DiscSense: Automated Semantic Analysis of Discourse Markers

Damien Sileo3,1, Tim Van de Cruys2, Camille Pradel1, Philippe Muller3

1:Synapse Développement, 2:IRIT (CNRS), 3:IRIT (University of Toulouse)
damien.sileo@irit.fr

Abstract

Discourse markers (by contrast, happily, etc.) are words or phrases that are used to signal semantic and/or pragmatic relationships between clauses or sentences. Recent work has fruitfully explored the prediction of discourse markers between sentence pairs in order to learn accurate sentence representations, that are useful in various classification tasks. In this work, we take another perspective: using a model trained to predict discourse markers between sentence pairs, we predict plausible markers between sentence pairs with a known semantic relation (provided by existing classification datasets). These predictions allow us to study the link between discourse markers and the semantic relations annotated in classification datasets. Handcrafted mappings have been proposed between markers and discourse relations on a limited set of markers and a limited set of categories, but there exist hundreds of discourse markers expressing a wide variety of relations, and there is no consensus on the taxonomy of relations between competing discourse theories (which are largely built in a top-down fashion). By using an automatic prediction method over existing semantically annotated datasets, we provide a bottom-up characterization of discourse markers in English. The resulting dataset, named DiscSense, is publicly available.

Keywords: Discourse marker semantics, pragmatics, discourse marker prediction

1. Motivation

Discourse markers are a common language device used to make explicit the semantic and/or pragmatic relationships between clauses or sentences. For example, the marker so in sentence (1) indicates that the second clause is a consequence of the first.

(1) We’re standing in gasoline, so you should not smoke.

Several resources enumerate discourse markers and their use in different languages, either in discourse marker lexicons (Knott, 1996; Stede, 2002; Roze et al., 2012; Das et al., 2018) or in corpora, annotated with discourse relations, such as the well-known English Penn Discourse TreeBank (Prasad et al., 2008), which inspired other efforts in Turkish, Chinese and French (Zeyrek and Webber, 2008; Zhou et al., 2014; Danlos et al., 2015). The PDTB identifies different types of discourse relation categories (such as conjunction and contrast) and the respective markers that frequently instantiate these categories (such as and and however, respectively), and organizes them in a three-level hierarchy. It must be noted, however, that there is no general consensus on the typology of these markers and their rhetorical functions. As such, theoretical alternatives to the PDTB exist, such as Rhetorical Structure Theory or RST (Carlson et al., 2001), and Segmented Discourse Representation Theory or SDRT (Asher and Lascarides, 2003). Moreover, marker inventories focus on a restricted number of rhetorical relations that are too coarse and not exhaustive, since discourse marker use depends on the grammatical, stylistic, pragmatic, semantic and emotional contexts that can undergo fine grained categorizations.

Meanwhile, there exist a number of NLP classification tasks (with associated datasets) that equally consider the relationship between sentences or clauses, but with relations that possibly go beyond the usual discourse relations; these tasks focus on various phenomena such as implication and contradiction (Bowman et al., 2015), semantic similarity, or paraphrase (Dolan et al., 2004). Furthermore, a number of tasks consider single sentence phenomena, such as sentiment, subjectivity, and style. Such characteristics have been somewhat ignored for the linguistic analysis and categorization of discourse markers per se, even though discourse markers have been successfully used to improve categorization performance for these tasks (Jernite et al., 2017; Nie et al., 2019; Pan et al., 2018a; Sileo et al., 2019b). Specifically, the afore-mentioned research shows that the prediction of discourse markers between pairs of sentences can be exploited as a training signal that improves performance on existing classification datasets. In this work, we make use of a model trained on discourse marker prediction in order to predict plausible discourse markers between sentence pairs from existing datasets, which are annotated with the correct semantic categories. This allows us to explore the following questions:

- Which semantic categories are applicable to a particular discourse marker (e.g. is a marker like but associated with other semantic categories than just mere contrast)?
- Which discourse markers can be associated with the semantic categories of different datasets (e.g. what are the most likely markers between two paraphrases)?
- To what extent do discourse markers differ between datasets with comparable semantic categories (e.g. for two sentiment analysis datasets, one on films and one on product reviews, are the markers associated with positive sentences different)?

