Optimal stability for a first order coefficient in a non-self-adjoint wave equation from Dirichlet-to-Neumann map

Mourad Bellassoued and Ibtissem Ben Aicha

University of Tunis El Manar, Ecole Nationale d’ingénieurs de Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia

E-mail: mourad.bellassoued@enit.utm.tn and ibtissem.benaicha@enit.utm.tn

Received 1 April 2017, revised 20 July 2017
Accepted for publication 4 August 2017
Published 20 September 2017

Abstract
This paper is focused on the study of an inverse problem for a non-self-adjoint hyperbolic equation. More precisely, we attempt to stably recover a first order coefficient appearing in a wave equation from the knowledge of Neumann boundary data. We show in dimension n greater than two, a stability estimate of Hölder type for the inverse problem under consideration. The proof involves the reduction to an auxiliary inverse problem for an electro-magnetic wave equation and the use of an appropriate Carleman estimate.

Keywords: inverse problem, stability estimate, Dirichlet-to-Neumann map, Carleman estimate

1. Introduction and main results

The main purpose of this paper is the study of an inverse problem of determining a coefficient of order one on space appearing in a non-self-adjoint wave equation. Let $\Omega \subset \mathbb{R}^n$ with $n \geq 2$, be an open bounded set with a sufficiently smooth boundary $\Gamma = \partial \Omega$. For $T > 0$, we denote by $Q = \Omega \times (0, T)$ and $\Sigma = \Gamma \times (0, T)$. We introduce the following initial boundary value problem for the wave equation with a velocity field V,

$$\mathcal{L}_V u := (\partial_t^2 - \Delta + V \cdot \nabla)u = 0 \quad \text{in } Q,$$

$$u|_{t=0} = \partial_t u|_{t=0} = 0 \quad \text{in } \Omega,$$

$$u = f \quad \text{on } \Sigma,$$

(1.1)
where $V \in W^{1,\infty}(\Omega, \mathbb{R}^n)$ is a real vector field and $f \in \mathcal{H}_0^1(\Sigma) := \{ f \in H^1(\Sigma), f|_{t=0} = 0 \}$ is the Dirichlet data that is used to probe the system. We may define the so-called Dirichlet-to-Neumann (DN) map associated with the wave operator L_V as follows

$$\Lambda_V : \mathcal{H}_0^1(\Sigma) \rightarrow L^2(\Sigma)$$

$$f \mapsto \partial_{\nu} u,$$

where ν denotes the unit outward normal to Γ at x and $\partial_{\nu} u$ stands for $\nabla u \cdot \nu$.

The inverse problem we address is to determine the velocity field V appearing in (1.1) from the knowledge of the DN map Λ_V and we aim to derive a stability result for this problem. To our knowledge this paper is the first treating the stability for the recovery of a coefficient of order one on space in a wave equation.

The problem of recovering coefficients appearing in hyperbolic equations gained increasing popularity among mathematicians within the last few decades and there are many works related to this topic. But they are mostly concerned with coefficients of order zero on space. In the case where the unknown coefficient is depending only on the spatial variable, Rakesh and Symes [22] proved by means of geometric optics solutions, a uniqueness result in recovering a time-independent potential in a wave equation from global Neumann data. The uniqueness by local Neumann data, was considered by Eskin [14] and Isakov [16]. In [5], Bellassoued, Choulli and Yamamoto proved a log-type stability estimate, in the case where the Neumann data are observed on any arbitrary subset of the boundary. Isakov and Sun [17] addressed an inverse problem about recovering a coefficient of first order on time and proved that the knowledge of local Dirichlet-to-Neumann map yields a stability result of Hölder type in determining a coefficient in a subdomain. As for stability results obtained from global Neumann data, one can see Sun [27], Cipolatti and Lopez [13]. There are also growing publications on the related inverse problems in the Riemannian case. We mention e.g. the paper of Bellassoued and Dos Santos Ferreira [6], Stefanov and Uhlmann [26] and [20] in which Liu and Oksanen consider the problem of recovering a wave speed c from acoustic boundary measurements modelled by the hyperbolic DN map. Other than the mentioned papers, the recovery of time-dependent coefficients in hyperbolic equations has also been developed recently, we refer e.g. to Bellassoued and Ben Aïcha [2, 3] and in the Riemannian case, we refer to the work of Waters [30], in which a stability of Hölder type was proved, for the identification of the x-ray transform of a time-dependent coefficient in an hyperbolic equation. In [24], Salazar considered the stability issue and extended the result of the paper [23] to more general coefficients and he established a stability result for compactly supported coefficients provided T is sufficiently large. For curiosity, the reader can also see [9, 18] and the references therein.

The above papers are concerned only with coefficients of order zero on space. In the case where the unknown coefficient is of order one, we cite for example the paper of Pohjola [21], in which he considered an inverse problem for a steady state convection diffusion equation. He showed by reducing his problem to the case of a stationary magnetic Schrödinger equation that a velocity field can be uniquely determined from the knowledge of Neumann measurements. Cheng, Nakamura and Somersalo [12] treated the same problem and they proved a uniqueness result for more regular coefficients. Salo [25] also studied this problem and proved a uniqueness result in the case where the coefficient is Lipschitz continuous. The overall method of proving uniqueness in these papers was based on reducing the inverse problems under investigation to similar ones for self-adjoint operators and applying the maximum principle. We can also refer to the paper [19] in which a uniqueness result for a general non-self-adjoint second-order elliptic operator on a manifold with boundary is addressed.
The stability in the recovery of coefficients of order one on space appearing in non self-adjoint operators has never been treated before. In this work, we consider this challenging problem and we establish a stability estimate of Hölder type for the recovery of coefficient V appearing in the wave operator L^V from the knowledge of the DN map Λ^V. The proof of the stability estimate requires the use of an L^2-weighted inequality called a Carleman estimate designed for elliptic operators (see [8, 11]) instead of the maximum principle used in [21].

Before stating our main result, we introduce the admissible set of the coefficients V. Given $M > 0$ and $V_0 \in W^{1, \infty}(\Omega, \mathbb{R}^n)$, we define

$$\mathcal{V}(M, V_0) := \{ V \in W^{1, \infty}(\Omega, \mathbb{R}^n), \| V \|_{W^{1, \infty}(\Omega)} \leq M, \ V = V_0 \text{ on } \Gamma \}.$$

Then our main result can be stated as follows

Theorem 1.1. Let $M' > 0$, V_1, and $V_2 \in \mathcal{V}(M, V_0)$. If $V_1 - V_2 \in W^{2, \infty}(\Omega)$ and $\| V_1 - V_2 \|_{W^{2, \infty}(\Omega)} \leq M'$, then, there exist positive constants $\kappa \in (0, 1)$ and $C > 0$ such that

$$\| V_1 - V_2 \|_{L^2(\Omega)} \leq C\| \Lambda^V_1 - \Lambda^V_2 \|^\kappa.$$

Here the constant C is depending only on Ω and M, M' and $\| \cdot \|$ denotes the norm in $L^2(H^1_0(\Sigma); L^2(\Sigma))$.

The above statement claims stable determination of the velocity field V from the knowledge of the DN map Λ^V, where both the Dirichlet and Neumann data are performed on the whole boundary Σ. By theorem 1.1, we can readily derive the following

Corollary 1.2. Let $V_1, V_2 \in \mathcal{V}(M, V_0)$. Then, we have that $\Lambda^V_1 = \Lambda^V_2$ implies $V_1 = V_2$ almost everywhere in Ω.

We point out that since the hyperbolic operator L^V is not self-adjoint, then we should first head toward an auxiliary problem for an electro-magnetic wave equation in order to be able to prove our main results.

The remainder of this paper is organized as follows: in section 2, we reduce the inverse problem associated with the equation (1.1) to a corresponding inverse problem for an electro-magnetic wave equation. By the use of an elliptic Carleman estimate, we give in section 3 the proof of theorem 1.1.

2. Reduction of the Problem

The overall method of proving the stability for the inverse problem under consideration is mainly based on reducing it to an equivalent problem concerning the following electro-magnetic wave equation

$$\begin{cases}
\mathcal{H}_A u := (\partial_t^2 - \Delta_A + q)u = 0 & \text{in } Q, \\
u_{t=0} = \partial_t u_{t=0} = 0 & \text{in } \Omega, \\
u = f & \text{on } \Sigma,
\end{cases}$$

(2.2)

where $f \in H^1_0(\Sigma)$ is a non homogeneous Dirichlet data, $A = (a_j)_{1 \leq j \leq n} \in W^{1, \infty}(\Omega, \mathbb{C}^n)$ is a pure imaginary complex magnetic vector and $q \in L^\infty(\Omega, \mathbb{R})$ is a bounded electric potential. Here Δ_A denotes the magnetic Laplacian and it is given by
\[
\Delta_a = \sum_{j=1}^{n} (\partial_j + ia_j)^2 = \Delta + 2iA \cdot \nabla + i\text{div}A - A \cdot A.
\]

According to [4, 8, 10], the initial boundary value problem (2.2) is well posed and we have the existence of a unique solution within the following class
\[u \in C([0, T]; H^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)).\]

Therefore, we may define the DN map \(N_{A,q}\) associated with the wave equation (2.2) as follows
\[
N_{A,q} : H^1_0(\Sigma) \longrightarrow L^2(\Sigma),
\]
\[f \longmapsto (\partial_\nu + iA \cdot \nu)u.
\]

The purpose of this section is to reduce the inverse problem associated with the wave equation (1.1) to an auxiliary problem for (2.2). Note that if \(A\) is of real valued then \(H^1_{A,q}\) is a self-adjoint wave operator. The strategy is mainly inspired by [12, 21, 25]. We specify the choice of the pure imaginary complex vector \(A\) and the real function \(q\) in such a way \(H^1_{A,q}\) coincide with \(\mathcal{L}v\) and the same for the associated DN maps.

