Genetic Population Structure of *Tectura paleacea*: Implications for the Mechanisms Regulating Population Structure in Patchy Coastal Habitats

Emina Begovic¹*, David R. Lindberg²

¹ Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America, ² Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California, United States of America

Abstract

The seagrass limpet *Tectura paleacea* (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. This pattern of population structure suggests that seagrass patches are not entraining the larvae of *T. paleacea* by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in *T. paleacea* might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments.

Introduction

The effects of larval dispersal on marine invertebrate ecology and evolution has long been recognized [1,2], but its implications for evolutionary events such as speciation, extinction, and population structuring have only recently been verified and experimentally studied using molecular data and phylogenetic studies [3,4,5]. At multiple scales the patterns are clear and often surprising. For example, multiple marine taxa show strong molecular differentiation between populations in the Indian Ocean and Western Pacific, while little variation is present in the expansive Western Pacific [6]. Within the significantly smaller Southern California Bight, Hamm and Burton [7], using allozymes from *Haliothis* (abalone), found that genetic distance was independent of geographic distance over a 300 km sampling range, and suggested that limited larval dispersal is involved in generating genetic differentiation. Along the entire California coast, Moberg & Burton [8] have shown that sea urchins (*Strongylacanthura*) also have very heterogeneous genetic compositions on both large and small geographic scales suggesting that, “the larval pool is not well mixed geographically (even on spatial scales <20 km), despite long planktonic larval duration.”

From these and other studies, a picture of the role of larval dispersal in contributing to the genetic makeup of populations is emerging, and it is one that often significantly differs [4,5,9,10] from early expectations. This can be partly attributed to the fact that our understanding of the effects of larval dispersal remains incomplete due to (1) limited taxon sampling that has not included less abundant species with patchy distributions, and (2) the lack of attention given to the effects of ecological factors (e.g., habitat specificity and availability, predator-prey interactions, resource availability, etc.) on geographical distributions of genetic diversity. This study examines the population structure of *Tectura paleacea* (Gastropoda; Patellogastropoda), a stenotopic species found only on its obligate seagrass host *Phyllospadix* [11,12]. The distribution of *T. paleacea* is patchy on local and regional scales throughout the Northeastern Pacific (Vancouver, Canada to Baja California, Mexico [13]). This species is a broadcast spawner with lecithotrophic larvae that can spend anywhere from a few hours to a several days in the plankton [14,15,16,17]. While some studies...
have shown that taxa with planktonic larvae tend to have low geographic population structure [18,19], other studies find that long planktonic larval duration does not result in low geographic population structuring [8,20]. These studies have tried to address the role of hydrogeography and fine scale physical oceanography in larval dispersal success, but conflicting results remain. Other studies have begun to examine the contribution of different ecological roles in population structuring. Ayre et al. [9] show that phylogeographic breaks within populations of marine organisms correspond to the degree to which the organism can utilize sheltered habitat, while Dawson [18] demonstrates a correlation between the distribution of edge-effect species and phylogeographic structure. Kelly & Eernisse [21] hypothesize that variability in near-shore sea surface temperature may be responsible for observed differences in the population structure of species with similar larval dispersal capabilities. These studies show a decoupling between larval dispersal strategies and phylogeographic patterns, but the contributions of specific local biotic factors to the differential success of larval dispersal remain untested.

The primary objective of this study was to measure the relative contribution of habitat specificity on larval dispersal and in turn biogeographic population structure within T. paleacea populations found along the Oregon-California coast. Specifically, we examine the role of seagrass in localized larval retention as an obstacle to gene flow. In doing so we determined the geographical distribution of mitochondrial lineages within T. paleacea and estimated genetic diversity. Furthermore, to evaluate the historical role of dispersal in structuring T. paleacea populations we compare modern-day morphological and mitochondrial geographic patterns.

Materials and Methods

Collections

Six localities with extensive Phyllospadix seagrass habitat were identified along the California-Oregon coast (see Figure 1). Each locality was approximately 2 degrees latitude apart and had T. paleacea populations present. The northern sampling boundary, determined by the northern range limit of T. paleacea, was Cape Arago, Oregon [22]. The southern sampling boundary was at Bird Rock in La Jolla, California, which is approximately 45 km north of the California-Mexico border.

