The habitat suitability of Timor friarbird (Philemon inornatus) in Western Timor Island, Indonesia

BLASIUS PAGA1,2,*, SATYAWAN PUDYATMOKO2, LIES RAHYU WIJAYANTI2, PRAMANA YUDA3
NURPANA SULAKSONO4

1Department of Forestry, Politeknik Pertanian Negeri Kupang. Jl. Prof Herman Yohaness, Lasiana, Kupang 85528, East Nusa Tenggara, Indonesia. Tel.: +62-380-881600, Fax.: +62-380-881601, *email: blasiuspaga@yahoo.co.id
2Faculty of Forestry, Universitas Gadjah Mada. Jl. Agro Bulaksumur, Sleman 55281, Yogyakarta, Indonesia
3Faculty of Biotechnology, Universitas Atma Jaya Yogyakarta. Jl. Babaksari 44, Sleman 66281, Yogyakarta, Indonesia
4Gunung Merbabu National Park. Jl. Merbabu No. 136, Boyolali 57316, Central Java, Indonesia

Abstract. Paga B, Pudyatmoko S, Wijayanti LR, Yuda P, Sulaksono N. 2022. The habitat suitability of Timor friarbird (Philemon inornatus) in Western Timor Island, Indonesia. Biodiversitas 23: 703-713. Timor friarbird is an endemic bird to Timor Island. The population of this bird has been declining due to land cover changes as a result of massive anthropogenic pressures. This study aimed to assess the suitability of Timor friarbird’s habitat by using 12 ecoregional variables. The sources of data included Sentinel 2A satellite imagery and remote sensing-based algorithms. The bird’s presence was analyzed by using a combination of line transect with point count methods. Ecological Niche Factor Analysis (ENFA) model was applied to obtain habitat suitability value as well as a coefficient of marginality (M) and specialization (S). These results showed that the Timor friarbird needs a habitat with a different value from the average of the entire habitat. High specialization value indicated that the species has a narrow ecological niche. Factors influencing habitat suitability included the distance from roads, the presence of mangroves, primary and secondary dryland forests, rivers, and low-density settlements. About 75% of the study area is classified as unsuitable habitat, and only 22% is suitable with range classes of suitability from marginal to optimal habitat. Areas with less anthropogenic pressure on the land cover will be preferred more by the bird. Improvement of unsuitable habitat and protection of suitable habitat, therefore, will be the most important strategy for Timor friarbird conservation.

Keywords: Habitat suitability, marginality and specialization, Timor friarbird

INTRODUCTION

Timor Island landscape was dominated by dry season forest and non-forest (Lesmana et al. 2000). The dry season forest harbors a high endemcity level of flora and fauna (Lesmana et al. 2000; Paga et al. 2021). However, the biogeography of dry season forests is only partially understood (Prieto-torres et al. 2018). Overall, there are 35 bird species on the island (Stattersfield et al. 1998), and seven endemic species, including Timor friarbird (Philemon inornatus) (Coates and Bishop 2000; Paga et al. 2021).

Distribution of Timor Friarbird birds is scattered on the island of Timor (Monk et al. 2000), from the lowlands to the highlands (2400 m asl) (Coates and Bishop 2000). It was first recognized in 1944 (Mayr 1944). According to the traditional life of the Timorese, this species has become an identity in their daily activities (Paga et al. 2021). The bird has a body size of 24 cm and is classified as a chirping bird (Coates and Bishop 2000).

Currently, the population density of this bird is very low with 1 individual per 2 Ha (Paga 2012). But, it has not been considered as a protected animal under the government regulation (No P.106/MENLHK/SETJEN/ KUM.1/12/2018) (KLHK 2018), and The International Union for Conservation of Nature’s (IUCN) has classified it as Least Concern (BirdLife International 2018). Many species of the Meliphagidae family are threatened by humans (Goulding et al. 2019). Various anthropogenic disturbances continue to occur in the form of hunting, forest conversion, and habitat fragmentation (Monk et al. 2000). This change causes declines in the forest (Miettinen et al. 2011, Margono et al. 2014), and strong habitat fragmentation (Fisher 2011), which can change the spatiotemporal of species occurrence (Barrantes et al. 2016).

Natural forests as sources of food, shelter, and reproductive sites of Timor friarbird have disappeared (Prior et al. 2013; Oppel et al. 2017; Bain et al. 2020). Unfortunately, the species adaptability to forest loss has not been known. This study is important in identifying the consequence of habitat change on the habitat suitability of the Timor friarbird. This information is the basic knowledge for effective decision-making for habitat conservation (Wauchope-drumm et al. 2019; Chiaante et al. 2019). This study aims to assess landscape factors that contribute to the habitat suitability of the Timor friarbird and to determine whether the western part of Timor Island is the optimum habitat for the species.

MATERIALS AND METHODS

Study area

The study area covers 1662.91 km2 of Kupang City and of Kupang District, East Nusa Tenggara Province,
Indonesia (Figure 1). The Kupang City has the highest population size and density (2413 people/km²), compared to Kupang District (73 people/km²) (BPS-Statistics of Nusa Tenggara Timur Province 2020).

The climate of the study area is characterized by a long dry season period of ±7-8 months (April-November), with an annual rainfall of ±1450 mm (Malyani et al. 2014). This area is one of the driest regions in Indonesia. About 18% of the area above 500 meters receives more rainfall, compared to ±60% of the steep hilly-highland (100-500 m) and ±22% area below 100 meters (Fisher 2012; Pujiono et al. 2019). Rainfall and topography are factors that affect the number of natural water sources, therefore, they limit the distribution of island dwellers, both humans and wildlife (Pudyatmoko 2017). The study area is surrounded by steep hills and highlands (Amfoang, Camplong, Amarasi).

