OVERVIEW OF THE TCV TOKAMAK EXPERIMENTAL PROGRAMME

H. REIMERDES for the TCV team1 and the EUROWision MST1 team2
Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
Email: holger.reimerdes@epfl.ch

Abstract

The TCV tokamak continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of divertor gas baffle, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce the coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime with \(T_e/T_i \sim 1 \) and have stimulated shifts from L-mode to H-mode studies across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with “small” (or no) ELMs explored. Most prominently, negative triangularity was investigated in great detail and confirmed as an attractive scenario with H-mode core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration in the European research effort alongside a vibrant domestic programme and international collaborations.

1. INTRODUCTION

The “Tokamak à Configuration Variable” (TCV) [1] is a carbon walled, medium sized (major radius \(R_0 = 0.88 \) m, magnetic field \(B_0 \leq 1.5 \) T), conventional aspect ratio \((A \approx 4) \) tokamak with unique shaping capabilities. Together with its flexible heating systems for electrons and ions, a steadily growing number of diagnostics and a modern control system, it continues to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. These recent enhancements are part of a greater facility upgrade that commenced in 2015 [2] in contribution to the EU strategy to solve the DEMO exhaust problem [3]. Experiments are performed in part by topical teams, under the auspices of the EUROWision medium-size tokamak programme and local teams at the Swiss Plasma Center together with international collaborators.

Auxiliary heating is provided by a neutral beam injection (NBI) system [4] and X2 and X3 electron cyclotron resonance heating (ECRH) systems. An improved acceleration grid for the NBI system with reduced beam divergence [5] and, hence, lower power losses in the duct together with an improved cooling of the duct [6] allowed for a 2.5x increase in injected energy with an injected power up to 1.3 MW. In addition, up to 1.0 MW NBI operation in hydrogen has been demonstrated. The legacy ECRH system of 1.4 MW from two 83 GHz gyrotrons (X2) and 0.9 MW from two 118 GHz gyrotrons (X3) was enhanced by two 1.0 MW dual frequency (84/126 GHz) gyrotron for X2 or X3 heating [7]. The first dual-frequency gyrotron started operation in 2019 and performed as designed, validating the numerical models used in its development [8]. A second unit has recently attained the same performance and is being integrated in the ECRH system for plasma operation.

The most conspicuous upgrade was the installation of a first set of removable gas baffles for the 2019 experimental campaign. Its effect on the neutral distribution is described in Sec. 2. The baffles naturally had a large impact on the TCV edge and divertor programme, summarised in Sec. 3. With more auxiliary heating, H-mode studies towards a better understanding of the ITER baseline scenario gained more prominence, Sec. 4. As type-I ELMs associated with the baseline scenario are of great concern for the safety of the ITER divertor, and certainly unacceptable in a reactor, a significant part of the experimental programme was dedicated to the research of alternative scenarios, discussed in Sec. 5. Several specific issues of concern for ITER operation are addressed in

1 See Appendix
2 See author list of B. Labit et al 2019 Nucl. Fusion 59 086020
Sec. 6. Section 7 gives an overview of TCV’s contributions to real-time control of interest for ITER and beyond, before conclusions in Sec. 8.

2. DIVERTOR UPGRADE

The divertor upgrade is centred around the installation of removable gas baffles that separate the vessel into main and divertor chambers. The baffles primarily seek to increase the divertor neutral pressure and thereby facilitate the extrapolation to future devices, such as ITER, which will rely upon high divertor neutral pressure. The divertor closure of a first set of baffles was optimised for a large neutral compression in the conventional, single-null divertor, Fig. 1(a), using the edge transport code SOLPS-ITER, which couples a fluid description of the plasma with kinetic neutrals [2]. The baffles consist of graphite tiles that replace standard wall protection tiles requiring only short manned entries. The first set of baffles was installed for the 2019 experimental campaign [9]. The baffles were complemented with new port protection tiles that shadow magnetic field lines shielding the lower lateral ports from direct contact with plasma. These are independent of the baffles and increase the configurational flexibility for baffled and unbaffled configurations, Fig. 1(b-d). Divertor diagnostics were also upgraded with additional wall mounted Langmuir probes [10] and an additional IR thermography system for complete divertor chamber coverage. A new, long-throw reciprocating divertor probe array (RDPA) extends probe measurements into the divertor volume [11], where new divertor Thomson scattering chords, equipped with narrow filters, are now able to measure electron temperatures down to 1 eV [12]. Radiation diagnostics are greatly enhanced with a new tomography camera array each housing sensitive foil bolometers, AXUV and separate soft X-ray diode arrays to reconstruct radiation profiles in the divertor and the main chamber [13]. The system is complemented by the tangentially viewing, multi-camera spectral imaging system, MANTIS [14], and wide coverage divertor spectroscopy chords (DSS) [15]. Probe turbulence measurements are augmented with a new gas puff imaging system near the X-point [16].

Experimentally, Ohmically heated diverted discharges, Fig. 1(a), qualitatively confirm SOLPS-ITER predictions [17] with up to a 5x increase in divertor neutral pressure [9] [18], Fig. 2. The concurrently predicted decrease of the main chamber neutral density is, as yet, unconfirmed as the associated pressure is below the dynamic range of the TCV baratron. A higher ratio of separatrix density, n_{e,sep}, and line averaged density, (n_{e}), in the baffled configuration, however, indicates a reduction of core ionisation and, hence, a lower main chamber neutral density [19]. Optional fuelling into the divertor or the main chamber can disentangle the effects of fuelling rate, divertor and/or main chamber neutral pressure, P_{n,div/main}, and plasma density, n_{e}. These new device capabilities provided by the baffles were extensively used for studies of the divertor and the plasma edge, discussed in Sec. 3, and contributed to other aspects of TCV’s scientific programme.

Scanning the plasma plugging by displacing the X-point with respect to the baffles, indicates that the installed divertor closure is close to optimal [18]. SOLEDGE2D-Eirene Eirene calculations with a more refined main chamber PWI model than SOLPS-ITER suggest that increased closure may further increase the neutral compression [20] guiding the design of future baffle versions.

The baffles were removed in early 2020 restoring the full shaping flexibility, but will be re-installed for dedicated future campaigns. In addition, a second baffle set with less closure, better suited for snowflake configurations, see Sec. 3.2, is being procured and will be installed in 2021. It will be followed by a third combination of inner and outer baffles with greater closure than the initial set in 2022.

