Search for pair production of third-generation leptoquarks and top squarks in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a τ lepton and a b quark. The search is based on a data sample of pp collisions at $\sqrt{s} = 7$ TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb^{-1}. The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to τ lepton and b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, τ lepton, and b quark, λ'^{\prime}_{333} are obtained. These results are the most stringent for these scenarios to date.

Submitted to Physical Review Letters

© 2013 CERN for the benefit of the CMS Collaboration. [CC-BY-3.0 license](http://creativecommons.org/licenses/by/3.0/)

See Appendix A for the list of collaboration members
Many extensions \cite{1-6} of the standard model (SM) predict new scalar or vector bosons, called leptoquarks, which carry nonzero lepton and baryon numbers, as well as color and fractional electric charge. Such particles are motivated by a unified description of quarks and leptons. The combination of both baryon and lepton numbers implies that leptoquarks can mediate quark-lepton transitions, and leptoquarks decay into a quark and a lepton (with model-dependent branching fractions). For leptoquark masses that are within reach of current collider experiments, limits on flavor-changing neutral currents, i.e. processes that change quark flavor but not electric charge, along with limits on other rare processes \cite{7}, favor leptoquarks that couple to quarks and leptons within the same SM generation.

The dominant pair production mechanisms for leptoquarks at the Large Hadron Collider (LHC) are gluon-gluon fusion and quark-antiquark annihilation and the cross sections for these processes depend only on the leptoquark mass and spin. The results are interpreted in the context of models with either scalar leptoquarks (LQ) or vector leptoquarks (VLQ).

Supersymmetry (SUSY) is an attractive extension of the SM because it can resolve the hierarchy problem \cite{8} without unnatural fine-tuning, if the mass of the supersymmetric partner of the top quark (top squark, or stop) is not too large \cite{9}. In this scenario, the large mixing angle between the left-chiral and right-chiral stops (\tilde{t}_L and \tilde{t}_R), which arises from the large top Yukawa coupling to the Higgs boson, can produce two mass eigenstates, \tilde{t}_1 and \tilde{t}_2, with a large mass splitting. Thus, $M_{\tilde{t}_1}$ can be substantially smaller than the masses of the other scalar SUSY particles. This light-stop scenario can be realized in both R-parity-conserving (RPC) and R-parity-violating (RPV) SUSY models, where R-parity is a new, multiplicatively conserved quantum number \cite{10} that distinguishes SM and SUSY particles. Most previous searches for the light stop have been performed in the context of RPC models, in which the presence of two undetected particles (the lightest supersymmetric particles) generates a signature with large missing transverse momentum. If R-parity is violated, however, supersymmetric particles can decay into final states containing the standard model particles only. These signatures are not considered in most searches \cite{11,12}.

At the LHC, a $\tilde{t}_1\tilde{t}_1$ pair is produced via strong interactions. When the masses of the supersymmetric partners of the gluon and quarks, excluding the top quark, are large, the stop pair production cross section is similar to that of the third-generation LQ. The cross section also depends on the first-generation squark mass and the stop mixing angle because of loop corrections, but the contribution from these diagrams is less than 2%. Trilinear RPV operators allow the lepton-number-violating decay $\tilde{t}_L \rightarrow \tau b$ \cite{10} with a coupling λ'_{333}, resulting in the same final state as for third-generation LQ decay, with similar kinematics.

In this Letter, a search is presented for pair production of third-generation leptoquarks or stops each decaying to a τ lepton and a b quark, using pp collision data at $\sqrt{s} = 7$ TeV. The data sample has been recorded by the CMS detector and corresponds to an integrated luminosity of 4.8 fb$^{-1}$. One of the τ leptons in the final state is required to decay leptonically, $\tau \rightarrow \ell \nu_\ell \tau$, where ℓ can be either a muon or an electron, referred to as the light lepton below. The other τ lepton is required to decay to hadrons (τ_h), $\tau \rightarrow \tau_h \nu_\tau$. These requirements result in two possible final states referred to as $e\tau_h b b$ and $\mu \tau_h b b$. The experimental signature is characterized by an energetic electron or muon, a τ_h, and two jets produced by the hadronization of b quarks (b jets). For the pair production of leptoquarks or stops, the scalar sum of the transverse momenta (p_T) of the decay products, $S_T \equiv p_T^{\tilde{t}} + p_T^\ell + p_T^{b_1} + p_T^{b_2}$, is expected to be large, as is the invariant mass of each system containing a b jet and a τ lepton originating from the same heavy particle.

