Estimates for p-Laplace type equation in a limit case

Fernando Farroni Luigi Greco Gioconda Moscariello *

December 17, 2013

Abstract

We study the Dirichlet problem for a p–Laplacian type operator in the setting of the Orlicz–Zygmund space $L^q \log^{-\alpha} L(\Omega, \mathbb{R}^n)$, $q > 1$ and $\alpha > 0$. More precisely, our aim is to establish which assumptions on the parameter $\alpha > 0$ lead to existence, uniqueness of the solution and continuity of the associated nonlinear operator.

Keywords: Dirichlet problems, p–Laplace operators, existence, uniqueness, continuity, Orlicz–Sobolev spaces.

Mathematics Subject Classification (2000): 35J60

1 Introduction

Let Ω be a bounded Lipschitz domain of \mathbb{R}^N, $N \geq 2$. We consider the Dirichlet problem

\begin{equation}
\begin{cases}
\text{div} \, A(x, \nabla u) = \text{div} \, f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\end{equation}
where $A : \Omega \times \mathbb{R}^N \to \mathbb{R}^N$ is a Carathéodory vector field satisfying the following assumptions for a.e. $x \in \Omega$ and all $\xi, \eta \in \mathbb{R}^N$

$$
\langle A(x, \xi), \xi \rangle \geq a|\xi|^p \quad (1.2)
$$

$$
|A(x, \xi) - A(x, \eta)| \leq b|\xi - \eta|(|\xi| + |\eta|)^{p-2} \quad (1.3)
$$

$$
\langle A(x, \xi) - A(x, \eta), \xi - \eta \rangle \geq a|\xi - \eta|^2(|\xi| + |\eta|)^{p-2} \quad (1.4)
$$

where $p \geq 2$, $0 < a \leq b$.

Let $f = (f^1, f^2, \ldots, f^N)$ be a vector field of class $L^s(\Omega, \mathbb{R}^N)$, $1 \leq s \leq q$ where q is the conjugate exponent of p, i.e. $pq = p + q$.

Definition 1.1. A function $u \in W^{1,r}_0(\Omega)$, $p - 1 \leq r \leq p$, is a solution of (1.1) if

$$
\int_\Omega \langle A(x, \nabla u), \nabla \varphi \rangle \, dx = \int_\Omega \langle f, \nabla \varphi \rangle \, dx, \quad (1.5)
$$

for every $\varphi \in C_0^\infty(\Omega)$.

By a routine argument, it can be seen that the identity (1.5) still holds for functions $\varphi \in W^{1,\frac{p-1}{p-1-r}}(\Omega)$ with compact support. We shall refer to such a solution as a distributional solution or (as some people say) as a very weak solution [17, 20].

We point out that, if $r < p$, such a solution may have infinite energy, i.e. $|\nabla u| \notin L^p(\Omega)$. The existence of a solution $u \in W^{1,p-1}_0(\Omega)$ to problem (1.1) is obtained in [1] when $\text{div} \, f$ belongs to $L^1(\Omega, \mathbb{R}^N)$. It is well known that the uniqueness of solutions to (1.1) in the sense of Definition 1.1 generally fails [26, 1]. Then, other possible definitions have been introduced, as the so-called duality solutions [27], the approximation solutions (SOLA) [5], the entropy solutions [25, 19, 6]. Recent results for the regularity of such solutions are given in [21, 22]. However, these ideas do not apply if one wants to investigate the uniqueness of a distributional solution. At the present time the problem remains unclear, unless for $p = 2$ [11] and $p = N$ [1]. In the case $p = 2$ the range of exponents r allowing for a comprehensive theory is known, see [2, 18]. In the general case, uniqueness is proved in the setting of the grand Sobolev space (see [12]).

Our goal in the present paper is to study problem (1.1) assuming that the datum f lies in the Orlicz–Zygmund space $L^q\log^{-\alpha} L(\Omega, \mathbb{R}^n)$, $\alpha > 0$. More precisely, our aim is to establish under which assumptions on the parameter $\alpha > 0$ we can define a continuous operator

$$
\mathcal{H} : L^q\log^{-\alpha} L(\Omega, \mathbb{R}^n) \to L^p\log^{-\alpha} L(\Omega, \mathbb{R}^n) \quad (1.6)
$$
which carries a given vector field f into the gradient field ∇u.

In the case $\alpha \leq 0$, in the literature there are several results on the continuity of the operator defined in (1.6) [23, 8, 14]. Moreover, as a consequence of the results in [10] and [4] and the interpolation theorem of [3], when $p = 2$ the operator \mathcal{H} is Lipschitz continuous for any $-\infty < \alpha < \infty$. Actually, for $p = 2$ and suitable $\alpha > 0$, the existence for problem (1.1) is also ensured for not uniformly elliptic equations [24].

Here we consider the case $p > 2$. Our main results are the following.

Theorem 1.1. For each $f \in L^q \log^{-\alpha} L(\Omega, \mathbb{R}^n)$, $1 < q < 2$ and $0 < \alpha < \frac{p}{p-2}$, the problem (1.1) admits a unique solution $u : \Omega \rightarrow \mathbb{R}$ such that

$$\|\nabla u\|_{L^p \log^{-\alpha} L(\Omega, \mathbb{R}^n)} \leq C \|f\|_{L^q \log^{-\alpha} L}$$

Moreover, the operator \mathcal{H} is continuous.

Theorem 1.2. There exists a constant $C > 0$ depending on n, p, α, a and b such that, if f and g belong to $L^q \log^{-\alpha} L(\Omega, \mathbb{R}^n)$, $1 < q < 2$ and $0 < \alpha < \frac{p}{p-2}$, then

$$\|\mathcal{H}f - \mathcal{H}g\|_{L^p \log^{-\alpha} L} \leq C \left(\|f\|_{L^q \log^{-\alpha} L}^{q(1-\gamma)} \|f\|_{L^q \log^{-\alpha} L} \right) \left(\|f\|_{L^q \log^{-\alpha} L}^{\gamma} \right),$$

where $\gamma = \frac{\alpha p}{p-2}$.

We point out that Theorem 1.1 improves the result of [12] in two different directions. First of all, when $0 < \alpha < \frac{p}{p-2}$, it gives higher integrability of the solutions found in [12]. On the other hand, the case $\alpha = \frac{p}{p-2}$ is not covered by [12].

