KURATOWSKI MONOIDS OF n-TOPOLOGICAL SPACES

T. BANAKH, O. CHERVAK, T. MARTynyuk, M. PylyPovycH, A. RAVSKy, M. SIMKIV

Dedicated to the 120-th birthday of K. Kuratowski (1896-1980)

Abstract. Generalizing the famous 14-set closure-complement Theorem of Kuratowski from 1922, we prove that for a set X endowed with n pairwise comparable topologies $\tau_1 \subset \cdots \subset \tau_n$, by repeated application of the operations of complement and closure in the topologies τ_1, \ldots, τ_n to a subset $A \subset X$ we can obtain at most $2K(n) = 2\sum_{i,j=0}^n \binom{i+j}{i}\binom{i+j}{j}$ distinct sets.

1. Introduction

This paper was motivated by the famous Kuratowski 14-set closure-complement Theorem \(^1\), which says that for any topological space (X, τ) the operators of complement $c : \mathcal{P}(X) \to \mathcal{P}(X)$, $c : A \to X \setminus A$ and closure $\overline{\tau} : \mathcal{P}(X) \to \mathcal{P}(X)$, $\overline{\tau} : A \mapsto \overline{A}$, generate a submonoid $\langle c, \overline{\tau} \rangle$ of cardinality ≤ 14 in the monoid $\mathcal{P}(X)^{\mathcal{P}(X)}$ of all self-maps of the power-set $\mathcal{P}(X)$ of X.

In \(^2\) Shallitt and Willard constructed two commuting closure operators $p, q : \mathcal{P}(X) \to \mathcal{P}(X)$ on the power-set $\mathcal{P}(X)$ of a countable set X such that the submonoid $\langle p, q, c \rangle \subset \mathcal{P}(X)^{\mathcal{P}(X)}$ generated by these closure operators and the operator of complement is infinite. In Example 3.1 below we shall define two metrizable topologies τ_1 and τ_2 on a countable set X such that the closure operators $\overline{\tau}_1$ and $\overline{\tau}_2$ in the topologies τ_1 and τ_2 generate an infinite submonoid $\langle \overline{\tau}_1, \overline{\tau}_2 \rangle$ in the monoid $\mathcal{P}(X)^{\mathcal{P}(X)}$ of all self-maps of $\mathcal{P}(X)$. Moreover, for some set $A \subset X$ the set $\{ f(A) : f \in \{ \overline{\tau}_1, \overline{\tau}_2 \} \}$ is infinite. This shows that Kuratowski’s 14-set theorem does not generalize to spaces endowed with two or more topologies.

The situation changes dramatically if two topologies τ_1 and τ_2 on a set X are comparable, i.e., one of these topologies is contained in the other. In this case we shall prove that the closure operators $\overline{\tau}_1, \overline{\tau}_2 : \mathcal{P}(X) \to \mathcal{P}(X)$ induced by these topologies together with the operator c of complement generate a submonoid $\langle \overline{\tau}_1, \overline{\tau}_2, c \rangle \subset \mathcal{P}(X)$ of cardinality ≤ 126. In fact, we shall consider this problem in a more general context of multitopological spaces and polytopological spaces.

By a multitopological space we understand a set X endowed with a family \mathcal{T} of topologies on X. A multitopological space (X, \mathcal{T}) is called polytopological if the family of its topologies \mathcal{T} is linearly ordered by the inclusion relation. A typical example of a polytopological space is the real line endowed with the Euclidean and Sorgenfrey topologies. Another natural example of a polytopological space is any Banach space, carrying the norm and weak topologies. A dual Banach space is an example of a polytopological space carrying three topologies: the norm topology, the weak topology and the $*$-weak topology. A topological space (X, τ) can be thought as a polytopological space $(X, \{ \tau \})$ endowed with the family $\{ \tau \}$ consisting of a single topology τ.

For a topology τ on a set X by $\overline{\tau} : \mathcal{P}(X) \to \mathcal{P}(X)$ and $\overline{\tau} : \mathcal{P}(X) \to \mathcal{P}(X)$ we shall denote the operators of taking the interior and closure with respect to the topology τ. These operators assign to each subset $A \subset X$ its interior $\overline{\tau}(A)$ and closure $\overline{\tau}(A)$, respectively. Since $\tau = \{ \overline{\tau}(A) : A \subset X \} = \{ X \setminus \overline{\tau}(A) : A \subset X \}$ the topology τ can be recovered from the operators $\overline{\tau}$ and $\overline{\tau}$.

For a multitopological space $X = (X, \mathcal{T})$ the submonoid $K(X) = \langle \overline{\tau}, \overline{\tau} : \tau \in \mathcal{T} \rangle$

\(^1\)A complete bibliography related to the Kuratowski 14-set closure-complement Theorem is collected on the web-site http://www.mathtransit.com/cornucopia.php created by Mark Bowron.
in \(\mathcal{P}(X)^{\mathcal{P}(X)} \) generated by the interior and closure operators \(\bar{\tau}, \bar{\tau} \) for \(\tau \in \mathcal{T} \), will be called the Kuratowski monoid of the multitopological space \(X \). A somewhat larger submonoid

\[
K_2(X) = \langle c, \bar{\tau} : \tau \in \mathcal{T} \rangle
\]

in \(\mathcal{P}(X)^{\mathcal{P}(X)} \) generated by the operator of complement \(c \) and the closure operators \(\bar{\tau}, \tau \in \mathcal{T} \), will be called the full Kuratowski monoid of the multitopological space \(X \).

Taking into account that \(\bar{\tau} = c \circ \bar{\tau} \circ c \) and \(\bar{\tau} = c \circ \bar{\tau} \circ c \), we see that \(K(X) \subseteq K_2(X) \) and moreover,

\[
K_2(X) = K(X) \cup (c \circ K(X)),
\]

which implies that \(|K_2(X)| \leq 2 \cdot |K(X)| \).

The notion of a multitopological space has one disadvantage: multitopological spaces do not form a category (it is not clear what to understand under a morphism of multitopological spaces). This problem with multitopological spaces can be easily fixed by introducing their parametric version called \(L \)-topological spaces where \((L, \leq)\) is a partially ordered set.

Given a subset \(X \) we denote by \(\text{Top}(X) \) the family of all possible topologies on \(X \), partially ordered by the inclusion relation. The family \(\text{Top}(X) \) is a lattice whose smallest element is the anti-discrete topology \(\tau_o \) and the largest element is the discrete topology \(\tau_d \) on \(X \). Observe that for the discrete topology the operators \(\bar{\tau}_d \) and \(\bar{\tau}_d \) coincide with the identity operator \(1_X \) on \(\mathcal{P}(X) \).

Let \((L, \leq)\) be a partially ordered set. By definition, an \(L \)-topology on a set \(X \) is any monotone map \(\tau : L \to \text{Top}(X) \). The monotonicity of \(\tau \) means that for any elements \(i \leq j \) in \(L \) we get \(\tau(i) \subseteq \tau(j) \). In the sequel for an element \(i \in L \) it will be convenient to denote the topology \(\tau(i) \) by \(\tau_i \). By an \(L \)-topological space we shall understand a pair \((X, \tau)\) consisting of a set \(X \) and an \(L \)-topology \(\tau : L \to \text{Top}(X) \) on \(X \).

By a morphism between two \(L \)-topological spaces \((X, \tau)\) and \((Y, \sigma)\) we understand a map \(f : X \to Y \) which is continuous as a map between topological spaces \((X, \tau_i)\) and \((Y, \sigma_i)\) for every \(i \in L \). \(L \)-Topological spaces and their morphisms form a category called the category of \(L \)-topological spaces. Each \(L \)-topological space \(X = (X, \tau) \) can be thought as a multitopological space endowed with the family of topologies \(\{\tau_i\}_{i \in L} \). If the set \(L \) is linearly ordered, then the multitopological space \((X, \{\tau_i\}_{i \in L})\) is polytopological.

So we can speak about the Kuratowski monoid \(K(X) \) and the full Kuratowski monoid \(K_2(X) \) of an \(L \)-topological space \(X \).

We shall be especially interested in (full) Kuratowski monoids of \(n \)-topological spaces where \(n = \{0, \ldots, n-1\} \) is a finite non-zero ordinal (or a natural number). Observe that \(n \)-topological spaces can be thought as sets endowed with \(n \)-topologies \(\tau_0 \subseteq \tau_1 \subseteq \cdots \subseteq \tau_{n-1} \).

We shall prove that the upper bound for the cardinality of the Kuratowski monoid \(K(X) \) of an \(n \)-topological space \(X \) is given by the number

\[
K(n) = \sum_{i,j=0}^{n} \binom{n}{i+j} \cdot \binom{i+j}{j}
\]

where \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the binomial coefficient.

The main result of this paper is the following theorem.

Theorem 1.1. For any \(n \)-topological space \(X = (X, \mathcal{T}) \) its Kuratowski monoid \(K(X) \) has cardinality \(|K(X)| \leq K(n) \) and its full Kuratowski monoid \(K_2(X) \) has cardinality \(|K_2(X)| \leq 2 \cdot K(n) \).

The upper bounds \(|K(X)| \leq K(n) \) and \(|K_2(X)| \leq 2 \cdot K(n) \) given in Theorem 1.1 are exact as shown in our next theorem.

Theorem 1.2. For every \(n \in \omega \) there is an \(n \)-topological space \(X = (X, \mathcal{T}) \) such that \(|K(X)| = K(n) \) and \(|K_2(X)| = 2 \cdot K(n) \).

This theorem will be proved in Section 8 (see Corollary 8.2). The asymptotics of the sequence \(K(n) \) is described in the following theorem, which will be proved in Section 6.

Theorem 1.3. There exists \(\lim_{n \to \infty} K(n)/(2n) = \sup_{n \to \infty} K(n)/(2n) = 16/9 \) which implies that \(K(n) = (16/9 + o(1)) \cdot (2n) \) for \(n \leq 9 \).

The values of the sequences \(K(n) \) and \(2K(n) \) for \(n \leq 9 \), calculated with help of computer are presented in the following table:
KURATOWSKI MONOIDS OF n-TOPOLOGICAL SPACES

n	0	1	2	3	4	5	6	7	8	9
$K(n)$	1	7	63	697	8549	111033	1495677	20667463	291020283	4157865643
$2K(n)$	2	14	126	1394	17098	222066	2991359	41334926	582040566	8315731286

In particular, the Kuratowski monoid $K(X)$ of any topological space $X = (X, \tau)$ consists of 7 elements (some of which can coincide [2]):

1, $\check{\tau}$, $\check{\check{\tau}}$, $\check{\check{\check{\tau}}}$, $\check{\check{\check{\check{\tau}}}}$, $\check{\check{\check{\check{\check{\tau}}}}}$.

For a 2-topological space $X = (X, \tau)$ endowed with two topologies $\tau_0 \subset \tau_1$ the number of elements of the Kuratowski monoid $K(X)$ increases to 63 (see Proposition 9.2):

1, $\check{\tau}_0$, $\check{\check{\tau}}$, $\check{\check{\check{\tau}}}$, $\check{\check{\check{\check{\tau}}}}$, $\check{\check{\check{\check{\check{\tau}}}}}$.

2. The Kuratowski Monoid of a Saturated Polytopological Space

In this section we introduce a class of n-topological spaces $X = (X, \mathcal{T})$ whose Kuratowski monoids $K(X)$ have cardinality strictly smaller than $K(n)$.

A multitopological space (X, \mathcal{T}) is called saturated if for any topologies $\tau_0, \tau_1 \in \mathcal{T}$ each non-empty open subset $U \in \tau_0$ has non-empty interior in the topology τ_1. A typical example of a saturated multitopological space is the real line \mathbb{R} endowed with the Euclidean and Sorgenfrey topologies $\tau_0 \subset \tau_1$.

For a linearly ordered set L an L-topological space (X, τ) is defined to be saturated if the multitopological space $(X, \{\tau_i\}_{i \in L})$ is saturated.

Theorem 2.1. For a saturated polytopological space $X = (X, \tau)$ the Kuratowski monoid $K(X)$ coincides with the set

$$\{1\} \cup \{\check{\tau}, \check{\check{\tau}}, \check{\check{\check{\tau}}}, \check{\check{\check{\check{\tau}}}} : \tau \in \mathcal{T}\}$$

and hence has cardinality $|K(X)| \leq 1 + 6 \cdot |\mathcal{T}|$.

Proof. The definition of a saturated polytopological space $X = (X, \tau)$ implies that $\check{\tau}_0 \check{\tau}_1 = \check{\tau}_0 \check{\tau}_0$ for any topologies $\tau_0, \tau_1 \in \mathcal{T}$. Applying to this equality the operator c of taking complement, we get

$$\check{\tau}_0 \check{\tau}_1 = c\tau_0 c\tau_1 c = c\tau_0 \tau_0 c = c\tau_0 c\tau_0 c = \check{\tau}_0 \check{\tau}_0.$$

This implies that

$$K(X) = \bigcup_{\tau \in \mathcal{T}} K(X, \tau) = \bigcup_{\tau \in \mathcal{T}} \{1, \check{\tau}, \check{\check{\tau}}, \check{\check{\check{\tau}}}, \check{\check{\check{\check{\tau}}}}\}$$

and hence $|K(X)| \leq 1 + \sum_{\tau \in \mathcal{T}} (|K(X, \tau)| - 1) \leq 1 + 6 \cdot |\mathcal{T}|$. □

Example 2.2. Let $X = (\mathbb{R}, \{\tau_0, \tau_1\})$ be the real line \mathbb{R} endowed with the Euclidean topology τ_0 and the Sorgenfrey topology τ_1. The Kuratowski monoid $K(X)$ has cardinality $|K(X)| = 13$. Moreover, for some set $A \subset \mathbb{R}$ the family $K(X)A = \{f(A) : A \in K(X)\}$ has cardinality $|K(X)A| = |K(X)| = 13$.

