Mono-Alkylated Ligands Based on Pyrazole and Triazole Derivatives Tested Against *Fusarium oxysporum* f. sp. *albedinis*: Synthesis, Characterization, DFT, and Phytase Binding Site Identification Using Blind Docking/Virtual Screening for Potent Fophy Inhibitors

Yassine Kaddouri*1, Farid Abrigach1, Sabir Ouahhoud2, Redouane Benabbes2, Mohamed El Kodadi1,3, Ali Alsalme4, Nabil Al-Zaqri4,5, Ismail Warad6 and Rachid Touzani1*

1 Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco, 2 Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco, 3 Centre Régional des Métiers de l’Éducation et de Formation Oujda, Oriental, Morocco, 4 Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia, 5 Department of Chemistry, College of Science, Ibb University, Ibb, Yemen, 6 Department of Chemistry, Science College, An-Najah National University, Nablus, Palestine

Twelve recent compounds, incorporating several heterocyclic moieties such as pyrazole, thiazole, triazole, and benzotriazole, made in excellent yield up to 37–99.6%. They were tested against *Fusarium oxysporum* f. sp. *albedinis* fungi (Bayoud disease), where the best results are for compounds 2, 4, and 5 with IC\textsubscript{50} = 18.8–54.4 \mu g/mL. Density functional theory (DFT) study presented their molecular reactivity, while the docking simulations to describe the synergies between the trained compounds of dataset containing all the tested compounds (57 molecules) and *F. oxysporum* phytase domain (Fophy) enzyme as biological target. By comparing the results of the docking studies for the Fophy protein, it is found that compound 5 has the best affinity followed by compounds 2 and 4, so there is good agreement with the experimental results where their IC\textsubscript{50} values are in the following order: 74.28 \textit{(5)} < 150 \textit{(2)} < 214.10 \textit{(4)}, using Blind docking/virtual screening of the homology modeled protein and two different tools as Autodock Vina and Dockthor web tool that gave us predicted sites for further antifungal drug design.

Keywords: pyrazole, triazole, *Fusarium oxysporum*, antifungal, DFT, docking
INTRODUCTION

Fusarium oxysporum f. sp. albedinis (F.o.a) displays the leading dangerous agent among all pathogens of date palm plant, notably in North Africa (Freeman and Maymon, 2000). Thus, infections appear in the vascular wilt of Phoenix dactylifera. It is also called Bayoud disease, which is frequently fatal and kills plants in 6 months to 2 years. In the horticultural field, F. oxysporum is one of the important fungus organisms raised in cultivated lands. It makes up 40–70% of the entire fusaria isolates. It is represented by several diversified forms in terms of morphology and physiology. These forms are saprophytes or parasites of many plants and represent various levels of virulence. Bayoud disease has destroyed more than 15 million Moroccan and Algerian P. dactylifera trees (Diana et al., 1995; Hakkou et al., 2004).

Unfortunately, to this time, no remedial treatment exists against this fungus, except some limited methods such as land disinfection (Thangavelu and Gopi, 2015), resistant strains propagation (Joshi, 2018), and practice, which have a significance because they reduce this disease's impact. One of the important five-membered hetero atomic rings, where nitrogen and sulfur are separated by one carbon, is 1,3-thiazole, prepared by original strategies. It is a pharmacophore, a privileged scaffold, in many compounds with several biological activities (Reis et al., 2011; Fadda et al., 2012; Alegaon et al., 2014; Bekhit et al., 2015; Varghese et al., 2016; El-Naggar and Abdel-Mottaleb, 2017; El-Sayed and Ismail, 2019; Nayak and Gaonkar, 2019; Pricopie et al., 2019). Pyrazole is a five-membered heterocyclic with two adjacent nitrogen atoms, common in a variety of commercial compounds applied in many industrial fields (Pongor et al., 2004; Elayyachy et al., 2005; Bouabdallah et al., 2006; Dawood and Abdel-Wahab, 2012; Aribigach et al., 2014; Singh et al., 2014, 2016; Akhtar et al., 2017). Another five-membered heterocyclic is 1,2,4-triazole; has three nitrogen atoms at positions 1, 2, and 4 of the ring; and used as a pharmacophore core linked to other compounds, offering different pharmacological activities (Touzani et al., 2003; Sahu et al., 2013; Barbuceanu et al., 2014; Cetin and Geckiseler, 2015; Elbelghiti et al., 2016; Shaikh et al., 2016; Singh et al., 2016; Dalloul et al., 2017). The pyridine may be a six-membered heterocyclic containing merely one nitrogen atom and again documented for several applications (Fadda et al., 2012; Hu et al., 2014; Sun et al., 2014; El-Naggar and Abdel-Mottaleb, 2017; Wei et al., 2019). The pyrimidine is a six-membered heterocyclic having two nitrogen atoms at positions 1 and 3 of the ring, and it has been of significant interest in many applications (Gatta et al., 1990; Iaroshenko et al., 2011; El-Adasy, 2017; Thangarasu et al., 2019). However, because of insufficient information on the pathogenesis of the F.o.a. fungus, numerous computational approaches have usually used to understand further the mechanism of action for this disease antifungal. In this background, docking simulation (Prabhudeva et al., 2019) remains one of the most powerful tools to give an atomistic insight into molecular recognition by predicting the strength of molecule protein–binding modes. The chosen target is the F. oxysporum phytase domain (Fophy) enzyme, a protein that plays versatile roles in agricultural and feeding fields. It catalyzes the degradation of phytate (an essential constituent of grains, cereals, and oilseeds) into inorganic phosphorus and myoinositol phosphate derivatives. Inhibition of the Fophy enzyme can affect the expansion of the fungus indirectly by preventing the phytate degradation, well-established as a robust chelating agent readily binding to covalent metal ions and renders them insoluble and therefore unavailable for absorption. These characteristics made both these proteins prospective potential targets to develop new anti-F. oxysporum inhibitors (Gontia-Mishra et al., 2014). And keeping in mind the biological significance of heterocyclic ligands, we described the synthesis of new heterocyclic compounds, used as potent antimicrobial agents, in our study. A molecular docking approach was used for the best antifungal derivatives against Fophy. The structure of this approach was constructed using the homology model that has been previously reported in the literature (Soundararajan et al., 2011; Aribigach et al., 2014; Tighadouini et al., 2019; Toubi et al., 2019), to achieve better insight into the ligand–receptor binding interactions and direct future synthesis. In case that there is no cofactor, blind docking, and virtual screening are used in this study for site prediction and protocol validation using Autodock Vina (Seeliger and de Groot, 2010) and Dockthor (Santos et al., 2020).

MATERIALS AND METHODS

Chemicals and Instruments

All the chemicals used in this study were of analytical grades (Aldrich, purity >99%). Melting points were measured with Koffler bank and the FTIR analysis with the FTIR-8400S spectrometer using KBr pellets. We recorded the 1H and 13C nuclear magnetic resonance (NMR) spectra on AVANCE 300, 400, and 500 MHz from BRUKER. The in vitro anti-Fusarium activity was tested by the agar diffusion technique.

