Search for B^+-meson decay to $a_1^+ K^{*0}$

The BaBar Collaboration

August 5, 2008

Abstract

We present the preliminary result of a search for the decay $B^\pm \rightarrow a_1^\pm K^{*0}$. The data, collected with the BaBar detector at the Stanford Linear Accelerator Center, represent 465 million $B\overline{B}$ pairs produced in $e^+ e^-$ annihilation at the $\Upsilon(4S)$ energy. The result for the branching fraction is:

$$\mathcal{B}(B^+ \rightarrow a_1^+ K^{*0}) \times \mathcal{B}(a_1^+ \rightarrow \pi^+ \pi^- \pi^+) = (0.7^{+0.5+0.7}_{-0.4-0.7}) \times 10^{-6},$$

corresponding to an upper limit at 90\% confidence level of 1.6×10^{-6}. The first error quoted is statistical, the second systematic.

Submitted to the 34th International Conference on High-Energy Physics, ICHEP 08, 29 July—5 August 2008, Philadelphia, Pennsylvania.

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC02-76SF00515.
The **BABAR** Collaboration,

B. Aubert, M. Bona, Y. Karyotakis, J. P. Lees, V. Poireau, E. Prencipe, X. Prudent, V. Tisserand

Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France

J. Garra Tico, E. Grauges

Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

L. Lopez\(^{ab}\), A. Palano\(^{ab}\), M. Pappagallo\(^{ab}\)

INFN Sezione di Bari\(^{a}\); Dipartimento di Fisica, Università di Bari\(^{b}\), I-70126 Bari, Italy

G. Eigen, B. Stugu, L. Sun

University of Bergen, Institute of Physics, N-5007 Bergen, Norway

G. S. Abrams, M. Battaglia, D. N. Brown, R. N. Cahn, R. G. Jacobsen, L. T. Kerth, Yu. G. Kolomensky, G. Lynch, I. L. Osipenkov, M. T. Ronan, K. Tackmann, T. Tanabe

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

C. M. Hawkes, N. Soni, A. T. Watson

University of Birmingham, Birmingham, B15 2TT, United Kingdom

H. Koch, T. Schroeder

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

D. Walker

University of Bristol, Bristol BS8 1TL, United Kingdom

D. J. Asgeirsson, B. G. Fulson, C. Hearty, T. S. Mattison, J. A. McKenna

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

M. Barrett, A. Khan

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

V. E. Blinov, A. D. Bukin, A. R. Buzykäev, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

M. Bondioli, S. Curry, I. Eschrich, D. Kirkby, A. J. Lankford, P. Lund, M. Mandelkern, E. C. Martin, D. P. Stoker

University of California at Irvine, Irvine, California 92697, USA

S. Abachi, C. Buchanan

University of California at Los Angeles, Los Angeles, California 90024, USA

J. W. Gary, F. Liu, O. Long, B. C. Shen, G. M. Vitug, Z. Yasin, L. Zhang

University of California at Riverside, Riverside, California 92521, USA

\(^{1}\)Deceased
V. Sharma

University of California at San Diego, La Jolla, California 92093, USA

C. Campagnari, T. M. Hong, D. Kovalskyi, M. A. Mazur, J. D. Richman

University of California at Santa Barbara, Santa Barbara, California 93106, USA

T. W. Beck, A. M. Eisner, C. J. Flacco, C. A. Heusch, J. Kroseberg, W. S. Lockman, A. J. Martinez, T. Schalk, B. A. Schumm, A. Seiden, M. G. Wilson, L. O. Winstrom

