Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian
Matteo Novaga, Berardo Ruffini

To cite this version:
Matteo Novaga, Berardo Ruffini. Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian. 2014. hal-00930181v2

HAL Id: hal-00930181
https://hal.archives-ouvertes.fr/hal-00930181v2
Preprint submitted on 17 Jan 2014
Brunn-Minkowski inequality for the 1-Riesz capacity and level set convexity for the 1/2-Laplacian

M. Novaga ∗, B. Ruffini †

January 17, 2014

Abstract
We prove that the 1-Riesz capacity satisfies a Brunn-Minkowski inequality, and that the capacitary function of the 1/2-Laplacian is level set convex.

Keywords: fractional Laplacian; Brunn-Minkowski inequality; level set convexity; Riesz capacity.

1 Introduction
In this paper we consider the following problem

\[
\begin{cases}
(-\Delta)^s u = 0 & \text{on } \mathbb{R}^N \setminus K \\
u = 1 & \text{on } K \\
\lim_{|x| \to +\infty} u(x) = 0
\end{cases}
\]

where \(N \geq 2, s \in (0, N/2), \) and \((-\Delta)^s\) stands for the \(s \)-fractional Laplacian, defined as the unique pseudo-differential operator \((-\Delta)^s : \mathcal{S} \mapsto L^2(\mathbb{R}^N)\), being \(\mathcal{S} \) the Schwartz space of functions with fast decay to 0 at infinity, such that

\[
\mathcal{F}(-\Delta)^s f = |\xi|^{2s} \mathcal{F}(f)(\xi),
\]

where \(\mathcal{F} \) denotes the Fourier transform. We refer to the guide [12, Section 3] for more details on the subject. A quantity strictly related to Problem (1) is the so-called Riesz potential energy of a set \(E \), defined as

\[
I_\alpha(E) = \inf_{\mu(E)=1} \int_{\mathbb{R}^N \times \mathbb{R}^N} \frac{d\mu(x) d\mu(y)}{|x-y|^{N-\alpha}}, \quad \alpha \in (0, N).
\]

* Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
email: novaga@dm.unipi.it
† Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
email: berardo.ruffini@sns.it
It is possible to prove (see [18]) that if E is a compact set, then the infimum in the definition of $I_\alpha(E)$ is achieved by a Radon measure μ supported on the boundary of E if $\alpha \leq N - 2$, and with support equal to the whole E if $\alpha \in (N - 2, N)$. If μ is the optimal measure for the set E, we define the Riesz potential v of E as

$$v(x) = \int_{\mathbb{R}^N} \frac{d\mu(y)}{|x - y|^{N-\alpha}},$$

so that

$$I_\alpha(E) = \int_{\mathbb{R}^N} v(x)d\mu(x).$$

It is not difficult to check (see [18, 15]) that the potential v satisfies

$$(-\Delta)\frac{2}{\alpha} v = c(\alpha, N) \mu,$$

where $c(\alpha, N)$ is a positive constant, and that $v = I_\alpha(E)$ on E. In particular, if $s = \alpha/2$, then $v_K = v/I_{2s}(K)$ is the unique solution of Problem (1).

Following [18], we define the α-Riesz capacity of a set E as

$$\text{Cap}_\alpha(E) := \frac{1}{I_\alpha(E)}.$$

(4)

We point out that this is not the only concept of capacity present in literature. Indeed, another one is given by the 2-capacity of a set E, defined by

$$C_2(E) = \min \left\{ \int_{\mathbb{R}^N} |
abla \varphi|^2 : \varphi \in C^1(\mathbb{R}^N, [0, 1]), \varphi \geq \chi_E \right\}$$

(5)

where χ_A is the characteristic function of the set A. It is possible to prove that, if E is a compact set, then the minimum in (5) is achieved by a function u satisfying

$$\begin{cases}
\Delta u = 0 & \text{on } \mathbb{R}^N \setminus E \\
u = 1 & \text{on } E \\
\lim_{|x| \to +\infty} u(x) = 0.
\end{cases}$$

(6)

It is worth stressing that the 2-capacity and the α-Riesz capacity share several properties, and coincide if $\alpha = 2$. We refer the reader to [19, Chapter 8] for a discussion of this topic.

