O papel da diurese osmótica induzida por ureia na geração de hipernatremia no paciente crítico: relato de caso e revisão da literatura

The role of urea-induced osmotic diuresis and hypernatremia in a critically ill patient: case report and literature review

Autores
Jesiree Iglesias Quadros Distenhreft
Júlia Guasti Pinto Vianna
Gabriela S. Scopel
Jayme Mendonça Ramos
Antonio Carlos Seguro
Weverton Machado Luchi

1 Universidade Federal do Espírito Santo, Serviço de Nefrologia, Hospital Universitário Cassiano Antonio Moraes, Vitória, ES, Brasil.
2 Universidade de São Paulo, Laboratório de Investigação Médica, Hospital das Clínicas da Faculdade de Medicina da São Paulo, São Paulo, Brasil.

Resumo
A hipernatremia é um distúrbio eletrolítico comum no ambiente de terapia intensiva, com uma prevalência que pode chegar a 25%. Está associada a maior tempo de internação hospitalar e é um fator de risco independente para a mortalidade. Este relato ilustra um caso de hipernatremia de origem multifatorial no ambiente de terapia intensiva. Destacaremos o papel da diurese osmótica por geração excessiva de ureia, uma causa de hipernatremia pouco conhecida e subdiagnosticada. Este cenário pode estar presente em pacientes em uso de elevadas doses de corticoides, com sangramento gastrointestinal, em uso de dietas e suplementos hiperproteicos e estado de hipercalemia, especialmente durante a fase de recuperação de injúria renal. A seguir, discutiremos uma abordagem clínica para o diagnóstico da hipernatremia secundária à diurese osmótica induzida por ureia, destacando a importância do conceito de clearance de água livre de eletrólitos nesse contexto.

Palavras-chave: Diurese; Hipernatremia; Ureia; Cuidados Críticos.

Resumo
Hypernatremia is a common electrolyte problem at the intensive care setting, with a prevalence that can reach up to 25%. It is associated with a longer hospital stay and is an independent risk factor for mortality. We report a case of hypernatremia of multifactorial origin in the intensive care setting, emphasizing the role of osmotic diuresis due to excessive urea generation, an underdiagnosed and a not well-known cause of hypernatremia. This scenario may occur in patients using high doses of corticosteroids, with gastrointestinal bleeding, under diets and hyperprotein supplements, and with hypercalcemia, especially during the recovery phase of renal injury. Through the present teaching case, we discuss a clinical approach to the diagnosis of urea-induced osmotic diuresis and hypernatremia, highlighting the utility of the electrolyte-free water clearance concept in understanding the development of hypernatremia.

Keywords: Diuresis; Hypernatremia; Urea; Critical Care.

Introdução
A hipernatremia no ambiente de terapia intensiva é um problema comum, com prevalência que pode chegar a 25%. Está associada a maior tempo de internação hospitalar e é um fator de risco independente para mortalidade.1 Representa um déficit de água em relação à quantidade de sódio corporal, podendo ocorrer devido à perda de água livre de eletrólitos e/ou ao ganho de sódio. A perda de água livre secundária à diurese osmótica frequentemente resulta de elevadas concentrações de glicose ou ureia na urina ou pelo uso de manitol.2 Em pacientes críticos, a elevada oferta proteica, o estádio de hipercalemia, sangramento do trato gastrointestinal e altas doses de corticoides podem impulsionar uma excessiva geração de ureia, diurese osmótica e consequentemente hipernatremia.3 Utilizamos o relato de caso a seguir para ilustrar a abordagem diagnóstica da hipernatremia associada à diurese osmótica secundária à geração excessiva de ureia, enfatizando a importância do cálculo do clearance de água livre de eletrólitos nesse contexto.
HIPERNATREMIA SECUNDÁRIA À DIURESE OSMÓTICA INDUZIDA POR UREIA

