Measurement of jet-medium interactions via direct photon-hadron correlations in Au+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

U. Acharya, A. Adare, S. Afanasiev, C. Aidala, Y. Akiba, R. Akimov, H. Al-Bataineh, J. Alexander, H. Al-Ta’ani, A. Angerami, K. Aoki, N. Apadula, Y. Aramaki, H. Asano, E.C. Aschenauer, E.T. Atomssa, R. Averbeck, A. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, B. Bannier, K.N. Barish, B. Bassalleck, A.T. Basye, S. Bathe, V. Baublis, C. Baumann, S. Baumgart, A. Bazilevsky, S. Belikov, R. Belmont, A. Berdnikov, Y. Berdnikov, J.H. Blom, L. Bichon, A.A. Bickley, D. Black, B. Blankenship, D.S. Blau, J.S. Bok, V. Borisov, K. Boyle, M.L. Brooks, J. Brylsiwskij, H. Buesching, V. Bumazhnikov, G. Bunce, S. Butsyk, C.M. Camacho, S. Campbell, V. Canoa Roman, A. Caringi, P. Castera, C.-H. Chen, C.Y. Chi, M. Chiu, I.J. Choi, J.B. Choi, S. Choi, R.K. Choudhury, P. Christiansen, T. Chuo, P. Chung, O. Chvala, V. Cianciolo, Z. Citron, B.A. Cole, Z. Csones da Valle, M. Connors, P. Constanti, N. Cronin, N. Crossette, M. Csanád, T. Csörgő, T. Dahms, S. Dairaku, K. Das, A. Datta, M.S. Daugherity, G. David, M.K. Dayananda, K. DeBlasio, K. Dehmelt, A. Deshpande, E.J. Donaldson, K.V. Dharmawardane, O. Dietzsch, L. Ding, A. Dion, J.H. Do, M. Donadelli, D. D’Orazio, O. Dragier, A. Drees, K.A. Drees, J.M. Durham, A. Durum, D. Dutta, S. Edwards, F. Efremenko, F. Ellingshaus, T. Engelmore, A. Enokizono, H. En’yo, F. Esha, S. Esumi, K.O. Eyser, B. Faden, W. Fan, D.E. Fields, M. Finger, F. Finger, J. Firlak, D. Fitzgerald, F. Fleuret, S.L. Fokin, Z. Frenkel, J.E. Frantz, A. Franz, A.D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, K. Gainey, C. Gal, P. Garg, A. Garishvili, I. Garishvili, F. Giordano, A. Glenn, Y. Gong, M. Gonin, Y. Goto, Y. Gu, R. Granier de Cassagnac, N. Gran, S.V. Greene, G. Grim, M. Grosse Perdekamp, V. Gu, T. Gunji, L. Guo, H.-Å. Gustafsson, T. Hachiya, J.S. Haggerty, K.I. Hahn, H. Hamagaki, J. Hamblet, R. Han, S.Y. Han, 13, J.H. Hans, 13, E.P. Hartoumi, S. Hasegawa, K. Hashimoto, E. Hashum, R. Hayano, S. Hayashi, X. He, M. Heffner, T.K. Hennemick, T. Hester, J.C. Hill, A. Hodges, M. Hohlmann, R.S. Hollis, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, Y. Hori, D. Hornbuck, J. Huang, S. Huang, T. Ichihara, R. Ichimiyama, J. Ide, H. Inuma, Y. Ikeda, K. Imai, Z. Imazu, J. Imrek, M. Inaba, A. Iordanova, D. Iserhounier, M. Ishihara, A. Ishinoue, T. Iose, M. Issah, A. Isupov, D. Ivanishchek, Y. Iwanaga, B.V. Jacak, M. Javani, Z. Ji, J. Jia, X. Jiang, J. Jim, B.M. Johnson, K. Jones, J.S. Joo, D. Joun, D.S. Jumper, F. Kajihara, S. Kameneti, N. Kamihara, J. Kamin, S. Kaneti, B.H. Kang, J.H. Kang, J.S. Kang, J. Kapustinsky, K. Karatsus, M. Kasai, D. Kawall, K. Kawashima, A.V. Kazantsev, T. Kempel, J.A. Key, V. Kachatriyan, P.K. Khandai, A. Khazanadeev, A. Khatiwada, K.M. Kijima, K. Kikkui, A. Kim, B.I. Kim, C. Kim, D.H. Kim, D.J. Kim, E. Kim, E.-J. Kim, H.J. Kim, Y.-J. Kim, Y.K. Kim, D. Kincses, E. Kinney, K. Kilkulis, D. Klimentev, 11, E. Klimentoff, D. Kleinfelder, P. Kline, L. Kochno, M. Komatsu, B. Komkov, M. Konno, J. Koster, D. Kotchetkov, M. Kotov, A. Kozlov, A. Král, F. Kravitz, G.J. Kunde, B. Kurgys, K. Kurita, M. Kurosawa, Y. Kwon, G.S. Kyle, R. Lacey, Y.S. Lai, J.G. Lajoie, D. Larionova, M. Larionova, A. Lebedev, B. Lee, D.M. Lee, J. Lee, K. Lee, H.B. Lee, K.S. Lee, J.Y. Lee, R.S. Lee, M.J. Leitch, M.A.L. Leite, M. Leitgeb, E. Leitner, B. Lenz, B. Lewis, N.A. Lewis, X. Li, L. Li, P. Lichenwalner, P. Liebing, H.S. Lim, L.A. Linden Levy, T. Liška, A. Litvinenko, M. Liu, M.X. Liu, S. Lökös, B. Love, R. Luechentzog, D. Lynch, C.F. Macguire, T. Majoros, U.I. Makdisi, M. Makek, A. Malakhov, M.D. Malik, A. Manion, V.I. Manko, E. Mannel, Y. Mao, H. Masui, T. Masuzawa, F. Matathias, M. McCreanor, P.J. McGaughy, D. McGlinchey, C. McKinney, N. Means, A. Meles, M.M. Mendoza, B. Meredith, W.J. Metzger, M. Mikaelian, Y. Miyachi, A. Milov, K. Miki, A. Milov, B. Mihara, A. Mishra, J.T. Mitchell, I. Mitran, Y. Miyachi, S. Miyasaka, A.K. Mohanty, S. Mohapatra, H.J. Moon, T. Moon, Y. Morino, A. Morreale, D.P. Morrison, S. Morrow, M. Moskovitz, S. Motschwiller, T. Mønkhova, B. Mulilo, T. Murakami, J. Murata, M. Mwai, T. Nagae, S. Nagamiya, T. Nakamura, K. Nakano, S. Nam, A. Natteros, N. Nelson, P.K. Netrakanti, J. Newby, M. Nguyen, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakamika, K.R. Nakamura, K. Nakamura, K. Nakano, S. Nam, A. Natterros, S. Nelson, P.K. Netrakanti, J. Newby, M. Nguyen, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakamika, K.R. Nakamura, K. Nakamura, K. Nakano, S. Nam, A. Natterros, S. Nelson, P.K. Netrakanti, J. Newby, M. Nguyen, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakamika, K.R. Nakamura, K. Nakamura, K. Nakano, S. Nam, A. Natterros, S. Nelson, P.K. Netrakanti, J. Newby, M. Nguye, M. Naglis, M.I. Nagy, I. Nakagawa, Y. Nakamika, K.R. Nakamura, K. Nakamura, K. Nakano, S. Nam, A. Natterros, S. Nelson, P.K. Netrakanti, J. Newby, M. Nguyen.
We present direct photon - hadron correlations in 200 GeV/A Au+Au, d+Au and p+p collisions, for direct photon p_T from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark’s momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron p_T and is most pronounced for hadrons...
analog of Compton scattering, $q + g \rightarrow \gamma + q$

