Research Article

Risk Prediction and Response Strategies in Corporate Financial Management Based on Optimized BP Neural Network

Meijia Zhai

School of Business Management, Shandong Polytechnic, Jinan, Shandong 250104, China

Correspondence should be addressed to Meijia Zhai; 581@sdp.edu.cn

Received 11 March 2021; Revised 2 April 2021; Accepted 7 April 2021; Published 17 April 2021

Academic Editor: Zhihan Lv

Copyright © 2021 Meijia Zhai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper mainly analyzes the theories related to the financial risk of the company and combines the principles of principal component analysis, particle swarm optimization algorithm, and artificial neural network to derive the financial risk index system of the company. To improve the accuracy of financial risk prediction, principal component analysis and particle swarm algorithm are applied to optimize the BP neural network model, the input data of the prediction model is improved, and the optimal initial weights and thresholds are given to the BP neural network by using particle swarm algorithm search, whereby the financial risk prediction model of particle swarm optimization BP neural network is constructed. The empirical results show that the model constructed by BP neural network not only has a high accuracy rate for static financial risk evaluation but also has a better prediction effect. After training and testing, the BP neural network-based enterprise financial risk evaluation model can accurately determine the existing financial situation of enterprise financial management and has a good prediction effect. Our research method is a fusion of the processing of the two methods, which belongs to the first integration of results.

1. Introduction

The healthy operation of an enterprise depends on various factors, and the overall financial status of an enterprise is a key indicator of its operation. Good financial status and operating results not only guarantee the current business decisions and operation management of an enterprise but also are essential for the sustainable and healthy growth of an enterprise in the future [1]. A lot of research data shows that financial risk exists in the process of business management of an enterprise, and poor management or poor decision-making may cause the level of financial risk to exceed the alert value and financial crisis. The financial crisis can be directly reflected by the financial status and operating results of the enterprise, and to some extent, this financial risk situation can be predicted by tracking and analyzing all aspects of the enterprise; therefore, this predictable enterprise financial risk situation provides scholars and relevant research institutions with the possibility of further analysis.

The current global economic environment is unpredictable, and increased enterprises are putting increased attention on their financial risk prediction and analysis to ensure sustainable and healthy development. Effective financial risk prediction can not only sound the alarm for enterprises and adjust their financial risk level promptly but also help enterprise managers to manage their business better and make reasonable decisions to avoid financial crises and make their development [2]. It can also help enterprise managers make better management and rational decisions, avoid financial crises, and make enterprise development more long-term, smooth, and healthy. Overall, the significance of financial risk forecasting can be reflected in the following aspects.

Businesses are an important force to be reckoned with in today’s economic market, driving the country’s economic development and accelerating the national plan for a stronger network. But given the nature of enterprises, they require large amounts of capital for support and are prone to financial risk. The financial risks of a company can reduce its operating performance and profitability and overall can negatively affect the development of the industry [3]. Therefore, this paper carries out a study on the evaluation of financial risks of companies, using the method of BP neural
network to construct a model and evaluate the financial risks of companies. It enables the company managers to take appropriate ex ante control and ex post control tools according to the actual situation. Ultimately, it can improve the risk response capability of Internet companies and enhance the social status of the company [4]. This paper mainly analyzes the theory related to financial risk prediction, selects suitable financial risk indicators, and then combines the principles of principal component analysis, particle swarm optimization algorithm, and artificial neural network to establish a particle swarm optimization BP neural network financial risk prediction model for listed companies based on the company’s sample data and it uses different models to do comparative analysis on the prediction results of the company’s financial risk, to provide some suggestions for the realistic enterprise [5]. The model can be used to compare and analyze the financial risk prediction results of companies and provide some suggestions for the financial risk prediction of real enterprises [6].

