Covariant Hamiltonian formalisms for particles and antiparticles

Edgardo T. Garcia Alvarez\(^1\) and Fabián H. Gaioli\(^1\)

September 6, 2018

Abstract

The hyperplane and proper time formalisms are discussed mainly for the spin-half particles in the quantum case. A connection between these covariant Hamiltonian formalisms is established. It is showed that choosing the space-like hyperplanes instantaneously orthogonal to the direction of motion of the particle the proper time formalism is retrieved on the mass shell. As a consequence, the relation between the Stückelberg-Feynman picture and the standard canonical picture of quantum field theory is clarified.

\(^1\)Instituto de Astronomía y Física del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires, Argentina and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina. E-mail: gaioli@iafe.uba.ar.

1 Introduction

The unification of the principles of relativity and quantum mechanics presents a serious obstacle. On the one hand, as from the seminal work of Minkowski (1908) the first theory deals with the space and time on an equal footing:
“Space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.”

On the other hand, the principles of quantum mechanics, originally developed in a canonical formalism, have broken this symmetry by choosing the coordinate time of a given frame of reference to label the evolution of the system. Therefore the standard canonical formalism does not provide a relativistic invariant description of the dynamical evolution of the system. Moreover in this framework it is not possible to describe simultaneously particles and antiparticles at a first quantized level.

Different covariant formalisms were proposed to overcome these obstacles. Significative advances were obtained when the problem was faced with the purpose of reformulating the old fashioned canonical theory of quantum electrodynamics. Two kinds of solutions were presented at the Pocono conference half a century ago (Schweber, 1986; Mehra, 1994). One by Schwinger (1948), who, as Tomonaga (1946), essentially generalized the standard canonical formalism of quantum field theory to arbitrary space-like surfaces, and another one, containing more radical changes, by Feynman (1951) (see also Schweber, 1986 and Mehra, 1994). Feynman’s ideas, like Stückelberg’s (1941a, b, 1942) ones, dealt with the space-time trajectories of charged particles, and were essentially formulated at a first quantized level.

In this work we recall such ideas in order to discuss the covariant Hamiltonian formalism for relativistic particles. We shall focus our exposition on the Fleming hyperplane formalism (Fleming, 1965, 1966), closely related to the Tomonaga-Schwinger ideas and the Feynman proper time formalism, with the aim of establishing a bridge between them. This will clarify many misunderstood issues of the connection between the standard canonical picture and the Feynman space-time picture, from the Feynman point of view.

The main purpose of this work is to discuss Feynman’s formalism for the relativistic spin-$\frac{1}{2}$ particles in the quantum case (Sections 4 and 5), but for pedagogical reasons we begin discussing the problem at the classical level for

1See Jauch and Rohrlich (1976) for a list of references about formalisms involving arbitrary space-like surfaces.

2From the canonical point of view, this connection was established by Dyson (1948).
the spinless relativistic particle in Sections 2 and 3.

Throughout this work we use natural units ($\hbar = c = 1$). Our convention for the metric is

\[ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu, \quad \eta_{\mu\nu} = \text{diag}(1, -1, -1, -1). \] (1)

2 The classical relativistic particle in the hyperplane

The standard canonical formalism usually considers particle states only. Let us go beyond this formalism by using the Hamiltonian

\[H = \epsilon \sqrt{m^2 + p^2}, \] (2)

where ϵ is +1 and −1 for particles and antiparticles respectively. In this way we adopt Stückelberg’s (1941a, b, 1942) and Feynman’s (1948, 1949) ideas introducing the concept of antiparticles at the classical level as negative energy states going backwards in coordinate time.\(^3\) As we have stressed above, the canonical formalism privileges the temporal coordinate x^0 of a reference frame in order to describe the evolution, the one in which H is the temporal component of the four-momenta $p^\mu = (H, -\mathbf{p})$. In other words, for each reference frame we have a different Hamiltonian which generates the dynamical evolution of the system in the corresponding coordinate time. The key idea of the hyperplane formalism is unifying such multiplicity of dynamical descriptions by taking the temporal coordinate of a privileged frame, τ, for labeling the dynamics. This choice can be written in an invariant language as follows: Space-time is foliated with a family of space-like surfaces $n^\mu x_\mu - \tau = 0$ (the hyperplanes) characterized by a normalized vector $n^\mu (n^\mu n_\mu = 1)$ orthogonal to the surfaces

\[n^\mu = \frac{\partial x^\mu}{\partial \tau}. \] (3)

We have chosen the normal vector n^μ in the direction of the future light cone. Following this convention the components of the temporal vector n^μ

