Application of targeted Next Generation Sequencing assay on a portable sequencing platform for culture-free detection of drug resistant tuberculosis from clinical samples

Andrea M. Cabibbe,a Andrea Spitaleri,a,b Simone Battaglia,a Rebecca E. Colman,c,d Anita Suresh,c Swapna Uplekar,c Timothy C. Rodwell,c,d* Daniela M. Cirilloa*#

aEmerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
bCenter for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
cFoundation for Innovative New Diagnostics (FIND), Campus Biotech, Geneva, Switzerland
dDepartment of Medicine, University of California, San Diego, CA, USA

Running Title: MinION sequencing for drug-resistant tuberculosis

#Address correspondence to Dr. Daniela Maria Cirillo, cirillo.daniela@hsr.it

*Senior authors
Abstract

Targeted Next Generation Sequencing (tNGS) has emerged as a comprehensive alternative to existing methods for drug susceptibility testing (DST) of *Mycobacterium tuberculosis* from patient sputum samples for clinical diagnosis of drug resistant TB (DR-TB). However, the complexity of sequencing platforms has limited their uptake in low-resource settings. The goal of this study was to evaluate the use of tNGS-based DST solution: Genoscreen Deeplex Myc-TB, for use on the compact, low-cost Oxford Nanopore Technologies MinION sequencer.

One hundred four DNA samples extracted from smear-positive sputum sediments, previously sequenced using the Deeplex assay on an Illumina MiniSeq, were re-sequenced on MinION after applying a custom library preparation. MinION read quality, mapping statistics and variant calling were computed using an *in-house* pipeline and compared to the reference Miniseq data. The average percentage of MinION reads mapped to an H37RV reference genome was 90.8%, versus 99.5% on MiniSeq. The mean depth of coverage was 4151x and 4177x on MinION and MiniSeq, respectively, with heterogeneous distribution across targeted genes. Composite reference coverage breadth was >99% for both platforms. We observed full concordance between technologies in reporting the clinically relevant drug resistant markers, including full gene deletions.

We demonstrated that the workflow and sequencing data obtained from Deeplex on MinION are comparable to the MiniSeq, despite the higher raw error rates on MinION, with the added advantage of MinION’s portability, versatility and low capital costs. Targeted NGS on MinION is a promising DST solution for rapidly providing clinically relevant data to manage complex DR-TB cases.
The World Health Organization’s (WHO) End TB Strategy calls for universal access to comprehensive drug susceptibility testing (DST) and early diagnosis of all persons with any form of tuberculosis (TB), as a priority and key component of integrated, patient-centered TB care (1). Despite global investments in improving laboratory capacity, in 2018, only 51% of people with bacteriologically confirmed TB were tested for rifampicin resistance (RIF-R) and less than 60% of the notified multidrug-resistant (MDR)/RIF-R patients were tested for second-line resistance (2). The long turnaround time, the relatively low throughput and demanding laboratory biosafety requirements makes the culture-based phenotypic DST unsuitable as primary tool for clinical management of complex TB cases (3).

The uptake of WHO-recommended rapid diagnostics (WRD), Xpert MTB/RIF Ultra (Cepheid, Sunnyvale, CA, USA) and line probe assays for use on direct clinical samples, has contributed significantly to the global increase in number of RIF-R TB cases detected, and has reduced diagnostic and treatment delays (4-6). However, the current WRDs are designed to interrogate only short genomic regions harboring the high prevalence mutations (i.e. “hot spots”) associated with phenotypic resistance to most but not all of the first- and second-line drugs. In addition, current WRDs cannot fully discriminate mutations conferring low- and high-level resistance, nor mutations not associated with resistance (7), and cannot be adapted easily to detect new genomic regions associated with resistance to novel and repurposed TB medications recently approved for treatment by WHO (8).
Next Generation Sequencing (NGS) of *Mycobacterium tuberculosis* complex (MTBC) can provide deep and comprehensive data on all clinically relevant resistance mutations, and is the leading alternative to existing phenotypic and molecular DST methods (9) currently used for diagnosing drug resistant TB. The effective implementation of whole genome sequencing (WGS) in clinical settings, however, is currently limited by the need for an initial TB culture step to generate sufficient bacterial load for successful sequencing (10).

