Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

Hannah Ayrle, Meike Mevissen, Martin Kaske, Heiko Nathues, Niels Gruetzner, Matthias Melzig and Michael Walkenhorst

Abstract

Background: Gastrointestinal and respiratory diseases in calves and piglets lead to significant economic losses in livestock husbandry. A high morbidity has been reported for diarrhea (calves ≤ 35%; piglets ≤ 50%) and for respiratory diseases (calves ≤ 80%; piglets ≤ 40%). Despite a highly diverse etiology and pathophysiology of these diseases, treatment with antimicrobials is often the first-line therapy. Multi-antimicrobial resistance in pathogens results in international accordance to strengthen the research in novel treatment options. Medicinal plants bear a potential as alternative or additional treatment. Based on the versatile effects of their plant specific multi-component-compositions, medicinal plants can potentially act as ‘multi-target drugs’. Regarding the plurality of medicinal plants, the aim of this systematic review was to identify potential medicinal plant species for prevention and treatment of gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation in calves and piglets.

Results: Based on nine initial sources including standard textbooks and European ethnoveterinary studies, a total of 223 medicinal plant species related to the treatment of gastrointestinal and respiratory diseases was identified. A defined search strategy was established using the PRISMA statement to evaluate 30 medicinal plant species starting from 20,000 peer-reviewed articles published in the last 20 years (1994–2014). This strategy led to 418 references (257 in vitro, 84 in vivo and 77 clinical trials, thereof 48 clinical trials in veterinary medicine) to evaluate effects of medicinal plants and their efficacy in detail. The findings indicate that the most promising candidates for gastrointestinal diseases are Allium sativum L., Mentha x piperita L. and Salvia officinalis L.; for diseases of the respiratory tract Echinacea purpurea (L.) MOENCH, Thymus vulgaris L. and Althea officinalis L. were found most promising, and Echinacea purpurea (L.) MOENCH, Camellia sinensis (L.) KUNTZE, Glycyrrhiza glabra L. and Origanum vulgare L. were identified as best candidates for modulation of the immune system and inflammation.

Conclusions: Several medicinal plants bear a potential for novel treatment strategies for young livestock. There is a need for further research focused on gastrointestinal and respiratory diseases in calves and piglets, and the findings of this review provide a basis on plant selection for future studies.

Keywords: Medicinal plants, Calves, Piglets, Gastrointestinal diseases, Respiratory diseases
Background

A high standard of animal health and welfare is striven in modern livestock husbandries. Health in early life represents a precondition for a superior constitution and results in a high productivity later in life. The mammalian immune system is still immature in the first weeks of life and, in combination with an inappropriate colostral supply, contact to pathogens often results in high morbidity and mortality in young farm animals. Inadequate management including long distance transports, fasting, commingling of individuals from different sources, abrupt changes in diet or incorrect diet, overcrowding of pens, improper climate and suboptimal hygiene are crucially involved in infectious diseases [1–6]. In calves and piglets, the first contact sites for pathogens are the epithelia of the gastrointestinal and respiratory tract. Table 1 shows four of the most important infectious disease complexes in calves and piglets leading to a decreased animal performance and welfare and therefore high economic losses.

In calves and piglets, a variety of pathogens can cause gastrointestinal diseases. Neonatal calf diarrhea represents the most frequent cause of calf losses [2, 7–9] with a mortality of around 55 % in the U.S.A. and in Korea [10] and a morbidity ranging from 12 % in the U.S.A., 23 % in Canada up to 53 % in The Netherlands [1, 7, 11]. Insufficient colostral supply and failure of feeding or improper diet are triggers for diarrhea in calves [12–14]. In suckling and postweaning piglets an infection with enterotoxigenic Escherichia coli strains has been reported to lead to high economic losses as a result of a constant high morbidity and mortality [15]. Verocytotoxin-producing Escherichia coli infections can lead to more seldom but severe edema disease in weaned pigs [16–18]. The prevalence of postweaning diarrhea has been reported to be 35 % in France [19], the morbidity was stated to exceed 50 % in Finland [20] and the mortality can be as high as 25 % without therapy [17]. The incidence of neonatal diarrhea in piglets depends on concentration of antibodies in sow’s colostrum. While piglets are protected by the antibodies in sow’s milk, the predisposition for postweaning diarrhea increases with weaning. Additional factors to the immunological gap, including abrupt changes in diet, an increase in stomach pH, and changes in the enzymatic and cellular configuration of the intestine lead to dysbiosis [6, 17, 21].

Respiratory diseases in calves and piglets have been assessed as one of the most serious diseases with regard to financial losses because of decreased weight gain, costs for veterinary interventions and higher condemnation at slaughter [22]. In fattening calves bovine respiratory disease is a considerable challenge with a morbidity ranging from 49 % in Switzerland to 80 % in the U.S.A. [23, 24]. There is a disposition of the bovine respiratory tract to respiratory diseases. Improper microclimate, noxious gases and distress through transportation are predisposing factors additionally [25, 26]. Respiratory diseases are also of high importance in pigs. The morbidity rates differ between countries; a morbidity of 10 and 40 % have been reported for Denmark and the U.S.A. respectively [27, 28]. Mortality rates up to 15 % [29] have been reported and attributed with the porcine respiratory disease complex. The interaction of various pathogens as well as housing conditions, management and genetic factors, were reported to cause bronchopneumonia [27, 29].

Antibiotic therapy is often the first-line therapy of diseases of the gastrointestinal and respiratory tract in calves and piglets. A previously published study showed that fattening calves receive antibiotics for 30 days on average. Moreover, calves are frequently treated with reserve antibiotics such as florochinolones and cephalosporines of the 3. and 4. generation [30]. In pig production, routine prophylactic administration of antimicrobial agents is a widely-used practice in herds suffering from neonatal diarrhea, postweaning diarrhea or edema disease irrespective of increasing ineffectiveness in consequence of bacterial resistance [6]. More than 60 % of the antibiotics used in porcine husbandry are administered by oral group treatment [31]. Data on antimicrobial resistance monitoring indicated that 59 % of porcine Escherichia coli strains from fecal samples showed resistance to at least one antibiotic and 12 % to more than four of the antibiotics that were investigated [32]. With regard to increasing antimicrobial resistance worldwide, the prevailing issue of reducing antibiotics in food producing animals is seeking for novel options to prevent and cure most common and costly diseases. Improved biosecurity and housing conditions, new feeding regimes, vaccinations and the use of disease-resistant breeds are important provisions.

The diverse etiopathology and symptomatology of diseases in young stock is a challenge and demands a multitargeted therapy. In contrast to chemically synthesized mono-target drugs, multi-target drug characteristics are typical for medicinal plants based on their multi-component composition, which can lead to pleiotropic, synergistic or additive effects in the organism [33, 34]. The broad spectrum of natural products from plants represents a prevailing and widely unemployed potential especially for medication of herbivore and omnivore livestock [35]. Medicinal plants have been used worldwide for prevention and treatment of diseases in human and animals for centuries. Ethnovegetarian research and the underlying documents describing traditional and recent use of medicinal plants [36–38] could be exploited as alternative or as supportive tools to reduce the use of antibiotics in livestock. Additionally, some medicinal plants are known to modulate the immune system and inflammation and could be used as a prophylaxis for infectious diseases.

Human clinical studies, experimental in vivo, ex vivo and in vitro studies on medicinal plants are available,
Disease complex	Pathogens	Pathophysics/pathogenesis	Demands for prophylaxis and therapy
Calves			
Neonatal Calf Diarrhea	*Escherichia coli*	secretory/malabsorptive/maldigestive diarrhea	antimicrobial
	Bovine Coronavirus	dehyration	antiviral
	Rotavirus	hypovolemic shock	antidiarrheal
	Cryptosporidium parvum	decrease in temperature	antiadhesive
		d-lactat acidosis	astringent
		septicaemia	spasmylic
		neurological symptoms	analgesic
		apathy	anti-inflammatory
		recumbency	orexigenic
		reluctance to drink	prebiotic
		fever	immunostimulant
Bovine Respiratory Disease	*Mannheimia haemolytica*	catharral/interstitial/fibrinous bronchopneumonia	antimicrobial
	Parainfluenza type 3 virus	fever	antiviral
	Histophilus somni	increased respiratory rate	analgesic
	Mycoplasma bovis	dyspnnoea	anti-inflammatory
	Bovine respiratory syncytial virus	inappetence	immunostimulant
		nasal discharge	mucolytic
		coughing	secretolytic
		apathy	antitussive
		runting	
Piglets			
Neonatal Diarrhea	*Escherichia coli*	secretory/malabsorbative/maldigestive diarrhea	antimicrobial
	Rotavirus	dehyration	antiviral
	Cryptosporidium spp.	hypovolemic shock	antidiarrheal
		decrease in temperature	antiadhesive
		d-lactat acidosis	astringent
		septicaemia	spasmylic
		neurological symptoms	analgesic
		apathy	anti-inflammatory
		recumbency	orexigenic
		reluctance to drink	prebiotic
		fever	immunostimulant
Postweaning Diarrhea	*Clostridium perfringens*	enteritis	antiviral
	Coronavirus	Isospora suis	antidiarrheal
	Porcine Circovirus type 2	colitis	antiadhesive
	Trichurus suis	dehydration	astringent
	Oesophagostomum dentatum		
	Salmonella spp.		
	(Yersinia spp.)		
	Pasteurella multocida		
	Porcine reproductive and respiratory syndrome virus		
	Mycoplasma hyopneumoniae		
	Swine influenza virus		
	Porcine circovirus type 2		
but there is a lack of comprehensive research for veterinary medicine, especially in young farm animals. Therefore, the purpose of the underlying work is to gain information about potential efficacy of medicinal plants in human and veterinary medicine including in vitro, in vivo and clinical studies.

The aim of this systematic literature review is to identify medicinal plant species or their extracts that are promising candidates for use in diseases of the gastrointestinal and respiratory tract and for stimulation of the immune system and prevention or therapy of inflammation in calves and piglets. Candidate plants should bear a reliable potential for effective treatment and prevention of these diseases. The information obtained can build a basis for state-of-the-art experimental trials and clinical studies with medicinal plants of interest for the treatment of gastrointestinal and respiratory diseases and for the modulation of the immune system and inflammatory processes in calves and piglets.

Methods

The design of the systematic review was a priori individually developed according to the recommendations of the PRISMA statement [39, 40] and AMSTAR measurement tool [41]. The research question was designed following the PICOS scheme [39]: the population are calves and piglets in livestock farming, the intervention is a treatment with medicinal plants, the comparator is no treatment, a placebo or standard treatment, the outcome is the effect of the plant, the study design included in vitro, ex vivo, in vivo and clinical trials. The detailed protocol of the systematic review is provided in the Additional file 1.

Selection of plant species

To choose eligible plant species, different initial sources were screened in respect to plant species frequently recommended for the treatment of gastrointestinal diseases, particularly unspecified or infectious diarrhea and gastrointestinal spasms (QA) and respiratory diseases (QR) as well as those plants that have been reported to modulate the immune system and affect inflammation in infectious diseases (QL). Regarding the intended use of medicinal plants in Western livestock husbandry, potential plant species should be economically available or easy to cultivate in Europe. The initial sources included standard literature, based on traditional empiric knowledge and historical literature of veterinary [42–45], and human phytotherapy [46], peer-reviewed publications of European [47] and in particular Swiss ethnoveterinary medicine [36, 38] and a report of the European Food Safety Authority (EFSA) [48] focusing on the use of plants as feed additives in animal production. All plant species of these sources connected to one or more of the indications were recorded including the used part(s) of plant, the route of administration, the duration, the contraindications and adverse effects (Additional file 1). Based on the plant species that had been mentioned in at least three different initial sources for the same indication, a preliminary selection was established. This selection was sent to three specialists in European veterinary phytotherapy to capitalize their experience. The experts were asked to comment on the preliminary selection of plant species regarding the most common ones being particularly suitable for treatment and prevention of gastrointestinal and respiratory diseases.

Selection of scientific references

Bibliographic search

The chosen plant species were included in the following step. A bibliographic web-based search was conducted based on the recommendations of the PRISMA statement [39, 40] and AMSTAR measurement tool [41]. An introduction in scientific bibliographic literature searches and continuous support was provided by a professional librarian. The bibliographic sources used included PubMed [49] and Web of Science [50]. Both were consulted in the time between 2015-02-16 and 2015-02-19 by one person. The search terms consisted of the Latin name, the common trivial name in English and the pharmaceutical denomination in Latin (e.g. “Foeniculum vulgare” OR “fennel” OR “foeniculi fructus”). In the PubMed keyword search, the results were refined with the subjects 'complementary

Table 1 Challenging infectious diseases in calves and piglets: pathogens, pathophysiology, resulting demands for prophylaxis and therapy (Continued)

Pathogens	Pathophysiology	Resulting demands
Actinobacillus pleuropneumoniae (Streptococcus suis) (Haemophilus parasuis)	increased respiratory rate	anti-inflammatory
	fever	immunostimulant
	reduced growth rates	mucolytic
	running	secretolytic
		antitussive
The remaining references were refined using a selective screening of the title. References remained if the content suffices the objective of the review. Therefore, inclusion criteria were pre-defined by two scientists and lead to an inclusion of all references containing investigations of plants in in vivo, ex vivo, in vivo or clinical studies. Besides these categories, the evaluation included the following inclusion criteria: antibacterial effect, enhancement of antibiotics, antiviral effect, antiprotozoal effect, anti-inflammatory effect, analgesic effect, spasmolytic effect, antiadhesive effect, astringent effect, secretolytic or mucolytic effect, antitussive effect, and other effects on the gastrointestinal tract, respiratory tract or immune system, treatment of diarrhea, bacterial or viral infections of the gastrointestinal tract or respiratory tract, bronchopneumonia, common cold, cough as well as ingredients, constituents, components of plants and the detection or extraction of them, toxic activity or adverse effects due to a treatment with plants.

Exclusion criteria were chosen in order to exclude references dealing with other plant species or subspecies than those we focused on, a mixture of different plant species investigated as one single preparation, pathogens affecting only humans, diseases regulated by laws, cultivation or breeding of plants, plant genetics, seeds and fertilizers, regional reservoirs, habitats or demands for growing of plants, plant pathology, plant protection systems or pesticides, ecology, geology, ethnology, sociology, the usage of the plant as food, food technology or food-packaging, the use of the plant as a repellent or insecticide, other medical branches, other diseases or apparatuses than mentioned in the inclusion criteria (e.g. dermatology, cardiology, oncology, nephrology, diabetes) as well as other animal classes than mammalians and birds.

