Isotretinoin Impairs the Secretory Function of Meibomian Gland Via the PPARγ Signaling Pathway

Peng Zhang, Lei Tian, Jiayu Bao, Shang Li, Ao Li, Ya Wen, Jingyi Wang, and Ying Jie

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Lab, Beijing, China

Correspondence: Ying Jie, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Lab, No. 1 Dong Jiao Min Xiang, Dong Cheng District, Beijing 100730, China; jie_yingcn@aliyun.com.

PZ and LT contributed equally to this study.

Accepted: March 14, 2022
Published: March 30, 2022
Citation: Zhang P, Tian L, Bao J, et al. Isotretinoin impairs the secretory function of meibomian gland via the PPARγ signaling pathway. Invest Ophthalmol Vis Sci. 2022;63(3):29. https://doi.org/10.1167/iovs.63.3.29

Purpose. To investigate the effects of isotretinoin on the ocular surface and to explore the possible mechanisms.

Methods. Rats were treated with isotretinoin 20 mg/kg/d for five months and tested monthly for tear secretion, fluorescein staining, and infrared photography. After five months of treatment, tissues were harvested for routine staining to evaluate the morphological changes; and real-time polymerase chain reaction, Western blot, and immunohistochemistry to study the expression of associated genes and their products such as forkhead box protein O1 (FoxO1), forkhead box protein O3, peroxisome proliferator-activated receptor γ (PPARγ), adipose differentiation–related protein, elongation of very long chain fatty acids protein 4, fatty acid binding protein 4, matrix metalloproteinase-9, and interleukin-6.

Results. Systemically, isotretinoin-treated rats have a significantly lower body weight that controls and apparent skin damage. Locally, although there was no alteration in tear secretion, a significant corneal involvement indicated by increased fluorescein staining scores, and also the contrast of meibomian gland was significantly reduced but no significant atrophy of the acinus was found. In addition, isotretinoin causes a decrease in conjunctival goblet cells. Furthermore, isotretinoin treatment did not cause the upregulation of FoxO1 and inflammation related genes but significantly suppressed the expression of PPARγ pathway.

Conclusions. Isotretinoin does not cause a significant atrophy of the acinus and a significant change of FoxO1 expression in the meibomian gland. Isotretinoin causes meibomian gland dysfunction, affecting meibocyte differentiation and qualitative and quantitative changes in the meibum, through PPARγ pathway.

Keywords: isotretinoin, meibomian gland dysfunction, PPARγ, sebaceous gland, FoxO1
the change of FoxO1 expression in the MG and to explore the role of the peroxisome proliferator–activated receptor γ (PPARγ) pathway involved in it. We found that isotretinoin induced MGD is not FoxO1 mediated but through PPARγ pathway.

Materials and Methods

Animal Model and Treatment

Thirty-two 12-week-old female Wistar rats (purchased from Charles River Laboratory Animal Center, Beijing, China) were used in this study. Prior to initiation of treatment, the eyes of each rat were evaluated using a slit-lamp microscope (BX900; Haag-Streit AG, Koeniz, Switzerland). All animal eyes appeared normal. Subsequently, rats were randomly divided into two groups, the control group and the isotretinoin group. Isotretinoin was purchased from Shangh hai Aladdin Biochemical Technology Co., Ltd. (I129856 Aladdin). It was supplied as a yellow-orange to orange crystalline powder that was stored at −20°C in a sealed container away from light. Before its use, the isotretinoin was brought to room temperature and dissolved in glycerol. The isotretinoin group was given 20 mg/kg per day of isotretinoin for five months, and the control group received the vehicle only. The drug was administered by oral intubation, using glycerol as a vehicle. All animal experiments were complied with the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Research Development Co., Ltd., Tianjin, China) was used to collect tear for measurement. Animals were anesthetized by intraperitoneal injection of pentobarbital. The thread was then placed on the lower conjunctival fornix near the lateral canthus at approximately one-third of the length of the lower lid. After one minute, the thread was removed, and the red wetted length was measured.

Western Blot Analysis

Tissues were collected and lysed in RIPA buffer supplemented with protease inhibitor cocktail, and quantified with BCA protein analysis kit (Yeasen Biotech Co., Ltd., Shanghai, China). Protein concentrations were measured by BCA protein analysis kit (Yeasen Biotech Co., Ltd., Shanghai, China). Then, an equal amount of protein (30 μg) was subjected to SDS-PAGE and then transferred to polyvinylidene fluoride (PVDF) membranes. After blocking in 5% non-fat milk for one hour, the membranes were incubated with the primary antibodies over night at 4°C. After the membranes were rinsed thoroughly with Tris-buffered saline solution with Tween20, they were incubated with secondary antibodies for one hour at room temperature. Finally, Western Lightning Plus-ECL (PerkinElmer, Inc, Waltham, MA, USA) was added to magnify the HRP signals, which were detected using a Bio-Rad system (Bio-Rad Laboratories, Inc., Berkeley, CA, USA). Image analysis was performed using the Image Lab software. Primary antibodies used for western blotting are listed below: FoxO1 (ET1608-25, 1:1000) and fatty acid binding protein 4 (FABP4; ET1703-98, 1:1000) were from Huaan Biotechnology (Hangzhou, China). Forkhead box protein O3 (FoxO3A) (66428-1-Ig, 1:1000), elongation of very long chain fatty acids protein 4 (ELOVL4; 55023-1-AP, 1:500), adipose differentiation-related protein (ADRP; 15294-1-AP, 1:1000) and matrix metalloproteinase 9 (MMP9) (10375-2-AP, 1:600) were from Proteintech Group Inc (Rosemont, IL, USA). PPARγ (24355; 1:1000) was from Cell Signaling Technology (Danvers, MA, USA).

