Research Paper

Protective Effects of Co-Treatment With Hydroethanolic Extract of Origanum Vulgare on Gentamicin-Induced Renal Toxicity in Rats

Saeed Hajihashemi, Razieh Rajabi, Atefeh Ghasabadi Farahani

1. Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.

ABSTRACT

Objective: Renal toxicity and ototoxicity are considered as the main side effects of aminoglycoside antibiotics, such as gentamicin. The present study aimed to investigate the effect of co-treatment by origanum vulgare extract on the gentamicin-induced renal toxicity.

Method: Adult male Wistar rats in the weight range of 200 to 250 grams were randomly assigned into four groups (n = 8): Control, renal toxicity (with the intraperitoneal injection of gentamicin [100 mg/kg/day], for eight days), co-treatment with OV extract and gentamicin vehicle (with the intraperitoneal injection of normal saline and OV extract gavage [40 mg/kg], for eight days), co-treatment with OV ethanolic extract (with the intraperitoneal injection of gentamicin [100 mg/kg/day] and OV extract gavage [40 mg/kg]), for eight days. The amount of urea, creatinine, sodium, potassium, and osmolality were measured in the plasma and urine samples. The left kidney was used for the histological study and the right kidney was used to measure MDA and FRAP.

Results: Treatment with OV ethanolic extract significantly decreased the blood concentrations of creatinine, urea, the absolute excretion of sodium, the fractional excretion of sodium and potassium, and MDA, compared with the renal toxicity group. Besides, co-treatment with ethanolic extract of origanum vulgare significantly increased creatinine clearance, urinary osmolality, and FRAP, compared with the renal toxicity group.

Conclusion: The oral co-treatment with ethanolic extract of origanum vulgare has a protective effect on gentamicin-induced renal toxicity. This effect can be induced by reducing the oxidative stress caused by free radicals and reducing the amount of lipid peroxidation caused by gentamicin.

Key words: Co-treatment, Gentamicin, Nephrotoxicity, Origanum vulgare

Extended Abstract

1. Introduction

Renal toxicity and ototoxicity are considered as the main side effects of the gentamicin [1]. These side effects are associated with the production of Reactive Oxygen Species (ROS). During gentamicin-induced renal toxicity, the tubular epithelial cell necrosis and glomerular damages create ROS. The ROS leads to the contraction of glomerular mesenchymal cells, increases renal vascular resistance, and reduces renal blood flow and glomerular filtration [1]. Thus, the selective aggregation of gentamicin in renal tissues damages various types of cells [2].

Origanum Vulgare (OV) from the mint family is a medicinal plant; the leaves and flower branches of this plant...
are used medicinally. OV includes several pharmaceutically active compounds, such as linalool, thymol, carvacrol, myrcene, caryophyllene, tannin, glycoside, saponin, and rosaniline acetate [6, 7]. The terpenes compounds of OV, like carvacrol acetate and thymol, have significantly decreased the ROS and nitrogen oxide levels [10]. Moreover, the phenolic compounds of OV have protective effects against ROS and strengthen the body’s antioxidant system [13, 14]. Considering the antioxidant properties of the hydroethanolic extract of OV, the present study aimed to investigate the effect of co-treatment by OV extract on the gentamicin-induced renal toxicity.

2. Materials and Methods

This experimental study was conducted on a sample of 32 adult male Wistar rats with a weight range of 200 to 250 grams. The rats were assigned into four groups: Control, gentamicin, OV + normal saline, OV + gentamicin. The control group received no treatment. The gentamicin (100 mg/kg) was intraperitoneally injected to the rats of the gentamicin group, for eight days. Animals in the OV + normal saline group daily received the gavage of hydroethanolic extract of OV (40 mg/kg) and normal saline (0.5 ml), for eight days. Furthermore, the OV + gentamicin group received the gavage of hydroethanolic extract of OV (40 mg/kg) and intraperitoneal injection of gentamicin (100 mg/kg). On the ninth day of the experiment, the urine samples were collected, also, the blood pressure was measured from the Caudal artery. Next, the blood sampling was conducted from the abdominal aorta of the animals.

