Abstract

The accumulation of damaged and aggregated proteins is a hallmark of aging and increased proteotoxic stress. To limit the toxicity of damaged and aggregated proteins and to ensure that the damage is not inherited by succeeding cell generations, a system of spatial quality control operates to sequester damaged/aggregated proteins into inclusions at specific protective sites. Such spatial sequestration and asymmetric segregation of damaged proteins have emerged as key processes required for cellular rejuvenation. In this review, we summarize findings on the nature of the different quality control sites identified in yeast, on genetic determinants required for spatial quality control, and on how aggregates are recognized depending on the stress generating them. We also briefly compare the yeast system to spatial quality control in other organisms. The data accumulated demonstrate that spatial quality control involves factors beyond the canonical quality control factors, such as chaperones and proteases, and opens up new venues in approaching how proteotoxicity might be mitigated, or delayed, upon aging.

Keywords aging; asymmetric division; protein aggregates; protein quality control; vesicle trafficking; spatial quality control

DOI 10.15252/embr.201643458 | Received 30 September 2016 | Revised 19 December 2016 | Accepted 24 January 2017 | Published online 13 February 2017

EMBO Reports (2017) 18: 377–391

Introduction

Proteins are responsible for cellular structure, function, and regulation. The maintenance of protein homeostasis, or proteostasis, is therefore crucial for survival, and cells have evolved an intricate system of temporal protein quality control (PQC) that ensures proper production, renewal, and function of the proteome [1–3]. The chaperones of the temporal PQC system govern the de novo folding of nascent polypeptides and the refolding of proteins that have lost their tertiary structure. Chaperones also promote, together with proteases, the degradation of proteins that cannot be refolded [4,5]. Removing misfolded proteins from the cell is a crucial process, and if this fails, misfolded proteins can accumulate in differently sized aggregates and larger inclusions [6,7]. Such aggregated proteins (or oligomers on their path to aggregates) are harmful, not only due to the loss of function of the non-native proteins, but perhaps mostly due to toxic gain of function through interaction with, and impeding of, essential processes [8,9]. The importance of proteostasis is exemplified by the many diseases that are associated with protein misfolding and aggregation such as cystic fibrosis, amyotrophic lateral sclerosis (ALS), Alzheimer’s and Parkinson’s disease, where proteins of aberrant structure interfere with cellular function and eventually cause cell death [3,10,11].

The cellular PQC system is continuously at work to maintain low levels of protein damage; however, the system is imperfect in the sense that it is tuned for optimal reproduction success and not for long-term survival [12,13]. Thus, accumulation of protein damage appears inevitable during aging. To cope with the accumulation of damaged and aggregated proteins, cells have, in addition to temporal PQC, developed a second line of defense where oligomers and aggregated proteins are sequestered into large inclusions at certain protective locations within the cell [14–17]. This process of spatial PQC harnesses the toxicity of misfolded proteins, oligomers, and aggregates, and can aid in their subsequent clearance [18–20]. Spatial sequestration also facilitates the asymmetric segregation of damaged proteins that occurs during cell division, which enables an old progenitor cell to produce a pristine daughter cell harboring a “rejuvenated” proteome [13,21].

Protein misfolding and aggregate formation

The process of protein folding is driven by the hydrophobic effect, where hydrophobic regions of the polypeptide chain are buried on the inside creating a specific three-dimensional structure referred to as the native form [2,22,23]. If the native form of a protein is disrupted and hydrophobic regions of the polypeptide exposed, the protein becomes misfolded and dysfunctional, and can accumulate in high molecular weight aggregates [10,24]. Mutations along with translational and transcriptional errors are intrinsic factors that promote protein misfolding and aggregation [25]. Some proteins, rich in glutamine and asparagine residues, form highly organized aggregates called amyloids, whereas other proteins form less
Aggregate recognition by the PQC system

Several classes of chaperones are involved in the recognition and elimination of protein aggregates. Small heat shock proteins (sHsps), referred to as holdases or aggregates, bind misfolded proteins and concentrate them in stable aggregates to prevent further interactions. Co-chaperones of the J-protein family (Hsp40) are also early participants in the aggregate recognition process: They bind unfolded regions of proteins as well as recruit and stimulate the ATPase activity of heat shock protein 70 (Hsp70). Hsp70 chaperones have protein-folding capacities (foldases), are important for disaggregation, and aid in protein degradation by the ubiquitin proteasome system (UPS). Disaggregation does in some organisms also involve Hsp100 proteins such as the yeast Hsp104, which requires the assistance of Hsp70 and Hsp40.

Interestingly, the specific set of chaperones recruited to a protein aggregate is dependent on the type of proteotoxic stress. In yeast, heat-induced aggregates are recognized by the cooperation of sHsps (Hsp26/42), Hsp40, Hsp70, and Hsp104. Aggregates formed by hydrogen peroxide (H₂O₂) are similarly recognized by the sHsps, but in contrast to heat-induced aggregates, the recruitment of Hsp70/Hsp104 requires the peroxiredoxin (Prx) Tsa1. Prxs are peroxide scavengers that undergo a functional shift to chaperones upon increased intracellular levels of H₂O₂. This shift is mediated by the sulfhydration of a peroxidatic cysteine on Tsa1 and is reversed by the sulfiredoxin Srx1. The major cytosolic Hsp40, Ydj1, is required for efficient resolution of aggregates formed under heat stress, but is dispensable for aggregate resolution during H₂O₂ stress (Fig 1). This could be explained by the fact that some Hsp40 chaperones such as yeast Ydj1 and human Hdj2 are inactivated during oxidative stress, by oxidation of their cysteine-rich zinc finger domains. Clearance of peroxide-induced aggregates is instead aided by Srx1-dependent reduction in sulfonlated Tsa1, and the essential Hsp40, Sis1, which lack the oxidation prone zinc finger domain. Although Tsa1 localizes also to heat-induced aggregates, it is not required for the formation or elimination of these types of aggregates, establishing Tsa1/Srx1 as PQC factors required specifically under oxidative stress.

The different chaperone requirements during heat and peroxide stress indicate that the contents or structure of aggregates formed during these conditions might be different. The distinct dynamics of aggregate movements observed under heat stress and H₂O₂ exposure support this notion; Tsa1-associated aggregates formed under heat stress are mostly stationary, whereas the aggregates in H₂O₂-treated cells are significantly more mobile.

Distinct cellular sites for quality control

To study the process of aggregation in yeast and other systems, researchers have used different types of fluorescent misfolding substrates (Table 1). Upon heat stress and/or impairment of the PQC system, the temperature sensitive allele of the SUMO-conjugating enzyme Ubc9 (Ubc9ts), the unassembled von Hippel–Lindau tumor suppressor (VHL), and the thermo labile luciferase all misfold and accumulate at multiple sites, called stress foci, CytoQs, or juxtanuclear quality control (JUNQ) sites. Prxs are peroxide scavengers that undergo a functional shift to chaperones upon increased intracellular levels of H₂O₂. This shift is mediated by the sulfhydration of a peroxidatic cysteine on Tsa1 and is reversed by the sulfiredoxin Srx1. The major cytosolic Hsp40, Ydj1, is required for efficient resolution of aggregates formed under heat stress, but is dispensable for aggregate resolution during H₂O₂ stress (Fig 1). This could be explained by the fact that some Hsp40 chaperones such as yeast Ydj1 and human Hdj2 are inactivated during oxidative stress, by oxidation of their cysteine-rich zinc finger domains. Clearance of peroxide-induced aggregates is instead aided by Srx1-dependent reduction in sulfonlated Tsa1, and the essential Hsp40, Sis1, which lack the oxidation prone zinc finger domain. Although Tsa1 localizes also to heat-induced aggregates, it is not required for the formation or elimination of these types of aggregates, establishing Tsa1/Srx1 as PQC factors required specifically under oxidative stress.
highly dynamic in the sense that its misfolded proteins are rapidly exchanging with the cytosol [16]. This rapid turnover is not seen in the IPOD, which exhibits almost no dynamic exchange with the surrounding cytosol, and was therefore originally thought to harbor terminally insoluble proteins [16,17].

