Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland

Pedro Cardoso‡§, Lea Heikkinen¹, Joel Jalkanen¹, Minna Kohonen¹, Matti Leponiemi¹, Laura Mattila¹, Joni Ollonen¹, Jukka-Pekka Ranki¹, Anni Virolainen¹, Xuan Zhou¹, Timo Pajunen‡

‡ Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
§ IUCN SSC Spider & Scorpion Specialist Group, Helsinki, Finland
| Department of Biosciences, University of Helsinki, Helsinki, Finland
¶ Department of Environmental Sciences, University of Helsinki, Helsinki, Finland

Corresponding author: Pedro Cardoso (pedro.cardoso@helsinki.fi)

Academic editor: Jeremy Miller

Received: 15 Sep 2017 | Accepted: 14 Dec 2017 | Published: 18 Dec 2017

Citation: Cardoso P, Heikkinen L, Jalkanen J, Kohonen M, Leponiemi M, Mattila L, Ollonen J, Ranki J, Virolainen A, Zhou X, Pajunen T (2017) Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland. Biodiversity Data Journal 5: e21010. https://doi.org/10.3897/BDJ.5.e21010

Abstract

Background

During a field course on spider taxonomy and ecology at the University of Helsinki, the authors had the opportunity to sample four plots with a dual objective of both teaching on field methods, spider identification and behaviour and uncovering the spider diversity patterns found in the southern coastal forests of Hankoniemi, Finland. As an ultimate goal, this field course intended to contribute to a global project that intends to uncover spider diversity patterns worldwide. With that purpose, a set of standardised methods and procedures was followed that allow the comparability of obtained data with numerous other projects being conducted across all continents.

New information

A total of 104 species and 1997 adults was collected. Of these, 41 species (39%) were Linyphiidae and 13 (12%) Theridiidae. All other families had 6 or less species represented.

© Cardoso P et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Linyphiidae were also dominant in terms of adult individuals captured, with 1015 (51%), followed by 428 (21%) Lycosidae, 158 (8%) Tetragnathidae and 145 (7%) Theridiidae. All other families had less than 100 individuals. The most abundant species were *Neriene peltata*, *Alopecosa taeniata*, *Piratula hygrophila* and *Dismodicus elevatus*, all with more than 100 individuals. All sites had between 56 and 62 species and between 445 and 569 individuals.

Keywords

arthropoda, boreal forest, COBRA, sampling

Introduction

Dominated by taiga (boreal forest) in the centre and south and tundra in the north, Finland (and the neighbouring Scandinavian Peninsula) marks the transition between the temperate and subarctic zones in Europe. With approximately 45000 multicellular species known to occur in the country (Rassi et al. 2010), Finnish biota is of recent origin, as this area was completely covered by ice during the Last Glacial Maximum until as recently as 10000 years ago. Most species have therefore migrated from the south during the last thousands of years, with very few endemic species constituting exceptions. Most groups show relatively low diversity, both at a local scale (alpha diversity) and when comparing sites on their composition (beta diversity). Low diversity, mainly of endemics and a long tradition of taxonomic work for most groups, means that Finnish fauna and flora are well-known, to the point that Finland currently is the only country worldwide where a full set of organisms, from vascular plants and arthropods to birds and mammals, have already been assessed twice for their threat level according to the International Union for the Conservation of Nature (Rassi et al. 2001, Rassi et al. 2010, Juslén et al. 2013, Juslén et al. 2016).

