Role of PII proteins in nitrogen fixation control of *Herbaspirillum seropedicae* strain SmR1

Lilian Noindorf1, Ana C Bonatto2, Rose A Monteiro1, Emanuel M Souza1, Liu U Rigo1, Fabio O Pedrosa1, Maria BR Steffens1, Leda S Chubatsu1*

Abstract

Background: The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In *Herbaspirillum seropedicae*, two PII-like proteins (GlnB and GlnK), encoded by the genes *glnB* and *glnK*, were identified. The *glnB* gene is monocistronic and its expression is constitutive, while *glnK* is located in the *nlmAglnKamtB* operon and is expressed under nitrogen-limiting conditions.

Results: In order to determine the involvement of the *H. seropedicae glnB* and *glnK* gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The *glnK*-mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the *glnK* mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the *glnB* mutant has a wild-type phenotype.

Conclusions: Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in *H. seropedicae*.

Background

The PII family comprises homotrimeric proteins that have important roles in the control of the central metabolism in bacteria and plants, acting as transducers of the cellular nitrogen and carbon levels [1,2]. In many *Proteobacteria* studied there is a pair of PII proteins, usually called GlnB and GlnK, and their function is to sense the cellular levels of nitrogen, carbon and energy by binding the effectors 2-oxoglutarate, ATP and ADP [2,3]. These signals are then relayed to target proteins through conformational changes triggered by interaction with the effectors. The proteobacterial PII proteins also undergo a cycle of uridylylation/deuridylylation catalyzed by the bifunctional GlnD protein [1] in response to the intracellular levels of nitrogen. These conformational and covalent state changes stimulate or inhibit interactions of PII with different cellular protein targets involved in nitrogen and carbon metabolism [2].

PII proteins are key players in the regulation of nitrogen fixation in *Proteobacteria*. In *Klebsiella pneumoniae* and *Azotobacter vinelandii*, GlnK is required to regulate the activity of NifL, which inhibits NifA, the *nif* gene specific activator, under nitrogen-excess conditions [4-6]. In *Azospirillum brasilense* and *Rhodospirillum rubrum* GlnB is necessary for the activation of NifA under nitrogen-limiting conditions [7-9], whereas in *Rhodobacter capsulatus* both PII proteins are necessary for the NH₄⁺-dependent regulation of NifA activity [10]. In addition, PII proteins are also involved in the post-translational control of nitrogenase activity in *R. rubrum* [11] and in *A. brasilense* through interaction with DraT, DraG and AmtB [12].

Herbaspirillum seropedicae is a nitrogen-fixing *β-Proteobacterium* isolated from the rhizosphere and tissues of several plants, including economically important species [13]. In this organism two PII-like coding genes were identified, *glnB* and *glnK* [14,15]. The *glnB* gene is monocistronic and its expression is constitutive [14], whereas *glnK* is apparently co-transcribed with *amtB* and *orf1*, which encode for an ammonium transporter and a membrane associated protein of unknown function, respectively [15]. Recently *orf1* was named *nlmA*.
(nitrogen limitation membrane protein A) since its product was detected in membrane extracts of *H. seropedicae* grown under nitrogen-limitation conditions [16]. The expression of the *nlmAglnKamtB* operon is dramatically increased under nitrogen-limiting conditions and is dependent on NtrC [15]. As in other *Proteobacteria*, both PII proteins from *H. seropedicae* are targets of covalent modification by GlnD (uridylyltransferase/uridylyl removing enzyme) in response to the levels of ammonium ions [17].

Results and Discussion

To analyze the role of GlnK and GlnB in the control of nitrogen fixation in *H. seropedicae*, glnB (LNglnB) and glnK (LNglnK) insertional mutants and a glnK in-frame deletion mutant strain (LNglnKdel) were constructed and their phenotypes analyzed under different physiological conditions. These mutant strains were able to grow using nitrate as sole nitrogen source (data not shown).

