Pbl-team teaching: supporting vocational students logical thinking and creative disposition

A Maharani 1,2, Darhim 2, J Sabandar1, and T Herman2

1Universitas Swadaya Gunung Djati, Jl. Perjuangan No. 1, Cirebon 45134, Indonesia; 2Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung 40154, Indonesia

E-mail: anggi17317@gmail.com

Abstract. An analysis of labour demand informs that a dimension of the ability to think logically and creatively are needed. Many studies on the implementation of PBL have been carried out. However, no research has yet combined the PBL model and the team teaching method as a solution in learning for vocational schools. The collaboration involves mathematics teachers and at least one vocational teacher as a learning resource. An implementation of PBL-team teaching has been carried out in the technology & industry group of Vocational Schools in the district of Cirebon. This study is a quasi-experiment with a pretest-posttest control group design. It involves one medium-level and low-level school. Each sample was taken randomly in two classes experiment is PBL-Team Teaching and PBL, and one control class is the conventional model. Descriptive statistical analysis was used in this study. The result shows that the increase in mathematical logic and creative thinking ability of students who used PBL-team teaching was higher than students in PBL and conventional models. PBL-team teaching requires sufficient preparation for teachers. That is, to collaborate in teaching and transferring their knowledge. In addition to solving problems, it is necessary to prepare students' initial knowledge.

1. Introduction

There are several level dimensions of ability needed by industry. That is, the ability to think logically, to solve problems, to use technical logic and reasoning [1]. However, the ability to think critically and creatively is also essential [2–4]. For developing the industry, it needs innovating in improving the quality and competition of products. There is some literature of the ability to think logically and creatively [5–16]. It explains that the ability to think logically and creatively influences the success of students [17–19]. Wakefield & John F’s [20] illustrates the relationship between the interests of vocational and cognitive skills. They explore through the field of study. The results of the research stated the correlation between logic thinking, insight, idea, and creative thinking. Meanwhile, Russell [21] shows that mathematics is the key that allows a person to develop. Graduates who come to the industry are those who have basic mathematical skills and conceptual abilities. So, it can be embedded in practice and adopted in any workplace. However, many company leaders find that young workers cannot apply the mathematical concepts they have learned to overcome workplace problems. Therefore, it is critical to package learning in vocational schools that are suitable for industry needs.
Having the ability to think logically means that students can think in a coherent and sensible way based on objective facts obtained from a literature review of topics learned in a hierarchical manner from general things to more specific things [22–24]. Creativity is a product of creative thinking through good and right ways [25–27]. The results of this study concluded that learning by filing the problem yet improve four aspects of the ability to think creatively students, especially flexibility in solving the problem. But for aspects of understanding to problem information, novelty and fluency in answering questions has increased [28].

Research on PBL in Vocational High Schools has been carried out [29]. But no research has yet combined the PBL model, and the team teaching method as collaboration involves mathematics teachers and at least one vocational teacher as a learning resource. In general, people will interpret learning resources as in the form of textbooks or reading books. But Sadiman, et al. classify learning resources into people, messages, materials, tools, techniques, and environments [30]. However, the integration of cognitive knowledge and vocational skills is needed by vocational students [31, 32].

Goetz conducted observations for 1 year at NCTM and found that 2 teachers who collaborated collaboratively in learning were said to be effective [33]. According to Asmani, the purpose of implementing team teaching is to streamline the teaching and learning process [34].

PBL-team teaching is carried out following PBL learning steps with team teaching methods. PBL-team teaching in learning mathematics in vocational schools involves one mathematics teacher and at least one vocational teacher. Team teaching method is a method of teaching conducted by more than one teacher [33–35]. PBL learning steps enable vocational students to get real problems according to the vocational program they choose. The representation or stimulation of the problem is made narrative referring to contextual, real, and authentic problems.

2. Method
This research is a quasi-experimental study, with the design of the pretest-posttest control group. In its implementation, this study uses three groups of students. A first group is a group of students who get learning using the PBL model with the team teaching (as experimental-1) method, a second is a group of students who use the PBL (as experimental-2) model, and the third is the group that uses conventional learning models (as control). The three groups come from two schools that have different levels, that is, the middle and low school level. The initial ability of students is grouped into upper, middle, and lower.