In the particular case that the vector field A takes the form

$$A(x, \xi) = \langle A(x)\xi, \xi \rangle^{\frac{p-2}{2}} A(x)\xi$$

(1.9)

where $A : \Omega \rightarrow \mathbb{R}^{N \times N}$ is a measurable, symmetric, uniformly elliptic matrix field, we also prove a stability theorem for solutions to problem (1.1) in terms of the characteristic of A (see Section 3). The characteristic of the symmetric matrix field $A : \Omega \rightarrow \mathbb{R}^{N \times N}$ (see [13]) is defined as the quantity

$$K_A = \text{ess sup}_{x \in \Omega} \left(1 + |A(x) - I|^{\frac{p}{2}} \right).$$

(1.10)

Observe that $K_A \geq 1$ and $K_A = 1$ if and only if A is the identity matrix.
Theorem 1.3. Assume that $A: \Omega \to \mathbb{R}^{N \times N}$ is a measurable symmetric matrix field satisfying the ellipticity bounds
\[
a^\frac{2}{p} |\xi|^2 \leq \langle A(x)\xi, \xi \rangle \leq b^\frac{2}{p} |\xi|^2, \tag{1.11}\]
for a.e. $x \in \Omega$, for every $\xi \in \mathbb{R}^N$. There exists a constant $C > 0$ depending on n, p, α, a and b such that, if $u, v \in W^{1, L^p \log^{-\alpha}}(\Omega)$, with $0 < \alpha < \frac{1}{p-2}$, verify
\[
\begin{cases}
\text{div} \left(\langle A(x)\nabla u, \nabla u \rangle^{\frac{p-2}{2}} A(x)\nabla u \right) = \text{div} \left(|\nabla v|^{p-2} \nabla v \right) & \text{in } \Omega, \\
u = v & \text{on } \partial \Omega,
\end{cases}
\tag{1.12}
\]
then
\[
\|\nabla u - \nabla v\|_{L^p \log^{-\alpha} L^p} \leq C (K_A - 1)^{\gamma(1-\gamma)} K_A^{\gamma(\gamma+1)} \| |\nabla u| + |\nabla v|\|_{L^p \log^{-\alpha} L^p} \tag{1.13}
\]
where $\gamma = \frac{p-2}{p}$.

The main tool to prove our results is the Hodge decomposition and fine properties of the norm in the Zygmund spaces developed in Section 2.

2 Preliminary results

2.1 Basic notation

We indicate that quantities $a, b \geq 0$ are equivalent by writing $a \sim b$; namely, $a \sim b$ will mean that there exist constants $c_1, c_2 > 0$ such that $c_1 a \leq b \leq c_2 a$. Similarly, $a \lesssim b$ ($a \gtrsim b$ respectively) will mean that there exists $c > 0$ such that $a \leq cb$ ($a \geq cb$ respectively).

From now on, Ω will denote a bounded Lipschitz domain in \mathbb{R}^N. For a function $v \in L^p(\Omega)$ with $1 \leq p < \infty$ we set
\[
\|v\|_p = \left(\int_\Omega |v|^p \, dx \right)^{\frac{1}{p}}.
\]
Barred integrals denote averages, namely $\bar{f}_\Omega = \frac{1}{|\Omega|} \int_\Omega f$.

4
2.2 Marcinkiewicz Spaces

For $0 < p < \infty$, the Marcinkiewicz space weak-$L^p(\Omega)$, also denoted by $L^{p, \infty}(\Omega)$, consists of all measurable functions $g : \Omega \to \mathbb{R}$ such that

$$
\|g\|_{L^{p, \infty}(\Omega)}^p = \|g\|_{p, \infty}^p = \sup_{t > 0} t^p |\{ x \in \Omega : |g(x)| > t \}| < \infty.
$$

A useful property of the Marcinkiewicz norm is given by the following identities

$$
\|g^\alpha\|_{p, \infty}^p = \|g\|_{\alpha p, \infty}^{\alpha p} \quad \text{for } \alpha > 0. \tag{2.1}
$$

For $1 < q < p$ one has

$$
L^{p, \infty}(\Omega) \subset L^q(\Omega).
$$

We shall appeal to the following Hölder type inequality

$$
\|v\|_{L^q(E)} \leq \left(\frac{p}{p - q} \right)^{\frac{1}{q}} |E|^{-\frac{1}{q}} |\Omega|^{\frac{1}{q} - \frac{1}{p}} \|v\|_{L^{p, \infty}(\Omega)} \tag{2.2}
$$

which holds true for $v \in L^{p, \infty}(\Omega)$, $E \subset \Omega$ and $q < p$.

2.3 Grand Lebesgue and grand Sobolev Spaces

For $1 < p < \infty$ we denote by $L^p(\Omega)$ the grand–Lebesgue space $L^p(\Omega)$ consisting of all functions $v \in \bigcap_{0 < \varepsilon \leq p-1} L^{p-\varepsilon}(\Omega)$ such that

$$
\|v\|_p = \sup_{0 < \varepsilon \leq p-1} \varepsilon^{\frac{1}{p}} \left(\int_{\Omega} |v|^{p-\varepsilon} \, dx \right)^{\frac{1}{p-\varepsilon}} < \infty. \tag{2.3}
$$

Moreover

$$
\|v\|_p \sim \sup_{0 < \varepsilon \leq p-1} \varepsilon^{\frac{1}{p}} \left(\int_{\Omega} |v|^{p-\varepsilon} \, dx \right)^{\frac{1}{p-\varepsilon}}. \tag{2.4}
$$

The Marcinkiewicz class weak – $L^p(\Omega)$ is contained in $L^p(\Omega)$ (see [15, Lemma 1.1]).

More generally, if $\alpha > 0$ we denote by $L^{\alpha,p}(\Omega)$ the grand–Lebesgue space consisting of all functions $v \in \bigcap_{0 < \varepsilon \leq p-1} L^{p-\varepsilon}(\Omega)$ such that

$$
\|v\|_{\alpha,p} = \sup_{0 < \varepsilon \leq p-1} \varepsilon^{\frac{\alpha}{p}} \left(\int_{\Omega} |v|^{p-\varepsilon} \, dx \right)^{\frac{1}{p-\varepsilon}} < \infty. \tag{2.5}
$$
2.4 Zygmund spaces

We shall need to consider the Zygmund space \(L^q \log^{-\alpha} L(\Omega) \), for \(1 < q < \infty \), \(\alpha > 0 \). This is the Orlicz space generated by the function

\[
\Phi(t) = t^q \log^{-\alpha}(a + t), \quad t \geq 0,
\]

where \(a \geq e \) is a suitably large constant, so that \(\Phi \) is increasing and convex on \([0,\infty[\). The choice of \(a \) will be immaterial. More explicitly, for a measurable function \(f \) on \(\Omega \), \(f \in L^q \log^{-\alpha} L(\Omega) \) simply means that

\[
\int_{\Omega} |f|^q \log^{-\alpha}(a + |f|) \, dx < \infty.
\]

It is customary to consider the Luxemburg norm

\[
[f]_{L^q \log^{-\alpha} L} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi(|f|/\lambda) \, dx \leq 1 \right\},
\]

and \(L^q \log^{-\alpha} L(\Omega) \) is a Banach space. However, we shall introduce an equivalent norm, which involves the norms in \(L^{q-\varepsilon}(\Omega) \), for \(0 < \varepsilon \leq q - 1 \), and is more suitable for our purposes. For \(f \) measurable on \(\Omega \), we set

\[
\|f\|_{L^q \log^{-\alpha} L} = \left\{ \int_0^{\varepsilon_0} \varepsilon^{q-1} \|f\|_{L^{q-\varepsilon}}^q \, d\varepsilon \right\}^{1/q} \tag{2.6}
\]

Here \(\varepsilon_0 \in (0, q - 1] \) is fixed. The following is a refinement of a result of [11].

