EA-1, A Novel Adhesion Molecule Involved in the Homing of Progenitor T Lymphocytes to the Thymus

Beat A. Imhof, Patricia Ruiz, Barbara Hesse, Ronald Palacios, and Dominique Dunon
Basel Institute for Immunology, CH-4058 Basel, Switzerland

Abstract. The mouse progenitor T lymphocyte (pro-T) cell line FTF1 binds in vitro to thymus blood vessels, the thymic capsule, and liver from newborn mice. A mAb, EA-1, raised against an embryonic mouse endothelial cell line, blocked adhesion. The antibody also interfered with pro-T cell adhesion to a thymus-derived mouse endothelial cell line; it had no effect on the adhesion of mature T lymphocytes and myeloid cells. The antigen recognized by EA-1 is located on the vascular endothelium of various mouse tissues and absent on pro-T cells. EA-1 antibody precipitates molecules with apparent molecular weights of 110,000, 140,000, 160,000, and 200,000. Immunoclearing and binding-inhibition studies with antibodies against known adhesion molecules suggest that the EA-1 antigen is a novel adhesion molecule involved in colonization of the embryonic thymus by T cell progenitors.

Colonization of the mouse thymus by T lymphocyte progenitors from fetal liver occurs apparently in a wave starting at day 10 of embryonic development (Moore and Owen, 1967; Saladin et al., 1986; Jotereau et al., 1987; Savagner et al., 1988; Palacios and Samaridis, 1991). In postnatal life, T cell progenitors (pro-T cells) from the bone marrow continually migrate into the thymus, albeit in smaller number, and there they develop into the various thymocyte populations (Scollay et al., 1986; Kewski, 1987; Adkins et al., 1987; Savagner et al., 1988; Deugnier et al., 1989; Palacios et al., 1990). pro-T cells, the earliest differentiation stage in the T-lymphocyte lineages (Palacios and Pelkonen, 1988), are transported to the thymus via the blood circulation (Savagner et al., 1986; Dunon et al., 1990; Palacios et al., 1990). A critical first step in the process of thymus colonization is the adhesion of pro-T cells to the perithymic vascular endothelium.

Adhesion of mature hemopoietic cells to endothelium has been extensively studied (Harlan, 1985; Rosen, 1989; Stoolman, 1989; Osborn, 1990; Springer, 1990a; Albelda and Buck, 1990). Several classes of adhesion molecules present on endothelium participate in this process. ELAM-1 and PAdGEM/GMP-140 constitute the so-called selectin family or LECAM (Bevilacqua et al., 1989; Johnston et al., 1989). ICAM-1, ICAM-2, PECAM-1/EndoCAM, and VCAM belong to the group designated as cell adhesion molecules (CAM) and more widely to the Ig structure superfamily (Simmons et al., 1988; Horley et al., 1989; Staunton et al., 1990; Albelda et al., 1990; Newman et al., 1990; Elices et al., 1990). Most of these molecules can be induced to be expressed on certain endothelia by tissue inflammation in vivo or by cytokine treatment in vitro (Osborn, 1990). Finally the integrins, consisting of an α and a β subunit, are widely distributed on different tissues and participate in both, cell–cell and cell–substrate interaction (Albelda and Buck, 1990). All these molecules seem to be involved in homing of various hemopoietic cell lineages to a variety of tissues. A more restricted tissue or organ-specific homing has been found in the lymphoid system (Streeter et al., 1988a; Springer, 1990b). Thus, lymph nodes and Peyer's patches contain specialized blood vessels with a characteristic morphology, the high endothelial venules (HEV), to which mature lymphocytes bind. mAbs, directed against HEV antigens, block lymphocyte adhesion on HEV in the mucosa and others in peripheral lymph nodes (Streeter et al., 1988a; Nakache et al., 1989). Because such endothelial adhesion molecules are expressed in specific organs and because they seem to determine where circulating mature lymphocytes will exit the bloodstream, they are referred to as addressins (Berg et al., 1989).