In order to answer these questions, we train a model for discourse marker prediction between sentence pairs, using millions of examples. We then use this model to predict markers between sentences whose semantic relationships have already been annotated—for example, pairs of sentences (s_1, s_2, y) where y is in Paraphrase, Non-Paraphrase.
Figure 1: Overview of our method

These predictions allow us to examine the relationship between each category y and the discourse markers that are most often predicted for that category. Figure 1 shows an overview of our method. Thus, we propose **DiscSense**, a mapping between markers and senses, that has several applications:

- A characterization of discourse markers with categories that provides new knowledge about the connotation of discourse markers; our characterization is arguably richer since it does not only use PDTB categories. For instance, our mapping shows that the use of some markers is associated with negative sentiment or sarcasm; this might be useful in writing-aid contexts, or as a resource for second language learners; it could also be used to guide linguistic analyses of markers;

- A characterization of categories of discourse markers can help “diagnosing” a classification dataset; As shown in table 2 below, SICK/MNLI dataset categories have different associations and our method can provide a sanity check for annotations (e.g., a Contradiction class should be mapped to markers expected to denote a contradiction);

- An explanation of why it is useful to employ discourse marker prediction as a training signal for sentence representation learning; DiscSense can also be used to find markers which could be most useful when using a discourse marker prediction task as auxiliary data in order to solve a given target task.

2. Related work

Previous work has amply explored the link between discourse markers and semantic categories. Pitler et al. (2008), for example, use the PDTB to analyze to what extent discourse markers *a priori* reflect relationship category. Asr and Demberg (2012) have demonstrated that particular relationship categories give rise to more or less presence of discourse markers. And a recent categorization of discourse markers for English is provided in the DimLex lexicon (Das et al., 2018).

As mentioned before, discourse markers have equally been used as a learning signal for the prediction of implicit discourse relations (Liu et al., 2016; Braud and Denis, 2016) and inference relations (Pan et al., 2018b). This work has been generalized by DiscSent (Jernite et al., 2017), DisSent (Nie et al., 2019), and Discovery (Sileo et al., 2019b) who use discourse markers to learn general representations of sentences, which are transferable to various NLP classification tasks. However, none of these examine the individual impact of markers on these tasks.

sentence1	sentence2	category
oh it's really it's true	*it is correct.*	entailment
yeah that that'll be good	*that is ideal.*	neutral

sentence1	sentence2	marker
oh it's really it's true	*it is correct.*	*so*
yeah that that'll be good	*that is ideal.*	*well,*

marker	category	confidence
so	entailment	43%
well	neutral	28%

![DiscSense mapping](image)
3. Experimental setup

3.1. Discourse marker corpus

In order to train a model to predict plausible discourse markers between sentence pairs, we use the English Discovery corpus (Sileo et al., 2019b), as it has the richest set of markers. It is composed of 174 discourse markers with 20k usage examples for each marker (sentence pairs where the second sentence begins by a given marker). Sentence pairs were extracted from web data (Panchenko et al., 2017), and the markers come either from the PDTB or from an automatic extraction method based on heuristics. An example of the dataset is provided in [2].

(2) Which is best? Undoubtedly, \(s_1 \) that depends on the person, \(s_2 \).

Since we plan to use marker prediction on sentence pairs from classification datasets, in which some sentence pairs cannot plausibly occur consecutively, (e.g. entirely unrelated sentences), we augment the Discovery dataset with non-consecutive sentence pairs from the DepCC corpus for which we create a new class. We sample sentences that were separated by 2 to 100 sentences in order to cover various degrees of relatedness.

Besides, we also want to predict markers beginning single sentences, so we mask the first sentence of Discovery example pairs in 10% of cases by replacing it with a placeholder symbol \([S]_1\). This placeholder will be used to generate sentence pairs from single sentences in datasets where sentence pairs are not available. For example, in the Customer Review dataset (CR), we predict a marker between \([S]_1\) and review sentences.

