DOUBLE EPW SEXTICS ASSOCIATED TO GUSHEL-MUKAI SURFACES

PIETRO BERI

Abstract. Works by O’Grady allow to associate to a 2-dimensional Gushel-Mukai variety, which is a K3 surface, a double EPW sextic. We characterize the K3 surfaces whose associated double EPW sextic is smooth. As a consequence, we are able to produce symplectic actions on some families of smooth double EPW sextics which are hyper-Kähler manifolds.

We also provide bounds for the automorphism group of Gushel-Mukai varieties in dimension 2 and higher.

1. Introduction

Double EPW sextics are an important family of hyper-Kähler manifolds i.e. compact simply connected Kähler manifolds with a unique, up to scalar, holomorphic two-form, which is everywhere non-degenerate. The linebase example of hyper-Kähler manifolds are K3 surfaces; a classical example are double covers of \(\mathbb{P}^2\). Double EPW sextics are a generalization of it, as they come with a structure of double covers of special sextic hypersurfaces in \(\mathbb{P}^5\), the so-called EPW sextics.

In Section 2 we present the main objects that come into play. The basis of the theory of double EPW sextics has been developed by O’Grady in an influential series of papers. Already from [29], an important connection is observed between (double) EPW sextics and ordinary 2-dimensional Gushel-Mukai (GM) varieties, complete intersections of a linear space and a quadric hypersurface inside a Grassmannian. This link has been successively extended to higher-dimensional GM varieties by Iliev and Manivel in [18] and then developed in detail by Debarre and Kuznetsov, in a series of papers that lay the groundwork for an extensive study of the beautiful and intricate interplay between the two families.

A natural question about this relation is: can we give conditions on a GM variety to be associated to a double EPW sextic which is smooth? Indeed, whenever the double cover is smooth, it is a hyper-Kähler manifold.

In Section 3 we answer this question for 2-dimensional GM varieties, which are Brill-Noether general \((10)\)-polarized K3 surfaces. We provide an answer in terms of geometry and in terms of period: the following result summarizes Theorem 3.2 and Theorem 3.3.

Theorem 1.1. The double EPW sextic associated to a strongly smooth K3 surface \(S = \mathbb{P}^6 \cap G(2, V_5) \cap Q\) is smooth if and only if \(S\) contains neither lines nor quintic elliptic pencils. Equivalently, a \((10)\)-polarized K3 surface is associated to a double EPW sextic which is a hyper-Kähler manifold if and only if it does not lie in six (explicitly described) divisors in the corresponding moduli space.

The author is supported by the ERC Synergy Grant ERC-2020-SyG-854361-HyperK.
This result relies on the tools provided by Debarre and Kuznetsov which we presented in Section 2 as well as on a careful description of the involution acting on the moduli space of EPW sextics, described for the first time by O'Grady [30]. It is interesting to note that smoothness was already known in the very general case, but Theorem 1.1 holds without any general assumption: eliminating the hypothesis of very generality is usually a challenging problem and we believe that our result is interesting in this spirit.

As an application of Theorem 1.1, in Section 4 we produce symplectic actions for various groups on families of double EPW sextics which are hyper-Kähler, from lattice-theoretic considerations on automorphisms of K3 surfaces.

Section 5 is devoted to finding bounds for the automorphism group of GM varieties and on actions of groups on EPW sextics. For example, in Proposition 5.2 we show that the automorphism group of S is a finite subgroup of $PGL(2,\mathbb{C})$ and can only be symplectic; we also provide some results for GM varieties in higher dimension. Most of these results are obtained by studying the automorphism group of Fano varieties containing a GM variety.

A previous version of this paper contained some results about lifting automorphisms of EPW sextics to their double cover; in the meanwhile, a much stronger result has been obtained by Kuznetsov in [8], see Proposition 2.10. We used this result to simplify the proof of Proposition 4.2 and to prove the symplecticity of the automorphism group of a strongly smooth K3 surface in \mathbb{P}^6, see Proposition 5.2.

Acknowledgments: Most of the results of this paper are part of my PhD thesis. I am grateful to Alessandra Sarti for her constant support, for the supervision of this work and for many useful discussions. I would like to thank Giovanni Mongardi, Enrico Fatighenti and Simone Novario for many interesting discussions. Finally I would also like to thank the anonymous referee for many helpful comments and suggestions.

1.1. Notations. Let X be a topological space. A property holds for $x \in X$ general if the condition is satisfied by all the points inside an open subset of X. A property holds for $x \in X$ very general if the condition is satisfied by all the points in the complement of a countable union of closed subspaces inside X.

Given a complex vector space V, the Grassmannian of k-dimensional vector subspaces in V will be denoted by $G(k,V)$; every Grassmannian we consider will be embedded in the projective space $\mathbb{P}(\bigwedge^k V)$ via the Plücker embedding. Non-zero decomposable vectors in $\mathbb{P}(\bigwedge^k V)$ are elements that lie in $G(k,V)$.

Definition 1.2. Consider $V_5 \cong \mathbb{C}^5$. Following [18], for $v \in V_5 - \{0\}$ we call Pfaffian quadric P_v the symmetric bilinear form $x \mapsto \text{vol}(v \wedge x \wedge x)$ on $\bigwedge^2 V_5$.

The Grassmannian is the intersection of all the Pfaffian quadrics; since $\ker(P_v) = v \wedge V_5$, every Pfaffian quadric P_v has rank 6.

An automorphism α on a hyper-Kähler manifold X is symplectic if it acts trivially on a 2-form on X, non-symplectic otherwise. We always consider $H^2(X,\mathbb{Z})$ endowed with the Beauville-Bogomolov (BB) form. A $(2t)$-polarization is a polarization whose square is $2t$ with respect to the BB form. We write $S^{[2]}$ for the Hilbert square on a K3 surface S. For any $H \in \text{NS}(S)$, we
denote by H_2 the induced class on $S^{[2]}$ and by $\delta \in \text{NS}(S^{[2]})$ the class of the divisor such that 2δ parametrizes non-reduced subschemes.

2. EPW sextics and Gushel-Mukai varieties

2.1. EPW sextics. O’Grady provided slightly different points of view on the construction of Eisenbud-Popescu-Walter sextics, see for example [29], [32] and [31]; here we follow mainly [31], with a view to [3], by Debarre and Kuznetsov.

Let V_6 be a 6-dimensional vector space over \mathbb{C}, on which we fix a volume form $\Lambda^6 V_6 \cong \mathbb{C}$, which in turns induces a symplectic form ω on $\Lambda^3 V_6$.

In [9, Example 9.3], Eisenbud, Popescu and Walter introduced the Lagrangian subbundle F of $\mathcal{O}_{\mathbb{P}(V_6)} \otimes \Lambda^3 V_6$, whose fiber over $[v]$ is $F_v = v \wedge \Lambda^2 V_6$.

Given $v \in V_6 - \{0\}$, we can fix a decomposition $V_6 \cong \mathbb{C}v \oplus V_5$ for some hyperplane $V_5 \subset V_6$, which induces $\Lambda^3 V_6 \cong \Lambda^3 V_5 \oplus F_v$. Every element of F_v can be written in the form $v \wedge \eta$ for some $\eta \in \Lambda^2 V_5$ and this induces an isomorphism of vector spaces

\begin{equation}
\rho: F_v \cong \bigwedge^2 V_5
\end{equation}

\begin{equation}
v \wedge \eta \mapsto \eta.
\end{equation}

This observation will be useful later.

We call $LG(\Lambda^3 V_6) \subset G(10, \Lambda^3 V_6)$ the symplectic Grassmannian, parametrizing Lagrangian subspaces with respect to the symplectic form on $\Lambda^3 V_6$; since two volume forms differ by a non-zero constant, $LG(\Lambda^3 V_6)$ does not depend on the choice of the volume form. From now on, $A \in LG(\Lambda^3 V_6)$ will be a Lagrangian subspace in $\Lambda^3 V_6$ such that $\mathbb{P}(A) \cap G(3, V_6) = \emptyset$.

For a fixed A, we consider the map of vector bundles $\lambda_A: F \to \mathcal{O}_{\mathbb{P}(V_6)} \otimes A^\vee$ such that $(\lambda_A)_v(x) = \omega(x, -)_{|A}$ for every $[v] \in \mathbb{P}(V_6)$. Since A is a Lagrangian subspace, the map is injective on $[v] \in \mathbb{P}(V_6)$ if and only if $F_v \cap A = 0$. Since $\text{rk}(F) = \text{rk}(\mathcal{O}_{\mathbb{P}(V_6)} \otimes A^\vee)$, we can consider the map $\det(\lambda_A): \det(F) \to \det(\mathcal{O}_{\mathbb{P}(V_6)} \otimes A^\vee)$.

Definition 2.1. The determinantal variety $Y_A = Z(\det(\lambda_A))$ is a sextic hypersurface (see [29, (1.8)]) called Eisenbud Popescu Walter (EPW) sextic.

We also associate to A a stratification of $\mathbb{P}(V_6)$: for $k \geq 0$ we define

\begin{equation}
Y_A^{\geq k} = \{ [v] \in \mathbb{P}(V_6) | \dim(F_v \cap A) \geq k \};
\end{equation}

\begin{equation}
Y_A^k = \{ [v] \in \mathbb{P}(V_6) | \dim(F_v \cap A) = k \}.
\end{equation}

The sets $Y_A^{\geq k}$ are degeneracy loci and are thus endowed with a natural structure of scheme. For every k, the variety $Y_A^{\geq k+1}$ is a closed subvariety of $Y_A^{\geq k}$ and clearly $Y_A = Y_A^{\geq 1}$.

Proposition 2.2. If $\mathbb{P}(A) \cap G(3, V_6) = \emptyset$, then Y_A is integral and normal and $\text{Sing}(Y_A) = Y_A^{\geq 2}$. Moreover $Y_A^{\geq 2}$ is a normal integral surface whose singular locus is $Y_A^{\geq 3}$ which in turn is finite; when smooth, the surface $Y_A^{\geq 2}$ is of general type. Finally $Y_A^{\geq 4} = \emptyset$.

Proof. Integrality and normality for Y_A follow from $\text{Sing}(Y_A) = Y_A^{\geq 2}$. For the rest, see [31, Corollary 2.5], [31, Proposition 2.9], [32, Claim 3.7], [2, Theorem B.2] and [10, Proposition 1.10].
The situation can be much more complicated for EPW sextics associated to a Lagrangian subspace \(A \) which contains a non-zero decomposable vector, however for our scope we will not need to deal with them.