Little is known about the interaction of lymphocyte progenitors with endothelium during development. Moreover, little is known about the existence of adhesion molecules that participate in the homing of lymphocyte progenitors to particular tissues or organs (Tavassoli and Hardy, 1990). We generated a mAb, EA-1, that reacts with a protein expressed on mouse endothelial cells. It inhibits the binding of pro-T cells to thymic endothelium, but it has no effect on adhesion of mature T lymphocytes or myeloid cells to tissues. Thus we provide evidence for restricted binding of T-cell progenitors to thymic endothelium, and we have identified on the surface of endothelial cells, a novel protein involved in that process.

1. Abbreviations used in this paper: CAM, cell adhesion molecule; DPBS, Dulbecco's PB; HEV, high endothelial venules; IMDM, Iscoves modified MEM; pro-T cells, T cell progenitors.
Figure 1. Binding of FTFI pro-T cells to frozen sections of tissue from newborn mice. (A) Photograph of frozen sections from the binding assay. FTFI appear as large round cells with a shiny surface easily distinguishable from the frozen sections (see arrows). (a) Cortico-medullary junction of thymus; FTFI cells bound to a blood vessel. (b) Cortical region and capsule of the thymus; FTFI cells bound to the capsule. (c) Liver; (d) kidney; (e) lung; (f) heart. The inset in a shows medulla and cortex of a newborn thymus. The arrowhead points to FTFI cells bound to a blood vessel. (B) Quantitation of bound cells per microscope field. Mean values represent five independent assays with a total of 20 counted microscope fields per assay. Bar, 100 μm.
Table I.

	pro-T lymphoma	Pre-B lymphoma	Early pre-B lymphoma	Carcinoma
pro-T lymphoma	L10A62	18.81	40E1	KLN205

A. Binding capacity of cell lines on tissue sections

Tissue	Thymus	Liver	Kidney	Lung	Heart
Thymus	++	++	++	++	++
Liver	+	+	+	+	++
Kidney	-	+	-	++	++
Lung	-	-	-	++	++
Heart	-	-	-	-	+

B. Inhibition of cell binding by EA-1 antibody

Tissue	Thymus	Liver	Kidney	Lung	Heart
Thymus	+++	++	+	++	++
Liver	+	++	++	++	++
Kidney	+	+	+	+	++
Lung	-	-	-	++	++
Heart	-	-	-	-	+

In A the symbols are as follows: -, <3 cells/field; +, 3-15 cells/field; ++, 16-40 cells/field. In B the symbols are as follows: -, 0%; +, 1-30%; ++, 31-60%; +++ 61-100%.

Materials and Methods

Cells

The development, characterization, and functional potential of the pro-T cell clone FTFI are described elsewhere (Pelkonen et al., 1987; Palacios et al., 1989). They were grown in culture medium in the presence of interleukin 2 as described (Palacios et al., 1989). For further binding studies we used the pre-B cell lymphoma 18-81 (Alt et al., 1981), early pre-B cell lymphoma 40E1 (Alt et al., 1981), the mature B cell line L10A62 (Kim et al., 1979) and the carcinoma cell line KLN 205 (American Type Culture Collection, Rockville, MD). Endothelial cells, eEnd.2 (derived from mouse embryo) and eEnd.1 (derived from young mouse thymus), obtained from E. Wagner, Institute for Molecular Pathology (Vienna), are both endothelial cell lines transformed by the polyoma middle T oncogene and cultured as described (Williams et al., 1989).

FITC Coupling to pro-T Cells

FITC (Sigma Chemical Co., St. Louis, MO) was prepared as a 25.7 mM stock solution in DMSO (Fluka AG, Buchs, Switzerland) and processed as described (Imhof et al., 1990). Briefly, 100 μl stock solution was added to

Figure 2. Inhibition of pro-T cell binding on frozen sections of newborn thymus and liver by EA-1 antibody. FTFI cells were mixed with SP 2/0 supernatant (control) or with EA-1 hybridoma supernatant (EA-1) and used in the binding assay. Control rat antibodies of the same isotype as EA-1 gave identical results as the SP 2/0 control (not shown).

Figure 3. Binding of pro-T cells and peripheral mature T lymphocytes on thymus-derived endothelial cell line, eEnd.1. FTFI and T cells were first FITC labeled and then used for binding on endothelial cells plated in microtiter plates. Bound cells were counted by measuring fluorescence on a Fluoroskan II microtiter reader. Pro-T cell binding was inhibited by antibody EA-1; binding of mature peripheral T cells was not. A mean of 5.5 × 10^4 ± 0.5 × 10^4 FTFI cells and 3.3 × 10^3 ± 0.25 × 10^3 peripheral T cells (both taken as binding index 1) bound to a monolayer containing 3 × 10^4 t.End.1 cells per well. Three independent experiments were taken with 10 wells per value.

