Development of real-time RT-PCR assay for diagnosis of viral enteritis in neonatal goat kids

SAPNA PRAJAPATI¹, K GURURAJ², DIMPLE ANDANI³, ANJALI PACHORI⁴, ASHOK KUMAR⁵ and R V S PAWAIYA⁶

ICAR-Central Institute for Research on Goats, Farah, Mathura, Uttar Pradesh 281 122 India

Received: 13 August 2019; Accepted: 3 September 2019

ABSTRACT

Rotavirus gastroenteritis is a worldwide disease affecting primarily infants, young children and young ones of wide variety of mammalian and avian species. Diarrhoea in goat kids is most frequently found associated with Group A rotavirus (GARV) and another enteric pathogen bovine coronavirus (BCoV), a major viral pathogen associated with neonatal diarrhoea. Enteric BCoV replicates in epithelial cells of gut, destroying villi, resulting in severe, often bloody diarrhoea in calves. It requires highly sensitive and specific assays to diagnose the disease at field level. In the present study, a real-time reverse-transcriptase (RT) polymerase chain reaction (PCR) was developed and validated for specific detection and quantification of GARV and BCoV with high sensitivity and specificity. For real-time RT-PCR, primers were designed to target nucleocapsid gene for BCoV; NSP4 gene and VP6 gene were designed for GARV using discontiguous conserved sequences. Real-time RT-PCR assay was standardized by serial dilution of positive GARV and BCoV RNA. The rotavirus real-time RT-PCR assay was found to be specific to rotavirus, but broadly reactive to GARV. The sensitivity of the assay for detecting rotavirus and BCoV in faecal samples and tissue sample was found to be high in such reactions. The real-time RT-PCR assay was effective in detecting GARV and BCoV in all positive samples obtained from sheds, farms and outbreaks. The results of this study demonstrate that the real-time RT-PCR assay for viral enteritis is broadly reactive, specific, and sensitive for detection of GARV and BCoV in faecal sample and tissue samples.

Key words: BCoV, GARV, NSP4 gene, Nucleocapsid gene, Real-time RT-PCR, VP6 gene

Neonatal enteritis is an important disease that causes mortality in young age with significant economic losses. Although the neonatal diarrhea is common, there is still little knowledge about pathology, pathogenesis and immunohistochemical localization of viral agents that cause neonatal enteritis in goat kids. Acute gastroenteritis is caused by a number of viruses, including rotavirus, norovirus, astrovirus, and bovine corona virus (Logan et al. 2006; Anderson and Evan, 2010; Maarseveen et al. 2010). Transmission is via the fecal–oral route and clinical manifestations range from subclinical infection to varying degrees of fever, diarrhea, and vomiting (Elliott, 2007; Anderson and Evan, 2010). Rotaviruses are dsRNA viruses, and have a segmented genome leading to frequent reassortment (Estes and Kapikian, 2007; Greenberg et al. 2009). Serogroups A–C are known to infect humans with the majority of infections caused by serogroup A (Estes and Kapikian, 2007; Greenberg et al. 2009). Bovine coronavirus, of the family Coronaviridae, produces a more severe, long-lasting disease compared to rotavirus.

Reduction in goat kid mortality is vital to the economic goat husbandry and is critical for the fast growth of goat industry in the country. The variable mortality rates for small, medium and large categories of goat keeping were 32.8, 32.1 and 15.8% in kids (Kumar, 2006). Previously, realtime PCR based molecular detections using SYBR green chemistry were developed to detect the group A rotaviruses with higher efficiency in animals (Schwarz et al. 2002), and a combined assay for detection of group F adenovirus, rotavirus A, and rotavirus C from stool specimens with the efficiency of 155% compared to electron microscopy (Logan et al. 2006). Similarly, TaqMan® probe-based real-time reverse transcriptase (RT) polymerase chain reaction (PCR) assay was developed by Jothikumar et al. (2009) to target the non-structural protein region 3 of rotavirus.

Molecular diagnostics offer faster and more accurate reproducible results compared to conventional assays and Real-time PCR offers improved sensitivity and specificity (Yuan et al. 2006). We hereby report a real-time PCR based...
diagnostic assay developed for enteric viruses in neonatal goat kids.

