Loopy annealing belief propagation for vertex cover and matching: convergence, LP relaxation, correctness and Bethe approximation

Marc Lelarge
INRIA-ENS
marc.lelarge@ens.fr

Abstract—For the minimum cardinality vertex cover and maximum cardinality matching problems, the max-product form of belief propagation (BP) is known to perform poorly on general graphs. In this paper, we present an iterative annealing BP algorithm which is shown to converge and to solve a Linear Programming relaxation of the vertex cover problem on general graphs. As a consequence, our annealing BP finds (asymptotically) a minimum fractional vertex cover on any graph. We also show that it finds (asymptotically) a minimum size vertex cover for any bipartite graph and as a consequence compute the matching number of the graph. Our approach is based on the Bethe variational interpretation of BP. We show that the Bethe free entropy is concave and that BP maximizes it. Using loop calculus, we also give an exact (also intractable for general graphs) expression of the partition function for matchings in terms of our BP messages which can be used to improve mean-field approximations.

I. INTRODUCTION

Loopy belief propagation (BP) [1] has been shown empirically to be effective in solving a wide range of hard problems in various fields [2], [3]. These algorithms were originally designed for tree-structured graphical models. Understanding their convergence and accuracy on general graphs remains an active research area.

In [4], the max-product BP algorithm is shown to find in pseudo-polynomial time a maximum weight matching in a bipartite graph when there is a unique such optimal matching. [5] and [6] generalize this result by establishing convergence and correctness of the max-product BP when the LP relaxation has a unique optimum and this optimum is integral. [6] also shows that when this condition is not satisfied then max-product BP will give useless estimates for some edges. By setting all the weights to one, the results of [5], [6] apply to our setting of maximum cardinality matching: max-product BP converges and is correct only when the graph has a unique maximum matching which is optimum for the LP problem.

For the vertex cover problem, a one-sided relation between LP relaxation and BP is established. [7] shows that for the maximum weight independent set problem, if the max-product BP algorithm (started from the natural initial condition) converges then it is correct and the LP problem has a unique integral solution. Since a subset of vertices is a vertex cover if and only if its complement is an independent set, by setting all the weights to one, results of [7] apply to the minimum cardinality vertex cover: the tightness of the LP relaxation is necessary for the max-product optimality but it is not sufficient.

We should stress that [5] and [6] deal with a generalization of the matching problem namely with b-matchings. Also [8] extends [4] and analyzes the max-product BP applied to the minimum-cost network flow problem. In [4], [5], [6], [2] or [8], a crucial assumption is required for convergence and correctness of BP: uniqueness of the optimum solution. For the minimum cardinality vertex cover and maximum cardinality matching problems, this assumption is very restrictive. To overcome this difficulty, we introduce annealing which was shown to solve the absence of corelation decay at zero temperature for the matching problem in [9], [10]. For the same reason, annealing ensures the convergence of our BP algorithm on any finite graph and allows us to select the right fixed point of the zero temperature (i.e. max-product) BP algorithm. As noted in [11], such a scheme will solve the LP relaxation of the combinatorial optimization problem.

A similar approach was proposed in [12] but no convergence results were given. Our paper shows rigorously that this approach is successful for the minimum vertex problem and the maximum matching problem. Also related to our approach is [13] which deals with minimum weight perfect matchings in complete bipartite graphs and shows that the Bethe free entropy is concave which easily implies that the same is true in our setting. The loop series expansion developed in [14] is also closely related to our work. We will give an exact derivation of the loop series for matching.

We present our results in the next Section. We first start in Section II-A by introducing the two combinatorial optimization problems studied in this paper: matching and vertex cover. We introduce our annealing BP and show its convergence for general graphs. We then introduce a simpler version of BP (corresponding to the standard max-product version) and relate it to our annealing BP. We show that it allows us to compute minimum fractional vertex cover for any graph. In Section II-B we show that for bipartite graphs, our algorithm computes a minimum vertex cover. In Section II-C, we use variational techniques to analyze BP and give an exact loop series expansion. In Section II-D we give the main idea of the proofs. We conclude in Section IV.

II. RESULTS

A. (Fractional) matching and vertex cover numbers

We consider a graph $G = (V, E)$. We denote by the same symbol ∂v the set of neighbors of node $v \in V$ and the set of edges incident to v. A matching is encoded by a binary
vector $B = (B_e, e \in E) \in \{0, 1\}^E$ defined by $B_e = 1$ if and only if the edge e belongs to the matching. We have for all $v \in V$, $\sum_{e \in \partial v} B_e \leq 1$. The size of the matching is given by $\sum_e B_e$. For a finite graph G, we define the matching number of G as $\nu(G) = \max \{\sum_e B_e\}$ where the maximum is taken over matchings of G. Similarly a vertex cover is encoded by a binary vector $C = (C_v, v \in V) \in \{0, 1\}^V$ defined by $C_v = 1$ if and only if the vertex v belongs to the vertex cover. We have for all $e = (uv) \in E$, $C_u + C_v \geq 1$. The size of the vertex cover is given by $\sum_v C_v$ and the vertex cover number of G is $\tau(G) = \min \{\sum_v C_v\}$ where the minimum is taken over vertex covers of G.

The matching number is the solution of the following binary Integer Linear Program (ILP):

$$\nu(G) = \max \sum_{e \in E} x_e \quad \text{s.t.} \quad \sum_{e \in \partial v} x_e \leq 1, \forall v \in V; x_e \in \{0, 1\},$$

and the vertex cover number is the solution of the following ILP:

$$\tau(G) = \min \sum_{v \in V} y_v \quad \text{s.t.} \quad y_u + y_v \geq 1, \forall (uv) \in E; y_v \in \{0, 1\},$$

The straightforward Linear Programming (LP) relaxation of these ILP is formed by replacing $x_e \in \{0, 1\}$ (resp. $y_v \in \{0, 1\}$) by $x_e \in [0, 1]$ (resp. $y_v \in [0, 1]$).

We define the fractional matching polytope:

$$FM(G) = \left\{ x \in \mathbb{R}^E, x_e \geq 0, \sum_{e \in \partial v} x_e \leq 1 \right\},$$

and the fractional matching number

$$\nu^*(G) = \max_{x \in FM(G)} \sum_{e \in E} x_e.$$ \hspace{1cm} (2)

Similarly, the fractional vertex cover number is

$$\tau^*(G) = \min_{0 \leq y_v \leq 1, y_u + y_v \geq 1, \forall (uv) \in E} \sum_{v} y_v.$$ \hspace{1cm} (3)

By linear programming duality, we have $\nu^*(G) = \nu^*(G)$ (see Section 64.6 in [15]). Note however that computing the matching number $\nu(G)$ can be done in polynomial time whereas determining the vertex cover number $\tau(G)$ is NP-complete (Corollary 64.1a in [15]).