Direct photons are produced dominantly via the QCD terings [1] occurring in the initial stages of the collision.

lations among particles arising from hard partonic scat-

high momentum hadrons, reconstructed jets, and corre-

the plasma is not yet understood.

plasma and the transport of the deposited energy within

quarks and gluons [3, 4]. However, the exact mecha-

nermics (QCD) [2]. Experimental measurements and the-

oretical analyses have shown that this plasma exhibits

remarkable properties, including opacity to traversing

quarks and gluons [3, 4]. However, the exact mechan-

ism for energy loss by these partons in quark gluon

plasma and the transport of the deposited energy within

the plasma is not yet understood.

Experimental probes to address these questions include

high momentum hadrons, reconstructed jets, and corre-

lations among particles arising from hard partonic scat-

terings occurring in the initial stages of the collision.

Direct photons are produced dominantly via the QCD

analog of Compton scattering, $q + g \rightarrow q + \gamma$, at leading

order, and do not interact via the strong force as they traver-

se the plasma. In the limit of negligible initial partonic

transverse momentum, the final state quark and photon

are emitted back-to-back in azimuth with the photon bal-

ancing the transverse momentum of the jet arising from

the quark. Consequently, measuring the correlation of

high momentum direct photons with opposing hadrons

allows investigation of quark gluon plasma effects upon

transiting quarks and their fragmentation into hadrons.

Correlations of direct photons with hadrons and jets

have been measured by the PHENIX [5, 6] and STAR [7]

Collaborations at RHIC, and by the CMS and ATLAS

Collaborations at the Large Hadron Collider [8–11].

Using the photon energy to tag the initial energy of the

quark showed that quarks lose a substantial amount of

energy while traversing the plasma [10, 11]. The photon
tag also allows construction of the quark fragmentation function $D(z)$, where

$z = p_{\text{hadron}}/p_{\text{parton}}$. Here, z repre-
sents the fraction of the quark’s original longitudinal
momentum carried by the hadrons. In photon-hadron (γ-h)
correlations, z can be approximated by $z_T = p_{T,\text{hadron}}/p_{T,\text{parton}}$.

Comparison of γ-h correlations in heavy ion collisions to
those in p+p collisions quantifies the plasma’s impact on
parton fragmentation. γ-h correlations in p+p or d+A
collisions will reflect any cold nuclear matter modification of
jet fragmentation.

At RHIC, the fragmentation function is substantially
modified in central Au+Au collisions [9, 10]. High z
fragments are suppressed, as expected from energy loss. Low

z fragments are enhanced at large angles with respect to
the jet core, i.e. with respect to the original quark direction.

CMS and ATLAS have measured jet fragmentation functions
using reconstructed jets to tag the parton energy.

These studies, conducted with jet energies of ≈ 100
GeV, show enhancement of low p_T (i.e. low z) jet frag-

ments in central Pb+Pb collisions [14–16]. In addition,

CMS has shown that the energy lost by the quark is ap-

proximately balanced by hadrons with approximately 2
GeV p_T in the intrajet region. This is in qualitative
agreement with the RHIC result, even though the initial
quark energy differs by an order of magnitude.

There has been considerable theoretical effort to de-
scribe jet-medium interactions. Several mechanisms for
parton energy loss were compared by the JET Collabo-

ration [17]. The medium response to deposited energy
is now under study by several groups [18–21]. The de-

posited energy may be totally equilibrated in the plasma,

but alternatively the deposited energy may kick up a

wake in the expanding plasma [18, 22]. Different descrip-
tions of plasma-modified gluon splitting result in different
fragmentation functions, and can be tested by comparing the predictions to direct photon-hadron (γ_{dir}-h)
correlations.

