Characterizing subgroup perfect codes by 2-subgroups

Junyang Zhang

Received: 5 November 2022 / Revised: 19 April 2023 / Accepted: 27 April 2023 / Published online: 16 May 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
A perfect code in a graph Γ is a subset C of $V(\Gamma)$ such that no two vertices in C are adjacent and every vertex in $V(\Gamma) \setminus C$ is adjacent to exactly one vertex in C. Let G be a finite group and C a subset of G. Then C is said to be a perfect code of G if there exists a Cayley graph of G admitting C as a perfect code. It is proved that a subgroup H of G is a perfect code of G if and only if a Sylow 2-subgroup of H is a perfect code of G. This result provides a way to simplify the study of subgroup perfect codes of general groups to the study of subgroup perfect codes of 2-groups. As an application, a criterion for determining subgroup perfect codes of projective special linear groups $\text{PSL}(2, q)$ is given.

Keywords Cayley graph · Perfect code · Subgroup perfect code · Projective special linear group

Mathematics Subject Classification 05C25 · 05C69 · 94B99

1 Introduction

All groups considered in the paper are finite groups with identity element denoted by 1, and all graphs considered are finite, undirected and simple. For a graph Γ, we use $V(\Gamma)$ and $E(\Gamma)$ to denote its vertex set and edge set respectively. The distance in Γ between two vertices is the length of a shortest path between the two vertices or ∞ if there is no path in Γ joining them. Let r be a positive integer. A subset C of $V(\Gamma)$ is called [1, 15] a perfect r-error-correcting code (or perfect r-code for short) in Γ if every vertex of Γ is at distance no more than r to exactly one vertex in C. A perfect 1-code is usually called a perfect code. Equivalently, a subset C of $V(\Gamma)$ is a perfect code in Γ if C is an independent set of Γ and every vertex in $V(\Gamma) \setminus C$ is adjacent to exactly one vertex in C. A perfect code in a graph is also called an efficient dominating set [5] or independent perfect dominating set [18] of the graph.
The notion of perfect r-codes in graphs was firstly introduced by Biggs [1] as a generalization of the notions of perfect r-codes under the Hamming metric and Lee metric. Recall that in coding theory the Hamming distance between words of length n over an alphabet of size $m \geq 2$ is precisely the graph distance in the Hamming graph $H(n, m)$ [22]. Therefore perfect r-codes in $H(n, m)$ are exactly those in the classical setting under the Hamming metric. Similarly, the Lee distance [12] between words of length n over an alphabet of size $m \geq 3$ is precisely the graph distance in the Cartesian product $L(n, m)$ of n copies of the cycle of length m and therefore perfect r-codes in $L(n, m)$ are exactly those in the classical setting under the Lee metric.

The problem of the existence of perfect codes under a given metric is of great significance in coding theory. A complete classification of the parameters for which perfect codes over Galois fields exist have been completed in the early 1970s [29, 30, 36]. In 1970, Golomb and Welch [10] conjectured that for any $n > 2, r > 1$, and $q \geq 2r + 1$ there is no q-ary perfect r-codes of length n under the Lee metric. Although this conjecture has been studied extensively for more than half a century, it is still wide open [12, 19]. The celebrated Lloyd’ Theorem [20] is one of the most powerful tools available for proving nonexistence results for perfect codes. In [1], Biggs generalized the Lloyd’s Theorem to perfect codes in distance-transitive graphs and showed that the natural setting for the problem of perfect codes is the class of distance-transitive graphs. Since the seminal works of Biggs [1] and Delsarte [6], an extensive body of research has been devoted to perfect codes in distance-transitive graphs and, in general, in distance-regular graphs and association schemes [2]. In [4], Chihara proved that many infinite families of classical distance-regular graphs have no non-trivial perfect codes, including the Grassmann graphs and the bilinear forms graphs of which the non-existence of perfect codes was reverified by a new proof in [23]. Doob graphs are an important family of distance-regular Cayley graphs. In [25], all possible parameters of subgroup perfect codes in Doob graphs were described. In [16], a necessary and sufficient condition for a Doob graph to admit perfect codes was given. The reader is referred to [11, 24, 28] for more results on perfect codes in distance-regular graphs.