MATERIALS AND METHODS

Collection of clinical samples (Fecal samples): A total of 304 diarrheal and non-diarrheal faecal samples of animals (goat kids and lambs) were collected from Jamunapari, Barbari and Jakrana shed, Experimental shed of Division of Animal Health, ICAR–Central Institute for Research on Goats (CIRG), Makhdoom, Farah, Mathura (Uttar Pradesh) from October, 2016 to March 2019. Samples were collected between the age group of 0–3 months. Out of 304 faecal samples, 254 were diarrheal samples, goat kids (232), lambs (22) and 17 tissue samples from different outbreaks and farms. The swab samples were suspended in 2.0 ml sterile double glass distilled water and stored in microfuge tubes at 4°C for RNA isolation.

Extraction of RNA: Rotaviral dsRNA extraction with TRizol reagent was carried out as per the manufacturer’s protocol. The RNA pellet was resuspended in 30 μl nuclease free water (NFW), followed by incubation in water bath set at 55–60°C for 10–15 min. The isolated RNA was then used for downstream application including cDNA synthesis or stored at −20°C till further use.

SYBR green real time PCR for GARV detection: The qRT-PCR assay was performed with SuperScript™ III Platinum® SYBR® Green One-Step qRT-PCR kit and CFX96 Real-Time PCR System operated by CFX™ Manager software. The qRT-PCR reaction was run in duplicates, each in a total volume of 20 μl. Primers (Table 1) were designed for the amplification of VP6 gene and NSP4 gene of GARV and Nucleocapsid protein gene for BCoV.

RESULTS AND DISCUSSION

Real-time RT-PCR was standardized and developed for detection of GARV and BCoV in diarrhoeic samples of small ruminants. For GARV we targeted two genes, viz. VP6 and NSP4, and for BCoV, NC gene was targeted. Out of 304 diarrheic faecal samples, 94 diarrheic neonate fecal samples were tested for GARV VP6 gene in which 5 samples were positive, and out of 74 tested by NSP4 real-time RT-PCR, 4 were positive. These samples were detected with very high sensitivity and specificity for GARV. While NC real-time RT-PCR for detection of BCoV revealed 3 positive out of 94 samples tested.

Detection and quantification of Group A rotavirus targeting VP6 gene: Molecular assay were used for targeting VP6 gene in 94 samples and based on RUU cut-off and melt curve analysis, the positive samples were detected (Fig. 1). Real-time PCR testing of diarrheic faecal samples from 94 animals (goat kids-89 and lambs-5), revealed positivity for rotavirus in 5 samples. Thus, the qRT-PCR assay could even detect the rotaviral infection in some of the samples that were negative in conventional RT-PCR, thereby, showing its higher sensitivity compared to the latter.

Detection and quantification of Group A rotavirus targeting NSP4 gene: Molecular assays were used for targeting NSP4 gene in 94 samples and based on RUU cut-off and melt curve analysis, the positive samples were detected (Fig. 2). Real-time PCR testing of diarrheic faecal samples from 74 animals (goat kids-69 and lambs-5), revealed positivity for rotavirus in 5 samples. Thus, the qRT-PCR assay could even detect the rotaviral infection in some of the samples that were negative in conventional RT-PCR, thereby, showing its higher sensitivity compared to the latter.

Schwarz et al. (2002) have reported the detection of as low as 10 RNA molecules of viral RNA of Group A rotavirus in clinical samples obtained from various animal species and man by fluorimetry using the SYBR Green I dye in a real-time RT-PCR assay. The testing of diarrheic faecal samples from 30 animals (calves-23, goat kids-4 and lambs-3), revealed positivity for rotavirus in 25 samples by qRT-PCR assay. The real-time PCR assay could determine genomic copy numbers present in the diarrheic faecal samples Manuja et al. (2010), which were earlier detected as positive for rotavirus infection by RT-PCR. In addition to this, rotavirus was detected and quantified in six samples, which were otherwise negative by RT-PCR assay. The results are in agreement with published reports which have described real time RT-PCR to be rapid and more sensitive for the detection and quantitation of rotavirus compared to conventional RT-PCR assay (Kang et al. 2004; Logan et al. 2006; Gutiérrez-Aguirre et al. 2008).