Lemma 2.1. We have \(f \in L^q \log^{-\alpha} L(\Omega) \) if and only if

\[
\|f\|_{L^q \log^{-\alpha} L} < \infty. \tag{2.7}
\]

Moreover, \(\|f\|_{L^q \log^{-\alpha} L} \) is a norm equivalent to the Luxemburg one, that is, there exist constants \(C_i = C_i(q, \alpha, a, \varepsilon_0) \), \(i = 1, 2 \), such that for all \(f \in L^q \log^{-\alpha} L(\Omega) \)

\[
C_1 \, [f]_{L^q \log^{-\alpha} L} \leq \|f\|_{L^q \log^{-\alpha} L} \leq C_2 \, [f]_{L^q \log^{-\alpha} L}.
\]

Proof. It is easy to check that \(\|f\|_{L^q \log^{-\alpha} L} \) defined by (2.6) is a norm.

Let \(f \) be a measurable function defined in \(\Omega \). We clearly have

\[
|f|^q(a + |f|)^{-\varepsilon} \leq |f|^{q-\varepsilon} \leq 2^{q-1}[a^q + |f|^q(a + |f|)^{-\varepsilon}],
\]

for a.e. in \(\Omega \), hence integrating

\[
\int_{\Omega} |f|^q(a + |f|)^{-\varepsilon} \, dx \leq \|f\|_{L^{q-\varepsilon}}^q \leq 2^{q-1}a^q + 2^{q-1} \int_{\Omega} |f|^q(a + |f|)^{-\varepsilon} \, dx.
\]
This in turn implies
\[
\int_0^{\varepsilon_0} \varepsilon^{a-1} \left[\int_{\Omega} |f|^q (a + |f|)^{-\varepsilon} \, dx \right] d\varepsilon \leq \int_0^{\varepsilon_0} \varepsilon^{a-1} \|f\|^{q-\varepsilon}_{q-\varepsilon} \, d\varepsilon
\]
(2.8)
Moreover,
\[
\int_0^{\varepsilon_0} \varepsilon^{a-1} (a + |f|)^{-\varepsilon} \, d\varepsilon = \log^{-\alpha}(a + |f|) \int_0^{\varepsilon_0 \log(a + |f|)} \tau^{a-1} e^{-\tau} \, d\tau
\]
and
\[
\int_0^{\varepsilon_0 \log a} \tau^{a-1} e^{-\tau} \, d\tau \leq \int_0^{\varepsilon_0 \log(a + |f|)} \tau^{a-1} e^{-\tau} \, d\tau \leq \int_0^{\infty} \tau^{a-1} e^{-\tau} \, d\tau
\]
Therefore from (2.8) we get
\[
C_3 \int_{\Omega} |f|^q \log^{-\alpha}(a + |f|) \, dx \leq \int_0^{\varepsilon_0} \varepsilon^{a-1} \|f\|^{q-\varepsilon}_{q-\varepsilon} \, d\varepsilon
\]
\[
\leq C_4 \left[1 + \int_{\Omega} |f|^q \log^{-\alpha}(a + |f|) \, dx \right]
\]
(2.9)
for some positive constants.
Assume now that \(f \) satisfies (2.7). As
\[
\|f\|^{q-\varepsilon}_{q-\varepsilon} \leq \|f\|^{q}_{q-\varepsilon} + 1
\]
we see that the first term of (2.9) is finite, so \(f \in L^q \log^{-\alpha} \mathcal{L}(\Omega) \). Furthermore, if \(\|f\|_{L^q \log^{-\alpha} \mathcal{L}} = 1 \), then (2.9) implies
\[
\int_{\Omega} |f|^q \log^{-\alpha}(a + |f|) \, dx \leq C_5
\]
for a constant independent of \(f \). By homogeneity,
\[
[f]_{L^q \log^{-\alpha} \mathcal{L}} \leq C_5 \|f\|_{L^q \log^{-\alpha} \mathcal{L}}
\]
(2.10)
for all \(f \).
In case \(f \in L^q \log^{-\alpha} \mathcal{L}(\Omega) \), since the Zygmund space is continuously embedded in the gran Lebesgue space \(\mathcal{L}^{\alpha,q} \) (see [15]), there exists a constant \(C_6 > 0 \) such that
\[
\|f\|_{q-\varepsilon} \leq C_6 \varepsilon^{-\alpha/q} [f]_{L^q \log^{-\alpha} \mathcal{L}},
\]

thus
\[\|f\|_{q-\varepsilon}^q = \|f\|^q_{q-\varepsilon} \leq \|f\|_{q-\varepsilon}^q C_7 \|f\|_L^{q \log -\alpha} \]
and by (2.9) we get (2.7). In fact, if \(\|f\|_{L^q \log -\alpha} = 1 \), then we have
\[\|f\|_{L^q \log -\alpha} \leq C_8 \]
and by homogeneity we conclude with the reverse inequality to (2.10).

Remark 2.2. We examine the dependence of \(\|f\|_{L^q \log -\alpha} \) defined by (2.6), on the parameter \(\varepsilon_0 \). For fixed \(0 < \varepsilon_0 \leq \varepsilon_1 \leq q - 1 \), by Hölder's inequality we have
\[\|f\|_{q-\varepsilon} \leq \|f\|_{q-\varepsilon_0/\varepsilon_1} \]
and hence
\[\int_{\varepsilon_0}^{\varepsilon_1} \varepsilon^{\alpha-1} \|f\|_{q-\varepsilon}^q d\varepsilon \leq \int_{\varepsilon_0}^{\varepsilon_1} \varepsilon^{\alpha-1} \|f\|_{q-\varepsilon}^q d\varepsilon \leq \left(\frac{\varepsilon_1}{\varepsilon_0} \right)^\alpha \int_{\varepsilon_0}^{\varepsilon_1} \varepsilon^{\alpha-1} \|f\|_{q-\varepsilon}^q d\varepsilon. \]
(2.11)

Remark 2.3. It is clear that (2.7) implies \(f \in L^{\alpha,q}(\Omega) \). We remark that the norm (2.6) compares in a very simple way with \(\|f\|_{L^{\alpha,q}} \). Indeed, as \(\varepsilon \mapsto \|f\|_{q-\varepsilon} \) is decreasing, for all \(\sigma \in [0, q - 1] \) we have
\[\left\{ \int_0^\sigma \varepsilon^{\alpha-1} \|f\|_{q-\varepsilon}^q d\varepsilon \right\}^{1/q} \geq \|f\|_{q-\sigma} \left(\frac{\sigma^{\alpha}}{\alpha} \right)^{1/q}, \]
(2.12)
hence by (2.11)
\[\|f\|_{L^{\alpha,q}} \leq \left(\frac{q - 1}{\varepsilon_0} \right)^{\alpha/q} \|f\|_{L^q \log -\alpha}. \]
(2.13)

Moreover, using (2.6), the inclusion \(L^{\alpha,q}(\Omega) \subset L^q \log ^{-\beta}(\Omega) \) for \(\beta > \alpha \) (see (11)) is trivial:
\[\int_{\varepsilon_0}^{\varepsilon_1} \varepsilon^{\alpha-1} \|f\|_{q-\varepsilon}^q d\varepsilon = \int_{\varepsilon_0}^{\varepsilon_1} \varepsilon^{\alpha} \|f\|_{q-\varepsilon}^{q(\varepsilon^{\beta-\alpha} - 1)} d\varepsilon \]
and then
\[\|f\|_{L^q \log ^{-\beta}} \leq \left(\frac{\varepsilon_0^{\beta-\alpha}}{\beta - \alpha} \right)^{1/q} \|f\|_{L^{\alpha,q}}. \]
We point out that a simple application of the Lebesgue dominated convergence theorem proves that

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{\alpha/q} \|f\|_{q-\varepsilon} = 0,$$

(2.14)

for all \(f \in L^q \log^{-\alpha} L(\Omega) \), see [11]. Actually, (2.14) follows directly from (2.7), since it implies that the left hand side of (2.12) tends to 0 as \(\sigma \downarrow 0 \).

