Two-Versions of Conjugate Gradient-Algorithms Based on Conjugacy Conditions for Unconstrained Optimization

Abbas Y. AL-Bayati, A.J. Salim and Khalel K. Abbo
Department of Mathematics, Mosul University, Mosul, Iraq

Abstract: Problem statement: (CG) algorithms, which we had investigated in this study, were widely used in optimization, especially for large scale optimization problems, because it did not need the storage of any matrix. The purpose of this construction was to find new CG-algorithms suitable for solving large scale optimization problems. Approach: Based on pure conjugacy condition and quadratic convex function two new versions of (CG) algorithms were derived and observed that they were generate descent directions for each iteration, the global convergence analysis of these algorithms with Wolfe line search conditions had been proved. Results: Numerical results for some standard test functions were reported and compared with the classical Fletcher-Reeves and Hestenes-Stiefel algorithms showing considerable improving over these standard CG-algorithms. Conclusion: Two new versions of CG-algorithms were proposed in this study with their numerical properties and convergence analysis and they were out perform on the standard HS and FR CG-algorithms.

Key words: (CG) algorithms, exact line searches, global convergence properties

INTRODUCTION

The problem of interest can be stated as finding a local \(x^* \) to the unconstrained optimization problem:

\[
\min f(x), \quad x \in \mathbb{R}^n
\]

(1)

where, \(f: \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable and its gradient is available and denoted by \(g \). There are different type of iteration algorithms for solving the problem given in (1); all these algorithms uses the iteration of the form:

\[
x_{k+1} = x_k + \alpha_k d_k
\]

(2)

Where:
- \(x_0 \) = Starting point and
- \(\alpha_k \) = Step-size computed by line search procedure
- \(d_k \) = A descent direction

If \(f \in C^2 \) and the Hessian matrix \(G = \nabla^2 f(x) \) is available and positive definite then an ideal choice for \(d_k \) is the Newton direction\(^6\) given by:

\[
d_k = -G^{-1}g_k
\]

(3)

It is shown that when \(G_k \) is positive definite and \(x_k \) is lies in some neighborhood of \(x^* \) then the sequence \(\{x_k\} \) generated by (2) and (3) converges and order of convergence is second order. These local convergence properties represent the ideal local behavior which other algorithms aim to emulate as far as possible\(^6\), in spite of these desirable properties of Newton’s algorithm also it has some drawbacks such as dealing with \(n \times n \) matrix and when \(x_k \) is remote from \(x^* \) the algorithm may not defined when \(G_k \) is not positive. Therefore, other algorithms can be used for solving the problem (1) such as Quasi-Newton algorithms which are modifications of Newton’s algorithm and uses direction of the form:

\[
d_{k+1} = -H_{k+1}g_{k+1}
\]

(4)

where, \(H_{k+1} \) is an approximation of the inverse Hessian matrix. The Conjugate Gradient (CG) algorithm is suitable approach to solve the minimization problem given in (1) when \(n \) is large. If the (CG) algorithm is used to minimize non-quadratic objective functions the related algorithm is called the non-linear (CG) algorithm\(^{12,14,15}\). The search directions for CG-algorithm has the following form:

\[
d_{k+1} = -g_{k+1} + \beta_k d_k
\]

(5)

Here \(\beta_k \) is a scalar known as the (CG) parameter. Different CG-algorithms correspond to different
choices for the parameter β_k, therefore a crucial element in any (CG) algorithm is the definition of formula β_k; some well-known (CG) algorithms include the Hestenes-Stiefel (HS) algorithm, the Fletcher-Reeves (FR), the Polak-Ribiere (PR) and the Dai-Yuan (DY) algorithms[4,9,10,11]:

$$\beta^{HS}_k = T_k g_k + T_{k-1} d_{k-1}$$

$$\beta^{FR}_k = T_k g_k + T_{k-1} g_{k-1}$$

$$\beta^{PR}_k = T_k g_k + T_{k-1} g_{k-1} + g_k$$

$$\beta^{DY}_k = T_k g_k + T_{k-1} g_{k-1} + g_k$$

where, $y_k = g_{k+1} - g_k$.