We now define our associated BP message passing algorithm. We introduce the set \overline{E} of directed edges of G comprising two directed edges $u \rightarrow v$ and $v \rightarrow u$ for each undirected edge $uv \in E$. For $\overrightarrow{e} \in \overline{E}$, we denote by $- \overrightarrow{e}$ the edge with opposite direction. With a slight abuse of notation, we denote by ∂v the set of incident edges to $v \in V$ directed towards v. Our update rules depend on a parameter $\varepsilon > 0$ and are defined by $m^0_{\overrightarrow{e}} = 0$ and for $t \geq 0$ and all u, v neighbors in G:

$$m^t_{u \rightarrow v}(z) = \frac{z}{1 + \sum_{w \in \partial u \setminus v} m^t_{w \rightarrow u}(z)},$$ \hspace{1cm} (4)

where $\partial u \setminus v$ is the set of neighbors of v in G from which we removed v and with the convention that the sum over the empty set equals zero. We denote by $z \mathcal{R}_G$ the mapping sending $m^t(z) \in [0, \infty)^E$ to $m^{t+1}(z) = z \mathcal{R}_G(m^t(z))$. We also denote by $z \mathcal{R}_{\overrightarrow{e}}$ the local update rule 4: $m_{\overrightarrow{e}}^{t+1}(z) = z \mathcal{R}_{\overrightarrow{e}}(m_{\overrightarrow{e}}^t(z))$.

Theorem 1. For any finite graph G and $z > 0$, BP converges:

$$\lim_{t \rightarrow \infty} m^t_{\overrightarrow{e}}(z) = Y_{\overrightarrow{e}}(z).$$

Moreover as z tends to infinity, we have

$$\lim_{z \rightarrow \infty} \frac{\sum_{e \in E} Y_{\overrightarrow{e}}(z)Y_{\overleftarrow{e}}(z)}{z + \sum_{e \in E} Y_{\overrightarrow{e}}(z)Y_{\overleftarrow{e}}(z)} = \nu^*(G) = \tau^*(G).$$

Example 1. Consider the cycle with 3 nodes. Then, $Y(z)$ is the same for all edges and has to satisfy $Y(z) = z(1 + Y(z))^{-1}$ so that we get $Y(z) = 1/4 + z - 1/2$. Finally, we find that the expression above equals $\nu^*(G) = 3/2$.

We now define a much simpler message passing algorithm and a simpler expression for $\nu^*(G)$. Given a set of $\{0, 1\}$-valued messages I, we define a new set of $\{0, 1\}$-valued messages by:

$$J_{u \rightarrow v} = 1 \left(\sum_{e \in \partial u \setminus v} I_{w \rightarrow u} = 0 \right),$$ \hspace{1cm} (5)

with the convention that the sum over the empty set equals zero. We denote by \mathcal{P}_G the mapping sending $I \in \{0, 1\}^E$ to $J = \mathcal{P}_G(I)$ and as above, $\mathcal{P}_{\overrightarrow{e}}$ denotes the local update rule. Note that \mathcal{P}_G corresponds to the max-product algorithm presented in [6] with all weights equal to one. We define for each $v \in V$ and $I \in \{0, 1\}^E$,

$$F_v(I) = 1 \land \sum_{u \in \partial v} I_{u \rightarrow v} + \left(1 - \sum_{u \in \partial v} I_{v \rightarrow u} \right)^+,$$ \hspace{1cm} (6)

where $a \land b = \min(a, b)$ and $(a)^+ = \max(a, 0)$. The second part of the following theorem corresponds to Proposition 3.5 in [16] applied in our setting.

Theorem 2. For any graph G, if $I = \mathcal{P}_G \circ \mathcal{P}_G(I)$ then the vector $(F_v(I), v \in V)$ is a fractional vertex cover of G. Moreover, we have

$$\nu^*(G) = \inf_{I} \sum_{v \in V} F_v(I),$$ \hspace{1cm} (7)

where the infimum is over the solutions of $I = \mathcal{P}_G \circ \mathcal{P}_G(I)$.

By [6], if the LP relaxation (2) has a unique optimum and this optimum is integral, then iterating the map \mathcal{P}_G will allow us to find the unique solution to the fixed point equation $I = \mathcal{P}_G(I)$. Indeed in this case, [6] shows that the following rule allows us to find the maximum matching from the messages I: put edge e in the matching if and only if $I_{\overrightarrow{e}} + I_{\overleftarrow{e}} = 2$. Note that we can then derive a minimum vertex cover from a maximum matching in linear time (Theorem 16.6 in [15]).

We now show that our BP algorithm allows us to find I achieving the minimum in (7) and a minimum fractional vertex cover without any restriction on G.
Proposition 1. Let Φ^γ be the $\{0,1\}$-valued messages defined by $I^\gamma_v = 1$ if and only if $\lim_{z \to \infty} Y^\gamma(z) = \infty$. Then $(F_v(\Phi^\gamma)/2, v \in V)$ is a minimum fractional vertex cover, i.e. $2\nu^*(G) = \sum_v F_v(\Phi^\gamma)$.

Example 2. Consider the cycle with 3 nodes. Then $I^\gamma_v = 1$ for all oriented edges and $F_v(\Phi^\gamma) = 1$ for all $v \in V$. Note that Φ^γ is not the only fixed point to $\Phi = P_G \circ P_G(\Phi)$, the all zeros vector is also a solution. However the map P_G has no fixed point and max-product BP as defined in [6] does not converge.

B. Bipartite graphs

We now specialize our results to bipartite graphs. If the graph is bipartite then the fractional matching polytope is indeed the matching polytope, i.e. the convex hull of the incidence vectors of matchings (Corollary 18.1(b) in [15]) so that $\nu^*(G) = \nu(G)$, By König’s matching theorem (Theorem 16.2 in [15]), we also have in this case $\nu(G) = \tau(G)$. To summarize, a direct application of Theorem 1 gives:

Corollary 1. If G is bipartite, our BP algorithm computes the matching number which is equal to the vertex cover number.

We now show that for any bipartite graph $G = (V = U \cup W, E)$, our BP algorithm allows us to define a minimum vertex cover. For any $I \in \{0,1\}^E$, we consider the following subset $V(I)$ of vertices:

$\begin{align*}
\text{for } u \in U, & \quad u \in V(I) \iff \sum_{v \in \partial u} I_{v \rightarrow u} \geq 1, \\
\text{for } w \in W, & \quad w \in V(I) \iff \sum_{v \in \partial w} P_{v \rightarrow w}(I) \geq 2.
\end{align*}$

(8) (9)

Proposition 2. For any bipartite graph, the subset of vertices $V(I^\gamma)$ is a minimum vertex cover, where I^γ was defined in Proposition 7.

Example 3. Consider the cycle with 4 nodes. Again, we have $Y(z) = \sqrt{1/4 + z - 1/2}$ and the full vector of ones is a fixed point of $P_G \circ P_G$. We see that if we apply the results of previous section, we have $F_v(\Phi^\gamma) = 1$ for all $v \in V$ and we obtain a minimum fractional vertex cover. The above procedure (8) and (9) gives instead a minimum vertex cover. Note also that P_G has no fixed point so that the max-product BP of [6] does not converge.

