New fossil discoveries illustrate the diversity of past terrestrial ecosystems in New Caledonia

Romain Garrouste, Jérôme Munzinger, Andrew Leslie, Jessica Fisher, Nicolas Folcher, Emma Locatelli, Wyndy Foy, Thibault Chaillon, David J. Cantrill, Pierre Maurizot, Dominique Cluzel, Porter P. Lowry, II, Peter Crane, Jean-Jacques Bahain, Pierre Voinchet, Hervé Jourdan, Philippe Grandcolas and André Nel

New Caledonia was, until recently, considered an old continental island harbouring a rich biota with outstanding Gondwanan relicts. However, deep marine sedimentation and tectonic evidence suggest complete submergence of the island during the latest Cretaceous to the Paleocene. Molecular phylogenies provide evidence for some deeply diverging clades that may predate the Eocene and abundant post-Oligocene colonisation events. Extinction and colonization biases, as well as survival of some groups in refuges on neighbouring paleo-islands, may have obscured biogeographic trends over long time scales. Fossil data are therefore crucial for understanding the history of the New Caledonian biota, but occurrences are sparse and have received only limited attention. Here we describe five exceptional fossil assemblages that provide important new insights into New Caledonia’s terrestrial paleobiota from three key time intervals: prior to the submersion of the island, following re-emergence, and prior to Pleistocene climatic shifts. These will be of major importance for elucidating changes in New Caledonia’s floristic composition over time.

Integrating biological and geological knowledge is crucial for understanding biotic evolution and recent reviews have emphasized the need for additional paleontological data to enable more powerful tests of evolutionary and biogeographic hypotheses. Despite New Caledonia’s importance as a global biodiversity hotspot, such an integrative synthesis has not yet been fully developed for this Pacific archipelago, mainly because of a lack of detailed paleontological studies. New Caledonia has long fascinated biologists because of its isolated flora and fauna, but a deep understanding of the evolution and assembly of this biota appeared to be in conflict regarding its age. The New Caledonian biota contains representatives of some deep-branching lineages, including Amborella, the sister group of all other Angiosperms. However, recent geophysical, tectonic, and sedimentological studies suggest that the extant island is not nearly as old as many of these lineages and that the ancestors of its modern biota must have migrated more recently from other regions. These studies suggest a complex history, with the complete submergence of New Caledonia during the Late Cretaceous and Early Paleogene, possible sporadic re-emergence(s) during pre- and syn-obduction tectonic events between ~ 50 MY (millions of years) and ~ 34 MY, and finally, full emergence following subduction at some time between 34 and 25 MY. Following this period of uplift, an ultramafic regolith...
developed over peridotites throughout the island, and owing to its specific geochemical features, dramatically controlled terrestrial colonization. Although evidence for erosion of an older regolith was described from early Miocene sediments10,11, the ancient character of regolith development has generally been overlooked.

The geology of New Caledonia has been considered unfavourable for fossilisation. Sediments from the Permian to the Quaternary are present on the main island, but many are metamorphosed and large areas are covered by mantle peridotites resulting from obduction. Terrestrial fossil assemblages are therefore rare and very few have been documented. Among animals, some Holocene vertebrates and land snails are known12–14. Plants are better represented, but mainly by pollen and wood from scattered Permian to Holocene deposits15–22. Macrofloral remains are likewise rare, with a few Late Cretaceous angiosperms and leaves of the gymnosperm \textit{Podozamites} mentioned in old literature21, together with a probable leaf of Ginkgoales and leaves of \textit{Taeuopteris} from the Triassic18. A variety of leaves, stems, and unidentified roots have also been reported from weathered peridotites23, but more precise identifications were not possible. Subfossil copal resins have also been found, but without identifiable inclusions (RG pers. obs.). This record is too sparse to provide a clear understanding of the evolution and assembly of terrestrial paleobiotas before and after New Caledonia’s submersion and subsequent re-emergence24.

