Supplement of

Atmospheric oxidation mechanism and kinetics of indole initiated by ·OH and ·Cl: a computational study

Jingwen Xue et al.

Correspondence to: Fangfang Ma (maff@dlut.edu.cn) and Hong-Bin Xie (hbxie@dlut.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
1. Tunneling effects ... S3
2. Table S2 ... S4
3. Table S3 ... S5
4. Table S4 ... S5
5. Table S5 ... S6
6. Table S6 ... S12
7. Table S7 ... S13
8. Table S8 ... S14
9. Table S9 ... S15
10. Table S10 ... S16
11. Figure S1 .. S19
12. Figure S2 .. S20
13. References ... S21
Tunneling effects

For the reactions involving H-abstraction or H-shift, tunneling effects could influence their reaction rate constants and branching ratios of products. To probe the tunneling effects, reaction rate constants \((k) \) of bimolecular H-abstraction pathways and unimolecular H-shift pathways involved in the key reaction pathways and branching ratios \((I) \) of important species (intermediates \(\text{IM}_{1-7} \), \(\text{IM}_{2-5} \) and \(\text{IM}_{2-6} \)), products \((\text{P}_{2-10}, \text{P}_{1-7-4-1}) \), organonitrates (and alkoxy radicals, \(\text{NO-P}_3 \) and \(\text{NO-P}_4 \)), hydroperoxide \((\text{HO}_2\text{-P}_3, \text{HO}_2\text{-P}_4) \)) without tunneling effects were calculated at 298 K and 1 atm. The calculated data are shown in Table S1. It can be noted that all the values of \(k \) without the tunneling effects are at least one (up to three) order of magnitude lower than the corresponding values with tunneling effects, indicating that tunneling effects can significantly increase \(k \) values of the important reaction pathways. In addition, the tunneling effects have various effects on the branching ratios of important species. The tunneling effects increase the yields of \(\text{P}_{2-10} \), and \(\text{P}_{1-7-4-1} \), almost have no effect on the yields of \(\text{IM}_{1-7} \), \(\text{IM}_{2-6} \), \(\text{NO-P}_4 \) and \(\text{HO}_2\text{-P}_4 \) and reduce the yields of \(\text{IM}_{2-5} \), \(\text{NO-P}_3 \) and \(\text{HO}_2\text{-P}_3 \).

Table S1. Calculated reaction rate constants \((k) \) of important unimolecular H-shift/bimolecular H-abstraction pathways and branching ratios \((I) \) of main products with and without considering tunneling effects at 298 K and 1 atm .

Pathways	\(k \)	Species	\(I \)
\(\text{R}_1 \rightarrow \text{P}_{1-10} \)	Tun\(^*\) \(1.7 \times 10^{-15} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)	\(\text{IM}_{1-7} \)	77.4% 77.9%
	NoTun\(^\#\) \(1.1 \times 10^{-16} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)	\(\text{IM}_{2-5} \)	31.4% 34.3%
\(\text{R}_2 \rightarrow \text{P}_{2-10} \)	Tun\(^*\) \(4.5 \times 10^{-11} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)	\(\text{IM}_{2-6} \)	45.5% 50.1%
	NoTun\(^\#\) \(8.7 \times 10^{-12} \) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\)	\(\text{P}_{2-10} \)	23.1% 15.6%
\(\text{IM}_{1-7}4\text{OO-s} \rightarrow \text{IM}_{1-7}4\text{OO-OH-s} \)	Tun\(^*\) \(1.2 \times 10^{-2} \) s\(^{-1}\)	\(\text{P}_{1-7-4-1} \)	6.4% 3.1%
	NoTun\(^\#\) \(5.5 \times 10^{-3} \) s\(^{-1}\)	\(\text{NO-P}_3 \)	67.3% 70.6%
\(\text{IM}_{2-5}6\text{OO-a} \rightarrow \text{IM}_{2-5}6\text{OO-C5H-a} \)	Tun\(^*\) \(7.6 \times 10^{-4} \) s\(^{-1}\)	\(\text{HO}_2\text{-P}_3 \)	24.9% 26.1%
	NoTun\(^\#\) \(2.3 \times 10^{-7} \) s\(^{-1}\)	\(\text{NO-P}_4 \)	72.4% 73.0%
		\(\text{HO}_2\text{-P}_4 \)	26.8% 27.0%

\(^*\)Tunneling effects were taken into account when calculating the reaction rate constants.

