Exposição e reatividade do prematuro ao ruído em incubadora

Exposure and reactivity of the preterm infant to noise in the incubator

RESUMO

Objetivo: Avaliar a exposição e a reatividade do prematuro ao ruído intenso durante o cuidado em incubadora.

Método: Estudo observacional prospectivo na unidade de cuidados intermediários de um hospital de Ribeirão Preto (SP). Na primeira etapa do estudo (dimensionamento do ruído) participaram 35 prematuros e na segunda (análise da reatividade diante de um ruído intenso), 20. O ruído foi mensurado durante duas horas por um dosímetro e a reatividade filmada por três câmeras conectadas no computador. Diante de um nível máximo superior a 65 decibéis analisou-se a reatividade dos prematuros.

Resultados: Todos os prematuros apresentaram um nível equivalente acima do limite recomendado por organizações internacionais e mais da metade dos bebês esteve com um nível médio superiores ao limite permitido em incubadora pela norma brasileira. Diante do ruído intenso, grande parte dos bebês desencadeou reflexo cócleo-palpebral, sobressalto, mímica facial, modificou as atividades corporais ou apresentou padrão de sono e vigília, com diferenças estatisticamente significativas.

Conclusão: Os níveis sonoros mensurados foram intensos. O ruído a que os prematuros estão expostos nas incubadoras durante os cuidados recebidos constitui um evento estressante, modifica o estado comportamental e desencadeia respostas reflexas, corporais, manifestações faciais e mudança no estado de sono e vigília diante dos ruídos intensos e súbitos.

ABSTRACT

Purpose: To evaluate preterm infants' exposure and reactions to intense noise during incubator care. Methods: An observational and prospective study was performed in the intermediary care unit of a hospital in Ribeirão Preto (SP). Thirty-five preterm infants participated in the first stage of the study (measuring noise) and 20 in the second (analysis of responses to intense noise). Noise was measured for two hours using a dosimeter, and the responses were video recorded by three cameras connected to a computer. The preterm infants' responses to an Lmax higher than 65 decibels were analyzed. Results: Every preterm infant presented an L eq above the limit recommended by international organizations, and more than half of the babies had a mean L eq above the limit permitted by the Brazilian standard. Regarding the babies' responses to the intense noise, the majority of them showed blink reflex, startle reflex, facial mimics, changed bodily activities or changed sleep and wake state, all with statistically significant differences. Conclusion: The sound levels measured were intense. The noises that preterm infants are exposed to while being cared for in incubators constitute a stressor event. Sudden, intense noises change their behavioral state and causes reflexive and bodily responses, facial manifestations and changes in their sleep and wake state.

Fonte de financiamento: nada a declarar.

Conflito de interesses: nada a declarar.
INTRODUÇÃO

A unidade de terapia intensiva neonatal (UTIN) caracteriza-se como ambiente fundamental para promover a sobrevivência dos recém-nascidos (RN), prematuros e/ou em estado grave de saúde que precisam de tratamentos especializados e cuidados intensivos e contínuos(1). Porém, as diferentes exposições sensoriais à qual o bebê prematuro é submetido, como ruídos, luzes, repetidas técnicas, ventilação mecânica prolongada, entre outras, podem prejudicar o cérebro imaturo e em desenvolvimento e apresentar efeitos negativos no desenvolvimento neuroógico a longo prazo(2). Intervenções desenvolvimentais começaram a ter prioridade a partir dos anos de 1980 e a estimulação mínima passou a ser promovida. Os fatores ambientais tornaram-se interesse e preocupação da equipe no intuito de minimizá-los e a interação familiar familiar passou a ser incentivada precisamente(3).

Em um estudo de 2015(4), verificou-se que segundo a percepção de profissionais de unidades neonatais a principal fonte de ruídos é proveniente dos equipamentos utilizados nelas, dentre eles as incubadoras. A maior parte dos profissionais entrevistados, em um estudo de 2017, admitiu que o comportamento da equipe gera ruídos que podem ser nocivos aos RNs(5). O ruído é um potente estressor para o prematuro e tem sido comparado aos aminoglicosídeos em detrimento do desenvolvimento da cóclea. Em seres humanos a interação entre sistema auditivo e ambiente é fundamental para o desenvolvimento normal da audição. Nos neonatos a estimulação excessiva das células ciliadas do órgão de Corti, provocada por ruídos altos e contínuos pode ter consequência sua destruição, ocasionando perda auditiva progressiva(6). A concepção da importância do ambiente da UTIN tem conduzido à redução do ruído e de outras fontes de estresse.

A relação exata entre o nascimento precoce, o ambiente de cuidado intensivo e as sequelas futuras para a audição ainda não foi estabelecida, porém estudos demonstraram que o ruído pode causar apneia, hipoxemia, alternância na saturação de oxigênio e aumento do consumo de oxigênio secundário às frequências cardíacas e respiratórias elevadas e, portanto, diminuir a quantidade de calorias disponíveis para o crescimento(6). Sendo assim, é legítima a preocupação em minimizar o máximo possível a poluição sonora do ambiente neonatal. No contexto do cuidado desenvolvimental, na perspectiva do manejo do ambiente minimizar o ruído na unidade neonatal, destaca-se a relevância do controle do ruído produzido pelo motor e manuseio da incubadora, equipamento de apoio à vida amplamente utilizado no cuidado de recém-nascidos pré-termo (RNPTs), mas que requer cuidados especiais quanto ao seu manejo e controle.

O presente estudo tem o objetivo de avaliar a exposição e a reatividade dos RNPTs ao ruído durante o cuidado em incubadora.

MÉTODO

O estudo contou com a autorização das chefias do serviço médico de Neonatologia e de Enfermagem da instituição e a aprovação pelo Comitê de Ética do hospital (processo HCRP n° 5.363/2004).

Foi realizado um estudo observacional prospectivo na unidade neonatal de cuidados intermediários de um hospital terciário de Ribeirão Preto (SP).

Participantes

Os sujeitos do estudo foram os RNPTs internados nessa unidade neonatal e que atendiam aos seguintes critérios de inclusão: permanência em incubadora por pelo menos 24 horas antes do período de coleta; estãoveis clinicamente quanto ao controle de frequência cardíaca; em fase de alimentação por sonda gástrica e que tivessem passado na triagem auditiva comportamental: presença de resposta reflexa auditiva (reflexo cócleo-palpebral [RCP], reflexo de moro e/ou reação de startle/sobressalto) ou despertar do sono perante um estímulo sonoro intenso (agogô). Os critérios de exclusão foram: hemorragia intraventricular de grau III ou IV; uso de analgésicos, sedativos e/ou drogas psicotópicas nas 24 horas anteriores à coleta; falha na triagem auditiva comportamental.

