Toy models for D. H. Lehmer’s conjecture II

Eiichi Bannai* and Tsuyoshi Miezaki†

Abstract.
In the previous paper, we studied the “Toy models for D. H. Lehmer’s conjecture”. Namely, we showed that the m-th Fourier coefficient of the weighted theta series of the \mathbb{Z}^2-lattice and the A_2-lattice does not vanish, when the shell of norm m of those lattices is not the empty set. In other words, the spherical 4 (resp. 6)-design does not exist among the nonempty shells in the \mathbb{Z}^2-lattice (resp. A_2-lattice).

This paper is the sequel to the previous paper. We take 2-dimensional lattices associated to the algebraic integers of imaginary quadratic fields whose class number is either 1 or 2, except for $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, then, show that the m-th Fourier coefficient of the weighted theta series of those lattices does not vanish, when the shell of norm m of those lattices is not the empty set. Equivalently, we show that the corresponding spherical 2-design does not exist among the nonempty shells in those lattices.

Key Words and Phrases. weighted theta series, spherical t-design, modular forms, lattices, Hecke operator.

2000 Mathematics Subject Classification. Primary 11F03; Secondary 05B30; Tertiary 11R04.

*Faculty of Mathematics, Kyushu University, Motooka 744 Nishi-ku, Fukuoka, 819-0395 Japan, bannai@math.kyushu-u.ac.jp
†Division of Mathematics, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan, miezaki@math.is.tohoku.ac.jp
1 Introduction

The concept of spherical t-design is due to Delsarte-Goethals-Seidel [7]. For a positive integer t, a finite nonempty subset X of the unit sphere $S^{n-1} = \{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \cdots + x_n^2 = 1 \}$ is called a spherical t-design on S^{n-1} if the following condition is satisfied:

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} f(x) d\sigma(x),$$

for all polynomials $f(x) = f(x_1, x_2, \ldots, x_n)$ of degree not exceeding t. Here, the righthand side means the surface integral on the sphere, and $|S^{n-1}|$ denotes the surface volume of the sphere S^{n-1}. The meaning of spherical t-design is that the average value of the integral of any polynomial of degree up to t on the sphere is replaced by the average value at a finite set on the sphere. A finite subset X in $S^{n-1}(r)$, the sphere of radius r centered at the origin, is also called a spherical t-design if $\frac{1}{r}X$ is a spherical t-design on the unit sphere S^{n-1}.

We denote by $\text{Harm}_j(\mathbb{R}^n)$ the set of homogeneous harmonic polynomials of degree j on \mathbb{R}^n. It is well known that X is a spherical t-design if and only if the condition

$$\sum_{x \in X} P(x) = 0$$

holds for all $P \in \text{Harm}_j(\mathbb{R}^n)$ with $1 \leq j \leq t$. If the set X is antipodal, that is $-X = X$, and j is odd, then the above condition is fulfilled automatically. So we reformulate the condition of spherical t-design on the antipodal set as follows:

Proposition 1.1. A nonempty finite antipodal subset $X \subset S^{n-1}$ is a spherical $2s + 1$-design if the condition

$$\sum_{x \in X} P(x) = 0$$

holds for all $P \in \text{Harm}_{2j}(\mathbb{R}^n)$ with $2 \leq 2j \leq 2s$.

2
It is known [7] that there is a natural lower bound (Fisher type inequality) for the size of a spherical t-design in S^{n-1}. Namely, if X is a spherical t-design in S^{n-1}, then

$$|X| \geq \left(n - 1 + \left\lfloor \frac{t}{2} \right\rfloor \right) + \left(n + \left\lfloor \frac{t}{2} \right\rfloor - 2 \right) \left\lfloor \frac{t}{2} \right\rfloor - 1$$

if t is even, and

$$|X| \geq 2 \left(n - 1 + \left\lfloor \frac{t}{2} \right\rfloor \right) \left\lfloor \frac{t}{2} \right\rfloor$$

if t is odd.

A lattice in \mathbb{R}^n is a subset $\Lambda \subset \mathbb{R}^n$ with the property that there exists a basis $\{v_1, \cdots, v_n\}$ of \mathbb{R}^n such that $\Lambda = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_n$, i.e., Λ consists of all integral linear combinations of the vectors v_1, \cdots, v_n. The dual lattice Λ is the lattice

$$\Lambda^\ast := \{ y \in \mathbb{R}^n \mid (y, x) \in \mathbb{Z}, \text{ for all } x \in \Lambda \},$$

where (x, y) is the standard Euclidean inner product. The lattice Λ is called integral if $(x, y) \in \mathbb{Z}$ for all $x, y \in \Lambda$. An integral lattice is called even if $(x, x) \in 2\mathbb{Z}$ for all $x \in \Lambda$, and it is odd otherwise. An integral lattice is called unimodular if $\Lambda^\ast = \Lambda$. For a lattice Λ and a positive real number $m > 0$, the shell of norm m of Λ is defined by

$$\Lambda_m := \{ x \in \Lambda \mid (x, x) = m \} = \Lambda \cap S^{n-1}(m).$$

Let $\mathbb{H} := \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \}$ be the upper half-plane.

Definition 1.1. Let Λ be the lattice of \mathbb{R}^n. Then for a polynomial P, the function

$$\Theta_{\Lambda, P}(z) := \sum_{x \in \Lambda} P(x)e^{iz(x,x)}$$

is called the theta series of Λ weighted by P.

Remark 1.1 (See Hecke [8], Schoeneberg [18, 19]).
(i) When $P = 1$, we get the classical theta series

$$\Theta_{\Lambda}(z) = \Theta_{\Lambda, 1}(z) = \sum_{m \geq 0} |\Lambda_m| q^m, \text{ where } q = e^{\pi i z}.$$
(ii) The weighted theta series can be written as

\[\Theta_{\Lambda, P}(z) = \sum_{x \in \Lambda} P(x) e^{i\pi z(x, x)} = \sum_{m \geq 0} a_m^{(P)} q^m, \]

where \(a_m^{(P)} := \sum_{x \in \Lambda_m} P(x). \)

These weighted theta series have been used efficiently for the study of spherical designs which are the nonempty shells of Euclidean lattices. (See [22, 23, 5, 15, 6]. See also [2].)

Lemma 1.1 (cf. [22, 23, 15, Lemma 5]). Let \(\Lambda \) be an integral lattice in \(\mathbb{R}^n \). Then, for \(m > 0 \), the non-empty shell \(\Lambda_m \) is a spherical \(t \)-design if and only if

\[a_m^{(P)} = 0 \]

for all \(P \in \text{Harm}_{2j}(\mathbb{R}^n) \) with \(1 \leq 2j \leq t \), where \(a_m^{(P)} \) are the Fourier coefficients of the weighted theta series

\[\Theta_{\Lambda, P}(z) = \sum_{m \geq 0} a_m^{(P)} q^m. \]

The theta series of \(\Lambda \) weighted by \(P \) is a modular form for some subgroup of \(SL_2(\mathbb{R}) \). We recall the definition of the modular forms.

Definition 1.2. Let \(\Gamma \subset SL_2(\mathbb{R}) \) be a Fuchsian group of the first kind and let \(\chi \) be a character of \(\Gamma \). A holomorphic function \(f : \mathbb{H} \to \mathbb{C} \) is called a modular form of weight \(k \) for \(\Gamma \) with respect to \(\chi \), if the following conditions are satisfied:

(i) \(f \left(\frac{az + b}{cz + d} \right) = \left(\frac{cz + d}{\chi(\sigma)} \right)^k f(z) \) for all \(\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma. \)

(ii) \(f(z) \) is holomorphic at every cusp of \(\Gamma \).

If \(f(z) \) has period \(N \), then \(f(z) \) has a Fourier expansion at infinity, [10]:

\[f(z) = \sum_{m=0}^{\infty} a_m q_N^m, \quad q_N = e^{2\pi i z/N}. \]
We remark that for \(m < 0 \), \(a_m = 0 \), by the condition (ii). A modular form with constant term \(a_0 = 0 \), is called a cusp form. We denote by \(M_k(\Gamma, \chi) \) (resp. \(S_k(\Gamma, \chi) \)) the space of modular forms (resp. cusp forms) with respect to \(\Gamma \) with the character \(\chi \). When \(f \) is the normalized eigenform of Hecke operators, p.163, [10], the Fourier coefficients satisfy the following relations:

Lemma 1.2 (cf. [10, Proposition 32, 37, 40, Exercise 2, p.164]). Let \(f(z) = \sum_{m \geq 1} a(m)q^m \in S_k(\Gamma, \chi) \). If \(f(z) \) is the normalized eigenform of Hecke operators, then the Fourier coefficients of \(f(z) \) satisfy the following relations:

\[
 a(mn) = a(m)a(n) \quad \text{if} \quad (m, n) = 1
\]

\[
 a(p^{\alpha+1}) = a(p)a(p^{\alpha}) - \chi(p)p^{k-1}a(p^{\alpha-1}) \quad \text{if} \quad p \text{ is a prime.}
\]

We set \(f(z) = \sum_{m \geq 1} a(m)q^m \in S_k(\Gamma, \chi) \). When \(\dim S_k(\Gamma, \chi) = 1 \) and \(a(1) = 1 \), then \(f(z) \) is the normalized eigenform of Hecke operators, [10]. So, the coefficients of \(f(z) \) have the relations as mentioned in Lemma 1.2. It is known that

\[
 |a(p)| < 2p^{(k-1)/2}
\]

for all primes \(p \). Note that this is the Ramanujan conjecture and its generalization, called the Ramanujan-Petersson conjecture for cusp forms which are eigenforms of the Hecke operators. These conjectures were proved by Deligne as a consequence of his proof of the Weil conjectures, [10, page 164], [9]. Moreover, for a prime \(p \) with \(\chi(p) = 1 \) the following equation holds, [11].

\[
 a(p^{\alpha}) = p^{(k-1){\alpha}/2} \frac{\sin(\alpha + 1)\theta_p}{\sin \theta_p},
\]

where \(2 \cos \theta_p = a(p)p^{-(k-1)/2} \).

