Evaluation of Caregiver Burden of Family Members Providing Support for the Care of Patients Undergoing Brain Surgery at the Hospital

Yasemin Güner1, Dilek Çilingir2

1Department of Medical Education, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
2Department of Surgical Nursing, Karadeniz Technical University, Faculty of Health Sciences, Trabzon, Turkey

Abstract

AIM: The brain regulates various functions which control and coordinate the body. As brain surgeries influence the structures that regulate body functions, they can cause serious complications in patients, such as disability or death. This study aimed to determine the caregiver burden of family members providing support for the care of patients who had undergone brain surgery.

METHOD: The descriptive study was done with family members of 102 patients who had surgery at the neurosurgery department of a university hospital in Turkey. Data were collected using the descriptive features form for the patients, descriptive features form for the care providing family members, Zarit Care Load Scale adjusted for the clinic, and Barthel daily living activities index.

RESULTS: The results of the study revealed that patients undergoing neurosurgery were dependent to an extreme level and that care providing family members had mild or moderate level of care load. A statistically significant difference was found between the averages of family members and their age, sex, marital status, education level, monthly income level, and working status (p < .05).

CONCLUSION: As the level of dependency of the patients undergoing neurosurgery increased, the load of the family members providing care also increased. It would be beneficial to evaluate the support sources owned by care providing family members for taking care of patients and to direct them to people and institutions from where they could get assistance.

Keywords: Family, neurosurgery, patient care, perioperative nursing

INTRODUCTION

As the skull occupies a limited area and is close to vital centers, after neurosurgery patients can develop increased intracranial pressure, cardiac arrhythmia, air embolism, loss of hearing and difficulty in swallowing owing to the cranial nerves being influenced, loss of memory, paralysis, loss of senses such as blindness, speech disorders, mental confusion, and other complications in the postoperative period. Furthermore, in the postoperative period, medical dressings and drains in the surgical area trigger infections, and the patients become dependent for carrying out their daily living activities because of pain and tiredness. This also increases their need for family members to accompany them to the hospital and also increases the burden of care providers (İlçe et al., 2010; Moieni et al., 2014).

However, this situation restricts the daily activities and social lives of the family members providing care to the patient, the time they can allocate to other family members gets reduced, and can cause economic difficulties (İzgü, 2015). Caregiver burden is related to the degree of dependency of the patients for their daily living activities. As the degree of dependency and the time required for patient care increase, the load of the care provider also increases.

Cite this article as: Güner, Y., & Çilingir, D. (2021). Evaluation of caregiver burden of family members providing support for the care of patients undergoing brain surgery at the hospital. Florence Florence Nightingale J Nurs, 29(2), 167-175.

ORCID iDs of the authors: Y.G. 0000-0003-4932-771X, D.Ç. 0000-0002-0660-8426.

DOI: 10.5152/FNJN.2021.19207

Corresponding author: Yasemin Güner
E-mail: yasemin-kul@hotmail.com

Date of receipt: May 11, 2020
Date of acceptance: December 17, 2020
Available online date: May 11, 2021
As the caregiver burden increases, the quality of life of the caregiving family members worsens. Family members who are caregivers end up neglecting both their health and the health of the patients to whom they provide care. Caregivers feel restricted and desperate, they cannot meet their own requirements, and their satisfaction gets reduced. Patient care by a care provider whose life quality has reduced, can also be negatively influenced. When a caregiver does not have the mental and physical strength to deal with the problems arising as a result of the treatment being applied, their burden of care increases and quality of life get reduced (Aşiret Duru & Kapucu, 2012). A review of the literature shows that even though there are only a few studies related to the load of care providers, most of them are related to older people and those who provide care to patients with chronic diseases (Aşiret Duru & Kapucu, 2012; Atagün et al., 2011; Çıtlık et al., 2014; Kankaya et al., 2016). Therefore, we conducted this study in the postoperative period with relatives of patients who had undergone surgery for intracranial mass, subarachnoid hemorrhage, cerebral aneurysm rupture, and brain tumor. Once the caregiver burden of the family members providing support for the care of patients undergoing brain surgery at the hospital can be determined, the awareness of the surgical nurses about the load of care providers will increase, and the quality of care will improve, facilitating support for family members. This study aimed to evaluate the caregiver burden of family members providing support for the care of patients undergoing brain surgery at the hospital.

