An all-optical technique enables instantaneous single-shot demodulation of images at high frequency

Swapnesh Panigrahi¹, Julien Fade¹*, Romain Agaisse³, Hema Ramachandran² & Mehdi Alouini¹

High-frequency demodulation of wide area optical signals in a snapshot manner remains a technological challenge. If solved, it could open tremendous perspectives in 3D imaging, vibrometry, free-space communications, automated vision, or ballistic photon imaging in scattering media with numerous applications in smart autonomous vehicles and medical diagnosis. We present here a snapshot quadrature demodulation imaging technique, capable of estimating the amplitude and phase from a single acquisition, without synchronization of emitter and receiver, and with the added capability of continuous frequency tuning. This all-optical optimized setup comprises an electro-optic crystal acting as a fast sinusoidal optical transmission gate, and allows four quadrature image channels to be recorded simultaneously with any conventional camera. We report the design, experimental validation and examples of applications of such wide-field quadrature demodulating system that allowed snapshot demodulation of images with good spatial resolution and continuous frequency selectivity up to a few 100s of kilohertz.
lock-in detection is an ubiquitous measurement technique, where the signal of interest is imparted a periodic variation at the source to distinguish it from the random noise that it acquires on its path to the detector. Extremely weak signals may thus be extracted by selectively amplifying, at the detector, the component at the modulation frequency. In the field of optics, light intensity modulation/demodulation techniques have been employed, for example, in telemetry, free-space communications, biomedical imaging and viewing through scattering media. The enhanced immunity to noise and the massively increased transmission bandwidth due to multiplexed modulation has been widely used in telemetry. On the other hand, a weakly modulated signal may be intentionally cloaked in noise, with several different messages being encoded at different frequencies. Despite the eventuality of an eavesdropper demodulating a message at a certain frequency, the presence of multiple, possibly contradictory messages at different frequencies still provides partial secrecy (or at least discretion) of the communication.

Another very important area where the modulation/demodulation technique plays a dominant role is in the imaging through complex disordered media. Optical inhomogeneities within the medium indeed cause random multiple scattering of photons, altering the normally ballistic transport of light into diffusive transport, which strongly degrades the image-bearing capabilities of the light, hence resulting in turbidity, and poor visibility, as in the case of biological tissues or in fog. Imaging of objects hidden in such media can be achieved by the extraction of the ballistic photons, that constitute a very small fraction of the total photons reaching the detector, but which retain the information of the source (direction, state of polarization, spatial and temporal modulation) and can lead to direct imaging through a turbid medium. On the other hand, indirect imaging of embedded objects can be performed by estimation of optical inhomogeneities in the turbid medium from the detected scattered photons.

As a result, imaging through complex disordered media has been addressed using various techniques ranging from the efficient but costly time-gated techniques12,13, to the comparatively inexpensive polarization imaging14–17 and spatial modulation techniques18. In this context, the temporal modulation/demodulation technique utilizes the fact that the forward scattered ballistic light travels in a straight-line path within the medium, maintaining a phase relationship with the modulation of the source, while the scattered diffusive light has a statistical distribution of paths and hence loses the unique phase relation with the source, allowing its contribution to be filtered out for sufficiently high modulation frequencies. For instance, modulation frequencies in the range of 10–100 MHz would meet such requirement for transport applications (or for usual 3D range-imaging applications), whereas imaging in biological scattering tissues would require very high frequency operation in the gigahertz domain7. As a result, modulation-based approaches in the radio-frequency (RF) range have been confined so far to point-wise detection configurations19. Regarding two-dimensional ballistic-light imaging, existing techniques invariably require some form of processing at the receiver, either electronically, mechanically, or via software, increasing the complexity of the system, and often, the processing time. For example, electronic lock-in detection permits demodulation at one location at a time, necessitating a step-scan of the detector4. Software based approaches obviate the need for a step scan, but the requirement of obtaining images in real-time restricts the length of the time-series that may be recorded for demodulation, thus limiting the frequency of use3,16 well below the 100 MHz–GHz range.