We need first to introduce some notations. Let us consider the following set
\[
H^1_T(\Sigma) := \{g \in H^1(\Sigma); g|_{t=T} = 0\}.
\]

For \(g \in H^1_T(\Sigma)\), we define the adjoint operator of \(\Lambda v\) as follows:
\[
\Lambda_\ast v : H^1_T(\Sigma) \longrightarrow L^2(\Sigma),
\]
\[g \longmapsto \partial_\nu v,
\]

where \(v\) here denotes the unique solution of the backward problem
\[
\begin{cases}
\mathcal{L}_\ast v = \partial_\nu^2 v - \Delta v - \text{div}(Vv) = 0 & \text{in } Q, \\
v|_{t=T} = \partial_t v|_{t=T} = 0 & \text{in } \Omega, \\
v = g & \text{on } \Sigma.
\end{cases}
\]

On the other hand, we define the adjoint operator of the DN map \(N_{A,q}\) as follows
\[
N^\ast_{A,q} : H^1_T(\Sigma) \longrightarrow L^2(\Sigma),
\]
\[g \longmapsto (\partial_\nu + iA \cdot \nu)v,
\]

associated to the backward problem
\[
\begin{cases}
\mathcal{H}^\ast_{A,q} v = \mathcal{N}_{A,q} v = 0 & \text{in } Q, \\
v|_{t=T} = \partial_t v|_{t=T} = 0 & \text{in } \Omega, \\
v = g & \text{on } \Sigma.
\end{cases}
\]

In the sequel, we shall make use of the following Green formula for the magnetic Laplacian. Let \(A\) be a pure imaginary complex vector in \(W^{1,\infty}(\Omega, \mathbb{C}^n)\). Then, the following identity holds true
\[
\begin{align*}
\int_\Omega \Delta_A u \bar{v} \, dx &= -\int_\Omega (\nabla + iA)u (\nabla - iA)\bar{v} \, dx + \int_\Gamma (\partial_i + iv \cdot A)u \bar{v} \, d\sigma \\
&= \int_\Omega \Delta_A u \bar{v} \, dx + \int_\Gamma \left((\partial_\nu + iv \cdot A)u \bar{v} - (\partial_\nu + iv \cdot A)\bar{v} u \right) \, d\sigma,
\end{align*}
\]
(2.3)
for $u, v \in H^1(\Omega)$ such that $\Delta u, \Delta v \in L^2(\Omega)$. Here $d\sigma$ is the Euclidean surface measure on Γ. Finally, we introduce the admissible sets of the coefficients A and q: for $M > 0$, $A_0 \in W^{1,\infty}(\Omega, \mathbb{C}^n)$ and $q_0 \in L^{\infty}(\Omega, \mathbb{R})$, we define

$$A(M, A_0) := \{ A \in W^{1,\infty}(\Omega, \mathbb{C}^n), \| A \|_{W^{1,\infty}(\Omega)} \leq M, A = A_0 \text{ on } \Gamma\},$$

and

$$Q(M, q_0) := \{ q \in L^{\infty}(\Omega, \mathbb{R}), \| q \|_{L^{\infty}(\Omega)} \leq M, q = q_0 \text{ on } \Gamma\}.$$

We shall now give some properties of the considered operators as well as the associated DN maps. This statement will play a crucial role in proving theorem 1.1.

Lemma 2.1. Let $V_1, V_2 \in V$. We define $A_1, A_2 \in A(M, A_0)$ and $q_1, q_2 \in Q(M, q_0)$ by

$$A_j = \frac{i}{2} V_j, \quad q_j = \frac{1}{4} V_j^2 - \frac{1}{2} \text{div } V_j, \quad j = 1, 2. \tag{2.4}$$

Then, we have

$$H_{A_1, q_1} = L_{V_1}, \quad H_{A_1, q_1}^* = L_{V_1^*}, \quad \text{and} \quad N_{A_1, q_1} = N_{A_2, q_2} = N_{A_2, q_2}^*, \quad j = 1, 2.$$

Moreover,

$$\| N_{A_1, q_1} - N_{A_2, q_2} \| = \| \Lambda_{V_1} - \Lambda_{V_2} \|, \tag{2.5}$$

where $\| \cdot \|$ stands for the norm in $L(\mathcal{H}_0^1(\Sigma); L^2(\Sigma))$.

Proof. In light of (2.4), one can easily see that for any $u, v \in H^2(Q)$ we have

$$H_{A_1, q_1} u = (\partial^2_t - \Delta_{A_1} + q_j(x)) u = (\partial^2_t - \Delta + V_j \cdot \nabla) u = L_{V_1} u, \tag{2.6}$$

and

$$H_{A_1, q_1}^* v = (\partial^2_t - \Delta_{A_1} + q_j(x)) v = (\partial^2_t - \Delta_{-A_1} + q_j(x)) v = \partial^2_t v - \Delta v - \text{div}(V_j v) = L_{V_1^*} v. \tag{2.7}$$

A simple application of (2.3) yields $N_{A_1, q} = N_{-A_1, q} = N_{A_1, q}^*$. We move now to prove (2.5). Let us denote by u_j and v_j, $j = 1, 2$, the solutions of

$$\begin{cases}
\mathcal{L}_{V_j} u_j = 0 & \text{in } Q, \\
u_j|_{t=0} = 0 & \text{in } \Omega,
\end{cases} \quad \begin{cases}
\mathcal{L}_{V_j^*} v_j = 0 & \text{in } Q, \\
v_j|_{t=0} = 0 & \text{in } \Omega,
\end{cases} \quad j = 1, 2, \tag{2.8}$$

where $f \in \mathcal{H}_0^1(\Sigma)$ and $g \in \mathcal{H}_0^1(\Sigma)$. By multiplying the first equation in the left hand side of (2.8) by $\overline{v_j}$ and integrating by parts, we get

$$\int_{\Omega} \Lambda_{V_j}(f) \overline{v_j} \ d\sigma \ dt = \int_{Q} \left(-\partial_t u_j \partial_t \overline{v_j} + \nabla u_j \cdot \nabla \overline{v_j} + V_j \cdot \nabla u_j \overline{v_j} \right) dx \ dt. \tag{2.9}$$
On the other hand, based on (2.6) and (2.7), \(u_j \) and \(v_j \) with \(j = 1, 2 \), are also solutions to
\[
\begin{aligned}
&\mathcal{H}_{A,\partial_0} u_j = 0 \quad \text{in } Q, \\
&\mathcal{H}_{A,\partial_0}^* v_j = 0 \quad \text{in } Q, \\
&u_j|_{t=0} = \partial_t u_j|_{t=0} = 0 \quad \text{in } \Omega, \\
&v_j|_{t=T} = \partial_t v_j|_{t=T} = 0 \quad \text{in } Q, \\
&u_j = f \quad \text{on } \Sigma, \\
&v_j = g \quad \text{on } \Sigma.
\end{aligned}
\]
(2.10)

By multiplying the equation in the left hand side of (2.10) by \(\overline{v}_j \) and after integrating by parts, we get in light of (2.4) and (2.3),
\[
\int_\Sigma N_{A,\partial_0}(f) \overline{g} \, d\sigma \, dt = \int_Q \left(- \partial_t u_j \partial_t \overline{v}_j + \nabla u_j \cdot \nabla \overline{v}_j + \frac{1}{2} V_j \cdot \nabla u_j \overline{v}_j - \frac{1}{2} \nabla \overline{v}_j u_j - \frac{1}{2} \text{div} V_j u_j \right) \, dx \, dt.
\]
This immediately implies that
\[
\int_\Sigma N_{A,\partial_0}(f) \overline{g} \, d\sigma \, dt = \int_Q \left(- \partial_t u_j \partial_t \overline{v}_j + \nabla u_j \cdot \nabla \overline{v}_j + V_j \cdot \nabla u_j \overline{v}_j \right) \, dx \, dt = - \frac{1}{2} \int_\Sigma V_j \cdot u_j \overline{v}_j \, dx \, dt.
\]
Hence, from (2.9) and (2.11), we find out that
\[
\int_\Sigma N_{A,\partial_0}(f) \overline{g} \, d\sigma \, dt = \int_\Sigma \Lambda V_j(f) \overline{g} \, d\sigma \, dt - \frac{1}{2} \int_\Sigma V_j \cdot u_j \overline{v}_j \, dx \, dt.
\]
(2.11)

Owing to the assumption that \(V_1 = V_2 \) on \(\Gamma \), we get the desired result. \(\square \)

Due to lemma 2.1, the inverse problem under investigation may be equivalently reformulated as to whether the magnetic potential \(A \) and the electric potential \(q \) in (2.2) can be recovered from the knowledge of \(N_{A,q} \). This is the auxiliary inverse problem that we address in the remaining of this section.

As it was noted in Sun [28], the DN map is invariant under a gauge transformation. Namely, given any \(\varphi \in \mathcal{C}^2(\overline{\Omega}) \) with \(\varphi|_{\Gamma} = 0 \), one has \(N_{A+\nabla \varphi,q} = N_{A,q} \). Hence, the magnetic potential \(A \) can not be uniquely determined by \(N_{A,q} \). However, it is possible to show that the knowledge of the DN map \(N_{A,q} \) stably determines the electric potential \(q \) and the magnetic field corresponding to the pure imaginary complex potential \(A \) which is given by the 2-form \(d\alpha_A \) defined as follows
\[
d\alpha_A = \sum_{i,j=1}^n \left(\frac{\partial a_i}{\partial x_j} - \frac{\partial a_j}{\partial x_i} \right) dx_i \wedge dx_j.
\]
Actually, this problem is closely related to the one treated in Bellassoued and Ben Joud [4] in the absence of the electric potential, in Bellassoued [1] in the Riemmanian case and in Ben Joud [10]. Compared with the paper of Ben Joud [10], we formulate this auxiliary problem for less regular complex magnetic potentials.

Theorem 1.1 can then be reduced to the following equivalent statement

Theorem 2.2. Let \(A_1, A_2 \in \mathcal{A}(M,A_0) \), and \(q_1, q_2 \in \mathcal{Q}(M,q_0) \). Assume that \(A_1 - A_2 \in W^{2,\infty}(\Omega, \mathbb{C}^n) \) and \(q_1 - q_2 \in W^{1,\infty}(\Omega, \mathbb{R}) \). Then, there exist \(C > 0 \) and \(\mu \in (0,1) \) such that we have
\[
\|d\alpha_{A_1} - d\alpha_{A_2}\|_{H^{-1}(\Omega)} + \|q_1 - q_2\|_{H^{-1}(\Omega)} \leq C\|N_{A,q_1} - N_{A,q_2}\|^\mu.
\]
The above theorem claims stable determination of the magnetic field $d\alpha\Lambda$ and the electric potential q from the global Neumann measurement $\mathcal{N}_{\Lambda,q}$. Here we improve the result of Ben Joud [10] by considering complex magnetic potentials. The regularity condition imposed on admissible magnetic potentials is also weakened from $W^{3,\infty}(\Omega)$ to $W^{1,\infty}(\Omega)$.

