Who believes they are good navigators? A machine learning pipeline highlights the impact of gender, commuting time, and education

You Cheng a, b, *, Chuanxiuyue He b, c, *, Mary Hegarty b, Elizabeth R. Chrastil a, c

a Department of Cognitive Sciences, University of California Irvine, Irvine, 92697, CA, USA
b Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, 93106, CA, USA
c Department of Neurology and Behavior, University of California Irvine, Irvine, 92697, CA, USA

A R T I C L E I N F O

Dataset link: https://github.com/LilianYou/SeaHero_Quest

Keywords: Reproducibility crisis, Machine learning, Big data, Self-reports, Demographics, Spatial navigation

A B S T R A C T

Large scale digital data, which are becoming more prevalent, offer the potential to alleviate reproducibility concerns in psychology research findings. However, large scale digital data are not sufficient in and of themselves, thus necessitating the need for the development of machine learning (ML) pipelines that are capable of handling high dimensional datasets at scale. Such ML-based methodologies enable the analysis of complex relationships, which allows for the consideration of complicated demographics, a factor that is likely to play a role in the generalizability of research. We introduce a novel ML pipeline and demonstrate its potential on a large-scale digital dataset, Sea Hero Quest, a mobile game with data from nearly 770,000 players (ages 19 to 70, men N = 404,455, women N = 367,173). We analyzed how demographics are related to self-reported navigation ability using exploratory analysis, supervised and unsupervised learning. The results suggest that gender is the most important demographic factor in predicting self-reported navigation ability, followed by daily commuting time, age, and education, such that men (compared to women), long commuters (compared to those whose commuting time is shorter than 1 h), and older people with tertiary education (compared to younger people with secondary education) tended to evaluate themselves as better navigators. The large-scale dataset and ML pipeline capture influential factors, such as daily commuting time and education level, which have often been overlooked and are difficult to investigate with in-laboratory studies that use limited samples and traditional analytical techniques.

1. Introduction

1.1. The reproducibility crisis in psychology

Over the past decade, one critical question in the field of psychology research is the reproducibility of research findings (aka. the reproducibility crisis), such that findings reported in one study cannot be replicated using an independent group of subjects (Camerer et al., 2018; Simmons, Nelson, & Simonsohn, 2011). Various methods have been proposed to solve the reproducibility crisis, including conducting restrained experimental designs (Ioannidis, 2005; Simmons et al., 2011), generating and sharing registered reports (Van’t Veer & Giner-Sorolla, 2016), and archiving unpublished data in open databases (Schooler, 2011). However, a concern is that these methods simply narrow down the generalizability of research findings to a particular group of people.

Subjects in most psychology studies have traditionally been drawn from small and specialized samples — usually composed of college students in their early 20s. Moreover, sample source itself could be a possible explanation for failure to reproduce psychological findings. This is because samples may differ in their behaviors due to different demographic backgrounds (e.g., age, gender, education levels), which limits the generalizability of research findings. This calls for data at scale with well-representative samples that represent the diverse demographics of the human population (Ioannidis, 2005; Simmons et al., 2011).

1.2. Utilizing large-scale digital data as a solution to the reproducibility crisis

Digital data regarding people’s behavior collected online through platforms such as Amazon Mechanical Turk, social media, or phone-based games are becoming more and more prevalent in the field of psychology research, especially during the pandemic when conducting in-person experiments has been challenging. Digital data usually have very large sample sizes that could result in thousands or even millions of data points, and also enable us to more easily sample from diverse

* Corresponding authors.

E-mail addresses: youc3@uci.edu (Y. Cheng), c_he@ucsb.edu (C. He), hegarty@ucsb.edu (M. Hegarty), chrastil@uci.edu (E.R. Chrastil).

https://doi.org/10.1016/j.mlwa.2022.100419

Received 15 July 2022; Received in revised form 2 October 2022; Accepted 2 October 2022
Available online 5 October 2022
2666-8270/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1.3. Incorporating demographic information in large scale digital data to systematically interpret self-report measures

Self-report is a common method in psychology research in which people are asked to directly report their feelings, attitudes, beliefs, or behaviors (Jupp, 2006). It can be carried out in multiple forms, including open and closed-ended questions, rating scales, interviews, etc. Self-report is more efficient than physiological and behavioral measures, which are expensive in terms of both time and labor cost. It is an economic approach to prescreening targeted samples and in prognosing neurological disorders (e.g., Blazer, Hays, Fillenbaum, & Gold, 1997; Jonker, Launer, Hooijer, & Lindeboom, 1996; Taylor, Miller, & Tinklenberg, 1992). However, self-report measurements have been susceptible to concerns about validity – the extent to which a measure is indeed measuring what it claims to measure – as respondents may underestimate or overestimate their behaviors. Such mischaracterization could be intentional (Jupp, 2006) or could emerge from subconscious social stereotypes related to their demographic backgrounds (Reychav et al., 2019; Slavin et al., 2010; van der Ham et al., 2021; Wasef et al., 2021). In the latter situation, the reproducibility and generalizability of previous findings based on small samples can be examined using large datasets in which respondents represent a spectrum of demographic characteristics. This raises a new question as to how to thoroughly analyze the relationship between demographic information and human behaviors in large scale digital datasets.