The effect of *glnB* and *glnK* disruption on the NtrC-dependent expression of the *nlmAglnKamtB* operon [15] was determined using chromosomal *amtB::lacZ* transcriptional fusions of strains LNamtBlacZ, LNglnBamtBlacZ and LNglnKamtBlacZ. These strains were grown under N-limiting (5 mmol/L glutamate or 2 mmol/L NH4Cl) or N-excess (20 mmol/L NH4Cl) conditions and assayed for β-galactosidase activity. The LNamtBlacZ strain grown under N-limiting conditions showed β-galactosidase activity 21 times higher than in high ammonium (Table 1), confirming that *nlmAglnKamtB* is highly expressed under N-limiting conditions [15]. Strains LNglnKamtBlacZ and LNglnBamtBlacZ revealed a similar pattern of *amtB* expression, indicating that the mutation of either *glnK* or *glnB* does not affect *nlmAglnKamtB* expression. Since *nlmAglnKamtB* transcription is NtrC-dependent, these results suggest that GlnB and GlnK can substitute for each other in control of the NtrC/NtrB system in *H. seropedicae*. In agreement with this suggestion, *ntrC* [18] and *glnD* (unpublished results) mutants strains of *H. seropedicae* are unable to grow on nitrate, whereas the *glnB* and *glnK* mutant strains can use nitrate as sole nitrogen source.

In *Escherichia coli* both GlnB and GlnK are involved in the regulation of NtrC phosphorylation by NtrB, although GlnB is more effective [19]. Although several attempts were made, we failed to construct a double *glnB*-*glnK* mutant suggesting that an essential role is shared by these proteins in *H. seropedicae*.

The effect of *glnK* or *glnB* mutation on nitrogenase activity of *H. seropedicae* was determined in cultures grown in NH4+-free semi-solid NFbHP medium (Figure 1). Nitrogenase activity was reduced by approximately 95% in both *glnK* strains (LNglnKdel and LNglnK) indicating that GlnK is required for nitrogenase activity in *H. seropedicae*. On the other hand, the *glnB* strain (LNglnB) showed activity similar to that of the wild-type. These results contrast with those reported by Benelli et al [14] who constructed a *H. seropedicae* *glnB::Tn5-20B* mutant (strain B12-27) that was unable to fix nitrogen. Immunoblot assays did not detect GlnK in the B12-27 strain [Additional file 1: Supplemental Figure S1], suggesting that a secondary recombination event may have happened in this strain resulting in loss of GlnK not observed by Benelli et al [14].

The nitrogenase phenotype of the *glnK* mutants was complemented by pLNOGA (*nlmAglnKamtB*) and also partially restored (about 50%) by a plasmid expressing *glnB* under control of its own promoter (pACB210) suggesting that a higher copy number of *glnB* can substitute for *glnK* under N-limitation. The lower nitrogenase activity of the *glnK* strains could be due to lack of nif expression or inhibition of nitrogenase. We therefore analyzed the effect of the *glnK* mutation on the NtrC-dependent *nifA* promoter [20] and on the NifA-dependent *nifB* promoter of *H. seropedicae* [21] by using plasmids carrying *nifA::lacZ* (pRW1) or *nifB::lacZ* (pEMS140) fusions (Table 2). The β-galactosidase activity was the same in both wild-type (SmR1) and glnK (LNglnK) strains containing *nifA::lacZ*, supporting the view that GlnK is not strictly necessary for NtrC regulation in *H. seropedicae* in the presence of a functional *glnB* gene. On the other hand, expression of the *nifB::lacZ* fusion was reduced 10-fold in the *glnK* mutant compared to the wild-type, indicating that GlnK is

Table 1 Effect of *glnB* and *glnK* mutations on *nlmAglnKamtB* expression

Growth Conditions	LNamtBlacZ (SmR1, *amtB::lacZ*)	LNglnKamtBlacZ (ΔglnK, *amtB::lacZ*)	LNglnBamtBlacZ (glnB-Tc, *amtB::lacZ*)
5 mmol/L glutamate	(2.5 ± 0.2) × 10^3	(2.4 ± 0.2) × 10^3	(2.3 ± 0.2) × 10^3
2 mmol/L NH4Cl	(2.1 ± 0.1) × 10^3	(2.29 ± 0.08) × 10^3	(2.2 ± 0.1) × 10^3
20 mmol/L NH4Cl	(1.1 ± 0.2) × 10^3	(1.4 ± 0.4) × 10^3	(1.6 ± 0.3) × 10^3

Indicated strains of *H. seropedicae* were grown in the presence of glutamate or NH4Cl. β-galactosidase activity was determined as described. Values are the mean of at least three independent experiments ± standard deviation.
required for nifB expression in H. seropedicae, even in the presence of wild type glnB. These results indicate that the lower nitrogenase activity in the glnK mutants was the result of lack of nif expression, most likely due to impaired NifA activity.

