1. Introduction

The last decade has seen the discovery of many new faint dwarf spheroidal (dSph) galaxies of the Milky Way (MW) (e.g. Willman et al. 2005; Belokurov et al. 2006; Zucker et al. 2006a; Belokurov et al. 2007; Walsh et al. 2007, and many more). Many of these dwarfs are less luminous than a globular cluster (or even an open cluster) and exhibit high velocity dispersions (given their luminous mass) (e.g. Simon & Geha 2007; Koch et al. 2009; Geha et al. 2009). Should these objects be in virial equilibrium, they are the most dark matter (DM) dominated objects known in the universe. They would exhibit mass-to-light (M/L) ratios of more than a thousand (e.g. Simon & Geha 2007; Fellhauer et al. 2008; Geha et al. 2009).

ACDM simulations (e.g. Millennium II simulation of Boylan-Kolchin et al. 2009, (Via Lactea INCITE simulation of Kuhlen et al. 2008) predict that a galaxy like our MW should be surrounded by hundreds, if not thousands of small DM haloes which could host a dwarf galaxy. The discrepancy between the known number of MW satellites and these predicted values is known as the ‘missing satellite problem’ (e.g. Klypin et al. 1999; Moore et al. 1999). The discovery of new faint dwarfs in the SDSS catalogue doubled the number of known satellites. Extrapolating to areas of the sky and distances not covered by the survey (e.g. Koposov et al. 2008; Maccio et al. 2009, 2010) may suggest that the missing satellite problem is now solved.

Amongst these ultra-faint galaxies are dwarfs which are extremely metal-poor (Kirby et al. 2008, and references therein), some show complex star formation histories (Leo T de Jong et al. 2008) and many of them show unusual morphologies (Coleman et al. 2007; Sand et al. 2009). Others seem to show signs of tidal disruption (Zucker et al. 2006b; Fellhauer et al. 2007; Muñoz et al. 2008).

Signs of tidal disruption and the fact that all known dwarfs seem to be aligned in a disc-like structure around the MW (e.g. Metz et al. 2008, 2009) has given rise to alternative explanations for the existence of those galaxies. These theories imply that most, if not all, of the MW dwarfs are in fact no more than disrupting star clusters or tidal dwarf galaxies hosting no DM at all (Pawlowski et al. 2011).

In this paper we focus on two of these new ultra-faint dwarfs, namely Leo IV (Belokurov et al. 2007) and Leo V (Belokurov et al. 2008). Their properties have been studied by many authors: for Leo IV: Moretti et al. 2009, Simon et al. 2010 (Sand et al. 2010) and for Leo V: (Walker et al. 2009a,b). We summarize a selection of the observational data in Tab. 1. The pair of galaxies is found at a rather large distance from the MW (154 and 175 kpc respectively). The two galaxies are extremely metal-poor (Kirby et al. 2008, and references therein), some show complex star formation histories (Leo T de Jong et al. 2008) and many of them show unusual morphologies (Coleman et al. 2007; Sand et al. 2009). Others seem to show signs of tidal disruption (Zucker et al. 2006b; Fellhauer et al. 2007; Muñoz et al. 2008).

Amongst these ultra-faint galaxies are dwarfs which are extremely metal-poor (Kirby et al. 2008, and references therein), some show complex star formation histories (Leo T de Jong et al. 2008) and many of them show unusual morphologies (Coleman et al. 2007; Sand et al. 2009). Others seem to show signs of tidal disruption (Zucker et al. 2006b; Fellhauer et al. 2007; Muñoz et al. 2008).

Signs of tidal disruption and the fact that all known dwarfs seem to be aligned in a disc-like structure around the MW (e.g. Metz et al. 2008, 2009) has given rise to alternative explanations for the existence of those galaxies. These theories imply that most, if not all, of the MW dwarfs are in fact no more than disrupting star clusters or tidal dwarf galaxies hosting no DM at all (Pawlowski et al. 2011).