O estudo abrangeu 40 RNPTs. Desses, quatro RNs não participaram do estudo pelo não consentimento dos pais, tendo, assim, a coleta sido realizada com os outros 36 RNPTs. Um RN foi excluído da análise por problemas com as imagens e a não possibilidade de refazer a coleta, pois o bebê não estava mais na incubadora. O estudo teve a participação de 35 RNPTs e sua caracterização se encontra no Quadro 1.

Quadro 1. Caracterização dos RNPTs do grupo geral (primeira etapa) e do subgrupo (segunda etapa do estudo)

	Grupo geral	Subgrupo	
Sexo	Masculino	20	10
	Feminino	14	9
	Genitália ambígua	1	1
Peso ao nascer	Intervalo Média	650-2980g	700-2575g
		1406,9g	1369,75g
Peso atual	Intervalo Média	1050-2900g	1150-2530g
		1586g	1565g
Idade gestacional	Intervalo Média	185-255d (26s3d-36s3d)	185-225d (26s3d-36s3d)
		221,8d	221,25d
Idade pós-natal	Intervalo Média	1-83d	1-83d
Idade corrigida	Intervalo Média	215-272d (30s5d-38s6d)	215-272d (30s5d-38s6d)
		243,7d	246,7d

Fonte: as autoras
O Termo de Consentimento Livre e Esclarecido foi firmado com os pais ou responsáveis dos prematuros antes de realizar a mensuração do ruído e das filmagens dos RNs.

Medicação

O estudo foi realizado em duas etapas: a primeira refere-se ao dimensionamento do ruído e, a segunda, à análise da reatividade dos prematuros (respostas fisiológicas e comportamentais) diante de um ruído intenso gerado durante os cuidados em incubadora. Trinta e cinco prematuros participaram da primeira etapa do estudo e 20, da segunda. A seleção desses 20 RNPTs teve como base os seguintes critérios: prematuros expostos a pelo menos um L_{max} (mais elevado nível de pressão sonora [NPS] mensurado durante o período avaliado) maior que 65 dBA; fonte de ruído do L_{max} não ser choro, espirro nem agitação do próprio bebê, mas a tecnologia de cuidado, desde que a manipulação feita pela equipe não interfira na reatividade comportamental do prematuro; que esse L_{max} seja um ruído súbito de curta duração (pontual) para o registro e a análise das manifestações fisiológicas e comportamentais do prematuro antes (período anterior) e depois (período posterior) de sua ocorrência.

A mensuração do ruído no microambiente da incubadora foi realizada simultaneamente às filmagens dos parâmetros fisiológicos (frequência cardíaca [FC] e saturação de oxigênio [SaO2]) e das manifestações comportamentais (atividades reflexas, faciais, corporais e mudança de estado de sono e vigília) por um período contínuo de duas horas para cada RNPT. Para mensurar os níveis de ruído, utilizou-se um medidor de pressão sonora - dosímetro, modelo Quest 400, calibrado anteriormente a cada momento de coleta dos dados. O ruído em decibéis (dB) foi mensurado em NPS (sound level pressure [SPL]), na escala A e na condição de resposta slow, com a integralização dos NPS minuto a minuto, de acordo com a norma do Consensus Committee on RecommendedDesign Standards for Advanced Neonatal Care. O dosímetro foi fixado na lateral externa da incubadora e o microfone, introduzido dentro da incubadora e fixado na parte superior da cúpula. O microfone foi posicionado a mais ou menos 10 cm da cabeça do RN, distância essa definida para este estudo. Outros estudos relacionados definiram o posicionamento do microfone próximo a um dos ouvidos do RN, sem descrever com clareza a posição dele.

Três minicâmeras com fio conectadas a uma placa de vídeo em um computador foram usadas para a filmagem da reatividade (reações fisiológicas e comportamentais) do RNPT. A FC e a SaO2 foram mensuradas por um oxímetro de pulso, com o sensor colocado no pé do prematuro. A filmagem desses parâmetros foi realizada por uma câmera fixada em uma régua sob o monitor (câmera um). As manifestações comportamentais do RNPT foram filmadas por duas câmeras: uma para a filmagem da face do bebê (câmera dois – com recurso de áudio) e a outra para a filmagem de todo o corpo do RN (câmera três). Essas câmeras foram introduzidas dentro da incubadora e fixadas na parte lateral superior da cúpula.

Dos 20 bebês com possibilidade de análise das respostas antes e depois do ruído intenso (L_{max} maior que 65 dBA), cinco RNs tinham dois ou três momentos que atendiam aos critérios anteriores de seleção, escolhido para o processamento dos dados o momento com o maior L_{max}. A reatividade dos RNPTs foi analisada antes e depois do L_{max} selecionado para verificar se há ou não modificação nessas respostas perante o ruído súbito e intenso.

As respostas fisiológicas (FC e SaO2) e as comportamentais (mímica facial, atividade corporal e estado de sono e vigília) foram observadas e analisadas nos 20 segundos anteriores e 20 segundos posteriores ao L_{max} selecionado, com esses dois períodos subdivididos em dez intervalos de dois segundos.

Os índices da FC e da SaO2, foram registrados ao final de cada bloco de dois segundos, com um total de dez medidas para cada período. Atividades reflexas RCP (contração do músculo orbicular do olho observada por meio de movimentação palpebral, consistindo em um pequeno e rápido piscar ou fechamento de olhos até um grande fechamento, incluindo a contração de sobrancelhas), reação de sobressalto (reação corporal global; pode manifestar-se como reação de Moro ou estremeцimiento corporal com movimentação súbita de membros, pequeno “pulo” do corpo do RN, logo após o estímulo acústico; pode ou não acompanhar o reflexo de Moro) ou reflexo de Moro (violenta reação de sobressalto, movimento abrupto de todo o corpo, braços e pernas esticados e afastados da linha média do corpo; pode-se observar também tremor ou estremeцimiento de membros durante o movimento) foram observados, tendo sido assinalada sua presença (escore 1) ou ausência (escore 0) durante os períodos anterior (dois segundos antes do L_{max}) e posterior (durante o ruído e dois segundos após o L_{max}).