No evidence for third-generation LQ or stops has been found in previous searches, using a
final state with τ_h, light lepton, and two b jets. The most stringent lower limits on LQ and stop masses are 210 GeV [13] and 153 GeV [14], respectively. A search performed by the CMS Collaboration has excluded the existence of a third-generation LQ with an electric charge of $\pm 1/3$ and mass below 450 GeV, assuming 100% branching fraction to a b quark and a ν_{τ} [15]. Indirect bounds [16] exclude the region $\lambda^{33}_{1} > 0.26$ for $M_{\tau} \sim 100$ GeV.

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. A silicon pixel and strip tracker, which allows the reconstruction of the trajectories of charged particles within the pseudorapidity range $|\eta| < 2.5$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle with respect to the counterclockwise proton beam, are the innermost parts of the CMS detector. The tracker is surrounded by a calorimeter system, consisting of a lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter, which measures particle energy depositions for $|\eta| < 3$. The tracker and ECAL are placed within the superconducting solenoid. Muons are identified in gas-ionization detectors embedded in the steel flux return yoke of the magnet. Collision events are selected using a two-tiered trigger system. A more detailed description of the CMS detector can be found in Ref. [17].

Events are collected using triggers requiring the presence of an electron or a muon and a τ_h with transverse momentum thresholds ranging between 12–20 GeV and 15–20 GeV, respectively, depending on the data-taking period. Electrons are reconstructed using the tracker and fully instrumented barrel ($|\eta| < 1.44$) or endcap ($1.57 < |\eta| < 2.1$) regions of the ECAL. Selected electrons are required to have transverse momenta $p_T > 30$ GeV, an electromagnetic shower shape consistent with that of an electron, and an ECAL energy deposition that is compatible with the track reconstructed in the tracker. Muons are required to be reconstructed by both the tracker and the muon spectrometer. Candidates are required to have $|\eta| < 2.1$ and $p_T > 30$ GeV. A particle-flow (PF) technique [18] is used for the reconstruction of τ_h candidates. Information from all subdetectors is combined to reconstruct and identify final-state particles (PF candidates) produced in the collision. The PF candidates are used with the hadron-plus-strips algorithm [19] to reconstruct hadronic decays of τ leptons with one or three charged pions and up to two neutral pions. The reconstructed τ_h is required to have $p_T > 50$ GeV and $|\eta| < 2.3$. The light lepton and τ_h are required to have opposite electric charge. To reduce background from additional proton-proton interactions in the same beam crossing (pileup), the light lepton and τ_h are required to originate from the same vertex. The criteria for association to the vertex are optimized to take into account the finite lifetime of the τ lepton and are efficient for selecting an electron or muon from its decay. Selected electrons, muons, and τ_h are required to be isolated from other PF candidates and to be separated by $\Delta R \equiv \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} > 0.5$ for both the $e\tau_h b\bar{b}$ and $\mu \tau_h b\bar{b}$ channels. Here, $\Delta \phi$ is an azimuthal and $\Delta \eta$ a pseudorapidity separation between the light lepton and τ_h.

Jets are reconstructed using PF candidates with the anti-kT algorithm [20] with a distance parameter of 0.5. An average contribution of pileup interactions is estimated and subsequently subtracted from the jet energy [21]. Selected jets are required to be within $|\eta| < 2.4$ and have $p_T > 30$ GeV. Additionally, these jets must be separated from the selected light lepton and τ_h by $\Delta R > 0.5$. The selected events are required to have at least two jets identified as originating from b quark hadronization (b-tagged) using a displaced track counting algorithm, based on track impact parameter significance [22].