Research Questions

1. Do the caregiver family members of neurosurgery patients have burden of care?
2. Is there a relation between the dependency levels of patients after neurosurgery and the burden of care of caregiver family members?
3. Is there a relation between sociodemographic features of caregiver family members of neurosurgery patients and their burden of care?

Method

Study Design
This was a descriptive study.

Sample
The study was conducted between August 2016 and February 2017 at the neurosurgery department of a university hospital in Turkey. To determine the sample size of the study, a statistical analysis was performed with 90% power analysis using the Open Source Epidemiologic Statistics for Public Health program Version 3.01 (Dean et al., 2013), and family members of 102 patients were included.

This study was carried out with family members who were over the age of 18 and who had spent 48 hours as caregivers after brain surgery of their patients.

Data Collection Tools

Data were collected using the descriptive features form for the patients, the descriptive features form for the care providing family members, Zarit Care Load Scale adjusted for the clinic, and Barthel daily living activities index.

Descriptive Features Form for Patients: This form, prepared by the researcher, includes 10 questions for determining the features of the patient (such as age, sex, and so on) for whom the care provider is responsible (Bayram, 2014; Kaya et al., 2014; Özer et al., 2012).

Descriptive Features Form for Care Providing Family Members: This form includes 19 questions and 2 sections. In the first section, there are 11 questions including sociodemographic features of the family members of patients (such as age, sex, and so on). In the second section, there are 8 questions including information about the family members of patients regarding their care provision (such as the time spent on patient care, time spent on going to the hospital and coming back).

Zarit Care Load Scale that is Adapted for the Clinic (ZBI-TR): The Care Load Scale was developed by Zarit et al., in 1980. It is a scale used to determine the stress lived through by those providing care to people in need or to elderly people (Zarit et al., 1980). The Care Load Scale was adapted to Turkish by Özer et al. (2012), and validity and reliability studies have been conducted. The scale is a Likert-type scale with scores from “0” to “4”, such as never (0), seldom (1), sometimes (2), often (3), or almost always (4). The studies in the scale are generally related to social and emotional areas. The total score is obtained by adding all the studies. The total score can vary from 0 to 88. The higher the total score, the higher the load. If the load is between 0 and 20 points, it implies little or no load; between 21 and 41, moderate
or intermediate level of load; and between 41 and 60, high level of load. The range of 61 to 88 is rated as excessive load. The Cronbach alpha coefficient of the Zarit care burden scale was .82. In this study, the cronbach alpha value was found to be .80.

Barthel Daily Living Activities Index (BDLAI): This index, which was developed by Mahoney & Barthel in year 1965, has been used to determine the level of independence of daily living activities of individuals. The validity and reliability of the scale was verified by Kucukdeveci et al. (2000). The scale includes articles evaluating nutrition, passing from the wheelchair to the bed and back, self-care, bath, walking, going up and down the stairs, dressing, and bladder and bowel continence. Scores from the scale can range from “0” (lowest) to “100” (highest), with 0–20 points defining complete dependence, 21–61 advanced level of dependence, 62–90 intermediate level of dependence, and 91–100 points independence. The Cronbach alpha coefficient of the Barthel daily living activities index was .88. In this study, the cronbach alpha value was found to be .82.

Statistical Analysis

The data were analyzed with the Statistical Package for the Social Sciences version 18.0 (SPSS Inc., Chicago, IL, USA) software program. The Kolmogorov-Smirnov test was applied to determine whether the data were normally distributed. Statistical methods used included percentage, mean, Mann-Whitney U test, Kruskal-Wallis variance analysis, Spearman correlation analysis, and linear regression analysis.

Ethical Considerations

Ethical counsel permit (29.07.2016 Issue: 24237859-450) was obtained from the presidency of Karadeniz Technical University Medical Faculty Scientific Research Board ethical counsel for scientific research, and institutional permit was obtained from the hospitals. In addition, informed consent was obtained from each patient and caregiver family members. All the participants were informed that participation was voluntary and that all their information would be kept confidential.

Results

Of the patients in the study, 66.7% were 55 years or older, 63.7% were men, and 74.5% were married. A total of 71.6% of the patients were elementary school graduates, 76.5% had intermediate income levels, 78.4% of them did not work, and all of them had social security. Neurosurgery was performed for an intracranial tumor in 63.8% of the patients, 50% had at least 1 disease other than the disease for which they had surgery, and they stayed in the hospital for 8.0 ± 9.1 days on the average.