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

C. H. Cheng, D. A. Doll, B. Echenard, F. Fang, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter

California Institute of Technology, Pasadena, California 91125, USA

R. Andreassen, G. Mancinelli, B. T. Meadows, K. Mishra, M. D. Sokoloff

University of Cincinnati, Cincinnati, Ohio 45221, USA

P. C. Bloom, W. T. Ford, A. Gaz, J. F. Hirschauer, M. Nagel, U. Nauenberg, J. G. Smith, K. A. Ulmer, S. R. Wagner

University of Colorado, Boulder, Colorado 80309, USA

R. Ayad, A. Soffer, W. H. Toki, R. J. Wilson

Colorado State University, Fort Collins, Colorado 80523, USA

D. D. Altenburg, E. Feltresi, A. Hauke, H. Jasper, M. Karbach, J. Merkel, A. Petzold, B. Spaan, K. Wacker

Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany

M. J. Kobel, W. F. Mader, R. Nogowski, K. R. Schubert, R. Schwierz, A. Volk

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

D. Bernard, G. R. Bonneau, E. Latour, M. Verderi

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France

P. J. Clark, S. Playfer, J. E. Watson

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

M. Andreotti, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibinetto, P. Franchini, E. Luppi, M. Negrini, A. Petrella, L. Piemontese, V. Santoro

INFN Sezione di Ferrara; Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy

R. Baldini-Ferroli, A. Calcaterra, R. de Sangro, G. Finocchiaro, S. Pacetti, P. Patteri, I. M. Peruzzi

M. Piccolo, M. Rama, A. Zallo

INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

A. Buzzo, R. Contrari, M. Lo Vetere, M. M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi

INFN Sezione di Genova; Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy

2Now at Temple University, Philadelphia, Pennsylvania 19122, USA
3Now at Tel Aviv University, Tel Aviv, 69978, Israel
4Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
K. E. Alwyn, D. Bailey, R. J. Barlow, Y. M. Chia, C. L. Edgar, G. Jackson, G. D. Lafferty, T. J. West, J. I. Yi

University of Manchester, Manchester M13 9PL, United Kingdom

J. Anderson, C. Chen, A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle

University of Maryland, College Park, Maryland 20742, USA

C. Dallapiccola, X. Li, E. Salvati, S. Saremi

University of Massachusetts, Amherst, Massachusetts 01003, USA

R. Cowan, D. Dujmic, P. H. Fisher, G. Sciolla, M. Spitznagel, F. Taylor, R. K. Yamamoto, M. Zhao

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

P. M. Patel, S. H. Robertson

McGill University, Montréal, Québec, Canada H3A 2T8

A. Lazzaroab, V. Lombardoa, F. Palomboab

INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanob, I-20133 Milano, Italy

J. M. Bauer, L. Cremaldi, R. Godangc, R. Kroeger, D. A. Sanders, D. J. Summers, H. W. Zhao

University of Mississippi, University, Mississippi 38677, USA

M. Simard, P. Taras, F. B. Viaud

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

H. Nicholson

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

G. De Nardoab, L. Listaa, D. Monorchioab, G. Onoratoab, C. Sciaccaab

INFN Sezione di Napolia; Dipartimento di Scienze Fisiche, Università di Napoli Federico IIb, I-80126 Napoli, Italy

G. Raven, H. L. Snoek

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

C. P. Jessop, K. J. Knoepfel, J. M. LoSecco, W. F. Wang

University of Notre Dame, Notre Dame, Indiana 46556, USA

G. Benelli, L. A. Corwin, K. Honscheid, H. Kagan, R. Kass, J. P. Morris, A. M. Rahimi, J. J. Regensburger, S. J. Sekula, Q. K. Wong

Ohio State University, Columbus, Ohio 43210, USA

N. L. Blount, J. Brau, R. Frey, O. Igonkina, J. A. Kolb, M. Lu, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence

University of Oregon, Eugene, Oregon 97403, USA

6Now at University of South Alabama, Mobile, Alabama 36688, USA
1 INTRODUCTION

Recent searches for decays of B mesons to final states with an axial-vector meson a_1 or b_1 and a pion or kaon have revealed branching modes that are rather large among charmless decays: $(15-35) \times 10^{-6}$ for $B \rightarrow a_1(\pi, K)$ [1, 2], and $(7-11) \times 10^{-6}$ for a charged pion and kaon in combination with a b_1^0 or a b_1^+ meson [3, 4]. On the other hand the experimental search for $B^0 \rightarrow b_1^- \rho^+$ set an upper limit of 1.7×10^{-6} at the 90% confidence level for the branching fraction [5], although a branching fraction of 25×10^{-6} was expected [6].

