Quasinormal resonances of a massive scalar field in a near-extremal Kerr black hole spacetime

Shahar Hod
The Ruppin Academic Center, Emeq Hefer 40250, Israel
and
The Hadassah Institute, Jerusalem 91010, Israel
(Dated: September 20, 2011)

The fundamental resonances of near-extremal Kerr black holes due to massive scalar perturbations are derived analytically. We show that there exists a critical mass parameter, μ_c, below which increasing the mass μ of the field increases the oscillation frequency $\Re(\omega)$ of the resonance. On the other hand, above the critical field mass increasing the mass μ increases the damping rate $\Im(\omega)$ of the mode. We confirm our analytical results by numerical computations.

I. INTRODUCTION

The uniqueness theorems [1–3] imply that the metric outside a newly born black hole should relax into a Kerr-Newman spacetime, characterized solely by the black-hole mass, charge, and angular momentum. The relaxation phase in the dynamics of perturbed black holes is characterized by `quasinormal ringing’, damped oscillations with a discrete spectrum (see e.g. [4, 5] for detailed reviews). These characteristic oscillations are then followed by late-time decaying tails [6, 7].

The black hole quasinormal modes (QNMs) correspond to solutions of the perturbations equations (the Teukolsky master equation [8]) with the physical boundary conditions of purely outgoing waves at spatial infinity and purely ingoing waves crossing the event horizon [9]. Such boundary conditions single out a discrete set of black-hole resonances $\{\omega_n\}$ (assuming a time dependence of the form $e^{-i\omega t}$). In analogy with standard scattering theory, the QNMs can be regarded as the scattering resonances of the black-hole spacetime. They thus correspond to poles of the transmission and reflection amplitudes of a standard scattering problem in a black-hole spacetime.

Quasinormal resonances are expected to be excited by a variety of astrophysical processes involving black holes. Being the characteristic sound of the black hole itself, these free oscillations are of great importance from the theoretical [10, 11] and astrophysical point of view [4, 5]. They allow a direct way of identifying the spacetime parameters, especially the mass and angular momentum of the black hole. This has motivated a flurry of research during the last four decades aiming to compute the resonance spectrum of various types of black holes [4, 5].

It is worth nothing that in most cases of physical interest, the black-hole QNMs must be computed numerically by solving the perturbations equations supplemented by the appropriate physical boundary conditions. However, it has been shown [12–14] that the spectrum of quasinormal frequencies can be studied analytically in the near-extremal limit $a \to M$, where M and a are the mass and angular momentum per unit mass of the black hole, respectively.

The dynamics of scalar test fields in black-hole spacetimes is primarily of theoretical interest– it usually serves as a toy model for the analysis of gravitational black-hole perturbations. However, as pointed out in [15], the possible existence of boson stars could make scalar QNMs observationally relevant. Boson stars are assumed to be made up of self-gravitating massive scalar fields [15, 16]. If a boson star becomes unstable and collapses to form a black hole, it is expected to radiate scalar waves (along with gravitational waves) in the appropriate QNMs frequencies.

Former numerical investigations of massive QNMs (see e.g., [15, 17]) have found that increasing the mass μ of the field increases the oscillation frequency $\Re(\omega)$ of the mode. Below we shall provide an analytical explanation for this phenomena. Furthermore, we shall show that there exists a critical mass parameter, μ_c, above which increasing the mass μ of the field actually increases the damping rate $\Im(\omega)$ of the mode.

II. DESCRIPTION OF THE SYSTEM

The physical system we consider consists of a massive scalar field coupled to a rotating Kerr black hole. The dynamics of a scalar field Ψ of mass μ in the Kerr spacetime [18] is governed by the Klein-Gordon equation

$$ (\nabla^a \nabla_a - \mu^2) \Psi = 0 . $$

(1)

(It is worth emphasizing that μ stands for $\mathcal{M}G/hc$, where \mathcal{M} is the mass of the scalar field. We use units in which $G = c = h = 1$.) One may decompose the field as

$$ \Psi_{lm}(t, r, \theta, \phi) = e^{im\phi} S_{lm}(\theta; a\omega) R_{lm}(r; a\omega) e^{-i\omega t} , $$

(2)
where \((t, r, \theta, \phi)\) are the Boyer-Lindquist coordinates \([18]\), \(\omega\) is the (conserved) frequency of the mode, \(l\) is the spheroidal harmonic index, and \(m\) is the azimuthal harmonic index with \(-l \leq m \leq l\). (We shall henceforth omit the indices \(l\) and \(m\) for brevity.) With the decomposition \([24]\), \(R\) and \(S\) obey radial and angular equations both of confluent Heun type coupled by a separation constant \(K(\omega)\) \([19,23]\). The sign of \(\omega\) determines whether the solution is decaying \((\omega < 0)\) or growing \((\omega > 0)\) in time.

