Moss C, N, P and K stoichiometry and their relationships are related to soil nutrients and environment in a temperate desert of central Asia

Yong-Gang Li1+, Xiao-Bing Zhou1+, Yongxing Lu1, Yuan-Ming Zhang1*

1 CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 830011, China

*The first and second authors contributed equally to this work

*Corresponding author: Yuanming Zhang, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, No.818 Beijing Road south, Urumqi, Xinjiang 830011, PR China. E-mail ymzhang@ms.xjb.ac.cn

This article has been accepted For publication And undergone full peer review but has Not been through the copyediting, typesetting, pagination And proofreading process, which may lead to differences between this Version And the Version of Record. Please cite this article as doi: 10.1093/jpe/rtac070.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Previous studies showed that moss stoichiometric characteristics were influenced by moss patch size, shrubs and the environment in the desert. The study of moss stoichiometry in different spatial distribution areas is crucial for an understanding of growth and adaptation strategy of the mosses. In this study, the dominant moss (*Syntrichia caninervis* Mitt.) of biological soil crusts, and soil under the moss patches in the Gurbantunggut Desert were selected to determine their stoichiometry in different dunes and sites. Moss stoichiometry and soil available nutrients were significantly influenced by different distribution areas except for moss C. The $N_{\text{aboveground}}$ vs. $N_{\text{belowground}}$, $P_{\text{aboveground}}$ vs. $P_{\text{belowground}}$, and $K_{\text{aboveground}}$ vs. $K_{\text{belowground}}$ scaling exponents of moss were 0.251, 0.389, 0.442, respectively. The N vs. P scaling exponents were 0.71, 0.84 in above- and below-ground parts of moss. Moss stoichiometry was disproportionately distributed in the above-ground and below-ground parts. Moreover, moss N, P and K elements were influenced by mean annual precipitation (MAP), longitude and soil nutrients. The nutrients of moss were affected by spatial distribution, mean annual temperature (MAT), MAP and soil nutrients. The growth of moss was limited by N element in the temperate desert. This study provides the stoichiometric characteristics of C, N, P and K of moss at different spatial scales, and explores their relationships with environmental variables, which can help understand nutrient patterns and utilization strategy of N, P and K, and their potential responses to global climate changes in desert.
Keywords: Ecological stoichiometry, Moss, Soil nutrients, Spatial scale, Climate factors,

Syntrichia caninervis, Gurbantunggut Desert
1. Introduction

Mosses, as an important component of biological soil crusts, are common components of boreal, arctic, temperate and dryland ecosystems worldwide (Belnap, 2006; Elbert et al., 2012; Lindo and Gonzalez, 2010). Mosses play key functional roles in the ecosystems where they are prevalent (Belnap, 2006; Bowker et al., 2011; Maestre et al., 2012). In drylands, biocrusts mosses support a range of ecosystem functions, including soil stability, carbon (C) and nitrogen (N) fixation, CO₂ flux, and N mineralization (Bowker et al., 2011; Eldridge and Greene., 1994; Maestre et al., 2012; Su et al., 2012; Su et al., 2013; Wu et al., 2015).

Drylands are extremely important for achieving global sustainability, as they constitute 41% of Earth’s land surface (Pravalie, 2016; Reynolds et al., 2007). Drylands are also estimated to expand by the end of this century as a result of expected increases in aridity with climate change (Dai, 2013; Feng and Fu, 2013; Huang et al., 2016). The growth characteristics of the mosses are essential for their successful survival.

In drylands, several methods were used to determination of moss growth characteristics, including molecular (Gao et al., 2015; Yang et al., 2015; Zhang et al., 2018), cytobiology (Oliver et al., 2000a; Oliver et al., 2000b), morphology (Pan et al., 2016b; Tao and Zhang, 2012) and physiology (Yin and Zhang, 2016; Yin et al., 2017; Zhang and Zhang, 2014). Most studies focused on the individual and small scale of the mosses. However, mosses are patchily and widely distributed in the desert ecosystem (Bowker et al., 2014; Bowker et al., 2013; Zhang et al., 2007). Ecological stoichiometry, which approaches ecological questions by asking how the balance of elements required by organisms affects processes and interactions, is a valid method to study moss growth characteristics in different spatial distribution areas.
However, ecological stoichiometry was rarely used in moss studies (Ball and Guevara, 2015; Ball and Virginia, 2014). Previous studies have found that moss stoichiometry is easily influenced by environments (Ball and Guevara, 2015; Li et al., 2019a; Li et al., 2019b), and that moss growth showed consistent Potassium (K) or N-K co-limitation in peatlands (Wang et al., 2016). Potassium is an important nutrient element that can enhance plant N retention (Chiwa et al., 2019; Osaki, 1995) and influence the plant growth and photosynthetic rate in a vascular plant (Cuzzuol et al., 2013).

Carbon, N and P are essential components of all organisms and soil. Carbon is the basis of plant growth, reproduction and structure, and constructs about 50% of plant dry weight (Liu et al., 2011). N is the major component of all enzymes and chlorophyll in plants which plays an important role in controlling carbon uptake and primary production (Chen et al., 2016). P is a key element in plant ribosome production and responsible for the construction of RNA, DNA and ATP, playing an important role in genetic information transmission, energy storage and cell construction (Bai et al., 2012; Chen et al., 2013). K as a signal substance can improve nitrogen absorption and photosynthetic capacity of plants. Moreover, potassium can also improve the resistance of plants in arid areas and buffer the effect of water deficiency (Damon and Rengel, 2007; Samar Raza et al., 2013). The contents of plant N, P, K play a key role in plant growth, photosynthesis and environmental adaptability (Elser, 2000; Gusewell, 2004; Hedin, 2004; Samar Raza et al., 2013). Most ecosystem processes are constrained by nutrient cycling between plants and soil, the adaptation of plants and soil to the environment, and plant ecological functions (Aerts and Chapin, 2000; Bowker et al., 2013; Chapin, 1980;
Moody et al., 2018). Plant stoichiometry characteristics play an essential role in understanding plant growth characteristics in different spatial scales.

The C:N:P stoichiometry in above- and below-ground components of ecosystems are tightly connected and their interactions greatly affect ecosystem components, structure and functions (Zeng et al., 2016; Zeng et al., 2017; Yang et al., 2018; Bai et al., 2019). Specifically, leaf and root nutrient stoichiometry would influence plant growth and ecosystem processes and functions (Yang et al., 2018; Bai et al., 2019). The C:N and C:P rates would indicate the N and P use efficiency and plant growth rate (Elser et al., 2003; Zhang et al., 2020). The N:P should change with growth rate, and show plant growing with N limited or P limited (Shi et al., 2021; Liu et al., 2021). The N:P ratio and the N vs. P allometric scaling exponent both can indicate nutrient allocation, the relative accumulation rate of N compared to P, especially the latter, which intrinsically reflects the covariation between N and P, and indicates the life history of plants and the productivity and nutrient cycle of the ecosystem (Sardans and Penuelas, 2015; Tian et al., 2019; Guo et al., 2020; Zhao et al., 2020; Zhang et al., 2018). There has a better link between potassium and terrestrial ecosystem functions, and structural variables such as growth and nutrient cycling (Sardan and Penuelas, 2021). Plant N, P, K content is affected by environmental factors, including mean annual precipitation (MAP), mean annual temperature (MAT) and soil nutrient content (Liu et al., 2019; Han et al. 2005; Yuan et al., 2009; Sardans and Penuelas, 2015).

Plants and soil nutrients are influenced by each other. For example, plant litter and root exudates would provide carbon of substrates for soil organisms, while decomposer organisms in the soil supply nutrients to plants (Bardgett and Wardle, 2003; Lambers et al., 2009; van
These feedback processes take place in the above-ground and below-ground parts of the ecosystem, which influence ecosystem nutrient cycling. In terrestrial ecosystems, primary producers are frequently limited by the soil nutrients, such as soil available N and P (Elser et al., 2010; Gusewell, 2004; Harpole et al., 2011; Venterink, 2011), changes which can affect plant growth rate and homogeneity (Elser et al., 2007; Falkowski et al., 2000). Under environmental stress, the simultaneous and reasonable distribution of nitrogen and phosphorus in plants is conducive to the stability of metabolism and the maximization of growth. Synchronous and reasonable allocation of N, P and K in plants is conducive to maintaining stable metabolism, maximizing growth and environmental resistance (Zhang et al., 2018; Zhao et al., 2020; Sardan and Penuelas, 2021).

In addition, with the coupling of C, N, and P stoichiometry between plant and soil more an important research focus (Elser et al., 2010), K content of plant is the second most abundant nutrient after N, and highlights its great involvement and unavoidable contribution to plant functioning (Sardan and Penuelas, 2015, 2021). These studies focus on forests, shrubs and herbs which are vascular plants (Tränkner et al., 2018; Srivastava et al., 2020; Sardans and Penuelsa, 2015, 2021; Zhao et al., 2020; Shi et al., 2021), however, it is unclear that the relationship between stoichiometric characteristics and growth and environmental adaptability of moss with nonvascular plants.