Previous results showed that the N-terminal domain of H. seropedicae NifA is required for controlling its activity in response to NH4+, and that an N-truncated form of NifA is transcriptionally active, but not responsive to NH4+ levels [22,23]. Thus, the nitrogenase activity was determined in the glnK mutants carrying pRAMM1 or pLNA, which respectively express NmIA-GlnK-AmtB, GlnB, ΔN-NifA and NifA were also evaluated. Data represent the average of at least three independent experiments and bars indicate the standard deviations.

Figure 1 Nitrogenase activity of H. seropedicae wild-type, glnB and glnK strains Nitrogenase activity was determined as described using strains SmR1 (wild-type), LNglnB (glnB::Tc), LNglnK (glnK::Km), LNglnKdel (glnK::Km) grown in semi-solid medium. The glnK mutants carrying plasmids pLNOGA, pACB210, pLNA, or pRAMM1, which respectively express NmIA-GlnK-AmtB, GlnB, ΔN-NifA and NifA were also evaluated. Values are averages of at least three independent experiments ± standard deviation.

Table 2 Promoter activity of nifA::lacZ and nifB::lacZ fusions in H. seropedicae wild-type (SmR1) and glnK mutant (LNglnK) strains

Strains	β-galactosidase Activity [mmol o-nitrophenol/ (min.mg protein)]			
	Plasmids			
	none	pPW452 (promoter-less lacZ vector)	prW1 (nifA::lacZ)	pEMS140 (nifB::lacZ)
SmR1	(3 ± 1) × 10	(6 ± 2) × 10	(7 ± 1) × 10	(2.8 ± 0.1) × 10
LNglnK	(2.0 ± 0.7) × 10	(4 ± 2) × 10	(6 ± 1) × 10	(2.5 ± 0.3) × 10

H. seropedicae strains carrying the indicated plasmids were grown in NFbHP medium supplemented with 10 mmol/L of NH4Cl under air at 30°C. The cells were then centrifuged, resuspended in NFbHP (nitrogen-free) medium and de-repressed for 7 hours under 1.5% oxygen. β-galactosidase was determined as described. Values are averages of at least three independent experiments ± standard deviation.
that shown by the glnK mutant[15]. These results allow us to propose a model for the regulation of nitrogen fixation in H. seropedicae. Under N-limiting conditions, NtrC-dependent promoters are activated leading to expression of nifA and nlmA/glnK/amtB genes. The status of fixed nitrogen is signaled to NtrC via the uridylylation state of either GlnB or GlnK. Under a low ammonium and oxygen condition, NifA activates the expression of nif genes in a process which requires GlnK, most probably in an uridylylated form. Thus, under N-limiting conditions the nitrogenase complex is active, AmtB is associated with the membrane, NlmA is most probably in the periplasm and GlnK is mainly located in the cytoplasm. When ammonium is added, deuridylylated GlnK rapidly associates with the cell membrane by interacting with AmtB to form the GlnK-AmtB complex which, in turn, signals to nitrogenase to switch-off by a yet unknown process.

Conclusions

In summary, our results show that both GlnB and GlnK proteins can regulate NtrC-dependent promoters in H. seropedicae. Under physiological conditions, GlnK is required for NifA activity control. GlnK also controls the nitrogenase switch-off in response to NH4+ by a mechanism which most probably involves the formation of a membrane-bound GlnK-AmtB complex.