In this paper we focus on two of these new ultra-faint dwarfs, namely Leo IV (Belokurov et al. 2007) and Leo V (Belokurov et al. 2008). Their properties have been studied by many authors: for Leo IV: Moretti et al. 2009, Simon et al. 2010 (Sand et al. 2010) and for Leo V: (Walker et al. 2009a,b). We summarize a selection of the observational data in Tab. 1. The pair of galaxies is found at a rather large distance from the MW (154 and 175 kpc respectively). The two galaxies are extremely metal-poor (Kirby et al. 2008, and references therein), some show complex star formation histories (Leo T de Jong et al. 2008) and many of them show unusual morphologies (Coleman et al. 2007; Sand et al. 2009). Others seem to show signs of tidal disruption (Zucker et al. 2006b; Fellhauer et al. 2007; Muñoz et al. 2008).

Table 1. Observational properties of Leo IV and Leo V. The data is mainly taken from de Jong et al. (2010).

Galaxy	Leo IV	Leo V
RA (J2000)	11° 22' 58.6" ± 1.6	11° 31' 8.3" ± 1.6
Dec (J2000)	00° 33' 6" ± 54"	02° 12' 57" ± 12"
Dist [kpc]	154 ± 5	175 ± 9
vVERS [km s⁻¹]	10.1	60.8
LV [L☉]	1.8 ± 0.8 x 10⁴	1.0 ± 0.8 x 10⁴
Mv	−5.8 ± 0.4	−5.2 ± 0.4
r50 [pc]	128	133
σlos [km s⁻¹]	3.3 ± 1.7	2.4–3.7

Key words. galaxies: dwarf - galaxies: binaries - galaxies: halos - galaxies: individual (Leo IV, Leo V) - methods: numerical
Table 2. Initial positions and velocities in the adopted Cartesian coordinate system. The final set of velocities assumes the same amount of relative tangential velocity as given by the relative radial velocity.

	Leo IV	Leo V	\(\Delta \)
\(X \) [kpc]	14.713	20.937	6.224
\(Y \) [kpc]	84.728	90.435	5.707
\(Z \) [kpc]	128.442	149.262	20.840
\(V_{r}^{c} \) [km s\(^{-1}\)]	0.961	7.242	6.281
\(V_{\theta}^{c} \) [km s\(^{-1}\)]	5.537	31.282	25.745
\(V_{z}^{c} \) [km s\(^{-1}\)]	8.392	51.630	43.238
\(V_{r}^{t} \) [km s\(^{-1}\)]	-4.409	39.276	43.686
\(V_{\theta}^{t} \) [km s\(^{-1}\)]	12.945	-14.784	-27.731
\(V_{z}^{t} \) [km s\(^{-1}\)]	4.118	75.047	70.928

Walker et al. (2009b) suggest that the faint and ultra-faint dwarfs reside in similar DM haloes of a certain minimum mass. Therefore, we investigate equal mass DM haloes as the other case.

For the four cases described above we search for solutions adopting halo concentrations of \(c = 5 \), 10 and 20, as these are values typically adopted for dwarf galaxies (Lokas & Mamon, 2001). This gives a total of 12 different solutions to the problem.

The haloes are described as NFW-profiles with \(c = r_{200}/r_{\text{vir}} \), \(r_{200} \) being the virial radius in which the density is 200 times the critical density of the universe, using a standard value of the Hubble constant of \(H_{0} = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \).

2.2. Method

de Jong et al. (2010) investigated the minimum mass for the two DM haloes of the satellites, by assuming they were point masses. We use a simple two-body integration programme modelling the system in the following way:

- Both satellites are represented by analytical, rigid Navarro, Frenk & White (1997, NFW) potentials. The force on the centre of mass of one halo is computed using the exact force according to its position with respect to the potential of the other halo.
- To be a tightly bound pair we adopt a rigid distance criterion which requires that neither centre of the two haloes leaves the halo of the other dwarf, i.e. their separation is always smaller than the virial radius of the (smaller) halo.
- For each case we choose the total mass of the system and set up the two haloes according to their mass-ratio and concentration. Then we run the two-body code to determine if our distance criterion is fulfilled. If the maximum distance is larger or smaller, we alter the total mass respectively and use the code again. We iterate this process until we find a maximum separation equal to our distance criterion.

The reason why we choose a distance criterion instead of computing the escape velocity (i.e. the velocity the two dwarfs need to separate from each other to infinity) is that if we were to adopt such a criterion, we would also include bound cases in which the maximum separation between the two dwarfs easily exceeds their distance to the MW. As this would not make sense, we exclude these solutions by imposing a very rigid distance criterion.