It is well known that the theta series of \(\Lambda \subset \mathbb{R}^n \) weighted by harmonic polynomial \(P \in \text{Harm}_j(\mathbb{R}^n) \) is a modular form of weight \(n/2 + j \) for some subgroup \(\Gamma \subset SL_2(\mathbb{R}) \). In particular, when \(\text{deg}(P) \geq 1 \), the theta series of \(\Lambda \) weighted by \(P \) is a cusp form.

For example, we consider the even unimodular lattice \(\Lambda \). Then the theta series of \(\Lambda \) weighted by harmonic polynomial \(P, \Theta_{\Lambda,P}(z) \), is a modular form with respect to \(SL_2(\mathbb{Z}) \).
Example 1.1. Let Λ be the E_8-lattice. This is an even unimodular lattice of \mathbb{R}^8, generated by the E_8 root system. The theta series is as follows:

$$\Theta_{\Lambda}(z) = E_4(z) = 1 + 240 \sum_{m=1}^{\infty} \sigma_3(m) q^{2m}$$

$$= 1 + 240q^2 + 2160q^4 + 6720q^6 + 17520q^8 + \cdots,$$

where $\sigma_3(m)$ is a divisor function $\sigma_3(m) = \sum_{d|m} d^3$.

For $j = 2, 4$ and 6, the theta series of Λ weighted by $P \in \text{Harm}_j(\mathbb{R}^8)$ is a weight 6, 8 and 10 cusp form with respect to $SL_2(\mathbb{Z})$. However, it is well known that for $k = 6, 8$ and 10, $\dim S_k(SL_2(\mathbb{Z})) = 0$, that is, $\Theta_{\Lambda, P}(z) = 0$. Then by Lemma 1.1 all the nonempty shells of E_8-lattice are spherical 6-design.

For $j = 8$, the theta series of Λ weighted by P is a weight 12 cusp form with respect to $SL_2(\mathbb{Z})$. Such a cusp form is uniquely determined up to constant, i.e., it is Ramanujan’s delta function:

$$\Delta_{24}(z) = q^2 \prod_{m \geq 1} (1 - q^{2m})^{24} = \sum_{m \geq 1} \tau(m) q^{2m}.$$

The following proposition is due to Venkov, de la Harpe and Pache [5, 6, 15, 22].

Proposition 1.2 (cf. [15]). Let the notation be the same as above. Then the following are equivalent:

(i) $\tau(m) = 0$.

(ii) $(\Lambda)_{2m}$ is an 8-design.

It is a famous conjecture of Lehmer that $\tau(m) \neq 0$. So, Proposition 1.2 gives a reformulation of Lehmer’s conjecture. Lehmer proved in [11] the following theorem.

Theorem 1.1 (cf. [11]). Let m_0 be the least value of m for which $\tau(m) = 0$. Then m_0 is a prime if it is finite.

There are many attempts to study Lehmer’s conjecture ([11] 20), but it is difficult to prove and it is still open.
Recently, however, we showed the “Toy models for D. H. Lehmer’s conjecture” [3]. We take the two cases \mathbb{Z}^2-lattice and A_2-lattice. Then, we consider the analogue of Lehmer’s conjecture corresponding to the theta series weighted by some harmonic polynomial P. Namely, we show that the m-th coefficient of the weighted theta series of \mathbb{Z}^2-lattice does not vanish when the shell of norm m of those lattices is not an empty set. Or equivalently, we show the following result.

Theorem 1.2 (cf. [3]). The nonempty shells in \mathbb{Z}^2-lattice (resp. A_2-lattice) are not spherical 4-designs (resp. 6-designs).

This paper is sequel to the previous paper [3]. In this paper, we take some lattices related to the imaginary quadratic fields. Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field, and let \mathcal{O}_K be its ring of algebraic integers. Let Cl_K be the ideal classes. In this paper, we only consider the cases $|\text{Cl}_K| = 1$ and $|\text{Cl}_K| = 2$ except for Section 6. So, when we consider the cases $|\text{Cl}_K| = 1$ and $|\text{Cl}_K| = 2$, we denote by \mathfrak{o} (resp. \mathfrak{a}) the principal (resp. nonprincipal) ideal class.

We denote by d_K the discriminant of K:

$$d_K = \begin{cases} -4d & \text{if } -d \equiv 2, 3 \pmod{4}, \\ -d & \text{if } -d \equiv 1 \pmod{4}. \end{cases}$$

Theorem 1.3 (cf. [24, page 87]). Let d be a positive square-free integer, and let $K = \mathbb{Q}(\sqrt{-d})$. Then

$$\mathcal{O}_K = \begin{cases} \mathbb{Z} + \mathbb{Z} \sqrt{-d} & \text{if } -d \equiv 2, 3 \pmod{4}, \\ \mathbb{Z} + \mathbb{Z} \frac{-1 + \sqrt{-d}}{2} & \text{if } -d \equiv 1 \pmod{4}. \end{cases}$$

Therefore, we consider \mathcal{O}_K to be the lattice in \mathbb{R}^2 with the basis

$$\begin{cases} (1, 0), (1, \sqrt{-d}) & \text{if } -d \equiv 2, 3 \pmod{4}, \\ (1, 0), \left(-\frac{1}{2}, \frac{\sqrt{-d}}{2} \right) & \text{if } -d \equiv 1 \pmod{4}, \end{cases}$$

denoted by $L_\mathfrak{o}$.

Generally, it is well-known that there exists one-to-one correspondence between the set of reduced quadratic forms $f(x, y)$ with a fundamental discriminant $d_K < 0$ and the set of fractional ideal classes of the unique quadratic
field $\mathbb{Q}(\sqrt{-d})$ \cite{24}, page 94]. Namely, For a fractional ideal $A = \mathbb{Z}\alpha + \mathbb{Z}\beta$, we obtain the quadratic form $ax^2 + bxy + cy^2$, where $a = \alpha\alpha'/N(A)$, $b = (\alpha\beta' + \alpha'\beta)/N(A)$ and $c = \beta\beta'/N(A)$. Conversely, for a quadratic form $ax^2 + bxy + cy^2$, we obtain the fractional ideal $\mathbb{Z} + \mathbb{Z}(b + \sqrt{d_{K}})/2a$. We remark that $N(A)$ is a norm of A and α' is a complex conjugate of α.

Here, we define the automorphism group of $f(x, y)$ as follows:

$$U_f = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_2(\mathbb{Z}) \mid f(\alpha x + \beta y, \gamma x + \delta y) = f(x, y) \right\}.$$

Then, for $n \geq 1$, the number of the nonequivalent solutions of $f(x, y) = n$ under the action of U_f is equal to the number of the integral ideals of norm n \cite{24}.

Theorem 1.4 (cf. \cite{24}, page 63). Let $f(x, y)$ be the reduced quadratic form with a fundamental discriminant $D < 0$ and U_f be the automorphism group of $f(x, y)$. Then

$$\sharp U_f = \begin{cases} 6 & \text{if } D = -3, \\ 4 & \text{if } D = -4, \\ 2 & \text{if } D < -4. \end{cases}$$

These classical results are due to Gauss, Dirichlet, etc. Let a be an ideal class and $f_a(x, y)$ be the reduced quadratic form corresponding to a. Moreover, let L_a be the lattice corresponding to $f(x, y)$. We denote by $N(A)$ the norm of an ideal A. Then, using Theorem 1.4, we have

$$\sum_{x \in L_a} q^{(x,x)} = 1 + \sharp U_f \sum_{n=1}^{\infty} \sharp \{ A \mid A \text{ is an integral ideal of } a, N(A) = n \} q^n.$$

When $|\text{Cl}_K| = 2$, we give the generators of L_a in Appendix. Here, we remark that when $K = \mathbb{Q}(\sqrt{-1})$ (resp. $K = \mathbb{Q}(\sqrt{-3})$), L_o is \mathbb{Z}^2-lattice (resp. A_2-lattice). We studied the spherical designs of shells of those lattices in the previous paper \cite{3}.

In this paper, we take the imaginary quadratic fields $\mathbb{Q}(\sqrt{-d})$, with $d \neq 1$ and $d \neq 3$. Then, we consider the analogue of Lehmer’s conjecture corresponding to its theta series weighted by some harmonic polynomial P. Here, we consider the following problem that whether the nonempty shells of L_o and L_a are spherical 2-designs (hence 3-designs) or not.
In Section 4, we study the case that the class number is 1. We show that the m-th coefficient of the weighted theta series of L_α-lattice does not vanish when the shell of norm m of those lattices is not an empty set. Or equivalently, we show the following result:

Theorem 1.5. Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field whose class number is 1 and $d \neq 1, 3$ i.e., d is in the following set: $\{2, 7, 11, 19, 43, 67, 163\}$. Then, the nonempty shells in L_α are not spherical 2-designs.

Similarly, in Section 5, we study the case that the class number is 2 and show the following result:

Theorem 1.6. Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field whose class number is 2 i.e., d is in the following set: $\{5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427\}$. Then, the nonempty shells in L_α and L_α are not spherical 2-designs.

In Section 6, we consider the case that the class number is 3 and study the property of Hecke characters. In Section 7, we give some concluding remarks and state a conjecture for the future study.

2 Preliminaries

In this section, we review the theory of imaginary quadratic fields.

Theorem 2.1 (cf. [1, page 104, Proposition 5.16]). *We can classify the prime ideals of a quadratic field as follows:*

1. If p is an odd prime and $(d_K/p) = 1$ (resp. $d_K \equiv 1 \pmod{8}$) then $(p) = P\overline{P}$ (resp. $(2) = P\overline{P}$), where P and \overline{P} are prime ideals with $P \neq \overline{P}$, $N(P) = N(\overline{P}) = p$ (resp. $N(P) = 2$).

2. If p is an odd prime and $(d_K/p) = -1$ (resp. $d_K \equiv 5 \pmod{8}$) then $(p) = P$ (resp. $(2) = P$), where P is a prime ideal with $N(P) = p^2$ (resp. $N(P) = 4$).