The available theoretical estimates of the branching fractions of B^+ mesons to $a_1^+ K^{*0}$ come from calculations based on naïve factorization [7], and on QCD factorization [6]. The latter incorporates light-cone distribution amplitudes evaluated from QCD sum rules, and predicts branching fractions in quite good agreement with the measurements for $B \rightarrow a_1 \pi$ and $B \rightarrow a_1 K$ [1, 2]. The expected branching fraction for $B^+ \rightarrow a_1^+ K^{*0}$ from naïve factorization is 0.51×10^{-6} and that from QCD factorization is $9.7^{+4.9+32.9}_{-3.5-2.4} \times 10^{-6}$ with a prediction for the longitudinal polarization fraction $f_L = 0.38^{+0.51}_{-0.40}$. The first theoretical error corresponds to the uncertainties due to the variation of Gegenbauer moments, decay constants, quark masses, form factors and a B meson wave function parameter. The second theoretical error corresponds to the uncertainties due to the variation of penguin annihilation parameters [6]. For the longitudinal polarization fraction, all errors are added in quadrature, since the theoretical uncertainty is dominated uncertainties in the size of the penguin-annihilation amplitude. This mode is expected to be substantially enhanced by penguin annihilation and thus it is important to study this mechanism. In this paper we present the first search for the decay $B^+ \rightarrow a_1^+ K^{*0}$.

2 THE BaBar DETECTOR AND DATASET

The data for this measurement were collected with the BaBar detector [8] at the PEP-II asymmetric e^+e^- collider located at the Stanford Linear Accelerator Center. An integrated luminosity of 424 fb$^{-1}$, corresponding to $(465 \pm 5) \times 10^6 B \overline{B}$ pairs, was produced in e^+e^- annihilation at the $\Upsilon(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV). Charged particles from the e^+e^- interactions are detected, and their momenta measured by a combination of five layers of double-sided silicon microstrip detectors and a 40-layer drift chamber both operating in the 1.5 T magnetic field of the BaBar superconducting solenoid. Photons and electrons are identified with a CsI(Tl) electromagnetic calorimeter (EMC). Further charged particle identification (PID) is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring imaging Cherenkov detector (DIRC) covering the central region.

A detailed Monte Carlo program (MC) is used to simulate the B meson production and decay sequences, and the detector response [9]. Dedicated signal MC events for the decay $B^+ \rightarrow a_1^+ K^{*0}$ with $a_1^+ \rightarrow \rho^0 \pi^+$ has been produced. For the $a_1(1260)$ meson parameters we use a mass of 1230 MeV/c^2 and a width of 400 MeV/c^2. We account for the uncertainties of these resonance parameters in the determination of systematic uncertainties. The $a_1^+ \rightarrow \pi^- \pi^+ \pi^+$ decay proceeds mainly through the intermediate states $(\pi\pi)_\rho$ and $(\pi\pi)_\sigma$ [10]. No attempt is made to separate contributions of the dominant P wave $(\pi\pi)_\rho$ from the S wave $(\pi\pi)_\sigma$ in the channel $\pi\pi$. The difference in efficiency for the S wave and P wave cases is accounted for as a systematic error.
3 ANALYSIS METHOD

