Pre-treatment inflammatory parameters predict survival from endometrial cancer: A prospective database analysis

Kelechi Njoku a,b, Neal C. Ramchander a, Y. Louise Wan a, Chloe E. Barr c, Emma J. Crosbie a,c,⁎

a Division of Cancer Sciences, University of Manchester, School of Medical Sciences, Faculty of Biology, Medicine and Health, 5th Floor Research, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, United Kingdom
b Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
c Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom

HIGHLIGHTS
• Pre-treatment markers of inflammation were analysed in relation to endometrial cancer survival in a prospective study.
• Women with elevated CRP of ≥5.5 mg/L had a 68% increase in overall and a two-fold increase in cancer-specific mortality.
• There was no evidence of an effect of pre-treatment CRP on recurrence-free survival.
• Lymphocyte-based scores were associated with adverse clinico-pathologic factors, but not survival outcomes.
• CRP offers a simple, low-cost endometrial cancer prognostic test with potential to refine pre-treatment risk assessment.

ABSTRACT

Purpose. Inflammation predisposes to tumorigenesis by damaging DNA, stimulating angiogenesis and potentiating pro-proliferative and anti-apoptotic processes. The aim of this study was to investigate whether pre-treatment biomarkers of systemic inflammation are associated with survival outcomes in endometrial cancer.

Patients and methods. Women with endometrial cancer were recruited to a prospective database study. Pre-treatment systemic markers of inflammation, including C-reactive protein (CRP), Glasgow Prognostic Score and lymphocyte-based ratios [neutrophil-lymphocyte ratio (NMR), monocyte-lymphocyte ratio (MLR), systemic immune-inflammation index (SII)], were analysed in relation to overall, endometrial cancer-specific and recurrence-free survival using Kaplan-Meier estimation and multivariable Cox regression.

Results. In total, 522 women of mostly White British ethnicity, with a median age of 66 years (interquartile range (IQR), 56, 73) and BMI of 32 kg/m² (IQR 26, 39) were included in the analysis. Most had low-grade (67.2%), early-stage (85.4% stage I/II), endometrioid (74.5%) tumors. Women with pre-treatment CRP ≥5.5 mg/L had a 68% increase in overall (adjusted HR = 1.68, 95% CI 1.00–2.81, p = 0.049) and a two-fold higher cancer-specific mortality risk than those with CRP <5.5 mg/L (adjusted HR = 2.04, 95%CI 1.03–4.02, p = 0.04). Absolute lymphocyte count, NLR, MLR and SII were associated with adverse clinico-pathologic factors, but not overall, cancer-specific or recurrence-free survival in the multivariable analysis.

Conclusion. If confirmed in an independent cohort, CRP may offer a simple, low-cost test to refine pre-treatment risk assessment and guide personalised care in endometrial cancer. Our participants were mostly of White British ethnicity and further studies are needed to confirm the utility of CRP as a prognostic biomarker in other populations.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Endometrial cancer is the sixth most common malignancy in women worldwide, with an estimated 417,000 cases reported globally in 2020 [1]. In the United Kingdom (UK), it is the fourth most common and the 7th leading cause of death from cancer in women [2]. Over the last decade, endometrial cancer mortality rates have risen by 25% in the
UK, with similar trends reported in other high income countries [2]. Whilst most women with endometrial cancer are diagnosed early when curative treatment is likely, a significant minority present with advanced or metastatic disease that heralds a poor prognosis [3].

Accurate endometrial cancer risk assessment is fundamental to ensuring women receive appropriate evidence-based care [4]. Currently, clinico-pathological risk assessment is based on tumor parameters, including International Federation of Gynecology and Obstetrics (FIGO) surgical stage, tumor grade and histology, lymphovascular space invasion and depth of myometrial invasion [5,6]. The molecular classification of endometrial cancer holds great promise for improving risk stratification beyond these standard clinico-pathological features [7]. Management algorithms also take age, body mass index (BMI) and comorbid status into consideration [3]. However, there is emerging evidence that prognosis is influenced by factors other than traditional clinico-pathological parameters, and that these may help to refine endometrial cancer risk assessment [4-8-10].

Chronic low-grade inflammation is one of the biological mechanisms underpinning endometrial carcinogenesis [11]. Adipose tissue expansion and localized hypoxia accompanying excess body fat creates a chronic pro-inflammatory cytokine milieu of interferons, interleukins and C-reactive protein (CRP) [12,13]. The resulting inflammatory state promotes cellular proliferation and reduces apoptosis, contributing to malignant transformation, tumor growth and progression [14]. Whilst inflammation has been shown to increase risk [15], few studies have explored the potential prognostic utility of systemic inflammatory markers in endometrial cancer [16-24].

CRP is an acute-phase inflammatory protein that correlates with poor outcomes in several adult solid tumors [25,26]. A systematic review found CRP was prognostic in 90% of the 271 included studies [27], but few assessed its utility in the context of endometrial cancer [16,18,28]. Those that did failed to account for important clinical and other prognostic parameters that may explain or confound the association between CRP and survival. The systemic immune inflammation index (SII), a composite score that integrates lymphocyte, platelet and neutrophil counts, is a promising prognostic biomarker in several malignancies, including those of the ovary, breast [29], and endometrium [23,24,30] but there is limited evidence to enable its translation into routine clinical practice. Other inflammation-based parameters with potential prognostic utility that need external validation prior to their clinical use include neutrophil-to-lymphocyte ratio (NLR) and monocyte-to-lymphocyte ratio (MLR) [21].

The aim of this study was to investigate whether pre-treatment biomarkers of systemic inflammation are associated with survival outcomes using a large prospective database of endometrial cancer patients.