Infrared Imaging and Slit-Lamp Photography of the MG

In this study, MG dropout score and change of contrast were measured using the Oculus Keratograph 5M (Oculus GmbH, Wetzlar, Germany) one day before euthanization. MG morphology was evaluated via a slit-lamp microscope after the animal was euthanized.

RNA Isolation and Real-Time PCR

The upper and lower eyelids were completely excised, meibomian gland tissues were isolated by removing skin, subcutaneous tissue, muscle, and palpebral conjunctiva under a dissecting microscope. Total RNA was extracted with TRIzol reagent (Yeasen Biotech Co., Ltd., Shanghai, China) and quantified with a spectrophotometer (NanoDrop 2000c; Thermo Fisher Scientific, Waltham, MA, USA). The cDNA was reverse transcribed of total RNA to with a cDNA Synthesis Super Mix. Gene expression was then measured by quantitative PCR with SYBR Green Master Mix (Yeasen Biotech Co., Ltd., Shanghai, China) using a Bio-Rad CFX96 cycler (Bio-Rad Laboratories, Inc., Berkeley, CA, USA). GAPDH was used as a reference gene. Primer sequences are listed in Table 1.

Genes	Forward Primer	Reverse Primer	PCR Product, bp
FoxO1	TGGGCGAACCTGTCGTA	GGGCACACTCTCACCATC	108
FoxO3A	GGTCGCAAGCAAGTTCCC	GGATCTCCAGTCTGCTG	100
ELOVL4	GGACATACAATGAGCCCAA	GGCATCCATGAGTTCGCT	129
ADRP	GCGGCTCTGCCTGCAAT	AACACCACCAAGACATGC	88
PPARγ	GGGAGTTCCTCAAAAGCC	GCCATCCATAGTGGCCT	163
FABP4	TTCTGCGGTTCCTTGGA	TGCCTGGTCCGCGAAGC	125
Caspase3	AGGCTGCCAGGCTGGGAAGT	ACCTGGCAGTGGAGAAGA	105
GAPDH	ACCACAGTCCTGACCCAC	TCCACACCCTGTCGTA	452
IL6 (abs135607, 1:1000) was from Absin Bioscience Inc (Shanghai, China). **GAPDH** (30202, 1:2000) and secondary antibodies were from Yeasen Biotechnology (Shanghai, China).

Histological Stains

The eyes including the lids were excised and fixed in 10% buffered formalin and embedded in Paraffin. Sections were collected at a thickness of 4 μm from the same locations, each spaced approximately 200 μm apart to span the ocular surface in a lateral orientation. Tissue sections were stained with hematoxylin & eosin (H&E) and periodic acid-Schiff (PAS) to visualize and evaluate meibomian gland and goblet cell morphology and number. Images were acquired using PANNORAMIC whole slide scanners (3DHISTECH Ltd, Budapest, Hungary). The acini area of meibomian gland and the thickness of the ductal epithelium were analyzed by CaseViewer software (3DHISTECH Ltd, Budapest, Hungary). Conjunctival goblet cell counts were assessed with reference to the methods documented in the literature. Five sections from four samples in each group were stained with H&E and PAS stain to observe and evaluate the morphology of meibomian gland and number of GCs.

Oil Red O Staining

Frozen eyelids were sectioned in the vertical plane at a thickness of 10 μm, washed in phosphate-buffered saline solution (PBS) for five minutes and 60% isopropyl alcohol for 20 seconds, and stained with freshly prepared oil red O solution for 15 minutes, and rinsed with 60% isopropanol alcohol for one minute followed by water. The sections were counterstained with hematoxylin. Then the sections were mounted in glycerol and photographed using an upright microscope (Leica Microsystems GmbH, Wetzlar, Germany). The oil red O staining was analyzed with Image Pro-Plus 6.0 (Media Cybernetics, Silver Spring, MD, USA), expressed in mean optical density (MOD). First, the software is required to detect the valid measurement area and then measure the integrated optical density of the targeting stain region within that area. The percent of integrated optic density of the area was MOD.

Immunohistochemistry

Paraffin sections were rehydrated and blocked with 3% hydrogen peroxide for 10 minutes, followed by washing three times with PBS for five minutes each. Sections were subsequently treated with 0.2% Triton X-100 for 20 minutes. After washing three times each with PBS for five minutes, they were incubated with 5% BSA for 60 minutes, followed by incubation with **FoxO1** (ET1608-25, 1:200), **FoxO3A** (66428-1-Ig, 1:250), **PPARγ** (2435S, 1:400), **Elovl4** (55023-1-AP, 1:200), and **ADRP** (15294-1-AP, 1:200) antibodies overnight at 4°C. The sections were further incubated with secondary antibodies for one hour. The reaction product was then developed with diaminobenzidine for one minute, mounted with mounting medium, and examined under a light microscope. The immunohistochemical staining was analyzed with Image Pro-Plus 6.0 (Media Cybernetics, Silver Spring, MD, USA), expressed in MOD.