Procedures

The ecological Niche Factor Analysis (ENFA) is applied to determine the habitat suitability of the bird (Hirzel et al. 2002; Hirzel et al. 2004). It was calculated by comparing the ecogeographical variables values or cell niche in one area species (species cells distribution) and the value of the total cells in the entire study area.

Data collection

Ecological Niche Factor Analysis (ENFA) requires two large sets of data; presence-only species data as the response and Ecogeographical Variables (EGV) (Hirzel and Arlettaz 2003; Dolgener et al. 2014).

Data of ecogeographical variable

The ecogeographical data were obtained from satellite imagery with a cell resolution of 10 meters, which covers 166,291 ha with a total of 16,629,100 grid cells. The image was processed as thematic raster map data for ecogeographic variables and a Binary or Boolean Raster Map for presence data (Hirzel et al. 2002). The satellite image used was Sentinel MSI 2A (Multiple Spectral Instrument-level 2A) (Immordino et al. 2019), which produced 12 raster bands, namely: (1) Coastal aerosol raster; (2) Blue; (3) Greens; (4) Red; (5) Red edge1; (6) Red edge2; (7) Red edge3; (7) Red edge4; (7) Red edge5; (7) Red edge6; (9) Water vapor; (11) Shortwave Infrared1; and (12) Shortwave Infrared2 (Suhet 2015). The main data sourced from Remote Sensing (RS) Sentinel 2A satellite imagery on October 15, 2020, with 0-3% cloud cover, were downloaded from http://scihub.copernicus.eu with software ESA-SNAP 8.0.3 (European Space Agency-Sentinel Applications Platform) (Mora 2019).

Figure 1. The study area in the western part of Timor Island, Indonesia (Yellow Square); 1. Bipolo; 2. Camplong; 3. Baumata; 4. Bandara El Tari, Kupang, East Nusa Tenggara Province, Indonesia
The four categories of an environmental descriptor included; (i) topography: elevation and slope (Erfanian et al. 2013; Mora 2019); (ii) biotic: EVI (enhanced vegetation index) (Lara et al. 2018; Vijith and Dodge-Wan 2020); distance to a secondary dryland forest (SDLF), primary dryland forest (PDLF), and mangrove, (iii) abiotic: normalized difference water index (NDWI) (Xue and Su 2017), and distance from natural or artificial water sources, (iv) anthropogenic: distances from settlements and roads and agricultural activities (Table 1).

Data of Timor friarbird presence

The collection of Timor friarbird presence data was carried out from August 2019 to October 2020, on three landscapes (Table 2) (Bibby et al. 2000). Transect lines were placed systematically based on the sampling plot design through Hawth’s Analysis Tools for ArcGIS 10.2. Meanwhile, point counts were placed randomly outside the study area as a response variable (Hirzel et al. 2002; Hirzel 2004). The transect lines were 500 m and between points on the line was 250 m. The birds observed in the transect line were recorded and the coordinates of their encounter were noted (Bibby et al. 2000). The transect length of each landscape was 2.2 km in Baumata, 3.95 km in Bipolo and 5.3 km in Camplong. The width of the transect was 100 m (Bibby et al. 2000; Buckland 2006). Total length of the transect in three landscapes was 133,250 m (Table 2). The number of total point count was 819 points. Observations were made at each point for 5-10 minutes. Bird observations were carried out between 05.00 am-06.00 pm. Bird observations were repeated three times (September 2019, January and August 2020) in each habitat type. Points of Timor Friarbird presence were modeled with a raster map (0;1) (0: absent, 1: present) in a pixel resolution of 10 x 10 m with a coordinate projection system [EPSG 32751] WGS 84/UTM zone 51S also known as Boolean map.

Data analysis

ENFA used two data sets. First, a global collection that stores descriptor values for all cells in the study area to describe habitat characteristics and human disturbance quantitatively. This data set is called Ecogeographical Variable (EGV). Second, the species data that has stored values on all cells occupied/not occupied by a bird in the study area as a response variable (Hirzel et al. 2002; Hirzel and Lay 2008; Erfanian et al. 2013).

Table 1. Echogeographic variable descriptors used in the ENFA analysis

No of variable (Var.)	Name of EGV variable	Description	Reference
1	Slope	Quantitative value of land slope	Hirzel et al. (2004); Erfanian et al. (2013)
2	Elevation	Quantitative value of altitude	Hirzel et al. (2004)
3	EVI	Optimized quantitative value of the greenness index	Lara et al. (2018); Vijith and Dodge-Wan (2020)
4	Agriculture	Quantitative value of the feature index of the agricultural or open land and non-crop vegetation	Erfanian et al. (2013); Mora (2019)
5	NDWI	Quantitative value of the water body feature index to describe the presence of water features	Xue and Su (2017)
6	Distance to SDLF	Euclidean distance from SDLF	Hirzel et al. (2004); Immordino et al. (2019)
7	Distance to PDLF	Euclidean distance from PDLF	Hirzel et al. (2004); Immordino et al. (2019)
8	Distance to mangrove	Euclidean distance from mangrove	Hirzel et al. (2004); Immordino et al. (2019)
9	Distance to artificial water source	Euclidean distance from dams, check dams and ponds	Hirzel et al. (2004); Immordino et al. (2019)
10	Distance to Settlement	Euclidean distance from settlement	Hirzel et al. (2004); Immordino et al. (2019)
11	Distance to road	Euclidean distance from main road	Hirzel et al. (2004); Immordino et al. (2019)
12	Distance to river	Euclidean distance from river	Hirzel et al. (2004); Immordino et al. (2019)

