Mast cells: from lipid droplets to lipid mediators

Andrea DICHLBERGER*,†, Petri T. KOVANEN* and Wolfgang J. SCHNEIDER†

*Wihuri Research Institute, Helsinki, Finland, Kalliolinnantie 4, 00140 Helsinki, Finland
†Department of Medical Biochemistry, Medical University Vienna, Max F. Perutz Laboratories, Dr. Bohrgasse 9/2, 1030 Vienna, Austria

Abstract

LDs (lipid droplets) are metabolically highly active intracellular organelles. The lipid and protein profiles of LDs are cell-type-specific, and they undergo dynamic variation upon changes in the physiological state of a cell. It is well known that the main function of the LDs in adipocytes is to ensure energy supply and to maintain lipid homeostasis in the body. In contrast, LDs in inflammatory cells have been implicated in eicosanoid biosynthesis, particularly under inflammatory conditions, thereby enabling them to regulate immune responses. Human mast cells are potent effector cells of the innate immune system, and the triacylglycerol (triglyceride) stores of their cytoplasmic LDs have been shown to contain large amounts of arachidonic acid, the main precursor of pro-inflammatory eicosanoids. In the present review, we discuss the current knowledge about the formation and function of LDs in inflammatory cells with specific emphasis on arachidonic acid and eicosanoid metabolism. On the basis of findings reported previously and our new observations, we propose a model in which lipolysis of LD-triacylglycerols provides arachidonic acid for lipid mediator generation in human mast cells.

Key words: arachidonic acid, eicosanoid, lipid droplet, lipid mediator, mast cell, triacylglycerol (triglyceride)

GENERAL FEATURES OF LIPID DROPLET BIOLOGY

LDs (lipid droplets) are dynamic organelles in the cytoplasm of many cell types. They are most easily recognized and visible in adipocytes and in macrophage foam cells, two types of cell in which the biology of LDs has been studied most extensively. In these and other cells, such as neutrophils and eosinophils, LDs have been shown to contain a large range of lipids and to be associated with an ever-growing number of newly discovered regulatory proteins and enzymes (reviewed in, for example, [1–7]). Originally, LDs were modelled as simple structures analogous to lipoprotein particles, i.e. consisting of a core of lipid esters and a surface lipid monolayer harbouring resident and exchangeable specific proteins. In adipocytes, the main component of the neutral lipid core of LDs are TAGs (triaclylglycerols), whereas, in macrophages/foam cells, the core consists mainly of CEs (cholesteryl esters). In addition, DAGs (diacylglycerols), retinylsters [7–9] and ether lipids have been shown to be components of the LD cores in different cell types [10,11]. The LD surface monolayer is viewed as consisting of PLs (phospholipids), free cholesterol and lysophospholipids. However, it is likely that many minor lipid components of both the core and the surface layer of LDs have not yet been identified. This assumption appears to be supported by a growing body of experimental evidence, suggesting that the surface monolayer model of LDs is too simple. Further evidence for this notion is provided by recent biophysical studies of circulating lipoproteins, notably of LDL (low-density lipoprotein) particles [12] and/or VLDL (very-low-density lipoprotein) [13]. These investigations show that the resident apolipoprotein of these particles, ApoB (apolipoprotein B)-100, probably interacts in a dynamic fashion not only with the molecules of the surface PL layer, but also with components of the neutral lipid core. This property facilitates the formation of an interfacial third layer between the two lipid compartments [12] and, owing to the inherent conformational flexibility of the protein, permits dynamic adaptation to the different sizes of VLDL and LDL required for stabilization of the particles [13]. Interestingly, comparative proteomic studies of LDs in a variety of species, e.g. in yeast, Drosophila and several mammalian species (for example [4]), suggest that the core of LDs consists of several concentric layers of steryl esters which surround an inner core of TAG molecules. Indeed, evidence for...
such a model has been provided for the yeast *Saccharomyces cerevisiae* [14]. Other models perceive LDs as being built of curled ER (endoplasmic reticulum) with associated ribosomes immersed in secreted TAGs/CES, covered by a PL monolayer that, in fact, may be the cytoplasmic leaflet of the ER [15,16]. This multitude of suggested models probably reflects the observed large degree of inhomogeneities in size and contents of LDs, their wide variety of functions and their adaptation to different and/or rapidly changing metabolic conditions occurring in the LD-containing cell types. To avoid confusion, it is important to note that, depending on the emphasis of the respective studies, similar or identical structures have been referred to as fat bodies, spherosomes or lipid bodies in the literature. In addition, LDs of adipocytes have been termed adiposomes [17–19], which unfortunately is also the name chosen in some reports for adipocyte-secreted microvesicles [20,21]. In the present review, we designate the lipid-filled cytoplasmic structures and/or organelles as LDs.

Our knowledge about the lipid components of LDs, and also that about the LD proteome facilitating and/or regulating the assembly and degradation of LDs as well as about the utilization of specific molecules of LDs, is far from complete. The metabolic functions of LDs can be grouped into anabolic reactions, which include fatty acid synthesis and activation, and biosynthesis of sterols and TAG molecules, and catabolic reactions, which include hydrolysis, mobilization and further metabolism of the various components, particularly the fatty acids of PLs, steryl esters and TAGs. The proteins identified early on as actors in this dynamic picture include the PAT proteins perilipin/adipophilin/TIP-47, S3-12 and OXPAT (for a suggested nomenclature of LD proteins, see [22]), certain Rab proteins [23,24] and caveolins [24–27], a large number of lipid metabolic enzymes, lipolysis-modulating proteins and lipid transport proteins, and kinases and phosphatases acting on lipids and proteins (reviewed, for example, in [1,6]). Moreover, it is intriguing that an increasing number of proteins classically defined as residents of other cellular membranes and/or organelles have been proposed or demonstrated to be components of LDs. Since the ‘foreign’ proteins or subsets thereof are consistently co-isolated with highly purified LDs, it has been argued that LDs have tight associations and interactions with mitochondria, ER domains, endosomes and peroxisomes [3,16,28,29]. Such associations would enable LDs to perform a multitude of functions traditionally assigned to other subcellular organelles. The metabolic features of LDs as sites of storage and mobilization of lipids require the ability to rapidly change their complement of proteins as well as lipids in response to extracellular cues. Indeed, many of the above-described LD components can undergo large alterations in their numbers and metabolic state, for example in their phosphorylation status [3,7], without compromising the nature of these essential organelles.

