Endovascular treatment for acute ischemic stroke in patients with versus without atrial fibrillation: a matched-control study

Xu Tong1†, Shijing Li2†, Wei Liu3†, Zeguang Ren4, Raynald Liu1, Baixue Jia1, Xuelei Zhang5, Xiaochuan Huo1, Gang Luo1, Gaoting Ma1, Anxin Wang6, Yilong Wang7, Yongjun Wang6, Zhongrong Miao1*, Dapeng Mo1* and on behalf of ANGEL-ACT study group

Abstract

Background and objective: The effect of atrial fibrillation (AF) on outcomes of endovascular treatment (EVT) for acute ischemic stroke (AIS) is controversial. This study aimed to investigate the association of AF with outcomes after EVT in AIS patients.

Methods: Subjects were selected from ANGEL-ACT registry (Endovascular Treatment Key Technique and Emergency Work Flow Improvement of Acute Ischemic Stroke) - a prospective consecutive cohort of AIS patients undergoing EVT at 111 hospitals in China between November 2017 and March 2019, and then grouped according to having a history of AF or not. After 1:1 propensity score matching, the outcome measures including the 90-day modified Rankin Scale (mRS) score, successful recanalization after final attempt, symptomatic intracranial hemorrhage (ICH) within 24 h, and death within 90 days were compared.

Results: A total of 1755 patients, 550 with AF and 1205 without AF, were included. Among 407 pairs of patients identified after matching, no significant differences were found in the mRS score (median: 3 vs. 3 points; P = 0.29), successful recanalization (87.2 vs. 85.3%; P = 0.42), symptomatic ICH (9.4 vs. 9.1%; P = 0.86) and death (16.3 vs. 18.4%; P = 0.44) between patients with and without AF.

Conclusion: The findings of this matched-control study show comparable outcomes of EVT in Chinese AIS patients with and without AF, which do not support withholding EVT in patients with both AIS and AF.

Trial registration: NCT03370939
First registration date: 28/09/2017
First posted date: 13/12/2017

Keywords: Atrial fibrillation, Endovascular treatment, Ischemic stroke, Propensity score matching

* Correspondence: zhongrongm@163.com; bjttmodp@163.com
†Xu Tong, Shijing Li and Wei Liu contributed equally to this work.
1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China
Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Atrial fibrillation (AF), as the most common cause of cardioembolic stroke, is associated with a 4-5 times increased risk of acute ischemic stroke (AIS) and accounts for approximately 30–40% of all acute large vessel occlusion (LVO) [1–8]. Patients with AF-related stroke are older, have greater burden of comorbidities and worse neurological deficits, thus have a higher probability of disability or mortality after usual care [9–12]. Furthermore, intravenous thrombolysis (IVT) is less effective on both recanalization and clinical outcome but also increases the risk of intracranial hemorrhage (ICH) in patients with AF. The poor response to IVT could be partly explained by the pathophysiology of AF-related stroke, such as the gaps between patients with and without AF in terms of embolic size and components, collateral status, infarct core volume, and stroke progression [13, 14].

Endovascular treatment (EVT) represented by mechanical thrombectomy with stent-retriever or aspiration catheter has become the standard treatment for selected patients with AIS due to intracranial proximal LVO [15]. However, limited data and conflicting results exist regarding the role of AF on procedural and clinical outcomes after EVT [16–21]. To address this issue and on the hypothesis that the modification of AF was attributed to the effect of case mix; in other words, AF might not independently affect any outcome in EVT-treated patients after adjusting for possible confounders. We therefore performed a matched-control analysis based on a prospective nationwide registry database to assess whether the technical success and functional outcomes differ in LVO patients with and without AF after receiving EVT.

Methods

Study population

Data were extracted from ANGEL-ACT (Endovascular Treatment Key Technique and Emergency Work Flow Improvement of Acute Ischemic Stroke), a prospective nationwide registry of 1793 consecutive patients with AIS caused by LVO undergoing EVT in 111 hospitals in China between November 2017 and March 2019. Full methods of the registry, such as inclusion/exclusion criteria and data collection standards, have been reported earlier [22]. The protocol was approved by the ethics committees of all centers, and all participants (or legal representatives) provided written informed consent. The study procedures were in accordance with the 1964 Helsinki declaration and its later amendments.

In this analysis, patients with missing baseline or procedure data in Table 1 were excluded, and the remainder cases were divided into two groups based on whether they had pre-existing AF, identified by previous medical records.

Outcome measures

The primary outcome was the 90-day modified Rankin Scale (mRS) score assessed by trained and independent investigators. The secondary outcomes included successful recanalization (modified Thrombolysis in Cerebral Infarction [mTICI] of 2b-3) after first and final attempt, complete recanalization (mTICI of 3) after final attempt, [23] the proportions of mRS 0–1, 0–2 and 0–3 at 90 days. The safety outcomes were intra-procedural complications (e.g., new territorial embolization, arterial perforation, arterial dissection, vasospasm requiring treatment and in-stent thrombosis), any ICH, parenchymal hematoma type 2 (PH2) and symptomatic ICH within 24 hours according to the Heidelberg Bleeding Classification, [24] and death within 90 days.