Figure 4. Analysis of surface staining by antibody EA-1 on two endothelial cell lines (eEnd.2 and tEnd.1) and on the pro-T cell line (FTFI). Adherent cells were rapidly detached by trypsin and stained in suspension; the fluorescence detected on a FACScan. Cell number is plotted on the linear scale, fluorescence is plotted on a logarithmic scale.

Imhof et al. EA-1: Thymus-homing Adhesion Molecule
containing 1% BSA for at least 10 min. Slides were dried around the PappPen marked area and the tissue section then loaded with 10 μg pro-T, lymphoma or carcinoma cells in 200 μl DPBS. Binding was allowed to occur for 40 min at 8°C on a mini-shaker (A. Kühner AG, Basel, Switzerland) at 50 rpm. Slides were then placed vertically into DPBS containing 0.5% glutaraldehyde and 2% formaldehyde, where nonbound cells were allowed to fall off. After 20 min of fixation at room temperature, pro-T cells bound to the tissue section under study were counted using a light microscope (Axiophot; Zeiss, Oberkochen, Germany).

On Cultured Cells. Endothelial cells were seeded into 96-well (no. 3596; Costar Data Packaging, Cambridge, MA) microtiter plates (3 x 10^4 cells/well) and cultured for 24 h. After removing the medium, FITC-labeled pro-T cells, peripheral T cells, or polymorphonuclear leukocytes were added (10^5 cells/200 μl/well) and incubated at 37°C for 2 h. Unbound cells were removed by washing three times with DPBS containing 1% BSA; the slides were "flashed" dry between washes. Fluorescence, corresponding to cells bound in DPBS, was measured by a Fluoroskan II reader (Titerrek, Elfab Oy, Finland) (Imhof et al., 1990). The binding index is defined as the ratio of the number of cells bound to endothelium in the presence of blocking antibody to the number of cells bound in control medium.

Polymorphonuclear Leukocytes, Peripheral T Lymphocytes, and Blood Platelets For the isolation of leukocytes, we followed the protocol described by Lewinsohn et al. (1987). Briefly, blood was centrifuged onto a Percoll cushion (83.6% Percoll, 1.6% H2O, 14.8% 10x HBSS, and 5 mM EDTA). Cells from the interface were collected, stained with May-Grünwald-Giems, and used for binding assays.

Peripheral T lymphocytes were obtained from mouse spleens by a negative selection procedure. Briefly, to remove macrophages and B lymphocytes, spleen cells were incubated for 30 min with antibodies specific for macrophages (Mac-1) and B cells (B-220) followed by sheep anti-mouse IgG coated Dynabeads (40 beads/ml; Dynal, Oslo, Norway). Bound cells were separated with the MACS magnet (Biotechnische Geräte, Gladbach, Germany).

Blood platelets were prepared by differential centrifugation as described (Catalano and Dodds, 1989).

Antibodies Rabbit anti factor VIII serum was purchased from Behringwerke (Marburg, Germany). Antibody H 154.163 (anti-LFA-1) was kindly provided by Dr. P. Naquet (Centre d’Immunologie de Marseille Luminy, Marseille, France), YNU/7 (anti-ICAM-1) by Dr. F. Tuck (Karolinska Hospital, Stockholm, Sweden). 142/5 (anti CD44) from Dr. I. S. Trowbridge (The Salk Institute, San Diego, CA), and polyclonal anti-EndoCAM by Dr. C. Buck (The Wistar Institute, Philadelphia). Antibody Mel 14 was obtained from ATCC. Secondary antibodies were FITC-labeled goat anti-rabbit IgG (Cappel Laboratory, PA), FITC-labeled goat anti-rabbit IgG2b (The Binding Site LTD, Birmingham, UK), and FITC-labeled goat anti-rat IgG2a, F(ab')2 goat anti-rat IgG2a (both from The Binding Site LTD, Birmingham, UK). Biotin-labeled streptavidin was from Amersham International (Amersham, UK).

