Gene promoter and exon DNA methylation changes in colon cancer development – mRNA expression and tumor mutation alterations

Béla Molnár 1,2, Orsolya Galamb 1, Bálint Péterfia 2, Barnabás Wichmann 1, István Csabaí 3, András Bodor 3,4, Alexandra Kalmár 1, Krisztina Andrea Szigeti 2, Barbara Kinga Barták 2, Zsófia Brigitta Nagy 2, Gábor Valcz 1, Árpád V. Patai 2, Péter Igaz 1,2, and Zsolt Tulassay 1,2

Abstract

Background: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes.

Methods: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA methylation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed.

Results: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations.

Conclusions: DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.

Keywords: Colorectal cancer, Adenoma, DNA methylation, Mutation, Methyl capture sequencing, TP53 signaling pathway.
Background

Colorectal cancer (CRC) is a clinically important malignant disease due to its high incidence and mortality. According to the GLOBOCAN estimates with 1.4 million new cases and 694,000 deaths annually, CRC is the third most common cancer in the world, after lung and breast cancers [1].

The majority of sporadic CRCs develop according to the normal-adenoma-dysplasia-carcinoma sequence described byFearon and Vogelstein [2]. The accumulation of genetic and epigenetic alterations in colonic epithelium leads to CRC through early and late precancerous adenoma stages in which promoter DNA methylation changes of certain tumor suppressor genes with consecutive mRNA expression changes are one of the earliest events, often prior to the appearance of mutations in well-known genes such as the adenomatosis polyposis coli gene (APC) [3].

Recently, comprehensive molecular characterization of several human cancers including CRC has been performed and the data integrated into The Cancer Genome Atlas (TCGA) database (https://cancergenome.nih.gov/). Integrative evaluation of genetic, epigenetic and gene expression data of hundreds of CRC and paired normal adjacent tissue (NAT) samples revealed that in addition to the known mutations, epigenetic changes (especially DNA methylation) also play a key role in establishing CRC subtypes with different prognostic and therapeutic phenotypes [4]. The majority (84%) of CRCs were found to be non-hypermutated. Non-hypermethylated cancers with distinct colonic or rectal location could be distinguished according to copy-number alteration, DNA methylation or gene expression profiles [4].

DNA methylation changes both in promoter and gene body regions contribute to cancer phenotype as they can affect the gene transcription in several ways [3, 5–7]. In addition to the earlier methods focusing on gene promoter methylation analysis, new technologies, such as BeadChip methylation arrays [4, 8–12], reduced representation bisulfite sequencing (RRBS) [13], whole genomic bisulfite sequencing (WGBS) and methyl capture sequencing (MethylCap-Seq) [7, 14] were applied to study DNA methylation profiles in CRC. While the majority of investigations included CRC and NAT tissues [4, 9, 10, 12, 14], analysis of precancerous adenomas (AD) are represented in a small number of previous studies [8, 11] including a MethylCap-Seq study of WNT pathway genes we undertook [7]. We have also identified hypermethylated markers (mal, T-cell differentiation protein (MAL), proline rich membrane anchor 1 (PRIMA1), prostaglandin D2 receptor (PTGDR) and secreted frizzled related protein 1 (SFRP1)) in CRC and adenoma using bisulfite sequencing [15] and determined a common ten-gene methylation signature in colorectal adenomas and CRC based on methylation qPCR arrays [16].

BeadChip 27K and 450K arrays and RRBS offer opportunities for analysis of DNA methylation at single nucleotide resolution mainly within CpG islands, however recently developed Epic BeadChip arrays – besides examination of CpG island methylation - allow more extensive study of CpG sites outside of CpG islands, as well. WGBS provides the most widespread whole methylome analysis at single nucleotide resolution, but it is not commonly used due to its high cost. MethylCap-seq is an alternative genome-wide methylation analysis technique to identify novel differentially methylated regions (DMRs) [17, 18]. It gives extensive information about both promoter and gene body methylation, though at lower resolution [18]. Unlike BeadChip arrays, it is suitable for investigation of mutation hot spot regions within the gene body. It is known that mutations can cause altered DNA methylation and DNA methylation changes also can lead to development of mutations [19, 20]. The mutation rate is higher at methylated CpG sites than non-methylated ones [21, 22]. The change of 5-methylcytosine to thymine via spontaneous deamination [23, 24] which is less effectively repaired by the DNA repair machinery than the cytosine to uracil deamination reaction [22, 23] can cause the increased mutability of cytosines within CpG sites.

The aim of this study was to analyze genome-wide tissue DNA methylation differences along the colorectal normal-adenoma-carcinoma sequence progression, including gene body methylation changes using MethylCap-seq. The second aim was to search for a potential relation between DNA methylation and mutation alterations for 12 CRC-associated genes. The possible effects of the genetic and epigenetic changes on neoplastic phenotype at transcriptome level were also examined.

Methods

Estimation of global methylation levels using long interspersed nuclear element-1 (LINE-1) bisulfite sequencing

After DNA isolation from 5 colorectal adenoma, 5 CRC and 10 normal (N) colonic biopsy samples, bisulfite conversion of DNA samples was performed using EZ DNA Methylation-Direct Kit (Zymo Research). For quantification of methylation levels of the LINE-1 retrotransposable element, bisulfite-specific PCR (BS-PCR) was done and 146 bp long LINE-1 PCR products were sequenced on Pyromark Q24 system (Qiagen) using the Qiagen Q24 CpG LINE-1 Kit (Qiagen) according to the manufacturers’ instruction.

MethylCap-seq

Global DNA methylation alterations were determined using MethylCap-seq data of 30 colonic tissue samples
(15 AD, 9 CRC, 6 NAT) published previously by our research group [7]. In the previous study [7], only the DNA methylation changes of 160 WNT pathway genes and promoters were evaluated, while in this study whole methylome analysis was performed.

After informed consent of untreated patients, colonic biopsy samples were taken during routine endoscopic intervention. Using parallel formalin-fixed samples from the same site, histological diagnoses were established by experienced pathologists. Tissue samples from untreated CRC patients were also obtained from surgically removed colon or rectal tumors and from NAT that originated from the area farthest available from the tumor. The detailed patient specification has been described earlier [7]. The study was conducted according to the Helsinki declaration and approved by the local ethics committee and government authorities (Regional and Institutional Committee of Science and Research Ethics (TUKEB) Nr.: 69/2008, 202/2009 and 23,970/2011 Semmelweis University, Budapest, Hungary).

Genomic DNA was isolated using High Pure PCR Template Preparation Kit (Roche Applied Science) according to the manufacturer’s instructions [16]. The capture of methylated DNA fragments and next generation sequencing were performed as previously described [7]. Briefly, after fragmentation of 3 μg genomic DNA samples, the DNA fragments with methylated CpGs were selected using the Auto MethylCap kit (Diagenode). Purification of the methylated DNA fraction was carried out on QIAquick PCR purification columns (Qiagen). Library preparation was performed using the TruSeq ChiP Sample Preparation kit (Illumina) and clusters were generated using TruSeq SR Cluster Kit v3-cBot-HS (Illumina). Next generation sequencing of the methylated DNA fragments was performed on the HiSeqSQ instrument using TruSeq SBS v3-HS reagents (Illumina,) according to the manufacturer’s instructions. Bowtie2 software with default settings was used to map the 100 bp paired and 50 bp unpaired reads to the hg19 human genome reference assembly [25]. The aligned data were processed using the MEDIPS Biocoridor R package [26]. Methylation probabilities (β-values hereafter) were calculated for 100 bp long analysis windows (differentially methylated regions = DMRs), with respect to genome-wide CpG density dependent Poisson distributions.