\(^3\)Such a notion can be also used for deriving the Dirac equation from first principles (Gaioli and Garcia Alvarez, 1995).
adopt the simple form \((n_\tau)^\mu = (1,0,0,0)\) in the coordinates \((x_\tau)^\mu = (\tau, x_\tau)\) of the privileged frame. Of course, the choice of such privileged foliation, in order to label the dynamics, is arbitrary. Usually, each observer adopts his canonical foliation, that is the one corresponding to coordinate time. But at this point the hyperplane formalism dissociates the dual (geometrical and dynamical) role of the temporal coordinates of the different reference systems. Each temporal coordinate retains its geometrical role, but only one (arbitrarily chosen) adopts the dynamical one. Note that in this sense the time \(\tau\) registered by the privileged coordinate frame is an absolute scalar parameter. That is, any lapse of \(\tau(P_1) - \tau(P_2)\) corresponding to two events occurred at points \(P_1\) and \(P_2\) in space-time is (by definition) independent of the coordinate systems chosen.\(^4\) As a consequence its conjugate variable, the Hamiltonian \(H(n)\), is also scalar, which becomes evident writing it as\(^5\)

\[
H(n) = n^\mu p_\mu. \tag{4}
\]

In this way the hyperplane formalism describes the evolution of the system from any coordinate system in a covariant way. However, note that the multiplicity of dynamical descriptions of the standard canonical formalism discussed above was not lost. It is hidden in the arbitrary choice of \(n^\mu\). The only thing that has been improved is that now the canonical formalism is independent of the coordinate system chosen. That is the canonical formalism provides a relativistic invariant description of the dynamical evolution of the system.

Although the expression \(\text{(4)}\) looks explicitly covariant, the canonical formalism is rather complicated because of the variables \(p_\mu\) are not independent, since they satisfy the mass-shell constraint

\[
p^\mu p_\mu = m^2. \tag{5}
\]

An alternative expression for \(\text{(4)}\) can be obtained in terms of the canonical momentum \(p_\tau\) conjugated to the hyperplanes coordinates \(x_\tau\). Using \(\text{(2)}\) in

\(^4\)What is relative is the lapse in the time coordinates, i.e. for two systems \(S\) and \(S'\), \(x^0(P_1) - x^0(P_2) \neq x'^0(P_1) - x'^0(P_2)\).

\(^5\)Notice also that particle and antiparticle concepts are interchanged if we reverse the direction of \(n^\mu\).
coordinates \((\tau, \mathbf{x}_\tau)\) we have

\[
H(n) = \epsilon \sqrt{m^2 + p^\mu(n)p_\mu(n)}, \tag{6}
\]

where

\[
p^\mu(n) = p^\mu - n^\mu(n^\nu p_\nu), \tag{7}
\]

is the four vector associated with \(\mathbf{p}_\tau\) [which in the coordinates of the privileged frame reads \((p_\tau)^\mu(n) = (0, \mathbf{p}_\tau)]\). However the new momentum variables do not simplify the problem, because they also satisfy a constraint

\[
p^\mu(n)n_\mu = 0, \tag{8}
\]

since \(p^\mu(n)\) is the projection of \(p^\mu\) to the hyperplane \(\tau = 0\).

Notice also that the covariant Poisson brackets, \(\{f, g\}_{xp} \equiv \frac{\partial f}{\partial x^\alpha} \frac{\partial g}{\partial p_\alpha} - \frac{\partial g}{\partial x^\alpha} \frac{\partial f}{\partial p_\alpha}\), of (6) with the four-vector

\[
x^\mu(n) = x^\mu - n^\mu(n^\nu x_\nu) \tag{9}
\]

associated with \(\mathbf{x}_\tau\), is not canonical

\[
\{x^\mu(n), p^\nu(n)\}_{xp} = \eta^{\mu\nu} - n^\mu n^\nu. \tag{10}
\]

We will return to this kind of problems later on.

Up to this point, we have not removed the undesirable arbitrariness in the choice of \(n^\mu\). In the case of the free particle the only four-vector that gives a privileged direction in the space-time is the four-velocity (which for a spinless particle also coincides with the direction of its four-momentum\(^7\)).

We can remove the arbitrariness by choosing

\[
n^\mu = \epsilon \frac{dx^\mu}{ds} = \epsilon \frac{p^\mu}{m}, \tag{11}
\]

which identifies the canonical variable \(\tau\) with the proper time of the particle,

\[
\tau = \epsilon s, \quad ds = \epsilon \sqrt{1 - \mathbf{v}^2} dx^0; \tag{12}
\]

\(6\)The expression (6) was generalized to a curved space-time by Ferraro et al. (1987).