Statistical Analysis

Results in this present study were performed at least three independent experiments and presented as mean ± SD. Student’s t-test was conducted for statistical comparison of body weight, tear secretion, fluorescein staining scores and relative mRNA and protein expression between two individual groups and the Mann-Whitney U test was used to mean optical density of Immunohistochemistry using SPSS 17.0 software (SPSS, Chicago, IL, USA). Statistical significances were determined as $P < 0.05$.

RESULTS

Isotretinoin Induces Dry Eye-like Ocular Surface Damages

After 5 months of isotretinoin treatment, animals showed clinical signs of systemic toxicity, including significantly lower body weight than controls, dry skin, and abnormal secretions on the back. Animals in the control group showed no signs of toxicity (Figs. 1A, 1B). During isotretinoin treatment, no changes in tear secretion at all time points was observed, and there was no difference in tear secretion after 5 months of isotretinoin treatment compared with the

![Figure 1](https://example.com/figure1.png)

Figure 1. Body weight and skin changes of rats. Body size, skin changes (A), and body weight (B) decreased in the isotretinoin group compared with the control group. Data are presented as the mean ± SD. *$P < 0.05$ versus control group.
control group (Figs. 2A, 2B). After five months of isotretinoin treatment, it is observed an increase in corneal fluorescein staining scores. After five months of isotretinoin treatment, corneal fluorescein sodium staining was significantly higher in the isotretinoin group compared with the control group; and also significantly higher than the baseline (Figs. 2C, 2D). Representative pictures of corneal fluorescein staining were shown (Fig. 2E).

Isotretinoin Causes Thickening of the Epithelium in MG Ducts, a Decrease in Lipid Secretion and the Number of Conjunctival Goblet Cells

In the isotretinoin treated group, there was no significant difference in the morphology and size of the MGs from the control group by slit lamp examination (Fig. 3A). It is observed in the upper MG, the contrast of the gland was...
Isotretinoin and Meibomian Gland Dysfunction

FIGURE 3. The slit-lamp photography of the eyelids (A). The infrared photography of the meibomian glands (B). H&E staining of duct and acini of meibomian gland (C) \(n = 4 \). Scale bars: 50 μm. Oil red O staining of meibomian gland of the isotretinoin and control rats (D) \(n = 4 \). Scale bars: 25 μm. Representative images of the PAS staining. The number of PAS-positive cells was significantly decreased in the Isotretinoin group (E) \(n = 4 \). Scale bars: 100 μm. H&E staining of lacrimal gland (F). Scale bars: 50 μm.

Table 2. Comparison of Characteristics Between Isotretinoin and Controls

	Control	Isotretinoin	\(P \) Value
Meibomian gland Acini size (upper lid), mm\(^2\)	0.443 ± 0.048	0.438 ± 0.051	0.809
Ductal epithelial thickness, μm	8.39 ± 1.83	15.91 ± 3.79	0.0001 *
Conjunctival goblet cell, cell/mm	12.30 ± 2.10	8.28 ± 1.06	0.0412 *
Oil red O mean optical density	77.81 ± 19.15	43.76 ± 15.26	0.0031 *

* Statistically significant at \(P \leq 0.05 \).

Isotretinoin Did Not Stimulate Inflammatory Cytokine Production in the Meibomian Gland

Upregulation of \(\text{MMP9} \) is associated with ocular surface damage, which contributes to ocular surface inflammation and dry eye.\(^{16}\) Its activity was significantly elevated in patients with MGD as well.\(^{17}\) We found that it was not significantly changed in the isotretinoin group. At the same time, inflammatory cytokines \(\text{IL6} \) protein was significantly downregulated by western blot (Figs. 4A, 4B), indicating that isotretinoin did not cause any inflammatory change in the MG.

Isotretinoin Treatment Does Not Upregulate in FoxO1 Expression

Literature suggests that the effect of isotretinoin on the MGs may be similar to its effects on the sebaceous glands of the skin in the treatment of acne.\(^{8,10,18}\) FoxO1 plays an important role in the isotretinoin treatment of sebaceous acne, and there are hypotheses that the side effects of isotretinoin are also caused by elevated FoxO1 in the nucleus. To investigate whether isotretinoin affects the MG via FoxO1, FoxO1 and FoxO3A expression in the MG was measured. It is found that FoxO1 was not significantly changed. However, FoxO3A was significantly decreased (Figs. 5A–C). From the immunohistochemical staining, FoxO1 expression in normal rat meibomian gland and sebaceous gland tissues is mainly in the nucleus, with weak staining in the cytoplasm.
FIGURE 4. Western blot assay of indicated MMP9 and IL6 proteins in the meibomian gland homogenates (A) and densitometry analyses of the Western blotting results (B). Data are presented as the mean ± SD (n = 6). ****P < 0.0001 versus control group.

FIGURE 5. FoxO1, FoxO3A, PPARγ, ADRP, ELOVL4 and FABP4 mRNA levels in the meibomian gland were measured by qPCR (A) (n = 6). Western blot assay of indicated FoxO1, FoxO3A, PPARγ, ADRP, ELOVL4, and FABP4 proteins in the meibomian gland homogenates (B) and densitometry analyses of the western blotting results (C) (n = 6). Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001 versus control group.