The instrument used in the study is a test of logical and creative thinking that has construct and content validation. The question of logical thinking tests used corresponds to geometric material for 15-year-old students. Test questions refer to geometry competencies based on the high school curriculum. The type of test in this study is subjective in the form of descriptions but in each question contains a hint. The objective is the students can use their logical abilities to the fullest. Through the problem in the form of an essay, it will focus to the technique or method of students in solving problems that aim to know the thinking process, see the steps of work, and the accuracy of students in answering questions. Descriptive statistical analysis was used in this study.

3. Results and discussion
The result of the study shows the ability to logically & creative thinking in students at school is at medium and low levels for all groups. In general, based on the students' initial ability, school level, and the use of learning models, the average logical thinking ability of students who get PBL-Team teaching learning is higher than PBL and conventional. Descriptive statistics concerning students’ gain mathematics logically and creative thinking ability can be seen in the following Table 1.
Table 1. Description of gains a student’s mathematical thinking dan creative ability

Description	N	Minimum	Maximum	Mean	Std. Deviation
GAIN_LOGIS_PBLT	71	.23	1.00	.7004	.18534
GAIN_LOGIS_PBL	77	.00	1.00	.6647	.22508
GAIN_LOGIS_Kv	77	.04	.64	.2360	.14846
GAIN_KREATIF_PBLT	71	.11	.91	.4803	.16981
GAIN_KREATIF_PBL	77	-3.83	5.67	.4710	1.12609
GAIN_KREATIF_Kv	77	-.26	.73	.2166	.19865

The picture of improving logical thinking skills based on the use of learning models, school levels, and mathematical initial abilities is shown in Figures 1, 2, and 3. While the picture of increasing creative thinking skills in Figures 4, 5, 6.

Figure 1. The average increase in the ability to think logically based on the use of the Learning Model.

Figure 2. An average increase in Logical Thinking ability based on school level & use of learning models.

Figure 1 illustrates that the use of PBL-Team teaching models contributes to a higher capacity increase when compared to PBL and Kv models. From a logical thinking ability according to the use of the learning model, the average score of students who got learning with the PBL-TT model increased by 0.70 (moderate). Students who got the PBL model increased by 0.66 (moderate) and students who received conventional learning increased by 0.24 (low). Based on school level, logical thinking ability is depicted in Figure 2. At the middle school level, the overall PBL-Team teaching model provides a higher capacity improvement compared to PBL and Kv models. However, this is not the case in low schools. the overall ability of students who use PBL models is slightly better than students who use PBL-Team teaching and Kv models.
If viewed from the level of initial ability of students, overall Figure 3 provides an illustration that increasing logical thinking ability is higher for students with high levels. Based on the initial ability, the overall average score of students' logical thinking ability increased by 0.49 (moderate) for low-level students and 0.65 (moderate) for high-level students. It shows that the score will be higher for students with better initial abilities. When viewed as a whole, increasing the ability to think logically through the use of the PBL-Team teaching model is relatively higher for high-level students. Whereas for students at the medium level, the difference in improvement was not too much difference between students who used PBL-TT models and students who used PBL models.

As well as the ability to think logically, Figure 4 illustrates the overall ability to think creatively using the learning model and the results show that the average increase in creative thinking skills of students who use PBL-Teaching models is better than the group of students who use PBL and Konvensional models. But if viewed from the school level, Figure 5 illustrates that the increase in the average creative thinking ability of students at medium level schools using the PBL-Team teaching model is better than PBL and Kv while at the low school level PBL contributes the best in improving thinking skills creative.
The description of the data of increasing creative thinking ability in general shows that the average increase in students' creative thinking skills using PBL-TT models is 0.48 and PBL is 0.47. The increase of a students' creative thinking skills in PBL-TT and PBL classes are both at a moderate level. The increase of a students' creative thinking skills using conventional models is 0.22 (low). Based on the school level, it appears that PBL-TT provides an increase of 0.51 at medium level schools. Whereas for low-level schools, the biggest increase occurred in the class that received the PBL model which is 0.46. They are both in the medium category. From the scores of creative thinking abilities based on students' initial abilities, overall increased by 0.35 (moderate) for low-level students, 0.47 (moderate) for medium-level students, and 0.29 (low) for high-level students.