Clearly, rapid techniques providing wide-field demodulation imaging are greatly desirable as they would not only permit real-time applications like navigation, but would also open up possibilities for 3D ranging and imaging, vibrometry, optical communications, and specialized scientific instrumentation. Such imaging at high frequencies would be a leap forward for imaging through turbid media, a field of interest that has bearing on vision through opaque scattering walls18–20, medical diagnosis16–19, food quality analysis20, transport safety21,22, underwater vision23 and imaging through fog2. Progressing from single-pixel lock-in detection to simultaneous demodulation over millions of pixels to achieve snapshot image demodulation would bring to the realm the observation of spatially distributed and fast physical effects that remain otherwise undetectable. However, demodulation of light at radio frequencies and higher is known to present several practical challenges like phase synchronization, timing jitters, snapshot operation and difficulty in frequency tuning that have only been partially addressed by the few existing laboratory demonstrations of full-field demodulation, based on image intensifiers, Time-of-Flight (ToF) sensors, lidar systems24–28.

While fast intensity-modulated light sources are easily available, full-field demodulation of images at high frequencies still awaits a viable solution. This calls for a radically new approach to modulation/demodulation imaging in order to overcome technological impediments to rapid, full-field imaging.

In this article, we propose and demonstrate an imaging technique where the demodulation at the receiver is performed optically to obtain two-dimensional images instantaneously from a recording of a single frame of an ordinary digital camera. We first report the principle of this Full-field All-optical Single-shot Technique for Quadrature Demodulation (FAST-QUAD) which is in principle compatible with high-frequency operation up to the RF range. Then, the experimental validation of this imaging concept is provided using a first prototype which is described and characterized. We demonstrate demodulation imaging with good resolution (300 × 300 pixels) on the estimated amplitude and phase images in the DC to 500 kHz frequency range, with continuous frequency tuning capability, and without synchronization between source and observer. We finally illustrate the interest and versatility of this technique on two practical scenarios of use, showing that it would be equally applicable to spatially-multiplexed free-space communications, cryptography and ballistic light imaging with potential high impact on numerous applications such as smart autonomous vehicles technologies and medical diagnosis.

Results

Full-field all-optical singleshot technique for quadrature demodulation. Full-field instantaneous single-shot demodulation of images imaging can be achieved by performing the demodulation of the intensity-modulated light source(s) in the polarization-space at the receiver. For that purpose, we exploit the Pockel's effect in an electro-optic crystal that introduces a phase difference between two orthogonal components of light that is proportional to an applied voltage. This effect occurs at very high speeds, with response times of a few picoseconds29. As detailed below, suitable electrical excitation of the electro-optic crystal and orientation of birefringent/polarizing optical elements automatically resolves light into the quadrature components, and achieves the demodulation obviating the need for phase synchronization with the source, the only requirement to achieve snapshot demodulation being that the FAST-QUAD device is tuned to the frequency of the intensity modulation. Final image integration on a standard camera is performed during an exposure time that is several orders of magnitude larger than the modulation period, and thus a single frame captured by the FAST-QUAD camera provides the demodulated full-field image.
Indeed, contrary to standard approaches that rely on temporal sampling of modulated intensity signals (through image intensifiers, or specific electronic chips such as ToF sensors), FAST-QUAD requires no discrete temporal sampling of the received data. Also, contrary to anterior work using temporally multiplexed quadrature demodulation in optical coherence tomography (OCT), FAST-QUAD performs lock-in demodulation continuously in time and simultaneously over the full spatial extent of the image. This is achieved by transferring the well-known quadrature demodulation (lock-in) principle to the optical domain and in a massively spatially-multiplexed way in order to handle image demodulation. A classic electronic lock-in detector multiplies an incoming signal that is modulated at a frequency f_d by a sinusoid at frequency f_d generated by a local oscillator. The frequency and phase of this oscillator is tuned to obtain a coherent match with the weak incoming signal of interest. The product of the two is integrated over a length of time to average out all components except the one of interest. The phase matching step can be avoided when quadrature demodulation is performed, i.e., when the signal is demodulated by two local oscillators in quadrature (i.e., with a 90° phase delay between each other) to obtain two demodulation channels (I and Q quadratures). Optically, the mathematical operation of multiplication of an incoming intensity-modulated light signal (or image) at a frequency f with a local oscillator at f_d can be achieved by passing the input light (or image) through an optical gate whose transmittivity is modulated sinusoidally at frequency f_d. Contrary to electronics, optical quadrature lock-in detection requires 4 transmission gates ($T_{i1}, T_{i2}, T_{Q1}, T_{Q2}$) oscillating at f_d, with phases separated by 90° because the incoming light passes through optical transmission gates with non-zero transmittivity mean. This is shown schematically in Fig. 1 for transmissions ($T_{i1} = (1 + \cos 2\pi f_d t)/2$, $T_{Q1} = (1 + \sin 2\pi f_d t)/2$, $T_{i2} = (1 - \cos 2\pi f_d t)/2$, $T_{Q2} = (1 - \sin 2\pi f_d t)/2$), as represented in Fig. 1b), these latter corresponding to four quadratures with respective phases 0, 90, 180, and 270 degrees.