FIGURE 6. Immunohistochemical staining to detect meibomian gland and sebaceous gland FoxO1, FoxO3A, PPARγ, ADRP, and ELOVL4 expression (n = 4). Scale bars: 20 μm.
Lacrimal gland assay of indicated FoxO1, and Caspase3 proteins in the lacrimal gland homogenates (n = 6). To further determine the lipid-associated governing morphology, lipid metabolism and cell differentiation sensitive transcription factor that plays an important role in aging MG.20 To further determine the lipid-associated factors including PPARγ, and its downstream component ADRP, ELOVL4 and FABP4 using both real-time polymerase chain reaction and Western blot. The results showed that the expression of FoxO3A mRNA and protein were downregulated in the lacrimal gland (Figs. 7A, 7B); the expression of FoxO3A and PPARγ mRNA and protein were downregulated in the lacrimal gland (Figs. 7A, 7C).

DISCUSSION

MGD is a chronic, diffuse abnormality characterized by obstruction of the terminal ducts of the MG or qualitative or quantitative abnormalities in meibum secretion.23 It has been reported in many studies that isotretinoin can cause meibomian gland dysfunction, but the mechanism has not been clarified.

When the effects of isotretinoin in animal models were explored, it was shown that oral administration of low-dose isotretinoin (2 mg/kg/d) to rabbits for 60 days reduced goblet cells, increased thickening and keratinization of the meibomian gland ducts, and reduced meibomian gland acini size and lipid secretion. No evidence of an inflammatory response in the meibomian gland.24 Meibomian gland morphology was also analyzed in a hamster model, where oral administration of isotretinoin over 30 days resulted in a 75% reduction in the mean acinar volume of the meibomian gland. In addition, hamsters developed eyelid crusting and conjunctival erythema.25 Two recent studies evaluated the effects of isotretinoin on the rat meibomian gland. Ibrahim et al.26 treated male albino rats with 0.5 mg/kg/d isotretinoin (dissolved in 0.5 mL distilled water) for three months, morphometric analysis of the mean area of the acinar tissue in the isotretinoin-treated group showed a highly significant decrease by high magnification images. In addition to this, thickening and keratinization of the epithelial lining of the ducts and a significant increase in collagen fiber content were found. Karadag et al.27 treated Wistar rats by oral administration of isotretinoin (dissolved in glycerol) in two different concentrations: 7.5 mg/kg and 15 mg/kg for four weeks. A significant reduction in acini size of meibomian gland and the number of goblet cells in both 7.5 mg/kg/d and 15 mg/kg/d groups compared with the control group.11 Although statistically significant differences were observed between the isotretinoin and control groups, the change of glandular vesicle size was not dramatic. And there was no significant difference between the 15 mg/kg/d high-dose group and the 7.5 mg/kg/d low-dose isotretinoin-treated group.

In clinical studies, the contrast of the meibomian gland was the first to change significantly during isotretinoin treatment. Subsequently, Morphological changes such as

Table 3. Comparison of Immunohistochemistry Between Control and Isotretinoin Group

Genes	Control	Isotretinoin	P Value
Meibomian gland			
FoxO1 (nucleus)	27.53 ± 4.85	30.08 ± 1.35	0.2898
FoxO3A	172.87 ± 35.35	75.37 ± 51.78	0.0002
PPARγ	30.36 ± 19.26	6.66 ± 2.48	0.0012
ADRP	51.09 ± 14.98	19.72 ± 5.68	0.0286
ELOVL4	291.60 ± 102.3	111.71 ± 60.52	0.0003
Sebaceous gland			
FoxO1 (nucleus)	27.75 ± 3.55	27.20 ± 3.85	0.8968
FoxO3A	109.75 ± 25.19	47.47 ± 23.85	0.0005
PPARγ	101.85 ± 12.41	11.61 ± 4.88	0.0022
ADRP	142.45 ± 41.42	38.85 ± 9.27	0.0004
ELOVL4	129.64 ± 12.17	61.62 ± 25.73	0.0002
Lacrimal gland			
PPARγ	61.67 ± 8.25	25.62 ± 9.25	0.0022
FoxO3A	107.18 ± 24.11	22.92 ± 1.10	0.0286

*Statistically significant at P ≤ 0.05.

Immunohistochemistry also did not reveal significant changes of the expression of FoxO1 in the nucleus in the MGs and sebaceous glands (Fig. 6, Table 3).

Isotretinoin Induces a Decreased Expression of Lipid Metabolism Associated Genes

In recent years, several studies have also been performed in MG cells, and it was found that PPARγ was significantly downregulated in aging MGs.19–21 PPARγ is a lipidsensitive transcription factor that plays an important role in governing morphology, lipid metabolism and cell differentiation of the MG.22 To further determine the lipid-associated genes in the MG after isotretinoin treatment, we investigated several lipogenesis-related factors including PPARγ, and its downstream component ADRP, ELOVL4 and FABP4 using both real-time polymerase chain reaction and Western blot. The results showed that the expression of PPARγ, ADRP, ELOVL4 and FABP4 were significantly downregulated after isotretinoin treatment (Figs. 5A–C). The results by immunohistochemistry also showed that PPARγ, ADRP and ELOVL4 were significantly decreased in the MGs and sebaceous glands (Fig. 6, Table 3).

