STOP-Bang questionnaire should be used in all adults with Down Syndrome to screen for moderate to severe obstructive sleep apnea

Anderson Albuquerque de Carvalho¹,²*#a¶, Fábio Ferreira Amorim³&, Levy Aniceto Santana³&, Karlo Josefo Quadros de Almeida⁴&, Alfredo Nicodemos da Cruz Santana⁴,³¶, Francisco de Assis Rocha Neves¹¶

¹Department of Postgraduate Health Sciences, Universidade de Brasília, Faculdade de Ciências da Saúde, Brasília, Distrito Federal, Brazil.
²Respiratory Department, Multidisciplinary Sleep Unit, Hospital Regional da Asa Norte, Brasília, Distrito Federal, Brazil.
³Department of Postgraduate Health Sciences, Escola Superior de Ciências da Saúde, Faculdade de Medicina e Enfermagem, Brasília, Distrito Federal, Brazil.
⁴Regional Board of Secondary Care Department, Hospital Regional da Asa Norte, Centro de Referência Interdisciplinar em Síndrome de Down, Brasília, Distrito Federal, Brazil.

#a Current Address: Respiratory Department, Multidisciplinary Sleep Unit, Hospital Regional da Asa Norte, Brasília, Distrito Federal, Brazil.

* Corresponding author

E-mail: carvalhofisio2003@gmail.com (AAC)
Conflicts of Interest

The authors declare that they have viewed and approved the manuscript and that the opinions expressed in the submitted article are theirs and not an official position of the institution or the funder. This study was not supported by the industry. The other authors have no conflicts of interest to declare.

Sources of Funding

The study received financial support through process number 064.000.560/2015 of Public Notice number 40 of 10/29/2015, published in DODF n. 213, of 11/06/2015, regarding the Homologation of the Final Selection Result of Research Projects to be funded by Fundação de Ensino e Pesquisa em Ciências da Saúde (FEPECS).
Abstract

Study Objectives

To determine the prevalence of obstructive sleep apnea (OSA) in adults with Down syndrome (DS), to investigate factors related to OSA severity and to identify which sleep questionnaire is the most appropriate for the screening of OSA in this population.

Methods

Cross-sectional study that consecutively included 60 adults with DS. All patients underwent type III polysomnography and clinical and laboratory data were collected; sleep assessment questionnaires were applied. Multiple linear regression models evaluated the associations between OSA severity (measured by the respiratory event index - REI) and clinical and laboratory data and sleep questionnaires (Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index, BERLIN and STOP-Bang questionnaires).

Results

Results show that 60 (100%) adults with DS had OSA, with moderate-severe OSA identified in 49 (81.6%). At the multivariate linear regression, REI significantly correlated with hematocrit levels, BMI and STOP-Bang questionnaire (SBQ) results (P <0.001). The positive STOP-Bang ≥3 points) showed 100% of sensitivity (95%CI: 92.75-100%), 45.45% of specificity (95%CI: 16.75-76.62), positive predictive value of 89.09% (95%CI: 82.64-93.34%), negative predictive value of 100%, accuracy of 90% (95%CI: 79.49-96.24%) and OR of 24.29.

Conclusions
Adults with DS have a very high prevalence of OSA. Hematocrit levels, BMI and SBQ showed a strong correlation with OSA severity. The SBQ performed well in identifying moderate to severe OSA in this population. Considered together, these results point to the need to perform OSA screening in all adults with DS, and STOP-Bang may play a role in this screening.

Keywords

Down syndrome; obstructive sleep apnea; self-reported sleep quality; sensitivity and specificity; surveys and questionnaires; polysomnography.
Introduction

Down syndrome (DS) is the most prevalent chromosomal abnormality, with approximately 5.4 million affected individuals worldwide[1], with 206,000 of these patients in the United States[2]. In the last decades, the life expectancy of individuals with DS has considerably increased and currently exceeds 60 years in developed countries.[1] A common comorbidity in adults with DS is obstructive sleep apnea (OSA), of which prevalence ranges from 78-100% in these individuals.[3-8] Moreover, when compared to the general population, the OSA is more often classified as severe and is associated with more significant hypoxemia in individuals with DS.[3] In turn, OSA-related hypoxemia has been associated with decreased verbal IQ, executive function, visual-perceptual skills and increase in mood disorders in patients with DS.[9]