To address the lack of a detailed fossil terrestrial record, our research focused on potentially fossiliferous terrestrial sedimentary outcrops, particularly those likely to preserve plants and insects. New fossil assemblages were discovered across New Caledonia, from the Upper Cretaceous ‘Formation à charbon’ of Moindou (northern part of South Province), the Upper Cretaceous of Haut-Robinson (Mont-Dore municipality), the lower Miocene of Nepoui (southwest coast of North Province), and the middle (?) Miocene of the Fluvio-Lacustrine Formation (Madeleine falls and ‘Pont des Japonais’ outcrops, South Province) (Fig. 1 and Supplementary Figs. 1,4,7,9).

These discoveries dramatically expand the known diversity of plants and insects from the Cretaceous through the Neogene, provide important insights into past ecosystems on New Caledonia, and show that the island does indeed possess a diverse and widespread paleontological record that helps to illuminate key moments in its geological, evolutionary, and ecological history. These floras and faunas serve as a crucial first step towards a more integrated understanding of the complicated history of the New Caledonian biota.

Results

The geologic context of the newly discovered fossil-bearing outcrops found across New Caledonia (Fig. 1, and Supplementary Figs. 1,4,6,8), their basic features, and their preserved biota are discussed below. As a matter of reference, the New Caledonia archipelago comprises a main island (Grande Terre), its offshore extensions (Isle of Pines and Belep Islands), and a girdle of smaller and much younger islands (Loyalty Islands) that extends
parallel to and east of the main island. The Grande Terre is the emerged northernmost part of the ‘microcontinent’ Zealandia25.

Late Cretaceous of Haute-Nessadiou (H-Ness) and Haut-Robinson (H-Rob). The Upper Cretaceous sedimentary cover of Grande Terre consists of a passive margin megasequence, with coarse detrital terrestrial to marine peri-continental sediments at its base and fine-grained marine transgressive deposits towards the top. We located several fossiliferous outcrops within this sequence in the Haute-Nessadiou area between village of La Foa, Boghen pass, and the village of Moindou. This area contains a NW–SE striking strip of Upper Cretaceous mudstones and thin sandstones, 4 km wide and 16 km long (Formation à charbon, Supplementary Fig. 1) that reflect distal fluvial deposition. Marine bivalves and gastropods indicate deposition in estuarine marine environments while coal seams and other mudstone units contain in situ root horizons, indicating terrestrial deposition and development of soils. Marine invertebrate biostratigraphy (Supplementary Information) supports a Turonian to late Santonian age (~ 90–85 MY). Plant fossils occur in millimeter-thick argillite beds in several places and are dominated by conifers, including a woody ovuliferous cone scale with a distinct free tip consistent with the family Araucariaceae, and numerous cone scales in a complex expanded distally to form a distinct umbo as in extant genera such as *Sequoia* and *Sequoiadendron*, indicative of taxodiaceous Cupressaceae (Fig. 2a). Conifer foliage includes small needle-leaved taxa as well as broader leaved forms with a single midvein. One poorly preserved fern specimen and a possible cycad sporophyll with attached seeds were also recovered. At least five taxa of flowering plants (angiosperms) have been found in these deposits, including forms with both entire and toothed margins from moderately sized to large leaves (Fig. 2b-d). Precise systematic placement of these plant fossils is difficult because the cuticles and fine venation are not preserved, and because of the fragmentary nature of the material and thermal alteration of the sediments. No fossil insects were recovered from these sediments, but a number of the angiosperm leaves show marginal feeding traces, galling, and mining made by insects (Fig. 2c,e). Typically, arthropod remains are rare in soft mudstone and non-consolidated sandstone sediments26.

The Haut-Robinson plant outcrop is contained within the same general sequence as that at Haute-Nessadiou. Here the base of the Upper Cretaceous succession is interbedded with volcanic agglomerates, flows, and sills 10 to 50 m thick (Supplementary Fig. 1) derived from the trachyte and rhyolite flows that directly overlie the Jurassic basement27. Fluvial sandstones and siltstones in this outcrop contain abundant small woody stems and other fragmentary evidence of vegetation. Leaf fossils are rare and are confined to a few horizons. The material includes at least three taxa of ferns assigned to *Microphyllopteris*, *Cladophlebis*, and *Sphenopteris* (Supplementary