Here, we propose a machine learning pipeline for analyzing demographic relevance in large-scale digital self-report data. We tested the pipeline with a large dataset (around 770,000 global users’ data) collected from a phone-based game – Sea Hero Quest – in which people play navigation games in virtual environments, report their demographics, and evaluate their own navigation abilities (Coutrot et al., 2022, 2018; Spiers et al., 2021). One goal of Sea Hero Quest is to set a population-level benchmark for dementia research. In the study, people’s self-evaluations of their navigation abilities are based on a Likert-scale measurement, which is one of the most common types of rating scales in self-report measurement. Further, this ML pipeline could easily be generalized to detect behavior patterns in large scale self-report data in a wide variety of psychology research studies in the future.

2. Related work

Spatial navigation is a critical cognitive ability which enables people to represent their environments so as to reach target locations efficiently without getting lost or experiencing anxiety. Previous literature has emphasized the potential of navigation ability as a cognitive fingerprint to detect incipient Alzheimer’s disease (Berteau-Pavy et al., 2007; Coughlan et al., 2019, 2018; Kunz et al., 2015; Puthusserypady et al., 2022). Nevertheless, we still do not have a standard comprehensive task battery to measure individual navigation ability. Table 1 summarizes previous literature showing (1) the relations between navigation ability and Alzheimer’s disease; (2) self-reports as a promising efficient measure given the limitations of the objective measures; (3) previous research on demographics and navigation ability; and (4) the Sea Hero Quest project, which took the initiative to develop a population benchmark of the navigation ability. In the table, we also emphasize the limitations of the current approaches to each research topic. Specifically, objective measures of navigation ability are difficult to acquire on a large scale. In contrast, self-report measures are easier...
to acquire, but may be less reliable. Further, the relationship between
demographic information such as age, gender, etc. and both objective
and self-report measures has only been studied with relatively small
sample sizes. We elaborate on each of these points and the details of
the table in the following sections.

2.1. The lack of efficient measures to study spatial navigation ability

Navigation ability is usually measured using various paradigms or
metrics, such as the ability to memorize landmarks, learn routes, form
an accurate and coherent mental representation of the whole environ-
ment (i.e., cognitive map), estimate directions and distances, and
give efficient directions (Hegarty, Burte, & Boone, 2018; Montello, 2005;
Weisberg & Newcombe, 2018; Wolbers & Hegarty, 2010). People’s
performance also varies in different environments and with different

task goals (Li & Klippel, 2016; Nazareth et al., 2019; Pagkraitzidou et al.,
2020). It is time consuming and labor intensive to collect valid data
to evaluate healthy participants’ navigation ability on a large enough
scale that could illustrate the distribution of abilities across age and
other demographic information (e.g., home environments, commuting
time, etc.).

In contrast, self-reported navigation, as an easier and more econom-
ical measure, has shown small to moderate associations with perform-
ance in objective navigation tasks (Donald Heth et al., 2002; Epstein
et al., 2005; Hegarty et al., 2002; Hund & Padgett, 2010; Meneghetti
et al., 2014; Pazzaglia et al., 2016), demonstrating its potential to
be used as a powerful prescreening tool for detecting neurological
deficits that have navigation impairments. However, the relationship
between self-reported navigation ability and demographic information
is unclear, which calls for more research on generalizing findings based
on small samples to the general public with various demographic
backgrounds.

2.2. Demographics and navigation ability

Previous studies have found solid evidence supporting gender dif-
fferences and aging deficits in navigation ability at a behavioral level
(Lester et al., 2017; Nazareth et al., 2019; Spiers et al., 2021). Gender
and age effects have been discussed in self-reported measures as well
(e.g., Hegarty et al., 2006; van der Ham et al., 2021). However, these
studies used relatively small samples and as a consequence could not
take advantage of modeling methods targeting a large dataset
(e.g., clustering or random forest). Using a large dataset with a ML-
based analyses pipeline enables us to investigate whether people’s
self-evaluations match the findings of those in-laboratory empirical
studies. Preliminary evidence based on over 7000 participants in an
online study showed that older men tended to overestimate
their navigation ability as measured in online video-based navigation tasks
(van der Ham et al., 2021). Although that study captured the influence
of gender and age on self-reported navigation abilities reasonably
well, we propose here that large-scale digital data could advance
our knowledge further by considering other demographic information
(e.g., education levels, home environments, etc.) with machine learning
tools.