2.2. The dual EPW sextic.

One interesting feature of EPW sextics is that they admit a dual counterpart. The volume form on \(V_6^3 \) induces a volume form on \(V_6^\vee \) too, and thus a symplectic form on \(\bigwedge^3 V_6^\vee \cong (\bigwedge^3 V_6)^\vee \), hence for \(A \in LG(\bigwedge^3 V_6) \) we also have

\[
A^\perp = \{ \phi \in \bigwedge^3 V_6^\vee | \phi(a) = 0 \text{ for every } a \in A \} \in LG((\bigwedge^3 V_6)^\vee);
\]

\(\mathbb{P}(A) \cap G(3, V_6) = \emptyset \) if and only if \(\mathbb{P}(A^\perp) \cap G(3, V_6^\vee) = \emptyset \), see [31, Section 2.6].

Definition 2.3. We call dual EPW sextic the EPW sextic associated to \(A^\perp \).

When \(\mathbb{P}(A) \cap G(3, V_6) = \emptyset \), the hypersurfaces \(Y_A \subset \mathbb{P}(V_6) \) and \(Y_{A^\perp} \subset \mathbb{P}(V_6^\vee) \) are projectively dual; this has been proved by O’Grady, see also [2, Proposition B.3].

As showed in [31, Section 2.6], the EPW strata associated to \(A^\perp \) can also be described as

\[
Y_{A^\perp}^{\geq k} = \{ [V_5] \in \mathbb{P}(V_6^\vee) | \dim(\bigwedge^3 V_5 \cap A) \geq k \}
\]

Definition 2.4. We denote by

\[
\Sigma = \{ A \in LG(\bigwedge^3 V_6) | \mathbb{P}(A) \cap G(3, V_6) \neq \emptyset \}
\]

the set of Lagrangian subspaces \(A \) admitting a non-zero decomposable vector, by

\[
\Delta = \{ A \in LG(\bigwedge^3 V_6) | Y_A^{\geq 3} \neq \emptyset \}
\]

the set of Lagrangian subspaces whose third stratum is not empty, and by

\[
\Pi = \{ A \in LG(\bigwedge^3 V_6) | Y_{A^\perp}^{\geq 3} \neq \emptyset \}
\]

the set of Lagrangian subspaces \(A \in LG(\bigwedge^3 V_6) \) such that the third stratum associated to the dual Lagrangian \(A^\perp \) is not empty.

Following O’Grady, we write \(LG(\bigwedge^3 V_6)^0 = LG(\bigwedge^3 V_6) - (\Delta \cup \Sigma) \).

The subsets \(\Sigma, \Delta, \Pi \) descend to distinct irreducible divisors in \(LG(\bigwedge^3 V_6)/PGL(6) \), see [31, Proposition 3.1 Item 1] and [32, Proposition 2.2]. We denote their quotients in the same way.

Proposition 2.5. [2, Proposition B.8] If \(A \notin \Sigma \), the automorphism group of \(Y_A \) is \(\{ \alpha \in PGL(V_6) | (\bigwedge^3 \alpha)(A) = A \} \). In particular every \(\alpha \in \text{Aut}(Y_A) \) fixes \(Y_A^k \) for every \(k \geq 0 \).

From now on we always identify \(PGL(V_6) \) and \(PGL(V_6^\vee) \) through the natural isomorphism sending \(\phi \in PGL(V_6) \) to \((\phi^{-1})^\vee \), which maps \([V_5] \) to \([\phi(V_5)] \).

Corollary 2.6. If \(A \notin \Sigma \), then \(\text{Aut}(Y_A) = \text{Aut}(Y_{A^\perp}) \).
2.3. Double EPW sextics. The importance of EPW sextics stems mostly from the fact that, in the general case, they admit a ramified double cover which is a hyper-Kähler manifold, as was proved by O’Grady in [29]. We also refer to [3, Theorem 5.2, Item 1]).

We denote by \(R = \text{Coker}(\lambda_A)|_{Y_A} \) the first Lagrangian cointersection sheaf; it is a reflexive sheaf, see [29, Proposition 4.3, Item 1]).

Theorem 2.7. (O’Grady) Consider \(A \in \mathbb{L}G(\bigwedge^3 V_6) \) such that \(\mathbb{P}(A) \cap G(3, V_6) = \emptyset \). Then there is a unique double cover \(f_A : X_A \to Y_A \) with branch locus \(Y_A^{\geq 2} \) such that

\[
(f_A)_*\mathcal{O}_{X_A} \cong \mathcal{O}_{Y_A} \oplus R(-3),
\]

The variety \(X_A \) is integral and normal, and its singular locus is \(f_A^{-1}(Y_A^3) \).

A double cover of \(Y_A \) can be constructed even when \(\mathbb{P}(A) \cap G(3, V_6) \neq \emptyset \), provided that \(Y_A \neq \mathbb{P}(V_6) \). However, in this case \(X_A \) is never smooth.

Definition 2.8. We call double EPW sextic the double cover \(X_A \), and we denote by \(\iota_A \) the associated covering involution.

Theorem 2.9. [32, Theorem 4.25] Suppose that \(X_A \) is smooth i.e. \(A \in \mathbb{L}G(\bigwedge^3 V_6)^0 \). Then \(X_A \) is a hyper-Kähler manifold equivalent by deformation to the Hilbert square on a K3 surface. The involution \(\iota_A \) is non-symplectic.

The ample class \(D_A = f_A^*\mathcal{O}_{Y_A}(1) \in \text{NS}(X_A) \) is the only primitive polarization on \(X_A \) coming from \(Y_A \), by Lefschetz hyperplane theorem. It has square 2 with respect to the BB form; the general element, inside the moduli space \(\mathcal{M}_2 \) (see appendix A for a definition) is isomorphic to \((X_A, D_A) \) for some \(A \in \mathbb{L}G(\bigwedge^3 V_6)^0 \).

We denote by \(\text{Aut}_{D_A}(X_A) \subseteq \text{Aut}(X_A) \) the group of automorphisms fixing \(D_A \), or equivalently commuting with \(\iota_A \). There is a short exact sequence

\[
1 \to \{\text{id}, \iota_A\} \to \text{Aut}_{D_A}(X_A) \to \text{Aut}(Y_A) \to 1.
\]

Proposition 2.10. [8, Proposition A.2] The sequence (5) splits, so \(\text{Aut}_{D_A}(X_A) \cong \text{Aut}(Y_A) \times \{\text{id}, \iota_A\} \). When \(X_A \) is smooth, under this isomorphism \(\text{Aut}(Y_A) \) is the group of symplectic automorphisms fixing the polarization \(D_A \).

2.4. Gushel-Mukai varieties. In this section we introduce Gushel-Mukai varieties and in the next one we explain how they admit an associated EPW sextic. We fix a 5-dimensional complex vector space \(V_5 \). For the following definition and results we refer to [2, Definition 2.1].

Definition 2.11. Consider a vector subspace \(W \subseteq \bigwedge^2 V_6 \) of dimension \(\dim W \geq 6 \), and a quadric hypersurface \(Q \subset \mathbb{P}(W) \). We call ordinary Gushel-Mukai (GM) intersection the scheme

\[
Z = \mathbb{P}(W) \cap G(2, V_6) \cap Q.
\]

It is an ordinary GM variety if \(Z \) is integral and \(\dim(Z) = \dim(W) - 5 \).

When \(Z \) is a GM variety, it is a complete intersection inside \(G(2, V_5) \) and has degree 10 in \(\mathbb{P}(W) \).

If \(\dim(Z) \geq 3 \), \(Z \) is a Fano variety of index \(n - 2 \) (see for example [2, Theorem 2.3]). If \(\dim(Z) = 2 \), let \(H \) be the polarization given by \(\mathcal{O}_{\mathbb{P}(W)}(1) \); the polarized variety \((Z, H)\) is a Brill-Noether general K3 surface, see [25], also [20, Theorem 10.3]. The converse holds under a technical condition, which is strongly smoothness.
Definition 2.12. Let $Z = \mathbb{P}(W) \cap G(2, V_5) \cap Q$ be an ordinary n-dimensional GM variety. The Grassmannian hull of Z is the $(n+1)$-dimensional intersection $M_Z = \mathbb{P}(W) \cap G(2, V_5)$. We say that Z is strongly smooth if both Z and M_Z are dimensionally transverse and smooth.

Although GM curves exist, here we never deal with them, since they are never strongly smooth or, equivalently, their associated double EPW sextics are never smooth, as we will see later (Theorem 2.17).

If Z is strongly smooth, its Grassmannian hull has Picard rank 1 by the Lefschetz hyperplane theorem. For every Brill-Noether general $K3$ surface (S, H), the projective model $\phi_H(S)$ is a smooth ordinary GM variety of dimension 2, provided that it is strongly smooth (see Remark 2.19 below), whereas smoothness and strongly smoothness are equivalent when $n \geq 3$.

Definition 2.13. An isomorphism between $Z = \mathbb{P}(W) \cap G(2, V_5) \cap Q$ and $Z' = \mathbb{P}(W') \cap G(2, V'_5) \cap Q'$ is a linear map $\phi: \mathbb{P}(W) \to \mathbb{P}(W')$ such that $\phi(Z) = Z'$. We denote by $\text{Aut}(Z, \mathbb{P}(W))$ the group of automorphisms of Z.

By the Lefschetz hyperplane theorem, a smooth GM variety Z of dimension at least 3 has Picard rank 1. So, in this case, $\text{Aut}(Z, \mathbb{P}(W))$ is the whole automorphism group of Z as an abstract variety.

Debarre and Kuznetsov provided an intrinsic characterization of normal GM varieties in [2, Theorem 2.3]; this leads to the definition of GM data, which are a set of linear data which can be associated to any normal GM variety. These collections of objects are very useful to handle.