Synthesis of the Pyrazole and Triazole General Procedure for Preparing Compounds 1–12

The ligands 1–9, 11, and 12 were prepared by condensation of different monoamines with pyrazole or 1,2,4-triazole methylthanol derivatives (Pathway A, Figure 1), whereas 10 were prepared by condensation of imidazole with ethyl 1-(hydroxymethyl)-5-methyl-1H-pyrazole-3-carboxylate (Pathway B, Figure 1), according to the method described in the literature (Kaddouri et al., 2017, 2019, 2020).

2-(((1H-1,2,4-triazol-1-yl)methyl)amino) nicotinic acid, 1: Viscous product; 1H NMR [500 MHz, dimethyl sulfoxide (DMSO)-d6]: δ 8.33 (m, 1H), 7.09 (s, 4H), 4.94 (s, 2H); 13C NMR
Yield, 62.36%; mp: 114–116°C.

FIGURE 1 | The reaction procedure for the preparation of compounds 1–12 (pathway A,B).

(125 MHz, DMSO-d$_6$): δ 168.54, 159.67, 151.10, 144.17, 140.26, 113.46, 111.81, 54.

N-((3,5-dimethyl-1H-pyrazol-1-yl)-methyl)pyridin-2-amine, 6: Yield, 93.6%; mp: 150–152°C; 1H NMR (500 MHz, DMSO-d$_6$): δ 8.81 (s, 1H), 7.84 (t, $J = 6.6$ Hz, 1H), 7.60 (d, $J = 8.9$ Hz, 1H), 6.64 (d, $J = 8.9$ Hz, 1H), 5.76 (s, 1H), 5.42 (d, $J = 6.6$ Hz, 2H), 2.56 (s, 3H), 2.34 (3H); 13C NMR (125 MHz, DMSO-d$_6$): δ 156.06, 147.44, 139.47, 110.66, 101.75, 33.42, 10.67; CG-MS: m/z (%) = 372.1 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+K+2H]$^+$. 372.1].

5-Bromo-N-((3,5-dimethyl-1H-pyrazol-1-yl)-methyl)pyridin-2-amine, 6: Yield, 93.6%; mp: 150–152°C; 1H NMR (500 MHz, DMSO-d$_6$): δ 8.81 (s, 1H), 7.84 (t, $J = 6.6$ Hz, 1H), 7.60 (d, $J = 8.9$ Hz, 1H), 6.64 (d, $J = 8.9$ Hz, 1H), 5.76 (s, 1H), 5.42 (d, $J = 6.6$ Hz, 2H), 2.56 (s, 3H), 2.34 (3H); 13C NMR (125 MHz, DMSO-d$_6$): δ 156.06, 147.44, 139.47, 110.66, 101.75, 33.42, 10.67; CG-MS: m/z (%) = 372.1 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+K+2H]$^+$. 372.1].

N-((1H-pyrazol-1-yl)thiazol-2-amine, 7: Yield, 99.6%; mp: 74–76°C.

N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)thiazol-2-amine, 6: Yield, 93.6%; mp: 150–152°C; 1H NMR (500 MHz, DMSO-d$_6$): δ 8.81 (s, 1H), 7.84 (t, $J = 6.6$ Hz, 1H), 7.60 (d, $J = 8.9$ Hz, 1H), 6.64 (d, $J = 8.9$ Hz, 1H), 5.76 (s, 1H), 5.42 (d, $J = 6.6$ Hz, 2H), 2.56 (s, 3H), 2.34 (3H); 13C NMR (125 MHz, DMSO-d$_6$): δ 156.06, 147.44, 139.47, 110.66, 101.75, 33.42, 10.67; CG-MS: m/z (%) = 372.1 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+K+2H]$^+$. 372.1].

N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)thiazol-2-amine, 7: Yield, 99.6%; mp: 74–76°C.

N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)thiazol-2-amine, 8: Yield, 93.6%; mp: 150–152°C; 1H NMR (500 MHz, CDCl$_3$): δ 7.10 (s, 1H), 7.08 (d, $J = 8.9$ Hz, 1H), 6.81 (d, $J = 8.9$ Hz, 1H), 5.80 (s, 1H), 5.45 (2H), 2.91 (3H); 13C NMR (125 MHz, CDCl$_3$): δ 156.06, 147.44, 139.47, 110.66, 101.75, 33.42, 10.67; CG-MS: m/z (%) = 372.1 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+K+2H]$^+$. 372.1].

Ethyl 1-(((imidazol-1-yl)methyl)-5-methyl-1H-pyrazole-3-carboxylate, 10: Yield, 99.6%; mp: 74–76°C; 1H NMR (500 MHz, MeOD): δ 7.68 (t, $J = 1.0$ Hz, 1H), 7.04 (d, $J = 1.0$ Hz, 1H), 5.78 (s, 2H), 2.81 (s, 3H), 2.17 (s, 3H); 13C NMR (125 MHz, DMSO-d$_6$): δ 161.63, 135.11, 126.64, 106.56, 59.89, 14.14, 10.68; CG-MS: m/z (%) = 310 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+H]$^+$. 310.26]

2-(((Pyrazol-1-yl) amino)-6-methylpyridin-4-ol, 11: Yield, 93.82%; mp: 238–240°C; 1H NMR (500 MHz, DMSO-d$_6$): δ 8.11 (s, 1H), 7.91 (s, 1H), 7.78 (d, $J = 2.3$ Hz, 1H), 7.63 (d, $J = 8.9$ Hz, 1H), 7.44 (d, $J = 1.8$ Hz, 1H), 6.62 (d, $J = 8.9$ Hz, 1H), 6.22 (d, $J = 2.3$ Hz, 1H), 5.60 (d, $J = 6.9$ Hz, 2H); 13C NMR (125 MHz, DMSO-d$_6$): δ 156.11, 147.63, 139.62, 138.55, 129.47, 110.78, 107.16, 105.16, 56.44; CG-MS: m/z (%) = 372.8 [M^+ + calcd. for C$_{11}$H$_7$BrN$_4$ [M+DMSO+K+2H]$^+$. 372.1].

2-(((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-6-methylpyridin-4-ol, 12: Yield, 90.65%; mp: 100–102°C; 1H NMR (500 MHz, DMSO-d$_6$): δ 8.11 (s, 1H), 7.78 (t, $J = 2.3$ Hz, 1H), 7.46 (t, $J = 2.1$ Hz, 1H), 5.56 (d, $J = 12$ Hz, 1H), 5.39 (s, 1H), 5.36 (d, $J = 3.5$ Hz, 1H), 1.98 (s, 1H); 13C NMR (125 MHz, DMSO-d$_6$): δ 175.56, 172.05, 171.78, 163.62, 161.41, 99.54, 25.16.
The DFT study was performed using Gaussian 09W software (Frisch et al., 2009) by the DFT (Eschrig, 2003; Capelle, 2006; Van Mourik et al., 2014; Domingo et al., 2016; Contreras-Garcia and Yang, 2018) method with three functional parameters of Becke associated to the functional correlation gradient corrected by Lee Yang Parr (B3LYP) (Becke and Becke, 1993; Becke, 2014) and the exchange correlation in combination with 6–31 G (d, p) orbital basis sets for all atoms, with no symmetrical constraints. The molecular electrostatic potential (MEP) surfaces are generated in default parameters as total density and electrostatic potential (ESP) with the self-consistent field matrix for cubes and surface map generation.

