Almost a decade after its introduction to the scientific community, “Altmetrics” now has its’ own journal and a place in the mainstream evaluative methods of scholarly output.

Keywords: Altmetrics; Journal of Altmetrics
Altmetrics are diverse and dynamic. Altmetrics are multi-faceted and fast. Fang and Costas (2018) showed that tweets and reddits to research output accumulate half of the counts in only about 15 days. They are often viewed as "early signals of impact" (Wilsdon et al., 2017).

It should be noted that sometimes the early interest does not reflect on the traditional measure of citation impact collected years later. As an example, consider the first two top-ranked publications in the Altmetric Top-100 list for 2014 (https://www.altmetric.com/top100/2014/). The first one, "Experimental evidence of massive-scale emotional contagion through social networks" had an altmetric score of 5,044 at the end of 2014, and the second one "Variation in melanism and female preference in proximate but ecologically distinct environments" with an attention score of 4,083. The first article received 612 citations on Scopus, 458 citations on WoS and 1371 citation on Google Scholar until mid-July 2018. Its current altmetric score is 6868. The second article was cited only 4 times both on WoS and on Scopus and 7 times on Google Scholar – thus in this case the early attention did not predict future citation impact. It is also reflected in its current Altmetric attention score which decreased from 4,083 to 1,887.

Despite of their many advantages, altmetrics have some downsides that need attention, here are some:

- Most of the data are proprietary, and it is not clear how they are collected.
- Data are not monitored, and thus can easily be manipulated (more easily than citation counts).
- Reliability of the data – fluctuation in counts, stability of the platforms.
- Social media platforms are dynamic, they can lose popularity fast and even disappear (e.g Delicious, or Connotea), while other platforms may become more central for exposing and assessing research.
- Researchers and policy makers are not convinced of the added-value altmetrics provide (Aharony, Bar-Ilan, Julien, Benyamin-Kahana, & Cooper, n.d).

The most important challenges for me are to understand the meaning of altmetrics and what they measure (validity), why one gets involved, why others refrain from participating. Initial steps towards interpreting altmetrics were taken by Haustein, Bowman and Costas (2016).

That said, there is constant growth in the amount of research in the area of altmetrics which was demonstrated in a recent comprehensive literature review of the topic published by Sugimoto, Work, Larivière and Haustein (2017).

The need for a dedicated journal for altmetrics can also be demonstrated by the sheer growth in research articles in this area. Combining all the references in the above literature review with new articles that have ‘altmetrics” as a topic in their title, abstract or keyword, we found 978 publications on altmetrics and related topics that are indexed in Web of Science and Scopus.

Figure 1 demonstrates the overall growth in publications on the topic. It is worth noting that as of July 2018, the number of publications is more than half the articles published in 2017. This in itself supports our assumption that there is need for a specialized publication outlet for research on altmetrics in the form of The Journal of Altmetrics.

The five most prolific publication sources on altmetrics are: Scientometrics (88), JASIST (38), PloS One (33), Profesional de la Informacion (29) and the Journal of Informetrics (25).

In order to analyze research on altmetrics, we considered only publications that were directly relevant, (publications providing background information were excluded) and had dois. This dataset is comprised of 693 publications. We retrieved citations from the Web of Science (WOS) and Scopus, reader counts from Mendeley and other altmetrics from the two major aggregators: Altmetric.com and PlumX.
Table 1: Yearly average counts by different indicators and sources. Cits. stands for citations and FB for Facebook, the numbers in bold are the largest numbers in each column.

Year of publication	Average Scopus citations	Average WoS citation	Average Mendeley Readers	Average tweets – Altmetric	Average tweets – Plum	Average blog mentions – Altmetric	Average blog mentions – Plum	Average FB posts – Altmetric	Average likes, shares, comments on FB -Plum	Average Wikipedia mentions – Altmetric	Average Wikipedia mentions – Plum
2005	29.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2007	54.0	47.0	115.5	2.0	2.0	22.0	2.0	0.0	0.0	2.0	10.0
2008	45.7	38.3	102.0	8.7	6.7	4.0	1.0	1.0	1.0	4.5	1.5
2009	46.3	43.5	**223.3**	10.0	30.0	13.0	0.0	1.0	1.0	4.5	2.0
2010	54.4	23.4	88.6	9.8	8.0	2.6	2.5	0.0	0.0	1.0	1.0
2011	**95.1**	**79.2**	203.8	210.1	**177.5**	10.6	3.2	7.5	148.0	1.3	14.0
2012	46.0	43.6	103.6	72.3	47.9	7.2	2.7	2.8	13.8	1.0	1.7
2013	33.8	35.9	96.0	81.2	59.0	5.2	2.6	12.4	**3,365.9**	1.1	17.0
2014	27.9	29.1	115.6	**214.2**	162.8	5.8	**4.8**	14.8	322.5	1.4	14.0
2015	13.9	13.0	64.9	29.3	23.5	2.2	1.5	3.3	1,123.1	1.3	12.0
2016	7.4	5.5	47.2	35.1	27.9	1.6	1.5	2.2	2,290.6	1.0	1.1
2017	2.5	2.2	26.8	56.6	62.9	1.9	2.4	3.0	27.0	1.0	1.3
2018	0.4	0.2	14.4	40.2	41.3	1.6	1.2	1.8	18.4	1.0	1.0
Total	**17.6**	**14.3**	**62.1**	**74.8**	**63.2**	**3.9**	**2.5**	**6.3**	**1,125.5**	**1.2**	**1.5**
As expected, the highest coverage among the altmetric indicators is by Mendeley (97.3%) (Zahedi, Costas, & Wouters, 2014). Its coverage is higher than that of the citation databases (WoS –75.0%, Scopus 91.8%). Mendeley is followed by Twitter (Altmetric 70.0%, PlumX 65.1%) (Thelwall, Haustein, Larivière, & Sugimoto, 2013), blogs (Altmetric, 32.6%, PlumX 16.0%), Facebook (Altmetric 20.1%, PlumX 24.8%) and Wikipedia Altmetric 6.6%, PlumX 8.4%). Altmetric.com and PlumX track other altmetric indicators as well, but these had negligible coverage, except for usage indicators, collected by PlumX. The altmetric coverage of “altmetrics” is considerably higher than those reported for a large dataset (more than 700,000 items) by Costas, Zahedi and Wouters (2015), indicating that altmetrics are a “hot” topic.