Populations of T. paleacea were sampled from each locality at extreme low tides immediately after summer recruitment [14] during July 2002 and June 2003. Each sampling period entailed the identification of individual seagrass patches (defined as a continuous Phyllospadix rhizome covered substrate, separated by no less than one meter) within each locality. These patches were subsequently mapped using permanent markers embedded into surrounding boulders and triangulation techniques. All size classes of T. paleacea and their associated Phyllospadix blades were collected during timed searches from each Phyllospadix patch. Specimens of T. paleacea and blades of Phyllospadix were stored in 95% EtOH.

Relative abundance was estimated in terms of T. paleacea individuals collected per person per unit search time. One-way ANOVA was used to test whether relative abundances for each locality were significantly different [ANOVA calculated using the statistical software package SPSS v11 (SPSS Inc., Chicago IL)].

A total of 763 individuals were collected and deposited in the University of California Museum of Paleontology (see Table S1 for accession numbers). For all subsequent analyses only adults were used (adults measure ≥3.5 mm in length [23]). Morphological measurements were taken from a sub-sample of 295 individuals and of these, 120 were used for sequencing. With permission, we also included sequence data from two individuals of Tectura depicta collected at San Diego, CA by Kristina D. Louie (unpublished).

Sequencing

Small pieces of foot tissue were excised from a total of 120 T. paleacea adult individuals (10 individuals were sampled from each locality during the 2002 and again during the 2003 sampling period). Total genomic DNA was isolated using the “Animal Tissues” protocol included with the DNeasy Tissue Kit from QIAGEN, Inc. Valencia CA. A 450 nucleotide fragment of cytochrome oxidase b mtDNA (Cytb) was amplified and sequenced using the following primers: cobF 5’ - GGW TAY GTW YTW CGW TGR GGW CAR AT - 3’; cobR 5’ - GCR TAW GCR AWR AAR TAY CAY TCW GG - 3’ [24].

Phylogenetic analysis

No length variation was observed between sequences allowing for manual alignment in Se-Al [25]. Cytb amino acid sequences were used to verify nucleotide sequences and alignment. All sequence types have been deposited in GenBank (see Table S1 for list of specimens and accessions numbers). Two additional Cytb sequence types from T. depicta (the sister taxon of T. paleacea [26]) were included with permission from Kristina D. Louie (unpublished) for outgroup comparisons and network rooting.

The maximum likelihood model that best fits the combined Cytb data was calculated using a hierarchical Akaike information criterion as implemented in MODELTEST v3.06 [27]. This test was chosen in place of the likelihood ratio test because it imposes a penalty for model complexity resulting in models with better predictive accuracy [28]. Haplotype relationships were reconstructed with the neighbor-joining (NJ) algorithm and Maximum Likelihood (ML) implementing the transversion model (TVM) in addition to the proportion of invariable sites (I) and gamma distribution (G) models describing variation among sites (TVM+I+G) model of evolution using PAUP* version 4.0b10 [29]. For ML analyses gaps were treated as missing data and the heuristic search algorithm was implemented for ten random addition sequence replicates. Support for haplotype relationships was calculated using fast bootstrap analysis (4168 replicates) [30,31].

Population genetics data analysis

Patterns of haplotype diversity were examined on regional scales by grouping individuals according to phylogenetic affinities. To further test if this grouping accurately reflects population connectivity, each population was serially allocated to unique blocks (i.e., all possible population groupings were examined) and AMOVA analyses [32], as implemented in ARLEQUIN v2.0 [33], were done on all partitions. Total molecular variance (σ²) was calculated as the sum of the covariance components FsT (overall population variation), FsC (within group variation), and FsE (between group variation). Significance tests were based on 16,000 permutations.

Further population genetic data analyses were also carried out using ARLEQUIN v2.0. Haplotype and nucleotide diversity was estimated as a means to identify recent changes in effective population sizes. Tajima’s [34] measure of nucleotide diversity (θt) was estimated from the mean number of pairwise nucleotide differences (π) was selected due to its incorporation of allele frequencies, making this statistic more biologically meaningful as compared to others [i.e., segregating sites (θs)] [35]. Furthermore, the observed number of differences between haplotype pairs (i.e., mismatch distribution) was calculated in order to determine if populations are at demographic equilibrium. For example, while a bimodal mismatch distribution is indicative of demographic equilibrium, a unimodal distribution indicates that the population...
has most likely passed through a recent population expansion [36,37].

