Angiogenic growth factors augment K-Cl cotransporter expression in erythroid cells via hypoxia-inducible factor-1α

Caryn S Gonsalves, Children's Hospital Medical Center
Scott Crable, Children's Hospital Medical Center
Sharat Chandra, Children's Hospital Medical Center
Wei Li, Emory University
Vijay K Kalra, University of Southern California
Clinton Joiner, Emory University

Journal Title: American Journal of Hematology
Volume: Volume 89, Number 3
Publisher: Wiley: 12 months | 2014-03, Pages 273-281
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1002/ajh.23631
Permanent URL: https://pid.emory.edu/ark:/25593/mr916

Final published version: http://dx.doi.org/10.1002/ajh.23631

Copyright information:
© 2013 Wiley Periodicals, Inc.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits making multiple copies, distribution, public display, and publicly performance, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author, copyright and license notices be kept intact. This license prohibits exercising rights for commercial purposes.

Accessed October 14, 2021 2:00 AM EDT
Angiogenic growth factors augment K–Cl cotransporter expression in erythroid cells via hypoxia-inducible factor-1α

Caryn S. Gonsalves,1,2 Scott Crable,1 Sharat Chandra,1 Wei Li,3 Vijay K. Kalra,2 and Clinton H. Joiner1,3*

The potassium chloride cotransporters (KCCs) are members of the superfamily of cation-chloride cotransporters (SCL12) and mediate the coupled, electroneutral movement of K⁺ and Cl⁻ ions across the plasma membrane. KCC proteins play important roles in the regulation of cell volume, ion homeostasis, and transepithelial ion transport [1]. Of the four mammalian members of this family [2,3], KCC1 is ubiquitously expressed [1], while KCC2 is found primarily in neuronal tissue [4]. KCC3 transcripts are abundant in the heart and kidney [5,6], and KCC4 is expressed in skeletal muscle, heart, liver, and brain [6,7]. KCC1, KCC3, and KCC4 proteins are expressed in both human and mouse RBCs, although levels are higher in reticulocytes [8]. In sickle cell disease (SCD), high KCC activity causes dehydration of reticulocytes, and higher intracellular hemoglobin concentration [9], increasing the rate of polymerization of HbSS thereby, contributing to sickling and the pathophysiology of SCD [10–12].

Clinical manifestations of SCD, include chronic hemolytic anemia, painful vascular occlusions and end-organ damage [13–15]. SCD patients and sickle mouse models exhibit increased circulatory levels of inflammatory cytokine chemokines, such as IL-8 [16] and TNF-α [17,18], as well as angiogenic factors, placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) [19]. Less is known about the regulation of KCC gene expression in RBCs. In other cells, KCC3 and KCC4 expression has been shown to be regulated by insulin-like growth factor [20,21] platelet-derived growth factor (PDGF) [22] and VEGF [5]. Because VEGF and PlGF levels are elevated in sickle cell patients when compared with normal individuals [23], we hypothesized that these angiogenic factors also regulate KCC expression in erythroid cells. To address this hypothesis, we examined the effect of VEGF and PlGF on KCC expression in the erythroblast cell line K562, using pharmacological and genetic approaches. Our findings provide evidence that angiogenic growth factor(s) regulate transcription of KCC transporters in erythroid cells via HIF-1α, independent of hypoxia.

Introduction

The potassium chloride cotransporters (KCCs) are members of the superfamily of cation-chloride cotransporters (SCL12) and mediate the coupled, electroneutral movement of K⁺ and Cl⁻ ions across the plasma membrane. KCC proteins play important roles in the regulation of cell volume, ion homeostasis, and transepithelial ion transport [1]. Of the four mammalian members of this family [2,3], KCC1 is ubiquitously expressed [1], while KCC2 is found primarily in neuronal tissue [4]. KCC3 transcripts are abundant in the heart and kidney [5,6], and KCC4 is expressed in skeletal muscle, heart, liver, and brain [6,7]. KCC1, KCC3, and KCC4 proteins are expressed in both human and mouse RBCs, although levels are higher in reticulocytes [8]. In sickle cell disease (SCD), high KCC activity causes dehydration of reticulocytes, and higher intracellular hemoglobin concentration [9], increasing the rate of polymerization of HbS thereby, contributing to sickling and the pathophysiology of SCD [10–12].