The higher prevalence and severity of OSA in patients with DS is related to the phenotypic characteristics of DS itself. These changes include upper airway hypotonia, midface hypoplasia, mandibular hypoplasia, glossoptosis, lingual tonsil hypertrophy, pharyngomalacia, laryngomalacia, and tonsil / adenoid hypertrophy. Additionally, factors such as obesity and hypothyroidism, which are also frequently observed in individuals with DS, favor OSA onset.[3,9,10]

Despite the high risk for OSA in individuals with DS, recommendations for OSA screening and polysomnography in this population are not well established. The American Academy of Pediatrics recommends that polysomnography be performed in all children with DS up to the age of 4, or earlier, if OSA symptoms are present.[11] As for adult patients with DS, the recommendation is also to perform OSA screening, but it is not clearly defined how the screening should be performed (e.g., using a questionnaire or through polysomnography), nor the periodicity of this screening (e.g.,
Another important issue is that, for the adult population with DS, there are no validated questionnaires for OSA screening and there is no specific recommendation on which questionnaire should be applied to this special group of patients.

Considering that in the overall population, adequate OSA treatment helps to reduce the incidence of comorbidities and improve neurocognitive functions[12], the identification of OSA in patients with DS is essential to ensure a better neurological prognosis.

Therefore, the aim of the present study was to evaluate OSA prevalence and factors associated with OSA severity in adult patients with DS. Moreover, we investigated which questionnaire is the most appropriate for OSA screening in this population.

Methods and materials

This study was carried out from October 2017 to October 2018 and included 66 adults with DS attending the Down Syndrome Reference Center (CRISDOWN) of Hospital Regional da Asa Norte (HRAN) linked to Faculdade de Medicina da Escola Superior de Ciências da Saúde (ESCS), Brasília, Federal District, Brazil.

Subjects were sequentially recruited and submitted to type III polysomnography, anthropometric data collection, laboratory tests and sleep assessment questionnaires.

The inclusion criteria comprised individuals with DS treated at our service, of both genders, good overall health status, aged 18 years and older, capable to understand and accept the study and its procedures. The following were excluded: (1) individuals under 18 years of age; (2) patients undergoing treatment for sleep disorders; (3) patients...
with a history of conditions that could affect brain structure or function (such as cerebrovascular accident or head trauma); (4) those who refused to participate in the study.

A researcher explained the study in details to all participants with DS and their proxies. Those who agreed to participate in the study signed the free and informed written consent form. The study was approved by the Research Ethics Committee of Fundação de Ensino e Pesquisa em Ciências da Saúde (FEPECS) according to Opinion number 1,656,332/2016 and followed the principles established by the Declaration of Helsinki.

Data Collection and Research protocol

After the study participants were defined, a structured interview was carried out to collect the following data: age, gender, BMI, neck circumference (NC), Mallampati class and comorbidities. Venous blood samples were obtained for analysis after a fasting period of 12 to 15 hours. Laboratory tests included complete blood count, thyroid stimulating hormone (TSH), fasting glucose, HOMA-IR, alanine aminotransferase (ALT), uric acid, urea, creatinine and sodium levels.

The following questionnaires were also applied for sleep assessment: Epworth Sleepiness Scale (ESS)[13,14], Pittsburgh Sleep Quality Index (PSQI)[15], BERLIN Questionnaire (BQ)[16,17], and the STOP-Bang Questionnaire (SBQ)[18,19].

In the sleep assessment questionnaires, due to the absence of cutoff points specifically defined for the adult population with DS, the ones defined for the overall population were used, as follows: (1) probable presence of excessive daytime sleepiness in the ESS (total score> 10)[13]; (2) poor sleep quality in the PSQI (total score >5)[15];
(3) risk for OSA in the BQ (two or more positive categories)[17]; (4) risk for OSA in the SBQ (3 or more affirmative answers)[18]. These questionnaires were answered by the patients’ proxies, in agreement with other studies in individuals with DS.[4,5,20]

Moreover, all research subjects underwent type III polysomnography according to international guidelines.[21] This type III polysomnography has been previously used in OSA studies in individuals with DS[22] and in other populations[23,24].

