Kallmann syndrome in a patient with Weiss-Kruszka syndrome and a de novo deletion in 9q31.2

Anna-Pauliina Iivonen1†, Juho Kärkinen2†, Venkatram Yellapragada1, Virpi Sidoroff3, Henrikki Almusa4, Kirsi Vaaralahti1, Taneli Raivio1,2*

1Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

2New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland

3North Karelia Central Hospital, Joensuu, Finland

4Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland.

Abstract 181 words

Abstract – Disclosure 4,438 words

Running title: 9q31.2 deletion and Kallmann syndrome

† these authors contributed equally to this work

*Corresponding author: Prof. Taneli Raivio, MD, PhD; Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 University of Helsinki, Finland; e-mail: taneli.raivio@helsinki.fi
Abstract

Patients with deletions on chromosome 9q31.2 may exhibit delayed puberty, craniofacial phenotype including cleft lip/palate, and olfactory bulb hypoplasia. We report a patient with congenital HH with anosmia (Kallmann syndrome, KS) and a de novo 2.38 Mb heterozygous deletion in 9q31.2.

The deletion breakpoints (determined with whole genome linked-read sequencing) were in the FKN gene (9:108,331,353) and in a non-coding area (9:110,707,332) (hg19). The deletion encompassed six protein-coding genes (FKN, ZNF462, TAL2, TMEM38B, RAD23B, and KLF4). ZNF462 haploinsufficiency was consistent with the patient’s Weiss-Kruszka syndrome (craniofacial phenotype, developmental delay, and sensorineural hearing loss), but did not explain his KS. In further analyses, he did not carry rare sequence variants in 32 known KS genes in whole exome sequencing and displayed no aberrant splicing of 15 KS genes that were expressed in peripheral blood leukocyte transcriptome. The deletion was 1.8 Mb upstream of a KS candidate gene locus (PALM2AKAP2) but did not suppress its expression.

In conclusion, this is the first report of a patient with Weiss-Kruszka syndrome and KS. We suggest that patients carrying a microdeletion in 9q31.2 should be evaluated for the presence of KS and KS-related features.

Key words: puberty, Kallmann syndrome, hypogonadotropic hypogonadism, 9q31.2, anosmia
Introduction

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease that prevents pubertal development and elicits infertility due to deficient secretion or action of gonadotropin-releasing hormone (GnRH) (1). CHH is called normosmic (nCHH) if the patient has a normal sense of smell, and Kallmann syndrome (KS) if the patient has an absent or deficient ability to smell (1). Both nCHH and KS may manifest with accompanying anomalies, such as bone abnormalities, hearing impairment and ear abnormalities, cleft lip or palate, and anophthalmia and/or coloboma (1). These diseases present wide phenotypic and genetic heterogeneity, as over 60 genes underlying nCHH and KS have been identified to date (1,2). However, several nCHH and KS genes remain to be discovered, since the currently known genes account for only half of all cases (1). nCHH and KS might be inherited in a Mendelian or oligogenic fashion depending on the causative gene; large cohort studies suggest that a significant proportion of the cases are oligogenic (1).

Recently, Weiss and Kruszka reported a series of patients with developmental delay, distinct craniofacial phenotypes, and hearing loss and showed that this syndrome is due to loss-of-function $\textit{ZNF462}$ mutations or microdeletions in the 9q31.2 area (3). We report a patient with a complex phenotype including Weiss-Kruszka syndrome, KS, and a \textit{de novo} deletion on chromosome 9q31.2. The deletion encompassed $\textit{ZNF462}$, \textit{FKTN}, $\textit{TAL2}$, $\textit{TMEM38B}$, $\textit{RAD23B}$, and $\textit{KLF4}$. To date, 25 patients with Weiss-Kruszka syndrome have been reported (3-6), yet delayed puberty, anosmia, or CHH are not among the listed phenotypic features. On the other hand, deletions in the 9q31.2 chromosomal area have been continuously described since the 1970s (for example, in 7-15), at least one of whom had CHH (11), olfactory bulb hypoplasia (14), or delayed puberty in multiple family members (15), and at least four had cleft lip or palate (8,10,13,14) \textit{i.e.} phenotypic features...
reminiscent of KS. However, no clear link between the 9q31.2 deletions and complete KS currently exists. The closest connection comes from disruption or pathogenic variants in the closely located \textit{PALM2AKAP2} locus. Indeed, \textit{PALM2} and \textit{AKAP2}, which can form fusion transcripts, constitute potential KS disease genes, since a female with KS and Graves’ disease carried a missense mutation, which was predicted to be deleterious, in \textit{PALM2} (16), and a male with KS and bone anomalies carried a balanced chromosomal translocation that disrupted \textit{AKAP2} expression (17).

To investigate the putative relationship between the proband’s 9q31.2 deletion and KS, we first defined the exact deletion breakpoints with linked-read whole genome sequencing. Next, we investigated if the deletion was associated with decreased expression of \textit{PALM2AKAP2} and screened this gene in a set of Finnish KS patients. Since these investigations did not support the connection between \textit{PALM2AKAP2} and KS, we performed whole exome and RNA sequencing in the proband and his family members to exclude defects in genes implicated in KS and to reveal potential new candidate genes. Our results, together with the CHH and KS-related phenotypes in previous patients with 9q31.2 deletions, suggest that microdeletions in this chromosomal region underlie KS.
Subjects and methods

Subjects

We investigated a Finnish family whose son (the proband) had been assessed for delayed development and subsequently for the absence of puberty. He was the second child of healthy nonconsanguineous parents (Figure 1), and he had a healthy sister, who had normal timing of puberty since she reached menarche at the age of 12 years. The mother’s menarche age had been 11 years, and the father had no reported history of delayed puberty. Following an uneventful pregnancy, the proband was born at gestation week H42+1. His birth weight was 3240 grams and length 50 cm. He received 4, 6, and 9 Apgar points at the ages of 1, 5, and 10 minutes, respectively. He was noted to have a muscular ventricular septal defect that closed spontaneously. His testes were normally descended. Before going to school, he was diagnosed with attention deficit disorder and mild developmental delay. He had distinctive facial features including ptosis, flat nasal tip, low set ears, and mild bilateral sensorineural hearing loss with normal semicircular canals in MRI. At the age of 6.5 years, he underwent comparative genetic hybridization (Agilent 44K), in which a 2.38 Mb deletion in the 9q31.2 area was detected, yet the precise breakpoints remained undetermined. The deletion was de novo, as his parents tested negative for the presence of the deletion.