\(7\)This is not the case in general when the particle has spin. See, for example, Corben (1961, 1968).
since this choice imposes our privileged system to be a system in which the
particle is at rest.\footnote{Using (11) and the constraint (3) in (4) we have}

\[H(n) = \epsilon m = \epsilon \sqrt{p^\mu p_\mu}, \quad (13) \]

which shows that for particles the conjugate variable of \(\tau \) becomes the rest
mass \(m \).

3 The proper time formalism for classical spinless particles

Recently Hall and Anderson (1995) have proposed a covariant Hamiltonian
formalism for a relativistic particle based on a square root super-Hamiltonian

\[\mathcal{H} = \sqrt{p^\mu p_\mu}, \quad (14) \]

which resembles expression (13) but with the four momentum \(p^\mu \) not re-
stricted to the mass shell (\(\mathcal{H} \) behaves as a positive variable mass). Such
a formalism originally developed by Moses (1969) and Johnson (1969) and
more recently discussed by Evans (1990), Hannibal (1991a), and us (Aparicio
et al. 1995a, b) is a formalism free from constraints in which the invariant
evolution parameter is identified with the proper time. In this framework, in
contrast with (10), we have covariant commutation relations

\[\{x^\mu, p^\nu\} = \eta^{\mu\nu}. \quad (15) \]

However, we must deal with an indefinite mass system,\footnote{Note that \(s \) is the proper time for both particles and antiparticles, since, according to
Stueckelberg, for antiparticles \(dx^0 < 0 \).} in such a way that
the standard notion of definite-mass particles and antiparticles are recovered
specifying the initial conditions.

Hall’s and Anderson’s approach is interesting because, in spite of postu-
lating the form of the Hamiltonian, they derive \(\mathcal{H} \) in a constructive way by
imposing physical requirements.

Their argument flows as follows: Let us assume a four-dimensional Hamilton-
ian formalism whose equations of motion read

\footnote{Notice that (13) is incompatible with the mass-shell constraint (3).}
\[
\frac{dx^\mu}{d\lambda} = \frac{\partial \mathcal{H}}{\partial p_\mu}, \quad \frac{dp_\mu}{d\lambda} = -\frac{\partial \mathcal{H}}{\partial x_\mu},
\]

(16)

where \(\lambda \) is an invariant evolution parameter and \(\mathcal{H} = \mathcal{H}(x, p) \) is the covariant Hamiltonian. Afterwards let us assume that the invariant evolution parameter can be identified with the proper time,

\[\lambda = s.\]

(17)

Such a condition, in principle, allows us univocally to determine the form of the free spinless Hamiltonian. In this case space-time homogeneity imposes that \(\mathcal{H} \) cannot explicitly depend on \(x^\mu \), so \(\mathcal{H} = \mathcal{H}(p^\mu) \), and the condition of being a scalar under Lorentz transformations leads \(\mathcal{H} \) to be an arbitrary function of \(p = \sqrt{\eta_{\mu\nu} p^\mu p^\nu} \), the only scalar that we can form with the available tensors of the theory. Using the equations of motion, the constraint

\[
\eta_{\mu\nu} \frac{dx^\mu}{ds} \frac{dx^\nu}{ds} = 1,
\]

(18)

can be rewritten as

\[
\eta_{\mu\nu} \frac{\partial \mathcal{H}}{\partial p_\mu} \frac{\partial \mathcal{H}}{\partial p_\nu} = 1,
\]

(19)
or, taking into account that \(\frac{\partial \mathcal{H}}{\partial p_\mu} = \frac{\partial \mathcal{H}}{\partial p_\mu} \), as

\[
\left(\frac{d\mathcal{H}}{dp} \right)^2 = 1.
\]

(20)

Finally, the differential equation (20) can be easily integrated to give

\[
\mathcal{H} = \pm p,
\]

(21)

which is the Moses-Johnson Hamiltonian. The four-velocity associated with this Hamiltonian is

\[
\frac{dx^\mu}{ds} = \pm \frac{p^\mu}{p},
\]

(22)

an equation which shows that for positive mass states we have \(\lambda = s \), with the sign specified in equation (12).
Hall and Anderson have also generalized this argument for the case in which the theory admits another four-vector t^μ, giving in this case a Hamiltonian of the type\(^\text{[4]}\)

$$\mathcal{H} = t^\mu p_\mu.$$ \hfill (23)

This \mathcal{H} is admissible provided that the norm of t^μ satisfies

$$t^\mu t_\mu = 1.$$ \hfill (24)

The equation of motion of the four-velocity results

$$\frac{dx^\mu}{d\lambda} = t^\mu,$$ \hfill (25)

so the constraint (18) is equivalent to condition (24). We also remark the analogy of Hamiltonians (4) and (23). In the conclusions of their work Hall and Anderson speculate with the possibility of incorporating spin from such a generalization. At the end of this work we show that this conjecture can be crystalized relaxing the normalization condition (24), by choosing t^μ as the Dirac matrix γ^μ.