Classification

Thereby the references were classified into different categories of trial types. Studies investigating diseases occurring naturally in the investigated animal species or in humans were categorized as ‘clinical references’. Trials investigating diseases or the effect of plants in animal models were categorized as ‘in vivo references’. Studies using pathogens, cell layers or ex vivo models were categorized as ‘in vitro references’. Studies investigating the pharmacologic characteristics, constituents or the detection of them were categorized as ‘pharmacognostic references’ and the evaluation of plants summarizing other studies as ‘review references’.

In the last step, abstracts of the remaining clinical, in vivo and in vitro references were studied by one person. During this process, further references were excluded because they did not match the predefined selection criteria.

Assessment of clinical, in vivo and in vitro references

The remaining references were assessed by the following characteristics: used plant species, type of reference (clinical, in vivo or in vitro), indication of the reference inspired by the ATCvet classification (QA, QR, QL) [54], animal species used, study design, pharmaceutical form of the plant, type of application, concentration tested, dosage or minimal inhibition concentration and, if available, the tested pathogen.

To assess the potential of the selected plant species, a reconciliation of the demands for prophylaxis and therapy of gastrointestinal and respiratory diseases with the
hypothesized and tested effects of the plants was performed. The demands for prophylaxis and therapy were derived from the pathophysiology of the focused diseases (Table 1). According to these data, plant-derived treatment options should act bacteriostatic or bactericidal, synergistically with antibiotics, antiviral, antiprotozoal, anti-inflammatory, analgesic, immunomodulatory, antiarrheal, antiadhesive, spasmolytic, astringent, expectorant or antitussive (depending on the indication). The conclusion of a trial on the investigated hypothesized effect of the plant species (Additional file 3) was transferred in the following assessment. To compare the potential of the plant species, a scoring system was established. For each significantly proven effect, the plant species one point was given, while for each uncertain effect, zero points were assigned, and for each disproven effect a point was subtracted (for more details see Additional file 1). Clinical studies were given more weight compared to in vitro studies followed by in vivo studies. Clinical studies were given a weight of three, in vivo studies two, and in vitro studies one. The weighted average of the sum of points of the clinical, in vivo, and in vitro scores served as the final score. The scores were used to identify the plant species that are the most efficacious options for related disease complexes.

Score = 3 x (number of proven effects in clinical studies - number disproof of effects in clinical studies) + 2 x (number of proven effects in in vitro studies - number of disproof of effects in in vitro studies) + 1 x (number of proven effects in in vivo studies - number of disproof of effects in in vitro studies)

Results

The procedure of this systematic literature review is visualized in Fig. 1. The screening of ethnoveterinary research and standard phytherapeutic textbooks (initial sources) led to a total of 223 plant species recommended for the treatment and prophylaxis of gastrointestinal (diarrhea and intestinal spasms) and respiratory diseases in human and animals. A number of 134 different plant species were recommended for QA, 121 for QR and 44 for QL (Additional file 2). A preliminary selection of 29 plant species, recommended in at least three different sources for the same indication, was established. Therefrom, 17 plant species were recommended for QA, 15 for QR and 8 for QL. The specialists review led to an addition of one plant species (Origanum vulgare L.) to the preliminary list including finally 30 plant species. All of these plant species meet the claims for cost-efficiency or cultivability in Europe.

In the subsequent bibliographic search 20,364 references (after removal of duplicates) were found for the 30 plants species (Table 2). During the term-list search, the amount of relevant references led to a reduction of references with 6,800 remaining references. An ensuing random check of the excluded references confirmed the selected terms. The subsequent screening of titles led to a number of 2,797 eligible references, which were classified into the categories ‘clinical references’ (243), ‘in vivo references’ (428), ‘in vitro references’ (1258), ‘pharmacognostic references’ (704) and ‘review references’ (164). The terminal screening of the abstracts of all clinical, in vivo and in vitro references revealed a final number of 418 references (77 clinical, 84 in vivo, 258 in vitro) (Additional file 3). Due to the fact that more than one reference could be defined from some studies, the systematic literature research led to a number of 378 studies representing the effects and efficacy of 29 plant species in 418 references. For one plant species, Quercus robur L., no references were found according to the criteria.

A total of 19,077 references were excluded because they did not match the predefined selection criteria. Predominant reasons for exclusion included that the content of title and abstract did not correspond to the focus of the review (e.g. pathogens were not the pathogens of the focused diseases). Other reasons were missing abstracts (in 212 references) or publications that were not peer-reviewed.

From the 418 remaining references, 48 references based on clinical studies were veterinary origin with 19 swine studies, 5 cattle studies, 17 horse studies, and 4 studies in rabbits. A number of 370 references include studies in humans (29 clinical, 84 in vivo and 257 in vitro studies). A number of 77 in vivo references used laboratory rodents (rats, mice, guinea-pigs) and three studies used cats as an animal model. For gastrointestinal indications (QA), 198 references were found, 57 references were related to respiratory diseases (QR), and 163 references aimed at the modulation of the immune system and inflammation processes (QL). Most references coping with the inclusion criteria were found for Echinacea purpurea L. MOENCH. (48 references), Origanum vulgare L. (36 references) Thymus vulgaris L. (36 references), Camellia sinensis (L.) KUNTZE (32 references), and Allium sativum L. (31 references). The required effects of a treatment and the proven effects of the plant species as mono-substances for each indication are shown in Tables 3, 4 and 5. In Table 6, the most promising plant species of the peer-reviewed references according to the scoring system for each indication (QA, QR and QL), as well as the most frequently recommended plant species of the traditional references (Additional file 2) are shown. According to the scoring system, the two most promising plant species are Echinacea purpurea (L.) MOENCH (for QR and QL) and Allium sativum L. (for QA).

Discussion

There is a large amount of evidence-based knowledge about medicinal plants, represented by 20,364 studies focusing on 30 medicinal plant species from the last
20 years considering peer-reviewed publications in English or German language. The emergence of multi-drug resistance in human and animal pathogens results in international accordance to strengthen the research in novel treatment options. Medicinal plants and their extracts might be an option to prevent and cure livestock diseases.

Evaluation of the search strategy
This systematic review was designed and performed according to the guidelines of the PRISMA statement and AMSTAR measurement tool [39–41]. Due to the fact that we searched for available data on a largely underrepresented topic in the last decades, only a small number of
veterinary clinical data is currently available. Therefore, the search strategy was adapted to gain as much plant-specific information as possible and to cope with the complex research question. Human clinical studies, experimental in vivo studies with laboratory animals as well as ex vivo and in vitro studies were included as well. To avoid the

Plant species	Common name	All references imported from WoS & PM after removal of duplicates	After keyword search in titles and abstracts with endnote	Pharmacognostic studies	Reviews	After checking of relevance, regarded for the assessment of plant species	Clinical studies	In vivo studies	In vitro and ex vivo studies
Achillea millefolium L.	yarrow	345	157	14	2	15	2	3	10
Agrimonia eupatoria L.	agrimony	73	37	10	0	2	1	0	1
Allium sativum L.	garlic	1149	630	24	14	31	9	5	17
Althaea officinalis L.	marshmallow	62	29	6	1	6	0	4	2
Camellia sinensis (L.)	green tea	2052	804	53	21	32	4	6	22
Carum carvi L.	caraway	191	95	28	6	5	0	1	4
Cetraria islandica (L.)	icelandic moss	118	46	8	0	4	1	1	2
Echinacea purpurea (L.)	purple coneflower	869	364	45	18	48	14	8	26
Foeniculum vulgare (L.)	fennel	825	308	46	6	18	1	4	13
Glycyrrhiza glabra L.	liquorice	597	252	43	8	26	3	7	16
Linum usitatissimum L.	linseed	762	227	12	5	7	3	3	1
Malva sylvestris L.	wild mallow	243	50	2	2	4	0	3	1
Matricaria recutita L.	camomile	908	305	43	7	22	1	7	14
Mentha piperita L.	peppermint	1331	425	35	23	21	8	0	13
Origanum vulgare L.	oregano	904	526	42	0	36	10	4	22
Picea abies (L.) H.KARST.	norway spruce	1031	153	0	0	1	0	0	1
Pimpinella anisum L.	anis	453	147	12	2	12	2	0	10
Plantago lanceolata L.	english plantain	532	136	7	2	6	1	0	5
Potentilla erecta (L.) RAEUSCH.	tormentil	49	15	3	2	3	2	0	1
Primula veris L.	cowslip	106	23	2	0	1	0	0	1
Quercus robur L.	english oak	1210	165	7	0	0	0	0	0
Rubus fruticosus L.	blackberry	583	172	34	0	6	0	1	5
Rumex ssp. L.	dock	939	208	15	2	11	0	4	7
Salix ssp. L.	willow	915	171	20	13	6	0	1	5
Salvia officinalis L.	sage	902	372	67	5	20	7	7	6
Sambucus nigra L.	elderberry	891	169	19	4	7	1	2	4
Thymus vulgaris L.	thyme	831	372	52	3	36	6	2	28
Tussilago farfara L.	coltsfoot	101	36	14	0	4	0	1	3
Urtica dioica L.	stinging nettle	760	251	16	8	20	1	6	13
Vaccinium myrtillus L.	blueberry	632	155	25	7	8	0	4	4
sum		20364	6800	704	164	418	77	84	257

*Due to the definition of reference (trial x plant species x indication) the sum may contain some trials more than one time; 1WoS = Web of Science [50]; 2PM = PubMed [49]
Table 3 Assessment of medicinal plants based on peer-reviewed references of the last 20 years aiming gastrointestinal indications.

Plant species	Number of references	Type of reference	Antibacterial	Synergism with AB	Antiviral	Anti protozoal	Anti adhesive	Anti diarrheal	Spasmolytic	Immuno stimulant	Antiinflammatory	Analgesic	Hypothesis proved
Achillea millefolium L.	6	in vitro	2	+	?	o	+	?	o	+	?	o	+
	2	in vivo + clinical											
Allium sativum L.	12	in vitro	12	o	+	?	o	+	?	o	+	o	
	9	in vivo + clinical	2		13	1							
Althaea officinalis L.	2	in vitro	2		14								
	0	in vivo + clinical											
Camellia sinensis (L.) KUNTZE	8	in vitro	6	15		1					17	18	
	3	in vivo + clinical	2	16							20		
Carum carvi L.	4	in vitro	3		21						22		
	1	in vivo + clinical									23		
Echinacea purpurea (L.) MOENCH	0	In vitro											
	1	in vivo + clinical									24		
Foeniculum vulgare (L.) MILL.	10	in vitro	6	25	136	127	128		129		130		
	2	in vivo + clinical			131						132		
Glycyrrhiza glabra L.	9	in vitro	4	33	234	135					36	37	
	4	in vivo + clinical									39		
Linum usitatissimum L.	0	in vitro									40		
	3	in vivo + clinical									41	42	
Matricaria recutita L.	9	in vitro			45						46		
	3	in vivo + clinical									47		
Table 3
Assessment of medicinal plants based on peer-reviewed references of the last 20 years aiming gastrointestinal indications (Continued)

Plant species	Number of references	Type of reference	Antibacterial	Synergism with AB	Antiviral	Anti protozoal	Anti adhesive	Anti diarrheal	Spasmolytic	Immuno stimulant	Anti inflammatory	Analgesic	Hypothesis proved
Mentha x piperita L.	13	in vitro	8	1	51	1	3	52	1	54	1	56	
	7	in vivo + clinical	1	53		1	4	55	1	59			
Origanum vulgare L.	21	in vitro	57	2	58				1	59			
	8	in vivo + clinical	1	60		1	62	1	63	2	64	1	66
Picea abies (L.) H.KARST.	1	in vitro					1			71			
	0	in vivo + clinical											
Pimpinella anisum L.	7	in vitro	58	2	59			1	63	2	64	1	66
	0	in vivo + clinical											
Plantago lanceolata L.	1	in vitro						1		72			
	1	in vivo + clinical						1					
Potentilla erecta (L.) RAEUSCH.	0	in vitro						1					
	2	in vivo + clinical						1					
Rubus fruticosus L.	1	in vitro					1	76					
	0	in vivo + clinical											
Rumex ssp. L.	4	in vitro					1						
	1	in vivo + clinical						1					
Salix ssp. L.	1	in vitro					1	70					
	0	in vivo + clinical											
Salvia officinalis L.	6	in vitro					1						
	5	in vivo + clinical						1					
Sambucus nigra L.	1	in vitro					1						
	1	in vivo + clinical											
Plant species	Number of references	Type of reference	Antibacterial	Synergism with AB	Antiviral	Antiprotozoal	Antiahesive	Antidiarrheal	Spasmolytic	Immuno stimulant	Antifungal	Analgesic	Hypothesis proved
----------------------	----------------------	-------------------	---------------	------------------	-----------	---------------	-------------	--------------	-------------	------------------	------------	-----------	------------------
Tussilago farfara L.	1	in vitro	1	1	1	1	1	1	1	1	1	1	1
in vivo													
Urtica dioica L.	6	in vitro	2	2	2	2	2	2	2	2	2	2	2
in vivo													
Vaccinium myrtillus L.	2	in vitro	1	1	1	1	1	1	1	1	1	1	1
in vivo													

Sum of plant species for each effect	Sum of assessments
in vitro	in vitro
18	93
6	6
2	11

Sum of plant species for each effect	Sum of assessments
in vivo	in vitro
18	93
6	6
2	11