![FIG. 1. (a) Single-null diverted, (b) Snowflake-minus and (c) Super-X configurations in TCV with baffles (magenta) and (d) a diverted negative-triangularity configuration employing the port protection tiles (light grey). Gas fuelling (black) and neutral pressure measurement locations (green) are indicated in (a). (Adapted from [9].)](image1)

![FIG. 2. Baratron measurements of the neutral pressure in the divertor in Ohmic density ramps with (magenta) and without the baffles (blue). (Adapted from [9].)](image2)
3. EDGE PHYSICS

Plasma exhaust, and its compatibility with high core performance, is one of the main challenges on the way to fusion energy. The challenge is set by the width of the scrape-off layer with solutions hinging on the achievable separatrix density and the tolerable seed impurity concentration. Since the conditions of future high-performance devices cannot be achieved in today’s experiments, the development of predictive edge modelling capability is mandatory. TCV contributes by testing edge models, including those used for the design of the ITER divertor [21] and by exploring alternatives to the conventional single-null divertor to improve future reactor designs [22][23].

3.1. Plasma exhaust in the conventional divertor

The effect of the neutral pressure in a conventional single-null divertor, e.g. Fig. 1(a), is investigated by comparing identically programmed density ramp discharges in the baffled and un-baffled configurations. These discharges are performed in reverse field, where the magnetic field is directed in the unfavourable direction for H-mode access to remain in L-mode. Measurements with target Langmuir probes and the novel RDPA diagnostic show that, as predicted, increasing \(p_{n,\text{div}} \) in the baffled divertor leads to a cooler and denser divertor plasma for the same core density [24]. Flow measurements with the RDPA also reveal a stronger ionisation source in the divertor, consistent with the increased divertor fuelling required to obtain the same core density. As a result, and again as predicted, detachment commences at 20-30% lower \(n_e \) [18]. Experiments using main chamber fuelling provide further evidence that the onset of detachment is primarily determined by \(p_{n,\text{div}} \) rather than \(n_e \).

Efforts to test drift models in the SOLPS-ITER code led to the prediction of an electric potential well and altered drift patterns in reverse field discharges with very low plasma temperature in the divertor [25]. RDPA measurements in baffled discharges at sufficiently high density and, hence, sufficiently low plasma temperature, subsequently confirmed the existence of such a well [26]. Target current measurements show that in the cold TCV divertor, more easily accessible with baffles, SOL currents are dominated by Pfirsch-Schlüter currents [26]. The measurements were performed with a plasma current of 190 kA, the highest allowed for Ohmic L-mode operation in both field directions. Measured peaks in the target current, their directions and dependence on field directions and density, are found in qualitative agreement with SOLPS-ITER calculations. A high-fidelity test of SOLPS-ITER was attempted for a density ramp discharge in reverse field and with a somewhat higher current of 250 kA [27]. Cross-field diffusivities were set to match the \(T_e \) and \(n_e \) profiles measured by Thomson scattering well above the X-point. The model then reasonably describes \(T_e \) and \(n_e \) below the X-point, measured with the reciprocating probe (RPTCV), and near the outer target, by the new divertor Thomson chords, albeit with somewhat broader than predicted profiles. The model, however, clearly overpredicts the target plasma density and underpredicts its temperature. The model, also, concurrently overpredicts the divertor neutral pressure. The identified discrepancies will guide further refinements in the model and spur diagnostic developments. One recent question, for example, is the accuracy of the description of molecular-activated recombination (MAR) that, according to a recent spectroscopic investigation, provides a significant volumetric particle sink in TCV discharges [28][29].

Detachment was also obtained with nitrogen seeding in reverse field, Ohmic, L-mode discharges [30]. A sufficiently high seeding rate led to the formation of a stable radiator around the X-point. While at low plasma density only the particle flux to the outer target decreases, at higher density both targets start to detach. At high density, the nitrogen seeding has only a benign effect on the energy confinement time, indicative of a lower level of nitrogen penetration into the core plasma and, yet again, consistent with SOLPS-ITER simulations of the experiments [31].

3.2. Plasma exhaust in alternative divertor configurations

With the advent of MAST-Upgrade [32] and motivated by recent SOLPS-ITER simulations that explain the absence of advantageous effects of a larger target radius in previous TCV experiments [33], detailed investigations were conducted on TCV’s Super-X divertor [34], Fig. 1(c). Specific configurations designed to disentangle the effects of a large target radius, \(R_t \), and the angle between the divertor leg and the target surface, confirm the predicted dependence of the detachment onset on this angle, whereas the dependence on \(R_t \) remains weaker than predicted for the strongly baffled divertor. Target measurements with Langmuir probes reveal that, while the electron temperature decreases with larger \(R_t \), the electron density does not increase as expected, resembling the discrepancies identified for the single-null divertor, Sec. 3.1.
Other investigations addressed the *snowflake minus* configuration, Fig. 1(b), where a secondary X-point in the divertor splits one side of the SOL into distinct divertor legs with consequences for power distribution to the targets and the radiation volume. In attached conditions upstream profiles, from reciprocating probe measurements, remain independent of the divertor configuration. Probe measurements at the entrance of the low-field side (LFS) snowflake minus divertor, a configuration that attracted attention due to its unexpectedly strong broadening of the SOL at the secondary X-point [35], reveal large pressure drops that depend on the position of the secondary X-point and the drift direction and highlight the dominant role of parallel convection and ExB drifts in the power distribution to the targets [36]. Operating the snowflake minus in the baffled TCV divertor revealed significant particle fluxes to the top of the baffle indicative of over divertor closure. This hypothesis is also supported by experiments with a variant of the snowflake minus, where only the outer divertor is baffled, which achieved a higher divertor neutral pressure than the fully baffled snowflake [37]. The hypothesis will be further tested with the next combination of baffles foreseen for 2021.

3.3. H-mode/ELMs

Power exhaust studies were extended to Type-I ELMy H-modes at 170 kA and with 1 MW of NBI heating [18]. The addition of the divertor baffles decreases the peak electron temperature at the outer target between ELMs from ~5 eV to 3 eV. Lower divertor temperatures in the baffled divertor are also supported by measurements of the CIII emission, which is located further from the target in baffled discharges. Seeding of nitrogen is effective in further cooling of the divertor in-between the ELMs as seen in a three-fold decrease of target particle flux and the receding of the CIII emission to the X-point with the baffles. There are, in particular, no indications for a bifurcation in either case. However, even with strong seeding ELMs keep re-attaching the plasma.

3.4. SOL width/turbulence and blobs

The width of the heat carrying plasma channel of the scrape off layer (SOL), λ_q, and its extrapolation to future devices is key in determining the magnitude of the heat exhaust challenge. Its value generally decreases in H-mode, relevant for most current reactor scenarios, thus magnifying the challenge. Its scaling in L-mode remains important as it determines mitigation requirements during the start-up and landing phases of the discharge.

