Prediction of colorectal cancer risk based on profiling with common genetic variants

Li, Xue; Timofeeva, Maria; Spiliopoulou, Athina; McKeigue, Paul; He, Yazhou; Zhang, Xiaomeng; Svinti, Victoria; Campbell, Harry; Houlston, Richard S.; Tomlinson, Ian P. M.; Farrington, Susan M.; Dunlop, Malcolm G.; Theodoratou, Evropi

Published in: International Journal of Cancer

DOI: 10.1002/ijc.33191

Publication date: 2020

Document version: Final published version

Document license: CC BY

Citation for published version (APA):
Li, X., Timofeeva, M., Spiliopoulou, A., McKeigue, P., He, Y., Zhang, X., Svinti, V., Campbell, H., Houlston, R. S., Tomlinson, I. P. M., Farrington, S. M., Dunlop, M. G., & Theodoratou, E. (2020). Prediction of colorectal cancer risk based on profiling with common genetic variants. International Journal of Cancer. https://doi.org/10.1002/ijc.33191

Terms of use:
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to pure.support@bib.sdu.dk

Download date: 04. Nov. 2020
SHORT REPORT

Prediction of colorectal cancer risk based on profiling with common genetic variants

Xue Li1,2 | Maria Timofeeva3,4,5 | Athina Spiliopoulou6 | Paul McKeigue6 | Yazhou He2,4 | Xiaomeng Zhang2 | Victoria Svinti3,4 | Harry Campbell2 | Richard S. Houlston7 | Ian P. M. Tomlinson4 | Susan M. Farrington3,4 | Malcolm G. Dunlop3,4 | Evropi Theodoratou2,4

1School of Public Health, Zhejiang University, Hangzhou, China
2Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
3Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
4Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
5Danish Institute for Advanced Study (DIAS), Department of Public Health, University of Southern Denmark, Odense, Denmark
6Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
7Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK

Correspondence
Evropi Theodoratou, Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
Email: e.theodoratou@ed.ac.uk
Malcolm G. Dunlop, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
Email: malcolm.dunlop@igmm.ed.ac.uk

Funding information
Cancer Research UK, Grant/Award Numbers: C1298/A25514, C31250/A22804, C348/A12076, C6199/A16459; Medical Research Council, Grant/Award Number: U127527198

Abstract
Increasing numbers of common genetic variants associated with colorectal cancer (CRC) have been identified. Our study aimed to determine whether risk prediction based on common genetic variants might enable stratification for CRC risk. Meta-analysis of 11 genome-wide association studies comprising 16 871 cases and 26 328 controls was performed to capture CRC susceptibility variants. Genetic prediction models with several candidate polygenic risk scores (PRSs) were generated from Scottish CRC case-control studies (6478 cases and 11 043 controls) and the score with the best performance was then tested in UK Biobank (UKBB) (4800 cases and 20 287 controls). A weighted PRS of 116 CRC single nucleotide polymorphisms (wPRS116) was found with the best predictive performance, reporting a c-statistics of 0.60 and an odds ratio (OR) of 1.46 (95% confidence interval [CI] = 1.41-1.50, per SD increase) in Scottish data set. The predictive performance of this wPRS116 was consistently validated in UKBB data set with c-statistics of 0.61 and an OR of 1.49 (95% CI = 1.44-1.54, per SD increase). Modeling the levels of PRS with age and sex in the general UK population shows that employing genetic risk profiling can achieve a moderate degree of risk discrimination that could be helpful to identify a subpopulation with higher CRC risk due to genetic susceptibility.