Let G be a group and S a subset of G satisfying $S^{-1} := \{x^{-1} \mid x \in S\} = S$ and $1 \notin S$. The Cayley graph $\text{Cay}(G, S)$ of G with connection set S is defined as the graph with vertex set G such that two elements x, y of G are adjacent if and only if $yx^{-1} \in S$. Note that $H(n, m)$ and $L(n, m)$ are Cayley graphs of the additive group \mathbb{Z}_m^n with connection sets S_H and S_L, respectively, where S_H consists of all elements of \mathbb{Z}_m^n with precisely one nonzero coordinate, and S_L consists of all elements of \mathbb{Z}_m^n such that exactly one coordinate is $\pm 1 \pmod{m}$ and all other coordinates are zero.

Perfect codes in Cayley graphs have been extensively studied in the literature, see [13, Section 1] for a brief survey and [7, 9, 27, 35] for a few recent papers. In particular, perfect codes in Cayley graphs which are subgroups of the underlying groups are especially interesting since they are generalizations of perfect linear codes [31] in the classical setting. In [13], Huang et al introduced the following concepts: A subset C of a group G is called a perfect code of G if it is a perfect code of some Cayley graph of G; if further C is a subgroup of G, then C is called a subgroup perfect code of G.

In [13], some interesting results on normal subgroups of a group to be perfect codes were obtained. Subsequently, these results are extended to general subgroups of a group [3, 21, 32]. Let G be a group and H a subgroup of G. In [32, 33], the author and Zhou proved that H is a perfect code of G if there exists a Sylow 2-subgroup of H which is a perfect code of G. They also proved that for a metabelian group G, a normal subgroup H of G is a perfect code of G if and only if a Sylow 2-subgroup of H is a perfect code of G. This result was recently
generalized to all groups by Khaefi et al [14]. In this paper, we show that the restriction on the normality of \(H \) can also be removed. Actually, we prove the following result.

Theorem 1.1 Let \(G \) be a finite group and \(H \) a subgroup of \(G \). Then the following statements are equivalent:

(i) every Sylow 2-subgroup of \(H \) is a perfect code of \(G \);
(ii) \(H \) has a Sylow 2-subgroup which is a perfect code of \(G \);
(iii) \(H \) is a perfect code of \(G \).

In order to reduce the problem of determining subgroup perfect codes of general groups to that of 2-groups, we prove a result by using Theorem 1.1 as follows.

Theorem 1.2 Let \(G \) be a finite group and \(H \) a subgroup of \(G \). Let \(Q \) be a Sylow 2-subgroup of \(H \) and \(P \) a Sylow 2-subgroup of \(N_G(Q) \). Then \(H \) is a perfect code of \(G \) if and only if \(Q \) is a perfect code of \(P \).

There are four sections in this paper. After this introduction section, in Sect. 2 we fix the notations for the paper and list some known results for later use. In Sect. 3, we prove Theorems 1.1 and 1.2, and we also deduce a few other results base on Theorem 1.2. As an application of our main results, in Sect. 4 we give a criterion for determining subgroup perfect codes of the 2-dimensional projective special linear groups \(PSL(2, q) \) where \(q \) is a prime power.

2 Preliminaries

We at first fix some notations and terminologies. For a finite set \(S \), we use \(|S| \) to denote the number of elements contained in \(S \). Let \(G \) be a group. For a subgroup \(H \) of \(G \), we use \(|G : H| \) and \(N_G(H) \) to denote the index \(|G|/|H| \) of \(H \) in \(G \) and the normalizer \(\{ g \in G \mid g^{-1}Hg = H \} \) of \(H \) in \(G \) respectively. For any subset \(X \) of \(G \), we use \(\langle X \rangle \) to denote the subgroup of \(G \) generated by \(X \). Let \(p \) be a prime divisor of \(|G| \). The Cauchy’s Theorem (see [17, 3.2.1]) states that \(G \) contains an element of order \(p \). In particular, if \(G \) is of even order, then \(G \) contains an element of order 2, called an involution of \(G \). A subgroup \(P \) of \(G \) of order a power of \(p \) is called a \(p \)-subgroup of \(G \). If further \(|G : P| \) is not divisible by \(p \), then \(P \) is called a Sylow \(p \)-subgroup of \(G \). By the famous Sylow’s Theorem (see [17, 3.2.3]), there exists a Sylow \(p \)-subgroup of \(G \), every \(p \)-subgroup of \(G \) is contained in a Sylow \(p \)-subgroup of \(G \) and all Sylow \(p \)-subgroups of \(G \) are conjugate in \(G \).

