The Humpty Dumpty Effect on Planet Earth

Joel Berger1,2* and Joanna E. Lambert3

1 FWC-Biology, Colorado State University, Fort Collins, CO, United States, 2 Wildlife Conservation Society, New York, NY, United States, 3 Program in Environmental Studies, Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States

Humans have treated the earth harshly. Degradation of extant ecosystems leaves little chance that they might function as they have in the past. Putting back the pieces and restoring what once existed is no longer possible even with re-wilding—an effect analogous to the Humpty Dumpty parable. However, we do have conservation successes after concerted efforts related to habitat protection, species and ecosystem restoration, and planning. While the changes to Earth’s biosphere are grave, necessitating immediate and exhaustive action, our Humpty Dumpty world reassembles with progressive conservation victories at all regional scales from local to global which should lead to a modicum of optimism rather than despair. We suggest that to be truly effective our work as academic scientists must be more than publishing in scholarly journals. At the least, this should include changes in how success is measured in science and how university tenure is awarded.

Keywords: ecology, conservation success, conservation failure, earth, biodiversity, ecological grief, Anthropocene

INTRODUCTION

Many know the sad fate of Humpty Dumpty. He sat on a wall and had a great fall. Depicted as a fragile egg, the nineteenth century British allegory unfolds a story in which all the kings’ horses and all the kings’ men could not put Humpty back together again. We suggest that an Anthropocene version of this parable is our fragile biosphere.

We all know that human-induced disassembly of biodiversity and restructuring of ecological relationships have resulted in fundamental planetary changes. While Earth will always be the sum of its ecological processes, these processes differ from those existing even a decade ago. Just as Humpty could not be reconstituted into his pre-fall form, we are not likely to reconfigure biotic assemblages into their previous forms, despite rewilding and restoration efforts (Navarro and Pereira, 2015; Noss, 2020). Most places are just changed. We argue, however, that we do not have the luxury to lament this Humpty Dumpty Effect (Figure 1). We need to acknowledge it and use it to galvanize our tactics, not cripple us with a yearning for the past.

We both bristled when Chris Thomas’s provocative and beautifully written “Inheritors of the Earth: How Nature Is Thriving in an Age of Extinction” appeared in 2017. Neither of us was prepared to become resigned to a new version of Earth. We did not accept the premise that we need to mourn and carry on. But we must. Yesterday’s world is not today’s nor tomorrow’s.
With this in mind, we recently published a paper on food web disassembly that contextualizes how unabated human population growth is a central, though not the sole, ecological disruptor of most large mammal communities (Berger et al., 2020). Our central thesis was that the world is messy, that the pieces cannot be put back together, and that ecological transitions in the form of regime shifts, thresholds, and tipping points (Holling, 1973, 1986; Berlow et al., 2012) are expanding globally. A major take home point of this paper was steeped in the reality of accepting biological change, a topic central in Inheritors of the Earth (Thomas, 2017). Our paper rings with words of grave acceptance, though acceptance need not be passive nor contraindicate optimism.

We remain sanguine because of success stories that provide precedents for ways forward. These successes understandably vary, ranging from local to global and of broad thematic significance to small local victory. For instance, in addition to the vast protected areas with ecosystems functioning much in the way of the past—albeit situated in high-latitude regions with low human density (e.g., Tibet's Chang Tang, Northeast Greenland National Park, Alaska's Wrangell-St. Elias, and Russia's Arctic National Park)—governments and non-governmental organizations have also invested in protected areas at lower latitudes (e.g., Serengeti, Madidi, and Yellowstone National Parks; Kennedy et al., 2019).

Examples of other successes across the globe are presented in Table 1. Rewilding via species reintroduction has proven a particularly valuable tool at broad landscape levels. The reintroduction of gray wolves (Canis lupus) into the northern Rocky Mountains of Wyoming and Idaho re-established prey fear responses and former trophic interactions (Estes et al., 2012). Other examples of highly successful reintroductions include water buffalo (Bubalus bubalis) back into the Danube River Delta, Ukraine, red kite (Milvus milvus) into Britain, and bandicoot (Isoodon obesulus) and bilby (Macrotis lagotis) into Australia (Moseby and O’donnell, 2003; Cogălniceanu, 2012; Legge et al., 2018). Lesser-known successes have been removal of railroad fencing and creation of over- and underpasses—human actions that have reinstated migratory pathways. In Mongolia's Gobi Desert, for example, khulan (Equus hemionus), now pass on both sides of a modified railroad impediment for the first time in six decades (News Wise, 2020).

We write in full cognizance of the biodiversity extinction crisis and that we are losing more species than we are recovering (Nicholson and Possingham, 2007; Kolbert, 2014). Indeed, under our current circumstances of limiting funding and resources, a tactic of conservation triage prevails (Hayward and Castley, 2018). Yet, triumphs do still occur and do so because of individual choices and institutional action—both of which are the result of labile sociocultural-political processes that can change within a generation. Scientific advances, such as those offered by the nascent but growing field of synthetic biology, can bolster such changes (Redford and Adams, 2021). Other sources of cautious optimism include more efficient urban planning, the leveraging of high-resolution geospatial data to address agricultural demands, greater opportunities for reproductive choice by women, and a decrease in the intrinsic rate of human population growth globally (Sanderson et al., 2018; Vollset et al., 2020; ACF, 2021). Calls to action, especially when voiced across generations, gender, and ethnicity solidifies support and can result in change. To wit: the civil unrest related to environmental (in)justice garnered by Greta Thunberg (Rodrick, 2020).