A mímica facial foi analisada com o uso da escala Neonatal Facial Coding System (NFCS). As ações faciais da escala NFCS observadas foram: frente saliente (saliência, ruga e/ou sulcos verticais acima ou entre as sobrancelhas); olho aberto (compressão e/ou saliência nas pálpebras); suco nasolabial (elevar e aprofundar o suco nasolabial); boca aberta (boca aberta mais que lábios entreabertos relaxados); boca estirada vertical (estiramento dos cantos dos lábios com uma pronunciada depressão do maxilar); boca horizontal (evidente estirar, puxar dos cantos da boca na horizontal, às vezes acompanhado por tensão do lábio superior); língua tenso (língua elevada, com ponta e bordas tensas); protrusão de língua (movimento de língua para frente, mas nem sempre além dos lábios do bebê); tremor de queixo (evidentes movimentos frequentes para cima e para baixo no abaixar do maxilar); olho apertado (consiste em um pequeno e rápido piscar ou fechamento para baixo no abaixar do maxilar) para cada atividade facial, foi registrada a sua presença (escore 1) ou ausência (escore 0).

As mudanças na atividade corporal foram analisadas em cada intervalo de dois segundos, de acordo com o escore de cada padrão: 0 = nenhum ou muito pouco movimento (nenhum ou movimento mínimo, relaxamento geral do tônus muscular); 1 = movimentos regulares, pequenos e contínuos, relaxados (movimentos espontâneos suaves e pequenos dos braços, das pernas e dos dedos; o bebê está relaxado e não aborreado); 2 = tenso, irritado, não relaxado (bebê chora momentaneamente; movimentos regulares sobrepostos com rápida agitação, tremores ou suaves tremores dos membros superiores. Bebê está incomodado, mas acalma-se rapidamente após o movimento); 3 = abrupto, intencional, forte (movimentos ocorrem subitamente – fortes e/ou intencional, direcionados); 4 = movimentos realizados...
com muito esforço, muito tenso (movimentos elaborados – bastante tensos, estirados, podem envolver mimica facial e choro); 5 = movimentos frenéticos (movimentos espásticos, caóticos e agitados – rápidos, progressivos e descoordenados); 6 = sem movimento, imóvel, flácido (os membros são mantidos imóveis e estendidos. Integridade normal do membro ausente); 7 = tremores abruptos, descoordenados (movimentos abruptos dos braços – podem ocorrer com movimentos trêmulos das mãos)\(^{(11)}\). Foi considerada a atividade corporal que predominou durante os dez intervalos de dois segundos, mesmo que tenham ocorrido outros padrões durante os períodos anterior e posterior.

As mudanças de estado de sono e vigília foram registradas de acordo com o escor de cada estado \([1 = sono profundo (olhos firmemente fechados e imóveis, pouca ou nenhuma atividade motora, com exceção de tremores ocasionais ou movimentos rítmados de boca; respiração abdominal e relativamente lenta, profunda e regular); 2 = sono ativo (olhos fechados, porém com presença de movimentos oculares rápidos; atividade corporal de repuxados curtos até contorções e esticamentos; respiração irregular, costal e mais rápida que a do sono tranquilo/profundo; movimentação facial pode ter franziados de testa, caretas, sorrisos, repuxados, movimentos de boca e de sucção, mas movimentos faciais não são observados facilmente); 3 = sonolento (olhos abrem ou fecham, parcial ou totalmente abertos, imóveis e parecem aturdidos; alguma atividade motora generalizada pode ocorrer; respiração mais ou menos regular); 4 = alerta (corpo e rosto relativamente quietos e parados; olhos vivos e brilhantes); 5 = irrequieto (semelhante ao alerta, vocalizações suaves ou agitadas constantes; pode ocorrer choro); 6 = choro (características do alerta, mas atividade motora mais intensa e ataques de choro contínuos)\(^{(12)}\). Foro considerado o estado de sono e vigilia predominante de cada período, embora os bebês possam ter demonstrado outros estados no mesmo período.

A observação das imagens e a codificação das manifestações comportamentais foram realizadas por uma auxiliar de pesquisa que desconhecia os objetivos específicos do estudo e a pesquisadora não participou da codificação dos dados relacionados às manifestações comportamentais. A fidedignidade da codificação e da análise das manifestações comportamentais realizada pela auxiliar foi avaliada por meio da porcentagem de concordância\(^{(10)}\) com análise realizada simultaneamente por outra auxiliar de pesquisa, selecionando-se para tal uma amostra aleatória de 40% das filmagens. Para o cálculo da amostra aleatória, foi usado o programa SPSS (Statistical Package for the Social Sciences), versão 15.0, e a semente nº 987654321 para o gerador de números aleatórios. As duas auxiliares de pesquisa que participaram da análise das manifestações comportamentais visando à fidedignidade dessas estavam familiarizadas com a temática e a metodologia que estavam sendo utilizadas. Para a análise de concordância da NFCS, foi utilizada uma fórmula sugerida em outro estudo\(^{(10)}\) e para a atividade corporal e o estado comportamental, calculou-se a porcentagem de concordância entre os avaliadores. A concordância entre as codificadoras foi de 91,80% para NFCS, 99,84% para a atividade corporal e 98,96% para o estado de sono e vigilia, porcentagens superiores ao limite de 80% recomendado por outros estudos\(^{(10,11)}\). Os dados da reatividade do prematuro (FC, SaO\(_2\), mudança de estado, mimica facial, atividades reflexas e corporais) registrados antes e depois do L\(_{\text{mais}}\) selecionado para cada um dos RNs foram digitados em planilhas do software Excel. A aferição desses dados foi realizada mediante o processo de dupla digitação das planilhas.

Análise dos dados

Foram identificados os maiores L\(_{\text{mais}}\) e L\(_{\text{peak}}\) [mais alto NPS instantâneo, não filtrado, que ocorreu durante o minuto\(^{(8)}\)], L\(_{\text{mais}}\) superiores a 65 dBA (momentos de ruído intenso), L\(_{\text{mais}}\) [menor NPS mensurado durante o período avaliado\(^{(7)}\)] e L\(_{\text{eq}}\) [período de integração de NPS; variação da exposição sonora mensurada durante o período; média do nível sonoro\(^{(8)}\)] médio do período. Depois do reconhecimento dos momentos de ruído intenso, foram observadas as imagens filmadas pelas três câmeras nos horários anteriormente delimitados para a análise da reatividade do RN.