Clinical manifestations of SCD, include chronic hemolytic anemia, painful vascular occlusions and end-organ damage [13–15]. SCD patients and sickle mouse models exhibit increased circulatory levels of inflammatory cytokine chemokines, such as IL-8 [16] and TNF-α [17,18], as well as angiogenic factors, placental growth factor (PlGF) and vascular endothelial growth factor (VEGF) [19]. Less is known about the regulation of KCC gene expression in RBCs. In other cells, KCC3 and KCC4 expression has been shown to be regulated by insulin-like growth factor [20,21] platelet-derived growth factor (PDGF) [22] and VEGF [5]. Because VEGF and PlGF levels are elevated in sickle cell patients when compared with normal individuals [23], we hypothesized that these angiogenic factors also regulate KCC expression in erythroid cells. To address this hypothesis, we examined the effect of VEGF and PlGF on KCC expression in the erythroblast cell line K562, using pharmacological and genetic approaches. Our findings provide evidence that angiogenic growth factor(s) regulate transcription of KCC transporters in erythroid cells via HIF-1α, independent of hypoxia.
Methods

Cell culture and reagents

K562, a human erythroid cell line obtained from American Type Cell Culture (Manassa, WA), was cultured in RPMI 1640 medium containing 10% heat inactivated fetal bovine serum. Unless otherwise indicated, K562 cells were kept overnight in serum-free medium prior to treatment with human recombinant VEGF (250 ng/ml) or PlGF (250 ng/ml) (Peprotech, Rocky Hill, NJ), as previously described [24]. Diphenylidyloiodonium chloride (DPI), LY294002, PD98059, SP600125, rapamycin, and SB203580 were obtained from Tocris Biosciences (Ellisville, MO). R59949 (diacyl glycerol kinase inhibitor) was purchased from Calbiochem (Gibbstown, NJ). Pharmacological inhibitors were dissolved in DMSO or water as per manufacturer’s instructions. Inhibitors were used at concentrations that were deemed optimal from previous experiments and literature [25,26]. Primary antibodies for HIF-1α, β-actin, p44/42 MAP kinase, JNK, and the control siRNA were obtained from Santa Cruz Biotechnology (Santa Cruz, CA).

Luciferase reporter assays and transfections of siRNAs

Cells were transfected with 3 μg of the luciferase reporter construct, and 0.3 μg of a CMV β-galactosidase control plasmid, using the Transit LT-1 transfection reagent (Mirus, Madison, WI). Luciferase values were normalized to β-galactosidase values. Data are expressed relative to the activity of the promoter-less pGL3 basic vector. For RNAi experiments, K562 cells were transfected with 50 nM of the siRNAs or control siRNA, using the Transit LT-1 transfection reagent.

RNA extraction and real-time qRT-PCR

Total mRNA for qRT-PCR was extracted using the RNAasy micro kit (Qiagen, Valencia, CA). qRT-PCR assays for human and murine KCC mRNAs were run using TaqMan primers and probes [27]. Relative quantification (RQ) values for mRNA expression were calculated as 2−ΔΔCt [28], where ΔΔCt = (Ct target gene of treated sample − Ct GAPDH of treated sample) − (Ct target gene of control sample − Ct GAPDH of control sample).

Western blot analysis

Cells were lysed using a RIPA buffer [29]. Protein lysates were run on a 10% acrylamide gel. Membranes were stripped and re-probed with an antibody to β-actin (1:2,500) (Genscript, Piscataway, NJ), as a loading control. Bands were detected using the SuperSignal West Pico detection kit (Pierce Biotechnology, Rockford, IL). Densitometric analysis was performed using ImageJ [30].

NanoPro assay

KCC1, KCC3a, KCC3b, KCC4, and ERK protein expression were measured by the NanoPro 1000 System (Protein Simple). In brief, the K562 cells were stimulated with human VEGF (250 ng/ml) or PlGF (250 ng/ml) for 24 hr lysed in lysis buffer (ProteinSimple). The lysates were centrifuged and loaded in small capillaries with Ampholyte pre-mix G2 (ProteinSimple) and 0.5 standard ladder 3. Isoelectric focusing of proteins was performed by applying 21,000 mW for 40 min, followed by treatment with UV light to cross-link proteins to the inner capillary wall. The capillary was washed and immunoprobed for the indicated proteins. The results were analyzed using the Compass® software. Peak area was generated using a total anti-KCC antibodies [27] and ERK antibody, representing KCC1, KCC3a, KCC3b, KCC4, and ERK isoforms. Using ERK as an internal control, the amount of KCC1, KCC3a, KCC3b, and KCC4 was determined by calculating the ratio between KCC isoform peak height and ERK peak height [31,32].

Electrophoretic mobility shift assay (EMSA) for transcription factor HIF-1α binding to HRE sites

Double-stranded oligonucleotide probes (Supporting Information Table 1) corresponding to the appropriate HRE sites in the KCC3b and KCC4 promoters were biotin labeled (Pierce Biotechnology/Thermo Scientific, Rockford, IL). EMSAs were run as previously described [26]. A 50-fold excess of unlabeled probe was used to demonstrate the specificity of the interaction between the protein and DNA. In supershift assays, nuclear extracts were preincubated for 30 min with HIF-1α antibody (2 μg), prior to addition of the labeled oligonucleotide.

