The MEDITS trawl survey specifications in an ecosystem approach to fishery management

Maria Teresa Spedicato 1, Enric Massutí 2, Bastien Mérigot 3, George Tserpes 4, Angélique Jadaud 5, Giulio Relini 6

1 COISPA Tecnologia & Ricerca, via dei trulli 18, 70126 Bari, Italy. (MTS) (Corresponding author) E-mail: spedicato@coispa.it. ORCID iD: https://orcid.org/0000-0001-9939-9426
2 Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma, Illes Balears, Spain. (EM) E-mail: enric.massuti@ieo.es. ORCID iD: https://orcid.org/0000-0002-9524-5873
3 MARBEC - Université de Montpellier, CNRS, Ifremer,IRD, Sète, France. (BM) E-mail: bastien.merigot@umontpellier.fr. ORCID iD: https://orcid.org/0000-0001-5264-4324
4 Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, PO Box 2214, 71003 Heraklion, Greece. (GT) E-mail: gtserpes@hcmr.gr. ORCID iD: https://orcid.org/0000-0001-9052-4091
5 MARBEC - IFREMER, IRD, Université de Montpellier, CNRS, Avenue Jean Monnet, CS 30171, 34203 Sète Cedex, France. (AJ) E-mail: ajadaud@ifremer.fr. ORCID iD: https://orcid.org/0000-0001-6858-3570
6 Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, 16132 Genova, Italy. (GR) E-mail: biolmar@unige.it. ORCID iD: https://orcid.org/0000-0003-2502-5581

Summary: The MEDITS programme started in 1994 in the Mediterranean with the cooperation among research institutes from four countries: France, Greece, Italy and Spain. Over the years, until the advent of the European framework for the collection and management of fisheries data (the Data Collection Framework, DCF), new partners from Slovenia, Croatia, Albania, Montenegro, Malta and Cyprus joined MEDITS. The FAO regional projects facilitated the cooperation with non-European countries. MEDITS applies a common sampling protocol and methodology for sample collection, data storage and data quality checks (RoME routines). For many years, MEDITS represented the most important data source supporting the evaluation of demersal resources by means of population and community indicators, assessment and simulation models based on fishery-independent data. With the consolidation of the DCF, MEDITS routinely provides abundance indices of target species for tuning stock assessment models of intermediate complexity. Over the years, the survey scope has broadened from the population of demersal species to their fish community and ecosystems, and it has faced new challenges, such as the identification of essential fish habitats, providing new scientific insights linked to the Marine Strategy Framework Directive (e.g. biodiversity, trophic webs, allochthonous species and marine macro-litter evaluations) and to the ecosystem approach to fishery and marine spatial planning.

Keywords: demersal resources; trawl survey; sampling; Mediterranean.
INTRODUCTION

The aim of scientific bottom trawl surveys is typically to collect data on the distribution of a range of fish species, estimating relative abundance and biological parameters of these species (Hilborn and Walters 1992, Gunderson 1993). The use of quantitative indices obtained is manifold. These surveys are central to the knowledge of the status of commercially important fishery stocks and to forecasting how this status evolves over time (e.g. Trenkel et al. 2007).

In data-rich situations, when both fishery-dependent and fishery-independent data are available, indices of fish population structure by age or length or indices of the whole population are used for tuning age-structured or production stock assessment models. However, for several by-catch species or for stocks that are not the main target of the commercial fisheries, fishery-dependent data are sometimes of poor quality because of incompleteness of the time series, spatial coverage or misreporting (Cotter et al. 2009a). In these data-limited situations, trawl surveys can provide valuable information in terms of quantitative abundance indices, length and/or age structure and biological parameters. Indeed, trawl surveys have gained more attention during the last decade as a primary tool for providing information that is useful per se to the assessment process (e.g. Cotter et al. 2009b).

The MEDITS trawl survey programme in the Mediterranean started in 1994 as a European Commission–funded project in the framework of the cooperation between research institutes from four Member States of the European Union: France, Greece, Italy and Spain (Bertrand et al. 2002). During the following years, the survey was expanded to Slovenia, Croatia, Albania, Malta, Montenegro and Cyprus, finally involving 16 research institutes. Currently, the MEDITS sampling covers 543,000 km² with, on average, about 1283 sampling stations per year (Fig. 1; Table 1). Collaboration with non-European countries was facilitated by the FAO AdriaMed regional project and in 2000-2001 by the CopeMed project, for the conducting of two surveys in Morocco.

In 2002, the European countries bordering the Mediterranean made a commitment to carry out MEDITS surveys yearly according to the European Data Collection Framework (DCF). Permanent links are therefore maintained with the relevant bodies at European Union level, such as the Regional Coordination Group of the Mediterranean and Black Sea (RCG_Med&BS) and the Scientific Technical and Economic Committee for Fisheries (STECF). Furthermore, links were also maintained with the General Fisheries Commission for the Mediterranean (GFCM), the FAO regional fisheries management organization.

The MEDITS data have been used for joint publications, which have elucidated several aspects related to...
This paper aims to summarize and update the specifications of the MEDITS trawl survey, focusing on those most relevant to an ecosystem approach to fishery management and on data quality. The latter is pivotal for a sound evaluation of the status of demersal resources and their communities.

### A SUMMARY OF THE TECHNICAL SPECIFICATIONS OF THE MEDITS SURVEY

Since the beginning of the project, the standard sampling gear has been the bottom trawl GOC 73 (Bertrand et al. 2002) designed for experimental fishing for scientific purposes in the various conditions encountered in the whole survey area. It has a vertical opening slightly larger than that of the most common professional gears used in the area. Its codend mesh size is 20 mm (stretched mesh) to also allow the catch of juveniles of many species for estimating recruitment indices. Specific studies have been conducted to increase knowledge on the efficiency of the gear (Fiorentini et al. 1996, Fiorentini and Dremière 1996, Dremière et al. 1999, Fiorentini et al. 1999). Both research and commercial vessels are used, depending on the GSA and country, so operational conditions in the GSAs differ.

Haul duration is 30 minutes on the continental shelf (10-200 m depth) and 60 minutes on the slope (201-800 m depth). The standard fishing speed is 3 knots on the ground, and hauls are allowed only during daytime. Haul performance and gear geometry are usually monitored using the SCANMAR system or, more recently, SIMRAD or MARPORT sensors. Data acquisition is monitored in real time using a laptop and specific software. Effective tow duration was considered as the interval from the time when the gear is stabilized on the bottom and the time when speed is reduced to recover the warp. Vertical and horizontal openings (wings) of the net working on the bottom are expected to range depending on depth. On each haul, the horizontal opening is used to standardize abundance and biomass of catches in relation to the sampled surface.

In addition, probes are used to record water temperature (formerly using Minilog and currently DST Logic CTD sensors) on the bottom during the towing. Intercalibration to exchange knowledge and fine tuning of the application of the common protocols in the field activities have been pursued since the beginning of the MEDITS survey, especially through the exchange of scientists on board the vessels. Furthermore, intercalibration studies have been performed in some GSAs to evaluate vessel effect when a change was needed. For example, this was done between the research vessels *Corrida de Saavedra*, used in GSAs 1 (northern Alboran), 2 (Alboran Island), 5 (Balearic Islands) and 6 (northern Spain), and *Miguel Oliver*, as the former had to be replaced. The intercalibration study was conducted in GSA 6 using parallel hauls and did not show significant differences.

The potential impact of different methods for estimating wing opening on the standardized abundance

---

#### Table 1. – Average number of hauls carried out during the MEDITS bottom trawl surveys by each geographical sub-area (GSA) established by the General Fisheries Commission for the Mediterranean during the period 1994-2001 (before the DCF) and the period 2002-2017. The codes of the MEDITS macrostrata and the relative areas in km² are also shown.

| GSA | Macrostrata code | Area (km²) | 1994-2001 | 2002-2017 |
|-----|------------------|------------|-----------|-----------|
| 1   | 111a             | 11920      | 34        | 44        |
| 2   | 111b             | 833        | 7         |           |
| 5   | 115              | 12656      | 4         | 55**      |
| 6   | 112-113          | 32506      | 69        | 85        |
| 7   | 121              | 13860      | 67        | 64        |
| 8   | 131              | 4562       | 20        | 22        |
| 9   | 132              | 42410      | 153       | 120       |
| 10  | 134a-134b        | 20255      | 85        | 70        |
| 11  | 133              | 26975      | 120       | 99        |
| 15  | 135              | 10580      | 7         | 45        |
| 16  | 134c             | 31386      | 56        | 120       |
| 17 (W) | 211a-211b  | 60350      | 86        | 120       |
| 17 (NE) | 211c           | 184        | 2**       | 2         |
| 17 (CE) | 211d           | 31727      | 48**      | 60        |
| 18 (W) | 221e-221h     | 15273      | 72        | 70        |
| 18 (E) | 221i            | 5000       | 5*        |           |
| 18 (SE) | 221j           | 8735       | 40**      | 15        |
| 19  | 221a-221d       | 16347      | 74        | 70        |
| 20  | 222a-222b       | 16823      | 31        | 36        |
| 22 (Ar) | 223a           | 24916      | 22        | 23        |
| 22 (NAe) | 224a          | 68157      | 65        | 65        |
| 22 (SAe) | 225a           | 55258      | 38        | 40        |
| 23  | 225a (06-10)    | 7343       | 16        | 20        |
| 25  | 321a            | 11106      | 26**      |           |
| 3   | 114             | 13841      |           |           |

**since 1996; * southern Alboran Sea; ** since 2005; ⋆ since 2007; ⋆⋆ since 2008.

abundance and biomass indices of demersal species, their length-age-frequency distribution (by sex and maturity stages) and life history parameters, the latter especially related to total and fishing mortality. Population and community indicators and spatial occupation indices have also been estimated. All these results have provided information among the various GFCM geographical sub-areas (GSAs) of the Mediterranean for a range of target species and thematic areas. The first MEDITS monograph published in 2002 under the title “Mediterranean marine demersal resources: The MEDITS international trawl survey (1994-1999)” (Abelló et al. 2002) is the earliest good example of a joint publication at the wide geographical scale of the northern Mediterranean. Furthermore, studies have been carried out to understand the impact of fishing pressure on the abundance of populations, fish community diversity and structure, as well as to investigate the influence of environmental drivers on shaping the spatial and temporal distribution of fish populations and their communities, thus helping forecast the effects of global changes at a Mediterranean scale. Taxonomic studies, including new reports in the area and descriptions of new species, have also been carried out from samples collected during MEDITS surveys.

A list of relevant publications is provided in the Supplementary Material.