The Sea Hero Quest dataset (SHQ) is composed of both large-
scale self-reported navigation ability data and multidimensional
demographic data (more details below) in addition to data from multi-level
objective navigation task performance (which will not be considered
in this report). Therefore, the large SHQ dataset enables us to test for
relationships between people’s self-reported navigation ability and their
demographic information more systematically than previous studies.
More importantly, we demonstrated our ML-pipeline via the analyses,
which could be generalized to analyze other large-scale digital data in
future psychology research.

3. Methodology

The first step in our ML-pipeline2 was to conduct a correlation
analysis to explore the relationships between the observed variables
in the Sea Hero Quest sample. These were age, gender, handedness,
education level, home environment (i.e., rural (level 1), city (level-
3) or in-between/mixed (level 2)), average daily sleep hours, average
daily commute time, and self-reported navigation ability. Second, we
performed factor analysis to detect potential latent variables underly-
ing our observed variables. Third, we implemented an unsupervised
method (k-means clustering) to detect subpopulations in the sample,
based on the demographic information. Fourth, we implemented a
chi-squared independence test, which allowed us to determine how
self-reported navigation ability varies at each rating level, and across
subpopulations. These relationships were used to form data-driven
theories. Fifth, we used a supervised learning method (ordinal
logistic regression) to detect relationships between demographics and
self-reported navigation ability. Lastly, we implemented another su-
ervised learning method, complementing our parametric model with
a non-parametric model (random forest regression), which yielded
consistent results with our regression analysis. See Fig. 1.

We conducted our analyses on Google’s cloud server using Colab
notebooks with 2.3 GHz CPU Frequency, 2 CPU Cores (Haswell),
and 12 GB RAM.

3.1. Data description

We started with the full raw dataset which included approximately
4 million users (Coughlan et al., 2019). Because demographic and self-
reported navigation ability questions were all optional in the game, not
ever user answered all questions. Accordingly, we only included users
who responded to all questions (except for the countries, which is out of
the scope of this study, see more in Coutrot et al., 2018). Then, based on
previous research, we excluded people who reported sleeping less than
3 h or over 12 h3 every day, reported being younger than 19 years old
or over 70 years old,4 did not identify as a male or female, or reported
to have “unspecified” education (see Fig. 2). Our following analyses are
based on 771,628 users (52.4% male).

Fig. 2 illustrates the distributions of self-reported navigation ability
and of all demographic variables in the sample. Around 90% of partici-
pants were right-handed and the gender ratio was around 0.5, which is
representative of the world population. Most of the participants were
in their early twenties and 71.8% participants had a tertiary level of
education (i.e., college or university), indicating that our sample was
relatively younger and had higher education levels than the world pop-
nulation. Note that most participants reported “good” for self-reported
navigation ability (54.5%) and that only 13.6% participants reported
being “bad” or “very bad” at navigation.

3.2. Exploratory data analyses

3.2.1. Correlation analysis

We first looked at bivariate Spearman correlations among all vari-
ables (see Fig. 4). Correlations among most variables were lower than
.1, suggesting a low probability of latent factors (See more in the Factor
Analyses section). However, age and sleep, age and daily commuting

2 It is worth noting that this is not a fully automatic ML-pipeline, but rather a sequence of ML analyses.
3 Normal light sleepers still sleep over 3 h per day. People who reported
sleeping over 9 h per day are considered as long sleepers and rarely will people
sleep over 12 h every day (Grandner & Drummond, 2007; Patel, Malhotra,
White, Gottlieb, & Hu, 2006). Thus, we filtered out data by people who
reported sleeping less than 3 h or over 12 h.
4 Based on previous research on Sea Hero Quest (Coughlan et al., 2018),
people who reported being younger than 19 years old or older than 70 years
old showed abnormal behaviors.
time, as well as gender and commuting time were significantly correlated with each other (rs are above .1, $p < .001$) and male participants tended to report better navigation ability ($r = .24, p < .001$). With a large sample size, even small correlations will be significant; therefore, we did not consider effect sizes below 0.1, which were judged to be too small to be meaningful.

3.2.2. Factor analysis

We first conducted a Bartlett Sphericity Chi Square Test on all independent variables to test whether there was a pattern among the independent variables. The test result was significant ($\text{Score} = 109,858$, $p < .001$), indicating that there was such a pattern. Note that in this and all following analyses, we did not include self-reported navigation

Fig. 1. The proposed pipeline. *Note: Dashed boxes indicate data modules, solid boxes indicate processing modules.*
ability as a factor, it was only part of the analysis when it was used as a dependent variable in logistic regression and random forest regression. Next, we conducted a Kaiser–Mayer–Olkin (KMO) Test to test whether there was sufficient variance in the dataset to conduct a factor analysis. The KMO score was .508, which is smaller than the criterion of .6 (Kaiser, 1974), indicating there was not sufficient variance for factor analyses.

