HEAVY FLAVOUR PHYSICS RESULTS FROM LEP 1

O. SCHNEIDER

Institut de Physique des Hautes Energies,
Université de Lausanne, CH-1015 Lausanne, Switzerland
e-mail: Olivier.Schneider@iphe.unil.ch

Recent heavy flavour results from the LEP experiments are presented. These include a search for new physics in rare B decays, a new model-independent measurement of the b-quark fragmentation function at the Z peak, updated measurements of $|V_{cb}|$, results on $\Delta\Gamma_s$, searches for B^0_s oscillations, as well as a new measurement of $\sin(2\beta)$. Many combined results, obtained by dedicated working groups, are also given. The LEP measurements of V_{cb} from $B^0 \rightarrow D^{*-} \ell^+ \nu$ decays average to $|V_{cb}| = (39.7 \pm 3.0) \times 10^{-3}$, while inclusive measurements yield $|V_{cb}| = (40.8 \pm 2.0) \times 10^{-3}$ dominated by theoretical uncertainties. Charmless semileptonic decays have been observed inclusively, $\text{BR}(b \rightarrow u \ell^- \bar{\nu}) = (1.67 \pm 0.55) \times 10^{-3}$, corresponding to $|V_{ub}| = (4.04^{+0.62}_{-0.74}) \times 10^{-3}$. Significant progress has been made in the B^0_s sector, where the width difference is now close to being measured with a combined result of $\Delta\Gamma_s/\Gamma_s = 0.24^{+0.36}_{-0.12}$ or $\Delta\Gamma_s/\Gamma_s < 0.53$ at 95% CL. However, despite continuing improvements, Δm_s is still unmeasured, with a lower limit of 14.6 ps$^{-1}$ at 95% CL. Improved heavy flavour results are expected from LEP by Summer 2000. The current status of electroweak heavy flavour physics is summarized in another presentation.

Talk presented at the XXXVth Rencontres de Moriond,
Electroweak Interactions and Unified Theories,
Les Arcs, France, March 11–18, 2000.
It is not possible to review here all the heavy flavour results produced by the ALEPH, DELPHI, L3 and OPAL experiments based on their LEP 1 data, taken until 1995 at an e^+e^- center-of-mass energy equal or close to the Z mass. Although the peak activity of LEP 1 analysis is behind us, these data are still being analyzed, producing new and improved measurements.

The focus of this presentation is on new or updated b-physics results released since the 1999 Summer Conferences, as well as on the latest averages produced by various LEP heavy flavour working groups. Many of these results can be related to the magnitude of the least well known CKM matrix elements $|V_{ub}|$, $|V_{cb}|$, $|V_{td}|$ and $|V_{ts}|$, which are in turn related to the lengths of the sides of the CKM unitarity triangle. These measurements will be (together with the forthcoming results from the B factories and the Tevatron) important ingredients of future tests of the CKM picture within the Standard Model, where an inconsistency may indeed be an indirect indication of new physics.

New physics may also be responsible for unexpectedly high branching ratios in rare B decays involving flavour-changing neutral currents. For example the branching ratio of the decay $B \to K^-K^+\pi^+$, for which the OPAL collaboration has recently released an upper limit of 1.29×10^{-4} at 90% CL, is predicted to be 10^{-11} at most in the Standard Model (box diagram) but is practically unconstrained in certain supersymmetric models with R-parity violation (tree diagram possible).

1 b-fragmentation studies

Understanding the production of b-hadrons in Z decays is important for many heavy flavour analyses. The b-quark hadronisation can be described in terms of the variable $x_E = E_{b\text{-hadron}}/E_{\text{beam}}$, the fraction of the beam energy retained by the weakly-decaying b-hadron produced in a b jet. Being not known accurately, the distribution of x_E is simulated by the LEP experiments using the JETSET generator together with phenomenological models that relate the energy of the b-hadron with that of the initial b-quark. The most commonly used of these models, from Peterson et al., relies on a single parameter which has merely been tuned to reproduce the experimental spectra of high transverse momentum leptons originating mostly from the decay $b \to c\ell\bar{\nu}$. This tuning corresponds to a mean x_E of $\langle x_E \rangle = 0.702 \pm 0.008$, which is the value recommended up to now for heavy flavour analyses at LEP.