The previously published analysis of γ_{dir}-h correlations
showed an enhancement in soft particle production at
large angles. However, due to limited statistics, it was

not possible to investigate how the fragmentation func-
tion depends on the parton energy or the medium scale.

In this paper, we explore this question by looking at the
direct photon p_T dependence of the fragmentation func-
tion modification. We investigate whether enhancement
over the fragmentation function in p+p collisions depends
on the fragment z_T or on the fragment p_T. That is, does it
depend on the jet structure or does it reflect the distrib-
ution of particles in the medium? We also present first
results on γ_{dir}-h correlations in d+Au collisions to inves-
tigate possible cold-nuclear-matter effects on the frag-
mentation function.

II. DATASET AND ANALYSIS

In 2011, PHENIX collected data from Au+Au colli-
sions at $\sqrt{s_{NN}} = 200$ GeV. After event selection and
quality cuts, 4.4 billion minimum-bias (MB) events were
analyzed. These are combined with the previously re-
ported 3.9 billion MB Au+Au events from 2007 and 2.9

billion from 2010 [4]. The high momentum photon trig-

gered d+Au data set at $\sqrt{s_{NN}} = 200$ GeV was collected
in 2008, and 3 billion events are analyzed. The p+p com-
parison data are from 2005 and 2006 [12].

The measurements in this paper use the PHENIX cen-
tral spectrometers [23]. Two particle correlations are
constructed by pairing photons or π^0s measured in the

I. INTRODUCTION

Collisions of heavy nuclei at the Relativistic Heavy Ion
Collider (RHIC) produce matter that is sufficiently hot
and dense to form a plasma of quarks and gluons [1].

Bound hadronic states cannot exist in a quark gluon
plasma, as the temperatures far exceed the transition
temperature calculated by lattice quantum chromody-
namics (QCD) [2]. Experimental measurements and the-
etorical analyses have shown that this plasma exhibits
remarkable properties, including opacity to traversing
quarks and gluons [3, 4]. However, the exact mecha-
nism for energy loss by these partons in quark gluon
plasma and the transport of the deposited energy within
the plasma is not yet understood.

Experimental probes to address these questions include high momentum hadrons, reconstructed jets, and correlations among particles arising from hard partonic scatterings occurring in the initial stages of the collision. Direct photons are produced dominantly via the QCD analog of Compton scattering, $q + g \rightarrow q + \gamma$, at leading order, and do not interact via the strong force as they traverse the plasma. In the limit of negligible initial partonic transverse momentum, the final state quark and photon are emitted back-to-back in azimuth with the photon balancing the transverse momentum of the jet arising from the quark. Consequently, measuring the correlation of high momentum direct photons with opposing hadrons allows investigation of quark gluon plasma effects upon transiting quarks and their fragmentation into hadrons.

Correlations of direct photons with hadrons and jets have been measured by the PHENIX [5, 6] and STAR [7] Collaborations at RHIC, and by the CMS and ATLAS Collaborations at the Large Hadron Collider [8–11]. Using the photon energy to tag the initial energy of the quark showed that quarks lose a substantial amount of energy while traversing the plasma [10, 11]. The photon tag also allows construction of the quark fragmentation function $D(z)$, where $z = p_{\text{hadron}}/p_{\text{parton}}$. Here, z represents the fraction of the quark’s original longitudinal momentum carried by the hadrons. In photon-hadron (γ-h) correlations, z can be approximated by $z_T = p_{T,\text{hadron}}/p_{T,\text{parton}}$. Comparison of γ-h correlations in heavy ion collisions to those in p+p collisions quantifies the plasma’s impact on parton fragmentation. γ-h correlations in p+A or d+A collisions will reflect any cold nuclear matter modification of jet fragmentation.

At RHIC, the fragmentation function is substantially modified in central Au+Au collisions [9, 10]. High z fragments are suppressed, as expected from energy loss. Low z fragments are enhanced at large angles with respect to the jet core, i.e. with respect to the original quark direction. CMS and ATLAS have measured jet fragmentation functions using reconstructed jets to tag the parton energy. These studies, conducted with jet energies of ≈ 100 GeV, show enhancement of low p_T (i.e. low z) jet fragments in central Pb+Pb collisions [14–16]. In addition, CMS has shown that the energy lost by the quark is approximately balanced by hadrons with approximately 2 GeV p_T in the intrajet region. This is in qualitative agreement with the RHIC result, even though the initial quark energy differs by an order of magnitude.

There has been considerable theoretical effort to describe jet-medium interactions. Several mechanisms for parton energy loss were compared by the JET Collaboration [17]. The medium response to deposited energy is now under study by several groups [18–21]. The deposited energy may be totally equilibrated in the plasma, but alternatively the deposited energy may kick up a wake in the expanding plasma [18, 22]. Different descriptions of plasma-modified gluon splitting result in different fragmentation functions, and can be tested by comparing the predictions to direct photon-hadron (γ_{dir}-h) correlations.

The previously published analysis of γ_{dir}-h correlations showed an enhancement in soft particle production at large angles. However, due to limited statistics, it was not possible to investigate how the fragmentation function depends on the parton energy or the medium scale. In this paper, we explore this question by looking at the direct photon p_T dependence of the fragmentation function modification. We investigate whether enhancement over the fragmentation function in p+p collisions depends on the fragment z_T or on the fragment p_T. That is, does it depend on the jet structure or does it reflect the distribution of particles in the medium? We also present first results on γ_{dir}-h correlations in d+Au collisions to investigate possible cold-nuclear-matter effects on the fragmentation function.