Neonatal diarrhoea induced by animal group A rotavirus also causes significant economic loss in the dairy and meat industry due to increased morbidity and mortality, treatment costs, and reduced growth rates. Diarrhoea is a major cause of death for the young calves under one-month-old and kids and lambs between 0–15 days of age (Maes et al. 2003). At the same time, there are evidences of interspecies transmission of rotaviruses from one animal species to others, including humans (Palombo, 2002; Cook et al. 2004). This interspecies transmission could occur via genetic reassortment between human and animal rotavirus strains during co-infection of the same cell (Varghese et al. 2004). In India, although considerable work has been carried out on human rotaviruses, limited data is available on the epidemiology of animal rotavirus strains and even more restricted observations have been reported regarding the genotype specificities of field isolates.

A diagnosis of viral agents can be made by immune
Fig. 1. Cycle quantification and Tm calling of the VP6 gene amplicon of GARV analyzed using SYBR-Green qRT-PCR assay

Fig. 2. Cycle quantification and Tm calling of the NSP4 gene amplicon of GARV analyzed using SYBR-Green qRT-PCR assay

Fig. 3. Cycle quantification and Tm calling of the Nucleocapsid gene amplicon of BCoV analyzed using SYBR-Green qRT-PCR assay.
histochemical examination of tissue fixed in formalin. This study revealed that the most common viral agents in lambs and goat kids neonatal diarrhea was rotavirus. Our current study showed that coronavirus is also an important etiological factor, compared with other viral causes of diarrhea in small ruminants. However, according to a previous study by our group, its incidence has increased and may be an important viral agent in neonatal enteritis in the future. This study showed that viral etiology was very important to occurring of neonatal diarrhea.

Detection and quantification of Bovine Corona Virus (BCoV) targeting Nucleocapsid protein gene: Molecular assays were used for targeting nucleocapsid gene in 94 samples and based on RFU cut-off and melt curve analysis, the positive samples were detected (Fig. 3). Real-time PCR testing of diarrhoeic faecal samples from 94 animals (goat kids–92 and lambs-2), revealed positivity for BCoV in 3 samples. Thus, the qRT-PCR assay could even detect the coronaviral infection in some of the samples that were negative in conventional RT-PCR, thereby, showing its higher sensitivity compared to the latter.

Anamul et al. (2015), described study on development and application of a reverse transcription SYBR green real-time PCR assay system for the detection of group A rotaviruses (GARV) in bovines. The examination of clinical samples (n=80) showed consistent diagnostic specificity and sensitivity of the real-time PCR assay in comparison to a routinely used RNA electrophoresis method. The specificity of the assay was confirmed using other enteric viruses with the melting curve analysis of amplified products. The reproducibility of the assay was proved by low values of coefficient of variation in the intra- (1.7%) and inter-assay (2.4%). In comparison to RNA-PAGE screening method which detected 25% (20/80) positive samples for GARV, the newly developed real-time PCR detected 46.25% (37/80) positive samples for GARV, providing higher sensitivity of the assay developed. Reports on development of real time PCR for detection of RVs in animals are limited and in particular from India are not available for the use of the said test for detection of RVs in bovines. The results indicate use of real-time RT-PCR assay as a method of choice for the specific detection of GARV in field samples and particularly in a situation where a number of other clinically resembling infectious agents like picobirnavirus, coronavirus, calicivirus, and astrovirus are known to coincide as mixed infection. In our findings, real time RT-PCR was standardized with SYBR green dye for detection of GARV, GBRV and BCoV.