At the age of 13.5 years, the proband was referred for the evaluation of delayed puberty and was noted to have a hypoplastic scrotum and testes. He had self-reported anosmia, which had been well appreciated in the family, and absent olfactory bulbs in the MRI. He had no synkinesia, hand or foot deformities, pigmentation defects or missing teeth, nor he reported problems with balance. Abdominal ultrasound revealed two kidneys. His circulating reproductive hormone levels were low (LH 0.1 IU/L, FSH 0.2 IU/L, testosterone 0.7 nM, and inhibin B level was very low, 14 ng/l). At the age of 14 years and
11 months, he was still prepubertal (Tanner stage G1) with pubic hair stage P3. His testes were very small, only one centimeter in length (corresponding to < 1 ml). His reproductive hormone levels were still low; serum LH 0.1 IU/L, inhibit B 23 ng/l, and testosterone 0.4 nM. Based on the very small testicular size, low reproductive hormone and inhibit B levels, anosmia, and the absence of olfactory bulbs in the MRI scan, he was prepubertal, and a diagnosis of Kallmann syndrome was set (1,18). Induction of his puberty with low-dose testosterone was commenced. During the treatment, his testis size remained extremely small (assessed at the age of 16 years and 9 months) in the setting of low gonadotropin and inhibit B (23 ng/l at the age of 15 years and 9 months; 29 ng/l at 16 years 9 months, and 28 ng/l at 17 years 7 months) levels consistent with the KS diagnosis.

As a part of the diagnostic procedure, he underwent BluePrint Genetics® Kallmann Syndrome Panel Plus (version 3), a diagnostic platform that covers the coding regions of the following genes: ANOS1, CHD7, FGF8, FGFR1, GNRHR, KISS1R, PROK2, PROKR2, and TACR3 up to 20 bp of intronic sequence with single nucleotide changes, small indels up to 220 bp, and copy number variations defined as single exon or larger deletions and duplications.

Determination of the deletion breakpoints and presence of structural variants in KS genes with whole genome linked-read sequencing

DNA of all family members was extracted from peripheral blood leukocytes (PBL). The proband and parent RNA was isolated with the QIAamp RNA Blood Mini Kit (QIAGEN) from PBLs. The whole genome linked-read sequencing of the proband was performed at FIMM (Institute for Molecular Medicine Finland) according to 10X Genomics Chromium library preparation (Chromium Genome Reagent Kits v2 RevB; 10x Genomics, Pleasanton, CA, USA). The sample was sequenced with NovaSeq 6000 system (Illumina...
Inc., San Diego, CA, USA) using S4 flow cell and XP workflow. Read length for the paired-end run was 2x151. The reads were aligned to the GRCh37 (hg19) reference genome. The data were analyzed with Longranger 2.2.2 WGS pipeline with default parameters and GATK for variant calling and visualized with Loupe 2.1.1 (both programs by 10X Genomics). The genome was covered with a mean depth of 34.7x, and a mean molecule length of 26.8 kb. Loupe interactive visualization tool 2.1.1 was employed to define the exact 9q31.2 deletion breakpoints. In addition, as MLPA (Multiplex Ligation-dependent Probe Amplification) is available for only a fraction of known KS genes, we verified the absence of genomic structural variants of over 40 bp in size in the coding regions of 32 known KS genes (ANOS1, FGFR1, FGFR8, FGFR17, PROK2, PROKR2, CHD7, NSMF, HS6ST1, WDR11, SEMA3A, SEMA7A, PLXNA1, SOX10, IL17RD, FEZF1, NDNF, TCF12, TUBB3, DCC, SMCHD1, KLB, NTN1, SPRY4, PTCH1, FLRT3, AMH, DUSP6, PLXNA3, NRP1, SPRY2, and NRP2) with Loupe 2.1.1.

Investigation of PALM2AKAP2 expression with RT-qPCR

The RNA extracted from the proband and his parents were converted into cDNA using the iScript cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s instructions in a regular thermocycler with 1 µg of total RNA. The synthesized cDNAs were used as templates to assess the mRNA expression with a ready-to-use qPCR mix (Solis Biodyne) in a quantitative PCR machine (Roche LC480 II). The expression levels of PALM2AKAP2 were normalized to GAPDH. The relative expression levels were standardized against a healthy unrelated control sample, which was given an arbitrary value of 1.0. The PCR conditions and primers are available on request.

Sanger sequencing of PALM2AKAP2 in Finnish Kallmann syndrome patients
We examined a set of 16 Finnish KS patients (15 men, 1 woman) without mutations in ANOS1, FGFR1, FGF8, PROK2, PROKR2, CHD7, and WDR11 (19, 20). The exons and exon-intron boundaries of PALM2 (NC_000009.11, NM_053016.6, GRCh37) and AKAP2 (NC_000009.11, NM_001198656.1, GRCh37) were amplified with PCR from the genomic DNA. The PCR conditions and primers are available upon request. The PCR products were purified with ExoProStar treatment (GE Healthcare Life Sciences, Chicago, IL, USA), and sequenced from both directions using the ABI BigDye Terminator Cycle Sequencing Kit (v3.1) and ABI Prism 3730xl DNA Analyzer automated sequencer (Applied Biosystems, Foster City, CA, USA). The DNA sequences were aligned and read with Sequencher® 4.9 software (Gene Codes Corporation, AnnArbor, MI, USA). As one of the patients harbored a variant NC_000009.11:g.112918586C>T, in intron 2 of AKAP2, his RNA was converted into cDNA by using the SuperScript® III First-Strand Synthesis System for RT-PCR kit (Invitrogen by Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Part of AKAP2 transcript was PCR-amplified with cDNA-specific primers and subsequently sequenced. Effect of the AKAP2 variant NC_000009.11:g.112918586C>T was also predicted with Human Splicing Finder (https://www.genomnis.com/access-hsf) (21), MutationTaster (http://www.mutationtaster.org/) (22), NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/) (23, 24), and BDGP NNSPLICE (https://www.fruitfly.org/seq_tools/splice.html) (25), and its clinical interpretation was performed with InterVar (http://wintervar.wglab.org/) (26).

Whole exome sequencing

The whole exome sequencing (WES) of the proband’s family was performed with Illumina Novaseq S2 PE100 technology. First, the adapter was trimmed from the reads, as well as any low-quality nucleotides from the 5’ or 3’ ends of the read, removing pairs with less than
36 bp. The reads were aligned to the GRCh37 (hg19) reference genome with the BWA (Burrows-Wheeler Aligner). Non-unique read pairs and non-unique single reads were removed and GATK Base Recalibrator was used to clean the alignment. Any potential PCR duplicates were removed using Picard MarkDuplicates, and GATK IndelRealigner was used for indel sites. The mpileup from the SAMTOOLS package was used for variant calling (27). The sequencing yielded a mean target coverage of 222x and 98% of 20x coverage.