4 The Dirac equation in the hyperplane formalism

In this Section we review the hyperplane formalism for a quantum spinning particle described by the Dirac equation,

$$\gamma^\nu i \partial_\nu \psi(x) = m \psi(x)$$ \hfill (26)

(Hammer et al., 1968), with the aim of establishing a connection with the proper time formalism in an analogous way to the one discussed at the end of Section 2. Then our purpose is to translate the Hamiltonian form of equation (26),

$$i \partial_0 \psi(x) = (\alpha \cdot p + \beta m) \psi(x)$$ \hfill (27)

\footnote{Note that the new Hamiltonian is a particular case of the Hamiltonian (23) for $t^\mu = \pm p^\mu / p$.}
(\(p_\mu = i\partial_\mu\)), into an arbitrary hyperplane.

There are two ways for doing it depending on whether we take equation (26) or equation (27) as a starting point. We begin discussing the first possibility, proposed by Czachor (1995), which is more straightforward. Multiplying both members of equation (26) by \(\gamma_\nu\) and taking into account the identity \(\gamma^\mu \gamma^\nu = \eta^{\mu\nu} - i\sigma^{\mu\nu}\), we have (Kálmán and MacCotrina, 1968)

\[
i\partial_\mu \psi(x) = (i\sigma^{\mu\nu} p_\nu + m\gamma^\mu)\psi(x).
\]

(28)

Now contracting equation (28) with \(n^\nu\), we finally obtain (Czachor, 1995)

\[
i \frac{\partial \psi(x)}{\partial \tau} = n_\mu (i\sigma^{\mu\nu} p_\nu + m\gamma^\mu)\psi(x),
\]

(29)

where we have used the chain rule and (3)

\[
\frac{\partial \psi}{\partial \tau} = \frac{\partial \psi}{\partial x^\mu} \frac{\partial x^\mu}{\partial \tau} = n^\mu \partial_\mu \psi.
\]

The original derivation of Hammer et al. (1968) follows a similar argument to the one used for obtaining expression (3). It departs from equation (27) in the privileged reference system and rewrites this equation in a covariant way. Adapted to our notation and conventions, the Hammer-MacDonald-Pursey equation reads:

\[
i \frac{\partial \psi}{\partial \tau} = H(n)\psi,
\]

(30)

\[
H(n) = [\alpha^\mu(n)p_\mu(n) + \beta(n)m],
\]

where \(\alpha^\mu(n)\) and \(\beta(n)\) are the four-vector and scalar matrixes associated with the Dirac matrixes \(\alpha^i\) and \(\beta\) in the privileged frame, namely

\[
\alpha^\mu(n) = i\sigma^{\mu\nu} n_\nu,
\]

\[
\beta(n) = n_\mu \gamma^\mu.
\]

(31)

[This can be easily checked remembering that \((n_\tau)^\mu = (1, 0, 0, 0)\).]

The parameter \(\tau\) is, in general, unrelated to the proper time but, as we have discussed above, classically one can always choose the coordinate system in such a way that \(en_\mu\) can be identified with the velocity of the particle \(\frac{d\pi^\mu}{ds} = \frac{n^\mu}{m}\) \((\pi^\mu = p^\mu - eA^\mu)\). Then \(e\tau\) coincides with \(s\). The same
identification cannot be made at the quantum level in general, because the concept of trajectory is lost. However, in the free case we can argue that this identification makes sense for the eigenstates of the momentum operator

\[p^\mu \psi_k(x) = k^\mu \psi_k(x). \]

(32)

At least in this case, the second member of the second equality in equation (11) is well defined. By choosing \(n^\mu = \epsilon k^\mu / m \), the first term in the second member of equation (29) vanishes, and we finally obtain

\[i \frac{\partial \psi_k(x)}{\partial s} = p^\mu \gamma^\mu \psi_k(x), \quad s = \epsilon \tau. \]

(33)

Equation (33) resembles the Feynman parametrization of the Dirac equation (Feynman 1951). However note that the whole formalism discussed here is restricted to the mass shell \((k^\mu k^\mu = m^2) \), due to \(\psi_k(x) \) satisfies the Dirac equation (26). In the next section we briefly discuss the formalism associated with an equation like (33) out of the mass shell.

5 The proper time parametrization of the Dirac equation

Feynman in 1948, in his dissertation at the Pocono conference (Feynman, 1951; Schweber, 1986; Mehra, 1994), introduced a fifth parameter in the Dirac equation

\[-i \frac{\partial \Psi(x, s)}{\partial s} = \mathcal{H} \Psi(x, s), \]

(34)

\[\mathcal{H} = p^\mu \gamma^\mu, \]

However, note that this is not the case in the presence of interactions because we have not any chance to have a common basis which diagonalizes the four-vector operator \(\pi^\mu \) since \([\pi^\mu, \pi^\nu] = -ie F_{\mu\nu} \).

