Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

Eric D. Eisenmann¹, Boyd R. Rorabaugh² and Phillip R. Zoladz¹*

¹Department of Psychology, Sociology and Criminal Justice, Ohio Northern University, Ada, OH, USA, ²Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, Ada, OH, USA

Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.

Keywords: stress, cardiovascular, ischemia, anxiety, PTSD, rodent

INTRODUCTION

The goal of this review is to analyze recent literature utilizing rodent models to examine the impact of psychological stress on sensitivity to myocardial ischemia–reperfusion injury (IRI) in the context of the well-established relationship between stress, myocardial ischemic injury, and cardiovascular disease (CVD). Stress is a general adaptive response provoked by stimuli that disrupt homeostasis (1, 2). The stress response activates systems responsible for mobilizing the energy and resources necessary to overcome this homeostatic disturbance. The main systems activated include the hypothalamic–pituitary–adrenal (HPA) axis and the sympathetic adrenomedullary (SAM) system (3, 4). Stress results in the release of corticotropin-releasing hormone (CRH) from the paraventricular nucleus, which then causes the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary. ACTH acts on the adrenal cortex to synthesize and secrete the glucocorticoid (GC) hormone cortisol (in humans) or corticosterone (in rodents) (3, 5). The hypothalamus also activates the adrenal medulla via the sympathetic nervous system (SNS), which results in the release of the catecholamines epinephrine and norepinephrine. ACTH, CRH, and GCs provide the negative feedback necessary to dampen the stress response and return the body to homeostasis (4, 6). Cessation of the stress response is important to prevent damage associated with a prolonged stress response (3, 4, 7). Acute stress generally results in an adaptive response to homeostatic changes; the stress response becomes...
in patients with ischemic heart disease (8, 14, 17–21). Thus, monitoring for psychiatric disorders could improve outcomes of patients with cardiovascular disease (32, 33). Patients with psychiatric disorders experience worse outcomes in response to cardiovascular disorders (e.g., higher mortality). It is suggested that appropriate monitoring for psychiatric disorders could improve outcomes in patients with ischemic heart disease (8, 14, 17–21). Thus, research directed at minimizing the negative impact of stress is important (19, 21–25).

Stress and Cardiovascular Disease

Cardiovascular disease is the leading cause of mortality worldwide (26, 27), and stress is a well-established contributor to the development of CVD (3, 8, 20). Stress is relevant at all stages of CVD; stress can increase exposure to risk factors for CVD (e.g., smoking), the long-term development of atherosclerosis, and the triggering of cardiac events in people with CVD (28).

The most common form of CVD is ischemic heart disease (also known as coronary artery disease), which includes disease states such as angina, MI, and sudden cardiac death (SCD) (29, 30). MI occurs when blood flow to a region of the heart stops. The heart is an electromechanical pump; SCD most commonly occurs in response to ventricular fibrillation, a disturbance in electrical activity, as a result of acute coronary ischemia (31, 32). MI and SCD can lead to cardiac arrest and death. Stress may acutely trigger MI or SCD or worsen underlying CVD leading to one of these events (3). Thus, stress is closely related to ischemic heart disease. Research investigating the relationship between stress and the cardiovascular system is critical to improve patient outcomes in CVD (20, 25, 28).

Myocardial Ischemia–Reperfusion Injury

Myocardial IRI refers to the damage created by the stoppage of and the subsequent restoration of blood flow to the heart. Without blood flow, an imbalance between oxygen supply and demand is created which results directly in irreversible damage to cardiac tissue, eventually resulting in apoptosis or necrosis; this oxygen imbalance is referred to as ischemia. The duration of ischemia and amount of tissue exposed to ischemia are well established as the primary determinants of infarct size (IS), or the amount of non-viable tissue following ischemia. The mechanisms by which damage and protection occur in response to myocardial IRI has been described in detail previously (33–39). Thus, myocardial IRI is the primary mechanism by which cardiac tissue is damaged in MI, SCD, cardiac bypass surgery, and organ transplantation (40). Acute and chronic stress has an impact on myocardial IRI (3, 41, 42). Because myocardial IRI plays a major role in the morbidity and mortality associated with ischemic heart disease and MI, direct study of this pathology is desirable (35, 43–46). To better elucidate the mechanisms underlying CVD and ischemic injury, researchers have utilized animal models.

The Utility of Animal Models in Stress Biology and Cardiovascular Disease

Animal models are used extensively to study the relationship between stress and CVD. Animal models are especially important in studying stress biology, as they allow researchers to standardize the conditions of stress. Furthermore, a high level of experimental control and the potential to study causal neurobiological and behavioral mechanisms (with easier access to tissue samples and physiological manipulation) makes animal models advantageous for studying cardiovascular function and stress (22, 47, 48). By using validated methodology with translational relevance to human patients, researchers can use animal models effectively to examine underlying mechanisms and potential treatment options in CVD and stress (22, 49).

The Langendorff Isolated Heart – An Experimental Model of Ischemic Injury

Animal models have been developed to experimentally induce and study acute ischemia both in vivo (50, 51) and ex vivo (44, 52, 53). The Langendorff isolated heart preparation is one of the most extensively used animal models for the study of heart physiology and ischemia (53). In this model, crystalloid perfusates (or blood) is delivered through a cannula inserted in the ascending aorta. Retrograde flow closes the leaflets in the aortic valve, leading to perfusion of the coronary vasculature (52, 53). This model is commonly used to study myocardial IRI. This is accomplished by occlusion of a coronary artery (typically the left anterior descending artery), leading to regional ischemia, or by turning off flow, leading to global ischemia. This model allows the generation of data including IS, the recovery of contractile function, and electrical activity in response to induced ischemia. In regional ischemia, researchers use the IS relative to the area at risk (AAR), or the area normally perfused by the clamped artery, whereas global ischemia allows measurement of the total amount of non-viable tissue [for a complete methodological review of the Langendorff isolated heart, see Ref. (52)].

Notably, the Langendorff isolated heart system studies ischemic injury in the absence of normal humoral or neuronal stimulation, potentially limiting the translation of experimental findings to the clinical setting (52, 53). Furthermore, this model has additional disadvantages, including a high coronary flow rate, limited supply of high-energy phosphate, a reduced oxygen requirement, and a degree of technical skill required to perform successfully (53–55). These disadvantages have led to the development of alternative methods to study cardiovascular injury; other potentially more clinically relevant methods include altering the Langendorff...
procedure (54) or using in vivo models of cardiovascular injury (56). Despite its disadvantages, the Langendorff isolated heart system has proven invaluable to the study of myocardial IRI (52, 53). This model has been used effectively to identify potential strategies and pharmacological agents to decrease the amount of damage caused to the heart following MI (43, 53).

The Langendorff Isolated Heart Preparation in Rats
The Langendorff heart preparation is appropriate in mammalian species. Although this preparation has been used rarely in large animals or man (57–61), the most frequently used isolated heart model is that of the rat. The rat model allows for relatively low costs, easy handling, and uncomplicated equipment (53). Furthermore, the consistency of limited collateral circulation allows the study of regional ischemia in the rat. This provides an advantage over models with significant collateralization such as dog (62), guinea-pig (62, 63), and hamster models (63). Furthermore, the rat's consistent coronary structure makes it a better model than, for example, rabbits, whose coronary structure varies significantly between animals (64). However, it is important to recognize that the rat suffers distinct disadvantages in cardiovascular study because of its short action potential duration, which lacks a plateau phase. This makes this animal a poor choice for study of arrhythmogenesis and antiarrhythmic drugs (60, 65–68). Similarly, dogs have been shown to have elevated levels of troponin and creatine kinase, markers of cardiac damage, in response to cardiac injury (69). However, rats have only shown elevations in troponin, making them relatively poor candidates to study drug-induced injury using these markers (69, 70). Thus, one must remain mindful of the potential clinical relevance of studies in the context of the species being utilized (52).