The energy dependence of inclusion formation is explained by the fact that many PQC factors, for example, the major Hsp70s (Ssa1 and Ssa2) along with the nucleotide exchange factor Sse1 and the Hsp40 co-chaperone Ydj1, need ATP for their function [42,45,46] (Fig 2). Inclusion formation in yeast also requires the disaggregase Hsp104 and its ATPase activity, through an unknown mechanism [47,48]. One explanation for such ATP dependence could be that Hsp104 acts indirectly by modulation of the actin cytoskeleton [49], which has been shown to be involved in proper formation of inclusions (see sections below). In addition, the stress-induced Hsp90, Hsp82, is important for inclusion formation, whereas its constitutively expressed homologue Hsc82 is not [42].

In yeast, misfolded cytosolic protein aggregates are also observed inside the nuclear membrane and it was suggested that this quality control site should be labeled the intranuclear quality control site (INQ) [43]. Moreover, the intranuclear site seems to occupy a specific location within the nucleus, in close proximity to the nucleolus [43,45,46]. INQ formation is induced also during genotoxic stress, and several INQ-specific proteins have been identified during this stress, including proteins for chromatin remodeling and cell cycle control [50]. However, as the same model substrates have been used in defining both JUNQ and INQ in studies during proteotoxic stress, it is difficult to make a clear distinction between the two sites. Thus, we henceforth refer to them collectively as JUNQ/INQ.

JUNQ/INQ appears to form first upon stress, whereas the IPOD forms later and remains longer upon the relief of proteostatic stress [16,45,47]. This observation, and the fact that JUNQ/INQ is a highly dynamic structure enriched for proteasomes (see section on spatial sorting factors below), could be an indication that the juxtanuclear site is the preferred control site for misfolded proteins, and that substrates are only directed toward the IPOD when JUNQ/INQ is overcrowded or overwhelmed [15]. In this scenario, misfolded proteins that fail to be degraded at JUNQ/INQ could be re-routed to

Figure 1. Differential PQC strategies during heat shock and oxidative stress. In yeast, sHsps, Hsp40/Hsp70, and Hsp104 are sequentially recruited to denatured and misfolded proteins as well as to protein aggregates. The misfolded proteins can become refolded, degraded, or aggregated. Heat-induced aggregates are disaggregated by the action of Hsp70 and Hsp104 together with the Hsp40 protein Ydj1, which binds to aggregates and enables refolding or degradation of the extracted misfolded protein species (left). Upon H$_2$O$_2$ exposure, Tsa1 is sulfinylated and recruited to misfolded proteins and protein aggregates along with Hsp70 and Hsp104 (right). Proteins misfolded upon oxidative stress can be degraded or refolded in a manner supposedly similar to the pathway for heat-denatured proteins. However, disaggregation of H$_2$O$_2$-induced aggregates depends on the core Hsp70/Hsp104 machinery together with the Hsp40 Sis1, while the heat-related Ydj1 is not required. Furthermore, disaggregation upon oxidative stress is facilitated by Srx1-dependent reduction in sulfinylated Tsa1. As for heat stress, these disaggregated proteins can either be refolded or degraded.
IPOD, which would require some kind of trafficking between JUNQ/INQ and IPOD. Whether such trafficking occurs is presently unknown. Another possibility is that misfolded proteins are sorted into JUNQ/INQ and IPOD based on their structural and physical properties and that proteins are sorted to IPOD as a protective measure, in other words, to protect functional, or partially functional, misfolded proteins from degradation (see below).

Once the spatial PQC system of the yeast cell has redirected aggregated proteins to inclusions, the clearance of these inclusions requires the disaggregase activity of Hsp104 together with the activity of Hsp70s and co-chaperones [17,47] (Fig 1). The cytosolic Hsp40 Ydj1 is essential for the refolding of misfolded and aggregated substrates, whereas this process is independent of the related Hsp40 Sis1 [42,51]. This relationship between the cytosolic Hsp40s is explained by a competitive binding of substrates, where binding by Ydj1 directs the substrate for cycles of refolding, whereas binding by Sis1 targets the substrate for degradation [52]. The clearance of inclusions is independent of the sorting factor Hsp42 [42], while the sorting factors Hsp82 and Sti1 affect both spatial targeting as well as degradation [16,42] (see section below on spatial sorting factors). Clearance of inclusions also requires an intact cortical ER and a functional UPS system, along with proteins for required for deubiquitination [42,46].

Although the perivacular IPOD site persists for a longer period after stress, this inclusion is eventually cleared upon returning cells to non-stress conditions. This clearance was shown to be dependent on the disaggregase Hsp104, suggesting that proteins within IPOD are not terminally misfolded [17,43].

It should be noted that spatial compartmentalization of protein aggregates is not a secondary strategy or “backup plan”, but is

Table 1. Misfolding substrates used to study spatial PQC.
Substrate

VHL
Ubc9/1
Luciferase
Act1-E364K
Rnq1
Ure2
Sup35
Htt103Q
Htt97Q
Gnd1/1
AssCPY*
GFP-DegAB
Guk1-7

Localization of studied aggregation substrates to known quality control sites.

Spatial quality control in stress and aging

Sandra Malmgren Hill et al

EMBO reports Vol 18 No 3 | 2017 © 2017 The Authors

Figure 2. Sorting factors involved in the sequestration of protein aggregates toward quality control sites.

Misfolded and aggregated proteins are recognized by the yeast chaperone machinery: Hsp70s, Hsp40s (Ydj1 & Sis1), the Hsp90 Hsp82, and the disaggregase Hsp104. These chaperones are important for sequestering aggregated proteins into quality control sites: the juxtanuclear JUNQ, intranuclear INQ, and the perivacuolar IPOD sites. Aggregates bound by Btn2 and Sis1 are distributed toward JUNQ and/or INQ. The availability of Sis1 in the cytosol is regulated through competitive binding by Cur1, which translocates a fraction of the cytosolic Sis1 pool into the nucleus, making it unavailable for Btn2 binding. Inside the nucleus Btn2 acts as an aggregate, directing aggregated proteins into the intranuclear INQ inclusion. Btn2 also interacts with the small heat shock protein Hsp42 that is necessary for binding and targeting aggregates to the IPOD. Inclusion formation requires the actin cytoskeleton and vesicle trafficking, which is regulated by the vacuolar adaptor Vac17 and the motor protein Myo2. Amyloidogenic proteins, such as Htt103QP, are sequestered to the IPOD in a pathway independent of Hsp42 and require Sis1 and the E3 ligase Ltn1. This pathway also depends on Myo2-associated vesicle trafficking, but does not require Vac17. The IPOD formed by amyloids might therefore be distinct from that formed by amorphous aggregates; however, the formation of amyloid IPODs has been shown to influence the formation and dynamics of amorphous inclusions in an up till now undefined manner. See text for more details.
rather a complementary control strategy that acts in parallel with temporal quality control. While inclusion formation is not essential for degradation, it may facilitate refolding/degradation by increasing the proximity of chaperones and their substrates [42,53]. Furthermore, the sequestration of misfolded proteins into inclusions decreases the exposed surface area and limits potential toxic interactions that could interfere with cellular functions.