Such parallel and instantaneous demodulation is achieved by use of a suitably designed arrangement of birefringent elements at the input of a standard low-frame-rate camera (CCD or CMOS). The specific optical architecture employed for this purpose is illustrated in Fig. 1c. It comprises a polarizer (P), a quarter-wave plate (QWP) and splitting/polarizing prisms (FP, WP), and a single electro-optic (EO) crystal (e.g., Lithium Niobate (LiNbO3)) with eigenaxes oriented at 45° from the input polarization axis imposed by the polarizer P. A periodic sawtooth electric field at frequency f_0, with sufficient excursion to ensure perfect sinusoidal optical transmission, (i.e., allowing a 360° excursion of the optical phase difference) is applied to the EO crystal. As a result, this architecture does not require any dephasing or splitting electronic circuit. The $\lambda/4$ optical path difference arising in the QWP is advantageously converted into a 90° phase delay between optical transmission curves T_{i1} and T_{Q1}, whatever be the demodulation frequency f_d, thereby offering huge tuning capabilities of the demodulation imaging setup. The integration stage employed in conventional electronic quadrature lock-in demodulation circuits is here simply and directly performed by acquiring a single frame on the standard camera (C) for a typical duration of several thousand modulation periods. The optical arrangement is so designed that it allows the four quadrature images ($I_{i1}, I_{i2}, Q_{Q1}, Q_{Q2}$) to be simultaneously acquired on the camera (see Fig. 1c).

Finally, at each pixel (i, j) of the scene, the average (DC) intensity $I_0(i,j)$ as well as the amplitude $A_{(i,j)}$ and phase $\phi_{(i,j)}$ of the light component modulated at frequency f_d can be retrieved from the four detected intensities, since

$$I_0(i,j) = \frac{I_{i1(i,j)} + I_{i2(i,j)} + Q_{Q1(i,j)} + Q_{Q2(i,j)}}{4},$$

$$A_{(i,j)} = \sqrt{(I_{i1(i,j)} - I_{i2(i,j)})^2 + (Q_{Q1(i,j)} - Q_{Q2(i,j)})^2},$$

$$\phi_{(i,j)} = \arctan \left[\frac{Q_{Q1(i,j)} - Q_{Q2(i,j)}}{I_{i1(i,j)} - I_{i2(i,j)}} \right].$$

hence allowing instantaneous quadrature demodulation over the entire image from a single acquired frame.

Experimental demonstration. A prototype of a FAST-QUAD camera which implements the optical setup of Fig. 1c has been designed and built in order to validate and demonstrate the potentialities of the proposed full-field quadrature demodulation imaging approach. It includes a $40 \times 2 \times 2$ mm3 lithium niobate (LiNbO3) EO crystal and a low-frame rate high-dynamic range camera (Andor NEO sCMOS, 5.5 Mpixles, 16 bits) and was able to be operated up to few hundreds of kilohertz so far, limited by the bandwidth of the high-voltage amplifier available in our laboratory. The technical considerations and design of the prototype are reported in Methods. The data processing pipeline and calibration procedure developed to compensate for the mechanical and optical imperfections of this first prototype are given in Supplementary Notes 1 and 2, and Supplementary Figs. 1 and 2.