We stress that (2.14) does not hold uniformly, as \(f \) varies in a bounded set of \(L^q \log^{-\alpha} L(\Omega) \). Indeed, for each \(\varepsilon > 0 \) sufficiently small so that \(\Phi(e^{1/\varepsilon}) > 1 \), we choose a measurable subset \(E \subset \Omega \) verifying (\(\Omega \) has no atoms)

$$|E| = |\Omega| e^{-q/\varepsilon} \log^{-\alpha}(a + e^{1/\varepsilon}) = |\Omega|/\Phi(e^{1/\varepsilon})$$

and set

$$f = f_\varepsilon = e^{1/\varepsilon} \chi_E.$$

Then we find that \([f]_{L^q \log^{-\alpha} L} \equiv 1\), while

$$\|f\|_{q-\varepsilon} = e^{1/\varepsilon} e^{-1/q \varepsilon/(q-\varepsilon)} \log^{\alpha/(q-\varepsilon)}(a + e^{1/\varepsilon})$$

$$= e^{-1/(q-\varepsilon)} \log^{\alpha/(q-\varepsilon)}(a + e^{1/\varepsilon})$$

and

$$\lim_{\varepsilon \downarrow 0} \varepsilon^{\alpha/q} \|f\|_{q-\varepsilon} = e^{-1/q}.$$

Lemma 2.4. For each relatively compact subset \(M \subset L^q \log^{-\alpha} L(\Omega) \), condition (2.14) holds uniformly for \(f \in M \), that is

$$\lim_{\varepsilon \downarrow 0} \left(\sup_{f \in M} \varepsilon^{\alpha/q} \|f\|_{q-\varepsilon} \right) = 0.$$

Proof. For simplicity, we assume \(\varepsilon_0 = q - 1 \). As \(M \) is totally bounded, fixed arbitrarily \(\sigma > 0 \) we find a finite number of elements \(f_1, \ldots, f_k \in M \) with the property that, \(\forall f \in M, \exists j \in \{1, \ldots, k\} \):

$$\varepsilon^{\alpha/q} \|f - f_j\|_{q-\varepsilon} \leq \|f - f_j\|_{L^\alpha} \leq \alpha^{1/q} \|f - f_j\|_{L^q \log^{-\alpha} L} < \sigma,$$

for all \(\varepsilon \in [0, \varepsilon_0] \). Above, we used (2.13). Moreover, \(\exists \varepsilon_\sigma \in [0, \varepsilon_0] \) such that

$$\varepsilon^{\alpha/q} \|f_j\|_{q-\varepsilon} < \sigma, \quad \forall \varepsilon \in [0, \varepsilon_\sigma], \forall j \in \{1, \ldots, k\}.$$

Therefore, we conclude easily for any \(f \in M \) and \(\varepsilon \in [0, \varepsilon_\sigma] \)

$$\varepsilon^{\alpha/q} \|f\|_{q-\varepsilon} \leq \varepsilon^{\alpha/q} (\|f_j\|_{q-\varepsilon} + \|f - f_j\|_{q-\varepsilon}) < 2\sigma.$$

In particular, if \((f_n)_{n \in \mathbb{N}}\) is a converging sequence in \(L^q \log^{-\alpha} L(\Omega) \), then

$$\lim_{\varepsilon \downarrow 0} \left(\sup_n \varepsilon^{\alpha/q} \|f_n\|_{q-\varepsilon} \right) = 0.$$

9
2.5 Sobolev space $W^{1,L^p\log^{-\alpha}L_0}(\Omega)$

For a bounded domain $\Omega \subset \mathbb{R}^N$, let $W^{1,L^p\log^{-\alpha}L_0}(\Omega)$ be the completion of $C_0^\infty(\Omega)$ with respect to the norm

$$\|u\| = \|\nabla u\|_{L^q\log^{-\alpha}L^1}. $$

3 Proof of Theorem 1.1 and Theorem 1.2

Our goal in this section is to prove Theorem 1.1.

3.1 A fundamental lemma

Assume that $A = A(x, \xi)$ satisfies (1.2)–(1.4). For $\psi \in W^{1,L^p}(\Omega)$, we consider the equations

$$\text{div } A(x, \nabla u) = \text{div } f \text{ in } \Omega, \quad (3.1)$$
$$\text{div } A(x, \nabla v) = \text{div } g \text{ in } \Omega, \quad (3.2)$$

with $f, g \in L^{q-\varepsilon}(\Omega, \mathbb{R}^n)$, $0 < \varepsilon < 1$. Let $u, v \in \mathcal{W}^{1,p-\varepsilon}(\Omega)$ be solutions to (3.1) and (3.2) respectively such that

$$u - v \in \mathcal{W}^{1,p-\varepsilon}_0(\Omega)$$

Then

Lemma 3.1. There exists $0 < \varepsilon_p(n) < 1/p$ and a constant $C > 0$ depending on n, p, α, a and b such that the following uniform estimate holds

$$\|\nabla u - \nabla v\|_{p-\varepsilon}^p \leq C \left(\varepsilon_p(n)^{\frac{p-1}{p}} \|\nabla u\| + \|\nabla v\|_{p-\varepsilon}^p + \|f - g\|_{q-\varepsilon}^q \right), \quad (3.3)$$

for every $0 < \varepsilon < \varepsilon_p(n)$.

Proof of Lemma 3.1. The proof is achieved with a similar argument as in [12]. We sketch it for the sake of completeness.