Proof. The upper bound $|K(X)| \leq 13$ follows from Theorem 2.1. To prove the lower bound $|K(X)| \geq 13$, consider the subset

$$A = \bigcup_{n=0}^{\infty} (3^{-2n-1}, 3^{-2n}) \cup (1, 2) \cup \{3\} \cup ([4, 5) \cap \mathbb{Q})$$

and observe that the following 13 subsets of \mathbb{R} are pairwise distinct, witnessing that $|K(X)| \geq |\{f(A) : f \in K(X)\}| \geq 13$.

Observe that the family \(\{ f(A) : f \in K(X) \} \) is infinite and hence the Kuratowski monoid \(K(X) \) of the multitopological space \(X = (X, \{ \tau_0, \tau_1 \}) \) is infinite too.

\[\square \]

Theorem 2.2 gives a partial answer to the following general problem.

Problem 2.3. Which properties of a polytopological space \(X \) are reflected in the algebraic structure of its Kuratowski monoid \(K(X) \)?

3. An example of a multitopological space with infinite Kuratowski monoid

In this section we shall construct the following example announced in the introduction.

Example 3.1. There is a countable space \(X \) endowed with two (incomparable) metrizable topologies \(\tau_0, \tau_1 \) such that the Kuratowski monoid \(K(X) \) of the multitopological space \(X = (X, \{ \tau_0, \tau_1 \}) \) is infinite. Moreover, for some set \(A \subset X \) the family \(\{ f(A) : f \in K(X) \} \) is infinite.

Proof. Take any countable metrizable topological space \(X \) containing a decreasing sequence of non-empty subsets \((X_n)_{n \in \omega} \) such that \(X_0 = X, \bigcap_{n \in \omega} X_n = \emptyset \) and \(X_{n+1} \) is nowhere dense in \(X_n \) for all \(n \in \omega \).

To find such a space \(X \), take the convergent sequence \(S_0 = \{0\} \cup \{2^{-n} : n \in \omega \} \) and consider the subspace

\[
X = \{(x_k)_{k \in \omega} \in S_0^\omega : \exists n \in \omega \ \forall k \geq n \ x_k = 0\} \setminus \{0\}^\omega
\]

of the countable power \(S_0^\omega \) endowed with the Tychonoff product topology. It is easy to see that the subsets

\[
X_n = \{(x_k)_{k \in \omega} \in X : \forall k < n \ x_k = 0\}, \quad n \in \omega,
\]

have the required properties: \(X_0 = X, \bigcap_{n \in \omega} X_n = \emptyset \) and \(X_{n+1} \) is nowhere dense in \(X_n \).

On the space \(X \) consider two topologies

\[
\tau_0 = \{U \subset X : \forall n \in \omega \ U \cap (X_{2n+1} \setminus X_{2n+2}) \text{ is open in } X_{2n} \setminus X_{2n+2}\}
\]

and

\[
\tau_1 = \{U \subset X : \forall n \in \omega \ U \cap (X_{2n+1} \setminus X_{2n+3}) \text{ is open in } X_{2n+1} \setminus X_{2n+3}\}.
\]

Observe that \(\tau_0 \) coincides with the topology of the topological sum \(\bigoplus_{n \in \omega} X_{2n} \setminus X_{2n+2} \) while \(\tau_2 \) coincides with the topology of the topological sum \(\bigoplus_{n \in \omega} X_{2n+1} \setminus X_{2n+3} \).

We claim that the multitopological space \(X = (X, \{ \tau_0, \tau_1 \}) \) has the required properties.

By \(\tilde{\tau}_1, \tilde{\tau}_2 : P(X) \to P(X) \) we denote the closure operators in the topologies \(\tau_1 \) and \(\tau_2 \), respectively. The nowhere density of \(X_{n+1} \) in \(X_n \) for all \(n \in \omega \) and the definition of the topologies \(\tau_0, \tau_1 \) imply that for every \(n \in \omega \)

1. \(\tilde{\tau}_0(X \setminus X_{2n+1}) = X \setminus X_{2n+2}; \)
2. \(\tilde{\tau}_1(X \setminus X_{2n+2}) = X \setminus X_{2n+3}; \)
3. \(\tilde{\tau}_1(X \setminus X_{2n+1}) = X \setminus X_{2n+3}; \)
4. \(\tilde{\tau}_1^2(X \setminus X_1) = X \setminus X_{2n+1}. \)

Therefore, for the set \(A = X \setminus X_1 \) the sets \((\tilde{\tau}_1 \tilde{\tau}_0)(A), n \in \omega \), are pairwise distinct, which implies that the family \(\{ f(A) : f \in K(X) \} \) is infinite and hence the Kuratowski monoid \(K(X) \) of the multitopological space \(X = (X, \{ \tau_0, \tau_1 \}) \) is infinite too.

\[\square \]
4. Kuratowski monoids

To prove Theorem 1.1 we shall use the natural structure of partial order on the monoid $P(X)^P(X)$. For two maps $f, g \in P(X)^P(X)$ we write $f \leq g$ if $f(A) \subseteq g(A)$ for every subset $A \subset X$. This partial order turns $P(X)$ into a partially ordered monoid.

By a partially ordered monoid we understand a monoid M endowed with a partial order \leq which is compatible with the semigroup operation of M in the sense that for any points $x, y, z \in M$ the inequality $x \leq y$ implies $xz \leq yz$ and $zx \leq zy$. Recall that a monoid is a semigroup S possessing a two-sided unit $1 \in S$.

Observe that for two comparable topologies $\tau_1 \subseteq \tau_2$ on a set X we get

$$\hat{\tau}_1 \leq \hat{\tau}_2 \leq 1_X \leq \hat{\tau}_2 \leq \hat{\tau}_1$$

where $1_X : P(X) \to P(X)$ is the identity transformation of $P(X)$. Now we see that for a polytopological space $X = (X, T)$ its Kuratowski monoid $K(X) = \langle \hat{\tau}, \tau : \tau \in T \rangle$ is generated by the linearly ordered set

$$L(X) = \{ \hat{\tau} : \tau \in T \} \cup \{ 1_X \} \cup \{ \hat{\tau} : \tau \in T \}.$$

This leads to the following

Definition 4.1. A Kuratowski monoid is a partially ordered monoid K generated by a finite linearly ordered set L containing the unit 1 of K and consisting of idempotents.

The set L will be called a linear generating set of the Kuratowski monoid K. This set can be written as the union $L = L_- \cup \{ 1 \} \cup L_+$ where $L_- = \{ x \in L : x < 1 \}$ and $L_+ = \{ x \in L : x > 1 \}$ are the sets of negative and positive generating elements of K.

A Kuratowski monoid K is called a Kuratowski monoid of type (n, p) if K has a linear generating set L such that $|L_-| = n$ and $|L_+| = p$.

For two numbers $n, p \in \omega$ consider the number

$$K(n, p) = \sum_{i=0}^{n} \sum_{j=0}^{p} \binom{i+j}{i} \cdot \binom{i+j}{j}$$

and observe that $K(n) = K(n, n)$ for every $n \in \omega$.

It is easy to see that for each polytopological space $X = (X, T)$ endowed with $n = |T|$ topologies, its Kuratowski monoid $K(X)$ is a Kuratowski monoid of type (n, n) or $(n-1, n-1)$. The latter case happens if the polytopology T of X contains the discrete topology τ_d on X. In this case $\hat{\tau}_d = 1_X = \hat{\tau}_d$.

Now we see that Theorem 1.1 is a partial case of the following more general theorem, which will be proved in Section 7 (more precisely, in Theorem 7.1).

Theorem 4.2. Each Kuratowski monoid K of type (n, p) has cardinality $|K| \leq K(n, p)$.

The values of the double sequence $K(n, p)$ for $n, p \leq 9$ were calculated by computer:

n	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	6	7	8	9	10	
1	2	7	17	34	60	97	147	212	294	395
2	3	17	63	180	431	909	1743	3104	5211	8337
3	4	34	180	697	2173	5787	13677	29438	58770	110296
4	5	60	431	2173	8549	28039	80029	204690	479047	1041798
5	6	97	909	5787	28039	11033	376467	1128392	3059118	7629873
6	7	147	1743	13677	80029	376467	1495677	5192258	16140993	45761773
7	8	212	3104	29438	204690	1128392	5192258	20667463	73025423	233519803
8	9	294	5211	58770	479047	3059118	7629873	291020283	1042490763	
9	10	395	8337	110296	1041798	7629873	45761773	233519803	1042490763	4157865643

5. Kuratowski words

Theorem 4.2 will be proved by showing that each element of a Kuratowski monoid K with linear generating set L can be represented by a Kuratowski word in the alphabet L. Kuratowski words are defined as follows.

By a pointed linearly ordered set we understand a linearly ordered set L with a distinguished element $1 \in L$ called the unit of L. This element divides the set $L \setminus \{ 1 \}$ into negative and positive parts $L_- = \{ x \in L : x < 1 \}$ and $L_+ = \{ x \in L : x > 1 \}$, respectively. By $FS_L = \bigcup_{n=1}^{\infty} L^n$ we denote the free semigroup over L. It consists
of non-empty words in the alphabet \(L \). The semigroup operation on \(FS_L \) is defined as the concatenation of words. The set \(L \) is identified with the set \(L^1 \) of words of length 1 in the alphabet \(L \).

A word \(w = x_1 \ldots x_n \in FS_L \) of length \(n \) is called alternating if for each natural number \(i \) with \(1 \leq i < n \) the doubleton \(\{x_i, x_{i+1}\} \) intersects both sets \(L_- \) and \(L_+ \). According to this definition, words of length 1 also are alternating. On the other hand, an alternating word of length \(\geq 2 \) does not contain a letter equal to 1.

An alternating word \(x_0 \cdots x_n \in FS_L \) of length \(n + 1 \geq 2 \) is defined to be

- a \(v_x \)-word if there is an integer number \(m \in \{0, \ldots, n - 1\} \) such that the sequences \((x_{m+2i})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly increasing in \(L_- \) and the sequences \((x_{m+2i+1})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly decreasing in \(L_+ \);
- a \(v^-_x \)-word if there is a number \(m \in \{0, \ldots, n - 1\} \) such that the sequences \((x_{m+2i})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly decreasing in \(L_+ \) and the sequences \((x_{m+2i+1})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly increasing in \(L_- \);
- a \(w_x \)-word if there is a number \(m \in \{1, \ldots, n - 1\} \) such that \(x_{m-1} = x_{m+1} \in L_- \), the sequences \((x_{m+1+2i})_{0 \leq i \leq \frac{n-m}{2}} \), \((x_{m-1+2i})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly increasing in \(L_- \) and the sequences \((x_{m+2i})_{0 \leq i \leq \frac{n-m}{2}} \), \((x_{m+2i+1})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly decreasing in \(L_+ \);
- a \(w^-_x \)-word if there is a number \(m \in \{1, \ldots, n - 1\} \) such that \(x_{m+1} = x_{m-1} \in L_+ \), the sequences \((x_{m+3+2i})_{0 \leq i \leq \frac{n-m+2}{2}} \), \((x_{m-1+2i})_{0 \leq i \leq \frac{n-m-1}{2}} \) are strictly decreasing in \(L_- \) and the sequences \((x_{m+2i})_{0 \leq i \leq \frac{n-m}{2}} \), \((x_{m+2i+2})_{0 \leq i \leq \frac{n-m}{2}} \) are strictly increasing in \(L_+ \).

By \(V_x \) (resp. \(V^+_x \), \(V^-_x \), \(W_x \), \(W^-_x \)) we denote the family of all \(v_x \)-words (resp. \(v^+_x \)-words, \(v^-_x \)-word, \(w_x \)-words) in the alphabet \(L \). It is easy to see that the families of words \(V_x \), \(V^+_x \), \(W_x \), \(W^-_x \) are pairwise disjoint. Words that belong to the set \(K_L = L^1 \cup V_x \cup V^+_x \cup W_x \cup W^-_x \) are called Kuratowski words in the alphabet \(L \).

Let us calculate the cardinality of the set \(K_L \) depending on the cardinalities \(n = |L_-| \) and \(p = |L_+| \) of the negative and positive parts of \(L \).

For non-negative integers \(n, r \) by \(\binom{n}{r} \) we denote the cardinality of the set of \(r \)-element subsets of an \(n \)-element set. It is clear that

\[
\binom{n}{r} = \begin{cases} \frac{n!}{r!(n-r)!} & \text{if } 0 \leq r \leq n; \\ 0 & \text{otherwise.}
\end{cases}
\]

The numbers \(\binom{n}{r} \) will be called binomial coefficients. The following properties of binomial coefficients are well-known (see, e.g. [3, §5.1]).

Lemma 5.1. For any non-negative integer numbers \(m, n, k \) we get

1. \(\binom{n}{k} = \binom{n}{n-k} \),
2. \(\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \), and
3. \(\binom{n+m}{k} = \sum_{l=0}^{n} \binom{n}{l} \binom{m}{k-l} \).

In the following theorem we calculate the cardinality of the set \(K_L \) of Kuratowski words.

Theorem 5.2. For any finite pointed linearly ordered set \(L \) with \(n = |L_-| \) and \(p = |L_+| \) we get

1. \(|V_x| = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{l} \binom{p}{k-l} \binom{k+1}{l+1} \binom{n-l}{r} \),
2. \(|V^+_x| = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{l} \binom{p}{k-l} \binom{k+1}{l} \binom{n-l}{r} \),
3. \(|W_x| = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{l} \binom{p}{k-l} \binom{k+1}{l} \binom{n-l}{r} \),
4. \(|W^-_x| = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{l} \binom{p}{k-l} \binom{k+1}{l} \binom{n-l}{r} \),
5. \(|K_L| = \sum_{k=0}^{n} \binom{n}{k} \binom{p}{k} = K(n, p) \).