Hager and Zhang[6] shown that CG-algorithms with $T_{k-1} g_{k-1}$ in the numerator of β_k has strong global convergence properties with exact and inexact line searches especially with the following Wolfe conditions:

$$f(x_k + \alpha_k d_k) \leq f(x_k) + c\alpha_k g_k^T d_k$$

$$g(x_k + \alpha_k d_k)^T d_k \geq c\alpha_k g_k^T d_k$$

where, $0 < c_1 < c_2 < 1$. For some CG-algorithms stronger version of Wolfe conditions i.e., (10a) and:

$$\left|g_{k+1}^T d_k\right| \leq - c_2 g_k^T d_k$$

which is called pure conjugacy condition.

Dai and Liao[5] combined the search direction given in (3) or (4) with secant equation to modify the pure conjugacy condition (13) as follows:

$$d_{k+1} = -B_{k+1} T_{k+1} y_k$$

where, B_{k+1} symmetric positive $n \times n$ matrix, satisfying the quasi-Newton or (secant) equation:

$$g_k^T y_k = s_k$$

where, $s_k = x_{k+1} - x_k$, therefore:

$$d_{k+1}^T y_k = -g_{k+1}^T (B_{k+1} y_k) = -g_{k+1}^T s_k$$

This relation shows that (13) hold if the line search is exact i.e., $g_{k+1}^T s_k = 0$. However practical numerical algorithms normally adopt inexact line searches. For this reason, it seems more reasonable to replace the conjugacy condition (13) with the condition:

$$d_{k+1}^T y_k = 0$$

Whence is called pure conjugacy condition.

Dai and Liao[5] combined the search direction given in (3) or (4) with secant equation to modify the pure conjugacy condition (13) as follows:

$$d_{k+1} = -B_{k+1} T_{k+1} y_k$$

where, B_{k+1} symmetric positive $n \times n$ matrix, satisfying the quasi-Newton or (secant) equation:

$$B_{k+1} y_k = s_k$$

where, $s_k = x_{k+1} - x_k$, therefore:

$$d_{k+1}^T y_k = -g_{k+1}^T (B_{k+1} y_k) = -g_{k+1}^T s_k$$

This relation shows that (13) hold if the line search is exact i.e., $g_{k+1}^T s_k = 0$. However practical numerical algorithms normally adopt inexact line searches. For this reason, it seems more reasonable to replace the conjugacy condition (13) with the condition:

$$d_{k+1}^T y_k = 0$$

where, $\tau > 0$ is a scalar. The main object of this study is to find new (CG) algorithms with new search directions d_k having the same form of (5). This is done in materials and algorithms as well as the descent property and global convergent property will be proved and numerical results will be reported and compared with some standard CG algorithms.
MATERIALS AND ALGORITHMS

Derivation of two new versions of CG-algorithms: It is known that all conjugate direction algorithms generate conjugate directions at least theoretically and hence the key element for derivation of the new algorithms is the pure conjugacy condition (13), also in derivation of all conjugate direction algorithms it is assumed that the objective function is convex and quadratic, therefore we begin with convex quadratic function $q(x)$ defined by:

$$q(x) = \frac{1}{2} x^T G x$$ \hspace{1cm} (18)$$

where, $x \in \mathbb{R}^n$ and G is positive definite $n \times n$ matrix. Since $q(x)$ is strictly convex then G is diagonal and gradient of $q(x)$ is given by:

$$\nabla q(x) = G x$$ \hspace{1cm} (19)$$

The main property of quadratic function is:

$$k_1 k_1 k_1 + k_1 k_1 k_1 k_1 k_1 k_1 k_1 - = -$$ \hspace{1cm} (20)$$

From (18-20) we can write:

$$G^{-1} = \frac{s_k y_k}{y_k y_k} I_{n \times n}$$ \hspace{1cm} (21a)$$

Therefore Newton direction (3) for function defined in (18) can be written as:

$$d_{Nk} = -\left(\frac{s_k y_k}{y_k y_k} \right) g_{k+1}$$ \hspace{1cm} (21b)$$

Use the conjugacy condition (13) because Newton directions are conjugate with exact line searches:

$$d_{Nk} y_k = -g_{k+1} y_k + \beta_k d_k y_k = 0$$ \hspace{1cm} (22)$$

Similarly CG algorithms generates conjugate:

$$d_{CGk} y_k = -g_{k+1} y_k + \beta_k d_k y_k = 0$$ \hspace{1cm} (23)$$

Use (22) and (23) to get:

$$\beta_k = (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) \frac{d_k y_k}{d_k y_k}$$ \hspace{1cm} (24)$$

$$d_{k+1} = -g_{k+1} + (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) d_k$$

Put $s_k = \alpha_k d_k$

$$d_{k+1} = -g_{k+1} + (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) s_k$$ \hspace{1cm} (25)$$

Where:

$$\beta_k = (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) \frac{s_k y_k}{s_k y_k}$$ \hspace{1cm} (26)$$

We can therefore modify the Eq. 25 and 26 by using the idea of Dai and Laio and combining the quasi-Newton condition with pure conjugacy condition:

$$d_{k+1} = -(G' g_{k+1}) y_k$$

$$= -g_{k+1} G^{-1} y_k = -g_{k+1} s_k$$ \hspace{1cm} (27)$$

or

$$-s_k y_k = g_{k+1} y_k + g_{k+1} s_k = 0$$ \hspace{1cm} (28)$$

and

$$d_{k+1} = -g_{k+1} y_k + \beta_k d_k y_k = 0$$ \hspace{1cm} (29)$$

From (28) and (29) we get:

$$\beta_k = (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) \frac{s_k y_k}{d_k y_k}$$ \hspace{1cm} (30)$$

And letting $s_k = \alpha_k d_k$:

$$d_{k+1} = -g_{k+1} + (1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k) s_k$$

$$+ \frac{s_k y_k}{s_k y_k} s_k y_k s_k y_k$$

It seems from (30) if exact line search used i.e $s_k g_{k+1} = 0$ then (30) reduces to (26).

For convenience, we summarize the above algorithms as the following algorithms.

Algorithm 1: (New V1 Algorithm): The search direction of this new algorithm is defined as:

$$d_{k+1} = -g_{k+1} + \left(1 - \frac{s_k y_k}{y_k y_k} g_{k+1} y_k\right) s_k$$

Use (22) and (23) to get:
\[d = -g_{k+1} + \beta_k v_k d_k \]

when \(\beta^k \) computed as in (26). If Powell restart satisfied then \(d_{k+1} = -g_{k+1} \) else \(d_{k+1} = d \) and compute initial \(\alpha_k = \alpha_{k-1} \frac{\|d_k\|}{\|d_{k-1}\|} \) go to step (2).

Similarly we can summarize the new \(v_2 \) algorithm as:

Algorithm 2: (New V2 Algorithm): The search direction of this new algorithm is defined as:

\[d = -g_{k+1} + \beta_k v^2_k d_k \]

when \(\beta^{v2} \) computed as in (30). If Powell restart satisfied then \(d_{k+1} = g_{k+1} \) else \(d_{k+1} = d \) and compute initial \(\alpha_k = \alpha_{k-1} \frac{\|d_k\|}{\|d_{k-1}\|} \) go to step (2).

Convergence analysis: In the investigated of the global convergence analysis of many iteration algorithms, the following assumption is often needed.

Assumption 1:
- The level set \(S = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \} \) is bounded.
- In some neighborhood \(N \) of \(S \) \(f \) is continuously differentiable and its gradient is lipschitz continuous i.e., \(\exists \) a constant \(L > 0 \) s.t:

\[\|g(x) - g(y)\| \leq L \|x - y\| \forall x, y \in N \]

(31)

Note that assumption A implies that \(\exists \) a constant \(\gamma > 0 \) such that:

\[\|g(x)\| \leq \gamma \forall x_k \in N \]

(32)

In order to ensure global convergence of our algorithms we need to compute the step size \(\alpha_k \). The Wolfe line search consists of finding \(\alpha_k \) satisfying (10a) and (10b). The following lemma, called the Zoutendijk condition is often used to prove global convergence of (CG) algorithms. It was originally given by Zoutendijk\(^{[16]} \) and Wolfe\(^{[13]} \).

