Supplementary materials

1. Inclusion and exclusion criteria

The inclusion criteria were as follows:
(i) Surgery was performed at our center, and the pathological diagnosis was made;
(ii) Preoperative abdominal CT examination was conducted within two weeks before surgery;
(iii) With complete clinicopathological data in electronic medical records.

The exclusion criteria were as follows:
(i) Preoperative CT was not performed at our center;
(ii) Artifact was present in CT images;
(iii) With incomplete CT scanning series;
(iv) MCN that had progressed to invasive carcinoma.

The flow diagram is illustrated in Fig S1.

MCN/ASCN patients performed surgery at our center between February 2014 to August 2020

Inclusion criteria
(i) surgery was performed at our center and pathological diagnosis was made
(ii) preoperative abdominal CT examination was conducted within 2 weeks before surgery
(iii) complete clinicopathological data

exclusion criteria
(i) preoperative CT was not performed at our center
(ii) artifacts was present in CT images
(iii) incomplete CT series in PACS
(iv) MCN that had progressed to invasive carcinoma

113 MCN patients and 103 ASCN patients were finally enrolled

random sampling with 2:1 ratio

n = 144
Training cohort
(74 MCN, 70 ASCN)

n = 72
Validation cohort
(39 MCN, 33 ASCN)

Fig S1. Flow diagram of the inclusion and exclusion processes
2. Image preprocessing, tumor segmentation and feature extraction

Tumor segmentation and image preprocessing were performed via 3D Slicer [1] (version 4.11.0; http://www.slicer.org). All cases were semi-manually segmented by reader 1 (T.S.X, a junior radiologist with 3-year experience in interpretation of abdominal imaging) on all slices showing the lesion. First, the reader annotated the central area of the lesion and adjacent normal tissue respectively on a transverse, coronal, sagittal section. Then, an approximation algorithm called grow from seeds was used to generate a 3D region of interest (ROI) automatically. Finally, the reader could further optimize ROI manually if necessary.

Before extracting features, each CT scan of each patient was normalized with Z-scores in order to reduce image noise from different CT scanners. Images were then resampled to a voxel size of $1 \times 1 \times 1$ mm3. With the Radiomics module in 3D Slicer, 851 radiomics features were extracted based on venous phase CT images. After omitting 87 features with missing values, a total of 764 radiomics features were finally obtained.
3. Radiomics features information

A total of 764 radiomics features were extracted based on venous-phase CT images, covering six groups (14 shape features, 16 first-order features, 11 gray level dependence matrix features (GLDM), 12 gray level run length matrix features (GLRLM), 12 gray level size zone matrix features (GLSZM), and 699 wavelet-based features). Detailed information about these features is listed in Table S1.

Feature class	Feature name
Shape	
Elongation	Flatness
LeastAxisLength	MajorAxisLength
Maximum2DDiameterCol	Maximum2DDiameterRow
Maximum2DDiameterSlic	Maximum3DDiameter
MeshVolume	MinorAxisLength
Sphericity	SurfaceArea
SurfaceVolumeRatio	VoxelVolume
First-order	
10Percentile	90Percentile
Energy	InterquartileRange
Kurtosis	Maximum
MeanAbsolutDeviat	Mean
Range	Skewness
RootMeanSquared	TotalEnergy
GLDM	
DependenceEntropy	DependenceNonUniformity
DependenceNonUniformityNormalized	Dependence Variance
GrayLevelNoUnifor	LargeDependenceHighGrayLevelEmphasis
GLRLM	
GrayLevelNonUniformity	LongRunEmphasis
LongRunHighGrayLevelEmphasis	LongRunLowGrayLevelEmphasis
RunEntropy	RunLengthNormalizedOnUniformity
RunLengthNonUniformity	RunLengthNormalizedOnUniformity
GLSZM	
GrayLevelNonUniformity	LargeAreaEmphasis
LargeAreaHighGrayLevelEmphasis	LargeAreaLowGrayLevelEmphasis
SizeZoneNonUniformity	SizeZoneNonUniformityNormalized
Wavelet-based	Wavelet transformation based on above features.

Table S1. List of radiomics features classes. GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix.

Table S2. Detailed information on radiomics features. GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix.
3. Diagnostic criteria of radiological features.

(i) Tumor size: Tumor size was measured on transverse images. The maximum diameter of the tumor was recorded;

(ii) Location: The left margin of the superior mesenteric vein was used to divide pancreatic head/neck and body/tail;

(iii) Lesion contour: Lesion contour was split into two groups named round/ovoid and lobulated. If the lesion contour could not be described as the borders of the same circle, it was defined as a lobulated contour, or it was defined as a round/ovoid contour;

(iv) Wall thickness: If the wall thickness of a cystic lesion was larger than 2 mm, it was considered thick. If the wall was imperceptible or wall thickness smaller than 2 mm, it was considered thin;

(v) Wall enhancement: Wall enhancement was described as line or rim-like enhancement of lesion wall in arterial or venous-phase CT images. The enhanced wall was visible for at least 50% of the lesion circumference;

(vi) Calcification: Calcification presented on the wall or septa was noted as positive;

(vii) Mural nodules: A nodule-like structure on the inner side of the wall or on the septa was noted as mural nodules positive;

(viii) Dilation of the Wirsung duct: The main pancreatic duct was considered dilation if its diameter was larger than 2 mm.

Examples of radiological features are illustrated in Fig S2
Radiological feature	Example
Tumor size	![Image](image1.png)
Location	![Image](image2.png)
Pancreatic head/neck	Pancreatic body/tail
Lesion contour	![Image](image3.png)
Round/oval	Lobulated
Wall thickness	![Image](image4.png)
Thin	Thick
Wall enhancement	![Image](image5.png)
Absent	Present
Calcification	![Image](image6.png)
Absent	Present
Mural nodule	![Image](image7.png)
Absent	Present
Fig S2. Examples of radiological features. An asterisk was used to annotate the target lesion.

4. Reproducibility analysis for radiomics feature extraction.

A total of 764 radiomics features were extracted for each patient. The first step of the feature selection was reproducibility analysis. Thirty patients were randomly chosen to evaluate the inter/intra-observer intraclass correlation coefficient (ICC) of radiomics features. Reader 1 (T.S.X, a junior radiologist with 3-year experience in interpretation of abdominal imaging) repeated segmentation flow twice with time intervals exceeding one week; reader 2 (X.Y.W, a junior radiation oncologist with 4-year experience in irradiation volume segmentation of abdominal tumor) independently performed segmentation flow; the intraclass correlation coefficient (ICC) was calculated to evaluate feature reproducibility. All readers were blinded to the pathological diagnosis during segmentation.

Among all 764 radiomics features, there were 491 and 492 features with inter-observation ICC and intra-observation ICC higher than 0.90, respectively (Fig S3.). Finally, 472 features with both inter- and intra-observation ICC higher than 0.90 were selected for the next step.

The x-axis represents the feature number of 764 radiomics features; the y-axis measures features’ ICC. The horizontal dotted line represents the cutoff value of ICC level (0.90). Features with good agreement are annotated by a blue bar, while a poor agreement is annotated by a red bar.

5. R packages in this study

The R packages used in this study were as follows. Random forest algorithm was completed using the ‘randomForest’ package. The 10-fold cross validation was performed
using the ‘caret’ package. ROC was printed using ‘pROC’ package. The logistic regression model was constructed using the ‘rms’ package. The calculation of ICC was done by using the ‘irr’ package.