Single-cell atlas of the first intra-mammalian developmental stage of the human parasite *Schistosoma mansoni*

Carmen Lidia Diaz Soria, Jayhun Lee, Tracy Chong, Avril Coghlan, Alan Tracey, Matthew D. Young, Tallulah Andrews, Christopher Hall, Bee Ling Ng, Kate Rawlinson, Stephen R. Doyle, Steven Leonard, Zhigang Lu, Hayley M. Bennett, Gabriel Rinaldi, Phillip A. Newmark & Matthew Berriman

Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistosomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of *Schistosoma mansoni*. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Schistosomes are parasitic flatworms that cause schistosomiasis, a serious, disabling, and neglected tropical disease (NTD). More than 250 million people require treatment each year, particularly in Africa. The life cycle of this metazoan parasite is complex. A schistosome egg hatches in water to release a free-living, invasive larva that develops into asexually replicating forms within aquatic snails (the intermediate host). From the snail, thousands of cercariae—a second free-living larval form—are released into freshwater to find and invade a mammal (the definitive host). In the mammalian host, the larvae (schistosomula) migrate and develop into distinctive male or female adult worms (Fig. 1a). While the only drug currently available to treat schistosomiasis (praziquantel) works efficiently to kill adult parasites, it is less effective against immature parasites, including schistosomula. Understanding the parasite’s biology is a critical step for developing novel strategies to treat and control this NTD.

During invasion, the parasite undergoes a major physiological and morphological transformation from the free-living, highly motile cercariae to the adult parasitic form. Upon penetration, the tail used for swimming is lost. Less than three hours after entering the host, the thick glycocalyx is removed and the tegument remodelled to serve both nutrient-absorption and immune-protection roles. Throughout the rest of the organism’s life span in the definitive host, a population of sub-telengenital progenitor cells continuously replenish the tegument, allowing the parasite to survive for decades. The schistosomula make their way into blood or lymphatic vessels and, one week after infection, reach the lung capillaries. The migration through the lungs requires coordinated neuromuscular activities, including cycles of muscle elongation and contraction, to squeeze through capillaries and reach the general circulation. Over the following weeks, the parasites mature further into sexually reproducing adults. Dramatic changes to the parasite are required that include posterior growth, remodelling of the musculature and nervous system, as well as the development of the gonads and gut. This extensive tissue development starts in the schistosomula, with stem cells driving these transitions. However, to decipher cellular and molecular mechanisms underlying schistosomula development, a detailed understanding of the spatial organisation and transcriptional programs of individual cells is needed.

Fig. 1 Identification of 13 transcriptionally distinct cell types in schistosomula. a Experimental scheme describing the sources of the parasite material, single-cell analysis and validation pipeline. Approximately 5000 schistosomula per experiment were dissociated, followed by enrichment of fluorescein diacetate (FDA+) live cells using fluorescence-activated cell sorting (FACS). Cells were loaded according to the 10X Chromium single-cell 3’ protocol. Clustering was carried out to identify distinct populations and population-specific markers. Validation of population-specific markers was performed by in situ hybridisation (ISH). b Uniform Manifold Approximation and Projection (UMAP) representation of 3226 schistosomula single cells. Cell clusters are coloured and distinctively labelled. c Gene-expression profiles of population markers identified for each of the cell clusters. The colours represent the level of expression from dark red (high expression) to light red (low expression). The sizes of the circles represent the percentages of cells in those clusters that expressed a specific gene. The colour bars under gene IDs represent the clusters in (b).
Important insights into major processes that underlie the transformations across the life cycle have been gained from bulk transcriptomic studies. However, these studies are not able to quantify the relative abundance of different cell types from the absolute expression per cell, and the signal from highly expressed genes in a minority of cells can often be masked by a population averaging effect. Single-cell RNA sequencing has previously been used successfully to characterise cell types and understand how the cell expression profile changes during differentiation. Notable examples include recent studies in the free-living planarian flatworm *Schmidtea mediterranea* and the Phylum Platyhelminthes.

Here, we have used scRNAseq to characterise two-day schistosomula obtained by in vitro transformation of cercariae using 10X Chromium technology and validated the cell clusters by RNA in situ hybridization (ISH) in schistosomula and adult worms. We identified at least thirteen discrete cell populations, and described and validated novel marker genes for muscles, nervous system, tegument, oesophageal gland, parenchyma/gut primordia and stem cells. This study lays the foundation towards a greater understanding of cell types and tissue differentiation in the first intra-mammalian developmental stage of this NTD pathogen.

Results

Identification of 13 transcriptionally distinct cell types in schistosomula. We performed single-cell RNA sequencing of schistosomula collected two days after mechanically detaching the tail from free-living motile larvae (cercariae) (Fig. 1a). We first developed a protocol to efficiently dissociate the parasites using a protease cocktail, after which individual live cells were collected using fluorescence-activated cell sorting (FACS) (Fig. 1a and Supplementary Fig. 1a). Using the droplet-based 10X Genomics Chromium platform, we generated transcriptome-sequencing data from a total of 3513 larval cells, of which 3226 passed strict quality-control filters, resulting in a median of 900 genes and depth of 283,000 reads per cell and 1268 median UMI counts per cell (Supplementary Data 1). Given that an individual schistosomula comprises ~900 cells (Supplementary Fig. 1b), the number of cells (Supplementary Data 1). Given that an individual schistosomula comprises ~900 cells (Supplementary Fig. 1b), the number of quality-controlled cells theoretically represents >2x coverage of all cells in the organism at this developmental stage.

To create a cellular map of the *S. mansoni* schistosomula, we used Seurat to cluster and identify marker genes that were best able to discriminate between populations (Fig. 1b, c and Supplementary Data 2). To identify the cell types that each Seurat cluster represented, we curated lists of previously defined cell-specific markers (Supplementary Data 3). For example, tegument and stem cells were identified based on known marker genes in *S. mansoni*, whereas muscle cells and neurons were identified based on characterised marker genes in mouse and humans and *S. mansoni* (Supplementary Data 3). Based on the marker genes identified using Seurat, we identified the following distinct clusters of cells: three muscle-like (1,440 cells), two tegumental (281 cells), two parenchymal (158 cells), one cluster resembling stem cells (126), four resembling the nervous system (643 cells), oesophageal gland (17 cells), and two ambiguous clusters (Supplementary Fig. 12) for which no specific markers could be predicted (561 cells). In addition, Gene Ontology (GO) analysis of the marker genes for these two ambiguous clusters did not result in enrichment of any particular processes (Supplementary Fig. 2). Furthermore, the in situ validation of one of the clusters (ambiguous 1) remained inconclusive (Supplementary Fig. 12). For the rest of the populations, the GO analysis generally matched the predicted cellular processes for each cluster (Supplementary Fig. 2). For instance, as expected, the stem/germinial cell cluster showed a significant enrichment in genes involved in translation. Meanwhile, neuronal cells and muscle cells were enriched in processes involved in GPCR signalling and cytoskeleton, respectively. These analyses suggested that each cluster is molecularly distinct and likely displays different biological functions. Therefore, we defined highly specific cluster-defining transcripts (potential cell markers) (Supplementary Data 2, Supplementary Fig. 3) and characterised their spatial expression in both larval schistosomula and adult schistosomes by ISH (Supplementary Data 4).