The rat mAb EA-1, IgG2b, was prepared according to an immunization and cell fusion protocol described by Dr. M. Kosco (manuscript in preparation). Confluent endothelial cells (E2/E2.2) from a 150 cm² culture flask were irradiated with 10,000 rad and harvested with cell scrapers (Costar Data Packaging). These cells were then washed with DPBS, mixed 1:1 with complete Freund’s adjuvant for a final volume of 300 μl, and injected subcutaneously into the dorsal surface of the hind foot of a 2–3-month-old PVG rat. Injections with cells in DPBS only were repeated after 7 and 14 d. At day 17, the draining popliteal lymph node was dissected from the rat. The tissue was enzymatically digested using the following enzyme stock solutions: 150 mg/ml protease type IX (P-6141; Sigma Chemical Co.); 8 mg/ml collagenase CLS-4 (Worthington Biochemical Corp., Freehold, NJ); 10 mg/ml DNAse I (D-0876; Sigma Chemical Co.). The enzyme solutions were mixed to a final volume of 2 ml (0.5 ml Collagenase, 0.1 ml Protease, 0.1 ml DNAse, 1.3 ml IMDM [isoscles modified MEM; Gibco BRL]). A lymph node was opened by two slight crosses using a 25-gauge needle. Stroma were then digested at 37°C for two 30-min periods each with 1 ml enzyme cocktail. The cells that were then filtered into IMDM containing HAT (Gibco BRL), 10% FCS (Boehringer Mannheim GmbH, Mannheim, Germany), 50 μM β-mercaptoethanol, penicillin/streptomycin, and glutamine. Conditioned medium was produced by culturing 10⁶ PVG rat thymocytes (100 μl/well) in selection medium for three days before fusion. The IgG was purified from hybridoma supernatant on protein G affinity columns (Pharmacia Fine Chemicals, Uppsala, Sweden).

Immunofluorescence

Frozen sections were fixed with acetone and labeled with supernatant of the EA-1 hybridoma raised against eEnd.2 cells, followed by an FITC-conjugated goat anti-rat IgG antibody (Jackson Immuno Research Laboratories Inc.). To evaluate staining of adherent endothelial cells by flow fluorometry analysis (FACSscan; FACS is a registered trademark of Becton Dickinson and Company, Mountain View, CA), the cells were first removed from the culture flask by a very rapid tap then rinsed with DPBS which does not affect EA-1 antigen. Addition of complete medium stopped the reaction. The cells in suspension were stained by unlabeled EA-1 followed by the same FITC-conjugated goat anti-rat IgG described above.

Immunoprecipitation

To determine the molecular weight of the protein recognized by EA-1, confluent endothelial cells grown in a 150-cm² culture flask were surface iodinated by the lactoperoxidase/glucoseoxidase method described elsewhere (Marchalonis, 1969). Briefly, cells were washed twice with DPBS and incubated with 1.5 mCi ¹²⁵Iodine, 2 ml DPBS containing 1 U/ml lactoperoxidase, 2 U/ml Glucose oxidase, and 0.2% β-glucose. After 30-min incubation at room temperature, the cells were washed eight times with complete medium. Radioactive cells in DPBS containing 2 mM PMSF (Sigma Chemical Co.) and 1 TITU/ml Aprotinin (Sigma Chemical Co.) were harvested from the flask with a cell scraper (Costar Data Packaging). The cells were suspended in lysis buffer (2% NP-40 [Fluka AG], 150 mM NaCl, 50 mM Tris, pH 8, 2 mM PMSF, and 1 TITU/ml Aprotinin) and centrifuged for 10 min at 10,000 g. The supernatant was cleared twice with 100 μl Pansorbin (Calbiochem-Behring Corp., San Diego, CA) and a rabbit anti-rat serum (Jackson Laboratory, Bar Harbor, ME) to remove serum proteins. The supernatant and a rabbit anti-rat serum (1:20) were added to an aliquot of the cleared lysate and precipitation was performed using 30 μl Pansorbin (Calbiochem-Behring Corp.). Pellets were washed three times with lysis buffer, boiled in SDS-dissociation buffer, and run on SDS-PAGE, 5–15% acrylamide.