The extensive database of SOL width measurements in TCV L-modes [38], together with a cross-machine database of λ_q [39], spanning more than an order of magnitude, is found to be well described by an analytical model based on turbulent cross-field transport driven by resistive ballooning modes competing with convective parallel transport [40]. A larger spread for each device is attributed to experimental conditions extending beyond the sheath-limited regime and geometric modifications, such as plasma triangularity known to affect the ballooning stability, that are not yet included in the model. Shaping effects are, however, included in the GBS code [41]. A rigorous validation exercise with reciprocating probe fluctuation measurements in TCV discharges with circular, elongated and (negative) triangular cross sections showed that the shaping model implemented in GBS improves the description of SOL turbulence [42].

In H-mode, the TCV inter-ELM SOL is found 2-3 times smaller than in other devices with the same value of the poloidal field [43], suggesting that a scaling solely based on B_{pol} does not capture all key dependencies. The TCV measurements, however, agree with cross-machine scalings [44] that include the toroidal field, q_{95} and heating power.

At sufficiently high density, the SOL is generally observed to broaden, with a distinct second, longer, fall-off length in the plasma density emerging – a process referred to as *shoulder formation*. While the density shoulder does little to alleviate heat loads in the divertor, it is feared to increase main chamber recycling and erosion, with consequences for particle control, impurity influx and lifetime of the first wall in future devices. Repetition of L-mode discharges that clearly displayed a density shoulder in the un baffled divertor, showed no evidence of such in the baffled divertor, even though the divertor detachment starts at lower plasma density, providing further evidence that SOL collisionality is not the sole criterion [45]. Since the baffles are expected to decrease the main chamber neutral density, this behaviour indicates the important effect of neutrals on SOL transport, for example via suppressing zonal flows that stabilise anomalous transport [46] or fuelling of blobs [47]. Further support for the importance of the main chamber neutral density is obtained from an inner gap scan in the un baffled divertor [45], with a smaller gap resulting in a more pronounced density shoulder, consistent with an important, reinforcing role of main chamber recycling and, hence, neutral pressure.
The characterisation of the SOL turbulence in TCV was extended to H-mode [48]. In the analysed high triangularity (δ=0.5), low current (I_p=180 kA) H-mode scenario with 1 MW of NBI heating the inter-ELM density profiles exhibit a broadening at sufficiently strong fuelling and, hence, divertor neutral pressure, p_n,div, similar to observations on ASDEX-Upgrade and JET. The broadening is also accompanied by an increased blob frequency detected with Langmuir probes at the outboard midplane wall. Contrary to the observations in L-mode the broadening also prevails in the baffled divertor. The broadening of the upstream density profile is, however, not observed when a dissipative divertor is formed through nitrogen seeding rather than deuterium fuelling.

4. H-MODE PHYSICS

H-mode, as the confinement regime foreseen for ITER, is a prominent part of the TCV programme. The addition of the NBI as a heating method that has less constraints on electron density and temperature than the well-established EC heating schemes and heats ions in addition to electrons, greatly enhanced the H-mode operating range.

4.1. L-H power threshold

The L-H threshold, \(P_{LH} \), remains a critical issue for ITER and a reactor as it determines the minimum required installed heating power, and, apart from a hysteresis, also sets the minimum power that must be successfully exhausted in a divertor during H-mode operation. Current extrapolations are based on empirical scaling laws with ‘hidden parameters’ observed to affect the actual value.

The NBI system allows a decoupling of heating and plasma current that led to the discovery of a strongly increasing current (or unfavourable \(q_{95} \)) dependence of \(P_{LH} \) that increases with density [49]. This is not included in the present ITPA scaling [50] where good agreement is only obtained with \(q_{95} < 3.5 \) or at a plasma density close to the minimum density required to enter H-mode that, ironically, may be the least favourable operational position to enter H-mode with regard to ELM heat loads. Revisiting the isotope and charge number dependence with experiments in D, H and He resulted in good agreement with the ITPA scaling, again provided that \(q_{95} \) is sufficiently low. Adding small concentrations of D to H plasmas showed, however, a rapid decrease of the L-H threshold suggesting doping of H-plasmas as an option to lower \(P_{LH} \) in the pre-nuclear phase of ITER.

4.2. H-mode pedestal

Particular attention was dedicated to the pedestal in type-I ELMy H-modes, where the baffles were used to decouple the roles of main chamber neutral pressure, \(p_{n,main} \), and divertor neutral pressure, \(p_{n,div} \), in the pedestal structure. Fuelling and, thereby, a higher neutral pressure, generally degrades the pedestal pressure, \(p_{n,ped} \), consistent with previous findings [51] that linked the degradation to an outward shift of the density profile. This outward shift and the related pedestal degradation are, however, found to be considerably more benign in the baffled divertor, presumably due to a weaker increase of \(p_{n,main} \), leading to significantly higher \(T_{e,ped} \) and, hence, higher \(p_{n,ped} \) at high divertor neutral pressure, \(p_{n,div} \). Fig. 3, [52]. In this way, high fuelling rates, together with nitrogen seeding into the baffled divertor, resulted in an up to 3-fold increase in the radiated power without core confinement degradation. The improved performance was also observed across a range of target radii, \(R_t \), highlighting alternative divertors’ weak effect on pedestal and core properties.

4.3. Core confinement

In a continued effort to extrapolate ELMy H-mode performance to the ITER baseline (IBL) scenario, NBI and X3

FIG. 3. Measured (a) electron temperature and (b) density pedestal in unfueled, \(P_{NBI}=1\text{MW} \) discharge with (magenta) and without (cyan) baffles.
heated H-modes succeeded in matching the ITER targets of $\kappa=1.8$, $\delta=0.5$, $\beta_N=1.8$ and $q_{95}=3.0$ whilst retaining good confinement ($H_{\text{non}}\sim 1$) [53]. The Greenwald fraction reached 0.65, which is still lower than the IBL target, but sufficiently high for EC absorption at the third harmonic (X3) to become unreliable. Since EC heating with X3 is effective in preventing, or delaying, low m/n (usually 2/1) MHD, ELM triggered neoclassical tearing modes (NTMs) were only avoided by reducing I_P and, hence, the density, with a stationary demonstration of the scenario at $q_{95}=3.6$. The plasma shape of the TCV IBL discharge was chosen to match a corresponding experiment in ASDEX-Upgrade. Integrated modeling of TCV’s IBL discharges predicts the observed heat and particle transport, with dominant ITG modes. It also shows that the observed density peaking is sustained by core NBI fuelling and by turbulence transport.