Mutation analysis

Using normal, benign and malignant colorectal tissue samples, mutation hot-spot regions of 12 CRC-associated genes (APC, B-Raf proto-oncogene, serine/threonine kinase (BRAF), catenin beta 1 (CTNNB1), epidermal growth factor receptor (EGFR), F-box and WD repeat domain containing 7 (FBXW7), KRAS proto-oncogene, GTPase (KRAS), NRAS proto-oncogene, GTPase (NRAS), mutS homolog 6 (MSH6), 3-kinase catalytic subunit alpha (PIK3CA), SMAD family member 2 and 4 (SMAD2 and SMAD4), tumor protein 53 (TP53)) were amplified using a custom-made multiplex PCR panel previously designed by our research group [27]. Amplicon sequencing was carried out on a GS Junior instrument (Roche) using ligated and barcoded adaptors as described earlier [27]. Bead enrichment and sequencing were performed using GS Junior Titanium Sequencing Kit (Roche) according to the Sequencing Method Manual, GS FLX Titanium Series. For variant identification, Amplicon Variant Analyzer software (Roche) was applied.

Promoter DNA methylation and mRNA expression analysis of TP53 signaling pathway genes

The list of the TP53 pathway genes (in total 67 gene symbols) was constructed according to the KEGG pathway database. Promoters were defined as described earlier using Encode ChromHMM results [7]. Promoter DNA methylation was determined using methyl capture results of 30 colonic biopsy samples in a 100 base pair analysis window resolution and DMRs were identified between the diagnostic groups. In silico mRNA expression analysis for TP53 signaling pathway genes was performed using microarray data from colorectal tissue samples (Affymetrix HGU133Plus2.0; GEO accession numbers: GSE37364 [28], GSE18105 [29], GSE4107 [30], GSE9348 [31], GSE22242 [32], GSE8671 [33]).

Statistical analysis

For MethylCap-seq DNA methylation data analysis, differences between diagnostic groups (9 CRC samples versus 6 NAT samples, 15 AD samples versus 6 NAT samples) were characterized by Δβ-values (the differences of the average β-values of each sample group). The top50 candidate DMRs were selected according to the highest absolute values of Δβ-values. For estimation of global methylation levels using LINE-1 bisulfite sequencing, average methylation percentages of 3 analyzed CpG sites were calculated. For gene expression logFC calculations, the differences between the averages of samples groups were compared. During statistical evaluation of DNA methylation and gene expression data, for paired comparisons of diagnostic groups, Student’s t-test and False Discovery Rate (FDR) were applied as the Kolmogorov-Smirnov test resulted in normal distribution and the standard deviation of data were similar. Variance analysis was performed using the non-parametric Kruskal-Wallis test. A p-value of < 0.05 was considered as significant.

Results

Global DNA methylation alterations of the colorectal normal-adenoma-carcinoma sequence

Genome-wide decreases in DNA methylation were observed for samples from the adenoma stage of colorectal
Based on the LINE-1 bisulfite sequencing results, significant global DNA hypomethylation was detected both in CRC (63 ± 6.7%; \(p = 0.0302 \)) and adenoma samples (65 ± 3.8%; \(p = 0.0093 \)) compared to normal tissue (73 ± 1.4%). Variance analysis also revealed significantly lower DNA methylation level both in CRC and adenoma than in normal samples (Kruskal-Wallis test: \(p < 0.00104 \)) (Fig. 1a). MethylCap-seq results showed that decreased DNA methylation appeared principally in 40–60% and 80–100% methylation percentage categories in adenoma and CRC samples compared to NAT controls (Fig. 1b).

Top DMRs in CRC and adenoma samples identified by MethylCap-seq

In CRC samples known CRC-associated genes including heparan sulfate-glucosamine 3-sulfotransferase 2 (HS3ST2), dickkopf WNT signaling pathway inhibitor 2 (DKK2), tissue factor pathway inhibitor 2 (TFPI2) and syndecan 2 (SDC2) occurred in the top50 significantly hypermethylated 100 base paired regions (\(p < 0.001 \)), showing elevated promoter DNA methylation levels located within CpG islands. \(\Delta \beta \)-values representing methylation differences between CRC and NAT samples were in a range from 0.68 to 0.81. More than one third of the top50 hypermethylated DMRs align with weak (9%) or active (9%) promoters according to the Encode ChromHMM data. The majority of the top50 DMRs that were significantly hypomethylated in CRC compared to NAT samples (\(p < 0.001 \)) could not be assigned to genes, gene promoters, and were located in intergenic regions. Similar to the hypermethylated DMRs, large differences were found for hypomethylated DMRs with \(\Delta \beta \)-values between −0.74 and −0.65 (Additional file 1: Table S1A, B).

In the AD versus NAT comparison, 94% of the top50 highly methylated DMRs were found in CpG islands including generally known CRC-associated DNA methylation markers like Fli-1 proto-oncogene, ETS transcription factor (FLI1), GATA binding protein 4 (GATA4) and nerve growth factor receptor (NGFR). The top50 significant (\(p < 0.0001 \)) methylation alterations appeared to be more intensive in adenomas compared to NAT samples (\(\Delta \beta \)-values were between 0.86 and 0.79). Considering Encode ChromHMM data, 38% of top50 hypermethylated DMRs were found to be located in promoter regions, and 26% can function as active promoters. Similar to the results in CRC versus NAT comparison, almost all of the top50 DMRs showing significantly decreased DNA methylation in AD could not be annotated (\(p < 0.0001 \)) with stronger methylation differences than found in CRC versus NAT (\(\Delta \beta \)-values between −0.90 and −0.74) (Additional file 1: Table S1C, D).

DNA methylation alterations and expression of CRC-associated, frequently mutated genes

The mutation frequencies of a panel consisting 12 CRC-associated genes in CRC and AD samples were measured in our previous multiplex PCR-based CRC mutation hot-spot sequencing study [27]. DNA methylation alterations were also detected in the mutation hot-spot regions of 12 analyzed CRC-associated genes that are frequently mutated, including TP53, APC, KRAS, BRAF and FBXW7. DNA methylation changes on 100 base pair long analysis windows located on mutation hot-spot regions of TP53, APC, KRAS, BRAF and FBXW7 can be seen in Fig. 2. Evaluation of promoter methylation patterns of the 12 frequently mutated genes revealed several significant alterations including hypermethylation of the APC promoter in CRC and AD tissue specimens (\(p < 0.05; \Delta \beta = 0.27–0.39 \)) (Fig. 3a), hypermethylation of the TP53 promoter in AD (\(p < 0.001; \Delta \beta = 0.40 \)) and hypomethylation of CTNNB1 (\(p < 0.05; \Delta \beta \))
between −0.30 and −0.45) (Fig. 3a) and SMAD2 ($p = 0.024; \Delta \beta = −0.28$) in CRC compared to NAT samples.