KCC promoter luciferase reporter constructs

For the KCC3b luciferase construct, a fragment −1,100 to +142 bp from the transcription start site was PCR amplified using the human BAC clone CTD-2262M9 (Invitrogen/Life Technologies, Grand Island, NY) as a PCR template and inserted into the pcX2 luciferase vector. The −100/ +142 bp KCC3b was amplified from the −1,100/ +142 bp KCC3b construct. The −190/ +142 bp KCC3b HRE mutants were generated utilizing the QuikChange Lightening (Stratagene/Agilent Technologies, Santa Clara, CA) mutagenesis kit. Nucleotide enumeration is based on Genbank entry BC098390.1. The −875/+12 bp KCC4 wild-type sequence was amplified using BAC clone CTD-3165K9 as a PCR template and cloned into the pcX2 luciferase vector. The −96/+12 bp KCC4 and the −65/+12 bp KCC4 wt promoter construct were generated by digesting the −875/+12 bp KCC4 wt construct, followed by religation. Mutations at the indicated HRE and SP-1 nucleotide binding sites within the −875/+12 bp and −96/+12 bp KCC4 wt vectors were generated using the Quik-change Lightening mutagenesis kit (Stratagene/Agilent Technologies, Santa Clara, CA). Nucleotide enumeration was based on Genbank entry NM_005135.2. All constructs were confirmed by DNA sequencing.

Chromatin immunoprecipitation (ChiP) assay

K562 cells in serum-free medium were treated with either VEGF (250 ng/ml) or PlGF (250 ng/ml). ChiP analysis was performed using a HIF-1α antibody (Santa Cruz Biotechnology, Santa Cruz, CA) [26]. DNA was subjected to PCR amplification for 3 cycles using the following conditions: 95°C for 45 sec, 63°C for 30 sec, 72°C for 120 sec, using primers listed in Supporting Information Table 1. The PCR products were run on a 2% agarose gel.

PlGF overexpressing mice

PlGF was overexpressed in C57Bl/6 mice by injecting an adenovirus vector encoding murine PlGF cDNA (ad-PlGF) and an analogous control adenovirus expressing GFP (ad-GFP) intravenously [33]. Mice were injected via tail-veins with either Ad-GFP or Ad-PlGF at 1 × 109 vector DNA particles/animal, and animals were bled after 5 weeks to determine plasma PlGF levels. PlGF levels were measured by ELISA (R&D Systems, Minneapolis, MN).

Sorting of murine bone marrow for various stages of erythroid maturation

Fresh bone marrow cells were isolated from the PlGF and GFP overexpressing mice, and immunostained with FITC-conjugated anti-CD44 and PE/Cy7-conjugated Ter119 antibodies (BD Biosciences, San Jose, CA) [34]. Single cell suspensions were sorted using a FACs Vantage S System with a 70 μm nozzle (BD Biosciences, San Jose, CA). Cytopsin slides were prepared by centrifugation at 500g for 5 min in a Cytopsin® 4 cytocentrifuge, and counter-stained with Wright stain to assess erythroid differentiation in the sorted samples.

Statistical analysis

Data are presented as mean ± SD. Control and VEGF or PlGF-treated samples were compared using a Student’s t test. One-way ANOVA, followed by Tukey–Kramer test was used for multiple comparisons using the Instat-2 Software (Graph Pad, San Diego, CA). P < 0.05 was considered statistically significant.

Results

VEGF and PlGF upregulate mRNA and protein expression of KCCs in erythroid cells.

Both VEGF (Fig. 1A,B and Supporting Information Fig. 1) and PlGF (Fig. 1C,D and Supporting Information Fig. 1) increased KCC mRNA and protein expression in the erythroid leukemia cell line K562. VEGF at a concentration of 250 ng/ml, as deemed optimal from previous experiments and literature [24], increased mRNA expression of the KCC1, KCC3 (both alternatively spliced forms a and b) and KCC4 isoforms, (Fig. 1A) after 8 hr of treatment. KCC protein expression of KCC1, KCC3a, KCC3b, and KCC4 was determined by calculating the ratio between KCC isoform peak height and ERK peak height [31,32].
changes in mRNA levels for these isoforms (Fig. 1D and Supporting Information Fig. 1). KCC4 protein levels were also increased by PlGF, but to a lesser degree than mRNA levels and less than those seen with VEGF treatment (Fig. 1D and Supporting Information Fig. 1). These subtle differences in mRNA and protein expression responses to VEGF and PlGF suggest that post-transcriptional mechanisms, such as regulation by microRNAs [26], may be operative. Because a robust increase in the expression of KCC3b and KCC4 mRNA and protein levels was induced by both factors, we examined the mechanism governing their expression in erythroid cells.

