Proceeding Paper

Effects of Guanidinium and Formamidinium Addition to CH₃NH₃PbI₃-Based Perovskite Solar Cells †

Taku Kishimoto, Atsushi Suzuki, Naoki Ueoka and Takeo Oku *

Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan; oi21tkishimoto@ec.usp.ac.jp (T.K.); suzuki@mat.usp.ac.jp (A.S.);
oh21nueoka@ec.usp.ac.jp (N.U.)
* Correspondence: oku@mat.usp.ac.jp; Tel.: +81-749-28-8368
† Presented at the 2nd International Online-Conference on Nanomaterials, 15–30 November 2020; Available online: https://iocn2020.sciforum.net/.

Abstract: Additive effects of guanidinium [C(NH₂)₃, GA] iodide, formamidinium [CH(NH₂)₂, FA] iodide, and guanidinium chloride to CH₃NH₃PbI₃-based photovoltaic devices were investigated. Short-circuit current densities, open-circuit voltages, series resistances and shunt resistances were improved by the GA addition. The short-circuit current densities were increased by FA addition with GA, and the external quantum efficiencies increased, which resulted in suppression of pinholes in perovskite layers by the GA addition. X-ray diffraction showed that the lattice constants of the perovskite crystals increased by the GA and FA addition, and that the GA substituted partially at the CH₃NH₃-site.

Keywords: perovskite; solar cell; photovoltaic device; guanidinium; formamidinium

1. Introduction

Recently, thin film solar cells with perovskite-type methylammonium trihalogenoplumbates (II) (CH₃NH₃PbI₃) compounds have been widely studied due to their easy fabrication processes and high conversion efficiencies compared to conventional organic solar cells [1–4]. It was reported that the photovoltaic properties of perovskite solar cells depended severely on the compositions and crystal structures of the perovskite compounds. Doping with elements such as cesium [5], rubidium [6,7], potassium [8–10], sodium [11], formamidinium (CH(NH₂)₂, FA) [10,12], ethylammonium (CH₃CH₂NH₃, EA) [13], or guanidinium (C(NH₂)₃, GA) [14–16] at the methylammonium (CH₃NH₃, MA) sites improved the conversion efficiencies. Studies on doping with halogen atoms, such as chlorine (Cl) [17–23] or bromine (Br) [6], at the iodine (I) sites of the perovskite crystals have also been reported. The doped Cl ions were found to lengthen the diffusion length of excitons, which resulted in improvement of the conversion efficiency [17,19]. Various elemental substituted perovskite compounds have been reported [24].

The purpose of the present work was to investigate the effects of guanidinium iodide (GAI), guanidinium chloride (GACl) and formamidinium iodide (FAI) addition to CH₃NH₃PbI₃-Clₙ-based perovskite [16]. GA addition was expected to extend the carrier lifetime and to reduce the carrier recombination in the perovskite layers [15]. GACl addition was expected to provide effects of both GA and Cl additions. FA addition was also expected to expand the wavelength range of light adsorption [4]. The effects of these additives on the formation of perovskite compounds for the photovoltaic cells were investigated by light-induced current density–voltage (J–V) characteristics, incident photon-to-current conversion efficiency (IPCE), X-ray diffraction (XRD), optical microscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS).
2. Experimental

Details of the basic fabrication process are described in published reports [24–28]. F-doped tin oxide (FTO) substrates were cleaned using an ultrasonic bath with acetone and methanol, and dried under nitrogen gas. The 0.15 and 0.30 M TiO\textsubscript{2} precursor solutions were prepared from titanium diisopropoxide bis(acetylacetonate) (Sigma-Aldrich, 0.055 and 0.11 mL) with 1-butanol (1 mL), and the 0.15 M TiO\textsubscript{2} precursor solution was spin-coated on the FTO substrate at 3000 rpm for 30 s and heated at 125 °C for 5 min in air to form a TiO\textsubscript{x} layer. The 0.30 M TiO\textsubscript{2} precursor solution was spin-coated onto the TiO\textsubscript{x} layer at 3000 rpm for 30 s, and heated at 125 °C for 5 min. This process of coating with a 0.30 M solution was then performed two times, and the FTO substrate was annealed at 550 °C for 30 min to form a compact TiO\textsubscript{2} layer. For the mesoporous TiO\textsubscript{2} layer, TiO\textsubscript{2} paste was prepared with TiO\textsubscript{2} powder (Nippon Aerosil, P-25) with poly(ethylene glycol) (Nacalai Tesque, PEG #20000) in ultrapure water. The solution was mixed with acetylacetone (Wako Pure Chemical Industries, 10 μL) and triton X-100 (Sigma-Aldrich, 5 μL) for 30 min, and then left for 12 h to suppress the bubbles in the solution. After that, the TiO\textsubscript{2} paste was coated onto the substrate by spin-coating at 5000 rpm for 30 s. The cells were then annealed at 120 °C for 5 min and at 550 °C for 30 min to form a mesoporous TiO\textsubscript{2} layer.