2. Methods

2.1. Study population

Women with endometrial cancer treated between 2010 and 2015 at St Mary’s Hospital, a regional specialist centre for the management of gynecological cancers, were eligible for inclusion. All participants consented for their pseudo-anonymized data to be used for future research. Relevant sociodemographic and clinico-pathological data, including age, socioeconomic quintile, BMI, comorbidities, histological subtype, tumor grade and stage, depth of myometrial invasion and lymphovascular space invasion (LVSI) were recorded. We categorized age as <65 and ≥65 years, in line with age groupings used in many studies, and women were classified as underweight (BMI < 18.5 kg/m²), normal weight (BMI 18.5–24.9 kg/m²), overweight (BMI 25–29.9 kg/m²) or obese (BMI ≥ 30 kg/m²). We classified endometrial cancers according to histological subtype (endometrioid, serous, clear cell, carcinosarcoma) based on expert pathology review by two specialist gynecological pathologists, using FIGO 2009 surgical staging criteria [31].

Most women were treated with total hysterectomy and bilateral salpingo-oophorectomy (+/- adjuvant therapy, in line with national and international guidelines [3,6]. Women with grade 1 stage 1a endometrial cancer who wished to preserve their fertility, or who were medically unfit for surgery, received primary hormone therapy (+/- delayed hysterectomy). A few women received primary palliative radiotherapy. We reviewed all cases in follow-up clinics at 3-month (for 3 years), 6-month (for 1 year) and 12-month intervals for a total duration of 5 years, or until disease recurrence or death, whichever was sooner. We contacted GPs to ascertain current status where women had completed routine hospital-based follow up or moved away from Manchester. Disease recurrence was managed according to national and international recommendations [3,5]. Women with pelvic recurrence were managed surgically or with radiotherapy as appropriate, whereas those with metastatic or distant recurrent disease were managed with palliative hormone therapy, chemotherapy +/− radiotherapy [3,6]. We obtained cause of death information from death certificates.

2.2. Systemic inflammatory indices

We measured pre-treatment complete blood count (CBC), CRP and albumin levels for the study participants. Glasgow prognostic score (GPS) was calculated as follows: women with CRP > 10 mg/L and albumin<35 g/L were allocated GPS = 2; those with CRP > 10 mg/L or albumin<35 g/L were allocated GPS = 1; and those with CRP ≤ 10 mg/L and albumin≥35 g/L were allocated GPS = 0. Modified GPS (mGPS) was calculated as follows: women with CRP > 10 mg/L and albumin<35 g/L were allocated mGPS = 2; women with CRP > 10 mg/L and albumin≥35 g/L were allocated mGPS = 1; and those with CRP < 10 mg/L were allocated mGPS = 0. The following lymphocyte-based ratios were calculated: Neutrophil to Lymphocyte Ratio (NLR: neutrophil divided by lymphocyte count), Monocyte to Lymphocyte Ratio (MLR: monocyte divided by lymphocyte count), and Systemic Immune Inflammation Index (SII: neutrophil multiplied by platelet and divided by lymphocyte count). For each biomarker, the most appropriate cut-off value was based on the optimal decision threshold derived from receiver operating characteristics (ROC) curve analysis. The main study endpoints were overall, cancer-specific and recurrence-free survival.

2.3. Statistical analysis

Overall survival was defined as the time interval in months from start of primary treatment to death from any cause or the last day of survival data available. Cancer-specific survival was calculated from start of primary treatment to death from endometrial cancer or the date of last follow-up and censored on date of death from other causes. Recurrence-free survival was calculated from start of primary treatment to first record of recurrence, death or date of last follow-up, whichever was sooner. All inflammatory markers were analysed as both continuous and categorical variables (based on ROC defined thresholds). Chi-square (X²) and Fisher’s exact tests were used to compare proportions between groups, as appropriate. Student’s t-test and one-way or two-way ANOVA was used to test for statistical significance as indicated. The Kaplan-Meier method was used to compute survival rates and the log-rank test assessed survival differences between groups. Cox regression multivariable modeling was used to measure the association between inflammatory parameters and survival after adjustment for confounding and effect modifications. Hazard ratios (HRs) with 95% confidence intervals (95% CIs) were computed for both univariable and multivariable analyses. The confounding variables included in the models were age at diagnosis, BMI, type 2 diabetes mellitus (T2DM) status, treatment modality, FIGO stage, histological subtype, grade, LVSI, and depth of myometrial invasion. Confounding was evaluated by
assessing changes in hazard coefficients following the introduction of these variables to the Cox regression models. The assumption of proportional hazards was assessed and met for all models. A p-value of <0.05 was considered statistically significant. All analyses were conducted using the statistical package Stata 16.0 (https://www.stata.com).

3. Results

3.1. Study population

Of 537 eligible women, pre-treatment lymphocyte-based and CRP levels were available for 467 and 358 women, respectively (Table 1). Their median age and BMI were 66 years (Interquartile range (IQR), 56, 73) and 32 kg/m² (IQR 26, 39) respectively. Most had low-grade (67.2%), early-stage (85.4% stage I/II), endometrioid (74.5%) cancers. Most women were managed with primary surgery (88.5%), of whom 45% received adjuvant therapy. During the study period, 76 women (14.6%) relapsed, 108 (20.7%) died, and the remainder were alive as of 67.2%. Early-stage (85.4% stage I/II), endometrioid (74.5%) cancers.