To discriminate between signal and background, the invariant mass of the τ_h and b jet ($M_{\tau_h b}$) is required to be greater than 170 GeV. Of the two possible pairings of the τ_h and b jets, the one for which the invariant mass is closest to the invariant mass of the light lepton and the other
b jet is chosen as an observable. After the final selection, the S_T distribution is used to search for an excess above the SM expectation.

The dominant sources of $\ell \tau \bar{b} \bar{b}$ events from SM processes are the production of a W or Z boson associated with jets, where a jet is misidentified as a τ, and $t\bar{t}$ pair production. There is also a small contribution from Z bosons decaying to a pair of τ leptons, or to a pair of electrons or muons, where one of the electrons or muons is misidentified as the τ, and from single-top and diboson production processes.

The LQ signal is generated using the PYTHIA (v6.420) \cite{23} generator for a range of leptoquark masses M_{LQ} spanning 150 to 800 GeV. The MADGRAPH generator \cite{24} interfaced with PYTHIA for hadronization and showering is used to model the dominant $t\bar{t}$ and $W+jets$ backgrounds. These generators are also used to model the less significant Drell–Yan process Z/γ^*+jets. The single top production is modeled with the POWHEG \cite{25} generator, and diboson processes are modeled with PYTHIA v6.4. All generated samples are interfaced with TAUOLA \cite{26} for τ decay, passed through a full detector simulation based on GEANT4 \cite{27} and the complete reconstruction chain used for data analysis. The VLQ and stop pair production processes are modeled using the CALCHEP \cite{28,29} and PROSPINO \cite{30} generators in order to compare the kinematics of their decay products with those from scalar LQ. The most precise available cross section calculations, either next-to-leading order (NLO) or next-to-NLO, are used to normalize the signal \cite{31} and background processes \cite{32,33}.

The efficiencies of the trigger and final selection criteria for signal processes are estimated from the simulation. The identification efficiencies for leptons and b jets are found from data in different data-taking periods, and used where necessary to correct the event selection efficiency estimates from the simulation. The trigger efficiency for signal events with a LQ mass hypothesis of 550 GeV is close to 90% for both channels. The efficiency of the final selection is $(8.4 \pm 0.2\text{ (stat.)} \pm 0.6\text{ (syst.)})\%$ and $(13.3 \pm 0.3\text{ (stat.)} \pm 0.9\text{ (syst.)})\%$ for the $e\tau_b \bar{b}$ and $\mu\tau_b \bar{b}$ channels, respectively.

The $t\bar{t}$ background is estimated using simulation. The normalization and several kinematic distributions of the $t\bar{t}$ background are validated using events rejected by the $M_{\tau_b} > 170$ GeV criterion. Both the yield and the S_T distribution in this control region agree well with the data observation.

The number of W or Z background events containing a jet misidentified as a τ is estimated from data. The probability of misidentification is measured using events with a W boson produced in association with one jet passing τ selection criteria except the isolation requirement. The decay to electron or muon of the W boson is used. In the selected sample, the lepton is required to be well identified. The transverse mass $M_T = \sqrt{(2p_T^\ell E_T(1-\cos(\Delta\phi)))^2}$ is required to be greater than 50 GeV. Here, p_T^ℓ and E_T are the transverse momentum of the lepton, and the imbalance of the transverse energy in the event, respectively, and $\Delta\phi$ is the azimuthal angle between the lepton and the E_T direction. To reduce the contribution from $t\bar{t}$ events, the candidate τ and the lepton are required to have the same electric charge. The probability to satisfy the final τ selection criteria is found to be independent of the transverse momentum and pseudorapidity of the candidate τ, and is $f = (2.44 \pm 0.53)\%$. The number of background events is given by $N_{bk} = N_{W_\tau} \times f/(1 - f)$, where N_{W_τ} is the number of events in the control sample with well identified lepton, two b jets, and a τ candidate that passes the τ identification criteria but fails the isolation requirement and has opposite electric charge to that of the lepton. The contribution from $t\bar{t}$ background in this sample is subtracted. The S_T distribution for this background is determined from the Monte Carlo (MC) simulation. Because of statistical limitations on the MC samples, events with a lepton, a τ candidate, and two jets are used, and the jet p_T
spectrum is reweighted to match that expected from b jets.

The small background processes, such as \(Z \rightarrow \tau\tau\) and dibosons decaying into genuine \(\tau_h\) or \(Z \rightarrow \mu\mu\), with a light lepton misidentified as a \(\tau_h\), are estimated using the simulated data.

The estimations of the background and the signal efficiency are affected by systematic uncertainties. The uncertainty in the total integrated luminosity is 2.2% \[34\]. The uncertainty in the trigger and lepton efficiencies is 1–3%. The uncertainty assigned to the \(\tau_h\) identification efficiency is 6%, while the uncertainty in the b-tagging efficiency and mistagging probability are 4% and 10%, respectively. Systematic uncertainties of 17% and 13% are assigned to the normalization of the \(t\bar{t}\) background in the \(e\tau_h b\bar{b}\) and the \(\mu\tau_h b\bar{b}\) channels, respectively, based on the statistical uncertainties of the control sample and the uncertainties in the MC prediction, to which it is compared. The uncertainty in the cross section measurements for diboson production \[35\] is 30%, leading to a normalization uncertainty in the corresponding background rate. Owing to the statistical limitation on \(Z \rightarrow \tau\tau/\ell\ell\) simulation, the uncertainty in these backgrounds is 70% and 30% for the \(e\tau_h bb\) and \(\mu\tau_h bb\), respectively. A 40% systematic uncertainty is assigned to the modeling of \(Z\) production in association with two b jets \[36\]. A 4% uncertainty, due to modeling of initial- and final-state radiation in the simulation, is assigned to the signal acceptance. Uncertainty due to the effect of pileup modeling in the MC simulations is estimated to be 3%. Jet energy scale (2–4% depending on pseudorapidity and transverse momentum) as well as energy scale (3%) and resolution (10%) uncertainties for \(\tau_h\) which affect both the \(S_T\) distribution and the expected yields from the signal and background processes are taken into account.

Uncertainties due to the choice of parton distribution functions (PDF) of the proton lead to changes in the total cross section and the acceptance for both signal and background processes. PDF uncertainties in the theoretical cross section and on the final-state acceptance are calculated using the PDF4LHC \[37\] prescription, and are found to vary between 10–30% and 1–3%, respectively.

The number of observed events and the expected signal and background yields after the final selection are listed in Table \[1\]. Data are in good agreement with the SM background prediction. The \(S_T\) distribution of selected events in data and MC simulation is shown in Fig. \[1\]. As the distribution of \(S_T\) predicted for the SM background is in good agreement with the distribution obtained in data, a limit is set on the product of the cross section for pair production of third-generation LQ and the square of the branching fraction for the decay to \(\tau\) lepton and b quark.

The modified frequentist construction \(CL_s\) \[38\] is used for limit calculation. A maximum likelihood fit is performed to the \(S_T\) spectrum simultaneously for both \(e\tau_h bb\) and \(\mu\tau_h bb\) channels, taking into account correlations between the systematic uncertainties. The limits as a function of the LQ mass are shown in Fig. \[2\]. Assuming \(B(LQ \rightarrow \tau b) = 1\), we exclude LQ with masses below 525 GeV at 95% Confidence Level (CL), in good agreement with the expected limit at 543 GeV. The difference between acceptance and selection efficiency for LQ and VLQ is less than a few percent \[39\]. Thus, the same observed limit can be used to extract the limit on a top SU(5) VLQ predicted by the model of Ref. \[2\]. Such vector leptoquarks with masses 760 GeV are excluded at 95% CL, in agreement with the expected limit of 762 GeV.

These results are interpreted as a limit on stop pair production with RPV decay. Assuming \(B(\tilde{t}_1 \rightarrow \tau b) = 1\), stop masses below 525 GeV are excluded. A limit is also extracted for a benchmark scenario, where the branching ratio \(B(\tilde{t}_1 \rightarrow tb)\) decreases as stop mass increases as R-parity-conserving decays open up. The MSSM parameters used in a benchmark scenario are heavy SU(2) gaugino \(M_2 = 250\) GeV, heavy Higgsino mixing parameter \(\mu = 380\) GeV,
Table 1: Estimated signal (LQ) and background yields and observed events in data after the final selection. The first value in the uncertainty on the yield is the statistical contribution and the second value is the systematic contribution. The PDF uncertainties are not included.

Source	$\mu + \tau_b b\bar{b}$ channel	$e + \tau_b b\bar{b}$ channel
$t\bar{t}$	$38.1 \pm 3.4 \pm 5.7$	$10.9 \pm 1.8 \pm 2.0$
W+jets/Z+jets	$11.6 \pm 0.1 \pm 3.6$	$8.4 \pm 0.1 \pm 2.6$
$Z(\tau\tau/ll)$	$5.0 \pm 1.6 \pm 2.1$	$2.1 \pm 1.5 \pm 0.9$
Diboson	$0.5 \pm 0.1 \pm 0.2$	$0.3 \pm 0.1 \pm 0.1$
Total background	$55.2 \pm 3.8 \pm 7.5$	$21.8 \pm 2.3 \pm 3.6$
Data	46	25
Signal (450GeV)	$13.2 \pm 0.3 \pm 0.9$	$8.4 \pm 0.2 \pm 0.6$

Figure 1: The measured S_T distribution (points) compared to the stacked distribution of the SM backgrounds (shaded region) and a simulated $M_{LQ} = 450$ GeV LQ signal (solid line) after the final selection (color online).

$\tan\beta = 40$, where β is the ratio of the Higgs vacuum expectation values, stop mixing angle $\theta = 0$, and $\lambda'_{333} = 1$. The limit on $\sigma B(t\bar{t} \rightarrow \tau b)^2$ as a function of stop mass is shown in Fig. 2. Using this benchmark, the R-parity-violating stop is excluded for masses below 453 GeV in agreement with an the expected exclusion mass of 474 GeV. Using the same parameter set, but two M_2 values (250 GeV and 1 TeV), limits are set on RPV coupling λ'_{333} as a function of stop mass. The results are shown in Fig. 2. Top squarks with mass below 240 GeV (340 GeV) are excluded for $M_2 = 250$ GeV ($M_2 = 1$ TeV) for all values of $\lambda'_{333} > O(10^{-7})$, corresponding to a decay length of about 0.5 mm. Stops with very small values of λ'_{333} have been excluded by a different CMS analysis [40].

In summary, a search for pair production of third-generation scalar and vector leptoquarks and top squarks decaying in a RPV scenario has been presented. The search is performed in the final state including an electron or a muon, a hadronically decaying τ lepton and two b jets. No excess above the SM background prediction is observed at high S_T. Assuming a 100% branching fraction to a τ lepton and a b quark, the existence of the scalar leptoquarks with masses below 525 GeV is excluded at 95% CL. The existence of SU(5) vector leptoquarks with masses...
Figure 2: Left: the expected and observed upper limit at 95% CL on the LQ (\tilde{t}_1, VLQ) pair production cross section times $B(LQ/\tilde{t}_1/VLQ \rightarrow \tau b)$ as a function of the LQ (\tilde{t}_1, VLQ) mass. The ±1σ and ±2σ uncertainties on the expected limit are also shown as green (inner) and yellow (outer) bands around the expected limit. The blue (solid) curve, magenta (dashed) curve, and red (dotted) curve and the matching shaded bands represent the theoretical LQ, \tilde{t}_1, and VLQ pair production cross section and the uncertainties due to the choice of PDF and renormalization and factorization scales, respectively. Right: the expected and observed 95% CL limit on the RPV coupling λ'_{333} for $M_2 = 250$ GeV and $M_2 = 1$ TeV (color online).

below 760 GeV is also excluded at 95% CL. Limits are also set on top squark pair production with RPV decay. The limits are obtained on λ'_{333} as a function of stop mass, and stops with masses below 453 GeV are excluded for a benchmark scenario with $\lambda'_{333} = 1$. These limits are the most stringent to date, and the limits on λ'_{333} are the first direct limits that significantly improve previous indirect bounds.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staffs at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] H. Georgi and S. L. Glashow, “Unity of All Elementary-Particle Forces”, Phys. Rev. Lett. 32 (1974) 438, doi:10.1103/PhysRevLett.32.438

[2] S. Chakdar et al., “Unity of elementary particles and forces for the third family”, Phys. Lett. B 718 (2012) 121, doi:10.1016/j.physletb.2012.10.021, arXiv:1206.0409
[3] J. C. Pati and A. Salam, “Lepton number as the fourth ‘color’”, *Phys. Rev. D* 10 (1974) 275, doi:10.1103/PhysRevD.10.275

[4] B. Gripaios, “Composite leptoquarks at the LHC”, *JHEP* 02 (2010) 045, doi:10.1007/JHEP02(2010)045

[5] J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of superstring inspired E_6 models”, *Phys. Rept.* 183 (1989) 193, doi:10.1016/0370-1573(89)90071-9

[6] E. Eichten and K. Lane, “Dynamical breaking of weak interaction symmetries”, *Phys. Lett. B* 90 (1980) 125, doi:10.1016/0370-2693(80)90065-9

[7] O. Shanker, “$\pi \ell^2$, $K/3$ and K^0 – \bar{K}^0 constraints on leptoquarks and supersymmetric particles”, *Nucl. Phys. B* 204 (1982) 375, doi:10.1016/0550-3213(82)90196-1

[8] S. P. Martin, “A Supersymmetry Primer”, (1997). arXiv:hep-ph/9709356. See also references therein.

[9] M. Papucci, J. T. Ruderman, and A. Weiler, “Natural SUSY Endures”, *JHEP* 09 (2012) 035, doi:10.1007/JHEP09(2012)035 arXiv:1110.6926

[10] R. Barbier et al., “R-Parity-violating supersymmetry”, *Phys. Rept.* 420 (2005) 1, doi:10.1016/j.physrep.2005.08.006 arXiv:hep-ph/0406039

[11] CMS Collaboration, “Search for supersymmetry in events with a lepton, a photon, and large missing transverse energy in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* 06 (2011) 093, doi:10.1007/JHEP06(2011)093 arXiv:1105.3152

[12] CMS Collaboration, “Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy”, *Phys. Rev. Lett.* 107 (2011) 221804, doi:10.1103/PhysRevLett.107.221804 arXiv:1109.2352

[13] D0 Collaboration, “Search for Third Generation Scalar Leptoquarks Decaying into τb”, *Phys. Rev. Lett.* 101 (2008) 241802, doi:10.1103/PhysRevLett.101.241802 arXiv:0806.3527

[14] CDF Collaboration, “Search for Pair Production of Scalar Top Quarks Decaying to a τ Lepton and a b Quark in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. Lett.* 101 (2008) 071802, doi:10.1103/PhysRevLett.101.071802 arXiv:0802.3887

[15] CMS Collaboration, “Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at $\sqrt{s} = 7$ TeV”, (2012). arXiv:1210.5627 Submitted to JHEP.

[16] G. Bhattacharyya, “R-parity-violating supersymmetric Yukawa couplings: A mini-review”, *Nucl. Phys. B Proc. Suppl.* 52 (1997) 83, doi:10.1016/S0920-5632(96)00539-7 arXiv:hep-ph/9608415

[17] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 03 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[18] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[19] CMS Collaboration, “Performance of τ-lepton reconstruction and identification in CMS”, *JINST* 07 (2012) P01001, doi:10.1088/1748-0221/7/01/P01001 arXiv:1109.6043
References

[20] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[21] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, *Phys. Lett. B* **659** (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[22] CMS Collaboration, “b-Jet identification in the CMS experiment”, CMS Physics Analysis Summary CMS-PAS-BTV-11-004, (2011).

[23] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[24] J. Alwall et al., “MadGraph 5: going beyond”, *JHEP* **06** (2011) 128, doi:10.1007/JHEP06(2011)128, arXiv:1106.0522.

[25] S. Frixione, P. Nason, C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* **11** (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[26] Z. Was, “TAUOLA the library for tau lepton decay, and KKMC/KORALB/KORALZ... status report”, *Nucl. Phys. B, Proc. Suppl.* **98** (2001) 96, doi:10.1016/S0920-5632(01)01200-2.

[27] S. Agostinelli et al., “Geant4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[28] A. Belyaev et al., “Leptoquark Single and Pair production at LHC with CalcHEP/CompHEP in the complete model”, *JHEP* **0509** (2005) 005, doi:10.1088/1126-6708/2005/09/005, arXiv:0502067.

[29] A. Belyaev, N. D. Christensen, and A. Pukhov, “CalcHEP 3.4 for collider physics within and beyond the Standard Model”, (2012). arXiv:1207.6082.

[30] W. Beenakker et al., “Squark and gluino production at hadron colliders”, *Nucl. Phys. B* **492** (1997) 51, doi:10.1016/S0550-3213(97)80027-2.

[31] M. Krämer et al., “Pair production of scalar leptoquarks at the CERN LHC”, *Phys. Rev. D* **71** (2005) 057503, doi:10.1103/PhysRevD.71.057503, arXiv:hep-ph/0411038.

[32] K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through $O(\alpha s^2)$”, *Phys. Rev. D* **74** (2006) 114017, doi:10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.

[33] N. Kidonakis, “Next-to-next-toleading soft-gluon corrections for the top quark cross section and transverse momentum distribution”, *Phys. Rev. D* **82** (2010) 114030, doi:10.1103/PhysRevD.82.114030, arXiv:1009.4935.

[34] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).

[35] CMS Collaboration, “Measurement of W^+W^- production and search for the Higgs boson in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **699** (2011) 25, doi:10.1016/j.physletb.2011.03.056.

[36] CMS Collaboration, “Measurement of the Z/γ^*+b-jet cross section in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **06** (2012) 126, doi:10.1007/JHEP06(2012)126.
[37] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). arXiv:1101.0538

[38] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, CERN Report ATL-PHYS-PUB-2011-11 and CMS NOTE-2011/005, (2011).

[39] G. Brooijmans et al., “Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report”, (2012). arXiv:1203.1488

[40] CMS Collaboration, “Search for stopped long-lived particles produced in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 08 (2012) 12, doi:10.1007/JHEP08(2012)026
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Höchstenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguiro, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krämer¹, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka¹, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeros, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, T. Reis, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, R. Castello, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco², J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Szajder

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
T.S. Anjos³, C.A. Bernardes³, F.A. Dias³, T.R. Fernandez Perez Tomei⁵, E.M. Gregores⁵, C. Lagana⁴, F. Marinho⁴, P.G. Mercadante⁴, S.F. Novaes⁴, Sandra S. Padula⁴

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev⁴, P. Iaydjiev⁴, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayyanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina5, D. Polic, I. Puljak4

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran6, S. Elgamal7, A. Ellithi Kamel8, M.A. Mahmoud9, A. Radi10,11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Vvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluji12, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenaier, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabetes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram13, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte13, F. Drouhin13, C. Ferro, J.-C. Fontaine13, D. Gelé, U. Goerlach, P. Juillot, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaufere, O. Bondu, G. Boudoul, J. Chasseron, R. Chierici4, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, L. Sgandurra, V. Sordini, Y. Tschudi, P. Verder, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze14

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, C. Autermann, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov15