Definition 2.14. Ordinary GM data $(W, V_6, V_5, \mu, q, \epsilon)$ of dimension n consists of (we set $L = (V_6/V_5)^\vee$ for readability)

- a $(n+5)$-dimensional vector space W;
- a 6-dimensional vector space V_6;
- a hyperplane V_5 of V_6;
- an injective linear map $\mu: W \otimes L \hookrightarrow \Lambda^2 V_5$;
- a linear map $q: V_6 \to S^2 W^\vee$;
- a linear isomorphism $\epsilon: \Lambda^5 V_5 \to L \otimes 2$.

such that, for all $v \in V_5$, $w_1, w_2 \in W$,

$$q(v)(w_1, w_2) = \epsilon(v \wedge \mu(w_1) \wedge \mu(w_2)).$$

Definition 2.15. An isomorphism between two ordinary GM data sets $(W, V_6, V_5, \mu, q, \epsilon)$ and $(W', V'_6, V'_5, \mu', q', \epsilon')$ is a triple of linear isomorphisms $\phi_W: W \to W'$, $\phi_V: V_6 \to V'_6$, $\phi_L: L \to L'$ such that $\phi_V(V_5) = V'_5$, $\epsilon' \circ \Lambda^5 \phi_V = \phi_L \otimes 2 \circ \epsilon$, and the following diagrams commute

$$
\begin{array}{ccc}
V_6 & \xrightarrow{q} & \text{Sym}^2 W^\vee \\
\phi_V \downarrow & & \downarrow \text{Sym}^2 \phi_V \\
V'_6 & \xrightarrow{q'} & \text{Sym}^2 (W')^\vee
\end{array}
$$

$$
\begin{array}{ccc}
W \otimes L & \xrightarrow{\mu} & \Lambda^2 V_5 \\
\phi_W \otimes \phi_L \downarrow & & \downarrow \Lambda^2 (\phi_V | V_5) \\
W' \otimes L' & \xrightarrow{\mu'} & \Lambda^2 V'_5
\end{array}
$$

Debarre and Kuznetsov showed in [2, Section 2.1] how to associate a set of GM data $(W, V_6, V_5, \mu, q, \epsilon)$ to a normal GM variety and to GM data a GM intersection which a priori may not be a normal variety; when it is the case, the two
constructions are mutually inverse and behave well with respect to the definition of isomorphisms. To keep the exposition readable, we refer to their paper for the explicit correspondence.

Finally, we point out that another class of GM intersections, special GM intersections, exist, see for example [2, Section 2.5].

2.5. A correspondence between data sets. Debarre and Kuznetsov defined another set of data. Everytime we consider a 6-dimensional complex vector space V_6, we endow it with a volume form, which induces a symplectic form on $\bigwedge^3 V_6$.

Definition 2.16. An ordinary Lagrangian data is a collection (V_6, V_5, A), where

- V_6 is a 6-dimensional complex vector space,
- $V_5 \subset V_6$ is a hyperplane,
- $A \in LG(\bigwedge^3 V_6)$ is a Lagrangian subspace.

The ordinary Lagrangian data (V_6, V_5, A) and (V_6', V_5', A') are isomorphic if there is a linear isomorphism $\phi : V_6 \to V_6'$ such that $\phi(V_5) = V_5'$ and $(\bigwedge^3 \phi)(A) = A'$.

The next result, by Debarre and Kuznetsov, sums up the results by O'Grady, [29, Section 5 and Section 6], [32, Section 4], in dimension 2 and Iliev and Manivel, [18, Section 2] in dimension 5 and [18, Section 4] in dimension 3, 4.

Theorem 2.17. For $n \in \{1, \ldots, 5\}$, there is a bijection between the set of isomorphism classes of Lagrangian data sets (V_6, V_5, A), with

- $\mathbb{P}(A) \cap G(3, V_6) = \emptyset$
- $[V_5] \in Y_{A^4}^{n-4}$

and isomorphism classes of strongly smooth ordinary GM varieties of dimension n. In particular, there are no strongly smooth ordinary GM curves.

Proof. See [2, Theorem 3.6] and [2, Theorem 3.16]. For $n = 1$, recall that A^4 admits non-zero decomposable elements if and only if A does. Then we only need to observe that $Y_{A^4}^{n-4} = \emptyset$ by Proposition 2.2. \qed

It is interesting to note that the construction works for non strongly smooth GM varieties, but in that case A always admits non-zero decomposable elements.

Definition 2.18. Given some Lagrangian data (V_6, V_5, A), the associated ordinary GM variety is the GM intersection Z obtained by Theorem 2.17 from (V_6, V_5, A).

When not otherwise specified, we write $Z = \mathbb{P}(W) \cap G(2, V_5) \cap Q$ where Q is the projective quadric associated to $q(x)$ for any $x \in V_6 - V_5$.

Given a strongly smooth ordinary GM variety Z we denote by $A(Z)$ the Lagrangian subspace associated to Z by Theorem 2.17.

Remark 2.19. Strongly smooth special GM varieties of dimension 2 do not exist by [2, Remark 3.17], and Proposition 2.2.

For any (V_6, V_5, A) and $p \geq 2$, there is a short exact sequence

$$0 \to \bigwedge^p V_5 \to \bigwedge^p V_6 \xrightarrow{\lambda_p} \bigwedge^{p-1} V_5 \otimes L^p \to 0$$

The following two remarks will be useful in the proof of Theorem 3.2 in the frame of the study of 2-dimensional GM varieties: although the relation between the latter and EPW sextics is already clear in [29] and [32], the use of GM data allows a very precise study.
Remark 2.20. Given some Lagrangian data \((V_6, V_5, A)\), Theorem 2.17 allows to describe explicitly the associated ordinary GM variety \(Z \subseteq P(\Lambda^3 V_5)\). We fix \(x \in V_6 - V_5\), hence an isomorphism \(\Lambda^3 V_6 \cong \Lambda^3 V_5 \oplus F_x\). Under this isomorphism and \((1)\), the sequence \((8)\) for \(p = 3\) becomes

\[
0 \to \Lambda^3 V_5 \to \Lambda^3 V_6 \cong \Lambda^3 V_5 \oplus F_x \xrightarrow{\lambda_3} \Lambda^2 V_5 \to 0.
\]

For \(p = 4\) the sequence \((8)\) can be rewritten as \(0 \to \Lambda^4 V_5 \to \Lambda^4 V_6 \xrightarrow{\lambda_4} \Lambda^3 V_5 \to 0\) as well. We will thus consider \(W\) as a subspace of \(\Lambda^2 V_5\) and we identify \(\Lambda^3 V_5\) with \(\mathbb{C}\) through the volume form on \(V_6\). Then \(W = \lambda_3(A)\). As for the quadric hypersurface, we call \(Q(x)\) the projective quadric hypersurface associated to \(q(x) \in \text{Sym}^2 W^\vee\). We have \(Z = M_2 \cap Q(x)\). Consider \(w \in W\): since \(W = \lambda_3(A)\), there is \(\eta \in \Lambda^3 V_5\) such that \(\eta + x \wedge w \in A\). By definition of \(q : V_6 \to \text{Sym}^2 W^\vee\) given in Theorem 2.17, the element \(w = \lambda_3(\eta + x \wedge w)\) lies in \(Q(x)\) if and only if \(\eta \wedge w = \lambda_4(x \wedge \eta) \wedge w = 0\).

Remark 2.21. Consider instead some ordinary GM intersection \(Z = P(W) \cap G(2, V_5) \cap Q\), with associated GM data \((W, V_6, V_5, q, \epsilon)\). We consider again \(W \subseteq \Lambda^2 V_5 \otimes L^x\), and \(x \in V_6 - V_5\) such that \(Q = Q(x)\). As above \(\Lambda^3 V_6 \cong \Lambda^3 V_5 \oplus F_x\) and \((9)\) holds. Also \(\Lambda^3 V_5 \cong (\Lambda^2 V_5)^\vee\) via \(\epsilon : \Lambda^3 V_5 \to L^x \otimes W^\vee\) and \(A(Z)\) is

\[
\left\{(\eta, w) \in \Lambda^3 V_5 \otimes W \mid w \in W, \epsilon(\eta \wedge \mu(z))w = -(q(x)(w, -) \otimes [x])\right\}.
\]

Now we forget \(\epsilon\), we consider again \(W \subseteq \Lambda^2 V_5\) and \(\Lambda^3 V_5\) as \((\Lambda^2 V_5)^\vee\). We have then a splitting sequence \(0 \to W^\perp \to (\Lambda^2 V_5)^\vee \to \text{Sym}^2 W^\vee \to 0\). Putting all together we can rewrite \(A(Z) \subset W^\perp \oplus \text{Sym}^2 W^\vee \oplus F_x\) as

\[
\left\{((\xi, -q(x)(w, -), x \wedge w) \in W^\perp \oplus \text{Sym}^2 W^\vee \oplus F_x \mid \xi \in W^\perp, w \in W\right\}.
\]

From this description, under the identification \(\Lambda^3 V_5 \cong (\Lambda^2 V_5)^\vee\) we have \(A(Z) \cap \Lambda^3 V_5 = W^\perp\) by [2, Proposition 3.13, Item a)].

Consider the linear map \(x \wedge W \to \text{Sym}^2 W^\vee\) that sends \(x \wedge w\) to \(-q(x)(w, -)\): its graph \(\Gamma_x \subset \text{Sym}^2 W^\vee \oplus W\) induces a decomposition \(A(Z) = W^\perp \oplus \Gamma_x \subset W^\perp \oplus \text{Sym}^2 W^\vee \oplus F_x\).

3. K3 surfaces whose associated double EPW sextic is smooth

We denote by \(K_{10}\) the moduli space of \((10)\)-polarized K3 surfaces.

Definition 3.1. The divisor \(D_{x,y} \subset K_{10}\) is the locus of pairs \((S, H)\) such that there exists a primitive sublattice \(ZH + ZD \subseteq \text{NS}(S)\) whose Gram matrix is

\[
\begin{bmatrix}
10 & x \\
x & y
\end{bmatrix}.
\]

In this section we want to find precise conditions on a Brill-Noether general, \((10)\)-polarized, K3 surface such that the associated double EPW sextic \(X_{A(S)}\) is a hyper-Kähler manifold.

We answer this question in two ways, as a condition on curves on the embedded K3 surface (Theorem 3.2) and as a divisorial condition on \(K_{10}\) (Theorem 3.3). In particular, thanks to Theorem 3.3, finding whether \(X_{A(S)}\) is smooth becomes a lattice-theoretic problem on \(\text{NS}(S)\).

