NMR relaxation rates and Knight shifts in MgB₂

Eva Pavarini

INFM-Dipartimento di Fisica "A. Volta", Università di Pavia, I-27100 Pavia, Italy

I.I. Mazin

Code 6390, Naval Research Laboratory, Washington, DC 20375

(October 31, 2018)

We calculate \textit{ab initio} the NMR relaxation rates and the Knight shifts in MgB₂. We show that the dominant relaxation mechanism at the 11B nucleus is the interaction with the electronic orbital moment, and we give a simple explanation of that using a simple \textit{sp} tight binding model. When Stoner enhancement (also calculated \textit{ab-initio}) is accounted for, we obtain good agreement with reported experimental values. For the 25Mg nucleus, we predict that the dominant relaxation mechanism is the Fermi-contact interaction, which also dominates the Mg Knight shift.

PACS numbers: 74.70.-b 76.60.-k 76.60.Es 74.70.Ad 74.25.Jb

Recent discovery of superconductivity in MgB₂ created substantial interest. It was suggested that the underlying mechanism is electron-phonon interaction in the boron sublattice, which was subsequently confirmed by observation of a sizeable boron B shift, but not magnesium isotope effect. State of art local density approximation (LDA) calculations produced electron-phonon coupling constants λ ranging from 0.75 to 0.87. Lacking single crystals, experimental determination of λ relies on the specific heat renormalization measurements. Using the LDA density of states (DOS), these experiments give λ between 0.6 - 0.8; however, if there is any many-body renormalization of the LDA DOS, these experiments should be renalyzed.

Nuclear magnetic resonance (NMR) is a common probe of the DOS. The measured quantities, the spin-lattice relaxation rate, $1/T_1$, and the Knight shift, K, are related to the spin susceptibility, and thus are not subject to a phonon renormalization. Measurements of the relaxation rates and the Knight shift of 11B already exist. From the electronic structure of MgB₂ one can conjecture that the main source of relaxation should be the hyperfine coupling between the nuclear spin and conduction p electrons. However, a full microscopic understanding of the NMR data (relaxation rates and Knight shifts) is still missing. While different sources agree reasonably among themselves about the relaxation rates, reporting $1/T_1T$ between 5.6×10^{-3} and 6.5×10^{-3} $1/(K \sec)$, there is considerable controversy about the Knight shifts. Some authors report a small average shift $K = (K_z + 2K_{xy})/3 = 0.0175\%$, and give an upper bound on its anisotropy, $K_{ax} = (K_z - K_{xy})/3 < 0.0030\%$. Other authors report even smaller ($K = 0.006\%$) shift and they attribute the shift to the Fermi-contact interaction. Note that the Korringa relation, $r = K^2(T_1T)(\gamma_n/2\mu_B)^2(4\pi kg_B) = 1$, where γ_n is the nuclear gyromagnetic ratio, is not satisfied here, as the measurements give $r \sim 0.2$. Finally, a tiny negative shift ($K = -0.0005\%$) was measured by Tou et al. and attributed to core polarization.

Therefore, in order to clarify the microscopic origin of the NMR relaxation process and of the Knight shift, \textit{ab-initio} calculations are highly desirable.

In the present work we report LDA calculation of the relaxation rates and of the Knight shifts. We will show that for 11B the relaxation is due to the p states, and the \textit{orbital} relaxation rate is about 3 times larger than the dipole rate and 10 time larger than the Fermi-contact rate. After an appropriate Stoner renormalization is included, the agreement with the experiment is very good. On the other hand, the main source of Knight shift is the hyperfine coupling with s electrons. Also, the (yet unmeasured) relaxation on Mg is mainly due to the Fermi-contact interaction with the s states.

The hyperfine interaction $-\hbar \gamma_n I \cdot H$ is the coupling between the nuclear magnetic moment $\hbar \gamma_n I$ and the hyperfine field H produced at the site of the nucleus by the conduction electrons. In order to discuss separately the different relaxation mechanisms, we neglect the small spin orbit coupling and split the hyperfine interaction into three terms, $-\hbar \gamma_n I [H^s + H^{dp} + H^{p}]$. The first term is the coupling with the electronic orbital moment; the second and the third terms are, respectively, the dipole and the Fermi-contact interaction with the electronic spin.