Morphological analyses

Length, width, and height measurements were taken from 25 *T. paleacea* individual collected from each locality during 2002 and again during 2003. A total of 50 individuals were measured from each locality except in the case of Cape Arago where only 20 individuals were collected in 2003 resulting in a total of 43 individuals being measured from this locality. In total, 295 individuals were measured for morphological analyses. *Phyllospadix* blade width was measured at the exact point from which each *T. paleacea* individual was removed from the blade. The relationship of these variables was examined across all localities using ANOVA and correlation statistics. Analyses were done with the statistical software package SPSS v11 (SPSS Inc., Chicago IL).

The relationship between locality and morphology was examined by comparing length:height ratios (LHR) of individuals...
from each locality. This measure has been established as an appropriate indicator of ecophenotypic variation in marine plant limpets previously [38]. Width was not considered in these comparisons due to the fact that individuals of *T. paleacea* spend their entire lives on *Phyllospadix* blades and stems. In turn, the width of these plant structures constrains *T. paleacea* shell width soon after individuals reach adult size therefore shell width is a reflection of ecophenotypic variation in the plant host and not in

Figure 2. Neighbor-joining tree of partial Cytb mtDNA. Shows the relationship of 81 haplotypes and two outgroups haplotypes (*T. depicta* H1 & *T. depicta* H2). Corresponding haplotype localities are mapped, as is the average shell profile associated with each locality. Arrows indicate the ancestral node of southern clades nested within northern populations.

doi:10.1371/journal.pone.0018408.g002
Results

Phylogeography

The relative abundance estimates (expressed in terms of T. paleacea individuals encountered per person per unit search time) plotted against all localities. The hatched line indicates the expected trend for population abundance in Baja, Mexico, the southernmost limit of T. paleacea distribution.

doi:10.1371/journal.pone.0018408.g003

Phylogeography

Results

Phyllogeography

Of the 120 individuals sequenced, there were eighty-one unique haplotypes present. Twenty individuals were examined from each population resulting in the following haplotype distributions across the six sampled populations: 8 unique haplotypes from Simpson Reef; Cape Arago, OR (SR); 11 from Trinidad Head, Trinidad, CA (TH); 12 from Horsehoe Cove, Bodega, CA (HC); 13 from Monterey Bay, Monterey, CA (MB); 19 from Coal Oil Point Reserve, Santa Barbara, CA (CR); and 18 from Bird Rock, La Jolla, CA (BR). The haplotype relationships determined using a neighbor-joining algorithm are shown in Figure 2 with bootstrap values indicated above each branch of interest. The tree topology resulting from ML analysis is shown in Supplemental Figure S1 with bootstrap values indicated above each branch.

Population genetics and demography

The relative abundance of T. paleacea populations changed significantly across the sampled range. When plotted against localities by latitude, abundance data appear to have a normal distribution with the highest abundances at the center of the range of T. paleacea (Figure 3).

AMOVA analyses identified a strong geographic subdivision between the four populations sampled north of the peri-Point Conception (PPC) region and the two populations sampled south of the PPC region (see Table 1), with 32.94% of the total variance being attributed to population differences between these two regions. Only 1.59% of the total variance is attributed to differences between populations within these two regions. Fixation indices further support a reduction in gene flow across the PPC region with \(F_{CT} = 0.3294 \) indicating very great genetic differentiation [39]. These data collectively support a regional population subdivision between the populations sampled on either side of the PPC region.

Mismatched distributions shown in Figure 4 indicate that populations north of the PPC region have been at equilibrium longer than populations in the south with a smaller mean number of pairwise differences (\(\pi \)) in northern populations (\(\pi = 5.6652 \pm 2.7449 \)) as compared to those south of this geographic boundary (\(\pi = 8.7731 \pm 4.1338 \)). While southern populations do not have an exact Poisson distribution, they do show a relatively unimodal mismatch distribution indicative of more recent population expansion [37]. These data are consistent with the observed decrease in genetic variation in northern populations. Haplotype diversity (H) and nucleotide diversity (\(\pi \)) are significantly smaller in northern population as compared to populations found south of the PPC region (Table 2).

Morphological patterns

A positive correlation between blade width and shell width was observed (Figure 5a). ANOVA of Phyllopadix blade width compared across all localities resulted in significant differences

Table 1. Two-region analysis of variance across six populations of T. paleacea.