Proof.

1. To calculate the number of \(v_x \)-words, fix any \(v_x \)-word \(v \in V_x \) and write it as an alternating word \(v = x_k \ldots x_{2m} \ldots x_q \) such that the sequences \((x_{2m+2i})_{0 \leq i \leq \frac{2m}{2}} \) and \((x_{2m+2i-1})_{0 \leq i \leq \frac{2m-1}{2}} \) are strictly increasing in \(L_- \) and the sequences \((x_{2m+1+2i})_{0 \leq i \leq \frac{2m}{2}} \) and \((x_{2m+1+2i-1})_{0 \leq i \leq \frac{2m-1}{2}} \) are strictly decreasing in \(L_+ \). It follows that the sequence \((x_{2m+2i})_{1 \leq i \leq \frac{2m}{2}} \) is a strictly increasing sequence of length \(r = \left\lfloor \frac{2m}{2} \right\rfloor \) in the
linearly ordered set $A = \{x \in L : x > x_{2m}\} \subset L_+$. The number of such sequences is equal to \(\binom{q}{a} \) where the cardinality $a = |A|$ can vary from 0 (if x_{2m} is the largest element of the set L_+) till $n - 1$ (if x_{2m} is the smallest element of L_+). By analogy, $(x_{2m-2i})_{1 \leq i \leq \frac{2m-k}{2}}$ is a strictly increasing sequence of length $l = \left\lfloor \frac{2m-k}{2} \right\rfloor$ in the linearly ordered set A and the number of such sequences is equal to \(\binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \).

If $l = \left\lfloor \frac{2m-k}{2} \right\rfloor$, then $2m = k + 2l$ and $(x_{2m+1-2i})_{1 \leq i \leq \frac{2m-k}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{2m+1-k}{2} \right\rfloor = l$ in the linearly ordered set $B = \{x \in L : x < x_{2m+1}\} \subset L_+$. The number of such sequences is equal to \(\binom{\left\lfloor \frac{2m+1-k}{2} \right\rfloor}{i} \) where $b = |B| < p$. If $l = \frac{2m-k-2}{2}$, then $2m = k + 1 + 2l$ and $(x_{2m+1-2i})_{1 \leq i \leq \frac{2m+1-k}{2}}$ is a strictly increasing sequence of length $\left\lfloor \frac{2m+1-k}{2} \right\rfloor = l + 1$ in the set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{2m+1-k}{2} \right\rfloor}{i+1} \).

If $r = \frac{q-2m}{2}$, then $2m = q - 2r$ and $(x_{2m+1+2i})_{1 \leq i \leq \frac{q-2m}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{q-2m-1}{2} \right\rfloor = r - 1$ in the linearly ordered set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \). If $r = \frac{q-2m-1}{2}$, then $2m = q - 1 - 2r$ and $(x_{2m+1+2i})_{1 \leq i \leq \frac{q-2m-1}{2}}$ is a strictly decreasing sequences of length $\left\lfloor \frac{q-2m-1}{2} \right\rfloor = r$ in the linearly ordered set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \). Summing up and applying Lemma 5.1(2), we conclude that the family V_\ast of all V_\ast-words has cardinality

$$|V_\ast| = \sum_{a=0}^{n-1} \sum_{l=0}^{p-1} \sum_{a=0}^{a} \sum_{b=0}^{b} \binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{2m+1-k}{2} \right\rfloor}{i+1} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i+1}.$$

2. By analogy we can prove that

$$|W_\ast| = \sum_{a=0}^{n-1} \sum_{l=0}^{p-1} \sum_{a=0}^{a} \sum_{b=0}^{b} \binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{2m+1-k}{2} \right\rfloor}{i+1} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i+1}.$$

3. To calculate the number of W_\ast-words, fix any W_\ast-word $w \in W_\ast$ and write it as an alternating word $w = x_k \ldots x_{2m} \ldots x_q$ such that $k < 2m < q$, $x_{2m} \in L_-$, $x_{2m-1} = x_{2m+1} \in L_+$, the sequences $(x_{2m+2i})_{0 \leq i \leq \frac{2m-k}{2}}$ are strictly increasing in L_- whereas the sequences $(x_{2m+1+2i})_{0 \leq i \leq \frac{q-2m-1}{2}}$ and $(x_{2m-1-2i})_{0 \leq i \leq \frac{q-2m-1}{2}}$ are strictly decreasing in L_+. It follows that $(x_{2m-2i})_{1 \leq i \leq \frac{2m-k}{2}}$ is a strictly increasing sequence of length $l = \left\lfloor \frac{2m-k}{2} \right\rfloor$ in the linearly ordered set $A = \{x \in L : x > x_{2m}\} \subset L_+$. The number of such sequences is equal to \(\binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \) where $a = |A| < n$. By analogy, $(x_{2m+1+2i})_{0 \leq i \leq \frac{q-2m-1}{2}}$ is a strictly increasing sequence of length $r = \left\lfloor \frac{q-2m}{2} \right\rfloor$ in the linearly ordered set A and the number of such sequences is equal to \(\binom{\left\lfloor \frac{q-2m}{2} \right\rfloor}{i} \).

If $l = \frac{2m-k}{2}$, then $2m = 2l + k$ and $(x_{2m-1-2i})_{1 \leq i \leq \frac{2m-k}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{2m-k}{2} \right\rfloor = l - 1$ in the linearly ordered set $B = \{x \in L : x < x_{2m-1} = x_{2m+1}\} \subset L_+$. The number of such sequences is equal to \(\binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \) where $b = |B| < p$. If $l = \frac{2m-k-2}{2}$, then $(x_{2m-1-2i})_{1 \leq i \leq \frac{2m-k}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{2m-k-1}{2} \right\rfloor = l$ in the set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{2m-k-1}{2} \right\rfloor}{i} \).

If $r = \frac{q-2m}{2}$, then $2m = q - 2r$ and $(x_{2m+1+2i})_{0 \leq i \leq \frac{q-2m}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{q-2m}{2} \right\rfloor = r - 1$ in the linearly ordered set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{q-2m}{2} \right\rfloor}{i} \). If $r = \frac{q-2m-1}{2}$, then $2m = q - 1 - 2r$ and $(x_{2m+1+2i})_{1 \leq i \leq \frac{q-2m-1}{2}}$ is a strictly decreasing sequence of length $\left\lfloor \frac{q-2m-1}{2} \right\rfloor = r$ in the linearly ordered set B. The number of such sequences is equal to \(\binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \). Summing up, we conclude that the family W_\ast of all W_\ast-words has cardinality

$$|W_\ast| = \sum_{a=0}^{n-1} \sum_{l=0}^{p-1} \sum_{a=0}^{a} \sum_{b=0}^{b} \binom{\left\lfloor \frac{2m-k}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{2m+1-k}{2} \right\rfloor}{i+1} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i} \binom{\left\lfloor \frac{q-2m-1}{2} \right\rfloor}{i+1}.$$
4. By analogy we can prove that
\[
|\mathcal{W}_-| = \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \binom{b+1}{a} \binom{b}{a}.
\]

5. By the preceding items
\[
|\mathcal{K}_L| = |L| + |\mathcal{V}_x| + |\mathcal{V}_z| + |\mathcal{W}_-| + |\mathcal{W}_+| = 1 + n + p + |\mathcal{V}_x| + |\mathcal{W}_-| + |\mathcal{V}_z| + |\mathcal{W}_+| =
\]
\[
= 1 + n + p + \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \left(\binom{b+1}{a} \binom{b}{a} \binom{b}{a} \binom{b}{a} \binom{b}{a} \right)
\]
\[
= 1 + n + p + \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \left(\binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \right)
\]
\[
= 1 + n + p + \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \left(\binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \binom{b+2}{a} \right)
\]
\[
= 1 + n + p + \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \left(\binom{b+1}{a} \binom{b}{a} \binom{a+b+2}{a} \right)
\]
\[
= 1 + n + p + \sum_{a=0}^{n-1} \sum_{b=0}^{p-1} \sum_{l=0}^{a} \sum_{r=0}^{a} \binom{a}{l} \binom{r}{p} \left(\binom{b+1}{a} \binom{b}{a} \binom{a+b+1}{a} \right) = K(n, p).
\]

6. An asymptotics of the sequence \(K(n)\)

In this section we study the asymptotical growth of the sequence \(K(n) = K(n, n)\) and prove Theorem 6.3 announced in the Introduction as a corollary of the following results.

For every integers \(0 \leq a, b \leq n\) put
\[
c_{a,b}(n) = \frac{(2n-a-b)}{(2n)} = \frac{n(n-1) \cdots (n-a+1) \cdot n(n-1) \cdots (n-b+1)}{2n(2n-1) \cdots (2n-a-b+1)}
\]
and observe that
\[
\lim_{n \to \infty} c_{a,b}(n) = 2^{-(a+b)}.
\]

For every \(n \geq 0\) put \(k(n) = K(n)/(2n)^2\) and observe that
\[
k(n) = \frac{K(n)}{(2n)^2} = \sum_{i,j=0}^{n} \frac{(i+j)}{(2n)^2} = \sum_{a,b=0}^{n} \frac{(n-a-b)^2}{(2n)^2} = \sum_{a,b=0}^{n} c_{a,b}(n)^2.
\]

Proposition 6.1. For every \(n \geq 0\) we have \(k(n) \leq \frac{16}{9}\).

Proof. \(k(0) = 1, k(1) = k(2) = \frac{7}{4} < \frac{16}{9}, k(3) = \frac{969}{709} < \frac{16}{9}, k(4) = \frac{9549}{4909} < \frac{16}{9}\). Suppose now that for some \(n \geq 5\) we have proved that \(k(n-1) \leq \frac{16}{9}\).

We shall use the following two lemmas.

Lemma 6.2. For each \(0 < a \leq n\) we have \(c_{a,0}(n) < 2^{-a}\).

Proof. This lemma follows from the equality \(c_{a,0}(n) = \frac{n(n-1) \cdots (n-a+1)}{2n(2n-1) \cdots (2n-a+1)}\) and the inequality \((2n-l) > 2(2n-l)\) holding for all \(0 < l \leq n\).

Lemma 6.3. \(\frac{16}{9}c_{1,1}(n)^2 + 2(c_{1,0}(n)^2 + c_{2,0}(n)^2) < \frac{1}{4} + 2\left(\frac{1}{4} + \frac{1}{16} \right)\) for \(n \geq 5\).

Proof. Observe that \(c_{1,1}(n) = \frac{n}{2(2n-1)}\), \(c_{1,0}(n) = 1/2\), and \(c_{2,0}(n) = \frac{n-1}{2(2n-1)}\). Routine transformations show that the inequality in the lemma are equivalent to \(19 < 4n\), which holds for \(n \geq 5\). \(\square\)
Now we have that
\[k(n) = c_{0,0}(n)^2 + 2 \sum_{a=1}^{n} c_{a,0}(n)^2 + \sum_{a,b=0}^{n-1} c_{a,b}(n)^2 = 1 + 2 \sum_{a=1}^{n} c_{a,0}(n)^2 + \sum_{a,b=0}^{n-1} c_{a+1,b+1}(n)^2 = \]
\[= 1 + 2 \sum_{a=1}^{n} c_{a,0}(n)^2 + \sum_{a,b=0}^{n-1} \frac{n^2}{(2n-1)^2} c_{a,b}(n-1)^2 = \]
\[= 1 + 2 \sum_{a=1}^{n} c_{a,0}(n)^2 + 2 \sum_{a=1}^{n-2} c_{a,0}(n)^2 + c_{1,1}(n)^2 k(n-1) < \]
\[< 1 + 2 \sum_{a=1}^{n} \frac{1}{4^a} + 2(c_{1,0}(n)^2 + c_{2,0}(n)^2) + c_{1,1}(n)^2 \cdot \frac{16}{9} < \]
\[< 1 + 2 \sum_{a=3}^{\infty} \frac{1}{4^a} + 2\left(\frac{1}{4} + \frac{1}{4^2}\right) + \frac{1}{9} = \frac{16}{9} \]
according to Lemma 6.3.

Proposition 6.4. There exists a limit \(\lim_{n \to \infty} k(n) = 16/9 \).

Proof. The equality (1) implies that \(\lim_{n \to \infty} k(n) = \sum_{a,b=0}^{\infty} 2^{-2(a+b)} = \sum_{i=0}^{\infty} (i + 1)4^{-i} = 16/9 \). By Proposition 6.1 \(\lim_{n \to \infty} k(n) = 16/9 \).

By Stirling’s approximation, \(\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} (n/e)^n} = 1 \), which yields the second equality in Theorem 1.3.

7. Representing elements of Kuratowski monoids by Kuratowski words

Let \(K \) be a Kuratowski monoid with linear generating set \(L \) and let \(L_{\leq} = \{ x \in L : x < 1 \} \) and \(L_+ = \{ x \in L : x > 1 \} \) be the negative and positive parts of \(L \), respectively. Let \(FS_L = \bigcup_{n=1}^{\infty} L^n \) be the free semigroup over \(L \) and \(\pi : FS_L \to K \) be the homomorphism assigning to each word \(x_1 \ldots x_n \in FS_L \) the product \(x_1 \cdots x_n \) of its letters in \(K \). The homomorphism \(\pi : FS_L \to K \) induces a congruence \(\sim \) on \(FS_L \) which identifies two words \(u, v \in FS_L \) iff \(\pi(u) = \pi(v) \).

