S-Wave Superconductivity in Kagome Metal CsV₃Sb₅ Revealed by ¹²¹/¹²³Sb NQR and ⁵¹V NMR Measurements

Chao Mu(牟超)¹−², Qiangwei Yin(殷蔷薇)³, Zhijun Tu(涂志俊)², Chunsheng Gong(龚春生)³, Hechang Lei(雷和畅)³, Zheng Li(李政)¹−², and Jianlin Luo(雒建林)¹−²,⁴

¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
³Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
⁴Songshan Lake Materials Laboratory, Dongguan 523808, China

(Received 9 June 2021; accepted 28 June 2021; published online 30 June 2021)

We report ¹²¹/¹²³Sb nuclear quadrupole resonance (NQR) and ⁵¹V nuclear magnetic resonance (NMR) measurements on kagome metal CsV₃Sb₅ with T_c = 2.5 K. Both ⁵¹V NMR spectra and ¹²¹/¹²³Sb NQR spectra split after a charge density wave (CDW) transition, which demonstrates a commensurate CDW state. The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first-order phase transition. At low pressure, electric-field-gradient fluctuations diminish and magnetic fluctuations become dominant. Superconductivity emerges in the charge order state. Knight shift decreases and 1/T¹ shows a Hebel–Slichter coherence peak just below T_c, indicating that CsV₃Sb₅ is an s-wave superconductor.

DOI: 10.1088/0256-307X/38/7/077402

Kagome lattice has been intensely studied in condensed matter physics due to its geometric frustration and nontrivial band topology. Depending on the electron filling, on-site repulsion U, and nearest-neighbor Coulomb interaction V, several possible states have been proposed as the ground state, such as quantum spin liquid, charge density wave, and superconductivity.

Recently, superconductivity was discovered in the kagome metal AV₃Sb₅ (A = K, Rb, Cs), which undergoes a CDW transition before the superconducting transition. Scanning tunneling microscopy (STM) observed a chiral charge order that breaks time-reversal symmetry and leads to the anomalous Hall effect in the absence of magnetic local moments. This chiral charge order is energetically preferred and tends to yield orbital current. Inelastic x-ray scattering and Raman scattering exclude strong electron-phonon coupling driven CDW, while optical spectroscopy supports that CDW is driven by nesting of Fermi surfaces. High pressure can suppress CDW transition and reveal a superconducting dome in the P−T phase diagram. Further increasing pressure, a new superconducting phase emerges.

STM studies observed possible Majorana modes and pair density wave, which points to unconventional superconductivity in the surface state. Signatures of spin-triplet pairing and an edge supercurrent have been observed in Nd/Kₓ₁−ₓV₃Sb₅ devices. Whether the exotic surface superconducting state is intrinsic or comes from heterostructures, such as Bi₂Te₃/NbSe₂, needs to clarify the gap symmetry in the bulk state first. Thermal conductivity measurements on CsV₃Sb₅ down to 0.15 K showed a finite residual linear term, which suggests a nodal gap and points to unconventional superconductivity. On the other hand, magnetic penetration depth of CsV₃Sb₅ measured by tunneling diode oscillator showed a clear exponential behavior at low temperatures, which provides an evidence for nodeless superconductivity but does not rule out fully gapped unconventional superconductivity.

In this work, we report nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) investigations on CsV₃Sb₅. The splitting of ⁵¹V spectra and ¹²¹/¹²³Sb spectra demonstrates that a commensurate CDW order forms at 94 K with a first-order transition and coexists with superconductivity. In the superconducting state, Knight shift decreases and a Hebel–Slichter coherence peak appears in the spin-lattice relaxation rate just below T_c, which provides evidences for s-wave superconductivity in CsV₃Sb₅.

Single crystals of CsV₃Sb₅ were synthesized using the self-flux method, as reported in Ref. [21]. Superconductivity with T_c = 2.5 K is confirmed by dc magnetization measured using a superconducting quantum interference device (SQUID). The NMR
and NQR measurements were performed using a phase coherent spectrometer. The spectra were obtained by frequency step and sum method which sums the Fourier transformed spectra at a series of frequencies.[31] The spin-lattice relaxation time T_1 was measured using a single saturation pulse.