Theorem 3.2. Let \(S = P(W) \cap G(2, V_5) \cap Q\) be a \((10)\)-polarized K3 surface. The double cover \(X_{A(S)}\) of the associated EPW sextic \(Y_{A(S)}\) is smooth if and only if \(S\) is strongly smooth and contains neither lines nor quintic elliptic pencils.
We recall that \((S, H) \in \mathcal{K}_{10}\) is Brill-Noether general if and only if the projective model of \((S, H)\) is a smooth ordinary Gushel-Mukai variety of dimension two.

From now on, we see a Brill-Noether general \((S, H) \in \mathcal{K}_{10}\) as a smooth ordinary Gushel-Mukai 2-dimensional variety \(S = \mathbb{P}(W) \cap G(2, V_5) \cap Q\), with Grassmannian hull \(M_S = \mathbb{P}(W) \cap G(2, V_5)\).

Theorem 3.3. Let \((S, H) \in \mathcal{K}_{10}\) be a \((10)\)-polarized K3 surface. If \((S, H)\) is Brill-Noether general, let \(A(S) \in \mathbb{L}G(\Lambda^3 V_6)\) be the Lagrangian subspace associated to \((S, H)\). Then

1) \((S, H)\) is Brill-Noether general if and only if \((S, H) \notin D_{h,0}\) for \(h \in \{1, 2, 3\}\);
2) if \((S, H)\) is Brill-Noether general, then \((S, H)\) is strongly smooth if and only if \(A(S) \notin \Sigma\), if and only if \((S, H) \notin D_{4,0}\).

Moreover, if \((S, H)\) is strongly smooth, then \(A(S) \in \mathbb{L}G(\Lambda^3 V_6)^0\) if and only if \((S, H) \notin D_{1,-2}\).

3) \(Y^3_{A(S)} \cap \mathbb{P}(V_5) = \emptyset\) if and only if \((S, H) \notin D_{1,-2}\);
4) \(Y^3_{A(S)} - \mathbb{P}(V_5) = \emptyset\) if and only if \((S, H) \notin D_{5,0}\).

Grassmannian hulls \(M_S\) of strongly smooth Brill-Noether general K3 surfaces are isomorphic, see [19] or [32, Proposition 5.2, Item 3]). We need a characterization of the lines inside \(M_S\). For \(v \in V_5 - \{0\}\) and \(v \in V_3 \subseteq V_5\) with \(V_3 \cong \mathbb{C}^3\), we set \(L_{v, V_3} = \{v \wedge t \mid t \in V_5\}\). Every line in \(G(2, V_5)\), hence in \(M_S\), is of the form \(\mathbb{P}(L_{v, V_3})\).

Lemma 3.4. Consider \(v \in V_5 - \{0\}\). There exists a three dimensional vector space \(V_3 \ni v\) such that the line \(\mathbb{P}(L_{v,V_3}) \subset G(2, V_5)\) is contained in \(M_S\) if and only if \(\ker(P_v) \cap W\) has dimension exactly 2. In this case \(L_{v, V_3} = \ker(P_v) \cap W\).

Proof. We fix a decomposition \(V_5 = \mathbb{C}v \oplus U\); we know that \(\ker(P_v) = v \wedge U\), hence \(L_{v, V_3} \subset \ker(P_v)\) for any \(V_3 \ni v\). If \(\ker(P_v) \cap W\) has dimension 2, its projectivization is a line on \(M_S\) of the form \(\mathbb{P}(L_{v, V_3})\). Conversely, if \(\mathbb{P}(L_{v, V_3}) \subset M_S\) then \(L_{v, V_3} \subset W \cap \ker(P_v)\), in particular \(\dim(W \cap \ker(P_v)) \geq 2\). The dimension is exactly 2, or \(M_S\) would contain a plane, which is absurd since \(M_S\) has Picard rank 1.

When a GM variety \(Z\) is strongly smooth, for \(v \in V_5 - \{0\}\) the kernel of the Pfaffian quadric \((P_v)|_W\) is \(\ker(P_v) \cap W\) and its corank is at least \(\dim(W) - 6\). For \(x \notin V_6\) the kernel of \(q(x)\) is computed in [2, Proposition 3.13], Item b).

Proof of Theorem 3.2. The proof consists of three parts. We already know, from Section 2.5, that strongly smoothness is a necessary condition to have \(X_{A(S)}\) smooth. We need to prove \(A(S) \notin \Delta\) i.e. \(Y^3_{A(S)} = \emptyset\).

\(S\) contains no line if and only if \(Y^3_{A(S)} \cap \mathbb{P}(V_5) = \emptyset\). Fix \(x \in V_6 - V_5\), so that \(S = M_S \cap Q(x)\), with \(Q(x)\) the projective quadric associated to \(q(x)\); as in Remark 2.20 we have \(\Lambda^3 V_6 \cong (\Lambda^2 V_5)^\vee \oplus F_x\) and a linear map \(\lambda_3 : (\Lambda^2 V_5)^\vee \oplus F_x \to \Lambda^3 V_5\) sending \((\phi, x \wedge w)\) to \(w\).

For \(v \in V_5 - \{0\}\) we fix a decomposition \(V_5 = \mathbb{C}v \oplus U\). Since \(F_v = (v \wedge \Lambda^2 U) \oplus v \wedge U\), we can write

\[
\lambda_3(A) = W \quad \lambda_3(F_v) = v \wedge U \quad \ker((P_v)_W) = (v \wedge U) \cap W.
\]
We have $A \cap (\wedge^2 V_5)^\vee = W^\perp$ by Remark 2.21; we can also write $F_v \cap (\wedge^2 V_5)^\vee = v \wedge \wedge^2 U = \ker(P_v)^\perp$ and by (9),

\[(11) \quad \dim(A \cap F_v) = \dim(\lambda_3(A \cap F_v)) + \dim(A \cap F_v \cap (\wedge^2 V_5)^\vee).\]

We have $\lambda_3(A \cap F_v) \subseteq \ker(P_v) \cap W$. The dimension of $\ker(P_v) \cap W$ is at most 2, see Lemma 3.4, in particular:

1. If $\dim(\ker(P_v) \cap W) = 2$, then $\ker(P_v) + W$ has dimension 9, hence there is only one hyperplane containing both of them, so $\dim(W^\perp \cap \ker(P_v)^\perp) = 1$;

2. If $\dim(\ker(P_v) \cap W) = 1$, then $\ker(P_v) + W = \wedge^2 V_5$ and $W^\perp \cap \ker(P_v)^\perp = 0$.

By (11), since $A \cap F_v \cap (\wedge^2 V_5)^\vee = W^\perp \cap \ker(P_v)^\perp$ in order to obtain $\dim(A \cap F_v) = 3$ we must consider all the $v \in V_5$ for which (1) above holds. For such a v we have $\lambda_3(A \cap F_v) = \lambda_3(A) \cap \lambda_3(F_v)$, so that the RHS of (11) can be 3. The line $\ell = \mathbb{P}(\lambda_3(A \cap F_v))$ lies in M_S, so we only need to prove $\ell \subset Q(x)$. By Remark 2.20, we know that $q(x)(w, w) = 0$ if and only if there exists $\eta \in \wedge^3 V_5$ such that $\eta + x \wedge w \in A$ and $\eta \wedge w = 0$. Consider any $v \wedge u$ inside $\lambda_3(A \cap F_v)$: by hypothesis, there exists $\eta \in \wedge^3 V_5$ such that $\eta + x \wedge v \wedge u \in A \cap F_v$. This means that $\eta \in F_v$, so $\eta + x \wedge v \wedge u = 0$. In particular $v \wedge u \in Q(x)$, hence the whole line $\mathbb{P}(\lambda_3(A \cap F_v))$ is contained in S.

On the other hand, if $\mathbb{P}(L_{v_2}, V_3) \subset S$ for some $v \in V_5$, by Lemma 3.4 we also have $L_{v_2} \cap V_5 = \ker(P_v) \cap W \cong C^2$, hence there is some non-zero $\eta \in W^\perp \cap \ker(P_v)^\perp$. Then to prove $[v] \in Y_3^A \cap \mathbb{P}(V_5)$ we need $\lambda_3(A \cap F_v) = \lambda_3(A) \cap \lambda_3(F_v) = W \cap \ker(P_v)$.

Consider $v \wedge u \in W \cap \ker(P_v)$. We use (10): under the decomposition $(\wedge^2 V_5)^\vee \cong W^\perp + W^\vee$, the element

$$\alpha = (0, -q(x)(v \wedge u, -), x \wedge v \wedge u) \in W^\perp + W^\vee + F_x$$

lies in A and $\lambda_3(\alpha) = v \wedge u$. To prove that $\alpha \in F_v$, so that we have $v \wedge u \in \lambda_3(A \cap F_v)$, we show $\alpha \wedge \eta = 0$ for every $\eta \in F_v$, then we can conclude, since F_v is Lagrangian. As α is zero on the first component, we are left to prove $0 = \alpha \wedge \eta = -q(x)(v \wedge u, \eta)$ for $\eta \in F_v \cap W = L_{v_2} \cap V_5$. By hypothesis $\mathbb{P}(L_{v_2}, V_3) \subset S \subset Q(x)$: this happens if and only if $q(x)_{L_{v_2} \times L_{v_2} \cap V_5} = 0$ and in particular $q(x)(v \wedge u, -) = 0$ on $L_{v_2} \cap V_5$.

If $Y_3^A \subset \mathbb{P}(V_5) \neq \emptyset$, then S contains a quintic elliptic pencil. Consider $[x] \in Y_3^A \subset \mathbb{P}(V_5)$, so that S is the transverse intersection of M_S and $Q(x)$: by [2, Proposition 3.13, Item b)] the corank of $q(x)$ is 3.

The quadric $Q(x)$ is a cone of $\mathbb{P}(\ker(q(x))) = \mathbb{P}(A \cap F_x)$ over a smooth quadric surface $Q \subset \mathbb{P}^3$, the latter has two families of lines on it and two lines inside Q intersect if and only if they do not lie in the same family. Let $\{\ell_t\}_{t \in \mathbb{P}^1}$ be one of the two families. The cone of $\mathbb{P}(\ker(q(x)))$ over ℓ_t is a \mathbb{P}^4 which we denote by π_t. By transversality, the intersection $M_S \cap \pi_t = S \cap \pi_t$ is a degree-5 curve on S.