9 Assessment = conclusion of a reference on a hypothesized effect; 9reference = trial x plant species x indication; 9particularly unspecified or infectious diarrhea and gastrointestinal spasms + = reference proves evidently the hypothesized effect; ? = reference shows uncertain hypothesized effect; o = reference does not prove evidently the hypothesized effect; 19147, 148], 19149–152], 19153, 19154], 1969–76, 155–158], 19699, 19660], 19615, 19664], 19177], 19161, 162], 19163, 1964], 19165–170], 19170], 19171], 19172], 19124, 125], 19124, 173], 19174–176], 19177], 19178], 19179], 19175, 198–193], 19184], 19185], 19181], 19180], 19187], 19188], 19189], 19143, 190–192], 19142, 193], 19145], 19194], 19195], 19196, 197], 19141], 19198], 19199], 19200], 19201], 19202], 19175, 185, 203, 204], 19205–208], 19209, 210], 19189], 19176, 211–216], 19217], 19214], 19288, 205, 218], 19219], 19220], 19286, 221, 222], 19223], 19252, 118, 175, 224–237], 19238, 239], 19240], 19241], 19242, 243], 19244, 19245], 19244, 246], 19247], 19248], 19249], 19250, 250, 251], 19252, 253], 19251, 254], 19255], 19253], 19256], 19257], 19258], 19259], 19180, 250, 251, 254], 19255], 19253], 19256], 19257], 19258], 19259], 19180, 260–262], 19263], 19264], 19175, 211, 233, 237, 265], 19252], 19266–268], 19267, 268], 19269], 19270], 19269], 19268], 19271], 19272], 19505, 118–120, 175, 176, 226, 250, 272], 19274], 19213, 275, 276], 19277, 278], 19279], 19280], 19191, 281], 19185, 282], 19145], 19283, 284], 19285], 19259], 19286], 19287], 19286]
Table 4: Assessment of medicinal plants based on peer-reviewed references of the last 20 years aiming respiratory indications

Plant species	Number of references	Type of reference	Anti-bacterial with AB	Synergism	Antiviral	Spasmyolytic	Expectorant	Antitussive	Immuno-stimulant	Anti-inflammatory	Analgesic	Hypothesis proved	
Achillea millefolium L.	2	in vitro	2										
Agrimonia eupatoria L.	1	in vivo + clinical	1										
Allium sativum L.	1	in vitro	1										
Althaea officinalis L.	0	in vivo + clinical	0										
Camellia sinensis (L.) KUNTZE	0	in vitro	0										
Cetraria islandica (L.) ACH.	2	in vivo + clinical	1										
Echinacea purpurea (L.) MOENCH	3	in vitro	2										
Foeniculum vulgare (L.) MILL.	2	in vitro	2										
Glycyrrhiza glabra L.	1	in vitro	1										
Mentha x piperita L.	1	in vitro	1										
Pimpinella anisum L.	2	in vitro	2										
Plantago lanceolata L.	1	in vitro	1										
Primula veris L.	1	in vitro	1										
Rubus fruticosus L.	0	in vivo + clinical	0										
Rumex ssp. L.	2	in vitro	1										

Ayrle et al. BMC Veterinary Research (2016) 12:89
Table 4 Assessment\(^a\) of medicinal plants based on peer-reviewed references\(^b\) of the last 20 years aiming respiratory indications (Continued)

Plant Species	Effect	\(\text{in vitro}\)	\(\text{in vivo}\)	Clinical	\(\text{Assessment}\)
Salvia officinalis L.	0				1\(^{30}\) \(\text{in vitro}\)
	2				1\(^{31}\) \(\text{in vivo + clinical}\)
Sambucus nigra L.	1				1\(^{32}\) \(\text{in vitro}\)
	1				1\(^{33}\) \(\text{in vivo + clinical}\)
Thymus vulgaris L.	9				1\(^{34}\) \(\text{in vitro}\)
	1				1\(^{35}\) \(\text{in vivo + clinical}\)
Tussilago farfara L.	1				1\(^{36}\) \(\text{in vitro}\)
	1				1\(^{37}\) \(\text{in vivo + clinical}\)
Urtica dioica L.	3				1\(^{38}\) \(\text{in vitro}\)
	1				1\(^{39}\) \(\text{in vivo + clinical}\)
Vaccinium myrtillus L.	1				1\(^{40}\) \(\text{in vitro}\)
	0				1\(^{41}\) \(\text{in vivo + clinical}\)

Sum of plant species for each effect

Effect	\(\text{in vitro}\)	\(\text{in vivo + clinical}\)		
	5	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

Sum of assessments

Effect	\(\text{in vitro}\)	\(\text{in vivo + clinical}\)		
	9	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0

\(^a\) Assessment = conclusion of a reference on a hypothesized effect; \(^b\) reference = trial x plant species x indication; + = reference proves evidently the hypothesized effect; ? = reference shows uncertain hypothesized effect; o = reference does not prove evidently the hypothesized effect.

References:
1 [288, 289] 2 [290] 3 [291] 4 [292] 5 [293–296] 6 [297] 7 [298] 8 [299] 9 [300, 301] 10 [302] 11 [303] 12 [304] 13 [305] 14 [306] 15 [307] 16 [308] 17 [309] 18 [310, 311] 19 [312] 20 [313] 21 [314] 22 [315] 23 [316] 24 [317] 25 [191, 318, 319] 26 [113–116, 320, 321] 27 [108] 28 [322] 29 [323] 30 [324, 325] 31 [326] 32 [327]
Table 5 Assessment of medicinal plants based on peer-reviewed references of the last 20 years aiming the modulation of the immune system and inflammation

Plant species	Number of references	Type of reference	Immunostimulant	Antiinflammatory	Analgesic	Hypothesis proved
Achillea millefolium L.	2	in vitro	2	1		1
	2	in vivo + clinical	1	2	1	2
Agrimonia eupatoria L.	0	in vitro	1	1		1
	1	in vivo + clinical	1	1		1
Allium sativum L.	4	in vitro	1	2	1	1
	5	in vivo + clinical	1	2	1	1
Camellia sinensis (L.) KUNTZE	14	in vitro	5	11	12	15
	5	in vivo + clinical	2	14		15
Cetraria islandica (L.) ACH.	2	in vitro	2	1		1
	1	in vivo + clinical	1	1		1
Echinacea purpurea (L.) MOENCH	23	in vitro	16	19	6	20
	13	in vivo + clinical	9	22	12	23
Foeniculum vulgare (L.) MILL.	1	in vitro	1	1	1	12
	3	in vivo + clinical	1	1	1	1
Glycyrrhiza glabra L.	6	in vitro	4	28		4
	4	in vivo + clinical	3	30	1	32
Linum usitatissimum L.	1	in vitro	1	1		1
	3	in vivo + clinical	1	34	2	36
Melissa officinalis L.	1	in vitro	1	1		1
	3	in vivo + clinical	1	38	2	40
Matricaria recutita L.	5	in vitro	1	41	1	42
	5	in vivo + clinical	1	43	2	45
Mentha x piperita L.	0	in vitro	1	47		47
	1	in vivo + clinical	1	47		47
Origanum vulgare L.	1	in vitro	1	48		48
	6	in vivo + clinical	2	49		49
Pimpinella anisum L.	1	in vitro	1	52		52
	2	in vivo + clinical	1	53	1	54
Plantago lanceolata L.	3	in vitro	3	55		55
	0	in vivo + clinical	1	56		56
Potentilla erecta (L.) RAUSCH.	1	in vitro	1	56		56
	0	in vivo + clinical	1	56		56
Rubus fruticosus L.	4	in vitro	1	57		57
	0	in vivo + clinical	1	57		57
*Rumex ssp. L.	1	in vitro	1	58		58
	3	in vivo + clinical	2	59	2	60
*Salix ssp. L.	4	in vitro	4	61		61
	1	in vivo + clinical	1	62		62
Salvia officinalis L.	0	in vitro	1	63	1	64
	7	in vivo + clinical	1	64	1	65
Sambucus nigra L.	2	in vitro	1	65	1	66
	1	in vivo + clinical	1	67		67

Ayrle et al. BMC Veterinary Research (2016) 12:89
risk of source selection bias, multiple types of sources were used initially: standard textbooks, peer-reviewed publications, a governmental report, and personal communications with experts. The risk of introducing database bias was reduced by using two different and independent databases and by using the Mesh Terms function of PubMed. The selection of the 30 traditionally used plant species may bear a sampling bias. European ethnoveterinary and traditional administrations of medicinal plants were screened to identify promising plant species for the bibliographic search. Due to our strategy, it is likely that frequently studied plant species come up as more promising compared to less studied plants. Additionally, the timeliness of the review excluded studies published before 1994 which may be accepted in science for decades by e.g. the European Scientific Cooperative on Phytotherapy [55]. As a consequence, plants including *Malva sylvestris* L., *Potentilla erecta* (L.) RAEUSCH, *Primula veris* L., *Quercus robur* L. or *Picea abies* (L.) H.KARST. appeared less promising, although they are an integral element of traditional medicine.

Comparison of traditional phytotherapy with up-to-date knowledge

The most promising plant species of the peer-reviewed publications of the last 20 years were compared to the most common traditional administrations of the *initial sources* (Table 6). For the most promising plant species 62, 30 and 27 % are also frequently recommended in the *initial sources* for QA, QR and QL, respectively. The results confirmed the rationale of some traditional administrations of medicinal plants. Cases where the traditional applications were not confirmed by current studies, may be explained by the fact that only studies published between 1994 and 2014 were considered. Nevertheless, for many of these plant species broad scientific substantiation exists. For example, ESCOP monographs are available for *Linum usitatissimum* L., *Pimpinella anisum* L., *Cetraria islandica* (L.) ACHL., *Primula veris* L. and *Salix* sp.

Complexity of varying chemistry

It is important to consider that the amount of active constituents in plants depends on environmental factors. Based on the plant cultivars used climatic and geographic conditions, quality of the soil and method of cultivation and harvest influence the phytochemical composition of the plant and therefore, different amounts of constituents can be found in different batches. The used part of plant, widely divergent post-harvesting processing and methods of extraction and stabilization affect the chemistry of phytopharmaceuticals [56]. Environmental factors and post-harvesting procedures are likely to explain varying effectiveness of a medicinal plant in different studies as reported for Echinacea [57, 58]. Therefore, a direct comparison of the outcome of the studies is difficult especially because of the lack of information regarding the phytochemical composition of the used test material. The use of pharmacopoeia quality in future research would ensure a defined amount of active constituents [59].
Table 6 Promising medicinal plants for treatment and prophylaxis of gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation

Indication	Traditional applications in initial sources¹ (number of references recommending the plant for the indication)²	Peer-reviewed references (sum of points gathered in the scoring system)³
Gastrointestinal tract		
Matricaria recutita L. (7)	Allium sativum L. (41)	
Foeniculum vulgare (L.) MILL. (6)	Mentha x piperita L. (30)	
Potentilla erecta (L.) RAEUSCH (5)	Salvia officinalis L. (27)	
Linum usitatissimum L. (5)	Origanum vulgare L. (24)	
Rubus fruticosus L. (5)	Camellia sinensis (L.) KUNTZE (18)	
Thymus vulgaris L. (4)	Matricaria recutita L. (15)	
Mentha x piperita L. (4)	Glycerhiza glabra L. (14)	
Urtica dioica L. (4)	Thymus vulgaris L. (13)	
Vaccinium myrtillus L. (4)	Foeniculum vulgare (L.) MILL. (7)	
Salvia officinalis L. (4)	Carum carvi L. (6)	
Carum carvi L. (4)	Pimpinella anisum L. (6)	
Camellia sinensis (L.) KUNTZE (4)	Urtica dioica L. (6)	
Achillea millefolium L. (4)		
Respiratory tract		
Thymus vulgaris L. (7)	Echinacea purpurea (L.) MOENCH (10)	
Pimpinella anisum L. (6)	Thymus vulgaris L. (10)	
Althaea officinalis L. (5)	Althaea officinalis L. (8)	
Cetraria islandica (L) ACH. (5)	Glycerhiza glabra L. (5)	
Primula veris L. (5)	Salvia officinalis L. (5)	
Foeniculum vulgare (L.) MILL. (4)	Tussilago farfara L. (5)	
Sambucus nigra L. (4)	Urtica dioica L. (5)	
Malva sylvestris L. (4)	Achillea millefolium L. (4)	
Allium sativum L. (4)	Camellia sinensis (L.) KUNTZE (4)	
Picea abies (L.) HJKARST. (4)		
Modulation of immune system and inflammation		
Echinacea purpurea (L.) MOENCH (2)	Sambucus nigra L. (4)	
Salix sp. L. (2)		
Thymus vulgaris L. (1)	Echinacea purpurea (L.) MOENCH (41)	
Sambucus nigra L. (1)	Camellia sinensis (L.) KUNTZE (26)	
Urtica dioica L. (1)	Glycerhiza glabra L. (5)	
Malva sylvestris L. (1)	Origanum vulgare L. (19)	
Allium sativum L. (1)	Allium sativum L. (18)	
Plantago lanceolata L. (1)		
Tilia cordata MILL/Tilia platyphyllos SCOP. (1)		
Artemisia absinthium L. (1)		
Verbasum sp. L. (1)		
Armoracia rusticana PH. GÄRTN (1)		

¹ initial sources = standard literature, based on traditional empiric knowledge and historical literature of veterinary [42–45], and human phytotherapy [46], peer-reviewed publications of European [47] and Swiss ethnoveterinary medicine [36, 38] and a report of the European Food Safety Authority (EFSA) [48] focusing on the use of plants as feed additives in animal production; ² Score = 3 x (number of proven effects in clinical studies – number disproof of effects in clinical studies) + 2 x (number of proven effects in in vivo studies - number of disproof of effects in in vivo studies) + 1 x (number of proven effects in in vitro studies - number of disproof of effects of in vitro studies) ³ gastrointestinal tract: all plant species recommended for QA 4 times or more in the initial sources, ordered by incidence of recommendation by different authors as listed in detail in Additional file 2; respiratory tract: all plant species recommended for QR 4 times or more in the initial sources, ordered by incidence of recommendation by different authors as listed in detail in Additional file 2; modulation of immune system and inflammation: includes all plant species recommended for QL 1 time or more in the initial sources, ordered by incidence of recommendation by different authors as presented in file 2 in greater detail; ⁴ gastrointestinal tract: includes all plant species gathered for QA with a minimum score of 6 ordered by sum of points the plant species gathered; respiratory tract: includes all plant species gathered for QR with a minimum score of 4, ordered by sum of points the plant species gathered; modulation of immune system and inflammation: includes all plant species gathered for QL with a minimum score of 3, ordered by sum of points the plant species gathered; bold letters = plant species recommended in initial sources and in peer-reviewed references for same indication
Relevance for the treatment of livestock diseases
From the 418 references assessed, 46 focused on livestock including 19 clinical references for pigs and five for cattle. Most of these clinical studies used the plants as a feed additive and not as a pharmaceutical. This might be due to complex regulatory affairs exacerbating the licensing and authorization of a medicinal plant or a plant extract as a veterinary drug.