\(^\#\)Tunneling effects were not taken into account when calculating the reaction rate constants.
Table S2. Values of T_1 diagnostics for the intermediates and transition states involved in the key reaction pathways in the CCSD(T)/6-31+G(d') calculations within the CBS-QB3 scheme.

Species	T_1 diagnostics	Species	T_1 diagnostics
TS$_{1,7}$	0.039	IM$_{1,7}$	0.033
TS$_{2,5}$	0.033	IM$_{2,5}$	0.031
TS$_{2,6}$	0.034	IM$_{2,6}$	0.031
TS$_{2,10}$	0.028	C$_8$H$_6$N	0.039
TS$_{3,2}$	0.038	IM$_{1,7}$-4OO-s	0.020
TS$_{3,2'}$	0.037	IM$_{1,7}$-4OO-a	0.020
TS$_{3,2-4}$	0.037	IM$_{1,7}$-4OO-NH-s	0.031
TS$_{3,2-7}$	0.027	IM$_{1,7}$-4OO-OH-s	0.035
TS$_{4,3}$	0.035	IM$_{2,5}$-6OO-s	0.020
TS$_{4,3'}$	0.036	IM$_{2,5}$-6OO-a	0.020
TS$_{4,3-7}$	0.032	IM$_{2,5}$-6OO-C5H-a	0.029
TS$_{5,2}$	0.037	IM$_{2,6}$-5OO-s	0.020
TS$_{5,2'}$	0.038	IM$_{2,6}$-5OO-a	0.020
TS$_{5,2-1}$	0.031	IM$_{2,6}$-52OO-a	0.023
TS$_{6,2}$	0.036	C$_8$H$_6$N-4OO-s	0.021
TS$_{6,2'}$	0.036	C$_8$H$_6$N-4OO-a	0.021
TS$_{6,2-3}$	0.043	C$_8$H$_6$N-43OO-s	0.036
TS$_{6,2-3}$	0.043	C$_8$H$_6$N-43OO-a	0.036
Table S3. Polarizabilities (α) and the first ionization potentials (I) used in the long-range transition state theory.

Species	α/ao^3	I/eV
C$_8$H$_7$N (indole)	105.62*	7.74*
\cdotC$_8$H$_6$N (P$_{1-10}$/P$_{2-10}$)	106.58*	8.08*
\cdotC$_8$H$_6$N (P$_{1-11}$/P$_{2-11}$)	104.79*	8.29*
\cdotC$_8$H$_6$N (P$_{1-12}$/P$_{2-12}$)	104.90*	8.04*
\cdotC$_8$H$_6$N (P$_{1-13}$/P$_{2-13}$)	103.47*	7.80*
\cdotC$_8$H$_6$N (P$_{1-14}$/P$_{2-14}$)	103.25*	8.13*
\cdotC$_8$H$_6$N (P$_{1-15}$/P$_{2-15}$)	104.00*	7.62*
\cdotC$_8$H$_6$N (P$_{1-16}$/P$_{2-16}$)	8.26$^#$	15.24$^#$
OH	10.60$^#$	14.71$^#$
Cl	14.71$^#$	12.97$^#$
HCl	16.97$^#$	12.74$^#$

* α and I were calculated at BLYP/def2-QZVPD and CBS-QB3//M06-2X/6-31+G(d,p) level of theory, respectively, which have been used in our previous studies.1-4

Obtained from the NIST database 5

Table S4. Lennard-Jones parameters of the intermediates for various reactions used in the MultiWell or MESMER simulations.

Reactions	σ/\AA	ε/K
Indole + \cdotOH	6.4	685
Indole + \cdotCl	6.5	619
IM$_{1-7}$ + O$_2$	6.6	739
IM$_{2-5}$ + O$_2$	6.7	673
IM$_{2-6}$ + O$_2$	6.7	673
C$_8$H$_6$N + O$_2$	6.4	635
Table S5. NBO charge distribution for all the pre-reactive complexes of the indole + ·Cl reaction.