Both myocardial ischemic injury and cardiovascular responses to stress have been described in detail in both human patients and animal models; however, only several recent studies have focused directly on the sensitivity to myocardial ischemic injury in response following acute or chronic psychological stress exposure.

Acute Stress and Myocardial Ischemic Injury
The association between intense emotional stress and ischemic heart disease, specifically the incidence of SCD, has been researched for over 50 years (80, 81). Acute psychological stress in human patients leads to ischemia, stress cardiomyopathy, MI, and SCD (8). Stress cardiomyopathy is induced by intense stress that results in heart weakness without underlying pathology. Thus, stress cardiomyopathy is a recently identified disease state mirroring MI with symptoms, such as chest pain and ECG abnormalities, but without concomitant coronary spasm or ischemia-induced enzymatic release (82, 83). Mental stress elicits regional ischemic damage due to epicardial or microvascular constriction, as evidenced by changes in regional perfusion. Interestingly, this ischemia is not associated with the angina and ECG changes that are associated with exercise-induced stress (84–89). This transient myocardial ischemia and coronary artery constriction have been shown to occur in patients with advanced coronary artery disease in response to mental stress (89–91). Furthermore, mental stress has been shown to lead to ECG alternans, a predictor of ventricular arrhythmias and SCD (92–94).

Acute mental stress has been shown to alter the action potential duration of cardiac tissue in humans. Adrenergic stimulation with isoprenaline and adrenaline increases the steepness of the slope of action potential duration restitution; this suggests that adrenergic stimulation can lead to electrical instability, which could lead to ventricular fibrillation or arrhythmias (95). In an elegant study, Child et al. showed that a mental challenge was able to elicit this effect on action potential duration independent of the respiration or heart rate changes that occur in response to mental stress (96). Ventricular fibrillation has been shown to occur in response to both regional myocardial ischemia and electrical instability. Ventricular fibrillation leads to global cardiac ischemia, which can lead to cardiac death (97, 98). The ability of mental stress to cause cardiac ischemia and electrical instability in the heart is supported by epidemiological studies. The underlying risk factors inherent in clinical study complicate cardiovascular research. As previously discussed, the standardization of stress conditions makes animal models advantageous for investigating the underlying pathology of disease, including CVD.

Experimental Acute Stress and Cardiovascular Disease
Experimental work using animal models supports the effects of acute psychological stress on the cardiovascular system seen in human patients. Psychological stress has been shown to reduce the ventricular fibrillation threshold in dog (42, 99–103) and porcine models (104). Verrier and colleagues have demonstrated the ability of acute stress to precipitate ventricular arrhythmias in dogs exposed to anger and fear in both healthy hearts and hearts exposed to coronary artery occlusion (99–103, 105–108). Acute
stress was able to precipitate ventricular fibrillation and cardiac arrest; albeit, these studies did not utilize dogs exposed to a single acute stressor but rather an acute stress session following aversive conditioning (99–101, 103). These researchers found that behaviorally induced changes in vulnerability to fibrillation are mediated by the direct effects of catecholamines on beta receptors (109, 110). Further supporting the centrally mediated nature of cardiac arrhythmias generated by acute stress, Skinner and Reed were able to prevent an increase in ventricular fibrillation by cryogenic blockage of the forebrain, posterior hypothalamus, or fields of Forel (104). Thus, acute psychological stress has the ability to generate and exacerbate ischemia and ventricular arrhythmia.

Stress-limiting endogenous systems have been identified with the ability to abolish or reduce cardiac arrhythmias in response to sympathetic stimulation, acute stress, or ischemic injury (4, 7). The endogenous hormones utilized by these systems with protective effects on the cardiovascular system include GABA (111, 112), opioids (113), or vagal stimulation with cholinergic agonists (114, 115). Furthermore, it has been suggested that electrical instability does not necessarily disturb cardiac contractility (4, 116). Supporting the role of stress-limiting systems in cardiovascular injury, recent work in rodents demonstrates that acute stress may decrease damage in response to induced regional ischemia, possibly as a compensatory mechanism.

Experimental Acute Stress and Myocardial Ischemic Injury

Recent rodent studies looking at the effect of acute psychological stress on the impact of myocardial ischemic injury have found acute stress to be cardioprotective and reduce IS [see Table I (45, 117)]. The identified relevant studies utilized cold-restraint stress (117) and forced swim stress (45) before using the Langendorff method to induce regional ischemia. Acute swim stress and acute restraint stress are validated psychological stressors that have been used in combination with other stressors to model PTSD and depression (118–121). These stressors, individually or in combination, have resulted in anxiety-like and fear-related behavior in rodents as assessed by tests such as the elevated plus maze (EPM) and contextual fear conditioning (CF) (119, 122, 123). The decreased sensitivity to myocardial IRI provided by acute psychological stress is supported by similar findings in studies utilizing acute physiologic stressors, such as exercise or hyperthermia (124–128). The existence of endogenous signaling pathways that protect the heart from ischemic injury is well evidenced (46, 129–131).

Research has previously shown that short-term stress is accompanied by enhanced contractile function and resistance to hypoxia in hearts isolated from stressed animals, while long-term stress resulted in the opposite effect (4, 7). Additionally, acute stressors seem to result in the redistribution of the immune system to the site of inflammation, which could provide an adaptive response to stress (137–139). Interestingly, opioid antagonists were able to eliminate the cardioprotection afforded by cold-restraint stress, supporting this stress-limiting system's role in decreased sensitivity to ischemic damage (113, 117, 140).

Though acute psychological stress decreases the sensitivity of ischemic damage in response to myocardial IRI, the work does not necessarily contradict the previously discussed, well-established effects of acute stress in both animal models and clinical research, including triggering MI or independently leading to ischemic damage (72–75, 100–103). While electrical instability of the heart occurs in response to acute stress, it is possible that protective pathways exist to reduce the sensitivity to ischemic damage (4, 7, 116, 140). Additionally, it is important to recognize that while removing the additional stressors and underlying pathology found in humans adds experimental control, it does diminish the clinical translatability of this work (33, 52, 53). Furthermore, while investigators look at the myocardial ischemic injury of all rodents exposed to acute psychological stress, MI data in humans in response to acute stressors typically only represent patients who experienced an MI or symptoms of an MI (72–75). As a final potential limitation, rodent models look at the same ischemic injury in all subjects, whereas human patients can present with very different ischemic damage due to underlying disease and the possible collateralization of vessels over many years (135).

Contrasting the protective effects of acute stress, chronic stress in rodent models has impacted sensitivity to myocardial ischemic injury in rodent models by decreasing recovery of cardiac contractility and increasing ischemic injury (10, 132, 133, 134). The effect of chronic psychological stress is especially relevant because of the numerous stressors facing human patients, which have effects on cardiovascular outcomes (8, 14, 17–22, 141, 142). Thus, diminishing the negative effects of chronic stress on the heart has the ability to reduce cardiovascular morbidity and mortality. Therefore, the effect of chronic stress on the cardiovascular system has been an emerging area of research with several recent studies looking directly at myocardial ischemic injury.