3.2. Kaplan-Meier survival estimation and Cox regression analysis

The median follow-up was 40 months (IQR 24–57 months). Overall survival rates were 95% (92–96%) at 12 months, 84% (81–87%) at 36 months and 76% (71–80%) at 60 months. Age, T2DM status, stage, histology, grade, LVI and depth of myometrial invasion were all important predictors of overall survival. There was a 7% increased risk of death from any cause per unit increase in age (HR = 1.07, 95%CI 1.05–1.09, p = 0.001), however, there was no effect of BMI (HR = 0.99, 95%CI 0.98–1.01, p = 0.576). Compared to those without, women with T2DM had a 93% higher mortality risk (HR = 1.93, 95%CI 1.28–2.99, p = 0.002). Women with advanced disease (stage III/IV) had a three-fold higher risk of death (HR = 3.01, 95%CI 1.99–4.57, p < 0.001) than those with early-stage disease (stage I/II). Women with non-endometrioid tumors had a three-fold higher mortality risk (HR = 3.06, 95%CI 2.09–4.48, p < 0.001) than those with endometrioid tumors, and women with grade III disease had a near three-fold higher mortality risk (HR = 2.99, 95%CI 2.04–4.39, p < 0.001) than those with grade I/II disease. LVI and deep myometrial invasion were also associated with higher risks of death (HR = 2.27, 95%CI 1.55–3.31, p < 0.001 and HR = 1.78, 95%CI 1.22–2.60, p = 0.003, respectively).

Of the 108 deaths, 74(68.5%) were due to endometrial cancer. Cancer-specific survival rates were 96% (94–97%) at 12 months, 89% (85–91%) at 36 months and 82% (77–86%) at 60 months. Age at diagnosis (HR = 1.06, 95%CI 1.03–1.08, p < 0.001), T2DM status (HR = 1.68, 95%CI 1.01–2.78, p = 0.040), stage (HR = 4.97, 95%CI 3.11–7.93, p < 0.001), grade (HR = 5.86, 95%CI 3.51–9.80, p < 0.001), histology (HR = 5.14, 95%CI 3.20–8.23, p < 0.001), LVI (HR = 3.51 95%CI 2.21–5.57, p < 0.001) and deep myometrial invasion (HR = 2.24, 95% CI 1.42–3.55, p = 0.01) were important predictors of cancer-specific survival in univariable analyses.

Overall, there were 76 recurrences with a median time to recurrence of 14 months (range 1–54 months). The recurrence-free survival estimates for the whole cohort were 93% (90–95%) at 12 months, 83% (79–86%) at 36 months and 78% (75–84%) at 60 months. Age at diagnosis (HR = 1.04, 95%CI 1.02–1.07, p < 0.001), stage (HR = 4.43, 95%CI 2.91–7.37, p < 0.001), grade (HR = 4.50, 95%CI 2.80–7.23, p < 0.001), histology (HR = 3.62, 95%CI 2.31–5.69, p < 0.001), LVI (HR = 4.14, 95%CI 2.62–6.54, p < 0.001), deep myometrial invasion (HR = 2.29, 95%CI 1.46–3.60, p < 0.001) and T2DM status (HR = 1.75, 95%CI 1.07–2.88, p = 0.027) were important predictors of recurrence-free survival.

3.3. Pre-treatment CRP and endometrial cancer overall, cancer-specific and recurrence-free survival

CRP values ranged from 0.2 mg/L to 158 mg/L with a median CRP of 4 mg/L and IQR of 1.7–10 mg/L. The optimal prognostic cut-off value for survival based on the ROC curve decision threshold analysis was 5.5 mg/L (specificity 61%, sensitivity 49%, AUC 0.55). A total of 147 women (41.1%) with pre-treatment CRP > 5.5 mg/L were classed as having ‘high’ CRP whilst the remaining 211 with CRP < 5.5 mg/L were classed as having ‘low’ CRP. There was an association between CRP and BMI (Spearman’s correlation coefficient 0.35, p < 0.001), T2DM status and primary treatment received, but no evidence for an association with age, socioeconomic status, stage, histology, grade, LVI or myometrial invasion at the decision threshold of 5.5 mg/L (Table 2). At a higher threshold of 10 mg/L (used in the computation of GPS), there was evidence of an association between CRP and histology (p = 0.01) and tumor grade (p = 0.02). Women with high CRP had significantly higher overall and cancer-specific mortality rates than those with low CRP in both univariable and multivariable analyses (Fig. 1A, Table 3). There was no evidence of an effect of pre-treatment CRP on recurrence-free survival. When CRP was analysed as a continuous variable, the adjusted hazard ratios were 1.01(95%CI 1.00–1.03, p = 0.144, 1.02(95%CI 1.00–1.04, p = 0.057) and 1.00(95%CI 0.99–1.03, p =

Table 3

Variable	n (% total)
Age at diagnosis	Median age 66 years (IQR 56, 73)
<65 years	237 (45.4%)
≥65 years	285 (54.6%)
Body Mass Index (kg/m²)	Median BMI 32 kg/m² (IQR 26, 39)
Underweight	6 (1.2%)
Normal weight	82 (15.7%)
Overweight	125 (24.0%)
Obese	309 (59.2%)
Tumor grade	
1	245 (45.0%)
2	116 (22.2%)
3	171 (32.8%)
Tumor stage	
I	391 (75.1%)
II	54 (10.4%)
III	69 (13.2%)
IV	7 (1.3%)
Histology	
Endometrioid	389 (74.5%)
Non-endometrioid	133 (25.5%)
Lymphovascular invasion (n = 536)	
No	371 (71.5%)
Yes	148 (28.5%)
Depth of myometrial invasion	
<50%	335 (64.2%)
≥50%	187 (35.8%)
Social deprivation group (n = 532)	
Social group I (Least deprived)	147 (28.2%)
Social group II (Middle group)	181 (34.7%)
Social group III (Most deprived)	194 (37.2%)
History of type 2 diabetes mellitus (n = 535)	
Yes	105 (20.2%)
No	414 (79.8%)
Primary treatment	
Surgery	462 (88.5%)
Hormonal (Fertility sparing reasons)	21 (4.0%)
Hormonal (Not fit for surgery)	36 (6.9%)
Radiotherapy	3 (0.6%)
Adjuvant treatment	
Yes	234 (44.9%)
No	287 (55.1%)
Recurrence	
Yes	76 (14.0%)
No	445 (85.4%)
Survival status at end of follow up	
Alive	414 (79.3%)
Cancer-specific mortality	74 (14.2%)
Non-cancer related mortality	34 (6.5%)
Total	522 (100%)
and IQR of 1.58 counts other clinico-pathological variable (Table S2). Women with lymphocyteBold indicates p < 0.05.