The most easily observed function of LDs, i.e. accumulation of lipids for storage via influx, has been the starting point for attempts to delineate an integrated view of LDs as important organelles for assisting intracellular protein and lipid transport, which includes the mobilization and regulated efflux of lipids [5,6,30]. The rapid turnover of key LD components can perfectly fulfill the requirements for fatty acids to fuel cells, liberate lipid components for membrane synthesis, deliver precursors for hormone synthesis and generate secretory signalling molecules (lipid mediators) via enzymatic conversion of stored precursors. Inflammatory cells, including one particularly interesting cell type, the MC (mast cell), produce and secrete powerful lipid mediators [31]. The mechanism underlying the generation of these mediators by MCs and the involvement of LDs in the process are the focus of the present review and are discussed below.

LD FORMATION IN INFLAMMATORY CELLS

The molecular details of the processes of initiation and growth of LDs in any type of cell are still poorly understood. One reason for this shortcoming is that the experimental means to determine the mechanism and dynamics of LD formation are severely limited, for example by the fact that the size of a nascent LD is below the limits of resolution of light microscopy. Electron microscopic methodology, on the other hand, is limited to analysis of static images. Thus unambiguous experimental evidence for the mode of LD initiation is lacking. Notwithstanding this limitation, different models have been proposed, four of which can be deduced from the literature, as summarized previously in [6]. In short, these models include: (i) the ‘oiling out’ of TAGs synthesized in situ between the two ER leaflets [5]; (ii) bicelle formation, in which a lipid lens is excised from the ER [32]; (iii) budding of a bilayer vesicle, whose intramembranous space becomes filled with neutral lipids [6]; and (iv) LD growth by transfer of ER-derived neutral lipids into a concave depression (‘egg cup’) of the ER membrane [33]. The ‘egg cup’ model is based on data obtained by freeze–fracture electron microscopy, and in fact disputes that LDs form within the ER membrane bilayer [15]. In all of these models, LDs form towards the cytoplasmic aspect of the ER; however, LDs could also be of luminal origin [34]. Regardless of which model(s), if any, will ultimately prevail, all of these proposed mechanisms specify the ER as the key organelle for LD formation, and thus this feature appears to be the only well-established fact. In support of this conclusion, enzymes for the synthesis of a vast collection of lipids are resident proteins of the ER. Finally, a variation of the vesicle budding model posits that the droplets may never completely leave, but rather remain connected to the outer leaflet of the ER membrane [3,34], a notion which is in agreement with the cited proposals above for the internal structure of LDs [14–16].

Besides adipocytes and macrophages, the biology of the formation and functions of LDs has been studied in eosinophils and neutrophils in considerable detail. Melo et al. [35] have comprehensively summarized available data on the effects of exogenously added molecules as inducers of LD formation (see Table 1 in [35]) in various cell types. The lipid components reported to increase and/or stimulate LD formation were unsaturated, but not saturated, fatty acids, PAF (platelet-activating factor) and the eicosanoid PG (prostaglandin) D$_2$ (in eosinophils only). Among the unsaturated fatty acids, early investigations dealt with the incorporation of AA (arachidonic acid), the precursor of eicosanoids, as a tracer that indicated LD growth
in human lung MCs and macrophages [36,37], in neutrophilic leucocytes [38] and in eosinophils [38,39]. Accordingly, studies on the cellular uptake of radiolabelled AA, as analysed by electron microscopic autoradiography, showed that exogenous AA was predominantly incorporated into LDs of MCs, macrophages, neutrophils, eosinophils and epithelial cells [36,38,40]. Lipid analysis of purified LDs provided confirmatory evidence that these organelles are reservoirs of arachidonoyl lipids. Importantly, eosinophils incorporated AA mainly into the PL pool [38], whereas in monocytes/macrophages neutral lipids appeared to be the major target of exogenous AA [41,42]. Comparative analysis of different human circulating inflammatory cells (monocytes, neutrophils, eosinophils and platelets) and tissue cells (lung macrophages and MCs) revealed macrophages and especially MCs to contain large amounts of AA. In fact, 23 ± 6 and 45 ± 9% of the total cellular AA is stored in the neutral lipid fraction of macrophages and MCs respectively, with ~80% of the AA in neutral lipids residing in TAGs in both cell types [43]. However, neither the function(s) nor the mode of utilization of AA from the large TAG pool has been defined as yet.

As will be discussed in the next section, the identification of TAG-hydrolysing enzymes in LDs [16,17,28] is compatible with the proposal that AA from TAGs of LDs could be an indirect or direct source for cellular eicosanoid synthesis. This possibility is particularly relevant in the context of the significant amount of eicosanoids produced and secreted by activated MCs [31,44]. These recent findings suggest that the LDs of MCs constitute a new tool for studies of the regulatory mechanisms focusing on AA metabolism, eicosanoid biosynthesis and the release of pro-inflammatory lipid mediators.

ACTIVATED MCs RELEASE PREFORMED PROTEINACEOUS AND NEWLY GENERATED LIPID MEDIATORS

MCs are highly potent effector cells residing at mucosal, submucosal and perivascular areas throughout the body. The expression of a comprehensive set of different cell-surface receptors and their linkage to multiple signalling pathways participating in the exocytotic pathways enables these cells to rapidly respond to distinct stimuli by acutely releasing highly active mediators, hence regulating inflammation, host defence, tissue remodelling and homeostasis [45]. Besides their classical role in the development of IgE-mediated acute hypersensitivity reactions, including asthma and other allergic disorders, MCs exert pathophysiological effects in a wide range of different chronic inflammatory diseases, for example atherosclerosis, rheumatoid arthritis and obesity [46]. MCs originate in the bone marrow from pluripotent haemopoietic stem cells, circulate as progenitors and ultimately find their way into the various tissues of the body. Tissue homing of MC progenitors is mainly directed by KITLG [KIT ligand; also termed SCF (stem cell factor)], which is crucial for the development and survival of MCs. Mature tissue MCs are long-lived highly granulated cells whose activation and subsequent exocytosis of granules (degranulation) can be triggered by immunological [for example FcεRI (high-affinity receptor for IgE) cross-linking] and non-immunological (for example, pathogens and peptides) stimuli, thus leading to granule-mediated modification of the microenvironment of the activated cells [45]. The secretory granules of MCs are filled with various preformed mediator molecules, the best known of which are histamine, serotonin, heparin, the proteases tryptase, chymase and cathepsin G, as well as various cytokines, including IL (interleukin)-8 (reviewed in [45,47]).