The logic of this paper is to first clarify the relationship as a whole, and by studying and defining the concepts of corporate financial risk prediction, neural network model, particle swarm optimization algorithm, and principal component analysis method, we delve into specific research, analyze and study the current situation of domestic and foreign corporate financial risk prediction methods and the research progress of neural network in prediction, establish the financial risk index system of the company, and propose an improvement scheme based on principal. The paper also proposes an improvement scheme of the company’s financial risk prediction based on principal component analysis and particle swarm algorithm to optimize the neural network and then analyzes and evaluates the optimization scheme. This paper firstly explains the theoretical and practical significance of this study as well as the ideas and methods through the reading and analysis of domestic and international literature. Secondly, the theory of financial risk and financial risk evaluation is introduced. Then, we analyze the industry background and characteristics of the company to find out the main risks faced by Internet companies, identify the corresponding risk influencing factors for each main risk, and establish the evaluation index system. By comparing the advantages and disadvantages of various financial risk evaluation methods, this paper finally selects the BP neural network method to evaluate the financial risk of Internet enterprises, diagnoses, and analyses; optimizes the company’s financial risk prediction model based on BP neural network; integrates the particle swarm optimization algorithm and neural network; and introduces the particle swarm optimization algorithm with smaller prediction error, faster convergence speed, and simpler implementation into the neural network. In the process of neural network training, we use the particle swarm algorithm to optimize the connection weights and thresholds of the neural network and establish the financial risk prediction model of listed companies based on particle swarm optimization BP neural network.

2. Related Work

At present, scholars’ research on financial risk early warning is mainly based on two aspects, the focus of some scholars is the research on issues related to the enterprise financial risk early-warning index system, and the other scholars focus on the hot spot is the research on the method of enterprise financial risk early-warning model construction [7]. Compared with the domestic capital market, the development mechanism of the foreign capital market is relatively more standardized and the management mechanism of listed companies is relatively sounder, so there are more scholars and richer results on the study of the corporate financial crisis [8]. Many foreign scholars began to focus on the study of the corporate financial crisis more than 100 years ago, have proposed various prediction methods and models for the financial risks faced by the majority of enterprises, and accumulated a lot of experience, and now it has been widely used by enterprises and related investment institutions [9]. At present, the research on financial risk prediction of listed companies mainly includes discriminant analysis model, conditional probability model, and survival analysis model. Over the years, domestic and foreign scholars have established many prediction models and methods for financial risks, such as trend analysis method, discriminant analysis, regression analysis. However, these algorithms cannot meet the practical requirements and do not have the ability of self-adaptation and self-learning, and the robustness of the forecasting system cannot be guaranteed [10]. In recent years, many scholars have introduced artificial intelligence techniques and their improved algorithms into the research of financial risk prediction models. An artificial neural network (ANN) is formed by simulating the neural system of the human brain, and it belongs to a dynamic model.

Qiao and Du were the first to introduce neural network models to the field of financial distress prediction, and they used five financial indicators as explanatory variables to construct a neural network model. Simulation experiments showed that the artificial neural network model had a more satisfactory prediction effect compared with the traditional univariate or multivariate prediction models [11]. Muñoz et al. took the financial risk situation of the banking industry as the research established a neural network-based bank financial risk prediction model by considering the degree of influence of different weighting factors on the training of neural network samples, and the experiments showed that the accuracy of this improved neural network model was greatly improved [12]. The relevant research of foreign scholars has laid the foundation for financial risk early warning, and many domestic scholars have also achieved better results on financial risk prediction. G. Li and N. Li analyzed the enterprise financial risk influencing factors and evaluation indexes to get seven principal component variables by principal component analysis and then established a financial risk evaluation model based on BP neural network to test on sample enterprises, and the research results show that this indicates that the evaluation accuracy of BP neural
network will improve with the approach of time [13]. Barbieri et al. improved the BP neural network by using the recursive genetic algorithm to build the financial risk evaluation model, and the research results show that the recursive genetic algorithm can reasonably determine the threshold and parameters of the BP neural network, which improves the accuracy of the financial risk evaluation of the BP neural network model [14].