Data analysis

First, we verified that the coding exons of 32 KS-associated genes (ANOS1, FGFR1, FGF8, FGF17, PROK2, PROKR2, CHD7, NSMF, HS6ST1, WDR11, SEMA3A, SEMA7A, PLXNA1, SOX10, IL17RD, FEZF1, NDNF, TCF12, TUBB3, DCC, SMCHD1, KLB, NTN1, SPRY4, PTCH1, FLRT3, AMH, DUSP6, PLXNA3, NRP1, SPRY2, and NRP2) were covered in WES by using the BasePlayer analysis and visualization tool (28). Subsequently, the proband’s VCP file, provided by FIMM (27), was annotated using ANNOVAR (https://doc-openbio.readthedocs.io/projects/annovar/en/latest/). We defined that a potentially causative variant should be in the consensus splice-site or it should be nonsynonymous and not classified as benign by any of the ten applied in silico tools (SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, PROVEAN, MetaSVM, MetaLR_pred, M-CAP, and fathmm-MKL). Additionally, a potentially causative variant(s) should (i) occur only in the proband (de novo) (and have a minor allele frequency MAF <0.1%); (ii) be biallelic (autosomal recessive inheritance) (MAF <2%); (iii) be monoallelic and inherited from one parent and be absent in the sister (autosomal dominant) (MAF <0.1%); or (iv) be monoallelic and inherited in the X chromosome (X-linked recessive) (MAF <2%). The frequency criteria were applied for all ethnic subpopulation frequencies in gnomAD, ExAC,
1000 Genomes, and Exome Variant Server (provided in the ANNOVAR annotation) and in dbSNP (https://www.ncbi.nlm.nih.gov/snp/) (29) (manually verified). Finally, to be accepted for further analyses, a potentially causative variant in WES had to be present in the RNA sequencing data and/or the linked-read WGS data. We confirmed the genotype and segregation of the two such variants in all family members with Sanger sequencing. The primers were designed for sequences around candidate variants in RIMBP3C (NC_000022.10, NM_001128633.2) and SARS1 (NC_000001.10, NM_006513.4) (GRCh37). The PCR conditions and primers are available upon request.

RNA sequencing

The quality and integrity of the RNA was assessed with high sensitivity D5000 Screen Tape® System (Agilent). Following the quality control, RNAsSeq libraries were prepared using NEBNext Ultra II Directional Poly (A) Capture Kit. RNA sequencing was carried out as paired-end sequencing with Illumina NextSeq 500 Mid Output System. RNA quality-testing, library preparation, and sequencing were performed in the Functional Genomics Unit (FUGU) at the University of Helsinki, Finland.

RNA-sequencing data analysis

Raw adaptor-trimmed FASTQ files were subjected to quality assessment with the FASTQC tool (Simon Andrews, Babraham Bioinformatics). Based on the overall data quality and the individual reads, additional trimming was unnecessary. The sequences were aligned to the GRCh37 human genome version with the STAR package (30). Splicing events of known KS genes were visually verified with the Sashimi plot feature of the MISO framework (31) in the IGV browser from Broad Institute (32).
Statistics and the probability estimate for the occurrence of a 9q31.2 microdeletion and KS

The relative expression values of PALM2AKAP2 in the PBLs of the proband (n=4) and his parents (n=4) were compared with one way ANOVA, and followed by Tukey’s HSD post-hoc analysis. P-value <0.05 was accepted to indicate statistical significance. To evaluate the role of the 9q31.2 microdeletion in our proband, we utilized the CNV data obtained from the UK Biobank (33-35), in which 4 deletions, 1 Mb or larger in size, in a set of 472,734 people, overlapped the 24 Mb region, which is depicted with a rectangle on chromosome 9 in Figure 2 (chr9:102,253,143 – 126,253,089, GRCh37). Thus, the estimated probability for our proband not to harbor a causal mutation in known KS genes and to carry such a microdeletion by chance would be very small (1:2 x 4:472,734 = 4.23e-06). Moreover, at the population level, the probability to encounter a Finnish male with KS (incidence 1:30,000) (19) without a causative mutation in KS genes, who would carry such a microdeletion would be even several magnitudes smaller (i.e. 1:30,000 x 1:2 x 4:472,734 = 1.41e-10).

Ethics

Informed consents were obtained from all patients, and in the case of a minor/children, also a parent or guardian gave the consent. The study was approved by the Ethics Committee of the Hospital District of Helsinki and Uusimaa and was conducted in accordance with the Declaration of Helsinki.
Results

We investigated the genetic and phenotypic features of a patient with KS and Weiss-Kruszka syndrome who carried a 2.38 Mb deletion on chromosome 9q31.2. A diagnostic targeted sequencing panel for KS that covered the coding exons of genes ANOS1, CHD7, FGF8, FGFR1, GNRHR, KISS1R, PROK2, PROKR2, and TACR3 up to 20 bp intronic sequence and structural variants, was negative for likely pathogenic variants.

Determination of the 9q31.2 deletion breakpoints

To define the exact deletion breakpoints, we performed a whole genome linked-read sequencing of the proband’s DNA. He carried a 2.38 Mb deletion on chromosome 9:108,331,353-110,707,332, excluding PALM2AKAP2 locus that is located at 9:112,542,589-112,934,792 (hg19) (Fig. 2). Instead, the deletion disrupted FKTN, which contains 10 exons, at 9:108,331,353 in the first intron, and no other known gene at 9:110,707,332. The deletion encompassed six protein-coding genes (FKTN, TAL2, TMEM38B, ZNF462, RAD23B, and KLF4), none of which has been implicated in KS.

PALM2AKAP2 expression in peripheral blood leukocytes

Given that PALM2AKAP2 has been implicated in KS and our proband’s deletion laid approximately 1.8 Mb upstream of the PALM2AKAP2 locus (Fig. 2), we investigated whether the expression of PALM2AKAP2 was altered in peripheral blood leukocyte RNA. However, the proband’s PALM2AKAP2 transcript was expressed at a higher level than in the father (Figure 3), indicating that the deletion does not suppress PALM2AKAP2 expression.

Sanger sequencing of PALM2 and AKAP2 in 16 Finnish KS patients
To further probe the possible role of PALM2AKAP2 in KS, we screened the coding exons and exon-intron boundaries of both PALM2 and AKAP2 in 16 Finnish KS patients without mutations in established KS-causing genes (19, 20). In the intron 2 of AKAP2, we found one heterozygous variant, NC_000009.11:g.112918586C>T (rs777796314), with a frequency of 0.00004267 in Finns (gnomAD, https://gnomad.broadinstitute.org/) (36). This variant was classified as likely benign according to the 2015 ACMG/AMP guidelines (InterVar, (http://wintervar.wglab.org/)) (26). The carrier was diagnosed with KS at the age of 14 years. He had sensorineural hearing loss in the right ear, micropenis, normal MRI, and alopecia at the age of five. He had no family history of delayed puberty. Given that two out of four in silico tools predicted the variant to affect the acceptor site of exon 3 (MutationTaster: disease-causing; NetGene2: alteration of acceptor sites), we confirmed in vitro that the splicing was normal (data not shown). All other encountered PALM2 and AKAP2 variants had MAFs above 1% among gnomAD Finns.

