Application of extended rational trigonometric techniques to investigate solitary wave solutions

Nadia Mahak¹ · Ghazala Akram¹

Received: 27 December 2020 / Accepted: 20 June 2021 / Published online: 22 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, a variety of novel exact traveling wave solutions are constructed for the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation via analytical techniques, namely, extended rational sine-cosine method and extended rational sinh-cosh method. The physical meaning of the geometrical structures for some of these solutions is discussed. Obtained solutions are expressed in terms of singular periodic wave, solitary waves, bright solitons, dark solitons, periodic wave and kink wave solutions with specific values of parameters. For the observation of physical activities of the problem, achieved exact solutions are vital. Moreover, to find analytical solutions of the proposed equation many methods have been used but given methodologies are effective, reliable and gave more and novel exact solutions.

Keywords Nonlinear partial differential equations · Boiti-Leon-Manna-Pempinelli equation · Exact solutions · Extended rational sine-cosine method · Extended rational sinh-cosh method

1 Introduction
Investigating soliton wave solutions to nonlinear partial differential equations has long been a major impact in the field of mathematical physics. Traveling wave solutions of NPDEs in the type of soliton solutions have essential significance since they create a strong relation between mathematics and physics. Exact traveling wave solutions are considered best to understand the phenomena of natural sciences. A better deal of applications of NPDEs therefore appealed numerous researchers to look for their exact solutions. Many methods have been applied to find exact solutions of NPDEs such as, generalized exponential rational function Osman and Ghanbari (2018), tanh method Tariq and Akram (2017), the exp(−φξ)-expansion method Sajid and Akram (2018), the extended rational sine-cosine approach and extended rational sinh-cosh approach Mahak and Akram (2019a, 2019b),

¹ Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
F-expansion method Liu and Yang (2004), extended Fan sub-equation method Batool and Akram (2017),
the \(\frac{G'}{G}\)–expansion method Liu et al. (2019), the first integral method Akram and Mahak (2018a, 2018b), the unified method Osman et al. (2018), the extended \(\frac{G'}{G}\)–expansion method Akram and Mahak (2018), the generalised unified method Osman (2016), hyperbolic and exponential ansatz methods Ali et al. (2020),
the Hirota bilinear Liu et al. (2020), the ansatz method Osman et al. (2020), the modified Kudryashov and new auxiliary equation methods Kumar et al. (2020), the general bilinear techniques Liu et al. (2020), Sine-Gordon expansion method Ali et al. (2020), the Hirota method Ismael et al. (2020), and so on.

However, the present work focus on the adoption of two novel approaches: the extended rational sine-cosine approach and extended rational sinh-cosh approach to seek exact traveling wave solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. The Asymmetric-Nizhnik-Novikov-Veselov equation (ANNV) which is actually a two-dimensional KdV equation depicted by the system of equations;

\[
\begin{align*}
\Phi_x - \psi_y = 0 \\
\Phi_t - 3(\phi \psi)_x + \phi_{xxx} = 0,
\end{align*}
\]

and Boiti et al. Boiti et al. (1986) initially derived the above system that is a model for an incompressible fluid where \(\phi\) and \(\psi\) are the segments of the dimensionless speed. The system has been generally investigated from different view points, for example, the investigation of its Painlevè property, Lie symmetries, its solutions using arbitrary exponential functions, its the conservation law forms, its exact solution using a separation of variable approach etc. By inserting the transformation: \(\psi = \Phi_x\) and \(\phi = \Phi_y\), this system of equations yields

\[
\Phi_{yt} + \Phi_{xxyy} - 3\Phi_{xx} \Phi_y - 3\Phi_{xy} \Phi_x = 0,
\]

where \(\Phi = \Phi(x, y, t)\) and this equation (1.1) is called as Boiti-Leon-Manna-Pempinelli (BLMP) equation which was derived by Gilson et al. Gilson et al. (1993) during their researched a (2+1)-dimensional generalization of the AKNS shallow-water wave equation using the bilinear method. This equation was utilized to depict the (2+1)-dimensional interaction of the Riemann wave propagated along the y-axis with a long wave propagated along the x-axis. Many researchers are focusing to extract exact solutions of BLMP equation using various different methods such as, based on the binary Bell polynomials Luo (2001), Wronskian formalism and the Hirota method Delisle and Mosaddeghi (2013); Najafi et al. (2013), the extended homoclinic test approach Tang and Zai (2015), the rational sine-cosine method Arbabi and Najafi (2016) and so on.