Of the care providers, 40.2% were between 19 and 36 years of age, 68.6% were women, and 80.4% were married. Nearly half the patient’s relatives who participated in the study were primary school graduates, living in the city center, and 75% were in a nuclear family structure. A total of 83.3% of the caregivers had an intermediate level of income, 63.7% of them did not work, and all of them had social security. Of the caregivers who were family members, 91.2% were first-degree relatives of the patient, and 27.5% had a chronic disease.

Approximately, 50% of the caregivers had been caring for their patients for <30 days, 73.5% continuously stayed with the patient, and 64.7% were involved in patient care for 8–16 hours a day. It was determined that 28.4% of the caregivers had at least 1 person they were liable to look after at home, and 86.2% were liable to look after their children. A total of 55.9% of the caregivers were supported by other family members during the time they stayed in the hospital with the patient, and the most frequently received support was physical support (93.0%). Of the caregivers, 94.1% gave physical support to the patient, 58.8% lived through problems during the time they stayed at the hospital, and the most frequently experienced problem was related to sleeping (73.3%).

The total BDLAI score average of patients who were receiving care was 34.8 ± 31.8, and the ZBI-TR score average of the caregivers was 27.3 ± 12.8 (Table 1).

The total ZBI-TR score averages of family members providing care to patients undergoing brain surgery at the hospital were 36.2 ± 11.0 for those aged 55 or more, 29.4 ± 13.7 for women, 29.2 ± 12.4 for the

| Table 1: BDLAI Score Averages of Patients Undergoing Brain Surgery and ZBI-TR Score Averages of Care Providing Family Members (n = 102) |
|---|---|---|
| Scale types | n | Mean ± SD | Medium (min-max) |
| BDLAI | 102 | 34.8 ± 31.8 | 30.0 (0–100) |
| ZBI-TR | 102 | 27.3 ± 12.8 | 26.0 (2–56) |

Note: BDLAI = Barthel daily living activities index; ZBI-TR = Zarit Care Load Scale that is adapted for the clinic; n = Sample size; SD = Standard deviation.
married ones, 30.9 ± 12.5 for elementary school graduates, 32.5 ± 14.4 for those living in villages, 33.6 ± 12.1 for those having low monthly income levels, 29.9 ± 13.1 for those having extended families, 30.2 ± 12.9 for those not working, 27.4 ± 13.0 for those being first-degree relatives, and 27.5 ± 12.4 for those not having health problems. There was a statistically significant difference between the total ZBI-TR score averages in terms of age, sex, marital status, education status, monthly income level, and working status (p < .05) (Table 2). Therefore, it was determined that increased age, female sex, being married, low education level, and low monthly income increased the burden of care.

Table 2
Comparison of Sociodemographic Features of the Family Members Providing Care to Patients Undergoing Brain Surgery at the Hospital and ZBI-TR Score Averages (n = 102)

Sociodemographic features	n (%)	Mean ± SD	Statistical analysis
Age (years)			
19–36	41 (40.2)	20.8 ± 10.0	KW = 22.131
37–54	36 (35.3)	28.5 ± 12.9	p = .000
55 and older	25 (24.5)	36.2 ± 11.0	
Sex			
Female	70 (68.6)	29.4 ± 13.7	Z = −2.387
Male	32 (31.4)	22.8 ± 9.2	p = .017
Marital status			
Married	82 (80.4)	29.2 ± 12.4	Z = −2.866
Single	20 (19.6)	19.5 ± 11.4	p = .004
Education status			
Elementary school	58 (56.8)	30.9 ± 12.5	KW = 12.518
High school	22 (21.6)	24.9 ± 13.1	p = .002
High school/University	22 (21.6)	20.1 ± 9.7	
Place of living			
City	60 (58.9)	27.1 ± 12.3	KW = 1.377
District	34 (33.3)	26.5 ± 13.4	p = .502
Village	8 (7.8)	32.5 ± 14.4	
Monthly income level			
Good	7 (6.9)	13.2 ± 10.4	KW = 9.287
Intermediate	85 (83.3)	27.7 ± 12.3	p = .010
Low	10 (9.8)	33.6 ± 12.1	
Family type			
Nuclear	77 (75.5)	26.4 ± 12.7	Z = −1.005
Wide	25 (24.5)	29.9 ± 13.1	p = .315
Working status			
Working	37 (36.3)	22.3 ± 11.1	Z = −2.924
Not working	65 (63.7)	30.2 ± 12.9	p = .003
Degree of closeness to the patient			
First degree relative	93 (91.2)	27.4 ± 13.0	Z = −1.189
Second degree relative	9 (8.8)	26.5 ± 11.3	p = .850
Situation of having a health problem			
Yes	28 (27.5)	26.6 ± 13.9	Z = −.398
No	74 (72.5)	27.5 ± 12.4	p = .681