A word \(w \in FS_L \) is called irreducible if \(w \) has the smallest possible length in its equivalence class \([w]_{\sim} = \{ u \in FS_L : u \sim w \} \). Since the set of natural numbers is well-ordered, for each element \(x \in K \) there is an irreducible word \(w \in FS_L \) such that \(x = \pi(w) \). Consequently, the cardinality of \(K \) does not exceed the cardinality of the set of irreducible words in \(FS_L \).

Theorem 7.1. Each irreducible word in \(FS_L \) is a Kuratowski word. Consequently, \(\pi(K_L) = K \) and \(|K| \leq |K_L| \).

If the set \(L \) is finite, then \(|K| = |K_L| = K(n,p) \) where \(n = |L_{\leq}| \) and \(p = |L_+| \).

Proof. We divide the proof of Theorem 7.1 into a series of lemmas.

Lemma 7.2. For any elements \(x, y \in L_{\leq} \cup \{1\} \) we get \(xy = \min\{x, y\} \).

Proof. Since \(L \) is linearly ordered, either \(x \leq y \) or \(y \leq x \).

If \(x \leq y \), then multiplying this inequality by \(x \), we get \(x = xx \leq xy \). On the other hand, multiplying the inequality \(y \leq 1 \) by \(x \), we get the reverse inequality \(xy \leq x = x \). Taking into account that \(x \leq xy \leq x \), we conclude that \(x = xy \).

If \(y \leq x \), then multiplying this inequality by \(y \), we get \(y = yy \leq xy \). On the other hand, multiplying the inequality \(x \leq 1 \) by \(y \), we get \(xy \leq 1y = y \). Taking into account that \(y \leq xy \leq y \), we conclude that \(xy = y = \min\{x, y\} \).

By analogy we can prove:

Lemma 7.3. For any elements \(x, y \in L_+ \cup \{1\} \) we get \(xy = \max\{x, y\} \).

Proof. If \(x \leq y \), then multiplying this inequality by \(y \), we obtain \(xy \leq yy = y \). On the other hand, multiplying the inequality \(1 \leq x \) by \(y \), we get \(y = 1y \leq xy \). So, \(xy = y = \max\{x, y\} \).

If \(y \leq x \), then after multiplication by \(x \), we obtain \(xy \leq xx = x \). On the other hand, multiplying the inequality \(1 \leq y \) by \(x \), we get \(x \leq xy \) and hence \(xy = x = \max\{x, y\} \).
Recall that a word $x_1 \ldots x_n \in FS_L$ is alternating if for each natural number i with $1 \leq i < n$ the doubleton $\{x_i, x_{i+1}\}$ intersects both sets L_- and L_+. According to this definition, one-letter words also are alternating. Lemmas 7.2 and 7.3 imply:

Lemma 7.4. Each irreducible word $w \in FS_L$ is alternating.

The following lemma will help us to reduce certain alternating words of length 4.

Lemma 7.5. If $x_1x_2x_3x_4 \in FS_L$ is an alternating word in the alphabet L such that $x_1x_3 = x_1$ and $x_2x_4 = x_4$ in K, then $x_1x_2x_3x_4 \sim x_1x_4$ in K and hence $x_1x_2x_3x_4 \sim x_1x_4$.

Proof. Two cases are possible.

1) $x_1, x_3 \in L_-$ and $x_2, x_4 \in L_+$. In this case the equalities $x_1x_3 = x_1$ and $x_2x_4 = x_4$ imply that $x_1 \leq x_3$ and $x_2 \leq x_4$ (see Lemmas 7.2 and 7.3). To see that $x_1x_2x_3x_4 = x_1x_4$, observe that $x_1x_2x_3x_4 \leq x_1x_2 \cdot 1 \cdot x_4 = x_1x_2x_4 = x_1x_4$.

On the other hand,

$$x_1x_4 = (x_1x_3)x_4 = x_1 \cdot 1 \cdot x_3x_4 \leq x_1x_2x_3x_4.$$

These two inequalities imply the desired equality $x_1x_2x_3x_4 = x_1x_4$.

2) $x_1, x_3 \in L_+$ and $x_2, x_4 \in L_-$. In this case the equalities $x_1x_3 = x_1$ and $x_2x_4 = x_4$ imply that $x_1 \geq x_3$ and $x_2 \geq x_4$ (see Lemmas 7.2 and 7.3). To see that $x_1x_2x_3x_4 = x_1x_4$, observe that $x_1x_2x_3x_4 \leq x_1 \cdot 1 \cdot x_3x_4 = x_1x_3x_4 = x_1x_4$.

On the other hand,

$$x_1x_4 = x_1(x_2x_4) = x_1x_2 \cdot 1 \cdot x_4 \leq x_1x_2x_3x_4.$$

These two inequalities imply the desired equality $x_1x_2x_3x_4 = x_1x_4$.

Now we are able to prove that each irreducible word $w \in FS_L$ is a Kuratowski word. If w consists of a single letter, then it is trivially Kuratowski and we are done. So, we assume that w has length ≥ 2. By Lemma 7.4 the word w is alternating and hence can be written as the product $w = x_k \cdots x_n$ for some $k \in \{0, 1\}$ and $n > k$ such that $x_2 \in L_-$ for all integer numbers i with $k \leq 2i \leq n$ and $x_{2i-1} \in L_+$ for all integer numbers i with $k < 2i - 1 \leq n$.

Let m be the smallest number such that $k \leq 2m \leq n$ and $x_{2m} = \min\{x_{2i} : k \leq 2i \leq n\}$ in L_-. First we shall analyze the structure of the subword $x_k \cdots x_{2m}$ of the word $w = x_k \ldots x_n$.

Lemma 7.6. The sequence $(x_{2m-2i})_{0 \leq i \leq \frac{m-1}{2}}$ is strictly increasing in L_-.

Proof. Assume conversely that $x_{2i} \geq x_{2i-2}$ for some number $i \leq m$ and assume that i is the largest possible number with this property. The definition of the number m guarantees that $i < m$. Consequently, $x_{2i-2} \leq x_{2i}$ and $x_{2i} > x_{2i+2}$. Taking into account that $x_{2i-2}, x_{2i}, x_{2i+2} \in L_-$ and applying Lemma 7.2 we get $x_{2i-2}x_{2i} = \min\{x_{2i-2}, x_{2i}\} = x_{2i-2}$ and $x_{2i+2}x_{2i+2} = \min\{x_{2i+2}, x_{2i+2}\} = x_{2i+2}$.

Now consider the elements $x_{2i-1}, x_{2i+1} \in L_+$. If $x_{2i-1} \leq x_{2i+1}$, then $x_{2i-1}x_{2i+1} = x_{2i+1}$ by Lemma 7.3 and by Lemma 7.5 the alternating word $x_{2i-2}x_{2i-1}x_{2i+1} = x_{2i-2}x_{2i+1}$ is reducible as $x_{2i-2}x_{2i} = x_{2i-2}$ and $x_{2i-1}x_{2i+1} = x_{2i+1}$.

If $x_{2i-1} > x_{2i+1}$, then $x_{2i-1}x_{2i+1} = x_{2i-1}$ by Lemma 7.5. Lemma 7.5 guarantees that the alternating word $x_{2i-1}x_{2i-1}x_{2i+1}x_{2i+2} = x_{2i-1}x_{2i+2}$ is reducible as $x_{2i-1}x_{2i+1} = x_{2i-1}$ and $x_{2i+1}x_{2i+2} = x_{2i+2}$.

Therefore, the word $x_k \cdots x_n$ contains a reducible subword and hence is reducible, which contradicts the choice of this word. This contradiction shows that $x_{2i-2} < x_{2i}$ and hence $x_{2i-2}x_{2i} = \min\{x_{2i-2}, x_{2i}\} = x_{2i-2} \neq x_{2i}$ according to Lemma 7.2.

Lemma 7.7. The sequence $(x_{2m-2i})_{0 \leq i \leq \frac{m-1}{2}}$ is strictly decreasing in L_+.

Proof. Assume conversely that $x_{2i-1} \geq x_{2i+1}$ for some number $i < m$ with $k \leq 2i - 1$. Since $x_{2i-1}, x_{2i+1} \in L_+$, Lemma 7.3 implies that $x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i-1}$. By Lemma 7.3 $x_{2i}x_{2i+2} = x_{2i+2}$. Then by Lemma 7.5 the alternating word $x_{2i-1}x_{2i}x_{2i+1}x_{2i+2}$ is equal to $x_{2i-1}x_{2i+2}$. This implies that the word $x_k \cdots x_n$ is reducible, which contradicts the choice of this word. This contradiction shows that $x_{2i-1} < x_{2i+1}$ and hence $x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i+1} \neq x_{2i-1}$ according to Lemma 7.3.

Next, we consider the subword $x_{2m-1} \cdots x_n$ of the word $w = x_k \cdots x_n$.

Lemma 7.8. The sequence $(x_{2i+2})_{1 \leq i \leq \frac{m-2}{2}}$ is strictly increasing in L_-.

Proof. Assume conversely that $x_{2i} \geq x_{2i+2}$ for some number $i \leq m - 1$ with $k \leq 2i$. Since $x_{2i-1}, x_{2i+1} \in L_-$, Lemma 7.2 implies that $x_{2i-1}x_{2i+1} = x_{2i-1}$ and $x_{2i}x_{2i+2} = x_{2i+2}$. Then by Lemma 7.5 the alternating word $x_{2i}x_{2i+1}x_{2i+2}$ is equal to $x_{2i}x_{2i+2}$. This implies that the word $x_k \cdots x_n$ is reducible, which contradicts the choice of this word. This contradiction shows that $x_{2i} < x_{2i+2}$ and hence $x_{2i}x_{2i+1} = x_{2i+1} \neq x_{2i}$ according to Lemma 7.2.
Proof. Assume conversely that \(x_{2i} \geq x_{2i+2} \) for some number \(i > m \) with \(2i + 2 \leq n \). We can assume that \(i \) is the smallest possible number with this property. Then either \(i = m + 1 \) or else \(x_{2i+2} < x_{2i} \). If \(i = m + 1 \), then \(x_{2m} = x_{2i-2} \leq x_{2i} \) by the choice of \(m \). In both cases we get \(x_{2i-2} \leq x_{2i} \), which implies \(x_{2i-2}x_{2i} = \min\{x_{2i-2}, x_{2i}\} = x_{2i-2} \) according to Lemma 7.2. The same Lemma 7.2 implies that \(x_{2i}x_{2i+2} = \min\{x_{2i}, x_{2i+2}\} = x_{2i+2} \).

Now consider the elements \(x_{2i-1}, x_{2i+1} \in L_+ \). If \(x_{2i-1} \geq x_{2i+1} \), then \(x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i-1} \) and the alternating word \(x_{2i-1}x_{2i+1}x_{2i+1}x_{2i+2} = x_{2i-1}x_{2i+2} \) is reducible according to Lemma 7.5. If \(x_{2i-1} < x_{2i+1} \), then \(x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i+1} \) and the alternating word \(x_{2i-1}x_{2i+1}x_{2i+1} = x_{2i-1}x_{2i+2} \) is reducible by Lemma 7.5. But this contradicts the irreducibility of the word \(x_k \cdots x_n \). So, \(x_{2i} < x_{2i+2} \) and \(x_{2i}x_{2i+2} = \min\{x_{2i}, x_{2i+2}\} = x_{2i+2} \) according to Lemma 7.2.

Lemma 7.9. The sequence \((x_{2m+1+2})_{0 \leq i \leq \frac{n-2}{2}} \) is strictly decreasing in \(L_+ \).

Proof. Assume conversely that \(x_{2i-1} \leq x_{2i+1} \) for some \(i > m \) with \(2i + 1 \leq n \). Then \(x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i+1} \) according to Lemma 7.3. If \(i = m + 1 \), then \(x_{2i-2}x_{2i+1} = x_{2m}x_{2i} = \min\{x_{2i}, x_{2i+1}\} = x_{2m} \) by the choice of the number \(m \). If \(i > m + 1 \), then \(x_{2i-2}x_{2i+1} \) is reducible by Lemma 7.5. By Lemma 7.3 the alternating word \(x_{2i-2}x_{2i+1}x_{2i+1}x_{2i+2} = x_{2i-2}x_{2i+2} \) is reducible, which contradicts the irreducibility of the word \(x_k \cdots x_n \). This contradiction shows that \(x_{2i-1} > x_{2i+1} \) and hence \(x_{2i-1}x_{2i+1} = \max\{x_{2i-1}, x_{2i+1}\} = x_{2i-1} \) \(\neq x_{2i+1} \) according to Lemma 7.3.

Now we are ready to complete the proof of Theorem 7.1. Five cases are possible.

1) \(2m = n \). In this case \(x_k \ldots x_n = x_k \ldots x_2m \) is a \(V_\exists \)-word by Lemmas 7.6 and 7.9.

2) \(2m + 1 = n \) and \(k = 2m \). In this case \(x_k \ldots x_n = x_{2m}x_{2m+1} \) is a \(V_\exists \)-word.

3) \(2m + 1 = n \) and \(k \leq 2m - 1 \). This case has three subcases.

a) If \(x_{2m-1} < x_{2m+1} \), then \(x_k \ldots x_n = x_k \ldots x_{2m-1}x_{2m}x_{2m+1} \) is a \(V_\exists \)-word by Lemmas 7.6 and 7.7.

b) If \(x_{2m-1} > x_{2m+1} \), then \(x_k \ldots x_n = x_k \ldots x_{2m-1}x_{2m}x_{2m+1} \) is a \(V_\exists \)-word by Lemmas 7.6 and 7.4.