Statistical analysis

Data were displayed as median (interquartile range [IQR]) or frequency (percentage). Univariable comparisons of baseline characteristics between patients with and without AF were performed using Mann-Whitney or Pearson’s chi-square tests. To improve the comparability between the two groups, a 1:1 propensity score matching (PSM) was performed by using a caliper distance of 0.05 [25]. For comparing the outcomes between both groups, the odds ratios (OR) or common OR with their 95% confidence intervals (CI) were calculated using a binary or ordinal logistic regression model, if applicable. Significance level was set to α = 0.05 (2-sided). Statistical analyses were conducted with SAS software version 9.4 (SAS Institute Inc., Cary, NC).

Results

Among 1793 patients enrolled in the ANGEL-ACT registry, 38 patients were excluded due to missing baseline or procedure information, a total of 1755 patients were included in this analysis, including 550 cases with AF and 1205 without AF. After PSM, 814 patients were identified (Fig. 1).

As shown in Table 1, there were significant differences in many baseline and procedure characteristics between pre-matched patients with and without AF. For example, patients with AF were 8 years older, had 3 points higher NIHSS scores, were more frequently given anticoagulants before stroke onset, and received more passes of thrombectomy than those without AF; while patients with AF had lower proportions of male, current smoker, and vertebro-basilar artery occlusion, were less often given tirofiban during the procedure and emergency angioplasty/stenting, and experienced 65 min shorter onset-to-puncture time than those without AF (all P-values < 0.01). After PSM, all baseline and procedure characteristics between groups were well-balanced (Table 1).
Table 1 Baseline and procedure characteristics of patients with AF versus without AF

Baseline and procedure variables	Pre-matched population (n = 1755)	Post-matched population (n = 814)						
	With AF (n = 550)	Without AF (n = 1205)	SD (%)	P-value	With AF (n = 407)	Without AF (n = 407)	SD (%)	P-value
Age, median (IQR), years	71 (64–78)	63 (54–70)	72.0	< 0.01	69 (62–76)	68 (61–75)	4.3	0.32
Male sex	246 (44.7)	910 (75.5)	66.2	< 0.01	213 (52.3)	221 (54.3)	3.9	0.57
History of hypertension	333 (60.6)	673 (55.9)	9.5	0.07	232 (57.0)	245 (60.2)	6.5	0.35
History of diabetes mellitus	99 (18.0)	225 (18.7)	1.8	0.74	73 (17.9)	82 (20.2)	5.6	0.42
Prior ischemic stroke	130 (23.6)	207 (17.2)	16.1	< 0.01	85 (20.9)	88 (21.6)	1.8	0.80
Pre-stroke mRS score ≥ 1	84 (15.3)	146 (12.1)	9.2	0.07	55 (13.5)	60 (14.7)	3.5	0.61
Cigarette smoking	56.5	< 0.01	7.3	0.27				
Never Smoker	420 (76.4)	629 (52.2)	291	285				
Ex-smoker	44 (8.0)	89 (7.4)	37	28				
Current smoker	86 (15.6)	487 (40.4)	79	94				
Systolic blood pressure, median (IQR), mmHg	145 (130–160)	145 (132–162)	7.5	0.21	145 (130–160)	145 (130–160)	2.1	0.95
NIHSS score, median (IQR)	18 (14–22)	15 (11–21)	29.5	< 0.01	17 (13–21)	17 (13–22)	2.6	0.87
ASPECTS, median (IQR) a	10 (7–10)	9 (7–10)	13.1	< 0.01	10 (7–10)	10 (7–10)	1.5	0.91
Occlusion site	46.4	< 0.01	9.1	0.20				
Internal carotid artery	166 (30.2)	279 (23.2)	111 (27.3)	116 (28.5)				
Middle cerebral artery M1 segment	266 (48.4)	493 (40.9)	197 (48.4)	187 (45.9)				
Middle cerebral artery M2 segment	59 (10.7)	91 (7.6)	47 (11.6)	39 (9.6)				
Vertebro-basilar artery	49 (8.9)	313 (26.0)	42 (10.3)	60 (14.7)				
Other intracranial arteries b	10 (1.8)	29 (2.4)	10 (2.5)	5 (1.2)				
Prior use of antiplatelet agents	101 (18.4)	187 (15.5)	7.8	0.14	75 (18.4)	73 (17.9)	1.3	0.86
Prior use of anticoagulants	51 (9.3)	20 (1.7)	34.0	< 0.01	19 (4.7)	15 (3.7)	4.9	0.48
Prior intravenous thrombolysis	145 (26.4)	368 (30.5)	9.3	0.07	115 (28.3)	102 (25.1)	7.2	0.30
Type of anesthesia	16.8	0.01	4.1	0.55				
Local anesthesia only	265 (48.2)	500 (41.5)	190 (46.7)	184 (45.2)				
Local anesthesia plus sedation	92 (16.7)	190 (15.8)	68 (16.7)	60 (14.7)				
General anesthesia	193 (35.1)	515 (42.7)	149 (36.6)	163 (40.1)				
Stent-retriever thrombectomy	385 (70.0)	834 (69.2)	1.7	0.74	284 (69.8)	289 (71.0)	2.7	0.70
Aspiration thrombectomy	14 (2.6)	40 (3.3)	4.6	0.38	13 (3.2)	15 (3.7)	2.7	0.70
Stent-retriever plus aspiration thrombectomy	124 (22.6)	180 (14.9)	19.6	< 0.01	83 (20.4)	77 (18.9)	3.7	0.60
Pass number of thrombectomy, median (IQR)	2 (1–3)	1 (1, 2)	40.8	< 0.01	2 (1–3)	2 (1–3)	1.4	0.79
Emergency angioplasty/stenting	45 (8.2)	471 (39.1)	78.1	< 0.01	45 (11.1)	57 (14.0)	8.9	0.20
Intra-arterial thrombolysis	33 (6.0)	111 (9.2)	12.1	0.02	31 (7.6)	31 (7.6)	0.0	1.00
Intra-procedural use of tirofiban	201 (36.6)	712 (59.1)	46.3	< 0.01	167 (41.0)	186 (45.7)	9.3	0.18
Intra-procedural use of heparin	251 (45.6)	606 (50.3)	9.3	0.07	187 (46.0)	178 (43.7)	4.5	0.53
Onset-to-puncture time, median (IQR), min	260 (195–370)	325 (225–484)	30.8	< 0.01	284 (200–390)	290 (210–410)	6.0	0.22
Puncture-to-recanalization time, median (IQR), min	80 (50–120)	89 (54–135)	11.2	0.01	79 (50–120)	87 (53–128)	5.3	0.19

