Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results

A. M. Abd El-Raheem¹, Ehab M. Almetwally², M. S. Mohamed³ and E. H. Hafez⁴,*

¹ Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11566, Egypt
² Faculty of Business Administration, Delta University of Science and Technology, Egypt
³ Department of Mathematics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
⁴ Department of Mathematics, Faculty of Science, Helwan University, Cairo 11795, Egypt

* Correspondence: Email: Eslamhussam1986@hotmail.com; Tel: +201094506495.

Abstract: This paper is concerned with statistical inference of multiple constant-stress testing for progressive type-II censored data with binomial removal. The failure times of the test units are assumed to be independent and follow the modified Kies exponential (MKEx) distribution. The maximum likelihood method as well as Bayes method are used to derive both point and interval estimates of the parameters. Furthermore, a real data application for transformers turn insulation is used to illustrate the proposed methods. Moreover, this real data set is used to show that MKEx distribution can be a possible alternative model to the exponential, generalized exponential and Weibull distributions. Finally, simulation studies are carried out to investigate the accuracy of the different estimation methods.

Keywords: modified Kies family; constant-stress; progressive type-II censoring; maximum likelihood; Bayesian estimation; modified Kolmogorov-Smirnov

Mathematics Subject Classification: 62F09, 62G34

1. Introduction

The purpose of a life testing is to analyze failure times of test units that obtained under normal operating conditions. As it is well known, the modern products are designed to last longer, so for these products, collecting failure data under ordinary circumstances is entirely difficult or even impractical. In such situations, items should be exposed to stress higher than the manufacture levels
of stress, in order to obtain data about their failure times. We can call this kind of life test under tough conditions accelerated life testing (ALT), and the failure times of the test units from such ALT can be used to determine life characteristics under normal usage conditions.

There are many models to apply acceleration in the experiments such as Arrhenius model and inverse power model. Choosing the appropriate model of acceleration depends on the type of stress (voltage, pressure, or temperature) that the researcher wants to apply. Arrhenius model and inverse power model are usually used for the thermal and non-thermal stresses, respectively. The common kinds of ALTs are constant-stress ALT (CSALT), step-stress ALT (SSALT) and progressive-stress ALT (PSALT). In the CSALT the stress is constant during the whole time of the experiment, but the stress is increased gradually at specific times, in the SSALT. On the Contrast, the stress is increasing function of the time in the PSALT. ALTs can be divided based on the number of stress levels into two types: Simple and multiple level ALT. Simple ALT only has two levels of stress while, multiple ALT contains more than wo levels of stress.

Several authors have investigated the CSALT, Mohie El-Din et al. [32] considered the estimation problem of the CSALT for the extension of the exponential distribution under progressive type-II censoring. Mohie El-Din et al. [33] discussed the problem of obtaining the optimal CSALT designs for the Lindley distribution. The concern of estimation for CSALT for generalized half normal distribution under complete sampling was addressed by Wang and Shi [39]. Abd El-Raheem [6] developed CSALT’s optimal designs for extension of the exponential distribution. The problem of the optimum configuration of CSALT to extension of the exponential distribution under censoring was considered by Abd El-Raheem [7]. For further references on the CSALT, see Abd El-Raheem [8–10].

The SSALTs are discussed by several authors see for example, Balakrishnan and Han [17], Ismail [24], Mohie El-Din et al. [30,31], Chandra and Khan [37] and Hafez et al. [22]. For more reading about PSALTs, we can refer to Abdel-Hamid and Al-Hussaini [2–4], AL-Hussaini et al. [12], Abdel-Hamid and Abushul [5], Mohie El-Din et al. [34,35] and Abd El-Raheem [11].

Censoring appears normally in reliability examinations. It happens when lifetimes are known only for a portion of the units under examination, the residual lifetimes being known only to exceed determined values. There two main types of censoring schemes which are type-I and type-II censoring schemes (CSs). The fundamental difference between type-I and type-II CSs is that the first depends on the time of ending the experiment and the second depends on the number of failures. The test units in these two CSs cannot be excluded from the test until the end the test. A progressive type-II (PT-II) censoring is an extension of type-II censoring. It encourages the experimenter to remove experimented units at different times throughout the test. For more reading about PT-II CS, we can refer to Balakrishnan and Aggarwala [16], Almetwally et al. [13], Alshenawy et al. [14] and El-Sherpieny et al. [21].

Due to the great importance of PT-II censoring in reliability experiments, many researchers addressed the issue of statistical inference of ALTs under PT-II censored data, we can refer to Abdel-Hamid [1], Abdel-Hamid and Al-Hussaini [2, 4], Jaheen et al. [25] and Mohie El-Din et al. [29].

The motivation and contribution in this research is that we apply CSALT for the lifetime of units that follow the MKEx distribution under PT-II censored sample with binomial removal, also we estimate the parameters using Bayesian and classical methods. Moreover, we use a real life censored data of transforms insulation to illustrate the proposed methods.
The paper is organized as follows: The MKEx distribution and test assumptions for CSALT are discussed in Section 2. The maximum likelihood estimation (MLE) for the model parameters are provided in Section 3. Bayes estimates (BEs) under different loss functions are discussed in Section 4. In Section 5, asymptotic and bootstrap confidence intervals (CIs) are presented. Section 6 contains the simulation numerical results. Section 7 contains the transformers turn insulation application. Section 8 contains the conclusion of the paper and the major findings in this research.

2. Lifetime distribution and test assumptions

2.1. MKEx distribution

In 2013, Kumar and Dharmaja [26] introduced and studied the reduced Kies distribution. In many references, the reduced Kies distribution is known as modified Kies (MK) distribution. Kumar and Dharmaja [26] find out that the MK distribution can perform better than common lifetime distributions such as Weibull distribution and some of its extensions in modelling lifetime data. Kumar and Dharmaja [27] presented the exponentiated MK distribution and introduced its statistical properties. Dey et al. [20] estimated the distribution parameters of MK distribution under progressive type-II censoring and introduced the recurrence relations for the moments of the MK distribution. Based on MK distribution and the $T - X$ family, Al-Babtain et al. [15] introduced a new lifetime distribution, they called it modified Kies exponential (MKEx) distribution. Aljohani et al. [40] discussed the parameter estimation of the MKEx distribution using the MLE method, based on ranked set sampling. It has bathtub shape, increasing and decreasing failure rate. Furthermore, it has the ability to model negatively and positively skewed data. Moreover, it has a closed form cumulative distribution function (CDF) and very easy to handle which make the distribution is candidate to use in different fields such as life testing, reliability, biomedical studies and survival analysis. In this context, Al-Babtain et al. [15] used two different types of real data to show that this distribution may be a good alternative to many popular distributions such as Weibull, Marshall-Olkin exponential, Kumaraswamy exponential, beta exponential, gamma, and exponentiated exponential distribution. The CDF of the MKEx distribution is

$$F(x; \alpha, \sigma) = 1 - e^{-\left(e^{\alpha x} - 1\right)^\sigma}, \quad x > 0, \quad \alpha, \sigma > 0. \quad (2.1)$$

The corresponding probability density function (PDF) of (2.1) is given by

$$f(x; \alpha, \sigma) = \alpha \sigma e^{\alpha x} \left(1 - e^{-\sigma x}\right)^{\alpha - 1} e^{-\left(e^{\alpha x} - 1\right)^\sigma}, \quad x > 0, \quad \alpha, \sigma > 0. \quad (2.2)$$

2.2. Multiple CSALT’s assumptions

In this subsection, we introduce the assumption of CSALT under PT-II CS with binomial removal. Suppose an ALT contains number of stress levels $L \geq 2$ such that the stress is arranged ascendingly where $\phi_1 < \phi_2 < ... < \phi_L$, within the level l, $l = 1, 2, ..., L$, identical n_l units are exposed to an accelerated condition, so that the number of units under the lifetime experiment are $\sum_{l=1}^{L} n_l = n$, where n is the whole number of tested items in the test. In each stress level, ϕ_l, $l = 1, 2, ..., L$, at the time of the first failure $x_{l1;m,n_l}$, R_{l1} of the $n_l - 1$ remaining units are randomly excluded from the test. In the same manner R_{l2} of the surviving units, $n_l - R_{l1} - 1$, are randomly excluded from the test after the second
failure \(x_{1:2:m_l:n_l} \) is detected. This mechanism continues until the failure of \(l_{th} \) occurs. The remaining surviving units \(R_{m_l} = n_l - m_l - \sum_{j=1}^{m_l-1} R_{ij} \) are excluded from the test after the \(l_{th} \) occurs, and the test is terminated. Suppose that the elimination of an individual unit from the test is independent of the others but with the same probability of removal \(P \). Then, the number of units withdrawn at each failure time has a binomial distribution. That is \(R_1 \sim \text{binomial}(n_1 - m_1, P), R_{ij} \sim \text{binomial}(n_l - m_l - \sum_{l=1}^{m_l-1} R_{ij}, P), \) for \(l = 2, ..., m_l \) and \(R_{m_l} = n_l - m_l - \sum_{j=1}^{m_l-1} R_{ij} \). In this context, the assumptions of multiple CSALT are as follows:

1. In each stress level \(\phi_l \), the lifetime of the experimental units follow MKEx(\(\alpha, \sigma_l \)) distribution.
2. The scale parameter in each stress level \(\sigma_l \) and the stress level \(\phi_l \) is linked by the following relation.

\[
\log(\sigma_l) = \zeta + \beta \eta_l, \quad l = 0, 1, ..., L, \tag{2.3}
\]

where \(\zeta \in (-\infty, \infty) \) and \(\beta > 0 \) are the unknown model parameters and \(\eta_l = \eta(\phi_l) \) is an increasing function of \(\phi \).

(a) If \(\eta(\phi_l) = \log(\phi_l) \), the model in (2.3) becomes the inverse power model.
(b) If \(\eta(\phi_l) = \frac{1}{\phi_l} \), the model in (2.3) becomes Arrhenius model.
(c) If \(\eta(\phi_l) = \phi_l \), the model in (2.3) becomes exponential model.

For more extensive reading about acceleration and its different models we can refer to the book of Nelson [36], specifically Chapter 2.

From Eq (2.3), we have

\[
\sigma_l = \sigma_0 \exp[\beta(\eta_l - \eta_0)] = \sigma_0 \theta^z > 0, \quad l = 0, 1, ..., L, \tag{2.4}
\]

where \(\theta = \exp[\beta(\eta_l - \eta_0)] = \frac{\sigma_l}{\sigma_0} > 1, \) \(\sigma_0 > 0 \) is the scale parameter of the MKEx distribution under usage conditions \(\phi_0 \), and

\[
z_l = \frac{\eta_l - \eta_0}{\eta_1 - \eta_0}, \quad l = 1, 2, ..., L, \quad \text{satisfying} \quad z_L > z_{L-1} > ... > z_1 = 1.
\]

The transformation from the parameters \((\alpha, \sigma_l) = (\alpha, \zeta, \beta)\) to the new parameters \((\alpha, \sigma_0, \theta)\) is an one-to-one mapping. Since the Jacobian determinant from \((\alpha, \zeta, \beta)\) to \((\alpha, \sigma_0, \theta)\) does not equal zero. Thus, the unknown parameters should be estimated are \(\alpha, \sigma_0 \) and \(\theta \).