The angular functions \(S(\theta; \omega)\) are the spheroidal harmonics which are solutions of the angular equation \([8,21,24,23]\)

\[
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S}{\partial \theta} \right) + \left[K - a^2(\omega^2 - \mu^2) + a^2(\omega^2 - \mu^2) \cos^2 \theta - \frac{m^2}{\sin^2 \theta} \right] S = 0 .
\]

for the separation constants \(K_{lm}\). The expansion coefficients \(\{c_k\}\) are given in Ref. \([24]\).

The radial Teukolsky equation is given by \([8,25,26]\)

\[
\Delta \frac{d^2R}{dr^2} + \left(\Delta \frac{dR}{dr} + \left[H^2 + \Delta(2ma\omega - K - \mu^2(r^2 + a^2)] \right) R = 0 ,
\]

where \(\Delta \equiv r^2 - 2Mr + a^2\) and \(H \equiv (r^2 + a^2)\omega - ma\). The zeroes of \(\Delta\), \(r_\pm = M \pm (M^2 - a^2)^{1/2}\), are the black hole (event and inner) horizons.

We are interested in solutions of the radial equation \([3]\) with the physical boundary conditions of purely outgoing waves at spatial infinity and purely ingoing waves at the black-hole horizon (as measured by a comoving observer) \([17]\). That is,

\[
R \sim \begin{cases} \frac{1}{2} e^{i\sqrt{\omega^2 - \mu^2}y} & \text{as } r \to \infty \quad (y \to \infty) ; \\ e^{-i(\omega - m\Omega)y} & \text{as } r \to r_+ \quad (y \to -\infty) , \end{cases}
\]

where the “tortoise” radial coordinate \(y\) is defined by \(dy = [(r^2 + a^2)/\Delta]dr\). These boundary conditions single out a discrete set of resonances \(\{\omega_n\}\) which correspond to the quasinormal resonances of the massive field \([17]\). (We note that, in addition to the QNMs resonances, the massive field is also characterized by a spectrum of bound states \([17,27,28]\) which tend to zero at spatial infinity.)

III. THE QUASINORMAL RESONANCES

It is convenient to define new dimensionless variables

\[
x \equiv \frac{r - r_+}{r_+} ; \quad \tau \equiv \frac{r_+ - r_-}{r_+} ; \quad \varpi \equiv \frac{\omega - m\Omega}{2\pi T_{BH}} ; \quad k \equiv 2\omega r_+ .
\]

Here \(T_{BH} \equiv \frac{r_+ - r_-}{4\pi(r_+^2 + a^2)}\) and \(\Omega \equiv \frac{a}{r_+^2 + a^2}\) are the temperature and angular velocity of the black hole, respectively. In terms of these dimensionless variables the radial equation becomes

\[
x(x + \tau) \frac{d^2R}{dx^2} + (2x + \tau) \frac{dR}{dx} + VR = 0 ,
\]

where \(V \equiv H^2/r_+ x(x + \tau) - K_{lm} + 2ma\omega - \mu^2r_+^2(x + 1)^2 + a^2\) and \(H = \frac{r_+^2}{2}\omega x^2 + r_+ kx + r_+ \varpi \tau/2\).

