A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly

François Robert¹, Marco Blanchette³, Olivier Maes¹, Benoit Chabot³, and Benoit Coulombe¹,² *

¹ Laboratory of Gene Transcription
Institut de Recherches Cliniques de Montréal
110 Avenue des Pins Ouest
Montréal (Québec) H2W 1R7 Canada

² Département de biochimie
Université de Montréal, Canada

³ Département de microbiologie et d’infectiologie
Faculté de médecine
Université de Sherbrooke
Sherbrooke, Québec, J1H 5N4, Canada

* Corresponding author
Tel.: (514) 987-5662; Fax: (514) 987-5663; E-mail: coulomb@ircm.qc.ca

Running title:
Splicing factors associated with RNA polymerase II
SUMMARY

Transcription and splicing are coordinated processes in mammalian cells. We have used affinity chromatography with immobilized transcription elongation factor SII to purify a protein complex that contains core RNA polymerase II (RNA Pol II), the general transcription initiation factors and several splicing factors, including the U1, U2 and U4 snRNPs, the U2AF65 and SR proteins. The splicing factors and the transcription machinery co-purify through a gel filtration column and co-immunoprecipitate in experiments using an anti-U2AF65 antibody, indicating that they are part of a unique complex. Although the RNA Pol II-containing complex does not possess splicing activity, it can complement snRNP-inactivated extracts and can promote the formation of a pre-spliceosome complex. Because interactions between components of the splicing and transcription machineries occur in the context of a complex containing a hypophosphorylated RNA Pol II capable of initiating transcription, our results suggest that the coupling between transcription and splicing begins before transcription initiation.
INTRODUCTION

The splicing of pre-mRNA in mammalian cells is the nuclear process during which introns are removed from primary transcripts synthesized by RNA polymerase II (RNA Pol II). Splicing is achieved by the spliceosome, a large macromolecular complex, composed of small nuclear ribonucleoprotein (snRNP) particles and additional proteins including members of the serine/arginine-rich (SR) protein family (reviewed in 1 and 2). Cytological studies have revealed that splicing can occur in a co-transcriptional manner (see 3 and 4 for examples), and that factors necessary for splicing are recruited to sites of transcription (5-7). A growing body of data indicates that coupling between transcription and a variety of RNA maturation events may be achieved through the carboxy-terminal domain (CTD) of the RPBI subunit of RNA Pol II (reviewed in 8-11). The CTD is a seven-amino acid motif tandemly repeated 52 times in humans and 26-27 times in yeast. It is highly conserved among eukaryotic organisms, and is subject to reversible phosphorylation during the transcription cycle (reviewed in 12 and 13). Two isoforms of RNA Pol II exist in vivo, namely RNA Pol IIA and IIO. RNA Pol IIA possesses an hypophosphorylated CTD and preferentially enters the pre-initiation complex whereas RNA Pol IIO harbors an extensively phosphorylated CTD and is found in the elongation complex (13, 14). Biochemical studies indicate that RNA Pol II physically interacts with components involved in capping (15-18), polyadenylation (19) and splicing (20-24). Whereas a phosphorylated CTD is essential for the interaction with capping enzymes, the polyadenylation factor CPSF is brought to the transcription complex through an interaction with TFIID, and transferred to the phosphorylated CTD after transcription initiation (19,25). The phosphorylated RNA Pol IIO isoform has been found to associate with splicing factors, and has been identified in active spliceosomes (21-23). Truncation of the CTD leads to inefficient capping, polyadenylation and splicing in cultured mammalian cells (16,19). Both the overexpression of phosphorylated CTD peptides (26) and the use of antibodies directed against the CTD, have been shown to inhibit splicing (20,23,24). These results suggest that the phosphorylated CTD of RNA Pol II provides an interface for the recruitment of splicing factors. Whereas the mechanisms by which the CTD presents splicing factors to the nascent pre-mRNA remain unclear, a recent study suggests that the CTD might play an active role (27).
Initiation of transcription by RNA Pol II can be achieved \textit{in vivo} by large multiprotein complexes called RNA Pol II holoenzymes (reviewed in \textit{28} and \textit{29}). Various forms of holoenzymes have been isolated from mammalian cells, and all have been found to contain core RNA Pol II and a number of general transcription factors that are required for accurate transcription initiation \textit{in vitro} (\textit{30}). Here, we report that snRNPs, U2AF\textsubscript{65} and SR proteins are part of a RNA Pol II holoenzyme (hereafter called RNA Pol II-containing complex) purified by affinity chromatography using transcription elongation factor SII. The splicing factors associated with this RNA Pol II-containing complex can function in splicing reactions, and can promote the assembly of a pre-spliceosome complex \textit{in vitro}. Our data support a model in which coordination between transcription and splicing begins prior to transcription initiation by RNA Pol II.