Results

FTF1 pro-T Cells Bind to Thymic Tissue

The FTF1 cell line has cellular, molecular, and functional properties of pro-T cells, the progenitors that are the earliest stage of T cell development (Pelkonen et al., 1987; Palacios et al., 1989). FTF1 cells express the pro-T cell specific sur-

Figure 5. Immunofluorescence labeling of EA-1 on various mouse tissues. Frozen sections of neonatal or adult mouse tissues were used for staining. (A and B) Double staining using EA-1 followed by labeled (Texas red) anti-rat IgG and rabbit anti-factor VIII followed by FITC-labeled anti-rabbit IgG. (A) Central region of the thymus stained for EA-1. (B) Double staining for endothelial marker factor VIII. (C) EA-1 staining of the thymic cortico-medullary junction, apical surface, and cell-cell contact area in the endothelial cells of the tissue. (D) Corresponding phase contrast image, note endothelial adherent hemopoietic cells in the large capillary. (E) EA-1 staining of neonatal liver; the capillaries are positive. (F) EA-1 staining of adult spleen, all endothelia are positive. (G) Adult mouse blood platelets stained for EA-1. (H) Corresponding interference contrast image. Bars: (A-F) 100 μm; (H) 10 μm.
Figure 6. Double staining of adult bone marrow cells using EA-1 and typing antibodies for hemopoietic lineages. Total bone marrow cells were either single (EA-1, thy-1, B220, or Mac-1) or double stained (EA-1+thy-1, EA-1+B220, EA-1+Mac-1). EA-1 labeling was detected by a FITC-coupled anti-IgG2, antibody and the hemopoietic markers by Biotin-coupled anti-IgG2 antibody followed by phycoerythrin coupled avidin. Subpopulations of immature T and B lineage cells and immature myeloid cells were EA-1 positive. (a) Percent of cells in foreward vs side scatter, FACS window R1 corresponds to mature lymphocytes, FACS window R2 to immature cells.

Antigen	Mature Lymphocytes	Immature Cells
EA-1+	12	57
Thy-1+	8	16
EA-1+Thy-1+	4	10
B220+	42	22
EA-1+B220+	0	14
Mac-1+	0	32
EA-1+Mac-1+	0	32

Figure 7. Regulation of the expression of adhesion molecules on eEnd.2 endothelial cells. Cells were treated with 100 U/ml IL-1 or IFN-γ overnight, rapidly detached from the culture dish, and stained in suspension with indicated antibodies. EA-1 and CD-44 showed no upregulation, LFA-1, ICAM-1, and Mel14 showed increased expression after cytokine treatment.

The Journal of Cell Biology, Volume 114, 1991
Figure 8. Ability of pro-T cells or polymorphonuclear leukocytes to bind to eEnd.2 endothelium following cytokine treatment of endothelium. (A) Endothelial cells were cultured overnight with 100 U/ml IFN-γ or IL-1 and then used for binding assays with FTFl cells. (B) Corresponding experiment using polymorphonuclear leukocytes. The number of bound FTFl control cells was the same as in Fig. 3.

Tissue Distribution of the Antigen Recognized by EA-1

Using an analysis by immunofluorescence staining and microscopy of frozen sections from newborn mouse tissue we showed that the EA-1 antibody stains blood vessels in the thymus. The endothelial nature of the cells positive for EA-1 was demonstrated by double labeling assays with EA-1 and anti-factor VIII antibodies as an endothelial marker (Fig. 5). The labeling pattern of EA-1 on the luminal side of endothelial cells was compared with that in regions of cell–cell contact. We found that EA-1 reacts with an antigen present on all thymic capillaries. However, the EA-1 antibody also bound to vascular endothelia in newborn liver, spleen, lung, kidney, and brain (Fig. 5; and data not shown). In adult tissues, the antigen recognized by EA-1 was detected on endothelia of many tissues (as shown in Fig. 5 for spleen), on a subpopulation of immature haemopoietic cells from the bone marrow (Fig. 6) and, on freshly isolated blood platelets (Fig. 5, G and H).