In the present study, the equipment used to perform the type III PSG assessments was the ApneaLink Air (ResMed Germany Inc.), which has been previously used in other important studies.[23,24] This equipment allowed monitoring with the use of nasal pressure cannula (for airflow and snore detection), chest piezoelectric strap (for respiratory effort detection) and pulse oximetry (to monitor peripheral arterial oxygen saturation - SpO\textsubscript{2} and heart rate).

The total recording time was used as the denominator to calculate the respiratory event index (REI).[21,25] The PSG was assembled by a specialized technician from the Sleep Laboratory of our service. The patient was then referred to a temperature-controlled and quiet bedroom, to undergo the all-night test, without the technician’s supervision. All patients were accompanied by a proxy during the examination, who slept in a separate bed, but in the same room. Recording of sleep examination records started at 8pm and stopped at 7am in the following morning.

The respiratory events were defined as follows: (1) hypopnea, when there was a \geq30\% reduction in airflow for at least 10 seconds, observed through the nasal cannula, associated with a decrease in SpO\textsubscript{2} of at least 3%; (2) obstructive apnea, due to the absence or reduction \geq 90\% of airflow for at least 10 seconds in the presence of respiratory effort; (3) mixed apnea, due to the absence or reduction \geq 90\% of airflow, without the presence of respiratory effort only at the beginning of the event; (4) central
apnea, due to absence or ≥ 90% reduction in airflow for at least 10 seconds associated with absence of respiratory effort throughout the event.[26]

The OSA was then classified as mild, moderate or severe. It was classified as mild OSA when the REI was between 5 and 14.9 events / hour, moderate when the REI was between 15 and 29.9 events / hour and severe when the REI was 30 or more events / hour (detected by type III polysomnography).[26]

The polysomnography exams were manually reviewed by a single physician according to AASM standardized criteria.[26] The examiner was blinded to any patient clinical data. The PSG examinations were considered valid when there was ≥ 4 hours of adequate recording without significant loss of sensor signal (nasal pressure cannula, pulse oximetry and chest strap).[27-29]

Statistical Analysis

Numerical data are presented as mean and standard deviation. Categorical data are presented as absolute numbers and percentage. The statistical analysis was initially performed with simple (univariate) linear regression analysis to identify factors correlated with REI. Subsequently, variables with p-values <0.15 were considered for the multiple linear regression analysis, using variable selection according to the backward technique. A p-value <0.05 was used as the criterion for the retention of variables in the final multiple linear regression model.[30,31] Logarithmic transformation was used to obtain the dependent variable distribution normalization. Assumptions of normality, homocedascity (constant variance) and residual independence were assessed. The presence of multicollinearity was assessed by
estimating the variance inflation factor (VIF), with VIF >5 being used as an indication of multicollinearity in the multiple linear regression analysis.\[31\]

The adjusted coefficient of determination R^2 was used as a measure of fit quality. Normality was assessed by visual inspection of histograms and by applying the Shapiro-Wilk normality test.\[32,33\]

The sleep questionnaires that remained in the final multiple linear regression analysis model were used as categorical variable (positive or negative questionnaire) together with moderate to severe OSA (present or absent) in 2x2 contingency tables. Consequently, odds ratio (OR), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated.

The R software (R Foundation, Vienna, Austria) was used for statistical data analysis.\[32,33\] All hypothesis tests were bilateral. Values of $p < 0.05$ were considered significant.

Results

During the study period, 66 adults with DS were included in the research. Of this total, 60 completed and 06 patients (9%) dropped out of the study out of their own will. Ten percent (6 subjects) had to undergo the PSG again due to technical problems, such as loss of signal from one of the sensors.

Table 1 shows the participants’ demographic characteristics ($N = 60$). A total of 33 men (55%) and 27 women (45%) participated in the study and the mean age of the sample was 27.7 ± 9.1 years. Obesity and overweight were observed in 27 (45%) and 14 (23%) subjects, respectively. Oropharyngeal examination showed that 52 (86%) participants were Mallampati class III or IV. Clinically, 30 individuals (50%) were
diagnosed with congenital heart disease, and 7 had undergone previous surgical correction.