The experimental validation reported below was performed with an externally intensity-modulated green laser illumination ($\lambda = 532$ nm), to limit the effect of the strong chromatic dispersion occurring in the optical components (especially EO crystal, prisms and QWP). In future developments and applications of FAST-QUAD, direct modulation of the LEDs or laser light sources can be envisaged. A complete description of the imaging scenes considered in the remainder of this article is given in Supplementary Note 3 and Supplementary Fig. 3.

Instantaneous full-field demodulation imaging using FAST-QUAD has first been validated on a simple imaging scenario where the source comprised a logo of the Institut Foton (see Fig. 2) that was homogeneously illuminated by light modulated at $f = 5$ kHz.

The demodulation frequency on FAST-QUAD was first tuned to the exact modulation frequency by setting $f_d = 5$ kHz, and the corresponding results are shown in Fig. 2a. The average (DC) intensity map of the incoming signal, the estimated amplitude map and the estimated phase map after demodulation are illustrated in Fig. 2b. In this case, the modulation amplitude is well retrieved, with the amplitude map showing a good homogeneity throughout the field of view (FOV) (280×280 pixels), and an appreciable spatial resolution. As expected, the demodulated phase leads to a fairly flat estimated phase map. The quality of the demodulated images demonstrates the efficiency of the calibration/processing algorithms developed to compensate for the imperfections of the optical setup.

The demodulation frequency was then slightly detuned by setting $\Delta f = f - f_d = 10$ Hz, while maintaining the illumination intensity as illustrated in Fig. 2b. In this case, the demodulated amplitude map in Fig. 2b is almost dark, showing only a very low-contrast residual image of the logo. The phase map is of course not flat anymore, and would be expected to be irrelevant when the receiver is not tuned with the emitter’s frequency. The smooth estimated phase pattern observed here is due to a residual lack of
The selectivity of FAST-QUAD is found to be quite uniform across the FOV, although the homogeneity is degraded with this first prototype when the global demodulation efficiency decreases with higher modulation frequency or reduced exposure time. Experimentally, it was observed that 500 kHz corresponded to the frequency cut-off after which no significant demodulation efficiency could be obtained with this first prototype, due to the limited bandwidth of the high-frequency voltage amplifier used.

Discussion

The previous section has shown the real-time image demodulation of a single source modulated at a single frequency. We now illustrate two important potential applications of FAST-QUAD: the reduction of clutter and image encryption.

The imaging experiment presented in Fig. 4a makes use of the continuous frequency discrimination capability of FAST-QUAD. Two objects (in our case, two disks) are illuminated by two independent intensity modulated sources with the same average intensity (see Fig. 4a) but slightly different modulation frequencies (5.00 kHz and 5.01 kHz). Tuning the demodulation frequency \(f_d \) to one or the other frequency immediately results in a snapshot filtered image of the object modulated at that frequency in the amplitude map, demonstrating the frequency selectivity of FAST-QUAD (Fig. 4a). Such discrimination capability opens up the possibility of using several sources at different modulation frequencies, permitting novel imaging applications like assigning distinct frequencies to different classes of emitters.
resulting in strong demodulated amplitude signal and uniform phase map. Resulting in almost null demodulated amplitude. Illumination by spurious ambient light. In this case, the demodulated amplitude is negligible too.

It is possible to detect the encrypted image if a FAST-QUAD camera with the same exposure time makes it for its detection (see intensity map in Fig. 4b). On the other hand, for its unmodulated background, a conventional camera does not allow to mimic illumination by spurious ambient light. In this case, the demodulated amplitude is negligible too.