In addition, we also use another dataset by Malmi et al. (2018) for which human annotator accuracy is available for a better assessment of the performance of our marker prediction model. It contains 20k usage examples for 20 markers extracted from Wikipedia articles (the 20 markers are a subset of the markers considered in the Discovery dataset); we call this dataset Wiki20.

marker	category	support confidence (prior)
unfortunately	CR.negative	66 (21.8)
sadly	CR.negative	20 (21.8)
unfortunately	SST-2.negative	240 (22.5)
as a result	SST-2.negative	65 (22.5)
in contrast	MNLI.contradiction	1182 (16.9)
curiously	MNLI.contradiction	2912 (16.9)
technically	SICKE.contradiction	29 (7.8)
rather	SICKE.contradiction	147 (7.8)
similarly	MRPC.paraphrase	85 (35.5)
likewise	MRPC.paraphrase	103 (35.5)
instead	PDBT.Alternative	27 (0.6)
then	PDBT.Asynchronous	36 (2.4)
previously	PDBT.Asynchronous	36 (2.4)
by doing this	PDBT.Cause	22 (14.8)
additionally	PDBT.Conjunction	47 (12.5)
but	PDBT.Conjunction	89 (7.0)
elsewhere	PDBT.List	41 (1.3)
specifically	PDBT.Restatement	100 (10.6)
seriously	SarcasmV2.sarcasm	225 (26.7)
so	SarcasmV2.sarcasm	81 (26.7)

Table 2: Sample of categories and most associated markers.

4. Results

3.3. Model

For our experiments, we make use of BERT (Devlin et al., 2019), as a model for relation prediction. BERT is a text encoder pre-trained using language modeling having demonstrated state of the art results in various tasks of relation prediction between sentences, which is our use-case. The parameters are initialized with the pre-trained unsupervised base-uncased model and then fine-tuned using the Adam (Kingma and Ba, 2014) optimizer with 2 iterations on our corpus data, using default hyperparameters otherwise. We ran marker prediction experiments using BERT on both Discovery and Wiki20.

4.1. Marker prediction accuracy

Table 1 shows the results of the different models on the prediction of discourse markers. The accuracy of BERT on the
Table 3: Classification datasets considered in our study; N_{train} is the number of training examples

sentence1	sentence2	marker	sense
every act of god is holy because god is holy.	every act of god is loving because god is love.	likewise,	similarity
it gives you a schizophrenic feeling when trying to navigate a web page.	it's just a bad experience.	sadly,	Negative
the article below was published a few months back.	there is all too much truth in this.	sadly,	Negative
i do n't think i can stop with the exclamation marks ! ! !	this could be a problem ! ! ! !	seriously,	Sarcasm
ayye , think of link building as brand building.	there are no shortcuts.	unfortunately,	Negative
you will seldom meet new people.	in medellin you will definitely meet people.	in_contrast,	Contradiction
if i burn a fingertip , i 'll moan all night.	it did n't look too bad.	initially,	Contradiction
he puncture is about the size of a large pea.	he can see almost no blood .	curiously,	Contradiction

Table 4: Examples of the Discovery datasets illustrating various relation senses predicted by DiscSense

