A Bayesian Calibration–Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations

Jin-Long Wu, Jian-Xun Wang, Heng Xiao*

Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, United States

Abstract

Model-form uncertainties in complex mechanics systems are a major obstacle for predictive simulations. Reducing these uncertainties is critical for stakeholders to make risk-informed decisions based on numerical simulations. For example, Reynolds-Averaged Navier-Stokes (RANS) simulations are increasingly used in the design, analysis, and safety assessment of mission-critical systems involving turbulent flows. However, for many practical flows the RANS predictions have large model-form uncertainties originating from the uncertainty in the modeled Reynolds stresses. Recently, a physics-informed Bayesian framework has been proposed to quantify and reduce model-form uncertainties in RANS simulations for flows by utilizing sparse observation data. However, in the design stage of engineering systems, when the system or device has not been built yet, measurement data are usually not available. In the present work we extend the original framework to scenarios where there are no available data on the flow to be predicted. In the proposed method, we first calibrate the model discrepancy on a related flow with available data, leading to a statistical model for the uncertainty distribution of the Reynolds stress discrepancy. The obtained distribution is then sampled to correct the RANS-modeled Reynolds stresses for the flow to be predicted. The extended framework is a Bayesian calibration–prediction method for reducing model-form uncertainties. The merits of the proposed method are demonstrated on two flows that are challenging to standard RANS models. By not requiring observation data on the flow to be predicted, the present calibration–prediction method will gain wider acceptance in practical engineering design and analysis compared to the original framework. While RANS modeling is chosen to demonstrate the merits of the proposed framework, the methodology is generally applicable to other complex mechanics models involving solids, fluids flows, or

*Corresponding author. Tel: +1 540 231 0926
Email address: hengxiao@vt.edu (Heng Xiao)
the coupling between the two (e.g., mechanics models for the cardiovascular systems), where model-form uncertainties are present in the constitutive relations.

Keywords: model-form uncertainty quantification, turbulence modeling, calibration–prediction, Reynolds-Averaged Navier–Stokes equations, Bayesian inference

1. Introduction

Model-form uncertainties in complex mechanics systems are a major obstacle for predictive simulations. Reducing these uncertainties is critical for stakeholders to make risk-informed decisions based on numerical simulations. For example, the Reynolds-Averaged Navier–Stokes (RANS) simulations have been increasingly used in the design and analysis of mission-critical systems involving turbulent flows, thanks to the sustained growth of computational resources in the past decades. Examples include gas turbines, hydraulic turbines, aircrafts, and more recently the thermohydraulic system of nuclear power plants [1, 2]. Although RANS solvers are more accurate than the state-of-the-art empirical methods and low-fidelity models [e.g., 3], their predictions still have significant uncertainties. For many practical flows in engineering, the uncertainty in the turbulence closure model embedded in the RANS equations is the dominant source for the uncertainties in the predicted Quantities of Interest (QoIs). This is referred to as model-form uncertainty, which is arguably the most challenging uncertainty to quantify in RANS models and in other complex mechanics models.

Several approaches that are generally applicable to different applications have been used to quantify the model-form uncertainties in RANS simulations. A widely adopted method in the engineering communities is the parametric perturbation or model ensemble approach, in which the baseline simulations are repeated by perturbing the coefficients in the turbulence model or by using several turbulence models. The scattering in the obtained ensemble is used as an empirical indication of the prediction uncertainty. However, this ad hoc approach tends to underestimate the true uncertainties, since different models usually share similar assumptions (e.g., the Boussinesq assumption) and thus have similar biases. The Bayesian calibration method of Kennedy and O’Hagan [4] is a widely used approach for quantifying model-form uncertainties. In their framework the discrepancy in the predicted QoI is modeled as a Gaussian process, whose hyperparameters are calibrated with data. However, this physics-neutral framework treats the numerical model as a black-box, which leads to inefficient use of calibration data and makes it difficult for the users to specify prior knowledge based on their insights of the model and the problem. In the past few years, some
researchers have proposed open-box approaches to quantify the model-form uncertainties in RANS simulations, which are in contrast to the general-purpose, physics-neutral approaches described above. Dow and Wang \[5\] modeled the true eddy viscosity field as a Gaussian process, and used Direct Numerical Simulation (DNS) data to infer its hyperparameters and to find the optimal mean field that minimizes the misfit. Iaccarino and co-workers \[6–8\] introduced smooth perturbations on the Reynolds stress towards several limiting states in the physically realizable range \[9, 10\]. Oliver et al. \[11\] introduced discrepancy to the Reynolds stress tensor, and modeled the discrepancy term with a stochastic differential equation. The essential differences among the three open-box approaches lie in the treatment of physical prior knowledge and calibration data. Dow and Wang \[5\] used DNS data to reduce uncertainties, resulting in a calibration–prediction procedure. In contrast, Iaccarino et al. \[6–8\] and Oliver et al. \[11\] focused on uncertainty quantification and propagation by exploiting the physical insight on the Reynolds stresses, and they did not directly use data to reduce uncertainties.

More recently, Xiao et al. \[12\] proposed an open-box, physics-informed, Bayesian framework for quantifying and reducing model-form uncertainties in RANS simulations. Uncertainties are introduced to the Reynolds stresses and are parameterized compactly with physical realizability and spatial smoothness guaranteed \[6, 11\]. A Bayesian inference procedure based on an iterative ensemble Kalman method \[13\] is used to quantify and reduce the uncertainties by incorporating observation data. This method combines all sources of available information in a Bayesian framework including physical constraints, empirical knowledge, and observation data. In scenarios where observation data (e.g., sparse velocity measurements) are available, this framework provides a powerful method of predicting the whole-field velocity and other QoIs with quantified uncertainties.

However, in the design stage of engineering systems or devices, the target configuration (e.g., the new design of an aircraft or a gas turbine) has not been built yet, and thus measurement data are not available \[14, 15\]. The framework of Xiao et al. \[12\] is not directly applicable to these scenarios. Without observation data the framework would degenerate to an uncertainty estimation procedure, and the potential of the Bayesian framework cannot be fully exploited. Therefore, in the present work we extend the original framework to predict flows with no observation data by utilizing data from a different yet related flow. Specifically, we first build a statistical model for the Reynolds stress discrepancy on a related flow by incorporating available data (i.e., infer its uncertainty distribution), and then we sample the inferred uncertainty distribution to predict the flow of interest. The extended framework
is essentially a Bayesian calibration–prediction procedure. We consider two typical scenarios where observation data could be available on a related flow. (1) When mission-critical systems are developed, laboratory experiments are often performed on a down-scaled, geometrically similar model. Unfortunately, the experiments often have to be performed at a reduced Reynolds number than in the prototype, possibly due to limitations of the facilities or to avoid violating other similitudes (e.g., Mach number similarity). Although the Reynolds number similitude is not achieved, the experimental data obtained in the laboratory scale model can be valuable for quantifying uncertainties in the RANS-predicted Reynolds stresses. (2) Industrial product developments often consist of small incremental modifications of existing, well tested products, e.g., when a new gas turbine model is added to a family of existing products. In this case it is possible that measurement data, obtained from either experiments or field operations, are available on flows in a slightly different geometry from the flow to be predicted.

