Abstract

In this work we focus on the transmission dynamics of Visceral strains of leishmania, using mathematical model with two latent compartments in human. From the governing differential equations of the model, we find the reproductive number \(R_0 \); the number of secondary infection and its biological interpretation. Using Routh-Hurwitz criteria on upper bound matrix, the threshold condition, for stability of the Disease Free State, is calculated. Finally we show that the disease free equilibrium is globally asymptotically stable if \(R_0 < 1 \).

Keywords: Leishmaniasis; Basic reproductive number; Mathematical model; Local and global stability

Introduction

Visceral leishmaniasis is a vector-borne disease of humans and other mammals. This disease is caused by parasites of the Leishmania donovani complex. There are two main forms of visceral leishmania: (1) zoonotic visceral leishmaniais (ZVL), which affects mainly young children and the domestic dog as its principal reservoir and (2) anthroponotic visceral leishmanaisis (AVL), this affects people of all ages, and infectious sand y transmit it from human to human via biting [1]. Visceral leishmaniasis (VL) is severe and fatal. The average incubation period is 2-6 months; however it may vary from 10 days to one year [2,3]. Some of the patients recovered from V L, develops Post kala-Azar dermal leishmania with in the interval of 6 months to 3 years [4]. The vector latent period is assumed roughly to be 3 to 7 days [5,6].

No doubt leishmania control is challenging because the control of both sandflies and the reservoir is di cult. The failure rate of treatment is high due the two factors. Clinical structure of disease, the response of human immune system and the drug resistance acquired by the species [7].

Motivated from Hashim et al. [8] and Shillor et al. [9], the authors did not consider Homogenous population. We in our work have considered the homogenous mixing of the population. The Reproductive number so calculated, depends upon the densities of humans, reservoirs and vectors, which highlights the importance of homogenous mixing. Also we have applied new concept for calculating threshold condition, for disease free state as developed by Kamgang and Sallet [10].

In this paper, we present a mathematical model for the transmission dynamic of leishmaniasis. The model of 10 compartments includes 2 exposed classes of human infected with visceral leishmaniasis and PKDL. These exposed classes were not considered previously in the models. We find positive invariant region and use next generation matrix method to find the basic reproduction number \(R_0 \). Using upper bound matrix \(A(I) \) of the matrix \(A(X) \), of the infected classes, the threshold condition is found. Comparing \(R_0 \) and we find three values for \(R_0 \). On the basis of these values, we discuss the dynamical behavior of the model. Finally we show the global stability of the disease free equilibrium, and the existence of endemic equilibrium.

Model Formulation

In this section we present the formulation of the model.

We divide the compartmental model of human, reservoir and vector populations into different classes. The human population consist of sub-classes \(S(t), E_1, I_1, P, R_1, E_{12} \). Here \(S(t) \) represent the class of susceptible human, \(E_1 \) is the VL infected class, \(E_{12} \) is the class recovered from VL and exposed to PKDL. \(P \) is the human class with PKDL and \(R_1 \) is the human recovered class, \(I_1 \) is the human infectious with VL.

The total human population \(N_h \) is

\[N_h = S(t) + E_1 + I_1 + E_{12} + P + R_1 \]

The vector population is divided into two sub-classes \(S_v(t) \) and \(I_v(t) \), also the reservoir class is divided into \(S_r(t) \) and \(I_r(t) \).

\[
N_v(t) = S_v(t) + I_v(t); \ N_r(t) = S_r(t) + I_r(t)
\]

After susceptible person, being bitten by infectious vector, he/she can’t transmit leishmania virus immediately. We call this person as infected (exposed). When a susceptible vector \(S_v(t) \), bite the infectious person, the vector moves from susceptible compartment to the infectious compartment \(I_v(t) \) [11].