Note. ZBI-TR = Zarit Care Load Scale that is adapted for the clinic; n = Sample size; SD = Standard deviation.
Table 3
Comparison of Care Provision Features of Family Members Providing Care to Patients Undergoing Brain Surgery at the Hospital and ZBI-TR Score Averages (n = 102)

Features related to the care provision period	n (%)	ZBI-TR Mean ± SD	Statistical analysis
Period of dealing with patient care			
Less than 30 days	48 (47.1)	24.3 ± 11.4	KW = 9.387
Between 31 and 180 days	19 (18.6)	25.0 ± 10.8	
More than 181 days	35 (34.3)	32.7 ± 14.1	*p = .009*
Frequency of staying at the hospital			
Continuous	75 (73.5)	26.0 ± 13.0	Z = −1.705
Sometimes	27 (26.5)	30.8 ± 11.6	*p = .088*
Period of providing care to the patient			
Less than 8 hours	13 (12.7)	17.9 ± 14.8	KW = 6.73
Between 8 and 16 hours	66 (64.7)	28.5 ± 12.1	*p = .035*
More than 17 hours	23 (22.6)	29.0 ± 11.8	
Existence of people being liable to take care of at home			
Yes	29 (28.4)	29.7 ± 12.4	Z = −1.248
No	73 (71.6)	26.3 ± 12.9	*p = .212*
People being liable to take care of at home (n = 29)			
Mother-Father			
Yes	6 (20.7)	30.7 ± 14.7	Z = −.081
No	23 (79.3)	29.5 ± 12.1	*p = .937*
Child			
Yes	25 (86.2)	28.7 ± 12.0	Z = −1.048
No	4 (13.8)	36.5 ± 15.0	*p = .310*
Existence of other family members providing support for the care			
Yes	57 (55.9)	25.2 ± 13.0	Z = −1.738
No	45 (44.1)	30.0 ± 12.2	*p = .082*
Type of support provided to the patient by other family members giving support for the care (n = 57)			
Psychological support			
Yes	48 (84.2)	26.1 ± 13.3	Z = −1.228
No	9 (15.8)	20.9 ± 11.5	*p = .219*
Physical support			
Yes	53 (93.0)	25.2 ± 13.1	Z = −0.047
No	4 (7.0)	25.8 ± 13.6	*p = .964*
Financial support			
Yes	39 (68.4)	26.4 ± 14.1	Z = −1.049
No	18 (31.6)	22.7 ± 10.2	*p = .294*
The total ZBI-TR score averages of the caregivers was 32.7 ± 14.1 for those involved for more than 181 days, 30.8 ± 11.6 for those staying at the hospital sometimes, 29.0 ± 11.8 for those providing care for >17 hours, 29.7 ± 12.4 for those having someone to look after at home, 30.7 ± 14.7 for those having to look after their parents at home, 36.5 ± 15.0 for those having to look after their children at home, and 30.0 ± 12.2 for those not having other family members providing care support (Table 3).
The total ZBI-TR score averages of other family members providing support for the care of patients undergoing brain surgery was 26.1 ± 13.3 for psychological support to the patient, 25.8 ± 13.6 for physical support to the patient, and 26.4 ± 14.1 for financial support to the patient. The total ZBI-TR score average was 28.3 ± 12.4 for family members providing physical support to the patient, 28.7 ± 12.6 for those providing financial support, and 27.3 ± 12.6 for those providing psychological support (Table 3).

The total ZBI-TR score average of caregivers living through problems at the hospital was determined to be 29.1 ± 13.6. Regarding the problems experienced at the hospital, the total ZBI-TR score averages were found out to be 29.8 ± 14.2 relating to sleep, 33.4 ± 12.1 relating to food, 34.0 ± 13.5 relating to worship, 33.2 ± 13.0 relating to transportation, and 29.7 ± 16.4 relating to hygiene (Table 3).

