Structure formation in a nonlocally modified gravity model

Sohyun Park
Penn State University

In collaboration with Scott Dodelson and Sarah Shandera

July 2, 2013 University of Nottingham
Outline

1. A nonlocally modified gravity model which describes the late time acceleration

2. Is it also consistent with the growth of structure in the universe?
Describing the expansion history by $a(t)$

Universe in large scales ($> 100\text{Mpc}$):
- Homogeneous, isotropic and spatially flat
- Described by FRW (Friedmann-Robertson–Walker) metric

$$ds^2 = -dt^2 + a^2(t)d\vec{x} \cdot d\vec{x}$$

- Expansion history can be described by the scale factor
 $$\dot{a} > 0 \text{ expanding} \quad \ddot{a} > 0 \text{ accelerating}$$

- Current phase of acceleration: the Hubble rate is approaching to a constant, meaning accelerating
 $$\dot{H} \sim 0 \quad \frac{\ddot{a}}{a} = \dot{H} + H^2 > 0$$
Late time acceleration: a surprise, not expected from General Relativity

- **Einstein equation**

 \[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]

 spacetime curvature energy and momentum

 Specialize it to the FRW (homogeneous, isotropic, spatially flat) geometry:

- **Friedmann equation**

 \[\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \rho \]

 expansion rate energy density

If we consider only matter (including both ordinary and dark matter), what observation tells us:

- **LHS** \(H(t) = \frac{\dot{a}}{a} \) approaching to a const. but **RHS** \(\rho_{\text{matter}}(t) = \frac{\rho_0}{a^3(t)} \) falling off

 \(\dot{H} \sim 0 \Rightarrow \frac{\ddot{a}}{a} = \dot{H} + H^2 > 0 \)

- Two approaches to this problem:

 Modify LHS: Modified Gravity or **Add more energy to RHS:** Dark Energy
A MG model: nonlocally modified gravity

- **Model:** Deser and Woodard, PRL 99 (2007) 111301, arXiv:0706.2151 proposed to explain late time acceleration without DE using a nonlocal Lagrangian

\[
\mathcal{L} = \frac{1}{16\pi G} \sqrt{-gR} \left[1 + f\left(\frac{1}{\Box} R\right) \right] = \mathcal{L}_{E-H} + \Delta \mathcal{L}
\]

- What does \(\frac{1}{\Box} R\) mean?

For example, for the FRW geometry

\[ds^2 = -dt^2 + a^2(t)d\bar{x} \cdot d\bar{x}\]

\[\Box F(x) = \left(-\partial_t^2 - 3H\partial_t + \frac{\nabla^2}{a^2} \right) F(x)\]

If F is a function of time only,

\[
\frac{1}{\Box} F(t) = -\int_{t_i}^{t} \frac{dt'}{a^3(t')} \int_{t_i}^{t'} dt'' a^3(t'') F(t'') \quad \Rightarrow \quad \frac{1}{\Box} R = -\int_{t_i}^{t} \frac{dt'}{a^3(t')} \int_{t_i}^{t'} dt'' a^3(t'')(6\dot{H} + 12H^2)
\]

In general, find a Green's function for \(\Box\)

\[
\frac{1}{\Box} F(t, \bar{x}) = \int d^4 x' G(x, x') F(t', \bar{x}')
\]
Retarded Green’s function for □ for the FRW background

\[\square G_{ret}(x; x') = \left(-\dot{a}^2 - 3H\dot{a} + \frac{\nabla^2}{a^2} \right) G_{ret}(x; x') = \delta^4(x - x') \]

can be constructed using the massless, minimally coupled scalar mode functions \(u(t, k) \) for arbitrary \(a(t) \)

\[\ddot{u} + 3H(t)\dot{u} + \frac{k^2}{a^2(t)} u = 0 \]

No general solution for the mode function \(u(t, k) \) but the sub-horizon limit, use the WKB approximation to find

\[u(t, k) = \frac{1}{\sqrt{2k}} \exp \left[-ik \int^t_{t'} \frac{dt'}{a(t')} \right] \]

This will be used for the perturbation eqns involving acting \(\frac{1}{\square} \) on \(\Phi(t, \vec{x}) \) & \(\Psi(t, \vec{x}) \).
Main features of this nonlocally modified gravity

- $\frac{1}{R}$ is dimensionless: doesn’t introduce a new mass parameter
- $\frac{1}{R}$ is extremely small for the Solar System: $\frac{1}{R} = \frac{GM}{c^2 r} \to 10^{-9}$ at the surface of the earth

- Two built-in delays of the onset of acceleration
 - $R \approx 0$ for radiation-domination \rightarrow no modification until $t \sim 10^5 \text{yrs}$
 - Grows logarithmically after that: $\frac{1}{R} \approx \frac{4}{3} \ln \left(\frac{t}{t_{eq}} \right) \to \frac{1}{R}\Big|_{t_{now}=10^{10} \text{yrs}} \sim -15$

 don’t need huge fine-tuning for the parameter function f
 to match with the LCDM expansion history

\[
\begin{align*}
\text{Deffayet and Woodard,} \\
\text{JCAP 08 (2009) 023, arXiv:0904.0961}
\end{align*}
\]
Modified field eqn gives the expansion history