The blood samples were tested for Creatinine (Cr), Blood Urea Nitrogen (BUN), and the sodium and potassium concentrations. Also, the osmolality was measured in blood and urine samples. The observed values were used to Calculate Creatinine Clearance (CCR), absolute excretion of sodium (UNaVo) and potassium (UKVo), and fractional excretion of sodium (FENA) and potassium (FEK) using the suggested equations [17]. On the other hand, the kidneys were delivered to the pathology laboratory; the left and right kidneys were used to determine the tissue damage and measure Malondialdehyde (MDA) with FRAP test, respectively.

The one-way analysis of variance and Tukey test were performed to compare the treatment results’ differences, in SPSS-21. Also, the histological results were analyzed with the Kruskal Wallis and Dunnett tests. The P-value of lower than 0.05 was considered as a significant result in the analysis.

3. Results

Gentamicin treatment increased the levels of Cr, BUN, FENA, FEK, UNaVo, and MDA, also, it reduced the CCR level and the FRAP value of the renal tissue (antioxidant power), and had no significant effect on UKVo. However, OV extract co-treatment decreased the levels of Cr, BUN, FENA, FEK, UNaVo, and MDA, also, it increased the CCR level, the FRAP value, and had no significant effect on UKVo (Table 1). Thus, gentamicin treatment caused renal toxicity. However, the systolic blood pressure did

Table 1. The statistics of the measured and calculated variables in the study sample

Parameters	Mean±SD	Groups	%FEK	%FENa	UNaVo (mmol/min/kg)	UNaVo (mmol/min/kg)	CCR (ml/min/kg)	Crp (mg/dl)	BUN (mg/dl)	Osmolu (mOsm/kg H2O)
Control			56.33±3.56	0.61±02.0	2.66±0.12	1.07±0.05	1.35±0.05	0.48±0.07	23.17±0.45	283±19.44
Gentamicin			150.13±35.9	7.62±53.0	2.42±32.0	3.57±20.0	0.19±07.0	2.91±13.0	99.67±41.1	295.60±74.30
OV + normal saline			66.50±25.4	0.64±06.0	2.75±35.0	1.18±08.0	1.52±05.0	0.48±05.0	20.45±75.0	285.55±50.33
OV + gentamicin			60.25±40.6	0.92±04.0	2.71±08.0	1.35±15.0	1.45±04.0	0.63±04.0	31.05±88.0	289.1±15.33

FEK: Fractional Excretion of Potassium; FENA: Fractional Excretion of Sodium; UNaVo: Absolute Excretion of Sodium; CCR: Creatinine Clearance; Crp: Plasma Concentration of Creatinine; BUN: Blood Urea Nitrogen; Osmolu, Urine Osmolarity;

*P<0.01; **P<0.001; comparing with the control group; ***P<0.01; ****P<0.001; comparing with the gentamicin group
not differ between the rats with renal toxicity and those without gentamicin treatment.

Histological investigation results showed that gentamicin caused severe kidney tissue damage in the renal toxicity group, compared with the control group. The main observed damages include tubular necrosis, increase in the urinary space of the Bowman’s capsule, vacuolation, formation of protein templates, reduction in the number of red blood cells of the glomeruli, and tubular obstruction. Again, the OV extract co-treatment mostly protected the kidney tissue against the observed damages (Table 2).