Reading the above review of domestic and international literature, we can find that the research on enterprise financial risk evaluation has evolved from static models to dynamic models. Among the many evaluation methods, we find that the BP neural network method is more accurate than other methods in the evaluation of enterprise financial risk. From the above literature review, we can conclude that domestic and foreign scholars have been very thorough in their research on enterprise financial risk evaluation, and the research findings are very mature. However, the literature on financial risk evaluation for Internet companies alone is scarce, so the research in this area needs to be further explored. In this paper, we analyze the factors influencing the financial risk of Internet listed enterprises to establish an evaluation index system for the financial risk of Internet enterprises and use the method of BP neural network to construct a model and evaluate the financial risk of Internet listed companies. It enables the enterprise managers to take appropriate precontrol and postcontrol measures according to the actual situation. As a result, the research of this paper is meaningful.

3. Research on Enterprise Financial Management Based on Optimized BP Neural Network

3.1. Risk Prediction Model. Financial risk early warning, mainly using external environmental data, industry data, enterprise internal control information, and financial statement data, relying on fuzzy mathematical models and information technology and other analysis methods to establish a suitable financial risk early-warning index system. Based on the dynamic changes of a series of indicators, we analyze the financial situation of the enterprise and predict the possibility of financial risks in the process of production and operation. In short, financial risk early warning is the process of identifying, monitoring, and controlling the financial risks of the enterprise. Economic cycle fluctuations are the inevitable law of objective economic development, the expansion, and contraction of the economic level [15]. The economic cycle has a certain regularity and generally goes through four stages: recovery period, boom period, recession period, and depression period. The national economy recurs according to these four stages, and one cycle is a cycle. Each cycle contains four processes: recovery, development, recession, and contraction. The economic cycle also has certain specificity; that is, the timing, process, and fluctuations of each economic cycle are very different. Change the project plan to eliminate risks or protect project goals from being affected. Although it is impossible to eliminate all risks, specific risks can be avoided. There are many theories about economic cycle fluctuations, and this paper focuses on the relationship between the monetary factor theory, investment cycle theory, underconsumption theory, and financial risk warning.

The economic cycle theory describes the causes and processes of corporate financial risk and their interrelationships in terms of monetary factors, investment cycles, and underconsumption, as shown in Figure 1. The monetary factor theory suggests that the causes of cyclical fluctuations in the economy lie in the alternating expansion and contraction of the financial system, including banks, with short-term interest rates playing an important role in particular, and that the money supply and money circulation directly determine fluctuations in nominal state income [16]. Under this theory, money influences changes in demand; when the monetary mechanism is functioning normally, interest rates are relatively stable and firm costs remain stable; when money is less liquid, firm costs rise, leading to higher financing costs. The investment cycle theory considers overinvestment as the cause of the economic cycle and focuses on the imbalance between the production of consumer goods and the production of capital goods. That is, too much investment leads to an overdevelopment of the production of capital goods relative to the production of consumer goods, and the overdevelopment of capital goods further drives the economy into a boom phase. However, overproduction of capital goods leads to a surplus of products that further drives the economy into a depression phase. During economic expansion or contraction, the aggregate social demand rises or falls, the fluctuation of the economy will make the market investment behavior increase or decrease, and the increase or decrease of the firm’s investment behavior will trigger the investment risk to some extent. The theory of underconsumption suggests that, due to the lack of consumers’ purchasing power, the total purchasing power available to consumers is lower than the total value of social products, resulting in the fact that company’s total products cannot be sold at the expected selling price, which leads to excess production and economic depression. Also, when the consumer’s purchasing power shows an accelerated decline, the company will immediately reduce production capacity, resulting in a significant decline in demand for raw materials, and once the demand for raw materials declines, the cash available to the company declines rapidly, thereby increasing production and operating risks.