The difference between the sign of equation (33) and the sign of equation (14) is a consequence of having considered different starting points. While equation (33) is a direct covariant generalization of equation (27) in the hyperplane formalism, equation (34) is motivated by an off-shell proper time formalism, which for the spatial components preserves the standard results (Aparicio et al., 1995a).
to formulate a manifestly covariant (multiple-time) formalism of quantum electrodynamics.

Equation (34) is a Schrödinger-like equation in which the scalar Hamiltonian H plays the role of a mass operator. Notice that we retrieve the Dirac equation as an eigenvalue equation, $H\Psi_m = m\Psi_m$, for stationary states $\Psi_m(x, s) = \Psi_m(x, 0)e^{ims}$. The evolution operator

$$U = e^{ip_\mu\gamma^\mu s},$$

is unitary in the indefinite scalar product

$$\langle \Psi, \Phi \rangle = \int \overline{\Psi}(x)\Phi(x)d^4x.$$ (36)

The “norm” is positive and negative for particle and antiparticle states respectively (Gaioli and Garcia Alvarez, 1993). Moreover, such indefiniteness has its root in the Stückelberg picture, i.e. it can be shown that at the semiclassical level (Gaioli and Garcia Alvarez, 1996)

$$\text{sign} \left[\overline{\Psi}(x, s)\Psi(x, s) \right] = \text{sign} \frac{dx^0}{ds}.$$ (37)

The evolution of any operator A in the Heisenberg picture is given by

$$\frac{dA}{ds} = -i[H, A],$$

which is the proper time derivative originally proposed by Beck (1942).

During the last fifty years, this kind of parametrization and the proper time derivative have been rediscovered or discussed by many authors for different motivations (Nambu, 1950; Enatsu, 1954; Davidon, 1955; Proca, 1954, 1955; Gürgen, 1957; Peres and Rosen, 1960; Szamosi, 1961, 1963; Rafanelli, 1967a, b, 1968, 1970; DeVos and Hilgevoord, 1967; Bunge and Kálnay, 1969; Kálnay and MacCotrina, 1969; Johnson, 1971; Johnson and Chang, 1974; López and Pérez, 1981; Herdergen, 1982; Kubo, 1985; Sherry, 1989; Hannibal, 1991a, 1994; Grossmann and Peres, 1963; Schwinger, 1975; Rumpf, 1979; Barut, 1988; Barut and Thacker, 1985; Barut and Pavsik, 1987; Evans, 1990; Fanchi, 1993a, b; Czachor and Kuna, 1997).

In a previous work (Aparicio et. al., 1995a) we have established the connection between the derivative (38) and other proper time derivatives
We have concluded that this is the most satisfactory approach for incorporating the notion of proper time into the Dirac theory at the quantum level. In other works we have discussed the interpretation of the formalism (Gaioli and Garcia Alvarez, 1995, 1996) and the de Sitter invariance of equation (34) (Garcia Alvarez and Gaioli, 1997a, b). For the sake of completeness, we review in this Section some points necessary to understand the material discussed in the previous ones.

We begin by noticing that in equation (34) the coordinate time x^0 has been elevated to the status of an operator, canonically conjugated to the energy p^0. Their commutation relation and the standard canonical one for the three-position and momentum can be summarized in the covariant commutation relation

$$[[x^\mu, p^\nu] = -i\eta^{\mu \nu}, \quad (39)$$

which is the quantum analogue of equation (15). It is possible because, as in the formalism of Section 3, the mass-shell constraint (5), satisfied by the irreducible representations of the Poincaré group, is no longer valid. In this case, there is a new dynamical group of symmetries that enlarges the Poincaré group, that is, the de Sitter group, which could have been taken as the starting point to obtain the Feynman parametrization (Garcia Alvarez and Gaioli, 1997a, b). Here we have followed the heuristic argument given in Section 4 to obtain the form of a covariant Hamiltonian conjugated to the proper time s on the mass shell and after that, we have extrapolated this form out of the mass shell. We conclude this Section giving an independent argument which shows that the operator $p_\mu \gamma^\mu$ determines the evolution of the system in the proper time s.

