WEIGHTED COMPOSITION–DIFFERENTIATION OPERATOR
ON THE HARDY AND WEIGHTED BERGMAN SPACES

MAHSA FATEHI

Abstract. In this paper, we consider the sum of weighted composition operator C_{ψ_0,φ_0} and the weighted composition–differentiation operator $D_{\psi_n,\varphi_n,n}$ on the Hardy and weighted Bergman spaces. We describe the spectrum of a compact operator $C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n}$ when the fixed point w of φ_0 and φ_n is inside the open unit disk and φ_n has a zero at w of order at least n. Also the lower estimate and the upper estimate on the norm of a weighted composition–differentiation operator on the Hardy space H^2 are obtained. Furthermore, we determine the norm of a composition–differentiation operator $D_{\varphi,n}$ acting on the Hardy space H^2, in the case where $\varphi(z) = bz$ for some complex number b that $|b| < 1$.

1. Preliminaries

Let \mathbb{D} be the open unit disk in the complex plane. The Hardy space H^2 is the set of all analytic functions f on \mathbb{D} such that

$$
\|f\| = \left(\sup_{0<r<1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta \right)^{1/2} < \infty.
$$

For $-1 < \alpha < \infty$, the weighted Bergman space A^2_α is the space of all analytic functions f on \mathbb{D} so that

$$
\|f\| = \left(\int_{\mathbb{D}} |f(z)|^2 (\alpha + 1)(1 - |z|^2)^\alpha \, dA(z) \right)^{1/2} < \infty,
$$

where dA is the normalized area measure on \mathbb{D}. The case when $\alpha = 0$, usually denoted A^2, is called the (unweighted) Bergman space. Throughout this paper, we will write H_α to denote the Hardy space H^2 for $\alpha = -1$ or the weighted Bergman space A^2_α for $\alpha > -1$.

The weighted Bergman spaces and the Hardy space are reproducing kernel Hilbert spaces. For every $w \in \mathbb{D}$ and each non-negative integer n, let $K^{[n]}_{w,\alpha}$ denote the unique function in H_α that $\langle f, K^{[n]}_{w,\alpha} \rangle = f^{(n)}(w)$ for each $f \in H_\alpha$, where $f^{(n)}$ is the nth derivative of f (note that $f^{(0)} = f$); for convenience, we use the notation $K_{w,\alpha}$ when $n = 0$. The function $K^{[n]}_{w,\alpha}$ is called the reproducing kernel function. The reproducing kernel functions for evaluation at w are given by $K_{w,\alpha}(z) = 1/(1-wz)^{\alpha+2}$ and

$$
K^{[n]}_{w,\alpha}(z) = \frac{(\alpha + 2)...(\alpha + n + 1)z^n}{(1-wz)^{n+\alpha+2}}
$$

for $z,w \in \mathbb{D}$ and $n > 1$.

Date: August 12, 2021.

2010 Mathematics Subject Classification. 47B38 (Primary), 30H10, 30H20, 47B33, 47E99.

Key words and phrases. Weighted composition operator, Differentiation operator, Spectrum, Norm, Hardy space, Weighted Bergman space.
For an operator T on H_α, we write $\|T\|_\alpha$ to denote the norm of T acting on H_α. Through this paper, the spectrum of T and the point spectrum of T and the spectral radius of T are denoted by $\sigma_\alpha(T)$, $\sigma_{p,\alpha}(T)$, and $r_\alpha(T)$, respectively.

We write H^∞ to denote the space of all bounded analytic functions on \mathbb{D}, with $\|f\|_\infty = \sup\{|f(z)| : z \in \mathbb{D}\}$.

We say that an operator T on a Hilbert space H is hyponormal if $T^*T - TT^* \geq 0$, or equivalently if $\|T^*f\| \leq \|Tf\|$ for all $f \in H$. Moreover, the operator T is said to be cohyponormal if T^*T is hyponormal. Let P denote the projection of $L^2(\partial \mathbb{D})$ onto H^2. For each $b \in L^2(\partial \mathbb{D})$, we define the Toeplitz operator T_b on H^2 by $T_b(f) = P(bf)$. For φ an analytic self-map of \mathbb{D}, let C_φ be the composition operator such that $C_\varphi(f) = f \circ \varphi$ for any $f \in H_\alpha$. The composition operator C_φ acts boundedly for every φ, with

$$\left(\frac{1}{1 - |\varphi(0)|^2}\right)^{(n+2)/2} \leq \|C_\varphi\|_\alpha \leq \left(\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}\right)^{(n+2)/2}.$$

(See [2, Corollary 3.7] and [10, Lemma 2.3].) Let ψ be an analytic function on \mathbb{D} and φ be an analytic self-map of \mathbb{D}. The weighted composition operator $C_{\psi,\varphi}$ is defined by $C_{\psi,\varphi}(f) = \psi \cdot (f \circ \varphi)$ for $f \in H_\alpha$.

