onemap2pop

Tutorial to estimate recombination fraction and best order for two connected populations

Overview

Here we show how to use the HMM-EM algorithm of Quezada et al. (2021) implemented in the onemap R package to estimate the recombination fraction in a scenario with two outcrossing connected populations (having a common parent). The objective is, based on the information of both populations, to obtain the most likely order and multipoint distances.

Citation

To cite this R tutorial:

Quezada et al. (2021). Construction of a high-density genetic map of Acca sellowiana (Berg.) Burret, an outcrossing species, based on two connected mapping populations. *Front. Plant. Sci.* doi: 10.3389/fpls.2021.626811

Before to follow this tutorial

We expected that you have enough knowledge to build a linkage map for outcrossing populations with onemap software. If not, please follow its tutorial, available at http://augusto-garcia.github.io/onemap/vignettes_highres/Outcrossing_Populations.html.

Built-in data

In this tutorial, we will use a built-in data of the onemap package called onemap2pop. It is a simulated data of two full-sib populations that share one same parent. We used the software PedigreeSim (Voorrips and Maliepaard, 2012) to simulate them and onemap to build the individual linkage maps. To load this data:

```r
data(onemap2pop)
```

rf_2pops

The function rf_2pops estimates the recombination fraction based on two mapping populations. It estimates the recombination fractions based on a multipoint approach implemented using the methodology of Hidden Markov Models (HMM) with the Expectation Maximization (EM) algorithm as explained in the supplementary material of Quezada et al. (2021).

To use it, the user must had already built the individual maps for each population and assigned the correspondent linkage groups within markers. After building the maps for each population, the user must present an initial order with sharable markers between both populations, i.e., both populations have the markers provided in this order. Let’s assume that we built the following two linkage maps for a given linkage group (hereafter LG1) based on the information derived from two populations (POP1 and POP2).

```r
LG1_POP1_final
```

##
Printing map:
##
##
Markers Position Parent 1 Parent 2
1 M1 0.00 a | a a | b
2 M2 5.35 a | a a | b
3 M3 9.36 a | a a | b
4 M4 20.97 a | b a | b
5 M5 26.13 a | b b | a
6 M6 30.29 a | b a | b
7 M7 34.10 a | a a | b
8 M8 37.44 a | a a | b
9 M9 41.89 a | a b | a
11 M11 49.11 a | a a | b
12 M12 51.34 a | a b | a
13 M13 57.46 a | a a | b
10 M10 57.46 a | b a | a
14 M14 69.49 a | b b | a
15 M15 75.26 b | a b | a
16 M16 80.24 a | b a | a
17 M17 87.43 a | a a | b
18 M18 90.47 a | a b | a
19 M19 96.01 a | b b | a
20 M20 99.88 b | a a | a
21 M21 106.46 a | a a | b
21 markers log-likelihood: -1114.715

LG1_POP2_final

Printing map:
1 M1 0.00 a | a a | b
2 M2 6.71 a | a a | b
3 M3 8.71 a | a a | b
4 M4 13.41 a | b a | b
5 M5 15.94 a | b a | a
6 M6 24.65 a | b b | a
7 M7 28.74 a | a a | b
8 M8 30.34 a | a a | b
9 M9 35.98 a | a b | a
10 M10 44.36 a | b a | b
11 M11 49.45 a | a b | a
12 M12 56.79 a | a b | a
13 M13 59.85 a | a b | a
14 M14 62.74 a | b a | b
15 M15 73.32 b | a a | a
16 M16 76.78 a | b a | a
17 M17 76.78 a | a b | a
18 M18 81.91 a | a b | a
19 M19 95.08 a | a b | a
20 M20 95.08 a | a b | a
21 M21 95.08 a | a b | a
We have in this example two different orders for the same markers, one for each population:

LG1_POP1_final$seq.num

[1] 1 2 3 4 5 6 7 8 9 11 12 13 10 14 15 16 17 18 19 20 21

LG1_POP2_final$seq.num

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 19 21

The first step is to obtain the multipoint recombination fraction for the the two previously order based on the information of both populations.