Thus the total hyperfine field is given by

$$H = 2\mu_B \left\{ -\frac{1}{r} + \left[\frac{s}{r^3} - 3\frac{r(r \cdot s)}{r^5} \right] - \frac{8\pi s}{3} \delta(r) \right\},$$

where r, s and I are the electronic position, spin, and angular momentum operator. In the case of 11B, $I = 3/2$ and $\gamma_n = 0.89 \gamma_N$, while in the case of 25Mg $I = 5/2$ and $\gamma_n = -0.17 \gamma_N$, with $\gamma_N = e/mpc$.

According to Fermi’s golden rule, the relaxation rate, $1/T_1$, may be written as

$$\frac{1}{T_1} = \frac{2\pi}{\hbar} \sum_{kk's's'm} f(\epsilon_{ks}) [1 - f(\epsilon_{ks'})] \delta(\epsilon_{ks} - \epsilon_{ks'})$$
times \(f(\epsilon) \) is the Fermi-Dirac distribution, \(s \) is the spin index, and \(|m| \) are the eigenstates of \(I_z \). Here \(k \) stands for both the wave vector and band index. Expansion of the Fermi function and integration over the nuclear spin yields, for a polycrystalline sample, the following expression:

\[
\frac{1}{T_1 T} = 2\pi k_B \gamma_n^2 \left[\text{Tr} \left(\frac{1}{3} |\mathbf{H}|^2 \right) \right],
\]

where \(N \) is understood as a diagonal matrix in the spin and \(k \)-space, \(\delta_{ss'} \delta_{kk'} \delta(\epsilon_k) \). The relevant prefactor is \(C = (4\pi k_B/\hbar) (\gamma_n/\gamma_e)^2 \), the same that appears in the Korringa relation. In the present case \(C \sim 1.4 \times 10^{4} \text{(K sec)} \) for \(^{25}\text{Mg} \) and \(C \sim 3.9 \times 10^{5} \text{(K sec)} \) for \(^{11}\text{B} \). The interaction cross terms in Eq. (1) i.e. the terms proportional to \(\text{Tr}[\mathbf{H}^{\mu} \mathbf{N}^{\nu} \mathbf{H}^s] \), \(\text{Tr}[\mathbf{H}^{\mu} \mathbf{N}^{\nu} \mathbf{H}^{s'}] \) and \(\text{Tr}[\mathbf{H}^{\mu} \mathbf{H}^{s} \mathbf{N}^{s'}] \) all vanish, the first two exactly, because \(\text{Tr}[\mathbf{s}] = 0 \) and the third vanishes exactly for polycrystals because \(\text{Tr}[s^2 - 3(s \cdot r)^2] = 0 \), and approximately for single crystals, when the \(d \)-electron DOS is small (cf. Ref. [21], Eq. 24). Thus, without the core polarization, which will be discussed later, the relaxation rate has three contributions: the orbital, the dipole and the contact-field term. Note that in the terminology of Ref. [1], all cross terms, diagonal in interaction but off-diagonal in angular momentum, are included in the calculation. More details on this derivation can be found in Ref. [1].

In order to evaluate the relaxation rate, we adopt the tight binding LMTO-ASA method (LMTO47 Stuttgart code) [3]. This method has been already used with success to calculate \(1/T_1 \), e.g. in \(\text{A}_{3}\text{C}_{60} \) [4]. Thus we express the Bloch function as \(|\mathbf{k}s\rangle = \sum_{\mathbf{RL}} |\mathbf{r}_L, \mathbf{r}_{L'}\rangle |\mathbf{k}L\rangle |\mathbf{k}L'\rangle \), with \(|\mathbf{r}_L, \mathbf{r}_{L'}\rangle = |\Phi_{RL}\rangle + \sum_{\mathbf{R}L'} |\Phi_{RL'}\rangle |\mathbf{k}L\rangle |\mathbf{k}L'\rangle \). Here \(|\mathbf{r}_L, \mathbf{r}_{L'}\rangle = \phi_{RL}(\epsilon_{RL}, r)Y_{L}(\hat{r})Y_{L'}(\hat{r}') \), where \(\phi_{RL} \) is the radial solution of the Schrödinger equation at the energy \(\epsilon_{RL} \), \(\phi_{RL} \) its energy derivative, \(Y_{L} \) is a spherical harmonic with \(L = \text{lm} \). For simplicity, in the following we will write only the contributions from \(\phi_{RL} \), although in the calculation we have, of course, included all terms. Thus the three contributions to \(1/T_1 \) can be expressed as

\[
N_{LL'} = \frac{V}{8\pi} \sum_{\mathbf{R}} \int d^3c_{L,\mathbf{R}} \delta(\epsilon_{RL}) c_{L',\mathbf{R}}^{\dagger} c_{L,\mathbf{R}},
\]

and of the radial integrals involving \(\phi_{RL}(\epsilon_{RL}, r) \)

\[
\langle r^{-3} \rangle_{\downarrow \uparrow} = \int \phi_{RL}(\epsilon_{RL}, r) r^{-3} \phi_{RL}(\epsilon_{RL}, r) r^2 dr.
\]