Now we list some known results for later use. The first two lemmas seems some what trivial and can be found in [32].

Lemma 2.1 [32] Let \(G \) be a group and \(H \) a subgroup of \(G \). Then \(H \) is a perfect code of \(G \) if and only if it is a perfect code of any subgroup of \(G \) which contains \(H \).

Lemma 2.2 [32] Let \(G \) be a group and \(H \) a subgroup of \(G \). If \(H \) is a perfect code of \(G \), then for any \(g \in G \), \(g^{-1}Hg \) is a perfect code of \(G \). More specifically, if \(H \) is a perfect code in \(\text{Cay}(G, S) \) for some connection set \(S \) of \(G \), then \(g^{-1}Hg \) is a perfect code in \(\text{Cay}(G, g^{-1}Sg) \).

The following lemma is one of the main results in [13].

Lemma 2.3 [13] Let \(G \) be a group and \(H \) a normal subgroup of \(G \). Then \(H \) is a perfect code of \(G \) if and only if for all \(x \in G \), \(x^2 \in H \) implies \((xh)^2 = 1\) for some \(h \in H \).
The next three lemmas are from [33].

Lemma 2.4 [33] Let G be a group and H a subgroup of G. Then H is not a perfect code of G if and only if there exists a double coset $D = HxH$ with $D = D^{-1}$ having an odd number of left cosets of H in G and containing no involution. In particular, if H is not a perfect code of G, then there exists a 2-element $x \in G \setminus H$ such that $x^2 \in H$, $|H : H \cap xHx^{-1}|$ is odd, and HxH contains no involution.

Lemma 2.5 [33] Let G be a group and Q a subgroup of G. Suppose that either Q is a 2-group or at least one of $|Q|$ and $|G : Q|$ is odd. Then Q is a perfect code of G if and only if Q is a perfect code of $N_G(Q)$.

Lemma 2.6 [33] Let G be a group and Q a subgroup of G. Suppose that either Q is a 2-group or at least one of $|Q|$ and $|G : Q|$ is odd. Then Q is a perfect code of G if and only if for any $x \in N_G(Q)$, $x^2 \in Q$ implies $(xb)^2 = 1$ for some $b \in Q$.

Note that some corrigenda of the results in [32] were published in [33] and the statements of following two results from [32] listed below are unchanged and correct.

Lemma 2.7 [32] Let G be a group and H a subgroup of G. If either the order of H is odd or the index of H in G is odd, then H is a perfect code of G.

Lemma 2.8 [32] Let G be a group and H a subgroup of G. If there exists a Sylow 2-subgroup of H which is a perfect code of G, then H is a perfect code of G.

3 Main results

In this section, we present the proofs of Theorems 1.1 and 1.2. We also deduce a few corollaries of Theorem 1.2.

Let us prove Theorem 1.1 first.

Proof of Theorem 1.1 It is obvious that (ii) is true if (i) is true. Lemma 2.8 implies (ii)⇒(iii). In what follows we deduce (iii)⇒(i).

