On absolute points of correlations in $\text{PG}(2, q^n)$

Jozefien D’haeseleer
Department of Mathematics: Analysis, Logic and Discrete Mathematics
Ghent University
Gent, Flanders, Belgium
jozefien.dhaeseleer@ugent.be

Nicola Durante
Dipartimento di Matematica e Applicazioni “Caccioppoli”
Università di Napoli “Federico II”, Complesso di Monte S. Angelo
Napoli, Italy
ndurante@unina.it

Submitted: Aug 1, 2019; Accepted: May 8, 2020; Published: May 29, 2020
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let V be a $(d+1)$-dimensional vector space over a field F. Sesquilinear forms over V have been largely studied when they are reflexive and hence give rise to a (possibly degenerate) polarity of the d-dimensional projective space $\text{PG}(V)$. Everything is known in this case for both degenerate and non-degenerate reflexive forms if F is either \mathbb{R}, \mathbb{C} or a finite field F_q. In this paper we consider degenerate, non-reflexive sesquilinear forms of $V = F^3_q$. We will see that these forms give rise to degenerate correlations of $\text{PG}(2, q^n)$ whose set of absolute points are, besides cones, the (possibly degenerate) C^m_F-sets studied by Donati and Durante in 2014. In the final section we collect some results from the huge work of B.C. Kestenband regarding what is known for the set of the absolute points of correlations in $\text{PG}(2, q^n)$ induced by a non-degenerate, non-reflexive sesquilinear form of $V = F^3_q$.

Mathematics Subject Classifications: 51E21, 05B25

1 Introduction and definitions

Let V and W be two vector spaces over the same field F. A map $f : V \rightarrow W$ is called σ-semilinear if there exists an automorphism σ of F such that

$$f(v + v') = f(v) + f(v') \quad \text{and} \quad f(av) = a^\sigma f(v)$$

*Supported by FWO grant.
for all vectors \(v \in V \) and all scalars \(a \in \mathbb{F} \).

If \(\sigma \) is the identity map, then \(f \) is a linear map.

Let \(V \) be an \(\mathbb{F} \)-vector space with dimension \(d+1 \) and let \(\sigma \) be an automorphism of \(\mathbb{F} \). A map

\[
\langle \cdot, \cdot \rangle : (v, v') \in V \times V \rightarrow \langle v, v' \rangle \in \mathbb{F}
\]

is a \(\sigma \)-sesquilinear form or a \(\sigma \)-semibilinear form on \(V \) if it is a linear map on the first argument and it is a \(\sigma \)-semilinear map on the second argument, that is:

\[
\langle v + v', v'' \rangle = \langle v, v'' \rangle + \langle v', v'' \rangle
\]

\[
\langle v, v' + v'' \rangle = \langle v, v' \rangle + \langle v, v'' \rangle
\]

\[
\langle av, v' \rangle = a \langle v, v' \rangle, \quad \langle v, av' \rangle = a^\sigma \langle v, v' \rangle
\]

for all \(v, v', v'' \in V, \ a \in \mathbb{F} \). If \(\sigma \) is the identity map, then \(\langle \cdot, \cdot \rangle \) is a bilinear form. If \(B = (e_1, e_2, \ldots, e_{d+1}) \) is an ordered basis of \(V \), then for \(x, y \in V \) we have \(\langle x, y \rangle = X_A Y_{\sigma} \).

Here \(A = (a_{ij}) = (\langle e_i, e_j \rangle) \) is the associated matrix to the \(\sigma \)-sesquilinear form in the ordered basis \(B \), and \(X, Y \) are the columns of coordinates of \(x, y \) w.r.t. \(B \). In what follows we will denote by \(A^\top \), the transpose of a matrix \(A \). The term sesqui comes from the Latin and it means one and a half. For every subset \(S \) of \(V \) put

\[
S^\perp := \{ x \in V : \langle x, y \rangle = 0 \ \forall y \in S \}
\]

\[
S^\top := \{ y \in V : \langle x, y \rangle = 0 \ \forall x \in S \}
\]

Both \(S^\perp \) and \(S^\top \) are subspaces of \(V \). The subspaces \(V^\perp \) and \(V^\top \) are called the left and the right radical of \(\langle \cdot, \cdot \rangle \), respectively.

Proposition 1. The right and left radical of a sesquilinear form of a vector space \(V \) have the same dimension.

Let \(d+1 \) be the dimension of \(V \). Then \(\dim V^\perp = d+1 - \text{rk}(A) \) and \(\dim V^\top = d+1 - \text{rk}(B) \) where \(B = (a_{ij}^\sigma) \). The assertion follows from \(\text{rk}(B) = \text{rk}(A) \).

A sesquilinear form \(\langle \cdot, \cdot \rangle \) is called non-degenerate if \(V^\perp = V^\top = \{0\} \). It is called reflexive if \(\langle x, y \rangle = 0 \) implies \(\langle y, x \rangle = 0 \) for all \(x, y \in V \).

A duality or correlation of \(\text{PG}(d, \mathbb{F}) \) is a bijective map preserving incidence between points and hyperplanes of \(\text{PG}(d, \mathbb{F}) \). It can be seen as a collineation of \(\text{PG}(d, \mathbb{F}) \) into its dual space \(\text{PG}(d, \mathbb{F})^* \). We will call degenerate duality or degenerate correlation of \(\text{PG}(d, \mathbb{F}) \) a non-bijective map preserving incidence between points and hyperplanes of \(\text{PG}(d, \mathbb{F}) \). If \(V \) is equipped with a sesquilinear form \(\langle \cdot, \cdot \rangle \), then there are two induced (possibly degenerate) dualities of \(\text{PG}(d, \mathbb{F}) \):

\[
Y \mapsto X_A Y^\sigma = 0 \quad \text{and} \quad Y \mapsto Y_A X^\sigma = 0.
\]

The following holds.

Theorem 2. Any duality of \(\text{PG}(d, \mathbb{F}), d \geq 2 \), is induced by a non-degenerate sesquilinear form on \(V = \mathbb{F}^{d+1} \).
A duality applied twice gives a collineation of $\text{PG}(d, F)$. If $\langle \ , \rangle$ is given by $\langle x, y \rangle = X_t A Y^\sigma$, then the associated collineation is the following map:

$$f_{A_t^{-1} A^\sigma, \sigma^2} : X \mapsto A_t^{-1} A^\sigma X^{\sigma^2} \quad \text{(see [14])}.$$

The most important and studied types of dualities are those whose square is the identity, namely the polarities. Note that in this case $A_t^{-1} A^\sigma = \rho I$ and $\sigma^2 = 1$.

Proposition 3. [1, 2] A duality is a polarity if and only if the sesquilinear form defining it is reflexive.

Non-degenerate, reflexive forms have been classified long ago (not only on finite fields but also on \mathbb{R} or \mathbb{C}). A reflexive σ-sesquilinear form $\langle \ , \rangle$ is:

- **σ-Hermitian** if $\langle y, x \rangle = \langle x, y \rangle^\sigma$, for all $x, y \in V$. If $\sigma = 1$ such a form is called symmetric.
- **Alternating** if $\langle y, x \rangle = -\langle x, y \rangle$.

Theorem 4. A non-degenerate, reflexive σ-sesquilinear form is either alternating, or a scalar multiple of a σ-Hermitian form. In the latter case, if $\sigma = 1$ (i.e. the form is symmetric), then the scalar can be taken to be 1.

For a proof of the previous theorem we refer to [1] or [2]. Note that in case of reflexive σ-sesquilinear forms, left- and right-radicals coincide. The set $\Gamma : X_t AX^\sigma = 0$ of absolute points of a polarity is one of the well known objects in the projective space $\text{PG}(d, F)$: subspaces, quadrics and Hermitian varieties.

We recall that the classification theorem for reflexive σ-sesquilinear forms also holds if the form is degenerate.

Remark 5. Let Γ be the set of absolute points of a degenerate polarity in the projective space $\text{PG}(d, F)$, then Γ is one of the following: subspaces, degenerate quadrics and degenerate Hermitian varieties. All of these sets are cones with vertex a subspace V of dimension h (corresponding to V^\perp) and base a non-degenerate object of the same type in a subspace of dimension $d - 1 - h$ skew with V.

So everything is known for reflexive sesquilinear forms.

Up to our knowledge (at least on finite fields) almost nothing is know on non-reflexive sesquilinear forms of $V = F_{q^n}^{d+1}$. Given a sesquilinear form of V we may consider the induced correlation in $\text{PG}(d, q^n)$ and the set Γ of its absolute points, that is the points X such that $X \in X^\perp$ (or equivalently $X \in X^\top$). If $\langle x, y \rangle = X_t A Y^\sigma$, then $\Gamma : X_t AX^\sigma = 0$.

We will determine in the next sections the set Γ in $\text{PG}(1, q^n)$ and in $\text{PG}(2, q^n)$.

Let $V = F_{q^n}^{d+1}$, $d \in \{1, 2\}$ and let $\Gamma : X_t AX^\sigma = 0$, $\sigma \neq 1$, be the set of absolute points of a (possibly degenerate) correlation of V. We start with the following definition.

Definition. Let α be a σ-sesquilinear form of $F_{q^n}^{d+1}$. A σ-quadric (σ-conic if $d = 2$) of $\text{PG}(d, q^n)$, $d \in \{1, 2\}$ is the set of absolute points of the induced correlation of α in $\text{PG}(d, q^n)$.

See [10] for the definition and the properties of σ-quadrics of $\text{PG}(d,q^n)$ for every integer $d \geq 1$. It is an easy exercise (that we include in this paper) to determine the set Γ in $\text{PG}(1,q^n)$. For $d = 2$ the set Γ in $\text{PG}(2,q^n)$ has been studied by B.C. Kestenband in case \langle , \rangle is non-degenerate and the form is non-reflexive. The results are contained in 10 different papers from 2000 to 2014. We will summarize some of his results in the last section.

Contrary to the reflexive case, we will see that in general the knowledge of the set Γ of absolute points of a correlation induced by a non-degenerate, non-reflexive sesquilinear form will not help to determine the set Γ in the degenerate case.

2 Absolute points of correlations of $\text{PG}(1,q^n)$

In the sequel, we will determine the set of absolute points in $\text{PG}(2,q^n)$ for a degenerate correlation induced by a degenerate σ-sesquilinear form with associated automorphism $\sigma : x \mapsto x^{q^m}$, $(m,n) = 1$, of $V = \mathbb{F}_{q^n}$.

First assume that $V = \mathbb{F}_2$, and consider the set of absolute points of a correlation induced by a σ-sesquilinear form, that is the set of points in $\text{PG}(1,q^n)$ given by $\Gamma : X_{1,AX}^\sigma = 0$, where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a 2×2-matrix over \mathbb{F}_{q^n}. Here again, let σ be the automorphism $\sigma : x \mapsto x^{q^m}$, $(m,n) = 1$, of $V = \mathbb{F}_2$.

The points of Γ satisfy

$$(ax_1 + cx_2)x_1^\sigma + (bx_1 + dx_2)x_2^\sigma = 0.$$

- If $a = 1, b = c = 0, d \neq 0$, then $\Gamma : x_1^{q^2} + dx_2^{q^2} = 0$. If q is odd and $-d$ is a non-square of \mathbb{F}_{q^n}, then $\Gamma = \emptyset$. If q is even, $r = (q^n - 1, q^n + 1)$ and d is an element of \mathbb{F}_{q^n} such that $d^{q^{r-1}} \neq 1$, again $\Gamma = \emptyset$.

- If $a = 1, b = c = d = 0$, then $\Gamma : x_1^{q^2} = 0$ is the point $(0,1)$.

- If $b = 1, a = c = d = 0$, then $\Gamma : x_1x_2^\sigma = 0$ is the union of the points $(1,0), (0,1)$.

- From the examples above, we see that Γ can be the empty set, Γ can be a point or the union of two points. Hence we may assume that $|\Gamma| > 2$ and so we may suppose that $(1,0), (0,1), (1,1) \in \Gamma$, therefore $a = d = 0, b = -c$. So

$$\Gamma : x_1x_2(x_1^{\sigma^{-1}} - x_2^{\sigma^{-1}}) = 0.$$

Hence Γ is given by the union of $\{(1,0), (0,1)\}$ and the set of points (x_1, x_2) in $\text{PG}(1,q^n)$ such that $\left(\frac{x_2}{x_1}\right)^{\sigma^{-1}} = 1$. Hence, Γ is the set of points of an \mathbb{F}_q-subline $\text{PG}(1,q)$ of $\text{PG}(1,q^n)$.
Lemma 6. The set of the absolute points in $\text{PG}(1, q^n)$ of a (possibly degenerate) correlation induced by a σ-sesquilinear form of $\mathbb{F}_{q^n}^2$ is one of the following:

- the empty set, a point, two points;
- an \mathbb{F}_q-subline $\text{PG}(1, q)$ of $\text{PG}(1, q^n)$.

Definition 7. A σ-quadric Γ of $\text{PG}(1, q^n)$ is non-degenerate if $|\Gamma| \in \{0, 2, q+1\}$, otherwise it is degenerate. A σ-conic Γ of $\text{PG}(2, q^n)$ is non-degenerate if $V^\perp \cap V'^\perp = \{0\}$ and Γ does not contains lines. Otherwise, it is degenerate.

Note that if Γ is a degenerate σ-quadric of $\text{PG}(1, q^n)$, then there exists a degenerate sesquilinear form such that $V^\perp = V'^\perp$ with $\dim(V^\perp) = 1$.

Next we determine the possible intersection configurations of a line and a σ-conic of $\text{PG}(2, q^n)$. So let Γ be the set of absolute points in $\text{PG}(2, q^n)$ of a (possibly degenerate) correlation induced by a σ-sesquilinear form of $\mathbb{F}_3^{q^n}$, $\sigma : x \mapsto x^{qm}, (m, n) = 1$. Hence $\Gamma : X^t A X^\sigma = 0$.

Proposition 8. Every line intersects a σ-conic Γ of $\text{PG}(2, q^n)$ in either 0 or 1 or 2 or $q+1$ points (an \mathbb{F}_q-subline) or it is contained in Γ.

Proof. Let Y, Z be two distinct points of $\text{PG}(2, q^n)$ and let $\ell : X = \lambda Y + \mu Z, (\lambda, \mu) \in \mathbb{F}_q^2 \setminus \{(0,0)\}$ be the line containing them. The number of points of $\Gamma \cap \ell$ is given by the number of points of a σ-quadric on the line ℓ. Indeed a point $X = \lambda Y + \mu Z \in \ell \cap \Gamma$ if and only if $a\lambda^{\sigma+1} + b\lambda\mu^\sigma + c\lambda^\sigma\mu + d\mu^{\sigma+1} = 0$, where $a = Y_i A Y^\sigma, b = Y_i A Z^\sigma, c = Z_i A Y^\sigma, d = Z_i A Z^\sigma$. The assertion follows. \qed

3 Steiner’s projective generation of conics and C_F^m-sets

Before determining the sets of absolute points of correlations of $\text{PG}(2, q^n)$ we will recall some subsets of $\text{PG}(2, q^n)$, called (possibly degenerate) C_F^m-sets, that have been introduced and studied in [6, 7, 8] generalizing the constructions of conics due to J. Steiner. We will see that σ-conics of $\text{PG}(2, q^n)$ with $|A| = 0$, different form a cone with vertex a point and base a σ-quadric of $\text{PG}(1, q^n)$ will be a (possibly degenerate) C_F^m-set. First we recall J. Steiner’s construction of conics. Let \mathbb{F} be a field and let $\text{PG}(2, \mathbb{F})$ be a Desarguesian projective plane. Let R and L be two distinct points of $\text{PG}(2, \mathbb{F})$ and let \mathcal{P}_R and \mathcal{P}_L be the pencils of lines with centers R and L, respectively. In 1832 in [29] J. Steiner proves the following:

Theorem 9. The set of Γ of points of intersection of corresponding lines under a projectivity $\Phi : \mathcal{P}_R \rightarrow \mathcal{P}_L$ is one the following:

- if $\Phi(RL) \neq RL$, then Γ is a non-degenerate conic;
- if $\Phi(RL) = RL$, then Γ is a degenerate conic.
Inspired by Steiner’s projective generation of conics, in [6, 7, 8] the following definitions are given.

Definition 10. The set \(\Gamma \subset \text{PG}(2,q^n) \) of points of intersection of corresponding lines under a collineation \(\Phi : \mathcal{P}_R \rightarrow \mathcal{P}_L \) with accompanying automorphism \(x \mapsto x^{q^m} \) is one of the following:

- if \(\Phi(RL) \neq RL \), then \(\Gamma \) is called a \(C_{F^m} \)-set with vertices \(R \) and \(L \);
- if \(\Phi(RL) = RL \), then \(\Gamma \) is called a degenerate \(C_{F^m} \)-set with vertices \(R \) and \(L \).

Moreover in [8] the following is proved:

Theorem 11. A \(C_{F^m} \)-set \(\Gamma \) of \(\text{PG}(2,q^n) \) with vertices \(R = (1,0,0) \) and \(L = (0,0,1) \) has canonical equation \(x_1x_3^{q^m} - x_2^{q^{m+1}} = 0 \). Hence \(|\Gamma| = q^n + 1 \) and it is a set of type \((0,1,2,q+1) \) w.r.t. lines. It is the union of \(\{R,L\} \) with \(q-1 \) pairwise disjoint scattered \(\mathbb{F}_q \)-linear sets of pseudoregulus type, each of which is isomorphic to the set of points and lines of a \(\text{PG}(n-1,q) \), that is called a component of \(\Gamma \).

Theorem 12. A degenerate \(C_{F^m} \)-set of \(\text{PG}(2,q^n) \) with vertices \(R = (1,0,0) \) and \(L = (0,1,0) \) has canonical equation \(x_3(x_1x_3^{q^n-1} - x_2^{q^n}) = 0 \). Here \(|\Gamma| = 2q^n + 1 \) and it is a set of type \((1,2,q+1,q^n+1) \) w.r.t. lines. It is the union of the line \(RL \) with a set \(\mathcal{A} \) of \(q^n \) affine points isomorphic to \(\text{AG}(n,q) \) whose directions on the line \(RL \) form a maximum scattered \(\mathbb{F}_q \)-linear set \(S \) of pseudoregulus type with transversal points \(R \) and \(L \). Moreover \(\mathcal{A} \cup S \) is a maximum scattered \(\mathbb{F}_q \)-linear set of rank \(n+1 \), that is a blocking set of Rédei type and vice versa.

We refer to [8] and to [28] for the definition and properties of the relevant objects in the previous two theorems such as maximum scattered \(\mathbb{F}_q \)-linear set and blocking set of Rédei type.

In the next section we will see that the set of absolute points of a degenerate correlation of \(\text{PG}(2,q^n) \) induced by a degenerate, non-reflexive \(\sigma \)-sesquilinear form in \(\mathbb{F}_q^3 \) is either a \(C_{F^m} \)-set or a degenerate \(C_{F^m} \)-set or a cone with vertex a point \(R \) and base a \(\sigma \)-quadric of a line \(\ell \) not through \(R \).

4 Absolute points of degenerate correlations of \(\text{PG}(2,q^n) \)

In this section we determine the possible structure for the set of absolute points in \(\text{PG}(2,q^n) \) of a degenerate correlation induced by a \(\sigma \)-sesquilinear form in \(\mathbb{F}_q^3 \). Let \(\Gamma : X_1AX^\sigma = 0 \) be such a set of points. For the sequel we can assume \(\sigma \neq 1 \). Indeed if \(\sigma = 1 \), then \(\Gamma \) is always a (possibly degenerate) conic or the full pointset (a degenerate symplectic geometry). In what follows, \(\sigma \), if not differently specified, will denote always the map \(x \mapsto x^{q^m} \), \((m,n) = 1\).
First assume \(\text{rank}(A) = 2 \), then \(V^\perp \) and \(V^\top \) are one-dimensional vector spaces of \(V \), so points of \(\text{PG}(2, q^n) \). If \(V^\perp \neq V^\top \), then we may assume that the point \(R = (1, 0, 0) \) is the right-radical and the point \(L = (0, 0, 1) \) is the left-radical. It follows that

\[
A = \begin{pmatrix}
0 & a & b \\
0 & c & d \\
0 & 0 & 0
\end{pmatrix}
\]

and

\[
\Gamma : X_tAX_\sigma^t = (ax_1 + cx_2)x_2^\sigma + (bx_1 + dx_2)x_3^\sigma = 0.
\]

Consider the pencil of lines through the point \(R \), that is

\[
\mathcal{P}_R = \{ \ell_{\alpha,\beta} : (\alpha, \beta) \in \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \setminus \{(0, 0)\} \},
\]

where

\[
\ell_{\alpha,\beta} : \begin{cases}
x_1 = \lambda \\
x_2 = \mu \alpha, (\lambda, \mu) \in \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \setminus \{(0, 0)\} \\
x_3 = \mu \beta
\end{cases}
\]

and the pencil of lines through \(L \), that is

\[
\mathcal{P}_L = \{ \ell'_{\alpha',\beta'} : (\alpha', \beta') \in \mathbb{F}_{q^n} \times \mathbb{F}_{q^n} \setminus \{(0, 0)\} \}, \quad \text{where} \quad \ell'_{\alpha',\beta'} : \alpha'x_1 + \beta'x_2 = 0.
\]

Let

\[
\Phi : \mathcal{P}_R \rightarrow \mathcal{P}_L
\]

be the collineation between \(\mathcal{P}_R \) and \(\mathcal{P}_L \) given by \(\Phi(\ell_{\alpha,\beta}) = \ell'_{\alpha',\beta'} \), where

\[
(\alpha', \beta')_t = A'(\alpha, \beta)_t^\sigma.
\]

where \(A' \) is the matrix

\[
A' = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.
\]

Note that \(|A'| \neq 0 \) since \(\text{rank}(A) = 2 \). It is easy to see that \(\Gamma \) is the set of points of intersection of corresponding lines under the collineation \(\Phi \) and hence it is a (possibly degenerate) \(\mathbb{C}^{m^2} \)-set (see [6, 7, 8]).

Let \(Y = (y_1, y_2, y_3) \) be a point of \(\Gamma \), then the tangent line \(t_Y \) to \(\Gamma \) at the point \(Y \) is the line

\[
t_Y : (ay_2^\sigma + by_3^\sigma)x_1 + (cy_2^\sigma + dy_3^\sigma)x_2 = 0.
\]

So for every point \(Y \) of \(\Gamma \) the line \(t_Y \) contains the point \(L = (0, 0, 1) \). The tangent line \(t_L \) to \(\Gamma \) at the point \(L \) is the line

\[
t_L : bx_1 + dx_2 = 0.
\]

First assume that \(t_L = RL : x_2 = 0 \), then \(b = 0 \) and we can put \(d = 1 \) obtaining

\[
\Gamma : (ax_1 + cx_2)x_2^\sigma + x_2x_3^\sigma = 0.
\]
with $a \neq 0$, so
\[
\Gamma : x_2(ax_1x_2^{-1} + cx_2^2 + x_3^2) = 0,
\]
that is a degenerate $C_{\mathbb{F}}^m$-set with vertices $R(1,0,0)$ and $L(0,0,1)$ since the collineation Φ maps the line RL into itself (see [8]).

Next assume t_L is not the line RL, so we may suppose, w.l.o.g., that $t_L : x_1 = 0$, that is $d = 0$ and $b = 1$. In this case
\[
\Gamma : (ax_1 + cx_2)x_2^2 + x_1x_3^2 = 0,
\]
with $c \neq 0$, is a non-degenerate $C_{\mathbb{F}}^m$-set with vertices $R(1,0,0)$ and $L(0,0,1)$ since the collineation Φ does not map the line RL into itself (see [8]).

Next assume that $V^\perp = V^\perp$ so they coincide as projective points of $\text{PG}(2,q^n)$. We may assume that $R = L = (1,0,0)$ is both the left and right radical of $\langle \cdot, \cdot \rangle$. In this case the set of absolute points is the set Γ of points of $\text{PG}(2,q^n)$ such that $X_tAX^\sigma = 0$ with
\[
A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}
\]
so
\[
\Gamma : (ax_2 + bx_3)x_2^2 + (cx_2 + dx_3)x_3^2 = 0.
\]
It follows that Γ is the set of points of a cone with vertex the point R, the base of this cone is either the empty set, a point, two points or $q + 1$ points of an \mathbb{F}_q-subline of a line not through the point R.

Note that Γ can be seen as the set of points of intersection of corresponding lines under the same collineation Φ from \mathcal{P}_R to \mathcal{P}_L, with $R = L$, similar to the case $R \neq L$.

Next assume $\text{rank}(A) = 1$. In this case $\dim V^\perp = \dim V^\perp = 2$, so in $\text{PG}(2,q^n)$ the right- and left-radical are given by two lines r and ℓ. First assume $r \neq \ell$, so we may put $r : x_3 = 0$ and $\ell : x_1 = 0$, then $\Gamma : x_1x_2^2 = 0$, that is the union of the two lines r and ℓ.

Finally assume that $r = \ell$, e.g. $r = \ell : x_3 = 0$, then $\Gamma : (cx_1 + dx_2 + ex_3)x_3^2 = 0$ is again the union of two (possibly coincident) lines.

In the next proposition we summarize what has been proved with the previous arguments.

Proposition 13. The set of absolute points in $\text{PG}(2,q^n)$ of a degenerate correlation induced by a degenerate σ-sesquilinear form of \mathbb{F}_q^3 is one of the following:

- a cone with vertex a point R and base a σ-quadric of a line ℓ not through R (i.e. just R, a line, two lines or an \mathbb{F}_q-subpencil of \mathcal{P}_R);
- a degenerate $C_{\mathbb{F}}^p$-set (see [8]);
- a $C_{\mathbb{F}}^p$-set (see [8]).
4.1 Some applications for C_F^m-sets of PG$(2, q^n)$

In recent years, (degenerate or not) C_F^m-sets of PG$(2, q^n)$ have been used for several applications. We recall some of them here.

Let $M_{m,n}(\mathbb{F}_q)$, with $m \leq n$, be the vector space of all the $m \times n$ matrices with entries in \mathbb{F}_q. The distance between two matrices is the rank of their difference. An $(m \times n, q, s)$-rank distance code is a subset \mathcal{X} of $M_{m,n}(\mathbb{F}_q)$ such that the minimum distance between any two of its distinct elements is s. An \mathbb{F}_q-linear $(m \times n, q, s)$-rank distance code is a subspace of $M_{m,n}(\mathbb{F}_q)$.

It is known (see e.g. [4]) that the size of an $(m \times n, q, s)$-rank distance code \mathcal{X} satisfies the Singleton-like bound:

$$|\mathcal{X}| \leq q^{n(m-s+1)}.$$

When this bound is achieved, \mathcal{X} is called an $(m \times n, q, s)$-maximum rank distance code, or $(m \times n, q, s)$-MRD code, for short.

In finite geometry $(m \times m, q, m)$-MRD codes are known as spread sets (see e.g. [5]) and there are examples for both \mathbb{F}_q-linear and non-linear codes.

The first class of non-linear MRD codes, different from spread sets, are the non-linear $(3 \times 3, q, 2)$-MRD codes constructed in [3] by using C_F^1-sets of PG$(2, q^3)$.

Indeed starting with a C_F^1-set \mathcal{C} of PG$(2, q^3)$ in [3], they construct a set \mathcal{E} of $q^3 + 1$ points that is an exterior set to the component \mathcal{C}_1 of \mathcal{C} (i.e. the lines joining any two distinct points of \mathcal{E} is external to \mathcal{C}_1).

By using field reduction from PG$(2, q^3)$ to PG$(8, q) = PG(M_{3,3}(q))$, the component $\mathcal{C}_1 \cong PG(2, q)$ corresponds to the Segre variety $S_{2,2}$. This is the set of matrices with rank 1. The set \mathcal{E} corresponds to an exterior set to the Segre variety $S_{2,2}$ of PG$(8, q)$ and hence a set of q^6 matrices such that the difference between any two has rank at least two, i.e. a $(3 \times 3, q, 2)$-MRD code.

In this section, it is shown that, starting from a C_F^m-set of PG$(2, q^n)$, infinite families of non-linear $(3 \times n, q, 2)$-MRD codes can be constructed. (See also [10]).

Let $R = (1, 0, 0)$ and $L = (0, 0, 1)$ be two points of PG$(2, q^n)$ with $n \geq 3$ and let \mathcal{C} be the C_F^m-set with vertices R and L given by

$$\mathcal{C} = \{ P_t = (t^{q^{m+1}}, t, 1) : t \in \mathbb{F}_{q^n} \} \cup \{ R \}.$$

It follows that

$$\mathcal{C} = \bigcup_{a \in \mathbb{F}_q^*} \mathcal{C}_a \cup \{ R, L \},$$

with $\mathcal{C}_a = \{ P_t : t \in N_a \}$ and $N_a = \{ x \in \mathbb{F}_{q^n} : N(x) = a \}$, where $N(x) = x^{q^n-1} \frac{1}{x}$ denotes the norm of an element $x \in \mathbb{F}_{q^n}$ w.r.t. \mathbb{F}_q. For every $a \in \mathbb{F}_q^*$, consider the partition of the points of the line RL, different from R and L, into subsets $J_a = \{ (-t, 0, 1) : t \in N_a \}$ and let $\pi'_1 \cong PG(2, q)$ be a subgeometry contained in \mathcal{C}_1.

Theorem 14. For every subset T of \mathbb{F}_q^* containing 1, the set

$$\mathcal{X} = (\mathcal{C} \setminus \bigcup_{a \in T} \mathcal{C}_a) \cup \bigcup_{a \in T} J_a$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.32
is an exterior set with respect to \(\pi_1' \).

Proof. The lines \(RP \) and \(LP \), with \(P \in \mathcal{C} \setminus (\bigcup_{a \in T} C_a \cup \{R, L\}) \), meeting \(\mathcal{C} \) exactly in two points, are external lines w.r.t. \(\pi_1' \).

Similarly, for every \(P \in C_b \) and \(P' \in C_{b'} \) with \(b, b' \in \mathbb{F}_q^* \setminus T \) the line \(PP' \) is external to \(\pi_1' \).

Finally, for every point \(P \in C_b \) with \(b \in \mathbb{F}_q \setminus T \) and \(P' \in J_a \) with \(a \in T \), the line \(PP' \) is external to \(\pi_1' \).

Indeed suppose, by way of contradiction, that the line \(PP' \) meets \(\pi_1' \) in a point \(S \) with coordinates \((x^{q^{2m}}, x^{q^n}, x)\). Let \(P = (\alpha^{q^{m+1}}, \alpha, 1) \) with \(N(\alpha) = b \) and let \(P' = (-t, 0, 1) \) with \(N(t) = a \). By calculating the determinant of the matrix \(M \) whose rows are the coordinates of the points \(S, P, P' \), we have that \(|M| = -tM_1 + \alpha M_1^{q^n} \), where \(M_1 \) is the cofactor of the element \(m_{3,1} \) of \(M \). Since \(S, P \) are distinct points, \(M_1 \neq 0 \), hence \(|M| = 0 \) if and only if \(t = \alpha M_1^{q^n-1} \), that is a contradiction since \(N(\alpha) = b \) while \(N(t) = a \) with \(a \neq b \).

From the previous theorem we have the following result.

Corollary 15. For all \(n \geq 3, q > 2 \), the vectors \(pv \in M_{3, n}(q) \), \(\rho \in \mathbb{F}_q^* \), whose corresponding points are in \(\mathcal{X} \), plus the zero vector, give a non-linear \((3 \times n, q, 2)\)-MRD code.

Remark 16. These codes have been generalized first, by using bilinear forms and the cyclic representation of PG\((n-1, q^n)\) by N. Durante and A. Siciliano in [11], to non-linear \((n \times n, q, n-1)\)-MRD codes. Later G. Donati and N. Durante generalized these codes in [9] by using \(\sigma \)-normal rational curves, which is a generalization of normal rational curves in PG\((d, q^n)\), to non-linear \(((d+1) \times n, q, d)\)-MRD codes, where \(d \leq n - 1 \).

Other applications of (degenerate or not) \(C_F^m \)-sets of PG\((2, q^n)\) are:

- **Conics of PG\((2, q^n)\), \(q \) even.** Indeed the affine part, plus the vertices, of a degenerate \(C_F^1 \)-set of PG\((2, q^n)\), \(q = 2 \) form a regular hyperoval.

- **Translation hyperovals of PG\((2, q^n)\), \(q \) is even.** Indeed the affine part, plus the vertices of a \(C_F^m \)-set of PG\((2, q^n)\), \(q = 2 \), \(m > 1 \), form a translation hyperoval.

- **Semifield flocks of a quadratic cone of PG\((3, q^n)\), \(q \) odd (and hence also translation ovoids of the parabolic quadric Q\((4, q^n)\), \(q \) odd).** Indeed, every semifield flock \(\mathcal{F} \) of a quadratic cone of PG\((3, q^n)\), \(q \) odd is associated with a scattered \(\mathbb{F}_q \)-linear set \(\mathcal{I}(\mathcal{F}) \) of internal points w.r.t. a non-degenerate conic \(\mathcal{C} \) of a plane PG\((2, q^n)\) of PG\((3, q^n)\). The known examples of semifield flocks of a quadratic cone of PG\((3, q^n)\) are the linear flock, the Kantor-Knuth, the Cohen-Ganley \((q = 3)\) and the sporadic semifield flock \((q = 3, n = 5)\). These semifield flocks give as set \(\mathcal{I}(\mathcal{F}) \) a point, a scattered \(\mathbb{F}_q \)-linear set of pseudoregulus type on a secant line to \(\mathcal{C} \), a component of a \(C_F^1 \) set of PG\((2, 3^n)\) and a component of a \(C_F^0 \)-set of PG\((2, 3^5)\), respectively.

See [10] for more details on these applications.
5 Non-degenerate σ-sesquilinear forms in $\mathbb{F}_{q^n}^3$

In this section we will determine the possible structure for the set of absolute points in $\text{PG}(2, q^n)$ of a correlation induced by a non-degenerate σ-sesquilinear form of $\mathbb{F}_{q^n}^3$. So consider the set of points $\Gamma : X_tAX^\sigma = 0$. These sets of points have been studied in several papers by B. Kestenband. For this reason the set of points of this section have been called Kestenband σ-conics in [10]. We will try to summarize what is known up to now. First recall some easy properties for the set Γ. For the sequel we can assume $\sigma \neq 1$, since if $\sigma = 1$, then Γ is always a (possibly degenerate) conic.

Proposition 17. Every line of $\text{PG}(2, q^n)$ meets $\Gamma : X_tAX^\sigma = 0$ in either 0, 1, 2 or $q+1$ points of an \mathbb{F}_q-subline.

Proof. From Proposition 8 we only have to show that Γ does not contain lines. Suppose, by way of contradiction, that Γ contains a line, say ℓ, then we can assume w.l.o.g. that $\ell : x_3 = 0$. Then the matrix A assumes the following shape:

$$A = \begin{pmatrix}
0 & 0 & a \\
0 & b & c \\
d & e & f
\end{pmatrix}$$

hence $\text{rank}(A) \leq 2$, a contradiction. \square

In the next two theorems let $\sigma : x \mapsto x^{q^n}$ with $(m, 2n+1) = 1$.

Theorem 18. Let $\Gamma : X_tAX^\sigma = 0$ be the set of absolute points of a correlation of $\text{PG}(2, q^{2n+1})$, $n > 0$, q odd. Then we find that $|\Gamma| \in \{q^{2n+1} + \epsilon q^{n+1} + 1 |\epsilon \in \{0, 1, -1\}\}$ and the set Γ depends on the number of points of Γ and points outside Γ fixed by the induced collineation $f_{A^{-1}A^\sigma, \sigma^2}$. The following holds:

- If $f_{A^{-1}A^\sigma, \sigma^2}$ fixes no points outside Γ, then $|\Gamma| = q^{2n+1} + 1$. Moreover $f_{A^{-1}A^\sigma, \sigma^2}$ fixes one point of Γ and Γ is projectively equivalent to:

$$x_3x_1^{\sigma} + x_2^{\sigma+1} + (x_1 + ex_2)x_3^\sigma = 0,$$

where $e^{q^{2n}} + e^{q^{n-1}} + \cdots + e + e^{q^2} \neq 0$.

- If $f_{A^{-1}A^\sigma, \sigma^2}$ fixes more than one point outside Γ, then $|\Gamma| = q^{2n+1} + 1$. Moreover, Γ is projectively equivalent to:

$$x_1^{\sigma+1} + x_2^{\sigma+1} + x_3^{\sigma+1} = 0,$$

the collineation $f_{A^{-1}A^\sigma, \sigma^2}$ fixes $\text{PG}(2, q)$ pointwise and hence it fixes the $q+1$ points of Γ on the subconic $x_1^2 + x_2^2 + x_3^2 = 0$ in $\text{PG}(2, q)$ and q^2 points of $\text{PG}(2, q) \setminus \Gamma$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27(2) (2020), #P2.32

11
• If \(f_{A_t^{-1}A^r,s^2} \) fixes one point outside \(\Gamma \), then \(\Gamma \) is projectively equivalent to:
\[
ax_1^{\sigma+1} + (bx_1 + cx_2)x_2^{\sigma} + dx_3^{\sigma+1} = 0,
\]
with \(a, b, c, d \neq 0 \). Moreover \(f_{A_t^{-1}A^r,s^2} \) fixes either 0, 1, 2 or \(q + 1 \) points of \(\Gamma \). In particular

- If \(f_{A_t^{-1}A^r,s^2} \) fixes either 0, 2 or \(q + 1 \) points of \(\Gamma \), then \(\epsilon = 0 \). In the last case the \(q + 1 \) points of \(\Gamma \) fixed by \(f_{A_t^{-1}A^r,s^2} \) are collinear.
- If \(f_{A_t^{-1}A^r,s^2} \) fixes 1 point of \(\Gamma \), then \(\epsilon \in \{-1, 1\} \).

Theorem 19. Let \(\Gamma : X_\ell AX^\sigma = 0 \) be the set of absolute points of a correlation of \(PG(2, q^{2n+1}) \), \(n > 0 \), \(q \) even. Then we find that \(|\Gamma| \in \{q^{2n+1} + cq^{n+1} + 1|\epsilon \in \{0, 1, -1\}\} \) and the set \(\Gamma \) depends on the number of points of \(\Gamma \) and points outside \(\Gamma \) fixed by the induced collineation \(f_{A_t^{-1}A^r,s^2} \). The following holds:

• If \(f_{A_t^{-1}A^r,s^2} \) fixes no points outside \(\Gamma \), then \(\epsilon \in \{-1, +1\} \). Moreover \(f_{A_t^{-1}A^r,s^2} \) fixes one point of \(\Gamma \) and \(\Gamma \) is projectively equivalent to:
\[
x_3x_1^{\sigma} + x_2^{\sigma+1} + (x_1 + ex_2)x_3^{\sigma} = 0,
\]
where \(c \) is even. The trinomial \(x^{q^{m+1}} + px + 1 \) can have one, two, \(q + 1 \) or no zero.

1. If it has one or \(q + 1 \) zeros, then \(\rho = 0 \) and the collineation \(f_{A_t^{-1}A^r,s^2} \) fixes \(PG(2, q) \) pointwise and hence it fixes the \(q + 1 \) points of \(\Gamma \) on the subline \(x_1 + x_2 + x_3 = 0 \) in \(PG(2, q) \) and \(q^2 \) points of \(AG(2, q) = PG(2, q) \setminus \Gamma \).
2. If it has two zeros, then the collineation \(f_{A_t^{-1}A^r,s^2} \) fixes 2 points of \(\Gamma \).
3. If it has no zeros, then the collineation \(f_{A_t^{-1}A^r,s^2} \) fixes no point of \(\Gamma \).

In the next theorems let \(\sigma : x \mapsto x^{q^m} \) with \((m, 2n) = 1 \).

Theorem 20. Let \(\Gamma : X_\ell AX^\sigma = 0 \), with \(A \) a diagonal matrix, be the set of absolute points of a correlation of \(PG(2, q^{2n}) \), \(n > 0 \). Then
\[
|\Gamma| \in \{q^{2n} + 1 + (-q)^{n+1}(q - 1), q^{2n} + 1 + (-q)^{n}(q - 1), q^{2n} + 1 - 2(-q)^n\}.
\]
Moreover,

• if \(|\Gamma| = q^{2n} + 1 + (-q)^{n+1}(q - 1) \), then \(\Gamma \) is projectively equivalent to
\[
x_1^{\sigma+1} + x_2^{\sigma+1} + x_3^{\sigma+1} = 0;
\]
• if $|\Gamma| = q^{2n} + 1 + (-q)^n(q - 1)$, then Γ is projectively equivalent to
 \[x_1^{\sigma+1} + x_2^{\sigma+1} + ax_3^{\sigma+1} = 0, \]
 with $a \notin \{x^{q+1} : x \in F_{q^{2n}}\}$;

• if $|\Gamma| = q^{2n} + 1 - 2(-q)^n$, then Γ is projectively equivalent to
 \[ax_1^{\sigma+1} + bx_2^{\sigma+1} + x_3^{\sigma+1} = 0, \]
 with $a, b, a/b \notin \{x^{q+1} : x \in F_{q^{2n}}\}$.

Theorem 21. Let $\Gamma : X_tAX^{\sigma} = 0$, with A a non-diagonal matrix, be the set of absolute points of a correlation of $\text{PG}(2, q^{2n})$, $n > 0$, q even. Then $|\Gamma| \in \{q^{2n} - (-q)^{n+1} + 1, q^{2n} - (-q)^n + 1, q^{2n} + 1\}$

Theorem 22. Let $\Gamma : X_tAX^{\sigma} = 0$, with A a non-diagonal matrix, be the set of absolute points of a correlation of $\text{PG}(2, q^{2n})$, $n > 0$, q odd. Then we can distinguish two cases.