II. DATASET AND ANALYSIS

In 2011, PHENIX collected data from Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. After event selection and quality cuts, 4.4 billion minimum-bias (MB) events were analyzed. These are combined with the previously reported 3.9 billion MB Au+Au events from 2007 and 2.9 billion from 2010 [4]. The high momentum photon triggered d+Au data set at $\sqrt{s_{NN}} = 200$ GeV was collected in 2008, and 3 billion events are analyzed. The p+p comparison data are from 2005 and 2006 [12].

The measurements in this paper use the PHENIX central spectrometers [23]. Two particle correlations are constructed by pairing photons or π^0s measured in the
In Au+Au collisions, the background has an azimuthal via the zero-yield-at-minimum (ZYAM) procedure [28]. The acceptance in pseudorapidity is $|\eta| < 0.35$, while each spectrometer arm covers 90 degrees in azimuth. Beam-beam counters [26], located at 1.44 meters from the center of the interaction region, cover the pseudorapidity range from 3.0 to 3.9 and full azimuthal angle. They are used to determine the collision centralities and vertex positions. Figure 1 shows the detector configuration in 2011.

FIG. 1. Side view of the PHENIX central arm spectrometers in 2011.

Phenons and π^0s are measured in the EMCal. There are four sectors of lead-scintillator (PbSc) sampling calorimeters in the west arm, while the east arm has two sectors of lead-scintillator and two lead-glass (PbGl) Čerenkov calorimeters. The PbSc and PbGl calorimeters have energy resolutions of $dE/\sqrt{E} = 8.1%/\sqrt{E} \pm 2.1%$ and 5.9%/\sqrt{E} $\pm 0.8\%$, respectively. Photons are selected via an electromagnetic shower shape cut [27] on energy clusters. The high granularity of the EMCal, $\delta \eta \times \delta \phi = 0.011 \times 0.011$ for PbSc and 0.008 \times 0.008 for PbGl, allows for π^0 reconstruction via the $\pi^0 \rightarrow \gamma\gamma$ channel (invariant mass = 120 - 160 MeV/c^2) up to $p_T = 15$ GeV, beyond which shower merging becomes significant. A charged track veto is applied to remove possible hadron or electron contamination in the photon sample, reducing auto-correlations in the measurement. The EMCal system is also used to trigger on d+Au events with high p_T photons.

Two particle correlations are constructed as a function of $\Delta \phi$, the azimuthal angle between photon or π^0 triggers and associated hadron partners. Pairs arise from jet correlations superimposed on a combinatorial background from the underlying event. In p+p and d+Au collisions where the event multiplicity is low, we treat this background as flat in $\Delta \phi$ and subtract it, normalizing the level via the zero-yield-at-minimum (ZYAM) procedure [28]. In Au$+$Au collisions, the background has an azimuthal asymmetry quantified in the flow parameters v_n, which are used to modulate the subtracted background, as described in Eqn. 1. Only v_2 is included in the subtraction, while higher-order effects are included as an additional systematic uncertainty on the final results.

We report jet pairs as conditional, or per-trigger yields, of hadrons. Detector acceptance corrections are determined using mixed events with similar centrality and collision vertex. For Au$+$Au collisions, the background level b_0 is estimated using an absolute normalization [28], determined from the uncorrelated single-photon and single-hadron production rates. The final invariant yield of associated hadrons is obtained by dividing the background-subtracted correlated hadron yields by the number of triggers N_t and correcting for the associate charged hadron efficiency ϵ, determined by a GEANT detector simulation:

$$\frac{1}{N_t} \frac{dN_{\text{pair}}}{d\Delta \phi} = \frac{1}{N_t} \frac{N_{\text{pair}}}{\epsilon} \left\{ \frac{dN_{\text{pair}}^{\text{real}}}{d\Delta \phi} - b_0 \left[1 + 2(\langle v_2^a v_1^b \rangle \cos(2\Delta \phi)) \right] \right\},$$ \hspace{1cm} (1)$$

where v_1^a and v_2^a are the elliptic flow magnitudes independently measured for the trigger and associated particles, respectively [6]. These modulate the angular distribution of the background. Lastly, N_{pair} denotes the number of trigger-associate pairs. The subscript “real” refers to a trigger-associate particle pair that came from the same event, and the subscript “mix” refers to trigger-associate pairs that come from different events and are used to correct for correlations due to detector effects.

In both Au$+$Au and d+Au analyses, photons with transverse momentum of 5 to 15 GeV/c are selected as triggers. To extract yields of hadrons associated with direct photons, the background from decay photon correlations with hadrons must be subtracted. In Au$+$Au collisions, where the multiplicity is high, this is achieved via a statistical subtraction procedure defined by Eqn. 2. R_{γ} is the ratio of the number of inclusive photons to the number of decay photons, and is measured independently [29]. The conditional yield of hadrons per direct photon is given by:

$$Y_{\text{direct}} = \frac{R_{\gamma} Y_{\text{inclusive}} - Y_{\text{decay}}}{R_{\gamma} - 1},$$ \hspace{1cm} (2)$$

where $Y_{\text{inclusive}}$ and Y_{decay} are the conditional yields of hadrons per inclusive photon and decay photon, respectively.