3c) If \(x_{2m-1} = x_{2m+1} \), then \(x_k \ldots x_n = x_k \ldots x_{2m-1}x_{2m}x_{2m+1} \) is a \(W_\exists \)-word by Lemmas 7.6 and 7.7.

4) \(2m + 2 \leq n \) and \(k = 2m \). Since \(x_{2m} \leq x_{2m+2} \), this case has two subcases.

a) If \(x_{2m} < x_{2m+2} \), then \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m+1}x_{2m+2} \ldots x_n \) is a \(V_\exists \)-word by Lemmas 7.8 and 7.9.

b) If \(x_{2m} = x_{2m+2} \), then \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m+1}x_{2m+2} \ldots x_n \) is a \(W_\exists \)-word by Lemmas 7.8 and 7.9.

5) \(2m + 2 \leq n \) and \(k \leq 2m - 1 \). This case has four subcases.

a) \(x_{2m} < x_{2m+2} \) and \(x_{2m-1} < x_{2m+1} \). In this case \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m+1} \ldots x_n \) is a \(V_\exists \)-word by Lemmas 7.6, 7.9.

b) \(x_{2m} < x_{2m+2} \) and \(x_{2m-1} > x_{2m+1} \). In this case \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m-1}x_{2m} \ldots x_n \) is a \(V_\exists \)-word by Lemmas 7.6, 7.9.

b) \(x_{2m} < x_{2m+2} \) and \(x_{2m-1} = x_{2m+1} \). In this case \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m-1}x_{2m} \ldots x_n \) is a \(W_\exists \)-word by Lemmas 7.6, 7.9.

5c) \(x_{2m} = x_{2m+2} \). In this case we shall prove that \(x_{2m-1} > x_{2m+1} \). Assuming that \(x_{2m-1} \leq x_{2m+1} \) we can apply Lemma 7.3 to conclude that \(x_{2m-1}x_{2m+1} = \max\{x_{2m-1}, x_{2m+1}\} = x_{2m-1} \). It follows from \(x_{2m} = x_{2m+2} \) that \(x_{2m}x_{2m+2} = x_{2m+2} \). By Lemma 7.5 the alternating word \(x_{2m-1}x_{2m}x_{2m+1}x_{2m+2} \) is reducible, which is a contradiction. So, \(x_{2m-1} > x_{2m+1} \) and hence \(x_k \ldots x_n = x_k \ldots x_{2m}x_{2m+1}x_{2m+2} \ldots x_n \) is a \(W_\exists \)-word by Lemmas 7.6, 7.9.

Therefore each irreducible word in \(FS_L \) is a Kuratowski word, which implies that \(|K| \leq |K_L| \). If the set \(L \) is finite, then the set \(K_L \) of Kuratowski words over \(L \) has cardinality \(|K_L| = K(|L_-|, |L_+|) \), see Theorem 5.2.

8. Separation of Kuratowski words by homomorphisms

In the preceding section we proved that any element of a Kuratowski monoid \(K \) with a linear generating set \(L \) can be represented by a Kuratowski word \(w \in K_L \). In this section we shall prove that Kuratowski words can be separated by homomorphisms into the Kuratowski monoids of suitable 2-topological spaces.

Given an \(n \)-topological space \(X = (\{X_i\}_{i \in \Bbb N}, \tau) \), observe that the linear generating set

\[
L(X) = \{t_i\}_{i \in \Bbb N} \cup \{1_X\} \cup \{\bar t_i\}_{i \in \Bbb N}
\]

of its Kuratowski monoid \(K(X) \) is symmetric.

This observation motivates the following definition. A *linearly ordered set* is a linearly ordered set \(L \) endowed with an involutive bijection \(* : L \rightarrow L \), \(* : \ell \mapsto \ell^* \), that has a unique fixed point \(1 \in L \) and is
decreasing in the sense that for any elements \(x < y \) in \(L \) we get \(x^* > y^* \). Each \(* \)-linearly ordered set \(L \) is pointed — the unit of \(L \) is the unique fixed point of the involution \(* : L \to L \). Observe that the structure of a \(* \)-linearly ordered set \(L \) is determined by the structure of its negative part \(L_- \).

A map \(f : L \to \Lambda \) between two \(* \)-linearly ordered sets \(L, \Lambda \) will be called a \(* \)-morphism if \(f \) is monotone (in the sense that for any elements \(x \leq y \) in \(L \) we get \(f(x) \leq f(y) \)) and preserves the involution (in the sense that \(f(x^*) = f(x)^* \) for every \(x \) in \(L \). Since \(f(1) = f(1^*) = f(1)^* \), the image \(f(1) \) of the unit of \(L \) coincides with the unit of \(\Lambda \). Observe that each \(* \)-morphism \(f : L \to \Lambda \) is uniquely determined by its restriction \(f|_{L_-} \).

For a \(* \)-linearly ordered set \(L \), the involution \(* : L \to L \) of \(L \) has a unique extension to an involutive semigroup isomorphism \(* : FS_L \to FS_L \) of the free semigroup over \(L \). The image of a word \(w \in FS_L \) under this involutive isomorphism will be denoted by \(w^* \).

Let \(X = (X, T) \) be a polytopological space and

\[
L(X) = \{ \tau : \tau \in T \} \cup \{ 1_X \} \cup \{ \tau : \tau \in T \}
\]

be the linear generating set of the Kuratowski monoid \(K(X) \) of \(X \). Observe that each topology \(\tau \) is determined by its interior operator \(\bar{\tau} \) (since \(\tau = \{ \bar{\tau}(A) : A \subset X \} \)). This implies that the interior operators \(\bar{\tau}, \bar{\tau} \in T \), are pairwise distinct. The same is true for the closure operators \(\bar{\tau}, \bar{\tau} \in T \). This allows us to define a bijective involution \(* : L(X) \to L(X) \) letting \(\bar{\tau}^* = \bar{\tau} \) and \(\bar{\tau}^* = \bar{\tau} \) for every \(\tau \in T \). This involution turns \(L(X) \) into a \(* \)-linearly ordered set.

Let \(L \) be a \(* \)-linearly ordered set. Choose any point \(c \notin L \) and consider the free semigroup \(FS_{L \cup \{ c \}} \) over the set \(L \cup \{ c \} \). This semigroup consists of words in the alphabet \(L \cup \{ c \} \). Let \(X = (X, T) \) be a polytopological space and \(L(X) \) be the linear generating set of the Kuratowski monoid \(K(X) \) of \(X \). Let \(c_X : \mathcal{P}(X) \to \mathcal{P}(X), c_X : A \mapsto X \setminus A \), denote the operator of taking complement.

Given any \(* \)-morphism \(f : L \to L(X) \) let \(\bar{f} : FS_{L \cup \{ c \}} \to K_2(X) \) be a (unique) semigroup homomorphism such that \(\bar{f}(1) = 1_X, \bar{f}(c) = c_X \), and \(\bar{f}(\ell) = f(\ell) \) for \(\ell \in L \). The homomorphism \(\bar{f} \) will be called the Kuratowski extension of \(f \).

Observe that \(\bar{f}(K_L) \subset K(X) \). In the semigroup \(FS_{L \cup \{ c \}} \) consider the subset

\[
\widetilde{K}_L = K_L \cup \{ cw : w \in K_L \} \subset FS_{L \cup \{ c \}}
\]

whose elements will be called full Kuratowski words.

Theorem 8.1. For any \(* \)-linearly ordered set \(L \) and any two distinct words \(u, v \in \widetilde{K}_L \) there is a 2-topological space \(X \), and a \(* \)-morphism \(f : L \to L(X) \) whose Kuratowski extension \(\bar{f} : FS_{L \cup \{ c \}} \to K_2(X) \) separates the words \(u, v \) in the sense that \(\bar{f}(u) \neq \bar{f}(v) \).

Proof. In most of the cases the underlying set of the 2-topological space \(X \) will be a set \(X = \{ x, y \} \) containing two pairwise distinct points \(x, y \) and the topologies of \(X \) are equal to one of four possible topologies on \(X \):

- \(\tau_d = \{ \emptyset, \{ x \}, \{ y \}, X \} \), the discrete topology on \(X \);
- \(\tau_a = \{ \emptyset, X \} \), the anti-discrete topology on \(X \);
- \(\tau_s = \{ \emptyset, \{ x \}, X \} \);
- \(\tau_y = \{ \emptyset, \{ y \}, X \} \).

Fix any two distinct words \(u, v \in \widetilde{K}_L \) and consider four cases.

1) \(u \in K_L \) and \(v \notin K_L \). In this case consider the 2-topological space \(X = (X, (\tau_a, \tau_d)) \). Then for the \(* \)-morphism \(f : L \to \{ 1_X \} \subset L(X) \) we get \(\bar{f}(u) = 1_X \neq c_X = \bar{f}(v) \).

2) \(v \in K_L \) and \(u \notin K_L \). In this case take the 2-topological space \(X \) from the preceding case and observe that for the \(* \)-morphism \(f : L \to \{ 1_X \} \subset L(X) \) we get \(\bar{f}(u) = c_X \neq 1_X = \bar{f}(v) \).

3) \(u, v \in K_L \). Denote by \(u_0, v_0 \in L \) the last letters of the words \(u, v \), respectively. Consider two cases.

3a) \(u_0 \neq v_0 \). We lose no generality assuming that \(u_0 < v_0 \) (in the linearly ordered set \(L \)).

Five subcases are possible:

3aa) \(u_0 = 1 \) and \(v_0 \in L_+ \). In this case consider the 2-topological space \(X = (\{ x, y \}, (\tau_a, \tau_d)) \) and the \(* \)-morphism \(f : L \to L(X) \) assigning to each \(\ell \in L_- \) the operator \(\tau_\ell_a \). Then for the subset \(A = \{ x \} \) of \(X \) and the operators \(\bar{u} = \bar{f}(u) \) and \(\bar{v} = \bar{f}(v) \), we get \(\bar{u}(A) = A \neq X = \tau_\ell_a(A) = \bar{v}(A) \), which implies that \(\bar{f}(u) \neq \bar{f}(v) \).

3ab) \(u_0 \in L_- \) and \(v_0 = 1 \). In this case, take the 2-topological space \(X \), the subset \(A = \{ x \} \), and the \(* \)-morphism \(f : L \to L(X) \) from the preceding case. Then \(\bar{u}(A) = \emptyset \neq A = \bar{v}(A) \), which implies that \(\bar{f}(u) \neq \bar{f}(v) \).
3ac) \(u_0 \in L_- \) and \(v_0 \in L_+ \). In this case, take the 2-topological space \(X \), the subset \(A = \{x\} \) and the \(*\)-morphism \(f : L \to L(X) \) from case (3aa). Then \(\hat{u}(A) = \emptyset \neq X = \hat{v}(A) \), which implies that \(\hat{f}(u) \neq \hat{f}(v) \).

3ad) \(u_0, v_0 \in L_- \). Consider the 2-topological space \(X = (\{x, y\}, (\tau_a, \tau_x)) \) and the \(*\)-morphism \(f : L \to L(X) \) assigning to each \(\ell \in L_- \) the operator

\[
\hat{f}(\ell) = \begin{cases}
\hat{\tau}_a & \text{if } \ell \leq u_0; \\
\hat{\tau}_x & \text{if } \ell > u_0.
\end{cases}
\]

Put \(\hat{u} = \hat{f}(u) \) and \(\hat{v} = \hat{f}(v) \). Observe that for the subset \(A = \{x\} \) we get \(\hat{u}_0(A) = \hat{\tau}_a(A) = \emptyset \) and hence \(\hat{u}(A) = \emptyset \). Next, we evaluate \(\hat{v}(A) \). Write the Kuratowski word \(v = v_0 \ldots v_q \) where \(v_0, \ldots, v_q \in L \{1\} \). If \(q = 0 \), then \(\hat{v}(A) = \hat{v}_0(A) = \hat{\tau}_x(A) = A \neq \emptyset = \hat{u}(A) \). If \(q > 0 \), then \(\hat{v}_1 = \hat{v}_0(A) = \hat{v}_1(A) = \{\hat{\tau}_a(A), \hat{\tau}_x(A)\} = \{X\} \) and hence \(\hat{v}(A) = X \neq \emptyset = \hat{u}(A) \). This yields the desired inequality \(\hat{f}(u) \neq \hat{f}(v) \).

3ae) \(u_0, v_0 \in L_+ \). In this case we can consider the conjugated words \(u^* \) and \(v^* \) and observe that their last letters are distinct and belong to the set \(L_- \). By the preceding item, there are a 2-topological space \(X \) and a \(*\)-morphism \(f : L \to L(X) \) such that \(\hat{f}(u^*) \neq \hat{f}(v^*) \). Then \(\hat{f}(u)^* = \hat{f}(u^*) \neq \hat{f}(v^*) = \hat{f}(v)^* \) and hence \(\hat{f}(u) \neq \hat{f}(v) \).

Next, consider the case:

3b) \(u_0 = v_0 \). It follows that \(u_0 = v_0 \in L \{1\} \). Write the Kuratowski words \(u, v \) as \(u = u_p \ldots u_0 \) and \(v = v_q \ldots v_0 \) where \(u_i, v_i \in L \{1\} \). For the sake of consistency it will be convenient to assume that \(u_i = 1 \) for every integer \(i \notin \{0, \ldots, p\} \) and \(v_j = 1 \) for every integer \(j \notin \{0, \ldots, q\} \). Un particular, \(u_{-1} = v_{-1} = 1 \).

