Cognition and Behavior

\(\alpha\) Phase-Amplitude Tradeoffs Predict Visual Perception

Camille Fakche, Rufin VanRullen, Philippe Marque, and Laura Dugué

https://doi.org/10.1523/ENEURO.0244-21.2022

1Université de Paris, Integrative Neuroscience and Cognition Center Unité Mixte de Recherche 8002, Centre National de la Recherche Scientifique, Paris F-75006, France, 2Centre National de la Recherche Scientifique, CerCo, Centre de Recherche Cerveau et Cognition, Unité Mixte de Recherche 5549, Université de Toulouse, Toulouse F-31052, France, 3Toulouse NeuroImaging Center, Unité Mixte de Recherche 1214, INSERM Institut National de la Santé et de la Recherche Médicale, Toulouse F-31024, France, 4Médecine Physique et de Réadaptation, Centre Hospitalier Universitaire Rangueil, Toulouse F-31059, France, and 5Institut Universitaire de France (IUF), Paris F-75005, France

Visual Abstract

Spontaneous \(\alpha\) oscillations (~10 Hz) have been associated with various cognitive functions, including perception. Their phase and amplitude independently predict cortical excitability and subsequent perceptual performance. However, the causal role of \(\alpha\) phase-amplitude tradeoffs on visual perception remains ill-defined. We aimed to fill this gap and tested two clear predictions from the pulsed inhibition theory according to which \(\alpha\) oscillations are associated with periodic functional inhibition. (1) High-\(\alpha\) amplitude induces cortical inhibition at specific phases, associated with low perceptual performance, while at opposite phases, inhibition decreases (potentially increasing excitation) and perceptual performance increases. (2) Low-\(\alpha\) amplitude is less susceptible to these phasic (periodic) pulses of inhibition, leading to overall higher perceptual performance. Here, cortical excitability was assessed in humans using phosphene (illusory) perception induced by single pulses of transcranial magnetic stimulation (TMS) applied over visual cortex at perceptual threshold, and its postpulse evoked activity recorded with simultaneous electroencephalography (EEG). We observed that prepulse \(\alpha\) phase modulates the probability to perceive a phosphene, predominantly for high-\(\alpha\) amplitude, with a nonoptimal phase for phosphene perception between \(-\pi/2\) and \(-\pi/4\). The prepulse nonoptimal phase further leads to

Significance Statement

The pulsed inhibition theory predicts that the functional inhibition induced by high-\(\alpha\) oscillations’ amplitude is periodic, with specific phases decreasing neural firing and perceptual performance. In turn, low-\(\alpha\) oscillations’ amplitude is less susceptible to phasic moments of pulsed inhibition leading to overall higher perceptual performance. Using transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) recordings in humans, we found that specific phases of spontaneous \(\alpha\) oscillations (~10 Hz) decrease cortical excitability and the subsequent perceptual outcomes predominantly when \(\alpha\) amplitude is high. Our results provide strong causal evidence in favor of the pulsed inhibition theory.
an increase in postpulse-evoked activity [event-related potential (ERP)], in phosphene-perceived trials specifically. Together, these results show that \(\alpha \) oscillations create periodic inhibitory moments when \(\alpha \) amplitude is high, leading to periodic decrease of perceptual performance. This study provides strong causal evidence in favor of the pulsed inhibition theory.

Key words: \(\alpha \) oscillations; cortical excitability; EEG; phase-amplitude tradeoffs; TMS; visual perception

Introduction

\(\alpha \) Brain oscillations (8–12 Hz) play a role in various cognitive functions, including visual perception (VanRullen, 2016a; Dugué and VanRullen, 2017; Clayton et al., 2018; Samaha et al., 2020; Kienitz et al., 2021), and are proposed to support active functional inhibition (Pfurtscheller and Lopes da Silva, 1999). Specifically, low parieto-occipital \(\alpha \) amplitude recorded in human is correlated with a higher probability to perceive a near-threshold visual stimulus (Ergenoglu et al., 2004; Sauseng et al., 2005; Thut et al., 2006; van Dijk et al., 2008; Händel et al., 2011). Similarly, specific \(\alpha \) phases lead to better detection performance while opposite phases lead to impaired performance (Varela et al., 1981; Busch et al., 2009; Mathewson et al., 2009; Dugué et al., 2011a; Samaha et al., 2015). Perception fluctuates periodically over time, along with the phase of \(\alpha \) oscillations.

\(\alpha \) Oscillations’ amplitude and phase further seem to predict cortical excitability. Spiking activity recorded in macaques is higher at the trough of the \(\alpha \) cycle, and for lower \(\alpha \) amplitude (Bollimunta et al., 2008; Haegens et al., 2011, 2015; van Kerkoerle et al., 2014). Moreover, functional magnetic resonance imaging studies have shown that the cortical blood oxygenation level-dependent response fluctuates along with the phase of \(\alpha \) oscillations in visual cortex (V1/V2; Scheeringa et al., 2011), and increases when \(\alpha \) amplitude decreases (Goldman et al., 2002; Moosmann et al., 2003). Critically, transcranial magnetic stimulation (TMS) studies went beyond such correlational evidence. When applied over V1/V2, single-pulse TMS can elicit phosphenes (illusory percepts) depending on cortical state, i.e., when cortical excitability is sufficiently high. Phosphene perception leads to a higher event-related potential (ERP) than the absence of percept (Taylor et al., 2010; Dugué et al., 2011a; Samaha et al., 2017). Interestingly, studies have shown that phosphene perception is higher for low prepulse \(\alpha \) amplitude (Romei et al., 2008; Samaha et al., 2017), and fluctuates according to \(\alpha \) phase (Dugué et al., 2011a; Samaha et al., 2017). These studies independently suggest that both \(\alpha \) oscillations’ amplitude and phase modulate cortical excitability and causally predict visual perception. However, their joint causal effects are still ill-defined.

Here, we address this question in the framework of the pulsed inhibition theory (Klimesch et al., 2007; Jensen and Mazaheri, 2010; Mathewson et al., 2011), which makes two clear predictions regarding \(\alpha \) phase-amplitude tradeoffs: (1) high-\(\alpha \) amplitude exhibits states of cortical inhibition at specific phases associated with lower perceptual performance (nonoptimal phases); while (2) low-\(\alpha \) amplitude is less susceptible to phasic pulsed inhibition, leading to high perceptual performance. A few studies have investigated the phase-amplitude tradeoffs (i.e., effect of the interaction between phase and amplitude) of low frequency oscillations on sensory perception and motor functions in human (Table 1). Although most of these studies observed a phase effect on task performance exclusively (or stronger) for high-\(\alpha \) (or lower frequencies) amplitude (Mathewson et al., 2009; Ng et al., 2012; Ai and Ro, 2014; Bonnefond and Jensen, 2015; Herrmann et al., 2016; Spitzer et al., 2016; Kizuk and Mathewson, 2017; Hussain et al., 2019; Alexander et al., 2020), one found a phase effect for low-\(\alpha \) amplitude exclusively (Busch and VanRullen, 2010), some found no difference between high-\(\alpha \) and low-\(\alpha \) amplitude (Milton and Pleydell-Pearce, 2016; Harris et al., 2018), and finally, some found no phase effect (Zoefel and Heil, 2013; Madsen et al., 2019). Importantly, most of these studies are correlational (Table 1). Only two (Hussain et al., 2019; Madsen et al., 2019) investigated the causal link between spontaneous \(\alpha \) oscillations’ amplitude and phase, cortico-spinal excitability, assessed with TMS to evoke a motor-evoked potential (MEP) on the hand muscle, and the subsequent motor performance. Other studies found a causal phase effect of spontaneous \(\alpha \) oscillations on cortico-spinal excitability and the associated MEP for high-\(\alpha \) amplitude, but used the absence of \(\alpha \) oscillations as control thus not comparing phase-effects between a high-\(\alpha \) and low-\(\alpha \) amplitude condition (Schaworonkow et al., 2018, 2019; Stefanou et al., 2018; Zrenner et al., 2018; Bergmann et al., 2019).