dataset	categories	example&class	N_{train}
MR	sentiment (movie)	“bland but harmless”	neg 11k
SST	sentiment (movie)	“a quiet , pure , elliptical film”	pos 70k
CR	sentiment (products)	“the customer support is pathetic.”	neg 3k
SUBJ	subjective/objective	“it is late at night in a foreign land”	obj 10k
MRPC	paraphrase	“i ’m never going to [...]”	paraphrase 4k
SICK-E	inference relation	“a man is puking”	neutral 4k
SNLI	inference relation	“dog leaps out”	entailment 4k
SarcasmV2	presence of sarcasm	“don’t quit your day job”	sarcasm 9k
Emergent	stance	“a meteorite landed in nicaragua.”	for 2k
PDTB	discourse relation	“it was censorship”	Conjunction 13k
Squinky	I/F	“boo ya.”	uninformative, high implicature, uniformal, 4k
MNLI	inference relation	“they renewed inquiries”	entailment 391k
STAC	discourse relation	“what ?”	question-answer-pair 11k
SwitchBoard	speech act	“well , a little different , actually .”	hedge 19k
MRDA	spect act	“yeah that ’s that ’s that ’s what i meant .”	acknowledge-answer 14k
Verifiability	verifiability	“i ’ve been a physician for 20 years.”	verifiable-experiential 6k
Persuasion	C/E/P/S/S/R	“Co-operation is essential for team work”	low specificity 566
EmoBank	V/A/D	“i wanted to be there..”	low valence, high arousal, low dominance 5k
GUM	discourse relation	“do not drink”	condition 2k
QNLI	inference relation	“Who took over Samoa?”	entailment 105k
MNLI	inference relation	“they renewed inquiries”	entailment 391k
STS-B	similarity	“a man is running.”	dissimilar 1k
CoLA	linguistic acceptability	“They drank the pub.”	not-acceptable 8k
QQP	paraphrase	“Is there a soul?”	Non-duplicate 364k
RTE	inference relation	“Oil prices fall back as Yukos oil threat lifted”	not-entailment 2k
WNLI	inference relation	“The fish ate the worm. It was tasty.”	entailment 0.6k

Table 4: Examples of the Discovery datasets illustrating various relation senses predicted by DiscSense

Discovery test data is quite high given the large number of classes (174, perfectly balanced) and sometimes their low semantic distinguishability. This accuracy is significantly higher than the score of the Bi-LSTM model in the setup of Sileo et al. (2019b). The BERT model finetuned on Discovery outperforms human performance reported on Wiki20 with no other adaptation than discarding markers not in Wiki20 during inference. With a further step of fine-tuning (1 epoch on Wiki20), we also outperform the best model from Malmi et al. (2018). These results suggest that the BERT+Discovery model captures a significant part of the use of discourse markers; in the following section, we will apply it to the prediction of discourse markers for individual categories.

4.2. Prediction of markers associated to semantic categories

For each semantic dataset, consisting of either annotated sentences (s_1, y) or annotated sentence pairs (s_1, s_2, y), where y is a category, we use the BERT+Discovery model to predict the most plausible marker m in each example. The classification datasets thus yield a list of (y, m) pairs. Association rules (Hipp et al., 2000) can be used to find interesting rules of the form $(m \Rightarrow y)$, or $(y \Rightarrow m)$. We discard examples where no marker is predicted, and we discard markers that we predicted less than 20 times for a par-
ticular dataset. Table 2 shows a sample of markers with the highest probability of \(P(y|m) \), i.e. the probability of a class given a marker. An extended table, which includes a larger sample of significant markers for all datasets included in our experiments, is available in appendix A and an even larger, exhaustive table of 2.9k associations is publicly available.\(^\dagger\)

The associations for some markers are intuitively correct (likewise denotes a semantic similarity expected in front of a paraphrase, sadly denotes a negative feeling, etc.) and they display a predictive power much higher than random choices. Other associations seem more surprising at first glance, for example, seriously as a marker of sarcasm—although on second thought, it seems a reasonable assumption that seriously does not actually signal a serious message, but rather a sarcastic comment on the preceding sentence. Generally speaking, we notice the same tendency for each class: our model predicts both fairly obvious markers (unfortunately as a marker for negative sentiment, in contrast for contradiction), but equally more inconspicuous markers (e.g. initially and curiously for the same respective categories) that are perfectly acceptable, even though they might have been missed by (and indeed are not present in) a priori approaches to discourse marker categorization. The associations seem to vary across domains (e.g. between CR and SST2) but some markers (e.g. unfortunately) seem to have more robust associations than others. Table 4 provides some Discovery samples where the markers are used accordingly.