3. Estimation via maximum likelihood method

In this section, the classical estimates of the parameters of MKEx distribution under PT-II CS with binomial removal are obtained. As we mentioned later that the \(R_{ij} \) has a binomial distribution, then the PDF of \(R_{ij}, l = 1, 2, ..., L \) is given as follows:

\[
Pr(R_{1l} = r_{1l}) = \binom{n_l - m_l}{r_{1l}} p_{11} (1 - p_{11})^{n_l - m_l - r_{1l}},
\]

while, for \(j = 2, 3, ..., m_l - 1 \):

\[
Pr(R_{ij} = r_{ij}|R_{(i-1)}) = \binom{n_l - m_l - \sum_{j=1}^{i-1} r_{ij}}{r_{ij}} p_{ij} (1 - p_{ij})^{n_l - m_l - \sum_{j=1}^{i-1} r_{ij}},
\]
where \(0 \leq r_{ij} \leq n_i - m_i - \sum_{j=1}^{l-1} r_{ij}\). Furthermore, we suppose that \(R_{ij}\) is independent of \(X_{ij;m;n_i}\) for all \(l, l = 1, 2, ..., L\). Therefore, the likelihood function \(\alpha, \sigma_0, \theta\) under PT-II censoring with binomial removal is given by

\[
L^* = \prod_{l=1}^{L} C_l \prod_{j=1}^{m_l} f(x_{ij}; \alpha, \sigma_0, \theta) \left(1 - F(x_{ij}; \alpha, \sigma_0, \theta)\right)^{R_{ij}} Pr(R_{ij} = r_{ij}),
\]

(3.1)
since \(X_{ij;m;n_i}\) and \(R_{ij}\) for all \(l = 1, 2, ..., L\) are independent, then the MLE of \(P\) can be derived by maximizing \(Pr(R_{ij} = r_{ij})\) directly. Hence the MLE of \(P\) is given by

\[
\hat{P} = \sum_{l=1}^{L} \frac{\sum_{j=1}^{m_l - 1} r_{ij}}{(m_l - 1)(n_i - m_i) - \sum_{l=1}^{L} (m_l - l - 1)r_{ij}}.
\]

The likelihood function under PT-II censoring after estimating \(P\), have the following form:

\[
L^*(\alpha, \sigma_0, \theta) = \prod_{l=1}^{L} C_l \prod_{j=1}^{m_l} \alpha \sigma_0 \theta^{\tau_{ij}} e^{\alpha \sigma_0 \theta^{\tau_{ij}} (1 - e^{-\sigma_0 \theta^{\tau_{ij}}})} \left(1 - e^{\sigma_0 \theta^{\tau_{ij}} - 1}\right)^{\tau_{ij}},
\]

(3.2)

where \(\tau_{ij} = x_{ij;m;n_i}, C_l = n_i(n_i - 1 - R_{1l})(n_i - 2 - R_{1l} - R_{2l})... (n_i - m_i + 1 - \sum_{j=1}^{m_l-1} R_{ij})\).

The log-likelihood function after removing the normalizing constant, can be formed as in Eq (3.3)

\[
\ell(\alpha, \sigma_0, \theta) = \left[\log(\alpha) + \log(\sigma_0)\right] \sum_{l=1}^{L} m_l + \log(\theta) \sum_{l=1}^{L} m_l \bar{z}_l + \alpha \sigma_0 \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij}} + \left(\alpha - 1\right) \sum_{l=1}^{L} \sum_{j=1}^{m_l} \log(1 - e^{-\sigma_0 \theta^{\tau_{ij}}}) - \sum_{l=1}^{L} \sum_{j=1}^{m_l} (1 + R_{ij}) \left[\sigma_0 \theta^{\tau_{ij}} - 1\right]^\alpha.
\]

(3.3)

By finding partial derivatives of \(\ell\) with respect to the distribution parameters, we have

\[
\frac{\partial \ell}{\partial \alpha} = \frac{\sum_{l=1}^{L} m_l}{\alpha} + \sigma_0 \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij}} + \left(\alpha - 1\right) \sum_{l=1}^{L} \sum_{j=1}^{m_l} \log(1 - e^{-\sigma_0 \theta^{\tau_{ij}}}) - \sum_{l=1}^{L} \sum_{j=1}^{m_l} (1 + R_{ij}) \left[\sigma_0 \theta^{\tau_{ij}} - 1\right]^\alpha \log [\sigma_0 \theta^{\tau_{ij}} - 1],
\]

(3.4)

\[
\frac{\partial \ell}{\partial \sigma_0} = \frac{\sum_{l=1}^{L} m_l}{\sigma_0} + \alpha \sigma_0 \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij}} \bar{z}_l + \left(\alpha - 1\right) \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij}} \bar{z}_l \left[\sigma_0 \theta^{\tau_{ij}} - 1\right]^{-1} - \alpha \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij}} \bar{z}_l \left[1 + R_{ij}\right] [\sigma_0 \theta^{\tau_{ij}} - 1]^{\alpha - 1},
\]

(3.5)

\[
\frac{\partial \ell}{\partial \theta} = \frac{1}{\theta} \sum_{l=1}^{L} \sum_{j=1}^{m_l} \bar{z}_l \theta^{\tau_{ij}} - \alpha \sigma_0 \sum_{l=1}^{L} \sum_{j=1}^{m_l} \bar{z}_l \theta^{\tau_{ij} - 1} \bar{z}_l - \alpha \sum_{l=1}^{L} \sum_{j=1}^{m_l} \bar{z}_l \theta^{\tau_{ij}} \left[1 + R_{ij}\right] [\sigma_0 \theta^{\tau_{ij}} - 1]^{\alpha - 1} + \left(\alpha - 1\right) \sum_{l=1}^{L} \sum_{j=1}^{m_l} \theta^{\tau_{ij} - 1} \bar{z}_l \left[\sigma_0 \theta^{\tau_{ij}} - 1\right]^{-1},
\]

(3.6)

where \(\epsilon_{ij} = \sigma_0 \theta^{\tau_{ij}}\). The MLE of \((\alpha, \sigma_0, \theta)\) is \((\hat{\alpha}, \hat{\sigma}_0, \hat{\theta})\), which may be derived simultaneously by solving Eqs (3.4)–(3.6). Regrettably, solving these equations will be very hard, so we have to use numerical techniques like the Newton-Raphson method.
4. Bayesian estimation

This section includes the BEs of α, σ_0 and θ. We assume that α, σ_0 and θ are independent and have gamma priors. Gamma prior for the acceleration factor $\theta > 1$ was first considered by DeGroot and Goel [19]. They stated that in most problems of accelerated life testing the accelerating factor θ will be greater than 1. However, in order to not restrict the applicability of the acceleration model we shall consider prior distributions for θ that assign positive density to all positive values of θ. If the experimenter is almost certain that $\theta > 1$, then he can choose a gamma prior distribution that assigns a suitably small probability to the interval $0 < \theta < 1$. For more details about this point, see Section 3 of DeGroot and Goel [19]. The gamma priors for distribution parameters are as follows:

\[
\begin{align*}
C_1(\alpha) &\propto \alpha^{n_1-1}e^{-\hat{\mathcal{H}}_1\alpha}, \quad \alpha > 0, \quad \eta_1, \mathcal{H}_1 > 0, \quad (4.1) \\
C_2(\sigma_0) &\propto \sigma_0^{n_2-1}e^{-\hat{\mathcal{H}}_2\sigma_0}, \quad \sigma_0 > 0, \quad \eta_2, \mathcal{H}_2 > 0, \quad (4.2) \\
C_3(\theta) &\propto \theta^{n_3-1}e^{-\hat{\mathcal{H}}_3\theta}, \quad \theta > 1, \quad \eta_3, \mathcal{H}_3 > 0. \quad (4.3)
\end{align*}
\]

The joint prior of α, σ_0 and θ is obtained as

\[
\mathcal{C}(\alpha, \sigma_0, \theta) \propto \alpha^{n_1-1}\sigma_0^{n_2-1}\theta^{n_3-1}\exp\{-(\alpha\mathcal{H}_1 + \sigma_0\mathcal{H}_2 + \mathcal{H}_3\theta)\}, \quad \alpha, \sigma_0 > 0, \theta > 1. \quad (4.4)
\]

To determine suitable and superior values of the hyper-parameters of the independent joint prior, we can use estimate and variance-covariance matrix of MLE method. By equating mean and variance of gamma priors as the following equations, the estimated hyper-parameters can be computed as

\[
\begin{align*}
\eta_j &= \frac{1}{B} \sum_{i=1}^{B} \left[\frac{1}{B} \sum_{i=1}^{B} \hat{\Omega}_i^j \right]^2, \quad j = 1, 2, 3, \quad (4.5) \\
\mathcal{H}_j &= \frac{1}{B} \sum_{i=1}^{B} \hat{\Omega}_i^j, \quad j = 1, 2, 3, \quad (4.6)
\end{align*}
\]

where, B is the number of iteration and $\hat{\Omega}_1 = \hat{\alpha}$, $\hat{\Omega}_2 = \hat{\sigma}_0$, and $\hat{\Omega}_3 = \hat{\theta}$.

By multiplying Eq (3.2) by (4.4), and making some simplifications the posterior distribution \(\mathcal{C}^*(\alpha, \sigma_0, \theta) \) is formed as follows

\[
\mathcal{C}^*(\alpha, \sigma_0, \theta) \propto \alpha^{n_1+\sum_{i=1}^{L} m_i-1}\sigma_0^{n_2+\sum_{i=1}^{L} m_i-1}\theta^{n_3-1}\exp\{-(\alpha\mathcal{H}_1 + \sigma_0\mathcal{H}_2 + \mathcal{H}_3\theta)\}
\]

\[
\prod_{l=1}^{L} \prod_{j=1}^{m_l} \theta^{c_{l,j}} e^{\alpha \gamma_{l,j} \tau_{l,j}} \left(1 - e^{-\gamma_{l,j} \tau_{l,j}} \right)^{\sigma_{l,j}-1} e^{-\left(1+R_{l,j}\right) e^{-c \gamma_{l,j} \tau_{l,j}}}. \quad (4.7)
\]

The BEs of $u(\Theta) = u(\alpha, \sigma_0, \theta)$ using squared error (SE) and LINEX loss functions are as follows

\[
\tilde{u}_{SE}(\Theta) = E(u(\Theta)), \quad (4.8)
\]

and

\[
\tilde{u}_{LINEX}(\Theta) = -\frac{1}{c} \log[E(e^{-c u(\Theta)})], \quad c \neq 0. \quad (4.9)
\]
It is obvious that both BEs of \(u(\alpha, \sigma_0, \theta) \) in (4.8) and (4.9) are considered as the division of more than one integration over each other. As we know multiple integrals is very tough to be solved analytically or even mathematically by hand. Therefore, we have to use the Markov Chain Monte Carlo (MCMC) technique to find an approximate value of integrals. An important methods of the MCMC technique, is the Metropolis-Hastings (MH) algorithm, some times they call it the random walk algorithm. Its similar to acceptance-rejection sampling, the MH algorithm consider for each iteration of the algorithm, a candidate value can be generated from normal proposal distribution.

The MH algorithm produces a series of draws from MKEx distribution as follows:

1. initiate with \(\alpha(0) = \hat{\alpha}, \sigma_0(0) = \hat{\sigma}_0, \theta(0) = \hat{\theta} \).
2. Set \(i = 1 \).
3. Simulate \(\alpha^* \) from proposal distribution \(N(\alpha(i-1), var(\alpha(i-1))) \).
4. Evaluate the acceptance probability \(A(\alpha(i-1)|\alpha^*) = \min \left[1, \frac{C^*(\alpha(i)|\alpha(i), \sigma_0, \theta)}{C^*(\alpha^*|\alpha(i-1), \sigma_0, \theta)} \right] \).
5. Draw \(U \sim U(0,1) \).
6. If \(U \leq A(\alpha(i-1)|\alpha^*) \), put \(\alpha(i) = \alpha^* \), else put \(\alpha(i) = \alpha(i-1) \).
7. Do the Steps 2–6 for \(\sigma_0 \) and \(\theta \).
8. Put \(i = i + 1 \).
9. Repeat Steps 3–8, \(N \) times to obtain \((\alpha(1), \sigma(1)_0, \theta(1)), ..., (\alpha(N), \sigma(N)_0, \theta(N)) \).

Then, the BEs of \(u(\alpha, \sigma_0, \theta) \) using MCMC under SE, and LINEX loss functions are respectively

\[
\hat{u}_{SE} = \frac{1}{N} \sum_{i=M+1}^{N} u(\alpha(i), \sigma_0(i), \theta(i)),
\]

\[
\hat{u}_{LINEX} = -\frac{1}{c} \log \left[\frac{1}{N-M} \sum_{i=M+1}^{N} \exp \left\{ -c \cdot u(\alpha(i), \sigma_0(i), \theta(i)) \right\} \right],
\]

where \(M \) is the burn-in period.