We believe emphatically that as academic scientists we cannot limit ourselves to the currency of our trade: peer-reviewed publications. Essays or perspectives do not accomplish conservation, nor do they typically reach the public (Strother and Fazal, 2011; Morrison et al., 2018). We must work where we can to influence decision-makers and to implement sociocultural change related to environmental policy. This involves non-academic pursuits such as working with agencies
Continent	Locale	Key native species	Initial in situ anthropogenic change/challenge	The success
North America	Greater Yellowstone Ecosystem, USA	Gray wolf (*Canis lupus*)	Extirpated by poisoning, trapping, and shooting	Re-introduction of gray wolves resulted in re-installation of fear in prey species (*e.g.*, *Cervus elaphus*) and trophic-level shifts in species abundance
North America	Great Basin Desert, USA	Large mammal community comprising two large-bodied artiodactyls: bighorn sheep (*Ovis canadensis*) and pronghorn (*Antilocapra americana*)	Livestock-induced habitat alterations (1880’s – 1980’s) with post-disturbance addition of mule deer (*Odocoileus hemionus*) and pumas (*Puma concolor*)	Societal recognition that novel species will enter landscapes as a consequence of human activities
North America	Pacific Coast, Colorado Plateau, USA	California Condor (*Gymnogyps californianus*)	Extirpated by poison and shooting; declared extinct in the wild in 1987	Re-introduction; ~ 275 individuals currently Mexico and USA, in and outside of national parks
Africa	Ol Kinyei Conservancy, Maasai Mara Ecosystem, Kenya	Lions (*Panthera leo*), wildebeest (*Connochaetes taurus*)	Extensive and intensive habitat loss as consequence of human population growth and resource extraction	Placement of Maasai land in a conservancy has increased their revenue while enabling growth of lion and wildebeest populations
Africa	Rwanda, Uganda, Democratic Republic of Congo	Mountain gorillas (*Gorilla gorilla beringei*)	Poaching, habitat loss, war and civil unrest	With protection, substantive population growth (from ~270 to >1,000 individuals)
Asia	Gobi Desert, Mongolia	Khulan (*Equus hemionus*), Mongolian gazelles (*Procapra gutturosa*)	Governmental and corporate proposal to build large-scale industrial plant to extract soda ash from lake	Habitat protected and planned industrialization site canceled
Asia	Annamite Mts, Vietnam	Silver-backed chevrotain (*Tragulus versicolor*)	Poaching and habitat loss resulted in assumption of extinction	Not extinct – intensive field work and camera traps reveal existence
Asia	Tonle Sap Wetlands, Cambodia	Storks (*Ciconia* spp), spot-billed pelican (*Pelecanus philippensis*), ibis (*Pseudibis davisoni, Thaumatibis gigantea*)	Massive population reductions	Species protections result in upwards of 20x in population abundance
South America	Andes Range, Columbia	Diverse assemblage of birds and mammals	Privately owned land and reticence toward biodiversity conservation	Creation of large national parks and other protected areas
South America	Patagonian grasslands, Columbia and Argentina	Guanaco (*Lama guanicoe*), puma (*Puma concolor*)	Domestic sheep result in centuries of habitat degradation; recent downturn in economic viability of sheep production results in habitat regeneration	Guanaco populations increase tenfold, and pumas expand
South America	Rio Ucubamba Valley, Peru	Marvelous Spatuletail (*Loddigesia mirabilis*)	Deforestation via slash and burn methods results in population decline	Establishment of Huembo Reserve, and expanded protected land, community outreach projects
Europe	Wetlands of Danube River delta	Fish, bird, mammal assemblages	Presence of dam; water pollution, invasive species	Dam removal, re-wilding, species reintroduction (*e.g.*, water buffalo, *Bubalus bubalis*) habitat protection
Europe	Great Britain	Red kite (*Milvus milvus*)	Concerted removal effort via hunting, trapping, and poisoning; by mid-twentieth century, only a handful of breeding pairs throughout island	Captive breeding, reintroductions; now ~1,800 breeding pairs
Europe	Iberian Peninsula, Spain	Iberian lynx (*Lynx pardinus*)	Over-hunting, poaching, decline in prey species, fragmentation of habitat	Captive breeding, species reintroduction, and habitat protection; population now > 550 individuals;

(Continued)
and policymakers, writing opinion editorials, working toward gender equity, engaging in complicated conversations with multiple stakeholders, and acknowledging iterative, structural racism that has profound impacts for environmental justice. Such actions are requisite to enact broad conservation changes (Wittenmyer et al., 2018). Though work beyond academia (e.g., outreach, advocacy) is often not rewarded at institutions of higher education, standards are readily changed by re-writing the requirements for tenure.