The ALEPH collaboration has submitted to this conference a new measurement of the shape of the x_E distribution (see Fig. 1) based on approximately 3000 $B \to D^0 l\nu$ decays, where the B meson energy has been estimated in a model-independent way from an identified lepton, a fully reconstructed D^* meson and missing energy information. The energy spectrum is found to be somewhat harder than assumed before, with $\langle x_E \rangle = 0.7198 \pm 0.0045^{\text{stat}} \pm 0.0053^{\text{syst}}$, consistent with a previous ALEPH measurement. This confirms a recent result from SLD, $(x_E) = 0.714 \pm 0.005^{\text{stat}} \pm 0.004^{\text{syst}} \pm 0.002^{\text{model}}$, which has small model-dependent systematics, although based on an inclusive sample of b-hadrons.

These direct measurements of the shape of the x_E distribution have now sufficient precision to envisage tests of the b-fragmentation model predictions and to discriminate amongst these models for the first time. For example, both ALEPH and SLD data favour the description of Kartvelishvili et al. over the one from Peterson et al.

2 Measurements of $|V_{cb}|$ and $|V_{ub}|$

The study of the $B^0 \to D^{*-} l^+ \nu$ decay kinematics allows the extraction of $|V_{cb}|$. The differential decay rate as a function of the boost ω of the D^{*-} in the B^0 rest frame is predicted by the Heavy Quark Effective Theory to be

$$\frac{d\Gamma}{d\omega} = K(\omega) F_{D^*}^2(\omega) |V_{cb}|^2 ,$$

(1)

where $K(\omega)$ is a known phase-space function and $F_{D^*}(\omega)$ a single form factor which, in the heavy quark limit, is equal to unity at zero recoil. The interesting observable is thus the decay rate at zero recoil, but since the phase space vanishes at $\omega = 1$, the quantity $F_{D^*}(1)|V_{cb}|$ must be extracted from an extrapolation of the measured differential rate at $\omega > 1$. At LEP, this extrapolation relies on a specific parametrization of the shape of $F_{D^*}(\omega)$ in terms of the slope ρ^2 at $\omega = 1$.
Systematic uncertainties are dominated by the limited knowledge of the branching ratio and hadron lifetime are well established since several years, with current averages of BR(b → ℓ−) = (10.58 ± 0.07 ± 0.17)% and τb = 1.564 ± 0.014 ps, analyses measuring the b → uℓ−¯ν branching ratio are quite recent and unique to LEP. They face the difficulty of dealing with a very large b → cℓ−¯ν background, but have the advantage to be sensitive to the whole lepton spectrum (rather than only to the its end-point where the b → cℓ−¯ν decays are supressed). L3, ALEPH, and DELPHI have now all published evidence for b → uℓ−¯ν transitions, and their measurements average to BR(b → uℓ−¯ν) = (1.67 ± 0.36 ± 0.37 ± 0.20) × 10^{-3}, where the first uncertainty summarizes statistics and experimental systematics, the second uncertainty reflects the limited knowledge of b → cℓ−¯ν transitions, and the third one results from the modelling of b → uℓ−¯ν. Using Eq. (3), the LEP averages from inclusive semileptonic b decays are |V_{cb}| = (40.8 ± 0.4_{\text{exp}} ± 2.0_{\text{theory}}) × 10^{-3} and |V_{ub}| = (4.04^{+0.62}_{-0.74}) × 10^{-3}. The former can be combined with the less precise but consistent LEP estimate from exclusive decays to yield |V_{cb}| = (40.5 ± 1.8) × 10^{-3}.
3 Results on the B_s^0 decay width difference

Information on $\Delta \Gamma_s$, the decay width difference between the two mass eigenstates of the B_s^0–\bar{B}_s^0 system, can be obtained by studying the proper time distribution of untagged data samples enriched in B_s^0 mesons. In the case of an inclusive or a semileptonic B_s^0 decay selection, both the short- and long-lived components are present, and the proper time distribution is a superposition of two exponentials with decay constants $\Gamma_s \pm \Delta \Gamma_s/2$. In principle, this provides sensitivity to both Γ_s and $(\Delta \Gamma_s/\Gamma_s)^2$. Ignoring $\Delta \Gamma_s$ and fitting for a single exponential leads to an estimate of Γ_s with a relative bias proportional to $(\Delta \Gamma_s/\Gamma_s)^2$. An alternative approach, which is directly sensitive to first order in $\Delta \Gamma_s/\Gamma_s$, is to determine the lifetime of B_s^0 candidates decaying to CP eigenstates; measurements exist for $B_s^0 \to J/\psi \phi^0$, and now also for $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$. These are predicted to be mostly CP-even states. Recently, ALEPH has also obtained for the first time an estimate of $\Delta \Gamma_s/\Gamma_s$ directly from a measurement of the $B_s^0 \to D_s^{(*)+}D_s^{(*)-}$ branching ratio under the assumption that these decays practically account for all the CP-even final states.