4.4. Density limit

ITER and other future high-performance devices need to operate at densities close to the density limit for high fusion power and for divertor protection. The H-mode density limit has therefore been studied in TCV in newly developed NBI-heated scenarios at $I_P=170kA$ and $100kA$, corresponding to $q_{95}=3.7$ and 6.2, respectively. In both scenarios a density ramp follows the characteristic phases also observed in other devices (e.g. on ASDEX Upgrade [54]) [55]. At sufficiently high core density the temperature pedestal starts to erode and confinement to degrade, which is ultimately followed by an H-L back transition and accompanied by the formation of a strongly radiating region at the X-point generally associated with a MARFE. A further density increase leads to strong edge cooling, the upward movement of the MARFE from the X-point along the HFS edge and, eventually, macroscopic MHD leading to a disruption at a line averaged density close to the Greenwald limit. The evolution through these phases is more gradual in the baffled divertor and occurs at lower edge density than in the un-baffled divertor, consistent with a higher divertor dissipation (see Sec. 3.1). Experiments demonstrated that additional NBI heating power is effective in counteracting the upward movement of the MARFE and, therefore, qualified NBI as a valuable actuator for feedback-controlled operation near the density limit (see Sec. 7.4).

5. ALTERNATIVE ELM-FREE REGIMES

While H-mode confinement is key for reactor designs with realistic dimensions, the cyclical heat and particle loads of type-I ELMs are prohibitive and robust mitigation techniques or alternative scenarios must be found.

5.1. Small ELM regime

The small ELM regime, developed on ASDEX-Upgrade and TCV [56], greatly reduces the transient power and particle loads associated with type-I ELMs. This regime requires high triangularity, close to a DND configuration and steady gas fueling where small ELMs gradually replace large ELMs at sufficiently high separatrix density [57]. The small ELM regime could also be accessed in the baffled TCV divertor, where it requires a substantially increased divertor fueling rate, and the operational window extended down to $q_{95}=3.7$, albeit only at reduced toroidal field [58]. First attempts of nitrogen seeding in the baffled divertor showed no significant detrimental effect on core confinement, reminiscent of the observations in type-I ELMy regimes, Sec. 4.2, although a comparison with the un-baffled divertor is still pending.

A comparison of the pedestal dynamics of the small ELM regime with type-I ELMs was performed using a novel short-pulse reflectometer [59]. The reflectometer takes advantage of new advances in hardware, particularly GHZ-range arbitrary waveform generators and vector-network-analyser extension modules. Shifting the reflectometry paradigm from the conventional frequency domain to the time domain, the time of flight of nanosecond-scale pulses is measured directly, and fast scans of the wave-train frequency permit resolving the entire density profile on a μs scale [60]. The instrument measures fast changes to pedestal density profiles with high spatio-temporal resolution (mm/μs). The small-ELM scenario is found to feature a ~ 25-35 kHz quasi-coherent density fluctuation near the separatrix $\rho_s=0.993-1.05$ not observed during a similar type-I ELM discharge. This oscillation is also found in low-field-side magnetic pick-up probes displaying a strong ballooning character and $n=+1$ toroidal mode number and could help explain the markedly different pedestal dynamics observed in the small-ELM regime.

5.2. QH-mode

Some effort was dedicated to the development of a low-density H-mode scenario with counter-injected NBI heating in pursuit of conditions compatible with QH-mode. These conditions are prone to high fast ion losses yielding low ion temperature and toroidal rotation profiles. Reducing the plasma size and, thereby, increasing the
outer gap between plasma and wall, proved effective in partially restoring efficient heating. In addition, edge ECRH deposition was used to lower the density by increasing the ELM frequency. However, true quiescent conditions remain to be obtained.

5.3. Negative triangularity

Negative triangularity (NT), pioneered by TCV since the 1990s [61][62] and recently also demonstrated in DIII-D [63], emerges as an attractive alternative scenario with an H-mode like energy confinement, but an L-mode like pressure profile and no ELMs. NT was extensively revisited taking advantage of new TCV capabilities to confirm its advantageous L-mode confinement and explore its stability and exhaust properties [64].

5.3.1. Core confinement

The attractiveness of the NT tokamak arises from its advantageous confinement properties. The confinement improvement observed in limited Ohmic plasma with increasing negative triangularity has been documented up to $\delta=-0.6$ without any evidence of saturation [64].

NBI heating has permitted an extension of TCV’s NT research towards more reactor-relevant regimes with $T_e/T_i \sim 1$ at low collisionality. Using NBI and ECH to scan negative triangularity in limited configurations is seen to improve confinement over the entire range of temperature ratios, T_e/T_i, from 0.5 to 5 and collisionality, $1/\nu_{ef}$, from 0.1 to 2 [65]. The correlation electron cyclotron emission diagnostic (CECE), sensitive to wavenumbers $k_B<0.4$ cm$^{-1}$ and measuring at $\sim 2/3$ of the minor radius ($0.55<\rho_{vol}<0.75$) shows a decrease of radiative temperature fluctuations, Fig. 4. This decrease of the temperature fluctuation amplitude also occurs when matching heating power as well as when matching plasma profiles. Linear gyrokinetic flux tube simulations confirm that the turbulence regime changes from pure TEM dominated in Ohmic and ECH heated to a mixture of TEM and ITG in strongly NBI heated discharges. The simulations suggest that in both turbulence regimes, NT partially stabilises the most unstable modes with low wavenumbers and supports the idea that critical gradients, beyond which micro-instabilities are triggered, are higher.

The investigation of NT confinement has also been extended to diverted configuration, with the port protection tiles extending the range of possible strike point positions on the outer wall, Fig. 1(d) [64]. A scan of the upper triangularity from 0.5 to 0.3 shows a continuous improvement of the confinement time by up to 50%. Adding NBI power leads even to a further improvement of the $H_{B\theta}(\gamma,2)$ confinement factor, indicating a more favourable power and/or density dependence than in the scaling, Fig. 5. L-H transitions have been observed only sporadically in these fully NT diverted scenarios, indicating a wide L-mode existence range – up to 1MW input power - despite a magnetic field directed in the traditionally favourable direction (with the ion grad B-drift directed from the core plasma towards the X-point).