It is unclear whether moss growth is limited by N or P, especially in the desert ecosystem where is N deficient and plant growth is limited by N (Zhang et al., 2016b; Zhou et al., 2018; Zhou et al., 2014). In addition, The results of previous studies suggest that mosses are poikilohydric, non-vascular plants, which mainly absorb water, N and P from the air through
above-ground parts (Ayres et al., 2006; Pan et al., 2016a; Tao and Zhang, 2012). Carbon, N and P of moss are different characteristics between the above- and below-ground parts of the mosses (Li et al., 2019a). Moreover, recent studies found that the above-ground parts are the major area of life activity, and the accumulation of C, N and P in these parts benefits their functional integrity (Lindo and Gonzalez, 2010; Pan et al., 2015; Rong et al., 2015; Zhang et al., 2017; Zhang et al., 2016a; Li et al., 2019a). The principal function of the below-ground components of moss is to anchor the plant to the ground, with few nutrients taken up from the soil (Lindo and Gonzalez, 2010; Li et al., 2019a). There is little research on potassium content of moss in the desert ecosystem. Especially, K is an essential nutrient involved in many important plant physiological processes, and enhances stress tolerance (Zhang et al., 2010; Zhao et al., 2014). The stoichiometric characteristic of mosses was significant plasticity, and higher sensitivity than vascular plants in the desert (Ball and Guevara, 2015; Zhang et al., 2016). Thus, documenting C, N, P and K content of mosses and their stoichiometric characteristic influenced by spatial distribution are important for the understanding of their environmental adaptability mechanism and growth in different habitats of desert ecosystems.

Moss crusts are widely distributed in the Gurbantunggut Desert, Central Asia (Zhang et al., 2007). Moss crust is continuous at the bottom of the sand dunes, while is not at the top. We found that the stoichiometric characteristics of the moss are influenced by microhabitats and moss patch size, which means that the nutrient content of moss show obvious and significant changes with the changes of spatial distributions. It is unclear whether the stoichiometry characteristics of the moss are remarkably different in different habitats. Our objectives in this study are to 1) explore the stoichiometric characteristics of the mosses in
different distribution areas; 2) determine the relationships of stoichiometric characteristics between above and below-ground parts of moss, and their relationships with environmental variables. Three following hypothesis were tested: (1) the stoichiometric characteristics of the moss would vary significantly in different distribution areas, due to the nutrient content of moss showing obvious and significant changes with the changes of environment; (2) like vascular plants, the moss N, P and K contents were disproportionately distributed among above-ground and below-ground parts; (3) moss can absorb water and nutrients from below-ground parts, and the growth of moss is easily limited by nitrogen in Gurbantunggut Desert.

2. Materials and methods

2.1 Site description

The study was conducted in the Gurbantunggut Desert (44°11’–46°20’ N, 84°31’–90°00’ E, 300–600 m a.s.l.), which is located in the center of the Jungger Basin, Central Asia (Li et al., 2019a). It is the largest fixed and semi-fixed desert, and the second-largest desert in China, with the area of 4.88 × 10^{5} km². Moist air currents from the Indian Ocean are blocked by the Himalayas and fail to reach this area, resulting in a vast expanse of arid terrain. Annual precipitation ranges from 70 to 260 mm, most of which occurs from April to July, while potential mean annual evaporation is estimated at 2606.6 mm. The mean annual temperature is 7.26°C (Zhang et al., 2007). The moss *S. caninervis* is widely distributed in the Gurbantunggut Desert. Plant in the surrounding the mosses is dominantly *Ephedra distachya*, *Calligonum leucladum*, *Seriphidium terraealbae*, *Artemisia arenaria*, *Erodium oxyrrhynchum*, *Carex physodes*. Moss and soil samples were obtained from 44 sites in the Gurbantunggut Desert in August 2017 (Fig 1). In order to verify the difference in the
stoichiometric characteristics of moss between successive dunes in a site, moss and soil were sampled from the continuous bottom of three typical sand dunes for studying of the moss and soil characteristics in different sand dunes (n=5×3=15). There was no significantly different in particle size of sample sites. The soil particle size < 1 mm accounted for 96±2 % in per site. Moss abundance and cover differed across the sites.

2.2 Sample collection and processing

There have five plots of 10 m × 10 m in each site. The samples of moss and soil were selected randomly in the plot. Five discrete moss patches were sampled at each site (n=5 per site). Moss-dominated crusts tend to be found in exposed area as a sampling point where the distance was farther than 30 cm to shrubs. Although moss frequently co-occurs with cyanobacteria in cryptobiotic crusts, we selected moss patches occurring without a visible lichen or cyanobacterial component. All of samples were collected from the flat interdunes where edaphic properties were homogeneous.

At each sampling site, the moss crusts (about 2 cm thickness) were first carefully collected from the soil and the moss shoot samples were stored in a plastic bag (Quintarabio, China; http://www.quintarabio.cn) in cooling boxes. Next, a cutting ring (5 cm high, 5 cm diameter) was used to collect soil samples under the moss patches from where the moss crusts had been collected (Li et al., 2019a,b). The samples of moss crust were taken to the laboratory where the above- and below-ground parts of the moss were separated and cleaned carefully with water. Specially, the moss samples were washed sequentially with water on sieves of decreasing pore size (2, 1, and 0.5 mm) and sand was excluded (Li et al 2019a). The parts of
moss above-ground and below-ground were oven-dried at 65°C for 48 hours. Soil samples were air dried before analysis.

The C, N, and P contents of the above- and below-ground parts of *S. caninervis* were determined. We determined the C content with a total organic carbon analyzer by using a solid dry combustion method (Han et al. 2005). Total N (mg/g) was measured using an elemental analyzer (2400 II CHN Elemental Analyzer; Perkin-Elmer, USA). Total P (mg/g) was determined by molybdenum–antimony anti-spectrophotometric method (Han et al., 2005). Total K content was measured with an atomic absorption spectrophotometer (Perkin Elmer model 2380, Perkin Elmer Inc., USA).

Soil nutrient levels, namely organic C (OC) total N (TN), total P (TP), total K (TK), NO₃ +NO₂-N (NO₃-N), NH₄-N, available P (AP) and available K (AK) were determined. Soil OC contents were determined by the dichromate oxidation method. The removal of inorganic carbon is to drop 1 mol/L HCL into the sample before determination to remove the influence of inorganic carbon. Soil TN and TP contents were measured using the Kjeldahl procedure after digestion with concentrated H₂SO₄ on a distillation unit, and the HClO₄–H₂SO₄ ammonium molybdate–ascorbic acid method, respectively. Total K was measured by inductively-coupled plasma spectrometry (Perkin Elmer Optima 3000-DV ICP, Perkin Elmer Inc., Shelton, Connecticut, USA). For extractable inorganic N (NO₃ + NO₂-N and NH₄-N), 20 g soil was extracted in 50 ml 2 M KCl, filtered, and then frozen until run on a Lachat autoanalyzer (Barrett et al., 2007). Molybdenum–antimony colorimetric method was used to analyze the AP content (Bao, 2000). For the AK, 5 g soil was extracted in 50 ml
1 mol/L NH₄Ac, filtered, and then frozen until run on an atomic absorption spectrophotometer (Perkin Elmer model 2380, Perkin Elmer Inc., USA).

The mean annual precipitation (MAP) and mean annual temperature (MAT) were collected on the website: http://www.resdc.cn.

2.3 Statistics

The scaling relationship of multiple nutrients among the plant organs is described by the following equations:

\[Y = \beta X^\alpha \]

or \[\log(Y) = \log(\beta) + \alpha \log(X) \]

where \(X \) and \(Y \) are the elemental concentrations of moss. The reduced major axis (RMA) was applied to estimate the parameters of \(\alpha \) and \(\beta \) in the scaling function. When \(\alpha = 1 \), the relationship of \(X \) to \(Y \) is probably isometric; otherwise, the scaling relationship is considered allometric. When \(\alpha > 1 \), it is assumed that \(Y \) changes faster than linearly with \(X \), whereas \(\alpha < 1 \) indicates that \(X \) changes faster than linearly with respect to \(Y \).

Moss C, N, P and K contents and soil nutrients in different scales of sand dunes and in different sample sites were analyzed using one-way analysis of variance (ANOVA). T-test was conducted on the comparison of moss C, N, P and K contents, moss C:N, C:P, C:K, N:P, N:K, and P:K between above- and below-ground parts. Pearson correlation analysis was used to analyze the correlations between moss stoichiometry in aboveground and belowground.
and between moss stoichiometry and soil nutrients. All statistical analyses were performed using R 3.5.0 software (R Development Core Team 2017).

