STRUCTURE THEORY FOR ONE CLASS OF
LOCALLY FINITE LIE ALGEBRAS.

L.A. Simonian ¹

Abstract

In this paper I consider locally finite Lie algebras of characteristic zero satisfying the condition that for every finite number of elements x_1, x_2, \ldots, x_k of such an algebra L there is finite-dimensional subalgebra A which contains these elements and $L(\text{ad}A)^n \subset A$ for some integer n. For such algebras I prove several structure theorems that can be regarded as generalizations of the classical structure theorems of the finite-dimensional Lie algebras theory.

INTRODUCTION. The subject of this article is similar to that of Refs.[1, 2, 3]. I consider locally finite Lie algebras of characteristic zero. A Lie algebra is called locally finite if every its finite subset is contained in a finite-dimensional subalgebra. We will study representations $R = (M, L)$ of such algebras. A representation $R = (M, L)$ is a homomorphism of a Lie algebra L into the algebra of linear transformations of a linear space M. We will assume that $R = (M, L)$ satisfies the following condition:

(1) for every $x \in L$ the linear transformation x^R has the Fitting null component of a finite co-dimension. Here x^R is the linear transformation that corresponds to $x \in L$ in the representation R.

For such linear transformation the following is true:

LEMMA 1. Let A be a linear transformation of a linear space M of an infinite dimension, M be the Fitting null component of A, that is, the set of all $x \in M$ with $xA^m = 0$ for some integer m. If M/M_0 has finite dimension, then M is a direct sum $M_0 \oplus M_1$, where M_1 is a finite-dimensional space invariant under A, and the transformation induced by A in M_1 is an automorphism.

Lemma 1 allows us to determine the trace trA of A as a trace of the linear transformation, which is induced by A in the finite-dimensional space.

¹Send correspondence to the author at levsimonian@hotmail.com or 1060 Ocean Avenue F8, Brooklyn, NY 11226, USA
Besides, given a representation \(R = (M, L) \) satisfying condition (1), this Lemma allows us to construct a decomposition
\[
M = M_\rho \oplus M_\sigma \oplus \ldots \oplus M_\tau \oplus M_0
\]
into weight spaces relative to a nilpotent subalgebra \(H \) of \(L \). This decomposition has the same properties as in the finite-dimensional case and is used in the proof of

THEOREM 3. Let \(L \) be a locally finite Lie algebra of characteristic zero. Suppose \(L \) has a representation \(R = (M, L) \) in a vector space \(M \) satisfying the condition (1) and the associative span \(A \) of \(L \) in the representation \(R = (M, L) \) is locally finite. If the kernel of the representation \(R \) is locally solvable and \(tr(x^R)^2 = 0 \) for every \(x \in L' \), then \(L \) is locally solvable.

Theorem 3 can be considered as a generalization of the Cartan’s criterion for solvability.

Subsequent results are obtained for Lie algebras and their representations that satisfy the following conditions:

(2) representations \(R = (M, L) \): for every finite-dimensional subalgebra \(A \) of \(L \) there is such an integer \(n \) that \(MA^n \) has finite dimension.

(3) Lie algebra \(L \): for every finite set \(x_1, x_2, \ldots, x_k \in L \) there is a finite-dimensional subalgebra \(A \) which contains these elements and for which \(L(adA)^n \subset A \) for some integer \(n \).

COROLLARY. An algebra \(L \) satisfying the condition (3) is locally solvable if and only if \(tr(adx)^2 = 0 \) for every \(x \in L' \).

Since the intersection of a finite number of finite-codimensional subspaces has finite codimension, the trace can be defined simultaneously for any finite number of transformations for algebras that satisfy condition (2). All properties of the usual finite-dimensional trace are true in this case. Therefore, for the representation \(R = (M, L) \) satisfying the condition (2) we can define a trace form
\[
f(a, b) = tr a^R b^R, \ a, b \in L.
\]
In particular, if \(L \) satisfies the condition (3), we obtain the form
\[
K(a, b) = tr(ada)(adb)
\]
It is natural to name this form the Killing form of \(L \).

Lie algebra \(L \) is said to be semi-simple if its locally solvable ideal equals to 0, that is, if \(L \) has no non-zero locally solvable ideals.
THEOREM 4. Let L be a locally finite semi-simple Lie algebra of characteristic 0, and $R = (M, L)$ be an arbitrary faithful representation satisfying the condition (2). Then the trace form $f(a, b)$ is non-degenerate.

If L satisfies the condition (3) and the Killing form $K(a, b)$ is non-degenerate, then L is semi-simple.

This theorem can be regarded as a generalization of the Cartan’s criterion for semi-simplicity. Finally, the following theorem generalizes the structure theorem.

THEOREM 6 (Structure Theorem). Let L be a semi-simple Lie algebra that satisfies condition (3). Then L is a subdirect sum of a set of finite-dimensional simple algebras.