Muscle cells show position-dependent patterns of expression. Three discrete muscle cell clusters were identified by examining the expression of the well-described muscle-specific genes myosin and troponin (Fig. 2a and Supplementary Fig. 3a), as well as a number of differentially expressed markers. One muscle cluster (428 cells) was distinguished by markedly higher expression of the uncharacterised gene Smp_161510, which was expressed along the dorso-ventral axis of 2-day old schistosomula (Fig. 2b). In adult worms, Smp_161510 did not exhibit dorsal-ventral expression but was instead expressed throughout the worm body (Supplementary Fig. 4a) and co-localised with pan-muscle marker troponin (Smp_018250) (Fig. 2c and Supplementary Fig. 4b). A subset of cells in this muscle cluster also expressed wnt-2 (Smp_167140) (Fig. 2a and Supplementary Fig. 3a). These wnt-2+ cells showed an anterior-posterior gradient in two-day schistosomula (Fig. 2d) that remained consistent during the development from juveniles to mature adult worms (Fig. 2e, f and Supplementary Fig. 4a). Given that these markers showed distinct spatial distributions, we termed this population ‘positional muscle’.

In a second muscle-like cluster (788 cells), an orthologue of the myoD transcription factor from *S. mediterranea* (dd_Smed_v6_12634_0_1) was uniquely expressed (Fig. 2a). In addition, expression of rhodopsin GPCR (Smp_153210) was enriched in this myoD+ cluster (Fig. 2a and Supplementary Fig. 3a). Both genes showed a scattered expression pattern throughout the schistosomula (myoD; Supplementary Fig. 4c and rhodopsin GPCR; Fig. 2g) and, in adults, myoD (Smp_167400) is also scattered throughout the body (Fig. 2h and Supplementary Fig. 4d).

Finally, a third cluster (224 cells) of putative muscle cells was distinguished from the other clusters by its high actin-2 expression (Smp_307020, Smp_307010) expression and lower expression of myoD, Smp_161510 and rhodopsin GPCR (Fig. 2a and Supplementary Fig. 3a). ISH confirmed actin-2 expression throughout the body of the schistosomula and adults (Fig. 2i-k). Our single-cell transcriptomic data suggested that actin-2 was enriched but not specific to this cluster. In line with the transcriptome evidence, actin-2 was expressed within cells from the other two muscle clusters (Supplementary Fig. 4e-i).

Schistosomula have two distinct populations of tegumental cells. We identified two populations of tegumental cells (Tegument 1 and Tegument 2; Fig. 3a and Supplementary Fig. 3b). The first tegumental cluster (Tegument 1, 182 cells) expressed several known tegument genes, including four that distinguish it from Tegument 2 (99 cells) and encode: Fimbrin (Smp_037230), TAL10 (Tegument allergen-like protein 10, Smp_074460), Annexin B2 (Smp_077720) and Smn217 (Smp_086480) (Fig. 3a and Supplementary Data 3). Fluorescently conjugated dextran specifically labels tegumental cell bodies. Within the Tegument 1 population, cells expressing annexin B2 were dextran+ (Fig. 3b), confirming that annexin B2...
Fig. 2 Muscle cells express positional information underlying parasite development. a Expression profiles of cell markers that are specific or enriched in the muscle clusters. Genes shown in red were validated by ISH. b FISH of Smp_161510. Smp_161510-expressing cells are found in dorsal and ventral sides along the midline. vs: ventral sucker. Single confocal sections shown for each image. c Double FISH of Smp_161510 and a pan-muscle marker troponin (Smp_018250) in the head region of the adult worm. A: anterior; P: posterior. Maximum intensity projection (MIP) is shown. d FISH of wnt-2 (Smp_167140) in 2-day old schistosomula. MIP. e Whole-mount in situ hybridisation (WISH) of wnt in the head region of the adult worm. The whole adult worm image is shown in Supplementary Fig. 4a. A: anterior; P: posterior. f Double FISH of wnt-2 (Smp_167140) and troponin (Smp_018250) in the head region of the adult worm, MIP. g Double FISH of myoD (Smp_167400) and troponin (Smp_018250) in adult soma, MIP. i, j Spatial distribution of actin-2 (Smp_307020) throughout the body of the parasite. K Schematic that summarises the muscle cell types in 2-day old schistosomula. Marker genes identified in the current study are indicated in red. V: ventral; D: dorsal. The numbers of ISH experiments performed for each gene are listed in ‘Methods’ and Supplementary Data 7.
Fig. 3 Two distinct populations of tegumental cells in schistosomula. a Expression profiles of cell marker genes that are specific to or enriched in the tegument clusters. Genes validated by ISH are marked in red. b annexin B2+ cells have taken up the fluorescent dextran. Yellow arrowheads indicate double-positive cells. Single confocal sections are shown. c Double FISH of Tegument 1 markers annexin B2 (Smp_077720) and Smp_022450. The majority of the cells show co-localisation (white signal). Left: MIP; right: zoomed in confocal sections. vs: ventral sucker; gc: germinal cell cluster. d Double FISH of Tegument 1 markers Smp_022450 and meg3 (Smp_138070). The majority of the cells show co-localisation (white signal). e Double FISH of Tegument 1 marker (Smp_022450) with ccdc74 (Smp_030010), MIP. The majority of cells show co-localisation (white signal), while a subset of cells in the neck region of the worm show single positive cells for Tegument 2 markers. f, g Double FISH of Tegument 2 marker mboat (Smp_169040) and annexin B2 (Smp_077720) and an osseophageal gland marker meg4 (Smp_307220), single confocal sections. Green arrowhead: mboat+ cells; white arrowhead: double-positive cells. h Schematic that summarises the tegument cell populations in 2-day old schistosomula. Marker genes identified in the current study are indicated in red. All previously reported genes are shown in black. The numbers of ISH experiments performed for each gene are listed in ‘Methods’ and Supplementary Data 7.
is a tegumental marker. The Tegument 1 population also showed enrichment for an uncharacterised gene (Smp_022450) that, to our knowledge, has not previously been reported as tegument-associated. Cells expressing Smp_022450 in the head, neck and body of the schistosomulum co-localised with annexin B2 (Smp_077720) (Fig. 3c) and were dextran+ (Supplementary Fig. 5a). Tegument 1 also showed enrichment for the microoxen gene meg-3 (Smp_138070), with meg3 co-localising with the novel tegument gene Smp_022450 in the neck and anterior region of the larva (Fig. 3d).

Distinguishing the second tegumental cluster was challenging due to a paucity of Tegument 2-specific markers (Fig. 3a and Supplementary Fig. 3b). Nonetheless, we selected two genes for further investigation: cdc7 (Smp_030010) and mboat (Smp_169040). We confirmed the tegumental assignment of cdc7 with dextran+ labelling (Supplementary Fig. 5b) and a double FISH experiment showed colocalization of cdc7 with Tegument 1 marker Smp_022450 (Fig. 3e). However, distinct regions of expression for these two markers were also evident (Fig. 3e). Expression of mboat was lower but mostly distinct from Tegument 1 cells (Fig. 3f). Nonetheless, some level of co-localisation with Tegument 1 markers was still observed (Fig. 3f and Supplementary Fig. 5c). This is consistent with the expression profile for this gene that shows low-level expression in the Tegument 1 population (Fig. 3a and Supplementary Fig. 3b).