Suppose that H is a perfect code of G. Let Q be an arbitrary Sylow 2-subgroup of H. It suffices to show that Q is a perfect code of G. If $|N_G(Q) : Q|$ is odd, then Lemma 2.7 implies that Q is a perfect code of $N_G(Q)$ and it follows from Lemma 2.5 that Q is a perfect code of G. In what follows, we assume that $|N_G(Q) : Q|$ is even. Consider an arbitrary element $x \in N_G(Q) \setminus Q$ with $x^2 \in Q$. Set $P = \langle Q, x \rangle$. Then Q is a normal subgroup of P of index 2. In particular, $P = Q \cup xQ$. Since Q is a Sylow 2-subgroup of H, we get $x \notin H$ and $x^2 \in H$. Therefore $(HxH)^{-1} = Hx^{-1}H = HxH$. Furthermore, $|H : H \cap xHx^{-1}|$ is odd as $Q = xQx^{-1} \subseteq H \cap xHx^{-1}$. Since

$$h_1xH = h_2xH \iff x^{-1}h_2^{-1}h_1x \in H$$

$$\iff h_2^{-1}h_1 \in xHx^{-1}$$

$$\iff h_2^{-1}h_1 \in H \cap xHx^{-1}$$

$$\iff h_1(H \cap xHx^{-1}) = h_2(H \cap xHx^{-1})$$

for each pair of elements $h_1, h_2 \in H$, it follows that HxH is a union of an odd number of left cosets of H in G. Since H is a perfect code of G, it follows from Lemma 2.4 that
$H \times H$ contains an involution, say $h_1 h_2$. Let $h = h_2 h_1$. Since $xh = h_1^{-1}(h_1 h_2)h_1$, xh is an involution in xH. Set $L = \langle Q, x, h \rangle$. Since $xh x^{-1} = (xh)^2 h^{-1} x^{-2} = h^{-1} x^{-2} \in \langle Q, h \rangle$ and $x Q x^{-1} = Q$, we conclude that (Q, h) is a normal subgroup of L. Since $x \notin \langle Q, h \rangle$ and $x^2 \in \langle Q, h \rangle$, we obtain that (Q, h) is of index 2 in L. Therefore $|L|/|P| = |\langle Q, h \rangle|/|Q|$. Since Q is a Sylow 2-subgroup of H and (Q, h) is a subgroup of H containing Q, we have that $|\langle Q, h \rangle|/|Q|$ is odd. Therefore $|L|/|P|$ is odd and it follows that P is a Sylow 2-subgroup of L. Since xh is an involution contained in L, there exists a Sylow 2-subgroup R of L containing xh. By the Sylow’s Theorem, the Sylow 2-subgroups of L are conjugate in L. Therefore there exists an element $b \in L$ such that $b R b^{-1} = P$. It follows that $b x b h b^{-1} \in P$. Since $x \notin H$ and $b, h \in H$, we get $b x h b^{-1} \notin H$. Thus $b x b h b^{-1} \notin P$. It follows that $b x h b^{-1} \in x Q$ as $P = Q \cup x Q$ and $b x h b^{-1} \in P$. Since xh is an involution, we have that $b x h b^{-1}$ is an involution. Now we have proved that xQ contains an involution. By Lemma 2.6, Q is a perfect code of G.

Now we prove Theorem 1.2.

Proof of Theorem 1.2 ⇒) Suppose that H is a perfect code of G. By Theorem 1.1, we have that Q is a perfect code of G and it follows from Lemma 2.1 that Q is a perfect code of P.

⇐ Suppose that Q is a perfect code of P. Consider an arbitrary element $x \in N_G(Q)$ with $x^2 \in Q$. Then $\langle Q, x \rangle$ is a 2-subgroup of $N_G(Q)$. Since P is a Sylow 2-subgroup of $N_G(Q)$, we conclude that $\langle Q, x \rangle$ is contained in $b^{-1} P b$ for some $b \in N_G(Q)$. Thus $b x h b^{-1} \in P$ and $(b x h b^{-1})^2 \in Q$. Since Q is normal in P and a perfect code of P, by Lemma 2.3 we obtain $(b x h b^{-1})^2 c^2 = 1$ for some $c \in Q$. It follows that $b^{-1} c b \in Q$ and $(b^{-1} c b)^2 = 1$. By Lemma 2.6, we have that Q is a perfect code of G. Recall that Q is a Sylow 2-subgroup of H. By Theorem 1.1, H is a perfect code of G.