The interaction of human, reservoir and vector population is represented in the flowchart as shown in Figure 1.
The dynamical system for human, reservoir and vector population is given by

\[
\begin{align*}
\dot{S} &= \Gamma_h - (\lambda_h + \mu_h) S_h \\
\dot{E}_1 &= \lambda_h S_h - ((k_2 + \mu_h) E_1 \\
\dot{I}_1 &= k_2 E_1 - ((\gamma_1 + \delta_1 + \mu_h) I_1 \\
\dot{E}_{12} &= (1 - a_1) \gamma_1 I_1 - ((k_3 + \mu_h) E_{12} \\
\dot{P}_2 &= k_3 E_{12} - ((\gamma_2 + \beta_2 + \delta_2 + \mu_h) P_2 \\
\dot{R} &= a_1 \gamma_1 I_1 + ((\gamma_2 + \beta_2) P_2 - (\mu_h) R \\
\dot{S}_r &= \gamma_r - \lambda_r S_r - \mu_r S_r \\
\dot{I}_r &= \lambda_r S_r - \mu_r I_r \\
\dot{S}_v &= \gamma_v - \lambda_v S_v - \mu_v S_v \\
\dot{I}_v &= \lambda_v S_v - \mu_v I_v.
\end{align*}
\]

(1)

Mathematical Analysis of the Model

In this section, we discuss invariant region, the disease free equilibrium point and reproductive number R_0 of the system (1).

Invariant region

We have assumed all the parameters as nonnegative. Since the model is concerned with living population, therefore the state variables are assumed to be nonnegative at $t=0$. The dynamic of overall population is given by the following differential equations.

\[
\begin{align*}
\dot{N}_h &= \Gamma_h - \mu_h N_h - (\delta_1 + \delta_2) P_2 - (\mu_h) R \\
\dot{N}_r &= \Gamma_r - \mu_r N_r, \\
\dot{N}_v &= \Gamma_v - \mu_v N_v.
\end{align*}
\]

If the human population is disease free, i.e. $I_1 = P_2 = 0$, then equation (2) reduces to the form;

\[
\dot{N}_h = \Gamma_h - \mu_h N_h.
\]

Equilibrium in this case is

\[
N_{h0} = \frac{\Gamma_h}{\mu_h}.
\]

From equation (2) and the fact that $(\delta_1 + \delta_2) N_h^* \geq \delta_1 I_1 + \delta_2 (P_2)$, we have

\[
\Gamma_h - \mu_h N_h - (\delta_1 + \delta_2) N_h \leq N_h \leq \Gamma_h - \mu_h N_h
\]

(7)

The lower bond for equation (7) is given by

\[
N_{h0} = \Gamma_h - \mu_h N_h - (\delta_1 + \delta_2) N_h.
\]

The equilibrium of equation (8) is

\[
N_{h0} = \frac{\Gamma_h}{\mu_h + \delta_1 + \delta_2}.
\]

With the initial condition

Notation

Notation	Description of the parameters.
c_2	Progression rate of VL in sand y(from human)
a	Sandflies biting rate
Γ_h	Recruitment rate of human
Γ_r	Recruitment rate of sandfly
Γ_v	Recruitment rate of reservoir
μ_h	Natural mortality rate of human
μ_v	Natural mortality rate of Sandflies
μ_r	Natural mortality rate of Reservoirs
γ_2	PKDL recovery rate after treatment
γ_1	Developing PKDL rate after treatment
β_1	PKDL natural healing rate
c	Progression rate of VI in sandfly (from reservoir)
b	Progression rate of VI in reservoir (from sandfly)
η_1	Treatment rate of VL
δ_1	VL induced death rate
k_1	1/k_1 is incubation period of vL
k_2	1/k_2 is incubation period of PKDL
δ_2	PKDL induced death rate
b_2	Progression rate of VL in human (from sandfly)

Table 1: Description of the parameters.
\[N_i(0) = N_{0_i} \quad (10) \]

If \(N_j \) and \(N_v \) denote the solution of equation (5) and equation (8), then any solution of equation (2), satisfy
\[N_i \leq N_{0_i} \leq N_{v_i} \quad (11) \]

Consider the biological feasible region \(\Omega \) given by:
\[\Omega = \left(S_h, E_1, I_1, P_2, R_1, S_r, I_r, S_v, I_v \right) \in R^6, \quad N_S \leq \frac{\Gamma_S}{\mu_s}, \quad N_{I_1} \leq \frac{\Gamma_{I_1}}{\mu_{I_1}}, \quad N_r \leq \frac{\Gamma_r}{\mu_r}, \quad N_v \leq \frac{\Gamma_v}{\mu_v}. \]

From equation (2), using standard comparison theorem, we have
\[N_h \leq N_h(0)e^{-\mu_i(t)} + \frac{\Gamma_h}{\mu_h} \left(1 - e^{-\mu_i(t)} \right). \]
So
\[N_h \to \frac{\Gamma_h}{\mu_h} \text{ as } t \to \infty. \]

Similarly
\[N_r \to \frac{\Gamma_r}{\mu_r} \quad \text{and} \quad N_v \to \frac{\Gamma_v}{\mu_v} \text{ and } t \to \infty. \]

Hence positivity is invariant domain, and the model is epidemiologically and mathematically well posed.

