Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions

Ahad Qayyum, Elizabeth Ley Oei, Klara Paudel, Stanley L Fan

Ahad Qayyum, Klara Paudel, Stanley L Fan, Department of Renal Medicine and Transplantation, The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, United Kingdom
Elizabeth Ley Oei, Department of Renal Medicine and Transplantation, Singapore General Hospital, Singapore 169608, Singapore

Author contributions: Qayyum A and Fan SL designed the mini-review, generated the tables and figure and co-wrote the manuscript; Oei EL and Paudel K contributed to the data collection and writing of the manuscript.

Open-access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Stanley L Fan, Department of Renal Medicine and Transplantation, The Royal London Hospital, Barts Health NHS Trust, Whitechapel, London E1 1BB, United Kingdom. s.fan@qmul.ac.uk
Telephone: +44-20-35942674
Fax: +44-20-35942691
Received: June 14, 2014
Peer-review started: June 15, 2014
First decision: September 28, 2014
Revised: October 7, 2014
Accepted: November 17, 2014
Article in press: November 19, 2014
Published online: February 6, 2015

Abstract
A major concern inhibiting some clinicians from embracing peritoneal dialysis (PD) as the preferred first modality of dialysis is the effects of PD solutions on the peritoneal membrane. These anatomical and functional changes predispose to complications like peritonitis, encapsulating peritoneal sclerosis and ultrafiltration failure. In recent years, “biocompatible” and glucose-sparing PD regimens have been developed to minimize damage to the peritoneal membrane. Can the use of these more expensive solutions be justified on current evidence? In this review of the literature, we explore how we may individualize the prescription of biocompatible PD fluid.

Key words: Individualized prescription; Biocompatibility; Peritoneal dialysis; Glucose degradation products; Peritonitis; Ultrafiltration failure; Residual renal function

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: There is increasing evidence of benefit for using biocompatible and non-glucose based peritoneal dialysis (PD) fluids. However, cost remains an impediment and perhaps there are selected groups of patients where the cost can be justified. We suggest that biocompatible solutions should be considered for patients with residual renal function and/or expected to remain on PD for a long period. They are particularly helpful for patients with drain-in pains. The targeting of diabetic patients for non-glucose solutions is intriguing given the recent IMPENDIA/EDEN study although vigilance is required to minimize unaware hypoglycemia. It remains to be seen if PD nephrologists are willing to take the same leap of faith that our hemodialysis (HD) colleagues took when they moved from Acetate-based HD solutions to Bicarbonate dialysate. It is possible that economies of scale will reduce the cost of the biocompatible solutions if we use them more frequently.

Qayyum A, Oei EL, Paudel K, Fan SL. Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions. World
INTRODUCTION
Peritoneal dialysis (PD) has been a popular modality of renal replacement therapy since it was introduced in 1978[1]. In comparison to hemodialysis (HD), PD provides a more gradual and continuous method of fluid and solute clearance, with improved preservation of residual renal function and minimal cardiac stress. PD is at least equivalent in terms of survival benefits in the initial phase of dialysis vintage[2]. Furthermore, PD is more cost effective than HD, especially when reduced erythropoietin stimulatory agent requirement and patient transport cost savings are considered[3].

Common complications of PD include peritonitis, technique and ultrafiltration failure. It has been proposed that newer “biocompatible” and “non-glucose” containing PD fluids can reduce these complications[4]. However, these newer PD solutions are more expensive, and the potential cost advantage of PD over HD may be attenuated. We have reviewed the literature to determine if the additional cost of these newer solutions can be offset by reducing complication rates.

It is generally accepted that conventional PD fluids alter the functional and anatomical integrity of the peritoneal membrane over time[5,6]. Glucose degradation products (GDPs), high lactate and low pH levels have been implicated in the pathogenesis of adverse dynamic changes in the peritoneal membrane[7], which then predispose to complications like peritonitis, technique failure, etc[8].