3. If $p \mid d_k$ then $(p) = P^2$, where P is a prime ideal with $N(P) = p$.
Lemma 2.1. Let I be an integral ideal of K. For $n \in \mathbb{N}$, if $N(I) = n$ and I is a principal ideal, namely, $I \in \mathfrak{o}$ then there exist $a, b \in \mathbb{Z}$ such that for $-d \equiv 2, 3 \pmod{4}$

$$n = a^2 + db^2,$$

for $-d \equiv 1 \pmod{4}$

$$n = a^2 + db^2 \quad \text{or} \quad n = \frac{a^2 + db^2}{4}.$$

If $|\text{Cl}_K| = 2$, $N(I) = n$ and I is a nonprincipal ideal, namely, $I \in \mathfrak{a}$ and assume that m is one of the norm of nonprincipal ideals then there exist $a, b \in \mathbb{Z}$ such that for $-d \equiv 2, 3 \pmod{4}$

$$mn = a^2 + db^2,$$

for $-d \equiv 1 \pmod{4}$

$$mn = a^2 + db^2 \quad \text{or} \quad mn = \frac{a^2 + db^2}{4}.$$

Proof. We assume that $|\text{Cl}_K| = 1$. For $-d \equiv 2, 3 \pmod{4}$, we can write $I = (a + b\sqrt{-d})$, then $N(I) = a^2 + db^2$. For $-d \equiv 1 \pmod{4}$, we can write $I = (a + b\sqrt{-d})$ or $I = ((a + b\sqrt{-d})/2)$, then $N(I) = a^2 + db^2$ or $N(I) = (a^2 + db^2)/4$.

Here, we assume that $|\text{Cl}_K| = 2$. Let J be the nonprincipal ideal of K whose norm is m. If I is a nonprincipal ideal then, JI is a principal ideal of K. Therefore, for $-d \equiv 2, 3 \pmod{4}$, we can write $JI = (a + b\sqrt{-d})$, then $N(JI) = a^2 + db^2$. Hence, $mn = a^2 + db^2$. For $-d \equiv 1 \pmod{4}$, we can write $JI = (a + b\sqrt{-d})$ or $JI = ((a + b\sqrt{-d})/2)$, then $N(JI) = a^2 + db^2$ or $N(JI) = (a^2 + db^2)/4$. Hence, $mn = a^2 + db^2$ or $mn = (a^2 + db^2)/4$. \square

Proposition 2.1. Let $F(m)$ be the number of the integral ideals of norm m of K. Let p be a prime number. Then, if $p \neq 2$

$$F(p^e) = \begin{cases} e + 1 & \text{if } (d_K/p) = 1, \\ (1 + (-1)^e)/2 & \text{if } (d_K/p) = -1, \\ 1 & \text{if } p \mid d_K, \end{cases}$$

if $p = 2$

$$F(2^e) = \begin{cases} e + 1 & \text{if } d_K \equiv 1 \pmod{8}, \\ (1 + (-1)^e)/2 & \text{if } d_K \equiv 5 \pmod{8}, \\ 1 & \text{if } 2 \mid d_K. \end{cases}$$
Proof. When \((d_K/p) = 1\) i.e., \((p) = P\overline{P}\) and \(P \neq \overline{P}\), since \(P\) and \(\overline{P}\) are the only integral ideals of norm \(p\), we have \(F(p) = 2\). Moreover, the integral ideals of norm \(p^e\) are as follows: \(P^e, P^{e-1}\overline{P}, \ldots, (\overline{P})^e\). So, we have \(F(p^e) = e + 1\). The other cases can be proved similarly.\(\square\)

3 Hecke characters and Theta series

In this section, we introduce the Hecke character and discuss the relationships between the Hecke character and the weighted theta series of the lattices \(L_o\) and \(L_a\). Then, we show that for \(|\text{Cl}_K| = 1\) and \(P_1 = (x^2 - y^2)/2\), the weighted theta series \(\Theta_{L_o,P_1}\) is a normalized Hecke eigenform. For \(|\text{Cl}_K| = 2\) and \(P_2 = x^2 - y^2\), a certain sum of the two weighted theta series \(c_1\Theta_{L_o,P_2} + c_2\Theta_{L_a,P_2}\) is a normalized Hecke eigenform. Later, we give the explicit values of \(c_1\) and \(c_2\).

A Hecke character \(\phi\) of weight \(k \geq 2\) with modulus \(\Lambda\) is defined in the following way. Let \(\Lambda\) be a nontrivial ideal in \(\mathcal{O}_K\) and let \(I(\Lambda)\) denote the group of fractional ideals prime to \(\Lambda\). A Hecke character \(\phi\) with modulus \(\Lambda\) is a homomorphism

\[
\phi : I(\Lambda) \to \mathbb{C}^\times
\]

such that for each \(\alpha \in K^\times\) with \(\alpha \equiv 1 \pmod{\Lambda}\) we have

\[
(7) \quad \phi(\alpha \mathcal{O}_K) = \alpha^{k-1}.
\]

Let \(\omega_\phi\) be the Dirichlet character with the property that

\[
\omega_\phi(n) := \phi((n))/n^{k-1}
\]

for every integer \(n\) coprime to \(\Lambda\).

Theorem 3.1 (cf. [14, page 9], [13, page 183]). Let the notation be the same as above, and define \(\Psi_{K,\Lambda}(z)\) by

\[
(8) \quad \Psi_{K,\Lambda}(z) := \sum_A \phi(A)q^{N(A)} = \sum_{n=1}^{\infty} a(n)q^n,
\]

where the sum is over the integral ideals \(A\) that are prime to \(\Lambda\) and \(N(A)\) is the norm of the ideal \(A\). Then \(\Psi_{K,\Lambda}(z)\) is a cusp form in \(S_k(\Gamma_0(d_K \cdot N(\Lambda)), (\frac{d_K}{d}) \omega_\phi)\).
We remark that function (8) is a normalized Hecke eigenform [11, 21]. Moreover, if the class number of K is h then the character as given in (7) will have h extensions to nonprincipal ideals. Namely, the function (8) has h choices, so we denote by $\Psi_{K,\Lambda}^{(1)}(z), \ldots, \Psi_{K,\Lambda}^{(h)}(z)$ each functions (see [16]).

Example 3.1.

(i) $d = 2$.

We calculate $\Psi_{K,\Lambda}(z) = \sum_{m \geq 1} a(m)q^m$, where $\Lambda = (1)$ and the weight of the Hecke character is 3. We remark that $|\Cl_K| = 1$. By the definitions (7) and (8), we have $a(1) = 1^2 = 1$, $a(2) = \sqrt{-2}^2 = -2$, $a(3) = (-1 + \sqrt{-2})^2 + (-1 - \sqrt{-2})^2 = 2$, $a(4) = 2^2$, \ldots. Thus, we obtain

$$\Psi_{K,\Lambda}^{(1)}(z) = q - 2q^2 - 2q^3 + 4q^4 + 4q^6 - 8q^8 - 5q^9 + \cdots.$$

(ii) $d = 5$.

We calculate $\Psi_{K,\Lambda}(z) = \sum_{m \geq 1} a(m)q^m$, where $\Lambda = (1)$ and the weight of the Hecke character is 3. We remark that $|\Cl_K| = 2$. When A of norm m is a nonprincipal ideal, A^2 is a principal ideal, so, $\phi(A^2)$ is computable by the definition (7). For example, $\phi((2, 1 + \sqrt{-5})^2) = \phi((2)) = 4$, so, we can assume that $\phi((2, 1 + \sqrt{-5})) = 2$, i.e., $a(2) = 2$. Then, since $(2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5}) = (1 - \sqrt{-5})$ and $(2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) = (-1 - \sqrt{-5})$, we have $a(3) = ((1 + \sqrt{-5})^2 + (1 - \sqrt{-5})^2)/2 = -4$, $a(4) = 2^2$, \ldots. Thus, we obtain

$$\Psi_{K,\Lambda}^{(1)}(z) = q + 2q^2 - 4q^3 + 4q^4 - 5q^5 - 8q^6 + 4q^7 + 8q^8 + 7q^9 + \cdots.$$

| Table 1: Integral ideals of small norm of $d = 2$ and $d = 5$ |
|---|---|
| $N(A)$ | A: ideal |
| 1 | (1) |
| 2 | (\sqrt{-2}) |
| 3 | (-1 + \sqrt{-2}) |
| 4 | (2) |
| 5 | (\sqrt{-5}) |
| 6 | (1 - \sqrt{-5}) |

$\phi(A^2)$ is computable by the definition (7). For example, $\phi((2, 1 + \sqrt{-5})^2) = \phi((2)) = 4$, so, we can assume that $\phi((2, 1 + \sqrt{-5})) = 2$, i.e., $a(2) = 2$. Then, since $(2, 1 + \sqrt{-5})(3, 1 + \sqrt{-5}) = (1 - \sqrt{-5})$ and $(2, 1 + \sqrt{-5})(3, 1 - \sqrt{-5}) = (-1 - \sqrt{-5})$, we have $a(3) = ((1 + \sqrt{-5})^2 + (1 - \sqrt{-5})^2)/2 = -4$, $a(4) = 2^2$, \ldots. Thus, we obtain

$$\Psi_{K,\Lambda}^{(1)}(z) = q + 2q^2 - 4q^3 + 4q^4 - 5q^5 - 8q^6 + 4q^7 + 8q^8 + 7q^9 + \cdots.$$
On the other hand, we assume that $\phi((2, 1 + \sqrt{-5})) = -2$, i.e., $a(2) = -2$. Then, we have

$$\Psi_{K, \Lambda}^{(2)}(z) = q - 2q^2 + 4q^3 + 4q^4 - 5q^5 - 8q^6 - 4q^7 - 8q^8 + 7q^9 + \cdots.$$

Here, we discuss the relationships between the Hecke character and the weighted theta series of the lattices L_o and L_a. First, we quote the following theorem:

Theorem 3.2 (cf. [13, page 192]). Let L be an integral lattice with the Gram matrix A and N be the natural number such that the elements of NA^{-1} are rational integers. Let the character $\chi(d)$ be

$$\chi(d) = \left(\frac{(-1)^{r/2} \det L}{d}\right).$$

Then, for $P \in \text{Harm}_2(\mathbb{R}^2)$,

(1) $\Theta_{L, P} \in M_3(\Gamma_0(4N), \chi)$.

(2) If all the diagonal elements of A are even, then $\Theta_{L, P} \in M_3(\Gamma_0(2N), \chi)$.

(3) If all the diagonal elements of A and NA^{-1} are even, then $\Theta_{L, P} \in M_3(\Gamma_0(N), \chi)$.