Whole exome sequencing, RNA sequencing, splicing analysis, and identification of potentially causative variants

Given that the targeted KS gene panel, the deletion in 9q31.2 per se, or the adjacent candidate gene PALM2AKAP2 provided no equivocal answer to our question of whether this deletion underlies KS in the proband, we sequenced the whole exome in the proband, his healthy parents and sister. First, no rare sequence variants were found in the 32 genes implicated in KS (IL17RD, SPRY2, DUSP6, CHD7, FGFR1, SOX10, ANOS1, FGF8, FGF17, PROK2, PROKR2, NSMF, HS6ST1, WDR11, SEMA3A, SEMA7A, PLXNA1, FEZF1, NDNF, TCF12, TUBB3, DCC, SMCHD1, KLB, NTN1, SPRY4, PTCH1, FLRT3, AMH, PLXNA3, NRP1, and NRP2). Second, we investigated in the linked-read WGS data whether the proband carried genomic structural variants of over 40 bp in the coding
regions of these 32 KS genes. However, none of the genes were disrupted by structural variants. As WES may not detect non-coding variants that affect splicing, we investigated the splicing events of KS genes in the proband and his parents with RNA sequencing and subsequent visualization of transcripts. Overall, 15 KS genes, *FGFR1, PROK2, CHD7, NSMF, HS6ST1, WDR11, SEMA3A, SEMA7A, PLXNA1, TCF12, SMCHD1, PTCH1,* and *DUSP6,* were expressed in PBLs, and none of them displayed aberrant splicing events (*data not shown*). Finally, we investigated whether the WES data would contain new potential KS candidate gene mutations. Two rare variants of uncertain significance emerged, one in *RIMBP3C* and the other in *SARS1.* An overview of the variants is shown in Supplementary Table 1 and Supplementary Material.

Overlapping genetic region with our proband and the previously reported patient with CHH

Our proband’s deletion (9:108,331,353-110,707,332) and the deletion of the previously described patient with CHH (9:110,672,051-120,997,503) (11) overlapped in 9:110,672,051-110,707,332 (hg19). This region contained ribosomal pseudogene RNA5SP293. According to the UCSC Genome Browser (https://genome.ucsc.edu/), the following transcription factors were determined to have binding sites in this overlapping region: *GATA3, MYC, JUND, CEBPB, TEAD4, GATA2, MAFF, USF2, USF1, BHLHE40, ZNF143, ATF3,* and *SIX5.*

Discussion

We report a patient with KS, developmental delay, ptosis, ventral septal defect, craniofacial phenotype, and mild bilateral sensorineural hearing loss without coding region mutations in the established KS genes, which was assessed by using a targeted sequencing panel, linked-read whole genome sequencing, RNA sequencing, and WES.
Instead, he carried a heterozygous de novo microdeletion in 9q31.2, which we estimated to be extremely rare (AF below 1/200 000). The deletion encompassed loci of six protein-coding genes (FKTN, TAL2, TMEM38B, ZNF462, RAD23B, and KLF4).

The deletion was 2.38 Mb in size and the 5’ breakpoint broke FKTN in the first intron. However, to the best of our knowledge, FKTN is not implicated in KS or CHH (37, 38). Haploinsufficiency of ZNF462 is associated with Weiss-Kruszka syndrome (3), the most typical symptoms of which include developmental delay, ptosis, metopic ridge, facial asymmetry, corpus callosum dysgenesis, down-slanting palpebral fissures, arched eyebrows, epicanthal folds, short upturned nose with a bulbous tip, marked cupid bow/wide philtrum, low set ears, hypertelorism, and hearing loss (3,5). Our proband thus clearly exhibited Weiss-Kruszka syndrome, and several putative links could connect ZNF462 and the reproductive system. For instance, fibroblast growth factor 8, required for GnRH neuron ontogeny, also induces Znf462 expression in the chick pre-placodal region, and hypothalamic expression of ZNF462 decreases at puberty in non-human primates (39, 40). On the other hand, mutations in ZNF462 have not been reported to cause delayed puberty or affect the sense of smell (3-6), suggesting that ZNF462 haploinsufficiency alone is not sufficient to explain the KS phenotype. In humans, the strongest GWAS signals that associated with the variation in the age at menarche were at 9q31.2 (rs2090409), the nearest genes to this SNP being TMEM38B, FKTN, TAL2, and ZNF462 (41), as well as SNPs rs12684013, rs4452860, and rs7028916 (42) in the intergenic regions in 9q31.2 (menarche, age at, quantitative trait locus 3, i.e., MENAQ3 locus; MIM 612883), which were all deleted in our proband. In a recent GWAS study, TMEM38B was associated with puberty timing in both males and females (43). Moreover, despite the putative association of the 9q31.2 region to age at menarche and puberty timing in GWAS studies, mutations in the genes deleted in our proband have not been implicated in CHH or KS.
KS-related phenotypes in our proband and representative previously reported patients with 9q31.2 deletions are shown in Fig. 2 and Supplementary Table 2. There are two previous deletions that overlap with the one encountered in our proband, and are associated with delayed puberty or CHH (11, 15). Ramineni et al. reported a family, in which a deletion in 9q31.2 segregated with delayed puberty. The overlapping region between their deletion and that of ours encompassed only one protein-coding gene, KLF4. KLF4 is coexpressed with SOX10, a known KS gene, in the chick neural crest (44), and KLF4 interacts with β-catenin and inhibits Wnt signaling (45) by preventing β-catenin binding to TCF7L2 (46), a transcription factor implicated in the development of the hypothalamus and pituitary (47, 48). The deletion in our patient and in the family reported by Ramineni et al. also contained the SNP rs139300691, which is associated with the sense of smell (49). The second informative patient, originally classified to have delayed puberty by Xu et al., had the onset of puberty at the age of 18 years, and his Tanner stage was G2 at the age of twenty in the setting of normal gonadotropin levels (11). Thus, he fulfilled the criteria of CHH (1). The ~35 kb region shared by our proband and Xu’s patient (11), contained only a ribosomal pseudogene RNA5SP293 (Fig. 2). This region also contains binding sites for ZNF143 (a transcription factor which interacts with a puberty-related factor, LIN28B, in neuroblastoma cells (50)), JUND (JunD binds to GnRHR activator protein-1 (AP-1) site in mouse gonadotrope-derived αT3-1 cells (51), and is expressed in the mouse olfactory bulb (52)), GATA2 and GATA3 (crucial for neurogenesis and expressed in the olfactory bulbs (53)); and CEBPB (Cebpb in rats is expressed in the olfactory bulbs and olfactory ensheathing cells (54), and is known to be an upstream transcriptional regulator of Gnrh in mice (55)). However, the mechanism by which a loss of transcription binding site(s) alone would cause a disease is difficult to decipher, especially as the closest KS candidate gene locus (PALM2AKAP2) is relatively far away, 1.8 Mb,
downstream from the 3’ breakpoint of the deletion. This locus in our patient with KS was, however, spared and expressed *PALM2AKAP2* efficiently (Fig. 3). Moreover, screening a set of Finnish KS patients revealed no pathogenic variants in *PALM2AKAP2*. Of note, the cases displayed in Fig. 2 showed wide phenotypic variability and we were able to verify KS-related features in only a proportion of them (see Supplementary Table 2 and Supplementary Material for details).