TABLE 1. Clinical and laboratory characteristics of adult participants with Down syndrome.

Variable	Overall
Age, years	27.7± 9.1
Gender, Male sex	33 (55%)
BMI, kg/m²	27.9 ± 5.9
Overweight	14 (23%)
Obesity	27 (45%)
Neck circumference, cm	40 ± 3.7
Mallampati class, 3-4	52 (86%)
Hypothyroidism	40 (66%)
Congenital cardiopathies	30 (50%)
Uric acid	6.2 ±1.5
Creatinine	0.96 ± 0.18
Glucose	63.9 ± 34.4
Hematocrit	47.7 ± 5.4
HOMA-IR	6.3 ± 6.2
Sodium	140.1 ± 2.9
ALT	23.1 ± 10.1
TSH	2.6 ± 1.8
Urea	29.6 ± 11.2
Values are shown as mean ± SD, N (%). SD = standard deviation, BMI = body mass index, ALT = alanine aminotransferase, TSH = thyroid stimulating hormone. N = 60.

Regarding the questionnaires used for sleep assessment (Table 2) it was observed that: (1) ESS suggested sleepiness (ESS >10) in 32 participants (53%); (2) PSQI identified sleep disorders (PSQI >5) in 37 participants (61%); (3) the BQ and (4) the SBQ indicated high risk of OSA in 49 participants (81%) and 55 participants (91%), respectively.

TABLE 2. Sleep-related characteristics of adult participants with Down syndrome.

Variable	Overall
REI	30.4 ± 19
OSA severity	
Mild	11 (18.3%)
Moderate	26 (43.3%)
Severe	23 (38.3%)
(1) ESS score	10.8 ± 3.9
Total score > 10	32 (53%)
(2) PSQI score	6.4 ± 2.2
Total score > 5	37 (61%)
(3) BQ score, risk for OSA	49 (81%)
(4) SBQ score, risk for OSA (>=3)	55 (91%)

Values are shown as mean ± SD, N (%). SD = standard derivation, REI = respiratory event index, BMI = body mass index, BQ = Berlin Questionnaire, ESS = Epworth.
Sleepiness Scale, PSQI = Pittsburgh Sleep Quality Index, SBQ = Stop-Bang Questionnaire. N = 60.

When performing the type III PSG, it was observed that the 60 (100%) study individuals had OSA (REI ≥ 5 events / h), with moderate to severe OSA in 49 (81.6%). Central sleep apnea syndrome (> 5 events / h) was not observed in any of the subjects.

At the simple linear regression analysis (Table 3), several variables showed a significant linear association with the dependent variable (REI), such as uric acid, glucose, hematocrit, HOMA-IR, BMI, ALT, neck circumference, Mallampati class, BQ, ESS, PSQI and SBQ. However, the multiple linear regression analysis (final model), as shown in Table 4, identified only hematocrit, BMI and SBQ as independent predictors of REI. On average, for every 1-unit increase in the hematocrit or BMI variables, and for SBQ to go from negative to positive, the REI response variable increased by 0.073, 0.028, and 0.616 respectively. None of the other sleep questionnaire scores (BQ, ESS, and PSQI) demonstrated a significant positive linear association with REI.

TABLE 3. Results of simple (univariate) linear regression analysis for the dependent variable respiratory event index.

