Study on the Behaviour of Green Concrete by the use of Industrial waste Material: A Review

Ashish Shukla¹, Nakul Gupta², Ankur Gupta³, Rajesh Goel⁴, Sanjeev Kumar⁵
¹Research Scholar, Department of Civil Engineering, GLA University, Mathura
²,³Assistant Professor, Department of Civil Engineering, Mathura
⁴Dean, Professor, NICMAR, NCR
⁵Associate Professor, JC Bose University of Science and Technology, YMCA, Faridabad

E-mail: as302389@gmail.com

Abstract. Concrete nowadays is a material of all time and also the common used substance in which primary element is the cement. That is lime on the basis of establish materials utilized throughout with aggregate to form concrete. Require of cement for creation purpose to build concrete had lead to the gain CO₂ discharge that view suspicion on worldwide nature. This day’s time the cost of achievement is mostly as well as the cost of substance. To build the concrete inexpensive and immature various attempt were construct on renewal of waste with cement, fine aggregate and course aggregate. Numerous find out the flexural strength, split tensile strength and compressive strength of concrete is on the basis of renewal with unfinished. That research analysis on the reaction of moderate the reduce waste materials like slag of blast furnace, dust of silica and dust of marble with Cement.

Keyword: Concrete, Cement mortar, Marble Dust, GGBS, Silica Fume, Split Tensile Strength, Flexural Strength, Compressive Strength, Water Absorption Test.

1. Introduction
Due to the many change of industrial revolution have occurred in life style of people in different way with industries [1]. Millions of tones waste generate by the excavation from all over the world including to the industries. Therefore, industrial waste in concrete has become necessary for the infrequent premises of concrete and for improving the material [2]. The development of solid technology decease expenditure of natural and decrease environmental pollution through the industrial waste. Sub-product mainly causes for the nature of earth from unhealthy rays [1]. The utilization of industrial wastes in concrete renew nature of resources, short out the problem for elimination of waste and find out more ideas to protect the nature. More industrial waste used as totally or partially replacement of cement. It evaluation thoroughly industrial waste materials. It can be utilize in sufficient concrete as cement replacement [3]. This paper evaluate some of these industrial wall organized like as slag of blast furnace waste, marble powder and dust of silica fume.

2. Industrial Waste
Industrial waste is generated by industries working. More amount of waste are generate in the industries. If waste is not reuse/repurpose and utilize adequately than bad effect in nature. Our environment acquire polluted day to day [4]. People occupation work on earth manufactured a significant weight of waste more than 2500 millions tones annually, involve the industrial and agricultural waste from civilization total population of urban and rural area. In industrial waste mainly problem achieved of pollution. Man made industries are throw out their garbage in wherever in the earth, that is destroying atmosphere and natural world [5]. As a result of over needs in our everyday
lives industrialization and technology are developing very rapidly. This industry is very essential for the advancement of our human civilization and good life style, industrialization is the only option. It has no other option but make together universal needs of stock, but the main important point and the problem is mainly industrial plant are environment conversable. Large number of garbage comes day to day in factories/industries. That lead to climate change and soil pollution, which is harmful to the biodiversity and natural world/the environment.

3. Waste Marble Dust Powder

One of the prime waste organised throughout the shaping, polishing and cutting waste create to the marble powder dust in the stone factory. Due to the procedure marble turns into 20%-25% of marble waste dust [6]. Marble procedures in India most successful industries, in nation concrete has the reaction of dissimilar marble waste dust substance. That will differ to the physical and engineering premises of fresh and solid concrete. It composite matter take part response in hydraulic, it make significant contribution to the formation and micro structure outcome of hydrate with significant utilize of renewal material, top reason that mix material of concrete reduction of cost ,save energy possibility of smallest amount to environment will provide sufficient product [7]. Mainly marble/stone industries have present to the achievement of environment issue caused by waste generation as dissimilar position of opening performance, Chemical part or element in marble waste dust are SiO₂, CaO, Fe₂O₃, Al₂O₃, MgO, Na₂O, K₂O, SO₃ [8]. The exploratory test finish on renewal marble waste powder to concrete and outcomes define to the table 1.