We investigated the causal effect of spontaneous \(\alpha \) phase-amplitude tradeoffs on cortical excitability and subsequent perceptual performance in the visual modality, and tested the predictions made by the pulsed inhibition theory using TMS and electroencephalography (EEG).
Table 1: Electro/magneto-encephalography (EEG/MEG) experiments investigating oscillations phase-amplitude tradeoffs on behavioral performance in human

Study	Method	Frequency band	Frequency	Oscillatory activity	Modality	Behavioral measure	Main results
Studies using TMS							
Visual modality							
Current study	EEG α	10 Hz	Spontaneous	Visual	Near-threshold TMS-induced phosphene perception	Phase-amplitude effect on detection, stronger for high amplitude	
Other modalities							
Hussain et al. (2019)	EEG α, β	8–12 Hz, 13–30 Hz	Spontaneous	Motor	Supra-threshold TMS-induced MEP	Optimal phase (leading to increased MEP) reverses between low-α and high-β amplitude; no phase-amplitude effect for β	
Madsen et al. (2019)	EEG α	7–13 Hz	Spontaneous	Motor	Supra-threshold TMS-induced MEP	No phase-amplitude effect on MEP amplitude	
Studies not using TMS							
Visual modality							
Alexander et al. (2020)	EEG α	5.6–14.4 Hz	Spontaneous	Visual	Detection of near-threshold stimulus through eyes closed	Phase effect on detection for high amplitude	
Bonnefond and Jensen (2015)	MEG α	9–12 Hz	Stimulus-locked (retention interval)	Visual	Sternberg working memory task with supra-threshold stimuli	Phase effect on γ power for high amplitude	
Busch and VanRullen (2010)	EEG θ	7 Hz	Spontaneous (amplitude attentionally modulated)	Visual	Detection of spatially attended or unattended near-threshold visual stimulus	Phase effect on detection and GFP for low amplitude	
Harris et al. (2018)	EEG θ, α	5 Hz, 11–15 Hz	Stimulus-locked (α amplitude attentionally modulated)	Visual	Detection of spatially attended or unattended near-threshold visual stimulus	No phase-amplitude effect on detection	
Kizuk and Mathewson (2017)	EEG α	12 Hz	Entrained (spontaneously modulated)	Visual	Detection of spatially attended or unattended metacontrast masked stimulus (75% performance)	Tendency for phase-amplitude effect on detection, stronger for high amplitude	
Mathewson et al. (2009)	EEG α	10 Hz	Stimulus-locked	Visual	Detection of metacontrast masked stimulus (70% performance)	Phase effect on detection for high amplitude	
Milton and Pleydell-Pearce (2016)	EEG α	7.8–12.7 Hz	Spontaneous (amplitude attentionally modulated)	Visual	Simultaneity judgement of spatially attended or unattended stimulus (50% performance)	No phase-amplitude effect on simultaneity judgement	
Other modalities							
Ai and Ro (2014)	EEG α	8–12 Hz	Spontaneous	Somatosensory	Detection of near-threshold stimulus	Phase effect on detection for high amplitude	
Herrmann et al. (2016)	MEG δ	2 Hz	Entrained	Auditory	Detection of near-threshold stimulus	Phase effect on detection for high amplitude	
Ng et al. (2012)	EEG θ, α	2–6 Hz, 8–12 Hz	Entrained	Auditory	Detection of near-threshold stimulus	Phase-amplitude effect on detection, stronger for high amplitude; no phase-amplitude effect for α	
Spitzer et al. (2016)	EEG δ, α	3 Hz, 6.7 Hz, 11 Hz	Stimulus-locked	Visual, auditory, and somatosensory	Two-interval numerosity comparison task (80% performance)	δ Phase-amplitude effect on choice-predictive signals, stronger for high amplitude; no phase-amplitude effect for α and α	
Zoefel and Heil (2013)	EEG δ	0.5 Hz	Entrained and spontaneous	Auditory	Detection of near-threshold stimulus	No phase-amplitude effect on detection neither for entrained nor for spontaneous oscillations	

Note that studies independently investigating the phase and the amplitude of oscillations were not included in this table. We only selected studies specifically investigating the interaction between the instantaneous phase and the amplitude on behavioral performance. Entrained oscillations: oscillations with a nonrandom phase distribution induced by a repetitive stimulus presentation. Stimulus-locked oscillations: oscillations with a nonrandom phase distribution induced by a single stimulus. Spontaneous oscillations: oscillations with a random phase distribution. GFP, global field power; MEP, motor-evoked potential; TMS, transcranial magnetic stimulation.
in human. Cortical excitability was assessed using phos-
phene perception induced by single-pulse TMS applied
over V1/V2 at perceptual threshold (~50% detection),
and its postpulse evoked activity. Our results validate
both predictions, demonstrating that α oscillations create
periodic inhibitory moments when α amplitude is high,
leading to lower perceptual performance. Critically, both
simulations and ERP analyses confirmed that the ob-
tained results were not a mere analysis confound in which
the quality of the phase estimation covaries with the
amplitude.

Materials and Methods
This study is a reappraisal of an early study from Dugué
et al. (2011a), which focused on the causal link between
the phase of ongoing α oscillations, cortical excitability,
and visual perception. Here, we instead focused on the
combined role of the phase and the amplitude of sponta-
neous α oscillations on the causal relation between corti-
cal excitability and visual perception.

Participants
As in the original study, the data from nine participants
(eight male, 20–35 years old) were analyzed (for inclusion/
exclusion criteria, see Dugué et al., 2011a). All partici-
pants fulfilled the standard inclusion criteria for TMS ex-
periment (Rossi et al., 2009), gave their written informed
consent, and were compensated for their participation.
Human participants were recruited in Toulouse, France.
The study was approved by the local French ethics com-
mittee Sud-Ouest et Outre-Mer I (IRB #2009-A01087-50)
and followed the Declaration of Helsinki.

TMS apparatus and EEG recording
Participants seated in a dark room, 57 cm from a com-
puter screen (36.5° × 27° of visual angle). Their head was
maintained using a chinrest and a headrest. A 70-mm fig-
mater using a chinrest and a headrest. A 70-mm fig-
surrounding the eyes. Biphasic TMS pulses were applied with a
Magstim Rapid2 stimulator of 3.5 Tesla (Magstim). EEG
brain tissue. Biphasic TMS pulses were applied with a
Magstim Rapid2 stimulator of 3.5 Tesla (Magstim). EEG
was acquired simultaneously with a 64-channels Active
Two Biosemi system, with DC recording at a sampling
rate of 1024 Hz. Additional electrodes, Common Mode
Sense (CMS) and Driven Right Leg (DRL), were placed
2 cm under the eyes of the participants and were used as
reference and ground, respectively, to minimize TMS-in-
duced EEG artifact. Finally, horizontal, and vertical elec-
tro-oculograms were recorded using three additional
electrodes placed around the eyes.

Experimental procedure
Phosphene screening and titration
Participants were selected based on their ability to per-
ceive TMS-induced phosphenes in the left visual field. A
train of seven pulses at 20 Hz and 70% of the TMS
machine output intensity, i.e., suprathreshold, was ap-
plied over the right occipital pole (i.e., V1/V2; Dugué et al.,
2011a; see also Dugué et al., 2016, 2019; Lin et al., 2021)
while participants kept fixating at a central fixation. 24% of
the participants did not perceive any phosphene (four out of 17) and were thus excluded from the main experi-
ment. For each remaining participant, an individual phos-
phene perception threshold was determined by applying
single pulses of TMS at varying intensities and asking
them to report (with their dominant hand) whether they
perceived a phosphene or not (left or right arrow on the
computer keyboard, respectively).