In the end, we can’t look backwards. Ecological restoration and rewilding will not bring us back to what Earth once was, even in the recent past (Thomas, 2017; Berger, 2018; Berger et al., 2020). But new versions will coalesce and while we may not gain identical species assemblages, we can work toward comparable ecological function (Chazdon, 2014). Working at all scales, we too can invest in where, when and how we try to impact a world we’d like to see.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

This study was funded by Colorado State University, the Wildlife Conversation Society, and the University of Colorado.

REFERENCES

ABC Birds (2016). In Latin America, It Takes a Village to Save Rare Hummingbirds. Available online at: https://abcbirds.org/it-takes-a-village-to-save-rare-hummingbirds/ (accessed September 20, 2016).

ACF (2021). Agricultural Conservation Planning Framework. Available online at: https://acpf4watersheds.org (accessed July, 2020).

Anonymous (2008), Conservation Success Story: Birds Stage Dramatic Recovery in Cambodia. Available online at: https://news.mongabay.com/2008/04/conservation-success-story-birds-stage-dramatic-recovery-in-cambodia/ (accessed April, 2008).

Berger, J. (2018). Extreme Conservation: Life at the Edges of the World. Chicago, IL: University of Chicago Press. doi: 10.7208/chicago/9780226366432.001.0001

Berger, J., Wangchuk, T., Briceno, C., Vila, A., and Lambert, J. E. (2020). Disassembled food webs and messy projections: modern ungulate communities in the face of unabating human population growth. *Front. Ecol. Evol.* 8, 1–23. doi: 10.3389/fevo.2020.00128

Berger, J., and Wehausen, J. (1991). Consequences of a mammalian predator-prey disequilibrium in the Great Basin Desert. *Conserv. Biol.* 5, 243–248. doi: 10.1111/j.1523-1739.1991.tb00129.x

Berlow, E. L., Brown, J. H., Fortelius, M., Getz, W. M., Hastings, A., et al. (2012). Approaching a state shift in Earth’s biosphere. *Nature* 486, 52–58. doi:10.1038/nature11018

Birdlife (2017), Listen to the Birds. Available online at: https://www.birdlife.org/flamingo-factory-natron (accessed August, 2017).
Chazdon, R. L. (2014). Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. Chicago, IL: University of Chicago Press. doi: 10.7208/chicago/9780226181099.001.001

Coghlin, C. (2019). “Black Sea environmental status improvement through the restoration of wetlands along the Danube River,” in Environmental Security in Watersheds: The Sea of Azov. NATO Science for Peace and Security Series C: Environmental Security, ed V. Lagoutov (Dordrecht: Springer). doi: 10.1007/978-94-007-2460-0_6

Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., et al. (2012). Trophic downgrading of planet Earth. Science 333, 301–306. doi: 10.1126/science.1205106

Gelin, M. L., Branch, L. C., Thornton, D. H., Novaro, A. J., Gould, M. J., and Caragiulo, A. (2017). Response of pumas (Puma concolor) to migration of their primary prey in Patagonia. PLoS ONE 12:e0188877. doi: 10.1371/journal.pone.0188877

Guardian (2019). Bilbies Returned to National Park in South-West NSW After 100-Year Absence. Available online at: https://www.theguardian.com/environment/2019/oct/06/bilbies-returned-to-national-park-in-south-west-nsw-after-100-year-absence (accessed October, 2019).

Hayward, M. W., and Castley, J. G. (2018). Triage in conservation. Front. Ecol. Evol. 5:168. doi: 10.3389/fevo.2017.00168

Holling, C. S. (1973). Resilience and stability of ecological systems. Annu. Rev. Ecol. Systemat. 4, 1–23. doi: 10.1146/annurev.es.04.110173.000245

Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., and Kiesecker, J. M. (2013). How to successfully reintroduce the greater bilby, M. fatuous (Marsupialia: Thylacomyidae), to northern South Australia: survival, ecology and notes on reintroduction protocols. Wildlife Res. 30, 15–27. doi: 10.1071/WR02012

Kimbrough, L. (2020). Animal Crossing: A Wild as Makes History. Available online at: https://news.mongabay.com/2020/06/animal-crossing-a-wild-as makes-history/ (accessed June, 2020).

Kolbert, E. (2014). In Extinction: A Natural History of Vanishing Species. Boston, MA: Houghton Mifflin Harcourt. Available online at: https://www.newswise.com/articles/in-extinction-a-natural-history-of-vanishing-species (accessed June 26, 2020).

Kimbrough, L. (2019). “Cross-boundary human impacts compromise the Serengeti-Mara ecosystem.” Science 363, 1424–1428. doi: 10.1126/science.aav0564

Vollset, S. E., Gore, E., Yuan, C.-W., Cao, J., Smith, A.E., Hsiao, T., et al. (2020). Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet 395:2020. doi: 10.1016/S0140-6736(20)30677-2

Wittmer, G., Berger, J., Crooks, K. R., Noon, B. R., Pejchar, L., Reed, S. E., et al. (2018). To advocate or not is no longer the question: paths to enhance scientific engagement. Bioscience 68:13. doi: 10.1093/biosci/bix134

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.