Understanding NT’s advantageous confinement properties advanced with the first global non-linear gyrokinetic simulations using the GENIE code that reproduce the observed transport level over a major portion of the minor radius for a pair of limited TCV plasmas with $\delta=0.3$ and $\delta=-0.3$ [66]. The plasmas were heated with ECH and the turbulent transport is, consequently in the trapped electron mode (TEM) regime. In addition to predicting the absolute transport levels, the simulations also reproduce a density fluctuation profile as measured in similar discharges [67]. A comparison of the global calculations with local, flux tube

![Fig. 4. Comparison of positive and negative triangularity at the same heating power (a,b) and at the same temperatures (c,d), which both show a larger temperature fluctuation amplitude for $\delta > 0$ (e). (Adapted from [65].)
calculations reveals that non-local effects play a crucial role in negative δ performance and must be retained to describe the experiment [66].

5.3.2. Performance

NBI heating allowed an extended operating space of NT plasmas to the ITER baseline (IBL) value of β_N and beyond, attaining a record $\beta_{N}=3.0$ [64], Fig. 5(b). However, similarly to the low-q_{95} IBL scenario in TCV, Sec. 4.3, these discharges are prone to NTMs, but due to their density have become inaccessible to X2 ECH control. Instabilities have, consequently, prevented stationary conditions with strong auxiliary heating. Operational limits of NT plasmas at low q_{95} and high density are found to be similar to those in positive δ.

5.3.3. Edge

Reciprocatng probe plunges past the LCFS of Ohmic, inner wall limited NT plasmas confirm a reduced turbulent radial particle flux extending from the core into the plasma edge. The reduction near the LCFS is only partially explained by a reduced fluctuation amplitude, but more by a change in the phase shift between density and potential fluctuations [68]. The saturation current is, however, dramatically reduced in the SOL region past the separatrix, which enters the vessel in sufficiently negative δ plasmas [69]. This transition is also seen clearly by the new mid-plane GPI system as a strong reduction of the fluctuation level [69], Fig. 6. This reduction outside the separatrix occurs equally in inner-wall limited NT plasmas and diverted NT plasmas. The appearance of a separatrix in the vessel, at sufficiently negative δ, also coincides with a strong decrease of the main chamber wall interaction [69]. The decrease in fluctuation level correlates particularly well with a significant reduction in connection length of the flux tubes that connect to the outer wall. The strong decrease of main chamber plasma-wall interaction addresses a key concern for reactors.

With ELMs avoided and main PWI strongly suppressed, power exhaust in NT still requires the mitigation of target heat fluxes. With an L-mode SOL width, though narrower than for positive δ [70], that is comparable to conventional H-modes, a reactor will have to dissipate similar levels of power in a SOL. This dissipation must be achieved along field lines that are typically shorter but end at larger target radii. Nitrogen seeding was effective to decrease the plasma temperature at the outer target below 5 eV, albeit with a degradation of core confinement.

6. ITER PHYSICS/OPERATIONAL LIMITS

TCV addresses critical aspects of the discharge initiation and evolution including those that may limit plasma performance or even pose a danger to the machine in ITER and future power plants.
6.1. Plasma startup

Start up in helium (He) has been investigated by comparing the 1D reaction-diffusion-convection code TOMATOR-1D to magnetised RF He plasmas in TCV [71]. Plasmas were generated and maintained with X2 heating. The model can describe the evolving density profile and reveals a decrease of the EC absorption efficiency with heating power, which is explained by electron energy gains beyond the optimum for electron impact ionisation. Further experiments reveal a dramatic increase of the EC absorption efficiency when an additional vertical field in the range of 0.25-0.5\% of the toroidal field strength is applied, which may result from an optimum effective decrease of the power density at the resonance layer.

6.2. ECCD

In ITER, ECCD is selected as the main tool to stabilise neoclassical tearing modes (NTM). Modelling, however, generally overestimates the current drive efficiency and must invoke an empiric, anomalous transport of fast electrons to match experiments. New insight was gained by measuring the dynamic response to modulated ECCD applied at the second harmonic X-mode (X2) with an absolutely calibrated multi-chord hard X-ray spectrometer diagnostic (HXRS) [72], [73]. The applied square wave with an EC power of 750 kW, a modulation frequency of ~100 Hz and duty-cycle of ~20\% is a trade-off between minimising perturbations of the equilibrium current profile and maximising the HXRS signal. The response to on- and off-axis ECCD, which indicates an outward transport in space and an acceleration to higher energies with time, can be compared to predictions of the time-varying Fokker-Planck modelling with the 3D bounce-averaged relativistic code LUCE coupled with the synthetic hard-X-ray diagnostic module R5-X2. Diffusivity models that depend on power (as a proxy for temperature) and/or the electron momentum (as required to describe kinetic instabilities) led to significantly better agreement than a constant anomalous diffusivity, but still fall short of describing all aspects of the measured dynamic response [73]. Potential mechanisms that are being investigated include EC wave scattering by edge fluctuations that have been reported in simple magnetised plasmas [74] as well as in dedicated experiments on TCV [75].

6.3. Neoclassical tearing modes

The ITER baseline scenario is prone to NTMs and, hence, their control is a prerequisite for safe, high performance operation. Systematic variations of the current profile using ECCD revealed an unexpected density dependence of the onset of triggerless NTMs. A newly developed model of the classical stability index Δ' explains the observations with the known density dependence of the current drive efficiency and a new density dependence of the stability of Ohmic plasmas, which become more unstable at higher density [76]. The improved description of the island is still sufficiently simple to be evaluated in real-time and could inform the supervisory controller of an integrated control framework, such as that presented in Sec. 7.4, of the plasma state and thereby facilitate NTM pre-emption in future devices.

6.4. Fast ion studies

Fast ion confinement affects the NBI and ultimately the alpha-heating in ITER. Magneto-hydrodynamic modes, some of them driven by the fast particle population itself, can deteriorate that confinement by an order of magnitude. In addition to a degradation of the auxiliary and internal heating performance, the lost, highly energetic particles can also damage the wall. It is, therefore, essential to minimise fast particle losses for safe and efficient operation.

Enabled by the first NBI heating system installed in 2015, fast-ion studies are gaining prominence with the development of robust scenarios that display rich, fast-ion driven, MHD spectra [77]. Several classes of Alfvén eigenmodes (TAE, EAE, RSAE) have already been identified by mode number and frequency evolution. TAEs and EAEs occur during NBI heated phases, but only with simultaneous ECRH. EGAMs were also identified but again only with ECRH. EGAMS are driven by a bump on tail fast ion distribution generated by strong charge exchange losses. The dependence of beam-driven modes on ECRH is explained by the ECRH effect on the slowing down time of beam ions which increases the fast ion density. For the same reason, NBI of hydrogen, with a faster slowing down time leading to a lower fast ion density, is not seen to drive modes. Fast ion confinement in TCV appears close to neoclassical and, thus far, is unaffected by the observed modes. In addition to the beam driven modes, a continuous mode, enhanced by NBI, is also observed. Its frequency evolution is suggestive of a TAE and it is hypothesised that it may be related to an interaction with turbulence.
A newly operational Fast Ion Loss Detector (FILD) is now operational that can delineate the reciprocal effect of these modes on the fast-ion population [78]. The diagnostics features a novel double-slit design to detect fast-ion losses in plasma discharges with either co- or counter-current injection. First measurements show, for example, an enhanced fast ion loss in NBI heated discharges with 2/1 NTMs, Fig. 7(a). The signal amplitude correlates with the maximum magnetic perturbation amplitude at the location of the FILD, Fig. 7(b).

