Slow Ca\(^{2+}\) Efflux by Ca\(^{2+}/H^{+}\) Exchange in Cardiac Mitochondria Is Modulated by Ca\(^{2+}\) Re-uptake via MCU, Extra-Mitochondrial pH, and H\(^{+}\) Pumping by F\(_{0}\)F\(_{1}\)-ATPase

Johan Haumann\(^1\), Amadou K. S. Camara\(^1,2,3,4\), Ashish K. Gadicherla\(^1\), Christopher D. Navarro\(^1\), Age D. Boelens\(^1,5\), Christoph A. Blomeyer\(^1\), Ranjan K. Dash\(^6\), Michael R. Boswell\(^1\), Wai-Meng Kwok\(^1,3,4,6\) and David F. Stowe\(^1,2,3,5,7,8\)

Mitochondrial (m) Ca\(^{2+}\) influx is largely dependent on membrane potential (\(\Delta \Psi_m\)), whereas mCa\(^{2+}\) efflux occurs primarily via Ca\(^{2+}\) ion exchangers. We probed the kinetics of Ca\(^{2+}/H^{+}\) exchange (CHE\(_{m}\)) in guinea pig cardiac muscle mitochondria. We tested if net mCa\(^{2+}\) flux is altered during a matrix inward H\(^{+}\) leak that is dependent on matrix H\(^{+}\) pumping by ATP\(_m\) hydrolysis at complex V (F\(_{0}\)F\(_{1}\)-ATPase). We measured \([\text{Ca}^{2+}]_m\), extra-mitochondrial (e) \([\text{Ca}^{2+}]_e\), \(\Delta \Psi_m\), pH\(_m\), pH\(_e\), NADH, respiration, ADP/ATP ratios, and total [ATP]\(_m\) in the presence or absence of protonophore dinitrophenol (DNP), mitochondrial uniporter (MCU) blocker Ru360, and complex V blocker oligomycin (OMN). We proposed that net slow influx/efflux of Ca\(^{2+}\) after adding DNP and CaCl\(_2\) is dependent on whether the \(\Delta \text{pH}_m\) gradient is/is not maintained by reciprocal outward H\(^{+}\) pumping by complex V. We found that adding CaCl\(_2\) enhanced DNP-induced increases in respiration and decreases in \(\Delta \Psi_m\) while [ATP]\(_m\) decreased, \(\Delta \text{pH}_m\) gradient was maintained, and [Ca\(^{2+}\)]\(_m\) continued to increase slowly, indicating net mCa\(^{2+}\) influx via MCU. In contrast, with complex V blocked by OMN, adding DNP and CaCl\(_2\) caused larger declines in \(\Delta \Psi_m\) as well as a slow fall in pH\(_m\) to near pH\(_e\) while [Ca\(^{2+}\)]\(_m\) continued to decrease slowly, indicating net mCa\(^{2+}\) efflux in exchange for H\(^{+}\) influx (CHE\(_{m}\)) until the \(\Delta \text{pH}_m\) gradient was abolished. The kinetics of slow mCa\(^{2+}\) efflux with slow H\(^{+}\) influx via CHE\(_m\) was also observed at pH\(_e\) 6.9 vs. 7.6 by the slow fall in pH\(_m\) until \(\Delta \text{pH}_m\) was abolished; if Ca\(^{2+}\) reuptake via the MCU was also blocked, mCa\(^{2+}\) efflux via CHE\(_m\) became more evident. Of the two components of the proton electrochemical gradient, our results indicate that CHE\(_m\) activity is driven largely by the \(\Delta \text{pH}_m\) chemical gradient with H\(^{+}\) leak, while mCa\(^{2+}\) entry via MCU depends largely on the charge gradient \(\Delta \Psi_m\). A fall in \(\Delta \Psi_m\) with excess mCa\(^{2+}\) loading can occur during cardiac cell stress.
Haumann et al. Complex V-Dependent Mitochondrial Ca\(^{2+}\) Uptake/Efflux

Cardiac cell injury due to mCa\(^{2+}\) overload may be reduced by temporarily inhibiting F\(_0\)F\(_1\)-ATPase from pumping H\(^{+}\) due to ΔΨ\(_m\) depolarization. This action would prevent additional slow mCa\(^{2+}\) loading via MCU and permit activation of CHE\(_m\) to mediate efflux of mCa\(^{2+}\).

HIGHLIGHTS

- We examined how slow mitochondrial (m) Ca\(^{2+}\) efflux via Ca\(^{2+}\)/H\(^{+}\) exchange (CHE\(_m\)) is triggered by matrix acidity after a rapid increase in [Ca\(^{2+}\)]\(_m\) by adding CaCl\(_2\) in the presence of dinitrophenol (DNP) to permit H\(^{+}\) influx, and oligomycin (OMN) to block H\(^{+}\) pumping via F\(_0\)F\(_1\)-ATP synthase/ase (complex V).
- Declines in ΔΨ\(_m\) and pH\(_m\) after DNP and added CaCl\(_2\) were larger when complex V was blocked.
- [Ca\(^{2+}\)]\(_m\) slowly increased despite a fall in ΔΨ\(_m\) but maintained pH\(_m\) when H\(^{+}\) pumping by complex V was permitted.
- [Ca\(^{2+}\)]\(_m\) slowly decreased and external [Ca\(^{2+}\)]\(_e\) increased with declines in both ΔΨ\(_m\) and pH\(_m\) when complex V was blocked.
- ATP\(_m\) hydrolysis supports a falling pH\(_m\) and redox state and promotes a slow increase in [Ca\(^{2+}\)]\(_m\).
- After rapid Ca\(^{2+}\) influx due to a bolus of CaCl\(_2\), slow mCa\(^{2+}\) efflux by CHE\(_m\) occurs directly if pH\(_e\) is low.

Keywords: cardiac mitochondria, Ca\(^{2+}\) uptake/release, mitochondrial Ca\(^{2+}\) uniporter, Ca\(^{2+}\)/H\(^{+}\) exchange, H\(^{+}\) leak and pumping, complex V

INTRODUCTION

Mitochondrial (m) Ca\(^{2+}\) overload is a damaging consequence of cardiac ischemia-reperfusion (IR) injury and hence is an important subject for potential therapy (Brookes et al., 2004; O’Rourke et al., 2005; Stowe and Camara, 2009; Camara et al., 2010). During IR, mitochondria can consume rather than generate ATP (Chinopoulos and Adam-Vizi, 2010; Chinopoulos et al., 2010), which consequently can augment mCa\(^{2+}\) overload (Riess et al., 2002) sufficient to induce cell apoptosis and necrosis (Murphy and Steenbergen, 2008). [Ca\(^{2+}\)]\(_m\) is regulated in part by electrochemical dependent cation flux via Ca\(^{2+}\) transporters and by cation exchangers within the inner mitochondrial membrane (IMM) (Gunter and Pfeiffer, 1990; Gunter et al., 1994; Bernardi, 1999; Brookes et al., 2004). The major route for mCa\(^{2+}\) uptake is via the ruthenium red (RR) sensitive mitochondrial Ca\(^{2+}\) uniporter (MCU), now considered a macromolecular complex composed of two pore components, MCU and MCUb, and MCU regulators MCU1, 2, 3, and EMRE (essential MCU regulator), and other components (De Stefani et al., 2015). Ca\(^{2+}\) influx via the MCU is reduced by competition with cytosolic Mg\(^{2+}\) (Boelens et al., 2013; Tewari et al., 2014). Additional modes of mCa\(^{2+}\) uptake are proposed to occur via a ryanodine type channel (RTC) in the IMM (Ryu et al., 2011; O-Uchi et al., 2013; Tewari et al., 2014) and at the sarcoplasmic reticular-MCU interface where functional Ca\(^{2+}\) signaling between the cytoplasmic and mitochondrial compartments is believed to occur (Csordas et al., 2010).

A primary mCa\(^{2+}\) efflux pathway is the Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCE\(_m\)) (Boyman et al., 2013). In unicellular organisms and in some non-cardiac tissues there is firm evidence (Azzone et al., 1977; Pozzan et al., 1977; Wingrove et al., 1984; Brand, 1985; Rottenberg and Marbach, 1990; Gunter et al., 1991, 1994; Bernardi, 1999; Demaurex et al., 2009; Nishizawa et al., 2013) for slow homeostatic mCa\(^{2+}\) efflux through a Na\(^{+}\)-independent Ca\(^{2+}\) exchanger (NICE), i.e., a non-electrogenic Ca\(^{2+}\)/H\(^{+}\) exchanger (CHE) that might be activated when the ΔpH\(_m\) gradient across the IMM is altered. The amount of free (ionized) [Ca\(^{2+}\)]\(_m\) available for exchange depends on the extent of dynamic mCa\(^{2+}\) buffering (Bazil et al., 2013; Blomeyer et al., 2013; Tewari et al., 2014). mCa\(^{2+}\) influx via the MCU and efflux via the NCE\(_m\) are largely voltage (ΔΨ\(_m\)) dependent, whereas Ca\(^{2+}\) transport via the CHE\(_m\), while pH-dependent, may be electrogenic (1 H\(^{+}\) for 1 Ca\(^{2+}\)) or non-electrogenic (2 H\(^{+}\) for 1 Ca\(^{2+}\)). However, CHE\(_m\) can be indirectly dependent on the full IMM electrochemical gradient if there is a decrease in the IMM ΔpH\(_m\) gradient (Rottenberg and Marbach, 1990; Dash and Beard, 2008; Dash et al., 2009).

There is a well-known direct correlation between ΔΨ\(_m\) and mCa\(^{2+}\) uptake based on the Nernst equation; a more polarized ΔΨ\(_m\) permits greater mCa\(^{2+}\) uptake (Wingrove et al., 1984; Gunter et al., 1994). mCa\(^{2+}\) uptake via the MCU depends both on the electrical (charge) gradient, ΔΨ\(_m\), and on the concentration gradient for [Ca\(^{2+}\)] across the IMM. ATP\(_m\) hydrolysis with H\(^{+}\) pumping can occur at complex V (F\(_0\)F\(_1\)-ATP synthase/ase) during cardiac ischemia (Jennings et al., 1991) in an attempt to maintain cardiac ischemia gradient, and along with the ΔΨ\(_m\)
maintain the uptake of mCa slowly decreases during a protonophore-induced inward H
lower mATP hydrolysis (no H
hydrolysis, which would result in H
dependent mCa
uncoupling), total [ATP]
m

Exposure of mitochondria to external (e) CaCl2 when the IMM is fully charged (high \(\Delta \Psi_m\)), defined here by the presence of substrate in state 2 conditions without the IMM is fully charged (high \(\Delta \Psi_m\)), total \(\text{[ATP]}_m\)

we considered it crucial to also dynamically measure changes in mCa
dynamically alter \([\text{Ca}^{2+}]_m\) or [Ca2+]e outside the mitochondria. Because pH affects the binding of Ca
[Ca2+]e after a bolus of CaCl2, either by inducing an inward H+
leak that causes an outward pumping of H+
by complex V, or by altering the extra-mitochondrial pH.

