Evaluation of *Mussaenda erythrophylla* Schumach. & Thonn. for Anthelmintic Activity

Astalakshmi Narayanan*, Senthilkumar Palaniappan
Department of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore - 641 021, Tamil Nadu, India

Article History:
- Received on: 06 Jul 2020
- Revised on: 01 Aug 2020
- Accepted on: 07 Aug 2020

Keywords:
- Mussaenda erythrophylla
- Phertima Posthuma
- piperazine citrate
- anthelmintic

ABSTRACT

Medicinal plants are an essential source of treatment for various ailments. The Rubiaceae family is a rich source of medicinally important herbs. *Mussaenda* is an active member of the family Rubiaceae. It is largely seen in parks and gardens as an ornamental plant of India. It is a native of Western tropical Africa. Helminths are a wide choice of organisms which include worms such as parasitic intestinal worms, whipworms (*Trichuris trichiura*), (*Ascaris lumbricoides*) or hookworms (*Necator americanus* and *Ancylostoma duodenale*) etc. Helminthiasis is a condition of infection by worms. It is commonly known as worm infection As per WHO statistics near about 2 billion peoples are infected by soil-transmitted helminths worldwide. The infected class of peoples were found to be nutritionally and physically impaired. The current study aims at exploring the anthelmintic property of the leaves of *Mussaenda erythrophylla* Schumach. & Thonn. Anthelmintic properties of *Mussaenda erythrophylla* leaves extracts using petroleum ether (60-80°C), chloroform, ethyl acetate and methanol were evaluated against *Phertima posthuma* (Indian earthworms) at five concentrations viz., 10mg/ml, 20mg/ml, 30mg/ml, 40mg/ml and 50mg/ml. Piperazine citrate is used as the reference standard. The duration taken for paralysis and death of the *Phertima posthuma* were assessed for all the groups. Methanolic extract of *Mussaenda erythrophylla* shows moderately significant anthelmintic property as compared to the non-treated group.

Corresponding Author
Name: Astalakshmi Narayanan
Phone:
Email: astalakshmisurendar@gmail.com

ISSN: 0975-7538
DOI: https://doi.org/10.26452/ijrps.v12i1.3937

© 2021 | All rights reserved.

INTRODUCTION

Folklore medicine has its history and dates back to many centuries (*Gunasekaran et al.*, 2015). It is helpful for humanity with treatment for enormous diseases and disorders (*Astalakshmi et al.*, 2019). Medicinal plants of the Rubiaceae family are rich in medicinally important phytoconstituents. *Mussaenda* is an active member of the family Rubiaceae (*Astalakshmi and Sundaraganapathy*, 2017). It is an evergreen shrub, with hairy leaves and found its nativity in tropical regions. The plant is used for jaundice, cough, leprosy, etc. (*Eswaraiah et al.*, 2012). World Health Organization states that 2 billion people of the world are affected by various kind of worm infections. These parasitic worms infect a large area of livestock (*Kumar et al.*, 2014). Plant kingdom always serves as a rich source for the remedy of various parasitic infections (*Astalakshmi et al.*, 2015).
Table 1: Anthelmintic activity of *Mussaenda erythrophylla* leaves extract and Piperazine citrate.

Group	Treatment	Dose	Time taken for Paralysis (min)	Time taken for Death (min)
		-	-	-
II	*Mussaenda erythrophylla* leaves petroleum ether extract	10	>240	>240
III	*Mussaenda erythrophylla* leaves chloroform extract	20	>240	>240
IV		30	>240	>240
V		40	>240	>240
VI		50	>240	>240
VII	*Mussaenda erythrophylla* leaves ethyl acetate extract	10	>240	>240
VIII		20	>240	>240
IX		30	>240	>240
X		40	>240	>240
XI		50	185.6 ± 0.62***	206.4 ± 0.50***
XII	*Mussaenda erythrophylla* leaves methanol extract	10	>240	>240
XIII		20	>240	>240
XIV		30	>240	>240
XV		40	192.3 ± 0.74***	214.4 ± 0.12***
XVI		50	181.0 ± 0.17***	199.4 ± 0.50***
XVII	*Mussaenda erythrophylla* leaves methanol extract	10	>240	>240
XVIII		20	>240	>240
XIX		30	>240	>240
XX		40	175.6 ± 0.27***	198.4 ± 0.24***
XXI		50	162.1 ± 0.07***	183.21 ± 0.36***
XXII	Piperazine citrate	10	85.6 ± 0.50***	104.8 ± 0.37***
XXIII		20	32.4 ± 0.50***	047.4 ± 0.40***
XXIV		30	16.4 ± 0.85***	026.6 ± 0.74***
XXV		40	10.1 ± 0.70***	020.4 ± 0.50***
XXVI		50	05.6 ± 0.24***	008.2 ± 0.37***

The values are expressed as mean ± SEM and compared to control.