Lemma 1: Let the assumption 1 holds, the sequence \(\{x_k\} \) be generated by (2) and (5) and \(d_k \) is descent direction \(\forall k \) i.e \(g_k^T d_k < 0 \). If \(\alpha_k \) satisfies the Wolfe conditions (10a) and (10b) or strong Wolfe conditions (10a) and (11) then we have:

\[\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|h_k\|^2} < +\infty \]

(33)

for proof\(^{[16]} \) or\(^{[13]} \).

In the investigated of the global convergence analysis for many CG-algorithms. The descent or sufficient decent condition plays an important role. In the following theorem we show that the new \(v_1 \) algorithm produces sufficient descent directions i.e., \(g_k^T d_k \leq -c\|g_k\| \) where \(c \) is some positive scalar.

Theorem 1: If the assumption 1 holds and \(\alpha_k \) satisfies the Wolfe conditions then the search directions generated by (25) are descent directions \(\forall k \).

Proof: For initial direction \((k = 0) \) we have:

\[d_i = -g_i \rightarrow g_i^T d_i = -\|g_i\|^2 < 0 \]

Suppose \(g_i^T d_j < 0 \) \(\forall j = 1...k \):

\[g_{k+1}^T d_{k+1} = -g_{k+1}^T g_{k+1} + \left(1 - \frac{s_i^T g_i}{g_i^T y_k} \right) \frac{g_{k+1}^T y_k}{y_i^T y_k} \]

\[= -g_{k+1}^T g_{k+1} + \frac{s_i^T g_i}{s_i^T y_k} \]

\[\leq g_{k+1}^T g_{k+1} + L \left(\frac{s_i^T g_i}{s_i^T y_k} \right) \left(\frac{g_{k+1}^T y_k}{y_i^T y_k} \right) \]

From lipschitz condition \(y_k^T g_{k+1} \leq L \), \(s_i^T g_{k+1} \):

\[d_{k+1}^T g_{k+1} \leq g_{k+1}^T g_{k+1} + L \left(\frac{s_i^T g_i}{s_i^T y_k} \right) \left(\frac{g_{k+1}^T y_k}{y_i^T y_k} \right) \]

Again form lipschitz condition:

\[y_k^T y_k \leq L \frac{y_k^T s_k}{y_k s_k} \rightarrow \frac{L}{y_k^T s_k} \geq \frac{1}{y_k^T s_k} \]

Therefore:

\[g_{k+1}^T d_{k+1} \leq -g_{k+1}^T g_{k+1} + L \left(\frac{s_i^T g_i}{s_i^T y_k} \right) \left(\frac{g_{k+1}^T y_k}{y_i^T y_k} \right) \]

Note that from Wolfe conditions \(s_i^T y_k > 0 \) then we have two cases either \(L \geq 1 \) or \(0 < L < 1 \), if \(L \geq 1 \) then \(d_k \) is a descent direction for all \(k \). On the other hand if \(0 < L < 1 \) then we have:

\[s_k^T y_k = s_k^T g_{k+1} - s_k^T g_k > s_k^T g_{k+1} \] since \(s_k^T g_k < 0 \)
Also:
\[g_{k+1}^{T}d_{k+1} \leq g_{k+1}^{T}g_{k+1} + Ls_{k}^{T}g_{k+1} - Ls_{k}^{T}g_{k+1} \]

If:
\[s_{k}^{T}g_{k+1} < 0 \]

then:
\[g_{k+1}^{T}d_{k+1} < 0 \]

Since \(0 < L < 1 \) and if \(s_{k}^{T}g_{k+1} > 0 \) then:
\[Ls_{k}^{T}g_{k+1} < g_{k+1}^{T}g_{k+1} + Ls_{k}^{T}g_{k+1} \]

and hence \(d_{k+1}^{T}g_{k+1} < 0 \); so the proof of the Theorem 1 is completed.