Then, we obtain the following lemmas:

Lemma 3.1. Let K be an imaginary quadratic field whose class number is 1 and L_o be the lattice corresponding to the principal ideal class \mathfrak{o}. Let ϕ be the Hecke character of weight 3 with modulus Λ. Assume that $\Lambda = (1)$ and $P_1 = (x^2 - y^2)/2 \in \text{Harm}_2(\mathbb{R}^2)$. Then, $\Psi_{K, \Lambda}(q) = \Theta_{L_o, P_1}(q)$.

Lemma 3.2. Let K be an imaginary quadratic field whose class number is 2 and L_o (resp. L_a) be the lattice corresponding to the principal ideal class \mathfrak{o} (resp. nonprincipal ideal class \mathfrak{a}). Let ϕ be the Hecke character of weight 3 with modulus Λ. Assume that $\Lambda = (1)$ and $P_2 = x^2 - y^2 \in \text{Harm}_2(\mathbb{R}^2)$. Then, $\Psi_{K, \Lambda}(q) = c_1 \Theta_{L_o, P_2}(q) + c_2 \Theta_{L_a, P_2}(q)$, where c_1 and c_2 are given as in table 2.

Proof of Lemmas 3.1 and 3.2. First, we assume that the lattices are integral lattices, if not we multiple the Gram matrix of L by 2.
Table 2: Coefficients, c_1 and c_2

$-d$	-5	-6	-10	-13	-15	-22	-35	-37	-51
c_1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
c_2	1/2	1/2	1/2	1/2	2	1/2	3	1/2	1/2

$-d$	-58	-91	-115	-123	-187	-235	-267	-403	-427
c_1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
c_2	1/2	5/3	1/2	1/2	7/3	1/2	11/9	1/2	

Because of the Theorems 3.1 and 3.2, $\Psi_{K, \Lambda}(q)$, $\Theta_{L_0, P}(q)$ and $\Theta_{L_0, P}(q)$ with $P = P_1$, P_2 are modular forms of the same group Γ. Therefore, we calculate the basis of the space of modular forms of group Γ and check $\Psi_{K, \Lambda}(q) = \Theta_{L_0, P_1}(q)$ and $\Psi_{K, \Lambda}(q) = c_1\Theta_{L_0, P_2}(q) + c_2\Theta_{L_0, P_2}(q)$ explicitly (using “Sage”, Mathematics Software [17]).

Corollary 3.1. Let the notation be the same as above. If $|\text{Cl}_K| = 1$ then $\Theta_{L_1, P_1}(q)$ is a normalized Hecke eigenform. If $|\text{Cl}_K| = 2$ then $c_1\Theta_{L_1, P_2}(q) + c_2\Theta_{L_2, P_2}(q)$ is a normalized Hecke eigenform.

Proof. The function (8) is a normalized Hecke eigenform [11][21].

Finally, we give the following proposition, which is an analogue of Theorem 1.1 and the crucial part of the proof of Theorems 1.5 and 1.6.

Proposition 3.1. Assume that $\sum_{m \geq 1} a(m)q^m$ is a normalized Hecke eigenform of $S_3(\Gamma, \chi)$ and the coefficients $a(m)$ are rational integers. Moreover, let p be the prime such that $\chi(p) = 1$. Let α_0 be the least value of α for which $a(p^\alpha) = 0$. If $a(p) \neq \pm p$ then $\alpha_0 = 1$ if it is finite.

Proof. Assume the contrary, that is, $\alpha_0 > 1$, so that $a(p) \neq 0$. By the equation (5),

$$a(p^{\alpha_0}) = 0 = p^{\alpha_0} \frac{\sin(\alpha_0 + 1)\theta_p}{\sin \theta_p}.$$

This shows that θ_p is a real number of the form $\theta_p = \pi k/(1 + \alpha_0)$, where k is an integer. Now the number

$$z = 2 \cos \theta_p = a(p)p^{-1},$$

(9)
being twice the cosine of a rational multiple of \(2\pi\), is an algebraic integer. On the other hand \(z\) is a root of the equation

\[(10) \quad pz - a(p) = 0.\]

Hence \(z\) is a rational integer. By (4) and (9), we have \(|z| \leq 1\). Therefore \(z = \pm 1\) and the equation (10) becomes \(a(p) = \pm p\). By assumption, this is a contradiction. \(\square\)

\section{The case of \(|\text{Cl}_K| = 1\)}

Let \(K := \mathbb{Q}(\sqrt{-d})\) be an imaginary quadratic field. If the class number of \(K\) is 1 then \(d\) is in the following set \(\{1, 2, 3, 7, 11, 19, 43, 67, 163\}\). In particular, we only consider the cases where \(d\) is in the set: \(\{2, 7, 11, 19, 43, 67, 163\}\) since the cases \(d = 1\) and \(d = 3\) are considered in \([3]\).

In this section, we assume that \(a(m)\) and \(b(m)\) are the coefficients of the following functions:

\[
\Theta_{L_0}(q) = \sum_{m \geq 0} a(m)q^m, \quad \Theta_{L_0,P_1}(q) = \sum_{m \geq 1} b(m)q^m,
\]

where \(P_1 = (x^2 - y^2)/2 \in \text{Harm}_2(\mathbb{R}^2)\).

\textbf{Lemma 4.1.} Let \(d\) be one of the elements in \(\{2, 7, 11, 19, 43, 67, 163\}\). We set \(a'(m) = a(m)/2\) for all \(m\). Then,

\[
a'(p^e) = \begin{cases}
 e + 1 & \text{if } (d_K/p) = 1, \\
 (1 + (-1)^e)/2 & \text{if } (d_K/p) = -1, \\
 1 & \text{if } p \mid d_K.
\end{cases}
\]

\textit{Proof.} Because of the equation (9), \(a'(m)\) is the number of integral ideals of \(K\) of norm \(m\). Therefore, it can be proved by Proposition 2.1. \(\square\)

\textbf{Lemma 4.2.} Let \(p\) be a prime number such that \((d_K/p) = 1\). Then, \(b(p) \neq 0\). Moreover, if \(p \neq d\) then \(b(p) \neq \pm p\).

\textit{Proof.} We remark that by Corollary 3.1 \(\Theta_{L_0,P_1}(q) = \Psi_{K,A}(q)\). So, the numbers \(b(m)\) are the coefficients of \(\Psi_{K,A}(q)\).
First, we assume that \(d \neq 2 \) i.e., \(-d \equiv 1 \pmod{4} \) and \(\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}(1 + \sqrt{-d})/2 \). If \(N((a + b\sqrt{-d})) \) is equal to \(p \) then by Lemma 2.1,
\[
p = a^2 + db^2.
\]
Because of the definition of \(\Psi_{\mathcal{O}_K}(q) \),
\[
b(p) = (a + b\sqrt{-d})^2 + (a - b\sqrt{-d})^2 = 2(a^2 - db^2).
\]
If \(b(p) = 0 \) then \(a^2 = db^2 \). This is a contradiction. Assume that \(b(p) = \pm p \).
Then,
\[
2(a^2 - db^2) = \pm(a^2 + db^2),
\]
that is, \(a^2 = 3db^2 \) or \(3a^2 = db^2 \). This is a contradiction.

Next, we assume that \(d = 2 \) i.e., \(-d \equiv 2 \pmod{4} \) and \(\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\sqrt{-2} \). If \(N((a + b\sqrt{-2})) \) is equal to \(p \) then by Lemma 2.1,
\[
p = a^2 + 2b^2.
\]
Because of the definition of \(\Psi_{\mathcal{O}_K}(q) \),
\[
b(p) = (a + b\sqrt{-2})^2 + (a - b\sqrt{-2})^2 = 2(a^2 - 2b^2).
\]
If \(b(p) = 0 \) then \(a^2 = 2b^2 \). This is a contradiction. Assume that \(b(p) = \pm p \).
Then,
\[
2(a^2 - 2b^2) = \pm(a^2 + 2b^2),
\]
that is, \(a^2 = 6b^2 \) or \(3a^2 = 2b^2 \). This is a contradiction.
Proof of Theorem 1.5. We will show that \(b(m) \neq 0 \) when \((L_0)_m \neq \emptyset\).

By Theorem 3.1, \(\Theta_{L_0,P_1} \) is a normalized Hecke eigenform. So, we assume that \(m \) is a power of prime, if not we could apply the equation (2). We will divide our considerations into the following three cases.

(i) Case \(m = p^\alpha \) and \(p \mid d_K \):
 By \(a(m) = 2 \) and the inequality (11), the shells \((L_0)_m\) are not spherical 2-designs. Hence, \(b(m) \neq 0 \).

(ii) Case \(m = p^\alpha \) and \((d_K/p) = -1\):
 By Lemma 4.1,
 \[
 a(p^n) = \begin{cases}
 0 & \text{if } n \text{ is odd}, \\
 2 & \text{if } n \text{ is even}.
 \end{cases}
 \]
 By \(a(m) = 2 \) and the inequality (11), when \(n \) is even, the shells \((L_0)_m\) are not spherical 2-designs. Hence, \(b(m) \neq 0 \).

(iii) Case \(m = p^\alpha \) and \((d_K/p) = 1\):
 By Proposition 3.1 and Lemma 4.2, we have \(b(m) \neq 0 \). This completes the proof of Theorem 1.5. \(\square \)

5 The case of \(|\text{Cl}_K| = 2 \)

Let \(K := \mathbb{Q}(\sqrt{-d}) \) be an imaginary quadratic field. In this section, we assume that the class number of \(K \) is 2. So, we consider that \(d \) is in the following set: \(\{5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427\} \). We denote by \(\mathfrak{o} \) (resp. \(\mathfrak{a} \)) the principal (resp. nonprincipal) ideal class.

In this section, we also assume that \(a(m) \) and \(b(m) \) are the coefficients of the following functions:

\[
\Theta_{L_0}(q) + \Theta_{L_a}(q) = \sum_{m \geq 0} a(m)q^m,
\]

\[
c_1 \Theta_{L_0,P_2}(q) + c_2 \Theta_{L_a,P_2}(q) = \sum_{m \geq 1} b(m)q^m,
\]

where \(c_1 \) and \(c_2 \) are defined in Lemma 3.2.
Lemma 5.1. Set \(l_1 := \{N(O) \mid x \in L_o\} \) and \(l_2 := \{N(A) \mid A \in a\} \). Then, \(l_1 \cap l_2 = \emptyset \). Therefore, the set \(L_o \cap L_a \) consists of the origin.