Besides the secretion of preformed mediators during degranulation, MC activation also triggers the release of acutely de-novo-synthesized lipid mediators such as eicosanoids, but possibly also growth factors and various cytokines [45]. Compared with the comprehensive knowledge about the identity of preformed proteinaceous mediators in the granules of MCs, our insights into the biology of various lipid mediators are quite limited. In addition, given the lack of knowledge about the mechanisms for their secretion and their unknown, but probably very short, life span, it can be assumed that not all lipid mediators have been identified yet. Among the demonstrated lipid mediators of MCs, eicosanoids play a prominent role. The common precursor molecule for eicosanoids is AA, an ω-6 polyunsaturated fatty acid with 20 C-atoms and four double bonds at positions 5, 8, 11 and 14 (i.e., 5,8,11,14-eicosatetraenoic acid). There are three major pathways of eicosanoid biosynthesis (see Figure 1), in which free AA is oxidized by: (i) COX (cyclooxygenase)-1 and/or COX-2 to form PGs, (ii) LOs (lipoxygenases) to generate HPEETEs (hydroperoxyeicosatetraenoic acids) and subsequently LTs (leukotrienes), and (iii) cytochrome P450 epoxygenase and ω-hydroxylase to produce EETs (epoxyeicosatrienoic acids) and HETEs (hydroxyeicosatetraenoic acids) respectively [48,49]. It is well established that, upon activation, MCs rapidly generate eicosanoid molecules of three kinds from AA [31]: the prostaglandin PGD2, and the LTs LTBA and LTC4. A recent study reported for the first time comprehensive data about the phenotype-specific production and release of lipid mediators from murine MCs: 90 lipid mediators originating from the three major eicosanoid biosynthetic pathways were characterized by LC (liquid chromatography)–tandem MS [49]. The expression of COX-1 and COX-2 in human MCs is well-studied [48], as well as the expression of 5-LO [50] and 15-LO type 1 [51].

Table 1

Species	Source	Reference(s)
Human	MCs from lung tissue	[36,37,83]
	MCs derived from cord blood CD34+ progenitors	[58]
	MCs derived from peripheral blood CD34+	[55]
	MCs (LAD 2) originally derived from bone-marrow-derived progenitors of an MC sarcoma/leukaemia patient	[55]
Mouse	MCs derived from bone marrow progenitors	[86]
Rat	Rat basophilic leukaemia cell line (RBL-2H3)	[86]
Inasmuch as the eicosanoid mediators can regulate MC functions in vivo by autocrine and paracrine mechanisms and the LTs exert pro-inflammatory actions on arterial endothelial cells and smooth muscle cells [52], LT production by arterial MCs may contribute to their pro-inflammatory and pro-atherogenic activities in the arterial wall. This raises the question about the mechanisms by which immunomodulatory cells, including MCs, can promote inflammatory states without inducing a severe allergic reaction or anaphylactic shock due to massive release of inflammatory mediators. Regarding this question, Theoharides et al. [45] have proposed a model for mediator secretion by MCs, which they call ‘differential’ or ‘selective’ release of the mediators, which is not coupled to degranulation. This model of selective release of mediators is also supported by a recent study on mouse BMMCs (bone-marrow-derived MCs) using an in vitro model of cell injury in which MCs release LTs, IL-6 and TNF (tumour necrosis factor)-α, but not histamine, due to the binding of fibroblast- and keratinocyte-derived IL-33 to T1/ST2 receptors on the surface of MCs [53].

In contrast, much less is known about the role of LDs as a site of lipid mediator generation. The seminal observation by Dvorak’s group [36] in 1983 that LDs (then termed lipid bodies) in lung MCs serve as storage sites for AA was the first to implicate LDs in eicosanoid biosynthesis in MCs. Surprisingly, in the three decades since publication of these results, only fragmentary novel information about the lipid and protein composition of MC LDs has been gained. Interestingly, LDs are found more frequently in MCs residing in regions of inflammation [54]. As the LDs in MCs collectively contain only minute amounts of TAGs compared with adipocytes and hepatocytes, they clearly must function in processes distinct from cellular and/or systemic TAG metabolism. Such processes probably include various intracellular pathways of lipid signalling and the release of lipid mediators. Indeed, the TAGs of LDs may contribute to the pool of AA utilized for MC lipid mediator secretion, as suggested by recent work from our laboratory [55]. This work was facilitated by the establishment of a protocol for the generation of human MCs under well-defined conditions in the absence of serum [56], and is also in accordance with findings demonstrating that human cord-blood-derived MCs contain LDs after in vitro differentiation and cultivation in the presence of 10% FBS (fetal bovine serum) [57,58]. Under serum-free culture conditions, we could generate mature and functional human MCs from peripheral-blood-derived CD34+ progenitor cells in the presence of KITLG [56]. This protocol does produce exclusively connective tissue-type MCs, i.e. MCs that contain both tryptase and chymase in their granules. Interestingly, differentiation of the isolated CD34+ progenitors into mature MCs was found to be accompanied by a steady
increase in the number and size of LDs [55]. When we incubated the MCs with unsaturated fatty acids, but not with saturated fatty acids, the formation of LDs was accelerated, and, in agreement with the early findings by Dvorak et al. [36], incubation of MCs with AA led to its efficient incorporation into the TAG pool of the MCs, which we could show to be the predominant lipid class in the LDs of MCs. In fact, by tandem MS, a unique species of TAG molecules containing arachidonoyl residues in all three positions could be demonstrated as components of LDs in MCs [55]. Furthermore, experiments designed to analyse the fate of LDs following stimulus-induced activation of the MCs showed that secretion of cytoplasmic granules was neither associated with a release of LDs nor was the appearance of LDs altered [55]. These results established an axis connecting extracellular AA with its uptake and subsequent delivery to the TAG pool of LDs in human MCs, and provide a basis for future experiments exploring the yet unknown mode of synthesis and release of lipid mediators by inflammatory cells. In the next section, we describe the current status of knowledge about this aspect of the pro-inflammatory function of such cells.