The decay photon background is estimated using measured π^0-hadron (π^0-h) correlations and a Monte Carlo pair-by-pair mapping procedure. The simulation calculates the probability distribution for decay photon-hadron (γ_{dec}-h) pairs in a certain photon p_T range as a
function of the parent π^0 p_T. $\gamma_{\text{dec-h}}$ correlations are constructed via a weighted sum over all individual π^0-hadron pairs, where the weighting factor reflects the kinematic probability for a π^0 at a given p_T to decay into a photon in the selected p_T range. The $\gamma_{\text{dec-h}}$ per-trigger yield can be described by the following equation:

$$Y_{\text{dec}} = \frac{\int \rho(p_{T\gamma} \rightarrow p_{T\pi} \epsilon^{-1}(p_{T\pi})) N_{\pi^0-h} dp_{T\gamma}}{\int \rho(p_{T\gamma} \rightarrow p_{T\pi} \epsilon^{-1}(p_{T\pi})) N_{\pi^0-h} dp_{T\gamma}},$$

(3)

where ρ gives the probability that a π^0 decays to a photon with $p_{T\pi}$, and ϵ is the π^0 reconstruction efficiency, which can be determined by scaling the raw π^0 spectra to a power law fit to published data [30]. N_{π^0-h} and N_{π^0} are the number of π^0-h pairs and number of π^0's, respectively. When reconstructing the π^0, a strict cut on the asymmetry of the energy of the two photons is applied to reduce the combinatorial background from low energy photons. The probability weighting function, determined from Monte Carlo simulation, takes into account the actual EMCal response, including energy and position resolution and detector acceptance.

With the π^0 to decay photon p_T map, ρ, the inclusive photon sample can be separated into a meson decay component and a direct component. To construct $\gamma_{\text{dec-h}}$ yields with trigger photon p_T of 5–15 GeV/c, hadron correlations with π^0 of 4 $\leq p_T \leq$ 17 GeV/c are utilized. The slightly wider p_T range is chosen to account for decay kinematics, as well as p_T smearing from the EMCal energy and position resolution. An additional cutoff correction accounts for the small $\gamma_{\text{dec-h}}$ yield in the trigger p_T range 5–15 GeV/c from π^0 with $p_T \geq$ 17 GeV/c. The merging of decay photons from high p_T π^0 is not accounted for in the Monte Carlo mapping simulation. Instead, the efficiency to detect photons from a high momentum parent meson is calculated via GEANT simulation of the full detector response. This loss is included in the probability function as an additional correction. The opening angle of photon pairs that merge is small, thus they are removed from the measured inclusive photon sample by the shower shape cut.

In $d+Au$ collisions, where the underlying event background is much smaller, it is possible to improve the signal to background for direct photons. This is done event-by-event using a photon isolation cut and by removing all photons identified (tagged) as resulting from a π^0 decay [12]. First, all photons with $p_T \geq$ 0.5 GeV/c are paired. Those pairs with invariant mass between 120–160 MeV/c2 are tagged as decay photons and removed from the inclusive sample. Next, an isolation criterion is applied to the remaining photons to further reduce the background of decay photons, as well as contamination from fragmentation photons. The isolation cut requires that the energy in a cone around the trigger photon be less than 10% of the photon energy in $p+p$ collisions. In the $d+Au$ analysis, the cut is modified slightly to include the effect of the modest underlying event. The underlying event is evaluated separately for each $d+Au$ centrality class, resulting in an isolation criterion:

$$\sum_{\Delta R < R_{\text{max}}} E < (E_{\gamma} * 0.1 + < E_{\text{bg}} >),$$

(4)

where E is the measured energy in the isolation cone, E_{γ} is the photon energy, $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ is the distance between the trigger photon and other particles in the event and $< E_{\text{bg}} >$ is the average energy inside the cone in the underlying event. The cone size (R_{max}) used in this analysis is 0.4.

To account for the underlying event, the zero-yield-at-minimum procedure, known as ZYAM [28], is applied to the angular correlation functions for each centrality class. As an isolation cut distorts the near-side yield, the minimum point is determined within the restricted $\Delta \phi$ range of 0.9 - 1.6 rad. The zero-point yield is determined by integrating in a 0.03 rad range around the minimum point. The hadron conditional yield reported here is corrected for the PHENIX hadron acceptance. The ZYAM subtracted inclusive and decay yields for each centrality are combined using a weighted sum based on the number of each type of trigger to obtain the MB yields.

Some decay photons are missed by the π^0 tagging procedure and slip through the isolation cut to be counted as direct photons. Such falsely isolated $\gamma_{\text{dec-h}}$ correlations are corrected via a statistical subtraction, similar to the procedure utilized in $Au+Au$ collisions, as shown in Eqs. 5 and 6.

$$Y_{\text{iso}} = \frac{1}{R_{\gamma} - 1} \cdot (P_{\gamma} Y_{\text{inc}} - Y_{\text{miss, iso}}),$$

(5)

where Y_{iso} is the per-trigger yield of hadrons correlated with all photons satisfying the tagging and isolation cuts, and $Y_{\text{miss, iso}}$ is the per-trigger yield of hadrons correlated with decay photons which are not properly vetoed, i.e. are “missed” by the cuts.

$$P_{\gamma} = \frac{N_{\text{inc}} - N_{\text{dec}} - N_{\text{iso}}}{N_{\text{inc}}},$$

(6)

where in the numerator, the total number of photons surviving the tagging and isolation cuts is obtained by subtracting the decay yield, N_{dec}, and the isolated photon yield, N_{iso}, from the total inclusive photon yield, N_{inc}. The denominator, $N_{\text{miss, iso}}$, is the number of decay photons that pass the same cuts. More detail on the subtraction procedures and cuts can be found in reference [5].