Twenty-five years after the beginning of the MEDITS trawl survey, this second monograph aims to further understanding spatial and temporal patterns of populations and fish community structures and to explore the influence of anthropogenic factors in shaping such patterns.
indices (number and kg km\(^{-2}\)) have been tested on a case study in GSA 10 (central-southern Tyrrhenian Sea). Different models were applied to species with different depth distributions, such as European hake (continental shelf and slope), red mullet (continental shelf) and giant red shrimp (slope):

- the mean of the wing opening by depth stratum (median and mode were almost coincident with the mean, so only this metric was used)
- a logarithmic equation used for the period 2002-2012:
  \[ WO = 14.54 + 0.651 \times \ln(x) \] (2)
- a logarithmic equation used during the period 1994-2001 before the routine use of SCANMAR system for gear monitoring:
  \[ WO = 6.7873 \times \ln(x) + 133.94 \] (3)
where \( WO \) is the wing opening and \( x \) is depth.

The results highlighted that the impact on the estimates of abundance indices (both in number and weight) over 10 years (2002-2012) was, on average, around 2% if Equation (2) was compared with the mean (1) and around 8% if Equation (3) was compared with the mean (1). This higher percentage was observed only for European hake (Fig. 2). Thus, it was considered acceptable to continue to use Equation (3), in continuity with the past, if a device for monitoring the trawl geometry could not be used in a certain GSA in a given year.

The time of the year in which the MEDITS survey is scheduled is late spring-summer (from May to July). The survey follows a depth-stratified random sampling scheme, with haul allocation being proportional to the surface of depth strata, whose limits are 10-50, 51-100, 101-200, 201-500 and 501-800 m. Up to 44 different geographic sectors are also included in the stratification. The sampling strata and the GFCM GSAs are reported in Figure 3.

Indices are calculated following the usual procedure of the stratified mean and variance (Souplet 1996):

\[ I = \sum_{i=1}^{N} W_i \times \sigma_i \]
Table 2. – List of the taxonomic categories used in the MEDITS bottom trawl surveys with code specification and year of introduction and use. The symbol “—” indicates that the taxonomic category is still used.

| MEDITS code | Nature | Years        |
|-------------|--------|--------------|
| A           | Fish   | 1994-2011    |
| Aa          | Fish Agnatha | 2014—      |
| Ae          | Fish Elasmobranchii | 2012—     |
| Ao          | Fish Osteichthyes | 2012—     |
| B           | Crustaceans (Decapoda) | 1994—     |
| Bam         | Amphipoda | 2012—     |
| Bci         | Cirripedia | 2012—     |
| Beu         | Euphausiacea | 2012—     |
| Bis         | Isopoda | 2012—     |
| Bst         | Stomatopoda | 2012—     |
| C           | Cephalopoda | 1994—     |
| D           | Other commercial (edible) species | 1994-2011 |
| Dec         | Echinodermata | 2012—   |
| Dmb         | Mollusca Bivalvia | 2012—   |
| Dmg         | Mollusca Gastropoda | 2012—   |
| Dmo         | Mollusca Opisthobranchia | 2012—   |
| Dtu         | Tunicata (Ascidiae) | 2012—   |
| E           | Other animal species but not commercial (not edible) | 1994-2011 |
| Ean         | Améllida | 2014—     |
| Eba         | Brachiopoda | 2012—     |
| Ebr         | Bryozoa | 2012—     |
| Ech         | Echiura | 2014—     |
| Ecn         | Cnidaria | 2012—     |
| Ect         | Ctenophora | 2012—    |
| Ecc         | Echinodermata | 2012—   |
| Ehi         | Hirudinea | 2012—    |
| Emb         | Mollusca Bivalvia | 2012—   |
| Emg         | Mollusca Gastropoda | 2012—   |
| Emo         | Mollusca Opisthobranchia | 2012— |
| Emp         | Mollusca Polyplacophora | 2014—   |
| Ene         | Nematoda | 2014—     |
| Epo         | Polychaeta | 2012—    |
| Epr         | Priapulidae | 2014—   |
| Esi         | Sipunculida | 2012—    |
| Esc         | Scaphopoda | 2012—    |
| Esp         | Sponges (Porifera) | 2012— |
| Etu         | Tunicata (Ascidiae) | 2012—   |
| G           | Portions or products of animal species (shell debris, eggs of gastropods, selachians, etc.) | 2012—   |
| H           | Portions or products of vegetal species (e.g. leaves of sea grasses, of terrestrial plants, etc.) | 2012—   |
| M           | Mammals | 2014—     |
| O           | Birds   | 2014—     |
| R           | Reptilia (turtles) | 2014—   |
| V           | #Aquatic plants, macroalgae# | 2014—   |

SUMMARY OF THE MEDITS BIOLOGICAL SPECIFICATIONS

The focus of the collection of survey data has been on keeping consistency throughout the time, so revisions of the protocols were introduced taking care to avoid disruptions in the time series. These changes are proposed, discussed and adopted in the MEDITS coordination meetings, which are organized annually.

During the last few years more emphasis was directed towards addressing ecosystem questions, while placing the survey in the DCF. Since 2012, the taxonomic categories and lists have been expanded to take into account the needs of the Marine Strategy Framework Directive (MSFD; Directive 2008/56/EC).

All the species larger than 1 cm caught during the MEDITS survey are identified, then total weight and number of individuals are recorded. Alien species are also identified and noted. Currently 43 taxonomic categories are used (Table 2), linked to 1470 observed taxa (at least in one GSA). A full taxonomic list (TM list) is hence routinely updated and is currently available in the online repository (https://www.sibm.it/MEDITS%202011/...
The procedure for including a new species in the TM list foresees that the new species’s name and sheet is submitted to the person responsible for the TM list who, after checks, proposes a specific code according to the rule of the Nordic Code Centre (NCC-Stockholm).

Currently, the TM list is composed of approximately 1617 codes. Up to 2017, the identified taxa included 385 bony fish, 54 elasmobranchs, 220 crustaceans (decapods), 25 other crustaceans, 60 cephalopods, 93 echinoderms, 115 bivalve molluscs, 98 gastropod molluscs, 54 opisthobranch molluscs, 72 tunicates (mainly Asciidea), 28 bryozoans, 90 cnidarians, 42 polychaetes, 50 porifers, 100 aquatic plants and macroalgae and other less numerous groups. 54 taxa of bony fish and 5 elasmobranchs were recorded in all the GSAs, while for crustacean decapods 10 taxa were observed in all the GSAs (Relini 2015, Relini and Vallarino 2016, Relini and Vallarino 2017).

Among the 14 alien (non-indigenous) bony fish, 12 were recorded in GSA 25 (Relini 2015). The occurrence of 6 alien species of Crustacea decapods was also recorded, mainly in the eastern Mediterranean (Relini and Vallarino 2016).

Since 2012, the MEDITS reference list of target species has been updated (Table 3) and includes 82 species, of which 32 are elasmobranchs. In addition, the list includes all species of the *Epinephelus* and *Scomber* genera, for which length measurements should be taken.
For all these species and the two genera, total number of individuals, total weight and individual length are collected.

This list of species has been further split in two groups:

– MEDITES G1, which includes 41 species, contains 3 bony fish, 4 crustaceans, 2 cephalopods and 32 elasmobranchs. For these species total number of individuals, total weight, individual length and also biological parameters including sex, maturity, individual weight and age are collected;

– MEDITES G2, which includes 43 species for which the total number of individuals, total weight and individual length are collected.

In 2011, the MEDITES coordination meeting agreed to increase the information recorded during the MEDITES survey, including the monitoring of new biological variables such as the age of bony fish species coded G1 and the individual weight of all the species coded G1.

A length-stratified random sampling was adopted to collect these biological variables, with fixed number of individuals randomly chosen from each length class by sex to take otoliths and individual weight. For details, see the MEDITES Handbook (Anonymous 2017). These biological variables were thus added to the routinely collected information on the macroscopic maturity stage for the main taxonomic groups. All individual measures of the different species are collected following common protocols.

Maturity scales currently used for the main taxonomic groups, Osteichthyes, oviparous and viviparous Elasmobranchii, Crustacea and Cephalopoda were updated at different time steps. A first update of the maturity scales was introduced in 2007, when it was decided to better discriminate the individuals that were maturing for the first time from those that had already reproduced at least once. In addition, this update aimed to better distinguish stages in the maturation and reabsorbing processes. The final goal was to allow, as much as possible, an unbiased estimate of the size at first maturity using either the maturity ogive or mean size at maturing and mature stages. Since 2013, the maturity scale of elasmobranchs was split between oviparous and viviparous species, given the differences of these reproduction strategies.

The validation of the maturity staging has been continuously pursued over the years, with microscopic histological analysis performed by a working group on maturity staging, established in the MEDITES coordination group. At the beginning of 2013, macroscopic photos and descriptions of the full maturity scales of 68 species were collected along with photos of histological sections. This work was also enriched with observations from other seasons carried out in the DCF biological samplings and culminated in the publication of the “Atlas on the maturity stages of Mediterranean fishery resources” (Follesa and Carbonara 2019).

Moreover, these MEDITES working groups established and maintained links with the ICES Working Group BIOP (e.g. ICES 2017). This allowed a continuous update and, for example, the introduction, for the main taxonomic group, of maturity stage conversion tables between MEDITES maturity scales and other scales if differences emerged. These conversion tables allowed consistency to be maintained in the time series.

ETHICAL ISSUES

The MEDITES protocol prescribes that if a live specimen of a rare species or a species subject to conservation measures is caught, efforts should be made to obtain length, weight and sex data and return the specimen back to the sea unharmed, giving it a chance for survival. The specimens should be returned to the sea preferably within 4-5 minutes.

DATA COLLECTION ON MARINE MACRO-LITTER

In 2013, the MEDITES coordination meeting decided to introduce among the MEDITES activities the samplings of marine macro-litter, to provide data for the descriptor 10 of the MSFD. A common protocol, taking the basis from the one of Galgani et al. (1996), was hence established for the collection of these data on a voluntary basis and it was further improved in 2014 and 2015. Up to 34 different typologies have been identified in the protocol, including 9 main categories related to litter material class and 27 sub-categories related to source and main litter findings (Table 4). This table also shows a comparison with the classification adopted by the ICES International Bottom Trawl Survey (IBTS).

As a result of this activity, the MEDITES group also contributed to the actions of the United Nation Environment Programme (UNEP), the Barcelona Convention of the Mediterranean Action Plan (MAP) for implementing the Regional Plan on Marine Litter Management in the Mediterranean, and the Marine Litter Regional Cooperation Platform. This platform was established by UNEP-MAP as an open-ended group of regional and international partners participating on a voluntary basis and with mandates and activities contributing to the environmentally sound management of marine litter in the Mediterranean (available at http://web.unep.org/unemap/keywords/marine-litter).