Covariate	Level	Regression coefficient (Beta)	95% CI Lower	95% CI Upper	P-value											
Uric acid		0.230	0.149	0.312	<.001*											
Creatinine		0.637	-0.235	1.509	0.149											
Glucose		0.024	0.011	0.036	<.001*											
Hematocrit		0.082	0.062	0.102	<.001*											
	HOMA-IR	Age	BMI	Sodium	ALT	TSH	Urea	Congenital cardiopathies	BQ score	ESS score	PSQI score	SBQ score	Neck circumference	Mallampati class	Hypothyroidism	Number of drugs
------------------	----------	---------	---------	---------	---------	---------	---------	--------------------------	-----------	-----------	-------------	------------	----------------	----------------	---------------	-----------------
	0.054	0.014	0.034	0.038	0.023	-0.047	-0.012	Yes	0.037	0.081	0.072	≥3	0.051	0.837	Yes	≥2
	0.032	-0.003	0.009	-0.015	0.008	-1.34	-0.002	-	-	0.046	0.005	0.958	0.010	0.430	-	
	0.075	0.031	0.059	0.090	0.037	0.041	0.026	0.278	0.352	0.116	0.139	1.469	0.092	1.245	-	
	<.001*	0.102	0.01*	0.157	0.003*	0.288	0.083	0.814		<.001*	0.037*	<.001*	0.016*	<.001*		
Gender	Regression coefficient (Beta)	95% CI Lower	95% CI Upper	P-value												
--------	-------------------------------	--------------	--------------	---------												
Female	-0.227	-0.538	0.084	0.149												
Male	-	-	-	-												

BMI = body mass index, ALT = alanine aminotransferase, TSH = thyroid stimulating hormone, BQ = Berlin Questionnaire, ESS = Epworth Sleepiness Scale, PSQI = Pittsburgh Sleep Quality Index, SBQ = Stop-Bang Questionnaire.

*Statistical significance = p < 0.05. N = 60 in each of the simple linear regression analyses.

Table 4. Results of the multivariate linear regression analysis for the dependent variable respiratory event index.

Covariate	Level	REI	Regression coefficient (Beta)	95% CI Lower	95% CI Upper	P-value
Hematocrit		0.073	0.056	0.090	<.001*	
BMI		0.028	0.013	0.043	<.001*	
SBQ	>=3	0.616	0.289	0.943	<.001*	
	0-2	-	-	-	-	

REI = respiratory event index, BMI = body mass index, SBQ = Stop-Bang Questionnaire. Adj R-Sq= 0.69. *Statistical significance. N = 60.
As the SBQ remained in the final multiple linear regression model, the contingency table analysis (2x2) with moderate to severe OSA was performed. Positive SBQ (3 or more affirmative answers) showed 100% of sensitivity (95%CI: 92.75-100%), 45.45% of specificity (95%CI: 16.75-76.62%), 89.09% of PPV (95%CI: 82.64-93.34%), 100% of NPV, 90% of accuracy (95%CI: 79.49-96.24%) and OR of 24.29.

Discussion

The present study contributes with important findings. First, when compared to previously published studies[3-8], it included the largest number of adults with DS. Second, it evaluated for the first time the role of the SBQ in OSA screening in this population. Moreover, this was the first study to evaluate the prevalence of OSA in adults with DS in Brazil.

Thus, we demonstrated that the prevalence of OSA in individuals with DS in our sample was 100%. Moreover, 81.6% of the subjects had moderate to severe OSA. Interestingly, participants with DS were included in the present study regardless of whether or not they had significant complaints of sleep-disordered breathing. This fact supports the idea of performing active OSA screening in all adult individuals with DS[3,5] during routine consultations. Compared to other OSA studies in adult individuals with DS, the prevalence of OSA was also high and ranged from 78 to 100%. It is noteworthy that the number of individuals included in such studies was usually small, the smallest with 3 patients and the largest with 47 individuals[3-8].

The difference in OSA prevalence between studies possibly derives from heterogeneities between them, such as different types of polysomnography for OSA diagnosis, as well as sample characterization and size.
Our results also demonstrated that BMI is positively correlated with OSA severity indicated by the REI. This correlation corroborates the high prevalence of the observed moderate to severe OSA, based on the fact that 68% of our adult patients with DS were obese or overweight. This correlation between BMI and REI has been well documented in the overall population[34] and in adults with DS[3,5,6].

Interestingly, the hematocrit level is also correlated with OSA severity. This correlation has been previously identified in individuals in the overall population with OSA[35,36]; however, this finding had not yet been demonstrated in the population of adult individuals with DS. This correlation possibly reflects the presence and greater severity of nocturnal hypoxemia that stimulates increased erythropoietin synthesis, with consequent elevated erythrocyte production and increased hematocrit levels[35,36].