Proof. Let \(p \) be the prime number such that \((d_K/p) = 1 \). Then there exist prime ideals \(P \) and \(P' \) such that \((p) = PP' \) and \(N(P) = N(P') = p \). Since the class number is 2, we have \(P \) and \(P' \) or \(P \) and \(P' \) are in \(a \). If \(P \) and \(P' \) are in \(a \) we denote by \(p_i \) such a prime. If \(P \) and \(P' \) are in \(a \) we denote by \(p'_i \) such a prime.

Let \(p \) be the prime number such that \((d_K/p) = -1 \). Then \((p) \) is the prime ideal and \(N((p)) = p^2 \). We denote by \(q_i \) such a prime.

Let \(p \) be the prime number such that \(p \mid d_K \). Then there exists a prime ideal \(P \) such that \((p) = P^2 \) and \(N(P) = p \). Since the class number is 2, we have \(P \in o \) or \(P \in a \). If \(P \in o \) we denote by \(r_i \) such a prime. If \(P \in a \) we denote by \(r'_i \) such a prime.

We take the element \(n \in l_1 \cap l_2 \) and perform a prime factorization, \(n = p_1 \cdots p'_1 \cdots q_1 \cdots q_i \cdots r_1 \cdots r'_1 \cdots \). Then, \(p_1, \ldots, q_1, \ldots, r_1, \ldots \) correspond to principal ideals. So, if the number of the primes \(p' \) and \(r' \) is even then \(n \in l_1 \) and if the number of the primes \(p' \) and \(r' \) is odd then \(n \in l_2 \). This completes the proof of Lemma 5.1.

\[a'(p^e) = \begin{cases} e + 1 & \text{if } (d_K/p) = 1, \\ (1 + (-1)^e)/2 & \text{if } (d_K/p) = -1, \\ 1 & \text{if } p \mid d_K. \end{cases} \]

Proof. Because of the equation \(\Theta \), \(a'(m) \) is the number of integral ideals of \(K \) of norm \(m \). Therefore, it can be proved by Proposition 2.1.

Lemma 5.3. Let \(p \) be a prime number such that \((d_K/p) = 1 \). Then, \(b(p) \neq 0 \). Moreover, if \(p \neq d \) then \(b(p) \neq \pm p \).

Proof. We remark that by Corollary 3.1 \(c_1 \Theta_{L_a,P_2}(q) + c_2 \Theta_{L_a,P_2}(q) = \Psi_{K,A}(q) \). So, the numbers \(b(m) \) are the coefficients of \(\Psi_{K,A}(q) \).

We set \(N(J) = p \). When \(J \) is a principal ideal, it can be proved by the similar method in Lemma 4.2. So, we assume that \(J \) is nonprincipal.

We list the smallest prime number \(m \) such that \(m \mid d_K \) and \(m \in \{N(I) \mid I \in a\} \), and the values \(b(m) \) are in Table 3. First, we assume that \(-d \equiv 2 \) or
Table 3: Values of m and $b(m)$

$-d$	-5	-6	-10	-13	-15	-22	-35	-37	-51
m	2	2	2	3	2	5	2	3	
$b(m)$	2	2	2	-3	2	-5	2	3	

$-d$	-58	-91	-115	-123	-187	-235	-267	-403	-427
m	2	7	5	3	11	5	3	13	7
$b(m)$	2	-7	-5	3	-11	5	3	-13	7

3 (mod 4). If $N(J)$ is equal to p then by Lemma 2.1

$$mp = a^2 + db^2.$$

Because of the definition of $\Psi_{K,\Lambda}(q)$,

$$b(mp) = (a + b\sqrt{-d})^2 + (a - b\sqrt{-d})^2 = 2(a^2 - db^2).$$

Since $b(mp) = b(m)b(p)$ and the value of $b(m)$ in Table 3, we have $b(p) = a^2 - db^2$. If $b(p) = 0$ then $a^2 = db^2$. This is a contradiction. Assume that $b(p) = \pm p$. Then,

$$a^2 - db^2 = \pm \frac{a^2 + db^2}{2},$$

that is, $a^2 = 3db^2$ or $3a^2 = db^2$. This is a contradiction.

Next, we assume that $-d \equiv 1$ (mod 4). If $N(J)$ is equal to p then by Lemma 2.1 there exist $a, b \in \mathbb{Z}$ such that

$$mp = a^2 + db^2 \text{ or } mp = \frac{a^2 + db^2}{4}.$$

Because of the definition of $\Psi_{K,\Lambda}(q)$,

$$b(mp) = (a + b\sqrt{-d})^2 + (a - b\sqrt{-d})^2 = 2(a^2 - db^2).$$

or

$$b(mp) = \left(\frac{a + b\sqrt{-d}}{2}\right)^2 + \left(\frac{a - b\sqrt{-d}}{2}\right)^2 = a^2 - db^2.$$

19
Since $b(mp) = b(m)b(p)$ and the value of $b(m)$ in Table 3, we have $b(p) = 2/b(m) \times (a^2 - db^2)$ or $b(p) = 1/b(m) \times (a^2 - db^2)/2$. If $b(p) = 0$ then $a^2 = db^2$. This is a contradiction. Assume that $b(p) = \pm p$. Then,

$$\frac{2(a^2 - db^2)}{b(m)} = \pm \frac{a^2 + db^2}{m},$$

or

$$\frac{a^2 - db^2}{2b(m)} = \pm \frac{a^2 + db^2}{4m},$$

that is, $a^2 = 3db^2$ or $3a^2 = db^2$ since $m = \pm b(m)$ for $-d \equiv 1 \pmod{4}$. This is a contradiction.

Proof of Theorem 1.6. Because of Lemma 5.1 it is enough to show that $b(m) \neq 0$ when $(L_\sigma)_m \neq \emptyset$ or $(L_\lambda)_m \neq \emptyset$.

By Theorem 3.1 $c_1 \Theta_{L_\sigma, p_1} + c_2 \Theta_{L_\lambda, p_2}$ is a normalized Hecke eigenform. So, We assume that m is a power of prime, if not we could apply the equation (2). We will divide into the three cases.

(i) Case $m = p^\alpha$ and $p \mid d_K$:

By $a(m) = 2$ and (1), the shells $(L)_m$ are not spherical 2-designs. Hence, $b(m) \neq 0$.

(ii) Case $m = p^\alpha$ and $(d_K/p) = -1$:

By Lemma (4.1),

$$a(p^n) = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$

By $a(m) = 2$ and (1), when n is even, the shells $(L)_m$ are not spherical 2-designs. Hence, $b(m) \neq 0$.

(iii) Case $m = p^\alpha$ and $(d_K/p) = 1$:

By Proposition 3.1 and Lemma 5.3 $b(m) \neq 0$. This completes the proof of Theorem 1.6. □
6 The case of $|\text{Cl}_K| = 3$

In the previous sections, we studied the cases of class number $h = |\text{Cl}_K|$ is either 1 or 2. However, it seems that the situation is somewhat different for the cases of class numbers $h \geq 3$. In this section, we discuss briefly how it is different, by considering the case of $d = 23$ ($h = 3$).

We first remark that one reason of success for the cases $h = 1$ and $h = 2$ is that the coefficients $a(m)$ of the Hecke eigenform $\Psi_{K,A}$ are all integers. Therefore, by the formula (10) $z = a(p)/p$ is a rational number (and since it is an algebraic integer), and so it must be a rational integer. It seems that this situation is no more true in general for the cases of $h \geq 3$. We will give more details information, concentrating the special (and typical) case of $d = 23$.

We denoted by $\mathfrak{o}, \mathfrak{a}_1$ and \mathfrak{a}_2 the ideal classes. The corresponding quadratic forms are $x^2 + xy + 6y^2$, $2x^2 - xy + 3y^2$ and $2x^2 + xy + 3y^2$, namely, $L_\mathfrak{o} = \langle (1, 0), (1/2, \sqrt{3}/2) \rangle$, $L_{\mathfrak{a}_1} = \langle (2, 0), (1/2, \sqrt{3}/2) \rangle$ and $L_{\mathfrak{a}_2} = \langle (2, 0), (-1/2, \sqrt{3}/2) \rangle$, respectively. We give the weighed theta series of those ideal lattices. We set $P_1 = x^2 - y^2$ and $P_2 = xy$ in this section.

$$
\Theta_{L_\mathfrak{o}} = 1 + 2q + 2q^4 + 4q^6 + 4q^8 + 2q^9 + 4q^{12} + 2q^{16} + 4q^{18} + 2q^{23} + 4q^{24} + 2q^{25} + 4q^{26} + 4q^{27} + 4q^{32} + 6q^{36} + 4q^{39} + 8q^{48} + 2q^{49} + 4q^{52} + 4q^{54} + 4q^{58} + 4q^{59} + 4q^{62} + 6q^{64} + 8q^{72} + 4q^{78} + 2q^{81} + 4q^{82} + 4q^{87} + 2q^{92} + 4q^{93} + 4q^{94} + 8q^{96} + 2q^{100} + O[q]^{101}
$$

$$
\frac{1}{2} \times \Theta_{L_\mathfrak{o}, P_1} = q + 4q^4 - 11q^6 - 7q^8 + 9q^9 + q^{12} + 16q^{16} + 13q^{18} - 23q^{23} - 44q^{24} + 25q^{25} + 29q^{26} - 38q^{27} - 28q^{32} + 85q^{36} - 14q^{39} + 77q^{48} + 49q^{49} - 103q^{52} - 99q^{54} - 91q^{58} + 26q^{59} + 101q^{62} - 15q^{64} - 11q^{72} + 133q^{78} + 81q^{81} - 43q^{82} + 82q^{87} - 92q^{92} - 182q^{93} - 19q^{94} - 7q^{96} + 100q^{100} + O[q]^{101}
$$

$$
\Theta_{L_{\mathfrak{a}_1}, P_2} = 0
$$

$$
\Theta_{L_{\mathfrak{a}_1}, P_1} = 8q^2 - 11q^3 - 7q^4 + q^6 + 32q^8 + 13q^9 - 88q^{12} + 29q^{13} - 56q^{16} + 121q^{18} + 81q^{24} - 103q^{26} - 99q^{27} + 91q^{29} + 101q^{31} + 49q^{32} + 41q^{36} + 133q^{39} - 43q^{41} - 18q^{46} - 19q^{47} - 183q^{48} + 200q^{50} + 232q^{52} - 295q^{54} + 209q^{58} + 41q^{62} - 224q^{64} + 253q^{69} + 77q^{71} + 393q^{72} - 283q^{73} - 275q^{75} - 375q^{78} + 418q^{81} - 247q^{82} - 227q^{87} + 161q^{92} - 203q^{93} + 353q^{94} + 616q^{96} +
$$
392q^{98} - 175q^{100} + O[q]^{101}