The rest of this section is devoted to proving this auxiliary result.

2.1. Geometrical optics solutions

Section 2 mainly aims at the study of the auxiliary inverse problem associated with the electro-magnetic wave equation (2.2), that is the identification of $d\alpha\Lambda$ and q from the DN map $\mathcal{N}_{\Lambda,q}$. To begin with, we shall first construct geometrical optics solutions for the equation (2.2) associated with a suitable smooth approximation of the magnetic potential (see [7, 21]).

Let Ω be a bounded domain that is compactly contained in $\tilde{\Omega} \subset \mathbb{R}^n$. Let $A_1, A_2 \in W^{1,\infty}(\tilde{\Omega})$ such that $\|A_j\|_{W^{1,\infty}(\tilde{\Omega})} \leq M$, $j = 1, 2$ and $A_1 = A_2$ on Γ. Then, there exist two extensions $\tilde{A}_1, \tilde{A}_2 \in W^{1,\infty}(\tilde{\Omega})$, such that $\tilde{A}_1 = \tilde{A}_2$ on $\tilde{\Omega} \setminus \Omega$. Moreover, there exists a positive constant $C > 0$ such that

$$\|\tilde{A}_j\|_{W^{1,\infty}(\tilde{\Omega})} \leq CM, \quad j = 1, 2.$$ \hfill (2.12)

Here C is depends only on Ω, $\tilde{\Omega}$ and M.

Let $\chi \in C^\infty_c(\mathbb{R}^n)$ such that $\text{Supp} \, \chi \subset B(0, 1)$, $0 \leq \chi \leq 1$, and $\int_{\mathbb{R}^n} \chi(x) \, dx = 1$. For a sufficiently large $\lambda > 0$, we denote $\chi_\lambda(x) = \lambda^{\alpha} \chi(\lambda^{\alpha} x)$, with $0 < \alpha \leq 1/2$. For $j = 1, 2$, we define the smooth approximations $A^\alpha_{j,j}$ of the extensions $\tilde{A}_j \in W^{1,\infty} (\mathbb{R}^n, C)$ as follows:

$$A^\alpha_{j,j} := \chi_\lambda * \tilde{A}_j, \quad j = 1, 2.$$ \hfill (2.13)

This terminology is justified by the fact that $A^\alpha_{j,j}$ gets closer to \tilde{A}_j as λ goes to ∞. This can be seen from the following result:

Lemma 2.4. Let $\tilde{A} \in W^{1,\infty} (\mathbb{R}^n, C^\alpha)$ be such that $\|\tilde{A}\|_{W^{1,\infty}(\mathbb{R}^n)} \leq M$. Then, there exists a positive constant C depending only on M and Ω such that for all $\lambda > 0$ we have

$$\|\tilde{A} - A^\alpha_{j,j}\|_{L^\infty (\mathbb{R}^n)} \leq C\lambda^{-\alpha}. \hfill (2.14)$$

Moreover, for any multi-index $\gamma \in \mathbb{N}^n$, with $|\gamma| \geq 1$, we have

$$\|\partial^\gamma A^\alpha_{j,j}\|_{L^\infty (\mathbb{R}^n)} \leq C\lambda^{\alpha(|\gamma|-1)}.$$ \hfill (2.15)

where C is a positive constant depending only on M and Ω.

Inverse Problems 33 (2017) 105006

M Bellassoued and I Ben Aicha
Proof. From [15], we have $A \in C^{0,1}(\mathbb{R}^n)$ and $\|A\|_{C^0(\mathbb{R}^n)} \leq \|A\|_{W^{1,\infty}(\mathbb{R}^n)}$, thus in light of (2.13), we have

$$
|A - A^\lambda_1| = \left| \int_{\mathbb{R}^n} A(x - y)\chi(y)\,dy - A(x) \right|
$$

$$
= \left| \int_{\mathbb{R}^n} A(x - y)\chi(\lambda^\alpha y)\lambda^\alpha\,dy - A(x) \right|
$$

$$
= \left| \int_{\mathbb{R}^n} A(x - \lambda^{-\alpha}y)\chi(y) - A(x)\chi(y)\,dy \right|
$$

$$
\leq \|A\|_{C^0(\mathbb{R}^n)} \lambda^{-\alpha} \int_{\mathbb{R}^n} |\chi(y)|\,dy
$$

which completes the proof of the first estimate (2.14). We move now to prove (2.15). We should first notice that for all multi-index $\gamma \in \mathbb{N}^n$ such that $|\gamma| \geq 1$, we have

$$
\int_{\mathbb{R}^n} \partial^\gamma \chi(y)\,dy = 0.
$$

Thus, from the above observation, we find

$$
|\partial^\gamma A^\lambda_1(x)| = \left| \int_{\mathbb{R}^n} A(y)\lambda^\alpha \partial^\gamma \left(\chi(\lambda^\alpha (x - y)) \right)\,dy \right|
$$

$$
= \left| \int_{\mathbb{R}^n} A(x - \lambda^{-\alpha}y)\chi(\lambda^\alpha (x - y))\,dy \right|
$$

$$
= \left| \int_{\mathbb{R}^n} \left(A(x - \lambda^{-\alpha}y) - A(x) \right)\lambda^\alpha \partial^\gamma \chi(y)\,dy \right|
$$

$$
\leq \|A\|_{C^0(\mathbb{R}^n)} \lambda^{\alpha|\gamma|} \int_{\mathbb{R}^n} |\partial^\gamma \chi(y)|\,dy
$$

$$
\leq C\lambda^{\alpha|\gamma| - 1}.
$$

This completes the proof of the lemma. □

The coming statement claims the existence of particular solutions to the equation (2.2). In the rest of this section, we will consider A to be extended as \tilde{A} outside Ω. We denote by \tilde{A} this extension.

Lemma 2.5. (see [10]) Given $\omega \in \mathbb{S}^{n-1}$ and $\varphi \in C_0^\infty(\mathbb{R}^n)$. Let $A \in W^{1,\infty}(\Omega)$ and $q \in L^\infty(\Omega)$. We consider the function ϕ defined by (2.12). Then, for any $\lambda > 0$ the equation $H_{A,\lambda}u = 0$ in Q admits a solution

$$
u \in C([0, T]; H^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)),
$$

of the form

$$u(x, t) = \phi(x, t) b^\lambda_1(x, t) e^{i\lambda(x - s\omega) + r(x, t)},
$$

where

$$b^\lambda_1(x, t) = \exp \left(i \int_0^t \omega \cdot A^\lambda_1(x + s\omega)\,ds \right).
$$

Here A^λ_1 is given by (2.13) and the correction term r satisfies

$$r(x, 0) = 0, r(x, 0) = 0, \text{ in } \Omega, \quad r(x, t) = 0 \text{ on } \Sigma.$$
Moreover, there exists a positive constant $C > 0$ such that
\[
\lambda^\alpha \|r\|_{L^2(Q)} + \lambda^{\alpha - 1} \|\nabla r\|_{L^2(Q)} \leq C \|\varphi\|_{H^r(\mathbb{R}^3)}, \quad 0 < \alpha \leq 1/2. \tag{2.16}
\]

Proof. In order to prove this lemma, it will be enough to show that if r solves the following equation
\[
\begin{aligned}
\mathcal{A}_r r &= g, & \text{in } Q, \\
\partial_t r|_{t=0} &= \partial_t r|_{t=0} = 0, & \text{in } \Omega, \\
r &= 0, & \text{on } \Sigma,
\end{aligned} \tag{2.17}
\]
then the estimate (2.16) is satisfied. Here the function g is given by
\[
g(x,t) = -e^{i\lambda(x\omega + t)}(\partial_t^2 - \Delta_A + q(x))(\phi b^\lambda_A)(x,t) - 2i\lambda e^{i\lambda(x\omega + t)}b^\lambda_A(x,t)(\partial_t - \omega \cdot \nabla)\phi(x,t) - 2i\lambda e^{i\lambda(x\omega + t)}\phi(x,t)(\partial_t - \omega \cdot \nabla - i(\omega \cdot A))b^\lambda_A(x,t).
\]
This and the fact that ϕ satisfies (2.12) and b^λ_A solves the following equation
\[
(\partial_t - \omega \cdot \nabla - i(\omega \cdot A^\lambda))b^\lambda_A = 0,
\]
immediately implies that
\[
g(x,t) = -e^{i\lambda(x\omega + t)}(\partial_t^2 - \Delta_A + q(x))(\phi b^\lambda_A)(x,t) + 2\lambda e^{i\lambda(x\omega + t)}\omega \cdot (A^\lambda_A - A)(x)(b^\lambda_A\phi)(x,t),
\]
with $g \in L^1(0,T;L^2(\Omega))$. By setting $w(x,t) = \int_0^t r(x,s) \, ds$, one can see that w solves the hyperbolic problem (2.17) with the right hand side
\[
F(x,t) = \int_0^t g(x,s) \, ds = \int_0^t -e^{i\lambda(x\omega + s)}(\partial_t^2 - \Delta_A + q(x))(\phi b^\lambda_A)(x,s) \, ds + \int_0^t 2\lambda e^{i\lambda(x\omega + s)}\omega \cdot (A^\lambda_A - A)(x)(\phi b^\lambda_A)(x,s) \, ds = F_1(x,t) + F_2(x,t). \tag{2.18}
\]
Let us put
\[
g_1(x,s) = (\partial_t^2 - \Delta_A + q(x))(\phi b^\lambda_A)(x,s), \quad \text{and} \quad g_2(x,s) = 2\lambda \omega \cdot (A^\lambda_A - A)(x)(\phi b^\lambda_A)(x,s).
\tag{2.19}
\]
In light of (2.18) and (2.19), we have
\[
F_1(x,t) = -\frac{1}{\lambda^2} \int_0^t g_1(x,s) \partial_s(e^{i\lambda(x\omega + s)}) \, ds.
\]
Thus, by integrating by parts with respect to s and using (2.15), we get
\[
\|F_1\|_{L^2(Q)}^2 \leq \frac{C}{\lambda^2}(\|g_1\|_{L^2(Q)}^2 + T\|g_1(\cdot,0)\|_{L^2(\Omega)}^2 + T\|\partial_t g_1\|_{L^2(Q)}^2) \leq \frac{C}{\lambda^{2-2\alpha}} \|\varphi\|_{H^r(\mathbb{R}^3)}^2. \tag{2.20}
\]
On the other hand, in view of (2.18) and (2.19) we have
\[F_2(x, t) = \frac{1}{i\lambda} \int_0^t g_2(x, s) \partial_s (e^{i\lambda(x, \omega + s)}) \, ds. \]
Again, by integrating by parts with respect to the variable \(s \), we find in view of (2.14)
\[\|F_2\|^2_{L^2(Q)} \leq \frac{C}{\lambda^{2\alpha}} \|\varphi\|^2_{H^4(\mathbb{R}^n)}. \]
(2.21)
Applying the standard energy estimate for hyperbolic initial boundary value problems to the solution \(w \), we get from (2.20) and (2.21)
\[\|r\|_{L^2(Q)} = \|\partial_tr\|_{L^2(Q)} \leq C \left(\frac{1}{\lambda^\alpha} + \frac{1}{\lambda^{1-\alpha}} \right) \|\varphi\|_{H^4(\mathbb{R}^n)}, \quad 0 < \alpha \leq 1/2. \]
By using again the energy estimate applied to the solution \(r \), we get from (2.14)
\[\|\nabla r\|_{L^2(Q)} \leq C \|\varphi\|_{H^4(\mathbb{R}^n)}, \]
for any \(0 < \alpha \leq 1/2 \). This completes the proof of the lemma. \(\square \)

In a similar manner, we can construct a solution to the backward problem.