In the $Au+Au$ analysis, there are four main sources of systematic uncertainties. The systematic uncertainty coming from the statistical subtraction method is due to the statistical and systematic uncertainties on the value of R_{γ}. There are also uncertainties when extracting the jet functions due to uncertainties on the value of the elliptic flow modulation magnitude, v_2. This analysis uses
published values and uncertainties from PHENIX [6]. The absolute normalization method to determine the underling event background level, and the determination of the decay photon p_T mapping are also significant contributors to the overall systematic uncertainties. The uncertainties, along with their p_T and centrality dependence, are propagated into the final jet functions and per-trigger hadron yields. The systematic uncertainty on the hadron efficiency determination comes in as a global scale uncertainty on the correlated hadron yields. In MB $d+Au$ collisions, v_2 is small. However, the systematic uncertainties on γ-h correlations include those arising from the ZYAM procedure used to determine the combinatorial background. There is also an uncertainty arising from the π^0 tagging and isolation cuts, which is included in the quoted systematic uncertainty.

FIG. 2. Per-trigger yield of hadrons associated to direct photons in $Au+Au$ collisions (closed [black] circles) for direct photon p_T 5–9 GeV/c, compared with $p+p$ baseline (open [blue] squares), in various ξ bins.

FIG. 3. Per-trigger yield of hadrons associated to direct photons in $d+Au$ collisions (closed [black] circles) for direct photon p_T 7–9 GeV/c, compared with $p+p$ baseline (open [blue] squares), in various ξ bins.

III. RESULTS

In this paper, we aim to quantify the modification of the jet fragmentation function $D(z)$ in Au+Au and $d+Au$ collisions, compared to the $p+p$ baseline. The jet fragmentation function describes the probability of an outgoing parton to yield a hadron with momentum fraction $z = p^\text{hadron}/p^\text{parton}$. Assuming that the initial-state k_T of partons in a nucleon has a negligible effect, then $z_T = p^\text{hadron}/p^T$ can be used to approximate z. To focus on the low z_T region, where modification is anticipated, we use the variable $\xi = \ln(1/z_T)$.

Figure 2 shows azimuthal angular distributions of hadrons associated with direct photons of 5 < p_T < 9 GeV/c, in the 0–40% most central Au+Au collisions, separated into bins of ξ. These distributions are a combination of the 2007, 2010 and 2011 data sets. The Au+Au results are shown as closed [black] circles, with shaded boxes representing systematic uncertainties on the measurement. The $p+p$ γ_{dir}-h result is shown in open [blue] squares. The $p+p$ baseline measurement combines data collected in 2005 and 2006 [6,12]. It should be noted that the isolation cut in the $p+p$ analysis makes the near-side yield not measurable. Consequently, the $p+p$ points with $\Delta \phi < 1$ are not shown in these distributions.

On the near side, the Au+Au γ_{dir}-h yields are consistent with zero, indicating that the statistical subtraction is properly carried out and next-to-leading-order effects are negligible. On the away-side, an enhancement in the Au+Au data compared to $p+p$ is observed in the higher ξ bins. As noted before, this corresponds to low z, where the observed hadrons carry a small fraction of the scattered parton’s original momentum. In the low ξ bins, the Au+Au per-trigger yield is suppressed, as expected if the parton loses energy in the medium.

Fig. 3 shows the $\Delta \phi$ distributions of isolated γ_{dir}-h yields in $d+Au$ and $p+p$ collisions, for direct photon p_T 7–9 GeV/c. The $d+Au$ and $p+p$ results are consistent in all the measured ξ bins.

Figure 3(a) shows the fragmentation functions for all three systems as a function of ξ. These are calculated by integrating the per-trigger yield of hadrons in the azimuthal angle region $|\Delta \phi - \pi| < \pi/2$ rad. Data points for Au+Au are plotted on the ξ axis at the middle of each ξ bin: 0.2, 0.6, 1.0, 1.4, 1.8, 2.2. The $p+p$ and $d+Au$ points have been shifted to the left in ξ for viewing clarity.

$I_{AA} = Y_{AA}/Y_{pp}$ is a nuclear-modification factor, which quantifies the difference between the fragmentation functions in Au+Au and $p+p$. In the absence of medium modification, I_{AA} should equal 1. Figure 3(b) shows I_{AA} for direct photons of 5 < p_T < 9 GeV/c. In Au+Au collisions, there is a clear suppression at low ξ and enhancement at high ξ. The $d+Au$ nuclear modification factor, I_{dA}, is also shown as closed [purple] crosses in Fig. 3(b). I_{dA} is consistent with unity across all ξ ranges, indicating that there is no significant modification of the jet fragmentation function in $d+Au$ collisions.

The statistics from the combined Au+Au runs allow
for a differential measurement as a function of direct photon p_T (i.e. as a function of the approximate jet energy). Fig. 5 shows I_{AA} as a function of ξ for three direct photon p_T ranges. While the associated hadron yields are smaller than those in $p+p$ at low ξ, the appearance of extra particles at higher ξ is observed for direct photons with p_T of 5–7 GeV/c. A qualitatively similar increase of I_{AA} with ξ is visible for the 7-9 GeV/c direct photon p_T range.

To investigate where the energy deposited in the plasma goes, we study the dependence of I_{AA} on the integration range in azimuthal opening angle. The hadron yields are also integrated in two narrower angular ranges on the away side: $|\Delta \phi - \pi| < \pi/3$ rad and $|\Delta \phi - \pi| < \pi/6$ rad. The resulting I_{AA} values are shown in Fig. 6 for all three direct photon p_T bins. The enhancement over $p+p$ is largest for the 5–7 GeV/c direct photon momentum range, and for the full away-side integration range. The suppression pattern is similar for the different integration regions, suggesting that the jet core is suppressed, and the enhancement exists at large angles. The angular distributions support the observation from Fig. 3 that particle yields are enhanced at large angles with respect to the away-side jet axis in the $1.6 < \xi < 2.0$ bin.

