Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic

Samsuri Abdullah a,⁎, Amalina Abu Mansor b, Nur Nazmi Liyana Mohd Napi a, Wan Nurdiyana Wan Mansor a, Ali Najah Ahmed c,d, Marzuki Ismail b,e, Zamzam Tuah Ahmad Ramly f,g

a Air Quality and Environment Research Group, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
b Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
c Faculty of Engineering, University Tenaga Nasional, Bangi 43650, Malaysia
d Institute of Engineering Infrastructures, Universiti Tenaga Nasional, Bangi 43650, Malaysia
e Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
f Faculty of Environmental Studies, Universiti Putra Malaysia, Serdang 43400, Malaysia
g Enviro Excel Tech Sdn Bhd., A-G-09, Univ 360 Places, 43300 Seri Kembangan, Malaysia

HIGHLIGHTS

• The PM2.5 concentrations dominated the Air Pollutant Index (API) in Malaysia.
• There were several reductions on PM2.5 concentrations during Malaysia Movement Control Order (MCO).
• Several red zone areas showed approximately 28.3% reduction of PM2.5 concentrations.
• The Northern Region of Peninsular Malaysia showed the highest average reduction of PM2.5 concentrations, with 23.7%.

GRAPHICAL ABSTRACT

ABSTRACT

An outbreak of respiratory illness which is proven to be infected by a 2019 novel coronavirus (2019-nCoV) officially named as Coronavirus Disease 2019 (COVID-19) was first detected in Wuhan, China and has spread rapidly in other parts of China as well as other countries around the world, including Malaysia. The first case in Malaysia was identified on 25 January 2020 and the number of cases continue to rise since March 2020. Therefore, 2020 Malaysia Movement Control Order (MCO) was implemented with the aim to isolate the source of the COVID-19 outbreak. As a result, there were fewer number of motor vehicles on the road and the operation of industries was suspended, ergo reducing emissions of hazardous air pollutants in the atmosphere. We had acquired the Air Pollutant Index (API) data from the Department of Environment Malaysia on hourly basis before and during the MCO with the aim to track the changes of fine particulate matter (PM2.5) at 68 air quality monitoring stations. It was found that the PM2.5 concentrations showed a high reduction of up to 58.4% during the MCO. Several red zone areas (~41 confirmed COVID-19 cases) had also reduced of up to 28.3% in the PM2.5 concentrations variation. The reduction did not solely depend on MCO, thus the researchers suggest a further study considering the influencing factors that need to be adhered to in the future.

⁎ Corresponding author.
E-mail address: samsuri@umt.edu.my (S. Abdullah).

https://doi.org/10.1016/j.scitotenv.2020.139022
0048-9697/© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Coronavirus is one of the significant pathogens that affects human respiratory system. Coronavirus Disease 2019 (COVID-19) is caused by a novel CoV, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is formerly known as 2019 novel coronavirus (2019-nCoV) (H. Li et al., 2020). The outbreak of SARS-CoV-2 began at Wuhan, Hubei Province, People’s Republic of China in late December 2019 (Q. Li et al., 2020). Considering the global threat, the World Health Organization (WHO) has declared COVID-19 as a Public Health Emergency of International Concern (PHEIC) (Sohrabi et al., 2020). It is a pandemic that is spreading in other parts of Asia, such as Japan, Thailand, Singapore, Malaysia, and Australia as well as Europe and North America (Rothan and Byrareddy, 2020). Older people with the age of >80 years old has a high mortality susceptibility, with the case-fatality rate of 21.9% once infected with COVID-19 (Koh and Hoeing, 2020). In Malaysia, the earliest COVID-19 cases were detected on 25 January 2020 (Ministry of Health Malaysia, 2020). The number of cases have since then kept on increasing, especially in March 2020. This escalating COVID-19 outbreak in Malaysia has urged several measures to be taken, including putting surveillance system in place to detect cases immediately; carrying out rapid diagnosis; performing immediate case isolation and rigorous tracking; and quarantining close contacts of those who have been tested positive in COVID-19. Malaysian government has announced the implementation of Movement Control Order (MCO) with the aim to isolate the source of the COVID-19 outbreak. Statistically, the number of confirmed COVID-19 cases at the end of Phase I MCO is 2766 cases (31 March 2020) and for Phase II is 4987 cases (14 April 2020) (Ministry of Health Malaysia, 2020). During MCO, several activities, including operating business is not allowed, except for essential services (Malaysian National Security Council (NSC), 2020). Since people are working from home and several industries are suspended, the traffic density and industrial emissions have reduced. In Malaysia, the sources of air pollution are derived from motor vehicles, industrial emissions, and open burning (Latif et al., 2014; Abdullah et al., 2019). The air quality status is defined based on the Air Pollutant Index (API) of 6 criteria pollutants whereby the dominant pollutant in Malaysia is fine particulate matter (PM$_{2.5}$). Therefore, in this study, the researchers will evaluate the variation of PM$_{2.5}$ changes during and before MCO in Malaysia.

2. Methods

In Malaysia, the air quality is managed by the Department of Environment under the Ministry of Environment and Water. The researchers acquired the Air Pollutant Index (API) data from the website of Air Pollutant Index of Malaysia (available at http://apims.doe.gov.my/public_v2/home.html) on hourly basis from 14 March 2020 to 14 April 2020 to determine the relative changes (%) of air quality. These data covered the air quality status before MCO (14–17 March 2020) ($n=6445$), during Phase I MCO (18–31 March 2020) ($n=22,848$) and Phase II MCO (1–14 April 2020) ($n=22,835$). Overall, there are 0.19% of missing data and the total data used in this study is 55,128. The missing data were omitted in this study. The API for each hour was then converted to PM$_{2.5}$ concentrations (μg/m3) (available at http://apims.doe.gov.my/public_v2/aboutapi.html). The computation of API and PM$_{2.5}$ concentrations is shown in Table 1.

All 68 air quality monitoring stations in Malaysia were selected in this study, as shown in Table 2. The stations are responsible of monitoring the air quality status in Malaysia comprehensively (available at http://apims.doe.gov.my/public_v2/aboutapi.html) to detect any significant changes in the environment quality that may be harmful to human health and the environment (Department of Environment Malaysia, 2020).

Table 1

API	Breakpoint of concentration	Equation for API
X = PM$_{2.5}$ (24 h average, unit: μg/m3)		
0–50	0 ≤ X ≤ 12.0	API = 4.1667 + X
51–100	12.1 ≤ X ≤ 75.5	API = 0.7741 + (X−12.1) + 51
101–200	75.6 ≤ X ≤ 150.4	API = 1.3218 + (X−75.5) + 101
201–300	150.5 ≤ X ≤ 250.4	API = 0.9909 + (X−150.5) + 201
301–400	250.4 ≤ X ≤ 350.4	API = 0.9909 + (X−250.5) + 301
401–500	350.5 ≤ X ≤ 500.0	API = 0.6604 + (X−350.5) + 401

$*$ is multiply.