Table 2. Typology of the presence of the Timor friarbird estimation

Typology of location	Baumata landscape	Bipolo landscape	Camplong landscape
Grid area (ha)	374	1659	2184
Conservation area (ha)	36.21	308.60	696.60
Distance from Kupang (central point from Eltari airport) (km)	5.3	26.1	34.4
Topography	Low	Low-high	Middle-high
Elevation (m asl)	211-263	10-50	240-480
Habitat type	Lowland forest	Lowland forest	Lowland forest
Transect Length (m)	6800	31600	42000
Total Point Count	62	246	511
ENFA produced a global marginality coefficient (0-1), which described how far the optimum condition of the species is to the average of the study area, and specialization value (0-infinity). A marginalization value close to 0 indicates that the habitat characteristics favored by the species are identical to global habitat characteristics. It indicates a generalist species (Hirzel et al. 2002; 2004). Marginality value near 1 indicated that the species niche is different with the conditions of the study area. Negative results indicated that the species was present in habitat conditions below the global average habitat value, while positive results indicated that they preferred habitat values above the global average habitat value.

The ecogeographical variables contribution on the habitat suitability was examined from the score matrix from Biomapper software. Another output is the habitat suitability map with various classes (Hirzel et al. 2002). The habitat suitability map is a prognosis of habitat suitability classes and the extent of each class (Hirzel et al. 2002; 2006; Hirzel and Lay 2008).

Evaluation of model accuracy was measured by the values of absolute validation index (AVI), contrast validation index (CVI) and Boyce Index (Hirzel 2004; Hirzel et al. 2004). An AVI (0-1) indicates how well this model distinguishes areas of high with low habitat suitability (Hirzel and Arlettaz 2003; Hirzel 2006). Meanwhile, CVI (0-0.5) shows how accurate the model is (Hirzel and Arlettaz 2003), and boyce-index value assessed the extent of the predictive power (-1 to 1).

RESULTS AND DISCUSSION

The score of matrix marginality and specialization of the Timor friarbird’s habitat

The calculation of marginality and specialization matrix score for Timor Friarbird habitat is based on the 73 pixels where the species present, including Camplong 20, Bipolo 33, and Baumata 20 (Figure 2).

The overall marginality (M) is 0.92. It means that the Timor friarbird habitat was very different from the average conditions in the study area. The specialization (S) value is 8, or the tolerance value is 0.124, indicated a low tolerance and a narrow habitat niche. According to the calculation of the 12 existing factors, the first 3 contributed 93% of eigenvalues. The first was the marginality factor which contributed 41%, while the second and third factors of specialization contributed 52% (Table 3). The results explained 96.5% of information that can be used to determine the habitat suitability map.

Nine variables had negative values and three positives. A negative value indicated that the species preferred to choose a lower value than the average condition. The variables with a high absolute value were the distance from the road (-0.635), mangrove (-0.419), NDWI (-0.310), distance to a river (-0.297), slope (-0.293) and distance to PDLF (-0.212). Other variables, such as elevation (-0.115), agriculture (-0.102), distance from SDLF (0.063), distance to artificial water sources (-0.007) and distance to settlement (-0.102) showed an absolute value close to zero, which means that they were not significantly different from the average condition of the area.

Figure 2. Binary map of Timor friarbird presence in 73 locations; Baumata (20), Bipolo (33), and Camplong (20) Landscapes
Table 3. Marginality and specialization values of Timor friarbird's ecogeographical variables based on ENFA analysis results

No. var.	Ecogeography variable	Marginality	Spec.1	Spec.2	Spec.3
		Factor1	Factor2	Factor3	
1	Slope (5)	-0.293	0.050	0.008	
2	Elevation (7)	-0.115	0.205	0.355	
3	Evi (12)	0.279	-0.006	0.033	
4	Agriculture (10)	0.019	-0.028	-0.011	
5	NDWI (3)	-0.310	-0.023	0.037	
6	Distance to SDLF (11)	0.063	-0.424	0.028	
7	Distance to PDLF (6)	-0.212	0.369	0.090	
8	Distance to mangrove (2)	-0.419	-0.547	-0.703	
9	Distance to artificial water source/others (9)	-0.007	-0.029	-0.344	
10	Distance to settlement (8)	-0.102	0.458	-0.215	
11	Distance to road (1)	-0.635	-0.092	0.443	
12	Distance to river (4)	-0.297	0.347	-0.084	
	Marginality:	0.918			
	Specialisation:	8.083			
	Tolerance (1/S):	0.124			

Habitat suitability map
The main ENFA output showed that factors 1-3 had a 93% contribution percentage for the total of factor eigenvalues and was able to explain 96.5% information. Therefore, it was sufficient to make the Timor friarbird habitat suitability map (Figure 3).

Figure 3 showed the red area was not suitable habitat, while those closer to green were more suitable. The low suitability areas were dominant in the highlands (>200 m asl) of West Timor Island, such as hills, steep, and mountains around the Bipolo landscape from North to East. They are connected to the Fatuleu, Amfoang, Nunsanen, Camplong, as well as the southern part of Kupang bay in the Amarasi region, which are connected to the Baumata landscape. Conversely, suitable habitats (marginal to optimal) were dominant in the lowland areas (<200 m asl) of the Bipolo landscape and its surroundings compared to others on the west side of the Kupang bay lowlands bordering Kupang City and some lowlands in the western region of the Camplong bordering Naibonat, East Kupang Sub-district, Kupang District.