Source of variation	Sum of squares	Variance components*	% of variation explained	Fixation index*	95% significance
Among regions	91.233	1.6564	32.94%	\(F_{CT} = 0.3294 \)	\(p = 0.00 \)
Among populations within each region	19.550	0.0798	1.59%	\(F_{CT} = 0.0237 \)	\(p = 0.00 \)
Within populations	375.300	3.2921	65.47%	\(F_{ST} = 0.3453 \)	\(p = 0.00 \)
Total	488.083	5.02836	100%		

AMOVA and phylogeographic pattern both indicate a geographical subdivision at the PPC region. The source of variation, percentage of variance explained, and fixation indices are included.

*Significance calculated at the 0.05 level.

doi:10.1371/journal.pone.0018408.t001
(LWR) identified significant differences ($p<0.00$) between four groups (BR + TH + SR; CR; MB; HC) of populations that did not correspond to the same four population groupings (BR + MB; CR; HC; TH + SR) found for blade width alone (see Figure 5b–c). The longest and most narrow forms were found in the SR population instead of the CR population, which had the narrowest average blade widths.

ANOVA and Tukey post hoc multiple comparisons of length:height ratios (LHR) across all localities indicated a statistically significant break between three groups (BR; CR + MB; HC; TH + SR) of populations (Figure 6a–b). BR had the largest LHR ($p<0.00$) indicating that overall shell shape is characterized by elongated shell length and low apex height. The opposite was true for TH and SR populations, which had significantly smaller LHR ($p<0.00$) indicating that shell shape is shorter in length with a relatively high apex. The three populations found between the most northern and southern extremes (CR, MB, and HC) were statistically indistinguishable from each other ($p=0.206$), and were characterized by an intermediate shell shape.

Discussion

Historic and phylogeographic patterns

A diverse patellogastropod fauna found in Tertiary fossil deposits from the Dominican Republic include species that were closely associated with marine plants [40]. These records indicate the presence of marine seagrass limpets in the Caribbean by the late Miocene. The first record of a T. paleacea-like marine plant limpet in the subtropical Pacific comes from a Pleistocene deposit in the Sea of Cortez (Lindberg unpublished). As seagrass limpets expanded their range into the temperate North Pacific during the late Pliocene and early Pleistocene, populations in the subtropical Pacific and Caribbean went extinct [40]. These fossil data indicate that the ancestral populations of both T. paleacea and T. depicta, the sister taxon of T. paleacea [26], originated in the Caribbean and moved through the Isthmus of Panama sometime before the closure of the isthmus 3.1–3.5 million years ago [41,42] and subsequently expanded their range into northern latitudes. The extant range of T. depicta is restricted from northern Baja to central California reflecting ancestral distributions.

AMOVA results indicate that a barrier to gene flow between northern and southern populations of T. paleacea exists somewhere between Santa Barbara and Monterey (i.e., the PPC region). While this region encompasses the well-known biogeographic boundary of Point Conception [43,44,45], this reduction in gene flow is not necessarily associated with Point Conception itself; more sampling would need to be done across the PPC region to confirm the exact location of the geographic barrier to gene flow [46]. Historical patterns examined in association with AMOVA results indicate that northern population isolation resulted from a range expansion rather than a selective sweep. Evidence supporting a recent range expansion includes lower nucleotide diversity estimates north of Santa Barbara, the southern distribution of T. depicta, and concordant patterns seen in a variety of genetic population structures.
of taxa that share a similar coastal distribution across the Northeastern Pacific [47, 48, 49].

From a phylogenetic perspective, haplotype relationships predicted from NJ and ML analyses further support the presence of a partial barrier to gene flow in the PPC region. As expected, due to the low levels of genetic variation present between our sampled populations, the tree resulting from ML analysis has less resolution than the NJ tree and neither have significant support values (Figure 2 & Figure S1). Nonetheless NJ and ML patterns of haplotype relationships indicate that an ancestral northern assemblage of populations has given rise to multiple clusters of extant southern populations independently. The presence of three (potentially more if ML results are considered) reciprocally monophyletic clades of haplotypes originating south of the PPC region nested within the paraphyletic clade of haplotypes originating north of the PPC region is indicative of at least three independent dispersal events originating from northern populations followed by rapid coalescence giving rise to the extant southern populations (Figure 2). In light of the known historical data that supports a range shift from the north to the south during the majority of the reproductive season for most marine species in this region [50, 51]. Therefore, these flow patterns combined with more recent historical temperature shifts, which may have facilitated regional population contractions/expansions, could explain this pattern of repeated north to south dispersal. Given the available data we cannot rule out the possibility that *T. paleacea* populations may have gone extinct entirely south of Point Conception during the late Pliocene and early Pleistocene. If this was the case then these dispersal events represent range expansion into areas where *T. paleacea* had previously gone extinct. This raises the possibility that southern populations are being maintained as sink populations deriving from northern larval source populations. This scenario would have significant impact on conservation strategies being implemented in rocky intertidal environments along the California-Oregon coast.