Furthermore, an estimation of the tidal radii of Leo IV and V gives values that are similar to our distance criterion. Using

\[
\rho_{\text{tidal}} \approx \left(\frac{m_{\text{dwarf}}}{3 M_{\text{MW}}(D)} \right)^{1/3} \cdot D \tag{2}
\]

with \(m_{\text{dwarf}} \approx 4 \times 10^{10} \text{ M}_\odot \), \(M_{\text{MW}}(D) \approx 10^{12} \text{ M}_\odot \) and \(D = 165 \text{ kpc} \), we get 40 kpc as tidal radius. This is slightly lower than the distance criterion used, but is also a rather rough estimate. However, it shows that the distance criterion is a sensible way to restrict the solutions.

Hence, the choice of our distance criterion allows us to treat the galaxy pair as isolated, i.e. to neglect the potential of the MW.

The simulations are always computed forward in time, starting from our current view of the dwarfs. We thus ascertain the next maximum separation to assess if the two dwarfs are bound to each other now. As we do not know where they came from, nor the details of their orbit around the MW, we cannot predict their future fate using these models.
2.3. Full N-body simulations

To ensure that the results are reasonable, we perform full N-body simulations as a check of each of the 12 solutions obtained with our simple code. We use the particle-mesh code SUPERBOX (Fellhauer et al. 2000). It is fast and enables simulations of galaxies on normal desktop computers. It has two levels of higher resolution grids, which stay focused on the simulated objects, providing high resolution only in the areas where it is needed.

Each object (halo) is modeled using 1,000,000 particles. We use NFW distributions for the haloes according to the results obtained with the two-body code. The haloes extend all the way to their virial radius.

The resolution of the grids is such that we try to keep about 15 cell-lengths per scale length, r_{sc}, of the haloes. A particle-mesh code has no softening-length like a Tree-code but previous studies (Spinato et al. 2003) showed that the length of one grid-cell is approximately the equivalent of the softening-length. Furthermore the particles in a particle-mesh code are not stars or in our case DM-particles, they rather represent tracer-particles of the phase-space of the simulated object. Densities are derived on a grid, and then a smoothed potential is calculated.

The number of particles is chosen according to the adopted grid-resolution to ensure smooth density distributions. A detailed discussion about the particle-mesh code SUPERBOX can be found in Fellhauer et al. (2000).

To clarify we state once more, that the N-body simulations are only used to verify the results of the simple method. This means we check the next maximum distance of the two galaxies. The simulations do not represent full-scale simulations of the past, present and future of the two Leo galaxies. Such simulations are more demanding and are beyond the simple scope of this paper.

Table 3

This table shows the minimum bound mass for each of our cases. The first column gives the number of the case, the second is the adopted concentration of the haloes. Then we give the mass of the DM halo and its virial radius for Leo IV and Leo V. The next column gives the total mass in DM of the whole system, the next column shows the ‘ratio’ by which the maximum distance differs between the full N-body simulation and the two-body code. The last column is a short explanation for the cases: rad. vel. = only radial velocity, rad. & tan. vel. = radial and tangential velocity adopted; mass ratio 1.8 = the two haloes have a fixed mass ratio of 1.8; equal mass = the two haloes have the same mass.

Case	c	$M_{DM,LeoIV}$ [M$_\odot$]	$r_{vir,LeoIV}$ [kpc]	$M_{DM,LeoV}$ [M$_\odot$]	$r_{vir,LeoV}$ [kpc]	M_{tot} [M$_\odot$]	ratio	Scenario	
0a	oo	–	–	–	–	–	4.18 x 10^8	–	Point masses (a)
0b	oo	–	–	–	–	–	1.47 x 10^10	–	Point masses (b)
1	5	1.34 x 10^10	49.00	7.45 x 10^9	40.29	2.09 x 10^10	0.965	rad. vel. mass ratio 1.8	
2	10	1.27 x 10^10	48.11	7.05 x 10^9	39.55	1.98 x 10^10	0.953	rad. vel. mass ratio 1.8	
3	20	1.22 x 10^10	47.42	6.75 x 10^9	39.98	1.89 x 10^10	0.935	rad. vel. mass ratio 1.8	
1a	5	9.05 x 10^9	42.99	9.05 x 10^9	42.99	1.81 x 10^10	1.179	rad. vel. equal mass	
2a	10	8.55 x 10^9	42.18	8.55 x 10^9	42.18	1.71 x 10^10	1.194	rad. vel. equal mass	
3a	20	8.30 x 10^9	41.76	8.30 x 10^9	41.76	1.66 x 10^10	1.204	rad. vel. equal mass	
4	5	3.47 x 10^9	67.25	1.93 x 10^9	55.28	5.39 x 10^9	0.993	rad.& tang. vel. mass ratio 1.8	
5	10	3.11 x 10^10	64.83	1.73 x 10^10	53.30	4.83 x 10^9	0.956	rad.& tang. vel. mass ratio 1.8	
6	20	2.84 x 10^10	62.90	1.58 x 10^10	51.70	4.42 x 10^9	0.968	rad.& tang. vel. mass ratio 1.8	
4a	5	2.30 x 10^9	59.50	2.30 x 10^9	59.50	4.80 x 10^9	1.450	rad.& tang. equal mass	
5a	10	2.20 x 10^9	57.80	2.20 x 10^9	57.80	4.40 x 10^9	1.372	rad.& tang. equal mass	
6a	20	2.10 x 10^9	56.91	2.10 x 10^9	56.91	4.20 x 10^9	1.284	rad.& tang. equal mass	

![Fig. 1. Minimum DM mass of the total system M_{tot} versus concentration of the haloes. We plot 1/c in favour of c to include the point-mass results at 1/c = 0 (cases 0a,b; plotted as open and filled circle - blue online). Solid lines are the results using the mass-ratio of 1.8. Triangles are cases with radial velocity only and tri-stars with additional tangential velocity. Dashed lines show the results of equal mass haloes. Squares are radial velocity only cases and crosses have additional tangential velocity.](image-url)

3. Results

3.1. Point Mass Case

We first recalculate the minimal bound mass assuming both galaxies are point masses, following the methodology by de Jong et al. (2010). We assume that the relative velocity between the two dwarfs is equal to their escape velocity (i.e. the velocity required for the haloes to separate to infinity). Because point masses do not have any characteristic radius we cannot apply any meaningful distance criterion here.

Using only the observed radial velocities (case 0a) we confirm the total DM mass of the system obtained by de Jong et al.
Table 4. In this table we show the mass-range of the haloes of cases 1(a)–3(a) and 4(a)–6(a) (which encompass the range of our results) within a radius of Leo IV of 97 pc, for which an observationally based estimate of the mass exists (Simon & Geha 2007).

Cases	$M_{DM}(r_{opt} = 97\text{pc})$ $[M_{\odot}]$	$M/L(r_{opt})$ $[M_{\odot}/L_{\odot}]$
Simon & Geha 2007	$(1.4 \pm 1.5) \times 10^{6}$ 151	
1 – 3	6.76×10^5 – 4.60×10^6 37 – 255	
1a – 3a	5.92×10^5 – 4.03×10^6 33 – 224	
4 – 6	9.31×10^5 – 6.19×10^6 52 – 344	
4a – 6a	8.23×10^5 – 5.58×10^6 46 – 310	

Our result is a factor of two lower, however, those authors used an approximation obtained from energy arguments, while we perform the full escape velocity calculation. Given the wide range in possible results, as shown later in the text, and taking the observational uncertainties into account, a difference of a factor of two is still a very good match.

Furthermore, we calculate the minimum bound mass assuming the two satellites also have tangential velocities (according to Tab. 2). In this case (case 0b) the total mass required to keep the galaxies bound is $1.47 \times 10^{10} M_{\odot}$. That is, three times more DM is required to keep them bound. While this may seem a large mass, we refer the reader to the following sections to put this result into context.

The results are shown in Tab. 3 in the first two lines and in Fig. 1 at $1/c = 0$.

3.2. Two-body Integrator

We now have a look at our results, obtained by the two-body integrator we use. As explained in Sect. 2 the two haloes are rigid, analytical potentials acting on the centre of mass of the other galaxy. Additionally, we now introduce a very strict distance criterion of the form that neither halo centre should leave the other halo (i.e. separations larger than the (smaller) virial radius). This way we make sure that we are really dealing with a tightly bound pair.

The results are two-fold: Of course we see an immediate large increase in the required minimum mass (compared to the point-mass cases) just by introducing the rigid distance criterion. We plot the total mass in DM against $1/c$ in Fig. 1 to include the point mass cases ($c = \infty$). We see that the bound mass is larger for lower values of the concentration. This can be easily understood as with higher concentrations we have more of the total mass of the halo concentrated towards the centre and therefore the gravitational pull on the other dwarf is larger.

Secondly, we also find that including the additional tangential velocity roughly triples the required mass. While the cases with radial velocities (cases 1–3, 1a–3a) require masses in the range of about $1.6-2.1 \times 10^{10} M_{\odot}$, the additional tangential velocity increases the necessary masses up to much larger values of $4.2-5.4 \times 10^{10} M_{\odot}$ (cases 4–6, 4a–6a).

As a little side-remark, we see that we need slightly less massive haloes in the equal halo mass cases than if we adopt a mass-ratio of 1.8 between the two haloes. As these differences are small compared with the differences of the unknown concentration, and even more so with the unknown tangential velocity, we can easily neglect them and assume that distributing the mass differently between the two haloes has no strong effect on our results.

Table 5. Mass-to-Light ratios within a radius of 300 pc of our simulations. We adopt V-band magnitudes of -5.8 for Leo IV and -5.2 for Leo V.

Case c Log M_{\odot}/L_{\odot}	LEO IV Log M_{\odot}/L_{\odot}	LEO V	Log M_{\odot}/L_{\odot}
1 5	2.544	2.710	
2 10	2.929	3.092	
3 20	3.343	3.499	
1a 5	2.484	2.740	
2a 10	2.867	3.122	
3a 20	3.279	3.534	
4 5	2.686	2.853	
5 10	3.067	3.232	
6 20	3.482	3.641	
4a 5	2.631	2.880	
5a 10	3.014	3.270	
6a 20	3.425	3.688	

The possible range of DM masses for the two galaxies spans about half an order of magnitude. However, given the large observational uncertainties it is the best we can do. The masses themselves are rather large and taken at face value would imply that the dwarfs are among the most DM dominated objects in the observed universe.

3.3. Comparison with observationally obtained data

We now put our results into context and compare them with observations. Simon & Geha (2007) measured the velocity dispersion of Leo IV and derived a total dynamical mass, within their optical radius (97 pc), of $1.4 \pm 1.5 \times 10^{6} M_{\odot}$. This implies a
Fig. 3. Results of the full N-body simulation of case 4a (the case with the largest discrepancy between the two-body and full N-body result). In the left panel the surface-density contours of the Leo V halo are shown. The (red) cross marks the position of the centre of Leo IV. The inner 5 (black) contours are between 26–10 M⊙ of the mass) of the two haloes; (black) solid lines for Leo IV and dashed (blue) lines for Leo V. The horizontal (red) solid line shows again the distance criterion from the simple code. The (red) cross shows the maximum distance in the full simulation and (green) contours are between 1 and 0.5 of the ratio inside this radius and compare our results with the observationally derived results reported by Wilkinson et al. (2006). We can then infer the M/L-ratio of 151. This value is quite similar to most of the other known dSph galaxies of the MW. We, therefore, use our results and compute the mass of our Leo IV haloes within the same 97 pc. The resulting masses and derived M/L-ratios are shown in Tab. 4. Our M/L-ratios are in the range of 35–328 and encompass the results of Simon & Geha (2007). Furthermore, should the results of Simon & Geha (2007), which are based on very few stars, prove to be correct, our results mean that we can rule out DM haloes with high concentrations (i.e. c = 20).

Walker et al. (2009a) report a central velocity dispersion of \(\sigma = 2.4^{+0.4}_{-0.6} \text{ km s}^{-1} \) based on five stars for Leo V. Using this value they calculate a dynamical mass, within an adopted \(r_h = 67.4 \text{ pc} \), of \(3.3^{+0.9}_{-0.5} \times 10^5 \text{ M}_\odot \). Calculating the mass within this radius in our models gives a range from \(2.7 \times 10^5 \text{ M}_\odot \) to \(2.5 \times 10^5 \text{ M}_\odot \), again encompassing the results derived from observations by Walker et al. (2009a).

Another way to compare our results with observations is by computing the total mass within a ‘standard’ radius of 300 pc, as adopted by Walker et al. (2009b). We can then infer the M/L-ratio inside this radius and compare our results with the observationally derived results reported by Wilkinson et al. (2006). Given the low luminous masses of the two dwarfs, our results point to M/L-ratios of the order of \(\log_{10}(M/L) = 2.5–3.7 \) (see also Tab. 5). Despite being quite high, plotting these values together with observationally derived values of other dwarfs (Fig. 2) we see that they follow the general trend of higher M/L-ratios with lower luminous masses. In fact, if we fit a line through the observational results, our values would intersect that linear fit.

This means, not only do our results follow and confirm the observed trend of the known MW dSphs, we can further conclude that the two satellites do not need unreasonable amounts of DM to form a bound pair.

3.4. Comparison to N-body simulations

Since we now have the results of all our cases, we have to make sure that they still hold if we resimulate them with a full N-body code. Of course the full N-body simulations will differ significantly from the ones above, we simply want to know if our conclusions remain valid.

In the full N-body simulations, the two live haloes are interacting with each other. They experience dynamical friction which shrinks their orbits around each other until they finally merge. This cannot be reproduced by the simple code but we can determine if the next maximum separation of the orbit is smaller than the extent of the other halo, as our distance criterion in the simple simulations requires.

What we find is that the results differ by a few per cent (max. 6.5%) in the simulations using a mass ratio of 1.8 between the haloes. The haloes get slowed down and, therefore, turn around at a smaller separation.

If the haloes have the same mass and we only adopt radial velocities, the orbit overshoots the maximum distance by approximately 20 per cent. If we add the additional tangential velocities, our restricted results differ by about 28–45 per cent, in the sense that the maximum separation is larger in the ‘full’ simulation than in the restricted one. This may seem odd given that dynamical friction should act in the opposite direction, however, there are other mechanisms at work. We see an expansion of the haloes as orbital energy is transformed into internal energy, furthermore, we see that the two haloes get deformed – particles from one halo get dragged along by the gravitational force of the other. We give the ratio of the maximum separations between the full and restricted simulations in the second to last column of Tab. 3 (labeled ‘ratio’).

We plot, in Fig. 3, the results of case 4a, the case with the largest discrepancy in separation between the two haloes compared with the restricted prediction. In the left panel we see the contours of the Leo V halo at the time of maximum separation, with the cross marking the position of the centre of Leo IV. We see that the contours are slightly elongated towards the other halo and that they show a clear deformation. This deformation is caused by the gravitational pull of the other halo, which has dragged particles of the dwarf towards it.
In the middle panel we see the large discrepancy between the distance criterion (horizontal line) and the actual first maximum separation of the orbit. But as the total mass of a NFW profile only increases with the logarithm of the radius, even a large discrepancy in radius as in our case 4a amounts only to a few per cent error in the mass of the halo. Given the fact that our results span almost an order of magnitude, and the large uncertainties from the observations (luminous mass, distance, etc.), we claim that the results of the restricted code are verified.

Finally, the right panel of Fig. 3 shows the Lagrangian radii of Leo IV (solid lines) and Leo V (dashed lines). We see that the interaction of the two halos causes the Lagrangian radii to expand. At the time of the maximum separation (marked with a cross) the halo of Leo IV is just outside the 90 % mass-radius and, as shown in the left panel, is still within the expanded and deformed halo of Leo V. In some sense, this matches the original distance criterion, which said that neither halo-centre should leave the other halo.

4. Discussion & Conclusions

We have presented possible scenarios for a twin system consisting of the faint dwarf spheroidal galaxies Leo IV and Leo V. The simulations were performed using a simple two-body code to rapidly find the solutions in the vast parameter space and the results were verified using a full N-body code. From this we find the minimum DM masses required for the two galaxies to form a tightly bound pair.

The parameter space is restricted by assuming two independent DM halos orbiting each other. Two perfectly shaped halos would only be seen before the first close passage. This is a strong simplification of the real geometry of the problem. But as our results show (i.e. the comparison with the real N-body simulations) the resulting error of this simplification is in the order of 5-20% and therefore much smaller than the mass-range of our results, stemming from e.g. the unknown tangential velocity.

A further restriction is the maximum distance criterion we adopt. We find this criterion sensible given the satellites’ large distances from the MW. Smaller maximum separations would lead to higher required masses for the system to be bound. Larger separations would lead to lower masses, but since the expected tidal radius of the system (with respect to the gravitational force of the MW) is of the order of our distance criterion, we feel confident with our choice.

As our distance criterion is of the order of the tidal radius, we are able to simplify even further and treat the system of the two dwarfs as isolated (i.e. we do not simulate the potential of the MW). As our aim is to determine whether the two galaxies are bound now (and make no predictions about their future or past), we do not need to take their orbit around the MW into account.

Regarding the relative velocity we adopt two cases. In one the restriction is that the measured difference in radial velocity is the only relative velocity the dwarfs have. In the other case the two satellites are given an additional tangential velocity of the same magnitude as the radial velocity.

We also adopt two mass ratios. First, mass-follows-light, i.e. the two halos have a mass ratio of 1.8 like the luminous components. Second, mimicking the fact (claimed by Walker et al. 2009b) that almost all dSph galaxies reside in DM halos of the same minimum mass (i.e. a minimum halo mass to carry a luminous component), a mass ratio of 1.0. Moreover, to span the full range of proposed concentrations for dwarf galaxy dark halos we take three values for the concentration into account $c = 5, 10, 20$.

If we assume that the bound system consists of two DM halos orbiting each other, we infer masses of about $1.7 - 2.1 \times 10^{10} \, M_\odot$ for the whole system. If we add an additional tangential velocity, which cannot be observationally verified, we obtain $\approx 4.2 - 5.4 \times 10^{10} \, M_\odot$. These are indeed very high masses for the two faint satellites and would put them amongst the most DM dominated objects known. Still, these results do not infer that the scenario is impossible.

Another point to take away is that if we add the same amount of relative velocity tangentially, i.e. increasing the total relative velocity by a factor $\sqrt{2}$, the required mass more than doubles. This shows quite a strong dependence on the relative velocity. Still, if we double the tangential velocity the mass would vary within an order of magnitude, an uncertainty we find in our results anyway.

We compute the DM mass within the adopted optical radius of Simon & Geha (2007) for Leo IV (i.e. 97 pc) and find that the M/L-ratios we obtain span the observationally (measured velocity dispersion) derived results. Our results are also in agreement with the measured velocity dispersion of Leo V (Walker et al. 2009a) and the inferred dynamical mass. Taking the observations at face value, our results could, therefore, restrict the possible concentrations of the real DM halos, once we know their relative tangential velocity.

Furthermore, we checked our results against the trend for dSph galaxies published by Wilkinson et al. (2006). They give the M/L-ratios within a radius of 300 pc (also seen in Walker et al. 2009b). Our simulations predict M/L-ratios, using the same radius, in the range $\log_{10} M/L = 2.5 - 3.7$. These values are high but encompass the predictions for faint dSph galaxies, if we extrapolate the known values to the magnitudes of the Leos.

Comparing the results of our two-body code with full N-body simulations we find differences in the maximum separations of only a few per cent in most of the simulations. Only the simulations with equal mass halos and additional tangential velocity have rather large discrepancies. Because the mass of an NFW halo increases with radius, proportional to $\ln(r)$, the uncertainty in the masses is much lower. The simple integration programme used cannot predict any deformations of the halos due to their mutual interactions. In the full simulations we see those deformations and, even though the initial distance criterion is not fulfilled anymore, the halos still stay within the deformations of the other. In that sense the distance criterion is still obeyed.

Our final remark is that we wanted to search for the necessary total dark matter mass of the pair of satellites to ensure that they are bound to each other. Even though the comparison between the simple code and the full N-body results deviate somewhat from our distance criterion, they do not change the conclusions of the simulations. A bound pair in the relaxed case is still a bound pair in the full simulations. Just by looking at our different cases (i.e. radial velocity only or radial plus tangential velocity) our results differ by about half an order of magnitude in total mass. In that respect a mass uncertainty of even 20–30 per cent does not change the conclusions of this paper, nor would it alter the inferred M/L-ratios significantly.

Summing up, assuming that the two Leos do, in fact, consist of a tightly bound pair, we find their inferred dark matter masses to be high but still within reasonable values. Therefore, it is possible that the two galaxies form a bound pair, making them an ultra-faint counterpart of the Magellanic Clouds.