Lemma 2.6. Given \(\omega \in S_n^{n-1} \) and \(\varphi \in C_0^\infty(\mathbb{R}^n) \). We consider the function \(\phi \) defined by (2.12). Then, for any \(\lambda > 0 \) the equation \(H^* A, q = 0 \) in \(Q \) admits a solution
\[\varphi \in C([0, T]; H^1(\Omega)) \cap C^1([0, T]; L^2(\Omega)), \]
of the form
\[\varphi(x, t) = \phi(x, t) b^2_A(x, t) e^{i\lambda(x, \omega + t)} + r(x, t), \]
where
\[b(x, t) = \exp \left(i \int_0^t \omega \cdot A_A(x + s\omega) \, ds \right), \]
and \(r(x, t) \) satisfies
\[r(x, T) = \partial_T r(x, T) = 0, \quad \text{in } \Omega, \quad r(x, t) = 0 \quad \text{on } \Sigma. \]
Moreover, there exists a positive constant \(C > 0 \) such that
\[\lambda^\alpha \|r\|_{L^2(Q)} + \lambda^{\alpha-1} \|\nabla r\|_{L^2(Q)} \leq C \|\varphi\|_{H^4(\mathbb{R}^n)}, \quad 0 < \alpha \leq 1/2. \]
(2.22)

2.2. Stability for the magnetic field

In this section we are going to use the geometrical optics solutions constructed before in order to retrieve a stability result for the determination of the magnetic field \(d\alpha A \) from the DN map \(N_{A,q} \). Let us first consider \(A_1, A_2 \in A(M, A_0) \) and \(q_1, q_2 \in Q(M, q_0) \). We define
\(A(x) = (A_1 - A_2)(x) \) and \(q(x) = (q_2 - q_1)(x) \).

Assume that there exists \(\rho > 0 \) such that \(T > \text{Diam} \Omega + 4\rho \). We denote \(D_\rho = \{ x \in \mathbb{R}^n \setminus \Omega, \dist(x, \Omega) < \rho \} \).

Throughout the rest of the paper, we assume that \(\text{supp} \varphi \subset D_\rho \), so that we have \(\text{supp} \varphi \cap \Omega = \emptyset \), and \((\text{supp} \varphi \pm T \omega) \cap \Omega = \emptyset \).

We recall that \(A \) is assumed to be extended as \(\tilde{A} \) outside \(\Omega \) and that we denoted by \(A \) this extension. Moreover, we extend \(q \) to a \(L^\infty(\mathbb{R}^n) \) function by defining it by zero outside \(\Omega \). We denote by \(A \) and \(q \) these extensions.

2.2.1 Preliminary estimate. The main purpose of this section is to establish the following:

Lemma 2.7. There exists a constant \(C > 0 \), \(\delta > 1 \) and \(0 < \beta < \alpha < 1 \) such that for any \(\omega \in \mathbb{S}^{n-1} \), the following estimate

\[
\left| \int_{\mathbb{R}} \omega \cdot A(y - s\omega) \, ds \right| \leq C \left(\lambda^\delta \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^{\beta}} \right) \text{ a.e., } y \in \mathbb{R}^n,
\]

holds true for any \(\lambda > 0 \) sufficiently large. Here \(C \) depends only on \(\Omega \), \(T \) and \(M \).

Proof. In view of lemma 2.5, and using the fact that \(\text{supp} \varphi \cap \Omega = \emptyset \), there exists a geometrical optic solution \(u_2 \) to the following equation

\[
\begin{cases}
\mathcal{H}_{A, q_2} u_2 = 0, & \text{in } Q, \\
u_{2|_{t=0}} = \partial_t u_{2|_{t=0}} = 0, & \text{in } \Omega,
\end{cases}
\]

in the following form

\[u_2(x, t) = \varphi_2(x + t\omega) b_{2, \lambda}^q(x, t) e^{i\lambda(x \cdot \omega + t)} + r_2(x, t), \]

with \(b_{2, \lambda}^q(x, t) = \exp \left(i \int_0^t \omega \cdot A_2^q(x + s\omega) \, ds \right) \) and \(r_2 \) satisfies (2.16). Next, let us denote by \(f_\lambda = u_{2|_{\Sigma}} \). Let \(u_1 \) be a solution to the following system

\[
\begin{cases}
\mathcal{H}_{A_1, q_1} u_1 = 0, & \text{in } Q, \\
u_{1|_{t=0}} = \partial_t u_{1|_{t=0}} = 0, & \text{in } \Omega, \\
u_1 = u_2 := f_\lambda, & \text{on } \Sigma.
\end{cases}
\]

Putting \(u = u_1 - u_2 \). Then, \(u \) is a solution to

\[
\begin{cases}
\mathcal{H}_{A, q} u = 2iA \cdot \nabla u_2 + V_A u_2 + q u_2, & \text{in } Q, \\
u_{1|_{t=0}} = \partial_t u_{1|_{t=0}} = 0, & \text{in } \Omega, \\
u = 0, & \text{on } \Sigma.
\end{cases}
\]
where $A = A_1 - A_2$, $q = q_2 - q_1$ and $V_A = i\text{div}A + (A_2^2 - A_1^2)$. On the other hand, lemma 2.6 and the fact that $(\text{supp}q \pm T\omega) \cap \Omega = \emptyset$, guarantee the existence of a geometrical optic solution v to

$$\begin{cases}
\mathcal{H}_{A,q}^\ast v = 0, & \text{in } Q, \\
v_{|\partial Q} = 0, & \text{on } \partial Q,
\end{cases}$$

in the following form

$$v(x,t) = \varphi_1(x + t\lambda)b_{2,\lambda}(x,t)e^{\lambda(x \omega + t)} + r_1(x,t),$$

where $b_1(x,t) = \exp\left(i \int_0^t \omega \cdot \bar{A}_{1,\lambda}(x + s\omega) \, ds\right)$ and r_1 satisfies (2.22). Multiplying the first equation in (2.23) by v and integrating by parts, we get in view of (2.3),

$$\int_Q 2iA \cdot \nabla u_2(x,t) \overline{v}(x,t) \, dx \, dt = \int_{\Sigma} (Na_{q,t} - Na_{q_2,t})(f) \overline{v}(x,t) \, d\sigma \, dt - \int (V_A(x) + q(x))u_2(x,t)\overline{v}(x,t) \, dx \, dt. \tag{2.24}$$

On the other hand, by replacing u_2 and v by their expressions, we get

$$\int_Q 2iA \cdot \nabla u_2(x,t) \overline{v}(x,t) \, dx \, dt = \int_Q 2iA \cdot \nabla (\phi_2 b_{2,\lambda}(x,t)((\phi_1 b_{1,\lambda})^{\ast})(x,t)) \, dx \, dt$$

$$+ \int_Q 2iA \cdot \nabla (\phi_2 b_{2,\lambda}(x,t)(\overline{\phi_1 b_{1,\lambda}})(x,t)) \, dx \, dt$$

$$- 2\lambda \int_Q \omega \cdot A(x)(\phi_2 b_{2,\lambda}(x,t)(\overline{\phi_1 b_{1,\lambda}})(x,t)) \, dx \, dt$$

$$- 2\lambda \int_Q \omega \cdot A(x)(\phi_2 b_{2,\lambda}(x,t)r_1(x,t))e^{\lambda(x \omega + t)} \, dx \, dt$$

$$+ 2i \int_Q A \cdot \nabla r_2(x,t)(\overline{\phi_1 b_{1,\lambda}})(x,t) e^{-i\lambda(x \omega + t)} \, dx \, dt$$

$$+ 2i \int_Q A \cdot \nabla r_2(x,t)\overline{r_1}(x,t) \, dx \, dt$$

$$= -2\lambda \int_Q \omega \cdot A(x)(\phi_2 \overline{\phi_1}(x,t)(b_{2,\lambda} b_{1,\lambda}^{\ast})(x,t)) \, dx \, dt + I_{\lambda}. \tag{2.25}$$

Using the fact that for λ sufficiently large, we have

$$\|u_2\|_{L^2(Q)} \leq C\|\varphi_1\|_{H^l(\mathbb{R}^n)}\|\varphi_2\|_{H^l(\mathbb{R}^n)}, \quad \text{and} \quad |I_{\lambda}| \leq C\lambda^{1-\alpha}\|\varphi_1\|_{H^l(\mathbb{R}^n)}\|\varphi_2\|_{H^l(\mathbb{R}^n)}. \tag{2.26}$$

On the other hand from the trace theorem we have
\[
\left| \int_{\Sigma} (N_{A_2, q_2} - N_{A_1, q_1})(f_\lambda) \, \overline{\varphi}(x, t) \, d\sigma \, dt \right| \leq \| N_{A_2, q_2} - N_{A_1, q_1} \| \| f_\lambda \|_{H^r(\Sigma)} \| \overline{\varphi} \|_{L^2(\Sigma)} \\
\leq \| N_{A_2, q_2} - N_{A_1, q_1} \| \| u_2 - r_2 \|_{H^r(Q)} \| \overline{\varphi} \|_{H^r(Q)} \\
\leq C\lambda^3 \| N_{A_2, q_2} - N_{A_1, q_1} \| \| \varphi_1 \|_{H^r(\mathbb{R}^\nu)} \| \varphi_2 \|_{H^r(\mathbb{R}^\nu)}.
\]