Structural equation modeling (SEM) was developed between the stoichiometric characteristics. The following variables were included in models: the C, N, P and K content in above-ground parts of moss was used in the saturated model which tests the relationship of C, N, P and K elements; MAP, MAT, latitude, longitude, N, P and K content in soil and above- and below-ground parts of moss were each split into three groups. The model gives path parameters, which can explain the influence of different parameters on moss nutrients. The advantage of this approach was that we could determine which parameters (for example, sign or magnitude of path coefficients) differed among groups, and obtained a separate parameter estimate for each group. The model was considered to be a good fit if the data included an insignificant ($P > 0.05$) chi-square test statistic, RMSEA<0.05, $P>0.05$, and both GFI and CFI > 0.90. The SEM analyses were performed using R 3.5.0 software (R Development Core Team 2017).

FIG 1

3. Result

3.1 Moss stoichiometry and soil nutrients in different spatial distribution areas.

N and P contents in both above-ground and below-ground parts of moss differed significantly ($P=0.040$, $P=0.002$) among different sand dunes. No significant differences in moss C and K contents of above-ground parts ($P=0.698$, $P=0.357$) were found among different sand dunes. However, for the below-ground, moss K content varied significantly
(P=0.037) among different sand dunes. Significant differences in C:N, N:K and P:K in above-
ground and below-ground parts of moss were found among sand dunes. The ratios of N:P and
C:K were not significantly different (above-ground: P=0.461, P=0.481; below-ground:
P=0.231, P=0.052) different among continuous interdunes (Table 1). Moss stoichiometry and
stoichiometric ratios in above-ground parts were significantly affected by different sampled
sites, except for moss C and P contents and moss C:N and C:P. In below-ground parts, moss P
content and C:N ratio did not differ significantly among sampled sites (Table 1). Moss N and
P contents in above-ground parts of moss increased with annual mean precipitation increased
(P=0.02; Fig 2a, 2b). Moss P content in above-ground and below-ground parts of moss was
also significantly influenced by annual mean temperature (Fig 2c). Moss N content did not
significantly change with AMT.

Table 1

Fig 2.

For the soils under moss crust, soil TK, NO$_3$-N, NH$_4$-N and AK contents differed
significantly (P=0.019, P<0.001, P=0.009, P=0.042) among sand dunes (Table 2). Significant
differences in soil TK, NO$_3$-N, NH$_4$-N, AP and AK contents (P=0.009, P<0.001, P=0.006,
P<0.001, P<0.001) were also observed among different sampled sites.

Table 2
3.2 Relationships between stoichiometry characteristics of moss

Moss C, P and K contents in above-ground parts of moss were significantly \((P=0.019, P<0.001, P<0.001) \) higher than that in below-ground parts of moss (Table 3). No significant \((P=0.877) \) differences were found in moss N content in above-ground and below-ground parts of moss. The ratios of C:N and P:K in above-ground parts of moss were significantly \((P<0.001, P=0.032) \) higher than that in below-ground parts of moss. However, the ratios of C:P, N:P and N:K in below-ground parts of moss were significantly \((P=0.022, P<0.001, P=0.035) \) higher than those in above-ground parts of moss. Moss C:K ratios between above-ground and below-ground parts were not obviously different \((P=0.929, \text{Table 3}) \).

Table 3

The SEM model explained 42%, 28% and 23% of variance in moss C, N and P contents in above-ground parts, respectively (Fig 3). Moss P content had the strongest direct effect on moss N content in above-ground parts. Moss C content in above-ground parts was positively affected by moss N content in above-ground parts \((0.53, P<0.001) \), while negatively affected by moss K content in above-ground parts \((-0.39, P<0.01) \). A significantly positive effect was found between moss K and P content in above-ground parts \((0.48, P<0.01) \). Weak effects were observed between moss C and P content, and between moss N and K content in above-ground parts.

The N vs. P scaling exponents were 0.71 and 0.84 in above-ground and below-ground of moss respectively, which were less than 1. The likelihood ratio test indicated that the N vs. P scaling exponent in below-ground of moss was significantly greater than that in above-ground.
of moss (Fig. 4). The scaling relationships between above-ground and below-ground of nitrogen, phosphorus and potassium was 0.251, 0.389, 0.442 ($R^2=0.13$, $P<0.01$; $R^2=0.26$, $P<0.01$; $R^2=0.27$, $P<0.01$), respectively (Fig 5).

3.3 Relationships between soil nutrients and moss stoichiometry

Moss K contents in above and below-ground parts significantly ($P=0.03$, $R^2=0.13$; $P<0.01$, $R^2=0.16$) increased with soil AK content (Fig 6a). Moss P contents in above and below-ground parts showed significant ($P=0.04$, $R^2=0.14$; $P=0.03$, $R^2=0.14$) and positive correlation with soil NO$_3$-N content (Fig 6b).

The SEM model showed that the effects of climate, latitude, longitude and soil nutrients on moss N, P and K assimilation differed between above- and below-ground parts of the mosses (Fig 7-9). The fit of the moss and soil N model was satisfactory (GFI=0.971, CFI=0.996, RMSEA=0.023, Chi-square=11.760, $P=0.382$). The model explained 20% and 23% of the variance in N content in above-ground and below-ground parts, respectively (Fig 7). The strongest direct effect of N content in above-ground parts was affected by N content in below-ground parts of moss (0.31), which was significantly affected by soil nutrient content (0.19).
The fit of the P model was satisfactory (CFI=0.970, GFI=0.953, RMSEA=0.040, Chi-square=19.339, P=0.055). In the P model, the SEM model explained 46% of the variation in P content in above-ground parts and 46% of the variation in P content in below-ground parts of moss (Fig 8). The strongest direct effect was found between P content in above-ground parts and below-ground parts (0.31). Soil nutrient content strongly affected the P content in below-ground parts (0.59), and the P content in above-ground parts (0.49). The soil nutrient content was significantly influenced by MAT (0.71).

The fit of the K model was satisfactory (CFI=0.979, GFI=0.959, RMSEA=0.034, Chi-square=16.366, P=0.128). The model explained 48% of the variance in K content in above-ground parts of mosses and 33% of the variance in K content in below-ground parts (Fig 9). K content in below-ground parts significantly affected moss K content in above-ground parts (P<0.001). The soil nutrient content had significant and positive effects on moss K content in below-ground parts (0.67, P<0.01). Soil nutrient content was significantly influenced by MAT (0.74, P<0.01). Latitude and longitude had significantly affected moss K content in above-ground parts (0.32, 0.33; P<0.05)

Fig 6
Fig. 7
Fig. 8
Fig. 9
4. Discussion

4.1 Different responses of mosses and soil characteristics to variables in spatial scale

In the current study, no significant differences in moss C content were found in different sands and sites, except that moss C in below-ground parts. In addition, our previous studies found that moss C did not shift with changes of moss patch size and microhabitats (Li et al., 2019a; Li et al., 2019b). Thus, our previous and current results suggested that moss C was stable in different spatial scales from patch size (cm) to sampling site (10Km). In contrast, moss N significantly differs in different patch sizes, microhabitats, sands and sites, which means that moss N was extremely sensitive to the environment in different spatial scales from patch size (cm), microhabitats (m), continuous dunes (Km) to sampling site (10 Km). Moss P and K were also sensitive to the environment in the current study. The changes in N, P and K were consistent with the conclusion that moss nutrients were plastic in a different environment (Ball and Guevara, 2015). Because the change of moss stoichiometry is different, our results were consistent with our first hypothesis that moss stoichiometry varied with different spatial distribution areas.

The results of ANOVA analysis showed that the stoichiometry of moss significantly changed with the changes in spatial distribution area, MAP and MAT. Thus, one reason of the different stoichiometric characteristics of moss may be affected by the environment (MAP, MAT) in the spatial distribution area. Moss N and P contents significantly increased with MAP, which might be due to the founding that moss can assimilate nutrients from dry and wet deposition of air (Ball and Virginia, 2014; Iii et al., 1987; Zhang and Wang, 2010). Moss can assimilate partly N and P nutrients from rainfall, snow and other sources. Wetness
duration increased with MAP increased, which would benefit to the growth of moss. The growth of moss needs to accumulate large amounts of nitrogen and phosphorus. In addition, the increase of wetting is rich in microbial activity and accelerates nutrient turnover, which in turn promotes and accelerates biomass accumulation of moss in the Negev Desert (Kidron et al., 2010; Kidron, 2014). Moss P content was also influenced by MAT, thus the changes in moss P content can contribute to moss growth in different temperature conditions. Thus, the climate factors (MAP, MAT) had a significantly affected the stoichiometry of moss. It also supports the conclusion that mosses are very sensitive to environmental changes. Our results also show that longitude and latitude significantly affect the stoichiometric characteristics of moss. It is a reason that the moss stoichiometric characteristics were significantly different in different distribution areas. Plant N, P and K contents of moss increased with the increased longitude. N and P contents of moss were no significant difference in different latitudes. However, moss K content was a significant difference between different latitudes. It is an obviously different vascular plant in which plant N and P contents were significantly different with latitude increased.