In contrast, targeted NGS (tNGS) can be performed on direct clinical samples, and has emerged as a feasible option for comprehensive, fast and clinically relevant sequencing from patient sputum samples (11-15). However, the complexity, cost and laboratory requirements of many sequencing platforms have limited the broad uptake of culture-free, tNGS for DST in the routine, low-resource settings that carry the highest diagnostic burden. The use of novel, nanopore-based DNA sequencing instruments (e.g. MinION, Oxford Nanopore Technologies, ONT, Oxford, UK) in low-resource and diverse field settings has emphasized the added value of these instruments (16) as clinical tools. They are portable, robust and low capital cost sequencers that could conceivably be utilized in near-patient settings to conduct tNGS in a manner that could transform TB DST and the treatment decision making process (17, 18). Indeed, the Minion platform has the potential to penetrate clinical laboratories far more broadly than other sequencing solutions in terms of cost, space, maintenance and clinical utility, with the added value of potentially being useful for identifying resistance-conferring mutations in near real-time (19, 20). In addition, large scale implementation of these portable sequencers could provide early information on transmission through strain identification, resulting in more efficient contact tracing and epidemiological investigations.
The aim of this study was to evaluate the adaptability of an existing TB tNGS assay kit and DST analytics solution (Deeplex Myc-TB, Genoscreen, Lille, France), originally developed for application on Illumina (San Diego, CA, USA) sequencing instruments, for use on the portable ONT MinION sequencer in order to demonstrate the feasibility and potential of rapid tNGS on a compact, low-cost sequencer.

Materials and Methods

Sample collection: For this study, 104 DNA samples from randomly selected smear positive, Xpert MTB/RIF positive sputum specimens, previously characterized by Deeplex Myc-TB on Illumina MiniSeq platform, were re-sequenced using MinION. Samples were retrieved from the archived collection available at Ospedale San Raffaele, Milano, Italy. No patient data were used, and the study was done without any modification of clinical and laboratory management.

Sample preparation: We performed ONT MinION sequencing on the same Deeplex Myc-TB amplicons produced from clinical samples previously sequenced on Illumina MiniSeq instrument, in order to compare and contrast results and performance. Sequencing of Deeplex Myc-TB amplicons on MiniSeq was considered the reference technology for this study. Laboratory procedures including sputum sample processing, DNA extraction and purification, and PCR amplification by Deeplex Myc-TB Kit are described in detail in the Supplementary Material.

Library preparation and sequencing: While the sample preparation steps were common to both sequencing instruments, the library preparation steps for sequencing on the MinION and Miniseq were different based on sequencing
manufacturers’ instructions. Each previously produced Deeplex Myc-TB hi-plex
amplicon was used for MinION library preparation, as described in detail in the
Supplementary Material.

Post-sequencing analysis pipelines: The Deeplex MycTB kit contains a
sequencing analysis and clinical interpretation software solution originally developed
for Illumina raw sequence data. This solution is currently not optimized for sequence
data from the MinION. For the purposes of this study, we therefore computed read
quality and mapping statistics for MinION data using an in-house, proprietary
pipeline we developed, while for the Miniseq results we used the software solution
provided by the manufacturer as described in the Supplementary Material and
complemented the analysis with the MTBseq pipeline (21). The read quality,
mapping statistics and overall number of nucleotide variants (i.e. any Single
Nucleotide Polymorphism [SNP], nucleotide insertion/deletion [INDELs]) identified by
MinION and MiniSeq were then compared. The pipelines adopted are described in
detail in the Supplementary Material. Mutations associated with drug resistance were
determined according to standardized methods previously published (22, 23).

Results
All 104 sediment samples amplified by Deeplex Myc-TB and sequenced using
MiniSeq, were also successfully sequenced on MinION.

MiniSeq mapping statistics
The average percentage of MiniSeq reads identity mapping to the reference genome
was 99.5% (Figure 1). The average depth of sequencing coverage obtained on
MiniSeq was 4177x. Mean composite reference coverage breadth of the study
samples was over 99%, indicating complete coverage of the targeted genome regions (Data set S2). The MiniSeq coverage depth was stratified by targeted genomic region for all the 104 samples (Figure 2, Data set S3).

