CONFORMAL GENERIC SUBMERSIONS WITH TOTAL SPACE AN
ALMOST HERMITIAN MANIFOLD

Mehmet Akif AKYOL

ABSTRACT. Akyol, M. A and Şahin, B. [Conformal semi-invariant submersions, Commun. Contemp. Math. 19, 1650011 (2017).] introduced the notion of conformal semi-invariant submersions from almost Hermitian manifolds. The present paper deals with the study of conformal generic submersions from almost Hermitian manifolds which extends semi-invariant submersions, generic Riemannian submersions and conformal semi-invariant submersions a natural way. We mention some examples of such maps and obtain characterizations and investigate some properties, including the integrability of distributions, the geometry of foliations and totally geodesic foliations. Moreover, we obtain some conditions for such submersions to be totally geodesic and harmonic, respectively.

1. Introduction

Let \tilde{M} be an almost Hermitian manifold with almost complex structure J and M a Riemannian manifold isometrically immersed in \tilde{M}. We note that submanifolds of a Kähler manifold are determined by the behavior of tangent bundle of the submanifold under the action of the almost complex structure of the ambient manifold. A submanifold M is called holomorphic (complex) if $J(T_q M) \subset T_q M$, for every $q \in M$, where $T_q M$ denotes the tangent space to M at the point q. M is called totally real if $J(T_q M) \subset T_q^\perp M$, for every $q \in M$, where $T_q^\perp M$ denotes the normal space to M at the point q. As a generalization of holomorphic and totally real submanifolds, CR−submanifolds were introduced by Bejancu [7]. A CR−submanifold M of an almost Hermitian manifold \tilde{M} with an almost complex structure J requires two orthogonal complementary distributions D and D^\perp defined on M such that D is invariant under J and D^\perp is totally real [7]. There is yet another generalization of CR−submanifolds known as generic submanifolds [9]. These submanifolds are defined by relaxing the condition on the complementary distribution of holomorphic distribution. Let M be a real submanifold of an almost Hermitian manifold \tilde{M}, and let $D_q = T_q M \cap JT_q M$ be the maximal holomorphic subspace of $T_q M$. If $D : q \rightarrow D_q$ defines a smooth holomorphic distribution on M, then M is called a generic submanifold of \tilde{M}. The complementary distribution D^\perp of D is called purely real distribution on M. A generic submanifold is a CR−submanifold if the purely real distribution on M is totally real. A purely real distribution D^\perp on a generic submanifold M is called proper if it is not totally real. A generic submanifold is

2010 Mathematics Subject Classification. Primary 53C43; Secondary 53C20.

Key words and phrases. Kähler manifold, Riemannian submersion, Generic Riemannian submersion, Conformal submersion, Conformal generic submersion, Vertical distribution.
called proper if purely real distribution is proper. Generic submanifolds have been studied widely by many authors and the theory of such submanifolds is still an active research area, see [11], [12], [13], [20], [21], [33] for recent papers on this topic.

The notion of Riemannian submersions between Riemannian manifolds were studied by O’Neill [23] and Gray [17]. Later on, such submersions have been studied widely in differential geometry. Riemannian submersions between Riemannian manifolds equipped with an additional structure of almost complex type was firstly studied by Watson [36]. Watson defined an almost Hermitian submersion between almost Hermitian manifolds and he showed that the base manifold and each fiber have the same kind of structure as the total space, in most cases. We note that almost Hermitian submersions have been extended to the almost contact manifolds [10], locally conformal Kähler manifolds [22], quaternionic Kähler manifolds [19], paraquaternionic manifolds [8], [34] and statistical manifolds [35].

Recently, Şahin [29] introduced the notion of semi-invariant Riemannian submersions as a generalization of anti-invariant Riemannian submersions [28] from almost Hermitian manifolds onto Riemannian manifolds. Later such submersions and their extensions are studied [3], [4], [24], [25], [26], [31] and [32]. As a generalization of semi-invariant submersions, Ali and Fatima [1] introduced the notion of generic Riemannian submersions. (see also [2]).

On the other hand, A related topic of growing interest deals with the study of the so-called horizontally conformal submersions: these maps, which provide a natural generalization of Riemannian submersion, introduced independently Fuglede [14] and Ishihara [18]. As a generalization of holomorphic submersions, the notion of conformal holomorphic submersions were defined by Gudmundsson and Wood [16]. In 2017, Akyol and Şahin [5] defined a conformal semi-invariant submersion from an almost Hermitian manifolds onto a riemannian manifold. In this paper, we introduce conformal generic submersions as a generalization of semi-invariant submersions, generic Riemannian submersions and conformal semi-invariant submersions, investigate the geometry of the total space and the base space for the existence of such submersions.

The present article is organized as follows. In Section 2, we give some background about conformal submersions and the second fundamental maps. In Section 3, we define and study conformal generic submersions from almost Hermitian manifolds onto Riemannian manifolds, give examples and investigate the geometry of leaves of the horizontal distribution and the vertical distribution. In this section we also show that there are certain product structures on the total space of a conformal generic submersion. In the last section of this paper, we find necessary and sufficient conditions for a conformal generic submersion to be totally geodesic and harmonic, respectively.

2. Preliminaries

The manifolds, maps, vector fields etc. considered in this paper are assumed to be smooth, i.e. differentiable of class C^∞.
2.1. Conformal submersions. Let $\psi : (M_1, g_1) \rightarrow (M_2, g_2)$ be a smooth map between Riemannian manifolds, and let $p \in M_1$. Then ψ is called \textit{horizontally weakly conformal} or \textit{semi conformal} at p if either (i) $d\psi_p = 0$, or (ii) $d\psi_p$ is surjective and there exists a number $\Lambda(p) \neq 0$ such that

$$g_2(d\psi_p\xi, d\psi_p\eta) = \Lambda(p)g_1(\xi, \eta) \quad (\xi, \eta \in \mathcal{H}_p).$$

We call the point p is of type (i) as a critical point if it satisfies the type (i), and we shall call the point p a regular point if it satisfied the type (ii). At a critical point, $d\psi_p$ has rank 0; at a regular point, $d\psi_p$ has rank n and ψ is submersion. Further, the positive number $\Lambda(p)$ is called the \textit{square dilation} (of ψ at p). The map ψ is called \textit{horizontally weakly conformal} or \textit{semi conformal} (on M_1) if it is horizontally weakly conformal at every point of M_1 and it has no critical point, then we call it a \textit{horizontally conformal submersion}.

A vector field $\xi_1 \in \Gamma(TM_1)$ is called a basic vector field if $\xi_1 \in \Gamma((\ker\psi)^{\perp})$ and ψ-related with a vector field $\xi_1 \in \Gamma(TM_2)$ which means that $(d\psi_p\xi_1) = \xi_1(d\psi(p)) \in \Gamma(TM_2)$ for any $p \in \Gamma(TM_1)$.

Define \mathcal{T} and \mathcal{A}, which are O’Neill’s tensors, as follows

\begin{equation}
\mathcal{A}_{E_1}E_2 = \mathcal{V}\nabla^1_{\mathcal{H}E_1}\mathcal{H}E_2 + \mathcal{H}\nabla^1_{\mathcal{H}E_1}\mathcal{V}E_2
\end{equation}

\begin{equation}
\mathcal{T}_{E_1}E_2 = \mathcal{H}\nabla^1_{\mathcal{V}E_1}\mathcal{V}E_2 + \mathcal{V}\nabla^1_{\mathcal{V}E_1}\mathcal{H}E_2
\end{equation}

where \mathcal{V} and \mathcal{H} are the vertical and horizontal projections (see [15]). On the other hand, from \eqref{2.1} and \eqref{2.2}, we have

\begin{equation}
\nabla^1_{\mathcal{V}}W = \mathcal{T}_V W + \hat{\nabla}_V W
\end{equation}

\begin{equation}
\nabla^1_\xi \xi = \mathcal{H}\nabla^1_\xi \xi + \mathcal{T}_\xi \xi
\end{equation}

\begin{equation}
\nabla^1_\xi V = \mathcal{A}_\xi V + \mathcal{V}\nabla^1_\xi V
\end{equation}

\begin{equation}
\nabla^1_\xi \eta = \mathcal{H}\nabla^1_\xi \eta + \mathcal{A}_\xi \eta
\end{equation}

for $\xi, \eta \in \Gamma((\ker\psi)^{\perp})$ and $V, W \in \Gamma(\ker\psi)$, where $\hat{\nabla}_V W = \mathcal{V}\nabla^1_{\mathcal{V}}W$. If ξ is basic, then $\mathcal{H}\nabla^1_\xi \xi = \mathcal{A}_\xi V$.