Due to missing information regarding the absorption of orally administered medicinal plant compounds by the gastrointestinal tract, local treatment of gastrointestinal diseases might promising compared to a systemic treatment of respiratory diseases. Effective concentrations of, e.g. essential oils via inhalation may be obtained in the respiratory tract, but it is less practicable when larger herds need to be treated. While pigs as monogastrics might be compared with humans, calves are young ruminants and the biotransformation of plants secondary metabolites in the forestomach is not well known. However, in suckling calves plant extracts can be administered by daily milk diet to ensure bypassing the forestomach by oesophageal groove reflex.

We identified only a few recent references and also few traditional recommendations for the indication QR (n = 57) compared to QA (n = 198). Interestingly, similar findings were reported from ethnoveterinary research [47, 60]. One explanation might include the challenge of the treatment of respiratory diseases because systemic effects are needed to obtain the therapeutic effect compared to primarily local effects. Modulation of the immature or deficient immune system of calves and piglets provides a starting-point for the prevention of multifactorial infectious diseases. In the traditional phytotherapy literature, effects of medicinal plants on the immune system cannot be found frequently. This might be explained by the fact that immunology is a relatively young scientific field that developed rapidly in recent years. In human medicine, some immune stimulating preparations are already available on the market and therefore, a variety of studies is available. In contrast, for livestock, scientific knowledge is not transferred to practical use yet.

This review mainly focused on therapeutic options of medicinal plants. From this point of view, the relevance of possible toxicity, adverse effects or residues in livestock products remains open. Regarding safety aspects Tussilago farfara L. cannot be recommended as a therapeutic medicinal plant due to the presence of toxic pyrrolizidine alkaloids. Nevertheless, the majority of plant species in this review are consumed by humans as food, spices, luxury foodstuffs or as registered nutraceuticals and pharmaceuticals. If these plant species are safe for ingestion in humans, it might be legitimate to transfer these results to other mammals with a comparable metabolism (herbivores and omnivores). Under these circumstances, risks for humans based on residues in products from food-producing animals should be neglectable. For herbivores and omnivores with a mainly plant-based ration, safety of the most medicinal plant species can be supposed. These species may cope with plant secondary metabolites in a similar way as humans [35].

Promising plant species for gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation
Several trials show the equivalence of plant-derived pharmaceuticals with synthetic ones, but nonetheless there are some trials showing the contrary. Based on the data presented in this review, Allium sativum L., Mentha x piperita L. and Salvia officinalis L. carry a high potential for treatment of gastrointestinal diseases (Table 3). Echinacea purpurea (L.) MOENCH, Thymus vulgaris L. and Althaea officinalis L. may be considered for the treatment of respiratory diseases (Table 4). Regarding the majority of positive results of studies evaluated, Echinacea purpurea (L.) MOENCH, Camellia sinensis (L.) KUNTZE and Glycyrrhiza glabra L. were found to stimulate the immune response (Table 5).

Traditionally, plant species with a high content of tanning agents are administered in diarrhea. Allium sativum L. does not contain tanning agents, but due to its antibacterial, antidiarrheal, anti-inflammatory and immunomodulatory effects, it may be used for prophylactic and acute treatment in diarrhea of calves and piglets. Eight in vivo and clinical studies were identified for Allium sativum L. proving these effects, and no studies disproving them. A trial conducted with neonatal calves showed that allicin, a main active compound of Allium sativum L., delayed the onset of diarrhea due to Cryptosporidium parvum [61]. Two clinical studies demonstrated anti-diarrheal effects and a reduction of the fecal coliform count by Allium sativum L. There is also evidence for an improvement of performance in pre-ruminant calves [62, 63]. The immunomodulatory activity of Allium sativum L. in pigs [64, 65] and poultry [66, 67] may hold true in immunocompromised calves to support their immune defense. Its antibacterial effects on Escherichia coli and Salmonella spp. in vitro suggest a high probability of antibacterial activity in vivo [68–75]. Nevertheless, more clinical studies are necessary to investigate antiinfective effects of Allium sativum L. in young farm animals. Allium sativum L. has been reported to exhibit anti-inflammatory activity in rats [76]. There is also mechanistic evidence for anti-inflammatory properties as well as immunostimulation showed in three in vitro studies, namely an inhibition of leucocyte migration [77], modulation of interleukin and interferon-gamma expression [78] and a suppression of nitrogen oxide production in macrophages [79]. An anti-inflammatory effect may be useful for the treatment of systemic inflammation.
processes often accompanied with diarrhea. Facing animal welfare and regarding efficient synthetic non-steroidal and steroidal anti-inflammatory agents, it is debatable whether there is a need for plant-derived alternatives. While synthetic non-steroidal and steroidal anti-inflammatory agents often produce considerable adverse effects including an inhibition of mucus production [80, 81], medicinal plants compass considerable adverse effects because they contain several different active compounds which might reduce the potential of unwanted effects [82]. In vivo tests for acute and chronic toxicity, the maximum tolerance dose and genotoxicity Allium sativum L. was demonstrated to be relatively safe if administered in therapeutic dosages [83] and if estimated for the animals metabolic body weight [84]. With respect to food quality, it must be assured that residues of Allium sativum L., responsible for the typical taste of this plant do not result in an altered taste of meat.

To reduce enteral spasms during diarrheal diseases, Mentha x piperita L. might be an efficient treatment option based on three clinical studies in humans, demonstrating efficient spasmyloytic activity comparable to butylscopolamine [85–87]. The underlying mechanism includes inhibition of smooth muscle contractility through the block of calcium influx by menthol [88]. In traditional medicine, Mentha x piperita L. has been used in the therapy of respiratory diseases. Peppermint essential oil showed spasmylytic activity on rat trachea ex vivo [89]. But there are no clinical studies in veterinary medicine for Mentha x piperita L. in respiratory disease. No adverse effects have been reported for Mentha x piperita L. infusions or oral intake of leaves [90]. Excessive inhalation or local application of pure Mentha x piperita L. essential oil was shown to lead to hypersensitivity reactions [56]. Contraindications are severe hepatic damage and cholestasis [43].

Based on this review, the most prominent plant species for stimulation of the immune system is Echinacea purpurea (L.) MOENCH. The main constituents are polysaccharides, alkylamides, caffeic acid esters and polyacetylenes [91]. It has been used in therapy for stimulation of the immune system in human medicine, mainly for prevention of viral infections of the respiratory tract [92]. A total of 23 clinical and in vivo studies revealed multiple effects on the innate and acquired immune system. Echinacea purpurea (L.) MOENCH was shown to increase the immune response towards swine erysipelas vaccination in piglets [93], prevented enveloped virus infections in humans [94] and reduced symptom severity in naturally acquired upper respiratory tract infections in humans [95]. In contrast, seven clinical or in vivo studies reported the absence of the above mentioned effects. For example Echinacea purpurea (L.) MOENCH failed to enhance growth or to show any immunomodulatory effect in one study in pigs [96]. Reasons for these negative results may be due to a very small number of individuals, an improper dosage or study design. As mentioned above, the diversity of non-standardized Echinacea preparations with varying chemistry is likely to result in different findings. In some studies, the dosage was not reported, and therefore it was not possible to estimate how much plant material or drug equivalent was administered per day. Consequently, due to missing data final conclusions cannot be drawn. Nevertheless, eight in vivo studies reported modulations of immune system and blood cell count, and no studies were found disproving these effects. Different Echinacea species were found to increase the total number of white and red blood cells in mice [97] and horses [98]. Twenty-six in vitro studies demonstrated the underlying mechanisms of immunomodulatory effects of Echinacea purpurea (L.) MOENCH. It was reported to activate macrophages and natural killer cells [99–101] and to modulate several cytokines [102–105]. Echinacea purpurea (L.) MOENCH is known as a safe immunostimulant in humans and several products are available on the market. No reported interactions with other drugs and no toxic effects after overdosage were reported [106]. Possible rare adverse effects such as hypersensitivity reactions are reported, but no adverse effects have been observed during long-term administration [107]. In general, Echinacea purpurea (L.) MOENCH seems to be effective in preventing respiratory diseases and as an early intervention immediately after onset of first symptoms of infectious diseases [95]. However, further veterinary clinical studies need to be performed, especially to evaluate effective dosages.

In human medicine, Thymus vulgaris L. has been already effectively used according to its antitussive and mucusolytic effects in the treatment of acute bronchitis, often in combinations with other plant species, e. g. Primula veris L. for its expectorant effects [108–110]. The main active compound of Thymus vulgaris L. is the essential oil containing thymol, geraniol, thujanol and linalool [111]. The above mentioned effects still have to be investigated for veterinary purposes. Nevertheless, an enhancement of the mucociliary clearance in mice was shown in two in vivo studies [112, 113]. This effect was explained by an interaction with β2 receptors in rat lung tissue [112]. Additionally, three ex vivo studies demonstrated spasmylytic effects of Thymus vulgaris L. on tracheal chains comparable to theophylline [114–116]. The reported anti-inflammatory properties [117] and antibacterial effects found in in vitro studies [118–120] of Thymus vulgaris L. still needs to be investigated in clinical studies. In vivo studies on the toxicology of Thymus vulgaris L. leaf extract showed no toxic potential [121, 122]. In summary, the data available support the potential for using Thymus vulgaris L. for treatment of respiratory diseases in livestock.

Camellia sinensis (L.) KUNTZE seems to be useful for treatment of diarrhea as well as for stimulation of the immune system. Main constituents are polyphenolic compounds (up to 25 % catechin derivatives in non-fermented
plants, e.g. epigallocatechin), purine alkaloids (caffeine, theobromine, theophylline) and flavonoids [123]. Some clinical studies reported beneficial effects of *Camellia sinensis* (L.) KUNTZE on gut health as indicated by a reduced prevalence of postweaning diarrhea in piglets, but also a decrease in growth performance [124]. An experimental trial on a diet with *Camellia sinensis* (L.) KUNTZE whole plant extract revealed a significant decrease of *Clostridia* counts, but also of *Enterococci* counts in the feces of piglets compared to a standard diet with antibiotics [125]. Two *in vivo* studies showed also anti-influenza virus activity in mice [126] and chicken [127], which might be due to an inhibition of virus adsorption [126]. Fifteen *in vitro* and five *in vivo* studies demonstrated antioxidative [128–130] and anti-inflammatory [131, 132] effects and a modulation of the immune system [133, 134]. No studies were found disproving these effects. In mice, the intake of a concentrated extract of *Camellia sinensis* (L.) KUNTZE did not lead to unwanted adverse effects [135]. Despite that *Camellia sinensis* (L.) KUNTZE is known to be fairly devoid of unwanted effects, some reports on liver damage related to the intake of *Camellia sinensis* (L.) KUNTZE extract are available [136, 137]. In summary, most reports state that safety of *Camellia sinensis* (L.) KUNTZE extract can be supposed, if used appropriately to the recommendations [136]. Therefore, *Camellia sinensis* (L.) KUNTZE bears a reliable potential for prophylaxis and therapy of diseases in calves and piglets.

The main active compound of medicinally used roots of *Glycyrrhiza glabra* L. is the saponin glycyrrhizin. Furthermore, it contains flavonoids and isoflavonoids, chalcones, cumarins and phytoestrogens [123]. With regard to the inclusion criteria of this review, no clinical studies focusing on *Glycyrrhiza glabra* L. could be found. Nevertheless, it was shown to exhibit immunostimulatory effects *in vivo*, by stimulation of cellular and nonspecific response [138]. In three *in vivo* and *ex vivo* models, antitussive [139] and tracheal smooth muscle relaxing activity [140] as well as regulating effects in the gastrointestinal tract were reported [141]. Four *in vitro* studies demonstrated its antimicrobial [142, 143] and antiviral potential by activation of autophagy [144]. In an assessment of different plant species, *Glycyrrhiza glabra* L. exerted the strongest antiviral activity against rotavirus [145]. Due to these versatile effects, *Glycyrrhiza glabra* L. might be beneficial for prophylaxis and treatment of virus induced diseases of the respiratory- as well as the gastrointestinal tract. Regarding the safety of *Glycyrrhiza glabra* L., it is important to choose the right dosage due to the hyper-mineralocorticoid-like effects of glycyrrhizin. An acceptable daily dosage of 0.015–0.229 mg glycyrrhizin/kg body weight/day for human and animals was reported [146].

Conclusions

This systematic review identified common medicinal plant species as a potential future therapeutic option for gastrointestinal and respiratory diseases in calves and piglets. Based on their plant specific multi-component compositions, the versatile effects of medicinal plants as ‘multi-target drugs’ may bear a potential for the treatment of respiratory and gastrointestinal diseases in calves and piglets. Medicinal plants are unlikely to replace chemical medications as a general rule, but they may be a single or at least a complementary treatment. In concert with housing, feeding and hygiene, medicinal plants are part of a sustainable, natural option for improving animal health and reducing the use of antimicrobials in livestock farming. The results of this review provide support for a need for additional *in vitro*, *in vivo* and clinical research focused on phytotherapy for recently emerging and challenging diseases in livestock. While a large amount of peer-reviewed studies about medicinal plant species is available, most of the clinical and experimental studies were performed in humans and experimental animals. More research is needed to evaluate the potential of medicinal plants for treatment of farm animals. The data from this review provide guidance on medicinal plants promising for further investigations in livestock: the most promising candidates for gastrointestinal diseases are *Allium sativum* L., *Mentha x piperita* L. and *Salvia officinalis* L.; for diseases of the respiratory tract, *Echinacea purpurea* (L.) MOENCH, *Thymus vulgaris* L. and *Althea officinalis* L. were found most promising, and *Echinacea purpurea* (L.) MOENCH, *Camellia sinensis* (L.) KUNTZE, *Glycyrrhiza glabra* L. and *Origanum vulgare* L. were identified as best candidates for modulation of the immune system and inflammation. Based on this review, studies are under way to investigate the effects of promising medicinal plants in calves and piglets.