Let us de ne a new region \(G \) as
\[G = \left\{ X \in \Omega, N_h \leq N_{h_1}, N_r \leq \frac{\Gamma_r}{\mu_r}, N_v \leq \frac{\Gamma_v}{\mu_v} \right\}, \]
where
\[X = (S_h, E_1, I_1, P_2, R_1, S_r, I_r, S_v, I_v)^T. \]

Clearly \(G \) is the sub region of \(\Omega \). In light of equation (3), equation (4) and equation (11), it is reasonable to work on \(G \) instead of \(\Omega \).

Disease free equilibrium

The disease free equilibrium of the model (1) is given by:
\[X_0 = \left(\frac{\Gamma_h}{\mu_h}, 0, 0, 0, 0, \frac{\Gamma_r}{\mu_r}, 0 \right), \]

Reproductive number

The number of secondary infections occurring in completely susceptible population by introducing an infectious individual to the population is called reproductive number \(R_0 \) [12].

To find the global stability of the disease free equilibrium, we use next generation method for \(R_0 = \left(-FV^{-1} \right)^T \), [13]. Where is spectral radius? And
\[F = \begin{bmatrix}
0 & 0 & 0 & 0 & m_1 & -a_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & m_1 & m_0 & m_2 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad V = \begin{bmatrix}
a_1 & k_2 & -a_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
k_1 & -a_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & d_2 & -a_3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & k_3 & -a_4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\mu_v & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\mu_r & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\mu_s & 0 & 0 & 0 \\
\end{bmatrix}. \]

Here
\[m_1 = \frac{ab}{\mu_h}, \quad m_2 = \frac{ab}{\mu_r}, \quad m_3 = \frac{ab}{\mu_v}, \quad m_0 = \frac{ab}{\mu_s}, \quad m_4 = \frac{ab}{\mu_s}, \quad m_5 = \frac{ab}{\mu_s}, \quad m_6 = \frac{ab}{\mu_s}, \quad m_7 = \frac{ab}{\mu_s}, \quad m_8 = \frac{ab}{\mu_s}, \quad m_9 = \frac{ab}{\mu_s}. \]

With
\[a_1 = k_2 + \mu_v, \quad a_2 = g_1 + \delta_t + \mu_h, \quad a_3 = k_3 + \mu_h, \quad a_4 = \gamma_2 + \beta_t + \delta_2 + \mu_h \]
\[d_2 = (1 - \alpha) \gamma_1. \]

After simplification, we get reproduction number
\[R_0 = \left[\frac{\mu_r \mu_s}{\mu_h} \right]^{1/2}. \]

We can further simplify to get
\[R_0 = \sqrt{R_a + R_b} \]
where
\[R_a = R_1 R_2, \quad R_b = R_3 R_4. \]

The term \(R_1 \) indicates that if sandfly is infectious and the reservoir is susceptible, the contact would result the transmission of \(V_l \) from sand \(y \) to reservoir. The term \(R_2 \) indicates the transmission of \(V_l \) from reservoir to sand \(y \). So the term \(R_3 \) indicates the transmission of \(V_l \) between sandfly and reservoir. Similarly the term \(R_4 \) indicates the transmission of \(V_l \) between human and sand fly. The term \(R_a \) and \(R_b \) both denote the transmission of visceral strains of leishmania. There is no term representing the transmission of PKDL because it is the silent complication of \(V_l \). When a susceptible vector bites human/reservoir infected with PKDL, the vector does not transmit PKDL but transmit \(V_l \) to the next victim. So \(R_b \) is biologically sensible.