Figure 2. Fossil plants and insect activities. (a) cone of taxodiaceous Cupressaceae; (b–d) leaves; (e) insect activities on a leaf (Late Cretaceous, Haute Nessadiou); (e) insect activities on leaves (Late Cretaceous, Haut-Robinson); (f, g) insect activities on leaves (Nepoui, Early Miocene); Copyright R. Garrouste. Scale bars = 1 cm.
at the Haut-Robinson plant outcrop, but the fossil leaves show numerous mines and galls. Nessadiou Formation, probably due to the more proximal mode of deposition. No fossil insects have been found steeply/shallowly angled venation. The flora of the Haut-Robinson outcrop is distinct from that of the Haute-

The Fluvio-Lacustrine formation (Fig. 1) (Supplementary Information). This formation comprises the sedimentary infill of depressions mainly located in the Massif du Sud in southern Grande Terre, which includes the Yaté Basin, Plaine des Lacs, Rivière des Pirogues, and Creek Pernod. This unit, 70 to 80 m thick, formed from the erosion of weathering profiles that developed over peridotites or gabbro cumulates. It also displays evidence of hydromorph (palustrine) pedogenesis with horizons of ferric crust and includes plant roots encrusted with iron oxides, as well as localized layers that are rich in well-preserved fossil plant remains (Figs. 3 and 4). Over most of its area, it is capped by ferruginous cuirasses (Plateau de Gertrude, La Madeleine waterfall, etc.) that probably formed in association with an ancient water table. Fossiliferous layers are distributed throughout the whole series, including in some cuirasses (La Madeleine waterfall). The general pattern of the fossiliferous sites is broadly similar to fossiliferous travertine formations, and a few cases of iron travertine deposits are known in Spain and in Greece, also on ultramafic formations with ferrhydrite encrusted leaves.

The precise age of these deposits is difficult to determine. Attempts at paleomagnetic dating of internal duricrusts and lateritic ferricrete on top of the sequence yielded contradictory results ranging from latest Oligocene (25 MY) to Miocene (15 MY). Folcher et al. proposed several age hypotheses for the Fluvio-Lacustrine Formation, spanning the latest Oligocene to Holocene (ca. 120,000 years ago). They favour a possible early to middle Miocene age by correlation with tectonic events recorded in Nepoui sediments (coarse conglomerate beds).
and erosion sequence positions). We were unsuccessful in our attempt to use electron spin resonance (ESR) to date quartz grains at the two major fossil localities (La Madeleine and the Pont des Japonais), where quartz grains are exceedingly rare.

At the ‘La Madeleine’ locality (Mad), poorly preserved casts of leaves and wood fragments occur at the surface of a ferruginous cuirass along the La Madeleine River close to its falls on the Plaine des Lacs. More productive, however, is a small (~ 10 m long) but rich fossil-bearing layer of ferricrust that occurs in a small hill near the Madeleine waterfall (Supplementary Fig. 7). This matrix preserves plant remains in three dimensions and with cellular detail, including leaves, flowers, seeds, and wood (Supplementary Fig. 8). These fossils are preserved as dense mats of plant material that accumulated in great quantity in small sinks, without particular orientation,
suggesting deposition in the absence of a current. They consist mainly of eudicot leaves (Figs. 3 and 4) with
additional remains of flower petals, inflorescence bracts, and seeds, as well as remains of ferns and gymnosperm
branches with attached leaves. Although original organic material is not present in these fossils, some show
exceptional preservation of epidermal and anatomical details, including stomata, which should help to improve
future identification. Preliminary results indicate the presence of at least 30 plant morphotypes, including likely
representatives of the angiosperm families Ericaceae (ex Epacridaceae), Malvaceae-Sterculioideae, Thymelae-
aceae, and Myrtaceae, but further investigation of more material is needed. Some fossil representatives are
nearly identical to the leaves of extant taxa of Thymelaeaceae (Solmsia) and Ericaceae (Styphelia). Leaf physi-
ognomy and the taxonomic composition of the fossil flora at the La Madeleine site are strongly consistent with
the present-day local maquis vegetation, suggesting that similar plant communities may extend as far back as
the late Miocene \(^{42}\). The La Madeleine site also preserves a three-dimension cast of a pair of beetle elytra, which
were found in association with a dense leaf mat (Fig. 4a-c). These remains are attributed to an extinct species
of scarabaeid beetle, likely related to an extant New Caledonian species found in the rainforest of the same area
(Rivière Bleue) (Supplementary Information).

