Leptoquarks and Contact Interactions at LeHC

A.F. Żarnecki
University of Warsaw

Outline:

- Introduction
- LQ model
- CI approach
- Results

XVI International Workshop on Deep-Inelastic Scattering and Related Subjects
7-11 April 2008, University College London
Analysis
Presented analysis was developed in 2000/2001 as a contribution to TESLA TDR (February 2001) and the THERA Book (December 2001).

Results were also published in: A.F.Zarnecki, Acta Phys.Polon.B33 (2002) 619-640 [e-Print: hep-ph/0104107]

LeHC
Same approach (with only minor modifications) has been used since 2005 to demonstrate physics capabilities of ep upgrade option of LHC.

Current update was prepared assuming following scenarios:

- electron/positron energy of 70 GeV, luminosities of 2×10 or $2 \times 100 \text{ fb}^{-1}$
- electron/positron energy of 140 GeV, luminosities of 2×1 or $2 \times 10 \text{ fb}^{-1}$
Leptoquarks

BRW model Buchmüller-Rückl-Wyler

• $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
• lepton and baryon number conservation
• strong bounds from rare decays
 \Rightarrow either left- or right-handed couplings
• family diagonal

\Rightarrow 7 scalar and 7 vector leptoquarks

First generation LQ can be produced as an s-channel resonance in the $e^\mp p$ collisions.

Fermion number - F

• $F=0$ resonances in $e^+ q$
• $F=2$ resonances in $e^- q$
Leptoquarks

Narrow width approximation

Leptoquark width

$$\Gamma_{LQ} = \frac{\lambda_{LQ}^2 M_{LQ}}{8\pi(J + 2)}$$

- M_{LQ} - leptoquark mass
- $J = 0, 1$ - leptoquark spin
- λ_{LQ} - Yukawa coupling
 leptoquark-electron-quark

If the width is small and $M_{LQ} \ll \sqrt{s_{ep}}$
production cross section:

$$\sigma^{NW,A} = (J + 1)\frac{\pi}{4s} \lambda_{LQ}^2 q(x_0, \mu^2)$$

Interference effects can be neglected.
Leptoquarks

Limit setting

For $M_{LQ} \ll \sqrt{s_{ep}}$ and small λ_{LQ} we expect narrow resonance in $\frac{d\sigma}{dM_{eq}}$.

If no such resonance is observed, we can set λ_{LQ} limits based on numbers of events measured in bins of electron-quark invariant mass:

$$M_{inv} = \sqrt{x \cdot s_{ep}}$$

Leptoquarks with masses up to about 1 TeV can be searched for.

NC DIS cross section at LeHC

A.F. Żarnecki
LQ and CI at LeHC
Leptoquarks

Limit setting

NS DIS background suppressed by additional cut on:

\[y = 0.5 \cdot (1 - \cos \theta^*) \]

\(\theta^* \) - e scattering angle in eq rest frame

NC DIS background cross section largest at low \(y \):
\[\frac{d\sigma^{e^\pm p}}{dy} \sim \frac{1}{y^2} \]

Scalar Leptoquarks:
\[\left. \frac{d\sigma}{dy} \right|_S \sim \text{const} \]

Vector Leptoquarks:
\[\left. \frac{d\sigma}{dy} \right|_V \sim (1 - y)^2 \]

Optimized cut on \(y \) for \(E_e = 140 \text{ GeV} \)

A.F. Żarnecki
LQ and CI at LeHC
CI approach

CI limit

In the limit $M_{LQ} \gg \sqrt{\text{sep}}$, both virtual LQ production (s-channel) and exchange (u-channel) important. Cross section can be described by an effective $eeqq$ coupling:

$$\eta_{\alpha\beta}^{eq} = a_{\alpha\beta}^{eq} \cdot \left(\frac{\lambda_{LQ}}{M_{LQ}}\right)^2$$

Effective Lagrangian for vector $eeqq$ contact interactions:

$$\mathcal{L}_{CI} = \sum_{\alpha,\beta=L,R} \eta_{\alpha\beta}^{eq} \cdot (\bar{e}_\alpha \gamma^\mu e_\alpha)(\bar{q}_\beta \gamma_\mu q_\beta)$$
Contact Interactions

Contact Interactions modify tree level $e\gamma \rightarrow e\gamma$ scattering amplitudes $M^{eq}_{\alpha\beta}$:

$$
M^{eq}_{\alpha\beta}(Q^2) = \frac{e^2 e_q}{Q^2} - \frac{e^2}{\sin^2 \theta_W \cdot \cos^2 \theta_W} \cdot \frac{g^e g^q}{Q^2 + m_Z^2} + \eta^{eq}_{\alpha\beta}
$$