Using (38), for $A = x^\mu$, and (39) we obtain the covariant generalization of Breit’s (1928, 1931) formula

$$\frac{dx^\mu}{ds} = \gamma^\mu. \quad (40)$$

Projecting this equation of motion on positive and negative mass states, for eliminating the covariant Zitterbewegung, by means of the projectors

\[^{13}\text{See Fanchi (1993b) for a review of different proposals.}\]
\[\Lambda_{\pm} \equiv \frac{1}{2} \left(1 \pm \frac{\mathcal{H}}{\sqrt{\mathcal{H}^2}} \right), \quad (41) \]
\[\Lambda_{\pm} \mathcal{H} \Lambda_{\pm} = \pm \Lambda_{\pm} \sqrt{p^\mu p_\mu} \Lambda_{\pm}, \quad (42) \]

we have

\[\Lambda_{\pm} \frac{dx^\mu}{ds} \Lambda_{\pm} = \pm \Lambda_{\pm} \sqrt{p^\mu p_\mu} \Lambda_{\pm}. \quad (43) \]

The projected Hamiltonian and four-velocity are analogues of (21) and (22) respectively, which on the positive mass shell leads us to the identification of the evolution parameter with the proper time. Moreover, we see that eliminating the interference between positive and negative states we have the analogue of the proper time constraint (18), namely

\[\Lambda_{\pm} \frac{dx^\mu}{ds} \Lambda_{\pm} \Lambda_{\pm} \frac{dx_\mu}{ds} \Lambda_{\pm} = \Lambda_{\pm}. \quad (44) \]

6 Further remarks and conclusions

Summarizing, the standard canonical formalism has two difficulties:

- \textit{a}) It does not provide a relativistic invariant description of the dynamical evolution of the system,
- \textit{b}) It does not enable us to include simultaneously particles and antiparticles states.

The problem (\textit{a}) is because the coordinate time is not a Lorentz scalar, and (\textit{b}) is due to the fact that particles and antiparticles go forwards and backwards in this time respectively. Then the coordinate time is not able to describe processes involving both species simultaneously. The standard canonical formalism of quantum field theory is a many particle formalism with negative and positive charges for the particles and antiparticles respectively\footnote{This double sign of the charge has its correlate in the double sign of the kinetic energy, \(\left(\frac{dx^0}{ds} = \frac{\sqrt{m^2 + p^2}}{m} \right) \), in the Feynman-Stückelberg picture, while the sign of the energy and the charge is kept unaltered in the standard picture and in the Stückelberg one, respectively.}. Such a picture reinterprets the notion of antiparticle of the
Stückelberg picture by reversing the direction of its space-time trajectory, which is equivalent to conjugate its charge.\footnote{This property, emphasized by Feynman (1948, 1949) at the classical level, is also held in the quantum case (Garcia Alvarez and Gaioli, 1997b).}

The first difficulty \((a)\) is removed by the Fleming formalism, but there is a price to be paid.

\(a')\) It has an arbitrariness in the choice of the privileged system.

We have shown that as soon as we try to remove this arbitrariness, by choosing \(n^\mu = \epsilon \frac{dx^\mu}{d\epsilon}\), we get to the proper time formalism on the mass shell. But in this case difficulty \((b)\) still remains. We have to label the dynamics with the time \(s = \epsilon \tau\) (in this case \(\tau\) is the proper time of the particle) for having the same label for both particles and antiparticles: A solution which naturally arises in the proper time formalism out of the mass shell.

The last discussion suggests us how to remove difficulty \((b)\) at the level of the hyperplane formalism. One could label the dynamics with \(\xi = \epsilon \tau\). In this case the Hamiltonian, corresponding to equation \((4)\) and to the Dirac equation in the hyperplane, reads

\[
H_\xi(n) = \epsilon n^\mu p_\mu, \quad (45)
\]

\[
i \frac{\partial \psi(x)}{\partial \xi} = \epsilon n_\mu (i \sigma^{\mu\nu} p_\nu + m \gamma^\mu) \psi(x). \quad (46)
\]

Note that the new Hamiltonian, as the rest mass, becomes definite positive. The hyperplane formalism corresponding to equation \((45)\) out the mass shell is equivalent to the Hall and Anderson formalism, identifying \(t^\mu\) with \(\epsilon n^\mu\). Moreover, it is interesting to see the analogy between \((45)\) with the covariant Hamiltonian \((34)\), identifying \(\epsilon n^\mu\) (which temporal component is \(n^0 = \epsilon\)) with \(\gamma^\mu\) (notice that the eingenvalues of \(\gamma^0\) are \(\pm 1\)).