In what follows, we give three corollaries of Theorem 1.2. These corollaries involve special groups G or special subgroups H.

Corollary 3.1 Let G be a group and H a subgroup of G. Let Q be a Sylow 2-subgroup of H and P a Sylow 2-subgroup of G containing Q. If $P \cap N_G(Q)$ is of odd index in $N_G(Q)$, then H is a perfect code of G if and only if Q is a perfect code of P.

Proof Note that $N_P(Q) = P \cap N_G(Q)$. Since $P \cap N_G(Q)$ is of odd index in $N_G(Q)$, we have that $N_P(Q)$ is a Sylow 2-subgroup of $N_G(Q)$. By Lemma 2.5, Q is a perfect code of P if and only if Q is a perfect code of $N_P(Q)$. Together with Theorem 1.2, we conclude that H is a perfect code of G if and only if Q is a perfect code of P.

Corollary 3.2 Let G be a group having a normal Sylow 2-subgroup P. Let H be a subgroup of G and Q a Sylow 2-subgroup of H. Then H is a perfect code of G if and only if Q is a perfect code of P.

Proof Since the Sylow 2-subgroup P is normal in G, we have that P is the unique Sylow 2-subgroup of G. Therefore every Sylow 2-subgroup of $N_G(Q)$ is contained in P. This implies that Q is a subgroup of P and $N_P(Q)$ is the unique Sylow 2-subgroup of $N_G(Q)$. Since $N_P(Q) = P \cap N_G(Q)$, it follows that $P \cap N_G(Q)$ is of odd index in $N_G(Q)$. By Corollary 3.1, H is a perfect code of G if and only if Q is a perfect code of P.

Corollary 3.3 Let G be a group having an abelian Sylow 2-subgroup and H a subgroup of G. Let Q be a Sylow 2-subgroup of H and P a Sylow 2-subgroup of G containing Q. Then H is a perfect code of G if and only if Q is a perfect code of P.
Proof By the Sylow’s Theorem, all Sylow 2-subgroups of \(G \) are conjugate in \(G \). Since \(G \) has an abelian Sylow 2-subgroup and \(P \) is a Sylow 2-subgroup of \(G \), we have that \(P \) is abelian and therefore \(Q \) is normal in \(P \). Thus \(P \) is a Sylow 2-subgroup of \(N_G(Q) \). By Theorem 1.2, we obtain that \(H \) is a perfect code of \(G \) if and only if \(Q \) is a perfect code of \(P \). \(\square \)

As a contrast to Corollary 3.3, we introduce the following proposition of which the statement is an equivalent expression of a theorem [21, Theorem 1.1] of Ma et al. Note that a 2-group has no element of order 4 if and only if it is elementary abelian.

Proposition 3.4 Let \(G \) be a group. Then every subgroup of \(G \) is a perfect code if and only if
\(G \) has an elementary abelian Sylow 2-subgroup.

Proof \(\Rightarrow \) If \(G \) has a Sylow 2-subgroup \(P \) which is not an elementary abelian group, then \(P \) contains an element \(z \) of order 4. In particular, \(z \in N_G(\langle z^2 \rangle) \) and \(z \langle z^2 \rangle \) contain no involution. By Lemma 2.6, \(\langle z^2 \rangle \) is not a perfect code of \(G \). Therefore, if every subgroup of \(G \) is a perfect code, then every Sylow 2-subgroup of \(G \) is elementary abelian.

\(\Leftarrow \) If \(G \) has an elementary abelian Sylow 2-subgroup, then every Sylow 2-subgroup of \(G \) is elementary abelian as all Sylow 2-subgroups of \(G \) are conjugate. Let \(H \) be a subgroup of \(G \). Let \(Q \) be a Sylow 2-subgroup of \(H \) and \(P \) a Sylow 2-subgroup of \(N_G(Q) \). Then \(P \) is an elementary abelian group containing \(Q \) and therefore \(Q \) is a perfect code of \(P \). By Theorem 1.2, we obtain that \(H \) is a perfect code of \(G \). \(\square \)

Let \(Q \) be a Sylow 2-subgroup of \(H \) which is contained in a Sylow 2-subgroup \(P \) of \(G \). In general, \(Q \) being a perfect code of \(P \) does not guarantee that \(H \) is a perfect code of \(G \). See the following example.