Abbreviations: AF atrial fibrillation, ASPECTS Alberta Stroke Program Early CT Score, IQR interquartile range, mRS modified Rankin Scale, NIHSS National Institutes of Health Stroke Scale, pc-ASPECTS posterior circulation Alberta Stroke Program Early CT Score, SD standardized difference

Values are numbers with percentages in parentheses, unless indicated otherwise

*aASPECTS for anterior circulation stroke, and pc-ASPECTS for posterior circulation stroke

*bincluding anterior cerebral artery A1/A2 segments, posterior cerebral artery P1 segment
Comparisons of outcome measures between patients with and without AF were presented in Table 2. Before matching, there was no significant difference in recanalization rates between the two groups, but patients with AF had a higher 90-day mRS score ($P < 0.01$) and higher risks of intra-procedural complications ($P = 0.02$), hemorrhagic transformations within 24 hours (all $P < 0.01$), and death within 90 days ($P = 0.01$), whereas they had lower proportions of mRS 0–1, 0–2, and 0–3 points at 90 days (all $P < 0.01$). After matching, the difference in the primary outcome - 90-day mRS score no longer existed between patients with and without AF (median: 3 vs. 3 points; $P = 0.29$). In addition, all differences in secondary and safety outcomes that differed between both groups before matching also disappeared.

Discussion

This real-world registry study in China found that patients with AF were older, had more severe symptoms on admission, a lower proportion of posterior circulation occlusions, and a shorter time from onset to puncture. After matching for baseline characteristics using propensity scores, AF was not independently associated with 90-day functional outcomes, recanalization rates, and intra-procedural complications.

A subgroup analysis of the MR CLEAN trial (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) showed a trend towards a decreased treatment effect of EVT in patients with AF. However, the sample size of AF patients in their study was rather small, thus no definite conclusion could be drawn [16]. A subsequent meta-analysis from the HERMES collaboration (Highly
Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials) demonstrated no interaction between AF and functional outcomes after EVT, but found a trend towards a lower rate of symptomatic ICH in AIS patients with AF (3.4% in AF patients vs. 4.5% in non-AF patients), which might be related to the lower percentage of pre-treatment with IVT (76.3% in AF patients vs. 90.6% in non-AF patients). This is probably mainly due to the fact that patients with AF are more likely to taking oral anticoagulants, which is a contraindication for the administration of tPA [17]. Conversely, a post-hoc analysis of a multi-center head-to-head clinical trial revealed that AF was an independent risk factor for any ICH in AIS patients undergoing stent-retriever thrombectomy, which was partly attributable to the adjusted anticoagulation status and more retrieval attempts by mediation analyses [18]. Furthermore, a national registry study assessing post-thrombectomy outcomes found no difference in either in-hospital or discharge outcomes between matched patients with or without AF, [19] whereas two other studies suggested faster procedural time, fewer passes, higher rates of first pass effect, successful reperfusion and good functional outcome with AF-related stroke [20, 21].

Previous observations found patients with AIS caused by AF tend to have more bleedings and worse outcomes after EVT than those without AF [16, 18]. However, special cautions should be taken when interpreting these results, such a statement could lead to misconclusions to suspecting or even denying EVT to patients with AF. We may expect that AIS caused by a sudden embolus from the cardiovascular circulation can progress faster than AIS caused by progressive carotid or intracranial artery stenosis, where there may be time for