VEGF and PlGF-mediated KCC4 expression in erythroid cells involves VEGFR-1

PlGF binds preferentially to VEGFR-1 (Flt-1), while VEGF binds to both VEGFR-1 and VEGFR-2 (Flk-1) in a variety of cells to
mediate intracellular signaling [35]. Although the VEGFR-1 receptor is expressed in megakaryocytic precursors [36] and K562 cells [37], the expression of these receptors in primary erythroid cells has not been delineated. Therefore, we determined the expression of VEGFR-1 and VEGFR-2 in erythroid precursor cells derived from bone marrow of normal mice (Supporting Information Fig. 2), isolated on the basis of CD44 expression and cell size (forward scatter) [34]. The VEGFR-1 receptor was expressed in early erythroblasts, with declining expression as maturation of erythroblasts progressed (Supporting Information Fig. 2). The expression of VEGFR-2 was not detectable in erythroblasts.

VEGF and PlGF-mediated upregulation of KCC4 involves VEGFR-1, PI-3-kinase, MAP kinase, p38 MAP kinase, mTOR, NADPH-oxidase, and HIF-1α

To elucidate the signaling pathways involved in VEGF- and PlGF-mediated KCC4 expression, we utilized pharmacological inhibitors specific for various kinases. Pretreatment of K562 cells with a pharmacological inhibitor, SU5416 for VEGFR-1 and R-2 [38] significantly inhibited VEGF (Fig. 1E, lane 3 vs. lane 2) and PlGF-induced (Fig. 1G, lane 3 vs. lane 2) KCC4 expression, when compared with cells treated with VEGF or PlGF only. Inhibitors for PI3 kinase (LY294002), MAP kinase (PD98059), p38 MAP kinase (SB203580), and JNK (SP600125) inhibited VEGF-mediated KCC4 mRNA expression (Fig. 1E, lanes 4–7 vs. lane 2). DMSO, a solvent for inhibitors used, did not induce expression of KCC3b or KCC4 (data not shown). Significant inhibition of KCC4 mRNA levels was observed with the same inhibitors in PlGF treated cells (Fig. 1G, lanes 4–7 vs. lane 2). Mammalian target of rapamycin (mTOR) plays an important role in the PI-3 kinase/Akt pathway in VEGF-stimulated cancer cells [39]. As shown in Fig. 1F (lane 3) and Fig. 1H (lane 3) rapamycin attenuated KCC4 mRNA expression below the basal level, following treatment with either VEGF or PlGF. As reactive oxygen species (ROS), derived from nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, are also involved in VEGF- and PlGF-mediated cell signaling [40,41], we determined if these signaling pathways played a role in VEGF- and PlGF-mediated KCC3 and KCC4 expression in K562 cells. DPI, an inhibitor of NADPH-oxidase also attenuated KCC4 mRNA levels, in VEGF-treated cells (Fig. 1F, lane 4 vs. lane 2) and in PlGF-treated cells (Fig. 1H, lane 4 vs. lane 2). The transcription factor, hypoxia-inducible factor-1α (HIF-1α) has been shown to play a role in VEGF-mediated gene expression of ET-1 and PAI-1 [25,33]. We found that R59949, which reduces levels of HIF-1α by factors, such as ET-1 [26] or PlGF [44]. The treatment of K562 cells with VEGF increased levels of HIF-1α protein when compared with levels in untreated cells as determined by Western blots (Fig. 2E, lane 2 vs. lane 1). This increase in VEGF-mediated HIF-1α protein levels was inhibited to basal levels by the PI3 kinase inhibitor (LY294002) and the MAP kinase inhibitor (PD98059) (Fig. 2E, lanes 3 and 4 vs. lane 2). Moreover, SU5416, a VEGFR-1 receptor inhibitor [38] (Fig. 2E, lane 5 vs. lane 2) and R59949, a putative inhibitor of HIF-1α, also attenuated HIF-1α protein levels (Fig. 2E, lane 6). These data demonstrate that VEGF stabilizes HIF-1α protein in erythroid cells, independent of hypoxia via signaling involving VEGF-R1, PI-3 kinase, and MAP kinase.