EXPERIMENTAL PROCEDURES

Affinity purification of RNA polymerase II-containing complexes

RNA Pol II-containing complexes were purified from HeLa whole cell extract as described previously (\textit{31}). Briefly, a HeLa whole cell extract in ACB buffer (10 mM Hepes pH 7.9, 0.1 mM EDTA, 0.1 mM DTT and 10% glycerol) containing 50 mM NaCl was loaded on a GST-SII affinity column. The column was washed with ACB buffer containing 50 mM NaCl, and eluted with ACB buffer containing 300 mM NaCl. An equivalent GST column was used as a control. The eluate from the GST-SII affinity column was further purified by chromatography through a Sepharose CL2B gel filtration column in ACB containing 50 mM NaCl and 20% glycerol (\textit{31}). Samples were concentrated 5-10 fold before use in Western blot and transcription assays. The RNA Pol II-containing complexes were found to elute slightly faster than Dextran blue on the CL2B column.

Transcription assay

Transcription reactions were performed as described by Pan et al. (\textit{31}) using the adenovirus major late promoter fused to a G-less cassette as template (\textit{32}). Run-off transcripts were analyzed on 8% denaturating polyacrylamide gels.
Immunoprecipitation

The GST-SII-column eluate (10 µg) was treated with RNase A (0.5 µg) for 30 min at room temperature, and then incubated with protein A-Sepharose beads (25 µl) which had previously been bound to 5 µl of either anti-U2AF65 or pre-immune rabbit serum in a final volume of 1 ml of immunoprecipitation buffer (20 mM Heps pH 7.9, 150 mM KOAc, 1 mM DTT, 1 mM EDTA, 20% glycerol, 0.5% NP40) supplemented with bovine serum albumin (625 µg). The beads were washed 3 times with immunoprecipitation buffer, resuspended in loading buffer and boiled for 5 min. The proteins were separated using a 12.5 % SDS gel and were transferred to PVDF filters which were then probed with specific antibodies.

S100 complementation assay

The 32P-labeled RNA transcripts used in the splicing assays were prepared as described (33). The S100 fraction (34) and the SR proteins (35) were prepared as previously described. Either 87.5, 175 or 350 ng of purified SR proteins, or 2.5, 5, and 10 µg of GST-SII eluate were used to complement the splicing activity of the S100 extract.

SnRNA complementation assays

Specific snRNAs were removed from HeLa nuclear extracts and GST-SII-column eluates by incubation with oligonucleotides (25 ng/µl) complementary to different snRNAs and RNase H (1 unit/µl) for 90 min at 37°C (36). For the U4 depletion, ATP (0.5 mM) and creatine phosphate (20 mM) were also included in the depletion procedure. The sequences of the oligonucleotides used are available upon request. Splicing assays were performed as described for the S100 complementation assay, except that nuclear extracts or depleted-nuclear extracts were used as sources of splicing factors, and were complemented using 10 µg of either GST-SII eluates or snRNA-depleted GST-SII-column eluates as described in the figure legends.