Although for each positive integer n, the differentiation operator $D_\alpha(f) = f^{(n)}$ is unbounded on H_α (note that $\lim_{m \to \infty} \|D_\alpha(z^m)\|/\|z^m\| = \infty$), there are some analytic maps $\varphi : \mathbb{D} \to \mathbb{D}$ such that the operator $C_{\varphi}D_\alpha$ is bounded. The bounded and compact operators $C_{\varphi}D_\alpha$ on H_α were determined in [5], [8], and [9]. Recently, the authors and Hammond [3] obtained the adjoint, norm, and spectrum of some operators $C_{\varphi}D_1$ on the Hardy space. For an analytic self-map φ and a positive integer n, the composition–differentiation operator on H_α is defined by the rule $D_{\psi,\varphi,n}(f) = f^{(n)} \circ \varphi$; for convenience, we use the notation D_{φ} when $n = 1$. For an analytic function ψ on \mathbb{D}, the weighted composition–differentiation operator $D_{\psi,\varphi,n}$ on H_α is defined

$$D_{\psi,\varphi,n}f(z) = \psi(z)f^{(n)}(\varphi(z)).$$

Some properties of weighted composition–differentiation operators were considered in [11] and [5].

In this paper, we determine the spectra of a compact operator $C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n}$ when the fixed point w of φ_0 and φ_n is inside the open unit disk and the function ψ_n has a zero at w of order at least n (Theorem 2.4). The spectral radius of a class of compact weighted composition–differentiation operators is obtained (Theorem 2.5). In addition, we find the lower estimate and the upper estimate for $\|D_{\psi,\varphi,n}\|_{-1}$ (Propositions 3.2 and 3.6). Moreover, the norm of a composition–differentiation operator $D_{\varphi,n}$, acting on the Hardy space H^2, is determined in the case where $\varphi(z) = bz$ for some complex number b that $|b| < 1$ (Theorem 3.5).

2. Spectral Properties

To find the spectrum of $C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n}$ we need to obtain an invariant subspace of $(C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^*$. To do this, we consider the action of the adjoint of the operator $C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n}$ on the reproducing kernel functions.

Lemma 2.1. Let m be a non-negative integer. Suppose that C_{ψ_0,φ_0} and $D_{\psi_n,\varphi_n,n}$ are bounded operators on H_α and the fixed point w of φ_0 and φ_n is inside the open unit disk. Assume that the function ψ_n has a zero at w of order at least n.

(i) If \(m > n \), then
\[
(C_{\psi_0, \varphi_0} + D_{\psi_n, \varphi_n, n})^* K_{w, \alpha}^{[m]} = \sum_{j=0}^{m-1} \alpha_j(w) K_{w, \alpha}^{[j]} + \sum_{i=n}^{m-1} \beta_{i-n}(w) K_{w, \alpha}^{[i]}
\]
\[
+ \left(\psi_0(w) (\varphi_0' (w))^m + \binom{m}{n} \psi_n(w) (\varphi_n'(w))^{m-n} \right) K_{w, \alpha}^{[n]},
\]

(ii) if \(m = n \), then
\[
(C_{\psi_0, \varphi_0} + D_{\psi_n, \varphi_n, n})^* K_{w, \alpha}^{[m]} = \sum_{j=0}^{n-1} \alpha_j(w) K_{w, \alpha}^{[j]} + \binom{n}{n} \psi_n(w) (\varphi_n'(w))^{n-n} K_{w, \alpha}^{[n]},
\]

(iii) if \(m < n \), then
\[
(C_{\psi_0, \varphi_0} + D_{\psi_n, \varphi_n, n})^* K_{w, \alpha}^{[m]} = \sum_{j=0}^{m-1} \alpha_j(w) K_{w, \alpha}^{[j]} + \psi_0(w) (\varphi_0'(w))^m K_{w, \alpha}^{[m]},
\]

where the functions \(\alpha_j \)'s and \(\beta_j \)'s consist of some products of the derivatives of \(\psi_0 \) and \(\varphi_0 \) and some products of the derivatives of \(\psi_n \) and \(\varphi_n \), respectively.