Mechanisms regulating population structure

It has been generally accepted that seagrass canopies alter the hydrodynamic conditions of the space they occupy [52]. Flume tank observations and field studies have demonstrated that

Figure 5. Morphological comparisons between *T. paleacea* and *Phyllospadix*

A) *T. paleacea* shell width is regressed against *Phyllospadix* blade (or stem) width across all localities resulting in a positive correlation. Scatter plots of B) *Phyllospadix* blade width and C) the degree of ovalness, measured as length:width ratios (LWR), compared across all localities are shown. Error bars show 95.0% confidence intervals. Note the lack of concordance between the patterns seen in B and C.

doi:10.1371/journal.pone.0018408.g005
that the presence of any larval retention due to attenuated flow in seagrass beds is not enough to act as a population structuring force for populations of \textit{T. paleacea} distributed along the California-Oregon coast. The lack of collection site-specific population structure indicates high levels of gene flow between sites. Given the lack of dispersal ability by adults, the possibility of this gene flow being a result of adult dispersal as opposed to larval dispersal is unlikely. While adult dispersal potential may exist via individuals hitchhiking on drifting clumps of seagrass, this has yet to be documented.

The data presented here lend support to the hypothesis that a biogeographic boundary within the PPC region is acting as the primary mechanism driving genetic population structuring in \textit{T. paleacea}. This result is consistent with Avise’s \cite{58} hypothesis that concordance exists between biogeographic and intraspecific phylogeographic boundaries. This indicates a local decoupling of reproduction from larval recruitment \cite{59} and in turn argues in support of pre-settlement larval availability as the primary population structuring force acting within these populations. These findings have important implications for the ecological importance of open-coast seagrass communities on larval recruitment. Specifically, these findings suggest that open-coast seagrass communities act primarily as larval sources and do not actively facilitate increased larval settlement.

Phylogeography and morphology

There is a clear decoupling between patterns of morphological variation and population structure. Shape change is shown in Figure 5c and indicates a shift from a low profile, elongate form in the south to a shorter and taller profile in the north. While there are three statistically significant clusters of morphotypes distributed across the sampled distribution of \textit{T. paleacea}, the boundaries between these clusters do not correspond to the PPC region, the biogeographic boundary associated with the phylogeographic break between northern and southern populations (Figure 1). Furthermore, variability seen in \textit{Phyllospadix} blade morphology (previous studies have also shown that \textit{Phyllospadix} morphology systematically varies across its range \cite{60}) cannot account for the morphological differences seen in \textit{T. paleacea} populations given the lack of overlap between three of the four population groupings identified by ANOVA for LWR and blade width across localities (Figure 5b–c).

Two possible mechanisms might explain the pattern of morphological variation observed across the sampled distribution of \textit{T. paleacea}. The first is natural selection followed by local adaptation, while the second is ecophenotypic plasticity in response to local environmental variability. If natural selection was acting to produce the morphological variation observed between populations, given the fact that Cyb is among the most rapidly evolving markers found within the mitochondrial genome of gastropods \cite{42}, we would expect to see a concordance between molecular and morphological patterns. Instead the presence of incomplete lineage sorting suggests that natural selection is not acting on the populations within each morphologically unique region, although the possibility remains that there has not been enough time for mitochondrial genes to reflect selective pressure \cite{61}.

The second possible mechanism is differential ecophenotypic expression as a response to habitat heterogeneity. A number of studies have identified similar morphological trends associated with local ecophenotypic responses to variable environments \cite{62, 63, 64}. Although currently there are few ecological data available for \textit{T. paleacea}, making it difficult to determine the extent of ecophenotypic plasticity, studies on other intertidal snails have

![Figure 6. Differences between LHR across sampled populations. A] A scatter plot of LHR across all localities is shown. Error bars show 95.0% confidence intervals. B] ANOVA p-values are given for all comparisons. Significance is estimated at the 0.05 level using the Tukey post hoc test. A statistically significant break is evident between three groups of populations: 1) BR; 2) CR, MB, HC, and 3) TH, SR. doi:10.1371/journal.pone.0018408.g006

seagrass beds reduce flow \cite{53, 54} and dampen vertical wave energy \cite{55, 56}. Recent evidence supports the long-standing hypothesis that this reduction in water flow acts as a mechanism to increases particle trapping \cite{57, 53}. The expectation is that the observed increase in particle trapping within seagrass beds should have significant effects on larval retention and subsequent patterns of recruitment for broadcast spawning taxa associated with seagrasses.