Taken together, variation in the chromosomal region 9q31.2 at the population level associates with the variation in puberty timing and the sense of smell. Previous rare patients with deletions including 9q31.2 have exhibited CHH and KS-related phenotypes such as delayed puberty, an olfactory bulb defect, and cleft lip and/or palate. We describe the first patient with an extremely rare *de novo* deletion in 9q31.2 and KS. *ZNF462* haploinsufficiency was consistent with the patient’s Weiss-Kruszka syndrome but did not explain his KS. In further analyses, he did not carry rare sequence variants in known KS genes. Our results suggest that patients carrying a microdeletion in 9q31.2 should be evaluated for the presence of KS and KS-related features, and conversely, that KS patients with features of Weiss-Kruszka syndrome should be evaluated for the presence of a heterozygous 9q31.2 microdeletion.
Acknowledgements

Sequencing was performed by the Sequencing laboratory of the Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. The authors would wish to thank Annika Tarkkanen, MSc, for the review of the English language.

Author’s roles

T.R., V.S., K.V. collected the study subjects and the clinical data, and phenotyped the patients. J.K., A-I.P., V.Y., H.A., K.V. and T.R. analyzed the next generation sequencing data, H.A. carried out ANNOVAR annotation, A-I.P. and K.V. performed Sanger sequencing data analyses. V.Y. performed PALM2AKAP2 RT-qPCR analyses; A.-I.P., J.K., V.Y., K.V. and T.R. wrote the manuscript, and all authors critically revised the manuscript. T.R. coordinated and managed the study.

Disclosure

This work was supported by the Academy of Finland, Foundation for Pediatric Research, Sigrid-Juselius Foundation, Novo Nordisk Foundation, Emil Aaltonen Foundation, University of Helsinki, Helsinki University Hospital, and Päivikki and Sakari Sohlberg foundation. Taneli Raivio is on the Editorial Board of European Journal of Endocrinology. The other authors have nothing to disclose.
Reference list

1. Young J, Xu C, Papadakis G, Acierno JS, Maione L, Hietamäki J, Raivio T, Pitteloud N. Clinical management of congenital hypogonadotropic hypogonadism. *Endocr Rev* 2019 **40** 669-710.

2. Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. *Hum Genet* 2020 doi: 10.1007/s00439-020-02147-1.

3. Weiss K, Wigby K, Fannemel M, Henderson LB, Beck N, Ghali N, Study DDD, Anderlid BM, Lundin J, Hamosh A et al. Haploinsufficiency of *ZNF462* is associated with craniofacial anomalies, corpus callosum dysgenesis, ptosis, and developmental delay. *Eur J Hum Genet* 2017 **25** 946-951.

4. Cosemans N, Vandenhove L, Maljaars J, Van Esch H, Devriendt K, Baldwin A, Fryns JP, Noens I, Peeters H. *ZNF462* and *KLF12* are disrupted by a *de novo* translocation in a patient with syndromic intellectual disability and autism spectrum disorder. *Eur J Med Genet* 2018 **61** 376-383.

5. Kruszka P, Hu T, Hong S, Signer R, Cogné B, Isidor B, Mazzola SE, Giltay JC, van Gassen KLI, England EM et al. Phenotype delineation of *ZNF462* related syndrome. *Am J Med Genet A* 2019 **179** 2075-2082.

6. González-Tarancón R, Salvador-Rupérez E, Miramar Gallart MD, Barroso E, Díez García-Prieto I, Pérez Delgado R, López Pisón J, García Jiménez MC. A novel mutation in the ZNF462 gene c.3306dup; p.(Gln1103Thrfs*10) is associated to Weiss-Kruszka syndrome. A case report. Acta Clin Belg. 2020 Jun 16:1-4. doi: 10.1080/17843286.2020.1780391. Online ahead of print. PMID: 32543299

7. Turleau C, de Grouchy J, Chabrolle JP. Intercalary deletions of 9q. *Ann Genet* 1978 **21** 234-236.
8. Farrell SA, Siegel-Bartelt J, Teshima I. Patients with deletions of 9q22q34 do not define a syndrome: three case reports and a literature review. *Clin Genet* 1991 **40** 207-214.

9. Kulharya AS, Flannery DB, Norris K, Lovell C, Levy B, Velagaleti GV. Fine mapping of breakpoints in two unrelated patients with rare overlapping interstitial deletions of 9q with mild dysmorphic features. *Am J Med Genet A* 2008 **164A** 2234-2241.

10. Chien SC, Li YC, Li LH, Wu JY, Hsu PC, Shi SL, Tsai FJ, Lin CC. A new familial insertion, ins(18;9)(q12.2;q33.1q31.1) with a 9q31.1-9q33.1 deletion in a girl with a cleft lip and palate. *Am J Med Genet A* 2010 **152A** 1862-1867.

11. Xu M, Zhou H, Yong J, Cong P, Li C, Yu Y, Qi M. A Chinese patient with KBG syndrome and a 9q31.2-33.1 microdeletion. *Eur J Med Genet* 2013 **56** 245-250.

12. Mucciolo M, Magini P, Marozza A, Mongelli P, Mencarelli MA, Hayek G, Tavalazzi F, Mari F, Seri M, Renieri A et al. 9q31.1q31.3 deletion in two patients with similar clinical features: a newly recognized microdeletion syndrome? *Am J Med Genet A* 2014 **164A** 685-690.

13. Cao R, Pu T, Fang S, Long F, Xie J, Xu Y, Chen S, Sun K, Xu R. Patients carrying 9q31.1-q32 deletion share common features with Cornelia de Lange Syndrome. *Cell Physiol Biochem* 2015 **35** 270-280.

14. Dugan SL, Panza E, Openshaw A, Botto LD, Camacho JA, Toydemir RM. Delineation of the 9q31 deletion syndrome: Genomic microarray characterization of two patients with overlapping deletions. *Am J Med Genet A* 2018 **176** 2901-2906.

15. Ramineni AK, Burgess T, Cruickshanks P, Coman D. A novel familial 9q31.2q32 microdeletion: Muscle cramping, somnolence, fatigue, sensorineural hearing loss, pubertal delay, and short stature. *Clin Case Rep* 2019 **7** 304-310.
16. Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, Chorich LP, Sullivan ME, Choi JH, Cameron RS et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. *Mol Cell Endocrinol* 2016 **437** 86-89

17. Panza E, Gimelli G, Passalacqua M, Cohen A, Gimelli S, Giglio S, Ghezzi C, Sparatore B, Heye B, Zuffardi O et al. The breakpoint identified in a balanced de novo translocation t(7;9)(p14.1;q31.3) disrupts the A-kinase (PRKA) anchor protein 2 gene (AKAP2) on chromosome 9 in a patient with Kallmann syndrome and bone anomalies. *Int J Mol Med* 2007 **19** 429-435.

18. Varimo T, Miettinen PJ, Känsäkoski J, Raivio T, Hero M. Congenital hypogonadotropic hypogonadism, functional hypogonadotropism or constitutional delay of growth and puberty? An analysis of a large patient series from a single tertiary center. *Hum Reprod* 2017 **32** 147-153.