As we shall now show, the spectrum of massive quasinormal resonances can be studied analytically in the double limit \(a \to M\) and \(\omega \to m\Omega\) (see \([22]\) for the massless case). We first consider the radial equation \([8]\) in the far region \(x \gg \max\{\tau, M(m\Omega - \omega)\}\). Then Eq. \([8]\) is well approximated by

\[
x^2 \frac{d^2R}{dx^2} + 2x \frac{dR}{dx} + V_{far} R = 0 ,
\]
where \(V_{\text{int}} = (\omega^2 - \mu^2)r_+^2 x^2 + 2(\omega k - \mu^2 r_+)x + [-K_{lm} + 2m\omega + k^2 - \mu^2(r_+^2 + a^2)] \). A solution of Eq. (9) that satisfies the boundary condition (6) can be expressed in terms of the confluent hypergeometric functions \(M(a, b, z) \)

\[
R = C_1(2i\sqrt{\omega^2 - \mu^2 r_+})^{\frac{1}{2} + i\delta} x^{-\frac{1}{2} + i\delta} e^{-i\sqrt{\omega^2 - \mu^2 r_+}x} M\left(\frac{1}{2} + i\delta + ik, 1 + 2i\delta, 2i\sqrt{\omega^2 - \mu^2 r_+}x + C_2(\delta \to -\delta)\right),
\]

where \(C_1 \) and \(C_2 \) are constants. Here

\[
\kappa \equiv \frac{\omega k - \mu^2 r_+}{\sqrt{\omega^2 - \mu^2}},
\]

and

\[
\delta^2 \equiv k^2 + 2m\omega - K_{lm} - \frac{1}{4} - \mu^2(r_+^2 + a^2).
\]

The notation \((\delta \to -\delta)\) means “replace \(\delta \) by \(-\delta\) in the preceding term.”

We next consider the near horizon region \(x \ll 1 \). The radial equation is given by Eq. (8) with \(V \to V_{\text{near}} \equiv -K_{lm} + 2m\omega - \mu^2(r_+^2 + a^2) + (kx + \omega r/2)^2/x(x + \tau) \). The physical solution obeying the ingoing boundary conditions at the horizon is given by

\[
R = x^{-\frac{1}{2}} e^{\left(x^{-\frac{1}{2}} + 1\right)i\frac{1}{2}\omega x - k)} F_1(1, i\delta - ik, 1, 1 - i\omega; -x/\tau),
\]

where \(F_1(a, b; c; z) \) is the hypergeometric function.

The solutions (10) and (13) can be matched in the overlap region \(\max\{\tau, M(m\Omega - \omega)\} \ll x \ll 1 \). It is worth emphasizing that in order to have a non-trivial overlap region we must restrict our analytical solution to the regime of rapidly rotating \textit{near-extremal} black holes. In particular, the condition \(\tau \ll 1 \) is satisfied in the near-extremal limit. The \(x \ll 1 \) limit of Eq. (10) yields

\[
R \to C_1(2i\sqrt{\omega^2 - \mu^2 r_+})^{\frac{1}{2} + i\delta} x^{-\frac{1}{2} + i\delta} + C_2(\delta \to -\delta).
\]

The \(x \gg \tau \) limit of Eq. (13) yields

\[
R \to \tau^\frac{1}{2} e^{-i\delta - i\omega/2} F_1(1, i\delta - ik, 1, 1 - i\omega + i\omega) x^{-\frac{1}{2} + i\delta} + (\delta \to -\delta).
\]

By matching the two solutions in the overlap region one finds

\[
C_1 = \tau^\frac{1}{2} e^{-i\delta - i\omega/2} F_1(1, i\delta - ik, 1, 1 - i\omega + i\omega)(2i\sqrt{\omega^2 - \mu^2 r_+})^{-\frac{1}{2} - i\delta},
\]

\[
C_2 = x^\frac{1}{2} e^{-i\delta - i\omega/2} F_1(1, i\delta - ik, 1, 1 - i\omega + i\omega)(2i\sqrt{\omega^2 - \mu^2 r_+})^{-\frac{1}{2} + i\delta}.
\]

Approaching Eq. (10) for \(x \to \infty \) one gets

\[
R \to C_1(2i\sqrt{\omega^2 - \mu^2 r_+})^{i\delta} F_1(1 + 2i\delta, 1, 1 + i\delta + i\kappa) x^{-1 + i\kappa} + C_2(\delta \to -\delta) e^{i\sqrt{\omega^2 - \mu^2 r_+}x} + C_1(2i\sqrt{\omega^2 - \mu^2 r_+})^{-i\delta} F_1(1 + 2i\delta, 1, 1 + i\delta - i\kappa) x^{-1 - i\kappa} + C_2(\delta \to -\delta) e^{-i\sqrt{\omega^2 - \mu^2 r_+}x}.
\]