Species	Atoms	Number	Natural Charge
Indole	N	1	-0.596
	C	2	0.143
	C	3	-0.109
	C	4	-0.327
	C	5	-0.274
	C	6	-0.222
	C	7	-0.043
	C	8	-0.255
	C	9	-0.276
	H	10	0.453
	H	11	0.259
	H	12	0.249
	H	13	0.250
	H	14	0.248
	H	15	0.250
	H	16	0.250
RC₂₋₅	N	1	-0.563
	C	2	0.173
	C	3	-0.127
	C	4	-0.304
	C	5	-0.241
	C	6	-0.141
	C	7	-0.040
	C	8	-0.185
	C	9	-0.286
	H	10	0.466
	H	11	0.265
	H	12	0.294
	H	13	0.256
	H	14	0.256
	H	15	0.266
Atm	Num	Value	
-------	-----	-------	
H	14	0.256	
H	15	0.266	
H	16	0.261	
Cl	17	-0.350	

RC\textsubscript{2-13}

Atm	Num	Value
N	1	-0.576
C	2	0.126
C	3	-0.087
C	4	-0.302
C	5	-0.201
C	6	-0.199
C	7	-0.020
C	8	-0.273
C	9	-0.193
H	10	0.459
H	11	0.270
H	12	0.254
H	13	0.293
H	14	0.255
H	15	0.260
H	16	0.267
Cl	17	-0.334

RC\textsubscript{2-14}

Atm	Num	Value
N	1	-0.578
C	2	0.165
C	3	-0.122
C	4	-0.221
C	5	-0.269
C	6	-0.193
C	7	0.041
C	8	-0.228
C	9	-0.268
H	10	0.465
H	11	0.288
H	12	0.257
Atom	Number	Charge
------	--------	--------
H	10	0.260
H	14	0.281
H	15	0.257
H	16	0.257
Cl	17	-0.391

RC2-15

Atom	Number	Charge
N	1	-0.563
C	2	0.173
C	3	-0.127
C	4	-0.304
C	5	-0.241
C	6	-0.141
C	7	-0.040
C	8	-0.185
C	9	-0.286
H	10	0.466
H	11	0.265
H	12	0.294
H	13	0.256
H	14	0.256
H	15	0.266
H	16	0.261
Cl	17	-0.350

RC2-16

Atom	Number	Charge		
N	1	-0.579		
C	2	0.123		
C	3	-0.068		
C	4	-0.323		
C	5	-0.197		
C	6	-0.213		
C	7	-0.006		
C	8	-0.226		
C	9	-0.242		
H	10	0.462		
H	11	0.266		
Element	Position	Distance		
---------	----------	----------		
H	12	0.267		
H	13	0.258		
H	14	0.255		
H	15	0.289		
H	16	0.264		
Cl	17	-0.331		
Pathways	0.1 atm	0.4 atm	0.7 atm	1.0 atm
----------	---------	---------	---------	--------
Indole + ·OH	7.90×10^{-11} cm3 molecule$^{-1}$ s$^{-1}$			
Indole + ·Cl	2.91×10^{-10} cm3 molecule$^{-1}$ s$^{-1}$			
IM$_{1.7}$ + O$_2$	6.12×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$			
IM$_{2.5}$ + O$_2$	6.15×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$			
IM$_{2.6}$ + O$_2$	6.10×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$			
CsH$_6$N + O$_2$	6.13×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$			
IM$_{1.7}$-4OO \rightarrow IM$_{1.7}$-4OO-OH	1.22×10^{-2} s$^{-1}$			
IM$_{2.5}$-6OO \rightarrow IM$_{2.5}$-6OO-C5H	2.94×10^{-4} s$^{-1}$			
IM$_{2.6}$-5OO \rightarrow IM$_{2.6}$-5OO-a	3.60×10^{-7} s$^{-1}$			
CsH$_6$N-4OO \rightarrow CsH$_6$N-4OO-a	8.77×10^{-9} s$^{-1}$			