The second experiment, presented in Fig. 4b, utilizes the fact that FAST-QUAD provides frequency selectivity, and also requires no synchronization between the source and the receiver. It illustrates how a piece of secret information or an image (here, a picture of a key) could be embedded in decoy background (here, a picture of a lock) by the sender, and retrieved by the intended recipient equipped with FAST-QUAD, whereas it would go totally unnoticed by any other observer using a conventional camera. As the hidden object is intensity-modulated at high frequency (here, 5 kHz) but with same average intensity as the unmodulated background, a conventional camera does not allow for its detection (see intensity map in Fig. 4b). On the other hand, a FAST-QUAD camera with the same exposure time makes it possible to detect the encrypted image efficiently (see amplitude maps in Fig. 4b), when \(f_d \) is set to the frequency used by the sender, without need for phase synchronization. A mismatch in the frequencies fails to reveal the embedded image (Fig. 4b).

In conclusion, we have proposed and demonstrated a novel all-optical technique for instantaneous full-field demodulation of images from a single recorded frame of an ordinary digital camera. By means of illustrative examples, we demonstrate the potential of this approach which has numerous additional advantages like requiring no synchronization between source and observer (thereby permitting relative motion), continuous frequency tuning capability, compactness and portability. To the best of our knowledge, this proof-of-principle experiment is the first ever snapshot demodulation imaging in the DC to 500 kHz frequency range, with the added capability of continuous frequency tuning.

These first encouraging results act as an incentive for achieving high-frequency snapshot quadrature demodulation imaging in the 10’s MHz to 10’s GHz range, which is no longer unrealistic. This concept would bring a real breakthrough in the field of imaging in terms of applications, among which we can cite high-speed snapshot vibrometry, multiplexed free-space optical communications, automated vision, or spatially resolved lock-in detection at high-frequency for enhanced detection of spatially distributed physical phenomena, but also 3D imaging (potentially with range resolution of one millimeter or even below using modulated illumination in the ultra high frequency (UHF) range and above). More importantly, this would also enable ballistic photons imaging through scattering media, with major applications in smart autonomous vehicles technologies, transportation safety and in biomedical diagnosis for in-depth imaging in highly diffusive biological tissues. Since the technique is based on the electro-optic effect (e.g., Pockel’s effect with typical response times on the picosecond scale\(^{29}\)), the underlying concept of FAST-QUAD should remain valid even at those very high frequencies. Technological bottleneck to operation at high frequencies would primarily be the fast application of high voltage signals across the EO crystal. This calls for an optimized optical design to limit the size of the EO crystal used while ensuring good image quality. In such a design, achromatic optical elements should be favored, and a crucial optimization of the physical dimensions of the crystal should be found in order to not only improve the numerical aperture and the resolution of the system, but also to release the current constraint of narrow-band laser illumination. Another challenge will be the generation of high-frequency voltage ramps to allow for high-frequency operation. Lastly, conflicting requirements on the laser illumination line-width imposed by good demodulation and speckle removal in the images will also be investigated in future developments.

Methods

Optical design of the FAST-QUAD prototype. The sketch and photograph of the optical setup used in this first prototype of FAST-QUAD are given in Fig. 5a.
prototype is based on the general design described in Fig. 1c, and as stated there, the central component of the prototype is an electro-optic (EO) crystal which introduces a controllable optical phase delay $\Delta \Phi(V)$ between two transverse components of the light beam propagated through it, when a voltage V is applied across it. Assuming unpolarized incoming light with average intensity I_0, and an ideal input polarizer P (see Fig. 1c), the light entering the EO crystal has intensity $I_0/2$ and is vertically polarized, i.e., its Jones vector reads $I_0 = \sqrt{I_0/2} [1 \ 0]^T$.

The Jones matrix of the EO crystal whose eigenaxes are oriented at 45° from the input polarization reads

\[
EO_{45}[\Delta \Phi(V)] = \begin{bmatrix}
\cos(\Delta \Phi(V)) & i \sin(\Delta \Phi(V)) \\
 i \sin(\Delta \Phi(V)) & \cos(\Delta \Phi(V))
\end{bmatrix},
\]

whereas the action of an ideal Wollaston prism (oriented along the input polarizer P) can be modeled with the following Jones matrices of a vertical and an horizontal polarizer:

\[
WP_{V} = \frac{1}{\sqrt{2}} \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}, \quad \text{and} \quad WP_{H} = \frac{1}{\sqrt{2}} \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}.
\]