To explore more subtle differences in expression profiles between the two tegumental populations, we also investigated tentative functional differences. Analysis of marker genes enriched in Tegument 2 using the STRING database predicted a group of interacting genes involved in clathrin-mediated endocytosis58 (Supplementary Fig. 5d, e). From this group, we chose dynamin (Smp_129050) and epsin4 (Smp_140330) for FISH validation and found that they are expressed in regions of the schistosomula body, distinct from Tegument 1 cells (Supplementary Fig. 3b, 5c, g). In adult worms, we found that the spatial expression of many markers for Tegument 1 and 2 cells were similarly enriched in the anterior cell mass, ventral sucker, and throughout the worm body (Supplementary Fig. 6a, b).

Micro-exon gene expression is enriched in the oesophageal gland. We also discovered a small population of oesophageal gland cells (17 cells) that expressed meg4 genes (Smp_307220/ Smp_307240)59 (Fig. 3a and Supplementary Figs. 3f and 6c, d). The oesophageal gland is an anterior accessory organ of the digestive tract60 and is crucial for degradation of host immune cells and parasite survival61. This group of cells also expressed other meg genes with high specificity such as meg8 (Smp_172180), meg9 (Smp_125320), meg11 (Smp_176020), meg15 (Smp_010550) and meg32.1 (Smp_132100) (Fig. 3a). The function of this class of genes is enigmatic but they have the capacity to generate protein diversity based on their propensity for exon skipping59,62. Given the expression of some meg genes around the oesophagus of adult parasites63,64 and the developmental relationship between the oesophagus and the tegument65, we tested if tegumental genes co-localised with any known genes from the meg4+ oesophageal gland population (Fig. 3a). We found that mboat co-localised with the oesophageal gland marker meg4 (Fig. 3g). Similar to mboat, we also observed co-localisation of epsin4 with meg4 in the oesophageal gland (Supplementary Fig. 6d). In adults, Tegument 2 markers such as epsin4 (Smp_140330) and mboat (Smp_169040) were consistently enriched in the oesophageal gland of the adult worm (Supplementary Fig. 6e, f). In the case of mboat, we could observe co-localisation with meg4 in the oesophageal gland (Supplementary Fig. 6g). Therefore, the meg4+ oesophageal gland cells share similar molecular composition and function to the Tegument 2 cells (Fig. 3h).

Identification of schistosome parenchymal and primordial gut cells. Schistosomes, like other platyhelminthes, are acelomates and lack a fluid-filled body cavity. Instead, their tissues are bound together by cells and extracellular matrix of the parenchyma21,58. We identified two cell types that most likely represent parenchymal cells (101 cells, Parenchymal 1; 57 cells, Parenchymal 2) that showed enriched expression of numerous enzymes such as lysosome, peptidase, and cathepsin (Fig. 4a and Supplementary Fig. 3c).

Cells expressing cathepsin B (Smp_141610) were spread throughout the worm parenchyma and showed long cytoplasmic processes stretching from each cell (Figs. 4b–f and Supplementary Fig. 7a, b). A similar expression profile was observed for serpin (Smp_090080) expressing cells in the later stages of schistosomula as well as in adult parasites (Supplementary Fig. 7c–e). In addition, parenchymal cells did not co-express markers that characterise other cell types, except for actin-2 (actin-2 muscle), which showed slight overlap in expression (Supplementary Fig. 7f–j).

In Parenchymal 2 cells, we found that leucine aminopeptidase (lap) (Smp_030000) was expressed in the primordial gut expressing cathepsin B' (Smp_103610)66 and surrounding parenchymal tissue (Fig. 4g). Such mixed gut/parenchymal expression was also observed in adult parasites (Fig. 4h). This is consistent with previous studies in adult parasites where LAP was detected in the gut and in cells surrounding the gut67. Overall, the identified genes mark schistosomula parenchyma, while a few of them are also expressed in the gut primordia (Fig. 4i).

Stem cells in two-day-old schistosomula. Recently, it was shown that schistosomula carry two types of stem cell populations: somatic stem cells and germinal cells16. The somatic stem cells are involved in somatic tissue differentiation and homeostasis during intra-mammalian development, whereas the germinal cells are presumed to give rise to germ cells (sperm and oocytes) in adult parasites16. Less than 24 h after the cercaria enters the mammalian host to become schistosomulum, ~5 somatic stem cells at distinct locations begin to proliferate16 (Fig. 5a). Germinal cells, on the other hand, are found in a distinct anatomical location called the germinal cell cluster, and only begin to proliferate ~1 week after penetrating the host16.

We identified a single stem/germinal cell cluster (126 cells) that expressed the canonical cell cycle markers histone h2a (Smp_086860)16 and histone h2b (Smp_1038390)7 (Fig. 5b and Supplementary Fig. 3d). In addition, this cluster also had a significant enrichment of translational components (Supplementary Fig. 2). We confirmed that histone h2a (Smp_086860) is expressed in ~5 cells, 1 medial and 2 on each side (Fig. 5a) and also in the germinal cell cluster a few days later (Supplementary Fig. 8a). In adults, histone h2a (Smp_086860) is expressed in somatic cells as well as in cells of the gonads (testis, ovary, and vitellaria) (Supplementary Fig. 8b). In addition, we identified a novel stem/germ cell marker calmodulin (cam) (Smp_032950). This gene was expressed similarly to h2a, but in some schistosomula, a few more cam+ cells could be observed medially as well as near the germinal cell cluster (Fig. 5c). In addition, some cam+ cells were also positive for h2b in schistosomula (Fig. 5d). In adults, cam+ cells were expressed in the adult gonads (Fig. 5e) and soma (Fig. 5f).

In addition to histone h2a (Smp_086860), histone h2b (Smp_108390) and cam (Smp_032950), cells in this cluster expressed stem cell markers including fgfR(A (Smp_175590) and
nanos-2 (Smp_051920)15,16,68(Fig. 5b). Given that many of these genes have been associated with two distinct stem cell populations16 (somatic and germinal), we tested if these cells could be further subclustered, but were unable to do so, presumably due to the low expression level of some of these genes in most cells in this cluster (Supplementary Fig. 8c). Overall, these data suggest that this cluster does indeed represent population(s) of stem cells that might give rise to...
somatic and germ cells during the course of parasite development within the mammalian host (Fig. 5g).

Heterogeneity in cells of the schistosomulum nervous system. Platyhelminthes have a central nervous system composed of cephalic ganglia and main nerve cords, and a peripheral nervous system with minor nerve cords and plexuses. This system also plays a neuroendocrine role by releasing neuromodulators during development and growth.