On a related note, it is encouraging to see that the top markers predicted on the implicit PDTB dataset are similar to those present in the more recent English-DimLex lexicon which annotates PDTB categories as senses for discourse markers (Das et al., 2018). This indicates that our approach is able to induce genuine discourse markers for discourse categories that coincide with linguistic intuitions; however, our approach has the advantage to lay bare less obvious markers, that might easily be overlooked by an a priori categorization.

5. Conclusion

Based on a model trained for the prediction of discourse markers, we have established links between the categories of various semantically annotated datasets and discourse markers. Compared to a priori approaches to discourse marker categorization, our method has the advantage to reveal more inconspicuous but perfectly sensible markers for particular categories. The resulting associations can straightforwardly be used to guide corpus analyses, for example to define an empirically grounded typology of marker use. More qualitative analyses would be needed to elucidate subtleties in the most unexpected results. In further work, we plan to use the associations we found as a heuristic to choose discourse markers whose prediction is the most helpful for transferable sentence representation learning.

6. Bibliographical References

Asher, N. and Lascarides, A. (2003). Logics of conversation. Cambridge University Press.

Asr, F. T. and Demberg, V. (2012). Implicitness of Discourse Relations. In COLING.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326.

Braud, C. and Denis, P. (2016). Learning Connective-based Word Representations for Implicit Discourse Relation Identification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 203–213, Austin, Texas, nov. Association for Computational Linguistics.

Carlson, L., Marcu, D., and Okurowski, M. E. (2001). Building a Discourse-tagged Corpus in the Framework of Rhetorical Structure Theory. In Proceedings of the Second SIGdial Workshop on Discourse and Dialogue - Volume 16, SIGDIAL ’01, pages 1–10, Stroudsburg, PA, USA. Association for Computational Linguistics.

Conneau, A. and Kiela, D. (2018). SentEval: An evaluation toolkit for universal sentence representations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).

Danlos, L., Colinet, M., and Steinlin, J. (2015). FDTB1: Repérage des connecteurs de discours dans un corpus français. Discours - Revue de linguistique, psycholinguistique et informatique, (17), dec.

Das, D., Scheffler, T., Bourgonje, P., and Stede, M. (2018). Constructing a Lexicon of {English} Discourse Connectives. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, pages 360–365, Melbourne, Australia, jul. Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics.

Dolan, B., Quirk, C., and Brockett, C. (2004). Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources. In {COLING} 2004, 20th International Conference on Computational Linguistics, Proceedings of the Conference, 23-27 August 2004, Geneva, Switzerland.

Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2000). Algorithms for Association Rule Mining &Dash; a General Survey and Comparison. SIGKDD Explor. Newsl., 2(1):58–64, jun.

Jernite, Y., Bowman, S. R., and Sontag, D. (2017). Discourse-Based Objectives for Fast Unsupervised Sentence Representation Learning.

Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, pages 1–13.
Knott, A. (1996). *A data-driven methodology for motivating a set of coherence relations*. Ph.D. thesis, University of Edinburgh, {UK}.

Liu, Y. P., Li, S., Zhang, X., and Sui, Z. (2016). Implicit discourse relation classification via multi-task neural networks. *ArXiv*, abs/1603.02776.

Malmi, E., Pighin, D., Krause, S., and Kozhevnikov, M. (2018). Automatic Prediction of Discourse Connectives. In *Proceedings of the 11th Language Resources and Evaluation Conference*, Miyazaki, Japan, may. European Language Resource Association.

Nie, A., Bennett, E., and Goodman, N. (2019). DisSent: Learning sentence representations from explicit discourse relations, pages 4497–4510, July.

Pan, B., Yang, Y., Zhao, Z., Zhuang, Y., Cai, D., and He, X. (2018a). Discourse Marker Augmented Network with Reinforcement Learning for Natural Language Inference. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 989–999, Melbourne, Australia, jul. Association for Computational Linguistics.

Pan, B., Yang, Y., Zhao, Z., Zhuang, Y., Cai, D., and He, X. (2018b). Discourse marker augmented network with reinforcement learning for natural language inference. In *ACL*.

Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S. P., and Biemann, C. (2017). Building a Web-Scale Dependency-Parsed Corpus from Common Crawl. pages 1816–1823.

Pitler, E., Raghupathy, M., Mehta, H., Nenkova, A., Lee, A., and Joshi, A. (2008). Easily Identifiable Discourse Relations. In *Coling 2008: Companion volume: Posters*, pages 87–90. Coling 2008 Organizing Committee.

Prasad, R., Dinesh, N., Lee, A., Miltsakaki, E., Robaldo, L., Joshi, A., and Webber, B. (2008). The Penn Discourse TreeBank 2.0. In Bente Maegaard Joseph Mariani Jan Odijk Stelios Piperidis Daniel Tapias Nicoletta Calzolari (Conference Chair) Khalid Choukri, editor, *Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08)*, Marrakech, Morocco, may. European Language Resources Association (ELRA).

Roze, C., Danlos, L., and Muller, P. (2012). LEXCONN: A French Lexicon of Discourse Connectives. *Discours*, (10).

Sileo, D., de Cruys, T. V., Pradel, C., and Muller, P. (2019a). Discourse-based evaluation of language understanding.

Sileo, D., Van De Cruys, T., Pradel, C., and Muller, P. (2019b). Mining discourse markers for unsupervised sentence representation learning. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 3477–3486, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Stede, M. (2002). DiM{L}ex: A Lexical Approach to Discourse Markers. In *Exploring the Lexicon - Theory and Computation*. Edizioni dell’Orso, Alessandria.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). {GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In *International Conference on Learning Representations*.

Zeyrek, D. and Webber, B. (2008). A Discourse Resource for Turkish: Annotating Discourse Connectives in the {METU} Corpus. In *Proceedings of IJCNLP*.

Zhou, Y., Lu, J., Zhang, J., and Xue, N. (2014). Chinese Discourse Treebank 0.5 {LDC2014T21}.
A DiscSense categories