Example 3.5 Let \(G = S_6 \), \(H = \langle (12)(35), (345) \rangle \), \(P = \langle (12), (35), (3456) \rangle \) and \(Q = \langle (12)(35) \rangle \). Then \(Q \) is a Sylow 2-subgroup of \(H \) and \(P \) is a Sylow 2-subgroup of \(G \) containing \(Q \). It is obvious that \((1325) \in N_G(Q), (1325)^2 \in Q \) and \((1325)Q = \{(1325), (1523)\} \). Note that \((1325)Q \) contains no involution. By Lemma 2.6, \(Q \) is not a perfect code of \(G \). It follows from Theorem 1.1 that \(H \) is not a perfect code of \(G \). However, \(Q \) is a perfect code of \(P \) as \(Q \) has a complement \(\{(12), (3456)\} \) in \(P \).

4 Subgroup perfect codes of \(\text{PSL}(2, q) \)

Throughout this section, we assume that \(q \) is a prime power. Let \(d = 1 \) if \(q \) is even and \(d = 2 \) if \(q \) is odd. Recall that \(|\text{PSL}(2, q)| = \frac{1}{2}q(q-1)(q+1) \). Note that all subgroups of \(\text{PSL}(2, q) \) were first known by Dickson in [8]. The main results of this section can be used to check whether a given subgroup of \(\text{PSL}(2, q) \) is perfect code. We will use the following result of Dickson which gives a classification of maximal subgroups of \(\text{PSL}(2, q) \).

Lemma 4.1 [8, 26] A maximal subgroup of \(\text{PSL}(2, q) \) is isomorphic to one of the following groups:

(i) the dihedral group of order \(\frac{2(q-1)}{d} \) when \(q \neq 3, 5, 7, 9, 11 \);
(ii) the dihedral group of order \(\frac{2(q+1)}{d} \) when \(q \neq 2, 7, 9 \);
(iii) a semidirect product of an elementary abelian group of order \(q \) by a cyclic group of order \(\frac{q-1}{d} \);
(iv) \(S_4 \) when \(q \) is an odd prime number and \(q \equiv \pm 1 \pmod{8} \);
(v) \(A_4 \) when \(q \) is a prime number \(> 3 \) and \(q \equiv 3, 13, 27, 37 \pmod{40} \);

\(\odot \) Springer
(vi) As when \(q \) is one of the following forms: \(q = 5^m \) or \(4^m \) where \(m \) is a prime, \(q \) is a prime number congruent to \(\pm 1 \) (mod 5), or \(q \) is the square of an odd prime number which satisfies \(q \equiv -1 \) (mod 5);

(vii) \(\text{PSL}(2, r) \) when \(q = r^m \) and \(m \) is an odd prime number;

(viii) \(\text{PSL}(2, r) \) when \(q = r^2 \).

The following lemma maybe well known and it can be deduced directly from Lemma 4.1.

Lemma 4.2 Let \(q \) be a prime power with \(q \equiv \pm 1 \) (mod 8). Then every Sylow 2-subgroup of \(\text{PSL}(2, q) \) is a dihedral group.

Proof Since \(q \equiv \pm 1 \) (mod 8), we have \(|\text{PSL}(2, q)| = \frac{1}{2}q(q - 1)(q + 1) \). Therefore 8 \mid |\text{PSL}(2, q)| and exactly one of \(\frac{1}{2}q(q + 1) \) and \(\frac{1}{2}q(q - 1) \) is odd. By Lemma 4.1, if \(q \neq 7, 9 \), then \(\text{PSL}(2, q) \) has dihedral subgroups of order \(q \pm 1 \); if \(q = 7, 9 \), then \(\text{PSL}(2, q) \) has maximal subgroups isomorphic to \(S_4 \) (note that \(\text{PGL}(2, 3) \cong S_4 \)). Thus \(\text{PSL}(2, q) \) has a dihedral Sylow 2-subgroup and it follows that every Sylow 2-subgroup of \(\text{PSL}(2, q) \) is a dihedral group. \(\square \)

In [21], it was shown that every subgroup of \(\text{PSL}(2, q) \) is a perfect code if \(q \) is even or \(q \equiv \pm 3 \) (mod 8). The following theorem gives a criterion for determining subgroup perfect codes of \(\text{PSL}(2, q) \) for the remainder case when \(q \equiv \pm 1 \) (mod 8).