Transcriptional activation of KCC4 mRNA expression involves selective HRE-sites and SP-1 cis-binding elements in its promoter

The HIF complex is known to modulate gene transcription by binding to promoter elements known as hypoxia response elements or HREs (RCGTG) [45]. In situO analysis of the KCC4 promoter region revealed the presence of two HREs at positions −21 to −18 bp (CCGTG) and −75 to −73 bp (ACGTT), relative to transcriptional start site (Fig. 3A). Two canonical SP-1 consensus sites are also present in the promoter at positions −44 to −35 and −64 to −56 bp. Luciferase assays of K562 cells transfected with the full length −875/+12 bp KCC4 promoter reporter construct and a truncated −96/+12 bp KCC4 promoter reporter construct yielded similar activity (Fig. 3B), indicating that the truncated promoter of KCC4 was sufficient for transcriptional activity. Further truncation of the
promoter construct to −65/−12 bp, eliminating the HRE site at position −76/−73 bp, showed reduced luciferase activity by ~75% (Fig. 3B, lane 3). These data identify the −96/+12 bp region as the minimal promoter essential for transcription of KCC4 mRNA. Next, we created mutations of the individual HRE sites, designated as HRE 1m (at −21/−18 bp) and HRE 2m (at −76/−73 bp) within the full length −875/+12 bp of KCC4 promoter. The HRE1 mutant retained full promoter activity when compared with the full length −875/+12 bp KCC4 promoter (Fig. 3C, lane 2 vs. lane 1). However, mutation of the HRE2 cis-binding site led to ~75% decrease in reporter activity (Fig. 3C, lane 3). Using the −96/+12 bp promoter construct, we also examined the role of SP-1 binding sites at positions −44 to −35 and −64 to −56 bp in transcription of KCC4 mRNA. Mutations at either of these SP-1 binding sites substantially (~90%) reduced KCC4 promoter activity, when compared with the −96/+12 bp KCC4 promoter (Fig. 3C, lanes 5 and 6 vs. lane 4) construct. Taken together, the data showed that the HRE site at −75/−73 bp (HRE2), but not the HRE site at −21/−18 bp (HRE1), and both SP-1 sites were involved in regulating KCC4 mRNA expression at basal levels.

Transcriptional activation of KCC3b mRNA expression involves HRE-sites in its promoter

In silico analysis of the KCC3b proximal promoter region showed two HRE sites at positions −9 bp to −6 bp (HRE1, ACGTG) and −49 to −46 bp (HRE2, GGCGT) relative to transcriptional start site, as depicted in Fig. 3D. K562 cells transfected with a −190/+142 bp KCC3b promoter luciferase construct showed similar levels of luciferase activity as compared to the full length −1,100/+142 bp KCC3b luciferase promoter construct (Fig. 3E, lane 2 vs. lane 1), suggesting
that the −190/+142 bp promoter region is the minimal region required for KCC3b promoter activity. Mutations within the HRE1 site at positions −9/−6 bp of the −190/+142 bp KCC3b promoter construct led to a ∼90% decrease in reporter luciferase activity, when compared with the −190/+142 bp KCC3b construct (Fig. 3E, lane 3 vs. lane 2). In addition, mutation of the HRE2 site at position −49/−46 bp reduced reporter luciferase activity by ∼80% (Fig. 3E, lane 4). Taken together, these results showed that both HRE sites within the KCC3b promoter were required for KCC3b mRNA expression at basal levels.

VEGF augments binding of HIF-1α in vitro (EMSA) and in vivo (ChIP) to the promoter regions of KCC4

In an electrophoretic mobility shift assay (EMSA), using an oligonucleotide probe spanning the HRE2 site at −76/−73 bp of the KCC4 promoter, VEGF treatment of K562 cells showed increased probe binding to nuclear extracts (Supporting Information Fig. 4A, lane 2 [1.5 ± 0.16] vs. lane 1). An oligonucleotide probe with mutations in the HRE site (Table 1) resulted in reduced binding of (Supporting Information Fig. 4A, lane 3 [0.89 ± 0.13] vs. lane 2). A 50-fold excess of the unlabeled probe competed out biotin-labeled probe binding (Supporting Information Fig. 4A, lane 4 [0.95 ± 0.13] vs. lane 2), and antibody to HIF-1α reduced binding to the wild-type oligonucleotide probe (Supporting Information Fig. 4A, lane 5 [1.09 ± 0.18] vs. lane 2).

To determine whether HIF-1α binds to the KCC4 promoter, we performed chromatin immunoprecipitation (ChIP) assays. VEGF treatment of K562 cells showed increased binding of HIF-1α to the KCC4 promoter in native chromatin (Fig. 4A, top panel) as reflected by the increase in the expected 200 bp PCR product corresponding to the KCC4 promoter region containing the HRE site at position −76/−73 bp. Immunoprecipitation with control rabbit IgG did not display any significant amplification of the expected PCR products (Fig. 4A, middle...
Amplification of the PCR products as input DNA, before immunoprecipitation with the HIF-1α antibody, was similar in both samples (Fig. 4A, bottom panel). Taken together, the data showed HIF-1α binds to native chromatin to up-regulate the KCC4 expression in vivo.