C. Results at positive temperature

In this section, we consider general graphs and our BP algorithm for finite z. We introduce the family of probability distributions on the set of matchings parametrised by a parameter $z > 0$:

$\mu^\gamma_G(B) = \frac{z \sum_e B_e}{P^\gamma_G(z)}$, (10)

where $P^\gamma_G(z) = \sum_B z \sum_e B_e \prod_{v \in V} Y^\gamma(z) = 1$ $(\sum_{e \in \partial v} B_e \leq 1)$. For any finite graph, when z tends to infinity, the distribution μ^γ_G converges to the uniform distribution over maximum matchings so that we have

$\nu(G) = \lim_{z \to \infty} \sum_{e \in E} \mu^\gamma_G(B_e = 1)$. (11)

We define the internal energy $U(z)$ and the canonical entropy $S(z)$ as:

$U_G(z) = -\sum_{e \in E} \mu^\gamma_G(B_e = 1)$,

$S_G(z) = -\sum_B \mu^\gamma_G(B) \ln \mu^\gamma_G(B)$. (12)

The free entropy $\Phi_G(z)$ is then defined by

$\Phi_G(z) = -U_G(z) \ln z + S_G(z)$. (13)

A more conventional notation in the statistical physics literature corresponds to an inverse temperature $\beta = \ln z$. A simple computation shows that:

$\Phi_G(z) = \frac{\ln P_G(z)}{\beta}$. (14)

Let $D(G)$ be the set of distribution over matchings, i.e.

$\mu \in D(G)$ if and only if $\mu(B)$ is a matching in $G = 1$. Let $\mu_G \in D(G)$. For any $e \in E$, we define $\mu_{G,e}$ the marginal of μ_G restricted to e, i.e.

$\mu_{G,e}(1) = 1 - \mu_{G,e}(0) = \mu_G(B_e = 1) = \sum_{B, B_e = 1} \mu_G(B)$. (15)

Similarly for any $v \in V$, we define $\mu_{G,\partial v}$ the marginal of μ_G restricted to $\partial v \in E$. The Bethe internal energy $U^B[\mu_G]$ and the Bethe entropy $S^B[\mu_G]$ are then defined by

$U^B[\mu_G] = -\sum_{e \in E} \mu_{G,e}(1)$,

$S^B[\mu_G] = -\sum_{e \in E} \mu_{G,e}(b_e) \ln (\mu_{G,e}(b_e)) + \sum_{e \in E, b_e \in \{0,1\}} \mu_{G,e}(b_e) \ln (\mu_{G,e}(b_e))$. (16)

The Bethe free entropy $\Phi^B[\mu_G; z]$ is then defined by

$\Phi^B[\mu_G; z] = -U^B[\mu_G] \ln z + S^B[\mu_G]$. (17)

It is well known that if G is a tree, i.e. acyclic graph, then we have $\Phi^B[\mu^\gamma_G; z] = \Phi_G(z)$ (see [2]).

We first reformulate the Bethe free entropy function.

Proposition 3. Let $\mu_G \in D(G)$ be a distribution over matchings. Define $x_e = \mu_{G,e}(1)$. Then we have $x \in FM(G)$ defined by (11) and

$U^B[\mu_G] = -\sum_{e \in E} x_e$,

$S^B[\mu_G] = \frac{1}{2} \sum_{e \in E} \left\{ \sum_{e \in \partial v} -x_e \ln x_e + (1 - x_e) \ln (1 - x_e) \right\} - \frac{1}{2} \left(\sum_{e \in \partial v} x_e \right) \ln \left(1 - \sum_{e \in \partial v} x_e \right) \left(1 - \sum_{e \in \partial v} x_e \right)$,

with the standard convention $0 \ln 0 = 0$. (18)

We then have
Proposition 4. The function $S^B(x)$ defined by

$$S^B(x) = \frac{1}{2} \sum_{v \in V} \left\{ \sum_{e \in \partial v} -x_e \ln x_e + (1-x_e) \ln(1-x_e) \right\}$$

is non-negative concave on $FM(G)$ defined by $\{ \}$.

We also define $U^B(x) = -\sum_{e \in E} x_e$ and $\Phi^B(x; z) = -U^B(x) \ln z + S^B(x)$. Note that for any $\mu_G \in D(G)$, we have,

$$\Phi^B(\mu_G; z) = \Phi^B(x; z),$$

for x defined by $x_e = \mu_{[G,e]}(1)$.

Proposition 5. For $z > 0$, let $x(z) \in \mathbb{R}^E$ be defined by

$$x_e(z) = \frac{Y(z)}{z} (\gamma(z) \gamma(z) + \gamma(-\gamma(z))) \in (0, 1).$$

Then we have:

$$\sup_{x \in FM(G)} \Phi^B(x; z) = \Phi^B(x(z); z).$$

In words, our BP algorithm is shown to maximize the Bethe free entropy (a standard fact, see $\{\}$) which in our case is concave.

We now give a reparametrization of the Gibbs distribution. For any vector $B \in \{0, 1\}^E$, we denote by $B_{\partial v} \in \{0, 1\}^{\partial v}$ its restriction to components in ∂v. We first define the marginal probabilities

$$\mu_{\partial v}(B_{\partial v}) = \left(1 - \sum_{e \in \partial v} x_e(z) \right)^{1-\sum_{e \in \partial v} x_e(z)} \prod_{e \in \partial v} x_e(z)^{B_e},$$

and

$$\mu_e(B_e) = x_e(z)^{B_e} (1-x_e(z))^{1-B_e},$$

where $x_e(z)$ is defined by $\{\}$. Given a graph $G = (V, E)$ and some set $F \subset E$, we define $d_F(v)$ as the degree of node v in the subgraph induced by F. A generalized loop is any subset F such that $d_F(v) \neq 1$ for all $v \in V$. We define $V(F)$ as the number of vertices covered by F, i.e. vertices with $d_F(v) \geq 1$.

Theorem 3. For any graph G, we have for $z > 0$,

$$\mu_G^z(B) = \frac{1}{Z} \prod_{v \in V} \mu_{\partial v}(B_{\partial v}) \prod_{e \in E} \mu_e(B_e).$$

with

$$Z = 1 + \sum_{F \subset E} (-1)^{|F|} \prod_{v \in V} (d_F(v) - 1) \prod_{e \in F} x_e(z) \prod_{e \in \partial v} 1 - x_e(z),$$

where only generalized loops F lead to non-zero terms in the sum of $\{\}$. Moreover, we have

$$\ln Z = \Phi_G(z) - \Phi^B(x(z); z).$$

Note that if G is a tree, we recover that $Z = 1$ and that our BP algorithm computes exactly the marginals of the Gibbs distribution defined by $\{\}$. However for general graphs, BP algorithm is not exact and equation $\{\}$ gives the exact correction term as a loop serie expansion $\{\}$. Explicit computation of these loops is in general intractable. Indeed counting the total number of matchings $\exp (\phi_G(1))$ falls into the class of $\#P$-complete problem. However equation $\{\}$ can be used to approximate such quantities by accounting for a small set of significant loop corrections.