An ideal Fresnel bi-prism simply entails a splitting of the light intensity in half, with no effect on the beam polarization. Lastly, the QWP with its eigen-axes oriented at -45° from the input polarization direction, has a Jones matrix equal to $QWP_{-45} = EO_{45}[-90]$. As a result, classical Jones calculus following the path of the beams across the optical setup described in Fig. 5a leads to theoretical intensity transmission functions for the four quadrature channels:

\[
T_{V} = \frac{1}{2\sqrt{2}} WP_{V} \cdot EO_{45} \cdot [\Delta \Phi(V)] \cdot [01]^T | 01 \]^{2} \frac{1 + \cos \Delta \Phi(V)}{8}, \tag{4}
\]

and for the Q-quadrautes:

\[
T_{Q} = \frac{1}{2\sqrt{2}} WP_{H} \cdot QWP_{-45} \cdot EO_{45} \cdot [\Delta \Phi(V)] \cdot [01]^T | 01 \]^{2} \frac{1 - \sin \Delta \Phi(V)}{8}, \tag{5}
\]

which, on varying V, provide the transmission curves described in Fig. 1b, thereby allowing spatially multiplexed lock-in product demodulation of the four quadratures.

To attain an optical phase delay $\Delta \Phi(V)$ modulated at the demodulation frequency f_d, such that $\Delta \Phi(V) = 2\pi f_d T \mod 2\pi$, the voltage V applied across the EO crystal must be linearly modulated along a sawtooth waveform.

Fig. 3 Evaluation of frequency selectivity. a Demodulated amplitude averaged over 300 x 300 pixels plotted as a function of frequency detuning $\Delta f = f - f_d$ with steps of 0.12 Hz for $f = 5$ kHz and 2 s exposure time (left); $f = 5$ kHz and 250 ms exposure time (center); $f = 100$ kHz and 2 s exposure time (right). b FWHM of the demodulation efficiency scales as the inverse exposure time. c Uniformity maps of the frequency selectivity (FWHM of the demodulated intensity as a function of Δf) over the entire FOV (8 x 8 pixels binning).
conventional intensity camera. Right: Modulation amplitude maps demonstrate that FAST-QUAD can retrieve the concealed image when in an unmodulated background (lock), and the scene is imaged with FAST-QUAD (exposure time 1 s). Left: The encrypted image cannot be detected on a conventional intensity camera. Right: Modulation amplitude maps demonstrate that FAST-QUAD can retrieve the concealed image when \(f_d \) is set to the exact frequency used by the sender.

The encrypted image cannot be detected on a conventional intensity camera. Right: Modulation amplitude maps demonstrate that FAST-QUAD can retrieve the concealed image when \(f_d \) is set to the exact frequency used by the sender.

\[
\Delta \Phi(V) = \pi (r_{13} n_0^2 - r_{13} n_0^2) V / 4 A \times 300 \text{ pm} \quad \text{V}^{-1} \quad \text{and} \quad r_{13} \approx 30 \text{ pm} \quad \text{V}^{-1} \quad \text{correspond to (Pockels') electro-optic coefficients of LiNbO}_3 \quad \text{(approximate values in the visible range)}}
\]

The ordinary, respectively, extraordinary, optical refractive indices of LiNbO\(_3\) are \(n_o \approx 2.32 \) and \(n_e \approx 2.23 \) at \(\lambda = 532 \text{ nm} \). To limit the voltage amplitude to reasonable values (i.e., within the 100 – 200 V range), we selected a LiNbO\(_3\) EO crystal (Moltec GmbH) of length \(l = 40 \text{ mm} \) and with a \(2 \times 2 \text{ mm}^2 \) aperture section (\(d = 2 \text{ mm} \)). A high-voltage sawtooth waveform (with peak-to-peak amplitude of 124 V calibrated to provide exact 360\(^\circ\) maximum optical phase difference excursion \(\Delta \Phi \)) has been applied on the electrodes of the EO crystal using a signal generator (Tektronix AFG3252C) and a high-voltage amplifier (New Focus 3211 High Voltage Amplifier, 250 V, 0–0.6 MHz bandwidth).