VEGF augments binding of HIF-1α in-vitro (EMSA) and in-vivo (ChIP) to the promoter regions of KCC3b

Nuclear extracts from VEGF-treated K562 cells showed increased binding to an oligonucleotide probe spanning the HRE site at −9/−6 bp (HRE1) of the KCC3b promoter (Supporting Information Fig. 4B, lane 2 [1.51 ± 0.13] vs. lane 1), as determined by EMSA. A 50-fold excess of unlabeled probe competed out HIF-1α binding in nuclear extracts (Supporting Information Fig. 4B, lane 3 [0.9 ± 0.08]). An oligonucleotide with mutations within the HRE site abrogated binding of nuclear extract (Supporting Information Fig. 4B, lane 4 [0.91 ± 0.18]). Incubation of nuclear extracts with a HIF-1α antibody also reduced binding of the HIF-1α protein to the −9/−6 bp HRE site in the KCC3b promoter (Supporting Information Fig. 4B, lane 5 [0.97 ± 0.09] vs. lane 2). The oligonucleotide probe spanning the HRE site at −49/−46 bp (HRE2) in KCC3b promoter also showed increased binding to nuclear extracts from VEGF-treated K562 cells (Supporting Information Fig. 4C, lane 2 [1.5 ± 0.04] vs. lane 1). Probe binding to the nuclear extracts of VEGF-treated cells was reduced by addition of 50-fold excess of unlabeled probe (Supporting Information Fig. 4C, lane 3 [1.0 ± 0.20]), as well as by mutation of the HRE motif (Supporting Information Fig. 4C, lane 4 [0.95 ± 0.12]), and by the addition of a HIF-1α antibody (Supporting Information Fig. 4C, lane 5 [1.17 ± 0.08]).

The results of EMSA analysis were corroborated by ChIP analysis using an HIF-1α antibody and PCR primers specific for the KCC3b promoter region encompassing both the HRE sites at −9/−6 bp (HRE1) and −49/−46 bp (HRE2) (Fig. 4B, top panel). Untreated cells showed some occupation of the promoter by HIF-1α, which was increased by VEGF treatment (Fig. 4B). Immunoprecipitation with
control rabbit IgG did not show substantial amplification of the expected PCR products (Fig. 4B, middle panel). Amplification of the PCR products, prior to immunoprecipitation with HIF-1α antibody, confirmed similar amount of input DNA, in untreated and VEGF-treated samples from K562 cells (Fig. 4B, bottom panel). Thus, both HRE sites in KCC3 promoter appear to be involved in VEGF-mediated transcription of KCC3b in vitro and in vivo.

PIGF augments binding of HIF-1α in vivo to the promoter regions of KCC4 and KCC3b

ChIP analysis of chromatin samples derived from PIGF-treated cells immunoprecipitated with HIF-1α antibody showed approximately a two-fold increase in the expected PCR product of 193 bp size, corresponding to the KCC4 promoter region spanning the HRE site at −76/−73 bp (HRE2) as compared to control, untreated cells (Fig. 4C, top panel). Immunoprecipitation of chromatin samples with normal rabbit IgG showed no amplification of the PCR product (Fig. 4C, middle panel), and loading of the input DNA was similar in both lanes (Fig. 4C, bottom panel).

ChIP analysis of the KCC3b promoter also showed approximately two-fold increase in the amplification of the expected PCR product (200 bp) spanning both HRE sites within the promoter (Fig. 4D, top panel), in PIGF-treated cells. Immunoprecipitation with a control rabbit IgG showed minimal amplification of the PCR product (Fig. 4D, middle panel), and input DNA controls were comparable (Fig. 4D, bottom panel). These results indicate that HIF-1α binds to both the KCC3b and KCC4 promoter in native chromatin of K562 cells when treated with PIGF.

Overexpression of PIGF in vivo augments expression of the KCC3 and KCC4 isoforms in mouse erythroblast progenitors

In silico analysis revealed that the HRE sequences within the KCC3b and KCC4 promoters are conserved in mice and humans; thus, we examined whether PIGF regulated the expression of KCC3 and KCC4 mRNA in mouse erythrocytes in vivo. To analyze the effect of PIGF on KCC expression in vivo, we overexpressed PIGF in C57BL/6 mice by intravenous injection with an adeno-viral vector coding for PIGF, whereas the control mice received a vector encoding GFP [33]. PIGF expression was sustained, with levels in treated animals ranging from 300 to 391 pg/ml (mean = 338 ± 27 pg/ml) as compared to levels of 5–8 pg/ml (mean = 8 ± 2 pg/ml) in control GFP animals. After 4 weeks of vector injection, erythroid subpopulations at progressive stages of differentiation were isolated from the marrow of four mice overexpressing PIGF and control mice, utilizing flow cytometry and gating on Ter-119-positive erythroid cells, and sorting on the basis of CD44 staining and forward scatter [34]. Proportions of the sorted population were quantified by cytopsins; thus, confirming the progression of erythroid differentiation from population stages I–IV (Fig. 4E). The effect of PIGF overexpression on KCC mRNA levels by quantitative PCR was expressed as the ratio of KCC mRNA levels in isolated erythroid fractions derived from PIGF-mice to that of the GFP-injected mice. As shown in Fig. 4E, the KCC4 mRNA levels were significantly increased in polychromatophilic and orthochromatic erythroblasts (stage III), as well as in reticulocytes (stage IV), but not in earlier precursors (proerythroblast and basophilic erythroblasts) (stage I) and basophilic and polychromatophilic erythroblasts (stage II) in PIGF-overexpressing mice. KCC3 mRNA, which is the principle KCC species in mouse erythroblasts [27] was increased ~2.5-fold only in population III containing polychromatophilic and orthochromatic normoblasts (Fig. 4E). The expression of KCC1 was not changed significantly in any of the erythroblast populations. These data showed that elevation of PIGF levels in vivo resulted in increased expression of KCC3 and KCC4 mRNAs in erythroid precursors in mid to late phases of erythroid differentiation.