In the calibration–prediction framework outlined above, a pivotal assumption is that the Reynolds stress discrepancies in the two flows, the one used for calibration and the one to be predicted, can be described by the same statistical model. This assumption allows the extrapolation of Reynolds stress discrepancies from the calibration case to the prediction case, where “extrapolation” should be interpreted in a statistical sense. The extrapolation of the Reynolds stress discrepancy is justified if the two cases share overall physical characteristics despite the differences in their specific flow conditions (e.g., Reynolds number and geometry). The same assumption is the basis of many wind tunnel experiments in which it is infeasible to achieve the prototype Reynolds number with the laboratory setup.

The objective of the present work is to explore the feasibility of such a calibration–prediction procedure. The performance of the proposed extension is evaluated on two canonical flows, the flow over periodic hills and the flow in a square duct, at several Reynolds numbers. In both cases the Reynolds stress discrepancies are calibrated in a lower Reynolds number flow with sparse observation of velocities and then are used to predict flows at higher Reynolds numbers. Moreover, we also explore the feasibility of extrapolating the Reynolds stress discrepancy calibrated in a square duct flow to the flow in a rectangular duct. The remaining of the paper is organized as follows. Section 2 outlines the model-form uncertainty quantification framework proposed in Xiao et al. [12] and presents the extension proposed in the current work. Section 3 presents and discusses numerical simulation results for two canonical flows that are challenging for standard RANS models. Finally, Section 4 concludes the paper.
2. Methodology of the Bayesian Calibration–Prediction Framework

Consider two flows that are closely related, e.g., flows in the same geometry but at a different Reynolds number, or flows in slightly different geometries. One flow (to be used for calibration) has some velocity observation data available, while the other flow (to be predicted) has no observation data. The overall idea of the proposed calibration–prediction framework can be summarized as follows. Baseline RANS simulations are first performed for both the calibration flow and the flow to be predicted, both having discrepancies in the RANS-predicted Reynolds stresses that are a priori unknown. In the present framework, we assume that the discrepancies in both cases have the same statistical distributions and model them as a random field. We first utilized prior knowledge and observation data to build a statistical model of the discrepancy. Subsequently, the obtained uncertainty distribution of the discrepancy is sampled and used to correct the baseline Reynolds stress in the prediction case, which is then propagated to uncertainties in velocities and in other QoIs by solving the RANS equations with the corrected Reynolds stresses.

Admittedly, since flows at different Reynolds numbers can have significantly different Reynolds stress magnitudes, direct extrapolation of the Reynolds stress discrepancy tensor field from one flow to another is likely to be problematic. Therefore, when extrapolating the Reynolds stress discrepancies to the flow to be predicted, we extrapolate the projections (magnitude, shape, orientation) of the discrepancies and not the componentwise discrepancies. Specifically, the log-discrepancy of the magnitude and discrepancies of the shapes parameters of the Reynolds stress tensors are extrapolated. These projections can be considered normalized quantities independent of the magnitude of the Reynolds stresses, and thus they can be extrapolated from one flow to another. Note that in the calibration of Reynolds stress discrepancies, the uncertainty space is also parameterized on the physical projections to guarantee the physical realizability (i.e., Reynolds stress tensor must correspond to a physically possible state [10]).

In Fig. 1 we summarize the probabilistic calibration–prediction framework for RANS modeling with uncertainty quantifications. The two components of the framework, calibration and prediction, are introduced in Sections 2.1 and 2.2, respectively.

2.1. Calibration by Building a Statistical Model of the Reynolds Stress Discrepancy

The calibration procedure uses the method of Xiao et al. [12] for quantifying and reducing model-form uncertainties. The procedure is briefly summarized here for completeness. In the framework, the true Reynolds stress $\tau(x)$ is modeled as a random tensorial field with
Figure 1: Schematic overview of the calibration–prediction procedure for the quantification, reduction, and propagation of uncertainties in RANS models. An example is used to illustrate the overall algorithm. In this example the uncertainty distribution of the Reynolds stress discrepancy is calibrated in a square duct flow at a low Reynolds number, and then the calibrated distribution is used to predict the flow in a rectangular duct at a higher Reynolds number where no data are available.
the spatial coordinate \(x \) as index and the RANS-predicted Reynolds stress \(\tilde{\tau}^{\text{rans}}(x) \) as prior mean. To ensure physical realizability, uncertainties are injected to the physically meaningful projections of the Reynolds stress tensor, which is transformed as follows [6]:

\[
\tau = 2k \left(\frac{1}{3} I + a \right) = 2k \left(\frac{1}{3} I + V \Lambda V^T \right)
\]

where \(k \) is the turbulent kinetic energy which indicate the magnitude of \(\tau \); \(I \) is the second order identity tensor; \(a \) is the anisotropy tensor; \(V = [v_1, v_2, v_3] \), and \(\Lambda = \text{diag}[\lambda_1, \lambda_2, \lambda_3] \) with \(\lambda_1 + \lambda_2 + \lambda_3 = 0 \) are the orthonormal eigenvectors and eigenvalues of \(a \), respectively, indicating the shape and orientation of \(\tau \). After the decomposition, the eigenvalues \(\lambda_1, \lambda_2, \lambda_3 \) are mapped to a Barycentric coordinates \((C_1, C_2, C_3)\) with \(C_1 + C_2 + C_3 = 1 \). Consequently, all physically realizable states are enclosed in the Barycentric triangle shown in Fig. 2a. To facilitate parameterization, the Barycentric coordinates are further transformed to the natural coordinates \((\xi, \eta)\) with the triangle mapped to the square as shown in Fig. 2b. After the mapping, uncertainties are introduced to the mapped quantities \(k, \xi, \) and \(\eta \) by adding discrepancy terms to the corresponding RANS predictions, i.e.,

\[
\log k(x) = \log \tilde{k}^{\text{rans}}(x) + \delta^k(x) \quad (2a)
\]

\[
\xi(x) = \tilde{\xi}^{\text{rans}}(x) + \delta^\xi(x) \quad (2b)
\]

\[
\eta(x) = \tilde{\eta}^{\text{rans}}(x) + \delta^\eta(x) \quad (2c)
\]

where \(\delta^k(x) \) is the log-discrepancy of the turbulent kinetic energy; \(\delta^\xi(x) \) and \(\delta^\eta(x) \) are discrepancies of the Reynolds stress shape parameters \(\xi \) and \(\eta \), respectively. To avoid instability due to potential reverse diffusions, uncertainties are not introduced to the orientation \((v_1, v_2, v_3)\) of the Reynolds stresses.