APRESENTAÇÃO DO CASO

HISTÓRIA CLÍNICA E EXAMES LABORATORIAIS INICIAIS

Paciente do sexo feminino, 72 anos, com antecedentes de Hipertensão arterial sistêmica, diabetes mellitus tipo 2 e insuficiência cardíaca, foi admitida no setor de emergência com edema agudo de pulmão hipertensivo (PA 250/150 mmHg), evoluindo com necessidade de ventilação mecânica invasiva. O eletrocardiograma evidenciou bloqueio de ramo esquerdo, porém os marcadores de necrose miocárdica foram negativos e o cateterismo cardíaco não mostrou obstruções significativas. Os exames laboratoriais da admissão não apresentavam alterações dignas de nota.

No quarto dia de internação foi extubada, porém apresentou laringoespasmo grave refratário às medidas clínicas, dentre elas o uso de corticoide, requerendo reintubação. Devido à presença de sinais de congestion em radiografia de tórax, além de edema periférico e oligúria, foi iniciado 40 mg/dia de furosemida endovenosa. Evoluiu com pneumonia associada à ventilação mecânica e elevação progressivamente dos níveis de sódio, chegando a 165 mEq/L (Tabela 1). O tratamento com SF 0,45% e água livre pela sonda enteral foi instituído, sem melhora da natremia. Em seguida, durante o processo de desmame ventilatório, observou-se ao exame físico hemiparesia à direita. A tomografia computadorizada de crânio evidenciou um acidente vascular isquêmico em território de artéria cerebral média esquerda com discreta transformação hemorrágica. Após extubação, manteve-se afásica e com disfagia, permanecendo em dieta enteral. A Tabela 1 resume a evolução dos parâmetros laboratoriais e os dados clínicos relevantes ao caso.

Tabela 1: Parâmetros laboratoriais durante a internação*

Exames de sangue	Admissão	4º dia	6º dia	12º dia	14º dia	19º dia	Valores de referência
Creatinina (mg/dL)	0,8	0,79	0,86	1,88	1,53	0,59	0,7 - 1,2
Ureia (mg/dL)	25	61	80	206	239	49	10 - 25
Sódio (PNa) (mEq/L)	139	141	150	153	165	141	135 - 145
Cloro (mEq/L)	102	101	106	101	117	100	98 - 107
Potássio (mEq/L)	3,9	4,2	3,3	3,9	3,4	4,04	3,5 - 5
Bicarbonato (mEq/L)	24,7	25,2	30	36,5	24	22	22 - 24
Glicose (mg/dL)	130	139	181	247	270	208	< 140
Osmolaridade (POsm) (mOsm/L)	345					275 - 295	

Volume urinário

Volume urinário (UVol) (mL)	Admissão	4º dia	6º dia	12º dia	14º dia	19º dia	Valores de referência
800	2.055	2.025	2.500	3.500			
1.500	2.500	< 3.500					
Creatinina (g)	(0,7 - 1,3)	0,05 g	(51,63mg/dL)				
Ureia (g)	48,9 g	24,6 g	(15 - 35)				
Sódio (UNa) (mEq/L)	22	68	40 - 220				
Potássio (UK) (mEq/L)	62	25	15 - 125				
Glicose (g)	Negativo**	0,072 g	(4 mg/dL)				
Osmolaridade (UOsm) (mOsm/L)	570	350	(50 - 1.200)				

Osmóis medidos na urina

Total de Osmóis	Ureia	Sódio + Potássio
1.154	814	340
875	410	465
600 - 800	350 - 450	300 - 350

**Início da administração de corticoide e furosemida; * Início da administração de dieta hiperproteica; ‡ Suspensão da furosemida; † Avaliação pela Nefrologia; ¶ Suspensão do corticoide e administração de dieta normoproteica. Cálculos e fórmulas utilizados na avaliação da Nefrologia estão representados no Box 1. **Urina tipo 1 com glicose negativa.
HIPERNATREMIA SECUNDÁRIA À DIURESE OSMÓTICA INDUZIDA POR UREIA

