Abstract. In 1974, Vegh proved that if \(k \) is a prime and \(m \) a positive integer, there is an \(m \) term permutation chain of \(k \)th power residue for infinitely many primes [E. Vegh, \(k \)th power residue chains, J. Number Theory, 9(1977), 179-181]. In fact, his proof showed that \(1, 2, 2^2, \ldots, 2^{m-1} \) is an \(m \) term permutation chain of \(k \)th power residue for infinitely many primes. In this paper, we prove that for any “possible” \(m \) term sequence \(r_1, r_2, \ldots, r_m \), there are infinitely many primes \(p \) making it an \(m \) term permutation chain of \(k \)th power residue modulo \(p \), where \(k \) is an arbitrary positive integer [See Theorem 1.2 below]. From our result, we see that Vegh’s theorem holds for any positive integer \(k \), not only for prime numbers. In fact, we prove our result in more generality where the integer ring \(\mathbb{Z} \) is replaced by any \(S \)-integer ring of global fields (i.e. algebraic number fields or algebraic function fields over finite fields).

1. Introduction

Let \(K \) be a global field (i.e. algebraic number field or algebraic function field with a finite constant field). Let \(S \) be a finite set of primes of \(K \) (if \(K \) is an algebraic number field, \(S \) contains all the archimedean primes). Let \(A \) be the ring of \(S \)-integers of \(K \), that is
\[
A = \{ a \in K | \text{ord}_P(a) \geq 0, \forall P \notin S \}.
\]
If \(K \) is a number field and \(S \) is the set of the archimedean primes of \(K \), then \(A \) is just the usual integer ring \(\mathcal{O}_K \) of \(K \), i.e. the integral closure of \(\mathbb{Z} \) in \(K \). It is well known that \(A \) is a Dedekind domain. Let \(P \) be a nonzero prime ideal of \(A \) and \(k \) a positive integer. A sequence of elements in \(A \)
\[
(1.1) \quad r_1, r_2, \cdots, r_m
\]
for which the \(\frac{m(m+1)}{2} \) sums
\[
\sum_{k=i}^{j} r_k, \quad 1 \leq i \leq j \leq m,
\]
are distinct \(k \)th power residues modulo \(P \), is called a chain of \(k \)th power residue modulo \(P \). If
\[
r_i, r_{i+1}, \cdots, r_m, r_1, r_2, \cdots, r_{i-1}
\]
is a chain of kth power residue modulo P for $1 \leq i \leq m$, then we call (1.1) a cyclic chain of kth power residue modulo P. If

$$r_{\sigma(1)}, r_{\sigma(2)}, \ldots, r_{\sigma(m)}$$

is a chain of kth power residues for all permutations $\sigma \in S_m$, then we call (1.1) a permutation chain of kth power residue modulo P. These definitions are generalizations of the classical definitions of kth power residue chains of integers modulo a prime number (see [5]).

Let k, p be prime numbers. In 1974, using Kummer’s result on kth power character modulo p with preassigned values, Vegh [5] proved the following result for kth power residue chains of integers.

Theorem 1.1. (Vegh [5]) Let k be a prime and m a positive integer. There is an m term permutation chain of kth power residue for infinitely many primes.

By using the result of Mills (Theorem 3 of [2]), he showed that this result also holds if the prime k is replaced by other kinds of integers (for example k odd, $k = 4$, or $k = 2Q$, where $Q = 4n + 3$ is a prime). It should be noted that Gupta [1] exhibited quadratic residue chains for $2 \leq m \leq 14$ and cyclic quadratic residues for $3 \leq m \leq 6$.

The main result of this paper is the following theorem.

Theorem 1.2. Let k and m be arbitrary positive integers. Let r_1, r_2, \ldots, r_m be a sequence of elements of A such that for all permutations $\sigma \in S_m$,

$$(1.2) \quad \frac{m(m+1)}{2} \text{ sums } \sum_{k=i}^{j} r_{\sigma(k)} (1 \leq i \leq j \leq m) \text{ are distinct.}$$

Then r_1, r_2, \ldots, r_m is an m term permutation chain of kth power residue for infinitely many prime ideals.

Remark 1.3. By the definition of permutation chain, the condition (1.2) is necessary for r_1, r_2, \ldots, r_m being a permutation chain of kth power residue.

In Section 2 and 3, we will prove Theorem 1.2 for number fields and function fields, respectively. As a corollary, we get the following theorem which is the generalization of Vegh’s Theorem to the case that k is an arbitrary positive integer and A is any S-integer ring of global fields.