The conditional posterior distributions used in MH algorithm are given as follows:

\[
C^*(\sigma|\alpha_0, \theta) \propto \exp \left\{ -\sigma H_1 \right\} \sigma^{m_0} \exp \left\{ \sum_{i=1}^{L} \left[\sum_{j=1}^{m_j} e^{\alpha \sigma \theta_i \tau_j} \left(1 - e^{-\sigma \theta_i \tau_j} \right)^{\alpha - 1} e^{-(1+R_j) \left[e^{\sigma \theta_i \tau_j} - 1 \right]^\varphi} \right] \right\},
\]

(4.10)

\[
C^*(\sigma_0|\alpha, \theta) \propto \sigma_0^{m_0} \exp \left\{ -\sigma_0 H_2 \right\} \sum_{i=1}^{L} \left[\sum_{j=1}^{m_j} e^{\alpha \sigma_0 \theta_i \tau_j} \left(1 - e^{-\sigma_0 \theta_i \tau_j} \right)^{\alpha - 1} e^{-(1+R_j) \left[e^{\sigma_0 \theta_i \tau_j} - 1 \right]^\varphi} \right],
\]

(4.11)

and

\[
C^*(\theta|\alpha, \sigma_0) \propto \theta^{m_1-1} \exp \left\{ -\theta H_3 \right\} \sum_{i=1}^{L} \left[\sum_{j=1}^{m_j} \theta^2 e^{\alpha \sigma \theta_i \tau_j} \left(1 - e^{-\sigma \theta_i \tau_j} \right)^{\alpha - 1} e^{-(1+R_j) \left[e^{\sigma \theta_i \tau_j} - 1 \right]^\varphi} \right].
\]

(4.12)

The Bayesian estimates have CIs which are called the credible intervals or some times we call it the highest posterior density (HPD) intervals, for more information see, Chen and Shao [18]. They performed a technique that was used extensively to generate the HPD intervals of unknown parameters of the distribution. In this method, samples are drawn with the proposed MH algorithm that are used to generate estimates, for the HPD algorithm see Chen and Shao [18].
5. Confidence intervals

In this section, the asymptotic, percentile Bootstrap and Bootstrap-t confidence intervals (CIs) for the unknown distribution parameters \(\alpha, \sigma_0, \theta \) are obtained.

5.1. Asymptotic confidence intervals

Asymptotic CI is the most popular approach to establish the approximate confidence limits for parameters, we use the MLE to obtain the observed Fisher information matrix \(I(\hat{\Omega}) \), which consists of the negative second derivative of the natural logarithm of the likelihood function evaluated at \(\hat{\Omega} = (\hat{\alpha}, \sigma_0, \hat{\theta}) \), where

\[
I(\hat{\Omega}) = \begin{bmatrix}
I_{\hat{\alpha}\hat{\alpha}} & I_{\hat{\alpha}\sigma_0} & I_{\hat{\alpha}\hat{\theta}} \\
I_{\sigma_0\hat{\alpha}} & I_{\sigma_0\sigma_0} & I_{\sigma_0\hat{\theta}} \\
I_{\hat{\theta}\hat{\alpha}} & I_{\hat{\theta}\sigma_0} & I_{\hat{\theta}\hat{\theta}}
\end{bmatrix}
\]

and by invereseing this matrix we can find the asymptotic variance-covariance matrix. Now we can find the asymptotic variance-covariance matrix of the parameter vector \(\Omega \) is \(V(\hat{\Omega}) = I^{-1}(\hat{\Omega}) \).

So the 100(1 – \(\gamma \))% asymptotic confidence intervals for parameters \(\alpha, \sigma_0 \) and \(\theta \) can be established as follows:

\[
(\hat{\theta}_l, \hat{\theta}_u) = \hat{\theta} \pm Z_{1-\gamma/2} \sqrt{V(\hat{\theta})},
\]

where \(\hat{\theta} \) is \(\alpha, \sigma_0 \) or \(\theta \), and \(Z_q \) is the 100\(q \)th percentile of a standard normal distribution.

5.2. Bootstrap confidence interval

In this subsection, two parametric bootstrap methods: Percentile bootstrap (B-P) and the bootstrap-t (B-T) [23] are considered to obtain CIs for \(\alpha, \sigma_0 \), and \(\theta \).

The percentile bootstrap CIs can be obtained in such a way.

1. Find the values of the MLE of MKEx distribution.
2. To find the estimates of the bootstrap, we must generate a bootstrap samples, \((\alpha_1^b, \sigma_0^b, \theta^b)\), using MLEs of \((\alpha, \sigma_0, \theta)\).
3. Repeat step number (2) \(B \) times to have \((\alpha_1^{b(1)}, \alpha_2^{b(1)}, \ldots, \alpha_B^{b(1)}), (\sigma_0^{b(1)}, \sigma_0^{b(2)}, \ldots, \sigma_0^{b(B)}) \) and \((\theta_1^{b(1)}, \theta_2^{b(1)}, \ldots, \theta_B^{b(1)})\).
4. Arrange \((\alpha_1^{b(1)}, \alpha_2^{b(2)}, \ldots, \alpha_B^{b(B)}), (\sigma_0^{b(1)}, \sigma_0^{b(2)}, \ldots, \sigma_0^{b(B)}) \) and \((\theta_1^{b(1)}, \theta_1^{b(2)}, \ldots, \theta_B^{b(B)})\) from smallest to the biggest, \((\alpha_1^{b[1]}, \alpha_2^{b[2]}, \ldots, \alpha_B^{b[B]}), (\sigma_0^{b[1]}, \sigma_0^{b[2]}, \ldots, \sigma_0^{b[B]}) \) and \((\theta_1^{b[1]}, \theta_1^{b[2]}, \ldots, \theta_B^{b[B]})\).
5. The two side 100(1 – \(\gamma \))% percentile bootstrap confidence interval for \(\alpha, \sigma_0 \) and \(\theta \) are evaluated by \([\alpha_1^{b[1]}, \alpha_1^{b[2]}], [\sigma_0^{b[1]}, \sigma_0^{b[2]}]\) and \([\theta_1^{b[1]}, \theta_1^{b[2]}]\).

The bootstrap-t CIs can be obtained in such a way.

1. Repeat the first two steps in the percentile bootstrap algorithm.
2. Evaluate \(T = \frac{\hat{\theta} - \theta}{\sqrt{V(\hat{\theta})}} \), where \(\theta \) is \(\alpha, \sigma_0 \) or \(\theta \), and \(V(\hat{\theta}^b) \) is asymptotic variances of \(\hat{\theta}^b \).
3. Repeat the above two steps \(B \) times and rearrange \((T_1^{(1)}, T_2^{(2)}, \ldots, T_B^{(B)})\) in ascending order.
4. A two side 100(1 − γ)% bootstrap-t CI for \(\alpha, \sigma_0 \) and \(\theta \) are given by
\[
[\alpha - T_{\alpha}^{b(2\delta (1 - \gamma^2))} \sqrt{V(\alpha^b)}, \alpha + \sqrt{V(\alpha^b)T_{\alpha}^{b(2\delta (1 - \gamma^2))}}],
[\sigma_0 - T_{\sigma_0}^{b(2\delta (1 - \gamma^2))} \sqrt{V(\sigma_0^b)}, \sigma_0 + \sqrt{V(\sigma_0^b)T_{\sigma_0}^{b(2\delta (1 - \gamma^2))}}],
[\theta - T_{\theta}^{b(2\delta (1 - \gamma^2))} \sqrt{V(\theta^b)}, \theta + \sqrt{V(\theta^b)T_{\theta}^{b(2\delta (1 - \gamma^2))}}].
\]

6. Simulation study

![Graphs and histograms showing MCMC iterations and kernel histograms for parameters \(\alpha, \sigma_0, \theta \) with true values: \(\alpha = 2, \sigma_0 = 1.5, \theta = 2, n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10; m_1 = 54; m_2 = 36; m_3 = 18; m_4 = 9, and P = 0.8.\)]

Figure 1. MCMC iterations and the kernel histograms of the posterior samples for each parameter with true values: \(\alpha = 2, \sigma_0 = 1.5, \theta = 2, n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10; m_1 = 54; m_2 = 36; m_3 = 18; m_4 = 9, and P = 0.8.\)

In this section, we conduct a Monte Carlo simulation to find the estimates of the distribution parameters with different sample sizes \(n_i \) and different censoring schemes \(R_i \) with different probability of binomial removal \(P \). We compare the performance of the MLEs and the BEs under different loss functions in terms of their relative absolute bias (RABias), and the mean square error (MSE). Furthermore, we estimate the length of asymptotic CI (L.CI), length of B-P CI (L.BP), length of B-T
CI (L.BT) and for Bayesian estimation method we estimate length of credible interval (L.Cr). In the simulation, we consider different sample sizes, n_l, different number of failures, m_l, and different ratio of failures, r_l, where $r_l = m_l/n_l$. In addition, probability of binomial removal P is considered to be 0.35, and 0.8 for each stress level $l = l_1, l_2, \ldots, L$. The true values of the parameters used in the simulation study are $(\alpha = 2, \sigma_0 = 1.5, \theta = 2)$ and $(\alpha = 0.8, \sigma_0 = 1.5, \theta = 2)$. The simulation study is done using 10,000 iterations, and the average of the results of these iterations are tabulated in Tables 1–9.

The MCMC iterations and the kernel histograms of the posterior samples of the parameters α, σ_0, and θ are plotted in Figure 1.

Figure 1 shows that the MCMC samples are well mixed and stationary achieved. Also, it indicates that posterior distributions of the three parameters are symmetric.

Table 1. RABias and MSE of the MLE for binomial removal parameter P based on CSALT.

P	n_1, n_2	m_1, m_2	RABias	MSE	n_1, n_2, n_3, n_4	m_1, m_2, m_3, m_4	RABias	MSE
0.35	8, 7	6, 5	1.7083	0.3684	1.7083	0.3684		
		7, 6	1.6929	0.3658	5, 4, 3, 2	0.6704	0.1678	
		6, 5	0.1837	0.0343	4, 3, 2, 1	0.2269	0.1164	
		7, 6	0.1257	0.0250	5, 4, 3, 2	0.1656	0.0467	
0.8	20, 18	14, 13	1.6814	0.3582	10, 7, 6, 4	1.4933	0.3442	
		18, 16	1.6087	0.3244	14, 9, 7, 4	1.4403	0.3191	
		14, 13	0.1242	0.0251	10, 7, 6, 4	0.1811	0.0300	
		18, 16	0.1169	0.0209	14, 9, 7, 4	0.1526	0.0242	
0.35	40, 27	28, 19	1.6577	0.3449	21, 14, 7, 5	0.9262	0.1096	
		36, 24	1.5523	0.3014	27, 18, 9, 6	0.8184	0.0877	
		28, 19	0.1172	0.0236	21, 14, 7, 5	0.1622	0.0262	
		36, 24	0.0933	0.0152	27, 18, 9, 6	0.1310	0.0231	
0.8	75, 55	52, 38	1.6159	0.3266	42, 28, 14, 7	0.8864	0.1011	
		68, 50	1.5166	0.2869	53, 36, 18, 9	0.7818	0.0805	
		52, 38	0.1068	0.0199	42, 28, 14, 7	0.1513	0.0249	
		68, 50	0.0032	0.0189	53, 36, 18, 9	0.1140	0.0229	

The following observations are conducted from the simulation study:

1. For fixed m_l, P, η_l and true values of the parameters, the RABias, MSE and length of CIs decrease as n_l increases.
2. The best method of estimation is the Bayesian estimation according to the values of the MSE.
3. The BEs under SE loss function are better than the corresponding estimates under LINEX loss function with $c = -0.5$ for all parameters.
4. BEs under LINEX loss function for α and σ_0 with $c = 0.5$ are better than the corresponding estimates under SE loss function for all cases.
5. BEs under LINEX loss function for θ, with $c = 0.5$ is better than SE loss function when α is less than 1, while, when α is greater than 1, BEs under SE loss function are better.
Table 2. RABias and MSE of the MLE, and BEs based on SE and LINEX loss functions for MKEx distribution when \(L = 2, \alpha = 2, \sigma_0 = 1.5 \) and \(\theta = 2 \).