1. WEIGHT SPACES. PROOF OF LEMMA 1. Let N be a finite-dimensional subspace of M such that $M = N \oplus M_0$ and let e_1, e_2, \ldots, e_n be a basis of the N. We have $e_iA = \sum_{j=1}^{n} a_{ij}e_j + m_i$, where $m_i \in M_0$. For any m_i there is an integer number n_i such that $m_iA^{n_i} = 0$. Let P denote the linear subspace spanned by $m_i, m_iA, \ldots, m_iA^{n_i-1}, i = 1, 2, \ldots, n$. It is clear that P is invariant under A and has a finite dimension. From the equality $e_iA = \sum_{j=1}^{n} a_{ij}e_j + m_i$ it follows that $NA \subseteq P + N$. Hence $K = P + N$ is invariant under A. We have $M = K + M_0$. Since K is finite-dimensional, it can be represented as $K = K_1 \oplus K_0$, where K_1 and K_0 are, respectively, the Fitting one and the Fitting null components of K relative to the transformation induced by A in K. Then $M = K_1 + K_0 + M_0$. Since $K_0 \subseteq M_0$, then $M = K_1 + M_0$. We shall show now that this sum is direct. Since K is finite-dimensional there is t such that $yA^t = 0$ for any $y \in K \cap M_0$. On the other hand, there exists s such that $K_1 = KA^s = KA^{s+1} = \cdots$. Let $r = \max(s, t)$. Then $K_1 = KA^r$ and $yA^r = 0$ for any $y \in K \cap M_0$. Now let $x \in K_1 \cap M_0$. Then from the equality $K_1 = KA^r$ it follows that $x = yA^r$ for some $y \in K$. On the other hand, since $x \in K_1 \cap M_0$, it holds $xA^r = 0$. But then $0 = xA^r = yA^{2r}$. Hence $y \in K \cap M_0$ and, consequently, $yA^r = 0$. But then $x = yA^r$ is equal to zero and $K_1 \cap M_0 = 0$. From the construction of K_1 it follows, that A is a linear transformation acting in K_1 as an automorphism. Therefore, the only possibility is to put $M_1 = K_1$.

This lemma may be considered as a generalization of the well-known Fitting’s lemma. Let M_0 and M_1 are the Fitting null and the Fitting one.
components of M relative to A, respectively.

As in [4], a linear transformation A will be called algebraic, if every vector $x \in M$ is contained in a finite-dimensional subspace that is invariant under A.

LEMMA 2. If the Fitting null component M_0 of M relative to A has finite codimension, then A is an algebraic linear transformation.

PROOF. By Lemma 1, $M = M_1 \oplus M_0$, where M_1 has finite dimension and A acts in M_1 as an automorphism. Let $x \in M$. We shall show that the dimension of the smallest subspace that contains x and is invariant relative to A is finite. Let $x = y + z$, where $y \in M_1$ and $z \in M_0$. Since M_1 is invariant under A, $yA \in M_1$. On the other hand, $zA^m = 0$ for some integer m. Let N be the subspace, which is generated by M_1, z, zA, \ldots, zA^{m-1}. It is clear that $x \in N$, N is invariant under A, and N has finite dimension. The lemma is proved.

Let the characteristic roots of A be in the base field Φ and let $M_1 = M_\alpha \oplus M_\beta \oplus \cdots \oplus M_\gamma$ be the decomposition of M_1 into the weight spaces relative to A. Then $M = M_0 \oplus (\bigoplus \alpha \neq 0 M_\alpha)$. Also we have that all M_α with $\alpha \neq 0$ are of finite dimension. It is worth recalling that by definition $x \in M_\alpha$, if and only if $x(A - \alpha E)^m = 0$ for some integer m.

We will require some known results which I outline here for completeness. Let A be an associative algebra, and $a \in A$. Let us consider the inner derivation $D_a : x \rightarrow x' = [x, a]$ in A. If we denote $x^{(k)} = (x^{(k-1)})', x^{(0)} = x$, then the following formulas hold:

$$xa^k = a^kx + \binom{k}{1} a^{k-1}x' + \binom{k}{2} a^{k-2}x'' + \cdots + x^{(k)}$$

$$a^kx = a^kx - \binom{k}{1} x'a^{k-1} + \binom{k}{2} x''a^{k-2} + \cdots + (-1)^k x^{(k)}$$

$$x\phi(a) = \phi(a)x + \phi_1(a)x' + \phi_2(a)x'' + \cdots + x^{(r)},$$

where $\phi(\lambda)$ is a polynomial of degree r and $\phi_k(\lambda) = \phi^{(k)}(\lambda)/k!$.

LEMMA 3 [6]. Let A, B be linear transformations in a vector space M satisfying $B(adA)^u = 0$ for some integer u. Let $\mu(\lambda)$ be a polynomial and let $M_{\mu A} = \{x | x\mu(A)^m = 0 \text{ for some integer } m\}$. Then $M_{\mu A}$ is invariant under B.

PROOF. Let $x \in M_{\mu A}$ and suppose that $x\mu(A)^m = 0$. Putting $\phi(\lambda) = \mu(\lambda)^m$, we obtain $B\phi(A) = \phi(A)B + \phi_1(A)B' + \cdots + \phi_{u-1}(A)B^{(u-1)}$. Since
\[\phi_0(\lambda) = \phi(\lambda), \phi_1(\lambda), \ldots, \phi_{u-1}(\lambda) \] are divisible by \(\mu(\lambda)^m \), \(x\phi_j(A) = 0, 0 \leq j \leq u-1 \). Therefore \(xB\phi(A) = 0 \) and \(xB \in M_{\mu A} \).

COROLLARY. If \(B(adA)^n = 0 \) then the weight spaces \(M_\alpha \) are invariant under \(B \).

Let \(R = (M, L) \) be a representation of a Lie algebra \(L \) in a vector space \(M \) of infinite dimension, satisfying the condition (1) and let characteristic roots of every \(A \in L \), lie in the base field.

We shall also assume that for every finite-dimensional subalgebra \(H \) of \(L \) there is such an integer \(m \) that \((adH)^m = 0 \).