Experimental session
Participants performed four blocks of 200 trials each,
composed of 90% of test trials and 10% of catch trials (ran-
domly interleaved). In the test trials, single-pulse TMS was
applied at the perception threshold, on average across par-
cipants, phosphenes were perceived in 45.96 ± 7.68% of
trials. In the catch trials, the stimulation intensity was kept
the same, but instead of applying single pulses, double pulses
(40-ms interval) were administered to monitor the validity of
participants’ responses (91.66 ± 8.81% of phosphene per-
ceived). In other words, participants were presumably not
pressing the button randomly; the selected cortical location
did in fact lead to phosphene perception when stimulated.
Adding a second pulse of TMS with a short delay between
the two pulses has a cumulative effect on neural activity,
leading to suprathreshold stimulation (Ray et al., 1998;
Gerwig et al., 2005; Kammer and Baumann, 2010). The lon-
ger the delay between the two pulses, the most likely such
cumulative effect disappears, which in the present case
would lead for the participants to perceiving two pulses.
Debriefing with each participant confirmed that this was
never the case. Throughout the experiment, participants kept
fixating a central dot and pressed a button to start the trial
(Fig. 1). The delay between the button-press and the subse-
quently applied TMS pulse varied randomly between 1500 and
2500 ms. After a 600-ms delay following the pulse, a re-
sponse screen was displayed instructing the participants to
indicate whether they perceived a phosphene or not with the
left or right arrow, respectively. The percentage of phosphene
perceived was monitored every 20 trials. When above 75% or
below 25% of phosphene perceived in the test trials, the
experimenter repeated the threshold procedure to select an
intensity so as to maintain a threshold around 50% of phos-
phene perceived.

EEG analyses
EEG analyses were performed with EEGLAB 13.6.5
(Swartz Center for Computational Neuroscience, University
of California San Diego, California; Delorme and Makeig,
2004) and custom software written in MATLAB R2014b (The
MathWorks).

EEG preprocessing
EEG data for test trials and channel localizations were
imported into EEGLAB. EEG data were downsampled to
512 Hz, re-referenced to average reference, and epoched
from ~1500 to 1000 ms around the single-pulse of TMS. To
minimize the artifact induced by the pulse, EEG data from
Figure 1. Experimental paradigm. Participants self-initiated the trial by pressing a button. After a random delay between 1500 and 2500 ms, a single (90% of trials) or a double (10% of trials) pulse of TMS was applied over V1/V2. After a 600-ms delay, participants indicated whether they perceived the phosphene or not with the left or right arrow, respectively.

−1 to 150 ms around the pulse was erased and replaced with a linear interpolation of the window boundaries. Epochs were finally manually inspected and rejected if artifacts (e.g., blinks) were detected. No electrode was rejected from the analysis.

Time-frequency decomposition
A time-frequency transform (morlet wavelets) was computed on single trials with the timefreq function from EEGLAB. The “cycles” parameter was set to [1, 15], the length of the filter increasing logarithmically from 1 to 15 cycles. The “freqs” parameter was set to [2, 100], producing frequencies that increase from 2 to 100 Hz.

Trial sorting by bin of amplitude
We then sorted the trials according to the amplitude of prepulse, spontaneous, α oscillations. The amplitude at each time-frequency point and for each trial, participant, and electrode was thus calculated. It corresponds to the absolute of the complex vector obtained from the time-frequency decomposition. For each trial and participant, we then averaged the amplitude across all electrodes (we had no a priori hypothesis regarding the electrode location of the effect) and time-frequency points selected based on the previous publication (Dugué et al., 2011a), i.e., time-frequency points at which a significant effect of the prepulse phase on phosphene perception was observed (from −400 to −50 ms before the pulse to avoid postpulse contamination on prepulse activity, and from 7 to 17 Hz). Trials were then sorted in three equally sized bins of low-amplitude, medium-amplitude, and high-amplitude trials. The percentage of phosphene perceived was computed for each bin of amplitude. Kruskal–Wallis test was used to test for significant difference in phosphene perception across bins. The next analyses were performed on the two extreme bins, i.e., low and high amplitude, exclusively, to clearly separate the low-α and high-α amplitude trials (with no possibility of overlap) using the least number of bins necessary to maximize the number of trials per condition. There were on average across the nine participants 108 ± 17.92 trials for the perceived-phosphene and 115.56 ± 15.86 trials for the unperceived-phosphene condition for the low-α amplitude trials, and 98.56 ± 30 trials for the perceived-phosphene and 126.11 ± 29.73 trials for the unperceived-phosphene condition for the high-α amplitude trials.

Phase-opposition
We calculated the phase-locking values (i.e., amount of phase concentration across trials), separately for low-α and high-α amplitude trials, and perceived-phosphene and unperceived-phosphene trials. The phase-locking value was obtained by, first, dividing the complex vectors obtained from the time-frequency decomposition by their length (i.e., instantaneous amplitude) thus normalizing for amplitude and keeping only the instantaneous phase (i.e., angle of the vectors). Second, the mean across trials of the normalized vectors was computed. The length of the average vector is now a measure of phase distribution, i.e., phase-locking across trials. For each amplitude condition, we subsampled the number of trials in the phosphene condition with the most trials to match the phosphene condition with the least trials. This subsampling procedure was repeated 100 times with a different subset of selected trials, and then we averaged the iterations. For each participant, phase-locking values were then summed across perceived-phosphene and unperceived-phosphene trials to obtain phase-opposition sums (POSSs). POSSs were then averaged across all electrodes, separately for low-α and high-α amplitude trials.

This measure of phase opposition is designed to give a low value when summing over two conditions both with uniform (random) phase distributions. On the other hand, POSS is high when summing over two conditions both with strong phase-locked distributions across trials, as would happen when two conditions are associated with opposite phases. Since POSS is computed on spontaneous (prepulse) activity, i.e., the phase distribution across all trials can be assumed to be uniform (see below for further statistics), if the phase is locked across trials for one specific condition (half of the overall trials) then the phase of the other condition (other half of the overall trials) would logically be locked in the opposite direction, leading to a high POSS value.

This average was then compared with a surrogate distribution obtained with a permutation procedure (Dugué et al., 2011a, 2015; VanRullen, 2016b) consisting in shuffling the perceived-phosphene and unperceived-phosphene labels (5000 repetitions) and recalculating phase-locking values.
(including subsampling) to obtain a surrogate phase-locking distribution under the null hypothesis that both perceived-phosphene and unperceived-phosphene trials have a uniform phase distribution, and further summed across the two surrogate distributions to compute a surrogate POS, characterized by a given mean and SEM (Standard Error of the Mean; separate procedure for low-α and high-α amplitude). Z-scores were computed by comparing the experimentally obtained POS to the mean and SEM of the surrogate POS: Z-scores = (POS – surrogate POS mean)/surrogate POS SEM.

False discovery rate (FDR) correction for multiple comparisons was further applied to p-values. A topographical analysis on the z-scores revealed two regions of interest (ROIs) involved in the phase-opposition effect (occipital and frontal). We repeated the previous analyses for these regions.

Specific time-frequency points were then selected for further analyses. We selected the time points separately for occipital and frontal electrodes/ROIs for which Dugué et al. (2011a) observed the maximal phase effect between perceived-phosphene and unperceived-phosphene conditions at electrodes PO3 (in occipital ROI: −77 ms) and AFz (in frontal ROI: −40 ms), respectively. We selected the 10.7-Hz frequency for both occipital and frontal electrodes/ROIs based on the fast Fourier transform (FFT) performed on prepulse ERPs (see below), this frequency is identical to the frequency observed when performing FFTs on prepulse EEG time series (see below, FFT on prepulse EEG time series). Note that the frequency resolution differs between the wavelet decomposition and the FFT. Thus, for all wavelet decomposition related analyses, we used the closest frequency (10.7 Hz) to the peak observed in the FFT analyses (10.24 Hz).

We further ensured, at these selected time-frequency points, that the prepulse phase-opposition effect was not because of a contamination by the wavelet decomposition from the postpulse activity, separately for electrode PO3 and AFz. We thus tested whether the phase was uniformly distributed for both low-α and high-α amplitude trials. For each trial, phases were extracted and averaged across participants, separately for perceived-phosphene and unperceived-phosphene conditions, and the uniformity of the distribution across all trials was tested with a Rayleigh test from the Circular Statistics Toolbox (P. Berens, CircStat: A MATLAB Toolbox for Circular Statistics, Journal of Statistical Software, Volume 31, Issue 10, 2009 http://www.jstatsoft.org/v31/i10, Berens, 2009). For both amplitude conditions, and for both electrode PO3 (low-α amplitude trials: p = 0.081657, χ = 0.1883; high-α amplitude trials: p = 0.22314, χ = 0.13517) and electrode AFz (low-α amplitude trials, p = 0.65929, χ = 0.076575; high-α amplitude trials, p = 0.19943, χ = 0.14016), the tests did not reveal a significant effect suggesting that the phase was uniformly distributed across trials.

