Differential effects of insulin-like growth factor binding protein-6 (IGFBP-6) on migration of two ovarian cancer cell lines

Zhiyong Yang¹ and Leon A. Bach¹,²*

¹ Department of Medicine (Alfred), Monash University, Prahran, VIC, Australia
² Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, VIC, Australia

Introduction: IGFBP-6 inhibits angiogenesis as well as proliferation and survival of rhabdomyosarcoma cells. However, it promotes migration of these cells in an IGF-independent manner. The IGF system is implicated in ovarian cancer, so we studied the effects of IGFBP-6 in ovarian cancer cells.

Methods: The effects of wild type (wt) and a non-IGF-binding mutant (m) of IGFBP-6 on migration of HEY and SKOV3 ovarian cancer cells, which, respectively, represent aggressive and transitional cancers, were studied. ERK and JNK phosphorylation were measured by Western blotting.

Results: IGF-II, wt-, and mIGFBP-6 each promoted SKOV3 cell migration by 77–98% (p < 0.01). In contrast, IGF-II also increased HEY cell migration to 155 ± 13% of control (p < 0.001), but wt-IGFBP-6 and mIGFBP-6 decreased migration to 62 ± 5 and 66 ± 3%, respectively (p < 0.001). In these cells, coincubation of IGF-II with wt but not mIGFBP-6 increased migration. MAP kinase pathways are involved in IGFBP-6-induced rhabdomyosarcoma cell migration, so activation of these pathways was studied in HEY and SKOV3 cells. Wt and mIGFBP-6 increased ERK phosphorylation by 62–99% in both cell lines (p < 0.05). Wt-IGFBP-6 also increased JNK phosphorylation by 139–153% in both cell lines (p < 0.05), but the effect of mIGFBP-6 was less clear. ERK and JNK inhibitors partially inhibited the migratory effects of wt and mIGFBP-6 in SKOV3 cells, whereas the ERK inhibitor partially restored wt and mIGFBP-6-induced inhibition of HEY cell migration. The JNK inhibitor had a lesser effect on the actions of wtIGFBP-6 and no effect on the actions of mIGFBP-6 in HEY cells.

Conclusion: IGFBP-6 has opposing effects on migration of HEY and SKOV3 ovarian cancer cells, but activates MAP kinase pathways in both. Delineating the pathways underlying the differential effects on migration will increase our understanding of ovarian cancer metastasis and shed new light on the IGF-independent effects of IGFBP-6.

Keywords: insulin-like growth factor, insulin-like growth factor binding protein-6, ovarian cancer, migration, MAP kinase

INTRODUCTION

The insulin-like growth factor (IGF) system has a key role in normal growth and development (1). IGF-I is regulated by growth hormone and mediates many of its actions, whereas both IGF-I and IGF-II stimulate proliferation, survival, and migration of many cell types. Dysregulation of the IGF system is implicated in many disease processes including cancer, and there has been considerable interest in recent years in developing IGF inhibitors as therapeutic agents (2). However, clinical trials of these inhibitors has been disappointing, and current strategies include understanding mechanisms of resistance as well as finding biomarkers of IGF responsiveness that will permit optimized targeting of these agents.

Insulin-like growth factor actions are regulated by a family of six high affinity binding proteins (IGFBP 1–6) (3, 4). Of these, IGFBP-6 is characterized by a 50-fold binding preference for IGF-II over IGF-I, conferring specificity in inhibiting IGF-II actions (5–7). Most IGFBPs also have IGF-independent actions, and we have shown in recent years that IGFBP-6 inhibits angiogenesis (8) as well as promoting migration of rhabdomyosarcoma and colon cancer cells in an IGF-independent manner (9, 10). Further, we identified cell surface prohibitin-2 as a protein that binds IGFBP-6 and is required for its effects on cell migration (11).