Since \(u \neq v \), the number \(k = \min\{i \geq 0 : u_i \neq v_i\} \) is well-defined and does not exceed \(\max\{p, q\} \). It follows from \(u_0 = v_0 \) that \(k \geq 1 \). By the definition of \(k \) we also get the equality \(u_{k-1} \ldots u_0 = v_{k-1} \ldots v_0 \). First we consider the case \(u_{k-1} = v_{k-1} \in L_+ \). Since \(u_k \neq v_k \), we lose no generality assuming that \(u_k < v_k \). Since \(u, v \) are alternating words, the inclusion \(u_{k-1} = v_{k-1} \in L_+ \) implies \(u_k, v_k \in L_- \cup \{1\} \) and \(u_k \in L_- \).

Two cases are possible:

3ba) \(u_k < u_{k-2} \) (this case includes also the case of \(k = 1 \) in which \(u_1 = 1 = u_{-1} \)). Since \(u \in K_L \), the inequality \(u_k < u_{k-2} \) implies that the sequence \((u_{k-2i})_{0 \leq i \leq \frac{k}{2}} \) is strictly increasing in \(L_- \) and the sequence \((u_{k-1-2i})_{0 \leq i \leq \frac{k}{2}} = (v_{k-1-2i})_{0 \leq i \leq \frac{k}{2}} \) is strictly decreasing in \(L_+ \).

Now consider two subcases:

3baa) \(v_{k+1} > v_{k-1} \). In this case \((v^*_{k+1-2i})_{0 \leq i \leq \frac{k}{2}} \) is a strictly increasing sequence in \(L_- \). Depending on the relation between the elements \(u_k \) and \(v^*_{k+1} \) of \(L_- \) we shall distinguish two subcases.

3baaa) \(v^*_{k+1} \leq u_k \). In this case consider the 2-topological space \(X = (X, (\tau_a, \tau_y)) \) where \(X = \{x, y\} \) and define the \(*\)-morphism \(f : L \to L(X) \) assigning to each \(\ell \in L_- \) the operator

\[
\hat{f}(\ell) = \begin{cases}
\hat{\tau}_a & \text{if } \ell \leq v^*_{k+1}; \\
\hat{\tau}_x & \text{if } v^*_{k+1} < \ell \leq u_k; \\
1_X & \text{if } u_k \leq \ell.
\end{cases}
\]

Consider the subset \(A = \{x\} \subset X \). Since the sequence \((u_{k-2i})_{0 \leq i \leq \frac{k}{2}} \) is strictly increasing in \(L_- \), for every positive number \(i \leq \frac{k}{2} \) we get \(v_{k-2i} = u_{k-2i} > u_k \) and hence \(\hat{u}_{k-2i} = \hat{v}_{k-2i} = 1_X \), which implies that \(\hat{u}_k = \hat{v}_k = \hat{v}_{k-2i} = \hat{v}_{k-2i-2i} = 1_X \), and hence \(\hat{u}_k = \hat{v}_k = \hat{v}_{k-2i} = \hat{v}_{k-2i-2i} = 1_X \), and hence \(\hat{u}_k = \hat{v}_k = \hat{v}_{k-2i} = \hat{v}_{k-2i-2i} = 1_X \). On the other hand, for every positive \(i \leq \frac{k}{2} \) we get \(u^*_{k+1-2i} = v^*_{k+1-2i} = v_{k+1} \), and hence \(\hat{u}_{k+1-2i} = \hat{v}_{k+1-2i} \in \{\hat{\tau}_y, 1_X\} \), which implies \(\hat{u}_{k+1-2i} = \hat{v}_{k+1-2i} \in \{\hat{\tau}_y(A), 1_X(A)\} = \{A\} \). So, \(\hat{u}_k = \hat{v}_k \).

Observe that \(\hat{u}_k \neq \hat{u}_k(A) = \hat{\tau}_y(A) = \emptyset \) and hence \(\hat{u}(A) = \emptyset \). On the other hand, the inequality \(v_k > u_k \) implies \(\hat{v}_k = 1_X \) and then \(\hat{v}_k \neq \hat{u}_k \). This yields the desired inequality \(\hat{f}(u) \neq \hat{f}(v) \).

3baab) \(v^*_{k+1} > u_k \). In this case consider the 2-topological space \(X = (X, (\tau_a, \tau_x)) \) where \(X = \{x, y\} \) and define a \(*\)-morphism \(f : L \to L(X) \) assigning to each \(\ell \in L_- \) the operator

\[
\hat{f}(\ell) = \begin{cases}
\hat{\tau}_a & \text{if } \ell \leq u_k; \\
\hat{\tau}_x & \text{if } u_k < \ell \leq v^*_{k+1}; \\
1_X & \text{if } u_k < \ell.
\end{cases}
\]

Consider the subset \(A = \{x\} \subset X \). Since the sequence \((u_{k-2i})_{0 \leq i \leq \frac{k}{2}} \) is strictly increasing in \(L_- \), for every positive \(i \leq \frac{k}{2} \) we get \(v_{k-2i} = u_{k-2i} > u_k \) and hence \(\hat{u}_{k-2i} = \hat{v}_{k-2i} = 1_X \), which implies that \(\hat{u}_{k-2i}(A) = \hat{v}_{k-2i}(A) = A \).
\(\hat{u}_{k-2i}(A) \in \{ \tilde{\tau}_x(A), 1_X(A) \} = \{ A \} \). Since the sequence \((v_{k+1-2i})_{0 \leq i \leq \frac{k+1}{2}} \) is strictly increasing in \(L_+ \), for every positive \(i \leq \frac{k+1}{2} \) we get \(u^*_{k+1-2i} = v^*_{k+1-2i} \) and hence \(\hat{u}_{k+1-2i} = \hat{v}_{k+1-2i} = 1_X \), which implies
\[\hat{u}_{k+1-2i}(A) = \tilde{\tau}_{k+1-2i}(A) = A. \]
So, \(\hat{u}_{k-1} \cdots \hat{u}_0(A) = \hat{u}_{k-1} \cdots \hat{u}_0(A) = A \).

Observe that \(\hat{u}_k \cdots \hat{u}_1(A) = \tilde{\tau}_x(A) = \emptyset \) and hence \(\hat{u}(A) = \emptyset \). Next, we evaluate \(\hat{v}(A) \). If \(v_k = 1 \), then \(\hat{v}(A) = \hat{v}_k \cdots \hat{v}_1(A) = A \neq \emptyset = \hat{u}(A) \). If \(v_k \neq 1 \) but \(v_{k+1} = 1 \), then \(u_k < v_k \) implies that \(\hat{v}_k \in \{ \tilde{\tau}_x, 1_X \} \) and hence \(\hat{v}(A) = \hat{v}_k \cdots \hat{v}_0(A) = \tilde{\tau}_x(A), 1_X(A) = \{ A \} \) and hence \(\hat{v}(A) = A \neq \emptyset = \hat{u}(A) \). If \(v_{k+1} \neq 1 \), then \(\hat{v}_{k+1} \cdots \hat{v}_1(A) = \hat{v}_{k+1}(A) = \tilde{\tau}_x(A) = X \) and then \(\hat{v}(A) = X \neq \emptyset = \hat{u}(A) \). This yields the desired inequality \(\hat{f}(u) \neq \hat{f}(v) \).

Next, consider the subcase:

3bab) \(v_{k+1} = v_{k-1} \). In this case \(v \in W_x \) and hence the sequences \((v_{k-2i})_{0 \leq i \leq \frac{k-1}{2}} \) and \((v_{k+1+2i})_{0 \leq i \leq \frac{k-1}{2}} \) are strictly increasing in \(L_- \) whereas the sequences \((v_{k-1-2i})_{0 \leq i \leq \frac{k-1}{2}} \) and \((v_{k+1+2i})_{0 \leq i \leq \frac{k-1}{2}} \) are strictly decreasing in \(L_+ \). Consider the 2-topological space \(X = \{(x, y), (\tau_x, \tau_y)\} \) and define a \(*\)-morphism \(f : L \to L(X) \) assigning to each element \(\ell \in L_- \) the operator
\[
f(\ell) = \begin{cases}
\tilde{\tau}_y & \text{if } \ell \leq u_k; \\
1_X & \text{if } \ell > u_k.
\end{cases}
\]
Also consider the subset \(A = \{ x \} \) in the 2-topological space \(X \).

Taking into account that \(u_k < u_k \leq u_{k+2i} \) for any \(i \in \mathbb{Z} \) with \(0 \leq k + 2i \leq q \), we conclude that \(\hat{v}_{k+2i} = 1_X \).

On the other hand, for every \(i \in \mathbb{Z} \) with \(1 \leq k + 1 + 2i \leq q \) we get \(\hat{v}_{k+1+2i} \in \{ \tilde{\tau}_y, 1_X \} \) and hence \(\hat{v}_{k+1+2i}(A) \in \{ \tilde{\tau}_y(A), 1_X(A) \} = \{ A \} \). This implies that \(\hat{v}(A) = A \).

On the other hand, \(\hat{u}_k \cdots \hat{u}_0(A) = \hat{u}_k \hat{v}_{k-1} \cdots \hat{v}_0(A) = \hat{u}_k(A) = \tilde{\tau}_y(A) = \emptyset \) and then \(\hat{u}(A) = \emptyset \neq A = \hat{v}(A) \). This implies that \(\hat{f}(u) \neq \hat{f}(v) \).

Finally, consider the subcase:

3bac) \(v_{k+1} < v_{k-1} \). Taking into account that \(v \in K_L \) and the sequence \((v_{k-1-2i})_{0 \leq i \leq \frac{k-1}{2}} \) is strictly decreasing in \(L_+ \), we conclude that \(v_{k-1} > v_{k-1+2i} \) for any non-zero integer number \(i \) with \(0 \leq k - 1 + 2i \leq q \) and \(u_k < \min(u_{k-2}, u_k) = \min(v_{k-2}, v_k) \leq v_{k-2+2i} \) for any integer number \(i \) with \(k + 2i \in \{ 0, \ldots, q \} \). Take the 2-topological space \(X \), the subset \(A = \{ x \} \), and the \(*\)-morphism \(f : L \to L(X) \) from the case (3bab). By analogy with the preceding case it can be shown that \(\hat{v}(A) = A \neq \emptyset = \hat{u}(A) \) and hence \(\hat{f}(u) \neq \hat{f}(v) \). This completes the proof of case (3bab).

So, now we consider the case:

3bb) \(u_k \geq u_{k-2} \). This case is more difficult and requires to consider a set \(X = \{ x, y, z \} \) of cardinality \(|X| = 3 \) endowed with the topologies:
\[
\begin{align*}
\tau_{x,z} &= \{ \emptyset, \{ x \}, \{ z \}, \{ x, z \}, X \}, \\
\tau_{x,z,y} &= \{ \emptyset, \{ x \}, \{ y \}, \{ z \}, \{ x, y \}, \{ x, z \}, X \}, \\
\tau_{x,z,y} &= \{ \emptyset, \{ x \}, \{ y \}, \{ x, y \}, \{ x, z \}, X \}.
\end{align*}
\]
In \(X \) consider the subset \(A = \{ x \} \).

The inequality \(u_{k-2} \leq u_k \in L_- \) and the inclusion \(u \in K_L \) imply that the sequence \((u_{k-1+2i})_{0 \leq i \leq \frac{k-1}{2}} \) is strictly decreasing in \(L_+ \). By analogy, the (strict) inequality \(v_{k-2} = v_{k-2} \leq u_k < v_k \) implies that sequence \((v_{k-1+2i})_{0 \leq i \leq \frac{k-1}{2}} \) is strictly increasing in \(L_- \) and \((v_{k-1+2i})_{0 \leq i \leq \frac{k-1}{2}} \) is strictly decreasing in \(L_+ \). Let \(u_{k-1}^* \) be the letter in \(L_+ \), symmetric to the letter \(u_{k-1} \) with respect to \(1 \). Depending on the relation between \(u_{k-1}^* \) and \(u_k \) we consider two subcases:

3ba) \(u_{k-1}^* \leq u_k \). In this case consider the 2-topological space \(X = (X, (\tau_{x,z}, \tau_{x,z,y})) \) where \(X = \{ x, y, z \} \) and define the \(*\)-morphism \(f : L \to L(X) \) assigning to every element \(\ell \in L_- \) the operator
\[
f(\ell) = \begin{cases}
\tilde{\tau}_x & \text{if } \ell \leq u_{k-1}^*; \\
\tilde{\tau}_{x,z} & \text{if } u_{k-1}^* < \ell \leq u_k; \\
1_X & \text{if } u_k < \ell.
\end{cases}
\]
Consider the subset \(A = \{ x \} \) of \(X \). Observe that for every \(\ell \in L \) we get \(\{ x \} \subset \hat{\ell}(\{ x \}) \subset \hat{\ell}(\{ x, y \}) \subset \{ x, y \} \). Then
\[
\{ x \} \subset \hat{u}_{k-2} \hat{u}_{k-3} \cdots \hat{u}_0(A) \subset \{ x, y \}
\]
and
\[
\{ x, y \} = \tilde{\tau}_{x,z}(\{ x \}) \subset \tilde{\tau}_{x,z}(\{ x, y \}) \subset \hat{u}_{k-1} \hat{u}_{k-2} \cdots \hat{u}_0(A) \subset \hat{u}_{k-1}(\{ x, y \}) = \tilde{\tau}_{x,z}(\{ x, y \}) = \{ x, y \}.
\]
So, \(\hat{u}_{k-1} \cdots \hat{u}_0(A) = \hat{u}_{k-1} \cdots \hat{u}_0(A) = \{x, y\} \) and \(\hat{u}_k \cdots \hat{u}_1(A) = \hat{u}_k(\{x, y\}) = \hat{r}_{x, y}\). Taking into account that \(u_k < v_k \) and the sequence \((u_k, v_k)_{0 \leq k \leq \infty} \) is strictly increasing in \(L^- \), we conclude that \(\{u_k, v_k\}_{0 \leq k \leq \infty} \subset \{\hat{r}_{x, y}, 1\} \), which implies that \(\hat{v}(A) = \hat{v}_k \cdots \hat{v}_0(A) \subset \{x, y\} \neq \{x\} \cup \hat{u}(A) \). This yields the desired inequality \(\hat{f}(u) \neq \hat{f}(v) \).

