Designing and synthesising new metastable compounds is a major challenge of today’s material science. While exploration of metastable oxides has seen decades-long advancement thanks to the topochemical deintercalation of oxygen as recently spotlighted with the discovery of nickelate superconductor, such unique synthetic pathway has not yet been found for chalcogenide compounds. Here we combine an original soft chemistry approach, structure prediction calculations and advanced electron microscopy techniques to demonstrate the topochemical deintercalation/reintercalation of sulfur in a layered oxychalcogenide leading to the design of novel metastable phases. We demonstrate that La₂O₂S₂ may react with monovalent metals to produce sulfur-deintercalated metastable phases La₂O₂S₁₋₅ and αA-La₂O₂S whose lamellar structures were predicted thanks to an evolutionary structure-prediction algorithm. This study paves the way to unexplored topochemistry of mobile chalcogen anions.
Topochemistry enables a step-by-step control of chemical composition and atomic arrangements of materials by introducing, removing, or replacing specific atoms/molecules of host lattices without drastic modification of the overall crystal structure. It is one of the most versatile ways to design phases attainable only in mild synthesis conditions, i.e., at low temperature. Reactions aiming at the intercalation and the deintercalation of cationic species (mainly Li, Na, and other alkali metals) from an inorganic host have been extensively investigated since the sixties. These topochemical reactions recently highlighted by the 2019 Nobel Prize in Chemistry led to the stabilization of numerous metastable phases\(^2\)\(^-\)\(^5\) and also gave rise to major applications in Li-ion batteries.\(^6\) In 1999, Hayward and coworkers opened up a seminal topochemistry route based on the deintercalation of oxygen anions. Namely, they succeeded in extracting oxygen atoms of the perovskite-type oxide LaNiO\(_3\) at low temperature (\(T = 200 °C\)) using NaH as reducing reagent and oxygen getter to form the layered nickelate LaNiO\(_2\) with Ni\(^{+}\) cations in square planar coordination.\(^8\) This synthetic pathway received much interest, as extraordinary changes in physical properties (e.g., magnetism, electrical conductivity) could be expected thanks to the stabilization of unusual oxidation states and chemical environment of cations while maintaining the low dimensionality of the inorganic framework.\(^9\)-\(^11\) In that respect the stunning discovery of the superconductor nickelate, \(\text{Nd}_0\text{Sr}_0\text{NiO}_2\text{NiO}_2\), has recently spotlighted the benefit of this topochemical approach.\(^12\) So far, such reactions were mainly limited to oxides and no topochemical deintercalation of sulfur at low temperature leading to metastable phases was reported.

To bring this situation to an end, we explore the intercalation/deintercalation of sulfur anions in lanthanum oxysulfides via an original soft chemistry route. We use the evolutionary structure prediction algorithm USPEX\(^13\)-\(^14\), and 3D electron diffraction\(^15\) to confirm and characterize the topochemical deintercalation of sulfur and the formation of new metastable compounds. Return very recently, we demonstrated the formation of layered transition metal chalcogenides by insertion of transition metals in layered precursors containing chalcogenide dimers or trimers.\(^16\)-\(^17\) We took advantage of the ability of chalcogen oligomers to be easily reduced to form chalcogenide anions. In the case of sulﬁde dimers or trimers, the reductive cleavage (\(\text{S}_2\))\(^2\)\(^-\)\(+\) \(2e^-\rightarrow \text{S}^2^-\) or (\(\text{S}_3\))\(^2\)\(^-\) \(+\) \(4e^-\rightarrow \text{S}^2^-\) induced by contact with micrometric copper triggers the spontaneous intercalation of the metal into the precursor at low temperature. As a result, \(\text{La}_2\text{O}_2\text{Cu}_2\text{S}_2\) and \(\text{BaCu}_2\text{S}_2\) were obtained from the reaction of \(\text{La}_2\text{O}_2\text{S}\) or \(\text{BaS}\) with elemental copper at 250 °C. Our work also revealed that in the case of the reaction of \(\text{BaS}\) with Ni at 340 °C, sulfur could be extracted from the \(\text{S}_3\)\(^2\)\(^-\) containing precursor to form a \(\text{S}_2\)\(^2\)\(^-\) containing compound (e.g., \(\text{BaS}_2\)) and a binary transition metal chalcogenide (e.g., \(\text{NiS}_2\)).\(^17\) This observation suggests that the reduction of the oligomer by zero-valent metal can either lead to the intercalation of metal species or to the partial removal of chalcogen depending on the difference in free energies between the two antagonist reactions. It promoted us to explore more deeply the possible topochemical deintercalation of chalcogenides in layered precursors containing oligomers with various reducing reagents.

