Electroacupuncture reduces scopolamine-induced amnesia via mediating the miR-210/SIN3A and miR-183/SIN3A signaling pathway

Fan Ye
Affiliated of Hospital of Hubei University of Arts and Science

Shiming Tian
Affiliated Hospital of Hubei University of Arts and Science

Huimin Hu (✉ neurondr@yeah.net)
Affiliated Hospital of Hubei University of Arts and Science

Zhengwen Yu (✉ shengyu85258@163.com)
Affiliated Hospital of Hubei University of Arts and Science

Research article

Keywords: electroacupuncture, scopolamine, SIN3A, miR-210, miR-183, recognitive impairment

DOI: https://doi.org/10.21203/rs.3.rs-31499/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The expression of SIN3A is closely correlated with electroacupuncture (EA) treatment efficacy of scopolamine-induced amnesia (SIA), but its underlying mechanisms remain to be further explored.

Methods: Quantitative real-time PCR was performed to analyze the expression of candidate microRNAs (miRNAs) and SIN3A mRNA in a rat model of SIA. Western blot was carried out to evaluate the differential expression of SIN3A proteins under distinct circumstances. Luciferase assay was used to explore the inhibitory role of certain miRNAs in SIN3A expression. Novel object recognition (NOR) test was performed to assess the memorial ability of SIA rats undergoing EA treatment. Immunohistochemistry was carried out to evaluate the expression of SIN3A in the hippocampus of SIA rats.

Results: Rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p were significantly up-regulated in SIA rats treated with EA. In addition, rno-miR-183-5p and rno-miR-210-3p exerted an inhibitory effect on SIN3A expression. EA treatment of SIA rats effectively restored the dysregulated expression of rno-miR-183-5p, rno-miR-210-3p and SIN3A. And EA treatment also promoted the inhibited expression of neuronal IEGs including Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats. Accordingly, the NOR test also confirmed the effect of EA treatment on the improvement of memory in SIA rats.

Conclusion: In this study, an animal model of SIA was treated with EA to investigate its therapeutic effect. Moreover, our work presented solid evidence on the regulatory pathway of miR-183/SIN3A and miR-210/SIN3A in the pathogenesis of SIA.

Introduction

Scopolamine is a strong amnestic compound with the ability to block the activity of muscarinic acetylcholine receptors to impair the memory and learning functions in mammals [1]. In fact, various amnesia models established by induction using scopolamine have been commonly used to screen potential drugs with the ability to enhance the memory [2]. Moreover, other applications of scopolamine were also reported. For example, it is also an anticholinergic agent which is applied for the prevention of motion sickness-associated nausea and vomiting [3]. And scopolamine was also demonstrated to selectively enhance generalization between odor representations in rat olfactory cortex [4].

Electroacupuncture (EA) was initially used in European countries such as Italy and France in the 19th century [5]. At this moment, EA has become a popular type of traditional Chinese medicines in the treatment of a wide range of medical conditions [6]. The electro stimulations of anatomical positions generated by EA can affect various physiological processes, such as angiogenesis, tissue regeneration and neuron activation, which may be promoted by the increased levels of expression of some genes in the nervous system induced by EA [7, 8].
MicroRNA belongs to a class of short non-coding RNA transcripts that can modulate the expression of target genes by either translational suppression or mRNA degradation. Since miRNAs can sustain repeated freeze-thaw cycles, they are superior to protein biomarkers in the diagnosis of many medical disorders. For example, one miRNA, miRNA-210, can increase the expression of vascular endothelial growth factor (VEGF) to enhance the proliferation of vascular cells [9-12].

Highly expressed in non-neuronal as well as neuronal cells, SIN3A contains different domains, such as a paired helix domain, several core elements, a domain for histone deacetylase (HDAC) interaction, as well as a highly conserved domain. Via the domain for HDAC interaction, SIN3A can bind to a core complex consisted of a RBAP46/48 protein with the ability to bind to histone, a SAP18/20 protein with the ability to stabilize the complex, as well as an HDAC2 enzyme [13]. In fact, the silencing of SIN3A in rats can rescue the impaired memory functions caused by the exposure to scopolamine. Furthermore, the silencing of SIN3A in hippocampus of rats with amnesia elevated the level of H3K9 and H3K14 acetylation in the promoter of immediate early genes (IEGs) while suppressing the binding affinity of SIN3A to the promoter of IEGs in neuron cells, thus restoring the memory functions in these rats [14]. Neuronal IEGs is a family of synaptic plasticity genes which are involved in memory consolidation [15]. And regulatory transcription factors such as Egr1 and effector proteins such as Arc, Homer1 and Narp are encoded by IEGs. Specially, Egr1 could control the expression of synaptic plasticity genes, Arc could control actin dynamics, Homer1 is involved in glutamate receptor transportation, and Narp could regulates glutamate receptor clustering at the synapse [16].