Consider now $(\pi_t \cap S)$ and $(x \cap S)$ for $t \neq t'$. We have $\pi_t \cap \pi_{t'} = \mathbb{P}(\ker(q(x)))$, as ℓ_t and $\ell_{t'}$ are in the same family, so $(\pi_t \cap S) \cap (\pi_{t'} \cap S) = \mathbb{P}(\ker(q(x))) \cap S$. But the latter is empty, since $\mathbb{P}(\ker(q(x))) = \text{Sing}(Q(x))$ and S is smooth. So the pencil $\{S \cap \pi_t\}_{t \in \mathbb{P}^1}$ is elliptic.

If S contains a quintic elliptic pencil, then $Y_3^A \subset \mathbb{P}(V_5) \neq \emptyset$. We call $E \subset N_S(S)$ the class of the elliptic pencil: the sublattice $\mathbb{Z}H + \mathbb{Z}E = K \subset N_S(S)$ has Gram matrix
The orthogonal complement of H in K is generated by $\kappa = H - 2E$; we denote by κ_2 the corresponding class in $\text{NS}(S[2])$.

From now on, we consider notations and results from appendix A. Following that, we call e, f two canonical generators of a copy of U, moreover e_1, f_1 will be the canonical generators of a second copy of U, orthogonal to the first one. By Eichler Criterion [16, Proposition 3.3], there is an isometry $\psi : H^2(S[2], \mathbb{Z}) \to \Lambda$ such that $\psi(H_2 - 2\delta) = h = e + f$ and $\psi(\kappa_2) = g + 2\ell - 2e_1 - 8f_1$; the involution j on the moduli space exchanges g and ℓ in Λ_B, so that $j(\kappa_2) = g + 2\ell - 2e_1 - 8f_1$ is an algebraic class for $X_A(S)$, which lies in D_A^\perp. It has square 10 and divisibility 2 in $H^2(X_A(S), \mathbb{Z})$, so D_A lies in a flopping wall and is not ample, see [7, Theorem 5.1, Item b)].

Hence $Y^3_{A(S)} \neq \emptyset$ and more precisely $Y^3_{A(S)} - \mathbb{P}(V_5) \neq \emptyset$, since points in $Y^3_{A(S)} \cap \mathbb{P}(V_5)$ correspond to lines in S, hence sublattices in $\text{NS}(S)$ whose Gram matrix is

$$
\begin{pmatrix}
10 & 1 \\
1 & -2
\end{pmatrix}
$$

It is then sufficient to observe that such a sublattice is neither an overlattice nor a sublattice of $HZ + EZ$.

We can now prove the second version of the characterization.

Proof of Theorem 3.3. For 1) see [13, Lemma 2.8]. We do not need to ask $(S, H) \notin D_{5,2}$, as in [13], since this is a divisor inside the complement of K_{10} in its closure; to see that, one checks that the orthogonal complement of H in $ZH + ZD$ has square -2 and concludes by [15, Theorem 2.7]. For 2) see [13, Lemma 2.7]. The rest of the statement comes directly from Theorem 3.2. Lines on $S = \mathbb{P}(W) \cap G2, V_5) \cap Q$ correspond to sublattices of $\text{NS}(S)$ whose Gram matrix is

$$
\begin{pmatrix}
10 & 1 \\
1 & -2
\end{pmatrix}
$$

To prove 3) it is then sufficient to show that this lattice admits no non-trivial overlattice. For 4) the proof is the same, with the lattice whose Gram matrix is

$$
\begin{pmatrix}
10 & 5 \\
5 & 0
\end{pmatrix}
$$

Finally, the description of lines in S can be made more precise.

Proposition 3.5. Let $S = \mathbb{P}(W) \cap G2, V_5) \cap Q$ be a strongly smooth $K3$ surface. Let $A(S)$ be the associated Lagrangian subspace. Then

$$|Y^3_{A(S)} \cap \mathbb{P}(V_5)| = |\{\ell \subset S | \ell \text{ line} \}|.$$

Proof. This is an easy consequence of the first part of the proof above. To show the one-to-one correspondence, one observes that two lines $\mathbb{P}(L_v, V_5)$ and $\mathbb{P}(L_{v'}, V'_5)$ intersect in at most one point if $[v] \neq [v']$.

4. **Inducing Automorphisms on Double EPW Sextics**

We explain here how we can use our main result, and particularly Theorem 3.3, to deduce the existence of automorphisms on families of smooth double EPW sextics. This was actually the first motivation for our study of strongly smooth GM surfaces, since the automorphisms of S act on the associated EPW sextic.

Proposition 4.1. (Debarre and Kuznetsov) For Z a strongly smooth GM variety, there is a natural inclusion of $\text{Aut}(Z, \mathbb{P}(W))$ in $\text{Aut}(Y_{A(Z)}) \cong \text{Aut}(Y_{A(Z)}^\perp)$ as the stabilizer of $[V_5] \in Y_{A(Z)}^\perp$.

Proof. See [2, Proposition 3.21, Item c]): the result still holds if we replace "dimension \(\geq 3 \)" in the statement with "\(X \) strongly smooth". \(\square \)

O'Grady showed that, for \(S = \mathbb{P}(W) \cap G(2,V_6) \cap Q \) very general, the associated double EPW is smooth, however the group \(\text{Aut}(S,\mathbb{P}(W)) \) is trivial for \(S \) very general! In addition, all those automorphisms turn out to be symplectic, see proposition 2.10 and proposition 5.2, and families of \(K3 \) surfaces in \(K_{10} \) carrying symplectic actions typically have big codimension.

So, to find automorphisms on some \(S \) that induce automorphisms on a smooth double EPW sextic, the tricky part is to control the generality. By Theorem 3.3, we can easily deduce the existence of automorphisms on some smooth double EPW sextic, appealing to the classification of automorphisms on \(K3 \) surfaces. Let \((V_6,V_5,A)\) be the Lagrangian data associated to \(S \); by Theorem 2.17, \([V_5]\) \(\in Y^3_{A^\perp} \), hence \(A \) always lies in \(\Pi \).

In the following statement, we denote by \(D_n \) the dihedral group of order \(2n \). In the proof we use some results from the next section; we decided to postpone them to keep the exposition more cohesive.

Proposition 4.2. Let \(G \) be one of the following groups,

\[
\mathbb{Z}/n\mathbb{Z} \text{ for } n \in \{2,3,4\}, \quad (\mathbb{Z}/2\mathbb{Z})^2, \quad D_n \text{ for } n \in \{4,5,6\}.
\]

There is a family of Lagrangian subspaces in \(\Pi - (\Sigma \cup \Delta) \) such that, for any \(A \) in the family, the associated double EPW sextic \(X_A \) is smooth and admits a symplectic action of \(G \) which commutes with the covering involution.

For a general element of the family, \(\text{Aut}_{D_A}(X_A) = \iota_A \times G \).

Proof. A \((10)-\)polarized \(K3 \) surface \((S,H)\) admits a symplectic action of \(G \) which fixes \(H \) if and only if its Néron-Severi group contains \(L = \mathbb{Z}H \oplus \Omega_G \), where \(\Omega_G \) is a negative-definite lattice associated to \(G \), which turns out to be the coinvariant lattice for the action of \(G \) in cohomology. This has been proved by Nikulin [26], but see also [12, Proposition 6.3].

We start by considering \(G = \mathbb{Z}/n\mathbb{Z} \) with \(n = 2,\ldots,6 \), \((\mathbb{Z}/2\mathbb{Z})^2\) or \(D_4 \) and we want to prove that there is a family of \(K3 \) surfaces for which the very general element \(S \) has \(\text{NS}(S) = L \). Then we will have \(G = \text{Aut}(S,\mathbb{P}(W)) \) for \(G \neq \mathbb{Z}/n\mathbb{Z} \) with \(n = 5,6 \), and \(\text{Aut}(S,\mathbb{P}(W)) = D_n \) otherwise: in the latter case we appeal to [11, Propositions 8.1 and 9.1] and then Proposition 5.2, in the former simply to Proposition 5.2.

By the surjectivity of the period map for marked \(K3 \) surfaces, proving the existence of the family amounts to showing that there is a primitive embedding \(L \) in \(\Lambda_{K3} = U^{\oplus 3} \oplus E_8(-1)^{\oplus 2} \). By [11, Propositions 6.2 and 7.7], there is a family of elliptic \(K3 \) surfaces whose Néron-Severi group is \(U \oplus \Omega_G \). Now, any embedding of \(U \) in an even lattice \(M \) induces a splitting \(M = U \oplus U^\perp \), in particular in our case we have \(\Omega_G \subset U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \subset \Lambda_{K3} \). We fix a canonical basis \(\{e,f\} \) for the distinguished copy of \(U \) and we consider the lattice \(\mathbb{Z}(e+5f) \oplus \Omega_G \), which is a copy of \(L \) and is primitive in \(\Lambda_{K3} \), since the two summands lies in two different direct summands of the big lattice. This give us a maximal family of \(K3 \) surfaces with a symplectic action of \(G \).

For the very general element \((S,H)\) in the family, the \((10)-\)polarization has divisibility 10 in the Néron-Severi group, in particular \((S,H)\) is Brill-Noether general and strongly smooth by Theorem 3.3. Since these properties fail on a finite number of
divisors in the moduli space, this means that also the general element in the family enjoys them (these families has positive dimension). For the same lattice-theoretic reasons, \((S, H)\) will not lie in \(D_{h,0}\) for \(h = 4, 5\) nor \(D_{1, -2}\), so its associated double EPW sextic is smooth and carries a symplectic action of \(G\) fixing the polarization \(D_A\), by Proposition 4.1 and Proposition 2.10.

Proposition 5.5 ensures that the group of automorphisms fixing \(D_A\) on the associated EPW sextic is isomorphic to \(\text{Aut}(S, \mathbb{P}(W))\) for a general \((S, H)\), since in that case the projective model does not contain any line or conic. \(\Box\)

5. Bounds on automorphisms of Gushel-Mukai varieties

5.1. Bounds for Brill-Noether general K3 surfaces. In the next two sections we provide some bounds on the automorphism group of GM varieties. Grassmanian hulls will play a fundamental role and the key point is the following observation.

Lemma 5.1. Let \(Z\) be a strongly smooth GM variety with Grassmannian hull \(M_Z\). Then \(\text{Aut}(Z, \mathbb{P}(W)) \subset \text{Aut}(M_Z)\).

