NAFSSR: Stereo Image Super-Resolution Using NAFNet

Xiaojie Chu* Liangyu Chen* Wenqing Yu
Background

- Stereo Image Super-resolution

- Low-resolution
 - Left-view
 - intra-view
 - Right-view
 - intra-view

- Cross-view

- High-resolution
Overview

NAFSSR

NAFBlock: Blocks from NAFNet
SCAM: Stereo Cross-Attention Modules
Architectures

- NAFBlock [1]

\(\text{SimpleGate}(x) = x_1 \times x_2, \text{ where } [x_1, x_2] = \text{split}(x, \text{dim}=\text{channel}) \)

[1] Chen, Liangyu, et al. "Simple baselines for image restoration." arXiv preprint arXiv:2204.04676 (2022).
Architectures

- Stereo Cross Attention Module (SCAM)
 - Scaled dot-Product Attention
 - Attention(Q, K, V) = $\text{softmax}(QK^T/\sqrt{C})V$
 - Bidirectional Cross Attention
 - $F_{R \rightarrow L} = \text{Attention}(W_1^{L}X_L, W_1^{R}X_R, W_2^{R}X_R)$
 - $F_{L \rightarrow R} = \text{Attention}(W_1^{R}X_R, W_1^{L}X_L, W_2^{L}X_L)$
 - Fusion
 - $F_L = \gamma_L F_{R \rightarrow L} + X_L$
 - $F_R = \gamma_R F_{L \rightarrow R} + X_R$

![Diagram of Architectures](image-url)
Architectures

- Stereo Cross Attention Module (SCAM)
 - Scaled dot-Product Attention
 - $\text{Attention}(Q, K, V) = \text{softmax}(QK^T / \sqrt{C})V$

- Bidirectional Cross Attention
 - $F_{R \rightarrow L} = \text{Attention}(W^L_1X_L, W^R_1X_R, W^R_2X_R)$
 - $F_{L \rightarrow R} = \text{Attention}(W^R_1X_R, W^L_1X_L, W^L_2X_L)$

- Attends to corresponding features along the horizontal epipolar line
- since image pairs has horizontal disparities only
Architectures

- NAFSSR Family

Models	#Channels	#Blocks	#Params
NAFSSR-T	$C = 48$	$N = 16$	0.46M
NAFSSR-S	$C = 64$	$N = 32$	1.56M
NAFSSR-B	$C = 96$	$N = 64$	6.80M
Tricks

- Data Augmentation

	hflip	vflip	channel shuffle	PSNR	ΔPSNR
	✗	✗	✗	23.43	-
✗	✓	✗	✗	23.64	+0.21
✗	✓	✓	✗	23.63	+0.20
✗	✗	✓	✓	23.62	+0.19
✓	✓	✓	✗	23.73	+0.30
✓	✓	✓	✓	23.82	+0.39
Tricks

- Stochastic depth [2] for better generality.

Model	Training Stoch. Depth	Test TLSC	In-distribution Flickr1024 [32]	Out-distribution KITTI 2012 [9]	KITTI 2015 [25]	Middlebury [27]	Average
NAFSSR-S	✓	✓	23.85	26.91	26.74	29.63	27.76
	✓	✓	23.82 (−0.03)	26.88 (−0.03)	26.71 (−0.03)	29.61 (−0.02)	27.73 (−0.03)
	✓	✓	23.78 (−0.07)	26.86 (−0.05)	26.67 (−0.07)	29.54 (−0.09)	27.69 (−0.07)
NAFSSR-B	✓	✓	24.10	27.05	26.89	29.93	27.96
	✓	✓	23.98 (−0.11)	26.92 (−0.13)	26.70 (−0.19)	29.78 (−0.15)	27.80 (−0.16)
	✓	✓	24.01 (−0.09)	27.00 (−0.05)	26.80 (−0.09)	29.81 (−0.12)	27.87 (−0.09)

[2] Huang, Gao, et al. “Deep networks with stochastic depth.” European conference on computer vision. Springer, Cham, 2016.
Tricks

- Train-test Inconsistency: Patches vs. Image
- Inference: Test-time Local Statistics Converter (TLSC) [3]

Model	Training Stoch. Depth	Test TLSC	In-distribution Flickr1024 [32]	Out-distribution	KITTI 2012 [9]	KITTI 2015 [25]	Middlebury [27]	Average
NAFSSR-S	✓	✓	23.85	26.91	26.74	29.63	27.76	
	✓		23.82 (-0.03)	26.88 (-0.03)	26.71 (-0.03)	29.61 (-0.02)	27.73 (-0.03)	
	✓		23.78 (-0.07)	26.86 (-0.05)	26.67 (-0.07)	29.54 (-0.09)	27.69 (-0.07)	
NAFSSR-B	✓	✓	24.10	27.05	26.89	29.93	27.96	
	✓		23.98 (-0.11)	26.92 (-0.13)	26.70 (-0.19)	29.78 (-0.15)	27.80 (-0.16)	
	✓		24.01 (-0.09)	27.00 (-0.05)	26.80 (-0.09)	29.81 (-0.12)	27.87 (-0.09)	

[3] Chu, Xiaojie, et al. "Revisiting Global Statistics Aggregation for Improving Image Restoration." arXiv preprint arXiv:2112.04491 (2021).
Results

- More Stereo Cross Attention Modules (SCAM), better results

#SCAM	0	1	4	8	16	32
PSNR	23.56	23.74	23.76	23.79	23.82	23.85
ΔPSNR	-	+0.18	+0.20	+0.23	+0.26	+0.29
Results

• #Parameters vs. PSNR
Results

- Runtime speedup

Models	PSNR	Time (ms)	Speedup
SSRDEFNet [4]	23.59	238.5	1.00×
NAFSSR-T (Ours)	23.64 (+0.05)	46.7	5.11×
NAFSSR-S (Ours)	23.88 (+0.29)	91.8	2.60×
NAFSSR-B (Ours)	24.07 (+0.48)	224.9	1.06×
Visual Examples
NTIRE Stereo Image Super-Resolution Challenge

• Additional Tricks for challenge
 • Further enlarge model by increasing its depth and width
 • Test-time data augmentations for self-ensemble [4]
 • Ensemble multiple models trained with various hyper-parameters [5]

• Result
 • 24.239 dB PSNR on the validation set
 • 23.787 dB PSNR on the test set (First place)

[4] Lim, Bee, et al. "Enhanced deep residual networks for single image super-resolution." CVPRW, 2017.
[5] Wortsman, Mitchell, et al. "Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time." arXiv preprint arXiv:2203.05482 (2022).
Summary

• NAFSSR
 • Single View: NAFNet Block [1]
 • Cross-view: Stereo Cross Attention Module

• Tricks:
 • Training
 • Data augmentation: flip + RGB shuffle
 • Regularization: stochastic depth [2]
 • Inference
 • Test-time Local Statistics Converter [3]

[1] Chen, Liangyu, et al. "Simple baselines for image restoration." arXiv preprint arXiv:2204.04676 (2022).
[2] Huang, Gao, et al. "Deep networks with stochastic depth." ECCV, 2016.
[3] Chu, Xiaojie, et al. "Revisiting Global Statistics Aggregation for Improving Image Restoration." arXiv preprint arXiv:2112.04491 (2021).

https://github.com/megvii-research/NAFNet