- $\eta^{eq}_{\alpha\beta}$ - 4 possible couplings for every flavor q

$e^- p$ NC DIS sensitive mostly to η^{eq}_{LL} and η^{eq}_{RR}

$e^+ p$ NC DIS sensitive mostly to η^{eq}_{LR} and η^{eq}_{RL} (q=u,d)

Different LQ models correspond to different helicity structure of new interactions
CI approach

Limit setting

In the CI approximation \(\frac{\lambda_{LQ}}{M_{LQ}} \) limits can be derived from measured high-\(Q^2 \) NC DIS

\[
E_e = 70 \text{ GeV} \quad 2 \times 10^2fb^{-1} \quad \quad \quad E_e = 140 \text{ GeV} \quad 2 \times 1 fb^{-1}
\]

SM expectations systematic uncertainty of 5% assumed for \(Q^2 \sim 10^5 GeV^2 \)
Intermediate masses

For $M_{LQ} \sim \sqrt{s}$ neither NWA nor CI limit can be used.

Limits are derived from high-Q^2 NC DIS using “modified CI” approach.

LQ contribution to scattering amplitudes:

- **s-channel LQ production**:
 \[
 \eta_{\alpha\beta}^{eq} = \frac{a_{\alpha\beta}^{eq} \cdot \chi_{LQ}^2}{M_{LQ}^2 - \hat{s} - i\hat{s} \Gamma_{LQ} M_{LQ}}
 \]
 where
 \[
 \hat{s} = x s_{ep} > 0
 \]

- **u-channel LQ exchange**:
 \[
 \eta_{\alpha\beta}^{eq} = \frac{a_{\alpha\beta}^{eq} \cdot \chi_{LQ}^2}{M_{LQ}^2 - \hat{u}}
 \]
 where
 \[
 \hat{u} = -\hat{s} - \hat{t} = -x(1 - y)s_{ep} < 0
 \]

Full LO cross section, including interference effects.
CI approach

Comparison of limits

Modified CI approach can be used also for $M_{LQ} < \sqrt{s}$.

However, for low masses NWA gives better limits.

Width of the limit distributions: expected statistical fluctuations from simulation of multiple MC experiments

Expected S^L_0 limits for $E_e = 70$ GeV, $2 \times 10^6 fb^{-1}$
Comparison of limits

Expected limits from NWA ⊕ CI method, compared with ZEUS 94-00 results

Very good agreement with detailed experimental study.
Experiment at LeHC

Expected limits depend also on the assumed detector parameters

Angular coverage: (default: 10°)

Mass resolution: (default: 5%)

\[
\lambda_{LQ} = S^{R}_{1/2} \quad \text{and} \quad \lambda_{LQ} = V^{L}_{1/2}
\]

- $S^{R}_{1/2}$ for angular coverage
- $V^{L}_{1/2}$ for mass resolution

Graphs showing the dependence of λ_{LQ} on M_{LQ} for different angular coverages and mass resolutions.
Expected scalar LQ limits

Comparison of expected LQ limits from LeHC, with expected limits from HERA (new), as well as from Tevatron and LHC (2001).
Expected vector LQ limits

Comparison of expected LQ limits from LeHC, with expected limits from HERA (new), as well as from Tevatron and LHC (2001).
New physics in eq scattering

Contact interactions can be used to describe many "new physics" phenomena at energy scales $\sqrt{s_{ep}}$ much smaller than "new" scale.

Considered in this analysis:
- general CI models
- large extra dimensions
- quark form factor

Possible “new physics” processes:

- Z'
- LQ', \tilde{q}
- $G_1G_2G_3...$
- $Z\gamma$
- R_q
Results

Expected limits for general CI models

VV model (conserving parity)

LL model (violating parity)

Understanding of systematics important!

Similar limits for Λ^-

A.F. Żarnecki
Expected limits for other CI models

AAD model (Large Extra Dimensions)

![Graph showing expected limits for AAD model](image)

Quark form factor model

![Graph showing expected limits for quark form factor model](image)

Similar limits for M_S^-

Resolution below $10^{-19} m$ can be obtained!
Quark size limits

LeHC would improve our resolving power by about an order of magnitude, compared to HERA.
Conclusions

LeHC would extend the energy domain of ep studies by about an order of magnitude.

With high luminosity precise SM tests possible.

Direct LQ production can be studied for masses up to about 1-2 TeV.

For higher mass scales stringent limits can be set for LQ couplings, comparable to those expected from LHC.