SMAD4 promoter region was found to be hypomethylated both in AD and CRC biopsy samples ($p < 0.05; \Delta \beta$ between −0.25 and −0.32). mRNA expression profiles of the 12 analyzed CRC-associated genes revealed that APC and CTNNB1 could be regulated by DNA methylation during the colorectal carcinogenesis as showing inverse relation between promoter DNA methylation and mRNA expression (Fig. 3b).

DNA methylation on TP53 signaling pathway gene promoters – Relation with gene expression results

The TP53 pathway genes selected according to the KEGG pathway database were represented with 67 gene symbols. Promoters were defined as described earlier using Encode ChromHMM results [7]. In the CRC versus NAT comparison, 26.9% of TP53 pathway genes (18 from 67 genes) showed significant DNA methylation alterations in their promoter regions with at least a 10% methylation difference ($p < 0.05, \Delta \beta \geq 0.1$) (Table 1). In CRC samples hypermethylated DMRs were found in the promoter regions of 11 genes such as caspase 8 (CASP8), cyclin dependent kinase inhibitor 1A and 2A (CDKN1A and CDKN2A), insulin-like growth factor binding protein 3 (IGFBP3), sestrin 2 (SESN2) and tumor protein p73 (TP73), while seven TP53 pathway genes including G2 and S-phase expressed 1 (GTSE1) showed hypomethylation in their promoters. The box plots of the significant hyper-, and hypomethylated DMRs in TP53 pathway gene promoters showing the highest DNA methylation differences between CRC and NAT samples are represented on Fig. 4 and the box plots of all DMRs fulfilling the criteria can be seen in Additional file 2: Figure S1.

By applying the same criteria, significant promoter DNA methylation changes were observed in 37.3% of TP53 pathway genes (25/67) in AD compared to NAT samples ($p < 0.05, \Delta \beta \geq 0.1$) (Table 1). Fifteen TP53 pathway genes showed elevated promoter methylation in AD samples including CDKN2A, IGFBP3 and TP73, while hypomethylation was detected in the promoter regions of 10 genes such as GTSE1, damage specific DNA binding protein 2 (DDB2) and cyclin dependent kinase 1 (CDK1).

Using in silico expression analysis of microarray data from colonic biopsy samples (Affymetrix HGU133-Plus2.0 GEO accession numbers: GSE37364 [28], GSE18105 [29], GSE4107 [30], GSE9348 [31], GSE22242 [32], GSE8671 [33]), an inverse relation between promoter DNA methylation alteration and mRNA expression (Table 2) was shown for a number of differentially methylated TP53 pathway genes including CDKN1A, CDKN2A, GTSE1, IGFBP3, SESN2 and SESN3 (Table 2).

Discussion

The accumulation of DNA methylation alterations accompanied by genetic changes such as mutations and
deletions is known to contribute to the pathogenesis of various cancer types including CRC [3, 4]. Comprehensive DNA methylation changes found in precancerous adenoma stages can serve as early detection markers [7, 8, 11, 34]. In this study, global DNA methylation alterations were analyzed along the colorectal normal-adenoma-carcinoma sequence, and top differentially methylated genes/regions were identified using genome-wide MethylCap-seq analysis.

The second aim of the study was to find out if there is a potential correlation between DNA methylation and mutational alterations for 12 CRC-associated genes. Furthermore, the possible effects of the genetic and epigenetic changes on TP53 signaling pathway genes at the transcriptome level were also examined.

Global hypomethylation was detected by LINE-1 bisulfite sequencing in CRC samples compared to normal tissue in line with previous data [35–37]. Although to a lower extent, global DNA hypomethylation could be detected as early as the AD stage. LINE-1 bisulfite sequencing was used for overall hypomethylation analysis due to its superior advance over MethylCap-seq, which predominantly targets genomic regions with high methylated CpG density [14].

In this study, we identified 22 novel AD- and/or CRC-associated hypermethylated DMRs (approximately one fourth of top50 hypermethylated DMRs) which could be assigned to genes with previously undescribed methylation changes in cancers including CRC. These markers are principally involved in transcription regulation (e.g. BHLHE23, CUX2, HLX, MAFB, MKX, NKX1–1, and GSC2), transport processes (e.g. SLC24A2, GLRA3, LRRC38, SNAP91), and intracellular signaling (e.g. RGS20, GNAL, NRG3). Among the hypermethylated transcription factors, the expression of H2.0 like homeobox (HLX) was found to be reduced in moderately differentiated CRCs [38]. Moreover, HLX is also considered as a tumor suppressor in hepatocellular carcinoma [39]. The platelet derived growth factor receptor alpha
Table 1 DNA methylation alterations in promoter regions of TP53 signaling pathway genes in CRC and AD tissues compared to NAT samples

Gene symbol	Gene name	chr	start	stop	$\Delta \beta$ (CRC-NAT)	$\Delta \beta$ (AD-NAT)
ATM	ATM serine/threonine kinase	11	108092901	108093000	0.22*	
ATR	ATR serine/threonine kinase	3	142298701	142298800	0.26*	0.20*
BAX	BCL2 associated X, apoptosis regulator	19	49457601	49457700		−0.20*
BBC3	BCL2 binding component 3	19	47734901	47735000	0.29*	
CASP8	caspase 8	2	202098501	202098600	0.31**	0.17*
CCND3	cyclin D3	6	41908401	41908500		−0.20*
CCNE1	cyclin E1	19	30303701	30303800	0.51**	0.21*
CDK1	cyclin dependent kinase 1	10	62539101	62539200		−0.33**
CDK6	cyclin dependent kinase 6	7	92466601	92466700	0.33**	
CDKN1A	cyclin dependent kinase inhibitor 1A	6	36644601	36644700	0.23*	
CDKN2A	cyclin dependent kinase inhibitor 2A	9	21975301	21975400	0.29*	
CHEK1	checkpoint kinase 1	11	125496401	125496500	0.23*	
CYCS	cytochrome c, somatic	7	25164001	25164100	0.32*	
DDB2	damage specific DNA binding protein 2	11	47237401	47237500		−0.28*
EIZ4	EIZ4, autophagy associated transmembrane protein	11	125438801	125438900	0.29*	
FAS	Fas cell surface death receptor	10	90751601	90751700	−0.43***	
GADD45A	growth arrest and DNA damage inducible alpha	1	68150801	68150900	0.30*	
GTSE1	G2 and S-phase expressed 1	22	46693501	46693600	−0.26*	−0.31**
(PDGFRA) was observed to be hypermethylated in AD compared to normal controls in our study. It was found to be overexpressed in CRC, but in accordance with promoter hypermethylation detected in our MethylCap-seq study – it was down-regulated in adenomatous polyps [40]. Nevertheless, one fifth of hypermethylated and the majority of hypomethylated DMRs could not be associated with known genes, both in CRC versus NAT and AD versus NAT comparisons. The identified significant top50 methylation changes could be observed in a high proportion (> 80%) of the specimens within a sample group compared to the mutational alterations analyzed in this study.