In Finland and despite obvious knowledge gaps on the distribution of species - the Wallacean Shortfall (Lomolino 2004, Cardoso et al. 2011), spiders are particularly well-known. Seppo Koponen recently described the history of Finnish arachnology (Koponen 2010). The first list of Finnish spider species was published by A. von Nordmann in 1863 with 140 species (von Nordmann 1863). By the beginning of the twentieth century, F. W. Mäklin, K. E. Odenwall and T. H. Järvı had increased the list to 255 species (Mäklin 1874, Odenwall and Järvı 1901, Järvı 1906). Later, major taxonomic and faunistic work directed to spiders has been done mainly by P. Palmgren (e.g. Palmgren 1939, Palmgren 1943, Palmgren 1950, Palmgren 1974a, Palmgren 1974b, Palmgren 1975, Palmgren 1976, Palmgren 1977), P. Lehtinen (e.g. Lehtinen 1964, Lehtinen et al. 1979) and S. Koponen (e.g. Koponen 1977, Koponen 1999, Koponen et al. 2007), with more recent additions by T. Pajunen (e.g. Pajunen et al. 2009, Pajunen and Väisänen 2015) and N. Fritzén (e.g. Fritzén 2005, Fritzén 2012, Fritzén et al. 2015). Currently, this list consists of 647 species (Koponen et al. 2016).
The last arachnological paper by Järvi described the spider fauna around the Tvärminne Zoological Station of the University of Helsinki, in southeast Hankoniemi, listing about 150 species (Järvi 1916). Some decades later, Palmgren dedicated extensive and long-lasting research to this same area, reporting 425 species (Palmgren 1972). This region now has one of the best known spider faunas worldwide. The peninsula of Hanko (Hankoniemi) is the southernmost region of Finland, lying just south of 60 degrees north. Its bedrock is a mixture of Precambrian bedrock and a recent end-moraine complex, running as a continuous ridge from the Russian Karelia through the whole of southern Finland and even further into the northern Baltic Sea. Hankoniemi is therefore dominated by moraine or sandy soils, interspersed with strips of calciferous minerals. The area is comparatively rich, with a number of different biotopes and high species richness for the region (it harbours about 15% of the endangered species of Finland). The main habitat type is pine forest (dominated by *Pinus sylvestris*), often over consolidated dunes fields. Yet, mixed spruce (*Picea abies*) and mixed forests are also very common in smaller areas.

During a field course on spider taxonomy and ecology at the University of Helsinki, the authors had the opportunity to sample four plots with the dual objective of both teaching on field methods, spider identification and behaviour and uncovering the spider diversity patterns found in the southern coastal forests of Hankoniemi. As an ultimate goal, this field course intended to contribute to a global project that intends to uncover spider diversity patterns worldwide (see http://biodiversityresearch.org/research/biogeography/). With that purpose, a set of standardised methods and procedures was followed (Cardoso 2009) that allow the comparability of obtained data with numerous other samples being conducted across all continents. By doing so, these data are guaranteed to be reused for multiple future projects currently being implemented.

Sampling methods

Study extent: Four 50 x 50 m plots following a west to east transect were selected for sampling (Table 1). All were in mixed coastal forests dominated by Norway spruce and Scots pine at sea level (0 - 10 m). Plots 1 and 2 were separated by about 100 m, plot 3 was 1.8 km and plot 4 was 5 km from the first (Fig. 1).

Plot	Latitude	Longitude
Plot 1	59.83226	23.14042
Plot 2	59.83281	23.14137
Plot 3	59.83779	23.17062
Plot 4	59.84147	23.22869

Table 1.
Location of sampling plots.
Study dates: Samples were collected in June 2016, with all but pitfall trapping being conducted on the 13th and 14th. Pitfall traps were left in the field between the 13th and 26th of June 2016.

Sampling description: The COBRA - Conservation Oriented Biodiversity Rapid Assessment - protocol at the four plots was followed. This protocol, first proposed for Mediterranean spiders (Cardoso 2009) and very recently adapted for and being applied both on the tropics (Malumbres-Olarte et al. 2016) and islands (Emerson et al. 2017) involves night aerial sampling (4 hours/plot), day/night sweeping (4 hours/plot), day/night beating (4 hours/plot) and pitfall traps (48 traps distributed for 12 samples). In total, it involves about 24 hours of effective work per site (see Cardoso 2009 for details).

Geographic coverage

Description: Hankoniemi, Finland

Coordinates: 59.8 and 59.9 Latitude; 23.0 and 23.3 Longitude.

Taxonomic coverage

Taxa included:

Rank	Scientific Name	Common Name
order	Araneae	Spiders
Temporal coverage

Data range: 2016-6-13 - 2016-6-26.

