A note on the Nielsen realization problem for connected sums of $S^2 \times S^1$

Bruno P. Zimmermann
Università degli Studi di Trieste
Dipartimento di Matematica e Geoscienze
34127 Trieste, Italy

Abstract. We consider finite group-actions on 3-manifolds \mathcal{H}_g obtained as the connected sum of g copies of $S^2 \times S^1$, with free fundamental group F_g of rank g. We prove that, for $g > 1$, a finite group of diffeomorphisms of \mathcal{H}_g inducing a trivial action on homology is cyclic and embeds into an S^1-action on \mathcal{H}_g. As a consequence, no non-trivial element of the twist subgroup of the mapping class group of \mathcal{H}_g (generated by Dehn twists along embedded 2-spheres) can be realized by a periodic diffeomorphism of \mathcal{H}_g (in the sense of the Nielsen realization problem). We also discuss when a finite subgroup of the outer automorphism group $\text{Out}(F_g)$ of the fundamental group of \mathcal{H}_g can be realized by a group of diffeomorphisms of \mathcal{H}_g.

2010 Mathematics Subject Classification: 57M60, 57M27, 57S25

Key words and phrases: 3-manifold; connected sums of $S^2 \times S^1$; finite group action; mapping class group; outer automorphism group of the fundamental group; Nielsen realization problem

1. Introduction

All finite group-actions in the present paper will be faithful, smooth and orientation-preserving, all manifolds orientable. We are interested in finite group-actions on connected sums $\mathcal{H}_g = \#_g (S^2 \times S^1)$ of g copies of $S^2 \times S^1$; we will call \mathcal{H}_g a closed handle of genus g in the following. The fundamental group of \mathcal{H}_g is the free group F_g of rank g. Considering induced actions on the fundamental group and on the first homology $H_1(\mathcal{H}_g) \cong \mathbb{Z}^g$, there are canonical maps

$$\text{Diff}(\mathcal{H}_g) \to \text{Out}(F_g) \to \text{GL}(g, \mathbb{Z})$$

where $\text{Diff}(\mathcal{H}_g)$ denotes the orientation-preserving diffeomorphism group of \mathcal{H}_g and $\text{Out}(F_g) = \text{Aut}(F_g)/\text{Inn}(F_g)$ the outer automorphism group of its fundamental group.

Theorem 1. Let G be a finite group acting on a closed handle \mathcal{H}_g of genus $g > 1$ such that the induced action on the first homology of \mathcal{H}_g is trivial. Then G is cyclic and a subgroup of an S^1-action on \mathcal{H}_g; in particular, all elements of G are isotopic to the identity.
For a description and classification of circle-actions on 3-manifolds and closed handles, see [14].

Denoting by $\text{Mod}(\mathcal{H}_g)$ the mapping class group of isotopy classes of orientation-preserving diffeomorphisms of \mathcal{H}_g, there are induced maps

$$\text{Mod}(\mathcal{H}_g) \to \text{Out}(F_g) \to \text{GL}(g, \mathbb{Z}).$$

Let $\text{Twist}(\mathcal{H}_g)$ denote the subgroup of $\text{Mod}(\mathcal{H}_g)$ generated by all Dehn twists along embedded 2-spheres in \mathcal{H}_g (i.e., by cutting along a 2-sphere and regluing after twisting by one full turn around an axis; since such a twist represents a generator of $\pi_1(SO(3)) \cong \mathbb{Z}_2$, its square is isotopic to the identity). By classical results of Laudenbach [6],[7] there is a short exact sequence

$$1 \to \text{Twist}(\mathcal{H}_g) \hookrightarrow \text{Mod}(\mathcal{H}_g) \to \text{Out}(F_g) \to 1;$$

moreover $\text{Twist}(\mathcal{H}_g) \cong (\mathbb{Z}_2)^g$ is generated by the sphere twists around the core spheres $S^2 \times \ast$ of the g different $S^2 \times S^1$ summands of \mathcal{H}_g (twists around separating 2-spheres instead are isotopic to the identity). It is proved in [1] that $\text{Mod}(\mathcal{H}_g)$ is isomorphic to a semidirect product $\text{Twist}(\mathcal{H}_g) \rtimes \text{Out}(F_g)$. Theorem 1 has the following consequence (in the sense of the Nielsen realization problem).

Corollary 1. No nontrivial element of the twist group $\text{Twist}(\mathcal{H}_g)$ can be realized (represented) by a periodic diffeomorphism of \mathcal{H}_g.

