THE TAXONOMICAL SIGNIFICANT OF COMPUTERD PHYLOGENETIC ANALYSIS AND MORPHOLOGICAL DATA IN SOME SPECIES OF POLYGONACEAE

H.R.H. Al-Newani 1 S. A. Aliway 2 R. K.H.Al-Masoudi 2
Lecturer Assist. Prof. Assist. Lecturer

1Dept. Bio-Coll. Sci, Mustansiriyah University Email: sphh@uomustansiriyaha.edu.iq
2Dept. Biology-Coll. Sci, University of Baghdad

ABSTRACT

This research dealt with study of cladistics taxonomy of five species related to the genus Rumex L. and Polygonum L. from family polygonaceae in Iraq by using Mesquite software V.2.75. This research support strongly delimiting the species P. aviculare L. and P. lapathifolia L.as suggested in floras publiction while R. dentatus L. is setted in single group whereas R. vesicarius L. and R. conglomeratus Murray were included in the same group. Also, this study involved characteristics of shape, dimensions, color, and ornamentation of seeds and fruits as the seed forms were ranging from lenticular to trigonous. In terms of size calculations, the seeds of R. vesicarius was recorded the higher range (4.0 - 4.5) mm in length while, P. aviculare recorded the lowest (1.5 -1) mm in length. However, the shape was lenticular in P. lapathifolia and trigonous in the remaining species. Color of seeds and surface ornamentation is recognized. fruits shape is an important characters in identification of selected species as two groups are distinguished: persistent tubercules tepals which are spine teeth in R. dentatus and tongue like shape in R. conglomerates, the second group is persistent tepals which are papery in P. lapathifolia, biconvex in P. aviculare and cordate to winged as in R. vesicarius beside that, colors, dimensions and surface nature is also recorded.

Key words: Iraq, Polygonum, Rumex, cladistic taxonomy, trigonous, fruits, seeds

*Received:11/7/2019, Accepted:31/10/2019
INTRODUCTION
Number of publications suggested including the genus *Rumex* is in the tribe rumiceae and *Polygonum* in polygoneae together in the polygonaceae family which is from predominant plant families in the northern temperate regions while others are tropical or subtropical comprising of perennial herbaceous weeds, shrubs and vines trees (4,5,6,7,8,9). The family is generally 30 to 49 genera with about 750 species globally and approximately 33 species in Iraq (10,11,14,15). The genus *Rumex* has the highest diversity within Iraqi buckweed family with ten species distributed throughout Iraqi districts principally towards the mountain regions. However, in flora of Iraq eight species of *Polygonum* had been stated as perennial and mostly glabrous weeds in the north areas (1,2,3,10,12,17,16). *Polygonum* is heterogeneous complex taxonomically with various florals treatment as number of genera had been added or removed like *Persicaria*, Moreover, this species has a medical benefit to treat dysentery with bloody stools, UTI, bacteremia, endocarditis and meningitis (19,20,22). In 2000, Ronse Decraene et al documented the efficiency of fruit sculpturing to delimit the tribes of *Pcrsicarieae* and *Polygoneae* (20,21,23,24). On the other hand, an attempt had been made by Mosferi and Keshavarzi to segregate of Iranian polygonaceae tribes based on morphological characters (18,21,24,25,26). The diversity of fruit nature and structure made it an interesting feature to taxonomists and recognized as good features for identification purpose (11,12,13,27). Numerical taxonomy is proved to be helpful in delimiting species more than conventional methods. As Tavakkoli et al (28,29) made a cladistics analysis to Calligonum and Pteropyrum from Polygonaceae and it was efficient in illustrating phylogenetic relationships. In spite of number of global research on fruit morphology of polygonaceae but there is still lacking data about Iraqi buckwheat family. So the present study aims to evaluate the taxonomic effect of cladistics taxonomy to delimit the studied species beside morphological data of the seeds and fruits of the genus *Polygonum* and *Rumex*.