Theorem 2: The global convergence of the new \(v_1 \):

Consider the iterative procedure \(x_{k+1} = x_{k} + \alpha_{k}d_{k} \) where \(d_{k} \) is defined by (25) and suppose that the assumption 1 holds. If \(\alpha_{k} \) satisfies the Wolfe conditions (10a) and (10b) then Algorithm 1 either stops at stationary point i.e., \(\|g_{k}\| = 0 \) or \(\lim_{k \to \infty} \inf \|g_{k}\| = 0 \).

Proof: The proof of theorem (2) is by contradiction i.e., if theorem (2) is not true then \(\|g_{k}\| \neq 0 \) then there exists a positive scalar \(\gamma > 0 \) such that:
\[\|g_{k}\| > \gamma, \ \forall k \]

then:
\[d_{k+1}^{T}g_{k+1} = -g_{k+1}^{T}g_{k+1} + \frac{y_{k}^{T}g_{k+1}s_{k}^{T}g_{k+1} + y_{k}^{T}g_{k+1}s_{k}^{T}g_{k+1}}{y_{k}^{T}y_{k}} \]

(34)

Use second Wolfe condition (10b) and Lipschitz condition for \(y_{k}^{T}y_{k} \leq Ls_{k}^{T}y_{k} \). Therefore:
\[d_{k+1}^{T}g_{k+1} \geq -g_{k+1}^{T}g_{k+1} + c_{2} L \frac{y_{k}^{T}g_{k+1}s_{k}^{T}g_{k+1}}{y_{k}^{T}y_{k}} \]

\[-c_{1} \frac{y_{k}^{T}g_{k+1}s_{k}^{T}g_{k+1}}{y_{k}^{T}y_{k}} \]

Note that:
\[y_{k}^{T}y_{k} = g_{k+1}^{T}g_{k+1} - 2g_{k+1}^{T}d_{k+1} + d_{k+1}^{T}g_{k+1} \]
\[\geq g_{k+1}^{T}g_{k+1} - g_{k+1}^{T}g_{k+1} = y_{k}^{T}g_{k+1} \]

\[d_{k+1}^{T}g_{k+1} \geq -\|g_{k+1}\|^{2} + \lambda g_{k+1}^{T}s_{k} \]

(35)

When \(\lambda = c_{2}(L-1) \); Divide both sides of (35) by \(\|g_{k+1}\|^2 \) and take the squares to get:
\[\frac{1}{\lambda^{2}} \left(\frac{d_{k+1}^{T}g_{k+1}}{\|g_{k+1}\|^2} + 1 \right)^{2} \geq \|g_{k+1}\|^2 \cos^{2} \theta_{k} \]

Since:
\[(g_{k}^{T}s_{k}) = \|g_{k}\|^{2} \cos^{2} \theta_{k} \]

then:
\[\frac{1}{\lambda^{2}} \sum_{i=0}^{\infty} \left(\frac{d_{k+1}^{T}g_{k+1}}{\|g_{k+1}\|^2} + 1 \right)^{2} \geq \sum_{i=0}^{\infty} (g_{k}^{T}s_{k}) \geq \gamma \cos^{2} \theta_{k} \]

Taking the summation of the above equality from \(k = 0 \) to \(k = \infty \) yields:
\[\frac{1}{\lambda^{2}} \sum_{i=0}^{\infty} \left(\frac{d_{k+1}^{T}g_{k+1}}{\|g_{k+1}\|^2} + 1 \right)^{2} \geq \sum_{i=0}^{\infty} (g_{k}^{T}s_{k}) \geq \gamma \cos^{2} \theta_{k} = \infty \]

Contradiction with Zountendijk theorem. Therefore \(\|g_{k}\| = 0 \).

Note: To study the convergence analysis of the new Algorithm 2 we will give only the conditions for descent property since the algorithm is not in general generates descent directions except under suitable conditions.