Given these findings from previous studies, the obligate association of \textit{T. paleacea} with \textit{Phyllospadix} would suggest increased levels of population structure due to decreased flow environments and subsequently increased larval retention within \textit{Phyllospadix} beds. While we did not directly measure the level of larval dispersal ability associated with any given seagrass bed, our data indicate

Genetic Population Structure of \textit{Tectura paleacea}

	BR	CR	MB	HC	TH	SR
SR	0.000	0.000	0.000	0.000	0.852	--
TH	0.000	0.000	0.000	0.000	--	--
HC	0.000	0.377	1.000	--	--	--
MB	0.000	0.322	--	--	--	--
CR	0.000	--	--	--	--	--

Significance at the 0.05 level.
demonstrated that flow intensity can significantly alter foot size and shell morphology [65,66,67] as can predation intensity [65,68,69] and food supply [70]. All of these factors may be contributing to the region-specific morphological variation observed in T. paleacea populations. Although there are limited food supply and predation data available to begin to address this question, transplant experiments could be used to test for plasticity and in turn determine the necessity for further ecological and/or molecular data.

Morphological variation within Phyllospadix may contribute to the differences observed between T. paleacea populations. Three morphological species of Phyllospadix (P. serrulatus, P. scouleri, and P. toreyi) occur along the coast of North America. Individuals of T. paleacea feed exclusively on the leaf epidermis of P. scouleri [71] and occasionally on P. toreyi [72]. This feeding strategy has been attributed to the availability of proteins and absence of phenolic substances in blade epidermal cells of Phyllospadix [73]. While studies have indicated strong support for the differentiation of P. serrulatus from P. scouleri and P. toreyi [60,74], additionally, intermediate forms of these two species have been identified [75] suggesting that hybridization may occur. However, comparison data do exist for leaf epidermal differences between these three named species [73], suggesting that epidermal cell shape and size differ between P. scouleri and P. toreyi. These data, combined with data that indicate latitudinal variability in P. scouleri and P. toreyi [60], may be associated with the morphological variation seen in T. paleacea populations living on these seagrasses.

Phyllospadix beds provide a partial defense against many larger benthi c predators due to the inaccessibility of thin floating blades where T. paleacea is found. However, smaller predators, such as the sea star Leptasterias hexactis, are commonly found in these beds [76]. Laboratory experiments conducted by Fishl yn and Phillips [76] demonstrated that T. paleacea individuals show no escape response as a result of contact with L. hexactis individuals. Instead, they suggest that T. paleacea is chemically camouflaged. If T. paleacea uses chemical camouflage as its primary defense against predators, it is unlikely that predation intensity could explain the region-specific variability seen in shell morphology. If we are to identify the mechanisms regulating ecophenotypic plasticity within T. paleacea, detailed studies examining the ecological role of T. paleacea in seagrass habitats and its ecophenotypic plasticity potential are needed.