After setting the size of the population and initializing the position and velocity of the particles according to the needs of the actual problem, the fitness value of each particle is calculated. Here, the BP network is used to calculate the error using the mean square error function:

\[\text{fitness} = \frac{1}{N} \sum_{i=1}^{N} (y_{\text{real}} - y_i). \]

During each iteration, the particle updates its velocity \(V_{id} \) and position \(X_{id} \) by individual and global extremes, as follows:
\[V_{sd}^{k+1} = \omega V_{sd}^{k} - c_1 r_1 (p_{sd}^{k} - X_{sd}^{k}) - c_2 r_2 (p_{sd}^{k} - X_{sd}^{k}), \tag{2} \]

where \(V_{sd}^{k+1} \) is the value of speed. At the end of the calculation, the value obtained is the optimal solution of the problem, that is, the initial weights and thresholds of the BP neural network. The improved BP neural network model is trained to form the financial risk prediction model of the listed company. The prediction process based on the BP algorithm is shown in Figure 2.

Therefore, the input layer neuron nodes of the BP neural network model are determined by the number of principal components analyzed by the principal components of the Internet enterprise. In this paper, the number of the analyzed principal components is used as the number of nodes in the input layer to optimize the financial risk impact indicators of the processed Internet enterprises. In this paper, the number of initially selected financial indicator variables is large and needs to be censored before entering the data into the early-warning model, reducing the complexity of the early-warning model by deleting redundant variables while retaining as much as possible the indicator variables that can significantly distinguish the degree of financial risk. Before conducting a significance analysis of financial indicators, the test is first performed on the study sample to determine the distribution of the sample. The K-S test is a method to determine whether the sample data obey a particular distribution, so K-S is often

Figure 1: Relationship between economic cycle theory and financial risk warning.

This paper lists companies are divided into 2 categories, so the output layer node is 2.

There are many kinds of transfer functions for BP neural networks. It is important to select the most suitable transfer function for the training efficiency of the BP neural network. Considering the actual data and accuracy requirements of Internet enterprises, the transit function is chosen in this paper, and the real numbers of the output of the implicit layer are in the range of \([-1, 1]\). The design of the network parameters must be trained, trial-and-error and feedback of the model several times, and finally the BP neural network model achieves a small error, that is, convergence, at which time the internal parameters of the network model are the optimal combination of parameters.

3.2. Subrisk Response Strategies. The number of initially selected financial indicator variables is large and needs to be censored before entering the data into the early-warning model, reducing the complexity of the early-warning model by deleting redundant variables while retaining as much as possible the indicator variables that can significantly distinguish the degree of financial risk. Before conducting a significance analysis of financial indicators, the test is first performed on the study sample to determine the distribution of the sample. The K-S test is a method to determine whether the sample data obey a particular distribution, so K-S is often
used to test whether a set of samples conforms to the theory of normal distribution or whether there is a significant difference between two groups of variables:

\[D_n = \min \left\{ \left| F_n(x_i) + F_0(x_i) \right|, \left| F_n(x_i) - F_0(x_i) \right| \right\}. \]

(3)

To address the problem of dispersion of the sample distribution of each company’s financial data, this paper selects a KNN-based fuzzy affiliation measure to determine the fuzzy affiliation degree, which has strong robustness. The fuzzy affiliation degree of this paper is

\[s_i = 1 + (1 + \theta) \left(\frac{d_{ai} - d_{\text{max}}}{d_{\text{max}} + d_{\text{min}}} \right)^w. \]

(4)

For the inertia weight factor \(w \) in the speed of the particle swarm algorithm, its value has a crucial influence on the searchability of the algorithm [18]. If a larger value of \(w \) is chosen, the global search ability of the algorithm is enhanced, and if a smaller value of \(\phi_{m,n} \) is chosen, the local search ability of the algorithm is enhanced, leading to easily falling into local extremes. Therefore, an appropriate value of \(w \) can improve the search speed of the algorithm while ensuring the search capability. In this paper, the inertia weight factor \(w \) varies with the individual fitness value \(q \) as follows:

\[\phi_{m,n} = \frac{\left\| q_{m,n} \right\|}{\delta^2} \exp \left(-\frac{(q_{m,n} - \bar{q}_{m,n})^2}{2\sigma^2} \right) \ast \left[e^{\gamma \left(q_{m,n} - \bar{q}_{m,n} \right)} - e^{-\left(y^{2}/2 \right)} \right]. \]