In addition, it has been suggested that inclusion formation is a way not only to sequester damage but also to protect the proteome during times of stress [54]. Studies using rapid and severe heat stress in yeast (46°C 8 min) demonstrated that entire protein complexes could be segregated into aggregates, and yet their function completely restored upon stress relief [54]. It is possible that during spatial quality control, when aggregates are merged into larger inclusions at specific sites, some proteins that were part of the initial aggregates/stress foci are extracted and returned to their normal function. The process of temporarily sequestering functional components is seen also during stress granule formation, where mRNA and ribosomes are aggregated to initiate a global stall of translation [55]. Interestingly, stress granules are formed on preexisting protein aggregates, evidently linking the two sequestration pathways [56]. However, the possible functional contribution of stress granule formation in aggregate inclusion formation and spatial quality control is yet to be determined.

Spatial sorting factors and mechanisms of inclusion formation

As all of the non-amyloid substrates of spatial PQC localize to both IPOD and JUNQ/INQ, it does not seem to be the protein as such that determines its PQC destination. Rather, it is more likely that the spatial sorting is a result of the degree of misfolding, aggregate state/structure, and the types of protein motifs that are exposed for recognition by certain sorting factors [17] (Table 2; Fig 2).

Based on the enrichment of proteasomes at JUNQ/INQ and the rapid exchange between JUNQ/INQ and its surroundings [16], it was suggested that localization of misfolded proteins to this site could be linked to recognition by the UPS; that is, the ubiquitination status of a protein might act as a potential sorting signal. Initial studies showed that blocking ubiquitination decreased the ratio of misfolded proteins that were targeted to JUNQ, whereas addition of an ubiquitin tag to the IPOD-exclusive substrate Rnq1 could partially redirect it to JUNQ [16]. In line with this, ubiquitination was proven essential for the sequestration of proteasomal substrates in cells with limited chaperone function [51]. While these data pointed toward protein ubiquitination as a possible sorting signal, later studies failed to demonstrate site-specific immunostaining of ubiquitin, and showed that the misfolded substrate Gnd1 is still localized to both JUNQ and IPOD sites even when two major E3 ubiquitin ligases are deleted [43]. Thus, while ubiquitination could be important in certain cellular contexts [51], there might be additional features of the misfolded proteins that enable their interaction with certain sorting factors and direct them to discrete quality control sites.

The small heat shock protein Hsp42 has been identified as a major sorting factor in yeast and is involved exclusively in sorting aggregated proteins into an inclusion at the peripheral IPOD. Consequently, deletion of this gene causes the majority of misfolded proteins to be redirected toward the JUNQ/INQ [17,43,57]. The prion-like N-terminal domain of Hsp42 is essential for its localization to aggregates and the formation of IPOD [17]. As deletion of Hsp42 does not completely abolish IPOD formation, there may be additional sorting factors involved in the formation of this quality control site, and it also remains to be elucidated whether the IPOD formed by amorphous aggregates corresponds to a different inclusion site than that formed by amyloids. In addition, the exact localization of the IPOD needs further clarification. The IPOD is localized to the vacuolar membrane, close to the pre-autophagosomal structure (PAS) [15,16,47]; however, the process of autophagy is not needed for IPOD formation or its dissociation [16,42,58]. This could indicate that IPOD formation is restricted to a certain site at the vacuolar membrane, directed, and tethered by factors that are yet to be identified (see below).

For sequestration of proteins toward the nuclear control sites, the v-SNARE binding protein Btn2, and to a lesser extent its paralog Cur1, have been implicated to function as sorting factors [57] (Fig 2). The Hsp40 co-chaperone Sis1 and Hsp42 compete for binding to Btn2, where Btn2 either directs Sis1 to the nucleus or accompanies Hsp42 toward the IPOD site [50,57]. When in the nucleus, Btn2 functions as an aggregate, promoting coalescence of misfolded proteins into an inclusion [43]. Cur1 appears located exclusively to the nuclear inclusion site together with Sis1 and could regulate the balance of sorting between JUNQ/INQ and IPOD by affecting the amount of Sis1 available in the cytosol for interaction with Btn2 [57]. In agreement with this, overproduction of Cur1 redirects

Table 2. Spatial sorting factors and chaperones involved in spatial PQC.

Factor	JUNQ/INQ	IPOD	Regulates inclusion formation	References
Hsp104	x	x	+++	[16,17,42–45,47]
Ssa1/2	x	x	+++	[42,46,57]
Sse1	nd	nd	+++	[42]
Ydj1	nd	nd	+++	[42,45]
Sst1	nd	nd	+ (JUNQ/INQ)	[16,43]
Sis1	x	x	+ (JUNQ/INQ)	[57,72]
Hsp42	x	+ (IPOD)		[17,42,43,57,72]
Hsp82	nd	nd	+	[42]
Mca1	x	x	–	[45,72]
Btn2	x	x	+++ (JUNQ/INQ)	[43,57,72]
Cur1	x	+		[57]
Vac17	nd	nd	+	[63]
Hsp26	x	x	–	[17,42]
Tsa1	x	x	–	[38]
Ltn1	x	+ (IPOD)		[69]

Localization of studied sorting factors and chaperones to quality control sites and the dependence on their presence for proper inclusion formation. Major determinants of spatial sorting denoted with +++, less important factors +, and factors displaying only a minor role in sorting are denoted with +. Chaperones and aggregate-associated factors that do not affect spatial sorting are denoted with –. nd, localization in respect to quality control sites has not been determined.
cytosolic Sis1 to the nucleus and causes misfolded proteins to be partially diverted to the cell periphery [57], and limiting cellular levels of Sis1 results in a similar phenotype [43]. Further, supporting the importance of available cytosolic Sis1 in spatial sorting of PQC substrates, co-expression of prions or amyloid-forming proteins have been demonstrated to sequester Sis1 from the cytosol and thereby inhibiting import of cytosolic substrates into the nucleus for their degradation [52]. The role of Sis1 in spatial quality control might, however, be partly indirect as it also affects the load of misfolded proteins by regulating ubiquitination and degradation [51,59].

As outlined above, JUNQ/INQ formation during proteotoxic stress requires Btn2 but is independent of Hsp42. However, during genotoxic stress intranuclear site formation depends on both Btn2 and Hsp42 [50]. As Hsp42-dependent protein sorting has only been investigated in the context of IPOD formation during proteotoxic stress, the mechanism underlying its involvement in INQ formation during genotoxic stress is unclear.

Another protein associated with the formation of JUNQ/INQ is the Hsp90 co-chaperone Sti1. Although not essential for JUNQ/INQ formation, deletion of STI1 dramatically impedes the transport of misfolded proteins into nuclear deposits and multiple cytosolic aggregates are formed [16,43]. However, JUNQ/INQ formation is not affected when STI1 is deleted in an hsp42A background, where the majority of misfolded proteins are routed to the nuclear inclusion [43]. Thus, the defect in spatial quality control observed in Sti1-deficient cells might be indirect and linked to an elevation in the levels of misfolded and ubiquitinated proteins in such cells as Sti1 regulates the ATPase activity of both Hsp70s and Hsp90s [60,61]. Sti1 has also been implied in the formation of peripheral inclusions of amyloidogenic proteins, but whether this is due to a direct or indirect function remains to be elucidated [62].