MATERIALS AND METHODS
Sample Collections Specimens of this study were collected from herbarium specimens moreover, field trips have been done during collecting season in different places of Iraq from 2017-2018. Matured achenes and nuts have been examined under dissecting microscope for further identification (10,11). The phenotypic shape of the fruits and seeds in each species have observed beside that, the external features of the surface sculpturing of fruits and seeds by anatomical microscope have studied and recorded all the observations and measurements differences of selected species from family polygonaceae. Generally 5 samples were examined for each species according to their availability in the lab.

Characters	Character states
Life span	Annual or biennial
Stem habitat	Erect
Stem branching	Branching
Stem color	Glaucous
Stem status	Green
Petiole length	Long
Ochreae shape	Tuncate
Leaf duration	Deciduous
Panicle status	Persistent
Racemes shape	Dense spike like
Nuts	Glossy

Characters	Character states
Life span	Annual
Stem habitat	Ascending to erect
Stem branching	Non-branched
Stem color	Green
Stem status	Greenish to reddish
Petiole length	Short
Ochreae shape	Lacinate
Leaf duration	Deciduous
Panicle status	With clusters of racemes
Racemes shape	Dense spike like
Nuts	Glossy

Table 1. Characters and character states
Numerical analysis
Morphological features have collected from fresh samples beside herbarium sheets deposited in BUH herbarium in addition, data have gathered from related publications (10,11,18,21). Among eleven distinctive characters illustrated in table 1 have been chosen to construct matrix of data by using Mesquite software V.2.75 (28).

RESULTS AND DISCUSSION
The phylogenetic tree has been carried out by mesquite software by using 25 characters state revealed delimited the species Polygonum aviculare from Persicaria lapathifolia while R. conglomeratus and R. dentatus is include in the same sister group. On the other hand, R. vesicarius is represented as separated group as illustrated in fig(1)and this assist the previous work by other scientists for this fact (10,11).

Fig.1 Tree of data matrix constructed by mesquite software

Fruit and seeds morphology
This study was examined fruits and seeds of selected species from polygonaceae family which showed differentiation among selected species by dimensions, color and surface sculpturing patterns. In terms of dimension calculations, the seeds of Rumex vesicarius was recorded the higher range(4.0-4.5)mm in length while Polygonum aviculare recorded the lowest one(1.5-1)mm in length. On the other hand, the highest average of length was (1.5-1.75) mm in Rumex vesicarius L. and lowest range was(1-1.25) in Rumex conglomeratus L. However, the measurement of width was varied from 0.75 mm. to in P. aviculare to 2.5 mm. in R. vesicarius. Regarding to seed shapes, two groups had been differentiated into as table (2): first group: seeds with lenticular shape include species Persicaria lapathofolia while the
second group included seeds with a trigonous shape for other remaining species. In terms of color seeds, there was gradient from brown color in *Polygonum aviculare* to dark brown in *Persicaria lapathifolia* and *Rumex dentatus* while black color is noticed in *Rumex conglomeratus* L. However, pale yellow is stated in *R. vesicarius* as in Fig (2). Table (2). For surface texture all studied species were smooth as illustrated in table (2). The achene length of *P. aviculare* was 2 mm while *R. vesicarius* had higher rang (4.5-10.0) mm, although the length was (7.5-15.0) mm in *R. dentatus*. According to size parameters the smallest width found 0.75 mm in *P. aviculare* and the largest width was in 8 mm in *R. vesicarius*, where *P. lapathifolia* was 1.75 mm, *R. conglomeratus* was 2.5-3 mm and 3-5.5 mm in *R. dentatus* respectively. Out of five species, two types of fruits shape have been differentiated: persistent tubercules tepals which are spine teeth in *R. dentatus* and tongue like shape in *R. conglomeratus*, the second shape is persistent tepals which are papery in *Persicaria lapathifolia*, biconvex in *P. aviculare* and cordate to winged as in *R. vesicarius* as illustrated in Fig (3) Table (3). In terms of color surface of fruits there was variation from light brown in all species of *Polygonum* and *R. dentatus* through dark brown into *Persicaria lapathifolia* and *R. conglomeratus* to light yellow in *R. vesicarius* as it usually pink when fruit is fresh as noticed in Fig (4). However, the surface sculpturing is an important feature as graduated from granular in *P. aviculare* faintly netted bounded by small edges in *Persicaria lapathifolia* while there was serrated sculpturing in *R. dentatus* and *R. vesicarius* L. but it was smooth surface in *R. conglomeratus* L. as Table (3), the proceeding study some species were heterogeneous in appearance.