The Fermi-contact, the orbital, and the dipole contributions may then be written respectively as

\[
\frac{1}{3} \text{Tr} |\mathbf{H}^F |^2 = \frac{1}{2} \mu_B^2 \left(\frac{4}{3} \delta(\epsilon_{RL}, 0) N_{ss} \right)^2,
\]

\[
\frac{1}{3} \text{Tr} |\mathbf{H}^O |^2 = \frac{8}{3} \mu_B^2 \sum_{\mathbf{R}} \sum_{\mathbf{R}'L'LL'} \left(\frac{\langle r^{-3} \rangle_{\downarrow \uparrow}}{\pi k_B T} \right)^2 \mathbf{N}_{LL'} \frac{\partial^2}{\partial \epsilon_{RL}^2} N_{LL'}.
\]

Here \(D_{LL'}^{\mu} = \langle L'|\mu |L \rangle \), \(l_0 = l_z, l_{\pm 1} = l_{\pm}/\sqrt{2} \), and \(C_{LL'}^{2\mu} = \sqrt{\frac{8}{\pi k_B T}} \int_0^\infty 2\mu_B(t) Y_{L}(\hat{r}) Y_{L'}(\hat{r}') t^2 dt \).

In the same way, the Knight shift can be written as \(K_{KL} = \mu_B \text{Tr} T r |\mathbf{H}_K 1| \) where \(\alpha \) is the direction along which the external magnetic field is applied. As the relaxation rate, the relative shift may also be expressed as a function of the DOS matrix and the radial integrals, expanding the Bloch function in the LMTO basis set.

The DOS matrix was calculated by the linear tetrahedron method. We found that the results were already very well converged with a mesh of 370 irreducible \(k \) points. In order to minimize the linearization error accurate wavefunctions at the Fermi level, the final runs were performed with \(\epsilon_{RI} = \epsilon_F \). The convergence of the sums over the angular momentum was also very good. We find that we can truncate after \(l = 2 \). The reason is that the radial integrals \((\langle a_0/r^3 \rangle_{\downarrow \uparrow}) \) decrease quickly when \(l \) and \(l' \) increases. For \(\text{Mg} \) we find, e.g. \((\langle a_0/r^3 \rangle_{\downarrow \uparrow})_{11} = 4.8 \), \((\langle a_0/r^3 \rangle_{\downarrow \uparrow})_{22} = 0.16 \), and \((\langle a_0/r^3 \rangle_{\downarrow \uparrow})_{33} = 0.09 \), and in for \(\text{B} \), \((\langle a_0/r^3 \rangle_{\downarrow \uparrow})_{11} = 1.1 \) and \((\langle a_0/r^3 \rangle_{\downarrow \uparrow})_{22} = 0.2 \). What is the dominant mechanism that gives rise to the magnetic relaxation at \(\text{B} \) and \(\text{Mg} \) nuclei? In most metals it is the Fermi contact one, defined by the DOS of the \(s \) electrons at the Fermi level. However, in the case of \(\text{MgB}_2 \) the states near the Fermi level are mainly \(\text{B} \) p. We find that the ratio \(N_{ss}(\text{Mg})/N_{ss}(\text{Mg}) \sim 1/4 \), and \(N_{ss}(\text{B})/N_{ss}(\text{B}) \sim 1/50 \). Therefore, at least in the case of \(\text{B} \), the ratio is very small, and the Fermi contact term could become comparable or even smaller than the dipole or the orbital term. We have calculated all three contributions for both elements and show the results in Tables 1 and 2.