Feeney et al. (2011) reported a study on multiplex TaqMan® assay for detection of viral enteritis. He described the work-up of two internally controlled multiplex, probe-based PCR assays and reports on the clinical validation over a 3-year period, March 2007 to February 2010. Multiplex assays were developed using a combination of TaqMan® and minor groove binder (MGB™) hydrolysis probes. The assays were validated using a panel of 137 specimens, previously positive via a nested gel-based assay. The assays had improved sensitivity for adenovirus, rotavirus, and norovirus (97.3% vs. 86.1%, 100% vs. 87.8%, and 95.1% vs. 79.5%, respectively) and also more specific for targets adenovirus, rotavirus, and norovirus (99% vs. 95.2%, 100% vs. 93.6%, and 97.9% vs. 92.3%, respectively). The current study was designed for detection of enteric viruses using molecular assays, to produce accurate, quick with highly sensitive and specific reproducible results. Hence, two genes, viz. VP6 & NSP4 were targeted for GARV and Nucleocapsid for Bovine corona virus. All the assays were set-up using SYBR green Reverse transcriptase real time PCR.

Comparative analysis of GARV VP6 gene, GARV NSP4 gene and BCoV nucleocapsid protein

Neonatal enteritis is an important disease that causes deaths of animals before 3 weeks of age, and results in significant economic losses. Viral agents can predispose the young animals to secondary infections in the gastrointestinal tract, especially in lambs and goat kids younger than 21 days. Although the neonatal diarrhea is common in calves, there is limited knowledge about enteric viruses and their effects including the prevalence and geographic distribution in small ruminants. Hence, in the current study molecular diagnostics were used as a tool to carry out epidemiological investigations with the aim of detecting rotavirus and coronavirus presence goat kids and lambs and its association with viral enteritis.

Neonatal infectious pathologies in goats may be caused by bacteria, viruses, parasites or nutritional deficiencies, often in synergy and usually characterized by high morbidity and mortality. Rotaviruses, Coronavirus and bacteria, such as Escherichia coli, Salmonella spp. and Clostridium spp., are etiological agents more commonly involved in gastrointestinal diseases in kids (Singh et al. 2018a; Singh et al. 2018b). In our study, 254 neonatal diarrheic goat kids were studied, of which 47.48% were 0–1 month old and 52.52%
1–3 months of age.

The current study could reveal some important features of the enteric viral infections in small ruminants with respect to various criteria like age, season, gender etc. In conclusion, the real time PCR assays developed for the enteric viruses in the current study were to cater to the higher sensitivity and specificity besides the time involved in conducting the other conventional assays. The GARV were the most common enteric pathogen followed by BCoV and rarely GBRV. The GARV emerged as most important pathogen, that was associated with clinical diarrhoeic cases as evidenced by the conventional RT-PCR assay and the VP6 and NSP4 gene based qRT-PCR. This indicates the fact that GARV needs attention in field conditions leading to diarrhoea, slower growth rate and mortality in goat kids, which can only be addressed by vaccination and hygiene measures. Based on the results obtained from the developed real time PCR assays, conclusion could be drawn that there is need to study the epidemiological status of enteric viruses and their pathogenic effects in neonatal kids. Although the GBRV incidence was less than 2%, their importance with respect to clinical diarrhea and its combination with other bacterial pathogens like Escherichia coli or Cryptosporidium should be explored. The significance of enteric viruses in small ruminants was always not supported by ample data, which the current study could address in a way using the latest tools including qRT-PCR assays for their detection.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, ICAR-Central Institute for Research on Goats, Makhdoom, Mathura and Dean, College of Biotechnology, DUVASU, Mathura, Uttar Pradesh, for providing necessary facilities to carry out the work. The authors are also thankful to CAB in Scheme of ICAR-IASRI and AINP on Neonatal Mortality of Farm Animals (ICAR) for providing financial support to carry out the research work.

REFERENCES

Anamul H A. 2015. Development of real-time PCR assay for detection of rotavirus infection in diarrheic bovine calves. Advances in Animal Veterinary Sciences 3(6): 321–24.

Anderson and Evan J. 2010. Prevention and treatment of viral diarrhea in pediatrics. Expert review of anti-infective therapy 8(2): 205–17.

Chauhan R S and Singh N P. 1996. Epidemiology of rotavirus infection in calves in India. Indian Journal of Animal Sciences 11: 221–23.

Cook N, Bridger J, Kendall K, Iturria-Gomara M, El-Attar L and Gray J. 2004. The zoonotic potential of rotavirus. Journal of Infection 48: 289–302.