antecedents	consequents	support	confidence+prior
unfortunately,	CR.negative	66	100.0 (21.8)
regardless,	CR.positive	31	96.9 (37.8)
meaning,	Cola.not-well-formed	21	48.8 (16.5)
regardless,	Cola.well-formed	23	95.8 (39.1)
only,	Emergent.against	24	88.9 (8.8)
normally,	Emergent.for	22	78.6 (26.8)
separately,	Emergent.observing	148	59.2 (20.9)
anyway,	EmoBankA.high	24	85.7 (30.0)
originally,	EmoBankA.low	27	90.0 (31.8)
together,	EmoBankD.high	20	62.5 (23.4)
inevitably,	EmoBankD.low	21	91.3 (37.1)
plus,	EmoBankV.high	45	90.0 (26.2)
sadly,	EmoBankV.low	36	92.3 (34.5)
by contrast,	Formality.high	35	100.0 (28.9)
well,	Formality.low	49	100.0 (31.0)
this,	GUM.circumstance	24	35.3 (7.5)
or,	GUM.condition	31	50.0 (5.5)
instead,	Implicature.high	28	77.8 (28.3)
by comparison,	Implicature.low	24	88.9 (32.2)
nationally,	Informativeness.high	29	100.0 (28.3)
seriously,	Informativeness.low	37	100.0 (32.8)
in contrast,	MNLI.contradiction	1182	74.1 (16.9)
in turn,	MNLI.entailment	7475	65.4 (17.0)
for instance	MNLI.neutral	177	70.8 (16.9)
so,	MRDA.Accept	57	12.9 (1.5)
well,	MRDA.Acknowledge-answer	85	10.3 (1.7)
well,	MRDA.Action-directive	20	2.4 (0.7)
actually,	MRDA.Affirmative Non-yes Answers	37	12.2 (1.5)
personally,	MRDA.Assessment/Appreciation	25	15.9 (1.9)
especially,	MRDA.Collaborative Completion	25	7.4 (1.0)
really,	MRDA.Declarative-Question	48	11.9 (0.7)
mostly,	MRDA.Defending/Explanation	114	62.3 (5.2)
probably,	MRDA.Dispreferred Answers	25	1.5 (0.6)
namely,	MRDA.Expansions of y/n Answers	37	33.6 (4.1)
so,	MRDA.Floor Grabber	56	12.7 (2.1)
and	MRDA.Floor Holder	53	8.2 (2.4)
and	MRDA.Hold Before Answer/Agreement	26	4.0 (0.5)
absolutely,	MRDA_INTERRUPTED/ABANDONED/UNINTERPRETABLE	24	1.2 (0.6)
probably,	MRDA.Negative Non-no Answers	28	1.7 (0.4)
though,	MRDA.Offer	27	18.9 (3.4)
honestly,	MRDA.Other Answers	31	36.0 (0.6)
actually,	MRDA.Reject	34	11.2 (0.4)
probably,	MRDA.Reject-part	20	1.2 (0.2)
also,	MRDA.Rising Tone	66	36.7 (3.4)
originally,	MRDA.Statement	20	37.0 (10.6)
surely,	MRDA.Understanding Check	26	40.6 (2.5)
realistically,	MRDA.Wh-Question	24	27.6 (1.1)
or,	MRDA.Yes-No-question	61	16.1 (0.8)
elsewhere,	MRPC.not-paraphrase	30	81.1 (17.1)
similarly,	MRPC.paraphrase	85	87.6 (35.5)
but	PDTB.Comparison	97	52.4 (3.8)
by doing this,	PDTB.Contingency	22	57.9 (6.7)
currently,	PDTB.Entrel	212	63.5 (7.8)
for instance	PDTB.Expansion	179	77.5 (13.5)
then,	PDTB.Temporal	62	36.7 (1.4)
rather,	PDTB.Alternative	36	25.4 (0.6)
antecedents	consequents	support	confidence+prior
---------------------------------	--------------------------------------	---------	-----------------
then,	PDTB.Asynchronous	60	38.7 (2.4)
by doing this,	PDTB.Cause	22	61.1 (14.8)
additionally	PDTB.Conjunction	47	63.5 (12.5)
but	PDTB.Contrast	89	61.4 (7.0)
for instance	PDTB.Instantiation	138	65.1 (4.8)
elsewhere,	PDTB.List	41	16.2 (1.3)
specifically,	PDTB.Restatement	100	67.6 (10.6)
separately,	PDTB.Synchrony	21	2.8 (0.7)
moreover	PersuasivenessEloquence.high	21	46.7 (17.5)
hence,	PersuasivenessEloquence.low	21	84.0 (48.6)
undoubtedly,	PersuasivenessPremiseType.common knowledge	24	85.7 (49.1)
for instance	PersuasivenessRelevance.high	25	67.6 (41.4)
undoubtedly,	PersuasivenessRelevance.low	21	56.8 (27.7)
for instance	PersuasivenessSpecificity.high	24	82.8 (33.1)
undoubtedly,	PersuasivenessSpecificity.low	20	87.0 (38.9)
undoubtedly,	PersuasivenessStrength.low	20	87.0 (42.9)
likewise,	QNLI.entailment	38	74.5 (25.4)