The N:K and P:K ratio of moss showed significant changes at different scales, which were related to the nonlinear relationship in the allometric growth index of N vs K and P vs K, indicating that there was no significant relationship between K content and N, P content of moss. It is found that the N:P ratio has no significant change in different sand dunes, but shows significant changes in different sites of the desert. The N:P ratio of moss maintains a relatively stable state under the same environment in different sands, while the nitrogen phosphorus ratio of moss shows significant changes on a large scale, indicating that the N:P
ratio of moss is vulnerable to environmental changes. It shows that moss can adapt to the changes in the desert environment by adjusting the content of N, P and N:P ratio. Moreover, it is found that the ratio of C:N and C:P change significantly in different sands, but there is no significant change in different sites of desert, the change of soil nutrients on the dune scale, fertilizer island effect and other spatial heterogeneity factors may have changed the nitrogen and phosphorus utilization efficiency of moss. On the large scale, it is affected by environmental factors and soil nutrient distribution, and its nitrogen and phosphorus utilization efficiency show a relatively unified trend among sites.

For soil under moss, soil OC was not influenced by moss in different spatial distribution areas, which may be due to the small changes in moss C content. However, except for soil TK, soil TN and TP also did not differ among spatial distribution areas. Our results suggested that soil OC, TN, TP and TK under moss soil were mainly influenced by moss patches in the temperate desert (Li et al., 2019a). Previous studies found that soil nutrients without moss were significantly influenced by different spatial distribution areas in the Gurbantunggut Desert (Tao et al., 2016). Thus, the moss can be considered as a stabilizer on the desert surface, not only because it can fix sand (Weber et al., 2016), but also effectively provide stable soil nutrients. It is suggested that moss had an ecological function of stabilizing the soil nutrients. However, soil available nutrients varied significantly from different spatial scales in the Gurbantunggut Desert. The microbial processes, which are sensitive to environmental change in different sites, are related to the change in available nutrients.
4.2 Differences in moss stoichiometry characteristic of above- and below-ground parts

The statistical evidence showed moss stoichiometry in above-ground parts significantly differed from below-ground parts except for moss N content. The scaling exponents of moss N, P and K content between above-ground and below-ground parts of moss were less than 1 (0.251, 0.389, 0.442). In addition, the scaling exponents of moss C:N, C:P, C:K, N:P, N:K, P:K rates were also less than 1 (Fig S3). Our results were consistent with our hypothesis that the N, P and K contents were disproportionately distributed among moss above-ground parts and below-ground parts. The scaling exponent of nutrients showed the nutrient disproportionately distributed among plant organs with the different function types (Yan et al., 2016; Zhao et al., 2020). The nutrient contents of organs with similar functions tend to change proportionally (the scaling exponent was 1), whereas the nutrient contents of organs with distinct functions tend to change disproportionately (the scaling exponent was more or less than 1). The more active function of the organ, the less its nutrient content is likely to change (Zhao et al., 2018). Our results were also consistent with the finding that plant stoichiometry was disproportionately distributed in the above-ground and below-ground parts of the plant (Zeng et al., 2017). These results supported our hypothesis that moss stoichiometry in above-ground parts of moss was significantly higher than that in below-ground parts.

The N:P in below-ground parts of moss was significantly higher than that in above-ground parts. Metabolic organs had a higher N:P ratio than structural organs, resulting from high N concentrations in metabolic organs (Zhang et al. 2018). Thus, it does not agree with the previous conclusion that moss has a vertical structure, which includes the above-ground
"green" zone of alive, growing, and photosynthetically active parts, and the below-ground "brown" zone of senescent, dead, and decaying moss, rhizoids and other detritus (Lindo and Gonzalez, 2010).

Moreover, the N vs. P scaling exponent in above-ground parts of moss was less than that in below-ground parts. The N vs. P scaling exponent under different nutrient availability can reveal plant growth strategies. The N vs. P exponents were less than 1 for the plant, which implied a larger P investment of whole plants rather than N (Elser et al., 2010; Zhao et al., 2020). The N vs. K and P vs. K scaling exponent were significantly linear in below-ground and above-ground parts of moss, respectively (Fig S1). There is possible that the below-ground parts of moss tended to be disproportionately assigned to more N and less P than the above-ground parts. It is a possible reason to explain the higher N vs. P scaling exponent of below-ground parts of moss than that of above-ground parts. Our result was consistent with the global result that the scaling exponent of roots was higher than that of green leaves (Yuan et al., 2011). Recent global synthesis studies showed that the N vs. P scaling exponent of leaves and fine roots were 0.68 (95% CI = 0.67-0.69) and 0.82 (95% CI = 0.79-0.85), respectively (Tian et al., 2018; Wang et al., 2019), which also support our results that a higher N vs. P scaling exponent in below-ground parts than that in above-ground parts of moss. In vascular plants, fine roots with high N concentrations can represent protein concentrations related to nutrient uptake (Collins et al., 2016). Leaves with high P and K can reveal the high potential for constructing biological compounds related to energy and growth (Collins et al., 2016). However, moss N content was an insignificant difference between above-ground and below-ground parts, and P and K content in above-ground was higher than that in below-
ground parts. These results suggested that mosses need to invest more P and K to leaves for stable photosynthesis and improve environmental resistance, and more N to rhizoids for effective and low-cost nutrient absorption (Withington et al., Caplan et al., 2014).

Thus, our results were also consistent with the results that the growth strategy of moss was driven by the above-ground parts of moss in a temperate desert (Li et al., 2019a), and that the basal parts of moss plants are a functional group of the fine root, and include the stems and leaves buried by sand and soil fungi and bacteria (Birse et al., 1957; Jia et al., 2008). Our results provide strong evidence that the N vs. P scaling exponents varied among moss parts. Such a variation is a serious challenge for ecological models, which merely consider the N vs. P scaling exponent as an input parameter to predict plant growth and nutrient dynamics.

Except for C, significant correlations between moss stoichiometry in above-ground and below-ground parts were mostly observed. The results suggested that C assimilation differed from N, P and K accumulation. Our results were also consistent with previous studies that stoichiometry patterns in different plant organs had different distributions (He et al., 2015). In the current study, moss C positively correlated with moss N and P, but negatively correlated with moss K in above-ground parts. Similar results were found in McGroddy et al., (2004). In contrast, Zheng and Shangguan (2007) reported negative correlations between leaf C and leaf N, and between leaf C and P among Chinese Loess plateau flora. Thus, the relationships of plants C, N, P and K were different among the life-form groups and the different ecosystems (Zhang et al., 2012; Zheng and Shangguan, 2007). The saturated model of SEM reported that moss N positively contributed to moss C accumulation, while moss K had a negative effect. The results indicated that there was a trade-off in nutrient allocation between structural
toughness and fast growth and that moss C, N, P and K were coordinated elements. The strong correlation between leaf N and P is consistent with Gusewell, (2004), Mcgroddy et al, (2004), Wright et al, (2004; 2005a) and Han et al (2005). In this present study, moss K showed a weaker relationship with moss N, and the scaling exponents of N vs. K, and P vs. K were not significantly lined (Fig S1). This result was inconsistent with previous studies that plant K enhances plant N retention (Chiwa et al., 2019; Osaki, 1995). However, moss K significantly negative and positive correlated with moss C and P, which indicates that the growth rate decreased and the environmental resistance increased were with K content increase. Thus, moss C, N, P and K elements need to be considered to be the core traits making up the moss growth and adaptation, and the C, N, P elements play a key role in these ecological processes. The K was not limited to moss growth. The value of N:P was less than 14, and combining the ratio of C:N, C:P and linear relationships of C, N, P elements, we suggested that moss growth was limited by N and P elements. Thus, our results are also consistent with the hypothesis that the moss growth was limited by nitrogen in this desert.

4.3 Relationships between moss and soil stoichiometry in temperature desert

Scaling relationships between soil and moss nitrogen, phosphorus, potassium concentrations were no significant linear correlation (Fig S2). Moss has high stoichiometric homeostasis in the changing environment of soil nutrients. Previous studies found that vascular plant species with high homeostasis tend to be slower growing but also capable of maintaining growth when resources are limited, given the potential for greater conservative use of resources, which was in line with our results (Zhao et al., 2021). However, moss N, P, K and soil available nutrients are positively correlated in most cases (Fig S4). Our results
support the conclusion that moss can assimilate and transport soil available nutrients by the below-ground parts (Ayres et al., 2006; Ball and Virginia, 2014; Raven, 2003). Most studies showed that moss can acquire nutrients directly from soil, stream, wet and dry atmosphere deposition (Ayres et al., 2006; Ball and Virginia, 2014). In this study, the results suggested that moss nutrients in above-ground parts mainly assimilate nutrients from below-ground parts of moss (Fig S5-7). Thus, soil nutrients and moss nutrients in below-ground parts also play a crucial role in moss nutrients in above-ground parts uptake and individual growth.