Methods

Plasmids, Bacterial strains and Growth conditions

The H. seropedicae and E. coli strains and plasmids used in this work are listed in Table 3. E. coli strains were grown routinely in Luria medium (Luria broth or Luria agar) [29] at 37°C. H. seropedicae was grown at 37°C in NFbHP medium [30] supplemented with NH4Cl (20 mmol/L) or the indicated nitrogen source. The concentrations of the antibiotics used were as follows: ampicillin (250 μg/mL), tetracycline (10 μg/mL), kanamycin (100 μg/mL for E. coli, 1 mg/mL for H. seropedicae), streptomycin (80 μg/mL) and chloramphenicol (30 μg/mL for E. coli, 100 μg/mL for H. seropedicae).

Enzyme assays

β-galactosidase activity was determined in cells carrying a lacZ fusion as described [31]. To study the amtB-lacZ-Km® chromosomal fusion expression, H. seropedicae strains carrying chromosomal transcriptional fusions were grown for 14 hours in NFbHP medium containing glutamate (5 mmol/L) or NH4Cl (2 mmol/L or 20 mmol/L), and assayed for β-galactosidase activity. To study the nifA and nifB expression, H. seropedicae strains carrying plasmid-borne transcriptional fusions nifA::lacZ or nifB::lacZ were grown for 14 hours in NFbHP medium containing NH4Cl (10 mmol/L) under
Table 3 *Herbaspirillum seropedicae* strains and plasmids

Strains	Phenotype/genotype	Reference
Herbaspirillum seropedicae		
SmR1	Wild type, Nif+, SmR⁺	[38]
LNglnK	SmR1 containing glnK::sacB⁻-Km^R	this work
LNglnKdel	SmR1 containing ΔglnK⁺	this work
LNglnB	SmR1 containing glnB::Tc^R	this work
LNamtBlacZ	SmR1 containing amtB::lacZ-Km^R	this work
LNglnKamtBlacZ	LNglnKdel containing ΔglnK⁻-Km^R	this work
LNglnBamtBlacZ	LNglnB containing ΔglnB⁻-Km^R	this work
B12-27	SmR1 containing glnB⁻-Tn5⁻²⁶⁸	[14]
Escherichia coli		
DH10B	Sm^R, F⁺ [pproA^B- lacZΔM15]	Life Technologies
S17.1	Sm^R, Tra⁺ pro thi recA hsdR⁺ (RP4-2 kan^{Tn7} tet⁺Mu)	[39]

Plasmids	Relevant characteristics	Reference
pACB192	1.7 kb DNA fragment containing the glnB gene of *H. seropedicae* in pSUP202	This work
pACB194	glnB gene of *H. seropedicae* with a tetracycline resistance transposon EZ-TN™ < TET-1 > (Epitecture) in pSUP202	this work
pACB210	glnB gene of *H. seropedicae* in pLAFR3.18Cm	this work
pDK6	Expression vector/ lacZ promoter, Km^R	[37]
pDK6nifACT	*H. seropedicae* nifA deleted of 606 bp in the 5' coding region cloned into pDK6 carrying the nifA promoter	this work
pDK6nifA	nifA gene promoter region of *H. seropedicae* in pDK6	this work
pEM5140	nifB-lacZ transcriptional fusion of *H. seropedicae* in pPW452	[21]
pEM5301	1.7 kb EcoRI fragment that contains the promoter region and part of the nifA gene of *H. seropedicae* in pTZ19R	[40]
pLAFR3.18Cm	Tc^R, Km^R, IncP cosmid with the pTZ18R cloning nest	[15]
pLNfAfA	Expresses ΔN-NifA of *H. seropedicae* with its own promoter in pLAFR3.18Cm	this work
pLNOGA	5.1 kb fragment that contains the nlmA⁻-KmR operon of *H. seropedicae* in pLAFR3.18Cm	[15]
pLNglK	0.9 kb BamHI/HindIII fragment that contains the 3' terminal of the nlmA gene, the complete glnK gene and 5' terminal of the amtB gene of *H. seropedicae* in pTZ18R	this work
pMH701	Km^R, contains a sacB-Km^R cassette	[35]
pPW452	Tc^R, lacZ gene fusion	[41]
pRAM277	contains *H. seropedicae* nifA deleted of 606 bp in the 5' end, encoding an N-truncated form of NifA deleted of its N-terminal domain and Q-linker	this work
pRAMM1	nifA of *H. seropedicae* in pLAFR3.18Cm	this work
pRW1	nifA-lacZ transcriptional fusion of *H. seropedicae* in pPW452	[20]
pSUP202	Ap^R, Cm^R, Tc^R, Mob	[39]
pSUPFamtBlacZ	Central region of the amtB gene with a lacZ-Km^R cassette insertion in pSUP202	[15]
pSUPGlnK	0.9 kb BamHI/HindIII fragment that contains the 3' terminal of the nlmA gene, the complete glnK gene and 5' terminal of the amtB gene of *H. seropedicae* in pLAFR3.18Cm	this work
pSUPGlnKdel	ΔglnK (192bp) gene of *H. seropedicae* in pSUP202	this work
pSUPGlnKaslacB	contains ΔglnK and a sacB-Km^R cassette (from pMH701) cloned into the vector pSUP202	this work
pSUPGlnKsacB	0.9 kb fragment spanning from the 3' end of nlmA to the 5' end of amtB with a sacB-Km^R (from pMH701) inserted into the glnK gene	this work
pTZ19R	Ap^R, lacZ^F tET⁺	[42]
pUC18	Ap^R, lacZ^F, F⁺	Invitrogen
pUCG08del	0.8 kb DNA fragment that contains the 3' terminal of the nlmA gene, the complete glnK gene and the 5' terminal of the amtB gene of *H. seropedicae* in pUC18	this work