SOURCES AND SITES OF LIPID MEDIATOR SYNTHESIS IN MCs

Most studies on LDs with human primary cells have been performed with isolated and purified blood leucocytes, notably basophils, neutrophils and eosinophils (reviewed in [35,54,59]). Since the circulating blood does not contain MCs, in vitro studies on MC biology require either isolation of MCs from a tissue or isolation of circulating MC progenitors and subsequent induction of their maturation under well-defined culture conditions. The difficulty of either method for obtaining mature human MCs probably explains the paucity of investigations on LDs in human MCs. The early work on LDs in human MCs have been limited to MCs isolated from human lungs, a rich source of MCs [37,43,60–62], but only few observations and/or studies about LDs in MCs derived from other sources have been reported (summarized in Table 1). However, it remains to be seen whether observations made in these cells in fact represent the characteristics of bona fide mature MCs in the respective species. Therefore we will restrict ourselves to studies with mature cells of the myeloblastic lineage (basophils, neutrophils and eosinophils) isolated from blood and/or terminally differentiated MC populations generated in vitro from progenitor cells.

Any cell harbouring LDs must maintain an appropriate amount of lipids in its complement of LDs in order to be able to react to extracellular cues in a more or less rapid fashion. As the neutral lipids in the core of the LDs provide fatty acids for a variety of purposes, the fatty acids must be rapidly replenished by re-esterification/re-acylation reactions. The same holds true for PLs in the peripheral layer of LDs. To facilitate cellular lipid homeostasis, fatty acids likely recycle between the PLs and TAGs. The PL molecules derived from the LDs themselves and/or from cellular lipid bilayer membranes and TAG molecules could be recycled by acyltransferase-catalysed reactions utilizing PL- and TAG-derived fatty acids respectively. Despite the obvious validity of this metabolic concept, the biophysical problem of how lipolytic enzymes access their substrates within droplets has not been solved. To gain access to the hydrophobic substrates, either the enzyme must translocate its catalytic portion through the PL monolayer or a core lipid domain must emerge on the surface of the monolayer to become accessible to the lipase. It appears that the access of lipases to the LD core is regulated, at least in part, by PAT proteins. For instance, it has been shown that perilipin phosphorylation may be crucial for allowing HSL (hormone-sensitive lipase) to gain access to its substrates [63].

The catabolism of PLs can occur by employing a wide variety of phospholipases. The bulk of literature states that AA is mobilized by the action of various cytosolic and secretory enzymes belonging to the superfamily of the PLA2 (phospholipase A2) enzymes [64], which have been characterized as hydrolysing the sn-2 fatty acyl bond of membrane glycerophospholipids. Depending on the stimulus [65], PC (phosphatidylcholine), PE (phosphatidylethanolamine) [66,67] and PI/PS (phosphatidyl-inositol/phosphatidylserine) [65,68] are important sources for AA production among the PLs, although the localization(s) of these PL pools has not been determined. However, PL species which are not prominent components of membranes, such as PA (phosphatidic acid) [69], MAGs (monoacylglycerols) and even lysophospholipids (reviewed in [70]), have also been proposed as AA donors in IgE-receptor-mediated activation of MCs [71]. The best-studied type of PLA2, cPLA2, (cytosolic PLA2, also termed group IV PLA2), liberates AA from the ER, phagosomal membrane and the nuclear envelope, but, as claimed in [44], not from the plasma membrane. It is important to note that, although the association of cPLA2 with LDs has been amply demonstrated, lipolysis by this enzyme of PL molecules in a surface lipid monolayer, such as that on LDs, has yet to be proven directly. In this context, sPLA2s (secretory PLA2s) have been reported to be active also intracellularly, i.e. in the course of their secretion [72]. Since these enzymes also act on the PL monolayer of lipoprotein particles, it is possible, by inference, that not only sPLA2s, but also cPLA2s can act on the single PL leaflet of LDs [73] (see Figure 1).
Fonteh et al. [78] were the first to report that immunologically activated murine BMMCs release sPLA2 activity that contributes to AA production and eicosanoid biosynthesis. Subsequently, these observations were extended by showing that murine BMMCs express all members of the group II subfamily of sPLA2s [79]. However, Fonteh et al. [78] stated that, as in macrophages, it is doubtful that sPLA2s can mobilize AA from the plasma membrane of MCs, in agreement with the above-mentioned claim by Bozza et al. [44]. In a paper by Kikawada et al. [80], cPLA2α in combination with sPLA2 as an amplifier was shown to regulate finally, human group V sPLA2 was suggested to induce group IV A
portant for the clearance of the cell-surface-bound enzyme, but doubtful that sPLA2s can mobilize AA from the plasma mem-
However, Fonteh et al. [78] stated that, as in macrophages, it is
Bozza et al. [44]. In a paper by Kikawada et al. [80], cPLA2
amounts of AA in the TAG pool of the LDs [44]. In such a
setting, acylglycerol-hydrolysing lipases have been suggested to
be important for the clearance of the cell-surface-bound enzyme, but
appeared not to be directly linked to eicosanoid production. Fi-
nally, human group V sPLA2 was suggested to induce group IVA
cPLA2-independent cysteinyl-LT synthesis [82].