On the basis of the methylation levels of the top50 hypomethylated and hypermethylated markers determined in this study, including the newly identified DMRs, the clear separation of CRC and NAT samples was also apparent for an independent sample set (Additional file 2: Figure S2). Furthermore, a partially overlapping set of samples also showed consistent DNA methylation profiles analyzed by MethylCap-seq and EpiTect Methyl qPCR methods (Additional file 2: Figure S3).

Approximately half of the top50 identified hypermethylated DMRs in CRC represent genes found to demonstrate elevated DNA methylation levels in different types of cancers [14, 16, 34, 41–60]. Seven of the top50 markers (BNC1 [16], DKK2 [48–50], HS3ST2 [51], MIR124–3 [52], SDC2 [14, 34, 53, 54], TFPI2 [55, 56] and ZIC1 [57]) were previously described as methylated genes in CRC. Hypermethylation of basonuclin (BNC1) zinc finger protein, SDC2 transmembrane heparin sulfate proteoglycan, and DKK2 dickkopf WNT signaling pathway inhibitor 2 genes were also reported in previous studies by our research group [16, 34]. Among the annotated AD versus NAT top50 hypermethylated DMRs, several markers were found to be hypermethylated in various cancers including FLI1 [58, 59], GATA4 [51] and NGFR [60]. These showed elevated methylation levels in CRC samples in other studies.

Table 1 DNA methylation alterations in promoter regions of TP53 signaling pathway genes in CRC and AD tissues compared to NAT samples (Continued)

Gene symbol	Gene name	chr	start	stop	Δβ (CRC-NAT)	Δβ (AD-NAT)
IGF1	insulin like growth factor 1	12	102871901	102872000	−0.26*	−0.23*
IGFBP3	insulin like growth factor binding protein 3	7	45961101	45961200	0.46*	
			45961401	45961500	0.54**	0.73***
			45961501	45961600	0.48*	0.60***
			45961701	45961800	0.42*	
MDM4	MDM4, p53 regulator	1	204486501	204486600	0.14*	
PTEN	phosphatase and tensin homolog	10	89621101	89621200	−0.34*	
RCHY1	ring finger and CHY zinc finger domain containing 1	4	76439201	76439300	−0.23*	
			76440301	76440400		−0.29*
RFWD2	ring finger and WD repeat domain 2	1	176177801	176177900	−0.33*	
RRM2	ribonucleotide reductase regulatory subunit M2	2	10261301	10261400	0.32*	
SERPINE1	serpin family E member 1	7	100773001	100773100	0.24*	
SESN1	sestrin 1	6	109331401	109331500	0.27*	
SESN2	sestrin 2	1	28585601	28585700	0.24*	
SESN3	sestrin 3	11	94965001	94965100	−0.24*	
SFN	stratifin	1	27189901	27190000	−0.35*	
			27190301	27190400	−0.34*	
SHISA5	shisa family member 5	3	48513701	48513701	0.24*	
THBS1	thrombospondin 1	15	39871901	39872000	−0.27*	
			39872801	39872900	−0.22*	
TP73	tumor protein p73	1	3567901	3567901	0.58**	0.82***
			3568001	3568001	0.53*	0.81***
			3568101	3568101	0.26*	
TSC2	TSC complex subunit 2	16	2097201	2097300	−0.26*	

* p < 0.05; ** p < 0.01; *** p < 0.001
Table 2 TP53 signaling pathway genes showing inverse relation between promoter DNA methylation and mRNA expression

Gene symbol	Gene name	promoter DNA methylation in our Metcap-Seq study*	mRNA expression in tumor/adenoma versus normal (logFCmin and logFCmax)**	Alterations in cancer/CRC/adenoma***
BAX	BCL2 associated X, apoptosis regulator	hypomethylated in adenoma	0.36 and 1.09	downregulation in CRC [72]
CDK1	cyclin dependent kinase 1	hypomethylated in adenoma	0.42 and 2.12	overexpression in cancer [73]
CDKN1A (p21)	cyclin dependent kinase inhibitor 1A	hypermethylated in CRC	−2.16 and −0.67	loss of expression in CRC [74]
CDKN2A (p16)	cyclin dependent kinase inhibitor 2A	hypermethylated in CRC	−0.81	hypermethylated in CRC [75, 76] and in adenoma [76]
CYCS	cytochrome c, somatic	hypermethylated in CRC	−0.43 and −1.83; −0.33 and −1.27	loss of protein expression in CRC and in adenoma [77]; its downregulation correlates with apoptosis resistance [77]
DDB2	damage specific DNA binding protein 2	hypomethylated in adenoma	1.31 and 1.54	suppresses tumorigenicity [78]
GTSE1	G2 and S phase expressed	hypomethylated in CRC	0.27 and 2.61	upregulation in several tumor types [80, 81]
IGFBP3	insulin like growth factor binding protein 3	hypermethylated in CRC	−1.11 and −2.27	hypermethylated in lung cancer [82]; downregulation in esophageal carcinoma [83]; lower level is associated with increased colon adenoma risk [84]
SESN2	sestrin 2	hypermethylated in CRC	−1.86 and −0.72	downregulation in tumors [85–87]; predicts unfavorable CRC outcome [85]
SESN3	sestrin 3	hypomethylated in CRC	0.46 and 1.09	involved in in vitro resistance to Irinotecan [88]

*Δβ-values see in Table 1

**according to Affymetrix HGU133Plus2.0 microarray data (GEO accession numbers: GSE37364 [28], GSE18105 [29], GSE4107 [30], GSE9348 [31], GSE22242 [32], GSE8671 [33])

***according to previous literature data
In this study, we present a comparative analysis between the promoter methylation and mRNA expression data of 12 genes frequently mutated during colorectal carcinogenesis and progression. The results revealed that DNA methylation can play a role in the regulation of \textit{APC} and \textit{CTNNB1} expression in addition to and in parallel with the mutational changes. The above genes are members of the WNT signaling pathway investigated in details in our previous analysis [7]. Hypermethylation of the \textit{APC} promoter [7, 50, 61, 62] and hypomethylation of the \textit{CTNNB1} promoter [7, 49] in AD and CRC samples have also been detected in other studies indicating that the DNA methylation alterations of frequently mutated canonical WNT pathway key genes can contribute to its constitutive activation in colorectal carcinogenesis from the premalignant adenoma stage.

Farkas et al. evaluated DNA methylation changes of genes frequently mutated in CRC using BeadChip450K technology, including 11 of the 12 genes analyzed in our study [49] and reported hypomethylation in \textit{CTNNB1} and \textit{SMAD2} promoters in CRC compared to NAT samples. Decreased promoter DNA methylation levels of these genes were also observed in our MethylCap-seq analysis together with methylation alterations of other genes such as \textit{SMAD4} and \textit{TP53} promoters during colorectal carcinogenesis.