Validation model
The AVI value is 0.557 indicated that this model can distinguish areas of high from of low habitat suitability. Meanwhile, the CVI indicator: 0.414 and Boyce-index value: 0.652 showed that the model was accurate and the completed predictions were consistent with attendance distribution in the evaluation data set.

Reclassification of habitat suitability map
Reclassification in habitat suitability maps with a lower number of classes helped to identify the habitat space used by the bird. The habitat suitability map (HS; 0-100) (Figure 4) were divided into 5 classes, namely unsuitable, marginal, moderate suitability, optimally suitable (Figure 5). The size of each class is presented in Table 4.

Figure 3. Habitat suitability map of Timor friarbird in the Western Part of Timor Island, Indonesia
Table 4. Reclassification of Timor friarbird’s habitat suitability map

Reclassification	Intervals	Area (Ha)	Percentage (%)
Unsuitable	0-27	12453.81	74.7
Marginal	28-45	30261.75	18.2
Moderate suitable	46-68	4392.02	2.6
Suitable	69-90	1284.51	0.8
Optimal/high suitable	91-100	933.77	0.6
Cloud cover factor	-	5165.14	3.1
Total		166291	100

The total area of Timor friarbird habitat was 36,872.05 ha (22.2%), and consisted of a marginal class, moderate suitability, optimal, while not suitable habitat was 125,253.81 ha (77.1%).

The distribution of the Timor friarbird habitat was dominant in the Bipolo Landscape around the Bipolo Natural Recreation Area (NRA), Sulamu bordering the West and Central Fatuleu Sub-districts. The northern boundary of these two sub-districts had a mountainous topography and steep hills with the highest peak being Mount Fatuleu 875 m, while the southern boundary was a lowland area, covering 4000 ha of tidal mudflats with 1400 ha covered by mangrove forests (Trainor and Hidayat 2014). From the habitat evaluation grid covering an area of 3600 ha in each landscape (Figure 4), Bipolo had a larger habitat area for the Timor friarbird (2162.87 ha) compared to Camplong (1460.62 ha) and Baumata (1577.3 ha) (Figure 5). According to the total area of the habitat evaluation grid in the three landscapes, which was 10,800 Ha, 5599.2 Ha was unsuitable habitat, while 5200.8 ha was suitable in the form of various classes (Figure 6).
Discussion

Timor Friarbird has been known to coexist with humans and also predominated almost all lowlands in the area. The pattern of 'Mamar' a traditional wisdom agroforest around springs (Pujiono et al. 2021) settlements and agricultural activities around natural water sources or rivers, such as the Baumata and Camplong springs, 'Overlaps' wildlife habitats.

The birds known to live in lowland to highland habitats but prefer a relatively narrow environment. ENFA showed that the bird habitat was dominated by forested areas in the Bipolo landscape, compared to the other two locations (Camplong and Baumata). Their marginality value indicated that this species lives in a very special habitat relative to its reference set. Based on the ecological niche category, the Timor friarbird’s habitat had been classified as a "specialist species". This is consistent with Hirzel et al. (2002; 2004) that the specialist could only live in narrow habitat space. Previously, the distribution of Timor friarbird was restricted in geographical range (Coates and Bishop 2000).

The bird lives in a very limited range of habitats under conditions that differ partly from the study area. The specialist has been supported by its special characteristics in the form of a long and sturdy beak to pick up nectar on a large or deep flower crown like Bombax ceiba and insects on the bark of trees. Honeyeaters select flowers by size and sturdiness of available perches such as Eucalyptus spp., feed on large inflorescences (Recher and Davis 2011), which flowered more abundantly, had cup-shaped flowers (Recher et al. 2016). This is in line with Scoble and Clarke (2006), that nectarivorous birds (family Meliphagidae) prefer flowers that contain large amounts of nectar. It is a better predictor of bird visitation (Chmel et al. 2021).

The closer the road, the more it is selected by the birds in their daily activities. This species’s presence was highest near the road (3-37 m) compared to a distance of more than 142 m (Paga 2012). Timorese builds houses on the left and right sides of the road. Road verges in transformed landscapes have been important habitats for plants (Arenas et al. 2017; Grobler and Campbell 2022). These areas generally contain some trees and poles with a height of more than 12 m. More open canopy and forest edge plant blooms increase the abundance of nectarivorous species (Sementili-Cardoso et al. 2020). The vegetation is generally composed of flower-producing plant species and insects, such as Gliricidia sepium, Ceiba pentandra, Spondias sp., which were planted as a road boundary or a border of land ownership. Other tree species are Cassia siamea and Tectona grandis which are commonly found at the edges of PDLF and SDLF. The Timor friarbird requires a minimum of seven trees with pole and sapling-level vegetation as a food source and cover as a habitat (Paga et al. 2021).