Table S6. Calculated reaction rate constants (k) at 298 K and over the pressure range from 0.1 to 1.0 atm of the main reaction pathways for the indole + ·OH/Cl reactions.
Table S7. Calculated reaction rate constants (k) at 298 K and over the energy transfer parameters from 50 to 250 cm$^{-1}$ of the main reaction pathways for the indole + ·OH/Cl reactions

Pathways	$\Delta E_d = 50$ cm$^{-1}$	$\Delta E_d = 100$ cm$^{-1}$	$\Delta E_d = 150$ cm$^{-1}$	$\Delta E_d = 200$ cm$^{-1}$	$\Delta E_d = 250$ cm$^{-1}$
Indole+OH	7.89×10^{11} cm3 molecule$^{-1}$ s$^{-1}$	2.90×10^{10} cm3 molecule$^{-1}$ s$^{-1}$	7.90×10^{11} cm3 molecule$^{-1}$ s$^{-1}$	7.90×10^{11} cm3 molecule$^{-1}$ s$^{-1}$	7.90×10^{11} cm3 molecule$^{-1}$ s$^{-1}$
Indole+Cl	2.90×10^{10} cm3 molecule$^{-1}$ s$^{-1}$	6.12×10^{12} cm3 molecule$^{-1}$ s$^{-1}$			
IM$_{1.7}$ + O$_2$	6.15×10^{12} cm3 molecule$^{-1}$ s$^{-1}$				
IM$_{2.5}$ + O$_2$	6.10×10^{12} cm3 molecule$^{-1}$ s$^{-1}$				
IM$_{2.6}$ + O$_2$	6.13×10^{12} cm3 molecule$^{-1}$ s$^{-1}$				
C$_{5}$H$_{5}$N + O$_2$	6.13×10^{12} cm3 molecule$^{-1}$ s$^{-1}$				
IM$_{1.7}$-4OO-s \rightarrow IM$_{1.7}$-4OO-Cl \rightarrow	1.22×10^{-2} s$^{-1}$				
IM$_{2.5}$-6OO-a \rightarrow IM$_{2.5}$-6OO-C5H-a	7.65×10^{-4} s$^{-1}$				
IM$_{2.6}$-5OO-a \rightarrow IM$_{2.6}$-5OO-C5H-a	3.60×10^{-7} s$^{-1}$				
C$_{5}$H$_{5}$N-4OO-a/s \rightarrow C$_{5}$H$_{5}$N-43OO-a/s	8.77×10^{-9} s$^{-1}$				
Table S8. Calculated branching ratios (Γ) at 298 K and over the pressure range from 0.1 to 1.0 atm of the main reaction pathways for the indole + \textbf{ -OH/-Cl reactions}

Species	Γ 0.1 atm	Γ 0.4 atm	Γ 0.7 atm	Γ 1.0 atm
IM$_{1-7}$	77.4%	77.4%	77.4%	77.4%
IM$_{2-5}$	31.4%	31.4%	31.4%	31.4%
IM$_{2-6}$	45.5%	45.5%	45.5%	45.5%
P$_{2-10}$	23.1%	23.1%	23.1%	23.1%
P$_{1-7-4-1}$	6.6%	6.5%	6.5%	6.5%
NO-P$_{3}$	67.3%	67.3%	67.3%	67.3%
HO$_{2}$-P$_{3}$	24.9%	24.9%	24.9%	24.9%
NO-P$_{4}$	72.4%	72.4%	72.4%	72.4%
HO$_{2}$-P$_{4}$	26.8%	26.8%	26.8%	26.8%
NO-P$_{5}$	72.7%	72.7%	72.7%	72.7%
HO$_{2}$-P$_{5}$	26.9%	26.9%	26.9%	26.9%
NO-P$_{6}$	73.0%	73.0%	73.0%	73.0%
HO$_{2}$-P$_{6}$	27.0%	27.0%	27.0%	27.0%
Table S9. Calculated branching ratios (Γ) at 298 K and over the energy transfer parameters range from 50 to 250 cm$^{-1}$ of the main reaction pathways for the indole + -OH/-Cl reactions

