CASE REPORT

Olfactory neuroblastoma treated with minimally invasive surgery and adjuvant radiotherapy: a case report and review of the literature

INTRODUCTION

Olfactory neuroblastoma (ON) originates from the olfactory epithelium. Unilateral nasal obstruction and epistaxis are the most common symptoms. Furthermore, headache, sinus pain, excessive lacrimation, rhinorrhea, anosmia and changes in vision may occur. Treatment modalities for ON are surgery combined with radiotherapy (RT) and/or chemotherapy. In this short communication, we report the case of a patient with a mass in the right nasal cavity who was treated by endoscopic resection and adjuvant RT.

CASE REPORT

A 34-year-old male was referred to our hospital where he presented a 6-month history of unilateral nasal obstruction and frontal headache. Endoscopic examination showed a polypoid mass in the right nasal cavity and permitted biopsy of the lesion. Histological findings documented an olfactory neuroblastoma of Grade II according to Hyam's grading system. MRI was performed, revealing a well-circumscribed lesion in the right nasal sinus, hypointense on T1 weighted and hyperintense on T2 weighted sequences (Figure 1). This disease presentation corresponded to Kadish stage B. After discussion in the multi-disciplinary tumour board, a bimodality therapeutic approach consisting of endoscopic resection followed by adjuvant radiotherapy (RT) was chosen. The patient was treated with endoscopic resection and external beam radiotherapy to the right nasal sinus with intensity-modulated radiotherapy (IMRT) technique. After 2 years follow-up, the patient is free of tumour without any late effect related to therapies. We believe that, in such patients, a treatment strategy including endoscopic resection followed by adjuvant radiotherapy may be effective and feasible and should be considered the gold standard of care.
Beam geometry in IMRT plan consisted of five coplanar 6 MV fields. The prescribed dose was 60 Gy in 30 fractions (2 Gy daily) defined as the mean dose planned to the PTV with 95% of the PTV receiving ≥95% of the prescribed dose. Dose–volume histogram was calculated for the IMRT plan for the following volumes: PTVs, spinal cord, brainstem, optic chiasm, eyes, optic nerves and lens. The dose–volume constraints were satisfied: 0.03 cc of the optic chiasm, optic nerves, eyes and brainstem should receive <54 Gy, spinal cord 45 Gy and lens 6 Gy. The dose distribution is shown in Figure 3. Radiation treatment was well tolerated with Grade 1 skin acute toxicity according to Radiation Therapy Oncology Group scale and nasal obstruction. No treatment interruption occurred. The patient is still under regular follow-up based on MRI and nasal endoscopy; after 2 years of observation, he continues to be free from disease without any late complications of therapy.

DISCUSSION

ON is a rare malignant tumour of the nasal cavity and it arises from the olfactory neuroepithelium located in the nasal septum. Commonly, this tumour causes unilateral nasal obstruction and epistaxis. Minor manifestations are anosmia, headache, sinus pain, rhinorrhea and epiphora. In the present case, the patient showed unilateral nasal obstruction and frontal headache. Clinically, ON is staged using the Kadish system that is based on the spread of the tumour. According to this system, stage A corresponds to tumours confined to the nasal cavity, stage B includes
lesions involving also the paranasal sinuses, whereas stage C presents masses that extend beyond the nasal cavity and paranasal sinuses. MRI scan is essential to study disease extension and usually reveals a tumour mass presenting a low-intensity signal in T1-weighted images and an iso- or high-intensity signal in T2-weighted images. A key issue consists in early histological diagnosis of ON through endoscopic biopsy. Many studies tend to divide ON into low-grade and high-grade lesions according to Hyams classification identifying two distinct entities. Malouf et al. showed that patients with high-grade ON had larger tumours, frequent lymph node involvement and more often leptomeningeal metastasis compared to low-grade ON. In our case, MRI showed a Kadish stage B ON and endoscopic biopsy revealed a low-grade ON.

The available literature indicates that a combination of surgery and RT is the best treatment approach. Although craniofacial resection is considered the gold standard surgical treatment, some recent reports suggest treating ON with minimally invasive surgery. In fact, endoscopic approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach. Although craniofacial approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach. Although craniofacial approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach.

In our opinion, this case report shows that a combined modality approach with minimally invasive surgery and postoperative RT is the best treatment approach. Although craniofacial resection is considered the gold standard surgical treatment, some recent reports suggest treating ON with minimally invasive surgery. In fact, endoscopic approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach.