For the preparation of perovskite compounds, a solution of CH\textsubscript{3}NH\textsubscript{3}I (Showa Chemical Co. Ltd. (Tokyo, Japan), 190.7 mg) and PbCl\textsubscript{2} (Sigma-Aldrich (St. Louis, MO, USA), 111.2 mg) was prepared with a mole ratio of 3:1 and in N,N-dimethylformamide (Nacalai Tesque, 500 μL) with additives of GAI (10 mol%, 7.5 mg), GACl (10 mol%, 3.8 mg), and GAI + FAI (10 mol%, 7.5 and 6.9 mg). These perovskite cells are denoted +GAI, +GACl, and +GAI+FACl, respectively. The reaction mechanism proposed for the CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} perovskite is as follows: 3CH\textsubscript{3}NH\textsubscript{3}I + PbCl\textsubscript{2} → CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3} + 2CH\textsubscript{3}NH\textsubscript{3}Cl (↑). Since 2CH\textsubscript{3}NH\textsubscript{3}Cl is generated as a byproduct during the reaction, the quantity 10 mol% means 10 mol% of the produced CH\textsubscript{3}NH\textsubscript{3}PbI\textsubscript{3}. The solutions were stirred at 70 °C for 24 h. Then, the solutions of CH\textsubscript{3}NH\textsubscript{3}PbI(Cl) were introduced into the TiO\textsubscript{2} mesopores by the spin-coating method and annealed at 150 °C for 20 min (perovskite with additive) or 140 °C for 15 min (standard) to form the perovskite layer. A hole transport layer was then prepared by spin-coating onto the perovskite layer. For the hole transport layer, a chlorobenzene solution of 0.5 mL was mixed with a solution of lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI, Tokyo Chemical Industry (Tokyo, Japan), 260 mg) in acetonitrile (Nacalai Tesque (Singapore City, Singapore), 0.5 mL) for 12 h. The former solution with 4-tert-butylpyridine (Aldrich, 14.4 μL) was mixed with the Li-TFSI solution (8.8 μL) for 30 min at 70 °C. All procedures for preparation of the thin contacts were evaporated as top metal electrodes. The layered structures of the present solar cells were denoted FTO/TiO\textsubscript{2}/perovskite/spiro-OMeTAD/Au, as shown in Figure 1. The J–V characteristics of the photovoltaic cells were measured under illumination at 100 mW cm-2 using an air mass (AM) 1.5 solar simulator (San-ei Electric, XES-301S, Osaka, Japan).

The J–V measurements were performed by source measure unit (Keysight, B2901A Precision SMU). The scan rate and sampling time were ≈0.08 V s-1 and 1 ms, respectively. Four cells were tested for each condition. The solar cells were illuminated through the sides of the FTO substrates, and the illuminated area was 0.090 cm2. The IPCE of the cells were also measured (Enli Technology, QE-R). The microstructures of the present cells were investigated using an X-ray diffractometer (Bruker, D2 PHASER), a transmission optical microscope (Nikon, Eclipse E600), and a scanning electron microscope (Jeol, JSM-6010PLUS/LA) equipped with EDS.
3. Results and Discussion