We reconstruct a_1^+ candidates through the decay sequence $a_1^+ \rightarrow \rho^0 \pi^+ \text{ and } \rho^0 \rightarrow \pi^+ \pi^-$. The other primary daughter of the B meson is reconstructed as $K^{*0} \rightarrow K^+ \pi^-$. For the ρ^0, the invariant mass of the pion pair is required to lie between 0.55 and 1.0 GeV/c². For the a_1 and K^* we accept a range that includes sidebands. The a_1 invariant mass is required to lie between 0.9 and 1.8 GeV/c², while the K^* invariant mass is required to lie between 0.8 and 1.0 GeV/c². Secondary charged pion candidates from a_1 and K^* decays are rejected if classified as protons, kaons, or electrons by their DIRC, dE/dx, and EMC PID signatures. We reconstruct the B meson candidate by combining the four-momenta of a pair of primary daughter mesons, using a fit that constrains all particles to a common vertex. From the kinematics of $\Upsilon(4S)$ decay we determine the energy-substituted mass $m_{ES} = \sqrt{\frac{1}{2}s - p_B^2}$ and energy difference $\Delta E = E_B - \frac{1}{2}\sqrt{s}$, where (E_B, p_B) is the B meson four-momentum vector, and all values are expressed in the $\Upsilon(4S)$ rest frame. We require $5.25 \text{ GeV}/c^2 < m_{ES} < 5.29 \text{ GeV}/c^2 \text{ and } |\Delta E| < 100 \text{ MeV}$. To reduce fake meson candidates we require a B, a_1 and K^* vertex χ^2 probability > 0.01.

We also impose restrictions on the helicity-frame decay angle θ_{K^*} of the K^* mesons. The helicity frame of a meson is defined as the rest frame of the meson with the z axis along the direction of boost to that frame from the parent rest frame. For the decay $K^* \rightarrow K \pi$, θ_{K^*} is the polar angle of the daughter kaon, and for $a_1 \rightarrow \rho \pi$, θ_{a_1} is the polar angle of the normal to the a_1 decay plane. We define $\mathcal{H}_i = \cos(\theta_i)$, where $i = (K^*, a_1)$. Since many background candidates accumulate near $|\mathcal{H}_{K^*}| = 1$, we require $-0.98 \leq \mathcal{H}_{K^*} \leq 0.8$.

Backgrounds arise primarily from random combinations of particles in continuum $e^+e^- \rightarrow q\bar{q}$ events ($q = u, d, s, c$). We reduce these with a requirement on the angle θ_T between the thrust axis of the B candidate in the $\Upsilon(4S)$ frame and that of the charged tracks and neutral calorimeter clusters in the rest of the event (ROE). The distribution is sharply peaked near $|\cos \theta_T| = 1$ for jet-like continuum events, and nearly uniform for B meson decays. The requirement, which optimizes the expected signal yield relative to its background-dominated statistical uncertainty, is $|\cos \theta_T| < 0.8$. $B\bar{B}$ background arising from $b \rightarrow c$ transitions is suppressed by removing events with D meson candidates, reconstructed in the decays $D^0 \rightarrow K^- \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$, with an invariant mass within $\pm 0.02 \text{ GeV}/c^2$ of the nominal mass value.

The number of events which pass the selection is 15802. Besides the signal events, these samples contain $q\bar{q}$ (dominant) and $B\bar{B}$ with $b \rightarrow c$ combinatorial backgrounds, and a fraction of other charmless $B\bar{B}$ background modes. The average number of candidates found per event in the selected data sample is 1.5 (2.0 to 2.4 in signal MC depending on the polarization). We choose the candidate that is most likely a signal decay, as judged from the output of a neural network, where we use the ρ meson mass and the vertex fit χ^2 probabilities of B, a_1 and K^* candidates as input variables.