4. Discussion

In the present study, gentamicin increased the plasma levels of Cr and BUN, also, it reduced the clearance. However, OV extract co-treatment prevented the gentamicin-induced renal toxicity in rats. Also, the result showed that the parameters of oxidative stress and renal excretory function significantly differ between the control and gentamicin groups. Previous studies have shown that phenolic compounds reduce the plasma and urine levels of Cr because these compounds neutralize free radicals resulted from the gentamicin treatment. Thus, the phenolic compounds of hydroethanolic extract of OV can affect the development of renal toxicity due to a simultaneous gentamicin treatment [26, 27]. Besides, our results indicated that the antioxidant compounds of the OV extract can reduce the excretion of sodium and potassium; this occurs owing to the reduction of free radicals and oxidative stress by OV extract [31].

OV extract co-treatment prevented tissue damage in rats with gentamicin-induced renal toxicity. The hydroxyl group in the phenolic compounds of OV extract has regenerative properties and can trap free radicals. Also, the co-treatment with OV extract in rats receiving gentamicin decreased the amount of MDA in kidney tissue and increased the FRAP value. Previous studies have also reported that co-treatment with hydroethanolic extract of OV reduces the oxidative stress and has a protective effect on kidney tissue [25, 26].

5. Conclusion

The findings of this study showed that the antioxidant, anti-inflammatory, and vasodilatory properties of co-treatment with hydroethanolic extract of OV protects rats against gentamicin-induced renal damage. Further studies are needed to identify the active components of the ethanolic extract of OV, investigate the mechanism of their effect on the kidneys, and compare the effects of these compounds. Thus, OV extract could be recommended as a medicinal plant to prevent the renal toxicity of gentamicin.

Ethical Considerations

Compliance with ethical guidelines

The present study was confirmed by the Ethics Committee of the Arak University of Medical Sciences (Ethics Code, IR.ARAKMU.REC.1394284).

Funding

This study is the result of a research project approved by the Student Research Committee of Arak University of Medical Sciences.

Authors' contributions

Conceptualization, methodology, validation, and data analysis: Saeed Hajihashemi; Conducting research and

Table 2. The observed damages in the study sample

Parameters	Tubular Necrosis	Formation of Protein Templates	Tubular Obstruction	Vacuolation	Total Tubular Damage	Reduction of Red Blood Cells in Glomeruli	Increase in the Space of the Bowman Capsule	Total Glomeruli Damage
Control	0	0	0	0	0	0	0	0
Gentamicin	4 *	3 **	3 ***	4 *	4 ***	3 *	4 *	4 *
OV normal saline	0 *	0 *	0 *	0 *	0 ***	0 *	0 *	0 *
OV gentamicin	1 *	1 *	1 *	1 *	2 ***	1 *	1 *	1 *

*P<0.001: Comparing with the control group; †P<0.001: Comparing with the gentamicin group.
experiments, collecting data, and reviewing the sources of drafting, Razieh Rajabi and Atefeh Ghiasabadi Farahani.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Vice-Chancellor for Research and Information Technology of Arak University of Medical Sciences for their financial support.
آثار حفاظتی درمان هیپرمنیا عصاره اتانولی گیاه مرزنجوش بر سمیت کلیوی جنتامایسین در رت

سعید حاجی‌هاشمی*، راضیه رجبی، عاطله غیاث آبادی‌فرامنی

1 گروه ویژنلور، مهندسی پزشکی، دانشگاه علوم پزشکی اراک، اراک، ایران.

اطلاعات مقاله:
تاریخ دریافت: 23 اسفند 1398
تاریخ پذیرش: 18 خرداد 1399
تاریخ انتشار: 13 شهریور 1399

مقدمه
جنتامایسین یکی از آنتی‌بیوتیک‌های آمینوگلیکوزیدی است که به علت طیف گسترده اثرات ضد باکتریایی، فعالیت سریع، پایدار بودن ساختمان شیمیایی و ارزان بودن درمان عفونت‌های مخصوصاً علیه باکتری‌های گرم منفی همچنان استفاده می‌شود. سمیت کلیوی و سمیت شنوایی از عوارض جانبی آنتی‌بیوتیک‌های آمینوگلیکوزیدی مانند جنتامایسین است. در این مطالعه اثرات درمان هم‌زمان عصاره اتانولی گیاه مرزنجوش به صورت خوراکی روی سمیت کلیوی حاصل از جنتامایسین بررسی شد.