Usage rights

Use license: Open Data Commons Attribution License

Data resources

Data package title: COBRA_Finland_Hankoniemi

Resource link: http://ipt.pensoft.net/resource?r=cobra_hankoniemi_finland

Number of data sets: 1

Additional information

Results: A total of 104 species and 1997 adults was collected (Table 2, voucher specimens are deposited at the Finnish Museum of Natural History). Of these, 41 species (39%) were Linyphiidae and 13 (12%) Theridiidae. All other families had 6 or less species represented. Linyphiidae were also dominant in terms of adult individuals captured, with 1015 (51%), followed by 428 (21%) Lycosidae, 158 (8%) Tetragnathidae and 145 (7%) Theridiidae. All other families had less than 100 individuals. The most abundant species were *Neriene peltata*, *Alopecosa taeniata*, *Piratula hygrophila* and *Dismodicus elevatus*, all with more than 100 individuals. All sites had between 56 and 62 species and between 445 and 569 individuals.

Family	Species	Plot 1	Plot 2	Plot 3	Plot 4	Total
Anyphaenidae	*Anyphaena accentuata* (Walckenaer, 1802)	1	2	3		
Araneidae	*Araneus marmoreus* Clerck, 1757	1			1	
Araneidae	*Araneus sturmi* (Hahn, 1831)	3	5	2	10	
Araneidae	*Araniella cucurbitina* (Clerck, 1757)	1	2	3		
Araneidae	*Cyclosa conica* (Pallas, 1772)	1	1	1	3	
Araneidae	*Gibbaranea omoeda* (Thorell, 1870)	1	1	1	3	

Table 2. Richness and abundance of species per plot (adults only).
Order	Family	Species	Authority	Genus	Species	Year
Araneidae	Araneidae	Leviellus stroemi	Thorell, 1870	1	1	
Clubionidae	Clubionidae	Clubiona comta	C. L. Koch, 1839	4	8	5
		Clubiona lutescens	Westring, 1851	1	1	4
		Clubiona subsultans	Thorell, 1875	2	2	4
Dictynidae	Dictynidae	Dictyna arundinacea	(Linnaeus, 1758)	1	4	5
		Dictyna pusilla	Thorell, 1856	4	4	7
		Lathys nielsen	(Schenkel, 1932)	1	1	
Gnaphosidae	Gnaphosida	Drassyllus praeficus	(L. Koch, 1866)	1	1	
		Gnaphosa bicolor	(Hahn, 1833)	1	4	2
		Haplodrassus signifer	(C. L. Koch, 1839)	1	1	
		Haplodrassus soerenseni	(Strand, 1900)	4	1	3
		Haplodrassus umbratilis	(L. Koch, 1866)	1	1	2
		Zelotes clivicola	(L. Koch, 1870)	1	1	
Hahniidae	Hahniidae	Cryphoca silvicola	(C. L. Koch, 1834)	6	12	3
Linyphiidae	Linyphiidae	Agyneta cauta	(O. Pickard-Cambridge, 1902)	7	12	6
		Agyneta ramosa	Jackson, 1912	2	5	10
		Agyneta subtilis	(O. Pickard-Cambridge, 1863)	1	2	3
Linyphiidae	Linyphiidae	Anguliphaters angulipalpis	Westring, 1851	1	1	
		Bathyphaters nigrinus	Westring, 1851	1	1	
Linyphiidae	Linyphiidae	Bathyphaters parvulus	Westring, 1851	3	4	7
Linyphiidae	Linyphiidae	Ceratinella brevis	Wider, 1834	1	1	
Linyphiidae	Linyphiidae	Dicymbium tibiale	Blackwall, 1836	1	1	2
Linyphiidae	Linyphiidae	Diplacentria bidentata	Emerton, 1882	3	3	
Linyphiidae	Linyphiidae	Diplocephalus picinus	Blackwall, 1841	1	1	2
Linyphiidae	Linyphiidae	Diplostyla concolor	Wider, 1834	3	1	4
Linyphiidae	Linyphiidae	Dismodicus elevatus	(C. L. Koch, 1838)	14	36	38

- Cardoso P et al
| Family | Species | Males | Females | Immatures | Total |
|-------------|---|-------|---------|-----------|-------|
| Linyphiidae | *Entelecara congenera* (O. Pickard-Cambridge, 1879) | 1 | 1 | | |
| Linyphiidae | *Entelecara erythropus* (Westring, 1851) | 8 | 9 | 17 | |
| Linyphiidae | *Entelecara flavipes* (Blackwall, 1834) | 1 | 1 | | |
| Linyphiidae | *Gongylidium rufipes* (Linnaeus, 1758) | | | 19 | 19 |
| Linyphiidae | *Hylphantes graminicola* (Sundevall, 1830) | 4 | 2 | 1 | 7 |
| Linyphiidae | *Hypomma cornutum* (Blackwall, 1833) | 3 | 2 | 2 | 7 |
| Linyphiidae | *Macaragrus rufus* (Wider, 1834) | 1 | 1 | | 2 |
| Linyphiidae | *Maro minutus* O. Pickard-Cambridge, 1906 | | | 1 | 1 |
| Linyphiidae | *Maso sundevalli* (Westring, 1851) | 23 | 9 | 32 | 11 |
| Linyphiidae | *Micaragrus apertus* O. Pickard-Cambridge, 1871 | 1 | | | 1 |
| Linyphiidae | *Minyriolus pusillus* (Wider, 1834) | 1 | 2 | 1 | 4 |
| Linyphiidae | *Moebelia penicillata* (Westring, 1851) | 2 | | | 2 |
| Linyphiidae | *Nerene clathrata* (Sundevall, 1830) | 5 | 11 | 3 | 3 |
| Linyphiidae | *Nerene peltata* (Wider, 1834) | 89 | 169 | 88 | 159 |
| Linyphiidae | *Obscuriphantes obscurus* (Blackwall, 1841) | 20 | 12 | 5 | 8 |
| Linyphiidae | *Oedothorax gibbosus* (Blackwall, 1841) | | | 1 | 1 |
| Linyphiidae | *Palliduphantes pallidus* O. Pickard-Cambridge, 1871 | | | 1 | 1 |
| Linyphiidae | *Pelecopsis elongata* (Wider, 1834) | 1 | 3 | 1 | 5 |
| Linyphiidae | *Pityohyphantes phrygianus* (C. L. Koch, 1836) | 3 | 2 | 2 | 7 |
| Linyphiidae | *Pocadicnemis pumila* (Blackwall, 1841) | 1 | 1 | 1 | 3 |
| Linyphiidae | *Tenuiphantes alacris* (Blackwall, 1853) | 3 | 1 | 2 | 15 |
| Linyphiidae | *Tenuiphantes cristatus* (Menge, 1866) | | | 1 | 1 |
| Linyphiidae | *Tenuiphantes tenebricola* (Wider, 1834) | 21 | 16 | 10 | 23 |
| Linyphiidae | *Walckenaeria antica* (Wider, 1834) | | | 2 | 2 |
| Linyphiidae | *Walckenaeria atrotibialis* O. Pickard-Cambridge, 1878 | | | 2 | 2 |
| Linyphiidae | *Walckenaeria cucullata* (C. L. Koch, 1836) | 3 | 1 | 4 | 4 |

Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland
Family	Species	Author, Year	Freq.1	Freq.2	Freq.3	Freq.4	Freq.5
Linyphiidae	Walckenaeria cuspidata	Blackwall, 1833	1	1			
Linyphiidae	Walckenaeria dysderoides	(Wider, 1834)			1	1	
Linyphiidae	Walckenaeria nudipalpis	(Westring, 1851)	1				1
Liocranidae	Agroeca brunnea	(Blackwall, 1833)					1
Lycosidae	Alopecosa taeniata	(C. L. Koch, 1835)	87	72	61	61	281
Lycosidae	Pardosa lugubris	(Walckenaer, 1802)	2	4	14	3	23
Lycosidae	Piratula hygrophila	(Thorell, 1872)	9	3	33	78	123
Lycosidae	Trochosa terricola	Thorell, 1856					1
Mimetidae	Ero furcata	(Villers, 1789)					1
Miturgidae	Zora nemoralis	(Blackwall, 1861)	3				3
Miturgidae	Zora spinimana	(Sundevall, 1833)		3	2	1	6
Philodromidae	Philodromus aureolus	(Clerck, 1757)	3		2		5
Philodromidae	Philodromus cespitum	(Walckenaer, 1802)	1				2
Philodromidae	Philodromus collinus	C. L. Koch, 1835	5	10	9	6	30
Philodromidae	Philodromus fuscomarginatus	(De Geer, 1778)	1	1		3	5
Philodromidae	Philodromus marginatus	(Clerck, 1757)					1
Phrurolithidae	Phrurolithus festivus	(C. L. Koch, 1835)	1				1
Pisauridae	Pisaura mirabilis	(Clerck, 1757)					1
Salticidae	Evarcha falcata	(Clerck, 1757)	3	1	12	16	
Salticidae	Neon reticulatus	(Blackwall, 1853)				2	2
Segestriidae	Segestria senoculata	(Linnaeus, 1758)	2		1		3
Tetragnathidae	Metellina mengei	(Blackwall, 1869)	30	16	7	29	82
Tetragnathidae	Metellina merianae	(Scopoli, 1763)	2				2
Tetragnathidae	Pachygnatha listeri	Sundevall, 1830	6	15	12	12	45
Tetragnathidae	Tetragnatha dearmata	Thorell, 1873					1
Tetragnathidae	Tetragnatha obtusa	C. L. Koch, 1837	7	7	5	3	22
Theridiidae