Finally, post hoc one-tailed t tests were performed to investigate whether POS, computed for each participant at the selected time-frequency points and averaged across electrodes for the occipital and the frontal ROI separately, differed significantly between low-α and high-α amplitude trials. This analysis was similarly performed for several versions of α amplitude binning (i.e., 2, 3, 4, and 5). On average across the nine participants, phosphene-conditions, and α-amplitude conditions, there were 167.94 ± 36.01 trials per bin in the two-bin version, 111.96 ± 24.29 trials in the three-bin version, 83.97 ± 18.41 trials in the four-bin version, and 67.18 ± 15.39 trials in the five-bin version.

FFT on prepulse EEG time series

To confirm further that the high-α as well as the low-α amplitude conditions both contained α oscillations, EEG time series from −600 to −1 ms were analyzed with an FFT (500 points zero padding), independently for the occipital and frontal ROI, for each α-amplitude condition, trial and participant. The resulting amplitude spectra were then averaged across trials and participants and plotted from 2 to 40 Hz. One-tailed t tests were used to compare individual 10.24-Hz peaks to their corresponding 1/f aperiodic component. The 10.24-Hz peaks were further compared between low-α and high-α amplitude conditions with one-tailed t tests. To ensure that the significant difference between the two conditions did not come from a difference in their aperiodic 1/f component, we also fitted the amplitude spectra to the 1/f component for each participant and compared the 1/f component at 10.24 Hz between low-α and high-α amplitude conditions with two-tailed t tests.

Simulations

The phase-opposition analysis between low-α and high-α amplitude trials could be because of an analysis confound, i.e., with decreasing amplitude, the robustness of the phase estimation decreases. Hence, a control procedure ensured that the phase estimation was not impacted by amplitude covariation, especially relevant when interpreting phase-opposition in low-α amplitude trials. A time-frequency decomposition and phase-opposition analysis, identical to the one described above (Fig. 2), was performed on a simulated dataset. Four electrophysiological datasets were simulated with similar properties as those observed in our empirical data: one for each experimental condition (300 trials each), i.e., perceived-phosphene and unperceived-phosphene for low-α and high-α amplitude conditions. Specifically, each trial was created as a sum of sine waves from 2 to 40 Hz. The amplitude of the simulated signal was determined based on the empirical data. For frequencies from 2 to 7 and 13 to 40 Hz, an amplitude of 100 arbitrary units (au) was chosen. For frequencies from 8 to 12 Hz, amplitudes varied depending on the simulated condition. For the low-α amplitude condition, we selected amplitudes of 280 au and 320 au for perceived-phosphene and unperceived-phosphene condition, respectively. For the high-α amplitude condition, we selected amplitudes of 580 and 620 au for perceived-phosphene and unperceived-phosphene conditions, respectively. A random phase between 0 and 2π was selected for frequencies from 2 to 7 and 13 to 40 Hz. For frequencies from 8 to 12 Hz, the phase varied depending on the simulated condition, i.e., [0, π] for perceived-phosphene for both low-α and high-α amplitude
conditions, and \(\pi \) for unperceived-phosphenes for both low-\(\alpha \) and high-\(\alpha \) amplitude conditions. This phase distribution was applied to 80% of trials. In the other 20% of trials, a random phase between 0 and 2\(\pi \) was selected.

Finally, white noise (VanRullen, 2016b) was added to all simulated datasets (amplitude: 4000 au) to match the empirically observed averaged \(z \)-score of phase-opposition (Fig. 2).

ERPs. Previously preprocessed EEG data were further cleaned from the power line noise by applying a notch filter at 50 Hz (band-stop at 47–53 Hz) before epoching. ERPs, centered on the pulse onset, were computed as the average of trials for each \(\alpha \)-amplitude condition, phosphene-perception condition, and participant. The difference of ERPs between perceived-phosphenes and unperceived-phosphenes conditions averaged across nine participants and all 64 electrodes. Colormap, \(Z \)-scores. Black outline, significant phase-opposition FDR corrected for multiple comparisons (FDR = 0.01, corresponding to \(p \)-values threshold of \(2.08 \times 10^{-5} \) for low-\(\alpha \) amplitude condition, and \(1.96 \times 10^{-5} \) for high-\(\alpha \) amplitude condition). There is a significant phase-opposition from –400 to –50 ms before the pulse, between 5 and 18 Hz when \(\alpha \) amplitude is high. The effect is less extended across time and frequencies when \(\alpha \) amplitude is low. B, \(Z \)-scores topographies averaged across the time-frequency window identified in panel A for high-\(\alpha \) amplitude. The effect is maximal in a frontal and an occipital ROI when \(\alpha \) amplitude is high. The topography is less clear when \(\alpha \) amplitude is low. White dots, electrodes of interest within each ROI. C, \(Z \)-scores maps of phase-opposition computed separately for the frontal ROI (upper panel) and the occipital ROI (lower panel).

Figure 2. The phase of spontaneous \(\alpha \) oscillations predicts phosphene perception mainly for high-\(\alpha \) amplitude. This figure is supported by Extended Data Figures 2-1, 2-2, 2-3. Upper panel, Phase-opposition computed, respectively, on high-\(\alpha \) amplitude trials. Lower panel, Low-\(\alpha \) amplitude trials. A, \(Z \)-scores map of phase-opposition between perceived-phosphenes and unperceived-phosphenes conditions averaged across nine participants and all 64 electrodes. Colormap, \(Z \)-scores. Black outline, significant phase-opposition FDR corrected for multiple comparisons (FDR = 0.01, corresponding to \(p \)-values threshold of \(2.08 \times 10^{-5} \) for low-\(\alpha \) amplitude condition, and \(1.96 \times 10^{-5} \) for high-\(\alpha \) amplitude condition). There is a significant phase-opposition from –400 to –50 ms before the pulse, between 5 and 18 Hz when \(\alpha \) amplitude is high. The effect is less extended across time and frequencies when \(\alpha \) amplitude is low. B, \(Z \)-scores topographies averaged across the time-frequency window identified in panel A for high-\(\alpha \) amplitude. The effect is maximal in a frontal and an occipital ROI when \(\alpha \) amplitude is high. The topography is less clear when \(\alpha \) amplitude is low. White dots, electrodes of interest within each ROI. C, \(Z \)-scores maps of phase-opposition computed separately for the frontal ROI (upper panel) and the occipital ROI (lower panel).

conditions, and \(\pi \) for unperceived-phosphenes for both low-\(\alpha \) and high-\(\alpha \) amplitude conditions. This phase distribution was applied to 80% of trials. In the other 20% of trials, a random phase between 0 and 2\(\pi \) was selected. Finally, white noise (VanRullen, 2016b) was added to all simulated datasets (amplitude: 4000 au) to match the empirically observed averaged \(z \)-score of phase-opposition (Fig. 2).

ERPs. Previously preprocessed EEG data were further cleaned from the power line noise by applying a notch filter at 50 Hz (band-stop at 47–53 Hz) before epoching. ERPs, centered on the pulse onset, were computed as the average of trials for each \(\alpha \)-amplitude condition, phosphene-perception condition, and participant. The difference of ERPs between perceived-phosphenes and unperceived-phosphenes conditions was computed, separately for low-\(\alpha \) and high-\(\alpha \) amplitude conditions. The ERP differences were then compared against zero with repeated measures one-tailed \(t \) tests (from 350 to 800 ms). Correction for multiple comparisons was applied following a cluster procedure. For each participant, surrogate ERPs were obtained by shuffling the perceived and unperceived phosphene labels (500 repetitions). \(t \) tests were recomputed similarly as before, and the number of consecutive significant time points (surrogate cluster size) for each repetition was stored. The \(p \)-value for each empirical cluster was then computed as the proportion of surrogate clusters that were larger than the empirical cluster. Using an \(\alpha \) level of 0.05, we considered an empirical cluster significant if its size was larger than at least 95% of the surrogate clusters.