In our clinical case, after discussing with the patient about the literature data regarding the prophylactic cervical irradiation, the pros and cons and the side effects, we opted for an RT volume that included the tumour bed and decided not to perform ENI owing to the limited Kadish B stage, radical surgery, absence of clinically and radiologically positive nodes and the possibility of treatment at the time of recurrence.

Furthermore, in addition to surgery and RT, chemotherapy may offer improvement in local control and reduction in the frequency of distant metastasis, especially in patients with unresectable tumours or in case of advanced disease and recurrent and metastatic lesions.

CONCLUSION

In our opinion, this case report shows that a combined modality approach with minimally invasive surgery and postoperative RT is the best treatment approach. Although craniofacial resection is considered the gold standard surgical treatment, some recent reports suggest treating ON with minimally invasive surgery. In fact, endoscopic approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach.

In our clinical case, after discussing with the patient about the literature data regarding the prophylactic cervical irradiation, the pros and cons and the side effects, we opted for an RT volume that included the tumour bed and decided not to perform ENI owing to the limited Kadish B stage, radical surgery, absence of clinically and radiologically positive nodes and the possibility of treatment at the time of recurrence.

Furthermore, in addition to surgery and RT, chemotherapy may offer improvement in local control and reduction in the frequency of distant metastasis, especially in patients with unresectable tumours or in case of advanced disease and recurrent and metastatic lesions.

CONCLUSION

In our opinion, this case report shows that a combined modality approach with minimally invasive surgery and postoperative RT is the best treatment approach. Although craniofacial resection is considered the gold standard surgical treatment, some recent reports suggest treating ON with minimally invasive surgery. In fact, endoscopic approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach. Although craniofacial approaches present some advantages such as shorter surgical time and hospitalization and a better quality of life. Table 1 reports studies including treatment characteristics and outcome for olfactory neuroblastoma. Some reports showed that the addition of postoperative radiation to surgery significantly improves local control rate, and RT is the best treatment approach.
Study, year	Period	Patients (n)	Treatment	RT technique	Mean Dose (Gy)	Follow-up (months)	Median Survival (months)	5-year OS	Other Survival
Dulguerov and Cakaterra, 1992	1970–1990	24	S only RT only S + RT ± CT RT + CT	2D-RT 3D-CRT	60	–	–	–	5-year DSS 74% 5-year RFS 58%
Polin et al, 1998	1976–1994	34	RT ± CT + S	–	50.6	–	71	81	–
Resto et al, 2000	1981–1998	27	S only RT only S + RT ± CT	–	61.8	–	71	–	–
Eich et al, 2001	1981–1998	17	RT only S + RT	2D-RT 3D-CRT	57.3	86	94	–	–
Simon et al, 2001	1978–1998	13	S only RT only S + RT ± CT	–	59.4	75	60	61	5-year DFS 56%
Chao et al, 2001	1976–1996	25	S only RT ± CT S + RT ± CT	2D-RT 3D-CRT	56.4	96	–	66.3	5-year DFS 56.3%
Gruber et al, 2002	1980–2001	28	RT ± CT S + RT ± CT	2D-RT 3D-CRT	60	68	–	–	5-year LPFS 81% 5-year DFS 70% 5-year CSS 77%
Argiris et al, 2003	1981–2000	16	S ± CT S + RT ± CT	–	55	51	60	60	5-year DFS 33%
Diaz et al, 2005	1979–2002	30	S only S + RT RT ± CT	–	59.4	72	–	89	5-year RFS 69%
Castelnuovo et al, 2007	1999–2004	10	S only S + RT RT ± CT	3D-CRT	56.1	37	37	–	–
Bachar et al, 2008	1972–2006	39	S only RT only S + RT ± CT	3D-CRT IMRT	53.13	–	140	87.9	5-year RFS 76% 5-year LRFS 82% 5-year LRRFS 82.5%
Otshin et al, 2010	1971–2004	77	S only S + RT ± CT RT ± CT	2D-RT 3D-CRT IMRT	60	72	–	64	5-year DFS 57%
Platek et al, 2011	1973–2006	511	S only RT only S + RT Neither S nor RT	–	–	–	–	73 S + RT 68 S only 35 RT only 26 neither S nor RT	–

(Continued)
Table 1. (Continued)

Study, year	Period	Patients (n)	Treatment	RT technique	Mean Dose (Gy)	Follow-up (months)	Median Survival (months)	5-year OS	Other Survival
Back et al, 2012	1990–2009	17	S only S + RT ± CT RT ± CT	2D-RT 3D-CRT IMRT	60	57.5	60	68	5-year DFS 62%
Michel et al, 2012	1978–2006	11	S only S + RT RT + CT	–	–	–	–	90	5-year DFS 54.5%
Modesto et al, 2013	1998–2010	43	Multimodal therapy	3D-CRT IMRT	64	77	–	65	5-year PFS 57%
Kumar et al, 2013	2006–2010	15	S + RT ± CT RT ± CT	2D-RT 3D-CRT IMRT	54	23	35	45 (4 year)	4-year LRC 25%
Ow et al, 2014	1992–2007	70	S only S + RT ± CT	–	–	91.4	126.3	90	5-year DSS 90%
Rimmer et al, 2014	1978–2013	95	S only S + RT ± CT	2D-RT 3D-CRT IMRT	–	88.6	224	83.4	5-year DFS 80%
Feng et al, 2015	2001–2012	24	S only S + RT ± CT	–	60	44	–	82 (3 year)	3-year DFS 70.8%
Mori et al, 2015	1992–2013	17	S + RT Multimodal therapy	3D-CRT IMRT	–	95	–	88	5-year RFS 74%
Lapierre et al, 2016	1993–2015	10	S only S + RT ± CT	3D-CRT IMRT	61	136	–	90 (10 year)	5-year PFS 70%

2D-RT, 2-dimensional radiotherapy; 3D-CRT, 3-dimensional conformal radiotherapy; CSS, cancer-specific survival; CT, chemotherapy; DFS, disease-free survival; DSS, disease-specific survival; IMRT, intensity-modulated radiation therapy; LPFS, local progression-free survival; LRC, locoregional control; LRFS, local relapse-free survival; LRRFS, locoregional relapse-free survival; OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival; RT, radiotherapy; S, surgery.
IMRT can be effective in this setting. Two years after treatment, there is no local recurrence in the nasal cavity nor late effects. Nevertheless, the possibility of late relapse requires an extended follow-up time.

LEARNING POINTS

1. In this case report of a rare clinicopathological entity, we showed the impact of bimodal therapy with minimally invasive surgery and adjuvant RT. This strategy has proved to be successful, representing a proof of principle for potential future studies.

2. Minimally invasive surgery is potentially feasible in olfactory neuroblastoma.

3. Adjuvant radiotherapy increases local control.

4. High-tech radiation provides a good balance between tumor control and normal tissue sparing.

5. Combination therapy is safe and effective in this setting.

CONSENT

Written informed consent for the case to be published (including images, case history and data) was obtained from the patient(s) for publication of this case report, including accompanying images.

REFERENCES

1. Lund VJ, Howard D, Wei W, Spittle M. Olfactory neuroblastoma: past, present, and future? *Laryngoscope* 2003; 113: 502–7. doi: https://doi.org/10.1097/00005537-200303000-00020

2. Kadish S, Goodman M, Wang CC. Olfactory neuroblastoma. A clinical analysis of 17 cases. *Cancer* 1976; 37: 1571–6. doi: https://doi.org/10.1002/1097-0142(19760337:3<1571::AID-CNCR2820370347>3.0.CO;2-L

3. Diaz EM, Johinigan RH, Pero C, El-Naggar AK, Roberts DB, Barker JL, et al. Olfactory neuroblastoma: the 22-year experience at one comprehensive cancer center. *Head Neck* 2005; 27: 138–49. doi: https://doi.org/10.1002/hed.20127

4. Malouf GG, Casiraghi O, Deutsch E, Guigay J, Temam S, Bourhis J. Low- and high-grade esthesioneuroblastomas display a distinct natural history and outcome. *Eur J Cancer* 2013; 49: 1324–34. doi: https://doi.org/10.1016/j.ejca.2012.12.008

5. Dulguerov P, Allal AS, Calcaterra TC. Olfactory neuroblastoma: a meta-analysis and review. *Lancet Oncol* 2001; 2: 683–90. doi: https://doi.org/10.1016/S1470-2241(01)00558-7

6. Morita A, Ebersold MJ, Olsen KD, Foote RL, Lewis JE, Quast LM. Esthesioneuroblastoma: prognosis and management. *Neurosurgery* 1993; 32: 706–14.

7. Dulguerov P, Calcaterra T. Olfactory neuroblastoma: the UCLA experience 1970–1990. *Laryngoscope* 1992; 102: 843–9. doi: https://doi.org/10.1288/00005537-199208000-00001

8. Polin RS, Sheehan JP, Chenelle AG, Munoz E, Larner J, Phillips CD, et al. The role of preoperative adjuvant treatment in the management of esthesioneuroblastoma: the University of Virginia experience. *Neurosurgery* 1998; 42: 1029–37. doi: https://doi.org/10.1097/00005537-199805000-00045

9. Resto VA, Eisele DW, Forastiere A, Zahurak M, Lee DJ, Westra WH. Esthesioneuroblastoma: the Johns Hopkins experience. *Head Neck* 2000; 22: 550–8. doi: https://doi.org/10.1002/1097-0347(20000922)22:6<550:AID-HED2>3.0.CO;2-0

10. Eich HT, Staar S, Micke O, Eich PD, Stützer H, Müller R. Radiotherapy of esthesioneuroblastoma. *Int J Radiat Oncol Biol Phys* 2001; 49: 155–60. doi: https://doi.org/10.1016/S0360-3016(00)00811-7

11. Simon JH, Zhen W, McCulloch TM, Hoffman HT, Paulino AC, Mayr NA, et al. Esthesioneuroblastoma: the University of Iowa experience 1978–1998. *Laryngoscope* 2001; 111: 488–93. doi: https://doi.org/10.1097/00005537-200103000-00020

12. Chao KS, Kaplan C, Simpson JR, Haughey B, Spector GJ, Sessions DG, et al. Olfactory neuroblastoma. A clinical analysis of 17 cases. *Laryngoscope* 2000; 110: 749–57. doi: https://doi.org/10.1002/hed.1017

13. Gruber G, Laedrach K, Baumert B, Spector GJ, Sessions DG, et al. Outcome and prognostic factors in olfactory neuroblastoma: a single institution experience. *Eur Arch Otorhinolaryngol* 2012; 269: 213–21. doi: https://doi.org/10.1007/s00405-011-1568-0

14. Zosaihn M, Gruber G, Olszyk O, Karakoyun-Celik P, Pehlivian B, Azria D, et al. Outcome and prognostic factors in olfactory neuroblastoma: the University of Margaret Hospital experience. *Head Neck* 2007; 29: 845–50. doi: https://doi.org/10.1002/hed.20610

15. Bachar G, Goldstein DP, Shah M, Tandon A, Ringash J, Pond G, et al. Olfactory neuroblastoma: the Princess Margaret Hospital experience. *Head Neck* 2008; 30: 1607–14. doi: https://doi.org/10.1002/hed.20920

16. Ozsahin M, Gruber G, Olszyk O, Karakoyun-Celik P, Pehlivian B, Azria D, et al. Outcome and prognostic factors in olfactory neuroblastoma: a rare cancer network study. *Int J Radiat Oncol Biol Phys* 2010; 78: 992–7. doi: https://doi.org/10.1016/j.ijrobp.2009.09.019

17. Platek ME, Merziana M, Mashare TL, Popat SR, Rigual NR, Warren GW, et al. Improved survival following surgery and radiation therapy for olfactory neuroblastoma: analysis of the SEER database. *Radust Oncol* 2011; 6: 41. doi: https://doi.org/10.1186/1748-717X-6-41

18. Bäck L, Oinas M, Pietarinne-Runtti P, Saarilahki K, Vuola J, Saat R, et al. The developing management of esthesioneuroblastoma: a single institution experience. *Eur Arch Otorhinolaryngol* 2012; 269: 213–21. doi: https://doi.org/10.1007/s00405-011-1568-0

19. Michel J, Fakhry N, Santini L, Mancini J, Giovanni A, Despi P. Nasal and paranasal esthesioneuroblastomas: clinicopathological and histological features. *Eur Ann Otorhinolaryngol Head Neck Dis* 2012; 129: 238–43. doi: https://doi.org/10.1016/j.anorl.2011.10.007

20. Modesto A, Blanchard P, Tao YG, Rives M, Janot F, Serrano E, et al. Multimodal treatment and long-term outcome of patients with esthesioneuroblastoma. *Oral Oncol* 2013; 49: 830–4. doi: https://doi.org/10.1016/j.oraloncology.2013.04.013