Theorem 3: If the gradient of the objective function is Lipschitz continuous with \(L > 0 \) and if:
\[L \left(\frac{y_{k}^{T}g_{k+1}}{s_{k}^{T}y_{k}} \right) \leq \frac{3}{4} \left(\frac{s_{k}^{T}g_{k+1}}{s_{k}^{T}y_{k}} \right) \]

(36)

Then the search directions generated by Algorithm 2 are descent directions.

Proof: For initial direction \(d_{i} = -g_{i} \rightarrow d_{i}^{T}g_{i} = -\|g_{i}\| < 0 \) now let \(g_{j}^{T}d_{j} < 0 , j = 1...k-1 \) assuming (36) holds for \(\forall j \) then:
\[d_{k+1}^{T}g_{k+1} = -g_{k+1}^{T}g_{k+1} + \beta_{i}d_{i}^{T}g_{k+1} \]
It is clear that for exact line searches the directions are descent for all k. We assume that the parameter α_k satisfies Wolfe conditions therefore:

$$d_{k+1}^r g_{k+1} = -g_{k+1}^T g_{k+1} + \frac{g_{k+1}^T y_k}{s_k^T y_k} g_{k+1} - \frac{y_k^T g_{k+1}}{y_k^T y_k} g_{k+1} + \left(\frac{s_k^T g_{k+1}}{s_k^T y_k}\right)^2$$

Therefore using Lipschitz condition:

$$\frac{g_{k+1}^T y_k}{y_k^T y_k} g_{k+1} \leq \frac{g_{k+1}^T s_k}{y_k^T s_k}$$

Then:

$$d_{k+1}^r g_{k+1} \leq -g_{k+1}^T g_{k+1} + \frac{g_{k+1}^T y_k}{s_k^T y_k} g_{k+1} - \frac{y_k^T g_{k+1}}{y_k^T y_k} g_{k+1} + \left(\frac{s_k^T g_{k+1}}{s_k^T y_k}\right)^2$$

But:

$$\frac{g_{k+1}^T y_k}{s_k^T y_k} g_{k+1} \leq \left(\sqrt{2} \left(s_k^T g_{k+1}\right) y_k\right)$$

Use the fact $u^T v \leq \frac{1}{2}(u^2 + v^2)$ with $u = \left(s_k^T y_k\right)$ and $v = \sqrt{2}s_k^T g_{k+1}$ to get:

$$\frac{g_{k+1}^T y_k}{s_k^T y_k} g_{k+1} \leq \frac{1}{2} \frac{1}{2} \left(s_k^T y_k\right)^2 + \frac{2\left(s_k^T g_{k+1}\right)^2}{s_k^T s_k}$$

Use (38) in (37) to get:

$$d_{k+1}^r g_{k+1} \leq -g_{k+1}^T g_{k+1} + \frac{1}{4}\|g_{k+1}\|^2 + \frac{L\left(s_k^T g_{k+1}\right)^2}{s_k^T y_k}$$

Hence the search directions are descent if (36) satisfied and the proof of the theorem (3) is completed.

RESULTS

Here we reported some numerical results obtained with the implementation of the new v1 and v2 algorithms on a set of unconstrained optimization test problems taken from \cite{2,3}. We have selected (15) large scale unconstrained optimization problems in extended or generalized form; for each test function we have considered numerical experiments with the number of variables $n = 100, 1000, 10000$.

These two new versions are compared with two well-known CG-algorithms; the first is the Hestenes and Stiefel (HS) algorithm which is one of the best and well-known CG-algorithms\cite{5} in practice and always generates conjugate directions independent of line search and objective functions. The second is the original Fletcher and Reeves (FR) algorithm. All these algorithms are implemented with the standard Wolfe line search conditions (10a) and (10b) with $c_1 = 0.0001$ and $c_2 = 0.9$ where initial step-size $\alpha_k = 1/\|g_k\|$ and the initial guess for other iterations i.e., ($k>0$):