Splicing complex formation

Radiolabeled adenovirus transcript (~5 fmol) (33) was incubated with nuclear extract (2.5
µl), U2-depleted nuclear extract (2.5 µl), GST-SII-column eluate (2.5 µg), or U2-depleted GST-
SII-column eluate (2.5 µg) under conditions identical to those used for the splicing reactions.
Aliquots were collected at different time points, and analyzed on 3.5% acrylamide: 0.043% bisacrylamide native gels.

RESULTS

Affinity purification of a human RNA polymerase II-containing complex that also contains
splicing factors

The transcription elongation factor SII (also called TFIIS) has previously been used as a
ligand in protein-affinity chromatography for the purification of a RNA Pol II-containing
complex that contains core RNA Pol II and the general transcription factors (31), as well as
capping and polyadenylation factors (16,19). The size of this complex is estimated to be in the
2-4 MDa range, sedimenting as a 70S particle (31). The RNA Pol II-containing complex is
sensitive to high salt concentrations and increasing the Na+/K+ concentration above 0.3 M causes
its dissociation in subcomplexes (data not shown). We show here that the eluate from a GST-SII
column, but not from a GST control column, contains SR proteins, at least one Sm protein, the
Y12-68K polypeptide and the U2AF65 splicing factor (Fig. 1). While the eluate contains the bulk
of U2AF65 and is enriched for a subset of SR proteins, it contains a smaller proportion of the
total Y12-68K and Sm proteins. In agreement with Greenblatt and colleagues (31), the general
transcription initiation factors including TBP, TFIIB, TFIIE, TFIIF and TFIIH, and core RNA Pol
II are present in the GST-SII-column eluate (Fig. 1 and data not shown). As revealed by Western
blot experiments with the N-20 antibody that specifically recognizes the N-terminus of RPB1
(Fig. 1, first panel), the RNA Pol II in the complex corresponds to the hypophosphorylated IIA
form (i.e. the form involved in transcription initiation), which we estimated to be a 100-fold more
abundant than the hyperphosphorylated IIO form in the complex preparation. This observation
was confirmed by Western blot experiments with antibodies that specifically recognize either the
IIA (Ab 8WG16) or the IIO (Ab CC3) forms of RNA Pol II. By comparing the ratios of RNA
Pol IIA over the total amount of proteins in the WCE and the SII-column eluate, we estimated
the purification factor of the SII-affinity column to be approximately a 1000 fold. The association
of splicing factors with a complex containing the hypophosphorylated IIA form of RNA Pol II and capable of transcription initiation (see below) contrasts with previous reports that have
documented an interaction between splicing factors and RNA Pol IIO or a phosphorylated CTD (20,22).

To confirm that the splicing and transcription factors are part of the same multiprotein complex, we submitted the GST-SII-column eluate to a gel filtration column and an immunopre-
ceptation experiment. Following a Sepharose CL2B gel filtration column, the splicing factors
continue to co-purify with core RNA Pol II and the general transcription factors RAP74 and
TFIIEα (Fig. 2A), indicating that all these splicing and transcription factors are either part
of a unique complex, or are distributed in a collection of complexes of similar molecular
masses. Virtually all the polypeptides that had bound to the GST-SII column co-migrated on the
Sepharose CL2B column (data not shown), again indicating that the proteins that had bound to
SII are part of a single complex or a set of complexes of similar molecular weight. As determined
by the synthesis of a 400-nucleotide run-off transcript accurately initiated from the adenovirus
major late promoter in vitro, the transcriptional activity found in the GST-SII-column eluate also
co-purifies with the splicing factors, core RNA Pol II and the general initiation factors (Fig. 2B).
In addition, and notably, core RNA Pol II is recovered from both the GST-SII-column eluate and
the crude whole cell extract in immunoprecipitation experiments using an anti-U2AF65 antibody,
but not a control antibody (Fig. 3). Extensive treatment with RNase A does not dissociate
U2AF65 from RNA Pol II in co-immunoprecipitation assays (Fig. 3), clearly demonstrating that
the splicing machinery is primarily associated with the complex via protein-protein interactions.
Together, these results provide compelling evidence that several components of the splicing
machinery are tightly associated with a RNA Pol II-containing complex that is fully capable of
initiating transcription in vitro, suggesting that coordination between splicing and transcription
begins prior to transcription initiation.
The splicing factors associated with the RNA polymerase II-containing complex can function in splicing reactions