This, (2.25) and (2.26) yield
\[
\left| \int_{Q} \omega \cdot A(x)(\varphi_2 \overline{\varphi}_1)(x, t) (b_{2,2} \overline{b}_{1,1})(x, t) \, dx \, dt \right| \\
\leq C\left(\lambda^2 \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^2} \right) \| \varphi_1 \|_{H^r(\mathbb{R}^\nu)} \| \varphi_2 \|_{H^r(\mathbb{R}^\nu)}.
\]

Since \(A = 0 \) outside \(\Omega \), then putting \(y = x + t\omega \) and \(s = t - s \), we get for \(\varphi_1 = \varphi_2 = \varphi \in C_0^\infty(\mathcal{D}_\rho) \),
\[
\left| \int_{0}^{T} \int_{\mathbb{R}^n} \omega \cdot A(y - t\omega) \varphi^2(y) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \, dy \, dt \right| \\
\leq C\left(\lambda^2 \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^2} \right) \| \varphi \|_{H^r(\mathbb{R}^\nu)}^2.
\]

Now, using the fact that
\[
\int_{0}^{T} \int_{\mathbb{R}^n} \omega \cdot A(y - t\omega) \varphi^2(y) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \, dy \, dt \\
= \int_{0}^{T} \int_{\mathbb{R}^n} \omega \cdot (A - A_\lambda)(y - t\omega) \varphi^2(y) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \, dy \, dt \\
+ \int_{0}^{T} \int_{\mathbb{R}^n} \omega \cdot A_\lambda(y - t\omega) \varphi^2(y) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \, dy \, dt,
\]

we get from (2.14)
\[
\left| \int_{0}^{T} \int_{\mathbb{R}^n} \omega \cdot A_\lambda(y - t\omega) \varphi^2(y) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \, dy \, dt \right| \\
\leq C\left(\lambda^2 \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^2} \right) \| \varphi \|_{H^r(\mathbb{R}^\nu)}^2.
\]

Therefore, since
\[
\partial_t \left[\exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right) \right] = -i\omega \cdot A_\lambda(y - t\omega) \exp \left(-i \int_{0}^{t} \omega \cdot A_\lambda(y - s\omega) \, ds \right),
\]
we obtain the following estimation.
\[|i \int_{\mathbb{R}^n} \varphi^2(y) \left[\exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) \right) - 1 \right] dy | \leq C \left(\lambda^2 \|N_{A_{\lambda}, q^2} - N_{A_{\lambda}, q_1}\| + \frac{1}{\lambda^\alpha} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}. \] (2.27)

We move now to specify the choice of the function \(\varphi \in C^\infty_0(D_\rho) \). We set \(B(0, r) := \{ x \in \mathbb{R}^n; |x| < r \} \) for all \(r > 0 \). Let \(\psi \in C^\infty_0(\mathbb{R}^n) \) be a non-negative function which is supported in the unit ball \(B(0, 1) \) and such that \(\|\psi\|_{L^2(\mathbb{R}^n)} = 1 \). For \(y \in D_\rho \), we define
\[\varphi_h(x) = h^{-n/2} \psi \left(\frac{x - y}{h} \right). \] (2.28)

Then, for \(h > 0 \) sufficiently small such that \(\text{Supp} \ \varphi_h \subset D_\rho \), we can verify that
\[\text{Supp} \ \varphi_h \cap \Omega = \emptyset \quad \text{and} \quad (\text{Supp} \ \varphi_h \pm T_\omega) \cap \Omega = \emptyset. \]

Moreover, we have
\[
\begin{align*}
&\left| \exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - 1 \right| = \left| \int_{\mathbb{R}^n} \varphi_h^2(x) \left[\exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - 1 \right] dx \right| \\
\leq &\left| \int_{\mathbb{R}^n} \varphi_h^2(x) \left[\exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - \exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(x - s\omega) ds \right) \right] dx \right| \\
+ &\left| \int_{\mathbb{R}^n} \varphi_h^2(x) \left[\exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(x - s\omega) ds \right) - 1 \right] dx \right|.
\end{align*}
\] (2.29)

Using the fact that
\[\left| \int_0^T (i\omega \cdot A_{\lambda}^t(y - s\omega) - i\omega \cdot A_{\lambda}^t(x - s\omega)) ds \right| \leq C |y - x|, \]
we deduce upon replacing \(\varphi = \varphi_h \) in (2.27), the following estimation
\[\left| \exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - 1 \right| \leq C \int_{\mathbb{R}^n} \varphi_h^2(x) |y - x| dx + C \left(\lambda^2 \|N_{A_{\lambda}, q^2} - N_{A_{\lambda}, q_1}\| + \frac{1}{\lambda^\alpha} \right) \|\varphi_h\|^2_{H^1(\mathbb{R}^n)}. \]

On the other hand, we have
\[\|\varphi_h\|_{H^1(\mathbb{R}^n)} \leq Ch^{-3} \quad \text{and} \quad \int_{\mathbb{R}^n} \varphi_h^2(x) |y - x| dx \leq Ch. \]

So, we end up getting the following inequality
\[\left| \exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - 1 \right| \leq Ch + C \left(\lambda^2 \|N_{A_{\lambda}, q^2} - N_{A_{\lambda}, q_1}\| + \frac{1}{\lambda^\alpha} \right) h^{-6}. \]

Selecting \(h \) small such that \(h = 1/\lambda^\eta h^6 \), that is \(h = \lambda^{-\alpha/7} \), we find \(\delta > 1 \) and \(0 < \beta < \alpha < 1 \) such that
\[\left| \exp \left(-i \int_0^T \omega \cdot A_{\lambda}^t(y - s\omega) ds \right) - 1 \right| \leq C \left(\lambda^\delta \|N_{A_{\lambda}, q^2} - N_{A_{\lambda}, q_1}\| + \frac{1}{\lambda^\alpha} \right). \] (2.30)
Using the fact that $|X| \leq e^{M} |e^{X} - 1|$ for any X real satisfying $|X| \leq M$ we found out that

$$\left| - i \int_{0}^{T} \omega \cdot A_{A}^{T}(y - s \omega) \, ds \right| \leq e^{MT} \exp \left(- i \int_{0}^{T} \omega \cdot A(y - s \omega) \, ds \right) - 1,$$

where $X = \int_{0}^{T} -i\omega \cdot A_{A}^{T}(y - s \omega) \, ds$. We conclude in light of (2.30) the following the estimate

$$\left| \int_{0}^{T} \omega \cdot A_{A}^{T}(y - s \omega) \, ds \right| \leq C \left(\lambda^{\delta} |N_{A_{2}, q_{2}} - N_{A_{1}, q_{1}}| + \frac{1}{\lambda^{\beta}} \right), \quad \text{a.e.} \ y \in D_{\rho}, \ \omega \in S^{n-1}.$$

By replacing ω by $-\omega$, we get

$$\left| \int_{0}^{T} \omega \cdot A_{A}^{T}(y - s \omega) \, ds \right| \leq C \left(\lambda^{\delta} |N_{A_{2}, q_{2}} - N_{A_{1}, q_{1}}| + \frac{1}{\lambda^{\beta}} \right), \quad \text{a.e.} \ y \in D_{\rho}, \ \omega \in S^{n-1}.$$

Bearing in mind that

$$\left| \int_{-T}^{T} \omega \cdot A(y - s \omega) \, ds \right| \leq \left| \int_{0}^{T} \omega \cdot A_{A}^{T}(y - s \omega) \, ds \right| + \left| \int_{-T}^{0} \omega \cdot (A_{A}^{T} - A)(y - s \omega) \, ds \right|,$$

we can deduce from (2.32) and (2.14) the following estimate

$$\left| \int_{-T}^{T} \omega \cdot A(y - s \omega) \, ds \right| \leq C \left(\lambda^{\delta} |N_{A_{2}, q_{2}} - N_{A_{1}, q_{1}}| + \frac{1}{\lambda^{\beta}} \right) \leq C \left(\lambda^{\delta} |N_{A_{2}, q_{2}} - N_{A_{1}, q_{1}}| + \frac{1}{\lambda^{\beta}} \right),$$

for all $y \in D_{\rho}$ and $\omega \in S^{n-1}$. Since $T > \text{Diam} \Omega + 4\rho$ and supp $A \subseteq \Omega$ we obtain in view of (2.31)–(2.32),

$$\left| \int_{\mathbb{R}} \omega \cdot A(y - s \omega) \, ds \right| \leq C \left(\lambda^{\delta} |N_{A_{2}, q_{2}} - N_{A_{1}, q_{1}}| + \frac{1}{\lambda^{\beta}} \right), \quad \text{a.e.} \ y \in \mathbb{R}^{n}, \ \omega \in S^{n-1}.$$

This completes the proof of the lemma. \hfill \Box

2.2.2. An estimate for the magnetic field. In this section we estimate the magnetic field $d\omega A_{1} - d\omega A_{2}$ by the use of the lemma proved in the previous section. For this purpose, let us first introduce this notation

$$a_{k}(x) = (A_{1} - A_{2})(x) \cdot e_{k} = A(x) \cdot e_{k},$$

where $(e_{k})_{1 \leq k \leq n}$ is the canonical basis of \mathbb{R}^{n}. On the other hand, we denote by

$$\sigma_{j,k}(x) = \frac{\partial a_{k}}{\partial x_{j}}(x) - \frac{\partial a_{j}}{\partial x_{k}}(x), \quad j, k = 1 \ldots n.$$

(2.33)

Let $\xi \in \omega^{+}$. By the change of variables $x = z - s\omega \in \omega^{+} \oplus \mathbb{R} \omega = \mathbb{R}^{n}$, we have the following identity

$$z \cdot \xi = z \cdot \xi - s\omega \cdot \xi = x \cdot \xi,$$
with $dx = dz\, ds$. Thus, we get

$$
\int_{\omega^+} e^{-iz\xi} \int_{\mathbb{R}} \omega \cdot A(z - s\omega)\, ds\, dz = \int_{\omega^+} \int_{\mathbb{R}} e^{-iz\xi + z\xi \omega} (\omega \cdot A)(z - s\omega)\, ds\, dz
$$

$$
= \int_{\mathbb{R}^n} e^{-iz\xi} \omega \cdot A(x)\, dx.
$$

Assume that $\Omega \subset B(0, R)$, with $R > 0$. Using the fact that $\text{Supp} \ A \subset \Omega$, we get from lemma 2.7

$$
\left| \int_{\mathbb{R}^n} e^{-iz\xi} \omega \cdot A(x)\, dx \right| \leq \int_{\omega \cap B(0, R)} \left| e^{-iz\xi} \int_{\mathbb{R}} \omega \cdot A(z - s\omega)\, ds\, dz \right| \, dz
$$

$$
\leq C \left(\lambda^2 \|N_{\Delta q_2} - N_{\Delta q_1}\| + \frac{1}{\lambda^2} \right). \quad (2.34)
$$