The ‘Pont des Japonais’ (PJap) outcrop includes several fossiliferous layers along several hundred meters of
exposure on a road to the Pont des Japonais. As at ‘Mad’, fossils are preserved in three dimensions in iron oxide
and include leaves, seeds, and wood fragments (Fig. 3 and 4). The density of fossils is lower than at ‘Mad’ and
leaves are not typically found as dense mats, but the ‘PJap’ assemblages nonetheless contain a high diversity of
leaf morphotypes. The composition of the flora is also different, and includes gymnosperms, Calophyllaceae,
Ericaceae (ex Epacridaceae), Lauraceae, Malvaceae-Sterculioideae, and Rhamnaceae. The leaf morphology and
taxonomic affinities of the ‘PJap’ fossils, especially the abundant leaf fossils that resemble those of extant New
Caledonian Lauraceae, are consistent with a rainforest community similar to that of the current vegetation in
the ‘Rivière Bleue’ reserve in the southern Grande Terre \(^{43}\). In general, the ‘PJap’ fossil leaves are also larger than
those at ‘Mad’, further consistent with a rainforest rather than a maquis community. The ‘PJap’ assemblages
also contain some evidence of insects; feeding marks are present on a few leaves (margin and galls), one layer
contains numerous wasp nests (Fig. 4d-f), and another ca. 4 m thick layer contains numerous bee nests built
with consolidated mud and very small fragments of iron oxide. We attribute these nests, comprising clusters of
cells that open to flat surfaces, to the ichnogenus Rosellichnus Genise and Bown, 1996 \(^{44}\). The contemporaneity
of such ichnofossils with the rocks that contain them is difficult to establish \(^{45}\), but the absence of any organic
remains in them suggests they are fossils.

Figure 4. Middle(?) Miocene ferricrust with plant and insect remains. (a–c) ‘La Madeleine’ outcrop; (d–g)
‘Pont des Japonais’ outcrop. (a) slab with non-oriented plants. NC. MAD 01 A; (b) detail of a pair of elytra of a
beetle (Coleoptera: Scarabaeoidea). NC. MAD 01 A; (c) details of counterpart (NC. MAD 01 B); (d) ‘Rivière des
Pirogues’ sedimentary basin landscape and outcrop, ‘Pont des Japonais’ area with ichnofossils (Rosellichnus sp.);
(e) details of clustered ichnofossil Rosellichnus sp. on subsurface of the latericrust; (f) ichnofossil Rosellichnus sp.
attributed to eusocial Hymenoptera NC-PJ-O2. Copyright R. Garrouste. Scale bars (a–d,f) = 1 cm; (e) = 4 cm.
Comparison of fossil assemblages. The new discoveries suggest that the Late Cretaceous floras from New Caledonia are generally similar to those from contemporaneous eastern Gondwanan communities but contribute important new data, because such floras are rare. In Australia, the Winton Formation from central Queensland, which spans the Latest Albian or Cenomanian to early Turonian, is one of the few well-known macrofloras in the region28,46. Other Late Cretaceous floras include that from the Waare Formation in the Otway Basin in Central Australia49. New Zealand Late Cretaceous is better represented with floras of the Albian to Cretaceous. Cenomanian (Clarence Series)46,50, Campanian (Taratu Formation)51 and Latest Cretaceous (Pakawau Formation)52. Comparison of the New Caledonia assemblages to these floras confirms the widespread occurrence of taxodiaceous Cupressaceae, which dominate in distal deltaic settings (such as the Pitt Island sequences of the Tupuangi Formation), suggesting their importance in coastal environments. This prominence of conifers during the mid- to Late Cretaceous is consistent across the Gondwanan margin to the Antarctic Peninsula, where they occur in distal facies in the late Albian Alexander Island flora53.