Some misfolded proteins require a functional actin cytoskeleton and/or transport along the cortical ER to reach their quality control site in addition to appropriate sorting factors [16,17,42]. Furthermore, the Hsp104 disaggregate interacts with components of the endosomal trafficking pathway, and this association is even more pronounced upon heat treatment [63]. Additionally, the deletion of genes required for endosomal vesicle trafficking and vesicle fusion to the vacuole severely impairs inclusion formation, whereas over-expression of proteins that accelerated vesicle movement also accelerated inclusion formation [45]. These data highlight the involvement of vesicle trafficking and inter-organelle communication in spatial PQC [42,44,47,63], and based on these reports, the dependence on the actin cytoskeleton for IPOD formation might be the result of hetero- and homotypic fusion to the vacuole, which requires actin and actin-remodeling proteins [64].

Interestingly, the deposition of beta-sheet containing amyloids into inclusions seems to involve a somewhat different set of sorting factors and mechanisms. Amyloid-forming proteins skip the intermediate step of stress foci formation and directly form a peripheral IPOD-like inclusion [42], and in contrast to inclusion formation of amorphous aggregates, the sequestration route for amyloids is independent of Hsp42 [17,42] (Fig 2). Inclusion formation of amyloids requires the cooperation of Hsp70 together with the Hsp40 co-chaperone Sis1 [52,62,65] and is also aided by interactions with proteins rich in glutamine and asparagine [66–68]. A genome-wide screen also identified several components of the ribosome quality control complex (RQC), including the E3 ubiquitin ligase Ltn1, as being essential for inclusion formation of the amyloidogenic Huntington disease protein Htt103QP [69] (Fig 2). Similar to amorphous aggregates, Htt103QP amyloids interact with the actin cytoskeleton [69,70], and mutations that reduce actin cable formation and/or actin integrity renders the Htt103QP cytotoxic [71].

Myo2-mediated vesicle transport has been implicated in the inclusion formation of both amorphous aggregates and amyloids [58]. However, the sequestration of amorphous aggregates depends on Myo2 interacting with the vacuolar adaptor protein Vac17, whereas Vac17 is not required for the spatial control of amyloidogenic proteins [63]. Instead, it was suggested that amyloids might be delivered to the perivacuolar control site via vesicles along the cytoplasm-to-vacuole targeting (CVT) pathway [58]. However, a direct interaction between aggregated proteins and functional vesicles has not yet been demonstrated.

Furthermore, protein aggregates were shown to localize in the proximity of lipid droplets, and the sterol-composition of lipid droplets regulates the rate of inclusion clearance [72]. It is therefore possible that sterols could act as chemical chaperones, aiding in dissolving and clearing aggregate inclusions. Another possibility is that fusion of lipid droplets to the vacuolar membrane facilitates import of IPOD-residing misfolded proteins into the vacuole, such that they can be degraded by vacuolar proteases. However, further studies are required to investigate the exact involvement of quality control sites and spatial PQC in damage removal.

Protein aggregation during cellular aging

Protein aggregates accumulate with time in several model organisms and are considered a hallmark of aging. This age-related accumulation of damaged proteins may be a combined effect of increased levels of damaging agents together with a decreased capacity of the PQC system to remove damage. Supporting this is the fact that ROS levels and oxidatively damaged proteins increase with age in many organisms [73,74]. Furthermore, the capacity of the UPS and vacuole-mediated autophagy declines with age leading to an age-associated decay in PQC [75,76]. The connection between PQC, protein damage, and longevity is demonstrated by studies showing that deletion of major chaperones, ROS scavengers, or proteasome subunits leads to an increased load of non-native proteins and protein aggregates, and reduces replicative life span in yeast [46,77–79]. Conversely, increasing the activity of PQC components mitigates the accumulation of protein aggregates in aged cells and extends life span [38,45,77,79].

As many studies of protein aggregation have been performed using various immediate stresses as the cause of aggregation, much of the features of protein aggregates formed progressively through cell generations upon replicative aging remain elusive. There is however data demonstrating that age-associated aggregates engage some of the same PQC proteins as stress-induced aggregates. Peroxiredoxin Tsa1 is for example required for recognition of aggregates in aged yeast cells in a manner similar to aggregates formed under H2O2 exposure, and elevated levels of Tsa1 counteract accumulation of age-induced protein aggregation and extend life span [38]. Together with the fact that ROS and oxidatively damaged proteins increase with age it is reasonable to assume that H2O2 is
Spatial PQC in aging cells

The aggregated proteins that accumulate in aging cells are sequenced into inclusions, however the similarities between these inclusions and the quality control sites that are formed upon stress-induced protein aggregation are still unclear. Cells in early stages of aging are found with an Hsp70-containing juxta/intranuclear inclusion, similar to the stress-induced JUNQ/INQ [46]. However, age-induced inclusions are devoid of the JUNQ/INQ factor Btn2 and have also been shown to colocalize with the IPOD-residing Rnq1 [45,85]. A recent study suggested that age-induced inclusions are neither JUNQ nor IPOD, and that they instead represent another distinct form of quality control site [85]. It should be noted that the definitions of the quality control sites are ambiguous, especially for the peripheral IPOD inclusion: Initial studies used amyloid as IPOD markers, but later findings, as mentioned above, revealed that these substrates are sequestered to a peripheral site by a specific, Hsp42-independent route, different from that exploited by amorphous aggregates [17]. Thus, it is not clear that the peripheral inclusion formed by amyloids and by non-amyloidogenic proteins corresponds to the exact same site of quality control. It might be that when amyloids are expressed in cellular systems to function as an IPOD marker, the presence of these aggregate structures affects the routing of stress-induced protein aggregates. In line with this, it was observed that the dynamics of aggregate formation and fusion was altered in the presence of the amyloidogenic HttQ97 [42]. Another study also showed that induction of Rnq1 expression in old cells already harboring inclusions, caused the disaggregase Hsp104 (and possibly other factors) to relocate from the existing inclusion toward the newly formed amyloid-inclusion [85]. These data indicate that there could be at least two different types of IPODs/peripheral inclusions: one being Hsp42-dependent and one being Hsp42-independent, and that the presence of either affects the formation and regulation of the other (Fig 2).

Deletion of Hsp42 reduces the fraction of aged cells displaying visible aggregate inclusions [85]. As deletion of Hsp42 results in no obvious fitness defect and even extends replicative life span [17,85], this could be interpreted as inclusion formation not being important for cytoprotection during cellular senescence. Alternatively, it is possible that in hsp42Δ cells, misfolded proteins and their oligomers are rerouted toward JUNQ/INQ, which could promote and accelerate their degradation, leading to less accumulation in inclusions and an extended life span.

While the exact nature of age-induced inclusions remains unclear, a cell’s ability to form these inclusions declines with increasing age [46,69]. The reason for this age-dependent deterioration of spatial PQC is not known but may be caused by a simultaneous collapse of multiple systems [86] (Fig 3). The burden of protein damage increases with age, as a consequence of increased ROS produced by dysfunctional mitochondria, and a decline in UPS degradation [75,87]. It has also been shown that chaperones are especially prone to oxidation by ROS [36,88]. Thus, the increased load of aggregated proteins and the titration and inactivation of cellular chaperones could provide one explanation for the age-associated loss of spatial PQC [51].