Proof. Let \(f \) be an arbitrary function in \(\mathcal{H}_\alpha \). For each non-negative integer \(m \), we have
\[
\langle f, C_{\psi_0, \varphi_0}^* K_{w, \alpha}^{[m]} \rangle = \langle C_{\psi_0, \varphi_0} f, K_{w, \alpha}^{[m]} \rangle = \sum_{j=0}^{m} \binom{m}{j} \psi_0^{(m-j)}(w) \left(f \circ \varphi_0 \right)^{(j)} (w)
\]
\[
= \langle f, \sum_{j=0}^{m-1} \alpha_j(w) K_{w, \alpha}^{[j]} + \psi_0(w) (\varphi_0'(w))^m K_{w, \alpha}^{[m]} \rangle.
\]

Since \(f \) is an arbitrary function in \(\mathcal{H}_\alpha \), we conclude that
\[
(2.1) \quad C_{\psi_0, \varphi_0}^* K_{w, \alpha}^{[m]} = \sum_{j=0}^{m-1} \alpha_j(w) K_{w, \alpha}^{[j]} + \psi_0(w) (\varphi_0'(w))^m K_{w, \alpha}^{[m]}.
\]

Let \(m < n \). Since \(\psi_n \) has a zero at \(w \) of order at least \(n \), we have
\[
\langle f, D_{\psi_n, \varphi_n, n}^* K_{w, \alpha}^{[m]} \rangle = \left(\psi_n \cdot (f^{(n)} \circ \varphi_n) \right)^{(m)} (w)
\]
\[
= \sum_{i=0}^{m} \binom{m}{i} \psi_n^{(m-i)}(w) (f^{(n)} \circ \varphi_n)^{(i)} (w)
\]
\[
= 0.
\]

It shows that \(D_{\psi_n, \varphi_n, n}^* K_{w, \alpha}^{[m]} = 0 \).
Now assume that $m \geq n$. We obtain
\[
\langle f, D^*_\psi,\varphi_n \cdot K^{[m]} \rangle = \sum_{i=0}^{m} \binom{m}{i} \psi^{(m-i)}(w)(f^{(m)} \circ \varphi_n)^{(i)}(w)
\]
\[
= \sum_{i=0}^{m-n} \binom{m}{i} \psi^{(m-i)}(w)(f^{(m)} \circ \varphi_n)^{(i)}(w)
\]
\[
+ \sum_{i=m-n+1}^{m} \binom{m}{i} \psi^{(m-i)}(w)(f^{(m)} \circ \varphi_n)^{(i)}(w)
\]
(2.2)
\[
= \sum_{i=0}^{m-n} \binom{m}{i} \psi^{(m-i)}(w)(f^{(m)} \circ \varphi_n)^{(i)}(w).
\]
If $m > n$, then by (2.2), we get
\[
\langle f, D^*_\psi,\varphi_n \cdot K^{[m]} \rangle = \langle f, \sum_{i=0}^{m-n-1} \beta_i(w)K^{[i+n]} + \binom{m}{m-n} \psi_n^{(m-n)}(w)(\varphi_n(w))^{m-n} \rangle K^{[m]},
\]
so
\[
D^*_\psi,\varphi_n \cdot K^{[m]} = \sum_{i=n}^{m-1} \beta_i(w)K^{[i]} + \binom{m}{n} \psi_n^{(m-n)}(w)(\varphi_n(w))^{m-n} K^{[m]}.
\]
If $m = n$, then by (2.2), we see that
\[
\langle f, D^*_\psi,\varphi_n \cdot K^{[m]} \rangle = \psi_n^{(n)}(w)f^{(n)}(w) = \langle f, \psi_n^{(n)}(w)K^{[m]} \rangle.
\]
Hence the result follows. \[\square\]

In the next proposition, we identify all possible eigenvalues of $C_{\psi,\varphi_n} + D_{\psi,\varphi_n}$.

Proposition 2.2. Suppose that C_{ψ,φ_n} and D_{ψ,φ_n} are bounded operators on H_α and the fixed point w of φ_0 and φ_n is inside the open unit disk. If the function ψ_n has a zero at w of order at least n, then
\[
\left\{ \psi_0(w), \psi_0(w)(\varphi_0(w))^l : l \in \mathbb{N}_{\geq n} \right\} \bigcup \left\{ \psi_0(w)(\varphi_0(w))^l + \binom{l}{n} \psi_n(w)(\varphi_n(w))^{l-n} : l \in \mathbb{N}_{\geq n} \right\}
\]
contains the point spectrum of $C_{\psi,\varphi_0} + D_{\psi,\varphi_n}$.

Proof. Let λ be an arbitrary eigenvalue for $C_{\psi,\varphi_0} + D_{\psi,\varphi_n}$ with corresponding eigenvector f. Note that
\[
(2.3) \quad \lambda f(z) = \psi_0(z)f(\varphi_0(z)) + \psi_n(z)f^{(n)}(\varphi_n(z))
\]
for each $z \in \mathbb{D}$. If $f(w) \neq 0$, then $\lambda = \psi_0(w)$. Let f have a zero at w of order $l \geq 1$. Differentiate (2.3) l times and evaluate it at the point $z = w$ to obtain
\[
(2.4) \quad \lambda f^{(l)}(w) = \sum_{j=0}^{l} \binom{l}{j} \psi_0^{(l-j)}(w)(f \circ \varphi_0)^{(j)}(w)
\]
\[
+ \sum_{j=0}^{l} \binom{l}{j} \psi_n^{(l-j)}(w)(f^{(n)} \circ \varphi_n)^{(j)}(w).
\]
First assume that $l < n$. Since ψ_n has a zero at w of order at least n, we have $\lambda = \psi_0(w)(\varphi_0(w))^l$ by (2.4).
Now assume that \(l \geq n \). Then \(\psi_n^{(l-j)}(w) = 0 \) for each \(j > l - n \). Hence \((2.3) \) implies that

\[
\lambda f^{(l)}(w) = \sum_{j=0}^{l} \binom{l}{j} \psi_0^{(l-j)}(w) (f \circ \varphi_0)^{(j)}(w) + \sum_{j=0}^{l-n} \binom{l}{j} \psi_n^{(l-j)}(w) (f^{(n)} \circ \varphi_n)^{(j)}(w)
\]

and so

\[
\lambda f^{(l)}(w) = \psi_0(w) f^{(l)}(w) (\varphi_0'(w))^l + \binom{l}{l-n} \psi_n(w) f^{(l)}(w) (\varphi_n'(w))^{l-n}.
\]

(Note that in case of \(\varphi_n'(w) = 0 \) and \(l = n \), we set \((\varphi_n'(w))^{l-n} = 1 \).) Therefore, in this case, any eigenvalue must have the form

\[
\psi_0(w) (\varphi_0'(w))^l + \binom{l}{n} \psi_n(w) (\varphi_n'(w))^{l-n}
\]

for a natural number \(l \) with \(l \geq n \).

\(\square \)

Proposition 2.3. Suppose that the hypotheses of Proposition 2.2 hold. Then the point spectrum of \((C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^* \) contains

\[
\{ \overline{\psi_0(w), \psi_0(w)(\varphi_0'(w))^n + \psi_n(w)} : l \in \mathbb{N}_{\geq n} \} \bigcup \{ \psi_0(w)(\varphi_0'(w))^l + \binom{l}{n} \psi_n(w) (\varphi_n'(w))^{l-n} : l \in \mathbb{N}_{\geq n} \}.
\]

Proof. Let \(l \) be a positive integer with \(l \geq n \) and \(K_l \) denote the span of \(\{K_{w,\alpha}, K_{w,\alpha}^{[1]}, ..., K_{w,\alpha}^{[l]} \} \). Note that this spanning set is linearly independent and so is a basis. Let \(A_l \) be the matrix of the operator \((C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^* \) restricted to \(K_l \) with respect to this basis. We infer from Lemma 2.1 that

\[
A_l = \begin{bmatrix}
B_n & \ast & \ast & \ldots & \ast \\
0 & \psi_0(w)(\varphi_0'(w))^n + \psi_n(w) & \ldots & \ast & \ast \\
0 & 0 & \ldots & \ast & \ast \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \psi_0(w)(\varphi_0'(w))^l + \binom{l}{n} \psi_n(w) (\varphi_n'(w))^{l-n} & \ast
\end{bmatrix},
\]

where \(B_n \) is an \(n \times n \) upper triangular matrix that its main diagonal entries are \(\psi_0(w), \psi_0(w)(\varphi_0'(w))^n, ..., \psi_0(w)(\varphi_0'(w))^{n-1} \). Then \(A_l \) is an upper triangular matrix too. Since the subspace \(K_l \) is finite dimensional, it is closed and so the space \(\mathcal{H}_n \) can be decomposed as

\[
\mathcal{H}_n = K_l \oplus K_l^\perp.
\]

Then the block matrix of \((C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^* \) with respect to the above decomposition must be of the form

\[
\begin{bmatrix}
A_l & C_l \\
0 & El
\end{bmatrix}
\]

(note that \(K_l \) is invariant under \((C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^* \) by Lemma 2.1 and so the lower left corner of the above matrix is 0). Since the spectrum of \((C_{\psi_0,\varphi_0} + D_{\psi_n,\varphi_n,n})^* \) is the union of the spectrum of \(A_l \) and the spectrum of \(El \) (see [2, p. 270]), we conclude that the union of \(\{ \overline{\psi_0(w), \psi_0(w)(\varphi_0'(w))^t} : t \in \mathbb{N} \text{ and } t < n \} \) and
\[
\left\{ \psi_0(w)(\varphi_0'(w))^t + \binom{l}{n}\psi_n(w)(\varphi_n'(w))^{t-n} : t \in \mathbb{N} \text{ and } n \leq t \leq l \right\}
\]
is the subset of \(\sigma_p,\alpha\left((C_{\psi,\varphi_0} + D_{\psi,\varphi,n})^\ast\right)\). Since \(l\) is arbitrary, the result follows. \(\square\)