The strategy of the paper is summarized as follows: Demarcation of extended rational sine-cosine and extended rational sinh-cosh approaches are presented, in Section 2. In Section 3, application of these methods on the BLMP equation is investigated and graphs of some obtained solutions are drawn in Section 4. Conclusion is given in Section 5. Section 6 represents future recommendations.

2 Algorithms

Consider the nonlinear partial differential equation (NPDE):

\[\text{Springer}\]
\[F(\Phi, \Phi_x, \Phi_t, \Phi_{xx}, \Phi_{xt}, \ldots) = 0, \]

where \(\Phi = \Phi(x, t) \) and inserting the following traveling wave transformation

\[\Phi(x, t) = \Phi(\psi), \quad \psi = x - ct, \]

where \(c \) refers the wave speed, which converts the NPD Eq. (2.1) into an ODE:

\[G(\Phi, -c\Phi', \Phi'', \phi' \Phi'', \Phi''', -c\Phi''', \ldots) = 0, \]

where \(' \) denotes the derivative with respect to \(\psi \).

2.1 Extended rational sine-cosine method

Step 1. To obtain the solutions of Eq. (2.2), extended rational sine-cosine method asserts the general solution in the form

\[\Phi(\psi) = \frac{\xi_0 \sin(\mu \psi)}{\xi_2 + \xi_1 \cos(\mu \psi)}, \quad \cos(\mu \psi) \neq \frac{-\xi_2}{\xi_1}, \]

or,

\[\Phi(\psi) = \frac{\xi_0 \cos(\mu \psi)}{\xi_2 + \xi_1 \sin(\mu \psi)}, \quad \sin(\mu \psi) \neq \frac{-\xi_2}{\xi_1}, \]

where the unknown parameters \(\xi_0, \xi_1, \xi_2 \) and \(\mu \) is the wave number can be determined later.

Step 2. By substituting Eq. (2.3) or (2.4) into Eq. (2.2), polynomials in \(\cos(\mu \psi) \) or \(\sin(\mu \psi) \) are obtained. Then collecting all coefficients with like powers of \(\cos(\mu \psi)^z \) or \(\sin(\mu \psi)^z \), (where \(z \) is a positive integer) and equating them to zero. A set of algebraic equations can be obtained. The resulting equations are solved with the aid of Maple to get the values of unknown constants \(\xi_0, \xi_1, \xi_2, c \) and \(\mu \).

Step 3. Substituting the obtained unknown values from Step 2 into Eq. (2.3) or (2.4), the solution of Eq. (2.2) can be found.

2.2 Extended rational sinh-cosh method

Step 1. To obtain the solutions of Eq. (2.2), extended rational sinh-cosh method asserts the general solution in the form

\[\Phi(\psi) = \frac{\xi_0 \sinh(\mu \psi)}{\xi_2 + \xi_1 \cosh(\mu \psi)}, \quad \cosh(\mu \psi) \neq \frac{-\xi_2}{\xi_1}, \]

or,

\[\Phi(\psi) = \frac{\xi_0 \cosh(\mu \psi)}{\xi_2 + \xi_1 \sinh(\mu \psi)}, \quad \sinh(\mu \psi) \neq \frac{-\xi_2}{\xi_1}, \]

where the unknown parameters \(\xi_0, \xi_1, \xi_2 \) and \(\mu \) refers the wave number can be determined later.
Step 2. By substituting Eq. (2.5) or (2.6) into Eq. (2.2), polynomials in \(\cosh(\mu \psi) \) or \(\sinh(\mu \psi) \) are obtained. Then collecting all coefficients with like powers of \(\cosh(\mu \psi)^k \) or \(\sinh(\mu \psi)^k \), (where \(z \) is a positive integer) and equating them to zero. A set of equations can be obtained. The resulting equations are solved with the aid of Maple to get the values of unknown constants \(\xi_0, \xi_1, \xi_2, c \) and \(\mu \).

Step 3. Substituting the obtained unknown values from Step 2 into Eq. (2.5) or (2.6), the solution of Eq. (2.2) can be found.