\frac{4}{\sqrt{23}} \times \Theta_{L_1, \nu_2} = q^3 - 3q^4 + 5q^6 - 7q^9 + 9q^{13} - 11q^{18} + 13q^{24} - 3q^{26} + 9q^{27} - 15q^{29} - 15q^{31} + 21q^{32} - 27q^{36} + 17q^{39} + 33q^{41} - 39q^{47} - 19q^{48} + 45q^{54} + 31q^{58} - 51q^{62} - 23q^{69} + 57q^{71} + 5q^{72} - 15q^{73} + 25q^{75} - 35q^{78} - 38q^{81} + 45q^{82} - 55q^{87} + 69q^{92} + 65q^{93} - 27q^{94} - 75q^{100} + O[q]^{101}

\Theta_{L_2, \nu_1} = 1 + 2q^2 + 2q^3 + 2q^4 + 2q^6 + 2q^8 + 4q^{12} + 2q^{13} + 4q^{16} + 4q^{18} + 6q^{24} + 2q^{26} + 2q^{27} + 2q^{29} + 2q^{31} + 4q^{32} + 6q^{36} + 2q^{39} + 2q^{41} + 2q^{46} + 2q^{47} + 6q^{48} + 2q^{50} + 4q^{52} + 6q^{54} + 2q^{58} + 2q^{62} + 4q^{64} + 2q^{69} + 2q^{71} + 8q^{72} + 2q^{73} + 2q^{75} + 6q^{78} + 4q^{81} + 2q^{82} + 2q^{87} + 2q^{92} + 2q^{93} + 2q^{94} + 8q^{96} + 2q^{98} + 2q^{100} + O[q]^{101}

2 \times \Theta_{L_2, \nu_1} = 8q^2 - 11q^3 - 7q^4 + q^6 + 32q^8 + 13q^9 - 88q^{12} + 29q^{13} - 56q^{16} + 121q^{18} + 81q^{24} - 103q^{26} - 99q^{27} - 91q^{29} + 101q^{31} + 49q^{32} + 41q^{36} + 133q^{39} - 43q^{41} - 184q^{46} - 19q^{47} - 183q^{48} + 200q^{50} + 232q^{52} - 295q^{54} + 209q^{58} + 41q^{62} - 224q^{63} + 253q^{69} + 77q^{71} + 393q^{72} - 283q^{73} - 275q^{75} - 375q^{78} + 418q^{81} - 247q^{82} - 227q^{87} + 161q^{92} - 203q^{93} + 353q^{94} + 616q^{96} + 392q^{98} - 175q^{100} + O[q]^{101}

We calculate the Hecke character of weight 3 and modulus (1), i.e, we calculate \(\Psi_{K, \Lambda} = \sum_{m \geq 1} a(m)q^m \), where \(\Lambda = (1) \) and \(k = 3 \). When \(A \) of norm \(m \) is a nonprincipal ideal, \(A^3 \) is a principal ideal. Then we set \(\phi(A^3) = \phi(A)^3 \). For example, \((2, -1/2 + \sqrt{-23}/2)^3 = (-3/2 - \sqrt{-23}/2) \). Because of

\[
\phi \left(\left(\frac{-3 - \sqrt{-23}}{2} \right) \right) = \left(\frac{-3 - \sqrt{-23}}{2} \right)^2 = \frac{-7 + 3\sqrt{-23}}{2},
\]

\(\phi((2, -1/2 + \sqrt{-23}/2)) \) is one of the roots of

\[
(11) \quad x^3 - \left(\frac{-7 + 3\sqrt{-23}}{2} \right) = 0.
\]

We denote by \(\alpha_1, \alpha_2 \) and \(\alpha_3 \) the roots of equation (11), namely, \(\alpha_1 \sim -1.86272 + 0.728188i, \alpha_2 \sim 0.300733 - 1.97726i \) and \(\alpha_3 \sim 1.56199 + 1.24907i \), respectively. Then, \(\phi((2, -1/2 + \sqrt{-23}/2)) \) is one of \(\alpha_1, \alpha_2 \) or \(\alpha_3 \). (Actually there are three different Hecke characters in this case.) First let us set \(\phi((2, -1/2 + \sqrt{-23}/2)) = \alpha_1 \). By the equation \((2, -1/2 + \sqrt{-23}/2) \)
\(\sqrt{-23}/2 = (2),\)

\[\phi\left(\left(2, \frac{-1 + \sqrt{-23}}{2}\right)\right) \times \phi\left(\left(2, \frac{1 + \sqrt{-23}}{2}\right)\right) = \phi((2)).\]

We get

\[\alpha_1 \times \phi\left(\left(2, \frac{1 + \sqrt{-23}}{2}\right)\right) = 4,\]

hence, \(\phi((2, 1/2 + \sqrt{-23}/2)) = 4/\alpha_1.\) So,

\[a(2) = \phi\left(\left(2, \frac{-1 + \sqrt{-23}}{2}\right)\right) + \phi\left(\left(2, \frac{1 + \sqrt{-23}}{2}\right)\right) = \alpha_1 + 4/\alpha_1.\]

By the equation \((2, -1/2 + \sqrt{-23}/2) \times (3, 1/2 - \sqrt{-23}/2) = (1/2 - \sqrt{-23}/2),\)

\[\phi\left(\left(2, \frac{-1 + \sqrt{-23}}{2}\right)\right) \times \phi\left(\left(3, \frac{1 - \sqrt{-23}}{2}\right)\right) = \phi\left(\left(\frac{1 - \sqrt{-23}}{2}\right)\right).\]

We get

\[\alpha_1 \times \phi\left(\left(3, \frac{1 - \sqrt{-23}}{2}\right)\right) = \left(\frac{1 - \sqrt{-23}}{2}\right)^2 = \frac{-11 - \sqrt{-23}}{2},\]

hence, \(\phi((3, 1/2 - \sqrt{-23}/2)) = (-11 - \sqrt{-23})/2 \times 1/\alpha_1.\) Similarly, \(\phi((3, -1/2 - \sqrt{-23}/2)) = (-11 + \sqrt{-23})/2 \times \alpha_1/\alpha_1^2 + 4).\) So,

\[a(3) = \phi\left(\left(3, \frac{1 - \sqrt{-23}}{2}\right)\right) + \phi\left(\left(3, \frac{-1 - \sqrt{-23}}{2}\right)\right)\]

\[= \frac{-11 - \sqrt{-23}}{2} \times \frac{1}{\alpha_1} + \frac{-11 + \sqrt{-23}}{2} \times \frac{\alpha_1}{\alpha_1^2 + 4}.\]

We recall \(\alpha_1 \sim -1.86272 + 0.728188i.\) Then, we obtain

\[\Psi_{K,\Lambda}^{(i)} = q - 3.72545q^2 + 4.24943q^3 + \cdots.\]

Actually, it is possible to continue this calculation, but we need the information on the basis of all the ideals, which is rather complicated. So, we determine the Hecke eigenforms \(\Psi_{K,\Lambda}^{(i)}\) by a different method. By computer calculation (using “Sage” [17]), we know that the space of the modular forms
of weight 3 where $\Psi_{K,\Lambda}$ belongs is of dimension 3. We can calculate the basis of this modular form explicitly, and the three basis elements are of the form:

\begin{align*}
q + 4q^4 - 11q^6 - 7q^8 + 9q^9 + \cdots, \\
q^2 - 5q^4 + 7q^6 + 4q^8 - 8q^9 + \cdots, \\
q^3 - 3q^4 + 5q^6 - 7q^9 + \cdots.
\end{align*}

On the other hand, because of Theorems 3.1 and 3.2, Θ_{L_0,P_1}, $\Theta_{L_{a_1},P_1}$ and $\Theta_{L_{a_2},P_2}$ are in the same space of Hecke eigenforms $\Psi_{K,\Lambda}^{(i)}$. Therefore, comparing the first three coefficients of the following equation:

$$
\Psi_{K,\Lambda}^{(i)}(q) = \frac{1}{2} \Theta_{L_0,P}(q) + a_2 \Theta_{L_{a_1},P}(q) + b_2 \sqrt{23} \Theta_{L_{a_2},P}(q),
$$

we can find numbers a and b as follows:

$$(a,b) = \begin{cases}
(A_1, B_2), \\
(A_2, B_1), \\
(A_3, B_3),
\end{cases}
$$

where A_1, A_2 and A_3 are the elements defined by

$$
\{x \mid 512x^3 - 96x + 7 = 0\} = \{A_1 = -0.465681, A_2 = 0.0751832, A_2 = 0.390498\},
$$

respectively, and B_1, B_2 and B_3 are the elements defined by

$$
\{x \mid 512x^3 - 2208x + 1587 = 0\} = \{B_1 = -2.37065, B_2 = 0.873067, B_3 = 1.49759\},
$$

respectively.

In this way, we can calculate the Hecke eigenforms $\Psi_{K,\Lambda}^{(i)}$. Namely,

$$
\Psi_{K,\Lambda}^{(1)} = q - 3.72545q^2 + 4.24943q^3 + 9.87897q^4 - 15.831q^5 - 21.9018q^6 + 9.05761q^7 + 41.9799q^8 - 21.3624q^9 + 42.0781q^{10} - 33.7437q^{11} - 23q^{12} - 93.07q^{13} + 25q^{14} + 79.5844q^{15} + 0.244826q^{16} + 55.473q^{17} - 33.9378q^{18} - 69.1528q^{19} + 89.4799q^{20} - 90.7777q^{21} - 8.78692q^{22} + 85.6853q^{23} + 42.8975q^{24} + 178.808q^{25} + 49q^{26} - 93.1362q^{27} + O[q^{28}],
$$

$$
\Psi_{K,\Lambda}^{(2)} = q + 0.601466q^2 + 1.54364q^3 - 3.63824q^4 + 0.928445q^5 - 4.59414q^6 - 6.61718q^7 - 5.61612q^8 + 23.5162q^9 + 11.7897q^{10} - 3.98001q^{11} - 23q^{12} - 7.90168q^{13} + 25q^{14} + 14.1442q^{15} -
$$
24.1073q^{27} - 42.4015q^{29} - 27.9663q^{31} + 25.4677q^{32} + 24.0749q^{36} + 36.3005q^{39} + 74.9986q^{41} - 13.8337q^{46} - 93.8839q^{47} + 18.1991q^{48} + 49q^{49} + 15.0366q^{50} + O[q]^{51}.