Ovarian cancer is the second most common gynecological malignancy after uterine cancer but the most common cause of gynecological cancer death in Australia (12). In the United States, ovarian cancer is the eighth most common cancer and the fifth leading cause of cancer death in women (13). The diagnosis of ovarian cancer is often delayed because it presents with non-specific symptoms, so that it has metastasized at presentation. Because of this, 5-year-survival is 43%. The IGF system is implicated in ovarian cancer, and both IGF ligands and the IGF-I...
IGFBP-6 has differential effects on migration of SKOV3 and HEY ovarian cancer cells

Initially, the effects of IGF-II and wt or mIGFBP-6 on proliferation of ovarian cancer cells were studied. However, none of these proteins had any effect on proliferation (results not shown). Cell migration was then studied using a microchemotaxis chamber.
SKOV3 cell migration was increased by IGF-II (177 ± 19% of control, *p < 0.01), wtIGFBP-6 (198 ± 22% of control, *p < 0.001), and mIGFBP-6 (195 ± 13% of control, *p < 0.001) (Figure 1). Coincubation of IGF-II with either wt or mIGFBP-6 had no additional effect on migration of these cells. Collectively, these results suggest that the effect of IGFBP-6 was IGF-independent.

Insulin-like growth factor-II also increased HEY cell migration to 155 ± 13% of control (*p < 0.001) but wtIGFBP-6 and mIGFBP-6 each decreased migration to 62 ± 5 and 66 ± 3% of control, respectively (*p < 0.01) (Figure 1). Coincubation of IGF-II reversed the effect of wtIGFBP-6 to 95 ± 7% of control (*p < 0.01 wtIGFBP-6 vs. wtIGFBP-6 + IGF-II). In contrast, coincubation of IGF-II had no significant effect on the mIGFBP-6-induced decrease in migration. These results suggest that the effect of IGFBP-6 was IGF-dependent to some extent in these cells.

OVCAR-3 cells did not migrate under basal conditions or after incubation with IGF-II or IGFBP-6 (results not shown) and were not studied further.

IGFBP-6 INCREASES MAP KINASE ACTIVATION IN OVARIAN CANCER CELLS

We have previously shown that MAP kinase pathways are involved in IGFBP-6-induced rhabdomyosarcoma cell migration (9, 10), so we compared activation of these pathways in HEY and SKOV3 cells. Wt and mIGFBP-6, respectively, increased ERK phosphorylation in SKOV3 cells to 178 ± 15% (*p < 0.01) and 199 ± 22% (*p < 0.001) of control (Figure 2). Similarly, wt and mIGFBP-6, respectively, increased ERK phosphorylation in HEY cells to 162 ± 19% (*p < 0.05) and 163 ± 24% (*p < 0.05) of control.

WtIGFBP-6 also increased JNK phosphorylation in SKOV3 and HEY cells to 253 ± 61% (*p < 0.05) and 239 ± 66% (*p < 0.05) of control, respectively (Figure 3). In contrast, mIGFBP-6 significantly increased JNK phosphorylation to 176 ± 19% (*p < 0.001) of control in SKOV3 cells but not in HEY cells (123 ± 13% of control, NS). Phosphorylation of p38 MAPK was not detected in either cell line under basal conditions or following incubation with wt or mIGFBP-6 (results not shown).

EFFECTS OF ERK AND JNK PATHWAY INHIBITORS ON IGFBP-6-INDUCED MIGRATION IN OVARIAN CANCER CELLS

PD98059, an inhibitor of ERK1/2 activation, and SP600125, a JNK inhibitor, were used to study the roles of MAPK pathways in IGFBP-6-induced ovarian cancer cell migration. These inhibitors
FIGURE 3 | IGFBP-6 increases phosphorylation of JNK in SKOV3 and HEY cells. Following serum starvation overnight, SKOV3 and HEY cells were treated without (con) or with wt mIGFBP-6 (1 µg/ml) for 10 min. Cell lysates were subjected to Western blotting analysis using antibodies against phospho-JNK. Blots were stripped and reprobed with total JNK. β-actin was used as a protein loading control. (Upper): representative blots. (Lower): extent of phosphorylation in response to wtIGFBP-6 and mIGFBP-6 was calculated as the ratio of phospho/total ERK. Results are shown as mean ± SEM of five to six independent experiments and expressed as a percentage of control. *p < 0.05, ***p < 0.001 vs. Con.

were shown to, respectively, decrease ERK and JNK phosphorylation in each cell line at the concentration used (30 µM, results not shown).