- Varying the action w.r.t the metric we get the modified field eqn:

\[
G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G T_{\mu\nu}
\]

\[
\Delta G_{\mu\nu} = \left[G_{\mu\nu} + g_{\mu\nu} - D_{\mu}D_{\nu} \right] \left\{ f\left(\frac{1}{\bar{R}}\right) + \frac{1}{\bar{R}} \left[R f'(\frac{1}{\bar{R}}) \right] \right\} + \left[\delta_{\mu}^{(\rho)} \delta_{\nu}^{(\sigma)} - \frac{1}{2} g_{\mu\nu} g^{\rho\sigma} \right] \partial_{\rho} \left(\frac{1}{\bar{R}}\right) \partial_{\sigma} \left(\frac{1}{\bar{R}} \right) R f'(\frac{1}{\bar{R}}) \right]\]

- The 0th order eqns for the FRW background

\[
3H^2 + \Delta G_{00} = 8\pi G \rho
\]

\[
-2\dot{H} - 3H^2 + \frac{1}{3a^2} \delta^{ij} \Delta G_{ij} = 8\pi G \rho
\]

- Construction of the nonlocal distortion function \(f \):

 The free parameter \(f \) can be chosen to fit any expansion history:

 In particular, the function \(f \) is fitted to mimic the expansion history of LCDM Deffayet and Woodard, JCAP 08 (2009) 023, arXiv:0904.0961.

\[
f(X) \sim \frac{1}{4} \left[\tanh \left(\frac{1}{3}X + \frac{5}{2} \right) - 1 \right]
\]

What about the growth history?
Perturbations in modified gravity

To see the growth of structure, perturb the metric around the FRW background; perturbations encoded in the two potentials, which depend on space and time

\[ds^2 = -(1 + 2\psi)dt^2 + a^2(t)(1 - 2\Phi)d\vec{x} \cdot d\vec{x} \]

Generally, differences between GR and MG

GENERAL RELATIVITY	MODIFIED GRAVITY
\(\Phi + \Psi = 0 \)	\(\Phi + \Psi \neq 0 \)
\(\nabla^2 \Phi = -4\pi G\rho_m a^2 \delta \)	\(\nabla^2 \Phi = -4\pi G_{\text{eff}}\rho_m a^2 \delta \)
Perturbation Equations

- The modified field equations (generically)

\[
\begin{align*}
G_{00} + \Delta G_{00} &= 8\pi G T_{00} \\
\bar{G}_{00} + \Delta \bar{G}_{00} + \delta \left(G_{00} + \Delta G_{00} \right) &= 8\pi G \left(\bar{T}_{00} + \delta T_{00} \right) \\
G_{ij} + \Delta G_{ij} &= 8\pi G T_{ij} \\
\bar{G}_{ij} + \Delta \bar{G}_{ij} + \delta \left(G_{ij} + \Delta G_{ij} \right) &= 8\pi G \left(\bar{T}_{ij} + \delta T_{ij} \right)
\end{align*}
\]

- The FRW background equations govern the expansion history

\[
\bar{G}_{00} + \Delta \bar{G}_{00} = 8\pi G \bar{T}_{00}, \quad \bar{G}_{ij} + \Delta \bar{G}_{ij} = 8\pi G \bar{T}_{ij}
\]

- Perturbations equations govern the growth history

\[
\delta \left(G_{00} + \Delta G_{00} \right) = 8\pi G \delta T_{00}, \quad \delta \left(G_{ij} + \Delta G_{ij} \right) = 8\pi G \delta T_{ij}
\]

Arranging these in a more conventional form (for the far sub-horizon modes, \(k >> H_a \)):

- Poisson equation

\[
k^2 \Phi + k^2 \Phi \left\{ f(\bar{X}) + \frac{1}{\bar{X}} \left[\bar{R} f'(\bar{X}) \right] \right\} + \frac{k^2}{2} \left\{ f'(\bar{X}) \frac{1}{\bar{X}} \delta R + \frac{1}{\bar{X}} \left[f'(\bar{X}) \delta R \right] \right\} = 4\pi G a^2 \bar{\rho} \delta
\]

\[
k^2 \Phi + k^2 E[\Phi] = 4\pi G a^2 \bar{\rho} \delta
\]

- Gravitation slip equation

\[
(\Phi + \psi) = 8\pi G \delta T_B - (\Phi + \psi) \left\{ f(\bar{X}) + \frac{1}{\bar{X}} \left[\bar{R} f'(\bar{X}) \right] \right\} - f'(\bar{X}) \frac{1}{\bar{X}} \delta R - \frac{1}{\bar{X}} f'(\bar{X}) \delta R
\]
Solution for the slip equation