- **Tetragnathidae**
 - *Tetragnatha pinicola* L. Koch, 1870
 - Species richness: 1
 - Individuals: 4
 - Total: 6
 - **Enoplognatha ovata** (Clerck, 1757)
 - Species richness: 4
 - Individuals: 4
 - **Episinus angulatus** (Blackwall, 1836)
 - Species richness: 1
 - Individuals: 2
 - Total: 4
 - **Euryopis flavomaculata** (C. L. Koch, 1836)
 - Species richness: 1
 - Individuals: 3
 - Total: 5
 - **Neottiura bimaculata** (Linnaeus, 1767)
 - Species richness: 7
 - Individuals: 7
 - **Paidiscura pallens** (Blackwall, 1834)
 - Species richness: 15
 - Individuals: 5
 - Total: 15
 - Total: 39
 - **Parasteatoda lunata** (Clerck, 1757)
 - Species richness: 2
 - Individuals: 2
 - Total: 4
 - **Phylloneta sisyphia** (Clerck, 1757)
 - Species richness: 3
 - Individuals: 1
 - Total: 4
 - **Platnickina tincta** (Walckenaer, 1802)
 - Species richness: 9
 - Individuals: 11
 - Total: 11
 - Total: 40
 - **Robertus lividus** (Blackwall, 1836)
 - Species richness: 9
 - Individuals: 3
 - Total: 1
 - Total: 16
 - **Simitidion simile** (C. L. Koch, 1836)
 - Species richness: 2
 - Individuals: 2
 - **Theridion mystaceum** L. Koch, 1870
 - Species richness: 2
 - Individuals: 1
 - Total: 3
 - **Theridion pinastri** L. Koch, 1872
 - Species richness: 1
 - Individuals: 1
 - Total: 2
 - **Theridion varians** Hahn, 1833
 - Species richness: 3
 - Individuals: 4
 - Total: 3
 - Total: 15
 - **Diaea dorsata** (Fabricius, 1777)
 - Species richness: 10
 - Individuals: 4
 - Total: 10
 - Total: 29
 - **Ozyptila atomaria** (Panzer, 1801)
 - Species richness: 1
 - Individuals: 1
 - **Ozyptila trux** (Blackwall, 1846)
 - Species richness: 1
 - Individuals: 8
 - Total: 4
 - Total: 13
 - **Xysticus audax** (Schrank, 1803)
 - Species richness: 1
 - Individuals: 3
 - Total: 4
 - **Xysticus luctuosus** (Blackwall, 1836)
 - Species richness: 4
 - Individuals: 1
 - Total: 5
 - **Xysticus obscurus** Collett, 1877
 - Species richness: 2
 - Individuals: 2

Remarks:
The vast majority of species are widespread in Finland and most of Europe. The most notable exception is the uloborid *Hyptiotes paradoxus* (C. L. Koch, 1834), found for the first time on the Finnish mainland, although only represented here by two juveniles. The species was earlier known in Finland only from Ahvenanmaa, an archipelago on the southwestern part of the country (Fritzén 2002) and should be a recent addition due to the effects of global warming that drive a northwards movement of many species until recently only recorded south of the country (Fritzén et al. 2015). Additionally, the linyphiid...
Entelecara flavipes was found in Finland just a few years ago in the region of Helsinki, about 100 km east from Hankoniemi (Pajunen and Väisänen 2015). Finally, the thomisid **Diaea dorsata**, which was considered threatened in the 1980s, is now numerous at Hankoniemi.