Stability Analysis

In this section, we discuss the relation between additional threshold number and basic \(R_0 \) reproductive number \(R_0 \), to find the global stability of the disease free equilibrium, and existence of endemic equilibrium of the system (1).

Proposition: The disease free equilibrium is locally asymptotically stable if \(R_0 < 1 \) and unstable if \(R_0 > 1 \).

Proof: For the proof of this result verify the reference [13].

Global stability of the disease free equilibrium

To find the global stability of the disease free equilibrium of the system (1), we state some definitions [9,10].

Definition 1: An \(m \times m \) matrix, for \(m \geq 2 \) is called irreducible if for any proper sub-set \(I \) of \(\{1, 2, \ldots, m\} \), \(\exists \ p \in I \) and \(q \notin I \) such that \(A_{p,q} \neq 0 \).

Definition 2: The matrix \(M \) is said to be Metzler matrix if \(A_{p,q} \geq 0 \) for \(p
eq q \).

Definition 3: The compact set \(M \subset \Omega \) is called stable for the dynamical system defined on \(\Omega \) if for every trajectory initiated from a point in \(M \) is in \(W \), for all \(t \geq 0 \). Here \(U \) and \(W \) are neighborhoods of \(M \).

Definition 4: A compact set \(N \subset D \) is called an attractor for a dynamical system defined on \(D \) if there exist a nbhd \(X \) of \(N \) such that for every point \(X \in \mathbb{R}^n \), there exists a time \(t \geq 0 \), such that every trajectory initiated at \(x \) belongs to \(Y \) for \(t > t_0 \). The largest set \(X \) is called a basin of attraction.

If \(X = D \) the set \(N \) is then called global attractor. A set \(N \) which is stable and a global attractor is called globally asymptotically stable.

Theorem: The set \(G \) is globally asymptotically stable for the dynamical system (1) defined on \(\Omega \).
be initial conditions associated with equation (3) and equation (4). And for \(\epsilon > 0 \), \(B_\epsilon(G) \) be defined as:

\[
B_\epsilon(G) = \{ x \in \Omega : \exists t \in \mathbb{R}, \epsilon < N_h < N_h + \epsilon, N_i - \epsilon < N_i < N_i + \epsilon, N_v - \epsilon < N_v < N_v + \epsilon \},
\]

where

\[
X = (S_h, E_1, I_1, E_{12}, P_2, R_1, S_r, I_r, S_v, I_v).
\]

Since the collection \(\{ B_\epsilon(G), \epsilon > 0 \} \) is a complete neighborhood system of the compact set \(G \). So X and Y as discussed in above definitions, also belong to this collection.

Consider an arbitrary \(\epsilon > 0 \). The points \(N_h, N_i, N_v \) and \(N_h - N_i + \epsilon \) are asymptotically stable equilibria of the dynamical system defined by equation (3), equation (4), equation (5), and equation (8) on \((0, \infty) \).

Hence there exists \(t_\epsilon > 0 \) such that for all \(t > t_\epsilon \) we have

\[
N_h - \epsilon < N_i < N_h + \epsilon, \quad N_i - \epsilon < N_v < N_v + \epsilon, \quad N_v - \epsilon < N_v < N_v + \epsilon,
\]

\[
\Rightarrow X = (S_h, E_1, I_1, E_{12}, P_2, R_1, S_r, I_r, S_v, I_v) \in B_\epsilon(G).
\]

Thus \(G \) is global attractor.

Next to show that \(G \) is stable

On the basis of monotonicity of \(N_h, N_i, N_v \), we have

\[
N_h - \epsilon < N_i < N_h + \epsilon, \quad N_i - \epsilon < N_v < N_v + \epsilon,
\]

\[
N_v - \epsilon < N_v < N_v + \epsilon.
\]

Thus we have shown that any solution of the model (1), starting from a point in \(B_\epsilon(G) \), remains in \(B_\epsilon(G) \). So \(G \) is stable. Thus \(G \) is globally asymptotically stable. Hence we can now study the system (1) on \(G \), instead of \(\Omega \).