روش‌ها
موش‌های محققی برای انتخاب از نوع و بزرگی (Wistar) در مناطقی از ۱۰۰ تا ۲۵۰ گرم به صورت تصادفی به ۲۰۰ تا ۲۵۰ گرم با عصاره اتانولی گیاه مرزنجوش به صورت داخل صفاقی و هم‌زمان عصاره اتانولی گیاه مرزنجوش به ۱۰۰ گرم با عصاره اتانولی گیاه مرزنجوش به صورت داخل صفاقی و هم‌زمان عصاره اتانولی گیاه مرزنجوش به ۱۰۰ گرم با عصاره اتانولی گیاه مرزنجوش به صورت داخل صفاقی و هم‌زمان عصاره اتانولی گیاه مرزنجوش به ۱۰۰ گرم با عصاره اتانولی گیاه مرزنجوش به صورت داخل صفاقی و هم‌زمان عصاره اتانولی گیاه مرزنجOSH به صورت داخل صفاقی و هم‌زمان عصاره اتانولی گیاه مرзنا

غیاث آبادی فراهانی، راضیه رجبی، سعید حاجی‌هاشمی*
این گیاه مصرف درمانی طولانی تاریخی دارد. تاکنون ترکیبات فعال درمانی در این گیاه شناسی و استخراج شیمیایی که می‌تواند فعال‌شود، شامل کاروتئین‌ها و هیستامین‌ها و ترکیبات ترنشیپلیاورا به نحوی را بگیرید [8] و ارجاع مهم‌ترین این ترکیبات سیاه‌چال‌های سمی‌زوری زوج، کرک‌آمیز، کاربوئید، کانی، مخاط، اسکلس و چرب از این گیاه است. از ظرفیت ترمیم و درمان‌زده این گیاه استفاده می‌شود. در طب سنتی، مزج‌چربی به عنوان یکی از درمان‌های فیزیکی، مصرف آن، و اثرات آن در جنین و پیوستگی کندن کرک‌آمیز دارد. [8]. تحقیقات بالینی نشان داده که مزج‌چربی با ضعف درخشش خوشه‌های انگشتین را کاهش می‌دهد. تحقیقات انجام شده در این زمینه، همچنین اشاره کرده‌اند که با تاثیر بهبود در دسترسی درمان‌زده، این گیاه مصرف درمانی طولانی تاریخی دارد.

مطالعات قبلی اثبات کلیه، تجمع مروبی، بهبود قند خون، و کاهش از بین بردن پیشگیری از بیماری‌های انسانی. از مطالعات قبلی، اثبات کلیه، تجمع مروبی، بهبود قند خون، و کاهش از بین بردن پیشگیری از بیماری‌های انسانی. از مطالعات قبلی، اثبات کلیه، تجمع مروبی، بهبود قند خون، و کاهش از بین بردن پیشگیری از بیماری‌های انسانی. از مطالعات قبلی، اثبات کلیه، تجمع مروبی، بهبود قند خون، و کاهش از بین بردن پیشگیری از بیماری‌های انسانی. از مطالعات قبلی، اثبات کلیه، تجمع مروبی، بهبود قند خون، و کاهش از بین بردن پیشگیری از بیماری‌های انسانی.
پزشکی‌ها بایستی از استفاده از دستگاه‌های عصب‌سنجی تاکید کنند. با استفاده از دستگاه اسپکتروفتومتر (UV) مقدار جذب نوری در طول موج 532 نانومتر اندازه گیری شد. میزان جذب نوری در طول موج 532 نانومتر اندازه گیری می‌شود.[15]...