In SKOV3 cells, neither inhibitor had a significant effect on basal migration (Figure 4). PD98059 partially inhibited wtIGFBP-6-induced migration from 347 ± 22 to 215 ± 24% of control (p < 0.001). This inhibitor had a similar effect on mIGFBP-6-induced migration (214 ± 5 vs. 353 ± 9% of control, p < 0.001). SP600125 also partially abrogated SKOV3 cell migration induced by wtIGFBP-6 (223 ± 16 vs. 347 ± 22% of control, p < 0.001) and mIGFBP-6 (203 ± 18 vs. 353 ± 9% of control, p < 0.001).

In HEY cells, both inhibitors decreased basal migration by ~30% (p < 0.001, Figure 4). Despite this, PD98059 partially restored migration in the presence of wtIGFBP-6 (83 ± 3 vs. 61 ± 3% of control, p < 0.001) and mIGFBP-6 (86 ± 2 vs. 65 ± 3% of control, p < 0.001). SP600125 also partially restored migration in the presence of wtIGFBP-6 (74 ± 5 vs. 61 ± 3% of control, p < 0.01), although the effect was less potent than that of PD98059 (p < 0.05). SP600125 had no effect on mIGFBP-6-induced inhibition of HEY cell migration (64 ± 3 vs. 65 ± 3% of control, NS).

Since both inhibitors had partial effects on IGFBP-6-induced changes in migration in each cell line, the effects of a combination of the two inhibitors were studied to determine whether it would completely abolish migration. However, the combination resulted in significant toxicity in both cell lines (results not shown).

DISCUSSION

The findings of this study showed that IGFBP-6 increased migration of SKOV3 ovarian cancer cells in an IGF-independent manner, which is similar to our previous findings in rhabdomyosarcoma and colon cancer cells (9–11). However, in contrast to these cell lines, IGFBP-6 inhibited migration of HEY ovarian cancer cells. IGF-II reversed the inhibitory effects of wt but not mutant IGFBP-6 in these cells, suggesting that IGFBP-6 inhibited migration by
both IGF-dependent and IGF-independent mechanisms. Wt and mutant IGFBP-6 increased ERK and JNK phosphorylation in both cell lines, whereas mutant IGFBP-6 only increased ERK phosphorylation in HEY cells. Inhibitors of ERK and JNK partially inhibited the migratory effects of wt and mIGFBP-6 in SKOV3 cells, whereas the ERK inhibitor partially restored wt and mIGFBP-6-induced inhibition of HEY cell migration. The JNK inhibitor had a lesser effect on the actions of wtIGFBP-6 and no significant effect on the actions of mIGFBP-6 in HEY cells. The latter is consistent with the lack of effect of mIGFBP-6 on JNK phosphorylation in these cells.

We previously showed that IGFBP-6-induced migration of rhabdomyosarcoma cells is dependent on activation of MAP kinase pathways. In RD rhabdomyosarcoma cells, IGFBP-6 transiently increased phosphorylation of p38 MAPK, whereas ERK was constitutively activated and IGFBP-6 had no further effect (9). Specific p38 and ERK inhibitors completely abolished IGFBP-6-induced RD cell migration as did p38 knockout. In contrast, the JNK pathway appeared to have no role in IGFBP-6-induced migration of these cells. The pattern of MAPK activation was different in Rh30 rhabdomyosarcoma cells, which derive from a distinct tumor subtype (10). IGFBP-6 increased phosphorylation of ERK and JNK, but had no effect on p38 phosphorylation in these cells. ERK inhibition abolished IGFBP-6-induced migration as did a p38 inhibitor, despite IGFBP-6 not inducing p38 phosphorylation. A JNK inhibitor also partially inhibited IGFBP-6-induced Rh30 cell migration. These and other findings suggested that crosstalk among MAP kinase pathways played an important role in IGFBP-6-induced cell migration.