In the current project, DNA methylation alterations were also detected in the mutation hot-spot regions of 12 analyzed CRC-associated frequently mutated genes including \textit{TP53}, \textit{APC}, \textit{KRAS}, \textit{BRAF}, and \textit{FBXW7}. In accordance with the observation that C \textendash{} T transitions at CpG sites are the most prevalent mutations in \textit{TP53} gene in colon tumors [63], the high mutation rate and methylation changes at mutation hot spot regions of this gene could be detected in our study. DNA methylation can cause mutations in tumor suppressor genes such as \textit{TP53}, as mutations occur 10–40 times more frequently on the basis of methylated cytosine than of unmethylated cytosine [19, 20]. The conversion of 5-methylcytosine to thymine via spontaneous deamination [23, 24] or by the APOBEC/AID system [64] can lead to a high mutational burden of 5-methylcytosine. The 5-methylcytosine can be involved in increased mutability through other mechanisms. According to a recent report, elevated C to G transversion rate in cancer genomes can be associated with 5-hydroxymethylcytosines derived by the oxidation of 5-methylcytosine catalyzed by TET proteins [65].

Hypomethylation was also detected in addition to the elevated methylation levels on certain mutation hot-spots. This is only seemingly contradictory to previous data indicating that the mutation rate is higher on methylated CpG sites than on unmethylated ones [21], as the relative hypomethylation (from high level to intermediate level) and not the absolute loss of DNA methylation was observed on certain mutation hot-spots in our study. It is in conjunction with the results of a recent work describing that among the methylated CpG sites, the rate of mutations (or SNP density) was found to be increased on less methylated CpG sites (20–60%) as compared to high-intermediately and highly methylated CpGs (60–80% ; > 80%) [21, 66]. Cancer-associated overall hypomethylation of the genome including heterochromatic DNA repeats, retrotransposons, and endogenous retroviral elements also contribute to genome instability [20].

In our analysis, DMRs could be identified on all chromosomes with the relatively largest number of aligned sequence reads on chromosome 17, similar to the MethylCap-seq study performed by Simmer et al. [14]. Next, DNA methylation alterations of \textit{TP53} (encoded on chr 17) signaling pathway genes were also investigated. \textit{TP53} pathway deregulation frequently occurs through the mutations or deletion of \textit{TP53} itself [67]. Outside the mutations of the \textit{TP53} gene, this pathway is rarely hit by any other mutations/polymorphisms [68–70]. Other mechanisms, such as epigenetic regulation including DNA methylation changes of \textit{TP53} pathway genes, also contribute to attenuating the pathway and participate in cancer development [67], and \textit{TP53} itself is also thought to regulate cancer-associated genes showing altered methylation patterns [71]. Accordingly, our MethylCap-Seq analysis revealed significant promoter DNA methylation changes in approximately one third of \textit{TP53} signaling pathway genes in CRC. Moreover, an even greater proportion of \textit{TP53} pathway gene promoters (around 40%) showed altered DNA methylation in AD samples compared to NAT controls. The alterations of the identified \textit{TP53} pathway genes with inverse promoter DNA methylation and mRNA expression differences (Table 2) were found to be associated with tumorigenesis in different cancer types including CRC [72–88]. Among these markers, in addition to the down-regulation of well known p16 (\textit{CDKN2A}) [75, 76] and p21 (\textit{CDKN1A}) [74] cyclin dependent kinase inhibitors, BCL2 associated X, apoptosis regulator (\textit{BAX}) [72], \textit{SESN2} [85–87], \textit{IGFBP3} [84] and cytochrome c, somatic (\textit{CYCS}) [77] are also thought to exert tumor suppressor functions. Diminished or loss of \textit{CYCS} protein expression in AD and CRC tissue was found to be correlated with apoptosis resistance [77]. \textit{DDB2} damage specific DNA binding protein, which was described to suppress the tumorigenicity in case of ovarian cancer [78] and reduces CRC invasiveness [79], showed promoter hypomethylation and overexpression in AD samples in our study, suggesting its contribution to the inhibition of uncontrolled expansion in the adenoma stage.
Conclusions

Using genome-wide DNA methylation analysis, we identified novel aberrant methylation profiles of genes including *HLX, CUX2, MKX, NRG3* and *PDGFRA* associated with the colorectal adenoma-carcinoma sequence progression. In addition to the genetic changes, DNA methylation alterations were also shown in the mutation hot-spot regions of 12 analyzed, CRC-associated, frequently mutated genes including, *TP53, APC, KRAS, BRAF*, and *FBXW7*. Global hypomethylation – which might be linked to genetic instability - could be detected as early as the adenoma stage.

Our study also revealed that promoter DNA methylation changes influence the mRNA expression level in the case of a significant part of the *TP53* pathway genes. Thus epigenetic alterations can also contribute to a whole pathway-related effect on DNA repair and apoptosis in addition to single gene (e.g. *TP53*) mutations.

In summary, the methyl-capture sequencing technique yielded reproducible, clinically relevant results on the whole genome level which are related to cancer phenotype development through mRNA expression changes and to the cancer genotype through the link of mutation formation.

Additional files

Additional file 1: Table S1A. Top50 hypermethylated DMRs in CRC versus NAT comparison. **Table S1B.** Top50 hypomethylated DMRs in CRC versus NAT comparison. Table S1C. Top50 hypermethylated DMRs in adenoma tissue compared to NAT samples. **Table S1D.** Top50 hypomethylated DMRs in adenoma tissue compared to NAT samples. (DOC 253 kb)

Additional file 2: Figure S1. Box plots of significant DMRs in *TP53* pathway gene promoters between CRC and NAT samples. **Figure S2.** DNA methylation pattern of top50 hypermethylated DMRs on an independent set of samples. **Figure S3.** DNA methylation profiles of the overlapping regions on methyl capture sequencing and EpiText array results. (DOC 902 kb)