In a series of works (see for instance [5, 10, 17] and the monography [16]) it has been proved that the solutions of (6) are level set convex provided E is a convex body, that is, a compact convex set with non-empty interior. Moreover, in [1] (and later in [9] in a more general setting and in [8] for the logarithmic capacity in 2 dimensions) it
has been proved that the 2-capacity satisfies a suitable version of the Brunn-Minkowski inequality: given two convex bodies K_0 and K_1 in \mathbb{R}^N, for any $\lambda \in [0,1]$ it holds
\[
C_2(\lambda K_1 + (1-\lambda)K_0)^{\frac{1}{N-2}} \geq \lambda C_2(K_1)^{\frac{1}{N-2}} + (1-\lambda)C_2(K_0)^{\frac{1}{N-2}}.
\]
We refer to [20, 14] for a comprehensive survey on the Brunn-Minkowski inequality.

The main purpose of this paper is to show the analogous of these results in the fractional setting $\alpha = 1$, that is, $s = 1/2$ in Problem (1). More precisely, we shall prove the following result.

Theorem 1.1. Let $K \subset \mathbb{R}^N$ be a convex body and let u be the solution of Problem (1) with $s = 1/2$. Then

(i) u is level set convex, that is, for every $c \in \mathbb{R}$ the set $\{u > c\}$ is convex;

(ii) the 1-Riesz capacity $\text{Cap}_1(K)$ satisfies the following Brunn-Minkowski inequality: for any couple of convex bodies K_0 and K_1 and for any $\lambda \in [0,1]$ we have
\[
\text{Cap}_1(\lambda K_1 + (1-\lambda)K_0)^{\frac{1}{N-1}} \geq \lambda\text{Cap}_1(K_1)^{\frac{1}{N-1}} + (1-\lambda)\text{Cap}_1(K_0)^{\frac{1}{N-1}}.
\]

The proof of the Theorem 1.1 will be given in Section 2, and relies on the results in [11, 9] and on the following observation due to L. Caffarelli and L. Silvestre.

Proposition 1.2 ([7]). Let $f : \mathbb{R}^N \to \mathbb{R}$ be a measurable function and let $U : \mathbb{R}^N \times [0,+\infty)$ be the solution of
\[
\Delta (x,t)U(x,t) = 0, \quad \text{on } \mathbb{R}^N \times (0, +\infty) \quad U(x,0) = f(x).
\]
Then, for any $x \in \mathbb{R}^N$ there holds
\[
\lim_{t \to 0^+} \partial_t U(x,t) = (-\Delta)^{\frac{1}{2}} f(x).
\]

Eventually, in Section 3 we provide an application of Theorem 1.1 and we state some open problems.

2 Proof of the main result

This section is devoted to the proof of Theorem 1.1.

Lemma 2.1. Let K be a compact convex set with positive 2-capacity and let $(K_\varepsilon)_{\varepsilon > 0}$ be a family of compact convex sets with positive 2-capacity such that $K_\varepsilon \to K$ in the Hausdorff distance, as $\varepsilon \to 0$. Letting u_ε and u be the capacitary functions of K_ε and K respectively, we have that u_ε converges uniformly on \mathbb{R}^N to u as $\varepsilon \to 0$. As a consequence, we have that the sequence $C_2(K_\varepsilon)$ converges to $C_2(K)$, and that the sets $\{u_\varepsilon > s\}$ converge to $\{u > s\}$ for any $s > 0$, with respect to the Hausdorff distance.
Proof. We only prove that \(u_\varepsilon \to u \) uniformly as \(\varepsilon \to 0 \) since this immediately implies the other claims. Let \(\Omega_\varepsilon = K \cup K_\varepsilon \). Since \(u_\varepsilon - u \) is a harmonic function on \(\mathbb{R}^N \setminus \Omega_\varepsilon \), we have that

\[
\sup_{\mathbb{R}^N \setminus \Omega_\varepsilon} |u_\varepsilon - u| \leq \sup_{\partial \Omega_\varepsilon} |u_\varepsilon - u| \leq \max \left\{ 1 - \min_{\partial \Omega_\varepsilon} u, 1 - \min_{\partial \Omega_\varepsilon} u_\varepsilon \right\}.
\]

