Two Case Reports and an Updated Review of Spinal Intraosseous Schwannoma

Fan Zhang, B.S., Feizhou Lu, Ph.D., Jianyuan Jiang, B.S., Hongli Wang, M.S.
Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China

We report two rare cases of spinal intraosseous schwannoma (SIS) with sustained myelopathy symptoms and provide an updated review regarding SIS in the literature. A 71-year-old man experienced right lumbocrural pain and gait disturbance accompanied by paresthesia and right leg weakness for 6 months. Neurologic examination revealed impaired right leg motor function (grade 3/5) with diminished feeling on the right side caudally from the lumbar L4 sensory dermatome; however, his nerve reflexes were normal. Enhanced magnetic resonance imaging (MRI) (Fig. 1) showed a mass with lesions in the vertebral body (L4) and spinal canal compressing the lumbar spinal cord. Computed tomography (CT) scan revealed a slowly growing tumor with severe vertebrae destruction (Fig. 2A, arrow). Piecemeal resection and decompression were performed. After total laminectomy and facetectomy of L3–5, a well-demarcated tumor was exposed extending into the spinal canal (Fig. 2B, arrow) without nerve involvement or dural adhesions. The spine was stabilized with pedicle screws and rods after the tumor was completely resected. Histological characteristic of the tumor revealed Antoni A and B tissue (Fig. 2C) and overexpression of S-100 protein (Fig. 2D), which confirmed a diagnosis of intraosseous schwannoma without originating nerve remnants. Intraoperative fluoroscopy revealed successful total resection.

Key Words : Spinal intraosseous schwannoma · Myelopathy · Differential diagnosis.
internal fixation (Fig. 3A). Postoperative images taken at the 2-year follow-up showed no obvious evidence of recurrence and general bony fusion (Fig. 3B, C, D), and the patient's gait and sensation in the right lower extremity showed good recovery.

Case 2
A 54-year-old female reported a 4-month history of gait disturbance and paresthesia of both lower extremities. Physical examination revealed numbness in both legs without obvious weakness (grade 5/5); nerve reflexes were normal. MRI (Fig. 4A) showed a mass (arrow) that appeared to originate from the posterior elements of T9 and extended into the spinal canal and paravertebral areas, extruding the spinal cord. T9 vertebrae bone erosion was observed on CT. The imaging results led to a differential diagnosis of primary benign/malignant bone tumor or metastatic tumor. The tumor was completely separated and surgically resected from the spinal nerve root with a clear border, and a posterior fusion with allograft bone was performed to stabilize the spine. Pathological characteristics of the tumor confirmed a benign schwannoma (Fig. 4C, D). Intraoperative fluoroscopy demonstrated successful internal fixation in the proper position for posterior interbody fusion (Fig. 4E, F). According to the MRI images at the 4-year follow-up, there was no obvious sign of recurrence with relieved gait and sensation disturbance (Fig. 4G).
those cases were probably intraosseous invasions of extraosseous nerve sheath tumors. It is known that neurilemmomas can involve bone by three possible mechanisms: 1) an extraosseous tumor causing secondary bone erosion; 2) a tumor arising centrally within the bone; and 3) tumor origination in the nutrient canal followed by growth into a dumbbell-shape that enlarges the spinal canal. Of these, only the second mechanism could occur with intraosseous neurilemmoma; the small nerves that give rise to these tumors have been described in the human vertebrae (10, 23). In other words, the intraosseous origin of schwannoma must be nerves within bones that are free from adjacent neural tissue. This view is supported by most reports in the SIS literature (5, 11).

Symptoms vary among SIS patients. Because most of these tumors enlarge slowly, the patient’s history may be considerably long, and most experience pain (14/25, 56%) depending on the tumor location. Neurological compression symptoms develop when the tumor perforates the bone cortex and causes spinal cord protrusion, but specific symptoms can differ depending on the level of the lesion. SISs are most commonly found in the lumbar region (38%), followed by thoracic (32%) and cervical (28%), which is different from the results reported by Park et al. (10).

Radiological findings in SIS can also vary considerably, and differential diagnosis includes ruling out solitary myeloma, chordoma, chondrosarcoma, giant cell tumor, angiomatosis, and aneurysmal bone cyst. SISs are sometimes found to primarily occupy the intraosseous region with or without extravertebral and spinal canal involvement, and a hollowed out vertebral body with a single, thin, bulging cortex perforation is suggestive of intraosseous origin. Generally, intraosseous schwannoma appears on radiological images as a lytic defect with bone erosion lacking new periosteal bone formation and calcification/ossification, although a narrow sclerotic zone may be present between the tumor and bone. Vertebral intraosseous schwannomas gradually increase in size, resulting in pedicle and vertebral body erosion that widens the foramen and vertebral scalloping. Histological conformation is mandatory for a diagnosis of SIS. Proliferation of slender spindle cells with oval nuclei and focal palisading nuclei (Antoni A) and degenerated hypocellular areas (Antoni B) with hemosiderin deposition and thrombosed blood vessels are suggestive of schwannoma. SISs are not histologically different from schwannomas that develop elsewhere, even at the ultrastructural level, but the histological features of intraosseous neurilemmomas may be obscured in highly cellular lesions with subtle Antoni types A and B patterns. Both types have long durations and similar degenerative characteristics, including perivascular hyalinization, calcification, and cystic degeneration.