\(n \)	\(P \)	\(m_1, m_2 \)	\(L = 2 \)	MLE	\(\alpha \)	RABias	MSE	\(\sigma_0 \)	RABias	MSE	\(\theta \)	RABias	MSE
6, 5	0.35												
\(\alpha \)	0.2807	0.7270	0.0813	0.2016	0.1219	0.2767	0.0428	0.1474					
\(\sigma_0 \)	0.0136	0.2230	0.0157	0.0189	0.0041	0.0206	0.0269	0.0181					
\(\theta \)	0.0100	0.1531	0.0154	0.0072	0.0119	0.0070	0.0188	0.0075					
7, 6	15												
\(\alpha \)	0.2068	0.4976	0.0515	0.1240	0.0845	0.1650	0.0201	0.0959					
\(\sigma_0 \)	0.0103	0.1609	0.0100	0.0185	0.0215	0.0217	0.0011	0.0164					
\(\theta \)	0.0039	0.1081	0.0084	0.0056	0.0053	0.0055	0.0114	0.0057					
6, 5	0.8												
\(\alpha \)	0.3184	0.8187	0.10372	0.20867	0.14484	0.28773	0.06465	0.15069					
\(\sigma_0 \)	0.0057	0.1727	0.00148	0.01665	0.01312	0.01933	0.00981	0.01499					
\(\theta \)	0.0003	0.1158	0.00776	0.00556	0.00440	0.00562	0.01109	0.00561					
7, 6	15												
\(\alpha \)	0.2290	0.5483	0.07143	0.14796	0.10564	0.20064	0.03904	0.11035					
\(\sigma_0 \)	0.0254	0.1427	0.01641	0.01869	0.02780	0.02235	0.00540	0.01604					
\(\theta \)	0.0029	0.0858	0.00545	0.00474	0.00247	0.00476	0.00841	0.00480					
14, 13	0.35												
\(\alpha \)	0.1809	0.2897	0.06951	0.07044	0.08387	0.08417	0.05554	0.05901					
\(\sigma_0 \)	0.0195	0.0544	0.01144	0.00761	0.00652	0.00779	0.01630	0.00757					
\(\theta \)	0.0024	0.0189	0.00641	0.00247	0.00505	0.00243	0.00778	0.00252					
18, 16	38												
\(\alpha \)	0.0858	0.1227	0.02433	0.02919	0.03482	0.03376	0.01407	0.02573					
\(\sigma_0 \)	0.0103	0.0426	0.00725	0.00693	0.01174	0.00745	0.00282	0.00653					
\(\theta \)	0.0001	0.0148	0.00318	0.00217	0.00198	0.00217	0.00437	0.00219					
14, 13	0.8												
\(\alpha \)	0.1644	0.2671	0.06245	0.06461	0.07617	0.07703	0.04910	0.05441					
\(\sigma_0 \)	0.0014	0.0541	0.00018	0.00746	0.00533	0.00793	0.00491	0.00714					
\(\theta \)	0.0007	0.0190	0.00441	0.00249	0.00302	0.00248	0.00580	0.00252					
18, 16	38												
\(\alpha \)	0.0868	0.1340	0.02659	0.03344	0.03722	0.03849	0.01617	0.02951					
\(\sigma_0 \)	0.0084	0.0421	0.00626	0.00675	0.01078	0.00722	0.00179	0.00639					
\(\theta \)	0.0017	0.0142	0.00185	0.00210	0.00063	0.00211	0.00306	0.00210					
Table 2 (continued).

Point Estimation	$\alpha = 2; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100$
	Sample 1: $n_1 = 40; n_2 = 27$	Sample 2: $n_1 = 75; n_2 = 55$

n	P	m_1, m_2	α	σ_0	θ	MLE RABias	MSE	SE RABias	MSE	LINEX (c = -0.5) RABias	MSE	LINEX (c = 0.5) RABias	MSE	
28, 19	0.35	67	0.1150	0.0145	0.0002	0.1203	0.0591	0.0063	0.0036	0.0036	0.0090	0.0043	0.0060	0.016
36, 24	0.8		0.0560	0.0053	0.0007	0.0560	0.0591	0.0019	0.0012	0.0006	0.0013	0.0043	0.0060	0.016
53, 39	0.35	130	0.0865	0.0071	0.0026	0.1203	0.0591	0.0028	0.0012	0.0005	0.0013	0.0043	0.0060	0.016
68, 50	0.8		0.0263	0.0023	0.0025	0.0865	0.0591	0.0019	0.0013	0.0005	0.0013	0.0043	0.0060	0.016
53, 39	0.35	130	0.0757	0.0118	0.0015	0.1203	0.0591	0.0028	0.0012	0.0005	0.0013	0.0043	0.0060	0.016
68, 50	0.8		0.0225	0.0003	0.0015	0.0757	0.0591	0.0019	0.0013	0.0005	0.0013	0.0043	0.0060	0.016

AIMS Mathematics Volume 6, Issue 5, 5222–5255.
Table 3. RABias and MSE of the MLE, and BE based on SE and LINEX loss functions for MKEx distribution when \(L = 4, \alpha = 2, \sigma_0 = 1.5 \) and \(\theta = 2 \).

Point Estimation	\(L = 4 \)	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)				
\(n \) \(P \)	\(r_1 \)	RABias	MSE						
0.7	0.35	0.2247	0.6369	0.0476	0.1663	0.0869	0.2233	0.0102	0.1278
	0.0633	0.1460	0.0405	0.0223	0.0293	0.0232	0.0514	0.0223	
	0.0022	0.0210	0.0176	0.0037	0.0160	0.0035	0.0191	0.0038	
	0.1733	0.4048	0.0394	0.1077	0.0672	0.1366	0.0127	0.0876	
	0.0070	0.0973	0.0095	0.0176	0.0187	0.0205	0.0006	0.0155	
	0.0125	0.0132	0.0009	0.0016	0.0000	0.0017	0.0019	0.0016	
0.9	0.7	0.2771	0.7357	0.0886	0.2122	0.1317	0.2934	0.0472	0.1527
	0.1505	0.0575	0.0220	0.0179	0.0107	0.0194	0.0329	0.0173	
	0.0157	0.0193	0.0198	0.0038	0.0184	0.0036	0.0211	0.0040	
	0.1673	0.3860	0.0353	0.0941	0.0624	0.1184	0.0093	0.0779	
	0.0022	0.0852	0.0114	0.0158	0.0207	0.0182	0.0024	0.0141	
	0.0087	0.0112	0.0015	0.0016	0.0006	0.0016	0.0025	0.0016	
0.8	0.7	0.1408	0.2127	0.0461	0.0511	0.0595	0.0604	0.0330	0.0437
	0.0429	0.0434	0.0281	0.0077	0.0241	0.0075	0.0321	0.0080	
	0.0021	0.0054	0.0081	0.0010	0.0076	0.0010	0.0085	0.0011	
	0.0822	0.1173	0.0241	0.0313	0.0345	0.0361	0.0140	0.0276	
	0.0150	0.0329	0.0027	0.0054	0.0062	0.0056	0.0006	0.0052	
	0.0069	0.0046	0.0058	0.0009	0.0055	0.0008	0.0062	0.0009	
38	0.9	0.1618	0.2389	0.0595	0.0629	0.0727	0.0741	0.0466	0.0537
	0.0293	0.0403	0.0142	0.0063	0.0103	0.0063	0.0181	0.0063	
	0.0022	0.0052	0.0044	0.0008	0.0040	0.0008	0.0049	0.0008	
	0.0815	0.1145	0.0249	0.0316	0.0351	0.0359	0.0150	0.0283	
	0.0104	0.0308	0.0054	0.0055	0.0088	0.0058	0.0020	0.0052	
	0.0033	0.0041	0.0042	0.0007	0.0039	0.0007	0.0046	0.0008	
Table 3 (continued).

Point Estimation	$\alpha = 2; \sigma_0 = 1.5; \theta = 2$
$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100; \eta_3 = 130; \eta_4 = 170$	
Sample 1: $n_1 = 30; n_2 = 20; n_3 = 10; n_4 = 7$	
Sample 2: $n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10$	

$L = 4$	Sample 1	Sample 2								
n	P	r	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)				
			RABias	MSE						
67	0.7		0.1147	0.1226	0.0468	0.0329	0.0540	0.0369	0.0398	0.0293
	0.9		0.0019	0.0216	0.0102	0.0035	0.0081	0.0035	0.0124	0.0035
			0.0125	0.0043	0.0099	0.0010	0.0096	0.0010	0.0102	0.0010
0.8			0.0500	0.0562	0.0176	0.0163	0.0231	0.0178	0.0121	0.0152
			0.0055	0.0164	0.0014	0.0029	0.0032	0.0029	0.0004	0.0028
			0.0031	0.0028	0.0032	0.0005	0.0030	0.0005	0.0035	0.0005
130	0.7		0.1203	0.1206	0.0519	0.0347	0.0591	0.0390	0.0449	0.0308
			0.0102	0.0200	0.0057	0.0036	0.0036	0.0036	0.0078	0.0036
			0.0035	0.0031	0.0052	0.0006	0.0050	0.0006	0.0055	0.0006
			0.0456	0.0526	0.0173	0.0167	0.0226	0.0182	0.0120	0.0156
			0.0038	0.0168	0.0031	0.0029	0.0049	0.0030	0.0013	0.0029
			0.0006	0.0028	0.0021	0.0005	0.0018	0.0005	0.0023	0.0005
0.9			0.0694	0.0538	0.0288	0.0132	0.0322	0.0143	0.0253	0.0122
			0.0040	0.0102	0.0058	0.0017	0.0047	0.0017	0.0069	0.0018
			0.0074	0.0020	0.0058	0.0004	0.0056	0.0004	0.0059	0.0004
			0.0323	0.0310	0.0107	0.0082	0.0133	0.0086	0.0080	0.0079
			0.0025	0.0084	0.0023	0.0015	0.0032	0.0015	0.0014	0.0015
			0.0012	0.0015	0.0016	0.0003	0.0014	0.0003	0.0017	0.0003
0.8			0.0577	0.0472	0.0227	0.0115	0.0261	0.0124	0.0193	0.0107
			0.0051	0.0097	0.0029	0.0017	0.0018	0.0017	0.0040	0.0017
			0.0029	0.0017	0.0032	0.0003	0.0030	0.0003	0.0033	0.0003
			0.0248	0.0273	0.0065	0.0073	0.0091	0.0076	0.0039	0.0071
			0.0030	0.0075	0.0001	0.0014	0.0011	0.0014	0.0008	0.0014
			0.0010	0.0013	0.0008	0.0002	0.0006	0.0002	0.0009	0.0002
Table 4. RABias and MSE of the MLE, and BEs based on SE and LINEX loss functions for MKEx distribution when $L = 2$, $\alpha = 0.8$, $\sigma_0 = 1.5$ and $\theta = 2$.

Point Estimation	$\alpha = 0.8; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100$
	Sample 1: $n_1 = 8; n_2 = 7$	Sample 2: $n_1 = 20; n_2 = 18$

$L = 2$	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)														
n	P	m_1, m_2	RABias	MSE														
6, 5	0.35	6, 5	α 0.1278	0.1722	0.0313	0.0311	0.0387	0.0362	0.0242	0.0269	σ_0 1.0002	1.1995	0.0302	0.1361	0.0857	0.2044	0.0202	0.0986
7, 6	0.8	7, 6	α 0.0952	0.1180	0.0229	0.0240	0.0289	0.0274	0.0170	0.0211	σ_0 1.6012	1.0521	0.0777	0.1758	0.1336	0.2682	0.0266	0.1166
			θ 0.0231	0.2521	0.0103	0.0350	0.0040	0.0395	0.0240	0.0333								
6, 5	0.35	6, 5	α 0.1497	0.2026	0.0430	0.0366	0.0504	0.0422	0.0359	0.0318	σ_0 1.6000	1.3241	0.0769	0.2322	0.1356	0.3572	0.0224	0.1451
7, 6	0.8	7, 6	α 0.1110	0.1340	0.0322	0.0280	0.0384	0.0319	0.0262	0.0247	σ_0 1.0000	0.8346	0.0749	0.1401	0.1266	0.2076	0.0275	0.0955
			θ 0.0382	0.2447	0.0016	0.0310	0.0124	0.0357	0.0150	0.0285								
14, 13	0.35	14, 13	α 0.0680	0.0470	0.0241	0.0102	0.0265	0.0110	0.0217	0.0095	σ_0 0.0118	0.3393	0.0179	0.0523	0.0442	0.0693	0.0065	0.0417
18, 16		18, 16	α 0.0324	0.0255	0.0080	0.0058	0.0099	0.0060	0.0061	0.0054	σ_0 0.0458	0.2617	0.0386	0.0487	0.0614	0.0620	0.0173	0.0392
	0.35		θ 0.0080	0.1082	0.0021	0.0120	0.0035	0.0126	0.0077	0.0117								
14, 13	0.8	14, 13	α 0.0630	0.0471	0.0230	0.0104	0.0254	0.0112	0.0206	0.0097	σ_0 0.0186	0.2695	0.0248	0.0461	0.0540	0.0675	0.0007	0.0369
			θ 0.0165	0.0948	0.0061	0.0137	0.0005	0.0144	0.0127	0.0134								
18, 16	0.8	18, 16	α 0.0326	0.0252	0.0094	0.0058	0.0113	0.0061	0.0075	0.0055	σ_0 0.0667	0.2473	0.0512	0.0571	0.0745	0.0732	0.0289	0.0452
			θ 0.0065	0.0667	0.0030	0.0110	0.0025	0.0145	0.0085	0.0108								
Table 4 (continued).