Os dados foram processados no SPSS, versão 15.0. Os níveis sonoros encontrados para L\(_{\text{eq}}\) e L\(_{\text{mais}}\) foram comparados com os níveis estabelecidos pelo Consensus Committee on Recomended Design Standards for Advanced Neonatal Care\(^{(9)}\) e pela norma brasileira IEC 601-2-19\(^{(13)}\). A combinação do som contínuo de fundo e o som transitorio em qualquer área de cuidado da criança não deve ultrapassar, em NPS, o L\(_{\text{eq}}\) de 45 dBA nem o L\(_{\text{mais}}\) de 65 dBA, de acordo com o Consensus Committee Recomended Design Standards for Advanced Neonatal Care\(^{(9)}\) em 2007. A Academia Americana de Pediatria (AAP)\(^{(14)}\) também sugere que o nível sonoro nas UTINs e nas incubadoras não deve ultrapassar os 45 dBA. O nível sonoro dentro do compartimento do RN na incubadora não deve exceder (60 dBA)\(^{(15)}\), de acordo com a norma brasileira. A variabilidade de L\(_{\text{eq}}\), L\(_{\text{mais}}\) e L\(_{\text{peak}}\) (valores menor e maior) e os L\(_{\text{mais}}\) selecionados foram também analisados.

Analisou-se a reatividade dos prematuros antes e após o L\(_{\text{mais}}\) selecionado para cada um dos 20 RNs, com o objetivo de verificar se há ou não modificação nas respostas fisiológicas e/ou comportamentais perante o ruído súbito e intenso. A NFCS e o RCP foram analisados em 19 RNs em razão de um dos RNPs estar com protetor ocular (fototerapia); outras atividades comportamentais foram analisadas nos 20 RNs. Os valores médios e os desvios padrão para a média, valores mínimos e máximos da FC e da SaO\(_2\) foram calculados nos períodos anterior e posterior ao L\(_{\text{mais}}\) selecionado. Nessas análises, foi utilizado o teste não paramétrico de Wilcoxon com nível de significância α = 0,05 para verificar se houve ou não diferença significativa entre os valores obtidos nos dois períodos.

Foi realizada a distribuição dos RNs segundo as atividades comportamentais mais frequentes nos períodos anterior e posterior, por meio da distribuição de frequência e porcentagem para caracterizar as atividades e os estados mais frequentes. Os escores das atividades faciais, corporais e das mudanças de estado de sono e vigilia nos períodos anterior e posterior foram apresentados em frequência e porcentagem de ocorrência. Nessas análises, foi utilizado o teste não paramétrico de Wilcoxon com nível de significância α = 0,05 para verificar se houve ou não diferença significativa entre os escores obtidos nos dois períodos.
RESULTADOS

Os níveis de ruído foram coletados em quatro marcas de incubadoras nacionais (marcas: A – 22 exemplares; B – dois exemplares) e importadas (marcas: C1 – seis exemplares; C2 – quatro exemplares; D – um exemplar).

Os NPSs foram mensurados durante 4.200 minutos (70 horas). Desse total, todos os minutos apresentaram L_{eq} abaixo do limite de 45 dBA recomendado pela American Academy of Pediatrics e pelo Consensus Committee on Recommended Design Standards for Advanced Neonatal Care, 713 (17%) minutos estavam acima do limite de 60 dBA permitido pela norma brasileira para o nível sonoro médio em incubadoras e 985 (23,4%) minutos acima do limite de 65 dBA para o maior NPS (L_{max}) de acordo com o Consensus Committee on Recomended Design Standards for Advanced Neonatal Care em 2007.

Os níveis sonoros em L_{eq} variaram de 47,6 a 88,7 dBA durante as duas horas de mensuração do ruído a que cada prematuro foi exposto em incubadora, com L_{eq} acima do limite de 45 dBA recomendado pelas normas internacionais em todos os RNs. O L_{eq} médio mensurado esteve na faixa de 54 a 75,3 dBA, com média de 62,3 dBA; 54,3% dos prematuros permaneceram com níveis sonoros médios acima dos 60 dBA permitidos pela norma brasileira para incubadora. Os L_{min} variaram de 46,9 a 61,6 dBA, portanto nenhum bebê esteve com o nível sonoro dentro do padrão especificado internacionalmente, como pode ser observado no Figura 1.

Os L_{max} variaram de 49 a 97,2 dBA. Todos os 35 bebês pesquisados apresentaram momentos com níveis de L_{max} maiores que os 65 dBA especificados pelo Consensus Committee on Recommended Design Standards for Advanced Neonatal Care. O número de vezes que os ruídos atingiram L_{max} maiores que o especificado pela norma variou de quatro a 111 vezes, 3,3% a 92,5% do tempo de mensuração. Os L_{peak} variaram de 87 a 135,7 dBA. A Tabela 1 apresenta os níveis sonoros a que todos os prematuros estiveram expostos durante os cuidados diários em incubadora.

A variabilidade da FC média esteve entre 114 e 182,9 batidas por minuto (bpm) no período anterior ao ruído intenso analisado, com média de 140,6 bpm, com FC mínima de 114 e máxima de 187 bpm. No período posterior, a variabilidade da FC média foi de 101,4 a 162,5 bpm, média de 138 bpm, com FC mínima de 69 e máxima de 187 bpm. A SaO$_2$ média variou de 87,2% a 97,8% no período anterior, com média de 95,3%, com valores mínimo de 86% e máximo de 99%. No período posterior, a SaO$_2$ média esteve entre 90% e 98%, com média de 95,5%, com SaO$_2$ mínima de 84% e máxima de 98%. As diferenças na FC e na SaO$_2$, média, mínima e máxima não foram estatisticamente significativas ($p > 0,05$) nos períodos anterior e posterior ao ruído intenso. Constatou-se que nenhuma das médias da FC e da SaO$_2$ estiveram acima de 146 bpm e abaixo de 95%, respectivamente, com todas as médias dentro da faixa de normalidade em ambos os períodos, como demonstrado na Tabela 2.

Todos os RNPTs não apresentaram nenhum padrão reflexo no período anterior ao ruído intenso. Nove RNs (47,4%) desencadearam o reflexo cócleo-palpebral (RCP) diante do ruído intenso, um RN (5%), o reflexo de sobressalto e três RNs (15%), RCP e sobressalto. RCP foi a reatividade mais frequente (62,4%) entre os 19 RNPTs; sete bebês (35%) não apresentaram atividade reflexa diante do ruído intenso.