Additional files

Additional file 1: Protocol of the systematic review. (DOCX 27 kb)

Additional file 2: Plant species recommended for the treatment of gastrointestinal and respiratory diseases in human and animals based on standard textbooks, European peer-reviewed ethnoveterinary publications and an EFSA report. (XLSX 42 kb)

Additional file 3: Assessment of medicinal plants effects in 418 final peer-reviewed references. (XLSX 59 kb)

Abbreviations

ATCvet, Anatomical Therapeutic Chemical classification system for veterinary medicine; e.g., *exempli gratia* (in English: for example); EFSA, European Food Safety Authority; EMA, European Medicines Agency; ESCOP, European Scientific Cooperative On Phytotherapy; MBW, metabolic body weight; pH, pondus Hydrogenii; PICOS, population, intervention, comparator, outcome, study design; QA, preparations used for the treatment of diseases affecting the alimentary tract or metabolism, particularly unspecified or infectious diarrhea and intestinal spasms; QA, immunomodulating agents; QR, preparations for the treatment of diseases in the respiratory system; sp., any species, not specified in detail; spp, subspecies; WHO, World Health Organization.
Acknowledgements
We want to thank the specialists of veterinary phytotherapy for reviewing the primary list of 29 medicinal plant species, namely Dr. med. vet. Caecilia Brendeck-Worm, Dr. med. vet. Werner Hagemueller and Dr. med. vet. Elisabeth Stoefer. Furthermore, we want to thank Edith Hofer, librarian of the Vetsuisse library, University of Bern, for the continuous and straightforward support; Dr. Stephan Haesler, president of the Swiss Association of the History of Veterinary Medicine, for providing historic veterinary literature and Dr. Christopher Porter for linguistic revision. Special thanks goes to the Swiss retailer Migros for funding this work.

Funding
This work was funded by the Swiss retailer Migros (project #500.54). The funding institution were not involved in the study design, collection, analysis and interpretation of the obtained data and in writing the manuscript.

Availability of data and materials
All the data supporting the findings are contained within the manuscript and in the Additional files 1, 2 and 3.

Authors’ contributions
HA designed the review, collected, analysed and interpreted the data and wrote the manuscript. MMel participated in the design of the study, in the interpretation and discussion of data and coordinated the writing and reviewing of the manuscript. MK contributed his expert-knowledge on diseases of calves and participated in the interpretation and discussion of data. MN and NG contributed their expert-knowledge on diseases of piglets and participated in the interpretation and discussion of data. MMel contributed his expert-knowledge on pharmaceutical biology and participated in the interpretation and discussion of data. MW participated in the design of the study, in the interpretation and discussion of data and in the writing of the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable because this manuscript does not contain any individual persons’ data.

Ethics approval and consent to participate
Not applicable for this systematic literature review.

Author details
1Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, postbox 219, Frick 5070, Switzerland. 2Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, Bern 3012, Switzerland. 3Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich 8057, Switzerland. 4Department of Clinical Veterinary Medicine, Swine Clinic, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern 3012, Switzerland. 5Dahlem Centre of Plant Sciences, Institute of Pharmacy, Freie Universitat Berlin, Koenigin-Luise-Strasse 2 + 4, Berlin 14195, Germany.

Received: 27 November 2015 Accepted: 30 May 2016
Published online: 06 June 2016

References
1. Donovan GA, Dohoo IR, Montgomery DM, Bennett FL. Associations between primary immune function and mortality in dairy heifers in Florida, USA. Prev Vet Med. 1998;34(4):31–46.
2. Meganck V, Holfack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematic review with emphasis on the use of probiotics and fluid therapy. Acta Vet Scand. 2014;56(6):75.
3. Cusack PM, McMeniman NJ, Lean U. The medicine and epidemiology of bovine respiratory disease in feedlots. Aust Vet J. 2003;81(8):480–7.
4. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. The epidemiology of bovine respiratory disease: what is the evidence for preventive measures? Can J Vet. 2010;51(12):1351–9.
5. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can J Vet. 2010;51(10):1095–102.
6. Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhoea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anin Health Res Rev. 2005;6(1):17–39.
7. Windeyer MC, Leslie KE, Godden SM, Hodgins DC, Lissenmore KD, LeBlanc SJ. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev Vet Med. 2014;113(2):231–40.
8. Lorenz I, Fagan J, More SJ. Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves. Vet J. 2011;184(1):42–7.
9. Lorenz I, Earley B, Gilmore J, Higan J, Kennedy E, More SJ. Calf health from birth to weaning. III. Housing and management of calf pneumonia. Vet J. 2011;184(1):14.
10. Cho YL, Yoon KJ. An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci. 2014;15(1):11–17.
11. Bartels CJ, Holzhauser M, Jomotuma P, Swart WA, Lam TJ. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Prev Vet Med. 2010;99(2–3):162–9.
12. Uhlde FL, Kaufmann T, Sager H, Albin S, Zanoni R, Schelling E, Meylan M. Prevalence of four enteropathogens in the faeces of young diarrheic dairy calves in Switzerland. Vet Rec. 2008;163(12):362–6.
13. Luginbühl A, Reitk K, Mettler A, Kollbrunner M, Corboz L, Deplazes P. Field study of the prevalence and diagnosis of diarrheaea-causing agents in the newborn calf in a Swiss veterinary practice area. Schweiz Arch Tierheilkd. 2005;147(6):245–52.
14. Kake M, Leister T, Smolka A, Andresen U, Kunz H-J, Kehler W, Schubert-HJ, Koch A. Neonatal diarrhoea in the calf – IV. communication: Neonatal diarrhoea as a herd problem: colostrum management. Praktischer Tierarzt. 2009;90(8):756–67.
15. Thomson JR, Friendship RM. Digestive System. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Disease of Swine. 10th ed. John Wiley & Sons; 2012.
16. Fryddehand K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol. 2002;85(2):169–82.
17. Fairbrother JM, Gyles CL: Colibacillosis. In: Diseases Of Swine. 10 edn. Edited by Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. Ames, Chichester, Oxford: John Wiley & Sons; 2012.
18. Rossi L, D’Orto V, Vagni S, Sala V, Reggi S, Baldi A. Protective effect of oral administration of transgenic tobacco seeds against verocytotoxic Escherichia coli strain in piglets. Vet Res Comm. 2014;38(1):39–49.
19. Madec F, Bridoux N, Bouina S, Jestin A. Measurement of digestive disorders in the piglet at weaning and related risk factors. Prev Vet Med. 1998;35(1):153–72.
20. Laine TM, Lytyväinen T, Ylihao M, Anttila M. Risk factors for post-weaning diarrhoea on piglet producing farms in Finland. Acta Vet Scand. 2008;50:21.
21. Rosso P, Vagni S, Polidori C, Albarboli G, Baldi A, D’Orto V. Experimental Induction of Escherichia coli Diarrhoea in Weaned Piglets. Open J Vet 2012;1:1–8.
22. VanAlstine WG. Respiratory System. In: Diseases of Swine. 10 edn. Edited by Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW. Ames, Chichester, Oxford: John Wiley & Sons, Inc.; 2012.
23. Hilton WM. BDG in 2014: where have we been, where are we now, and where do we want to go? Anim Health Rev. 2014;15(2):120–2.
24. Bäehler C, Steiner A, Luginbühl A, Ewy A, Posthaufl H, Strabel D, Kaufmann T, Regula G. Risk factors for death and unwanted early slaughter in Swiss veal calves kept at a specific animal welfare standard. Res Vet Sci. 2012;92(1):162–78.
25. Stöber M. Enzootische Bronchopneumonie. In: DIRksen G, Grünner H-D, Stöber M, editors. Innere Medizin und Chirurgie des Rindes. 4th ed. Berlin: Parey Buchverlag; 2002. p. 310–3.
26. Kake M, Kunz H-J, Reinhold P. Die enzootische Bronchopneumonie des Kalbes - ein Update. Praktischer Tierarzt. 2012;29:232–42.
27. Hansen MS, Pors SE, Jensen HE, Bille-Hansen V, Bögstad M, Flachs EM, Nielsen OL. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J Comp Pathol. 2010;143(2):310–31.
28. Harms PA, Halbur PG, Sorden SD. Three cases of porcine respiratory disease complex associated with porcine circovirus type 2 infection. J Swine Health Prod. 2002;10(1):27–30.
29. Choi YK, Goyal SM, Joo HS. Retrospective analysis of etiologic agents associated with respiratory diseases in pigs. Can J Vet. 2003;44(9):735–7.
30. Beer G, Doher MR, Bäehler C, Meylan M. Antibiotikaempfindlichkeit in der Schweizer Kälbermast. Schweiz Arch Tierheilkd. 2015;157(1):155–7.
31. Pendle W, Jenny B, Sidler X, Spring P. Antibiotikaeneisatz beim Schwein: Erste Resultate aus dem projekt FitPig. In: Kreuzer M, Lanzini T, Liesegang A, Bruckmaier R, Hess HD, editors. Gesunde und leistungsfähige Nutztiere: Futter an Genotyp oder Genotyp an Futter anpassen? vol. 38. Zürich: ETH-Schriftenreihe zur Tierernährung; 2015.

32. Eidgenössisches Departement des Innern, EDI, Bundesamt für Lebensmittelsicherheit und Veterinärwesen, BLV. ARCH Bericht über den Vertrieb von Antibiotika in der Veterinärmedizin und das Antibiotikaresistenzmonitoring bei Nutztiere in der Schweiz. 2013.

33. Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine. 2001;8(5):304–9.

34. Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16(2):397–110.

35. Reichling J, Saller R. Herbal remedies in veterinary phytotherapy. Schweiz Arch Tierheilkd. 2001;143(8):395–403.

36. Díserl M, Ivmeyer S, Hamburger M, Vogl CR, Tesic A, Kläfer F, Meier B, Wallenhorst M. Ethnoveterinary herbal remedies used by farmers in four north-eastern Swiss cantons (St. Gallen, Thurgau, Appenzell Innerrhoden and Appenzell Ausserrhoden). J Ethnobiol Ethnomed. 2014;10:32.

37. Mayer M, Vogl CR, Amoorea M, Hamburger M, Wallenhorst M. Treatment of organic livestock with medicinal plants: a systematic review of European ethnoveterinary research. Forschende Komplementärmedizin. 2014;21(6):375–86.

38. Schmid K, Ivmeyer S, Vogl C, Kläfer F, Meier B, Hamburger M, Wallenhorst M. Traditional use of herbal remedies in livestock in farmers in 3 Swiss cantons (Aargau, Zurich, Schaffhausen). Forsch Komplementmed. 2012;19(3):125–36.

39. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009;6(7):e1000100.

40. Moher D, Liberati A, Tetzlaff J, Altman DG, Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J Clin Epidemiol. 2009;62(10):1006–12.

41. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC. Interventions: Explanation and Elaboration. PLoS Med. 2009;6(7):e1000100.

42. Wynn SG, Fougère BJ. Veterinary herbal medicine. 1st ed. St. Louis: Mosby; 2007.

43. Reichling J, Gachnian-Mirtschowa R, Frater-Schröder M, Saller R, Robinovich M, Widmaier H. Heilpflanzenkunde für die Veterinarpraxis. 2nd ed. Berlin Heidelberg: Springer Verlag; 2008.

44. Aichberger L, Graftschafter M, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Echinacea metabolism and drug interactions: An update of the Echinacea monograph. J Agric Food Chem. 2008;56(22):10552–6.

45. Walkenhorst M. Ethnoveterinary herbal remedies used by farmers in four north-eastern Swiss Cantons (St. Gallen, Thurgau, Appenzell Innerrhoden and Appenzell Ausserrhoden). J Ethnobiol Ethnomed. 2014;10:6.

46. Hanieh H, Narabara K, Piao M, Gerile C, Kondo Y. Modulatory effects of two levels of dietary Alliums on immune response and certain immunological variables, following immunization, in White Leghorn chickens. Ani Sci J. 2010;81(6):763–80.

47. Tugwell P, Moher D, Bouter LM. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7:10.

48. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

49. Conner R, Walkenhorst M. Antibiotics in the veterinary profession. In: Current opinion in veterinary medicine and surgery. 2007;19:273–6.

50. Truchlinski I, Krause M, Cendrowska-Pinkosz M, Modzelewska-Banachiewicz B. In vitro antibacterial activity of medicinal plant extracts on Escherichia coli strains from human clinical specimens and interactions with antimicrobial drugs. Nat Prod Res. 2012;26(16):1553–7.

51. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

52. Truchlinski I, Krause M, Cendrowska-Pinkosz M, Modzelewska-Banachiewicz B. In vitro antibacterial activity of medicinal plant extracts on Escherichia coli strains from human clinical specimens and interactions with antimicrobial drugs. Nat Prod Res. 2012;26(16):1553–7.

53. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

54. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

55. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

56. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

57. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

58. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.

59. Walkenhorst M, Ayrle L, Fritsch F, Gansinger D, Hagmüller W, Hahn-Hägerdal B. Influence of garlic, synthetic 1,2,4-triazole derivative and herbal preparation Echinovit C on selected indices of turkey-hens non-specific immunity. Pol J Vet Assoc. 1998;212(7):987–90.
with levels of soluble and cellular adhesion molecules. J Agric Food Chem. 2011;59(14):7177–5.

77. Hofbauer R, Frass M, Greiner B, Kaye AD, Frost EA. Effects of garlic extract (Allium sativum) on neutrophil migration at the cellular level. Heart disease (Hagerstown, Md). 2003;1(1):14–7.

78. Liu C-T, Su H-H, Lai C-K, Sheen L-Y. Effect of Supplementation with Garlic Oil on Activity of Th1 and Th2 Lymphocytes from Rats. Planta Med. 2009;75(3):205–10.

79. Daneshmandi S, Hajimoradi M, Ahmadian-Bad HN, Hassan ZM, Roudabshy M, Ghazanfar T. Effect of 14-kDa and 47-kDa protein molecules of aged garlic extract on pentoneal macrophages. Immunopharmacol Immunotoxicol. 2011;33(1):21–7.

80. Carter GT, Duong V, Ho S, Ngo KC, Greer CL, Weeks DL. Side effects of commonly prescribed analgesic medications. Phys Med Rehabil Clin N Am. 2014;25(2):457–70.

81. Hairorinoo S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Sci. 2013;102(5):4821–47.

82. Saller R, Pfister-Hotz G, Tsen C, Melzer J, Reichling J, Iberogast (R): A modern phytotherapeutic combined herbal drug for the treatment of functional disorders of the gastrointestinal tract (dyspepsia, irritable bowel syndrome) – from phytomedicine to ‘evidence based phytopharmacy’. A systematic review. Forsch Komplementarmed Klass Naturheilkd. 2002;9:1–20.