Another piece of prior information is the smooth spatial distribution of the Reynolds stresses. The smoothness is guaranteed by representing the Reynolds stress discrepancy fields \(\delta^k, \delta^\xi, \) and \(\delta^\eta \) (generically denoted as \(\delta \) below) with smooth basis functions. Specifically, the prior distributions of the discrepancies are chosen as nonstationary zero-mean Gaussian random fields \(\mathcal{GP}(0, K) \) (also know as Gaussian processes), and the basis set is chosen as the eigenfunctions of the kernel \(K \) [10]. This choice of basis function leads to the Karhunen–Loeve (KL) expansions of the random field. That is, the discrepancies can be represented as follows:

\[
\delta(x, \theta) = \sum_{i=1}^{\infty} \omega_i|\theta_i \phi_i(x),
\]

7
where θ is the realized outcome, and the coefficients ω_i (denoting ω^k_i, ω^ξ_i, and ω^η_i for discrepancy fields δ^k, δ^ξ, and δ^η, respectively) are independent standard Gaussian random variables. In practice the infinite series is truncated to m terms with m depending on the smoothness of the kernel K.

With the projections above, the discrepancies are parameterized by the coefficients ω^k_i, ω^ξ_i, ω^η_i with $i = 1, 2, \cdots, m$. The uncertainty distributions of the coefficients are then inferred by using an iterative ensemble Kalman method [13, 17]. In this method the prior distribution of Reynolds stresses (as parameterized by the coefficients) is first represented with samples drawn from the distribution. The collection of the samples, referred to as prior ensemble, is propagated to velocities by using a forward RANS solver. The Kalman filtering procedure is used to incorporate velocity observation data to the prediction, yielding a corrected ensemble. The procedure is repeated until statistical convergence is achieved. The converged posterior ensemble is a sample based representation of the uncertainty distributions of the Reynolds stresses and other QoIs.

The forward RANS solver tauFoam used in the Bayesian inference above basically computes velocities from a given Reynolds stress field. It is developed based on a conventional
steady-state RANS solver in OpenFOAM \cite{18} by replacing the turbulence modeling component (i.e., solution of the transport equations for turbulent quantities) with a supplied Reynolds stress field.

2.2. Prediction for Flows without Observation Data with Corrected Reynolds Stresses

The calibration procedure outlined in Section 2.1 builds a statistical model by inferring the uncertainty distribution of the Reynolds stress discrepancy, which is represented by the posterior ensemble obtained from the iterative Kalman method. Next, we use the obtained statistical model of the Reynolds stresses discrepancy to make predictions on flows with no observation data. To this end, we extrapolate the Reynolds stress discrepancy from the calibration case to the prediction case, and then we use the forward RANS solver to propagate the samples of corrected Reynolds stresses to the corresponding velocities and other QoIs.

2.2.1. Extrapolation to flow at a different Reynolds number

After calibrating the uncertainty distribution of the Reynolds stress discrepancy, it is straightforward to extrapolate to a flow with geometric similarity but not dynamic similarity (i.e., at a different Reynolds number). Here we merely emphasize two potential pitfalls as mentioned above. First, the analyst must ensure that the two flows indeed have the same overall characteristics. If the calibration case is a flow over an airfoil without separation while the flow to be predicted has a massive separation, the extrapolation can lead to incorrect results even though the two cases have the same geometry. Second, it is the discrepancies of the physical projections of the Reynolds stress that are extrapolated. Since these are also the discrepancies inferred in the calibration procedure, it does not pose any practical difficulties.

2.2.2. Extrapolation to flow in a different geometry

When the calibration case and the prediction case differ not only in Reynolds number but also in geometry, extrapolation of the Reynolds stress discrepancies poses additional challenges. That is, how to map a field from one geometry (e.g., a square) to another (e.g., a rectangle). The mapping scheme depends on the physical characteristics of the two flows. The choice is inevitably case-specific and relies on the judgment of the analyst.

In Fig. 3 we use an example to illustrate the mapping scheme, where the Reynolds stress discrepancy calibrated on the flow in a square duct is used to predict the flow in a rectangular duct. Results for this case will be presented in Section 3.2. In the calibration (Fig. 3a), the two contours symmetric along the diagonal indicate spatial distribution of
Reynolds stress discrepancy due to particular features of the flow, e.g., vortices. The shaded region in Fig. 3b indicates that the Reynolds stress discrepancy in the prediction case, the flow in the rectangular geometry, is unknown before the knowledge from the square duct case is incorporated. There are at least three possible schemes of extrapolating discrepancies calibrated in the square geometry to the rectangle:

1. **Direct mapping.** As shown in Fig. 3c, the obtained discrepancy field in the square is directly mapped to the lower half of the rectangle, while the Reynolds stress discrepancies in the upper half are still unknown. Prior knowledge can still be specified on the discrepancy in the unmapped region, but the uncertainty distribution in this region does not reflect information from the calibration case.

 The mapping between the two geometries can be better understood by comparing the vertex numbering (A, B, C, D) in the square domain in Fig. 3a and the rectangle domains in Fig. 3c.

2. **Stretching the entire domain.** As shown in Fig. 3d, the calibrated field is mapped linearly to the entire domain of the rectangle, i.e., both contours are stretched in the mapped domain.

3. **Direct mapping of lower right domain and stretching of upper left domain.** As shown in Fig. 3e, the lower left half of the calibrated discrepancy field (A-B-C) below the diagonal is directly mapped to the same triangle in the rectangular domain, and the upper triangle (A-C-D) is mapped to the quadrilateral (A-C-C’-D) in the rectangular domain.

 The analyst must rely on the physical understanding of the flow to be predicted (i.e., the flow in the rectangular geometry in Fig. 3b) to decide which mapping schemes described above are reasonable. Even though no data is directly available from the flow to be predicted, we still utilize the two ingredients of a Bayesian framework, prior knowledge and data, to make predictions. The prior knowledge is formulated based on the relations between the flows in the calibration and prediction cases, while the data come from the calibration case. Therefore, as with the original framework of Xiao et al. [12], the extended calibration–prediction procedure is a Bayesian framework.

2.2.3. Resampling the posterior ensemble

 Once we identify a scheme for mapping the discrepancies, we can sample the posterior distribution of the discrepancy obtained in the calibration and use them to make predic-
Figure 3: Schematic illustration of possible schemes for mapping the calibrated Reynolds stress discrepancies on a square duct to a rectangular duct, which is the flow to be predicted. Dash-dotted lines indicate lines of symmetry. Contours indicate Reynolds stress discrepancies and underlying flow structures.