Table 2 Outcome measures of patients with AF versus without AF

Outcome variables	Pre-matched population (n = 1755)	Post-matched population (n = 814)						
	With AF (n = 550)	Without AF (n = 1205)	Univariable analysis	With AF (n = 407)	Without AF (n = 407)	Univariable analysis		
			Effect size (95% CI)			Effect size (95% CI)		
Primary outcome			P-value			P-value		
mRS at 90 d, median (IQR)	4 (1–5)	3 (0–5)	0.59 (0.47–0.74) a	< 0.01	3 (0–5)	1 (1–5)	1.16 (0.82–1.52) a	0.29
Secondary outcomes								
Successful recanalization after first attempt	267/550 (48.6)	588/1205 (48.8)	0.99 (0.81–1.21) b	0.92	209/407 (51.4)	150/407 (46.7)	1.21 (0.92–1.59) b	0.18
Successful recanalization after first attempt	479/550 (87.1)	1065/1205 (88.4)	0.89 (0.65–1.20) b	0.44	355/407 (87.2)	347/407 (85.3)	1.18 (0.79–1.76) b	0.42
Complete recanalization after final attempt	376/550 (68.4)	789/1205 (65.5)	1.14 (0.92–1.41) b	0.24	279/407 (68.6)	264/407 (64.9)	1.18 (0.88–1.58) b	0.27
mRS 0–1 at 90 d	174/518 (33.6)	521/1162 (44.8)	0.62 (0.50–0.77) b	< 0.01	143/387 (37.0)	143/386 (37.1)	1.00 (0.74–1.33) b	0.98
mRS 0–2 at 90 d	195/518 (37.6)	565/1162 (48.6)	0.64 (0.52–0.79) b	< 0.01	160/387 (41.3)	155/386 (40.2)	1.05 (0.79–1.40) b	0.74
mRS 0–3 at 90 d	252/518 (48.7)	676/1162 (58.2)	0.68 (0.55–0.84) b	< 0.01	208/387 (53.8)	192/386 (49.7)	1.17 (0.89–1.56) b	0.27
Safety outcomes								
Intra-procedural complications a	63/550 (11.5)	95/1205 (7.9)	1.51 (1.08–2.12) b	0.02	43/407 (10.6)	36/407 (8.8)	1.22 (0.76–1.94) b	0.41
Any ICH within 24 h	158/516 (30.6)	222/1163 (19.1)	1.87 (1.48–2.37) b	< 0.01	106/384 (27.6)	95/388 (24.5)	1.18 (0.85–1.62) b	0.32
PH2 within 24 h	35/516 (6.8)	41/1163 (3.5)	1.99 (1.25–3.17) b	< 0.01	25/384 (6.5)	23/388 (5.9)	1.11 (0.62–1.98) b	0.74
Symptomatic ICH within 24 h	54/513 (10.5)	70/1156 (6.1)	1.83 (1.26–2.65) b	< 0.01	36/381 (9.4)	35/386 (9.1)	1.05 (0.64–1.71) b	0.86
Death within 90 d	100/518 (19.3)	162/1162 (13.9)	1.48 (1.12–1.94) b	0.01	63/387 (16.3)	71/386 (18.4)	0.86 (0.59–1.25) b	0.44

Abbreviations: AF atrial fibrillation, CI confidence interval, ICH intracranial hemorrhage, IQR interquartile range, mRS modified Rankin Scale, mTICI modified Thrombolysis in Cerebral Infarction, OR odds ratio, PH2 parenchymal hematoma type 2

Data are shown as the event number/total number (%), unless otherwise indicated.

The common OR values were calculated using a binary logistic regression model

The OR values were calculated using an ordinal logistic regression model

Defined as mTICI of 2b-3

Defined as mTICI of 3

Including new territorial embolization, arterial perforation, arterial dissection, vasospasm requiring treatment and in-stent thrombosis

According to the Heidelberg Bleeding Classification
development of collaterals [26]. In this study, patients with AF were treated about 1 hour earlier (median time from onset to puncture: 260 min vs. 325 min) compared to those without AF, suggesting a faster infarct growth rate and a stronger time dependence of reperfusion therapy in AF-related stroke.

Strengths of this study were the large sample size of enrolled patients \((n = 1755)\) and the high prevalence of AF \((31.3\%)\), resulting in more reliable estimations. Also, comparison of outcomes after PSM was a strength. Finally, all radiological and clinical outcomes in this analysis were centrally adjudicated by the independent imaging core laboratory or clinical events committee, except those intra-procedural complications were locally scored by site investigators. Nevertheless, our study has some limitations. First, the collateral status has been shown to be an excellent predictor of stroke outcomes, so a major limitation of this study is the lack of assessment of collateral status, which has been postulated as a possible reason for difference in functional outcomes post-EVT of LVO patients with vs. without AF [28, 29]. Second, this study was conducted in Chinese population, where the prevalence of intracranial atherosclerotic disease (ICAD) is very high [30]. In this context, an underlying ICAD stenotic lesion is often cited as a possible reason for immediate re-oclusion after thrombectomy that results in bailout intracranial angioplasty or stenting, thus potentially having an impact on the outcomes [31]. Our findings should be interpreted with caution and could not easily be extrapolated to other populations. Third, patients with AF may have more comorbidities (e.g., decreased ejection fraction, valvular heart disease, other organ failure), larger infarct core, and different texture of thrombus compared to those without AF. However, these variables were not collected in the ANGEL-ACT registry, so their confounding effects could not be ruled out. Finally, no information on antithrombotic therapy from post-procedure to discharge, treatment adherence and rehabilitation training after discharge was recorded, therefore limiting comments on the association between them and functional outcomes.