Although the RNA Pol II-containing complex displays transcriptional activity and contains many splicing factors, it failed to splice a simple pre-mRNA in vitro (data not shown), suggesting that at least one essential splicing factor is missing and/or that some factors in the preparation are inactive. To assess the activity of the SR proteins present in the RNA Pol II-containing complex, we used the GST-SII-column eluate to complement splicing reactions performed with a HeLa S100 extract. S100 extracts are known to contain all the factors required for accurate splicing of a pre-mRNA in vitro except the SR proteins (37). Figure 4A shows the human RNA Pol II-containing complex complementing the S100 extract (lanes 7-9) with an efficiency comparable to that of purified SR proteins (lanes 4-6), whereas the eluate from a GST control column does not (lane 10). Clearly, the SR proteins that are associated with the RNA Pol II-containing complex can function in pre-mRNA splicing in vitro.

The presence of Y12-68K and the Sm proteins in the GST-SII-column eluate, as detected by Western blot analysis (see Fig. 1), suggests that at least the U1 snRNP particle is associated with the RNA Pol II-containing complex. To identify the snRNPs present in the complex, we used a splicing assay performed with nuclear extracts that had specific snRNAs inactivated by treatment with RNase H and specific anti-sense oligonucleotides (36). Figure 4B shows that the RNA Pol II-containing complex preparation can stimulate the splicing activity of nuclear extracts depleted of U1, U2 or U4 snRNAs (lanes 4, 8 and 12). In each case, restoration of splicing activity was due to the presence of U1, U2 or U4 snRNAs in the RNA Pol II-containing complex, since GST-SII-column eluates depleted of U1, U2 or U4 did not restore the splicing activity of nuclear extracts depleted of the same snRNA (compare lane 3 with lane 6, lane 7 with lane 10, and lane 11 with lane 14 in Fig. 4B). Because the bulk of U4 snRNA exists in association with U5 and U6 in the form of a tri-snRNP complex (2), these data suggest that the human RNA Pol II-containing complex is associated with all the spliceosomal snRNPs.
The splicing factors associated with the RNA polymerase II-containing complex can form a pre-spliceosomal complex

To determine whether the splicing factors associated with the RNA Pol II-containing complex can support the assembly of splicing complexes, the GST-SII-column eluate was incubated with a radiolabeled transcript containing an adenovirus splicing cassette. Complex formation was analyzed on native polyacrylamide gels. Figure 5 shows that the factors in the RNA Pol II-containing complex can support the assembly of complexes with an efficiency nearly comparable to that of a nuclear extract (compare lanes 2-5 with lanes 10-13). One of these complexes (RP) nearly co-migrates with spliceosomal complex A and its formation is severely compromised by inactivation of U2 snRNA (compare lanes 6-9 to 14-17). These results indicate that the splicing factors present in the RNA Pol II-containing complex preparation can be efficiently utilized to promote the assembly of a pre-spliceosomal complex.