Lymphocyte counts were available for 467 women with values ranging from 0.4 × 10^9/L to 6.62 × 10^9/L, with a median value of 2.02 × 10^9/L.

There was an association between lymphocyte count ≥2.15 × 10^9/L and BMI but no evidence for an association with any other clinico-pathological variable (Table S2). Women with lymphocyte counts ≥2.15 × 10^9/L had higher overall mortality rates than women with lymphocyte counts <2.15 × 10^9/L on univariable analysis (HR = 0.65, 95%CI 0.43–0.99, p = 0.04) (Fig. 1C). There was no evidence of an effect of lymphocyte count on overall (adjusted HR = 0.67, 95%CI 0.42–1.04, p = 0.08), cancer-specific (adjusted HR = 0.68, 95%CI 0.39–1.16, p = 0.16) or recurrence-free survival (adjusted HR = 0.74, 95%CI 0.44–1.25, p = 0.27) at a prognostic threshold of 2.15 × 10^9/L, in multivariable analyses.

NLR values ranged from 0.28 to 32 (median 2.39) and IQR 1.79–32. The optimal prognostic cut-off was 2.38 (specificity 53%, sensitivity 65%, AUC 0.59). Approximately 50% of women (n = 237) had an NLR ≥2.38. There was an association between NLR prognostic categories and age, stage, grade, LVSII and depth of myometrial invasion (Table S2). Women with NLR ≥2.38 had higher overall and cancer-specific mortality rates than women with NLR <2.38 (HR = 1.86, 95%CI 1.23–2.81, p = 0.003 and HR = 1.73, 95%CI 1.08–2.79, p = 0.020, respectively) in univariable analyses (Fig. 1D), however, after adjusting for confounding factors, there was no evidence of an effect of NLR on overall, cancer-specific or recurrence-free survival.

MLR values ranged from 0.06 to 0.80 (median 0.27) and IQR 0.21–0.35. The optimal prognostic cut-off was 0.42 (specificity 53%, sensitivity 65%, AUC 0.59). A total of 263 women (56.4%) had MLR values ≥0.25. There was an association between MLR prognostic categories and age, BMI, histology, grade and depth of myometrial invasion (Table S2). Women with MLR ≥0.25 had higher overall mortality, cancer-specific mortality and recurrence rates than women with MLR <0.25 (HR = 1.64, 95%CI 1.09–2.50, p = 0.02; HR = 1.64, 95%CI 1.01–2.67, p = 0.04 and HR = 1.71, 95%CI 1.05–2.79, p = 0.03, respectively) in univariable analyses (Fig. 1E). However, after adjusting for confounding factors, there was no evidence of an effect of MLR on overall, cancer-specific or recurrence-free survival.
3.6. Systemic Immune Inflammation Index (SII) and endometrial cancer overall, cancer-specific and recurrence-free survival

SII data were available for 467 women and had values ranging from 53 to 9366 (median value 678, IQR 477–1009). The optimal SII cut-off value based on the ROC curve decision threshold was 910 (sensitivity 39%, specificity 72%, AUC 0.65). A total of 139 women (29.8%) had SII values ≥910. There was an association between SII values ≥910 and standard pathological prognostic factors, including stage, histology, grade, LVSI and depth of myometrial invasion (Table S2). Over the study period, 23 women with SII values ≥910 (16.5%) recurred compared to 50 women with values <910 (15.2%), \(p = 0.700 \). There was a significantly higher overall mortality rate in women with SII ≥910 compared to women with SII <910 (28.1% vs 18.6% respectively, \(p = 0.023 \)). Women with pre-treatment SII values ≥910 had a higher rate of all-cause mortality than those with SII values <910 (HR = 1.58, 95%CI 1.05–2.36, \(p = 0.026 \)) on univariable analysis (Fig. 1F). However, after adjusting for confounding factors, there was no evidence of an effect of SII on overall, cancer-specific or recurrence-free survival.

4. Discussion

4.1. Main findings

Here, we show evidence for the potential utility of CRP as a prognostic biomarker in endometrial cancer. Women with a high pre-treatment CRP at a decision threshold of 5.5 mg/L had a 68% increase in overall mortality and a two-fold higher cancer-specific mortality risk compared to those with low CRP. Absolute lymphocyte count, NLR, MLR and SII were associated with aggressive tumor parameters including stage, histology, grade, LVSI and depth of myometrial invasion, but when these and clinical prognostic factors were controlled for, there was no evidence that lymphocyte-based scores are associated with overall, cancer-specific or recurrence-free survival.
A multicenter study of 403 surgically treated patients found LVSI or age at diagnosis \[16\], and the study failed to control for other im-

leagues reported GPS 2 to be an independent predictor of survival and re-

trial cancer found high pre-operative CRP levels were associated with in-

myometrial invasion. A small study of 176 women with type 1 endome-

portant prognostic parameters, for example BMI, T2DM and depth of

stage, grade, histological subtype, LVSI and depth of myometrial inva-

SII is a novel composite indicator of inflammation and a promising

grognostic biomarker for several solid adult malignancies \[40\]. A meta-analysis of 2724 patients showed that elevated SII was associated

poor overall survival and increased risk of lymph node metastasis in patients with gynecological malignancies \[29\]. An association be-

between SII and disease-free survival was noted in women with ovarian

and breast cancer but no endometrial cancer studies were included in

the review. Subsequent studies include a retrospective analysis of 442

patients of Japanese descent with a mean BMI of 23 kg/m², which

found SII was an independent prognostic factor in endometrial cancer.