The "specialist" bird has not chosen all roads as its habitat. It prefers a flat road located near the river and close to the mangrove forest and an area with low settlement density. Such road conditions are more dominantly found in Bipolo landscape, which is closer to the mangrove forest. Meanwhile, the Baumata and Camplong landscapes are located at a distance of more than 3 km from the mangrove forest. These landscape portraits have implications for the availability of the Timor friarbird habitat, which is dominantly wider in the Bipolo than Baumata and Camplong (Figures 5 and 6). Building main roads in natural habitats threaten the survival of species and communities (Maseko et al. 2017, 2019). The major roads with high-traffic experience have low encounters or negative bird abundance due to the noise (Carvalho and Mira 2011; Kociolek et al. 2011; Möller et al. 2011; Summers et al. 2011; McClure et al. 2013; D’Amico et al. 2015; Jack et al. 2015; Ascensao et al. 2019; Cooke et al. 2020; Schwartz et al. 2020). Meanwhile, smaller roads that are further away from noise have increased the presence of birds (Cooke et al. 2020). Anthropogenic noise and high-traffic roads tend to be avoided by songbirds (Polak 2014). In semi-arid and arid areas, noise pollution from roads and traffic interferes with the vocal communication of birds and can cause rapid genetic effects (Dean et al. 2019). The avian can be substantially affected by roads (Bishop and Brogan 2013), roads and wildlife have important implications and utility for the conservation of indigenous, or management of, exotic wildlife (Sadleir and Linklater 2016; Dean et al. 2019).

The distance from the mangrove affects the habitat suitability for the Timor friarbird. The closer to the mangrove forest, the higher the species presence to forage for flowers, insects, and fruit in the tight crevices of the mangrove canopy. This area is also the main habitat for estuarine crocodiles (Crocodylus porosus), so it is the safest area for the Timor Friarbird habitat from the threat of massive poaching that recently (Paga et al. 2021).

This species prefers locations with lower NDWI and near rivers. Artificial water sources had very little contribution to the suitability of the Timor friarbird habitat (Table 3). Rivers are beneficial to birds in hot conditions and contribute to habitat degradation (Landman et al. 2012; McKechnie et al. 2012; Abdulla et al. 2018). The scarcity of water resources is a major determinant of the structure of animal and plant communities in dry environments (Smit et al. 2019).

Areas close to riverbanks have sufficient groundwater supplies for vegetation growth in the dry season (Paga 2012). Riverbanks habitats have unique vegetation characteristics and capable of maintaining bird species diversity (Hillman et al. 2016; Nimmo et al. 2016; Zimbres et al. 2017; Liang et al. 2018), and beneficial for ecosystem function in the tropics (Luke et al. 2019) with stable temperatures (Li et al. 2013). At a distance less than 1 km from the river, the presence of the Timor friarbird was higher and decreased with a farther distance (>1 km) from the river (Paga 2012). The presence of such land cover becomes a suitable habitat space for the species to obtain food resources, cover, shelter, and nesting places.

Slope contributed to the suitability of the Timor friarbird’s habitat. This species preferred land that tends to be flat and lightly sloping, at 3-15% (flat to sloping land) (Paga 2012). The landscape with a dominant flat to gently sloping slope can be found in the Bipolo lowlands on the southern side of the Fatuleu Mountains, compared to Baumata and Camplong, which had a dominant topography.
of >15%. In the Baumata area, flat and sloping land can only be found around the Baumata NRA, covering 36.21 ha. Topographical complexity creates climate gradients that break down regional climate patterns into local scale microclimates (Dobrowski et al. 2011). These conditions create a variety of habitats and give species a greater opportunity to move with climate change. Topography is very important in an era of climate change because changes in temperature and rainfall regimes will significantly change forest ecosystems and species assemblages (Coristine and Kerr 2011; Robillard et al. 2015; Stralberg et al. 2015). Topography controls the hydrological conditions, where moisture and nutrients are required to support high-quality habitat that accumulates in the sunken lowlands (Bale et al. 2020).

The SDLF has no significant contribution on habitat suitability, meanwhile the distance variable from primary forest affected the habitat suitability. The closer to the primary forest, the higher the occupancy of this species. Specialist nectarivorous birds were most frequent in the primary forest and undisturbed forest (Alvarez-Alvarez et al. 2018; Chiawo et al. 2018). This species for foraging activities, especially insects in dense tree canopy crevices, during the day before resting under a dense vegetation canopy. They performed this behavior in order to avoid hot temperatures during the day. Preliminary studies have shown that birds and other animals living in hot and arid savanna environments use thermally buffered microsites to avoid extreme temperatures (Hetem et al. 2012; McKechnie et al. 2012; Potter et al. 2013; Briscoe et al. 2014, Scheffers et al. 2014). This area and its surroundings are significantly used by the species’ for rest and social activities after eating in the morning (Paga et al. 2021). Most songbird settle in breeding areas with uneven habitat quality and social attractiveness (Broughton et al. 2020). In order to conserve on a landscape scale of native bird species, a minimum forest cover thresholds required are at least 40-50% of primary forest types with a more open canopy cover (Martens et al. 2012; Banks-Leite et al. 2014; Morante-Filho et al. 2015; Ochoa-Quintero et al. 2015). Forest type and structural heterogeneity have a more direct influence on the distribution of bird species (Bale et al. 2020; Maseko et al. 2020).

Not all settlement areas were selected as "specialist" habitats, but only a few had characteristics suitable for this species, namely low-density areas, settlements close to roads with low levels of vehicle and human mobility. Furthermore, there is evergreen vegetation throughout the year on the left and right sides of the road forming a vegetation line as a forest area that function as natural or semi-natural habitats for birds (Bennett et al. 2014; Pasher et al. 2016; Zimbres et al. 2017; Sullivan et al. 2017; Hall et al. 2018). This area can function as a corridor for birds that move in and out of settlements with at least 7 individuals tree or pole vegetation as a source of feed and cover (Paga et al. 2021).