6.5. Runaway electrons

Further experiments aim at understanding and controlling runaway electrons (REs), whether created during start-up or by disruptions, as they may cause severe damage in larger devices such as ITER. Models of RE generation and their subsequent dynamics must be validated through comparison with experiments. On TCV RE beams were routinely and reproducibly created using Ne or Ar injection. The RE scenarios were recently extended to He, Kr and Xe injection, and to NT and diverted configurations, increasing the space for model validation.

Filtered imaging for multiple wavelength ranges avoiding in particular contributions from strong line radiation using TCV’s MULTICAM diagnostic provided the first measurements of synchrotron radiation emitted by a RE beam on TCV and even allowed the detection of pre-disruption seed distributions, Fig. 8(a), [79]. The versatility of TCV and its control system allowed the beam to be vertically displaced, altering the diagnostic viewing angle, and thereby test the synthetic synchrotron diagnostic SOFT, Fig. 8(b). A comparison with kinetic theory for RE dynamics in uniform magnetic fields indicates significant non-collisional pitch angle scattering as well as radial transport of REs, as can be caused by magnetic perturbations [80].

In addition, strategies to purge the impurities from a post-mitigation RE beam with further D₂ injection are being explored. He, Ne and Ar have been successfully purged and the required D₂ density scanned. Mitigation with pure D₂ injection led to a full RE current re-conversion and subsequent return to a thermal plasma within 50ms [81].

7. DEVELOPMENT OF CONTROL SOLUTIONS

TCV continues to employ its flexible digital control system and a growing number of measurements that are available in real-time to enhance available control solutions. These are integrated into a generic plasma control framework to address the needs of next-generation tokamaks [82].
7.1. Plasma start-up control

A new procedure to calculate the poloidal field (PF) coil current trajectories during plasma start-up was applied to the development of doublet-shaped plasmas, which feature two magnetic axes and an internal separatrix. Following encouraging results obtained in 2017 [83], new experiments were carried out attempting to obtaining stationary doublet plasmas, lasting many current redistribution times. The new procedure achieved reliable and reproducible breakdowns and early ramp-up with two separate current channels. Depending on the programmed PF coil trajectories, the two current channels could be made to either part into separate droplets, or merge into a single-axis plasma. This experimental campaign yielded valuable data on the early formation of doublets and allowed the validation of new and promising control tools, to be tested further in future campaigns.

7.2. Plasma exhaust control

Plasma exhaust control, for future reactors, was explored using an estimate of the CIII radiation profile along the divertor leg, indicative of the local \(T_e \), as a proxy for detachment. The strategy comprised real-time-analysis of spectral video images using the MANTIS diagnostic [84], experiments to characterise the dynamic relationship between gas valve actuation and displacement of the emission front [85] and offline feedback design and resulted in the demonstration of feedback control of the distance of the radiation from the target to the X-point for both L- and H-mode scenarios [86].

7.3. Real-time plasma state detection

An important requirement for integrated real-time control is to know the state of the plasma.

7.3.1. Confinement states

In particular the confinement mode is a key quantity to be estimated, as, for example, unexpected H-L back transitions can often indicate an imminent density limit disruption, Sec. 4.4. Confinement mode transitions are often easily distinguished by human operators correlating visible light signals with line-integrated density measurements. To automate this, a deep-learning based confinement state detector was implemented and tested on TCV data [87], which is able to distinguish between L-mode, H-mode and Dithering states with high fidelity when compared with human-labelled data. These detectors are now being improved and prepared for implementation in the TCV plasma control system.

7.3.2. Kinetic equilibrium reconstruction

Knowledge of the flux distribution and internal plasma profiles is essential for many control tasks in fusion plasmas. Plasma equilibria are routinely reconstructed in real-time using readily available magnetic measurements. These equilibrium reconstructions can be improved by constraining the plasma current or pressure profiles with measurements or (dynamic) modelling, a technique usually referred to as kinetic equilibrium reconstructions or integrated data analysis. Kinetic equilibrium reconstructions based on dynamic modelling have now, for the first time, been carried out in real-time by coupling the free-boundary equilibrium code LIUQE with the 1.5D transport code RAPTOR, during TCV discharges [88]. In addition to the magnetic measurement the equilibrium is also constrained by estimates of pressure and current density profiles from real-time evolution of the 1D transport equations, which are in turn constrained by measurements of the line integrated density obtained from the interferometer and of the central electron temperature obtained from differentially filtered SXR diodes. Running the algorithm on a single node of the control system achieves a cycle time of less than 1.6 ms, which is faster than the current diffusion and energy confinement times and, therefore, sufficient to track changes of the internal profiles.

7.4. Generic control framework

With a view to future long-pulse tokamak discharges, a generic and, therefore, easily transferable plasma control framework has been developed and implemented in the TCV control system [89][90]. Such a control framework includes RT plasma state reconstruction, monitoring and supervision, and actuator management, as well as robust detection and handling of off-normal events. The novel framework consists of a tokamak-specific interface layer and a tokamak-independent task layer. The interface layer translates diagnostic and actuator signals into general
descriptions of the state of the plasma and the actuators that can be processed by the task layer. Real-time decisions on control task priorities are taken by a high-level supervisory controller based on the detection of off-normal events, and details of the task execution are delegated to lower-level, and multiple, controllers. This plasma control framework was tested in numerous TCV experiments. The first example demonstrated real-time re-assignment of ECRH actuators from ϱ-profile and β_N control to NTM control in response to the appearance of a mode [90][91]. More recently, a density limit disruption avoidance algorithm was implemented within the same framework (see Section 4.4). This algorithm controls the NBI power and the fuelling rate based upon an estimated proximity to the disruptive boundary [92], previously identified on ASDEX Upgrade [93].