Ligand Preparation
The compounds of interest for further docking purposes are geometrically optimized applying the DFT method, and the frequency was calculated for ground state verification after saving them as mole files later included in open label to convert them into pdbqt files that will be incorporated in Autodock Vina for virtual screening.

Protein Preparation and Active Site Selection
The modeled proteins structure of Fophy considered as target reported in the literature (Abigail et al., 2018; Kaddouri et al., 2019; Tighadouni et al., 2019; Toubi et al., 2019) was prepared in Autodock 4 default parameters, and the whole protein was used as grid for blind docking–virtual screening (Table 1) with Perl as launcher of virtual screening for all the ligands in Autodock Vina (Seeliger and de Groot, 2010).

For the docking validation, Dockthor (Santos et al., 2020), a web tool for ligand–protein docking, was used for blind

Table 1 | Blind docking simulation parameters and virtual screening configuration using Autodock Vina.

Docking parameters	Virtual screening configuration
Genetic algorithm	center.x = -5.932
2,500,000 no. of evals (medium)	center.y = -1.368
Lamarckian V4 output	center.z = 29.033
Population size: 12	population: 40
Initial seed: 1672	num.modes: 10
Energy range: 4	

Table 2 | Blind docking simulation parameters and virtual screening configuration using Dockthor.

Virtual screening configuration	Search algorithm
center.x = -3.018	center.x = -3.018
center.y = -1.2215	center.y = -1.2215
center.z = 27.7495	center.z = 27.7495
size.x = 40	size.x = 40
size.y = 40	size.y = 40
size.z = 40	size.z = 40
number of evaluations: 500,000	no.of runs: 12
Population size: 750	soft docking
Initial seed: -1,985	

23.20, 22.41; CG-MS: m/z (%) = 206.1 [M+H]+ [calcd. for C₉H₁₁N₃O [M+H]+ 205.22].
Chemical Name	pKi (exp)	MIC/MIC₅₀ (µM)
Atrazine	3.55	
Linuron	3.40	
Dicabon	3.36	
Crotroxophos	4.50	
Dichlorvos	3.16	
Phosphamidon	3.99	
Monensin-H		0.15
Lasalocid		2.20
Benomyly	1	
2		
Monensin-H	4	100
Lasalocid	5	100
Benomyly	6	100
7		
Monensin-H	8	100
Lasalocid	9	100
Benomyly	10	100
Monensin-H	11	100
Lasalocid	12	100
Benomyly	13	100
14		2510
Monensin-H	15	410
Lasalocid	16	330
Benomyly	17	2550
Monensin-H	18	2486
Lasalocid	19	1223
Benomyly	20	697
Monensin-H	21	2856
Lasalocid	22	2332
Benomyly	23	2592
Monensin-H	24	2755
Lasalocid	25	2614
Benomyly	26	86
Monensin-H	27	168
Lasalocid	28	662
Benomyly	29	30
Monensin-H	30	28_{µg/ml}
Lasalocid	31	27_{µg/ml}
Benomyly	32	18_{µg/ml}
Monensin-H	33	22_{µg/ml}
Lasalocid	34	20_{µg/ml}
Benomyly	35	20_{µg/ml}
Monensin-H	36	3_{µg/ml}
Lasalocid	37	2.50_{µg/ml}
Benomyly	38	5_{µg/ml}
Monensin-H	39	2.50_{µg/ml}
Lasalocid	40	40_{µg/ml}
Benomyly	41	2.5_{µg/ml}
Monensin-H	42	5_{µg/ml}
Lasalocid	43	40_{µg/ml}
Benomyly	44	80_{µg/ml}
Monensin-H	45	10_{µg/ml}
Lasalocid	46	5_{µg/ml}
Benomyly	47	10_{µg/ml}
Monensin-H	48	20_{µg/ml}

Note: MIC, minimum inhibitory concentration; IC50, half maximal inhibitory concentration; pKi, inhibition constant.
docking/virtual screening of the active compounds in the whole Fophy protein chain, and the parameters for this is described in Table 2.

Dataset Preparation
The selected compounds are all the testes against F.o.a., collected from the references (Waring et al., 2002; Radi et al., 2012, 2015; Smaail et al., 2012; Boussalah et al., 2013; Lotth et al., 2015; Abrigach et al., 2017, 2018; Tighadouini et al., 2018, 2019; Koudad et al., 2019; Toubi et al., 2019).

In Table 3, this dataset contained 57 compounds, where 6 of them are tested against phytase inhibitors with Ki values that are converted to pKi between 3.16 for Dichlorvos and 4.50 for crytoxyphos. The dataset compounds structure is collected in with their pKi, IC50, or MIC values.

ADME Predictions
The ADME (adsorption, distribution, metabolism, and exertion) properties are depicted from SwissADME web tool (Hou et al., 2004; Arnott and Planey, 2012; Daina et al., 2017).

RESULTS AND DISCUSSION

Chemistry
The mono-alkylated ligands based on pyrazole and 1,2,4-triazole are prepared (Figure 2), whereas compounds 5, 6, 9, and 11 were described in the literature (Touzani et al., 2003; Kaddouri et al., 2019, 2020). Several physicochemical analysis methods that are described in section Synthesis of the Pyrazole and Triazole Ligands characterized the prepared ligands.

All compounds were characterized by 1H and 13C NMR.

Table 4 illustrates the chemical shifts of CH2 in the examined ligands, where there is no significant difference between the studied ligands, and their structures are unique.

The chemical shifts of the mono-alkylated ligands 1–12 are located in the regions 5.18–5.76 ppm for 1H NMR, indicating a doublet peak that takes place because of the coupling of CH2 with the nearest free proton NH, and 53.42–73.7 ppm for 13C NMR, except for ligand 10, which carries an original chemical structure. For ligand 10, the 1H NMR chemical shift is 4.25 ppm with a single peak, and the 13C NMR chemical shift is 59.88 ppm.

As an example, for the characterization of the studied compounds, N-((1H-pyrazol-1-yl)methyl)thiazol-2-amine, 7 in Figure 3 is displayed as follows:

To formulate this compound, 1.5 g of 2-aminothiazole (14.9 mmol) and 1.47 g of (1H-pyrazol-1-yl) methanol (14.9 mmol) were mixed in acetonitrile under reflux for 4h, and the solvent was evaporated and then recrystallized in diethyl ether after filtration to have the final product (1.42 g, 53.08%): mp 108–110°C.

In Figure 4, 1H NMR (DMSO-d6, 500 MHz) spectrum of N-((1H-pyrazol-1-yl)methyl)thiazol-2-amine encloses the following peaks:

- Triplet integration at 8.68 ppm with JH–H = 6.7 Hz for the proton of the NH.
- Doublet integration at 7.80 ppm with JH–H = 2.3 Hz for the proton in position 3′.
- Doublet integration at 7.46 ppm with JH–H = 1.1 Hz for the proton in position 5′.
- Doublet integration at 7.09 ppm with JH–H = 3.6 Hz for the proton in position 5.
- Doublet di-doublet integration at 6.74 ppm with JH–H = 3.6 Hz for the proton in position 4.
- Triplet integration at 6.23 ppm with JH–H = 2.0 Hz for the proton in position 4′.
- Singlet integration at 5.56 ppm for the protons of the CH2.