Protein concentration was determined by the Bradford method [32] using bovine serum albumin as standard.

Nitrogenase activity was determined using cells grown in semi-solid NFbHP medium containing glutamate (0.5 mmol/L). For nitrogenase switch-off/on assays cells were incubated in 3 mL of NFbHP medium (O.D.₆₀₀ = 0.2) and incubated in 25 mL flasks, at 30°C for 7 hours under 1.5% oxygen. The results are reported as nmol of o-nitrophenol (NP) produced per min per mg protein.
were grown in liquid NFbHP medium with glutamate (4 mmol/L) at 30°C and 120 rpm [28]. Nitrogenase activity was determined by acetylene reduction [33,34].

Construction of the LNglkB mutant of *H. seropedicae*

Plasmid HS26-FP-00-000-021-E03 (Genopar consortium, http://www.genopar.org), which contains the *H. seropedicae* glnB gene in pUC18, was linearized with EcoRI and treated with T4DNA polymerase. It was then digested with HindIII to release a 1.7 kb fragment containing the glnB gene. This fragment was subcloned into the vector pSUP202 previously linearized with BamHI, treated with T4DNA polymerase and digested with HindIII to produce plasmid pACB192.

In vitro transposon mutagenesis of the glnB gene carried by plasmid pACB192 was performed using the EZ:TN †-<TET-1> Insertion Kit (Epicentre Technologies) following the manufacturer’s instructions. A plasmid containing the transposon insertion in the glnB coding region was selected and named pACB194. This plasmid was introduced by conjugation to *H. seropedicae* SmR1 using *E. coli* strain S17.1 as the donor. Recombinant colonies were selected for tetracycline resistance and screened for the loss of chloramphenicol resistance (vector marker). Southern blot of restriction enzyme digested genomic DNA was used to confirm the presence of the transposon in the glnB gene (data not shown). This *H. seropedicae* glnB-Tc^R strain was named LNglkB.