19. Laitinen EM, Vaaralahti K, Tommiska J, Eklund E, Tervaniemi M, Valanne L, Raivio T. Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. *Orphanet J Rare Dis* 2011 **6** 41.

20. Laitinen EM, Tommiska J, Sane T, Vaaralahti K, Toppari J, Raivio T. Reversible congenital hypogonadotropic hypogonadism in patients with CHD7, FGFR1 or GNRHR mutations. *PLoS One* 2012 **7** e39450.

21. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres, Beroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. *Nucleic Acids Res* 2009 **37** e67.

22. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. *Nature Methods* 2014 **11** 361-362.
23. Hebsgaard SM, Korning PG, N. Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana DNA by combining local and global sequence information. *Nucleic Acids Res* 1996 **24** 3439-3452.

24. Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. *J Mol Biol* 1991 **220** 49-65.

25. Reese MG, Eeckman FH, Kulp D, Haussler D. Improved Splice Site Detection in Genie. *J Comp Biol* 1997 **4** 311-323.

26. Quan Li and Kai Wang. InterVar: Clinical interpretation of genetic variants by ACMG-AMP 2015 guideline. *Am J Hum Genet* 2017 **100** 1-14.

27. Sulonen AM, Ellonen P, Almusa H, Lepistö M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C et al. Comparison of solution-based exome capture methods for next generation sequencing. *Genome Biol* 2011 **12** R94.

28. Katainen R, Donner I, Cajuso T, Kaasinen E, Palin K, Mäkinen V, Aaltonen LA, Pitkänen E. Discovery of potential causative mutations in human coding and noncoding genome with the interactive software BasePlayer. *Nat Protoc* 2018 **13** 2580-2600.

29. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. *Genome Res* 1999 **8** 677-679.

30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 2013 **29** 15-21.

31. Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdóttir H, Robinson JT, Mesirov JP, Airoldi EM, Burge CB. Quantitative visualization of alternative exon expression from RNA-seq data. *Bioinformatics* 2015 **31** 2400-2402.
32. Thorvalsdóttir H, James T. Robinson, Jill P. Mesirov. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* 2013 **14** 178-192.

33. Aguirre M, Rivas MA, Priest J. Phenome-wide Burden of Copy-Number Variation in the UK Biobank. *Am J Hum Genet* 2019 **105** 373-383.

34. Global Biobank Engine, Stanford, CA (URL: http://gbe.stanford.edu) [3rd (March, 2021) accessed].

35. McInnes G, Tanigawa Y, DeBoever C, Lavertu A, Olivieri JE, Aguirre M, Rivas MA. Global Biobank Engine: enabling genotype-phenotype browsing for biobank summary statistics. *Bioinformatics* 2019

36. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP et al. The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature* 2020 **581** 434-443.

37. Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. *J Neuromuscul Dis* 2017 **4** 259-267.

38. Murakami T, Hayashi YK, Noguchi S, Ogawa M, Nonaka I, Tanabe Y, Ogino M, Takada F, Eriguchi M, Kotooka N et al. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. *Ann Neurol* 2006 **60** 597-602.

39. Hintze M, Prajapati RS, Tambalo M, Christophorou NAD, Anwar M, Grocott T, Streit A. Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction. *Development* 2017 **144** 2810-823.

40. Lomniczi A, Wright H, Castellano JM, Matagne V, Toro CA, Ramaswamy S, Plant TM, Ojeda SR. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. *Nat Commun* 2015 **6** 10195.
41. Perry JR, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. *Nat Genet* 2009 **41** 648-650.

42. He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. *Nat Genet* 2009 **41** 724-728.

43. Hollis B, Day FR, Busch AS, Thompson DJ, Soares ALG, Timmers PRHJ, Kwong A, Easton DF, Joshi PK, Timpson NJ; PRACTICAL Consortium; 23andMe Research Team, Ong KK, Perry JRB. Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan. *Nat Commun* 2020 **11** 1536.

44. Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by Spatial Genomic Analysis. *Nat Commun* 2017 **8** 1830.

45. Zhang W, Chen X, Kato Y, Evans PM, Yuan S, Yang J, Rychahou PG, Yang VW, He X, Evers BM et al. Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. *Mol Cell Biol* 2006 **26** 2055-2064.

46. Sellak H, Wu S, Lincoln TM. KLF4 and SOX9 transcription factors antagonize β-catenin and inhibit TCF-activity in cancer cells. *Biochim Biophys Acta* 2012 **1823** 1666-1675.

47. Chen C, Lu Y, Liu J, Li L, Zhao N, Lin B. Genome-wide ChIP-seq analysis of TCF4 binding regions in colorectal cancer cells. *Int J Clin Exp Med* 2014 **7** 4253-4259.
48. Brinkmeier ML, Potok MA, Davis SW, Camper SA. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. *Dev Biol* 2007 311 396-407.

49. Dong J,Wyss A, Yang J, Price TR, Nicolas A, Nalls M, Tranah G, Franceschini N, Xu Z, Schulte C et al. Genome-Wide association analysis of the sense of smell in U.S. older adults: Identification of novel risk loci in African-Americans and European-Americans. *Mol Neurobiol* 2017 54 8021-8032.

50. Tao T, Shi H, Mariani L, Abraham BJ, Durbin AD, Zimmerman MW, Powers JT, Missios P, Ross KN, Perez-Atayde AR et al. LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promoters. *Proc Natl Acad Sci U S A* 2020 117 16516-16526.

51. Ellsworth BS, White BR, Burns AT, Cherrington BD, Otis AM, Clay CM. c-Jun N-terminal kinase activation of activator protein-1 underlies homologous regulation of the gonadotropin-releasing hormone receptor gene in αT3-1 cells. *Endocrinology* 2003 144 839-849.

52. Liu N, Cigola E, Tinti C, Jin BK, Conti B, Volpe BT, Baker H. Unique regulation of immediate early gene and tyrosine hydroxylase expression in the odor-deprived mouse olfactory bulb. *J Biol Chem* 1999 274 3042-3047.

53. Nardelli J, Thiesson D, Fujiwara Y, Tsai FY, Orkin SH. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. *Dev Biol* 1999 210 305-321.

54. Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. *Glia* 2005 51 132-147.
55. Messina A, Langlet F, Chachlaki K, Roa J, Rasika S, Jouy N, Gallet S, Gaytan F, Parkash J, Tena-Sempere M, Giacobini P, Prevot V. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. *Nat Neurosci* 2016 **19** 835-844.

Figure legends

Figure 1. Pedigree of the family, in which the proband (arrow) carried a heterozygous de novo 2.38 Mb deletion in chromosome 9q31.2 that encompassed *FKTN, TAL2, TMEM38B, ZNF462, RAD23B*, and *KLF4*. The proband had Weiss-Kruszka syndrome due to ZNF462 haploinsufficiency with ptosis, flat nasal tip, low set ears, mild developmental delay, and mild bilateral sensorineural hearing loss, and Kallmann syndrome (congenital hypogonadotropic hypogonadism, anosmia, and the absence of olfactory bulbs).