MinION mapping statistics

Two sequencing runs of 48 and 56 samples were performed on the MinION device using two flowcells to sequence the whole study collection of 104 isolates. The average identity percentage of MinION reads mapping to the H37RV targeted genome was 90.8%, with MAPQ value around 60 (Figure 1). The average depth of sequencing coverage relative to reference genome obtained on MinION was 4151x. As with MiniSeq, the MinION coverage depth was stratified by targeted genomic region for all study samples (Data sets S4, S5). Figure 2 shows a heterogeneous coverage depth distribution across genes associated with drug resistance, and lower coverage in the ribosomal region (rrs and rrl). Mean composite reference coverage breadth was over 99%, indicating complete coverage of the targeted genome regions (Data sets S6, S7).

Variant calling: MinION vs MiniSeq

We compared the total variant calls between the MinION and MiniSeq, setting different minimum coverage thresholds to explore variant calling with MinION, as described in Supplementary Material. Overall, we observed good overlap of variant calls between sequences generated from MinION and MiniSeq (Figure 3 and Data set S17; Figure 4 and Data set S18). No substantial changes in MinION variant calls were found as a result of minimum coverage values considered. Discrepant total SNP calls were found on MinION compared to MiniSeq when stringent (i.e. 400x) minimum cut-offs were applied, resulting in fewer calls from MinION.
Regarding the presence of confidence-graded mutations associated with resistance (22, 23) to the main drugs, we observed full concordance between MinION and MiniSeq results when we fixed minimum coverage thresholds to call a variant on MinION to 40x (Figure 4). Only two resistance associated mutations in the *rrs* gene (linked to streptomycin resistance at genomic coordinates 1472337 and 1572359) were detected by MiniSeq and missed by MinION at the 40x threshold adopted, but these were however identified also by MinION with a lower number of reads (10 and 38 reads, respectively, Data sets S8 and S12). The MinION method correctly identified the resistance patterns determined by MiniSeq, including: 3 RIF-R, isoniazid (INH)-R strains with additional pyrazinamide (PZA)-R and streptomycin (SM)-R, PZA-R and ethambutol (EMB)-R, PZA-R only, respectively; 1 RIF-R, INH-S sample with additional capreomycin (CAP)-R; 6 RIF-S, INH-R cases, with additional STR-R in 3 cases; 5 strains showing STR-R only (Data set S19). In two samples we observed a full *pncA* gene deletion on Miniseq, which was correctly identified by MinION as well.

Discussion

Replacing or complementing phenotypic DST with tNGS-based resistance prediction could avoid or significantly decrease our reliance on culture-based DST methods, and has the potential to transform the management of DR-TB globally. The recent development of compact, portable NGS instruments for field deployment will accelerate the decentralization of NGS testing and make near-patient tNGS for clinical diagnosis of drug resistant TB, a near-term reality, with remarkable time and cost savings compared to conventional sequencing instruments (16, 18). The early availability of an accurate molecular profile of the TB strain infecting a patient will enable healthcare workers to establish evidence-based treatments at the time of...
diagnosis, which will minimize the risk of inadequate treatment regimens being
started. Additionally, for drugs such as ethambutol and pyrazinamide, for which
phenotypic DST remains less reproducible than molecular prediction of resistance
(24), tNGS is an added-value clinical tool.

In this study, we demonstrated that the existing tNGS Deeplex Myc-TB assay,
optimized primarily for larger Illumina sequencing platforms, could be successfully
implemented on a portable MinION sequencing device. With only minor protocol
modifications we were able to adapt the library preparation of amplicons (average
size of 600 base pairs) for optimal, long-read sequencing direct from patient clinical
samples. This approach resulted in excellent coverage across the targeted MTBC
genomic regions, but with higher error rates compared to Miniseq sequences from
the same sample amplicons (Figure 1). Critical to the success of this adaptation was
the flexible bioinformatics pipeline we developed, which allowed us to set optimal
minimum coverage thresholds to compensate for the error rates in MinION data and
enabled us to detect all clinically relevant variants also identified by the Miniseq
instrument and standard bioinformatics pipeline.