Figure 1(a) shows the spectra of 51V with $\mu_0 H = 8.65 \text{T} \parallel c$. 51V with $I = 7/2$ has seven NMR peaks at 150 K. Below $T_{\text{CDW}} = 94 \text{K}$, the magnitude of original peaks decreases gradually and two sets of new peaks arise, which indicates that the CDW transition is commensurate and there are two different sites of V atoms in the CDW state. The coexistence of two phases between 91 K and 94 K demonstrates that the CDW transition is of first-order due to a simultaneous superlattice transition.[10] The quadrupole resonance frequencies of both 51V sites increase with decreasing temperature below 94 K, as shown in Fig. 1(b).

Knight shift ^{51}K is deduced from the central peaks and is summarized in Fig. 1(c). Below T_{CDW}, two splitting peaks give two Knight shift values, one of which jumps up and the other jumps down. The corresponding $^{51}(1/T_1 T)$ jumps to the opposite side or does not change at T_{CDW}, as shown in Fig. 1(d). We also measured the Knight shift and $^{51}(1/T_1 T)$ with $H \perp c$, as shown in Fig. S1 of the Supplemental Material, which also shows an opposite trend at T_{CDW}. Therefore, the splitting of ^{51}K is not caused by different hyperfine couplings, but by the change of the orbital part of Knight shift.

$^{51}(1/T_1 T)$ in a Fermi liquid state is proportional to the square of the density of states (DOS) around the Fermi energy $N(E_F)$. Just below T_{CDW}, $^{51}(1/T_1 T)$ of the right peak jumps to 64% of the value above T_{CDW}, indicative of the decrease of $N(E_F)$ by 20%. $^{51}(1/T_1 T)$ of the left peak is smooth at T_{CDW}. The difference of $^{51}(1/T_1 T)$ between two V sites manifests the modulation of DOS at different V positions, which is consistent with 2×2 CDW charge order.[27] 51V has a very small quadrupole moment, $Q = -5.2 \times 10^{-30} \text{m}^2$. Therefore, the relaxation is governed by magnetic fluctuations and can reflect the change in the DOS, even though the electric field gradient (EFG) fluctuates strongly near T_{CDW}. On the contrary, 121Sb and 123Sb have larger quadrupole moments, $^{121}Q = -54.3 \times 10^{-30} \text{m}^2$ and $^{123}Q = -69.2 \times 10^{-30} \text{m}^2$, respectively, which can be used to detect the EFG fluctuations and perform NQR measurement.

In order to study the superconducting state, we must perform measurement at a magnetic field lower than the upper critical field, $\mu_0 H_{c2} \sim 0.5 \text{T}$.[25] Usually NQR experiments do not need applying magnetic field, however Knight shift cannot be measured at zero field. Here we measure ^{121}K by applying a perturbing field of 64 Oe that is larger than the lower critical field, $\mu_0 H_{c1} \sim 2 \text{mT}$.[32] With a perturbing field, the nuclear spin-lattice relaxation is the sum of electric quadrupole interactions and the nuclear Zeeman energy[33]

$$
\mathcal{H} = \mathcal{H}_Q + \mathcal{H}_Z
= \frac{5}{6} [3I_z^2 - I^2] + \frac{\eta (I_x^2 + I_y^2)}{2}
- \gamma H_0 \left(I_z \cos \theta + \frac{I_x e^{-i\phi} + I_y e^{i\phi}}{2} \sin \theta \right).
$$