MAP kinases are also implicated in ovarian cancer cell migration. MAP4K4 increased SKOV3 cell migration via activation of JNK but not ERK or p38 MAP kinases (23). ERK and JNK were also implicated in mesothelin-stimulated migration of ovarian cancer cells (24), whereas JNK but not ERK or p38 MAP kinase was involved in GnRH-induced ovarian cancer migration (25). Interestingly, the latter study included OVCAR-3 cells, which did not migrate under any conditions in the current study; the reasons for the different responses are unclear but may relate to specific tissue culture conditions. Nevertheless, these findings are consistent with the present study showing that MAP kinase inhibition decreases IGFBP-6-induced migration of SKOV3 cells.

Although MAP kinase activation is associated with increased migration of many cancer cell lines, they may also inhibit this process in some circumstances. For example, ERK activation inhibits neutrophil migration whereas p38 MAP kinase enhances it (26). Similarly, ERK activation mediates CXCL1-induced inhibition of airway smooth muscle cell migration (27). These findings are consistent with those of the present study showing that ERK inhibition partially reversed IGFBP-6-induced inhibition of HEY cell migration.

MAP kinase pathways are not the only signaling pathways involved in cell migration. For example, the PI3 kinase/Akt pathway also mediates migration of some cells (28) including ovarian cancer cells (29). We performed preliminary time-course experiments to determine the effects of wt and mIGFBP-6 on Akt phosphorylation. There was no effect in SKOV cells but there appeared to be an increase in HEY cells (results not shown). However, these results were highly variable and do not explain the inhibitory effect of IGFBP-6 on HEY cell migration. Further, we have previously found that Akt was not involved in IGFBP-6-induced rhabdomyosarcoma cell migration (10).

We showed that IGFBP-6-induced migration of rhabdomyosarcoma cells is dependent on binding to prohibitin-2 (11). Knockdown of prohibit-2 abrogated IGFBP-6-induced migration of these cells without perturbing IGFBP-6-induced phosphorylation of ERK or JNK, suggesting that its effect was downstream or independent of MAP kinases (11). The ovarian cancer cell lines used in the present study express prohibitin-2 (results not shown), so it would be of interest to determine whether this protein is involved in the migratory responses observed in the present study.

Other IGFBPs have been shown to have context-specific differences in IGF-independent actions. For example, IGFBP-3 inhibited or enhanced EGF-dependent proliferation of breast epithelial cells depending on whether or not fibronectin was used to coat tissue culture plates (30). In contrast with the present study, IGFBP-3 also had differential effects on ERK phosphorylation in these breast cells. A number of other studies have suggested that interactions of IGFBP-3 with other modulators including GRP78 and the sphingolipid rheostat may also play a role in these differential responses (31). Future studies of potential interactions between IGFBP-6 and these modulators would be of interest.

In conclusion, this study has shown differential effects of IGFBP-6 on migration of two ovarian cancer cell lines. IGFBP-6-dependent changes in migration of both cell lines were accompanied by MAP kinase pathway activation, so that this cannot explain the opposite direction of the migratory responses. IGFBP-6 inhibits the actions of IGF-II (7) and angiogenesis by an IGF-independent pathway (8), and both of these may contribute to its anti-tumorigenic effects. However, promotion of migration may be pro-tumorigenic, so further studies to determine the mechanisms underlying the differential effects of IGFBP-6 on migration in these cell lines would help in developing an IGFBP-6-based therapeutic for IGF-II-dependent cancers. These studies could include determining differences in the molecular signatures of these cell lines, which may in turn suggest additional potential therapeutic targets and/or biomarkers of tumor aggressiveness. Metastasis is a complex, multistage process, so studying the effects of IGFBP-6 on other aspects such as cell adhesion would also be of interest. Finally, once the determinants of the promigratory actions of IGFBP-6 are understood, combination therapies including an “optimized” IGFBP-6 molecule and an IGF-I receptor inhibitor may synergistically provide dual blockade of the IGF pathway together with beneficial IGF-independent actions of the binding protein.

ACKNOWLEDGMENTS

This study was funded by a project grant from Cancer Council Victoria.

REFERENCES

1. Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov (2007) 6(10):821–33. doi:10.1038/nrd2359
2. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer (2012) 12(3):159–69. doi:10.1038/nrc3215
3. Bach LA, Heady SJ, Norton RS. IGF-binding proteins – the pieces are falling into place. *Trends Endocrinol Metab* (2015) 16(5):228–34. doi:10.1016/j.tem.2005.05.005

4. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. *Nat Rev Cancer* (2014) 14(5):329–41. doi:10.1038/nrc3720

5. Bach LA. Insulin-like growth factor binding protein-6: the “forgotten” binding protein? *Horm Metab Res* (1999) 31(2–3):226–34. doi:10.1055/s-2007-978723

6. Bach LA. IGFBP-6 five years on; not so ‘forgotten’? *Horm IGF Res* (2005) 15(3):185–92. doi:10.1016/j.yhur.2005.04.001

7. Bach LA, Fu P, Yang Z. Insulin-like growth factor-binding protein-6 and cancer. *Clin Sci* (2013) 124(4):215–29. doi:10.1042/CS20120343

8. Zhang C, Lu L, Li Y, Wang X, Zhou J, Liu Y, et al. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis. *Int J Cancer* (2012) 130:2003–12. doi:10.1002/ijc.26201

9. Fu P, Thompson JA, Bach LA. Promotion of cancer cell migration: an insulin-like growth factor [IGF]-independent action of IGF-binding protein-6. *J Biol Chem* (2007) 282(31):22298–306. doi:10.1074/jbc.M703066200

10. Fu P, Liang GJ, Khot SS, Phan R, Bach LA. Cross-talk between MAP kinase pathways is involved in IGF-independent, IGFBP-6-induced RhoA rhabdomyosarcoma cell migration. *J Cell Physiol* (2010) 224(3):636–43. doi:10.1002/jcp.21216

11. Fu P, Yang Z, Bach LA. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration. *J Biol Chem* (2013) 288:29890–900. doi:10.1074/jbc.M113.510826

12. Australian Institute of Health and Welfare & Cancer Australia 2012. *Gynaecological Cancers in Australia: an overview*. Cancer series no. 70. Cat. no. CAN 66.

13. Prevention CDBCa. *Gynecologic Cancers*. (2013). Available from: http://www.cdc.gov/cancer/gynecov/statistics/

14. Bruchim I, Werner H. Targeting IGF-1 signaling pathways in gynecologic malignancies. *Expert Opin Ther Targets* (2013) 17(3):307–20. doi:10.1517/14728222.2013.749863

15. Sayer RA, Lancaster JM, Pittman J, Gray I, Whitaker R, Marks JR, et al. High insulin-like growth factor-2 (IGF-2) gene expression is an independent predictor of poor survival for patients with advanced stage serous epithelial ovarian cancer. *Gynecol Oncol* (2005) 96(2):355–61. doi:10.1016/j.ygyno.2004.10.012

16. Beaucamp MC, Vasmeen A, Knafo A, Gotlieb WH. Targeting insulin and insulin-like growth factor pathways in epithelial ovarian cancer. *J Oncol* (2010) 2010:257038. doi:10.1155/2010/257038

17. Walker G, MacLeod K, Williams ARW, Cameron DA, Smyth JF, Langdon SP. Insulin-like growth factor binding proteins IGFBP3, IGFBP4, and IGFBP5 predict endocrine responsiveness in patients with ovarian cancer. *Clin Cancer Res* (2007) 13(5):1438–44. doi:10.1158/1078-0432.CCR-06-2245

18. Bhansali-Mostafavi Z, Tickle TL, Zhang J, Bennett KE, Vachris JC, Spencer MD, et al. Correlation analysis of HOX, ERBB and IGFBP family gene expression in ovarian cancer. *Cancer Invest* (2008) 26(10):990–8. doi:10.1080/07357900802074349