![Figure 6](image)

Figure 6. The average score of Gain on creative thinking skills based on MIA and the use of learning models

From Figure 6, the highest increase in creative thinking abilities is achieved by students with moderate levels. Some research results on PBL, show that increased ability does not interact with initial abilities [36–38]. Overall, the use of PBL-Team teaching relatively provides a higher increase for students at high levels. Whereas for students with moderate and low levels, the most significant increase occurred in students who received PBL models.

4. **Conclusion**

Overall description, the improvement of students' logical and creative thinking abilities who receive PBL-TT and PBL models is not much different. In general, the higher the level of initial ability, the higher the student's ability to increase. These results provide an explanation that the creativity of students develops not based on initial abilities. Provision of the right stimulus, able to make low-level students have increased creativity over students at high levels. However, the use of PBL-TT models can improve students' overall creative thinking ability both regarding their initial abilities and school level.

BIBLIOGRAPHY

[1] Shadiq F 2009 Strategi Pembelajaran Matematika Sleman: Depdiknas
[2] Cahyati H, Muin A and Musyrifah E 2018 Efektivitas Teknik SCAMPER dalam Mengembangkan Kemampuan Berpikir Kreatif Matematis Siswa J. Medives J. Math. Educ. IKIP Veteran Semarang 2 173
[3] Kaufman J C, Plucker J A and Baer J 2008 Essentials of creativity assessment 53 (John Wiley & Sons)
[4] Sternberg R J and Williams W M 1996 How to develop student creativity (ASCD)
[5] Maharani A and Lelasari L 2017 Experimentation of Spices LEarning Strategies With The
Method of Problem Based Learning (PBL) to Build Motivation and The Ability to Think Logically for Vocational School Students

[6] Sumarmo U, Hidayat W, Zulkarnaen R, Hamidah M and Sariningsih R 2012 Kemampuan dan Disposisi Berpikir Logis, Kritis, dan Kreatif Matematik (Eksperimen terhadap Siswa SMA Menggunakan Pembelajaran Berbasis Masalah dan Strategi Think-Talk-Write) J. Pendidikan MIPA 17 17

[7] Purwanto A 2012 Kemampuan berpikir logis siswa SMA Negeri 8 kota Bengkulu dengan menerapkan model inkuiri terbimbing dalam pembelajaran fisika EXACTA 10 133

[8] Saragih S 2006 Menumbuhkembangkan Berpikir Logis dan Sikap Positif terhadap Matematika melalui Pendekatan Matematika Realistik J. Pendidik. dan Kebud. Dep. Pendidik. Nasional. Badan Penelit. dan Pengembangan, Ed. Juli

[9] Yanti O F and Prahmana R C I 2017 Model Problem Based Learning, Guided Inquiry, and Kemampuan Berpikir Kritis Matematis JRPM (Jurnal Rev. Pembelajaran Mat. 2 120

[10] Usdiyana D, Purniati T, Yulianti K and Harningsih E 2009 Meningkatkan kemampuan berpikir logis siswa SMP melalui pembelajaran matematika realistik J. Pengajaran MIPA 13 1

[11] Setiawati E 2014 Mengembangkan kemampuan berpikir logis, kreatif, dan habit of mind matematis, melalui pembelajaran berbasis masalah Unpubl. Diss. Bandung SPs Univ. Pendidik. Indones.