Conclusion

The present study found no difference in the radiological and clinical outcomes following EVT between Chinese AIS patients with and without AF, implying AF status should not hamper the decision making to proceed to EVT. Furthermore, our results were in contrast to the increased hemorrhage rates and worse functional outcomes observed in AF-related stroke treated with supportive care or IVT. It is known that thrombolysis is less used in patients with AF-related LVO and, if used, has only limited effect. Thus, the fact is EVT might be the best chance for these patients.

Abbreviations

AF: Atrial fibrillation; AIS: Acute ischemic stroke; ANGEL-ACT: Endovascular Treatment Key Technique and Emergency Work Flow Improvement of Acute Ischemic Stroke; ASPECTS: Alberta Stroke Program Early CT Score; CI: Confidence interval; EVT: Endovascular treatment; HERMES: Highly Effective Reperfusion Evaluated in Multiple Endovascular Stroke Trials; ICH: Intracranial hemorrhage; IVT: Intravenous thrombolysis; LVO: Large vessel occlusion; MR CLEAN: Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands; mRS: Modified Rankin Scale; mTICI: Modified Thrombolysis in Cerebral Infarction; NIHSS: National Institutes of Health Stroke Scale; OR: Odds ratio; pc-ASPECTS: Posterior circulation Alberta Stroke Program Early CT Score; PH2: Parenchymal hematoma type 2; PSM: Propensity score matching; SD: Standardized difference

Acknowledgements

We thank all participating hospitals, relevant clinicians, statisticians, and imaging and laboratory technicians.

Authors’ contributions

Zhongrong Miao \(^1\), Liqiang Guo \(^5\), Cunfeng Song \(^2\), Ya Peng \(^28\), Jin Wu \(^11\), Shijun Zhao \(^5\), Junfeng Zhao \(^1\), Zhiming Zhou \(^1\), Yongli Li \(^15\), Ping Jing \(^16\), Lei Yang \(^7\), Yajie Liu \(^19\), Qingshi Zhao \(^10\), Yan Liu \(^22\), Xiaoxiang Peng \(^17\), Qinchun Gao \(^22\), Zaiyu Guo \(^26\), Wenhou Chen \(^24\), Weirong Li \(^27\), Xiaojiang Cheng \(^23\), Yun Xu \(^24\), Yongqiang Zhang \(^4\), Guilian Zhang \(^23\), Yiliu Lu \(^2\), Xinyu Lu \(^3\), Dengxiang Wang \(^27\), Yan Wang \(^23\), Hao Li \(^19\), Yang Hua \(^29\), Dejin Geng \(^26\), Haicheng Yuan \(^20\), Hongwei Wang \(^28\), Haifang Wang \(^31\), Zengwu Wang \(^26\), Liping Wei \(^22\), Xuancong Liu \(^6\), Xiangjun Shi \(^14\), Juntao Li \(^19\), Wenwu Yang \(^17\), Wenji Jing \(^19\), Xiang Yin \(^33\), Liuyuan Wang \(^36\), Chunlei Li \(^49\), Yibin Cao \(^27\), Fengping Zhu \(^10\), Peng Zhang \(^33\), Xiang Lu \(^15\), Shengli Chen \(^25\), Wenwu Peng \(^22\), Lixin Wang \(^38\), Xue Wen \(^5\), Shugui Shi \(^37\), Wanning Wang \(^9\), Wang Bo \(^60\), Pu Yuan \(^1\), Dong Wang \(^25\), Haitao Guan \(^34\), Wenbao Liang \(^34\), Dalang Ma \(^39\), Long Chen \(^26\), Yan Xiao \(^40\), Xiangdong Xie \(^40\), Zhonghua Shi \(^69\), Xiangjun Zeng \(^70\), Fanfan Su \(^9\), MingZe Chang \(^25\), Jijun Yin \(^23\), Hongxia Sun \(^39\), Chong Li \(^57\), Yong Bi \(^10\), Gang Xie \(^27\), Yuwu Zhao \(^25\), Chao Wang \(^25\), Peng Zhang \(^40\), Jianjun Zhang \(^25\), Dongjun Li \(^21\), Hui Liang \(^38\), Zhibing Yang \(^54\), Yan Wang \(^32\), Xinyu Wang \(^55\), Lin Yin \(^7\), HongKai Qiu \(^36\), Jun Wei \(^25\), Xiaoyan Sun \(^51\), Xiaoyu Yang \(^32\), Weihua Wu \(^27\), Limbo Gao \(^23\), Zhihong Ai \(^26\), Lan Tan \(^12\), Li Ding \(^47\), Qiong Liang \(^17\), Zhirong Wang \(^23\), Jianwen Yang \(^29\), Peng Xu \(^30\), Wei Dong \(^107\), Quanle Zheng \(^103\), Zhenyun Zhu \(^103\), Liuye Zhao \(^104\), Qiong bo Meng \(^105\), Yuning Wei \(^106\), Xiangan Chen \(^107\), Wei Wang \(^10\), Dong Sun \(^109\), Yongping Yan \(^116\), Guangxiong Yuan \(^117\), Yadong Yang \(^12\), Jianfeng Zhou \(^119\), Zhi Yang \(^14\), Zhenzhong Zhang \(^115\), Ning Guan \(^116\), Huihong Wang \(^117\)