Proof. Since \(S\) spans \(\mathbb{P}(W)\), the restriction \(\rho: \{\alpha \in \text{Aut}(\mathbb{P}(W)) \mid \alpha(S) = S\} \to \text{Aut}(S, \mathbb{P}(W))\) is an isomorphism of groups. By [2, Corollary 2.11], any \(\alpha \in \text{Aut}(S, \mathbb{P}(W))\) is induced by an automorphism \((g_W, g_V, g_L)\) of ordinary GM data, where the isomorphism \([g_W] \in \text{PGL}(W \otimes L) = \text{PGL}(W)\) is the restriction of \([\Lambda^2 (g_V)|_{V_5}]\) to \(\mathbb{P}(W)\). Hence \(\rho\) factors as \(\{\alpha \in \text{Aut}(\mathbb{P}(W)) \mid \alpha(S) = S\} \stackrel{\rho_1}{\to} \text{Aut}(M_S) \to \text{Aut}(S, \mathbb{P}(W))\). Since \(\rho\) is injective, the same holds for \(\rho_1\). \(\Box\)

Let \(S = \mathbb{P}(W) \cap G(2, V_5) \cap Q\) be a Brill-Noether general K3 surface. The automorphism group \(\text{Aut}(S, \mathbb{P}(W))\) is the group of the automorphisms of the abstract surface \(S\) fixing \(H\); this group is finite, see [17, Chapter 5, Proposition 3.3].

O’Grady [32] studied in detail the 6-dimensional complete linear system \([H_2 - 2\delta]\). This linear system is naturally isomorphic to the space of quadrics in \(\mathbb{P}(W)\) containing \(S\) and the associated map admits a very explicit description ([32, (4.2.5)]),

\[
\phi: S^{[2]} \dashrightarrow |H_2 - 2\delta|^\vee \cong \mathbb{P}^5
\]

\[
Z \mapsto \{Q \in |V_6| \text{ such that } (Z) \subset Q\}.
\]

The map \(\phi\) factors as a small contraction \(c: S^{[2]} \to X_{A(S)\perp}\) and \(f: X_{A(S)\perp} \dashrightarrow \mathbb{P}^5\). The latter can be identified to the double cover \(f_{A(S)\perp}\) up to a finite number of flops [32, Theorem 4.15], in particular it is generically 2-to-1 and induces a birational involution \(\iota\) on \(S^{[2]}\) which acts as minus the reflection with respect to the class \(H_2 - 2\delta\) in cohomology [32, Proposition 4.20]. The birational transformation \(c\) induces an identification of \(\text{Aut}_{D_{A(S)\perp}}(X_{A(S)\perp})\) with \(\text{Bir}_{H_2 - 2\delta}(S^{[2]}(2))\), the group of birational endomorphisms fixing \(H_2 - 2\delta\) and (5) translates as

\[1 \to \{\text{id}, \iota\} \to \text{Bir}_{H_2 - 2\delta}(S^{[2]}(2)) \xrightarrow{\Delta} \text{Aut}(Y_{A(S)\perp}) \to 1.\]

We denote by \(\mathfrak{S}_n\) the symmetric group on \(n\) objects and by \(\mathfrak{A}_n\) the alternating group on \(n\) objects.

Proposition 5.2. If \(S\) is strongly smooth, \(\text{Aut}(S, \mathbb{P}(W))\) acts symplectically on \(S\) and is isomorphic to one of the following groups:

\[
\mathbb{Z}/n\mathbb{Z} \text{ for } n = 1, 2, 3, 4, \quad D_n \text{ for } n = 2, \ldots, 6
\]

\[
\mathfrak{A}_4, \quad \mathfrak{S}_4, \quad \mathfrak{A}_5.
\]
Proof. We prove simplicity. We know that (5) splits, identifying the lifting of \(\text{Aut}(Y_{A(S)}) \), which we denote by \(S \), with the group of automorphisms acting trivially on \(H^{0,2}(X_{A(S)}) \). Since \(c \) is an isomorphism in codimension one, \(S \) seen as a subgroup of \(\text{Bir}_{H_{-25}}(S^{[2]}) \) acts symplectically on \(S^{[2]} \). Inside \(S \) there is \(G \), the lifting of \(\text{Aut}(S, \mathbb{P}(W)) \subset \text{Aut}(Y_{A(S)}) \). We denote by \(G' \subset \text{Bir}_{H_{-25}}(S^{[2]}) \) the group of natural automorphisms \(\alpha^{[2]} \) on \(S^{[2]} \) induced by \(\alpha \in \text{Aut}(S, \mathbb{P}(W)) \): if we can prove \(G = G' \) we are done, since \(\alpha^{[2]} \) is symplectic if and only if \(\alpha \) is.

Fix some \(\alpha \in \text{Aut}(S, \mathbb{P}(W)) \subset \text{Aut}(Y_{A(S)}) \). A straightforward computation, using (12) and (7), gives \(\phi \circ \alpha^{[2]} = \alpha \circ \phi \), hence \(\lambda(G) = \lambda(G') \). For \(\tilde{\alpha} \in G \) the lifting of \(\alpha \), we have then \(\tilde{\alpha} = \alpha^{[2]} \) or \(\tilde{\alpha} = \alpha^{[2]} \circ \iota \). Note that \(\alpha^{[2]} \) fixes the class \(H_2 \), while \(\iota \) only fixes \(H_2 - 2\delta \) and its multiples [28, Proposition 4.21 (b)], so the first equality holds if and only if \(\tilde{\alpha} \) fixes \(H_2 \).

We turn to \(|H_2| \), as a linear system on \(X_{A(S)} \), via the small contraction \(c \); it is the pullback via the Hilbert-Chow contraction of \(\mathcal{H}^{0,2} \) on the symmetric product \(S^{[2]} \),

\[
H^0(S^{[2]}, H_2) = H^0(S^{[2]}, \mathcal{H}^{0,2} = \text{Sym}^2 W^\vee
\]

The action of the lifting \(\tilde{\alpha} \) of \(\alpha \) to \(X_{A(S)} \) is induced by the action of \(SL(V_6) \) [5, Proof of Proposition A.2], thus \(\tilde{\alpha} \) acts on the global sections of \(H_2 \) since it induces a linear automorphism of \(W \), see Equation (7). So \(\tilde{\alpha}^* H_2 = H_2 \), which provides us \(\tilde{\alpha} = \alpha^{[2]} \) as desired.

To obtain the bound we observe that, by Lemma 5.1, \(G \) is a finite subgroup of \(\text{Aut}(M_{S}) \) and the latter is isomorphic to \(\text{PGL}(2, \mathbb{C}) \) ([34, Theorem 7.5]), since the strongly smoothness of \(S \) implies the condition of generality for \(M_{S} \) in [34], cf. [2, Proposition 2.22]. So \(G \) is either cyclic, dihedral, \(\mathfrak{A}_4, \mathfrak{S}_4 \) or \(\mathfrak{A}_5 \). For cyclic groups the order is at most 8 by [26, Theorem 4.5] and actually when the order is \(n = 7, 8 \) the lattice \(\Omega^2_2 \) (same notation as in Proposition 4.2) does not contain an element of square 10, as a computation modulo \(2n \) shows, so we can rule them out. Moreover, if \(G \) contains an order \(n = 5, 6 \) element, then \(D_n \subset G \) by [11, Proposition 8.1]. Finally, \(n \leq 6 \) for \(D_n \) by [35]. \(\square \)

Remark 5.3. In Proposition 4.2, we provide some families of \(K3 \) surfaces with prescribed \(\text{Aut}(S, \mathbb{P}(W)) \). According to Proposition 5.2, the possible cases left are \(\text{Aut}(S, \mathbb{P}(W)) \in \{ D_3, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5 \} \).

When \(S \) contains no line, \(\phi : S^{[2]} \rightarrow |H_2 - 2\delta| \) behaves particularly well. Let \(C \) be the set of smooth conics inside \(S \); by [32, Claim 4.19] \(|H_2 - 2\delta| \) is base-point-free and

\[
Y_{A(S)}^{3} = \bigcup_{C \in C} \phi(C^{[2]}).
\]

When moreover \(S \) is strongly smooth, we are able to provide a bound for the automorphism group of the associated \(EPW \) sextic \(Y_{A(S)} \), which is particularly useful when there is no conic on \(S \); we used Proposition 5.5 under this condition in the proof of Proposition 4.2, in the previous section.

Definition 5.4. We denote by \(\text{Aut}_C(S, \mathbb{P}(W)) \leq \text{Aut}(S, \mathbb{P}(W)) \) the subgroup of automorphisms acting trivially on \(C \).

Clearly \(\text{Aut}_C(S, \mathbb{P}(W)) \) appears in (14).
Proposition 5.5. Let $S = \mathbb{P}(W) \cap G(2, V_5) \cap Q$ be a strongly smooth Brill-Noether general K3 surface with N smooth conics on it. Suppose that S contains no line: the automorphism group of $Y_{A(S)}$ sits in an exact sequence

\begin{equation}
1 \to \operatorname{Aut}_C(S, \mathbb{P}(W)) \to \operatorname{Aut}(Y_{A(S)}) \xrightarrow{g} \mathfrak{S}_{N+1}
\end{equation}

where g sends $\alpha \in \operatorname{Aut}(Y_{A(S)})$ to its action on $Y^3_{A(S)^{\perp}}$, whose cardinality is $N + 1$.

\textbf{Proof.} The morphism g in (16) is well defined by Corollary 2.6 and its kernel is the subgroup of automorphisms of Y_A fixing pointwise $Y^3_{A^{\perp}}$. We are only left to prove that $\operatorname{Aut}_C(S, \mathbb{P}(W)) = \ker(g)$, we actually prove a bit more. Indeed, by (15) the fibers over $Y^3_{A(S)^{\perp}}$ are given by P_S and $C(2)$ for $C \in C$. By the same computations of Proposition 5.2, the action of α on C induces a permutation on $\{P_S, C_1^{(2)}, \ldots, C_N^{(2)}\}$ hence on $Y^3_{A(S)^{\perp}}$, which is the same as the one induced by α as an element of $\operatorname{Aut}(Y_{A(S)})$ (note that, since α acts on M_S too by Lemma 5.1, $\alpha^{[2]}$ always fixes P_S). \hfill \square

Remark 5.6. The morphism g in (16) is not necessarily surjective. Indeed, let $(S, H) \in K_10$ be a very general element of $D_{2,-2}$ (see Definition 3.1). Then S contains exactly one smooth conic, say C. An involution of $Y_{A(S)}$ exchanging the two elements inside $Y^3_{A(S)^{\perp}}$ would lift to a symplectic involution on $X_{A(S)}$ (which is smooth for (S, H) general, see Theorem 3.3), but then $X_{A(S)}$ would have Picard rank at least 9 by [24, Corollary 5.2]. This is impossible since $X_{A(S)}$ and $S^{[2]}$ have the same Picard rank, cf. Lemma A.4.