In one set of experiments, we challenged isolated energized mitochondria with a bolus of CaCl2 in the absence or presence of increasing concentrations of the protonophore 2,4-dinitrophenol (DNP) in the absence or presence of the complex V inhibitor oligomycin (OMN) to block ATP hydrolysis-induced H+ pumping, and or Ru360 to block the reuptake of Ca2+
via the MCU. To understand how DNP, OMN, and Ru360 dynamically alter \([\text{Ca}^{2+}]_m\) or [Ca2+]e after a bolus of CaCl2, we considered it crucial to also dynamically measure \(\Delta \Psi_m\), pHm, and NADH, as well as mitochondrial respiration (extent of uncoupling), total \([\text{ATP]}_m\), and ATPm/ADPm ratio. In another set of isolated mitochondrial experiments, we directly induced mCa2+ efflux via CHE after CaCl2 loading by altering the Na+-free medium from a control pH7 of 7.15 to either pH 7.6 or 6.9. We show that secondary Ca2+ influx vs. efflux is \(\Delta [\text{H}^+]_m\) dependent.

MATERIALS AND METHODS

Isolated Mitochondrial Experiments

All experiments conformed to the Guide for the Care and Use of Laboratory Animal and were approved by the Medical College of Wisconsin Biomedical Resource Center animal studies committee. Detailed methods for mitochondrial isolation and measurements of \(\Delta \Psi_m\), \([\text{Ca}^{2+}]_m\), NADH redox state, pHm, [ATP]m, ADPm/ATPm ratio, respiration, and the number of animals per group, are furnished (see section “Supplementary Materials S.1.1–S.1.12”). Briefly, mitochondria were isolated from guinea pig heart ventricles in iced buffer and were suspended in experimental buffer containing in mM: KCl 130, K2HPO4 5, MOPS 20, bovine serum albumin 0.016 and EGTA ∼0.036–0.040 at pH 7.15 (adjusted with KOH) at room temperature (21°C). The experimental buffer had a final protein concentration of 0.5 mg/mL. Specific fluorescent probes and spectrophotometry (Qm-8, Photon Technology International, Birmingham, NJ, United States) were used to measure \([\text{Ca}^{2+}]_m\) (indo-1AM) and buffer [Ca2+]e (indo-1 or Fura 4 F penta-K+ salt), NADH, an indicator of mitochondrial redox state (autofluorescence), pHm, (BCECF-AM), and mitochondrial membrane potential (\(\Delta \Psi_m\)) assessed by rhodamine-123 or TMRRM (Heinen et al., 2007; Huang et al., 2007; Aldakkak et al., 2010; Haumann et al., 2010) (all fluorescence probes from Invitrogen™ – Thermo Fisher Scientific). Respiration (Clark electrode) and ATPm (bioluminescence) and ATPm/ADPm ratio (HPLC, luminometry) were also measured. The experimental buffer, mitochondrial substrates, and drugs were Na+-free to prevent activation of NCEm by extra-mitochondrial Na+. The inactivity of the NCE was verified by comparing data from these experiments to data from experiments with added CGP-37157, a known mitochondrial NCEm inhibitor (data not shown).

Experimental Protocols

Medium pHe-Induced Changes in pHm

The experimental buffer was identical to that described above except that in addition to the pH 7.15 buffer, buffers at pH 6.9 and 7.6 were prepared by titration with HCl and KOH, respectively. The residual EGTA carried over from the isolation buffer to the experimental buffer resulted in an ionized extra-mitochondrial \([\text{Ca}^{2+}]_e\) of <200 nM (Figure 1). To measure changes in \([\text{Ca}^{2+}]_e\) after adding a bolus of 40 µM CaCl2, each pH buffer contained Fura 4 F penta-K+ salt. The Kp’s for Ca2+ were calculated and corrected for each buffer pH because pH affects the binding of Ca2+ to the fluorescence dye (see section “Supplementary Materials S.1.4, S.1.8”). In other experiments, pHm and \(\Delta \Psi_m\) were measured using BCECF-AM and TMRRM fluorescent dyes, respectively. Experiments were initiated at \(t = 30\) s when mitochondria were added to the medium.
FIGURE 1 | Changes in buffer \([\text{Ca}^{2+}]_e \) (A), matrix pH \(p_{m} \) (B), and \(\Delta \Psi_m \) (C) over time after adding 40 \(\mu \text{M} \) CaCl\(_2\) (210 s) at extramitochondrial pH \(7.6, 7.15, \) and 6.9 with or without 1 \(\mu \text{M} \) Ru360 (300 s) to inhibit additional mCa\(^{2+}\) uptake via MCU. Note the rapid fall in \([\text{Ca}^{2+}]_e \) due to fast mCa\(^{2+}\) uptake via the MCU and the following slow rise in \([\text{Ca}^{2+}]_e \) (Ca\(^{2+}\) efflux) (A), slow decline in \(p_{m} \) (B), and slow depolarization of \(\Delta \Psi_m \) (C) at pH 6.9 (each line = mean of 3–4 replicates from 12 guinea pig hearts for each fluorescence measurement). Note in the pH 6.9 medium the faster rate of mCa\(^{2+}\) efflux (A) over time when MCU was blocked, and the faster declines in \(p_{m} \) (B) and \(\Delta \Psi_m \) (C) over time when MCU was not blocked.

For \(P<0.05 \):
* Ru360 vs. no Ru360 at each pH
pH 6.90 vs. 7.15 ± Ru360
† pH 7.15 vs. 7.60 ± Ru360
buffer; at \(t = 90 \text{ s} \) pyruvic acid (PA, 0.5 mM) was added, followed by a bolus of 40 \(\mu \text{M} \) CaCl\(_2\) at \(t = 210 \text{ s} \) to initiate rapid mCa\(^{2+}\) uptake via MCU. Note that in guinea pig cardiac mitochondria, the respiratory control index (RCI) is higher in the presence of pyruvate alone (Heinen et al., 2007; Blomeyer et al., 2013; Boelens et al., 2013) than with pyruvate plus malate (Riess et al., 2008). For some experiments, 1 \(\mu \text{M} \) Ru360 (or vehicle, 0.1% DMSO) was added at \(t = 300 \text{ s} \) shortly after adding CaCl\(_2\) to block Ca\(^{2+}\) reuptake into mitochondria via MCU after the Ca\(^{2+}\) was extruded from mitochondria. At the end (1700 s) of each experiment, the potent protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 4 \(\mu \text{M} \)) was given to completely abolish the \(\Delta \Psi_\text{m} \) gradient and depolarize \(\Delta \Psi_\text{m} \). Data for each pH group were collected in mitochondrial suspensions from the same heart; approximately 8–10 hearts were used for each fluorescent probe. At pH 7.15, adding 40 \(\mu \text{M} \) CaCl\(_2\), which increased extra-mitochondrial \([\text{Ca}^{2+}]_e\) into the 1 \(\mu \text{M} \) range and increased the initial \([\text{Ca}^{2+}]_m\) to approximately 500 nM (Figures 1, 2), is unlikely to induce membrane permeability transition pore (mPTP) opening. However, to test the possibility of mPTP opening, 500 nM cyclosporine A (CsA), a modulator of cyclophilin D required to open mPTP, was given before adding CaCl\(_2\) in several experiments at pH\(_e\) 6.9 and 7.15.

Protonophore-Induced Changes in pH\(_m\)

Experiments were initiated at \(t = -120 \text{ s} \); at \(t = -90 \text{ s} \), mitochondria were added to the experimental buffer (time line, Figure 3); external pH\(_e\) was 7.15. At \(t = 0 \text{ s} \), pyruvic acid (PA, 0.5 mM) was added to the mitochondria suspended in the experimental buffer, followed by 0, 10, 20, 30, or 100 \(\mu \text{M} \) DNP, a mild protonophore, at \(t = 90 \text{ s} \), followed by the addition of de-ionized H\(_2\)O, 10, or 25 \(\mu \text{M} \) CaCl\(_2\) at \(t = 225 \text{ s} \). The 90 s period allowed for full \(\Delta \Psi_\text{m} \) polarization.
and stabilization of pH\textsubscript{m} and NADH. In some experiments (see section “Supplementary Results S.2.4” and Supplementary Figure S.6), 100 nM Ru360 was added at \(t = 300 \) s, after the addition of CaCl\textsubscript{2}, to block any reuptake of mCa2+ by the MCU that was extruded by CHE\textsubscript{m}. For the OMN treated groups, 10 \(\mu \)M OMN was added to the experimental buffer at the start of the experimental protocol (Figure 3). At the end of each experiment CCCP was added at \(t = 760 \) s to maximally depolarize \(\Delta \Psi \textsubscript{m} \). DNP, Ru360, OMN, and CCCP were each dissolved initially in DMSO and then in buffer to yield a final buffer concentration for DMSO of 0.1 to 0.4\% (wt/vol). Each drug or DMSO alone was added to a final volume of 10 \(\mu \)L. To test for mPTP opening, CsA was given before adding 20 or 30 \(\mu \)M DNP and 25 \(\mu \)M CaCl\textsubscript{2} in several experiments conducted at pH\textsubscript{E} 7.15.

Statistical Analyses

Data were summarized at 500, 1000, and 1500 s (for Figures 1, 2) for external buffer-induced changes in pH\textsubscript{m} on [Ca2+]\textsubscript{e}. Data were summarized for protonophore-induced changes in pH\textsubscript{m} on [Ca2+]\textsubscript{m} at 80 s (after adding PA), 215 s (after adding DNP), 275 s (early after adding CaCl\textsubscript{2}), and 700 s (late after adding CaCl\textsubscript{2}) (e.g., Figure 4). All data points were presented and expressed as average ± SEM. Repeated measure ANOVAs followed by a post hoc analyses using Student-Newman-Keuls’ test was performed to determine statistically significant differences among groups. A \(P \)-value < 0.05 (two-tailed) was considered significant. See Figure legends for statistical notations.