Species	$\Delta E_d = 50$ cm$^{-1}$	$\Delta E_d = 100$ cm$^{-1}$	$\Delta E_d = 150$ cm$^{-1}$	$\Delta E_d = 200$ cm$^{-1}$	$\Delta E_d = 250$ cm$^{-1}$
IM1-7	77.4%	77.4%	77.4%	77.4%	77.4%
IM2-5	31.4%	31.4%	31.4%	31.4%	31.4%
IM2-6	45.5%	45.5%	45.5%	45.5%	45.5%
P2-10	23.1%	23.1%	23.1%	23.1%	23.1%
P1-7-4-1	6.5%	6.5%	6.5%	6.5%	6.5%
NO-P3	67.3%	67.3%	67.3%	67.3%	67.3%
HO2-P3	24.9%	24.9%	24.9%	24.9%	24.9%
NO-P4	72.4%	72.4%	72.4%	72.4%	72.4%
HO2-P4	26.8%	26.8%	26.8%	26.8%	26.8%
NO-P5	72.7%	72.7%	72.7%	72.7%	72.7%
HO2-P5	26.9%	26.9%	26.9%	26.9%	26.9%
NO-P6	73.0%	73.0%	73.0%	73.0%	73.0%
HO2-P6	27.0%	27.0%	27.0%	27.0%	27.0%
Table S10. Calculated spin distribution based on the Mulliken population analysis for main intermediates involved in the indole + ·OH/·Cl reactions.

Species	Atoms	Number	Mulliken atomic spin densities
IM1.7	N	1	0.038
C	2	0.146	
C	3	-0.222	
C	4	0.729	
C	5	-0.111	
C	6	0.287	
C	7	-0.039	
C	8	0.278	
C	9	-0.107	
H	10	-0.002	
H	11	-0.031	
H	12	0.003	
H	13	-0.011	
H	14	0.027	
H	15	-0.013	
H	16	0.003	
O	17	0.021	
H	18	0.003	

IM2.5	N	1	0.044
C	2	0.200	
C	3	-0.186	
C	4	0.103	
C	5	-0.061	
C	6	0.573	
C	7	-0.055	
C	8	0.461	
C	9	-0.230	
H	10	-0.003	
H	11	-0.003	
H	12	0.023	
H	12	-0.009
H	13	0.000
H	14	-0.009
H	15	0.001
Figure S1. Calculated reaction rate constants (k) at 1 atm and over the temperature range from 230 to 330 K for the indole + ·OH (A) and indole + ·Cl (B) reactions.
Figure S2. Calculated branching ratios (Γ values) at 1 atm and over the temperature range from 230 to 330 K for the indole + ·OH (A) and indole + ·Cl (B) reactions.
References

1. Guo, X. R.; Ma, F. F.; Liu, C., Niu, J., He, N., Chen, J. W.; Xie, H. B.: Atmospheric Oxidation Mechanism and Kinetics of Isoprene Initiated by Chlorine Radicals: A Computational Study, *Sci. Total Environ.*, 2020, 712, 136330.

2. Ma, F.F.; Xie, H. B.; Li, M.; Wang, S.; Zhang, R. Y.; Chen, J. W.: Autoxidation Mechanism for Atmospheric Oxidation of Tertiary Amines: Implications for Secondary Organic Aerosol Formation, *Chemosphere*, 2021, 273, 129207.

3. Xie, H. B.; Ma, F. F.; Wang, Y. F.; He, N.; Yu, Q.; Chen, J. W. Quantum Chemical Study on ·Cl-Initiated Atmospheric Degradation of Monoethanolamine. *Environ. Sci. Technol.* 2015, 49, 13246-13255.

4. Xie, H. B.; Ma, F. F.; Yu, Q.; He, N.; Chen, J. W. Computational Study of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds Featuring NHx-pi-Bond (x=1, 2) Structures. *J. Phys. Chem. A* 2017, 121, 1657-1665.

5. NIST Computational Chemistry Comparison and Benchmark Database. NIST Standard Reference Database Number 101, R. D. Johnson III, Release 16a, August 2013. http://cccbdb.nist.gov/.