In Figure 5, NMR 13C (DMSO-d6, 125 MHz) of N-((1H-pyrazol-1-yl)methyl)thiazol-2-amine contain the following peaks at:

- 168.11 for the carbone C2;
- 139.33 for the carbone C3′;
- 139.02 for the carbone C5;
- 130.47 for the carbone C5;
- 108.52 for the carbone C4;
- 105.76 for the carbone C4′;
- 59.40 for the carbone CH2.

In Figure 6, two-dimensional NMR COSY (DMSO-d6, 400 MHz) δ ppm contains the following spots at:

Table 4 | The chemical shifts of CH2 in the studied ligands.

Compound	1H NMR (δ (CH2))	13C NMR (δ (CH2))
1	5.22	54
2	5.52	54.42
3	5.43	53.79
4	5.67	54.55
5	5.59	56.44
6	5.76	53.42
7	5.56	58.93
8	5.45	56.74
9	5.39	65.58
10	4.25	59.88
11	5.18	73.24
12	5.18	73.70
FIGURE 3 | 1H NMR spectrum of N-[(1H-pyrazol-1-yl)methyl]thiazol-2-amine, 7.

FIGURE 4 | 13C NMR spectrum of N-[(1H-pyrazol-1-yl)methyl]thiazol-2-amine, 7.
(5.56, 5.56) for CH$_2$.
(6.23, 6.23), (7.46, 6.23), (7.81, 6.23), (6.24, 7.46), and (6.23, 7.81) for CH (4).
(6.71, 6.74), (7.10, 6.74), and (6.71, 7.10) for CH (5).
(7.46, 7.46), (7.46, 6.23), and (6.24, 7.46) for CH (5').
(7.81, 7.81), (7.81, 6.23), and (6.23, 7.81) for CH (3').

Biological Assay and Lipophilicity Study

The preliminary results established that ligands 2, 4, and 5 displayed a significant inhibitory effect on F.o.a., in volumes
over 50 µL, i.e., at concentrations higher than 16 µg/mL. To affirm that effect, we retested those ligands in three independent experiments (n = 3 experiments with ±SEM) to get the minimum inhibitory concentrations (MICs) experimentally.

For the mono-alkylated ligands, Table 5 demonstrates that ligand 2 carries a 6.7-cm diameter of the strain in 50 µL (Figure 7) that resembled 22.99% inhibition. It kills F.o.a., appearing from 160 µL, at 100% inhibition. Ligand 3 has the same structure as ligand 2 but methyl group at the α position of the pyridine ring. This causes its inactivity, exhibiting no inhibition in 50 µL. Ligand 1 shows no inhibition at all. Ligands 4 (Figure 7), 5, and 6 show a respectable percentage of inhibition in 50 µL, corresponding to 25.29, 56.32, and 8.05%, respectively. The highest inhibition was seen in ligand 5 with IC50 = 18.8 µg/mL (Figure 7); it has no substituents on the pyrazole moiety, contrary to the substituted one; ligand 6 has a less percentage of inhibition. The results also show no meaningful difference, in terms of inhibition efficiency, between ligands 7 and 8, even if there are two methyl groups at positions 3 and 5 on the pyrazole moiety in compound 8. Ligands 9 and 10 kill F.o.a. in 500 µL with 100% of inhibition, showing no inhibition in other volumes. Ligands 11 and 12 show acceptable percentages of inhibition, starting from 160 µL, at 28.74%, and 35.63%, respectively, and the finest result obtained is by the non-substituted pyrazole moiety in compound 12. These compounds have identical or better results than compounds described in the literature by Tighadouini et al. (2019), where their compound 9 has 76% of inhibition in 200 µL, whereas compound 5 has 79.31% in 160 µL.

Table 6 shows the three best anti-Fusarium candidates IC50 values, where the highest value is for ligand 5 having IC50 = 18.8 µg/mL and IC50 = 74.28 µmol/L, substituted pyridine ring with Brome.

µg/mL	µmol/mL
2	150.31
4	214.10
5	74.28

TABLE 6 | The MIC, pIC50, and LogP values of the studied ligands 2, 4, and 5.

IC50 (µmol/L)	pIC50	LogP
2 | 150.31 | 2.18 | 1.49 |
4 | 214.10 | 2.33 | 1.24 |
5 | 74.28 | 1.87 | 1.93 |

TABLE 5 | The preliminary results of the studied ligands tested against F.o.a.

% of inhibition	IC50 µg/mL	IC50 µmol/mL						
50 µL	160 µL	500 µL						
1	8.7	8.7	8.7	0.00	0.00	0.00	–	–
2	6.7	0	0	22.99	100	100	30.4 ± 0	150.31 ± 0
3	8.7	4	0	0.00	54.02	100	–	–
4	6.5	2.2	0	25.29	74.71	100	54.4 ± 0	214.10 ± 0
5	3.8	1.8	0.3	56.32	79.31	96.55	18.8 ± 0	74.28 ± 0
6	8	1.8	0	8.05	79.31	100	–	–
7	8.7	5.2	0	0.00	40.23	100	–	–
8	8.7	5.4	0	0.00	37.93	100	–	–
9	8.7	8.7	0	0.00	0.00	100	–	–
10	8.7	8.7	0	0.00	0.00	100	–	–
11	8.7	6.2	1.2	0.00	28.74	86.21	–	–
12	8.7	5.6	0	0.00	35.63	100	–	–
The lipophilicity (Veber et al., 2002; Leeson and Springthorpe, 2007; Podunavac-Kuzmanovic et al., 2008; Mannhold et al., 2009; Arnott and Planey, 2012; Hadda et al., 2014; Sima et al., 2017) characteristic of a ligand is the most important key in drug design and discovery, contributing to the ADMET-Tox (Gleeson et al., 2011; Glaab, 2016; Kauthale et al., 2017; Dhandapani and Balachandar, 2019) (administration, distribution, metabolism, excretion, and toxicity) of drugs and providing us insights about their solubility, cell membrane permeability, and so on (Arnott and Planey, 2012). It is expressed as the LogP of a compound with two different solvents: 1-octanol showing the lipid membrane and water as the model for cytoplasm (Holladay, 2015).

In our study, the LogP values of compounds 2, 4, and 5 were calculated handling the “Marvin sketch 19.13” software (https://chemaxon.com/products/marvin). The results are summed up in Table 6, which demonstrates that ligand 5 is the most effective with the biggest value of lipophilicity (LogP = 1.93); the order of inhibition efficiency IC₅₀ correlated well with the following lipophilicity values order: 5 > 2 > 4. The LogP values were in the optimum region (LogP = 3), and hence, all three ligands could pass through the lipid membrane by the intense decrease in their IC₅₀ values; for instance, for ligand 4, IC₅₀ = 214.10 µmol/L and LogP = 1.24. Based on these results, lipophilicity and antifungal activity correlation plot are represented in Figure 8, and the analysis of these results established a notable linear correlation between pIC₅₀ and LogP according to the following equation: y = −0.671x + 3.1689, where x: LogP, y: pIC₅₀, and correlation coefficient of R² = 0.9984.

To sum up, the results proved a correlation between the lipophilicity and antifungal activity of the ligands, but further precise experiments recommended to figure out the unfamiliar mechanism of action for the investigated ligands.