Thus, although the Bartlett Sphericity Chi Square Test showed that there was a pattern among the independent variables, there was no latent factor. This finding suggests patterns emerge from the independent variables alone, which can be tested by cluster analyses.

3.2.3. Clustering

Subpopulations. To determine whether there were subpopulations in the dataset, we conducted k-means clustering analyses, based on all of the demographic variables except self-reported ability. K-means clustering – partitioning observations into k clusters where each observation is assigned to one cluster with the nearest mean – is one of the simplest and most computationally efficient partitioning methods (Forgy, 1965; Lloyd, 1982). It has been commonly used for partitioning people into subpopulations based on their demographics (e.g., customer segmentation in marketing to construct customer profiles) in many industries (e.g., Kansal, Bahuguna, Singh, & Choudhury, 2018; Namvar, Gholamian, & KhakAbi, 2010; Wu, Yau, Ong, & Chong, 2021).

The k-means clustering was conducted using the Python sklearn package. Because k-means clustering uses the Euclidean distance for measuring object similarities, all variables were first preprocessed by normalizing to the range between 0 and 1. The initial 4 cluster centroids were selected randomly from the data. The clustering analyses yielded 4 clusters based on the elbow method, which were then validated with additional methods such as Davies Bouldin score and Silhouette score to identify the optimal number of clusters. The model took 2.11 s to run (CPU times: user 2.1 s, system: 27.3 ms).

As shown in Fig. 5, the four clusters (called groups) represent four subpopulation groups. Group 1 (called “male long commuter”) was composed of males with education levels close to that in the total sample distribution, and a daily commute of more than 1 h. Group 2 (called “female tertiary education”) was composed of females with tertiary education, and a daily commute close to that in the total sample distribution. Group 3 (called “male tertiary education short commuter”) was composed of males with tertiary education, and a daily commute of less than 1 h. Group 4 (called “secondary education”) was composed of people with secondary education, equally representative of both genders and with a daily commuting time close to that of the total sample distribution. Further, age, sleep, home environment, and handedness were evenly distributed across the four groups. These four subpopulation groups differ in their demographics, especially in terms of gender, education, and daily commuting time. Thus, we focus on the interactions between these variables for the ordinal regression analysis.

Subpopulations and Self-Reported Navigation Ability. We then tested whether self-reported navigation ability varies for people in the different subpopulations. First, the average self-reported navigation ability of each group was significantly different from each of the others (Non-parametric ANOVA with Conover’s post hoc test and Holm–Bonferroni Correction, $p < 0.001$). More specifically, male long commuters reported the best navigation skills, followed by male short commuters with tertiary education, people with secondary education, and lastly females with tertiary education (See Fig. 6).

Then, we conducted the chi-square test of independence to test the frequency distribution of all levels of self-reported navigation skills among the four subpopulations. This analysis showed that group membership and self-reported navigation skills were significantly associated ($\chi^2 = 41069.51, p < 0.001$). Post-hoc pairwise comparisons revealed that all groups at all navigation ability levels were significantly different from each other (all $p < 6.25e^{-5}$, Bonferroni corrected). In other words, the percentages of people that indicated that their navigation ability as “very bad”, “bad”, “good”, or “very good” were different across groups (See Fig. 7). More specifically, male long commuters reported the highest within-group percentage of “very good” at navigation, followed by male short commuters with tertiary education, people with secondary education, females with tertiary education. People with secondary education reported the highest within-group percentage of

![Flowchart of the data filtering for the Sea Hero Quest self-reported database.](image)
Fig. 3. Percentages and histograms of all self-reported variables.

Fig. 4. Bivariate spearman correlations between the self-reported variables. Note: All correlations were statistically significant (p < 0.001).

Fig. 5. Subpopulations featured by histograms of seven demographic factors. Male long commuter: Males across both education levels with more than 1 h daily commute. Female tertiary education: Females with tertiary education that have a wide range of daily commuting times. Males tertiary education short commuter: Males with tertiary education that commute less than 1 h on a daily basis. Secondary education: Both males and females with secondary education that have a wide range of daily commuting times. The differences among four groups were mainly driven by gender, education, and commuting time. Age, sleep, home environment, and handedness were evenly distributed for each group.

“good” at navigation, followed by females with tertiary education, male short commuters with tertiary education, male long commuters. Females with tertiary education reported the highest within-group percentages of both “bad” and “very bad” at navigation, both followed by
interaction variables, as well as the primary variables of age, gender, education level, daily commuting time, daily sleep hours, and home environment were added to the ordinal logistic regression model. Age, daily commuting time and sleep hours were standardized and centered. The whole model took 9 min 57 s to run (CPU times: user 6 min 24 s, system: 3 min 33 s).