References

1. Garstang W (1923) The theory of recapitulation: A critical restatement of the biogenetic law. Journal of the Linnean Society of London 53: 81-101.
2. Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates: with special reference to the planktonic larvae in the Sound (Oresund). Meddelelser fra Kommissionen for Danmarks Fiskeri- Og Havunders Segelejer 4: 1-523.
3. Harvey PH, Leigh RA, Smith JM, Nee S (1996) New uses for new phylogenies. New York: Oxford University Press xii: 349 p.
4. Mian BR (2004) What’s larval got to do with it? Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol Ecol 13: 597-611.
5. Miller KJ, Ayre DJ (2000) Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals. J Anim Ecol 77: 713-724.
6. Dutta TEJ, Palumbi SR (1999) Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Marine Biology (Berlin) 134: 705-710.
7. Haman DE, Burton RS (2000) Population genetics of black abalone, Haliotis cracherodii, along the central California coast. Journal of Experimental Marine Biology & Ecology 254: 235-247.
8. Moberg PE, Burton RS (2000) Genetic heterogeneity among adult and recruit red sea urchins, Strongylocentrotus franciscanus. Marine Biology 136: 773-784.
9. Ayre DJ, Minchinton TE, Ferrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18: 1887-1903.
10. Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7: 114-118.
11. Grant AR (1938) A systematic revision of the genus Amussa eschscholtzii, including consideration of ecology and speciation. Berkeley: University of California, Berkeley, 55 p.
12. Test AR (1945) Ecology of California Amussa. Ecology 26: 395–405.
13. Lindberg DR (2007) Patellogastropoda. In: Carlton JT, ed. Light and Smith’s Manual Intertidal Invertebrates of the Central California Coast. Berkeley: University of California Press.
14. Fritchman HK (1961) A study of the reproductive cycle in the California Acmaeidae (Gastropoda) Part II. Veliger 3: 95-101.
15. Fritchman HK (1962) A study of the reproductive cycle in the California Acmaeidae (Gastropoda) Part IV. Veliger 4: 134-140.
16. Smetacek V (1982) Laboratory spawning, larval development, and metamorphosis of the limpets Lottia digitalis and Lottia asmi (Patellogastropoda, Lottiidae). Invertebrate Biology 121: 11–24.
17. Strathmann MF (1987) Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. Seattle: University of Washington Press xii: 670 p.
18. Dawson MN (2001) Phylogography in coastal marine animals: a solution from California. Journal of Biogeography 28: 723–736.
19. Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50: 1167–1175.

Summary

This study identifies population structure of T. paleacea that is concordant with the biogeographic barrier at the PPC region in California. Historical data suggest that extant populations originated in southern subtropical regions and have made their way across this barrier only since the late Pliocene or early Pleistocene. Although larval dispersal was not directly measured, the pattern of population structuring observed indicates that seagrass communities, which are known to alter flow regimes within their environment, do not affect larval dispersal ability enough to impact on the connectivity of T. paleacea populations. Furthermore, morphological patterns are not concordant with the molecular patterns observed. These findings support the role of local habitat variability in maintaining differential ecophenotypic expression across the distribution of T. paleacea, suggesting that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments with diverse life history components.

Supporting Information

Figure S1 The resulting strict consensus tree topology using ML analysis. ML analysis resulted in two trees with the likelihood score 1542.74406 and few nodes with significant bootstrap support. Bootstrap values (4,168 replicates) are indicated above each branch. Southern clades are highlighted in red while northern clades are in black.

Table S1

Acknowledgments

We would like to thank DB Wake, G Roderick and SA Nichols for their helpful comments and suggestions in the preparation of this manuscript. Also, we would like to thank SA Nichols, A Aronowsky, and CP Meyer for their long hours in the field and helpful discussions. The manuscript was considerably improved by comments from an anonymous reviewer. Any errors remain our own.

Author Contributions

Conceived and designed the experiments: EB DRL. Performed the experiments: EB. Analyzed the data: EB DRL. Contributed reagents/materials/analysis tools: EB DRL. Wrote the paper: EB DRL.
42. Collins TM, Frazer K, Palmer AR, Vermeij GJ, Brown WM (1996) Evolution of the Patellogastropoda fauna of the Caribbean Sea during the Neogene. American Malacological Union Proceedings. Key West, Florida.

40. Lindberg DR (1987) Evolution of the Patellogastropoda of the North Pacific. Berkeley: University of California, Berkeley. 291 p.

39. Wright S (1978) Evolution and the genetics of populations, variability within and between natural populations. Chicago: University of Chicago Press. 580 p.

38. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

37. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

36. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 532–569.

35. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

34. Excoffier L, Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for biometric analysis. Bioinformatics 16: 1117–1121.

33. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for the analysis of molecular variance. BMC Bioinformatics 1: 23.

32. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance. Genetics 130: 479–491.

31. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for the analysis of molecular variance. BMC Bioinformatics 1: 23.

30. Mort ME, Soltis PS, Soltis DE, Mabry ML (2000) Comparison of three methods of sequence and gene arrangement comparisons indicate that Pogonomya is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17: 87–106.

29. Swofford DL (1998) Phylogenetic analysis using parsimony (* and Other Methods). Sinauer Associates, Sunderland, Massachusetts.

28. Swoford DL (1990) Phylogenetic analysis using parsimony (* and Other Methods). Sinauer Associates, Sunderland, Massachusetts.