Soil NH$_4^-$-N and NO$_3^-$-N significantly affected moss N content, and soil NO$_3^-$-N was significantly correlated with moss P. The results suggest that moss may use NH$_4^-$-N as the main N source in N-limited deserts. This founding was similar to the conclusion with Takebayashi et al. (2010). Ruan and Giordano (2017) considered that about 13% more energy is needed to produce the same amount of biomass, if the NO$_3^-$-N rather than NH$_4^-$-N is used. Moreover, immobilization of NH$_4^-$-N is reported to be faster than that of NO$_3^-$-N, while remineralization of immobilized N is slower in NH$_4^-$-N than in NO$_3^-$-N-treated soil (Ahmed et al., 1973; Azam and Malik., 1985; Herrmann et al., 2005; Zhou et al., 2020). This also explained that soil NH$_4^-$-N is significantly influenced by soil TN. It is possible that soil NO$_3^-$-N was transported to moss for the balance between moss P and K, between matter and energy, because moss is a rich phosphorus plant (Hao et al., 2005). Soil available nutrients significantly changed moss N, P and K contents in below-ground parts, which means that the rhizoid and stem in below-ground parts may not only have anchor functions, but also have nutrients absorption and transmission functions.
MAP and longitude significantly affected by N, P and K elements in below-ground parts of moss, and soil nutrient was obviously influenced by MAT in three models (SEM). These results indicated that MAP and longitude directly affected moss stoichiometry, and the MAT indirectly affected moss N and P elements. Moss N and P elements were indirectly influenced by latitude. These results were consistent with previous studies that the variation of plant nutrient stoichiometry is influenced by many environmental factors (e.g. climate and soil properties). However, they were different to the conclusion that N and P concentrations decreased and N:P ratio increased with MAT and MAP (Reich and Oleksyn, 2004; Han et al., 2005). Hong et al. (2014) have reported that leaf P was negatively correlated with MAT and MAP, and root P and N:P were negatively and positively correlated with MAT, respectively. He et al. (2015) found that MAT, MAP and the aridity index (AI) in the desert ecosystem had significant effects on leaf P, but no effects on stems and roots. In addition to climate factors, soil attributes are critical to plant growth and therefore affect plant nutrient stoichiometry. Research has found that leaf N and P concentrations are positively correlated with soil nutrients (Han et al., 2011, Luo et al., 2020). Our results suggested that moss growth was directly influenced by MAP and longitude, and indirectly influenced by MAT, and the weakest effect of latitude in our study area. Thus, our results suggested that moss stoichiometry was influenced by climate factors and soil available nutrients.

5. Conclusion

The results of the present study show that moss is limited by N element in temperature desert. Above-ground and below-ground parts of moss had different stoichiometric characteristics and functions. The moss rhizoid had some functions of vascular plant root, for
example, anchor vegetal body, absorption and transmission of soil nutrients. Moss nutrients in below-ground parts were mainly influenced by MAP, longitude and soil available nutrients. Moss stoichiometry were a significant difference among different distribution areas with the changes of environment. Moss nutrients have stronger plasticity than vascular plant.

Funding

This work was supported by National Natural Science Foundation of China (42007099, U2003214, 41977099) and West Light Foundation of The Chinese Academy of Sciences (2018-XBQNXZ-B-016).
Acknowledgements

We would like to thank Yong-Xing Lu and Yi-Xiang Sun, for their assistance with sample collecting in field.
Reference

Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv Ecol Res 30: 1-67.

Ahmed Z, Yahiro Y, Kai H, et al. (1973) Transformation of the organic nitrogen becoming decomposable due to the drying of soil. Soil Science Plant Nutrition 19: 287-298.

Ayres E, van der Wal R, Sommerkorn M, et al. (2006) Direct uptake of soil nitrogen by mosses. Biology letters 2: 286-288. doi: 10.1098/rsbl.2006.0455.

Azam F, Malik, KA (1985) Immobilization and remineralization of fertilizer N in soil supplemented with different organic materials. Pakistan Journal of Soil Science 1, 59-65.

Bai XJ, Wang BR, An SS, et al. (2019) Response of forest species to C:N: P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau. China. Catena 183: 104186. https://doi.org/10.1016/j.catena.2019.104186.

Bai Y, Wu J, Clark, CM, et al. (2012) Grazing altersecosystem functioning and C:N: P stoichiometry of grasslands along a regional precipitation gradient. Journal Applied Ecology. 49: 1204-1215. doi.org/10.1111/j.1365-2664.2012.02205.x.

Ball BA, Guevara JA (2015) The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant and Soil 389: 225-235. doi: 10.1007/s11104-014-2355-7.

Ball BA, Virginia RA (2014) The ecological role of moss in a polar desert: implications for aboveground-belowground and terrestrial-aquatic linkages. Polar Biol 37: 651-664. doi: 10.1007/s00300-014-1465-2.

Bao S (2000) Soil and Agricultural Chemistry Analysis. 1st ed. . Beijing: China Agriculture Press.

Bardgett RD, Bowman WD, Kaufmann R, et al. (2005) A temporal approach to linking aboveground and belowground ecology. Trends in Ecology & Evolution 20: 634-641. doi: 10.1016/j.tree.2005.08.005.

Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84: 2258-2268. doi: Doi 10.1890/02-0274.
Barrett JE, Virginia RA, Lyons WB, et al. (2007) Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. J Geophys Res-Bioge 112. doi: Artn G01010

Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20: 3159-3178. doi: 10.1002/hyp.6325.

Birse EM, Landsberg SY, H GC (1957) The effects of burial by sand on dune mosses. Transactions of the British Bryological Society, 3: 285-301.

Bowker MA, Maestre FT, Eldridge D, et al. (2014) Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23: 1619-1637. doi: 10.1007/s10531-014-0658-x.

Bowker MA, Maestre FT, Mau RL (2013) Diversity and Patch-Size Distributions of Biological Soil Crusts Regulate Dryland Ecosystem Multifunctionality. Ecosystems 16: 923-933. doi: 10.1007/s10021-013-9644-5.

Bowker MA, Mau RL, Maestre FT, et al. (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25: 787-795. doi: 10.1111/j.1365-2435.2011.01835.x.

Canton Y, Roman JR, Chamizo S, et al. (2014) Dynamics of organic carbon losses by water erosion after biocrust removal. Jour Hydrol Hydromech 62: 258-268. doi: 10.2478/johh-2014-0033.

Caplan JS, Wheaton CN, Mozdzer TJ, (2014) Belowground advantages in construction cost facilitate a cryptic plant invasion. AoB Plants, 6: 20. https://doi.org/10.1093/aobpla/plu020.

Chamizo S, Rodriguez-Caballero E, Roman JR, et al. (2017) Effects of biocrust on soil erosion and organic carbon losses under natural rainfall. Catena 148: 117-125. doi: 10.1016/j.catena.2016.06.017.

Chapin FS (1980) The Mineral-Nutrition of Wild Plants. Annu Rev Ecol Syst 11: 233-260. doi: DOI 10.1146/annurev.es.11.110180.001313.

Chen Y, Chen L, Peng Y, et al. (2016) Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500 km grassland transect on the Tibetan plateau. Glob. Ecological Biogeography, 25, 1416-1427. doi.org/10.1111/geb.12500.
Chen Y, Han W, Tang L, et al. (2013) Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36: 178-184. doi.org/10.1111/j.1600-0587.2011.06833.x.

Chiwa M, Sheppard LJ, Leith ID, et al. (2019) P and K additions enhance canopy N retention and accelerate the associated leaching. Biogeochemistry 142: 413-423. doi: 10.1007/s10533-019-00543-y.

Collins CG, Wright SJ, Wurzburger N (2016). Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees. Oecologia, 180(4): 1037-1047. https://doi.org/10.1007/s00442-015-3410-7.

Couradeau E, Karaoz U, Lim HC, et al. (2016) Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun 7. doi: ARTN 10373

Cuzzuol GRF, Milanez CRD, Gomes JML, et al. (2013) Relationship between N, P, and K and the quality and stem structural characteristics of Caesalpinia echinata Lam. plants. Trees-Struct Funct 27: 1477-1484. doi: 10.1007/s00468-013-0894-9.

Dai, A.G., 2013. Increasing drought under global warming in observations and models. Nat Clim Change 3: 171-171. doi: 10.1038/Nclimate1811.