In the lacrimal gland tissue, after isotretinoin treatment, several lipogenesis-related factors including PPARγ and its downstream component ADRP, ELOVL4 and FABP4 were significantly downregulated (Figs. 7A, 7B). The expression of FoxO3A and PPARγ mRNA and protein were downregulated in the lacrimal gland (Figs. 7A, 7C).

FIGURE 7. (A) FoxO1, FoxO3A, PPARγ, and Caspase3 mRNA levels in the lacrimal gland were measured by qPCR (n = 6). (B) Western blot assay of indicated FoxO1, and Caspase3 proteins in the lacrimal gland homogenates (n = 6). (C) Immunohistochemical staining to detect lacrimal gland FoxO3A, PPARγ expression (n = 3). Data are presented as the mean ± SD, *P < 0.01 versus control group. Scale bars: 20 μm.
FoxO1ulated that possibly isotretinoin affects the MG also via a large part to differences in toxicokinetics, placental transfer, and the dissolution method is different. As far as we know, isotretinoin is insoluble in water and suspended in glycerol. Secondly, the dose of 7.5 mg/kg isotretinoin applied in rats is consistent with human serum after the administration of isotretinoin in acne therapy (0.5-1 mg/kg). This concentration has also been used in other studies of isotretinoin. Among patients with acne, nuclear deficiency and cytoplasmic expression of FoxO1 are increased in the sebaceous glands compared to the healthy control group, and expression of nonphosphorylated FoxO1 in the nucleus was upregulated and the nuclear/cytoplasmic ratio was significantly increased during isotretinoin treatment, involved in isotretinoin-induced pro-apoptotic signaling in sebaceous glands. Isotretinoin treatment of acne by affecting the sebaceous glands through the isotretinoin→ATRA→RAR→FoxO1 pathway, and it is speculated that possibly isotretinoin affects the MG also via FoxO1. In our study, the expression level did not significantly increase in the MG by systemic isotretinoin treatment. This may be related to the disease state. In acne patients, sebocytes show a deficiency of FoxO1 in the nucleus, which is transferred to the cytoplasm. Normal individuals are mainly expressed in nuclear or nuclear with faint cytoplasmic expression of FoxO1. After isotretinoin treatment, the nuclear/cytoplasmic ratio was significantly increased, but it did not exceed the nuclear/cytoplasmic ratio of normal human FoxO1. We used normal rats for our experiments and in normal specimens itself FoxO1 expression made strong positive expression in the nucleus and weak expression in the cytoplasm. The action of isotretinoin did not significantly promote the upregulation of FoxO1 intranuclear expression in normal samples. Isotretinoin does not affect the basal expression level of FoxO1 in the meibomian gland of normal rats. In addition to this, it may be related to the sensitivity of the species to isotretinoin. In the present study, we did not cause significant atrophy of the meibomian gland by isotretinoin.

The MG is a modified holocrine sebaceous gland, and its secretion requires constant destruction of MG acinus cells and therefore requires constant differentiation of MG stem cells located in the basal layer of the acinus to allow renewal. Literature revealed the presence of a stem cell-like population around the circumference and the presence of transient amplifying cells in the basal layer of the acinus. Before adipogenesis and holocrine secretion, the basal acinar cells of the MG differentiate and move toward the center of the acinus. In the literature, peroxisome proliferator-activated receptor (PPARγ), a lipid-sensitive nuclear receptor that regulates differentiation and lipid synthesis in MG cells, is significantly downregulated in aging human and mouse MGs. In the MG cells, PPARγ was expressed in both the nucleus and cytoplasm, whereas in the lacrimal gland it was expressed only in the cytoplasm, which may be related to the cell type and cell function. In both tissues, the expression level of PPARγ was downregulated after isotretinoin treatment. Its downstream adaptor ADRP is a storage protein involved in adipocyte maintenance and development. It is found in lipid droplets of different cell types and is thought to be a molecule expressed early in lipid accumulation and early adipocyte differentiation. ADRP protein decreases as adipocyte differentiation progresses. ADRP protein is expressed on the surface of lipid droplets in the early stages of adipocyte differentiation, whereas ADRP is absent from the surface of lipid droplets in late differentiation and mature adipocytes. The presence of ADRP has been reported in rat MG tissue by Northern and Western blot analysis and immunohistochemistry. In our study, ADRP was strongly expressed in the cytoplasm of acinar cells at the margins of the glandular vesicles in the control group. In contrast, ADRP expression was weak in the isotretinoin group. This indicates that isotretinoin significantly influenced the early differentiation of acinar cells.

The lipids of the meibomian gland consist mainly of neutral lipids. Neutral lipids, such as wax esters and cholesterol esters, form a nonpolar lipid sublayer in the tear film that is in contact with the external environment. A significant decrease in wax esters in the lipids of the sebaceous glands after isotretinoin action has been documented. In addition to this, meibum differ from sebum in that they contain more extremely long-chain fatty acids such as (O-Acyl)-ω-hydroxy fatty acids (OAHFAs). OAHFAs are the main components of the amphiphilic lipid sublayer and are thought to have a role in stabilizing the tear film by producing an interface between the water-immiscible nonpolar lipid sublayer and the aqueous layer beneath it. All OAHFA-based lipids and their derivatives contain extremely long-chain fatty acids with residues >C28. The elongase of long chain fatty acid family (ELOVL1–ELOVL7)
are the key rate-limiting enzymes for extremely long chain fatty acid synthesis. Of these, ELOVL4 shows activity toward substrates ≥C₂₀.⁴⁶ Fatty acid binding proteins (FABPs) are proteins that bind long-chain fatty acids and are involved in fatty acid uptake and transport.⁴⁷ Therefore we examined the expression level of ELOVL4 and FABP4 after the action of isotretinoin and showed that the expression of ELOVL4 and FABP4 were significantly reduced after the action of isotretinoin, which may lead to a reduction in the synthesis, uptake, and transport of extremely long-chain fatty acids such as OHFA, affecting the stability between the lipid and aqueous layers of the tear film and leading to evaporative dry eye. ELOVL4 and FABP4 are also regulated by PPARγ.⁴⁸,⁴⁹