FRAP

با استفاده از ترکیب آنتی‌اکسیدان‌های متعدد، میزان آنتی‌اکسیدانی در طول مدت در ناحیه تیو باربیتوریک (TBA) اندازه گیری شد. میزان جذب نوری در طول موج 532 نانومتر اندازه گیری می‌شود.[15]...

FRAP
کراتینین، کلیوئید و نیتروژن اوره از پارامترهایی که برای مشخص کردن هیپورتکسی در موش‌های آزمایشگاهی مورد استفاده قرار می‌گیرند می‌باشند.

آنتی‌بیوتیک‌های مختلفی مانند کلینیکامیکس، کلینیریک، باکتریستاتیک و پلی‌پلاستیک را در مقایسه با گروه کنترل در بررسی درمان موش‌های دچار هیپورتکسی مورد استفاده قرار گرفته‌اند.

این آزمایش‌ها با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

این آزمایش‌ها با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروه کلینیریک 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروه باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروگو گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروگو کلایمیریکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروگو باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروگو گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروگو کلایمیریکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروگو باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروگو گروه کلینیکامیکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروه با دریافت گروگو کلایمیریکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن و گروه با دریافت گروگو باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.

با استفاده از چهار گروه 12 موش شامل گروه کنترل، گروه با دریافت گروگو گروگو گروه کلایمیریکس 3 میلیلیتر در دقیقه بر کیلوگرم وزن، گروگو با دریافت گروگو باکتریستاتیک 3 میلیلیتر در دقیقه بر کیلوگرم وزن انجام شد.
در موش های با سمیت کلیوی، جنتامایسین دفع ادراری
پتاسیم (UNaVo) را به صورت معنی‌داری در مقایسه با گروه با سمیت
میکرو مول برمیلی لیتر) را به طور معنی‌داری نسبت به گروه کنترل
(پریل) (AVONA) (کلیوی) گذشته، فاکتور های تاثیرگذار بر سمیت کلیوی، جنتامایسین و
در مقایسه با گروه کنترل. نتایج به صورت میانگین ± انحراف معیار در گروه هاست.

پارامترها	گروه سمیت کلیوی	گروه جنتامایسین	گروه کنترل
فراکنش پتاسیم	0.01/0.01/0.01	0.01/0.01/0.01	0.01/0.01/0.01
نحوه ادراری کلیوی	++	++	++
آسیب کلیوی	++	++	++
آسیب گلولیوئیدر	++	++	++
آسیب کلیوی، جنتامایسین	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر، اسپیتین	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر، اسپیتین، کپسول، مزگر	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر، اسپیتین، کپسول، مزگر، ژانسیمین	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر، اسپیتین، کپسول، مزگر، ژانسیمین	++	++	++
آسیب کلیوی، جنتامایسین، گلولیوئیدر، اسپیتین، کپسول، مزگر، ژانسیمین	++	++	++
با توجه به این آزمون‌ها، جنتامایسین در مقایسه با گروه کنترل به طور معنی‌داری نسبت به گروه سمیت کلیوی با جنتامایسین شد. در بافت کلیه نسبت به گروه سمیت کلیوی با جنتامایسین به صورت معنی‌داری افزایش داد. در موش‌های مصرف کننده جنتامایسین، GH و GL در طی ۶ روز تجویز همزمان جنتامایسین و سمت جنتامایسین فراتر از GH و GL رفته بودند. در موش‌های مصرف کننده جنتامایسین، GH و GL در طی ۶ روز تجویز همزمان جنتامایسین و سمت جنتامایسین فراتر از GH و GL رفته بودند. در موش‌های مصرف کننده جنتامایسین، GH و GL در طی ۶ روز تجویز همزمان جنتامایسین و سمت جنتامایسین فراتر از GH و GL رفته بودند. در موش‌های مصرف کننده جنتامایسین، GH و GL در طی ۶ روز تجویز همزمان جنتامایسین و سمت جنتامایسین فراتر از GH و GL رفته بودند. در موش‌های مصرف کننده جنتامایسین، GH و GL در طی ۶ روز تجویز همزمان جنتامایسین و سمت جنتامایسین فراتر از GH و GL رفته بودند.
بازیابی یافته‌های گروه‌های صحرایی نر در گروه کنترل و جنامایسین و گروه درمان‌شده با عصاره اتانولی مرزنجوش.
کلیه میزان دفع ادراری آن‌ها شد. همانند تحقیقات دیگر، کاهش غلظت کراتینین و بی‌درمانی آن را نشان می‌دهد که در این مطالعه نیز مشاهده شده‌است. کاهش غلظت کراتینین و افزایش میزان فیلتراسیون گلومرولی، کاهش بی‌درمانی آن در گروه‌های کنترل و دریافت‌کننده جنامایسین مشاهده شد.