FIG. 4. (a) Integrated away-side $\gamma_{s(\text{h})}$ per-trigger yields of $Au+Au$ (closed [black] circles), $d+Au$ ([purple] crosses) and $p+p$ (open [blue] squares), as a function of ξ. The $p+p$ and $d+Au$ points have been shifted to the left for clear viewing, as indicated in the legend. (b) I_{AA} (closed [black] circles) and I_{DA} ([purple] crosses).

FIG. 5. I_{AA} vs ξ for direct photon p_T of 5–7 GeV/c (closed [black] circles), 7–9 GeV/c (closed [red] squares), and 9–12 GeV/c (closed [green] triangles).

FIG. 6. I_{AA} as a function of ξ for direct photon p_T of (a) 5–7, (b) 7–9, and (c) 9–12 GeV/c. Three away-side integration ranges are chosen to calculate the per-trigger yield and the corresponding I_{AA}: $|\Delta \phi - \pi| < \pi/2$ (closed [black] circles), $|\Delta \phi - \pi| < \pi/3$ (closed [blue] squares) and $|\Delta \phi - \pi| < \pi/6$ (closed [red] triangles).

FIG. 7. Ratios of I_{AA} as a function of direct photon p_T , for three different away-side integration ranges.

Whether or not I_{AA} becomes significantly larger than unity - what we have been referring to as enhancement - there is a tendency for I_{AA} to increase with increasing ξ. To quantify this, we calculate the weighted averages...
of I_{AA} values above and below $\xi = 1.2$. The ratio for each integration range is plotted in Fig. 7 as a function of the direct photon p_T. The enhancement is largest for softer jets and for the full away-side integration range, implying that jets with lower energy are broadened more than higher energy jets.

![Graph showing I_{AA} for direct photon p_T]

FIG. 8. Measured I_{AA} for direct photon p_T of (a) 5–7, (b) 7–9, and (c) 9–12 GeV/c, as a function of ξ, are compared with theoretical model calculations.

IV. DISCUSSION

To determine whether I_{AA} indicates any cold nuclear matter effects, the χ^2 per degree of freedom values were calculated under the assumption of no modification and are determined to be 7.4/5, 4.0/5, 10.0/5 for direct photon p_T bins 5–7, 7–9, and 9–12 GeV/c, respectively. The result indicates that I_{AA} is consistent with unity and therefore the jet fragmentation function is not significantly modified in $d+Au$ collisions, within the current uncertainties. This suggests that any possible cold nuclear matter effect is small.

We next compare our $Au+Au$ results to predictions from the CoLBT-hydro model [22] in Fig. 8 which shows I_{AA} as a function of ξ for the 3 direct photon p_T bins; the z_T axis is displayed on the top. The solid lines are from the CoLBT model calculated in the same kinematic ranges as the data. The model calculation shows the same trends with ξ as the data. CoLBT has a kinetic description of the leading parton propagation, including a hydrodynamical picture for the medium evolution. In this calculation, both the propagating jet shower parton and the thermal parton are recorded, along with their further interactions with the medium. Consequently, the medium response to deposited energy is modeled. The model clearly shows that as the direct photon p_T increases, the transition where I_{AA} exceeds one occurs at increasing ξ. According to this calculation, the enhancement at large ξ arises from jet-induced medium excitations, and that the enhancement occurs at low z_T reflects the thermal nature of the produced soft particles.

Figure 8(b) shows a BW-MLLA calculation (dashed [red] curve) in which it is assumed that the lost energy is redistributed, resulting in an enhanced production of soft particles [31]. The calculation for jets with energy of 7 GeV in the medium is in relatively good agreement with the measured results. The model comparisons suggest that the enhancement of soft hadrons associated with the away-side jet should scale with the p_T of the hadrons. A modified fragmentation function could be expected to produce a change at fixed z_T. This is not consistent with either the data or the CoLBT model.

V. SUMMARY

We have presented direct photon - hadron correlations in $\sqrt{s_{NN}} = 200$ GeV Au+Au, $d+Au$ and $p+p$ collisions, for photon p_T from 5 - 12 GeV/c. As the dominant source of correlations is QCD Compton scattering, we use the photon energy as a proxy for the opposing quark’s energy to study the jet fragmentation function. Combining data sets from three years of data taking at RHIC allows study of the conditional hadron yields opposite to the direct photons as a function of z_T and the photon p_T. This is the first time such a differential study of direct photon - hadron correlations has been performed at RHIC.

We observe no significant modification of the jet fragmentation in $d + Au$ collisions, indicating that cold nuclear matter effects are small or absent. We find that hadrons carrying a large fraction of the quark’s momentum are suppressed in $Au+Au$ compared to $p+p$ and $d+Au$. This is expected from energy loss of partons in quark gluon plasma. As the momentum fraction decreases, the yield of hadrons in $Au+Au$ increases, eventually showing an excess over the jet fragment yield in $p+p$ collisions. The excess is seen primarily at large angles and is most pronounced for hadrons associated to lower momentum direct photons.

To address whether the excess is a result of medium modification of the jet fragmentation function or the excess indicates the presence of “extra” particles from the medium, we compared to theoretical calculations. The calculations suggest that the observed excess arises from medium response to the deposited energy. Furthermore, the excess particles appear at low z_T, corresponding to low associate hadron p_T. This can be seen in each direct photon p_T bin.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating in-
stitions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People’s Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l’Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea). Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

[1] K. Adcox et al. (PHENIX Collaboration), “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration,” Nucl. Phys. A 757, 184 (2005).

[2] J. H. Weber, A. Bazavov, and P. Petreczky, “Equation of state in (2+1) flavor QCD at high temperatures,” PoS Confine2018, 166 (2019).

[3] K. Adcox et al. (PHENIX Collaboration), “Suppression of hadrons with large transverse momentum in central Au+Au collisions at √sNN = 130 GeV,” Phys. Rev. Lett. 88, 022301 (2002).