Here ν_{zz} is the quadrupole resonance frequency along the principal axis $(c$-axis), $\nu_{zz} \equiv \frac{b}{2\sqrt{2}I_3}$, with $eq = V_{zz}; \eta$ is an asymmetry parameter of the EFG, $\eta = V_{xx} - V_{zz}; V_{yy}, V_{xx}$ are the EFGs along the x, y, z directions, respectively; θ and ϕ are the polar and
azimuthal angles between the direction of the applied field and the principal axis of EFG. When η is small enough to be negligible, the resonance frequency at a small perturbation field along c-axis is

$$\nu_{\text{NQR}}(H_0) = \nu_{\text{NQR}}(0) + \gamma(1 + K)H_0, \quad I_z = \pm |I_z|.$$ \hspace{1cm} (2)

The perturbing field eliminates the degeneration of $\pm I_z$ and results in a spectra splitting. When $H_0 \perp c$, the peak of $|\pm \frac{1}{2}\rangle \leftrightarrow |\pm \frac{3}{2}\rangle$ is split by the perturbing field, while other peaks are not affected.\cite{34}

$$\nu_{\text{NQR}}(H_0) = \nu_{\text{NQR}}(0) \pm \frac{I + \frac{1}{2}}{2} \gamma(1 + K)H_0,$$

$$|\pm \frac{1}{2}\rangle \leftrightarrow |\pm \frac{3}{2}\rangle,$$ \hspace{1cm} (3)

where m is a half-integer.

Fig. 2. $^{121}/^{123}$Sb NQR spectra with a perturbing field of 64 Oe along c-axis at (a) 130 K and (b) 4.2 K, respectively. The arrows mark the peaks where T_1 was measured. (c) Temperature dependence of the $1/T_1 T$ measured with 121Sb at $-1/2 \leftrightarrow -3/2$ peak and 123Sb at $-3/2 \leftrightarrow -5/2$ peak, respectively. (d) Temperature dependence of the $^{121}/^{123}$Sb isotopic ratio $^{123}T_1/^{121}T_1$. The vertical dashed line indicates the position of T_{CDW}.

There are two isotopes of Sb nuclei which are 121Sb with $I = 5/2$ and 123Sb with $I = 7/2$. The NQR spectra should contain two 121Sb peaks and three 123Sb peaks. Figures 2(a) and 2(b) show the spectra with a perturbing field of 64 Oe along c-axis, which eliminates the degeneration of $\pm I_z$ and results in a small spectral splitting. There are two different crystallographic sites for Sb in CsV$_3$Sb$_5$ with the atomic ratio of Sb1:Sb2 = 1:4.\cite{35} The relative intensities of different sites are proportional to their atomic ratio,\cite{36} so Sb2 site has larger spectral intensity than Sb1 site. The spectra in Figs. 2(a) and 2(b) are of Sb2 atoms which encompass the kagome layer with a graphite-like network. Sb1 atoms located in the kagome plane with V atoms have weak spectra, which are presented in the Supplemental Material. The ν_{zz} and η deduced from the spectra above and below T_{CDW} are summarized in Table 1, where η is zero above T_{CDW} reflecting isotropy in the xy-plane. Below T_{CDW}, η of Sb2 changes to finite values, which indicate the breaking of in-plane symmetry and two unequal sites of Sb2 with the ratio of 1 : 2. The slightly decreasing ν_{zz} implies that the main change is not the EFG strength, but the EFG direction at Sb2 sites. On the other hand, the EFG at Sb1 site changes frequency obviously without asymmetry.

Table 1. The quadrupole resonance frequencies and asymmetry parameters.

T	Site	η	$^{121}\nu_{xx}$	$^{123}\nu_{xx}$
130 K	Sb1	0	71.41	43.35
	Sb2	0	73.02	44.69
4.2 K	Sb2'	0.097	73.06	44.36
	Sb2''	0.099	73.31	44.50