3 Exact solutions of the Proposed PDE

The transformation:

\[
\Phi(x, y, t) = U(\psi), \quad \psi = \lambda_1 x + \lambda_2 y - ct, \tag{3.1}
\]

where \(\lambda_1, \lambda_2 \) and \(c \) are constants, is inserting into Eq. (1.1) and the resulting ODE can be written as

\[
-c\lambda_2 U'' + \lambda_1^3 \lambda_2 U''' - 6\lambda_1^2 \lambda_2 U'U'' = 0. \tag{3.2}
\]

Integrating Eq. (3.2) and setting the constant of integration equals to zero which leads

\[
-c\lambda_2 U' + \lambda_1^3 \lambda_2 U'' - 3\lambda_1^2 \lambda_2(U')^2 = 0. \tag{3.3}
\]

3.1 Exact solutions by extended rational sine-cosine method

Suppose that solution of Eq. (3.3) has the form

\[
U(\psi) = \frac{\xi_0 \sinh(\mu \psi)}{\xi_0 + \xi_1 \cosh(\mu \psi)}. \tag{3.4}
\]

Substituting Eq. (3.4) into Eq. (3.3), we get a polynomial in \(\cos(\mu \psi) \) and then collecting all coefficient of the like powers of \(\cos(\mu \psi)^k \) and setting them to zero. The following algebraic equations are obtained:

\[
cos(\mu \psi)^3 : c\lambda_2^2 \xi_2^2 + \lambda_1^3 \mu^2 \xi_2 \xi_1^2 = 0,
\]

\[
cos(\mu \psi)^2 : c\lambda_2 \xi_1^3 + 2c\lambda_2 \xi_2 \xi_1 + 4\lambda_1^3 \mu^2 \xi_2\xi_1^2 - 4\lambda_1^3 \mu \xi_2 \xi_1^2 - 3\lambda_1^2 \mu \xi_2 \xi_1^2 = 0,
\]

\[
cos(\mu \psi)^1 : c\lambda_2^2 \xi_2 \xi_1 + 2c\lambda_2 \xi_2 \xi_1^2 - 4\lambda_1^3 \mu \xi_2 \xi_1^2 + \lambda_1^3 \mu \xi_2 \xi_1^2 + 6\lambda_1^2 \xi_0 \mu \xi_2 \xi_1 = 0,
\]

\[
cos(\mu \psi)^0 : c\lambda_2 \xi_2 \xi_1^2 - 6\lambda_1 \mu \xi_2 \xi_1^2 + 4\lambda_1 \mu \xi_2 \xi_1^2 + 3\lambda_1 \xi_0 \mu \xi_2 \xi_1 = 0.
\]

The solutions of above equations are classified as Case 1

\[
1. \mu = \pm 1 \frac{1}{2\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}}, \quad \xi_0 = \pm \sqrt{-\frac{c\lambda_2}{\lambda_1}} \xi_1, \quad \xi_1 = \xi_1, \quad \xi_2 = 0.
\]

For the case 1 the solutions of Eq. (1.1):
\[\Phi_{1}(x,y,t) = \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \tan \left[\frac{1}{2\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

\[\Phi_{2}(x,y,t) = -\sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \tan \left[\frac{1}{2\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

\[\text{Case 2, } \mu = \pm \frac{1}{\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}}, \quad \xi_{0} = \pm \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} \xi_{1}}, \quad \xi_{1} = \pm \xi_{2}, \quad \xi_{2} = \xi_{2}. \]

For the case 2 the solutions of Eq. (1.1):

\[\Phi_{2_{1}}(x,y,t) = \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \sin \left[\frac{1}{\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

\[\Phi_{2_{2}}(x,y,t) = \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \sin \left[\frac{1}{\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

\[\Phi_{2_{3}}(x,y,t) = -\sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \sin \left[\frac{1}{\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

\[\Phi_{2_{4}}(x,y,t) = -\sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}}} \sin \left[\frac{1}{\lambda_{1}} \sqrt{-\frac{c_{\lambda}^{2}}{\lambda_{1}} (\lambda_{1} x + \lambda_{2} y - ct)} \right]. \]

OR

Suppose that Eq. (3.3) has solution in the form, as

\[U(\psi) = \frac{\xi_{0} \cos (\mu \psi)}{\xi_{2} + \xi_{1} \sin (\mu \psi)}. \]

