Supporting Information

Identification of a Two-Coordinate Iron(I)–Oxalate Complex

M. Mayer, N. Vankova, F. Stolz, B. Abel*, T. Heine*, K. R. Asmis*
Table of contents

S1. Experimental section

S2. IR-FL-MALDI (-) mass spectrum assignment

S3. Comparison of harmonic MP2 vs. B3LYP spectra

S4. Isomer comparison \([\text{Fe}^{\text{III}}(\text{C}_2\text{O}_4)_2]^\text{−}\)

S5. Isomer comparison \([\text{Fe}^{\text{II}}(\text{C}_2\text{O}_4)\text{CO}_2]^\text{−}\)

S6. Isomer comparison \([\text{Fe}^{\text{I}}(\text{C}_2\text{O}_4)]^\text{−}\)

S7. Band assignment

S8. Natural population analysis (NPA) for the iron-oxalate complexes (energetically lowest-lying isomers)

S9. Optimized Cartesian coordinates in Å of the energetically lowest-lying isomers of the studied iron-oxalate complexes.
S1. Experimental section

S1.1 IR-FL-MALDI

For IR-FL-MALDI measurements, an aqueous solution of iron(III) nitrate (c = 1.6 mmol L$^{-1}$) and oxalic acid (c = 3.2 mmol L$^{-1}$) dissolved in water/methanol (2:1, v/v) was used. The main components of the setup consist of a thin liquid μ-beam, an IR-laser (Photonic Industries, DP20-OPO) and a reflectron-type mass spectrometer. The liquid beam is injected into high vacuum via a 20 μm quartz nozzle generated by a HPLC pump. For injection of the samples into the liquid beam line a high-pressure valve is used. The IR-laser emits nanosecond pulses at a pulse repetition rate of 1 kHz with a pulse energy of 1mJ at a wavelength of 2900 nm. The light is focused onto the liquid using a CaF$_2$ lens with a focal length of 50 mm, generating a focus diameter of 56 μm and peak energy densities up to GW/cm2. The IR-light excites the OH-stretch of the water molecules, heats up and then disperses the liquid beam, and in turn desolvates the ions. It displays a linear response between liquid phase ion concentration and gas phase ion signal over several orders of magnitude. This soft and sensitive MS approach allowed us to detect ionic species in different oxidation states.

More details on the experimental setup and the method are given in Ref. [1,3].

S1.2 Leipzig cyrogenic ion trap triple mass spectrometer

Nano-ionspray mass spectra and IRPD spectra were recorded using the Leipzig 6 K ion trap triple mass spectrometer described in detail elsewhere.[4,5] In brief, ions were transferred from a solution of iron(III) nitrate (c = 1.6 mmol L$^{-1}$) and oxalic acid (c = 3.2 mmol L$^{-1}$), dissolved in water/methanol (2:1, v/v), into the gas phase using a nanospray ion source. The ion beam was collimated and compressed in phase space in a He-buffer-gas filled radio frequency (RF) ion-guide, held at room temperature. Subsequently, the ions with m/z = 144, 188 and 232 were mass-selected by using a quadrupole mass filter and focused in a RF ring-electrode ion-trap. The trap was filled with deuterium (D$_2$) buffer gas at a temperature of 13 K. The trapped ions were thermalized and weakly bound ion-messenger complexes with D$_2$ are formed by many-body collisions.[6] Messenger-tagging ensures measuring an IRPD spectrum in the linear absorption regime and facilitates structural assignment based on a comparison to calculated vibrational spectra. Every 100 ms, all ions were extracted from the ion trap and focused into the center of the extraction region of an orthogonally mounted reflectron tandem mass spectrometer. IRPD spectra were obtained by irradiating the ions in the center of the extraction region with an IR laser pulse from a Nd:YAG laser (Continuum Surelight EX1) pumped OPO/OPA/AgGaSe$_2$ laser system (Laser Vision) operated at 10 Hz and with a bandwidth of approximately 3.5 cm$^{-1}$. IRPD spectra were recorded by continuously scanning the laser wavelength with a scan speed such that a TOF mass spectrum averaged over 20 laser shots was obtained every 2 cm$^{-1}$. Typically, three to four scans were measured and averaged to obtain an IRPD spectrum. The photodissociation cross-section σ_{IRPD} was determined as described previously.[4,5]

S1.3 Computational details

Electronic structure calculations and vibrational frequency analysis were carried out with the Gaussian 16, rev C.01 program package[8] using the MP2 method[9] in combination with the def2-SVPD basis sets.[10] The simulated vibrational spectra were obtained from unscaled anharmonic vibrational frequencies and intensities, and convoluting the corresponding stick spectra with a Gaussian line shape function (12 cm$^{-1}$ full-width-at-half-maximum). QTAIM calculations[11] for determination of the Bader charge on Fe were performed at the DFT (B3LYP) level for the MP2-optimized structures by means of the ADF2019 software package.[12,13]
S2. IR-FL-MALDI (-) mass spectrum assignment