Investigações Adicionais

Ao ser avaliada pela equipe de nefrologia, no décimo quarto dia de internação, a paciente encontrava-se clinicamente hipervolêmica, com balanço hídrico acumulado positivo, apesar da diarreia e do estado febril, estável hemodinamicamente, tendendo à hipertensão, e ainda em uso de altas doses de corticoide endovenoso (metilprednisolona 75 mg, 8/8 horas), iniciado em decorrência do laringoespasmo. A furosemida havia sido suspensa no décimo segundo dia de internação devido à piora de função renal e hipernatremia. A paciente recebia dieta enteral com as seguintes características: dieta para diabetes, volume/dia = 1.500 mL, hiperproteica (75g/L), com osmolaridade de 530 mOsm/L e concentração de sódio de 17 mEq/L. De acordo com o peso estimado de 60 quilos, recebia uma oferta proteica de 1,8 g/kg.

A partir dos dados de urina de 24h e dos exames séricos descritos na Tabela 1, foram realizados os seguintes cálculos: clearence de água livre (CH$_2$O) = - 1.320 mL; clearence de água livre de electrolitos (CeH$_2$O) = + 957 mL; total de osmóis = 1.154 mOsm; osmóis gerados pela ureia = 814 mOsm; osmóis gerados por Na + K = 340 mOsm. O Box 1 descreve as fórmulas e os cálculos utilizados no caso.

Diagnóstico

Hipernatremia induzida por diurese osmótica secundária à excessiva geração de ureia.

Acompanhamento Clínico

A partir da identificação da hipernatremia secundária à geração excessiva de ureia, instituiu-se uma redução da oferta proteica (1,0 g/kg) e da osmolaridade da dieta enteral e o desmame do corticoide, havendo a partir de então queda progressiva dos níveis de ureia e sódio. Após cinco dias da instituição dessas medidas, a ureia urinária reduziu-se a 24,6 g ao dia, respondendo por 410 mOsm do total de 875 mOsm na urina, corrigindo o efeito osmótico prévio induzido pela excessiva geração de ureia. O sódio plasmático encontrava-se em 141 mEq/L.

Discussão

A descrição ilustra um caso de hipernatremia de etiologia multifatorial no ambiente de terapia intensiva. Apesar de a furosemida ter um papel inicial na elevação dos níveis de sódio, destacaremos o papel da diurese osmótica por geração excessiva de ureia, uma causa de hipernatremia pouco conhecida e subdiagnosticada. Embora os dados de prevalência na literatura sejam escassos, o estudo de Lindner G e colaboradores demonstrou que a diurese osmótica secundária à ureia foi o fator causal em 10% dos casos que evoluíram com hipernatremia na unidade de terapia intensiva. Discutiremos abaixo os conceitos fisiopatológicos essenciais para a abordagem desse diagnóstico, e em seguida utilizaremos os dados do nosso caso para aplicarmos a esses conceitos.

Box 1. Cálculos e fórmulas utilizados na interconsulta da nefrologia

1. Osmolaridade plasmática efetiva:

 \[2 \left[\text{P}_{\text{Na}} \text{(mEq/L)} \right] + \left[\text{glicose (mg/dL)/18} \right] \left[165 \right] + \frac{270}{18} = 345 \text{ mOsm/kg} \]

2. Osmolaridade urinária:

 \[2 \left[\text{U}_{\text{Na}} \text{(mEq/L)} + \text{U}_{\text{K}} \text{(mEq/L)} \right] + \left[\text{ureia urinária (mg/dL)/6} \right] + \left[\text{glicose urinária (mg/dL)/18} \right] \left[22 + 62 \right] + \frac{2413}{6} + \frac{4}{18} = 570 \text{ mOsm/kg} \]