Figure 2 shows the J–V characteristics of the TiO2/perovskite/spiro-OMeTAD photovoltaic cells under illumination, which indicates the effects of the GA and FA addition [16]. The measured photovoltaic parameters of the cells are summarized in Table 1. Standard CH3NH3PbI3(Cl) cells provided a power conversion efficiency (η) of 5.31%, and the averaged efficiency (η_{av}) of four electrodes on the cells was 4.42%, as listed in Table 1. The short-circuit current density (J_{SC}), open-circuit voltage (V_{OC}) and fill factor (FF) were increased by GAI addition and the highest efficiency of 12.51% was obtained for the +GAI cell. The highest J_{SC} and V_{OC} were obtained for +GAI+FAI cells, which provided an η of 11.66% and η_{av} of 11.01%. FF values of the +GAI+FAI cells were lower than that of +GAI cells. Addition of GACl to CH3NH3PbI3(Cl) provided a higher η of 9.14% than that of the standard cells, but lower than that of +GAI cells. Table 1 shows that the series resistances (R_s) and the shunt resistances (R_{sh}) were decreased and increased by GA addition, respectively. These results lead to improvements of J_{SC} and V_{OC}. Further improvements could be expected by optimizing the compositions and annealing conditions.

![Layered structure of the present solar cells (FTO/TiO2/perovskite/spiro-OMeTAD/Au).](image)

Figure 1. Layered structure of the present solar cells (FTO/TiO2/perovskite/spiro-OMeTAD/Au).

![J–V characteristics of the present perovskite photovoltaic cells.](image)

Figure 2. J–V characteristics of the present perovskite photovoltaic cells.
Table 1. Measured photovoltaic parameters of solar cells.

Device	J_{SC} (mA cm$^{-2}$)	V_{OC} (V)	FF	η (%)	η_{ave} (%)	R_s (Ω cm2)	R_{sh} (Ω cm2)	E_g (eV)
Standard	19.0	0.823	0.339	5.31	4.42	9.64	70	1.55
+GAI	20.9	0.972	0.616	12.51	11.20	7.05	1599	1.53
+GACL	19.1	0.875	0.548	9.14	7.30	8.20	290	1.53
+GAI+FAI	21.3	0.999	0.547	11.66	11.01	8.92	667	1.54

4. Conclusions

Photovoltaic properties, such as J_{SC}, V_{OC}, R_s and R_{sh} of MAPbI$_3$-Cl$_x$-based perovskite photovoltaic cells, were improved by GA addition. Increase of J_{SC} and V_{OC} by GA and FA addition implies that MA-GA-FA mixed cation-based perovskite solar cells have a potential for further improvement of the photovoltaic performances.

Author Contributions: Conceptualization, T.K., A.S., and T.O.; Methodology, T.K., N.U., and A.S.; Formal analysis, T.K. and T.O.; Investigation, T.K.; Data curation, T.K. and T.O.; Writing—original draft preparation, T.K. and T.O.; Writing—review and editing, T.O.; Visualization, T.K. and T.O.; Supervision, A.S. and T.O.; Project administration, T.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Super Cluster Program of the Japan Science and Technology Agency (JST).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. *J. Am. Chem. Soc.* 2009, 131, 6050–6051, doi:10.1021/ja809598r.
2. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Yum, J.-H.; Humphry-Baker, R.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. *Sci. Rep.* 2012, 2, 591, doi:10.1038/srep00591.
3. Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. *Science* 2012, 338, 643–647, doi:10.1126/science.1228604.
4. Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. *Science* 2015, 348, 1234–1237, doi:10.1126/science.aaa9272.
5. Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeuruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. *Energy Environ. Sci.* 2016, 9, 1989–1997, doi:10.1039/C5EE03874J.
6. Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Baena, J.P.C.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. *Science* 2016, 354, 206–209, doi:10.1126/science.aah5557.
7. Ueoka, N.; Oku, T.; Suzuki, A. Additive effects of alkali metals on Cu-modified CH$_3$NH$_3$PbI$_3$-Cl$_x$ photovoltaic devices. *RSC Adv.* 2019, 9, 24231–24240.
8. Machiba, H.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and evaluation of K-doped MA$_{0.8}$FA$_{0.1}$K$_{0.1}$PbI$_3$(Cl)$_x$ perovskite solar cells. *Chem. Phys. Lett.* 2019, 730, 117–123.
9. Kandori, S.; Oku, T.; Nishi, K.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Fabrication and characterization of potassium- and formamidinium-added perovskite solar cells. *J. Ceram. Soc. Jpn.* 2020, 128, 805–811, doi:10.2109/jcersj2.20900.
10. Oku, T.; Kandori, S.; Taguchi, M.; Suzuki, A.; Okita, M.; Minami, S.; Fukunishi, S.; Tachikawa, T. Polysilane-inserted methylammonium lead iodide perovskite solar cells doped with formamidinium and potassium. *Energies* 2020, 13, 4776–4777, doi:10.3390/en13184776.
11. Ueoka, N.; Oku, T. Effects of co-addition of sodium chloride and copper(II) bromide to mixed-cation mixed-halide perovskite photovoltaic devices. *ACS Appl. Energy Mater.* 2020, 3, 7272–7283, doi:10.1021/acsaeem.0c00182.
12. Suzuki, A.; Kato, M.; Ueoka, N.; Oku, T. Additive effect of formamidinium chloride in methylammonium lead halide compound-based perovskite solar cells. J. Electron. Mater. 2019, 48, 3900–3907, doi:10.1007/s11664-019-07153-2.

13. Nishi, K.; Oku, T.; Kishimoto, T.; Ueoka, N.; Suzuki, A. Photovoltaic characteristics of CH3NH3PbIxCl1-x perovskite solar cells added with ethylammonium bromide and formamidinium iodide. Coatings 2020, 10, 410, doi:10.3390/coatings10040410.

14. Hou, X.; Hu, Y.; Liu, H.; Mei, A.; Li, X.; Duan, M.; Zhang, G.; Rong, Y.; Han, H. Effect of guanidinium on mesoscopic perovskite solar cells. J. Mater. Chem. A 2017, 5, 73–78, doi:10.1039/C6TA08418D.

15. Jodlowski, A.D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiairisaona, M.; Ahmad, S.; Koch, N.; Camacho, L.; Miguel, G.; Nazeeruddin, M. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979, doi:10.1038/s41560-017-0054-3.

16. Kishimoto, T.; Suzuki, A.; Ueoka, N.; Oku, T. Effects of guanidinium addition to CH3NH3PbI3 perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 2019, 127, 491–497, doi:10.2109/jcersj2.18214.

17. Stranks, S.D.; Eperon, G.E.; Grancini, G.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344, doi:10.1126/science.1243982.

18. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522, doi:10.1126/science.aaa2725.

19. Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 519–522, doi:10.1126/science.aaa2725.

20. Oku, T.; Suzuki, K.; Suzuki, A. Effects of chlorine addition to perovskite-type CH3NH3PbI3 solar cells: Why is CH3NH3I : PbCl2 = 3 : 1 the “magic” ratio? Nanoscale 2016, 8, 6361–6368, doi:10.1039/C5NR06217A.

21. Oku, T.; Ohishi, Y.; Suzuki, A.; Miyazawa, Y. Effects of NH4Cl addition to perovskite CH3NH3PbI3 solar cells. J. Ceram. Soc. Jpn. 2017, 125, 303–307, doi:10.2109/jcersj2.16279.

22. Oku, T.; Ohishi, Y. Effects of annealing on CH3NH3PbI3(Cl) perovskite photovoltaic devices. J. Ceram. Soc. Jpn. 2018, 126, 56–60, doi:10.2109/jcersj2.17162.

23. Oku, T. Crystal structures of perovskite halide compounds used for solar cells. Rev. Adv. Mater. Sci. 2020, 59, 264–305, doi:10.1515/rams-2020-0015.

24. Ueoka, N.; Oku, T.; Ohishi, Y.; Tanaka, H.; Suzuki, A. Effects of excess PbI2 addition to CH3NH3PbI3 perovskite solar cells. Chem. Lett. 2018, 47, 528–531, doi:10.1246/cl.171214.

25. Oku, T. Highly (100)-oriented CH3NH3PbI3(Cl) perovskite solar cells prepared with NH4Cl using an air blow method. RSC Adv. 2018, 8, 10389–10395, doi:10.1039/c7ra13582c.

26. Ueoka, N.; Oku, T.; Tanaka, H.; Suzuki, A.; Sakamoto, H.; Yamada, M.; Minami, S.; Miyachi, S.; Tsukada, S. Effects of PbI2 addition and TiO2 electron transport layers for perovskite solar cells. Jpn. J. Appl. Phys. 2018, 57, 08RE05, doi:10.7567/JJAP.57.08RE05.

27. Ueoka, N.; Oku, T.; Suzuki, A. Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)xRb1−xPb0.9Cu0.1I3−x(Cl, Br) perovskite photovoltaic cells. AIP Adv. 2020, 10, 125023, doi:10.1063/5.0029162.