***p<0.001, n=6

(*Phertima posthuma*).

MATERIALS AND METHODS

Plant Material Collection

Mussaenda erythrophylla Schumach. &Thonn. The plant was collected from in and outskirts of Malappuram district of Kerala and authenticated by Botanical Survey of India, Coimbatore.

Preparation of extract

Mussaenda erythrophylla leaves were collected and dried in the shade. The dried leaves were reduced to a size of 150 - 175mm and extracted successively using petroleum ether(60-80°C), chloroform, ethyl acetate and methanol in increasing order of polarity using soxhlet extraction process (Sasidharan et al., 2011). The preliminary phytochemical analysis shows the presence of alkaloids, flavonoids, glycosides, tannins, steroids in the extracts.

Animals

Earthworms shows resemblance in its anatomical and physiological nature similar to that of human intestinal roundworms (Vidyarthi, 1977; Thorn et al., 1977; Vigar, 1984). The healthy adult earthworms were collected from wet soil. They were cleaned using water and sorted on their dimension range and employed for the study.

Anthelmintic studies

Indian Earthworms ranging in size of 3-5cm length and 0.1-0.2cm width were selected. The study was carried out with twenty-six groups of six earthworms for each group. Each group contains 10ml of specified solutions. Group I, contains normal saline and served as a negative control. Group II to VI contains petroleum ether(60-80°C) extract of *Mussaenda erythrophylla* leaves in concentrations of 10mg/ml, 20mg/ml, 30mg/ml, 40mg/ml and
50mg/ml respectively. VII to XI groups were treated with the same concentrations as above of chloroform extract of Mussaenda erythrophylla leaves. Ethyl acetate extract of Mussaenda erythrophylla leaves was given to Group XII to XVI as the previous test groups. Group XVII to XXI was treated with methanolic extract of Mussaenda erythrophylla leaves as above. Whereas, Group XXII to XXVI were treated with the reference standard drug piperazine citrate with the above-specified concentrations. The time taken for paralyze and death for earthworms were observed. The observation was carried out for a test period of 4 hours (Table 1). Paralysis of the earthworms was confirmed by non-revival in 0.9% saline solution, and mortality was confirmed by losing up of movement and losing away of their body colours (Singh et al., 2011; Dash et al., 2002).

Statistical Analysis

The obtained data were analyzed statistically with One-way ANOVA and expressed as Mean ± S.E.M, n = 6 earthworms. The significance level was P<0.05.

RESULTS AND DISCUSSION

Helminthiasis is one of the common infections in humans, affecting a significant part of the globe. Mainly, in developing countries, helminthiasis is a massive threat to public health (Das et al., 2011). As per statistics from WHO, it is estimated that near about 2 billion people were affected by parasitic worm infections throughout the world (Asta-lakshmi et al., 2015). This alarming condition is due to the deficiencies in pure water supply related to poverty, illiteracy and lack of hygiene (Walter and Richard, 1985). Helminthiasis is a common condition seen globally among the majority of the population. It is highly prevalent in a country like India, especially in countryside areas and to a smaller extent in city regions. An anthelmintic drug will expel the parasitic worms (helminths) from the human body by striking or slaughtering them (Tem-jenmongla and Yadav, 2005). The currently available anthelmintic drugs are not able to kill these gastrointestinal helminths due to their resistance (Sub-hasish et al., 2010). Moreover, the presently available anthelmintic drugs in the market are also at a high cost (Nisha et al., 2012). These complications encourage researchers to search for novel anthelmintic agents from herbal resources. Mussaenda erythrophylla Schumach. &Thonn. Is an ornamental plant widely seen in the southern part of India. Preliminary phytochemical investigation of the leaves extracts shows the presence of alkaloids, flavonoids, tannins, carbohydrates and proteins. Anthelmintic properties of Mussaenda ery-