Acknowledgements. MF acknowledges funding through Fondecyt grant 1095092 and BASAL. RS is funded through a Comite Mixto grant.
References

Belokurov V., et al. 2006, ApJ, 647, L111
Belokurov V., et al. 2007, ApJ, 654, 897
Belokurov V., et al. 2008, ApJ, 686, L83
Boylan-Kolchin M., Springel V., White S.D., Jenkins A., Lemson G. 2009, MNRAS, 398, 1150
Coleman M.G., et al. 2007, ApJ, 668, L43
Fellhauer M., Kroupa P., Baumgardt H., Bien R., Boily C., Spurzem R., Wassmer N. 2000, NewASt., Vol. 5, No. 6, 305
Fellhauer M., et al. 2006, MNRAS, 385, 1095
Fellhauer M., et al. 2007, MNRAS, 375, 1171
Fellhauer M., et al. 2008, MNRAS, 385, 1095
Geha M., Willman B., Simon J.D., Strigari L.E., Kirby E.N., Law D.R., Strader J. 2009, ApJ, 692, 1464
Jin S., Martin N., de Jong J., Conn B., H.-W., Irwin M. 2012 to appear in the proceedings of the Subaru conference on Galactic Archaeology, Shuzenji, Japan (Nov. 1-4 2011), arXiv1201.5399
de Jong J.T.A., et al. 2008, ApJ, 680, 1112
de Jong J.T.A., Martin N.F., Rix H.-W., Smith K.W., Jin S., Macciò A.V. 2010, ApJ, 710, 1664
Kirby E.N., Simon J.D., Geha M., Guhathakurta P., Frebel A. 2008, ApJ, 685, L43
Klypin A., Kravtsov A.V., Valenzuela O., Prada F. 1999, ApJ, 522, 82
Koch A., et al. 2009, ApJ, 690, 453
Koposov S., et al. 2008, ApJ, 686, 279
Kühlen M., Diemand J., Madau P., Zemp M. 2008, Journal of Physics: Conference Series, Vol. 125, Issue 1, p. 1
Lokas E.L., Mammon G.A. 2001, MNRAS, 321, 155
Macciò A.V., Dutton A.A., van den Bosch F.C. 2009, MNRAS, 391, 1940
Macciò A.V., Kang X., Fontanot F., Somerville R.S., Koposov S., Monaco P. 2010, MNRAS, 402, 1995
Metz M., Kroupa P., Libeskind N.I. 2008, ApJ, 680, 287
Metz M., Kroupa P., Jerjen H. 2009, MNRAS, 394, 1529
Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P. 1999, ApJ, 524, L19
Moretti M.L., et al. 2009, ApJ, 699, L125
Muñoz R.R., Majewski S.J., Johnston K.V. 2008, ApJ, 679, 346
Navarro J.F., Frenk C.S., White S.D.M. 1997, ApJ, 490, 493
Pawlowski M.S., Kroupa P., de Boer K.S. 2011, A&A, 523, 118
Sand D.J., Olszewski E.W., Willman B., Zaitisky D., Seth A., Harris J., Piutek S., Saha A. 2009, ApJ, 704, 898
Sand D.J., Seth A., Olszewski E.W., Willman B., Zaritsky D., Kallivayalil N. 2010, ApJ, 718, 530
Simon J.D., Geha M. 2007, ApJ, 670, 313
Simon J.D., Frebel A., McWilliam A., Kirby E.N., Thompson I.B. 2010, ApJ, 716, 446
Spinnato P.F., Fellhauer M., Portegies Zwart S.F. 2003, MNRAS, 344, 22
Walker M.G., Belokurov V., Evans N.W., Irwin M.J., Mateo M., Olszewski E.W., Gilmore G. 2009, ApJ, 694, L144
Walker M.G., Mateo M., Olszewski E.W., Penarrubia J., Evans, N.W., Gilmore G. 2009, ApJ, 704, 1274
Walsh S.M., Jerjen H., Willman B. 2007, ApJ, 662, L83
Willman B., et al. 2005, ApJ, 626, L85
Wilkinson M.I., Kleyna J.T., Gilmore G.F., Evans N.W., Koch A., Grebel E.K., Wyse R.F.G., Harbeck D.R. 2006, Msngr, 124, 25
Zucker D.B., et al. 2006, ApJ, 643, L103
Zucker D.B., et al. 2006, ApJ, 650, L41