MEDITES DATA QUALITY

The MEDITES protocol also establishes common formats for data storage, which include the following standard files: TA (data on the technical specifications of the hauls), TB (aggregated data on total number and weight by species), TC (aggregated data of the frequency distribution by length, sex and maturity stage by species), TE (individual data of length, weight and age by sex) and TL (data by category and subcategory of marine macro-litter).
The Common Fisheries Policy sets out key principles for data quality: e.g. accuracy, reliability and timeliness, avoidance of duplication through improved coordination, safe storage in data base systems and improved availability (EC 2013). To minimize the occurrence of errors, in addition to the standardization of data collection using common protocols at the different steps of the survey implementation, common data checks on the MEDITS standard files were implemented. In 2011, the process of data quality checks was updated and standardized among the MEDITS group to unify the checks independently made by the 18 GSAs participating in the MEDITS survey.

To perform automatically the data check procedure by means of a routine enabling errors to be detected and facilitating their correction, the RoME routine, an R code for performing multiple and cross checks on MEDITS survey data in TA, TB, TC, TE and TL files, was developed (Bitetto et al. 2019). In version 1.3, RoME was transformed into a package structured in 55 different functions: the run is performed by means of the function RoME(). Each function is related to a specific check and is recalled in a specific order to avoid cascade errors. This is also maintained in RoME version 1.4.

This software does not correct the data, but it detects the errors, warning the user that there is the possibility of one or more errors, specifying the type of the error and facilitating correction of the data. The process is based on a loop of checks (errors and warnings) and...
feedbacks, so users are able to correct data but they are also advised if some deviations from the protocols occur that are not necessarily classified as errors. This also represents the basis for a data quality assurance and audit for the data to be used in the MSFD (Moriarty et al. 2019) and in the data calls of end users. The analysis carried out at EWG-STECF level evidenced that the quality of MEDITS data greatly improved when RoME was used before data upload and the Joint Research Centre checks correctly show no error patterns (STECF 2013). The data checks are performed by RoME simultaneously on the files that can also contain data of more than one year. Further specifications can be found in the RoME Manual, which can be downloaded together with the software at the following link: https://www.sibm.it/MEDITS%202011/principaledownload.htm.

Another point which can be a source of bias is related to the gear used during the survey, i.e. whether the technical specifications are in line with the standards adopted for the MEDITS gear. The Multidisciplinary Group on Gear Performance and Standardization of Gear Data Processing (MGGP) was established within the MEDITS coordination group. Regular checks of the MEDITS gears (trawl, rigging and doors) were introduced in 2012, and this protocol of checks was updated in 2014 and further revised in 2015 to fix some technical details. The final version is reported in the MEDITS Handbook, which also includes the work performed by this working group (MEDITS-Handbook, Version 9, Anonymous 2017).

ACCESS TO MEDITS DATA

Access to the MEDITS data is currently controlled by regulation EU 2017/1004 (recast). Data are made available for end users’ needs (e.g. STECF, GFCM) through specific data calls released on an annual basis. Data can also be made available by the relevant countries for specific projects. To facilitate scientific collaborations, each year the MEDITS coordination group agrees common projects, including scientific publications based on the MEDITS data.

In addition, through contacts with the international and national coordinators, a certain number of scientists not involved in the MEDITS project can be invited to the annual MEDITS coordination meetings to present proposals for common projects and discuss the preparation of scientific papers.

MEDITS DATA FOR FISHERIES ASSESSMENT

In the Mediterranean, until the advent of the DCF, trawl survey data were considered the most important—and sometimes the only—source of reliable information for evaluating the status of stocks, fish communities and ecosystems using total mortality estimates (e.g. SAMED; Lembo 2002), assessment models based on fishery-independent data (e.g. SURBA; Needle 2003), simulation models (e.g. ALADYM; Lembo et al. 2009) and population and community indicators (Cotter et al. 2009a).

Under simple formulation and assumptions on natural mortality, MEDITS data allow estimates of total mortality to be made from the structure of the species population at sea, so that guess estimates of the exploitation rate can be obtained, an approach that is also valid in data-limited situations. The SAMED project (Lembo 2002) was a good example, outlining specific methods and approaches and providing an evaluation of several stocks in the Mediterranean (GFCM-SAC 2002). With the consolidation of the DCF, MEDITS data routinely support the stock assessment of the target species, providing relevant abundance indices for tuning the assessment models (for brevity, only the last year reports are here cited; STECF 2018a, 2018b, FAO 2018).

Furthermore, MEDITS data have been exploited in several projects to shed light on the localization of essential fish habitats, i.e. nursery and spawning grounds (e.g. Lembo 2010, Giannoulaki et al. 2013, Druon et al. 2015, Colloca et al. 2015), for fish stock identification (Fiorentino et al. 2015), to discover stability or change in biodiversity (e.g. Gaertner et al. 2010, 2013, Granger et al. 2015), to elucidate whether changes in fishing and environmental pressures are propagated bottom-up, top-down, or both (Rochet et al. 2010), to identify regional differences in changes of functional group biomass associated with regional variations of environmental factors (Brind’Amour et al. 2016), to perform a large-scale analysis of cephalopod demersal community (Keller et al. 2017), and to validate forecasts of an integrated ecosystem model at a Mediterranean-wide scale (Moullec et al. 2019).

FINAL REMARKS

The strength of the MEDITS survey so far has been the agreement among the participants to share standardized methods at a Mediterranean level using the same gear, sampling scheme and protocols for collecting, checking and analysing data. However, a shift in the survey time occurred in some situations, and the survey could be not conducted in some years because of administrative issues at national level. Implementing mitigation actions through standardization methods based on GAM modelling is possible, but this process is time-consuming and not always successful. Hence, an effort should be made to avoid disruptions in the time series of surveys as much as possible.

The experience gained in MEDITS in terms of standardization of file formats (TA, TB, TC, TE and TL) and data quality checks can be used to move forward the implementation of a common database/platform to share the effectiveness of open source visual and statistical data checks, keeping internationally available and maintained standard reference lists, sharing data for process and upon end users’ requests. In fact, data accessibility and availability for scientific use is also considered a key point in the European Union (STECF 2018c). The experience gained in MEDITS in terms of data standardization and data quality checks can also be applied to recover time series of past surveys in the different countries, as was already done in the context...
the RECFISH project (Ligas 2019) for the GRUND surveys (Relini 2000).

During the last few years, a liaison with the ICES Workshop on Technical Development to Support Fisheries Data Collection (WKSEATEC) and IBTS took place. While progress in the Mediterranean has centred on implementation of standardized data checking routines across surveys, in the Atlantic and Baltic areas efforts converged towards progress in electronic data capture. Moving towards a wider implementation of paperless sampling during the measuring process using either purchased or developed in-house technology is a point to be further developed for the future in all the Mediterranean GSAs involved in the MEDITS project.

A question also rises on the use of data from scientific surveys such as MEDITS. Is the potential of this kind of information fully exploited? The usefulness of the MEDITS trawl survey time series also relies on the possibility of using these data in an assessment framework that allows them to be exploited to produce advice, even in situations in which fishery-dependent data are not available, as is being done in the ICES advice framework (Table 5).

Trawl surveys are also an accurate source of information for understanding the influence of climate change on fish populations, their communities and ecosystems. Many papers so far have tried to disentangle the effects of the anthropogenic pressure caused by fishing from the ones mainly driven by environmental variables linked to climate change, such as sea surface and bottom temperatures, using GAM modelling for example. This is a focus topic in this special issue, to better understand the underlying processes of tropicalization and its potential effect on demersal resources. Thus, it is becoming increasingly important to integrate existing knowledge on environmental drivers, fishing pressure and species interaction in the assessments of ecosystems and fisheries, in line with the ecosystem approach to fisheries management. Many papers in this special issue investigate these relationships.

Unlike in other European seas, where several trawl surveys have been historically conducted, in the Mediterranean MEDITS is the only scientific survey carried out for monitoring stocks of demersal species independently of fisheries biological sampling (EC 2016). A second scientific trawl survey, placed in a different time quarter different from the current MEDITS survey could provide useful information to improve and expand the current assessment process and the present understanding of biological processes and dynamics. It can also further assist the implementation of an ecosystem approach to fishery management. Accurate information on cartilaginous fish populations, for example, is difficult to obtain from the commercial fishery, and a single survey cannot be sufficient. This proposal has been put to the STECF (2019). The following aspects could be further improved with the availability of data from a second survey: i) capturing the most relevant biological events for a wide spectrum of stocks (e.g. different spawning seasons), including vulnerable species such as cartilaginous fish; ii) obtaining more accurate estimates of life history parameters (e.g. mortality and growth), in particular of vulnerable species; iii) improving estimates of recruitment indices; iv) obtaining more valuable records for estimating the stock-recruitment relationships; v) improving estimates of seasonal spatial occupation of the different components of the stocks, thus providing key information for a space/season fishery management (e.g. Spedicato 2015); and vi) allowing a more robust evaluation of changes in the population and community indicators.

ACKNOWLEDGEMENTS

The MEDITS surveys are carried out within the Data Collection Framework. The European Commission and Member States of the Mediterranean countries are thankfully acknowledged.

We are grateful to all the colleagues who contribute to the activities of the MEDITS trawl surveys and to the ones who initially paved the way for the progress of MEDITS in the Mediterranean.