The gold standard for benign bone tumors is marginal resection. Unfortunately, this is often difficult to achieve in SISs, which have both intra- and extraosseous components that invade adjacent structures, including nerve roots, spinal cord, and paravertebral tissue. This is usually addressed with adequate cu-
Table 1. Previous reports of SIS

Ref.	Year	Author	Age (y)	Sex	Origin	Level/original location	Symptom	Treatment	Resection
7	1971	Dickson et al.	51	F	-	L3/vertebral body	Left thigh pain	Abdominal approach excision and fusion	Complete
10	1971	Gupta and Agarwal	37	M	-	-	Back pain, lower limb weakness	-	Complete
22	1975	Polley	34	F	-	C6, C7/vertebral body	No neurological deficits, but neck pain after cervical injury	Posterior approach excision and fusion	Complete
16	1988	Naidu et al.	50	M	-	C3, C4/vertebral body, pedicle, and transverse process	Weakness in all limbs and burning sensation in both lower limbs	Posterior approach excision without fusion	Complete
1	1992	Barnowsky and Dalal	41	M	L4 root	L4	-	-	-
12	1994	Knapp et al.	65	F	-	L4, L5	-	Biopsy	-
18	1997	Nooraie et al.	46	M	-	T12, L1/vertebral body	Complain of severe back pain after accident without abnormal neurological deficits	Posterior approach excision and fusion	Complete
13	1998	Ko et al.	-	-	T8	-	Operated	-	
3	1998	Chang et al.	58	M	-	L4, L5/vertebral body	Severe pain and numbness of both lower extremities	1. Anterolateral retroperitoneal fusion and excision, 2. Posterior fusion	Complete
22	2000	Ramasamy et al.	37	M	-	T12/vertebral body	Back pain, weakness, and bilateral lower extremity numbness	Resection with anterior and posterior fusion	Complete
11	2001	Inaoka et al.	9	M	T10 root	T10/vertebral body and left transverse process	Nontender distention of the back without abnormal neurological deficits	Not mentioned	Complete
11	2001	Inaoka et al.	39	M	L5 root	L5/vertebral body and left transverse process	Moderate lumbar pain without abnormal neurological deficits	Not mentioned	Operated
24	2001	Schreuder et al.	39	F	-	C6/vertebral body	Neck pain and dysphagia	Anterior approach excision and fusion	Complete
15	2004	Mitutani et al.	73	F	-	C4	Discomfort in swallowing	-	Complete
17	2005	Nannapaneni and Sinar	42	M	-	C5/vertebral body	No neurological deficits	Anterior approach excision and fusion	Complete
26	2005	Singrakhia et al.	43	M	-	C3, C4/vertebral body	Increasing numbness around the right shoulder and deltoid weakness	Anterior approach excision and fusion	Operated
26	2005	Singrakhia et al.	45	M	-	C4/vertebral body and left transverse process	Progressive pain and weakness in the right upper limb	Anterior approach excision and fusion	Operated
10	2005	Gupta and Agarwal	30	F	-	L2/vertebral body	Complaints of backache and progressively increasing weakness in both lower limbs	Not mentioned	Complete
We report two cases of SIS, which is a rare differential diagnosis for intraspinal tumor. Proper diagnosis requires radiological tests, gross intraoperative findings, and postoperative histological results. Symptoms vary depending on tumor location, and fusion with bone graft is required in approximately 68% of cases.

CONCLUSION

We report two cases of SIS, which is a rare differential diagnosis for intraspinal tumor. Proper diagnosis requires radiological tests, gross intraoperative findings, and postoperative histological results. Symptoms vary depending on tumor location, and fusion with bone graft is required in approximately 68% of cases.