(5)

The fitness value is used as a measure of the evolutionary behavior of individuals in a population. Genetic algorithms establish fitness functions to determine the fitness value of individuals and reproduce well-adapted individuals based on the fitness value to find the optimal solution [19]. Commonly used methods include the roulette wheel method and ranked selection method. Crossover operation is the core of the process of genetic algorithm, and it is the main way to generate new individuals; the most used are single-point crossover operator, uniform crossover operator, and so forth. The combination of variation with selection and crossover ensures the effectiveness of the genetic algorithm and improves the search efficiency of the algorithm.

The current early-warning methods of finance companies are too old, the financial information used in univariate early warning is rather one-sided, and the accuracy of early-warning results is not high [20–24]. First of all, univariate early warning is not combined with a certain theoretical basis, it mainly relies on the subjective judgment of finance personnel in selecting indicators and risk evaluation, and there is also a problem of poor consideration for the comprehensiveness of the selected indicators, which will lead to the lack of credibility of the early-warning results. Also, univariate early warning can only give a general direction, for example, the lower the gearing ratio is, the better, but the ratio is not clearly defined, and the univariate early warning often results in contradictory early-warning results. Univariate financial risk warning is more of a qualitative analysis method than a quantitative one, and it is a potential trend to shift the financial risk warning method to quantitative analysis in the future.

Serial number	Input node	Indicator name
1	Node 1	Principal component 1
2	Node 2	Principal component 2
3	Node 3	Principal component 3
4	Node 4	Principal component 4
5	Node 5	Principal component 5
6	Node 6	Principal component 6
7	Node 7	Principal component 7

Table 1: Principal component variables corresponding to the 7 nodes in the input layer.

![Figure 2: BP algorithm flow chart.](image-url)
4. Analysis of Results

4.1. BP Neural Network Analysis. The BP model is trained using 150 samples from the training set, and the remaining 50 samples from the test set are used to predict the model that meets the accuracy requirements and verify the validity of the model. The PSO algorithm is limited to the maximum number of iterations or the expected error, while the PSO fitness function is the mean square error function used in the BP neural network error calculation to analyze the expected model output and the actual predicted output data. The data in the training set test may be the same, but the same amount is very small. We have removed most of the same data during the preprocessing. The same data has almost no effect on the results. The learning and training method of BP is the “LM algorithm.” Figure 3 shows the curve of the change of fitness of the PSO algorithm in the process of optimizing the weights and thresholds of the BP network, where the horizontal axis is the number of times the model is trained and the vertical axis is the training error of the network. The PSO algorithm changes the fitness value of the particles significantly during the iterations and the error is decreasing, while the sum of squared errors of the test samples decreases to 0.1519 when the iteration proceeds 161 times.

From Figure 4, the PSO-BP prediction model achieves 86.0% identification accuracy for the test sample, which is a significant improvement compared to the traditional BP model with 66.0% and the GA-BP model with a 76% correct identification rate. Therefore, the PSO-BP prediction model has better financial risk prediction ability. In practice, the improved BP model is established in this paper based on principal component analysis and the PSO algorithm can provide a certain reference basis, and enterprises and investors can pay different degrees of attention to enterprises according to the specific risk evaluation values of the model.

