Gallbladder carcinoma (GBCA) is a relatively rare malignancy with bad prognosis. It was first described in 1777 by deStoll (1), and is the most common malignant neoplasm of the biliary tract and the fifth most common gastrointestinal cancer. Patients with GBCA have usually advanced disease at the time of diagnosis. GBCA is associated with porcelain gallbladder and chronic inflammation, secondary to gallstones. Ultrasonography is often the first step to the diagnosis. CT and MRI are used for further characterization of the gallbladder lesions and metastatic survey. 18F-FDG PET/CT is useful in diagnosing ambiguous primary lesions, uncovering distant disease and detecting residual disease after cholecystectomy. In this report, we present these imaging findings in 4 patients with gallbladder carcinoma.

Case reports

An 82-year-old woman was admitted to our hospital with congestive heart failure. Abdominal history included diverticulosis, diverticulitis, cholangitis, pancreatitis, and a partial colectomy for an ileocaecal adenoma. Seven years earlier, there was an increased CA19.9 without signs of malignancy on 18F-FDG PET/CT or US-endoscopy. The patient had no abdominal pain. Physical examination revealed a flexible abdomen with normal peristalsis. Blood sample demonstrated increased levels of alkaline phosphatase, gamma-glutamyl transferase, lactate dehydrogenase (LDH), and lipase. Abdominal ultrasound (Fig. 1A and B) revealed a hypoechogenic mass adjacent to the gallbladder wall. This finding was further investigated by CT. A contrast-enhanced (80 cc non-ionic iodinated contrast medium, Ultravist®; Bayer HealthCare Pharmaceuticals) multidetector CT scan of the abdomen (Fig. 1C and D) demonstrated a suspicious, contrast-enhanced mass adjacent to the wall of the gallbladder and possibly locally invading the liver. Non-contrast enhanced 18F-FDG PET/CT (Fig. 1E and F) confirmed a mass lesion with hypermetabolic characteristics at the fundus of the gallbladder, corresponding to the contrast-enhancing mass adjacent to the wall of the gallbladder.
analysis revealed a primary gallbladder carcinoma. Adjuvant chemotherapy was initiated and during one year follow-up, a liver metastasis of the gallbladder carcinoma was diagnosed and treated by radiofrequency ablation.

A 65-year-old woman was admitted to our hospital for a follow up of a carcinoma of the anal canal. Abdominal history included a squamous cell carcinoma of the anal canal treated by abdominoperineal resection and radiotherapy and an appendectomy. The patient had no abdominal pain. Physical examination revealed a painless abdomen with normal peristalsis. Contrast enhanced 18F-FDG PET/CT (Fig. 3A, B, C and D) showed a mass lesion with hypermetabolic characteristics at the gallbladder with invasion of the liver. Diagnosis of a solitary metastasis was suggested and a partial hepatectomy with resection of the gallbladder was performed. Pathological analysis revealed a primary gallbladder carcinoma. Adjuvant chemotherapy was initiated and during one year follow-up, a liver metastasis of the gallbladder carcinoma was diagnosed and treated by radiofrequency ablation.

A 65-year-old woman was admitted to our hospital with progressive dyspnea. Medical history includes arterial hypertension, choledocolithiasis treated by sphincterotomy and stenting, and diabetes with a recent leg amputation (4 months ago). Blood sample showed increased inflammatory markers and liver enzyme values. A chest X-ray demonstrated bilateral pleural effu-
A pleural puncture showed a chylothorax with metastatic cells. Additional blood samples showed an elevated CA 125 level. Abdominal ultrasound (Fig. 4A) showed a porcelain gallbladder. Further investigation by contrast-enhanced (80 cc non-ionic iodinated contrast medium, Ultravist®, Bayer HealthCare Pharmaceuticals) multidetector CT scan of the abdomen (Fig. 4B and C) confirmed a porcelain gallbladder, a solitary hypodense liver lesion, abdominal and retroperitoneal adenopathies, peritoneal metastases, and ascites. The patient died 15 days after hospitalization. Autopsy established macroscopically a gallbladder filled with gallstones. The wall was thickened and contained a mass with central necrosis. Microscopy confirmed the presence of a gallbladder carcinoma.

Discussion

Gallbladder carcinoma is a relatively infrequent neoplasm in most Western countries. The most common incidence rates have been reported in women from India, Chile, Pakistan and Ecuador. GBCA is up to 3 times higher among women than men (2).

GBCA is found incidentally in 1-3% of cholecystectomy specimens and in 0.5%-7.4% of autopsies (3). Gallstones are identified as the major risk factor, being present in 60% to 90% of cases (4). Obesity is also associated with an increased risk of GBCA (5). A strong association has been described with mixed bacterial and Salmonella infections (6) and porcelain gallbladder (7). Anomalous pancreaticobiliary ductal junction (APDJ) is a rare congenital anomaly considered to be an etiological factor in the development of GBCA, especially in young women without stones (8).

The clinical presentation of GBCA remains unspecific and may include abdominal pain, weight loss, fever, and jaundice (9).

Sonography is often the first imaging technique (10). CT and MRI are widely used for further characterization of potentially malignant gallbladder lesions and metastatic survey (11). At any of these imaging techniques, GBCA may appear as a mass completely occupying or replacing the gallbladder lumen (40-65%), a focal or diffuse asymmetric gallbladder thickening (20-30%), or an intraluminal polypoid lesion (15-25%) (12).