Relationship of EA-1 Antigen to Other Cell Adhesion Molecules

It is known that several adhesion molecules known to be expressed on endothelial cells can be upregulated by inflammatory reactions mediated by endotoxins or cytokines. IL-1 failed to induce a higher expression of the EA-1 antigen on the endothelial cell line eEnd.2, but INF-γ had a slight effect on a negative subpopulation (Fig. 7). Another adhesion molecule, CD44, showed no significant change. By contrast LFA-1, ICAM-1 and gp90(T414) were upregulated upon cytokine treatment. Induction of LFA-1 and gp90(T414) expression on eEnd.2 cells by IL-1 is a novel and interesting finding. It may be because of the fact that this particular cell line is of embryonic origin.

In analogy to the induction of adhesion molecules, inflammatory reactions increase the binding capacity of endothelium for myeloid cells or mature lymphocytes (Osborn, 1990). We found that treatment of eEnd.2 endothelium with IL-1 reduced pro-T cell binding (Fig. 8 A). By contrast, polymorphonuclear leukocytes bound slightly better to endothelia treated with IL-1 or IFN-γ (Fig. 8 B).

Antibodies directed against the known adhesion molecules, LFA-1, CD44, and gp90(T414) did not interfere with pro-T cell adhesion to eEnd.1 endothelial cells (Fig. 9 A). Interestingly, antibodies against the integrin LFA-1 slightly increased the inhibitory effect of EA-1 antibodies (Fig. 9 B).

Immunoprecipitation of the Antigen Recognized by EA-1

After surface iodination, endothelial cell (eEnd.2) proteins were solubilized and immunoprecipitated with EA-1. SDS-PAGE, under reducing conditions, detected bands at a molecular weight of 110,000, 140,000, 160,000, and 200,000 (Fig. 10). Nonreducing conditions did not significantly change the pattern. However, depending on experimental conditions the intensity of the individual bands varied, probably because of limited digestion. The molecular weight of one band (140,000) is similar to that of PECAM/endoCAM/CD31 which is also expressed on endothelia and platelets. But using immunoclearing with a polyclonal anti-CD-31 antiserum, we could clearly show that the two molecules are different (Fig. 10).

Figure 9. Adhesion molecules involved in inflammation do not interfere with pro-T cell adhesion. Binding of FTFl cells to eEnd.1 endothelium was performed as described in Fig. 3. Antibodies against LFA-1, CD44, and gp90(T414), and the antibody EA-1, were added as hybridoma supernatants in the binding assay. Synergistic effects of the various adhesion molecules on FTFl binding were studied by mixing the above antibodies with EA-1 in the adhesion assay. Only anti-LFA-1 showed a minor effect. The number of bound FTFl control cells was the same as in Fig. 3.
Discussion

pro-T Cells Interact Specifically with Thymic Endothelium

Here we have shown that pro-T lymphocytes bind to thymus and liver from newborn mice as well as to an endothelial cell line derived from thymus. This property of T-cell progenitors appears restricted to vessels in hemopoietic tissue; that is, they do not adhere to endothelia in other organs such as kidney, lung, or heart. The EA-1 antibody reacts with molecules of apparent molecular weights of 110,000, 140,000, 160,000, and 200,000, which are components of the plasma membrane of endothelial cells.

Although it recognizes an antigen expressed on vascular endothelium from several tissues, EA-1 effectively blocks the binding of pro-T cells to thymus-derived endothelium, but it does not affect the adhesion of mature T lymphocytes or myeloid cells to any tissue. This result strongly suggests that the molecules recognized by the EA-1 antibody on endothelial cells selectively participate in the adhesion of pro-T cells to thymic endothelium. EA-1, located on other tissues may either not be functional or it could be involved in homotypic endothelial cell–cell contact. The specificity of EA-1 antigen for pro-T cells in the thymus might result from interaction of the endothelium with the thymus in a way that alters its binding affinity. Such a process is also thought to be involved in LFA-1-mediated adhesion and deadhesion of lymphocytes (Dustin and Springer, 1989; Figdor et al., 1990). Specificity might also result from posttranslational modifications of the antigen, as had been shown for the receptor molecule of ELAM-1 or PADGEM/GMP-140, lacto-N-fucopentaose III (Walz et al., 1990; Larsen et al., 1990; Lowe et al., 1990; Phillips et al., 1990). Moreover, different adhesion molecules may act together and tissue specificity is probably created by the proportional number of these molecules to each other (Hamann et al., 1988).