III. PROOFS

A. Convergence of BP

Given a set of messages X, we define a new set of messages Y by:

$$Y_{u \rightarrow v} = \frac{1}{1 + \sum_{w \in \partial u \setminus v} Y_{w \rightarrow u}},$$

with the convention that the sum over the empty set equals zero. We denote by \mathcal{R}_G the mapping sending $X \in [0, \infty)^E$ to $Y = \mathcal{R}_G(X)$. We also denote by \mathcal{R}_G^z the local update rule $\{\}$: $Y_{\partial v} = \mathcal{R}_G^z(X)$. Note that the mapping $z \mathcal{R}_G^z$ defined in $\{\}$ is simply the mapping multiplying by z each component of the output of the mapping \mathcal{R}_G (making the notation consistent).

Proposition 6. (i) For any finite graph G and $z > 0$, the fixed point equation:

$$X = z \mathcal{R}_G(X)$$

has a unique attractive solution denoted $Y(z) \in (0, +\infty)^E$.

(ii) The function $z \mapsto Y(z)$ is non-decreasing and the function $z \mapsto Y(z)/z$ is non-increasing for $z > 0$.

(iii) If in addition, G is a finite tree, then for all $e \in E$, the law of B_e under μ_G^z is a Bernoulli distribution with

$$\mu_G^z(B_e = 1) = \frac{Y(z) R_e (Y(z))}{1 + Y(z) R_e (Y(z))}.$$

Comparisons between vectors are always componentwise. Note that the right-hand side of $\{\}$ does not depend on the choice of orientation of the edge e as $Y(z)$ solves $\{\}$. Before proving this proposition, let define for all $v \in V$, the following function of the messages $(Y, z \in \partial v)$,

$$D_v(Y) = \sum_{e \in \partial v} Y_{\partial v} (Y(z)) / (1 + Y_{\partial v} (Y(z))).$$

In view of point (iii) of Proposition 6, we see that if the graph G is a tree, $D_v(Y(z))$ is simply the probability for vertex v to be covered by a matching distributed according to μ_G^z. In particular, when G is a tree, we can rewrite $\{\}$ as

$$\nu(G) = \lim_{z \rightarrow \infty} \frac{1}{2} \sum_{v \in V} D_v(Y(z)).$$
Proof: For the first point, we follow the proof of Theorem 3 in [17]. Let \(z > 0 \) and define the sequence of messages:
\[
X^0(z) = 0 \quad \text{and for } t \geq 0,
\]
\[
X^{t+1}(z) = \frac{z}{1 + \sum_{w \in \partial u \setminus u} X^t_{w \rightarrow u}(z)}.
\] (21)

The sequence \(X^t(z) \) (resp. \(X^{t+1}(z) \)) is non-decreasing (resp. non-increasing). We define \(\lim_{t \rightarrow \infty} \uparrow X^t(z) = X^-(z) \) and \(\lim_{t \rightarrow \infty} \downarrow X^{t+1}(z) = X^+(z) \). For any \(Y(z) \) fixed point of (16), a simple induction shows that
\[
0 \leq X^t(z) \leq X^-(z) \leq Y(z) \leq X^+(z) \leq X^{t+1}(z) \leq z.
\]

We now prove that \(X^-(z) = X^+(z) \) finishing the proof of the first point. Note that we have \(X^t(z) = zR_G(X^-(z)) \) and \(X^{t+1}(z) = zR_G(X^+(z)) \). In particular for any \(z > 0 \), we have \(\sum_{v \in V} D_v(X^+(z)) = X^-(z) \) so that in view of (18), we have
\[
\sum_{v \in V} D_v(X^+(z)) = \sum_{v \in V} D_v(X^-(z)).
\] (22)

We see from (19) that for each \(v \in V \), \(D_v \) is an increasing function of the \((X^v, \bar{c}^v \in \partial v) \), so that (22) together with \(X^-(z) \leq X^+(z) \) imply the desired result.

We now prove that \(z \mapsto \frac{X^t(z)}{z} \) and \(z \mapsto X^t(z) \) are respectively non-increasing and non-decreasing, this implies proof (ii). We prove it by induction on \(t \): consider \(z < z' \). If \(X^t(z) < X^t(z') \) then by (21) we have \(X^t(z) \geq X^t(z') \) and if \(X^t(z) > X^t(z') \) then again by (21), we have \(X^{t+1}(z) > X^{t+1}(z') \).

We consider now the case where \(G \) is a tree. For any directed edge \(u \rightarrow v \), we define \(T_{u \rightarrow v} \) as the subtree containing \(u \) and \(v \) and obtained from \(G \) by removing all incident edges to \(v \) except the edge \(uv \). A simple computation shows that
\[
\frac{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=1})}{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=0})} = \frac{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=1})}{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=0})}, \] (23)

This directly implies that for a finite tree, \(Y_{u \rightarrow v}(z) = \frac{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=1})}{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=0})} \). Then a simple computation shows that
\[
\frac{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=1})}{\mu^{2}_{T_{u \rightarrow v}}(B_{uv=0})} = \frac{Y_{u \rightarrow v}(z)Y_{v \rightarrow u}(z)}{z},
\]
which directly implies (17).

\[B. \text{ Zero temperature limit} \]

In order to compute the matching number, we must let \(z \) tend to infinity in \(Y(z) = zR_G(Y(z)) \). Iterating once this recursion, we get \(Y(z) = zR_G(zR_G(Y(z))) \). Note that we have for any \(z > 0 \),
\[
zR_G(zX) = \frac{1}{z^{-1} + \sum_{w \in \partial u \setminus u} X_{w \rightarrow u}}.
\]

Hence we can define for any \(X \in [0,1]^E \), \(Q_G(X) = \lim_{z \rightarrow \infty} \uparrow zR_G(zX) \in [0,\infty]^E \) by its local update rule:
\[
Q_{u \rightarrow v}(X) = \frac{1}{\sum_{w \in \partial u \setminus u} X_{w \rightarrow u}}, \] (23)

with the conventions \(1/0 = \infty \) and the sum over the empty set equals zero (in particular, if \(u \) is a leaf of the graph \(G \), then \(Q_{u \rightarrow v}(X) = \infty \)).

By point (ii) of Proposition 6, we can define \(\lim_{z \rightarrow \infty} \uparrow Y(z) = Y \in [0,\infty]^E \) and \(\lim_{z \rightarrow \infty} \downarrow Y(z) = X \in [0,1]^E \). Then, we have
\[
X = R_G(Y) \quad \text{and, } \quad Y = Q_G(X).
\] (24)

We provided we can extend the maps \(R_G \) and \(Q_G \) continuously from their respective domains \([0, \infty]^E \) and \([0,1]^E \) to their compactifications \([0, \infty]^E \) and \([0,1]^E \) respectively. This can be done easily as follows: if there exists \(w \in \partial u \setminus v \) with \(Y_{w \rightarrow u} = \infty \), then we set \(R_{u \rightarrow v}(Y) = 0 \); if \(X_{w \rightarrow u} = 0 \) for all \(w \in \partial u \setminus v \), then we set \(Q_{u \rightarrow v}(X) = \infty \).