$$\alpha_k = \alpha_{k-1} \sqrt{d_k^T f / \|f\|^2}$$

In the all these cases, the stopping criteria is the $\|g_k\| \leq 10^{-6}$. Problems numbers indicate for: 1 is the Extend trigonometric, 2 is the Extend Rosenbrok, 3 is the Penalty, 4 is the Perturbed Quadratic, 5 is the Rayadan 1, 6 is the Extended three exponential terms, 7 is the Generalized tridigonal 2, 8 is the Extended Powell, 9 is the Extended wood, 10 is the Quadratic QF1, 11 is the Quadratic QF2, 12 is the Extend tridigonal 2, 13 is the Almost perturbed quadratic, 14 is the Tridiognal perturbed quadratic, 15 is the ENGAL1 (CUTE).

Because the main costs in the numerical optimization are the Function And Gradient Evaluations (FGEV) and also the number of Iterations (IT), hence our comparison are based on the function, gradient evolutions (which they are equal in these CG-algorithms by employing cubic fitting technique as a line search subprogram). Also in the comparison we considered the ability of the algorithms to solve particular test problems.

All codes are written in double precision FORTRAN (2000) with F77 default compiler settings. These codes are originally written by Andrei\cite{1,2} and modified by the authors.
Table 1: Comparison of different CG-algorithms with different test functions and different dimensions

P. No.	n	IT	FGEV	IT	FGEV	IT	FGEV	IT	FGEV
1	100	19	35	21	35	18	35	19	35
1000	39	67	67	31	56	38	65		
10000	34	59	72	34	59	32	60		
2	100	34	72	34	72	32	70	47	93
1000	35	77	81	34	74	78	131		
10000	35	83	82	35	82	54	106		
3	100	9	23	11	29	11	29	10	27
1000	23	49	902	49	902	24	191		
10000	19	259	2791	14	42	92	2406		
4	100	102	155	86	130	110	168	95	150
1000	380	595	581	353	543	349	568		
10000	192	1703	1664	1203	1879	1417	2160		
5	100	80	122	91	146	99	156	102	161
1000	390	720	658	339	602	602			
10000	1442	2516	2596						
6	100	14	23	15	23	13	22	15	25
1000	30	435	21	14	23	127	3351		
10000	147	4175							
7	100	42	62	37	29	36	58	37	67
1000	67	102	64	60	98	73	115		
10000	57	90	64	60	98	73	115		
8	100	75	143	98	181	89	169	180	313
1000	81	153	160	294	123	228			
10000	357	561	572	364	593				
9	100	32	60	34	66	32	60	71	110
1000	28	54	32	62	54	47	84		
10000	31	61	36	69	43	47	86		
10	100	100	152	97	149	95	142	108	174
1000	353	542	333	518	385	313	520		
10000	1106	1731	1061	1670	1759	1193	1742		
11	100	119	180	105	166	104	165	130	196
1000	396	619	357	561	362	364	593		
10000	1668	2468	1236	1967	2088	1839	2905		
12	100	38	61	44	70	39	63	40	65
1000	40	64	41	66	43	34	68		
10000	284	8112	358	8415	998	160	3964		
13	100	104	157	85	120	92	144	98	157
1000	365	570	311	489	317	314	519		
10000	1241	1970	1204	1892	1240	1276	1981		
14	100	26	47	101	164	97	153	106	166
1000	82	1664	337	530	341	335	941		
10000	1186	1847	1181	1842	1261	1187	1846		
15	100	29	50	20	50	27	47	34	57
1000	81	1940	67	1423	93	142	3616		
10000	213	6245	134	3650	253	203	5655		

*: The algorithm fail to converge

Table 2: Comparison of different CG-algorithms with respect to the number of best (IT and FGEV)

FR algorithm	HS algorithm	New v1 algorithm	New v2 algorithm	Equivalence relations
--------------	--------------	------------------	------------------	----------------------
100	5(5)	8(2)	6(7)	1(1)
1000	2(1)	6(7)	3(6)	1(1)
10000	2(3)	6(7)	3(2)	1(3)

From Table 1 we have observed that the new v2 algorithm is the better than the others for n = 100, in terms of the number of results against (IT and FGEV). Details of the best results of these compared algorithms are shown in Table 2. From this Table we have observed also that for n = 1000, the new v1 is also the best and for n = 10000, the new v1 is the best, overall 45 problem dimensions test operations.