The greenery value as EVI has a significant effect on the Timor friarbird habitat suitability. This species prefers an area with higher EVI than average. This is because green areas provide more fruit and insects for the birds. The existence of food resources together with reproduction place, cover and shelter was very dependent on vegetation. Vegetation in tropical deciduous forests is influenced by rainfall patterns as a strong determinant of the new growth of this resource (Kushwaha et al. 2011; Butt et al. 2015).

Although many bird species avoid agricultural areas (Sekercioglu 2012), this species is commonly found in a specific agricultural area, such as cashew plantations. Their activities in the plantation include nectar forage, insects and cashew fruit, social activities under shady tree crowns, and shelter (Fontürbel et al. 2021).

According to this study, the landscape forest habitat of Bipolo to Tanjung Toda, which has been relatively undisturbed by anthropogenic activities, was a critical habitat for the survival of the endemic Timor friarbird bird population in the future. The relocation in the central government cluster of East Nusa Tenggara Province to the Nainonat area, East Kupang, near the Kupang Bay tidal lowlands, needs to consider the critical habitat existence of this species.

This species currently has Least Concern status by IUCN, however there are real threats that have caused its decline of the size of suitable habitat (only 22.2%). For the conservation of this specialist bird, a more systematic monitoring program is needed, and other bio-ecological studies as well as habitat development priorities in areas that support the availability of specific environments suitable for this species. These efforts require multi-stakeholder collaboration (government, tribal-cultural and religious communities, industry and business, environmental groups, research and education institutions) as well as cross-country (Indonesia and Timor Leste), because the species is located in two countries, one island as habitat for endemic bird species and on Timor island.

ACKNOWLEDGEMENTS

This study was funded by the 2020 Final Recognition Grant from Universitas Gadjah Mada (UGM), Yogakarta, Indonesia and the Domestic Postgraduate Education Scholarship (BPPDN), the Higher Education Director General of the Republic of Indonesia. The authors are grateful to the Forestry Planning Laboratory in the Department of Forestry, Kupang State Agricultural Polytechnic for assisting the equipment in this study. To Mr. Arief Budiman who has assisted in data analysis and searching for library sources in this writing.

REFERENCES

Abdu S, McKechnie AE, Lee ATK, Cunningham SJ. 2018. Can providing shade at water points help Kalahari birds beat the heat? J Arid Environ 152: 21-27. DOI: 10.1016/j.jaridenv.2018.01.018.

Alvarez-Alvarez EA, Corcuera P, Almazán-Núñez RC. 2018. Spatiotemporal variation in the structure and diet types of bird assemblages in tropical dry forest in southwestern Mexico. Wilson J Ornithol 130 (2): 457-469. DOI: 10.1676/17-009.1.

Arenas JM, Escudero A, Mola I, Casado MA. 2017. Roadsides: An opportunity for biodiversity conservation. Appl Veg Sci 20 (4): 527-537. DOI: 10.1111/avsc.12528.
Coristine LE, Kerr JT. 2011. Habitat loss, climate change, and emerging conservation challenges in Canada. Canadian J Zool 89 (5): 435-451. DOI: 10.1139/e11-023.

D’Amico M, Roman J, de los Reyes L, Revilla E. 2015. Vertebrate road-kill patterns in Mediterranean habitats: Who, when and where. Biol Conserv 152: 234-242. DOI: 10.1016/j.biocon.2015.06.010.

Dean WRJ, Seymour CL, Joseph GS, Foord SH. 2019. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11 (5): 81. DOI: 10.3390/j11050081.

Dolgner N, Freudenberg L, Schluck M, Schneeweiss N, Bissh PL, Tiedemann R. 2014. Environmental niche factor analysis (ENFA) relates environmental parameters to genetic diversity in an endangered amphibian, the fire-bellied toad (Bombina bombina). Conserv Genet 15 (1): 11-21. DOI: 10.1007/s10592-013-0517-4.

Dobrowolski SZ. 2011. A climatic basis for microrefugia: The influence of terrain on climate. Glob Change Biol 17 (2): 1022-1035. DOI: 10.1111/j.1365-2486.2010.02263.x.

Erfanian B, Mirkarimi SH, Mahani AS, Rezaei HR. 2013. A presence-only habitat suitability model for Persian leopard (Panthera pardus saxicolor) in Golestan National Park, Iran. Wild Biol 19 (2): 170-178. DOI: 10.2981/12-045.

Fisher RP. 2011. Socialising the Pixel, A Mixed Methods Approach to Assessing the State of Forests in West Timor. [Thesis]. Charles Darwin University, Darwin. [Australia]

Fisher R. 2012. Tropical forest monitoring, combining satellite and social data, to inform management and livelihood implications: Case studies from Indonesian West Timor.Intl J Appl Earth Obs 16 (1): 77-84. DOI: 10.1016/j.jag.2011.12.004.

Fontúrbel FE, Orellana JL, Rodríguez-Gómez GB, Tabiño CA, Castaño-Villa GJ. 2021. Habitat disturbance can alter forest understory bird activity patterns: A regional-scale assessment with camera-traps. For Ecol Manag 479: 118618. DOI: 10.1016/j.foreco.2020.118618.

Goulding W, Moss PT, Micalpine CA. 2019. An assessment of the Tagula Honeyeater Microtisreticulata inicia, a data deficient bird species in a Melanesian endemic hotspot. Bird Conserv Int 30: 1-20. DOI: 10.1080/09592709.2019.1600025.

Grollier BA, Campbell EE. 2022. Road and landscape-context impacts on bird pollination in fynbos of the southeastern Cape Floristic Region. S Afr J Bot 144: 664-678. DOI: 10.1016/j.sajb.2021.11.056.

