Lattice-QCD-based Schwinger-Dyson Approach for Chiral Symmetry Restoration at Finite Temperature

Hideaki Iida, Makoto Oka, Hideo Suganuma

Dept. of Physics, Tokyo Institute of Technology, Ohokayama 2-12-1, Meguro, Tokyo 152-8551, Japan

We propose the Schwinger-Dyson (SD) formalism based on lattice QCD, i.e., LQCD-based SD formalism, for the study of dynamical chiral-symmetry breaking in QCD. We extract the kernel function $K(p^2)$ in the SD equation from the lattice data of the quark propagator in the Landau gauge. As remarkable features, we find infrared vanishing and intermediate enhancement of the kernel function $K(p^2)$ in the SD equation. We apply the LQCD-based SD equation to thermal QCD, and calculate the quark mass function at the finite temperature. We find chiral symmetry restoration at the critical temperature $T_c \sim 100$ MeV.

1. Introduction

Dynamical chiral-symmetry breaking (DCSB) is one of the most important nonperturbative features in QCD. For the study of DCSB, the Schwinger-Dyson (SD) formalism has been used as an interesting and powerful method. For QCD, the SD formalism consists of an infinite series of nonlinear integral equations which determine the n-point Green’s function of quarks and gluons, and therefore it includes the infinite-order effect of the QCD gauge coupling constant g.

For instance, the SD equation for the quark propagator $S(p)$ is described with the nonperturbative gluon propagator $D_{\mu\nu}(p)$ and the nonperturbative quark-gluon vertex $g\Gamma_{\nu}(p,q)$ as

$$S^{-1}(p) = S_0^{-1} + g^2 \int_q \gamma_{\mu} S(q) D_{\mu\nu}(p-q) \Gamma_{\nu}(p,q),$$

where $S_0(p)$ denotes the bare quark propagator and the simple notation $\int_q \equiv \int \frac{d^4q}{(2\pi)^4}$ has been used in the Euclidean metric.

In the practical calculation for QCD, however, the SD formalism is drastically truncated: the perturbative gluon propagator and the one-loop running coupling are used instead of the nonperturbative quantities in the original formalism. This simplification seems rather dangerous because some of nonperturbative-QCD effects are neglected.

In this paper, we formulate the SD equation based on the recent lattice QCD (LQCD) results, i.e., the LQCD-based SD equation, and aim to construct a useful and reliable analytic framework including the proper nonperturbative effect in QCD. Using the LQCD-based SD equation, we investigate also DCSB at finite temperatures.

2. The Quark Propagator in Lattice QCD

First, we briefly review the quark propagator $S(p)$ in lattice QCD. The inverse quark propagator in the Landau gauge is generally given by

$$S^{-1}(p) = Z(p^2)\{p + M(p^2)\}$$

in the Euclidean metric. Here, $M(p^2)$ is called as the quark mass function, and $Z(p^2)$ corresponds to the wave-function renormalization of the quark field. In the quark propagator, DCSB is characterized by the mass generation as $M(p^2) \neq 0$.

The quark mass function $M(p^2)$ in the Landau gauge is recently measured in lattice QCD at the quenched level [5], and the lattice data in the chiral limit is well reproduced by

$$M(p^2) = M_0/\{1 + (p/\bar{p})^\gamma\}$$

with $M_0=260$ MeV, $\bar{p}=870$ MeV and $\gamma=3.04$. The infrared quark mass $M(0) = M_0 \approx 260$ MeV seems consistent with the constituent quark mass in the quark model. Using this lattice result of $M(p^2)$, the pion decay constant is calculated.
as $f_\pi \simeq 87$ MeV with the Pagels-Stokar formula \[\text{[83x-64]} \] and the quark condensate is obtained as $\langle \bar{q}q \rangle_{\lambda=1 \text{GeV}} \simeq -(220 \text{MeV})^3$. These quantities related to DCB seem consistent with the standard values.

3. The Schwinger-Dyson Equation

In this section, we formulate the SD equation for quarks in the chiral limit in the Landau gauge. By taking the trace Eq. (1), one finds

$$ M(p^2) = \frac{g^2}{4} \int_q \text{tr} \{ \gamma_{\mu} \frac{Z(q^2)}{\hat{A} + M(q^2)} \Gamma_{\nu}(p, q) \} D_{\mu\nu}(\tilde{q}) $$

(4)

with $\tilde{q} \equiv p - q$. For the quark-gluon vertex, we assume the chiral-preserving vector-type vertex,

$$ \Gamma_{\mu}(p, q) = \gamma_{\mu} \Gamma((p - q)^2), $$

(5)

which keeps the chiral symmetry properly. (In contrast, to be strict, the Higashijima-Miransky approximation \[\text{[83x-231]} \] explicitly breaks the chiral symmetry in the formalism.) Then, one obtains

$$ M(p^2) = C_F g^2 \int_q \frac{Z(q^2)M(q^2)}{q^2 + M^2(q^2)} \Gamma((q^2)^2) D_{\mu\nu}(\tilde{q}) $$

(6)

with $C_F = 4/3$ being the color factor for quarks. In the Landau gauge, the Euclidean gluon propagator is generally expressed by

$$ D_{\mu\nu}(p^2) = \frac{d(p^2)}{p^2} \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right), $$