Reduced efficiency in the PQC upon aging could be linked also to the functional state of organelles. A loss of vacuolar pH control has been identified as one of the early events during aging in yeast, and is the result of fewer protons being transported into the vacuole [89]. This defective pH control ultimately induces mitochondrial dysfunction and a reduced mitochondrial membrane potential, which have been shown to cause an increase in ROS production [89–91]. As fewer protons are transported into the vacuole, the proton concentration in the cytosol might be elevated which could affect protein stability. Thus, the age-related acidification of the cytosol could overwhelm the PQC system through elevated oxidation and protonation, ultimately causing a collapse of the spatial PQC. The loss of vacuolar acidification could also cause a breakdown in vesicle trafficking and fusion to the vacuole [92,93], processes that are important for spatial sequestration of aggregated proteins [58,63] (Fig 3).

The actin cytoskeleton is also affected during aging, with cells displaying a decrease in actin turnover and an accumulation of aggregated F-actin [94,95]. The disruption of a functional actin cytoskeleton affects vesicle trafficking and fusion, mitochondrial inheritance, increases ROS accumulation and could also explain the inefficient inclusion formation observed in aging cells.

Asymmetric inheritance of age-accumulated protein damage

During yeast cell division, protein damage is to a large extent retained within the aged mother cell to produce a young and immaculate daughter cell, born with a full replicative potential [96–100]. The process of damage segregation is an active and factor-dependent process [45,63,70,101]. Disrupting this segregation by deletion of asymmetry-generating genes (AGGs, see below) has a
Spatial sequestration of protein aggregates into the quality control sites (IPOD and JUNQ/INQ) within the mother cell restricts their inheritance [47,103], and sorting factors for spatial PQC such as Hsp70s, Hsp40s and Hsp104 are thus indispensable for proper damage retention. Although there are conflicting reports regarding the dependency of the actin cytoskeleton for inclusion formation [17,42,47,104], an intact actin cytoskeleton and cytoskeleton remodeling proteins are required for the selective retention of these inclusions in mother cells during cytokinesis [49,77,101,102]. Aggregated proteins are associated with actin cables, and the retrograde flow of actin, mediated by actin nucleation at the polarisome, prevents aggregates from entering the bud, and possibly also aids in inclusion formation [16,43,49,77]. The histone deacetylase Sir2 has also been implicated as an important factor for aggregate segregation, and affects this process possibly by regulating actin assembly via chaperones containing TCP-1 (CCT) [77,102].

The exact mechanism of how aggregates are linked to the actin cytoskeleton is not clear and studies have demonstrated close localization also between protein aggregates and the ER, mitochondria, vacuole and endomembrane vesicles [42,44,47,63]. These observations provide the possibility that the aggregate-actin association could be mediated by aggregates being tethered to actin-interacting organelles or vesicles. A recent genome-wide screen aiming to identify factors required for generating damage asymmetry confirmed the importance of the actin cytoskeleton in this process [63] (Fig 4; Table 3). Additionally, this study identified several AGGs related to functions in vesicle transport and vacuolar functions and showed that AGGs are enriched in functions related to endomembrane trafficking, cytoskeleton organization and cell polarity (Fig 4; Table 3) [63]. Deletion of these genes affects vesicle recruitment to actin cables, vesicle transport, and vesicle-vacuolar fusion. Mutations in genes involved in these processes also impede inclusion formation and the retention of protein aggregates during cell division [63]. On the other hand, overexpression of one of these genes, the vacuolar adaptor protein Vac17, efficiently boosted vesicle trafficking, inclusion formation, and damage asymmetry. This improved asymmetry was accompanied also by an extended replicative life span. The effect achieved by Vac17 overexpression was dependent on its binding to the actin-interacting motor protein Myo2 [63]. Interestingly, Myo2 normally transports cellular material in an anterograde transport toward the bud [105,106], and it remains to be elucidated how this motor protein affects the tethering of protein aggregates to actin cables while preventing them from entering the bud. One explanation could be that Myo2, by its interaction with Vac17 and Vac8 on vacuolar vesicles [106], brings aggregated proteins in close proximity to actin cables which impairs Myo2 motor function, allowing only passive movement of aggregates in the retrograde direction of actin cable growth. The observed results could also be explained by an indirect effect, where Vac17-Myo2 act upstream to regulate vesicle trafficking and fusion, thereby affecting the retention of protein aggregates and their sequestration to the vacuolar membrane. The rejuvenation...
occurring during meiotic division of yeast, where all spores are cleared of damage [107], could also be linked to vacuole-tethering of protein damage, as the entire vacuole is excluded from the cells during the sporulation process [108].

In addition to mechanisms that limit aggregate inheritance, cells have also evolved a process of aggregate removal so that any damage that accidentally leaks into the daughter cell is eliminated [45,70]. This removal is achieved either by disaggregation/degradation or by retrograde transport of aggregates back into the mother cell. As expected, most of the AGGs that have been studied affect both processes of aggregate retention and removal [45]. Exceptions to this rule were the Hsp70 Ssa3 together with the metacaspase Mca1 that was found to solely regulate the process of aggregate removal. The specific role of Ssa3 in aggregate removal remains unknown, while the role of Mca1 is a combination of protease-independent and protease-dependent functions. Mca1 can act as a co-chaperone and buffer against deficiencies in cytosolic Hsp40s and could possibly mediate its protease-dependent effect by pre-cleaving substrates and facilitating their subsequent removal by the proteasome [45,109,110].

Spatial quality control in higher eukaryotes

Some features of inclusion formation and damage retention that are seen in yeast are conserved also in higher eukaryotes. An inclusion

Figure 4. Asymmetry-generating genes (AGGs).

A map of the genetic landscape of a yeast cell, with genes required for the asymmetric inheritance of damaged and aggregated proteins denoted in yellow. Multiple cellular pathways are important for the generation of damage symmetry, but identified AGGs specifically cluster around functions related to protein folding, cytoskeleton organization, cell polarity, and vesicle trafficking, indicating that these cellular functions are major determinants of temporal and spatial quality control. Figure created using http://thecellmap.org. AGGs presented in this figure are also listed in Table 3.
Table 3. Asymmetry-generating genes (AGGs).

ORF	Gene name	GO biological function	References
YKL184W	SPE1	Biosynthesis	[63]
YIL122W	PGC1	Cell cycle	[63]
YNL307C	MCK1	Cell cycle	[63]
YFL003C	MSH4	Cell cycle	[63]
YDR247W	VHS1	Cell cycle	[63]
YDL127W	PCL2	Cell polarity	[63]
YNL271C	BNI1	Cell polarity	[102]
YBR200W	BEM1	Cell polarity	[102]
YIL118W	RHO3	Cell polarity	[102]
YIL021W	SPA2	Cell polarity	[49]
YKR100C	SKG1	Cell wall organization	[63]
YDL035C	GPR1	Cellular response	[63]
YCR073C	SSK22	Cellular response	[63]
YCL026C	FRM2	Cellular response	[63]
YJR066W	TOR1	Cellular response	[63]
YNL305C	BX1	Cellular response	[63]
YPL222W	FMP40	Cellular response	[63]
YHR206W	SKN7	Cellular response	[63]
YFL013C	IES1	Chromatin organization	[63]
YGL037C	PNC1	Chromatin organization	[63]
YCR082W	AHC2	Chromatin organization	[63]
YLL131C	FKH1	Chromatin organization	[63]
YDR254W	CHL4	Chromatin organization	[63]
YDR285W	ZIP1	Chromatin organization	[63]
YPL181W	CT16	Chromatin organization	[63]
YDL042C	SIR2	Chromatin organization	[96]
YLR337C	VRP1	Cytoskeleton organization	[63]
YNL298W	MSB3	Cytoskeleton organization	[63]
YLR370C	ARC18	Cytoskeleton organization	[63]
YOR014W	RTS1	Cytoskeleton organization	[63]
YCR088W	ABP1	Cytoskeleton organization	[63]
YBL007C	SLA1	Cytoskeleton organization	[63]
YIL034C	CAP2	Cytoskeleton organization	[63]
YLR319C	BUD6	Cytoskeleton organization	[63]
YCR065W	HCM1	Cytoskeleton organization	[63]
YDR273W	DON1	Cytoskeleton organization	[63]
YBR109C	CMD1	Cytoskeleton organization	[70]
YDR366W	SPC110	Cytoskeleton organization	[70]
YDR208W	MSS4	Cytoskeleton organization	[70]
YLR212C	TB4	Cytoskeleton organization	[70]
YLR319C	BUD6	Cytoskeleton organization	[102]
YCR009C	RVS161	Cytoskeleton organization	[102]
YFL039C	ACT1	Cytoskeleton organization	[102]
YMR032W	HOF1	Cytoskeleton organization	[49]
YCR092C	MSH3	DNA repair	[63]

Table 3. (continued)

ORF	Gene name	GO biological function	References
YKR067W	GPT2	Lipid metabolism	[63]
YLR404W	SE11	Lipid metabolism	[63]
YDR284C	DPP1	Lipid metabolism	[63]
YCL050C	APA1	Metabolism	[63]
YGR292W	MAL12	Metabolism	[63]
YGL062W	PYC1	Metabolism	[63]
YCR079W	PTC6	Mitochondrial process	[63]
YKL137W	CMC1	Mitochondrial process	[63]
YHR198C	AIM18	Mitochondrial process	[63]
YPL159C	PET20	Mitochondrial process	[63]
YCR083W	TRX3	Mitochondrial process	[63]
YDL119C	HEM25	Mitochondrial process	[63]
YLR091W	GEP5	Mitochondrial process	[63]
YDR256C	CTA1	Peroxisome	[63]
YBR082C	UBC4	Protein degradation	[63]
YMR119W	ASI1	Protein degradation	[63]
YFL007W	BLM10	Protein degradation	[63]
YOR197W	MCA1	Protein degradation	[45]
YDL126C	CDC48	Protein degradation	[70]
YPL240C	HSPB2	Protein folding	[63]
YAL005C	SSA1	Protein folding	[45]
YLL024C	SSA2	Protein folding	[45]
YBL075C	SSA3	Protein folding	[45]
YDL229W	SSB1	Protein folding	[45]
YNL064C	YDJ1	Protein folding	[45]
YPL240C	HSPB2	Protein folding	[45]
YLJ034W	KAR2	Protein folding	[70]
YLF045C	SEC53	Protein folding	[70]
YLL026W	HSP104	Protein folding	[77]
YGR272C	YGR272C	Ribosome assembly	[63]
YGR276C	RNH70	Ribosome assembly	[63]
YOR293W	RPS10A	Ribosome assembly	[63]
YML063W	RPS1B	Ribosome assembly	[63]
YKR060W	UTP30	Ribosome assembly	[63]
YCR077C	PAT1	RNA processing	[63]
YCR063W	BUD31	RNA processing	[63]
YGR271W	SLH1	Translation	[63]
YNL014W	HEF3	Translation	[63]
YNL086W	SNN1	Transport	[63]
YCR095W	CPR4	Transport	[59]
YOR270C	VPH1	Transport	[63]
YCR073W-A	SOL2	Transport	[63]
YNL326C	PFA3	Transport	[63]
YAL002W	VPS8	Transport	[63]
YCR067C	SED4	Transport	[63]
In addition to the cell fate determining factors, damaged essential for asymmetric inheritance and progeny rejuvenation in mammalian cell systems and sequestration of damage to this site is named the “aggresome”, accumulates close to the nucleus in S. cerevisiae [16,72,116]. Although functionally similar to the yeast JUNQ, aggrosomes are enclosed by a vimentin cage and are formed in a cell autonomous manner [16,113]. Experiments aimed at deciphering how for why the toxicity of disease-prone proteins is most pronounced in neuronal cells, as these cells rely on vesicle trafficking for appropriate synaptic function. Indeed, it has been shown that mutant Huntingtin associates with synaptic vesicles and inhibits neurotransmitter release [128].

Concluding remarks

The existence and concept of spatial PQC is a rather recent addition to the many facets of proteostasis. The existence of such spatial control became manifest with data demonstrating that damaged and aggregated proteins can be spatially retained in one cell during mitotic division [77,96] and that misfolded proteins are sequestered into specific cellular and organelle-proximal depositions sites upon their aggregation [16]. Experiments aimed at deciphering how spatial control is attained mechanistically suggest that spatial quality control requires many more factors in addition to those involved in temporal PQC. As reviewed herein, such factors include those that are involved in: (i) inter-organelle communication by endomembrane trafficking; (ii) polarity establishment; (iii) formation and dynamics of actin cytoskeleton; and (iv) aggregate sorting by, for example, Huntingtin and α-synuclein, and these amyloid aggregates interact with components of the endocytic trafficking machinery [122–126]. This interaction of aggregated proteins with the endocytic machinery could be a conserved mechanism of spatial sequestration. Thus, accumulation of misfolded disease proteins may obstruct accurate inclusion formation and instead lead to inhibition of endocytosis and toxicity [123,127]. The interaction with vesicles and the inhibition of their proper trafficking could be an explanation for why the toxicity of disease-prone proteins is most pronounced in neuronal cells, as these cells rely on vesicle trafficking for appropriate synaptic function.

Table 3. (continued)

ORF	Gene name	GO biological function	References
YEL005C	VAB2	Transport	[63]
YNL259C	ATX1	Transport	[63]
YGR254W	ENO1	Transport	[63]
YCL063W	VAC17	Transport	[63]
YKL175W	ZRT3	Transport	[63]
YCR068W	ATG15	Transport	[63]
YDL006W	PTC1	Transport	[63]
YOR106W	VAM3	Transport	[63]
YGR289C	MAL11	Transport	[63]
YER083C	GET2	Transport	[63]
YCL079W	KXO1	Transport	[63]
YL085C	KTR7	Transport	[63]
YGL020C	GET1	Transport	[63]
YLR360W	VPS58	Transport	[63]
YCR075C	ERS1	Transport	[63]
YOR291W	YPK9	Transport	[63]
YAL014C	SYN8	Transport	[63]
YBR131W	CCZ1	Transport	[63]
YCR044C	PER1	Transport	[63]
YJR033C	RAV1	Transport	[63]
YPR149W	NCE102	Transport	[63]
YJL09C	VPS53	Transport	[63]
YGL084C	GUP1	Transport	[63]
YNL275W	BOR1	Transport	[63]
YOR132W	VPS17	Transport	[63]
YPR019W	FAB1	Transport	[63]
YEL013W	VAC8	Transport	[63]
YOR326W	MYO2	Transport	[70]
YBR080C	SEC18	Transport	[70]
YLR268W	SEC22	Transport	[70]

Names and annotations for genes depicted in Fig 4 as yellow nodes. Genes that are involved in the generation of damage symmetry in yeast, where aggregated and misfolded proteins are retained in the mother cell during cell division to produce a rejuvenated progeny.
regarding the nature of spatial quality control. For example, is there exchange of substrates between, for example, IPOD and JUNQ/INQ, can there be only one IPOD or JUNQ/INQ in a cell, what is the nature of triage and targeting of misfolded substrates to these different quality sites, and are there new quality control sites to be discovered when expanding the misfolded substrates used and the conditions causing their misfolding?

It is also unclear to what extent the IPOD/JUNQ/INQ deposition sites formed during a heat shock (or other stresses) are similar to those observed in aging cells and whether the same factors are required in their formation. While protein misfolding and damage is generated in an instantaneous manner during a heat shock, such damage accumulates over generations during replicative aging, which might call for other routes and mechanisms of adaptive aging, which might sacrifice for reproduction.

References

1. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475: 324 – 332
2. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353: aac4354
3. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319: 916 – 919
4. Walter S, Buchner J (2002) Molecular chaperones–cellular machines for protein folding. Angew Chem Int Ed Engl 41: 1098 – 1113
5. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571 – 579
6. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3: R9 – R23
7. Zettlmayr G, Rudolph R, Jaenicke R (1979) Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry 18: 5567 – 5571
8. Winkhuysen KP, Tatzelt J, Haass C (2008) The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J 27: 336 – 349
9. Dobson CM (2003) Protein folding and misfolding. Nature 426: 884 – 890
10. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24: 506 – 514
11. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5: 5659
12. Kirkwood TB, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332: 15 – 24
13. Nyström T, Liu B (2014) Protein quality control in time and space – links to cellular aging. FEBS Lett 580: 40 – 48
14. Buchberger A, Bukau B, Sommer T (2011) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40: 238 – 252
15. Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11: 777 – 788
16. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454: 1088 – 1095
17. Specht S, Miller SB, Mogk A, Bukau B (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 195: 617 – 629
18. Treusch S, Cyr DM, Lindquist S (2009) Amyloid deposits: protection against toxic protein species? Cell Cycle 8: 1668 – 1674
19. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805 – 810
20. Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH (2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12: 749 – 757
21. Nyström T, Liu B (2014) The mystery of aging and rejuvenation – a budding topic. Curr Opin Microbiol 18: 61 – 67
22. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 182: 223 – 230
23. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437: 640 – 647
24. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16: 574 – 581
25. Wetzel R (1994) Mutations and off-pathway aggregation of proteins. Trends Biotechnol 12: 193 – 198
26. Landreth M, Sayawa MR, Hipp MS, Eisenberg DS, Wuthrich K, Hartl FU (2016) The formation, function and regulation of amyloids: insights from structural biology. J Intern Med 280: 164 – 176
27. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333 – 366
28. Morimoto RI, Cuervo AM (2014) Protein aggregation and the aging progero in health and disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1): S33 – S38
29. Cershnenson A, Giersch LM, Pastore A, Radford SE (2014) Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 10: 884 – 891
30. Labbadia J, Morimoto RI (2015) The biology of protein aggregation in aging and disease. Annu Rev Biochem 84: 435 – 464
31. Matthews JB, Caud FR, Garcia-Moreno B, Flanagan MA, March KL, Shire SJ (1985) pH-dependent processes in proteins. CRC Crit Rev Biochem 18: 91 – 197
32. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40: 1250 – 1258
33. Dahl JU, Gray MJ, Jakob U (2015) Protein quality control under oxidative stress conditions. J Mol Biol 427: 1549 – 1563
34. Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24: 1311 – 1317
35. Masionneuve E, Freyssie L, Lignon S, Capron L, Dukan S (2008) Carbonylated proteins are detectable only in a degradation-resistant aggregate state in Escherichia coli. J Bacteriol 190: 6609 – 6614
36. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci USA 97: 5746 – 5749
37. Haslebeck M, Franzmann T, Weinfurter D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12: 842 – 846
38. Hanzen S, Vleiss K, Yang J, Roger F, Andersson V, Zamarbide-Fores S, Andersson R, Malm L, Palais G, Btauze B et al (2016) Lifespan control by redox-dependent recruitment of chaperones to misfolded proteins. Cell 166: 140 – 151
39. Jiang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JY, Yun JW et al (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625 – 635
40. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73 – 82
41. Choi Hi, Lee SP, Kim KS, Hwang CY, Lee YR, Chae SK, Kim YS, Chae HZ, Kwon KS (2006) Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2. Free Radic Biol Med 40: 651 – 659
42. Escusa-Toret S, Vonk WI, Frydman J (2013) Spatial sequestration of misfolded proteins by a dynamic chaperone pathway secures cellular fitness during stress. Nat Cell Biol 15: 1231 – 1243
43. Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A, Mohamed MY, Guibide DL, Richter K, Lisby M, Schiebel E et al (2015) Compartment-specific aggregates direct distinct nuclear and cytoplasmic aggregate deposition. EMBO J 34: 778 – 797
44. Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A, Ross RT, McClain M, Li R (2014) Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159: 530 – 542
45. Hill SM, Hao X, Liu B, Nystrom T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344: 1389 – 1392
46. Oling D, Eisele F, Kvitk T, Nystrom T (2014) Opposing roles of Ubp3-dependent deubiquitination regulate replicative life span and heat resistance. EMBO J 33: 747 – 761
47. Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D (2012) Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2: 738 – 747
48. Lam R, Tkach JM, Vierling E, Glover J (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279: 29139 – 29146
49. Tessarz P, Schwarz M, Mogk A, Buka B (2009) The yeast AAA+ chaperone Hsp104 is a part of a network that links the actin cytoskeleton with the inheritance of damaged proteins. Mol Cell Biol 29: 3738 – 3745
50. Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, Hoffmann E, Groth A et al (2015) Cmr3p/Wdr76 defines a nuclear genotoxic stress body linking genome integrity and protein quality control. Nat Commun 6: 6533
51. Shiber A, Breuer W, Brandes M, Ravid T (2013) Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting. Mol Biol Cell 24: 2076 – 2087
52. Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hips M, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154: 134 – 145
53. Sontag EM, Vonk WI, Frydman J (2014) Sorting out the trash: the spatial nature of eukaryotic protein quality control.Curr Opin Cell Biol 26: 139 – 146
54. Wallace EW, Kear-Scott JL, Pilpenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM et al (2015) Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell 162: 1286 – 1298
55. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36: 932 – 941
56. Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Buka B (2013) Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 23: 2452 – 2462
57. Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S (2012) Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 23: 3041 – 3056
58. Kumar R, Nawroth PP, Tyedmers J (2016) Prion aggregates are recruited to the insoluble protein deposit (IPD) via myosin 2-based vesicular transport. PLoS Genet 12: e1006324
59. Summers DW, Wolfe KJ, Ren HY, Cyr DM (2013) The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubcr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One 8: e52099
60. Wegele H, Haslebeck M, Reinstein J, Buchner J (2003) Sti1 is a novel activator of the Ssa proteins. J Biol Chem 278: 25970 – 25976
61. Richter K, Mischler P, Hainzl O, Reinstein J, Buchner J (2003) Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle. J Biol Chem 278: 10328 – 10333
62. Wolfe KJ, Ren HY, Trepte P, Cyr DM (2013) The Hsp70/90 chaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 24: 3588 – 3602
63. Hill SM, Hao X, Gronvall J, Spikings-Nordby S, Widlund PO, Amen T, Jothav A, Jøsefson R, Kaganovich D, Liu B et al (2016) Asymmetric inheritance of aggregated proteins and age reset in yeast are regulated by vac17-dependent vacuolar functions. Cell Rep 16: 826 – 838