REFERENCES

Abelló P., Bertrand J.A., De Sola L.G., et al. (eds). 2002. Mediterranean marine demersal resources: the MEDITS international trawl survey (1994-1999). Sci. Mar. 66(Suppl. 2): 1-280. https://doi.org/10.3989/scimar.2002.66s2
Anonymous. 2017. MEDITS Handbook, Version n. 9. MEDITS Working Group, 106 pp. http://www.sibm.it/MEDITS%202011/principaledownload.htm
Bertrand J.A., De Sola L.G., Papaconstantinou C., et al. 2002. The general specifications of the MEDITS surveys. Sci. Mar. 66(Suppl. 2): 9-17. https://doi.org/10.3989/scimar.2002.66s2
Bitetto I., Facchini M.T., Sperdaci M.T. 2019. RoMe (version 1:1). R code to perform multiple checks on MEDITS Survey data (TET and TTE files). IRPEM. http://www.sibm.it/MEDITS%202011/RoMe.htm
Brind’Amour A., Rochet M.J., Ordines F., et al. 2016. Environmental drivers explain regional variation of changes in fish and invertebrate functional groups across the Mediterranean Sea from 1994 to 2012. Mar. Ecol. Prog. Ser. 562: 19-35. https://doi.org/10.3354/meps11912
Carbonara P., Follesa M.C. (eds). 2019. Handbook on fish age determination: a Mediterranean experience. Studies and Reviews. No. 98. Rome, FAO 180 pp.
Colloca F., Garofalo G., Bitetto I., et al. 2015. The seascapes of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10: e0119590. https://doi.org/10.1371/journal.pone.0119590
Cotter J., Petigos P., Abella A., et al. 2009a. Towards an ecosystem approach to management (EAPM) when trawl surveys provide the main source of information. Aquat. Living Resour. 22: 243-254. https://doi.org/10.1016/j dolor.20090025
Cotter J., Mesnil B., Wittthames P., et al. 2009b. Notes on nine biological indicators estimable from trawl surveys with an illustrative assessment for North Sea cod. Aquat. Living Resour. 22: 153-153. https://doi.org/10.1016/j dolor.20090016
Dremière P.-Y., Fiorentino L., Cosimi G., et al. 1999. Escapement from the main body of the bottom trawl used for the Mediterranean trawl survey (MEDITS). Aquat. Living Resour. 12: 207-217. https://doi.org/10.1016/S0099-7440(00)88471-5
Drumont J.N., Fiorentino F., Murenu M., et al. 2015. Modelling of European hake nurseries in the Mediterranean Sea: an ecological niche approach. Prog. Oceanogr. 130: 186-204. https://doi.org/10.1016/j pocean.2014.11.005
European Commission (EC). 2013. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, Amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and Repealing Council Regulations (EC) No 2371/2002 and (EC) No 658/2009 and Council Decision 2004/385/EC. European Commission, Brussels. 40 pp.
European Commission (EC). 2016. EU Commission Implementing Decision 2016/1251 of 12 July 2016 adopting a multiannual Union programme for the collection, management and use of data on inshore fisheries and aquaculture sectors for the period 2017-2019. 65 pp.
European Union (EU). 2017. EU Regulation 2017/1004 of the European Parliament and of the Council of 17 May 2017 on the establishment of a Union framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the common fisheries policy and repealing Council Regulation (EC) No 199/2008 (recast) FAO. 2018. Report of the twelfth session of the Scientific Advisory Committee on Fisheries, General Fisheries Commission for the Mediterranean, Tangiers, Morocco, 26-29 June 2018. FAO Fisheries and Aquaculture Report R1245, Rome, Italy. 225 pp.
Fiorentini L., Dremière P.Y. 1996. Efficacy and selectivity of the trawl used for the MEDITS project. IRPEM. 17 pp.
Fiorentini L., Dremière P.Y., Sala A., et al. 1996. Intercalibration des campagnes internationales de chalutage démersal en Méditerranée centrale. IRPEM. CE Med/93/015: 59 pp.
Fiorentini L., Dremière P.-Y., Leonori I., et al. 1999. Efficiency of the bottom trawl used for the Mediterranean international trawl survey (MEDITS). Aquat. Living Resour. 12: 187-205. https://doi.org/10.1016/S0099-7440(00)88470-3
Fiorentino F., Massuti E., Tinii F., et al. 2015. Stock units: Identification of distinct biological units (stock units) for different fish and shellfish species and among different GFCM-GSA. STOCKMED Deliverable 03: Final Report. January 2015, 310 pp. https://ec.europa.eu/fisheries/documentation/studies/stockmed en
Follesa M.C., Carbonara P. (eds). 2019. Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews, n. 99. Rome, FAO. 268 pp.
GFCM-SAC. 2002. Report of the fourth stock assessment Sub- TCB. Twelfth meeting (SCSA) Barcelona, Spain. 6-9 May. 118 pp.
Gaertner J.C., Mériot B., Relini G., et al. 2010. Reproducibility of the multi-component aspect of species diversity through different areas and scales; towards the constitution of a shortlist of complementary indices for monitoring fish diversity? Ecography 33: 1123-1135. https://doi.org/10.1111/j.1365-0097.2009.06259.x
Gaertner J.C., Maiorano F., Mériot B., et al. 2013. Large-scale diversity of slope fishes: patterns inconsistency between multiple diversity indices. PLoS ONE 8: e66753. https://doi.org/10.1371/journal.pone.0066753
Galgani F., Souplet A., Cadiou Y. 1996. Accumulation of debris on the deep sea floor off the French Mediterranean coast. Mar. Ecol. Prog. Ser. 142: 225-234. https://doi.org/10.3354/meps142225
Giannoulaïki M., Belluscio A., Colletti F., et al. (eds). 2013. Mediterranean sensitive habitats. DG MARE Specific Contract SI2.600741. Final Report. 557 pp.
Granger V., Fromentin J.M., Bez N., et al. 2015. Large spatio-temporal monitoring highlights shift in Mediterranean fish diversity hotspots. Prog. Oceanogr. 130: 65-74. https://doi.org/10.1016/j.pocean.2014.10.002
Gunderson D.R. 1993. Surveys of fisheries resources. Wiley. New York. 248 pp.
Hilborn R., Walters C.J. 1992. Quantitative fisheries stock assessment: Choice, dynamics and uncertainty. Chapman and Hall, New York. 570 pp. https://doi.org/10.1007/978-1-4615-3598-0
Keller S., Hidalgo M., Álvarez-Berastegui D., et al. 2017. Demersal cephalopod communities in the Mediterranean: a large-scale analysis. Mar. Ecol. Prog. Ser. 584: 105-118. https://doi.org/10.3354/meps12542
ICES. 2017. Report of the Working Group on Biological Parameters (WGBIOP), 2-6 October 2017, Sardinia, Italy. ICES CM 2017/ SSGIEOM/08. 129 pp.
Lembo G. (coord.). 2002. Stock Assessment in the Mediterranean. Final Report EU Project n° 99/047.
Lembo G. (coord.). 2010. Identification and localization of main nursery areas of demersal species in the Italian sea. NURSEY. Final report (VI Plan MPAAF), Italian Biology Association S.I.B.M., Genova. 119 pp.
Lembo G., Abella A., Fiorentino F., et al. 2009. ALADYM: an age and length-based single species simulator for exploring alternative management strategies. Aquat. Living Resour. 22: 233-241. https://doi.org/10.1016/j dolor.20090024
Liguori A. (coord.). 2019. Recovery of fisheries historical time series for Mediterranean and Black Sea stock assessment RECFISH. SC/01 Final Report (Deliverable D1.0). Framework contract for the provision of scientific advice for the Mediterranean and the Black Seas. EASME/EMFF/2016/032. 95 pp.
Moriarty M., Greenstreet S.P.R., Rasmussen J., et al. 2019. Assessing the state of demersal fish to address formal ecosystem based management needs: making fisheries independent trawl survey data ‘fit for purpose’. Front. Mar. Sci. 6: 162. https://doi.org/10.3389/fmars.2019.00162
Moulec F., Velez L., Verley P., et al. 2019. Capturing the big picture of Mediterranean marine biodiversity with an end-to-end model of climate and fishing impacts. Prog. Oceanogr. 178: 102179. https://doi.org/10.1016/j pocean.2019.102179
Needle C.L. 2003. Survey-based assessments with SURBA. Working Document to the ICES Working Group on Methods of Fish Stock Assessment, Copenhagen, 29 January - 5 February 2003.
Relini G. 2000. Demersal trawl surveys in the Italian seas: a short review. In: Bertrand J.A., Relini G. (eds), Demersal resources in the Mediterranean. Actes de Colloques, 26. IFREMER, Plouzané, France. 33-45.
Relini G. 2015. Fish biodiversity in MEDITS surveys. Biol. Mar. Mediterr. 22: 176-177.
Relini G., Vallarino G. 2016. Species richness of Crustacea Decapoda in MEDITS surveys. Biol. Mar. Mediterr. 23: 277-278.

Relini G., Vallarino G. 2017. Cephalopods recorded during MED-ITS surveys. Biol. Mar. Mediterr. 34: 216-217.
Rochet M.J., Trenkel V.M., Carpentier A., et al. 2010. Do changes in environmental and fishing pressures impact marine communities? An empirical assessment. J. Appl. Ecol. 47: 741-750. https://doi.org/10.1111/j.1365-2664.2010.01841.x
Souplet A. 1996. Calculation of abundance indices and length frequencies in the MEDITS survey. In: Bertrand J. (ed), Campagne internationale de chalutage démersal en Méditerranée (MED-ITS). Campagne 1995 Vol. III. Rapport final de contrat CEI-FREMER-IÉO-SIBM-NCMR (MED/93/020,018,006,004).
Spedicato M.T. 2015. Critical and protected habitats of the Mediterranean Sea: knowledge from the MAREA project and insights for the Maritime Spatial Planning. Biol. Mar. Medit. 22: 29-33.
Scientific, Technical and Economic Committee for Fisheries (STECF). 2013. Assessment of Mediterranean Sea stocks part 1 (STECF 13-22). Publications Office of the European Union, Luxembourg. EUR 26329 EN, JRC 86087, 400 pp.
Scientific, Technical and Economic Committee for Fisheries (STECF). 2018a. Mediterranean Stock Assessments - Part 1 (STECF-18-12). Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/838965
Scientific, Technical and Economic Committee for Fisheries (STECF). 2018b. Mediterranean Stock Assessments - Part 2 (STECF-18-16). Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/598716
Scientific, Technical and Economic Committee for Fisheries (STECF). 2018c. Preparation for the evaluation of the list of mandatory research surveys at sea (STECF-18-04). Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/5986174
Scientific, Technical and Economic Committee for Fisheries (STECF). 2019. Preparation for the evaluation of the list of mandatory research surveys at sea (STECF-19-05). Publications Office of the European Union, Luxembourg.
Trenkel V.M., Rochet M.J., Mesnil B. 2007. From model-based prescriptive advice to indicator-based interactive advice. ICES J. Mar. Sci. 64: 768-774. https://doi.org/10.1093/icesjms/fsm006
SUPPLEMENTARY MATERIAL
The following supplementary material is available through the online version of this article and at the following link:
http://scimar.icm.csic.es/scimar/supplm/sm04915esm.pdf
List of the papers peer reviewed (with or without impact factor) published between 2002 and 2017 and based on MEDITS data.
The MEDITS trawl survey specifications in an ecosystem approach to fishery management

Maria Teresa Spedicato, Enric Massutí, Bastien Mérigot, George Tserpes, Angélique Jadaud, Giulio Relini

Supplementary material
Carlucci R., Capezzuto F., D’Onghia G. 2002. Aspetti della biologia di *Lepadobranchus boscii* (Risso, 1810) (Osteichthyes, Scophthalmidae) nel Mar Ionio. Biol. Mar. Mediterr.: 9: 747-750.

Carlucci R., Capezzuto F., Maiorano P. 2009. Distribution, population structure and dynamics of the black anglerfish (*Lophius budegassa*) (Spinola, 1871) in the Eastern Mediterranean Sea. Fish. Res. 95: 76-87. https://doi.org/10.1016/j.fishres.2008.07.015

Carlucci R., Capezzuto F., Sion L., et al. 2009. Are di nursery di specie demersali nel mar Ionio settenzionale. Biol. Mar. Mediterr.: 16: 194-196.

Carlucci R., Lembo G., Maiorano P. et al. 2009. Nursery areas of red mullet (*Mallus barberatus*), hake (*Merluccius merluccius*) and deep-water rose shrimp (*Parapeneaus longirostris*) in the Eastern-Central Mediterranean Sea. Est. Coast. Shelf Sci. 89: 529-536. https://doi.org/10.1016/j.ecss.2009.04.034

Carlucci R., Capezzuto F., Battista D., et al. 2010. Occurrence of juveniles of *Scyliorhinus canicula* and *Mustelus mustelus* in the north-western Ionian Sea. Biol. Mar. Mediterr.: 17: 244-245.