Lemma 1. Let \(\lim_{z \rightarrow \infty} \uparrow Y(z) = Y \in [0,\infty]^E \). Then \(Y \) is the smallest solution to the fixed point equation \(Y = Q_G \circ R_G(Y) \).

proof: Let \(Z = Q_G \circ R_G(Z) \). For any \(z > 0 \), we have for any \(X \in [0,1]^E, zR_G(zX) \leq Q_G(X) \) so that an easy induction implies that \(X^t(z) \leq Z \) where \(X^t(z) \) is the sequence defined in the proof of Proposition 6. Letting first \(t \) and then \(z \) tend to infinity, allows us to conclude.

Note that thanks to (19), we can extend the functions \(D_v(Y) \) continuously on \([0,\infty]^E \) by setting \(D_v(Y) = 1 \) as soon as there exists \(Y_{\bar{c}^v} = \infty \) for \(\bar{c}^v \in \partial v \). To summarize, we have for each \(v \in V \),
\[
\lim_{z \rightarrow \infty} D_v(Y(z)) = D_v(Y) \leq 1, \] (25)

where \(Y \) is the smallest solution to the fixed point equation \(Y = Q_G \circ R_G(Y) \) that can be written as:
\[
Y_{u \rightarrow v} = \frac{1}{\sum_{w \in \partial u \setminus v} 1 + \sum_{w \in \partial u \setminus v} X_{w \rightarrow u}}, \] (26)

with the conventions \(1/0 = \infty \) and \(1/\infty = 0 \) and the sum over the empty set equals zero.

Lemma 2. We have for any \(Y \in [0,\infty]^E \) and \(v \in V \),
\[
D_v(Y) = \sum_{\bar{c}^v \in \partial v} Y_{\bar{c}^v} R_{\bar{c}^v}(Y) \frac{1}{1 + \sum_{w \in \partial u \setminus v} Y_{w \rightarrow v}} - 1 (Y_{\bar{c}^v} < \infty) + 1 (\exists \bar{c}^v \in \partial v, Y_{\bar{c}^v} = \infty), \] (27)

where the first sum on the right-hand side should be understood as a sum over \(\bar{c}^v \in \partial v \) with \(Y_{\bar{c}^v} < \infty \).

Proof: We only need to consider the case where there exists \(\bar{c}^v \in \partial v \) such that \(Y_{\bar{c}^v} = \infty \). By the definition of the lemma before the statement, we have in this case \(D_v(Y) = 1 \). Hence we need to prove that the first term in the right-hand side of (27) vanishes. This follows from the following fact: let \(\bar{c}^v \in \partial v \setminus \bar{c}^v \), then \(Y_{\bar{c}^v} = \infty \) implies that \(R_{\bar{c}^v}(Y) = 0 \).

For the messages \(Y \in [0,\infty]^E \) (resp. \(X \in [0,1]^E \)) defined in (24), we define the \((0,1)\)-valued messages \(Y^1 \) (resp. \(X^1 \)) by \(\sum_{u \rightarrow v} 1(Y_{u \rightarrow v} = \infty) \) (resp. \(I_{X_{u \rightarrow v}} = 1(X_{u \rightarrow v} > 0) \)). It follows directly from (24) and the definition of \(P_G \) that
\[
1^1 = P_G(I^1), \quad \text{and, } \quad 1^1 = P_G(I^1). \] (28)
We now prove that for any finite graph G, the right-hand term in (29) is a function of I^X and I^Y only.

For any $Y \in [0, \infty]$, we define $I(Y) = 1(Y = \infty)$ and still denote by I the function acting similarly on vectors componentwise, i.e. if $I = I(Y)$ then $I^\tau = I(Y^\tau)$.

Lemma 3. For $Y \in [0, \infty]$, we define $Y' = Q_G \circ R_G(Y)$. If $Y'' \leq (\text{resp.} \geq) Y$, then

$$\sum_{v \in V} D_v(Y) \geq (\text{resp.} \leq) \sum_{v \in V} F_v(I(Y')),$$

where F_v was defined in (6).

Proof: Suppose $Y' \leq Y$, then using Lemma 2 we get

$$\sum_{v \in V} D_v(Y) \geq \sum_{v \in E} Y'_v R_{-\tau}(Y) \frac{1}{1 + Y'_e R_{-\tau}(Y)} 1(Y'_e < \infty) \geq V + \sum_{v \in V} 1(\exists \tau \in e, Y'_e = \infty).$$

For the first term A, denote $X = R_G(Y)$ so that $Y' = Q_G(X)$. Then we have

$$A = \sum_{v \in E} Q_{-\tau}(X) X_{-\tau} \frac{1}{1 + Q_{-\tau}(X) X_{-\tau}} 1(Q_{-\tau}(X) < \infty)$$

$$= \sum_{v \in E} Q_{-\tau}(X) X_{-\tau} \frac{1}{1 + Q_{-\tau}(X) X_{-\tau}} 1(Q_{-\tau}(X) < \infty)$$

$$= \sum_{v \in V} \sum_{\tau \in \partial v} X_{-\tau}(X) \frac{1}{1 + X_{-\tau}(X)} 1(Q_{-\tau}(X) < \infty).$$

We now prove that

$$B_v = \left(1 - \sum_{\tau \in \partial v} I_{-\tau}(Y')\right)^+ \geq 1.$$

First note that if $J(X)$ is defined by $J_{-\tau}(X) = 1(X_{-\tau} > 0)$, then we have $P_G(J(X)) = I(Y')$. Hence if $\sum_{\tau \in \partial v} I_{-\tau}(Y') = 0$, then $\exists w \neq w'$ both in ∂v with $X_{w,w'} > 0$. This in turn implies that $0 < Q_{-\tau}(X) < \infty$ for all $\tau \in \partial v$, so that in this case we have

$$B_v = \sum_{\tau \in \partial v} X_{-\tau}(X) \frac{1}{Q_{-\tau}(X)^{-1} + X_{-\tau}} = 1.$$

Note now that if $B_v > 0$, there must exists $\tau \in \partial v$ such that $X_{-\tau} > 0$ and $Q_{-\tau}(X) < \infty$ and this last constraint implies that there exists $\tau' \neq \tau \in \partial v$ with $X_{-\tau'} > 0$. In particular, we have $B_v = 1$ and $\sum_{\tau \in \partial v} I_{-\tau}(Y') = 0$. This finished the proof of (29). The lemma then follows.

We are now ready to state our first main result for finite graphs:

Proposition 7. For any finite graph G, we have

$$\sum_{v \in V} D_v(Y) = \lim_{z \to \infty} \sum_{v \in V} D_v(Y(z)) = \inf_{I} \sum_{v \in V} F_v(I),$$

where the infimum is over the solutions of $I = P_G \circ P_G(I)$.