Substituting Eq. (3.7) into Eq. (3.3), we get a polynomial in \(\sin(\mu \psi) \) and collecting all coefficients of the like powers of \(\sin(\mu \psi) \) and setting them to zero. The following algebraic equations are obtained:

\[\sin(\mu \psi)^{3} : -c_{\lambda} \xi_{1}^{2} \xi_{2} + \lambda_{1}^{3} \mu^{2} \xi_{2} \xi_{1}^{2} = 0, \]

\[\sin(\mu \psi)^{2} : -2 c_{\lambda} \xi_{1} \xi_{2}^{2} - c_{\lambda} \xi_{1}^{3} + 4 \lambda_{1}^{3} \mu^{2} \xi_{1}^{3} - 4 \lambda_{1}^{3} \mu^{2} \xi_{2} \xi_{1} + 3 \lambda_{1}^{2} \xi_{0} \mu \xi_{2}^{2} = 0, \]

\[\sin(\mu \psi)^{1} : -c_{\lambda} \xi_{2} \xi_{1}^{2} - 2 c_{\lambda} \xi_{1} \xi_{2}^{2} + \lambda_{1}^{3} \mu^{2} \xi_{2}^{2} - 4 \lambda_{1}^{3} \mu^{2} \xi_{2} \xi_{1}^{2} + 6 \lambda_{1}^{2} \xi_{0} \mu \xi_{2} \xi_{1} = 0, \]

\[\sin(\mu \psi)^{0} : -c_{\lambda} \xi_{1} \xi_{1}^{2} - 6 \lambda_{1}^{3} \mu^{2} \xi_{1}^{3} + 4 \lambda_{1}^{3} \mu^{2} \xi_{2} \xi_{1}^{2} + 3 \lambda_{1}^{2} \xi_{0} \mu \xi_{1}^{2} = 0. \]

The solutions of above equations are classified as Case 3.

\[\mu = \pm \frac{1}{2 \lambda_{1}} \sqrt{\frac{c_{\lambda}^{2}}{\lambda_{1}}}, \quad \xi_{0} = \xi_{0}, \quad \xi_{1} = \pm \sqrt{\frac{\lambda_{1}}{c_{\lambda}^{2}}} \xi_{0}, \quad \xi_{2} = 0. \]

For the case 3 the solutions of Eq. (3.3):
For the case 4 the solutions of Eq. (3.3):

\[\Phi_1(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \cot \left[\frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]. \]
\[\Phi_2(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \cot \left[\frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]. \]

Case 4. \(\mu = \pm \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} \), \(\xi_0 = \pm \sqrt{\frac{c\lambda_2}{\lambda_1}} \xi_2 \), \(\xi_1 = \pm \xi_2 \), \(\xi_2 = \xi_2 \).

For the case 4 the solutions of Eq. (3.3):

\[\Phi_4_1(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \cosh \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\} \cos \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\}, \]
\[\Phi_4_2(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \cosh \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\} \sin \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\}, \]
\[\Phi_4_3(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \cosh \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\} \sin \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\}, \]
\[\Phi_4_4(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \cosh \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\} \cos \left\{ \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right\}. \]

3.2 Exact solutions by extended rational sinh-cosh method

Suppose that the traveling wave solution of Eq. (3.3) has the form,

\[U(\psi) = \frac{\xi_0 \sinh (\mu \psi)}{\xi_2 + \xi_1 \cosh (\mu \psi)}. \]

Substituting Eq. (3.7) into Eq. (3.3), we get a polynomial in \(\cosh(\mu \psi) \) and collecting all terms with the like powers of \(\cosh(\mu \psi) \) and setting them to zero. The following algebraic equations are obtained:

- \(\cosh(\mu \psi)^3 : c\lambda_2\xi_2^2\xi_1^2 - \lambda_1^3\mu^2\xi_1^2\xi_2^2 = 0, \)
- \(\cosh(\mu \psi)^2 : 2c\lambda_2^2\xi_2\xi_1 + c\lambda_2^3\xi_1 - 4\lambda_1^3\mu^2\xi_1^3 + 4\lambda_1^3\mu^2\xi_2^2\xi_1 + 3\lambda_1^2\xi_0\mu a_2^2 = 0, \)
- \(\cosh(\mu \psi)^1 : c\lambda_2^2\xi_2^3 + 2c\lambda_2^2\xi_2^2 - \lambda_1^3\mu^2\xi_1^2 + 4\lambda_1^3\mu^2\xi_2^2\xi_1 + 6\lambda_1^2\xi_0\mu \xi_2^2\xi_1 = 0, \)
- \(\cosh(\mu \psi)^0 : c\lambda_2^2\xi_2^2\xi_1 - 4\lambda_1^3\mu^2\xi_2^2\xi_1 + 6\lambda_1^3\mu^2\xi_3^3 + 3\lambda_1^2\xi_0\mu \xi_2^2\xi_1 = 0. \)