We discriminate further against $q\bar{q}$ background with a Fisher discriminant \mathcal{F} [12] that combines four variables: the polar angle of the B candidate momentum and of the B thrust axis with respect to the beam axis in the $\Upsilon(4S)$ rest frame; and the zeroth and second angular moments $L_{0,2}$ of the energy flow, excluding the B candidate, with respect to the B thrust axis. The moments are defined by $L_i = \sum_j p_i \times |\cos \theta_i|^j \cdot p_i$, where θ_i is the angle with respect to the B thrust axis of a track or neutral cluster i, p_i is its momentum.

We obtain yields and the longitudinal polarization f_L from an extended maximum likelihood (ML) fit with the input observables ΔE, m_{ES}, \mathcal{F}, the resonance masses m_{a_1} and m_{K^*} and the helicity distributions \mathcal{H}_{K^*} and \mathcal{H}_{a_1}.

Since the correlation between the observables in the selected data and in MC signal events is
small, we take the probability density function (PDF) for each event to be a product of the PDFs for the individual observables. Corrections for the effects of possible correlations are made on the basis of MC studies described below.

We determine the PDFs for the signal and $B\bar{B}$ background components from fits to MC samples. We develop PDF parameterizations for the combinatorial background with fits to the data from which the signal region ($5.26 \text{ GeV}/c^2 < m_{ES} < 5.29 \text{ GeV}/c^2$ and $|\Delta E| < 60 \text{ MeV}$) has been excluded.

The m_{ES} and ΔE distributions are parametrized as linear combinations of the so-called Crystal-Ball function [13] and Gaussian. In case of m_{ES} for $q\bar{q}$ and $B\bar{B}$ background we use the threshold function $x\sqrt{1-x^2}\exp[-\xi(1-x^2)]$, with argument $x \equiv 2m_{ES}/\sqrt{s}$ and shape parameter ξ. This function is discussed in more detail in Ref. [14]. In case of ΔE for $q\bar{q}$ and $B\bar{B}$ background we use a polynomial function. The PDFs for the Fisher discriminant $P_j(F)$ are parametrized as single or double Gaussian. The PDFs for the invariant masses of the a_1 and K^* mesons are constructed as linear combinations of relativistic Breit Wigner and polynomial functions. We use a joint PDF $P_j(\mathcal{H}_{K^*}, \mathcal{H}_{a_1})$ for the helicity distributions, the signal component is parametrized as the product of the ideal angular distribution in \mathcal{H}_{K^*} and \mathcal{H}_{a_1} from Ref. [15], times an empirical acceptance function $\mathcal{G}(\mathcal{H}_{K^*}, \mathcal{H}_{a_1})$ while the helicity PDF for the other components is the product of the helicity PDFs for \mathcal{H}_{K^*} and \mathcal{H}_{a_1}. The \mathcal{H}_i distributions in case of $q\bar{q}$ and $B\bar{B}$ background are based on Gaussian and polynomial functions. We allow the most important parameters (first coefficient of the polynomial function for ΔE, the invariant masses of the a_1 and the K^*, and the width of the Breit Wigner for the invariant masse of the K^*) for the determination of the combinatorial background PDFs to vary in the fit, along with the yields for the signal and $q\bar{q}$ background.

The likelihood function is

$$
\mathcal{L} = \exp \left(-\sum_j Y_j \right) \prod_i \sum_j Y_j \times P_j(m_{ES}^i)P_j(F^i)P_j(\Delta E^i)P_j(m_{a_1}^i)P_j(m_{K^*}^i)P_j(\mathcal{H}_{K^*}^i, \mathcal{H}_{a_1}^i),
$$

where N is the number of events in the sample, and for each component j (signal, $q\bar{q}$ background, $b \to c \ B\bar{B}$ background, or charmless $B\bar{B}$ background), Y_j is the yield of component j and $P_j(x^i)$ is the probability for variable x of event i to belong to component j.

