Abstract—Convolutional Neural Networks (CNNs) have become the default choice for processing visual information, and the design complexity of CNNs has been steadily increasing to improve accuracy. To cope with the massive amount of computation needed for such complex CNNs, the latest solutions utilize blocking of an image over the available dimensions (e.g., horizontal, vertical, channel, and kernel) and batching of multiple input images to improve data reuse in the memory hierarchy. While there has been a large collection of works on maximizing data reuse, only a few studies have focused on the memory bottleneck problem caused by limited bandwidth. Bandwidth bottleneck can easily occur in CNN acceleration as CNN layers have different sizes with varying computation needs and as batching is typically performed over each layer of CNN for an ideal data reuse. In this case, the data transfer demand for a layer can be relatively low or high compared to the computation requirement of the layer, and therefore temporal fluctuations in memory access can be induced eventually causing bandwidth problems. In this paper, we first show that there exists a high degree of fluctuation in memory access to computation ratio depending on CNN layers and functions in the layer being processed by the compute units (cores), where the compute units are tightly synchronized to maximize data reuse. Then we propose a strategy of partitioning the compute units where the cores within each partition process a batch of input data in a synchronous manner to maximize data reuse but different partitions run asynchronously. Because the partitions stay asynchronous and typically process different CNN layers at any given moment, the memory access traffic sizes of the partitions become statistically shuffled. Thus, the partitioning of compute units and asynchronous use of them make the total memory access traffic size be smoothed over time, and the degree of partitioning determines a tradeoff between data reuse efficiency and memory bandwidth utilization efficiency. We call this smoothing statistical memory traffic shaping, and we show that it can lead to 8.0% of performance gain on a commercial 64-core processor when running ResNet-50.

1 INTRODUCTION

Emerging Convolutional Neural Network (CNN) [3] is one of the most popular machine learning methods, especially for image classification and object detection. A typical CNN has a deep structure and multiple types of filters to be able to model complicated functions, necessitating a high computational power. As most of CNN’s operations allow parallelism, a CNN can be fit well into the existing data-parallel architectures, such as GPGPUs [8], manycore processors [11], FPGAs [1], and emerging deep-learning accelerators [7].

These architectures (called CNN accelerators hereafter) block each image over dimensions (e.g., horizontal, vertical, channel, and kernel) and batch multiple images [9] to maximally exploit memory hierarchy where components closer to compute units are smaller in capacity but offer higher bandwidth and energy efficiency. A large body of work has addressed maximizing data reuse heuristically or systematically. For instance, Yang et al. [16] proposed an optimal loop blocking and reordering technique for convolution and fully-connected layers to maximize data reuse in the memory hierarchy. Their analytical model optimizes memory traffic on multi-level memory hierarchy at a given on-chip storage budget.

Modern CNN models (architectures) such as Inception-v4 [13] and ResNet [4] tend to have a large number of layers. Because the layers have different designs with a varying number of channels, number of kernels, and size of convolution filters, the degree of data reuse also varies across the layers. The variation can be significant, leading to a severe temporal fluctuation in bandwidth demands for different layers, especially for off-chip main memory. Such a fluctuation is not a problem when the memory bandwidth is sufficiently large, but that is not true as we will show in Section 4. Furthermore, memory bandwidth demand per accelerator is steadily increasing because more transistors are becoming available due to the finer-pitch process technology, and because circuit- and microarchitecture-level optimizations (e.g., mixed-precision) to arithmetic units are allowing more arithmetic units to be integrated [8].

Providing a sufficient main-memory bandwidth to accommodate peak demands can be a solution. However, it is extremely inefficient as increasing main-memory bandwidth accompanies area/energy overhead due to bulky I/Os and deteriorated signal integrity, leading to a high-cost premium [12]. Rather, it is desired to shrink the gap between peak and average main-memory bandwidth utilization by regulating bandwidth demands from the numerous compute units. To the best of our knowledge, previous studies have not focused on this bandwidth bottleneck problem of memory hierarchy that is caused by temporal fluctuations of resource demands.