Theorem: Let a positive system be defined on set \(\Omega \subseteq \mathbb{R}^n \) and let \(\Omega \subseteq \mathbb{R} \) be globally asymptotically stable. Let \(M \) be the largest invariant subset of \(\Omega \). Then \(M \) is globally asymptotically stable on \(\Omega \). Particularly if \(M = \{ x \} \) where \(x^* \) is equilibrium point of the system with basin of attraction containing \(\mathcal{E} \). Then \(x^* \) is GAS for the system on \(\Omega \).

Proof: For the proof of the theorem verify the reference [9] theorem (5). To prove the global stability of the disease free equilibrium, we use theorem (4.3) of [10].

For this let

\[
X = (S_h, R_1, S_r, E_1, I_1, E_{12}, P_2, I_r, S_v, I_v)^T.
\]

Now for global asymptotic stability of the disease free equilibrium of the system (1) on smaller set \(G \), we decompose \(X \) as, \(X_s \) and \(X_I \) of noninfected and infected, humans reservoirs and sandies, such that

\[
X_I = \left(E_1, I_1, E_{12}, P_2, I_r, I_v \right)^T.
\]

Thus we have shown that any solution of the model (1), starting from any point \(x^* \), remains in \(B_\epsilon(G) \). Hence we can now study the system (1) on \(G \), instead of \(\Omega \).

For any initial point of the model (1), \(N_h = 0, N_i = 0, N_v = 0 \), which belong to this collection.

\[
X = (S_h, E_1, I_1, E_{12}, P_2, R_1, S_r, I_r, S_v, I_v) \in B_\epsilon(G).
\]

Thus \(G \) is global attractor.

Next to show that \(G \) is stable.

On the basis of monotonicity of \(N_h, N_i, N_v \), we have

\[
N_h - \epsilon < N_i < N_h + \epsilon, \quad N_i - \epsilon < N_v < N_v + \epsilon,
\]

\[
N_v - \epsilon < N_v < N_v + \epsilon.
\]

Thus we have shown that any solution of the model (1), starting from any point in \(B_\epsilon(G) \), remains in \(B_\epsilon(G) \). So \(G \) is stable. Thus \(G \) is globally asymptotically stable. Hence we can now study the system (1) on \(G \), instead of \(\Omega \).

Theorem: Let a positive system be defined on set \(\Omega \subseteq \mathbb{R}^n \) and let \(\mathcal{E} \subseteq \Omega \) be globally asymptotically stable. Let \(M \) be the largest invariant subset of \(\mathcal{E} \). Then \(M \) is globally asymptotically stable on \(\mathcal{E} \). Particularly if \(M = \{ x \} \) where \(x^* \) is equilibrium point of the system with basin of attraction containing \(\mathcal{E} \). Then \(x^* \) is GAS for the system on \(\mathcal{E} \).

Proof: For the proof of the theorem verify the reference [9] theorem (5). To prove the global stability of the disease free equilibrium, we use theorem (4.3) of [10].

For this let

\[
X = (S_h, R_1, S_r, E_1, I_1, E_{12}, P_2, I_r, S_v, I_v)^T.
\]

Now for global asymptotic stability of the disease free equilibrium of the system (1) on smaller set \(G \), we decompose \(X \) as, \(X_s \) and \(X_I \) of noninfected and infected, humans reservoirs and sandies, such that

\[
X_I = \left(E_1, I_1, E_{12}, P_2, I_r, I_v \right)^T.
\]

Thus we have shown that any solution of the model (1), starting from any point \(x^* \), remains in \(B_\epsilon(G) \). Hence we can now study the system (1) on \(G \), instead of \(\Omega \).

For the proof of the theorem verify the reference [9] theorem (5). To prove the global stability of the disease free equilibrium, we use theorem (4.3) of [10].

For this let

\[
X = (S_h, R_1, S_r, E_1, I_1, E_{12}, P_2, I_r, S_v, I_v)^T.
\]

Now for global asymptotic stability of the disease free equilibrium of the system (1) on smaller set \(G \), we decompose \(X \) as, \(X_s \) and \(X_I \) of noninfected and infected, humans reservoirs and sandies, such that

\[
X_I = \left(E_1, I_1, E_{12}, P_2, I_r, I_v \right)^T.
\]