T_1 was measured at $|-\frac{1}{2}\rangle \leftrightarrow |\pm \frac{3}{2}\rangle$ peak of 121Sb2 and $|-\frac{3}{2}\rangle \leftrightarrow |\pm \frac{5}{2}\rangle$ peak of 123Sb2, respectively. After spectra splitting below T_{CDW}, T_1 was measured at the right-side peaks, marked by arrows in Fig. 2(b). The degeneration is eliminated by the magnetic field, so the NQR recovery curves are no longer applicable. The recovery curve used for $|\pm \frac{1}{2}\rangle \leftrightarrow |\pm \frac{3}{2}\rangle$ transition of 121Sb is

$$1 - \frac{M(t)}{M(\infty)} = \frac{1}{35} e^{-\frac{\eta}{4}} + \frac{3}{56} e^{-\frac{\eta}{2}} + \frac{1}{40} e^{-\frac{5\eta}{2}} + \frac{25}{56} e^{-\frac{\eta}{2}} + \frac{25}{56} e^{-\frac{5\eta}{2}}.$$ \hspace{1cm} (4)

The recovery curve used for $|\pm \frac{1}{2}\rangle \leftrightarrow |\pm \frac{5}{2}\rangle$ transition
of 123Sb is

$$1 - \frac{M(t)}{M(\infty)} = \frac{1}{84} e^{-\frac{T}{T_1}} + \frac{1}{21} e^{-\frac{T}{T_2}} + \frac{1}{132} e^{-\frac{T}{T_3}} + \frac{25}{308} e^{-\frac{T}{T_4}} + \frac{100}{273} e^{-\frac{T}{T_5}} + \frac{49}{132} e^{-\frac{T}{T_6}} + \frac{49}{429} e^{-\frac{T}{T_7}}. \quad (5)$$

We use the same fitting function for both above and below T_{CDW}, since the η is small. Figure 2(c) shows the temperature dependence of $1/T_1 T$ of $^{121}/^{123}$Sb. Upon cooling, $^{121}/^{123}(1/T_1 T)$ starts to increase a little and drops sharply below T_{CDW} for both 121Sb and 123Sb. With further cooling, $^{121}/^{123}(1/T_1 T)$ becomes constant from 70 K to T_c, which obeys the Korringa relation and suggests that the system is in a Fermi liquid state. $^{51}(1/T_1 T)$ of 51V has shown that DOS is only 20%. Here the large drop implies that the EFG fluctuations play an important role above T_{CDW} and are suppressed after CDW transition. Moreover, $^{121}/^{123}(1/T_1 T)$ decreases continuously without sudden jump like $^{51}(1/T_1 T)$. This implies that the superlattice transition has strong effect on V atoms that locate in the kagome plane, but has very small effect on Sb2 atoms that locate outside the kagome plane. Therefore, $^{121}/^{123}(1/T_1 T)$ of Sb2 shows a second-order CDW transition behavior.

In general, a spin-lattice relaxation occurs through magnetic and/or electric-quadrupole channels. The magnetic relaxation is related to the gyromagnetic ratio γ_n and gives $^{123}T_1/^{121}T_1 = 3.4$, while the electric-quadrupole relaxation is related to the quadrupole moment Q and gives $^{123}T_1/^{121}T_1 = 1.5$. Above T_{CDW}, $^{123}T_1/^{121}T_1$ is smaller than 3, as shown in Fig. 2(d), which indicates that both magnetic fluctuations and EFG fluctuations are important. Below T_{CDW}, the ratio increases with decreasing temperature and approaches to 3.4 at zero temperature limit, which indicates that the magnetic process becomes dominant at low temperature. Therefore, the effect of EFG fluctuations in the superconducting state is negligible.

The Knight shift of Sb can be deduced from the spectra splitting. The field calibrated by a Gauss meter has an uncertainty, so the absolute Knight shift value is not reliable in an ultra-low field. The relative Knight shift $\Delta K = K - K_0$, where K_0 is the average value above T_c, has very weak dependence on T. The ΔK values for all directions are almost unchanged above T_c and decrease below T_c, as shown in Fig. 3, which is consistent with spin-singlet pairing. The perturbing field is much larger than the lower critical field, so the drop below T_c is not from Meissner effect but intrinsic spin susceptibility.