We define $\omega = \frac{\xi e_k - \xi e_j}{|\xi e_k - \xi e_j|}$. Multiplying (2.34) by $|\xi e_k - \xi e_j|$, we obtain for all $\xi \in \omega^$

$$
\left| \int_{\mathbb{R}^n} e^{-iz\xi} \left(\xi a_k(x) - \xi a_j(x) \right)\, dx \right| \leq C |\xi e_k - \xi e_j| \left(\lambda^2 \|N_{\Delta q_2} - N_{\Delta q_1}\| + \frac{1}{\lambda^2} \right).
$$

This together with (2.33) yield

$$
|\tilde{\sigma}_{jk}(\xi)| \leq C < \xi > \left(\lambda^2 \|N_{\Delta q_2} - N_{\Delta q_1}\| + \frac{1}{\lambda^2} \right),
$$

for all $\xi \in \omega^$. Changing $\omega \in S^{n-1}$, then we get for any $\xi \in \mathbb{R}^n$

$$
|\tilde{\sigma}_{jk}(\xi)| \leq C < \xi > \left(\lambda^2 \|N_{\Delta q_2} - N_{\Delta q_1}\| + \frac{1}{\lambda^2} \right).
$$

We are now in position to upper bound the magnetic field induced by the magnetic potential in suitable norms. For this purpose, let $0 < R \leq \lambda$. In light of the above reasoning, this can be achieved by decomposing the $H^{-1}(\mathbb{R}^n)$ norm of σ_{jk} as follows

$$
\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)}^2 = \int_{|\xi| \leq R} |\tilde{\sigma}_{jk}(\xi)|^2 < \xi >^{-2} \, d\xi + \int_{|\xi| > R} |\tilde{\sigma}_{jk}(\xi)|^2 < \xi >^{-2} \, d\xi.
$$

Then, we have

$$
\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)} \leq C \left(R^n \| < \xi >^{-1} \tilde{\sigma}_{jk} \|_{L^\infty(B(0, R))}^2 + \frac{1}{R^2} \|\sigma_{jk}\|_{L^2(\mathbb{R}^n)}^2 \right).
$$

This entails that

$$
\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)} \leq C \left(R^n \left(\lambda^{2\beta} \|N_{\Delta q_2} - N_{\Delta q_1}\|^2 + \frac{1}{\lambda^{2\beta}} \right) + \frac{1}{R^2} \right).
$$

Next, we choose $R > 0$ in such away $R^n / \lambda^{2\beta} = 1/R^2$. Thus, we obtain

$$
\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)}^2 \leq C \left(\lambda^{\frac{n}{2}} \|N_{\Delta q_2} - N_{\Delta q_1}\|^2 + \lambda^{\frac{n}{2}} - 2\beta \right)
$$

$$
\leq C \left(\lambda^{\mu_2} \|N_{\Delta q_2} - N_{\Delta q_1}\|^2 + \lambda^{-\mu_2} \right), \quad (2.35)
$$
where $\delta > 1$, $\beta > 0$ are given in lemma 2.7, $\mu_1 = \frac{2\beta n}{n+2} + 2\delta > 0$ and $\mu_2 = \frac{2\beta n}{n+2} - 2\beta > 0$. Now we assume that $\|N_{A_2,q_2} - N_{A_1,q_1}\| < c < 1$, and we minimize with respect to λ to end up getting

$$\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)} \leq C\|N_{A_2,q_2} - N_{A_1,q_1}\|^{1/2}.$$

The above estimate remains true in the case where $\|N_{A_2,q_2} - N_{A_1,q_1}\| \geq c$, since we have

$$\|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)} \leq \frac{2M}{c^{1/2}} \leq \frac{2M}{c^{1/2}} \|N_{A_2,q_2} - N_{A_1,q_1}\|^{1/2}.$$

Therefore, we find out that

$$\|d\alpha_{A_1} - d\alpha_{A_2}\|_{H^{-1}(\Omega)} \leq \sum \|\sigma_{jk}\|_{H^{-1}(\mathbb{R}^n)} \leq C\|N_{A_2,q_2} - N_{A_1,q_1}\|^{1/2}. \quad (2.36)$$

2.3. Stability for the electric potential

The goal of this section is to prove a stability estimate for the electric potential. The proof involves using the stability estimate we have already obtained for the magnetic field. We will proceed as in [29].

Let $n < p_0 < \infty$. Apply the Hodge decomposition to $A_1 - A_2$ in the space $W^{1,p_0}(\Omega, \mathbb{C}^n)$. We define

$$A_1' = A_1 + \frac{1}{2} \nabla \psi, \quad \text{and} \quad A_2' = A_2 - \frac{1}{2} \nabla \psi,$$

with $\psi \in W^{1,p_0}(\Omega) \cap H^1_0(\Omega)$. From lemma 6.2 given in [29], $A' = A_2' - A_1'$ satisfies

$$\|A'\|_{W^{1,p_0}(\Omega)} \leq C\|d\alpha_{A_1} - d\alpha_{A_2}\|_{L^p(\Omega)} = C\|d\alpha_{A_1} - d\alpha_{A_2}\|_{L^p(\Omega)}.$$

Recall that since the DN map is invariant under gauge transformation then we have

$$N_{A_1,q_1} = N_{A_1} + \frac{i}{2} \nabla \psi_{q_1}, \quad N_{A_2,q_1} = N_{A_2} - \frac{i}{2} \nabla \psi_{q_1}. \quad (2.39)$$

Throughout the rest of this section, A_j will be replaced by A_j' for $j = 1, 2$.

2.3.1. Preliminary estimate.

Lemma 2.8. There exist a constant $C > 0$ such that for any $\omega \in S^{n-1}$, the following estimate

$$\left| \int_{\mathbb{R}^n} q(y - t\omega) \, dt \right| \leq C\left(\lambda \|N_{A_2,q_2} - N_{A_1,q_1}\| + \frac{1}{\lambda^2} \right), \quad \text{a.e. } y \in \mathbb{R}^n,$$

holds true. Here C depends only on Ω, T and M.

Proof. We start with the identity (2.24) except this time we isolate the electric potential term

$$\int_{\Omega} q(x) u_2(x,t)v(x,t) \, dx \, dt = \int_{\Sigma} (N_{A_1,q_1} - N_{A_2,q_2})(f)v(x,t) \, d\sigma \, dt$$

$$- \int_{\Omega} 2iA' \cdot \nabla u_2(x,t)v(x,t) \, dx \, dt - \int_{\Omega} V_A'(x) u_2(x,t)v(x,t) \, dx \, dt,$$

where $V_A' = \text{idiv} A' + (A_2' - A_1')$. By replacing u_2 and v by their expressions, we get
\[\int q(x)u_2(x, t)\mathcal{P}(x, t) \, dx \, dt = \int q(x)(\phi_2 \overline{\phi}_1)(x, t)(b^2_{2,\lambda} \overline{\Phi}_1)(x, t) \, dx \, dt + \int q(x)\phi_2(x, t)\overline{\Phi}_1(x, t) \, dx \, dt + \int q(x)\overline{\phi}_1(x, t)\Phi_1(x, t) \, dx \, dt + \int q(x)r_2(x, t)\overline{\Phi}_1(x, t) \, dx \, dt. \]

Therefore, we have the following identity
\[\int q(x)(\phi_2 \overline{\phi}_1)(x, t)(b^2_{2,\lambda} \overline{\Phi}_1)(x, t) \, dx \, dt = \int (N_{\mathcal{A}_1} - N_{\mathcal{A}_2})(f)\mathcal{P}(x, t) \, d\sigma \, dt + I_\lambda, \tag{2.40} \]

where \(I_\lambda \) is given by
\[I_\lambda = \int 2i\mathcal{A}^* \cdot \nabla u_2(x, t)\overline{\mathcal{P}(x, t)} \, dx \, dt - \int V_{\mathcal{A}^*}(x)u_2(x, t)\overline{\mathcal{P}(x, t)} \, dx \, dt - \int q(x)\phi_2(x, t)\overline{\Phi}_1(x, t) \, dx \, dt - \int q(x)\overline{\phi}_1(x, t)\Phi_1(x, t) \, dx \, dt - \int q(x)r_2(x, t)\overline{\Phi}_1(x, t) \, dx \, dt \]

For \(\lambda \) sufficiently large, we have
\[|I_\lambda| \leq C \left(\frac{1}{\lambda^\alpha} + \lambda \|\mathcal{A}^*\|_{L^\infty(\Omega)} \|\phi_1\|_{H^r(\mathbb{R}^3)} \|\phi_2\|_{H^r(\mathbb{R}^3)} \right), \tag{2.41} \]

with \(0 < \alpha \leq 1/2 \). On the other hand, by the trace theorem, we have
\[\left| \int (N_{\mathcal{A}_1} - N_{\mathcal{A}_2})(f)\mathcal{P}(x, t) \, d\sigma \, dt \right| \leq C\lambda^3 \|N_{\mathcal{A}_1} - N_{\mathcal{A}_2}\|_{L^r(\mathbb{R}^3)} \|\phi_1\|_{H^r(\mathbb{R}^3)} \|\phi_2\|_{H^r(\mathbb{R}^3)}. \tag{2.42} \]

Thus, from (2.40)–(2.42) we obtain
\[\left| \int q(x)(\phi_2 \overline{\phi}_1)(x, t)(b^2_{2,\lambda} \overline{\Phi}_1)(x, t) \, dx \, dt \right| \leq C \left(\lambda^3 \|N_{\mathcal{A}_1} - N_{\mathcal{A}_2}\|_{L^r(\mathbb{R}^3)} + \lambda \|\mathcal{A}^*\|_{L^\infty(\Omega)} + \frac{1}{\lambda^\alpha} \right) \|\phi_1\|_{H^r(\mathbb{R}^3)} \|\phi_2\|_{H^r(\mathbb{R}^3)}. \]