Construction of the LNglKn mutant of *H. seropedicae*

To clone the glnK gene, chromosomal DNA of *H. seropedicae* was amplified using the primers glnKD (5′-AACGCTTCGATCCGCTACCTCGGT-3′, BamHI restriction site is underlined) and glnKR (5′-GGACCTGTATCTAGTGTATCCGT-3′, Xhol restriction site is underlined) were used to amplify a 180 bp region upstream of the glnK gene and the first 180 bp of glnK. The amplified fragments were joined by the HindIIIsite of the *H. seropedicae* SmR1 by conjugation with *E. coli* strain S17.1 as the donor. Recombinant colonies were selected for kanamycin and chloramphenicol resistance. One mutant strain was selected, and grown overnight in liquid NFbHP medium supplemented with ammonium chloride (20 mmol/L) and 80 μg/mL streptomycin. One microliter of the culture was plated on solid NFbHP medium supplemented with 20 mmol/L NH₄Cl, 5% sucrose and 80 μg/mL streptomycin. Sucrose is toxic to bacteria containing the sacB gene in the chromosome, therefore only strains that lost the sacB-Km^R cassette by a second homologous recombination event would grow. The selected strains were analyzed by PCR with the primers GlnKF1 (5′-TGGTCCAAGACCTTGACG3′) and GlnKR1 (5′-CATGCTCATAGAGTTCGCC3′) which were homologous to the glnK flanking 5′- and 3′- regions, confirming the deletion of the 192 bp glnK fragment (data not shown). This in-frame glnK strain (ΔglnK) was named LNglnKdel.

Construction of plasmid pLNΔNifA*

An Eco47III/SacI DNA fragment containing the nifA gene promoter region of *H. seropedicae* was excised from the plasmid pEMS301[36] and sub-cloned into the SmaI/SacI-cut vector pDK6 [37], yielding plasmid pDK6npifA. An XbaI DNA fragment encoding for the central and C-terminal region of NifA protein (ΔN-NifA) of *H. seropedicae* was excised from the plasmid pRAM2T7 and sub-cloned into the XbaI-cut pDK6npifA, in the same orientation as the nifA promoter, yielding plasmid pDK6npifACT. Finally, a SacI/HindIII DNA fragment containing the nifA 5′-truncated gene was excised from pDK6npifACT and sub-cloned into pLAFR3.18Cm digested with SacI and HindIII. The
generated plasmid was named pLNΔNifA and encodes for the central and C-terminal domains of NifA under control of the nifA promoter.

Construction of the plasmid pACB210
A 1.7 kb EcoRI-HindIII fragment containing the glnB gene with its promoter region was excised from the plasmid HS10-MP-00-000-014-E08 (Genopar consortium, http://www.genopar.org), and sub-cloned into the vector pLAFR3.18 digested with EcoRI-HindIII to yield plasmid pACB210.

Construction of chromosomal amtB::lacZ transcriptional fusions
To construct amtB-lacZ transcriptional fusions, the suicide plasmid pSUPamtBClacZ was introduced by conjugation, using E. coli strain SI7.1 as the donor, into H. seropedicae strains SmR1, LNglnKdel and LNglnB resulting in the strains LNamtBlacZ, LNglnKamtBlacZ and LNglnBamtBlacZ, respectively. Genomic DNA hybridization confirmed the presence of the cassette lacZ-Km in the amtB gene (data not shown).

Additional material

List of Abbreviations
ApR: ampicillin resistance; CmR: chloramphenicol resistance, KmR: kanamycin resistance; TcR: tetracycline resistance; SmR: streptomycin resistance.

Acknowledgements
We are grateful to the GENOPAR consortium for providing plasmids, and to Roseli Prado, Juliesta Pio and Valter Bauru for technical assistance. We are also grateful to Dr. Geoffrey Yates for reading the manuscript. This work was supported by INCT-FBN/CNPq/MCT, Institutos do Milênio, PRONEX, CAPES, CNPq and Fundação Araucária.

Author details
1National Institute of Science and Technology for Biological Nitrogen Fixation, Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba, PR, 81531-980, Brazil. 2Department of Genetics, Universidade Federal do Paraná, CP 19071, Curitiba, PR, 81531-980, Brazil.

Authors' contributions
LN constructed plasmids and H. seropedicae mutants, carried out physiological experiments and helped to draft the manuscript; ACB constructed plasmids and carried out immunassays; RAM constructed plasmids and designed some of the experiments; LN, RAM and LUR helped to draft the manuscript; FOP, EMS, MBRS and LSC conceived the study, participated in its design and in writing the manuscript; LSC also supervised the study. All authors read and approved the final manuscript.

