Supplementary Information

Cysteine Disulfides (Cys-ss-X) as Sensitive Plasma Biomarkers of Oxidative Stress

Xiaoyun Fu¹,², Shelby A. Cate¹, Melissa Dominguez¹, Warren Osborn¹, Tahsin Özpolat¹,
Barbara A. Konkle¹,², Junmei Chen¹, José A. López¹,²

¹ Bloodworks Research Institute, Seattle, USA
² Department of Medicine, University of Washington, Seattle, USA
Supplementary Table 1. Reproducibility, linear range, and limit of detection

Analytes	Reproducibility (RSD\(^a\))	Linear range\(^b\)	LOD\(^a\)	
	Intra-day (n=4)	Inter-day (n=8)	(mol/L)	(mol/L)
Cys-NEM	2.8%	4.2%	1.3 x 10\(^{-5}\) – 4.0 x 10\(^{-9}\)	2.0 x 10\(^{-9}\)
GS-NEM	3.2%	3.0%	2.0 x 10\(^{-5}\) – 1.1 x 10\(^{-9}\)	5.0 x 10\(^{-10}\)
NAC-NEM	4.8%	4.5%	1.2 x 10\(^{-5}\) – 5.0 x 10\(^{-9}\)	2.5 x 10\(^{-9}\)
Hcy-NEM	2.2%	3.1%	6.1 x 10\(^{-6}\) – 3.0 x 10\(^{-9}\)	1.5 x 10\(^{-9}\)
CG-NEM	2.7%	5.4%	1.1 x 10\(^{-6}\) – 4.0 x 10\(^{-9}\)	2.0 x 10\(^{-9}\)
γEC-NEM	4.8%	5.9%	6.0 x 10\(^{-7}\) – 2.5 x 10\(^{-9}\)	1.2 x 10\(^{-9}\)
Cystine	2.0%	5.1%	6.7 x 10\(^{-6}\) – 3.8 x 10\(^{-10}\)	2.0 x 10\(^{-10}\)
GSSG	2.5%	6.5%	7.7 x 10\(^{-6}\) – 2.2 x 10\(^{-9}\)	1.0 x 10\(^{-9}\)
NACss	4.3%	4.8%	1.2 x 10\(^{-5}\) – 1.5 x 10\(^{-9}\)	7.5 x 10\(^{-10}\)
NAC-ss-Cys	1.8%	6.4%	5.3 x 10\(^{-7}\) – 2.7 x 10\(^{-9}\)	5.4 x 10\(^{-10}\)
Hcy-ss-Cys	0.9%	6.3%	9.0 x 10\(^{-7}\) – 4.5 x 10\(^{-9}\)	4.5 x 10\(^{-9}\)
CG-ss	3.8%	9.2%	6.0 x 10\(^{-7}\) – 6.0 x 10\(^{-9}\)	3.0 x 10\(^{-9}\)
CG-ss-Cys	2.2%	6.8%	7.0 x 10\(^{-7}\) – 3.5 x 10\(^{-9}\)	2.0 x 10\(^{-9}\)
γEC-ss-Cys	4.0%	7.9%	8.0 x 10\(^{-7}\) – 1.6 x 10\(^{-8}\)	8.0 x 10\(^{-9}\)
GS-ss-Cys	4.4%	7.8%	1.0 x 10\(^{-6}\) – 5.0 x 10\(^{-9}\)	2.5 x 10\(^{-9}\)
Caffeine	2.9%	3.0%	8.9 x 10\(^{-6}\) – 3.6 x 10\(^{-8}\)	2.0 x 10\(^{-8}\)

\(^a\)RSD: relative standard deviation

\(^b\)Linear range and limit of detection (LOD) were tested with 5 µl of injection
Supplementary Table 2. Clinical characteristics of SCD patients

Patient ID	Ethnicity	Age	Sex	Genotypes	Hydroxyurea	Complications
1	African American	34	F	SS	No	Iron overload, pulmonary hypertension, acute chest syndrome, vasoocclusive crises, chronic renal failure, multiple strokes, deep vein thrombosis
2	African American	24	M	SS	Yes	Frequent vaso-occlusive crises, iron overload, multiple episodes of acute chest syndrome, pulmonary embolism (twice)
3	African American	22	F	SS	Yes	Frequent vaso-occlusive pain crises
4	African American	41	F	SS	Yes	Pulmonary hypertension, retinopathy, left shoulder and bilateral hip avascular necrosis, multiple deep vein thrombosis (chronically on anticoagulation)
5	African American	37	M	SS	Yes	Priapism, stroke, sickle cell hepatopathy, avascular necrosis of the femoral heads, iron overload
6	African American	61	F	SB⁺	Yes	Bilateral hip avascular necrosis
7	African American	38	F	SS	Yes	Avascular necrosis both shoulders and knees, chronic severe pain
8	Hispanic	25	M	SB⁰	Yes	Frequent vaso-occlusive pain crises, avascular necrosis of both hips and shoulders, transient ischemic attack
9	African American	28	M	SC	Yes	Acute chest syndrome (twice), priapism

Supplementary Table 3. Clinical characteristics of sepsis patients

Patient ID	Lived/Died	Age	Sex	ARDS⁺	APII⁺	APIII⁺
1	Lived	36	F	At risk	18	68
2	Died	73	M	At risk	24	79
3	Lived	48	F	Yes	27	84
4	Lived	57	F	At risk	20	52
5	Died	N/A	N/A	At risk	27	99

⁺ARDS: acute respiratory distress syndrome
⁺APIII: Acute Physiology and Chronic Health Evaluation (APACHE) II/III scores, which correlate with disease severity. APIII scores were assessed at the first evaluation after patients were admitted to the intensive care unit.
Supplementary Figure 1. Concentrations of reduced and total thiols in whole blood quantified by mass spectrometry. Whole blood from 11 healthy donors was collected in 3.2% sodium citrate then mixed with NEM (final concentration: 20 mM), aliquoted, snap-frozen in liquid nitrogen, and stored at -80°C until analysis. Reduced and total thiols in whole blood were analyzed using the same method as for plasma (see Methods) except that the whole blood samples were diluted 1 to 10 with 5 mM phosphate buffer, pH 6.0, and the internal standard for whole blood quantification contained GSH* at 150 µM.