3.bbb) \(u_k < u_k^* \). In this case consider the 2-topological space \(X = (X, (\tau_{x, z}, \tau_{x, z, xy})) \) where \(X = \{x, y, z\} \). Define a \(* \)-morphism \(f : L \to L(X) \) assigning to every element \(\ell \in L^- \) the operator

\[
\hat{f}(\ell) = \begin{cases}
\hat{r}_{x, z} & \text{if } \ell \leq u_k; \\
\hat{r}_{x, z, xy} & \text{if } u_k \leq \ell \leq u_{k-1}^*; \\
1_X & \text{if } u_{k-1}^* < \ell.
\end{cases}
\]

Consider the subset \(A = \{x\} \) of \(X \). It follows that

\[
\hat{u}_{k-1} \cdots \hat{u}_0(\{x\}) = \hat{u}_{k-1}(\{x\}) = \{\hat{r}_{x, z}(\{x\}), \hat{r}_{x, z, xy}(\{x, y\})\} = \{\{x\}\}
\]

and hence \(\hat{u}_k \cdots \hat{u}_0(A) = \hat{u}_k(\{x, y\}) = \hat{r}_{x, z}(\{x, y\}) = \{x\} \). Taking into account that the sequence \((u_k, v_k)_{0 \leq k \leq \infty} \) is strictly increasing in \(L^- \), we conclude that \(\hat{u}_{k-1}^* = 1_X \) for all positive \(i \leq \frac{v_k - u_k}{2} \).

This implies that \(\hat{v}(A) = \hat{v}_k \cdots \hat{v}_0(A) \subset A = \{x\} \).

On the other hand, \(\hat{u}_k \cdots \hat{u}_0(A) = \hat{v}_k(\{x, y\}) \subset \{\hat{r}_{x, z}(\{x, y\}), 1_X(\{x, y\})\} = \{\{x, y\}\} \). Taking into account that \(u_k < v_k \) and the sequence \((u_k, v_k)_{0 \leq k \leq \infty} \) is strictly increasing, we conclude that \(\hat{v}_k(\{x, y\}) = \{x, y\} \subset \{\hat{r}_{x, z}(\{x, y\}), 1_X(\{x, y\})\} \), which implies that \(\hat{v}(A) = \hat{v}_k \cdots \hat{v}_0(A) \not\subset \{x, y\} \). So, \(\hat{u}(A) \neq \hat{v}(A) \), which implies that \(\hat{f}(u) \neq \hat{f}(v) \).

This completes the proof of case (3) under the assumption \(u_{k-1} = v_{k-1} \in L^+ \). If \(u_{k-1} = v_{k-1} \in L^- \), then we can consider the dual words \(u^* = u_k \cdots u_0^* \) and \(v^* = v_k \cdots v_0^* \). For these dual words we get \(u_i^* = v_i^* \) for \(i < k \) and \(v_{k-1}^* = u_{k-1}^* \in L^+ \). In this case the preceding proof yields an 2-topological space \(X \) and a \(* \)-morphism \(f : L \to L(X) \) such that \(\hat{f}(u^*) \neq \hat{f}(v^*) \neq \hat{f}(v)^* \), which implies that \(\hat{f}(u) \neq \hat{f}(v) \).

Finally, consider the case:

4) \(u, v \in \tilde{K}_L \setminus K_L \). Then \(u = cu' \) and \(v = cv' \) for some distinct words \(u', v' \in K_L \). By the case (3), we can find a 2-topological space \(X \) and a \(* \)-morphism \(f : L \to L(X) \) such that \(\hat{f}(u') \neq \hat{f}(v') \). This means that \(\hat{f}(u')(A) \neq \hat{f}(v')(A) \) for some subset \(A \subset X \). Then

\[
\hat{f}(u)(A) = \hat{f}(u')(A) = \hat{f}(c\hat{f}(u')(A)) = c_X(\hat{f}(u')(A)) \neq c_X(\hat{f}(v')(A)) = \hat{f}(c\hat{f}(v')(A)) = \hat{f}(v)(A),
\]

which means that \(\hat{f}(u) \neq \hat{f}(v) \). \(\square \)

The following corollary of Theorem 8.1 implies Theorem 10.2 and shows that the upper bound in Theorem 10.1 is exact.

Corollary 8.2. For any \(* \)-linearly ordered set \(L \) there is an \(L^- \)-topological space \(X = (X, (\tau_\ell)_{\ell \in L^-}) \) such that the unique semigroup homomorphism \(\pi : FS\ L_{L^+} \to K_2(X) \) such that \(\pi(1) = 1_X \), \(\pi(c) = c_X \), \(\pi(\ell) = \hat{r}_\ell \), \(\pi(\ell') = \hat{r}_\ell \) for \(\ell \in L^- \) maps bijectively the set \(K_2(X) \) onto \(K(X) \) and the set \(\tilde{K}_L \) onto \(K_2(X) \). If the set \(L^- \) has finite cardinality \(n \), then the Kuratowski monoid \(K(X) \) of \(X \) has cardinality \(|K(X)| = K(n, n) = K(n) \) and the full Kuratowski monoid \(K_2(X) \) of \(X \) has cardinality \(|K_2(X)| = 2 \cdot K(n) \).

Proof. Let \(\tilde{K}_L \setminus \{u, v\} = \{u, v\} \in \tilde{K}_L \times \tilde{K}_L : u \neq v \} \). By Theorem 8.1, for any distinct words \(u, v \in \tilde{K}_L \) there exist 2-topological space \(X_{u, v} = (X_{u, v}, (\tau_{u, v}, \hat{r}_{u, v})^*) \) and a \(* \)-morphism \(f_{u, v} : L \to L(X) \) whose Kuratowski extension \(\hat{f}_{u, v} : FS\ L_{L^+} \to K_2(X_{u, v}) \) separates the words \(u, v \) in the sense that \(\hat{f}(u) \neq \hat{f}(v) \). This means that \(\hat{f}_{u, v}(u)(A_{u, v}) \neq \hat{f}_{u, v}(v)(A_{u, v}) \) for some subset \(A_{u, v} \subset X_{u, v} \). Let \(\delta_{u, v} \) denote the discrete topology on the set \(X_{u, v} \).

Define the \(L^- \)-topology \(\tau_{u, v} : L^- \to Top(X_{u, v}) \) on \(X_{u, v} \) by the formula

\[
\tau_{u, v}(\ell) = \begin{cases}
\tau_{u, v} & \text{if } \ell = \hat{r}_{u, v}; \\
\tau_{u, v}^* & \text{if } \ell = \hat{r}_{u, v}^*; \\
\delta_{u, v} & \text{otherwise}.
\end{cases}
\]
Consider the L_*-topological space $X^{-}_{u,v} = (X_{u,v}, \tau_{u,v})$ and observe that its full Kuratowski monoid coincides with its full Kuratowski monoid of the 2-topological space $X_{u,v}$. Moreover, the Kuratowski extension $\hat{f}_{u,v} : F_{S_{L_*}} \to K_2(X_{u,v}) = K_2(\tau_{u,v})$ of the morphism $f_{u,v}$ has the properties $\hat{f}_{u,v}(1) = 1_{X_{u,v}}, f_{u,v}(c) = c_{X_{u,v}}, f_{u,v}(\ell) = \tau_{u,v}(\ell)$, and $f(\ell^*) = \tau_{u,v}(\ell^*)$ for $\ell \in L_*$.

We lose no generality assuming that for any distinct pairs $(u, v), (u', v') \in \bar{K}_L^2 \setminus \Delta$ the sets $X_{u,v}$ and $X_{u',v'}$ are disjoint. This allows us to consider the disjoint union $X = \bigcup \{X_{u,v} : (u, v) \in \bar{K}_L^2 \setminus \Delta\}$ and the subset $A = \bigcup \{A_{u,v} : (u, v) \in \bar{K}_L^2 \setminus \Delta\}$ in X. For every $\ell \in L_*$ consider the topology τ_ℓ on the set X generated by the base $\bigcup \{\tau_{u,v}(\ell) : (u, v) \in \bar{K}_L^2 \setminus \Delta\}$. We claim that the L_*-topological space $X = (X, \tau)$ (which is the direct sum of L_*-topological spaces $X_{u,v}$) and the subset $A \subset X$ have the desired property: for any two distinct words $u, v \in \bar{K}_L$, we get $\hat{u}(A) \neq \hat{v}(A)$, where \hat{u} and \hat{v} are the images of u and v under the (unique) semigroup homomorphism $\pi : F_{S_{L_*}} \to K_2(X)$ such that $\pi(1) = 1_X, \pi(c) = c_X, \pi(\ell) = \tau_\ell, \pi(\ell^*) = \tau_\ell^*$ for $\ell \in L_*$. This follows from the fact that $\hat{u}(A) \cap X_{u,v} = f_{u,v}(u)(A_{u,v}) \neq f_{u,v}(v)(A_{u,v}) = \hat{v}(A) \cap X_{u,v}$.

This means that the restriction $\pi : \bar{K}_L \to K_2(X)$ is injective. By Theorem 7.1 $\pi(\bar{K}_L) = K(X)$. Since $K_2(X) = K(X) \cup \{c_X \circ w : w \in K(X)\}$, we get also that $\pi(\bar{K}_L) = K_2(X)$. This means that the homomorphism π maps bijectively the set \bar{K}_L onto $K(X)$ and the set \bar{K}_L onto $K_2(X)$.

If the set L_* has finite cardinality n, then the set \bar{K}_L has cardinality $|\bar{K}_L| = K(n, n) = K(n)$ (according to Theorem 5.2) and hence $|K(X)| = |\bar{K}_L| = K(n, n)$ and $|K_2(X)| = |\bar{K}_L| = 2 \cdot K(n, n) = 2 \cdot K(n)$. \hfill \Box

9. Free Kuratowski monoids

In this section we shall discuss free Kuratowski monoids over pointed linearly ordered sets. By a pointed linearly ordered set we understand a linearly ordered set (L, \leq) with a distinguished point $1 \in L$ called the unit of L. The subsets $L^- = \{x \in L : x \leq 1\}$ and $L^+ = \{x \in L : 1 < x\}$ are called the negative and positive parts of L, respectively. A function $f : L \to \Lambda$ between two pointed linearly ordered sets is called a morphism if $f(1) = 1$ and f is monotone in the sense that $f(x) \leq f(y)$ for any elements $x \leq y$ of L.

Each pointed linearly ordered set L determines the free Kuratowski monoid $F_{K L}$ defined as follows. On the free semigroup $F_{S_L} = \bigcup_{n=1}^{\infty} L^n$ consider the smallest compatible partial preorder \preceq extending the linear order \leq of the set $L = L^1 \subset F_{S_L}$ containing the pairs $(x, x), (x, 1x), (1x, x), (x^2, x)$, and (x^2, x) for $x \in L$. The compatible partial preorder \preceq generates the congruence $\rho_\preceq = \{(v, w) \in F_{S_L} : v \preceq w, w \preceq v\}$ on F_{S_L} identifying the words $x, x1, 1x, x^2$ for any $x \in L$. The quotient semigroup $F_{K L} = F_{S_L}/\rho_\preceq$ endowed with the quotient partial order is called the free Kuratowski monoid generated by the pointed linearly ordered set L. By $q_L : F_{S_L} \to F_{K L}$ we shall denote the (monotone) quotient homomorphism. The restriction $\eta_L = q_L|L : L \to F_{K L}$ is called the canonical embedding of the pointed linearly ordered set L into its free Kuratowski monoid. In Proposition 5.2 we shall see that η is indeed injective.

First we show that the free Kuratowski monoid $F_{K L}$ is free in the categorical sense.

\textbf{Proposition 9.1.} For any pointed linearly ordered set L and any Kuratowski monoid K with a linear generating set Λ any morphism $f : L \to \Lambda$ determines a unique monotone semigroup homomorphism $\hat{f} : F_{K L} \to K$ such that $\hat{f} \circ \eta_L = f$.

\textbf{Proof.} Let $\hat{f} : F_{S_L} \to K$ be the unique semigroup homomorphism extending the morphism $f : L \to \Lambda$ into $K \subset L$. The partial order \preceq of the Kuratowski monoid K induces the compatible partial preorder \preceq on F_{S_L} defined by $u \preceq v$ iff $\hat{f}(u) \preceq \hat{f}(v)$. The monotonicity of f implies that the partial preorder \preceq contains the linear order of the set L. Then the minimality of the partial preorder \preceq implies that $\preceq \leq \preceq$. This allows us to find a unique monotone semigroup homomorphism $\hat{f} : F_{K L} \to K$ such that $\hat{f} \circ \eta_L = f$ and hence $\hat{f} \circ \eta_L = \hat{f} \circ q_L|L = f|L = f$. \hfill \Box

\textbf{Proposition 9.2.} For any pointed linearly ordered set L the quotient homomorphism $q_L : F_{S_L} \to F_{K L}$ maps bijectively the set \bar{K}_L of Kuratowski words onto $F_{K L}$.

\textbf{Proof.} Theorem 7.1 implies that $q_L(\bar{K}_L) = F_{K L}$. To show that $q_L|\bar{K}_L$ is injective, we shall apply Theorem 5.2. Choose any injective morphism $e : L \to L^*$ of the pointed linearly ordered set L into a *-linearly ordered set
L^*. Let $\bar{e} : FS_L \rightarrow FS_{L^*}$ be the unique semigroup homomorphism extending the map e. The injectivity of e implies the injectivity of the homomorphism \bar{e}.