CONCLUSION

The suggested algorithms like the original CG-algorithms are gave better numerical results in terms of IT and FGEV which are clearly well-defined from Table 2.
We have observed by the two new versions of the CG-algorithms which are suggested in this study that they are arrive at the limit point while the original HS and FR algorithms are failed.

REFERENCES

1. Andrei, N., 2008. 40 conjugate gradient algorithm for unconstrained optimization. A survey on their definition ICI. Technical Report No. 13/08. http://www.ici.ro/camo/nceluai/p13a08.pdf
2. Andrei, N., 2008. An unconstrained optimization test functions collection. Adv. Model. Optimiz., 10: 147-161. http://www.ici.ro/camo/journal/vol10/v10a10.pdf
3. Bongartz, I., A.R. Conn, N.I.M. Gold and P.L. Toint, 1995. CUTE: Constrained and unconstrained testing environment. ACM. Trans. Math. Software, 21: 123-160. DOI: 10.1145/200979.201043
4. Dai, Y.H. and Y. Yuan, 1999. A nonlinear conjugate gradient algorithm with a strong global convergence property. SIAM. J. Optimiz., 10: 177-182. DOI: 10.1137/S1052623497318992
5. Dai, Y.H. and L.Z. Liao, 2001. New conjugacy conditions and related nonlinear conjugate gradient algorithms. Applied Math. Optimiz., 43: 87-101. DOI: 10.1007/s002450010019
6. Fletcher, R., 1987. Practical algorithms for Unconstrained Optimization. 2nd Edn., John Wiley and Sons, Chichester, ISBN: 0 471 91547 5, pp: 451.
7. Fletcher, R., 1993. An overview of unconstrained optimization. Numerical Analysis Report, NA/149. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.3716&rep=rep1&type=pdf
8. Hager, W.W. and H. Zhang, 2006. A survey of nonlinear conjugate gradient algorithms. Pacific J. Optimiz., 2: 35-58. http://www.math.lsu.edu/~hozhang/papers/cgsurvey.pdf
9. Han, J., 2001. Two fundamental convergence theorems for nonlinear conjugate gradient algorithms and their applications. Acta Math. Appli. Sinica 17: 38-46. DOI: 10.1007/BF02669682
10. Hiroshi, Y. and M. Takano, 2004. Global convergence properties of nonlinear conjugate gradients with modified secant condition. Comput. Optimiz. Appli., 28: 203-225. DOI: 10.1023/B:COAP.0000026885.81997.88
11. Jean, G. and N. Jorge, 1992. Global convergence properties of conjugate gradients algorithms for optimization. SIAM. J. Optimiz., 2: 21-42. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.9688&rep=rep1&type=pdf
12. Shi, Z.J. and J. Guo, 2008. A new algorithm of nonlinear conjugate gradient method with strong convergence. Comput. Applied Math., 27: 93-106. http://www.scielo.br/pdf/cam/v27n1/a06v27n1.pdf
13. Wolfe, P., 1969. Convergence conditions for ascent algorithms. SIAM. Rev., 11: 226-235. http://www.jstor.org/pss/2028111
14. Zhen-Jun, S. and G. Jinhua, 2008. A new algorithm of nonlinear conjugate gradient algorithm with strong convergence. J. Comput. Applied Math., 27: 93-106. http://www.scielo.br/pdf/cam/v27n1/a06v27n1.pdf
15. Zhang, L., 2009. New versions of the Hestenes-Stiefel non-linear conjugate gradient algorithm based on the secant condition for optimization. J. Comput. Applied Math., 28: 111-133. http://www.scielo.br/pdf/cam/v28n1/a06v28n1.pdf
16. Zountendijk, G., 1970. Nonlinear Programming, Computational Algorithms. In: Integer and Nonlinear Programming, Abadie, J. (Ed.). North-Holland, Amsterdam, ISBN: 0444100008, pp: 37-86.