Due to the importance of the ratio of the length and thickness/breadth of the crystal, the best option in terms of FOV and resolution consisted of placing the EO crystal just after the input polarizer \(P \) (Thorlabs, LPVISB050), before the image was focused by lens \(L_1 \). In an intermediate image plane where a field mask has been inserted to restrict the spatial extent of the image so that the 4 sub-images do not overlap at the camera (See Fig. 5a). The light is re-collimated through objective lens \(L_2 \) and split with a Fresnel bi-prism (NewLight photonics, 160\(^\circ\) apex angle) and a

Fig. 5 Presentation of FAST-QUAD prototype. a Schematic and photograph of the FAST-QUAD prototype. Due to the dimensions of the EO crystal employed (2 x 2 x 40 mm\(^3\)), it was optimal to have it positioned after the input polarizer \(P \). This was followed by a focusing lens \(L_1 \), a field mask (FM) at the intermediate image (that restricts the image spatial extent to prevent superimposition of the 4 sub-images on the camera), and thereafter a lens \(L_3 \) that recollimates the beam. A Fresnel bi-prism (FP) splits the beam into two, one part of which passes through a quarter-wave plate (QWP). Further propagation through a Wollaston prism results in 4 beams that are imaged onto the camera by means of lens \(L_3 \), providing the four quadrature images. b Example of raw image acquisition when the FAST-QUAD prototype is illuminated with homogeneous light field. The four 300 x 300 pixels quadrature sub-images \(I_1, I_2, Q_1 \) and \(Q_2 \) are delineated with yellow frames. The red cross indicates the position of the reference pixel used in Supplementary Note 2 to illustrate the quadrature mismatch correction algorithm implemented.
The code used for data analysis, as well as for display of the data is available from the corresponding author upon reasonable request.

Data availability

The datasets generated during and/or analyzed during this study are available from the corresponding author upon reasonable request.

Code availability

The code used for data analysis, as well as for display of the data is available from the corresponding author upon reasonable request.

Received: 2 October 2019; Accepted: 29 November 2019; Published online: 28 January 2020