RESULTS

CHE\textsubscript{m} Activation Was Exposed by Efflux of Ca2+ With Influx of H+ and Was Greater If MCU Was Inhibited

Direct evidence for CHE\textsubscript{m} activation was observed by acidifying the extra-mitochondrial buffer (low pH\textsubscript{E}), which subsequently decreased the matrix pH\textsubscript{m} slowly over time (Figure 1). With NCF\textsubscript{m} and Na+/H+ (NHE\textsubscript{m}) inactivated by using Na+-free solutions and substrates, fast mCa2+ influx via the MCU, induced after adding 40 \(\mu \)M CaCl\textsubscript{2} at pH 6.9, was followed by a slow mCa2+ efflux over time \(\sim\) (300–1700 s) as shown by the increase in extra-mitochondrial [Ca2+]\textsubscript{e} from <200 nM to nearly 4500 nM in the absence of Ru360 (Figure 1A). When Ru360 was added 90 s after adding CaCl\textsubscript{2}, [Ca2+]\textsubscript{e} rose even more over the first 1000 s, indicating blockade of Ca2+ recycling via the MCU and revealing the total mCa2+ effluxed via CHE\textsubscript{m}. In the pH 6.9 plus Ru360 group the mean rate (slope) of increase in [Ca2+]\textsubscript{e} (mCa2+ efflux) was 1.5 ± 0.1 nM/s, \(\Delta \)pH 0.4 units). This was greater than in the pH 6.9 minus Ru360 group (1.0 ± 0.2 nM/s over 300–1000 s), suggesting that approximately 1/3 of the mCa2+ extruded was retaken up across the IMM.
via the MCU. In contrast, mCa$^{2+}$ efflux was not observed in the pH 7.6 medium without Ru360, and minimally at 1500 s at pH 7.6 with Ru360. There was less mCa$^{2+}$ efflux at pH 7.15 ± pH 7.6 compared to pH 6.9 ± Ru360. However, even at pH 7.15 ± Ru360, there were similar steady declines in pH$_E$ while net slow Ca$^{2+}$ efflux was noted only in the plus Ru360 groups, indicating Ca$^{2+}$ re-uptake via MCU. Therefore, in the acidic extra-mitochondrial medium, slow decreases in pH$_m$ (H$^+$ influx) were accompanied by slow increases in mCa$^{2+}$ efflux, indicating CHE$_m$ activity. Eventually, matrix acidification was more pronounced in the pH 6.9 medium (ΔPH 0.62 units) in the absence of Ru360 than in all other groups so that over time as H$^+$ influx was exchanged for Ca$^{2+}$ efflux the IMM ΔPH gradient was eventually obliterated, halting Ca$^{2+}$ efflux (Figure 1B). Eventually, because of mCa$^{2+}$ influx, near complete depolarization of ΔΨ$_m$ occurred in the pH 6.9 medium (Figure 1C), as shown by little change after adding CCCP, and by the complete depolarization of ΔΨ$_m$ when Ca$^{2+}$ recycling via the MCU was permitted (minus Ru360 group). Although adding CaCl$_2$ at an external pH$_E$ of 6.9 led eventually to near complete dissipation of ΔΨ$_m$, when CsA was first added to the buffer, CsA prevented the gradual, slow extrusion of mCa$^{2+}$ and declines in pH$_m$ and ΔΨ$_m$ induced by adding CaCl$_2$ at pH 6.9 indicating a complete lack of CHE$_m$ activity (see section “Supplementary Results S.2.1” and Supplementary Figures S.1A–C).

Increasing Matrix Acidification Led to Ca$^{2+}$ Efflux Until Loss of the ΔPH$_m$ Gradient and a Lack of Ca$^{2+}$ Re-uptake via MCU on Full Depolarization of ΔΨ$_m$

A plot of extra-mitochondrial [Ca$^{2+}$]$_E$ as a function of matrix [H$^+$]$_m$ at each extra-mitochondrial pH (Figure 2) indicates maximal mCa$^{2+}$ efflux occurred in the pH$_E$ 6.9 medium (largest IMM (AH$^+$) gradient), much less so in the pH 7.15 medium, and not at all in the pH 7.6 medium. Ca$^{2+}$ efflux was accentuated in the presence of Ru360 given just after the added CaCl$_2$ bolus (Figure 2). The difference (arrow) between the absence and presence of Ru360 indicates the rapid reuptake (recycling) of Ca$^{2+}$ via MCU on extrusion via CHE$_m$. Thus total Ca$^{2+}$ efflux was greater in the pH 6.9 group when MCU was not blocked because [H$^+$]$_m$ rose higher than when MCU was blocked. The steep, vertical increase in mCa$^{2+}$ efflux at the highest [H$^+$]$_m$ in the pH 6.9 group resulted from cessation of mCa$^{2+}$ reuptake via MCU due to depolarization of ΔΨ$_m$ (Figure 1C). The net amount of H$^+$ entering mitochondria per Ca$^{2+}$ exiting mitochondria may be indeterminate because much of the H$^+$ entering is pumped out via the respiratory enzyme complexes.

Mitochondrial Membrane Potential (ΔΨ$_m$) Was Depressed by DNP After Adding CaCl$_2$

In the protonophore series of experiments (time line, Figure 3), DNP alone decreased ΔΨ$_m$ slightly as assessed by rodamine-123 (R123) (Huang et al., 2007) (Figure 4), in a concentration-dependent manner, except at 100 µM DNP, which alone fully (+OMN) or nearly (−OMN) depolarized ΔΨ$_m$. ΔΨ$_m$ was estimated as % of maximal depolarization, where the baseline after adding substrate with OMN signifies full polarization (0%) and addition of CCCP denotes complete depolarization (100%). Adding 10 µL of 0.1% DMSO (DNP vehicle) or 10 µM DNP had no significant effect when given before CaCl$_2$, whereas adding 20, 30, or 100 µM DNP before 10 µM CaCl$_2$ reduced the R123 ΔΨ$_m$ signals by 12.7, 18.7, and 92.4% vs. DMSO (Figure 4A), respectively. In the presence of OMN (Figure 4C), adding 20, 30, or 100 µM DNP before 10 µM CaCl$_2$ increased the fluorescence signal intensities (i.e., depolarized ΔΨ$_m$) by 16.2, 33.0, and 99.0%, respectively, vs. DMSO (0%). Overall, before adding either 10 or 25 µM CaCl$_2$, 20 and 30 µM DNP moderately decreased ΔΨ$_m$ in the absence of OMN but greatly decreased ΔΨ$_m$ in the presence of OMN, suggesting blocked proton pumping from complex V (Figures 4C,D vs. Figures 4A,B). If no CaCl$_2$ was given after DNP, the moderate decrease in ΔΨ$_m$, which was unaffected by CsA, persisted for up to 25 min (see section “Supplementary Results S.2.5” and Supplementary Figure S.7A). After adding 10 and 30 µM DNP, and then CaCl$_2$, there were large decreases in ΔΨ$_m$ resulting from entry of Ca$^{2+}$. Although ΔΨ$_m$ depolarization by DNP alone was unaffected by CsA, the subsequent slow ΔΨ$_m$ depolarization induced by 25 µM CaCl$_2$ was delayed by CsA (Supplementary Figure S.7B). Supplementary Results S.2.3 and Supplementary Figures S.3A–D shows statistics on mean ± SEM data for ΔΨ$_m$ replotted from Figure 4 at time points 215, 275, and 700 s.

Matrix Free [Ca$^{2+}$]$_m$ Rose or Fell Slowly Depending on Block of Complex V

Adding 10 µM CaCl$_2$ without DNP (ΔΨ$_m$ fully polarized) caused [Ca$^{2+}$]$_m$ to increase rapidly from 80 nM (no added CaCl$_2$) initially to 235 nM at 300 s, whereas after adding 25 µM CaCl$_2$, [Ca$^{2+}$]$_m$ rose more rapidly to 450 nM (Figures 5A,B); [Ca$^{2+}$]$_m$ remained unchanged over time (300–750 s) after adding 10 µM CaCl$_2$ but fell slowly and gradually (non-significantly) over time after adding 25 µM CaCl$_2$ (DMSO group, Figures 5A,B). After adding 10–30 µM DNP, adding 10 µM CaCl$_2$ promoted a slow, secondary rise in [Ca$^{2+}$]$_m$ (Figure 5A). The secondary, slow increase in [Ca$^{2+}$]$_m$ beginning 300 s after adding 10 µM CaCl$_2$ plus DNP was accompanied by a slow decrease in extra-mitochondrial [Ca$^{2+}$]$_E$ (see Supplementary Figure S.6A). When ΔΨ$_m$ was nearly or totally depolarized by 100 µM DNP in the absence of OMN, and after adding 10 µM CaCl$_2$, there was no change in [Ca$^{2+}$]$_m$ over 300–750 s and thus no mCa$^{2+}$ uptake over time (Figure 5A). [Ca$^{2+}$]$_m$ slowly increased over 300–750 s after first adding 10 and 20 µM DNP and then 25 µM CaCl$_2$ (Figure 5B), which caused the slow declines in ΔΨ$_m$ (Figure 4B). In the 100 µM DNP group [Ca$^{2+}$]$_m$ increased moderately immediately after adding 25 µM CaCl$_2$, but did not change further over time. Supplementary Results S.2.6 and Supplementary Figures S.4A,B display statistics on...
In marked contrast, when complex V was blocked by OMN, adding 10 µM CaCl₂ (Figure 6A) after adding 10–30 µM DNP caused a marked decrease in [Ca²⁺]ₘ over time (300–750 s); after adding 25 µM CaCl₂ in the absence of DNP (Figure 6B), [Ca²⁺]ₘ rose higher initially, whereas 10–30 µM DNP caused a slow decrease in [Ca²⁺]ₘ over this period, indicating net mCa²⁺ efflux. Supplementary Results S.2.6 and Supplementary Figures S.4C,D shows statistics on mean ± SEM data for [Ca²⁺]ₘ replotted from Figure 6 (+OMN) at time points 215, 275, and 700 s. The secondary, slow decrease in [Ca²⁺]ₘ after adding 20 µM DNP plus 25 µM CaCl₂ was accompanied by an increase in extra-mitochondrial [Ca²⁺]ₑ (see Supplementary Figure S.6B). Note that additional mCa²⁺ uptake after giving 25 µM CaCl₂ was halted after adding Ru360, 90 s later (at t = 325 s) and converted to mCa²⁺ efflux in the presence of OMN as shown by the increase in [Ca²⁺]ₑ (see Supplementary Figures S.6B vs. S.6A). A summary of slope data collected over the first 7 s (1 sample/s) after adding 10 or 25 µM CaCl₂ in the presence (Figures 5C,D) or absence (Figures 6C,D) of OMN shows that the average initial, rapid increase in [Ca²⁺]ₘ via the MCU was much faster after adding 25 µM CaCl₂ than after 10 µM CaCl₂ in the ±OMN groups; this initial rate of mCa²⁺ uptake decreased as ΔΨₘ fell with added DNP. The initial rate of increase in [Ca²⁺]ₘ during the first 7 s after...
adding 10 µM CaCl₂ (Figure 5C) decreased from 8 to 2 nM/s (DNP 0–100 µM). After adding 25 µM CaCl₂ (Figure 5D), the rate decreased from 88 to 20 nM/s. In the presence of OMN (Figures 6C,D), the initial increases in [Ca²⁺]m in fully coupled mitochondria (no DNP) were later than those in the absence of OMN (Figures 6C,D vs. Figures 5C,D). With OMN present, the initial increases in [Ca²⁺]m decreased from 30 to 4 nM/s after adding 10 µM CaCl₂ and from 130 to 13 nM/s after adding 25 µM CaCl₂. Thus the initial rates of increase in [Ca²⁺]m with 10 µM CaCl₂ were consistently faster in the presence of OMN (Figure 6C vs. Figure 5C), and at 25 µM CaCl₂, with or without 10 µM DNP (Figure 6D vs. Figure 5D).