The rise of flowering plants during the mid-Cretaceous is not well documented in eastern Gondwanan macrofloras, but angiosperms are important in Late Cretaceous floras, including those of New Caledonia. The first Australian angiosperms appeared toward the end of the Early Cretaceous54 and are widespread in Late Cretaceous assemblages. Late Cretaceous angiosperms from New Caledonia are similar to those of the Winton Formation of Queensland in general leaf physiognomy and especially in the predominance of small-toothed morphotypes. This contrasts with approximately coeval floras from New Zealand such as from the Clarence Series, which contains larger and entire-margined leaves, although it is unclear if this difference reflects contemporaneous spatial heterogeneity in climate and community composition or floras of slightly different ages. The presence of angiosperms in these communities is also associated with pronounced evidence of insect herbivory in the form of leaf damage, although no insect body fossils have been recovered from New Caledonia.

The Early Miocene Nepoui flora is especially important as the first known post-obduction terrestrial paleo-biota. Our results suggest this deposit preserves a highly diverse angiosperm community growing in a more humid climate than is found on the western coast of Grande Terre today, which is consistent with reconstructed paleoclimates34. The rich and diverse flora, together with the numerous traces of interactions with arthropods (Fig. 2fg), are indicative of a complex paleobiota, suggesting extensive re-colonisation of the island potentially only ca. four million years following its final re-emergence. This Miocene fossil material also directly establishes the presence of some present-day groups in New Caledonia (e.g., Gymnostoma), which are relicts of earlier ecosystems (viz. those of Zealandia) that potentially survived obduction on neighbouring now-drowned islands, as suggested by geological studies58,59 and biogeographic analyses based on fossil and present-day taxa2,3,60,61. Nevertheless, assembly of the modern New Caledonian biota from the Oligocene to early Miocene is most consistent with the ages inferred by molecular dating for many extant clades6 and the idea that much of the current biota was assembled via dispersal from Caledonian biota from the Oligocene to early Miocene is most consistent with the ages inferred by molecular dating for many extant clades6 and the idea that much of the current biota was assembled via dispersal from Caledonian biota from the Oligocene to early Miocene is most consistent with the ages inferred by molecular dating for many extant clades6 and the idea that much of the current biota was assembled via dispersal from.

Methods

Materials. All material collected is the property of the Government of New Caledonia, Service Géologique de la Nouvelle-Caledonie (SGNC), and is temporarily deposited in the MNHN Paris, the Geological Sciences Department at Stanford University, and the Royal Botanic Gardens Victoria, Australia.

Imaging. The observations were made under a binocular microscope and photographs were taken with a digital SLR (NIKON D800 with a 60 mm f2.8 Nikkor lens) camera with a controlled oblique light. SEM microscope images were produced with BSE mode and EDS X-ray analysis (service des collections, MNHN and Yale University).

Data availability All relevant data are available from the authors.
References

1. Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. \textit{Trends Ecol. Evol.} \textbf{25}, 434–441 (2010).

2. Grandcolas, P. \textit{et al.} New Caledonia: A very old Darwinian island? \textit{Philos. Trans. R. Soc. Lond.} (B) \textbf{363}, 3309–3317 (2008).

3. Nattier, R. \textit{et al.} Newer than New Caledonia emergence? A molecular phylogenetic study of the neopterine crickets (Orthoptera: Gryllidae). \textit{J. Biogeogr.} \textbf{38}, 2195–2209 (2011).

4. Grandcolas, P. \textit{et al.} false ideas about New Caledonia biogeography. \textit{Cladistics} \textbf{33}, 481–487 (2017).

5. Grandcolas, P. \textit{et al.} Relict species: a relict concept? \textit{Trends Ecol. Evol.} \textbf{29}, 655–663 (2014).

6. Nattier, R. \textit{et al.} Updating the phylogenetic dating of New Caledonia biodiversity with a meta-analysis of available evidence. \textit{Sci. Rep.} \textbf{7}, 3705 (2017).

7. Pelletier, B. Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. \textit{Documents Scientifiques et Techniques de l’IRD} \textbf{117}, 17–30 (2007).