83. Alqasoumi S, Khan TH, Al-Yahya M, Al-Mofleh I, Rafatullah S. Effect of Acute and Chronic Treatment of Common Spices in Swiss Albino Mice: A Safety Assessment Study. Int J Pharm. 2012;8(2):80–90.

84. Ungemach FR, Anhang I. Umrechnung von Humandosierungen für Tiere. In: Löscher W, Ungemach FR, Kroeker R, editors. Grundlagen der Pharmacotherapie bei Haus- und Nutztieren. 2nd ed. Berlin und Hamburg: Paul Parey; 1994. p. 400–1.

85. Micklefield GH, Greving I, May B. Effects of peppermint oil and caraway oil on gastroduodenal motility. Phytotherapy research : PTR. 2000;14(1):20–3.

86. Asan T, Kuxanova H, Ide M, Hirayama I, Nakamura JI, Fujita KJ, Horutti R. Spasmolytic effect of peppermint oil in biliary in double-contrast bari um enema compared with Buscopan. Clin Radiol. 2003;58(4):301–5.

87. Imagawa A, Hata H, Nakatsu M, Yoshida Y, Takeuchi K, Inokuchi T, Imada T, Kohno Y, Takahara M, Matsumoto K, et al. Peppermint oil solution is useful as an antispasmodic drug for esophageagastroduodenoscopy, especially for elderly patients. Dig Dis Sci. 2012;57(9):2379–84.

88. Annta A, Liotta R, Mule F. Effects of menthol on circular smooth muscle of human colon analysis of the mechanism of action. Eur J Pharmacol. 2014;702:93–101.

89. de Sousa AA, Soares PM, de Almeida AN, Maia AR, de Souza EP, Assrey AM. Antispasmodic effect of Mentha piperita essential oil on tracheal smooth muscle of rats. J Ethnopharmacol. 2010;130(2):433–7.

90. Heermann JR, Honeyman MS, Zimmerman JJ, Thacker BJ, Holden PJ, Chang CC. Effect of dietary Echinacea purpurea on viremia and performance in porcine reproductive and respiratory syndrome virus-infected nursery pigs. J Anim Sci. 2003;81(9):2139–44.

91. Modarei M. Effect of Echinacea purpurea Hydro Alcoholic Extract on the Blood Parameters in Mice. Asian J Chem. 2013;25(3):1373–5.
intestinal damage of rats induced by methotrexate administration. Planta Med. 1999;65(6):545–8.

162. Tataria MR, Siliva E, Dudek K, Kowalk S, Gawron A, Piersiak T, Dobrowolski P, Studzinski T. Effect of aged garlic extract and alllicin administration to sows during pregnancy and lactation on body weight gain and gastrointestinal tract development of piglets: Morphological properties of the small intestine. Part II. Bull Vet Inst Pulawy. 2005;49(4):455–64.

163. Vajl M, Shafaghat A, Salimi F. Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. Journal of Medicinal Plants Research. 2011;5(32):6972–6.

164. Watt K, Christofi N, Young R. The detection of antibacterial actions of whole herb tinctures using luminescent Escherichia coli. Phytotherapy research : PTR. 2007;21(12):1193–9.

165. Bandypadhyay D, Chatterjee TK, Dasgupta A, Lourduaraj J, Dastidar SG. In vitro and in vivo antimicrobial action of tea: The commonest beverage of Asia. Biol Pharm Bull. 2005;28(11):2125–7.

166. Ciraj AM, Sulaia J, Mamatha B, Gopalakrishna BK, Shivananda PG. Antibacterial activity of black tea (Camellia sinensis) extract against Salmonella serotypes causing enteric fever. Indian J Med Sci. 2001;55(7):376–81.

167. Mukherjee D, Bhattacharjey Pi, Samanta S. Comparative Profile of the Antimicrobial Activities of Assam, Daroos and Darjeeling Tea Leaves (Camellia sinensis L). Journal of Pure and Applied Microbiology. 2012;664:2011–5.

168. Neyestani TR, Khalaji N, Gharavi A. Selective microbiologic effects of tea and certain antibiotics against Escherichia coli in vitro. Journal of alternative and complementary medicine (New York, NY). 2007;13(10):1119–24.

169. Reygaert W, Jusufi I. Green tea as an effective antimicrobial for urinary tract infections caused by Escherichia coli. Front Microbiol. 2013;4:662.

170. Tiwari RP, Bharti SK, Kaur HD, Dikshit RP, Hoondal GS. Synergistic antimicrobial activity of tea & antibiotics. Indian J Med Res. 2005;122(1):80–4.

171. Lee JH, Shin JS, Chung M-S, Lim S-T, Kim KH. In Vitro Anti-Adhesive Activity of Green Tea Extract against Pathogen Adhesion. Phytother Res. 2009;23(4):460–6.

172. Chaudhuri L, Basu S, Seth S, Chaudhuri T, Besra SE, Vedasimromini JR, Garguly DK. Prokinetic effect of black tea on gastrointestinal motility. Life Sci. 2000;66(9):847–54.

173. Ratnasooriya WD, Fernando TSP. Antidiamhoael activity of Sri Lankan Dusk grade Black Tea (Camellia sinensis L.) in mice. Pharmacogn Mag. 2009;5(18):115–21.

174. Kacanikova M, Vukovic N, Horska E, Salamon I, Bobkova A, Hleba L, Fiskelova M. Evaluation of antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin. J Environ Sci Health B. 2014;49(7):505–12.

175. Mohsenzadeh M. Evaluation of antibacterial activity of selected Iranian essential oils against Staphylococcus aureus and Escherichia coli in nutrient broth medium. Pakistan journal of biological sciences: PJB. 2007;10(20):3639–7.

176. Al-Essa MK, Shafaghi YA, Mohammed FI, Atif FU. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm Biol. 2010;48(1):76–80.

177. Keshavarz A, Maleyani M, Ghanadi A, Mahzouni P. Effects of Carum carvi L. (Caraway) extract and essential oil on TNBS-induced colitis in rats. Research in pharmaceutical sciences. 2013;8(1):1–8.

178. Hill LL, Foote JC, Erickson BD, Cerniglia CE, Denny GS. Echinacea purpurea and Its Constituents. J Clin Pharm Ther. 2009;34(12):615–22.

179. Sancar M, Hantash T, Oktay B, Apikoglu-Rabus S, Cirakli Z, Gulluoglu MG, Izzettin FV. Comparative effectiveness of Glycericina glabra vs. omeprazole and misoprostol for the treatment of aspirin-induced gastric ulcers. AFR J Pharm Pharmacol. 2009;3(26):1215–20.

180. Sisodia BS, Saikia D, et al. Antimicrobial potential of Glycyrrhiza glabra root. J Ethnopharmacol. 2011;38(1):77–80.

181. Shinwari ZK, Khan I, Naz S, Hussain A. Assessment of antibacterial activity of three plants used in Pakistan to cure respiratory diseases. Afr J Biotechnol. 2009;8(24):7082–6.

182. Al Akeel R, AlSheikh Y, Mateen A, Sijad R, Jaradah K, Gupta VC. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi Journal of biological sciences. 2014;21(2):147–51.

183. Gulfras M, Mehmod S, Minhas N, Jabeen N, Kausar R, Jabeen K, Arshad G. Composition and antimicrobial properties of essential oil of Foeniculum vulgare. Afr J Biotechnol. 2008;7(24):4364–8.

184. Darmaneova S, Stoyanova A. Antimicrobial activity of aromatic products. 14 extracts from fruits of sweet fennel (Foeniculum vulgare Mill. var. dulce Mill.) and coriander (Coriandrum sativum L.). Journal of Essential Oil Bearing Plants. 2010;7(5):440–5.

185. Bultak C, Altick E, Bayakrak O, Ulu S. Antioxidative and Antimicrobial Screening of 19 Commercial Essential Oils in Turkey. In: Edited by Turgut K, Onus AN, Mathe A. International Medicinal and Aromatic Plants Conference on Culinary Herbs. Volume B85, edn., 2009. 111–116.

186. Costa Brandelli CL, Giordani RB, Attiolo De Carli G, Tasca T. Indigenous traditional medicine: in vitro anti-giardial activity of plants used in the treatment of diarrhea. Parasitol Res. 2009;104(6):1345–9.

187. Lee JH, Lee DJ, Kim YS, Kim HP. S-Lipoygenase Inhibition of the Fructus of Foeniculum vulgare and Its Constituents. Biomed Ther. 2012;20(1):113–7.

188. Alexandrovich I, Kovtukhova O, Kolomo E, Sidorenko T, Shushunov S. The effect of fennel (Foeniculum vulgare) seed oil emulsion in infantile colic: A randomized, placebo-controlled study. Altem Ther Health Med. 2003(4):68–61.

189. Guler MA, Savin F, Kapas M, Ustunbey B. Analysis of the essential oil composition of Caraway seeds (Carum carvi L.). Journal of Essential Oil Research. 2000;12(6):599–604.

190. Ayrle A. The detection of antibacterial actions of whole herb tinctures using luminescent Escherichia coli. Phytotherapy research : PTR. 2007;21(12):1193–9.

191. Shakibayeva Z, Zhumaliev S, Kish ❤️, Husainov G, Shmgalov A. Antimicrobial activities of some plants used in Pakistan to cure respiratory diseases. Afr J Biotechnol. 2012;11(4):77–9.

192. Lee JH, Lee DJ, Kim YS, Kim HP. S-Lipoygenase Inhibition of the Fructus of Foeniculum vulgare and Its Constituents. Biomed Ther. 2012;20(1):113–7.

193. Sancar M, Hantash T, Oktay B, Apikoglu-Rabus S, Cirakli Z, Gulluoglu MG, Izzettin FV. Comparative effectiveness of Glycericina glabra vs. omeprazole and misoprostol for the treatment of aspirin-induced gastric ulcers. Afr J Pharm Pharmacol. 2009;3(12):615–20.

194. Srinivasan D, Ramaswamy S, Sengottuvelu S. Prokinetic Effect of Polyherbal Formulation on Gastrointestinal Tract. Pharm Pharmacol. 2009;5(17):37–42.

195. Palla AH, Khan NA, Bashir S, Ur-Rehman N, Iqbal J, Gilani AH. Pharmacological basis for the medicinal use of Limun ustilissimum (Flaxseed) in infectious and non-infectious diarrhea. J Ethnopharmacol. 2015;160:61–8.

196. Strzalkowski AK, Godlewski MM, Hallay N, Kulasek G, Zhang K, Iqbal J, Gilani AH. Pharmacological basis for the medicinal use of Limun ustilissimum (Flaxseed) in infectious and non-infectious diarrhea. J Ethnopharmacol. 2015;160:61–8.

197. Holman DB, Bautero B, Benitez MR. Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota. Can J Microbiol. 2014;60(10):649–59.

198. Abdoul-Latif FM, Mohamed N, Edou P, Ali AA, Djama SQ, Obare LC, Bassole IHN, Dicko MH. Antimicrobial and antioxidant activities of essential oil and methanol extract of Masticaria chamomilla L. from Djibouti. Journal of Medicinal Plants Research. 2013;7(5):1512–7.

199. Munir N, Iqbal AS, Atif A, Bashir R, Sharif N, Saleem F, Naz S. Evaluation of antibacterial and antimicrobial potential of two endangered plant species atropa belladonna and maticaria chamomilla. African journal of traditional, complementary, and alternative medicines: AJTCAM/African Networks on Ethnomedicines. 2014;11(5):111–7.
204. Silva NC, Barbosa L, Setto LN, Fernandes Jr AJ. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Prod Res. 2012;26(16):1510-4.

205. Ammon HP, Kelber O, Okpanyi SN. Spasmolytic and tonic effect of Iberogast (STW 5) in intestinal smooth muscle. Phytomedicine: International journal of phytotherapy and phytopharmacology. 2006;13 Suppl 5:67–74.

206. Maschi O, Cero ED, Galli GV, Caruso D, Bosio E, Dell’Agli M. Inhibition of human camp-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L. J Agric Food Chem. 2008;56(13):5015–20.

207. Schermann M, Michel K, Zeller F, Hohenester B, Ruehl A. Region-specific effects of STW 5 (Iberogast (R)) and its components in gastric fundus, corpus and antrum. Phytomedicine: International journal of phytotherapy and phytopharmacology. 2006;13:90–9.

208. Storr M, Sibaev A, Weiser D, Kelber O, Schirra J, Goke B, Allescher HD. Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine. Digestion. 2004;70(4):257–64.

209. Calzada F, Arista R, Perez H. Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal-gum acacia-induced hyperperistalsis in rats. J Ethnopharmacol. 2010;128(1):30-5.

210. Sebai H, Jabri MA, Souli A, Ribi K, Selmi J, Toubourti O, El-Benna J, Salky M. Antidiarheal and antioxidant activities of chamomile (Matricaria recutita L.) decoction extract in rats. J Ethnopharmacol. 2014;152(2):327–32.

211. Carvalho JCT, Vignoli VV, de Souza GHB, Ujikawa K, Neto JJ. Antimicrobial activity of essential oils from plants used in Brazilian popular medicine. In: Edited by Martino V, Caffini N, Lappa A, Schilcher H, Phillipson JD, Tchernitchin A, Benvenuti S. Second World Congress on Medicinal and Aromatic Plants for Human Welfare. Womp-2: Pharmacognosy, Pharmacology, Phytochemistry, Toxicology. 1999. 77-81.

212. Pattnaik S, Subramanym VR, Rath C. Effect of essential oils on the viability and morphology of Escherichia coli (SP-11). Microb. 1995;84(340):195–9.

213. Saed S, Tanig P. Antimicrobial activities of Mentha piperita and Allium sativum against B. subtilis. J Ethnopharmacol. 2006;108(2):145–50.

214. Schiedt Z, Molnar J, Hohmann J. Antimicrobial and antiplasms activities of essential oils. Fitoterapia. 2006;77(4):279–85.

215. Thompson A, Meah D, Ahmed N, Conniff-Jenkins R, Chileshe E, Phillips CO, Claypole TC, Forman DW, Row PE. Comparison of the antibacterial activity of essential oils and extracts of medicinal and culinary herbs to investigate potential new treatments for irritable bowel syndrome. BMC Complement Altern Med. 2012;13:338.