A summary of slope data collected between 300 and 750 s, i.e., after the initial, rapid increase in [Ca²⁺]m via the MCU with added 10 µM CaCl₂, demonstrates a much slower and smaller (pM/s) gradual increase in [Ca²⁺]m over time in the absence of OMN with a threefold greater slope after 30 µM DNP vs. DMSO (Figure 5E). After adding 25 µM CaCl₂, the slow increase in [Ca²⁺]m was about fourfold higher after 20 µM DNP vs. DMSO (Figure 5F). The secondary slow rise in [Ca²⁺]m was about 1000 times slower than the initial fast phase and roughly dependent on
both the amount of mCa$^{2+}$ that was taken up initially just after adding CaCl$_2$ and the extent of $\Delta \Psi_m$ depolarization. In contrast, in the presence of OMN under the same conditions of added CaCl$_2$ and DNP, the slope data showed slow and small declines (rather than increases) in $[\text{Ca}^{2+}]_m$ over time (Figures 6E,F). The slow rate of extrusion of mCa$^{2+}$ by CHE$_m$ when complex V was blocked with OMN (Figures 6E,F) became greater when mCa$^{2+}$ entry via the MCU was greater (Figures 6A,B).

Mitochondrial Redox State Remained Steady Without OMN but Fell With OMN-Induced Block of Complex V

A reduced redox state is associated with maintenance of pH$_m$. Adding the substrate PA increased the redox state (more reduced) as determined by high NADH autofluorescence (Figure 8). In the absence of OMN, adding 10 to 30 µM DNP or 25 µM CaCl$_2$ (Figures 8A,B) did not cause a significant change in NADH. NADH was unchanged despite up to 60% decrease in $\Delta \Psi_m$ fluorescence (Figures 4A,B) after adding DNP and CaCl$_2$. However, when complex V was blocked by OMN (Figures 8C,D), there was significant oxidation (low NADH) by DNP in a concentration dependent manner. In contrast to the condition without OMN, with OMN present as little as a 20% fall in $\Delta \Psi_m$ fluorescence (Figures 4C,D) led to a more oxidized NADH state. Moreover, NADH was fully oxidized at 20 µM DNP with OMN present (Figures 8C,D), and the oxidized state was not altered significantly by adding CaCl$_2$ after DNP. In the absence or presence of CaCl$_2$, NADH
was completely oxidized after adding 100 µM DNP (data not shown).

ATP Concentration Fell Without OMN but Remained Steady With OMN-Induced Block of Complex V

Total medium [ATP] was measured and mitochondrial [ATP] \text{m} \text{ was estimated (see section “Supplementary Materials S.1.10”). Basal [ATP] \text{m} \ was measured after adding mitochondria to the experimental buffer in the absence of OMN (Figures 9A,B). There was no change in basal [ATP] \text{m} \ after adding PA. DNP, at 10 µM, did not significantly change [ATP] before or after adding CaCl2 (Figures 9A,B). Basal [ATP] \text{m} \ was unchanged if CaCl2 was not added (data not displayed). Adding 20 or 30 µM DNP alone had no significant effect on [ATP] \text{m} \, but adding CaCl2 resulted in a decrease in [ATP] \text{m} \ (Figures 9C,D). In the presence of OMN (Figures 9C,D), adding mitochondria to the buffer did not change [ATP] \text{m} \, indicating inhibited complex V activity. [ATP] \text{m} \ remained at a very low level and was unaffected by DNP or CaCl2 in the presence of OMN. With OMN present, ATP \text{m}/ADP \text{m} \ ratios (see section “Supplementary Materials S.1.11, S.1.12 and Supplemental Results S.2.9”) also decreased with added DNP and CaCl2, along with the progressive declines in \Delta \Psi \text{m} \.

Additional Supplemental Comparisons and Calculations

Supplementary Results S.2.2 and Supplementary Figure S.2 demonstrate the effect of adding DNP and CaCl2 on respiration. Supplementary Results S.2.7 and Supplementary Figure S.9 furnish values for \Delta \Psi \text{m}, [Ca^{2+}] \text{m}, and pH \text{m} \ at 700 s, replotted from Figures 4–7, to compare these results in the presence or absence of OMN. The Supplementary Table shows DNP concentrations that produced 50% inhibitions (IC50) of \Delta \Psi \text{m}, [Ca^{2+}] \text{m}, fast (initial) \frac{d}[Ca^{2+}] \text{m}/dt, and pH \text{m} \ as a linear function of 0–30 µM DNP ± OMN at the 700 s time point. Supplementary Figure S.10 displays calculated mCa^{2+} flux rates (J_{\text{CHE}}) for CHE\text{m} (see section “Supplementary Results S.2.8”) in the absence and presence of OMN.

DISCUSSION

Ca^{2+}/H^{+} Exchange Activity Is Identified by Manipulating IMM \Delta[H^{+}] and \Delta[Ca^{2+}] Gradients

We provide firm support for a role of CHE\text{m} in maintaining homeostasis of Ca^{2+} against H^{+} under certain conditions in cardiac cell mitochondria that may mimic some sequelae of
cardiac IR injury. Our results: (1) furnish direct evidence for CHEm activity by the secondary, slow increases in matrix Ca\(^{2+}\) influx coupled to slow increases in matrix H\(^+\) influx, when both NCE and NHE activities are blocked, and particularly, when MCU-dependent mCa\(^{2+}\) re-uptake is blocked with Ru360; (2) demonstrate that respiration increases while ΔΨ\(_{m}\) decreases mildly, whereas pH\(_{m}\) and redox state are relatively maintained when inducing a matrix inward H\(^+\) leak with DNP before adding CaCl\(_2\); adding CaCl\(_2\) results in a secondary, slow increase in [Ca\(^{2+}\)]\(_{m}\) that slowly depolarizes ΔΨ\(_{m}\); (3) show that the lack of a slow fall or rise in [Ca\(^{2+}\)]\(_{m}\) compared to [Ca\(^{2+}\)]\(_{i}\); (4) demonstrate that blocking complex V with OMN supports ATP hydrolysis with H\(^+\) pumping. These two scenarios, ±OMN, are depicted graphically in Figure 10A vs. Figure 10B.

Net Mitochondrial Ca\(^{2+}\) Influx Occurs via MCU and Net Ca\(^{2+}\) Efflux Can Occur via Ca\(^{2+}\)/H\(^+\) Exchange

The dependence of rapid MCU-mediated mCa\(^{2+}\) uptake on ΔΨ\(_{m}\) has been examined extensively (Gunter and Pfeiffer, 1990; Gunter et al., 1994; Dash et al., 2009; Haumann et al., 2010). But our study demonstrates that net m[Ca\(^{2+}\)]\(_{m}\) can additionally increase slowly via the MCU, and that this happens when pH\(_{m}\) is relatively maintained despite a decline in ΔΨ\(_{m}\) resulting from the DNP-mediated inward H\(^+\) flux and after the initial rapid Ca\(^{2+}\) influx via MCU. A gradual increase in [Ca\(^{2+}\)]\(_{m}\) at the expense of maintaining the ΔpH\(_{m}\) may be deleterious to mitochondrial function. We propose that this secondary rise in net [Ca\(^{2+}\)]\(_{m}\) results from an adequate ΔΨ\(_{m}\) with Ru360-dependent slow mCa\(^{2+}\) uptake, which eventually leads to a slow, continued fall in ΔΨ\(_{m}\). Because H\(^+\) pumping at complex V prevents matrix acidification, which is associated with a maintained redox state; and (7) show that the decrease in [ATP] in the absence of OMN supports ATP hydrolysis with H\(^+\) pumping. These two scenarios, ±OMN, are depicted graphically in Figure 10A vs. Figure 10B.
countered by H⁺ pumping at complex V (in addition to other complexes), can maintain the ΔpHm and support the pnf (ΔΨm + RT/FΔpHm) (Dzbek and Korzeniewski, 2008). This view is especially supported by the smaller decline in extramitochondrial [Ca²⁺]e in the presence of 20 μM DNP, 25 μM CaCl₂, and OMN, as well as in the presence of Ru360, by the gradual increase in [Ca²⁺]e due to CHEm mediated Ca²⁺ efflux. These results are reinforced by the exaggerated effect of added CaCl₂ to enhance the decline in ΔΨm over time and by the slow decreases in [Ca²⁺]m linked to slow decreases in pHm. Blocking outward H⁺ pumping by complex V prevented compensation for DNP-mediated H⁺ influx. Consistent with
our observations, it was reported that matrix acidification may reduce Ca\(^{2+}\) uptake in cardiac mitochondria by its effect on decreasing $\Delta \Psi_m$ (Gursahani and Schaefer, 2004). In contrast, when ATP\(_m\) hydrolysis is prevented, pH\(_m\) slowly decreases toward pH\(_E\) with a greater fall in $\Delta \Psi_m$; the slow H\(^+\) influx is accompanied by a slow net fall in [Ca\(^{2+}\)]\(_m\) mediated by CHE\(_m\) even though the extruded Ca\(^{2+}\) is recycled via the MCU. Since H\(^+\) influx (DNP-induced leak) is not countered by reciprocal H\(^+\) pumping to restore $\Delta \Psi_m$, the slow influx of H\(^+\) is exchanged for slow Ca\(^{2+}\) efflux via CHE\(_m\) until the $\Delta \psi$ gradient is dissipated.