27. Posada D, Crandall KA (1998) ModelTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

26. Begovic E (2004) Population structuring mechanisms and diversification patterns in the Patellogastropoda. Berkeley: University of California, Berkeley. 291 p.

25. Horgan DA (1976) Population studies of the stenotopic limpet Nucella pahaeca on its sea-grass bed Phyllospadix tenuis. Western Society of Malacologists Annual Report. pp 17–18.

24. Boore JL, Brown WM (2000) Mitochondrial genomes of Eucyclogobius newberryi goby, an extratropical northeastern Pacific shelf. Limnology & Oceanography 11: 711–731.

23. Horgan DA (1976) Population studies of the stenotopic limpet Nucella pahaeca on its sea-grass bed Phyllospadix tenuis. Western Society of Malacologists Annual Report. pp 17–18.

22. Keen AM, Dony CI (1942) An annotated check list of the gastropods of Cape Arago, Oregon. Oregon State Monographs - Studies in Zoology 3: 1–16.

21. Kelly RP, Ernisse DJ (2007) Southern hospitality: a latitudinal gradient in gene flow in the marine environment. Evolution 61: 790–707.

20. Gilb MR, Hilbish TJ (2003) Patterns of larval dispersal and their effect on the maintenance of a blue mussel hybrid zone in southwest England. Evolution 57: 1061–1077.

19. Marko PB (1998) Historical allopatry and the biogeography of speciation in the prosobranch snail genus Nucella. Evolution 52: 757–774.

18. Gaylord B, Gaines SD (2000) Temperature or transport? Range limits in marine species mediated solely by flow. American Naturalist 155: 769–789.

17. Wares JP, Gaines SD, Cunningham CW (2001) A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution 55: 295–306.

16. Hemminga M, Duarte C (2000) Seagrass ecology. Cambridge, UK; New York, NY: Cambridge University Press xi: 286 p.

15. Gacia E, Granata TC, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquatic Botany 65: 253–268.

14. Gambi MC, Nowell ARM, Jumars PA (1990) Plume observations on flow dynamics in Zostera marina eelgrass beds. Marine Ecology-Progres Series 61: 159–170.

13. Fonseca MS, Cabanal JA (1992) A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine Coastal & Shelf Science 35: 556–576.

12. Verduin JJ, Backhaus JO (2000) Dynamics of plant-flow interactions for the seagrass Amphibolis antarctica: field observations and model simulations. Estuarine Coastal & Shelf Science 50: 185–204.

11. Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogesosciences 2: 1–8.

10. Avise JC (1994) Molecular markers, natural history and evolution. New York: London: Chapman & Hall xiv: 511 p.

9. Todd GD (1998) Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe? Hydrobiologia 375:376: 1–21.

8. McMillan C, Phillips RC (1981) Morphological variation and isozymes of North American Phyllospadix tenuis. Canadian Journal of Botany 59: 1494–1560.

7. Avise JC (2000) Phylogeography: the history and formation of species. Cambridge: Harvard University Press. 447 p.

6. Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225: 1478–1480.

5. Stearns SC (1989) The evolutionary significance of phenotypic plasticity: phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. Bioscience 39: 436–445.

4. Arendall DJ, Marchinko KB, Palmer AR (2001) Precise tuning of barnacle leg length to coastal wave action. Proc Biol Sci 268: 2149–2154.

3. Kitching JA, Munz L, Ebling FJ (1986) The ecology of Lough Ine. XV. The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35: 113–126.

2. Trussell GC, Enter RJ (2001) Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetics 112:113: 321–337.

1. Vermeij GJ (1973) Morphological patterns in high inter tidal gastropods: adaptive strategies and their limitations. Marine Biology 20: 319–346.

1. Appleton RD, Palmer AR (1988) Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Evolution 52: 757–774.

1. Palmer AR (1990) Effect of crab effluent and scent of damaged conspecifics on the feeding efficiency and shell predation of Nucella on the northern California coast. Evolution 54: 1061–1077.

1. Kitching JA, Munz L, Ebling FJ (1986) The ecological significance of shell and body forms in Nucella. Journal of Animal Ecology 35: 113–126.

1. Trussell GC, Enter RJ (2001) Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetics 112:113: 321–337.

1. Vermeij GJ (1973) Morphological patterns in high inter tidal gastropods: adaptive strategies and their limitations. Marine Biology 20: 319–346.