Furthermore, there exists $(S', H') \in D_{2,-2}$ such that $(S^{[2]}, H_2 - 2\delta)$ and $((S')^{[2]}, H'_2 - 2\delta')$ are birational as varieties with a big and nef line bundle, or equivalently $A(S) = A(S')$ and $P_{S'}$ is sent to $\phi(C^{(2)})$ via the map associated to $[H' - 2\delta']$. The argument above proves that (S, H) and (S', H') are not isomorphic.

5.2. Bounds in greater dimension. In Section 5.1 we dealt with 2-dimensional GM varieties. Now we consider GM varieties of dimension 3 and 4. By [2, Proposition 3.2] their automorphism group is finite, and trivial in the general case.

Remark 5.7. By Proposition 4.1, whenever the associated Lagrangian $A(Z)$ does not lie in $\Delta \cap \Pi$, automorphisms of prime order of Z have order at most 11, because the automorphism lifts to $X_{A(Z)}$ and $X_{A(Z)^{\perp}}$, of which at least one is smooth, and a symplectic automorphism of prime order on a deformation of a Hilbert scheme of two points has order at most 11, see [23, Corollary 2.13].

Proposition 5.8. Let Z be a smooth ordinary GM variety of dimension 3 and $G \subset \operatorname{Aut}(Z)$. Then there exists a group H among

\begin{equation}
1, \quad A_4, \quad \mathfrak{S}_4, \quad A_5, \quad \mathbb{Z}/k\mathbb{Z} \quad \text{or} \quad D_k \quad \text{for} \quad k \geq 2
\end{equation}

and $r \geq 1$ such that G sits in an exact sequence $1 \to \mathbb{Z}/r\mathbb{Z} \to G \to H \to 1$.

\textbf{Proof.} The Grassmannian hull M_Z is smooth since Z is three-dimensional and $\operatorname{Aut}(Z, \mathbb{P}(W)) = \operatorname{Aut}(Z)$ since Z has Picard rank one. By [34, Theorem 6.6], there is a short exact sequence

\begin{equation}
1 \to \mathbb{C}^4 \times \mathbb{C}^* \to \operatorname{Aut}(M_Z) \xrightarrow{\pi} \operatorname{PGL}(2, \mathbb{C}) \to 1,
\end{equation}

where π is the natural projection. Since $\operatorname{PGL}(2, \mathbb{C})$ is a simple group, π must be surjective and hence $\operatorname{Aut}(M_Z)$ is a central extension of $\operatorname{PGL}(2, \mathbb{C})$ by a finite group. By [34, Theorem 6.6], the center of $\operatorname{Aut}(M_Z)$ is isomorphic to $\mathbb{Z}/r\mathbb{Z}$ for some r, and the quotient $\operatorname{Aut}(M_Z)/\mathbb{Z}/r\mathbb{Z}$ is a finite group.

Therefore, $\operatorname{Aut}(M_Z)$ is a central extension of $\operatorname{PGL}(2, \mathbb{C})$ by a finite group, and hence $\operatorname{Aut}(M_Z)$ is a finite group.
thus G is an extension of $H = \pi(G)$ by $N = G \cap (\mathbb{C}^4 \times \mathbb{C}^*)$. The group G is finite by Lemma 5.1, so $H \subset \text{PGL}(2, \mathbb{C})$ has to appear in (17). As for N, it is finite inside $\mathbb{C}^4 \times \mathbb{C}^*$, so it is isomorphic to a finite subgroup of \mathbb{C}^*.

Remark 5.9. In [8], Debarre and Mongardi produced an explicit example of EPW sextic with automorphism group isomorphic to $\text{PSL}(2, F_{11})$. This allows them to find examples of smooth ordinary GM threefolds with automorphism group isomorphic to $\mathbb{Z}/11\mathbb{Z}$, D_6, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, D_5, D_2, $\mathbb{Z}/2\mathbb{Z}$.

The *spin group* $\text{Spin}(n)$, for $n \geq 2$, is the universal cover of the special orthogonal group $\text{SO}(n)$. It is possible to study finite subgroups of $\text{Spin}(5)$ using this definition: finite subgroups of $\text{SO}(5)$ have been classified, see [22, Corollary 2].

The quotient by $\{\pm 1\}$ in the result below comes from the fact that, for any $\alpha \in \text{PGL}(V_5)$ acting on the Grassmannian hull M_2, a representative in $\text{GL}(V_5)$ of the form $\begin{pmatrix} T & 0 \\ \bar{b} \end{pmatrix}$ is chosen, such that $\det(T) = 1$. A representative in this form for α is unique, up to multiplication by -1. See [34, Proposition 5.2] for details.

Proposition 5.10. Let Z be a smooth ordinary GM variety of dimension 4 and $G \subset \text{Aut}(Z)$. Then G is the quotient by $\{\pm 1\}$ of a group \tilde{G} such that there is an exact sequence

$$1 \to \mathbb{Z}/r\mathbb{Z} \to \tilde{G} \to H \to 1$$

for some $r \geq 1$ and H a finite subgroup inside $\text{Spin}(5)$.

Proof. As in Proposition 5.8, we just have to impose finiteness for a subgroup of $\text{Aut}(M_Z)$. By [34, Proposition 5.2], the group G is an extension of a subgroup of $(\text{Sp}(4, \mathbb{C}) \times \mathbb{C}^*)/\{\pm 1\}$ by some $N \subset \mathbb{C}^4$. Actually $N = \{1\}$ as G is finite, hence G is isomorphic to the quotient of a finite subgroup of $\text{Sp}(4, \mathbb{C}) \times \mathbb{C}^*$. Any finite subgroup of $\text{Sp}(4, \mathbb{C})$ lies inside its maximal compact subgroup, which is the compact symplectic group $\text{Sp}(2)$. In turn $\text{Sp}(2)$ is isomorphic to $\text{Spin}(5)$. □

Remark 5.11. In [8], Debarre and Mongardi produced smooth ordinary GM fourfolds with automorphism group isomorphic to D_6, $\mathbb{Z}/3\mathbb{Z}$, D_5, $\mathbb{Z}/5\mathbb{Z}$, D_2, $\mathbb{Z}/2\mathbb{Z}$.

Corollary 5.12. Consider $A \in \mathbb{L}\mathcal{G}(\wedge^3 V_6) - \Sigma$ and $G \subset \text{Aut}(Y_A)$. Suppose that G fixes a point $[v] \in Y_A^h$ or a point $[V_5] \in Y_{A,1}^h$ for $k \in \{1, 2\}$.

1) If $k = 2$, then G sits in an exact sequence $1 \to \mathbb{Z}/r\mathbb{Z} \to G \to H \to 1$ for some $r \geq 1$ and H a group in (5.8).

2) If $k = 1$, then G is the quotient by $\{\pm 1\}$ of a group \tilde{G}, where \tilde{G} is an extension of some finite subgroup of $\text{Spin}(5)$ by a cyclic group $\mathbb{Z}/r\mathbb{Z}$.

Proof. We consider the case of G fixing $[V_5] \in Y_{A,1}^h$. the dual case follows by Corollary 2.6. We denote by Z the ordinary GM variety associated to the Lagrangian data (V_6, V_5, A): by Theorem 2.17 it is a strongly smooth GM variety of dimension $5 - k$. By Proposition 4.1, there is an inclusion $G \subset \text{Aut}(Z, \mathbb{P}(W))$, then the result follows from Proposition 5.8 and Proposition 5.10. □

If the associated Lagrangian $A(Z)$ lies in Δ or Σ we can be more precise.

Definition 5.13. A plane $\pi \subset G(2, V_5)$ is a σ-plane if it is of the form $\mathbb{P}(v \wedge V_4)$ for some 4-dimensional vector space $V_4 \subset V_5$ and $v \in V_4 - \{0\}$. A τ-quadric surface in $G(2, V_5)$ is a linear section of $G(2, V_4)$ for some 4-dimensional $V_4 \subset V_5$.

Corollary 5.14. Let Z be a smooth ordinary GM variety of dimension 4 and associated Lagrangian subspace $A(Z)$. If one of the following holds:

- Z contains a τ-plane,
- Z contains a τ-quadric surface,

then there is an exact sequence $1 \to N \to \text{Aut}(Z) \to \mathfrak{S}_n$, where $n = |Y^3_{A(Z)}|$ (resp. $n = |Y^3_{A(Z),1}|$) if Z contains a σ-plane (resp. a τ-quadric surface), and N is one of the groups in the list at (14).

Proof. By [4, Theorem 4.3, Item e)] for σ-planes, [4, Remark 5.29] and [1, Section 7.3] for τ-quadric surfaces, the associated Lagrangian subspace $A(Z)$ lies in Δ or Π. So there is a strongly smooth Brill-Noether general $K3$ surface whose associated Lagrangian subspace is $A(Z)$. Then we use Proposition 5.5.

The coarse moduli space of smooth GM varieties of dimension 4 is constructed in [6]. Inside it, the family of ordinary GM varieties containing a σ-plane (resp. a τ-quadric surface) has codimension 2 (resp. 1), see [4, Remark 5.29]; the general members of both families are rational, see [1, Proposition 7.1 and Proposition 7.4].

APPENDIX A. AN INVOLUTION OF THE MODULI SPACE

We collect some results which are useful for the proof of theorem 3.2, but they are different in flavour from the rest of the paper; for details about the construction in this section we refer to [7, Section 3.2].

We denote by $\Lambda = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \langle -2 \rangle$ the abstract lattice isomorphic to $H^2(X, \mathbb{Z})$ for X equivalent by deformation to the Hilbert square on a $K3$ surface. We fix a copy of the hyperbolic plane $U \subset \Lambda$, with canonical basis $\{e, f\}$. We take $h = e + f$ and we call $\Lambda_h \subset \Lambda$ the orthogonal complement of h. The group of isometries of Λ fixing h acts on Λ_h as $\tilde{O}(\Lambda_h) = \{ \theta \in O(\Lambda_h) \mid \theta = \text{id}_{\Lambda_h} \}$, cf. [14, Proposition 3.12, Item i)]. We denote $Q_2 = \{ [x] \in \mathbb{P}(\Lambda_h \otimes \mathbb{C}) \mid x^2 = 0, (x, \bar{x}) > 0 \}$ and $\mathcal{P}_2 = Q_2/\tilde{O}(\Lambda_h)$.