In this paper, we first show that the gain of data reuse by batching diminishes on the latest CNN models, because they tend to have lean (smaller kernels and fewer neurons) and deep (more layers) structures. On the other hand, the synchronous nature of batching exacerbates the bandwidth fluctuation issue. To address this problem, we propose to divide compute cores into multiple partitions and make each partition internally operate synchronously but make different partitions operate asynchronously. This solution slightly sacrifices the degree of data reuse, but its temporal bandwidth balancing through statistical memory traffic shaping [15] will be shown to outweigh the sacrifice.

2 DATA REUSE CHARACTERISTICS OF CNN

Modern data-parallel architectures provide increasing computation performance for CNN processing. The latest NVIDIA
GPUs based on Pascal microarchitecture reach 10 TFLOPS for single-precision operations per chip [4]. Intel’s Knights Landing (KNL [11]) manycore CPUs offer 6 TFLOPS per chip with 72 x86 cores featuring AVX-512 SIMD support. As lower-precision arithmetic is viable especially for inference, CNN accelerators including GPUs, CPUs, and FPGAs are expected to populate more functional units tailored to 16- and 8-bit operations, further increasing compute capability. For example, Google’s Tensor Processing Unit [7] supports 8-bit integer performance of 92 TOPS through 64K matrix-multiply units.

Fetching data from a large memory such as an off-chip main memory per arithmetic operation is costly in terms of energy and bandwidth efficiencies. Therefore, it is critical to effectively utilize a hierarchy of memory components (e.g., L1, L2 caches or scratchpad memory) by exploiting locality. A convolutional layer consists of k kernels, and each kernel receives c feature maps (or input channels) passed from the previous layer, conducts convolution, and produces an output feature map to pass to the next layer. The k feature maps produced in this layer are further processed by other filters, such as pooling, rectified linear unit (ReLU), and batch normalization (BN). The convolution filtering, which dominates CNN computation, can be made highly parallel and provides abundant opportunities for reusing the fetched weight data. For example, the number of operations using a point in an input channel is proportional to the number of kernels and their size whereas a weight in a kernel is accessed for the number of times that is proportional to the number of channels and the feature map size per channel. Furthermore, a kernel weight can be reused further through processing input images in batch (called batching [9] hereafter).

By making sub-blocks of feature maps and kernel weights and then by conducting computation on these sub-blocks, we can achieve a high memory locality in reusing the weight data. For example, the size of CNN weights often reaches tens to hundreds of megabytes [10], far exceeding the on-chip buffer size. Finding optimal blocking configurations maximizes data reuse at a certain memory capacity leading to the highest ratio of computation over accesses to the next level in the memory hierarchy. Yang et al. [16] proposed a systematic approach to find optimal loop blocking and reordering configurations for the convolution and fully-connected layers. The MKLDNN library [5] we utilize in this study also exploits similar schemes.

The latest CNN models have increasing number of layers; for example, ResNet-50 [4] has 50 convolutional layers, which dominate processing time, interleaved with the other aforementioned functions to improve a recognition rate. These convolutional layers have a wide variation in the sizes of channels/kernels and the number of channels/kernels. The computation to memory access ratio heavily depends on these factors; for example, if all the weights of the kernels at a certain convolutional layer fit in the last-level cache, they are loaded just once while processing a batch of input images. This manifests as a huge diversity in main-memory bandwidth utilization over layers (hence over time) as depicted in Figure 1 and Table 1 (experimental setup is specified in Section 4), but few studies have focused on the temporal fluctuation of memory bandwidth demands and the resulting inefficiency.

The conventional strategy of maximizing data reuse over memory hierarchy is still effective if a CNN accelerator is equipped with main memory that can sustain the peak bandwidth, completely absorbing the temporal fluctuation and hence its performance being unaffected. However, increasing peak main-memory bandwidth requires a high-cost premium. Contemporary accelerators exploit 3D stacking of memory and better interface material such as silicon interposer [12] to increase memory bandwidth, but their values are still around hundreds of GB/s (e.g., 732GB/s for an NVIDIA GPU with HBM2 [4]), which is much lower than the peak bandwidth demands from compute cores with half-precision performance (over 20 TFLOPS). With insufficient main-memory bandwidth, compute units such as cores would be underutilized especially during the early stages (layers) of CNN processing (Figure 1) whereas memory stays idle while processing the later layers, leading to suboptimal acceleration performance if all the cores process the same layer together. Therefore, it is critical to devise a solution that spreads memory requests more evenly over time to reduce the gap between peak and average demands.

Table 1: Memory bandwidth and TFLOPS of various layers on ResNet-50 [4] (the abbreviations H, V, and K stand for horizontal, vertical, and the number of kernels respectively).

Layer	Input size (H x V)	# of input channels (H x V)	Kernel (H x V, K)	BW (GB/s)	FLOPS	
Pooling	112 x 112	64	56 x 56	3 x 3, -	254	0.6T
Conv2_1a	56 x 56	64	56 x 56	1 x 1, 64	174	2.9T
Conv2_2a	56 x 56	256	56 x 56	1 x 1, 64	120	3.0T
Conv3_2b	28 x 28	128	28 x 28	3 x 3, 128	55	3.7T
Conv4_3a	14 x 14	1024	14 x 14	1 x 1, 256	76	3.0T
Conv5_3b	7 x 7	512	7 x 7	3 x 3, 512	15	2.2T

3 Statistical Memory Traffic Shaping by Partitioning Compute Units

In this paper, we focus on alleviating the temporal fluctuation of memory bandwidth demands on manycore-based CNN accelerators. Similar observations and solutions can be applied to other accelerator types supporting concurrent execution of multiple contexts (e.g., NVIDIA Volta [8]). Cores in manycore processors typically share higher levels of the memory hierarchy (e.g., last-level caches or main memory). This enables 1)
certain data in a shared memory level to be used by multiple cores (effect 1) and 2) the cores with time-varying degree of bandwidth and capacity demands to utilize the resource more effectively (effect 2). Previous studies in CNN acceleration focused on exploiting effect 1 to further enhance the degree of data reuse. [14] compared the options of sharing kernels or images, and advocated sharing kernels as it can better exploit the producer-consumer locality of images among CNN layers. Our reference implementation [5] also shares kernels among cores; but instead of distributing partitioned images to the cores, it allocates different images in a batch to different cores.

This, however, tightly couples a group of cores sharing kernel weights. In CNN acceleration, layer processing is highly sequential as a layer takes input channels that are produced by its immediately previous layer. As more cores participate in a group, compute to memory access ratio increases due to a higher degree of data (weights) reuse, but the cores operate highly synchronously as they process the same layer together. In an extreme case of all cores in an accelerator composing a single group, the configuration for data listed in Figure 1 only a single layer is processed at any given time; therefore effect 2 cannot be well exploited and the huge variation in main-memory bandwidth demands across layers can become a serious problem.

If accessing kernel weights takes a large portion of main-memory bandwidth utilization, it is more beneficial to maximize kernel weight reuse by increasing the core group size even if it leads to more severe bandwidth fluctuation over time. However, the impact of kernel weights on total memory bandwidth diminishes as CNN models advance. Figure 2 shows the ratio of kernel weights over total memory accesses for the convolutional and fully-connected layers of the ImageNet Large Scale Visual Recognition Challenge winners. The number of layers increases, the size of convolution filters decreases, and a layer often receives feature maps from multiple of previously calculated layers. These all contribute towards reducing relative portion of memory bandwidth demands due to kernel weights.

We exploit this trend of smaller impacts of kernel weights on main-memory accesses by separating the compute cores in a CNN accelerator into multiple partitions. Then we make the cores in each partition process the assigned batch synchronously, but we allow a partition to operate asynchronously against the other partitions. This slightly sacrifices the degree of data reuse because kernel weights are not shared among multiple partitions and hence should be loaded from main memory per partition. However, its effect of better temporal bandwidth balancing through statistical memory traffic shaping [15] can outweigh the overhead.

Figure 3 depicts the impact of this statistical memory traffic shaping on CNN accelerator performance with an illustration-purpose example where memory bandwidth demands from four cores vary depending on the layers they are processing. With an unlimited bandwidth, the execution times of cores are not affected by their main-memory bandwidth demands (Figure 3(a)). For a realistic system with a limited bandwidth, however, it takes much longer for the cores to execute layers demanding more main-memory bandwidth (L1 and L3). When the cores are not partitioned (Figure 3(b)), all four cores should be synchronized in layer boundaries. When the cores are divided into two partitions (Figure 3(c)), the execution of core 3 and core 4 can be on different layers as the partitions operate independently. Then, the memory bandwidth demands from the cores can be distributed such that the aggregate bandwidth demands are always below the peak bandwidth provided by the accelerator. Even if there exists an additional memory traffic due to a lower degree of data reuse in accessing kernel weights, as far as its overhead on performance is smaller than the overhead due to the lack of memory traffic shaping effect, a partitioning would be beneficial.

4 Evaluation

Experimental setup: To quantify the performance improvement, three popular CNN designs were tested: VGG-16 [10], GoogleNet [14], and ResNet-50 [4]. The numbers of layers were chosen to be 16, 22, and 50, respectively. As for the processor, an Intel Knights Landing (Xeon Phi 7210) with 64 cores was used. It has a peak single-precision arithmetic performance of 6 TFLOPS, and it is equipped with MCDRAM that can achieve up to 400GB/s. We used Caffe [6] as the CNN framework and utilized Intel’s math kernel library (MKL-DNN v0.1 [5]) as it is highly optimized for Intel Knights Landing. To measure the bandwidth utilization, hardware profiling was used.

To test the proposed strategy, the 64 cores were divided into 2, 4, 8, and 16 partitions and the memory utilization and calculation speed were measured for each partition size. To keep the number of images loaded on DRAM to be constant, 64/n images were assigned to a partition as a batch where n is the number of partitions. In this way, a total of 64 images are processed by the entire processor at any time. Because of the limitation of MCDRAM capacity (16GB), results up to 8 partitions are provided for VGG-16, and up to 16 for GoogleNet and ResNet-50. DRAM size can become the performance bottleneck for a larger number of partitions, but we exclude such situations because DRAM size tradeoff is not in the scope of this study. Note that VGG-16’s DRAM saturates faster because it needs a larger space for loading all of its weights.

Results: The baseline performance of synchronous data reuse is investigated first. In Figure 4(a), the average and standard deviation of memory bandwidth usage are shown for ResNet-50 with no partition. The image batch size for data reuse is the same as the number of cores such that each core processes a single image per weight loading from DRAM. It can be observed that the standard deviation increases as the number of cores increases. This is expected because more cores are equivalent to more concurrently processed images,
and therefore a larger fluctuation in the absolute size of total bandwidth usage (in GB/s). As the standard deviation becomes larger, there is a higher chance of the memory bandwidth becoming the performance bottleneck. This leads to a decrease in the average memory bandwidth usage per core as shown in Figure 4, because more time needs to be spent waiting in the queue. Note that this memory bandwidth bottleneck problem is expected to become even more crucial when compute capability is further improved with 16- and 8-bit operations.

To address the memory bottleneck problem, we applied the proposed partitioning strategy to the three CNN models, and present the relative performance results in Figure 5. For VGG-16, GoogleNet, and ResNet-50, standard deviation is reduced by up to 20.0%, 37.6%, and 36.2%, respectively. This confirms that the fluctuation is reduced by increasing the partition size. It is a direct result of statistical traffic shaping over asynchronous partitions, and thus the average bandwidth usage, i.e., memory bandwidth utilization efficiency, is also improved by 18.7%, 22.7%, and 15.2%, respectively. Eventually, the overall performance is improved by 3.9%, 11.1%, and 8.0%.

The partitioning improves performance of all three CNN models. The performance improvement comes despite of less weight data reuse, because the bandwidth issue is more critical for the tested cases. For the set of chosen test scenarios, the performance is steadily improved as the number of partitions is increased except for VGG-16’s 8 partitions. In general, we expect the performance to deteriorate as the number of partitions becomes too large, but the limitation on DRAM size prevented us from testing such scenarios. The performance improvement is most significant when partition size is increased from 1 (no partition) to 2. This is because the reduction of fluctuation by traffic shaping is most significant for the case. Figure 6 shows the memory bandwidth utilization of no partition, 4 partitions, and 16 partitions for ResNet-50. Without partitioning, memory bandwidth utilization severely fluctuates. For 16 partitions, however, the bandwidth utilization becomes relatively steady.

5 Conclusion

For CNN acceleration, a synchronous use of cores has been considered as a desirable solution because of its data reuse efficiency. In this work, we have shown that such a synchronous use can have a downside of a memory bandwidth bottleneck problem, especially for the latest CNN algorithms whose weight data reuse is less critical. To provide a mechanism for trading data reuse efficiency with memory bandwidth utilization efficiency, we proposed a partitioning strategy where compute units are divided into multiple partitions and different partitions run asynchronously. The strategy was tested over VGG-16, GoogleNet, and ResNet-50 using Intel Knights Landing processor with 64 cores. The evaluation results show that the standard deviation of memory bandwidth usage is reduced by 20.0-37.6% and the average is increased by 15.2-22.7%. This indicates that a statistical traffic shaping is achieved and the memory bandwidth is better utilized on the average. Overall, CNN acceleration performance is improved by 3.9-11.1%.

Acknowledgments

This work was partially supported by the National Research Foundation of Korea grant funded by the Korea government (NRF-2017R1A2B0205416 and NRF-2017R1E1A1A03070560).

References

[1] A. M. Caulfield et al., “A Cloud-Scale Acceleration Architecture,” in MICRO, 2016.
[2] D. Foley and J. Danskin, “Ultra-Performance Pascal GPU and NVLink Interconnect,” Micro, IEEE, vol. 37, no. 2, Mar/Apr 2017.
[3] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
[4] K. He et al., “Deep Residual Learning for Image Recognition,” in CVPR, 2016.
[5] Intel, “Intel(R) Math Kernel Library for Deep Neural Networks,” 2016. [Online]. Available: https://github.com/01org/mkl-dnn
[6] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” arXiv:1408.5093, 2014.
[7] N. P. Jouppi et al., “In-datacenter Performance Analysis of a Tensor Processing Unit,” in ISCA, 2017.
[8] NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” 2017. [Online]. Available: http://www.nvidia.com/volta
[9] Y. Shen et al., “Escher: A CNN Accelerator with Flexible Buffering to Minimize Off-Chip Transfer,” in FCCM, 2017.
[10] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv:1409.1556, 2014.
[11] A. Sodani et al., “Knights Landing: Second Generation Intel Xeon Phi Product,” Micro, IEEE, vol. 36, no. 2, Mar/Apr 2016.
[12] Y. H. Son et al., “Microbank: Architecting Through-Silicon Interposer-Based Main Memory Systems,” in SC, 2014.
[13] C. Szegedy et al., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” arXiv:1602.07601, 2016.
[14] C. Szegedy et al., “Going Deeper with Convolutions,” in CVPR, 2015.
[15] A. S. Tanenbaum et al., Computer Networks. Prentice Hall, 2010.
[16] X. Yang et al., “A Systematic Approach to Blocking Convolutional Neural Networks,” arXiv:1606.04209, 2016.