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duerdort, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teysnier, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann4, A. Nowack, L. Perchalla, O. Pooth, P. Sauerland, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Bethens, M. Bergholz16, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, C. Diez Pardos, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann16, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M. Rosin, J. Salfeld-Nebgen, R. Schmidt16, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schlepper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, L. Vanelderen
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, C. Bös er, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Gutho f, C. Hackstein, F. Hartmann, T. Hauth, M. Heinrich, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov, J.R. Komaragiri, P. Lobelle Pardo, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvá th, F. Sikler, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guhait, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfae i, H. Bakshiansohi, S. M. Es f am i, A. Fahim, M. Hashemi, H. H es ar i, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza,
N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, L. Lusito, G. Maggi, M. Maggi, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, A. Pompi, G. Pugliese, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Brabiant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, P.M. Rossi, T. Rovelli, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglio, V. Ciulli, C. Cividini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gouzi, M. Meschini, S. Paolotti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbricatore, R. Musenich, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, L. Di Matteo, S. Fiorendi, S. Gennai, A. Ghezzi, S. Malvezzi, R.A. Manzoni, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavalla, A. De Cosa, O. Dogan, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento, Padova, Italy
P. Azzi, N. Bachetta, P. Bellan, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, F. Gasparini, A. Gozzelino, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Margoni, A.T. Meneguzzo, M. Nespolo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Torre, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, A. Santocchia, S. Spiezia, S. Taroni

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, F. Foà, A. Giassi, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, A. Rizzi, A.T. Serban, P. Spagnolo, P. Squillaciotti, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini
A The CMS Collaboration

INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, C. Fanellia,b, M. Grassia,b,4, E. Longoa,b, P. Meridiania,b, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,4, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,4, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,4, D. Montaninoa,b,4, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, Y.D. Oh, H. Park, S.R. Ro, D.C. Son, T. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
S. Evtushukhin, V. Golovtsov, Y. Ivanov, V. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossor, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, V. Krychkin, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo
Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chung, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Bott, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, N. Magini, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Mejers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spinas, D. Spiga, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Koltinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bertignoni, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland
C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, T. Karaman, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborouh

The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lازic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, D. Pellett, F. Ricci-Tam, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein omitted, P. Traczyk, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng omitted, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Parameswaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petruchiani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech omitted, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Kruvelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, M. Spiropulu, V. Timciuc, J. Veverka, R. Wilkinson, S. Xie, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirscharue, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, M. Park, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, Bl. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,
T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alversen, E. Barberis, D. Baumgartel, M. Casco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, E. Friis, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at California Institute of Technology, Pasadena, USA
4: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
5: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
6: Also at Suez Canal University, Suez, Egypt
7: Also at Zewail City of Science and Technology, Zewail, Egypt
8: Also at Cairo University, Cairo, Egypt
9: Also at Fayoum University, El-Fayoum, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at National Centre for Nuclear Research, Swierk, Poland
13: Also at Université de Haute Alsace, Mulhouse, France
14: Now at Joint Institute for Nuclear Research, Dubna, Russia
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Sharif University of Technology, Tehran, Iran
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
24: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
25: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
28: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
29: Also at University of California, Los Angeles, USA
30: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
31: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
32: Also at University of Athens, Athens, Greece
33: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
34: Also at The University of Kansas, Lawrence, USA
35: Also at Paul Scherrer Institut, Villigen, Switzerland
36: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
37: Also at Gaziosmanpasa University, Tokat, Turkey
38: Also at Adiyaman University, Adiyaman, Turkey
39: Also at Izmir Institute of Technology, Izmir, Turkey
40: Also at The University of Iowa, Iowa City, USA
41: Also at Mersin University, Mersin, Turkey
42: Also at Ozyegin University, Istanbul, Turkey
43: Also at Kafkas University, Kars, Turkey
44: Also at Suleyman Demirel University, Isparta, Turkey
45: Also at Ege University, Izmir, Turkey
46: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
47: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
48: Also at University of Sydney, Sydney, Australia
49: Also at Utah Valley University, Orem, USA
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
52: Also at Argonne National Laboratory, Argonne, USA
53: Also at Erzincan University, Erzincan, Turkey
54: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
55: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
56: Also at Kyungpook National University, Daegu, Korea