- **GR:** $\Phi + \Psi = 0$

- In this nonlocally modified gravity $\Phi + \Psi \neq 0$

Gravitational slip as a function of redshift in the nonlocal model. The two curves, \textit{barely distinguishable}, are for $k=0.03$ (red) and $k=0.3$ h/Mpc (blue)

Park and Dodelson, PRD \textbf{87}, 024003 (2013)
arXiv: 1209.0836
Solution for the Poisson equation

- **GR:** \(G_{\text{eff}} = G \)
- In this nonlocally modified gravity, the Poisson eqn becomes
 \[
 k^2 \Phi + k^2 E[\Phi] = 4\pi G \alpha^2 \tilde{\rho} \delta
 \]
- Define the effective Newton’s constant as
 \[
 k^2 \Phi \equiv 4\pi G_{\text{eff}} \alpha^2 \tilde{\rho} \delta
 \]
 which is
 \[
 G_{\text{eff}} \frac{k^2 \Phi + k^2 E[\Phi]}{G} = \frac{1}{1 + \frac{E[\Phi]}{\Phi}}
 \]

The fractional change to Newton’s constant as a function of redshift \(z \). The two curves, which depict the evolution for \(k=0.03 \) (red) & \(k=0.3 \) h/Mpc (blue) is virtually scale-independent.

Why a dip?

Park and Dodelson, PRD 87, 024003 (2013) arXiv: 1209.0836
Late time acceleration:
a surprise, not expected from General Relativity

- **Einstein equation**
 \[G_{\mu\nu} = 8\pi G T_{\mu\nu} \]
 spacetime curvature energy and momentum

 Specialize it to the FRW (homogeneous, isotropic, spatially flat) geometry:

- **Friedmann equation**
 \[\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \rho \]
 expansion rate energy density

If we consider only matter (including both ordinary and dark matter), what observation tells us:

- **LHS** \(H(t) = \frac{\dot{a}}{a} \) approaching to a const. but **RHS** \(\rho_{\text{matter}}(t) = \frac{\rho_0}{a^3(t)} \) falling off

 ➡️ **Modified Gravity** should make \(G \) grow to compensate the dropping of energy density!
Why a dip in the curve of \(\frac{G_{\text{eff}}}{G} \)?

0th order eqn has 1 effect: rescaling of G (the same as Blue curve)

1st order eqn has 2 effects: Blue curve: rescaling of G

\[
\frac{G_{\text{eff}}}{G} = \frac{1}{1 + \frac{E[\Phi]}{\Phi}} \cdot \left(f(\bar{X}) + \frac{1}{\Phi} \left[Rf'(\bar{X}) \right] \right) + \frac{1}{2\Phi} \left(f'(\bar{X}) \frac{1}{\Phi} \delta R(\Phi) + \frac{1}{\Phi} \left[f'(\bar{X}) \delta R(\Phi) \right] \right)
\]

Red curve: against the rescaling
"A discriminating probe of gravity at cosmological scales”
Zhang, Liguori, Bean and Dodelson PRL 2007

\[E_G \sim \frac{\text{Galaxy position-lensing correlation}}{\text{Galaxy position-redshift space correlation}} \]

\[\sim \frac{\text{Laplacian of Newtonian potential}}{\text{Peculiar velocity divergence}} \]

\[E_G \sim \frac{\left< \delta_g \kappa \right>}{\left< \delta_g \theta \right>}, \quad \frac{\Phi - \Psi}{\ddot{\delta}}, \quad \frac{\Omega_{0m} \tilde{G}_{\text{eff}}}{\beta} \]

\[\tilde{G}_{\text{eff}} = \frac{G_{\text{eff}}}{G} \quad \beta = \frac{d \ln D}{d \ln a} \]
Distinguishing between modified gravity and LCDM

Zhang, Liguori, Bean and Dodelson PRL 2007

$E_{G_{\text{nonlocal}}} (z = 0.5) = 0.37$
$E_{G_{\text{nonlocal}}} (z = 1.0) = 0.30$
$E_{G_{\text{nonlocal}}} (z = 1.5) = 0.28$
$E_{G_{\text{nonlocal}}} (z = 2.0) = 0.26$
$E_G(k)$ As a function of k, $z = 1.5$ fixed

Nonlocal

ADEPT+LSST $1.3 < z < 1.7$

SKA
As a function of z, $k=0.03 \, h/\text{Mpc}$ fixed

Diagram

- **GR**
- **Nonlocal**

Axes
- z-axis
- EG-axis

Data
- The graph shows the behavior of EG as a function of z with $k=0.03 \, h/\text{Mpc}$.
- The data points or curves for GR and Nonlocal are indicated on the graph.

Analysis
- The plot illustrates how EG changes with z for the given k value.
- Comparing GR and Nonlocal models, differences in behavior can be observed.

Conclusion
- The graph provides insights into the nonlocal effects compared to GR for a specific value of k.
Summary and Conclusion

- A nonlocally modified gravity model proposed by Deser and Woodard gives an explanation for current cosmic acceleration.
- This model predicts a pattern of growth that differs from standard general relativity (+ dark energy) at the 10-30% level.
- These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.