CHRONIC STRESS AND CARDIOVASCULAR DISEASE

Chronic stress has been implicated to cause or worsen CVD in human patients (20, 141–145). Chronic stress has been linked to increased risk of ischemic heart disease (20, 28). The INTERHEART case–control study showed that significant long-term stress over the course of 12 months more than doubled the risk of acute MI, even after adjusting for conventional risk factors such as diabetes mellitus, hypertension, and smoking (146). Prospective cohort studies have supported the effect of long-term stress on risk of coronary heart disease. Studies have linked coronary heart disease risk with work-related stressors, specifically when an imbalance between effort and reward is experienced (147–151). Furthermore, the effects of long-term stress may persist long after the cessation of the chronic stressors. Survivors of the siege of Leningrad were found to have increased blood pressure and increased mortality from CVD, relative to Russians who were not in the besieged city, over 50 years after the event (152).

Chronic Stress and Cardiovascular Disease

Psychological conditions related to chronic stress and CVD include depression, anxiety, and PTSD (3). As previously discussed, psychiatric disorders can worsen outcomes in CVD.
Subjects	Stress protocol	Reperfusion injury (RI) protocol	Primary finding	Reference
Acute psychological stress				
Adult male Wistar rats	Forced swim for 10 min RI 10 min after	30 min ischemia 60 min reperfusion	Decreased infarct size (IS)/area at risk (AAR)%	Moghimian et al. (45)
Adult male Sprague-Dawley rats	Individual immobilization, placed in a cold room for 3 h at 4 ± 0.3°C RI immediately after	30 min ischemia 120 min reperfusion	Decreased IS/AAR%	Wu et al. (117)
Chronic psychological stress				
Adult male Sprague-Dawley rats	1–1.5 h daily restraint stress for 8–14 days RI 24 h later	30 min ischemia 180 min reperfusion	Increased IS/AAR% Increased # of fatal arrhythmias	Scheuer and Mifflin (132)
Adult male Sprague-Dawley rats	2 h daily restraint stress for 11–12 days RI 24 h later	30 min ischemia 180 min reperfusion	Increased IS/AAR% Increased # of fatal arrhythmias	Scheuer and Mifflin (132)
Adult male Wistar-Kyoto (WKY) rats	Crowding stress (living space 200 cm²/rat) for 8 weeks RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	Decreased LVDP recovery Increased duration of ventricular tachycardia (VT)	Ravingerova et al. (133)
Adult male spontaneously hypertensive (SHR) rats	Crowding stress (living space 200 cm²/rat) for 8 weeks RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	Decreased LVDP recovery Decreased duration of VT	Ravingerova et al. (133)
Adult male Wistar rats	10 s electrical shock, 50 s rest for 1 h daily for 7 days RI 24 h later	30 min ischemia 120 min reperfusion	Increased IS/AAR%	Rakhshan et al. (10)
Adult male Wistar rats	Witnessed rats receive but did not receive 10 s electrical shock, 50 s rest for 1 h daily for 7 days (psychological shock) RI 24 h later	30 min ischemia 120 min reperfusion	Increased IS/AAR%	Rakhshan et al. (10)
5-week-old male Wistar-Kyoto (WKY) rats	Crowding stress (~70 cm² living space per 100 g body mass) for 14 days RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	No significant difference between stress and no stress groups	Ledvenyiova-Farkasova et al. (134)
5-week-old female Wistar-Kyoto (WKY) rats	Crowding stress (~70 cm² living space per 100 g body mass) for 14 days RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	Decreased VT duration	Ledvenyiova-Farkasova et al. (134)
5-week-old female spontaneously hypertensive (SHR) rats	Crowding stress (~70 cm² living space per 100 g body mass) for 14 days RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	Increased VT duration	Ledvenyiova-Farkasova et al. (134)
5-week-old male spontaneously hypertensive (SHR) rats	Crowding stress (~70 cm² living space per 100 g body mass) for 14 days RI unspecified	30 min ischemia 120 min reperfusion (reperfusion-induced tachyarrhythmias and contractile function measured 40 min after reperfusion initiation)	Increased VT duration	Ledvenyiova-Farkasova et al. (134)
Adult male Sprague-Dawley rats	31 days chronic social instability (randomized paired housing) 1 h immobilized predator exposure on days 1 and 11 See Zoladz et al. (136) for complete PTSD paradigm RI 48 h later	20 min ischemia 120 min reperfusion	Increased IS/AAR% Decreased RPP Decreased +dP/dT	Rorabaugh et al. (135)
Adult female Sprague-Dawley rats	31 days chronic social instability (randomized paired housing) 1 h immobilized predator exposure on days 1 and 11 See Zoladz et al. (136) for complete PTSD paradigm RI 48 h after	20 min ischemia 120 min reperfusion	No significant effect	Rorabaugh et al. (135)
However, this relationship may be bidirectional. For example, it has been shown that coronary heart disease leads to a higher incidence of depression, and depression leads to worse outcomes in coronary heart disease (14, 15, 17, 49, 153). Furthermore, the association between depression and coronary heart disease occurs independent of comorbid risk factors such as high cholesterol, hypertension, or obesity (13, 49, 154, 155). PTSD also increases a patient's risk for developing coronary heart disease. This association is independent of comorbid depression, genetic influences, and other confounding factors (156–158). The negative cardiovascular outcomes exhibited in both depression and PTSD have been attributed to underlying dysfunction in the autonomic nervous system and HPA axis (13, 22, 48, 49, 135). However, precisely defining the contribution of long-term stress to CVD is difficult due to potential confounding factors including the aforementioned psychological disorders (28). Thus, animal models provide an acceptable means to study chronic stress in the controlled experimental setting (22).

Experimental Chronic Stress and Cardiovascular Disease

Animal models support the negative effects of chronic stress on the cardiovascular system evidenced by epidemiological studies. Experimental studies have found exposure to chronic stress results in enhanced development of atherosclerosis and plaque destabilization (3, 159, 160). Chronic stress has also been shown to lower the threshold for ventricular arrhythmias (103, 107–109, 161, 162). In a landmark study, Verrier and Lown conditioned dogs to associate a sling with an aversive shock for 3 days. On days 4 and 5, these researchers found that coronary occlusion in dogs re-exposed to the sling environment (in the absence of shock) led to ventricular fibrillation, whereas dogs in a non-aversive cage environment did not experience ventricular fibrillation. Research has continued to focus on this ability of chronic psychological stress to result in cardiac instability (101, 102, 107).

Researchers have used validated models of psychological disorders to study the relationship between psychological disorders and the cardiovascular system. For example, the relationship between depression and CVD has been studied using chronic stress models [e.g., chronic mild stress (CMS) and social isolation] of depression in rodents. The CMS model of depression involves exposure to mild and unpredictable stressors, including changing cage mates, cage tilt, and periods of water or food deprivation, for a period greater than 2 weeks (49, 153, 163). These models of depression decrease rodent intake of a sweet solution, suggestive of anhedonia. Rodents exposed to these well-established animal models display depressive-like behavior, and have a decreased threshold for arrhythmias and tissue fibrosis (22, 49, 153, 163–167). Although animal models have been used to study stress biology and cardiovascular outcomes, few studies exist using validated models of psychological disorders to study the effect of stress on sensitivity to myocardial ischemic injury.