\(^1\)Beijing Tiantan Hospital, Beijing, China
\(^2\)Langfang Changping Hospital, Hebei, China
\(^3\)Liaocheng Third People’s Hospital, Shandong, China
\(^4\)The First People’s Hospital of Changzhou, Jiangsu, China
\(^5\)The Second Affiliated Hospital of Nanjing Medical University, Jiangsu, China
\(^6\)Fengshen District People’s Hospital of Tangshan City, Hebei, China
\(^7\)Ping Central People’s Hospital, Jilin, China
\(^8\)Yiyishan Hospital of Wannan Medical College, Anhui, China
\(^9\)The 2nd Affiliated Hospital of Harbin Medical University, Heilongjiang, China
\(^10\)The Central Hospital of Wuhan, Hubei, China
\(^11\)The First Hospital of Shijiazhuang, Hebei, China
\(^12\)Shenzhen Hospital of Southern Medical University, Guangdong, China
\(^13\)The People’s Hospital of Longhua, Guangdong, China
\(^14\)Yangjiang People’s Hospital, Guangdong, China
\(^15\)The First People’s Hospital of Huai’an, Hubei, China
\(^16\)The Central Hospital of Wuhan, Hubei, China
\(^17\)The First Hospital of Shijiazhuang, Hebei, China
\(^18\)The First Hospital of Xiangjiang Medical University, Xiangiang, China
\(^19\)The First Affiliated Hospital of Xi’an Jiaotong University Medical School, Shaanxi, China
\(^20\)The Second Affiliated Hospital of Xian Jiaotong University, Shaanxi, China
\(^21\)The Third People’s Hospital of Hubei Province, Hubei, China
\(^22\)The Second Affiliated Hospital of Guangzhou Medical University, Guangdong, China
\(^23\)Tianjin TEDA Hospital, Tianjin, China
\(^24\)Zhangzhou Affiliated Hospital of Fujian Medical University, Fujian, China
\(^25\)Taiyuan Central Hospital, Shanxi, China
\(^26\)The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
\(^27\)The Second Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
\(^28\)The First People’s Hospital of Wenhui, Zhejiang, China
\(^29\)The Second Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
Authors’ contributions
XT, DM and ZM designed the study; XT, SL and WL wrote the main manuscript text and prepared figures; ZR and RL made the critical revision of the manuscript. The author(s) read and approved the final manuscript.

Funding
This study was funded by the National Key Research and Development Program of China (2018YFC1312801, 2016YFC1301500), China Postdoctoral Science Foundation (2019M650773). The funding body did not play any role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author (Da Peng Mo (bjtmq@163.com) or Zhongrong Miao (zhongrongm@163.com) upon reasonable request.

Declarations

Ethics approval and consent to participate
The protocol was approved by the ethics committees of Beijing Tiantan Hospital and each participating site. Each participant or his/her representative gave written informed consent before being enrolled in the study. The study procedures were in accordance with the 1964 Helsinki declaration and its later amendments.

Consent for publication
Not applicable.

Competing interests
The authors have no financial conflicts of interest.

Author details
1Department of Interventional Neuroangiography, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China. 2Department of General Practice, Beijing Mentougou District Hospital, Beijing, China. 3Center for Medical Device Evaluation, National Medical Product Administration, Beijing, China. 4Department of Neurosurgery, University of South Florida, Tampa, Florida, USA. 5The First Hospital of Foshan Medical College, Guangdong, China. 6China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital of Yulin, Guizhou, China. 7Xinhua Hospital of Huai'an, Jiangsu, China. 8Qitaite Coal General Hospital Helongjiang, China. 9People's Hospital of Shanghai, China. 10The Affiliated Hospital of Guangzhou Medical University, Guangxi, China. 11The Affiliated Hospital of Guizhou Medical University, Guizhou Province, China. 12The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China. 13Qingdao Central Hospital, Shandong, China. 14The Fourth People's Hospital of Langfang City, Hebei, China. 15Beijing Daxing hospital, Beijing, China. 16Wangfeng Hospital, Shandong, China. 17Luoyang General Hospital Affiliated to Zhengzhou University, Henan, China. 18Dongguan Kanghua Hospital, Guangdong, China. 19Shunde Hospital of Southern Medical University, Guangdong, China. 20Handan Central Hospital, Hebei, China. 21The 981 hospital of the Chinese People's Liberation Army, Hebei, China. 22Linfen people's Hospital, Shanxi, China. 23Anshan people's Hospital of Guizhou, China. 24Changle Hospital, Shaanxi, China. 25The Second People's Hospital of Dongying, Shandong, China. 26Tangshan Gongsen hospital, Hebei, China. 27PLA 985 Hospital of the Joint Logistics Support Force, Shanxi, China. 28Gaowei People's Hospital, Shandong, China. 29Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China. 30Chongqing Sanxia Center Hospital, Chongqing, China. 31Hospital of Traditional Chinese Medicine of Qinnan, Guizhou, China. 32Guangdong Hospital of Chinese Medicine, Guangdong, China. 33People's hospital of Yangjiang, Guangdong, China. 34The Third Affiliated Hospital of CQMU, Chongqing, China. 35General Hospital of The Yangtze River Shipping, Hubei, China. 36First People's Hospital of Beijing, Beijing. 37Shanxi Provincial People's Hospital, Shanxi, China. 38The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 39Luoyang General Hospital Affiliated to Zhengzhou University, Henan, China. 40Weifang TCM Hospital, Shandong, China. 41The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 42Linfen people's Hospital, Shanxi, China. 43The Affiliated Hospital of Guizhou Medical University, Guizhou Province, China. 44The Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China. 45Guizhou Medical University, Guizhou, China. 46Hengshui Fifth hospital of Heng shui City, Hebei, China. 47Second Hospital of Dalian Medical University, Liaoning, China. 48Boai Hospital of Zhongshan, Guangdong, China. 49The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China. 50Tangshan Gongren hospital, Hebei, China. 51The Affiliated Hospital of Zhijiang Hospital of Zhejiang University, Hangzhou, Zhejiang, China. 52The Affiliated Hospital of Zhejiang Hospital, Hangzhou, Zhejiang, China. 53The Affiliated Hospital of Jinzhou Medical University, Liaoning, China. 54Chongqing Sanxia Center Hospital, Chongqing, China. 55Jilin Province People's Hospital, Jilin, China. 56Xiangtan Central Hospital, Hunan, China. 57People's Hospital of Nanpu County, Hebei, China. 58Luzhou Railway Central Hospital, Guangxi, China. 59Zhaoming People's Hospital, Guangdong, China. 60Tongde Hospital of Zhejiang Hospital, Zhejiang, China. 61The First Affiliated Hospital of Nanjing Drum-Tower Hospital Group, Jiangsu, China. 62Shenzhou coal electricity group worker general hospital, Shanxi, China. 63The Affiliated Hospital of Chongqing Medical University, Chongqing, China. 64Guangdong Hospital of Chinese Medicine, Guangdong, China. 65People's hospital of Yangjiang, Guangdong, China. 66The Third Affiliated Hospital of CQMU, Chongqing, China. 67General Hospital of The Yangtze River Shipping, Hubei, China. 68First People's Hospital of Beijing, Beijing. 69Shanxi Provincial People's Hospital, Shanxi, China. 70The Affiliated Hospital of Zhejiang Hospital, Zhejiang, China. 71The 967 Hospital of the Joint Logistics Support Force of PLA, Liaoning, China. 72Beijing Tiantan Hospital and each participating site. Each participant or his/her representative gave written informed consent before being enrolled in the study. The study procedures were in accordance with the 1964 Helsinki declaration and its later amendments. 73The Affiliated Hospital of Northwest University Xi'an No.3 Hospital, Shaanxi, China. 74The Second Hospital of Liao Cheng, Shandong, China. 75Jilin Province People's Hospital, Jilin, China. 76People's Hospital of Huanghua City, Hebei, China. 77Shanghai Forth People's Hospital, Shanghai, China. 78Wanbei Coal-electricity Group General Hospital, Hebei, China. 79The 904 Hospital of Joint Logistic Support Force, Xinjiang, China. 80Qitaite Coal General Hospital Helongjiang, China. 81People's Hospital of Hejian City, Hebei, China. 82Handan Central Hospital, Hebei, China. 83Zhengzhou Third People's Hospital, Zhengzhou, China. 84Baoji hospital of Zhoukang, Henan, China. 85Hangzhou Third People's Hospital, Zhejiang, China. 86Xiantang Central Hospital, Hunan, China. 87People's Hospital of Nanpu County, Hebei, China. 88Luzhou Railway Central Hospital, Guangxi, China. 89Zhaoming People's Hospital, Guangdong, China. 90Tongde Hospital of Zhejiang Hospital, Zhejiang, China. 91The First Affiliated Hospital of Nanjing Drum-Tower Hospital Group, Jiangsu, China. 92Chuxiong State People's Hospital, Chuxiong, Yunnan, China. 93The Fourth Affiliated Hospital of China Medical University, Liaoning, China. 94Taihe Hospital, Shijian, Hebei, China. 95Qingdao Municipal Hospital, Shandong, China. 96The First People's Hospital of Yunnan Province, Yunnan, China. 97The NO.2 People's Hospital of Lanzhou, Gansu, China. 98Taizhou First People's Hospital, Zhejiang, China. 99Hunan Provincial People's Hospital, Hunan, China. 100First People's Hospital of Changde City, Hunan, China. 101Zhejiang Yuyao People's Hospital, Zhejiang, China. 102Aidebao Hospital, Hebei, China. 103The First Hospital of Fangshan District, Beijing, China. 104Tianjin Xiqing Hospital, Tianjin, China. 105People's Hospital of Zunhua, Hebei, China. 106Xingtai Third Hospital, Hebei, China. 107Qingyuan People's Hospital, Guangdong, China. 108Fengcheng City Central Hospital, Liaoニング, China. 109People's Hospital of Hejian City, Hebei, China. 110Handan Central Hospital, Hebei, China. 111Xiangtan Central Hospital, Hunan, China. 112People's Hospital of Nanpu County, Hebei, China. 113Luzhou Railway Central Hospital, Guangxi, China. 114Maoming People's Hospital, Guangdong, China. 115Tongde Hospital of Zhejiang Hospital, Zhejiang, China. 116The First Affiliated Hospital of Nanjing Drum-Tower Hospital Group, Jiangsu, China. 117Xishan coal electricity group worker general hospital, Shanxi, China.
References

1. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019;74(1):104–32. https://doi.org/10.1016/j.jacc.2019.01.011.

2. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–30.

3. Campbell BC, Mitchell PJ, Beumer D, van der Lugt A, Majoe C, et al. Endovascular fibrillation in patients with acute ischemic stroke and atrial fibrillation: a MR CLEAN subgroup analysis. EuroIntervention. 2017;13(8):996–1002. https://doi.org/10.4244/EIJ-D-16-00050.

4. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2015;372:2296–306. https://doi.org/10.1056/NEJMoa1503780.

5. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306. https://doi.org/10.1056/NEJMoa1503780.

6. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Endovascular therapy to 6 hours after Stroke with a Mismatch between Deficit and Infarct. N Engl J Med. 2018;378:11–21.

7. Albers GW, Marks MP, Kemp S, Christensen S, Tsi Ts, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18. https://doi.org/10.1056/NEJMoa1713973.

8. Akbik F, Alawieh A, Cawley CM, Howard BM, Tong FC, Nahab F, et al. Effect of atrial fibrillation on endovascular thrombectomy for acute ischemic stroke. A meta-analysis of individual patient data from six randomised trials: results from the HERMES collaboration. Eur Stroke J. 2020;5(3):245–51. https://doi.org/10.1177/2396987200293440.

9. Hwang K, Zha M, Gao J, Du J, Liu R, Liu X. Increased intracranial hemorrhage of mechanical thrombectomy in acute ischemic stroke patients with atrial fibrillation. J Thromb Thrombolysis. 2021;51(2):536–44. https://doi.org/10.1007/s11239-020-02269-3.

10. Munir MB, Alqahtani F, Beltagy A, Tarabishy A, Alkhouli M. Comparative outcomes of mechanical Thrombectomy for acute ischemic stroke in patients with and without atrial fibrillation. J Vasc Interv Radiol. 2017;28(11):1604–5. https://doi.org/10.1016/j.jvir.2017.06.024.

11. Li J, Luo CB, Chen C, Chang FC, Lin CJ, Lee IH, et al. Better endovascular mechanical thrombectomy outcome in atrial fibrillation patients with acute ischemic stroke: a single-center experience. J Chin Med Assoc. 2020;83(8):756–60. https://doi.org/10.1097/JCMA.0000000000000377.

12. Liu C, Luo Z, Mokin M, Burgin WS, Bauer CT, Fiehler J, et al. Current Status of Endovascular Treatment for Acute Large Vessel Occlusion in China: A Real-World Nationwide Registry. Stroke. 2021;52;STROKEAHA.120031869.

13. Zivadinov DQ, Yoo AJ, Khatr P, Tomnick TA, von Kummer R, Saver JL, et al. Recommendations on angiographic recanalization grading standards for acute ischemic stroke: a consensus statement. Stroke. 2013;44(9):2650–63. https://doi.org/10.1161/STROKEAHA.113.001972.

14. von Kummer R, Broderick JP, Campbell BC, et al. The Heidelberg bleeding classification: classification of bleeding events after ischemic stroke and reperfusion therapy. Stroke. 2014;45(10):2981–6. https://doi.org/10.1161/STROKEAHA.114.009059.

15. Tong X, Wang Y, Fiehler J, Bauer CT, Ji B, Zhang X, et al. Thrombectomy Versus Combined Thrombolyis and Thrombectomy in Patients With Acute Stroke: A Matched-Control Study. Stroke. 2021;52;STROKEAHA.120031599.

16. Widimsky P. Acute ischaemic stroke in atrial fibrillation: worse outcomes unrelated to treatment methods. EuroIntervention. 2017;13(8):905–6. https://doi.org/10.4244/EIJV13IA8134.

17. Tan BY, Kong WY, Ngiam JN, Tech HL, Sharma WK, Yeo LL. The role of topographic collateral in predicting functional outcome after thrombolysis in anterior circulation ischemic stroke. J Neuroimaging. 2017;27(2):217–20. https://doi.org/10.1111/jon.12387.

18. Sun B, Shi Z, Pu J, Yang S, Wang H, Yang D, et al. Effects of mechanical thrombectomy for acute stroke patients with etiology of large artery atherosclerosis. J Neurol Sci. 2019;396;178–83. https://doi.org/10.1016/j.jns.2018.10.017.

19. Guglielmi V, LeCouffe NE, Zinkstok SM, Compagne K, Eker R, Treurniet KM, et al. Collateral circulation and outcome in atherosclerotic versus Cardioembolic cerebral large vessel occlusion. Stroke. 2019;50(2):3360–8. https://doi.org/10.1161/STROKEAHA.119.026299.

20. Wang Y, Zhao X, Liu L, Soo YO, Pu Y, Pan Y, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese intracranial atherosclerosis (CICAS) study. Stroke. 2014;45(3):663–9. https://doi.org/10.1161/STROKEAHA.113.003508.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.