Discussion

In this study, we provide evidence that VEGF and PIGF increase the transcription of KCC genes in erythrocytes via hypoxia-independent stabilization of HIF-1α protein. VEGFR-1 was expressed in erythrosis K562 cells and early erythroid precursors in vivo. VEGFR-1 blockade significantly reduced VEGF and PIGF stimulation of KCC expression in K562 cells. The stimulatory patterns of KCC expression in VEGF and PIGF were subtly different: both increased message levels for KCC1, KCC3b, and KCC4, but only VEGF also increased KCC3a mRNA levels. Protein levels of KCC1, KCC3b, and KCC4 were increased in K562 cells by both VEGF and PIGF. Using pharmacologic approaches confirmed by RNA interference, we showed that the canonical PI-3 kinase pathways activated by VEGFR-1, involving p38 MAP kinase, NADPH-oxidase, mTOR, and JNK kinase, was responsible for VEGF/PIGF upregulation of KCC expression. VEGF and PIGF stabilized HIF-1α levels in K562 cells [25,33], and manipulation of HIF-1α modulated VEGF stimulation of KCC expression. The cis-acting regulatory elements (hypoxia responsive elements or HREs) which mediate HIF-1α transcriptional regulation [46] were present at multiple sites in the promoter regions of the all three KCC genes. Detailed analysis of the KCC3b and KCC4 promoters demonstrated functional activity of several of these HREs, as well as the binding motifs for SP-1 transcription factor. In vitro and in vivo binding of HIF-1α to HRE sites was augmented by VEGF and PIGF as demonstrated by EMSA and ChIP assays. Finally, in mice induced to overexpress PIGF, KCC expression in erythroid precursors was upregulated compared to cells from control mice. These data constitute a consistent and compelling body of evidence to support the notion that the angiogenic factors, VEGF and PIGF, acting through VEGF-R1 upregulate transcription of KCC transporters in erythroid cells via a HIF-1α-dependent, hypoxia-independent mechanism.

Our findings corroborate and extend previous studies on the transcriptional regulation of KCC genes by factors such as insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF) [5,20,22]. Both, IGF-1 and PDGF signal through receptors linked to PI-3 kinase and its downstream regulators to increase HIF-1α levels [47]. VEGF and PIGF-mediated signaling through VEGFR-R-1 has been shown to result in hypoxia-independent activation of HIF-1α and in HIF-1α-dependent increase of several other genes in different cell types [24,44]. PIGF and VEGF are elaborated from erythroid precursors, but not by other hematopoietic cells [48–50]. Under conditions of erythroid hyperplasia, such as SCD and other hemolytic anemia, levels of VEGF and PIGF are high in plasma [19,49,50]. The pathophysiological importance of the elevation of these angiogenic growth factors is accentuated by findings that cytokinomines (e.g. IL-1α, IL-8, MCP-1, and MIP-1β) are elevated in the plasma of sickle cell patients and are upregulated by PIGF treatment of normal cells [16–18,51]. These findings support a central role of angiogenic factors in driving the proinflammatory and procoagulant vasculopathy that characterizes SCD.

The production of VEGF/PIGF by erythroblasts and the regulation of gene expression of KCC and perhaps other HIF-1α-dependent genes in these cells represents an autocrine/paracrine phenomenon that could be magnified by erythropoietic stress in SCD and other hemolytic conditions. It remains to be determined whether perturbations of KCC expression by elevated levels of VEGF/PIGF in SCD result in altered KCC protein content and/or function in sickle reticulocytes that could explain the dysregulation of the volume regulatory behavior of the KCC system in these cells. Based on our findings, it is conceivable that erythroid differentiation under high VEGF/PIGF stimulation could result in cells with altered contents or ratios of KCC proteins. Indeed, we have demonstrated that the ratio of KCC1...
protein to KCC3 is higher in SS RBC membranes than AA RBC [27].