Theorem 4.3 Let \(q \) be a prime power with \(q \equiv \pm 1 \) (mod 8), \(H \) a subgroup of \(\text{PSL}(2, q) \) and \(Q \) a Sylow 2-subgroup of \(H \). Then \(H \) is a perfect code of \(\text{PSL}(2, q) \) if and only if one of the followings holds:

(i) \(Q \) is trivial;

(ii) \(Q \) is noncyclic;

(iii) \(Q \) is a cyclic 2-group of maximal order.

Proof Write \(G = \text{PSL}(2, q) \). We at first prove the sufficiency. If \(Q \) is trivial, then \(H \) is of odd order. By Lemma 2.7, \(H \) is a perfect code of \(G \). In what follows, we assume that \(Q \) is nontrivial. By Lemma 4.2, every Sylow 2-subgroup of \(G \) is dihedral. By the Sylow’s Theorem, \(Q \) is contained in a Sylow 2-subgroup of \(G \). Therefore, if \(Q \) is noncyclic, then it is either a dihedral group or an elementary abelian group of order 4. Let \(P \) be a Sylow 2-subgroup of \(N_G(Q) \). If \(Q \) is noncyclic, then \(P \) is a dihedral group and \(Q \) is of index 2 in \(P \). If \(Q \) is a cyclic 2-group of maximal order, then \(P \) is a Sylow 2-subgroup of \(G \) and therefore dihedral. In both cases, \(Q \) has a complement of order 2 in \(P \) and therefore is a perfect code of \(P \). By Lemma 1.2, \(H \) is a perfect code of \(G \). This completes the proof of the sufficiency.

Now we prove the necessity. If \(Q \) is a nontrivial proper subgroup of a cyclic 2-group, then there exists \(x \in G \) such that \(x \notin Q \) and \(Q = \langle x^2 \rangle \). Clearly, \(x \in N_G(Q) \) and \(xQ \) contains no involution. By Lemma 2.6, \(Q \) is not a perfect code of \(G \). It follows from Theorem 1.1 that \(H \) is not a perfect code of \(G \). Thus, if \(H \) is a perfect code of \(G \), then one of the three conditions (i), (ii) and (iii) holds. \(\square \)

It is straightforward to check that every maximal subgroup of \(G \) listed in Lemma 4.1 contains a Sylow 2-subgroup which is either noncyclic or a cyclic 2-group of maximal order. Combining the result of Ma et al [21] that every subgroup of \(\text{PSL}(2, q) \) is a perfect code if \(q \) is even or \(q \equiv \pm 3 \) (mod 8), Theorem 4.3 implies the following result.

Corollary 4.4 Let \(q \) be a prime power. Then every maximal subgroup of \(\text{PSL}(2, q) \) is a perfect code of \(\text{PSL}(2, q) \).
Acknowledgements This work was supported by the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1054) and the Foundation of Chongqing Normal University (21XLB006).

Data Availability No data, models, or code were generated or used during the study.