Theoretical Investigations

DFT Calculations

MEP may be a truly capable tool utilized to calculate or envision the reactive zones of nucleophilic and electrophilic attacks on a molecular system. It is often generated by mapping the ESP onto the isoelectron density surface of the molecule, providing us the chance to know the distribution of the electronic charge all over the structure. MEP mapping remains helpful in figuring out the synergy of a molecule with its environment and monitoring the hydrogen binding interactions, for its biological recognition processes (Kryachko, 2013; Alpaslan et al., 2019).

In our research, the optimized structures are in their global minima because of its positive frequencies values, MEP maps of compounds 2, 4, and 5 generated based on their density functional theory (DFT) optimized geometries; displayed in Figure 9. The negative ESP regions of compound 2 mainly concentrated over the nitrogen atoms of the pyrazole ring with

![Figure 8](image1.png) **FIGURE 8** | Lipophilicity and antifungal activity plot.

![Figure 9](image2.png) **FIGURE 9** | MEP surfaces for the three best anti-Fusarium candidates 2 (A), 4 (B), and 5 (C), where the negative regions (black circle) are related to electrophilic reactivity, whereas the positive regions (red circle) are for nucleophilic reactivity.

![Figure 10](image3.png) **FIGURE 10** | Structure alignment of homology modeled Fophy protein (colored) and its template 3K4P (blue).
ID	Affinity (kcal/mol)	pMIC	pIC₅₀	MW (<500 Da)	HAC (<10)	HDO (<5)	nRot (<10)	TPSA	logP (<5)	nVio
Atrazine	−5.8	−6.5	215.68	3	2	4	62.73	1.74	No	
Linuron	−5.8	−6.5	249.09	2	1	4	41.57	2.59	No	
Diuron	−5.5	−6.5	230.09	1	1	3	32.34	2.54	No	
Crotoxyphos	−6.4	−6.5	314.27	6	0	8	80.87	2.69	No	
Dichlorvos	−4.3	−6.5	220.98	4	0	4	54.57	1.60	No	
Phosphamidon	−5.6	−6.5	299.69	5	0	8	74.88	1.68	No	
Monensin-H	−6.8	−6.5	670.88	11	4	10	153.37	3.63	Yes	
Lasalocid	−7.4	−6.5	590.60	8	4	13	133.52	5.12	Yes	
Benomyl	−6.3	−6.5	292.32	4	2	8	85.25	1.85	No	
1	−6.5	−6.5	219.20	5	2	4	92.93	−0.06	No	
2	−5.9	−6.5	202.26	2	1	3	42.74	1.57	No	
3	−6.2	−6.5	216.29	2	1	3	42.74	2.01	No	
4	−5.8	−6.5	254.09	3	1	3	55.63	1.29	No	
5	−6.0	−6.5	253.10	2	1	3	42.74	1.70	No	
6	−6.4	−6.5	281.16	2	1	3	42.74	2.33	No	
7	−5.0	−6.5	180.23	2	1	3	70.98	1.04	No	
8	−5.6	−6.5	208.28	2	1	3	70.98	1.72	No	
9	−6.2	−6.5	202.26	2	1	3	42.74	1.45	No	
10	−5.3	−6.5	234.26	4	0	5	61.94	1.07	No	
11	−5.6	−6.5	204.23	3	2	3	62.97	0.85	No	
12	−6.3	−6.5	232.29	2	2	3	62.97	1.50	No	
13	−6.3	−6.5	216.29	2	1	3	42.74	1.98	No	
14	−6.5	−6.5	247.25	4	1	4	88.56	1.18	No	
15	−6.2	−6.5	295.18	2	1	3	42.74	2.62	No	
16	−6.0	−6.5	360.05	2	1	3	42.74	2.92	No	
17	−6.7	−6.5	252.24	5	3	3	96.09	0.62	No	
18	−6.8	−6.5	233.27	4	2	3	75.86	1.25	No	
19	−7.0	−6.5	294.27	4	2	4	80.04	1.06	No	
20	−6.3	−6.5	220.32	5	1	5	29.85	2.48	No	
21	−4.8	−6.5	179.22	2	1	4	46.92	1.01	No	
22	−6.0	−6.5	215.29	2	1	4	29.85	2.20	No	
23	−5.5	−6.5	188.23	2	1	3	42.74	1.30	No	
24	−6.2	−6.5	263.18	3	1	3	55.63	1.14	No	
25	−7.1	−6.5	243.30	2	1	4	46.92	2.29	No	
26	−7.3	−6.5	277.36	1	0	4	21.06	3.68	No	
27	−6.3	−6.5	249.31	1	0	4	21.06	2.99	No	
28	−6.4	−6.5	229.32	2	1	4	29.85	2.48	No	
29	−6.3	−6.5	217.22	3	2	4	67.15	0.92	No	
30	−6.0	−6.5	305.38	5	0	7	65.18	1.62	No	
31	−5.9	−6.5	319.40	5	0	8	65.18	1.91	No	
32	−7.0	−6.5	409.52	5	0	10	65.18	3.41	No	
33	−6.2	−6.5	409.52	5	0	10	65.18	3.41	No	
34	−6.3	−6.5	319.40	5	0	7	65.18	1.87	No	
35	−6.0	−6.5	347.46	5	0	8	65.18	2.53	No	
36	−6.9	−6.5	434.53	5	1	9	80.97	3.22	No	
37	−6.3	−6.5	310.40	5	0	5	51.77	2.45	No	
38	−7.2	−6.5	426.47	7	0	11	104.37	2.52	No	
39	−6.9	−6.5	309.41	2	0	5	38.88	3.05	No	
40	−6.2	−6.5	425.48	6	0	11	91.48	3.15	No	
41	−7.3	−6.5	354.41	4	0	6	84.70	2.31	No	
42	−6.5	−6.5	470.48	8	0	12	137.30	2.46	Yes	

(Continued)
TABLE 7 | Continued

ID	Affinity (kcal/mol)	pMIC	pIC50	MW (<500 Da)	HAC (<5)	HDO (<5)	nRot (<5)	TPSA	logP (<5)	nVio
43	−6.4	1.40	−	323.44	2	0	5	38.88	3.28	No
44	−6.7	1.10	−	439.51	6	0	11	91.48	3.30	No
45	−7.8	2.00	−	302.42	4	0	4	42.12	1.66	No
46	−6.4	2.30	−	418.49	8	0	10	94.72	1.74	No
47	−5.8	2.00	−	304.43	4	0	7	42.12	1.93	No
48	−5.9	1.70	−	420.51	8	0	13	94.72	2.00	No

a value of -1.174 eV, whereas the negative charges of compound 4 were situated on the nitrogen atoms of the triazole ring with a value of -1.612 eV. Compound 5 has negative charges located on the nitrogen atoms of the pyrazole ring with a value of -0.492 eV greater than the negative charge of compound 9 reported by Tighadouini et al. (2019), which has -1.850 eV. The positive charges of three ligands 2, 4, and 5 located were in the NH region of the N-C-N junction with values of 0.989, 1.612, and 1.324 eV, respectively. These results permitted us valuable information on the potential sites engaged in interactions between hydrogen bonds and the amino acid residues of protein receptors.