Elbert W, Weber B, Burrows S, et al. (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459-462. doi: 10.1038/ngeo1486.

Eldridge DJ, Greene RSB (1994) Microbiotic Soil Crusts - a Review of Their Roles in Soil and Ecological Processes in the Rangelands of Australia. Aust J Soil Res 32: 389-415. doi: Doi 10.1071/Sr9940389.

Elser JJ (2000) Ecological stoichiometry: from sea lake to land. Trends in Ecology & Evolution 15: 393-394. doi: 10.1016/S0169-5347(00)01956-X.

Elser JJ, Acharya K, Kyle M, et al. (2003) Growth rate–stoichiometry couplings in diverse biota. Ecology Letters, 6: 936-943. https://doi.org/10.1046/j.1461-0248.2003.00518.x

Elser JJ, Bracken MES, Cleland EE, et al. (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10: 1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x.
Elser JJ, Fagan WF, Kerkhoff AJ, et al. (2010) Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol 186: 593-608. doi: 10.1111/j.1469-8137.2010.03214.x.

Falkowski P, Scholes RJ, Boyle E, et al. (2000) The global carbon cycle: A test of our knowledge of earth as a system. Science 290: 291-296. doi: DOI 10.1126/science.290.5490.291.

Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13: 10081-10094. doi: 10.5194/acp-13-10081-2013.

Gao B, Zhang D, Li X, et al. (2015) De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration. BMC genomics 16: 416. doi: 10.1186/s12864-015-1633-y.

Guo Y, Yan Z, Gheyret G, et al. (2020) The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. Journal. Ecology. 108: 1276-1286. https://doi.org/10.1111/1365-2745.13369.

Gusewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164: 243-266. doi: 10.1111/j.1469-8137.2004.01192.x.

Gusewell S (2005) High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytol 166: 537-550. doi: 10.1111/j.1469-8137.2005.01320.x.

Gusewell S, Koerselman M (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol 5: 37-61. doi: Doi 10.1078/1433-8319-000022.

Han WX, Fang JY, Guo DL, et al. (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168: 377-385. doi: 10.1111/j.1469-8137.2005.01530.x.

Han WX, Fang JY, Reich P, et al. (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol. Lett. 14: 788-796. https://doi.org/10.1111/j.1461-0248.2011.01641.x.

Hao ZQ, Ye J, Jiang P, et al. (2005) Roles of bryophyte in nutrient cycling in dark coniferous forest of Changbai Mountains. Chinese Journal of Applied Ecology 16(12): 2263-2266 (in Chinese).
Harpole WS, Ngai JT, Cleland EE, et al. (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14: 852-862. doi: 10.1111/j.1461-0248.2011.01651.x.

He M, Zhang K, Tan H, et al. (2015) Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions. Ecol Evol 5: 1494-1503. doi: 10.1002/ece3.1441.

Hedin LO (2004) Global organization of terrestrial plant-nutrient interactions. P Natl Acad Sci USA 101: 10849-10850. doi: DOI 10.1073/pnas.040422101.

Herrmann A, Witter E, Katterer T (2005) A method to assess whether 'preferential use' occurs after N-15 ammonium addition; implication for the N-15 isotope dilution technique. Soil Biol Biochem 37: 183-186. doi: 10.1016/j.soilbio.2004.06.008.

Hong J, Wang X, Wu J (2014) Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the Northern Tibetan Plateau. PLoS ONE 9: 109052. https://doi.org/10.1371/journal.pone.0109052.

Hu R, Wang XP, Pan YX, et al. (2014) The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. Eur J Soil Biol 62: 66-73. doi: 10.1016/j.ejsobi.2014.02.008.

Huang JP, Yu HP, Guan XD, et al. (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6: 166 doi: 10.1038/Nclimate2837.

Iii FSC, Oechel WC, Cleve KV, et al. (1987) The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia 74: 310-315.

Ji XH, Zhang YM, Tao Y, et al. (2013) Size characteristic of moss crust paths and its relationship to the environmental factors in Gurbantunggut Desert. Journal of Desert Research 33: 1803-1809.

Jia RL, Li XR, Liu LC, et al. (2008) Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, Northern China. Soil Biol Biochem 40: 2827-2834. doi: 10.1016/j.soilbio.2008.07.029.

Kerkhoff AJ, Enquist BJ, Elser JJ, et al. (2005) Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol Biogeogr 14: 585-598. doi: 10.1111/j.1466-822X.2005.00187.x.
Kerkhoff AJ, Fagan WF, Elser JJ, et al. (2006) Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am Nat 168: 103-122. doi: 10.1086/507879.

Kidron GJ, Budel B (2014). Contrasting hydrological response of coastal and desert biocrusts. Hydrol Process 28: 361-371. doi: 10.1002/hyp.9587.

Kidron GJ, Monger HC, Vonshak A, et al. (2012) Contrastong effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 139-140, 484-494

Kidron GJ, Tal SY (2012) The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma 179-180, 104-112.

Kidron GJ, Vonshak A (2012) The use of microbiotic crusts as biomarkers for ponding, subsurface flow and soil moisture content and duration. Geoderma 181-182, 56-64.

Kidron GJ, Vonshak A, Dor I, et al. (2010) Properties and spatial distribution of microbiotic crusts in the Negev Desert. Catena 82: 92-101.

Knapen A, Poesen J, Galindo-Morales P, et al. (2007) Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow. Earth Surf. Process. Landf. 32, 1884-1901

Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441-1450. doi: 10.2307/2404783.

Lambers H, Mougel C, Jaillard B, et al. (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant and Soil 321: 83-115. doi: 10.1007/s11104-009-0042-x.

Li YG, Zhou XB, Zhang YM (2019a) Moss patch size and microhabitats influence stoichiometry of moss crusts in a temperate desert, Central Asia. Plant and Soil. doi: 10.1007/s11104-019-04191-x.

Li YG, Zhou XB, Zhang YM (2019b) Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China. J Arid Land 11: 579-594. doi: 10.1007/s40333-019-0057-y.

Lindo Z, Gonzalez A (2010) The Bryosphere: An Integral and Influential Component of the Earth's Biosphere. Ecosystems 13: 612-627. doi: 10.1007/s10021-010-9336-3.

Liu JG, Gou XH, Zhang F, et al. (2021) Spatial patterns in the C:N:P stoichiometry in Qinghai spruce and the soil across the Qilian Mountains, China. Catena, 196: 104814. https://doi.org/10.1016/j.catena.2020.104814
Liu JX, Fang X, Tang XL, et al. (2019) Patterns and controlling factors of plant nitrogen and phosphorus stoichiometry across China's forests. Biogeochemistry 143: 191-205. https://doi.org/10.1007/s10533-019-00556-7

Liu R, Zhao H, Zhao X, et al. (2011) Facilitative effects of shrubs in shifting sand on soil macrofaunal community in Horqin Sand Land of Inner Mongolia, Northern China. Eur. J. Soil Biol 47: 316-321. https://doi.org/10.1016/j.ejsobi.2011.07.006.

Luo Y, Peng QW, Li KH; et al. (2021) Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena 199105100. https://doi.org/10.1016/j.catena.2020.105100.

Maestre FT, Castillo-Monroy AP, Bowker MA, et al. (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Jour Ecol 100: 317-330. doi: 10.1111/j.1365-2745.2011.01918.x.

McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 85: 2390-2401. doi: Doi 10.1890/03-0351.

Moody EK, Carson EW, Corman JR, et al. (2018) Consumption explains intraspecific variation in nutrient recycling stoichiometry in a desert fish. Ecology 99: 1552-1561. doi: 10.1002/ecy.2372.

Oliver MJ, Tuba Z, Mishler BD (2000a) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151: 85-100. doi: Doi 10.1023/A:1026550808557.

Oliver MJ, Velten J, Wood AJ (2000b) Bryophytes as experimental models for the study of environmental stress tolerance: *Tortula ruralis* and desiccation-tolerance in mosses. Plant Ecol 151: 73-84. doi: Doi 10.1023/A:1026598724487.

Osaki M (1995) Ontogenic Changes of N, P, K, Ca, and Mg Contents in Individual Leaves and Tubers of Potato Plants. Soil Sci Plant Nutr 41: 417-428. doi: Doi 10.1080/00380768.1995.10419604.

Pan FJ, Zhang W, Liu SJ, et al. (2015) Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees-Struct Funct 29: 883-892. doi: 10.1007/s00468-
Pan Z, Pitt WG, Zhang Y, et al. (2016) The upside-down water collection system of Syntrichia caninervis. Nat Plants 2: 16076. doi: 10.1038/nplants.2016.76

Pravalie R (2016) Drylands extent and environmental issues. A global approach. Earth-Sci Rev 161: 259-278. doi: 10.1016/j.earscirev.2016.08.003.