FFT on prepulse ERPs

The use of TMS to induce phosphene perception rather than an external stimulation allows for direct access to the instantaneous state of the spontaneous brain oscillations. In other words, one can directly compute the prepulse ERP differences (time before pulse onset) between perceived-phosphenes and unperceived-phosphenes conditions, to assess spontaneous oscillatory activity. In this case, when comparing ERP differences between perceived-phosphenes and unperceived-phosphenes conditions, separately for low-\(\alpha \) and high-\(\alpha \) (presorted)
amplitude trials, there is no analysis confound coming from a less accurate phase estimation when \(\alpha \) amplitude is low. ERP differences from \(-400\) to \(0\) ms were then analyzed with an FFT (500 points zero padding), independently for electrodes PO3 and AFz, for each \(\alpha \)-amplitude condition and for each participant. The resulting amplitude spectra were then averaged across participants and plotted from 2 to 40 Hz (a peak at 10.24 Hz was observed for both electrodes and for each \(\alpha \)-amplitude condition). We then performed the following steps to test for a difference between high-\(\alpha \) and low-\(\alpha \) amplitude trials in the resulting amplitude spectra: (1) difference of the averaged amplitude spectra between high-\(\alpha \) and low-\(\alpha \) amplitude trials; (2) fit of this difference to the 1/f component; (3) removing of the 1/f component; (4) Gaussian fit of the resulting amplitude spectra to extract the frequency window showing a difference between high-\(\alpha \) and low-\(\alpha \) amplitude trials; (5) statistical comparison of the amplitude spectra (uncorrected for 1/f) between high-\(\alpha \) and low-\(\alpha \) amplitude trials conditions with a one-tailed \(t \) test. To ensure that the obtained significant difference between low-\(\alpha \) and high-\(\alpha \) amplitude conditions was not because of a difference in their 1/f aperiodic components, we fitted the amplitude spectra to their 1/f component and computed the area under the curve, for each participant, separately for low-\(\alpha \) and high-\(\alpha \) amplitude conditions, for both electrodes PO3 and AFz. The area under the curve of the low-\(\alpha \) amplitude condition was compared with the one of the high-\(\alpha \) amplitude condition with a two-tailed \(t \) test.

Finally, an FFT (500 points zero padding) was performed separately for the ERP of perceived-phosphene and unperceived-phosphene conditions on each participant. We then computed phase-locking values across participants to assess the interindividual variability at 10.24 Hz for low-\(\alpha \) and high-\(\alpha \) amplitude trials separately (frequency at which a peak of amplitude was observed in the amplitude spectra of the ERP difference between phosphene perceived and unperceived conditions). The sum of phase-locking values across participants of perceived-phosphene and unperceived-phosphene conditions was computed, for low-\(\alpha \) and high-\(\alpha \) amplitude trials separately, and evaluated statistically with a permutation procedure. \(P \) values were estimated by comparing these POSs to the mean and SEM of the surrogate distribution obtained by shuffling the perceived-phosphene and unperceived-phosphene labels (repeated 500 times), for low-\(\alpha \) and high-\(\alpha \) amplitude trials separately, before replicating the previous analysis on the surrogate ERPs.

FFT on postpulse ERPs

As mentioned above, the advantage of the present TMS procedure is that it allows for direct access to the instantaneous state of the spontaneous brain oscillations. In other words, pre pulse spontaneous activity is readily observable on the ERP. To ensure that postpulse ERPs were not contaminated by spontaneous \(\alpha \) oscillations (i.e., that the TMS pulse here reset \(\alpha \) oscillations), an FFT (500 points zero padding) was performed on the ERPs of the perceived-phosphene and unperceived-phosphene conditions, from 400 to 800 ms, for electrodes PO3 and AFz separately, and for each \(\alpha \)-amplitude condition and participant. One-tailed \(t \) tests against the aperiodic 1/f activity were used to test the significance of the 10.24-Hz peak.

Perceptual performance as a function of prepulse phase

Low-\(\alpha \) and high-\(\alpha \) amplitude trials were sorted in nine phase bins at the selected time-frequency points (see above, Phase-opposition), separately for the occipital ROI, as well as the specific electrode PO3 (\(-77\) ms, 10.7 Hz), and the frontal ROI, as well as the specific electrode AFz (\(-40\) ms, 10.7 Hz). The percentage of perceived-phosphene was computed for each phase bin, \(\alpha \)-amplitude condition, electrode, and participant, and further averaged across participants and electrodes. The values were finally normalized by dividing the percentage of perceived-phosphene averaged across phase bins, separately for each \(\alpha \)-amplitude condition. A two-way repeated-measures ANOVA was performed to test for the main effect of phase bin. The percentage of variance explained was computed as the difference between the optimal phase (maximum percentage of phosphene perceived) and the opposite one.

ERP amplitude as a function of prepulse phase

Bin sorting was applied as described in the previous section. Then, the ERP difference between perceived-phosphene and unperceived-phosphene conditions for each phase bin and \(\alpha \)-amplitude condition was computed. The maximum perceived-unperceived ERP difference was selected in the time window in which an ERP difference between low-\(\alpha \) and high-\(\alpha \) amplitude was detected, according to repeated measures two-tailed \(t \) test for each time point from 350 to 800 ms (PO3: from 482 to 513 ms; AFz: from 605 to 728 ms). A two-way repeated-measures ANOVA was performed to test for a main effect of phase bin and interaction between phase bin and \(\alpha \)-amplitude (results regarding the main effect of \(\alpha \)-amplitude were not interpreted). Specifically, we tested the hypotheses that (1) the ERP difference between perceived-phosphene and unperceived-phosphene conditions depended on the phase of spontaneous \(\alpha \) oscillation, and (2) that this phase effect is stronger for high-\(\alpha \) amplitude trials. Finally, we calculated the maximum ERP amplitude of the perceived-phosphene and unperceived-phosphene conditions separately, independently for phase bin centered on \(-\pi/4\) and \(\pi/2\), corresponding, respectively, to the maximum and the minimum ERP difference, and low-\(\alpha \) and high-\(\alpha \) amplitude trials. For each \(\alpha \)-amplitude condition, we fitted the data to a linear mixed-effect model with phase bins and phosphene conditions as fixed effects, and participants as random effects. Post hoc analyses were done with one-tailed \(t \) tests.

Results

Single-pulse TMS was applied over the right occipital cortex (V1/V2) in nine healthy participants, at threshold intensity (45.96 \(\pm\) 7.68% of phosphene perceived across participants) while simultaneously recording EEG. Previous analysis of this dataset (Dugué et al., 2011a) revealed that the phase of spontaneous \(\alpha \) oscillations in the time-
frequency window from −400 to −50 ms prepulse, and from 7 to 17 Hz, predicts the perceptual outcome. This phase effect explained ~15% of the variability in phosphene perception. Here, trials were split according to low-amplitude, medium-amplitude, and high-amplitude of the prepulse spontaneous α oscillations (within the same time frequency-window as in Dugué et al., 2011a). We tested the two predictions made by the pulsed inhibition theory: (1) high-α amplitude induces periodic inhibitory moments leading to poor perceptual performance; and (2) low-α amplitude is less susceptible to phasic inhibition, and lead to overall higher perceptual performance. We first analyzed phosphene detection for each α-amplitude condition. We observed that phosphene detection rate depends on α amplitude with the highest detection being in low-α (48.22 ± 4.88%) then medium-α (45.94 ± 7.92%), and high-α (43.75 ± 11.57%) amplitude trials (Kruskal–Wallis: p = 0.0553, Cohen’s d (effect size) = 0.88). Note that the earlier study (Dugué et al., 2011a) was not optimized to test the predictions made by the pulsed inhibition theory. However, the present results argue in its favor, with higher phosphene perception when α amplitude is low (Romei et al., 2008). In the next analyses, we discarded the medium-α amplitude trials to concentrate on the low-α and high-α amplitude conditions. This allowed us to clearly separate the two types of amplitude trials, while maximizing the number of trials per condition (see also Extended Data Fig. 2-1 for further assessment of such amplitude binning procedure).