Blind Docking/Virtual Screening

In this study, the rotatable bonds of the ligand flexibility were allowed, while the protein was adopted as a rigid structure. As a first step of this study, the three-dimensional structures of the homology modeled Fophy protein and its template, which is *Aspergillus niger* phytase (PDB:3K4P) (Gontia-Mishra et al., 2014; Toubi et al., 2019), were aligned using Pymol software (Seeliger and de Groot, 2010), and it is presented in Figure 10.

As presented, there is good alignment between the two structures with smooth change; forward blind docking/virtual screening in both structures is provided using the active compounds against F.o.a., where the dataset compounds are the ones in Table 7.

From Table 7, only 31 compounds have pMIC values between 2.54 and 7.10, with 42 having pIC50 values between 1.09 and 4.69; thus, there were 73 compounds in dataset of 48 compounds other than the nine first compounds as bactericides and insecticides. The pKi values were from 2.74 and 5.83, with 97% of the compounds not violating the Lipinski’s rule of 5, which makes it a good database for future in vivo tests.

For the Blind docking with virtual screening, the results obtained from Autodock Vina are presented in Figure 11 and Table 8.

From the results above, the majority of the ligands screened are binding into the third active site, whereas only compound 3 is in the first site and the compounds monensin-H; 33, 54, and 89 are in the second one, but with which residues the compounds are interacting in the third site; thus, the following data were collected as shown in Table 8.

From data above, the site contains the following residues: SER77, GLU78, HIS81, LEU82, PHE90, SER91, LEU92, LYS95, PHE253, ALA259, ASP260, HIS322, ILE326, ASP329, TYR330, SER333, HIS340, ASN398, ALA421, GLU422, ASN423, ILE424, THR425, THR427, PHE430, SER431, and TRP434, where 15.09% of the bonds are with ILE424, 14.62% with ASP329, 10.37% with TRP434, 9.43% with LEU82, and 7.5% with ILE326.

For more specific study, the modes of binding interactions for ligands 2, 4, and 5, which are in the third site of the Fophy protein, are presented in Figure 12. Based on the docking results, ligand 5 reached the strongest affinity of -6.0 kcal/mol, whereas ligand 2 showed -5.9 kcal/mol, and ligand 4 showed -5.8 kcal/mol.

For more specific study, the modes of binding interactions for ligands 2, 4, and 5, which are in the third site of the Fophy protein, are presented in Figure 12. Based on the docking results, ligand 5 reached the strongest affinity of -6.0 kcal/mol, whereas ligand 2 showed -5.9 kcal/mol, and ligand 4 showed -5.8 kcal/mol.

As presented in Figure 12 and Table 9, the studied compounds have multiple bonds, but only compounds 5 and 4 have carbon hydrogen bonds, whereas the strongest stay for the compounds with distance ranges from 1.59 to 5.40 Å for all bonds.

By comparing the results of the docking studies for the Fophy protein, it is found that compound 5 has the best affinity followed by compounds 2 and 4, so there is good agreement with the experimental results where their IC50 values are in the following order: 7.42 (5) < 150 (2) < 214.10 (4), but needs more
investigations with much more compounds to build a model for phytase inhibitor prediction.

For protocol validation, blind docking/virtual screening was done for the same ligands and parameters with *A. niger* phytase (PDB:3K4P), which is the homology modeling template of the studied Fophy protein, implemented in Autodock Vina, and the results are presented in Figure 13.

As presented in Figure 13, there are two different sites instead of three found in Fophy protein; compound 3 in the third one is eliminated because it is not active against F.o.a., and commonly most of the ligands screened are in the same site (the third one for Fophy protein and the second for *A. niger* phytase protein), which is approved also from all ligand visualizations using Autodock Vina and Dockthor as presented in Figure 14.

Site ID	Atrazine	Linuron	Diuron	Crotoxyphos	Dichlorvos	Phosphamidon
3	–	–	–	–	–	–
3	–	–	–	–	–	–
3	–	–	–	–	–	–
3	–	–	–	–	–	–

"y" means that there is binding between ligand and target.
Table 9: The binding interactions between the best-studied ligands and the Fophy protein selected active site.

Affinity (kcal/mol)	Interaction (L-AA)	Distance (Å)
2	−5.9	3.74
Pyrazole-LEU82: pi-sigma		
Pyrazole-LEU82: pi-alkyl		5.05
Pyridine-ASP329: pi-anion		3.54
Pyridine-ILE424: alkyl		5.41
4	−5.8	5.24
Pyrazole-ILE424: pi-alkyl		
Pyrazole-ASP329: carbon		3.15
hydrogen bond		
NH-ASP329: conventional hydrogen bond		2.03
Pyridine-LEU82: pi-alkyl		5.44
Pyridine-ILE424: pi-alkyl		5.13
5	−6.0	3.20
Pyrazole-ASP329: carbon		
hydrogen bond		
Pyrazole-ASN423: carbon		3.64
hydrogen bond		
Pyridine-HIS81: carbon		3.60
hydrogen bond		3.30
Pyrazole-ASP329: pi-anion		
Pyridine-LEU82: pi-alkyl		5.40
Pyridine-ILE424: pi-alkyl		5.13
NH-SER431: unfavorable donor		1.59

Conclusion

Series of 12 pyrazole- and triazole-based ligands were prepared in good yield up to 99.6% and characterized using 1H and 13C NMR spectroscopy. The preliminary antifungal test screening against F.o.a. proved that ligands 2, 4, and 5 showed close to total inhibition of the fungus with an appreciable increase in their efficiency, starting from low concentrations. This encouraged us to study their reactivity, using DFT, and binding affinity, using the Fophy protein to show ligand–protein interactions, as described in the literature. From the results obtained using computational methods such as DFT studies of MEP surfaces, we found that ligand 2 had negative potential electrostatic regions mainly concentrated over the nitrogen atoms of the pyrazole ring with a value of -1.174 eV, whereas compound 4 had negative charges on the nitrogen atoms of the triazole ring with a value of -1.612 eV. Ligand 5 had negative charges on the nitrogen atoms of the pyrazole with a value of -0.492 eV. The positive charges of three ligands 2, 4, and 5 were in the NH region of the N-C-N junction with values of 0.989, 1.612, and 1.324 eV, respectively. These results gave us valuable information about the potential sites involved in interactions between hydrogen bonds and the amino acid residues of the protein receptors, correlating well with the docking results. Using Blind docking/virtual screening, the predicted site contains the following residues: SER77, GLU78, HIS81, LEU82, PHE90, SER91, LEU92, PHE90, SER91, LEU92, LYS95, PHE253, ALA259, ASP260, HIS322, ILE326, ASP329, TYR340, SER333, HIS340, ASN398, ALA421, GLU422, ASN423, ILE424, THR425, THR427, PHE430, SER431, TRP434, where 15.09% of the bonds are with ILE424, 14.62% with ASP329, 10.37% with TRP434, 9.43% with LEU82, and 7.5% with ILE326. In the binding mode of interactions for ligands 2, 4, and 5, ligand 5 reached the strongest affinity of -6.0 kcal/mol, with the strongest carbon hydrogen bonds with distance range of 1.59 to 5.40 Å for all bonds, whereas ligand 2 showed -5.9 kcal/mol, and ligand 4 showed -5.8 kcal/mol. For docking validation, the same protocol using
Autodock Vina and another protocol using the Dockthor web tool give us the same predicted sites on Fophy protein.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YK conceived and designed the chemistry experiments, performed the theoretical investigations experiments as DFT and molecular docking, interpreted all the data, and wrote the paper. SO and RB conceived, designed, and performed the biological experiments. FA performed the homology modeling of the studied protein and revised the paper. ME, AA, NA-Z, and IW revised the manuscript. RT supervised the work and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Project number (RSP-2020/78).