In an ultra-low field, 121K measurements have large errors which preclude further analysis. On the other hand, spin-lattice relaxation rate can be measured accurately. $^{121}/^{123}(1/T_1 T)$ shows a clear Hebel–Slichter coherence peak just below T_c and then rapidly decreases at low temperatures as shown in Fig. 4. It evidences that the superconducting gap is of s-wave symmetry. As for d- or p-wave, gap sign changes over the Fermi surface, which suppresses a coherence peak. In iron-based superconductors, s$^\pm$-wave also changes gap sign between different Fermi surfaces and suppresses a coherence peak. So far, the Hebel–Slichter coherence peak has only been observed in s-wave superconductors. Here the coherence peak is small, which may be due to residual EFG fluctuations and/or a strong electron-phonon coupling. In other s-wave superconductors, the coherence peaks of Sb are also very small, such as in YbSb$_3$ and BaTi$_2$Sb$_2$O. A recent STM study has suggested the absence of sign-change in the superconducting order parameter. Magnetic penetration depth measured by tunneling diode oscillator has shown a nodeless behavior. These results are both consistent with the s-wave gap symmetry. There is also experimentally observed residual density of states in the superconducting state, which may be due to the competition between superconductivity and CDW.

Another s-wave superconductor Ta$_4$Pd$_3$Te$_{16}$ also has a CDW order coexisting with superconductivity and shows residual density of states in the superconducting state.

$^{121}(1/T_1 T)$ is measured at the split peak due to the CDW transition and shows sudden changes at both T_{CDW} and T_c, which indicates that the superconductivity coexists with the CDW state. The coexistence...
of superconductivity and topological charge order may stimulate exotic excitations in the surface state [26,43] which needs further investigations. Recently another superconducting phase at high pressure was found in CsV$_3$Sb$_5$, which is consistent with the CDW state, which may lead to exotic excitations in the surface state. EFG fluctuations are suppressed and magnetic fluctuations become dominant at low temperature. In the superconducting state, Δ decreases and $121/121(1/Tc)/T$ shows a coherence peak just below T_c, which is the hallmark of the s-wave full gap superconductivity. The superconductivity coexists with the CDW state, which may lead to exotic surface state.

We thank S. K. Su, X. B. Zhou and B. Su for assistance in some of the measurements.

References

[1] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[2] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[3] Yang S, Huse D A and White S R 2011 Science 332 1173
[4] Fu M, Imai T, Han T H and Lee Y S 2015 Phys. Rev. B 92 041204(R)
[5] Khuntia P, Velazquez M, Barthelémy Q, Bert F, Kermarrec E, Legros A, Bernu M, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[6] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[7] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502
[8] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[9] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon E, Gonzalez-Hernandez R, Smeljkal E, Chen Y, Parkin S S P, M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilsen J R, Wilson S D, E, Legros A, Bernu B, Messio L, Zorko A and Mendels P 2020 Nat. Phys. 16 469
[10] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P and Toberer E S 2019 Phys. Rev. B 100 014502
[11] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schneuer E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Ossorn R, Seshadri R, Balents L, Wei J, Liu X, Zhang S S, Chang G, Botinokl I, Zhang Q, Hossain M S, Cochran T A., Melter D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neu H H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J and Yang Z 2021 Phys. Rev. B 103 024513
[12] Chen X, Zhan X, Wang X, Deng L, Li J, Chen X, Guo J G and Chen L J 2021 Chin. Phys. Lett. 38 057402
[13] Zhao C C, Wang L S, Xia W, Yin Q W, Ji J M, Huang Y, Tu C P, Cao Z C, Liu J J, Gong C S, Uwatokyo Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[14] Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y and Yuan H 2021 Phys. Rev. B 103 L205004
[15] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Wang J, Yang H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J and Yang Z 2021 Phys. Rev. B 103 242513
[16] Chen X, Zhan X, Wang X, Deng L, Li J, Chen X, Guo J G and Chen L J 2021 Chin. Phys. Lett. 38 057402
[17] Zhao C C, Wang L S, Xia W, Yin Q W, Ji J M, Huang Y, Tu C P, Cao Z C, Liu J J, Gong C S, Uwatokyo Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001
[18] Zhang Z, Chen Z, Zhou Y, Yuan Y, Wang S, Wang J, Yang H, An C, Zhang L, Zhu X, Zhou Y, Chen X, Zhou J and Yang Z 2021 Phys. Rev. B 103 242513
Supplemental Material for “S-Wave Superconductivity in Kagome Metal CsV$_3$Sb$_5$ Revealed by $^{121/123}$Sb NQR and 51V NMR Measurements