Hall M, Nimmo D, Watson S, Bennett AF. 2018. Linear habitats in rural landscapes have complementary roles in bird conservation. Biodivers Conserv 27 (10): 2655-2625. DOI: 10.1007/s10531-018-1557-3.

Hetem RS, Strauss WM, Fick LG, Maloney SK, Meyer LCR, Shobrak S, Fuller A, Mitchell D. 2012. Activity re-assignment and microclimate selection of free-living Arabica oryx: Responses that could minimise the effects of climate change on homeostasis?. Zoology 115 (6): 411-416. DOI: 10.1007/s10592-012-0045-5.

Hillman EJ, Bigelow SG, Samuelson GM, Herzog PW, Hurty RA, Rood SB. 2016. Increasing river flow expands Riparian habitat: Influences of flow augmentation on channel form, Riparian vegetation and birds along the Little Bow River, Alberta. River Res App 32: 1687-1697. DOI: 10.1002/rra.3018.

Hirzel AH, Hauss J, Chessell D, Perrin N. 2002. Ecological niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 83 (2): 2027-2036. DOI: 10.2307/3071784.

Hirzel AH, Arlettaz R. 2003. Modeling habitat suitability for complex species distributions by environmental-distance geometric mean. Environ Manag 32 (5): 614-623. DOI: 10.1007/s00267-003-0048-3.

Hirzel AH. 2004. Biomapper 3.1 User’s Manual. Lab of Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Switzerland.

Hirzel AH, Posse B, Ogger PA, Crettenand Y, Glinz C, Arlettaz R. 2004. Ecological requirements of reintroduced species and the implications for release policy: The case of the bearded vulture. J Appl Ecol 41: 1103-1116. DOI: 10.1111/j.1365-2486.2004.01382.x.

Hirzel AH, Randin C, Guisan A. 2006. Evaluating the ability of habitat suitability models to predict species presence. Ecol Model 19: 142-152. DOI: 10.1016/j.ecolmodel.2006.05.017.

Hirzel AH, Lay GL. 2008. Habitat suitability modelling and niche theory. J Appl Ecol 45: 1372-1381. DOI: 10.1111/j.1365-2664.2008.01524.x.

Immordino F, Barsanti M, Cangiulietta E, Cocito S, Delbono I, Peirano A. 2019. Application of Sentinel-2 multispectral data for habitat mapping of Pacific Islands: Palau Republic (Micronesia, Pacific Ocean). J Mar Sci Eng 7 (9): 316. DOI: 10.3390/mce7090316.
Jack J, Rytwinski T, Fabrig L, Francis CM. 2015. Influence of traffic mortality on forest bird abundance. Biodivers Conserv 24 (6): 1507-1529. DOI: 10.1007/s10531-015-0873-0.

KLHK (Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia). 2018. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia tentang Wilayah Hidup Binaan Masyarakat. P.106/MENLHKSET/SET/JEN/KUM.1/12/2018. Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia, Jakarta. [Indonesian]

Kociolek AV, Clevenger AP, Clair CCST, Proppe DS. 2011. Effects of road networks on bird populations. Conserv Biol 25 (2): 241-249. DOI: 10.1111/j.1523-1739.2010.16365.X.

Kushwaha CP, Tripathi SK, Tripathi BD, Singh KP. 2011. Patterns of tree phenological diversity in dry tropics. Acta Ecologica Sinica 31 (4): 179-185. DOI: 10.1006/j.2011.04.003.

Landman M, Schoeman D, Hall-Martin AJ, Kerley GHI, Matt H. 2012. Understanding long-term variations in an elephant p pouss effect to manage impacts. Plos One 7 (9): e45334. DOI: 10.1371/journal.pone.0045334.

Lara C, Saldias GS, Paredes A, Cazelles B, Broitman BR. 2018. Temporal variability of MODIS phenological indices in the temperate rainforest of Northern Patagonia. Remote Sens 10 (956): 1-12. DOI: 10.3390/rs10060956.

Lesmana D, Triboir T, Gaur A. 2000. Arti Penting Hutan di Daratan Timor Bagian Barat: Telaah Awal Informasi Keaneakarasan Hayati dan Sosial-Ekonomi di Pulau Timor (Propinsi Nusa Tenggara Timur). Bird Life Indonesia. [Indonesian]

Li L, Wang Z, Zerbe S, Absudalish N, Tang Z, Ma M, Yin L, Mohammat A, Han W, Fang J. 2013. Species richness patterns and water-energy dynamics in the drylands of northwest China. Plos One 8: e66450. DOI: 10.1371/journal.pone.0066450.

Liang C, Feng G, Si X, Mao L, Yang G, Svenning JC, Yang J. 2018. Bird species richness is associated with phylogenetic relatedness, plant species richness, and altitudinal range in Inner Mongolia. Ecol Evol 8: 53-58. DOI: 10.1002/ece3.3606.

Luke SH, Slade EM, Gray CL, Annamalai KV, Drewer J, Williamson J, Agama AL, Ationg M, Mitchell SL, Vairapan CS, Strebfig MJ. 2019. Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. J Appl Ecol 56: 85-92. DOI: 10.1111/1365-2664.13280.

Martenstsen AC, Ribeiro MC, Banks-Leite C, Prado PL, Metzger JP. 2012. Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26 (6): 1100-1111. DOI: 10.1111/j.1523-1739.2012.01940.x.

Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. 2014. Primary forest cover loss in Indonesia over 2000-2012. Nat Clim Change 4 (8): 730-735. DOI: 10.1038/nclimate2277.