(8)

Moreover, by Hausdorff convergence, we know that there exists a sequence \((r_\varepsilon)_\varepsilon \) infinitesimal as \(\varepsilon \to 0 \) such that \(K_\varepsilon \subset K + B_{r_\varepsilon} \), where \(B(r) \) indicates the ball of radius \(r \) centred at the origin. Thus

\[
\min \left\{ \min_{\partial \Omega_\varepsilon} u, \min_{\partial \Omega_\varepsilon} u_\varepsilon \right\} \geq \min \left\{ \min_{K + B(2r_\varepsilon)} u, \min_{K_\varepsilon + B(2r_\varepsilon)} u_\varepsilon \right\}.
\]

(9)

Since the right-hand side of (9) converges to 1 as \(\varepsilon \to 0 \), from (8) we obtain

\[
\lim_{\varepsilon \to 0} \sup_{\mathbb{R}^N \setminus \Omega_\varepsilon} |u_\varepsilon - u| = 0,
\]

which brings to the conclusion.

Remark 2.2. Notice that a compact convex set has positive 2-capacity if and only if its \(\mathcal{H}^{N-1} \)-measure is non-zero (see [13]).

Proof of Theorem 1.1. We start by proving claim (i). Let us consider the problem

\[
\begin{cases}
-\Delta(x,t)U(x,t) = 0 & \text{in } \mathbb{R}^N \times (0, \infty) \\
U(x,0) = 1 & x \in K \\
U_t(x,0) = 0 & x \in \mathbb{R}^N \setminus K \\
\lim_{|x(t)| \to \infty} U(x,t) = 0
\end{cases}
\]

(10)

By Proposition 1.2 we have that \(U(x,0) = u(x) \) for every \(x \in \mathbb{R}^N \). Notice also that, for any \(c \in \mathbb{R} \), we have

\[
\{ u \geq c \} = \{ (x,t) : U(x,t) \geq c \} \cap \{ t = 0 \}
\]

which entails that \(u \) is level set convex, provided that \(U \) is level set convex. In order to prove this, we introduce the problem

\[
\begin{cases}
\Delta(x,t)V(x,t) = 0 & \text{in } \mathbb{R}^{N+1} \setminus K \\
V = 1 & x \in K \\
\lim_{|x(t)| \to \infty} V(x,t) = 0
\end{cases}
\]

(11)

whose solution is given by the capacitary function of the set \(K \) in \(\mathbb{R}^{N+1} \), that is, the function which achieves the minimum in Problem (5).
Since K is symmetric with respect to the hyperplane $\{t = 0\}$ (where it is contained), it follows, for instance by applying a suitable version of the Pólya-Szegő inequality for the Steiner symmetrization (see for instance [2, 4]), that V is symmetric as well with respect to the same hyperplane. In particular we have that $\partial_t V(x, 0) = 0$ for all $x \in \mathbb{R}^N \setminus K$. This implies that $V(x, t) = U(x, t)$ for every $t \geq 0$. To conclude the proof, we are left to check that V is level set convex. To prove this we recall that the capacitary function of a convex body is level set convex, as proved in [9]. Moreover, by Lemma 2.1 applied to the sequence of convex bodies $K_\varepsilon = K + B(\varepsilon)$ we get that V is level set convex as well. This concludes the proof of (i).