Proof: Let $Y = \lim_{z \to \infty} Y(z)$ and recall that we denoted $I^Y = I(Y)$ so that $I^Y = P_G \circ P_G(I^1)$ by (28). By Lemma 3 and (25), we have

$$\lim_{z \to \infty} \sum_{v \in V} D_v(Y(z)) = \sum_{v \in V} D_v(Y) = \sum_{v \in V} F_v(I^Y).$$

We need to prove that if $I = P_G \circ P_G(I)$ then we have $\sum_{v \in V} F_v(I) \geq \sum_{v \in V} D_v(Y)$. For any such I, we define W^0 as follows:

$$W^0 = \left\{ \begin{array}{ll} \infty & \text{if } I^\tau = 1 \\ 0 & \text{otherwise.} \end{array} \right.$$

Then let $W^{k+1} = Q_G \circ R_G(W^k)$ for $k \geq 0$. A simple induction shows that $I(W^{k+1}) = P_G \circ P_G(I(W^k)) = I$ for all $k \geq 0$. In particular, $W^0 \leq W^1$ and again by induction, we see that the sequence $\{W^k\}_{k=0}^\infty$ is non-decreasing and we denote by W^1 its limit. Applying Lemma 3 to W^1, we get

$$\sum_{v \in V} D_v(W^1) \leq \sum_{v \in V} F_v(I).$$

Taking the limit $k \to \infty$, we obtain

$$\sum_{v \in V} D_v(W^1) \leq \sum_{v \in V} F_v(I).$$

Moreover Y being the smallest solution to the fixed point equation $Y = R_G \circ R_G(Y)$, we have $Y \leq W^1$ and using the fact that D_v is increasing, we get

$$\sum_{v \in V} D_v(Y) \leq \sum_{v \in V} D_v(W^1) \leq \sum_{v \in V} F_v(I),$$

which concludes the proof.

We now prove

Lemma 4. If $I = P_G \circ P_G(I)$, then $(F_v(I)/2, v \in V)$ is a fractional vertex cover.

Proof: We need to prove that for all $(uv) \in E$, $F_u(I) + F_v(I) \geq 2$. This follows easily from the fact that if $\sum_{w \in \partial u} I_{w-u} = 0$ then we have $I_{w-u} = 0$ for all $w \in \partial v$ and hence $(1 - \sum_{w \in \partial v} I_{v-w})^+ = 1$. Hence we have

$$F_u(I) + F_v(I) \geq \sum_{w \in \partial u} I_{w-u} + \sum_{w \in \partial v} I_{w-v}$$

$$+ 1 \left(\sum_{w \in \partial u} I_{w-u} = 0 \right) + 1 \left(\sum_{w \in \partial v} I_{w-v} = 0 \right) \geq 2.$$

In the rest of this subsection, the graph $G = (U \cup W, E)$ is assumed to be bipartite. The following lemma shows that V^1 is a vertex cover.

Lemma 5. For any $I = P_G \circ P_G(I)$, the set $V(I)$ defined by (5) and (9) is a vertex cover.

Proof: Consider $u \in U$, $w \in W$ and $(uw) \in E$. We denote $J = P_G(I)$ so that $I = P_G(J)$. The fact that $u \notin V(I)$
implies that \(J_{u \rightarrow w} = 1 \) and since \(I_{w \rightarrow u} = 0 \), there exists \(v \in \partial u \setminus u \) such that \(J_{u \rightarrow w} = 1 \) so that \(w \in V(I) \). Similarly if \(w \notin V(I) \) then \(\sum_{v \in \partial u} J_{u \rightarrow w} \leq 1 \). Hence if \(J_{u \rightarrow w} = 1 \), then \(I_{w \rightarrow u} = 1 \) and if \(J_{u \rightarrow w} = 0 \) then there exists \(v \in \partial u \setminus u \) with \(I_{w \rightarrow u} = 1 \). So in both cases, \(w \in V(I) \).

Lemma 6. Let \(I \) achieving \(\inf I \sum_{v \in V} F_v(I) \) where the infimum is over the solutions of \(I = P_G \circ P_G(I) \). Then, the size of the set \(V(I) \) is \(\frac{1}{2} \sum F_v(I) \).

Proof: Again, we denote \(J = P_G(I) \) so that \(I = P_G(J) \).

First note that \((1 - \sum_{\varphi \in \partial v} J_{\varphi \rightarrow v})^+ = 1 \left(\sum_{\varphi \in \partial v} J_{\varphi \rightarrow v} \geq 2 \right) \). Hence we have \(\sum F_v(I) = A + B \), with

\[
A = \sum_{u \in U} \left(1 \wedge \sum_{u \in \partial u} I_{u \rightarrow w} \right) + \sum_{u \in W} \left(\sum_{u \in \partial w} J_{u \rightarrow w} \geq 2 \right),
\]

\[
B = \sum_{u \in W} \left(1 \wedge \sum_{u \in \partial w} I_{u \rightarrow w} \right) + \sum_{u \in U} \left(\sum_{u \in \partial w} J_{u \rightarrow w} \geq 2 \right).
\]

Clearly \(A \) is the size of the set \(V(I) \), so we need only to show that \(A = B \). Note that \(A \) depends only on messages form \(I \) from nodes in \(W \) to nodes in \(U \) and \(B \) depends only on the remaining messages in \(I \). Assume that \(A < B \) and consider

\[
B' = \sum_{u \in W} \left(1 \wedge \sum_{u \in \partial w} J_{u \rightarrow w} \right) + \sum_{u \in U} \left(\sum_{u \in \partial u} J_{u \rightarrow u} \right).
\]

Note that we have

\[
1 \wedge \sum_{u \in \partial w} J_{u \rightarrow w} = \left(1 - \sum_{u \in \partial w} I_{u \rightarrow w} \right)^+ = 1 \left(\sum_{u \in \partial w} J_{u \rightarrow w} \geq 2 \right).
\]

In particular we have \(B' \leq A < B \). Moreover if \(K \) is such that for any \(w \in W \) and \(u \in U \), \(K_{w \rightarrow u} = I_{w \rightarrow u} \), and \(K_{u \rightarrow w} = J_{u \rightarrow w} \), then we have \(\sum F_v(K) = A + B' \) and \(K = P_G \circ P_G(K) \) contradicting the minimality of \(I \).

C. Positive temperature

We now prove Proposition 3. For \(\mu_G \in D(G) \), we have \(\mu_G(\sum_{e \in \partial v} B_e \leq 1) = 1 \) so that by the linearity of expectation, \(\sum_{e \in \partial v} \mu_G(e) \leq 1 \). We now prove the concavity of the Bethe entropy, Proposition 5. For \(k \in \mathbb{N} \), we define \(\Delta^k = \{ x \in \mathbb{R}^k, x_i \geq 0, \sum_{i=1}^k x_i \leq 1 \} \).