A free oscillations of the field (a quasinormal resonance) is characterized by a purely outgoing wave at spatial infinity. Thus, the coefficient of the exponent \(e^{-i\sqrt{\omega^2 - \mu^2 r_+}x} \) in Eq. (18) should vanish, see Eq. (6). Taking cognizance of Eqs. (16) and (18), one finds the resonance condition for the quasinormal modes of the massive field:

\[
\frac{\Gamma(2i\delta)\Gamma(1 + 2i\delta)(-2i\tau\sqrt{\omega^2 - \mu^2 r_+})^{-i\delta}}{\Gamma(\frac{1}{2} + i\delta - ik)\Gamma(\frac{1}{2} + i\delta - i\omega + ik)} + \frac{\Gamma(-2i\delta)\Gamma(1 - 2i\delta)(-2i\sqrt{\omega^2 - \mu^2 r_+})^{i\delta}}{\Gamma(\frac{1}{2} - i\delta - ik)\Gamma(\frac{1}{2} - i\delta - i\omega + ik)} = 0.
\]
The resonance condition (19) can be solved analytically in the regime $\tau \ll 1$ with $\omega \simeq m\Omega$. We first write it in the form
\[
\frac{1}{\Gamma(\frac{1}{2} - i\delta - i\varpi + ik)} = \mathcal{D} \times (-2i\tau \sqrt{\omega^2 - \mu^2 r_+})^{-2i\delta},
\] (20)
where $\mathcal{D} \equiv [\Gamma(2i\delta)]^2 \Gamma(\frac{1}{2} - i\delta - i\varpi + ik)/[\Gamma(-2i\delta)]^2 \Gamma(\frac{1}{2} + i\delta - ik)\Gamma(\frac{1}{2} + i\delta - i\varpi + ik)$. We note that \mathcal{D} has a well defined limit as $a \to M$ and $\omega \to m\Omega$.

In the limit $\omega \to m\Omega$, where ω is almost purely real, one finds from Eq. (12) that δ^2 is also almost purely real. If δ is almost purely real and larger than ~ 1, then one has $(-i)^{-2i\delta} = e^{(-i)^2(2i\delta)} = e^{-\pi \delta} \ll 1$. If δ is almost purely imaginary with a positive imaginary part, then one has $\tau^{-2i\delta} \to 0$ in the near-extremal $\tau \to 0$ limit. In both cases one therefore finds $\epsilon \equiv (2\pi \tau \sqrt{\omega^2 - \mu^2 r_+})^{-2i\delta} \ll 1$ on the r.h.s of Eq. (20).

Thus, a consistent solution of the resonance condition (20) may be obtained if $1/\Gamma(\frac{1}{2} - i\delta - i\varpi + ik) = O(\epsilon)$ (31). Suppose
\[
\frac{1}{2} - i\delta - i\varpi + ik = -n + \eta\epsilon + O(\epsilon^2),
\] (21)
where $n \geq 0$ is a non-negative integer and η is a constant to be determined below. Then one has
\[
\Gamma(\frac{1}{2} - i\delta - i\varpi + ik) \simeq \Gamma(-n + \eta\epsilon) \simeq (-n)^{-1}\Gamma(-n + 1 + \eta\epsilon) \simeq \cdots \simeq \left[(-1)^n n!\right]^{-1}\Gamma(\eta\epsilon),
\] (22)
where we have used the relation $\Gamma(z + 1) = z\Gamma(z)$ (24). Next, using the series expansion $1/\Gamma(z) = \sum_{k=1}^{\infty} c_k z^k$ with $c_1 = 1$ [see Eq. (6.1.34) of (24)], one obtains
\[
1/\Gamma(\frac{1}{2} - i\delta - i\varpi + ik) = (-1)^n n!\eta\epsilon + O(\epsilon^2).
\] (23)
Substituting (23) into (20) one finds $\eta = \mathcal{D}/[(-1)^n n!]$.

Finally, substituting $\varpi \equiv (\omega - m\Omega)/2\pi T_{BH}$ and $k \equiv 2\omega r_+ = m + O(M T_{BH})$ [the last equality holds for $\omega = m\Omega + O(T_{BH})$] into Eq. (21), one obtains a simple formula for the quasinormal resonances of the massive field:
\[
\omega = m\Omega + 2\pi T_{BH}[m - \delta - i(n + \frac{1}{2})] + O(M T_{BH}^2, \epsilon T_{BH}).
\] (24)

IV. NUMERICAL CONFIRMATION

We shall now verify the validity of the analytically derived formula (24) for the massive resonances. The black-hole quasinormal frequencies can be computed using standard numerical techniques, see (17) for details. We present here results for the case $l = m = 2$. Substituting in Eq. (21), $a \to M$ and $M\omega = 1 + O(M T_{BH})$ [see Eq. (21) for $a \to M$], one finds $K_{22} \simeq 6\pi - \frac{9}{2} M^2 \mu^2$, where we have used the expansion coefficients $c_1 = \frac{1}{3}$ and $c_2 = -\frac{3}{10\pi}$ from (24). Next, substituting this value of K_{22} into (12), one obtains
\[
\delta_{22}^2 = \frac{25}{28} - \frac{1}{7} M^2 \mu^2 + O(M T_{BH}).
\] (25)
One therefore finds that δ_{22} is real for $\mu < \mu_c = \sqrt{25/32} M^{-1}$ and imaginary for larger values of the field mass. (It is worth emphasizing that in full units $M \mu$ stands for the dimensionless ratio $GM \mu/hc = \mu M/M_{\text{Planck}}$.)

Taking cognizance of Eqs. (24)-(25), one finds that for small mass values ($\mu < \mu_c$, where δ_{22} is real), increasing the mass μ of the field increases the oscillation frequency $\mathcal{R}(\omega)$ of the resonance. On the other hand, for $\mu > \mu_c$ (where δ_{22} is imaginary) increasing the mass μ of the field increases the damping rate $\Im(\omega)$ of the mode.

In Table I we present a comparison between the analytically derived massive resonances, Eq. (24), and the numerically computed frequencies (17). We find an almost perfect agreement between the two. Table I demonstrates the fact that the agreement between the numerical data and the analytical formula (24) is quite good already at $a/M = 0.9$. This is quite surprising since the assumption $\tau \ll 1$ breaks down for this value of the rotation parameter.
TABLE I: Massive scalar quasinormal resonances of a near-extremal Kerr black hole with $a/M = 0.995$. The data shown is for the mode $l = m = 2$, see also [17]. We display the ratio between the analytically derived frequencies, ω_{ana}, and the numerically computed values, ω_{num}. The numerically computed frequencies of the massive field agree with the analytical formula (24) to within 2%.

a/M	$\Re \omega_{\text{ana}} / \Re \omega_{\text{num}}$	$\Im \omega_{\text{ana}} / \Im \omega_{\text{num}}$
0.0	1.003	0.983
0.1	1.003	0.983
0.2	1.003	0.983
0.3	1.004	0.983

TABLE II: Massive scalar quasinormal resonances of a near-extremal Kerr black hole. The data shown is for the mode $l = m = 2$ with $M\mu = 0.1$, see also [17]. We display the ratio between the analytically derived frequencies, ω_{ana}, and the numerically computed values, ω_{num}. The agreement between the numerical data and the analytical formula (24) is quite good already at $a/M = 0.9$.

a/M	$\Re \omega_{\text{ana}} / \Re \omega_{\text{num}}$	$\Im \omega_{\text{ana}} / \Im \omega_{\text{num}}$
0.9	1.007	1.095
0.95	1.010	1.053
0.99	1.005	0.995
0.995	1.003	0.983

V. SUMMARY

In summary, we have studied analytically the quasinormal mode spectrum of massive fields in the spacetime of near-extremal rotating black holes. It was shown that the fundamental resonances can be expressed in terms of the black-hole physical parameters: the temperature T_{BH} and the angular velocity Ω. Furthermore, we have shown that there exists a critical mass parameter, $\mu_c(l, m)$, below which increasing the mass μ of the field increases the oscillation frequency $\Re(\omega)$ of the resonance. On the other hand, above the critical field mass increasing the mass μ of the field increases the damping rate $\Im(\omega)$ of the mode. We confirmed our analytical results by numerical computations.

ACKNOWLEDGMENTS

This research is supported by the Meltzer Science Foundation. We thank Yael Oren, Arbel M. Ongo and Ayelet B. Lata for helpful discussions.

[1] W. Israel, Phys. Rev. 164, 1776 (1967); Commun. Math. Phys. 8, 245 (1968).
[2] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[3] S. W. Hawking, Commun. Math. Phys. 25, 152 (1972); D. C. Robinson, Phys. Rev. D 10, 458 (1974); Phys. Rev. Lett. 34, 905 (1975); J. Isper, Phys. Rev. Lett. 27, 529 (1971).
[4] H. P. Nollert, Class. Quantum Grav. 16, R159 (1999).
[5] E. Berti, V. Cardoso and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009).
[6] R.H. Price, Phys. Rev. D 5, 2419 (1972); C. Gundlach, R.H. Price, and J. Pullin, Phys. Rev. D 49, 883 (1994); J. Bicák, Gen. Relativ. Gravitation 3, 331 (1972).
[7] E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phys. Rev. Lett. 74, 2414 (1995); E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phys. Rev. D 52, 2118 (1995); S. Hod and T. Piran, Phys. Rev. D 58, 024017 (1998) [arXiv:gr-qc/9712041]; S. Hod and T. Piran, Phys. Rev. D 58, 024018 (1998) [arXiv:gr-qc/9801001]; S. Hod and T. Piran, Phys. Rev. D 58, 044018 (1998) [arXiv:gr-qc/9801059]; S. Hod and T. Piran, Phys. Rev. D 58, 024019 (1998) [arXiv:gr-qc/9801060]; S. Hod, Phys. Rev. D 58, 104022 (1998) [arXiv:gr-qc/9811032]; S. Hod, Phys. Rev. D 61, 024033 (2000) [arXiv:gr-qc/9902072]; S. Hod, Phys. Rev. D 61, 064018 (2000) [arXiv:gr-qc/9902073]; L. Barack, Phys. Rev. D 61, 024026 (2000); S. Hod, Phys. Rev. Lett. 84, 10 (2000) [arXiv:gr-qc/9907096]; S. Hod, Phys. Rev. D 60, 104053 (1999) [arXiv:gr-qc/9907044]; S. Hod, Class. Quant. Grav. 18, L311 (2001) [arXiv:gr-qc/0008001]; S. Hod, Phys. Rev. D 66, 024001 (2002) [arXiv:gr-qc/0201017]; R. J. Gleiser, R. H. Price, and J. Pullin, Class. Quant. Grav. 25, 072001 (2008); M. Tiglio, L. E. Kidder, and S. A. Teukolsky, Class. Quant. Grav. 25, 105022 (2008); R. Moderski and M. Rogatko, Phys. Rev. D 77, 124007 (2008); X. He and J. Jing, Nucl. Phys.B
[755, 313 (2006); H. Koyama and A. Tomimatsu, Phys. Rev. D 65, 084031 (2002); B. Wang, C. Molina, and E. Abdalla, Phys. Rev. D 63, 084001 (2001).

[8] S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972); Astrophys. J. 185, 635 (1973); W. H. Press and S. A. Teukolsky, Astrophys. J. 185, 649 (1973).

[9] S. L. Detweiler, in Sources of Gravitational Radiation, edited by L. Smarr (Cambridge University Press, Cambridge, England, 1979).

[10] S. Hod, Phys. Rev. Lett. 81, 4293 (1998) arXiv:gr-qc/9812002.

[11] T. Horowitz and V. E. Hubeny, Phys. Rev. D 62, 024027 (2000).

[12] S. Hod, Phys. Rev. D 75, 064013 (2007) arXiv:gr-qc/0611004; S. Hod, Class. and Quant. Grav. 24, 4235 (2007) arXiv:0705.2306; A. Gruzinov, arXiv:gr-qc/0705.1725.

[13] S. Hod, Phys. Rev. D 63, 140002 (2006) arXiv:06111004; S. Hod, Class. and Quant. Grav. 24, 4235 (2007) arXiv:0705.2306; A. Gruzinov, arXiv:gr-qc/0705.1725.

[14] S. Hod, Phys. Rev. D 63, 084001 (2001).