So the model can now be written as

\[
\dot{X} = A(X) + E_X \rightarrow \begin{bmatrix} X_s = A_s(X)X_s + E_S \\ X_I = A_I(X)X_I \end{bmatrix}
\]

where

\[
A_s = \begin{pmatrix} -\mu_h & 0 & 0 & 0 \\ 0 & -\mu_i & 0 & 0 \\ 0 & 0 & -\mu_r & 0 \\ 0 & 0 & 0 & -\mu_v \end{pmatrix}
\]

And the matrix \(A(X) \) is given by

\[
A(X) = \begin{pmatrix} -a_1 & 0 & 0 & 0 & 0 & ab_2S_h & N_h + N_r \\ k_2 & -a_2 & 0 & 0 & 0 & 0 \\ 0 & d_2 & -a_3 & 0 & 0 & 0 \\ 0 & 0 & k_3 & -a_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\mu_r & ab_2S_v & N_h + N_r \\ 0 & ac_2S_v & N_h + N_r & 0 & ac_2S_v & 0 & -\mu_v \end{pmatrix}
\]

We restrict the domain of the system (1) from \(G \) to \(G \), to ensure the irreducibility of \(A(X) \), such that \(\mathcal{G} = \{ X, X \in G, X_S \neq 0 \} \).

The set \(\mathcal{G} \) is positively invariant because only the initial point of any trajectory can have \(X_S = 0 \). Putting \(S_h = R_1 = S_r = S_v = 0 \) in the system (1), we have \(S_h > 0, R_1 > 0, S_r > 0, S_v > 0 \).

So all of the diagonal entries of \(A(X) \) are nonnegative, hence \(A(X) \) is metzler and irreducible \(\forall X \in \mathcal{G} \).

Since diagonal entries of \(A(X) \) are negative. So we state the following result

Proposition: Let \(X^*_I \) be the non-infected class of the total population, then

\[
X^*_I = (S_h^*, R_1^*, S_r^*, E_1^*, I_1^*, E_{12}^*, P_2^*, I_r^*, S_v^*, I_v^*)^T
\]

is globally asymptotically stable equilibrium point of the system (1) reduced to the sub-domain \(\{ X \in \mathcal{G}, X_I = 0 \} \).

Corollary: The system (14) is globally asymptotically stable if there exist a matrix \(\bar{A}_I \) such that

\[
A_I(X) \leq \bar{A}_I X \in \mathcal{G}
\]

and if

\[
A_I(\bar{X}) = \bar{A}_I X^* \text{ for some } \bar{X} = (\bar{X}_I, \bar{X}_s) \text{ then } \bar{X}_I = 0,
\]

\[
\alpha(\bar{A}_I) \leq 0
\]

Where \(\alpha \) is stability modulus or the largest real part of the eigen values of \(\bar{A}_I \).
Proof:

Since

\[\frac{1}{N_h + N_r} \leq \frac{1}{N_h + N_r} \]

So the upper bound of \(A_f(X) \) denoted by \(\overline{A_f} \) is given by

\[
\overline{A_f}(X) = \begin{pmatrix}
-a_1 & 0 & 0 & 0 & 0 & \frac{ab_2 S_0}{N_h + N_r} \\
-k_2 & -a_2 & 0 & 0 & 0 & 0 \\
0 & 0 & d_2 & -a_3 & 0 & 0 \\
0 & 0 & -k_3 & -a_4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\mu_r \frac{ab_2 S_0}{N_h + N_r}
\end{pmatrix},
\]

and

Clearly \(A_f(X) \leq \overline{A_f}(X) \) as

\[
\frac{1}{N_h + N_r} \leq \frac{1}{N_h + N_r}
\]

And

\(A_f(X) = \overline{A_f}(X) \) only if \(S_h = S_0 \), \(R_h = 0 \), \(S_r = S_0 \), \(S_r = S_0 \)

Thus H4 of theorem (4.3) holds \([10]\), equivalently equation (15) and equation (16), hold.

To show that H, or equation (18) holds, we state the following theorem.