By Proposition 9.1 the morphism e determines a unique monotone semigroup homomorphism $\bar{e} : FK_L \rightarrow FK_{L^*}$ such that $\bar{e} \circ \eta_L = \eta_{L^*} \circ e$. By Theorem 8.2 there exists a polytopological space X and a *-morphism $f : L^* \rightarrow L(X)$ whose Kuratowski extension $f : FS_{L^*} \rightarrow K(X)$ maps bijectively the set K_{L^*} onto $K(X)$.

By Proposition 9.3 the *-morphism $f : L^* \rightarrow L(X) \subset K(X)$ determines a (unique) monotone semigroup homomorphism $\hat{f} : FS_{L^*} \rightarrow K(X)$ such that $\hat{f} \circ \eta_{L^*} = f$. Thus we obtain the commutative diagram

\[
\begin{array}{ccc}
L & \xrightarrow{e} & L^* \\
\downarrow & & \downarrow \\
K_L & \xrightarrow{\bar{e}|K_L} & K_{L^*} \\
\downarrow & & \downarrow \\
FS_L & \xrightarrow{\hat{f}} & FS_{L^*} \\
\downarrow & & \downarrow \\
FK_L & \xrightarrow{\bar{e}} & FK_{L^*} \\
\downarrow & & \downarrow f \\
& K(X) &
\end{array}
\]

in which the map $\hat{f} \circ \bar{e}|K_L$ is injective. Since $\hat{f} \circ \bar{e} = \hat{f} \circ \bar{e} \circ q_L$, the injectivity of the map $\hat{f} \circ \bar{e}|K_L$ implies the injectivity of the map $q_L|K_L$. Since $q_L(K_L) = FK_L$, the restriction $q_L|K_L : K_L \rightarrow FK_L$ is bijective. \hfill \square

Now we prove that the congruence ρ_\leq on FS_L determining the free Kuratowski monoid can be equivalently defined in a more algebraic fashion.

Proposition 9.3. For any pointed linearly ordered set L the congruence ρ_\leq on the free semigroup FS_L coincides with the smallest congruence ρ on FS_L containing the pairs $(x,y_1), (x,y_2)$ for any $x \in L$ and the pairs (x_1y_1,x_2y_2), $(y_1y_2,x_1x_2y_1,x_2x_1)$ for any points $x_1, x_2, y_1, y_2 \in L$ with $x_1 \leq x_2 \leq 1 \leq y_1 \leq y_2$.

Proof. First we prove that $\rho \subset \rho_\leq$. The definition of the partial preorder \leq implies that $\{(x,x_1), (x,1x), (x,x^2) : x \in L\} \subset \rho_\leq$. Repeating the proofs of Lemma 7.3 we can show that

$$\{(x_1y_1,x_2y_2), (y_1y_2,x_1x_2) : x_1, x_2, y_1, y_2 \in L, x_1 \leq x_2 \leq 1 \leq y_1 \leq y_2\} \subset \rho_\leq.$$

Now the minimality of the congruence ρ_\leq implies that $\rho \subset \rho_\leq$.

Denote by $\rho^\downarrow : FS_L \rightarrow FS_L/\rho$ and $q_L : FS_L \rightarrow FS_L/\rho_\leq = FK_L$ the quotient homomorphisms. Since $\rho \subset \rho_\leq$, there is a unique homomorphism $h : FS_L/\rho \rightarrow FK_L$, making the following diagram commutative:

\[
\begin{array}{ccc}
K_L & \xrightarrow{\rho^\downarrow} & FS_L \\
\downarrow & & \downarrow q_L \\
FS_L/\rho & \xrightarrow{h} & FK_L
\end{array}
\]

In this diagram by $i : K_L \rightarrow FS_L$ we denote the identity inclusion of the set K_L of Kuratowski words into the free semigroup FS_L. The proof of Theorem 7.1 implies that $\rho^\downarrow(K_L) = FS_L/\rho$.

On the other hand, Proposition 9.2 guarantees that the restriction $q_L|K_L : K_L \rightarrow FK_L$ is bijective. This implies that the homomorphism h is bijective and hence $\rho_\leq = \rho$. \hfill \square

The bijectivity of the restriction $q_L|K_L : K_L \rightarrow FK_L$ and Theorem 5.2 imply:

Corollary 9.4. For any finite pointed linearly ordered set L the free Kuratowski monoid FK_L has cardinality

$$|FK_L| = |K_L| = K(n,p) = \sum_{i=0}^{n} \sum_{j=0}^{p} \binom{i+j}{i} \binom{i+j}{j},$$

where $n = |L_-|$ and $p = |L_+|$.

Given two non-negative natural numbers \(n, p \), fix any pointed linearly ordered set \(L_{n,p} \) with \(|(L_{n,p})_-| = n\) and \(|(L_{n,p})_+| = p\) and denote the free Kuratowski monoid \(FK_{L_{n,p}} \) by \(FK_{n,p} \).

Proposition 9.5. For any pointed linearly ordered set \(L \) and any distinct elements \(x, y \in FK_L \) there is a morphism of pointed linearly ordered sets \(f : L \rightarrow L_{2,2} \) such that \(f(x) \neq f(y) \). This implies that \(FK_L \) embeds into some power of the free Kuratowski monoid \(FK_{2,2} \).

Proof. Enlarge the pointed linearly ordered set \(L \) to a \(*\)-linearly ordered set \(L^* \) and denote by \(e : L \rightarrow L^* \) the identity embedding. Let \(\tilde{e} : FS_L \rightarrow FS_{L^*} \) be the unique semigroup homomorphism extending \(e \). It is clear that \(\tilde{e} \) is an injective map.

By Proposition 9.2 the restriction \(q_L|K_L : K_L \rightarrow FK_L \) is bijective. So, we can find Kuratowski words \(u, v \in K_L \) such that \(q_L(u) = x \) and \(q_L(v) = y \). By Theorem 8.1 for the Kuratowski words \(u, v \in K_L \subset K_{L^*} \) there exist a 2-topological space \(X \) and a \(*\)-morphism \(g : L^* \rightarrow L(X) \) such that \(\hat{g}(u) \neq \hat{g}(v) \) where \(\hat{g} : FS_{L^*} \rightarrow K(X) \) is the unique semigroup homomorphism extending the \(*\)-morphism \(g \). Moreover, the proof of Theorem 8.1 guarantees that the linear generating set \(L(X) \) of the 2-topological space \(X \) is isomorphic to the \(*\)-linearly ordered set \(L_{2,2} \). So, there exists a (unique) bijective \(*\)-morphism \(\iota : L_{2,2} \rightarrow L(X) \). Let \(f = \iota^{-1} \circ g : L^* \rightarrow L_{2,2} \).

The commutativity of the following diagram

\[
\begin{array}{ccc}
L & \xrightarrow{e} & L^* \\
\downarrow & & \downarrow \quad f \\
\downarrow \quad \tilde{e}|K_L & \quad \tilde{e}'|K_{L^*} & \downarrow \\
K_L & \xrightarrow{g} & K_{L^*} \\
\downarrow & & \downarrow \quad f \\
FS_L & \xrightarrow{q_L} & FK_{L^*} \\
\downarrow & & \downarrow \quad f \\
FK_L & \xrightarrow{\hat{g}} & K(X) \\
\end{array}
\]

and the inequality \(\hat{g} \circ \tilde{e}(u) \neq \hat{g} \circ \tilde{e}(v) \) imply that \(\tilde{f}(x) \neq \tilde{f}(y) \). \(\square \)

In fact, Proposition 9.5 can be improved as follows.

Proposition 9.6. For any pointed linearly ordered set \(L \) and any distinct elements \(x, y \in FK_L \) there is a pair \((n, p) \in \{(1, 2), (2, 1)\} \) and a morphism of pointed linearly ordered sets \(f : L \rightarrow L_{n,p} \) such that \(\tilde{f}(x) \neq \tilde{f}(y) \). This implies that \(FK_L \) embeds into some power of the partially ordered monoid \(FK_{1,2} \times FK_{2,1} \).

Proof. Because of Proposition 9.5 it suffices to prove that the points of the free Kuratowski monoid \(FK_{2,2} \) can be separated by monotone homomorphisms into the Kuratowski monoids \(FK_{1,2} \) and \(FK_{2,1} \). Write the \(*\)-linearly ordered set \(L_{2,2} \) as \(L_{2,2} = \{\bar{r}_0, \bar{r}_1, 1, \bar{r}_1, \bar{r}_0\} \) for some elements

\[
\bar{r}_0 < \bar{r}_1 < 1 < \bar{r}_1 < \bar{r}_0.
\]

By analogy the pointed linearly ordered sets \(L_{1,2} \) and \(L_{2,1} \) can be written as \(L_{1,2} = \{\bar{r}, 1, \bar{r}_1, \bar{r}_0\} \) and \(L_{2,1} = \{\bar{r}_0, \bar{r}_1, 1, \bar{r}\} \). Consider the four surjective monotone morphisms

\[
h_{12} : L_{2,2} \rightarrow L_{1,2}, \ h_{23} : L_{2,2} \rightarrow L_{1,2}, \ h_{34} : L_{2,2} \rightarrow L_{2,1} \text{ and } h_{45} : L_{2,2} \rightarrow L_{2,1}
\]

such that

\[
h_{12}(\bar{r}_0) = h_{12}(\bar{r}_1) = \bar{r}, \ h_{23}(\bar{r}_1) = h_{23}(1) = 1, \ h_{34}(1) = h_{34}(\bar{r}_1) = 1, \text{ and } h_{45}(\bar{r}_1) = h_{45}(\bar{r}_0) = \bar{r}.
\]
Kuratowski words in the alphabet determine the structure of any free Kuratowski monoid. The following diagram shows the order structure of

By Proposition 9.2, the free Kuratowski monoid $FK_{2,2}$ can be identified with the 63-element set $\mathcal{K}_{L_{2,2}}$ of Kuratowski words in the alphabet $L_{2,2}$:

In the following two lists we write the pairs $(h_{12}(w), h_{45}(w))$ and $(h_{23}(w), h_{34}(w))$ for the Kuratowski words w from the above list. Analyzing these two lists we can see that the quadruples $(h_{12}(w), h_{45}(w), h_{23}(w), h_{34}(w))$, $w \in \mathcal{K}_{L_{2,2}}$, are pairwise distinct, which means that the elements of the free Kuratowski monoid $FK_{2,2}$ are separated by the homomorphism $(h_{12}, h_{23}, h_{34}, h_{45}) : L_{2,2} \to L_{2,2}^2 \times L_{2,2}^2$.

The homomorphism (h_{12}, h_{45}):

The homomorphism (h_{23}, h_{34}):

Proposition 9.1 shows that the homomorphisms into free Kuratowski monoids $FK_{n,p}$ for $n+p \leq 3$ completely determine the structure of any free Kuratowski monoid. The following diagram shows the order structure of

[Diagram]

□
the free Kuratowski monoids $FK_{1,1}$ with the linear generating set $L_{1,1} = \{a, 1, x\}$. We identify the elements of $FK_{1,1}$ with the Kuratowski words in the alphabet $L_{1,1}$. For two Kuratowski words u, v an arrow $u \rightarrow v$ indicated that $u \leq v$ in $FK_{1,1}$.

The following diagram shows the order structure of the free Kuratowski monoids $FK_{2,1}$ with the linear generating set $L_{2,1} = \{a, b, 1, x\}$:

The free Kuratowski monoid $K_{1,2}$ is isomorphic to the free Kuratowski monoid $K_{2,1}$ endowed with the reversed partial order.

Proposition 9.7 has an interesting application.

Proposition 9.7. All elements of any Kuratowski monoid K are idempotents.

Proof. Let L be the linear generating set of the Kuratowski monoid K. Since K is a quotient monoid of the free Kuratowski monoid FK_L, it suffices to check that all elements of FK_L are idempotents. By Proposition 9.6 the free Kuratowski monoid FK_L embeds into some power of the monoid $FK_{1,2} \times FK_{2,1}$. So, it suffices to check that each element of the free Kuratowski monoids $FK_{1,2}$ and $FK_{2,1}$ is an idempotent. This can be seen by a direct verification of each of 17 elements of $FK_{1,2}$ (or its algebraically isomorphic copy $FK_{2,1}$).

References

[1] K. Kuratowski, *Sur l’opération \overline{A} de l’Analysis Situs*, Fund. Math. 3 (1922) 182–199.
[2] B.J. Gardner, M. Jackson, *The Kuratowski Closure-Complement Theorem*, New Zealand J. Math. 38 (2008), 9–44.
[3] R. Graham, D. Knuth, O. Patashnik, *Concrete mathematics. A foundation for computer science*, Addison-Wesley Publishing Company, Reading, MA, 1994.
[4] J. Shallit, R. Willard, *Kuratowski’s Theorem for two closure operators*, preprint (arXiv:1109.1227).

T. Banakh: IVAN FRANKO NATIONAL UNIVERSITY OF LVIV (UKRAINE) AND JAN KOCHANOWSKI UNIVERSITY IN KIELCE (POLAND)
E-mail address: t.o.banakh@gmail.com

O. Chervak, T. Martynyuk, M. Pylypovych, M. Simkiv: IVAN FRANKO NATIONAL UNIVERSITY OF LVIV (UKRAINE)
E-mail address: oschervak@gmail.com, tetyanka.martynyuk@gmail.com, pylypovych@gmail.com, simkiv.markiyan@gmail.com

A. Ravsky: INSTITUTE FOR APPLIED PROBLEMS OF MECHANICS AND MATHEMATICS, LVIV (UKRAINE)
E-mail address: oravsky@mail.ru