3. Excreção de osmóis urinários (calculados a partir da urina de 24h):

 \[
 \begin{align*}
 \text{Total} & \quad \text{Urea} \\
 \text{Osmolaridade urinária} & \quad \text{Urea urinária} \\
 \text{UOsm X 24h \text{ Uvol}} & \quad \left(\text{mg/dL/6} \right) \times 24h \text{ Uvol} \\
 570 \text{ mOsm/kg} \times 2,025 \text{ L} & \quad 402 \text{ mOsm/kg} \times 2,025 \text{ L} \\
 1,154 \text{ osmóis} & \quad 814 \text{ osmóis} \\
 & \\
 \text{4. Clearence de água livre (CH$_2$O):} & \\
 \text{Uvol (mL) x (1 - UOsm/P\text{osm})} & \\
 2,025 \times (1 - 570/345) & = - 1320 \text{ mL} \\
 & \\
 \text{5. Clearence de água livre de electrolitos (CeH$_2$O):} & \\
 \text{Uvol (mL) x (1 - (U_{\text{Na}} \text{(mEq/L)} + U_{\text{K}} \text{(mEq/L)}) \times 165) = 2,025 \times (1 - (22 + 62)) = 957 mL} \\
 \text{P_{\text{Na}} \text{(mEq/L)}} & \\

 \end{align*}
 \]

Braz. J. Nephrol. (J. Bras. Nefrol.) 2020;42(1):106-112
Conforme ilustrado na Figura 1A, o volume urinário é composto por água e solutos. Os solutos podem ser divididos em eletrólitos (sódio, potássio, etc.) e não-eletrólitos (como ureia, glicose, creatinina, etc.). A parte do volume urinário necessária para excretar todos os solutos através de uma urina com concentração osmótica similar (isosomial) ao plasma é chamada de clarede urinária (ureia e osmóis mal dissociados). Já a parte do volume da urina que está livre de solutos representa o clearance de água livre (CH₂O). O CH₂O também pode ser conceituado como a quantidade de água que deve ser adicionada ou removida ao COsm para completar o volume total de urina medido nas 24 horas. Outro conceito importante é o clearance de água livre de eletrólitos (C₂H₂O), que consiste no volume da urina que está livre apenas dos solutos eletrólitos.

A modulação do CH₂O é dada em especial pelo hormônio antidiurético (ADH), que por sua vez é dependente da natremia. Em situações habituais, quando há elevação da osmolaridade plasmática, o CH₂O ficará negativo em decorrência da elevação do ADH, deixando a urina hiperosmolar em relação ao plasma, indicando que o organismo está conservando água. Inversamente, quando a osmolaridade plasmática reduzir, o valor do CH₂O será positivo e a osmolaridade urinária será menor que a plasmática, indicando que o organismo está perdendo água. Todavia, como veremos adiante, é o C₂H₂O que de fato expressará perda ou retenção de água em relação às mudanças no sódio plasmático.

A osmolaridade plasmática e urinária englobam predominantemente em seus cálculos as concentrações de sódio, potássio, glicose e ureia (Box 1). Entretanto, a ureia, por não ter carga elétrica e movimentar-se livremente do intra para o extracelular no plasma, não é capaz de gerar gradiente osmótico efetivo. Assim, mesmo com níveis plasmáticos elevados, ela não pode determinar alterações dos níveis de ADH. Por outro lado, apesar de ser parcialmente reabsorvida no túbuulo proximal, em altas concentrações, a ureia comporta-se como um soluto não permeável, exercendo propriedades osmóticas. A ureia participa da concentração urinária ao se acumular no interstício medular, aumentando o gradiente gerado pelo mecanismo de contra-corrente para reabsorção de água. No entanto, existe uma proporção ótima entre a osmolaridade gerada pela ureia e pelos solutos não ureia de 0,2 a 1,2. Acima desse valor, o excesso de ureia excretada terá pequena ou nenhuma influência na concentração do interstício medular. Consequentemente, ela permanece nos túbulos e passará a ter efeito osmótico, responsável pela perda de água livre de eletrólitos. Esse mecanismo dará origem à hipernatremia. Do ponto de vista prático, além da relação entre a porção da osmolaridade urinária gerada pela ureia e pelos solutos não ureia > 1,2, a concentração urinária de ureia superior a 250 mmol/L (> 1,500 mg/dL) também sugere a presença do efeito osmótico.