8. Cluzel, D. \textit{et al.} An outline of the geology of New Caledonia; from Peronian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene Evolution. \textit{Episodes} \textbf{35}, 72–86 (2012).

9. Maurizot, P. \textit{et al.} Pre-obduction records of Eocene foreland basins in central New Caledonia (Southwest Pacific); an appraisal from surface geology and Cadart 1 borehole data. \textit{NZ J. Geol. Geophys.} \textbf{57}, 307–311 (2014).

10. Sevin, B. \textit{et al.} A drastic lower Miocene regolith evolution triggered by post obduction slab break-off and uplift in New Caledonia. \textit{Tectonics} \textbf{33}, 1787–1801 (2014).

11. Coudray, J. \textit{et al.} Recherches sur le Néogène et le Quaternaire marins de la Nouvelle-Calédonie; contribution de l'étude sédimentologique à la connaissance de l'histoire géologique post-Eocène (Thèse Doctorat d’État, 1976).

12. Bowyer, A. \textit{et al.} Long-term ecological change in a conservation hotspot: The fossil avifauna of Me Aure cave, New Caledonia. \textit{Biodivers Conserv} \textbf{19}, 3207–3224 (2010).

13. Lanteaume, M. \textit{et al.} Pre-obduction records of Eocene foreland basins in central New Caledonia (Southwest Pacific); an appraisal from surface geology and Cadart 1 borehole data. \textit{NZ J. Geol. Geophys.} \textbf{57}, 307–311 (2014).

14. Mourer-Chauviré, C. \textit{et al.} Description of the skull of the genus \textit{Sylviornis} \textit{Poplin}, 1980 (Aves, Galliformes, Sylviornithidae new family), a giant extinct bird from the Holocene of New Caledonia. \textit{Monographies de la Societé d'Histoire Natural de les Baléars} \textbf{12}, 205–218 (2005).

15. Boyer, A. \textit{et al.} Long-term ecological change in a conservation hotspot: The fossil avifauna of Me Aure cave, New Caledonia. \textit{Biodivers Conserv} \textbf{19}, 3207–3224 (2010).

16. Bourdeau, E. \textit{et al.} Découverte du genre “\textit{Homoxylon} Sahni”, dans les terrains secondaires de la Nouvelle-Calédonie. \textit{Mémoires du Muséum national d’Histoire naturelle (C – Sciences de la Terre)} \textbf{3}, 129–143 (1954).

17. Bourdeau, E. \textit{et al.} Etude paléoaxologique de la Nouvelle-Calédonie. I. Sur un \textit{Homoxylon australis} n. sp., bois fossile du marais de Mara. \textit{Bulletin du Muséum national d’Histoire naturelle} \textbf{2}(72), 341–346 (1955).

18. Saltard, M. \textit{et al.} Contribution à la connaissance de la flore fossile de la Nouvelle-Calédonie, avec une introduction stratigraphique. \textit{Palaeontographica (B)} \textbf{225}, 1–25 (1992).

19. Saltard-Cheboldaeff, M. \textit{et al.} Bois minéralisés cénozoïques de Nouvelle-Calédonie. \textit{Palaeontographica (B)} \textbf{288}, 65–97 (2012).

20. Zeller, R. \textit{Note sur quelques empreintes végétales des couches de charbon de la Nouvelle-Calédonie. Bull. Soc. Géol. France} \textbf{3}(17), 443–446 (1899).

21. Stevenson, J. \textit{et al.} A comparison of Late Quaternary forest changes in New Caledonia and Northeastern Australia. \textit{Quatern. Res.} \textbf{64}, 372–383 (2005).

22. Bourdon, E. \textit{et al.} Morphopédologie des formations superficielles dans le Sud de la Nouvelle-Calédonie (Rivière des Pirogues, Plaine des Lacs). In: Rapports scientifiques et techniques, Sciences de la Terre. ORSTOM, 43 p. (1988).