Dezoito RNPTs (94,7%) não apresentaram atividade facial na escala NFCS e um RN (5,3%) teve o escore 0,8 para a atividade facial no período anterior ao ruído intenso. Onze RNs (57,9%) não apresentaram atividade facial diante do ruído intenso avaliado e oito RNs (42,1%) tiveram escores entre 0,2 e 1,4. Houve diferença estaticamente significativa entre os escores da NFCS obtidos nos períodos anterior e posterior ao ruído intenso ($p = 0,012$), como se observa na Figura 2. Nessa figura, observa-se que, de acordo com a escala NFCS, no período anterior ao L_{max} maior que 65 dBA, o RN13 obteve o escore de 0,8 para a atividade facial, apresentando a atividade fronte saliente e olho apertado. Os outros 18 RNs (94,7%), antes do ruído, não estavam apresentando atividade facial de acordo com a escala NFCS. Após o ruído, o mesmo RN13 apresentou...

Figura 1. Níveis sonoros a que os RNPTs estavam expostos em L_{eq}, L_{min} e L_{max} durante os cuidados diários em incubadora. Fonte: as autoras
Tabela 1. Níveis sonoros a que os RNPTs estavam expostos em L_{eq} (média e porcentagens acima das normas), L_{min} e L_{max} (máximo e porcentagem acima da norma) durante os cuidados diários em incubadora.

Grupo geral	L_{eq} Méd	% > 45 dB*	% > 60 dB**	L_{max} Méd	L_{max} % > 65 dB*
01	57,7	100	3,3	54,3	79,9
02	61,2	100	8,3	54,8	89,8
03	66,6	100	25,8	52,3	85,3
04	67,5	100	10,8	53,8	92,3
05	57,7	100	4,2	55	81,3
06	57,8	100	7,5	54,9	80,7
07	60,9	100	6,7	49,5	88,7
08	55,5	100	2,5	52,1	85
09	56,6	100	5	53,6	81
10	71,4	100	12,5	52,2	95,6
11	59,7	100	20	55,6	82,1
12	56,4	100	3,3	52,7	85,7
13	71,9	100	15	48,8	90,8
14	57,5	100	11,7	51,8	82
15	62,5	100	15	53,6	85,1
16	65,1	100	8,3	55,1	87,6
17	62,7	100	29,2	48,9	86,3
18	74,4	100	25,8	51,9	92,1
19	66,2	100	20	47,1	89
20	55,8	100	0,8	53,1	78,7
21	67,9	100	39,2	55,7	90,6
22	70,7	100	49,2	52,3	95,9
23	68,1	100	15	56,6	90,3
24	63,4	100	10,8	54	86,7
25	56,3	100	2,5	54	77,2
26	54	100	1,7	48,3	82,4
27	65,6	100	100	61,6	89,8
28	56,6	100	0	55,3	67,7
29	56,7	100	5,8	46,9	85
30	75,3	100	25,8	54,4	96,8
31	64,3	100	10,8	54	97,2
32	65,4	100	90,8	52,3	81,4
33	56,5	100	2,5	52,9	79,5
34	58	100	2,5	56,5	80,1
35	55,6	100	1,7	52,6	76,1

Subgrupo	L_{min} Méd	% > 45 dB*	% > 60 dB**	L_{max} Méd	L_{max} % > 65 dB*
02	61,2	100	8,3	54,8	89,8
03	66,6	100	25,8	52,3	85,3
04	67,5	100	10,8	53,8	92,3
05	57,7	100	4,2	55	81,3
06	57,8	100	7,5	54,9	80,7
07	60,9	100	6,7	49,5	88,7
09	56,6	100	5	53,6	81
10	71,4	100	12,5	52,2	95,6
11	59,7	100	20	55,6	82,1
12	56,4	100	3,3	52,7	85,7
14	57,5	100	11,7	51,8	82
17	62,7	100	29,2	48,9	86,3

*Limite definido para ambiente do cuidado neonatal pelo Consensus Committee on Recommended Design Standards for Advanced Neonatal Care$^{(8)}$ e recomendado para a UTIN e incubadoras pela AAP$^{(14)}$; **Limite definido para as incubadoras pela norma brasileira IEC 601-2-1913; Fonte: as autoras.
por maior tempo as atividades de fronte saliente, olho apertado e boca aberta, obtendo o escore de 1,44. As atividades faciais mais prevalentes diante do ruído intenso foram: fronte saliente (26 vezes), olho apertado, boca aberta (nove), sulco nasolabial (7), língua tensa (5) e protrusão de língua (3). Não foram observadas atividades faciais, como boca estirada na vertical, boca na horizontal e tremor de queixo.

A maioria dos RNPTs (19 RNs) apresentava nenhum ou muito pouco movimento no período anterior ao ruído intenso. Após o estímulo ruidoso, as atividades corporais variaram entre nenhum ou muito pouco movimento (nove RNs), movimentos regulares, pequenos e contínuos, relaxados (seis RNs), tensos, irritados e não relaxados (3 RNs) e movimentos realizados com muito esforço, muito tensos (2 RNs). Houve diferença estatisticamente significativa (p = 0,003) entre as atividades corporais antes e após o ruído analisado, sendo as atividades mais frequentes e tensas após o ruído, como mostra a Figura 3, a qual demonstra que no período anterior ao ruído intenso, somente o RN13 apresentava atividade corporal, realizando movimentos regulares, pequenos e contínuos - relaxado, de acordo com a escala do movimento geral do corpo segundo Warnock.

Dos 19 RNs que apresentavam o escore 0 de atividade corporal, nove permaneceram nesse padrão, seis mudaram para o escore 1, dois, para o escore 2 e dois bebês para o padrão de escore 4; o prematuro que se encontrava na atividade corporal de escore 1 passou para o 2. Assim, constatou-se que 55% dos prematuros modificaram o padrão de atividade corporal perante o estímulo intenso, com mais movimentação, o que pode ser observado na Figura 4.

O estado de sono e vigília predominante no período anterior ao ruído intenso foi sono profundo (14 RNs); houve também sono ativo (4 RNs) e sonolência (2 RNs). Perante o estímulo ruidoso, os estados de sonos ativo (5 RNs) e profundo (3 RNs) foram os mais prevalentes, mas manifestaram-se também os estados irrequieto (3 RNs), sonolência (um RN) e alerta (um RN). Houve diferença estatisticamente significativa (p = 0,005) entre os períodos anterior e posterior ao ruído analisado.
Dos 14 RNPTs que estavam em sono profundo, seis permaneceram nesse estado após ruído intenso, sete mudaram para sono ativo e um, para o estado irrequieto. Dentre os quatro bebês que estavam no sono ativo, um foi para o sono profundo e dois ficaram irrequietos. Dos dois prematuros sonolentos antes do ruído, um deles ficou alerta e o outro permaneceu sonolento. Verificou-se, assim, mudança no estado de sono e vigília em 60% dos RNs diante do ruído intenso. A Tabela 3 demonstra a reatividade comportamental que os prematuros apresentaram nos períodos anterior e posterior ao ruído intenso e o nível de significância.