Point Estimation	\(L = 2 \)	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)					
\(\alpha = 0.8; \sigma_0 = 1.5; \theta = 2 \)	\(\eta_0 = 40; \eta_1 = 60; \eta_2 = 100 \)	Sample 1: \(n_1 = 40; n_2 = 27 \)	Sample 2: \(n_1 = 75; n_2 = 55 \)							
\(n \)	\(P \)	\(m_1, m_2 \)	RABias	MSE	RABias	MSE	RABias	MSE	RABias	MSE
28, 19	0.35	\(\alpha \)	0.1302	0.0284	0.0355	0.0067	0.0444	0.0070	0.0084	0.0064
		\(\sigma_0 \)	0.0171	0.1258	0.0839	0.0219	0.0559	0.0255	0.0146	0.0194
		\(\theta \)	0.0103	0.0520	0.0260	0.0079	0.0130	0.0080	0.0040	0.0080
36, 24	0.67	\(\alpha \)	0.1213	0.0287	0.0359	0.0071	0.0448	0.0075	0.0089	0.0068
		\(\sigma_0 \)	0.0061	0.1314	0.0876	0.0240	0.0584	0.0284	0.0160	0.0210
		\(\theta \)	0.0134	0.0489	0.0245	0.0081	0.0122	0.0083	0.0040	0.0080
28, 19	0.8	\(\alpha \)	0.0433	0.0119	0.0149	0.0029	0.0186	0.0030	0.0036	0.0028
		\(\sigma_0 \)	0.0320	0.1113	0.0742	0.0211	0.0495	0.0248	0.0141	0.0183
		\(\theta \)	0.0038	0.0377	0.0188	0.0064	0.0094	0.0065	0.0032	0.0063
53, 39	0.35	\(\alpha \)	0.0863	0.0129	0.0161	0.0031	0.0200	0.0032	0.0039	0.0030
		\(\sigma_0 \)	0.0087	0.0630	0.04198	0.01045	0.02799	0.01139	0.00696	0.00979
		\(\theta \)	0.0051	0.0247	0.01237	0.00398	0.00619	0.00401	0.00199	0.00399
68, 50	0.8	\(\alpha \)	0.0204	0.0054	0.00677	0.00129	0.00847	0.00131	0.00161	0.00127
		\(\sigma_0 \)	0.0152	0.0564	0.03761	0.01023	0.02507	0.01120	0.00682	0.00947
		\(\theta \)	0.0031	0.0188	0.00938	0.00321	0.00469	0.00324	0.00160	0.00319
53, 39	0.35	\(\alpha \)	0.0715	0.0115	0.01432	0.00277	0.01790	0.00285	0.00346	0.00269
		\(\sigma_0 \)	0.0087	0.0630	0.04198	0.01045	0.02799	0.01139	0.00696	0.00979
		\(\theta \)	0.0051	0.0247	0.01237	0.00398	0.00619	0.00401	0.00199	0.00399
68, 50	0.8	\(\alpha \)	0.0204	0.0054	0.00677	0.00129	0.00847	0.00131	0.00161	0.00127
		\(\sigma_0 \)	0.0152	0.0564	0.03761	0.01023	0.02507	0.01120	0.00682	0.00947
		\(\theta \)	0.0031	0.0188	0.00938	0.00321	0.00469	0.00324	0.00160	0.00319
Table 5. RABias and MSE of the MLE, and BEs based on SE and LINEX loss functions for MKEx distribution when $L = 4$, $\alpha = 0.8$, $\sigma_0 = 1.5$ and $\theta = 2$.

Point Estimation	$\alpha = 0.8; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100; \eta_3 = 130; \eta_4 = 170$	$n_1 = 6; n_2 = 4; n_3 = 3; n_4 = 2$	$n_1 = 15; n_2 = 10; n_3 = 8; n_4 = 5$													
	α	σ_0	θ														
$L = 4$	n	P	r_i	RABias	MSE												
0.35	0.7	0.3488	0.2183	0.2729	0.0383	0.3411	0.0444	0.0479	0.0331	0.0694	0.1297	0.0648	0.0255	0.0324	0.0266	0.0127	0.0264
	0.9	0.1845	0.1066	0.1332	0.0206	0.1665	0.0230	0.0257	0.0186	0.0551	0.7860	0.5240	0.2074	0.3494	0.2965	0.1383	0.1458
15	0.7	0.3929	0.2463	0.3078	0.0546	0.3848	0.0633	0.0682	0.0468	0.0694	0.8392	0.5594	0.3730	0.2078	0.0921	0.1005	
	0.8	0.1813	0.0960	0.1200	0.0188	0.1499	0.0210	0.0235	0.0171	0.0204	0.1148	0.0574	0.0211	0.0287	0.0199	0.0106	0.0230
0.35	0.7	0.1571	0.0498	0.0622	0.0109	0.0778	0.0117	0.0137	0.0102	0.0583	0.2391	0.1594	0.0372	0.1062	0.0441	0.0248	0.0341
	0.9	0.0703	0.0255	0.0319	0.0060	0.0399	0.0063	0.0075	0.0057	0.0695	0.1907	0.1272	0.0410	0.0848	0.0515	0.0274	0.0336
38	0.7	0.1907	0.0575	0.0718	0.0129	0.0898	0.0139	0.0161	0.0119	0.0125	0.2257	0.1505	0.0497	0.1003	0.0641	0.0331	0.0405
	0.8	0.0831	0.0283	0.0354	0.0065	0.0442	0.0069	0.0082	0.0062	0.0005	0.0242	0.0121	0.0046	0.0060	0.0045	0.0023	0.0047
	0.9	0.0602	0.1982	0.1321	0.0431	0.0881	0.0541	0.0287	0.0351	0.0056	0.0195	0.0098	0.0039	0.0049	0.0038	0.0019	0.0040
Table 5 (continued).

$L = 4$	Sample 1: $n_1 = 30; n_2 = 20; n_3 = 10; n_4 = 7$	Sample 2: $n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10$
n	P	r_1
---------	---	---
0.7	0.35	0.35
α	0.1201	0.1201
σ_0	0.0023	0.0023
θ	0.0235	0.0235
η_0	40	40
η_1	60	60
η_2	100	100
η_3	130	130
η_4	170	170

$L = 3$	Sample 1: $n_1 = 30; n_2 = 20; n_3 = 10; n_4 = 7$	Sample 2: $n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10$
n	P	r_1
---------	---	---
0.7	0.35	0.35
α	0.1201	0.1201
σ_0	0.0023	0.0023
θ	0.0235	0.0235
η_0	40	40
η_1	60	60
η_2	100	100
η_3	130	130
η_4	170	170
Table 6. Lengths of asymptotic, percentile bootstrap, bootstrap-t, and credible CIs when $L = 2$, $\alpha = 2$, $\sigma_0 = 1.5$ and $\theta = 2$.

Interval Estimation	$\alpha = 2; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100$
	Sample 1: $n_1 = 8; n_2 = 7$	Sample 2: $n_1 = 20; n_2 = 18$
$L = 2$	MLE	SE
	L.CI L.BP L.BT L.Cr L.BP L.BT L.Cr L.BP L.BT L.Cr L.BP L.BT L.Cr L.BP L.BT	
n P m_1, m_2		
	6, 5	0.35
15	\(\alpha\)	2.5173
	\(\sigma_0\)	1.8502
	\(\theta\)	1.5327
	\(\alpha\)	2.2411
	\(\sigma_0\)	1.5719
	\(\theta\)	1.2890
0.8	\(\alpha\)	2.5208
	\(\sigma_0\)	1.6294
	\(\theta\)	1.3349
7, 6	\(\alpha\)	2.2818
	\(\sigma_0\)	1.4738
	\(\theta\)	1.1484
14, 13	\(\alpha\)	1.5632
	\(\sigma_0\)	0.9079
	\(\theta\)	0.5389
0.35	\(\alpha\)	1.1977
	\(\sigma_0\)	0.8076
	\(\theta\)	0.4776
38	\(\alpha\)	1.5640
	\(\sigma_0\)	0.9123
	\(\theta\)	0.5409
0.8	\(\alpha\)	1.2636
	\(\sigma_0\)	0.8028
	\(\theta\)	0.4674
Table 6 (Continued).

$$\alpha = 2; \sigma_0 = 1.5; \theta = 2$$

$$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100$$

Sample 1: $$n_1 = 40; n_2 = 27$$

Sample 2: $$n_1 = 75; n_2 = 55$$

Interval Estimation	$L = 2$				MLE				SE				LINEX ($c = -0.5$)				LINEX ($c = 0.5$)
n	P	m_1, m_2	L.CI	L.BP	L.BT	L.Cr	L.BP	L.BT									
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
28, 19	0.35					1.0621	0.0344	0.0346	0.5881	0.0186	0.0187	0.6029	0.0187	0.0190	0.5738	0.0189	0.0191
		α				0.6071	0.0195	0.0194	0.2317	0.0076	0.0076	0.2347	0.0076	0.0076	0.2288	0.0076	0.0076
		σ_0				0.3979	0.0128	0.0128	0.1485	0.0049	0.0049	0.1491	0.0048	0.0048	0.1478	0.0047	0.0046
		θ				0.9476	0.0303	0.0305	0.5033	0.0161	0.0161	0.5139	0.0160	0.0158	0.4932	0.0164	0.0163
	36, 24	0.8				0.5490	0.0167	0.0171	0.2231	0.0071	0.0071	0.2255	0.0068	0.0069	0.2207	0.0066	0.0067
		α				0.3494	0.0112	0.0112	0.1383	0.0044	0.0044	0.1388	0.0046	0.0047	0.1377	0.0045	0.0044
		σ_0				0.9826	0.0307	0.0306	0.6606	0.0193	0.0195	0.6207	0.0196	0.0197	0.5920	0.0186	0.0186
		θ				0.6308	0.0199	0.0200	0.2462	0.0075	0.0076	0.2498	0.0077	0.0077	0.2428	0.0078	0.0078
		0.36, 24				0.4086	0.0125	0.0125	0.1595	0.0053	0.0052	0.1601	0.0049	0.0049	0.1588	0.0051	0.0052
		α				0.9110	0.0296	0.0293	0.4628	0.0151	0.0151	0.4735	0.0145	0.0149	0.4528	0.0142	0.0142
		σ_0				0.5867	0.0188	0.0188	0.2343	0.0072	0.0070	0.2371	0.0073	0.0073	0.2316	0.0070	0.0070
		θ				0.3598	0.0109	0.0109	0.1403	0.0046	0.0046	0.1408	0.0045	0.0045	0.1399	0.0046	0.0046
	53, 39	0.35				0.7519	0.0237	0.0238	0.4228	0.0131	0.0133	0.4279	0.0139	0.0140	0.4179	0.0125	0.0124
		α				0.4571	0.0148	0.0149	0.1736	0.0056	0.0056	0.1748	0.0053	0.0053	0.1725	0.0054	0.0053
		σ_0				0.2877	0.0091	0.0091	0.1122	0.0036	0.0036	0.1124	0.0037	0.0037	0.1119	0.0037	0.0037
		θ				0.6085	0.0195	0.0191	0.3096	0.0099	0.0101	0.3130	0.0095	0.0095	0.3064	0.0099	0.0097
	68, 50	0.8				0.4108	0.0138	0.0137	0.1684	0.0054	0.0054	0.1692	0.0054	0.0054	0.1675	0.0053	0.0053
		α				0.2573	0.0081	0.0082	0.1056	0.0033	0.0033	0.1058	0.0034	0.0034	0.1055	0.0033	0.0033
		σ_0				0.5645	0.0182	0.0184	0.3150	0.0101	0.0100	0.3182	0.0101	0.0102	0.3119	0.0098	0.0098
		θ				0.5948	0.0129	0.0128	0.1657	0.0052	0.0052	0.1666	0.0053	0.0053	0.1648	0.0053	0.0053
		53, 39				0.4111	0.0129	0.0128	0.1037	0.0032	0.0031	0.1038	0.0034	0.0034	0.1035	0.0032	0.0033
		α				0.2555	0.0075	0.0079	0.1037	0.0032	0.0031	0.1038	0.0034	0.0034	0.1035	0.0032	0.0033
Table 7. Lengths of asymptotic, percentile bootstrap, bootstrap-t, and credible CIs when \(L = 4, \alpha = 2, \sigma_0 = 1.5 \) and \(\theta = 2 \).