KEYWORDS
colorectal cancer, genetic prediction, genome-wide association study, polygenic risk score

Abbreviations: BMI, body mass index; CCFR2, Colon Cancer Family Registry 2; CCRF1, Colon Cancer Family Registry 1; CI, confidence interval; COIN, continuous or intermittent trial; CORSA, Colorectal Cancer Study of Austria; CRC, colorectal cancer; CRP, C-reactive protein; DACHS, Darmkrebs Chancen der Verhütung durch Screening; FIN, Finnish Colorectal Cancer Predisposition Study; GWAS, genome-wide association study; IBD, inflammatory bowel disease; LD, linkage disequilibrium; NSCCG, National Study of Colorectal Cancer Genetics; ORs, odds ratios; PCs, principal components; PRSs, polygenic risk scores; QC, quality control; ROC, receiver-operating characteristic curve; SCOT, Short Course Oncology Treatment trial; SNP, single nucleotide polymorphism; SOCCS, Study of Colorectal Cancer in Scotland; UKBB, UK Biobank; VD, vitamin D; WHR, waist hip rate.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Int. J. Cancer. 2020;1–7. wileyonlinelibrary.com/journal/ijc © 2020 UICC
INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers, with 1.8 million new cases and almost 0.8 million deaths globally in 2018.\(^1\) Substantial evidence showed that screening can reduce CRC mortality by allowing early detection and removal of precancerous lesions. Policy makers and clinicians rely on risk classification to determine which individuals to screen. To date, these classification schemes are predominantly based on age and/or a simple classification of family history. Stratifying the average risk population into risk categories offers the potential of tailoring surveillance intensity.

Comprehensive information on genetic susceptibility could contribute importantly to CRC risk stratification, given that the heritability of CRC has been estimated to be around 16% to 35%\(^2\) and the sibling recurrence risk ratio is about 2.0.\(^3\) We previously assessed the utility of CRC genetic risk profiling with a panel of 10 common genetic variants associated with CRC susceptibility.\(^4\) Although discrimination ability was low (c-statistic of 0.56), we showed that genotype data provides additional information to that from family history alone.\(^3\) Others have also showed that personalized screening using polygenic risk scores (PRSs) have the potential to identify high-risk subgroups most likely to benefit from targeted CRC prevention strategies.\(^5\) Incorporating more complete genetic information is expected to improve risk stratification and the combined effect of multiple risk loci has the potential to achieve a degree of risk discrimination that is useful for CRC risk stratification.

In our study, we aimed to derive, optimize and test PRSs for prediction of CRC and to apply the PRSs with the best predictive performance in population settings for risk stratification. We developed models by incorporating genetic information of CRC and several markers that comprise potential CRC risk factors or complex traits co-occurring with CRC. To gauge the broader future potential of genetic risk modeling, we assessed the utility of genetic risk scores in categorizing risk subgroups within the general population by projecting the risk models to the UK population.

MATERIALS AND METHODS

2.1 Studies

We made use of 11 previously published genome-wide association studies (GWASs) (ie, CCRR,\(^6\) CCFR,\(^7\) COIN,\(^8\) CORSA,\(^9\) Croatia,\(^10\) DACHS,\(^11\) FIN,\(^12\) NSCCG-OncoArray,\(^13\) SCOT,\(^14\) UK1\(^15\) and VQS)\(^16\) to generate a list of genetic variants associated with CRC risk. A series of Scottish CRC case-control studies were used to test the predictive performance of PRSs. The developed PRSs were further evaluated in an independent test data set from UK Biobank (UKBB). Schematic representation of the study design is shown in Figure S1. Standard quality control (QC) measures were applied to each of the data sets. After QC process, a total of 16 871 cases and 26 328 controls were finally included for the derivation of genetic susceptibility single nucleotide polymorphisms (SNPs), 6478 cases and 11 043 controls from Scottish dataset were included for the development of PRSs and 4800 cases and 20 287 controls from UKBB were included to validate the predictive performance of the PRSs developed. Details are described in Supporting Information Methods and Table S1.

2.2 Polygenic risk scores

2.2.1 Genome-wide polygenic score

We performed a meta-GWAS of 11 studies to obtain a list of genome-wide significant SNPs (\(P < 5 \times 10^{-8}\)) and their per-allele odds ratios (ORs) and SEs for CRC risk. The meta-analysis SNPs were pruned to only those with an \(r^2 < 0.1\) and a distance greater than 500 kb. For completeness, we also included the genetic risk variants reported in early published CRC GWASs (Table S2). A weighted genome-wide PRS (wPRS) was computed using both previously known susceptibility variants and independent variants identified by the meta-GWAS.