Experimental Chronic Stress and Myocardial Ischemic Injury

In several recent rodent studies, researchers have found greater ISs, decreased cardiac output, and decreased recovery of contractile function in response to chronic psychological stress [see Table 1 (10, 132, 133, 134, 135)]. Chronic physiologic stress has previously shown mixed results; both decreased (168) and increased (169) sensitivity to myocardial ischemic injury have been reported. Evidencing only negative effects of chronic stress on myocardial ischemic injury, the impact of chronic psychological stress represents an emerging area of research to minimize the detrimental effect of chronic stress (135, 170). The disruptive effect of chronic psychological stress exposure on myocardial ischemic injury has been demonstrated using several different chronic stressors, including chronic restraint stress (132), daily foot shocks or witnessing rats receiving those foot shocks (10), or crowding stress (133, 134).

These stressors are frequently utilized in modeling psychological disorders that result from stress. Restraint stress has been used as a psychological stressor in rats and has been utilized in combination with other stressors to model PTSD and depression (119, 122, 123, 136). Inescapable footshock is used to model depressive symptoms in rodents. Rats exposed to inescapable footshock have demonstrated anxiety-like behavior on an EPM, impaired growth rates, decreased rearing in an open field, and decreased locomotion (50, 171–173). Crowding stress is a well-known and ethologically valid model of psychological stress in rats which causes social competition for resources, such as space, food, and water. Crowding stress results in behavioral and physiologic data reflecting psychological stress (174–178). These chronic psychological stressors resulted in disruption to the cardiovascular system following induced myocardial ischemic injury, either by causing increased IS and decreased contractile function recovery (10, 132) or only decreased contractile function recovery (133, 134). These studies suggest that chronic stress not only increases the likelihood of a MI or SCD but also exacerbates the damage in response to ischemic injury.

A potential limitation of these studies is that researchers did not take behavioral measures of stress prior to myocardial ischemic injury. Although the methods of stress used to stress these animals are validated as methods of inducing psychological stress, individual susceptibility may play a role in the response of the animal to a psychological stressor (10, 132, 133, 134). Stress exposure may affect animals differently, and thus, measurement of the stress response at the behavioral level is important. The only known published study utilizing a model of a chronic psychological disorder where animals' response to stress was validated prior to myocardial ischemic injury is utilizing a predator-based psychosocial model of PTSD (135).

A Predator-Based Psychosocial Model of PTSD and Myocardial Ischemia–Reperfusion Injury

A predator-based psychosocial model of PTSD has been utilized to study sensitivity to myocardial ischemic injury. This model involves two 1-h cat exposures, during which rats are restrained while they can see, smell, and hear a cat but cannot be physically harmed. The two exposures are separated by a period of 10 days. Starting on the day of the first cat exposure, rodents experience chronic social instability by having their housing partner changed daily for 31 days. After the 31-day paradigm,
rats exhibit a fear memory associated with the cat exposures (evidenced by freezing in response to conditioned context and cues), heightened anxiety-like behavior on the EPM, an exaggerated startle response, and impaired memory for newly learned information. Furthermore, rats exposed to this paradigm have demonstrated physiological changes reflecting elevated SNS activity and HPA axis abnormalities, including elevated heart rate and blood pressure, decreased baseline corticosterone levels, and enhanced negative feedback of the HPA axis (135, 136, 179–181). Replicating and expanding on these results, researchers utilizing this model have shown stressed rats exhibit decreased serotonin, increased norepinephrine, and increased measures of oxidative stress and inflammation in the brain, adrenal glands, and systemic circulation (182, 183).

Recently, we found that, subsequent to this chronic psychological stress paradigm, male rats exposed to myocardial ischemic injury exhibited greater ISs and decreased recovery of contractile function [Figure 1 (135)]. The disruptive effect of this PTSD paradigm on the heart is further strengthened by anxiety-like behavior in rats on the EPM prior to myocardial ischemic injury. These data suggest that the psychological stress induced by the PTSD paradigm is having an effect directly on the heart, causing the heart to be more susceptible to damage following a MI (135). The ability of chronic stress to worsen the extent of ischemic injury and decrease the recovery of cardiac contractility further exacerbates the supported negative effects of stress in CVD, which make rodents exposed to chronic stress more susceptible to ventricular fibrillation and MI (13, 22, 48, 49, 135).

THE IMPORTANCE OF THE EFFECT OF PSYCHOLOGICAL STRESS ON MYOCARDIAL ISCHEMIA–REPERFUSION INJURY

Shown presently, acute and chronic psychological stress affects sensitivity to myocardial ischemic injury in opposite directions; acute psychological stress decreases, whereas chronic psychological stress increases sensitivity to myocardial ischemic injury (45, 117). It is possible that protective mechanisms exist in response to an optimal level of acute stress, but these mechanisms are eventually overcome by more intense levels of stress (4).

Physiologically, a possible explanation for this differential effect is that acute psychological stress causes norepinephrine release and acute alpha stimulation, which results in ischemic preconditioning (184, 185). Chronic psychological stress may result in chronic beta stimulation, worsening the ischemic injury (186–190). The previously discussed advantages of the isolated rat heart (66), the wide variety of validated psychological stressors in rodents (119, 122, 123, 136, 174–178), and the existence of rodent models of psychiatric disorders (49, 153, 181) add weight to the presently discussed findings. However, it is important to qualify
studying the sensitivity of the rodent heart to ischemic injury in response acute and chronic psychological stress in the context of clinical and experimental studies on the effects of stress on the cardiovascular system. Elucidation of stress-limiting systems will help identify novel therapeutic options to decrease cardiovascular mortality. Further research investigating the relationship between acute and chronic stress and ischemic injury will improve patient care with implications that extend beyond cardiovascular disease.

AUTHOR CONTRIBUTIONS

EE wrote the first draft of the manuscript and revised it following peer review. BR provided comments on each draft. PZ helped EE prepare the manuscript, provided comments on each draft, and prepared the figures.

REFERENCES

1. Cannon WB. Stresses and strains of homeostasis. Am J Med Sci (1935) 189(1):13–4. doi:10.1097/00000441-193501000-00001
2. Selye H. The story of the adaptation syndrome. Am J Med Sci (1952) 224(6):711. doi:10.1097/00000441-195212000-00039
3. Lagravere HM, Kuiper J, Bot I. Acute and chronic psychological stress as risk factors for cardiovascular disease: insights gained from epidemiological, clinical and experimental studies. Brain Behav Immun (2015) 50:18–30. doi:10.1016/j.bbi.2015.08.007
4. Meerson FZ. Stress-induced arrhythmic disease of the heart – part I. Clin Cardiol (1994) 17(7):362–71. doi:10.1002/clc.4960170705
5. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med (1998) 338(3):171–9. doi:10.1056/NEJM199801153380307
6. Meijer OC. Understanding stress through the genome. Stress (2006) 9(2):61–7. doi:10.1080/10253890600979669
7. Meerson FZ. Adaptive Protection of the Heart. Boca Raton, FL: CRC Press (1990).
8. Dimsdale JE. Psychological stress and cardiovascular disease. J Am Coll Cardiol (2008) 51(13):1237–46. doi:10.1016/j.jacc.2007.12.024
9. Johnson EO, Kamilaris TC, Chrousos GP. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev (1992) 16(2):115–50. doi:10.1016/S0149-7634(05)80175-7
10. Rakshsan K, Imani A, Faghihi M, Nabavizadeh F, Golnazari M, Karimian S. Evaluation of chronic physical and psychological stress induction on cardiac ischemia/reperfusion injuries in isolated male rat heart: the role of sympathetic nervous system. Acta Med Iran (2015) 53(8):482–90.
11. Tennant C, Langeluddecke P, Byrne D. The concept of stress. Aust N Z J Psychiatry (1985) 19(2):113–8. doi:10.3109/00048678509161308
12. Parker GB, Owen CA, Brotchie HL, Hyett MP. The impact of differing anxiety disorders on outcome following an acute coronary syndrome: time to start worrying? Depress Anxiety (2010) 27(3):302–9. doi:10.1002/da.20602
13. Penninx BW, Bierens JJ, de Geest SC, van Tilburg T. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry (2001) 58(3):221–7. doi:10.1001/archpsyc.58.3.221
14. Anda R, Williamson D, Jones D, Macera C, Eaker E, Glassman A, et al. Depressed affect, hopelessness, and the risk of ischemic heart disease in a cohort of U.S. adults. Epidemiology (1993) 4(4):285–94. doi:10.1097/00001648-199307000-00003
15. Mavrides N, Nemeroff C. Treatment of depression in cardiovascular disease. Depress Anxiety (2013) 30(4):328–41. doi:10.1002/da.22051
16. Mavrides N, Nemeroff CB. Treatment of affective disorders in cardiac disease. Dialogues Clin Neurosci (2015) 17(2):127–40.
17. Barefoot JC, Helms MJ, Mark DB, Blumenthal JA, Califf RM, Haney TL, et al. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol (1996) 78(6):613–7. doi:10.1016/S0002-9149(96)00380-3
18. Ketterer MW. Secondary prevention of ischemic heart disease. The case for aggressive behavioral monitoring and intervention. Psychosomatics (1993) 34(6):478–84. doi:10.1016/S0033-3182(93)71821-6
19. Monroe SM, Harkness KL. Life stress, the “kindling” hypothesis, and the recurrence of depression: considerations from a life stress perspective. Psychol Rev (2005) 112(2):417–45. doi:10.1037/0033-295X.112.2.417
20. Steptoe A, Kivimaki M. Stress and cardiovascular disease: an update on current knowledge. Am J Med (2013) 34:337–54. doi:10.1146/annurev-publhealth-031912-114452
21. Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev (2005) 4(2):141–94. doi:10.1016/j.arr.2005.03.003
22. Grippo AL. The utility of animal models in understanding links between psychosocial processes and cardiovascular health. Soc Personal Psychol Compass (2011) 5(4):164–79. doi:10.1111/j.1751-9004.2011.00342.x
23. Gianaros PJ, Wagner TD. Brain-body pathways linking psychological stress and physical health. Curr Dir Psychol Sci (2015) 24(4):313–21. doi:10.1177/0963721415581476
24. Richtig E, Trapp EM, Avian A, Brezinsek HP, Trapp M, Egger JW, et al. Psychological stress and immunological modulations in early-stage melanoma patients. Acta Derm Venereol (2015) 95(6):691–5. doi:10.2340/00015555-2045
25. Davey A, Shukla A, Sharma P, Srivastava K, Davey S, Vyas S. Are the adverse psychiatric outcomes reflection of occupational stress among nurses: an exploratory study. Asian J Med Sci (2016) 7(1):96–100. doi:10.3126/ajms.v7i1.12869
26. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med (2006) 3(11):e442. doi:10.1371/journal.pmed.0030442
27. Quam L, Smith R, Yach D. Rising to the global challenge of the chronic disease epidemic. Lancet (2006) 368(9533):1221–3. doi:10.1016/S0140-6736(06)69422-1
28. Steptoe A, Kivimaki M. Stress and cardiovascular disease. Nat Rev Cardiol (2012) 9(6):360–70. doi:10.1038/nrcardio.2012.45
29. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (2015) 385(9963):117–71. doi:10.1016/S0140-6736(14)61682-2
30. Mendis S, Puska P, Norving B. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization (2011).
31. Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res (2004) 61(2):208–17. doi:10.1016/j.cardiores.2003.11.018
32. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev (1989) 69(4):1049–169.
33. Braunwald E, Klener RA. Myocardial reperfusion: a double-edged sword? J Clin Invest (1985) 76(5):1713–9. doi:10.1172/JCI112160
34. Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, et al. Role of apoptosis in reperfusion injury. Cardiovasc Res (2004) 61(3):414–26. doi:10.1016/j.cardiores.2003.12.023
35. Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth (2012) 16(3):123–32. doi: 10.1016/j.scrv.2011.04.018
36. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest (1994) 94(4):1621–8. doi:10.1172/JCI117504
37. Raav K, Kumar VK, Viswanath RK, Subbaraju GV. Cardioprotective activity of alcoholic extract of Tunispora cordifolia in ischemia-reperfusion induced myocardial infarction in rats. Biol Pharm Bull (2005) 28(12):2319–22. doi:10.1248/bpb.28.2319
38. Wang QD, Swardh A, Sjostrom PO. Relationship between ischaemic time and ischaemia/reperfusion injury in isolated Langendorff-perfused mouse hearts. Acta Physiol Scand (2001) 171(2):123–8. doi:10.1046/j.1365-201x.2001.00788.x
39. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol (1960) 70:68–78.
40. McMichael M, Moore RM. Ischemia-reperfusion injury pathophysiology, part 1. J Vet Emerg Crit Care (2004) 14(4):231–41. doi:10.1111/j.1476-4431.2004.00004.x
41. Taggart P, Critchley H, Lambiase PD. Heart-brain interactions in cardiac arrhythmia. Heart (2011) 97(9):698–708. doi:10.1136/hrt.2010.209340.
42. Verrier RL. Behavioral stress, myocardial ischemia, and arrhythmias. In: Cardiac Electrophysiology: From Cell to Bedside (2015) 9:167–77. doi:10.1080/17440938.2004.974176
43. Johns TN, Olson BJ. Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg (1954) 140(5):675–82. doi:10.1097/00000658-195411000-00006
44. Day SB, Johnson JA. The distribution of the coronary arteries of the rabbit. Anat Rec (1958) 129(4):633–43. doi:10.1002/ar.1091320411
45. Rees SA, Curtis MJ. Selective IK blockade as an antiarrhythmic mechanism: effects of UK66, 914 on ischaemia and reperfusion arrhythmias in rat and rabbit hearts. Br J Pharmacol (1993) 108(1):139–45. doi:10.1111/1476-5381.1993.tb15455.x
46. Rees SA. Characterisation, utilisation and clinical relevance of isolated perfused heart models of ischaemia-induced ventricular fibrillation. Cardiovasc Res (1998) 39(1):194–215. doi:10.1097/00001849-199806000-00006
47. Bleuel H, Deschi U, Bertsch T, Bolz G, Rebek W. Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Exp Toxicol Pathol (1995) 47(2–3):121–7. doi:10.1016/S0040-2949(91)82027-6
48. Wroblewski F, LaDue CD, Groudine M, Waskar S, Vlkova V, Vlkov J, et al. Increased incidence of heart failure following percutaneous coronary angioplasty and percutaneous coronary intervention: a Registry based study. Ann Noninvasive Electrocardiol (1997) 2(4):269–74. doi:10.1111/j.1542-4773.1997.tb00234.x
49. Rees SA, Curtis MJ. Specific IK1 blockade: a new antiarrhythmic mechanism? Effect of RP8866 on ventricular arrhythmias in rat, rabbit, and primate. Circulation (1993) 87(6):1979–89. doi:10.1161/01.CIR.87.6.1979
50. Chen JX, Chen DZ. Novel cardioprotective strategy combining three different methods to prevent ischemia/reperfusion injury in aged hearts in an improved rabbit model. Exp Ther Med (2015) 9(4):1339–47. doi:10.3892/etm.2015.2680
51. Muller J, Theorell T, de Faire U, Ahlbom A, Haljali V. cardiomypathy following the Christchurch earthquakes. PLoS One (2013) 8(7):e68504. doi:10.1371/journal.pone.0068504
52. Bleuel H, Deschi U, Bertsch T, Bolz G, Rebek W. Diagnostic efficiency of troponin T measurements in rats with experimental myocardial cell damage. Exp Toxicol Pathol (1995) 47(2–3):121–7. doi:10.1016/S0040-2949(91)82027-6
53. Tang R, Wang Q, Zhou M, Yang Y, Qin X, Wang Y, et al. Cardiac-specific SOCS3 deletion prevents in vivo myocardial ischemia-reperfusion injury through sustained activation of cardioprotective signaling molecules. PLoS One (2015) 10(5):e0127942. doi:10.1371 journal. pone.0127942
54. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol (2011) 50(6):940–50. doi:10.1016/j.yjmcc.2011.02.018
55. Skrzypiec-Spring M, Grothus B, Szlag A, Schulz R. Isolated heart perfusion according to Langendorff – still viable in the new millennium. J Pharmacol Toxicol Methods (2007) 55(2):113–26. doi:10.1016/j.vasc.2006.05.006
1991;11:283–91. doi:10.1161/01.CIR.11.2.283

8. Engel GL. Sudden and rapid death during psychological stress. Folklore or folk wisdom? Ann Intern Med (1971) 74(5):771–82. doi:10.7326/0002-8703(71)90771-5

9. Roanzki A, Bairey CN, Krantz DS, Friedman J, Resser KJ, Morell M, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol (2010) 55(4):333–41. doi:10.1016/j.jacc.2009.08.057

10. Brotman DJ, Golden SH, Wittstein IS. The cardiovascular toll of stress. Lancet (2007) 370(9590):1089–100. doi:10.1016/S0140-6736(07)61305-1

11. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med (2003) 352(6):539–48. doi:10.1056/NEJMoa0306046

12. Scharley SW, Windenburg DC, Lesser JR, Maron MS, Hauser RG, Lesser Jr, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol (2010) 55(4):333–41. doi:10.1016/j.jacc.2009.08.057

13. Engel GL. Sudden and rapid death during psychological stress. Folklore or folk wisdom? Ann Intern Med (1971) 74(5):771–82. doi:10.7326/0002-8703(71)90771-5

14. Engel GL. Psychologic stress, vasodepressor (vasovagal) syncope, and sudden death. Ann Intern Med (1978) 89(3):403–12. doi:10.7326/0002-8703-89-3-403

15. Akaji Y, Nef HM, Mollmann H, Ueyama T. Stress cardiomyopathy. Annu Rev Med (2010) 61:271–86. doi:10.1146/annurev.med.011009.171570

16. Yoshihashi K, Ueshima K, Uchida T, Oh-mura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J Am Coll Cardiol (2001) 38(1):1–8. doi:10.1016/S0735-1097(00)10136-X

17. Rolinski A, Baracki ZR, Krantz DS, Friedman J, Resser KJ, Morell M, et al. Left ventricular ischemia-induced T-wave alternans in canines. J Am Coll Cardiol (2010) 37(6):1719–25. doi:10.1016/S0735-1097(10)01196-2

18. Taggart P, Sutton P, Chababi Z, Boyett MR, Simon R, Elliott D, et al. Effect of adrenergic stimulation on action potential duration restitution in humans. Circulation (2003) 107(2):285–9. doi:10.1161/01.CIR.0000044941.13346.74

19. Child N, Hanson R, Bishop M, Rinaldi CA, Bostock J, Western D, et al. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate. Circ Arrhythm Electrophysiol (2014) 7(3):518–23. doi:10.1161/CIRCEP.113.000909

20. Bradley CP, Clayton RH, Nash MP, MOURAD A, Hayward M, Paterson DJ, et al. Human ventricular fibrillation during global ischemia and reperfusion: paradoxical changes in activation rate and wavefront complexity. Circ Arrhythm Electrophysiol (2011) 4(5):684–91. doi:10.1161/CIRCEP.110.961284

21. Kazbanov IV, Clayton RH, Nash MP, Bradley CP, Paterson DJ, Hayward MP, et al. Effect of global cardiac ischemia on human ventricular fibrillation: insights from a multi-scale mechanistic model of the human heart. PLoS Comput Biol (2014) 10(11):e1003891. doi:10.1371/journal.pcbi.1003891

22. Lown B. Sudden cardiac death: the major challenge confronting contemporary cardiology. Am J Cardiol (1979) 43(2):313–28. doi:10.1016/S0002-9149(79)8021-1

23. Lown B. Sudden cardiac death: biobehavioral perspective. Circulation (1987) 76(1 Pt 2):1186–96.

24. Skinner JE, Reed JC. Blockade of fronto-cortical-brain stem pathway prevents ventricular fibrillation of ischemic heart. Am J Physiol (1981) 240(2):H156–63.

25. Corbalan R, Lown B, Psychological stress and ventricular arrhythmias during myocardial infarction in the conscious dog. Am J Cardiol (1974) 34(6):692–6. doi:10.1016/0002-9149(74)90195-3

26. Lown B, Corbalan R, Psychological stress and threshold for repetitive ventricular response. Science (1973) 182(4114):834–6. doi:10.1126/science.182.4114.834

27. Verrier RL, Hagesdal EL, Lown B. Delayed myocardial ischemia induced by anger. Circulation (1987) 75(1):249–54. doi:10.1161/01.CIR.75.1.249

28. Skinner JE, Reed JC. Blockade of fronto-cortical-brain stem pathway prevents ventricular fibrillation of ischemic heart. Am J Physiol (1981) 240(2):H156–63.

29. Corbalan R, Lown B. Psychological stress and ventricular arrhythmias during myocardial infarction in the conscious dog. Am J Cardiol (1974) 34(6):692–6. doi:10.1016/0002-9149(74)90195-3

30. Lown B, Corbalan R. Psychologic stress and threshold for repetitive ventricular response. Science (1973) 182(4114):834–6. doi:10.1126/science.182.4114.834

31. Verrier RL, Lown B. Influence of neural activity on ventricular electrical instability during acute myocardial ischemia and infarction. In: Sandoe E, Julian DG, Bell JW, editors. Management of Ventricular Tachycardia-Role of Mexiletine. Amsterdam: Excerpta Medica (International Congress Series No. 458) (1978). p. 133–50.

32. Verrier RL, Lown B. Behavioral stress and cardiac arrhythmias. Annu Rev Med (1984) 46:155–76. doi:10.1146/annurev.med.46.060318.001103

33. Verrier RL, Lombardi E, Lown B, editors. Restraint of myocardial blood-flow during behavioral stress. Circulation. Dallas: American Heart Association (1982).

34. Adameova A, Abbaldatif Y, Dhallia NS. Role of the excessive amounts of circulating catecholamines and glucocorticoids in stress-induced heart disease. Can J Physiol Pharmacol (2009) 87(7):493–514. doi:10.1139/y09-042

35. Gillis R. Neurotransmitters involved in the central nervous-system control of cardiovascular function. Dev Neurosci (1982) 15:41–53.

36. Segal SA, Jacob T, Gillis RA. Blockade of central nervous system GABAergic tone causes sympathetically-mediated increases in coronary vascular resistance in cats. Circ Res (1984) 55(4):404–15. doi:10.1161/01..RES.55.5.404

37. Pasyk S, Walton J, Pitt B, editors. Central opioid mediated coronary and systemic vasconstriction in the conscious dog. Circulation. Dallas: American Heart Association (1981).

38. Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical stability of acutely ischemic myocardium. Influences of heart rate and vagal stimulation. Circulation (1973) 47(2):291–8. doi:10.1161/01.CIR.47.2.291

39. DeSilva RA, Verrier RL, Lown B. The effects of psychological stress and vagal stimulation with morphine on vulnerability to ventricular fibrillation (VF) in the conscious dog. Am J Heart (1978) 92(2):197–203. doi:10.1016/0002-7037(78)90463-5

40. Meerson FZ, Ustinova EE, Manukhina EB. Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotoxic effect. Biomed Biochim Acta (1989) 48(2–3):583–8.
animal model of post-traumatic stress disorder. Stress predator exposure in conjunction with chronic social instability as an Rorabaugh BR, Krivenko A, Eisenmann ED, Bui AD, Seeley S, Fry ME, Gablovsky I, et al. Effect of crowding stress on tolerance to injury in young male and female hypertensive rats: molecular mechanisms. Physiol Heart Circ Physiol

Am J Physiol Heart Circ Physiol

J Physiol

Atherosclerosis

Ir2a and neurosteroidogenesis. Circulation (2008) 1176(1):1739–46. doi:10.1161/aji0154344

Liberzon I, Krotov M, Young EA. Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology (1997) 22(6):251–6. doi:10.1016/S0306-4530(97)00044-9

Eisenmann et al. Stress and Ischemic Injury 11

Frontiers in Psychiatry | www.frontiersin.org

April 2016 | Volume 7 | Article 71

117. Wu S, Wong MC, Chen M, Cho CH, Wong TM. Role of opioid receptors in cardioprotection of cold-restraint stress and morphine. J Biomed Sci (2004) 11(6):270–31. doi:10.1007/BF02255356

118. Havondjian H, Paul SM, Skolnick P. Acute, stress-induced changes in the benzodiazepine/gamma-aminobutyric acid receptor complex are confined to the chloride ionophore. J Pharmacol Exp Ther (1986) 237(3):787–93.

119. Liberon I, Krotov M, Young EA. Stress-reset: effects on ACTH and fast feedback. Psychoneuroendocrinology (1997) 22(6):443–53. doi:10.1016/S0306-4530(97)00044-9

120. Purdy RH, Morrow AL, Moore PH Jr, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A (1991) 88(10):4553–7. doi:10.1073/pnas.88.10.4553

121. Schwartz WD, Wess MJ, Labarca R, Skolnick P, Paul SM. Acute stress enhances the activity of the GABA receptor-gated chloride ion channel in brain. Brain Res (1987) 411(1):151–5. doi:10.1016/0006-8993(87)90692-5

122. Miao YL, Guo WZ, Shi WZ, Fang WW, Liu Y, Liu J, et al. Midazolam ameliorates the behavior defects of a rat posttraumatic stress disorder model through dual 18 kDa translocator protein and central benzodiazepine receptor and neurosteroidogenesis. PLoS One (2014) 9(7):e101450. doi:10.1371/journal.pone.0101450

123. Restel LB, Tavares RF, Lisboa SF, Joca SR, Correa FM, Guimarães FS. S-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol (2008) 154(8):826–31. doi:10.1016/j.bjphar.2008.02.001-6

124. Qian YZ, Shipley JB, Levasseur JE, Kukreja RC. Dissociation of heat shock proteins expression with ischemic tolerance by whole body hyperthermia. J Mol Cell Cardiol (1998) 30(6):1163–72. doi:10.1006/jmcc.1998.0680

125. Taylor RP, Harris MR, Starnes JW. Acute exercise can improve cardioprotection without increasing heat shock protein content. Am J Physiol (1999) 276(2 Pt 2):H1098–102.

126. Hoshida S, Yamashita N, Otsu K, Hori M. Repetitive physiologic stresses provide persistent cardioprotection against ischemia-reperfusion injury in rats. J Am Coll Cardiol (2002) 40(4):826–31. doi:10.1016/S0735-1097(02)02001-6

127. Joyceux M, Godin-Ribout D, Patel A, Demenge P, Yellon DM, Ribout C. Infarct size-reducing effect of heat stress and alpha 1 adrenoceptors in rats. Br J Pharmacol (1998) 125(4):645–50. doi:10.1038/sj.bjp.0702137

128. Locke M, Tanguay RM, Klabunde RE, Ianuzzo CD. Enhanced postischemic myocardial recovery following exercise induction of HSP 72. Am J Physiol (1995) 269(2 Pt 2):H320–5.

129. Murphy CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation (1986) 74(3):1124–36. doi:10.1161/01.CIR.74.3.1124

130. Das DS, Das DK. Mechanism of preconditioning. JUBMB Life. (2008) 60(4):199–202. doi:10.1016/j.phu.2007.09.001-6

131. Wang GY, Wu S, Wong MC, Chen M, Cho CH, Wong TM. Role of opioid receptors in myocardial ischemia-reperfusion injury and stroke in Swedish men. BMJ Open (2014) 4(3):e004355. doi:10.1136/bmjopen-2013-004355

132. Kivimaki M, Ferrje JE, Brumner E, Head J, Shipley MJ, Vartiainen E, et al. Justice at work and reduced risk of coronary heart disease among employees: the Whitehall II prospective cohort study. Atherosclerosis (2013) 227(1):178–81. doi:10.1016/j.atherosclerosis.2012.12.027

133. Netterstrom B, Kristensen TS, Jensen G, Schnorr P. Is the demand-control model still a useful tool to assess work-related psychosocial risk for ischemic heart disease? Results from 14 year follow up in the Copenhagen City Heart study. Int J Occup Med Environ Health (2010) 23(3):217–24. doi:10.2478/V10001-010-0031-6

134. Toren K, Schioler L, Giang WK, Nowak M, Soderberg M, Rosengren A. A longitudinal general population-based study of job strain and risk for coronary heart disease and stroke in Swedish men. BMJ Open (2014) 4(3):e004355. doi:10.1136/bmjopen-2013-004355

135. Kivimaki M, Ferrje JE, Brumner E, Head J, Shipley MJ, Vartiainen E, et al. Justice at work and reduced risk of coronary heart disease among employees: the Whitehall II study. Arch Intern Med (2005) 165(19):2245–51. doi:10.1001/archinte.165.19.2245

136. Kivimaki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson El, Alfredsson L, et al. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet (2015) 386(10005):1739–46. doi:10.1016/S0140-6736(15)60295-1

137. Sparen P, Vagero D, Shestov DB, Plavinskaia S, Parfenova N, Hiptiar V, et al. Long term mortality after severe starvation during the siege of Leningrad: prospective cohort study. BMJ (2004) 328(7430):11. doi:10.1136/bmj.37942.603970.9A

138. Grippo AJ, Beltz TG, Johnson KA. Behavioral and cardiovascular changes in the chronic mild stress model of depression. Psychophysiology (2003) 40(4):703–10. doi:10.1111/1440-2400.00350-7

139. Carney RM, Freedland KE. Depression, mortality, and medical morbidity in patients with coronary heart disease. Biol Psychiatry (2003) 54(3):241–7. doi:10.1016/S0006-3223(02)00111-2
Eisenmann et al. Stress and Ischemic Injury

155. Wulsin LR, Singal BM. Do depressive symptoms increase the risk for the onset of coronary disease? A systematic quantitative review. Psychosom Med (2003) 65(2):201–10. doi:10.1097/01.PSY.0000058371.50240.E3

156. Edmondson D, Cohen BE. Posttraumatic stress disorder and cardiovascular disease. Prog Cardiovasc Dis (2013) 55(6):548–56. doi:10.1016/j.pcad.2013.03.004

157. Edmondson D, Kronish IM, Shaffer JA, Falzon L, Burg MM. Posttraumatic stress disorder and risk for coronary heart disease: a meta-analytic review. Am Heart J (2013) 166(5):806–14. doi:10.1016/j.ahj.2013.07.031

158. Vaccarino V, Goldberg J, Rooks C, Shah AJ, Veladar E, Faber TL, et al. Posttraumatic stress disorder and incidence of coronary heart disease: a twin study. J Am Coll Cardiol (2013) 62(11):970–8. doi:10.1016/j.jacc.2013.04.085

159. Kaplan J, Manuck SB, Clarkson TB, Lusso FM, Taub DM, Miller EW. Social stress and atherosclerosis in normocholesterolemic monkeys. Science (1983) 220(498):733–5. doi:10.1126/science.6836311

160. Ratcliffe HL, Luginbuhl H, Schnarr WR, Chacko K. Coronary arteriosclerosis in swine: evidence of a relation to behavior. J Comp Physiol Psychol (1969) 68(3):385–92. doi:10.1037/h0027520

161. Liang B, Verrier RL, Melman J, Lown B. Correlation between circulating catecholamine levels and ventricular vulnerability during psychological stress in conscious dogs. Exp Biol Med (1979) 161(3):266–9. doi:10.3181/00379727-161-40533

162. Rosenfeld J, Rosen MR, Hoffman BF. Pharmacologic and behavioral effects of chronic intermittent hypoxia. Neurosci Biobehav Rev (2013) 39(5):656–70. doi:10.1016/j.neubi rev.2013.02.004

163. Grippo AJ, Johnson AK. Biological mechanisms in the relationship between depression and heart disease. Neurosci Biobehav Rev (2002) 26(8):941–62. doi:10.1016/S0149-7634(03)00003-4

164. Grippo AJ, Francis J, Beltz TG, Felder RB, Johnson AK. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav (2005) 84(5):697–706. doi:10.1016/j.physbeh.2005.02.011

165. Grippo AJ, Beltz TG, Weiss RM, Johnson AK. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry (2006) 59(4):309–16. doi:10.1016/j.biopsych.2005.07.010

166. Sgoifo A, Carnevali L, Grippo AJ. The socially stressed heart. Insights from studies in rodents. Neurosci Biobehav Rev (2014) 39:51–60. doi:10.1016/j.neubi rev.2013.12.005

167. Wood SK. Cardiac autonomic imbalance by social stress in rodents: understanding putative biomarkers. Front Psychol (2014) 5:950. doi:10.3389/ fpsyg.2014.00950

168. Mancardi D, Tullio F, Crisafulli A, Rastaldo R, Folino A, Penna C, et al. Omega 3 has a beneficial effect on ischemia/reperfusion injury, but cannot reverse the effect of stressful forced exercise. Physiol Heart Circ Physiol (2005) 29:124–7. doi:10.1038/journal.pone.0043884

169. Li B, Yang CJ, Yue N, Liu Y, Jia J, Wang YQ, et al. Clomipramine reverses depression and heart disease. Biol Psychiatry (2003) 54(18):29–39. doi:10.1016/j.biopsych.2003.05.027

170. Bugajski J, Borycz J, Giod R, Bugajski A. Crowding stress impairs the pituitary-adrenocortical responsiveness to the vasopressin but not corticotropin-releasing hormone stimulation. Brain Res (1995) 681(1–2):223–8. doi:10.1016/0006-8993(95)00297-4

171. Sgoifo A, Koolhaas J, De Boer S, Musso E, Stilli D, Buwalda B, et al. Social stress, autonomic neural activation, and cardiac activity in rats. Neurosci Biobehav Rev (1999) 23(7):915–23. doi:10.1016/S0149-7634(99)00025-1

172. Vicario M, Alonso C, Guilarte M, Serra J, Martinez G, Gonzalez-Castro AM, et al. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction. Psychoneuroendocrinology (2012) 37(1):65–77. doi:10.1016/j.psyneuen.2011.05.005

173. Zoladz PR, Flesher M, Diamond DM. Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities. Psychoneuroendocrinology (2012) 37(9):1531–45. doi:10.1016/j.psyneuen.2012.02.007

174. Zoladz PR, Flesher M, Diamond DM. Differential effectiveness of tianeptine, clonidine and amitriptyline in blocking traumatic memory expression, anxiety and hypertension in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry (2013) 44:1–16. doi:10.1016/j.pnpbp.2013.01.001

175. Zoladz PR, Park CR, Flesher M, Diamond DM. Psychosocial predator-based animal model of PTSD produces physiological and behavioral sequelae and a traumatic memory four months following stress onset. Physiol Behav (2015) 147:183–92. doi:10.1016/j.physbeh.2015.04.032

176. Wilson CB, McLaughlin LD, Nair A, Ebenzer PJ, Dange R, Francis J. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS One (2013) 8(10):e76146. doi:10.1371/journal.pone.0076146

177. Wilson CB, Ebenzer PJ, McLaughlin LD, Francis J. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One (2014) 9(2):e89104. doi:10.1371/journal.pone.0089104

178. Rorabaugh BR, Ross SA, Galiviz RJ, Papay RS, McCune DE, Simpson PC, et al. Alpha1- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurososporine-sensitive, chelythrine-insensitive mechanism. Cardiovasc Res (2005) 65(2):436–45. doi:10.1016/j.cardiores.2004.10.009

179. Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB, et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res (1993) 73(4):656–70. doi:10.1161/01.RES.73.4.656

180. Dave A, Kavamoto EM, Scavone C, Vassallo DV, Rossini LV. Changes in vascular reactivity following administration of isotoprotanol for 1 week: a role for endothelial modulation. Br J Pharmacol (2004) 148(5):629–39. doi:10.1038/sj bj.0706749

181. Kim HK, Park WS, Warda M, Park SY, Ko EA, Kim MH, et al. Beta adrenergic overstimulation impaired vascular contractility via actin-cytoskeleton disorganization in rabbit cerebral artery. PLoS One (2012) 7(8):e38884. doi:10.1371/journal.pone.0043884

182. Pye MP, Cobbe SM. Mechanisms of ventricular arrhythmias in cardiac failure and hypertrophy. Cardiov Res (1992) 26(8):740–50. doi:10.1093/cvr/26.8.740

183. Lochner A, Genade S, Tromp E, Podzuweit T, Moolman JA. Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation (1999) 100(9):958–66. doi:10.1161/01.CIR.100.9.958

184. Suematsu Y, Anttila V, Takamoto S, del Nido P. Cardioprotection afforded by ischemic preconditioning interferes with chronic beta-blocker treatment. Circ Res (2004) 95(5):293–9. doi:10.1161/01.RES.00169174

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Eisenmann, Rorabaugh and Zoladz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.