Biocompatible PD fluids are produced in multi-compartmented bags that separately store the acidic glucose solution and the bicarbonate buffer solution. This allows the glucose component to be heat sterilized at a low pH thus causing minimal or no caramelization and GDP generation[9]. At the point of use, the acidic glucose compartment is mixed together with the buffer solution to produce a more physiological pH solution, with minimal lactate and GDP concentrations.

ALTERNATIVES TO GLUCOSE AS OSMOTIC AGENTS
Glucose remains a popular osmotic agent in conventional PD solutions due to its low cost, relative safety and effectiveness. Increasing glucose concentration allows for greater ultrafiltration due to the larger osmotic gradient. However, increasing glucose concentrations also means increased glucose absorption, which may result in metabolic abnormalities like hyperglycemia, hyperinsulinemia, obesity and hyperlipidemia[10]. Non-glucose based osmotic agents such as icodextrin (used in Extraneal solution) and amino acids (used in Nutrineal solution) are often used in glucose-sparing regimens to reduce the metabolic impact of glucose absorption. The icodextrin molecule is large sized and does not cross the membrane easily, thus producing a prolonged osmotic gradient and sustained ultrafiltration. The enhanced ultrafiltration achieved with Extraneal results in better fluid balance with improved blood pressure control[11], and a reduction in left ventricular mass[12].

Nutrineal is an amino acid based PD solution which is generally considered equivalent to a 1.5% glucose bag with respect to osmotic power. Although the pH of the solution is 5.5 (low), it contains no glucose and hence is considered biocompatible. No study has shown any mortality benefit with this solution but improvements in nutritional parameters like albumin, transferrin and protein catabolic rate has been observed in some malnourished PD patients[13,14]. Both these non-glucose based PD solutions are licensed to be used once a day.

COST OF BIOCOMPATIBLE PD SOLUTIONS
Table 1 illustrates the cost difference between the various PD solutions. For convenience sake we have included the trade name of the PD fluids most commonly used in the United Kingdom. The catalogue prices of the non-conventional solutions are approximately 50% more expensive than the conventional ones. In the United Kingdom, based on these catalogue prices, continuous ambulatory PD compromising of daily 4 exchanges (CAPD × 4) of Dianeal would cost £5650/year, but × 2 Physioneal, Nutrineal, Extraneal would cost £10860/year. The incremental cost of switching a patient on automated PD from Dianeal to biocompatible glucose sparing regimen is similar. The cost incurred using 4 cycles of Dianeal (1.5%) overnight followed by last fill Dianeal (2.5%) is estimated to be £9420/year. A switch to 3 cycles of Physioneal, 1 cycle of Nutrineal and last fill Extraneal would cost an extra £5000/year (Table 2).

When extrapolating to a PD program of 150 patients the additional cost of prescribing biocompatible, glucose sparing regimen equates to £0.75 M/year. This calculation is somewhat spurious as it is based the on United Kingdom catalog prices which is not the actual price charged to the National Health Service. Nevertheless, as a comparator, the annual salary of a Band 6 nurse in United Kingdom ranges between £25700 to £34500. These figures present a significant dilemma as the same PD program could possibly employ 20 additional fully trained nurses at equivalent cost of changing to glucose sparing biocompatible fluids.
EVIDENCE OF BENEFIT AND USE OF BIOCOMPATIBLE PD SOLUTIONS

Faced with the reality of current financial constraints can we individualise the use of biocompatible PD fluids?

The balANZ trial\[15\] was a large well conducted RCT exploring the clinical benefits of biocompatible solutions. Using biocompatible fluids, a significant 33% reduction in peritonitis rates was achieved although other studies have not yielded similar results. We have to consider if employing additional nurses would be more cost effective than biocompatible solutions in reducing peritonitis rates\[16\].

The balANZ study also suggested that biocompatible solutions may better preserve residual renal function (RRF). Although the primary end point did not reach statistical significance, the rate of decline of RRF was lower in the biocompatible PD fluid arm and time to anuria which was a secondary end-point did reach statistical significance. The importance of delaying onset of anuria should not be underestimated and would support using these more expensive solutions in patients with residual renal function.

One of the strongest drivers for the use of biocompatible solutions is the hope that PD membrane will be preserved, thereby delaying PD technique failure and reducing the development of encapsulating peritoneal sclerosis (EPS). Dialysate concentration of Cancer Antigen 125 (CA-125) is proposed to be an indicator of peritoneal mesothelial cell health\[17\]. There is evidence to suggest that biocompatible solutions preserve CA-125 levels, implying that they might prevent peritoneal membrane damage induced by the bioincompatible nature of the PD solutions\[18,19\]. Those most at risk of EPS may benefit from using biocompatible solutions. The incidence of EPS complication increases with time on PD\[20\]. There is consensus that EPS is very rare in people who were on PD for less than 3-4 years. The Pan-Thames EPS study\[21\] showed that more than 70% of the patients who developed EPS had a PD vintage of more than 5 years. If one is to use biocompatible solutions to reduce EPS risk, it should be prescribed at outset of PD. One might argue that elderly patients with high co-morbidity and short life-expectancy are unlikely to develop this complication. Perhaps more controversially, young patients with good match prognosis

Table 1 Catalog prices of different peritoneal solutions

	United Kingdom (£)	Singapore ($)	Pakistan (Rs)
CAPD fluid			
Conventional CAPD 2 litre bag			
Dianeal (1.5%)	3.87	10.66	774
Staysafe (1.5%)	4.24	10.98	812
Biocompatible CAPD 2 litre bag			
Physioneal	7.32	89	1464
Nutrineal	8.5	120	1785
Extraneal	6.6	70	1200
Balance	4.65	9	1020
Automated PD Fluid			
Conventional APD 5 litre bag			
Dianeal (1.5%)	8.6	28	1400
Sleepsafe (1.5%)	7.8	28	1450
Biocompatible APD 5 litre bag			
Physioneal	12.2	42	2200
Sleep balance	12.5	60	2350

Source: Fresenius Dialysis Product Catalogue 2013 revised (United Kingdom, Singapore and South Asia); Baxter PD Product List 2014 (United Kingdom, Singapore and Pakistan). CAPD: Continuous ambulatory peritoneal dialysis; APD: Automated peritoneal dialysis; PD: Peritoneal dialysis.

Table 2 Estimated annual cost of peritoneal dialysis fluids based on United Kingdom catalog prices

	United Kingdom (£)	Increment (%)
CAPD		
Dianeal (1.5%) × 4	5650	-
2 × Dianeal, Nutrineal, Extraneal	8340	48
2 × Physioneal, Extraneal, Nutrineal	10860	92
APD		
Dianeal: 1.5% (* 4 cycles) with last fill of 2.5%	9420	-
Dianeal, Nutrineal, Extraneal: (* 3 cycles 1.5%, 1 cycle Nutrineal) with last fill Extraneal	11790	25
Physioneal, Nutrineal, Extraneal(* 3 cycles 1.5%, 1 cycle Nutrineal) with last fill Extraneal	14420	53

CAPD: Continuous ambulatory peritoneal dialysis; APD: Automated peritoneal dialysis.
There are other obvious reasons for minimizing glucose load in the PD solution. Li et al. [25] (on behalf of the IMPENDIA and EDEN study groups) reported a significant improvement in glycemic and lipid control with the use of glucose sparing PD fluids in the diabetic population. Could better glycaemic control have been achieved through more meticulous diabetic treatment if the additional resources were devoted to providing a comprehensive diabetic service? We suggest an additional caveat: not only should we be concerned about hyperglycaemia but hypoglycemia unawareness might be more dangerous leading to cardiac instability (an association between unaware hypoglycaemia and prolonged electrocardiogram QT-dispersion has been found in non-dialysis patients [26]). Hypoglycaemia unawareness is certainly something that we have found in diabetic patients that undergo routine continuous glucose monitoring. Figure 1 provides an example of diurnal hourly variations in interstitial glucose concentrations in a diabetic patient using nocturnal icodextrin to minimize overnight glucose exposure.

CONCLUSION

It is very ironic to note that HD faced a similar dilemma when a transition from acetate to bicarbonate buffered dialysate was proposed. Prescribing bicarbonate dialysate was equally controversial as it was more expensive and generally all the supportive data came from in vitro studies while in vivo studies provided very
little support. Nevertheless, a calculated rational leap of faith was taken and over time bicarbonate buffered HD dialysate has become cost-effective. Furthermore, the superiority of bicarbonate over acetate-based buffer was demonstrated during this time. Although we strongly believe in the potential benefits of PD biocompatible fluids, we acknowledge the pragmatic hesitancy of our colleagues due to associated high premium costs. In such a stalemated situation an approach to individualizing the prescription of biocompatible PD solutions is sensible. There is evidence to support its use in selected patient groups such as those with residual renal function with good life expectancy or patients with drain-in pain. The use of non-glucose PD solutions to improve diabetic control is perhaps more controversial but one hopes that cost will fall as uptake of these solutions increase. We are quite hopeful that in the imminent future the story of biocompatible PD fluids will have a similar conclusion to that of the bicarbonate buffered dialysate in HD.

REFERENCES

1. Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2: 84-86 [PMID: 687024]
2. McDonald SP, Marshall MR, Johnson DW, Polkinghorne KR. Relationship between dialysis modality and mortality. J Am Soc Nephrol 2009; 20: 155-163 [PMID: 19092128 DOI: 10.1618/ASN.2007111188]
3. Blake PG. Integrated end-stage renal disease care: the role of peritoneal dialysis. Perit Dial Int 2001; 16 Suppl 5: 61-66 [PMID: 1509687 DOI: 10.1093/ndt/16.suppl_5.61]
4. Chung SH, Stenvinkel P, Bergström J, Lindholm B. Biocompatibility of new peritoneal dialysis solutions: what can we hope to achieve? Perit Dial Int 2000; 20 Suppl 5: S57-S67 [PMID: 11229614]
5. Williams JD, Craig KJ, von Ruhland C, Topley N, Williams GT, Biopsy Registry Study Group. The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int Suppl 2003; (88): S43-S49 [PMID: 14870877 DOI: 10.1046/j.1523-1755.2003.08085.s]
6. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT, Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470-479 [PMID: 11805177]
7. Tauer A, Zhang X, Schaub TP, Zimmeck T, Niwa T, Passlick-Deetjen J, Pischetsrieder M. Formation of advanced glycation end products during CAPD. Am J Kidney Dis 2003; 41: S57-S60 [PMID: 12612954 DOI: 10.1053/ajkd.2003.50086]
8. Davies SJ, Bryan J, Phillips L, Russell GJ. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498-506 [PMID: 8671821 DOI: 10.1093/oxfordjournals.ndt.a027318]
9. Rippe B, Simonsen O, Wieslander A, Landgren C. Clinical and physiological effects of a new, less toxic and less acidic fluid for peritoneal dialysis. Perit Dial Int 1997; 17: 27-34 [PMID: 9868019]
10. Delauer J, Maingourd C. Acute metabolic effects of dialysis fluids during CAPD. Am J Kidney Dis 2001; 37: S103-S107 [PMID: 11158872 DOI: 10.1053/ajkd.2001.20762]
11. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, Nash K, Sorkin M, Mujais S. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 2005; 16: 546-554 [PMID: 15625070 DOI: 10.1618/ASN.2004090793]
12. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, Gerlag PG, Hoormtje SJ, Wolters J, van der Sande FM, Leunissen KM. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 2003; 63: 1556-1563 [PMID: 12631373 DOI: 10.1046/j.1523-1755.2003.00887.x]
13. Koppel JD, Bernard D, Messana J, Swartz R, Bergström J, Lindholm B, Lim V, Brunori G, Leiserowitz M, Bier DM. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int 1995; 47: 1148-1157 [PMID: 7783413 DOI: 10.1038/ki.1995.164]
14. Taylor GS, Patel V, Spencer S, Fluck RJ, McIntyre CW. Long-term use of 1.1% amino acid dialysis solution in hypoalbuninemic continuous ambulatory peritoneal dialysis patients. Clin Nephrol 2002; 58: 445-450 [PMID: 12508967 DOI: 10.5414/CNP58445]
15. Johnson DW, Brown FG, Clarke M, Boudville N, Elias TJ, Foo MW, Jones B, Kulkami H, Langham R, Ranganathan D, Schollum J, Suranyi M, Tan SH, Voss D, balANZ Trial Investigators. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 2012; 23: 1097-1107 [PMID: 22440806 DOI: 10.1681/ASN.2011122101]
16. Cox SD, Steddon S, Mallinder S, Fan SL, Punzalan S. Re-training and switching of PD system to reduce recurrent gram-positive PD peritonitis. J Ren Care 2006; 32: 198-201 [PMID: 17345978 DOI: 10.1111/j.1755-6686.2006.tb00222.x]
17. Visser CE, Brouwer-Steenbergjan BJ, Betjes MG, Koomen GC, Beelen RH, Krediet RT. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10: 64-69 [PMID: 7724031]
18. le Poole CY, Welgen AT, Weijmer MC, Valentijn RM, van Ittersum FJ, ter Wee PM. Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 2005; 25 Suppl 3: S64-S68 [PMID: 16048260]
19. Weiss L, Stegmügy B, Malmgren G, Tejde M, Hadimieri H, Siegert CE, Ahlén J, Larsson R, Ingman B, Simonsen O, van Hamersvelt HW, Johansson AC, Hylander B, Mayr M, Nilsson PH, Andersson PO, De los Rios T. Biocompatibility and tolerability of a purely bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int 2009; 29: 647-655 [PMID: 19910566]
20. Kavanagh D, Prescott GJ, MacRae TR. Peritoneal dialysis-associated peritonitis in Scotland (1999-2002). Nephrol Dial Transplant 2004; 19: 2584-2591 [PMID: 15304559 DOI: 10.1093/ndt/gfh386]
21. Balasubramaniam G, Brown EA, Davenport A, Cairns H, Cooper B, Fan SL, Farrington K, Gallagher H, Harnett P, Krausz S, Steddon S. The Pan-THames EPS study: treatment and outcomes of encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2009; 24: 3209-3215 [PMID: 19211652 DOI: 10.1093/ndt/gfp008]
22. Feriani M, Kirchgesner J, La Greca G, Passlick-Deetjen J. Randomized long-term evaluation of bicarbonate-buffered CAPD solution. Kidney Int 1998; 54: 1731-1738 [PMID: 9844152 DOI: 10.1046/j.1523-1755.1998.00167.x]
23. Mactier RA, Sprosen TS, Gokal R, Williams PF, Lindberg M, Naik RB, Wroe U, Grinoltco KF, Larsson R, Berglund J, Trancaus AP, Fait D. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 1998; 53: 1061-1067 [PMID: 9551418 DOI: 10.1111/j.1523-1755.1998.00849.x]
24. Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12: 1046-1051 [PMID: 11316864]
25. Li PK, Colletton BF, Ariza A, Do JY, Johnson DW, Sanabria M, Shockey TR, Story K, Vatazin A, Verrelli M, Yu AW, Bargman JM. Randomized, controlled trial of glucose-sparing peritoneal dialysis in diabetic patients. J Am Soc Nephrol 2013; 24: 1889-1900 [PMID: 23494801 DOI: 10.1681/ASN.2012100987]
26. Chow E, Bernjak A, Williams S, Fawdry RA, Hibbert S, Freeman...
J, Sheridan PJ, Heller SR. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. *Diabetes* 2014; 63: 1738-1747 [PMID: 24757202 DOI: 10.2337/db13-0468]

P- Reviewer: Olowu WA, Shrestha BM
S- Editor: Tian YL
L- Editor: A
E- Editor: Liu SQ