To prove (ii) we start by noticing that the 1-Riesz capacity is a $(1 - N)$-homogeneous functional, hence inequality (7) can be equivalently stated (see for instance [1]) by requiring that, for any couple of convex sets K_0 and K_1 and for any $\lambda \in [0, 1]$, the inequality

$$\text{Cap}_1(\lambda K_1 + (1 - \lambda)K_0) \geq \min\{\text{Cap}_1(K_0), \text{Cap}_1(K_1)\} \quad (12)$$

holds true.

We divide the proof of (12) into two steps.

Step 1.
We characterize the 1-Riesz capacity of a convex set K as the behaviour at infinity of the solution of the following PDE

$$\begin{cases}
(-\Delta)^{1/2} v_K = 0 & \text{in } \mathbb{R}^N \setminus K \\
v_K = 1 & \text{in } K \\
\lim_{|x| \to \infty} |x|^{N-1} v_K(x) = \text{Cap}_1(K)
\end{cases}$$

We recall that, if μ_K is the optimal measure for the minimum problem in (2), then the function

$$v(x) = \int_{\mathbb{R}^N} \frac{d\mu_K(y)}{|x-y|^{N-1}}$$

is harmonic on $\mathbb{R}^N \setminus K$ and is constantly equal to $I_1(K)$ on K (see for instance [15]). Moreover the optimal measure μ_K is supported on K, so that $|x|^{N-1} v(x) \to \mu_K(K) = 1$ as $|x| \to \infty$. The claim follows by letting $v_K = v/\text{I}_1(K)$.

Step 2.
Let $K_\lambda = \lambda K_1 + (1 - \lambda)K_0$ and $v_\lambda = v_{K_\lambda}$. We want to prove that

$$v_\lambda(x) \geq \min\{v_0(x), v_1(x)\}$$

for any $x \in \mathbb{R}^N$. To this aim we introduce the auxiliary function

$$\tilde{v}_\lambda(x) = \sup \{ \min\{v_0(x_0), v_1(x_1)\} : x = \lambda x_1 + (1 - \lambda)x_0 \},$$

5
and we notice that Step 2 follows if we show that \(v_\lambda \geq \tilde{v}_\lambda \). An equivalent formulation of this statement is to require that for any \(s > 0 \) we have
\[
\{ \tilde{v}_\lambda > s \} \subseteq \{ v_\lambda > s \}. \tag{13}
\]
A direct consequence of the definition of \(\tilde{v}_\lambda \) is that
\[
\{ \tilde{v}_\lambda > s \} = \lambda \{ v_1 > s \} + (1 - \lambda) \{ v_0 > s \}.
\]
For all \(\lambda \in [0, 1] \), we let \(V_\lambda \) be the harmonic extension of \(v_\lambda \) on \(\mathbb{R}^N \times [0, \infty) \), which solves
\[
\begin{cases}
-\Delta_{(x,t)} V_\lambda(x,t) = 0 & \text{in } \mathbb{R}^N \times (0, \infty) \\
V_\lambda(x,0) = v_\lambda(x) & \text{in } \mathbb{R}^N \times \{0\} \\
\lim_{(x,t) \to \infty} V_\lambda(x,t) = 0.
\end{cases} \tag{14}
\]
Notice that \(V_\lambda \) is the capacitary function of \(K_\lambda \) in \(\mathbb{R}^{N+1} \), restricted to \(\mathbb{R}^N \times [0, +\infty) \).

Letting \(\tilde{V}_\lambda(x,t) = \sup \{ \min \{ V_0(x_0,t_0), V_1(x_1,t_1) \} : (x,t) = \lambda(x_1,t_1) + (1 - \lambda)(x_0,t_0) \} \), as above we have that
\[
\{ \tilde{v}_\lambda > s \} = \lambda \{ v_1 > s \} + (1 - \lambda) \{ v_0 > s \}.
\]
By applying again Lemma 2.1 to the sequences \(K_0^\varepsilon = K_0 + B(\varepsilon) \) and \(K_1^\varepsilon = K_1 + B(\varepsilon) \), we get that the corresponding capacitary functions, denoted respectively as \(V_0^\varepsilon \) and \(V_1^\varepsilon \), converge uniformly to \(V_0 \) and \(V_1 \) in \(\mathbb{R}^N \), and that \(\tilde{V}_\lambda^\varepsilon \), defined as in (15), converges uniformly to \(\tilde{V}_\lambda \) on \(\mathbb{R}^N \times [0, +\infty) \).