To address the problem of low accuracy of financial risk prediction, this paper establishes a model of PSO optimized BP network by analyzing the particle swarm algorithm and BP model. The node is an important part of the framework; the design of the node is a key part of the framework design. There are certain limitations and unrealistic feelings for the node experiment in isolation. The best way is to conduct an experimental study of the entire framework to observe the performance of the node. However, this is often economically undesirable, technically difficult, and sometimes even impossible. Therefore, the current node research, whether domestic or foreign, still uses simulation methods, that is, taking out a combination from the framework. It is called a detached body. Applying various loads in the structure to this composite body reflects the stress state of the node to achieve the purpose of experimental research. However, the separation of the node from the frame involves various boundaries and load handling issues. Different boundary treatments and loading point positions change the performance of the nodes. Using the faster convergence speed of the PSO algorithm, we find the global optimal point, assign the optimal initial weights and thresholds to the BP network, apply it to the financial risk prediction of listed companies, and compare the prediction effect with the BPS model and GA-BP model. The simulation experiments show the following: (1) the BP neural network model has no excessive restrictions on the research sample data, has self-learning and self-adaptive capabilities, and has a wide range of application, which is superior in financial risk prediction, but still has its problems such as easy fall into the local optimum, long operation time, and low prediction accuracy. (2) To address the shortcomings of BP networks, principal component analysis, and particle swarm optimization algorithm are introduced into the neural network to optimize the input side of the model and the initial parameters of the model, respectively, and the improved BP model significantly improves the accuracy of financial risk prediction. (3) The BP model based on principal component and particle swarm optimization not only improves the nonlinear mapping ability of the BP network but also enhances the convergence speed and overall performance of the network. Compared
with the original BP forecasting model and GA-BP forecasting model, the method has better nonlinear fitting ability and higher forecasting accuracy for the financial situation of listed companies.

The main difference between the PSO-BP algorithm and other algorithms is that the PSO-BP algorithm uses adaptive parameter optimization.

4.2. Risk Forecast Analysis. The financial data of 600 listed companies in high-tech industries were reclassified and combined using a 2:1 ratio, with a training sample of 396 and a test sample of 198. Among the 198 test samples, the sample size of healthy enterprises with stable development (category 1) was 104, the sample size of ST enterprises and *ST enterprises as crisis enterprises was 62, and the sample size of enterprises declaring bankruptcy or delisting as distressed enterprises (category 3) was 32. The four classification models are used to classify the financial data, and the classification results are shown in Figure 5. From Figure 5, we can get the error and fit of the BP neural network. The green curve in the figure shows the actual value, the blue curve shows the training value, the green dashed line shows the best value, the red curve shows the test value, and the black dashed line shows the target value. From the figure, we can conclude that the error is decreasing as the number of iterations of the BP neural network increases.

From Figure 6, we can see that principal component 1 explains more about current ratio, quick ratio, and main business profit ratio, so it can be seen that principal component 1 explains more about solvency; principal component 2 explains more about total assets return ratio and total assets turnover ratio, so it can be seen that principal component 2 explains more about profitability; principal component 3 explains more about R&D ratio and return on net assets. Therefore, principal component 3 can be regarded as an indicator of innovation capability; principal component 4 explains more about the sales cash ratio and current assets and liabilities ratio, so principal component 4 can be regarded as an indicator of cash capability; principal component 5 explains more about the shareholding ratio of the largest shareholder, so principal component 5 can be regarded as an indicator of equity concentration. Principal component 6 explains the R&D expense ratio and net profit growth rate to a higher extent, so principal component 6 can be regarded as an indicator of asset utilization ability. Principal component 7 explains operating cash margin to a high degree, so it can be regarded as an indicator of asset operation efficiency. Therefore, the 17 output-based indicators are finally transformed into 7 indicators.