References

1. Barnowsky L, Dalal R: Extradural schwannoma manifested as an expansile vertebral lesion. AJR Am J Roentgenol 159: 1352-1353, 1992
2. Cetinkal A, Atabey C, Kaya S, Colak A, Topuz AK: Intraosseous schwannoma of thoracic 12 vertebra without spinal canal involvement. Eur Spine J 16 Suppl 2: 236-239, 2009
3. Chang CJ, Huang JS, Wang YC, Huang SH: Intraosseous schwannoma of the fourth lumbar vertebra: case report. Neurosurgery 43: 1219-1222, 1998
4. Choudry Q, Younis F, Smith RB: Intraosseous schwannoma of D12 thoracic vertebra: diagnosis and surgical management with 5-year follow-up. Eur Spine J 16 Suppl 3: 283-286, 2007
5. Cohen DM, Dahlin DC, Maccarty CS: Apparently solitary tumors of the vertebral column. Mayo Clin Proc 39: 509-528, 1964
6. de la Monte SM, Dorfman HD, Chandra R, Makower M: Intraosseous schwannoma: histologic features, ultrastructure, and review of the literature. Hum Pathol 15: 551-558, 1984
7. Dickson JH, Waltz TA, Fechner RE: Intraosseous neurilemoma of the third lumbar vertebra. J Bone Joint Surg Am 53: 349-355, 1971
8. Ellis GL, Abrams AM, Melrose RJ: Intraosseous benign neural sheath neoplasms of the jaws. Report of seven new cases and review of the literature. Oral Surg Oral Med Oral Pathol 44: 731-743, 1977
9. Gordon EJ: Solitary intraspinal neurilemoma of the tibia: review of intraspinal neurilemmoma and neurofibroma. Clin Orthop Relat Res (117): 271-282, 1976
10. Gupta SP, Agarwal A: Intraosseous neurilemmoma of L2 vertebra—a case report. Indian J Pathol Microbiol 48: 367-369, 2005
11. Inaoka T, Takahashi K, Hanoaka H, Absurano R, Tokusashi Y, Matsuno T, et al.: Paravertebral neurinoma associated with aggressive intravertebral extension. Skeletal Radiol 30: 286-289, 2001
12. Knapp TR, Struk DW, Munk PL, Bainbridge TC, Bhimji SD, Poos PY:
Spinal Cord Compression due to Intraosseous Schwannoma | F Zhang, et al.

13. Ko SE, Lee TY, Lim JW, Ng SH, Chen WJ, Hsieh MJ, et al.: Thoracic neurilemmomas: an analysis of computed tomography findings in 36 patients. J Thoracic Imaging 13: 21-26, 1998
14. Kojima M, Seichi A, Yamamuro K, Inoue H, Kimura A, Hoshino Y: Intraosseous schwannoma originating from the posterior column of the thoracic spine. Eur Spine J 20 Suppl 2: S153-S156, 2011
15. Mizutani A, Yokota N, Kawaji H, Yamaguchi-Okaida M, Miyagawa T, Namba H: Intraosseous schwannoma of the cervical vertebral body: a case report and review of the literature. Br J Neurosurg 24: 604-646, 2010
16. Naidu MR, Dinakar I, Rao KS, Ratnakar KS: Intraosseous schwannoma of the cervical spine associated with skeletal fluorosis. Clin Neurol Neurosurg 90: 257-260, 1988
17. Nannapaneni R, Sinar EJ: Intraosseous schwannoma of the cervical spine. Br J Neurosurg 19: 244-247, 2005
18. Nooriae H, Taghipour M, Arasteh MM, Daneshbod K, Erfanie MA: Intraosseous schwannoma of T12 with burst fracture of L1. Arch Orthop Trauma Surg 116: 440-442, 1997
19. Park SC, Chung SK, Choe G, Kim HJ: Spinal intraosseous schwannoma: a case report and review. J Korean Neurosurg Soc 46: 403-408, 2009
20. Pedersen HE, Blunck CE, Gardner E: The anatomy of lumbosacral posterior rami and meningeal branches of spinal nerve (sinu-vertebral nerves): with an experimental study of their functions. J Bone Joint Surg Am 38-A: 377-391, 1956
21. Polkey CE: Intraosseous neurilemmoma of the cervical spine causing paraparesis and treated by resection and grafting. J Neurol Neurosurg Psychiatry 38: 776-781, 1975
22. Ramasamy P, Shackleford I, Al Jafari M: Schwannoma of T12 vertebra: case report and review of literature. Sarcoma 4: 185-190, 2000
23. Samter TG, Vellos E, Shafer WG: Neurilemmoma of bone. Report of 3 cases with a review of the literature. Radiology 75: 215-222, 1960
24. Schreuder HW, Veth RP, Pruszczynski M, Lemmens JA, van Laarhoven EW: Intraosseous schwannoma (neurilemmoma) of the cervical spine. Sarcoma 5: 101-103, 2001
25. Sherman MS: The nerve of bone. J Bone Joint Surg Am 45: 522-528, 1963
26. Singrakhia MD, Parmar H, Maheshwari M, Fehlings M: Cervical schwannoma presenting as an expansile vertebral body lesion: report of two cases with a technical note on the surgical management. Surg Neurol 66: 192-196: discussion 196, 2006