Corollary 1.4. Let k and m be arbitrary positive integers. In A, there is an m term permutation chain of kth power residues for infinitely many prime ideals.

Proof of Corollary 1.4. Number field case: let P be a prime ideal of A and p the prime number lying below P and put

$$r_i = p^{i-1}, \quad i = 1, 2, \ldots, m.$$
Function field case: let t be any element of A which is transcendental over the constant field of K and put

$$r_i = t^{i-1}, \quad i = 1, 2, \cdots, m.$$ \hspace{1cm} (1.4)

It is easy to see r_1, r_2, \ldots, r_m satisfy the condition of Theorem 1.2.

Our main tool for proving Theorem 1.2 is the following Chebotarev’s density theorem for global fields (Theorem 13.4 of [3] and Theorem 9.13A of [4]).

Theorem 1.5. (Chebotarev) Let L/K be a Galois extension of global fields with $\text{Gal}(L/K) = H$. Let $C \subset H$ be a conjugacy class and S_K be the set of primes of K which are unramified in L. Then

$$\delta(\{|p \in S_K| (p, L/K) = C\}) = \frac{\#C}{\#H},$$

where δ means Dirichlet density. In particular, every conjugacy class C is of the form $(p, L/K)$ for infinitely many places p of K.

2. **Proof of the main result for number fields**

Let the set

$$\mathcal{E} = \{\sum_{k=i}^{j} r_{\sigma(k)} | \sigma \in S_m, \ 1 \leq i \leq j \leq m\}. \hspace{1cm} (2.1)$$

Define

$$\mathcal{P} = \{P | P \text{ is a prime ideal of } A \text{ and } \exists c_i, c_j \in \mathcal{E}, c_i \neq c_j \text{ s.t. } P | c_i - c_j\}. \hspace{1cm} (2.2)$$

It is easy to see that \mathcal{P} is a finite set of prime ideals of A and the elements in \mathcal{E} modulo P are not equal if $P \notin \mathcal{P}$.

Let ζ_k be a primitive kth roots of unity. Let $L = K(\zeta_k, \sqrt[k]{\mathcal{E}})$. Then L/K is a Kummer extension. By Chebotarev’s density theorem, there are infinitely many prime ideals P in A such that P splits completely in L. Let B be the integral closure of A in L and \mathfrak{p} be a prime ideal of B lying above P, then

$$\frac{B}{\mathfrak{p}} \cong \frac{A}{P}. \hspace{1cm} (2.3)$$

But we have

$$c \equiv (\sqrt[k]{\mathfrak{c}})^k \mod \mathfrak{p}, \quad \forall c \in \mathcal{E}, \hspace{1cm} (2.4)$$

that is c is a kth power residue in B/\mathfrak{p}. From (2.3), c is also a kth power residue in A/P.

Let \mathcal{M} be the infinite set of all the prime ideals of A which split completely in L. From the above discussions, the infinite set $\mathcal{M} - \mathcal{P}$ satisfies our requirement. That is to say all the elements in \mathcal{E} are distinct kth power residues for any prime P in $\mathcal{M} - \mathcal{P}$. Hence, r_1, r_2, \ldots, r_m is an m term permutation chain of kth power residue for all the prime ideals $P \in \mathcal{M} - \mathcal{P}$.

3. Proof of the main result for function fields

Let K be a global function field with a constant field \mathbb{F}_q, where $q = p^s$, p is a prime number.

1) If $(k, p) = 1$. We can prove that the sequence $r_1, r_2, ..., r_m$ is a permutation chain of kth power residue for infinitely many prime ideals of A by the same reasoning as in the Section 2.

2) If $p|k$. Let $k = p^r k'$ and $(k', p) = 1$. Let P be a prime ideal of A and a be any element of A. Since the characteristic of the residue field is p, it is easy to see that a is a kth power residue modulo P if and only if a is a k'th power residue modulo P. Since the theorem holds for k' from 1), it also holds for k. Thus, we have finished the proof in this case.

References

[1] H.Gupta, Chains of quadratic residues, Math.Comp.25(1971), 379-382.
[2] W.H.Mills, Characters with preassingned values, Canad.J.Math.15(1963), 169-171.
[3] J.Neukrich, Algebraic number theory, Springer,Berlin, 1999.
[4] M.Rosen, Number theory in function fields, Springer-verlag, New York, 2002.
[5] E.Vegh, kth power residue chains, J.Number Theory,9(1977), 179-181.

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
E-mail address: hus04@mails.tsinghua.edu.cn, liyan_00@mails.tsinghua.edu.cn