To investigate the potential joint effect of the amplitude and the phase of spontaneous α oscillations on phosphene perception, we calculated POS (see Materials and Methods), separately for low-α and high-α amplitude conditions. Specifically, this analysis assesses whether phosphene perception is modulated by significantly different phases of the α cycle by computing the sum of phase-locking values (i.e., the amount of phase concentration across trials) over the perceived-phosphenes and unperceived-phosphenes conditions (Dugué et al., 2011a,b, 2015; VanRullen, 2016b). Spontaneous activity is characterized by a uniform phase distribution across all trials. Thus, if the phase is locked across trials for the perceived-phosphenes condition (approximately half of the overall trials) then the phase of the unperceived-phosphenes condition (other half of the overall trials) will logically be locked in the opposite direction, leading to a strong POS. Conversely, a weak POS value can only be obtained if both perceived and unperceived-phosphenes conditions have near-random phase distributions, i.e., if phase does not affect phosphene perception. For high-α amplitude (Fig. 2, top raw), this analysis revealed a strong phase-orientation between perceived-phosphenes and unperceived-phosphenes conditions across all participants and electrodes, from −400 to −50 ms prepulse, and in the frequency range from 5 to 18 Hz (Fig. 2A). This effect remained significant after FDR correction for multiple comparisons (FDR = 0.01, corresponding to a z-score threshold of 4.27, a p-value threshold of 1.96 × 10^-5, and a Cohen’s d threshold approaching infinity). The corresponding topography revealed that the phase-orientation effect was maximal over occipital and frontal electrodes (Fig. 2B,C). The analysis was replicated on low-α amplitude trials (Fig. 2, bottom raw). The overall strength of the effect was less important, i.e., effect less extended across time and frequency, for low-α amplitude trials (remained significant after FDR correction, FDR = 0.01, corresponding to a z-score threshold of 4.26, a p-value threshold of 2.08 × 10^-5, and a Cohen’s d approaching infinity), and showed a less informative topography of the effect. A post hoc analysis revealed that POS values, averaged across electrodes, separately for the occipital and frontal ROIs at the respective selected time-frequency points (see Materials and Methods), were significantly higher for high-α compared with low-α amplitude trials at (10.7 Hz, −77 ms) for the occipital ROI (one-tailed t-test: p = 0.0016, Cohen’s d = 1.9645, CI = [0.042; infinity]); Extended Data Fig. 2-1B and at (10.7 Hz, −40 ms) for the frontal ROI (one-tailed t-test: p < 0.001, Cohen’s d = 2.1165, CI = [0.0457; infinity]); Extended Data Fig. 2-1F). Together, these results suggest that there is an optimal phase of spontaneous α oscillations that predicts phosphene perception. This phase effect is more robust across time and across frequencies and is significantly higher for high-α compared with low-α amplitude trials. Interestingly, Extended Data Fig. 2-1 further illustrates the impact of several binning versions of the previous analysis (from two to five bins). In all versions, there is a difference of POS between low-α and high-α amplitude trials (one-tailed t-tests for all binning versions show ps < 0.004 and Cohen’s ds > 1.27). However, increasing the number of bins decreases the number of trials in each bin. Consequently, all main analyses were performed on the three-bin version (excluding the middle bin) to clearly separate low-α and high-α amplitude trials while maximizing the number of trials per condition.

To ensure that the difference in phase effect observed between low-α and high-α amplitude trials does not depend on a poor estimation of the phase when α amplitude is low, we performed a control analysis based on simulations (Extended Data Fig. 2-2). The phase-opposition analysis displayed in Figure 2 was repeated on simulated data generated with the same parameters (amplitude ratio between low-α and high-α amplitude trials) than those observed in the empirical dataset (for more details, see Materials and Methods). The simulations show that in both the low-α and high-α amplitude conditions, POS between perceived-phosphene and unperceived-phosphene trials can be observed with similar time-frequency profiles. Thus, the effect observed in Figure 2 cannot be simply explained by an underpowered phase estimation in low-α amplitude trials but indeed reflects a functional neurophysiological brain process. In addition, we tested that α oscillations are actually present in prepulse, low-α amplitude trials (Extended Data Fig. 2-3). An FFT on the prepulse EEG activity revealed a peak at 10.24 Hz in the occipital ROI for both low-α (one-tailed t-test against the 1/f aperiodic activity: \(p = 0.0354 \), Cohen’s d = 0.7371, CI = [11.7481; infinity]) and high-α (\(p = 0.0102 \), Cohen’s d = 0.9999, CI = [60.0927; infinity]) amplitude trials, and in...
the frontal ROI for both low-α (p = 0.0465, Cohen’s $d = 0.6668$, CI = [1.6258; infinity]) and high-α (p = 0.0162, Cohen’s $d = 0.9527$, CI = [29.2137; infinity]) amplitude trials. This analysis confirms that estimating the phase in low-α amplitude trials is indeed neurophysiologically relevant. Additionally, the peak at 10.24 Hz was significantly higher for high-α compared with low-α amplitude trials, for both the occipital (one-tailed t test: $p = 0.0268$, Cohen’s $d = 0.2176$, CI = [6.8434; infinity]) and the frontal ($p = 0.0316$, Cohen’s $d = 0.2485$, CI = [4.1668; infinity]) ROI. This difference was unlikely because of a difference in the 1/f aperiodic activity between low-α and high-α amplitude conditions, i.e., there was no significant difference in the 1/f component at 10.24 Hz between low-α and high-α amplitude conditions for the occipital (two-tailed t tests: $p = 0.2362$; Cohen’s $d = 0.1893$, CI = [-9.8442; 34.4352]) and the frontal ($p = 0.0867$, Cohen’s $d = 0.3361$, CI = [-2.5463; 30.6516]) ROI.

To further understand the link between prepulse spontaneous α oscillatory phase and amplitude, cortical excitability and phosphene perception, and address further a possible confound coming from a less accurate phase estimation when α amplitude is low (see Materials and Methods), we analyzed the ERP difference between perceived-phosphen and unperceived-phosphen conditions. Critically, the use of TMS to induce phosphene perception allows for direct access to the instantaneous state of the spontaneous brain oscillations. In other words, the prepulse ERP differences (time before pulse onset) between perceived-phosphen and unperceived-phosphen conditions, allows to assess spontaneous oscillatory activity. Thus, if there is an optimal phase for perception and an opposite, nonoptimal one, then for each participant the prepulse ERP for perceived-phosphen and for unperceived-phosphen should each oscillate in α, and so would the ERP difference. Additionally, if all participants share the same optimal phase, then the prepulse ERP difference averaged across participants should oscillate in α as well. We analyzed the ERP difference between perceived-phosphen and unperceived-phosphen conditions for electrodes PO3 and AFz (selected, respectively, in the occipital and frontal ROIs based on previous studies; Taylor et al., 2010; Dugué et al., 2011a; Fig. 3). For both electrodes and for both low-α and high-α amplitude trials, the ERP difference appeared periodic in the last 400 ms preceding the pulse (note that both low-α and high-α amplitude conditions show this effect). An FFT applied on the ERP difference of each participant in the prepulse period (–400–0 ms) showed a peak in amplitude for both electrode PO3 (10.24 Hz for both low-α and high-α amplitude; Fig. 4A) and electrode AFz (10.24 Hz for low-α and 9.22 Hz for high-α amplitude; Fig. 4B). Additionally, the amplitude of the prepulse oscillatory difference between perceived-phosphen and unperceived-phosphen was significantly higher for high-α amplitude compared with low-α amplitude trials, for the frequency window from 5.12 to 11.26 Hz for PO3 (one-tailed t test: $p = 0.044$, Cohen’s $d = 0.361$, CI = [0.813; infinity]; see Materials and Methods), and from 7.16 to 10.24 Hz for AFz ($p = 0.039$, Cohen’s $d = 0.241$, CI = [0.786; infinity]). This difference was unlikely because of a difference in the 1/f aperiodic activity between low-α and high-α amplitude conditions as their aperiodic activity did not differ significantly, neither for electrode PO3 (two-tailed t test: $p = 0.063$, Cohen’s $d = 0.3131$, CI = [-13.8069; 414.8763]) nor AFz (two-tailed t test: $p = 0.806$, Cohen’s $d = 0.0264$, CI = [-76.8006; 95.8066]). To further assess the interindividual variability, we calculated the sum of phase-locking values across participants at 10.24 Hz for perceived-phosphen and unperceived-phosphen conditions, separately for low-α and high-α amplitude trials, and for PO3 and AFz electrodes. In other words, we ask whether the prepulse ERP for each condition oscillates in-phase across all participants, and are in phase-opposition between perceived-phosphen and unperceived-phosphen conditions. We found that there is a phase-opposition between perceived-phosphen and unperceived-phosphen conditions for the electrode PO3, for high-α amplitude trials (permutation statistics: z-score = 1.9794, $p = 0.0239$, Cohen’s $d = 1.756$), but not for low-α amplitude trials (z-score = 0.9856, $p = 0.1622$, Cohen’s $d = 0.6957$), nor for AFz low-α (z-score = 0.2059, $p =...
0.4184, Cohen’s $d = 0.1375$) and high-α (z-score = 1.169, $p = 0.1212$, Cohen’s $d = 0.8462$) amplitude. Phosphene perception depends on an optimal phase of α oscillation at the occipital electrode PO3, when α amplitude is high. Together, these analyses suggest that phosphene perception alternates between optimal and nonoptimal phases of the α (10.24 Hz) oscillations in the 400-ms window before the pulse, with all participants sharing a similar optimal phase. This phase effect is predominant in the occipital region, and stronger when the α amplitude is high.