64. Eizteng W, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158: 669 – 679

65. Douglas PM, Treusch S, Ren HY, Halfmann R, Dunnwald ML, Lindquist S, Cyr DM (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci USA 105: 7206 – 7211

66. Wang Y, Merin AB, Costello CE, Sherman MY (2007) Characterization of proteins associated with polyglutamine aggregates: a novel approach towards isolation of aggregates from protein conformation disorders. PLoS One 10: e0136362

67. Ripaud L, Chumakov V, Antonin M, Salmonowicz H, Brown R, Turkowska J, Sredniawa W, Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Wear MP, Kryndushkin D, O Ripaud L, Chumakov V, Antonin M, Salmonowicz H, Brown R, Turkowska J, Sredniawa W, Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Wear MP, Kryndushkin D, O

68. Eitzen G, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158: 669 – 679

69. Peters TW, Rardin MJ, Czerwiec G, Evanis US, Reis-Rodrigues P, Lithgow GJ, Mooney SD, Gibson BW, Hughes RE (2012) Torl regulates protein solubility in Saccharomyces cerevisiae. Mol Biol Cell 23: 4679 – 4688

70. Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M et al (2015) Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161: 919 – 932

71. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8: e1000450

72. Reis-Rodrigues P, Czerwiec G, Peters TW, Evanis US, Alavez S, Caman EA, Vantipalli M, Mooney SD, Gibson BW, Lithgow GJ et al (2012) Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell 11: 120 – 127

73. Saarikangas J, Barral Y (2015) Protein aggregates are associated with replicative aging without compromising protein quality control. Elife 4: e06197

74. Dillin A, Gottschling DE, Nystrom T (2014) The good and the bad of being connected: the integrons of aging. Curr Opin Cell Biol 26: 107 – 112

75. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239 – 247

76. Dukan S, Nystrom T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274: 26027 – 26032

77. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492: 261 – 265

78. Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amido- darane-induced programmed death of yeast. J Cell Biol 168: 257 – 269

79. Machida K, Tanaka T (1999) Farnesol-induced generation of reactive oxygen species dependent on mitochondrial transmembrane potential hyperpolarization mediated by F(0)F(1)-ATPase in yeast. FEBS Lett 462: 108 – 112

80. Baars TL, Petri S, Peters C, Mayer A (2007) Role of the V-ATPase in regulation of the vacuolar fusion-fusion equilibrium. Mol Biol Cell 18: 3873 – 3882

81. Kane PM (2006) The whereto, when, and how of organelle acidification by the yeast vacuolar H+ -ATPase. Microbiol Mol Biol Rev 70: 177 – 191

82. Gourlay CW, Carpp LN, Timpson P, Winder SJ, Ayscough KR (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164: 803 – 809

83. Gourlay CW, Ayscough KR (2005) The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 5: 1193 – 1198

84. Agulianu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299: 1751 – 1753

85. Kennedy BK, Austricco NR Jr, Guarente L (1994) Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127: 1985 – 1993

86. Jazwinski SM, Egilmez NK, Chen JB (1989) Replication control and cellular life span. Exp Gerontol 24: 423 – 436
99. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183: 1751–1752
100. Shcheprova Z, Baldi S, Frei SB, Gonnet G, Barral Y (2008) A mechanism for asymmetric segregation of age during yeast budding. Nature 454: 728–734
101. Liu B, Larsson L, Franssens V, Hao X, Hill SM, Andersson V, Hoglund D, Song J, Yang X, Oling D et al (2011) Segregation of protein aggregates involves actin and the polarity machinery. Cell 147: 959–961
102. Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140: 257–267
103. Coelho M, Lade SJ, Alberti S, Gross T, Tolic IM (2014) Fusion of protein aggregates facilitates asymmetric damage segregation. PLoS Biol 12: e1001886
104. Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegryn RD, Sherman MY, Chernoff YO (2006) Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol 26: 617–629
105. Fortsch J, Hummel E, Krist M, Westermann B (2011) The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J Cell Biol 194: 473–488
106. Weisman LS (2006) Organelles on the move: insights from yeast vacuole inheritance. Nat Rev Mol Cell Biol 7: 243–252
107. Unal E, Kinde B, Amon A (2011) Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science 332: 1554–1557
108. Roeder AD, Shaw JM (1996) Vacuole partitioning during meiotic division in yeast. Genetics 144: 445–458
109. Hill SM, Nyström T (2015) The dual role of a yeast metacaspase: what doesn’t kill you makes you stronger. Bioessays 37: 525–531
110. Kampinga HH (2014) Cell biology. A cell death avenue evolved from a life-saving path. Science 344: 1341–1342
111. Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kampinga HH (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4: e417
112. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143: 1883–1898
113. Bufalino MR, DeVeale B, van der Kooy D (2013) The asymmetric segregation of damaged proteins is stem cell-type dependent. J Cell Biol 201: 523–530
114. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao DP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: 727–738
115. Ouyang H, Li YO, Ravichandran M, Dong A, Qiu W, Mackenzie F, Dhe-Paganon S, Arrowsmith CH, Zhai RG (2012) Protein aggregates are recruited to aggresomes by histone deacetylase 6 via unanchored ubiquitin C termini. J Biol Chem 287: 2317–2327
116. Herrmann L, Wiegmann C, Arslan-Werner A, Hilbrich I, Jager C, Flach K, Suttkus A, Lachmann I, Arendt T, Holzer M (2015) Hook proteins: association with Alzheimer pathology and regulatory role of hook3 in amyloid beta generation. PLoS One 10: e0119423
117. Weisberg SJ, Lyakhovetsky R, Werdiger AC, Gitler AD, Soen Y, Kagano-vich D (2012) Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc Natl Acad Sci USA 109: 15811–15816
118. Szebenyi G, Wigley WC, Hall B, Didier A, Yu M, Thomas P, Kramer H (2007) Hook2 contributes to aggresome formation. BMC Cell Biol 8: 19
119. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132: 583–597
120. Betshinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila. C. elegans and vertebrates. Curr Biol 14: R674 – R685
121. Fuentealba LC, Evers G, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105: 7732–7737
122. Merin AB, Zhang X, Miliaras NB, Kazantsev A, Chernoff YO, McCaffery JM, Wendland B, Sherman MY (2003) Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. Mol Cell Biol 23: 7554–7565
123. Merin AB, Zhang X, Alexandrov IM, Salnikova AB, Ter-Avanesian MD, Chernoff YO, Sherman MY (2007) Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB J 21: 1915–1925
124. Qin ZH, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR, Kegel KB, Aronin N, DiFiglia M (2004) Huntington bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24: 269–281
125. Ravikumar B, Imanisiro S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab6 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121: 1649–1660
126. Galvagnion C, Buell AK, Mesl G, Michaels TC, Vendruscolo M, Knowles TP, Dobson CM (2015) Lipid vesicles trigger alpha-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11: 229–234
127. Zabrocki P, Pellens K, Vanhelmont T, Vandevoorde T, Griffioen G, Wera S, Van Leuven F, Winderickx J (2005) Characterization of alpha-synuclein aggregation and synergistic toxicity with protein tau in yeast. FEBS J 272: 1386–1400
128. Li H, Wyman T, Yu ZX, Li SH, Li XJ (2003) Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Hum Mol Genet 12: 2021–2030
129. Comyn S, Young BP, Leowen CJ, Mayor T (2016) Prefoldin promotes proteasomal degradation of cytosolic proteins with missense mutations by maintaining substrate solubility. PLoS Genet 12: e1006184

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.