Received: 8 July 2010 Accepted: 11 January 2011 Published: 11 January 2011

References
1. Arcondeguy T, Jack R, Merrick M: PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001, 65(1):80-105.
2. Forchhammer K: P-II signal transducers: novel functional and structural insights. Trends Microbiol 2008, 16(2):65-72.
3. Jiang P, Ninfaj AJ: Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 2007, 46(45):12979-12996.
4. He LH, Soupene E, Ninfaj A, Kustu S: Physiological role for the GlnK protein of enteric bacteria: Relief of NifK inhibition under nitrogen-limiting conditions. J Bacteriol 1998, 180(24):6661-6667.
5. Jack R, De Zamaroczy M, Merrick M: The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 1999, 181(4):1156-1162.
6. Little R, Reyes-Ramirez F, Zhang Y, van Heeswijk WC, Dixon R: Signal transduction to the Azotobacter vinelandii NIF-L-NIF-A regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. Embo J 2000, 19(22):6041-6050.
7. Arsene F, Kaminski PA, Elmerich C: Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. J Bacteriol 1996, 178(16):4830-4838.
8. Araujo LA, Monteiro RA, Souza EM, Steffens MB, Ribeiro L, Pedrosa FO, Chubatsu LS: GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli. Res Microbiol 2004, 155(6):491-495.
9. Zhang YP, Pohlmann EL, Roberts GP: Identification of critical residues in GlnK for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci USA 2004, 101(9):2782-2787.
10. Drexler T, Gross S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W: Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capitis. Microbiology-Sgm 2003, 149:2203-2212.
11. Zhang YP, Wolfe DJ, Pohlmann EL, Conrad MC, Roberts GP: Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Microbiology-Sgm 2006, 152:2075-2089.
12. Huegro LF, Merrick M, Monteiro RA, Chubatsu LS, Steffens MB, Pedrosa FO, Souza EM: In Vitro Interactions between the P-II Proteins and the Nitrogenase Regulatory Enzymes Dinitrogenase Reductase ADP-ribosyltransferase (DraT) and Dinitrogenase Reductase-activating Glycohydrolase (DraG) in Azospirillum brasilense. J Biol Chem 2009, 284(11):6674-6682.
13. Baldani Jr, Baldani VLD, Seldin L, Dobereiner J: Characterization of the Herbaspirillum seropedicae Gen-Nov, Sp-Nov, a Root-Associated Nitrogen-Fixing Bacterium. Int J Syst Bacteriol 1986, 36(1):86-93.
14. Benelli EM, Souza EM, Funayama S, Rigo LU, Pedrosa FO: Evidence for two possible gltB-type genes in Herbaspirillum seropedicae. J Bacteriol 1997, 179(14):4623-4626.
15. Noindorf L, Blaze FG, Banque VA, Monteiro RA, Wassenh R, Cruz LM, Rigo LU, Souza EM, Steffens MB, Pedrosa FO, et al: Characterization of the orf1glnKamtB operon of Herbaspirillum seropedicae. Arch Microbiol 2006, 185(1):55-62.
16. Huegro LF, Noindorf L, Gimenes C, Lemgruber RSP, Cordellini DF, Falarz LJ, Cruz LM, Monteiro RA, Pedrosa FO, Chubatsu LS, et al: Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of P-II proteins. FEMS Microbiol Lett 2010, 308(1):60-67.
17. Bonatto AC, Couto GH, Souza EM, Araujo LM, Pedrosa FO, Noindorf L, Benelli EM: Purification and characterization of the bifunctional uridylyltransferase and the signal transducing proteins GlnB and GlnK from Herbaspirillum seropedicae. Protein Expr Purif 2007, 55:293-299.
18. Pensohn DC, Souza EM, Steffens MB, Pedrosa FO, Yates MG, Rigo LU: The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae. FEMS Microbiol Lett 2000, 192(2):217-221.
19. Atkinson MR, Ninfaj AJ: Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 1998, 29(2):431-447.
20. Wassenh R, Pedrosa FO, Yates MG, Rigo FG, Chubatsu LS, Rigo LU, Souza EM: Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein. FEMS Microbiol Lett 2002, 212(2):177-182.
21. Rigo FG, Pedrosa FO, Chubatsu LS, Yates MG, Wassenh R, Steffens MB, Rigo LU, Souza EM: The expression of nifB gene from Herbaspirillum
seropedicaceae is dependent upon the NifA and RpoN proteins. Can J Microbiol 2006, 52(12):1199-1207.

22. Souza EM, Pedrosa FO, Drummond M, Rigo LU, Yates MG. Control of Herbaspirillum seropedicaceae NifA activity by ammonium ions and oxygen. J Bacteriol 1999, 181(2):681-684.

23. Monteiro RA, Souza EM, Funayama S, Yates MG, Pedrosa FO, Chubatsu LS. Expression and functional analysis of an N-truncated NifA protein of Herbaspirillum seropedicaceae. FEBS Lett 1999, 447(2-3):283-286.

24. Wang H, Franke CC, Nordlund S, Noren A. Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 2005, 253(2):273-279.

25. Tremblay PL, Hallenbeck PC. Ammonia-induced formation of an AmtB-GinK complex is not sufficient for nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 2008, 190(5):1588-1594.

26. Dodsworth JA, Leigh JA. Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci USA 2006, 103(26):9779-9784.

27. Fu H, Burris RH. Ammonium Inhibition of Nitrogenase Activity in Herbaspirillum seropedicaceae. J Bacteriol 1989, 171(6):3166-3175.

28. Klassen G, Pedrosa FO, Souza EM, Funayama S, Rigo LU. Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicaceae SMR1. Can J Microbiol 1997, 43(9):887-891.

29. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning - a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989.

30. Pedrosa FO, Yates MG. Regulation of Nitrogen-Fixation (nif) Genes of Azospirillum brasilense by NifA and Ntr (Gln) Type Gene-Products. FEMS Microbiol Lett 1988, 23(1):95-101.

31. Miller JH. Experiments in Molecular Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, second 1972.

32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.

33. Dilworth MJ. Acetylene Reduction by Nitrogen-Fixing Preparations from Clostridium Pasteurianum. Biochim Biophys Acta 1966, 127(2):285-294.

34. Schüllhorn R, Burris RH. Acetylene as a Competitive Inhibitor of N2 Fixation. Proc Natl Acad Sci USA 1967, 58(1):213-216.

35. Hynes NF, Quandt J, Oconnell MP, Puhler A. Direct Selection for Curing and Deletion of Rhizobium Plasmids Using Transposons Carrying the Bacillus subtilis sacB Gene. Gene 1989, 78(1):111-120.

36. Souza EM, Funayama S, Rigo LU, Yates MG, Pedrosa FO. Sequence and Structural Organization of a nifA-Like Gene and Part of a nifB-Like Gene of Herbaspirillum seropedicaceae Strain Z78. J Gen Microbiol 1991, 137:1511-1522.

37. Kleiner D, Paul W, Menick MJ. Construction of Multi-copy Expression Vectors for Regulated over-Production of Proteins in Klebsiella pneumoniae and Other Enteric Bacteria. J Gen Microbiol 1988, 134:1779-1784.

38. Souza EM, Pedrosa FO, Rigo LU, Machado HB, Yates MG. Expression of the nifA gene of Herbaspirillum seropedicaceae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element. Microbiology-Sgm 2000, 146:1407-1418.

39. Simon R, Pfeifer U, Puhler A. A Broad Host Range Mobilization System for Invivo Genetic-Engineering - Transposon Mutagenesis in Gram-Negative Bacteria. Bio-Technology 1983, 1(9):784-791.

40. Souza EM, Funayama S, Rigo LU, Pedrosa FO. Cloning and Characterization of the nifA gene from Herbaspirillum seropedicaceae Strain Z78. Can J Microbiol 1991, 37(6):425-426.

41. Woodley P, Buck M, Kennedy C. Identification of sequences important for recognition of vnf genes by the VnfA transcriptional activator in Azotobacter vinelandii. FEMS Microbiol Lett 1996, 135(2-3):213-221.

42. Mead DA, Szaszova-Skorupa E, Kemper B. Single-stranded DNA ‘blue’ T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng 1986, 1(1):67-74.