The evidence reviewed above is based on the dogma that
PLs are by far the predominant, if not sole, source of AA for
eicosanoid generation. However, this view may need to be mod-
ified in the light of several findings. In agreement with the, not
yet proven, proposal that LDs contain membrane structures har-
bourning mostly ER-derived enzymes in their interior, eicosanoid-
forming enzymes have been immunolocalized within LDs (re-
viewed in, for example, [16,44]). Specifically, PGHS (PGH synthase) 1 and PGH2 (also called COX-1 and COX-2) and LOs (5-LO, and in some cases 15-LO) have been localized to LDs in a variety of cells [44], and also in MCs [83]. The presence of these enzymes in LDs would allow for the focal formation of eicosanoids within LDs and the utilization of the substantial amounts of AA in the TAG pool of the LDs [44]. In such a
setting, acylglycerol-hydrolysing lipases have been suggested to
first liberate AA from TAGs for incorporation into PLs, from
which PL2 activities would then release the acid for conver-
sion into eicosanoids. Alternatively, the MC activation process,
characterized by a rapid production and release of eicosanoids,
would be considerably accelerated by bypassing the intermedi-
ate step described above, i.e. when the AA released from TAGs
could be immediately used as a substrate for COX/LO enzymes (Figure 1). The most obvious candidate lipases for acting on
the acylglycerols for direct release of AAs from TAGs, DAGs and MAGs appear to be ATGL (adipocyte triglyceride lipase), HSL
and MGL (monoglyceride lipase), which are rather ubiquitously
expressed enzymes. In fact, ATGL has already been shown be-
ond doubt to have a crucial role in initiating the lipolytic cascade
of TAGs in adipocyte LDs [84]. However, the mode of fatty acid
liberation from LDs by ATGL may vary widely among different
cell types.

Detailed in vitro and in vivo studies on the stereoselectivity of
ATGL, HSL and DGAT2 (DAG-acyltransferase 2) suggested a
‘three-pool’ model for cellular DAGs in mouse white adipose
tissue [85]. Interestingly, ATGL alone specifically generates sn-1,3
DAGs, whereas, in the presence of its co-activator CGI-58, it also
produces sn-2,3 DAGs. Moreover, DGAT2 was identified to asso-
ciate with LDs, where it prefers ATGL-derived sn-1,3 DAGs for
re-esterification into TAGs. It is proposed that, at least in adipo-
cytes, ATGL-derived sn-1,3 and sn-2,3 DAGs are either substrates
for HSL-mediated catabolism or for DGAT2-mediated TAG syn-
thesis, but do not serve directly as a substrate for PL biosynthesis
or PCK (protein kinase C) activation [85]. To investigate whether
ATGL is also involved in LD lipolysis in other human cell types,
Smirnova et al. [81] modulated the level of the enzyme in HeLa
cells by RNA interference or by overexpression of wild-type and
a mutated form of GFP (green fluorescent protein)-labelled
ATGL respectively. LD size was inversely correlated with ATGL
activity present in the cells, indicating that the enzyme probably
is, in addition to adipocytes, also a key enzyme for LD cata-
bolism in other cell types. Interestingly, ATGL is a member of a
family of lipases with high homology to serine esterases including
the PL2(s) (Figure 4 in [18]). In particular, an invariant serine
residue in the core of the catalytic domain is found in ATGL and
human cPLA2.

A recent report [86] implies that LD content in murine MCs
(the cell line RBL-2H3 and murine BMMCs) is regulated differ-
ently from that in adipocytes (3T3-L1). Although the authors
[86] suggested that lipogenic stimuli, such as insulin, initiate the
formation of LDs in both adipocytes and MCs, the TAG content of
MCs, as measured with a TAG quantification kit, did not increase as
much as that in adipocytes. This finding is interpreted to indi-
cate that LDs of lipogenesis-induced MCs do accumulate lipids
that are different from those in adipocytes. However, lipid staining
of insulin-treated cells with Oil Red O revealed massive accumu-
lation of neutral lipids in LDs of MCs. Furthermore, the authors
interpreted their findings to support the claims that eicosanoid
synthesis is localized to LDs, but such an implication was not
supported by direct analysis of the protein content of these organ-
elles [86]. Thus the experiments described above do not exclude
the possibility that LDs contribute to eicosanoid production from
TAG-derived AA. In fact, studies from our laboratory have shown
that mature human MCs obtained from peripheral-blood-derived
CD34+ progenitors form LDs enriched in AA-containing TAG
species following incubation with the precursor fatty acid [55].
Significantly, the secretion of PGD2 from these cells within 5 min
after IgE/anti-IgE stimulation was attenuated by knocking-down
HSL or ATGL alone and most extensively when both enzymes
were knocked down (A. Dichlberger, S. Schlager, W. J. Schneider
and P. T. Kovanen, unpublished work).

Although the preliminary data described above are compat-
ible, although unlikely, with a direct contribution of TAG-AA for
eicosanoid synthesis, the transfer of AA from the LD TAG pool to
the LD PL monolayer and subsequent release from the monolayer
by PL2 within a few minutes must be studied experimentally.
This requires manipulation of the PL2(s) involved, which, un-
fortunately, have not been unambiguously identified (see above).
However, the release of AA from TAG molecules requires the
reacylation of the DAG produced, a reaction involving the ATP-
consuming activation of the fatty acid to acyl-CoA by long-chain
ACSLs (acyl-CoA synthetases) [87]. Interestingly, even though
reacylation may not occur in the same time frame as hydro-
lysis, siRNA (small interfering RNA)-mediated gene silencing
of ACSL3 and ACSL4 in MCs also reduces the release of PGD2
(A. Dichlberger, S. Schlager, W. J. Schneider and P. T. Kovanen,
unpublished work), which again supports the notion of a direct contribution of the TAG pool of MC LDs to PGD₂ secretion. These experiments provide the basis for future studies on the enzymology and regulation of PGD₂ synthesis, and on the identification of the sources of AA used for conversion into eicosanoids by activated MCs.

HUMAN MCs IN THE PATHOGENESIS OF EICOSANOID-RELATED INFLAMMATORY DISEASES

Regarding the potential clinical significance of the studies discussed in the present review, we wish to emphasize that MCs are among the major producers of eicosanoids, thus contributing to the development of several inflammatory conditions, including asthma, rheumatoid arthritis and atherosclerosis [88]. In particular, MC-derived PGD₂ has been recognized as an important mediator in asthma by causing bronchoconstriction, vasodilation and alteration of capillary permeability [89]. Recent observations have demonstrated that PGD₂ regulates T₃β2 (T-helper type 2) inflammation in bronchial asthma via the specific interaction with its two major receptors D prostaglandin receptor (DP) and chemoattractant receptor homologous molecule expressed on T₃β2 cells (CRTH2) [89].