Além da geração excessiva de ureia, a diurese osmótica pode estar presente nas seguintes situações: glicosúria (> 250 mmol/L ou > 4,5g/dL), uso de manitol e durante a fase de recuperação de lesão renal aguda (LRA). Nesta situação, a osmolaridade urinária será superior à osmolaridade plasmática às custas de solutos não eletrólitos, e o CH₂O estará negativo por considerar no seu cálculo a osmolaridade urinária por todos os solutos, sugerindo equivocadamente retenção de água (Box 1 e Figura 1B). Dessa forma, o cálculo do C₂H₂O, por não considerar os níveis de ureia e os outros solutos não eletrólitos em sua fórmula, é mais acurado que o CH₂O para predizer se está ocorrendo perda ou retenção de água. Adicionalmente, diante de um contexto de hipernatremia, também podemos inferir que está ocorrendo perda de água livre quando a soma das concentrações de Na⁺ + K⁺ da urina for menor que a concentração de Na⁺ do plasma (|U_NaK/P_Na| > 1). Portanto, a diurese osmótica deve ser suspeitada quando a osmolaridade urinária > 300 mOsm/L (ou superior à plasmática) na presença de elevado volume de urina (em geral > 2,5 L/24h), associado a CH₂O negativo e C₂H₂O positivo. Ela é confirmada quando a taxa de excreção de solutos não eletrólitos for superior a 600 mOsm/24h (Figura 2). É importante ressaltar que o volume urinário pode estar < 2,5 L/24h quando houver LRA concomitante ou perda significativa extrarenal de água.

No caso em questão, a concentração de ureia na urina foi de 2.413 mg/dL, responsável por 402 mOsm/L dos 570 mOsm/L da osmolaridade urinária (relação da osmolaridade gerada pela ureia/solutos não ureia = 2,39), deixando evidente a contribuição da ureia no total de osmóis da urina (814 mOsm do total de 1.154 mOsm) (Tabela 1). Apesar de a paciente ter hiperiglicemia, a glicosúria foi irrisória, não sendo o fator responsável pela diurese osmótica. O elevado nível plasmático de ureia presente neste caso pode estar relacionado aos seguintes fatores: uso de elevadas doses de corticoide, dieta hiperproteica e
Hipernatremia secundária à diurese osmótica induzida por ureia

Figura 1. A. Composição do volume urinário e sua relação com o clearance osmolar (COsm), o clearance de água livre (CH$_2$O) e o clearance de água livre de eletrólitos (CE) em diferentes situações de tonicidade da urina: iso-osmolar, hipertônica e hipotônica. B. Situação habitual durante a eliminação de uma urina hipertônica: o CH$_2$O é negativo, cenário em que o organismo retém água. Isso ocorre pelo aumento da reabsorção de água livre de solutos no ducto coletor por ação do hormônio antidiurético, o que é referido como TH$_2$O. Observe que o C$_2$H$_2$O também é negativo, representando que a maior parte dos solutos (osmóis) da urina são compostos por eletrólitos, Na e K (CE). Inversamente, no cenário de diurese osmótica, o cálculo do CH$_2$O também é negativo, porém o C$_2$H$_2$O é positivo, demonstrando que a maior parte dos solutos são compostos por não eletrólitos (CNE>CE) e a maior parte do volume urinário está destinada para excretá-los, ao invés de solutos eletrólitos, configurando perda de água, e não retenção. CE = clearance de eletrólitos; CNE = clearance de não eletrólitos; Uosm = osmolaridade urinária; Posm = osmolaridade plasmática.