Table 2. Seed morphological characters for selected species

Species	Dimensions (mm)	Shape	Color	Surface sculpturing	
	Long	Width			
P. aviculare	1.5-1	1-0.75	Trigonous	Brown	Smooth
P. lapathifolia	2.12-2.15	1.25-1.125	Lenticular	Brown dark	Smooth
R. dentatus	2.25-2.0	1.5-1.75	Trigonous	Brown dark	Smooth
R. vesicarius	4.5-5.0	2.0-2.5	Trigonous	Pale yellow	Smooth
R. conglomeratus	1-1.75	1-1.25	Trigonous	black	Smooth

Table 3. Fruits morphological characters of selected species

Species	Dimensions (mm)	Shape	Color	Surface Sculpturing	
	Long	Width			
P. aviculare	2.5-4.25	0.75-1.25	Biconvex	Light brown	Granular
P. lapathifolia	2.25	1.75	Papery tepals	Dark brown	Faintly netted
R. dentatus	3.9-5	3.5-5.5	Spine teeth	Light brown	Serrate
R. vesicarius	10.5-11	7.25-8.0	Cordate to winged	Light yellow	Serrate
R. conglomeratus	4.25	2.5-3.0	Tongue like	Dark brown	Smooth
Fig 2. Seeds of selected species

- *P. lapathifolia*
- *P. aviculare*
- *R. conglomeratus*
- *R. dentatus*
- *R. vesicarius*
Fig 3. Fruits of selected species