Ca\(^{2+}\) and H\(^+\) gradients across the IMM are largely dependent on $\Delta \Psi_m$ and ApH gradients resulting from H\(^+\) pumping by respiratory complexes. Ionic homeostasis requires one cation efflux pathway to oppose another cation influx pathway and vice versa. Cation exchangers fulfill this need. Unlike mCa\(^{2+}\) uptake via MCU, which is dependent on $\Delta \Psi_m$ and on the chemical gradient, exchange of Ca\(^{2+}\) and H\(^+\) via CHE\(_m\) may or may not be dependent on $\Delta \Psi_m$ (Rottenberg and Marbach, 1990; Günter et al., 1991). But the direction of Ca\(^{2+}\) and H\(^+\) flux mediated solely by CHE\(_m\) is dependent on a large IMM [H\(^+\)] or [Ca\(^{2+}\)] gradient to shuttle Ca\(^{2+}\) or H\(^+\) across the IMM. This can be expressed by an electroneutral J_{CHE} flux equation (Tewari et al., 2014), calculated here in the presence and absence of OMN (see section “Supplementary Results S.2.8” and Supplementary Figure S10). J_{CHE} flux analysis of our data suggests that slow mCa\(^{2+}\) influx could have occurred via CHE\(_m\) in the absence of OMN, whereas mCa\(^{2+}\) efflux could have occurred in the presence of OMN. Indeed, we have provided strong support for slow net mCa\(^{2+}\) efflux mediated by CHE\(_m\) (despite slow mCa\(^{2+}\) uptake by MCU) when complex V cannot pump H\(^+\) in the presence of OMN.

Although CHE\(_m\) likely occurs both in the absence or presence of OMN, our results suggest that the observed secondary, slow influx of mCa\(^{2+}\) influx (minus OMN) is due primarily to reuptake by a Ru360 sensitive mechanism, presumably MCU, that may overwhelm any CHE\(_m\) activity. This is because Ru360 blocked the slow rise in [Ca\(^{2+}\)]\(_m\) and the slow fall in [Ca\(^{2+}\)]\(_i\), thus supporting MCU as the mediator of the slow mCa\(^{2+}\) influx. The J_{CHE} flux equation only monitors differences in [H\(^+\)] and [Ca\(^{2+}\)] on either side of the IMM and does not rely on effects of the $\Delta \Psi_{\text{Hm}}$ gradient on H\(^+\) pumping or the $\Delta \Psi_m$ gradient on mCa\(^{2+}\) uptake via MCU. Thus the secondary, slow mCa\(^{2+}\) uptake after the initial CaCl\(_2\) bolus (Figures 5A,B,E,F) appears to be a direct effect of H\(^+\) pumping by complex V (minus OMN) to maintain the $\Delta \Psi_{\text{Hm}}$ charge gradient and support the pmf although $\Delta \Psi_m$ continues to fall due to the continued mCa\(^{2+}\) influx. On the other hand, inhibiting ATP\(_m\) hydrolysis (Figures 9C,D) to prevent H\(^+\) pumping not only enhances the fall in $\Delta \Psi_m$ (Figures 4C,D) to retard further mCa\(^{2+}\) loading by the MCU, but also permits slow CHE\(_m\)-mediated mCa\(^{2+}\) efflux (Figures 6A,B,E,F) in exchange for mH\(^+\) influx until the diminishing $\Delta \Psi_{\text{Hm}}$ gradient is abolished (Figures 7C,D).

Alternatively, we demonstrated CHE\(_m\) activity by acidifying the external medium before adding CaCl\(_2\), while blocking NCE\(_m\) and NHE\(_m\) activities by using Na\(^+\) free buffer and substrates. We observed a slowly increasing [Ca\(^{2+}\)]\(_e\) coupled to a slowly increasing [H\(^+\)]\(_m\). We used Ru360 to expose the net amount of mCa\(^{2+}\) efflux via CHE\(_m\) by blocking the effluxed Ca\(^{2+}\) from re-entering via MCU (Figures 1, 2). It is unlikely that 0.1–1 μM Ru360 inhibits CHE\(_m\) because Ru360 did not block mCa\(^{2+}\) efflux (Figures 1, 2), only mCa\(^{2+}\) influx. Of course, Ru360 might block another mode of non-MCU Ca\(^{2+}\) uptake. Our proposed mechanism is described schematically in Figures 10A,B. We postulate that CHE\(_m\) activity is completely inhibited if the matrix remains alkaline (large $\Delta \Psi_{\text{Hm}}$ gradient), thus exposing net Ca\(^{2+}\) uptake via MCU. The slow increases in [Ca\(^{2+}\)]\(_m\) that we observed previously (Haumann et al., 2010) likely represent net slow mCa\(^{2+}\) via MCU (reference Figure 5).

A leucine zipper EF-hand-containing trans-membrane protein (LETM1) found in non-mammalian cells is thought to be a molecular component of CHE\(_m\) (Jiang et al., 2009; Shao et al., 2016). Knockdown and expression of LETM1 in a number of cell lines support its role in Ca\(^{2+}\)/H\(^+\) exchange, particularly in mitochondria (Jiang et al., 2013; Doonan et al., 2014). Alternatively, other studies (Nowikovsky et al., 2004, 2012; Froschauer et al., 2005; Malli and Graier, 2010; Austin et al., 2017) support that LETM1 either does not mediate Ca\(^{2+}\) efflux (De Marchi et al., 2014) or that it mediates K\(^{+}\)/H\(^+\) and/or Na\(^+\)/H\(^+\) exchange, so conclusive genetic evidence for CHE requires more study. It is important to note that the elusive CHE protein appears to be insensitive to MCU inhibitors, i.e., ruthenium red (RR) compounds (Bernardi et al., 1984), and to CGP-37157, the NCE inhibitor (Tsai et al., 2014). The present study explores for the first time the kinetics of CHE\(_m\) activity in relation to MCU activity in cardiac cell mitochondria.

$\Delta \Psi_m < E_{\text{REV}} - \text{ATPase}$ Promotes ATP Hydrolysis

FoF\(_1\)-ATPase directionality is governed by $\Delta \Psi_m$ and its “reversal potential” $E_{\text{REV}} - \text{ATPase}$, which in turn is dependent on the concentration of the reactants ATP/ADP, and H\(^+\) (Metelkin et al., 2009; Chinopoulos and Adam-Vizi, 2010; Chinopoulos et al., 2010). Additional factors of E_{REV} that affect the direction and rate of ATP synthesis/hydrolysis are the free [P] and the H\(^+\)/mATP\(_m\) coupling ratio, n (Cross and Muller, 2004). When $\Delta \Psi_m$ becomes less negative than E_{REV}, which depends on a high [ATP]\(_m\) and $\Delta \Psi_{\text{Hm}}$, but a low [ADP]\(_m\), H\(^+\) ejection by complex V becomes thermodynamically favorable (Metelkin et al., 2009; Chinopoulos and Adam-Vizi, 2010; Chinopoulos et al., 2010; Chinopoulos, 2011). $E_{\text{REV}} - \text{ATPase}$ can occur when $\Delta \Psi_m$ falls between −130 and −100 mV, depending on matrix [ATP]\(_m\)/[ADP]\(_m\), [Pi]\(_m\), $\Delta \Psi_{\text{Hm}}$, and the coupling ratio (Chinopoulos et al., 2010; Chinopoulos, 2011). Others (Leysens et al., 1996; Bains et al., 2006; Chinopoulos and Adam-Vizi, 2010) have observed that a fall in $\Delta \Psi_m$ caused by a protonophore, such as DNP or CCCP, can induce ATP hydrolysis through reversal of FoF\(_1\)-ATP synthase. The consequent H\(^+\) pumping by complex V would tend to partially restore $\Delta \Psi_m$ to offset the protonophore-induced decreases in pH\(_m\) and $\Delta \Psi_m$ as discussed above. The electrical gradient $\Delta \Psi_m$ and the H\(^+\) chemical gradient $\Delta [H^+]_m$ together contribute to the total pmf that powers the synthesis of ATP; when pmf is not maintained, hydrolysis of matrix ATP
occurs. Previous studies have also furnished indirect evidence for reversal of F0F1-ATP synthase under conditions of reduced mCa2+ uptake and a fully depolarized ΔΨm with CCCP (Leyssens et al., 1996; Bains et al., 2006). ATPm hydrolysis has been reported to occur in vivo during cardiac ischemia (Grover et al., 2004), but the in vivo ΔΨm at which this occurs is not known. Here we show how a DNP-induced fall in ΔΨm induces ATP hydrolysis.

In the absence of OMN, the lack of a fall in ATP levels after adding 10 μM DNP indicated that ATPm hydrolysis (Figure 9) did not occur because ΔΨm remained relatively stable before adding CaCl2. However, adding CaCl2 resulted in a gradual, but large, fall in ΔΨm over time. In the presence of 20 μM DNP and 25 μM CaCl2, ATP hydrolysis occurred (20–25% of maximum) with a decrease in ΔΨm at an IMM gradient of approximately 0.35 ΔpHm, units (Figures 7A,B). A faster rate of ATP hydrolysis was indicated by the additional fall in [ATP]m over time after adding 30 μM DNP and CaCl2. The DNP-induced falls in ΔΨm were accompanied by reduced ATPm/ADPm ratios (see section “Supplementary Materials S.1.11, S1.12 and Supplementary Results S.2.9”) indicating consumption of ATP; as also shown by the lower [ATP]m (Figures 9A,B). A calculation of available matrix ATP is given (see section “Supplementary Results S.2.10”). In the presence of 100 μM DNP and added CaCl2, ΔΨm was maximally depolarized (Figures 4A,B), the ΔpHm gradient was abolished (Figures 7A,B), and NADH was oxidized (Figures 8A,B), indicating that ATPm hydrolysis was insufficient to maintain the pmf. This contrasts to the situation with 10–30 μM DNP where pmf was supported largely by the ΔpHm gradient, as also reflected by the maintained NADH redox state. ΔΨm is normally fully polarized when complex V is blocked by OMN (Valdez et al., 2006; Brand and Nicholls, 2011); however, the effect of DNP to slightly decrease ΔΨm was intensified when OMN was present, particularly after adding 25 μM CaCl2 that intensifies the depolarization of ΔΨm in the presence of DNP. This effect of DNP in the absence of OMN indicates that ATP hydrolysis indeed supported the ΔpHm via H+ pumping even at a relatively small decline in ΔΨm with DNP. With OMN present, ATP hydrolysis cannot occur (Figures 9C,D) and so complex V cannot contribute to maintaining pHm; therefore, the low pHm accompanied by a high [Ca2+]m must have activated CHEm.