In addition to pro-T cells, peripheral mature T cells and polymorphonuclear leukocytes adhere to the endothelial cell lines tested here. But, EA-1 antibody specifically blocked the adhesion of FTF1 pro-T cells without affecting that of other hemopoietic cell lineages. Also, IL-1, a cytokine involved in inflammatory reactions, stimulated the binding of myeloid cells but had a negative effect on pro-T cell binding. Thus, the binding of these various hemopoietic cells seems to depend on interaction with a different set of adhesion molecules. Moreover, these results suggest that the homing of pro-T cells to the thymus uses molecular mechanisms different from those described for inflammation mediated cell adhesion to endothelia.

The in vitro assay described here ought to prove valuable in studying thymic specific homing mechanisms involved in embryonic pattern formation.

The EA-1 Antigen Is A Novel Adhesion Protein

The question arises whether the EA-1 antigen is a novel molecule or whether pro-T cell binding to thymic endothelium is a function of a previously described adhesion molecule. PADGEM/GMP-140, a protein-mediating cell adhesion of hemopoietic cells to endothelia, has a similar tissue distribution and the same molecular weight as the EA-1 antigen (Johnston et al., 1989; Parmentier et al., 1990). However, several experiments reveal major differences between the two molecules. EA-1 is mainly expressed on the cell surface, whereas GMP-140 colocalizes with factor VIII, in Weibel-Palade bodies in endothelial cells (Bonfanti et al., 1989). Only inflammatory activation of the cells brings GMP-140 to the cell surface (Osborn, 1990). EA-1 is constitutively expressed on endothelial cell surfaces and stimulation of these cells by IL-1 does not increase the expression of EA-1. PECAM-1/EndoCAM, another adhesion molecule found on endothelium is found on the apical plasma-membrane and in cell–cell junctions of endothelial cells. Its published molecular weight is 130 kd (Newman et al., 1990). Identity with EA-1 could be excluded by immunoclearing, which was possible because of bovine/mouse crossreactivity of a polyclonal anti-EndoCAM antibody (Albelda et al., 1990). The other adhesion molecules ELAM-1, Pgp-1/CD44, I-CAM, gp90MEL, β1, and β2integrins differed from EA-1 in molecular weight, tissue distribution pattern, and their regulation of cell surface expression (Pont et al., 1986; Simmons et al., 1988; Picker et al., 1989; Zhou et al., 1989; Siegelman et al., 1989; Albelda and Buck, 1990; Hogervorst et al., 1990; Stoolman, 1990). Therefore, we conclude that the EA-1 antigen has not been previously described. Our data suggest that
it selectively plays a role in the adhesion of T lymphocyte progenitor cells to endothelium. Interestingly, the EA-1 antigen may also be involved in carcinoma cell adhesion to endothelium. Adhesion molecules used by cells of the immune system have already been found to play a role in cancer metastasis and they may open possibilities of applications in therapy (Rice et al., 1989; Günthert et al., 1991). We are currently attempting to isolate cDNA encoding the molecule recognized by EA-1 antibody to further define the nature, function, and relatedness of this protein with other adhesion molecules.

We thank Dr. E. Wagner and L. Williams for the endothelial cell lines eEnd.2 and eEnd.1, Dr. W. Risau for advice with endothelial cultures, Dr. C. A. Buck and Dr. S. M. Alberda for polyclonal anti–endoCAM antibody, Dr. A. Harnann for advice with the adhesion assays, Dr. M. Kosco and Dr. C. Steinberg for reviewing and improving the manuscript, Hans Spalinger and Beattice Pfeiffer for Photography, and Hanspeter Stahler for artwork.

The Basel Institute for Immunology was founded and is supported by F. Hoffmann-La Roche and Co. Ltd., Basel, Switzerland.

Received for publication 14 January 1991 and in revised form 7 May 1991.

References

Adkins, B., C. Mueller, C. Y. Okada, R. A. Reichert, I. L. Weissman, and F. Hoffmann-La Roche and Co. Ltd., Basel, Switzerland. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. Variations in immunoglobulin heavy and light chain gene expression in a cloned Abelson murine leukemia virus-transformed cell line. Blood. 85:325–326.