Next, for each participant, we sorted low-α and high-α amplitude trials in nine bins according to the prepulse EEG phase, for the selected time-frequency points (occipital ROI: ~ 77 ms, 10.7 Hz; frontal ROI: ~ 40 ms, 10.7 Hz). Then, the percentage of phosphene perceived was calculated for each bin and averaged across participants (Fig. 5). A two-way repeated-measures ANOVA revealed a significant effect of the phase in both the occipital ($F_{(1,8)} = 2.117$, $p = 0.0467$, $\eta^2 = 0.4967$, CI = [0.002; infinity]; unperceived: $p = 0.7648$, SS = 0.294) or AFz ($F_{(1,8)} = 0.002$, $p = 0.9224$, SS = 0.9224, $\eta^2 = 0.001$), and no interaction for either electrode PO3 ($F_{(1,8)} = 0.612$, $p = 0.5164$, $\eta^2 = 0.2045$, CI = [0.001; infinity]; unperceived: $p = 0.9244$, Cohen’s $d = 0.1212$, Cohen’s $d = 0.8462$) amplitude. Phosphene perception is centered on 10.24 Hz in the postpulse ERP amplitude spectra, in both low-α and high-α amplitude trials averaged across frequency window from 5.12 to 11.26 Hz for electrode PO3, and from 7.16 to 10.24 Hz for electrode AFz (one-tailed t tests: $p = 0.044$ for PO3, $p = 0.039$ for AFz). Frequency peak at 10.24 Hz for both low-α and high-α amplitude for electrode PO3; at 10.24 Hz for low-α and 9.22 Hz for high-α amplitude for electrode AFz.

Figure 4. The prepulse ERP difference between perceived-phosphene and unperceived-phosphene conditions oscillates in α. A, Frequency spectra computed on the ERP difference between perceived-phosphene and unperceived-phosphene conditions, on the prepulse period from -400 to 0 ms, respectively, for electrode PO3, and, B, electrode AFz. Red color, high-α amplitude trials; blue color, low-α amplitude trials. Colored solid lines, frequency spectra averaged across the nine participants between 2 and 40 Hz. Shaded area, SEM. Dotted rectangle, significant difference between high-α and low-α amplitude trials averaged across frequency window from 5.12 to 11.26 Hz for electrode PO3, and from 7.16 to 10.24 Hz for electrode AFz (one-tailed t tests: $p = 0.044$ for PO3, $p = 0.039$ for AFz). Frequency peak at 10.24 Hz for both low-α and high-α amplitude for electrode PO3; at 10.24 Hz for low-α and 9.22 Hz for high-α amplitude for electrode AFz.
Phosphene perception is plotted according to the instantaneous phase at $\pi/2$ ms, 10.7 Hz, for the occipital ROI. Phosphene perception oscillates along with the α phase (two-way repeated-measures ANOVA: $F_{(1,8)} = 2.117$, $p = 0.0467$, $\eta^2 = 20.93$), with an optimal phase for phosphene perception at the phase $\pi/2$ of the α cycle. The percentage of variance explained by the phase is more important for high-α (16.9% difference between $\pi/2$ and $-\pi/2$) compared with low-α (13.3%) trials. B. Phosphene perception is plotted according to the instantaneous phase at -40 ms, 10.7 Hz for the frontal ROI. Phosphene perception oscillates along with the α phase (two-way repeated-measures ANOVA: $F_{(1,8)} = 3.360$, $p = 0.0028$, $\eta^2 = 29.58$), with an optimal phase for phosphene perception at the phase $\pi/2$ of the α cycle. The percentage of variance explained by the phase is more important for high-α (21.2% difference between $\pi/2$ and $-\pi/2$) compared with low-α (17.6%) α trials.
PO3. Specifically, we observed a higher ERP difference at \(-\pi/4\), i.e., around the nonoptimal phase for phosphene perception, for the electrode PO3. This effect seems to come from an increased ERP in perceived-phosphene trials specifically. Indeed, we extracted the peak of the ERP for low-\(\alpha\) and high-\(\alpha\) amplitude trials, at \(-\pi/4\) and \(\pi/2\) phases of the \(\alpha\) cycle, corresponding, respectively, to the maximum and minimum ERP difference observed (see Fig. 5A), separately for perceived-phosphene and unperceived-ERPs, for the nine participants (Fig. 6B). We implemented two linear mixed effects models, one for each \(\alpha\)-amplitude condition. In each model, we entered as fixed effects the phase \(-\pi/4, \pi/2\), the phosphene condition (perceived, unperceived), as well as their interaction. As random effect, we had participants’ intercepts and slopes for the effect of phase and phosphene condition.

Figure 6. The ERP is higher for perceived-phosphene trials at the nonoptimal phase for phosphene perception, for the electrode PO3. Left panels, ERP difference between perceived-phosphene and unperceived-phosphene conditions computed for nine phase bins, and averaged across the nine participants, for low-\(\alpha\) amplitude trials. Right panels, For high-\(\alpha\) amplitude trials. A, Single trials were sorted into nine phase bins according to the instantaneous phase at \(-77\) ms, 10.7 Hz, for the electrode PO3. For each phase bin, the maximum perceived-unperceived ERP difference was computed. Errors bars, SEM. The ERP difference oscillates along with the \(\alpha\) phase \(F(1,8)=2.338, p=0.0286, \eta^2=22.62\). The ERP difference was higher at the phase \(-\pi/4\). B, ERP for the perceived-phosphene and unperceived-phosphene conditions, for the electrode PO3, for the phase \(-\pi/4\) and \(\pi/2\). P., perceived-; Unp., unperceived-phosphene conditions. Gray dots, maximum ERP for each participant; white dots, averaged ERP across the nine participants. The maximum ERP at the phase \(-\pi/4\) for perceived-phosphene trials was significantly higher compared with unperceived-phosphene trials at the phase \(-\pi/4\) for both low-\(\alpha\) (one-tailed \(t\) test, \(p=0.0265\)) and high-\(\alpha\) (\(p=0.0074\)) amplitude trials type, and compared with unperceived-phosphene trials at the phase \(\pi/2\) for both low-\(\alpha\) (\(p=0.0254\)) and high-\(\alpha\) (\(p=0.0253\)) amplitude trials type. C, Single trials were sorted into nine phase bins according to the instantaneous phase at \(-40\) ms, 10.7 Hz, for the electrode AFz. For each phase bin, the maximum perceived-unperceived ERP difference was computed. Errors bars, SEM.
amplitude conditions, and a significant interaction between the phosphenome condition and the phase for both low-\(\alpha\) and high-\(\alpha\) amplitude conditions. A post hoc analysis showed that the ERP difference at \(-\pi/4\) for perceived-phosphene trials was significantly higher compared with unperceived-phosphene trials at \(-\pi/4\) for both low-\(\alpha\) (one-tailed \(t\) test, \(t_{(32)} = -2.313, p = 0.0273, \text{estimate} = -8.833 \pm 3.82, \text{SE}\)) amplitude conditions, and a significant interaction between the phosphenome condition and the phase for both low-\(\alpha\) and high-\(\alpha\) amplitude conditions. Thus, around \(-\pi/4\) for perceived-phosphene trials specifically. Together, our results provide strong evidence in favor of the pulsed inhibition theory by establishing a causal link between the amplitude of spontaneous \(\alpha\) oscillations, cortical excitability, and subsequent perceptual performance.