Lemma 7. Let \(g : \Delta^k \rightarrow \mathbb{R} \) be defined by

\[
g(x) = - \sum_{i=1}^k x_i \ln x_i + \sum_{i=1}^k (1 - x_i) \ln (1 - x_i) - 2 \left(1 - \sum_{i=1}^k x_i \right) \ln \left(1 - \sum_{i=1}^k x_i \right).
\]

For \(k \geq 1 \), \(g \) is concave. Moreover, we have

\[
\frac{\partial g}{\partial x_i} = \ln \left(\frac{1 - \sum_{j=1}^k x_j^2}{x_i (1 - x_i)} \right).
\]

Proof: From Theorem 20 in [13], we know that the function

\[
h(x) = - \sum_{i=1}^k x_i \ln x_i + \sum_{i=1}^k (1 - x_i) \ln (1 - x_i) - \left(1 - \sum_{i=1}^k x_i \right) \ln \left(1 - \sum_{i=1}^k x_i \right) + \sum_{i=1}^k x_i \ln \left(\sum_{i=1}^k x_i \right)
\]

is non-negative and concave on \(\Delta^k \). We have

\[
\frac{\partial g}{\partial x_i} = h(x) + H \left(\sum_{i=1}^k x_i \right),
\]

where \(H(p) = - p \ln p - (1 - p) \ln (1 - p) \) is the entropy of a Bernoulli random variable and is concave in \(p \).

We now prove Proposition 3. For \(e = (uv) \in E \) and \(x \in \Delta^k \) (the interior of \(\Delta^k \)), we have

\[
\frac{\partial \Phi_B(x; z)}{\partial x_e} = - \ln z + \ln \left(\frac{(1 - \sum_{e \in \partial v} x_f (1 - \sum_{e \in \partial u} x_f)}{x_e (1 - x_e)} \right).
\]

Hence, we have \(\frac{\partial \Phi_B(x; z)}{\partial x_e} = 0 \) if and only if

\[
x_e (1 - x_e) = z \left(1 - \sum_{e \in \partial v} x_f \right) \left(1 - \sum_{e \in \partial u} x_f \right).
\]

(32)

Note that \(\sum_{f \in \partial u} x_f (z) = P_E(Y(z)) \), so that we have by (19)

\[
\left(1 - \sum_{f \in \partial v} x_f (z) \right) = \left(1 - \sum_{f \in \partial v} \frac{Y_f (z)}{Y_{e \rightarrow v}(z)} \right) \frac{1}{1 + \sum_{f \in \partial u} \frac{Y_f (z)}{Y_{e \rightarrow v}(z)}}
\]

and the formula for \(S^B[\mu_G] \) follows.

We now give a lemma implying the concavity of the Bethe entropy, Proposition 5. For \(k \in \mathbb{N} \), we define \(\Delta^k = \{ x \in \mathbb{R}^k, x_i \geq 0, \sum_{i=1}^k x_i \leq 1 \} \).
and using the fact that $\mathbf{Y}(z) = zR_G(\mathbf{Y}(z)$, we get
\[
x_e(z) = \frac{Y_{u \rightarrow v}(z)}{1 + \sum_{w \in \partial u} Y_{w \rightarrow u}(z)} = \frac{Y_{v \rightarrow u}(z)}{1 + \sum_{w \in \partial u} Y_{w \rightarrow u}(z)}.
\]
Hence, evaluating (32) at $x_e(z)$, we get
\[
x_e(z)(1 - x_e(z)) \frac{Y_{u \rightarrow v}(z)Y_{v \rightarrow u}(z)}{z} = x_e(z)^2,
\]
so that
\[
x_e(z) = \frac{Y_{u \rightarrow v}(z)Y_{v \rightarrow u}(z)}{z}
\]
which follows from the definition of $x_e(z)$ in (12). Proposition 5 follows.

We also note that the following equality (which will be used later) is true for $x(z)$ defined by (12):
\[
x_e(z)(1 - x_e(z)) = \left(1 - \sum_{e' \in \partial u} x_{e'}(z)\right) \left(1 - \sum_{e' \in \partial v} x_{e'}(z)\right)
\]
(D. Proofs of the main results of Sections II-A and II-B)

We now prove Theorems 1 and 2. First by Proposition 6(i), we have $\lim_{t \rightarrow \infty} m^U_G(z) = Y^F_G(z)$. Moreover since $\mathbf{Y}(z) = zR_G(\mathbf{Y}(z)$, we have by (13):
\[
\sum_{e \in E} \frac{Y^U_e(z)Y^U_e(z)}{z + Y^U_e(z)Y^U_e(z)} = \frac{1}{2} \sum_{v \in \mathcal{V}} D_v(\mathbf{Y}(z)).
\]
Hence by Proposition 7, we have
\[
\lim_{z \rightarrow \infty} \sum_{e \in E} \frac{Y^U_e(z)Y^U_e(z)}{z + Y^U_e(z)Y^U_e(z)} = \inf_{I \in \mathcal{P}_G \circ \mathcal{P}_G(\mathcal{I})} \frac{\sum_{v \in \mathcal{V}} F_v(I)}{2}
\]
where the infimum is over the solutions of $I = \mathcal{P}_G \circ \mathcal{P}_G(\mathcal{I})$. So that by Lemma 4, we have
\[
\lim_{z \rightarrow \infty} \sum_{e \in E} \frac{Y^U_e(z)Y^U_e(z)}{z + Y^U_e(z)Y^U_e(z)} \geq \tau^*(G) = \nu^*(G).
\]
The other inequality follows from the definition:
\[
\nu^*(G) = \sup_{x \in \mathcal{PF}(G)} -U^B(x) \geq -U^B(x(z)) = \sum_{e} x_e(z).
\]
This finishes the proof of Theorem 1.

The first statement of Theorem 2 is exactly Lemma 4 and the second statement is Proposition 7, Proposition 1 follows from (30) and Lemma 4. Proposition 2 follows from Lemmas 5, 6 and the fact that \mathcal{P}^*_G achieves the minimum in this last lemma (see Proposition 1).

E. Loop series expansion

In this section, we prove Theorem 3. The fact that μ^{z_G} can be written as (13) (called tree-based reparameterization in [2]) follows from a direct application of the definitions.

To simplify notation, we write in the proofs x_e instead of $x_e(z)$.

Lemma 8. For any $v \in \mathcal{V}$, $z > 0$, we have
\[
\frac{\partial_v \mu_e(B_e)}{\prod_{e \in \partial v} \mu_e(B_e)} = 1 - \sum_{S \subseteq \partial v} (-1)^{|S|} (|S| - 1) \prod_{e \in S} B_e - x_e(z) 1 - x_e(z).
\]

Proof: Note that if $B_f = 1$, the left-hand side is equal to $\prod_{e \neq f} (1 - x_e)^{-1}$, while if $\sum_{e \in \partial v} B_e = 0$, it is equal to $\prod_{e \neq f} (1 - x_e)$. We need to check that the right-hand side agrees in these two cases. Let consider the case $B_f = 1$, then the right-hand side (denoted R) equals:
\[
R = 1 - \sum_{|S| \geq 1, f \notin S} (-1)^{|S|} (|S| - 1) \prod_{e \in S} \frac{x_e}{1 - x_e}
\]
\[
= 1 - \sum_{|S| \geq 1, f \notin S} (-1)^{|S|+1} \prod_{e \in S} \frac{x_e}{1 - x_e}
\]
\[
= 1 + \sum_{|S| \geq 1, f \notin S} \prod_{e \in S} x_e \prod_{e' \notin S, e' \neq f} (1 - x_e') \prod_{e \neq f} (1 - x_e)
\]
\[
= \prod_{e \neq f} (1 - x_e)
\]
A similar computation shows the second case. ■

The following lemma shows (14).