Since \(\tilde{V}_\lambda^\varepsilon(x,t) \leq V_\lambda^\varepsilon(x,t) \) for any \((x,t) \in \mathbb{R}^N \times [0, +\infty) \), as shown in [9, pages 474 - 476], we have that \(\tilde{V}_\lambda(x,t) \leq V_\lambda(x,t) \). As a consequence, we get
\[
\{ v_\lambda > s \} = \{ V_\lambda > s \} \cap H \supseteq \{ \tilde{V}_\lambda > s \} \cap H = \left[\lambda \{ V_1 > s \} + (1 - \lambda) \{ V_0 > s \} \right] \cap H \supseteq \lambda \{ V_1 > s \} \cap H + (1 - \lambda) \{ V_0 > s \} \cap H = \lambda \{ v_1 > s \} + (1 - \lambda) \{ v_0 > s \}
\]
for any \(s > 0 \), which is the claim of Step 2.

We conclude by observing that inequality (12) follows immediately, by putting together Step 1 and Step 2. This concludes the proof of (ii), and of the theorem.

Remark 2.3. The equality case in the Brunn-Minkowski inequality (7) is not easy to address by means of our techniques. The problem is not immediate even in the case of the 2-capacity, for which it has been studied in [6, 9].
3 Applications and open problems

In this section we state a corollary of Theorem 1.1. To do this we introduce some tools which arise in the study of convex bodies. The support function of a convex body \(K \subset \mathbb{R}^N \) is defined on the unit sphere centred at the origin \(\partial B(1) \) as
\[
h_K(\nu) = \sup_{x \in \partial K} \langle x, \nu \rangle.
\]
The mean width of a convex body \(K \) is
\[
M(K) = \frac{2}{\mathcal{H}^{N-1}(\partial B(1))} \int_{\partial B(1)} h_K(\nu) d\mathcal{H}^{N-1}(\nu).
\]
We refer to [20] for a complete reference on the subject. We observe that, if \(N = 2 \), then \(M(K) \) coincides up to a constant with the perimeter \(P(K) \) of \(K \) (see [3]).

We denote by \(K_N \) the set of convex bodies of \(\mathbb{R}^N \) and we set
\[
K_{N,c} = \{ K \in K_N, M(K) = c \}.
\]
The following result has been proved in [3].

Theorem 3.1. Let \(F : K_N \to [0, \infty) \) be a q-homogeneous functional which satisfies the Brunn-Minkowski inequality, that is, such that \(F(K + L)^{1/q} \geq F(K)^{1/q} + F(L)^{1/q} \) for any \(K, L \in K_N \). Then the ball is the unique solution of the problem
\[
\min_{K \in K_N} \frac{M(K)}{F^{1/q}(K)}.
\]
(16)

An immediate consequence of Theorem 3.1, Theorem 1.1 and Definition 4 is the following result.

Corollary 3.2. The minimum of \(I_1 \) on the set \(K_{N,c} \) is achieved by the ball of measure \(c \). In particular, if \(N = 2 \), the ball of radius \(r \) solves the isoperimetric type problem
\[
\min_{K \in K_2, P(K) = 2\pi r} I_1(K).
\]
(17)

Motivated by Theorem 1.1 and Corollary 3.2 we conclude the paper with the following conjectures:

Conjecture 3.3. For any \(N \geq 2 \) and \(\alpha \in (0, N) \), the \(\alpha \)-Riesz capacity \(\text{Cap}_\alpha(K) \) satisfies the following Brunn-Minkowski inequality:
for any couple of convex bodies \(K_0 \) and \(K_1 \) and for any \(\lambda \in [0, 1] \) we have
\[
\text{Cap}_\alpha(\lambda K_1 + (1 - \lambda) K_0) \gtrless \lambda \text{Cap}_\alpha(K_1)^{\frac{\alpha}{N}} + (1 - \lambda) \text{Cap}_\alpha(K_0)^{\frac{\alpha}{N}}.
\]
(18)

Conjecture 3.4. For any \(N \geq 2 \) and \(\alpha \in (0, N) \), the ball of radius \(r \) is the unique solution of the problem
\[
\min_{K \in K_N, P(K) = N\omega_N r^{N-1}} I_\alpha(K).
\]
(19)
Acknowledgements

The authors wish to thank G. Buttazzo and D. Bucur for useful discussions on the subject of this paper.

References

[1] C. Borell: Capacitary inequalities of the Brunn–Minkowski type, Math. Ann., 263 (1984), 179–184.

[2] F. Brock: Weighted Dirichlet-type inequalities for Steiner Symmetrization, Calc. Var. Partial Differential Equations, 8 (1999), 15–25.

[3] D. Bucur, I. Fragalà, J. Lamboley: Optimal convex shapes for concave functionals, ESAIM Control Optim. Calc. Var., 18 (2012), 693–711.

[4] A. Burchard: Steiner symmetrization is continuous in $W^{1,p}$, Geom. Funct. Anal., 7 (1997), 823–860.

[5] L.A. Caffarelli, J. Spruck: Convexity of Solutions to Some Classical Variational Problems, Comm. P.D.E., 7 (1982), 1337–1379.

[6] L.A. Caffarelli, D. Jerison, E.H. Lieb: On the Case of Equality in the Brunn–Minkowski Inequality for Capacity, Adv. Math., 117 (1996), 193–207.

[7] L.A. Caffarelli, L. Silvestre: An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245–1260.

[8] A. Colesanti, P. Cuoghi: The Brunn-Minkowski Inequality for the n-dimensional Logarithmic Capacity of Convex Bodies, Potential Anal., 22 (2005), 289–304.

[9] A. Colesanti, P. Salani: The Brunn-Minkowski inequality for p-capacity of convex bodies, Math. Ann., 327 (2003), 459–479.

[10] A. Colesanti, P. Salani Quasi-concave Envelope of a Function and Convexity of Level Sets of Solutions to Elliptic Equations, Math. Nach., 258 (2003), 3–15.

[11] P. Cuoghi, P. Salani: Convexity of level sets for solutions to nonlinear elliptic problems in convex rings, Electr. J. Differential Equations, 124 (2006), 1–12.

[12] E. Di Nezza, G. Palatucci, E. Valdinoci Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573.
[13] L.C. Evans, R.F. Gariepy: *Measure theory and fine properties of functions*, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[14] R. Gardner: *The Brunn-Minkowski inequality*, Bull. Amer. Math. Soc., 353 (2002), 355–405.

[15] M. Goldman, M. Novaga, B. Ruffini: *Existence and stability for a non-local isoperimetric model of charged liquid drops*, Preprint (2013), available at http://cvgmt.sns.it/paper/2267/

[16] B. Kawohl: *Rearrangements and Convexity of Level Sets in P.D.E.*, Lecture Notes in Mathematics, 1150, Springer, Berlin, 1985.

[17] N. Korevaar, *Convexity of Level Sets for Solutions to Elliptic Ring Problems*, Comm. Partial Differential Equations, 15 (1990), 541–556.

[18] N.S. Landkof: *Foundations of Modern Potential Theory*, Springer-Verlag, Heidelberg 1972.

[19] E.H. Lieb, M. Loss: *Analysis*, Graduate Studies in Mathematics, AMS, 2000.

[20] R. Schneider: *Convex bodies: the Brunn-Minkowski theory*, Cambridge Univ. Press, 1993.