Regarding the use of questionnaires for OSA screening, our study was the first to identify a questionnaire capable of playing a significant role in OSA screening in adults with DS. The sensitivity and accuracy of the SBQ for detecting moderate to severe OSA was 100% and 90%, respectively.

This result indicates that the SBQ should be applied to all adult individuals with DS, thus helping to prioritize individuals who need to undergo the polysomnography. This recommendation becomes important as we observe that the international guidelines indicate OSA screening in adults with DS, but do not clearly indicate how this screening should be performed[37-39].

Finally, regarding the results of the BQ, ESS and PSQI questionnaires not showing a role in relation to OSA in our study, that is in accordance with the results of the study by Giménez et al[5].

Our study shows some limitations. First, the individuals were submitted to a type III PSG and not to a full PSG test. Consequently, we did not have information related to
sleep architecture, and OSA severity (REI) may have been underestimated. However, the type III PSG has been used in DS with good results.[22,40-42] Moreover, the number of technical problems that required the type III PSG to be repeated was small (10% in our study), which is in accordance to previous studies in DS or not (3–18%).[21,22,43-45] The present study was performed in a single center for DS patients from a reference hospital. Therefore, it is possible that our results may represent a specific population of adults with DS, since DS patients treated in a community care institution were not included.

Conclusion

In conclusion, our study confirmed the very high prevalence of OSA in adults with DS. Additionally, the SBQ, hematocrit levels and BMI showed a strong correlation with OSA severity. Furthermore, the SBQ showed high sensitivity and specificity in identifying moderate to severe OSA in this population. Taken together, these results indicate the need for OSA screening in all adults with DS. Nevertheless, considering the limited access to polysomnography for all patients, the use of hematocrit levels and BMI, and especially the application of the SBQ can select the individuals at higher risk for OSA who should undergo the polysomnography. However, further studies with a larger population of patients with DS are needed for more definitive conclusions to be drawn.

Acknowledgement
The authors would like to thank the study participants and their proxies for their patience and contributions to the research.

References

1. Vos T, Allen C, Arora M, Barber RM, Brown A, Carter A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016. doi:10.1016/S0140-6736(16)31678-6.

2. De Graaf G, Buckley F, Skotko BG. Estimation of the number of people with Down syndrome in the United States. Genet Med 2017. doi:10.1038/gim.2016.127.

3. Trois MS, Capone GT, Lutz JA, Melendres MC, Schwartz AR, Collop NA, et al. Obstructive sleep apnea in adults with Down syndrome. J Clin Sleep Med 2009.

4. Andreou G, Galanopoulou C, Gourgoulianis K, Karapetsas A, Molyvdas P. Cognitive status in Down syndrome individuals with sleep disordered breathing deficits (SDB). Brain Cogn 2002. doi:10.1016/S0278-2626(02)00019-2.

5. Giménez S, Videla L, Romero S, Benejam B, Clos S, Fernández S, et al. Prevalence of sleep disorders in adults with down syndrome: A comparative study of self-reported, actigraphic, and polysomnographic findings. J Clin Sleep Med 2018. doi:10.5664/jcsm.7382.

6. Resta O, Foschino Barbaro M, Giliberti T, Caratozzolo G, Cagnazzo M, Scarpelli F, et al. Sleep related breathing disorders in adults with Down syndrome. Down Syndr Res Pract 2007. doi:10.3104/reports.138.
7. Telakivi T, Partinen M, Salmi T, Leinonen L, Härkönen T. Nocturnal periodic breathing in adults with Down’s syndrome. J Intellect Disabil Res 1987. doi:10.1111/j.1365-2788.1987.tb01340.x.

8. Clark RW, Schmidt HS, Schuller DE. Sleep-Induced Ventilatory Dysfunction in Down’s Syndrome. Arch Intern Med 1980. doi:10.1001/archinte.1980.00330130047015.

9. Lal C, White DR, Joseph JE, Van Bakergem K, LaRosa A. Sleep-disordered breathing in down syndrome. Chest 2015. doi:10.1378/chest.14-0266.