Since Ω is Lipschitz, we may use the Hodge decomposition of the vector field $|\nabla u - \nabla v|^{-\varepsilon}(\nabla u - \nabla v) \in \mathcal{L}^{\frac{p-\varepsilon}{p}}(\Omega)$ (see [15, 16]), namely

$$|\nabla u - \nabla v|^{-\varepsilon}(\nabla u - \nabla v) = \nabla \varphi + h, \quad (3.4)$$
for some \(\varphi \in \mathcal{W}_0^{1,1-\varepsilon p} (\Omega) \) and some divergence free vector field \(h \in \mathcal{L}^{p-\varepsilon p} (\Omega) \). Moreover, fixed \(0 < \varepsilon_p(n) < 1/p \), for every \(0 < \varepsilon < \varepsilon_p(n) \) the following estimates hold (see [10])

\[
\| \nabla \varphi \|_{p-\varepsilon p} \leq C(n,p) \| \nabla u - \nabla v \|_{p-\varepsilon p} \quad (3.5)
\]

\[
\| h \|_{p-\varepsilon p} \leq C(n,p) \varepsilon \| \nabla u - \nabla v \|_{p-\varepsilon p} \quad (3.6)
\]

From condition (1.4) we obtain

\[
\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq \int_{\Omega} \left(|\nabla u| + |\nabla v| \right)^{p-2} |\nabla u - \nabla v \|^{\varepsilon p} \ dx
\]

\[
\leq \frac{1}{a} \int_{\Omega} \left\langle A(x, \nabla u) - A(x, \nabla v), |\nabla u - \nabla v \|^{\varepsilon p} (\nabla u - \nabla v) \right\rangle \ dx
\]

(3.7)

By Definition 1.1, we are legitimate to use \(\varphi \) as a test function for equations in both (3.1) and (3.2) respectively. Then

\[
\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq \frac{1}{a} \left[\int_{\Omega} \left\langle f - g, \nabla \varphi \right\rangle \ dx + \int_{\Omega} \left\langle A(x, \nabla u) - A(x, \nabla v), h \right\rangle \ dx \right]
\]

(3.8)

With the aid of condition (1.3) and the Hölder’s inequality, we get

\[
\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq \frac{1}{a} \left[\| f - g \|_{q-\varepsilon q} \| \nabla \varphi \|_{p-\varepsilon p}^{q-\varepsilon q} \right.
\]

\[
\left. + b \| \nabla u \| + |\nabla v|^{p-2} \| \nabla u - \nabla v \|_{p-\varepsilon p} \| h \|_{p-\varepsilon p} \right]
\]

(3.9)

which, in view of (3.5) and (3.6), yields

\[
\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq C \left[\| f - g \|_{q-\varepsilon q} \| \nabla u - \nabla v \|_{p-\varepsilon p}^{1-\varepsilon p} \right.
\]

\[
\left. + \varepsilon \| \nabla u \| + |\nabla v|^{p-2} \| \nabla u - \nabla v \|_{p-\varepsilon p}^{2-\varepsilon p} \right]
\]

(3.10)

where \(C = C(n,p,a,b) \). With the aid of Young’s inequality we obtain

\[
\| \nabla u - \nabla v \|_{p-\varepsilon p}^{p-1} \leq C \| f - g \|_{q-\varepsilon q} + C \| \nabla u \| + |\nabla v|^{p-2} \| \nabla u - \nabla v \|_{p-\varepsilon p}
\]

\[
\leq C \left(\| f - g \|_{q-\varepsilon q} + \varepsilon \| \nabla u \| + |\nabla v|^{p-1} \right)
\]

\[
+ \frac{1}{(p-1)2^{p-1}} \| \nabla u - \nabla v \|_{p-\varepsilon p}^{p-1}
\]

(3.11)
Once the latter term is absorbed by the left hand side, we have
\[\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq C \left(\| f - g \|_{q-\varepsilon q} + \varepsilon^{\frac{p-1}{p}} \| \nabla u \| + \| \nabla v \|^{p-1}_{p-\varepsilon p} \right) \] (3.12)
which corresponds to the estimate we wanted to prove. \qed

Corollary 3.2. Under the assumptions of Lemma 3.1, if \(u = v \) on \(\partial \Omega \), there exists \(0 < \varepsilon_0 < 1/p \) and a constant \(C > 0 \) depending on \(n, p, \alpha, a \) and \(b \) such that, for any \(0 < \varepsilon < \varepsilon_0 \) the following uniform estimate holds
\[\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq C \left(\varepsilon^{\frac{p-1}{p-2}} \| f \|_{q-\varepsilon q} + \| f - g \|_{q-\varepsilon q} \right), \] (3.13)

Proof. For \(g = 0 \) and \(v = 0 \), estimate (3.3) reduces to
\[\| \nabla u \|_{p-\varepsilon p} \leq C \left(\| f \|_{q-\varepsilon q} + \varepsilon^{\frac{p-1}{p}} \| \nabla u \|^{p-1}_{p-\varepsilon p} \right) \] (3.14)
which gives, for \(C \varepsilon^{\frac{p-1}{p-2}} < 1 \)
\[\| \nabla u \|_{p-\varepsilon p}^{p-1} \leq C \| f \|_{q-\varepsilon q}^{q-1} \] (3.15)
Similarly, one has
\[\| \nabla v \|_{p-\varepsilon p}^{p-1} \leq C \| g \|_{q-\varepsilon q}^{q-1} \] (3.16)
Inserting (3.15) and (3.16) into (3.12), we finally get (3.13). \qed

3.2 Uniqueness

Under the assumptions of Theorem 1.1, if \(f = g \), estimate (3.13) reduces to
\[\| \nabla u - \nabla v \|_{p-\varepsilon p} \leq C \varepsilon^{\frac{p-1}{p}} \| f \|_{q-\varepsilon q} \] (3.17)
Then, if \(f \in L^q \log^{-\alpha} L(\Omega, \mathbb{R}^n) \), \(0 < \alpha \leq p/(p-2) \), uniqueness follows from (2.14) letting \(\varepsilon \to 0^+ \) in (3.17). Actually, we can prove a stronger uniqueness result.

Theorem 3.3. Assume (1.2) - (1.4) hold. There exist \(s \in (p-1/p, p) \) depending only on \(n, p, a \) and \(b \), such that if \(u, v \in W^{1,1}(\Omega) \) satisfy \(u - v \in W^{0,1,1}(\Omega) \), \(\nabla u \in L^s \log^{-\alpha} L(\Omega, \mathbb{R}^n) \), \(0 < \alpha \leq p/(p-2) \), \(\nabla v \in L^s(\Omega, \mathbb{R}^n) \) and
\[\text{div} \, A(x, \nabla u) = \text{div} \, A(x, \nabla v) \] (3.18)
then \(u = v \) in \(\Omega \).
Proof of Theorem 3.3. Arguing as in Lemma 3.1, we decompose the vector field $|\nabla u - \nabla v|^{\varepsilon_p} (\nabla u - \nabla v) \in \mathcal{L}^{\frac{p}{p-\varepsilon_p}}(\Omega)$ and for $f = g$ we get the following estimate

$$\|\nabla u - \nabla v\|_{p-\varepsilon_p}^p \leq C\varepsilon^{\frac{p}{p-\varepsilon_p}} \|\nabla u\| + |\nabla v| \|p-\varepsilon_p\|^p \tag{3.19}$$

which yields

$$\|\nabla u - \nabla v\|_{p-\varepsilon_p}^p \leq C\varepsilon^{\frac{p}{p-\varepsilon_p}} \left(\|\nabla u - \nabla v\|_{p-\varepsilon_p}^p + \|\nabla u\|_{p-\varepsilon_p}^p \right) \tag{3.20}$$

for $0 < \varepsilon < \varepsilon_p(n)$ and $C = C(n, p, a, b)$. Now, if $0 < \varepsilon < \min \{ \varepsilon_p(n), 1/C^{\frac{p-2}{p}} \}$, the first term in the right hand side can be absorbed by the left hand side of (3.20) and so

$$\|\nabla u - \nabla v\|_{p-\varepsilon_p}^p \leq \left(\frac{C\varepsilon}{1-C\varepsilon} \right)^{\frac{p}{p-2}} \|\nabla u\|_{p-\varepsilon_p}^p \tag{3.21}$$