4.3. Analysis of Coping Strategies. The company has not included the accounts receivable turnover ratio in the graph because the company has been free of accounts receivable because of the first-pay-first-settlement method. The first-pay-first-served settlement method can accelerate capital turnover, improve capital utilization, avoid time value loss from credit sales, and prevent bad debts from occurring. For the research results, it is found that the experience correlation and the errors and efficiency of AI technology are better than other research results, indicating that our research algorithm has more advantages. Under normal circumstances, the company’s use of the cash sales model should increase storage costs and reduce inventory turnover, but Figure 7 shows that the company’s inventory turnover has increased by 2.52 percentage points over the five years, which not only indicates that the company’s products are very popular and may even be in short supply, but also further illustrates the company’s quality inventory management capabilities. The total asset turnover ratio and current asset turnover ratio are on a slight downward trend and the rate of decline is slowing down year by year, which is inevitably related to the listing of the company in early 2016, indicating that the company’s management is adapting and adjusting. Overall, the company has a strong operating capacity.
From 2016 to 2020, the company’s gross sales margin increased from 39.23% to 45.69%, a total increase of 6.45 percentage points over the five years. This is mainly due to the steady growth of the company’s main business revenue, while the growth rate of operating costs has slowed down year by year. The operating profit margin has been steadily increasing every year, which is still a satisfactory result in a relatively weak economy. Net sales margin is also on a year-on-year upward trend, while the growth rate of net margin is always higher than the growth rate of gross margin. The reason for the year-on-year increase in operating profit margin and net sales margin but at a slower pace is that the company has been upgrading its products and launching many new products, increasing promotional expenses. From Figure 8, there is a slight upward trend in earnings per share from 2017 to 2018, indicating good business results and a stable level of profitability of common stock. In 2018–2019, the company’s return on net assets is maintained at a certain level, indicating that the company’s ability to use its capital to obtain net income is relatively stable. It indicates that the company has good profitability.

Based on the process of building the company’s financial risk early-warning system described in this paper, it is applied to the company, the efficacy coefficient method is used to calculate the risk evaluation value of the company’s financial indicators for each year, the fuzzy evaluation method is used to calculate the risk evaluation value of nonfinancial indicators, the integrated financial risk evaluation value of the company is obtained after aggregation, the calculation process is not shown now, and the results are shown in Figure 9. In Figure 9, we can see that the value of each type is different, and the difference is quite big.

Awareness of the crisis is an important prerequisite for a company to be able to run successfully. For the company, within just four years, it has carried out several capital operations, ignored the capital market risks, and violated the rules, which disappointed the investors. For our research results, compared with other previous research results, our results have higher efficiency and higher accuracy. Therefore, first, at the ideological level, company managers should be fully aware of the fierce competition and risks in the market, and be able to stay alert always and strive to do a good job of risk control and early warning. And top-down to build a risk culture, encourage employees to actively participate in risk prevention and control and early warning, improve the staff’s awareness of risk prevention and control and early warning, and be able to identify risks promptly. First of all, we should improve the training mechanism for internal staff to enhance the understanding of financial management, financial risk prevention, and early-warning work of departmental staff and improve the ownership and initiative of departmental staff to pay more conscious attention to the risk information found in the work process. Second, the course of financial risk should be one of the important contents of enterprise training courses. Finally,
combine the internal culture and system construction, so that the staff will be aware of the existence of financial risks in their daily work, and consciously cooperate with the financial management department’s work.

5. Conclusion

In this paper, we analyze the financial characteristics of Internet companies at each stage, find the four main types of risks they face, and analyze the required capabilities and the selection of impact indicators for each risk. The BP neural network model is selected to evaluate the financial risks of Internet listed companies by combining the advantages and disadvantages of various evaluation methods, and the results show that the constructed BP neural network model has a good ability to identify the financial situation of Internet listed companies. After comparing various methods of financial risk prediction, this paper introduces artificial neural networks into the field of financial risk prediction and carries out model optimization for the shortcomings of BP neural networks. First, the input data of the model is improved, and the six representative principal components obtained from the principal component analysis are used as the input of the model, which simplifies the structure of the model and enhances the generalization ability of the model; then, the initial parameters of the model are improved, the particle swarm algorithm is used to optimize the parameters of the BP neural network, and the optimal extreme values are used as the initial weights and thresholds of the network, which improves the model performance. The empirical results show that the model constructed by BP neural network not only has a high accuracy rate for static financial risk evaluation but also has a better prediction effect.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financed by the Shandong Provincial Institute of Education Sciences in 2020: Research and Practice of Visualization in Teaching Design of Accounting Courses in Higher Vocational Colleges from the Perspective of Curriculum Ideology and Politics (2020JXY067).