P. lapathifolia
P. aviculare
R. conglomeratus
R. dentatus
R. vesicarius
Fig 4. Rumex versicarius in the field

REFERENCES
1- Aliway, S.A.; L.K.A. Al-Azerg; H. Redah and S. Nameer. 2017. Anatomical comparative for two species *Amaranthus albus* L. and *Amaranthus gracilis*Defs. The Iraqi Journal of Agricultural Sciences.48 (6): 1573-1581
2- Aliwy, S.A. 2017. Systematical comparative for two species *Amaranthus albus* L. and *Amaranthus gracilis*Defs. The Iraqi Journal of Agricultural Sciences.48 (3): 852-859
3- Al-Musawi, A.H., S.A., Aliway and L.K.A., Al-Azerg.2017. Isolation of two species of compositae family *E. amatus* Boiss. &Hausskn. and *E. cephalotes* DC. By morphological and vegetative shoot apex for the first time in Iraq. The Iraqi Journal of Agbotany, ricultural Sciences.48 (5): 1247-1254
4- Arnott, G. A. W. 1832. Botany. Encyclopedia Britannica Ed. 7, 5: 30-145
5- Ayodele, A.E. and J.D. Olowokudejo. 2006. The family Polygonaceae in West Africa: Taxonomic significance of leaf epidermal characters. South African journal Botany, 72.442-459
6- Buchinger, M. 1957. Nota Sobre la subdivision de la familial as Polygonaceas, Boletin De la Sociedad Argentina 7: 42-43
7- Bunawan, H., N., Talip and N., M., Noor. 2011. Foliar anatomy and micromorphology of Polygonum minus Huds. and their taxonomic implications. AJCS, 5(2):123-127
8- Burke, J., M., and A., Sanchez. 2011. Revised subfamily classification for Polygonaceae, with a tribal classification for Eriogonoidae. Brittonia, 63, (4):510-520
9- Clapham, A. R., Tutin, T. G. and E.F., Warburg. 1962. Flora of British Isles, 2nd ed. Cambridge University Press. pp.: 542-559
10- Cullen, J. 1965. Polygonaceae. In: Davis, P. H. (eds.), Flora of Tukey and the Aegean Island. Edinburgh University Press 2: 281-293
11- Edmonson, J.R. and J.R. Akeroyd in flora of Iraq, S., Ghazanfar and J., Edmondson. 2016. Flora of Iraq, Volume5, Part1. Kew publishing, pp: 150
12- Freeman, C. C. and J.L. Reveal. 2005. Polygonaceae. Vol. 5. Flora of North America, Oxford University Press, pp.: 216-221
13- Haraldson, K. 1978. Anatomy and taxonomy in Polygonaceasubfam. Polygonoideae Meisn. emend. Jaretzky. Symbolae Botanicae Upsalienses 22: 1-95
14- Heywood, V. H. 1978. Flowering Plants of the World, Oxford University Press, Oxford: 336
15- Kantachot, C. and P., Chantaranotha . (2011). Achene Morphology of Polygonum s.l. (Polygonaceae) in Thailand. Tropical Natural History, 11(1): 21-28
16- Keshavarzi, M., F., Ebrahimi and S, Mosaferi. 2018. Comparative anatomical and micromorphological study of some Rumex species (Polygonaceae). Acta Biologica Szegediensis, 62(1):45-52
17- Maharajan, M. and A., Rajendran.2014. Taxonomic studies on selected species of the genus *Polygonum* L. (Polygonaceae) in south India. Journal of Science, 4(3): 144-148
18- Mosaferi, S. and M. Keshavarzi. 2011. Micro-morphological study of Polygonaceae tribes in Iran. Phytologia Balcanica, 17 (1): 89 – 100.
19- Mosaferi, S., M., Sheidai, M., Keshavarzi and Z., Noormohammadi. 2015. Polygonum aviculare (Polygonaceae) subspecies, new records for the Flora of Iran. Modern Phytomorphology, 8: 31–36.
20- Qaiser, M. 2001. Polygonaceae. In: Ali, S. I. and Qaisar, M. (eds.). Flora of Pakistan. Department of Botany, Karachi University and Missouri Botanical Garden, St Louis, Missouri, U.S.A. 205: 4-164
21- Narasimhulu, G., K.K., Reddy and J., Mohamed. 2014. The genus Polygonum (Polygonaceae): An ethno pharmacological and phytochemical perspectives – Review. Int J Pharm Pharm Sci, 6 (2):21-45
22- Reddy, M.T., H., Begum, N., Sunil, P. S., Rao, N., Sivaraj and S., Kumar. 2015. Predicting Potential Habitat Distribution of Sorrel (Rumex vesicarius L.) in India from Presence-Only Data Using Maximum Entropy Model. Open Access Library Journal, 2: 1590
23- Ronse De Craene, L. P., S.P., Hong and E., Smets. 2000. Systematic significance of fruit morphology and anatomy in tribes Persicarieae and Polygonaeae (Polygonaceae). Bot. J. Linn. Soc. 134: 301–337
24- Ronse Decraene, L. P. and J.R. Akeroyd. 1988. Generic limits in Polygonum L. and related genera (Polygonaceae) on the basis of floral characters. Botanical Journal Linnaean Society 98: 321-371
25- 4- Salama, H. and N., Marraiki. 2015. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt. Saudi Journal of Biological Sciences, 17(1):57-63
26- Sanchez, A., T.M., Schuster, J.M., Burke and K. A., Kron. 2011. Taxonomy of Polygonoideae (Polygonaceae): A new tribal classification. Taxon 60(1):151-160
27- Srivastava, R.C. 2014. Family polygonaceae in India. Indian Journal of Plant Sciences, 3, 112-150
28- Tavakkoli, S., O., Sh. Kazempour and A.A., Maassoumi. 2008. Morphological cladistic analysis of Calligonum and Pteropyrum (Polygonaceae) in Iran. Iran J. Bot. 14(2): 117-125
29- Xu, Zhenghao and M., Deng. 2017. Identification and Control of Common Weeds: Volume 2. pp:87-94.