The raw base call error rate was found to be high in MinION sequencing, at around
9%, in comparison to the negligible error rates in MiniSeq data (Figure 1). Even
accepting that around 0.5% of identified mismatches compared to the reference
genome are actually polymorphisms, in line with the mismatch percentage shown by
Illumina where more than 90% of reads on average had extremely high base call
accuracy of 99.9%, the average identity to the reference genome remained quite low
for the MinION data. The 9% rate is in line with those described in previous
publications on nanopore 1D reads sequencing (17, 25). The deep coverage we
obtained on the MinION, an intrinsic feature of tNGS, however, enabled us to still
generate enough high-quality reads to identify all of the clinically relevant variants
accurately. Furthermore, the downstream bioinformatics analysis pipeline that we
tailored for MinION data enabled us to remove the low-quality reads which helped us
minimize false positive calls.

The variable MinION depth of coverage for the Deeplex Myc-TB targeted regions
(Figure 2) was another source of complexity in our analyses, requiring a focus on
higher coverage values on the runs to obtain interpretable results from all the gene
regions interrogated. This heterogeneous distribution was also observed in the
MiniSeq data generated from the same amplicons, although with narrower
interquartile ranges and closer outliers (boxplot in Figure 2), and can be attributed to
the different sizes of fragments, different PCR amplification efficiencies, differences
in GC content affecting the sequencing quality, and the presence of contaminant
DNA material in the direct samples. All of these components likely affected the
quality of the reads generated (particularly true for the ribosomal region conserved
among bacteria, rrs and rrl).

With regard to variant calling, we have demonstrated that by applying appropriate
minimum call thresholds to the coverage depth at a given target region (Figures 3-4),
it is possible to determine with high confidence the presence of a true variant allele in
a clinical sample sequenced on MinION that is present at a frequency of ≥ 80%.
The majority of discrepant variant calls between MiniSeq and MinION were found
when the stringent 400x minimum cut-off to call a variant (red bar in Figure 3) was
applied to MinION data. This was especially true for rrs, tlyA, gidB and gyrA (Figure
4), and led to indeterminate results when a given position didn’t reach the minimum
coverage needed to make a call. This was also evident in gene regions showing lower coverage depths, on average (Figure 2, e.g. *rrs*, *tlyA*).

Concerning the detection of resistance-conferring mutations, the two technologies produced almost identical variant calls when the analyses were performed at MinION 40x minimum coverage (Figures 3 and 4 and Supplementary Material) and MiniSeq at Deeplex Myc-TB Web Application default settings. Interestingly, two full *pncA* deletions were correctly detected by MinION using the Porechop demultiplexing approach using the MiniSeq sequencing data from the same amplicons as reference. Conversely, the Albacore and Guppy software aligned a small number of reads to the *pncA* region of these two samples, i.e. 40 to 60, likely due to the misclassification barcoding process in which reads were assigned to wrong sample (25). This disagreement between Albacore/Guppy and Porechop is due to the very stringent settings applied by Porechop, which result in more reads in unclassified bin but lower risk of misclassification. This condition should reduce the risk of cross-barcode contamination and, therefore, the false positive detection of InDels and SNPs by MinION, which is essential for clinical use cases.

The costs to run Deeplex Myc-TB on MinION and MiniSeq, considering kits, reagents and consumables for DNA extraction, targeted amplification and sequencing at the maximum multiplexing achievable with the two platforms, were comparable and in the range of € 100 per sample. The targeted depth of sequencing coverage was similar for the two platforms (400x), and batch size for a single run was higher on MiniSeq than MinION (72 vs 56 on MiniSeq and MinION, respectively). In this study, we assessed two different batch sizes for MinION (48 and 56) obtaining linear cumulative yield in gigabase, suggesting that MinION throughput may be still increased over 56, without significant loss in coverage depth.
Turnaround time to prepare samples for MinION and MiniSeq sequencing reactions from DNA extraction was also similar (3 working days). Future customization of Deeplex Myc-TB primers for MinION chemistry, avoiding the need of library preparation modifications to the protocol, would enable shorter library preparation time and is something that should be explored. Importantly, the length of the MinION run could also be optimized to reduce time and cost. In the two study runs, the cumulative yield of reads after 12 hours accounted for about the 60% of the total (Data set S20), with read lengths constant up to the end of the MinION sequencing. Therefore, the two runs could have been stopped after 12 hours with a > 2000x average depth of sequencing coverage from the samples included in the run, likely enabling one to reliably analyze all Deeplex Myc-TB targets. Batching fewer samples on a MinION amplicon run, likely the pragmatic solution for a routine laboratory with limited daily samples, would enable one to generate optimal sequencing reads for clinical interpretation within a few hours. Additionally, there is the potential to re-use flowcells on MinION, which is not possible on MiniSeq, and could significantly reduce the time and cost per sample sequenced. The versatility and physical robustness of the MinION compared to MiniSeq, accompanied by lower capital and maintenance costs, and demonstrated accuracy for identifying clinically relevant mutations in MTBC, make this tNGS platform a promising solution for decentralized, culture-free clinical sequencing in laboratories with fewer daily samples.