Activated MCs are also present in atherosclerotic segments of human coronary arteries [90], and a role for MC-derived eicosanoids has been suggested to contribute to the pathogenesis of human cardiovascular diseases. Both, prostaglandins (e.g. PGD₂ and its metabolites) and LTs (e.g. LTB₄ and cysLTs) have been reported to promote atherosclerosis [91] and abdominal aortic aneurysm [92]. An aspect of clinical importance is the emerging concept that resolution of inflammation requires a biosynthetically active process utilizing polyunsaturated fatty acids [i.e. AA, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid)] to produce specialized pro-resolving mediators [93]. Although these components have not been studied, nor any relevant process investigated in MCs, it appears plausible that such pathways may operate in these cells, providing them with the capacity to contribute to the reinstatement of homeostasis, as well.

Thus a detailed molecular understanding of the generation of MC-derived eicosanoids may help us to design drugs that block pathophysiological critical components of the AA pathway in MCs, which may emerge as novel targets in the treatment of chronic inflammatory diseases, such as asthma and atherosclerosis.

ACKNOWLEDGEMENTS

W.J.S. is a Senior Visiting Researcher of the Sigrid Juselius Foundation, Helsinki, Finland. The Wihuri Research Institute is maintained by the Jenny and Antti Wihuri Foundation.

FUNDING

Our own work was supported by the Sigrid Juselius Foundation. A.D. was supported by the Austrian Science Fund via an Erwin Schrödinger Fellowship [grant number J2994-B20].

REFERENCES

1. Beller, M., Thiel, K., Thul, P. J. and Jackie, H. (2010) Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 584, 2176–2182
2. Brassemile, D. L. (2007) The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 48, 2547–2559
3. Goodman, J. M. (2008) The gregarious lipid droplet. J. Biol. Chem. 283, 28005–28009
4. Goodman, J. M. (2009) Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J. Lipid Res. 50, 2148–2156
5. Ofloß, S. O., Boström, P., Andersson, L., Rutberg, M., Perman, J. and Boren, J. (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim. Biophys. Acta 1791, 448–458
6. Walthier, T. C. and Farese, Jr, R. V. (2009) The life of lipid droplets. Biochim. Biophys. Acta 1791, 459–466
7. Walthier, T. C. and Farese, Jr, R. V. (2012) Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714
8. Blaner, W. S., O’Byrne, S. M., Wongsiriroj, N., Kluwe, J., D’Ambrosio, D. M., Jiang, H., Schwabe, R. F., Hillman, E. M., Piantedosi, R. and Libien, J. (2009) Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim. Biophys. Acta 1791, 467–473
9. Testerink, N., Ajat, M., Houweling, M., Brouwers, J. F., Fyl, P. V. van Manen, H. J., Otto, C., Helms, J. B. and Vaandrager, A. B. (2012) Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS One 7, e34945
10. Bartz, R., Li, W. H., Venables, B., Zehmer, J. K., Roth, M. R., Beller, M., Thiel, K., Thul, P. J. and Jackle, H. (2010) Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–847
11. Chilton, F. H. and Connell, T. R. (1988) Lethin-linked phosphoglycerides. Major endogenous sources of arachidonate in the human neutrophil. J. Biol. Chem. 263, 5260–5265
12. Kumar, V., Butcher, S. J., Oorni, K., Engelhardt, P., Heikkinen, J., Kaski, K., Aila-Korpela, M. and Kovanen, P. T. (2011) Three-dimensional cryoEM reconstruction of native LDL particles to 16A resolution at physiological body temperature. PLoS One 6, e18841
13. Miki, C., Peters, J., Trapp, M., Kommueller, K., Schneider, W. J. and Prassil, R. (2011) Softness of atherosogenic lipoproteins: a comparison of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) using elastic incoherent neutron scattering (EINS). J. Am. Chem. Soc. 133, 13213–13215
14. Czabany, T., Wagner, A., Zwytlick, D., Lohner, K., Leitner, E., Ingolic, E. and Daum, G. (2008) Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 283, 17065–17074
15. Robenek, H., Buers, I., Hofnagel, O., Robenek, M. J., Troyer, D. and Severs, N. J. (2009) Compartmentalization of proteins in lipid droplet biogenesis. Biochim. Biophys. Acta 1791, 408–418
16. Han, H. C., Melo, R. C., Jin, Z., Dvorak, A. M. and Weller, P. F. (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J. 21, 167–178
17. Liu, P., Ying, Y., Zhao, Y., Mundy, D. I., Zhu, M. and Anderson, R. G. (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792
18. Smirnova, E., Goldberg, E. B., Makarova, K. S., Lin, L., Brown, W. J. and Jackson, C. L. (2006) ATGL has a key role in lipid droplet/ adiposome degradation in mammalian cells. EMBO Rep. 7, 106–113
19. Zechner, R., Kienesberger, P. C., Haemmerle, G., Zimmermann, R. and Lass, A. (2009) Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 50, 3–21
Aoki, N., Jin-no, S., Nakagawa, Y., Asai, N., Arakawa, E., Tamura, N., Tamura, T. and Matsuda, T. (2007) Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology 148, 3850–3862

Muller, G., Jung, C., Straub, J., Wied, S. and Kramer, W. (2009) Induced release of membrane vesicles from rat adipocytes containing glycosylphosphatidylinositol-anchored microdomain and lipid droplet signalling proteins. Cell Signalling 21, 324–338

Kimmel, A. R., Brasaemle, D. L., McAndrews-Hill, M., Sztalryd, C. and Londo, C. (2010) Adoption of PERL1 as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid Res. 51, 468–471

Azouz, N. P., Matsui, T., Fukuda, M. and Sagi-Eisenberg, R. (2009) Lipid droplet-organelle interactions: sharing the fats. Biochim. Biophys. Acta 1791, 441–447

Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. and Nomura, R. (2001) Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J. Cell Biol. 152, 1079–1085

Le Lay, S., C. M. B., Hajduc, E. and Dugali, I. (2009) Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim. Biophys. Acta 1791, 514–518

Umlauf, E., Csaszar, E., Moertelmaier, M., Schuetz, G. J., Parton, R. G. and Prohaska, R. (2004) Association of stomatin with lipid droplets. J. Biol. Chem. 279, 23699–23709

Brasaemle, D. L., Dolios, G., Shaprio, L. and Wang, R. (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842

Zehner, J. K., Huang, Y., Peng, G., Pu, J., Anderson, R. G. and Liu, P. (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9, 914–921

Ducharme, N. A. and Bickel, P. E. (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149, 942–949

Boyce, J. A. (2007) Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–185

Ploegh, H. L. (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438

Robeneik, H., Hofnagel, O., Buers, I., Robeneik, M. J., Troyer, D. and Severs, N. J. (2006) adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J. Cell Sci. 119, 4215–4224

Jacquier, N., Choudhary, V., Mari, M., Toulmay, A., Reggiori, F. and Schneiter, R. (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424–2437

Melo, R. C., D’Avila, H., Wan, H. C., Bozza, P. T., Dvorak, A. M. and Wellner, P. F. (2011) Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J. Histochem. Cytochem. 59, 540–556

Dvorak, A. M., Dvorak, H. F., Peters, S. P., Shulman, E. S., MacGlashan, Jr, D. W., Pyne, K., Harvey, V. S., Galli, S. J. and Lichtenstein, L. M. (1983) Lipid bodies: cytoplasmic organelles important to arachidonate metabolism in macrophages and mast cells. J. Immunol. 131, 2965–2976

Dvorak, A. M., Hammel, I., Schulman, E. S., Peters, S. P., MacGlashan, Jr, D. W., Schleimer, R. P., Newball, H., Pyne, K., Dvorak, H. F., Lichtenstein, L. M. et al. (1984) Differences in the behavior of cytoplasmic granules and lipid bodies during human lung mast cell degranulation. J. Cell Biol. 99, 1678–1687

Wellner, P. F., Monahan-Earley, R. A., Dvorak, H. F. and Dvorak, A. M. (1991) Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am. J. Pathol. 138, 141–148

Logan, M. R., Odemuyiwa, S. O. and Moqbel, R. (2003) Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J. Allergy Clin. Immunol. 111, 923–932

Platkowski, M. C., Brandao, B. A., de Assis, M. C., Feliciano, L. F., Raymond, B., Freitas, C., Saliba, A. M., Zahn, J. M., Touqui, L. and Bozza, P. T. (2008) Lipid body mobilization in the Exo1Induced release of inflammatory mediators by airway epithelial cells. Microb. Pathog. 45, 30–37

Triggianni, M., Orienti, A. and Marone, G. (1994) Differential roles for triglyceride and phospholipid pools of arachidonic acid in human lung macrophages. J. Immunol. 152, 1394–1403

Yu, W., Bozza, P. T., Tzizik, D. M., Gr. J. P. Cassara, J., Dvorak, A. M. and Wellner, P. F. (1998) Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am. J. Pathol. 152, 759–769

Triggianni, M., Orienti, A., Seeds, M. C., Bass, D. A., Marone, G. and Chilton, F. H. (1995) Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool. J. Exp. Med. 182, 1181–1190

Bozza, P. T., Bakker-Abreu, I., Navarro-Xavier, R. A. and Bandeira-Melo, C. (2011) Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot. Essent. Fatty Acids 85, 205–213

Theoharides, T. C., Kempuraj, D., Tagen, M., Conti, P. and Kalogeromitros, D. (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65–87

Galli, S. J. and Tsai, M. (2012) IgE and mast cells in allergic disease. Nat. Med. 18, 693–704

Kovaren, P. T. (2007) Mast cells: multipotent local effector cells in atherothrombosis. Immunol. Rev. 217, 105–122

Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875

Lundstrom, S. L., Saluja, R., Adner, M., Haeggstrom, J. Z., Nilsson, G. P. and Wheelock, C. E. (2013) Lipid mediator metabolomic profiling demonstrates differences in eicosanoid patterns in two phenotypically distinct mast cell populations. J. Lipid Res. 54, 116–126

Gheorghe, K. R., Kortokova, M., Catrina, A. I. L., Backman, L., af Klint, E., Claesson, H. E., Radmark, O. and Jakobsson, P. J. (2009) Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res. Ther. 11, R83

Gulliksson, M., Brunstrom, A., Johansson, M., Backman, L., Nilsson, G., Harvima, I., Dahlen, B., Kumlin, M. and Claesson, H. E. (2007) Expression of 15-lipoxygenase type-1 in human mast cells. Biochim. Biophys. Acta 1771, 1156–1165

Back, M. and Hansson, G. K. (2006) Leukotriene receptors in atherosclerosis. Ann. Med. 38, 493–502

Enoksson, M., Lyberg, K., Moller-Westerberg, C., Fallon, P. G., Nilsson, G. and Lunderius-Andersson, C. (2011) Mast cells as sensors of cell injury through IL-33 recognition. J. Immunol. 186, 2523–2528

Bozza, P. T., Magalhaes, K. G. and Wellner, P. F. (2009) Leukocyte lipid bodies – Biogenesis and functions in inflammation. Biochim. Biophys. Acta 1791, 540–551

Dichberger, A., Schlagier, S., Lappalainen, J., Kakela, R., Hattula, K., Butcher, S. J., Schneider, W. J. and Kovanen, P. T. (2011) Lipid body formation during maturation of human mast cells. J. Lipid Res. 52, 2198–2208

Lappalainen, J., Lindstedt, K. A. and Kovanen, P. T. (2007) A protocol for generating high numbers of mature and functional human mast cells from peripheral blood. Clin. Exp. Allergy 37, 1404–1414
Mast cells: from lipid droplets to lipid mediators

Review Article

73 Oorni, K. and Kovanen, P. T. (2009) Lipoprotein modification by

74 Nakatani, Y., Hara, S., Murakami, M., Kudo, I. and Inoue, K.

(2013) Recent progress in phospholipase A2 research: from cells to animals to humans. Prog. Lipid Res. 50, 152–192