It has been reported that EA treatment continuously increased the expression of several candidate miRNAs including mno-miR-183-5p, mno-miR-34c-3p, mno-miR-210-3p, mno-miR-758-5p, mno-miR-568, and mno-miR-196c-3p [17]. Meanwhile, SIN3A silencing was found to mitigate SIA [14]. In this study, we set up an animal model of SIA and treated it with or without EA to investigate the effect of EA on SIA.

Materials And Methods

Animal grouping and treatment

In this study, 25 Wistar male rats were acquired from the Center of Laboratory Animals at our institute. All rats were about 8 weeks in age and weighed 250 to 300 g. The animal protocols of this study have been approved by the Institutional Animal Ethics Committee. After 7 days of adaptation, 24 rats were rats were randomly selected and divided into 4 groups with 6 rats in each group, i.e., 1. SHAM group; 2. SIA group; 3. SIA + EA group; and 4. EA group. Comparisons were made between SHAM group, SIA group and SIA+EA group to study the effect of EA upon SIA rats. And comparisons were also made between SHAM group and EA group to select potential miRNAs which respond to EA treatment. All rats were placed in individual cages at 22 ± 1°C during the experiment. The establishment of the SIA model and corresponding EA treatment will be described below.

Establishment of an SIA rat model
Scopolamine hydrobromide (Sigma-Aldrich, St. Louis, MO) was dissolved in 0.9% saline and then injected into rats via intraperitoneal injection at a dosage of 3 mg/kg. The injection was carried out once a day for seven days consecutively. The rats in the SHAM group were given the injection of 0.9% saline at the same dosage and the same frequency. After the 7 days of consecutive injection were finished, all rats were euthanized by CO₂ suffocation to collect their brain tissues for subsequent analyses.

EA treatment

The treatment with EA was carried out immediately after the SIA rats gained full conscience after the induction of anesthesia. According to previous publications [18], To carry out the EA treatment, the site of acupuncture, Renzhong, which is located at the junction beneath the nasal septum along the cleft lip midline, as well as the site of Neiguan, which is located at the junction between the flexor carpi radialis and palmaris longus, were subjected to electro stimulation delivered via a 0.25 mm × 30 mm single use needle. During the EA procedure, the frequency of electro stimulation was set to 2 Hz, while the intensity of the electro stimulation was set to 3.0 mA. The EA stimulation was applied for 1 min in 12 h intervals upon the rats immediately after full recovery from anesthesia until the rats were sacrificed.

Novel object recognition (NOR) test

The NOR test was carried out to assess recognition memory according to a procedure described in (Singh and Thakur, 2014).

RNA isolation and real-time PCR

Samples of collected tissues and cultured cells were pulverized and then lysed using a QIAzol lysis buffer (Qiagen, Valencia, CA). Then, total RNA content was isolated from each sample by using a miRNeasy mini assay kit (Qiagen, Valencia, CA) according to manual instructions. Then, 2 μg of RNA in each sample was reversely transcribed into cDNA by using a Superscript II assay kit for reverse transcription (Invitrogen, Carlsbad, CA). Finally, real-time PCR was carried out by using a Prism 7900 HT real-time PCR system (Applied Biosystems, Foster City, CA) in conjunction with a SYBR green master mix (Applied Biosystems, Foster City, CA) following the instructions provided by the manufacturer. The relative expression of rno-miR-183-5p (Primer-F: 5’- TATGGCACTGGTAGAATTCA-3’; Primer-R: 5’-GAACATGTCTGATATCTC-3’), rno-miR-34c-3p (Primer-F: 5’-AGGCAGTAGTTAGGCTATTG-3’; Primer-F: 5’-GAACATGTCTGATATCTC-3’), rno-miR-210-3p (Primer-F: 5’-AGGCAGTAGTTAGGCTATTG-3’; Primer-R: 5’-GAACATGTCTGATATCTC-3’), rno-miR-758-5p (Primer-F: 5’-TGGTTGAGCAGAGGAC-3’; Primer-R: 5’-GAACATGTCTGATATCTC-3’), rno-miR-196c-3p (Primer-F: 5’-AGGTAGTTGCTGATTTG-3’; Primer-R: 5’-GAACATGTCTGATATCTC-3’), Arc (Primer-F: 5’-TATTCAGGCTGGTGTCATG-3’; Primer-R: 5’-TGGAGCAGTTATCCAGAGG-3’), Egr1 (Primer-F: 5’-AGCGAAACACCCCTATGAGCA-3’; Primer-R: 5’-TCGTTTGCTGGTGAATTC-3’), Homer1 (Primer-F: 5’-GAAGTGCAGGAGAGATG-3’; Primer-R: 5’-TGATTGCTGAATGTGACC-3’), Narp (Primer-F: 5’-GTCTGGGAGGTTCAAGGCA-3’; Primer-R: 5’-
AGGAAGTGGCTCAGGCATCT-3') and SIN3A mRNA (Primer-F: 5'-CAGAATGACACCAAGGTCTGAG-3'; Primer-R: 5'-CATACGCAAGTGAGAGGTGTGG-3') was quantified using the $2^{-\Delta \Delta CT}$ method.