Since \(q = 0 \) outside \(\Omega \), then by the change of variables \(y = x + i\omega, \ s = t - s \) we get for \(\overline{\Phi}_1 = \phi_2 = \phi \),
\[\left| \int_0^T \int_{\mathbb{R}^3} q(y - i\omega)\phi^2(y) \exp \left(-i \int_0^s \omega \cdot A^2_{\lambda}(y - s\omega) \, ds \right) dy \, dr \right| \leq C \left(\lambda^3 \|N_{\mathcal{A}_1} - N_{\mathcal{A}_2}\|_{L^r(\mathbb{R}^3)} + \lambda \|\mathcal{A}^*\|_{L^\infty(\Omega)} + \frac{1}{\lambda^\alpha} \right) \|\phi\|^2_{H^r(\mathbb{R}^3)}, \]

with \(A^2_{\lambda} = \chi_{\lambda} \mathcal{A}^* \). This and the fact that
\[\left| \int_0^T \int_{\mathbb{R}^3} q(y - i\omega)\phi^2(y) \left[1 - \exp \left(-i \int_0^s \omega \cdot A^2_{\lambda}(y - s\omega) \, ds \right) \right] dy \, dr \right| \leq C \|A^2_{\lambda}\|_{L^r(\mathbb{R}^3)} \|\phi\|^2_{H^r(\mathbb{R}^3)} \leq C \|\mathcal{A}^*\|_{L^\infty(\Omega)} \|\phi\|^2_{H^r(\mathbb{R}^3)}, \]
implies that

\[
\left| \int_0^T \int_{\mathbb{R}^n} q(y - t\omega) \varphi^2(y) \, dy \, dt \right| \leq \left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \lambda\|A'\|_{L^\infty(\Omega)} + \frac{1}{\lambda^2} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}.
\]

Applying Morrey’s inequality given by the following estimate

\[
\|A'\|_{C^{0, \frac{s}{2}}(\Omega)} \leq C\|A'\|_{W^{1,p}(\Omega)}, \quad A' \in W^{1,p}(\Omega),
\]

where \(n < p \leq \infty \) and \(C \) a positive constant which depends on \(p, n \) and \(\Omega \), we get

\[
\left| \int_0^T \int_{\mathbb{R}^n} q(y - t\omega) \varphi^2(y) \, dy \, dt \right| \leq \left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \lambda\|A'\|_{W^{1,p}(\Omega)} + \frac{1}{\lambda^2} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}.
\]

where \(n < p_0 < \infty \). Hence, in light of (2.38), we find out that

\[
\left| \int_0^T \int_{\mathbb{R}^n} q(y - t\omega) \varphi^2(y) \, dy \, dt \right| \leq \left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \lambda\|\alpha_{A_1} - \alpha_{A_2}\|_{L^\infty(\Omega)} + \frac{1}{\lambda^2} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}.
\]

(2.43)

By interpolating, we have for \(s = \frac{2}{p_0} \)

\[
\|\alpha_{A_1} - \alpha_{A_2}\|_{L^\infty(\Omega)} \leq \|\alpha_{A_1} - \alpha_{A_2}\|_{L^{\infty}(\Omega)}^{1 - s} \|\alpha_{A_1} - \alpha_{A_2}\|_{L^2(\Omega)}^s
\leq C\|\alpha_{A_1} - \alpha_{A_2}\|_{H^{\frac{s}{2}}(\Omega)}^{\frac{s}{2}} \|\alpha_{A_1} - \alpha_{A_2}\|_{H^{-\frac{s}{2}}(\Omega)}^{\frac{s}{2}}
\leq C\|\alpha_{A_1} - \alpha_{A_2}\|_{H^{-\frac{s}{2}}(\Omega)}^{\frac{s}{2}}.
\]

(2.44)

Therefore, from (2.43) and (2.36), we obtain

\[
\left| \int_0^T \int_{\mathbb{R}^n} q(y - t\omega) \varphi^2(y) \, dy \, dt \right|
\leq \left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \lambda\|\alpha_{A_1} - \alpha_{A_2}\|_{L^\infty(\Omega)}^{1/4} + \frac{1}{\lambda^2} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}
\leq C\left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \frac{1}{\lambda^2} \right) \|\varphi\|^2_{H^1(\mathbb{R}^n)}.
\]

Now we just need to proceed as in the determination of the magnetic field. We consider the sequence \((\varphi_h)_{h}\) defined by (2.28) with \(y \in D_\rho \). Since

\[
\left| \int_0^T q(y - t\omega) \, dt \right| = \left| \int_0^T \int_{\mathbb{R}^n} q(y - t\omega) \varphi_h^2(x) \, dx \, dt \right|
\leq \left| \int_0^T \int_{\mathbb{R}^n} q(x - t\omega) \varphi_h^2(x) \, dx \, dt \right| + \left| \int_0^T \int_{\mathbb{R}^n} \left(q(y - t\omega) - q(x - t\omega) \right) \varphi_h^2(x) \, dx \, dt \right|
\]

and using the fact that \(|q(y - t\omega) - q(x - t\omega)| \leq C|y - x| \), we obtain

\[
\left| \int_0^T q(y - t\omega) \, dt \right| \leq C\left(\lambda^3 \|N_{A_1; q_1} - N_{A_2; q_2}\| + \frac{1}{\lambda^2} \right) \|\varphi_h\|^2_{H^1(\mathbb{R}^n)} + C\int_{\mathbb{R}^n} |y - x| \varphi_h^2(x) \, dx.
\]
On the other hand, since \(\| \varphi_h \|_{L^2(\mathbb{R}^n)} \leq Ch^{-3} \) and \(\int_{\mathbb{R}^n} |x - y| \varphi_h^2(x) \, dx \leq C h \), we conclude that
\[
\left| \int_0^T q(y - t\omega) \, dt \right| \leq C \left(\lambda^3 \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^\alpha} \right) h^{-6} + C h.
\]

Selecting \(h \) small such that \(h = h^{-6}/\lambda^\alpha \). Then, we find two constants \(\delta > 1 \) and \(0 < \beta < \alpha < 1 \) such that
\[
\left| \int_0^T q(y - t\omega) \, dt \right| \leq C \left(\lambda^\delta \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^\beta} \right).
\] (2.45)

The estimate (2.45) remains true by replacing \(\omega \) by \(-\omega \). Then we get for all \(y \in D_p \),
\[
\left| \int_{-T}^T q(y - t\omega) \, dt \right| \leq C \left(\lambda^\delta \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^\beta} \right).
\]

Next, using the fact that \(q = q_2 - q_1 = 0 \) outside \(\Omega \) and since \(T > \text{Diam} \Omega + 4\rho \), we have
\[
\left| \int_{\mathbb{R}} q(y - t\omega) \, dt \right| \leq C \left(\lambda^\delta \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^\beta} \right), \quad \text{a.e. } y \in \mathbb{R}^n, \, \omega \in S^{n-1}.
\]

This completes the proof of the lemma. \(\square \)

2.3.2. Estimate for the electric potential. This section is devoted to upper bound the electric potential. In light of lemma 2.8 and arguing as in section 2.2.2, we get for all \(\xi \in \omega^\perp \) the following estimate
\[
|\tilde{q}(\xi)| \leq C \left(\lambda^\delta \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{\lambda^\beta} \right). \quad (2.46)
\]

By changing \(\omega \in S^{n-1} \) (2.46) holds for all \(\xi \in \mathbb{R}^n \). By decomposing the \(H^{-1}(\mathbb{R}^n) \) norm of \(q \), we find
\[
\| q \|_{H^{-1}(\mathbb{R}^n)}^2 = \int_{|\xi| < R} |\tilde{q}(\xi)|^2 < \xi >^{-2} \, d\xi + \int_{|\xi| > R} |\tilde{q}(\xi)|^2 < \xi >^{-2} \, d\xi \\
\leq C \left(R^n \| \tilde{q} \|_{L^2(\mathbb{R}^n)}^2 + \frac{1}{R^n} \| q \|_{L^2(\Omega)}^2 \right).
\]

Thus, in light of (2.46), we get
\[
\| q \|_{H^{-1}(\mathbb{R}^n)} \leq C \left(R^n \lambda^{2\delta} \| N_{A_2, q_2} - N_{A_1, q_1} \|^2 + \frac{R^n}{\lambda^{2\beta}} + \frac{1}{R^2} \right).
\]

We choose \(R \) such that \(R^{n+2} = \lambda^{2\beta} \) and we obtain
\[
\| q \|_{H^{-1}(\mathbb{R}^n)} \leq C \left(R^4 \| N_{A_2, q_2} - N_{A_1, q_1} \| + \frac{1}{R} \right),
\]

for some positive constant \(k > 0 \). All the above mentioned statements are valid for \(\lambda \) sufficiently large. Assume that there exists \(\kappa > 0 \) such that \(\| N_{A_2, q_2} - N_{A_1, q_1} \| \leq \kappa \). We select
\[
R = \| N_{A_2, q_2} - N_{A_1, q_1} \|^{-1/(k+1)}.
\]
Thus, \(\lambda \) is sufficiently large and we get
\[
\|q\|_{H^{-1}(\mathbb{R}^N)} \leq C\|M_{A_2} - N_{A_1}\|^2, \quad \mu_2 = 1/(k + 1) \in (0, 1).
\] (2.47)
This completes the proof of theorem 2.2.

3. Proof of theorem 1.1

At this stage we are well prepared to deal with the inverse problem under investigation, that is the identification of \(V \) appearing in (1.1) from the knowledge of \(\Lambda V \). Based on lemma 2.1 and theorem 2.2 we prove the main result of this paper. Let us start by stating the main tool allowing us to prove the stability.