3. Results and discussion

The MCO has been found to reduce PM$_{2.5}$ Concentrations. Before the implementation of MCO and during the MCO (18 March–14 April 2020), the daily PM$_{2.5}$ concentrations were in the range of 5.3–425.9μg/m3 and 3.9–692.5μg/m3, respectively. The New Malaysia Ambient Air Quality Standard (NMAAQS) has set the standard limit of PM$_{2.5}$ to 35μg/m3 for a 24-hour average (Department of Environment Malaysia, 2020) and the World Health Organization (WHO) (2017) has set a more stringent limit of PM$_{2.5}$ to 25μg/m3. Before MCO, one of the air quality monitoring stations that exceeded the limit was Politeknik Kota Kinabalu (555) (42.5μg/m3), while during MCO, the PM$_{2.5}$ concentrations at Rompin (S38) exceeded the limit of NMAAQS with 69.2μg/m3. Table 3 shows the variation of daily PM$_{2.5}$ concentrations before and during MCO. The reduction of PM$_{2.5}$ concentrations occurred at 34 stations, which attributed for 50% of overall stations. The highest reduction was at Politeknik Kota Kinabalu (555), with 58.5% (Before = 41.2μg/m3; During MOC = 17.1μg/m3), while the lowest reduction was at Miri (558), with 0.6% (reduce at 0.1μg/m3). Table 4 shows the variation of daily PM$_{2.5}$ concentrations before and during MCO I. The reduction of PM$_{2.5}$ concentrations occurred at 29 stations, which attributed for 42.6% of overall stations. The highest reduction was at Politeknik Kota Kinabalu (555), with 53.6% (Before = 41.2μg/m3; MCO I = 19.1μg/m3), while the lowest reduction was at Mindin (S8), with 0.8% (Before = 19.6μg/m3; During MCO I = 19.7μg/m3). Table 5 shows the variation of daily PM$_{2.5}$ concentrations during MCO I and MCO II. Interestingly, the reduction of PM$_{2.5}$ concentrations occurred at 52 stations, which attributed for 76.5% of overall stations. The highest reduction was at Seberang Perai (S7), with 35.1% (MCO I = 21.1μg/m3; MCO II = 13.7μg/m3), while the lowest reduction was at Mindin (S8), with 0.3% (reduce at 0.1μg/m3). Fig. 1 shows the reduction average of PM$_{2.5}$ based on different regions in Peninsular Malaysia (North, Central, South, East) and the East Malaysia of Sabah and Sarawak. High reductions were found in Peninsular Malaysia at the North (23.7%), Central (16.2%), South (15%), and East (11.3%) regions as well as the East Asia of Sabah (23.1%) and Sarawak (13.6%) at a different timeline before MCO, during MCO I and MCO II. The ranges of reduction were 6.5–23.7%, 8.8–16.2%, 11.0–13.3%, 7.7–11.3%, 15.8–23.1%, 9.5–13.6% for North, Central, South, and East of Peninsular Malaysia, followed by the East Malaysia of Sabah and Sarawak, respectively.

The MCO in Malaysia included several prohibitions of mass movement and gathering; Malaysians travelling abroad; tourists and visitors’ entry; and educational institutions, government and private agencies (except for essential services) closure (Malaysian National Security Council (NSC), 2020). These restrictions indirectly reduce the air pollution in Malaysia, although a detailed study needs to be conducted by considering other influencing factors, including local meteorology and anthropogenic emissions. Based on the results, the MCO had successfully reduced pollutants emission, particularly PM$_{2.5}$ concentrations, as there were less motor vehicles and industry activities during the MCO. There were several red zone areas with >41 cases of confirmed COVID-19 (Crisis Preparedness and Response Centre, 2020). Some red zone areas were then enforced under the Enhanced Movement Control
Table 2

Air quality monitoring stations in Malaysia.

Station	Region	State	Location
S1	North	Perlis	Kangar
S2	North	Kedah	Langkawi
S3	North	Kedah	Alor Setar
S4	North	Kedah	Sungai Petani
S5	North	Kedah	Kulim Hi-Tech
S6	Pulau Pinang	Seberang Jaya	
S7	Pulau Pinang	Seberang Perai	
S8	Pulau Pinang	Minden	
S9	Pulau Pinang	Balik Pulau	
S10	Perak		Taiping
S11	Perak		Tasek Ipoh
S12	Perak		Pegoh Ipoh
S13	Perak		Seri Manjung
S14	Perak		Tanjung Malim
S15	Central	Kuala Lumpur	Batu Muda
S16	Kuala Lumpur	Cheras	
S17	Kuala Lumpur	Putrajaya	
S18	Selangor		Kuala Selangor
S19	Selangor		Petaling Jaya
S20	Selangor		Shah Alam
S21	Selangor		Klang
S22	Selangor		Bangi
S23	Selangor		Sungai Petani
S24	Selangor		Tawau
S25	Selangor		Kota Bharu
S26	Selangor		Sandakan
S27	Sabah		Kota Kinabalu
S28	Sabah		Tawau
S29	Sabah		Kota Kinabalu
S30	Sarawak		Keningau
S31	Sarawak		Kuching
S32	Sarawak		ILP Serian

Table 3

Variation of daily PM$_{2.5}$ concentrations before MCO and during MCO.

Location	Before MCO	During MCO	Variation
	µg/m3	µg/m3	%
Karnag	11.3	12.6	+11.8
Langkawi	11.7	12.4	+6.7
Alor Setar	15.4	16.8	+8.7
Sungai Petani	20.8	18.2	−12.5
Kulim Hi-Tech	20.0	15.7	−21.5
Seberang Jaya	21.6	21.0	−2.9
Seberang Perai	19.2	17.4	−9.4
Minden	19.7	16.2	−17.7
Balik Pulau	19.3	20.3	+5.2
Taiping	20.3	16.4	−39.2
Tasek Ipoh	20.9	17.7	−15.2
Pegoh Ipoh	18.3	18.7	+2.5
Seri Manjung	21.2	17.7	−16.3
Tanjung Malim	11.5	9.3	−23.1
Batu Muda	16.9	18.8	+11.4
Cheras	14.4	15.7	+9.4
Putrajaya	15.0	17.6	+26.9
Kuala Selangor	18.8	15.5	−17.5
Petaling Jaya	22.1	16.7	−24.3
Shah Alam	18.5	17.3	−6.8
Klang	19.5	22.0	+13.0
Bangi	12.6	15.0	+24.7
Nilai	14.1	15.8	+11.8
Seremban	10.1	12.0	+18.9
Port Dickson	11.2	13.8	+23.0
Alor Gajah	8.9	10.9	+22.8
Bukit Rambai	12.4	13.0	+5.6
Bandaraya Melaka	11.0	13.0	+20.6
Semagat	14.0	18.9	+34.8
Batu Pahat	9.4	11.7	+23.9
Kluang	9.1	9.6	+5.0
Larkin	13.6	13.9	+2.3
Pasir Gudang	9.3	10.9	+17.1
Pengerang	8.0	14.5	+82.1
Kota Tinggi	8.1	7.2	−9.0
Tangkak	12.6	13.7	+1.1
Rompin	8.6	10.2	+23.4
Tenerloh	12.4	14.1	+13.6
Jerantut	12.5	12.9	+2.7
Indra Mahkota Kuantan	8.5	8.8	+2.9
Balok Baru Kuantan	10.3	9.6	−7.0
Keningau	12.5	11.9	−4.7
Paka	8.7	9.2	+5.8
Kuala Terengganu	13.3	17.0	+32.8
Besut	11.0	13.3	+21.0
Tanah Merah	23.8	22.9	−4.3
Kota Bharu	12.0	18.8	+57.0
Tawau	8.7	7.2	+16.7
Sandakan	12.2	10.0	−22.3
Kota Kinabalu	13.7	11.7	−14.3
Kimanis	22.5	13.7	−39.0
Keningau	12.5	11.9	−4.7
Labuan	14.9	14.8	−0.8
Politeknik Kota Kinabalu	11.3	9.4	−16.6
Limbang	20.5	18.5	−9.9
ILP Miri	12.0	12.0	−0.6
Samalaju	13.0	12.0	−0.1
Bintulu	13.9	13.5	−3.0
Mukah	7.7	7.3	−4.2
Kapit	7.4	6.8	−16.4
Sibu	11.3	9.5	−18.5
Sarikie	9.0	7.1	−21.3
Sari Aman	8.1	7.8	−13.8
Samarahan	8.1	8.6	−6.5
Kuching	8.9	9.8	+10.4
Johor Setia Klang	41.9	29.1	−30.6
IPD Serian	15.5	17.0	+15.5

Order (EMCO). The red zone areas included Kluang (S32) (28.3% reduction of PM$_{2.5}$ concentrations, MCO I and MCO II), Jerantut (S40) (14.5%, MCO I and MCO II), Kota Bharu (S48) (0.3%, MCO I and MCO II), Petaling Jaya (S19) (24.3%, before and during MCO), Klang (S21) (11.5%, MCO I and MCO II), Cheras (S16) (4.9%, MCO I and MCO II), Seremban (S25) (11.6%, MCO I and MCO II), Bandaraya Melaka (S29) (9.6%, MCO I and MCO II), Tawau (S49) (25.1%, before and during MCO), Kuching (S67) (0.3%, before and during MCO), and Samarahan (S66) (11.2%, before and during MCO). The researchers observed that the decreasing of
Location	Before MCO	MCO I	Variation
	µg/m³	%	
S. Abdullah et al. / Science of the Total Environment 729 (2020) 139022			
Table 4	Variation of daily PM_{2.5} concentrations during MCO I and MCO II.		
Location	Before MCO	MCO I	Variation
---	---	---	---
	µg/m³	%	
Kangar	11.3	13.2	1.9
Langkawi	11.7	12.9	1.2
Alor Setar	15.4	20.2	4.7
Sungai Petani	20.8	21.1	0.3
Kulim Hi-Tech	20.0	18.6	−1.4
Seberang Jaya	21.5	25.4	3.9
Seberang Perai	19.2	21.1	1.9
Minden	19.7	19.6	0.1
Balik Pulau	19.3	23.6	4.2
Taiping	20.3	19.1	−1.2
Tasek Ipoh	20.9	20.1	−0.8
Pegah Ipoh	18.3	18.2	0.1
Seri Kembangan	21.2	18.8	−2.4
Tanjung Malim	11.5	10.3	−1.2
Batu Muda	16.9	19.1	2.2
Cheras	14.4	16.1	1.7
Putrajaya	15.0	18.0	3.0
Kuala Selangor	18.8	17.6	−1.2
Petaling Jaya	22.1	17.2	−4.9
Shah Alam	18.5	17.7	−0.8
Klang	19.5	23.4	3.9
Banting	12.6	15.9	3.3
Nilai	14.1	16.3	2.1
Seremban	10.1	12.8	2.7
Port Dickson	11.2	15.0	3.8
Alor Gajah	8.9	11.3	2.4
Bukit Rambai	12.4	13.1	0.7
Bandaraya Melaka	11.0	13.9	2.9
Segamat	14.0	17.3	3.3
Batu Pahat	9.4	11.5	2.1
Kluang	9.1	11.1	2.0
Larkin	13.6	14.4	0.8
Pasir Gudang	9.3	10.5	1.5
Pengerang	8.0	17.1	9.1
Kota Tinggi	8.1	6.9	−1.2
Tangkak	12.6	14.9	2.3
Rompin	8.6	17.3	8.7
Temerloh	12.4	14.6	2.2
Jerantut	12.5	13.9	1.3
Indera Mahkota Kuantan	8.5	8.9	0.4
Balok Baru Kuantan	10.3	9.9	−0.4
Kemaman	4.8	12.8	8.0
Paka	8.7	8.4	−0.3
Kuala Terengganu	13.3	18.8	5.5
Besut	11.0	12.5	1.5
Tanah Merah	23.8	24.0	0.2
Kota Bharu	12.0	18.8	6.8
Tawau	8.7	6.5	−2.2
Sandakan	12.2	9.0	−3.3
Kota Kinabalu	13.7	13.1	−0.6
Kinabalu	22.5	16.1	−6.4
Keningau	12.5	12.6	0.1
Labuan	14.9	16.6	1.7
Limbang	11.3	9.2	−2.1
ILP Serian	20.5	21.2	0.7
Miri	12.0	12.7	0.7
Samaralau	13.0	12.1	−0.9
Bintulu	13.9	13.7	−0.2
Mukah	7.7	7.4	−0.3
Kapit	7.4	6.3	−1.1
Sibu	11.3	10.6	−0.7
Sarawak	9.0	7.0	−2.0
Sri Aman	8.1	7.3	−0.8
Samarahan	8.1	7.2	−0.9
Kuching	8.9	8.8	−0.1
Johan Setia Klang	41.9	32.0	−9.9
IPD Serian	5.4	6.9	1.5
Politeknik Kota Kinabalu	41.2	19.1	−22.1

In Malaysia, Jerantut (S40) is considered as the background station (rural). Unfortunately, it did not show the lowest PM_{2.5} concentrations as expected whereby the PM_{2.5} concentrations before MCO was 12.5 µg/m³ and during MCO was 12.9 µg/m³ with an additional of PM_{2.5} concentrations mostly occurred after the MCO I. The movements and activities of residents living in the red zone area may have been restricted; however, pollutant emissions, especially from mobile sources had indirectly reduced in such areas.
The variation of PM$_{2.5}$ concentrations was further increased with the increment of 10.7% when the researchers compared the PM$_{2.5}$ concentrations before MCO (12.5 µg/m3) and during MCO I (13.9 µg/m3). It showed a decreasing variation (14.5%) between MCO I and MCO II, with 13.9 µg/m3 and 11.9 µg/m3, respectively. The researchers observed that this station did not show the lowest PM$_{2.5}$ concentrations as a representative background station, thus a further study needs to be conducted by considering the other factors, including meteorological and the anthropogenic sources to justify the variation of PM$_{2.5}$ at this station as compared with other stations. Previously, Latif et al., (2014) clarified that there is an emergence of development around 10 km radius from the station. This could affect the condition of the station as a background station. A background station must be located at a remote area which has minimal influence of anthropogenic sources.

4. Conclusion

In this study, the researchers concluded that the MCO has significant effects in reducing the PM$_{2.5}$ concentrations in Malaysia. It should be noted that other factors, such as weather conditions, traffic density, industrial activities, and biomass burning should be considered for further investigations. The MCO has been continued in Phase III, which started on 15 April 2020, and the PM$_{2.5}$ concentrations are expected to continue to stay low, as several areas have been placed under enhanced MCO.

CRediT authorship contribution statement

Samsuri Abdullah: Methodology, Writing - original draft, Writing - review & editing. **Amalina Abu Mansor**: Investigation, Formal analysis. **Nur Nazmi Liyana Mohd Napi**: Investigation, Formal analysis. **Wan Nuridiyana Wan Mansor**: Methodology. **Ali Najah Ahmed**: Methodology. **Marzuki Ismail**: Methodology. **Zamzam Tuah Ahmad Ramly**: Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Fundamental Research Grant Scheme for Research Acculturation of Early Career Researchers by the Malaysian Ministry of Education (FRGS-RACER) and Research and Management Centre, Universiti Malaysia Terengganu. We greatly appreciate the front line doctors, nurses, police, soldiers, etc. especially the Director-General of Health Malaysia, Dato Dr. Noor Hisham Abdullah, for their hard work during this critical time. Those who are directly impacted with COVID-19, we wish you brighter days ahead.

References

Abdullah, S., Ismail, M., Ahmed, A.N., Abdullah, A.M., 2019. Forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support. Atmosphere 10, 667. https://doi.org/10.3390/atmos10110667.

Crisis Preparedness and Response Centre, 2020. From the Desk of the Director-General of Health Malaysia. https://kkesihatan.com/, Accessed date: 15 April 2020.

Department of Environment Malaysia, 2020. Air Quality. https://www.doe.gov.my/portal1/en/info-umum/kualiti-udara/114, Accessed date: 14 April 2020.

Koh, G.C.H., Hoeing, H., 2020. How should the rehabilitation community prepare for 2019-nCoV? Arch. Phys. Med. Rehabil. https://doi.org/10.1016/j.apmr.2020.03.003.

Latif, M.T., Dominick, D., Ahamad, F., Khan, M.F., Juneng, L., Hamzah, F.M., Nadzir, M.S.M., 2014. Long term assessment of air quality from a background station on the Malaysian peninsula. Sci. Total Environ. 482, 316–348. https://doi.org/10.1016/j.scitotenv.2014.02.132.

Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K.S.M., Lau, E.H.Y., Wong, J.Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T.T.Y., Wu, J.T., Gao, G.F., Cowling, B.J., Yang, B., Leung, G.B., Feng, Z., 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207. https://doi.org/10.1056/NEJMc2001316.

Li, H., Liu, S.M., Yu, X.H., Tang, S.L., Tang, C.K., 2020. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int. J. Antimicrob. Agents https://doi.org/10.1016/j.ijantimicag.2020.105951.

Malaysian National Security Council (NSC), 2020. Movement Control Order (MCO). https://www.mkn.gov.my/web/ms/covid-19/, Accessed date: 15 April 2020.

Ministry of Health Malaysia, 2020. Latest COVID-19 statistic in Malaysia. https://www.moh.gov.my/index.php/pages/view/2019-ncov-wuhan, Accessed date: 15 April 2020.

Rothan, H.A., Byrareddy, S.N., 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433.

Sohrabi, C., Alsafi, Z., O’Neill, M., Khan, M., Kerwan, A., Al-Jabir, A., Isfahidis, C., Agha, R., 2020. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034.

World Health Organisation (WHO), 2017. Evolution of WHO Air Quality Guidelines: Past, Present and Future. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2017/evolution-of-who-air-quality-guidelines-past-present-and-future-2017 (accessed 14 April 2020).