Theorem: The metzler matrix satisfy the axiom \(H_5; \alpha(\overline{A_f}) \leq 0 \) if the basic reproductive number \(R_0 \) satisfy the inequality;

\[
R_0 \leq \xi
\]

where

\[
\xi = \frac{a^2 b^2 c^2 \mu_h (\delta_h + \delta_r + \delta_s)^2 \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2}{\mu_h \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2 (1 + \frac{d_2 k_3}{a^2 d_1})}
\]

Proof: We decompose the matrix \(\overline{A_f} \) in the blocks such that

\[
\overline{A_f} = \begin{pmatrix} L & M \\ P & Q \end{pmatrix},
\]

where \(L, M, P, Q \) are \(3 \times 3 \) sub-matrices. The matrix \(\overline{A_f} \) is stable if \(S \) and \(Q - PL^{-1}M \) are metzler stable. Here \(S \) is metzler stable, because all its off diagonal entries are nonnegative, and all the eigen values are negative.

Let

\[
Y = Q - PL^{-1}M
\]

Then \(\overline{A_f} \) is stable if \(Y \) is stable.

And \(Y \) is stable if \(det(Y) \geq 0 \)

This means that \(\alpha(\overline{A_f}) \leq 0 \) only if

\[
\frac{a^2 b^2 c^2 \mu_h (\mu_h + \delta_h + \delta_r + \delta_s)^2 \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2}{\mu_h \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2 (1 + \frac{d_2 k_3}{a^2 d_1})} \leq 0,
\]

Or

\[
\frac{a^2 b^2 c^2 \mu_h (\mu_h + \delta_h + \delta_r + \delta_s)^2 \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2}{\mu_h \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2 (1 + \frac{d_2 k_3}{a^2 d_1})} < 1,
\]

where

At the disease free equilibrium,

\[
S_h = S_0 = \frac{\Gamma_r}{\mu_h}, S_r = 0 = \frac{\Gamma_h}{\mu_h}, R_h = R_0 = \frac{\Gamma_h}{\mu_h}
\]

\[
N_h + N_r = \frac{\Gamma_h \mu_r}{\mu_h} (\mu_h + \delta_h + \delta_r + \delta_s)
\]

By putting these values in above equation, we have

\[
\frac{a^2 b^2 c^2 \mu_h (\mu_h + \delta_h + \delta_r + \delta_s)^2 \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2}{\mu_h \mu_r (\mu_h + \delta_h + \delta_r + \delta_s)^2 (1 + \frac{d_2 k_3}{a^2 d_1})} \geq 1
\]

We take this value as \(\xi \). Thus \(H_1 \) or equation(17) holds, if \(\xi \geq 1 \).

Also \(R_0 < \xi \). So using theorem (4.3) of \([10]\), we claim the following result.

Theorem: If the parameters of the model satisfy the condition \(\alpha(\overline{A_f}) \leq 0 \), then the disease free equilibrium of the system (1) is globally asymptotically stable.

Simulation results of the model

In the Figure 2 below, we have reduced the treatment rate of both VI infected and PKDL infected humans, in the sense that we have used drugs other than sodium stibogluconate (expensive medicine) or that the hospital is far away or that the case is not properly diagnosed leading to wrong treatment. No mass awareness program is lunched for vector control. Taking \(\gamma_1 = 0.023 \), \(\alpha_0 = 0.2856 \) (normal); and \(\alpha_1 = 0.064 \).

Figure 2: Population behavior graph 1.

Figure 3: Population behavior graph 2.
The graph shows that it takes long time to eradicate the diseases. In Figure 3 we have increased the treatment rate for both VL and PKDL and also a proper arrangement for vector control. Taking $\gamma = 0.5$, $\gamma = 0.4$, biting of sandfly $a = 0.1856$ medicine effectiveness $a = 0.74$. The graph shows that with in short time the disease can be eradicated.

Conclusion

In this work a mathematical model of leishmania transmission was presented. The novelty of the model is, the homogenous mixing of human, reservoir and vector. The basic reproduction number R_0, so calculated, depends upon the density of human, vectors and reservoirs, which highlights the importance of homogenous mixing. R_0 is most sensitive to a, b and c and can have value greater than 1 (endemic state), if a; sand y biting rate, b; transmission probability of either strain in reservoir from sand y and c, transmission probability of either strain in sand y from reservoir, were not controlled. For this, different measures to control phlebotomine sandflies, like residual spraying of dwellings and animal shelters, insecticide treated nets; application of repellents/insecticides to skin or to fabrics and impregnated dog collars may be taken. Sand y is susceptible to all the major insecticidal groups. In ZVL foci, where dogs are the unique domestic reservoir, a reduction in Leishmania transmission would be expected if we could combine an effective mass treatment of infected dogs with a protection of both healthy and infected dogs from the sand y bites. Since sand y can up to the range of 1km, so leishmania transmission in dogs can be controlled, if they were kept away at least by 1km, from villages and cities. The disease can be controlled in human within a short time, however in reservoir class; the disease control takes long time. It is suggested to cull PCR+ dogs; this strategy gives imminent results in disease control.