This study has some limitations. The Deeplex Myc-TB assay was applied only on smear-positive sputum samples, and prior complete sequencing results were obtained from all selected samples on the Illumina platform. The sensitivity and specificity of this tNGS solution (Deeplex Myc-TB and MinION sequencing) still needs to be evaluated using appropriate analytical and clinical studies. Mycobacterial species identification and MTBC genotyping were not assessed with
MinION data, as the current study was meant primarily to compare the total variant calls and drug resistance interpretation of the two sequencing technologies. The high frequency variant threshold adopted for MinION (i.e. 80% in this analysis) was set to avoid the introduction of additional variables in this first mutation analysis comparison between the two platforms. Furthermore, the Deeplex Web Application used to analyse the MiniSeq data and didn’t detect the presence of any relevant low frequency variant (at 3% threshold), therefore the overall comparative SNP analysis should not be biased.

In this study, we demonstrated that the workflow and sequencing data obtained from Deeplex Myc-TB amplicons from direct clinical specimens, sequenced on a MinION instrument, are comparable to the Illumina MiniSeq process and outputs, with the added advantage of the MinION device’s portability and low capital costs, making this platform more suitable for use in clinical mycobacteriology and to a wider extent in clinical microbiology laboratories where the same platform can be used to identify MDR bacterial pathogens (20). The application of tNGS on portable, solid state sequencing devices holds enormous promise for precision global health in the management of DR-TB, where sequencing data obtained from direct clinical samples could inform clinical decision systems supporting individual treatment decisions and large-scale programmatic molecular DST (26). More broadly, portable and compact sequencing technologies are demonstrating their valuable role in the fight against emerging infectious diseases (27).

Acknowledgments
This work was supported by the Foundation for Innovative New Diagnostics (Memorandum of Understanding between Foundation for Innovative New
Diagnostics and Ospedale San Raffaele, 05 November 2014). We thank Dr. Araia Berhane (Communicable Diseases Control Division, Ministry of Health, Asmara, Eritrea), Mr. Saleh Mohammed Said (National Health Laboratory, Ministry of Health, Asmara, Eritrea) and Mr. Daniel Tesfagergish (National Health Laboratory / National Tuberculosis Reference Laboratory, Asmara, Eritrea) for support with sample collection, and Dr. Alberto Trovato (Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy) for support with Illumina sequencing.

AMC, REC, ASu, SU, TCR and DMC conceived and designed the study; TCR and DMC supervised the study; AMC, ASp and SB performed the tests, interpreted the results, and wrote the draft; REC, ASu, SU, TCR and DMC reviewed critically the manuscript. All authors reviewed and agreed the final version of the manuscript.

References

1. WHO. 2015. Implementing the end TB strategy: the essentials. World Health Organization,
2. WHO. 2019. Global tuberculosis report 2019. World Health Organization,
3. Gilpin C, Korobitsyn A, Weyer K. 2016. Current tools available for the diagnosis of drug-resistant tuberculosis. Ther Adv Infect Dis 3:145-151.
4. Theron G, Zijenah L, Chanda D, Clowes P, Rachow A, Lesosky M, Bara W, Mungofa S, Pai M, Hoelscher M, Dowdy D, Pym A, Mwaba P, Mason P, Peter J, Dheda K, team T-N. 2014. Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial. Lancet 383:424-35.
5. Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, Banada PP, Deshpande S, Shenai S, Gall A, Glass J, Krieswirth B, Schumacher SG, Nabeta P, Tukvadze N, Rodrigues C, Skrahina A, Tagliani E, Cirillo DM, Davidow A, Denkinger CM, Persing D, Kwiatkowski R, Jones M, Alland D. 2017. The New Xpert MTB/RIF Ultra: Improving Detection of MBio 8.