Chao Mu,1,2 Qiangwei Yin,3 Zhijun Tu,3 Chunsheng Gong,3 Hechang Lei,3 Zheng Li,1,2 and Jianlin Luo1,2,4

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
4Songshan Lake Materials Laboratory, Dongguan 523808

1. Knight shift and spin-lattice relaxation rate of 51V with $H \perp c$

Figure S1 shows 51K jumps up below T_{CDW} with $H \perp c$, however $^{51}(1/T_1T)$ for both directions does not jump up. It indicates that the splitting and jumping of 51K at T_{CDW} are not by the change of hyperfine coupling constants, but by the orbital part of Knight shift.

![Fig. S1](image)

(a) Temperature dependence of the Knight shift of 51V. (b) Temperature dependence of the $^{51}(1/T_1T)$. The vertical dashed line indicates the position of T_{CDW}.

2. Sb spectra

There are two different crystallographic sites of Sb in CsV$_3$Sb$_5$. Sb1 atoms locate in the kagome plane with V atoms and Sb2 atoms encapsulate the kagome layer with a graphitelike network. The atomic ratio is Sb1 : Sb2 = 1 : 4, which determines the spectra intensity ratio. Therefore, we can distinguish two Sb spectra by their peak intensity. Fig. S2 shows the spectrum from 67 MHz to 161 MHz at 4.2 K.

![Fig. S2](image)

Fig. S2. $^{121/123}$Sb-NQR spectra with a perturbing field of 64 Oe along c-axis at 4.2 K.
The peaks of Sb1 atoms are shown in Fig. S3. Below \(T_{\text{CDW}} = 94\) K, peaks shift to higher frequency which indicates EFG strength increases. The pairing of peaks at 4.2 K is due to a perturbing field of 64 Oe along \(c\)-axis. They merge together when peaks are broad at 130 K.

![Graph showing Sb1-NQR spectra with a perturbing field of 64 Oe along \(c\)-axis at (a) 130 K and (b) 4.2 K.](image)

Fig. S3. (Color online) \(^{121/123}\)Sb1-NQR spectra with a perturbing field of 64 Oe along \(c\)-axis at (a) 130 K and (b) 4.2 K, respectively.

The change of EFG is different between Sb1 site and Sb2 sites below \(T_{\text{CDW}}\). The EFG strength is enhanced without asymmetry at Sb1 site in the kagome plane. On the other hand, the main change is not the EFG strength, but the EFG direction at Sb2 sites out of kagome plane. Moreover, in the CDW state, Sb2 has two unequal sites with ratio of 1:2 from the electric field gradient point of view, while Sb1 has only one site. It imposes constraints on the possible configurations of the CDW state.

We emphasize that two Sb2 sites with ratio of 1:2 are intrinsic. There is only one set of peaks of Sb2 above \(T_{\text{CDW}}\) and no other peak from impurity. Below \(T_{\text{CDW}}\), the peaks of Sb2 split into two sets, which is same as that of \(^{51}\)V. The peaks of Sb1 do not split below \(T_{\text{CDW}}\), as shown in Fig. S3 (b), so the splitting of Sb2 is not from defects. Otherwise, both Sb1 and Sb2 should split at the same time. The ratio of 1:2 is also an indirect proof that it is intrinsic. Defects induced peaks should have an arbitrary ratio and the ratio should change with temperature. Moreover, the full width at half maximum (FWHM) of two splitting peaks are same, which proves they are all intrinsic.

![Graph showing Sb1-NQR spectra with a perturbing field of 64 Oe along \(c\)-axis at (a) 130 K and (b) 4.2 K.](image)