Figura 2. Algoritmo de investigação diagnóstica da hipernatremia induzida por ureia.
hipercatabolismo associado ao quadro infeccioso. Se
considerarmos apenas a geração de ureia pela dieta
hiperproteica, teríamos uma produção aproximada
de 36 g de ureia (≈ 34% do conteúdo proteico inge-
rido) do total de 48,9 g (Tabela 1), indicando que há
outros fatores associados.

Pelo exposto acima, a paciente apresentava os-
molaridade urinária maior que a plasmática (570
mOsm/L vs. 345 mOsm/L) e valor do CH₂O negativo
de 1.320 mL, sugerindo retenção de água no contexto
de hipernatremia. Entretanto, o valor do CH₂O po-
sitivo de 957 mL/dia, e (U₂₄₆₂)/(P₄₆₅₆) < 1, indica que
há perda de água livre. Através do CH₂O positivo é
possível notar que a urina na verdade está diluída, e
não concentrada em relação ao plasma, visto que os
eletrólitos são responsáveis por apenas 168 mOsm/L
dos 570 mOsm/L da osmolaridade urinária. A hipe-
romolaridade da urina se dá às custas de ureia. Não
há, portanto, retenção de água, e sim perda de água
livre.

Importante mencionar que o aumento dos níveis
plasmáticos de sódio observado nos primeiros dias de
internação (D₅) não esteve relacionado à geração ex-
cessiva de ureia, e sim ao uso de furosemida, prescrita
no quarto dia devido à congestão pulmonar, oligúria
e edema de membros inferiores, no contexto da fá-
lha de extubação associada ao laringoespasmo. Ela
também foi responsável pela alcalose metabólica e hi-
pocalemia observadas na Tabela 1. Foi suspensa no
décimo segundo dia por piora da função renal, apesar
de ainda manter balanço hídrico acumulado positivo.
A hipernatremia associada à diurese osmótica induzi-
da por ureia em geral se apresenta mais tardiamente
durante a internação hospitalar, conforme observado
neste relato, visto a necessidade de maior tempo para
uma geração excessiva de ureia pelos fatores desenca-
deantes mencionados acima.

Diversos fatores somaram-se ao longo da interna-
ção e resultaram no estágio de hipernatremia hipervo-
lêmica encontrado no nosso caso. Foram eles: sobre-
carga hidrossalina, retenção de sódio pelo corticoide,
oligúria secundária à injúria renal, uso de furosemida
e a maior perda de água relativa à perda de sódio du-
rante a diurese osmótica. A hipernatremia hipervo-
lêmica também tem sido relatada durante a fase de
recuração da injúria renal em pacientes previa-
te expostos a severa sobrecarga hidrossalina. Durante
essa fase, apesar da melhora progressiva do ritmo de
filtração glomerular, os mecanismos de reabsorção
tubular de ureia e de concentração urinária ainda
persistem comprometidos, e a filtração do excesso
de ureia acumulada no plasma favorecerá a diurese
osmótica.⁶ Isso pode ser observado no presente caso,
visto que foi durante o período de início da queda
de creatinina plasmática (D₁₂->D₁₄, Tabela 1) que o
nível plasmático do sódio alcançou seu maior valor.

Em adição, a poliúria esperada durante a fase de
diurese osmótica não foi evidente no nosso caso de-
vindo à perda extrarrenal de água por diarreia e fe-
bre e pela injúria renal aguda. Inversamente, quando
não há LRA e sobrecarga hidrossalina precedendo ou
concomitante à geração excessiva de ureia, a hiper-
natremia cursará com poliúria e hipovolemia (Figura
2). Devido à elevação plasmática desproporcional de
ureia em relação à creatinina, o quadro pode mimeti-
zar um padrão de LRA pré-renal.