Results and discussion

Topochemical conversion from \(\text{La}_2\text{O}_2\text{S}\) to \(\text{a}-\text{La}_2\text{O}_2\text{S}\). \(\text{La}_2\text{O}_2\text{S}\) appears as the ideal precursor to test the possibility to extend such a concept of anionic topochemistry from oxides to chalcogenides (Fig. 1a). Its structure consists of fluorite-type \(\text{La}_2\text{O}_2\text{S}\)\(^2\)\(^-\) infinite layers separated from each other by discrete \(\text{S}_2\)\(^2\)\(^-\) sulfur dimers aligned in parallel to these 2D blocks.\(^18\) The deintercalation of one sulfur atom per dimer with metal should lead a priori to a \(\text{La}_2\text{O}_2\text{S}\) compound (Fig. 1b) whose structure should be inherited from the layered structure of the precursor \(\text{La}_2\text{O}_2\text{S}\)\(_3\) and that may come with potentially interesting optical properties as found in other oxysulfides.\(^19\)-\(^20\) To confirm this hypothesis, we started our investigation by scanning the low-energy structures of \(\text{La}_2\text{O}_2\text{S}\) compound using a designed crystal structure prediction (CSP) methodology detailed in Methods section. The combination of USPEX structure searching evolutionary algorithm with first-principles calculations makes it possible to locate two polymorphs, namely \(\text{hP}\) and \(\text{a}-\) crystal structures that are, respectively, stable and metastable (see Fig. 1c and S1–2 for details). Both phases are dynamically stable, justifying their respective location at global and local minima on the potential energy surface of \(\text{La}_2\text{O}_2\text{S}\) (see their computed phonon dispersion curves in Figs. S3–4, as well as DFT details in SI). The most stable candidate exhibits a hexagonal layered structure with \(\text{S}_2\)\(^-\)\/[\(\text{La}_2\text{O}_2\)] fluoro-type (111) slab alternating with sulfur atoms in octahedral environment of lanthanum (P3\(_1\)m1 space group). Note that, this is the exact structure of the \(\text{La}_2\text{O}_2\text{S}\) compound already reported in the literature and commonly prepared at high temperature (800–1200 °C). This is interesting as it gives a direct validation of the modeling approach. In the following, this structure will be denoted \(\text{hP}–\text{La}_2\text{O}_2\text{S}\) according to the Pearson notation (\(h\) for hexagonal and \(P\) for primitive cell). The second low-energy phase lies at 72 meV/atom above ground-state \(\text{hP}-\text{La}_2\text{O}_2\text{S}\) (GGA PBE level of theory, see SI). Its structure is fully reminiscent to the one of the \(\text{La}_2\text{O}_2\text{S}\) precursor: it is built upon the stacking of \(\text{S}_2\)\(^-\)\/[\(\text{La}_2\text{O}_2\)] fluoro-type (001) slabs alternating with sulfur atoms in prismatic environments. In the same way with \(\text{hP}-\text{La}_2\text{O}_2\text{S}\), this metastable polymorph with orthorhombic \(\text{Amm}2\) space group is named hereafter \(\text{a}-\text{La}_2\text{O}_2\text{S}\). The thermal and kinetic stability of these two structures were further confirmed by ab initio molecular dynamics (AIMD) simulation in which both \(\text{hP}\) and \(\text{a}-\text{La}_2\text{O}_2\text{S}\) retained their main structural framework after 10 ps at temperatures up to 600 K (Fig. S5–S6). Consequently, the theoretical calculations clearly anticipate the possible existence of metastable \(\text{a}-\text{La}_2\text{O}_2\text{S}\) besides the already known phase \(\text{hP}-\text{La}_2\text{O}_2\text{S}\).