The conclusion of Theorem 3.3 follows by (2.14), as $\varepsilon \to 0^+$ in (3.21). \qed

The previous theorem improves the uniqueness result of [12], which does not cover the case $\alpha = p/(p-2)$. We point out that our result also improves the result in [7], since the Marcinkiewicz space $weak - \mathcal{L}^p$ is contained in $\mathcal{L}^{p,\infty}(\Omega)$ when $1 < \alpha \leq p/(p-2)$. Actually, estimate (3.3) allows us to give a simple proof of [7, Theorem 4.2]. Arguing as in Theorem 3.3, we arrive at (3.21) for $|\nabla u| \in \mathcal{L}^{p,\infty}(\Omega)$ and $|\nabla v| \in \mathcal{L}^p(\Omega)$. Then, by Hölder’s inequality (2.2) we get

$$\|\nabla u - \nabla v\|_{p-\varepsilon_p}^p \leq C\varepsilon^{\frac{p}{p-2}-1} \|\nabla u\|_{p,\infty}^p \tag{3.22}$$

and letting $\varepsilon \to 0^+$ we have $u = v$ in Ω.

3.3 Existence

Let $f \in \mathcal{L}^q \log^{-\alpha} \mathcal{L}(\Omega, \mathbb{R}^N), 1 < q < 2$ and $0 < \alpha \leq p/(p-2)$. The aim of this subsection is to prove the existence in Theorem 1.1. As a preliminary step, we show that, if $(f_n)_n$ is a converging sequence in $\mathcal{L}^q \log^{-\alpha} \mathcal{L}(\Omega, \mathbb{R}^N)$, such that for each n

$$\begin{cases}
\text{div} \mathcal{A}(x, \nabla u_n) = \text{div} f_n \\
u_n = 0 \quad \text{on} \ \partial \Omega
\end{cases} \tag{3.23}
$$

then $(\nabla u_n)_n$ is a Cauchy sequence in $\mathcal{L}^p \log^{-\alpha} \mathcal{L}(\Omega, \mathbb{R}^N)$. To prove this, we first note that, by Lemma 2.4, if we fix a $\sigma > 0$, we find $\vartheta \in]0, 1]$ such that, if $0 < \varepsilon < \vartheta\varepsilon_p(n)$, then

$$\varepsilon^\alpha \|f_m\| + |f_n|^{q-\varepsilon_p} < \sigma,$$
for all $m, n \in \mathbb{N}$. Hence (3.13) with f_m, f_n in place of f, g, and u_m, u_n in place of u, v, respectively, yields

\[
\|\nabla u_m - \nabla u_n\|_{p-\varepsilon p}^p \lesssim \sigma + \|f_m - f_n\|_{q-\varepsilon q}^q. \tag{3.24}
\]

We multiply both sides by $\varepsilon^{\alpha-1}$ and integrate with respect to ε on $(0, \vartheta \varepsilon_p(n))$. For $\delta = \varepsilon p/\vartheta \geq \varepsilon p$, we have

\[
\|\nabla u_m - \nabla u_n\|_{p-\varepsilon p} \geq \|\nabla u_m - \nabla u_n\|_{p-\varepsilon},
\]

hence

\[
\int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} \|\nabla u_m - \nabla u_n\|_{p-\varepsilon p}^p d\varepsilon \geq \left(\frac{\vartheta}{p}\right)^\alpha \int_0^{\varepsilon_0} \delta^{\alpha-1} \|\nabla u_m - \nabla u_n\|_{p-\varepsilon}^p d\delta, \tag{3.25}
\]

where $\varepsilon_0 = p\varepsilon_p(n)$. On the other hand,

\[
\int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} d\varepsilon = \frac{(\vartheta \varepsilon_p(n))^\alpha}{\alpha}
\]

and (setting here $\delta = \varepsilon q$)

\[
\int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} \|f_m - f_n\|_{q-\varepsilon q}^q d\varepsilon \leq q^{-\alpha} \int_0^{\varepsilon_0} \delta^{\alpha-1} \|f_m - f_n\|_{q-\varepsilon}^q d\delta. \tag{3.26}
\]

Therefore, recalling definition (2.6), from (3.24) we get

\[
\|\nabla u_m - \nabla u_n\|_{L^p L^{p-\varepsilon p}} \lesssim \sigma + \|f_m - f_n\|_{L^q L^{q-\varepsilon q}}. \tag{3.27}
\]

with no restrictions on $m, n \in \mathbb{N}$. Now, as the sequence $(f_n)_n$ converges in $L^q L^{p-\varepsilon p} L(\Omega)$, we have

\[
\|f_m - f_n\|_{L^q L^{p-\varepsilon p} L} < \sigma,
\]

provided m and n are sufficiently large, hence

\[
\|\nabla u_m - \nabla u_n\|_{L^p L^{p-\varepsilon p} L} \lesssim \sigma
\]

proving that $(\nabla u_n)_n$ is a Cauchy sequence as desired.

Now we are in a position to prove existence of solution for problem (1.1). Indeed, we approximate the vector field f in the right hand side of the equation by $f_n \in L^q(\Omega, \mathbb{R}^N)$, $n = 1, 2, \ldots$, such that $f_n \to f$ in
\(L^q \log^{-\alpha} L(\Omega, \mathbb{R}^N) \), and for each \(n \) we consider the (unique) solution \(u_n \) to the problem

\[
\begin{align*}
\text{div} \mathcal{A}(x, \nabla u_n) &= \text{div} f_n \\
 u_n &\in W^{1,p}_0(\Omega)
\end{align*}
\]

(3.28)

Using what we have seen above, \((u_n)_n\) converges in \(W^{1,L^p \log^{-\alpha} L^p}_0(\Omega) \), that is, there exists \(u \in W^{1,L^p \log^{-\alpha} L^p}_0(\Omega) \) such that \(u_n \to u \). To conclude that \(u \) solves (1.1), we only need to note, that by (1.3) we can pass to the limit as \(n \to \infty \) into the equation of (3.28), getting

\[
\text{div} \mathcal{A}(x, \nabla u) = \text{div} f,
\]

since \(\nabla u_n \to \nabla u \) in \(L^{p-1}(\Omega, \mathbb{R}^N) \) in particular.

The estimate (1.7) follows from (3.15), by the same argument used above, by integrating with respect to \(\varepsilon \).

Also continuity of the operator \(\mathcal{H} \) follows. Indeed, clearly \(f_n \to f \) in \(L^q \log^{-\alpha} L^q(\Omega, \mathbb{R}^n) \).