\(L = 4 \)	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)																	
\(n \)	\(P \)	\(\eta \)	L.CI	L.BP	L.BT	L.Cr	L.BP	L.BT													
0.7	0.35	0.35	2.5862	0.0280	0.0481	1.5552	0.0501	0.0249	1.7233	0.0533	0.0236	1.3997	0.0432	0.0242	0.0034	0.0088	0.0269	0.0034	0.0088	0.0269	
0.7	0.35	0.8	2.0923	0.0705	0.0720	1.2496	0.0381	0.0318	1.3506	0.0435	0.0332	1.1565	0.0380	0.0380	0.0156	0.0035	0.0035	0.0156	0.0035	0.0035	0.0156
0.7	0.8	0.9	2.0533	0.0633	0.0644	1.7679	0.0556	0.0520	1.8563	0.0611	0.0560	1.4872	0.0472	0.0472	0.0034	0.0034	0.0034	0.0034	0.0034	0.0034	0.0034
0.7	0.35	0.9	1.4320	0.0431	0.0420	0.8095	0.0269	0.0269	0.8432	0.0266	0.0266	0.7780	0.0240	0.0240	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432	0.0432
0.7	0.9	0.9	0.7776	0.0252	0.0255	0.3016	0.0092	0.0092	0.3085	0.0096	0.0096	0.2952	0.0096	0.0096	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287	0.0287
0.7	0.35	0.9	0.7688	0.0230	0.0229	0.2991	0.0097	0.0097	0.3060	0.0098	0.0098	0.2927	0.0099	0.0099	0.2618	0.0083	0.0083	0.2618	0.0083	0.0083	0.2618
0.7	0.9	0.8	0.7688	0.0230	0.0229	0.2991	0.0097	0.0097	0.3060	0.0098	0.0098	0.2927	0.0099	0.0099	0.2618	0.0083	0.0083	0.2618	0.0083	0.0083	0.2618
0.7	0.35	0.9	0.7688	0.0230	0.0229	0.2991	0.0097	0.0097	0.3060	0.0098	0.0098	0.2927	0.0099	0.0099	0.2618	0.0083	0.0083	0.2618	0.0083	0.0083	0.2618
0.7	0.9	0.8	0.7688	0.0230	0.0229	0.2991	0.0097	0.0097	0.3060	0.0098	0.0098	0.2927	0.0099	0.0099	0.2618	0.0083	0.0083	0.2618	0.0083	0.0083	0.2618
Table 7 (continued).

Interval Estimation	L = 4	MLE	SE	LINEX (c = -0.5)	LINEX (c = 0.5)																					
		L.CI	L.BP	L.BT	L.Cr	L.BP	L.BT																			
	n	P	α	σ₀	θ																					
	67	0.35	0.7	0.5766	0.0184	0.2228	0.0069	0.0070	0.2257	0.0072	0.0072	0.2200	0.0069	0.0068	0.8428	0.0273	0.0271	0.4817	0.0149	0.0147	0.4906	0.0152	0.0152	0.4734	0.0149	0.0149
			0.9	0.5018	0.0159	0.2097	0.0066	0.0066	0.2115	0.0065	0.0065	0.2079	0.0069	0.0068	0.2049	0.0062	0.0061	0.0865	0.0026	0.0026	0.0867	0.0027	0.0028	0.0864	0.0028	0.0027
		0.8	0.7	0.5515	0.0164	0.2331	0.0072	0.0074	0.2356	0.0073	0.0073	0.2306	0.0072	0.0072	0.2166	0.0068	0.0066	0.0897	0.0029	0.0028	0.0899	0.0029	0.0029	0.0896	0.0029	0.0029
			0.9	0.5074	0.0157	0.2118	0.0065	0.0065	0.2140	0.0068	0.0069	0.2098	0.0066	0.0066	0.2089	0.0063	0.0065	0.0893	0.0029	0.0028	0.0893	0.0026	0.0026	0.0892	0.0028	0.0028
		0.35	0.7	0.3963	0.0122	0.1604	0.0050	0.0050	0.1613	0.0052	0.0052	0.1595	0.0052	0.0052	0.1669	0.0052	0.0052	0.0691	0.0021	0.0021	0.0692	0.0022	0.0022	0.0690	0.0021	0.0020
			0.9	0.3590	0.0108	0.1521	0.0047	0.0047	0.1529	0.0050	0.0050	0.1514	0.0047	0.0047	0.1518	0.0048	0.0048	0.0659	0.0020	0.0020	0.0660	0.0021	0.0021	0.0658	0.0021	0.0021
		130	0.7	0.3848	0.0116	0.1616	0.0055	0.0055	0.1625	0.0051	0.0050	0.1607	0.0049	0.0049	0.1619	0.0049	0.0050	0.0670	0.0021	0.0021	0.0671	0.0021	0.0021	0.0670	0.0022	0.0022
			0.8	0.6182	0.0197	0.3321	0.0104	0.0103	0.3352	0.0107	0.0107	0.3291	0.0106	0.0104	0.1395	0.0043	0.0043	0.0591	0.0019	0.0019	0.0591	0.0018	0.0018	0.0590	0.0020	0.0020

- $\alpha = 2; \sigma_0 = 1.5; \theta = 2$
- $\eta_0 = 40; \eta_1 = 60; \eta_2 = 100; \eta_3 = 130; \eta_4 = 170$
- Sample 1: $n_1 = 30; n_2 = 20; n_3 = 10; n_4 = 7$
- Sample 2: $n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10$
Table 8. Lengths of asymptotic, percentile bootstrap, bootstrap-t, and credible CIs when $L = 2$, $\alpha = 0.8$, $\sigma_0 = 1.5$ and $\theta = 2$.

Interval Estimation	$\alpha = 0.8; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100$												
	Sample 1: $n_1 = 8; n_2 = 7$	Sample 2: $n_1 = 20; n_2 = 18$												
$L = 2$	MLE	SE	LINEX $(c = -0.5)$	LINEX $(c = 0.5)$										
n	P	m_1, m_2	L.CI	L.BP	L.BT	L.Cr	L.BP	L.BT	L.Cr	L.BP	L.BT	L.Cr	L.BP	L.BT
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
6, 5	0.35	α	1.2818	0.0391	0.0391	0.6468	0.0209	0.0209	0.6816	0.0210	0.0211	0.6141	0.0196	0.0201
		σ_0	4.2547	0.1357	0.1365	1.4359	0.0459	0.0460	1.7001	0.0531	0.0526	1.2259	0.0384	0.0384
		θ	2.2759	0.0724	0.0718	0.6676	0.0219	0.0213	0.7113	0.0236	0.0234	0.6315	0.0192	0.0194
7, 6	15	α	1.1211	0.0357	0.0355	0.5804	0.0195	0.0194	0.6082	0.0198	0.0198	0.5540	0.0176	0.0176
		σ_0	3.9110	0.1198	0.1198	1.5795	0.0522	0.0520	1.8729	0.0632	0.0624	1.3303	0.0424	0.0424
		θ	1.9608	0.0641	0.0653	0.7292	0.0223	0.0223	0.7784	0.0244	0.0250	0.6902	0.0212	0.0213
6, 5	0.8	α	1.3181	0.0432	0.0432	0.6705	0.0223	0.0223	0.7018	0.0225	0.0228	0.6407	0.0204	0.0205
		σ_0	4.4137	0.1384	0.1384	1.8351	0.0564	0.0572	2.2040	0.0723	0.0709	1.4882	0.0475	0.0476
		θ	2.2501	0.0726	0.0707	0.7987	0.0264	0.0260	0.8565	0.0285	0.0286	0.7475	0.0233	0.0232
7, 6	14, 13	α	1.1413	0.0364	0.0365	0.6606	0.0191	0.0196	0.6327	0.0204	0.0208	0.5808	0.0192	0.0186
		σ_0	3.5064	0.1147	0.1141	1.4000	0.0431	0.0429	1.6242	0.0530	0.0532	1.2009	0.0390	0.0388
		θ	1.9169	0.0582	0.0584	0.6901	0.0209	0.0208	0.7345	0.0227	0.0224	0.6516	0.0196	0.0197
14, 13	0.35	α	0.6620	0.0198	0.0199	0.3494	0.0113	0.0114	0.3564	0.0111	0.0109	0.3427	0.0110	0.0110
		σ_0	2.2835	0.0764	0.0752	0.8911	0.0295	0.0295	0.9986	0.0309	0.0308	0.8006	0.0250	0.0246
		θ	1.2565	0.0391	0.0396	0.4482	0.0137	0.0138	0.4608	0.0142	0.0142	0.4364	0.0140	0.0137
18, 16	0.8	α	0.5722	0.0189	0.0189	0.2889	0.0095	0.0094	0.2935	0.0098	0.0098	0.2843	0.0084	0.0084
		σ_0	1.9834	0.0642	0.0635	0.8356	0.0272	0.0271	0.9083	0.0278	0.0274	0.7707	0.0249	0.0249
		θ	1.2885	0.0430	0.0437	0.4297	0.0132	0.0132	0.4396	0.0139	0.0141	0.4201	0.0133	0.0135
14, 13	0.08	α	0.6925	0.0224	0.0228	0.3585	0.0113	0.0113	0.3652	0.0116	0.0114	0.3519	0.0120	0.0122
		σ_0	2.0331	0.0682	0.0681	0.8301	0.0263	0.0264	0.9201	0.0286	0.0291	0.7537	0.0241	0.0239
		θ	1.2007	0.0377	0.0377	0.4571	0.0141	0.0141	0.4706	0.0145	0.0144	0.4445	0.0137	0.0137
18, 16	0.8	α	0.5670	0.0178	0.0188	0.2896	0.0089	0.0088	0.2943	0.0094	0.0093	0.2850	0.0088	0.0087
		σ_0	1.9103	0.0604	0.0605	0.8876	0.0285	0.0287	0.9671	0.0309	0.0309	0.8167	0.0259	0.0260
		θ	1.0117	0.0330	0.0330	0.4109	0.0135	0.0136	0.4192	0.0139	0.0139	0.4031	0.0124	0.0124
Table 8 (Continued).

Interval Estimation	$L = 2$													
		MLE	SE	LINEX ($c = -0.5$)	LINEX ($c = 0.5$)									
n	P	m_1, m_2	α	σ_0	θ									
	28, 19	0.35	0.5196	0.0173	0.0173	0.2747	0.0088	0.0089	0.2776	0.0090	0.0089	0.2719	0.0087	0.0087
	36, 24	0.8	0.5444	0.0174	0.0174	0.2899	0.0095	0.0094	0.2929	0.0093	0.0092	0.2870	0.0091	0.0090
	53, 39	0.35	0.5344	0.0108	0.0108	0.1860	0.0059	0.0059	0.1870	0.0061	0.0060	0.1850	0.0057	0.0057
	68, 50	0.8	0.8161	0.0269	0.0268	0.3513	0.0113	0.0113	0.3573	0.0113	0.0113	0.3456	0.0109	0.0109
	53, 39	0.35	0.5345	0.0108	0.0108	0.1860	0.0059	0.0059	0.1870	0.0061	0.0060	0.1850	0.0057	0.0057
	68, 50	0.8	0.8161	0.0269	0.0268	0.3513	0.0113	0.0113	0.3573	0.0113	0.0113	0.3456	0.0109	0.0109
	53, 39	0.35	0.5345	0.0108	0.0108	0.1860	0.0059	0.0059	0.1870	0.0061	0.0060	0.1850	0.0057	0.0057
	68, 50	0.8	0.8161	0.0269	0.0268	0.3513	0.0113	0.0113	0.3573	0.0113	0.0113	0.3456	0.0109	0.0109
Table 9. Lengths of asymptotic, percentile bootstrap, bootstrap-t, and credible CIs when $L = 4$, $\alpha = 0.8$, $\sigma_0 = 1.5$ and $\theta = 2$.