Cell culture and transfection

SH-SY5H cells were purchased from the American Type Culture Collection (ATCC, Manassas, VA) and maintained in Ham's F-12 medium added with 5% fetal bovine serum, 100 μg/ml streptomycin, as well as 100 U/ml penicillin. The cell culture was carried out in a 37°C humidified incubator containing 95% air and 5% CO$_2$. When cells were 80% confluent, they were transfected with one of 6 candidate miRNAs, i.e., rno-miR-183-5p, rno-miR-34c-3p, rno-miR-210-3p, rno-miR-758-5p, rno-miR-568, or rno-miR-196c-3p, for 48 h before the mRNA and protein expression of SIN3A was detected. The transfection was carried out using Lipofectamine 2000 purchased from Invitrogen (Carlsbad, CA) following a routine transfection protocol.

Vector construction, mutagenesis and luciferase assay

To clarify the regulatory relationship between SIN3A and rno-miR-183-5p, rno-miR-34c-3p, rno-miR-210-3p, rno-miR-758-5p, rno-miR-568 or rno-miR-196c-3p, the 3'UTR of SIN3A containing the binding sites for above miRNAs were respectively cloned into different pcDNA luciferase vectors (Promega, Madison, WI) to produce vectors for wide type SIN3A 3'UTR. Then, site-directed mutagenesis was carried out using a Quick Change II site-directed mutagenesis assay kit (Stratagene, San Diego, CA) to generate mutant 3'UTR of SIN3A harboring the mutated binding sites for above miRNAs, respectively, which were also cloned into different pcDNA luciferase vectors to produce vectors for mutant SIN3A 3'UTR. In the next step, SH-SY5H cells were co-transfected with each of rno-miR-183-5p, rno-miR-34c-3p, rno-miR-210-3p, rno-miR-758-5p, rno-miR-568 or rno-miR-196c-3p in conjunction with wild type or mutant 3'UTR of SIN3A using Lipofectamine 2000. At 48 h post transfection, the luciferase activity of transfected cells was assayed using a Bright Glo luciferase kit (Promega, Madison, WI) following the instructions provided by the manufacturer.

Western blot analysis

Samples of collected tissues and cultured cells were prepared into a homogenate and centrifuged to collect the protein supernatant. Then, after quantifying protein concentrations by using a BCA assay kit (Pierce Biotechnology, Rockford, IL), an appropriate amount of sample protein was resolved by 10% denaturing SDS-PAGE and transferred onto PVDF membranes (Millipore, Bedford, MA), which were then blocked at room temperature for 1 h by using an Odyssey blocking reagent (Li-Cor, Lincoln, NE), incubated overnight in a 4 °C fridge with anti-SIN3A primary antibodies (ab129087, 1:1000 dilution, Abcam, Cambridge, MA), anti-Arc primary antibodies (ab18950, 1:1000 dilution, Abcam, Cambridge, MA), anti-Egr1 primary antibodies (ab133695, 1:1000 dilution, Abcam, Cambridge, MA), anti-Homer1 primary antibodies (ab184955, 1:1000 dilution, Abcam, Cambridge, MA) and anti-Narp primary antibodies (ab191563, 1:1000 dilution, Abcam, Cambridge, MA) and further incubation with HRP-conjugated secondary antibodies (ab6721, 1:2000 dilution, Abcam, Cambridge, MA). The relative protein expression was analyzed by using an Odyssey imaging system (Li-Cor, Lincoln, NE).
Immunohistochemistry assay