In the present study, we demonstrate for the first time that isotretinoin regulates MG acinar cell differentiation and lipogenesis through the PPARγ pathway. This conclusion is supported by substantial evidence. The results showed a significant decrease in the expression of the lipid-related genes PPARγ, ADRP, ELOVL4 and FABP4, this change was paralleled by a decreased lipid production, as verified by the infrared imaging system and oil red O staining. This may reflect qualitative or quantitative changes in meibum secretion.

In addition, the number of conjunctival goblet cells was also decreased in rat conjunctiva after isotretinoin treatment. This is consistent with previous findings from animal studies.¹¹,⁵⁰ We did not observe significant changes in tear secretion and lacrimal gland morphology in rats after the action of isotretinoin. The results of tear secretion after isotretinoin treatment have been inconsistently reported in the literature. Some literature reports a significant decrease in tear production, but tear production remains within the normal value.⁵¹,⁵² Other literature shows no significant change in tear secretion.⁶,⁵³–⁵⁶ Barbosa et al.⁵⁷ reported a white female with lacrimal gland agenesis, and after excluding Sjogren’s syndrome, a review of the medical history revealed a possible association with isotretinoin use. But in previous animal studies, rabbits were given doses five to 10 times higher than those used clinically for more than five months, there were no significant changes in tear secretion compared with the control group. Furthermore, histological analysis showed no significant changes in lacrimal gland morphology.⁵⁸ No significant differences were also seen in the expression of MMP9 in the ocular tissues after isotretinoin treatment. Moreover, the expression of inflammatory factor IL6 was downregulated. Species differences may be an important reason for the inconsistency of inflammation with previous cellular experiments. In our study, because of the insensitivity of the rats to isotretinoin treatment, no significant meibomian gland atrophy was induced similar to that observed clinically in humans, while the large difference in inflammatory response between rodents and humans may have contributed to the inconsistent observations with previous experiments with human meibomian gland epithelial cells.⁵⁵,⁵⁹–⁶²

In general, our findings further support existing data showing that isotretinoin can induce MGD. These results were consistent with those in the ocular surfaces in patients receiving prolonged systemic isotretinoin treatment. Isotretinoin action was mainly followed by a marked thickening of the MG duct epithelium and a decrease in meibum secretion and conjunctival goblet cells. FoxO1 was not significantly altered by isotretinoin treatment. Rather, there was a marked decrease in lipid genes, probably related to the PPARγ pathway, reflecting qualitative and quantitative changes in the meibum. Similar to the clinical hyposecretory form of MGD, it is suggested that clinical attention should not only be focused on the manifestation of acinus atrophy shown on infrared imaging of MG, but also on the altered contrast of MG and decreased secretory capacity. In particular, it is important to monitor the condition of the MG regularly during the period of medication and to adjust dose when it is appropriate to reduce the ocular impact of long-term use of isotretinoin.

Acknowledgments

Supported by the National Natural Science Foundation of China (81970764) and Youth Beijing Scholar 2020 (NO.022).

Disclosure: P. Zhang, None; L. Tian, None; J. Bao, None; S. Li, None; A. Li, None; Y. Wen, None; J. Wang, None; Y. Jie, None