RBC	BS	N	C	D	V	
لب	گلمرول	گلومرول	نکروز	واکوئل	دانه‌های کپسول بومن	تعداد گلبول‌های قرمز
صورت	عصاره اتانولی مرزنجوش	غلظت کراتینین	کاهش	ایجاد قالب‌های پروتئینی	کاهش	افزایش
پس از	درمان	درمان	درمان	درمان	درمان	درمان
یافته‌های این بررسی نشان داد که درمان هم‌زمان با عصاره اتانولی مرزنجوش باعث افزایش کلیرنس کراتینین و کاهش توجه به اثرات آنتی اکسیدانی و به دام‌انداختن رادیکال‌های آزادی و کاهش غلظت پلاسمای اوره و سلول‌های مزانژیال گلومرولی سبب کاهش فیلتراسیون گلومرولی و سمیت کلیوی سبب افزایش معنی‌دار در غلظت پلاسمایی کراتینین و اوره شد.

نتایج این مطالعه همانند مطالعات قبلی نشان داده که جنتامایسین با ایجاد هم‌زمان با عصاره اتانولی مرزنجوش در موش‌های دریافت‌کننده جنتامایسین از ایجاد گلوپازی، استرس اکسیداتیو، التهاب و افزایش پراکسیداسیون لیپیدی سبب شد که ترکیبات موجود در عصاره اتانولی مرزنجوش به دلیل اثرات آنتی اکسیدانی و انتخاب استرس کاهش اوره مانند جنتامایسین به دلیل اثرات آنتی اکسیدانی و انتخاب استرس جنتامایسین در موش‌های دریافت‌کننده جنتامایسین اثرات ضد حفاظتی دارند و نفوذ گلبول‌های سفید در بافت بین‌نانتی در کلیه را افزایش می‌دهد. این نتایج نشان داده که جنتامایسین با ایجاد هم‌زمان با عصاره اتانولی مرزنجوش باعث جلوگیری از آسیب بافتی جنتامایسین، تأمین دفع ادراری سدیم و پتاسیم و نیز افزایش کلیرنس کراتینین می‌شود.

در این مطالعه همانند مطالعات قبلی نشان داده که جنتامایسین با ایجاد هم‌زمان با عصاره اتانولی مرزنجوش باعث کاهش کلیرنس کراتینین در موش‌های دریافت‌کننده جنتامایسین شده است که می‌تواند به دلیل اثرات آنتی اکسیدانی و انتخاب استرس کاهش اوره و کاهش غلظت پلاسمای اوره سبب افزایش کلیرنس کراتینین باعث کاهش فیلتراسیون گلومرولی و سمیت کلیوی سبب افزایش معنی‌دار در غلظت پلاسمایی کراتینین و اوره شود.

نتایج این مطالعه همانند مطالعات قبلی نشان داده که جنتامایسین با ایجاد هم‌زمان با عصاره اتانولی مرزنجوش باعث کاهش کلیرنس کراتینین در موش‌های دریافت‌کننده جنتامایسین شده است که می‌تواند به دلیل اثرات آنتی اکسیدانی و انتخاب استرس کاهش اوره و کاهش غلظت پلاسمای اوره سبب افزایش کلیرنس کراتینین باعث کاهش فیلتراسیون گلومرولی و سمیت کلیوی سبب افزایش معنی‌دار در غلظت پلاسمایی کراتینین و اوره شود.
مرزنجوش با خواص آنتی اکسیدانی، ضدالتهابی و متسع کننده رگی خود، کلیه موش‌های صحرایی را در برابر آسیب کلیوی حاصل از جنگل‌سازی محفوظت می‌کند. با انجام مطالعات بیشتر و شناسایی ماهی با معد مؤثر موجود در عصاره اتانولی مرزنجوش و بررسی مکانیسم اثر انگیز بر کلیه و مقایسه اثرات این ترکیبات با روش‌های رایج در درمان می‌توان آن را به عنوان یک خوراکی گیاهی برای جلوگیری از سمیت کلیوی جنگل‌سازی توصیه کرد.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهشی

این مطالعه در کمیته اخلاق پژوهشی دانشگاه علوم پزشکی اراک با کد اخلاقی داشته‌گاه علم پزشکی اراک با کد اخلاقی D.ARAKMU. با حیوانات آزمایشگاهی رعایت شد (کد اخلاقی کد اخلاقی)

حامی مالی

این پژوهش حاصل طرح تحقیقاتی مصوب کمیته تحقیقاتی طلبه‌جویی دانشگاه علوم پزشکی اراک است.

مشارکت‌نوسانگان

مفهوم سازی و روش‌شناسی و اعتبارسنجی و آنالیز و تحلیل مفهوم‌سازی و رویکرد استاندارد و اثبات و تحلیل

تعارض منافع

بدین وسیله نویسندگان اعلام می‌کنند که هیچ گونه تضاد منافعی در خصوص پژوهش حاضر وجود ندارد.

تشکر و قدردانی

مؤلفان مراتب تشکر و قدردانی از معاونت محترم تحقیقات و فناوری اطلاعات دانشگاه علوم پزشکی اراک می‌کنند.
[28] Bae WK, Lee JU, Park JW, Bae EH, Ma SK, Kim SH, et al. Decreased expression of Na+/K+-ATPase, NHE3, NBC1, AQP1 and OAT in gentamicin-induced nephropathy. The Korean Journal of Physiology & Pharmacology. 2008; 12(6):331-6. [DOI:10.4196/kjpp.2008.12.6.331] [PMID] [PMCID]

[29] Williams PD, Trimble ME, Crespo L, Holohan PD, Freedman JC, Ross CR. Inhibition of renal Na+, K+-adenosine triphosphatase by gentamicin. Journal of Pharmacology and Experimental Therapeutics. 1984; 231(2):248-53. [PMID]

[30] Beltrán JMG, Espinosa C, Guardiola FA, Ángeles Esteban M. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata L.) leukocytes, cytotoxic, bactericidal and antioxidant activities. Fish & Shellfish Immunology. 2018; 79:1-10. [DOI:10.1016/j.fsi.2018.05.005] [PMID]

[31] Han F, Ma GQ, Yang M, Yan L, Xiong W, Shu JC, et al. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. Journal of Zhejiang University-Science B. 2017; 18(1):79-84. [DOI:10.1631/jzus.B1600377] [PMID] [PMCID]

[32] Hajihashemi S, Hamidiad Z, Rahbari A, Ghanbari F, Aghaei Motealeghi Z. Effects of Cobalamin (Vitamin B12) on gentamicin-induced nephrotoxicity in rat. Drug Research. 2017; 67(12):710-8. [DOI:10.1055/s-0043-117418] [PMID]

[33] Neugarten J, Aynedjian HS, Bank N. Role of tubular obstruction in acute renal failure due to gentamicin. Kidney International. 1983; 24:330-5. [DOI:10.1038/ki.1983.162] [PMID]