8. CONCLUSIONS

Despite a major TCV opening to install new divertor baffles in 2019 and adverse boundary conditions dictated by the global health crisis that started to unfold in early 2020, the TCV tokamak has remained highly productive. The scientific programme continues to balance focused research towards the success of ITER and the development of a DEMO through a close integration within the European fusion programme, whilst retaining the academic curiosity to develop solutions and allow for scientific discoveries. The addition of gas baffles for a dedicated campaign in 2019 and further campaigns planned demonstrated yet another dimension in TCV’s signature flexibility. The associated experiments are an integral part of the European strategy to address the exhaust issue in a future reactor through proof of principle experiments, such as the Super-X divertor, and model validation, for example as started with SOLPS-ITER. The model validation effort, in particular, is gaining prominence as edge turbulence codes such as GBS can now simulate the TCV edge plasma with realistic parameters [94]. The increased heating capabilities broaden the operational regime with $T_e/T_i \sim 1$ and have stimulated a general shift from L-mode towards more H-mode studies, where ITER baseline parameters were reached in type-I ELMy H-modes, power dissipation in the baffled divertor increased in scenarios with higher ϱ_0 and alternative regimes with “small” or no ELMs explored. A significant effort was dedicated to confirming negative triangularity as an attractive scenario with an L-mode confinement matching that of H-modes for positive triangularity without harmful ELMs and a strongly reduced plasma-wall interaction in the main chamber. Finally, the control effort has extended its scope from devising novel real-time-observers, such a kinetic equilibrium reconstructions and impurity emission front location estimates and demonstrating control solutions, such as detachment control, to developing and testing a general framework that will be needed for future devices.

Further versions of baffles will be tested in 2021 and 2022, initially focusing on snowflake configurations. In the short term TCV’s heating capability will also be enhanced with a second NBI system, operating with energies up to 60 keV. This beam is orientated opposite to the existing beam allowing the independent control of heating power and torque. The higher beam energy will also greatly enhance the operating space for fast ion studies. In the medium term further increases of the power and flexibility of the EC system, with additional dual frequency gyrotron at MW levels are foreseen. It is also envisaged to employ the now proven technique of machined tiles to test a specific alternative divertor configuration including optimised target geometries, with the “long-legged, tightly baffled” geometry identified as a potential game changing idea.

ACKNOWLEDGEMENTS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 - 2018 and 2019 - 2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was supported in part by the Swiss National Science Foundation and by the US Department of Energy under Award Number DE-SC0010529.

REFERENCES

[1] HOFMANN, F., et al., Plasma Phys. Control. Fusion 36 (1994) B277.
[2] FASOLI, A., et al., Nucl. Fusion 60 (2020) 016019.
[3] ZOHM, H., et al., Fus. Eng. Design. 166 (2021) 112307.
[4] KARPUHSHOV, A., et al., Fus. Eng. Design 123 (2017) 468.
[5] SOROKIN, A., et al., Rev. Sci. Instrum. 91 (2020) 013323.
[6] TOUSSAINT, M. et al., Fus. Eng. Design 155 (2020) 111695.
Theory and Advances in understanding power exhaust physics with the new, baffled TCV divertor, this conference, P6.

MARTIN, Y., et al., “High-efficiency, long-pulse operation of MW-level dual-frequency gyrotron, 84/126GHz, for the TCV Tokamak”, 44th International Conference On Infrared, Millimeter, And Terahertz Waves (Irmw-Thz), 2019.

HOGGE, J.-P., et al., AIP Conference Proceedings 2254 (2020) 090006.

REIMERDES, H., et al., Nucl. Fusion 61 (2021) 024002.

DE OLIVEIRA, H., et al., Rev. Sci. Instrum. 90 (2019) 083502.

DE OLIVEIRA, H., et al., “A fast-reciprocating probe array for two-dimensional measurements in the divertor region of the tokamak “a configuration variable”, submitted to Rev. Sci. Instrum.

ARNICHAND, H., et al., JINST 14 (2019) 126017.

SHEIKH, U.A., et al., “Upgrade of Tomographic Radiation Diagnostics on TCV”, Poster presented at 31st Symposium on Fusion Technology (SOFT 2020), Virtual Edition.

PEREK, A., VIJVERS, W.A.J., et al., Rev. Sci. Instrum. 90 (2020) 123514.

MARTINELLI, I., et al., “Spectroscopic studies of TCV divertor plasma with the DSS upgrade”, EPS conference 2021.

WUTHRICH, C., et al., “X-point and divertor filament dynamics from Gas Puff Imaging on TCV”, in preparation.

WENSING, M., et al., Plasma Phys. Control. Fusion 61 (2019) 085029.

FÉVRIER, O., et al., Nucl. Mater. Energy 27 (2021) 100977.

WENSING, M., “Drift-related transport and plasma-neutral interaction in the TCV divertor”, EPFL thesis, 2021.

GALASSI, D., et al., Plasma Phys. Control. Fusion 62 (2020) 115009.

PITTS, R.A., et al., Nucl. Mater. Energy 20 (2019) 100696.

REIMERDES, et al., Nucl. Fusion 60 (2020) 066030.

MILITELLO, F., et al., Nucl. Mater. Energy 26 (2021) 100908.

DE OLIVEIRA, H. et al., “New insights on divertor parallel flows, ExB drifts, and fluctuations from in situ, two-dimensional probe measurement in TCV”, in preparation.

WENSING, M., et al., Nucl. Fusion 60 (2020) 054005.

WENSING, M., et al., Nucl. Mater. Energy 25 (2020) 100839.

WENSING, M., et al., 62nd Annual Meeting of the APS Division of Plasma Physics, Nov 9-13, 2020, virtual meeting, W102.00002.

VERHAEGH, K., et al., Plasma Phys. Control. Fusion 63 (2021) 035017.

VERHAEGH, K., et al., Nucl. Mater. Energy 26 (2021) 100922.

FÉVRIER, O., et al., Plasma Phys. Control. Fusion 62 (2020) 035017.

SMOLDERS, A., et al., Plasma Phys. Control. Fusion 62 (2020) 125006.

HARRISON, J., et al., “Overview of first physics results from MAST Upgrade “, this conference, P6.

FIL, A., et al., Plasma Phys. Control. Fusion 62 (2020) 035008.

THEILER, C., et al., “Advances in understanding power exhaust physics with the new, baffled TCV divertor”, this conference, EX/7.

MAURIZIO, R., et al., Nucl. Fusion 59 (2019) 016014.

TSUI, C. et al., Nucl. Fusion 61 (2021) 046004.

GORDON, P., et al., “Power exhaust performance of baffled snowflake divertors in TCV”, in preparation.

MAURIZIO, R., et al., Nucl. Fusion 58 (2018) 016052.