Acknowledgements

We would like to thank Joanna Norkko and Riitta Savolainen for logistic support to the field course. Jagoba Malumbres-Olarte friendly reviewed a first draft of the paper.

References

- Cardoso P (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodiversity and Conservation 18 (14): 3949-3962. https://doi.org/10.1007/s10531-009-9690-7
- Cardoso P, Erwin T, Borges PV, New T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144 (11): 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024
- Emerson B, Casquet J, López H, Cardoso P, Borges PV, Mollaret N, Oromí P, Strasberg D, Thébaud C (2017) A combined field survey and molecular identification protocol for comparing forest arthropod biodiversity across spatial scales. Molecular Ecology Resources 17 (4): 694-707. https://doi.org/10.1111/1755-0998.12617
- Fritzén NR (2002) *Hyptiotes paradoxus* (Araneae: Uloboridae) found on the Åland Islands — a species new to Finland. Memoranda Societatis pro Fauna et Flora Fennica 78: 3-7.
- Fritzén NR (2005) Larinioides sclopetarius and Agalenatea redii (Araneae: Araneidae) — two spider species new to Finland. Memoranda Societatis Fauna et Flora Fennica 81: 108-110.
- Fritzén NR (2012) *Micaria lenzi* and *Clubiona juvenis* (Araneae: Gnaphosidae, Clubionidae), two spider species new to the dune fauna of Finland. Memoranda Societatis pro Fauna et Flora Fennica 88: 5-7.
- Fritzén NR, Koponen S, Pajunen T (2015) *Mangora acalypha* new to Finland, with notes on other araneid species spreading northwards (Araneae, Araneidae). Memoranda Societatis pro Fauna et Flora Fennica 90: 33-36.
- Järvi TH (1906) Einige aus dem finnischen Faunengebiete bisher unbekannte Araneen. Meddelanden af Societas pro Societas pro Fauna et Flora Fennica 32: 68-69.
- Järvi TH (1916) Die araneenfauna in der Umgebung von Tvarminne (Süd-Finnland). Acta Societatis pro Fauna et Flora Fennica 44: 1-46.
- Juslén A, Hyvärinen E, Virtanen LK (2013) Application of the Red-List Index at a National Level for Multiple Species Groups. Conservation Biology 27 (2): 398-406. https://doi.org/10.1111/cobi.12016
- Juslén A, Pykälä J, Kuusela S, Kaila L, Kullberg J, Mattila J, Muona J, Saari S, Cardoso P (2016) Application of the Red List Index as an indicator of habitat change. Biodiversity and Conservation 25 (3): 569-585. https://doi.org/10.1007/s10531-016-1075-0
• Koponen S (1977) Spider fauna (Araneae) of Kevo area, northernmost Finland. Reprints of the Kevo Subarctic Research Station 13: 48-62.
• Koponen S (1999) Three species of spiders (Araneae) new to the fauna of Finland from the southwestern archipelago. Entomologica Fennica 10: 6-6.
• Koponen S (2010) Arachnology in Finland. 1. From Laxmann to Palmgren. In: Nentwig W, Entling M, Kroop C (Eds) European Arachnology 2008. Natural History Museum, Bern, 99-103 pp.
• Koponen S, Fritzén NR, Pajunen T (2016) Checklist of spiders in Finland (Araneae). http://biolcoll.utu.fi/arach/checklist_of_spiders_in_Finland.htm. Accessed on: 2017-8-16.
• Koponen S, Fritzén NR, Pajunen T, Piirainen P (2007) Two orb-weavers new to Finland – Argiope bruennichi and Neoscona adianta (Araneae, Araneidae). Memoranda Societatis pro Fauna et Flora Fennica 83: 20-21.
• Lehtinen P (1964) Additions to the spider fauna of southern and central Finland. Annales Zoologici Fennici 1: 303-305.