Finally, in contrast with the standard case, the scalar product associated with the new Dirac equation \((46)\) is indefinite, i.e.

\[
\langle \psi, \psi \rangle = \int \bar{\psi} \gamma_\mu \psi d\sigma_\xi = \epsilon \int \bar{\psi} \sigma_\mu \psi n^\mu d\sigma_\tau. \quad (47)
\]

As in the case of equation \((36)\), this indefiniteness arises as a consequence of describing particle and antiparticle dynamics with the same label.
To summarize, the relation between the standard canonical picture and
the Feynman-Stückelberg one can be synthesized as follows:

In the first one the mass, the kinetic energy, and the scalar product are
always positive definite. Both particles and antiparticles go forward in co-
ordinate time and proper time, and they are only distinguished by the sign
of the charge. In the second case, both particles and antiparticles have posi-
tive mass, but only the proper time evolution goes forward for both species.
Particles and antiparticles have positive and negative kinetic energy reley-specti-
ately, and according to this they go forwards and backwards in coordinate
time. The charges are the same for both species, which avoids the use of a
many particle formalism in order to describe particle creation and annihila-
tion processes. As a consequence we also have and indefinite scalar product,
something which strikes against our standard notions. Moreover it has been
the historical reason for which Dirac disregarded the Klein-Gordon equation
(Weinberg, 1995). But, like the double sign in the energy, it has its roots in
the indefinite metric of the Minkowski space-time manifold. In other
words, while the second picture seems to be the natural way for adap-
ting the principles of quantum mechanics to the theory of relativity, the first one
looks as a deliberated attempt for keeping our old picture of non-relativistic
quantum mechanics for describing the full relativistic quantum phenomena.

References

[1] Aparicio, J.P., Gaioli, F.H., and Garcia Alvarez, E.T. (1995a). Physical Re-
view A, 51, 96.

[2] Aparicio J.P., Gaioli F.H., and Garcia Alvarez, E.T. (1995b). Physics Letters
A, 200, 233.

[3] Barut, A.O. (1988). Foundations of Physics, 18, 95.

[4] Barut, A.O., and Pavsic, M. (1987). Classical and Quantum Gravity, 4, L41.

16Remember that, at the semiclassical level, such processes can be pictured as a zig-zag
trajectory in space-time (Feynman, 1948, 1949; Garcia Alvarez and Gaioli, 1997).

17Notice that an indefinite metric space also appears in the covariant quantization of
electromagnetic fields (Gupta, 1950; Bleuler, 1950; see also Jauch and Rohrlich, 1976,
Chap. 6 and Cohen Tannoudji et. al., 1989, Chap 5).
[5] Barut, A.O., and Thacker, W. (1985). *Physical Review D*, **31**, 1186.

[6] Beck, G. (1942). *Revista Faculdade de Ciencias de Coimbra*, **10**, 66.

[7] Bleuler, K. (1950). *Helvetica Physica Acta*, **23**, 567.

[8] Breit, G. (1928). *Proceedings of the National Academy of Science USA*, **14**, 553; (1931). *Physical Review*, **37**, 90.

[9] Bunge, M., and Kálnay, A.J. (1969). *Progress of Theoretical Physics*, **42**, 1445.

[10] Cohen-Tannoudji, C., Dupont-Roc, J., and Grynberg, G. (1989). *Photons and Atoms: Introduction to Quantum Electrodynamics*, Wiley, New York.

[11] Corben, H.C. (1961). *Physical Review*, **121**, 1833.

[12] Corben, H.C., (1968). *Classical and Quantum Theories of Spinning Particles*, Holden-Day, San Francisco.

[13] Czachor, M. (1995). Personal communication.

[14] Czachor, M., and Kuna M. (1997). *Off-shell indefinite-metric triple-bracket generalization of the Dirac equation*, in *Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics (Group21)*, H.E. Doebner, W. Scherer, and P. Nattermann eds., World Scientific, Singapore, Vol. 1, p. 451.

[15] Davidon, W.C. (1955). *Physical Review*, **97**, 1131.

[16] DeVos, J.A., and Hilgevoord, J. (1967). *Nuclear Physics B*, **1**, 494.

[17] Dyson, F.J. (1949). *Physical Review*, **75**, 486.

[18] Enatsu, H. (1954). *Progress of Theoretical Physics*, **11**, 125.

[19] Enatsu, H., and Kawaguchi, S. (1975). *Nuovo Cimento A*, **27**, 468.

[20] Evans, A.B. (1990). *Foundations of Physics*, **20**, 309.

[21] Fanchi, J.R. (1993a). *Parametrized Relativistic Quantum Theory*, Kluwer, Boston.
[22] Fanchi, J.R. (1993b). *Foundations of Physics*, **23**, 487.

[23] Ferraro, R., Yastremiz, C., and Castagnino, M. (1987). *Physical Review D*, **35**, 540.

[24] Feynman, R.P. (1948). *Physical Review*, **74**, 939.

[25] Feynman, R.P. (1949). *Physical Review*, **76**, 749.

[26] Feynman, R.P. (1951). *Physical Review*, **84**, 108.

[27] Fleming, G.N. (1965). *Physical Review*, **137B**, 188.