For $g > 1$ this follows from Theorem 1 but the methods apply also to the case $g = 1$ of $\mathcal{H}_1 = S^2 \times S^1$, using the fact that $S^2 \times S^1$ is a geometric 3-manifold belonging to the $(S^2 \times \mathbb{R})$-geometry (one of Thurston’s eight 3-dimensional geometries, see [15]), and that finite group-actions on $S^2 \times S^1$ are geometric ([10, Theorem 8.4]).

For a solution of the Nielsen realization problem for aspherical and Haken 3-manifolds, see [21] (here finite groups of mapping classes can always be realized, except for a purely algebraic obstruction in the case of Seifert fiber spaces where, however, a finite inflation of the group can always be realized).

By [6], homotopic diffeomorphisms of \mathcal{H}_g are isotopic but this does not remain true for arbitrary connected sums of 3-manifolds. By [4], twists around separating 2-spheres in a 3-manifold may or may not be homotopic to the identity, moreover by [3] there are sphere-twists which are homotopic but not isotopic to the identity (see also the discussion in the introduction of [1]). As an example, considering a connected sum $M = M_1 \# M_2$ of two closed hyperbolic 3-manifolds M_1 and M_2, the sphere-twist around the connecting 2-sphere is not homotopic to the identity; also, it cannot be realized by a periodic map (e.g., if M_1 or M_2 does not admit a nontrivial periodic map then also the connected sum $M = M_1 \# M_2$ has no periodic maps).
There arises naturally the question of which finite subgroups of Out(F_g) can be realized by a finite group of diffeomorphisms of H_g. Finite groups G of diffeomorphisms of H_g which act faithfully on the fundamental group (i.e., inject into Out(F_g)) are considered in [17] where, for $g \geq 15$, the quadratic upper bound $|G| \leq 24g(g-1)$ for their orders is obtained. Since Out(F_g) has finite subgroups of larger orders, these subgroups cannot be realized by finite groups of diffeomorphisms (by [16] the maximal order of a finite subgroup of Out(F_g) is $2^g g!$, for $g > 2$). A precise result is as follows (we refer to [17, section 2] for definitions and the proof).

Theorem 2. Let G be a finite subgroup of Out(F_g) and $1 \to F_g \to E \to G \to 1$ the corresponding group extension associated to G. Then G can be realized by an isomorphic group of diffeomorphisms of H_g if and only if E is isomorphic to the fundamental group $\pi_1(\Gamma, \mathcal{G})$ of a finite graph of finite groups (Γ, \mathcal{G}) in normal form associated to a closed handle-orbifold (in particular, the vertex groups (Γ, \mathcal{G}) have to be isomorphic to finite subgroups of $SO(4)$ and the edge groups to finite subgroups of $SO(3)$).

We note that, for a finite group G acting on a closed handle H_g, the quotient H_g/G has the structure of a closed handle-orbifold (see [17]). Analogous results on finite group-actions on 3-dimensional handlebodies are obtained in [8] and [12] (and in [9] for finite group-actions on handlebodies in arbitrary dimensions).

The case $g = 2$ is special. By well-known results,

$$\text{Out}(F_2) \cong \text{Aut}(\mathbb{Z}^2) \cong \text{GL}(2, \mathbb{Z}) \cong D_6 * D_2 D_4,$$

so up to conjugation the maximal finite subgroups of $\text{Out}(F_2)$ are the dihedral groups D_6 and D_4 of orders 12 and 8, and both can be realized by diffeomorphisms of the torus with one boundary component (hence, if the realizations of the amalgamated subgroups D_2 coincide, one obtains a realization of the whole group $\text{Out}(F_2) \cong D_6 * D_2 D_4$). Considering the product with a closed interval, one obtains realizations on the handlebody V_2 of genus 2 and also on its double H_2 along the boundary.

Concerning the case $g = 3$, by [18] there are exactly five maximal finite subgroups of $\text{Out}(F_3)$ up to conjugation; by an easy application of Theorem 2, all of these maximal finite subgroups can be realized by diffeomorphisms of the closed handle H_3 of genus 3 (but not of a handlebody V_3 of genus 3).