We also calculate \(\text{ab initio} \) the core polarization. For this purpose we applied in the calculations an external magnetic field \(B \), and then calculated \(m_n(0) \), the spin density of the \(n \)th core shell at the nucleus. Then the core polarization Knight shift can be obtained as \(K_{sp} = \mu_B (8\pi/3) \sum \epsilon_n(0)/B \), and the corresponding contributions to the relaxations rate can be computed from the Korringa relations for the core states. For \(^{25}\text{Mg} \), the contribution of the core polarization is negligible and the Fermi-contact interaction dominates. For \(^{11}\text{B} \), we find that the contribution of the \(1s \) shell is of the same order, but of opposite sign, as the the \(2s \) shell contribution. Their total effect is thus small. Also, since the Fermi-contact contribution for \(\text{B} \) is much smaller than in \(\text{Mg} \), the relative effect of the dipole term is larger, leading to a noticeable anisotropy of the Knight shift (about 30%), while the Mg Knight shift is essentially isotropic.
TABLE I. Knight shift, $K\alpha$ in %. Both unrenormalized and Stoner-enhanced values are included, as discussed in the text. The label $\alpha = ab, c$ indicates the direction of the external magnetic field.

	dipole (ab)	dipole (c)	orbital	Fermi-contact	core	Total (ab/c)	Total (renormalized)	Expt. a	Expt. b	Expt. c
Mg	0.0005	-0.0010	0	0.0260	0.0003	0.0271/0.0256	0.0361/0.0341	-	-	-
B	-0.0004	0.0008	0	0.0027	-0.0007	0.0016/0.0028	0.0024/0.0042	0.0175	0.006	-0.0005

aRef. 1 bRef. 2 cRef. 4

TABLE II. Relaxation rate $1/|T_1|T$ in 10^{-3}(K sec). Both unrenormalized and Stoner-enhanced values are included, as discussed in the text.

	orbital	dipole	Fermi-contact	core	Total	Total (renormalized)	Expt. a	Expt. b	Expt. c
Mg	0.02	0.01	1.0	0.0001	1.0	1.6	-	-	-
B	2.6	0.8	0.28	0.02	3.7	5.9	5.6	6.5	6.1

aRef. 2 bRef. 1 cRef. 8

In order to understand the numerical results, we first calculate analytically the shifts and the relaxation rate for a model Hamiltonian which includes only B_s and B_p orbitals. We start with the contribution of s electrons, i.e. the contact term. The contact shift may be written as $K \sim \mu_B^2 (4/3) |\phi_0(0)|^2 N_{ss}$, where N_{ss} is the s-projected DOS per atom per spin. We find $|\phi_0(0)|^2/(4\pi) \sim 2.16a_0^{-3}$, and $N_{ss} \sim 0.002$ states/eV per B atom. Therefore $K \sim 0.0026$ and $1/|T_1|T \sim 2.5 \times 10^{-3}$ /K sec. Both numbers are very close to those obtained from the full calculations (Tables 1,2).

We now consider the contribution of B_p electrons. The states at the Fermi level are $\sim 70%$ B_p-like, $N_{p,p} \sim 0.035$ states/(spin eV atom), and $N_{p,p} \sim 0.045$ states/(spin eV atom). Thus $N_{p,p} \sim N_{p,p} \sim N_p/3$, where N_p is the total p-projected DOS per spin per atom. Therefore we find the following approximate expression of the orbital contribution to the relaxation rate

$$\frac{1}{|T_1|T} \sim 4\pi k_B^2 h^2 \frac{\mu_B^2}{3}|(r^{-3})_{11}|^2 \sum_{\mu \mu'} \left(C_{1,1,m}^{2\mu} C_{1,1,m}^{2\mu'} \right)^2 \frac{N_p}{3}$$

where $N_{p,p} = (2l+1)(l+1) = 6$. We find $|\langle a_0 / r \rangle|^3 \sim 1.14$ and $N_p/3 \sim 0.038$ states/eV by B atom, therefore $1/|T_1|T \sim 3 \times 10^{-3}$ /K sec. The orbital part of the Knight shift is zero in this model because nondiagonal elements of the DOS matrix vanish.

In the same way the dipole term can be written as

$$\frac{1}{|T_1|T} \sim 8\pi k_B^2 h^2 \frac{\mu_B^2}{3}|(r^{-3})_{11}|^2 \sum_{\mu \mu'} \left(C_{1,1,m}^{2\mu} C_{1,1,m}^{2\mu'} \right)^2$$

where $\sum_{\mu \mu'} (C_{1,1,m}^{2\mu} C_{1,1,m}^{2\mu'})^2 = 6/5$. Thus we find that the B_p electron contribution to the dipole relaxation rate is $1/|T_1|T \sim 0.8 \times 10^{-3}$ /K sec. For the Knight shift we find $K_d \sim -2Kxy = 2\mu_B^2 C_{10,10}^{2\mu}(r^{-3})_{11}(N_{pp,pp}) \sim 0.0015%$. Again, all these numbers are rather close to the all-electron results shown in the Tables. The ratio $(T_1)_{dip}/(T_1)_{orb} \sim (2/3)T_r[1\cdot 1]/\sum_{\mu \mu'} \left(C_{1,1,m}^{2\mu} C_{1,1,m}^{2\mu'} \right)^2$.