In the following theorem, we characterize the spectrum of an operator \(D_{\psi,\varphi,n}\) under the conditions of Proposition 2.2. The spectrum of an operator \(D_{\psi,\varphi,n}\) which was obtained in \([5, \text{Theorem 3.1}]\) is an example for Theorem 2.4.

Theorem 2.4. Suppose that the hypotheses of Proposition 2.2 hold. If \(C_{\psi,\varphi_0} + D_{\psi,n,\varphi,n}\) is compact on \(\mathcal{H}_\alpha\), then

\[
\sigma_\alpha(C_{\psi,\varphi_0} + D_{\psi,n,\varphi,n}) = \{0\}
\]

\[
\bigcup \left\{ \psi_0(w), \psi_0(w)(\varphi_0'(w))^l : l \in \mathbb{N}_{<n} \right\}
\]

\[
\bigcup \left\{ \psi_0(w)(\varphi_0'(w))^l + \binom{l}{n}\psi_n(w)(\varphi_n'(w))^{l-n} : l \in \mathbb{N}_{\geq n} \right\}
\]

In particular, if \(\psi_n(w) = 0\), then the operator \(D_{\psi,n,\varphi,n}\) is quasinilpotent; that is, its spectrum is \(\{0\}\).

In the next theorem, we obtain the spectral radius of a compact operator \(D_{\psi,\varphi,n}\).

Theorem 2.5. Suppose that \(D_{\psi,\varphi,n}\) is a compact operator on \(\mathcal{H}_\alpha\). Assume that the fixed point \(w\) of \(\varphi\) is inside the open unit disk and the function \(\psi\) has a zero at \(w\) of order \(n\). Then

\[
r_\alpha(D_{\psi,\varphi,n}) = \left(1 - \frac{\varphi'(w)}{n}\right)\left|\psi(n)(w)\right|\left|\varphi'(w)\right|^{l-n},
\]

where \([\cdot]\) denotes the greatest integer function.

Proof. Theorem 2.4 implies that

\[
\sigma_\alpha(D_{\psi,\varphi,n}) = \left\{ \binom{l}{n}\psi_n(w)(\varphi'(w))^{l-n} : l \in \mathbb{N}_{\geq n} \right\}
\]

and so

\[
r_\alpha(D_{\psi,\varphi,n}) = \sup \left\{ \binom{l}{n}\left|\psi(n)(w)\right|\left|\varphi'(w)\right|^{l-n} : l \in \mathbb{N}_{\geq n} \right\}.
\]

If \(\varphi'(w) = 0\), then \(r_\alpha(D_{\psi,\varphi,n}) = \left|\psi(n)(w)\right|\). Now suppose that \(\varphi'(w) \neq 0\). Let the function \(h(x) = x(x-1)...(x-n+1)|\varphi'(w)|^{x-n}\) on \([n,+\infty)\). Since \(|\varphi'(w)| < 1\) (see the Grand Iteration Theorem), we conclude that \(\lim_{x \to +\infty} h(x) = 0\). Then \(h\) is a bounded function on \([n,+\infty)\) and so it obtains an absolute maximum point. If \(h'(t) = 0\) for some \(t \in [n,+\infty)\), then \(g(t) = -\ln |\varphi'(w)|\), where \(g(x) = \frac{1}{x} + \frac{1}{x-1} + ... + \frac{1}{x-n+1}\) for each \(x \in [n,+\infty)\). We can easily see that \(g\) is strictly decreasing and so the function \(h\) has at most one local extremum on \([n,+\infty)\), which must be its absolute maximum (note that if \(h'(t) \neq 0\) for all \(t\), then \(h\) has an absolute maximum of \(n!\) at \(n\)). Therefore, for obtaining \(r_\alpha(D_{\psi,\varphi,n})\), we must find the greatest natural number \(l\) such that \(l \geq n\) and

\[
(l-1)...(l-n)|\varphi'(w)|^{l-n-1} \leq l...(l-n+1)|\varphi'(w)|^{l-n}
\]
or equivalently

\[
l \leq \frac{n}{1 - |\varphi'(w)|}.
\]
We begin this section with an example which is a starting point for estimating a lower bound for \(\| D_{\psi, \varphi, n} \|_{-1} \).

Example 3.1. Suppose that \(\varphi(z) = bz^2 + az^3 \) with \(\frac{1}{2} < |a| < 1 \) and \(|a| + |b| < 1 \). We can see that \(\varphi(0) = \varphi'(0) = 0 \) and \(\varphi''(0) = 2a \). By the paragraph after Theorem 2.5 we have \(r_\alpha(D_{\varphi}) = 2|a| \) and so \(\| D_{\varphi} \|_\alpha \geq 2|a| > 1 \). Compare \(2|a| \) with the lower bound for \(\| D_{\varphi} \|_{-1} \) which was found in [3, Proposition 4] (note that [3, Proposition 4] implies that \(\| D_{\varphi} \|_{-1} \geq 1 \)).

The preceding example leads to the lower estimate on the norm of \(D_{\psi, \varphi, n} \) on the Hardy space by using the spectrum of a weighted composition–differentiation operator which was obtained in Proposition 2.8.

Proposition 3.2. Suppose that \(D_{\psi, \varphi, n} \) is a bounded operator on \(H^2 \). Assume that the fixed point \(w \) of \(\varphi \) is inside the open unit disk.

(i) If \(\varphi'(w) \neq 0 \), then

\[
\| D_{\psi, \varphi, n} \|_{-1} \geq |\psi^{(n)}(w)| \left(\frac{1}{n} \right) |\varphi'(w)|^{-n}.
\]
(ii) if \(\varphi'(w) = 0 \), then
\[
\|D_{\psi,\varphi,n}\|_{-1} \geq |\phi^{(n)}(w)|;
\]

(iii) if \(\varphi'(w) = 0 \), \(\psi''(w) = 0 \) and \(n = 1 \), then
\[
\|D_{\psi,\varphi,1}\|_{-1} \geq \max \left\{ |\varphi'(w)|, |\psi(w)\varphi''(w)| \right\},
\]
where
\[
\phi(z) = \begin{cases}
\psi(z), & \psi(0)(w) = \ldots = \psi(n-1)(w) = 0, \\
\psi(z)\left(\frac{w-z}{1-\overline{w}z}\right)^{n-m}, & \psi(0)(w) = \ldots = \psi(m-1)(w) = 0, \psi(m)(w) \neq 0 \text{ and } 1 \leq m < n, \\
\psi(z)\left(\frac{w-z}{1-\overline{w}z}\right)^n, & \psi(w) \neq 0.
\end{cases}
\]

Proof. First suppose that \(\psi(0)(w) = \ldots = \psi(n-1)(w) = 0 \). Proposition 2.3 and the idea which was used in the proof of Theorem 2.5 imply that
\[
(3.1) \quad \|D_{\psi,\varphi,n}\|_{-1} \geq |\psi(n)(w)|\left(1 - |\varphi'(w)|^2\right)^{\frac{n}{2}} |\varphi'(w)|^{\frac{n}{2}}. \tag{3.1}
\]
(Note that in case of \(\varphi'(w) = 0 \), we set \(|\varphi'(w)|\left(1 - |\varphi'(w)|^2\right)^{\frac{n}{2}} = 1 \).)

Now assume that \(\psi(z) = (w-z)^mg(z) \), where \(1 \leq m < n \) and \(g(w) \neq 0 \). Let \(\phi(z) = \psi(z)\left(\frac{w-z}{1-\overline{w}z}\right)^{n-m} \). Since \(T_{\frac{w-z}{1-\overline{w}z}} \) is an isometry on \(H^2 \) and the \(n \)th derivative of \(\psi(z)\left(\frac{w-z}{1-\overline{w}z}\right)^{n-m} \) at the point \(w \) is \(\frac{(-1)^{n-1}g(w)}{(1-|w|^2)^{\frac{n}{2}}} \), by replacing \(\phi \) with \(\psi \) in (3.1), we obtain
\[
\|D_{\psi,\varphi,n}\|_{-1} = \|D_{\phi,\psi,n}\|_{-1} \geq \frac{n!|g(w)|}{(1-|w|^2)^{\frac{n}{2}}} \left(1 - |\varphi'(w)|^2\right)^{\frac{n}{2}} |\varphi'(w)|^{\frac{n}{2}}. \tag{3.1}
\]

Now suppose that \(\psi(w) \neq 0 \) and \(\phi(z) = \psi(z)\left(\frac{w-z}{1-\overline{w}z}\right)^n \). By replacing \(\phi \) with \(\psi \) in (3.1), we have
\[
\|D_{\psi,\varphi,n}\|_{-1} = \|D_{\psi,\varphi,n}\|_{-1} \geq \frac{n!|\psi(w)|}{(1-|w|^2)^{\frac{n}{2}}} \left(1 - |\varphi'(w)|^2\right)^{\frac{n}{2}} |\varphi'(w)|^{\frac{n}{2}}. \tag{3.1}
\]

Note that if \(\varphi'(w) = 0 \) and \(\psi''(w) = 0 \), then \(D_{\psi,\varphi,1}^nK_{w,-1}^{[2]} = \psi(w)\varphi''(w)K_{w,-1}^{[2]} \) by [4] Lemma 1]. Therefore, we conclude that \(\|D_{\psi,\varphi,1}\|_{-1} \geq |\psi(w)\varphi''(w)| \). Hence the result follows.

In the next example, we show that for some operators \(D_{\varphi} \), Proposition 3.2 is more useful than [3] Proposition 4] for estimating the lower bound for \(\|D_{\varphi}\|_{-1} \).

Example 3.3. Suppose that \(\varphi(z) = az^n + bz \), where \(\frac{1}{2} < |b| < 1 - |a| \) and \(n \) is a positive integer that \(n \geq 2 \). Proposition 3.2 implies that
\[
\|D_{\varphi}\|_{-1} \geq \frac{1}{1 - |b|} |b|^{1/(1 - |b|)} - 1 > 1
\]
and so this lower bound is greater than the lower bound for \(\|D_{\varphi}\|_{-1} \) which was estimated in [3] Proposition 4].

In the following proposition, we obtain \(\|D_{\psi,\varphi,n}\|_{\alpha} \), when \(D_{\psi,\varphi,n} \) is a compact hyponormal (or cohyponormal) operator which satisfies the hypotheses of Proposition 2.2.
Proposition 3.4. Suppose that \(\psi \) is not identically zero and \(\varphi \) is a nonconstant analytic self-map of \(\mathbb{D} \) so that \(D_{\psi, \varphi, n} \) is compact on \(H_\alpha \). Assume that \(w \) is the fixed point of \(\varphi \) and \(\psi \) has a zero at \(w \) of order at least \(n \). Then \(D_{\psi, \varphi, n} \) is hyponormal or cohyponormal on \(H_\alpha \) if and only if \(\psi(z) = az^n \) and \(\varphi(z) = bz \), where \(a \in \mathbb{C} \setminus \{0\} \) and \(b \in \mathbb{D} \setminus \{0\} \); moreover, in this case

\[
\|D_{\psi, \varphi, n}\|_\alpha = n!|a|^{1+\frac{1}{n}}|b|^{1-\frac{1}{n}} - n.
\]

Proof. Suppose that \(D_{\psi, \varphi, n} \) is hyponormal (or cohyponormal). If \(\psi^{(n)}(w) = 0 \), then \(r_\alpha(D_{\psi, \varphi, n}) = 0 \) by Theorem 2.4 and so \(D_{\psi, \varphi, n} \equiv 0 \) by [1] Proposition 4.6, p. 47. It follows that \(\psi \equiv 0 \) or \(\varphi \equiv 0 \) (note that \(D_{\psi, \varphi, n}(z^{n+1}) = (n+1)!\psi(z)\varphi(z) \)) which is a contradiction. Hence we assume that \(\psi^{(n)}(w) \neq 0 \). Since \(\psi \) has a zero at \(w \) of order \(n \), Lemma 2.1 shows that \(D_{\psi, \varphi, n}K_{\psi, \varphi, n}(z) = 0 \) and so \(w = 0 \). Lemma 2.1 implies that

\[
D_{\psi, \varphi, n}^* K_{\psi, \varphi, n}(z) = \frac{\psi^{(n)}(0)}{n!}(\psi(z) + (\alpha + n + 1)z^n).
\]

Since \(D_{\psi, \varphi, n} \) is hyponormal (or cohyponormal), it follows that

\[
D_{\psi, \varphi, n}K_{\psi, \varphi, n}(z) = \psi^{(n)}(0)(\alpha + 1)...(\alpha + n + 1)z^n.
\]

Because \(D_{\psi, \varphi, n}K_{\psi, \varphi, n}(z) = n!(\alpha + 1)...(\alpha + n + 1)\psi(z) \), we conclude that \(\psi(z) = \frac{\psi^{(n)}(0)}{n!}z^n \), where \(\psi^{(n)}(0) \neq 0 \). Then \(\psi^{(m)}(0) = 0 \) for each \(m \neq n \). Hence Lemma 2.1 shows that

\[
D_{\psi, \varphi, n}^* K_{\psi, \varphi, n}(n+1) = (n+1)!\psi^{(n)}(0)\varphi'(0)K_{\psi, \varphi, n}(n+1).
\]

Therefore, we have

\[
D_{\psi, \varphi, n}K_{\psi, \varphi, n}(n+1) = n!\psi^{(n)}(0)\varphi'(0)K_{\psi, \varphi, n}(n+1).
\]

On the other hand, we obtain

\[
D_{\psi, \varphi, n}K_{\psi, \varphi, n}(n+1)^+ = (n+1)!((\alpha + 1)...(\alpha + n + 2)\psi(z)\varphi(z)
\]

\[
= (n+1)!((\alpha + 1)...(\alpha + n + 2)\frac{\psi^{(n)}(0)}{n!}z^n\varphi(z)
\]

for each \(z \in \mathbb{D} \). Since \(D_{\psi, \varphi, n} \) is hyponormal (or cohyponormal), \((3.2) \) and \((3.3) \) imply that \(\varphi(z) = \varphi'(0)z \).

Conversely is obvious by [1] Proposition 3.2 (note that an analogue of [1] Proposition 3.2 holds in \(H^2 \) by the similar idea).

Due to the hyponormality (or cohyponormality) of \(D_{\psi, \varphi, n} \), invoking Theorem 2.5 it follows that

\[
\|D_{\psi, \varphi, n}\|_\alpha = r_\alpha(D_{\psi, \varphi, n}) = n!|a|^{1+\frac{1}{n}}|b|^{1-\frac{1}{n}} - n.
\]

\[\square\]

In the next theorem, we extend [8] Theorem 2.

Theorem 3.5. If \(\varphi(z) = bz \) for some \(b \in \mathbb{D} \setminus \{0\} \), then

\[
\|D_{\psi, \varphi, n}\|_1 = n!\left(\frac{n}{n-1}\right)|b|^n|z^n|^{-n}.
\]
Proof. The result follows immediately from Proposition 3.4 and the fact that T_n is an isometry on H^2.

Let $\|\varphi\|_\infty \leq b < 1$ and $\psi \in H^\infty$. We define $\varphi_b = (1/b)\varphi$ and $\rho(z) = bz$ (see [3, p. 2898]). Observe that $D_{\varphi,n} = C_{\varphi_b} D_{\rho,n}$. Since $\|D_{\psi,\varphi,n}\|_{-1} \leq \|\psi\|_\infty \|C_{\varphi_b}\|^{-1} \|D_{\rho,n}\|_{-1}$, we can estimate the upper bound for $\|D_{\psi,\varphi,n}\|_{-1}$ by the same idea as stated for the proof of [3, Proposition 4].

Proposition 3.6. If φ is a nonconstant analytic self-map of D with $\|\varphi\|_\infty < 1$ and the function ψ belongs to H^∞, then

$$\|D_{\psi,\varphi,n}\|_{-1} \leq n! \|\psi\|_\infty \left(\frac{b + |\varphi(0)|}{b - |\varphi(0)|}\right) \left(\frac{n}{b + |\varphi(0)|}\right)^n$$

whenever $\|\varphi\|_\infty \leq b < 1$. In particular, $\|D_{\varphi,n}\|_{-1} = n!$ whenever both $\|\varphi\|_\infty \leq \frac{1}{n+1}$ and $\varphi(0) = 0$.

References

[1] J. B. Conway, *The Theory of Subnormal Operators*, Amer. Math. Soc., Providence, 1991.
[2] C. C. Cowen and B. D. MacCluer, *Composition Operators on Spaces of Analytic Functions*, CRC Press, Boca Raton, 1995.
[3] M. Fatehi and C. N. B. Hammond, Composition-differentiation operators on the Hardy space, *Proc. Amer. Math. Soc.* 148 (2020), 2893–2900.
[4] M. Fatehi and C. N. B. Hammond, Normality and self-adjointness of weighted composition-differentiation operators, *Complex Anal. Oper. Theory* 15 (2021), 13.
[5] K. Han and M. Wang, Weighted composition–differentiation operators on the Bergman space, *Complex Anal. Oper. Theory* 15 (2021), 17.
[6] R. A. Hirschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, *Rocky Mountain. J. Math.* 35 (2005), 843–855.
[7] M. Moradi and M. Fatehi, Complex symmetric weighted composition–differentiation operators of order n on the weighted Bergman spaces, *arXiv*:2101.04911.
[8] M. Moradi and M. Fatehi, Products of composition and differentiation operators on the Hardy space, *arXiv*.
[9] S. Ohno, Products of composition and differentiation between Hardy spaces, *Bull. Austral. Math. Soc.* 73 (2006), no. 2, 235–243.
[10] A. E. Richman, Subnormality and composition operators on the Bergman space, *Integr. Equ. Oper. Theory* 45 (2003), 105–124.
[11] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, *Bull. Belg. Math. Soc. Simon Stevin* 16 (2009), 623–635.

Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Email address: fatehimahsa@yahoo.com