Definition A.1. We denote by \mathcal{M}_2 the coarse moduli space of (2)-polarized hyper-Kähler manifolds equivalent by deformation to the Hilbert square on a $K3$ surface.

The moduli space \mathcal{M}_2 has dimension 20 and is irreducible: it comes with a period map $\mathcal{M}_2 \to \mathcal{P}_2$ which is an open embedding, see [21, Theorem 1.10].

There is an open embedding $LG(A^3V_6)^0 / \text{PGL}(6) \hookrightarrow \mathcal{M}_2$, cf. [33, Proposition 1.2.1], which induces a period map $LG(A^3V_6)^0 / \text{PGL}(6) \to \mathcal{P}_2$.

We call $g = e - f$ the orthogonal complement of h in the fixed copy of U and ℓ a generator of the $\langle -2 \rangle$-part of Λ: we have $\Lambda_h = U^{\oplus 2} \oplus E_8(-1)^{\oplus 2} \oplus \mathbb{Z}g \oplus \mathbb{Z}\ell$.

Definition A.2. We denote by $j \in O(\Lambda_h)$ the isometry exchanging g and ℓ. For simplicity, we also call j the induced involution on \mathcal{P}_2.

The discriminant of Λ_h is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ as a group. We identify the class of $g/2$ as $(1, 0)$ and the class of $\ell/2$ as $(0, 1)$. Since $j((1, 0)) = (0, 1)$, by [27, Corollary 1.5.2] the involution j does not extend to an isometry of Λ.

Since the period map is an open embedding, the involution j induces a birational involution on \mathcal{M}_2.
Theorem A.3. [30, Theorem 1.1] The involution induced on \mathcal{M}_2 by j is the birational involution that sends (X_A, D_A) to $(X_{A^\perp}, D_{A^\perp})$.

The period map $(LG(A^3V_6) - \Sigma) \to \mathcal{P}_2$ commutes with j and the involution on $(LG(A^3V_6) - \Sigma)///PGL(6)$ sending $[A]$ to $[A^\perp]$, see [29] and [32].

We consider now $A \in \Pi - (\Delta \cup \Sigma)$ and we fix $[V_5] \in Y_{A^\perp}^3$. Let S be the GM variety associated to (V_6, V_5, A); we focus on it as the (10)-polarized K3 surface (S, H), with H the polarization associated to the embedding in $\mathbb{P}(W)$. The line bundle $H_2 - 2\delta$ is big and nef but not ample for a general choice of A.

The period map $\mathcal{M}_2 \to \mathcal{P}_2$ extends to a surjective map $\mathcal{M}_2^0 \to \mathcal{P}_2$, where \mathcal{M}_2^0 is the moduli space of hyper-Kähler manifolds with a big and nef divisor whose square is 2. Similarly, the period map on $LG(A^3V_6)^0//PGL(6)$ extends to a period map $(LG(A^3V_6) - \Sigma)//PGL(6) \to \mathcal{P}_2$. The period point of $[A]$ is the image of the period point of $(S^{[2]}, H_2 - 2\delta)$ via the involution j, cf. [32] (but beware, A is actually the dual of the Lagrangian subspace that O’Grady called A in his paper).

As an easy consequence, it is possible to compute the Néron-Severi of X_A from the one of S.

Lemma A.4. The involution j induces an isometry $\text{NS}(S^{[2]}) \cap (H_2 - 2\delta)^\perp \cong \text{NS}(X_A) \cap D_{A^\perp}$, in particular the Néron-Severi groups of X_A and $S^{[2]}$ have same rank.

References

[1] Olivier Debarre, Atanas Iliev, and Laurent Manivel, Special prime Fano fourfolds of degree 10 and index 2, Recent advances in algebraic geometry 417 (2014), 123.

[2] Olivier Debarre and Alexander Kuznetsov, Gushel–Mukai varieties: Classification and birationalities, Algebraic Geometry 5 (2018), 15–76.

[3] Olivier Debarre, Double covers of quadratic degeneracy and Lagrangian intersection loci, Mathematische Annalen 378 (2019), 1435–1469.

[4] Olivier Debarre and Emanuele Macrì, Gushel–Mukai varieties: Linear spaces and periods, Kyoto Journal of Mathematics 59 (2019), 857–953.

[5] Olivier Debarre, Gushel–Mukai varieties: Intermediate Jacobians, Épijournal Géom. Algébrique 4 (2020).

[6] Olivier Debarre and Emanuele Macrì, Gushel–Mukai varieties: Moduli, International Journal of Mathematics 2020, 2050013.

[7] Olivier Debarre and Emanuele Macrì, On the period map for polarized hyperkaehler fourfolds, International Mathematics Research Notices 2019 (2019), no. 22, 6887–6923.

[8] Olivier Debarre and Giovanni Mongardi, Gushel–mukai varieties with many symmetries and an explicit irrational gushel–mukai threefold, Bollettino dell’Unione Matematica Italiana 15 (2022), 133–161.

[9] David Eisenbud, Sorin Popescu, and Charles Walter, Lagrangian subbundles and codimension 3 subcanonical subschemes, Duke Mathematical Journal 107 (2001), no. 3, 427–467.

[10] Andrea Ferretti, The Chow ring of double EPW sextics, Algebra & Number Theory 6 (2012), no. 3, 539–560.

[11] Alice Garbagnati, Elliptic k3 surfaces with abelian and dihedral groups of symplectic automorphisms, Communications in Algebra 41 (2013), no. 2, 583–616.

[12] Alice Garbagnati and Alessandra Sarti, Elliptic fibrations and symplectic automorphisms on K3 surfaces, Communications in Algebra 37 (2009), no. 10, 3601–3631.

[13] Francois Greer, Zhiyuan Li, and Zhiyu Tian, Picard groups on moduli of K3 surfaces with Mukai models, International Mathematics Research Notices 2015 (2014), no. 16, 7238–7257.

[14] Valery Gritsenko, Klaus Hulek, and Gregory K. Sankaran, Moduli spaces of irreducible symplectic manifolds, Compositio Mathematica 146 (2010), no. 2, 404–434.

[15] Valery Gritsenko, Klaus Hulek, and Gregory K. Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of moduli. Vol. I, Adv. Lect. Math. 24 (2013), 459–526.
Valery A. Gritsenko, Klaus Hulek, and Gregory K. Sankaran, *Abelianisation of orthogonal groups and the fundamental group of modular varieties*, Journal of Algebra **322** (2009), no. 2, 463–478.

Daniel Huybrechts, *Lectures on K3 surfaces*, Vol. 158, Cambridge University Press, 2016.

Atanas Iliev and Laurent Manivel, *Fano manifolds of degree ten and EPW sextics*, Annales scientifiques de l’École Normale Supérieure, 2011, pp. 393–426.

V. A. Iskovskikh and Yu G. Prokhorov, *Algebraic Geometry V. Fano Varieties*, Encyclopedia of Math. Sci., vol. 47, Springer, 1999.

Daniel Huybrechts, *Lectures on K3 surfaces*, Vol. 158, Cambridge University Press, 2016.

Atanas Iliev and Laurent Manivel, *Fano manifolds of degree ten and EPW sextics*, Annales scientifiques de l’École Normale Supérieure, 2011, pp. 393–426.

V. A. Iskovskikh and Yu G. Prokhorov, *Algebraic Geometry V. Fano Varieties*, Encyclopedia of Math. Sci., vol. 47, Springer, 1999.

Andreas L. Knutsen and Trygve Johnsen, *K3 projective models in scrolls*, Springer, 2004.

Eyal Markman, *A survey of Torelli and monodromy results for holomorphic-symplectic varieties*, Complex and differential geometry, 2011, pp. 257–322.

Mattia Meckia and Bruno Zimmermann, *On finite groups acting on homology 4-spheres and finite subgroups of SO (5)*, Topology and its Applications **158** (2011), no. 6, 741–747.

Giovanni Mongardi, *On symplectic automorphisms of hyper-kähler fourfolds of k3 [2] type*, Michigan Mathematical Journal **62** (2013), 537–550.

Giovanni Mongardi, *Towards a classification of symplectic automorphisms on manifolds of K3[n]-type*, Mathematische Zeitschrift **282** (2016), 651–662.

Shigeru Mukai, *New developments in the theory of Fano threefolds: Vector bundle method and moduli problems*, Sugaku **47** (1995), 124–144.

Viacheslav Valentinovich Nikulin, *Finite groups of automorphisms of Kählerian K₃ surfaces*, Trudy Moskovskogo Matematicheskogo Obshchestva **38** (1979), 75–137.

Viacheslav Valentinovich Nikulin, *Integral symmetric bilinear forms and some of their applications*, Izvestiya Rossiskoi Akademii Nauk. Seriya Matematicheskaya **43** (1979), no. 1, 111–177.

Kieran G. O’Grady, *Involutions and linear systems on holomorphic symplectic manifolds*, Geometric & Functional Analysis GAFA **15** (2005), no. 6, 1223–1274.

Kieran G. O’Grady, *Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics*, Duke Mathematical Journal **134** (2006), no. 1, 99–137.

Kieran G. O’Grady, *Dual double EPW-sextics and their periods*, Pure and Applied Mathematics Quarterly **4** (2008), no. 2, 427–468.

Kieran G. O’Grady, *EPW-sextics: Taxonomy*, manuscripta mathematica **138** (2012), no. 1–2, 221–272.

Kieran G. O’Grady, *Double covers of EPW-sextics*, Michigan Mathematical Journal **62** (2013), 143–184.

Jens Piontkowski and Antonius Van de Ven, *The automorphism group of linear sections of the Grassmannians G (1, N)*, Documenta Mathematica **4** (1999), 623–664.

Gang Xiao, *Galois covers between K₃ surfaces*, Annales de l’institut fourier, 1996, pp. 73–88.

Université Paris Cité and Sorbonne Université, CNRS, IMJ-PRG, F-75013 Paris, France

Email address: beri@imj-prg.fr