75 Murakami, M., Kudo, I., Umeda, M., Matsuzawa, A., Takeda, M., Komada, M., Fujimori, Y., Takahashi, K. and Inoue, K. (1992) Detection of three distinct phospholipases A2 in cultured mast cells. J. Biochem. 111, 175–181

76 Murakami, M., Taketomi, Y., Miki, Y., Sato, H., Hirabayashi, T. and Yamamoto, K. (2011) Specific physiological roles of cytotoxic phospholipase A2α as defined by gene knockouts. Biochim. Biophys. Acta 1488, 139–148

77 Fonteh, A. N., Bass, D. A., Marshall, L. A., Seeds, M., Samet, J. M. and Chilton, F. H. (1994) Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J. Immunol. 152, 5438–5446

78 Enomoto, A., Murakami, M., Valentin, E., Lambeau, G., Gelb, M. H. and Kudo, I. (2000) Redundant and segregated functions of granule-associated heparin-binding group II subfamily of secretory phospholipases A2 in the regulation of degranulation and prostaglandin D2 synthesis in mast cells. J. Immunol. 165, 4007–4014

79 Kim, K. P., Rafter, J. D., Bittova, L., Han, S. K., Snitko, Y., Munoz, N. M., Leff, A. R. and Cho, W. (2001) Mechanism of human group V phospholipase A2 (PLA2)-induced leukotriene biosynthesis in human neutrophils. A potential role of hepamer sulfate binding in PLA2 internalization and degradation. J. Biol. Chem. 276, 11126–11134

80 Munoz, N. M., Kim, Y. J., Melton, A. Y., Kim, K. P., Han, S. K., Boetticher, E., O’Leary, E., Myou, S., Zun, H., Bonventre, J. V. et al. (2003) Human group V phospholipase A2 induces group IVA phospholipase A2-independent cysteinyl leukotriene synthesis in mouse mast cells through amplification of ERK and cPLA2α activation. Blood 110, 561–567

81 Kennerly, D. A. (1987) Diacylglycerol metabolism in mast cells. J. Immunol. Methods. 109, 93–1103

82 Schaloske, R. H. and Dennis, E. A. (2006) The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta 1761, 1246–1259

83 Garcia-Gil, M. and Siragianian, R. P. (1986) Source of the arachidonic acid released on stimulation of rat basophilic leukemia cells. J. Immunol. 136, 3825–3828

84 Kennerly, D. A. (1990) Phosphatidyldcholine is a quantitatively more important source of increased 1,2-diacylglycerol than is phosphatidylinositil in mast cells. J. Immunol. 144, 3912–3919

85 Yamada, K., Okano, Y., Miura, K. and Nozawa, Y. (1987) A major role for phospholipase A2 in antigen-induced arachidonic acid release in rat mast cells. Bioch. J. 247, 95–99

86 Chock, S. P., Rhee, S. G., Tang, L. C. and Schmauder-Chock, E. A. (1991) Linking phospholipase A2 to phospholipid turnover and prostaglandin synthesis in mast cell granules. Eur. J. Biochem. 195, 707–713

87 Kitatan, K., Akiba, S. and Sato, T. (2000) Role of phospholipase D-derived phosphatidic acid as a substrate for phospholipase A2 in RBL-2H3 cells. Biol. Pharm. Bull. 23, 1430–1433

88 Goetzl, E. J. and An, S. (1998) Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidyl acid and sphingosine 1-phosphate. FASEB J. 12, 1589–1598

89 Kennerly, D. A. (1987) Diacylglycerol metabolism in mast cells. Analysis of lipid metabolic pathways using molecular species analysis of intermediates. J. Biol. Chem. 262, 16305–16313

90 Mouret, C. M., Ghomashchi, F., Lindsay, M. R., James, S., Turner, H. (2012) Insulin-containing lipogenic stimuli suppress mast cell degranulation potential and up-regulate lipid body biogenesis and eicosanoid secretion in a PPARY-independent manner. J. Leukocyte Biol. 92, 653–665

91 Zechner, R., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, A. and Madeo, F. (2012) Rf SIGNALS: lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15, 279–291

92 Eichmann, T. O., Kumar, M., Haas, T. J., Farese, Jr, R. V., Zimmermann, R., Lass, A. and Zechner, R. (2012) Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287, 41446–41457

93 Greisen, W. E., Shimoda, L. M., Maetoff-Udzen, K. and Turner, H. (2012) Insulin-containing lipogenic stimuli suppress mast cell degranulation potential and up-regulate lipid body biogenesis and eicosanoid secretion in a PPARY-independent manner. J. Leukocyte Biol. 92, 653–665

94 Sopunen, E. and Kuypers, F. A. (2008) Mammalian long-chain acyl-CoA synthetases. Exp. Biol. Med. 233, 507–521

95 Ferrante, A. and Hii, C. (2011) Polyunsaturated fatty acids and inflammatory diseases. Infectious Diseases: A Modern Perspective (Nagal, A., ed.), pp. 157–178, InTech, New York

96 Arima, M. and Fukuda, T. (2011) Prostaglandin D2 and TxA2 inflammation in the pathogenesis of bronchial asthma. Korean J. Intern. Med. 26, 8–18

© 2013 The Author(s)
Laine, P., Kaartinen, M., Penttila, A., Panula, P., Paavonen, T. and Kovanen, P. T. (1999) Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99, 361–369

Roberts, II, L. J., Seibert, K., Liston, T. E., Tantengco, M. V. and Robertson, R. M. (1987) PGD2 is transformed by human coronary arteries to 9α, 11β-PGF2, which contracts human coronary artery rings. Adv. Prostaglandin Thromboxane Leukot. Res. 17A, 427–429

Di Gennaro, A., Wagsater, D., Mayranpaa, M. I., Gabrielsen, A., Swedenborg, J., Hamsten, A., Samuelsson, B., Eriksson, P and Haeggstrom, J. Z. (2010) Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm. Proc. Natl. Acad. Sci. U.S.A. 107, 21093–21097

Serhan, C. N. and Petasis, N. A. (2011) Resolvins and protectins in inflammation resolution. Chem. Rev. 111, 5922–5943