Maseko MST, Desb T, Kalle R, Downs CT. 2017. Response of Crested Guinea-fowl (Guttera edouardi), a forest specialist, to spatial variation in land use in Simangaliso Wetland Park, South Africa. J Ornithol 158 (2): 469-477. DOI: 10.1007/s10336-016-1406-7.

Maseko MST, Zungu MM, Smith DAE, Smith YCE, Downs CT. 2020. Effects of habitat-patch size and patch isolation on the diversity of forest birds in the urban-forest mosaic of Durban, South Africa. Urban Ecosyst. DOI: 10.1007/s11212-020-00945-x.

Mayr E. 1944. The birds of Timor and Sumba. Bull Am Mus Nat Hist 8 (2): 123-194.

McKechnie AE, Hockey PAR, Wolf BO. 2012. Feeling the heat: Australian landbirds and climate change. Emu 112 (2): 1-7. DOI: 10.1071/MU11122_ED.

McCleire CJW, Ware HE, Carlisle J, Kaltenecker G, Barber JR. 2013. An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proc Royal Soc B 280 (1773): 20132290. DOI: 10.1098/rspb.2013.2290.

Miettinen J, Shi C, Liew SC. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biol 17 (7): 2261-2270. DOI: 10.1111/j.1365-2486.2011.02398.x.

Müller AP, Erzinger H, Erzinger J. 2011. A behavioral ecology approach to traffic effects and specific variation in causes of traffic casualties among birds. Zool Res 32 (2): 115-127. DOI: 10.3724/SP.J.1141.2011.02115.

Monk AK, Fretes YD, Rekohudjarto-Lilley G. 2000. Ekologi Nusa Tenggara dan Maluku. Kartikaasri SN ed. V. Prenhallindo, Jakarta. Indonesia.

Mora B. 2019. Sentinel Application Platform (SNAP) - European Space Agency, MedRIN meeting, Paphos, Cyprus, 20 March 2019.
Schwartz ALW, Shilling FM, Perkins SE. 2020. The value of monitoring wildlife roadkill. Eur J Wildl Res 66 (1): 1-12. DOI: 10.1007/s10344-019-1357-4.

Scoble J, Clarke MF. 2006. Nectar availability and flower choice by eastern spinebills foraging on mountain correa. Anim Behav 72 (6): 1387-1394. DOI: 10.1016/j.anbehav.2006.03.024.

Sekercioglu CH. 2012. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol 153 (S1): 153-161. DOI: 10.1007/s10336-012-0869-4.

Sementili-Cardoso G, Vianna RM, Ottoncar RGC, Donatelli RJ. 2020. Differences in the bird community between a regenerating area and a native forest in Southeastern Brazil. J Nat Hist 54 (45-46): 2937-2959. DOI: 10.1080/00222933.2021.188738.

Smit B, Woodborne S, Wolf BO, McKechnie AE. 2019. Differences in the use of surface water resources by desert birds are revealed using isotopic tracers. Auk 136 (1): 1-13. DOI: 10.1093/auk/uky005.

Stattersfield AJ, Crosby MJ, Long AJ, Wege DC, Rayner AP. 1998. Endemic Bird Areas Biodiversity Conservation (7th ed.). BirdLife International’s Biodiversity Programme, Cambridge, UK.

Stralberg D, Matsuoka SM, Hamann A, Bayne EM, Sólymos P, Schmiegelow FKA, Wang X, Cumming SG, Song SJ. 2015. Projecting boreal bird responses to climate change: The signal exceeds the noise. Ecol Appl 25 (1): 52-69. DOI: 10.1890/13-2289.1.

Suhet. 2015. Sentinel-2 User Handbook (2nd ed). ESA Eur Space Agency, France.

Summers PD, Cunnington GL, Fahrig L. 2011. Are the negative effects of roads on breeding birds caused by traffic noise?. J Appl Ecol 8 (6): 1527-1534. DOI: 10.1111/j.1365-2664.2011.02041.x.

Sullivan MJP, Pearce-Higgins JW, Newson SE, Scholefield P, Brereton T, Oliver TH. 2017. A national-scale model of linear features improves predictions of farmland biodiversity. J Appl Ecol 54 (6): 1776-1784. DOI: 10.1111/1365-2664.12912.

Trainor CR, Hidayat O. 2014. Kupang Bay: An internationally significant wetland in West Timor, Indonesia. Birding ASIA 21: 45-50.

Vijith H, Dodge-Wan D. 2020. Applicability of MODIS land cover and Enhanced Vegetation Index (EVI) for the assessment of spatial and temporal changes in strength of vegetation in tropical rainforest region of Borneo. Remote Sens Appl Soc Environ 18 (10031): 1-12. DOI: 10.1016/j.rsase.2020.100311.

Wauchope-drumm M, Bentley J, Beaumont LJ, Baumgartner JB, Nipperess DA. 2019. Using a species distribution model to guide NSW surveys of the long-footed potoroo (Potorous longipes). Austral Ecol 45: 1-12. DOI: 10.1111/ace.12804.

Xue J, Su B. 2017. Significant remote sensing vegetation indices: A review of developments and applications. J Sensors 1353691: 1-17. DOI: 10.1155/2017/1353691.

Zimbres B, Peres CA, Machado RB. 2017. Terrestrial mammal responses to habitat structure and quality of remnant riparian forests in an Amazonian cattle-ranching landscape. Biol Conserv 206: 283-292. DOI: 10.1016/j.biocon.2016.11.033.