Samples of collected rat brain tissues in hippocampal CA1 region were sliced into 4 μm sections, fixed using PBS containing 4% paraformaldehyde, and quenched with 3% H$_2$O$_2$ to remove the activity of endogenous peroxidase. Then, after being blocked for 1 h in 5% BSA, the sections were treated overnight in a 4°C fridge with anti-SIN3A primary antibodies (ab129087, 1:100 dilution, Abcam, Cambridge, MA). After washing and further incubation with biotin-labeled secondary antibodies (1:1000 dilution, Abcam, Cambridge, MA), the slides were incubated with horseradish peroxidase (HRP)-tagged avidin/streptavidin and counter-stained with 4',6-diamidino-2-phenylindole (DAPI) before the positive expression of SIN3A was analyzed underneath a microscope.

Statistical analysis

All experimental results were shown in mean ± SD. The comparison of different groups was carried out using Student’s t test (for inter-group comparison) and one-way ANOVA (for multi-group comparison). A difference was deemed statistically significant if its probability was < 0.05, i.e., P < 0.05. All statistical analyses were done using SPSS 21.0 (IBM, Chicago, IL) and Prism 6.0 (GraphPad, San Diego, CA). Each experiment was repeated for 3 independent times.

Results

Up-regulation of rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p in rats treated with EA.

The expression of a group of miRNA candidates was evaluated in rats undergoing EA treatment. Among these miRNAs, the expression of rno-miR-183-5p (Fig.1A), rno-miR-34c-3p (Fig.1B) and rno-miR-210-3p (Fig.1C) was significantly elevated in rats subjected to EA treatment. No obvious difference was observed for the expression of rno-miR-758-5p (Fig.1D), rno-miR-568 (Fig.1E) and rno-miR-196c-3p (Fig.1F) between the two groups.

Rno-miR-183-5p and mo-miR-210-3p inhibited the luciferase activity of wild type SIN3A through binding to its 3’ UTR.

SIN3A expression is closely correlated with SIA. To further explore the relationship between miRNAs and SIN3A, luciferase vectors containing wild type and mutant SIN3A 3’ UTR were established and co-transfected with candidate miRNAs to SH-SY5H cells. Rno-miR-183-5p (Fig.2A) and mo-miR-210-3p (Fig.2C) repressed the luciferase activity of wild type SIN3A, but had no inhibitory effect on mutant SIN3A. Rno-miR-34c-3p (Fig.2B), rno-miR-758-5p(Fig.2D), mo-miR-568(Fig.2E) and rno-miR-196c-3p (Fig.2F) showed no effect in suppressing the luciferase activity of either wild type or mutant SIN3A vectors. These results demonstrated that rno-miR-183-5p and mo-miR-210-3p were able to inhibit the expression of SIN3A through targeting to the 3’ UTR of SIN3A.

Rno-miR-183-5p and mo-miR-210-3p mimics suppressed the expression of SIN3A in SH-SY5H cells.
The mimics of rno-miR-183-5p and rno-miR-210-3p were transfected into SH-SY5H cells to evaluate their inhibitory effect on SIN3A expression. In accordance with the results obtained from the luciferase assays, rno-miR-183-5p (Fig.2G) and rno-miR-210-3p (Fig.2I) mimics apparently repressed the mRNA and protein expression of SIN3A in SH-SY5H cells. Rno-miR-34c-3p (Fig.2H), rno-miR-758-5p(Fig.3J), rno-miR-568(Fig.2K) and rno-miR-196c-3p (Fig.2L) showed no effect on SIN3A expression.

EA treatment improved the memory consolidation of SIA rats.

Scopolamine treatment was performed in rats to induce amnesia, following with EA treatment. NOR test was carried out to assess the discrimination index (DI) of SIA rats. The time spent with novel objects and the DI in SIA rats were dramatically decreased as compared with those in the SHAM control, while the treatment with EA effectively restored the time spent with novel objects (Fig.3A) and the DI (Fig.3B) of SIA rats closer to the normal levels. And confounding parameters including rearing (Fig.3C), NCD (Fig.3D) and locomotor activity (Fig.3E) among the rat groups were similar.