Raven JA (2003) Long-distance transport in non-vascular plants. Plant Cell Environ 26: 73-85. doi: DOI 10.1046/j.1365-3040.2003.00920.x.

Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. 101: 11001-11006. https://doi.org/10.1073/pnas.0403588101.

Reynolds JF, Stafford Smith DM, Lambin EF, et al. (2007) Global desertification: Building a science for dryland development. Science 316: 847-851. doi: 10.1126/science.1131634.

Rodriguez-Caballero E, Knerr T, Weber B (2015) Importance of biocrusts in dryland monitoring using spectral indices. Remote Sens Environ 170: 32-39. doi: 10.1016/j.rse.2015.08.034.

Rong QQ, Liu JT, Cai YP, et al. (2015) Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China. Ecol Eng 76: 57-65. doi: 10.1016/j.ecoleng.2014.03.002.

Ruan ZX, Giordano M (2017) The use of NH4+ rather than NO3- affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp UTEX LB 2380, only when energy is limiting. Plant Cell Environ 40: 227-236. doi: 10.1111/pce.12858.

Rutherford WA, Painter TH, Ferrenberg S, et al. (2017) Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci Rep-Uk 7. doi: ARTN 44188

Sardans J, Peñuelas J (2015) Trees increase their P:N ratio with size: phosphorus; the treasure nutrient. Global Ecol. Biogeogr. 24: 147-156. https://doi.org/10.1111/geb.12231.

Sardans, J., Peñuelas, J., 2015. Potassium: A neglected nutrient in global change. Global Ecololgy Biogeography. 24: 261-275.

Sardans J, Peñuelas J (2021) Potassium Control of Plant Functions: Ecological and Agricultural Implications. Plants 10: 419. https://doi.org/10.3390/plants10020419
Shi LJ, Li QK, Fu XL, et al. (2021) Foliar, root and rhizospheric soil C:N:P stoichiometries of overstory and understory species in subtropical plantations. Catena 198: 105020. https://doi.org/10.1016/j.catena.2020.105020.

Srivastava AK, Shankar A, Chandran AKN, et al. (2020) Emerging concepts of potassium homeostasis in plants. Journal of Experimental Botany 71: 608-619. https://doi.org/10.1093/jxb/erz458

Su YG, Wu L, Zhang YM (2012) Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. Catena 96: 41-48. doi: 10.1016/j.catena.2012.04.003.

Su YG, Wu L, Zhou ZB, et al. (2013) Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggut desert, North China. Soil Biology and Biochemistry 58: 332-340. doi: 10.1016/j.soilbio.2012.12.006.

Takebayashi Y, Koba K, Sasaki Y, et al. (2010) The natural abundance of N-15 in plant and soil-available N indicates a shift of main plant N resources to NO3- from NH4+ along the N leaching gradient. Rapid Commun Mass Sp 24: 1001-1008. doi: 10.1002/rcm.4469.

Tao Y, Liu YB, Wu GL, et al. (2016) Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soil in the Junggar desert, China. Acta Prataculturae Sinica 25: 13-23.

Tao Y, zhang YM (2012) Effects of leaf hair points on dew deposition and rainfall evaporation rates in moss crusts dominated by Syntrichia caninervis, Gurbantunggut Desert, northwestern China. Acta Ecologica Sinica 32: 0007-0016.

Tian D, Yan ZB, Niklas KJ, et al. (2018) Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 5: 728-739. https://doi.org/10.1093/nsr/nwx142.

Tian D, Yan Z, Ma S, et al. (2019) Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Sci. China Life Sci. 62: 1047-1057. https://doi.org/10.1007/s11427-019-9584-1.
Tränker M, Tavakol A, Jákli B (2018) Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 163: 414-431.

van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11: 296-310. doi: 10.1111/j.1461-0248.2007.01139.x.

Venterink HO (2011) Does phosphorus limitation promote species-rich plant communities? Plant and Soil 345: 1-9. doi: 10.1007/s11104-011-0796-9.

Wang M, Larmola T, Murphy MT, et al. (2016) Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. Plant and Soil 400: 403-416. doi: 10.1007/s11104-015-2744-6.

Wang Z, Yu K, Lv S, et al. (2019) The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis. Functional Ecology. 33: 2081-2094. https://doi.org/10.1111/1365-2435.13434.

Wardle DA, Bardgett RD, Klironomos JN, et al. (2004) Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633. doi: 10.1126/science.1094875.

Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435: 806-810. doi: 10.1038/nature03611.

Weber B, Bowker M, Zhang Y, et al. (2016) Functional Roles of Biological Soil Crusts, Biological Soil Crusts: an Organizing Principle in Drylands. Springer, pp. 237-384.

Wright IJ, Reich PB, Cornelissen JHC, et al. (2005) Assessing the generality of global leaf trait relationships. New Phytol 166: 485-496. doi: 10.1111/j.1469-8137.2005.01349.x.

Wu L, Zhang YM, Zhang J, et al. (2015) Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: Implications for soil C balance in a temperate desert of northwestern China. Eur J Soil Biol 67: 27-34. doi: 10.1016/j.ejsobi.2015.01.003.

Yan Z, Li P, Chen Y, et al. (2016) Nutrient allocation strategies of woody plants: An approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports 6: 20099.
Yang HL, Zhang DY, Li HY, et al. (2015) Ectopic over expression of the aldehyde dehydrogenase ALDH21 from Syntrichia caninervis in tobacco confers salt and drought stress tolerance. Plant Physiol Bioch 95: 83-91. doi: 10.1016/j.plaphy.2015.07.001.

Yang Y, Liu BR, An SS (2018) Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 166: 328-338. https://doi.org/10.1016/j.catena.2018.04.018.

Yu Q, Wilcox K, Pierre KL, et al. (2015) Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 96: 2328-2335. https://doi.org/10.1890/14-1897.1

Yuan ZY, Chen HYH (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr, 18: 532-542. https://doi.org/10.1111/j.1466-8238.2009.00474.x

Yuan ZY, Chen HYH, Reich PB (2011) Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nat. Commun. 2: 234. https://doi.org/10.1038/ncomms1346.

Zeng QC, Lal R, Chen YN, et al. (2017) Soil, leaf and root ecological stoichiometry of Caragana korshinskii on the Loess Plateau of China in relation to plantation age. PLoS One e0168890, 12. https://doi.org/10.1371/journal.pone.0168890.

Zeng QC, Li X, Dong YH, et al. (2016) Soil and plant components ecological stoichiometry in four steppe communities in the loess plateau of china. Catena 147: 481-488. https://doi.org/10.1016/j.catena.2016.07.047.

Zhang F, Niu J, Zhang W, et al. (2010) Potassium nutrition of crops under varied regimes of nitrogen supply. Plant and Soil 335(1): 21-34.

Zhang H, Yang X, Wang J, et al. (2017) Leaf N and P stoichiometry in relation to leaf shape and plant size for Quercus acutissima provenances across China. Sci Rep 7: 46133. doi: 10.1038/srep46133.

Zhang J, Zhang YM (2014) Diurnal variations of chlorophyll fluorescence and CO2 exchange of biological soil crusts in different successional stages in the Gurbantunggut Desert of northwestern China. Ecol Res 29: 289-298. doi: 10.1007/s11284-013-1122-1.
Zhang JH, He NP, Liu CC, et al. (2020) Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology 26: 2534-2543. https://doi.org/10.1111/gcb.14973

Zhang K, Su YZ, Liu TN, et al. (2016) Leaf C:N:P stoichiometrical and morphological traits of Haloxylon ammodendron over plantation age sequences in an oasis-desert ecotone in North China. Ecol Res 31: 449-457. doi: 10.1007/s11284-016-1353-z.

Zhang LM, Wang CK (2010) Carbon and nitrogen release during decomposition of coarse woody debris for eleven temperate tree species in the eastern mountain region of northeast China. Chinese Journal of Plant Ecology 34(4): 368-374 (in Chinese).

Zhang Q, Xiong GM, Li JX, et al. (2018) Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types. Plant Soil, 427: 305-319. https://doi.org/10.1007/s11104-018-36550.

Zhang SB, Zhang JL, Slik JWF, et al. (2012) Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment. Global Ecol Biogeogr 21: 809-818. doi: 10.1111/j.1466-8238.2011.00729.x.

Zhang YG, Liu XJ, Zhang KC, et al. (2018) An ABSCISIC ACID INSENSITIVE3-like gene from the desert moss *Syntrichia caninervis* confers abiotic stress tolerance and reduces ABA sensitivity. Plant Cell Tiss Org 133: 417-435. doi: 10.1007/s11240-018-1394-9.

Zhang YM, Chen J, Wang L, et al. (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68: 599-610. doi: 10.1016/j.jaridenv.2006.06.012.