6. WHO. 2016. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance. World Health Organization,

7. Gröschel MI, Walker TM, van der Werf TS, Lange C, Niemann S, Merker M. 2018. Pathogen-based precision medicine for drug-resistant tuberculosis. PLoS Pathog 14:e1007297.

8. WHO. 2019. WHO consolidated guidelines on drug-resistant tuberculosis treatment. World Health Organization,

9. Cabibbe AM, Walker TM, Niemann S, Cirillo DM. 2018. Whole genome sequencing of. Eur Respir J 52.

10. McNerney R, Clark TG, Campino S, Rodrigues C, Dolinger D, Smith L, Cabibbe AM, Dheda K, Schito M. 2017. Removing the bottleneck in whole genome sequencing of Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action. Int J Infect Dis 56:130-135.

11. Makhado NA, Matabane E, Faccin M, Pinçon C, Jouet A, Boutachkourt F, Goeminne L, Gaudin C, Maphalala G, Beckert P, Niemann S, Delvenne JC, Delmée M, Razwiedani L, Nchabeleng M, Supply P, de Jong BC, André E. 2018. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis 18:1350-1359.
12. Tagliani E, Hassan MO, Waberi Y, De Filippo MR, Falzon D, Dean A, Zignol M, Supply P, Abdoulkader MA, Hassangue H, Cirillo DM. 2017. Culture and Next-generation sequencing-based drug susceptibility testing unveil high levels of drug-resistant-TB in Djibouti: results from the first national survey. Sci Rep 7:17672.

13. Colman RE, Anderson J, Lemmer D, Lehmkuhl E, Georghiou SB, Heaton H, Wiggins K, Gillece JD, Schupp JM, Catanzaro DG, Crudd V, Cohen T, Rodwell TC, Engelthaler DM. 2016. Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. J Clin Microbiol 54:2058-67.

14. Colman RE, Mace A, Seifert M, Hetzel J, Mshaie H, Suresh A, Lemmer D, Engelthaler DM, Catanzaro DG, Young AG, Denkinger CM, Rodwell TC. 2019. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med 16:e1002794.

15. Park J, Shin SY, Kim K, Park K, Shin S, Im C. 2018. Determining Genotypic Drug Resistance by Ion Semiconductor Sequencing With the Ion AmpliSeq™ TB Panel in Multidrug-Resistant Mycobacterium tuberculosis Isolates. Ann Lab Med 38:316-323.

16. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouédraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrero M, Camino-Sanchez A, Carter LL, Doerrbecker J, Enkirch T, Dorival IGG, Hetzel N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui M, Kosguy A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallash E,
17. Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Trina R, Bello A, Sall AA, Faye O, et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228-232.

18. Votintseva AA, Bradley P, Pankhurst L, Del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Petö TEA, Crook DW, Iqbal Z. 2017. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol 55:1285-1298.

19. Bainomugisa A, Duarte T, Lavu E, Pandey S, Coulter C, Marais BJ, Coin LM. 2018. A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions. Microb Genom 4.

20. Meehan CJ, Goig GA, Kohl TA, Verboven L, Dippenaar A, Ezewudo M, Farhat MR, Guthrie JL, Laukens K, Miotto P, Ofori-Anyinam B, Dreyer V, Supply P, Suresh A, Utpatel C, van Soolingen D, Zhou Y, Ashton PM, Brites D, Cabibbe AM, de Jong BC, de Vos M, Menardo F, Gagneux S, Gao Q, Heupink TH, Liu Q, Loiseau C, Rigouts L, Rodwell TC, Tagliani E, Walker TM, Warren RM, Zhao Y, Zignol M, Schito M, Gardy J, Cirillo DM, Niemann S, Comas I, Van Rie A. 2019. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol 17:533-545.