Abbreviations

AD: Adenoma; AID: Activation-induced cytidine deaminase; APC: Adenomatosis polyposis coli; AP0BEC: Apolipoprotein B mRNA editing enzyme catalytic subunit; BAX: BCL2 associated X, apoptosis regulator; BHLLHE23: Basic helix-loop-helix family member e23; BNC1: Basonuclin; BRAF: B-Raf proto-oncogene, serine/threonine kinase; BS-PCR: Bisulfite-specific polymerase chain reaction; CASPB: Caspase 8; CDK1: Cyclin dependent kinase 1; CDRK1A1 and CDRK2A: Cyclin dependent kinase inhibitor 1A and 2A; CNTN1: Contactin 1; CRC: Colorectal cancer; CREB5: CAMP responsive element binding protein 5; CTNNB1: Catenin beta 1; CUX2: Cut like homebox 2; CYCS: Cytochrome c, somatic; DDB2: Damage specific DNA binding protein 2; DKK2: Dickkopf WNT signaling pathway inhibitor 2; DMR: Differentially methylated regions; EGFR: Epidermal growth factor receptor; ERBB4: Erb-b2 receptor tyrosine kinase 4; FBXW7: F-box and WD repeat domain containing 7; FDR: False Discovery Rate; FLI1: FlI-1 proto-oncogene, ETS transcription factor; FMR1: Formin 1; GATA4: GATA binding protein 4; GEQ: Gene Expression Omnibus database; GLRA3: Glycin receptor alpha 3; GNAI1: G protein subunit alpha 1; GSC2: Gossypoloid homeobox 2; GTSE1: G2 and S-phase expressed 1; HILX: H2.0 like homeobox; HS3ST2: Heparan sulfate-glucosamine 3-sulfotransferase 2; IGBP3: Insulin-like growth factor binding protein 3; KRAS: KRAS proto-oncogene, GTPase; LINE-1: Long interspersed nuclear element-1; LRRC38: Leucine rich repeat containing 38; MAFB: MAF bZIP transcription factor B; MAL: Mal, T-cell differentiation protein; MethylCap-Seq: Methyl capture sequencing; MLR124–3: MicroRNA 124–3; MKX: Mohawk homeobox; MSH6: MutS homolog 6; N: Normal tissue; NAT: Normal adjacent tissue; NGFR: Nerve growth factor receptor; NKR1X–1: NK1 homeobox 1; NRAS: NRAS proto-oncogene, GTPase; NRG3: Neuregulin 3; PDGFRA: Platelet derived growth factor receptor alpha; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PRIMA1: Proline rich membrane anchor 1; PTGDR: Prostaglandin D2 receptor; RGDS20: Regulator of G protein signaling 2; RBBS: Reduced representation bisulfite sequencing; SDC2: Syndecan 2; SESN2: Sestrin 2; SFRP1: Secreted frizzled related protein 1; SLC6A7: Solute carrier family 16 member 7; SLC24A2: Solute carrier family 24 member 2; SMAD2 and SMAD4: SMAD family member 2 and 4; SNAP91: Synapsosome associated protein 91; SOX1: SRY-box 1; TCGA: The Cancer Genome Atlas; TET: Tet methylcytosine dioxygenase; TFPI2: Tissue factor pathway inhibitor 2; TP53: Tumor protein p53; TP7: Tumor protein p73; WGBS: Whole genome bisulfite sequencing; ZIC1: Zic family member 1

Acknowledgements

We thank hereby the help of Theo deVos PhD, Nha Le MD and Pál Vágvölgyi for their careful language assistance. The results shown here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/.

Data of the present manuscript was presented at the following conferences:

1. Galamb O, Wichmann B, Péterfia B, Kalmár A, Csabai I, Bodor A, Ribi D, Barták BK, Tóth K, Tulassay Z, Molnár B. Whole methylome analysis of colorectal tissue samples using methyl capture sequencing revealed epigenetic alterations of frequently mutated genes during normal-adenoma-carcinoma sequence progression. 23rd United European Gastroenterology Week (Barcelona, Spain October 24-28, 2015).

2. Molnár B, Péterfia B, Wichmann B, Patai A, Galamb O, Kalmár A, Tulassay Z. Whole genome sequencing in colorectal tumors: DNA methylation alterations of colorectal tumor mutation and hot spot genes (APC, P53, B-catenin, KRAS). [Teljes genom methylációs szekvenciálást vastagbél daganatokban: a vastagbél daganat mutációs gének és forrópontok (APC, P53, B-catenin, KRAS) DNS methylációs megelőző elváltozásai]. Central Eur J Gastroenterol Hepatol. 2016;2 Suppl 1:105-6. (Hungarian Society of Gastroenterology 56th Annual Meeting, Sófok, Hungary, June 4-7, 2016).

3. Molnár B, Galamb O, Péterfia B, Wichmann B, Kalmár A, Nagy A, Széligé K, Márkus E, Tulassay Z. DNA methylation changes precede and contribute to mutational changes in colorectal adenoma and cancer development through genomic instability. Central Eur J Gastroenterol Hepatol. 2017;3 Suppl 1:110-1. (Hungarian Society of Gastroenterology 59th Annual Meeting, Sófok, Hungary, June 10-13, 2017).

4. Molnár B, Galamb O, Péterfia B, Wichmann B, Kalmár A, Nagy ZB, Barták BK, Széligé K, Markus E, Tulassay Z. DNA methylation changes precede and contribute to sporadic mutations in colorectal adenoma and cancer development through induced genomic instability. 25th United European Gastroenterology Week (Barcelona, Spain, October 28-November 1, 2017).

Funding

This study was supported by the National Research, Development and Innovation Office (KMR-12-1-2012-0216 and NKP-16-1-2016-0004 grants), the Novo Nordisk Foundation Interdisciplinary Synergy Programme Grant no. NNFI15OC016584 and by the Hungarian Scientific Research Fund (OTKA-K111743 grant). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

Additional data and materials may be obtained from the corresponding author on reasonable request.

Authors’ contributions

BM, OG, BP, ÁV designed the study; BM, BP, ZT, IP contributed to the design and critical review of the manuscript, the experiments; BM, OG, BW, ICS, AB analyzed the experimental data; BM, OG, BP, ÁVP designed the study; BM, ÁVP, ZT collected the samples; OG, BW, ICS, AB contributed to the discussions, writing, and interpretation of data and in writing the manuscript.
Ethics approval and consent to participate
The study was conducted according to the Helsinki declaration and approved by the local ethics committee and government authorities (Regional Institutional Committee of Science and Research Ethics (TUKEB) Nr: 69/2008, 202/2009 and 23/970/2011 Semmelweis University, Budapest, Hungary). All routine colonic biopsy samples from the patients were taken after written informed consent and ethical permission was obtained for participation in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkírályi str 46, Budapest H-1088, Hungary. 22nd Department of Internal Medicine, Semmelweis University, Szentkírályi str 46, Budapest H-1088, Hungary. 3Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs H-7624, Hungary.

Received: 15 November 2017 Accepted: 18 June 2018
Published online: 27 June 2018

References

1. Ferlay J, Soerjomataram I, Dikshit R, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136: E359-86.
2. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Forman D, Brat F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136: E359-86.

13. Hanley MP, Hahn MA, Li AX, Wu X, Lin J, Wang J, Choi AH, Ouyang Z, Fong Y, Pfeifer GP, et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colon neoplasia. Oncogene. 2017;36:3035–44.

14. Simmer F, Brinkman AB, Assenov Y, Matarese F, Kaan A, Sabatino L, Villanueva A, Huetas D, Esteller M, Lengauer T, et al. Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics. 2012;7:1355–67.

15. Kalmár A, Péterfia B, Holósi P, Galamb O, Spisák S, Wichmann B, Bodor A, Tóth K, Patai ÁV, Valcz G, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer. 2015;15:736.

16. Patai ÁV, Valcz G, Holósi P, Kalmár A, Péterfia B, Patai Á, Wichmann B, Spisák S, Barták BK, Leizeršt K, et al. Comprehensive DNA methylation analysis reveals a common ten-gene methylation signature in colorectal adenomas and carcinomas. PLoS One. 2015;10:e0133836.

17. Zhao Y, Sun J, Zhang H, Guo S, Gu J, Wang W, Tang N, Zhou X, Yu J. High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq. Clin Epigenetics. 2014;6:18.

18. De Meyer T, Bady P, Trooskens G, Kurscheid S, Bloch J, Kros JM, Hanfellenbr JA, Stupp R, Delorenzi M, Hegi ME, et al. Genome-wide DNA methylation detection by MethylCap-seq and Infinium HumanMethylation450 BeadChips: an independent large-scale comparison. Sci Rep. 2015;5:15375.

19. Esteller M, Herrman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196:1–7.

20. Li S, Wen YH, Wei YJ, Wang YH, Liu HB. Aberrant DNA methylation and genome instability and mutation in cancer. Cancer Genet Epigenet. 2015;3:1–5.

21. Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics. 2012;13(Suppl 8):S7.

22. Mugal CF, Eligren H. Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol. 2011;12:R58.

23. Holliday R. Grigg GW. DNA methylation and mutation. Mutat Res. 1993;285: 61–7.

24. Enrich M, Wang RYH. 5-Methylcytosine in eukaryotic DNA. Science. 1981; 212:1350–7.

25. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.

26. Chavez L, Lienhard M, Dietrich J. MEDIPS: (MeD)IP-seq data analysis. R package version 1.14.0. 2013.

27. Hanley MP, Hahn MA, Li AX, Wu X, Lin J, Wang J, Choi AH, Ouyang Z, Fong Y, Pfeifer GP, et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colon neoplasia. Oncogene. 2017;36:3035–44.

28. Galamb O, Wichmann B, Sipos F, Spisák S, Holósi P, Spisák S, Kalmár A, Patai ÁV, Valcz G, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer. 2015;15:736.

29. Kalmár A, Péterfia B, Holósi P, Galamb O, Spisák S, Wichmann B, Bodor A, Tóth K, Patai ÁV, Valcz G, et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colon neoplasia. Oncogene. 2017;36:3035–44.

30. Patai ÁV, Valcz G, Holósi P, Kalmár A, Péterfia B, Patai Á, Wichmann B, Spisák S, Barták BK, Leizeršt K, et al. Comprehensive DNA methylation analysis reveals a common ten-gene methylation signature in colorectal adenomas and carcinomas. PLoS One. 2015;10:e0133836.

31. Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics. 2012;13(Suppl 8):S7.

32. Mugal CF, Eligren H. Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol. 2011;12:R58.

33. Enrich M, Wang RYH. 5-Methylcytosine in eukaryotic DNA. Science. 1981; 212:1350–7.

34. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.

35. Chavez L, Lienhard M, Dietrich J. MEDIPS: (MeD)IP-seq data analysis. R package version 1.14.0. 2013.

36. Páterfia B, Kalmár A, Hollósi P, Kalmár A, Patai ÁV, Valcz G, et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. BMC Cancer. 2015;15:736.

37. Esteller M, Herrman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002;196:1–7.

38. Li S, Wen YH, Wei YJ, Wang YH, Liu HB. Aberrant DNA methylation and genome instability and mutation in cancer. Cancer Genet Epigenet. 2015;3:1–5.

39. Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics. 2012;13(Suppl 8):S7.

40. Mugal CF, Eligren H. Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol. 2011;12:R58.

41. Holliday R. Grigg GW. DNA methylation and mutation. Mutat Res. 1993;285: 61–7.

42. Enrich M, Wang RYH. 5-Methylcytosine in eukaryotic DNA. Science. 1981; 212:1350–7.

43. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.

44. Chavez L, Lienhard M, Dietrich J. MEDIPS: (MeD)IP-seq data analysis. R package version 1.14.0. 2013.

45. Petrěfia B, Kalmár A, Patai ÁV, Csabai I, Bodor A, Micsik T, Wichmann B, Egedi K, Holósi P, Kovalsky I, et al. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GJ junior platform. J Cancer. 2017;8:162–73.

46. Galamb O, Wichmann B, Sipos F, Spisák S, Krensik T, Tóth K, Leizeršt K, Kalmár A, Tulassy Z, Molnár B. Dysplasia-carcinoma transition specific transcripts in colonic biopsy samples. PLoS One. 2012;7:e48547.

47. Matsuyama T, Ishikawa T, Mogushi K, Yoshida T, Iida S, Uetake H, Mizushima H, Tanaka H, Sugihara K. MUC12 mRNA expression is an independent marker of prognosis in stage II and stage III colorectal cancer. Int J Cancer. 2010;127:2292–9.

48. Hanley MP, Hahn MA, Li AX, Wu X, Lin J, Wang J, Choi AH, Ouyang Z, Fong Y, Pfeifer GP, et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colon neoplasia. Oncogene. 2017;36:3035–44.
identification based on altered methylation pattern of SFRP1, SFRP2, SDC2 and PRIM1 in plasma samples. Epigenetics. 2017. doi: https://doi.org/10.1080/15592294.2017.1356697. [Epub ahead of print]

35. Ogino S, Noshio K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS. A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst. 2008;100:1734–8.

36. Mima K, Nowak JA, Qan CR, Cao Y, Song M, Masugi Y, Shi Y, da Silva A, Gu M, Li W, et al. Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget. 2016;7:55098–109.

37. Sunami E, de Maat M, Vu A, Turner RR, Hoon DS. LINE-1 hypomethylation during primary colon cancer progression. PLoS One. 2011;6:e18884.

38. Hellington P, Nepling P, Kallionis B, Woort P, Bentel J, Wattchow D, Tilley WD. Expression and localization of homeodomain proteins DLX4, HB9 and HB24 in malignant and benign human colorectal tissues. Antisense Natl. Cancer Res. 2004;24:955–62.

39. Liu T, Chen J, Xiao S, Lei H. H2O-like homeobox 1 acts as a tumor suppressor in hepatocellular carcinoma. Tumour Biol. 2016;37:6419–28.

40. Dai VC, Zhu XS, Nan QZ, Chen ZX, Xie JP, Fu YK, Lin YY, Lian QN, Song QF, Zhan XL. Identification of differential gene expressions in colorectal cancer and polyps by cDNA microarray. World J Gastroenterol. 2012;18:570–5.

41. Sepulveda JL, Gutierrez-Pajares JL, Luna A, Yao A, Tobias JW, Thomas S, Woo Y, Gorgi F, Komissarova EV, Califano A, et al. High-definition CpG methylation of novel genes in gastric carcinogenisis identified by next-generation sequencing. Mod Pathol. 2016;29:182–93.

42. Chong Y, Miura K, Ryu H, Abdul-Ghafar J, Munkhdelger J, Lkhagvadorj S, Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto M, Wang K, Liang Q, Li X, Tsoi H, Zhang J, Wang H, Go MY, Chiu PW, Ng EK, Wang K, Liang Q, Li X, Tsoi H, Zhang J, Wang H, Go MY, Chiu PW, Ng EK, Liu T, Chen J, Xiao S, Lei X. H2O-like homeobox 1 acts as a tumor suppressor in hepatocellular carcinoma. Tumour Biol. 2016;37:6419–28.

43. Chemelli RM, Yang AS, Vieira IA, Vianna FSL, Alemar B, Giacomazzi J, Brandalize APC, and the CpG island context and can be associated with genome-wide CpG island DNA methylation changes in genes frequently mutated in sporadic colorectal cancers. Cancer Res. 2011;71:7187–94.

44. Brenton JD, Tavaré S, Bienz M, et al. Boosting Wnt activity during colorectal cancer and in the DNA repair and Wnt/catenin signaling pathway in hepatocellular carcinoma. Hepatology. 2012;56:2277–88.

45. Supek F, Lehner B, Hajkova P, Warnecke T. Hydroxymethylated cytosines are abundant in mammalian cells and have distinct DNA demethylation functions. Epigenomics. 2014;6:567–81.

46. Schmutte C, Yang AS, Nguyen TT, Beart RW, Jones PA. Mechanisms for the involvement of DNA methylation in colon carcinogenesis. Cancer Res. 1996;56:2375–81.

47. Chong Y, Miura K, Ryu H, Abdul-Ghafar J, Munkhdelger J, Lkhagvadorj S, Jung SY, Lee M, Ji SY, Choi E, et al. DNA methylation status of a distinctively different subset of genes is associated with each histologic Lauren classification subtype in early gastric carcinogenesis. Oncol Rep. 2014;31:2535–44.

48. Prinzi F, Nozat S, Jahuja-Anias MH, Rodriguez-Torres S, Friess L, Michallidi C, Cok J, Combe J, Vargas G, Prado W, et al. Early detection of gastric cancer using global genome-wide and IF4, ELMO1, CLIP4 and MSC DNA methylation in endoscopic biopsies. Oncotarget. 2017;8:35011–16.

49. Wang K, Liang Q, Li X, Tsoi H, Zhang J, Wang H, Go MY, Chiu PW, Ng EK, Sun JJ, et al. MGDA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome. Gut. 2016;65:1619–31.

50. Matsuoka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto M, Takada K, Aburutani H, et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res. 2011;71:1781–97.

51. Komatsu M, Sasaki H. DNA methylation is a key factor in understanding differentiation phenotype in esophageal squamous cell carcinoma. Epigenomics. 2014;6:657–9.

52. Tsao OM, Yan M, Shi H, Yu PN, Kuo CC, Lin WC, Li HJ, Lin YW. SOX1 functions as a tumor suppressor by antagonizing the WNT/β-catenin signaling pathway in hepatocellular carcinoma. Hepatology. 2012;56:2277–87.

53. Silva AL, Dawson SN, Arends MJ, Guttula K, Hall N, Cameron EA, Huang TH, Brenton JD, Tavaré S, Bieznski P, et al. Boosting Wnt activity during colorectal cancer progression through selective high methylation of Wnt signaling antagonists. BMC Cancer. 2014;14:891.

54. Parkas SA, Vymetalakova V, Vodicika L, Vodicika P, Nilsson TK, DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathways. Epigenomics. 2014;6:679–91.

55. Silva TD, Vidal SA, Filipe AV, De Lima JM, Neto RA, Saad SS, Forones NM. DNA methylation as an epigenetic biomarker in colorectal cancer. Oncol Lett. 2013;6:1687–92.

56. Gonzalez V, Lozano JJ, Muñoz J, Balaguer P, Pellisé M, Rodríguez de Miguel C, Andreu M, Jover R, Llor X, Giraldé MD, et al. Aberrant gene promoter methylation associated with sporadic multiple colorectal cancer. PLoS One. 2010;5:e8777.

57. Harada T, Yamamoto E, Yamano HO, Nojima M, Maruyama R, Kumeoka K, Ashida M, Yoshikawa K, Kimura T, Harada E, et al. Analysis of DNA methylation in bowel lavage fluid for detection of colorectal cancer. Cancer Prev Res (Phila). 2013;7:1002–10.

58. Oh T, Kim N, Moon Y, Kim KS, Hoehn BD, Park CH, Kim TS, Kim NK, Chung HC, An S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J Mol Diagn. 2013;15:498–507.
modifying effects of patient age and body mass index on prognosis. Cancer Epidemiol Biomark Prev. 2009;18:2513–21.

75. Coppedè F, Mighelli F, Lopomo A, Failli A, Legitimo A, Consolini R, Fontanini G, Sensi E, Serradio A, Seccia M, et al. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism. Epigenetics. 2014;9:621–33.

76. Profká V, Kologera C, Tambouras N, Stephanou D, Tsianos E, Seleriadis K, Kolos G. Promoter methylation status of HMLH1, MGMT, and CDKN2A/p16 in colorectal adenomas. World J Gastroenterol. 2010;16:3553–60.

77. Payne CM, Holubec H, Bernstein C, Bernstein H, Dvorak K, Green SB, Wilson M, Dall'Agnol M, Dvorakova B, Warneke J, et al. Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk. Cancer Epidemiol Biomark Prev. 2005;14:2066–75.

78. Han C, Zhao R, Liu X, Srivastava A, Gong L, Mao H, Qu M, Zhao W, Yu J, Wang QE. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res. 2014;12:794–94.

79. Roy N, Bommi PV, Bhat UG, Bhattacharjee S, Elangovan I, Li J, Patra KC, Kopanja D, Blunier A, Benya R, et al. DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res. 2013;73:3771–82.

80. Short B. GTSE1 leads cancer cells into CIN. J Cell Biol. 2016;215:593.

81. Tian T, Zhang E, Fei F, Li X, Guo X, Liu B, Li J, Chen Z, Xing J. Up-regulation of GTSE1 lacks a relationship with clinical data in lung cancer. Asian Pac J Cancer Prev. 2011;12:2039–43.

82. Jin X, Liu X, Li X, Guan Y. Integrated analysis of DNA methylation and mRNA expression profiles data to identify key genes in lung adenocarcinoma. Biomed Res Int. 2016;2016:4369431.

83. Ye P, Qu CF, Hu XL. Impact of IGF-1, IGF-1R, and IGFBP-3 promoter methylation on the risk and prognosis of esophageal carcinoma. Tumour Biol. 2016;37:6893–904.

84. Keku TO, Sandler RS, Simmons JG, Galanko J, Woosley JT, Proffitt M, Omofoye O, McDoom M, Lund PK. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas. BMC Cancer. 2008;8:143.

85. Wei JL, Fu ZX, Fang M, Guo JB, Zhao QN, Lu WD, Zhou QY. Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol Rep. 2015;33:1349–57.

86. Xu H, Sun H, Zhang H, Liu J, Fan F, Li Y, Ning X, Sun Y, Dai S, Liu B, et al. An shRNA based genetic screen identified Sestrin2 as a potential tumor suppressor in lung cancer via suppression of Akt-mTOR-p70S6K signaling. PLoS One. 2015;10:e0124033.

87. Ro SH, Xue X, Ramakrishnan SK, Cho CS, Narnkoong S, Jiang J, Seiple IA, Ho A, Park HW, Shah YM, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204.

88. Choi SH, Hong HK, Cho YB, Lee WY, Yoo HY. Identification of Sestrin3 involved in the in vitro resistance of colorectal cancer cells to irinotecan. PLoS One. 2015;10:e0126830.