Zhang YM, Zhou XB, Yin BF, et al. (2016b) Sensitivity of the xerophytic moss *Syntrichia caninervis* to prolonged simulated nitrogen deposition. Ann Bot-London 117: 1153-1161. doi: 10.1093/aob/mcw058.

Zhao SC, He P, Qiu SJ, et al. (2014) Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China - ScienceDirect. Field Crops Research, 169: 116-122.
Zhao N, Liu H, Wang Q, et al. (2018) Root elemental composition in Chinese forests: Implications for biogeochemical niche differentiation. Functional Ecology, 32: 40-49.

Zhao N, Yu G, Wang Q, et al. (2020) Conservative allocation strategy of multiple nutrients among major plant organs: From species to community. Journal of Ecology, 108: 267-278. https://doi.org/10.1111/1365-2745.13256.

Zhao YG, Xu MX (2013) Runoff and Soil Loss from Revegetated Grasslands in the Hilly Loess Plateau Region, China: Influence of Biocrust Patches and Plant Canopies. J Hydrol Eng 18: 387-393. doi: 10.1061/(Asce)He.1943-5584.0000633.

Zheng SX, Shangguan Z (2007) Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees-Struct Funct 21: 357-370. doi: 10.1007/s00468-007-0129-z.

Zhou XB, Bowker MA, Tao Y, et al. (2018) Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics. Sci Total Environ 626: 99-108. doi: 10.1016/j.scitotenv.2018.01.025.

Zhou XB, Tao Y, Yin BF, et al. (2020) Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia. Geoderma 366(1):114166. https://doi.org/10.1016/j.geoderma.2019.114166

Zhou XB, Zhang YM, Niklas KJ (2014) Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China. Ann Bot-London 113: 501-511. doi: 10.1093/aob/mct275.
Table caption

Table 1 One way ANOVA of moss stoichiometry in different dunes and sampling sites. P values were main effects from ANOVA.

Table 2 One way ANOVA of soil nutrients in different dune and site. P values were main effects from ANOVA.

Table 3 Result from the T-test of nutrient content and stoichiometry in above-ground and below-ground of the mosses.

Figure caption

Fig 1 Locations where moss samples were identified and collected in the Gurbantunggut Desert.

Fig 2 The changes in moss N and P contents with annual mean precipitation and annual mean temperature: a, moss N content in different AMP; b, moss P content in different AMP; c, moss P content in different AMT.

Fig 3 Relationships of C, N, P and K elements of above-ground parts of moss. Boxes represent measured variables. Standardized path coefficients are displayed, with the width of each arrow equivalent to the strength of the path. Solid lines represent the positive paths. Dashed lines indicate negative paths. The total amount of variance (R^2) explained for each endogenous variable (that is, those with arrows pointing to them) is given on top right of the
variable. Corresponding probability values are included when $P<0.20$ ($++ P< 0.20$, $+ P< 0.10$, $* P< 0.05$, ** $P< 0.01$, *** $P< 0.001$).

Fig 4 The N vs. P scaling exponents in above- and below-ground of moss.

Fig 5 Scaling relationships between above-ground and below-ground of moss nitrogen (or phosphorus, potassium) concentrations. (a) nitrogen element; (b) phosphorus element; (c) potassium element.

Fig. 6 relationships between soil AK content and moss K contents (a), soil NO3-N content and moss P contents (b).

Fig. 7 Final fitted structural equation models depicting relative effects of climate, geographical position, soil nutrient and moss N content in above-ground and below-ground parts. Boxes represent measured variables. Ellipse represent latent variable. Nabove-ground: nitrogen content in above-ground parts of moss; Nbelow-ground: nitrogen content in below-ground parts of moss. Standardized path coefficients are displayed, with the width of each arrow equivalent to the strength of the path. Red lines represent the positive paths ($P<0.05$). Blue lines indicate negative paths ($P<0.05$). The total amount of variance (R2) explained for each endogenous variable (that is, those with arrows pointing to them) is given on the below of the variable. Corresponding probability values are included when $P<0.50$ ($* P< 0.05$, ** $P< 0.01$). The fit of the model was satisfactory (CFI=0.996, GFI=0.971, RMSEA=0.023, Chi-square=11.760, $P=0.382$).

Fig. 8 Final fitted structural equation models depicting relative effects of climate, geographical position, soil nutrient and moss P content in above-ground and below-ground
parts. Boxes represent measured variables. Ellipse represent latent variable. Pabove-ground: phosphorus content in above-ground parts of moss; Pbelow-ground: phosphorus content in below-ground parts of moss. Standardized path coefficients are displayed, with the width of each arrow equivalent to the strength of the path. Red lines represent the positive paths. Blue lines indicate negative paths. The total amount of variance (R^2) explained for each endogenous variable (that is, those with arrows pointing to them) is given on the top right of the variable. Corresponding probability values are included when P<0.50 (* P<0.05, ** P<0.01). The fit of the model was satisfactory (CFI=0.970, GFI=0.953, RMSEA=0.040, Chi-square=19.339, P=0.055).

Fig. 9 Final fitted structural equation models depicting relative effects of climate, geographical position, soil nutrient and moss K content in above-ground and below-ground parts. Boxes represent measured variables. Ellipse represent latent variable. Kabove-ground: potassium content in above-ground parts of moss; Kbelow-ground: potassium content in below-ground parts of moss. Standardized path coefficients are displayed, with the width of each arrow equivalent to the strength of the path. Solid lines represent the positive paths. Dashed lines indicate negative paths. The total amount of variance (R^2) explained for each endogenous variable (that is, those with arrows pointing to them) is given on the top right of the variable. Corresponding probability values are included when P<0.50 (* P<0.05, ** P<0.01). The fit of the model was satisfactory (CFI=0.979, GFI=0.959, RMSEA=0.034, Chi-square=16.366, P=0.128).
Table 1: One way ANOVA of moss stoichiometry in different dunes and sampling sites. P values were main effects from ANOVA.

Moss	C	N	P	K	C:N	C:P	C:K	N:P	N:K	P:K
Above-ground										
Different dunes	0.698	0.040	0.002	0.357	0.014	0.010	0.481	0.461	0.022	<0.001
Different sites	0.825	0.004	0.630	<0.001	0.103	0.277	0.002	0.007	<0.001	0.001
Below-ground										
Different dunes	0.060	<0.001	<0.001	0.037	0.033	0.523	0.052	0.231	<0.001	<0.001
Different sites	<0.001	<0.001	0.95	<0.001	0.144	0.001	<0.001	<0.001	<0.001	0.012
Table 2 One way ANOVA of soil nutrients in different dune and site. *P* values were main effects from ANOVA.

Soil	OC	TN	TP	TK	NO$_3$-N	NH$_4^+$-N	AP	AK
Different dunes	0.631	0.584	0.135	0.019	<0.001	0.009	0.194	0.042
Different sites	0.090	0.221	0.214	0.009	<0.001	0.006	<0.001	<0.001
Table 3 Result from the T-test of nutrient content and stoichiometry in above-ground and below-ground of the mosses.

	Above-ground mean value	Below-ground mean value	t	p
C	270.531	256.738	2.348	0.019
N	15.692	15.746	-0.1553	0.877
P	1.410	1.278	4.695	<0.001
K	4.684	4.492	3.483	<0.001
C:N	17.355	16.422	3.603	<0.001
C:P	193.37	203.001	-2.293	0.022
C:K	58.364	58.514	-0.089	0.929
N:P	11.195	12.409	-5.359	<0.001
N:K	3.375	3.582	-2.120	0.035
P:K	0.302	0.288	2.155	0.032
Figure 4

$R^2 = 0.37, P = 1.7\times10^{-13}$

$R^2 = 0.40, P = 2.4\times10^{-16}$
Figure 5

(a) $R^2 = 0.13, P = 2e-05$

(b) $R^2 = 0.26, P = 4.7e-10$

(c) $R^2 = 0.27, P = 1.2e-10$
Figure 6

(a) K content in moss tissue (mg/g) vs. Soil AK content (µg/g)
- Aboveground: \(R^2 = 0.13, P = 0.03 \)
- Belowground: \(R^2 = 0.16, P < 0.01 \)

(b) P content in moss tissue (mg/g) vs. Soil NO₃-N content (µg/g)
- Aboveground: \(R^2 = 0.14, P = 0.04 \)
- Belowground: \(R^2 = 0.14, P = 0.03 \)
Figure 7

```
MAP  
|    | 0.68*** |
|-----|---------|
| MAT | -0.10   |
| Lat | -0.26*  |
| Lon | 0.20    |

Soil nutrient

$R^2 = 0.53$

$N_{\text{above-ground}}$

$R^2 = 0.20$

$N_{\text{below-ground}}$

$R^2 = 0.23$
```

Downloaded from https://academic.oup.com/jpe/advance-article/doi/10.1093/jpe/rtac070/6628817 by guest on 08 July 2022