EA treatment restored the dysregulated expression of rno-miR-183-5p, rno-miR-210-3p and SIN3A in SIA rats.

In rats suffering from scopolamine-induced amnesia, the expression of rno-miR-183-5p and rno-miR-210-3p was notably decreased, while the EA treatment remarkably recovered the down-regulated expression of rno-miR-183-5p (Fig.4A) and rno-miR-210-3p (Fig.4B) in SIA rats. However, the mRNA and protein expression of SIN3A was obviously elevated in SIA rats, while the EA treatment remarkably attenuated the abnormal mRNA (Fig.4C) and protein (Fig.4D) levels of SIN3A. Also, since amnesia is closely related to the hippocampus of brain, we further performed IHC on the hippocampus tissues of rat brain to analyze their expression of SIN3A (Fig.4E). Accordingly, SIN3A expression was apparently increased in SIA rats, while the treatment with EA down-regulated the expression of SIN3A in the brain of SIA rats.

EA treatment promoted the inhibited expression of neuronal IEGs including Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats.

By performing qPCR upon neuronal IEGs including Arc, Egr1, Homer1 and Narp, it is demonstrated that in the hippocampus of SIA rats, the gene expression of Arc, Egr1, Homer1 and Narp were all evidently down-regulated, while the EA treatment obstructed the down-regulation of these genes (Fig.5A). Moreover, as indicated by Fig.5B, the Western blot analysis also observed similar trend in protein expression of Arc, Egr1, Homer1 and Narp in the rat groups.

Discussion

The dosing of scopolamine can induce the impairment of cognitive functions in experimental animals by changing the levels of oxidative stress in the brain of rats [19]. In addition, several compounds derived from plants show promising efficacy in augmenting cognitive behaviors by blocking the functions of scopolamine. As a result, the above mentioned compounds have been tested in animal models to treat
memory loss [20]. Interestingly, EA therapies can rescue long-term impairments of memory functions in rats suffering from dementia by protecting the integrity of neuron cells while reducing the expression levels of Noxa, bax, and P53 in rat hippocampus [21, 22]. These results suggested that several signaling pathways may be involved in the role of EA therapies in the treatment of vascular dementia [23]. In this study, we compared the expression of 6 candidate miRNAs in rats to evaluate the effect of EA on their expression. We found that rno-miR-183-5p, mo-miR-34c-3p and mo-miR-210-3p in rats treated with EA were significantly up-regulated. In addition, we performed an NOR test on rats suffering from SIA. We found that EA treatment improved the level of memory consolidation in SIA rats. Furthermore, we analyzed the expression of rno-miR-183-5p, mo-miR-210-3p and SIN3A in SIA rats, and showed that the EA treatment effectively prevented dysregulated expression of rno-miR-183-5p, mo-miR-210-3p and SIN3A in SIA rats. Growing evidence suggests that the treatment by EA can alleviate neuronal disorders caused by neurophathy [24, 25]. Jing et al demonstrated that the treatment by EA can apparently enhance memory as well as learning capacities. In two recent publications, it was demonstrated that the treatment by EA can apparently enhance the ability of long term memory and learning in mice suffering from the AD disease [26-28]. And the treatment by EA was demonstrated to reduce the time required to complete face recognition while decreasing the levels of psychological stress [29].

A miRNA, miR-210, may able to regulate the process of cell apoptosis as well as cell proliferation by directly reducing the expression level of SIN3A. In addition, the regulatory effect of miR-210 inhibitors on the process of cell apoptosis as well as cell proliferation could be blocked by silencing the mRNA expression of SIN3A, suggesting that miR-210 exerts its effects by regulating the expression of SIN3A. In addition, a cluster of miRNAs containing miR-183, miR-96, and miR-182 can enhance the ability of brain learning by regulating the expression levels of a memory suppressor, i.e., protein phosphatase 1 (PP1) [30]. While the biogenesis process of multiple miRNAs highly expressed in neuron cells can be regulated by miR-183, miR-96, and miR-182, these miRNAs mainly exert their effects by elevating the expression levels of PP1 in the nuclear domain of cells [31]. In this study, we transfected SH-SY5H cells with miRNA mimics to evaluate their effect on SIN3A expression. Rno-miR-183-5p and rno-miR-210-3p mimics suppressed the expression of SIN3A in SH-SY5H cells. Moreover, we performed luciferase assay to explore the inhibitory effect of candidate miRNAs on SIN3A. Rno-miR-183-5p and rno-miR-210-3p inhibited the luciferase activity of SIN3A through binding to its 3’ UTR.

As a large sized scaffold protein, SIN3A contains several domains of paired amphipathic helix as well as a HDAC interaction domain. The paired amphipathic helix domains in SIN3A are responsible for recognizing as well as binding to certain transcriptional factors including MAD and MAX. On the other hand, the HDAC interaction domain can dock HDAC1 proteins as well as HDAC2 proteins to SIN3A, so as to repress the expression of target genes of SIN3A [32]. In addition, the treatment using scopolamine can decrease the levels of acetylation in the promoters of H3K9 as well as H3K14 genes, while the silencing of SIN3A expression elevated the levels of acetylation in the promoters of H3K9 as well as H3K14 genes [33]. In addition, the silencing of SIN3A expression can also alter the levels of acetylation in the promoter of H4K12 gene to deregulate the expression of multiple genes involved in memory consolidation.
Similarly, it was reported by Fischer et al. that the induced acetylation of the H3K9 gene by environmental factors can restore the consolidation of spatial memory [34].

Moreover, Srivas S et al. also reported that, in hippocampus of rats with amnesia, the dysregulated expression of SIN3A is correlated with the expression of neuronal IEGs including Arc, Egr1, Homer1 and Narp [14]. And IEGs are defined as a family of synaptic plasticity genes which are down-regulated during amnesia, aging and several neurodegenerative disorders [35-38]. They encode both regulatory transcription factors and effector proteins which actively participates in the process of synaptic plasticity, glutamate receptor clustering at the synapse and memory consolidation [14, 16, 39]. Therefore, the promoted gene and protein expression of Arc, Egr1, Homer1 and Narp by EA treatment also indicated the therapeutic effect of EA upon scopolamine-induced amnesia.

Conclusion

Here, we demonstrate that EA alleviates scopolamine-induced amnesia by regulating the miR-210/SIN3A and miR-183/SIN3A signaling pathways, i.e., by increasing the expression of miR-210/miR-183 while reducing the expression of SIN3A to restore memory functions in SIA rats.

Declarations

Conflict of interest

None

Funding

The authors received no specific funding for this work.

Data Availability

All relevant data are within the paper.

Acknowledgements

None

Author contributions

Huimin Hu and Zhengwen Yu conceived and designed the study. Fan Ye performed literature review, wrote the manuscript, produced the figures and compiled the table. Shiming Tian arranged the data and drew the figures. Huimin Hu and Zhengwen Yu supervised and handled correspondence. All authors read and approved the final manuscript.

References
1. Wang Q, Sun LH, Jia W, Liu XM, Dang HX, Mai WL, Wang N, Steinmetz A, Wang YQ, Xu CJ: Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother Res 2010;24:1748-1754.

2. Eun CS, Lim JS, Lee J, Lee SP, Yang SA: The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement Altern Med 2017;17:367.

3. Ebert U, Kirch W: Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 1998;28(11):944-949.

4. Wilson DA: Scopolamine enhances generalization between odor representations in rat olfactory cortex. Learn Mem 2001;8(5):279-285.

5. Xiang Y, Wu X, Lu C, Wang K: An overview of acupuncture for psoriasis vulgaris, 2009-2014. J Dermatolog Treat 2017;28:221-228.

6. Wang J, Wu B, Chen S: [Discussion on quantum entanglement theory and acupuncture]. Zhongguo Zhen Jiu 2017;37:1233-1237.

7. Pomeranz B: Scientific research into acupuncture for the relief of pain. J Altern Complement Med 1996;2:53-60; discussion 73-55.

8. Melzack R, Wall PD: Pain mechanisms: a new theory. Science 1965;150:971-979.

9. Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA: Up-regulation of miR-210 by vascular endothelial growth factor in ex vivo expanded CD34+ cells enhances cell-mediated angiogenesis. J Cell Mol Med 2012;16:2413-2421.

10. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, Liu J, Fu Y, Yang GY: MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 2014;21:37-43.

11. Lou Y, Gao F, Xie A, Guo F, Deng Z, Wang Y: [MicroRNA-210 modified human umbilical vein endothelial cells induce capillary formation]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2012;26:587-591.

12. Shoji T, Nakasa T, Yamasaki K, Kodama A, Miyaki S, Niimoto T, Okuhara A, Kamei N, Adachi N, Ochi M: The effect of intra-articular injection of microRNA-210 on ligament healing in a rat model. Am J Sports Med 2012;40:2470-2478.

13. Grzenda A, Lomberk G, Zhang JS, Urrutia R: Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 2009;1789:443-450.
14 Srivas S, Thakur MK: Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia. J Neurochem 2018;145:204-216.

15 Abel T, Lattal KM: Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 2001;11(2):180-187.

16 Loebrich S, Nedivi E: The function of activity-regulated genes in the nervous system. Physiol Rev 2009;89(4):1079–1103.

17 Zheng HZ, Jiang W, Zhao XF, Du J, Liu PG, Chang LD, Li WB, Hu HT, Shi XM: Electroacupuncture induces acute changes in cerebral cortical miRNA profile, improves cerebral blood flow and alleviates neurological deficits in a rat model of stroke. Neural Regen Res 2016;11:1940-1950.

18 Chang QY, Lin YW, Hsieh CL: Acupuncture and neuroregeneration in ischemic stroke. Neural Regen Res 2018;13(4):573-583.

19 Fan Y, Hu J, Li J, Yang Z, Xin X, Wang J, Ding J, Geng M: Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci Lett 2005;374:222-226.

20 Sawmiller D, Habib A, Li S, Darlington D, Hou H, Tian J, Shytle RD, Smith A, Giunta B, Mori T, Tan J: Diosmin reduces cerebral Abeta levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016;299:98-106.

21 Zhu Y, Zeng Y: Electroacupuncture protected pyramidal cells in hippocampal CA1 region of vascular dementia rats by inhibiting the expression of p53 and Noxa. CNS Neurosci Ther 2011;17:599-604.

22 Wang L, Tang C, Lai X: Effects of electroacupuncture on learning, memory and formation system of free radicals in brain tissues of vascular dementia model rats. J Tradit Chin Med 2004;24:140-143.

23 Duan DM, Dong X, Tu Y, Liu P: A microarray study of chronic unpredictable mild stress rat blood serum with electro-acupuncture intervention. Neurosci Lett 2016;627:160-167.

24 Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH: PET Imaging for Early Detection of Alzheimer's Disease: From Pathologic to Physiologic Biomarkers. PET Clin 2017;12:329-350.

25 Duran-Aniotz C, Hetz C: Glucose Metabolism: A Sweet Relief of Alzheimer's Disease. Curr Biol 2016;26:R806-809.

26 Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O'Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734-746.
27 Wang HF, Tan L, Cao L, Zhu XC, Jiang T, Tan MS, Liu Y, Wang C, Tsai RM, Jia JP, Yu JT: Application of the IWG-2 Diagnostic Criteria for Alzheimer's Disease to the ADNI. J Alzheimers Dis 2016;51:227-236.

28 Gardener SL, Sohrabi HR, Shen KK, Rainey-Smith SR, Weinborn M, Bates KA, Shah T, Foster JK, Lenzo N, Salvado O, Laske C, Laws SM, Taddei K, Verdile G, Martins RN: Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults. J Alzheimers Dis 2016;52:661-672.

29 Laforce R, Jr., Tosun D, Ghosh P, Lehmann M, Madison CM, Weiner MW, Miller BL, Jagust WJ, Rabinovici GD: Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer's pathology. Neuroimage Clin 2014;4:508-516.

30 Woldemichael BT, Jawaid A, Kremer EA, Gaur N, Krol J, Marchais A, Mansuy IM: The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat Commun 2016;7:12594.

31 Jawaid A, Woldemichael BT, Kremer EA, Laferriere F, Gaur N, Afroz T, Polymenidou M, Mansuy IM: Memory Decline and Its Reversal in Aging and Neurodegeneration Involve miR-183/96/182 Biogenesis. Mol Neurobiol 2019;56:3451-3462.

32 Kadamb R, Mittal S, Bansal N, Batra H, Saluja D: Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013;92:237-246.

33 Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010;328:753-756.

34 Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH: Recovery of learning and memory is associated with chromatin remodelling. Nature 2007;447:178-182.

35 Davis S, Bozon B, Laroche S: How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 2003;142:17–30.

36 Penner MR, Roth TL, Chawla MK, Hoang LT, Roth ED, Lubin FD, Sweatt DJ, Worley PF, Barnes CA: Age-related changes in Arc transcription and DNA methylation within the hippocampus. Neurobiol Aging 2011;32(12):2198–2210.