[28] Fleming, G.N. (1966). *Journal of Mathematical Physics*, **7**, 1959.

[29] Gaioli F.H., and Garcia Alvarez, E.T. (1993). *Anales AFA*, **5**, 39.

[30] Gaioli F.H., and Garcia Alvarez, E.T. (1995). *American Journal of Physics*, **63**, 177.

[31] Gaioli, F.H., and Garcia Alvarez, E.T. (1996). *Proper time approach to the localization problem II. The covariant Zitterbewegung*, IAFÉ preprint.

[32] Garcia Alvarez, E.T., and Gaioli, F.H. (1997a). *The role of the de Sitter group in relativistic quantum mechanics*, in *Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics (Group21)*, H.E. Doebner, W. Scherer, and P. Natermann eds., World Scientific, Singapore, Vol. 1, p. 514.

[33] Garcia Alvarez, E.T., and Gaioli, F.H. (1997b). *International Journal of Theoretical Physics*, **36**, 2391.

[34] Grossmann, Z., and Peres, A. (1963). *Physical Review*, **132**, 2346.

[35] Gupta, S.N. (1950). *Proceeding of the Physical Society of London A*, **63**, 681.

[36] Gürsey, F. (1957). *Nuovo Cimento*, **5**, 786.

[37] Hall M.J.W., and Anderson M.R. (1995). *American Journal of Physics*, **63**, 633.
[38] Hammer, C.L., MacDonald S.C., and Pursey P.L. (1968). Physical Review, 171, 1349.

[39] Hannibal, L. (1991). International Journal of Theoretical Physics, 30, 1431.

[40] Hannibal, L. (1991). International Journal of Theoretical Physics, 30, 1445.

[41] Hannibal, L. (1994). Foundations of Physics Letters, 7, 551.

[42] Herdegen, A. (1982). Acta Physica Polonica, B13, 863.

[43] Jauch, J.M., and Röhrlich, F. (1976). The Theory of Photons and Electrons, Springer, Berlin, p. 9.

[44] Johnson, J.E. (1969). Physical Review, 181, 1755.

[45] Johnson, J.E. (1971). Physical Review D, 3, 1735.

[46] Johnson, J. E., and Chang, K.K. (1974). Physical Review D, 10, 2421.

[47] Kálmay, A.J., and MacCotrina, E. (1969). Progress of Theoretical Physics, 42, 1422.

[48] Kubo, R., (1985). Nuovo Cimento A 35, 293.

[49] Lopez C.A., and Perez A.M. (1981). Nuovo Cimento Letters, 30, 173.

[50] Mehra, J. (1994). The Beat of a Different Drum. The Life and Science of Richard Feynman, Clarendron, Oxford, Chap. 15.

[51] Minkowski, H. (1908). Space and Time, reprinted in The principle of Relativity, Dover, New York (1952), p. 75.

[52] Moses, H.E. (1969). Annals of Physics, 52, 444.

[53] Nambu, Y. (1950). Progress of Theoretical Physics, 5, 82.

[54] Peres, A., and Rosen, N. (1960). Nuovo Cimento, 18, 644.

[55] Proca, A. (1954). Le Journal de Physique et le Radium, 15, 65.

[56] Proca, A. (1955). Nuovo Cimento, 2, 962.
[57] Rafanelli, K. (1967a). *Nuovo Cimento A*, **52**, 342.

[58] Rafanelli, K. (1967b) *Journal of Mathematical Physics*, **8**, 1440.

[59] Rafanelli, K. (1968). *Physical Review*, **175**, 1761.

[60] Rafanelli, K. (1970) *Nuovo Cimento A*, **67**, 48.

[61] Rumpf, H. (1979). *General Relativity and Gravitation*, **10**, 509.

[62] Schweber, S.S. (1986). *Review of Modern Physics*, **58**, 449.

[63] Schwinger, J. (1948). *Physical Review*, **10**, 1439.

[64] Schwinger, J. (1975). *Physical Review D*, **12**, 3105.

[65] Sherry, G.C. (1989). *Foundations of Physics*, **19**, 733.

[66] Stückelberg, E.C.G. (1941a). *Helvetic Physica Acta*, **14**, 322.

[67] Stückelberg, E.C.G. (1941b). *Helvetic Physica Acta*, **14**, 558.

[68]stückelberg, E.C.G. (1942). *Helvetic Physica Acta*, **15**, 23.

[69] Szamosi, G. (1961). *Nuovo Cimento*, **20**, 1090.

[70] Szamosi, G. (1963). *Nuovo Cimento*, **29**, 677.

[71] Tomonaga, S. (1946). *Progress of Theoretical Physics*, **1**, 27.

[72] Weinberg, S. *The Quantum Theory of Fields*, Cambridge University Press, Cambridge, p. 7.