It is easily seen that for $q \in M_1$, $\xi \in \mathcal{H}_q$ and $V \in \mathcal{V}_q$ the linear operators $\mathcal{T}_V, \mathcal{A}_\xi : T_qM_1 \rightarrow T_qM_1$ are skew-symmetric, that is

$$-g_1(\mathcal{T}_V E_1, E_2) = g_1(E_1, \mathcal{T}_V E_2) \quad \text{and} \quad -g_1(\mathcal{A}_\xi E_1, E_2) = g_1(E_1, \mathcal{A}_\xi E_2)$$

for all $E_1, E_2 \in T_qM_1$. We also see that the restriction of \mathcal{T} to the vertical distribution $\mathcal{T}_{|_{\ker\psi \times \ker\psi}}$ is exactly the second fundamental form of the fibres of ψ. Since \mathcal{T}_V is skew-symmetric we get: ψ has totally geodesic fibres if and only if $\mathcal{T} \equiv 0$.

Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds and suppose that $\psi : M_1 \rightarrow M_2$ is a smooth map between them. Then the differential of $d\psi$ of ψ can be viewed a section of the bundle $Hom(TM_1, \psi^{-1}TM_2) \rightarrow M_1$, where $\psi^{-1}TM_2$ is the pullback bundle which has fibres $(\psi^{-1}TM_2)_p = T_{\psi(p)}M_2$, $p \in M_1$. $Hom(TM_1, \psi^{-1}TM_2)$
has a connection ∇ induced from the Levi-Civita connection ∇^M and the pullback connection. Then the second fundamental form of ψ is given by

\begin{equation}
(\nabla d\psi)(\xi, \eta) = \nabla^\psi_\xi d\psi(\eta) - d\psi(\nabla^M_\xi \eta)
\end{equation}

for $\xi, \eta \in \Gamma(TM)$, where ∇^ψ is the pullback connection. It is known that the second fundamental form is symmetric.

Lemma 2.1. [37] Let (M, g_M) and (N, g_N) be Riemannian manifolds and suppose that $\psi : M \rightarrow N$ is a smooth map between them. Then we have

\begin{equation}
\nabla^\psi_\xi d\psi(\eta) - \nabla^\psi_\eta d\psi(\xi) - d\psi([\xi, \eta]) = 0
\end{equation}

for $\xi, \eta \in \Gamma(TM)$.

Remark 2.1. From (2.8), one can easily see that if ξ is basic and $\eta \in \Gamma((\ker d\psi)^\perp)$, then $[\xi, \eta] \in \Gamma(\ker d\psi)$.

Finally, we have the following from [6]

Lemma 2.2. (Second fundamental form of an HC submersion) Suppose that $\psi : M_1 \rightarrow M_2$ is a horizontally conformal submersion. Then, for any horizontal vector fields ξ, η and vertical vector fields V, W, we have

(i) $\langle \nabla d\psi \rangle(\xi, \eta) = \xi(\ln \lambda) d\psi \eta + \eta(\ln \lambda) d\psi \xi - g(\xi, \eta) d\psi(\nabla \ln \lambda)$;
(ii) $\langle \nabla d\psi \rangle(V, W) = - d\psi(T_V W)$;
(iii) $\langle \nabla d\psi \rangle(\xi, V) = - d\psi(\nabla^1_\xi V) = - d\psi(A_{\xi} V)$.

3. Conformal generic submersions from almost Hermitian manifolds

In this section, we define conformal generic submersions from an almost Hermitian manifold onto a Riemannian manifold, give lots of examples and investigate the geometry of leaves of distributions and show that there are certain product structures on the total space of a conformal generic submersion.

Let (M_1, g_1, J) be an almost Hermitian manifold with almost complex structure J and a Riemannian metric g such that [38]

\begin{equation}
(i) \ J^2 = -I, \quad (ii) \ g(Z_1, Z_2) = g(JZ_1, JZ_2),
\end{equation}

for all vector fields Z_1, Z_2 on M_1, where I is the identity map. An almost Hermitian manifold M_1 is called Kähler manifold if the almost complex structure J satisfies

\begin{equation}
\langle \nabla Z, J \rangle Z_2 = 0, \quad \forall Z_1, Z_2 \in \Gamma(TM_1),
\end{equation}

where ∇ denotes the Levi-Civita connection on M_1.

First of all, we recall the definition of generic Riemannian submersions as follows:

Definition 3.1. [1] Let N_1 be a complex m-dimensional almost Hermitian manifold with Hermitian metric h_1 and almost complex structure J_1 and N_2 be a Riemannian manifold with Riemannian metric h_2. A Riemannian submersion $\psi : N_1 \rightarrow N_2$ is called generic Riemannian submersion if there is a distribution $\mathcal{D}_1 \subseteq \ker d\psi$ such that

$$\ker d\psi = \mathcal{D}_1 \oplus \mathcal{D}_2 \quad J(\mathcal{D}_1) = \mathcal{D}_1,$$
where \mathcal{D}_2 is orthogonal complementary to \mathcal{D}_1 in $(\ker d\psi)$, and is purely real distribution on the fibres of the submersion ψ.

Now, we will give our definition as follows:

Let ϕ be a conformal submersion from an almost Hermitian manifold (M, g, J) to a Riemannian manifold (B, h). Define

$$\mathcal{D}_q = (\ker d\phi \cap J(\ker d\phi)), \quad q \in M$$

the complex subspace of the vertical subspace \mathcal{V}_q.

Definition 3.2. Let $\phi : (M, g, J) \rightarrow (B, h)$ be a horizontally conformal submersion, where (M, g, J) is an almost Hermitian manifold and (B, h) is a Riemannian manifold with Riemannian metric h. If the dimension \mathcal{D}_q is constant along M and it defines a differential distribution on M then we say that ϕ is conformal generic submersion. A conformal generic submersion is purely real (respectively, complex) if $\mathcal{D}_q = \{0\}$ (respectively, $\mathcal{D}_q = \ker d\phi_q$). For a conformal generic submersion, the orthogonal complementary distribution \mathcal{D}^\perp, called purely real distribution, satisfies

(3.3) \[\ker d\phi = \mathcal{D} \oplus \mathcal{D}^\perp, \]

and

(3.4) \[\mathcal{D} \cap \mathcal{D}^\perp = \{0\}. \]

Remark 3.1. It is known that the distribution $\ker d\phi$ is integrable. Hence, above definition implies that the integral manifold (fiber) $\phi^{-1}(q), \quad q \in B$, of $\ker d\phi$ is a generic submanifold of M. For generic submanifolds, see [9].

First of all, we give lots of examples for conformal generic submersions from almost Hermitian manifolds to Riemannian manifolds.

Example 3.1. Every semi-invariant Riemannian submersion [29] ϕ from an almost Hermitian manifold to a Riemannian manifold is a conformal generic submersion with $\lambda = 1$ and \mathcal{D}^\perp is a totally real distribution.

Example 3.2. Every slant submersion [30] ϕ from an almost Hermitian manifold to a Riemannian manifold is a conformal generic submersion such that $\lambda = 1$, $\mathcal{D} = \{0\}$ and \mathcal{D}^\perp is a slant distribution.

Example 3.3. Every semi-slant submersion [27] ϕ from an almost Hermitian manifold to a Riemannian manifold is a conformal generic submersion such that $\lambda = 1$ and \mathcal{D}^\perp is a slant distribution.

Example 3.4. Every conformal semi-invariant submersion [5] ϕ from an almost Hermitian manifold to a Riemannian manifold is a conformal generic submersion such that \mathcal{D}^\perp is a totally real distribution.

Example 3.5. Every generic Riemannian submersion [1] ϕ from an almost Hermitian manifold to a Riemannian manifold is a conformal generic submersion with $\lambda = 1$.
Remark 3.2. We would like to point out that since conformal semi-invariant submersions include conformal holomorphic submersions and conformal anti-invariant submersions, such conformal submersions are also examples of conformal generic submersions. We say that a conformal generic submersion is proper if \(\lambda \neq 1 \) and \(\mathcal{D}^\perp \) is neither complex nor purely real.

In the following \(\mathbb{R}^{2m} \) denotes the Euclidean \(2m \)-space with the standard metric. Define the compatible almost complex structure \(J \) on \(\mathbb{R}^8 \) by

\[
J \partial_1 = \frac{1}{\sqrt{2}}(-\partial_3 - \partial_2), J \partial_2 = \frac{1}{\sqrt{2}}(-\partial_4 + \partial_1), J \partial_3 = \frac{1}{\sqrt{2}}(\partial_1 + \partial_4), J \partial_4 = \frac{1}{\sqrt{2}}(\partial_2 - \partial_3), \\
J \partial_5 = \frac{1}{\sqrt{2}}(-\partial_7 - \partial_6), J \partial_6 = \frac{1}{\sqrt{2}}(-\partial_8 + \partial_5), J \partial_7 = \frac{1}{\sqrt{2}}(\partial_5 + \partial_6), J \partial_8 = \frac{1}{\sqrt{2}}(\partial_6 - \partial_7)
\]

where \(\partial_k = \frac{\partial}{\partial u_k} \), \(k = 1, ..., 8 \) and \((u_1, ..., u_8) \) natural coordinates of \(\mathbb{R}^8 \).