References

1. Lynn DD, Umari T, Dunnick CA, Dellavalle RP. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13–25.
2. Bettoli V, Guerra-Tapia A, Herane MI, Piquero-Martin J. Challenges and solutions in oral isotretinoin in acne: reflections on 35 years of experience. Clin Cosmet Invest Dermatol. 2019;12:943–951.
3. Layton A. The use of isotretinoin in acne. Dermatoendocrinol. 2009;1:162–169.
4. Nast A, Dreno B, Bettoli V, et al. European evidence-based (S3) guidelines for the treatment of acne. J Eur Acad Dermatol Venereol. 2012;26(Suppl 1):1–29.
5. Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines for care of the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–973.e33.
6. Caglar C, Senel E, Sabancilar E, Durmus M. Reduced ocular surface disease index (OSDI) scores in patients with isotretinoin treatment. Int Ophthalmol. 2017;37:197–202.
7. Ruiz-Lozano RE, Hernandez-Camarena JC, Garza-Garza LA, Bustamante-Arias A, Colorado-Zavala MF, Cardenas-de la Garza JA. Isotretinoin and the eye: a review for the dermatologist. Dermatol Tber. 2020;33(6):e14029.
8. Moy A, McNamara NA, Lin MC. Effects of Isotretinoin on Meibomian Glands. Optom Vis Sci. 2015;92:925–930.
9. Agamia NF, Hussein OM, Abdelmaksoud RE, et al. Effect of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of patients with acne vulgaris. Exp Dermatol. 2018;27:1344–1351.
10. Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. Dermatoendocrinol. 2011;3:141–165.
11. Karadag R, Karadag AS, Ozlu E, et al. Effects of different doses of systemic isotretinoin on eyes: a histopathological and immunohistochemical study in rats. Cornea. 2020;39:621–627.
12. Li X, Kang B, Woo IH, et al. Effects of topical mucolytic agents on the tears and ocular surface: a plausible animal model of mucin-deficient dry eye. Invest Ophthalmol Vis Sci. 2018;59:3104–3114.
13. Bu J, Zhang M, Wu Y, et al. High-fat diet induces inflammation of meibomian gland. Invest Ophthalmol Vis Sci. 2021;62:13.
14. Zhang R, Park M, Richardson A, et al. Dose-dependent benzalkonium chloride toxicity imparts ocular surface epithelial changes with features of dry eye disease. Ocul Surf. 2020;18:158–169.
15. Yao YL, Han X, Li ZM, Lian LH, Nan JX, Wu YL. Acan-thoic acid can partially prevent alcohol exposure-induced liver lipid deposition and inflammation. Front Pharmacol. 2018;9:459.
16. Messmer EM, von Lindenfels V, Garbe A, Kampik A. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. *Ophthal-mology*. 2016;123:2300–2308.
17. Aragona P, Aguennouz MH, Rania L, et al. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. *Ophthalmology*. 2015;122:62–71.
18. Tanriverdi C, Nurozler Tabakci B, Donmez S. Longitudi-nal assessment of meibomian glands and tear film layer in systemic isotretinoin treatment [published online ahead of print May 20, 2021]. *Eur J Ophthal-mol*, doi:10.1177/11006721211018361.
19. Nien CJ, Paugh JR, Massei S, Wahlert AJ, Kao WW, Jester JV. Age-related changes in the meibomian gland. *Exp Eye Res*. 2009;89:1021–1027.
20. Nien CJ, Massei S, Lin G, et al. Effects of age and dysfunction on human meibomian glands. *Arch Ophthal-mol*. 2011;129:462–469.
21. Jester JV, Potma E, Brown DJ. PPARgamma regulates mouse meibocyte differentiation and lipid synthesis. *Ocul Surf*. 2016;14:484–494.
22. Hwang HS, Parfitt GJ, Brown DJ, Jester JV. Meibocyte differentiation and renewal: Insights into novel mech-a-nisms of meibomian gland dysfunction (MGD). *Exp Eye Res*. 2017;163:37–45.
23. Nelson JD, Shimazaki J, Benitez-del-Castillo JM, et al. The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. *Invest Ophthal-mol Vis Sci*. 2011;52:1930–1937.
24. Kremer I, Gaton DD, David M, Gaton E, Shapiro A. Toxic effects of systemic retinoids on meibomian glands. *Ophthal-mic Res*. 1994;26:124–128.
25. Lambert RW, Smith RE. Effects of 13-cis-retinoic acid on the hamster meibomian gland. *J Invest Dermatol*. 1989;92:321–325.
26. Ibrahim MAA, Elwan WM. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rats. *Ann Anat*. 2017;211:78–87.
27. Yeh TN, Lin MC. Repeatability of meibomian gland contrast, a potential indicator of meibomian gland function. *Cornea*. 2019;38:256–261.
28. Gurlevik U, Kemeriz F, Yasar E. The effect of isotretinoin on meibomian glands in eyes: A pilot study [published online ahead of print Jan 03, 2022]. *Int Ophthal-mol*, doi:10.1007/s10792-021-02205-1.
29. Yeh TN, Lin MC. Meibomian gland contrast sensitivity and specificity in the diagnosis of lipid-deficient dry eye: a pilot study. *Optom Vis Sci*. 2021;98:121–126.
30. Cisneros FJ, Gough BJ, Patton RE, Ferguson SA. Serum levels of albumin, triglycerides, total protein and glucose in rats are altered after oral treatment with low doses of 13-cis-retinoic acid or all-trans-retinoic acid. *J Appl Toxicol*. 2005;25:470–478.
31. Ferguson SA, Cisneros FJ, Gough BJ, Ali SF. Four weeks of oral isotretinoin treatment causes few signs of general toxicity in male and female Sprague-Dawley rats. *Food Chem Toxicol*. 2005;43:1289–1296.
32. Ferguson SA, Berry KJ. Oral Accutane (13-cis-retinoic acid) has no effects on spatial learning and memory in male and female Sprague-Dawley rats. *Neurotoxicol Teratol*. 2007;29:219–227.