The results showed that the factors (including the interactions) all significantly contributed to the model ($\chi^2(14) = 55.302.18, p < .001$, pseudo $R^2 = .035$). The effect sizes in Table 2 can be interpreted as an odds ratio, which measures how many times the odds of reporting good navigation ability increases if the factor increases one standard deviation (for continuous variables) or changes to another value (for categorical variables). If this value is 1, it means the odds do not change. For example, the odds of males reporting higher navigation ability was 2.34 times that of females, which is statistically significant, $z(771.614) = 100.12, p < .001$. We did not consider effect sizes between 0.9–1.1, which were judged to be too small to be meaningful, even if they were significant, as the significance was likely due to the large sample size. Thus, we focused on the factors with relatively large effect sizes and left the other interesting trends for future studies.

To sum up, based on the ordinal logistic regression, men who commuted longer every day had higher odds of reporting better navigation ability, see Table 2. In terms of the interactions or the moderators, the strongest effect was education by gender which suggested that the gender gap was stronger for people with tertiary education than people with secondary education. The second strongest effect was education by commuting time, which implied that the commuting time effect was stronger for people with tertiary education than for people with secondary education.

3.4. Random forest regression

To complement our parametric model of ordinal logistic regression, we also conducted a non-parametric model to examine the importance of demographic variables in predicting self-reported navigating skills. We applied the random forest method, which is a meta estimator that utilizes ensemble decision trees (Breiman, 2001). The random forest method has high computational efficiency because its child estimator (i.e., standard tree growing algorithms) has low computational cost; the method also prevents overfitting by using multiple trees. We chose the random forest regression model rather than the classification model because the former could incorporate ordinal information in the dependent variable (Janitza, Tutz, & Boulesteix, 2016). We predicted

Table 2

Factors	Coeff	Effect size	z-value	p-value
age	0.058	1.06	18.30	<.001
gender	0.851	2.34	100.12	<.001
age:gender	0.071	1.07	15.62	<.001
edu	0.043	1.04	6.11	<.001
gender:edu	0.138	1.15	13.87	<.001
commute	0.324	1.38	66.72	<.001
gender:commute	−0.082	0.92	−17.98	<.001
educ:commute	−0.137	0.87	−27.98	<.001
left-hand	−0.024	0.98	24.11	<.001
sleep	0.055	1.06	−17.54	<.001
city-like	0.32	0.96	0.17	<.001

Fig. 6. Average navigation ability in each subpopulation group. Male long commuter: Males across both education levels with more than 1 h daily commute. Female tertiary education: Females with tertiary education that have a wide range of daily commuting times. Males tertiary education short commuter: Males with tertiary education that commute less than 1 h on a daily basis. Secondary education: Both males and females with secondary education that have a wide range of daily commuting times. The differences among four groups were mainly driven by gender, education, and commuting time. Age, sleep, home environment, and handedness were evenly distributed across the four groups. Note: Standard error was too small due to large sample size to be visible on these graphs.

Fig. 7. Percentage of self-reported navigation ability levels in each subpopulation group. Groups and levels of self-reported navigating skills were significantly related ($\chi^2 = 41.069.51, p < .001$). All groups at all navigation ability levels were significantly different (all $p < 6.25e−5$, Bonferroni corrected).
measure at a large scale. This result is consistent with findings from
4.2. Theoretical contributions
education, and daily sleep hours as important factors.
clustering, regression, and random forest models also identified age,
gender as the most important demographic factor in predicting self-
Hero Quest with approximately 770,000 users. The results identified
forest). The pipeline was tested with data from the mobile game Sea
ploratory analyses, parametric supervised learning models (ordinal
dataset. The pipeline used a combination of descriptive analyses, ex-
gate multidimensional demographic information in a large-scale digital

4.1. Summary of findings
self-reported navigation ability based on gender, age, sleep, education, home environment, daily commute, and handedness.
In the analysis, data were randomly split into a 75% training set and a 25% testing set. The RandomForestRegressor function in the Python
sklearn package was used. We used 100 trees, each tree was built on bootstrapped samples given equal weight, with the quality of each
split measured based on mean squared error (i.e., variance reduction), and the node size set to default (i.e., expanded until all leaves are
pure). Features are always randomized at each split and all features are considered to split a node (i.e., bagged trees) as empirically justified in
Geurts, Ernst, and Wehenkel (2006). For the variable importance measure-
ment, we used permutation-based importance ranking as it gives more unbiased rankings of the predictors (Altmann, Toloşi, Sander, &
Lengauer, 2010). Permutation importance was computed based on the
hold-out test set. The model took 1 min 15 s to run (CPU times: 1 min
14 s, system: 149 ms).
Permutation based feature importance rankings from the random
forest analyses revealed that gender was the most important variable for predicting self-reported navigating skills, followed by commuting
time, age, average hours of sleep, education levels, home environments, and handedness (See Fig. 8). This permutation importance ranking
aligns with the results of the logistic regression, further supporting the order of different demographic variables in predicting self-reported
navigation ability.