We validate the fitting procedure by applying it to ensembles of simulated experiments with the $q\bar{q}$ component drawn from the PDF, and with embedded known numbers of signal and $B\bar{B}$ background events randomly extracted from the fully simulated MC samples. By tuning the number of embedded events until the fit reproduces the yields found in the data, we find a positive bias

Y	Y_b	$\mathcal{B}(K^{*0} \to K^+\pi^-)$	$\mathcal{B}(10^{-6})$	S	UL (10^{-6})
55^{+10}_{-17}	27 ± 14	$\frac{2}{3}$	$0.7^{+0.5+0.7}_{-0.4-0.7}$	0.9	1.6
Y_b, to be subtracted from the observed signal yield Y: the corresponding numbers are reported in Table 1.

In the fitting procedure we allow the longitudinal polarization f_L to vary, finding the best value $f_L = 1.1 \pm 0.2$, where the error is statistical only; systematic uncertainties are not evaluated and we do not report a measurement on this quantity, since the observed signal is not statistically significant.

We compute the branching fraction by subtracting the fit bias from the measured yield, and dividing the result by the number of produced $B\bar{B}$ pairs and by the product of the selection efficiency times the branching ratio for the $B(K^{*0} \rightarrow K^+\pi^-)$ decay. We assume that the branching fractions of the $Y(4S) \rightarrow B^+B^-$ and $B^0\bar{B}^0$ are equal, consistent with measurement [10]. The efficiency for longitudinally and transversely polarized signal events, obtained from MC signal model, is 12.9% and 18.6%, respectively. The results are given in Table 1 along with the significance, computed as the square root of the difference between the value of $-2 \ln \mathcal{L}$ (with additive systematic uncertainties included) for zero signal and the value at its minimum. In order to obtain the most conservative upper limit, we assume $f_L = 1$ in estimating the branching fraction. In Figure 1 we show the projections of data with PDFs overlaid. The data plotted are subsamples enriched in signal with the requirement of a minimum value of the ratio of signal to total likelihood, computed without the plotted variable.

4 SYSTEMATIC STUDIES

Systematic uncertainties on the branching fractions arise from the imperfect knowledge of the PDFs, $B\bar{B}$ backgrounds, fit bias, and efficiency. PDFs uncertainties not already accounted for by free parameters in the fit are estimated from varying the signal-PDF parameters within their uncertainties. For K^* resonance parameters we use the uncertainties from Ref. [10] and for the a_1 resonance parameters from Ref. [1]. The uncertainty from fit bias (Table 1) includes its statistical uncertainty from the simulated experiments, and half of the correction itself, added in quadrature. We vary the $B\bar{B}$ background component yields by 100% for charmless background and by 20% for the $b \rightarrow c B\bar{B}$ background.

In the systematic uncertainty we account for a possible $B^+ \rightarrow a_2^+ K^{*0}$ contribution by parameterizing its PDFs on a dedicated sample of simulated events; for the helicity part of this component we use the corresponding joint ideal angular distribution from Ref. [15], as we do for our signal component. We conservatively assume $B^+ \rightarrow a_2^+ K^{*0}$ branching ratio could be as large as the $B^+ \rightarrow a_1^+ K^{*0}$ and vary the $B^+ \rightarrow a_1^+ K^{*0}$ from 0 to 19 events.

The uncertainty from the polarization is obtained by varying f_L within errors found in studies where f_L was allowed to vary in the fit. Uncertainties in our knowledge of the tracking efficiency include 0.3% per track in the B candidate. The uncertainties in the efficiency from the event selection are below 0.6%. We determine the systematic uncertainty on the determination of the integrated luminosity to be 1.1%. All systematic uncertainties on the branching fraction are summarized in Table 2.

5 RESULTS

We obtain as a preliminary result for the product of branching fractions:

$$\mathcal{B}(B^+ \rightarrow a_1^+ K^{*0}) \times \mathcal{B}(a_1^+ \rightarrow \pi^+\pi^-\pi^+) = (0.7^{+0.5+0.7}_{-0.4-0.7}) \times 10^{-6},$$
Table 2: Summary of systematic uncertainties of the determination of the $B^+ \rightarrow a_1^+K^{*0}$ branching fraction.