33. Ilić I, Oršolić N, Rodak E, et al. The effect of high-fat diet and 13-cis retinoic acid application on lipid profile, glycemic response and oxidative stress in female Lewis rats. *PLoS One*. 2020;15:e0238600.
34. Kamm JJ. Toxicology, carcinogenicity, and teratogenicity of some orally administered retinoids. *J Am Acad Dermatol*. 1982;6:652–659.
35. Nau H. Teratogenicity of isotretinoin revisited: species vari-ation and the role of all-trans-retinoic acid. *J Am Acad Dermatol*. 2001;45:S183–187.
36. Agamia NF, Abdallah DM, Sorour O, Mourad B, Younan DN. Skin expression of mammalian target of rapamycin and forkhead box transcription factor 01, and serum insulin-like growth factor-1 in patients with acne vulgaris and their rela-tionship with diet. *Br J Dermatol*. 2016;174:1299–1307.
37. Knop E, Knop N, Millar T, Obata H, Sullivan DA. The International Workshop on Meibomian Gland Dysfunction: report of the Subcommittee on Anatomy, Physiology, and Pathophysiology of the Meibomian Gland. *Invest Ophthal-mol Vis Sci*. 2011;52:1938–1978.
38. Olami Y, Zajicek G, Cogan M, Gnessin H, Pe’er J. Turnover and migration of meibomian gland cells in rats’ eyelids. *Ophthal-mic Res*. 2001;33:170–175.
39. Itabe H, Yamaguchi T, Ninura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. *Lipids Health Dis*. 2017;16:83.
40. Kutsuna M, Kodama T, Sumida M, et al. Presence of adipose differentiation-related protein in rat meibomian gland cells. *Exp Eye Res*. 2007;84:687–693.
41. Green-Church KB, Butovich I, Willcox M, et al. The Interna-tional Workshop on Meibomian Gland Dysfunction: report of the Subcommittee on Tear Film Lipids and Lipid-Protein Interactions in Health and Disease. *Invest Ophthal-mol Vis Sci*. 2011;52:1979–1993.
42. Strauss JS, Stranieri AM, Farrell LN, Downing DT. The effect of marked inhibition of sebum production with 13cis-retinoic acid on skin surface lipid composition. *J Invest Dermatol*. 1980;74:66–67.
43. Robosky LG, Wade K, Woolson D, et al. Quantitative evalu-ation of sebum lipid components with nuclear magnetic resonance. *J Lipid Res*. 2008;49:686–692.
44. Butovich IA. Meibomian glands, meibum, and meibogene-sis. *Exp Eye Res*. 2017;163:2–15.
45. Miyamoto M, Sassa T, Sawada M, Kihara A. Lipid polar-ity gradient formed by omega-hydroxy lipids in tear film prevents dry eye disease. *Elife*. 2020;9:e53582.
46. McMahon A, Lu H, Butovich IA. A role for ELOVL4 in the meibomian gland and sebocyte cell biology. *Invest Ophthal-mol Vis Sci*. 2014;55:2832–2840.
47. Storch J, Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. *J Biol Chem*. 2010;285:32679–32683.
48. Kim SW, Xie Y, Nguyen PQ, et al. PPARgamma regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (hMGEC). *Ocul Surf*. 2018;16:463–469.
49. You W, Xu Z, Sun Y, Valencak TG, Wang Y, Shan T. GADD45alpha drives brown adipose tissue formation through upregulating PPARgamma in mice. *Cell Death Dis*. 2020;11:585.
50. de Queiroga IB, Antonio Vieira L, Barros Jde N, Melo Diniz Mde F, de Morais LC. Conjunctival impression cytology changes induced by oral isotretinoin. *Cornea*. 2009;28:1009–1013.
51. Karalezli A, Borazan M, Altinors DD, Dursun R, Kiyici H, Akova YA. Conjunctival impression cytology, ocular surface, and tear film changes in patients treated with systemic isotretinoin. *Cornea*. 2009;28:46–50.
52. Polat M, Küknner Ş. The effect of oral isotretinoin on visual contrast sensitivity and amount of lacrimation in patients with acne vulgaris. *Cutan Ocul Toxicol*. 2017;36:35–38.
53. Bozkurt B, İrkeç MT, Atakan N, Orhan M, Geyik PO. Lacrimal function and ocular complications in patients treated with systemic isotretinoin. *Eur J Ophthalmol*. 2002;12:173–176.
54. Bayhan SA, Bayhan HA, Colgecen E, Gurdal C. Effects of topical acne treatment on the ocular surface in patients with acne vulgaris. *Cont Lens Anterior Eye*. 2016;39:431–434.
55. Duzgun E, Ozkur E. The effect of oral isotretinoin therapy on meibomian gland morphology and dry eye tests. *J Dermatolog Treat*. 2020;1–7.
56. Elhamaky TR. Efficacy of omega-3 fatty acids and punctal plugs in the prevention of isotretinoin-associated ocular surface disease. *Eur J Ophthalmol*. 2021;31:2339–2345.
57. Barbosa AP, Frd Oliveira, Fjd Rocha, Muglia VF, Rocha EM. Lacrimal gland atrophy and dry eye related to isotretinoin, androgen, and prolactin: differential diagnosis for Sjogren's syndrome. *Arq Bras Oftalmol*. 2021;84:78–82.
58. Rismondo V, Ubels JL, Osgood TB. Tear secretion and lacrimal gland function of rabbits treated with isotretinoin. *J Am Acad Dermatol*. 1988;19:280–285.
59. Ding J, Kam WR, Dieckow J, Sullivan DA. The influence of 13-cis retinoic acid on human meibomian gland epithelial cells. *Invest Ophthal Mol Vis Sci*. 2013;54:4341–4350.
60. Perlman RL. Mouse models of human disease: an evolutionary perspective. *Evol Med Public Health*. 2016;2016:170–176.
61. Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. *Proc Nail Acad Sci USA*. 2013;110:3507–3512.
62. Chen X, Sullivan BD, Darabad RR, Liu S, Kam WR, Sullivan DA. Are BALB/c mice relevant models for understanding sex-related differences in gene expression in the human meibomian gland? *Cornea*. 2019;38:1554–1562.