DISCUSSION

Because the physical interaction between RNA Pol II and splicing factors was shown initially to occur with a phosphorylated CTD (20-23), coupling between transcription and splicing was thought to begin during transcription elongation. The fact that an RNA Pol II-containing complex exists in association with various components of the splicing machinery, and that the CTD in the RNA Pol II-containing complex is hypophosphorylated implies that coupling can be initiated before transcription begins. Thus, a phosphorylated CTD is not absolutely required for the interaction of splicing factors with transcription complexes, suggesting that splicing factors can associate with an as yet unidentified component of the transcription machinery. Interactions between splicing factors and the general transcription machinery, including the transcription initiation factors TBP (38) and TFIIH (J. M. Egly, personal communication), have been reported. The splicing components that interact with the RNA Pol II-containing complex include SR proteins and snRNPs, factors that also associate with hyperphosphorylated RNA Pol II (20,22,23). In addition, we document for the first time the interaction of U2AF65 with transcription complexes. Thus, as shown by the capacity of the RNA Pol II-containing complex
to support splicing complex formation, all the components required for committing a pair of splice sites are part of the complex. However, the complex preparation cannot support splicing of a pre-mRNA, as if it is lacking one (or some) component(s) of the spliceosome. The identity of the splicing factor(s) that is lacking from the complex remains unknown. As is the case for the polyadenylation factor CPSF (25), we propose that CTD phosphorylation may trigger the transfer of splicing factors from the non-CTD site to the phosphorylated CTD (see Fig. 6 for a model). Splicing factors may then escort the elongating RNA Pol II until they are loaded onto the nascent pre-mRNA when appropriate RNA sites emerge from the elongating enzyme.

While our results suggest that the coupling between transcription and splicing occurs before transcription is initiated, it is difficult to envision how the initial loading of splicing factors can sustain the splicing of multiple introns on a single pre-mRNA. An attractive possibility is that the non-CTD portion of the RNA Pol II-containing complex that interacts with splicing factors facilitates the continuous recruitment of splicing factors to the elongating enzyme as previous sets of splicing factors are transferred to the CTD (see Fig. 6). Because the CTD and the RNA exit channel are closely juxtaposed in the initiation complex (39,40), transit through the CTD may facilitate their unloading to the nascent pre-mRNA. If not loaded rapidly after transcription, secondary structure formation on the pre-mRNA may compromise the recognition of splicing signals by splicing factors.

The association of splicing factors with a RNA Pol II-containing complex capable to initiate transcription also suggests that transcription initiation may play a critical role in the control of splicing. Consistent with this view, Cramer et al. (41,42) have shown that the identity of the promoter can influence the SR-dependent alternative splicing of a fibronectin pre-mRNA. Although recent studies have linked such effects to differences in the processivity of polymerase complexes (43,44), it remains possible that various forms of RNA Pol II-containing complexes with different subsets of splicing factors may be recruited to different promoters in preparation for the accurate regulation of downstream splicing events. However, regulatory splicing factors
that are recruited in initiation complexes may be used in the constitutive splicing of introns before
the transcription machinery reaches the alternative splicing unit. The continuous recruitment of
the same subset of regulatory splicing factors may be achieved if the assembly of transcription
initiation complexes localizes transcription sites near regions that are specifically enriched in
such factors. Thus, the model posits that the identity of the splicing regulators would be
determined by interactions with transcription factors bound to the promoter. During transcription
elongation, the phosphorylated CTD portion of RNA Pol II would act as a transit platform,
esential for the efficient downloading of splicing factors to the nascent pre-mRNA.

ACKNOWLEDGMENTS

We are grateful to Jack Greenblatt and members of our laboratories for helpful discus-
sions. We thank J. Patton for kindly providing anti-U2AF65 antibody. We thank Will Home for
comments on the manuscript, and Diane Bourque for help with the figures. F.R. and M.B. hold
studentships from the Fonds pour la Formation de Chercheurs et l’Aide à la Recherche and the
Medical Research Council of Canada, respectively. This work was supported by grants from
the Medical Research Council of Canada (to B. Coulombe and B. Chabot), the Cancer Research
Society Inc. (to B. Coulombe) and the National Cancer Institute of Canada (to B. Chabot). B.
Coulombe is a scholar from the Fonds de la Recherche en Santé du Québec and B. Chabot holds
a Canada Research Chair in Functional Genomics.
FIGURE LEGENDS