Alberda, S. M., and C. A. Buck. 1990. Integrins and other cell adhesion molecules. FASEB (Fed. Am. Soc. Exp. Biol.) J. 4:2886–2880.

Alberda, S. M., P. D. Oliver, L. H. Romer, and C. A. Buck. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.

Alt, F., N. E. Rosenberg, S. Lewis, R. J. Casanova, and D. Baltimore. 1990. EndoCAM: a novel endothelial cell-cell adhesion molecule. J. Cell Biol. 110:1227–1237.
Rice, G. E., and M. P. Bevilacqua. 1989. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. *Science (Wash. DC)*, 246:1303–1306.

Rosen, S. D. 1989. Lymphocyte homing: progress and prospects. *Curr. Opin. Cell Biol.* 1:913–919.

Salatin, J., F. Calman, M. Colley, and N. M. Le Douarin. 1986. Construction of chimeric thymuses in the mouse fetus by in utero surgery. *Eur. J. Immunol.* 16:523–530.

Savagner, P., B. A. Imhof, K. M. Yamada, and J. P. Thiery. 1986. Homing of hematopoietic precursor cells to the embryonic thymus: characterization of an invasive mechanism induced by chemotactic peptides. *J. Cell Biol.* 103:2715–2727.

Savagner, P., B. Bauvois, M. A. Deugnier, B. A. Imhof, and J. P. Thiery. 1988. Aspects of haemopoietic cell dynamics: ontogeny and targeted migration. *Ann. Inst. Pasteur Immunol.* 139:409–431.

Scolay, R., J. Smith, and V. Saffter. 1986. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. *Immunol. Rev.* 91:129–157.

Siegelman, M. H., M. van den Rijn, and I. L. Weissman. 1989. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. *Science (Wash. DC)*. 243:1165–1172.

Simmons, D., M. W. Makgoba, and B. Seed. 1988. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. *Nature (Lond).* 331:624–627.

Springer, T. 1990a. Adhesion receptors of the immune system. *Nature (Lond.)*. 346:425–434.

Springer, T. 1990b. Address code molecules of lymphocytes. In *Cell to Cell Interaction*. M. M. Burger, B. Sordat, and R. M. Zinkernagel, editors. S. Karger AG, Basel, Switzerland. 16–39.

Stamper, H. B., and J. J. Woodruff. 1976. Lymphocyte homing into lymph nodes: in vitro demonstration of selective affinity of recirculating lymphocytes for high endothelial venules. *J. Exp. Med.* 144:828–833.

Staunton, D. E., M. L. Dustin, and T. A. Springer. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. *Nature (Lond.)*. 339:61–64.

Stoolman, L. M. 1989. Adhesion molecules controlling lymphocyte migration. *Cell.* 56:907–910.

Streeter, P. R., E. L. Berg, B. T. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988a. A tissue-specific endothelial cell molecule involved in lymphocyte homing. *Nature (Lond.)*. 331:41–46.

Streeter, P. R., B. T. N. Rouse, and E. C. Butcher. 1988b. Immunohistologic and functional characterization of a vascular addressin in lymphocyte homing in peripheral lymph nodes. *J. Cell Biol.* 107:1853–1862.

Tavassoli, M., and C. L. Hardy. 1990. Molecular basis of homing of intravenously transplanted stem cells to the marrow. *Blood.* 76:1059–1069.

Walz, G., A. Aruffo, W. Kolanus, M. Bevilacqua, and B. Seed. 1990. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. *Science (Wash. DC).* 250:1132–1135.

Williams, R. L., W. Risau, H. G. Zerwes, H. Drexler, A. Aguzzi, and E. F. Wagner. 1989. Endothelium cells expressing the polyoma middle T oncogene induce hemagglutinates by host cell recruitment. *Cell.* 57:1053–1063.

Woodruff, J. J., L. M. Clarke, and Y. H. Chin. 1987. Specific cell-adhesion mechanisms determine migration pathways of recirculating lymphocytes. *Annu. Rev. Immunol.* 5:201–222.

Zhou, D. F. H., J. F. Ding, L. J. Picker, R. F. Bargatze, E. C. Butcher, and D. V. Goeddel. 1989. Molecular cloning and expression of Pgp-1. *J. Immunol.* 143:3390–3395.