Proof of Theorem 1.2: Let now \(0 < \alpha < p/(p-2) \) and let \(f, g \in L^q \log^{-\alpha} L^q(\Omega, \mathbb{R}^n) \).

Denote by \(u \) and \(v \) the solutions of (3.1) and (3.2), of class \(W^{1,L^p \log^{-\alpha} L^p}_0(\Omega) \), respectively. To prove (1.8), we multiply both sides of (3.13) by \(\varepsilon^{\alpha-1} \) and integrate with respect to \(\varepsilon \) on \((0, \vartheta \varepsilon_p(n)) \), for fixed \(\vartheta \in [0,1] \). Similarly as for (3.25) and (3.26), we have

\[
\int_0^{\varepsilon_p(n)} \varepsilon^{\alpha-1} \|
abla u - \nabla v\|_{p-\varepsilon}^p d\varepsilon \geq \left(\frac{\vartheta}{p} \right) \int_0^{\varepsilon_0} \delta^{\alpha-1} \|
abla u - \nabla v\|_{p-\delta}^p d\delta,
\]

(3.29)

\[
\int_0^{\varepsilon_p(n)} \varepsilon^{\alpha-1} ||f - g||_{q-\varepsilon}^q d\varepsilon \leq q^{-\alpha} \int_0^{\varepsilon_0} \delta^{\alpha-1} ||f - g||_{q-\delta}^q d\delta.
\]

(3.30)

respectively. On the other hand,

\[
\int_0^{\varepsilon_p(n)} \varepsilon^{\frac{p}{p-2}+\alpha-1} ||f||_{L^p \log^{-\alpha} L^p} + ||g||_{L^p \log^{-\alpha} L^p} \geq \left(\frac{\varepsilon_p(n)}{q} \right)^{\frac{p}{p-2}} \int_0^{\varepsilon_0} \delta^{\alpha-1} ||f||_{L^p \log^{-\alpha} L^p} + ||g||_{L^p \log^{-\alpha} L^p} d\delta.
\]

(3.31)

and therefore we get

\[
\|
abla u - \nabla v\|_{L^p \log^{-\alpha} L^p} \leq \varepsilon^{\frac{p}{p-2}-\alpha} ||f||_{L^p \log^{-\alpha} L^p} + ||g||_{L^p \log^{-\alpha} L^p} \leq \varepsilon^{\frac{p}{p-2}-\alpha} ||f||_{L^q \log^{-\alpha} L^q} + ||g||_{L^q \log^{-\alpha} L^q}.
\]

(3.32)

For

\[
\varepsilon^{\frac{p}{p-2}} = \frac{||f||_{L^q \log^{-\alpha} L^q} + ||g||_{L^q \log^{-\alpha} L^q}}{||f||_{L^p \log^{-\alpha} L^p} + ||g||_{L^p \log^{-\alpha} L^p}}
\]

15
we obtain estimate (1.8). In particular, for \(g = 0 \) and \(v = 0 \),
\[
\|\nabla u\|_{L^p \log^{-\alpha} \mathcal{L}}^p \lesssim \|f\|_{L^q \log^{-\alpha} \mathcal{L}}^q .
\] (3.33)

Remark 3.4. Assume \(f \) and \(g \) in \(L^q \log^{-\alpha} \mathcal{L}(\Omega, \mathbb{R}^N) \), and let \(u \) and \(v \) in \(\mathcal{W}^{1, p} \log^{-p/2} \mathcal{L}_0(\Omega) \) solve (3.1) and (3.2) respectively. For \(0 \leq \alpha < p/(p - 2) \), we can prove that
\[
\|\nabla u - \nabla v\|_{L^p \log^{-\alpha} \mathcal{L}}^p \lesssim \|f - g\|_{L^q}^q .
\] (3.34)

Indeed, in the case \(\alpha = 0 \), passing to the limit as \(\varepsilon \to 0 \) in (3.3), we find that \(\nabla u - \nabla v \in L^p(\Omega, \mathbb{R}^N) \) and
\[
\|\nabla u - \nabla v\|_{L^p \log^{-\alpha} \mathcal{L}}^p \lesssim \|f - g\|_{L^q}^q .
\] (3.34)

In the case \(0 < \alpha < p/(p - 2) \), similarly as for (3.31) we find (\(\theta = 1 \))
\[
\int_0^{\varepsilon_p(n)} \frac{\varepsilon^{p/2 - \alpha - 1}}{\theta^\alpha} \|f + |g|\|_{L^q}^q d\varepsilon \leq \left(\frac{\varepsilon_p(n)^\alpha}{\theta^\alpha} \right) \int_0^{\varepsilon_p(n)} \frac{\varepsilon^{p/2 - \alpha - 1}}{\theta^\alpha} \|f + |g|\|_{L^q}^q d\theta .
\] (3.35)

By (3.29), (3.30) and (3.35) we get
\[
\|\nabla u - \nabla v\|_{L^p \log^{-\alpha} \mathcal{L}}^p \lesssim \||f\|_{L^q \log^{-\alpha} \mathcal{L}}^p \lesssim \|f\|_{L^q \log^{-\alpha} \mathcal{L}}^q + \|f - g\|_{L^q \log^{-\alpha} \mathcal{L}}^q .
\] (3.36)

Proof of Theorem 1.3. Under assumption (1.11) it is easy to verify that \(A(x, \xi) \) defined in (1.9) satisfies assumptions (1.2)–(1.4) with \(\lambda = a \). By arguing as in the proof of Lemma 3.1, as in [9] we get
\[
\|\nabla u - \nabla v\|_{L^{p \varepsilon_p}}^p \leq C(n, p, a, b) \left\{ \left(K_A - 1 \right) \frac{\varepsilon^{p+1}}{\varepsilon_p^p} ||\nabla v||_{L^{p \varepsilon_p}} + \varepsilon^{p+1} ||\nabla u| + |\nabla v||_{L^{p \varepsilon_p}} \right\}
\] (3.37)

which holds true as long as \(\varepsilon \in (0, \varepsilon_p(n)) \) for some \(\varepsilon_p(n) > 0 \). Let us fix some \(\vartheta \in (0, 1) \) which will be properly chosen later. Let us consider the integrals
\[
I_1 = \int_0^{\varepsilon_p(n)} \varepsilon^{\alpha - 1} \|\nabla u - \nabla v\|_{L^{p \varepsilon_p}} d\varepsilon
\]
\[
I_2 = \int_0^{\varepsilon_p(n)} \varepsilon^{\alpha - 1} \|\nabla v\|_{L^{p \varepsilon_p}} d\varepsilon
\]
\[
I_3 = \int_0^{\varepsilon_p(n)} \varepsilon^{p+1} \|\nabla u| + |\nabla v||_{L^{p \varepsilon_p}} d\varepsilon
\] (3.38)
so that estimate (3.37) infers

\[I_1 \leq C(n, p, a, b) \left\{ (K_A - 1)^{\frac{p}{p-1}} I_2 + I_3 \right\} \] \hspace{1cm} (3.39)

We set

\[\delta = \frac{\varepsilon p}{\vartheta} \]