Fig. 1. Association of splicing factors with a human RNA Pol II-containing complex. SR proteins, the U2AF65 factor, the Y12-68K polypeptide and Sm proteins co-purify with a RNA Pol II-containing complex on a GST-SII-affinity column. Western blot analysis of purified SR proteins (lane 1), HeLa nuclear extract (NE) (lane 2), HeLa whole cell extract (WCE) (lane 3), the GST-SII-column eluate (lane 4) and the GST column eluate (lane 5) was performed using antibodies directed against N-terminus of the RPB1 subunit of RNA Pol II (Ab N-20) and detecting both the hypophosphorylated (IIA) and hyperphosphorylated (IIO) forms. Antibodies directed against different general transcription factors were also used (only experiments using anti-TBP and anti-RAP30 are shown). In addition, the mAb104 and Y12 antibodies revealed the presence of SR, Sm and Y12-68K proteins.

Fig. 2. Co-migration of the SR splicing factors with the RNA Pol II-containing complex and transcriptional activity on a gel filtration column. (A) Co-purification of SR proteins with the general initiation factors and core RNA Pol II. The GST-SII-column eluate was chromatographed through a Sepharose CL2B column, and the resulting concentrated fractions analyzed by Western blot using antibodies directed against RPB1 (form IIA), RAP74, TFIIE$^\alpha$ and SR proteins. (B) The RNA Pol II-containing complex is active in in vitro transcription. The GST-SII-column eluate was chromatographed through a Sepharose CL2B gel filtration column, and the resulting fractions tested in transcription assays in vitro. The position of the run-off transcript (400 nt) is indicated.

Fig. 3. Immunoprecipitation of the RNA Pol II-containing complex using anti-U2AF65 before, or following, an extensive treatment with RNase A. The SII-column eluate (Top Panel) and the crude whole cell extract (WCE; Bottom Panel) were either treated (+) or not treated (-) with RNase A, and then immunoprecipitated using either an anti-U2AF65 (αU2AF65) or a pre-immune (Mock) antibody. A proportion (5%) of the loading reactions (L) and the whole pellets (P) were then analyzed by Western blot using an anti-Pol IIA antibody (Ab 8WG16).
Fig. 4. Functional SR proteins and U1, U2 and U4 snRNPs associated with the RNA Pol II-containing complex. (A) The RNA Pol II-containing complex can complement the splicing activity of an S100 extract. Splicing reactions were performed using either a HeLa nuclear extract (lane 2) or an S100 extract alone (lane 3), or supplemented with increasing amounts of purified SR proteins (lanes 4 to 6), the GST-SII-column eluate (lanes 7 to 9) or the GST column eluate (lane 10). Lane 1 contained the pre-mRNA alone. (B) The RNA Pol II-containing complex can complement the splicing activity of nuclear extracts depleted of U1, U2 and U4 snRNAs. Splicing assays were performed using either an untreated nuclear extract (NE; lane 1), or nuclear extracts depleted using a mock oligonucleotide (NEΔmock; lane 2), the U1-specific oligonucleotide (NEΔU1; lanes 3-6), the U2-specific oligonucleotide (NEΔU2; lanes 7-10) or the U4-specific oligonucleotide (NEΔU4; lanes 11-14). Some reactions were complemented using the RNA Pol II-containing complex (lanes 4, 8 and 12), or the RNA Pol II-containing complex depleted using the mock oligonucleotide (lanes 5, 9 and 13), the U1-specific oligonucleotide (lane 6), the U2-specific oligonucleotide (lane 10) or the U4-specific oligonucleotide (lane 14). The positions of the splicing products are indicated.