References

1. Biggs N.L.: Perfect codes in graphs. J. Comb. Theory Ser. B 15, 289–296 (1973).
2. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-regular Graphs. Springer, Berlin (1989).
3. Chen J., Wang Y., Xia B.: Characterization of subgroup perfect codes in Cayley graphs. Discret. Math. 343, 111813 (2020).
4. Chihara L.: On the zeros of the Askey–Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18(1), 191–207 (1987).
5. Dejter I.J., Serra O.: Efficient dominating sets in Cayley graphs. Discret. Appl. Math. 129, 319–328 (2003).
6. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, 97 (1973).
7. Deng Y.-P., Sun Y.-Q., Liu Q., Wang H.-C.: Efficient dominating sets in circulant graphs. Discret. Math. 340, 1503–1507 (2017).
8. Dickson L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover Publications Inc., New York (1958).
9. Feng R., Huang H., Zhou S.: Perfect codes in circulant graphs. Discret. Math. 340, 1522–1527 (2017).
10. Golomb S.W., Welch L.R.: Perfect codes in the Lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18, 302–317 (1970).
11. Hammond P., Smith D.H.: Perfect codes in the graphs of the Galois Field Theory. Dover Publications Inc., New York (1975).
12. Horak P., Kim D.: 50 years of the Golomb–Welch conjecture. IEEE Trans. Inform. Theory 64, 3048–3061 (2018).
13. Huang H., Xia B., Zhou S.: Perfect codes in Cayley graphs. SIAM J. Discret. Math. 32, 548–559 (2018).
14. Khaefi Y., Akhlaghi Z., Khosravi B.: On the subgroup perfect codes in Cayley graphs. Des. Codes Cryptogr. 91, 55–61 (2023).
15. Krotov D.S.: The existence of perfect codes over graphs. J. Comb. Theory Ser. B 40, 224–228 (1986).
16. Krotov D.S.: The existence of perfect codes in Doob graphs. IEEE Trans. Inf. Theory 66(3), 1423–1427 (2020).
17. Kurzweil H., Stellmacher B.: The Theory of Finite Groups: An Introduction. Universitext. Springer, New York (2004).
18. Lee J.: Independent perfect domination sets in Cayley graphs. J. Graph Theory 37, 213–219 (2001).
19. Leung K.H., Zhou Y.: No lattice tiling of \mathbb{Z}_n by Lee sphere of radius 2. J. Comb. Theory Ser. A 171, 105157 (2020).
20. Lloyd S.P.: Binary block coding. Bell Syst. Tech. J. 36, 517–535 (1957).
21. Ma X., Walls G.L., Wang K., Zhou S.: Subgroup perfect codes in Cayley graphs. SIAM J. Discret. Math. 34, 1909–1912 (2020).
22. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
23. Martin W.J., Zhu X.J.: Anticodes for the Grassman and bilinear forms graphs. Des. Codes Cryptogr. 6(1), 73–79 (1995).
24. Schwartz M., Etzion T.: Codes and anticodes in the Grassman graph. J. Comb. Theory Ser. A 97, 27–42 (2002).
25. Shi M., Huang D., Krotov D.S.: Additive perfect codes in Doob graphs. Des. Codes Cryptogr. 87(8), 1857–1869 (2019).
26. Suzuki M.: Group Theory I. Springer, New York (1982).
27. Tamizh C.T., Mutharasu S.: Subgroups as efficient dominating sets in Cayley graphs. Discret. Appl. Math. 161, 1187–1190 (2013).
28. Thas J.A.: Polar spaces, generalized hexagons and perfect codes. J. Comb. Theory Ser. A 29, 87–93 (1980).
29. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24, 88–96 (1973).
30. van Lint J. H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings (1971).
31. van Lint J.H.: A survey of perfect codes. Rocky Mt. J. Math. 5, 199–224 (1975).
32. Zhang J., Zhou S.: On subgroup perfect codes in Cayley graphs. Eur. J. Comb. 91, 103228 (2021).
33. Zhang J., Zhou S.: Corrigendum to “On subgroup perfect codes in Cayley graphs [Eur. J. Comb. 91, 103228 (2022)]”. Eur. J. Comb. 101, 103461 (2022).
34. Zhou S.: Total perfect codes in Cayley graphs. Des. Codes Cryptogr. 81, 489–504 (2016).
35. Zhou S.: Cyclotomic graphs and perfect codes. J. Pure Appl. Algebra 223, 931–947 (2019).
36. Zinoviev V.A., Leontiev V.K.: The nonexistence of perfect codes over Galois fields. Probl. Control Inf. Theory 2, 123–132 (1973).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.