Sampling from a statistical model of a random field can be achieved with established methods [e.g., 19]. However, the actual implementation is not straightforward and it thus worths a detailed discussion. There are two obstacles in the resampling of the posterior ensemble for Reynolds stress discrepancies. First, different components in the random field are correlated. Second, the distribution to be sampled is not given analytically but represented by samples. The first problem can be solved by projecting the samples to the space spanned by the eigenvectors of the covariance matrix of the random field. The covariance matrix can be estimated from the ensemble. After the change of coordinates, each component in a transformed sample field can be considered realization from an independent random variable. The coordinate transformation decorrelates the components in the random field and makes the second obstacle relatively easy to overcome. The distribution of each random variable can be estimated independently from the transformed samples. Finally, the estimated distribution can be sampled straightforwardly to obtain new samples. Sampling of a given distribution of a scalar random variable can be achieved by using standard statistical techniques (e.g., transformation of a uniform random variable with the inverse cumulative distribution function) or more advanced methods in the literature. The detailed algorithm of the resampling procedure is presented in Appendix A.

The resampling procedure allows for the flexibility of using a larger number of samples.
for propagating the posterior uncertainties in the Reynolds stresses than that used in the inference procedure. More importantly, when simultaneously propagating uncertainties in the input along with model-form uncertainties, nested sampling or Sobol sampling [20] are needed for the uncertainty propagation. In this case it is important to be able to generate new samples for the Reynolds stress discrepancy from the obtained distribution. In the simulations presented in this work, however, the process can be simplified by using the same posterior ensemble obtained from the calibration for the uncertainty propagation in the prediction. The resampling algorithm is presented above for the completeness of the proposed framework.

3. Numerical Results and Discussions

In this section we demonstrate the capability of the proposed calibration–prediction method in two scenarios as described in Section 1. In the first scenario, the prediction flow and the calibration flow are geometrically similar but have different Reynolds numbers. This scenario is relatively straightforward and is examined on two cases, the flow over periodic hills and the flow in a square duct. In the second scenario, the prediction case differs from the calibration case not only in Reynolds number, but also in geometry. Note that in all cases examined here, we assume that observation data are only available in the calibration case and not in the prediction case. Benchmark data in the prediction case are used only to assess the performance of the proposed method.

3.1. Prediction of Flow at Different Reynolds Numbers

Two canonical flows of engineering relevance, the flow over periodic hills and the flow in a square duct, are used to evaluate the performance of the proposed calibration–prediction method. Both flows are challenging for the standard RANS models.

3.1.1. Flow over periodic hills

The flow over periodic hills is widely utilized to evaluate the performance of turbulence models due to the comprehensive experimental and numerical benchmark data at a wide range of Reynolds numbers [21]. The geometry of the computational domain is shown in Fig. 4. The Reynolds number \(Re \) is based on the crest height \(H \) and the bulk velocity \(U_b \) at the crest. Periodic boundary conditions are applied in the streamwise \((x) \) direction, and non-slip boundary conditions are applied at the walls. The spanwise \((z) \) direction is not considered since the mean flow is two-dimensional. The flow is calibrated on the flow
at $Re = 2800$, and then predictions are made for the flow at $Re = 10595$. Predictions of the flow at $Re = 5600$ is also performed, and the results are qualitatively similar to those presented below for the flow at $Re = 10595$. Therefore, the results for the flow at $Re = 5600$ are omitted for brevity.

Figure 4: Computational domain for the flow over periodic hills. The x, y and z coordinates are aligned with streamwise, wall-normal, and spanwise, respectively. The dimensions are normalized with H with $L_x/H = 9$, $L_y/H = 3.036$, and $L_z/H = 0.1$.

The baseline RANS result of the flow at $Re = 2800$ is calibrated with the procedure presented in Section 2.1. The prior and posterior ensembles of velocities are shown in Fig. 5. The prior ensemble of velocity profiles is scattered because of the perturbations (uncertainties) introduced to the RANS-predicted Reynolds stresses. It can be seen that the prior ensemble mean velocity is close to the baseline RANS results. Compared to the prior ensemble mean velocity, the posterior mean velocity shows a much better agreement with the benchmark, especially in the recirculation zone, where the magnitude of the reverse flow velocities are significantly underestimated in the baseline RANS results.

Figure 6 shows the Reynolds stresses discrepancies (i.e., the difference between the baseline RANS prediction and the benchmark data) for the calibration case ($Re = 2800$) and the prediction case ($Re = 10595$). More precisely, the discrepancies δ^k, δ^ξ, and δ^n in the physical projections are presented. As shown in Figs. 6a and 6b, δ^ξ and δ^n are similar for the flows at the two Reynolds numbers. It indicates that the discrepancies in the anisotropy of the Reynolds stresses are not sensitive to a moderate change of Reynolds number from 2800 to 10595. This is because the anisotropy is mainly influenced by the geometry of the domain and the coherent structures of the flow. In contrast, the log-discrepancy δ^k in turbulent kinetic energy (TKE) is clearly different for the two flows, especially in the recirculation
Figure 5: Calibration of Reynolds stress discrepancies based on velocity observations in the flow over periodic hill at a low Reynolds number $Re = 2800$. This figure shows the (a) prior and (b) posterior ensembles of velocities at eight locations, $x/H = 1, 2, \cdots, 8$. Black crosses (\times) denote locations where velocity observations are available.
region. This is related to a potential deficiency of extrapolating the log-discrepancy of the turbulent kinetic energy.

It is not clear if the log-discrepancy of the TKE, its discrepancy, or a combination of both is the best choice of quantity to extrapolate from the calibration to prediction case. As the log-discrepancy is dimensionless while the discrepancy has a dimension of the TKE, the former seems to be preferred. However, the hypothetical case shown in Table 1 suggests otherwise. Suppose in a particular region the true turbulence intensity, defined as the ratio of the velocity fluctuations u' to the reference velocity U_b, is 10% in both the calibration and prediction cases, while the RANS simulations give 0.1% and 1%, respectively. The errors in the RANS predictions are in fact rather consistent for the two cases in that the flow has a high intensity turbulence while the predictions give low turbulence intensities. In other words, the difference between 0.1% and 1% is not as significant as that between 1% and 10%. The true log-discrepancy would be 2 and 1 for the calibration and prediction cases, respectively. Hence, extrapolating the log-discrepancy to the prediction case would lead to a corrected turbulent intensity of 100% in the prediction case, which is drastically different from the truth, and such a correction can destabilize the simulation. In contrast, the absolute discrepancies are approximately the same for both cases and is thus a more appropriate quantity to extrapolate. On the other hand, one can easily devise a scenario where extrapolating the log-discrepancy is more reasonable. A more sophisticated scheme of extrapolation is needed and is the subject of future work. In view of the considerations above, the discrepancy of the turbulent kinetic energy is not extrapolated from the calibration cases to the prediction cases in the simulations presented below. In other words, the baseline RANS-modeled turbulent kinetic energy in the latter case is not perturbed in the prediction.