[12] Windayana H 2007 Pembelajaran matematika realistik dalam meningkatkan kemampuan berpikir logis, kreatif, dan kritis, serta komunikasi matematik siswa sekolah dasar J. Pendidik. Dasar 1 1

[13] Hendriana H, Prahmana R C I and Hidayat W 2018 Student's Performance Skills in Creative Mathematical Reasoning Infin. J. 7 83

[14] Maharani A 2018 Meningkatkan Kreativitas Matematis Siswa Melalui Pembelajaran Peta Pikiran Unimus J. Math. Educ. Sci. 1 11

[15] Maharani A 2017 Analisis Pengembangan Soal Tes Evaluasi Matematika Berbasis Kemampuan Berpikir Kreatif Untuk Siswa SMK Pada MATERI Geometri AKSIOMA J. Progr. Stud. Pendidik. Mat. 6 350

[16] Maharani A 2016 Profil Kemampuan Berpikir LOGis dan KOMunikasi Matematis Siswa SMK di Kabupaten Cirebon Repos. FKIP Unswagati

[17] Dewanto W K, Agustianto K and Sari B E 2018 Developing thinking skill system for modelling creative thinking and critical thinking of vocational high school student J. Phys. Conf. Ser. 953

[18] Sezen N and Bülbül A 2011 A scale on logical thinking abilities Procedia-Social Behav. Sci. 15 2476

[19] Ash-Shiddieqy M H, Suparmi A and Sunarno W 2018 The effectiveness of module based on guided inquiry method to improve students’ logical thinking ability J. Phys. Conf. Ser. 1006 12001

[20] Wakefield J F 1988 Cognitive Skills and Vocational Interests of Intermediate Adolescents.

[21] Education & Training Foundation 2015 Effective Practices in Post-16 Vocational Maths Final Report 34

[22] Matlin M E 2009 Cognitive Psychology. International Student Version. Jhon Wiley and Sons

[23] Hadi S 2004 Metodologi research jilid I Yogyakarta Andi 94 95

[24] Fios F 2013 Pengantar Filsafat Ilmu dan Logika Jakarta: Salemba Humanika

[25] Sternberg R J and Sternberg R J 1999 Handbook of creativity (Cambridge University Press)

[26] Almuharomah F A and Mayasari T 2018 Profil kemampuan berpikir kreatif fisika siswa SMP Quantum: Seminar Nasional Fisika, dan Pendidikan Fisika

[27] Ward S M S T B and Finke R A 1995 The creative cognition approach (MIT press)

[28] Siswono T Y E 2004 Mendorong Berpikir Kreatif Siswa Melalui Pengajuan Masalah (Problem Posing) Makal. dipresentasikan pada Konf. Nas. Mat. XI, Univ. Udayana Denpasar 23

[29] Primartadi A 2012 Pengaruh metode student teams-achievement division (STAD) dan problem
based learning terhadap hasil belajar ditinjau dari potensi akademik siswa SMK otomotif J. Pendidik. Vokasi 2

[30] Sadiman A 1996 Media pembelajaran Jakarta PT Rajawali
[31] Jones B F, Rasmussen C M and Moffitt M C 1997 Real-life problem solving: A collaborative approach to interdisciplinary learning. (American Psychological Association)
[32] Patton J R, Cronin M E, Bassett D S and Koppel A E 1997 A life skills approach to mathematics instruction: Preparing students with learning disabilities for the real-life math demands of adulthood J. Learn. Disabil. 30 178
[33] Goetz K 2000 Perspectives on team teaching: A semester I independent inquiry EGallery 1
[34] Asmani J M 2010 Pengenalan dan Pelaksanaan Lengkap Micro Teaching dan Team Teaching
[35] Buckley F J 1999 Team teaching: what, why, and how? (Sage Publications)
[36] Hidayat R and Nurrohmah 2016 Analisis Peningkatan Kemampuan Pemahaman Konsep Matematis Siswa MTs Lewat Penerapan Model Pembelajaran Problem Based Learning Berbantuan Software GEOGEBRA Berdasarkan Kemampuan Awal Matematika Jppm 9 12
[37] Ariyanto L and Santoso L 2013 Pengaruh Pembelajaran Problem Based Learning dan Discovery Learning terhadap Mathematical Problem Posing Siswa SMK Kelas XI J. Ilm. Pendidik. Mat. 2 Nomor 1 P-ISSN 2502-7638; E-ISSN 2502-8391 2 27–35
[38] Fitri N, Munzir S and Duskri M 2017 Meningkatkan Kemampuan Representasi Matematis melalui Penerapan Model Problem Based Learning 4