Figure 2. Schematic representation of the proband’s 9q31.2 deletion in relation to other informative patients with deletions encompassing this area. The dashed vertical lines indicate our proband’s 2.38 Mb deletion (chr9:108,331,353-110,707,332) (hg19), which encompassed six protein-coding genes (*FKTN, TAL2, TMEM38B, ZNF462, RAD23B*, and *KLF4*). Rectangles indicate relative locations and sizes of deletions in various patients, their colors and patterns highlight important Kallmann syndrome-related phenotypes and the vertical line indicates a Kallmann syndrome candidate gene locus (*PALM2AKAP2*). A summary of the patients is presented in Supplementary Table 2. The figure is modified from (14). The deletion coordinates are presented as GRCh37 (hg19). For Kulharya et al. (patient 2), Chien et al., and Ramineni et al. patients the UCSC genome coordinate conversion tool https://genome.ucsc.edu/cgi-bin/hgLiftOver was employed to convert hg18 coordinates to hg19.
Figure 3. Relative expression of *PALM2AKAP2* in the peripheral blood leukocytes of the proband with Kallmann syndrome, Weiss-Kruszka syndrome, and a heterozygous *de novo* deletion in 9q31.2, and his healthy parents. The bars represent four replicates of *PALM2AKAP2* expression measured by qPCR, normalized by a housekeeping gene (*GAPDH*), and adjusted against an unrelated control sample. *, P<0.05 (ANOVA followed by Tukey HSD post-hoc analysis).
Figure 1. Pedigree of the family, in which the proband (arrow) carried a heterozygous de novo 2.38 Mb deletion in chromosome 9q31.2 that encompassed FKTN, TAL2, TMEM38B, ZNF462, RAD23B, and KLF4. The proband had Weiss-Kruszka syndrome due to ZNF462 haploinsufficiency with ptosis, flat nasal tip, low set ears, mild developmental delay, and mild bilateral sensorineural hearing loss, and Kallmann syndrome (congenital hypogonadotropic hypogonadism, anosmia, and the absence of olfactory bulbs).
Figure 2. Schematic representation of the proband’s 9q31.2 deletion in relation to other informative patients with deletions encompassing this area. The dashed vertical lines indicate our proband’s 2.38 Mb deletion (chr9:108,331,353-110,707,332) (hg19), which encompassed six protein-coding genes (FKTN, TAL2, TMEM38B, ZNF462, RAD23B, and KLF4). Rectangles indicate relative locations and sizes of deletions in various patients, and their color and patterns highlight important Kallmann syndrome-related phenotypes, and the vertical line indicates a Kallmann syndrome candidate gene locus (PALM2AKAP2). A summary of the patients is presented in Supplementary Table 2. The figure is modified from (14). The deletion coordinates are presented as GRCh37 (hg19). For Kulharya et al. (patient 2), Chien et al., and Ramineni et al. patients the UCSC genome coordinate conversion tool https://genome.ucsc.edu/cgi-bin/hgLiftOver was employed to convert hg18 coordinates to hg19.

145x127mm (300 x 300 DPI)
Figure 3. Relative expression of PALM2AKAP2 in the peripheral blood leukocytes of the proband with Kallmann syndrome, Weiss-Kruszka syndrome and a heterozygous de novo deletion in 9q31.2, and his healthy parents. The bars represent four replicates of PALM2AKAP2 expression measured by qPCR, normalized by a housekeeping gene (GAPDH), and adjusted against an unrelated control sample. *, P<0.05 (ANOVA followed by Tukey HSD post-hoc analysis).
Supplementary Table 1. Two rare variants of uncertain significance in the whole exome sequencing data of the proband with a *de novo* microdeletion in 9q31.2 and Kallmann syndrome. Heterozygous variants in SARS1 and RIMBP3C were both inherited from the mother. Predicted protein change, variant type, and allele frequencies are shown.

Gene	Nucleotide change	Protein change	Frequency*
RIMBP3C	NC_000022.10:g.21904075_21904077del	p.(Glu397del)	-
SARS1	NC_000001.10:g.109778034G>A	p.(Arg317Gln)	0.000008¹

In ExAC, gnomAD, 1000 Genomes, dbSNP¹, or Exome Variant Server
Supplementary Table 2. Main clinical and genetic features of the patients listed in Figure 2.

Publication, patient (reference)	Sex	Oldest reported age at clinical examination	Puberty details	Inheritance of the heterozygous deletion	Reported main phenotypic features	Reported genetic methodology*	
Xu et al. 2013 (ref. 11)	M	20 years	started at 18 years, G2 at the age of 20 years	*de novo*	Kallmann syndrome-related: congenital hypogonadotropic hypogonadism other: KBG syndrome (developmental delay, growth retardation, craniofacial phenotype, skeletal anomalies, hearing loss, dental anomalies) due to a mutation in ANKRD11**	Sanger sequencing of ANKRD11, CGH array, chromosome analysis (550 G-band karyotyping)	
Ramineni et al. 2019 (ref. 15)	M	19 years	delayed puberty at 15 years	from the affected mother	Kallmann syndrome-related: delayed puberty, hearing loss other: delayed motor development, muscle pain, and cramps, short stature	chromosome microarray	
Dugan et al. 2018, patient 2 (ref. 14)	M	10 months	prepubertal age	not mentioned	Kallmann syndrome-related: bilateral cleft lip and palate, renal hypoplasia, hypoplastic olfactory bulbs, and sulci other: developmental delay, hypotonia, craniofacial anomalies, ptosis, ventriculomegaly, hearing impairment, mildly tapering fingers, and toes	SNP microarray	
Cao et al. 2015 (ref. 13)	F	18 months	prepubertal age	*de novo*	Kallmann syndrome-related: unilateral cleft lip other: Cornelia de Lange syndrome, short stature, developmental delay, craniofacial anomalies, hearing disorder, irregular dentition, short neck	WES, 550 G-band karyotyping, CGH Array, CNV validation with qPCR	
Reference	Age	Stage of Development	Mother's Condition	Other Conditions	Kallmann Syndrome-Related	Other Conditions	Methodology
-----------	-----	----------------------	-------------------	----------------	-------------------------	----------------	-------------
Chien et al. 2010 (ref. 10)	F	6 years	prepubertal age	from the unaffected mother***	**Kallmann syndrome-related:** unilateral cleft lip and palate	mental retardation, craniofacial anomalies, strabismus, tapered fingers, low-set ears, mitral valve prolapse, delayed motor development, hearing impairment, postnatal growth restriction	G-band karyotyping, FISH, SNP array
Dugan et al. 2018, patient 1 (ref. 14)	F	11 years****	not mentioned	**Kallmann syndrome-related:** developmental delay, short stature, growth hormone deficiency, pituitary lesion, type 1 diabetes mellitus	SNP microarray		
Mucciolo et al. 2014, patient 1 (ref. 12)	F	15 years 4 months	not mentioned	**Kallmann syndrome-related:** obesity, developmental delay, craniofacial anomalies, small hands with tapering fingers, a bicuspid aortic valve with moderate aortic insufficiency, short neck, cervico-thoracic gibbus	CGH array, microsatellite analysis of polymorphic loci in the deletion, sequencing of FKTN, cloning of breakpoints		
Mucciolo et al. 2014, patient 2 (ref. 12)	F	29 years	not mentioned	**Kallmann syndrome-related:** obesity, mild intellectual disability, craniofacial anomalies, a small right clavicle, hepatosteatosis, hypercholesterolemia, type 2 diabetes mellitus, hypertension, dilated cardiomyopathy, cervico-thoracic gibbus, short neck, short stature	CGH array, microsatellite analysis of polymorphic loci in the deletion, sequencing of FKTN, cloning of breakpoints		
Mucciolo et al. 2014, patient 3 (ref. 12)	F	not mentioned	not mentioned	**Kallmann syndrome-related:** not reported	other: mild intellectual disability, craniofacial anomalies, mild sensorineural hearing loss, hepatosteatosis, hypercholesterolemia, type 2 diabetes mellitus, hypertension, mild left ventricle hypokinesia, cervico-thoracic gibbus, short stature	CGH array, microsatellite analysis of polymorphic loci in the deletion, sequencing of FKTN, cloning of breakpoints	
Weiss et al. 2017, patient in pedigree 4 (ref. 3)	F	5 years	prepubertal age	**Kallmann syndrome-related:** not reported	other: hypotonia, craniofacial anomalies, strabismus, corpus callosum dysgenesis, ptosis	chromosomal microarray	
Study	Gender	Age	Pubertal Status	Mutation Type	Kallmann Syndrome-related:	Other:	Genetic Methods
------------------------	--------	-----------	-----------------	----------------	----------------------------	--------	------------------
Weiss et al. 2017,	F	12 years	not mentioned	de novo	not reported	ventricular septal defect, hyperopia, increased appetite, high pain threshold, mild intellectual disability, fine and gross motor delay, autism spectrum disorder, attention deficit disorder, obsessive-compulsive disorder, malformed and discolored teeth, overweight	chromosomal microarray
patient in pedigree 5							
(ref. 3)							
Kulharya et al. 2008,	F	4 months	prepubertal age	de novo	not reported	developmental delay, craniofacial anomalies, protruding ears, narrow palate and a short neck, short stature	cytogenetic and FISH analysis, CGH array, SNP array
patient 2, (ref. 9)							