216. Toruolug S. In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of environmental biology/Academy of Environmental Biology. India. 2011;32(1):23–9.

217. Joveritz L, Buchbauer G, Ball S, Denkova Z, Stalchev A, Stoyanova A, Schmidt E, Geissler M. Antimicrobial Activities of Essential Oils of Mint and Peppermint as Well as Some of Their Main Compounds. J Essent Oil Res. 2009;21(4):363–6.

218. Jallazadeh-Amin G, Maham M, Dalir-Naghadeh B, Kheir F. Effects of Mentha longifolia essential oil on ruminal and abomasal longitudinal smooth muscle in sheep. J Essent Oil Res. 2012;24(1):49–51.

219. Sharifi SD, Khorsandi SH, Khadem AA, Salehi A, Moslehi H. The effect of four herbal medicinal plants on the performance, digestive enzyme, nutrient digestibility, lipid metabolism and in vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet Med. 2010;55(2):71–8.

220. Micklefield G, Jung O, Greving I, May B. Effects of intraduodenal application of peppermint oil (WS(R) 1340) and caraway oil (WS(R) 1520) on the intestinal equilibrium of early-weaned pigs. Zootecnia-Brazilian Journal of Animal Science. 2013;42(2):137–43.

221. Yamamoto N, Nakai Y, Sasahira N, Hirano K, Tsujino T, Isayama H, Komatsu Y, Tada M, Yoshida H, Kawabe T, et al. Efficacy of peppermint oil as an alternative to diazepam for infantile colic. Acta Vet Brno. 2002;65(10):91–4.

222. Ayrle J. (Lamiaceae) against bacterial multiresistant strains isolated from nosocomial patients. Revista Brasileira De Farmacognosia-Brazilian Journal of Pharmacognosy. 2009;19(18):236–41.

223. Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88(2):308–16.

224. Fabian D, Sabol M, Domaracka K, Bunyakova D. Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicology in vitro : an international journal published in association with BIBRA. 2006;20(1):435–45.

225. Friedman M, Henika PR, Mandrell RE. Bacterialidial activities of plant essential oils and some of their isolated constituents: against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002;65(10):1545–60.

226. Hulankova R, Borilova G. In vitro combined effect of oregano essential oil and caprylic acid against Salmonella serovars, Escherichia coli O157:H7, Staphylococcus aureus and Listeria monocytogenes. Acta Vet Bmo. 2011; 80(4):343–8.

227. Mathlouthi N, Bouzaienne T, Oussali L, Recocoilaty F, Hamdi M, Urduci M, Bergaoui R. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance. J Anim Sci. 2012;90(3):813–23.

228. Ouwensh AE, Tonikon E, Kettunen H, Peuranen S, Schulze H, Rautonen N. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet Med. 2010;55(2):71–8.

229. Pogany Simonova M, Lautova A, Haviarova M. Pseudomonads from rabbits and their sensitivity to antibiotics and natural antimicrobials. Res Vet Sci. 2010;88(2):203–7.

230. Salo N, Uigar A. Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. subspecies hirtum (L.) kotschwar, Satureja thymbra L. and Thymus candidissimus Boiss. & Bal. Growing wild in Turkey. J Med Food. 2008;11(3):568–73.

231. Si H, Hu J, Liu Z, Zeng Z-l. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum beta-lactamase-producing Escherichia coli. FEMS Immunol Med Microbiol. 2008;53(2):190–4.

232. Sokovic M, Glamoclijja J, Marin PD, Bitic D, van Giersven LJ. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules (Basel, Switzerland). 2010;15(11):7326–42.

233. Strompfova V, Lautova A. Enterococci from piglets-probiotic properties and responsiveness to natural antibacterial substances. Folia Microbiol. 2009;54(5):538–44.

234. Daihya P, Purkayastha S. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian journal of pharmaceutical sciences. 2012;74(5):443–50.

235. Karakaya S, El SN, Karagozlu N, Sahin S. Antioxidant and Antimicrobial Activities of Essential Oils Obtained from Oregano (Origanum vulgare ssp hirtum) by Using Different Extraction Methods. J Med Food. 2011;14(6):645–52.

236. Bimczek D, Rau H, Seweck E, Janczyk P, Souffrant WB, Rothkotter HJ. Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro. Toxicology in vitro : an international journal published in association with BIBRA. 2008;22(3):652–8.

237. Manzanilla EG, Perez JR, Martin M, Kameal C, Baezaels F, Gas H. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J Anim Sci. 2002;80(4):1350–9.

238. Batsamigolu Malagoluy H, Baysal S, Missiriloglu Z, Polit M, Yilmaz H, Turan N. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzymes, nutrient digestibility, lipid metabolism and in vivo characteristics of the essential oil of Origanum vulgare L. (Lamiaceae) against bacterial multiresistant strains isolated from nosocomial patients. Revista Brasileira De Farmacognosia-Brazilian Journal of Pharmacognosy. 2009;19(18):236–41.
immune response of broilers fed on wheat-soybean meal diets. Br Poult Sci. 2010;51(1):67–80.

245. Henri JD, Bertol TM, de Moura NF, Coldebella A, de Brum PA R, Casagrande M. Oregano essential oil as food additive for piglets: antimicrobial and antioxidative potential. Revista Brasileira De Zootecnia-Brazilian Journal of Animal Science. 2011;39(8):1761–7.

246. Ariza-Nieto C, Bandick M, Baidoo SK, Anil L, Moller TW, Hathaway MR. Effect of dietary supplementation of oregano essential oils to sows on colostum and milk composition, growth pattern and immune status of suckling pigs. J Anim Sci. 2011;89(4):1079–89.

247. Bukovska A, Gikos S, Juhar S, Ilkova G, Rehak P, Koppel J. Effects of a combination of thyme and oregano essential oils on TNBS-induced colitis in mice. Mediators Inflamm. 2007;2007:32906.

248. Bampidis VA, Christodoulou V, Florou-Paneri P, Christaki E. The effect of dried oregano leaves versus neomycin in treating newborn calves with colibacillosis. Journal of Veterinary Medicine Series A-Physiology Pathology Clinical Medicine. 2006;53(3):154–6.

249. Sipponen A, Laitinen K. Antimicrobial properties of natural coniferous resin in the European Pharmocopoeia challenge test. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2011;119(10):720–4.

250. Al-Bayati FA. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J Ethnopharmacol. 2008;116(3):403–6.

251. Gradinaru AC, Miron A, Tifan A, Spac A, Brebu M, Aprosotoaie AC. Screening of antibacterial effects of arise essential oil alone and in combination with conventional antibiotics against Streptococcus pneumoniae clinical isolates. Rev Med ChiR Soc Med Nat lasi. 2011;41(2):537–43.

252. Abu-Darwish MS, Al-Ramamneh EA, Kyslychenko VS, Karpiuk UV. The antimicrobial activity of essential oils and extracts of some medicinal plants grown in Ash-shoubak region - South of Jordan. Pak J Pharm Sci. 2012;25(1):239–46.

253. Plasberenissen V, Jayakumar M, Igracimathu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006;6:39.

254. Darwish RM, Aburjai TA. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement Altern Med. 2010;10:9.

255. Tirapelli CR, de Andrade CR, Cassano AO, De Souza FA, Ambrosio SR, de Costa FB, de Oliveira AM. Antimispasmodic and relevant effects of the hydroalcoholic extract of Pimpinella anisum (Apocaceae) on rat anococcygeus smooth muscle. J Ethnopharmacol. 2007;110(2):23–9.

256. Ivarsson E, Frankow-Lindberg BE, Andersson HK, Lindberg JE. Growth inhibitory effects of oregano and thyme essential oils on enterococci. J Appl Microbiol. 2011;110(4):559–64.

257. Subbotina MD, Timchenko VN, Vorobovy MM, Konunova YS, Aleksandrovich YS, Shushurov S. Effect of oral administration of tormentil root extract (Potentilla tormentilla) on ratovirus diarrhea in children: a randomized, double blind, controlled trial. Pediatr Infect Dis J. 2003;22(8):706–11.

258. Huber R, Dufftth AV, Amann F, Ditfurth AV, Amann F, Guethlin C, Rostock M, Trittler R, Kuemmerer K, Rehak P, KoppeJ. Effect of combination of essential oils on enterococci and strain of enteropathogenic E. coli and the detection of thymol in the blood plasma. Berl Munch Tierarztl Wochenschr. 2006;119(2):59–40.

259. Jakesevic M, Xu J, Aaby K, Jeppsson B, Ahrne S, Molin G. Effects of bilberry juice on inflammation and antioxidant status of bone marrow cells from young rats. Mol Nutr Food Res. 2013;57(10):1753–61.

260. Genc Z, Yarat A, Cetinel SA, Pisiriciler R, Caliskan-Ak E, Altintas A, Demirci B. The effect of Botryococcus braunii oil on growth performance and diarrhoeal diseases of weaned pigs. Biologia. 2006;61(6):789–95.

261. Al-Azam P, Sabri Y, Mansour H, Al-Hajj J, Ayyad MA. Antioxidant and antimicrobial activities of Salvia officinalis L. in rats. Food Chem. 2013;141(1):3468–78.

262. Feizpour A, Bokbakhsh MH, Byrami G, Golamreza Z, Shahidi M. The effect of hydro-ethanolic extract of Achillea millefolium on muscular receptors of guinea pig tracheal smooth muscle. Indian J Pharmacol. 2013;45(1):13–7.
9.8. 9.76. et al. BMC Veterinary Research (2016) 12:89

ud and rachis of Tussilago farfara

9.8. 41. 32. 7. 3. 14. 8. 32. 5. 6. 5. 43. 31. 309. Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, von Boskabady MH, Khatami A. Relaxant effect of Foeniculum vulgare on respiratory infections. Am J Med. 1999;106(2):138–46.

Boskabady MH, Ramazani-Assari M. Possible mechanism for the relaxant effect of Pimpinella anisum on guinea pig tracheal chains. Pharm Biol. 2004;42(8):621–5.

Boskabady MH, Ramazani-Assari M. Relaxant effect of Pimpinella anisum on isolated guinea pig tracheal chains and its possible mechanism(s). J Ethnopharmacol. 2001;74(1):83–8.

Boskabady MH, Goezmen A, Biyk HH, Sen O. Antimicrobial and antibacterial effects of the Primula veris L. flower extracts. Cytologia. 2008;61(1):88–91.

Rossi A, Serraino I, Dugo P, Di Paola R, Monello G, Genovese T, Morabito D, Dugo G, Sautebin L, Caputi AP, et al. Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic Res. 2003;39(8):891–900.

Gettie M, Gebre-Mariam T, Bietz R, Hohe C, Huschka C, Schmidtko M, Abate A, Neubert RH. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nemurus and Rumex abyssinicus. Fitoterapia. 2003;74(1):239–43.

Orhan I, Deloriman-Orhan D, Ozcelik B. Antiviral activity and cytotoxicity of the lipopholic extracts of various edible plants and their fatty acids. Food Chem. 2009;113(2):701–5.

Hubbert M, Sievers H, Lehnfeld R, Kehrl W. Efficacy and tolerability of a spray with Salvia officinalis in the treatment of acute pharyngitis - a randomised, double-blind, placebo-controlled study with adaptive design and interim analysis. Eur J Med Res. 2006;11(12):20–6.

Zakay-Rones Z, Thom E, Wollan T, Wadstein J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J Int Med Res. 2004;32(2):132–40.

Iten F, Saller R, Abel G, Rechling J. Additive Antimicrobial Effects of the Active Components of the Essential Oil of Thymus vulgaris - Chemotype Carvacrol. Planta Med. 2009;75(11):1231–6.

Mullen KA, Lee AR, Lyman RL, Mason SE, Washburn SP, Anderson KL. Short communication an in vitro assessment of the antibacterial activity of plant-derived oils. J Dairy Sci. 2014;97(9):5857–91.

Meister A, Bernhardt G, Christoff V, Buschauer A. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: Discrimination between drug and ethanol effects. Planta Med. 1999;65(6):512–6.

Wienkoetter N, Begrow F, Kinzinger U, Schierdest A, Verspohl EJ. The effect of thyme extract on beta(2)-receptors and mucociliary clearance. Planta Med. 2007;73(7):629–35.

Turker AU, Usta C. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat Prod Res. 2008;22(2):136–46.

Li ZY, Zhi HJ, Xue SY, Sun HF, Zhang FS, Jia JP, Xing J, Zhang LZ, Qin XM. Metabolic profiling of the flower bud and rachis of Tussilago farfara with antitussive and expectorant effects on mice. J Ethnopharmacol. 2012;140(1):83–90.

Moravesci-Chahadehi A, Ibrahim D, Farzia-Sulaiman S, Mousavi L. Screening antimalarial activity of various extracts of Urtica dioica. Rev Biol Trop. 2012;60(4):1567–76.

Motamedhi M, Seyyednejad SM, Bahktiari A, Vafaei M. Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant. Jundishapur journal of natural pharmaceutical products. 2014;9(4):e15904.

Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, Bailey KW, Vet ZG, Li JK, Chan PK, et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by sintering netti lectin, Urtica dioica agglutinin. Antiviral Res. 2011;90(1):22–32.

Sezikawa H, Ikuta K, Mizuta K, Takechi S, Suzutani T. Relationship between polyphenol content and anti-influenza viral effects of berries. J Sci Food Agric. 2013;93(9):2339–41.

Yassa N, Saeidinia S, Pirouzi R, Akbaripour M, Shafiee A. Three phenolic glycosides and immunological properties of Achillea millefolium from Iran, population of Golestan, Iran, population of Golestan. Daru-Journal of Pharmaceutical Sciences. 2014;22(1):136–46.

Gumeniuk VM, Bilyk JH, Dymo DZ, Golovchenko VA, Fesenko VA. Antimicrobial activity of various extracts of Urtica dioica. Rev Biol Trop. 2012;60(4):1567–76.

Motamedhi M, Seyyednejad SM, Bahktiari A, Vafaei M. Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant. Jundishapur journal of natural pharmaceutical products. 2014;9(4):e15904.

Kumaki Y, Wandersee MK, Smith AJ, Zhou Y, Simmons G, Nelson NM, Bailey KW, Vet ZG, Li JK, Chan PK, et al. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by sintering netti lectin, Urtica dioica agglutinin. Antiviral Res. 2011;90(1):22–32.