ACKNOWLEDGMENTS

The authors acknowledged Researchers Supporting Project number (RSP-2020/78), King Saud University, Riyadh, Saudi Arabia.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2020.559262/full#supplementary-material

REFERENCES

Abrigach, F., Karzazi, Y., Benabbed, R., El youbi, M., Khoutoul, M., Taibi, N., et al. (2017). Synthesis, biological screening, POM and 3D-QSAR analyses of some novel pyrazolic compounds. Med. Chem. Res. 26, 1784–1795. doi: 10.1007/s00044-017-1888-8

Abrigach, F., Khou toul, M., Merghache, S., Oussaid, A., Lamsyah, M., Zarrouk, A., et al. (2014). Antioxidant activities of N-(3,5-dimethyl-1H-pyrazol-1-yl)methylpyridin-4-amine derivatives. Der. Pharma. Chem. 6, 280–285.

Abrigach, F., Rokni, Y., Takfaoui, A., Khoutoul, M., and Doucet, H. (2018). In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives biomedicine & pharmacotherapy. Biomed. Pharmacother. 103, 653–661. doi: 10.1016/j.biopha.2018.04.061

Akhtiar, J., Khan, A. A., Ali, Z., Haider, R., and Shahar Yar, M. (2017). Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 125, 143–189. doi: 10.1016/j.ejmech.2016.09.023

Alegaon, S. G. K. R. A., Garg, M. K., Dushyant, K., and Vinod, D. (2014). 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents. Bioorg. Chem. 54, 51–59. doi: 10.1016/j.bioorg.2014.04.001

Alpaslan, G. B. B., Demir, N., Tuner, Y., Yapar, G., Yildirim, N., Yildiz, M., et al. (2019). Synthesis, characterization, biological activity and theoretical studies of a 2-amino-6-methoxybenzothiazole-based fluorescent Schiff base. J. Mol. Struct. 1180, 170–178. doi: 10.1016/j.molstruc.2018.11.065

Arnott, J. A., and Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 7, 863–875. doi: 10.1517/17460441.2012.714363

Barbeceu, S. F., Ilies, D. C., Saramet, G., Uivarosi, V., Draghici, C., and Radulescu, V. (2014). Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int. J. Mol. Sci. 15, 10908–10925. doi: 10.3390/ijms150610908

Becke, A. D. (2014). A new mixing of hattree–fock and local density-functional theories. J. Chem. Phys. 98:1372. doi: 10.1063/1.4643040

Becke, A. D., and Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648. doi: 10.1063/1.464913

Bekhit, A. A., Hassan, A. M., Abd El Razik, H. A., El-Miligy, M. M., El-Agrody, E. J., and Bekhit Ael, D. (2015). New heterocyclic hybrids of pyrazole and its bioisosteres: design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem. 94, 30–44. doi: 10.1016/j.ejmech.2015.02.038

Benabbes, R., Lahmass, I., Souna, F., El Youbi, M., Saalaoui, E., Hakkou, A., et al. (2015). In vitro inhibitory effect of the extract powder of rosemary (Rosmarinus officinalis), oleander (Nerium oleander), grenade (Punica granatum) on the growth of Fusarium oxysporum fs albidinis and in vivo test Antagonist fungi on the incidence and the control of vascular wilt disease of date palm in palm grove in figuig south of morocco. Adv. Environ. Biol. 9, 126–132.
Bouabdallah, I., Touzani, R., Zidane, I., and Ramdani, A. (2006). Synthesis of new triepol ligand: N,N-bis[(1,5-dimethylpyrazol-3-yl)methyl]benzylamine. Catal. Commun. 8, 707–712. doi: 10.1016/j.catcom.2006.08.034

Boussalah, N., Touzani, R., Souna, F., Himri, I., Bouakka, M., Hakkou, A., et al. (2013). Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f. sp. albedinis and Saccharomyces cerevisiae yeast. J. Saudi Chem. Soc. 17, 17–21. doi: 10.1016/j.jsca.2011.02.016

Capelle, K. (2006). A bird’s-eye view of density-functional theory. arXiv. doi: 10.1590/S0103-97332006000700035

Cetin, A., and Gebciseler, I. (2015). Evaluation as antioxidant agents of 1,2,4-triazole derivatives: effects of essential functional groups. J. Appl. Pharm. Sci. 5, 120–126. doi: 10.7324/JAPS.2015.50620

Contreras-Garcia, J., and Yang, W. (2018). Perspective: chemical information encoded in electron density. Wu Li Hua Xue Xue Bao 8, 707–712. doi: 10.1016/j.catcom.2006.08.034

Dalloul, H. M., EI-nwairy, K., Shorafa, A. Z., and Samaha, A. A. (2017). Synthesis and antioxidant and antitumor activity of novel pyridine, thiazole, and pyrimidine derivatives containing sulfamoyl moiety. Int. J. Mol. Sci. 18, 231–243. doi: 10.3390/ijms18102318

Dawood, K. M., and Abdel-Wahab, B. F. (2012). ChemInform abstract: evaluation of their antileishmanial and antitrypanosomal activity. Eur. J. Med. Chem. 25, 419–424. doi: 10.1016/j.ejmech.2009.09.005

Freeman, S., and Maymon, M. (2000). Reliable detection of the fungal pathogenfusarium oxysporum f. sp. albedinis, causal agent of bayoud disease of date palm, using molecular techniques. Phytoparasitica 28, 341–348. doi: 10.1007/BF02981829

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Zheng, J. R., Scalmani, G., et al. (2009). Gaussian 09, Revision A.02. Gaussian 09, Inc, Wallington, CF.

Gatta, F., Perotti, F., Gradoni, L., Grammatica, M., Orsini, S., Palazzo, G., et al. (1990). Synthesis of some 1-(dihydroxypropyl)pyrazole[3,4-d]-pyrimidines and in vivo evaluation of their antileishmanial and antitrypanosomal activity. Eur. J. Med. Chem. 25, 419–424. doi: 10.1016/0223-5234(90)9005-N

Glaeb, E. (2016). Building a virtual ligand screening pipeline using free software: a survey building a virtual ligand screening pipeline using free software: a survey. Brief Bioinform. 17, 352–366. doi: 10.1093/bib/bbv037

Glesson, M. P., Hersey, A., Montanari, D., and Overington, J. (2011). Probing the links between in vitro potency, ADMET and physiochemical parameters. Nat. Rev. Drug Discov. 10, 197–208. doi: 10.1038/nrd3367

Gontia-Mishra, I., Kumar Singh, V., Tripathi, N., Sadidharam, S., and Tiwari, S. (2014). Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum. Biologia 69, 1283–1294. doi: 10.2478/s11756-014-0447-8

Hadda, T. B., Khardli, F. Z., Maimouni, M., Daoudi, M., Kerbal, A., Salgado-Zamora, H., et al. (2014). Impact of geometric parameters, charge, and lipophilicity on bioactivity of armed quinoxaline, benzothiazole, and benzothiozine: pom analyses of antibacterial and antifungal activity. Phosphorus Sulfur Silicon Related Elements 189, 753–761. doi: 10.1080/10426507.2013.835763

Hakkou, A., Chakroune, K., Souna, F., and Bouakka, M. (2004). “La Fusariose de la Brosse aux benzimidazoles et aux dicarboximides dans les cultures abritées de tomate en Tunisie. EPPO Bull. 26, 697–705. doi: 10.1111/j.1365-2338.1996.tb01513.x

Holladay, M. W. (2015). The organic chemistry of drug design and drug action: third edition. Drug Dev. Res. 75, 471–472.

Hou, T. J., Xia, K., Zhang, W., and Xu, X. J. (2004). ADME evaluation in drug discovery. Part 4. prediction of aqueous solubility based on atom contribution approach. J. Chem. Inf. Comput. Sci. 44, 266–275. doi: 10.1021/ci034184n

Hu, Y., Zhang, J., Yu, C., Li, Q., Dong, F., Wang, G., et al. (2014). Synthesis, characterization, and antioxidant properties of novel imin derivatives with amino-pyridine group. Int. J. Biol. Macromol. 70, 44–49. doi: 10.1016/j.ijbiomac.2014.06.024

Iaroshenko, V. O., Specwius, V., Vlach, K., Väches-Herrera, M., Ostrovsky, D., Mirkchyhan, S., et al. (2011). A general strategy for the synthesis of difluoromethyl-containing pyrazines, pyridines and pyrimidines. Tetrahedron 67, 5663–5677. doi: 10.1016/j.tet.2011.05.085

Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud. 6, 112–115. doi: 10.22271/plants.2018.v6.i3b.07

Kaddouri, Y. A. T., Abrigach, F., El Azzouzi, M., Zarrouk, A., and Hammouti, B. (2020). Tridentate pyrazole ligands: Synthesis, characterization and corrosion inhibitors for steel in hydrochloric acid solutions. Mater. Chem. Phys. Phys. 93, 281–285. doi: 10.1016/j.matchemphys.2003.08.011

Elbelghiti, M., Karzazi, Y., Dafali, A., Hammouti, B., Bentiss, F., Obot, I. B., Bahadir, I., et al. (2016). Experimental, quantum chemical and monte carlo simulation studies of 3,5-disubstituted-4-amino-1,2,4-triazoles as corrosion inhibitors on mild steel in acidic medium. J. Mol. Liq. 218, 281–293. doi: 10.1016/j.molliq.2016.01.076

El-Naggar, A. M., and Abdel-Mottaleb, M. S. A. (2017). Novel thiazole derivatives of medicinal potential: synthesis and modeling. J. Chem. 2017:4102796. doi: 10.1155/2017/4102796

El-Sayed, A. A., and Ismail, M. F. (2019). Synthesis and in-vitro antioxidant and antitumor evaluation of novel pyrazole-based heterocycles. J. Iran. Chem. Soc. 16, 921–937. doi: 10.1007/s13738-018-1566-x

Eschrig, H. (2003). The Fundamentals of Density Functional Theory. Dresden: Institute for Solid State and Materials Research Dresden and University of Technology Dresden. 204–204.

Fadda, A. A., Berghot, M. A., Amer, F. A., Badawy, D. S., and Bayoumy, N. M. (2012). Synthesis and antioxidant and antitumor activity of novel pyridine, chromene, thiazole and thiadiazole derivatives. Arch. Pharm. 345, 378–385. doi: 10.1002/ardp.201100335

Kaddouri, Y., Abrigach, F., El Azzouzi, M., Zarrouk, A., and Hammouti, B. (2017). Tridentate pyrazole ligands: Synthesis, characterization and corrosion inhibition properties with theoretical investigations. JMS. 8, 845–856.

Kauthale, S., Tekale, S., Damale, M., Sangshetti, J., and Pawar, P. (2017). Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett. 27, 3891–3896. doi: 10.1016/j.bmcl.2017.06.043

Koudad, M., El Hamouti, C., Elaatiaoui, A., Dadou, S., Oussaid, A., Abrigach, F., et al. (2019). Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives. J. Iran. Chem. Soc. 17, 297–306. doi: 10.1590/S0103-97332019-01766-4
Santos, K. B., Guedes, I. A., Karl, A. L. M., and Dardenne, L. E. (2020). Sima, I. A., Kot-Wasik, A., Wasik, A., Namie´snik, J., and Sârbu, C. Sahu, N., Sahu, J. K., and Kaushik, A. (2013). A review on ‘triazoles’.

Shaikh, M. H., Subhedar, D. D., Khan, F. A. K., Sangshetti, J. N., and Mannhold, R., Poda, G. I., Ostermann, C., and Tetko, I. V. (2009).

Kryachko, E. S. (2013). Applications of Density Functional Theory to Biological and Bioorganic Chemistry. Berlin: Heidelberg: Springer-Verlag (2013). doi: 10.1007/978-3-642-32750-6

Leson, P. D., and Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890. doi: 10.1038/nrd2445

Locke, T., and Colbourn, J. (1974). Contributions to a method of testing oil palm seedlings for resistance to Fusarium oxysporum Schlechter. f. sp. elaeidis toovey. Phytopathol. J. 1, 79–92. doi: 10.1111/j.1439-0434.1974.tb02691.x

Loth, B. M., Tir Touil, A., Len, C., and Verstraete, W. (2015). Antifungal activity of the LEADS-PEP protein-peptide data set.

Pricopie, A. I., Foc¸san, M., Ionu¸t I., Marc, G., Vlase, L., G˘˘, Podunavac-Kuzmanovic, S. O., Cvetkovic, D. D., and Barna, D. J. (2008).

Loth, B. M., Tir Touil, A., Len, C., and Verstraete, W. (2015). Antifungal activity of the LEADS-PEP protein-peptide data set. Frontiers in Chemistry | www.frontiersin.org 17 December 2020 | Volume 8 | Article 559262

Kryachko, E. S. (2013).

Kaddouri et al. New Antifungal Azole Fophy Inhibitors

Kaddouri et al. New Antifungal Azole Fophy Inhibitors
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., and Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. *J. Med. Chem.* 45, 2615–2623. doi: 10.1021/jm020017n

Waring, M. J., Ben-Hadda, T., Kotchevar, A. T., Ramdani, A., Touzani, R., Elkadiri, S., et al. (2002). 2,3-Bifunctionalized quinoxalines: synthesis, DNA interactions and evaluation of anticancer, anti-tuberculosis and antifungal activity. *Molecules* 7, 641–656. doi: 10.3390/molecules70800641

Wei, L., Tan, W., Zhang, J., Mi, Y., Dong, F., Li, Q., et al. (2019). Synthesis, characterization, and antifungal activity of schiff bases of inulin bearing pyridine ring. *Polymers* 11:371. doi: 10.3390/polym11020371

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Kaddouri, Abrigach, Ouahhoud, Benabbes, El Kodadi, Alsalme, Al-Zaqri, Ward and Touzani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.