[4] C. Adler et al. (STAR Collaboration), “Disappearance of back-to-back high pT hadron correlations in central Au+Au collisions at √sNN = 200 GeV,” Phys. Rev. Lett. 90, 082302 (2003).

[5] A. Adare et al. (PHENIX Collaboration), “Photon-Hadron Jet Correlations in p+p and Au+Au Collisions at √sNN = 200 GeV,” Phys. Rev. C 80, 024908 (2009).

[6] A. Adare et al. (PHENIX Collaboration), “Medium modification of jet fragmentation in Au+Au collisions at √sNN = 200 GeV measured in direct photon-hadron correlations,” Phys. Rev. Lett. 111, 032301 (2013).

[7] L. Adamczyk et al. (STAR Collaboration), “Jet-like Correlations with Direct-Photon and Neutral-Pion Triggers at √sNN = 200 GeV,” Phys. Lett. B 760, 689 (2016).

[8] S. Chatrchyan et al. (CMS Collaboration), “Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at √sNN = 2.76 TeV,” Phys. Lett. B 718, 773 (2013).

[9] M. Aaboud et al. (ATLAS Collaboration), “Comparison of Fragmentation Functions for Jets Dominated by Light Quarks and Gluons from pp and PbPb Collisions in ATLAS,” Phys. Rev. Lett. 123, 042001 (2019).

[10] M. Aaboud et al. (ATLAS Collaboration), “Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb+Pb and pp collisions with ATLAS,” Phys. Lett. B 789, 167 (2019).

[11] M. Aaboud et al. (ATLAS Collaboration), “Measurement of Z-tagged charged-particle yields in 5.02 TeV Pb+Pb and pp collisions with the ATLAS detector”, aTLAS-CONF-2019-052.

[12] A. Adare et al. (PHENIX Collaboration), “High pT direct photon and π0 triggerd azimuthal jet correlations and measurement of kT for isolated direct photons in p+p collisions at √s = 200 GeV,” Phys. Rev. D 82, 072001 (2010).

[13] L. Adamczyk et al. (STAR Collaboration), “Jet-Hadron Correlations in √sNN = 200 GeV p+p and Central Au+Au Collisions,” Phys. Rev. Lett. 112, 122301 (2014).

[14] S. Chatrchyan et al. (CMS Collaboration), “Measurement of Jet Fragmentation in PbPb and pp Collisions at √sNN = 2.76 TeV,” Phys. Rev. C 90, 024908 (2014).

[15] G. Aad et al. (ATLAS Collaboration), “Measurement of inclusive jet charged-particle fragmentation functions in Pb+Pb collisions at √sNN = 2.76 TeV with the ATLAS detector,” Phys. Lett. B 739, 320 (2014).

[16] V. Khachatryan et al. (CMS Collaboration), “Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at √sNN = 2.76 TeV,” J. High Energy Phys. 01 (2016) 006.

[17] K. M. Burke et al. (JET Collaboration), “Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions,” Phys. Rev. C 90, 014909 (2014).

[18] Y. He, T. Luo, X.-N. Wang, and Y. Zhu, “Linear Boltzmann Transport for Jet Propagation in the Quark-Gluon Plasma: Elastic Processes and Medium Recoil,” Phys. Rev. C 91, 054908 (2015), [Erratum: ibid 97, 019902 (2018)].

[19] S. Cao et al. (JETSCAPE Collaboration), “Multistage Monte-Carlo simulation of jet modification in a static medium,” Phys. Rev. C 96, 024909 (2017).

[20] K. C. Zapp, F. Krauss, and U. A. Wiedemann, “A perturbative framework for jet quenching”, J. High Energy Phys. 03 (2013) 080.

[21] R. Kunnawalkam Elayavalli and K. C. Zapp, “Medium response in JEWEL and its impact on jet shape observ-
ables in heavy ion collisions”, J. High Energy Phys. 07 (2017) 141.

[22] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang, “Effects of jet-induced medium excitation in γ-hadron correlation in $A+A$ collisions,” Phys. Lett. B 777, 86 (2018).

[23] K. Adcox et al. (PHENIX Collaboration), “PHENIX detector overview,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 469 (2003).

[24] L. Aphecetche et al. (PHENIX Collaboration), “PHENIX calorimeter,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 521 (2003).

[25] K. Adcox et al. (PHENIX Collaboration), “PHENIX central arm tracking detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 489 (2003).

[26] M. Allen et al. (PHENIX Collaboration), “PHENIX inner detectors,” Nucl. Instrum. Methods Phys. Res., Sec. A 499, 549 (2003).

[27] G. David, E. Kistenev, S. White, C. Woody, A. Bazilevsky, S. Belikov, V. Kochetkov, V. Omuchin, and A. Usachev, “Pattern recognition in the PHENIX PbSc electromagnetic calorimeter,” IEEE Trans. Nucl. Sci. 47, 1982 (2000).

[28] A. Sickles, M. P. McCumber, and A. Adare, “Extraction of Correlated Jet Pair Signals in Relativistic Heavy Ion Collisions,” Phys. Rev. C 81, 014908 (2010).

[29] S. Afanasiev et al. (PHENIX Collaboration), “Measurement of Direct Photons in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. Lett. 109, 152302 (2012).

[30] A. Adare et al. (PHENIX Collaboration), “Suppression pattern of neutral pions at high transverse momentum in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and constraints on medium transport coefficients,” Phys. Rev. Lett. 101, 232301 (2008).

[31] N. Borghini and U. A. Wiedemann, “Distorting the hump-backed plateau of jets with dense QCD matter”, arXiv:hep-ph/0506218.