1. Γ is projectively equivalent to
 \[rx_1^{\sigma+1} + \rho x_2^{\sigma} + sx_2^{\sigma+1} + x_3^{\sigma+1} = 0 \]
 for some r, ρ, s. In this case, the trinomial
 \[rx^{\sigma+1} + \rho x + s \tag{1} \]
 can have 0, 1, 2 or $q + 1$ roots. Moreover, the following holds
 \[|\Gamma| \in \{q^{2n} - (-q)^{n+1} + 1, q^{2n} - (-q)^n + 1, q^{2n} + 1\}. \]

2. Γ is projectively equivalent to
 \[x_1^{\sigma+1} + x_1x_2^{\sigma} + rx_2^{\sigma+1} + \tau x_2x_3^{\sigma} + sx_3^{\sigma+1} = 0 \]
 for some r, τ, s. Moreover $|\Gamma| \in \{q^{2n} \pm q^n + 1, q^{2n} + 1\}$.

In the first case,

• if Equation (1) has either $q + 1$ zeros or no zeros, then Γ is equivalent to a set, which is already studied in the diagonal case (Cor. 7, Prop. 29, 30 in [4]),

• if Equation (1) has one zero, then
 \[|\Gamma| \in \{q^{2n} - q^{n+1} + 1, q^{2n} + q^n + 1\} \text{ if } n \text{ is odd} \]
 \[|\Gamma| \in \{q^{2n} + q^{n+1} + 1, q^{2n} - q^n + 1\} \text{ if } n \text{ is even}, \]

• if Equation (1) has two zeros, then $|\Gamma| = q^{2n} + 1$.

For the results and the examples of this section we refer to the following papers by B.C. Kestenband [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
References

[1] S. Ball, Finite Geometry and Combinatorial Applications. London Mathematical Society Student Texts, Cambridge University Press, (2015).

[2] P.J. Cameron, Projective and polar spaces. University of London. Queen Mary and Westfield College, (1992).

[3] A. Cossidente, G. Marino, F. Pavese, Non-linear maximum rank distance codes. Des. Codes Cryptogr., 79 (3), (2016), 597–609.

[4] Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A 25, (1978), 226–241.

[5] P. Dembowski, Finite geometries. Berlin, Heidelberg, New York: Springer-Verlag, (1997), (reprint of the 1968 edition).

[6] G. Donati, N. Durante, Some subsets of the Hermitian curve. European J. Combin. 24 (2), (2003), 211–218.

[7] G. Donati, N. Durante, Baer subplanes generated by collineations between pencils of lines. Rendiconti del Circolo Matematico di Palermo. Serie II. Tomo LIV, (2005), 93–100.

[8] G. Donati, N. Durante, Scattered linear sets generated by collineations between pencils of lines. J. Algebraic Combin. 40 (4), (2014), 1121–1134.

[9] G. Donati, N. Durante, A generalization of the normal rational curve in PG(d, q^n) and its associated non-linear MRD codes. Des. Codes Cryptogr. 86 (6), (2018), 1175–1184.

[10] N. Durante, Geometry of sesquilinear forms. Notes of a course given at the Summer School FINITE GEOMETRY & FRIENDS, Brussels, (2019).

[11] N. Durante, A. Siciliano, Non-linear maximum rank distance codes in the cyclic model for the field reduction of finite geometries. Electron. J. Combin. 24 (2), (2017), #P2.33.

[12] K.W. Gruenberg, A.J. Weir, Linear Geometry. Graduate Texts in Mathematics, 49 (1st ed.), Springer-Verlag New York, (1977).

[13] T. Helleseth, A. Kholosha, x^{2^d+1} + x + a and related affine polynomials over GF(2^k). Cryptogr. Commun. 2, (2010), 85–109.

[14] D.R. Hughes, F.C. Piper, Projective planes. Graduate Texts in Mathematics, Vol. 6. Springer-Verlag, New York-Berlin, (1973).

[15] B.C. Kestenband, Correlations whose squares are perspectivities. Geom. Dedicata 33 (3), (1990), 289–315.

[16] B.C. Kestenband, The correlations with identity companion automorphism, of finite Desarguesian planes. Linear Algebra Appl. 304 (1-3), (2000), 1–31.

[17] B.C. Kestenband, The correlations of finite Desarguesian planes. I. Generalities. J. Geom. 77 (1-2), (2003), 61–101.
[18] B.C. Kestenband, The correlations of finite Desarguesian planes of even nonsquare order. *JP J. Geom. Topol.* 5 (1), (2005), 1–62.

[19] B.C. Kestenband, The correlations of finite Desarguesian planes. II. The classification (I). *J. Geom.* 82 (1-2), (2005), 91–134.

[20] B.C. Kestenband, The correlations of finite Desarguesian planes. III. The classification (II). *J. Geom.* 83 (1-2), (2005), 88–120.

[21] B.C. Kestenband, The correlations of finite Desarguesian planes. IV. The classification (III). *J. Geom.* 86 (1-2), (2006), 98–139.

[22] B.C. Kestenband, The correlations of finite Desarguesian planes of square order defined by diagonal matrices. *Linear Algebra Appl.* 423 (2-3), (2007), 366–385.

[23] B.C. Kestenband, Embedding finite projective geometries into finite projective planes. *Int. Electron. J. Geom.* 2 (2), (2009), 27–33.

[24] B.C. Kestenband, The correlations of finite Desarguesian planes of odd square order defined by upper triangular matrices with four nonzero entries. *JP J. Geom. Topol.* 10 (2), (2010), 113–170.

[25] B.C. Kestenband, The correlations of finite Desarguesian planes of even square order defined by upper triangular matrices with four nonzero entries. *JP J. Geom. Topol.* 16 (2), (2014), 127–152.

[26] M. Lavrauw, G. Van de Voorde, On linear sets on a projective line. *Des. Codes Cryptogr.* 56, (2010), 89–104.

[27] R. Lidl, H. Niederreiter, *Finite Fields.* (2nd ed.) Cambridge University Press, (1997).

[28] G. Lunardon, G. Marino, O. Polverino, R. Trombetti, Maximum scattered linear sets of pseudoregulus type and Segre Variety $S_{n,n}$. *J. Algebraic Combin.* 39 (2014), 807–831.

[29] J. Steiner, Systematische Entwicklung der Abhängigkeit Geometrische Gestalten von einander. Reimer, Berlin (1832).