2 Phase-amplitude tradeoffs on cortical excitability

We observed that the phase and the amplitude of spontaneous \(\alpha\) oscillations influence cortical excitability, only when there is subsequent perception. Indeed, a phase between \(-\pi/2\) and \(-\pi/4\) led to higher ERP exclusively for phosphene perception trials. Interestingly, this phase was also associated with lower perceptual performance. The nonoptimal phase of the \(\alpha\) oscillations (between \(-\pi/2\) and \(-\pi/4\)) tends to create periodic inhibitory cortical states favoring the absence of phosphene perception, which leads to a greater ERP response when a phosphene is in fact perceived. It is important to notice that the paradigm developed by Dugué et al. (2011a) was designed to specifically investigate the role of the phase of \(\alpha\) oscillations (and not the phase-amplitude tradeoffs). However, the results are compelling and in line with other studies observing similar effects (Bonnefond and Jensen, 2015; Hussain et al., 2019; and others comparing high-\(\alpha\) amplitude to the absence of \(\alpha\) oscillations: Schaworonkow et al., 2018, 2019; Stefanou et al., 2018; Zrenner et al., 2018; Bergmann et al., 2019). In the motor modality, they used single-pulse TMS over the motor cortex to induce MEPs allowing to estimate corticospinal excitability. They found an increase in corticospinal excitability and the subsequent MEP for high-\(\mu\) amplitude oscillations (i.e., \(\alpha\) oscillations observed in somatosensory and motor areas) and for specific \(\mu\) phases (Schaworonkow et al., 2018, 2019; Stefanou et al., 2018; Zrenner et al., 2018; Bergmann et al., 2019; Hussain et al., 2019). Bonnefond and Jensen (2015) alternatively analyzed the power of high \(\gamma\) oscillations (80–120 Hz) considered to reflects neuronal firing (Ray et al., 2008). They showed that \(\gamma\) power was weaker at the trough of high-\(\alpha\) amplitude oscillations (Bonnefond and Jensen, 2015). As predicted by the pulsed inhibition theory, high-\(\alpha\) amplitude modulates cortical and corticospinal excitability periodically. Interestingly, although the pulsed inhibition theory (Jensen and Mazaheri, 2010) originally proposed asymmetrical pulsed inhibition (i.e., inhibition at one particular phase and no inhibition at the opposite one), Bergmann et al. (2019) argued in favor of asymmetrical pulsed facilitation. Indeed, they assessed the role of the GABAergic system, considered the main
source of inhibition in the brain (Ribak and Yan, 2000), on the amplitude and phase of α oscillations, and did not observe any relation. The symmetry/asymmetry hypothesis was not explicitly assessed in the present study. Further investigation is thus necessary to disentangle the three possibilities: (1) symmetric pulsed inhibition and facilitation; (2) asymmetrical pulsed inhibition; or (3) asymmetrical pulsed facilitation.

α, A top-down process?

Our results show a potential functional link between the occipital and the frontal lobes. Several authors have proposed that α carries feedback information (van Kerkoerle et al., 2014; Michalareas et al., 2016) and that the amplitude of occipital α oscillations is modulated by top-down connections from frontoparietal regions (Klimesch et al., 2007; Mathewson et al., 2011). Here, we can speculate that the frontal region plays a role in the emergence of inhibitory and excitatory moments in occipital cortex. Specifically, their top-down influence on the amplitude of α oscillations would enhance or reduce locally the effect of the phase of occipital α oscillations on perceptual performance, thus explaining that the link between the phase and the amplitude of α oscillations and cortical excitability (ERP) was only present in the occipital ROI. In addition, the previous study from which the data originate (Dugué et al., 2011a) shows that the time at which the phase predicted the perceptual outcome differed by nearly one-half α-cycle between the occipital (~77 ms) and the frontal (~40 ms) ROI. This difference may reflect the delay for neural information to be transferred from one brain region to the other, consistent with previous observations of an α phase difference between occipital and frontal regions during visual perception (Burkitt et al., 2000; Patten et al., 2012; Alamia and VanRullen, 2019; Pang et al., 2020; Tsoneva et al., 2021). Further studies are warranted to investigate the functional interplay between the frontal and occipital cortex in the context of the pulsed inhibition theory.

In conclusion, our study provides strong causal evidence in favor of tradeoffs between the phase and the amplitude of α oscillations to create periodic inhibitory moments leading to rhythms in perception. As predicted by the pulsed inhibition theory, the effect of the phase of spontaneous α oscillations on perception increases for larger α amplitude.

References

Ai L, Ro T (2014) The phase of prestimulus alpha oscillations affects tactile perception. J Neurophysiol 111:1300–1307.
Alamia A, VanRullen R (2019) Alpha oscillations and traveling waves: signatures of predictive coding? PLoS Biol 17: e3000487.
Alexander KE, Estepp JR, Elbaasiny SM (2020) Effects of neuronnic shuffer observed in the EEG alpha rhythm. eNeuro 7: ENEURO.0171-20.2020–14.
Berens P (2009) CircStat: a MATLAB toolbox for circular statistics. J Stat Softw 31:1–21.
Bergmann TO, Lieb A, Zrenner C, Ziemann U (2019) Pulsed facilitation of corticospinal excitability by the sensorimotor μ-alpha rhythm. J Neurosci 39:10034–10043.
Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci 28:9976–9988.
Bonnefond M, Jensen O (2015) Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One 10(3):e0128671.
Burkitt GR, Silberstein RB, Cadusch PJ, Wood AW (2000) Steady-state visual evoked potentials and travelling waves. Clin Neurophysiol 111:246–258.
Busch NA, VanRullen R (2010) Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci USA 107:16048–16053.
Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29:7869–7876.
Clayton MS, Yeung N, Cohen Kadosh R (2018) The many characters of visual alpha oscillations. Eur J Neurosci 48:2498–2508.
Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21.
Dugué L, VanRullen R (2017) Transcranial magnetic stimulation reveals intrinsic perceptual and attentional rhythms. Front Neurosci 11:1–7.
Dugué L, Marque P, VanRullen R (2011a) The phase of ongoing oscillations mediates the causal relation between brain excitation and visual perception. J Neurosci 31:11889–11893.
Dugué L, Marque P, VanRullen R (2011b) Transcranial magnetic stimulation reveals attentional feedback to area V1 during serial visual search. PLoS One 6:e19712.
Dugué L, Marque P, VanRullen R (2015) Theta oscillations modulate attentional search performance periodically. J Cogn Neurosci 27:945–958.
Dugué L, Roberts M, Carrasco M (2016) Attention reorients periodically. Curr Biol 26:1595–1601.
Dugué L, Beck AA, Marque P, VanRullen R (2019) Contribution of FEF to attentional periodicity during visual search: a TMS study. eNeuro 6:ENEURO.0357–18.2019–10.
Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20:376–383.
Gerwig M, Niehaus L, Kastrup O, Stude P, Diener HC (2005) Visual cortex excitability in migraine evaluated by single and paired magnetic stimuli. Headache 45:1394–1399.
Goldman RI, Stern JM, Engel J, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487–2492.
Haegens S, Nácher V, Luna R, Romo R, Jensen O (2011) α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmic inhibition of neuronal spiking. Proc Natl Acad Sci USA 108:19377–19382.
Haegens S, Barczak A, Musachcia G, Lipton ML, Mehta AD, Lakatos P, Schroeder CE (2015) Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. J Neurosci 35:14341–14352.
Händel BF, Haarmeier T, Jensen O (2011) Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci 23:2494–2502.
Harris AM, Dux PE, Mattingley JB (2018) Detecting unattended stimuli depends on the phase of prestimulus neural oscillations. J Neurosci 38:3092–3101.
Herrmann B, Henry MJ, Haegens S, Oleseaer J (2016) Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. Neuroimage 124:487–497.
Hussain SJ, Claudino L, Bönstrup M, Norato G, Cruciani G, Thompson R, Zrenner C, Ziemann U, Buch E, Cohen LG (2019) Sensorimotor oscillatory phase-power interaction gates resting human corticospinal output. Cereb Cortex 29:3766–3777.
Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:1–13.