2.2.2 Regional genetic scores

We additionally constructed regional genetic scores by including SNPs associated with CRC and its risk factors (ie, vitamin D [VD], C-reactive protein [CRP], body mass index [BMI], waist hip rate [WHR] and inflammatory bowel disease [IBD]) by using the GENOSCORES library (https://pm2.phs.ed.ac.uk/genoscores/). This is similar to the approach used for LDpred,\(^17\) in which the correction for linkage disequilibrium (LD) between SNPs was based on premultiplying the vector of weights by the generalized inverse of the correlation matrix estimated from 1000G reference panel of European ancestry.
2.3 | Model development and evaluation

We constructed prediction models in the Scottish data set by incorporating genetic CRC risk in forms of either PRSs or regional genetic scores with adjustment for the first 10 genetic principal components (PCs). A sequence of logistic models was fitted for: (a) a weighted PRS of identified CRC GWAS SNPs; (b) regional genetic scores for CRC and (c) regional genetic scores for CRC and other relevant traits. A series of stepwise backward logistic regressions was conducted on regional genetic scores to obtain an optimized set of scores determined by the Akaike information criterion. The discriminatory accuracy of the models was evaluated by the area under the receiver-operating characteristic curve (ROC, known as c-statistic) with 10-fold cross-validation. These models were further assessed by the stratification of anatomic tumor sites (ie, proximal colon, distal colon and rectum). The PRS model with the best performance was then evaluated in UKBB. ORs were then derived for per SD increase in PRS for overall, and site-specific, CRC risk. To simplify the interpretation of PRS, we categorized it into percentiles based on its distribution in controls.

2.4 | Combined effect of PRS and family history

To evaluate the incremental contribution of combining PRS and family history for prediction, we additionally calculated the expected information for discrimination (expected weight of evidence, denoted as \(\Lambda \)). Briefly, the expected information for discrimination is the expected log-likelihood ratio in favor of correct assignment as case or control, taken as the average of the values in cases and controls. One advantage of using \(\Lambda \) is that the contributions of independent variables to predictive performance are additive on the scale of \(\Lambda \). For a logistic regression model, the sampling distribution of \(\Lambda \) is asymptotically Gaussian. In this situation, the c-statistic can be viewed as a mapping of \(\Lambda \), which takes values from 0 to infinity to the interval from 0.5 to 1. The rationale and theoretical explanations are presented in Supporting Information Methods. Family history of CRC was considered as a categorical variable, dependent on the presence or absence of at least one first-degree relative affected by CRC at any age at the time of recruitment.

2.5 | Estimation of absolute risk for developing CRC

The absolute risk of CRC for individuals in each risk category was calculated after accounting for competing risks of dying from causes other than CRC by using the formula described previously. Specifically, we obtained sex- and age-dependent UK CRC incidence and mortality rates for 2016 midyear from the Office for National Statistics (http://www.ons.gov.uk/). The mortality rates for non-CRC causes were estimated by subtracting the age- and sex-specific CRC mortality rates from the overall mortality rates. Full details of these calculations are provided in Supporting Information Methods.

Table 1

Comparison of methods for deriving the genetic scores: results from Scottish data set (SOCCS)

SNPs selection	SNPs included for creation of scores	Scores entering model (n)	Scores selected (n)	c-statistics (95% CI)						
Genome-wide significant SNPs										
CRC GWAS SNPs	116	One weighted PRS	1	0.60 (0.59-0.61)	1	0.56 (0.55-0.58)	1	0.59 (0.57-0.60)	1	0.59 (0.57-0.60)
Stepwise regression of CRC LD-adjusted regional scores with varying P value thresholds										
\(<5 \times 10^{-8}\)	1593	35 scores	35	0.58 (0.57-0.60)	16	0.58 (0.57-0.59)	21	0.58 (0.57-0.59)	23	0.59 (0.57-0.60)
\(<10^{-7}\)	1837	40 scores	36	0.58 (0.57-0.60)	19	0.59 (0.57-0.60)	23	0.59 (0.57-0.60)	25	0.59 (0.57-0.60)
\(<10^{-6}\)	2712	41 scores	36	0.59 (0.57-0.60)	19	0.59 (0.58-0.60)	25	0.59 (0.58-0.60)	26	0.59 (0.58-0.60)

Abbreviations: CI, confidence interval; CRC, colorectal cancer; GWAS, genome-wide association study; LD, linkage disequilibrium; PRS, polygenic risk score; SNP, single nucleotide polymorphism; SOCCS, Study of Colorectal Cancer in Scotland.