*Cao et al. applied whole exome sequencing (WES) but do not report variants in genes implicated in Kallmann syndrome. Other studies do not report Kallmann syndrome-related genetic findings.

**ANKRD11 mutations predispose to precocious puberty (supplementary ref. 5)

***Patient's deletion (del(9)(q31.1q33.1)) was inherited from her unaffected mother with an inverted insertion (18;9)(q12.2;q33.1q31.1)

****Reported age within or at the borderline of the normal limit (± 2SD; 8 years - 12 years) for Tanner breast stage M2 (supplementary ref. 6)
Supplementary File

Rare variants of uncertain significance detected in WES

The proband harbored two maternally inherited, rare heterozygous variants of uncertain significance detected in WES (Supplementary Table 1). The first variant lied in the RIMS-binding protein-3C gene (RIMBP3C), which is expressed mainly in the testis, interacts with the Hook1 cargo adaptor protein in mice, and is implicated in spermatogenesis (supplementary ref. 1). However, expression of RIMBP3C is very low in the human central nervous system and pituitary gland (Human Protein Atlas), and Rimbp3 knock-out male mice exhibit similar weights of seminal vesicles, testes, and cauda epididymis to WT mice, indicating normal genital development (supplementary ref. 1). The second variant was in SARS1 (encoding seryl-tRNA synthetase-1). Biallelic pathogenic variants in SARS1 were reported in an Iranian family with syndromic intellectual disability, microcephaly, ataxia, and seizures (supplementary ref. 2). Moreover, a de novo heterozygous variant in SARS1 has been reported in a patient with sporadic non-syndromic brain arteriovenous malformation (supplementary ref. 3). According to the 2015 ACMG/AMP guidelines (supplementary ref. 4), the SARS1 and RIMBP3C variants were classified as variants of uncertain significance, as the associations of the SARS1 and RIMBP3C genes to the proband’s phenotype are uncertain.

Patients in Figure 2

Features associated with KS were reported in five patients (Xu et al., 2013; Ramineni et al., 2019; Dugan et al., 2018 (patient 2); Cao et al., 2015; and Chien et al., 2010). At the time of assessment, five patients (Xu et al., 2013; Ramineni et al., 2019; and all three patients in Mucciolo et al., 2014), had reached pubertal age, and delayed puberty was diagnosed in the patient in Ramineni et al., 2019 and CHH in the patient in Xu et al., 2013.
All patients, except for the family members reported by Ramineni et al., 2019, and Dugan et al., 2018 (patient 1), presented with additional various craniofacial phenotypes. Moreover, the inheritance of the deletion was reported in all but in patient 2 in Dugan et al., 2018. Known CHH/KS genes were sequenced only in one patient (Cao et al., 2015), and no mutations in CHH/KS genes were reported (Supplementary Table 2).

Supplementary references

1. Zhou J, Du YR, Qin WH, Hu YG, Huang YN, Bao L, Han D, Mansouri A, Xu GL. RIM-BP3 is a manchette-associated protein essential for spermiogenesis. *Development* 2009 **136** 373-382

2. Musante L, Püttrmann L, Kahrizi K, Garshasbi M, Hu H, Stehr H, Lipkowitz B, Otto S, Jensen LR, Tzschach A et al. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. *Hum Mutat* 2017 **38** 621-636.

3. Wang K, Zhao S, Liu B, Zhang Q, Li Y, Liu J, Shen Y, Ding X, Lin J, Wu Y et al. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). *J Med Genet* 2018 **55** 675-684.

4. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 2015 **17** 405-424.

5. Goldenberg A, Riccardi F, Tessier A, Pfundt R, Busa T, Cacciagli P, Capri Y, Coutton C, Delahaye-Duriez A, Frebourg T, Gatinois V, Guerrot AM, Genevieve D, Lecoquiere F, Jacquette A, Khau Van Kien P, Leheup B, Marlin S, Verloes A, Michaud V, Nadeau G, Mignot C, Parent P, Rossi M, Toutain A, Schaefer E, Thauvin-Robinet C, Van Maldergem
L, Thevenon J, Satre V, Perrin L, Vincent-Delorme C, Sorlin A, Missirian C, Villard L, Mancini J, Saugier-Veber P, Philip N. Clinical and molecular findings in 39 patients with KBG syndrome caused by deletion or mutation of ANKRD11. *Am J Med Genet A* 2016 **170** 2847-2859.

6. Lindhardt Johansen M, Hagen CP, Mieritz MG, Wolthers OD, Heuck C, Petersen JH, Juul A. Pubertal progression and reproductive hormones in healthy girls with transient thelarche. *J Clin Endocrinol Metab* 2017 **102** 1001-1008.