Carpentieri P., Serpetti N., Colloca F., et al. 2016. Food preferences and rhythms of feeding activity of two co-existing demersal fish, the longspine snipefish, *Macroramphus scolopax* (*Linnaeus, 1758*), and the boarfish *Capros aper* (*Linnaeus, 1758*), on the Mediterranean deep shelf. Mar. Ecol. Prod. Ecol. 37: 106-118. https://doi.org/10.1111/mee.12269

Carter J.E., Abelló P., Lloris D., et al. 2002. Feeding guilds of western Mediterranean demersal fish and crustaceans: an analysis based on a spring survey. Sci. Mar. 66: 209-220. https://doi.org/10.3989/scimar.2002.66s2103

Carter J.E., Fanelli E., Kaspiris K., et al. 2014. Spatial variability in the trophic ecology and biology of the deep-sea shrimp *Aristeus antennatus* in the South-Western Mediterranean Sea. Deep-Sea Res. I 87: 1-13. https://doi.org/10.1016/j.dsr.2014.01.006

Cassevall M., Torres J., El Aouissimi A., et al. 2016. Pollutants and parasites in bycatch teleosts from southeastern Spanish Mediterranean’s fisheries: Concerns relating the foodstuff harnessing. Mar. Pollut. Bull. 104: 182-189. https://doi.org/10.1016/j.marpolbul.2016.01.040

Casciaro L., Gaudio P., Bitteto I., et al. 2015. Catch structure and reproductive pattern of *Melicertus kerathurus* in the South-Western Adriatic Sea. Biol. Mar. Mediterr.: 22: 162-163.

Cau A., Carbonell A., Follesa M.C., et al. 2002. MEDITS-based information on the deep water red shrimps *Aristaeomorpha foliacea* and *Aristaeus antennatus* (Crustacea: Decapoda: Aristeadidae). Fish. Res. 60: Suppl. 2: 103-127. https://doi.org/10.1016/s0165-7836(02)00027-9

Cavanna P., Lanteri L., Beccornia E., et al. 2008. Accrescimento e abbondanza e di alcuni cefalopodi Teuthoidea nel Mar Ligure. Biol. Mar. Mediterr. 15: 320-321. https://doi.org/10.3989/scimar.2002.66s2103

Colloca F., Capezzuto F., D’Onghia G. 2002. Aspetti della biologia di *Lepadobranchus boscii* (Cephalopoda: Ommastrephidae) in the South-Western Adriatic Sea (Central Mediterranean). Fish. Res. 52: 529-538. https://doi.org/10.1016/s0165-7836(02)00027-9

Colloca F., Carlucci R., Capezzuto F., et al. 2009. Identifying fish nurseries using density and persistence measures. Mar. Ecol. Prog. Ser. 381: 287-296. https://doi.org/10.3354/meps07942

Colloca F., Mastrantonio G., Jona Lasinio G., et al. 2014. *Parapeneaus longirostris* (Lucas, 1846) an early warning indicator species of global warming in the central Mediterranean Sea. J. Marine Syst. 139: 29-39. https://doi.org/10.1016/j.jmarsys.2013.10.007

Colloca F., Garofalo G., Bitteto I., et al. 2015. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10: e0119590. https://doi.org/10.1371/journal.pone.0119590

Colloca F., Enea M., Ragonec S., et al. 2017. A century fishery data documenting the collapse of smooth-hounds (*Mustelus spp.*) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27: 1145-1155. https://doi.org/10.1002/aqc.2789

Coralli P., Romeo T., Rinelli G. 2004. The sexual regime of deep-water shrimps (*Decapoda, Pandalidae*) in the southern Tyrrhenian Sea (Central Mediterranean). Crustacea 77: 751-756. https://doi.org/10.1163/1568504041958581

Corrales X., Coll M., Tecchio S., et al. 2015. Ecosystem structure and fishing impacts in the northwestern Mediterranean Sea using a food web model within a comparative approach. J. Mar. Syst. 148: 183-199. https://doi.org/10.1016/j.jmarsys.2015.03.006

Cotter J., Petigas P., Abella A., et al. 2009. Towards an ecosystem approach to fisheries management (EAFM) when trawl surveys provide the main source of information. Aquat. Living Resour. 22: 243-254. https://doi.org/10.1051/alr/2009025

Courbin N., Fabri M.-C., Miralles F.M., et al. 2016. Variability of PCB burden in 5 fish and sharks species of the French Mediterranean continental slope. Environ. Pollut. 212: 374-381. https://doi.org/10.1016/j.envpol.2016.01.044

Cucco D., Duret M., Ragonese S., et al. 2009. On the abundance and spatial distribution of *Illex coindetii* (*Cephalopoda: Ommastrephidae*) and *Eledone moschata* (*Cephalopoda: Ophiuropoda*) in the Sardinian Seas (central-western Mediterranean). A preliminary and qualitative investigation with special attention to some environmental constraints. Bol. Malacol. 45 (suppl.): 102-109.

Cucco D., Mereu M., Cunna R., et al. 2009. Variability in *Sepiopeta oweniana* (*Cephalopoda: Sepiidae*) hectocotyl. Ital. J. Zool. 76: 189-193. https://doi.org/10.1080/1125000802346241

Cucco D., Mereu M., Follesa M.C., et al. 2011. *Bathyteuthis sponalis* (Cephalopoda: Octopoda) from the central western Mediterranean Sea. J. Mar. Biol. Ass. U. K. 91: 549-553. https://doi.org/10.1017/S0025315409000076

Čustović S., Vrgoč N., Isailović L., et al. 2015. Distribution and population structure of greater weever, *Trachinus draco* (*Linnaeus, 1758*), in the Northern and Central Adriatic Sea. Naše more 62: 20-24. https://doi.org/10.17818/NM.1.4.2015

D’Ongha G., Sion L., Maiorano P., et al. 2006. Population biology and life strategies of *Chlorophthalmus agassizi* Bonaparte, 1842 (Pisces: Osteichthyes) in the Mediterranean Sea. Biol. Mar. Mediterr.: 13: 210-214.

D’Ongha G., Maiorano P., Sion L. 2008. A review on the reproductive
tion of grenadiers in the Mediterranean with new data on the gonad maturity and fecundity. In Alexei M. Orlov T. Iwamoto (eds), "Grenadiers of the World Oceans: Biology, Stock Assessment and Fisheries". American Fisheries Society Symposium, 63: 168-184.

D’Onghia G., Giove A., Maiorano P., et al. 2012. Exploring relationships between demersal resources and environmental factors in the Ionian Sea (Central Mediterranean). J. Mar. Biol. 2012: 279406. https://doi.org/10.1155/2012/279406

De Madron X., Le Corre G., et al. 2005. Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont. Shelf Res. 25: 2387-2409. https://doi.org/10.1016/j.csr.2005.08.002

Deudero S., Alomar C. 2015. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species. Mar. Pollut. Bull. 98: 58-69. https://doi.org/10.1016/j.marpolbul.2015.07.012

Dimech M., Camilleri M., Hiddink J.G., et al. 2008. Differences in spatio-temporal variation in diet may affect condition and abundance between acoustic and bottom trawl estimates to reconstruct the biomass trends of sardine and anchovy in the Strait of Sicily (Central Mediterranean). Fish. Res. 147: 290-295. https://doi.org/10.1016/j.fishres.2013.06.001

Florio G., Consoli P., Perdicuti F., et al. 2003. Annotated checklist of the skates (Chondrichthyes, Rajidae) in the South-Tyrrhenian Sea from Cape Suvero (Calabria) to Cape San Vito (Sicily). Biol. Mar. Mediterr. 10: 824-828.

Fiorentino F., Badalamenti F., D’Anna G., et al. 2009. On the reproductive biology of the deep-sea lobster, Polycheles tyrophos (Decapoda: Palmaria, Polychelidae), from the central-western Mediterranean. Crustaceana 83: 839-846. https://doi.org/10.1163/001128709X469223

Fiorentino F., Cannas R., Gasoni A., et al. 2008. Abnormal rostrum in Polycheles tyrophos Heller, 1835 (Decapoda: Polychelidae) from the central western Mediterranean. J. Crust. Biol. 28: 731-734. https://doi.org/10.1651/09-3167.1

Fiorentino F., Porcu C., Gasoni A., et al. 2009. Community structure of bathyal decapod crustaceans off South-Eastern Sardinian deep-waters (Central-Western Mediterranean). Mar. Ecol. 30 (Suppl. 1): 188-199. https://doi.org/10.1111/j.1439-0485.2009.00323.x

Fiorentino F., Mulas A., Cabiddu S., et al. 2010. Diet and feeding habits of two skate species, Raja brachyura and Raja miraletus (Chondrichthyes, Rajidae) in Sardinian waters (central-western Mediterranean). Ital. J. Zool. 77: 53-60. https://doi.org/10.1080/11252008002589000

Fiorentino F., Porcu C., Cabiddu S., et al. 2011. Deep-water fish assemblages in the central-western Mediterranean (south Sardinian deep-waters). J. Appl. Ichthyol. 27: 129-135. https://doi.org/10.1111/j.1439-0426.2010.01567.x

Fiorentino F., Cannas R., Cabiddu S., et al. 2012. Preliminary observations of the reproductive biology and diet for the Norwegian skate Dippitrus nudarosusens (Rajidae) from the Central Western Mediterranean. Cybium 36: 473-480. https://doi.org/10.26028/cybium/2012-363-006

Fortibuoni T., Bahri T., Camilleri M., et al. 2010. Nursery and spawning areas of deep-water rose shrimp, Parapenaeus longirostris (Decapoda: Peneidae), in the Strait of Sicily (Central Mediterranean Sea). J. Crustac. Biol. 30:167-174. https://doi.org/10.1651/09-1167.1

Fricke R., Ordines F. 2017. First record of the reticulated dragonet, Callionymus reticulatus Valenciennes, 1837 (Actinopterygii: Callionymiformes: Callionymidae), from the Balearic Islands (western Mediterranean). Acta Ichthyol. Piscat. 47: 225-228. https://doi.org/10.3750/AIEP/02280

Fricke R., Ordines F. 2017. First record of the reticulated dragonet, Callionymus reticulatus Valenciennes, 1837 (Actinopterygii: Callionymiformes: Callionymidae), from the Balearic Islands, western Mediterranean. Acta Ichthyol. Piscat. 47: 163-171. https://doi.org/10.3750/AIEP/02208

Frodehna N., Cannas R., Velonà A., et al. 2016. Population connectivity and phylogeography of the Mediterranean endemic skate Raja polystigma and evidence of its hybridization with the parapatric sibling R. montagui. Mar. Ecol. Prog. Ser. 554: 99-113. https://doi.org/10.3354/meps11799

Gaertner J.C., Bertrand J., Souplet A. 2002. STATIS-CoA: A methodological solution to assess the spatio-temporal organization of species assemblages. Application on fish and demersal assemblages of the French Mediterranean Sea. Sci. Mar. 66(Suppl. 2): 221-232. https://doi.org/10.3989/scimar.2002.66s2221

S4 • M.T. Spedicato et al.
Gaetner J.C., Bertrand A., Gil de Sojo L., et al. 2005. Large spatial scale variation of demersal fish assemblage structure on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297: 245-257.  
https://doi.org/10.3354/meps297245

Gaetner J.C., Garofalo G., Samani D., et al. 2005. Spatio-temporal organization of demersal assemblages of the East Corsica (Mediterranean Sea). Vie Milieu 55: 81-89.  
https://archimer.ifremer.fr/doc/2005/publication-692.pdf

Gaetner J.C., Merigot B., Belin G., et al. 2007. Spatial pattern in species richness of demersal fish assemblages on the continental shelf of the northern Mediterranean Sea: a multiscale analysis. Mar. Ecol, Prog. Ser. 341: 191-203.  
https://doi.org/10.3354/meps341191

Gaetner J.C., Merigot B., Relini G., et al. 2010. Reproducibility of the multi-component aspect of species diversity across different areas and scales: towards the constitution of a shortlist of complementary indicators for monitoring fish diversity? Ecography 33: 1123-1135.  
https://doi.org/10.1111/j.1600-0587.2009.06259.x

Gaetner J.C., Maiorano F., Merigot B., et al. 2013. Large-Scale diversity of slope fishes: pattern inconsistency between multiple diversity indices. PLoS ONE 8: e66753.  
https://doi.org/10.1371/journal.pone.0066753

Gagliò G., Bottari T., Rinelli P., et al. 2011. Prevalence of Clavellea stellata (C. L. L., 1758) in the Mediterranean Sea (Central Mediterranean). J. Appl. Ichthyol. 27: 136-138.  
https://doi.org/10.1111/j.1439-0426.2010.01526.x

Gancitano V., Badalucco C., Gancitano S., et al. 2008. Potenzialità produttive e stato di sfruttamento di Parapeneaus longirostris (Lucas, 1846) (Crustacea; Decapoda) nello Stretto di Sicilia (GSA 16). Biol. Mar. Mediterr. 15: 324-325.

Gancitano V., Cusumano S., Giusto G.B., et al. 2008. Valutazione dello stato di sfruttamento del gambero rosso Aristaeomorpha foliacea (Risso, 1827) (Crustacea; Decapoda) nello Stretto di Sicilia. Biol. Mar. Mediterr. 15: 326-327.

Gancitano V., Badalucco C., Cusumano S., et al. 2013. Exploitation state of Black-bellied Angler, Lophius budegassa (Spinola, 1807) (Pisces; Lophiidae), in the Strait of Sicily (GSA 15&16). Biol. Mar. Mediterr. 21: 184-185.

Gancitano V., Enea M., Colloca F., et al. 2015. Temporal dynamics of demersal resources in the south of Sicily (GSA 16) during the last twenty years. Biol. Mar. Mediterr. 22: 166-167.

Gancitano V., Giusto G.B., Labanchi L., et al. 2017. Catture, sforzo e stato di sfruttamento di Mullus barbatus e Mullus surmuletus, off Catalano-Levante of Southern Tyrrhenian Sea (Central Mediterranean). J. Appl. Ichthyol. 33: 1123-1135.  
https://doi.org/10.1111/j.1600-0587.2009.06259.x

García-Rodríguez M., Pereda P., Landa J., et al. 2005. On the biology and growth of the angler fish Lophias budaeus (Spinola, 1807) in the Spanish Mediterranean: a preliminary approach. Fish. Res. 71: 197-208.  
https://doi.org/10.1016/j.fishres.2004.08.033

Gargano F., Garofalo G., Fiorentino F., et al. 2013. Exploring connectivity between spawning and nursery areas of Mullus barbatus (L., 1758) in the Mediterranean through a dispersal model. Fish. Oceanogr. 26: 476-497.  
https://doi.org/10.1111/fog.12210

Garofalo G., Giorgio F., Fiorentino F., et al. 2003. Distributional pattern of rays (Pisces, Rajidae) in the Strait of Sicily in relation to fishing pressure. Hydrobiologia 503: 245-250.  
https://doi.org/10.1016/S0032-4592(03)00125-1

Garofalo G., Fiorentino F., Bono G., et al. 2004. Identifying spawning and nursery areas of Red mullet (Mullus barbatus, L., 1758) in the Strait of Sicily. In: Nishida T., Kailola P.J., Hollingworth C.E. (eds.), GIS/Spatial Analyses in Fishery and Aquatic Sciences, (Vol. 2). Fishery-aquatic GIS Research Group, Saiatama, Japan, pp.101-110.

Garofalo G., Cristina M., Toccaceli M., et al. 2004. Geostatistical modelling of biocenosis distribution in the Strait of Sicily. In: Nishida T., Kailola P.J., Hollingworth C.E. (eds.), GIS/Spatial Analyses in Fishery and Aquatic Sciences, (Vol. 2). Fishery-aquatic GIS Research Group, Saiatama, Japan, pp.241-250.

Garofalo G., Fiorentino F., Cristina M., et al. 2007. Stability of spatial pattern of allied species diversity in the Strait of Sicily (central Mediterranean). Hydrobiologia 580: 117-124.  
https://doi.org/10.1007/s1075-1-010-6156-1_10

Garofalo G., Ceriola L., Cristina M., et al. 2010. Nurseries, spawning grounds and recruitment of Octopus vulgaris in the Strait of Sicily, central Mediterranean Sea. ICES J. Mar. Sci. 67: 1363-1371.  
https://doi.org/10.1093/icesjms/faq101

Garofalo G., Fortibuoni T., Cristina M., et al. 2011. Persistence and co-occurrence of demersal nurseries in the Strait of Sicily (Central Mediterranean): implications for fishery management. J. Sea Res. 66: 29-38.  
https://doi.org/10.1016/j.seares.2011.04.008

Garofalo G., Fezzani S., Gargano F., et al. 2017. Predictive distribution models of European hake in the south-central Mediterranean Sea. Hydrobiologia 821: 153-172.  
https://doi.org/10.1007/s1075-1-010-6156-1_10

Garofalo G., Ceriola L., Cristina M., et al. 2010. Nurseries, spawning grounds and recruitment of Octopus vulgaris in the Strait of Sicily, central Mediterranean Sea. ICES J. Mar. Sci. 67: 1363-1371.  
https://doi.org/10.1093/icesjms/faq101

Goñi R., S. Adlerstein, F. Alvarez, M. et al. 2004. Recruitment indices: not a trivial issue. Methods Ecol. Evol. 6: 688-696.

Granger V., Bez N., Fromentin J.-M., et al. 2015. Mapping diversity indices. PLoS ONE 8: e66753.  
https://doi.org/10.1371/journal.pone.0066753

Granzotto A., Fiorentino F., Garofalo G., et al. 2006. Un approc-
Rüppell, 1844 (Cephalopoda: Octopoteuthidae) off the Balearic Islands. Can. J. Fish. Aquat. Sci. 66: 1355-1370.

Holcer D., Lazar B., Mackelworth P., et al. 2012. Rare or just unobserved? The occurrence of the giant devil ray (Mobula munkiana) and changes in life history traits in relation to phase transitions in distribution and demographic composition of the thornback ray (Aristeus antennatus) in the Gulf of Lions (NW Mediterranean): from single to multi-species approach. Hydrobiology 670: 67-85.

Kousteni V., Kontopoulou M., Megalofonou P. 2010. Sexual maturation of the red-shrimp (Palaemonetes Palaemonetes) as the single species of the genus occurring in the Mediterranean. Mar. Biol.: 163-192. doi:10.1007/s00227-016-2965-0

Joher S., Ballesteros E., Cebrian E., et al. 2012. Deep-water macroural-dominated coastal demersal assemblages on the continental shelf off Mallorca and Menorca (Balearic Islands, Western Mediterranean). Bot. Mar. 55: 485-497. doi:10.1515/bot-2012-0113

Joher S., Ballesteros E., Rodriguez-Prieto C. 2015. Contribution to the study of deep coastal detritic bottom: the algal communities of the continental shelf off the Balearic Islands, Western Mediterranean. Mediterr. Mar. Sci. 16: 573-590. doi:10.12681/mms.1249

Joher S., Ballesteros E., Rodriguez-Prieto C. 2016. Macroural-dominated coastal detritic communities from the Western Mediterranean and the Northeastern Atlantic. Mediterr. Mar. Sci. 17: 476-495. doi:10.12681/mms.1438

Johnson A.P., Valls M., Moranta J., et al. 2012. Effect of prey abundance and size on the distribution of demersal fishes. Can. J. Fish. Aquat. Sci. 69: 191-200. doi:10.1139/f2011-138

Kallianiotis A., Vidoris P., Syliaos G. 2004. Fish species assemblages and geographical sub-areas in the North Aegean Sea, Greece. Fish. Res. 68: 171-187. doi:10.1016/j.fishres.2003.12.007

Kasapidès P., Peristeraki P., Tserpes G., et al. 2007. A new record of the Lessepsian invasive fish Etrumeus teres (Osteichthyes: Clupeidae) in the Mediterranean Sea (Aegean, Greece). Aquat. Invasions 2: 152-154. doi:10.3399/ai.2007.2.2.12

Katsanevakis S., Lefkaditou E., Galinou-Mitsoudi S., et al. 2008. Molluscan diversity and conservation: species of minor commercial interest in Hellenic Seas. Mediterr. Mar. Sci. 9: 77-11. doi:10.1016/j.mams.2008.04.014

Keller S., Bartolino V., Hidalgo M., et al. 2016. Large-scale spatio-temporal patterns of Mediterranean cephalopod diversity. PLoS ONE 11: e0146469. doi:10.1371/journal.pone.0146469

Kousteni V., Kontopoulou M., Megalofonou P. 2017. Demersal cephalopod communities in the Mediterranean: a large-scale analysis. Mar. Ecol. Prog. Ser. 584: 105-118. doi:10.3354/meps12342

Keller S., Quetglas A., Raskin P., et al. 2017. Environmentally driven synchonizations of Mediterranean cephalopod populations. Prog. Oceanogr. 152: 1-14. doi:10.1016/j.pocean.2016.12.010

Kousteni V., Kontopoulou M., Megalofonou P. 2010. Sexual maturity and fecundity of Scyliorhinus canicula (Linnaeus, 1758) in the Aegean Sea. Mar. Biol. Res. 6: 390-398. doi:10.1080/17457710.2009.933771

Kovačić M., Ordines F., Schiliewen U.K. 2017. A new species of Buenia (Teleostei: Gobidae) from the western Mediterranean Sea, with the description of this genus. Zootaxa. 4250: 323-328. doi:10.11646/zootaxa.4250.5.3

Krstulovic Sifner S., Lefkaditou E., Ugarov N., et al. 2005. Composition and distribution of the cephalopod fauna in the eastern Adriatic and western Ionian Sea. Israel J. Zool. 51: 315-330. doi:10.1560/4LT4-K01W-C9GF-7YK3

Krstulovic Sifner S., Vrgoc N. Dadić V., et al. 2009. Long-term changes in distribution and demographic composition of thornback ray, Raja clavata, in the northern and central Adriatic Sea. J. Appl. Ichthyol. 25: 40-46. doi:10.1111/j.1439-0426.2008.01204.x

Lauria V., Midda M., Attirill M.J., et al. 2015. Predictive habitat suitability models to aid conservation of eelgrassnbrotherine community in the central Mediterranean Sea. Sei. Rep. 5: 13245. doi:10.1038/srep13245

Lauria V., Garofalo G., Cristina M., et al. 2016. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference. Mar. Env. Res.
nanean), Sci. Mar. 69: 167-181. https://doi.org/10.3989/scimar.2005.09n1167
Massuti E., Reina J.A., Lloris D., et al. 2002. First record of Solea (Microchirus) boscanion (Osteichthyes: Soleidei) in the Medi-
terranean Sea, with data on other sympatric soleid species. J. Mar. Biol. Assoc. U.K. 82: 907-911.
https://doi.org/10.1017/S0025556102006331
Mastrototo F., Chimienti G., Capezzuto F., et al. 2014. First record of Prototremus carolineri (Cnidaria: Octocorallia: Pen-
natulacea) in the Mediterranean Sea. Ital. J. Zool. 2014:1-8.
https://doi.org/10.1080/11250003.2014.982218
Mazzoldi C., Finotto L., Gristina M., et al. 2015. Contrastling life history and reproductive traits in two populations of Scyliorhi-
nus canicula. Mar. Biol. 162: 1175-1186. https://doi.org/10.1007/s00227-015-2659-z
Melis R., Vecca L., Cuccu D., et al. 2017. Genetic population struc-
ture and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807: 277-296. https://doi.org/10.1007/s10750-017-3399-5
Méritot B., Bertrand J., Gaertner J.C., et al. 2007. The multi-
component structuration of the species diversity of groundfish assemblages of the east coast of Corsica (Mediterranean Sea): Variation according to the bathymetric strata. Fish. Res. 88: 120-132. https://doi.org/10.1016/j.fishres.2007.08.003
Méritot B., Bertrand J., Mazouni N., et al. 2007. A multi-component analysis of species diversity of groundfish assemblages on the continental shelf of the Gulf of Lions (north-western Medi-
terranean Sea). Est. Coast. Shelf Sci. 73: 123-136. https://doi.org/10.1016/j.ecss.2006.12.017
Mezzasalma V., Zagra M., Di Stefano L., et al. 2008. Evidence of lipofuscin accumulation in the deep-water red shrimp Aristaeo-
morphus campechiae (Risso, 1827). Mediterr. Mar. Sci. 9: 21-33. https://doi.org/10.3750/AIP2011.42.1.03
Milienda G., Giuseppe F., Fazzini S., et al. 2017. Biomass HotSpot distribution model and spatial interaction of two exploited spe-
cies of horse mackerel in the south-central Mediterranean Sea. Hydrobiologia 821: 135-150. https://doi.org/10.1007/s10750-017-3336-7
Moranta J., Massuti E., Palmer M., et al. 2007. Geographical and ba-
thymetric trends in abundance, biomass and body size of four grenadier fishes along the Iberian coast in the western Medi-
terranean. Prog. Oceanogr. 72: 63-83. https://doi.org/10.1016/j.pocean.2006.09.003
Morat F., Letourneur Y., Dierking J., et al. 2014. The great melting of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 171: 110-121. https://doi.org/10.1016/j.fishres.2015.02.005
Palmas F., Addis P., Cabiddu S., et al. 2015. Distribution of spawning and nursery grounds for deep-water red shrimps in the central western Mediterranean Sea. Mediterr. Mar. Sci. 16: 117-127. https://doi.org/10.12681/mms.859
Pardinas I., Conesa D., Pennino M.G., et al. 2015. Bayesian spatio-
temporal approach to identifying fish nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528: 245-255. http://doi.org/10.3354/meps11281
Pennino M.G., D. Conesa, A. Lenci, P. Sulez, F., et al. 2016. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73: 2302-2310. https://doi.org/10.1093/icesjms/fsw062
Perdichizzi A., Pirrera L., Giordano D., et al. 2014. Diet and feeding be-
vaviour of longnosed skate Scyliorhinus canicula in the Ligurian Sea. Fish. Res. 78: 72-88. https://doi.org/10.1016/j.fishes.2005.12.008
Osio G.C., Orlo A., Millar C.P. 2015. Assessing the vulnerability of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 171: 110-121. https://doi.org/10.1016/j.fishes.2015.02.005
Perdichizzi A., Pirrera L., Profeta A., et al. 2014. Study of its instars. Mar. Ecol. Prog. Ser. 534: 90-102. https://doi.org/10.1111/j.1439-0485.2012.00528.x
Perdichizzi A., Pirrera L., Giordano D., et al. 2015. Distribution e
-temporal approach to identifying fish nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528: 245-255. http://doi.org/10.3354/meps11281
Pennino M.G., D. Conesa, A. Lenci, P. Sulez, F., et al. 2016. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73: 2302-2310. https://doi.org/10.1093/icesjms/fsw062
Perdichizzi A., Pirrera L., Giordano D., et al. 2014. Distribution e
-temporal approach to identifying fish nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528: 245-255. http://doi.org/10.3354/meps11281
Pennino M.G., D. Conesa, A. Lenci, P. Sulez, F., et al. 2016. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73: 2302-2310. https://doi.org/10.1093/icesjms/fsw062
Perdichizzi A., Pirrera L., Giordano D., et al. 2014. Distribution e
-temporal approach to identifying fish nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528: 245-255. http://doi.org/10.3354/meps11281
Pennino M.G., D. Conesa, A. Lenci, P. Sulez, F., et al. 2016. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73: 2302-2310. https://doi.org/10.1093/icesjms/fsw062
Perdichizzi A., Pirrera L., Giordano D., et al. 2014. Distribution e
-temporal approach to identifying fish nurseries by validating persistence areas. Mar. Ecol. Prog. Ser. 528: 245-255. http://doi.org/10.3354/meps11281
Mullus barbatus (Cephalopoda:... from the central-western... Puerta P., Hunsicker M.E., Reglero P., et al. 2016. Community-... from the central-western Mediterranean. Sci. Mar. 71: 61-66. https://doi.org/10.1016/j.scimar.2015.07.002

Peristeraki P., Lazarakis G., Skarvelis C., et al. 2006. Additional records on the occurrence of alien fish species in the eastern Mediterranean Sea. Mediterr. Mar. Sci. 7: 61-66. https://doi.org/10.1016/j.scimar.2015.07.002

Peristeraki P., Tserpes G., Lampadariou N., et al. 2017. Comparing demersal megafaunal species diversity along the depth gradient within the North Aegean and Cretan Seas (Eastern Mediterranean), PLoS ONE 12: e0184241. https://doi.org/10.1371/journal.pone.0184241

Pham C., Ramírez-Llodra E., Amaro T., et al. 2014. Marine litter distribution and abundance in European Seas, from the shelf to deep basins. PLoS ONE 9: e95839. https://doi.org/10.1371/journal.pone.0095839

Pinto C., Mannini A., Relini G. 2010. Remarks on Galeus melas (Chondrichthyes: Rajidae) in the Mediterranean. Mar. Sci. 15: 313-326. https://doi.org/10.12681/mms.559

Pinto C., Bellodi A., Cannas R. 2015. Life-history traits of the com... Mediterranean Octopodidae) from the western Mediterranean. Mar. Biol. 138: 785-792. https://doi.org/10.1007/s00227-009-1522-4

Piqueras A., Ordines F., González M., Franco I. 2009. Life history of the bathyhal octopus Pteroctopus tetracirrhus (Mollusca, Cephalopoda) in the Mediterranean Sea. Deep-Sea Res Part I. 56: 1379-1390. https://doi.org/10.1016/j.dsr.2009.02.007

Quetglas A., de Mesa A., Ordines F., et al. 2010. Life history of the deep-sea cephalopod family Histiotteuthidae in the western Mediterranean. Deep-Sea Res Part I. 57: 999-1008. https://doi.org/10.1016/j.dsr.2010.04.008

Quetglas A., Guijarro B., Ordines F., et al. 2012. Stock boundaries for fisheries assessment and management in the Mediterranean: the Balearic Islands as a case study. Sci. Mar. 76: 17-28. https://doi.org/10.1371/journal.pone.0133439

Ragonese S., Fiorentino F., Linelli P., et al. 2002. A procedure to evaluate the effect of lag-time in the sample structures of Physic blennoides. Brunich, 1768 (Osteichthytes: Gadiformes) in the Central Mediterranean. Sci. Mar. 66: 253-260. https://doi.org/10.1371/journal.pone.0074865

Ragonese S., Morizzo G., De Santi A., et al. 2005. Rapid-response indicators of changes in resource state based on Mediterranean bottom-trawl surveys. ICES J. Mar. Sci. 62: 511-515. https://doi.org/10.1016/j.icesjms.2004.11.008

Ragonese S., Nardone G., Ottonello D., et al. 2009. Distribution and biology of the Blackmouth catshark Galeus melastomus in the Strait of Sicily (Central Mediterranean Sea). Mediterr. Mar. Sci. 10: 55-72. https://doi.org/10.12681/mms.122

Ragonese S., Vitale S., Dimice M., De Santi A. 2011. Growth discontinuity in males of the deep-water giant red shrimp Aris... Octopus tetracirrhus in the Mediterranean Sea. Mar. Ecol. 33: 386-392. https://doi.org/10.1111/j.1439-0485.2011.00492.x

Ragonese S., Vitale S., Dimice M., et al. 2013. Abundances of Demersal Sharks and Chimaeras from 1994-2009 Scientific Surveys in the Central Mediterranean Sea. PLoS ONE 8: e74865. https://doi.org/10.1371/journal.pone.0074865

Ramírez-Amaro S., Ordines F., Terrasa B., et al. 2015. Demersal chondrichthyans along the Western Mediterranean: assemblages and biological parameters of their main species. Mar. Freshw. Res. 67: 636-652. https://doi.org/10.1017/MFR15003

Ramírez-Amaro S., Ordines F., Puerto M.A., et al. 2017. New morphological and molecular evidence confirm the presence of the Norwegian skate Dipturus sidneyensis (Storm, 1881) in the Mediterranean Sea and extend its distribution to the western basin. Mediterr. Mar. Sci. 18: 253-260. https://doi.org/10.1371/journal.pone.0133439

Ramón M., Lleonart J., Massuti Á. 2010. Royal cucumber (Stichopus regalis) in the northwestern Mediterranean: Distribution pattern and fishery. Fish. Res. 105: 21-27. https://doi.org/10.1016/j.fishres.2010.02.006

Relini G. 2015. Biodiversità introdotta dell’elenco MEDITS (Fish biodiversity in Medits surveys). Biol. Mar. Mediterr. 22: 176-177.