* c-statistics were estimated from the 10-fold cross-validation.
were also applied for these traits, and the number of regional genetic scores created and SNPs included are present Table S4.

We set out to optimize these derived scores by examining their discriminative ability in the Scottish data set (Table S5). More specifically, the combined effect of 116 CRC SNPs in the form of wPRS\textsubscript{116} was significantly associated with CRC risk (OR = 1.46, 95% confidence interval [CI] = 1.41-1.50, \(P = 1.71 \times 10^{-116}\), 1 SD increase of wPRS\textsubscript{116} and showed moderate discriminative ability (c-statistic = 0.60) (Table 1). When stratifying CRC status by tumor sites, the predictive ability of wPRS\textsubscript{116} had less accuracy than that for overall CRC risk (Table 1). With inclusion of multiple regional scores, the best model of regional genetic risk scores (including 31 CRC scores, 7 CRP scores, 2 VD scores, 25 IBD scores, 18 BMI scores and 7 WHR scores) yielded a c-statistics of 0.60 (Table S4). When comparing to the wPRS\textsubscript{116}, the regional scores showed no further improvement on overall CRC prediction (the \(P\) value of likelihood-ratio test for assessing predictive accuracy between the models of wPRS\textsubscript{116} and genetic risk scores was close to 1).

We next tested the predictive performance of wPRS\textsubscript{116} in the UKBB data set. Similarly, the wPRS\textsubscript{116} showed moderate discriminative ability with a c-statistic of 0.610 and an OR of 1.49 (95% CI = 1.44-1.54, \(P = 6.67 \times 10^{-128}\), per SD increase) (Table 2). For individuals in the lowest 1% of wPRS\textsubscript{116}, the OR compared with the middle quintile (40%-60%) was 0.32 (95% CI = 0.19-0.54, \(P = 8.51 \times 10^{-5}\)); by contrast, for individuals in the highest 1% of the PRS distribution, the corresponding estimated OR was 3.25 (95% CI = 2.50-4.22, \(P = 1.52 \times 10^{-17}\)) (Figure 1; Table S6). When considering CRC risk separately for proximal colon, distal colon and rectum, it showed no improvement in predictive performance. We then explored the modification effect of the wPRS\textsubscript{116} by sex, age or family history, but found no evidence of an interaction effect (Table S7, \(P\) interaction \(= .426\) for multiplicative interaction with sex, \(P\) interaction \(= .688\) with age, \(P\) interaction \(= .388\) with family history), therefore we did not fit additional interaction terms in the model.

We then assessed the incremental contribution of adding wPRS\textsubscript{116} and family history to a baseline model of age, sex and the first 10 genetic PCs as predictors in UKBB. Baseline model on age, sex and the 10 PCs yielded a c-statistic of 0.53, and the corresponding estimate of \(\Lambda\) was 0.01 bits (Table S8). When adding family history alone, the c-statistic increased to 0.55 and the corresponding \(\Lambda\) was 0.02 bits. Adding both family history and wPRS\textsubscript{116} yielded c-statistic of 0.610 and an incremental value of 0.10 bits, which showed significantly improvement over family history alone. We recalibrated the posterior probabilities by fitting a logistic regression model with the response variable as outcome and the logit of the posterior probability as the predictive variable. It showed that recalibration of the posterior probabilities increases the test log-likelihood only by 1 natural log units for baseline + family history and showed no increases for the baseline + FH + wPRS\textsubscript{116}, indicating that both these models were well calibrated (Figure S2).

To gauge the potential public health impact of applying such risk prediction model in the general population, we estimated the 10-year absolute risk of the general UK population (Figure S3, Table S9). We observed that the estimated absolute CRC risk for individuals at the highest 1% of PRS began to increase sharply after 45 years old, and reached a risk of 22.1% in men and 14.4% in women by 75 years old. As 50 years old is the recommended starting age of screening in Scotland, we used the average risk at this age as reference threshold (0.48% for men and 0.33% women). Individuals in the top 10% of wPRS\textsubscript{116} would reach or exceed this level of risk at 45 years old, which is 5 years earlier than the average risk population; in contrast, individuals in the bottom 10% of PRS would stay below this average risk until 60 years old. If we considered individuals with 10-year absolute risk ≥ 5% as high-risk group, with risk strata by wPRS\textsubscript{116} in population settings, we will able to identify 10% men and 5% women meritng intensive screening at 65 years old.

Table 2: The association between wPRS\textsubscript{116} and CRC risk in SOCCS and UKBB

Tumor sites	Validation data set (SOCCS)	Test data set (UKBB)				
	OR (95% CI)	P	c-statistics\(^a\) (95% CI)	OR (95% CI)	P	c-statistics (95% CI)
CRC overall	1.46 (1.41-1.50)	\(1.71 \times 10^{-116}\)	0.60 (0.59-0.61)	1.49 (1.44-1.54)	\(6.67 \times 10^{-128}\)	0.61 (0.60-0.62)
Proximal	1.26 (1.19-1.33)	\(1.47 \times 10^{-17}\)	0.56 (0.55-0.58)	1.51 (1.43-1.61)	\(6.00 \times 10^{-42}\)	0.61 (0.61-0.63)
Distal	1.36 (1.30-1.45)	\(3.46 \times 10^{-29}\)	0.59 (0.57-0.60)	1.48 (1.41-1.55)	\(1.25 \times 10^{-54}\)	0.61 (0.59-0.62)
Rectal	1.37 (1.30-1.44)	\(6.37 \times 10^{-37}\)	0.59 (0.57-0.60)	1.47 (1.39-1.55)	\(6.73 \times 10^{-41}\)	0.61 (0.59-0.62)

Abbreviations: CI, confidence interval; CRC, colorectal cancer; OR, odds ratio; SOCCS, Study of Colorectal Cancer in Scotland; UKBB, UK Biobank; wPRS\textsubscript{116}, weighted polygenic risk score of 116 colorectal cancer single nucleotide polymorphisms.

\(^a\)c-statistics were estimated from the 10-fold cross-validation.

Discussion

In our study, we describe a systematic approach to derive, validate and test a number of candidate genetic risk scores with incorporating information from hundreds to thousands of common genetic variants to predict polygenic susceptibility of CRC. We evaluated the predictive performance of both a genomic risk score and a series of regional genetic scores that were built based on the summary statistics from multiple GWASs. Our study shows that a weighted genomic risk score including 116 CRC susceptibility SNPs is the score with the best performance, while deconstructing genetic risk into multiple regional scores or inclusion of additional SNPs above the genome-wide

\[\text{\textcopyright IJC 2023} \quad \text{LI ET AL.} \]
significance threshold showed no further improvement on prediction performance. By implementing the PRSs developed, we show that the inclusion of genetic factors into a baseline model of age, sex and family history results in a significant improvement of CRC risk stratification. It should be noted that family history data in our study were collected based on self-reported bowel cancer history of parents and siblings. Therefore, any potential recall bias on family history may lead to the prediction improvement being less accurate.

ROC analysis of the genetic model that included wPRS$_{116}$ showed an improved but still modest discriminative performance (c-statistic: 0.60 in Scottish data set, 0.61 in UKBB data set). To our knowledge, the best predictive performance achieved by PRS along with age and family history was 0.69 and 0.60 for Korean men and women,20 but the SNPs were chosen from the same data set used to generate the model, and therefore the reported c-statistics are likely inflated. Other genetic models showed consistently low to modest discriminatory abilities.21 Hsu et al developed sex-specific models by using family history and 27 common genetic variants with adjustment of endoscopy history and obtained a discrimination ability of 0.59 for men and 0.56 for women.22 Similarly, Smith et al reported a c-statistic of 0.57 for genetic risk model combining 41 CRC susceptibility SNPs.23 The most recent genetic model for CRC was developed by Jeon et al including 63 CRC susceptibility SNPs and achieved a slightly improved predictive accuracy with a c-statistic of 0.59.24 This modest level of test performance is consistent across studies, suggesting that risk assessment algorithms based on independent SNPs reaching genome-wide significance level have similar performance characteristics in European populations. However, it should be kept in mind that our results pertain to the UK population of white ancestry only, and therefore generalization to any other ancestry need further evaluation.

With the expectation of improving the predictive power of common genetic variants, we additionally derived a set of SNPs associated with CRC risk with liberal P value thresholds to allow the contribution of signals from additional susceptibility SNPs that have not been...
discussed or validated in previous GWAS efforts. Any correlation between SNPs was addressed by creating LD-adjusted regional scores. However, with inclusion of thousands of SNPs, the predictive capacity did not improve but showed a lower c-statistic in the range of 0.58 to 0.59, which is probably due to the cost of adding noise from SNPs that were not truly associated with CRC. To assess if the genetic susceptibility of known risk factors of CRC would further contribute to CRC prediction, we developed prediction models, which incorporated genetic information of several known risk factors, but the c-statistic remained close to 0.60.

Most previous efforts mainly focused on the predictive ability of PRS to capture the overall risk of CRC. However, there is compelling evidence suggesting that genetic risk factors may differ by anatomic locations.25 We therefore aimed to improve prediction of site-specific CRC by deconstructing the commonly used genomic risk score into several regional scores, allowing susceptibility signals through multiple/different mechanisms to influence genetic predisposition to site-specific CRC. Although we treated proximal, distal and rectal cancer as distinct endpoints to generate the best set of regional scores respectively, their predictive performance still showed modest discriminative ability. This might be limited by the fact that the weights used for regional score calculation were derived from the coefficient estimates for overall CRC instead of site-specific ones.

An extrapolation to the UK population led to the conclusion that 10% of the general population will have a 10-years absolute risk approaching 5% after 65 years old on the basis of quantifiable genetic risk alone and who will merit intensive screening. A 5% threshold of absolute risk has clinical and public health impact since it exceeds the highest risk at any age in the general population and it is 10-fold greater than the risk of a 50-year old person who is eligible to enter the population-based screening programs. Additionally, the modeling shows individuals at different levels of the wPRS116 will reach the same risk estimate at different ages, supporting the notion that using genetic profiling in combination with age will lead to more effective risk stratification.

In conclusion, we show that prediction of CRC risk based on profiling with common genetic variants presents a moderate discriminability. Although the contribution of wPRS116 to individualized risk profiling is limited, employing genetic risk profiling can achieve a moderate degree of risk discrimination that is helpful to identify a population subset with high genetic risk.

ACKNOWLEDGMENTS
We are grateful to all who contribute to recruitment, data collection and data curation. We acknowledge that these studies would not be possible without the patients and controls and their families. We acknowledge the expert support on sample preparation from the Genetics Core of the Edinburgh Wellcome Trust Clinical Research Facility. E. T. is supported by a Cancer Research UK Career Development Fellowship (C31250/A22804). The work was supported by Programme Grant funding from Cancer Research UK (C348/A12076) and by funding for the infrastructure and staffing of the Edinburgh CRUK Cancer Research Centre. This work was also funded by a grant to M. G. D. as Project Leader with the MRC Human Genetics Unit Centre Grant (U127527198). At the Institute of Cancer Research, this work was supported by Cancer Research UK (C1298/A25514). Additional support was provided by the National Cancer Research Network. In Birmingham, funding was provided by Cancer Research UK (C6199/A16459).

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

ETHICS STATEMENT AND INFORMED CONSENT
Ethics approval of SOCCS was obtained from the Multi-Centre Research Ethics committee for Scotland (approval number MREC/01/0/5) and informed consent was provided by all participants. UK Biobank has approval from the North West Multi-Centre Research Ethics Committee (11/NW/0382) and obtained written informed consent from all participants prior to the study.

DATA AVAILABILITY STATEMENT
The data that support the findings of our study are available upon reasonable request from the corresponding authors. The data are not publicly available due to privacy or ethical restrictions.

ORCID
Xue Li https://orcid.org/0000-0001-6880-2577
Maria Timofeeva https://orcid.org/0000-0002-2503-4253
Yazhou He https://orcid.org/0000-0003-2358-0143

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
2. Jiao S, Peters U, Berndt S, et al. Estimating the heritability of colorectal cancer. Hum Mol Genet. 2014;23:3898-3905.
3. Kemp Z, Thirwell C, Sieber O, et al. An update on the genetics of colorectal cancer. Hum Mol Genet. 2004;13 [Spec No 2]:R177-R185.
4. Dunlop MG, Tenesa A, Farrington SM, et al. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42,103 individuals. Gut. 2013;62:871-881.
5. Frampton MJ, Law P, Litchfield K, et al. Implications of polygenic risk for personalised colorectal cancer screening. Ann Oncol. 2016;27:429-434.
6. Peters U, Hutter CM, Hsu L, et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 2012;131:217-234.
7. Whiffin N, Hosking FJ, Farrington SM, et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet. 2014;23:4729-4737.
8. Al-Tassan NA, Whiffin N, Hosking FJ, et al. A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep. 2015;5:10442.
9. Hofer P, Hagemann M, Brezina S, et al. Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas. Oncotarget. 2017;8:98623-98634.
10. He Y, Timofeeva M, Farrington SM, et al. Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC Med. 2018;16:142.
11. Weigl K, Chang-Claude J, Knebel P, Hsu L, Hoffmeister M, Brenner H. Strongly enhanced colorectal cancer risk stratification by combining family history and genetic risk score. Clin Epidemiol. 2018;10:143-152.
12. Orlando G, Law PJ, Palin K, et al. Variation at 2q35 (PNKD and TMBIM1) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Hum Mol Genet. 2016;25:2349-2359.
13. Penegar S, Wood W, Lubbe S, et al. National study of colorectal cancer genetics. Br J Cancer. 2007;97:1305-1309.
14. Paul J, Briggs A, Harkin A, et al. SCOT: Short Course Oncology Therapy—a comparison of 12 and 24 weeks of adjuvant chemotherapy in colorectal cancer. J Clin Oncol. 2011;29(15 suppl):e14145.
15. Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42:973-977.
16. Power C, Elliott J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int J Epidemiol. 2006;35:34-41.
17. Vilhjalmsson BJ, Yang J, Finucane HK, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97:576-592.
18. McKeigue P. Quantifying performance of a diagnostic test as the expected information for discrimination: relation to the C-statistic. Stat Methods Med Res. 2019;28(6):1841-1851.
19. Mavaddat N, Pharoah PD, Michailidou K, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036.
20. Jo J, Nam CM, Sull JW, et al. Prediction of colorectal cancer risk using a genetic risk score: the Korean Cancer Prevention Study-II (KCPS-II). Genomics Inform. 2012;10:175-183.
21. McGeoch L, Saunders CL, Griffin SJ, et al. Risk prediction models for colorectal cancer incorporating common genetic variants: a systematic review. Cancer Epidemiol Biomarkers Prev. 2019;28:1580-1593.
22. Hsu L, Jeon J, Brenner H, et al. A model to determine colorectal cancer risk using common genetic susceptibility loci. Gastroenterology. 2015;148:1330-1339.
23. Smith T, Gunter MJ, Tzoulaki I, Muller DC. The added value of genetic information in colorectal cancer risk prediction models: development and evaluation in the UK Biobank prospective cohort study. Br J Cancer. 2018;119:1036-1039.
24. Jeon J, Du M, Schoen RE, et al. Determining risk of colorectal cancer and starting age of screening based on lifestyle, environmental, and genetic factors. Gastroenterology. 2018;154:2152-2164.
25. Missiaglia E, Jacobs B, D’Ario G, et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann Oncol. 2014;25:1995-2001.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Li X, Timofeeva M, Spiliopoulou A, et al. Prediction of colorectal cancer risk based on profiling with common genetic variants. Int. J. Cancer. 2020;1-7. https://doi.org/10.1002/ijc.33191