Source of systematic uncertainty	Additive errors (events)	Multiplicative errors (%)
$b \rightarrow c B\bar{B}$ background	6	1.2
Charmless $B\bar{B}$ background	12	1.1
$B^+ \rightarrow a_1^+K^{*0}$ background	14	0.6
a_1 meson parametrization	4	3.3
PDF parametrization	3	1.4
Variation on f_L	2	1.0
ML Fit Bias	14	
Total additive (events)	26	
Total multiplicative (%)		4.1
Total systematic error $[B(10^{-6})]$		± 0.7

corresponding to an upper limit of 1.6×10^{-6}.

Assuming $B(a_1^\pm(1260) \rightarrow \pi^+\pi^-\pi^\pm)$ is equal to $B(a_1^\pm(1260) \rightarrow \pi^\pm\pi^-\pi^0)$, and that $B(a_1^\pm(1260) \rightarrow 3\pi)$ is equal to 100%, we obtain:

$$B(B^+ \rightarrow a_1^+K^{*0}) = (1.5_{-0.9}^{+1.0+1.4}) \times 10^{-6},$$

corresponding to an upper limit of 3.3×10^{-6}. The first error quoted is statistical and the second systematic. Since the signal significance is 0.9 standard deviations, we quote a 90% confidence level upper limit.

The upper limit from this measurement is, on the one hand, in agreement with the prediction from naïve factorization [7], and on the other hand, significantly lower than the QCD factorization estimation [6], though not inconsistent with it.

6 ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the
Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educación y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation.
Figure 1: Distributions for signal-enhanced subsets (see text) of the data projected onto the fit observables for the decay $B^+ \rightarrow a_1^+ K^{*0}$: (a) m_{ES}, (b) ΔE, (c) F, (d) $m(\rho\pi)$ for the a_1 candidate, (e) $m(K\pi)$ for the K^* candidate, (f) H_{K^*} and (g) H_{a_1}. The solid lines represent the results of the fit, and the dot-dashed and dashed lines the signal and background contributions, respectively. These plots are made with cuts on the ratio of signal to total likelihood. With respect to the nominal fit 19% to 46% (depending on the variable) of signal events remain.
References

[1] BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 97, 051802 (2006); Phys. Rev. Lett. 99, 261801 (2007).

[2] BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 100, 051803 (2008).

[3] BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 99, 241803 (2007).

[4] Charge-conjugate reactions are implied.

[5] W. T. Ford, for the BaBar Collaboration, presented at FPCP, Taipei, Taiwan (2008).

[6] H. Cheng and K. Yang, arXiv:0805.0329v1 (2008).

[7] G. Calderón, J. H. Múnoz, and C. E. Vera, Phys. Rev. D 76, 094019 (2007).

[8] BaBar Collaboration (B. Aubert et al.), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).

[9] The BaBar detector Monte Carlo simulation is based on GEANT4 [S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003)] and EvtGen [D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001)].

[10] Particle Data Group: Y.-M. Yao et al., J. Phys. G33, 1 (2006) and 2007 partial update for the 2008 edition.

[11] A. de Rújula, J. Ellis, E. G. Floratos and M. K. Gaillard, Nucl. Phys. B 138, 387 (1978).

[12] R. A. Fisher, Annals Eugen. 7, 179 (1936).

[13] M.J. Oreglia, Ph.D Thesis, SLAC-236(1980), Appendix D; J.E. Gaiser, Ph.D Thesis, SLAC-255(1982), Appendix F and T. Skwarnicki, Ph.D Thesis, DESY F31-86-02(1986), Appendix E.

[14] BaBar Collaboration (B. Aubert et al.), Phys. Rev. D 70, 032006 (2004).

[15] A. Datta Phys. Rev. D 77, 114025 (2008).