10. Dyken ME, Lin-Dyken DC, Poulton S, Zimmerman MB, Sedars E. Prospective polysomnographic analysis of obstructive sleep apnea in down syndrome. Arch Pediatr Adolesc Med 2003. doi:10.1001/archpedi.157.7.655.

11. Bull MJ, Saal HM, Braddock SR, Enns GM, Gruen JR, Perrin JM, et al. Clinical report – Health supervision for children with Down syndrome. Pediatrics 2011. doi:10.1542/peds.2011-1605.

12. Veasey SC, Rosen IM. Obstructive Sleep Apnea in Adults. N Engl J Med 2016. doi:10.1056/NEJMcp1816152.

13. Bertolazi AN, Fagondes SC, Hoff LS, Pedro VD, Barreto SSM, Johns MW. Portuguese-language version of the Epworth sleepiness scale: validation for use in Brazil. J Bras Pneumol 2009. doi:10.1590/S1806-37132009000900009.

14. Johns MW. Daytime sleepiness, snoring, and obstructive sleep apnea; The Epworth Sleepiness Scale. Chest 1993. doi:10.1378/chest.103.1.30.

15. Bertolazi AN, Fagondes SC, Hoff LS, Dartora EG, da Silva Miozzo IC, de Barba MEF, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med 2011. doi:10.1016/j.sleep.2010.04.020.
16. Netzer NC, Strohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med 1999. doi:10.7326/0003-4819-131-7-199910050-00002.

17. Vaz AP, Drummond M, Caetano Mota P, Severo M, Almeida J, Winck JC. Tradução do Questionário de Berlim para língua Portuguesa e sua aplicação na identificação da SAOS numa consulta de patologia respiratória do sono. Rev Port Pneumol 2011. doi:10.1016/S0873-2159(11)70015-0.

18. Chung F, Yegneswaran B, Liao P, Chung SA, Vairavanathan S, Islam S, et al. STOP questionnaire: A tool to screen patients for obstructive sleep apnea. Anesthesiology 2008. doi:10.1097/ALN.0b013e31816d83e4.

19. Fonseca LB de M, Silveira EA, Lima NM, Rabahi MF. STOP-Bang questionnaire: translation to Portuguese and cross-cultural adaptation for use in Brazil. J Bras Pneumol 2016. doi:10.1590/s1806-3756201500000243.

20. Hill E, Fairley D, Van Putten S, Cooper S, Forbes J, Williams L, et al. Use of the pictorial Epworth Sleepiness Scale in adults with Down’s syndrome. J Sleep Res 2012. doi:http://dx.doi.org/10.1111/j.1365-2869.2012.01044.x.

21. Collop NA, Anderson WMD, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, et al. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. J Clin Sleep Med 2007. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556918/

22. Dudoignon B, Amaddeo A, Frapin A, Thierry B, de Sanctis L, Arroyo JO, et al. Obstructive sleep apnea in Down syndrome: Benefits of surgery and noninvasive respiratory support. Am J Med Genet Part A 2017. doi:10.1002/ajmg.a.38283.

23. Corral J, Sánchez-Quiroga M-Á, Carmona-Bernal C, Sánchez-Armengol Á, Sánchez-de-la-Torre A, Durán-Cantolla J, et al. Conventional Polysomnography is
Not Necessary for the Management of Most Patients with Suspected Obstructive Sleep Apnea. Am J Respir Crit Care Med 2017. doi:10.1164/rccm.201612-2497OC.

24. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N Engl J Med 2016. doi:10.1056/nejmoa1606599.

25. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J, et al. Practice Parameters for the Indications for Polysomnography and Related Procedures: An Update for 2005. Sleep 2005. doi:10.1093/sleep/28.4.499.

26. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 2012. doi:10.5664/jcsm.2172.

27. Erman MK, Stewart D, Einhorn D, Gordon N, Casal E. Validation of the ApneaLinkTM for the screening of sleep apnea: A novel and simple single-channel recording device. J Clin Sleep Med 2007. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1978315/

28. Urschitz MS, Brockmann PE, Schlaud M, Poets CF. Population prevalence of obstructive sleep apnoea in a community of German third graders. Eur Respir J 2010. doi:10.1183/09031936.00078409.