The mass appears on US as a heterogeneous, predominantly hypoechoic tumor. Anechoic foci of trapped bile or necrotic tumor can be present, as well as echogenic shadowing from gallstones, porcelain gallbladder, or tumor calcifications (13).

GBCA are usually hypodense on unenhanced CT, with up to 40% of lesions showing hypervascular foci of enhancement equal to or greater than that of liver after IV contrast administration (14).

On MRI, GBCA usually shows hypo-to isointense signal characteristics on T1-weighted and moderately hypointense signal characteristics on T2-weighted sequences. On CT and MRI, intense irregular enhancement may occur at the periphery during early arterial phase. During portal venous and delayed phases, contrast enhancement may be retained in fibrous stromal components (12).

At 18F-FDG PET, an intense tracer accumulation in the region of the gallbladder suggests malignancy, although this lacks specificity in distinguishing GBCA from other malignant lesions (15).

MDCT has an accuracy of up to 84% in determining the local extent (T staging) of GBCA (16) and 85% in predicting resectability (17). MRI with cholangiographic and contrast-enhanced arterial and portal phase 3D angiographic images may be up to 100% sensitive for bile duct and vascular invasion, but only 67% sensitivity for hepatic invasion and 56% for lymph node metastases (18).

In patients with suspected GBC, depending on the disease stage, open surgical resection is appropriate. Adjuvant combination chemotherapy and molecular targeted therapy are emerging as therapeutic options in those with advanced GBC (19).

The poor prognosis associated with GBC is mainly related to advanced stage of disease at diagnosis, which is mainly due to the vague and non-specific clinical symptoms.

Conclusion

Gallbladder carcinoma is a relatively rare type of cancer, associated with a poor prognosis, related to the advanced tumor stage at diagnosis. Advances in radiological imaging have aided early detection and accurate staging of the tumor.

References

1. DeStoll M.: Ratioins mendendi, in nosocomio pactico vendobo-nensi. Part 1 lugduni batavumar, Haak et Socios et A. et J. Honkoop 1788.
2. Randi G., Franceschi S., La Vecchia C.: Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer, 2006, 118: 1591-1602.
3. Lack E.E.: Tumors of the gallbladder and cystic duct. In: Lack E.E., editor. Pathology of the pancreas, gallbladder, extrahepatic biliary tract and ampullary region. Oxford: Oxford university Press, 2003, p. 465-610.
4. Goldin R.D., Roa J.C.: Gallbladder cancer: a morphological and molecular update. Histopathology, 2009, 55: 218-229.
5. Larsson S.C., Wolk A.: Obesity and a risk of gallbladder cancer: a meta-analysis. Br J Cancer, 2007, 96: 1457-1461.
6. Dutta U., Garg P.K., Kumar R., Tandon R.K.: Typhoid carriers among patients with gallstone disease are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol, 2000, 95, 784-787.
7. Stephen A.E., Berger D.L.: Carcinoma in the porcelain gallbladder: a relationship revisited. Surgery, 2001, 129: 699-703.
8. Sasatomi E., Tokunaga O., Miyazaki K.: Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings. J Hepatobiliary Pancreat Surg, 2000, 7: 556-567.
9. Reid K.M., Ramos-De la Medina A., Donohue J.H.: Diagnosis and surgical management of gallbladder cancer: a review. J Gastrointest Surg, 2007, 11: 671-681.
10. Rodriguez-Fernandez A., Gomez-Rio M., Medina-Benitez A., et al.: Application of modern imaging methods in diagnosis of gallbladder carcinoma. J Surg Oncol, 2006, 93: 650-664.
11. Furlan A., Ferris J.V., Hosseinzadeh K., et al.: Gallbladder carcinoma update: multimodality imaging evaluation, staging, and treatment options. AJR, 2008, 191: 1440-1447.
12. Levy A.D., Murakata L.A., Rohrmann C.A.: Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics, 2001, 21: 295-314.
13. Tsuchiya Y.: Early detection of the gallbladder: macroscopic features and sonographic findings. Radiology 1991, 179: 171-175.
14. Yun E.J., Cho S.G., Park S., et al.: Gallbladder cancer and chronic cholecystitis: differentiation with two-phase spiral CT. Abdom Imaging, 2004, 29: 102-108.
15. Corvera C.U., Blumgart L.H., Akhurst T., et al.: 18F-fluorodeoxyglucose positron emission tomography influences management decision in patients with biliary cancer. J Am Coll Surg, 2008, 206: 57-65.
16. Kim S.J., Lee J.M., Lee J.Y., et al.: Accuracy of preoperative T-staging of gallbladder carcinoma using MDCT. AJR, 2006, 186: 758-762.
17. Kalra N., Suri S., Gupta R., et al.: MDCT in the staging of gallbladder carcinoma. AJR, 2006, 186: 758-762.
18. Kim J.H., Kim T.K., Kim B.S., et al.: Preoperative evaluation of gallbladder carcinoma: efficacy of combined use of MR imaging, MR cholangiography, and contrast-enhanced dual-phase three-dimensional MR angiography. J Magn Reson Imag, 2002, 16: 676-684.
19. Dutta U.: Gallbladder cancer: can newer insights improve the outcome? J Gastroenterol Hepatol, 2012, 27: 642-653.