References

1. Berg, R., Jarlman, O. & Svanberg, S. Medical transillumination imaging using short-pulse diode lasers. Appl. Opt. 32, 574–579 (1993).
2. Sedarsky, D., Berrocal, E. & Linne, M. Quantitative image contrast enhancement in time-gated transillumination of scattering media. Opt. Express 19, 1866–1883 (2011).
3. Ramachandran, H. & Narayanam, A. Two-dimensional imaging through turbid media using a continuous wave light source. Opt. Commun. 154, 255–260 (1998).
4. Emile, O., Bretenaker, F. & LeFloh, A. Rotating polarization imaging in turbid media. Opt. Lett. 21, 1706–1708 (1996).
5. Fade, J. et al. Long-range polarimetric imaging through fog. Appl. Opt. 53, 3854–3865 (2014).
6. Cuccia, D. J., Beviaqua, F. P., Durkin, A. J., Ayers, F. R. & Tromberg, B. J. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 14, 024012 (2009).
7. Panjghrahi, S., Fade, J., Ramachandran, H. & Alouini, M. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media. Opt. Express 24, 16066–16083 (2016).
8. Kim, H. K., Netz, U. J., Beuthan, J. & Helschier, A. H. Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes. Opt. Express 16, 18082–18101 (2008).
9. Nizam, D., Brain, A. E. & Duda, R. O. The measurement and use of registered reflectance and range data in scene analysis. Proc. IEEE 65, 206–220 (1977).
10. Sudarsanam, S. et al. Real-time imaging through strongly scattering media: seeing through turbid media, instantly. Sci. Rep. 6, 25033 (2016).
11. Wang, L., Ho, P. P., Lau, C., Zhang, G. & Alfano, R. R. Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate. Science 253, 769–771 (1991).
12. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232 (2012).
13. Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon. 8, 784 (2014).
14. Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photon. 9, 253 (2015).
15. Zador, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, 1600370 (2016).
16. Benz, D. A. & Stevenson, D. K. Optical time-of-flight and absorption imaging of biologic media. Science 259, 1463–1466 (1993).
17. Tromberg, B. J. et al. Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration. Philos. Trans. R. Soc. Lond. B 352, 661–668 (1997).
18. Boas, D. A. et al. Imaging the body with diffuse optical tomography. IEEE Signal. Process. Mag. 18, 57–75 (2001).
19. Ban, H. Y. et al. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med. Phys. 43, 4383–4395 (2016).
20. Lu, R. Light Scattering Technology for Food Property, Quality and Safety Assessment (CRC Press, 2016).
21. Watkins, W. R., Tolsted, D. H., CuQlock-Knopp, V. G., Jordan, J. B. & Merritt, J. O. Navigation through fog using stereoscopic active imaging. In Enhanced and Synthetic Vision 2000, Proc. SPIE, Vol. 4023, 20–28 (SPIE, Conference Location: Orlando, 2000).
22. Hautiere, N., Tarel, J.-P. & Aubert, D. Towards fog-free in-vehicle vision systems through contrast restoration. In Computer Vision and Pattern Recognition, IEEE Conference on CVPR’07, 1–8 (IEEE, Conference Location: Minneapolis, 2007).
23. Schechner, Y. Y. & Karpel, N. Clear underwater vision. In Computer Vision and Pattern Recognition, IEEE Conference on CVPR’04, 1–8 (IEEE, Conference Location: Washington DC, 2004).
24. Payne, A. D., Dorrington, A. A., Clee, M. J. & Carnegie, D. A. Characterizing an image intensifier in a full-field range imaging system. IEEE Sens. J. 8, 1763–1770 (2008).
25. Netz, U. J., Beuthan, J. & Helschier, A. H. Multipixel system for gigahertz frequency-domain optical imaging of finger joints. Rev. Sci. Inst. 79, 034301 (2008).
26. Harsard, M., Lee, S., Choi, O. & Horard, R. Time-of-Flight Cameras: Principles, Methods and Applications. (Springer Publishing Company, Inc., 2012).
27. Li, L. Technical White Paper: Time-of-flight camera—an introduction. (Texas Instruments Inc., Technical Report SLOA1908, 2014).
28. Multi, F. & Mahony, R. Statistical analysis of signal measurement in time-of-flight cameras. ISPRS J. Photogramm. Remote Sens. 66, 720–731 (2011).
29. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Elsevier, 2013).
30. Dubois, A., Vabre, L., Boccara, A. C. & Beaurepaire, E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 8005–8012 (2002).
31. Vabre, L., Dubois, A. & Boccara, A. C. Thermal-light full-field optical coherence tomography. Opt. Lett. 27, 530–532 (2002).
32. Yariv, A. & PochiYeh, P. Optical Waves in Crystal Propagation and Control of Laser Radiation. (John Wiley and Sons, Inc., 1983).
33. Weiss, R. S. & Gaylord, T. K. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985).

Acknowledgements

The authors would like to thank L. Frein, S. Boubier, C. Hamel, and A. Carré for their technical help with the experiments, as well as A. Carré for his technical help in the visual material design. The authors thank the Indo-French Center for Promotion of Advanced Research (IFCPR/CEFIPRA), New Delhi, for funding S.P. and requests for materials should be addressed to J.F. and R.A. analyzed the data. J.F. and R.A. realized the final images. J.F. and S.P., J.F. and R.A. analyzed the data. M.A. and H.R. conceived the project idea and initiated the research. M.A., H.R., S.P. and Yang, and the other, anonymous, reviewer/s for their contribution to the peer review of this work.

Author contributions

M.A. and H.R. conceived the project idea and initiated the research. M.A., H.R., S.P. and J.F. conceived and designed the imager. S.P., J.F., and M.A. planned and conducted the experiments. S.P. developed the acquisition software and the calibration procedure. S.P., J.F. and R.A. analyzed the data. J.F. and R.A. realized the final images. J.F. and H.R. wrote the paper. All the authors discussed the results and revised the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14142-w.

Correspondence and requests for materials should be addressed to J.F.

Peer review information Nature Communications thanks Diederik Wiersma, Yuanmu Yang, and the other, anonymous, reviewer/s for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