Mass scale limits about order of magnitude better than at HERA are expected for considered models.
Backup slides
Model	Fermion number F	Charge Q	$BR(LQ \rightarrow e^\pm q)$	Coupling	Squark type		
S^L_2	2	$-1/3$	1/2	e_Lu	νd	\tilde{d}_R	
S^R_2	2	$-1/3$	1	e_Ru			
\tilde{S}_0	2	$-4/3$	1	e_Rd			
$S^L_{1/2}$	0	$-5/3$	1	$e_L\tilde{u}$			
&	&	$-2/3$	0	$\nu\tilde{u}$			
$S^R_{1/2}$	0	$-5/3$	1	$e_R\tilde{u}$	$\nu\tilde{u}$		
&	&	$-2/3$	1	e_Rd			
$\tilde{S}_{1/2}$	0	$-2/3$	1	e_Ld	$\nu\tilde{d}$	$\tilde{u}_L \over \tilde{d}_L$	
&	&	$+1/3$	0				
S_1	2	$-4/3$	1	e_Ld	νd	νu	
&	&	$-1/3$	1/2	e_Lu	νd	νu	
&	&	$+2/3$	0				
V^L_0	0	$-2/3$	1/2	$e_L\tilde{d}$	$\nu\tilde{u}$		
V^R_0	0	$-2/3$	1	$e_R\tilde{d}$			
\tilde{V}_0	0	$-5/3$	1	$e_R\tilde{u}$			
$V^L_{1/2}$	2	$-4/3$	1	e_Ld	νd		
&	&	$-1/3$	0				
$V^R_{1/2}$	2	$-4/3$	1	e_Rd			
&	&	$-1/3$	1	e_Ru			
$\tilde{V}_{1/2}$	2	$-1/3$	1	e_Lu	νu		
&	&	$+2/3$	0				
V_1	0	$-5/3$	1	$e_L\tilde{u}$	$\nu\tilde{u}$	$\nu\tilde{d}$	
&	&	$-2/3$	1/2	$e_L\tilde{d}$	$\nu\tilde{u}$	$\nu\tilde{d}$	
&	&	$+1/3$	0				
CI Models

General models

Also referred to as compositeness models

Couplings $\eta^{eq}_{\alpha \beta}$ are related to the “new physics” mass scale Λ by the formula:

$$\eta = \frac{\varepsilon \cdot g_{CI}^2}{\Lambda^2}$$

where g_{CI} is the coupling strength of new interactions and $\varepsilon = \pm 1$.

By convention we set $g_{CI}^2 = 4\pi$.

Models conserving parity:

Model	η_{LL}^{ed}	η_{LR}^{ed}	η_{RL}^{ed}	η_{RR}^{ed}	η_{LL}^{eu}	η_{LR}^{eu}	η_{RL}^{eu}	η_{RR}^{eu}
VV	$+$ η							
AA	$+$ η	$-$ η	$+$ η	$+$ η	$-$ η	$-$ η	$+$ η	$+$ η
VA	$+$ η	$-$ η	$+$ η	$-$ η	$+$ η	$-$ η	$+$ η	$+$ η
X1	$+$ η	$-$ η	$+$ η	$+$ η				
X2	$+$ η	$+$ η	$+$ η	$+$ η				
X3	$+$ η	$+$ η	$+$ η	$+$ η				
X4	$+$ η	$+$ η	$+$ η					
X5	$+$ η	$+$ η	$+$ η					
X6	$+$ η	$-$ η						
U1	$+$ η	$-$ η						
U2	$+$ η							
U3	$+$ η							
U4	$+$ η	$+$ η						
U5	$+$ η	$+$ η						
U6	$+$ η	$-$ η						

Models violating parity:

Model	η_{LL}	η_{LR}	η_{RL}	η_{RR}
LL	$+$ η	$+$ η		
LR	$+$ η			
RL	$+$ η			
RR	$+$ η			

Family universality assumed!
Large Extra Dimensions

Arkani-Hamed–Dimopoulos–Dvali Model

If gravity propagates in the $4 + \delta$ dimensions, the effective mass scale M_S can be as low as 1 TeV.

⇒ Gravitational interactions become comparable in strength to electroweak interactions.

The contribution of graviton (Kaluza-Klein tower) exchange to the $e^\pm p$ NC DIS cross section can be described by an effective contact interaction type coupling:

$$\eta_G = \pm \lambda \cdot \frac{\mathcal{E}^2}{M_S^4}$$

where λ is the coupling strength and \mathcal{E} is related to the energy scales of hard interaction. (\sqrt{s}, Q^2)

Cross-section deviations for $e^- p$:
Quark form factor

“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is expected to decrease at high momentum transfer:

\[
\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \cdot \left[1 - \frac{R_q^2}{6} Q^2 \right]^2 \cdot \left[1 - \frac{R_e^2}{6} Q^2 \right]^2
\]

where \(R_q \) is the root mean-square radius of the electroweak charge distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for \(e^+p \) and \(e^-p \)!