References

[1] T. Shen, Y. Nagai, and C. Gao, “Design of building construction safety prediction model based on optimized BP neural network algorithm,” Soft Computing, vol. 24, no. 11, pp. 7839–7850, 2020.
[2] J. Gao, “Performance evaluation of manufacturing collaborative logistics based on BP neural network and rough set,” Neural Computing and Applications, vol. 33, no. 2, pp. 739–754, 2021.
[3] X. Yan, W. Weihan, and M. Chang, “Research on financial assets transaction prediction model based on LSTM neural network,” Neural Computing and Applications, vol. 33, no. 1, pp. 257–270, 2021.
[4] P. Wang, X. Liu, and Z. Han, “Multi-parameter online optimization algorithm of BP neural network algorithm in

Figure 9: Company financial risk assessment value.
Internet of Things service,” *Neural Computing and Applications*, vol. 33, no. 2, pp. 505–515, 2021.

[5] L. Liu and W. Ran, “Research on supply chain partner selection method based on BP neural network,” *Neural Computing and Applications*, vol. 32, no. 6, pp. 1543–1553, 2020.

[6] B. Gordan, M. Koojaliipoor, A. Clementking, H. Tootoonchi, and E. Tonnizam Mohamad, “Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques,” *Engineering with Computers*, vol. 35, no. 3, pp. 945–954, 2019.

[7] H. Wang and K. Islam, “An optimization model for poverty Alleviation fund audit mode based on BP neural network,” *Journal of Intelligent & Fuzzy Systems*, vol. 37, no. 1, pp. 481–491, 2019.

[8] H. I. Hussain, F. Kamarudin, H. M. T. Thaker, and M. A. Salem, “Artificial Neural Network to model managerial timing decision: non-linear evidence of deviation from target leverage,” *International Journal of Computational Intelligence Systems*, vol. 12, no. 2, pp. 1282–1294, 2019.

[9] R. Myšková and P. Házek, “Mining risk-related sentiment in corporate annual reports and its effect on financial performance,” *Technological and Economic Development of Economy*, vol. 26, no. 6, pp. 1422–1443, 2020.

[10] K. Lu, Y. Lyu, X. Li, and Y. Zhang, “A new method for evaluating information system growth of SMEs based on improved BP neural network,” *Information Systems and E-Business Management*, vol. 18, no. 4, pp. 779–792, 2020.

[11] G. Qiao and L. Du, “Enterprise financial risk early warning method based on hybrid PSO-SVM model,” *Journal of Applied Science and Engineering*, vol. 19, no. 4, pp. 779–800, 2019.

[12] C. Barbieri, I. Cattinelli, L. Neri et al., ”Development of an artificial intelligence model to guide the management of blood pressure, fluid volume, and dialysis dose in end-stage kidney disease patients: proof of concept and first clinical assessment,” *Kidney Diseases*, vol. 5, no. 1, pp. 28–33, 2019.

[13] S. M. Pappada, M. H. Owais, B. D. Cameron et al., “An artificial neural network-based predictive model to support optimization of inpatient glycemic control,” *Diabetes Technology & Therapeutics*, vol. 22, no. 5, pp. 383–394, 2020.

[14] X. Xiao-wei, ”Study on the intelligent system of sports culture centers by combining machine learning with big data,” *Personal and Ubiquitous Computing*, vol. 24, no. 1, pp. 151–163, 2020.

[15] S. P. Mishra and P. K. Dash, “Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm,” *Neural Computing and Applications*, vol. 31, no. 7, pp. 2243–2268, 2019.

[16] U. R. Alo, S. I. Ele, and H. F. Nweke, “A conceptual framework for network traffic control and monitoring using artificial neural networks,” *Journal of Theoretical and Applied Information Technology*, vol. 97, no. 22, pp. 3396–3412, 2019.

[17] Z. Xiong, N. Xiao, F. Xu et al., “An equivalent exchange based data forwarding incentive scheme for socially aware networks,” *Journal of Signal Processing Systems*, vol. 93, no. 1, pp. 1–15, 2021.