Interval Estimation	$\alpha = 0.8; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100; \eta_3 = 130; \eta_4 = 170$
Sample 1: $n_1 = 6; n_2 = 4; n_3 = 3; n_4 = 2$	Sample 2: $n_1 = 15; n_2 = 10; n_3 = 8; n_4 = 5$	

$L = 4$	MLE	SE	LINEX ($c = -0.5$)	LINEX ($c = 0.5$)											
n	P	η	L.CI	L.BP	L.BT	L.Cr	L.BP	L.BT	L.Cr	L.BP	L.BT	L.Cr	L.BP	L.BT	
0.7	0.35	α	1.4698	0.0462	0.0467	0.7239	0.0236	0.0232	0.7627	0.0247	0.0248	0.6868	0.0213	0.0212	
		σ_0	3.5902	0.1156	0.1146	1.7286	0.0530	0.0527	2.0040	0.0676	0.0656	1.4862	0.0479	0.0479	
		θ	1.4036	0.0448	0.0448	0.5356	0.0169	0.0170	0.5837	0.0182	0.0184	0.5071	0.0164	0.0162	
	0.9	α	1.1418	0.0350	0.0350	0.5520	0.0169	0.0167	0.5758	0.0191	0.0191	0.5299	0.0169	0.0169	
		σ_0	3.4620	0.1133	0.1134	1.5179	0.0480	0.0484	1.9046	0.0640	0.0629	1.2278	0.0393	0.0400	
		θ	1.1501	0.0355	0.0354	0.4442	0.0142	0.0142	0.4623	0.0147	0.0152	0.4285	0.0136	0.0138	
0.8	0.7	α	1.0560	0.0484	0.0474	0.8394	0.0267	0.0268	0.8866	0.0286	0.0288	0.7927	0.0252	0.0249	
		σ_0	3.5695	0.0975	0.0977	1.6700	0.0531	0.0531	1.9328	0.0587	0.0589	1.4413	0.0475	0.0479	
		θ	1.3192	0.0397	0.0399	0.4541	0.0141	0.0138	0.4718	0.0148	0.0150	0.4413	0.0142	0.0142	
	0.9	α	1.0735	0.0357	0.0351	0.5226	0.0162	0.0164	0.5419	0.0177	0.0176	0.5044	0.0157	0.0153	
		σ_0	3.1076	0.0110	0.0113	1.4556	0.0459	0.0456	1.7433	0.0528	0.0523	1.2233	0.0387	0.0381	
		θ	0.9778	0.0307	0.0308	0.4108	0.0130	0.0130	0.4216	0.0126	0.0124	0.4015	0.0119	0.0120	
0.35	0.7	α	0.7228	0.0236	0.0235	0.3757	0.0117	0.0119	0.3830	0.0123	0.0124	0.3687	0.0114	0.0116	
		σ_0	1.8867	0.0622	0.0625	0.7685	0.0247	0.0246	0.8331	0.0279	0.0280	0.7126	0.0224	0.0223	
		θ	0.6863	0.0216	0.0217	0.2607	0.0082	0.0084	0.2633	0.0083	0.0083	0.2585	0.0086	0.0084	
	0.9	α	0.5868	0.0186	0.0188	0.2986	0.0093	0.0094	0.3037	0.0097	0.0096	0.2936	0.0099	0.0098	
		σ_0	1.6633	0.0516	0.0516	0.7435	0.0240	0.0241	0.8232	0.0260	0.0263	0.6782	0.0204	0.0204	
		θ	0.5759	0.0188	0.0183	0.2460	0.0076	0.0076	0.2485	0.0080	0.0080	0.2437	0.0081	0.0080	
38	0.7	α	0.7254	0.0236	0.0231	0.3822	0.0118	0.0119	0.3900	0.0123	0.0123	0.3746	0.0119	0.0120	
		σ_0	1.8619	0.0601	0.0598	0.8725	0.0279	0.0280	0.9773	0.0310	0.0310	0.7863	0.0252	0.0252	
		θ	0.6098	0.0212	0.0213	0.2452	0.0077	0.0077	0.2478	0.0079	0.0078	0.2428	0.0076	0.0075	
	0.8	α	0.6061	0.0193	0.0193	0.3077	0.0094	0.0094	0.3124	0.0097	0.0097	0.3031	0.0095	0.0094	
		σ_0	1.7097	0.0532	0.0537	0.7779	0.0248	0.0251	0.8414	0.0282	0.0284	0.7223	0.0225	0.0224	
		θ	0.5460	0.0179	0.0179	0.2318	0.0073	0.0073	0.2338	0.0079	0.0079	0.2299	0.0071	0.0070	
Interval Estimation	$\alpha = 0.8; \sigma_0 = 1.5; \theta = 2$	$\eta_0 = 40; \eta_1 = 60; \eta_2 = 100; \eta_3 = 130; \eta_4 = 170$	Sample 1: $n_1 = 30; n_2 = 20; n_3 = 10; n_4 = 7$	Sample 2: $n_1 = 60; n_2 = 40; n_3 = 20; n_4 = 10$											
---------------------	----------------------------------	------------------------------	-----------------	-----------------											
$L = 4$															
n	P	η	MLE	SE	LINEX ($c = -0.5$)	LINEX ($c = 0.5$)									
-----	-----	-------	-----	----	-----------------	-----------------									
67	0.35	0.7	α	0.4878	0.0151	0.0146	0.2564	0.0082	0.0080	0.2593	0.0085	0.0080	0.2535	0.0081	0.0080
			σ_0	1.2667	0.0387	0.0389	0.5344	0.0172	0.0172	0.5636	0.0185	0.0186	0.5079	0.0156	0.0160
			θ	0.5004	0.0160	0.0160	0.2055	0.0064	0.0064	0.2067	0.0066	0.0066	0.2044	0.0064	0.0064
	0.9	0.7	α	0.4294	0.0139	0.0139	0.2141	0.0066	0.0066	0.2159	0.0067	0.0067	0.2124	0.0072	0.0071
			σ_0	1.1164	0.0338	0.0343	0.5006	0.0148	0.0148	0.5214	0.0161	0.0161	0.4817	0.0151	0.0152
			θ	0.4073	0.0127	0.0127	0.1787	0.0059	0.0059	0.1797	0.0058	0.0058	0.1777	0.0059	0.0059
	0.8	0.7	α	0.5444	0.0174	0.0174	0.2899	0.0095	0.0094	0.2929	0.0093	0.0092	0.2870	0.0091	0.0090
			σ_0	1.2908	0.0426	0.0427	0.5627	0.0180	0.0180	0.5912	0.0187	0.0185	0.5363	0.0168	0.0166
			θ	0.4844	0.0157	0.0157	0.1971	0.0066	0.0066	0.1985	0.0064	0.0064	0.1958	0.0062	0.0062
	0.9	0.7	α	0.4359	0.0138	0.0136	0.2196	0.0068	0.0070	0.2215	0.0070	0.0070	0.2177	0.0068	0.0068
			σ_0	1.1008	0.0348	0.0348	0.5018	0.0162	0.0161	0.5222	0.0159	0.0159	0.4830	0.0155	0.0153
			θ	0.4354	0.0132	0.0132	0.1920	0.0061	0.0061	0.1931	0.0059	0.0059	0.1909	0.0059	0.0058
	0.35	0.7	α	0.3291	0.0105	0.0106	0.1689	0.0054	0.0052	0.1697	0.0052	0.0053	0.1680	0.0055	0.0055
			σ_0	0.9161	0.0292	0.0295	0.3825	0.0121	0.0122	0.3920	0.0125	0.0125	0.3734	0.0119	0.0118
			θ	0.3847	0.0119	0.0119	0.1591	0.0052	0.0050	0.1598	0.0049	0.0049	0.1585	0.0049	0.0050
			α	0.2937	0.0093	0.0093	0.1483	0.0047	0.0046	0.1490	0.0045	0.0045	0.1476	0.0047	0.0048
	0.9	0.7	σ_0	0.7493	0.0242	0.0243	0.3227	0.0099	0.0099	0.3288	0.0108	0.0108	0.3170	0.0099	0.0098
			θ	0.3187	0.0110	0.0110	0.1387	0.0042	0.0042	0.1392	0.0045	0.0045	0.1382	0.0041	0.0041
			α	0.3291	0.0105	0.0106	0.1689	0.0054	0.0052	0.1697	0.0052	0.0053	0.1680	0.0055	0.0055
			σ_0	0.8994	0.0289	0.0283	0.3941	0.0125	0.0123	0.4051	0.0128	0.0127	0.3836	0.0124	0.0124
			θ	0.3526	0.0113	0.0113	0.1486	0.0051	0.0051	0.1493	0.0048	0.0048	0.1480	0.0044	0.0044
			σ_0	0.7814	0.0230	0.0234	0.3542	0.0113	0.0112	0.3616	0.0115	0.0115	0.3471	0.0108	0.0107
			θ	0.3018	0.0101	0.0099	0.1330	0.0044	0.0044	0.1334	0.0043	0.0043	0.1327	0.0042	0.0041
6. The BEs under LINEX loss function with parameter $c = 0.5$ have MSE less than corresponding estimates with $c = -0.5$, for all parameters.
7. Lengths of credible CIs are always shorter than the corresponding lengths of asymptotic CIs.
8. The percentile bootstrap CI has the shortest length among all considered CIs.

7. Application of transformer insulation

In this section, a real data set is analyzed to illustrate the proposed methods in the previous sections. Furthermore, this data set is used to show that the MKEx distribution can be a possible alternative to widely known distributions such as exponential distribution, generalized exponential distribution and Weibull distribution.

Nelson [36] presented in Chapter three of his book the results of a constant-stress accelerated life test of a transformer insulation. The test consisted of three levels of constant voltage, which are respectively 35.4 kv, 42.4 kv and 46.7 kv with normal voltage is 14.4 kv. The results of such test are presented in Table 10. In this table, the sign “+” refers to the censored data.

Voltage	Failure times
35.4 kv	0.1, 59.4, 71.2, 166.5, 204.7, 229.7, 308.3, 537.9, 1002.3+, 1002.3+
42.4 kv	0.6, 13.4, 15.2, 19.9, 25.0, 30.2, 32.8, 44.4, 50.2+, 56.2
46.7 kv	3.1, 8.3, 8.9, 9.0, 13.6, 14.9, 16.1, 16.9, 21.3, 48.1+

For each level of this test, we suggested using the following progressives CSs as follows:
1. For $\phi_1 = 35.4$ kv: $n_1 = 10$, $m_1 = 8$ and $R_{1j} = 0$, $j = 1, ..., 7$, $R_{18} = 2$, with $P = 0.0277$.
2. For $\phi_2 = 42.4$ kv: $n_2 = 10$, $m_2 = 9$ and $R_{2j} = 0$, $j = 1, ..., 7$, $R_{28} = 1$, $R_{29} = 0$, with $P = 0.0123$.
3. For $\phi_3 = 46.7$ kv: $n_3 = 10$, $m_3 = 9$ and $R_{3j} = 0$, $j = 1, ..., 8$, $R_{39} = 1$, with $P = 0.0123$.

In the following subsection, we explain how to perform a goodness of fit test for the data in Table 10 and the proposed MKEx distribution.

7.1. Modified KS algorithm for fitting progressive censored data

When the data is PT-II censored data, we have to use modified Kolmogorov-Smirnov (KS) goodness of fit test. The modified Kolmogorov-Smirnov statistic for PT-II censored data was originally introduced by Pakyari and Balakrishnan [38]. This algorithm is based on several steps, first, find the estimates of the parameters for the proposed distribution and next transforming the data to normality, then testing the goodness of fit of the transformed data to normality. Let $\tau_{1:n,m,n} < \tau_{2:n,m,n} < ... < \tau_{m:n,m,n}$ be a PT-II censored sample with CS $(R_1, R_2, ..., R_m)$ from a distribution function $F(t; \theta)$, then the modified KS statistic for PT-II censored data is

$$D_{m:n} = \max\{D^+_m, D^-_m\}, \quad (7.1)$$

where

$$D^+_m = \max_{i=1,2,...,m} \{v_{i:n,m,n} - u_{i:n,m,n}\},$$

$$D^-_m = \max_{i=1,2,...,m} \{v_{i:n,m,n} + u_{i:n,m,n}\}.$$
\[D_{m,n}^- = \max_{i=1,2,\ldots,m} \{u_{i,m,n} - \nu_{i-1,m,n}\}, \]

where \(\nu_{i,m,n} = E(U_{i,m,n}) \) is the expected value of the \(i \)th PT-II censored order statistic from the \(U(0,1) \) distribution, given by
\[\nu_{i,m,n} = 1 - \prod_{j=m-i+1}^{m} \left(\frac{j + R_{m-j+1} + \ldots + R_m}{j + 1 + R_{m-j+1} + \ldots + R_m} \right), \]

and \(u_{i,m,n} = F(t_{i,m,n}; \hat{\theta}) \) for \(i = 1,2,\ldots,m \).

The following algorithm was proposed by Pakyari and Balakrishnan [38] to apply the KS test for PT-II censored data.

1. Find the MLE of the parameter \(\theta \), and calculate \(\alpha_{i,m,n} = F(t_{i,m,n}; \hat{\theta}) \) for \(i = 1,2,\ldots,m \).
2. Evaluate \(y_{i,m,n} = \Phi^{-1}(\alpha_{i,m,n}) \) for \(i = 1,2,\ldots,m \).
3. Considering \(y_{1,m,n}, y_{2,m,n}, \ldots, y_{m,m,n} \) as a PT-II censored data from a normal distribution with mean \(\mu \) and standard deviation \(\sigma \), calculate the MLEs \(\hat{\mu} \) and \(\hat{\sigma} \).
4. Evaluate \(u_{i,m,n} = \Phi((y_{i,m,n} - \hat{\mu})/\hat{\sigma}) \) for \(i = 1,2,\ldots,m \).
5. Evaluate \(D_{m,n} \) according to (7.1).
6. Evaluate the P-value of the test, and reject the null hypothesis \(H_0 \) at significance level 0.05 if P-value less than 0.05.