Table 1 displays the yearly average counts per publication for several indicators. Note that Altmetric counts the number of Facebook posts, while PlumX provides the sum of likes, comments and shares, thus the two are not comparable. Both Mendeley reader counts and tweets are much higher than citations.

Lastly, Table 2 displays the “mosts” by different data sources. Interesting to note that the only item that appeared more than once was the article “Online collaboration: Scientists and the social network” (Van Noorden, 2014). This article presents the result of a large survey on how researchers use social media platforms.

In this editorial, I described what altmetrics means to the Journal’s Editorial Board and showed the growing interest in the topic which justifies the launch of a new specialty journal, the Journal of Altmetrics. We hope that soon the Journal of Altmetrics will be among the top journals that publish research on altmetrics and will join the established bibliometrics and research assessment journals such as Scientometrics and the Journal of Informetrics.

Competing Interests
The author has no competing interests to declare.

References
Aharony, N., Bar-Ilan, J., Julien, H., Benyamin-Kahana, M., & Cooper, T. (no date). Acceptance of altmetrics by LIS scholars: An exploratory study. Journal of Librarianship and Information Science. DOI: https://doi.org/10.1177/0961000617742461

Altmetric.com. (no date). What are altmetrics? Retrieved from: https://www.altmetric.com/about-altmetrics/what-are-altmetrics/.

Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903. DOI: https://doi.org/10.1016/j.joi.2014.09.005

Costas, R., Zahedi, Z., & Wouters, P. (2015). Do “altmetrics” correlate with citations? Extensive comparison of altmetric indicators with citations from a multidisciplinary perspective. Journal of the Association for Information Science and Technology, 66(10), 2003–2019. DOI: https://doi.org/10.1002/asi.23309

Fang, Z., & Costas, R. (2018). Studying the posts accumulation patterns of various Altmetric.com data sources. To be presented at the Altmetrics18 Workshop, London, UK.

Haustein, S., Bowman, T. D., & Costas, R. (2016). Interpreting ‘altmetrics’: Viewing acts on social media through the lens of citation and social theories. In: C. R. Sugimoto (Ed.), Theories of Informetrics and Scholarly Communication (pp. 307–405). Berlin: De Gruyter. DOI: https://doi.org/10.1515/9783110308464-022

Table 2: Publications receiving the highest counts by source. A or P at the end of a source name means that it was reported by Altmetric or by PlumX respectively.

Data source	First author	Title	Source	Pub. Year
Scopus	Tenopir	Data sharing by scientists: Practices and perceptions	PloS1	2011
WoS	Eysenbach	Can tweets predict citations? Metrics of social impact based on Twitter and correlation with traditional metrics of scientific impact	JMRI	2011
Mendeley	Hall	The Kardashian index: A measure of discrepant social media profile for scientists	Genome Biology	2014
Twitter A & P	Van Noorden	Online collaboration: Scientists and the social network	Nature	2014
Blog P	Faulkes	The vacuum shouls back: Postpublication peer review on social media	Neuron	2014
Facebook A	Van Noorden	Online collaboration: Scientists and the social network	Nature	2014
Facebook P	Mewburn	Why do academics blog? An analysis of audiences, purposes and challenges	Studies in Higher Education	2013
Wikipedia A	8 publications, each mentioned twice, including Van Noorden			
Wikipedia P	Piwowar	Altmetrics: Value all research products	Nature	2013
NISO. (2016). Outputs of the NISO Alternative Assessment Metrics Project. NISO RP-25-2016. Retrieved from: https://groups.niso.org/apps/group_public/download.php/17091/NISO%20RP-25-2016%20Outputs%20of%20the%20NISO%20Alternative%20Assessment%20Project.pdf.

Plum Analytics. (2018). PlumX metrics. Retrieved from: https://plumanalytics.com/learn/about-metrics/.

Priem, J. (2014). Altmetrics. In: B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 263–88). Cambridge, MA: MIT Press.

Priem, J., Taraborelli, D., Groth, P., & Neylon, C. (2010). Altmetrics: A manifesto. Retrieved from: http://altmetrics.org/manifesto.

Thelwall, M., Haustein, S., Lariviere, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PloS one, 8(5), e64841. DOI: https://doi.org/10.1371/journal.pone.0064841

Van Noorden, R. (2014). Online collaboration: Scientists and the social network. Nature News, 512(7513), 126. DOI: https://doi.org/10.1038/512126a

Wilsdon, J., Bar-Ilan, J., Frodeman, R., Lex, E., Peters, I., & Wouters, P. F. (2017). Next-generation metrics: Responsible metrics and mvaluation for Open Science. Report of the European Commission Expert Group on Altmetrics. Retrieved from: https://openaccess.leidenuniv.nl/bitstream/handle/1887/58254/report.pdf?sequence=1.

Zahedi, Z., Costas, R., & Wouters, P. (2014). How well developed are altmetrics? A cross-disciplinary analysis of the presence of 'alternative metrics' in scientific publications. Scientometrics, 101(2), 1491–1513. DOI: https://doi.org/10.1007/s11192-014-1264-0