21. van Belkum A, Burnham CD, Rossen JWA, Mallard F, Rochas O, Dunne WM. 2020. Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol 18:299-311.
21. Kohl TA, Utpatel C, Schleusener V, De Filippo MR, Beckert P, Cirillo DM, Niemann S. 2018. MTBseq: a comprehensive pipeline for whole genome sequence analysis of. PeerJ 6:e5895.

22. Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, Hanna D, Kim PS, Liwski R, Zignol M, Gilpin C, Niemann S, Denkinger CM, Fleming J, Warren RM, Crook D, Posey J, Gagneux S, Hoffner S, Rodrigues C, Comas I, Engelthaler DM, Murray M, Alland D, Rigouts L, Lange C, Dheda K, Hasan R, Ranganathan UDK, McNerney R, Ezewudo M, Cirillo DM, Schito M, Köser CU, Rodwell TC. 2017. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 50.

23. Allix-Béguec C, Arandjelovic I, Bi L, Beckert P, Bonnet M, Bradley P, Cabibbe AM, Cancino-Muñoz I, Caulfield MJ, Chaiprasert A, Cirillo DM, Clifton DA, Comas I, Crook DW, De Filippo MR, de Neeling H, Diel R, Drobniewski FA, Faksri K, Farhat MR, Fleming J, Fowler P, Fowler TA, Gao Q, Gardy J, Gascoyne-Binzi D, Gibertoni-Cruz AL, Gil-Brusola A, Golubchik T, Gonzalo X, Grandjean L, He G, Guthrie JL, Hoosdally S, Hunt M, Iqbal Z, Ismail N, Johnston J, Khanzada FM, Khor CC, Kohl TA, Kong C, Lipworth S, Liu Q, Maphalala G, Martinez E, Mathys V, Merker M, Miotto P, Mistry N, et al. 2018. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. N Engl J Med 379:1403-1415.

24. Köser CU, Cirillo DM, Miotto P. 2020. How to optimally combine genotypic and phenotypic drug-susceptibility testing methods for pyrazinamide. Antimicrob Agents Chemother.

25. Tyler AD, Mataseje L, Urfano CJ, Schmidt L, Antonation KS, Mulvey MR, Corbett CR. 2018. Evaluation of Oxford Nanopore's MinION Sequencing
Device for Microbial Whole Genome Sequencing Applications. Sci Rep 8:10931.

26. Temesgen Z, Cirillo DM, Raviglione MC. 2019. Precision medicine and public health interventions: tuberculosis as a model? Lancet Public Health 4:e374.

27. Mongan AE, Tuda JSB, Runtuwene LR. 2020. Portable sequencer in the fight against infectious disease. J Hum Genet 65:35-40.

Figure Legends

Figure 1: Histogram of percent of reads identity with respect to *Mycobacterium tuberculosis* H37Rv for MinION (blue bars) and MiniSeq (brown bars). The dots are the maximum value (90.8% and 99.5%, respectively).

Figure 2: Coverage depth as function of genes for MinION (ont) and MiniSeq, blue and brown for each gene, respectively. Mean values are reported in red. p-value annotation legend: ns: 5.00e-02 < p <= 1.00e+00; *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04.

Figure 3: Number of SNPs as function of genes. The purple bar represents the MiniSeq data analyzed by Deeplex Myc-TB Web Application at default 200x of depth coverage minimum.

Figure 4: Heatmap displaying the number of SNPs found with MinION and MiniSeq approaches as function of the coverage depth. The MinION SNP calls are determined at 80% frequency. MiniSeq data were analyzed with the Deeplex Myc-TB Web Application at 200x threshold (default setting). The dot horizontal lines outline
the targeted genomic regions and SNPs found within them. On the left, SNPs found
in both technologies for at least one sample are shown. The color map goes from +1
to -13, where the values are from the difference between (SNPs [MinION] – SNPs
[MiniSeq]) along the 104 samples. The value of 0 means agreement between
MinION and MiniSeq technologies (white). Mutations associated with drug resistance
are reported in red and the drug specified on the left.
Figure 3

Number of SNPs versus Genes at 80% of frequency and 40x-100x-200x-400x coverage

Comparison with Deeplex Web App (Illumina)
