Regularization of Ill-Posed Problems with Unbounded Operators. *†

A.G. Ramm
Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract
Variational regularization and the quasisolutions method are justified for unbounded closed operators.

1 Introduction. Variational regularization.

There is a large literature on methods for solving ill-posed problems: variational regularization, method of quasisolutions, iterative and projection regularization [2]-[8]. The case of ill-posed problems with a closed linear operator was discussed in [5], and the case of nonlinear, possibly unbounded, operators possibly unbounded, does not seem to be discussed. In the theory of ill-posed problems the following well-known result ([1, Lemma 1.5.8]) is often used: if A is an injective and continuous mapping from a compact set M of a Banach space into a set $N := AM$, then the inverse mapping $A^{-1} : N \rightarrow M$ is continuous. In [7, p.112] the usual assumption about continuity of A in the above result is replaced by the assumption about closedness of A.

In this short note ill-posed problems are studied in the case of the mapping A not necessarily continuous, but closed, possibly nonlinear. Our argument is very simple and the result is fairly general.

Let A be an injective, possibly nonlinear, closed operator on a Banach space X, and the equation

$$Ay = f$$ \hspace{1cm} (1.1)

has a solution y. Our arguments hold in metric spaces as well without changes.

Assume that A^{-1} is not continuous. This implies that problem (1.1) is ill-posed. Let

$$\|f_\delta - f\| \leq \delta.$$ \hspace{1cm} (1.2)

*key words:regularization, ill posed problems, unbounded operators
†Math subject classification: 47A52 65J 20
Given f_δ and A, one wants to construct $u_\delta = R_\delta(f_\delta)$, such that $\|u_\delta - y\| \to 0$ as $\delta \to 0$, where y solves (1.1). If u_δ is constructed, then the operator R_δ yields a stable approximation of the solution y to (1.1).

Let us first describe the method of variational regularization in our case.

Define the functional

$$F(u) := \|A(u) - f_\delta\| + \delta \phi(u), \quad (1.3)$$

and assume that $\phi(u) \geq 0$ is a functional, such that for any constant $c > 0$ the set

$$\{u : \phi(u) \leq c\} \text{ is precompact in } X. \quad (1.4)$$

The functional F depends on δ and f_δ, but for simplicity of writing we do not show this dependence explicitly. Assume that $D(A) \subset D(\phi)$, the domain of definition of ϕ, contains $D(A)$. This assumption implies that $y \in D(\phi)$, so that $\phi(y) < \infty$. Define $D(F) = D(A)$. If A were bounded, defined on all of X, then one would assume $y \in D(\phi)$ and $D(F) = D(\phi)$. If A were unbounded and $D(\phi) \subset D(A)$, then one would assume that $y \in D(\phi)$ and $D(F) = D(\phi)$.

Denote

$$0 \leq m := \inf_{u \in D(A)} F(u). \quad (1.5)$$

The number $m = m(\delta) \geq 0$. Let u_j be a minimizing sequence $u_j \in D(F)$ for the functional F, such that:

$$F(u_j) \leq m + \frac{1}{j} = m + \delta, \quad \frac{1}{j} \leq \delta. \quad (1.6)$$

Denote by $u_\delta := u_j(\delta)$ a member $u_j(\delta)$ of this minimizing sequence, where $j(\delta)$ is chosen so that $\frac{1}{j(\delta)} \leq \delta$. There are many such $j(\delta)$ and we fix one of them, for example, the minimal one. Since

$$F(y) \leq \delta + \delta \phi(y) := c_1 \delta, \quad c_1 := 1 + \phi(y), \quad (1.7)$$

one has:

$$m \leq c_1 \delta, \quad (1.8)$$

and

$$F(u_\delta) \leq m + \delta \leq c \delta, \quad c := c_1 + 1. \quad (1.9)$$

Thus $\delta \phi(u_\delta) \leq c \delta$, and

$$\phi(u_\delta) \leq c. \quad (1.10)$$

Let us now take $\delta \to 0$. By (1.4) and (1.10) one can select a convergent in X subsequence of the set u_δ, which we denote also u_δ, such that

$$\|u_\delta - u\| \to 0 \text{ as } \delta \to 0, \quad (1.11)$$

where u is the limit of u_δ.

2
From (1.2), (1.3), (1.9) and (1.10), one gets
\[0 = \lim_{\delta \to 0} F(u_\delta) = \lim_{\delta \to 0} \| A(u_\delta) - f_\delta \| = \lim_{\delta \to 0} \| A(u_\delta) - f \|. \] (1.12)

Since \(A \) is closed, (1.11) and (1.12) imply
\[\lim_{\delta \to 0} A(u_\delta) = A(u), \quad 0 = \| A(u) - f \|. \] (1.13)

Since \(A \) is injective, (1.13) and (1.1) imply \(u = y \), so
\[\lim_{\delta \to 0} \| u_\delta - y \| = 0. \] (1.14)

Since the limit \(y \) of any subsequence \(u_\delta \) is unique, the whole sequence \(u_\delta \) converges to \(y \).

We have proved the following result:

Theorem 1.1. Assume that (1.4) holds, \(\phi \geq 0 \), \(A : D(A) \to X \) is a closed, injective, possibly nonlinear unbounded operator, \(A(y) = f \), and \(A^{-1} \) is not continuous. Let \(u_\delta \) be constructed as above so that (1.9) holds. Then (1.14) holds.

In section 2 the method of quasisolutions is discussed in the case of possibly unbounded and nonlinear operators.

2 Quasisolutions for unbounded operators.

In this section the assumptions about equation (1.1) and the operator \(A \) are the same as in section 1, in particular, \(A^{-1} \) is not continuous, so that solving equation (1.1) is an ill-posed problem.

Choose a compactum \(K \subset X \) such that the solution of (1.1) \(y \in K \). Consider the problem
\[\| A(u) - f_\delta \| = \inf := \mu, \quad u \in K \subset D(A). \] (2.1)

The infimum \(\mu = \mu(\delta) \geq 0 \) depends on \(f_\delta \) also, but we do not show this dependence explicitly. Let \(u_j \) be a minimizing sequence:
\[\| A(u_j) - f_\delta \| \leq \mu + \frac{1}{j}. \] (2.2)

Choose \(j = j(\delta) \) such that \(\frac{1}{j} \leq \delta \) and denote \(u_j := u_\delta. \)

Then
\[\| A(u_\delta) - f_\delta \| \leq \mu + \delta. \] (2.3)

Since \(\| A(y) - f_\delta \| \leq \delta \), it follows that \(\mu \leq \delta \), so
\[\| A(u_\delta) - f_\delta \| \leq 2\delta. \] (2.4)
Since \(\{u_\delta\} \subset K \) one can select a convergent (to some \(u \)) subsequence, denoted also \(\{u_\delta\} \):

\[
\|u_\delta - u\| \to \text{ as } \delta \to 0. \tag{2.5}
\]

From (2.4) it follows that \(A(u_\delta) \) converges to \(f \):

\[
\|A(u_\delta) - f\| \leq \|A(u_\delta) - f_\delta\| + \|f_\delta - f\| \leq 3\delta \to 0 \text{ as } \delta \to 0. \tag{2.6}
\]

Since \(A \) is closed, it follows from (2.5) and (2.6) that

\[
A(u) = f. \tag{2.7}
\]

Injectivity of \(A \), equation (2.7), and the equation \(A(y) = f \) imply \(u = y \). We have proved:

Theorem 2.1. Assume that \(A : D(A) \to X \) is a closed, injective, possibly nonlinear and unbounded, operator, \(A(y) = f \), (1.2) holds, \(K \) is a compact set in \(X \), and \(y \in K \). If \(u_\delta \in K \) satisfies (2.4), then (1.14) holds.

Acknowledgement. The author thanks Professor A. Yagola for useful discussions.

References

[1] Dunford N., Schwartz J., Linear operators, General theory, Interscience Publishers, New York, 1958.

[2] Engl H., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer, Dordrecht, 1996.

[3] Groetsch C., Inverse problems in mathematical sciences, Vieweg, Braunschweig, 1993.

[4] Ivanov, V., Vasin, V., Tanana, V., Theory of linear ill-posed problems and applications, Nauka, 1978.

[5] Liskovetz O., regularization of equations with a closed linear operator, Diff. Equations, 7, N9, (1970), 972-976.

[6] Morozov V., Methods of solving incorrectly posed problems, Springer Verlag, New York, 1984.

[7] Ramm, A.G., Random fields estimation theory, Longman Scientific and Wiley, New York, 1990.

[8] Tikhonov A., Leonov, A., Yagola, A., Nonlinear ill-posed problems, vol. 1,2, Chapman and Hall, London, 1998.