Table 1: Experimental Research: Partially Replacement Of Marble Powder in Concrete

Serial no.	Ref. No.	Researcher name	Adding material	Proportion	Experimental outcome
a.	[6]	R. Kumar, S. K. Kumar	cement	Marble dust: 0%, 5%, 10%, 20%, W/C Ratio-0.43	flexural strength, Compressive strength, split tensile strength
b.	[9]	Raghvendra., Trivedi M. K.	cement	Marble dust: 5%, 10%, 15%, 20%, 25% W/C Ratio (0.50), M20 grade	flexural strength, Compressive strength
c.	[10]	Shirulea P.A., Rahman A., Rakesh D.	cement	Marble dust: 0%, 5%, 10%, 15%, 20% W/C Ratio (0.50),	split tensile strength, Compressive strength
d.	[11]	R.Chandrakar, A. Singh	cement	Marble dust: 5%, 10%, 15%, 20%, 25%, 30%, M20 grade	Compressive strength
e.	[12]	B. K. Rao	cement	Marble dust: 0%, 5%, 10%, 15%,20% W/C Ratio (0.46), M30	flexural strength, split tensile strength, Compressive strength
f.	[13]	Priyatham B., P.R.V.S, Chaitanya	cement	Marble dust: 0%, 5%, 10% and 15%,	Compressive strength, tensile strength
g.	[14]	S. Pal, N. Kisku	cement	Marble dust: 0%, 5%, 10%, 15%, 20%, 25%, M20 grade W/C Ratio-0.50	Compressive strength
h.	[15]	R.Pandey, Paliwal M.C.	cement	Marble dust: 0%, 5%, 10%, 15% and 20%, M20 grade W/C Ratio-0.45	Compressive strength
4. Waste Silica Fume/Silica Dust

Silica fume is also called as condensed silica, micro silica, silica dust or volatized silica. Silica dust an unformed/ unstructured polymorph of silicon dioxide manufactured/ constructed refuse in electric furnace [16] [17] [18] [19] [20]. Volatized silica displayed in gray colour powder and greatly pozzolanic material [21] [17]. Less in amount permeability of concrete into chlorides ions, when include the silica dust in concrete, which help to the solution augmentation from corrosion because of its wide surface area. Bleeding in the minimize in size of concrete [21]. Through incorporating silica fume in concrete opposed by mechanical premises just like safe to corrosion, flexibility concrete strength, durability chemical and achieved the scraping resistance. Silica dust involvement in concrete become better the stability of the concrete and also secure the embedded steel to corrosion and its mainly profitable in concrete because its physical and chemical properties [17] [22]. Chemical element of silica dust are SiO₂, Fe₂O₃, Na₂O, MgO, Al₂O₃, CaO, K₂O carbon(C) and sulphate(S) [23]. it experimentation finished by changing in silica dust(SF) to concrete and result define to the table 2.

Serial no.	Ref. No.	Researcher name	Adding material	Proportion	Experimental outcome
a.	[24]	R. Kumar, J. Dhaka	cement	Silica fume: 0%, 5%, 9%, 12%, 15%, M35 grade	Flexural strength, split tensile strength, compressive strength
b.	[25]	G. Singh, R. Singh Bansal	cement	Silica fume: 8%, 10%, 12% W/C Ratio (0.42), M25 grade	Workability, Durability, Compressive strength, Split tensile strength, Compressive strength, Flexural strength,
c.	[26]	N. K. Amudhavalli, J. Mathew	cement	Silica fume: 0%, 5%, 10%, 15%, 20%, M35 grade	Split tensile strength, Compressive strength, Flexural strength,
d.	[16]	Sasikumar A, Tamilvanan K	cement	Silica fume: 0%, 25%, 30%, 40%, 50%, M30 grade	Compressive strength, Split tensile strength, Compressive strength, Flexural strength, Compressive strength,
e.	[17]	A. Sharma, Seema,	cement	Silica fume: 0%,10%, 20% W/C Ratio (0.5),	Split tensile strength, Compressive strength, Flexural strength, Compressive strength,
f.	[27]	A. Anwar, S. A. Ahmad	cement	Silica fume: 5%, 10%, 15% W/C Ratio (0.40),	Split tensile strength, Compressive strength, Flexural strength, Flexural strength,
g.	[28]	Shannugapriya T, Uma R.N.	cement	Silica fume: 2.5%, 5%, 7.5%, 10%, and 12.5%, M60 grade	Flexural strength, Split tensile strength, Compressive strength,
h. [29] Parthasarathi1 N, Prakash M, Satyanarayanan K.S. cement Silica fume: - powder of egg shell replaced 5%, 10%, 15% in adding with silica dust by 2.5%, 5%, 7.5% Flexural strength, Compressive strength, Split tensile strength,

5. Waste Ground Granulated Blast Furnace Slag
Blast furnace slag manufacturing in iron industry. Coke, lime stone and iron ore are fulfil in tank furnace, that is outcome of melted slag at 1500°C- 1600°C temperature, drifting in the form of molten iron. The formation of melt slag is around the 30% of SiO$_2$ and 40% CaO. The formation of slag is approximately same as the chemical composition of ordinary Portland cement [30] [31] [32] [33]. The main element of blast furnace slag is dissolved in water and it show alkalinity like as cement and concrete. It’s effectively utilized as a pozzolanic material [31]. Blast furnace slag has discharge small amount of lime, which generates effloresces or ettringite in its presence, and build cement in chemically stable. In addition blast furnace slag small amount of C$_3$A content after than normal cement responsiveness of decreasing with sulphate [34]. Chemical element of blast furnace slag are SiO$_2$, Fe$_2$O$_3$, CaO, Al$_2$O$_3$, MgO [35] [30]. This exploratory done by changing on GGBS to concrete and the outcomes defined to table 3.