DISCUSSÃO

Embora os efeitos negativos do ruído nos RNs sejam conhecidos na literatura, o ambiente de cuidado neonatal continua muito ruidoso, como mostra um estudo recente que verificou o ruído máximo de 83,70 dB no período noturno no ambiente de UTIN. Esforços para minimizar os níveis sonoros são necessários e extremamente relevantes, desde que se considere o ruído um problema de saúde pública. Os níveis de ruído em ambientes de UTIN excedem os níveis recomendados pela AAP, confirmando que os níveis de ruído preconizados não estão sendo atendidos nessas modernas unidades.

Os níveis sonoros aqui mensurados foram bastante intensos; todos os L_{eq} estiveram acima do limite de 45 dBA definido pelas normas e recomendações internacionais vigentes e mais da metade estava com L_{eq} médios acima do limite de 60 dBA permitido pela norma técnica brasileira. Todos os RNs tiveram momentos com L_{eq} acima do limite de 65 dBA especificado pela norma internacional.

Apesar das diferenças metodológicas (condições e escalas de mensuração, tempo de coleta, presença ou não de RN, entre outras) entre os estudos em incubadoras, verificou-se que o nível de ruído médio mensurado no presente estudo (62,3 dBA) foi semelhante ao encontrado em outros estudos, como 61 dBA e 65,9 dBA, no entanto superior ao demonstrado em UTIN.
por alguns autores, como 49,6 dBA(15). A variabilidade do \(L_{eq} \) encontrada (47,6 a 88,7 dBA) foi maior que a de algumas pesquisas, como 51,3 a 64,5 dBA(18), 53,6 a 79,7 dBA(17) e 56 a 77 dBA(17).

Os níveis de ruído máximos registrados por alguns autores variaram de 53 a 68 dBA(18) e apresentaram média de 78 dBA(17), ruídos máximos bastante inferiores aos de até 97,2 dBA aqui registrados. \(L_{eq} \) maiores que 120 dBA foram mensurados, chegando a 135,7 dBA, níveis sonoros muito intensos quando se atenta para o fato de que eram bebês prematuros que estavam expostos a tais ruídos. Destaca-se que picos de ruído maiores que 135 dBA podem causar prejuízo mecânico nas células ciliadas da cóclea no ouvido interno(20).

Ao comparar os NPSs dimensionados nas incubadoras no presente estudo e os registrados nas unidades neonatais, pode-se observar que os níveis sonoros nas incubadoras variaram em \(L_{eq} \) de 47,6 a 88,7 dBA, variabilidade superior à registrada nas unidades neonatais, encontrando-se diferenças entre 14,79 e 18,57 dBA(21) acima do limite de 45 dBA definido pelas normas e recomendações internacionais vigentes, ressaltando que maiores que da metade estava com os \(L_{eq} \) médios acima do limite de 60 dBA permitido pela norma técnica brasileira. Tal dado é preocupante, pois, na maioria das vezes, RNs em incubadoras são prematuros de alto risco e, durante o cuidado neonatal, estão expostos a NPSs mais intensos que do ambiente.

Mesmo sem encontrar diferenças significativas nas respostas fisiológicas mensuradas, acredita-se, pois, base em outros estudos, que as alterações ocorridas podem ser clinicamente relevantes para um bebê imaturo em processo de crescimento, desenvolvimento e dependente de tecnologias de cuidados especiais, visto que a exposição a um som forte (≥ 60 dB) no útero ou em UTIN é capaz de alterar “frequência cardíaca, oxigenação, motilidade gastrointestinal, pressão e sono” e aumento do risco de hipóxia e bradicardia, já que os bebês doentes não apresentam reserva nem habilidade de autorregulação(22). As manifestações comportamentais estatisticamente significativas diante do ruído intenso e súbito evidenciam a condição de estresse a qual os prematuros estão expostos.

Não foram encontrados na literatura estudos sobre a reatividade dos RNs diante do ruído gerado durante os cuidados recebidos em incubadora. Localizaram-se estudos em que os ruídos foram provocados artificialmente pelo pesquisador durante algumas vezes, por períodos maiores e com NPSs maiores intensos.

O atual estudo constatou que nenhuma das médias da FC e da SaO\(_2\) esteve acima de 146 bpm e abaixo de 95%, respectivamente, com todas as médias dentro da faixa de normalidade em ambos os períodos, segundo estudos realizados previamente para a FC(23) e para a SaO\(_2\)(23). Já os achados encontrados em outro estudo(24) demonstraram que RNPTs apresentam aumento significativo da FC média e queda significativa da SaO\(_2\) média quando expostos a uma elevação de 10 a 15 dBA do ruído de fundo durante o sono ativo, assim como também foram encontradas em outro estudo(25) alterações significativas da FC e da SaO\(_2\) de RNs ante a exposição a ruídos na unidade neonatal.

A presente investigação não verificou mudanças significativas na FC nem na SaO\(_2\) para o grupo geral de prematuros perante os ruídos intensos(25), diferentemente de outros estudos(26), fato esse que pode ser justificado pelas diferenças metodológicas entre eles.

Entretanto, destaca-se que em cinco (25%) RNPTs a variabilidade da FC foi acima de 20 bpm. Em um desses RNs, a FC mínima (69 bpm) esteve abaixo da faixa da normalidade e em outro prematuro a SaO\(_2\) mínima (84%) esteve abaixo da faixa de normalidade e a FC máxima (187 bpm), acima, após o ruído intenso e súbito. Acredita-se que esses prematuros apresentaram variações clinicamente relevantes diante do ruído intenso, em razão da prematuridade orgânica encontrada, o que está em consonância com outros estudos(25,26).

A reatividade reflexa entre os prematuros investigados foi menor do que a proporção encontrada em outros estudos(27,28), fato justificável pelas diferenças metodológicas em relação à característica dos sujeitos, à intensidade e à fonte de ruído. Apesar disso, os dados do presente estudo corroboram com a literatura a qual afirma que o ruído intenso é stressante e desencadeia respostas reflexas nos bebês.