	calibration case	prediction case
true turbulence intensity	10%	10%
baseline RANS predicted intensity	0.1%	1%
log-discrepancy of TKE	2	1
discrepancy of TKE	$\sim 10^{-2}U_b^2$	$\sim 10^{-2}U_b^2$

Table 1: A hypothetical case to illustrate the potential deficiency of extrapolating log-discrepancy of the turbulent kinetic energy (TKE) from the calibration case to the prediction case. Turbulent intensities u'/U_b in both the calibration case and the prediction case are shown, where u' denotes velocity fluctuation and U_b is the reference bulk velocity.
Figure 6: The discrepancies of Reynolds stresses between baseline RANS and the benchmark data in the physically meaningful projections. This figure shows the discrepancies (a) δ^ξ, (b) δ^η, and (c) δ^k for the flows at $Re = 2800$ and $Re = 10595$, which are the calibration and prediction cases, respectively.
The flow over periodic hills at $Re = 10595$ is predicted based on the calibrated Reynolds stresses discrepancies, and the predictions of QoIs including the velocities, wall shear stresses, and reattachment location are compared to the benchmark data [21]. The posterior ensemble of velocities are shown in Fig. 7. It can be seen that the baseline RANS simulation underestimates the velocity magnitude in the recirculation zone, or equivalently the strength of the recirculation. Compared to the baseline RANS results, the posterior mean profiles of the velocities have significantly improved agreement with the benchmark data, especially in the recirculation zone. Admittedly, differences still exist between the posterior ensemble mean and the benchmark data. For example, the velocities near the flow reattachment between $x/H = 4$ and 7 are over-corrected. Such differences are expected because all samples and the mean of the posterior ensemble in the Kalman ensemble inference lie in the space spanned by the prior ensemble, but the truth may reside outside this space. More detailed discussions on this issue can be found in [12]. Figure 8 shows the bottom wall shear stress τ_w and the reattachment point x_{attach} of the flows in both the calibration case ($Re = 2800$) and the prediction case ($Re = 10595$). The recirculation zones are indicated by the range in which the wall shear stresses are negative. It can be seen that baseline RANS simulations underpredict the sizes of the recirculation zones in both the calibration and the prediction cases. Even without incorporating direct observation data, the predicted recirculation zone size is significantly improved. Such improvement is also confirmed by the posterior ensemble mean of reattachment point, which is much closer to the benchmark data compared to the baseline RANS result. This improvement is particularly notable considering the fact that velocity observations are not used for the inference in the prediction case ($Re = 10595$).

The main difference between the prediction and the benchmark data is near the crest of the hill, i.e., on the leeward side from $x/H = 0$ to $x/H = 1$ and on the windward side from $x/H = 8$ to $x/H = 9$. This is attributed to the lack of observation data at these locations in the calibration flow ($Re = 2800$). The wall shear stress τ_w samples are even more scattered at these locations compared to those of the calibration case. A possible explanation is that the Reynolds number in the prediction case is higher than that in the calibration case, and thus the length scale of prediction case is smaller. Consequently, spatial correlations of velocities are small between the region near the crest and the locations where observation data are available (e.g., in the free shear region and the recirculation zone). The weak correlation leads to larger scattering of predicted wall shear stresses τ_w.

17
Figure 7: Ensemble of predicted velocity profiles of the flow over periodic hills of $Re = 10595$ at eight streamwise cross-sections $x/H = 1, 2, \cdots, 8$ compared with benchmark data and baseline results.

Figure 8: Posterior ensembles of shear stress τ_w on the bottom wall and reattachment points x_{attach} for the flow over periodic hills, showing both (a) the calibration case at $Re = 2800$ and (b) the prediction case at $Re = 10595$. The regions with negative wall shear stresses on the bottom wall are recirculation zones. The reattachment point is determined by the change of wall shear stress from negative to positive, which is the downstream end of the recirculation zone.
3.1.2. Flow in Square Duct

The fully developed turbulent flow in a square duct is a widely known case for which RANS models fail to predict the secondary flow induced by Reynolds stress imbalances [22]. A schematic is presented in Fig. 9 to show the physical domain, major features of the flow, and the dimensions of the computational domain. Since the flow is fully developed in the streamwise direction, a two-dimensional simulation is performed. The computational domain only covers a quarter of the cross-section as shown in Fig. 9b based on the symmetry of the computational domain along \(y \) and \(z \) directions. All lengths are normalized by the height of the computational domain \(h = 0.5D \), where \(D \) is the height of the duct. The Reynolds number \(Re \) is based on duct height \(D \) and bulk velocity \(U_b \). The Reynolds stress discrepancies are calibrated on the flow at \(Re = 1 \times 10^4 \), and predictions are made for flows at \(Re = 8.3 \times 10^4 \) and \(2.5 \times 10^5 \).

![Schematic of flow in a square duct](image)

Figure 9: Domain shape for the flow in a square duct. The \(x \) coordinate represents the streamwise direction. Secondary flows induced by Reynolds stress imbalance exist in the \(y-z \) plane. Panel (b) shows that the computational domain covers a quarter of the cross-section of the physical domain. This is due to the symmetry of the mean flow in both \(y \) and \(z \) directions as shown in panel (c).

As in the periodic hill cases presented above, we only consider uncertainties in parameters \(\xi \) and \(\eta \), which represent the anisotropy (i.e., shape) of the Reynolds stress tensor. This is because the secondary flow is primarily induced by the anisotropy of Reynolds stresses. Figure 10 shows the secondary velocities \(U_z \) along four lines. It can be seen from Fig. 10a that the prior ensemble has a large range of scattering, which is attributed to the sensitivity of the secondary flow to the turbulence anisotropy. Compared to the prior ensemble mean,
the posterior ensemble mean is much closer to the benchmark data, which suggests that the discrepancies δ^c and δ^η are successfully calibrated. With the calibrated discrepancies, predictions are made for the two flows at higher Reynolds numbers.

Figure 10: (a) Prior ensemble and (b) posterior ensemble of velocity U_z profiles at four locations $y/h = 0.25, 0.5, 0.75$ and 1. The sample profiles of prior are scaled by a factor of 0.3 for clarity.

Figure 11a shows the secondary velocity at $Re = 8.3 \times 10^4$ along the vertical axis of symmetry along $z = h$ (position shown in inset) with comparison to available experimental data of Brundrett and Bains [23]. The baseline RANS result deviates from the experimental data because RANS models with isotropic eddy viscosity are not able to capture the stress anisotropy induced secondary flows. In contrast, the present method predicts an in-plane velocity magnitude comparable to the experimental data and captures its trend of spatial variation. Similarly, the prediction for the flow at $Re = 2.5 \times 10^5$ along the same line is presented in Fig. 12a, which also shows a good agreement with the benchmark data, even though the Reynolds number in this case is more than an order of magnitude larger than that in the calibration case.

Figure 11b shows the secondary velocity at $Re = 8.3 \times 10^4$ along the diagonal of the channel with comparison to experimental data [24]. It can be seen that the prediction is significantly improved compared to the baseline RANS result. The prediction for the flow at $Re = 2.5 \times 10^5$ as presented in Fig. 12b also demonstrates a satisfactory agreement with
Figure 11: The secondary flow velocity U_y in the prediction case (flow at $Re = 8.3 \times 10^4$, where no observation data are used). Velocity along (a) the vertical axis of symmetry and (b) the diagonal are shown. The experimental data are marked as ▲.

the benchmark data, although the location of the velocity peak is slightly different from the benchmark results. A possible explanation for this difference is that the assumption of similar Reynolds stress discrepancies becomes less accurate with the departure of Reynolds number from that of the calibration flow. Despite this discrepancy, the prediction presented in Fig. 12a and 12b are still comparable to or better than those obtained from RANS solvers utilizing advanced turbulence models, including an explicit algebraic Reynolds stress model (EASM) [25] and a Reynolds stress transport model (RSTM) [26]. It can be seen from Fig. 12a that the secondary velocity U_z of experimental data becomes negative between $z/h = 0$ and $z/h = 0.1$, a feature that is not captured by the explicit algebraic Reynolds stress model [25] or the Reynolds stress transport model [26]. Figure 12b shows that the velocity drop between $z/h = 0.1$ and $z/h = 0.2$ as in the experimental data is only captured by the present method, although the both Reynolds stress models capture the magnitude and general trend of the experimental data well. It is worth noting that by combining a RANS solver with a simple eddy viscosity model and indirect measurement data from a related flow (at a much lower Reynolds number), the present framework is able to achieve better predictions of in-plane velocities than advanced RANS models such as algebraic Reynolds stress model [25] and Reynolds stress transport models [26]. More assessment of advanced RANS models and comparison of their simulation results to experimental data can be found in ref. [25]. This comparison here highlights the merits of data in reducing model-form
uncertainties in turbulence modeling.

Figure 12: The comparison of predicted secondary velocity U_z at Reynolds number $Re = 2.5 \times 10^5$ with experimental data (denoted as ▲) and with predictions from advanced turbulence models including an explicit algebraic Reynolds stress model (EASM) and a Reynolds stress transport model (RSTM). Comparisons are shown (a) along the vertical axis of symmetry and (b) along the diagonal. Note that the prediction does not utilize observation data from the flow at $Re = 2.5 \times 10^5$.

Figure 13 shows vectors plots of the secondary flow velocity in the calibration and prediction cases. The vortex structures in both flows, which are at Reynolds numbers $Re = 8.3 \times 10^4$ and $Re = 2.5 \times 10^5$, are successfully captured as shown in Figs. 13a and 13b, respectively. In addition, two general trends can be observed from Fig. 13 as the Reynolds number increases. First, the secondary flow penetrates further to the corner of the duct as the Reynolds number increases. That is, the corner region where secondary flow is absent becomes smaller with increasing Reynolds number. Second, the thickness of the secondary flow boundary layers decreases as the Reynolds number increases, i.e., the velocity gradient $\partial U_y/\partial z$ near the bottom wall increases as the flow Reynolds number increases. Both trends are consistent with the findings from previous studies [23, 27]. Again, it is emphasized that these trends are predicted without utilizing observation data from the high Reynolds number cases ($Re = 8.3 \times 10^4$ or $Re = 2.5 \times 10^5$).

In addition to the favorable quantitative agreement with experimental data presented above, we also found that the qualitative features of the flows at Reynolds numbers $Re =$
Figure 13: Vector plot of the posterior mean of the predicted in-plane velocities for the flows at (a) $Re = 1 \times 10^4$ (flow for calibration), (b) $Re = 8.3 \times 10^4$ (flow to be predicted), (c) $Re = 2.5 \times 10^5$ (flow to be predicted), and (d) the enlargement of shaded region in plot (c). The directions and lengths of arrows indicate the directions and magnitude, respectively, of the secondary velocities. The shaded region highlight the presence of separation of secondary flow in the lower-left region (near the bottom wall and the vertical axis of symmetry).
8.3 \times 10^4 and 2.5 \times 10^5 are captured well in the prediction, although full-field benchmark data are not available for a detailed comparison. Vector plots of the posterior mean of the calibrated and predicted secondary velocities are presented in the three panels of Fig. 13. Comparison of Figs. 13a and 13f shows that the predicted overall flow patterns of the two flows at \(Re = 8.3 \times 10^4 \) and 2.5 \times 10^5 are very similar except for the minor differences near the lower left corner and in the near wall region. This is consistent with the previous findings reported in the literature [e.g., 23] that the general patterns of the secondary flows are not sensitive to the increase of Reynolds number at high Reynolds numbers. A closer examination reveals that the flow pattern does become more complex as the Reynolds number increases. For example, Figure 13c shows that in the flow at \(Re = 2.5 \times 10^5 \) the secondary flow starts to separate near the lower right part of the computational domain (the shaded region). This prediction is physical and can be confirmed by the available experimental data presented in Fig. 12b, in which the secondary flow velocity \(U_y \) becomes negative (leftward) at the same location [24]. Although such a phenomenon is not present in the calibration flow at a lower Reynolds number \(Re = 1 \times 10^4 \) (see Fig. 13a), it is still successfully captured by the proposed method for the flow at a higher Reynolds number \(Re = 2.5 \times 10^5 \). Recall that in the present Bayesian framework, information in the prediction can only come from the specified prior knowledge, observation data, or the physical dynamics model (i.e., the RANS solver), but the former two sources do not have information on presence of the separation. Therefore, one can only attribute the successful prediction of the separation to the RANS solver. This finding clearly demonstrates the merits of fully utilizing the physical model in the present method.

3.2. Prediction of Flow in a Different Geometry

In Section 3.1 above, it has been demonstrated that the calibrated Reynolds stress discrepancy can be utilized to predict flows on a geometrically similar domain but at higher Reynolds numbers. In this section we examine a more challenging case, where the Reynolds stress discrepancies calibrated on the square duct flow are used to predict the flow in a rectangular duct with aspect ratio of 1:2. The Reynolds number of the flow in the rectangular duct is \(Re = 8.8 \times 10^4 \), which is moderately higher than that of the calibration flow (1 \times 10^4). However, we focus on the change of geometry here since the test cases above have demonstrated that the change of Reynolds number does not pose intrinsic difficulties for the extrapolation.

Three possible schemes have been proposed in Section 2.2.2 to extrapolate the calibrated Reynolds stress discrepancies on the square duct to the rectangular domain in the prediction
case. The schemes have been illustrated in Fig. 3 and are summarized below for completeness: (1) direct mapping of the square to the lower half of the rectangle, (2) linear stretching of the square to the rectangle, and (3) direct mapping of the lower triangle and linear stretching of the upper triangle.

The three seemingly arbitrary choices are in fact based on three clear assumptions of the rectangular duct flow. Comparing the domains of the calibration case in Fig. 3 and the prediction case in Fig. 3 suggests that the major difference is that the upper boundary CD is moved further away from the bottom wall AB. The assumptions, i.e., assumed physical prior knowledge, on the change of the boundary location behind the three schemes can be described as follows:

Scheme 1: The change of the upper boundary location does not change the size and locations of the two vortices, and new flow patterns develop in the upper half of the rectangle.

Scheme 2: The flow in the rectangular duct maintains the same symmetric pattern as in the square duct case, with both vortices elongated approximately to the same aspect ratio of the rectangle.

Scheme 3: The change of the upper boundary location influences the upper vortex structure only, and the lower vortex remains unchanged.

While possibly none of the three assumptions is completely physical, the third one is the most realistic, which we will justify as follows. One of the most prominent features of the flows in both the square and the rectangular ducts is the secondary flows induced by the anisotropy of Reynolds stress tensor. This anisotropy is caused by the interactions between the boundary layers along the two perpendicular walls (AD and AB). It should be expected that moving the upper boundary further away has larger influence on the boundary layer of the vertical wall (AD) than on that of the horizontal wall (AB), since the flow in the upper half of the rectangular duct interacts only weakly with the boundary layer of the bottom wall. Based on this reasoning, the assumption associated with scheme 3 seems most reasonable, i.e., the change of boundary location influences only on the upper vortex and no the lower vortex. Consequently, scheme 3 as shown in Fig. 3 is the more appropriate choice.

The obtained flow patterns with the three mapping schemes above largely reflect their respective physical assumptions as detailed above. The in-plane streamlines from experiments 28 are presented in Fig. 14a, which shows two vortices. The two vortices in the
rectangular duct have different sizes, which is in contrast to the two symmetric vortices in the square duct. The major vortex is located at the upper right, while the minor structure is located at the lower left. The relative locations of the two vortices are similar to those in the square duct flow. The predicted streamlines based on the mapping schemes 1–3 are presented in Fig. 14b–14d, respectively. Figure 14b shows two vortices in the lower half of the duct similar to those in the square duct flow. It is noteworthy that a third vortex develops on the upper half of the duct, which is driven by the vortex below it. This predicted flow pattern is qualitatively different from that shown in Fig. 14a, suggesting that the assumption associated with scheme 1 is unphysical. Figure 14c shows that the prediction based on scheme 2 does capture the qualitative features of the major and the minor vortices, although the predicted center locations and the vortices sizes do not completely agree with the experimental results. Finally, the predicted streamlines based on scheme 3 are presented in Figure 14d, which has an even better agreement with the experimental data compared to that obtained with scheme 2. In particular, the center and the size of the minor vortex are very well predicted. The general pattern of the major vortex is also captured successfully, although the prediction quality is not as good as for the minor vortex. The remaining difference can be explained by the fact that the mapping scheme is linear, which may not be true due to the different influences of the boundary layer interactions.

Comparison of the three predictions above suggest that the assumed physical knowledge has a critical impact on the obtained predictions. An unphysical assumption as that behind scheme 1 leads to a qualitatively incorrect prediction of overall flow patterns. An assumption based on sound physical reasoning as in scheme 3 leads to the more favorable predictions.

Figure 15 shows the comparison of secondary flow velocity magnitude contours between experimental data [28] and the prediction based on scheme 3. It can be seen that the predicted contour patterns are similar to those of the experimental data, and the predicted magnitude is also comparable to the experimental data. Admittedly, the predicted secondary flow field is not exactly the same as the experimental data, e.g., the velocity magnitude is greater than the experimental data at the near wall region and smaller than the experimental data away from the wall. A possible reason is that the prior physical knowledge incorporated in scheme 3 is still far from enough to accurately account for the additional physics introduced by the geometry change. However, it can be seen from Fig. 14 that the prediction qualitatively captures the flow pattern, which is totally absent in baseline RANS results, with much lower computational cost compared to high fidelity simulations. Therefore, we argue that the proposed method provides a practical approach to quickly and approximately
Figure 14: Comparison of experimentally measured and the predicted secondary flow patterns (posterior mean) based on three schemes of mapping Reynolds stress discrepancy from the calibration case to prediction case. Panel (a) shows streamlines obtained from experiments [28]. Panels (b)–(d) show predicted streamlines based on schemes 1–3, respectively. The baseline RANS prediction is omitted here as it predicts no secondary flows.
search the design space with low computational costs in the preliminary design stage of engineering systems. It will help identify the promising design candidates for the further investigations with high fidelity simulations and/or model experiments.

Figure 15: Comparison of experimentally measured and the predicted contours of secondary velocity magnitude (posterior mean). Panel (a) shows contours obtained from experiment [28]. Panel (b) shows predicted contours based on scheme 3. Black crosses (+) and the numbers nearby indicate the values of the contours. Peaks and troughs are denoted as red (light shade) and blue (dark shade) to facilitate interpretation of flow field structure. The baseline RANS prediction is omitted here as it predicts no secondary flows.

4. Conclusion

Recently, Xiao et al. [12] proposed a framework for quantifying and reducing uncertainty in RANS simulations based on sparse observations of velocities. In the present work we extend the original framework to flows with no observation data, leading to a Bayesian calibration–prediction method. As in the original framework, the model-form uncertainty in RANS simulations are localized to the Reynolds stresses, which are modeled as a random
field. The uncertainty distribution of the discrepancy is first calibrated with available data on a related flow (e.g., the flow in a geometrically similar domain or in a slightly different geometry). Subsequently, the obtained distribution is extrapolated to the prediction case and is sampled to correct the RANS-modeled Reynolds stresses. The merits of the proposed method are demonstrated with two canonical flows of engineering relevance, the flow over periodic hills and the flow in a square duct. In the case of periodic hill flows, the uncertainty distribution of the discrepancy is calibrated in the flow at a lower Reynolds number and extrapolated to a higher Reynolds number. In the duct flow cases, the discrepancy distribution is calibrated in a square duct flow and used to predict flows at higher Reynolds number flows and that in a rectangular duct. Numerical simulation results demonstrate that the predictions of posterior mean velocities have significantly improved agreement with the benchmark data compared to the baseline RANS predictions. It is noteworthy that even the flow features that are not present in the calibration flow have been successfully captured in the prediction case by the proposed procedure, demonstrating the merits of framework in fully utilizing the RANS model. Based on the simulation results, we conclude that the proposed calibration–prediction method is a promising candidate for reducing model-form uncertainties in RANS simulations.

The proposed method is an algorithmically straightforward yet practically profound extension of the original framework. Since direct observation data are not required on the flow to be predicted, the range of applications is greatly expanded compared to the original framework. This is particularly relevant for turbulent flow simulations in support of engineering design, where the prototype system has not been build yet in the design stage.