29. Brockmann PE, Perez JL, Moya A. Feasibility of unattended home polysomnography in children with sleep-disordered breathing. Int J Pediatr Otorhinolaryngol 2013. doi:10.1016/j.ijporl.2013.09.011.

30. Zar, Jerrold H. Biostatistical Analysis. 5th Edition. Pearson Prentice-Hall; 2010.

31. Montgomery, D.C., Peck, EA, and Vining, G.G. Introduction to Linear Regression Analysis, 5th ed., John Wiley and Sons, Hoboken, NJ; 2012.
32. Nicholas J. Horton, Ken Kleinman - Using R for Data Management, Statistical Analysis, and Graphics CRC Press, 2011; pp 93–118.

33. The R Project for Statistical Computing. Available from: https://www.r-project.org

34. Durán J, Esnaola S, Rubio R, Iztueta Á. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med 2001. doi:10.1164/ajrccm.163.3.2005065.

35. Choi JB, Loredo JS, Norman D, Mills PJ, Ancoli-Israel S, Ziegler MG, et al. Does obstructive sleep apnea increase hematocrit? Sleep Breath 2006. doi:10.1007/s11325-006-0064-z.

36. Wu M, Zhou L, Zhu D, Lai T, Chen Z, Shen H. Hematological indices as simple, inexpensive and practical severity markers of obstructive sleep apnea syndrome: A meta-analysis. J Thorac Dis 2018. doi:10.21037/jtd.2018.10.105.

37. Van Allen MI, Fung J, Jurenka SB. Health care concerns and guidelines for adults with Down syndrome. Am J Med Genet - Semin Med Genet 1999. doi:10.1002/(SICI)1096-8628(19990625)89:2<100::AIDAJMG8>3.0.CO;2-N.

38. Ivan DL, Cromwell P. Clinical practice guidelines for management of children with down syndrome: Part II. J Pediatr Heal Care 2014. doi:10.1016/j.pedhc.2013.05.003.

39. Smith DS, Meurer LN, Bower D. Health Care Management of Adults with Down Syndrome PRACTICAL THERAPEUTICS Selected Medical Conditions with a Higher Prevalence in Adults with Down Syndrome*. 2001. Available: chromeextension://oemmndcbldboiefnladdacbdfimadadm/https://pdfs.semanticscholar.org/7ba7/4d3de5a3d02673666139b259323a0550990e.pdf

40. Cohen WI. Health Care Guidelines for Individuals with Down Syndrome-1999 Revision. Down Syndr., 2003. doi:10.1002/0471227579.ch17.
41. De Miguel-Díez J, Villa-Asensi JR, Álvarez-Sala JL. Prevalence of sleep-disordered breathing in children with down syndrome: Polygraphic findings in 108 children. Sleep 2003. doi:10.1093/sleep/26.8.1006.

42. Hill CM, Evans HJ, Elphick H, Farquhar M, Pickering RM, Kingshott R, et al. Prevalence and predictors of obstructive sleep apnoea in young children with Down syndrome. Sleep Med 2016. doi:10.1016/j.sleep.2016.10.001.

43. Brockmann PE, Damiani F, Nuñez F, Moya A, Pincheira E, Paul MA, et al. Sleep-disordered breathing in children with Down syndrome: Usefulness of home polysomnography. Int J Pediatr Otorhinolaryngol 2016. doi:10.1016/j.ijporl.2016.01.030.

44. Alonso-Álvarez ML, Terán-Santos J, Ordax Carbajo E, Cordero-Guevara JA, Navazo-Egüía AI, Kheirandish-Gozal L, et al. Reliability of home respiratory polygraphy for the diagnosis of sleep apnea in children. Chest 2015. doi:10.1378/chest.14-1959.

45. De Jesus Danzi-Soares N, Genta PR, Nerbass FB, Pedrosa RP, Soares FSN, César LAMH, et al. Obstructive sleep apnea is common among patients referred for coronary artery bypass grafting and can be diagnosed by portable monitoring. Coron Artery Dis 2012. doi:10.1097/MCA.0b013e328334df5d0.