No presente estudo, os escotes da escala NFCS não indicaram a presença de dor (NFCS > 3 pontos) nos prematuros diante da estimulação sonora intensa, mas, de alguma forma, que os RNPTs se sentiam incomodados e/ou estressados com a presença do ruído. Antes do estímulo sonoro, 94,7% dos prematuros não apresentaram atividade facial. Após o ruído, esse índice caiu para 57,9% e 42,1% dos prematuros passaram a demonstrar alguma atividade facial.

A atividade facial frontal saliente é considerada um indicador de estresse(29), tendo sido a mímica facial mais prevalente no presente estudo, fato que corrobora com a sugestão de que o ruído é um evento stressante. A atividade protrusão de língua esteve presente, mas sua frequência foi menor de todas as atividades faciais registradas. Essa atividade também é vista como indicativo de estresse nos RNs a termo(29), mas ainda há dúvidas se é indicativa de dor ou estresse nos prematuros.

Estudos sobre o comportamento auditivo demonstraram que 14,7%(28) e 21%(27) dos bebês apresentaram reação comportamental por meio das atividades faciais diante do estímulo sonoro. No presente estudo, registrou-se um índice superior de atividade facial (42,1%) diante do ruído intenso, quando comparado com outros estudos(27,28), o que caracteriza uma das respostas ao estresse gerado pelo ruído intenso.

Constatou-se aumento significativo das atividades corporais nos RNPTs diante do ruído intenso(25,28). Registaram-se também mudanças no estado de sono e vigilia dos RNPTs diante de ruído intenso(4,25,28). Contudo, não se observou presença de choro após ruído intenso, diferentemente de outro estudo realizado(25).

Mesmo em sono profundo, os RNs desencadeiam respostas comportamentais perante o estímulo sonoro. Tal fato foi observado no atual estudo em metade dos RNPTs que estavam em sono profundo, pois, diante do estímulo ruidoso, não permaneceram mais nesse padrão de sono.

Acredita-se que os bebês na UTIN podem sofrer mais os efeitos do estresse, em razão de o ruído ser um estímulo repetitivo e prolongado nessa unidade de cuidado, sendo praticamente impossível prevenir alguns tipos dele, pois muitos são típicos do ambiente de cuidados intensivos(30). Entretanto,
os ruídos produzidos involuntariamente pela equipe poderiam ser controlados para reduzir o nível de estresse nos bebês. Estudos apontam que trabalhadores da UTIN têm consciência dos ruídos e que estes podem interferir tanto para o bebê em seu desenvolvimento quanto para a rotina dos trabalhadores expostos.

Com um protocolo de intervenção com a redução da luz, do ruído, da atividade da equipe e da manipulação do bebê, concebe-se que a manipulação cuidadosa da incubadora, a qual minimiza os ruídos súbitos e intensos gerados durante o manuseio dela, seria uma maneira de reduzir o ruído nesse microambiente, favorecer a estabilidade fisiológica e a neurocomportamental dos RNs em incubadoras, poupando esses bebês de risco de gosto energético desnecessário e favorecer o processo de crescimento e desenvolvimento, na perspectiva do cuidado individualizado e desenvolvimental. Associada à redução de ruídos nocivos aos RNs, pode-se avaliar também a possibilidade da incorporação de estímulos acústicos adequados ao desenvolvimento no ambiente de permanência do bebê para a utilização de protetores auriculares de silicone para proteger os bebês contra ruídos excessivos, porém inevitáveis, das unidades de terapia e cuidados intensivos.

Acredita-se que a conscientização dos cuidadores de sua primordial participação no processo de redução nos níveis sonoros seja um meio eficaz para diminuir os ruídos a que os RNs estão expostos durante os cuidados na unidade neonatal. O ruído intenso e súbito durante o manuseio desta incubadora pode ser efetivamente reduzido pela manipulação cuidadosa dessa.

Destaca-se a importância da educação contínua e permanente com o uso da metodologia participativa no intuito de tornar os cuidadores (equipe de saúde e responsáveis pelo bebê) sujeitos ao processo de transformação do trabalho na unidade neonatal e alertá-los para as atitudes que podem minimizar a poluição sonora no microambiente desse equipamento e na unidade neonatal para favorecer a saúde auditiva dessas crianças.

O envolvimento de todos os profissionais para que a assistência neonatal melhore em qualidade é de extrema importância. Portanto, a pesquisa do nível de ruídos dentro da UTIN deve ser permanente.

CONCLUSÃO

Os níveis sonoros mensurados foram intensos. O ruído a que os prematuros estão expostos nas incubadoras durante os cuidados recebidos constitui um evento estressante, modificando o estado comportamental e desencadeando respostas reflexas, corporais, manifestações faciais e mudança no estado de sono e vigília diante dos ruídos intensos e súbitos.

AGRADECIMENTOS

Agradecemos à Quest Technologies a doação do equipamento Quest 400 para realizar as pesquisas do Grupo Estudos Saúde da Criança e Adolescente (GESCA), subgrupo Enfermagem Neonatal.