Relini G., Franco A. 2012. La ricchezza in specie dei mari italiani. Biol. Mar. Mediterr. 19: 263-264.
Relini G., Mannini A., De Ranieri S., et al. 2010. Chondrichthyes caught during the MEDITS surveys in the Italian waters. Biol. Mar. Mediterr. 17: 186-204.

Relini G., Lanteri L., Franco A. 2011. Gli Osteiidi dei mari italiani: biodiversità, protezione e sfruttamento. Biol. Mar. Mediterr. 18: 44-67.

Relini G., Vallarino G. 2016. La ricchezza in specie dei crostacei decapodi delle campagne MEDITS (Species richness of crustace decapoda of MEDITS survey). Biol. Mar. Mediterr. 23: 277-294.

Relini Orsi L., Papacostantinou C., Jukic-Peladic S., et al. 2002. Distribution of the Mediterranean hake populations (Merluccius merluccius) in the Alboran Sea. J. Northwest Atl. Fish. Sci. 35: 1-9. https://doi.org/10.2960/J.v35.m484

Ribas D., M. Muñoz, M. Casadevall, et al. 2006. How does the northern Mediterranean population of Helicolenus dactylopterus resist fishing pressure? Fish. Res. 79: 285-293. https://doi.org/10.1016/j.fishres.2006.03.022

Rinelli P., T. Florio G., et al. 2005. Observations on distribution and biology of Galeus melastomus (Chondrichthyes, Scyliorhinidae) in the Southern Tyrrhenian Sea (Central Mediterranean). Cybium 29: 41-46.

Rochet M.J., Trenkel V., Bellail R., et al. 2005. Combining indicators and spatial variation of gadoid's body condition. Ecosphere 6: 1-17.

Rochet M.J., Trenkel V., Carpentier A., et al. 2010. Do changes in management scenarios on geostatistical modelling of animal distribution? A case study with Liocarcinus depurator (Crustacea: Brachyura) trawl survey data. Fish. Res. 76: 252-265. https://doi.org/10.1016/j.fishres.2006.03.022

Romeo T., Castriota L., Consoli P., et al. 2009. Bathymetric and longitudinal distribution analysis of the rockfish Helicolenus dactylopterus (Delaroche, 1809) in the Southern Tyrrhenian Sea (central Mediterranean). Medit. Mar. Sci. 62: 1647-1666. doi:10.1080/1385223090315681

Ruggiero V., Sarda G., Conti P., et al. 2014. Effect of intra-specific competition, surface chlorophyll and fishing on the species of the genus Galeus melastomus, in the FAO GFCM GSA 9 (Ligurian and northern central Tyrrhenian Sea) and identification of nursery grounds Biol. Mar. Mediterr. 22: 182-183.

Sbrana M., Rossetti A., De Ranieri S., et al. 2014. Prime osservazioni sulla fauna ittica profonda del Mar Tirreno settentrionale. Biol. Mar. Mediterr. 21: 307-309.

Sbrana M., Sartor P., Ghidi M., et al. 2009. Aspetti di biologia di Nephrops norvegicus (L., 1758) (Crustacea: Decapoda) nel mar Tirreno settentrionale. Biol. Mar. Mediterr. 16: 366-367.

Serrano T., Barone M., Mancusi C. 2010. Mediterranean Cartilaginous Fishes: 25 Years Of Italian Research. Biol. Mar. Mediterr. 17: 232-235.

Serrano T., Barone M., Mancusi C., et al. 2005. Reproductive biology, growth and feeding habits of Raja astierias Delaroche, 1809, from the North Tyrrhenian and South Ligurian Sea (Italy), with some notes on trends in landings. International Council for the Exploration of the Sea. Thetheme session on CEFAS Research Fisheries Science, CM 2005/Sn. 12. Fisheries Science, 18 pp.

Serrano T., Papacostantinou C., Relini G., et al. 2009. 12. Distribution and abundance of spiny dogfish in the Mediterranean Sea based on the Mediterranean International Trawl Survey Program. In Gallucci V., McFarlane G., Bargmann G. (eds), Biology and Management of Dogfish Sharks, American Fisheries Society, Bethesda, pp. 139-149.

Sobrino I., Silva C., Sbrana M., et al. 2005. A review of the biology and fisheries of the deep water rose shrimp, Parapenaeus longirostris, in European Atlantic and Mediterranean waters (Decapoda, Dendrobranchiata, Penaeidae). Crustaceana 78: 1153-1184. https://doi.org/10.1111/j.1540-6525.2005.00316.x

Spedicato M.T. 2016. Study on the evaluation of specific management scenarios for the preparation of multiannual management plans in the Mediterranean and the Black Sea. Final Report, 640 pp.

Spedicato M.T., Baino R., Carbonara G., et al. 2005. Un metodo per standardizzare "a posteriori" le stime di abbondanza dei trawl-survey sulla base dei tempi operativi di cala. Biol. Mar. Med. 12: 589-593.

Spedicato M.T., Carbonara G., Rinelli P., et al. 2006. Biological reference points based on spawning stock biomass levels: the case of red mullet (Mullus barbatus L., 1758). Biol. Mar. Mediterr. 13: 112-123.

Spedicato M.T., Greco S., Sophronitis K., et al. 2002. Geographical distribution, abundance and some population characteristics of the species of the genus Pagellus (Ostechithyes: Perciformes) in different areas of the Mediterranean. Sci. Mar. 66(Suppl. 2): 65-82. https://doi.org/10.3989/scimar.2002.66s283

Santoro P., Colloca F., Lisica A., et al. 2013. Ruolo delle aree di nurisery per i giovani di nasello, Merluccius merluccius (L., 1758), nella GSA 9. Biol. Mar. Mediterr. 20: 204-205

Sartor P., Mannini A., Carlucci R., et al. (eds). 2017. Sintesi delle conoscenze di biologia, ecologia e pesca delle specie ittiche dei mari italiani / Synthesis of the knowledge on biology, ecology and fishery of the halieutic resources of the Italian seas. Biol. Mar. Mediterr. 24 (Suppl. 1): 607 pp.

Sharma M., Colloca F., Lisica A., et al. 2015. Abundance of black-mouth catshark, Galeus melastomus, in the FAO GFCM GSA 9 (Ligurian and northern central Tyrrhenian Sea) and identification of nursery grounds Biol. Mar. Mediterr. 22: 182-183.

Torre M., Kallianiotis A., Sicuro B., et al. 2011. Geographical and
Mediterraneo sottoposte a differente pressione da pesca: risultati di una serie storica di dati. Ph.D. thesis, Università degli Studi di Messina.

Ferrer Maza D. 2016. La salud de los peces comerciales: relación entre parasitismo, condición y potencial reproductor. Ph.D. thesis, Universidad de Valencia, Spain.

Guijarro B. 2012. Population dynamics and assessment of exploited deep water decapods off Balearic Islands: from single to multi-species approach. Ph.D. thesis, Universitat de les Illes Balears, Spain.

Joher Sais S. 2016. Macroalgal-dominated coastal detritic bottoms of the Mediterranean Sea and the Northeastern Atlantic: description, distribution and sampling methodologies. Ph.D. thesis, Universitat de Girona, Spain.

Keller S. 2017. Life-history, ecology and fisheries of cephalopods in the western Mediterranean. Ph.D. thesis, Universitat de les Illes Balears, Spain.

Koutsidi M. Functional characteristics and ecology of Mediterranean fishery catches: connecting fish characteristics with environment and ecosystem functioning. Ph.D. thesis, University of Patras, Greece.

Marongiu M.F. 2014. La riproduzione nei condroitti come elemento chiave per la loro conservazione e gestione nel Mediterraneo centro-occidentale. Ph.D. thesis, Università di Cagliari, Italy.

Marra M., 2013. Genetica di Popolazione e Filogeografia di Aristoteles antennatus (Crustacea: Decapoda) nel Mar Mediterraneo. Ph.D. thesis, Università di Bari Aldo Moro, Italy.

Moranta J. 2007. Deep western Mediterranean demersal fish communities. Ph.D. thesis, Universitat de les Illes Balears, Spain.

Mulas A. 2009. Interazioni trofiche tra Condritti in Mediterraneo. Ph.D. thesis, Università di Cagliari, Italy.

Ordines F. 2016. Benthic habitats, demersal communities and population dynamics of fishes on the cirralittoral soft bottoms of the Balearic shelf (western Mediterranean). Ph.D. thesis, Universitat de les Illes Balears, Spain.

Paradinas Aranjuelo I. 2016. Characterization of important deep water ecosystems for fisheries sustainability: European hake as a case study. Ph.D. thesis, Universidad de Valencia, Spain.

Pennino M.G. 2013. Implementing Ecosystem Approach to Fisheries Management: Advances and New tools. Ph.D. thesis, Universidad de Valencia, Spain.

Perdichizzi A. 2009. Dinamica di popolazione e pesca sostenibile dei gamberi profondi: il caso del mar Tirreno meridionale. Ph.D. thesis, Università degli Studi di Messina.

Pesci P. 2013. Ecologia, Biologia e Struttura di popolazione delle triglie Mullus barbatus Linneo, 1758 e Mullus surmuletus Linneo, 1758 nei mari circostanti la Sardegna. Ph.D. thesis, Università di Cagliari, Italy.

Puerta P. 2015. Spatial ecology of harvested cephalopods in the Western Mediterranean. Ph.D. thesis, Universidad Internacional Menéndez Pelayo, Spain.

Quetglas A. 2003. Bottom trawling cephalopod fauna from the Balearic Sea (Western Mediterranean). Ph.D. thesis, Universidad de las Illes Balears, Spain.

Ramírez-Amaro S. 2017. Past and recent demographic histories of western Mediterranean demersal chondrichthyans. Ph.D. thesis, Universitat de les Illes Balears, Spain.

Ricci P., 2017. Il ruolo delle specie keystone nella comunità demersale del Mar Ionio Settentrionale: aspetti strutturali, funzionali e gestionali. Ph.D. thesis, Università di Bari Aldo Moro, Italy.

Valls M. 2017. Trophic ecology in marine ecosystems from the Balearic Sea (western Mediterranean). Ph.D. thesis, Universitat de les Illes Balears, Spain.

Vittori S. 2013. Un approccio multidisciplinare per l’identificazione dello stock del nasello (Merluccius merluccius, Linnaeus 1758) nei mari sardi. Ph.D. thesis, Università di Cagliari, Italy.