These findings cannot necessarily be extrapolated to non-Japanese en-

dometrial cancer patients with elevated BMI \[29\]. Further data come

from a study of 155 women with FIGO stage I-III endometrial cancer

treated with postoperative external beam radiotherapy, which found el-

evated SII was associated with decreased overall survival \[24\]. Whilst

the authors attempted adjustment for confounding variables, histologi-

cal subtype and tumor grade did not correlate with survival outcomes,

raising concerns about the statistical power of the study. Another

study of 101 women with endometrial cancer reported a higher SII

was associated with shorter progression-free and overall survival

times, but was limited by small numbers \[30\]. To our knowledge, ours

is the largest study to date to investigate the prognostic relevance of

SII in women with endometrial cancer. We showed that SII is linked to

aggressive endometrial cancer phenotypic parameters, specifically

FIGO stage, histology, LVI and deep myometrial invasion, but when

these are adjusted for, there is no evidence for an effect of SII on survival

outcomes at these prognostic thresholds. Whilst there are no clinically

validated prognostic thresholds for markers like SII, and since applied

thresholds vary between studies, a different conclusion might be

reached based on alternative thresholds. Well-designed studies with

adequate sample sizes are now needed to confirm the true value of SII

as a prognostic biomarker in endometrial cancer and to identify optimal

decision thresholds.

We and others have shown that absolute lymphocyte count, NLR

and MLR are associated with adverse clinico-pathological factors in en-
dometrial cancer \[30,41–43\]. A retrospective analysis of 197 endometrial
cancer patients investigated the potential utility of NLR to predict

lymph node metastasis \[41\] while another study found a NLR >2.41

predicted cervical stromal involvement in endometrioid endometrial

cancer \[42\]. These findings are consistent with those of a meta-

analysis by Pergialiotis and colleagues, who showed NLR was associated

with poor overall survival and increased risk of lymph node metastasis

in patients with gynecological malignancies \[29\]. An association be-

tween SII and disease-free survival was noted in women with ovarian

and breast cancer but no endometrial cancer studies were included in

the review. Subsequent studies include a retrospective analysis of 442

patients of Japanese descent with a mean BMI of 23 kg/m², which

found SII was an independent prognostic factor in endometrial cancer.

These findings cannot necessarily be extrapolated to non-Japanese en-
dometrial cancer patients with elevated BMI \[29\]. Further data come

from a study of 155 women with FIGO stage I-III endometrial cancer
		
treated with postoperative external beam radiotherapy, which found el-

evated SII was associated with decreased overall survival \[24\]. Whilst

the authors attempted adjustment for confounding variables, histologi-
cal subtype and tumor grade did not correlate with survival outcomes,

raising concerns about the statistical power of the study. Another

study of 101 women with endometrial cancer reported a higher SII

was associated with shorter progression-free and overall survival
times, but was limited by small numbers \[30\]. To our knowledge, ours

is the largest study to date to investigate the prognostic relevance of

SII in women with endometrial cancer. We showed that SII is linked to

aggressive endometrial cancer phenotypic parameters, specifically

FIGO stage, histology, LVI and deep myometrial invasion, but when

these are adjusted for, there is no evidence for an effect of SII on survival

outcomes at these prognostic thresholds. Whilst there are no clinically

validated prognostic thresholds for markers like SII, and since applied

thresholds vary between studies, a different conclusion might be

reached based on alternative thresholds. Well-designed studies with

adequate sample sizes are now needed to confirm the true value of SII

as a prognostic biomarker in endometrial cancer and to identify optimal

decision thresholds.

We and others have shown that absolute lymphocyte count, NLR

and MLR are associated with adverse clinico-pathological factors in en-
dometrial cancer \[30,41–43\]. A retrospective analysis of 197 endometrial
cancer patients investigated the potential utility of NLR to predict

lymph node metastasis \[41\] while another study found a NLR >2.41

predicted cervical stromal involvement in endometrioid endometrial

cancer \[42\]. These findings are consistent with those of a meta-

analysis by Pergialiotis and colleagues, who showed NLR was associated

with advanced-stage disease, positive lymph nodes, LVI and distant

metastases \[43\]. A retrospective series of 605 surgically treated endo-

metrial cancer patients found NLR, but not MLR, was an independent

prognostic factor. NLR was linked to advanced stage while MLR was as-

associated with advancing age \[21\]. This study controlled for age, stage,

histology and LVSI and is thus open to residual confounding by BMI,

CRP categories	Unadjusted HR (95% CI)	p-Value	Adjusted HR (95% CI)	p-Value	
Overall mortality	CRP <5.5 mg/L	1.00	1.00	1.00	0.049
	CRP ≥5.5 mg/L	1.75 (1.09–2.80)	0.020	1.68 (1.00–2.81)	0.049
Cancer-specific mortality	CRP <5.5 mg/L	1.00	1.00	1.00	0.040
	CRP ≥5.5 mg/L	2.07 (1.13–3.76)	0.018	2.04 (1.03–4.02)	0.040
Disease recurrence	CRP <5.5 mg/L	1.00	1.00		
	CRP ≥5.5 mg/L	1.46 (0.79–2.69)	0.229	1.13 (0.58–2.20)	0.712

Adjusted model includes age, BMI, histology, grade, FIGO stage, LVI, depth of myometrial invasion, T2DM status and treatment received.