Sezikawa H, Ikuta K, Mizuta K, Takechi S, Suzutani T. Relationship between polyphenol content and anti-influenza viral effects of berries. J Sci Food Agric. 2013;93(9):2339–41.

Yassa N, Saeidinia S, Pirouzi R, Akbaripour M, Shafiee A. Three phenolic glycosides and immunological properties of Achillea millefolium from Iran, population of Golestan, Iran, population of Golestan. Daru-Journal of Pharmaceutical Sciences. 2014;22(1):136–46.

Benedek B, Kopp B, Melzig MF, Achillea millefolium L. s.l. - is the anti-inflammatory activity mediated by protease inhibition? J Ethnopharmacol. 2007;113(3):312–7.

Toghyani M, Tohidi M, Toghyani M, Gheisari A, Tabeidian SA. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nemurus and Rumex abyssinicus. Fitoterapia. 2003;74(1):239–43.

Orhan I, Deloriman-Orhan D, Ozcelik B. Antiviral activity and cytotoxicity of the lipopholic extracts of various edible plants and their fatty acids. Food Chem. 2009;113(2):701–5.

Hubbert M, Sievers H, Lehnfeld R, Kehrl W. Efficacy and tolerability of a spray with Salvia officinalis in the treatment of acute pharyngitis - a randomised, double-blind, placebo-controlled study with adaptive design and interim analysis. Eur J Med Res. 2006;11(12):20–6.

Zakay-Rones Z, Thom E, Wollan T, Wadstein J. Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. J Int Med Res. 2004;32(2):132–40.

Iten F, Saller R, Abel G, Rechling J. Additive Antimicrobial Effects of the Active Components of the Essential Oil of Thymus vulgaris - Chemotype Carvacrol. Planta Med. 2009;75(11):1231–6.

Mullen KA, Lee AR, Lyman RL, Mason SE, Washburn SP, Anderson KL. Short communication an in vitro assessment of the antibacterial activity of plant-derived oils. J Dairy Sci. 2014;97(9):5857–91.

Meister A, Bernhardt G, Christoff V, Buschauer A. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: Discrimination between drug and ethanol effects. Planta Med. 1999;65(6):512–6.

Wienkoetter N, Begrow F, Kinzinger U, Schierdest A, Verspohl EJ. The effect of thyme extract on beta(2)-receptors and mucociliary clearance. Planta Med. 2007;73(7):629–35.

Turker AU, Usta C. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat Prod Res. 2008;22(2):136–46.

Li ZY, Zhi HJ, Xue SY, Sun HF, Zhang FS, Jia JP, Xing J, Zhang LZ, Qin XM. Metabolic profiling of the flower bud and rachis of Tussilago farfara with antitussive and expectorant effects on mice. J Ethnopharmacol. 2012;140(1):83–90.

Moravesci-Chahadehi A, Ibrahim D, Farzia-Sulaiman S, Mousavi L. Screening antimalarial activity of various extracts of Urtica dioica. Rev Biol Trop. 2012;60(4):1567–76.

Motamedhi M, Seyyednejad SM, Bahktiari A, Vafaei M. Introducing Urtica dioica, A Native Plant of Khuzestan, As an Antibacterial Medicinal Plant. Jundishapur journal of natural pharmaceutical products. 2014;9(4):e15904.
prostaglandin quantification. Biomed 93.

Choi EM, Hwang JK. Antiinflammatory, analgesic and antioxidant activities 8.

Taylor JA, Weber W, Standish L, Quinn H, Goesling J, McGann M, Calabrese C. 6.

Uluisik D, Keskin E. Effects of ginseng and echinacea on cytokine mRNA expression in rats. J Sci World J. 2012;2012:2012:942025.

Zwickey H, Brush J, Iacullo CM, Connelly E, Gregory WL, Soumyanath A, Bureh R. The effect of Echinacea purpurea, Astragalus membranes and Glycyrrhiza glabra on CD69 expression in humans: a pilot study. Phytotherapy research : PTR. 2007;21(11):1109–12.

Oneil J, Hughes S, Loure A, Zweller J. Effects of echinacea on the frequency of upper respiratory tract symptoms: a randomized, double-blind, placebo-controlled trial. Ann Allergy Asthma Immunol. 2008;100(4):384–8.

Schwarz E, Farrelak A, Henneicke-von Zepelin HH, Bode JC, Bode C. Effect of oral administration of freshly pressed juice of Echinacea purpurea on the number of various subpopulations of B- and T-lymphocytes in healthy volunteers: results of a double-blind, placebo-controlled cross-over study. Phytomedicine : international journal of phytotherapy and phytomedecine. 2005;12(9):625–31.

Schulten B, Bullita M, Ballering-Buhr B, Koster U, Schafer M. Efficacy of Echinacea purpurea in patients with a common cold - A placebo-controlled, randomised, double-blind clinical trial. Arzneimittelforsch-Forsch-Drug Research. 2001; 51(7):563–8.

Taylor JA, Weber W, Standish L, Quinn H, Goelz J, McGann M, Cabalres C. Efficacy and safety of echinacea in treating upper respiratory tract infections in children: a randomized controlled trial. JAMA 2000(21):2384–8.

Kailieh M, Vanden Bergh W, Boone E, Essawi T, Haegeman G. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J Ethnopharmacol. 2007;113(3):510–6.

Choi EM, Wang JK. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia. 2004;75(5):557–65.

Tanira MOM, Shah AH, Mohsin A, Ageel AM, Qureshi S. Pharmacological and toxicological investigations on Foeniculum vulgare dried fruit extract in experimental animals. Phytother Res. 1996;10(1):33–6.

Zendeheil M, Taati M, Amoozad M, Hamidi F. Antiinflammatory effect of the aqueous extract obtained from Foeniculum vulgare in mice: the role of histamine H-1 and H-2 receptors. Iranian Journal of Veterinary Research. 2012;13(2):100–6.

Bordbar N, Karimi MH, Amihgozar Z. The effect of glycyrrhizin on maturation and T cell stimulation activity of dendritic cells. Cell Immunol. 2012;280(1):44–9.

Cheel J, Van Antwerp P, Tumova L, Onofre G, Vokurovka D, Zouaoui-Boudjelta K, Vanhaeversymbeek M, Neve J. Free radical-scavenging, antioxidant and immunostimulating effects of a licorice infusion (Glycyrrhiza glabra L). Food Chem. 2010;122(3):508–17.

Chen CL, Zhang DD. Anti-inflammatory effects of 81 chinese herb extracts and their correlation with the characteristics of traditional chinese medicine. Evidence-based complementary and alternative medicine : eCAM. 2014;2014:985176.

Herold A, Cremer L, Calugura A, Tamas V, Ionescu F, Manea S, Szelig G. Hydroalcoholic plant extracts with anti-inflammatory activity. Rom Arch Microbiol Immunol. 2003;62(21):117–29.
413. Gobel H, Fresenius J, Heinze A, Dworschak M, Soyka D. Effectiveness of Olemum menthae piperitae and paracetamol in therapy of headache of the tension type. Nervenarzt. 1999;68(7):672–81.

414. Ocana-Fuentes A, Arranz-Gutierrez E, Senorans F, Reglero G. Supercritical fluid extraction of oregano (Origanum vulgare) essences: oils with anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2010;48(6):1568–75.

415. Szaboova R, Laukova A, Lu C, Strompfova V, Simonova MP, Plachova Z, Chrenkova M, Faix S. Beneficial effect of plant extracts in rabbit husbandry. Acta Vet Brno. 2012;83(3):245–50.

416. Walter BM, Siliki G. Immunostimulatory effect of dietary oregano ethereal oils on lymphocytes from growth-retarded, low-weight growing pigs and productivity. Tijdschr Diergeneesk. 2004;129(6):178–81.

417. Cavalcante Melo FH, Rios ER, Rocha NF, Cito Mdo C, Fernandes ML, de Sousa DP, de Vasconcelos SM, de Sousa FC. Antioxidative activity of curcumin (C. longa) and capsaicin (C. annuum) in mice. J Pharm Pharmacol. 2012;64(12):1722–3.

418. Khali MMA, Pahlavan E, Shepeghi G, Shebani V, Pahlavan B. Antioxidative Effect of Aqueous Extract of Origanum vulgare L in Male Rats: Possible Involvement of the GABAergic System. Iranian Journal of Pharmaceutical Research. 2013;12(2):407–13.

419. Pahlavan L, Shepeghi G, Shebani V, Khali MA, Gojazadeh M, Pahlavan B, Pahlavan F. Study the Antioxidative Effect of Intraventriculobereventricular Injection of Aqueous Extract of Origanum Vulgone Leaves in Rat: Possible Involvement of Opioid System. Iranian Journal of Basic Medical Sciences. 2013;16(10):1109–13.

420. Stelter K, Frahm J, Paulsen J, Berk A, Kleinwachtter M, Selmar D, Danicke S. Effects of oregano on performance and immunomodulating factors in weaned piglets. Arch Anim Nutr. 2013;67(6):461–76.

421. Conforti F, Tundis R, Marrelli M, Menichini F, Statti GA, De Cindio B, Menichini F, Houghton PJ. Protective effect of Pimpinella anisicae ethanolic extract and its constituents on oxidative damage and its inhibition of nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Med Food. 2010;13(1):137–41.

422. Mahmood MS, Hussian I, Ahmad MF, Khan A, Abbas Z, Rafiq A. Immunomodulatory effects of Pimpinella anisica L. (Aniseed) in Broiler Chicks against Newcastle Disease and Infectious Bursal Disease Viruses. Boletin Latinoamericano y Del Caribe De Plantas Medicinales Y Aromáticas. 2011;43(5):458–65.

423. Durrani FR, Sultan A, Shand S, Chaud N, Khatkat FM, Durrani Z. Efficacy of aniseed extract as immune stimulant and growth promoter in broiler chicks. Pakistan journal of biological sciences: PJBS. 2007;10(20):3718–21.

424. Marchesan M, Paper DH, Hose S, Franz G. Investigation of the antinflammatory activity of plant extracts in vitro, mediated through toll-like receptor 4 and 2 activities of herb extracts. Acta Biochim Pol. 2014;61(2):359–67.

425. Tunor H, Olausdotter C, Bohlin L. Evaluation of antinflammatory properties of some Swedish medicinal plants. Inhibition of psoriasis gland biogenesis and PAF-induced oedocysis. J Ethnopharmacol. 1995;48(2):61–76.

426. Cuevas-Rodriguez EO, Dia VP, Yousef GG, Garcia-Saucedo PA, Lopez-Medina J, Pizzolatti MG, Soares Santos AR, Baggio CH, de Paula Werner MF. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol. 2012;139(2):2519–26.

427. Denev P, Kratchanova M, Ciz M, Lojek A, Vasicek O, Blazheva D, Nedelcheva Ayrle. Korean Physiological Society and the Korean Society of Pharmacology. 2013;17(1):81–7.

428. Suleyman H, Demirezer LO, Kuruuzum A, Banoglu ZN, Gocer F, Ozbakir G, Ogorevic A, Ozkabir G, Gepdiremen A. Antiinflammatory effect of the aqueous extract from Rumex patentia L. roots. J Ethnopharmacol. 1999;65(2):141–8.

429. Suleyman H, Demirezer LO, Kuruzum-Uz A. Analgesic and antipyretic activities of Rumex patentia extract on mice and rabbits. Pharmazie. 2000;56(10):815–7.

430. Tekkaya MA, Khabania P, Vojtek L, Hyrsl P. Antioxidant, antimicrobial and neutrophil-modulating activities of Pinus sylvestris and Plantago lanceolata extracts: effect on inflammation and PAF-induced exocytosis. J Ethnopharmacol. 2005;101(2):147–56.

431. Ocana A, Reglero G. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages. J Obes. 2012;2012:104706.
451. Najafi P, Torki M. Performance, Blood Metabolites and Immunocompetence of Broiler Chicks Fed Diets Included Essential Oils of Medicinal Herbs. J Anim Vet Adv. 2010;9(7):1164–8.

452. Taherian AA, Babaei M, Vafaei AA, Jarrahi M, Jafari M, Sadeghi H. Antinociceptive effects of hydroalcoholic extract of Thymus vulgaris. Pak J Pharm Sci. 2009;22(1):83–9.

453. Hwangbo C, Lee HS, Park J, Choe J, Lee J-H. The anti-inflammatory effect of tussilagone, from Tussilago farfara, is mediated by the induction of heme oxygenase-1 in murine macrophages. Int Immunopharmacol. 2009;9(13-14):1578–84.

454. Akbay P, Basaran AA, Undeger U, Basaran N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytotherapy research : PTR. 2003;17(1):34–7.

455. Basaran AA, Centoglu I, Undeger U, Basaran N. Immunomodulatory activities of some Turkish medicinal plants. Phytother Res. 1997;11(8):609–11.

456. Daoudi A, Arar L, Abdel-Sattar E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health. 2013;29(3):245–53.

457. Johnson TA, Sohn J, Inman WD, Bjeldanes LF, Rayburn K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011;18(12):143–7.

458. Bolla P, Catoi C, Gal A, Taulescu M, Fit N, Nadas G, Niculce M, Tamas M, Cuc C, Spinu M. Screening of five alcoholic plants extracts effects on the immune status of Romanian EIAV infected horses. Romanian Biotechnological Letters. 2011;16(6):6730–9.

459. Dana SC, Spinu M, Brudasca F, Opris A, Duca G. Alcoholic nettle extraction influences phagocytosis and body mass in broiler chickens. In: Bulletin of the University of Agricultural Sciences and Veterinary Medicine, Vol 61: VETERINARY MEDICINE. Volume 61, edn. Edited by Marghitas LA; 2004:233-236.

460. Hajhashemi V, Klooshani V. Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Avicenna journal of phytomedicine. 2013;3(2):193–200.

461. Sautebin L, Rossi A, Serraino I, Dugo P, Di Paola R, Mondello L, Genovese T, Britti D, Peli A, Dugo G, et al. Effect of anthocyanins contained in a blackberry extract on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Planta Med. 2004;70(8):745–52.

462. Luo H, Lv XD, Wang GE, Li YF, Kurihara H, He RR. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int J Food Sci Nutr. 2014;65(5):594–601.