3.3. The reason for which the orbital term dominates over the dipole term is that all three p are present at the Fermi level, as opposed, for instance, to the fullerene (B_8) where only one orbital is present at the Fermi level and thus the orbital moment is quenched.

In terms of the linear response theory, both the Knight shift and the relaxation rate are defined by the electronic spin susceptibility $\chi(q, \omega)$, specifically, $K \propto \text{Re} \chi(q, 0)$, and $1/|T_1| \propto \lim_{\omega \to 0} \sum q \text{Im} \chi(q, \omega)/\omega$. Electron-hole excitations renormalized the spin susceptibility, and in the simplest possible approximation one writes

$$\chi(q, \omega) \approx \chi_0(q, \omega)/[1 - I\chi_0(q, \omega)]$$

where χ_0 is the bare (noninteracting) susceptibility, I is the so-called Stoner factor, characterizing intraatomic exchange, and the calculations described above correspond to total neglect of the Stoner renormalization. One can estimate I from LSDA calculation with fixed total spin moment by fitting the total energy to the Stoner expression, $E_{tot}(M) = M^2/4N - M^2 I/4$, where M is the spin moment and N is the total DOS per spin. In this way, we found $IN = I\chi(q, 0) \approx 0.25$. Thus we can estimate renormalized Knight shift as $K \approx K_0/(1-IN) = 1.33K_0$. The renormalized values are also shown in the Tables.

Renormalization of $1/|T_1|$ is somewhat more difficult to take into account. It is easy to show that in the Stoner approximation

$$\text{Im} \chi(q, \omega) \approx \text{Im} \chi_0(q, \omega)/[1 - I\text{Re} \chi_0(q, \omega)]^2$$

however, averaging this expression over q's requires knowledge of the q-dependence of χ_0. Generally speaking, renormalization factor lies between $1/(1-IN)$ and $1/(1-IN)^2$. Using the Lindhard susceptibility and the sphere for the Fermi surface, Shastry and Abrahams found that in the 3D case

$$\left(\frac{\text{Im} \chi_0(q, \omega)}{[1 - I\text{Re} \chi_0(q, \omega)]^2} \right) \approx \frac{\text{Im} \chi_0(q, \omega)}{(1-IN)(1-2IN/3)}.$$
which is a good approximation for $IN \lesssim 0.7$. By integrating numerically Eq.2 with the Lindhard function, we found a better approximation, good for essentially all IN, and preserving the correct small IN limit, namely $\langle \Im \chi_0(q, \omega) \rangle / (1 - IN)^{5/3}$. Thus we used the factor $1.33^{5/3} \approx 1.6$ for $1/T$. For the 2D free electron gas, there is no q-dependence in $\chi_0(q, \omega)$ for $q < 2k_F$, and thus the renormalization factor is $1/(1 - IN)^2$.

The value of $1/T = 5.9 \times 10^{-3}$ $1/(K \sec)$, is in a good agreement with the reported experimental number. This means that the DOS, calculated within LDA, is a good approximation (maybe a slight underestimate) of the bare DOS, and thus the values for the electron-phonon coupling constant λ, obtained from the specific heat measurements, are reliable.

To the best of our knowledge, there are at present no experimental data for Mg. We predict that the magnetic shift is isotropic and that the principal relaxation mechanism is the Fermi-contact interaction, despite of the fact that $Nss/\sum_{l>0} Nll \sim 1/3$. The reason is that the quantities that one has to compare are not the partial DOS Nss and Nll but rather the dimensionless couplings $(2\mu_B^2/3)|\phi_s(0)|^2 Nss + \mu_B^2 \sum_{l>0} (r^{-3})Ul Nll$, and thus the relevant ratio is $R = (2/3)|\phi_s(0)|^2 Nss/\sum_{l>0} (r^{-3})Ul Nll$.