We identified four distinct populations that expressed neural-associated genes (Fig. 6a and Supplementary Fig. 3e). One population (450 cells) was characterised by the expression of genes encoding neuroendocrine protein 7B2 (7b2, Smp_073270) and neuroendocrine convertase 2 (pc2, Smp_077980) and lack of gnai (Smp_246100) expression (Fig. 6a). FISH of 7b2 (Smp_073270) showed expression in cells of the cephalic ganglia in schistosomula (Fig. 6b). The cephalic ganglia region was identified using lectin succinylated Wheat Germ Agglutinin (SWGA) staining. In adult worms, 7b2 was expressed in the cephalic ganglia as well as in the main and minor nerve cords (Fig. 6c–e). We refer to this cluster as ‘7b2/p2c+ nerve’ cells.

The second population (20 cells) expressed the uncharacterised gene Smp_203580 (Fig. 6f). Co-localisation experiments with 7b2 confirmed that this population was distinct from the central ganglia population (Fig. 6f). In the larvae, only six cells (two cells in the head and four cells in the body) expressed this marker novel gene Smp_203580 (Fig. 6f) but in adults, an expanded number of cells were found throughout the body of the parasite (Supplementary Fig. 9a–c). These cells displayed 2–3 long cellular processes, branching into different directions (Supplementary Fig. 9b). Interestingly, cells in this cluster also expressed the marker gene encoding KK7 (Smp_194830), known to be associated with the peripheral nervous system in S. mansoni. This population was expressed in the cephalic ganglia region of the head, one in the neck region, and one in the body region (Fig. 6h). In adults, this gene is expressed around the main and minor nerve cords (Fig. 6i and Supplementary Fig. 9e, f). Some gnai+ cells are also 7b2+ (Fig. 6i). We designated this population as ‘Sm-kk7+ nerve cells’.

The third population (141 cells) of cells expressed gnai (Smp_246100), a gene encoding a G-protein alpha subunit, group-I. FISH experiments showed expression of this gene in three cells: one in the gland region of the head, one in the neck region, and one in the body region (Fig. 6h). In adults, this gene is expressed around the main and minor nerve cords (Fig. 6i and Supplementary Fig. 9e, f). Some gnai+ cells are also 7b2+ (Fig. 6i). We designated this population as ‘gnai+ neurons’.

The last population comprised 32 cells and was annotated as ndf+ neurons. This population was characterised by the expression of a neurogenic differentiation factor (ndf; Smp_072470) and a neuropeptide receptor (Smp_118040) (Fig. 6a). The neurogenic differentiation factor (ndf) gene has recently been identified as a neuronal marker in adult schistosomes. The orthologue of ndf in S. mediterranea (neuroD1) is also associated with neuronal populations. Knockdown of this gene in combination with other neuronal specific genes in S. mediterranea, results in a decrease of 40% in a npg-4+ population. In addition, as well as expression in the nervous system, this gene is expressed in X1 neoblasts (stem cells) from wounded S. mediterranea and in cells near regenerating anterior blastemas. Although further experiments will be needed to ascertain the biological function of this population, data from adult schistosomes and S. mediterranea suggest this is indeed a neuronal population. Based on previous findings on S. mediterranea, it may be involved in the specification of other neuronal populations.

Overall, we show that in schistosomula, neuronal cells are transcriptionally and spatially heterogeneous (Fig. 6j), consistent with the pattern seen in more complex adult worms, where ~27 distinct neuron clusters could be identified in several anatomic regions.

Conserved gene expression patterns in stem cells and neurons between S. mansoni and Schmidtea mediterranea. Given that some of the populations described herein had not been previously characterised, we asked if we could further annotate our dataset by comparison to previously annotated single-cell RNAseq data from Schmidtea mediterranea, the closest freeliving model organism to S. mansoni. To compare clusters, we used a random forest (RF) model trained on S. mediterranea (Supplementary Fig. 10) to map gene expression signatures between both datasets. Using the RF model, we classified each of the larval S. mansoni cells using the adult S. mediterranea labels. We discovered that the stem cell population in our dataset mapped to S. mediterranea neoblasts and progenitor clusters (Fig. 7). This is consistent with previous work that showed comparability between S. mediterranea and S. mansoni stem cells. We also found other weaker signatures. For example, NDF+ cells in S. mansoni mapped to spp11+ neurons whilst tegument clusters mapped to epidermal neoblasts/progenitors in S. mediterranea. In addition, we observed that some cells on the schistosomula muscle populations mapped to S. mediterranea muscle progenitors. Taken together, these results suggest that despite great differences in developmental stages between larval schistosomula and the asexual adult Schmidtea mediterranea used for this comparison, marker genes for stem cells and neuronal populations have been conserved (Fig. 7 and Supplementary Data 5 and 6).
Fig. 5 A single cluster of stem cells in 2-day old schistosomula.

a. FISH of h2a (Smp_086860) shows ~5 stem cells located at distinct locations—1 medial cell (M) and 2 lateral cells on each side (1L and 2L, 1R, and 2R; L: left; R: right). MIP.

b. Expression profiles of cell marker genes that are specific or enriched in the stem/germinal cell cluster. Genes validated by ISH are marked in red. c. FISH of cam (Smp_032950) shows a similar localisation pattern as h2a, with some worms with a few more cam- cells in the medial region as well as in the germinal cell cluster region, MIP. gc: germinal cluster.

d. Double FISH of cam (Smp_032950) and a previously validated schistosome stem cell marker h2b (Smp_108390).

e. WISH of cam (Smp_032950) in adult parasites shows enriched expression in the gonads including testis, ovary, and vitellarium, as well as in the mid-animal body region. f. Double FISH of cam and h2b in adult soma. A single confocal section is shown. White arrows indicate co-localisation of two genes and magenta arrowheads indicate cells expressing only cam.

g. Schematic that summarises the stem and germinal cell populations in 2-day old schistosomula. Marker genes identified in the current study are indicated in red. All previously reported genes are shown in black. Genes that are enriched in this cluster but have not been directly shown by ISH are shown in grey. The numbers of ISH experiments performed for each gene are listed in ‘Methods’ and Supplementary Data 7.
ISH experiments. Importantly, the latter allowed us to validate key marker genes for each of the cell clusters, spatially mapping the cell populations in both schistosomula and adult worms and linking transcriptomic profiles to anatomical features of the organism.

By determining the transcriptome of individual cells from schistosomula, we uncovered marker genes not only for known populations, such as stem and tegument cells, but also for previously undescribed cell clusters, such as parenchymal cells. We found that marker genes of the parenchymal tissue are also
expressed in the primordial gut. However, the relationship between the parenchyma and gut primordial cells is yet to be determined. In planarians, the orthologous cathepsin gene (dd_Smed_v6_81_0_1) is a marker for cathepsin+ cells that include cells in the parenchyma32,33. This planarian cathepsin (dd_Smed_v6_81_0_1) is also expressed in the intestine33 and gut phagocytes32,33. Similarly, planarian aminopeptidase (dd_Smed_v6_181_0_1) is expressed in the intestine32,33. Thus, further work is required to characterise schistosome parenchymal cells and their signaling mechanisms with the surrounding gut cells32,33.