Lemma 9. We have
\[
Z = 1 - \sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} \prod_{e \in F} \left(\prod_{v \in \mathcal{V}} (d_F(v) - 1) \prod_{e \in F} x_e(z) \prod_{e \in \partial v} \mu_e(B_e)\right).
\]

Proof: By definition, we have
\[
Z = \sum_B \prod_{e \in B} \mu_e(B_e) \prod_{v \in \mathcal{V}} \prod_{e \in \partial v} \mu_e(B_e).
\]
By Lemma 8 we have
\[
P := \prod_v \prod_{e \in \partial v} \mu_e(B_e)
\]
\[
= \prod_v \left(1 + \sum_{S \subseteq \partial v} (-1)^{|S| - 1} (|S| - 1) \prod_{e \in S} B_e - x_e(z) \prod_{e \in \partial v} \mu_e(B_e)\right).
\]
Z can be seen as an expectation of P where the B_e are independent Bernoulli random variables with parameter x_e. In particular expanding P, we see that only the terms $(B_e - x_e)^2$ will contribute to its expectation so that we get
\[
Z = 1 + \sum_{\emptyset \neq F \subseteq E} \prod_v \left(\prod_{e \in F} \left(\prod_{v \in \mathcal{V}} (d_F(v) - 1) \prod_{e \in F} \frac{B_e - x_e(z)}{1 - x_e} \prod_{e \in \partial v} \mu_e(B_e)\right)\right) \prod_{e \in F} x_e(1 - x_e)
\]
\[
= 1 + \sum_{\emptyset \neq F \subseteq E} (-1)^{|F|} \prod_v \left(\prod_{e \in F} (d_F(v) - 1) \prod_{e \in F} \frac{x_e(z)}{1 - x_e}\right)
\]
where in the last claim, we used $\prod_v (-1)^{d_F(v)} = 1$. ■

The following lemma shows the last statement in Theorem 3.

Lemma 10. We have
\[
\ln Z = \Phi_G(z) - \Phi^B(x(z); z).
\]
Proof: We first compute

\[
e^{B(z)} = z^{-U(B)} \prod_{v} \left(1 - \sum_{e \in \partial v} x_e \right)^{-(1-\sum_{e \in \partial v} x_e)}
\]

\[
\prod_{v} \left(\prod_{e \in \partial v} x_e^{e_x} (1-x_e)(1-x_e)/2 \right)^{\frac{1}{2}}
\]

\[
= z^{\sum_{e} e_x} \prod_{e} x_e (1-x_e)^{1-x_e}
\]

\[
\prod_{v} \left(1 - \sum_{e \in \partial v} x_e \right)^{-(1-\sum_{e \in \partial v} x_e)}
\]

We now use the relation (33), to get:

\[
e^{B(z)} = \prod_{v} \frac{z^{\frac{1}{e_x}} \prod_{e} x_e (1-x_e)^{1-x_e}}{(1-x_e)^{b_e}-1}.
\]

Again using (33), we obtain

\[
\prod_{v} G_{e} = \prod_{v} \left(1 - \sum_{e \in \partial v} x_e \right)^{-(1-\sum_{e \in \partial v} x_e)}
\]

IV. Conclusion

We introduced an annealing BP algorithm for the vertex cover and matching problems and showed its convergence, its relation to LP relaxation and conditions for correctness. In contrast to previous results of this kind, we do not rely on the a priori uniqueness of the solution to the optimization problem. In view of the recent results [17] and [18], our approach should extend to more complex settings: b-matching, capacitated matching. Another direction worth investigating is the question of the convergence time of our algorithm that we left open (techniques used in [19] seems relevant).

Acknowledgement

The author acknowledges the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-11-JS02-005-01 (GAP project).

References

[1] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy approximations and generalized belief propagation algorithms,” IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2282–2312, 2005. [Online]. Available: [http://dx.doi.org/10.1109/TIT.2005.850085]

[2] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and variational inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[3] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599–618, 2001.

[4] M. Bayati, D. Shah, and M. Sharma, “Max-product for maximum weight matching: convergence, correctness, and LP duality,” IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 1241–1251, 2008.

[5] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina, “Belief propagation for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer solutions,” SIAM J. Discrete Math., vol. 25, no. 2, pp. 989–1011, 2011.

[6] S. Sanghavi, D. Malafouris, and A. Willsky, “Belief propagation and LP relaxation for weighted matching in general graphs,” IEEE Trans. Inform. Theory, vol. 57, no. 4, pp. 2203–2212, 2011.

[7] S. Sanghavi, D. Shah, and A. S. Willsky, “Message passing for maximum weight independent set,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 4822–4834, 2009.

[8] D. Gamarnik, D. Shah, and Y. Wei, “Belief propagation for min-cost network flow: convergence and correctness,” Oper. Res., vol. 60, no. 2, pp. 410–428, 2012.

[9] C. Bordenave, M. Lelarge, and J. Salez, “Matchings on infinite graphs,” Probability Theory and Related Fields, pp. 1–26, 2012.

[10] M. Lelarge, “Bypassing correlation decay for matchings with an application to k-satisfiability,” in Information Theory Workshop (ITW), 2013 IEEE. IEEE, 2013, pp. 1–5.

[11] A. E. Gelfand, J. Shin, and M. Chertkov, “Belief propagation for linear programming,” in ISIT. IEEE, 2013, pp. 2249–2253.

[12] M. Chertkov, “Exactness of belief propagation for some graphical models with loops,” CoRR, vol. abs/0801.0341, 2008.

[13] P. O. Vontobel, “The Bethe permanent of a nonnegative matrix,” IEEE Trans. Inform. Theory, vol. 59, no. 3, pp. 1866–1901, 2013.

[14] M. Chertkov and V. Y. Chernyak, “Loop calculus in statistical physics and information science,” Phys. Rev. E (3), vol. 73, no. 6, pp. 065 102, 4, 2006.

[15] A. Schrijver, Combinatorial optimization. Polyhedra and efficiency., ser. Algorithms and Combinatorics. Berlin: Springer-Verlag, 2003, vol. 24, Chapters 1–38.

[16] M. Lelarge, “A new approach to the orientation of random hypergraphs,” in SODA, Y. Rabani, Ed. SIAM, 2012, pp. 251–264.

[17] J. Salez, “Weighted enumeration of spanning subgraphs in locally tree-like graphs,” Random Structures & Algorithms, 2012.

[18] M. Leconte, M. Lelarge, and L. Massoulié, “Convergence of multivariate belief propagation, with applications to cuckoo hashing and load balancing,” in SODA, S. Khanna, Ed. SIAM, 2013, pp. 35–46.

[19] M. Sharify, S. Gaubert, and L. Grigori, “Solution of the optimal assignment problem by diagonal scaling algorithms,” ArXiv e-prints, Apr. 2011.