The solutions of above equations are classified as Case 5.
\[
\mu = \pm \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}}, \quad \xi_0 = \pm \sqrt{\frac{c\lambda_2}{\lambda_1}} \xi_1, \quad \xi_1 = \xi_2, \quad \xi_2 = 0.
\]

For the case 5 the solutions of Eq. (3.3):

\[
\Phi_5(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \tanh \left[\frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

(3.6)

\[
\Phi_5(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \tanh \left[\frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

Case 6. \[
\mu = \pm \frac{1}{2\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}}, \quad \xi_0 = \pm \sqrt{\frac{c\lambda_2}{\lambda_1}} \xi_2, \quad \xi_1 = \pm \xi_2, \quad \xi_2 = \xi_2.
\]

For the case 6 the solutions of Eq. (3.3):

\[
\Phi_6(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \frac{\sinh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}{1 + \cosh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}.
\]

\[
\Phi_6(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \frac{\sinh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}{1 + \cosh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}.
\]

\[
\Phi_6(x, y, t) = \sqrt{\frac{c\lambda_2}{\lambda_1}} \frac{\sinh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}{1 - \cosh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}.
\]

\[
\Phi_6(x, y, t) = -\sqrt{\frac{c\lambda_2}{\lambda_1}} \frac{\sinh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}{1 - \cosh \left[\frac{1}{\lambda_1} \sqrt{\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right]}.
\]

OR

Suppose that Eq. (3.3) has solution in the form, as

\[
U(\psi) = \frac{\xi_0 \cosh (\mu \psi)}{\xi_0 + \xi_1 \sinh (\mu \psi)}.
\]

Substituting Eq. () into Eq. (3.3), we get a polynomial in \(\sinh(\mu \psi)\) and collecting all terms of the like powers of \(\sinh(\mu \psi)^2\) and setting them to zero. The following algebraic equations are obtained:
\[
\sinh(\mu \varphi)^3 : c\lambda_2^2 \xi_1^2 \xi_2 + \lambda_1^3 \mu^2 \xi_1^2 \xi_2 = 0,
\]
\[
\sinh(\mu \varphi)^2 : 2 c\lambda_2^2 \xi_1 \xi_2 - c\lambda_2^3 \mu^2 \xi_1^2 - 4 \lambda_1^3 \mu^2 \xi_1^2 \xi_2 - 3 \lambda_1^2 \xi_0 \mu \xi_2^2 = 0,
\]
\[
\sinh(\mu \varphi)^1 : c\lambda_2^2 \xi_1^2 - 2 c\lambda_2^2 \xi_1^2 \xi_2 + \lambda_1^3 \mu^2 \xi_1^2 + 4 \lambda_1^3 \mu^2 \xi_1^2 \xi_2 + 6 \lambda_1^2 \xi_0 \mu \xi_2^2 = 0,
\]
\[
\sinh(\mu \varphi)^0 : -c\lambda_2^2 \xi_1^2 - 6 \lambda_1^3 \mu^2 \xi_1^2 - 4 \lambda_1^3 \mu^2 \xi_1^2 \xi_2 - 3 \lambda_1^2 \xi_0 \mu \xi_2^2 = 0.
\]

The solutions of above equations are classified as Case 7.

\[
\mu = \pm \frac{1}{2\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}}, \quad \xi_0 = \xi_0, \quad \xi_1 = \pm t \sqrt{\frac{\lambda_1}{c\lambda_2}}, \quad \xi_2 = 0.
\]

For the case 7 the solutions of Eq. (3.3):

\[
\Phi_1(x, y, t) = \sqrt{-\frac{c\lambda_2}{\lambda_1}} \coth \left[\frac{1}{2\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

\[
\Phi_2(x, y, t) = -\sqrt{-\frac{c\lambda_2}{\lambda_1}} \coth \left[\frac{1}{2\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

Case 8. \(\mu = \pm \frac{1}{\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}}\), \(\xi_0 = \pm \sqrt{\frac{c\lambda_2}{\lambda_1}} \xi_2\), \(\xi_1 = \pm t \xi_2\), \(\xi_2 = \xi_2\).

For the case 8 the solutions of Eq. (3.3):

\[
\Phi_5(x, y, t) = \sqrt{-\frac{c\lambda_2}{\lambda_1}} \cosh \left[\frac{1}{\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

\[
\Phi_6(x, y, t) = -\sqrt{-\frac{c\lambda_2}{\lambda_1}} \cosh \left[\frac{1}{\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

\[
\Phi_7(x, y, t) = \sqrt{-\frac{c\lambda_2}{\lambda_1}} \cosh \left[\frac{1}{\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]

\[
\Phi_8(x, y, t) = -\sqrt{-\frac{c\lambda_2}{\lambda_1}} \cosh \left[\frac{1}{\lambda_1} \sqrt{-\frac{c\lambda_2}{\lambda_1}} (\lambda_1 x + \lambda_2 y - ct) \right].
\]
3.3 Results and discussion

Some obtained exact rational trigonometric solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation are shown by graphs along with the physical explanations which are plotted only for $-10 \leq x \leq 10$, $-10 \leq y \leq 10$ and $t = 0$. Eq. (3.5) represents the periodic wave solutions, as tangent is a periodic function with period 2π. Fig. 1 illustrates the evolution of singular periodic wave solutions for $\Phi_1(x,y,t)$ for $\lambda_1 = 0.09$, $\lambda_2 = -1.78$ and $c = 0.078$. Taking $\lambda_1 = 0.09$, $\lambda_2 = -0.6$ and $c = 0.78$, Fig. 2 shows periodic solutions for $\Phi_2(x,y,t)$. Eq. (3.6) shows dark soliton solutions. Further, with $\lambda_1 = 0.09$, $\lambda_2 = 0.76$ and $c = 0.078$, Fig. 3 of $\Phi_5(x,y,t)$ describes kink wave solutions as Kink waves are solitons that rise or descend from one asymptotic state to another. With $\lambda_1 = 0.5$, $\lambda_2 = -1.76$ and $c = 0.078$, Fig. 4 also represents kink type wave solutions for $\Phi_6(x,y,t)$. With the supposition that $\lambda_1 = -0.5$, $\lambda_2 = 0.06$ and $c = 3$, part (a) of Fig. 5 illustrates the graph of the real part of $\Phi_8(x,y,t)$ which represents bright soliton wave solutions, while part (b) of Fig. 5 shows the graph of the imaginary part of $\Phi_8(x,y,t)$ which describes kink wave solutions.

Fig. 1 3D graphics of Φ_1 with $\lambda_1 = 0.09$, $\lambda_2 = -1.78$ and $c = 0.078$
Fig. 2 3D graphics of Φ_2 with $\lambda_1 = 0.09$, $\lambda_2 = -0.6$ and $c = 0.78$

Fig. 3 3D graphics of Φ_5 with $\lambda_1 = 0.09$, $\lambda_2 = 0.76$ and $c = 0.078$
4 Conclusion

Exact rational trigonometric solutions of the $(2 + 1)$-dimensional Boiti-Leon-Manna-Pempinelli equation have been retrieved by using extended rational sine-cosine and extended rational sinh-cosh methods. Obtained solitary wave solutions are extremely useful in the study of NPDEs in the context of shallow water waves. Some new graphical representations are obtained with the help of these methods. It is found that some of the obtained exact solutions have likely comparable with Arbabi and Najafi (2016). As solutions of Eq.(47) and Eq.(59) in Arbabi and Najafi (2016) are likely similar with our solutions Eqs. (3.6) and (3.5) respectively. To our knowledge, remaining obtained solutions such as solitary waves, singular periodic wave, bright solititon, dark soliton, periodic wave and kink wave solutions are new and novel.
5 Future recommendations

This paper obtained solitary wave solutions to a nonlinear evolution equation that appears in mathematical physics. These solutions are going to be indeed valuable for conducting future research in this field. One novel future aspect is to consider high dimensional equations for examples with perturbation term(s), fractional temporal evolutions will lead to
additional interesting results that will be further closer to realistic situations. Seeking analytical solutions for such equations will be a daunting task. It is believed that the proposed methods are powerful, effective, and may play an important role describing the physical features of various nonlinear complex models.

Funding Not applicable.

Code availability The computations involved in the work are done with the help of Maple and Mathematica.

Declaration

Conflict of interest The Authors have no conflict of interest.