4. Conclusions
4.3. Future directions
Although the sample for Sea Hero Quest has covered people with much more variable demographics than that of typical psychology
samples (often based on college students), our investigation has shown that it is still not representative of the world population. One limitation
is that a large proportion of subjects were in their 20 s and had tertiary education. In addition, playing Sea Hero Quest requires people
to have access to smartphones and the internet. The sample is likely
not representative of the world population partially due to the fact that such digital devices are not accessible to everyone equally. To make
the ML pipeline more generalizable, more representative population-
level data would be required in future research. However, acquiring a
large-scale digital dataset that is representative of the world population would be challenging for the reason suggested above. Indeed, these
could be common issues for other large-scale digital data used in future research in psychology. Our results highlight the importance of
analyzing confounds driven by the demographics of the participants in future large datasets analyses.
Second, although previous research has demonstrated the predictive
power of self-reported navigation ability on objective navigation ability (Hegarty et al., 2002), these measures are far from being equivalent.
Specifically, self-reported navigation ability is only moderately corre-
lated with performance in navigation tasks, such as retracing a route
taken previously, learning the layout of new places from different views
and navigation experiences, and estimating directions and distances
to known locations (Donald Heth et al., 2002; Epstein et al., 2005;
Hund & Padgitt, 2010; Meneghetti et al., 2014; Pazzaglia et al., 2016).
Thus, objective measurements are still necessary and can continue
to help to evaluate the validity of self-reports. Comparing objective
measures and self-reports with large samples such as this might help
to identify potential subconscious biases in self-reports that are related
to their demographic backgrounds. Further, if a link between objective
measures and self-reports could be established, using self-reports could
provide an efficient prognosis for people with neurological disorders
that have navigation impairments.
Third, preliminary evidence has suggested that individual task per-
formance in Sea Hero Quest is predictive of one's navigation ability in

Fig. 8. Permutation based feature importance ranking in the random forest regression analysis.
real life (Coughlan et al., 2019), but more work needs to be done to paint a full picture, including participants’ demographics.

In the future, pretrained models from the Sea Hero Quest dataset could be used to improve prediction accuracy for psychology studies with smaller samples. In that case, psychologists who study similar questions could more systematically approach their findings. This approach constitutes a useful addition to a growing set of methods which may collectively help alleviate the reproducibility crisis currently facing the field of experimental psychology.

4.4. Broader implications

By incorporating multivariate demographics in big data analyses, we demonstrated an approach that not only comprehensively interprets self-report results, but also informs the reproducibility of these results from a new perspective. Specifically, we replicated the findings in the experimental literature with new interpretations by incorporating new demographics at scale.

Specific to the research field of spatial navigation, individual differences in self-reported navigation ability have been linked to individual differences in Global Positioning System (GPS) use (He & Hegarty, 2020; Hejtmánek, Oravcová, Motýl, Horáček, & Fajnerová, 2018). Understanding more about user characteristics paves the way towards more efficient human–GPS interactions. In clinical settings, these analyses inform the future development of an adaptive self-reported threshold for preclinical screening based on demographic factors (Coughlan et al., 2019, 2018; Spiers, H. J. (2022)).

Data availability

We do not have the permission to share the data but we have shared our code on Github https://github.com/LilianYou/Sea_Hero_Quest.

Acknowledgments

This project was supported by the National Science Foundation, USA under Grant No. NSF IIS-2024633. We thank Hugo J. Spiers for his suggestions and for making the dataset available to us.

References

Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: a corrected feature importance measure. Bioinformatics, 26(10), 1340–1347. http://dx.doi.org/10.1093/bioinformatics/btp134.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. http://dx.doi.org/10.1023/A:1010935204032.

Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T. H., Huber, J., Johannesson, M., & Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour, 2(9), 637–644. http://dx.doi.org/10.1038/s41562-018-0292-x.

Coughlan, G., Coughlan, A., Khodokor, M., Minihan, A. M., Spiers, H., & Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences, 116(19), 9285–9292. http://dx.doi.org/10.1073/pnas.1901600116.

Coughlan, G., Laczó, J., Horta, J., Minihan, A. M., & Hornberger, M. (2018). Spatial navigation deficits—overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496–506. http://dx.doi.org/10.1038/s41582-018-0031.

Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yeisiltepe, D., & Spiers, H. J. (2018). Global determinants of navigation ability. Current Biology, 28(17), 2861–2866. http://dx.doi.org/10.1016/j.cub.2018.06.009.

Farah, M. J. (2017). The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron, 96(1), 56–71. http://dx.doi.org/10.1016/j.neuron.2017.08.034.

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768–769. http://dx.doi.org/10.1111/j.1532-5415.1965.tb05636.x.

He, C., Hegarty, M., Hejtmánek, A., Oravcová, L., Motýl, J., Horáček, J., & Fajnerová, O. (2018). Understanding more about user characteristics paves the way towards more efficient human–GPS interactions. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 32(9), 1309–1319. http://dx.doi.org/10.1002/acp.3295.

Hejtmánek, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: a corrected feature importance measure. Bioinformatics, 26(10), 1340–1347. http://dx.doi.org/10.1093/bioinformatics/btp134.

Hegarty, M., Burte, H., & Boone, A. P. (2018). Individual differences in large-scale spatial abilities and strategies. In D. Montello (Ed.), Behavioral and cognitive geography (pp. 231–246). Edward Elgar Publishing, http://dx.doi.org/10.4337/9781784717544.

Hegarty, M., He, C., Boone, A. P., Yu, S., Jacobs, E. G., & Chrastil, E. R. (2022). Understanding differences in wayfinding strategies. Topics in Cognitive Science, http://dx.doi.org/10.1111/tops.12592.

Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. http://dx.doi.org/10.1016/j.intell.2005.09.005.

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(3), 425–447. http://dx.doi.org/10.1016/S0167-8191(02)00116-2.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), Article e240. http://dx.doi.org/10.1371/journal.pmed.0040240.

Janitza, S., Tutz, G., & Boulesteix, A. L. (2016). Random forest for ordinal responses: a corrected feature importance measure. Computational Statistics & Data Analysis, 100(9), 15–24. http://dx.doi.org/10.1016/j.csda.2015.10.005.

Jupp, V. (2006). Self-report study. In The SAGE dictionary of social research methods. SAGE Publications, Ltd, http://dx.doi.org/10.4135/9780803926359.n29.

Kaiser, H. F. (1974). A index of factorial simplicity. Biometrics, 30(4), 749–751. http://dx.doi.org/10.1111/j.1751-5823.1974.tb04968.x.

Kruglack, S., Coughlan, G., Minihan, A., Spiers, H., & Hornberger, M. (2018). Entropy of city street networks linked to future spatial navigation ability. Nature, 55(7904), 104–110. http://dx.doi.org/10.1038/s41586-018-04486-7.

Kunst, A. M., & Pot, H. (2001). Random forest for ordinal responses: a corrected feature importance measure. Computational Statistics & Data Analysis, 41(4), 44–49. http://dx.doi.org/10.1016/S0167-8191(00)00125-6.

Lagacé, L.,合金, J., & Huber, J. (2017). The neuroscience of socioeconomic status: correlates, causes, and consequences. Neuron, 96(1), 56–71. http://dx.doi.org/10.1016/j.neuron.2017.08.034.
Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer segmentation using k-means clustering. In 2018 International conference on computational techniques, electronics and mechanical systems (pp. 135–139). IEEE, http://dx.doi.org/10.1109/cetms.2018.8769171.

Kochenderfer, M. J., & Wheeler, T. A. (2019). Algorithms for optimization. Mit Press.

Kunz, L., Schröder, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., & Axmacher, N. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science, 350(6259), 430–433. http://dx.doi.org/10.1126/science.aac3128.

Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T. (2017). The aging navigational system. Neuron, 95(5), 1019–1035. http://dx.doi.org/10.1016/j.neuron.2017.06.037.

Li, R., & Klippel, A. (2016). Wayfinding behaviors in complex buildings: The impact of environmental legibility and familiarity. Environment and Behavior, 48(3), 482–510. http://dx.doi.org/10.1177/001391651550243.

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. http://dx.doi.org/10.1109/tit.1982.1056489.

McKinlay, R. (2016). Technology: Use or lose our navigation skills. Neuron, 95(6), 956–958. http://dx.doi.org/10.1016/j.neuron.2016.04.041.

Namvar, M., Gholamian, M. R., & KhakAbi, S. (2010). A two phase clustering method using K-means clustering. In 2010 International conference on intelligent systems, modelling and simulation (pp. 215–219). IEEE, http://dx.doi.org/10.1109/isms.2010.48.

Nazareth, A., Huang, X., Voyder, D., & Newcombe, N. (2019). A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin & Review, 26(5), 1503–1528. http://dx.doi.org/10.3758/s13423-019-01635-6.

Pagkratidou, M., Borella, E., Pastore, M., & De Beni, R. (2014). The role of spatial abilities and self-assessments in cardinal point orientation across the lifespan. Learning and Individual Differences, 35, 113–121. http://dx.doi.org/10.1016/j.lindif.2014.07.006.