23. Jaffré, T. \textit{et al.} Changements dans la végétation de la Nouvelle-Calédonie au cours du Tertiaire: la végétation et la flore des roches ultrabasiques. \textit{Bulletin du Muséum National d’Histoire Naturelle (4) 9 (B) Adansonia} (4), 365–391 (1987).

24. Mortimer, N. \textit{et al.} Zealandia: earth’s hidden continent. \textit{GSA Today} \textbf{27}(3), 27–35 (2017).

25. Poirier, \textit{et al.} \textit{Plantae dominantae} et faunal change. \textit{GSA Today} \textbf{5}, 1787–1801 (2014).

26. Stevenson, J. \textit{et al.} First paleomagnetic dating of ferricrete in New Caledonia: new insight on the morphogenesis and paleoweathering of “Grande Terre”. \textit{Terra Nova} \textbf{24}, 77–85 (2011).

27. Maurizot, P. \textit{et al.} Post-obduction carbonate system development in New Caledonia (Népoui, Lower Miocene). \textit{Sed. Geol.} \textbf{331}, 42–62 (2016).

28. Lejeune, J. \textit{et al.} \textit{Asthenopodichnium} in fossil wood: different trace makers as indicators of different terrestrial palaeoenvironments. \textit{Palaeo. Palaeo. Palaeoclimatol. Palaeoecol.} \textbf{135}–366, 184–191 (2012).

29. del Zamaloa, M. C. \textit{et al.} Casuarinaceae from the Eocene of Patagonia, Argentina. \textit{Int. J. Plant Sci.} \textbf{167}, 1279–1289 (2006).

30. Sánchez España, J. \textit{et al.} Iron terraces in acid mine drainage systems: a discussion about the organic and inorganic factors involved in their formation through observations from the Tintillo acid river (Riotinto mine, Huelva, Spain). \textit{Geosphere} \textbf{3}, 133–151 (2007).

31. Kanellopoulos, C. \textit{et al.} Banded iron travertines at the Ilia Hot Spring (Greece): an interplay ofbiotic and abiotic factors leading to a modern banded iron formation analogue. \textit{Depositional Res.} \textbf{5}, 109–130 (2019).

32. Guarino, J. H. \textit{et al.} Carte géologique à l’échelle du 1/50000. Notice explicative sur la feuille Prony. \textit{Bulletin du Muséum géologiques et Miémières, Paris, 1–38 (1972).}

33. Auge, T. A. \textit{et al.} Etude d’un gisement de chrome et de minéralisations en platinoides Partie 1-Etude d’un gisement de chrome. \textit{Rapport final. BRGM/RC-52689-FR}, 140 (2002).

34. Arana, R. \textit{et al.} Mineralizations of hierron in el travertino de Lanjarón (Granada). \textit{Acta Geol. Hispanica} \textbf{14}, 106–112 (1979).

35. Auge, T. A. \textit{et al.} Etude d’un gisement de chrome et de minéralisations en platinoides Partie 1-Etude d’un gisement de chrome. \textit{Rapport final. BRGM/RC-52689-FR}, 140 (2002).

36. Arana, R. \textit{et al.} Mineralizations of hierron in el travertino de Lanjarón (Granada). \textit{Acta Geol. Hispanica} \textbf{14}, 106–112 (1979).
42. Chaillon, T. Étude d’un gisement fossile supposé du Miocène tardif à l’Holocène, Sud de la Grande-Terre (Nouvelle-Calédonie). Master Thesis, Université Montpellier – Sciences et Techniques du Languedoc, Montpellier, 1–27 (2016).

43. Genise, J. F. Ichnoentomology: insect traces in soils and paleosols. Top. Geobiol. 37, i–xxviii + 1–695 (2016).

44. Mayoral, E., Genise, J. F., Rodriguez-Ixart, F. J. & Santos, A. Coevalness of insect trace fossils and trace-bearing rocks, a case study from the Pliocene–Pleistocene of 3W Spain. Palaios 36, 113–121 (2021).

45. Pole, M. S. & Douglas, J. G. Bennettitales, Cycadales and Ginkgoales from the mid Cretaceous of the Eromanga Basin, Queensland, Australia. Cretaceous Res. 20, 523–538 (1999).

