Research Article

On the Hybrid Power Mean Involving the Character Sums and Dedekind Sums

Xiaoling Xu

School of Data Science and Engineering, Xi’an Innovation College of Yan’an University, Xi’an, Shaanxi, China

Correspondence should be addressed to Xiaoling Xu; yadxxxl513@163.com

Received 17 June 2021; Accepted 6 July 2021; Published 16 July 2021

Academic Editor: Yuan Yi

Copyright © 2021 Xiaoling Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of this paper is to use the elementary and analytic methods, the properties of Gauss sums, and character sums to study the computational problem of a certain hybrid power mean involving the Dedekind sums and a character sum analogous to Kloosterman sum and give two interesting identities for them.

1. Introduction

We all know that the classical Dedekind sums \(S(h, q) \) is defined (see [1]) as

\[
S(h, q) = \sum_{a=1}^{q} \left(\left(\frac{a}{q} \right) \right) \left(\left(\frac{ah}{q} \right) \right),
\]

(1)

where \(q \geq 2 \) is a positive integer, \(h \) is any integer prime to \(q \), and \((\langle x \rangle) = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \text{ is not an integer,} \\ 0 & \text{if } x \text{ is an integer.} \end{cases} \) (2)

This sum describes the behaviour of the logarithm of the eta function under modular transformations, see [1, 2], for related references. Because of the importance of this sum in analytic number theory, many scholars have studied its various properties and obtained a series of important results. Perhaps, the most important property of \(S(h, q) \) is its reciprocity theorem (see [3]). That is, for any positive integers \(h \) and \(q \) with \((h, q) = 1\), one has the identity

\[
S(h, q) + S(q, h) = -\frac{h^2 + k^2 + 1}{12hq} - \frac{1}{4}.
\]

(3)

Some other papers related to Dedekind sums can be found in [4–6], and we do not want to list them all here. On the contrary, we also introduce another character sums analogous to Kloosterman sums as follows. For any integer \(q \geq 3 \), let \(\chi \) be a Dirichlet character mod \(q \). For any positive integer \(k \) and integer \(h \), we define

\[
G(k, h, \chi; q) = \sum_{a_1=1}^{q} \sum_{a_2=1}^{q} \ldots \sum_{a_k=1}^{q} \chi(a_1 + a_2 + \ldots + a_k + h\overline{a_1}a_2 \ldots a_k),
\]

(4)
where $\sum_{i=1}^{t}$ denotes the summation over all $1 \leq a \leq q$ such that $(a, q) = 1$ and \bar{a} denotes the inverse of a. That is, $a \cdot \bar{a} \equiv 1 \mod q$.

For the properties of $G(k, h, \chi; q)$, some people had studied it and obtained some important results. For example, from the very special case of Weil’s work [7] one can obtain the estimate

$$\frac{1}{q} \sum_{a=1}^{q-1} \chi(a + m\bar{a}) \leq 2\sqrt{p},$$

where p is a prime and m is any integer. Some related important works can also be found in [7–11].

In this paper, we consider the computational problem of the hybrid power mean involving the Dedekind sums $S(h, q)$ and $G(k, h, \chi; q)$. That is,

$$\sum_{h=1}^{q} G(k, h, \chi; q) \cdot S(h, q).$$

However, for this hybrid power mean, it seems that none has studied it yet; at least, we have not seen any related results before. The problem is interesting because it is closely related to Dirichlet L-functions. In fact, for some special positive integers k, we can give an exact computational formula for (6). The main work of this paper is to reveal this point. That is, we shall use the elementary and analytic methods, and the properties of character sums to prove the following two conclusions.

Theorem 1. Let p be an odd prime with $p \equiv 3 \mod 4$, and $\chi_2 = (\cdot / p)$ denotes Legendre’s symbol mod p. Then, for any positive integer k with $(2k + 1, p - 1) = 1$, we have the identity

$$\sum_{h=1}^{p-1} G(2k, h, \chi_2; p) \cdot S(h, p) = (-1)^k \cdot p^k \cdot h_2^2,$$

where h_2 denotes the class number of the quadratic field $\mathbb{Q}(\sqrt{-p})$.

Theorem 2. Let p be an odd prime with $p \equiv 1 \mod 8$ and k be any positive integer with $(k, p - 1) = 1$. Then, we have the identity

$$\sum_{h=1}^{p-1} G(2k - 1, h, \chi_2; p) \cdot S(h, p) = 0.$$

For general composite number $q > 3$, whether there exists an exact computational formula for (6) will be our further research problem.

2. Several Lemmas

In this section, we shall give several simple lemmas, and they are necessary in the proofs of our theorems. First, we have the following.

Lemma 1. Let $p \geq 3$ be a prime, and λ and χ are two nonprincipal characters mod p with $\chi(-1) = -1$. Then, for any positive integer k, we have

$$\sum_{h=1}^{p-1} G(k, h, \chi; p) \cdot S(h, p) = \frac{2\alpha}{\pi^2} \cdot p \cdot |L(1, \chi)|^2.$$
where $\tau(\chi)$ denotes the classical Gauss sums.

Proof. For any integer n and nonprincipal character $\chi \mod p$, from the properties of Gauss sums $\tau(\chi)$ (see Theorem 8.20 in [12]), we have

$$
\chi(n) = \frac{1}{\tau(\chi)} \sum_{a=1}^{p-1} \overline{\chi(a)} e\left(\frac{na}{p}\right).
$$

(15)

Using (15) and the properties of the reduced residue system mod p, we have

$$
G(k,m;\lambda;p) = \sum_{a_1=1}^{p-1} \sum_{a_2=1}^{p-1} \sum_{a_k=1}^{p-1} \lambda \left(a_1 + a_2 + \ldots + a_k + ma_1a_2 \ldots a_k\right)
$$

$$
= \frac{1}{\tau(\lambda)} \sum_{b=1}^{p-1} \overline{\lambda}(b) \sum_{a_1=1}^{p-1} \sum_{a_k=1}^{p-1} \sum_{m=1}^{p-1} \lambda(b\left(a_1 + a_2 + \ldots + a_k + bma_1a_2 \ldots a_k\right)) \frac{e(b\left(a_1 + a_2 + \ldots + a_k + bma_1a_2 \ldots a_k\right))}{p}
$$

(16)

So, with the repeated use of (15) in (16), we have

$$
\sum_{m=1}^{p-1} \chi(m)G(k,m;\lambda;p)
$$

$$
= \frac{1}{\tau(\lambda)} \sum_{b=1}^{p-1} \overline{\chi}(b) \tau^{k+1}(\chi) \sum_{a_1=1}^{p-1} \sum_{a_k=1}^{p-1} \sum_{m=1}^{p-1} \chi(m)e\left(b\left(a_1 + \ldots + a_k + b^{k+1}ma_1a_2 \ldots a_k\right)\right)
$$

$$
= \frac{\tau(\chi)}{\tau(\lambda)} \sum_{b=1}^{p-1} \overline{\lambda}(b) \tau^{k+1}(\chi) \sum_{a_1=1}^{p-1} \sum_{a_k=1}^{p-1} \chi(a_1 \ldots a_k)e\left(a_1 + \ldots + a_k\right) \frac{e\left(\frac{a_1 + \ldots + a_k}{p}\right)}{p}
$$

(17)

This proves Lemma 1.

Lemma 2. Let $q > 2$ be an integer; then, for any integer a with $(a,q) = 1$, we have the identity

$$
S(a,q) = \frac{1}{q} \sum_{d|q} d^2 \Phi(d) \sum_{\chi \mod d} \chi(a)|L(1,\chi)|^2,
$$

(18)

where $L(1,\chi)$ denotes the Dirichlet L-function corresponding to character $\chi \mod d$.

Proof. See Lemma 2 of [6].

Lemma 3. If p is a prime with $p \equiv 1 \mod 4$ and ψ is any fourth-order character mod p, then we have the identity

$$
\tau^2(\psi) + \tau^2(\overline{\psi}) = 2\sqrt{p} \cdot \alpha,
$$

(19)

where $\alpha = \sum_{a=1}^{(p-1)/2} ((a + \overline{a})/p)$ is an integer.

Proof. See Lemma 2.2 of [13] or Lemma 3 of [14].

Lemma 4. If p is a prime with $p \equiv 5 \mod 8$ and ψ is any fourth-order character mod p, then, for any positive integer k, we have the identity
\[
\tau^k (\psi) + \tau^k (\psi) = \sum_{h=0}^{[k/2]} (-1)^h \cdot \frac{k}{k-h} \cdot \binom{k-h}{h} \cdot (2\alpha)^{k/2/h} \cdot p^{(1/2)(k+2h)}.
\]

Proof. First, for all nonnegative integers \(u\) and real numbers \(X\) and \(Y\), we have the identity
\[
X^u + Y^u = \sum_{h=0}^{[u/2]} (-1)^h \cdot \frac{u}{u-h} \cdot \binom{u-h}{h} \cdot (X + Y)^{u-2h} \cdot (XY)^h,
\]

This proves Lemma 4.

3. Proofs of the Theorems

In this section, we shall complete the proofs of our theorems. First, we prove Theorem 1. From Lemma 2, we have
\[
S(a, p) = \frac{1}{\pi^2} \cdot \frac{p}{p-1} \cdot \sum_{\chi \bmod p \chi(-1)=-1} \chi(a)|L(1, \chi)|^2.
\]

If \(p\) is a prime with \(p \equiv 3 \bmod 4\), then, for any positive integer \(k\) with \((2k+1, p-1)=1\), let \(2k+1 \equiv 1 \bmod (p-1)\); then, \(2k+1\) must be an odd number. If characters \(\lambda\) and \(\chi\) satisfy \(\lambda = \chi^{k+1}\) with \(\chi(-1)=-1\), then \(\chi = \chi^{2k+1}\). If \(\lambda = (\ast / p) = \chi_2\) is Legendre’s symbol \bmod \(p\), then we have \(\chi = \chi_2^{2k+1} = \chi_2\). Note that if \(p \equiv 3 \bmod 4\), then \(\chi_2(-1)=-1\), \(\tau(\chi_i) = i\sqrt{p}\) and \(L(1, \chi_2) = \pi h_p / \sqrt{p}\). So, from (23) and Lemma 1, we have
\[
\tau^{2k} (\psi) + \tau^{2k} (\psi) = \sum_{h=0}^{[k/2]} (-1)^h \cdot \frac{k}{k-h} \cdot \binom{k-h}{h} \cdot \left(\tau^2 (\psi) + \tau^2 (\psi)\right)^{k-2h} \cdot p^{2h}
\]

where \([x]\) denotes the greatest integer \(\leq x\). This formula is obtained because of Waring [15]. It can also be found in [16].

Note that if \(p \equiv 5 \bmod 8\), then, for any fourth-order character \(\psi \bmod p\), we have \(\tau(\psi) = \psi(-1) \cdot \tau(\psi) = -\tau(\psi)\).

So, \(\tau(\psi) \cdot \tau(\psi) = -p\). Thus, taking \(X = \tau^2 (\psi)\) and \(Y = \tau^2 (\psi)\), from (4) and Lemma 3, we have

\[
\sum_{h=0}^{[p/2]} \sum_{\chi \bmod p \chi(-1)=-1} \chi(h) \cdot G(2k, h, \chi_2; p) \cdot |L(1, \chi)|^2 = \frac{\tau^{2k+1} (\chi_2)}{i \cdot \sqrt{p}} \cdot |L(1, \chi)|^2
\]

This proves Theorem 1.
Now, we prove Theorem 2. Let \(p \) be a prime with \(p \equiv 5 \mod 8 \); then, \(\tau(\chi_2) = \sqrt{p} \). For any four-order character \(\chi \mod p \), we have \(\chi(-1) = -1 \). So, for any positive integer \(k \) with \((k, p - 1) = 1 \), note that \(k \) is an odd number; if \(\chi_2 = \chi^2 \), then \(\chi_2 = \chi^2 \). In this time, \(\chi = \chi_4 \) must be a fourth-order character \(\mod p \) and \(|L(1, \chi)| = |L(1, \chi_4)| \); from (23), Lemma 1, and Lemma 4, we have

\[
\sum_{h=1}^{p-1} G(2k - 1, h, \chi_2; p) \cdot S(h, p)
= \frac{1}{\pi^2} \cdot \frac{p}{p - 1} \cdot \sum_{\chi \mod p, \chi(-1) = -1} \chi(h) \cdot G(2k - 1, h, \chi_2; p) \cdot |L(1, \chi)|^2
= \frac{1}{\pi^2} \cdot \frac{p}{\sqrt{p}} \cdot \sum_{\chi \mod p} \frac{\tau^2(\chi)}{\sqrt{p}} \cdot |L(1, \chi)|^2
= \frac{1}{\pi^2} \cdot \sqrt{p} \cdot \left(\sum_{h=0}^{\lfloor k/2 \rfloor} (-1)^h \cdot \frac{k}{k - h} \cdot \binom{k - h}{h} \cdot (2\alpha)^{k - 2h} \cdot p^{(1/2)(k + 2h)} \right) \cdot |L(1, \chi)|^2
= \frac{1}{\pi^2} \cdot p^{(k+1)/2} \cdot \left(\sum_{h=0}^{\lfloor k/2 \rfloor} (-1)^h \cdot \frac{k}{k - h} \cdot \binom{k - h}{h} \cdot (2\alpha)^{k - 2h} \cdot p^h \right) \cdot |L(1, \chi)|^2.
\]

Combining (25) and (26), we may immediately deduce Theorem 2.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

Xu Xiaoling has contributed to this work and read and approved the final manuscript.

Acknowledgments

This work was supported by the N. S. F. of China (11771351) and the 2019 Special Scientific Research Program of Shaanxi Provincial Department of Education (19JK0978).

References

[1] T. M. Apostol, *Modular Functions and Dirichlet Series in Number Theory*, Springer-Verlag, New York, NY, USA, 1976.

[2] H. Rademacher, *Dedekind Sums, Carus Mathematical Monographs*, Mathematical Association of America, Washington D.C., USA, 1972.

[3] L. Carlitz, “Some theorems on generalized Dedekind sums,” *Pacific Journal of Mathematics*, vol. 3, no. 3, pp. 513–522, 1953.

[4] J. B. Conrey, E. Fransen, R. Klein, and C. Scott, “Mean values of Dedekind sums,” *Journal of Number Theory*, vol. 56, no. 2, pp. 214–226, 1996.

[5] C. Jia, “On the mean value of Dedekind sums,” *Journal of Number Theory*, vol. 87, no. 2, pp. 173–188, 2001.

[6] W. Zhang, “On the mean values of Dedekind Sums,” *Journal de Théorie des Nombres de Bordeaux*, vol. 8, no. 2, pp. 429–442, 1996.
[7] A. Weil, “On some exponential sums,” *Proceedings of the National Academy of Sciences*, vol. 34, no. 5, pp. 204–207, 1948.

[8] A. Granville and K. Soundararajan, “Large character sums: pretentious characters and the Polya-Vinogradov theorem,” *Journal of American Mathematical Society*, vol. 20, pp. 357–384, 2007.

[9] J. Bourgain, M. Z. Garaev, S. V. Konyagin, and I. E. Shparlinski, “On the hidden shifted power problem,” *SIAM Journal on Computing*, vol. 41, no. 6, pp. 1524–1557, 2012.

[10] Y. W. Hou and W. P. Zhang, “One kind high dimensional Kloosterman sums and its upper bound estimate,” *Journal of Shaanxi Normal University (Natural Science Edition)*, vol. 46, pp. 28–31, 2018.

[11] Y. Y. Liu and W. P. Zhang, “The linear recurrence formula of the hybrid power mean involving the cubic Gauss sums and two-term exponential sums,” *Journal of Shaanxi Normal University (Natural Science Edition)*, vol. 45, pp. 14–17, 2017.

[12] T. M. Apostol, *Introduction to Analytic Number Theory*, Springer-Verlag, New York, NY, USA, 1976.

[13] X. C. Du and X. X. Li, “On the fourth power mean of the generalized quartic Gauss sums,” *Acta Mathematica Sinica (Chinese Series)*, vol. 61, pp. 541–548, 2018.

[14] Z. Y. Chen and W. P. Zhang, “On the hybrid power mean of two kind different trigonometric sums,” *Open Mathematics*, vol. 17, pp. 519–526, 2019.

[15] E. Waring, *Miscellanea analytica de aequationibus algebraicis et curvarum proprietatibus*, Nabu Press, Cambridge, London, 1762.

[16] H. W. Gould, “The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences,” *The Fibonacci Quarterly*, vol. 37, pp. 135–140, 1999.