Since \(\delta \geq \varepsilon p \), a use of Holder’s inequality allow us to obtain

\[I_1 \geq \int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} \| \nabla u - \nabla v \|_{p-\delta}^p d\varepsilon = \left(\frac{\vartheta}{p} \right)^\alpha \int_0^{\vartheta \varepsilon_p(n)} \delta^{\alpha-1} \| \nabla u - \nabla v \|_{p-\delta}^p d\delta \] \hspace{1cm} (3.40)

On the other hand, since \(0 \leq \vartheta \leq 1 \) we have

\[I_2 \leq \int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} \| \nabla v \|_{p-\vartheta}^p d\varepsilon = \frac{1}{p^\alpha} \int_0^{\vartheta \varepsilon_p(n)} \delta^{\alpha-1} \| \nabla v \|_{p-\delta}^p d\delta \] \hspace{1cm} (3.41)

Similarly,

\[I_3 \leq (\vartheta \varepsilon_p(n))^{\frac{p}{p-2}} \int_0^{\vartheta \varepsilon_p(n)} \varepsilon^{\alpha-1} \| \nabla u + |\nabla v| \|_{p-\vartheta}^p d\varepsilon = C(n, p, \alpha) \int_0^{\vartheta \varepsilon_p(n)} \delta^{\alpha-1} \| \nabla u + |\nabla v| \|_{p-\delta}^p d\delta \] \hspace{1cm} (3.42)

Combining (3.40), (3.41) and (3.42) with (3.37) we have

\[\vartheta^{\alpha} \| \nabla u - \nabla v \|_{\mathcal{L}^p \log^{-\alpha}}^p \leq C \left\{ (K_A - 1)^{\frac{p}{p-1}} \| \nabla v \|_{\mathcal{L}^p \log^{-\alpha}}^p + \vartheta^{\frac{p}{p-2}} \| \nabla u + |\nabla v| \|_{\mathcal{L}^p \log^{-\alpha}}^p \right\} \] \hspace{1cm} (3.43)

Now, we pick \(\vartheta \) in such a way that

\[\vartheta^{\frac{p}{p-2}} = \left(\frac{K_A - 1}{K_A} \right)^{\frac{p}{p-1}} \]

Hence, (3.43) may be rewritten as

\[\| \nabla u - \nabla v \|_{\mathcal{L}^p \log^{-\alpha}}^p \leq C (K_A - 1)^{\frac{p}{p-1}} - \alpha \frac{p-2}{p-1} K_A^{\frac{p}{p-1}} \left\{ \left(\frac{p}{p-1} - \alpha \right) \| \nabla v \|_{\mathcal{L}^p \log^{-\alpha}}^p \right. \]

\[\left. + \| \nabla u + |\nabla v| \|_{\mathcal{L}^p \log^{-\alpha}}^p \right\} \] \hspace{1cm} (3.44)

Finally, (1.13) is proved. \(\square \)

17
References

[1] K. Astala, T. Iwaniec and G. Martin, *Elliptic partial differential equations and quasiconformal mappings in the plane*. Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009.

[2] K. Astala, T. Iwaniec and E. Saksman, *Beltrami operators in the plane*, Duke Math. J. 107 (2001), no. 1, 27-56.

[3] C. Bennett and K. Rudnick, *On Lorentz-Zygmund spaces*, Dissertationes Math. 175 (1980), 67 pp.

[4] Boccardo, L., *Quelques problèmes de Dirichlet avec données dans de grands espaces de Sobolev*, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 12, 1269-1272.

[5] L. Boccardo and T. Gallouët, *Nonlinear elliptic and parabolic equations involving measure data*, J. Funct. Anal. 87 (1989), no. 1, 149-169.

[6] L. Boccardo, T. Gallouët and L. Orsina, *Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data*, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), no. 5, 539-551.

[7] G. Dolzmann, N. Hungerbühler and S. Müller, *Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side*, J. Reine Angew. Math. 520 (2000), 1-35.

[8] L. D’Onofrio and G. Moscariello, *On finite energy solutions for nonhomogeneous p-harmonic equations*, Funct. Approx. Comment. Math. 40 (2009), part 1, 139-150.

[9] F.Farroni and G.Moscariello, *A quantitative estimate for mappings of bounded inner distortion*, Calc. Var. Partial Differential Equations, DOI 10.1007/s00526-013-0690-9.

[10] A.Fiorenza and C.Sbordone, *Existence and uniqueness results for solutions of nonlinear equations with right hand side in L¹*, Studia Math. 127 (1998), no. 3, 223–231.

[11] L.Greco *A remark on the equality det Df = Det Df*, Diff. Int. Eq., 6 (1993), no. 5, 1089–1100.

[12] L.Greco, T.Iwaniec, and C.Sbordone, *Inverting the p-harmonic operator*. Manuscripta Math. 92 (2) (1997), 249–258.
[13] T. Iwaniec, *Projections onto gradient fields and L^p–estimates for degenerated elliptic operators*, Studia Math. 75 (1983), no. 3, 293-312.

[14] T. Iwaniec and J. Onninen, *Continuity estimates for n-harmonic equations*, Indiana Univ. Math. J. 56 (2007), no. 2, 805-824.

[15] T. Iwaniec and C. Sbordone, *On the integrability of the Jacobian under minimal hypothesis*, Arch. Rational Mech. Anal. 119 (1992), 129–143.

[16] T. Iwaniec and C. Sbordone, *Weak minima of variational integrals*, J. Reine Angew. Math. 454 (1994), 143-161.

[17] T. Iwaniec and C. Sbordone, *Caccioppoli estimates and very weak solutions of elliptic equations*, Rend. Mat. Acc. Lincei, s. 9, v. 14 (2003) 3, 189–205.

[18] T. Iwaniec and C. Sbordone, *Quasiharmonic fields*, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), 519–572.

[19] G. Mingione, *The Calderón-Zygmund theory for elliptic problems with measure data*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 2, 195-261.

[20] G. Mingione, *Gradient estimates below the duality exponent*, Math. Ann. 346 (2010), no. 3, 571-627.

[21] G. Moscariello, *On the integrability of “finite energy” solutions for p-harmonic equations*, NoDEA Nonlinear Differential Equations Appl. 11 (2004), no. 3, 393-406.

[22] G. Moscariello, A. Passarelli di Napoli and M. M. Porzio, *Existence of infinite energy solutions of degenerate elliptic equations*, Z. Anal. Anwend. 31 (2012), no. 4, 393-426.

[23] F. Murat, Équations elliptiques non linéaires avec second membre L^1 ou mesure. Actes du 26ème congrès national d’analyse numérique (Les Karellis, juin 1994), pp. A12–A24.
[26] J. Serrin, *Pathological solutions of elliptic differential equations*, Ann. Sc. Norm. Sup. Pisa 18 (1964) 385–387.

[27] G. Stampacchia, *Le problème de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus*, Ann. Ist. Fourier, Grenoble 15 (1965) 189–258.

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli “Federico II”
Via Cintia – 80126 NAPOLI
ferando.farroni@unina.it
luigreco@unina.it
gmoscari@unina.it