21. Kumar R, Ghoshal S, Khosla D, Bharti S, Das A, Kumar N, et al. Survival and...
Case Report: Neuroblastoma of the olfactory tract

failure outcomes in locally advanced esthesioneuroblastoma: a single centre experience of 15 patients. Eur Arch Otorhinolaryngol 2013; 270: 1897–901. doi: https://doi.org/10.1007/s00405-012-2280-4

23. Ow TJ, Hanna EY, Roberts DB, Levine NB, El-Naggar AK, Rosenthal DI, et al. Optimization of long-term outcomes for patients with esthesioneuroblastoma. Head Neck 2014; 36: 524–30. doi: https://doi.org/10.1002/hed.23327

24. Rimmer J, Lund VJ, Beale T, Wei WI, Howard D. Olfactory neuroblastoma: a 35-year experience and suggested follow-up protocol. Laryngoscope 2014; 124: 1542–9. doi: https://doi.org/10.1002/lary.24562

25. Feng L, Fang J, Zhang L, Li H, Zhou B, Chen X, et al. Endoscopic endonasal resection of esthesioneuroblastoma: a single center experience of 24 patients. Clin Neurol Neurosurg 2015; 138: 94–8. doi: https://doi.org/10.1016/j.clineuro.2015.08.006

26. Mori T, Onimaru R, Onodera S, Tsuchiya K, Yasuda K, Hatakeyama H, et al. Olfactory neuroblastoma: the long-term outcome and late toxicity of multimodal therapy including radiotherapy based on treatment planning using computed tomography. Radiat Oncol 2015; 10: 88. doi: https://doi.org/10.1186/s13014-015-0397-5

27. Lapiere A, Selmai I, Samlali H, Brahmi T, Yosi S. Esthesioneuroblastoma: a single institution's experience and general literature review. Cancer Radiother 2016; 20: 783–9. doi: https://doi.org/10.1016/j.canrad.2016.05.015

28. Klepin HD, McMullen KP, Lesser GJ. Esthesioneuroblastoma. Curr Treat Options Oncol 2005; 6: 509–18. doi: https://doi.org/10.1007/s11864-005-0029-7

29. Elkon D, Hightower SI, Lim ML, Cantrell RW, Constable WC. Esthesioneuroblastoma. Cancer 1979; 44: 1087–94. doi: https://doi.org/10.1002/1097-0142(197909)44:3<1087::AID-CNCR2820440343>3.0.CO;2-A

30. Ferlito A, Rinaldo A, Rhys-Evans PH. Contemporary clinical commentary: esthesioneuroblastoma: an update on management of the neck. Laryngoscope 2003; 113: 1935–8. doi: https://doi.org/10.1097/00005537-200311000-00015

31. Monroo AT, Hinerman RW, Amdur RJ, Morris CG, Mendenhall WM. Radiation therapy for esthesioneuroblastoma: rationale for elective neck irradiation. Head Neck 2003; 25: 529–34. doi: https://doi.org/10.1002/hed.10247

32. Noh OK, Lee SW, Yoon SM, Kim SB, Kim SY, Kim CJ, et al. Radiotherapy for esthesioneuroblastoma: is elective nodal irradiation warranted in the multimodality treatment approach? Int J Radiat Oncol Biol Phys 2011; 79: 443–9. doi: https://doi.org/10.1016/j.ijrobp.2009.10.067

33. Yin ZZ, Luo JW, Gao L, Yi JL, Huang XD, Qu Y, et al. Spread patterns of lymph nodes and the value of elective neck irradiation for esthesioneuroblastoma. Radiother Oncol 2015; 117: 328–32. doi: https://doi.org/10.1016/j.radonc.2015.10.002

34. Bossi P, Saba NE, Vermorken JB, Stronan P, Pala L, de Bree R, et al. The role of systemic therapy in the management of sinonasal cancer: a critical review. Cancer Treat Rev 2015; 41: 836–43. doi: https://doi.org/10.1016/j.ctrv.2015.07.004

35. Merlotti A, Alterio D, Vigna-Taglianti R, Muraglia A, Lastrucci L, Manzo R, et al. Technical guidelines for head and neck cancer IMRT on behalf of the Italian association of radiation oncology - head and neck working group. Radiat Oncol 2014; 9: 264: . doi: https://doi.org/10.1186/s13014-014-0264-9