Fig. 5. Efficient formation of a U2-dependent complex by splicing factors associated with the RNA Pol II-containing complex. Nuclear extracts (lanes 2-5) and the RNA Pol II-containing complex (lanes 10-13) were incubated with an adenovirus pre-mRNA containing a splicing cassette. A nuclear extract (NEΔU2; lanes 6-9) and the RNA Pol II-containing complex (HoloΔU2; lanes 14-17) depleted of snRNA U2 were used as controls. Splicing complex formation was monitored over time as indicated. The positions of the H and A complexes formed in nuclear extracts are indicated. The RNA Pol II-containing complex also leads to the assembly of a U2-dependent complex (RP) that nearly migrates with the A complex.
Fig. 6. A model for transcription-coupled splicing. (A) Splicing factors (SF) involved in pre-spliceosomal complex formation are part of the RNA Pol II-containing complex in association with a non-CTD site located either on a transcription factor (TF) or core RNA Pol II (Pol II). (B) After transcription initiation, the CTD of RNA Pol II is phosphorylated and the splicing factors are transferred to the hyperphosphorylated CTD. The non-CTD site then becomes available for the recruitment of a new set of splicing factors. (C) The position of the CTD near the RNA exit channel of RNA Pol II allows binding and unloading of the splicing factors to the nascent transcript and formation of the spliceosome. Splicing factors at the non-CTD site could be transferred to the phosphorylated CTD in preparation for splicing of the next intron.
REFERENCES

1. Kramer, A. (1996) *Annu. Rev. Biochem.* **65**, 367-409.

2. Moore, M. J., Query, C. C. and Sharp, P. A. (1993) In Gesteland, R.F. and Atkins, J.F. (ed.) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 303-358.

3. Bauren, G. and Wieslander, L. (1994) *Cell* **76**, 183-192.

4. Beyer, A. L., Yvonne, N. and Osheim, Y. N. (1988) *Genes Dev.* **2**, 754-765.

5. Misteli, T. and Spector, D. L. (1999) *Mol. Cell* **3**, 697-705.

6. Misteli, T., Caceres, J. F. and Spector, D. L. (1997) *Nature* **387**, 523-527.

7. Zhang, G., Taneja, K. L., Singer, R. H. and Green, M. R. (1994) *Nature* **372**, 809-812.

8. Corden, J. L. and Patturajan, M. (1997) *Trends. Biochem. Sci.* **22**, 413-416.

9. Lewis, J. D. and Tollervey, D. (2000) *Science* **288**, 1385-1389.

10. Proudfoot, N. (2000) *Trends Biochem. Sci.* **25**, 290-293.

11. Steinmetz, E. J. (1997) *Cell* **89**, 491-494.

12. Corden, J. L. (1990) *Trends Biochem. Sci.* **10**, 383-387.
13. Dahmus, M. E. (1996) *J. Biol. Chem.* **271**, 19009-19012.

14. O’Brien, T., Hardin, S., Greenleaf, A. and Lis, J. T. (1994) *Nature* **370**, 75-77.

15. Cho, E. J., Takagi, T, Moore, C. R. and Buratowski, S. (1997) *Genes Dev.* **11**, 3319-3326.

16. McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Amgen EST Program, Shuman, S. and Bentley, D. L. (1997) *Genes Dev.* **11**, 3306-3318.

17. Yue, Z., Maldonado, E., Pillutla, R., Cho, H., Reinberg, D. and Shatkin, A. J. (1997) *Proc. Natl. Acad. Sci. USA* **94**, 12898-12903.

18. Komarnitsky, P., Cho, E. J. and Buratowski, S. (2000) *Genes Dev.* **14**, 2452-2460.

19. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M. and Bentley, D. L. (1997) *Nature* **385**, 357-361.

20. Chabot, B., Bisotto, S. and Vincent, M. (1995) *Nucleic Acids Res.* **23**, 3206-3213.

21. Kim, E., Du, L., Bregman, D. B. and Warren, S. L. (1997) *J. Cell Biol.* **136**, 19-28.

22. Mortillaro, M. J., Blencowe, B. J., Wei, X., Nakayasu, H., Du, L., Warren, S. L., Sharp, P. A. and Berezney, R. (1996) *Proc. Natl. Acad. Sci USA* **93**, 8253-8257.