A hipernatremia, e o estado hiperosmolar associa-
do, promovem uma infinidade de efeitos nas funções
corporais, resumidas na Figura 3.¹⁰,¹¹ No sistema ner-
vo central, a hiperosmolalidade desloca água livre
do espaço intracelular, retraindo as células cerebrais,
o que pode causar ruptura vascular. Esse efeito pode ter contribuído para o desenvolvi-
mento do AVC da nossa paciente. A prioridade do
tratamento é a retirada do fator causal e o aumento
da oferta de água filtrada por via oral ou por sonda
nasoentérica (Figura 2). Mesmo utilizando-se de uma
solução hipotônica a 0,45% (Osm: 154 mOsm/L),
haverá pouco ou nenhum efeito sobre a redução do
sódio, pois a osmolaridade dessa solução sempre es-
tará próxima à fração da osmolaridade determina-
da pelos eletrólitos na urina (no nosso caso, de 168
mOsm/L).¹² Quando a hipovolemia estiver presente,
no uso de diuréticos tiazídicos podem contribuir para
o tratamento. Os tiazídicos aumentam a excreção de
sódio no néfron distal numa proporção maior do que
o aumento da volume urinário, levando à redução do
CH₂O.¹² Nos casos cuja função renal está em fase de
recuperação, a resolução da hipernatremia ocorrerá
dias. Caso contrário, a indicação de diálise poderá
ser necessária.

Em resumo, os efeitos deletérios da hipernatremia
reforçam a necessidade da investigação diagnóstica
criteriosa e do conhecimento da fisiopatologia des-
se distúrbio. A hipernatremia associada à diurese
osmótica por geração excessiva de ureia deve fazer
parte do diagnóstico diferencial das causas de hiper-
natremia no ambiente de terapia intensiva. Dietas e
Hipernatremia secundária à diurese osmótica induzida por ureia

Figura 3. Representação das múltiplas consequências da hipernatremia e da hiperosmolaridade no organismo. Adaptado de Lindner G e cols.¹¹

suplementos hiperproteicos, estado de hipercatabolismo, uso de altas doses de corticoides e sangramento do trato gastrointestinal estão entre os principais fatores causais, especialmente no contexto de recuperação de LRA. O conceito do C₃H₂O é essencial para o diagnóstico dessa causa de hipernatremia.

REFERÊNCIAS

1. Lindner G, Funk GC, Schwarz C, Kneidinger N, Kaida A, Schneeweiss B, et al. Hypernatremia in the critically ill is an independent risk factor for mortality. Am J Kidney Dis 2007;50:952-7.
2. Arora SK. Hypernatremic disorders in the intensive care unit. J Intensive Care Med 2013;28:37-45.
3. Lindner G, Schwarz C, Funk GC. Osmotic diuresis due to urea as the cause of hypernatremia in critically ill patients. Nephrol Dial Transplant 2012;27:962-7.
4. Bodonyi-Kovacs G, Lecker SH. Electrolyte-free water clearance: a key to the diagnosis of hypernatremia in resolving acute renal failure. Clin Exp Nephrol 2008;12:74-8.
5. Oster JR, Singer I, Thatte L, Grant-Taylor I, Diego JM. The polyuria of solute diuresis. Arch Intern Med 1997;157:721-9.
6. Gennari FJ, Kassirer JP. Osmotic diuresis. N Engl J Med 1974;291:714-20.
7. Steinmetz PR, Smith HW. Urea and the renal concentrating operation in man. Am J Med 1963;35:727-36.
8. Mathisen O, Raeder M, Kiil F. Mechanism of osmotic diuresis. Kidney Int 1981;19:431-7.
9. Sam R, Hart P, Haghighat R, Ing TS. Hypervolemic hypernatremia in patients recovering from acute kidney injury in the intensive care unit. Clin Exp Nephrol 2012;16:136-46.
10. Heinemann HO, Demartini FE, Laragh JH. The effect of chlorothiazide on renal excretion of electrolytes and free water. Am J Med 1959;26:853-61.