In the case of Mg we find $|\phi_s(0)|^2/4\pi = 4.54a_0^{-3}$ and $\langle r^{-3} \rangle_{11} = 4.8a_0^{-3}$. Hence we find $R \approx 5$. Instead, in the case of B, $|\phi_s(0)|^2/4\pi = 2.16a_0^{-3}$ and $\langle r^{-3} \rangle_{11} = 1.1a_0^{-3}$, and thus $R \sim 0.35$. The coupling with non s electrons competes with or dominates over the coupling with selectrons when $R \lesssim 1$.

Finally, we would like to mention that the presented values for $1/T$ include contributions from both quasi-2D p_x and 3D p_z bands. If, as suggested, two different gaps open below T_c in these bands, the temperature dependence of $1/T$ at low temperature should be computed taking the different character of these bands in the normal states. It is not obvious apriori that the corresponding weights will be just the densities of states. Calculations similar to those described above, but band-decomposed are needed.

To summarize, we report first-principles calculations of the NMR relaxation rates and the Knight shifts on both sites in MgB$_2$. The results are in a good agreement with the experiment, provided that the dipole and the orbital hyperfine interactions are taken into account, as well as the Stoner renormalization of susceptibility. NMR relaxation at 11B nucleus is dominated by the orbital interaction, and that at the 25Mg nucleus by the Fermi-contact one. The Knight shift is dominated by the Fermi contact polarization both on B and on Mg. After these calculations were completed, we learned about similar calculations for the valence electrons relaxation rate on B from the Ames group [19a], with the results consistent with those reported here.

Useful discussions with E. Koch, O.K. Andersen, P. Carretta, V.P. Antropov, and K.D. Belashchenko are gratefully acknowledged.

References:

1. J. Nagamatsu, et al., Nature 410, 63-64 (2001).
2. J. Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer, cond-mat/0101446.
3. S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, P. C. Canfield., Phys. Rev. Lett. 86, 1877 (2001).
4. D.G. Hinks, H. Claus, J.D. Jorgensen, cond-mat/0104242.
5. Y. Kong, O.V. Dolgov, O. Jepsen, O.K. Andersen, cond-mat/0102499.
6. K.-P. Bolmen, R. Heid, B. Renker, cond-mat/0103329.
7. A.Y. Liu, I. I. Mazin, J. Kortus., cond-mat/0103570.
8. R.K. Kremer, B.J. Gibson, K. Ahn, cond-mat/0102432.
9. K.-J. Jung, S.H. Baek, F. Borsa, S. L. Bud’ko, G. Lapertot, P. C. Canfield, cond-mat/0103041.
10. H. Tou, H. Ikejiri, Y. Maniwa, T. Ito, T. Takenobu, K. Prassides, Y. Iwasa, cond-mat/0103484.
11. A.G. Gerashenko, K. Mikhailov, S. Verkhovskii, T. D’yachkova, A. Tyutyunnik, V. Zubkov, cond-mat/0102421.
12. H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, J. Akimitsu, cond-mat/0102334.
13. C. P. Slichter, Principles of Magnetic Resonance (Springer, New York, 1990).
14. O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B 34, 5253 (1986). We used an LMTO setup with three empty spheres [13] ($R_{Mg} = 2.46, R_B = 2.11, R_{E1} = 1.6, R_{E2} = 1.7$ a.u.). We also checked a setup without empty spheres, and the results were similar.
15. V.P. Antropov, I.I. Mazin, O.K. Andersen, A.I. Liechtenstein, and O. Jepsen, Phys. Rev. B 47, 12373 (1993).
16. T. Asada and K. Terakura, J. Phys. F. 12, 1387 (1982).
17. See, for example, A. Narath, in Hyperfine Interactions, A.J. Freeman and R.B. Frankel, eds (Academic Press, New York, 1967), p 287.
18. Note that in case of hexagonal symmetry, there are cross-terms between the core-polarization and the valence electrons hyperfine field, which were not included in our calculations. However, for Mg the core polarization interaction is negligible, and for B, whose states at the Fermi level are essentially pure p, cross-terms between the core polarization and the Fermi-contact interaction vanish by symmetry. Cross-terms between the core polarization and the dipole interaction are allowed $[(T_1^{-1})_{\mu p} - d_{\mu p}]$ in notations of Ref. [14], however, given the smallness of the core-polarization correction, we neglected it in this work.
19. K.D. Belashchenko and V.P. Antropov, unpublished.
20. B.S. Shastry and E. Abrahams, Phys. Rev. Lett., 72, 1933 (1994).