Changes in pHm, [Ca2+]m, and NADH Are Larger With OMN Than Without OMN

An interesting observation of our study is the contribution of complex V to maintain the ΔpHm gradient (and thus supporting the pmf) whereby the H+ leak is compensated by augmented H+ pumping by complex V; this resulted in slow mCa2+ influx (“Ca2+ leak”) that could be blocked by Ru360, which indicates the influx likely occurred via MCU. But if compensatory H+ pumping is blocked by OMN, the matrix becomes acidic, the ΔpHm gradient falls lower, and slow mCa2+ influx occurs via CHEm thus masking the slow mCa2+ influx (Figure 10B). Evidence for H+ pumping during ATP hydrolysis during DNP-mediated H+ influx was provided by the maintenance of an alkaline pHm; moreover, pHm indeed fell when H+ pumping was blocked by OMN. Similarly, if mitochondria reside in an acidic environment (Figures 1, 2), [H+]m falls as [Ca2+]m rises, indicating CHEm. Indeed, in a previous study it was reported that adding lactic acid to a Na+-free mitochondrial suspension increased buffer Ca2+ by 43% (Gambassi et al., 1993); it was suggested that Ca2+ was extruded as H+ influx caused H+ ions to compete with Ca2+ ions for mitochondrial binding sites (Gambassi et al., 1993). We furnish direct evidence for a link between Ca2+ influx and H+ influx in mammalian cardiac muscle mitochondria, when Na+ is absent and the MCU is blocked after adding CaCl2.

NADH levels remained unchanged after adding DNP and CaCl2 (Figures 8A,B); this likely reflects the faster state 2 respiration (Supplementary Figure S2) since the inward H+ leak by DNP was balanced by H+ pumping from complex V as well as from complexes I, III, and IV. Only at 100 μM DNP with CaCl2, which fully depolarized ΔΨm (Figures 4A,B), did DNP result in a lower pHm (Figures 7A,B) and a more oxidized redox state, i.e., a decrease in NADH (Figures 8A,B). It is likely that an increase in F0F1-ATPase activity plus a faster TCA cycle turnover (increased NADH/NAD+ ratio) can result in maintained NADH levels despite the DNP-induced H+ leak. In the presence of OMN, however, NADH was gradually oxidized (Figures 8C,D) along with the fall in pHm (Figures 7C,D); this scenario likely occurred because the additional H+ pumping by complex V to support ΔΨm was blocked. We observed that adding CaCl2 alone did not significantly change NADH levels in this model, which is consistent with our earlier study (Haumann et al., 2010). Although an increase in [Ca2+]m can stimulate NADH producing dehydrogenases (Denton et al., 1980; McCormack and Denton, 1980; Wan et al., 1989; Brandes and Bers, 1997), our experiments were conducted at maximal [Ca2+]m values below the K0.5 of 1 μM Ca2+ at which these dehydrogenases are reported to be activated (Denton et al., 1980; McCormack and Denton, 1980).

What Is the Functional Role of CHEm: How Is Net mCa2+ Efflux Modified by mCa2+ Influx via MCU?

The net Ca2+ driving force for ions across the IMM can be estimated by Nernst equilibrium potentials for given estimates of ΔΨm. Under conditions of 20 μM DNP, 25 μM CaCl2, and in the absence of OMN, when [Ca2+]m slowly increased, we calculated Nernst equilibrium potentials of approximately −8 and +18 mV, respectively, for [Ca2+] and [H+] at 700 s. We estimated ΔΨm as −110 to −120 mV at 700 s (based on our values for % of minimal and maximal depolarization (R-123 fluorescence) and curve fitting for approximating conversion to ΔΨm (Huang et al., 2007)). This indicated that the driving force for both Ca2+ and H+ would remain inward despite H+ pumping at complex V to attempt to re-establish the ΔpHm gradient by compensating for the DNP-mediated H+ influx. Based on our estimated ΔΨm and the calculated Ca2+ and H+ equilibrium potentials driving both Ca2+ and H+ inward, we conclude that the outward H+ pumping by complex V (in addition to complexes I, III, IV) was
sufficient to compensate for the continued inward influx of H\(^+\) mediated by DNP thus restoring the \(\Delta \Psi_{m}\) gradient, but not the \(p\text{mf}\), and thus preventing activation of CHE\(_{m}\). Ru360 blocked this additional uptake of \(m\text{Ca}^{2+}\) by the MCU so that \([\text{Ca}^{2+}]_{m}\) did not continue to fall.

We predict that the major conduit for both fast and slow \(m\text{Ca}^{2+}\) influx under our experimental conditions occurs primarily via the MCU. The efflux of \(\text{Ca}^{2+}\) via the CHE\(_{m}\) is slow so we expect the re-uptake of \(\text{Ca}^{2+}\) via the MCU also would be slow. Although the \(J_{\text{CHE}}\) flux equation alone predicted that slow \(m\text{Ca}^{2+}\) influx could have occurred via CHE\(_{m}\) this is unsustainable if \([\text{H}^{+}]_{m} < [\text{H}^{+}]_{c}\). It is likely that voltage-dependent transport of \(\text{Ca}^{2+}\) inward is mostly responsible if there is at least a partially maintained \(\Delta \Psi_{m}\) (Nernst potentials) despite \(m\text{Ca}^{2+}\) extrusion via CHE\(_{m}\). Interestingly, under the condition of a fully polarized \(\Delta \Psi_{m}\) (no DNP and no OMN) (Figures 4A–D), \([\text{Ca}^{2+}]_{m}\) did not rise as it did in the presence of DNP (Figures 5A,B) when pH\(_{m}\) was maintained (Figures 7A,B).

This suggests that the secondary, slow uptake of \(m\text{Ca}^{2+}\) is indirectly related to \(\text{H}^{+}\) pumping due to the decline in \([\text{H}^{+}]_{m}\) to support the \(p\text{mf}\); the additional, slow \(m\text{Ca}^{2+}\) uptake by the MCU occurs because of the remaining charge gradient (\(\Delta \Psi_{m}\)) and \(\text{Ca}^{2+}\) chemical gradient.

In contrast, in the presence of OMN the kinetics of the delayed, slow \(m\text{Ca}^{2+}\) efflux via CHE\(_{m}\) under conditions of reduced \(\Delta \Psi_{m}\) and low pH\(_{m}\) are different. Our estimates of \(\Delta \Psi\) (Huang et al., 2007) of \(-60 \to -70\) mV at 700 s with OMN present are much lower than without OMN; this is likely due to dissipation of both \(\Delta \Psi_{m}\) and \(\Delta \Psi_{e}\) gradients because \(\text{H}^{+}\) pumping by complex V to support \(\Delta \text{pH}_{m}\) (and \(\Delta \Psi_{m}\)) was blocked. With OMN present, we estimated Nernst potentials of +13 and +6 mV, respectively, for \(\text{Ca}^{2+}\) and \(\text{H}^{+}\) (calculated at 700 s). Based on these Nernst potentials the driving forces for both \(\text{Ca}^{2+}\) and \(\text{H}^{+}\) would remain inward with OMN present, although their Nernst potentials are reversed compared to those in the absence of OMN. With the slow inward driving force for \(\text{H}^{+}\), unmatched by \(\text{H}^{+}\) pumping at complex V, pH\(_{m}\) approached pH\(_{c}\) and net \([\text{Ca}^{2+}]_{m}\) became lowered due to CHE\(_{m}\). Because inhibiting the MCU with Ru360 caused a robust increase in \([\text{Ca}^{2+}]_{c}\), this indicated the \(m\text{Ca}^{2+}\) efflux via CHE\(_{m}\) re-enters via the MCU unless this pathway is blocked. Under the unique condition of collapsed \(\Delta \Psi_{m}\) (100 \(\mu\)M DNP) and \(\Delta \text{pH}_{m}\) gradients, the secondary, slow uptake of \(m\text{Ca}^{2+}\) is absent (Figures 5A,B, black lines) so that the decline in \([\text{Ca}^{2+}]_{m}\) via CHE\(_{m}\) is fully observed (Figures 6A,B). Thus, a fall in pH\(_{c}\) strongly supports net \(m\text{Ca}^{2+}\) efflux via CHE\(_{m}\) even though the Nernst potentials indicate continued slow \(m\text{Ca}^{2+}\) influx (via MCU), which indeed occurs if there is remaining \(\Delta \Psi_{m}\). This means that net \(m\text{Ca}^{2+}\) efflux due to CHE\(_{m}\) (Figures 1, 2 and Supplementary Figure S.6) can be exposed by blocking the MCU after the initial bolus of CaCl\(_2\) to prevent further \(m\text{Ca}^{2+}\) uptake. CHE\(_{m}\) is predicted by the \(J_{\text{CHE}}\) equation to favor \(m\text{Ca}^{2+}\) efflux in exchange for \(m\text{H}^{+}\) influx based on matrix and buffer ion concentrations obtained with OMN present (Supplementary Figure S.10). Our prediction assumes that \(\text{Ca}^{2+}\) is exchanged for \(2\text{H}^{+}\) with equal affinities for both cations, or a higher affinity for \(\text{H}^{+}\).

Does Transient, Low Conductance mPTP Also Shuttle Ca\(^{2+}\) Across the IMM in These Experiments?

Inducing a partial \(\Delta \Psi_{m}\) depolarization was reported to cause a slow influx of \(m\text{Ca}^{2+}\) through low conductance mPTP opening (Saotome et al., 2005). CsA prevented both an increase in \(m\text{Ca}^{2+}\) and the release of the small molecule calcine during simulated ischemia in cardiomycytes suggesting that transient mPTP opening during ischemia allowed \(m\text{Ca}^{2+}\) influx (Seidlmayer et al., 2015). In the present study adding CaCl\(_2\) in the presence of DNP or an acidic buffer caused falls in \(\Delta \Psi_{m}\), so could low conductance mPTP opening have contributed to the secondary, slow increase or decrease in \(m\text{Ca}^{2+}\) we observed in the absence or presence of OMN? We doubt this for the following reasons: (1) ROS, adenine nucleotide levels, and other factors are believed to contribute to mPTP formation during IR injury. But in our study we did not utilize IR to induce increases in \(m\text{Ca}^{2+}\) and ROS or decreases in pH\(_{m}\) or \(\Delta \Psi_{m}\); (2) Altering just the driving force for protons across the IMM using DNP or external pH to exchange \(\text{Ca}^{2+}\) ion for \(\text{H}^{+}\) ions is not compatible for a mechanism to cause or prevent formation of mPTP but it is for inducing mCHE activity; (3) Transient mPTP formation is controversial and based largely on the utility of calcine or other small particles to mark mitochondrial release of small molecules with free flowing ions such as \(\text{Ca}^{2+}\) (Petronilli et al., 1999); (4) CsA-sensitive transient mPTP opening in individual mitochondria of cardiac myocytes is quite rare even with elevated \([\text{Ca}^{2+}]_{c}\) or exposure to \(\text{H}_2\text{O}_2\) (Lu et al., 2016); (4) CsA, or its inhibition of the peptidyl prolyl cis–trans isomerase activity of cyclophilin D, has known and unknown effects on mitochondrial function that may be unrelated to mPTP formation (Giorgio et al., 2010). Some interpretations on effects of cyclophilin D, via CsA, may pertain to changes in \(\text{Ca}^{2+}\) flux due to mCHE rather than transitional mPTP opening.

CSA Ceases Activation of CHE\(_{m}\)

CsA unexpectedly stopped the secondary CaCl\(_2\)-induced effects attributed to CHE\(_{m}\). CsA ceased all apparent CHE\(_{m}\) activity after adding CaCl\(_2\) when pH\(_{c}\) was 6.9 or 7.15, as assessed by measurements of extra-matrix \([\text{Ca}^{2+}]_{o}\), pH\(_{m}\), and \(\Delta \Psi_{m}\) (Supplementary Figures S.1A–C). CsA did not blunt the partial \(\Delta \Psi_{m}\) depolarization induced by DNP alone at pH\(_{c}\) 7.15, but did delay full \(\Delta \Psi_{m}\) depolarization induced by adding CaCl\(_2\) after DNP (Supplementary Figures S.7A,B). We do not believe the slow, attenuated decreases in extrusion of \(\text{Ca}^{2+}\) or slow fall in matrix pH observed in the presence of CsA are directly related to inhibition of permanent or transient mPTP opening. CsA did not directly prevent the \(\Delta \Psi_{m}\) depolarization that occurs during CHE\(_{m}\) or with addition of DNP alone. In the absence of CsA (Figures 1A–C), the observed changes in pH\(_{m}\), external \([\text{Ca}^{2+}]_{o}\), and \(\Delta \Psi_{m}\) induced by adding CaCl\(_2\) at extra-matrix pH 6.9, occurred very slowly over 25–30 min; this is indicative of slow cation exchange activity, not mPTP. Moreover, full \(\Delta \Psi_{m}\) depolarization was incomplete. CsA or its inhibition of cyclophilin D may obviate the conditions for matrix \(\text{H}^{+}\) influx or \(m\text{Ca}^{2+}\) efflux as well as \(\text{Ca}^{2+}\) recycling via the MCU. CsA
may prevent dissipation of the ΔpH gradient when the external pH is low. Since the results obtained in the presence of CsA are not compatible with preventing or delaying mPTP opening, the effects of CsA in this setting are unclear. Additional experiments will be needed to delineate the mechanism of CsA on preventing CHEm.

Other Potential Limitations of the Study

One important limitation of our study is the lack of a selective inhibitor of CHEm to aid in defining a more precise mechanism of action. Since the gene code for LETM1 and its protein sequence are known, point mutations (Tsai et al., 2014) and knockdowns (Jiang et al., 2013; Doonan et al., 2014) in mammalian models will be helpful to assess mechanisms and kinetics of this cation antiporter; but it remains unclear if LETM1 mediates CHEm exclusively, or at all. Another limitation is that mitochondria were examined outside their normal milieu so that the contributions of ATP synthesis by glycolysis and ATP hydrolysis for cellular metabolic support could not be assessed. Experiments were conducted at room temperature at which metabolism would be lower and buffering capacity different than at 37°C. The activity of CHEm during cardiac IR is unknown and mCa2+ efflux in cardiac mitochondria may occur primarily via the NCEm and not CHEm. Nevertheless, induction of CHEm could occur in vivo during IR injury under very specific circumstances of trans-IMM cationic imbalance. Evaluation of CHEm activity in cardiac myocytes after IR injury should be helpful to design protective strategies using this mechanism.

CONCLUSION

This study furnishes new insights into the bioenergetic and dynamic mechanisms in cardiac cell mitochondria of delayed, slow mCa2+ influx via the MCU, and mCa2+ efflux via the pHm-dependent CHEm. We demonstrate the kinetics of slow changes in mCa2+ loading/unloading that are linked to unblocked vs. blocked ATPm hydrolysis to decrease vs. increase pHm, respectively, after partial depolarization by DNP. We found that after an initial CaCl2 bolus there is slow mCa2+ influx (Ca2+ leak) through a Ru360-sensitive pathway if H+ pumping counteracts a H+ leak; however, there is net slow mCa2+ efflux that overrides ΔΨm-mediated Ca2+ influx that is activated via CHEm if there is a high ΔpHm gradient. In cardiac mitochondria, the rapid and slow mode of uptake of mCa2+ appears to be dependent primarily on the trans-membrane [Ca2+]m and ΔΨm gradients if outward H+ pumping counteracts inward H+ entry. In contrast, slow extrusion of mCa2+ by CHEm appears to be dependent primarily on the ΔH+ gradient induced by H+ influx/leak by DNP or by an acidic pHc. Importantly, if NCEm and NHEm are inactivated, blocking complex V might prevent delayed Ca2+ overload and instead stimulate Ca2+ extrusion via CHEm if there is an inward H+ leak. In intact cells, this can also serve to preserve TCA cycle-generated ATP, i.e., substrate level phosphorylation. Such passive homeostatic balance of Δ[Ca2+]m may occur during cardiac injury when there is mCa2+ loading accompanied by declines in NADH redox state, pHm, and Ψm. We conclude that the differences in the rate and magnitude of mCa2+ influx/efflux in partially depolarized mitochondria, in the presence or absence of F0F1–ATPase activity, can be ascribed to the underlying changes in pmf components, ΔpHm and ΔΨm, after rapid mCa2+ loading.

AUTHOR CONTRIBUTIONS

DS proposed the study and its initial design. JH conducted most experiments, carried out initial statistical analysis, constructed initial figures, and participated in design, interpretation and writing. AG, AB, CB, CN, and MB conducted supporting experiments. AC, W-MK, and RD participated in theoretical interpretation of the results and text editing. DS and AC supervised the team in subsequent experimental designs, interpretation of results, and manuscript construction and writing.

FUNDING

This project was supported by grants from the National Institutes of Health (R01HL089514, R01HL095122 and ST35HL072483) and the Veterans Administration (Merit Review BX820405P and BX002539).

ACKNOWLEDGMENTS

The authors wish to thank Drs. Mohammed Aldakkak, Jason Bazil, Shivendra G. Tewari, Venkat Pannala, Kalyan C. Vinnakota, and Gayathri Natarajan for their help and advice, laboratory manager James S. Heisner for technical assistance and supporting experiments, and medical student David S. Lambert for discussions on follow up studies.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2018.01914/full#supplementary-material

REFERENCES

Aldakkak, M., Stowe, D. F., Cheng, Q., Kwok, W. M., and Camara, A. K. (2010). Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening. *Am. J. Physiol. Cell Physiol.* 298, C530–C541. doi: 10.1152/ajpcell.00468.2009

Austin, S., Tavakoli, M., Pfeiffer, C., Seifert, J., Mattarei, A., De Stefani, D., et al. (2017). LETM1-mediated K+ and Na+ homeostasis regulates mitochondrial Ca2+ efflux. *Front. Physiol.* 8:839. doi: 10.3389/fphys.2017.00839

Azzone, G. F., Pozzan, T., Massari, S., Bragadin, M., and Dell’Antone, P. (1977). H+/site ratio and steady state distribution of divalent cations in mitochondria. *FEBS Lett.* 78, 21–24. doi: 10.1016/0014-5793(77)80264-0

Jiang, H., Oliver, G., Hurst, R., Zhao, Y., and Haumann, H. J. (2013). The role of IIm- and Ile-dependent Ca2+ uptake and subsequent mitochondrial Ca2+ release in the regulation of cardiac contractility and ischemia/reperfusion injury. *J. Gen. Physiol.* 142, 7–25. doi: 10.1085/jgp.201210856

Doonan, T. A., Molla, O., Shackleton, M., Stowe, D. F., and Semenza, G. L. (2014). Regulation of LETM1 and its putative function in cardiac mitochondrial Ca2+ uptake. *Heart Fail. Rev.* 19, 439–449. doi: 10.1007/s10741-014-9483-x

Haumann, H. J., Sasse, S., Sasse, M., and Tavakoli, M. (2010). Mitochondrial matrix ATP synthase activity is increased by fission-1 induced mitochondrial fragmentation. *J. Physiol.* 588, 3029–3042. doi: 10.1113/jphysiol.2010.187152

Jiang, H., Azzone, G. F., and Haumann, H. J. (2013). The role of IIm- and Ile-dependent Ca2+ uptake and subsequent mitochondrial Ca2+ release in the regulation of cardiac contractility and ischemia/reperfusion injury. *J. Gen. Physiol.* 142, 7–25. doi: 10.1085/jgp.201210856

Zhang, M., Jiang, H., Zhang, M., and Haumann, H. J. (2013). Mitochondrial Ca2+ uptake and release in the regulation of cardiac contractility and ischemia/reperfusion injury. *J. Gen. Physiol.* 142, 7–25. doi: 10.1085/jgp.201210856

Zhang, M., Jiang, H., Zhang, M., and Haumann, H. J. (2013). Mitochondrial Ca2+ uptake and release in the regulation of cardiac contractility and ischemia/reperfusion injury. *J. Gen. Physiol.* 142, 7–25. doi: 10.1085/jgp.201210856

Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2018.01914/full#supplementary-material

Funding

This project was supported by grants from the National Institutes of Health (R01HL089514, R01HL095122 and ST35HL072483) and the Veterans Administration (Merit Review BX820405P and BX002539).

Acknowledgments

The authors wish to thank Drs. Mohammed Aldakkak, Jason Bazil, Shivendra G. Tewari, Venkat Pannala, Kalyan C. Vinnakota, and Gayathri Natarajan for their help and advice, laboratory manager James S. Heisner for technical assistance and supporting experiments, and medical student David S. Lambert for discussions on follow up studies.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2018.01914/full#supplementary-material
Bains, R., Roe, M. C., Larsen, G. A., Berg-Johnsen, J., and Vinje, M. L. (2006). Volatile anaesthetics depolarize neural mitochondria by inhibition of the electron transport chain. Acta Anaesthesiol. Scand. 50, 572–579. doi: 10.1111/j.1399-6576.2006.00988.x

Bazl, J. N., Blomery, C. A., Pradhan, R. K., Camara, A. K., and Dash, R. K. (2013). Modeling the calcium sequestration system in isolated guinea pig cardiac mitochondria. J. Bioenerg. Biomembr. 45, 177–188. doi: 10.1007/s10863-012-9488-2

Bernardi, P. (1999). Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155. doi: 10.1152/physrev.1999.79.4.1127

Bernardi, P., Paradisi, V., Pozzan, T., and Azzone, G. F. (1984). Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red. Biochemistry 23, 1645–1651. doi: 10.1021/bi00303a010

Blomery, C. A., Bazl, J. N., Stowe, D. F., Pradhan, R. K., Dash, R. K., and Camara, A. K. (2013). Dynamic buffering of mitochondrial Ca^{2+} during Ca^{2+} uptake and Na^{+}-induced Ca^{2+} release. J. Bioenerg. Biomembr. 45, 189–202. doi: 10.1007/s10863-012-9483-7

Boelens, A. D., Pradhan, R. K., Blomery, C. A., Camara, A. K., and Dash, R. K., and Sheu, S. S. (2004). Intramitochondrial [Ca^{2+}] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation. Am. J. Physiol. 275(2 Pt 2), H484–H494. doi: 10.1152/ajpheart.1998.275.2.H484

Demareux, N., Poburko, D., and Frieden, M. (2009). Regulation of plasma membrane calcium fluxes by mitochondria. Biochim. Biophys. Acta 1787, 1383–1394. doi: 10.1016/j.bbabio.2008.12.012

Denton, R. M., McCormack, J. G., and Edgell, N. J. (1980). Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na^{+}, Mg^{2+} and ruthenium red on the Ca^{2+}-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem. J. 190, 107–117. doi: 10.1042/bj1900107

Di Lisa, F., and Bernardi, P. (1998). Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell. Biochem. 184, 379–391. doi: 10.1007/A1006810523586

Donaan, P. J., Chandramoorthy, H. C., Hoffman, N. E., Zhang, X., Cardenas, C., Shamnughapriya, S., et al. (2014). LETM1-dependent mitochondrial Ca^{2+} flux modulates cellular bioenergetics and proliferation. FASEB J. 28, 4936–4949. doi: 10.1096/fj.14-256433

Dzib, J., and Korzeniewski, B. (2008). Control over the contribution of the mitochondrial membrane potential (ΔΨ) and proton gradient (ΔpH) to the protonotive force (Δp). In silico studies. J. Biol. Chem. 283, 33322–33329. doi: 10.1074/jbc.M804204200

Froschauer, E., Nowikovsky, K., and Schreyen, R. J. (2005). Electroneutral K^{+}/H^{+} exchange in mitochondrial membrane vesicles involves Yol027/LETM1 proteins. Biochim. Biophys. Acta 1711, 41–48. doi: 10.1016/j.bbamem.2005.02.018

Gambassi, G., Hansford, R. G., Sollott, S. J., Hogue, B. A., Lakatta, E. G., and Capogrossi, M. C. (1993). Effects of acidosis on resting cytosolic and mitochondrial Ca^{2+} in mammalian myocardium. J. Gen. Physiol. 102, 575–597. doi: 10.1085/jgp.102.3.575

Giorgio, V., Soriano, M. E., Basso, E., Bisetto, E., Lippe, G., Forte, M. A., et al. (2010). Cyclophilin D in mitochondrial pathophysiology. Biochim. Biophys. Acta 1797, 1113–1118. doi: 10.1016/j.bbabio.2009.12.006

Grover, G. J., Atwal, K. S., Sleph, P. G., Wang, F. L., Monshizadeh, H., Monticello, T., et al. (2004). Excessive ATP hydrolysis in ischemic myocardium by mitochondrial FIT0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolyse activity. Am. J. Physiol. Heart Circ. Physiol. 287, H1747–H1755. doi: 10.1152/ajpheart.01019.2003

Gunter, K. K., Zuscik, M. J., and Gunter, T. E. (1991). The Na^{+}–independent Ca^{2+} efflux mechanism of liver mitochondria is not a passive Ca^{2+}/2H^{+} exchanger. J. Biol. Chem. 266, 21640–21648.

Gunter, T. E., Gunter, K. K., Sheu, S. S., and Gavin, C. E. (1994). Mitochondrial calcium transport: physiological and pathological relevance. Am. J. Physiol. 267(2 Pt 1), C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313

Gunter, T. E., and Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258(5 Pt 1), C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755

Gursahani, H. I., and Schaefer, S. (2004). Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am. J. Physiol. Heart Circ. Physiol. 287, H2659–H2665. doi: 10.1152/ajpheart.00344.2003

Haumann, J., Dash, R. K., Stowe, D. F., Boelens, A., Beard, D. A., and Camara, A. K. S. (2010). Mitochondrial free [Ca^{2+}] increases during ATP/ADP antipot and ADP phosphorylation: exploration of mechanisms. Biochem. J. 499, 997–1006. doi: 10.1042/bj20100406

Heinen, A., Camara, A. K., Aldakkak, M., Rhodes, S. S., Riess, M. L., and Stowe, D. F. (2007). Mitochondrial Ca^{2+}-induced K^{+} influx increases respiration and enhances ROS production while maintaining Amembrane potential. Am. J. Physiol. Cell Physiol. 292, C148–C160. doi: 10.1152/ajpcell.00215.2006

Hoppe, U. C. (2010). Mitochondrial calcium channels. FEBS Lett. 584, 1975–1981. doi: 10.1016/j.febslet.2010.04.017
Leyssens, A., Nowicky, A. V., Patterson, L., Crompton, M., and Duchen, M. R. (2005). Mitochondrial ion channels: A role in the regulation of intramitochondrial metabolism. Properties of the Ca$^{2+}$-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem. J. 190, 95–105. doi: 10.1042/bj90095

Nowikovsky, K., Froschauer, E. M., Zsurka, G., Samaj, J., Reipert, S., Kolisek, M., Metelkin, E., Demin, O., Kovacs, Z., and Chnopoulos, C. (2009). Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. FEBS Lett. 576, 6942–6955. doi: 10.1111/j.1742-4658.2009.07394.x

Murphy, E., and Steenbergen, C. (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581–609. doi: 10.1152/physrev.00024.2007

Nishizawa, T., Kita, S., Maturana, A. D., Furuya, N., Hirata, K., Kasuya, G., et al. (2013). Structural basis for the counter-transport mechanism of a H$^+/\text{Ca}^{2+}$ exchanger. Science 341, 168–172. doi: 10.1126/science.1239002

Nowikovsky, K., Froschauer, E. M., Zsurka, G., Samaj, J., Reipert, S., Kolesik, M., et al. (2004). The LETM1/YOL027 gene family encodes a factor of the mitochondrial K$^+$ homestasis with a potential role in the Woll-Hirschhorn syndrome. J. Biol. Chem. 279, 30307–30315. doi: 10.1074/jbc.M403607200

Nowikovsky, K., Pozzan, T., Rizzuto, R., Scorrano, L., and Bernardi, P. (2012). Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J. Gen. Physiol. 139, 445–454. doi: 10.1085/jgp.201110757

O’Rourke, B., Cortassa, S., and Aon, M. A. (2005). Mitochondrial ion channels: gatekeepers of life and death. Physiology 20, 303–315. doi: 10.1152/physiol.00200.2005

O-Uchi, J., Jhin, B. S., Hurst, S., Bissett, S., Gross, P., Chen, M., et al. (2013). Overexpression of ry Ranode receptor type 1 enhances mitochondrial fragmentation and Ca$^{2+}$-induced ATP production in cardiac H9c2 myoblasts. Am. J. Physiol. Heart Circ. Physiol. 305, H1736–H1751. doi: 10.1152/ajpheart.00094.2013

Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., et al. (1999). Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcine fluorescence. Biophys. J. 76, 725–734. doi: 10.1016/S0006-3495(97)72329-5

Pozzan, T., Bragadin, M., and Azzone, G. F. (1977). Disequilibrium between steady-state Ca$^{2+}$ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca$^{2+}$ efflux. Biochemistry 16, 5618–5625. doi: 10.1021/bi00644a036

Riess, M. L., Camara, A. K., Heinen, A., Eells, J. T., Henry, M. M., and Stowe, D. F. (2008). ATP channel openers have opposite effects on mitochondrial respiration under different energetic conditions. J. Cardiovasc. Pharmacol. 51, 483–491. doi: 10.1177/0022014707309314

Ryus, S. Y., Beutner, G., Kinnally, K. W., Dirksen, R. T., and Sheu, S. S. (2011). Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. J. Biol. Chem. 286, 21324–21329. doi: 10.1074/jbc.C111.245597

Saotome, M., Kato, H., Satoh, H., Nagasaka, S., Yoshihara, S., Terada, H., et al. (2005). Mitochondrial membrane potential modulates regulation of mitochondrial Ca$^{2+}$ in rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 288, H1820–H1828. doi: 10.1152/ajpheart.00589.2004

Seidlmayer, L. K., Juettner, V. K., Kettewell, S., Pavlov, E. V., Blatter, L. A., and Dedkova, E. N. (2015). Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca$^{2+}$, ROS, pH, and inorganic polyphosphate. Cardiovasc. Res. 106, 237–248. doi: 10.1093/cvr/cvq097

Shao, J., Fu, Z., Ji, Y., Guan, X., Guo, S., Ding, Z., et al. (2016). Leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) forms a Ca$^{2+}$/H$^+$ antiporter. Sci. Rep. 6, 34174. doi: 10.1038/srep34174

Stowe, D. F., and Camara, A. K. (2009). Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid. Redox. Signal. 11, 1373–1414. doi: 10.1089/ARS.2008.2331

Tewari, S. G., Camara, A. K., Stowe, D. F., and Dash, R. K. (2014). Computational analysis of Ca$^{2+}$ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca$^{2+}$ uptake. J. Physiol. 592(Pt 9), 1917–1930. doi: 10.1113/jphysiol.2013.268847

Tsai, M. F., Jiang, D., Zhao, L., Clapham, D., and Miller, C. (2014). Functional reconstitution of the mitochondrial Ca$^{2+}$/H$^+$ antiporter LETM1. J. Gen. Physiol. 143, 67–73. doi: 10.1085/jgp.2013110996

Valdez, L. B., Zaobornyj, T., and Boveris, A. (2006). Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim. Biophys. Acta 1757, 166–172. doi: 10.1016/j.bjba.2006.02.013

Wan, B., LaNoue, K. F., Cheung, J. Y., and Scaduto, R. C. Jr. (1989). Regulation of citric acid cycle by calcium. J. Biol. Chem. 264, 13430–13439.

Wingrove, D. E., Amatruda, J. M., and Gunter, T. E. (1984). Glucagon effects on the membrane potential and calcium uptake rate of rat liver mitochondria. J. Biol. Chem. 259, 9390–9394.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Citation: Haumann J, Camara A.KS, Gadicherla AK, Navarro CD, Boelens AD, Blomeyer CA, Dash RK, Boswell MR, Kwok W-M and Stowe DF (2019) Slow Ca$^{2+}$/H$^+$ Exchange in Cardiac Mitochondria Is Mediated by Ca$^{2+}$/H$^+$ Exchanger via MCU. Front. Physiol. 9:1914. doi: 10.3389/fphys.2018.01914

Copyright © 2019 Haumann, Camara, Gadicherla, Navarro, Boelens, Blomeyer, Dash, Boswell, Kwok and Stowe. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.