23. Vincent, M., Lauriault, P., Dubois, M.-F., Lavoie, S., Bensauze, O. and Chabot, B. (1996) *Nucleic Acids Res.* **24**, 4649-4652.
24. Yuryev, A., Patturajan, M., Litingtung, Y., Joshi, R. V., Gentile, C., Gebara, M. and Corden, J. L. (1996) Proc. Natl. Acad. Sci USA 93, 6975-6980.

25. Dantonel, J.-C., Murthy, K. G. K., Manley, J. L. and Tora, L. (1997) Nature 389, 399-402.

26. Du, L. and Warren, S. L. (1997) J. Cell Biol. 136, 5-18.

27. Hirose, Y., Tacke, R. and Manley, J. L. (1999) Genes Dev. 13, 1234-1239.

28. Greenblatt, J. (1997) Curr. Opin. Cell Biol. 9, 310-331.

29. Myer, V. E. and Young, R. A. (1998) J. Biol. Chem. 273, 27757-27760.

30. Coulombe, B. and Burton, Z. F. (1999) Microbiol. Mol. Biol. Rev. 63, 457-478.

31. Pan, G., Aso, T. and Greenblatt, J. (1997) J. Biol. Chem. 272, 24563-24571.

32. Coulombe, B., Killeen, M., Liljelund, P., Honda, B., Xiao, H., Ingles, C. J. and Greenblatt, J. (1992) Gene Expr. 2, 99-110.

33. Chabot, B. (1994) In Higgins, S.J. and Hames, B.D. (ed.) RNA processing -A Practical Approach. Volume 1. Oxford University Press, Oxford, UK, pp. 1-29.

34. Dignam, J. D., Lebovitz, R. M. and Roeder, R. G. (1983) Nucleic Acids Res. 11, 1475-1489.

35. Zahler, A. M., Lane, W. S., Stolk, J. A. and Roth, M. B. (1992) Genes. Dev. 6, 837-847.
36. Black, D. L., Chabot, B. and Steitz, J. A. (1985) *Cell* **42**, 737-750.

37. Fu, X. D. (1995) *RNA* **1**, 663-680.

38. Yoshida, T., Makino, Y. and Tamura, T. (1999) *FEBS Lett.* **457**, 251-254.

39. Douziech, M., Forget, D., Greenblatt, J. and Coulombe, B. (1999) *J. Biol. Chem.* **274**, 19868-19873.

40. Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A. and Kornberg, R. D. (2001) *Science* **292**, 1876-1882.

41. Cramer, P., Caceres, C. F., Cazalla, D., Kadener, S., Muro, A. F., Baralle, F. E. and Kornblihtt, A. R. (1999) *Mol. Cell* **4**, 251-258.

42. Cramer, P., Pesce, C. G., Baralle, F. E. and Kornblihtt, A. R. (1997) *Proc. Natl. Acad. Sci., USA* **94**, 11456-11460.

43. Roberts, G. C., Gooding, C., Mak, H. Y., Proudfoot, N. J. and Smith, C. W. J. (1998) *Nucleic Acids Res.* **26**, 5568-5572.

44. Kadener, S., Cramer, P., Nogues, G., Cazalla, D., de La Mata, M., Fededa, J. P., Werbajh, S. E., Srebrow, A. and Kornblihtt, A. R. (2001) *EMBO J.* **20**, 5759-5768.
FOOTNOTE

Abbreviations: CTD, carboxy-terminal domain; RNA Pol II, RNA polymerase II; RAP, RNA Pol II-associated protein; snRNP, small nuclear ribonucleoprotein; SR, serine/arginine-rich; TF, transcription factor.
Figure 1

- U2AF65
- SmB
- Y12-68K
- SRp30
- SRp40
- SRp55
- SRp70
- RAP30
- TBP
- Pol IIA
- Purified SR
- HeLa NE
- HeLa WCE
- GST-SII eluate
- GST eluate
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly
François Robert, Marco Blanchette, Olivier Maes, Benoit Chabot and Benoit Coulombe

J. Biol. Chem. published online December 31, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M110516200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts