Supplementary Information:

Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity

Chatchai Rodwihok¹, Duangmanee Wongratanaphisan², Yen Linh Thi Ngo¹, MahimaKhandelwal¹, Seung Hyun Hur¹ and Jin Suk Chung¹,*

¹School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea; c.r wdwhok@hotmail.com (C.R.); nguyenlinh0912@gmail.com (Y.L.T.N.); mahimaiitr@gmail.com (M.K.); shhur@ulsan.ac.kr (S.H.H.)

²Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; duangmanee.wong@cmu.ac.th (D.W.)

*Correspondence: jschung@ulsan.ac.kr (J.S.C.)

Content:

Table S1. Comparisons of photosensitivity and time-dependent photocurrent response between the present work and other reported UV detectors.

Table S2. Comparisons of photocatalytic activity between the present work and other reported research.

Figure S1. Current of as-synthesized ZnO/rGO with bending radius; (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and (d) ZnO/rGO (30%).

Figure S2. Time-dependent absorption spectra of Methyl blue (MB) solution under visible light using (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and ZnO/rGO (30%) as a photocatalyst.

Figure S3. The photoluminescence spectra of pristine ZnO and as-synthesized ZnO/rGO
Table S1 Comparisons of photosensitivity and time-dependent photocurrent response between the present work and other reported UV detectors.

Structure	Substrate	λ_{UV} (nm)	UV intensity (W/cm2)	Bias voltage (V)	Dark current (A)	Photosensitivity (I_{UV}/I_{DARK})	Response time (s)	Ref.
MgZnO/ZnO thin film	Glass	365	3.20×10^{-3}	4	$~4.64 \times 10^{-6}$	$~1.01$	-	[1]
ZnO nanowires	SiO$_2$/Si	325	0.42×10^{-3}	1.5	$~0.50 \times 10^{-6}$	<4	-	[2]
ZnO nanowires	SiO$_2$/Si	300	2×10^{-3}	0.1	$~12.70 \times 10^{-6}$	$~1.51$	0.2	[3]
ZnO nanostructures	p-Si	365	0.80	3	$~3.50 \times 10^{-6}$	$~1.71$	-	[4]
Ti-doped ZnO thin film	glass	~ 365	2×10^{-3}	5	$~15.00 \times 10^{-9}$	$~6.80$	135	[5]
ZnO/rGO nanostructures	glass	365	0.80×10^{-3}	2	$~7.00 \times 10^{-6}$	4	44	[6]
ZnO/rGO nanostructures	glass	368	0.80×10^{-3}	4	-	20.10	-	[7]
ZnO/rGO (20%)	transparent film	365	0.62×10^{-3}	2	3.98×10^{-9}	8.81	18.16	This work

Table S2 Comparisons of photocatalytic activity between the present work and other reported research.

Catalyst	Catalyst concentration (g L$^{-1}$)	Light source	MB concentration (mg L$^{-1}$)	Degradation rate (%) and time (min)	k_c (min$^{-1}$)	Ref.
ZnO/GO (3%)	0.4	Metal halide lamp	10	$\sim 92\% / 30$	0.042	[8]
ZnO-g-C$_3$N$_4$/GO (50%)	0.3	Visible light	10	$99\% / 90$	0.030	[9]
GO/ZnO (1:2)	0.4	UV light (254 nm)	5	$94.5\% / 60$	-	[10]
ZnO/rGO (2.5%)	0.5	Mercury lamp (310-400 nm)	10	$\sim 80\% / 120$	0.012	[11]
ZnO NPs/rGO	0.3	Hg lamp (365 nm)	10	$99.5\% / 180$	-	[12]
ZnO/rGO	0.1	Mercury lamp (365-366 nm)	10	$83\% / 10$	-	[13]
ZnO/rGO	0.15	Hg lamp (365 nm)	5	$88\% / 260$	-	[14]
ZnO/rGO (1.5%)	0.2	Natural sunlight	5	$82.3\% /$ -	-	[15]
ZnO/g-C$_3$N$_4$ (500 °C)	0.2	4 - Visible-light lamps (545 nm)	10	$\sim 99\% / 180$	~ 0.033	[16]
ZnO/rGO (20%)	0.2	Fluorescent lamp	10	$93.78\% / 60$	0.0482	This work
Figure S1. Current of as-synthesized ZnO/rGO with bending radius; (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and (d) ZnO/rGO (30%).
Figure S2. Time-dependent absorption spectra of Methyl blue (MB) solution under visible light using (a) ZnO, (b) ZnO/rGO (10%), (c) ZnO/rGO (20%), and (d) ZnO/rGO (30%) as a photocatalyst.
Figure S3. The photoluminescence spectra of pristine ZnO and as-synthesized ZnO/rGO

References

1. Rana, V. S.; Rajput, J. K.; Pathak, T. K.; Purohit, L. P., Multilayer MgZnO/ZnO thin films for UV photodetectors. *Journal of Alloys and Compounds* **2018**, *764*, 724-729.
2. Lang, Y.; Gao, H.; Jiang, W.; Xu, L.; Hou, H., Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor. *Sensors and Actuators A: Physical* **2012**, *174*, 43-46.
3. Chao, L.-C.; Ye, C.-C.; Chen, Y.-P.; Yu, H.-Z., Facile fabrication of ZnO nanowire-based UV sensors by focused ion beam micromachining and thermal oxidation. *Applied Surface Science* **2013**, *282*, 384-389.
4. Bedia, A.; Bedia, F. Z.; Benyoucef, B.; Hamzaoui, S., Electrical Characteristics of Ultraviolet Photodetector based on ZnO Nanostructures. *Physics Procedia* **2014**, *55*, 53-60.
5. Shewale, P. S.; Lee, N. K.; Lee, S. H.; Kang, K. Y.; Yu, Y. S., Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. *Journal of Alloys and Compounds* **2015**, *624*, 251-257.
6. Safa, S.; Sarraf-Mamoory, R.; Azimirad, R., Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film. *Physica E: Low-dimensional Systems and Nanostructures* **2014**, *57*, 155-160.
7. Zare, M.; Safa, S.; Azimirad, R.; Mokhtari, S., Graphene oxide incorporated ZnO nanostructures as a powerful ultraviolet composite detector. *Journal of Materials Science: Materials in Electronics* **2017**, *28*,(9), 6919-6927.
8. Qin, J.; Zhang, X.; Xue, Y.; Kittiwattanothai, N.; Kongsittikul, P.; Rodthongkum, N.; Limpanart, S.; Ma, M.; Liu, R., A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. *Applied Surface Science* **2014**, *321*, 226-232.
9. Jo, W.-K.; Clament Sagaya Selvam, N., Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. *Journal of Hazardous Materials* **2015**, *299*, 462-470.
10. Munawaroh, H.; Sari, P. L.; Wahyuningsih, S.; Ramelan, A. H., The photocatalytic degradation of methylene blue using graphene oxide (GO)/ZnO nanodrums. *AIP Conference Proceedings 2018*, 2014, (1), 020119.

11. Jabeen, M.; Ishaq, M.; Song, W.; Xu, L.; Maqsood, I.; Deng, Q., UV-Assisted Photocatalytic Synthesis of ZnO-Reduced Graphene Oxide Nanocomposites with Enhanced Photocatalytic Performance in Degradation of Methylene Blue. *ECS Journal of Solid State Science and Technology 2017*, 6, (4), M36-M43.

12. Azarang, M.; Shuhaimi, A.; Yousefi, R.; Moradi Golsheikh, A.; Sookhakian, M., Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. *Ceramics International 2014*, 40, (7, Part B), 10217-10221.

13. He, J.; Niu, C.; Yang, C.; Wang, J.; Su, X., Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. *RSC Advances 2014*, 4, (104), 60253-60259.

14. Lv, T.; Pan, L.; Liu, X.; Lu, T.; Zhu, G.; Sun, Z., Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. *Journal of Alloys and Compounds 2011*, 509, (41), 10086-10091.

15. Omar, F. S.; Nay Ming, H.; Hafiz, S. M.; Ngee, L. H., Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application. *International Journal of Photoenergy 2014*, 2014, 8.

16. Jung, H.; Pham, T.-T.; Shin, E. W., Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect. *Applied Surface Science 2018*, 458, 369-381.