4.2. Strengths and limitations

Our study benefits from a large cohort of endometrial cancer pa-

tients recruited to population-based studies with broad inclusion

criteria, alleviating concerns about selection bias. The availability of

high quality socio-demographic and clinico-pathological data allowed

for robust correction for confounding factors and effect modifiers. Clas-

sically applied endometrial cancer prognostic parameters, including

stage, grade, histological subtype, LVI and depth of myometrial inva-

sion, all demonstrated the expected associations. The lack of data on

ethnicity, surgical approach and molecular subgroup is a limitation of

our work that may lead to an over- or under-estimation of survival out-

comes. The relatively small sample size for the CRP cohort reduces the

precision of our estimates. We were not able to validate the utility of

data-derived cut-offs either in a separate cohort or through cross valida-

tion within this cohort, due to low overall numbers. Thus further work

is needed before CRP can be introduced as a prognostic biomarker in rou-

tine clinical practice. As a single center study of mostly White British

women, we cannot necessarily extrapolate our study findings to

women from other centers, nationalities or ethnic backgrounds.

4.3. Interpretation

Obesity plays a strong etiological role in endometrial carcinogenesis and is characterized by a chronic low-grade inflammatory state \[32,33\]. Inflammation predisposes to tumorgenesis by damaging DNA, stimulating angiogenesis and potentiating pro-proliferative and anti-apoptotic processes \[14,34\]. The inflammatory cytokines that drive these processes include IL-1, IL-6, tumor necrosis-alpha and interferon-gamma \[12\]. These stimulate the production of CRP, an acute-phase protein that is

produced by the liver and released directly into the blood. The potential

prognostic utility of CRP has been investigated in many solid malignan-

cis, but was limited by small numbers \[30\]. To our knowledge, ours

is the largest study to date to investigate the prognostic relevance of

SII in women with endometrial cancer. We showed that SII is linked to

aggressive endometrial cancer phenotypic parameters, specifically

FIGO stage, histology, LVI and deep myometrial invasion, but when

these are adjusted for, there is no evidence for an effect of SII on survival

outcomes at these prognostic thresholds. Whilst there are no clinically

validated prognostic thresholds for markers like SII, and since applied

thresholds vary between studies, a different conclusion might be

reached based on alternative thresholds. Well-designed studies with

adequate sample sizes are now needed to confirm the true value of SII

as a prognostic biomarker in endometrial cancer and to identify optimal
decision thresholds.

We and others have shown that absolute lymphocyte count, NLR

and MLR are associated with adverse clinico-pathologic factors in endo-
dometrial cancer \[30,41–43\]. A retrospective analysis of 197 endometrial
cancer patients investigated the potential utility of NLR to predict

lymph node metastasis \[41\] while another study found a NLR >2.41

predicted cervical stromal involvement in endometrioid endometrial

cancer \[42\]. These findings are consistent with those of a meta-

analysis by Pergialiotis and colleagues, who showed NLR was associated

with advanced-stage disease, positive lymph nodes, LVI and distant

metastases \[43\]. A retrospective series of 605 surgically treated endo-

metrial cancer patients found NLR, but not MLR, was an independent

prognostic factor. NLR was linked to advanced stage while MLR was as-

associated with advancing age \[21\]. This study controlled for age, stage,

histology and LVSI and is thus open to residual confounding by BMI,
T2DM status, depth of myometrial invasion amongst others. A retrospective review of 510 surgically managed endometrial cancer patients of Chinese descent found NLR to be an independent prognostic marker [44]. Several studies support these findings [20,22,45–47], while others do not [17,41,48]. A systematic review of nine studies and 3390 patients concluded that elevated NLR has potential as a prognostic marker in women with endometrial cancer [49], but was limited by, marked heterogeneity of included studies with respect to NLR thresholds and small study sizes.

5. Conclusion

In this study, we found pre-treatment CRP to be an independent prognostic biomarker in endometrial cancer. Women with a high CRP at a decision threshold of 5.5 mg/l had a two-fold increased risk of death compared to women with low CRP. If validated in an independent cohort, CRP could provide a simple, low-cost prognostic test that has the potential to refine pre-treatment risk assessment and guide decisions about adjuvant treatment in endometrial cancer.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgyno.2021.11.009.