Table S1. Assignment of the dominant mass peaks shown in Figure 1c and 1d.

m/z	chemical formula
144	[Fe^{III}(C_2O_4)]
161	[Fe^{III}(C_2O_4)(OH)]
162	[Fe^{III}(C_2O_4)(H_2O)]
178	[Fe^{III}(C_2O_4)(OH)_2]
188	[Fe^{III}(C_2O_4)(CO_2)]
203	Fe-containing ion
212	n-butyl benzenesulfonamide [M-H]
224	[Fe^{III}(C_2O_4)(CO_2)(H_2O)_2]
232	[Fe^{III}(C_2O_4)_3]
S3. Comparison of harmonic MP2 vs. B3LYP spectra

The harmonic vibrational spectra calculated at the DFT (B3LYP) and the MP2 levels of theory agree well for the iron-oxalate complexes [Fe(III)(C₂O₄)₂] (Figure S5a) and [Fe(II)(C₂O₄)] (Figure S5c). However, for [Fe(II)(C₂O₄)CO₂]{ }the IR spectra of several isomers exhibit substantial differences (B3LYP vs. MP2). An example is shown in Figure S1. The comparison reveals significant differences in the absorption frequencies of the antisymmetric and the symmetric CO stretching vibrations of the single CO₂ moiety. As the comparison with the experimental IRPD spectrum indicates, the MP2 calculation overestimates the absorption frequencies of these bands. This overestimation is attributed to the slight difference in the geometry of the complexes optimized with the two different methods. As Figure S1 illustrates, the MP2 calculation predicts a planar geometry, with a dihedral angle between the intersecting planes of the oxalate and the CO₂ moieties of 0°. In contrast, in the B3LYP-optimized structure, the oxalate and CO₂ moieties are not co-planar, the dihedral angle being 28°.

Figure S1. Comparison between the unscaled harmonic vibrational spectra of [Fe(III)(C₂O₄)₂]: as calculated at the DFT (B3LYP) and at the MP2 levels of theory (the def2-SVPD basis sets were used in both cases). The minimum-energy structures of [Fe(II)(C₂O₄)CO₂] with \(M = 4 \), as identified at the two levels of theory, and the respective dihedral angles between the intersecting planes of the oxalate and CO₂ moieties are also shown.
Figure S2. Comparison of the IRPD spectra (red trace) of D$_2$-tagged [Fe$^{\text{III}}$(C$_2$O$_4$)$_2$]$^-$ to harmonic B3LYP (left) and MP2 (right) calculated spectra (scaled by 0.9928, the def2-SVPD basis sets were used in both cases) of the three energetically low-lying isomers with spin multiplicities 6, 4 and 2.

Table S2. ZPE-corrected relative energies (in kJ mol$^{-1}$) of the energetically low-lying isomers of [Fe$^{\text{III}}$(C$_2$O$_4$)$_2$]$^-$ with various spin multiplicities (M). The corresponding optimized structures are shown in Figure S2.
S5. Isomer comparison for $[\text{Fe}^{\text{III}}(\text{C}_2\text{O}_4)\text{CO}_2]^-$

Figure S3. Comparison of the IRPD spectra (blue trace) of D_2-tagged $[\text{Fe}^{\text{III}}(\text{C}_2\text{O}_4)\text{CO}_2]^-$ to harmonic B3LYP (left) and MP2 (right) calculated spectra (scaled by 0.9928, the def2-SVPD basis sets were used in both cases) of the energetically low-lying isomers with spin multiplicities 6, 4 and 2. Two fundamentally different orientations of the single CO$_2$ molecule with respect to the iron center are distinguished and the corresponding types of structures are labeled $[\text{Fe}^{\text{III}}(\text{C}_2\text{O}_4)-\text{CO}_2]$ and $[\text{Fe}^{\text{III}}(\text{C}_2\text{O}_4)-\text{O}_2\text{C}]$, resp.
Table S3. ZPE-corrected relative energies (in kJ mol\(^{-1}\)) of the energetically low-lying isomers of the type [Fe\(^{III}\)(C\(_2\)O\(_4\))\(-\)CO\(_2\)] and [Fe\(^{III}\)(C\(_2\)O\(_4\))CO\(_2\)] with various spin multiplicities (\(M\)). The corresponding structures are shown in Figure S3.

Binding motif	\(M\)	B3LYP/def2-SVPD	MP2/def2-SVPD
[Fe\(^{III}\)(C\(_2\)O\(_4\))\(-\)CO\(_2\)]	2	87	230
	4	0	18
	6	44	0
	2	119	236
[Fe\(^{III}\)(C\(_2\)O\(_4\))\(-\)O\(_2\)C\(_\)\)]	4	117	13
	6	47	6
S6. Isomer comparison for [Fe⁰(C₂O₄)]⁻

Figure S4. Comparison of the IRPD spectra (green trace) of D₂-tagged [Fe⁰(C₂O₄)]⁻ to harmonic B3LYP (left) and MP2 (right) calculated spectra (scaled by 0.9928, the def2-SVPD basis sets were used in both cases) of the energetically low-lying isomers with spin multiplicities 2, 4 and 6. Two distinct binding motifs of the oxalate ligand are distinguished and the corresponding types of structures are labeled “end-on” and “side-on.”
Table S4. ZPE-corrected relative energies (in kJ mol\(^{-1}\)) of the energetically low-lying isomers of [Fe\(^{II}\)(C\(_2\)O\(_4\))] with various spin multiplicities (M). The corresponding structures are shown in Figure S4.

Isomer	M	B3LYP	MP2
side-on	2	120	276
	4	25	55
	6	0	0
end-on	2	219	376
	4	125	157
	6	99	98
Figure S5. Comparison of the experimental IRPD spectra of D$_2$-tagged [Fe$^{	ext{III}}$(C$_2O_4$)$_2$] (a, red), [Fe$^{	ext{III}}$(C$_2O_4$)CO$_2$] (b, blue) and [Fe$^{	ext{II}}$(C$_2O_4$)] (c, green) with MP2-calculated anharmonic (top black, unscaled) and harmonic (bottom black, scaled by 0.9928, the def2-SVPD basis sets were used in both cases) vibrational spectra. The corresponding structures ($M = 6$) are also shown. Labels "#" denote combination bands, labels "**" denote overtones.
Table S5. Experimentally determined band positions, MP2-computed harmonic (scaled by 0.9928) and anharmonic (unscaled) vibrational frequencies, and band assignments of D$_2$-tagged iron complexes of the types [FeIII(C_2O_4)$_2$] (band labels a1-a5), [FeII(C_2O_4)CO$_2$] (band labels b1-b3) and [FeI(C_2O_4)] (band labels c1-c6). v: stretching vibration, δ: bending vibration, as: antisymmetric, s: symmetric

Band	Experiment	Harmonic	Anharmonic	Assignment
a1	1755	1773	1765	$v^\text{as-s}_\text{CO}_2$ (oxalate)
a2	1252	1294	1269	$v^\text{s}_\text{CO}_2$ (oxalate)
a3	1103	1141	1114	$v^\text{s-s}_\text{CO}_2$ (oxalate)
a4	869	881	873	δ_{CO_2} (oxalate)
a5	802	804	808	δ_{CO_2} (oxalate)
b1	1798	1809	1797	$v^\text{as}_\text{CO}_2$ (CO2)
b2	1745	not assigned	not assigned	not assigned
b3	1730	1755	1743	$v^\text{as-s}_\text{CO}_2$ (oxalate)
b4	1712	1732	1723	$v^\text{s-as}_\text{CO}_2$ (oxalate)
b5	1299	1335	1344	$v^\text{s-s}_\text{CO}_2$ (oxalate)
b6	1119	1194	1238	$v^\text{s-s}_\text{CO}_2$ (oxalate)
b7	872	876	865	δ_{CO_2} (oxalate)
b8	795	793	792	δ_{CO_2} (oxalate)
b9	724	766	762	δ_{CO_2} (CO2)
c1	1719	1744	1721	$v^\text{s-s}_\text{CO}_2$ (oxalate)
c2	1690	1715	1694	$v^\text{s-as}_\text{CO}_2$ (oxalate)
c3	1313	1354	1331	$v^\text{s-s}_\text{CO}_2$ (oxalate)
c4	1164	1213	1190	$v^\text{s-s}_\text{CO}_2$ (oxalate)
c5	860	878	861	δ_{CO_2} (oxalate)
c6	787	786	782	δ_{CO_2} (oxalate)
S8. Natural population analysis (NPA) for the iron-oxalate complexes (energetically lowest-lying isomers)

Table S6. Natural charge on iron in the energetically lowest-lying isomers of [FeIII(C$_2$O$_4$)$_2$]$^{-}$, [FeIII(C$_2$O$_4$)CO$_2$]$^{-}$ and [FeIII(C$_2$O$_4$)]$^{-}$, all with spin multiplicity of $M = 6$, as discussed in the main text. NPA were calculated via the NBO 6.0 software at the B3LYP/Zora scalar/TZ2P level of theory with the ADF2019 software package.$^{[12,13]}

Complex	Oxidation state	Natural charge
[FeIII(C$_2$O$_4$)$_2$]$^{-}$	3	1.9
[FeIII(C$_2$O$_4$)CO$_2$]$^{-}$	2	1.4
[FeIII(C$_2$O$_4$)]$^{-}$, side-on isomer	1	0.7
[FeIII(C$_2$O$_4$)]$^{-}$, end-on isomer	1	0.7
S9. Optimized Cartesian coordinates in Å of the energetically lowest-lying isomers of the studied iron-oxalate complexes.

1. [Fe(III)(C₂O₄)₂], \(M = 6 \), MP2-optimized geometry (Fig. 2a and Fig. S5a)

C	-2.61319600	-0.55639971	0.55607821
C	-2.61248200	0.55686168	0.55685419
O	-3.64401450	1.00923443	1.01008134
O	-1.38456650	0.92526029	0.92389380
O	-3.64527800	-1.00950984	-1.00774934
O	-1.38573000	-0.92446232	-0.92504281
Fe	0.00000000	0.00000000	0.00108599
C	2.61319600	0.55639971	0.55607821
C	2.61248200	0.55686168	0.55685419
O	3.64401450	1.00923443	1.01008134
O	1.38456650	0.92526029	0.92389380
O	3.64527800	-1.00950984	-1.00774934
O	1.38573000	-0.92446232	-0.92504281

2. [Fe(II)(C₂O₄)CO₂], \(M = 6 \), MP2-optimized geometry (Fig. 2b and Fig. S5b)

C	-3.31728900	-0.00037800	0.41702900
O	-2.45566200	0.00069200	-0.54771700
O	-4.52538200	-0.00040900	0.42198700
Fe	-0.52963200	0.00016600	-0.17937700
C	2.08937200	-0.79164500	0.07776200
C	2.08951500	0.79144400	0.07792200
O	3.13750300	1.41193000	0.17828600
O	0.89084500	1.33382300	-0.03841800
O	3.13720600	-1.41236600	0.17816000
O	0.89059500	-1.33775000	-0.03856000

3. [Fe(C₂O₄)]-, side-on isomer, \(M = 6 \), MP2-optimized geometry (Fig. 2c, top image and Fig. S5c)

C	0.00000000	0.79008150	1.03243550
C	0.00000000	-0.79008150	1.03243550
O	0.00000000	-1.41332750	2.08895950
O	0.00000000	-1.32262350	-0.16789150
O	0.00000000	1.41332750	2.08895950
O	0.00000000	1.32262350	-0.16789150
Fe	0.00000000	0.00000000	-1.65870500

4. [Fe(C₂O₄)]-, end-on isomer, \(M = 6 \), MP2-optimized geometry (Fig. 2c, bottom image)

C	0.45425600	-0.0009313	0.00000000
C	1.98918700	-0.0015855	0.00000000
O	2.49925750	0.0008931	1.14866400
O	2.49925750	0.0008931	-1.14866400
O	-0.21950330	-1.10165594	0.00000000
O	-0.21944970	1.10152806	0.00000000
Fe	-1.96681400	0.0004254	0.00000000

13
References

[1] A. Charvat, E. Lugovoj, M. Faubel, B. Abel, Rev. Sci. Instrum. 2004, 75, 1209.
[2] a) A. Charvat, B. Abel, Phys. Chem. Chem. Phys. 2007, 9, 3335; b) A. Charvat, A. Bogehold, B. Abel, Aust. J. Chem. 2006, 59, 81.
[3] a) A. Charvat, E. Lugovoj, M. Faubel, B. Abel, Eur. Phys. J. D 2002, 20, 573; b) F. Stolz, J. Appun, S. Naumov, C. Schneider, B. Abel, Chem. Plus Chem. 2017, 82, 233.
[4] N. Heine, K. R. Asmis, Int. Rev. Phys. Chem. 2015, 34, 1.
[5] N. Heine, K. R. Asmis, Int. Rev. Phys. Chem. 2016, 35, 507.
[6] a) D. J. Goebbert, T. Wende, R. Bergmann, G. Meijer, K. R. Asmis, J. Phys. Chem. A 2009, 113, 5874; b) M. Brümer, C. Kaposta, G. Santambrogio, K. R. Asmis, J. Chem. Phys. 2003, 119, 12700.
[7] W. R. Bosenberg, D. R. Guyer, J. Opt. Soc. Am. B 1993, 10, 1716.
[8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji et al., Gaussian 16, Gaussian, Inc, Wallingford CT, 2016.
[9] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys. Lett. 1990, 166, 275.
[10] a) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057; b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
[11] J. I. Rodriguez, R. F. Bader, P. W. Ayers, C. Michel, A. W. Götz, C. Bo, Chem. Phys. Lett. 2009, 472, 149.
[12] ADF 2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
[13] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
[14] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.