Montello, D. R. (2005). Navigation. In P. Shah, & A. Miyake (Eds.), The Cambridge handbook of spatial thinking (pp. 257–294). Cambridge, UK: Cambridge University Press.

Namvar, M., Gholamian, M. R., & Khak Abi, S. (2010). A two phase clustering method for intelligent customer segmentation. In 2010 International conference on intelligent systems, modelling and simulation (pp. 215–219). IEEE, http://dx.doi.org/10.1109/isms.2010.48.

Nazereth, A., Huang, X., Voyder, D., & Newcombe, N. (2019). A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin & Review, 26(5), 1503–1528. http://dx.doi.org/10.3758/s13423-019-01635-6.

Pachur, T., Dimas, E., Sakreida, K., Kernbach, J. M., Markello, R. D., Schöffski, O., & Badok, D. (2022). Pattern learning reveals brain asymmetry to be linked to socioeconomic status. Cerebral Cortex Communications, http://dx.doi.org/10.1093/ctcom/igca020.

Puthusserypady, V., Morrissey, S., Spiers, H., Patel, M., & Hornberger, M. (2022). Predicting real world spatial disorientation in Alzheimer’s disease patients using virtual reality navigation tests. Scientific Reports, 12(1), 1–12. http://dx.doi.org/10.1038/s41598-022-17634-w.

Rechav, I., Beeri, R., Balapour, A., Raban, D. R., Sabherwal, R., & Azuri, J. (2019). How reliable are self-assessments using mobile technology in healthcare? The effects of technology identity and self-efficacy. Computers in Human Behavior, 91, 52–61. http://dx.doi.org/10.1016/j.chb.2018.09.024.

Schooler, J. (2011). Unpublished results hide the decline effect. Nature, 470(7335), 437. http://dx.doi.org/10.1038/470437a.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. http://dx.doi.org/10.1177/0956797611417632.

Slavin, M. J., Brodaty, H., Kochan, N. A., Crawford, J. D., Trollor, J. N., Draper, B., & Sachdev, P. S. (2010). Prevalence and predictors of subjective cognitive complaints in the Sydney Memory and Ageing Study. The American Journal of Geriatric Psychiatry, 18(8), 701–710. http://dx.doi.org/10.1097/JGP.0b013e3181f490b.

Spiers, H. J., Coutrot, A., & Hornberger, M. (2021). Explaining world-wide variation in navigation ability from millions of people: Citizen science project sea hero quest. Topics in Cognitive Science, http://dx.doi.org/10.1111/tops.12590.

Taylor, J. L., Miller, T. P., & Tinklenberg, J. R. (1992). Correlates of memory decline: a 4-year longitudinal study of older adults with memory complaints. Psychology and Aging, 7(2), 185. http://dx.doi.org/10.1037/0882-7974.7.2.185.

van der Ham, I. J., van der Kuil, M. N., & Claessen, M. H. (2021). Quality of self-reported cognition: Effects of age and gender on spatial navigation self-reports. Aging & Mental Health, 25(3), 873–878. http://dx.doi.org/10.1080/13607863.2020.1742658.

van’t Veer, A. E., & Giner-Sorolla, R. (2016). Pre-registration in social psychology—A discussion and suggested template. Journal of Experimental Social Psychology, 67, 2–12. http://dx.doi.org/10.1016/j.jesp.2016.03.004.

Wasef, S., Laksono, I., Kapoor, P., Tang-Wei, D., Gold, D., Saripella, A., & Chung, F. (2021). Screening for subjective cognitive decline in the elderly via subjective cognitive complaints and informant-reported questionnaires: a systematic review. BMC Neuropsychology, 21(1), 1–9. http://dx.doi.org/10.1186/s12871-021-01493-5.

Weisberg, S. M., & Newcombe, N. S. (2018). Cognitive maps: Some people make them, some people struggle. Current Directions in Psychological Science, 27(4), 220–226. http://dx.doi.org/10.1177/0963721417744521.

Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146. http://dx.doi.org/10.1016/j.tics.2010.01.001.

Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. (2021). Integrated churn prediction and customer segmentation framework for telco business. IEEE Access, 9, 62118–62136. http://dx.doi.org/10.1109/access.2021.3073776.

Yu, S., Boone, A. P., He, C., Davis, R. C., Hegarty, M., Chrastil, E. R., & Jacobs, E. G. (2021). Age-related changes in spatial navigation are evident by midlife and differ by sex. Psychological Science, 32(5), 692–704. http://dx.doi.org/10.1177/0956797619880199.

Yu, Y., Chang, C. H., Liu, R., & Feng, Y. (2022). Machine learning with applications 10 (2022) 100419.