References

[1] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (3) (2021) 209–249.
[2] CRUK, Uterine Cancer Incidence Statistics, Available at: http://www.Cancerresearchuk.org, Last Accessed 1/6/2020 CRUK, 2020.
[3] K. Njoku, J. Abiola, J. Russell, E.J. Crosbie, Endometrial cancer prevention in high-risk women: a systematic review, Cancers (Basel) 13 (21) (2021) 5464.
[4] E. Shaw, M. Farris, J. McNeil, C. Friedenreich, Obesity and endometrial cancer, Obes. Cancer (2016) 107–136.
[5] S.J. Kitson, D.G. Evans, E.J. Crosbie, Identification of high-risk women for endometrial cancer prevention strategies: proposal of an endometrial cancer risk prediction model, Cancer Prev. Res. 10 (1) (2017) 1–13.
[6] I. Colombo, S. Lheureux, A.M. Oza, Summary of management guidelines for endometrial cancer, Management of Endometrial Cancer, Springer 2020, pp. 133–181.
[7] K. Njoku, C.E. Barr, J. Abiola, J. Russell, E.J. Crosbie, Metabolism, macrophage polarization, and breast cancer, Breast Cancer Res. 22 (1) (2020) 3–16.
[8] K. Njoku, C.J. Sutton, A.D. Whetton, E.J. Crosbie, Metabolic biomarkers for detection, prognosis and identifying recurrence in endometrial cancer, Metabolites 10 (8) (2020) 314.
[9] T. Wang, T.E. Rohan, M.J. Gunter, X. Xue, J. Wactawski-Wende, S.N. Rajpathak, M. Schenk-Riese, A. Chen-Charpentier, S. Hirasawa, Y. Luo, Multivariate analysis of prognostic biomarkers in endometrial cancer patients: a meta-analysis, Eur. J. Obstet. Gynecol. Reprod. Biol. 213 (2017) 1–8.
[10] C.E. Barr, K. Njoku, L. Hotchkies, N.A.J. Ryan, Y.L. Wan, D.A. Davies, S. Razvi, E.J. Crosbie, Does clinical and biochemical thyroid dysfunction impact on endometrial cancer survival outcomes? A prospective study database, Cancer (Basel) 13 (21) (2021) 5464.
[11] S.J. Kitson, D.G. Evans, E.J. Crosbie, Identifying high-risk women for endometrial cancer prevention strategies: proposal of an endometrial cancer risk prediction model, Cancer Prev. Res. 10 (1) (2017) 1–13.
[12] S.J. Kitson, D.G. Evans, E.J. Crosbie, Does clinical and biochemical thyroid dysfunction impact on endometrial cancer survival outcomes? A prospective study database, Cancers (Basel) 13 (21) (2021) 5464.
[13] K. Njoku, J. Abiola, J. Russell, E.J. Crosbie, Endometrial cancer prevention in high-risk women, Best Pract. Res. Clin. Obstet. Gynaecol. 65 (2020) 66–78.
[14] F. Modugno, R.B. Ness, C. Chen, N.S. Weiss, Inflammation and endometrial cancer: a hypothesis, Cancer Epidemiol. Prev. Biomark. 14 (12) (2005) 2644–2647.
[15] T. Wang, T.E. Rohan, M.J. Gunter, X. Xue, J. Wactawski-Wende, S.N. Rajpathak, M. Cushman, H.D. Strickler, R.C. Kaplan, S. Watherstein-Smoller, A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone users, Cancer Epidemiol. Prev. Biomarkers 20 (5) (2011) 971–977.
[16] M. Schmid, A. Schneitter, S. Hinterberger, J. Seeber, A. Reinthaller, L. Heim, Association of elevated C-reactive protein levels with an impaired prognosis in patients with surgically treated endometrial cancer, Obestet. Gynecol. 110 (6) (2007) 1231–1236.
[17] J. Li, J. Lin, Y. Luo, M. Kuang, Y. Liu, Multivariate analysis of inflammatory biomarkers in surgically treated endometrial cancer, PLoS One 10 (6) (2015), e0130640.
[18] L.J. Wang, H. Zhou, H.W. Lu, J. Li, Z.Q. Lin, Prognostic value of preoperative serum high-sensitivity C-reactive protein in patients with endometrial cancer, Zhonghua Yi Xue Za Zhi 91 (41) (2011) 2927–2930.
[19] M. Saijo, K. Nakamura, H. Masuyama, N. Ida, T. Haruma, T. Kusumoto, N. Seki, Y. Hiramatsu, Glasgow prognostic score is a predictor for prognosis in patients with endometrial cancer, Eur. J. Obstet. Gynecol. Reprod. Biol. 210 (2017) 35–47.
[20] R. Takahashi, S. Sambuchi, M. Kawano, T. Sasano, M. Terakawa, H. Kuroda, T. Hisamatsu, K. Kozasa, K. Sawada, T. Hamasaki, Prognostic significance of systemic neutrophil and leukocyte alterations in surgically treated endometrial cancer patients: a monoclinical study, Gynecol. Oncol. 137 (1) (2015) 112–118.
[21] M. Cummings, J. Merone, C. Keeble, L. Burland, M. Grzelinski, K. Sutton, N. Begum, A. Cullum, E. Cushman, H.D. Strickler, R.C. Kaplan, S. Wassertheil-Smoller, A prospective study of inflammation markers and endometrial cancer risk in postmenopausal hormone users, Cancer Epidemiol. Prev. Biomarkers 20 (5) (2011) 971–977.
[22] S. Matsubara, S. Mabuchi, Y. Takeda, N. Kawahara, H. Kobayashi, Prognostic significance of pre-treatment systemic immune-inflammation index in patients with endometrial cancer, PLoS One 16 (5) (2021), e0248871.
[23] K. Holub, F. Busato, S. Gospa, R. Sun, P. Pastier, C. Genestie, P. Morice, A. Leary, E. Deutsch, C. Haie-Meder, Analysis of systemic inflammatory factors and survival outcomes in endometrial cancer patients staged I–III FIGO and treated with postoperative external radiotherapy, J. Clin. Med. 9 (5) (2020) 1441.
[24] M.B. Peggs, G.M. Hirschfeld, C-reactive protein: a critical update, J. Clin. Invest. 111 (12) (2003) 1805–1812.
[25] K.H. Allin, B.G. Nordestgaard, Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer, Crit. Rev. Clin. Lab. Sci. 48 (4) (2011) 155–170.
[26] S. Shrotriya, D. Walsh, N. Bennani-Baiti, S. Thomas, C. Lorton, C-reactive protein is an important biomarker for prognosis and treatment response in adult solid tumors: a systematic review, PLoS One 10 (12) (2015), e0143080.
[27] K.M. Terlikowska, B. Dobrzynska, R. Terlikowski, A. Sienkiewicz, M. Kinalski, S.J. Terlikowski, Clinical value of selected markers of angiogenesis, inflammation, and}
insulin resistance and obesity in type 1 endometrial cancer, BMC Cancer 20 (1) (2020) 1–10.

[29] Y. Ji, H. Wang, Prognostic prediction of systemic immune-inflammation index for patients with gynecological and breast cancers: a meta-analysis, World J. Surg. Oncol. 18 (1) (2020) 1–11.

[30] C. Mirili, M. Bilici, Inflammatory prognostic markers in endometrial carcinoma: systemic immune-inflammation index and prognostic nutritional index, Med. Sci. Discov. 7 (1) (2020) 351–359.

[31] S. Pecorelli, Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium, Int. J. Gynecol. Obstet. 105 (2) (2009) 103–104.

