Introduction

Quality roughage shortage is still one of the most important problems of animal husbandry of Turkey (Sayar et al., 2010; Başbag et al., 2015). Meadows and grasslands are the cheapest source of quality roughage because they do not require any planting or care in general and they contain cheap and various types of plants (Bakır, 1987; Açıkgöz, 2001). There are 14.6 million hectares of grassland and 1.45 million hectares of meadow in Turkey (Topçu Demiroğlu and Özkan, 2017). Although the total dry matter produced and the feed quality of these meadows is always lower than the conventional feed crops obtained from monoculture or grass-legume mixtures (Tallowin and Jefferson, 1999; Sturludóttir et al., 2013), these offer benefits to overcome future agricultural challenges that go beyond the animal performance level (Hammond et al, 2014; Reine et al., 2020). In the Eastern Anatolian Region, grasslands are grazed with animals from spring to autumn, while meadows are usually mown once in July and after mowing, they are grazed with animals, and these generally wet areas are compacted by animals (Manga, 1975). Most of the grasslands are located in arid and semi-arid climatic zones. Van province has 1.239.289 ha of grassland area and 119.733 ha of meadow area (Turan and Altuner, 2014). Failure to comply with management rules of low rainfall is one of the most important reasons for the degradation of vegetation in grasslands (Holechek et al., 2004).

Grazing pressure on meadows and grasslands, which are an indispensable element of economic animal husbandry, is incease in parallel with the needs of the increaser population. This pressure on grasslands and early grazing brought about a decrease in yield (Sayar et al., 2015). However, the increaser need for shelter of the increaser population is also destroyed by the new roads and agricultural areas built. Grasslands are natural resources that can be used for a long time and renew themselves if grassland management rules are abided. However, if these rules are not abided, they turn into inefficient and barren fields in a very short time (Bilgen and Özyiğit, 2005). Our country’s grasslands are in a position to negatively affect our livestock breeding, and therefore the country’s
grassland area of Çolpan village, the study could not be carried out as it was not possible to identify plants in grassland under heavy grazing pressure. The meadow where the study was conducted is a natural meadow, which is mown, and grazed after mowing. The amount of precipitation in the province of Van for the year 2020 was recorded as 377.3 mm, which is close to the long-term average (387.9 mm). The average temperature and relative humidity for the long term are 9.18°C and 57.93%, and 9.32°C and 55.84% for 2020. It receives the most rainfall in March, April, and May (Anonymous, 2020). The area covered with plants, botanical composition, forage yield and condition of grassland and meadow were investigated in this study. The Loop method was used to determine the botanical composition. For this reason, 4 Loop direction were conducted in the grassland area and 2 Loop direction in the meadow area. Size of each direction consisted of 100 measurements. Measurements were made in each direction at every other 20 cm on a 20 m line extending in 4 directions from a point considered as the center of each Loop. In total, 400 measurements were made in each Loop. The dominant species in the measurement was recorded, the number of species found in each loop was divided by the number of measurements, and the ratio of the plant covered area was obtained. The ratio of the species in the composition was calculated over the area covered with plants. In identifying the plant species encountered in the vegetation’s greatly benefited from Davis (1978) and Serin et al. (2008). The decreaser, increaser, and invader species, which express the plant species’ palatability and their responses to grazing, have been defined by “Turkey’s Meadow and Grassland Plants” (Serin et al., 2008). In order to determine the herbage yield, samples were taken from the area within a 50×50 cm frame from 6 points representing the meadow and grassland. The samples were dried in a drying cabinet at 70°C for 48 hours and the rate of dry matter was calculated.
Results and Discussion

Area Covered with Plant

The study results revealed that the meadow area was covered with plants 100%. The area covered with vegetation in the examined part of the grassland of Colpan village was determined as 86%. Çınar et al. (2014), reported that the area covered with plants in five different grasslands is between 84.4-99.0%, and in a different study, Çınar et al. (2014) reported that the average rate was 95.3%. Çaçan and Başbağ (2016) reported that the area covered with plants is an average of 68.19%, and it varies between 48.25-86.67% according to years, directions, and altitudes.

Ünal et al. (2012) reported that the area covered with plants may differ according to the use of grassland, and also different results may be obtained with the effect of grazing pressure and vegetation measurement methods.

Botanical Composition

Poaceae, Asteraceae, and Fabaceae families had the highest density in the grassland area and Cuscutaceae, Dipsacaceae, and Hypericaceae had the the lowest. Similarly; many researchers reported that Fabaceae, Asteraceae, and Poaceae families were more found in natural meadow and grasslands of the Turkey than other plant families (Beyiş and Sabancı, 2011; Çaçan et al. 2014; Babalik and Sarıkaya, 2015; Şahin et al. 2015; Çınar et al., 2018; Çınar et al., 2019).

In the grassland area were identified 69 species belonging to 17 families. Total of 37 species in the grassland were perennial (45.29%), two are annual, biennial, or perennial (0.26%), 27 were annual (47.61%), and 3 were biennial (6.84%). (Table 1, Figure 4). It has been reported that perennial species were more common in different grasslands of our country (Çınar et al. 2019; Ertuş and Pınar, 2019). Aydin et al. (2014) reported that the annual species were more common in the grassland area. Artemisia spicigera (4.74%) Taeniatherum caput-medusae (5.0%) Arenaria serpyllifolia (5.0%) Medicago monantha (3.92%) species were the most common species found in the grassland area.

In the meadow area were identified 21 species belonging to 6 families. Total of 6 species in the meadow were identified as annual (20.75%), 1 as biennial (1.0%), 12 as perennial (76.50%), 1 as annual or biennial (1.75%). In the area where Poaceae family (67.50%) is very dense, species from Fabaceae and Asteraceae families have also been seen in a significant proportion. On the basis of species, the most frequent were Hordeum brevisubulatum (25.5%), Bromus scoparius (16.75%), Taraxacum androssowii (9.25%) and at least frequent were Achillea millefolium (1%), Medicago rigidula (1.0%), Silene conica (1%) (Table 2, Figure 4). In meadow vegetation, as in grassland vegetation, the rate of perennial species were found to be higher.
Family	Genus-Species	DEC	INC	INV	PPC	Form*
Apiaceae	Eryngium billardi	+	1.32	P		
	Grammosciadium	+	0.92	P		
	Pimpinella	+	0.79	P		
	Prangos	+	1.05	P		
Asteraceae	Achillea	+	0.67	P		
	Artemisia	+	4.74	P		
	Cnicus	+	0.26	A		
	Cota	+	2.50	A		
	Coulisina	+	2.11	P		
	Cymboala	+	0.79	A		
	Lacuga	+	0.26	B		
	Senecio	+	1.84	A		
	Tanacetum	+	0.92	P		
	Xeranthemum	+	1.84	A		
Boraginaceae	Alkanna	+	0.79	P		
	Onosma	+	0.26	P		
	Rinderia	+	1.18	P		
	Rockelia	+	0.13	A		
Brassicaceae	Alyssum	+	1.97	A		
	Alyssum szovitsi	+	2.89	A		
	Lepidium	+	0.67	P		
	Erysimum	+	3.82	B		
	Sisymbrium	+	0.39	A		
Caryophyllacea	Arenaria	+	2.37	P		
	Arenaria serpil	+	5.00	A		
	Dianthus	+	0.26	P		
	Gypsophila	+	0.67	P		
	Silene	+	0.79	P		
	Velezia	+	0.79	A		
Chenopodiaceae	Bassia	+	0.53	P		
	Salsoila	+	0.39	A		
Cistaceae	Helianthemum	+	4.34	A		
Cuscutaceae	Cuscuta	+	0.13	A&P		
Cyperaceae	Carex senetephi	+	2.24	P		
Dipsacaceae	Scabiosa	+	0.13	B&P		
Euphorbiaceae	Euphorbia	+	0.67	P		
	Euphorbia esula	+	0.53	P		
Fabaceae	Astragalus	+	0.13	P		
	Astragalus	+	2.89	P		
	Medicago monanha	+	5.92	A		
	Medicago rigidal	+	3.95	A		
	Medicago sativa	+	1.18	P		
	Trifolium arvense	+	0.79	A		
	Trifolium hirtum	+	0.79	A		
Geraniaceae	Erodium	+	1.45	A		
Hypericaceae	Hypericum	+	0.39	P		
Lamiaceae	Clinopodium	+	1.05	A		
	Salvia frigida	+	1.05	P		
	Salvia multiflu	+	1.45	P		
	Sideritis	+	0.26	P		
	Teucrium chamaedrys	+	0.26	P		
	Teucrium polium	+	0.92	P		
	Thymus kotschyanum	+	2.50	P		
Plumbaginaceae	Acantholimon	+	2.24	P		
	Bromus danthonia	+	0.92	A		
	Bromus erector	+	0.26	P		
	Bromus japonicus	+	0.26	A		
	Bromus tectorum	+	1.97	A		
	Dactylis glomerata	+	1.05	P		
	Elymus hispidus	+	1.18	P		
	Eremopoa persica	+	1.18	A		
	Gaudiniopsis	+	0.26	A		
	Hordeum marinum	+	0.53	A		
	Koeleria	+	1.18	P		
	Poa bulbosa	+	4.08	P		
	Stipa holoserica	+	0.79	P		
	Taeniatherum	+	5.00	A		
Santalaceae	Thesium billardi	+	2.76	B		
Total			100			

*A: Annual, B: Biennial, P: Perennial, DEC: Decreaser, INC: Increaser, INV: Invader, PPC: Percentage of Plant Coverage
Forage Yield and Condition of Meadow and Grassland

Dry matter yield in the grassland area was found to be between 68.73-106.9 kg/da and 91.40 kg/da on average. This is compatible with the findings of Ertuş et al. (2018), which were higher than the findings of Buzuk et al. (2009) and Çiplak (2015) working at the grasslands in Van. The dry matter yield of the meadow area was found to be between 331.6-452.9 kg/da and 385.2 kg/da on average. The dry matter yield in the meadows of the Kars region was reported to be between 196.0-250.0 kg/da (Arslan and Tufan, 2011).

The coverage rate of grasses, legumes, and other families of plants in the grassland area were found to be 18.66%, 15.65%, and 65.69% respectively. Çaçan et al. (2014) found the ratio of plants from other families (43.14%) in Bingöl grasslands higher than the ratios of grasses (29.77%) and legumes (27.08%), which were close to each other. Altun et al. (2010) reported that in the barren grassland area of Tekirdağ, grasses take more place in the botanical composition. Terziöğlu and Yalvaç (2004), in the Atmaca and Dönce villages in Van and Bakoğlu and Koç (2002) in Erzurum conditions reported that the proportion of grasses is higher than that of legumes and other families. On the grassland of Önülü village in Van, Ertuş et al. (2018) reported that the rate of grasses is 45.37%, legume is 9.97%, and other family species is 44.66%. Bakoğlu et al. (2019), working at Handüzü plateau in Rize, reported that it consists of 33.37% grasses, 5.75% legumes, and 60.88% plants from other families. Findings were generally compatible with Çaçan et al. (2014). It is not compatible with other studies, the grazing pressure on the grassland, grassland management style such as grazing animal species and the fact that the research areas have ecologies cause decrease in some plant species in vegetation or the spread of some species.

The ratio of grasses, legumes, and other families in the meadow area was found to be 62.75%, 19.0%, and 18.25% respectively. Temel et al. (2016), in their study on arid meadows with different soil characteristics, found that other family species were more dense than grasses. The difference in the findings is due to the different ecologies of the study areas.

In the botanical composition of the grassland area, the decrease, increaser, and invader species were found to be 4.85%, 8.69%, and 86.46% respectively. Temel et al. (2016), in their study on arid meadows with different soil characteristics, found that other family species were more dense than grasses. The difference in the findings is due to the different ecologies of the study areas.

In the botanical composition of the grassland area, the decrease, increaser, and invader species were found to be 4.85%, 8.69%, and 86.46% respectively. In the grassland, the prominent decrease species were found to be Medicago sativa, Elymus hispidus, Koeleria cristata with 1.18%, the increaser were Poa bulbosa (%4.08) and Arenaria blepharophylla (%2.37), and the invader were Medicago monantha (%5.92), Arenaria serpyllifolia
potential of Natural Pastures Vegetation in Gövelek娱乐.

A comprehensive approach of Botanical Compositions and Forage Yields in a Rangeland. Research Journal of Biotechnology. 10(10)

Babalık AA, Sarıkaya H. 2015. A research on the hay yield and botanical composition of the Zengi Rangeland in Isparta. Turkish Journal of Forestry (2): 96-101

Bakır Ö. 1987. Meadow-Pasture Management. Ankara University Faculty of Agriculture Publications. No: 992. pp. 362.

Bakoğlu A, Koç A. 2002. The Comparison of Some Soil and Plant of Characteristic in Grazed and Protected Range Sites I. Comparison of Plant Cover Characteristic. Firat University Journal of Engineering Science. 14(1), 37-77.

Bakoğlu A, Baykal H, Çatal Mİ. 2019. A Research on The Botanical Composition of Handizli Plateau. Turkish Journal of Agriculture - Food Science and Technology. 7(9): 1339-1343.

Balabanlı C, Albayrak S, Türk M, Yüksel O. 2006. Some Toxic Plants Growing In Rangelands Of Turkey And Their Effects On Animals. Suleyman Demirel University Journal of Forestry. Seri: A (2), 89-96.

Başbağ M, Sayar MS, Aydin A, Högşüren H, Demirel R. 2015. Some agronomical and quality traits in nine vetch (Vicia ssp.) species cultivated in Southeastern Anatolia, Turkey. Turkish Journal of Agricultural and Natural Sciences, 2(1): 69-77.

Beyiş ME, Sabancı CO. 2011. A Study on Botanical Composition and Hay Yield of Pastures in Gevşev District of Van. The Ninety Field Crops Congress of Turkey, Poster Papers. 12-15 September 2011. 2. Bursa/Turkey.

Bilgen M, Özyüiğit Y. 2005. Determination of Vegetation Characteristics of Some Rangelands in Korkuteli and Elmali. Mediterranean Agriculture Sciences. 18(2), 261-266.

Buzuk G, Sabancı CO, Ertuş MM. 2009. A Study of Botanical Composition and Hay Yield of Pastures in Caldarun District of Van. The Eighty Field Crops Congress of Turkey. 19-22 October 2009, Hatay/Turkey.

Çaçan E, Aydin A, Başbağ M. 2014. Comparison of Botanical Compositions of Two Different “Protected and Non-Protected” Natural Areas. Turkish Journal of Agricultural and Natural Sciences Special Issue: 2.

Çaçan E, Başbağ M. 2016. Exchange of the Botanical Composition and Hay Yield at Rangelands of Different Aspects and Altitudes of Bingöl Yelesen-Dikme Villages. Journal of Agricultural Fakulty of Ege University. 53 (1):1-9

Çınar S, Hatipoğlu R, Avcı M, İnal İ, Yücel C, Avag A. 2014. A Research on The Vegetation Structures of The Pastures in District Kırıklıhan, Hatay, Journal of Agricultural Faculty of Gaziosmanpasa University. 31 (2): 52-60.

Çınar S, Hatipoğlu R, Avcı M, İnal İ, Yücel C. 2018. A Research on The Determination of Botanical Composition of Pastures in District Tufanbeyli, Adana. Turkish Journal of Nature and Science.7(2): 21-29.

Çınar S, Hatipoğlu R, Avcı M, Yücel C, İnal İ. 2019. A Research on The Vegetation Structures of The Rangelands of District Tufanbeyli, Adana. KSU J: Agric Nat. 22(1):143-152.

Çınar S, Abdullayev A, Esenov N, Karadag Y. 2019. Determination of botanical composition, hay yield and forage quality of some natural rangelands in Kyrgyzstan’s Chuy Region. Applied Ecology and Environmental Research. 18(1): 401-416.

Çiplak E. 2015. Determination of Botanical Composition and Yield Potential of Natural Pastures Vegetation in Gövelek Village of Van. Yuzuncu Yil University. Institute of Science. Master Thesis. pp. 46.

Çomakli B, Öner T, Daçoğlu M. 2012. Changing of The Vegetation on Rangeland Sites with Different Using History Iğdır Univ. J. Inst. Sci. & Tech. 2(2): 75-82.

Davis PH. 1978. Flora of Turkey and the east aegeon islands. Davis PH. 1978. Flora of Turkey and the east aegeon islands.

Ertuş MM, Pınar SM, Erőglu H. 2018. A Study on Slightly Grazed Pasture in Ongal Village of Çatçak District in Van Province. International Congress on Agriculture and Animal Sciences. 7-9 November 2018. Alanya/Turkey.
Ertuş MM, Pınar M. 2019. Determination of Pasture Status of Ordeklı Village Pasture in Hakkâri Province. Journal of Bartın Faculty of Forestry. 21(2): 543-549. https://doi.org/10.24011/barofd.524227

Hammond K, Humphries D, Westbury D, Thompson A, Crompton L, Kirton P, Green C, Reynolds CK. 2014. The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agric. Ecosyst. Environ. 197: 88-95. https://doi.org/10.1016/j.agee.2014.07.016

Holechek JL, Pieper RD, Herbel CH. 2004. Range management: Principles and practices. Prentice Hall, New Jersey 607 p.

Ispirli K, Alay F, Uzun F, Çankaya N. 2016. Impacts of Livestock Grazing and Topography on Vegetation Cover and Structure in Natural Rangelands. Turk J Agric Res. 3: 14-22. https://doi.org/10.19159/tutad.76350

Koç A, Gökkuş A. 1994. Determination of the Most Appropriate Stubble Height to be Left with Botanical Composition and Soil Covering Area of Güzelyurt Village Pasture Vegetation. Türk Tarım ve Ormancılık Dergisi, 18(6): 495-500.

Manga İ. 1975. The Place and Importance of Feed Lice Breeding in Eastern Anatolian Animal Husbandry. Journal Agricultural Faculty of Ataturk University. 6(3), 75-91.

Palta Ş, Geçen Lermi A. 2018. Determination of Some Characteristics of Rangeland of Kutluabay Demirci Village in Bartın Province. Journal of Bartın Faculty of Forestry. 20(2): 352-359. https://doi.org/10.24011/barofd.437385

Reiné R, Ascaso J, Barrantes O. 2020. Nutritional Quality of Plant Species in Pyrenean Hay Meadows of High Diversity. Agronomy. 10, 883. https://doi.org/10.3390/agronomy10060883.

Sayar MS, Anlarsal AE, Basbag M. 2010. Current situation, problems and solutions for cultivation of forage crops in the Southeastern Anatolian Region. J. Agric. Fac. HR.U. 14: 59-67.

Sayar, MS, Han Y, Başbağ Y, Gül İ, Polat T. 2015. Rangeland Improvement and Management Studies in the Southeastern Anatolia Region of Turkey. Pak. J. Agric. Sci., Vol. 52(1): 9-18.

Sert Y, Tan M, Koç A, Zengin H. 2008. Türkiye’nin Çayır ve Mera Bitkileri. Tarım ve Köyleri Bakanlığı Tarımsal Üretim ve Geliştirme Genel Müd. Yayınları, Ankara.

Seydoşoğlu S, Saruhan V, Mermer A. 2015. Determination of the Botanical Composition of the Arid Pasture in District Eğil, Diyarbakır. Turk J Agric Res. (2015):2,76-82

Sturludóttir E, Brophy C, Belanger G, Gustavsson AM, Jørgensen M, Lunnan T, Helgadottir A. 2013. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69: 229–240. https://doi.org/10.1111/gfs.12037

Şahin B, Arslan S, Ünal S, Mutlu Z, Mermer A, Urla Ö, Ünal E, Özaydın KA, Ayağ A, Yıldız H, Aydoğanuş O. 2015. Floristic Features of Rangelands of Çankırı Province. Journal of Field Crops Center Research Institute. 24(1):1-15.

Tallowin JRB, Jefferson RG. 1999. Hay production from lowland semi-natural grasslands: A review of implications for ruminant livestock systems. Grass Forage Sci. 1999, 54: 99–115.

Temel S, Şimşek U, Erdel E, Tohumcu F, Gökmen F. 2016. Effects of Different Soil Features on Floristic Composition of Ground Meadows. Journal of Field Crops Center Research Institute. 25 (Special Papers-2): 168-173

Terzioğlu, Ö, Yalvaç N. 2004. A Research on Determination of Grazing Starting Time Hay Yield and Botanical Composition of Natural Rangelands in Van Region (J. Agric. Sci.), 2004, 14(1): 23-26

Topçu Demiroğlu G, Özkaran Ş. 2017. General View to Meadow-Rangelands and Forage Crops Cultivation of Aegean Region and Turkey. COMU J. Agric. Fac. 5 (1): 21–28

Turan N, Altuner F. 2014. The Roughage Production Potential, Problems and Suggestions in Van Province. Turk J Agric Res. 1(1): 91-97.

Ünal S, Mutlu Z, Mermer A, Urla Ö, Ünal E, Aydoğanuş M, Dedeoğlu F, Özaydın KA, Ayağ A, Aydoğanuş O, Şahin B, Aslan S. 2012. A Study on Assessment of Rangelands in Ankara Province. Journal of Field Crops Center Research Institute. 21(2): 41-49.