There was a statistically significant difference between the period of being involved with patient care; the period of providing care to the patient; the existence of physical support for the family members providing care to the patient; problems related to food, worship, and transportation faced by the caregivers providing patient care at the hospital and the total ZBI-TR score averages ($p < .05$ (Table 3). It was determined that the problems experienced by caregivers during their stay at the hospital increased their care burden. There was a significant negative relationship between the ZBI-TR score averages of family members providing care to the patients and BDLAI score averages of the patients ($r = -.288$). Accordingly, as BDLAI score averages increased, the total ZBI-TR score average decreased (Table 4).

Discussion

The care burden of the family members of the patients participating in the study was found to be mild and moderate. Various studies conducted with different surgical patient groups show that the care burden of family caregivers is moderate (Bayram, 2014; Dalgıç, 2015). In other studies, the patients’ relatives were reported to experience excessive burden (Crespo-Burillo et al., 2018; Kaynar Öztürk & Yural, 2018). In the postoperative period, neurosurgical patients restrict their activities for a certain period and need long-term care, requiring the participation and support of family members in hospital care. It is thought that neurosurgical patients’ dependence on others increases the care burden of family members.

A statistically significant difference was observed between the ZBI-TR mean scores of the family caregivers depending on their age, sex, marital status, education level, monthly income level, and employment status. Similar studies have reported that sex, marital status, educational status, health insurance, and economic status have a significant effect on care burden (Aoun et al., 2015; Moieni et al., 2014; Selen & Kav, 2014). Being a woman, being married, having a low income, and being employed are the factors that increase the burden of the caregivers.

This study revealed that the care burden of first-degree relatives was higher than that of others, and no severe care burden was found in second-degree relatives. The care burden of the patients’ relatives was evaluated by Yilmaz for patients with colon cancer and by Moieni for patients undergoing coronary artery bypass grafting, and the results were found to be similar to those of this study (Moieni et al., 2014; Yılmaz, 2016). As individuals who have a strong social relationship with the patient, in addition to their physical blood ties, also undertake the responsibility of providing care to the patient, having an increasing care burden can be thought of as a normal situation.

There was a statistically significant difference between the duration of providing care to the patient and the mean the ZBI-TR scores. It was seen that as the duration of care for the patients increased, the burden of the caregiver increased. This study results are in agreement with the literature in this aspect (Eğilli & Sunal, 2017; Pinquart & Sörensen, 2007; Şahin et al., 2009). It is thought that the duration of caregiving is among the factors affecting the burden of care; and as the duration of care increases, the burden and burnout level of the caregiver increase. In contrast to this study, another study revealed that the burden of the caregivers was lower in the first 1 or 2 years after liver transplantation (Çıtlık Sarıtaş et al., 2014). The fact that the perception of burden of the caregivers who have a care period of 1 to 2 years is less than that of those who care for less than 1 year can be attributed to the patients’ improved health over time and being more effective in performing activities of daily living.

This study demonstrated that caregivers who stay with patients who have had neurosurgery constantly felt more burden of care than occasional caregivers.
which is similar to other relevant studies (Malak & Dicle, 2008; Yilmaz, 2016). As time goes by, people who provide continuous care consider this a task, get used to it, and make it 1 of their daily life activities; whereas occasional caregivers are believed to have higher care burdens as they consider caring an obligation. In a study with oncology patients and their caregivers by Öner (Öner, 2012), those who gave continuous care to patients were reported to perceive more care burden. The fact that family caregivers constantly stay with the patient, cannot spare time for themselves, have their social life interrupted, and have difficulties in maintaining their self-care causes them to perceive caregiving as a stressful situation (Lang et al., 1999). Because of stressors resulting from being with the patient all the time, it is thought that family caregivers have more care burden.

The care burden of family members who gave physical support to the patient was found to be high in this study. In different studies, similar results were obtained (Bayram, 2014; Özdemir et al., 2009). This situation may suggest that neurosurgical patients become dependent on others for their daily life activities in the postoperative period and that family caregivers need more physical support.

Family caregivers of neurosurgery patients had problems with food, worship, and transportation during their stay at the hospital; and therefore, their mean ZBI-TR scores were found to be high. Relevant studies in the literature report similar results (Bayram, 2014; Özdemir et al., 2009). The reason for this is thought to be that the majority of family caregivers come from outside the province and thus stay with the patient constantly, the hospital does not provide food for them, the space allocated to them is physically insufficient, and the symptoms experienced by the patients are severe.