The topochemical deintercalation of sulfur in the layered precursor \(\text{La}_2\text{O}_2\text{S}\) was subsequently attempted by reaction with alkali metal \(\text{Rb}\) at low-temperature in evacuated and sealed pyrex tubes. Once excess \(\text{Rb}\) (and its salts) was washed out by dry ethanol (see synthetic procedure in Methods section), the powder X-ray diffraction (XRD) patterns were collected on products synthesized at 200 °C and 350 °C. They are very similar and could not be indexed with any known phases (Fig. 2a). The energy dispersive X-ray (EDX) spectra of the bulk product powder clearly revealed the absence of rubidium and a molar ratio \(\text{La} / \text{O} / \text{S}\) of 2.0(3) / 2.0 (4) / 0.98(11) (see Fig. S7). These results indicate the formation of a \(\text{La}_2\text{O}_2\text{S}\) phase without incorporation of \(\text{Rb}\) in \(\text{La}_2\text{O}_2\text{S}\) (Fig. 2b, c). In contrast, the fluorite-type (111) slabs characteristic of the stable polymorph \(\text{hP}-\text{La}_2\text{O}_2\text{S}\) (Fig. S8) could not be found in the experiment STEM image. The EDX spectrum of a nanosized...
metal M^0 that triggers subsequently the deintercalation of half sulfur atom of the S_2 dumbbell that possibly enables topochemical conversion of $La_2O_2S_2$ represented by white, red, and yellow balls, respectively.

electronic transition of sulfur pairs $22,23,$ to 3.88 eV in along the topochemical reduction. Namely, the band associated to c^+ but entails a shift of every second $2/3$ direction of the La_2O_2S structure (SG: Cmca). Raman spectroscopy confirmed the complete loss of the sulfur dimers along the topochemical reduction. Namely, the band associated to the S–S stretching modes located at 487 and 498 cm$^{-1}$ in $La_2O_2S_2$ have totally disappeared after the deintercalation of one sulfur from $La_2O_2S_2$ (Fig. S10), confirming the conclusion made from the XRD pattern that the reaction of $La_2O_2S_2$ towards $aLa-La_2O_2S$ was complete. Finally, the diffuse-reflectance spectra also support the cleavage of $(S_2)_{2^+}$ dimers (Fig. S11). The absorption thresholds move from 2.56 eV in $La_2O_2S_2$, a value characteristic of a $\pi^*\rightarrow\sigma^*$ electronic transition of sulfur pairs $22,23$, to 3.88 eV in $aLa-La_2O_2S$, a value significantly lower than the one observed in the $hP-La_2O_2S$ (4.13 eV). Our DFT calculations with the HSE06 functional fully confirmed the expected increase of the bandgap going from $aLa-La_2O_2S$ to $hP-La_2O_2S$ (calculated gaps of 4.1 and 4.3 eV, respectively). Based on previous experimental and theoretical studies on $hP-La_2O_2S$ $24,25$, their optical bandgaps can be associated to a S-3p \rightarrow La-6s/La-5d transition. Therefore, the difference of the bandgap values between the metastable and stable La_2O_2S varieties is likely ascribed to changes in the local environment of sulfur and lanthanum atoms.

As a whole, we can conclude that during the reaction between $La_2O_2S_2$ and elemental rubidium, the alkali metal activates a redox reaction with $(S_2)_{2^+}$ dimers that triggers the fracture of the S–S bonds. However, contrary to Cu0 metals that intercalate into the $La_2O_2S_2$ host lattice 16, Rb0 led to the topochemical deintercalation of sulfur to afford the unprecedented $aLa-La_2O_2S$ metastable phase. Preliminary calculations suggest that the intercalation of metal versus the deintercalation of sulfur is dictated by thermodynamic considerations and that the choice of reducing agents is the decisive factor for the outcome of the reaction. Even though, complete theoretical investigations are needed to ascertain this assertion, some experimental work further highlight the decisive role of the reducing power. Indeed, no reaction occurred when $La_2O_2S_2$ was treated at 200–300 °C under reducing atmosphere, i.e., 5% H$_2$/Ar flow (Fig. S12). The reduction was activated at 350 °C, but it led to the thermodynamically stable $hP-La_2O_2S$, where the original fluorite (001) slab was deformed into the fluorite (111) slab. This result highlights the contrast between the common reducing agent such as H$_2$ atmosphere and the more powerful reducing agent Rb0, which favored, even at the same reaction temperature (i.e., 350 °C), topochemical reduction to $aLa-La_2O_2S$.

Partial (de)intercalation of sulfur. At this stage, we might naturally wonder whether the topotactic deintercalation of $La_2O_2S_2$ is reversible or not at low temperature. To test this possibility, a portion of $aLa-La_2O_2S$ was mixed with one molar equivalent of sulfur and heated at 200 °C (Fig. 3a) and the product was analyzed by XRD (Fig. 3b). The original $La_2O_2S_1$ material could be fully recovered with no other reaction product, confirming the full reversibility of the temperature-assisted intercalation/deintercalation processes based on the formation/rupture of sulfur dimers within the $La_2O_2S/1La_2O_2S$ layered oxycalogenides. To gain more insight into the reaction mechanism of the sulfur intercalation, we also tested the reactivity of $aLa-La_2O_2S$ with only half molar equivalent of sulfur at low temperature to reach the target $La_2O_2S_{1.5}$ compound, i.e., a mid-composition between $La_2O_2S_2$ and La_2O_2S. The XRD pattern of the product obtained at 200 °C (Fig. 3b) revealed the conversion of $aLa-La_2O_2S$ into an unknown intermediate phase along with a small amount of $La_2O_2S_2$. The XRD pattern of this intermediate phase was similar to the one of $aLa-La_2O_2S$ but shifted to lower diffraction angles, suggesting the

Fig. 1 Topochemical reactivity of $La_2O_2S_2$. a Structure of $La_2O_2S_2$ reported by Ostorero et al. (SG: Cmca) 18. Lanthanum, oxygen, and sulfur atoms are represented by white, red, and yellow balls, respectively. b Conceptual scheme of S–S bond cleavage under the donation of one electron per elemental metal M^0 that triggers subsequently the deintercalation of half sulfur atom of the S_2 dumbbell that possibly enables topochemical conversion of $La_2O_2S_2$ into the new polymorph of La_2O_2S. c The two low-energy dynamically stable phases of La_2O_2S predicted by USPEX that are separated by 72 meV/atom.

NATURE COMMUNICATIONS | (2021) 12:3605 | https://doi.org/10.1038/s41467-021-23677-w | www.nature.com/naturecommunications
existence of an intercalated $\text{oA-La}_{2}\text{O}_{2}\text{S}_{x}$ phase ($1 < x < 2.0$). The same XRD pattern was observed in the attempt to deintercalate 0.5 S from $\text{La}_{2}\text{O}_{2}\text{S}_{2}$ using 1.0 equiv. of Rb, 1.0 equiv. of Ag, and 0.5 equiv. of Ni0 (Fig. 3c). These diffraction patterns could be refined with the same space group as $\text{oA-La}_{2}\text{O}_{2}\text{S}$ (Ammm2) and cell parameters of $\sim 8.5\ \text{Å}$, $\sim 4.0\ \text{Å}$, and $\sim 12.9\ \text{Å}$ without any superstructure peak. This clearly proved the existence of an intermediate phase with a strong reminiscence of the $\text{oA-La}_{2}\text{O}_{2}\text{S}$ structure. One of the reasonable assumptions is that this new phase replaced one half of monoatomic S^{2-} with dimeric $(\text{S}^{2-})_{2}$ anions retaining the main structural framework of $\text{oA-La}_{2}\text{O}_{2}\text{S}$. This partial dimerization should lead to the expected $\text{La}_{2}\text{O}_{2}\text{S}_{1.5}$ composition. To confirm this hypothesis, we analyzed the elemental composition of the nanocrystal ($\leq 100\ \text{nm}$) found in the sample after the thermal treatment of $\text{oA-La}_{2}\text{O}_{2}\text{S}_{x} + 0.5\ \text{S}$. Its EDX spectrum acquired on STEM indicated the La / O / S ratio of 2.0(3) / 2.0(3) / 1.5(3), supporting the hypothetical composition $\text{La}_{2}\text{O}_{2}\text{S}_{1.5}$ (see Fig. S13). Furthermore, both intercalation of 0.5 S and deintercalation of 0.5 S using metal species gave similar Raman spectra that featured a single intense peak at $413–417\ \text{cm}^{-1}$ while Raman peaks from $\text{oA-La}_{2}\text{O}_{2}\text{S}$ and $\text{La}_{2}\text{O}_{2}\text{S}_{2}$ were absent (Fig. S14–S15). Since an intense peak around 400–500 cm$^{-1}$ is characteristic of S–S stretching mode26, these Raman spectra support the formation of $\text{La}_{2}\text{O}_{2}\text{S}_{1.5}$ through the partial cleavage of S–S bonds.

To solve the crystal structure of this novel phase, we analyzed it by precession electron diffraction tomography (PEDT) (Fig. 4a, see Fig. S16 and Table. S4 for details)27,28. This emerging technique allows the solution of complex structures using single nanocrystals. PEDT data were collected on several nanocrystals of the novel phase. All data sets were analyzed using the computer programs PETS29, Superflip30, and Jana31. Figure 4a shows the reconstruction of the reciprocal lattice planes $hk0$, $h0l$, and $0kl$ which are consistent with an orthorhombic unit cell $a = 8.348\ \text{Å}$, $b = 3.961\ \text{Å}$, and $c = 12.645\ \text{Å}$ ($V = 418.1\ \text{Å}^3$) and a noncentrosymmetric space group Ammm2 (see SI). The structure was subsequently solved and refined using the program Jana32 on the basis of electron diffraction data using the dynamical theory of diffraction33. The structure analysis converged with electron Bragg reliability factor $R(\text{obs}) = 10.1\%$, revealing the layered structure displayed in Fig. 4b with the composition $\text{La}_{2}\text{O}_{2}\text{S}_{1.5}$. This structure consists of $\frac{2}{\sqrt{3}}[\text{La}_{2}\text{O}_{2}]$–fluorite-type ($\text{001}$) infinite slab alternating with sulfur layers containing one third and two thirds of sulfur atoms in the S^{2-} and $(\text{S}^{2-})_{2}$-anionic forms, respectively. Using this $\text{oA-La}_{2}\text{O}_{2}\text{S}_{1.5}$ structure model, both powder XRD patterns from sulfur intercalation and deintercalation, i.e., from $\text{oA-La}_{2}\text{O}_{2}\text{S}_{x} + 0.5\ \text{S}$ and $\text{La}_{2}\text{O}_{2}\text{S}_{2} + 0.5\ \text{Ni}$ reaction mixtures (Fig. 3), were successfully refined (Fig. S17 and Tables S5–S6). Large strain parameters had to be considered to reach satisfactory fitting. This can be interpreted as the signature of a stacking disorder occurring, as expected, during the intercalation or deintercalation processes in relation with the 2D structure of the host lattice and possible co-existence of different stages of (de)intercalation. The structure analysis was based on data collected on the most ordered crystals. However, in most of the electron diffraction data, diffuse scattering features along the $[001]$ axis signified the presence of stacking faults in the crystal. Fig. 4c shows the high-resolution image obtained on a well-organized domain of $\text{oA-La}_{2}\text{O}_{2}\text{S}_{1.5}$. The experimental
contrast in the HAADF-STEM image (Fig. 4c) asserts the stacking of \(2_{10}\) La\(_2\)O\(_2\)S fluorite-type (001) in finite slabs. A similar structure was predicted independently by the evolutionary algorithm USPEX for the composition La\(_2\)O\(_2\)S\(_{1.5}\). Indeed, the structure prophesied to be the most stable accorded well with the experimental structure obtained by the PEDT analysis (Fig. S18). The 2nd and 3rd most stable structures displayed intergrowth structures made of, respectively, corrugated or hexagonal...
Table 1 Summary of crystallographic parameters of La$_2$O$_2$S$_x$ series (1 ≤ x ≤ 2.0).

Compounds	Source	Space group	a (Å)	b (Å)	c (Å)	S-S distance (Å)
La$_2$O$_2$S$_2$	Ostorero et al18	Cmca	12.215(2)	5.943(1)	5.938(1)	2.103
hP-La$_2$O$_2$S	Morosin et al21	P3m1	4.049(1)	-	6.939(2)	4.049
α-La$_2$O$_2$S	This study	Amm2	4.148(9)	3.975(1)	12.728(0)	3.975(1)
α-La$_2$O$_2$S$_{1.5}$	This study	Amm2	8.4759(5)	4.0307(1)	12.853(0)	2.30(6)

All of the indicated values were obtained from refinement of a respective XRD pattern.

Intercalation of sulfur anions into α-La$_2$O$_2$S. The colorless powder of α-La$_2$O$_2$S (ca. 200 mg) was combined with S flakes (Aldrich, 99.9% ± 5%) in α-La$_2$O$_2$S: S = 1:0.5 molar ratio and ground in an agate mortar under argon atmosphere. Then the mixture was pelletized and sealed in an evacuated (10$^{-3}$ torr) silica tube. The sealed mixture was heated to 150 or 200 °C at a rate of 100 °C h$^{-1}$ and held at the same temperature for 4 h (T = 200 °C) and 48 h (T = 150 °C), see results in Fig. 3b, respectively, followed by gradual cooling in a furnace to obtain a pale yellow pellet. To complete the intercalation, the obtained pellet was ground with additional 0.5 equiv. of S under argon atmosphere. The mixture was again subject to the thermal treatment at 200 °C in the evacuated silica tube. After 160 h of annealing, the mixture was fully converted into the pale yellow pellet of the pure La$_2$O$_2$S$_2$.

Partial deintercalation of sulfur from La$_2$O$_2$S$_2$ to get α-La$_2$O$_2$S$_{1.5}$. To prepare α-La$_2$O$_2$S$_{1.5}$, either 0.5 equiv. of Ni (Aldrich, <0.01 mm, 99.9%) or 1.0 equiv. of Ag (Aldrich, 2-3.5 μm, ≥99.9%) was added to 1.0 equiv. of La$_2$O$_2$S$_2$ (ca. 150-250 mg). The mixture was ground together under argon atmosphere until the powder became greyish and sticky. Then the powder sample was pelletized, sealed in an evacuated (10$^{-3}$ torr) silica tube, and heated to 350 °C at a rate of 300 °C h$^{-1}$. The plateau temperature was maintained for 2 or 4 h before gradual cooling at RT for Ni and Ag, respectively (see Fig. 3c for XRD). Repeated thermal treatments did not lead to further consumption of La$_2$O$_2$S$_2$ even when excess Ag was added (i.e., using 1.1 equiv. of Ag). In the same way, when using Ni prolonged and repeated thermal treatments did not improve the yield of α-La$_2$O$_2$S$_{1.5}$.

Characterizations. Powder X-ray diffraction (XRD) patterns were recorded at room temperature on a Bruker D8 Advance Diffractometer (Bragg-Brentano geometry, 2θ – 2θ), which employs Cu K_{α} radiation (λ = 1.540598 Å) produced through Ge (111) monochromator and a LynEye detector. Rietveld refinements of the XRD patterns were performed with Jana2006 package31 using the fundamental parameter approach34. XRD peaks from the known phases were fitted on the basis of the previously reported structure models (see Table S3 and S5 for the details). Anisotropic microstrain was considered by refinement using the Pan2007 package32,33. The 3D ED data were analyzed using the Dr Probe program34. 3D electron diffraction data (3D ED) were collected using the precession electron diffraction tomography (PEDT) technique on a JEOL 5800LV scanning electron microscope (SEM) operating at 20 kV. The flat-polished specimens were prepared by impregnation of powder samples with the epoxy resin and subsequent grinding with ethanol/diamond grit suspensions. The detailed procedures of Raman spectroscopy and diffuse-reflection spectroscopy are described in the supporting information.

Scanning Transmission Electron Microscopy (STEM) imaging. Samples were prepared by dispersing the powder in ethanol and depositing the solution obtained on a holey-carbon-coated copper grid. Z-contrast imaging was performed on a Cs-probe corrected STEM Themis Z G3 (Thermo Fisher Scientific) equipped with a High Angle annular Dark Field (HAADF) detector (Fischione) operating at 80 or 300 kV accelerating voltage, with a 2.14 mrad convergence angle and 63–200 mrad collection angle. It is equipped with the 4-SDD detectors Super-X system allowing EDS analysis. Simulated images were obtained using the Dr Probe program.

Precession Electron Diffraction Tomography (PEDT) of α-La$_2$O$_2$S$_{1.5}$. The black powder from the reaction of La$_2$O$_2$S$_2$ with Ni (vide supra) was crushed in ethanol. A drop of the suspension was deposited and dried on a gold grid with a film of holey amorphous carbon. 3D electron diffraction data (3D ED)35 were collected using the precession electron diffraction tomography (PEDT) technique on a Philips CM120 electron transmission microscope (TEM) (V$_{acc}$ = 120 kV, LaB$_6$) with the precession device Nanomegas Digistar and a side-mounted CCD camera Olympus Veleta with 14 bit dynamic range. PEDT data sets were collected at the ambient temperature on several crystals using a 1-degree precession angle and a 1-degree tilt step (see Fig. S16 and Table. S4). 3D ED data were analyzed using the computer programs PETS2.036, Superflip37, and Jana200638. The structure analysis was performed from one data set that included the diffraction signal from two crystals (Fig. S16). For each data set, two hkl-type files are obtained: one for structure solution and kinematical refinement, and another file suitable for the dynamical refinement, where each ED frame is considered independent32,33. The refinement procedure using the dynamical theory of diffraction (called "dynamical...
reﬁnement3) implemented in JANA2006 was used. For the analysis, the data coming from the two adjacent crystals were combined to increase the data coverage and the statistic of the reﬁnement. The data indicate an orthorhombic unit cell a = 8.348 Å, b = 3.961 Å, and c = 12.645 Å (V = 481.1 Å3) and a non-centrosymmetric space group Amm2 (α + l = 2n on kkl). The initial structure can be described with 8 atoms forming an alternation of inﬁnite ﬂuorite-type layers [La2O3] and sulfuric layers stacked along c-axis (Fig. S16e). The model was validated by the dynamical reﬁnement following the procedure suggested in Palatinus et al.23. The reﬁnement leads to satisfying values with R(obs)/wR(obs) = 10.12/11.42% for 3523/4246 observed/all reﬂections. The reﬁnement and crystallographic parameters are presented in Table S4.

Structure predictions by the evolutionary algorithm. USPEX (Universal Structure Predictor: Evolutionary Xtalography) works on the EA (evolutionary algorithm) to perform a global search of crystal structures. USPEX is developed by the A.R. Oganov laboratory since 2004 and its detail is described in the articles from his group13,14. In this work, this EA code was interfaced with VASP (Vienna Ab initio Oganov laboratory since 2004 and its detail is described in the articles from his 4246 observed/all reﬂections. The reﬁnement and crystallographic parameters are presented in Table S4.

Motter, J. P., Koski, K. J. & Cui, Y. General strategy for zero-valent Ni2+ ion doped La2O3, Acta Cryst. C46, 1376–1378 (1990). Fan, B., Chique, C., M.-Conanec, O., Zhang, X. & Fan, X. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O3 with an external quantum yield higher than 100%. J. Phys. Chem. C. 116, 11652–11657 (2012). Larquet, C. & Carencio, S. Metal oxysulfides: from bulk compounds to nanomaterials. Front. Chem. 8, 179 (2020). Morosin, B. La2O3S2 structure reﬁnement and crystal ﬁeld. Acta Cryst. B29, 2647–2648 (1973).

Data availability
All data are available within the Article and Supplementary Files, or available from the corresponding authors on reasonable request.

Received: 4 December 2020; Accepted: 22 April 2021; Published online: 14 June 2021

References
1. Lerf, A. Storylines in intercalation chemistry. Dalton Trans. 43, 10276–10291 (2014).
2. Lévy, F. (ed) Intercalated Layered Materials (Reidel Publishing Company, 1979).
3. Vivanco, H. K. & Rodríguez, E. E. The intercalation chemistry of layered iron chalcogenide superconductors. J. Solid State Chem. 242, 3–21 (2016).
4. Motter, J. P., Koski, K. J. & Cui, Y. General strategy for zero-valent iron intercalation into two-dimensional layered nanomaterials. Chem. Mater. 26, 2313–2317 (2014).
5. Cassidy, S. J. et al. Layered CeS and LiCeS0 oxide chalcogenides obtained via topotactic oxidative and reductive transformations. Inorg. Chem. 58, 3838–3850 (2019).
6. Rannohotti, K. G. S., Josepha, E., Choi, J., Zhang, J. & Wiley, J. B. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Adv. Mater. 23, 442–460 (2011).
7. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
8. Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reagent for reducing topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).
9. Tsujimoto, Y. et al. Inﬁnite-layer iron oxide with a square-planar coordination. Nature 450, 1062–1065 (2007).
10. Romero, F. D. et al. SrFe3O4: Square-planar Ru2+ in an extended oxide. J. Am. Chem. Soc. 135, 1838–1844 (2013).
11. Kagayama, H. et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nat. Commun. 9, 772 (2018).
12. Li, D. et al. Superconductivity in an inﬁnite-layer nickelate. Nature 572, 624–628 (2019).
13. Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab-initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 094704 (2006).
14. Oganov, A. R., Lyakhov, A. O. & Valle, M. How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 44, 227–237 (2011).
15. Gemmi, M. et al. 3D electron diﬀraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).
16. Ostoréro, J. & Leblanc, M. Room-temperature structure of La2O2S, Acta Cryst. C46, 1376–1378 (1990). Li, Y. F., Xiao, B., Gao, Y. M. & Cheng, Y. H. Theoretical study of anisotropic structural, electronic, mechanical and thermodynamic properties of rare-earth R–Y, La oxysulfides. Comp. Mater. Sci. 125, 154–167 (2016).
17. Dai, Q. et al. Size and composition eﬀects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C. 112, 19399–19404 (2008).
18. Steudel, R. Properties of sulfur-sulfur bonds. Angew. Chem. Int. Ed. Engl. 14, 555–720 (1975).
19. Vincent, R. & Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diﬀraction intensities. Ultramicroscopy 53, 271–282 (1994).
20. Kolb, U., Gorelik, T., Küb, C., Otten, M. T. & Hubert, D. Towards automated diﬀraction tomography: part I—data acquisition. Ultramicroscopy 107, 507–513 (2007).
21. Palatinus, L. et al. Specifics of the data processing of precession electron diﬀraction tomography data and their implementation in the program PETS2.0. Acta Cryst. B75, 512–522 (2019).
22. Palatinus, L. & Chaupis, G. SUPERFLIP—a computer program for the solution of crystal structures by charge ﬂipping in arbitrary dimensions. J. Appl. Cryst. 40, 786–790 (2007).
23. Petříček, V., Dušek, M. & Palatinus, L. Crystallographic computing system and general features. Z. Kristallogr. – Cryst. Mater. 229, 345–352 (2014).
24. Palatinus, L. et al. Structure reﬁnement using precession electron diﬀraction tomography and dynamical diﬀraction: tests on experimental data. Acta Cryst. B71, 740–751 (2015).
25. Palatinus, L., Petříček, V. & Corréa, C. A. Structure reﬁnement using precession electron diﬀraction tomography and dynamical diﬀraction: theory and implementation. Acta Cryst. A71, 235–244 (2015).
26. Cheary, R. W. & Coelho, A. A. Axial divergence in a conventional X-ray powder diﬀractometer. I. Theoretical foundations. J. Appl. Cryst. 31, 851–861 (1998).
27. Stephens, P. W. Phenomenological model of anisotropic peak broadening in powder diﬀraction. J. Appl. Cryst. 32, 281–289 (1999).
28. Barthal, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).
29. Frueh, A. J. The crystallography of silver sulﬁde, Ag2S. Z. Fürr. Krist. – Cryst. Mater. 110, 136–144 (1958).
30. Tranah, J., Goodrich, R. G. & Watkins, S. F. X-ray diﬀraction measurements on metallic and semiconducting hexagonal NiS. Phys. Rev. B 2, 2859–2863 (1970).

Acknowledgements
S.S. is ﬁnancially supported by ISP2 Overseas Research Fellowships. The electron diﬀraction experiments were performed within CzechNanoLab Research Infrastructure supported by MEYS CR (LM2018110) and supported by Operational Programme Research, Development and Education ﬁnanced by European Structural and Investment Funds and the MEYS CR (Project No. SOLID21 CZ.02.01.00/0.0/0.0/16_019/0000760). TEM images were collected in the CEMIM Electron Microscopy Center in Nantes funded by the French National Plan Etat-Région and the European Regional Development Fund of Pays de la Loire. We also acknowledge the Jean Zay/IDRIS GENCI (France) under project n° A0089011512 and Jean Zay Challenge for allocation of computing time. Louis-Bení Mvéle Eyé is thanked for his help in the chemical synthesis work.
Author contributions
S.S. performed the synthetic work and characterization of the products; M.T.C., C.G.-D., and E.G. conducted TEM analyses; G.S. and L.P. studied the structure of αA-La₂O₂S₁.₅ by 3D electron diffraction; I.B. and G.F. performed the computational study; E.I., B.C., L.C., and S.J. supervised the study. S.S., L.C., and S.J. wrote the initial draft and all authors contributed to the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-23677-w.

Correspondence and requests for materials should be addressed to S.J. or L.C.

Peer review information Nature Communications thanks Jingbao Lian, Krzysztof Zborecki and other, anonymous, reviewers for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021