Ψ_{K,A}^{(3)} = q + 3.12398q^2 - 5.79306q^3 + 5.75927q^4 - 18.0974q^6 + 5.49593q^8 + 24.5596q^9 - 33.3638q^{12} - 2.15383q^{13} - 5.86788q^{16} + 76.7237q^{18} - 23q^{21} - 31.8383q^{24} + 25q^{25} - 6.72853q^{26} - 90.1376q^{27} - 13.0715q^{29} + 61.9041q^{31} - 40.3149q^{32} + 141.445q^{36} + 12.4773q^{39} - 66.2117q^{41} - 71.8516q^{46} + 50.9864q^{47} + 33.993q^{48} + 49q^{49} + 78.0996q^{50} + O[q]^{51}.

The coefficients $a(m)$ for this case are far from integers. In fact they are not elements in a cyclotomic number field in general. So, it seems difficult to use the Hecke eigenforms obtained this way to apply for the case of the class number 3 or more in general. Some new additional ideas will be needed to treat the case of $d = 23$ or more generally the cases of class numbers $h \geq 3$. We have included the presentation of the results (although they are not conclusive) for $d = 23$, hoping that it might help the reader for the future study on this topic.

Remark 6.1. We remark that the coefficients of $Ψ_{K,A}^{(i)}$ in above calculator results are not exact values but approximate values.

$N(A)$	A: ideal	$N(A)$	A: ideal
1	(1)	6	(1/2 - $\sqrt{-23}$/2)
			(6, 5/2 + $\sqrt{-23}$/2)
2	(2, -1/2 + $\sqrt{-23}$/2)		(6, 7/2 + $\sqrt{-23}$/2)
	(2, 1/2 + $\sqrt{-23}$/2)		(1/2 + $\sqrt{-23}$/2)
3	(3/2 + $\sqrt{-23}$/2)	7	-
	(3, 1/2 - $\sqrt{-23}$/2)		
4	(9, 5/2 + $\sqrt{-23}$/2)	8	(-3/2 - $\sqrt{-23}$/2)
	(4, 3/2 + $\sqrt{-23}$/2)		(4, -1 + $\sqrt{-23}$/2)
	(2)		(-3/2 + $\sqrt{-23}$/2)
	(4, 5/2 + $\sqrt{-23}$/2)	9	(9, 11/2 + $\sqrt{-23}$/2)
			(3)
		10	(9, 7/2 + $\sqrt{-23}$/2)

Table 4: Integral ideals of small norm of $d = 23$
7 Concluding Remarks

(1) In this paper, we use the mathematics software “Sage” [17]. In particular, The results in Tables 1 and 2 are computed by “Sage” using the command “K.ideals_of_bdd_norm()”. We remark that this command does not always give a \mathbb{Z}-basis of ideal. We must make sure the command “(ideal).basis()”.

(2) In Appendix C, we list theta series of lattices obtained from $\mathbb{Q}(\sqrt{-5})$. The other cases are listed in one of the author’s websites [12].

(3) In the previous paper [3], we studied the spherical designs in the nonempty shells of the \mathbb{Z}^2-lattice and A_2-lattice. The results state that any shells in the \mathbb{Z}^2-lattice (resp. A_2-lattice) are spherical 2-design (resp. 4-design). However, the nonempty shells in the \mathbb{Z}^2-lattice (resp. A_2-lattice) are not spherical 4-design (resp. 6-design). It is interesting to note that no spherical 6-design among the nonempty shells of any Euclidean lattice of 2-dimension is known. It is an interesting open problem to prove or disprove whether these exist any 6-design which is a shell of a Euclidean lattice of 2-dimension.

Responding to the authors’ request, Junichi Shigezumi performed computer calculations to determine whether there are spherical t-designs for bigger t, in the 2- and 3-dimensional cases. His calculation shows that among the nonempty shells of integral lattices in 2-dimension (with relatively small discriminant and small norms), there are only 4-designs. That is, no 6-designs were found. (So far, all examples of such 4-designs are the union of vertices of regular 6-gons, although they are the nonempty shells of many different lattices). In the 3-dimensional case, all examples obtained are only 2-designs. No 4-designs which are shells of a lattice were found. It is an interesting open problem whether this is true in general for the dimensions 2 and 3. Moreover, it is interesting to note that no spherical 12-design among the nonempty shells of any Euclidean lattice (of any dimension) is known. It is also an interesting open problem to prove or disprove whether these exist any 12-design which is a shell of a Euclidean lattice.

Finally, we state the following conjecture for the 2-dimensional lattices.

Conjecture 7.1. Let L be the Euclidean lattice of 2-dimension, whose quadratic form is $ax^2 + bxy + cy^2$.

26
(i) Assume that $b^2 - 4ac = \text{(Integer)}^2 \times (-3)$. Then, all the nonempty shells of L are not spherical 6-designs and some of the nonempty shells of L are spherical 4-designs. Moreover, if all the nonempty shells of L are spherical 4-designs then $b^2 - 4ac = -3$, that is, A_2-lattice.

(ii) Assume that $b^2 - 4ac = \text{(Integer)}^2 \times (-4)$. Then, all the nonempty shells of L are not spherical 4-designs and some of the nonempty shells of L are spherical 2-designs. Moreover, if all the nonempty shells of L are spherical 2-designs then $b^2 - 4ac = -4$, that is, \mathbb{Z}^2-lattice.

(iii) Otherwise, all the nonempty shells of L are not spherical 2-designs.

Acknowledgment. The authors thank Masao Koike for informing us that our previous results in [3] can be interpreted in terms of the cusp forms attached to L-functions with a Hecke character of CM fields, i.e., the imaginary quadratic fields $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, and in particular for bringing our attention to Theorem 1.31 in [14]. The authors also thank Junichi Shigezumi for his helpful discussions and computations on this research. The second author is supported by JSPS Research Fellowship.

A The case of $|\text{Cl}_K| = 1$

$-d$	$-d \pmod{4}$	d_K	L_α
-1	3	-2^2	$[1, \sqrt{-1}]$
-2	2	-2^3	$[1, \sqrt{-2}]$
-3	1	-3	$[1, (1 + \sqrt{-3})/2]$
-7	1	-7	$[1, (1 + \sqrt{-7})/2]$
-11	1	-11	$[1, (1 + \sqrt{-11})/2]$
-19	1	-19	$[1, (1 + \sqrt{-19})/2]$
-43	1	-43	$[1, (1 + \sqrt{-43})/2]$
-67	1	-67	$[1, (1 + \sqrt{-67})/2]$
-163	1	-163	$[1, (1 + \sqrt{-163})/2]$
B The case of $|\text{Cl}_K| = 2$

Table 6: $|\text{Cl}_K| = 2$

$-d$	$-d \pmod{4}$	d_K	L_a	L_b
-5	3	$-2^2 \times 5$	$[1, \sqrt{-5}]$	$[2, 1 + \sqrt{-5}]$
-6	2	$-2^2 \times 3$	$[1, \sqrt{-6}]$	$[2, \sqrt{-6}]$
-10	2	$-2^3 \times 5$	$[1, \sqrt{-10}]$	$[2, \sqrt{-10}]$
-13	3	$-2^2 \times 13$	$[1, \sqrt{-13}]$	$[2, 1 + \sqrt{-13}]$
-15	1	-3×5	$[1, (1 + \sqrt{-15})/2]$	$[2, (1 + \sqrt{-15})/2]$
-22	2	$-2^3 \times 11$	$[1, \sqrt{-22}]$	$[2, \sqrt{-22}]$
-35	1	-5×7	$[1, (1 + \sqrt{-35})/2]$	$[3, (1 + \sqrt{-35})/2]$
-37	3	$-2^2 \times 37$	$[1, \sqrt{-37}]$	$[2, 1 + \sqrt{-37}]$
-51	1	-3×17	$[1, (1 + \sqrt{-51})/2]$	$[3, (3 + \sqrt{-51})/2]$
-58	2	$-2^2 \times 29$	$[1, \sqrt{-58}]$	$[2, \sqrt{-58}]$
-91	1	-7×13	$[1, (1 + \sqrt{-91})/2]$	$[5, (3 + \sqrt{-91})/2]$
-115	1	-5×23	$[1, (1 + \sqrt{-115})/2]$	$[5, (5 + \sqrt{-115})/2]$
-123	1	-3×41	$[1, (1 + \sqrt{-123})/2]$	$[3, (3 + \sqrt{-123})/2]$
-187	1	-11×17	$[1, (1 + \sqrt{-187})/2]$	$[7, (3 + \sqrt{-187})/2]$
-235	1	-5×47	$[1, (1 + \sqrt{-235})/2]$	$[5, (5 + \sqrt{-235})/2]$
-267	1	-3×89	$[1, (1 + \sqrt{-267})/2]$	$[3, (3 + \sqrt{-267})/2]$
-403	1	-13×31	$[1, (1 + \sqrt{-403})/2]$	$[11, (9 + \sqrt{-403})/2]$
-427	1	-7×61	$[1, (1 + \sqrt{-427})/2]$	$[7, (7 + \sqrt{-427})/2]$
C \ \text{Theta series of } L_0 \ \text{and } L_\alpha \ \text{of } \mathbb{Q}(\sqrt{-5})