In this study, it was found that if family caregivers were also obliged to take care of their parents at home, their care burden increased. Similar results were found in different studies (Ateş & Bilgili, 2013; Bayram, 2014). According to this result, family caregivers cannot fulfill their roles at home during their hospital stay, which is thought to increase the perception of burden of care as their family life is interrupted.

Increasing dependency level of the patients in daily living activities increased the level of care burden felt by the family caregiver. As the Barthel Daily Living Activities Index scores increased, the independence of the person increased, and the care burden on the caregiver decreased. As a result of regression analysis on the basis of the statistically significant relationship between the 2 scales, it was seen that the dependence levels of the patients, measured by BGYAI, had a statistically significant effect on the caregivers’ feeling of the burden of care. As the dependency levels of the patients increased, the care burden also increased. There are studies in the literature with similar results (Crespo-Burrillo et al., 2018; Kaya et al., 2007; Malak & Dicle, 2008).

Study Limitations
A limitation of this study is that it was conducted at the neurosurgery clinic of a university hospital with the family members of patients undergoing brain surgery who agreed to participate in the study; so the results cannot be generalized for the family members of all patients undergoing brain surgery.

Conclusion and Recommendations
This study determined that patients undergoing brain surgery were dependent at an advanced level and that family members providing care felt a mild to moderate degree of load, and that as the dependency level of the patients increased, the load of care providing family members also increased. Furthermore, it was found that sociodemographic and care provision features of the family members providing care to the patient at the hospital played a part on the load of care. As per the results of this study, recommend that support be given to the nurses to undertake their responsibilities effectively with the aim of supporting care providing family members; the nurses must communicate with the care providers and specify their needs, and the patients and their relatives should be informed that patients undergoing brain surgery are dependent at an advanced level.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Karadeniz Technical University (29.07.2016 Issue: 24237859-450).

Informed Consent: Written informed consent was obtained from all the patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – Y.G., D.Ç.; Design – Y.G., D.Ç.; Supervision – D.Ç.; Resources – Y.G., D.Ç.; Materials – Y.G., D.Ç.; Data Collection and/or Processing – Y.G.; Analysis and/or Interpretation – Y.G., D.Ç.; Literature Search – Y.G.; Writing Manuscript – Y.G.; Critical Review – D.Ç.; Other – Y.G., D.Ç.
Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

Aoun, S. M., Deas, K., Howting, D., & Lee, G. (2015). Exploring the support needs of family caregivers of patients with brain cancer using the CSNAT: A comparative study with other cancer groups. PLoS One, 10(12), e0145106. [Crossref]

Aşiret Duru, G., & Kapucu, S. (2013). Burden of Caregivers of Stroke Patients. Turkish Journal of Neurology, 19(1), 5-10. [Crossref]

Atagün, M. İ., Balaban, Ö. D., Atagün, Z., Elagöz, M., & Özpolat, A. Y. (2011). Caregiver burden in chronic diseases. Current Approaches in Psychiatry, 3(3), 513-552. [Crossref]

Ates, E., & Bilgili, N. (2013). Overcoming the stress in caregivers of individuals with spinal cord injury and social support. Journal of Research and Development in Nursing, 15(3), 1-12.

Bayram, H. (2014). Determination of care burden and influencing factors of caregivers for major orthopedic surgery patients in clinics (Master’s Thesis). Dokuz Eylül University Institute of Medical Sciences, İzmir.

Crespo-Burillo, J. A., Rivero-Celada, D., Saenz-de Cabezón, A., Casado-Pellejero, J., Alberdi-Viñas, J., & Alarcía-Alejos, R. (2018). Deep brain stimulation for patients with Parkinson’s disease: Effect on caregiver burden. Neurologia (English Edition), 33(3), 154-159. [Crossref]

Çitlık Sarıtaş, S., Bayır, K., Sintaş, Ş., & Uçuzal, M. (2014). Care burden determination of caregivers of liver transplanted patients. Yıldırım Beyazıt University Faculty of Health Sciences Journal of Nursing E-Journal, 2(1), 18-23.

Dalgöz, C. (2015). Determination of care burden and depression levels of relatives of laryngectomy patients (Master’s Dissertation). Haliç University Institute of Medical Sciences, İstanbul.