regardless,	QNLI.not entailment	29	87.9 (25.5)
collectively,	QQP.duplicate	45	68.2 (18.6)
oddly,	QQP.not-duplicate	25	100.0 (31.8)
technically,	RTE.entailment	55	72.7 (28.1)
by comparison,	RTE.not entailment	29	67.4 (27.6)
technically,	SICKE.contradiction	29	87.9 (7.8)
in turn,	SICKE.entailment	32	64.0 (15.3)
meanwhile,	SICKE.neutral	155	92.8 (29.9)
unfortunately,	SST-2.negative	240	96.0 (22.5)
nonetheless,	SST-2.positive	383	93.4 (28.4)
so,	STAC.Acknowledgement	40	21.3 (5.3)
so,	STAC.Clarification question	23	12.2 (1.4)
however	STAC.Comment	91	48.7 (5.4)
otherwise,	STAC.Condition	21	25.0 (0.6)
anyway,	STAC.Contradiction	52	10.4 (3.1)
probably,	STAC.Collaborative Completion	76	18.9 (1.9)
alternately,	STAC.Collaborative Completion	22	59.5 (3.9)
especially,	STAC.Clarity	21	12.4 (2.0)
really,	STAC.Collaborative Completion	147	32.5 (2.3)
surprisingly,	STAC.Collaborative Completion	71	89.9 (9.8)
finally,	STAC.Collaborative Completion	130	46.9 (3.1)
finally,	STAC.Collaborative Completion	29	10.5 (0.4)
currently,	STAC.Contradiction	50	65.8 (10.6)
elsewhere,	STAC.Contradiction	516	70.0 (14.2)
in turn,	STAC.Contradiction	142	60.2 (18.4)
presently,	STAC.Contradiction	24	100.0 (28.1)
in other words	STAC.Contradiction	61	100.0 (28.3)
technically,	Sarcasm.notsarcasm	34	72.3 (26.8)
seriously,	Sarcasm.notsarcasm	225	71.2 (26.7)
well,	SwitchBoard.Acknowledge (Backchannel)	30	2.8 (0.6)
seriously,	SwitchBoard.Acknowledge (Backchannel)	25	4.6 (1.1)
only,	SwitchBoard.Affirmative Non-yes Answers	20	3.0 (0.8)
actually,	SwitchBoard.Affirmative Non-yes Answers	64	17.3 (1.9)
actually,	SwitchBoard.Appreciation	58	15.7 (2.4)
especially,	SwitchBoard.Appreciation	38	10.1 (1.3)
anyway,	SwitchBoard.Conventional-closing	82	39.4 (1.5)
surely,	SwitchBoard.Declarative Yes-No-Question	22	20.2 (2.0)
or,	SwitchBoard.Dispreferred Answers	24	1.7 (0.3)
honestly,	SwitchBoard.Deny	24	19.7 (0.8)
so,	SwitchBoard.Hold Before Answer/Agreement	24	2.5 (0.6)
only,	SwitchBoard.Hold Before Answer/Agreement	43	6.4 (0.4)
antecedents	consequents	support	confidence+prior
-------------------	------------------------------------	---------	-----------------
so,	SwitchBoard.Open-Question	85	8.8 (0.8)
well,	SwitchBoard.Other	36	3.4 (0.4)
or,	SwitchBoard.Other Answers	25	1.8 (0.3)
absolutely,	SwitchBoard.Quotation	88	6.2 (1.6)
especially,	SwitchBoard.Repeat-phase	24	6.4 (0.6)
or,	SwitchBoard.Rhetorical-Question	48	3.4 (0.9)
so,	SwitchBoard.Self-talk	22	2.3 (0.2)
really,	SwitchBoard.Signal-non-understanding	37	5.6 (0.2)
luckily,	SwitchBoard.Statement-non-opinion	20	71.4 (7.9)
personally,	SwitchBoard.Statement-opinion	43	20.4 (2.6)
meaning,	SwitchBoard.Summarize/Reformulate	26	6.9 (1.5)
this,	SwitchBoard.Uninterpretable	158	56.0 (9.7)
realistically,	SwitchBoard.Wh-Question	48	33.8 (2.9)
incidentally,	SwitchBoard.Yes-No-Question	32	78.0 (7.3)
coincidentally,	Verifiability.experiential	20	80.0 (8.3)
especially,	Verifiability.non-experiential	36	39.1 (9.1)
third,	Verifiability.unverifiable	23	100.0 (41.3)

Table 5: Categories and most associated marker. CR.negative denotes the negative class in the CR dataset. Datasets are described in table 3. Support is the number of examples where the marker was predicted given a dataset. Confidence is the estimated probability of the class given the prediction of the marker i.e. \(P(y|m) \). The prior is \(P(y) \). Full version is available at https://github.com/synapse-developpement/DiscSense.