Table 3: Experimental research: Partially Replacement of Blast furnace Slag (GGBS) in concrete

Serial no.	Ref. No.	Researcher name	Adding material	Proportion	Experimental outcome
a.	[32]	Yogendra, Patil O,	cement	Slag: 0%, 10%, 20%, 30% and 40%, W/C Ratio- 0.50	Flexural strength, Compressive strength
		.Patil P.N			
b.	[36]	K. Garg, K. Kapoor	cement	Slag: 0%, 10%, 20%, 30% and 40%, W/C Ratio- 0.50	Flexural strength, Compressive strength
c.	[37]	Prasanna K, Anandh	cement	Slag: 0%, 10%, 20%, 30%, 40% and 50%, W/C Ratio -0.45, M20-grade	Flexural strength, Compressive strength
		K.S., Ravishankar S			
d.	[34]	R. Rughooputh and J.	cement	Slag: 0%, 10%, 20%, 30%, 40% and 50%	Flexural strength, Compressive strength
		Rana			
e.	[31]	H.L.Chaithra , K.	Quarry sand, Cement	Slag: 30%, 40%, 50% QS- 40%, 50% and 60%, M40-grade	Flexural strength, Compressive strength
		Pramod , A. Chandrashekara			
f.	[38]	Lakshmaiah Chowdary P, Khaja	cement	Slag: 0%, 10%, 20%, 30% and 40%, M20-grade	Flexural strength, Compressive strength
		Khutubuddin S , et al			
6. Conclusions

- Use of waste material from various sectors has led to the development of eco-friendly concrete, that enriched the construction sector with more durable and strengthening material termed as Green Concrete.
- Disposed material such as Marble-Dust, Silica-Fumes and GGBS with their optimum dosage in concrete when replaced in various proportions with cement has led to an increase in strength of concrete.
- As per the researches done in the last decades, an optimum proportion of 10% has led to an increase of 32% compressive strength.
- These pozzolans also have an effect on the physical properties of concrete as GGBS leads to an increase in workability whereas both the other pozzolans that are Marble-Dust and Silica-Fumes reduce workability with an increase in proportion of these pozzolans as a replacement to cement.

7. Reference

[1] A. A. A. J. Karthikeyan, "A review on the effect of industrial waste in concrete," 2015.
[2] A. Ergün, "Effects of the usage of diatomite and waste marble powder as partial replacement." 2010.
[3] I. Manoj Kumar Dash a, "Sustainable use of industrial waste as partial replacement," 2016.
[4] P. P. A. M. Kaur, "Industrial Waste Utilization In Civil Engineering – A Sustainable Approach," vol. 9, 2014.
[5] P. H. P. W. R. Dhiraj Agrawal, "Utilization of industrial waste in construction material – A review," vol. 3, no. 1, 2014.
[6] S. K. K. Mr. Ranjan Kumar*, "Partial Replacement of Cement with Marble Dust Powder", vol. 5, no. 8, 2015.
[7] S. K, "Impact of Marble Dust on Cement Concrete," vol. 4, no. 6, 2017.
[8] A. E. M. A. E. Ali A. Aliabdo, "Re-use of waste marble dust in the production of cement and concrete," 2013.
[9] P. M. K. T. Raghuvendr1, "Partial Replacement of Cement with Marble Dust Powder in Cement Concrete," vol. 5, no. 5, 2017.
[10] A. R. .., R. D. G. Prof.P.A.Shirulea, "PARTIAL REPLACEMENT OF CEMENT WITH MARBLE DUST POWDER," vol. 1, no. 3, 2012.
[11] M. A. S. Ms. Ruchi Chandrakar1, "Cement Replacement in concrete with Marble Dust Powder".
[12] D. B. K. Rao, "Study on Marble Powder as Partial Replacement of Cement in Normal Compact Concrete," vol. 13, no. 4, 2016.
[13] B. P. V. S. Priyatham, "EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH MARBLE POWDER AND FINE AGGREGATE WITH QUARRY DUST," vol. 8, no. 6, 2017.
[14] P. N. K. Sonu Pal, "Effects of Partial Replacement of Cement with Marble Dust Powder on Properties of Concrete," vol. 3, no. 3, 2016.
[15] P. M. J. M. J. N. T. Rochakpandey*, "OPTIMUM PARTIAL REPLACEMENT OF CEMENT IN CONCRETE WITH WASTE MARBLE DUST IN CONJUNCTION WITH SUPER PLASTICIZERS," vol. 3, 2016.