46. Pole, M. S. & Philippe, M. Cretaceous plant fossils from Pitt Island, the Chatham group, New Zealand. Alcheringa 34, 231–253 (2000).

47. Carpenter, R. J. et al. Fossil evidence for open, Proteaceae-dominated heathland and fire in the Late Cretaceous of Australia. Am. J. Bot. 102, 2092–2107 (2016).

48. Parrish, J. T. et al. Paleoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaeos 13, 149–159 (1998).

49. Pole, M. S. & Philippe, M. Cretaceous plant fossils from Pitt Island, the Chatham group, New Zealand. Alcheringa 34, 231–253 (2000).

50. Mays, C. et al. Late Cretaceous (Cenomanian–Turonian) macroflora from the Chatham Islands, New Zealand: bryophytes, lycophytes and pteridophytes. Gondwana Res. 27, 1042–1060 (2014).

51. Pole, M. S. Cretaceous macrofloras of eastern Otago, New Zealand: angiosperms. Aust. J. Bot. 40, 169–206 (1992).

52. Kennedy, E. M. et al. Quantitative palaeoclimatic estimates from Late Cretaceous and Paleocene leaf floras in the northwest of the South Island, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 321–345 (2002).

53. Cantrill, D. J. & Falcon-Lang, H. J. Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Rev. Palaeobot. Palynol. 115, 119–145 (2001).

54. Burger, D. Early Cretaceous angiosperms from Queensland, Australia. Rev. Palaeobot. Palynol. 65, 153–163 (1990).

55. McCoy, S. et al. Fire and succession in the ultramafic maquis of New Caledonia. J. Biogeogr. 26, 579–594 (1999).

56. Pillon, Y. Time and tempo of diversification in the flora of New Caledonia. Bot. J. Linn. Soc. 170, 288–298 (2012).

57. Sutherland, R. et al. Continental-scale geographic change across Zealandia during Paleogene subduction initiation. Geology 48, 419–424 (2020).

58. Mortimer, N. et al. The Norfolk Ridge seamounts: Eocene-Miocene volcanoes near Zealandia’s rifted continental margin. Aust. J. Earth Sci. 68, 368–380 (2021).

59. Giribet, G. & Baker, C. M. Further discussion on the Eocene drowning of New Caledonia: discordances from the point of view of zoology. J. Biogeogr. 46, 1912–1918 (2019).

60. Brown, L. E. & Moll, D. The enigmatic palaeoecology and palaeobiogeography of the giant, horned, fossil turtles of Australasia: a review and reanalysis of the data. Herpetol. J. 29, 231–262 (2019).

61. Maurizot, P. & Campbell, H. J. Chapter 8. Palaeobiogeography of New Caledonia. Geol. Soc. Lond. Mem. 51, 189–214 (2020).

62. Steinthorsdottir, M. et al. The Miocene: the future of the past. Palaeoceanogr. Palaeoclimatol. 36, e2020PA004037 (2021).

Acknowledgements
We sincerely thank Natasha Barbolini and an anonymous referee for their useful remarks on the first version of this paper. This study was initiated with a grant from Agence Nationale de la Recherche BIONEOCAL to P.G. Additional field trips were conducted with support from the National Geographic Society (A.L. and P.C.), and BCDIV Labex (Diversités biologiques et culturelles) (P.G. and J.J.B). We are very grateful to the owners of the land on which some outcrops were located, Bernard Goumy (Haute Nessadiou) and Jacques Auvray (Haut-Robinson), and we are grateful to Jean-Marie Veillon and family Létocart for fieldwork help and for sharing information about New Caledonia.

Author contributions
R.G., J.M., A.L., D.J.C., P.P.L., H.J., J.F., P.M., D.C., P.G., N.F., E.L., and A.N. collected the material. All of them plus P.V., W.F. and T.C. contributed equally to the study and manuscript preparation. R.G., J.M., P.C., J.J.B. made photos. R.G., P.G., and A.N. designed the program. R.G. and A.N. are equal corresponding authors. P.G. and A.N. are equal last authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-97938-5.

Correspondence and requests for materials should be addressed to A.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