The present study illuminates novel mechanisms of transcriptional regulation of KCC proteins in erythroid cells, and their alteration by the abnormal cytokine milieu in SCID. Our findings raise the possibility that altering or interfering with the angiogenic cytokines, VEGF and PlGF, and their downstream effectors might not only mitigate the proinflammatory and procoagulant state of SCID but also improve the functional behavior of sickle red blood cells.

References

1. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 2005;85:423–493.
2. Lauf PK. Adragnia NC: K–Cl cotransporter: Properties and molecular mechanism. Cell Physiol Biochem 2000;10:341–354.
3. Monty DB, Gamba G. Renal potassium–chloride cotransporters. Curr Opin Nephrol Hypertens 2001;10:685–691.
4. Payne JA, Stevenson TJ, Donaldson LE. Cloning and expression of a human-specific K–Cl cotransporter in rat brain. Soc Neurosci Abstr 1996;22:732.
5. Hiki K, D’Andrea RJ, Furze J, et al. Cloning, characterization, and chromosomal location of a novel human K–Cl cotransporter. J Biol Chem 1999;274:10661–10667.
6. Mount DB, Mercado A, Song LY, et al. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 1999;274:16355–16362.
7. Boettger T, Hubner CA, Maier H, et al. Deafness and renal tubular acidosis in mice lacking the K–Cl cotransporter KCC4. Nature 2002;416:874–878.
8. Crable SC, Hammond SM, Papes R, et al. Multiple isoforms of the KCl cotransporter are expressed in sickle and normal erythrocytes. Exp Hematol 2005;33:624–631.
9. Quarnmyne M, Risinger M, Linkugel A, Frazier A, Joiner, C. Defining a phenotype for red cell volume in the megabasement potassium chloride cotransporter. Blood Cells Mol Dis 2011;47:95–99.
10. Brugnara C. Sickle cell disease: From membrane phenotype to therapy: biomechanics and prevention of erythrocyte dehydration. J Pediatr Hematol Oncol 2003;25(12):927–933.
11. Nagel RL, Fabry ME, Steinberg MH (Eds), Raven Press, New York 1994. p. 311.
12. Hiki K, D’Andrea RJ, Furze J, et al. Cloning, characterization, and chromosomal location of a novel human K–Cl cotransporter. J Biol Chem 1999;274:10661–10667.
13. Nagel RL, Fabry ME, Steinberg MH. The pathophysiology to novel therapies for prevention of hemolysis and inflammation. Blood 2000;96:2451–2459.
14. Embury SH, Hebbel RP, Mohandas N, et al. Pathogenesis of vaso-occlusion. In: Sickle Cell Pathogenesis of vaso-occlusion. In: Sickle Cell Disease: Rates and Risk-Factors. New Engl J Med 1991;325:11–16.
15. Nagel RL, Fabry ME, Steinberg MH (Eds), Raven Press, New York 1994. p. 311.
16.ENDOTHELIN-1 REACTIVATES THE SICKLE RED BLOOD CELL
17. Acknowledgment

The author thanks Punam Malik (Cincinnati Children’s Hospital Medical Center) for kindly providing PlGF-overexpressing mice. CSG was a Sickle Cell Research Scholar.

Author Contributions

C.H.J. was the principal investigator and takes responsibility for the paper. C.S.G., S.C., S.C., and W.L. performed the experiments. C.S.G., C.H.J., and V.K. analyzed data and wrote the paper.

References

1. Amendola RM, Cappelli R, Gamba G. Characterization of a human K–Cl cotransport system. J Biol Chem 1999;274:10661–10667.
2. Mount DB, Mercado A, Song LY, et al. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 1999;274:16355–16362.
3. Boettger T, Hubner CA, Maier H, et al. Deafness and renal tubular acidosis in mice lacking the K–Cl cotransporter KCC4. Nature 2002;416:874–878.
4. Crable SC, Hammond SM, Papes R, et al. Multiple isoforms of the KCI cotransporter are expressed in sickle and normal erythrocytes. Exp Hematol 2005;33:624–631.
5. Quarnmyne M, Risinger M, Linkugel A, Frazier A, Joiner, C. Defining a phenotype for red cell volume in the megabasement potassium chloride cotransporter. Blood Cells Mol Dis 2011;47:95–99.
6. Brugnara C. Sickle cell disease: From membrane phenotype to therapy: biomechanics and prevention of erythrocyte dehydration. J Pediatr Hematol Oncol 2003;25(12):927–933.
7. Nagel RL, Fabry ME, Steinberg MH. The pathophysiology to novel therapies for prevention of hemolysis and inflammation. Blood 2000;96:2451–2459.
8. Endothelin-1 reactivates the sickle red blood cell.