References

1. Molina R, Gradoni L, Alvar J (2003) Hiv and the transmission of leishmania. Ann Trop Med Parasitol 97: 29-45.
2. Badaro R, Jones TC, Carvalho EM, Sampaio D, Reed SG (1986) New perspectives on a subclinical form of visceral leishmaniasis. J Infect Dis 15: 1003-1011.
3. WHO (1996) Manual of Visceral Leishmaniasis Control.
4. Lowth M (2014) Leishmaniasis. Patient co, UK.
5. Sacks DL, Perkins PV (1985) Development of infective stage leishmania promastigotes within phlebotomine sandflies. Am J Trop Med Hyg 34: 456 - 467.
6. Sacks DL, Perkins PV (1984) Identification of an infective stage of leish-mania promastigotes. Science 223: 1417-1419.
7. Porrozzi R, Teva A, Amaral VF, Santos MV, Grimaldi GJR (2004) Cross-immunity experiments between different species or strains of leish-mania in rhesus macaques (macaca mulatta). Am J Trop Med Hyg 17: 297-305.
8. Elmojtaba IM, Mugisha JYT, Hashim MHA (2010) Modelling the role of cross-immunity between two di erent strains of leishmania. Nonlinear Analysis: Real World Applications 11: 2175-2189.
9. Dumont AY, Lumbia JMS, Shillor M (2013) Stability analysis and dynamics preserving nonstandard finite di erence scheme for a malaria model, Mathematical population studies. International Journal of Mathematical Demography 20: 101-122.
10. Kamgang JC, Sallet G (2008) Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium. Mathematical Biosciences 21: 31-12.
11. Zaman g, Lashari AA, Cohan M (2012) Dynamical features of dengue with saturating incidence rate. International Journal of pure and Applied Mathematics 76: 483-402.
12. Diekmann O, Heesterbeek JAP, Metz J (1990) On the definition and computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365-382.
13. Driessche P, Watmough J (2002) Reproduction numbers and the sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29-48.
14. Fialho RF, Schall JJ (1995) Thermal Ecology of Malarial parasite and its insect vector: Consequence for parasites transmission success. Journal of Animal Ecology 46(6): 553-562.
15. Gemperli, Vounatsou P, Sogoba N, Smith T (2006) Malaria mapping using transmission models: Application to survey data. Amer J Epidemiol 163: 289-297.
16. Kasap OE, Alten B (2006) Comparative demography of the sandy Phleboto- mus papatasi (Diptera: Psychodidae) at constant temperatures. J Vector Ecol 31(2): 378-385.
17. Gasim G, El Hassan AM, Khrarzzi A, Khalil EAG, Ismail A, et al. (2000) The development of post kala-azar dermal leishmaniasis (PKDL) is associated with acquisition of Leishmania reactivity by peripheral blood mononuclear cells (PBMC). Clin Exp Immunol 119: 523-529.
18. Sundar S, Agrawal G, Rai M, Makharia MK, Murray HW (2001) Treatment of Indian visceral leishmaniasis with single or daily infusion of low dose liposomal amphotericin B. Randomised trial. BMJ 323: 419-422.
19. Chappuis F, Sunder S, Hallu A, Ghalib H, Rigal S, et al (2007) Visceral leishmaniasis diagnosis,treatment and control. Nature Reviews 5: 873-882.
20. Zijlstra E, Musa A, Khalil E, Elhassan I, Elhassan A (2003) Post-Kala-azar dermal leishmaniasis. The Lancet infectious diseases 3(2): 87-98.
21. Lainson R, Ryan L, Shaw JJ (1987) Infective stages of Leishmania in the sand y vector and some observations on the mechanism of transmission. Mem Inst Oswaldo Cruz 82(3): 421-424.