HORACEK, J., et al., Nucl. Fusion 60 (2020) 066016.

GIACOMIN, M., et al., “Theory-based scaling laws of near and far scrape-off layer widths in single-null L-mode discharges”, Nucl. Fusion, in press.

THYSSE, A.S., et al., Phys. Plasmas 27 (2020) 052302.

VIANELLO, N., et al., “SOL profile and fluctuations in different divertor recycling conditions in H-mode plasmas”, this conference, P3.

LABIT, B., private communication.

MARTIN, Y., et al., J. Phys.: Conf. Ser. 123 (2008) 012033.
[51] SHEIKH, U., et al., Plasma Phys. Control. Fusion 61 (2019) 014002.
[52] SHEIKH, U., et al., Nucl. Mater. Energy 26 (2021) 100933.
[53] SAUTER, O., et al., “ITER baseline scenario investigations on the TCV tokamak and comparison with AUG”, this conference, P4.
[54] BERNERT, M., et al., Plasma Phys. Control. Fusion 57 (2015) 014038.
[55] PAU, A., et al., “Active disruption avoidance for H-mode density limits on TCV and ASDEX Upgrade”, Poster presented at 31st Symposium on Fusion Technology (SOFT 2020), Virtual Edition.
[56] LABIT, B., et al., Nucl. Fusion 59 (2019) 086020.
[57] LABIT, B., et al., “H-mode physics studies on TCV supported by the EUROfusion pedestal database”, this conference, P4.
[58] FAITSCH, M., et al., “High density, high confinement, power exhaust compatible H-mode regime in TCV and ASDEX Upgrade”, this conference, P4.
[59] MOLINA CABRERA, P., et al., “High resolution density pedestal measurements during Edge Localized Modes by short-pulse reflectometry in the TCV tokamak”, submitted to Plasma Phys. Control. Fusion.
[60] MOLINA CABRERA, P., et al., Rev. Sci. Instrum. 90 (2019) 123501.
[61] POCHELON, A., et al., Nucl. Fusion 39 (1999) 1807.
[62] CAMENEN, Y., et al., Nucl. Fusion 47 (2007) 510.
[63] AUSTIN, M.E., et al., Phys. Rev. Lett 122 (2019) 115001.
[64] PORTE, L., et al., “The Route to High Performance, DEMO relevant, Negative Triangularity Tokamak Operation on TCV”, this conference, P4.
[65] FONTANA, M., et al., Nucl. Fusion 60 (2020) 016006.
[66] MERLO, G., et al., Plasma Phys. Control. Fusion 63 (2021) 044001.
[67] HUANG, Z., CODA, S., Plasma Phys. Control. Fusion 61 (2019) 014021.
[68] BOEDO, J.A., et al., in preparation.
[69] HAN, W., et al., Nucl. Fusion 61 (2021) 034003.
[70] FAITSCH, M., et al., Plasma Phys. Control. Fusion 60 (2018) 045010.
[71] WAUTERS, T., et al., Plasma Phys. Control. Fusion 62 (2020) 105010.
[72] CHOI, D., et al., Fus. Eng. Design 159 (2020) 111733.
[73] CHOI, D., et al., Plasma Phys. Control. Fusion 62 (2020) 115012.
[74] CHELLAI, O., et al., Phys. Rev. Lett. 120 (2018) 105001.
[75] CHELLAI, O., et al., “Millimeter-wave beam scattering and induced broadening by plasma turbulence in the TCV tokamak”, Nucl. Fusion, in press.
[76] KONG, M., et al., Nuclear Fusion 60 (2020) 026002.
[77] GEIGER, B. et al., Plasma Phys. Control. Fusion 62 (2020) 095017.
[78] STIPANI, L., “A fast ion loss detector for the TCV Tokamak”, EPFL thesis 2021.
[79] WIJKAMP, T.A., et al., Nucl. Fusion 61 (2021) 046044.
[80] HOPPE, M., et al., Nucl. Fusion 60 (2020) 094002.
[81] SHEIKH, U.A., et al., “Runaway Electron Studies and Plasma Restart from a RE Beam on TCV”, IAEA Technical Meeting on Plasma Disruptions and their Mitigation, 20–23 July 2020.
[82] FELICI, F., “Integrated plasma state reconstruction, off-normal event handling and control, with application to TCV and ASDEX Upgrade”, this conference, P4.
[83] DUVAL, B.P., et al., “Singlet breakdown optimization to a doublet plasma configuration on the TCV tokamak”, 2018 IAEA Fusion Energy Conf. (Gandhinagar, India, 22–27 October 2018), EX/P1-6.
[84] RAVENSBERGEN, T., et al., Nucl. Fusion 60 (2020) 066017.
[85] VAN BERKEL, M., et al., Plasma Phys. Control. Fusion 62 (2020) 094001.
[86] RAVENSBERGEN, T., et al., Nat. Commun. 12 (2021) 1105.
[87] MATOS, F., et al., Nucl. Fusion 60 (2020) 036022.
[88] CARPANESE, F., et al., Nucl. Fusion 60 (2020) 066020.
[89] BLANKEN T.C., et al., Nucl. Fusion 59 (2019) 026017.
[90] VU, N.M.T., et al., Fus. Eng. Design 147 (2019) 111260.
[91] KONG, M., et al., Nucl. Fusion 59 (2019) 076035.
[92] VU, N.M.T., et al., submitted to Trans. on Nucl. Science.
19KTH Royal Institute of Technology, Stockholm, Sweden
20SUPA, University of Strathclyde, Glasgow, United Kingdom
21University of Seville, Spain
22UW Madison, Wisconsin, United States of America
23Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, USA
24VTT, Espoo, Finland
25Institute of Applied Physics, Fusion@ÖAW, T.U. Wien, Vienna, Austria
26Aristotle University of Thessaloniki, Thessaloniki, Greece
27National Centre for Nuclear Research (NCBJ), Otwock, Poland
28University of Texas at Austin, Austin, TX, United States of America
29Unità Tecnica Fusione, ENEA, Frascati, Italy
30Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark
31Institut für Ionen- und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
32Politecnico di Milano, Milan, Italy
33National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu, Japan
34Department of Economics, Engineering, Society and Business Organization (DEIm), University of Tuscia, Viterbo, Italy
35University of Napoli ‘Federico II’, Consorzio CREATE, Napoli, Italy
36Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung - Plasmaphysik, Jülich, Germany
37University of Rome Tor Vergata, Rome, Italy
38Jožef Stefan Institute, Ljubljana, Slovenia
39Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Krakow, Poland
40Department of Physics, National and Kapodistrian University of Athens, Athens, Greece
41Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain