LETTER TO THE EDITOR

Reply: Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers

Niccolo E. Mencacci,1,2 Alan M. Pittman,1,3 Ioannis U. Isaia,4,5 John Hardy,1,3 Stephan Klebe,4 Kailash P. Bhatia6 and Nicholas W. Wood1

1 Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
2 IRCCS Istituto Auxologico Italiano, Department of Neurology and Laboratory of Neuroscience – Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Centre, Universita’ degli Studi di Milano, 20149 Milan, Italy
3 Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London WC1N 3BG, UK
4 Department of Neurology, University Hospital, 97080 Würzburg, Germany
5 Parkinson Institute, Istituti Clinici di Perfezionamento, 20126 Milan, Italy
6 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, UK

Correspondence to: Professor Nicholas W. Wood,
Department of Molecular Neuroscience,
UCL Institute of Neurology,
Queen Square,
WC1N 3BG London, UK
E-mail: n.wood@ucl.ac.uk

Sir,

Thank you for the opportunity to reply to the correspondence concerning our recent publication in Brain, ‘Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers’ (Mencacci et al., 2014). We read with great interest these letters and we thank the authors for their insights.

Guella et al. (2014) report the screening of GCH1 in 528 Canadian cases with Parkinson’s disease and atypical parkinsonism and 290 matched controls. They identified two variants, the known pathogenic p.K224R (rarely reported in European populations) and the novel variant p.A99D (likely pathogenic according to in silico prediction tools and interspecies conservation) in three unrelated cases with Parkinson’s disease and the two benign variants p.P23L and p.P69L in one single control individual. The mutational frequency, excluding the aforementioned benign variant, was 0.56% (3/528) in cases versus 0% (0/290) in controls, consistent with the frequency we observed in our study (0.75% in cases versus 0.1% in controls).

This result is relevant as it represents the first independent confirmation that rare deleterious GCH1 variants are enriched in patients with Parkinson’s disease compared to control subjects. Furthermore, they describe the post-mortem findings of one of the mutated patients, who presented at the age of 82 with DOPA-responsive asymmetric rest tremor. This showed a combination of brainstem Lewy body pathology together with the presence of tau-immunoreactive neurofibrillary tangles. To date, the only available brain pathology analysis of a GCH1-associated neurodegenerative parkinsonism case showed severe nigral neurodegeneration and Lewy bodies in surviving nigral cells and in the locus coeruleus (Gibb et al., 1991; Segawa et al., 2004). Further studies are needed to establish if the tauopathy described by Guella et al. (2014) in their case represents simply an incidental finding.

The finding that GCH1 loss-of-function variants are not only responsible for childhood-onset DOPA-responsive dystonia, but are also associated with adult-onset neurodegenerative parkinsonism, is strengthened by the recent identification, through the meta-analysis of genome-wide association studies (GWAS) data deriving from ~13,000 cases and 95,000 controls, that GCH1 is also a low-risk susceptibility locus for Parkinson’s disease (Nalls et al., 2014). This finding potentially extends the role of GTP cyclohydrolase 1 (GCH1) deficiency in the pathogenesis of Parkinson’s disease beyond carriers of rare deleterious coding mutations.

The causal link between GCH1 and Parkinson’s disease remains a matter of speculation. Ryan et al. (2014) expand the discussion of our manuscript and add insight...
into the possible pathogenic mechanisms that predispose

GCH1 loss-of-function mutation carriers to nigrostriatal degeneration.

In our paper we proposed various hypotheses whereby

GCH1 and **BH4** deficiency and consequent chronic reduction of dopamine levels may predispose carriers of

GCH1 mutations to nigral cell degeneration.

Ryan et al. (2014) point out that different cellular mechanisms secondary to **BH4** deficiency, other than reduced dopamine levels, could contribute to the death of nigral dopaminergic neurons. **BH4** acts as an antioxidant itself and is an essential cofactor for nitric oxide synthases (NOS) activity. Furthermore decreased **BH4** levels have been demonstrated to lead to NOS uncoupling, which results in increased oxidative and nitrative stress (Chen et al., 2008) and identified **BH4** as a vascular defence mechanism against inflammation-induced endothelial dysfunction (Antoniades et al., 2011). Consequently the authors propose that a link between **BH4** levels, oxidative stress, and neuroinflammation could represent the mechanism underlying **GCH1**-associated Parkinson’s disease.

Fitting well with this model, and possibly supporting Ryan et al.’s view, we found that the **GCH1** SNP (rs11158026), recently identified as a risk variant for Parkinson’s disease (Nalls et al., 2014), is in moderate linkage disequilibrium (r² 0.457; D’ 0.932) with the SNPs constituting the functional haplotype. This possibly suggests a potential functional basis for the association of this variant to Parkinson’s disease.

The authors have also demonstrated the existence of an interaction between α-synuclein, mitochondrial function and **GCH1** activity. Their work may support the compelling hypothesis that a pathogenic cascade occurs in nigral neurons, whereby increased levels of α-synuclein and mitochondrial dysfunction lead to decreased **GCH1** activity and **BH4** levels, which in turn may result in increased oxidative stress and cell death (Ryan et al., 2014).

We believe that one of the outstanding questions is whether patients with DOPA-responsive dystonia eventually develop nigral neurodegeneration, or whether neurodegeneration can be avoided by dopaminergic replacement therapy. Answering this question will help to understand to what extent low dopamine levels play a role in nigral cell death, with obvious therapeutic implications for asymptomatic carriers of pathogenic variants.

Dopaminergic imaging studies performed in a few cases with classic DOPA-responsive dystonia (mostly genetically not confirmed) have shown no evidence of reduced nigrostriatal innervation (Snow et al., 1993; Jeon et al., 1998). This is consistent with post-mortem analysis of four extra cases showing normal nigral cell count (Furukawa et al., 1999; Grotzsch et al., 2002; Segawa et al., 2013). However, Sawle et al. (1991) report that six cases with DOPA-responsive dystonia displayed modest but significant reduction in the uptake of 18F-fluorodopa into both caudates and putamen. Furthermore, Tadic et al. (2012) report that in DOPA-responsive dystonia cases parkinsonian signs are a relatively common residual motor sign following treatment, possibly suggesting underlying neurodegeneration.

With regards to this, the case report of Terbeek et al. (2014) is of great interest. They describe a 41-year-old patient carrying a known pathogenic **GCH1** variant (p.Y75S) with onset of classic DOPA-responsive dystonia at age 11. He was treated with 1-DOPA (300 mg/day) from the age of 20 with good and sustained response. At age 41, because of rapid recurrence of dystonia after skipping a 1-DOPA dose, dopaminergic imaging (123I-FP-CIT SPECT) was performed and showed severe bilateral and asymmetric reduction of putaminal tracer uptake, a pattern typical of idiopathic Parkinson’s disease. However, clinical examination, performed after withdrawing 1-DOPA, revealed purely dystonic features without any obvious sign of parkinsonism.

In agreement with the interpretation of Terbeek et al. (2014), we believe that this case may indeed represent a case with overlapping DOPA-responsive dystonia and asymptomatic, as yet, nigrostriatal degeneration, possibly arguing against a neuroprotective role of dopamine replacement in **GCH1** mutation carriers.

Lastly, with regards to the letter by Furukawa and Kish (2014), we agree it is not easy to reconcile the evidence of nigral neurodegeneration that we and others have demonstrated in several individuals with **GCH1**-related parkinsonism and the intact dopaminergic innervation showed in some other cases (Nygaard et al., 1992; Kang et al., 2004).

However, the phenotype of these latter cases, characterized by excellent and prolonged response to very small doses of 1-DOPA and no motor fluctuations or dyskinesias in spite of decades of treatment, is very different from what we observed in the ‘neurodegenerative’ cases. It is therefore possible that there may exist two different types of adult-onset parkinsonism associated with **GCH1** mutations; on one side, a benign non-degenerative form, part of the phenotypic spectrum of metabolic **GCH1**-related striatal dopamine deficiency; on the other, a progressive form of parkinsonism with underlying nigral degeneration.

In conclusion, we anticipate that post-mortem analysis and longitudinal clinical, neuroimaging, and metabolic studies of larger series of **GCH1** mutation carriers—including asymptomatic carriers, individuals with classic DOPA-responsive dystonia and cases with adult-onset parkinsonism—will give way to important understandings of the pathogenesis of **GCH1**–associated Parkinson’s disease.

Funding

This study was supported by the Wellcome Trust/ Medical Research Council (MRC) Joint Call in Neurodegeneration award (WT089698) to the UK Parkinson’s Disease...
Consortium whose members are from the UCL/Institute of Neurology, the University of Sheffield, and the MRC Protein Phosphorylation Unit at the University of Dundee. This project was also supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre and the Grigioni Foundation for Parkinson Disease.

References

Antoniades C, Cunnington C, Antonopoulos A, Neville M, Margaritis M, Demesthenous M, et al. Induction of vascular GTP-cyclohydrolase I and endogenous tetrahydrobiopterin synthesis protect against inflammation-induced endothelial dysfunction in human atherosclerosis. Circulation 2011; 124: 1860–70.

Antoniades C, Shirodaria C, Van Assche T, Cunnington C, Tegeder I, Lotsch J, et al. GCH1 haplotype determines vascular and plasma biopterin availability in coronary artery disease effects on vascular superoxide production and endothelial function. J Am Coll Cardiol 2008; 52: 158–65.

Chen DD, Chen LY, Xie JB, Shu C, Yang T, Zhou S, et al. Tetrahydrobiopterin regulation of eNOS redox function. Curr Pharm Design 2014; 20: 3554–62.

Furukawa Y, Kish SJ. Parkinsonism in GTP cyclohydrolase 1-deficient DOPA-responsive dystonia. Brain 2015; 138: e351.

Gibb WR, Narabayashi Y, Yokochi M, Iizuka R, Lees AJ. New pathologic observations in juvenile onset parkinsonism with dystonia. Neurology 1991; 41: 820–2.

Guella I, Sherman HE, Appel-Cresswell S, Raiput A, Raiput AH, Farrer MJ. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2015; 138: e349.

Jeon BS, Jeong JM, Park SS, Kim JM, Chang YS, Song HC, et al. Dopamine transporter density measured by [123I]beta-CIT single-photon emission computed tomography is normal in dopa-responsive dystonia. Ann Neurol 1998; 43: 792–800.

Kang JH, Kang SY, Kang HK, Koh YS, Im JH, Lee MC. A novel missense mutation of the GTP cyclohydrolase I gene in a Korean family with hereditary progressive dystonia/dopa-responsive dystonia. Brain Dev 2004; 26: 287–91.

Mencacci NE, Isasias IU, Reich MM, Ganos C, Pagnol V, Polke JM, et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2014; 137: 2480–92.

Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014; 46: 989–93.

Nygaard TG, Takahashi H, Heiman GA, Snow BJ, Fahn S, Calne DB. Long-term treatment response and fluorodopa positron emission tomographic scanning of parkinsonism in a family with dopa-responsive dystonia. Ann Neurol 1992; 32: 603–8.

Ryan BJ, Craintree MJ, Channon KM, Wade-Martins R. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2015; 138: e348.

Ryan BJ, Lourenco-Venda LL, Craintree MJ, Hale AB, Channon KM, Wade-Martins R. α-Synuclein and mitochondrial bioenergetics regulate tetrahydrobiopterin levels in a human dopaminergic model of Parkinson disease. Free Radic Biol Med 2014; 67: 58–68.

Sawle GV, Leenders KL, Brooks DJ, Harwood G, Lees AJ, Frackowiak RS, et al. Dopa-responsive dystonia: [18F]dopa positron emission tomography. Ann Neurol 1991; 30: 24–30.

Segawa M, Nomura Y, Hayashi M. Dopa-responsive dystonia is caused by particular impairment of nigrostriatal dopamine neurons different from those involved in Parkinson disease: evidence observed in studies on Segawa disease. Neuropediatrics 2013; 44: 61–6.

Segawa M, Nomura Y, Yukishita S, Nishiyama N, Yokochi M. Is phenotypic variation of hereditary progressive dystonia with marked diurnal fluctuation/dopa-responsive dystonia (HPD/DRD) caused by the difference of the locus of mutation on the GTP cyclohydrolase 1 (GCH-1) gene? Adv Neurol 2004; 94: 217–23.

Snow BJ, Nygaard TG, Takahashi H, Calne DB. Positron emission tomographic studies of dopa-responsive dystonia and early-onset idiopathic parkinsonism. Ann Neurol 1993; 34: 733–8.

Tadic V, Kasten M, Bruggemann N, Stiller S, Hagenah J, Klein C. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol 2012; 69: 1558–62.

Terbeck J, Hermans S, Laere KV, Vandenberghhe W. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2015; 138: e350.