37 Srivas S, Thakur MK: Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice. Mol Neurobiol 2017;54:5107-5119.

38 Singh P, Thakur MK: Reduced recognition memory is correlated with decrease in DNA methyltransferase1 and increase in histone deacetylase2 protein expression in old male mice.
Abel T, Lattal KM: Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol 2001;11:180-187.

Figures

Fig 1

Rno-miR-183-5p, rno-miR-34c-3p and rno-miR-210-3p expression was enhanced in rats treated with EA (Real-time PCR, N=3, * P value < 0.05, vs SHAM group). A: Increased expression of rno-miR-183-5p in rats treated with EA. B: Increased expression of rno-miR-34c-3p in rats treated with EA. C: Increased expression...
of rno-miR-210-3p in rats treated with EA. D: Rno-miR-758-5p expression remained unchanged in rats treated with EA. E: Rno-miR-568 expression remained unchanged in rats treated with EA. F: Rno-miR-196c-3p expression remained unchanged in rats treated with EA.

Figure 2

Rno-miR-183-5p and rno-miR-210-3p inhibited the luciferase activity of wild type SIN3A through binding to its 3’ UTR (A-F: Luciferase assay, N=3, * P value < 0.05, vs control group) And rno-miR-183-5p and rno-miR-210-3p mimics suppressed the expression of SIN3A in SH-SY5H cells (G-L: Real-time PCR and Western blot analysis, N=3, * P value < 0.05, vs. scramble control group). A: The luciferase activity of wild type SIN3A was inhibited by rno-miR-183-5p. B: Rno-miR-34c-3p showed no inhibitory effect on the luciferase activities of wild type and mutant SIN3A. C: The luciferase activity of wild type SIN3A was inhibited by rno-miR-210-3p. D: Rno-miR-758-5p showed no inhibitory effect on the luciferase activities of wild type and mutant SIN3A. E: Rno-miR-568 showed no inhibitory effect on the luciferase activities of wild type and mutant SIN3A. F: Rno-miR-196c-3p showed no inhibitory effect on the luciferase activities of wild type and mutant SIN3A. G: The expression of SIN3A was inhibited by rno-miR-183-5p in SH-SY5H
cells. H: Rno-miR-34c-3p showed no repressive effect on SIN3A expression in SH-SY5H cells. I: The expression of SIN3A was inhibited by rno-miR-210-3p in SH-SY5H cells. J: Rno-miR-758-5p showed no repressive effect on SIN3A expression in SH-SY5H cells. K: Rno-miR-568 showed no repressive effect on SIN3A expression in SH-SY5H cells. L: Rno-miR-196c-3p showed no repressive effect on SIN3A expression in SH-SY5H cells.
EA treatment improved memory consolidation in SIA rats (NOR test, N=3, * P value < 0.05, vs sham group; ** P value < 0.05, vs. SIA group). A: EA treatment restored the time spent with novel objects in SIA rats. B: EA treatment restored the discrimination index in SIA rats. C: No difference was spotted of confounding parameter rearing among the rat groups; D: No difference was spotted of confounding parameter NCD among the rat groups; E: No difference was spotted of confounding parameter locomotor activity among the rat groups;
EA treatment restored up-regulated mo-miR-183-5p and mo-miR-210-3p and down-regulated SIN3A mRNA and protein in SIA rats (A-C: Real-time PCR; D: Western blot; E: IHC analysis; N=3, * P value < 0.05, vs sham group; ** P value < 0.05, vs. SIA group). A: Rno-miR-183-5p expression in SIA rats was elevated by EA treatment. B: Rno-miR-210-3p expression in SIA rats was elevated by EA treatment. C: Up-regulated SIN3A mRNA expression in SIA rats was attenuated by EA treatment. D: Up-regulated SIN3A protein expression in SIA rats was attenuated by EA treatment. E: EA treatment reduced SIN3A expression in the hippocampus of SIA rats.
Figure 5

The inhibited mRNA and protein expression of Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats was up-regulated by EA treatment. A: The suppressed gene expression of Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats was promoted by EA treatment (* P value < 0.05, vs. sham group; ** P value < 0.05, vs. SIA group). B: The suppressed protein expression of Arc, Egr1, Homer1 and Narp in the hippocampus of SIA rats was promoted by EA treatment (* P value < 0.05, vs. sham group; ** P value < 0.05, vs. SIA group).