[32] M.E. McDonald, D.P. Bender, Endometrial cancer: obesity, genetics, and targeted agents, Obstet. Gynecol. Clin. 46 (1) (2019) 89–105.

[33] M.L. MacKintosh, A.E. Derbyshire, R.J. McVey, J. Bolton, M. Nickkho-Amiry, C.L. Higgins, M. Kamieniorz, P.W. Pemberton, B.H. Kirmarsi, B. Ahmed, The impact of obesity and bariatric surgery on circulating and tissue biomarkers of endometrial cancer risk, Int. J. Cancer 144 (3) (2019) 641–650.

[34] Y.-Z. Guo, L. Pan, C.-J. Du, D.-Q. Ren, X.-M. Xie, Association between C-reactive protein and risk of cancer: a meta-analysis of prospective cohort studies, Asian Pacific J. Cancer Prev. 14 (1) (2013) 243–248.

[35] I. Saito, K. Yonenasai, F. Inami, Association of body mass index, body fat, and weight gain with inflammation markers among rural residents in Japan, Circ. J. 67 (4) (2003) 323–329.

[36] E.S. Rawson, P.S. Freedson, S.K. Oganian, C.E. Matthews, G. Reed, I.S. Ockene, Body mass index, but not physical activity, is associated with C-reactive protein, Med. Sci. Sports Exerc. 35 (7) (2003) 1160–1166.

[37] S. Amanullah, A. Jarari, G. Muralkrishnan, M.I. Bashu, K. Saira, Association of Hs-CRP with diabetic and non-diabetic individuals, Jordan J. Biol. Sci. 3 (1) (2010) 7–12.

[38] M. Ebrahimi, A.R. Heidari-Bakavoli, S. Shoeibi, S.R. Mirhafez, M. Moohebati, H. Esmaily, H. Ghazavi, M. Saberi Karimian, S.M.R. Parizadeh, M. Mohammadi, Association of serum Hs-CRP levels with the presence of obesity, diabetes mellitus, and other cardiovascular risk factors, J. Clin. Lab. Anal. 30 (6) (2016) 672–676.

[39] Y.L. Wan, R. Beverley-Stevenson, D. Carlisle, S. Clarke, R.J. Edmondson, S. Glover, J. Hölland, C. Hughes, H.C. Kitchener, S. Kitson, Working together to shape the endometrial cancer research agenda: the top ten unanswered research questions, Gynecol. Oncol. 143 (2) (2016) 287–293.

[40] J.-H. Zhong, D.-H. Huang, Z.-Y. Chen, Prognostic role of systemic immune-inflammation index in solid tumors: a systematic review and meta-analysis, Oncotarget 8 (43) (2017) 75381.

[41] T. Aoyama, M. Takano, M. Miyamoto, T. Yoshikawa, K. Kato, T. Sakamoto, K. Takasaki, H. Matsuura, H. Soyama, J. Hirata, Pretreatment neutrophil-to-lymphocyte ratio was a predictor of lymph node metastasis in endometrial cancer patients, Oncology 96 (5) (2019) 259–267.

[42] A.S. Akcioglu, B. Cakmak, A. Tuten, M. Oncul, S. Eskalen, F. Demirkiran, M. Arvas, O. Guralp, Can preoperative neutrophil to lymphocyte and platelet to lymphocyte ratios predict cervical stromal involvement in endometrioid endometrial adenocarcinoma? Eur. J. Gynaecol. Oncol. 38 (1) (2017) 20–24.

[43] V. Pergialiotis, M. Oikonomou, V. Damaskis, C. Chrelias, A.E. Tsantes, I. Panayiotides, Platelet to lymphocyte and neutrophil to lymphocyte ratio as predictive indices of endometrial carcinoma: findings from a retrospective series of patients and meta-analysis, J. Gynecol. Obstet. Hum. Reprod. 47 (10) (2018) 511–516.

[44] Y. Dong, Y. Cheng, J. Wang, The ratio of neutrophil to lymphocyte is a predictor in endometrial cancer, Open Life Sci. 14 (1) (2019) 110–118.

[45] T. Haruma, K. Nakamura, T. Nishida, C. Ogawa, T. Kusumoto, N. Seki, Y. Hiramatsu, Pre-treatment neutrophil to lymphocyte ratio is a predictor of prognosis in endometrial cancer, Anticancer Res. 35 (1) (2015) 337–343.

[46] L. Ding, Y. Ding, X. Mao, J. Zhao, H. Zhou, Retrospective study of the prognostic significance of neutrophil-to-lymphocyte ratio for postsurgical outcomes of patients with endometrial carcinoma, Int. J. Gynecol. Obstet. 138 (3) (2017) 311–319.

[47] W.K. Eo, H.J. Chang, S.H. Kwon, S.B. Koh, Y.O. Kim, Y. Ji, H.-B. Kim, J.Y. Lee, D.S. Huh, K.H. Kim, The lymphocyte-monocyte ratio predicts patient survival and aggressiveness of ovarian cancer, J. Cancer 7 (3) (2016) 289.

[48] Ç. Dönert, O. Türkmen, I. Kar, S. Sinaci, S.Y. Ergani, A. Karalök, D. Başaran, T. Turan, Independent predictors of survival in endometrium cancer: platelet-to-lymphocyte ratio and platelet/neutrophil/monocyte-to-lymphocyte ratio, J. Turkish Ger. Gynecol. Assoc. 19 (2) (2018) 78.

[49] L. Ni, J. Tao, J. Xu, X. Yuan, Y. Long, N. Yu, R. Wu, Y. Zhang, Prognostic values of pretreatment neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in endometrial cancer: a systematic review and meta-analysis, Arch. Gynecol. Obstet. 301 (1) (2020) 251–261.