Elliot E J. 2007. Acute gastroenteritis in children. British Medical Journal 334: 35–40.

Estes M K and Kapikian A Z. 2007. Rotaviruses and their replication. Fields Virology,(5th edn.), p. 1917–1974. (Eds) B N Fields, D M Knipe, P M Howley, D E Griffin, R A Lamb, M A Martin, B Roizman and S E Straus. Philadelphia, PA: Lippincott, Williams and Wilkins.

Feeney S A, Mitchell S J, Mitchell F, Wyatt D E, Fairley D, McCaughey C, Coyle P V and O’Neill H J. 2006. Association with the G4 rotavirus with gastroenteritis in adults. Journal of Medical Virology 78: 19–23.

Greenberg, Harry B and Mary K Estes. 2009. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136(6): 1939–51.

Gutiérrez-Aguirre and Ion. 2008. Sensitive detection of multiple rotavirus genotypes with a single reverse transcription-real-time quantitative PCR assay. Journal of Clinical Microbiology 46(8): 2547–54.

Jothikumar N, Kang G and Hill V R. 2009. Broadly reactive TaqMan® assay for real-time RT-PCR detection of rotavirus in clinical and environmental samples. Journal of Virological methods 155(2): 126–31.

Kang B K, Oh J S, Ha G W, Yang J S, Moon H J and Park B K. 2006. Multiplex reverse transcription-PCR for rapid differential detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, and porcine group A rotavirus. Journal of Veterinary Diagnostic Investigation 18(3): 278–81.

Kumar M. 2006. ‘Polymerase chain reaction for rapid detection of important zoonotic diarrhoeal pathogens’. M.V.Sc. Thesis, Indian Veterinary Research Institute, Izatnagar, India.

Logan C, O’Leary J J and O’Sullivan N. 2006. Real-Time Reverse Transcription-PCR for Detection of Rotavirus and Adenovirus as Causative Agents of Acute Viral Gastroenteritis in Children. Journal of Clinical Microbiology 44: 3189–95.

Maarseeven N M, Wessels E, Vossen E C and Class E C. 2010. Diagnosis of viral gastroenteritis by simultaneous detection of Adenovirus group F, Astrovirus, Rotavirus group A, Norovirus-genogroups I and II, and Sapovirus in two internally controlled multiplex real-time PCR assays. Journal of Clinical Virology 49(3): 205–10.

Maes R K, Grooms D L, Wise A G, Han C, Ciesicki V, Hanson L, Vickers M L, Kanitz C and Holland R. 2003. Evaluation of a human group A rotavirus assay for on-site detection of bovine rotavirus. Journal of Clinical Microbiology 41: 290–94.

Schwarz B A, Bange R, Vahlenkamp T W, Johne R and Muller H. 2002. Detection and quantitation of group A rotaviruses by competitive and real-time reverse transcriptionpolymerase chain reaction. Journal of Virology Methods 105: 277–85.

Singh D D, Pawaiya R S, Gururaj K, Gangwar N K, Mishra A K, Andani D, Singh M K, Bhushan S and Kumar A, 2018a. Molecular detection of Clostridium perfringens toxinotypes, Enteropathogenic Escherichia coli, rotavirus and coronavirus in diarrheic fecal samples of neonatal goat kids. Veterinarski arhiv 88(1): 1–20.

Singh D D, Pawaiya R V S, Gururaj K, Gangwar N K, Mishra A K, Singh R and Kumar A. 2018b. Detection of Clostridium perfringens toxinotypes, enteropathogenic E. coli, Rota and corona viruses in the intestine of neonatal goat kids by molecular techniques. Indian Journal of Animal Research 88(6): 655–61.

Varghese V, Das S, Singh N B, Kojima K, Bhattacharya S K, Krishnan T, Kobayashi N and Naik T N. 2004. Molecular characterization of a human rotavirus reveals porcine characteristics in most of the genes including VP6 and NSP4. Archives of Virology 149: 155–72.

Yuan and Wanzhe. 2006. Development of a nanoparticle-assisted PCR assay for detection of porcine epidemic diarrhea virus. Journal of Virological Methods 220: 18–20.