Example 3.6. Let \(\phi : (\mathbb{R}^8, g) \longrightarrow (\mathbb{R}^2, h) \) be a submersion defined by

\[
\phi(u_1, u_2, ..., u_8) = (t_1, t_2),
\]

where

\[
t_1 = e^{u_1} \sin u_3 \quad \text{and} \quad t_2 = e^{u_1} \cos u_3.
\]

Then, the Jacobian matrix of \(\phi \) is:

\[
d\phi = \begin{bmatrix}
e^{u_1} \sin u_3 & 0 & e^{u_1} \cos u_3 & 0 & 0 & 0 & 0 & 0 \\
e^{u_1} \cos u_3 & 0 & -e^{u_1} \sin u_3 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}.
\]

A straight computations yields

\[
\ker d\phi = \text{span}\{T_1 = \partial_2, T_2 = \partial_4, T_3 = \partial_5, T_4 = \partial_6, T_5 = \partial_7, T_6 = \partial_8\}
\]

and

\[
(ker d\phi)^\perp = \text{span}\{H_1 = e^{u_1} \sin u_3 \partial_1 + e^{u_1} \cos u_3 \partial_3, H_2 = e^{u_1} \cos u_3 \partial_1 - e^{u_1} \sin u_3 \partial_3\}.
\]

Hence we get

\[
JT_3 = \frac{1}{\sqrt{2}} T_4 + \frac{1}{\sqrt{2}} T_5, \quad JT_4 = -\frac{1}{\sqrt{2}} T_3 + \frac{1}{\sqrt{2}} T_6, \\
JT_5 = -\frac{1}{\sqrt{2}} T_3 - \frac{1}{\sqrt{2}} T_6, \quad JT_6 = -\frac{1}{\sqrt{2}} T_4 + \frac{1}{\sqrt{2}} T_5
\]

and

\[
JT_1 = \frac{1}{\sqrt{2}} T_2 - \frac{e^{-u_1} \sin u_3}{\sqrt{2}} H_1 - \frac{e^{-u_1} \cos u_3}{\sqrt{2}} H_2, \\
JT_2 = -\frac{1}{\sqrt{2}} T_1 + \frac{e^{-u_1} \cos u_3}{\sqrt{2}} H_1 - \frac{e^{-u_1} \sin u_3}{\sqrt{2}} H_2,
\]

where \(J \) is the complex structure of \(\mathbb{R}^8 \). It follows that \(\mathcal{D} = \text{span}\{T_3, T_4, T_5, T_6\} \) and \(\mathcal{D}^\perp = \text{span}\{T_1, T_2\} \). Also by direct computations yields

\[
d\phi(H_1) = (e^{u_1})^2 \partial v_1 \quad \text{and} \quad d\phi(H_2) = (e^{u_1})^2 \partial v_2.
\]

Hence, it is easy to see that

\[
g_{\mathbb{R}^2}(d\phi(H_i), d\phi(H_i)) = (e^{u_1})^2 g_{\mathbb{R}^8}(H_i, H_i), \quad i = 1, 2.
\]
Thus \(\phi \) is a conformal generic submersion with \(\lambda = e^{u_1} \).

Example 3.7. Let \(\psi: (\mathbb{R}^8, g_1) \rightarrow (\mathbb{R}^2, g_2) \) be a submersion defined by
\[
\psi(v_1, v_2, \ldots, v_8) = \pi^{17}\left(-\frac{v_1 + v_3}{\sqrt{2}}, -\frac{v_1 - v_3}{\sqrt{2}}\right).
\]
Then \(\psi \) is a conformal generic submersion with \(\lambda = \pi^{17} \).

Remark 3.3. Throughout this paper, we assume that all horizontal vector fields are basic vector fields.

Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M, g, J)\) onto a Riemannian manifold \((B, h)\). Then for \(Z \in \Gamma(\text{ker} \phi) \), we write
\[
(3.5) \quad JZ = \varphi Z + \omega Z
\]
where \(\varphi Z \in \Gamma(\text{ker} \phi) \) and \(\omega Z \in \Gamma((\text{ker} \phi)^\perp) \). We denote the orthogonal complement of \(\omega D^\perp \) in \((\text{ker} \phi)^\perp \) by \(\mu \). Then we have
\[
(3.6) \quad (\text{ker} \phi)^\perp = \omega D^\perp \oplus \mu
\]
and that \(\mu \) is invariant under \(J \). Also for \(\xi \in \Gamma((\text{ker} \phi)^\perp) \), we write
\[
(3.7) \quad J\xi = B\xi + C\xi
\]
where \(B\xi \in \Gamma(D^\perp) \) and \(C\xi \in \Gamma(\mu) \). From (3.5), (3.6) and (3.7) we have the following

Proposition 3.1. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M, g, J)\) onto a Riemannian manifold \((B, h)\). Then we have
\[
(i) \quad \varphi D = D, \quad (ii) \quad \omega D = 0, \quad (iii) \quad \varphi D^\perp \subset D^\perp, \quad (d) \quad B((\text{ker} \phi)^\perp) = D^\perp,
\]
\[
(a) \quad \varphi^2 + B\omega = -id, \quad (b) \quad C^2 + \omega B = -id, \quad (c) \quad \omega \varphi + C\omega = 0, \quad (d) \quad BC + \varphi B = 0.
\]

Next, we easily have the following lemma:

Lemma 3.1. Let \((M, g, J)\) be a Kähler manifold and \((B, h)\) a Riemannian manifold. Let \(\phi: (M, g, J) \rightarrow (B, h) \) be a conformal generic submersion. Then we have
\[
(i) \quad C\varphi^{\xi}Z + \omega A^{\xi}Z = A^{\xi}BZ + H\varphi^{\xi}CZ
\]
\[
B\varphi^{\xi}Z + \omega A^{\xi}Z = V\varphi^{\xi}BZ + A^{\xi}CZ,
\]
\[
(ii) \quad C\varphi^{\xi}Z + \omega A^{\xi}Z = A^{\xi}BZ + H\varphi^{\xi}CZ
\]
\[
B\varphi^{\xi}Z + \omega A^{\xi}Z = V\varphi^{\xi}BZ + A^{\xi}CZ,
\]
\[
(iii) \quad C\varphi^{\xi}Z + \omega A^{\xi}Z = A^{\xi}BZ + H\varphi^{\xi}CZ
\]
\[
B\varphi^{\xi}Z + \omega A^{\xi}Z = V\varphi^{\xi}BZ + A^{\xi}CZ,
\]
for \(\xi, \eta \in \Gamma((\text{ker} \phi)^\perp) \) and \(Z, W \in \Gamma(\text{ker} \phi) \).
3.1. The geometry of \(\phi : (M,g,J) \to (B,h) \).

Lemma 3.2. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M,g,J)\) onto a Riemannian manifold \((B,h)\). Then the distribution \(\mathcal{D} \) is integrable if and only if the following is satisfied

\[
\lambda^{-2}\{h((\nabla_d\phi)(U, J V) - (\nabla_d\phi)(V, J U), d\phi(\omega Z))\} = g(\nabla_V J U - \nabla_U J V, Z)
\]

for \(U, V \in \Gamma(\mathcal{D}) \) and \(Z \in \Gamma(\mathcal{D}^\perp) \).

Proof. The distribution \(\mathcal{D} \) is integrable if and only if

\[
g([U, V], Z) = 0, \quad \text{and} \quad g([U, V], \xi) = 0
\]

for any \(U, V \in \Gamma(\mathcal{D}) \), \(Z \in \Gamma(\mathcal{D}^\perp) \) and \(\xi \in \Gamma((\ker d\phi)^\perp) \). Since \(\ker d\phi \) is integrable \(g([U, V], \xi) = 0 \). Therefore, \(\mathcal{D} \) is integrable if and only if \(g([U, V], Z) = 0 \). By Eq. (3.1)(i), Eq. (3.2), Eq. (2.3) and Eq. (3.5) we have

\[
g([U, V], Z) = g(\mathcal{H}\nabla^M_U JV, \omega Z) + g(\nabla_U JV, \varphi Z) - g(\mathcal{H}\nabla^M_V Ju, \omega Z) - g(\nabla_V Ju, \varphi Z).
\]

By using the property of \(\phi \), Eq. (3.5) and Lemma 3.2 yields

\[
g([U, V], Z) = \lambda^{-2}h(- (\nabla_d\phi)(U, J V) + \nabla^\phi_U d\phi(JV), d\phi(\omega Z)) - \lambda^{-2}h(- (\nabla_d\phi)(V, J U) + \nabla^\phi_V d\phi(JU), d\phi(\omega Z)) + (\varphi(\nabla_V Ju - \nabla_U J V), \omega Z)
\]

which gives Eq. (3.8).

In a similar way, we get: \(\square \)

Lemma 3.3. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M,g,J)\) onto a Riemannian manifold \((B,h)\). Then the distribution \(\mathcal{D}^\perp \) is integrable if and only if

\[
\nabla_V \varphi U - \nabla_U \varphi V + \nabla_V \omega U - \nabla_U \omega V \in \Gamma(\mathcal{D}^\perp)
\]

for \(U, V \in \Gamma(\mathcal{D}^\perp) \).

We now investigate the geometry of leaves of \(\mathcal{D} \) and \(\mathcal{D}^\perp \).

Lemma 3.4. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M,g,J)\) to a Riemannian manifold \((B,h)\). Then \(\mathcal{D} \) defines a totally geodesic foliation on \(M \) if and only if

(a) \(\lambda^{-2}h((\nabla_d\phi)(X_1, J Y_1), d\phi(\omega X_2)) = g(\nabla_{X_1} Y_1, \varphi X_2) \)

(b) \(\lambda^{-2}h((\nabla_d\phi)(X_1, J Y_1), d\phi(\xi)) = g(\nabla_{X_1} \varphi BX + T_{X_1} \omega BX, Y_1) \)

for \(X_1, Y_1 \in \Gamma(\mathcal{D}), X_2 \in \Gamma(\mathcal{D}^\perp) \) and \(\xi \in \Gamma((\ker d\phi)^\perp) \).

Proof. The distribution \(\mathcal{D} \) defines a totally geodesic foliation on \(M \) if and only if

\[
g(\nabla^M_{X_1} Y_1, X_2) = 0 \quad \text{and} \quad g(\nabla^M_{X_1} Y_1, \xi) = 0
\]
for any $X_1, Y_1 \in \Gamma(D)$, $X_2 \in \Gamma(D^\perp)$ and $\xi \in \Gamma((\ker d\phi)^\perp)$. By virtue of Eq. (3.1)(i) and Eq. (3.1)(ii), we get

$$g(\nabla^M X_1, Y_2) = g(\tilde{\nabla} X_1, JY_1, \phi X_2) + g(H\nabla^M X_1, JY_1, \omega X_2).$$

Since ϕ is a conformal generic submersion, by Eq. (2.7) yields

$$(3.10) \quad g(\nabla^1 X_1, Y_2) = g(\tilde{\nabla} X_1, JY_1, \phi X_2) - \lambda^{-2}h((\nabla d\phi)(X_1, JY_1), d\phi(\omega X_2)).$$

On the other hand, by Eq. (3.1)(i), Eq. (3.1)(ii), Eq. (2.3) and Eq. (3.7) yields

$$g(\nabla^1 X_1, \xi) = g(Y_1, \nabla^1_X J\xi) + g(H\nabla^1 X_1, J\xi).$$

By Eq. (2.4), Eq. (2.7) and Eq. (3.5) we get

$$(3.11) \quad g(\nabla^1 X_1, \xi) = g(Y_1, \nabla^1_X \phi B\xi) + g(Y_1, T_{X_1} \omega B\xi) - \lambda^{-2}h((\nabla d\phi)(X_1, JY_1), d\phi(C\xi)).$$

Hence proof follows from Eq. (3.10) and Eq. (3.11). □

In a similar way, we have the following result.

Lemma 3.5. Let ϕ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian manifold (B, h). Then D^\perp defines a totally geodesic foliation on M if and only if

(a) $\lambda^{-2}h((\nabla d\phi)(X_2, JX_1), d\phi(\omega Y_2)) = g(\nabla X_2, JX_1, \phi Y_2),$

(b) $\lambda^{-2}h((\nabla d\phi)(X_2, JY_1), d\phi(JC\xi)) = g(T_{X_2} B\xi, \omega Y_2) - g(\nabla X_2, \phi Y_2, B\xi)$

for $X_1, Y_1 \in \Gamma(D)$, $X_2, Y_2 \in \Gamma(D^\perp)$ and $\xi \in \Gamma((\ker d\phi)^\perp)$.

From Lemma 3.4 and Lemma 3.5, we have the following result.

Lemma 3.6. Let $\phi : (M, g, J) \longrightarrow (B, h)$ be a conformal generic submersion from a Kähler manifold (M, g, J) onto a Riemannian manifold (B, h). Then the fibers of ϕ are locally product manifold of the form $M_D \times M_D^\perp$ if and only if

(i) $\lambda^{-2}h((\nabla d\phi)(X_1, JY_1), d\phi(\omega X_2)) = g(\nabla X_1, JY_1, \phi X_2)$

(ii) $\lambda^{-2}h((\nabla d\phi)(X_1, JY_1), d\phi(C\xi)) = g(\nabla X_1, \phi B\xi + T_{X_1} \omega B\xi, Y_1)$

(iii) $\lambda^{-2}h((\nabla d\phi)(X_2, JY_1), d\phi(\omega Y_2)) = g(\nabla X_2, JY_1, \phi Y_2),$

(iv) $\lambda^{-2}h((\nabla d\phi)(X_2, JY_1), d\phi(JC\xi)) = g(T_{X_2} B\xi, \omega Y_2) - g(\nabla X_2, \phi Y_2, B\xi)$

for any $X_1, Y_1 \in \Gamma(D)$, $X_2, Y_2 \in \Gamma(D^\perp)$ and $\xi \in \Gamma((\ker d\phi)^\perp)$.

Since the distribution $\ker d\phi$ is integrable, we only study the integrability of the distribution $(\ker d\phi)^\perp$ and then we discuss the geometry of leaves of $\ker d\phi$ and $(\ker d\phi)^\perp$.

Theorem 3.1. Let ϕ be a conformal generic submersion from a Kähler manifold (M_1, g_1, J) to a Riemannian manifold (M_2, g_2). Then the following conditions are equivalent:

(i) The distribution $(\ker d\phi)^\perp$ is integrable.

(ii) $\nabla(\nabla^1 B\eta - \nabla^1 B\xi) + A_C\eta - A_C\xi \in \Gamma(D^\perp)$.

(iii) \(\lambda^{-2}h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi) - \nabla^\xi d\phi(C\eta) + \nabla^\eta d\phi(C\xi), d\phi(\omega W)) \)
\[= g(\eta(\ln \lambda)C\xi - \xi(\ln \lambda)C\eta - C\eta(\ln \lambda)\xi + C\xi(\ln \lambda)\eta + 2g(\xi, C\eta)\nabla \ln \lambda, \omega W) \]
\[+ g(-\varphi(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi + A_c C\eta - A_\eta C\xi, W) \]

for \(\xi, \eta \in \Gamma(\text{kerd}\phi)^{-1} \), \(V \in \Gamma(\mathcal{D}) \) and \(W \in \Gamma(\mathcal{D}^\perp) \).

Proof. By virtue of (3.1) (i) and (3.1) (ii), we get
\[g([\xi, \eta], JV) = g(-J[\xi, \eta], V) = -g(J\nabla^1_\xi J\eta, JV_1) + g(J\nabla^1_\eta J\xi, JV) \]
for \(\xi, \eta \in \Gamma((\text{kerd}\phi)^{-1}) \) and \(V_1 \in \Gamma(\mathcal{D}) \). Then by using (3.7), (3.5), (2.5) and (2.6) yields
\[g([\xi, \eta], JV) = -g(\phi(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi) + A_c C\eta - A_\eta C\xi, JV) \]

So that
\[(3.12) \quad g([\xi, \eta], JV) = 0 \iff V(\nabla^1_\xi B\eta - \nabla^1_\eta B\xi) + A_c C\eta - A_\eta C\xi \in \Gamma(\mathcal{D}^\perp). \]

Also using (2.5), (2.6) and (3.7) we get
\[g([\xi, \eta], W) = g(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi + A_c C\eta - A_\eta C\xi, \varphi W) + g(\mathcal{H}\nabla^1_\xi B\eta, \omega W) \]
\[- g(\mathcal{H}\nabla^1_\eta B\xi, \omega W) + g_1(\mathcal{H}\nabla^1_\xi C\eta, \omega W) - g(\mathcal{H}\nabla^1_\eta C\xi, \omega W). \]

Taking into account (2.7) and Lemma 3.2 we get
\[g([\xi, \eta], W) = g(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi + A_c C\eta - A_\eta C\xi, \varphi W) \]
\[- \lambda^{-2}h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi), d\phi(\omega W)) \]
\[+ \lambda^{-2}h(-\xi(\ln \lambda)d\phi(C\eta) - C\eta(\ln \lambda)d\phi(\xi) + g(\xi, C\eta)d\phi(\nabla \ln \lambda) + \nabla^\xi d\phi(C\eta), d\phi(\omega W)) \]
\[- \lambda^{-2}h(-\eta(\ln \lambda)d\phi(C\xi) - C\xi(\ln \lambda)d\phi(\eta) + g(\eta, C\xi)d\phi(\nabla \ln \lambda) + \nabla^\eta d\phi(C\xi), d\phi(\omega W)) \]
by virtue of (2.5) and (2.7)
\[g([\xi, \eta], W) = g(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi + A_c C\eta - A_\eta C\xi, \varphi W) \]
\[- \lambda^{-2}h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi), d\phi(\omega W)) \]
\[- \lambda^{-2}g(\nabla \ln \lambda, \xi)d\phi(C\eta), d\phi(\omega W)) - \lambda^{-2}g(\nabla \ln \lambda, C\eta)d\phi(\xi), d\phi(\omega W)) \]
\[+ \lambda^{-2}g(\xi, C\eta)d\phi(\nabla \ln \lambda), d\phi(\omega W)) + \lambda^{-2}h(\nabla^\xi d\phi(C\eta), d\phi(\omega W)) \]
\[+ \lambda^{-2}g(\nabla \ln \lambda, \eta)d\phi(C\xi), d\phi(\omega W)) + \lambda^{-2}g(\nabla \ln \lambda, C\xi)d\phi(\eta), d\phi(\omega W)) \]
\[- \lambda^{-2}g(\eta, C\xi)d\phi(\nabla \ln \lambda), d\phi(\omega W)) - \lambda^{-2}h(\nabla^\eta d\phi(C\xi), d\phi(\omega W)) \]

A straight computation yields
\[g([\xi, \eta], W) = g(\eta(\ln \lambda)C\xi - \xi(\ln \lambda)C\eta - C\eta(\ln \lambda)\xi + C\xi(\ln \lambda)\eta + 2g(\xi, C\eta)\nabla \ln \lambda, \omega W) \]
\[+ g(-\varphi(V\nabla^1_\xi B\eta - V\nabla^1_\eta B\xi + A_c C\eta - A_\eta C\xi, W) \]
\[- \lambda^{-2}h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi) - \nabla^\xi d\phi(C\eta) + \nabla^\eta d\phi(C\xi), d\phi(\omega W)) \]
so that

\[g(\xi, \eta, W) = 0 \iff \lambda^{-2} h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi)) \]
\[- \nabla^\phi \xi d\phi(C\eta) + \nabla^\phi \eta d\phi(C\xi), d\phi(\omega W)) \]
\[= g(\eta(\ln \lambda) C\xi - \xi(\ln \lambda) C\eta - C\eta(\ln \lambda) \xi + C\xi(\ln \lambda) \eta + 2g(\xi, C\eta) \nabla \ln \lambda, \omega W) \]
\[+ g(-\phi(\nabla^1 B\eta - \nabla^1 B\xi + A_\xi C\eta - A_\eta C\xi), W) \]

By using (3.12) and (3.13) we obtain (i) \iff (ii), (i) \iff (iii) which completes the proof. \qed

From Theorem 3.1 we deduce

Theorem 3.2. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M_1, g_1, J)\) to a Riemannian manifold \((M_2, g_2)\) with integrable distribution \((\ker \phi)_{\perp}\). If \(\phi \) is a horizontally homothetic map then we have

\[\lambda^{-2} h((\nabla d\phi)(\xi, B\eta) - (\nabla d\phi)(\eta, B\xi)) - \nabla^\phi \xi d\phi(C\eta) + \nabla^\phi \eta d\phi(C\xi), d\phi(\omega W)) \]
\[= g(-\phi(\nabla^1 B\eta - \nabla^1 B\xi + A_\xi C\eta - A_\eta C\xi), W) \]

for \(\xi, \eta \in \Gamma((\ker \phi)_{\perp}) \) and \(V \in \Gamma(\ker \phi) \).

Remark 3.4. From the above result, one can easily see that a conformal generic submersion with integrable \((\ker \phi)_{\perp}\) turns out to be a horizontally homothetic submersion.

For the geometry of leaves of the horizontal distribution, we have the following theorem.

Theorem 3.3. Let \(\phi \) be a conformal generic submersion from a Kähler manifold \((M, g, J)\) to a Riemannian manifold \((B, h)\). Then the following conditions are equivalent:

(i) the horizontal distribution defines a totally geodesic foliation on \(M \).
(ii) \(\lambda^{-2} h((\nabla d\phi)(\xi, JV), d\phi(\eta)) = g(\eta, \nabla^1 J V) \)
(iii) \(\lambda^{-2} h(\nabla^\phi \xi \phi(\omega V_2), d\phi(C\eta)) = -g(\phi(A_\xi C\eta + \nabla^1 B\eta), V_2) \)
\[+ g(A_\xi B\eta - \xi(\ln \lambda) C\eta - C\eta(\ln \lambda) \xi + g(\xi, C\eta) \nabla \ln \lambda, \omega V_2) \]

for \(\xi, \eta \in \Gamma((\ker \phi)_{\perp}) \) and \(V \in \Gamma(D) \).

Proof. Given \(\xi, \eta \in \Gamma((\ker \phi)_{\perp}) \) and \(JV_1 \in \Gamma(D) \), by virtue of (3.1)(ii), (2.5), (2.6), (3.5) and (3.7) we obtain

\[g(\nabla^1 \eta, JV_1) = -g(\eta, \nabla^1 J V_1 + \nabla^1 J V_1) \]
\[= \lambda^{-2} h((\nabla d\phi)(\xi, JV_1), d\phi(\eta)) - g(\eta, \nabla^1 J V_1) \]
so that

\[g(\nabla^1 \eta, JV_1) = 0 \iff g(\eta, \nabla^1 J V_1) = \lambda^{-2} h((\nabla d\phi)(\xi, JV_1), d\phi(\eta)) \]
Given $V_2 \in \Gamma(D_2)$, by using $\eqref{3.1}(\text{ii})$, $\left(\ref{2.5}\right)$, $\left(\ref{2.6}\right)$, $\left(\ref{3.5}\right)$ and $\left(\ref{3.7}\right)$ we get
\[
g(\nabla^1_{\xi}\eta, V_2) = -g(\varphi(A_\xi C\eta + \nabla^1_{\xi}B\eta), V_2) - g(B\eta, \nabla^1_{\xi}\omega V_2) + g(\nabla^1_{\xi}C\eta, \omega V_2)
\]
\[
= -g(\varphi(A_\xi C\eta + \nabla^1_{\xi}B\eta), V_2) - g(B\eta, A_\xi \omega V_2) - \lambda^{-2} g(\nabla \ln \lambda, \xi) h(\varphi(\omega V_2), \varphi(\xi), \varphi(\omega V_2))
\]
so that
\[
g(\nabla^1_{\xi}\eta, V_2) = g(A_\xi B\eta - \xi(\ln \lambda) C\eta - C\eta(\ln \lambda) \xi + g(\xi, C\eta) \nabla \ln \lambda, \omega V_2)
\]
\[
\quad - g(\varphi(A_\xi C\eta + \nabla^1_{\xi}B\eta), V_2) - \lambda^{-2} h(\nabla^\phi \omega V_2, \varphi(\xi), \varphi(\eta, \omega V_2))
\]
From $\eqref{3.15}$ and $\eqref{3.16}$ we get $(i) \iff (ii)$, $(i) \iff (iii)$ and $(ii) \iff (iii)$ which completes the proof.

From Theorem $\ref{3.3}$ we immediately deduce

Theorem 3.4. Let ϕ be a conformal generic submersion from a Kähler manifold (M_1, g_1, J) to a Riemannian manifold (M_2, g_2) with a totally geodesic foliation $(\ker \phi)^\perp$. If ϕ is a horizontally homothetic map, then we have
\[
\lambda^{-2} h(\nabla^\phi_{\xi} \varphi(\omega V_2), \varphi(\xi), \varphi(\eta, \omega V_2)) = g(A_\xi B\eta - \xi(\ln \lambda) C\eta - C\eta(\ln \lambda) \xi + g(\xi, C\eta) \nabla \ln \lambda, \omega V_2)
\]
for any $\xi, \eta \in \Gamma((\ker \phi)^\perp)$.

Proof. Since $(\ker \phi)^\perp$ defines a totally geodesic foliation on M_1, from $\eqref{3.16}$ we have
\[
g(\nabla^1_{\xi}\eta, V_2) = g(A_\xi B\eta - \xi(\ln \lambda) C\eta - C\eta(\ln \lambda) \xi + g(\xi, C\eta) \nabla \ln \lambda, \omega V_2)
\]
\[
\quad - g(\varphi(A_\xi C\eta + \nabla^1_{\xi}B\eta), V_2) - \lambda^{-2} h(\nabla^\phi \omega V_2, \varphi(\xi), \varphi(\eta, \omega V_2))
\]
for any $\xi, \eta \in \Gamma((\ker \phi)^\perp)$ and $V_2 \in \Gamma(\ker \phi)$. Now, one can easily see that if λ is a constant on $(\ker \phi)^\perp$, we obtain $\eqref{3.17}$.

In the sequel we are going to investigate the geometry of leaves of the distribution $\ker \phi$.

Theorem 3.5. Let ϕ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian manifold (B, h). Then the vertical distribution defines a totally geodesic foliation on M if and only if
\[
T_U \varphi V + h \nabla^1_U \omega V \in \Gamma(\mu), \nabla_U \varphi V + T_U \omega V \in \Gamma(D_1)
\]
and
\[
\lambda^{-2} h(\nabla^\phi \omega V, \varphi(U), \varphi(\xi)) = g(-C T_U \varphi V - A_{\omega V} \varphi U - g(\omega V, \omega U) \nabla(\ln \lambda), \xi)
\]
for any $U, V \in \Gamma(\ker \phi)$ and $\xi \in \Gamma(\mu)$.

Proof. Given any $U, V \in \Gamma(\ker \phi)$ and $\xi \in \Gamma(\mu)$, by using $\eqref{3.1}(\text{ii})$ and $\left(\ref{3.5}\right)$ we get
\[
g(\nabla^1_U \varphi V, \xi) = g(\nabla^1_U \varphi V + \nabla^1_U \omega V, J\xi).
\]
Now, by using $\left(\ref{2.3}\right)$ we have
\[
g(\nabla^1_U \varphi V, \xi) = g(-C T_U \varphi V, \xi) - g(A_{\omega V} \varphi U, \xi) - \lambda^{-2} h(\varphi(\omega V U), \varphi(\xi))
\]
\[\Box\]
so that

\begin{equation}
(3.18) \quad g(\nabla_U^1 V, \xi) = g(-C T_U \varphi V, \xi) - g(A_{\omega V} \varphi U, \xi) - \lambda^{-2} h(\nabla^\phi_U d\phi(\omega U), d\phi(\xi))
\end{equation}

which tells that

\begin{align*}
g(\nabla_U^1 V, \xi) &= g(-C T_U \varphi V - A_{\omega V} \varphi U - g(\omega V, \omega U) \nabla(\ln \lambda), \xi) \\
&\quad - \lambda^{-2} h(\nabla^\phi_U d\phi(\omega U), d\phi(\xi)).
\end{align*}

Given for any \(U, V \in \Gamma(\ker d)\) and \(Z \in \Gamma(D^\perp)\), by using (3.11)(ii), (3.5) and (2.3) we get

\begin{align*}
g(\nabla_U^1 V, \omega Z) &= -g(J \nabla_U^1 J V, \omega Z) \\
&= -g(J(T_U \varphi V + \tilde{\nabla}_U \varphi V + \mathcal{H}_U \omega V + \mathcal{H} \nabla_U \omega V), \omega Z) \\
&= -g(C(T_U \varphi V + \mathcal{H} \nabla_U \omega V) + \omega(\tilde{\nabla}_U \varphi V + T_U \omega V), \omega Z)
\end{align*}

\[\square\]

From Theorem 3.5, we have

Theorem 3.6. Let \(\phi\) be a conformal generic submersion from a Kähler manifold \((M, g, J)\) to a Riemannian manifold \((B, h)\). Then any two conditions below imply the third:

(i) The vertical distribution defines a totally geodesic foliation on \(M\).

(ii) \(\lambda\) is a constant on \(\Gamma(\mu)\).

(iii) \(\lambda^{-2} h(\nabla^\phi_U d\phi(\omega U), d\phi(\xi)) = g(-C T_U \varphi V + A_{\omega V} \varphi U\), \(\xi)\)

for \(U, V \in \Gamma(\ker d)\) and \(X \in \Gamma((\ker d)^\perp)\).

Proof. In view of Eq. (3.18), if we have (i) and (iii), then we have that

\[g(\omega V, \omega U)g(\nabla(\ln \lambda), \xi) = 0,\]

which tells that \(\lambda\) is a constant on \(\Gamma(\mu)\). One can easily get the other assertions. \[\square\]

From Theorem 3.3 and Theorem 3.5 we have the following result.

Theorem 3.7. Let \(\phi : (M, g, J) \longrightarrow (B, h)\) be a conformal generic submersion from a Kähler manifold \((M, g, J)\) onto a Riemannian manifold \((B, h)\). Then the total space \(M\) is a generic product manifold of the leaves of \(\ker d\phi\) and \((\ker d\phi)^\perp\), i.e., \(M = M_{\ker d\phi} \times M_{(\ker d\phi)^\perp}\), if and only if

\[\lambda^{-2} h((\nabla d\phi)(\xi, J V), d\phi(\eta)) = g(\eta, J V \nabla^1 \xi J V),\]

\[\lambda^{-2} h((\nabla^{\phi}_\xi \phi(\omega V_2), d\phi(C \eta)) = -g(\phi(A_{\xi} C \eta + V \nabla^1 \xi B \eta), V_2)\]

\[+ g(A_{\xi} B \eta - \xi(\ln \lambda) C \eta - C \eta(\ln \lambda) \xi + g(\xi, C \eta) \nabla \ln \lambda, \omega V_2)\]

and

\[T_U \varphi V + \mathcal{H} \nabla_U \omega V \in \Gamma(\mu), \tilde{\nabla}_U \varphi V + T_U \omega V \in \Gamma(D_1),\]

\[\lambda^{-2} h(\nabla^\phi_U d\phi(\omega U), d\phi(\xi)) = g(-C T_U \varphi V - A_{\omega V} \varphi U - g(\omega V, \omega U) \nabla(\ln \lambda), \xi)\]
for any $\xi, \eta \in \Gamma((\ker d\phi)\perp)$, $U, V, V_2 \in \Gamma(\ker d\phi)$, where $M_{\ker d\phi}$ and $M_{(\ker d\phi)\perp}$ are leaves of the distributions $\ker d\phi$ and $(\ker d\phi)\perp$, respectively.

4. Totally geodesicity and Harmonicity of conformal generic submersions

In this section, we investigate the necessary and sufficient conditions for such submersions to be totally geodesicity and harmonicity, respectively. We first give the following definition.

4.1. Totally geodesicity of $\phi : (M, g, J) \rightarrow (B, h)$.

Definition 4.1. Let ϕ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian manifold (B, h). Then ϕ is called a $(\omega D\perp, \mu)$-totally geodesic map if $$(\nabla d\phi)(\omega Z, \xi) = 0, \text{ for } Z \in \Gamma(D\perp) \text{ and } \xi \in \Gamma(\mu).$$

The following result show that the above definition has an important effect on the character of the conformal generic submersion.

Theorem 4.1. Let ϕ be a conformal generic submersion from a Kähler manifold (M, g, J) to a Riemannian manifold (B, h). Then ϕ is a $(\omega D\perp, \mu)$-totally geodesic map if and only if ϕ is a horizontally homotetic map. Then the following conditions are equivalent:

1. ϕ is a horizontally homothetic map.
2. ϕ is a $(\omega D\perp, \mu)$-totally geodesic map.

Proof.
Given $Z \in \Gamma(D\perp)$ and $\xi \in \Gamma(\mu)$, by Lemma 3.2, we have

$$(\nabla d\phi)(\omega Z, \xi) = \omega Z(\ln \lambda)d\phi(\xi) + \xi(\ln \lambda)d\phi(\omega Z) - g(\omega Z, \xi)d\phi(\nabla \ln \lambda).$$

From above equation, we easily get $(i) \implies (ii)$. Conversely, if $(\nabla d\phi)(\omega Z, \xi) = 0$, we get

$$\omega Z(\ln \lambda)d\phi(\xi) + \xi(\ln \lambda)d\phi(\omega Z) = 0.$$ (4.1)

From above equation, since $\{d\phi(\xi), d\phi(\omega Z)\}$ is linearly independent for non-zero $\xi, Z = \{0\}$, we have $\omega Z(\ln \lambda) = 0$ and $\xi(\ln \lambda)$. It means that λ is a constant on $\Gamma(D\perp)$ and $\Gamma(\mu)$, which gives that $(i) \iff (ii)$. This completes the proof of the theorem.

We also have the following result.

Theorem 4.2. Let $\phi : (M, g, J) \rightarrow (B, h)$ is a conformal generic submersion, where (M, g, J) is a Kähler manifold and (B, h) is a Riemannian manifold. Then the following conditions are equivalent:

1. ϕ is a totally geodesic map.
2. $\mathcal{CT}_UJV + \omega \nabla_UJV = 0$ for $U, V \in \Gamma(D)$.
3. $\mathcal{T}_U\phi Z + \mathcal{A}_\omega Z U \in \Gamma(\omega D\perp)$ and $\nabla_U\phi Z + \mathcal{T}_U\omega Z \in \Gamma(D)$, for $U \in \Gamma(D), Z \in \Gamma(D\perp)$.

(iv) $\mathcal{T}_B B_\xi + H \nabla^1 B_\xi \in \Gamma(\omega^D)$ and $\mathcal{N}_V B_\xi + \mathcal{T}_V C_\xi \in \Gamma(JD)$, for $V \in \Gamma(\ker \phi), \xi \in \Gamma((\ker \phi)^\perp)$

(v) ϕ is a horizontally homotetic map.

Proof. In view of Eq. (3.1)(ii) and Eq. (2.7) we have

$$(\nabla \phi)(U, V) = d \phi(J \nabla^1_U J V)$$

for any $U, V \in \Gamma(D)$. Then from Eq. (2.3) we arrive at

$$(\nabla \phi)(U, V) = d \phi(J C T_J JV + \hat{\nabla}_U JV).$$

Using Eq. (3.3) and Eq. (3.7) in above equation we obtain

$$(\nabla \phi)(U, V) = d \phi(B T_U JV + C T_J JV + \phi \hat{\nabla}_U JV + \omega \hat{\nabla}_U JV).$$

So

$$(4.2) \quad (\nabla \phi)(U, V) = 0 \iff C T_J JV + \omega \hat{\nabla}_U JV = 0.$$

Given $U \in \Gamma(\ker \phi), Z \in \Gamma(D^\perp)$, by Eq. (3.1)(ii) and Eq. (2.7) we have

$$(\nabla \phi)(U, Z) = d \phi(J \nabla^1_U J Z).$$

By Eq. (2.3), Eq. (2.4) and Eq. (3.5) yields

$$(\nabla \phi)(U, Z) = d \phi(J C T_U \phi Z + \hat{\nabla}_U \phi Z + C T_U \omega Z + A C \omega Z U).$$

where we have used $H \nabla_\omega U = A C \omega U$. By using Eq. (3.5) and Eq. (3.7) in above equation we obtain

$$(\nabla \phi)(U, Z) = d \phi(B T_U \phi Z + C T_U \omega Z + \phi \hat{\nabla}_U \phi Z + \omega \hat{\nabla}_U \phi Z
+ \phi T_U \omega Z + \omega T_U \omega Z + B A \omega Z U + C A \omega Z U).$$

So

$$(4.3) \quad (\nabla \phi)(U, Z) = 0 \iff C T_U \phi Z + A \omega Z U + \omega \hat{\nabla}_U \phi Z + T_U \omega Z = 0.$$

Given $V \in \Gamma(\ker \phi), \xi \in \Gamma((\ker \phi)^\perp)$, by Eq. (3.1)(ii), Eq. (2.7), Eq. (2.3), Eq. (2.4) and Eq. (3.5) yields

$$(\nabla \phi)(V, \xi) = d \phi(J \nabla^1_V J \xi).$$

$$= d \phi(J (\nabla^1_V B_\xi + \nabla^1_V C_\xi)).$$

$$= d \phi(J (T_V B_\xi + \hat{\nabla}_V B_\xi + \mathcal{T}_V C_\xi + H \nabla^1_V C_\xi)).$$

$$= d \phi(C (T_V B_\xi + H \nabla^1_V C_\xi) + \omega (\hat{\nabla}_V B_\xi + \mathcal{T}_V C_\xi)).$$

So

$$(4.4) \quad (\nabla \phi)(V, \xi) = 0 \iff T_V B_\xi + H \nabla^1_V C_\xi \in \Gamma(\omega^D) \text{ and } \hat{\nabla}_V B_\xi + \mathcal{T}_V C_\xi \in \Gamma(JD).$$

Now, we will show that for any $\xi, \eta \in \Gamma(\mu), (\nabla \phi)(\xi, \eta) = 0 \iff \phi$ is a horizontally homothetic map.

Given $\xi, \eta \in \Gamma(\mu)$, from Lemma 3.2, we have

$$(\nabla \phi)(\xi, \eta) = (\xi(\ln \lambda) d \phi(\eta) + \eta(\ln \lambda) d \phi(\xi) - g(\xi, \eta) d \phi(\nabla \ln \lambda).$$
Taking $\eta = J\xi$, $\xi \in \Gamma(\mu)$ in the above equation we get
\[
(\nabla d\phi)(\xi, J\xi) = \xi(\ln \lambda) d\phi(J\xi) + J\xi(\ln \lambda) d\phi(\xi) - g(\xi, J\xi)d\phi(\nabla \ln \lambda)
= \xi(\ln \lambda) d\phi(J\xi) + J\xi(\ln \lambda) d\phi(\xi).
\]
If $(\nabla d\phi)(\xi, J\xi) = 0$, we get
\[
(4.5) \quad (\xi(\ln \lambda) d\phi(J\xi) + J\xi(\ln \lambda) d\phi(\xi) = 0.
\]
Taking inner product in Eq. (4.5) with $d\phi$ and taking into account ϕ is a conformal submersion, we have
\[
g(\nabla \ln \lambda, \xi) h(d\phi J\xi, d\phi \xi) + g(\nabla \ln \lambda, J\xi) h(d\phi \xi, d\phi \xi) = 0.
\]
which tells that λ is a constant on $\Gamma(J\mu)$. On the other hand, taking inner product in Eq. (4.5) with $d\phi(\xi)$ we have
\[
g(\nabla \ln \lambda, \xi) h(d\phi J\xi, d\phi \xi) + g_1(\nabla \ln \lambda, \xi) h(d\phi \xi, d\phi J\xi) = 0.
\]
which tells that λ is a constant $\Gamma(\mu)$. In a similar way, for $U, V \in \Gamma(D^{\perp})$, by using Lemma 3.2 we have
\[
(\nabla d\phi)(\omega U, \omega V) = \omega U(\ln \lambda) d\phi(\omega U) + \omega V(\ln \lambda) d\phi(\omega U) - g(\omega U, \omega V)d\phi(\nabla \ln \lambda).
\]
From above equation, taking $V = U$ we obtain
\[
(4.6) \quad (\nabla d\phi)(\omega U, \omega U) = 2\omega U(\ln \lambda) d\phi(\omega U) - g(\omega U, \omega U)d\phi(\nabla \ln \lambda).
\]
Taking inner product in Eq. (4.6) with $d\phi(\omega U)$ and taking into account ϕ is a conformal submersion, we derive
\[
2g(\nabla \ln \lambda, \omega U) h(d\phi(\omega U), d\phi(\omega U)) - g(\omega U, \omega U) h(d\phi(\nabla \ln \lambda), d\phi(\omega U)) = 0
\]
which tells that λ is a constant on $\Gamma(\omega D^{\perp})$. Thus λ is a constant on $\Gamma(\ker(d\phi)^{\perp})$. By Eq. (4.2), Eq. (4.3), Eq. (4.4), Eq. (4.5), we have $(i) \iff (ii), (i) \iff (iii), (i) \iff (iv), (i) \iff (v)$. This completes the proof of the theorem. \qed

4.2. **Harmonicity of $\phi : (M, g, J) \to (B, h)$**. Let $\phi : N_1 \to N_2$ be a C^∞ map between two Riemannian manifolds. We can naturally define a function $e(\phi) = N_1 \to [0, \infty]$ given by
\[
e(\phi)(x) = \frac{1}{2} |(d\phi)_x|, x \in N_2
\]
where $|(d\phi)_x|$ denotes the Hilbert-Schmidt norm of $(d\phi)_x$. We call $e(\phi)$ the energy density of ϕ. Let Ω is the compact closure \overline{U} of a non empty connected open subset U of N_1. The energy integral of ϕ over Ω is the integral of its energy density:
\[
E(\phi; \Omega) = \int_{\Omega} e(\phi)v_{g_N} = \int_{\Omega} \frac{1}{2} |(d\phi)_x|v_{g_N}
\]
where v_{g_N} is the volume form on (N, g_N). Let $C^\infty(N_1, N_2)$ denote the space of all differentiable map from N_1 on N_2. A differentiable map $\phi : N_1 \to N_2$ is said to harmonic if it is a critical point of the energy functional $E(\phi; \Omega) : C^\infty(N_1, N_2) \to \mathbb{R}$ for any compact domain $\Omega \subset N_1$. By the result of J. Eells and J. Sampson [6], we know that the map ϕ is harmonic if and only if the tension field
\[
\tau(\phi) = \text{trace}(\nabla d\phi) = 0.
\]
Theorem 4.3. Let \(\phi : (M, g, J) \rightarrow (B, h) \) be a conformal generic submersion, where \((M, g, J)\) is a Kähler manifold and \((B, h)\) is a Riemannian manifold. Then \(\phi \) is harmonic if and only if

\[
\text{trace}|_{(D_1)}\ d\phi\left(\mathcal{C}T_{Jh}(.) + \omega\hat{\nabla}_{Jh}(.)\right) + \\
\text{trace}|_{(D_2)}\ d\phi\left(\mathcal{C}T_{h}(.) + \omega\hat{\nabla}_{h}(.) + \omega\mathcal{B}(.). + \mathcal{C}\mathcal{H}\nabla^{1}_{h}(.).\right)
\]

Proof. For any \(U \in \Gamma(D_1), V \in \Gamma(D_2) \) and \(\xi \in \Gamma((\ker\phi)^{\perp}) \), by using Eq. (3.1) (i), Eq. (2.7), Eq. (3.7), Eq. (2.5), and Proposition 3.1 (f) we have

\[
(\nabla d\phi)(JU, JU) + (\nabla d\phi)(V, V) + (\nabla d\phi)(\xi, \xi) = -d\phi(J\nabla^{1}_{JU}V) + d\phi(J(\nabla^{1}_{JU}V + \nabla^{1}_{h}B\xi + \nabla^{1}_{h}C\xi)).
\]

A straight computation by using Eq. (3.7), Eq. (2.5) and Eq. (2.3)- (2.6), we obtain

\[
(\nabla d\phi)(JU, JU) + (\nabla d\phi)(V, V) + (\nabla d\phi)(\xi, \xi) = -d\phi(\mathcal{C}T_{Jh}U + \omega\hat{\nabla}_{Jh}U) + d\phi(\mathcal{C}T_{h}V + \omega\hat{\nabla}_{h}V + \mathcal{C}\mathcal{H}\nabla^{1}_{h}V) - \nabla^{1}_{h}d\phi(C^{2}\xi + \omega\mathcal{B}\xi) + d\phi(\mathcal{A}_{1}\mathcal{B}\xi + \mathcal{C}\mathcal{H}\nabla^{1}_{h}C\xi + \omega\mathcal{A}_{1}C\xi + \omega\nabla^{1}_{h}C\xi).
\]

Now, by taking trace on the above equation, we obtain the proof of the theorem. \(\Box \)

Remark 4.1. One can easily see that the maps defined Example 3.6 and Example 3.7 are an example of harmonic map.

References

[1] Ali, S. and Fatima, T., Generic Riemannian submersions, Tamkang Journal of Mathematics, 44(4), (2013), 395-409.
[2] Akyol, M. A., Generic Riemannian submersions from almost product Riemannian manifolds, Gazi University Journal of Science, 30(3), 89-100, (2017).
[3] Akyol, M. A., Conformal semi-invariant submersions from almost product Riemannian manifolds, Acta Mathematica Vietnamica, 42(3), 491-507, (2017), Doi:10.1007/s40306-016-0193-9.
[4] Akyol, M. A. and Gündüzalp, Y., Semi-invariant semi-Riemannian submersions, Commun. Fac. Sci. Univ. Ank. Series A1 Volume 67, Number 1, Pages 80-92 (2018).
[5] Akyol, M. A. and Sâhın, B., Conformal semi-invariant submersions, Communications in Contemporary Mathematics, Vol:19, No:2, (2017), 1650011, Doi: http://dx.doi.org/10.1142/S0219199716500115.
[6] Baird, P. and Wood, J.C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press. Oxford, 2003.
[7] Bejancu, A., Geometry of CR-submanifolds. Kluwer Academic, (1986).
[8] Caldarella, A.V., On paraquaternionic submersions between paraquaternionic Kähler manifolds, Acta Appl. Math. 112, (2010), no. 1, 1-14.
[9] Chen, B. Y., Differential geometry of real submanifolds in a Kähler manifold, Monatsh. Math., 91(1981), 257-274.
[10] Chinea, D., On horizontally conformal \((\varphi, \varphi')\)-holomorphic submersions. Houston J. Math. (2008); 34(3): 721-737.
[11] Choe, Y-W, Ki, U-H, and Takagi, R., *Compact minimal generic submanifolds with parallel normal section in a complex projective space*, Osaka J. Math. 37(2), (2000), 489-499.

[12] De, U. C., Sengupta, A. K. and Calin, C. *Generic submanifolds of quasi-Sasakian manifolds*, Demonstratio Math. 37(2), (2004), 429-437.

[13] De, U. C. and Sengupta, A. K., *Generic submanifolds of a Lorentzian para-Sasakian manifold*, Soochow J. Math. 27(1), (2001), 29-36.

[14] Fuglede, B., *Harmonic Morphisms Between Riemannian Manifolds*, Ann. Inst. Fourier (Grenoble) 28, (1978), 107-144.

[15] Falcitelli, M., Ianus, S. and Pastore, A. M., *Riemannian submersions and Related Topics*. World Scientific, River Edge, NJ, 2004.

[16] Gundmundsson, S. and Wood, J.C, *Harmonic Morphisms between almost Hermitian manifolds*. Boll. Un. Mat. Ital. B. (1997); 11(2): 185-197.

[17] Gray, A., *Pseudo-Riemannian almost product manifolds and submersions*, J. Math. Mech. 16, (1967), 715-737.

[18] Ishihara, T., *A mapping of Riemannian manifolds which preserves harmonic functions*, J. Math. Kyoto Univ. 19, (1979), 215-229.

[19] Ianus, S., Mazzocco, R. and Vilcu, G.E, *Riemannian submersions from quaternionic manifolds*. Acta Appl. Math., 104(1), (2008), 83-89.

[20] Kim, J-S., Choi, J. and Tripathi, M. M., *On generic submanifolds of manifolds equipped with a hypercosymplectic β-structure*, Commun. Korean Math. Soc. 21(2), (2006), 321-335.

[21] Kon, M., *On minimal generic submanifolds immersed in S^{2m+1}*, Colloq. Math. 90(2), (2001), 299-304.

[22] Marrero, J. C. and Rocha, J., *Locally conformal Kähler submersions*. Geom. Dedicata, 52(3), (1994), 271-289.

[23] O’Neill, B., *The fundamental equations of a submersion*. Mich. Math. J., (1966), 13, 458-469.

[24] Özdemir, F., Sayar, C. and Taştan, H. M., *Semi-invariant submersions whose total manifolds are locally product Riemannian*, Quaestiones Mathematicae, 40(7), (2017), 909-929.

[25] Park, K. S., *Almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds*, arXiv:1708.07753 [math.DG].

[26] Park, K. S., *H-semi-invariant submersions*, Taiwanese J. Math. Volume 16, Number 5 (2012), 1865-1878.

[27] Park, K. S. and Prasad, R., *Semi-slant submersions*, Bull. Korean Math. Soc. 50(3) (2013) 951-962.

[28] Şahin, B., *Anti-invariant Riemannian submersions from almost Hermitian manifolds*, Central European J. Math, no. 3, (2010), 437-447.

[29] Şahin, B., *Semi-invariant Riemannian submersions from almost Hermitian manifolds*, Canad. Math. Bull. 56, (2011), 173-182.

[30] Şahin, B., *Slant submersions from almost Hermitian manifolds*, Bull. Math. Soc. Sci. Math. Roumanie, 54(102), 1, (2011), 93-105.

[31] Şahin, B., *Riemannian submersions from almost Hermitian manifolds*, Taiwanese J. Math. 17(2) (2013) 629-659.

[32] Şahin, B., *Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications* (Elsevier, Academic Press, Massachusetts, Cambridge, 2017).

[33] Vilcu, G. E., *On generic submanifolds of manifolds endowed with metric mixed β-structures*, Commun. Contemp. Math. 18(6), 1550081, 2016 [21 pages].

[34] Vilcu, G. E., *Mixed paraquaternionic β-submersions*, Indag. Math. (N.S.) 24, (2013), no. 2, 474-488.

[35] Vilcu, A. D., Vilcu, G. E. *Statistical manifolds with almost quaternionic structures and quaternionic Kähler-like statistical submersions*. Entropy 17(9), (2015), 6213-6228.

[36] Watson, B., *Almost Hermitian submersions*. J. Differential Geometry, (1976); 11(1): 147-165.

[37] Urakawa, H., *Calculus of Variations and Harmonic Maps*, Amer. Math. Soc. 132, (1993).

[38] Yano, K. and Kon, M., *Structures on Manifolds*, World Scientific, Singapore, 1984.
Bingöl University, Faculty of Science and Arts, Department of Mathematics, 12000, Bingöl, Turkey

E-mail address: mehmetakifakyol@bingol.edu.tr