Figure 3 shows confidence contours in the plane $(1/\Gamma_s, \Delta \Gamma_s/\Gamma_s)$ obtained from a combined likelihood built with all the available information from LEP and CDF, including dedicated $\Delta \Gamma_s$ studies as well as B_s^0 lifetime measurements. The corresponding results for $\Delta \Gamma_s/\Gamma_s$ are

$$\Delta \Gamma_s/\Gamma_s = 0.24^{+0.16}_{-0.12} \quad \text{or} \quad \Delta \Gamma_s/\Gamma_s < 0.53 \quad \text{at 95\% CL}$$

without external constraint, and

$$\Delta \Gamma_s/\Gamma_s = 0.17^{+0.09}_{-0.10} \quad \text{or} \quad \Delta \Gamma_s/\Gamma_s < 0.31 \quad \text{at 95\% CL}$$

when constraining $1/\Gamma_s$ to the current world average of the B^0 lifetime. Such a constraint is well motivated theoretically, since the B^0 and B_s^0 decay widths are predicted to differ by $\sim 1\%$ at most,
but the current experimental check of this assumption, $\tau_{B_{s}^{0}/B_{s}} = 0.937 \pm 0.040 \text{ps}$ is still of limited precision. These combined results on $\Delta \Gamma_{s}/\Gamma_{s}$ are not yet precise enough to test the Standard Model predictions, which typically lie between 5% and 20%.

4 Search for B_{s}^{0} oscillations

B_{s}^{0}-\bar{B}_{s}^{0} oscillations have been the subject of many studies from ALEPH, DELPHI and OPAL, as well as SLD and CDF. No oscillation signal has been found so far. Because of the limited statistics available, the most sensitive analyses are currently the ones based on inclusive lepton samples, and on samples where a lepton and a D_{s} meson have been reconstructed in the same jet. However, with larger samples, the most promising approach would be to use fully reconstructed B_{s}^{0} mesons, which have a much better proper time resolution suitable to resolve higher oscillation frequencies.

DELPHI have fully reconstructed 44 B_{s}^{0} candidates in the $\bar{D}^{0}K^{-}\pi^{+}$, $\bar{D}^{0}K^{-}a_{1}^{+}$, $D_{s}^{+}a_{1}^{-}$ and $D_{s}^{+}a_{1}^{-}$ channels, whereas ALEPH have recently reported 50 candidates in the latter two channels. The number of signal events is estimated to be ~ 20 in each experiment, but with a proper time resolution of ~ 0.08 ps, more than two times better compared to more inclusive selections. As a result, these analyses, which have very poor sensitivity by themselves due to the lack of statistics, do nonetheless have a non-negligible impact on the average measurement of the oscillation amplitude A at high values of Δm_{s}, the mass difference between the two mass eigenstates of the B_{s}^{0} system.

All results have been combined, including the latest ones from ALEPH released for this conference and based on $D_{s}^{-}\ell^{+}$ correlations and fully reconstructed B_{s}^{0} candidates, to yield the amplitudes A shown in Fig. 4 as a function of Δm_{s}. In the combination procedure, the sensitivities of the inclusive lepton analyses, which depend directly on the assumed fraction $f_{B_{s}}$ of B_{s}^{0} mesons in an unbiased sample of weakly-decaying b hadrons, have been rescaled to a common value of $f_{B_{s}} = 0.096 \pm 0.012$. This value is obtained from direct production measurements, measurements of the time-integrated mixing probability $\bar{\chi}$ of b-hadrons at LEP, as well as the new world average of the B^{0} oscillation frequency, $\Delta m_{d} = 0.484 \pm 0.015$ ps. The combined sensitivity for 95% CL exclusion of Δm_{s} values is found to be 14.6 ps$^{-1}$, which is also the actual limit below which all values of Δm_{s} are excluded by the data at 95% CL. No oscillation signal can be claimed based on the deviation from $A = 0$ seen in Fig. 4 around 17 ps$^{-1}$; a fast Monte Carlo study shows indeed that statistical fluctuations can produced a more significant deviation (anywhere in the explored range in Δm_{s}) in ~ 3% of the samples generated with a very large true value of Δm_{s}.

The information on $|V_{ts}|$ obtained, in the framework of the Standard Model, from the combined Δm_{s} limit is hampered by the hadronic uncertainty, as is the case when extracting $|V_{td}|$ from Δm_{d}.
However, many uncertainties cancel in the frequency ratio

\[
\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B^0}}{m_{B^0}} \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2,
\]

where \(\xi \) is currently known to \(\sim 6\% \) from lattice QCD. This relation can be used in fits of the CKM matrix, together with the experimental results on \(\Delta m_s, \Delta m_d, |V_{ub}/V_{cb}| \) and \(\epsilon_K \), as well as theoretical inputs and unitarity constraints. Examples of such fits\(^4\) shown in Fig. 3, illustrate the fact that the combined \(\Delta m_s \) results from Fig. 4 provide, together with the measured value of \(\Delta m_d \), a significant constraint on the CKM matrix, favouring positive values of the Wolfenstein parameter \(\rho \).

5 CP violation in \(B^0 \to J/\psi K_S^0 \) decays

ALEPH has recently released a new measurement\(^3\) of the CP asymmetry in \(B^0, \bar{B}^0 \to J/\psi K_S^0 \) decays,

\[
A(t) = \frac{N_{B^0}(t) - N_{\bar{B}^0}(t)}{N_{B^0}(t) + N_{\bar{B}^0}(t)} = -\sin(2\beta) \sin(\Delta m_d t),
\]

where \(N_{B^0}(t) \) and \(N_{\bar{B}^0}(t) \) are the number of events produced as \(B^0 \) and \(\bar{B}^0 \) as a function of the proper time \(t \), and \(\beta \) is one of the angles of the CKM unitarity triangle. From a sample of 23 fully reconstructed candidates, selected with a signal efficiency of \((28 \pm 2)\% \) and an estimated purity of \((71 \pm 12)\% \), ALEPH measures \(\sin(2\beta) = 0.93^{+0.64}_{-0.88}(\text{stat})^{+0.36}_{-0.24}(\text{syst}) \). The systematic uncertainty is dominated by the limited knowledge of the probability of mistagging the initial state, measured to be \((25 \pm 6)\% \) using \(B^\pm \to J/\psi K^\pm \) events. This \(\sin(2\beta) \) result can be combined with previous measurements from OPAL and CDF to yield\(^5\) \(\sin(2\beta) = 0.91 \pm 0.35 \) or \(\sin(2\beta) > 0 \) at 98.5\% CL, increasing the confidence that CP violation has been observed in the \(B \) sector.

Acknowledgments

I would like to thank D. Abbaneo and R. Forty for useful comments and careful reading of this writeup, A. Stocchi for providing Fig. 3, and the organizers of these “Rencontres” for an enjoyable conference.

References

1. The LEP \(|V_{cb}|, |V_{ub}|, b \)-lifetimes, \(\Delta \Gamma_s \) and \(B \) oscillations working groups are coordinated by the LEP Heavy Flavour Steering Group; see \url{http://www.cern.ch/LEPHFS/} and the links therein. The combination procedures used by these groups are described in a public document\(^8\).
2. G. Abbiendi et al., OPAL coll., Phys. Lett. B476, 233 (2000).
3. The LEP heavy flavour working group, LEPHF 98-01, Sept. 1998.
4. ALEPH coll., ALEPH 2000-020 CONF 2000-017, March 2000.
5. K. Abe et al., SLD coll., SLAC-PUB-8316, \url{hep-ex/9912058}, Dec. 1999, subm. to Phys. Rev. Lett.
6. I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B530, 153 (1998).
7. G. Abbiendi et al., OPAL coll., CERN-EP/2000-032, Feb. 2000, subm. to Phys. Lett. B.
8. ALEPH, CDF, DELPHI, L3, OPAL et al., SLD coll., LEPHFS note 99-02, April 2000, to be subm. as CERN-EP preprint, and references therein.
9. F. Abe et al., CDF coll., Phys. Rev. D57, 5382 (1998).
10. R. Barate et al., ALEPH coll., CERN-EP/2000-036, Feb. 2000, subm. to Phys. Lett. B.
11. DELPHI coll., DELPHI 99-109 CONF 296, June 1999, contribution 4520 to Int. Europhysics Conf. on High Energy Physics, Tampere, 1999.
12. ALEPH coll., ALEPH 2000-029 CONF 2000-024, March 2000.
13. D. Abbaneo and G. Boix, J. of High Energy Physics 8, 4 (1999).
14. F. Caravaglios et al., \url{hep-ph/0002171}, presented by A. Stocchi at the 3rd Int. Conf. on \(B \) physics and CP violation, Taipei, Taiwan, Dec. 1999.
15. ALEPH coll., ALEPH 99-099 CONF 99-054, Nov. 1999, and references therein.