(7)

where we refer to $d(p^2)$ as the gluon polarization factor. Therefore, Eq. (6) is rewritten as

$$ M(p^2) = 3C_F g^2 \int_q \frac{Z(q^2)M(q^2)}{q^2 + M^2(q^2)} \Gamma((q^2)^2) d(q^2) \cdot \frac{d(q^2)}{q^2}. $$

(8)

Here, we define the kernel function

$$ K(p^2) \equiv g^2 \Gamma(p^2) d(p^2) $$

(9)

as the product of the quark-gluon vertex $\Gamma(p^2)$ and the gluon polarization factor $d(p^2)$. Then, the SD equation is expressed as

$$ M(p^2) = 3C_F \int_q \frac{Z(q^2)M(q^2)}{q^2 + M^2(q^2)} K((p - q)^2), $$

(10)

In the Landau gauge, the quark wave-function renormalization is not so significant and seems to be approximated as $Z(p^2) = 1$, which reduces the SD equation to

$$ M(p^2) = 3C_F \int_q \frac{M(q^2)}{q^2 + M^2(q^2)} \frac{K((p - q)^2)}{(p - q)^2}. $$

(11)

4. Extraction of the Kernel Function in the SD Equation from Lattice QCD

In this section, we extract the kernel function $K(p^2) \equiv g^2 \Gamma(p^2) d(p^2)$ in the SD equation \[\text{[83x-40]} \] using the quark mass function $M(p^2)$ obtained in lattice QCD. By shifting the integral variable from q to $\tilde{q} \equiv q - p$, we rewrite Eq. (11) as

$$ M(p^2) = 3C_F \int_q \frac{M((p - q)^2)}{(p - q)^2 + M^2((p - q)^2)} \frac{K(q^2)}{q^2}. $$

(12)

Therefore, we obtain

$$ M(p^2) = \frac{3C_F}{8\pi^3} \int_0^\infty dq^2 \Theta(p, q) K(q^2), $$

(13)

where $\Theta(p, q)$ is defined with $M(p^2)$ as

$$ \Theta(p, q) \equiv \int_0^\pi d\theta \sin^2 \theta $$

$$ \frac{M(p^2 + q^2 - 2pq \cos \theta)}{p^2 + q^2 - 2pq \cos \theta + M^2(p^2 + q^2 - 2pq \cos \theta)}. $$

(14)

Since the quark mass function $M(p^2)$ is given by Eq. \[\text{[83x-56]} \] in lattice QCD, we can calculate the kernel function $K(p^2)$ from Eq. \[\text{[83x-175]} \].

As shown in Fig.1, we numerically obtained the kernel function $K(p^2) \equiv g^2 \Gamma(p^2) d(p^2)$ extracted from the lattice QCD result for the quark propagator in the Landau gauge.

As remarkable features, we find “infrared vanishing” and “intermediate enhancement” in the kernel function $K(p^2)$ in the SD equation. In fact, $K(p^2)$ seems consistent with zero in the very infrared region as

$$ K(p^2 \sim 0) \simeq 0, $$

(15)

while $K(p^2)$ exhibits a large enhancement in the intermediate-energy region around $p \sim 0.5 \text{GeV}$.

These tendencies of infrared vanishing and intermediate enhancement in the kernel function $K(p^2) \equiv g^2 \Gamma(p^2) d(p^2)$ are observed also in the
5. Chiral Symmetry at Finite Temperature

Finally, we demonstrate a simple application of the LQCD-based SD equation to chiral symmetry restoration in finite-temperature QCD.

At a finite temperature T, the field variables obey the (anti-)periodic boundary condition in the imaginary-time direction, which leads to the SD equation for the thermal quark mass $M_n(p^2)$ of the Matsubara frequency $\omega_n = (2n+1)\pi T$ as

$$M_n(p^2) = \int_{m,q} \frac{3C_F M_m(q^2) K(\omega_{nm}^2 + \tilde{q}^2)}{\omega_{nm}^2 + q^2 + M_m^2(q^2) \omega_{nm}^2 + \tilde{q}^2},$$

with $\int_{m,q} \equiv T \sum_{m=-\infty}^{\infty} \int \frac{d^3q}{(2\pi)^3}, \omega_{nm} = \omega_n - \omega_m$ and $\tilde{q} = p - q$.

Using the kernel function $K(p^2)$ obtained in the previous section, we solve Eq. (16) for the thermal quark mass $M_n(p^2)$. Figure 2 shows the preliminary result for the thermal infrared quark mass $M_0(p^2 = 0)$ plotted against the temperature T. We thus find chiral symmetry restoration at a critical temperature $T_c \sim 100\text{MeV}$.

Figure 2. The thermal infrared quark mass $M_0(p^2 = 0)$ plotted against the temperature T. The critical temperature T_c is found to be about 100MeV.

REFERENCES

1. K. Higashijima, Phys. Rev. D29 (1984) 1228.
2. V. Miransky, Dynamical Symmetry Breaking in Quantum Field Theories, World Scientific, Singapore, 1993.
3. H. Suganuma, S. Sasaki and H. Toki, Nucl. Phys. B435 (1995) 207.
4. M.S.Bhagwat, M.A.Pichowsky, C.D.Roberts, P.C.Tandy, Phys. Rev. C 68 (2003) 015203.
5. P.O. Bowman, U.M. Heller, A.G. Williams, Nucl. Phys. B (Proc. Suppl.) 109 (2002) 163.
6. H. Pagels and S. Stokar, Phys. Rev. D20 (1979) 2947.
7. UKQCD Collaboration (D. Leinweber et al.), Phys. Rev. D58 (1998) 031501.