References

Akram, G., Mahak, N.: Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation. Optik **164**, 210–217 (2018)

Akram, G., Mahak, N.: Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus **133**(6), 212–220 (2018)

Akram, G., Mahak, N.: Analytical solution of the Korteweg-de Vries equation and microtubule equation using the first integral method. Opt. Quant. Electron **50**, 145 (2018)

Ali, K.K., Cattani, C., Graveomez-Aguilar, J.F., Baleanu, D., Osman, M.S.: Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. Chaos. Solitons. Fract. **139**, 110089 (2020)

Ali, K.K., Osman, M.S., Abdel-Aty, M.: New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method. Alexandria Eng. J. **59**(3), 1191–1196 (2020)

Arbabi, S., Najafi, M.: Soliton solutions of nonlinear evolution equations in mathematical physics. Optik **127**(10), 4270–4274 (2016)

Batool, F., Akram, G.: Application of extended Fan sub-equation method to (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation with fractional evolution. Opt. Quant. Electron **49**(11), 1–9 (2017)

Boiti, M., Leon, J., Manna, M., Pempinelli, F.: On the spectral transform of a Korteweg-de Vries equation in two spatial dimension. Inverse. Probl. **2**, 271–279 (1986)

Delisle, L., Mosaddeghi, M.: Classical and SUSY solutions of the Boiti-Leon-Manna-Pempinelli equation. J. Phys. A Math. Theor. **46**, 115–203 (2013)

Gilson, C.R., Nimmo, J.J., Willox, C.R.: A (2+1)-dimensional generalization of the AKNS shallow water wave equation. Phys. Lett. A **180**, 337–345 (1993)

Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Results Phys **19**, 103329 (2020)

Kumar, D., Park, C., Tamanna, N., Paul, G.C., Osman, M.S.: Dynamics of two-mode Sawada-Kotera equation: mathematical and graphical analysis of its dual-wave solutions. Results Phys **19**, 10358 (2020)

Liu, J., Yang, K.: The extended F-expansion method and exact solutions of nonlinear PDEs. Chaos. Solitons. Fract. **22**(1), 111–121 (2004)

Liu, J.G., Osman, M.S., Wazwaz, A.M.: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrödinger equation with variable coefficients in nonlinear optical fibers. Optik **180**, 917–923 (2019)

Liu, J.G., Zhu, W.H., Osman, M.S., Ma, W.X.: An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model. Eur. Phys. J. Plus **135**(5), 412 (2020)

Liu, J.G., Osman, M.S., Zhu, W.H., Zhou, L., Baleanu, D.: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium. AIP Adv. **10**(10), 105325 (2020)
Luo, L.: New exact solutions and Bäcklund transformation for Boiti-Leon-Manna-Pempinelli equation. Phys. Lett. A 375, 1059–1063 (2001)

Mahak, N., Akram, G.: Exact solitary wave solutions by extended rational sine-cosine and extended rational sinh-cosh techniques. Phys. Scripta 94(11), 115212 (2019)

Mahak, N., Akram, G.: Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity. Eur. Phys. J. Plus 134(40), 159–168 (2019)

Najaﬁ, M., Najaﬁ, M., Arbabi, S.: Wronskian determinant solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Int. J. Adv. Math. Sci 1, 8–11 (2013)

Osman, M.S., Liu, J.G., Hosseini, K., Yusuf, A.: Different wave structures and stability analysis for the generalized (2+1)-dimension Camassa-Holm-Kadomtsev-Petviashvili equation. Phys. Scripta 95(3), 035229 (2020)

Osman, M.S.: Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation in quantum magnetoplasmas. Wave Random Complex 26(4), 434–443 (2016)

Osman, M.S., Ghanbari, B.: New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)

Osman, M.S., Rezazadeh, H., Eslami, M., Neirameh, A., Mirzazadeh, M.: Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods. Univ. Politehnica Bucharest Sci. Bull.-Ser. Appl. Math. Phys. 80(4), 267–278 (2018)

Sajid, N., Akram, G.: The application of the exp(−φξ)-expansion method for finding the exact solutions of two integrable equations. Math. Probl. Eng 2018, 1–10 (2018)

Tang, Y., Zai, W.: New periodic-wave solutions for (2+ 1)- and (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equations. Nonlinear. Dynam 81(1–2), 249–55 (2015)

Tariq, H., Akram, G.: New approach for exact solutions of time fractional Cahn-Allen equation and time fractional Phi-4 equation. Phys. A 473, 352–362 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.