REFERÊNCIAS

1. Rocha LA, Martins CD. Ruídos ambientais na UTI Neonatal. Rev Bras Cien Vida. [Internet]. 2017 [citado em 2018 Jan 6];5(4):1-23. Disponível em: http://journal.faculdadecriancasavida.com.br/index.php/RBCV/article/view/143
2. Venkataraman R, Kamaluddeen M, Amin H, Lodha A. Is less noise, light and parental/caregiver stress in the neonatal intensive care unit better for neonates?. Indian Pediatrics. 2018;55(1):17-21.
3. Krollmann B, Brock DA, Eichel M, Nader PM, Neiheisel PW. Advances in neonatal care: focusing on the last 20 years. Neonatal Netw. 2002;21(5):43-9. http://dx.doi.org/10.1586/1073-0832.21.5.43. PMID:12240456.
4. Nazzario AP, Santos VCBJ, Rossetto EG, Souza SNDH, Amorim NEZ, Scochi CGS. Avaliação dos ruídos em uma unidade neonatal de um hospital Universitário. Semin Cien Biol Saude. 2015;36(1):189-98.
5. Cardoso SMS, Kozlowski LC, Lacerda ABM, Marques JM, Ribas A. Newborn physiological responses to noise in the neonatal unit. Rev Bras Otorrinolaringol (Engl Ed). 2015;81(6):583-8. http://dx.doi.org/10.1016/j.bjorl.2014.11.008. PMID:26480903.
6. Almadhoob A, Ohlsson A. Sound reduction management in the Neonatal Intensive Care unit for preterm or very low birth weight infants. Cochran Database Syst Rev. 2015;1:CD010333. http://dx.doi.org/10.1002/14651858.CD010333.pub2.
7. Robertson A, Cooper-Peel C, Ves P. Peak noise distribution in the neonatal intensive care nursery. J Perinatol. 1998;18(5):361-4. PMID:9766412.
8. Consensus Committee on Recomended Design Standars for Advanced Neonatal Care. Recommended standards for newborn ICU design: report of the seventh consensus conference on newborn ICU design. 2007. [citado em 2007 Jul 23]. Disponível em: http://www.nd.edu/~nicudes/Recommended%20Standards%207%20final%20May%202015.pdf
9. Nogueira MFH, Piero KC, Ramos EG, Souza MN, Dutra MVP. Mensuração de ruído sonoro em unidades neonatais e incubadoras com recém-nascidos: revisão sistemática de literatura. Rev Latinoam Enfermagem [Internet]. 2011 [citado em 2017 Mar 27];19(1):[10 telas]. Disponível em: http://www.scielo.br/pdf/rlan/v19n1/pt_28.pdf
10. Grunau RE, Fitzgerald CE, Ellwood AL. Neonatal facial coding system training manual. Vancouver: Biobehavioral Research Unit, Centre for Community Health & Health Evaluation Research, British Columbia Research Institute for Children’s & Women’s Health; 2001.
11. Warnock LA. An ethogram of neonatal distress behavior in response to acute pain (newborn male circumcision). Infant Behav Dev. 2003;26(3):398-420. http://dx.doi.org/10.1016/S0163-1383(03)00038-9.
12. Brazelton TB. Competência comportamental. In: Avery GB, Fletcher MA, Macdonald MG. Neonatologia: fisiologia e tratamento do recém-nascido. 4. ed. Belo Horizonte: Medsi; 1999. p. 290-301.
13. ABNT: Associação Brasileira de Normas Técnicas. NBR IEC 601-2-19: equipamento eletromédico – parte 2: prescrições particulares para segurança de incubadoras de recém-nascido (RN). Rio de Janeiro: ABNT; 1997.
14. AAP: American Academy of Pediatrics. Committee on Environmental Health. Noise: a hazard for the fetus and newborn. Pediatrics. 1997;100(4):724-7. http://dx.doi.org/10.1542/peds.100.4.724
15. Rodarte MDO, Scochi CGS, Santos CB. O ruído das incubadoras de um hospital de Ribeirão Preto. Pró-Fono R Atual Cient. 2003;15(3):297-306.
16. Galindo APG, Caicedo YC, Veléz-Pereira AM. Noise level in a neonatal intensive care unit in Santa Marta – Colombia. Colomb Med. 2017;48(3):119-24. http://dx.doi.org/10.25100/cn.v48i3.2173.
17. Saunders AN. Incubator noise: a method to decrease decibels. Pediatr Nurs. 1995;21(3):265-8. PMID:7792110.
18. Fasolo MI, Moreira RN, Abatji PJ. Avaliação de nível de ruído em incubadora. J Pediatri. 1994;70(3):157-62. http://dx.doi.org/10.2223/JPED.771.
19. Santos BR, Orsi KCSC, Balieiro MFMG, Sato MH, Kakehashi TY, Pinheiro EM. Efeito do “horário do soninho” para redução de ruído na unidade de terapia intensiva neonatal. Esc Anna Nery. 2015;19(1):20.110.2223/JPED.771.
20. Babisch W. Noise and health. Environ Health Perspect. 2005;113(1):A14-5. http://dx.doi.org/10.1289/ehp.113-a14. PMID:15631951.
21. Oliveira D, Figueiredo M, Batista V. Ubiquidade do ruído em Neonatologia: efeitos e efectividade de medidas de controlo. Acta Pediatr Port. 2013;44(5):234-41.

22. Oberlander T, Saul JP. Methodological considerations for use of heart rate variability as a measure of pain reactivity in vulnerable infants. Clin Perinatol. 2002;29(3):427-43. http://dx.doi.org/10.1016/S0095-5108(02)00013-1. PMid:12380467.

23. Sweetwood HM. Enfermagem na unidade de tratamento respiratório intensivo. São Paulo: Organização Andrei Editora; 1982. p. 24-59.

24. Kuhn P, Zores C, Pebayle T, Hoeft A, Langlet C, Escande B, et al. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr Res. 2012;71(1-4):386-92. http://dx.doi.org/10.1038/pr.2011.76. PMid:22391640.

25. Fonseca P, Marta E. Influencia del ruído en los signos vitales del recien nacido prematuro. Bogotá: Facultad de Enfermeria Pediatr, Pontificia Universidad Javeriana, 1989.

26. Souza MM, Silveira BL, Machado LCS, Santana MCCP, Flores NGC. Variabilidade da frequência cardíaca em recém-nascidos de alto risco na presença de ruído. Rev CEFAC. 2014;16(1):99-104. http://dx.doi.org/10.1590/1982-0216201414212.

27. Azevedo MF. Avaliação e acompanhamento audiológico de neonatos de risco. Acta AWHO. 1991;10(3):107-15.

28. Lichtig I, Monteiro SRG, Couto MIV, Haro FMB, Campos MSC, Vaz FAC, et al. Avaliação do comportamento auditivo e neuropsicomotor em lactentes de baixo peso ao nascimento. Rev Aso Med Bras. 2001;47(1):52-8. http://dx.doi.org/10.1590/S0104-42302001000100030.

29. Grunau RE, Holsti L, Whitfield MF, Ling E. Are twitches, startles, and body movements pain indicators in extremely low birth weight infants? Clin J Pain. 2000;16(1):37-45. http://dx.doi.org/10.1097/00002508-200003000-00007. PMid:10741817.

30. Smith SW, Ortmann AJ, Clark WW. Noise in the neonatal intensive care unit: a new approach to examining acoustic events. Noise Health. 2018;20(95):121-30. PMid:30136672.

Contribuição dos autores

MDOR participou da idealização do estudo, coleta, análise, síntese e interpretação dos dados e redação do artigo; CIF e AML participaram da síntese e interpretação dos dados; CMS e CGS participaram da atualização das referências bibliográficas e revisão do artigo; CGSS participou, na condição de orientadora, da idealização do estudo, análise, síntese, interpretação dos dados e redação do artigo.