THEOREM 1. If \(H \) is a finite-dimensional subalgebra of \(L \), then \(M \) can be decomposed as \(\bigoplus_{\alpha \neq 0} M_\alpha \oplus M_0 \) where \(M_\alpha, \alpha \neq 0 \), are finite-dimensional weight spaces relative to \(L \) with the weights \(\alpha \), and \(M_0 \) is a weight space relative to \(H \) with the weight \(\alpha = 0 \). The dimension of \(M_0 \) is infinite.

PROOF. First let's show that for every \(x \in M \) the smallest subspace \(N \) that is invariant under \(H \) and contains \(x \) has finite dimension. Indeed (see also [4]), if \(B_1, B_2, \ldots, B_r \) is a basis of \(H \), then \(N \) is the linear span of the set of all elements of the form \(xB_1^{m_1}B_2^{m_2} \ldots B_r^{m_r}, i_1 \leq i_2 \leq \ldots \leq i_r \). Since all \(B_i \) are algebraic, there is only a finite set of linearly independent elements of a given form and all of them may be found among the elements \(xB_1^{m_1}B_2^{m_2} \ldots B_r^{m_r} \) for which \(m_j \leq s_j \), where \(s_j \) are integers and \(j = 1, 2, \ldots, k \). Suppose now that every element \(A \) of a finite subset \(F \subset H \) is locally nilpotent, that is, for \(A \) the following condition is satisfied: for any \(x \in M \) there exists \(m \) such that \(xA^m = 0 \). We shall show that this condition holds for every element of the subalgebra \(\{F\} \) generated by the set \(F \). Indeed, since \(H \) is nilpotent, \(F \) is contained in Jacobson radical of representation \((N, H)\) [5]. Hence \(\{F\} \) is contained in it. But this means that \(\{F\} \) consists of nilpotent relative to \(N \) transformations and hence the given condition holds for the elements of \(\{F\} \).

Since \(H \) is nilpotent, there exists a chain of ideals \(0 \subset H_1 \subset H_2 \subset \ldots H_{n-1} \subset H_n = H \) such that \(\dim H_{i+1}/H_i = 1 \). Take an arbitrary element \(A \in H_1 \) and let \(M = \bigoplus_\alpha M_\alpha \) be a decomposition of \(M \) into the weight spaces relative to \(A^R \). From Lemma 3 it follows that all \(M_\alpha \) are invariant under \(L \). Besides there is just a finite number of the subspaces \(M_\alpha \), and \(\dim M_\alpha < \infty \) if \(\alpha \neq 0 \). Therefore \(M_1 = \bigoplus_{\alpha \neq 0} M_\alpha \) can be decomposed into a direct sum of a finite number of weight spaces relative to \(L \) (see [6, p.
43]). We recall that a map \(\alpha : A \rightarrow \alpha(A) \) of \(L \) into the base field \(\Phi \) is called the weight of \(M \) relative to \(L \) if there exists a nonzero element \(x \in M \) such that \(x(A^R - a(A))^m = 0 \) for all \(A \in L \). Here \(m \) is an integer which depends on \(x \) and \(A \). The set of elements (zero included) satisfying this condition forms the subspace that is called the weight subspace. It should be recalled that \(M_{0A} \) also is invariant under \(L \). Let \(B \) be an element of \(H_2 \setminus H_1 \) and \(M_{0A} = \bigoplus M_{\alpha B} \) be a decomposition of \(M_{0A} \) into the weight spaces relative to \(B^R \). The subspace \(M'_{1B} = \bigoplus_{\alpha B \neq 0} M_{\alpha B} \) has a finite dimension, is invariant under \(L \) and can be decomposed into a direct sum of a finite number of weight spaces relative to \(L \). If we add this decomposition to decomposition of \(M_{1A} \), we obtain that \(M = (\bigoplus M_{\alpha}) \oplus M'_{0B} \). \(A^R \) and \(B^R \) act in \(M'_{0B} \) as locally nilpotent transformations. Therefore, the subalgebra \(\{A, B\} \) consists of the locally nilpotent in \(M'_{0B} \) transformations [7]. Continuing in this way we obtain - by virtue of finite dimensionality of \(\mathcal{H} \) - the statement of the theorem.

If \(L \) is nilpotent we may combine Lie’s theorem with Theorem 1 to obtain the following

THEOREM 2. If \(L \) is finite-dimensional, then \(M \) is a direct sum of weight spaces \(M_\alpha \), and the matrices in the weight space \(M_\alpha, \alpha \neq 0 \) can be taken simultaneously in the form

\[
A_\alpha = \begin{pmatrix}
\alpha(A) & 0 & \cdots & 0 \\
* & \alpha(A) & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
* & * & \cdots & \alpha(A)
\end{pmatrix}
\]

This theorem is proved in exactly the same way as in Ref.[6]. In a similar fashion we obtain

COROLLARY. The weights \(\alpha : A \rightarrow \alpha(A) \) are linear functions on \(L \) which vanish on \(L' \).

2. **CARTAN’S CRITERION.** Let \(L \) be a finite-dimensional Lie algebra, \(H \) be a nilpotent subalgebra of \(L \), \(R = (M, L) \) be a representation of \(L \) in a vector space \(M \) satisfying the condition (1).

PROPOSITION 1. Let

\[
M = M_\rho \oplus M_\sigma \cdots M_\tau \oplus M_0
\]
be the decompositions of M and L into weight spaces relative to H. (The existence of the first decomposition was proved in the previous section). Then $M_\rho L_\alpha \subset M_{\rho+\alpha}$ if $\rho + \alpha$ is the weight of M relative to H; otherwise $M_\rho L_\alpha = 0$.

PROOF. For every $x \in M$ and $A, B \in L$ we have the equality $xA(B - \rho I - \alpha I) = x(B - \rho I)A + x(A(adB - \alpha I))$. If $x(B - \rho I)^m = 0$ and $A(adB - \alpha I)^n = 0$ then by repeating this equality we obtain $xA(B - \rho I - \alpha I)^{m+n+1} = 0$. Here $\rho = \rho(B)$, $\alpha = \alpha(B)$, and I is an identity operator of M.

It is also true that $[L_\alpha, L_\beta] \subset \mathcal{L}_{\alpha + \beta}$ if $\alpha + \beta$ is a root of L and $[L_\alpha, L_\beta] = 0$ otherwise (see [6, p. 64]).

Suppose now that H is a Cartan subalgebra. Then $H = L_0$, the root module corresponding to the root 0. Also, we have $L' = [L, L] = \sum_{\alpha, \beta} [L_\alpha, L_\beta]$, where the sum is taken over all roots α, β, and $L' \cap H = \sum_{\alpha} [L_\alpha, L_{-\alpha}]$, where the summation is taken over all α such that $-\alpha$ is also a root (see [6, p. 67]).

Let A be a linear transformation of M with the Fitting null component M_0A of a finite codimension. Then, as noted in Introduction, trA can be defined as the trace of the linear transformation induced by A in the quotient space M/M_0A. It is easy to see that trA is equal to the trace of the linear transformation induced by A in the quotient space of M by any invariant under A subspace of a finite codimension contained in M_0A.

LEMMA 4. Let Φ be algebraically closed of characteristic 0. Under the assumptions of this section let H be a Cartan subalgebra of L and let α be a root such that $-\alpha$ is also a root. Let $e_\alpha \in L_\alpha$, $e_{-\alpha} \in L_{-\alpha}$, $h_\alpha = [e_\alpha, e_{-\alpha}]$. Then $r(h_\alpha)$ is a rational multiple of $\alpha(h_\alpha)$ for every weight ρ of H in M.

PROOF. Let $M_0^\rho = M_0 + \sum_i M_{i\alpha}$, $i = 0, \pm 1, \pm 2, \ldots$. Let us turn to the quotient space $\overline{M} = M/M_0^\rho$. If M_0^ρ is invariant under $x \in L$, then the operator induced by x in \overline{M} is denoted as $x\overline{\rho}$. Consider functions of the form $\rho(h) + i\alpha(h), i = 0, \pm 1, \pm 2, \ldots$, which are weights, and form the subspace $N = \sum_i \overline{M}_{\rho+i\alpha}$ where $\overline{M}_{\rho+i\alpha} = M_{\rho+i\alpha} + M_0^\rho / M_0^\rho$ and the sum is taken over the corresponding weight spaces of the representation $R = (M, L)$. N is invariant relative to H and, by Proposition 1, it is also invariant relative to the linear transformations $e_{\overline{\alpha}}$ and $e_{-\overline{\alpha}}$. Thus, if tr_N denotes the trace of an induced mapping in N, then $tr_N h_\overline{\alpha} = tr_N [e_{\overline{\alpha}}, e_{-\overline{\alpha}}] = 0$. On the other hand, the restriction of $h_\overline{\alpha}$ to $\overline{M}_\sigma = \sigma + M_0^\rho / M_0^\rho$ has the single characteristic root.
\[\sigma(h) \]. Hence \(0 = tr_N h_{h}^R = \sum n_{\rho + i\alpha}(\rho + i\alpha)(h) \) where \(n_{\rho + i\alpha} = \dim M_{\rho + i\alpha} \).

Thus we have \((\sum n_{\rho + i\alpha})\rho(h) + (\sum i n_{\rho + i\alpha})\alpha(h) = 0 \). Since \(\sum n_{\rho + i\alpha} \) is a positive integer, this shows that \(\rho(h) \) is a rational multiple of \(\alpha(h) \).

PROOF OF THEOREM 3. Assume first that the base field \(\Phi \) is algebraically closed. It suffices to prove that \(C' \subset C \) for every finite-dimensional subalgebra \(C \) of the algebra \(L \). Hence we shall have that \(C \supset C' \supset C'' \supset C^{(k)} = 0 \). We therefore suppose that there exists a finite-dimensional subalgebra \(C \) such that \(C' = C \). Let \(H \) be a Cartan subalgebra of \(C \) and let

\[
M = M_{\rho} \oplus M_{\alpha} \oplus \cdots \oplus M_{r} \oplus M_{0}
\]

\[
C = C_{\alpha} \oplus C_{\beta} \oplus \cdots \oplus C_{\gamma} \oplus C_{0}.
\]

be the decomposition of \(M \) and \(C \) into weight spaces relative to \(H \). Then the formula \(H \cap C' = \sum [C_{\alpha}, C_{-\alpha}] \) implies that \(H = \sum [C_{\alpha}, C_{-\alpha}] \) summed on \(\alpha \) such that \(-\alpha \) is also a root. Choose such \(\alpha \), let \(e_{\alpha} \in C_{\alpha}, e_{-\alpha} \in C_{-\alpha} \), and consider the element \(h_{\alpha} = [e_{\alpha}, e_{-\alpha}] \). The formula \(H = \sum [C_{\alpha}, C_{-\alpha}] \) implies that every element of \(H \) is a sum of terms of the form \([e_{\alpha}, e_{-\alpha}] \). Let us turn to the quotient space \(M/M_0 \) and denote by \(h_{\alpha}^R \) the operator induced by \(h_{\alpha} \) in \(M/M_0 \). The restriction of \(h_{\alpha}^R \) to \(M_0 = M_{\rho} + M_0/M_0 \) has the single characteristic root \(\rho(h_{\alpha}) \). Hence the restriction of \((h_{\alpha}^R)^2 \) has the single characteristic root \(\rho(h_{\alpha}) \). Let \(n_{\rho} \) be the dimension of \(M_{\rho} \). Then we have \(tr(h_{\alpha}^R)^2 = \sum n_{\rho}(\rho(h_{\alpha}))^2 \). On the other hand, \(tr(h_{\alpha}^R) = tr(h_{\alpha}^R) \). Thus \(\sum n_{\rho}(\rho(h_{\alpha}))^2 = 0 \) since \(tr(h_{\alpha}^R)^2 = 0 \). By the Lemma 4, \(\rho(h_{\alpha}) = r_{\rho} \alpha(h_{\alpha}) \), where \(r_{\rho} \) is rational. Hence \(\alpha(h_{\alpha})^2(\sum n_{\rho}r_{\rho}^2) = 0 \). Since \(n_{\rho} \) are positive integers, this implies that \(\alpha(h_{\alpha}) = 0 \) and \(\rho(h_{\alpha}) = 0 \). Since \(\rho \) are linear functions and every \(h \in H \) is a sum of elements of the form \(h_{\alpha}, h_{\beta}, \ldots, \), we see that \(\rho(h) = 0 \). Thus 0 is the only weight for \(M \), that is, we have \(M = M_0 \). If \(\alpha \) is a root, then the condition

\[
M_{\rho}C_{\alpha} = \begin{cases}
0 & \text{if } \rho + \alpha \text{ is not a weight of } M \\
\subset M_{\rho+\alpha} & \text{if } \rho + \alpha \text{ is a weight}
\end{cases}
\]

implies that \(MC_{\alpha} = 0 \) for every \(\alpha \neq 0 \). Hence \(C_{\alpha} \oplus C_{\beta} \oplus \cdots \oplus C_{\gamma}, \alpha, \beta, \ldots, \gamma \neq 0 \) is contained in the kernel \(K \) of representation \((M,C)\). Hence \(C/K \) is a
homomorphic image of H. It follows that the C/K is nilpotent. According to our assumptions the kernel K is solvable, and it follows that C is solvable which contradicts $C' = C$.

If the base field is not algebraically closed, then let Ω be its algebraic closure. Then $(M_\Omega, L_\Omega) = R_\Omega$ is the representation of L_Ω in M_Ω and K_Ω is the kernel of this representation if K is the kernel of $R = (M, L)$. Since K is locally solvable, K_Ω is locally solvable. Next we note that $tr(x^R)^2 = 0$ and $tr x^R y^R = tr y^R x^R$ imply that $tr x^R y^R = (1/2) tr(x^R y^R + y^R x^R) = (1/2)(tr(x^R + y^R)^2 - tr(x^R)^2 - tr(y^R)^2) = 0$. Hence if $x_i \in L$ and $\omega_i \in \Omega$, then $tr(\sum_i \omega_i x_i^R)^2 = \sum_i \omega_i x_i^R x_i^R = 0$. To prove that the condition (1) holds we use the fact that associative span A of L in the representation $R = (M, L)$ is locally finite. We need to show that $(\sum_{i=1}^m \omega_i x_i)^R$ has the Fitting null component of finite codimension for every $x_1, x_2, \ldots, x_m \in L$ and $\omega_1, \omega_2, \ldots, \omega_m \in \Omega$. Since A is locally finite, the subalgebra A in A generated by x_1, x_2, \ldots, x_m has a finite dimension. Therefore there exists an integer u such that $y(x^R)^u = 0$. Here x is an arbitrary linear combination of x_1, x_2, \ldots, x_m with coefficients from the base field Φ, and y is an arbitrary element from the Fitting null component M_{0X} of the linear transformation x^R.

Take $(u+1)^m$ elements of the form

$$k_{i_1} x_1 + m_{i_2} x_2 + n_{i_3} x_3 + \cdots + s_{i_m} x_m$$

where $i_1, i_2, i_3, \ldots, i_m$ receive their values $1, 2, 3, \ldots, u+1$ independently, and $k_1, k_2, \ldots, k_{u+1}, m_1, m_2, \ldots, m_{u+1}, n_1, n_2, \ldots, n_{u+1}, s_1, s_2, \ldots, s_{u+1}$ are pairwise different nonzero integers. The intersection N of the Fitting null components of these elements has a finite codimension. Let us prove that for any $y \in N$ the equality $y(\omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_m x_m)^u = 0$ takes place for every $\omega_1, \omega_2, \ldots, \omega_m \in \Omega$. We have

$$(k_j x_1 + m_{i_2} x_2 + n_{i_3} x_3 + \cdots + s_{i_m} x_m)^u = 0, \quad j = 1, 2, \ldots, u + 1$$

for any $m_{i_2}, n_{i_3}, \ldots, s_{i_m}$ which are taken from the set of integers shown above. It follows immediately that

$$y P_0 + k_j y P_1 + k_j^2 y P_2 + \cdots + k_j^u y P_u = 0, \quad j = 1, 2, \ldots, u + 1$$

where $P_i = P_i(x_1, m_{i_2} x_2, n_{i_3} x_3, \ldots, s_{i_m} x_m)$ is the homogeneous component of i-th degree relative to x_1 of $(k_j x_1 + m_{i_2} x_2 + n_{i_3} x_3 + \cdots + s_{i_m} x_m)^u$. Since the
determinant of this system is Vandermonde’s determinant, it follows that $yP_0 = yP_1 = yP_2 = \cdots = yP_u = 0$. Next for P_i, $i = 0, 1, 2, \ldots, u$, we have $yP_i(x_1, m_1x_2, n_i x_3, \ldots, s_i x_m) = 0$, $l = 1, 2, \ldots, u - i + 1$. It immediately follows that

$$yP_0 + m_i yP_1 + m_i^2 yP_2 + \cdots + m_i^{u-i} yP_{i(u-i)} = 0, l = 1, 2, \ldots, u - i + 1$$

where $P_{ij}(x_1, x_2, n_i x_3, \ldots, s_i x_m)$ is a component of P, which is homogeneous of degree i relative to x_1 and of degree j relative to x_2. Since the determinant of this system is Vandermonde’s determinant, it follows that $yP_0 = yP_1 = \cdots = yP_{i(u-i)} = 0$.

Continuing in this way we obtain that $yP_{i_1i_2\cdots i_m} = 0$, $i_1, i_2, \ldots, i_m = 1, 2, \ldots, u$, $i_1 + i_2 + \cdots + i_m = u$, where $P_{i_1i_2\cdots i_m} = P_{i_1i_2\cdots i_m}(x_1, x_2, \ldots, x_m)$ are homogeneous polynomials of degree i_1 relative to x_1, of degree i_2 relative to x_2 and so on, and finally, of degree i_m relative to x_m, which arise in computing of the power $(x_1 + x_2 + \cdots + x_m)^u$, and which are its multihomogeneous components. On the other hand,

$$y(\omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_m x_m)^u = \sum \omega_1^{i_1} \omega_2^{i_2} \cdots \omega_m^{i_m} yP_{i_1i_2\cdots i_m}(x_1, x_2, \ldots, x_m).$$

Hence $y(\omega_1 x_1 + \omega_2 x_2 + \cdots + \omega_m x_m)^u = 0$.

Thus we have proved that the conditions of the theorem hold in $R_{\Omega} = (M_{\Omega}, L_{\Omega})$. The first part of the proof, therefore, implies that L_{Ω} is locally solvable.

LEMMA 5. Let $R = (M, L)$ and A is a finite-dimensional subalgebra of L such that MA^n has finite dimension for some integer n. Then a subspace of all $x \in L$ for which $x A^n = 0$ has finite codimension.

PROOF. Let z_1, z_2, \ldots, z_k is a basis of A. Then any product of n elements of the basis transfers M into finite-dimensional subspace of M. Thus the kernel of this product has finite codimension. Since there is only a finite number of different product of n elements of the basis, the intersection of all kernels of such products has a finite codimension as well. The lemma is proved.

From Lemma 5 it follows that the associative algebra generated by L in $R = (M, L)$ is locally finite. Therefore we can apply the results of [5] about the Jacobson radical of Lie algebra. Thus we obtain the following

COROLLARY. Let L be a locally finite Lie algebra over a field of characteristic 0. Suppose L satisfies the condition (3). Then L is locally solvable if and only if $tr(ada)^2 = 0$ for every $a \in L'$.

10
PROOF. The sufficiency of the condition is a consequence of Theorem 3, since the kernel of the adjoint representation is the centre. Conversely, assume L is locally solvable. Then from [5] it follows that $ada, a \in L'$, belongs to radical $J_{adL^*}(adL)$. Hence ada is a nilpotent linear transformation and $tr(ada)^2 = 0$.

3. A TRACE FORM. Let $R = (M, L)$ be a representation of a Lie algebra L in a vector space M which satisfies condition (2). Then we can define a trace form $f(a, b) = tr a^R b^R, a, b \in L$. The function $f(a, b)$ is evidently a symmetric bilinear form on M with values in the base field Φ. In particular, if L satisfies (3), we obtain the Killing form $K(a, b) = tr(ada)(adb)$.

If $f(a, b)$ is the trace form defined by the representation $R = (M, L)$, then $f([a, c], b) + f([a, [b, c]]) = tr([a, c]^R b^R + a^R [b, c]^R) = tr([a^R, c^R] b^R + a^R[b^R, c^R]) = tr([a^R b^R, c^R]) = 0$.

As noted in the Introduction, we can calculate the trace simultaneously for every finite number of elements of L, since these elements can be considered as linear transformations acting on a common quotient space of M of a finite dimension. Therefore, the last chain of equalities is correct.

A bilinear form $f(a, b)$ on L that satisfies the condition $f([a, c], b) + f([a, [b, c]]) = 0$ is called an invariant form on L. Hence the trace form is invariant. We note next that if $f(a, b)$ is any symmetric invariant form on L, then the radical L^\perp of the form - that is, the set of elements z such that $f(a, z) = 0$ for all $a \in L$ - is an ideal. This is clear since $f(a, [z, b]) = -f([a, b], z) = 0$.

PROOF OF THEOREM 4. Let $f(a, b)$ be a trace form of $R = (M, L)$. Then L^\perp is an ideal of L and $f(a, a) = tr(a^R)^2 = 0$ for every $a \in L^\perp$. Hence L^\perp is locally solvable by Theorem 3. Since L is semi-simple, $L^\perp = 0$, and $f(a, b)$ is non-degenerate. Next suppose that the Killing form is non-degenerate. If $R(L)' \neq 0$ then by the Theorem 7 from [5] $R(L)' \subset J(L)$, Jacobson radical of L. This implies that for every $a \in R(L)'$, it is true that $ada \in J(adL^*)$. Hence for every $b \in L$ we have $ada \cdot adb \in J(adL^*)$. Since by Levitzki theorem $J(adL^*)$ is locally nilpotent ideal, then $ada \cdot adb$ is a nilpotent linear transformation and therefore $tr(ada \cdot adb) = 0$. This contradicts our assumption that the trace form $tr(ada \cdot adb)$ is non-degenerate. Therefore, it is required of $R(L)$ that $R(L)' = 0$.

Let $a \in R(L), b \in L$ and N is a subspace of L such that L/N is finite-dimensional and ada and adb act in N as nil transformations. Let us denote
$L = L/N$ and $R(L) = R(L) + N/N$ and choose a basis for L such that the first vectors form a basis for $R(L)$. The matrices of linear transformations induced by ada and adb in L, respectively, are of the forms
\[
\begin{pmatrix} 0 & 0 \\ \ast & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \ast & 0 \\ \ast & \ast \end{pmatrix}.
\]
This implies that $tr(ada)(adb) = 0$. Hence $R(L) \subset L^\perp$, and the Killing form is degenerate.

Using Killing form the following characterization of the locally solvable radical in the characteristic 0 case (cf. [6, p. 73]) can be obtained.

THEOREM 5. If a locally finite Lie algebra L over a field of characteristic 0 satisfies the condition (3), then the locally solvable radical $R(L)$ of L is the orthogonal complement L^\perp of L' relative to the Killing form $K(a,b)$.

PROOF. The algebra $B = L^\perp$ is an ideal. Further, if $b \in B'$, then $tr(adb)^2 = K(b,b) = 0$. The kernel of the representation $a \to ada$, $a \in B$, is abelian. Hence B is locally solvable, by Corollary of theorem 2. Hence $B \subset R(L)$. Next, let $x \in R(L), a, b \in L$. Then $K([x,[a,b]]) = K([x,a],b)$. By [5] the element $[x,a]$ belongs to the Jacobson radical $J(L)$ of L. Consequently, $ad[x,a]$ belongs to $J(adL^*)$ and $ad[x,a] \cdot adb$ is nilpotent for every b. Hence $K([x,[a,b]]) = tr(ad[x,a] \cdot adb) = 0$. Thus $K([x,[a,b]]) = 0$ and $x \in L'^\perp$. Thus $R(L) \subset L'^\perp$ and so $R(L) = L'^\perp$.

Let Ω be an extension of the base field Φ of L. Then the Killing form f_{Ω} of L_{Ω} is obtained from the Killing form f of L by the extension. Therefore, f_{Ω} is non-degenerate if and only if f is non-degenerate [8]. Consequently, L_{Ω} is semi-simple if and only if L is semi-simple (see also [9]).

4. STRUCTURE OF SEMI-SIMPLE ALGEBRAS. We continue the consideration of locally finite Lie algebras L which satisfy the condition (3).

LEMMA 6 (cf. [6, p. 29]). Let A be a finite-dimensional subalgebra of L such that $L(adA)^n \subset A$. Then $A^\omega = \bigcap_{k=1}^{\infty} A^k$ is an ideal of L.

PROOF. If $A^\omega = 0$ then the assertion of Lemma is trivial. Let $A^\omega \neq 0$. We have $[L, A^n] \subset L(adA)^n$. A is finite-dimensional. Therefore, $A^\omega = A^m$ for some integer m. Thus $A^\omega = A^{n+m-1}$. Now we have $[L, A^\omega] = [L, A^{n+m-1}] \subset L(adA)^{n+m-1} \subset A(adA)^{m-1} = A^m = A^\omega$, which completes the proof.
Let $f(a, b)$ be any symmetric invariant bilinear form on L and let A be a subspace of L. Denote by A^\perp the subspace of L that consists of all elements $b \in L$ such that $f(a, b) = 0$ for all $a \in A$.

Lemma 7. If A is a finite-dimensional subspace of L such that $A \cap A^\perp = 0$, then $L = A \oplus A^\perp$.

Proof. Since $A \cap A^\perp = 0$, A is a non-degenerate subspace. Let us show that $L = A + A^\perp$. Take any basis a_1, a_2, \ldots, a_m in A and let c be any element of L. Find a decomposition $c = a + a^\perp$, where $a \in A$ and $a^\perp \in A^\perp$.

We will look for a in the form $a = x_1a_1 + x_2a_2 + \cdots + x_m a_m$. Then c will look like: $c = x_1a_1 + x_2a_2 + \cdots + x_m a_m + a^\perp$. From $f(a_i, a^\perp) = 0$ it follows that $f(a_i, c) = \sum_{k=1}^{m} x_k f(a_i, a_k), i = 1, 2, \ldots, m$. This system of equations has exactly one solution, since its determinant is the Gram’s determinant of the system a_1, a_2, \ldots, a_m. Since A is a non-degenerate subspace, this determinant is non-zero. The vector $a = x_1a_1 + x_2a_2 + \cdots + x_m a_m$, where x_k were just found, satisfies the conditions $f(a, c-a) = 0$. Indeed, $f(a_i, c-a) = f(a_i, c) - \sum_{k=1}^{m} x_k f(a_i, a_k) = 0$. From the equalities $f(a_i, c-a) = 0$, it follows that $c-a \in A^\perp$. To complete the proof it remains to put $a^\perp = c-a$.

Proof of Theorem 6. Let A be a finite-dimensional subalgebra for which $L(adA)^n \subset A$. By Lemma 6, subalgebra A^ω is an ideal of L. By Theorem 4, the Killing form $K(a, b)$ is non-degenerate. Since $K(a, b)$ is invariant, $(A^\omega)^\perp$ is an ideal of L. Indeed, for every $a \in A^\omega$, every $b \in (A^\omega)^\perp$ and every $c \in L$ we have $K(a, [b, c]) = -K([a, c], b) = 0$. Let us prove that $A^\omega \cap (A^\omega)^\perp = 0$. If, on the contrary, $b_1, b_2 \in A^\omega \cap (A^\omega)^\perp$ and a is any element of L, then $K([b_1, b_2], a) = -K(b_1, [a, b_2]) = 0$. Since $K(a, b)$ is non-degenerate, $[b_1, b_2] = 0$. Hence $A^\omega \cap (A^\omega)^\perp$ is an abelian ideal of L.

Since L is semi-simple, $A^\omega \cap (A^\omega)^\perp = 0$. By Lemma 7 this implies that $L = A^\omega \oplus (A^\omega)^\perp$. Since A^ω and $(A^\omega)^\perp$ are direct summands, every ideal of A^ω or $(A^\omega)^\perp$ is an ideal of L. Therefore A^ω and $(A^\omega)^\perp$ are semi-simple subalgebras. Moreover, since A^ω is finite-dimensional, A^ω is a direct sum of ideals which are simple. Let us denote by Π the set of all finite-dimensional simple ideals of L. This set is not empty; otherwise we have that $A^\omega = 0$ for every $x_1, x_2, \ldots, x_k \in L$. The previous implies that L is a locally nilpotent algebra. But by condition of the Theorem, L is semi-simple. Since $M^\omega = M$ for every finite-dimensional simple ideal M, $L = M \oplus M^\perp$. Now denote by N the intersection of all M^\perp where $M \in \Pi$. Let us prove that $N = 0$. Suppose
not, and let \(x_1, x_2, \cdots, x_k \) be a non-zero element of \(N \). Then by condition of the Theorem, there exists a finite-dimensional subalgebra \(A \), such that \(x_1, x_2, \cdots, x_k \in A \) and \(L(adA)^n \subset A \). Let \(B = A \cap N \). Then \(L(adB)^n \subset A \) and \(L(adB)^n \subset N \), since \(N \) is an ideal of \(L \). Consequently, \(L(adB)^n \subset B \) and \(B^\omega \) is ideal of \(L \). If \(B^\omega \neq 0 \), then \(B^\omega \) is a semi-simple ideal contained in \(N \). Next, \(B^\omega \) is a direct sum of simple ideals contained in \(N \) and, consequently, these ideals do not belong to \(\Pi \). But this contradicts the definition of \(\Pi \). Hence \(B^\omega = 0 \) for every finite subset \(x_1, x_2, \cdots, x_k \in N \) and \(N \) is a locally nilpotent ideal of \(L \). But \(L \) is a semi-simple Lie algebra. Hence \(N = 0 \). Then by Remac’s theorem \(L \) is a subdirect sum of simple finite-dimensional ideals \(M \cong L/M^\perp \). The proof of the theorem is complete.

It is well known that every derivation of a semi-simple finite-dimensional Lie algebra is inner. What about the infinite-dimensional case? Let \(L = \bigoplus \alpha L_\alpha \), where \(L_\alpha \) are finite-dimensional simple ideals of \(L \). In this case Stewart [10] proved the theorem that we give here for completeness.

THEOREM 7. Let \(L \) be a semi-simple Lie algebra and let \(L \) is a direct sum, \(L = \bigoplus \alpha L_\alpha \), where \(L_\alpha \) are finite-dimensional simple ideals of \(L \). Then

1) every derivation of \(L \) is an element of the complete direct sum \(\tilde{L} \) of \(L_\alpha \) and the algebra of all derivations \(D(L) \) of \(L \) is isomorphic to \(\tilde{L} \).

2) a derivation \(D \) is inner if and only if \(L_\alpha D = 0 \) for every \(L_\alpha \) with the exception of a finite number of it

3) \(L \) has outer derivations

4) every derivation of \(L \) is locally finite.

It follows from Theorem 7 that any semi-simple Lie algebra satisfying condition (3) is a subalgebra of the algebra of all derivations of such an algebra which is a direct sum of its simple finite dimensional ideals.

References

[1] L. A. Simonian, Cartan’s criteria for infinite-dimensional Lie algebras, Izvestija vuzov. Matematika, No 4, 1992, 104, (Russian)

[2] L. A. Simonian, The theorems of Weyl, Levi and Malcev - Harish - Chandra for locally finite Lie algebras, Izvestija vuzov. Matematika, No 6, 1993, 39 - 45, (Russian)
[3] L. A. Simonian, On one class of locally finite Lie algebras, Proc. Latvian Acad. of Scien., vol. 50, 1996, No 1, 35-36

[4] B. I. Plotkin, On algebraic sets of elements in groups and Lie algebras, Uspehi Mat. Nauk, 13, No 6, 1958, 133 - 138, (Russian)

[5] L. A. Simonian, On the Jacobson radical of Lie algebras, Latv. Mat. Ezhegodnik, 34 (1993), 230 - 234, (Russian)

[6] N. Jacobson, Lie algebras, Intersc. Publishers, New York - London, 1962

[7] L. A. Simonian, Some questions of the theory of Lie algebras representations, Latv. Univ. Zinatn. Raksti, 58, 1964, 5 - 20, (Russian)

[8] N. Bourbaki, Algebra. Modules. Rings. Forms, Moscow, Nauka, 1966, (Russian)

[9] N. Bourbaki, Lie groups and algebras. Lie algebras. Free Lie algebras and Lie groups, Moscow, Mir, 1976, (Russian)

[10] I. Stewart, Structure theorems for a class of locally finite Lie algebras, Proc. London Math. Soc., 1972, v 24, 79 -100