19. Gunawardana CG, Kuk C, Smith CR, Batruch I, Soosaipillai A, Diamandis EP. Comprehensive analysis of conditioned media from ovarian cancer cell lines identifies novel candidate markers of epithelial ovarian cancer. *J Proteome Res* (2009) 8(10):4705–13. doi:10.1021/pr900411g

20. Lin BY, White JT, Wu J, Lele S, Old LJ, Hood L, et al. Deep depletion of abundant serum proteins reveals low-abundant proteins as potential biomarkers for human ovarian cancer. *Proteomics Clin App* (2009) 3(7):853–61. doi:10.1002/pca.200800141

21. Shaw TJ, Sentermanek MK, Dawson K, Crane CA, Vanderhyden BC. Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. *Mol Ther* (2004) 10(6):1032–42. doi:10.1016/j.ymthe.2004.08.013

22. Gallicchio MA, Kneen M, Hall C, Scott AM, Bach LA. Overexpression of insulin-like growth factor binding protein-6 inhibits rhabdomyosarcoma growth in vivo. *Int J Cancer* (2001) 94(5):645–51. doi:10.1002/ijc.1519

23. Collins CS, Hong J, Sapinose L, Zhou Y, Liu Z, Micklach K, et al. A small interfering RNA screen for modulators of tumor cell motility identifies MAPK4 as a promyelocytic kinase. *Proc Natl Acad Sci U S A* (2006) 103(10):3775–80. doi:10.1073/pnas.060040103

24. Chang MC, Chen CA, Chen PJ, Chiang YC, Chen YL, Mao TL, et al. Mesotheli- min enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. *Biochem J* (2012) 442(2):293–302. doi:10.1042/ BJ20110282

25. Cheung IW, Leung PC, Wong AS. Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinases (MMP-2) and MMP-9. *Cancer Res* (2006) 66(22):10902–10. doi:10.1158/0008-5472.CAN-06-2217

26. Liu X, Ma B, Malik AB, Tang H, Yang T, Sun B, et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. *Nat Immunol* (2012) 13(3):457–64. doi:10.1038/ni.2258

27. Al-Awain LA, Chang Y, Rousseau S, Martin JG, Eidelman DH, Hamid Q. CXCL1 inhibits airway smooth muscle cell migration through the decoy receptor duffy antigen receptor for chemokines. *J Immunol* (2014) 193(3):1416–26. doi:10.4049/jimmunol.1302860

28. Kolisch V, Charest PG, Firtel RA. The regulation of cell motility and chemotaxis by phospholipid signaling. *J Cell Sci* (2008) 121:551–9. doi:10.1242/jcs.023333

29. Whitley BR, Beaulieu LM, Carter JC, Church FC. Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator-inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. *Gynecol Oncol* (2007) 104(2):470–9. doi:10.1016/j.ygyno.2006.08.048

30. McIntosh J, Dennison G, Holly JMP, Jarrett C, Frankow A, Foulstone EJ, et al. IGFBP-3 can either inhibit or enhance EGF-mediated growth of breast epithelial cells dependent upon the presence of fibronectin. *J Biol Chem* (2010) 285(50):38788–800. doi:10.1074/jbc.M110.77311

31. Johnson MA, Firth SM, IGFBP-3: a cell late pivot in cancer and disease. *Growth Horm IGF Res* (2014) 24(5):164–73. doi:10.1016/j.yghre.2014.04.007

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 October 2014; paper pending published: 26 November 2014; accepted: 14 December 2014; published online: 05 January 2015. Citation: Yang Z and Bach LA (2015) Differential effects of insulin-like growth factor binding protein-6 (IGFBP-6) on migration of two ovarian cancer cell lines. Front. Endocrinol. 5:231. doi: 10.3389/fendo.2014.00231

This article was submitted to Cancer Endocrinology, a section of the journal Frontiers in Endocrinology.

Copyright © 2015 Yang and Bach. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.