\Theta_{L_\sigma} = 1 + 2q + 2q^2 + 2q^3 + 4q^4 + 6q^5 + 6q^6 + 4q^7 + 4q^8 + 2q^9 + 2q^{10} + q^{10} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + q^{18} + q^{20} + q^{22} + q^{23} + q^{24} + q^{25} + q^{26} + q^{27} + q^{28} + q^{29} + q^{30} + q^{31} + q^{32} + q^{33} + q^{34} + q^{35} + q^{36} + q^{37} + q^{38} + q^{39} + q^{40} + q^{41} + q^{42} + q^{43} + q^{44} + q^{45} + q^{46} + q^{47} + q^{48} + q^{49} + q^{50} + O(q^{51})

\Theta_{L_\alpha} = 1 + 2q^2 + 2q^3 + 4q^4 + 6q^5 + 6q^6 + 4q^7 + 4q^8 + 2q^9 + 2q^{10} + q^{10} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + q^{18} + q^{20} + q^{22} + q^{23} + q^{24} + q^{25} + q^{26} + q^{27} + q^{28} + q^{29} + q^{30} + q^{31} + q^{32} + q^{33} + q^{34} + q^{35} + q^{36} + q^{37} + q^{38} + q^{39} + q^{40} + q^{41} + q^{42} + q^{43} + q^{44} + q^{45} + q^{46} + q^{47} + q^{48} + q^{49} + q^{50} + O(q^{51})

\Theta_{L_\sigma, \alpha} = q + 4q^4 - 5q^5 - 8q^6 - 7q^7 + 8q^8 + 16q^9 + 16q^{10} - 20q^{11} + 32q^{12} + 25q^{13} + 25q^{14} + 20q^{15} + 30q^{16} + 28q^{17} + 62q^{18} - 35q^{19} - 35q^{20} - 35q^{21} - 35q^{22} - 35q^{23} - 35q^{24} - 35q^{25} - 35q^{26} - 35q^{27} - 35q^{28} - 35q^{29} - 35q^{30} - 35q^{31} - 35q^{32} - 35q^{33} - 35q^{34} - 35q^{35} - 35q^{36} - 35q^{37} - 35q^{38} - 35q^{39} - 35q^{40} - 35q^{41} - 35q^{42} - 35q^{43} - 35q^{44} - 35q^{45} - 35q^{46} - 35q^{47} - 35q^{48} - 35q^{49} - 35q^{50} - O(q^{51})
\[\Psi^{(1)}_{K,q}(z) = q + 2q^2 - 4q^3 + 4q^4 - 5q^5 - 8q^6 + 4q^7 + 8q^8 + 7q^9 - 10q^{10} - 16q^{12} - 8q^{14} + 20q^{15} + 16q^{16} + 14q^{18} - 20q^{20} - 16q^{21} - 4q^{23} - 32q^{24} + 25q^{25} + 8q^{27} + 16q^{28} - 22q^{29} + 40q^{30} + 32q^{32} - 20q^{35} + 28q^{36} - 40q^{40} + 62q^{41} - 32q^{42} + 76q^{43} - 35q^{45} - 88q^{46} + 4q^{47} - 64q^{48} - 33q^{49} + 50q^{50} + 16q^{51} + 32q^{54} - 44q^{58} + 80q^{60} - 5q^{61} + 25q^{63} + 16q^{64} - 11q^{66} + 17q^{69} - 40q^{70} + 56q^{72} - 100q^{75} - 80q^{80} - 95q^{81} + 124q^{92} + 76q^{93} - 64q^{94} + 152q^{96} + 86q^{97} - 142q^{98} - 70q^{99} - 176q^{100} + 32q^{94} - 128q^{96} - 66q^{98} + 100q^{100} + 122q^{101} - 44q^{103} + 80q^{105} + 124q^{107} + 32q^{108} + 38q^{109} + 64q^{112} + 22q^{115} - 8q^{116} + 16q^{120} + 121q^{121} + 116q^{122} - 248q^{123} - 125q^{125} + 56q^{126} - 236q^{127} + 128q^{128} - 304q^{129} - 232q^{130} + 40q^{135} + 352q^{138} - 80q^{140} - 16q^{141} + 112q^{144} + 110q^{145} + 132q^{147} + 278q^{149} + 200q^{150} - 160q^{160} + 170q^{161} - 190q^{162} - 164q^{163} + 248q^{164} + 152q^{166} + 244q^{167} - 128q^{168} + 169q^{169} + 304q^{172} + 170q^{174} + 100q^{175} - 25q^{178} - 140q^{180} - 358q^{181} + 232q^{183} - 352q^{184} + 16q^{188} + 32q^{189} - 256q^{192} - 132q^{196} + 200q^{200} + 464q^{201} + 244q^{202} - 88q^{203} - 310q^{205} - 88q^{206} - 308q^{207} + 160q^{210} + 248q^{214} - 380q^{215} + 64q^{216} + 76q^{218} + 436q^{223} + 128q^{224} + 175q^{225} - 356q^{227} - 262q^{229} + 440q^{230} - 176q^{232} - 20q^{235} + 320q^{240} + 302q^{241} + 242q^{242} + 308q^{243} - 232q^{244} + 165q^{245} - 496q^{246} - 304q^{249} - 250q^{250} + 112q^{252} - 472q^{254} + 256q^{256} - 608q^{258} + 154q^{261} - 28q^{263} - 568q^{267} - 64q^{268} + 38q^{269} - 80q^{270} + 704q^{276} - 160q^{280} - 248q^{281} - 32q^{282} + 316q^{283} + 284q^{287} + 224q^{288} + 289q^{289} + 220q^{290} + 264q^{294} + 556q^{298} - 400q^{300} + 304q^{301} - 488q^{303} + 290q^{305} - 596q^{307} + 176q^{309} - 140q^{315} - 320q^{320} - 496q^{321} - 352q^{322} - 380q^{324} - 328q^{326} - 152q^{327} + 496q^{328} + 16q^{329} + 304q^{332} + 488q^{334} + 580q^{335} - 256q^{336} + 338q^{338} + 328q^{339} - 352q^{342} - 152q^{347} + 496q^{348} + 289q^{349} + 256q^{352} + 496q^{358} + 604q^{382} + 704q^{384} + 176q^{401} - 488q^{404} + 475q^{405} - 176q^{406} - 802q^{409} - 620q^{410} + 176q^{412} - 616q^{414} - 380q^{415} + 320q^{420} - 77q^{421} + 28q^{423} - 232q^{424} + 496q^{428} - 760q^{430} + 128q^{432} + 440q^{435} + 152q^{436} - 231q^{441} + 796q^{443} + 710q^{445} + 872q^{446} - 1112q^{447} + 256q^{448} + 398q^{449} + 350q^{450} - 712q^{454} - 524q^{458} + 880q^{460} + 764q^{463} - 352q^{464} + 124q^{467} - 64q^{469} - 40q^{470} + 640q^{480} + 604q^{482} + 704q^{483} + 48q^{484} + 616q^{486} + 484q^{487} - 464q^{488} - 656q^{489} + 330q^{490} - 992q^{492} - 608q^{498} + 500q^{500} + O(q)^{501}
\]

References

[1] S. Ahlgren, Multiplicative Relations in Powers of Euler's Product, *Journal of Number Theory*, **89** (2001), 222–233.
[2] E. Bannai, M. Koike, M. Shinohara, M. Tagami, Spherical designs attached to extremal lattices and the modulo p property of Fourier coefficients of extremal modular forms, Mosc. Math. J., 6-2 (2006), 225–264.

[3] E. Bannai, T. Miezaki, Toy models for D. H. Lehmer’s conjecture, accepted in J. Math. Soc. Japan.

[4] D. A. Cox, Primes of the form $x^2 + ny^2$. Fermat, class field theory and complex multiplication., A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989.

[5] P. de la Harpe and C. Pache, Cubature formulas, geometrical designs, reproducing kernels, and Markov operators, Infinite groups: geometric, combinatorial and dynamical aspects, Progr. Math., Birkhäuser, Basel, 248 (2005), 219–267.

[6] P. de la Harpe, C. Pache, B. Venkov, Construction of spherical cubature formulas using lattices, Algebra i Analiz, 18-1 (2006), 162–186; translation in St. Petersburg Math. J. 18-1 (2007), 119–139.

[7] P. Delsarte, J.-M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363-388.

[8] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1983.

[9] N. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, Amer. Math. Soc. Proc. Symp. Pure Math., 28 (1976), 275–305.

[10] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, Berlin/New York, 1984.

[11] D. H. Lehmer, The vanishing of Ramanujan’s $\tau(n)$, Duke Math. J. 14 (1947), 429-433.

[12] T. Miezaki’s website, http://sites.google.com/site/tmiezaki/home/

[13] T. Miyake, Modular forms, Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989.
[14] K. Ono, *The web of modularity: arithmetic of the coefficients of modular forms and q-series*, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2004.

[15] C. Pache, Shells of selfdual lattices viewed as spherical designs, *International Journal of Algebra and Computation* **5** (2005), 1085–1127.

[16] R. Prime, Heche character, http://www.math.uconn.edu/~prime/whatthehecke.pdf

[17] Sage, http://www.sagemath.org/

[18] B. Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, (German) *Math. Ann.* **116-1** (1939), 511–523.

[19] B. Schoeneberg, *Elliptic modular functions: an introduction*, Translated from the German by J. R. Smart and E. A. Schwandt. Die Grundlehren der mathematischen Wissenschaften, Band 203. Springer-Verlag, New York-Heidelberg, 1974.

[20] J.-P. Serre, *A course in arithmetic*, Translated from the French. Graduate Texts in Mathematics, **7**, Springer-Verlag, New York-Heidelberg, 1973.

[21] J.-P. Serre, Sur la lacunarité des puissances de η, *Glasgow Math. J.* **27** (1985), 203–221.

[22] B. B. Venkov, Even unimodular extremal lattices, (Russian) *Algebraic geometry and its applications. Trudy Mat. Inst. Steklov.*, **165** (1984), 43–48; translation in *Proc. Steklov Inst. Math.* **165** (1985) 47–52.

[23] B. B. Venkov, Réseaux et designs sphériques, (French) [Lattices and spherical designs], *Réseaux euclidiens, designs sphériques et formes modulaires*, Monogr. Enseign. Math. **37** (2001), 10–86, Enseignement Math., Geneva.

[24] D. B. Zagier, *Zetafunktionen und quadratische Körper: eine Einführung in die höhere Zahlentheorie*, Springer-Verlag, Berlin-New York, 1981.