Dean, A. G., Sullivan, K. M., Soe, M. M. (2013). OpenEpi: Open Source Epidemiologic Statistics for Public Health Version. www.OpenEpi.com, updated 2013/04/06, accessed 2021/03/19.

Eğilili, C. S., & Sunal, N. (2017). Determination of care load and affecting factors of demented patient caregivers. JAREN/Journal of Academic Research in Nursing, 3(2), 83-91. [Crossref]

İlçe, A., Totur, B., & Özbayır, T. (2010). Evaluation of patients with brain tumors according to NANDA international nursing diagnoses: Care offers. Journal of Neurological Sciences, 27(2), 178-184.

Izgü, N. (2015). Care burden and nursing care in primary caregivers of patients cured for hematopoietic stem cell transplantation. Journal of Hacettepe University Faculty of Nursing, 2(1), 61-69.

Kankaya, H., Doğru, B. V., Yıldırım, Y., & Fadılogoğlu, Ç. (2016). The examination of relationship between the reaction of caregivers and daily life activity levels of patient with multiple sclerosis. Gümüşhane University Journal of Health Sciences, 5(1), 33-49.

Kaya, H., Acaroğlu, R., Şendir, M., & Güldeş, S. (2014). The effect of neurosurgery patients’ optimistic life tendency on overcoming preoperation anxiety. Florence Nightingale Journal of Nursing, 15(59), 75-81.

Kaynar Öztürk, G., & Vural, F. (2018). Assessment of the caregiver burden of caregivers of colorectal cancer patients. Turkish Journal of Colorectal Disease, 28, 164-171. [Crossref]

Kucukdeveci, A. A., Yavuzer, G., Tannent, A., Suldur, N., Sonel, B., & Arasil, T. (2000). Adaptation of the modified Barthel Index for use in physical medicine and rehabilitation in Turkey. Scandinavian Journal of Rehabilitation Medicine, 32(2), 87-92. [Crossref]

Lang, D. A., Neil-Dwyer, G., & Garfield, J. (1999). Outcome after complex neurosurgery: the caregiver’s burden is forgotten. Journal of Neurosurgery, 91(3), 359-363. [Crossref]

Mahoney, F. I., & Barthel, D.W. (1965). Functional evaluation: The Barthel index. A simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Maryland State Medical Journal, 14, 61-65.

Malak, A. T., & Dicle, A. (2008). Care burden and influencing factors for caregivers for patients with brain tumors. Turkish Journal of Neurosurgery, 18(2), 118-121.

Moieni, M., Poorpooneh, Z., & Pahlavanzadeh, S. (2014). Investigating the effect of family-focused nursing intervention on caregiver burden of the family members of the patients undergoing coronary bypass surgery in Isfahan Shahid Chamran Hospital during 2012. Iranian Journal of Nursing and Midwifery Research, 19(2), 187.

Öner, Ö. İ. (2012). Examination of the caregiver burden and perceived social support of caregivers of oncology patients (Master’s Thesis). Firat Universitesi Institute of Health Sciences, Elazığ.

Özer, N., Yurttaş, A., & Akyil, R. Ç. (2012). Psychometric evaluation of the Turkish version of the Zarit Burden Interview in family caregivers of inpatients in medical and surgical clinics. Journal of Transcultural Nursing, 23(1), 65-71. [Crossref]

Özdemir, F. K., Şahin, Z. A., & Kuçük, D. (2009). Determining care burden of mothers with children who have cancer. New Medicine Journal, 26(3), 153-158.

Pinquart, M., & Sörensen, S. (2007). Correlates of physical health of informal caregivers: A meta-analysis. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(2), P126-P137. [Crossref]

Selen, F., & Kay, S. (2014). Determining the needs, caregiving burden and associated factors in primary caregivers of patients with chronic obstructive pulmonary diseases. Journal of Research and Development in Nursing, 16(1), 12-22.

Şahin, Z. A., Polat, H., & Ergüney, S. (2009). Determine burden for caregivers of cancer patients receiving chemotherapy. Journal of Nursing and Health Sciences, 12(2), 1-9.

Yılmaz, G. (2016). The evaluation of care burden of colon cancer patient’s relatives (Master’s Thesis). İstanbul University Institute of Medical Sciences, İstanbul.

Zarit, S. H., Reever, K. E., & Bach-Peterson, J. (1980). Relatives of the impaired elderly: Correlates of feelings of burden. The Gerontologist, 20(6), 649-655. [Crossref]