2. Proof of Theorem 1

Let G be a finite group acting faithfully and orientation-preservingly on a closed handle $H_g = \sharp_g(S^2 \times S^1)$ of genus g. By the equivariant sphere theorem (see [10] for an approach by minimal surface techniques, [2] and [5] for topological-combinatorial proofs), there exists an embedded, homotopically nontrivial 2-sphere S^2 in H_g such that $x(S^2) = S^2$.
or \(x(S^2) \cap S^2 = \emptyset \) for all \(x \in G \). We cut \(\mathcal{H}_g \) along the system of disjoint 2-spheres \(G(S^2) \), by removing the interiors of \(G \)-equivariant regular neighbourhoods \(S^2 \times [-1,1] \) of these 2-spheres, and call each of these regular neighbourhoods \(S^2 \times [-1,1] \) a 1-handle. The result is a collection of 3-manifolds with 2-sphere boundaries, with an induced action of \(G \). We close each of the 2-sphere boundaries by a 3-ball and extend the action of \(G \) by taking the cone over the center of each of these 3-balls, so \(G \) permutes these 3-balls and their centers. The result is a finite collection of closed handles of lower genus on which \(G \) acts (cf. [17]). Applying inductively the procedure of cutting along 2-spheres, we finally end up with a finite collection of 3-spheres or 0-handles (closed handles of genus 0). Note that the construction gives a finite graph \(\Gamma \) on which \(G \) acts whose vertices correspond to the 0-handles and whose edges to the 1-handles. Note that \(\Gamma \) has no free edges, i.e. edges with one vertex of valence 1.

On each 3-sphere (0-handle) there are finitely many points which are the centers of the attached 3-balls (their boundaries are the 2-spheres along which the 1-handles are attached). For each of these 3-spheres, let \(G_v \) denote its stabilizer in \(G \) (by the geometrization of finite group-actions on 3-manifolds, one may assume that the action of a stabilizer \(G_v \) on the corresponding 3-sphere is orthogonal but this is not needed for the following). Denoting by \(G_e \) the stabilizer in \(G \) of a 1-handles \(S^2 \times [-1,1] \), we can assume that each stabilizer \(G_e \) preserves the product structure of \(S^2 \times [-1,1] \) of the corresponding 1-handle (by choosing small equivariant regular neighbourhoods of the 2-spheres). If some element of a stabilizer \(G_e \) acts as a reflection on \([-1,1] \), we split the 1-handle into two 1-handles by introducing a new 0-handle obtained from a small regular neighbourhood \(S^2 \times [-\epsilon,\epsilon] \) of \(S^2 \times \{0\} \) by closing up with two 3-balls. Hence we can assume that each stabilizer \(G_e \) of a 1-handle \(S^2 \times [-1,1] \) does not interchange its two boundary 2-spheres; that is, \(G \) acts without inversions on the graph \(\Gamma \).

Suppose now that \(g > 1 \) and that the induced action of \(G \) on the first homology of \(\mathcal{H}_g \) and hence also of \(\Gamma \) is trivial. As before, \(G \) acts without inversions on \(\Gamma \) and \(\Gamma \) has no free edges. We will prove in next Proposition that under these hypotheses the action of \(G \) on \(\Gamma \) is trivial, that is each element of \(G \) acts as the identity on \(\Gamma \). Hence \(G \) fixes each vertex and each edge of \(\Gamma \).

Since \(G \) fixes each 1-handle \(S^2 \times [-1,1] \), it maps each 2-sphere \(S^2 \times \{0\} \) to itself. By construction, \(G \) does not interchange the two sides of such a 2-sphere and acts faithfully on it (otherwise some element of \(G \) would act trivially on an invariant regular neighbourhood of such a 2-sphere and then act trivially also on all of \(\mathcal{H}_g \) (well-known in particular for smooth actions)). It follows that \(G \) is isomorphic to a finite subgroup of the orthogonal group \(\text{SO}(3) \), i.e. cyclic \(\mathbb{Z}_n \), dihedral \(\mathbb{D}_{2n} \), tetrahedral \(A_4 \), octahedral \(S_4 \) or dodecahedral \(A_5 \). It is easy to see that an orientation-preserving action of \(\mathbb{D}_{2n} \), \(A_4 \), \(S_4 \) or \(A_5 \) on \(S^3 \) has at most two global fixed points around which a 1-handle can be attached; but then the graph \(\Gamma \) would be a segment or a circle, that is \(g \leq 1 \). Since \(g > 1 \), \(G \) is a cyclic group which acts by rotations around an axis \(S^1 \) in each 0-handle.
S^3. By the positive solution of the Smith-conjecture [13], each of these axes is a trivial knot in S^3, and hence the action of the cyclic group G embeds into an S^1-action on each 0-handle. Since these S^1-actions on the 0-handles extend to the connecting 1-handles $S^2 \times [-1, 1]$, the cyclic G-action on H_g embeds into an S^1-action.

To complete the proof of Theorem 1, it remains to prove the following Proposition (which may be considered as an analogue of Theorem 1 for finite graphs).

Proposition. Let G be a finite group acting faithfully on a finite connected graph Γ without free edges and of genus $g > 1$ (or cycle rank, or rank of its free fundamental group). Then also the induced action of G on the first homology $H_1(\Gamma) \cong \mathbb{Z}^g$ of Γ is faithful.

Proof. By subdividing edges, we can assume that G acts without inversion of edges on Γ. Suppose that an element $x \in G$ acts trivially on the first homology of Γ. Then its Lefschetz number is $1 - g$ which, by the Hopf trace formula, is equal to the Euler characteristic of the fixed point set of x which is a subgraph Γ' of Γ (since G acts without inversions of edges). The graph Γ of genus g has Euler characteristic $1 - g$; passing from Γ' to Γ by adding successively the missing edges, the Euler characteristic remains unchanged (when adding a free edge) or decreases. Since Γ has no free edges, this implies $\Gamma' = \Gamma$, and hence x acts trivially on Γ. This completes the proof of the Proposition.

By [19, proof of Satz 3.1], each finite subgroup of $\text{Out}(F_g)$ can be realized by an action of the group on a finite graph Γ without free edges (this is a version of the Nielsen realization problem for finite graphs which several years later was "rediscovered" by various authors); the Proposition implies then the following well-known result.

Corollary 2. The canonical projection $\text{Out}(F_g) \rightarrow \text{GL}(g, \mathbb{Z})$ is injective on finite subgroups of $\text{Out}(F_g)$.

We note that not all finite subgroups of $\text{GL}(g, \mathbb{Z})$ are induced in this way by finite subgroups of $\text{Out}(F_g)$; in fact, for $g = 2, 4, 6, 7, 8, 9$ and 10 there are finite subgroups of $\text{GL}(g, \mathbb{Z})$ of orders larger than $2^g g!$ (which, by [16], is the maximal order of a finite subgroup of $\text{Out}(F_g)$). On the other hand, there are also small cyclic subgroups of $\text{GL}(g, \mathbb{Z})$ which cannot be realized in this way, see the discussion in [20, section 5].
References

[1] T. Brendle, N. Broaddus, A. Putman, *The mapping class group of connected sums of $S^2 \times S^1$*, arXiv 2012:01529

[2] M.J. Dunwoody, *An equivariant sphere theorem*, Bull. London Math. Soc. 17 (1985), 437-448

[3] J.L. Friedman, D.M. Witt, *Homotopy is not isotopy for homeomorphisms of 3-manifolds*, Topology 25 (1986), 35-44

[4] H. Hendriks, *Applications de la théorie d'obstruction en dimension 3*, Bull. Soc. Math. France Mém. 53 (1977), 81-196

[5] W. Jaco, J.H. Rubinstein, *PL equivariant surgery and invariant decompositions of 3-manifolds*, Adv. in Math. 73 (1989), 149-191

[6] F. Laudenbach, *Sur le 2-sphères d’une variété de diemision 3*, Ann. Math. 97 (1973), 57-81

[7] F. Laudenbach, *Topologie de la dimension trois: homotopie et isotopie*, Société Mathématique de France, Paris 1974

[8] D. McCullough, A. Miller, B. Zimmermann, *Group actions on handlebodies*, Proc. London Math. Soc. 59 (1989), 373-415

[9] M. Mecchia, B. Zimmermann, *On finite groups of isometries of handlebodies in arbitrary dimensions and finite extensions of Schottky groups*, Fund. Math. 230 (2015), 237-249

[10] W.H. Meeks, P. Scott, *Finite group actions on 3-manifolds*, Invent. math. 86 (1986), 287-346

[11] W.H. Meeks, L. Simon, S.T. Yau, *Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature*, Ann. of Math. 116 (1982), 621-659

[12] A. Miller, B. Zimmermann, *Large groups of symmetries of handlebodies*, Proc. Amer. Math. Soc. 106 (1989), 829-838

[13] J.W. Morgan, H. Bass, *The Smith Conjecture*, Academic Press 1984

[14] F. Raymond, *Classification of actions of the circle on 3-manifolds*, Trans. Amer. Math. Soc. 131 (1968), 51-78

[15] P. Scott, *The geometries of 3-manifolds*, Bull. London Math. Soc. 15 (1983), 401-487

[16] S. Wang, B. Zimmermann, *The maximum order finite groups of outer automorphisms of free groups*, Math. Z. 216 (1994), 83-87

[17] B. Zimmermann, *On finite groups acting on a connected sum of 3-manifolds $S^2 \times S^1$*, Fund. Math. 226 (2014), 131-142

[18] B. Zimmermann, *Finite groups of outer automorphism groups of free groups*, Glasgow Math. J. 38 (1996), 275-282
[19] B. Zimmermann, Über Homöomorphismen n-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen, Comm. Math. Helv. 56 (1981), 474-486

[20] B. Zimmermann, Lifting finite groups of outer automorphisms of free groups, surface groups and their abelianizations, Rend. Istit. Mat. Univ. Trieste 37 (2005), 273-282 (electronic version under http://rendiconti.dmi.units.it)

[21] B. Zimmermann, Das Nielsensche Realisierungsproblem für hinreichend grosse 3-Mannigfaltigkeiten, Math. Z. 180 (1982), 349-359
Erratum to:

A note on the Nielsen realization problem for connected sums of $S^2 \times S^1$

Bruno P. Zimmermann

Department of Mathematics, University of Trieste, Italy

In the recent paper [1], we considered the Nielsen realization problem for finite subgroups of the mapping class groups $\text{Mod}(\mathcal{H}_g)$ of the 3-manifolds $\mathcal{H}_g = \#_g(S^2 \times S^1)$ obtained as the connected sums of g copies of $S^2 \times S^1$ (called closed handles of genus g in [1]).

Denoting by $\text{Twist}(\mathcal{H}_g)$ the subgroup of $\text{Mod}(\mathcal{H}_g)$ generated by all Dehn twists along embedded 2-spheres in \mathcal{H}_g, there is a short exact sequence

$$1 \to \text{Twist}(\mathcal{H}_g) \hookrightarrow \text{Mod}(\mathcal{H}_g) \to \text{Out}(\pi_1(\mathcal{H}_g)) \to 1,$$

and $\text{Twist}(\mathcal{H}_g) \cong (\mathbb{Z}_2)^g$ is generated by the twists around non-separating 2-spheres in \mathcal{H}_g. As a consequence of the main theorem, it is claimed in [1] that no non-trivial element of the twist group $\text{Twist}(\mathcal{H}_g)$ can be realized (represented) by a periodic diffeomorphism of \mathcal{H}_g (in the sense of the Nielsen realization problem); the proof of the main theorem in [1] is incomplete and the theorem has to be modified as follows.

Theorem. Let G be a finite group of orientation-preserving diffeomorphisms of a closed handle \mathcal{H}_g of genus $g > 1$. If G induces the trivial action on the first homology of \mathcal{H}_g then G is a cyclic group.

It is further claimed in [1] that G is a subgroup of an S^1-action on \mathcal{H}_g but the proof is incomplete since, in general, the various S^1-actions on the building blocks (0-handles) of \mathcal{H}_g don’t fit together along the 1-handles to define an S^1-action on all of \mathcal{H}_g.

Corollary. A non-cyclic subgroup of the twist group $\text{Twist}(\mathcal{H}_g)$ cannot be realized by diffeomorphisms of \mathcal{H}_g.

It is a consequence of the main theorem in a recent preprint by Lei Chen and Bena Tshishiku [2] that cyclic subgroups of $\text{Twist}(\mathcal{H}_g)$ can be realized by diffeomorphisms; more generally, the authors show that, for every closed oriented 3-manifold M which is a connected sum, a subgroup G of the twist group can be realized if and only if G is cyclic and M is a connected sum of lens spaces (including $S^2 \times S^1$).
References

[1] Bruno Zimmermann, *A note on the Nielsen realization problem for connected sums of $S^2 \times S^1$*, Rend. Istit. Mat. Univ. Trieste 53, 2021
 (electronic versions in: rendiconti.dmi.units.it, arXiv:2105.04901)

[2] Lei Chen, Bena Tshishiku, *Nielsen realization for twists on 3-manifolds*, preprint 2022
 (arXiv:2204.04820)