Table 11 contains the MLEs and BEs using SE and LINEX loss functions of \(\alpha, \sigma_0 \) and \(\theta \) for the real data set.

Table 11. Different estimates of unknown parameters for the real data set.

MLE	SE	LINEX (c = -0.1)							
\(\hat{\alpha} \)	\(\hat{\sigma}_0 \)	\(\hat{\theta} \)	\(\hat{\sigma}_{SE} \)	\(\hat{\sigma}_{\alphaSE} \)	\(\hat{\sigma}_{\sigmaSE} \)	\(\hat{\theta}_{SE} \)	\(\hat{\sigma}_{\alphaLINEX} \)	\(\hat{\sigma}_{\sigmaLINEX} \)	\(\hat{\theta}_{LINEX} \)
0.699051	0.000151778	34.9999	1.15775	0.000298505	39.4009	1.15805	0.000298505	39.416	

Based on the results of MLEs, the summary of results of the modified KS test for MKEx distribution are displayed in Table 12.

Table 12. Summary of the results of the modified KS test for MKEx distribution.

Distribution	Stress level	Test statistic	P-value
MKEx	\(\phi_1 \)	0.225534	0.248
MKEx	\(\phi_2 \)	0.217075	0.854
MKEx	\(\phi_3 \)	0.168044	0.500

Table 13 contains the value of the life characteristics \(\sigma_l, l = 0,1,2,3 \) for each stress level, also it contains the mean time to failure (MTTF) for each stress level.

Figures 2–5 display the reliability function of transformers insulation under different stress levels.
Table 13. The values of life characteristic and MTTF for each stress level for the MKEx distribution.

Stress level	The life characteristics (σ_i)	MTTF
ϕ_0	0.00015	4106.75
ϕ_1	0.0053	117.336
ϕ_2	0.0108	57.5029
ϕ_3	0.0158	39.2529

Figure 2. Reliability function under ϕ_0.

Figure 3. Reliability function under ϕ_1.

Figure 4. Reliability function under ϕ_2.

AIMS Mathematics
From Figures 2–5, we can note that with the increase in the stress value, the reliability function tends to zero faster.

The remainder of this section deals with the comparison of the proposed model, MKEx, generalized exponential (GE), Weibull, and exponential distributions. The comparison is performed using the real data shown in Table 10 and the PT-II CSs previously presented in this section. To clarify which of these distributions is more suitable for the data in Table 10, the parameters for the four distributions are estimated and the Akaike information criteria (AIC) is calculated for each distribution. The results of these calculations are summarized in Table 14. Furthermore, the results of modified KS test for the GE, Weibull, and exponential distributions are presented in Table 15.

Table 14. MLEs of the parameters of MKEx, GE, Weibull, and exponential distributions with AIC.

Distribution	AIC	Estimated parameters		
		\(\hat{\alpha} \)	\(\hat{\sigma}_0 \)	\(\hat{\theta} \)
MKEx	293.330	0.699051	0.000151	34.9999
GE	294.138	0.34446	0.000171	17.0303
Weibull	298.298	1.17927	0.000690	10.0043
Exponential	299.563	-	0.004015	2.02216

From Tables 14 and 15, we can see that the MKEx distribution provides a better fit to the given data compared to exponential, GE, and Weibull regarding AIC.

8. Conclusions

This paper discussed the statistical inference of CSALT under PT-II censoring with binomial removal when the lifetimes of test units follow the MKEx distribution. In this context, we obtained the point and interval estimates for the unknown parameters using both classical and Bayesian methods. We concluded that the Bayesian method was better than the classical method according to MSE and relative absolute bias of the estimates. Regarding the interval estimates, we noted that the
Table 15. Summary of the results of the modified KS test for GE, Weibull, and exponential distributions.

Distribution	Stress level	Test statistic	P-value
GE	ϕ_1	0.1871	0.570
	ϕ_2	0.2224	0.525
	ϕ_3	0.1957	0.571
Weibull	ϕ_1	0.190144	0.749
	ϕ_2	0.193394	0.871
	ϕ_3	0.178979	0.462
Exponential	ϕ_1	0.187407	0.849
	ϕ_2	0.20754	0.95
	ϕ_3	0.188103	0.384

percentile bootstrap interval was the best one according to the shortness of the interval length. Furthermore, An application about the insulation of transformers was discussed and used to illustrate the theoretical results. Moreover, the data of insulation of transformers was used to show that the suggested model, MKEx, can be a possible alternative to some well known distributions.

Acknowledgments

The authors are thankful for the Taif University researchers supporting project number TURSP-2020/160, Taif University, Taif, Saudi Arabia.

Conflict of interest

The authors declare no conflict of interest.

References

1. A. H. Abdel-Hamid, Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring, *Comput. Stat. Data Anal.*, 53 (2009), 2511–2523.
2. A. H. Abdel-Hamid, E. K. AL-Hussaini, Inference for a progressive stress model from Weibull distribution under progressive type-II censoring, *J. Comput. Appl. Math.*, 235 (2011), 5259–5271.
3. A. H. Abdel-Hamid, E. K. AL-Hussaini, Progressive stress accelerated life tests under finite mixture models, *Metrika*, 66 (2007), 213–231.
4. A. H. Abdel-Hamid, E. K. AL-Hussaini, Bayesian prediction for type-II progressive-censored data from the Rayleigh distribution under progressive-stress model, *J. Stat. Comput. Simul.*, 84 (2014), 1297–1312.
5. A. H. Abdel-Hamid, T. A. Abushal, Inference on progressive-stress model for the exponentiated exponential distribution under type-II progressive hybrid censoring, *J. Stat. Comput. Simul.*, 85 (2015), 1165–1186.
6. A. M. Abd El-Raheem, Optimal plans of constant-stress accelerated life tests for extension of the exponential distribution, *J. Test. Eval.*, **47** (2019), 1586–1605.

7. A. M. Abd El-Raheem, Optimal plans and estimation of constant-stress accelerated life tests for the extension of the exponential distribution under type-I censoring, *J. Test. Eval.*, **47** (2019), 3781–3821.

8. A. M. Abd El-Raheem, Optimal design of multiple accelerated life testing for generalized half-normal distribution under type-I censoring, *J. Comput. Appl. Math.*, **368** (2019), 112539.

9. A. M. Abd El-Raheem, Inference and optimal design of multiple constant-stress testing for generalized half-normal distribution under type-II progressive censoring, *J. Stat. Comput. Simul.*, **89** (2019), 3075–3104.

10. A. M. Abd El-Raheem, Optimal design of multiple constant-stress accelerated life testing for the extension of the exponential distribution under type-II censoring, *J. Comput. Appl. Math.*, **382** (2021), 113094.

11. A. M. Abd El-Raheem, M. H. Abu-Moussa, M. M. Mohie El-Din, E. H. Hafez, Accelerated Life Tests under Pareto-IV Lifetime Distribution: Real Data Application and Simulation Study, *Mathematics*, **8** (2020), 1786.

12. E. K. AL-Hussaini, A. H. Abdel-Hamid, A. F. Hashem, One-sample Bayesian prediction intervals based on progressively type-II censored data from the half-logistic distribution under progressive stress model, *Metrika*, **78** (2015), 771–783.

13. E. M. Almetwally, H. M. Almongy, A. E. Mubarak sayed, Bayesian and Maximum Likelihood Estimation for the Weibull Generalized Exponential Distribution Parameters Using Progressive Censoring Schemes, *Pak. J. Stat. Oper. Res.*, **14** (2018), 853–868.

14. R. Alshenawy, A. Al-Alwan, E. M. Almetwally, A. Z. Afify, H. M. Almongy, Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering, *Mathematics*, **8** (2020), 1679.

15. A. A. Al-Babtain, M. K. Shakhatreh, M. Nassar, A. Z. Afify, A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications, *Mathematics*, **8** (2020), 1345.

16. N. Balakrishnan, R. Aggarwala, *Progressive Censoring: Theory, Methods, and Applications*, Birkhauser, Boston, 2000.

17. N. Balakrishnan, D. Han, Exact inference for a simple step stress model with competing risks for failure from exponential distribution under type-II censoring, *J. Stat. Plan. Inf.*, **138** (2008), 4172–4186.

18. M. H. Chen, Q. M. Shao, Monte Carlo Estimation of Bayesian Credible and HPD Intervals, *J. Comput. Graphical Stat.*, **8** (1999), 6992.

19. M. H. DeGroot, P. K. Goel, Bayesian Estimation and Optimal Designs in Partially Accelerated Life Testing, *Nav. Res. Logist.*, **26** (1979), 223–235.

20. S. Dey, M. Nassar, D. Kumar, Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics, *Hacet. J. Math. Stat.*, **48** (2019), 332–350.
21. E. S. A. El-Sherpieny, E. M. Almetwally, H. Z. Muhammed, Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution, *Phys. A*, 553 (2020), 124251.

22. E. H. Hafez, F. H. Riad, S. A. M. Mubarak, M. S. Mohamed, Study on Lindley Distribution Accelerated Life Tests: Application and Numerical Simulation, *Symmetry*, 12 (2020), 2080.

23. B. Efron, Bootstrap Methods: Another Look at the Jackknife, *Ann. Stat.*, 7 (1979), 126.

24. A. A. Ismail, Inference for a step-stress partially accelerated life test model with an adaptive Type-II progressively hybrid censored data from Weibull distribution, *J. Comput. Appl. Math.*, 260 (2014), 533–542.

25. Z. F. Jaheen, H. M. Moustafa, G. H. Abd El-Monem, Bayes inference in constant partially accelerated life tests for the generalized exponential distribution with progressive censoring, *Commun. Stat. Theory Methods*, 43 (2014), 2973–2988.

26. C. S. Kumar, S. H. S. Dharmaja, On reduced Kies distribution, In: C. S. Kumar, M. Chacko, E. I. A. Sathar, Editors, *Collection of Recent Statistical Methods and Applications*, Department of Statistics, University of Kerala Publishers: Trivandrum, India, 2013, 111–123.

27. C. S. Kumar, S. H. S. Dharmaja, The exponentiated reduced Kies distribution: Properties and applications, *Commun. Stat. Theory Methods*, 46 (2017), 8778–8790.

28. S. Limon, O. P. Yadav, H. Liao, A literature review on planning and analysis of accelerated testing for reliability assessment, *Qual. Reliab. Eng. Int.*, 33 (2017), 2361–2383.

29. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for Weibull distribution with progressive first-failure censoring, *J. Stat. Appl. Prob.*, 3 (2015), 403–411.

30. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for power generalized Weibull distribution with progressive censoring, *Adv. Stat.*, 2015 (2015), 319051.

31. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Parametric inference on step-stress accelerated life testing for the extension of exponential distribution under progressive type-II censoring, *Commun. Stat. Appl. Methods*, 23 (2016), 269–285.

32. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. Ali, A. M. Abd El-Raheem, Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring, *Metron*, 74 (2016), 253–273.

33. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Optimal plans of constant-stress accelerated life tests for the Lindley distribution, *J. Test. Eval.*, 45 (2017), 1463–1475.

34. M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. Ali, A. M. Abd El-Raheem, Classical and Bayesian inference on progressive-stress accelerated life testing for the extension of the exponential distribution under progressive type-II censoring, *Qual. Reliab. Eng. Int.*, 33 (2017), 2483–2496.

35. M. M. Mohie El-Din, M. M. Amein, A. M. Abd El-Raheem, E. H. Hafez, F. H. Riad, Bayesian inference on progressive-stress accelerated life testing for the exponentiated Weibull distribution under progressive type-II censoring, *J. Stat. Appl. Pro. Lett.*, 7 (2020), 109–126.
36. W. Nelson, *Accelerated Testing: Statistical Models, Test Plans and Data Analysis*, Wiley: New York, NY, USA, 1990.

37. N. Chandra, M. A. Khan, Analysis and optimum plan for 3-step step-stress accelerated life tests with Lomax model under progressive type-I censoring, *Commun. Math. Stat.*, 6 (2018), 73–90.

38. R. Pakyari, N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, *IEEE Trans. Reliab.*, 61 (2012), 238–243.

39. L. Wang, Y. Shi, Estimation for constant-stress accelerated life test from generalized half-normal distribution, *J. Syst. Eng. Electronics*, 28 (2017), 810–816.

40. H. M. Aljohani, E. M. Almetwally, A. S. Alghamdi, E. H. Hafez, Ranked set sampling with application of modified Kies exponential distribution, *Alexandria Eng. J.*, 60 (2021), 4041–4046.