• Lehtinen PT, Koponen S, Saaristo M (1979) Studies on the spider fauna of the southwestern archipelago of Finland II. The Aland mainland and the island of Eckerö. Memoranda Societatis Fauna et Flora Fennica 55: 33-52.
• Lomolino MV (2004) Conservation biogeography. In: Lomolino MV, Heaney LR (Eds) Frontiers of Biogeography: New Directions in the Geography of Nature. Sinauer Associates, Sunderland, Massachusetts, 293-296 pp.
• Mäklin FW (1874) För Finlands fauna nya spindelarter. Ofversigt af Finska Vetenskaps-Societetens Förhandlingar 16: 279-282.
• Malumbres-Olarte J, Scharff N, Pape T, Coddington J, Cardoso P (2016) Gauging megadiversity with optimized and standardized sampling protocols: a case for tropical forest spiders. Ecology and Evolution 7 (2): 494-506. https://doi.org/10.1002/ece3.2626
• Odenwall E, Järvi TH (1901) Verzeichnis einiger für Finland neuer oder daselbst wenig beobachteter Araneen. Acta Societatis pro Fauna et Flora Fennica 20: 1-12.
• Pajunen T, Väisänen RA (2015) First records of spiders (Araneae) Baryphyma gowerense (Locket, 1965) (Linyphiidae), Entelecara flavipes (Blackwall, 1834) (Linyphiidae) and Rugathodes instabilis (O. P.-Cambridge, 1871) (Theridiidae) in Finland. Memoranda Societatis Fauna et Flora Fennica 90: 44-50.
• Pajunen T, Koponen S, Saaristo M, Väisänen RA (2009) Walckenaeria furcillata (Menge, 1869) and Walckenaeria lepida (Kulczynski, 1885) in Finland (Araneae, Linyphiidae). Memoranda Societatis pro Fauna et Flora Fennica 85: 79-85.
• Palmgren P (1939) Die spinnenfauna Finnlands I. Lycosidae . Acta Zoologica Fennica 25: 1-86.
• Palmgren P (1943) Die spinnenfauna Finnlands II. Pisauridae, Oxyopidae, Salticidae, Clubionidae, Anxyphaenidae, Sparassidae, Ctenidae, Drassidae . Acta Zoologica Fennica 36: 1-112.
• Palmgren P (1950) Die spinnenfauna Finnlands und Ostfennoskandiens III. Xysticidae und Philodromidae . Acta Zoologica Fennica 62: 1-43.
• Palmgren P (1972) Studies on the spider populations of the surroundings of the Tvärminne Zoological Station, Finland. Commentationes Biologicae, Societas Scientiarum Fennica 52: 1-133.
• Palmgren P (1974a) Die spinnenfauna Finnlands und Ostfennoskandiens IV. Argiopidae, Tetragenathidae und Mimetidae . Fauna Fennica 24: 1-70.
• Palmgren P (1974b) Die spinnenfauna Finnlands und Ostfennoskandiens V. Theridiidae und Nesticidae . Fauna Fennica 26: 1-54.
• Palmgren P (1975) Die spinnenfauna Finnlands und Ostfennoskandiens VI. Linyphiidae 1. Fauna Fennica 28: 1-102.
• Palmgren P (1976) Die spinnenfauna Finnlands und Ostfennoskandiens VII. Linyphiidae 2. Fauna Fennica 29: 1-126.
• Palmgren P (1977) Die spinnenfauna Finnlands und Ostfennoskandiens VIII. Argyronetidae, Agelenidae, Hahniidae, Dictynidae, Amaurobiidae, Titanocidae, Segestriidae, Pholcidae und Sicariidae . Fauna Fennica 30: 1-50.
• Rassi P, Alanen A, Kanerva T, Mannerkoski I (2001) Suomen lajien uhanalaisuus 2000. Ympäristöministeriö & Suomen ympäristökeskus, Helsinki.
• Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (Eds) (2010) Suomen lajien uhanalaisuus—Punainen kirja 2010. The 2010 red list of Finnish species. Ympäristöministeriö ja Suomen ympäristökeskus, Helsink.
• von Nordmann A (1863) Erstes Verzeichniss der in Finnland und Lappland bisher gefundenen Spinnen, Araneae . Bidrag till Finlands Naturkännedom, Etnografi och Statistik 8: 1-39.