[16] K. A. Sasikumar1, "Experimental Investigation on Properties of Silica Fumes as a Partial Replacement of Cement," vol. 5, no. 3, 2016.

[17] S. Ashutosh Sharma, "EFFECT OF PARTIAL REPLACEMENT OF CEMENT WITH SILICA FUME ON COMPRESSIVE STRENGTH OF CONCRETE," vol. 1, no. 1.

[18] M. A. S. E. A. Mohammed Abdul Samee #1, "Partial Replacement of Cement in Concrete with Fly Ash and Micro Silica," vol. 4, no. 4, 2017.

[19] E. A. Tanveer Asif Zerdi, "Study on Concrete By Partially Replacement of Silica Fume and Ceramic Tiles," vol. 5, no. 5, 2016.

[20] A. Bidare1 and V. Dhakad2, "Effect of Silica Fume on Strength Parameters of Concrete as a Partial Replacement of Cement," vol. 5, no. 8, 2017.

[21] E. A. Gumma Soumya, "STUDY ON MECHANICAL PROPERTIES OF CONCRETE USING SILICA FUME AND QUARTZ SAND AS REPLACEMENTS," vol. 119, 2018.

[22] M. A. B. M. H. Md Athar Kazmi1, "Investigations on Micro Silica (Silica Fume) as Partial Replacement of Cement in Concrete," vol. 6, no. 4, 2017.

[23] A. A. M. Anisur Rahman, "Use of Silica Fume in Stabilizing Cement-Dune Sand for Highway Materials," vol. 5, no. 1, 2017.

[24] E. D. Ram Kumar1, "PARTIAL REPLACEMENT OF CEMENT WITH SILICA FUME AND ITS EFFECTS ON CONCRETE PROPERTIES," vol. 4, no. 1, 2016.

[25] R. S. B. Gurdeep Singh1, "Effect of Partial Replacement of Cement by Silica Fume and Sand by Quarry Dust on Strength and Durability of Concrete," vol. 4, no. 9, 2017.

[26] J. M. N. K. Amudhavalli1, "EFFECT OF SILICA FUME ON STRENGTH AND DURABILITY PARAMETERS OF CONCRETE," vol. 3, no. 1, 2012.

[27] S. A. A. Abdullah Anwar1*, "An Experimental Investigation on Strength Behaviour of Concrete by Partial Replacement of Fine Aggregate with Copper Slag and Cement with Silica Fume," vol. 6, no. 1, 2018.

[28] T. ,. 2. 1, "Experimental Investigation on Silica Fume as partial Replacement of Cement in High Performance Concrete," vol. 2, no. 5, 2013.

[29] * M. P. I. E. A. N. Parthasarathi1, "EXPERIMENTAL STUDY ON PARTIAL REPLACEMENT OF CEMENT WITH EGG SHELL POWDER AND SILICA FUME," vol. 10, no. 2, 2017.

[30] V. G. N. E. A. Chalamcharla Venu Gopal, "Partial Replacement of Cement with GGBS in Concrete," vol. 3, no. 5, 2017.

[31] P. K. D. C. A. Chaithra H L1, "An Experimental Study on Partial Replacement of Cement by GGBS and Natural Sand by Quarry Sand in Concrete," vol. 3, no. 2, 2015.

[32] P. E. A. Yogendra O. Patil, "GGBS as Partial Replacement of OPC in Cement Concrete – An Experimental Study," vol. 2, no. 11, 2013.

[33] D. S. A. K. Nagaraju2, "Ground Granulated Blast Slag (GGBS) In Concrete – A Review", " vol. 12, no. 4, 2015.

[34] J. R. Reshma Rughoooputh, "Partial Replacement of Cement by Ground Granulated Blast furnace Slag In Concrete," 2014.

[35] N. R. P. J. Wainwright, "The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete".

[36] E. K. K. Er. Kimmi Garg, "ANALYSIS OF STRENGTH CHARACTERISTICS OF GGBS CONCRETE," vol. 5, no. 4, 2016.

[37] K. S. A. S. R. K. Prasanna, "AN EXPERIMENTAL STUDY ON STRENGTHENING OF CONCRETE MIXED WITH GROUND GRANULATED BLAST FURNACE SLAG (GGBS),"
vol. 12, no. 8, 2017.

[38] S. K. K. , B. V. E. A. P Lakshmaiah Chowdary, "An Experimental Study on Cement Replacement by GGBS in Concrete," vol. 6, no. 4, 2017.

[39] K. C. S. Mayank Mishra, "EXPERIMENTAL AND ECONOMICAL ANALYSIS OF CONCRETE USING STEEL FIBER AND GGBS AS PARTIAL REPLACEMENT OF CEMENT," 2018.

[40] J. H. Manjunatha M, "Study of Early Age Properties and Behaviour of Concrete with GGBS as Partial Replacement of Cement," 2015.