A crucial part of the proof of theorem 1.1 is an elliptic Carleman estimate designed for the elliptic operator \(\Delta \) and given in [8, 11]. For formulating our Carleman estimate, we shall first set some notations: let a subboundary \(\Gamma_0 \subset \Gamma \). Assume that there exists a function \(\psi \in C^2(\Omega, \mathbb{R}^n) \) such that
\[
\psi(x) > 0, \quad x \in \Omega, \quad |\nabla \psi(x)| > 0 \quad x \in \overline{\Omega}, \quad \text{and} \quad \partial_\nu \psi(x) \leq 0 \quad x \in \Gamma \setminus \Gamma_0.
\]

On the other hand, for any given parameter \(\beta > 0 \), we define the weight function \(\eta \) as follows
\[
\eta(x) = e^{\beta \psi(x)} \quad x \in \Omega.
\]

Then the following Carleman estimate holds true:

Proposition 3.1. (see [8, 11]) There exist \(\gamma_0 > 0 \) and \(C > 0 \) such that for all \(\gamma \geq \gamma_0 \), we have the following estimate:
\[
\int_\Omega \left(\gamma |\nabla u(x)|^2 + \gamma^3 |u(x)|^2 \right) e^{2\gamma \eta(x)} \, dx \leq \int_\Omega |\Delta u(x)|^2 e^{2\gamma \eta(x)} \, dx + \int_{\Gamma_0} \gamma |\partial_\nu u(x)|^2 e^{2\gamma \eta(x)} \, d\sigma,
\]
for any \(u \in H^2(\Omega) \) such that \(u(x) = 0 \) on \(\Gamma \).

Using the above statement, we are now able to stably retrieve the first order coefficient \(V \) from the information given by the DN map \(\Lambda V \).

3.1. Stability estimate for the velocity field

Armed with proposition 3.1, we turn now to proving the main result of this paper. Let us consider two velocity fields \(V_1, V_2 \in \mathcal{V}(V_0, M) \). We define \(V = V_1 - V_2 \). Our goal is to show that \(V \) stably depends on the DN map \(\Lambda V_1 - \Lambda V_2 \). In view of (2.37) and (2.4) we have the existence of a function \(\varphi \in W^{3,p}_0(\Omega) \cap H^1_0(\Omega) \) such that
\[
V = V_1 - V_2 = -2iA' + \nabla(2i\psi) = V' + \nabla \varphi.
\] (3.48)

Then \(\varphi \) is solution to the following equation
\[
\begin{cases}
\Delta \varphi = \Psi := \text{div} V - \text{div} V' = \text{div} V, & \text{in } \Omega, \\
\varphi = 0, & \text{in } \Gamma.
\end{cases}
\]
Thanks to (2.4) and (3.48), we have
\[\Psi = 2(q_2 - q_1) + \frac{1}{2}(V')(V_1 + V_2) + \frac{1}{2} \nabla \varphi (V_1 + V_2). \]

By applying proposition 3.1 to the solution \(\varphi \) and using the fact that \(\|V_j\|_{L^\infty(\Omega)} \leq M, \ j = 1, 2, \) we find
\[
\int_\Omega \gamma |\nabla \varphi(x)|^2 e^{2\gamma \eta(x)} \, dx \leq \int_\Omega |\Delta \varphi(x)|^2 e^{2\gamma \eta(x)} \, dx + \int_{\Gamma_0} \gamma |\partial_n \varphi(x)|^2 e^{2\gamma \eta(x)} \, d\sigma
\]
\[
\leq C \int_\Omega (|q_2 - q_1|^2 + |V'(x)|^2 + |\nabla \varphi(x)|^2) e^{2\gamma \eta(x)} \, dx + \int_{\Gamma_0} \gamma |\partial_n \varphi(x)|^2 e^{2\gamma \eta(x)} \, d\sigma.
\]

By taking \(\gamma \) sufficiently large, (3.49) immediately yields
\[
\int_\Omega |\nabla \varphi(x)|^2 e^{2\gamma \eta(x)} \, dx \leq C \int_\Omega (|q_2 - q_1|^2 + |V'(x)|^2) e^{2\gamma \eta(x)} \, dx + \int_{\Gamma_0} \gamma |\partial_n \varphi(x)|^2 e^{2\gamma \eta(x)} \, d\sigma.
\]

This implies that
\[
\|\nabla \varphi\|_{L^2(\Omega)}^2 \leq C \|q_2 - q_1\|_{L^2(\Omega)}^2 + \|V'\|_{L^2(\Omega)}^2 + \|\partial_n \varphi\|_{L^2(\Gamma_0)}^2.
\]

By interpolation and since \(\|q_2 - q_1\|_{W^{1,\infty}(\Omega)} \leq C(M, M') \), it follows from (2.47) that
\[
\|q_2 - q_1\|_{L^2(\Omega)} \leq \|q_2 - q_1\|_{H^1(\Omega)}^{1/2} \|q_2 - q_1\|_{H^{-1}(\Omega)}^{1/2} \leq C \|N_{q_2-q_1} - N_{q_1-q_1}\|_{\kappa_1}^{1/2},
\]
for some \(\kappa_1 \in (0, 1) \). Moreover, from (3.48) and Morrey’s inequality, we have
\[
\|V'\|_{L^2(\Omega)} \leq C \|A'\|_{L^2(\Omega)} \leq C \|A'\|_{L^\infty(\Omega)} \leq C \|A'\|_{W^{n,\infty}(\Omega)},
\]
where \(n < p_0 < \infty \). This, (2.38), (2.44) and (2.36) yield
\[
\|V'\|_{L^2(\Omega)} \leq C \|N_{q_1-q_1} - N_{q_2-q_1}\|_{\kappa_2}^{1/2},
\]
for some \(\kappa_2 > 0 \). On the other hand, owing to the assumption that \(V = V_1 - V_2 = 0 \) on \(\Gamma \) and taking advantage of Trace’s theorem, one gets
\[
\|\partial_n \varphi\|_{L^2(\Gamma_0)} \leq \|V'\|_{L^2(\Gamma_0)} \leq \|V'\|_{H^1(\Omega)} \leq \|V'\|_{L^2(\Omega)}^{1/2} \|V'\|_{H^1(\Omega)}^{1/2} \leq C \|N_{q_1-q_1} - N_{q_2-q_2}\|_{\kappa_3}^{1/2},
\]
for some \(\kappa_3 > 0 \). In view of (3.50)–(3.53), it is easily understood that
\[
\|V_1 - V_2\|_{L^2(\Omega)} \leq \|V'\|_{L^2(\Omega)} + \|\nabla \varphi\|_{L^2(\Omega)} \leq \|N_{q_1-q_2} - N_{q_1-q_1}\|_{\kappa},
\]
where \(\kappa := \min(\kappa_1, \kappa_2, \kappa_3) \). From (2.5) we deduce the desired result.

References

[1] Bellassoued M 2017 Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field Inverse Problems 33 055009
[2] Bellassoued M and Ben Aïcha I 2017 Stable determination outside a cloaking region of two time-dependent coefficients in an hyperbolic equation from Dirichlet to Neumann map Math. Anal. Appl. 449 46–76
[3] Bellassoued M and Ben Aïcha I 2016 Uniqueness for an inverse problem for a dissipative wave equation with time dependent coefficient Arina 23 65–78
[4] Bellassoued M and Benjoud H 2008 Stability estimate for an inverse problem for the wave equation in a magnetic field Appl. Anal. 87 277–92
[5] Bellassoued M, Choulli M and Yamamoto M 2009 Stability estimate for an inverse wave equation and a multidimensional Borg–Levinson theorem Differ. Equ. 247 465–94
[6] Bellassoued M and Dos Santos Ferreira D 2011 Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map Inverse Problems Imaging 5 745–73
[7] Bellassoued M, Kian Y and Soccorsi E 2016 An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains J. Differ. Equ. 260 7535–62
[8] Bellassoued M and Yamamoto M 2012 Carleman Estimates for Anisotropic Hyperbolic Systems in Riemannian Manifolds and Applications (Lecture Notes in Mathematical Sciences)
[9] Ben Aïcha I 2016 Stability estimate for hyperbolic inverse problem with time dependent coefficient Inverse Problems 31 125010
[10] Ben Joud H 2010 Stability estimate for an inverse problem for the electro-magnetic wave equation and spectral boundary value problem Inverse Problems 26
[11] Ben Joud H 2009 A stability estimate for an inverse problem for the Schrödinger equation in a magnetic field from partial boundary measurements Inverse Problems 25
[12] Cheng J, Nakamura G and Somersalo E 2001 Uniqueness of identifying the convection term Commun. Korean Math. Soc. 16 405–13
[13] Cipolatti R and Lopez I F 2005 Determination of coefficients for a dissipative wave equation with boundary measurements Math. Anal. Appl. 306 317–29
[14] Eskin G 2006 A new approach to hyperbolic inverse problems Inverse Problems 22 815–31
[15] Evans C 1998 Partial Differential Equations vol 19 (Providence, RI: American Mathematical Society)
[16] Isakov V 1991 An inverse hyperbolic problem with many boundary measurements Commun. PDE 16 1183–95
[17] Isakov V and Sun Z 1992 Stability estimates for hyperbolic inverse problems with local boundary data Inverse Problems 8 193–206
[18] Kian Y 2016 Stability in the determination of a time-dependent coefficient for wave equations from partial data Math. Anal. Appl. 436 408–28
[19] Kurylev Y K and Lassas M 1997 The multidimensional Gel’fand inverse problem for non-self-adjoint operators Inverse Problems 13 1495–501
[20] Liu S and Oksanen L 2016 A Lipschitz stable reconstruction formula for the inverse problem for the wave equation Trans. Am. Math. Soc. 368 319–35
[21] Polijova V 2013 A uniqueness result for an inverse problem of the steady state convection diffusion equation SIAM J. Math. Anal. 47 2084–103
[22] Rakesh and Symes W 1988 Uniqueness for an inverse problem of the wave equation Commun. PDE 13 87–96
[23] Ramm A G and Sjostrand J 1991 An inverse inverse problem of the wave equation Math. Z. 206 119–30
[24] Salazar R 2013 Determination of time-dependent coefficients for a hyperbolic inverse problem Inverse Problems 29 095015
[25] Salo M 2004 Inverse problems for nonsmooth first odered perturbation of the Laplacian Ann. Acad. Sci. Fenn. Math. Dissertationes 139
[26] Stefanov P and Uhlmann G 1998 Stability estimates for the hyperbolic Dirichlet-to-Neumann map in anisotropic media Funct. Anal. 154 330–58
[27] Sun Z 1990 On continuous dependence for an inverse initial boundary value problem for the wave equation Math. Anal. Appl. 150 188–204
[28] Sun Z 1993 An inverse boundary value problem for Schrödinger operators with vector potentials Trans. Am. Math. Soc. 1 953–69
[29] Tzou L 2008 Stability estimates for coefficients of magnetic Schrödinger equation from full, partial boundary measurements Commun. PDE 33 1911–52
[30] Waters A 2014 Stable determination of x-ray transforms of time dependent potentials from the dynamical Dirichlet-to-Neumann map Commun. PDE 39 12