Atomistic Models of General Anesthetics for use in In Silico Biological Studies

Mark J. Arcario, Christopher G. Mayne, and Emad Tajkhorshid*

Center for Biophysics and Computational Biology, Departments of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

E-mail: emad@life.illinois.edu

Phone: +1 (217) 244-6914. Fax: +1 (217) 244-6078

*To whom correspondence should be addressed
Table S1: Summary of Recent Molecular Dynamics Simulations Utilizing Anesthetics

Summary	Anesthetic	Force Field	Parameter Reference
Interaction of Propofol with an apoferritin dimer¹	Propofol	CHARMM	—
Parameterization of Isoflurane and free energy of binding to apoferritin²	Isoflurane	CHARMM	—
Interaction of Halothane with α4β2 nAChR model³	Halothane	CHARMM	¹
Flooding of GLIC with Isoflurane⁴	Isoflurane	CHARMM	²
Dynamics of GLIC with bound Isoflurane⁵	Isoflurane	CHARMM	²
Free energy of Propofol binding to GLIC⁶	Propofol	CHARMM	—
Effect of Propofol Stoichiometry on GLIC dynamics⁷	Propofol	CHARMM	—
Testing the effects of Propofol on GLIC mutants⁸	Propofol	CHARMM	⁸
Flooding of voltage-gated Na⁺ channel, NaChBac, with Isoflurane¹⁰	Isoflurane	CHARMM	²
Free energy of binding to GLIC and GLIC mutants¹¹	Desflurane	GROMOS	—
Flooding of Na⁺ channel, NaChBac, with Sevoflurane¹²	Sevoflurane	CHARMM	—

A literature search for articles published within the last 5 years was conducted in PubMed using the keywords “desflurane”, “isoflurane”, “sevoflurane”, “propofol”, “anesthesia”, and “anesthetic” in conjunction with “molecular dynamics”. Here, the title of the article is presented along with the anesthetic used and force field. Those entries with “—” in “Parameter Reference” signify that the parameters used in the paper were developed in the same study.
Anesthetic	Previous	Present	Density (g/mL)	∆H_vap (kcal/mol)
Isoflurane^a	1.38 (-44.5%)	2.91 (17.8%)	1.53±0.01 (2.7%)	8.48±0.03 (11.43%)
Propofol^b	2.02 (26.3%)	1.92 (20%)	0.93±0.01 (9.7%)	15.82±0.02^c

Calculated values for dipole moment, density and heat of vaporization are presented for both the previously parameterized model (Previous) and the currently developed models (Present) with the percent error from experimental values shown in parenthesis. The geometry optimized molecule with the optimized charge distribution was utilized to calculate the dipole moment. Again, it should be noted that the values for the in silico models should be 10-20% higher than experimental measurements to reproduce condensed phase properties. The density and heat of vaporization are presented mean±S.D. calculated across five replicates.

^a. Calculated physicochemical properties are done using the parameters from Hénin, et al. 2

^b. Calculated physicochemical properties are done using the parameters from LeBard, et al. 7

^c. Due to the high boiling point of propofol (529K), the heat of vaporization varies widely as discussed in the Results section.
Figure S1: Plot of the fraction of desflurane (blue), isoflurane (green), sevoflurane (orange), and propofol (red) partitioned into the POPC membrane as a function of time.
References

(1) Vedula, L. S.; Brannigan, G.; Economou, N. J.; Xi, J.; Hall, M. A.; Liu, R.; Rossi, M. J.; Dailey, W. P.; Grasty, K. C.; Klein, M. L. et al. A Unitary Anesthetic Binding Site at High Resolution. J. Biol. Chem. 2009, 284, 24176–24184.

(2) Hénin, J.; Brannigan, G.; Dailey, W. P.; Eckenhoff, R.; Klein, M. L. An Atomistic Model for Simulations of the General Anesthetic Isoflurane. J. Phys. Chem. B 2010, 114, 604–612.

(3) Willenbring, D.; Xu, Y.; Tang, P. The Role of Structured Water in Mediating General Anesthetic Action on α4β2 nAChR. Phys. Chem. Chem. Phys. 2009, 12, 10263–10269.

(4) Liu, Z.; Xu, Y.; Saladino, A. C.; Wymore, T.; Tang, P. Parameterization of 2-Bromo-2-Chloro-1,1,1-Trifluoroethane (halothane) and Hexfluoroethane for Nonbonded Interactions. J. Phys. Chem. A 2004, 108, 781–786.

(5) Brannigan, G.; LeBard, D. N.; Hénin, J.; Eckenhoff, R. G.; Klein, M. L. Multiple Binding Sites for the General Anesthetic Isoflurane Identified in the Nicotinic Acetylcholine Receptor Transmembrane Domain. Proc. Natl. Acad. Sci. USA 2010, 107, 14122–14127.

(6) Willenbring, D.; Liu, L. T.; Mowrey, D.; Xu, Y.; Tang, P. Isoflurane Alters the Structure and Dynamics of GLIC. Biophys. J. 2011, 101, 1905–1912.

(7) LeBard, D. N.; Hénin, J.; Eckenhoff, R. G.; Klein, M. L.; Brannigan, G. General Anesthetics Predicted to Block the GLIC Pore with Micromolar Affinity. PLoS Comput. Biol. 2012, 8, e1002532.

(8) Mowrey, D.; Cheng, M. H.; Liu, L. T.; Willenbring, D.; Lu, X.; Wymore, T.; Xu, Y.;
Tang, P. Asymmetric Ligand Binding Facilitates Conformational Transitions in Pentameric Ligand–Gated Ion Channels. *J. Am. Chem. Soc.* 2013, **135**, 2172–2180.

(9) Tillman, T.; Cheng, M. H.; Chen, Q.; Tang, P.; Xu, Y. Reversal of Ion-Charge Selectivity Renders the Pentameric Ligand-Gated Ion Channel GLIC Insensitive to Anaesthetics. *Biochem. J.* 2013, **449**, 61–68.

(10) Raju, S. G.; Barber, A. F.; LeBard, D. N.; Klein, M. L.; Carnevale, V. Exploring Volatile General Anesthetic Binding to a Closed Membrane-Bound Bacterial Voltage-Gated Sodium Channel Via Computation. *PLoS Comput. Biol.* 2013, **9**, e1003090.

(11) Brömstrup, T.; Howard, R. J.; Trudell, J. R.; Harris, R. A.; Lindahl, E. Inhibition Versus Potentiation of Ligand-Gated Ion Channels Can Be Altered by a Single Mutation That Moves Ligands Between Intra- and Intersubunit Sites. *Structure* 2013, **21**, 1307–1316.

(12) Barber, A. F.; Carnevale, V.; Klein, M. L.; Eckenhoff, R. G.; Covarrubias, M. Modulation of a Voltage-Gated Na⁺ Channel by Sevoflurane Involves Multiple Sites and Distinct Mechanisms. *Proc. Natl. Acad. Sci. USA* 2014, **111**, 6726–6731.