An important assumption in the proposed method is that the flow used for calibration and the flow to be predicted are closely related. Specifically, they share the same overall characteristics despite the fact that the two flows are not dynamically similar (i.e., they have different Reynolds numbers) or not even geometrically similar (e.g., flow in a square duct versus flow in a rectangular duct). This assumption is valid in many scenarios in engineering design. On the other hand, the assumption also implies that the quality of the prediction inevitably depends on the judgment of the analyst. We argue that this is an intrinsic feature of Bayesian methods, and it is often an advantage for a framework to be able to incorporate insights and prior knowledge from the users, who are often experts of the model and the problem of concern.
References

[1] M. Scheuerer, M. Heitsch, F. Menter, Y. Egorov, I. Toth, D. Bestion, S. Pigny, H. Paillere, A. Martin, M. Boucker, et al., Evaluation of computational fluid dynamic methods for reactor safety analysis (ECORA), Nuclear Engineering and Design 235 (2-4) (2005) 359–368.

[2] U. Bieder, C. Calvin, H. Mutelle, Detailed thermal hydraulic analysis of induced break severe accidents using the massively parallel CFD code Trio-U/PRICELES, in: Supercomputing in Nuclear Applications, Paris, 2003.

[3] C. Murray, RELAP Theory Manual, U.S. Department of Energy Office of Nuclear Energy (2014).

[4] M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (3) (2001) 425–464.

[5] E. Dow, Q. Wang, Quantification of structural uncertainties in the k–ω turbulence model, in: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA, Denver, Colorado, 2011, aIAA Paper, 2011-1762.

[6] M. Emory, R. Pecnik, G. Iaccarino, Modeling structural uncertainties in reynolds-averaged computations of shock/boundary layer interactions, AIAA paper 479 (2011) 1–16.

[7] M. Emory, J. Larsson, G. Iaccarino, Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures, Physics of Fluids 25 (11) (2013) 110822.

[8] C. Gorlé, G. Iaccarino, A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations, Physics of Fluids 25 (5) (2013) 055105.

[9] S. Banerjee, R. Krahl, F. Durst, C. Zenger, Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches, Journal of Turbulence 8 (32) (2007) 1–27.

[10] H. Tennekes, J. L. Lumley, A first course in turbulence, MIT press, 1972.

[11] T. Oliver, R. Moser, Uncertainty quantification for RANS turbulence model predictions, in: APS Division of Fluid Dynamics Meeting Abstracts, Vol. 1, 2009.
[12] H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, C. J. Roy, Quantifying and reducing model-form uncertainties in Reynolds-Averaged Navier-Stokes simulations: An open-box, physics-based, bayesian approach, submitted. Available at http://arxiv.org/abs/1508.06315 (2015).

[13] M. A. Iglesias, K. J. Law, A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Problems 29 (4) (2013) 045001.

[14] E. Torenbeek, Design of the well-tempered aircraft, Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes 1–30.

[15] J. H. McMasters, R. M. Cummings, Rethinking the airplane design processan early 21st century perspective, AIAA Paper 693 (2004) 5–8.

[16] O. P. Le Maitre, O. M. Knio, Spectral methods for uncertainty quantification: with applications to computational fluid dynamics, Springer, 2010.

[17] G. Evensen, Data assimilation: the ensemble Kalman filter, Springer, 2009.

[18] OpenCFD, OpenFOAM User Guide, see also http://www.opencfd.co.uk/openfoam (2014).

[19] P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2004.

[20] S. Joe, F. Y. Kuo, Constructing Sobol sequences with better two-dimensional projections, SIAM Journal on Scientific Computing 30 (5) (2008) 2635–2654.

[21] M. Breuer, N. Peller, C. Rapp, M. Manhart, Flow over periodic hills–numerical and experimental study in a wide range of reynolds numbers, Computers & Fluids 38 (2) (2009) 433–457.

[22] A. Huser, S. Biringen, Direct numerical simulation of turbulent flow in a square duct, Journal of Fluid Mechanics 257 (1993) 65–95.

[23] E. Brundrett, W. Baines, The production and diffusion of vorticity in duct flow, Journal of Fluid Mechanics 19 (03) (1964) 375–394.

[24] F. Gessner, A. Emery, The numerical prediction of developing turbulent flow in rectangular ducts, Journal of Fluids Engineering 103 (3) (1981) 445–453.
Appendix A. Algorithm for Resampling the Posterior Distribution of Reynolds Stress Discrepancies

Given an ensemble \(\{ \omega_i \}_{i=1}^N \) of size \(N \) representing the posterior distribution of Reynolds stress discrepancy, the objective is to obtain another ensemble of size \(N' \) drawn from the same distribution. Each sample \(\omega_i \) is a vector of size \(3m \times 1 \), consisting of the coefficients for the retained \(m \) modes of the three discrepancy fields \(\delta_k \), \(\delta^\xi \) and \(\delta^\eta \). The following algorithms are used for the resampling:

1. Estimate the sample mean and sample co-variance of the ensemble \(\{ \omega_i \}_{i=1}^N \) as follows:
 \[
 \bar{\omega} = \frac{1}{N} \sum_{i=1}^N \omega_i \tag{A.1}
 \]
 \[
 C = \frac{1}{N-1} \sum_{i=1}^N (\omega_i - \bar{\omega})^T (\omega_i - \bar{\omega}) \tag{A.2}
 \]

2. Perform eigendecomposition of covariance matrix \(C \) as below
 \[
 C \phi_j = \lambda'_j \phi_j \tag{A.3}
 \]
 to obtain the orthogonal eigenvectors \(\{ \phi_j \}_{j=1}^{3m} \).

3. Project the samples \(\{ \omega_i \}_{i=1}^N \) on the basis functions \(\{ \phi_j \}_{j=1}^{3m} \) to obtain \(\{ \alpha_i \}_{i=1}^N \), where \(\alpha_i \) is the coordinate of the sample \(\omega_i \) on the new basis set \(\{ \phi_j \}_{j=1}^{3m} \). The transformed ensemble \(\{ \alpha_i \}_{i=1}^N \) can be considered realizations of a random vector \(a \) of size \(3m \times 1 \) with uncorrelated components.
4. The probability distribution functions and the corresponding cumulative density functions (CDF) for each component of the random vector \mathbf{a} is estimated from the samples, i.e., $\{\alpha_i\}_{i=1}^N$, by using kernel density estimation techniques.

5. Generate N' samples for each of the component from the estimated CDF by using standard sampling techniques [19].

6. Reconstruct sample $\{\omega'_i\}_{i=1}^{N'}$ of size N' from the resampled coefficients $\{\alpha'_i\}_{i=1}^N$ and the basis $\{\phi_j\}_{j=1}^{3m}$.