CONCLUSIONS

Mussaenda erythrophylla Schumach. &Thonn. Is an ornamental plant widely seen in the southern part of India. The present study evaluates petroleum ether (60-80°C), chloroform, ethyl acetate and methanolic extracts of Mussaenda erythrophylla leaves at 10mg/ml, 20mg/ml, 30mg/ml, 40mg/ml and 50mg/ml for anthelmintic potential using piperazine citrate as a reference standard. Based on the study, it can be concluded that the chloroform, ethyl acetate and methanolic extracts of Mussaenda erythrophylla possess anthelmintic properties to dose-dependently. The time taken for paralysis by the chloroform extract, ethyl acetate extract and methanolic extracts at the highest concentration 50mg/ml was found to be 185.6 min, 181.0 min and 162.1 min respectively. These extracts were less significant than the standard piperazine citrate (time taken for paralysis 5.6min at 50mg/ml). However, Mussaenda erythrophylla methanolic extract is found to be more significant than the other extracts.

ACKNOWLEDGEMENT

The authors would like to thank Dr M. Surendra Kumar, Professor & Principal, Sengundhar College of Pharmacy, Tiruchengode, Tamil Nadu for his timely help in the collection of Indian earthworms and designing out the research activities.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

Funding Support

The authors declare that they have no funding support for this study.

REFERENCES

Astralakshmi, N., Kumar, M. S., Mithra, T., Nikhil, B. R., Rinshida, P., Zubair, Ameer, V. K., Babu, G. 2015. Evaluation of Hyophilainvoluta(Hook.) A. Jaeger
aqueous extract for anthelmintic activity. *World Journal of Pharmaceutical Research*, 4(6):1029–1033.

Astalakshmi, N., Sundaraganapathy, R. 2017. A comprehensive review on the genus: Mussaenda. *International Journal of Research in Pharmaceutical Sciences*, 8(4):534–541.

Astalakshmi, N., Sundaraganapathy, R., Kumar, M. S. 2019. A comparative study on Mussaenda erythrophylla leaves extract for larvicidal properties. *International Journal of Research in Pharmaceutical Sciences*, 10(1):220–222.

Das, S. S., Dey, M., Ghosh, A. K. 2011. Determination of anthelmintic activity of the leaf and bark extract of Tamarindus Indica linn. *Indian Journal of Pharmaceutical Sciences*, 73(1):104–107.

Dash, G. K., Suresh, P., Sahu, S. K., Kar, D. M., Ganapathy, S., Panda, A. 2002. Evaluation of Evolvulus alsinoides Linn for anthelmintic and antimicrobial activities. *Journal of Natural Remedies*, 2(2):182–185.

Eswaraiah, M. C., Elumalai, A., Manasa, N. 2012. Pharmacognostical Evaluation of Mussaenda erythrophylla Linn leaves. *Research Journal of Pharmacognosy and Phytochemistry*, 4(4):197–200.

Gunasekaran, S., Sundaramoorthy, S., Sathiavelu, M., Arunachalam, S. 2015. The genus Mussaenda: A phytopharmacological review. *Journal of Chemical and Pharmaceutical Research*, 7(7):1037–1042.

Kumar, S., Astalakshmi, N., Mithra, T., Nikhil, B. R., Rinishda, P., Zubair, Ameer, V. K. M., Babu, G. 2014. Evaluation of Cyathodium cavernarum Kunze Aqueous Extract for Anthelmintic Activity. *International Journal of Pharmacognosy and Phytochemical Research*, 6(4):778–779.

Nisha, P. V., Shruti, N., Swamy, K. S., Kumari, M., Vedamurthy, A. B., Krishna, V., Hoskeri, J. H. 2012. Anthelmintic activity of Pyrostegia venusta using Pheretima posthuma. *International Journal of Pharmaceutical Sciences and Drug Research*, 4(3):205–208.

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., Latha, L. Y. 2011. Extraction, Isolation and Characterization of Bioactive Compounds from Plants’ Extracts. *African Journal of Traditional, Complementary and Alternative Medicines*, 8(1):1–10.

Singh, S., Rai, A. K., Sharma, P., Barshiliya, Y. 2011. Comparative study of Anthelmintic activity between aqueous extract of Areva lanata and Rotula aquatic. *Lour Asian Journal of Pharmacy and Life Science*, 1(3):211–215.

Subhasish, M., Rabiul, H., Parag, G., Debasis, D. 2010. Investigation of in vitro anthelmintic activity of Clerodendron inerme. *International Journal of Drug Development and Research*, 2(4):826–829.