Previously, S. mansoni cell types have been revealed primarily through a combination of morphological and ISH studies of specific tissues, with stem and tegument cell populations being among the best characterised6,13,16. In the present study, we have identified and validated new markers, including a novel stem cell marker calmodulin (Smp_032950) that, to our knowledge, has not previously been associated with stem cells. Calmodulins are Ca2+ binding proteins involved in the miracidium-to-sporocyst transition, sporocyst growth80 and egg hatching81. In addition, we found this calmodulin-encoding gene to be expressed in the reproductive organs of adult males and females. In contrast, we were unable to identify three stem cell populations (delta, kappa and phi) that were previously described by Wang et al.16. In the latter study, marker genes were identified from the single-cell transcriptomes of 35 cells obtained from sporocyst germinal centres. Some marker gene expression was subsequently confirmed in 2-day old schistosomula. In our study, a particular cell population was not specifically targeted. As such, our sensitivity to identify the reported germline subcluster markers may have been reduced, particularly given their expected low expression levels16.

Coordinated neuromuscular activity is essential for schistosomes to migrate through host tissue82. Although circular and longitudinal muscle layers have been described in S. mansoni10,12,82, we found no evidence that the three muscle clusters correspond to different anatomical fibre arrangements. In the free-living planarian S. mediterranea, a population of muscle cells also shows no specific muscle layer localisation, but instead forms a cluster based on enriched expression of position-control genes (PCGs)33,83. We therefore reasoned that this may be the case for at least some of the muscle cells in our dataset.

Previous studies have shown that numerous vesicles are produced by endocytosis from cell bodies and trafficked to the
syncytial cytoplasm of the tegument\cite{84,85}. Our analysis revealed two distinct populations of tegumental cells, with a potential involvement of one of these populations (Tegument 2) in producing vesicles. By analysing inferred interactions between Tegument 2 genes, a group was identified that included homologues of known vesicular transport proteins: epsins and a phosphatidylinositol-binding clathrin assembly protein. Further, the most discriminatory marker that we found for the Tegument 2 cluster likely acylates membrane lysophospholipids\cite{86,87}. It is tempting to speculate that mibot acylates the specific phosphatidylinositol membrane phospholipids required for clathrin-related endocytosis. We also show through the FISH validation some level of co-localisation of tegumental genes with meg4 + oesophageal gland. Oesophagus connects the mouth to the gut and is surrounded by a gland that secretes, amongst other things, proteins encoded by meg genes that help process the ingested blood\cite{85,88} by degrading immune cells and preventing them from entering the gut\cite{89}. They are therefore crucial for parasitic development and a prime target for vaccine development\cite{93}.

Knowledge of planarian stem cells has recently been used to capture the study of stem cells in S. mansoni\cite{88}. Our comparison between schistosomula and S. mediterranea clusters uncovered conserved features for stem cells and neurons and served to support cell type assignment in schistosomula. Given that nerve cell populations have remained poorly characterised at the transcriptome level in schistosomes, planarians may serve as a model to understand the nervous system biology in schistosomula. A particularly remarkable feature of planarian biology is their regenerative properties. An individual worm comprises all cell types at intermediate stages of development and regeneration\cite{32,33,38}. This has enabled recent single-cell sequencing studies in planarians to characterise developmental trajectories from within the soma of adult worms\cite{32}. However, schistosomes do not share this regenerative property with their free-living relatives, instead intermediate stages of schistosome development necessarily need to be captured. The data from the present study represent the first step in that characterisation.

In characterising previously unknown marker genes and cell types, we have been careful to validate our findings against known markers where possible. Signals from damaged or dying cells caused by laboratory procedures are challenging to eliminate\cite{90,91}. We have included these genes as additional RNA samples in the library preparation. We included signals from damaged or dying cells caused by laboratory procedures are challenging to eliminate\cite{90,91}. We have included these genes as additional RNA samples in the library preparation. We included signals from damaged or dying cells caused by laboratory procedures are challenging to eliminate\cite{90,91}. We have included these genes as additional RNA samples in the library preparation. We included signals from damaged or dying cells caused by laboratory procedures are challenging to eliminate\cite{90,91}. We have included these genes as additional RNA samples in the library preparation. This higher expression is an essential feature of the tegument of Schistosoma mansoni\cite{93,94}.

Preparation of parasites. S. mansoni schistosomula were obtained by mechanical transformation of cercarias and cultured\cite{95}. In brief, experimentally-infected snails were washed, transferred to a beaker with water (−50–100 ml) and exposed under light to induce cercarial shedding for two hours, replacing the water and collecting cercariae every 30 min. Cercarial water collected from the beaker was filtered through a 47 µm stainless steel Millipore screen apparatus into sterile 50 ml Falcon tubes to remove any debris and small faeces. The cercariae were concentrated by centrifugation (800 × g for 15 min), washed three times in 1× PBS supplemented with 2% PSF (200 U/ml penicillin, 200 µg/ml streptomycin, 500 µg/ml amphotericin B), and three times in schistosomula wash medium (DMEM supplemented with 2% PSF and 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)). The cercarial tails were sheared off by −20 passes back and forth through a 22-G emulsifying needle, schistosomula bodies were separated from the sheared tails by Percoll gradient centrifugation, washed three times in schistosomula wash medium and cultured at 37 °C in modified Basch’s medium under 5% CO2 in air\cite{96}.

Single-cell tissue dissociation. Two days after transformation, the schistosomula cultured in modified Basch’s media at 37 °C and 5% CO2 were collected and processed in two separate batches (batch1 and batch2). Schistosomula collected from two different snail batches were considered biological replicates. Data collected as batch3 are ‘technical’ replicates of batch2 given they were collected on the same day and from the same pool of parasites. In each experiment, approximately 5000 larvae were pooled in 15 ml tubes and digested for 30 min in an Innova 4430 incubator with agitation at 300 rpm at 37 °C, using a digestion solution of 750 µg/ml Liberase DL (Roche 05466200101) in PBS supplemented with 20% FBS. The resulting suspension was passed through 70 µm and 40 µm cells strainers (Falcon). Dissociated cells were spun at 300 rpm for 5 mins and resuspended in 1× cold PBS supplemented with 20% heat inactivated fetal bovine serum (twice). The resulting cell suspension was co-cultured with 0.5 µg/ml of Fluorescein Diacetate (FDA; Sigma F7378) to label live cells, and 1 µg/ml of Propidium Iodide (PI; Sigma P4864) to label dead/dying cells, and sorted into eppendorf tubes using tubes using the BD Influx® cell sorter by enriching for FDA + / PI− cells\cite{97}. It took 2–3 h from the enzymatic digestion to generate single-cell suspensions ready for library preparation on the 10X Genomics Chromium platform.

10X Genomics library preparation and sequencing. The 10X Genomics protocol (‘Single Cell 3’ Reagent Kits v2 User Guide’ available from https://support.10xgenomics.com/single-cell-gene-expression/index/doc/user-guide-chromium-sINGLE-cell-3-reagent-kits-user-guide-v2-chemistry) was followed to create gel in emulsion beads (GEMs) containing single cells, hydrogel beads and reagents for reverse transcription, perform barcoded cDNA synthesis, and produce sequencing libraries from pooled cDNA. The concentration of single cell suspensions was approximately 500 cells/µl, as estimated by flow cytometry-based counting, and cells were loaded according to the 10X protocol (Chromium Single Cell 3’ Reagent Kits v2), intended to capture approximately 7000 cells per reaction. However, after sequencing and preliminary analysis, we found the actual number of captured cells was closer to 1200 cells per experiment. Library construction (following GEM breakage) was using 10X reagents following the ‘Single Cell 3’ Reagent Kits v2 User Guide’. The libraries were sequenced on an Illumina HiSeq4000 (paired-end reads 75 bp), using one sequencing lane per sample. All raw sequence data was deposited in the ENA under the project accession ERP116919.

Methods

Ethics statement. The complete life cycle of Schistosoma mansoni (NMRI strain) maintained at the Wellcome Trust Sanger Institute (WSI) was approved by the WSI. The WSI is constituted as required by the UK Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012. To harvest parasites for validation using in situ hybridization, we used Swiss-Webster (Taconic Biosciences) female mice that are between 5 to 12 weeks of age at the time of infection. The mouse infections was done using S. mansoni (NMRI strain received from Biomedical Research Institute (Rockville, MD)) and all mice were handled in accordance with the Institutional Animal Care Use Committee protocol at the University of Wisconsin-Madison (M005569).

Preparation of parasites. S. mansoni schistosomula were obtained by mechanical transformation of cercarias and cultured\cite{95}. In brief, experimentally-infected snails were washed, transferred to a beaker with water (−50–100 ml) and exposed under light to induce cercarial shedding for two hours, replacing the water and collecting cercariae every 30 min. Cercarial water collected from the beaker was filtered through a 47 µm stainless steel Millipore screen apparatus into sterile 50 ml Falcon tubes to remove any debris and small faeces. The cercariae were concentrated by centrifugation (800 × g for 15 min), washed three times in 1× PBS supplemented with 2% PSF (200 U/ml penicillin, 200 µg/ml streptomycin, 500 µg/ml amphotericin B), and three times in schistosomula wash medium (DMEM supplemented with 2% PSF and 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)). The cercarial tails were sheared off by −20 passes back and forth through a 22-G emulsifying needle, schistosomula bodies were separated from the sheared tails by Percoll gradient centrifugation, washed three times in schistosomula wash medium and cultured at 37 °C in modified Basch’s medium under 5% CO2 in air\cite{96}.
unique 6-digit number; entirely new gene models have the first digit ‘3’, e.g. Smp_3xxxx. To assign a gene name and functional annotation (used in Supplementary Data 2) to Smp identifiers, protein-coding transcript sequences were BLAST-searched against SwissProt to predict product information (blastp v2.7.0). Some genes also maintained previous functional annotation from GeneDB. Genes lacking predicted product information were named hypothetical genes.

Mapping and quantification of single-cell RNA-seq

Single-cell RNA-seq data were mapped to the *S. mansoni* reference genome v7 (https://parasite.wormbase.org/Schistosoma_mansoni_prija36577) using the 10X Genomics analysis pipeline Cell Ranger (v 2.1.0). We relied on the default cut-off provided by Cell ranger to detect empty droplets. Approximately 67% of sequenced reads mapped confidently to the transcriptome with an average 297,403 reads per cell. In total 3513 cells were sequenced, with a median 918 genes expressed per cell.

Clustering using Seurat

The Seurat package (version 3.1.5) (https://satijalab.org/seurat/) was used to analyse the raw values of the matrix.41 We removed cells that had greater than 30,000 Unique Molecular Identifiers (UMIs) and less than 600 genes per cell. We also removed cells with mitochondrial expression percentage (MT) > 2.5%. We normalised using the NormalizeData function from Seurat (https://satijalab.org/seurat/). Following normalisation, we identified 2000 highly variable genes using the Seurat FindVariableGenes function. We employed two methods to determine the number of PCs for clustering. The first, was the visual inspection of the ElbowPlot as provided by Seurat. The second method uses molecular cross-validation42 to determine the optimal number of PCs required to cluster the dataset (https://github.com/constantan/AMCV/blob/master/code.R). We identified 15 clusters (including two ambiguous clusters) using the FindClusters function from Seurat using the first 25 PCs.

Identifying marker genes and cluster annotation

To annotate each cluster, we manually inspected the top markers for each of the populations (Supplementary Data 2) and compared to the top markers curated from the literature (Supplementary Data 3). We used the Seurat package to identify marker genes for each population using the function FindMarkers and test.use = TRUE, return.thresh = 0.2, 0.3 or 0.4, depending on the cluster. The top markers for each cluster were then tested using topGO (https://bioconductor.org/packages/release/bioc/html/topGO.html) for all three categories (BP, MF, and CC). The threshold was set as FDR < 0.01.

Gene ontology (GO) analysis

The Gene Ontology (GO) annotation for *Schistosoma mansoni* was obtained by running InterProScan v5.25-64.0 (https://www.ebi.ac.uk/interpro/). GO term enrichment was performed using the weight01 method provided in topGOv9.23 v4.0 (available at http://bioconductor.org/packages/release/bioc/html/topGO.html) for all three categories (BP, MF, and CC). For each category, the analysis was restricted to terms with a node size of > 5.

STRINGdb analysis

We used STRINGdb to identify possible gene interactions that would enable us to differentiate between segmental clusters. Briefly, the *S. mansoni* v7 gene identifiers for the tagmem cluster with AUC ≥ 0.7 in Seurat were converted to *S. mansoni* V5 gene identifiers. The V5 gene identifiers are analysed in STRINGdb v11.0.45, Human, Caenorhabditis elegans and Drosophila melanogaster orthologues of these genes were identified from WormBase ParaSite.46

Finding Schmidtea-Schistosoma orthologues for random forest analysis

We accessed the transcriptome reference (version 6) for the assexual strain of *Schmidtea mediterranea* from planimine.12 This version is a Trinity de novo transcript assembly.43 We used orthoMCL to find one-to-one orthologues between *S. mediterranea* and *S. mansoni* as follows: (i) Smp and Sdm gene identifiers were collapsed to their root names (a single spliceform was taken for each gene) and clusters chosen with a single Schmidtea orthologue gene; (ii) Schmidtea genes present on haplotypic contigs were removed where applicable to reduce multiple gene sets to a single copy; and (iii) Single representative *Schmidtea* genes were randomly selected from orthologous groups containing many Schmidtea and only a single Schistosoma gene and where there was no mapping to another orthologue cluster. This gave us a set of *Schimdeata-Schistosoma* orthologous gene pairs. All Schmidtea genes were then replaced in the Schistosoma single-cell matrix with their *S. mediterranea* orthologues.

Immunostaining and lectin labelling

For lectin labelling, fluorescein succinylated wheat germ agglutinin (sWGA) (Vector Labs) was used at 1:500 dilution in PBS. Parasites were incubated in FISH blocking solution (5% horse serum (Sigma, H1270-500ML) and 0.3% Tween 20) 20 min for schistosomula or 20 µg/mL proteinase K for 30 min for adults, and fixed for ~0.5 h at room temperature. Prior to fixation, schistosomula were dehydrated in methanol and kept in −20 °C until usage. Parasites were rehydrated, permeabilised by 10 µg/mL proteinase K (ThermoFisher, 25530049) for 10–20 min for schistosomula or 20 µg/mL proteinase K for 30 min for adults, and fixed for 10 min immediately following proteinase K treatment.

For hybridization, labelled FISH and WISH riboprobes were generated using either DIG (digoxigenin)-12-UTP (Sigma, 11209256901), DNP (dinitrophenol)-11-UTP (PerkinElmer, NE555001) or fluorescein-12-UTP (Sigma, 11427857910). DIG-riboprobes were used for single FISH and WISH, and FITC- and DNP- riboprobes were used for double FISH. Anti-DIG-POD (1:500, MilliporeSigma, 11093274910), anti-DNP-POD (1:500 for WISH or 1:2000 for FISH and WISH) and anti-DIG-AP (MilliporeSigma, 11093274910) antibodies were used for FISH and anti-DIG-AP (MilliporeSigma, 11093274910) antibodies were used for double FISH experiments. Antifade (Agar Scientific, 100342) was used for mounting the slides. 3,3′-diaminobenzidine (DAB) (Sigma, D2600) was used for colour development in situ hybridization chain reaction (HCR) experiments were purchased from Molecular Instruments (Los Angeles, California, USA). Schistosomules were fixed as described above and mounted using DAPI mount medium (Sigma, D9542), 100 µm (Trix pH 7.5, 150 mM NaCl, 0.3% Triton X-100) overnight at 4 °C and anti-FITC-POD and anti-DNP-POD was incubated for 1 h at room temperature before or after overnight incubation at 4 °C. Tyramide conjugates were synthesized from N-hydroxy-succinimidyl esters of 5-(and 6)-carboxytetramethylrhodamine (TAMRA) (Molecular Probes) or DyLight 633 (Pierce). For tyramide signal amplification, fluorescein-conjugated tyramide (TAMRA or DyLight 633) diluted 1:250–1:500 in 100 mM borate buffer pH 8.5, 2 M NaCl, 0.02% H2O2, and 20 µg/mL 4-iodophenylboronic acid. For double FISH experiments, residual peroxidase activity was quenched by incubating for 45 min in 100 mM sodium azide (Fisher) diluted in PBS. Primers used for cloning a fragment of marker genes and riboprobe generation are listed in Supplementary Data 4.

For the gene *MyoD*, a probe, buffers and hairpins for third generation in situ hybridization chain reaction (HCR) experiments were purchased from Molecular Instruments (Los Angeles, California, USA). Schistosomules were fixed as described above and mounted using DAPI mount medium–G (Southern Biotech). Experiments were performed following the protocol developed for whole-mount nematode larvae13 and imaged on a confocal laser microscope (SP8 Leica).
dextran (Thermo Fisher Scientific, D3312) was added to the mesh and parasites transferred into a 1.7 ml tube. Immediately after the transfer, schistosomula were vortexed at 70% vortex power, transferred back to 20 µm mesh and flushed with schistosomula fixative (4% formaldehyde, 0.2% Triton X-100%, 1% NP-40 in PBS) before fixing.

Imaging and image processing. Schistosomula FISH images were taken using an Andor Spinning Disk WDB system (Andor Technology). Adult FISH images were taken using a Zeiss LSM 880 with Airyscan (Carl Zeiss) confocal microscope. Colorimetric WISH images were taken using AxioZoom.V16 (Carl Zeiss). Imaris 9.2.9 (Bitplane) and Photoshop (Adobe Systems) was used to process acquired images of maximum intensity projections (of z-stacks) and single confocal sections for linear adjustment of brightness and contrast.

Calculating cell numbers in schistosomula. Staining schistosomula to visualise cells: Cercariae and parasites at 0, 24 and 48 hr post-transformation were fixed in 5% (v/v) formaldehyde 4% (w/v) sucrose in PBS for 15 min (throughout staining worms were in 1.5 ml microtube flasks and spun down 2 min 500G when exchanging solutions). The fixed and stained parasites were washed 3x in PBS and resuspended in 0.4% PBS in ddH2O (to discourage salt crystals). 10 µl parasites were pipetted onto a glass slide and excess liquid drawn away with whatman filter paper. 10 µl ProLong Gold antifade mountant was added to the sample and a glass coverslip dropped over gently. Slides were left at room temperature overnight to set before imaging. A Zeiss LSM 510 Meta confocal microscope was used in conjunction with the Zen software to take a series of Z stacks, imaging 3 individual worms from each timepoint.

Image analysis to calculate cell numbers in schistosomula: Z stack images were imported into ImageJ software (import=image) sequence then converted to RGB and split by colour (Colour > split channels) and the blue channel used for further processing. Using the metadata associated with the file the scale parameter was adjusted. The image was cropped if necessary to show only one parasite. The threshold was set to remove any background. The signal above threshold was measured for the whole image stack (image can be inverted and converted to 8 bit for this purpose). The ROI manager was used to measure individual cell nuclei through the Z stack. A line was drawn around the cell on each image of the stack where present. This was imported to the threshold filtered stack and the area measured. 10 nuclei that were clearly defined and of diverse location and size were measured for each worm to obtain an average nuclei size and signal. In all cases as well as X and Y, Z was used to account for the full volume of the nuclei. The total volume for above threshold signal in the worm was divided by the average nuclei size to obtain an estimate for cell number.

Statistics and reproducibility. For schistosomula FISH, single FISH was initially performed for each gene and consistency in expression was determined across 5–10 worms. Following single FISH, multiple double FISH experiments were performed with various marker combinations, unless the marker has previously been extensively used in other studies (e.g., histone h2b (Smp_105410)6,59,61, meglutamine (Smp_108390)6,47,61, tsp-2 (Smp_194830)6), consistent in expression patterns was determined between 5–10 parasites. Following single FISH, multiple double FISH experiments were performed with various marker combinations, unless the marker has previously been extensively used in other studies (e.g., histone h2b (Smp_105410)6,59,61, meglutamine (Smp_108390)6,47,61, tsp-2 (Smp_194830)6), consistent in expression patterns was determined between 5–10 worms within the experiment, and also across different experiments including single FISH. For schistosomula dextran labelling, two independent experiments were performed with 30–50 worms in each experiment. For adultISH, in most cases, we first performed WISH on male and ~5 females and confirmed the consistency in expression across animals, unless the marker has previously been extensively used in other studies (e.g., histone h2b (Smp_105410)6,59,61, meglutamine (Smp_108390)6,47,61, cathepsin B (Smp_103610)6,47,61, tsp-2 (Smp_133560)6,47). Consistency in expression pattern was determined between 5–10 worms within the experiment, and also across different experiments including single FISH.

N = 2, 1. The complete list of the number of in situ hybridization is shown in Supplementary Data 7.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The raw data used in this study has been deposited in ENA with accession number PRJEB34071. The individual sample IDs in ENA are the following: ERS371426 (FUGI_R_D719553), ERS371422 (FUGI_R_D715952) and ERS371421 (FUGI_R_D719525). The data has also been deposited in ArrayExpress with accession number E-MTAB-9684. The data can be visualised and navigated from the following website: https://www.schistosomulaeatlantis.org/.

Code availability. The code used to analyse the data can be found using the following address: https://zenodo.org/badge/latestdoi/27103901047.

Received: 11 December 2019; Accepted: 13 November 2020; Published online: 18 December 2020

References
1. Hoffmann, K. F., Brindley, P. J. & Berriman, M. Medicine. Halting harmful helminths. Science 346, 168–169 (2014).
2. Basch, P. F. Schistosomes: development, reproduction, and host relations (Oxford Univ. Press, New York, 1991).
3. Cisil, D., Pica-Mattoccia, L., Basso, A. & Guidi, A. Schistosomiasis control: pragmatist forever? Mol. Biochem. Parasitol. 195, 23–29 (2014).
4. Dorsey, C. H., Cousins, C. E., Lewis, F. A. & Stirewalt, M. A. Ultrastructure of the Schistosoma mansoni cercaria. Micron 33, 279–323 (2002).
5. Hockley, D. J. & McLaren, D. J. Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int. J. Parasitol. 3, 13–25 (1973).
6. Collins, J. J. 3rd, Wendi, G. R., Iyer, H. & Newmark, P. A. Stem cell progeny contribute to the schistosome host-parasite interface. Elife 5, e12473 (2016).
7. Wendi, G. R. et al. Flatworm-specific transcriptional regulators promote the specification of tegumental progenitors in Schistosoma mansoni. elife 7, e33221 (2018).
8. Wilson, R. A. The saga of schistosome migration and attrition. Parasitology 136, 1581–1592 (2009).
9. Wilson, R. A. & Barnes, P. E. The terminal Schistosoma mansoni: observations on the formation, structure and composition of cytoplasmic inclusions in relation to tegument function. Parasitology 68, 239–258 (1974).
10. Sulbaran, G. et al. An invertebrate smooth muscle with striated muscle myosin filaments. Proc. Natl Acad. Sci. USA 112, E5660–E5668 (2015).
11. Halton, D. W. & Gustafsson, M. K. S. Functional morphology of the platyhelminth nervous system. Parasitology 113, S47–S72 (1996).
12. Collins, J. J. 3rd, King, R. S., Cogswell, A., Williams, D. L. & Newmark, P. A. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl. Trop. Dis. 5, e1009 (2011).
13. Lu, Z. et al. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci. Rep. 6, 31150 (2016).
14. Senft, A. W., Philipps, D. E. & Pelofsky, A. H. Electron microscope observations of the integument, ame cells, and gut of Schistosoma mansoni. Int. J. Parasitol. 47, 217–229 (1961).
15. Wang, B., Collins, J. J., 3rd & Newmark, P. A. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. Elife 2, e00768 (2013).
16. Wang, B. et al. Stem cell heterogeneity drives the parasitic life cycle of Schistosoma mansoni. elife vol 7, e35449 (2018).
17. Hoffmann, K. F., Johnston, D. A. & Dunne, D. W. Identification of Schistosoma mansoni gender-associated gene transcripts by cDNA microarray profiling. Genome Biol. 3, RESEARCH0041 (2002).
18. Fitzpatrick, J. M. et al. An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Mol. Biochem. Parasitol. 141, 1–13 (2005).
19. Chai, M. et al. Transcriptome profiling of lung schistosomula, in vitro cultured schistosomula and adult Schistosoma japonicum. Cell. Mol. Life Sci. 63, 919–929 (2006).
83. de la Torre-Escudero, E., Pérez-Sánchez, R., Manzano-Román, R. & Oleaga, A. Protonephridia. J. Protom. 94, 513–526 (2013).

84. Ilicic, T. et al. Classiﬁcation of the Schistosoma mansoni tegument forms from vesicle erections of a cytotype network. Parasiology 122, 67–73 (2001).

85. de la Torre-Escudero, E., Pérez-Sánchez, R., Manzano-Román, R. & Oleaga, A. In vivo C. elegans biotinylation of Schistosoma bovis adult worms and proteomic analysis of tegumental surface proteins. J. Proteom. 94, 513–526 (2013).

86. Shindou, H. & Shimizu, T. Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 284, 1–5 (2009).

87. Matsuda, S. et al. Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate speciﬁcity. Genes Cells 13, 879–888 (2008).

88. Li, X.-H. et al. Microexon gene transcriptional proﬁles and evolution provide insights into blood processing by the Schistosoma japonicum esophagus. PLoS Negl. Trop. Dis. 12, e006225 (2018).

89. Davies, E. L. et al. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. Elife 6, e22502 (2017).

90. Davies, E. L. et al. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. Elife 6, e22502 (2017).

91. Adam, M., Potter, A. S. & Potter, S. S. Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. Development 144, 3625–3632 (2017).

92. Ilicic, T. et al. Classiﬁcation of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).

93. Wilson, R. A. & Webster, L. A. Protonephridia. Biol. Rev. Camb. Philos. Soc. 49, 127–160 (1974).

94. Evans, T. A., Jurg, E. & Pearce, E. J. A bone morphogenetic protein homologue in the parasitic ﬂatworm, Schistosoma mansoni. Int. J. Parasitol. 39, 281–287 (2009).

95. Maciel, L. F. et al. Weighted gene co-expression analyses point to long noncoding RNA hub genes at different life-cycle stages. Front. Genet. 10, 823 (2019).

96. Mann, V. H., Morales, M. E., Rinaldi, G. & Brindley, P. J. Culture for genetic manipulation of developmental stages of Schistosoma mansoni. Parasitology 137, 451–462 (2010).

97. Peak, E., Chalmers, I. W. & Hoffmann, K. F. Development and validation of a quantitative, high-throughput, ﬂuorescent-based bioassay to detect schistosoma viability. PLoS Negl. Trop. Dis. 4, e759 (2010).

98. Batson, J., Roey, L. & Webber, J. Molecular Cross-Validation for Single-Cell RNA-seq. Preprint at https://doi.org/10.1101/786269 (2019).

99. Adrian Alexa, J. R. topGO: Enrichment Analysis for Gene Ontology (2019).

100. Szklarczyk, D. et al. STRING v11: protein-protein association networks with experimental datasets. Nucleic Acids Res. 45, D613 (2017).

101. Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).

102. Brandl, H. et al. PlanMine – a mineable resource of planarian biology and biodiversity. Nucleic Acids Res. 44, D764–D773 (2016).

103. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

104. Li, L., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL: identiﬁcation of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

105. Breiman, L. Random forests . Mach. Learn. 45, 5–32 (2001).

106. Choi, H. M. et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 145 (2018).

107. Diaz Soria, C. L., Tracey, A. & Zhiqiang, L. Single-cell atlas of the ﬁrst invertebrates in the human parasite Schistosoma mansoni. Github https://zenodo.org/badge/latestdoi/27/1039010 (2020).