Extracting the marker names:

```r
order_LG1POP1 <- colnames(POP1_geno$geno)[LG1_POP1_final$seq.num]
```

Computing the rf and likelihood considering information of POP1 and POP2

```r
LG1_POP1order <- rf_2pops(markers_names = order_LG1POP1,
data_P1 = POP1_geno,
data_P2 = POP2_geno,
rftwopoints_P1 = twopts_POP1,
rftwopoints_P2 = twopts_POP2,
LOD = 3,
max.rf = 0.5,
log10.mintol = -6,
max_it = 60)
```

interaction: 10 ; loglike: -2261.52695815027 ; tol: 0.09

interaction: 20 ; loglike: -2256.31269345973 ; tol: 0.01

interaction: 30 ; loglike: -2251.8721010692 ; tol: 0.005

interaction: 40 ; loglike: -2251.36224392631 ; tol: 7e-04

interaction: 50 ; loglike: -2251.35050257312 ; tol: 6e-05

interaction: 60 ; loglike: -2251.3504251465 ; tol: 5e-06

Extracting the sequence likelihood of the order:

```r
LG1_POP1order$P1P2_seq.like
```

[1] -2251.35

Extracting the marker names:

```r
order_LG1POP2 <- colnames(POP2_geno$geno)[LG1_POP2_final$seq.num]
```

Computing the rf and likelihood considering information of POP1 and POP2

```r
LG1_POP2order <- rf_2pops(markers_names = order_LG1POP2,
data_P1 = POP1_geno,
data_P2 = POP2_geno,
rftwopoints_P1 = twopts_POP1,
rftwopoints_P2 = twopts_POP2,
LOD = 3,
max.rf = 0.5,
log10.mintol = -6,
max_it = 60)
```

interaction: 10 ; loglike: -2178.64809140789 ; tol: 0.1
The likelihood of the populations can not necessarily be comparable (due to different sample sizes, missing data, informativeness of markers), but just to have a starting point, let us use the order of POP2 (higher likelihood) for both populations. To print the maps with such order:

```
LG1 POP2order
```

P1

```
## Printing map:
## # Markers   Position  Parent 1  Parent 2
## 1  M1  0.00  a   |   a  a   |   b
## 2  M2  6.71  a   |   a  a   |   b
## 3  M3  8.71  a   |   a  a   |   b
## 4  M4  13.41 a   |   b  a   |   b
## 5  M5  15.94 a   |   b  b   |   a
## 6  M6  24.65 a   |   b  a   |   b
## 7  M7  28.75 a   |   a  a   |   b
## 8  M8  30.34 a   |   a  a   |   b
## 9  M9  35.98 a   |   a  b   |   a
## 10 M10 44.35 a   |   b  a   |   a
## 11 M11 49.46 a   |   a  a   |   b
## 12 M12 56.82 a   |   a  b   |   a
## 13 M13 59.88 a   |   a  a   |   b
## 14 M14 62.73 a   |   b  b   |   a
## 15 M15 71.93 b   |   a  b   |   a
## 16 M16 74.99 a   |   b  a   |   a
## 17 M17 79.90 a   |   a  a   |   b
## 18 M18 84.30 a   |   a  b   |   a
## 19 M19 92.23 b   |   a  a   |   a
## 20 M20 94.70 a   |   b  b   |   a
## 21 M21 97.27 a   |   a  a   |   b
```

21 markers log-likelihood: -1118.765

P2

```
## Printing map:
## # Markers   Position  Parent 1  Parent 2
## 1  M20 92.23 b   |   a  a   |   a
## 2  M19 94.70 a   |   b  b   |   a
## 3  M21 97.27 a   |   a  a   |   b
## 4  M2  6.71 a   |   a  a   |   b
## 5  M3  8.71 a   |   a  a   |   b
## 6  M4  13.41 a   |   b  a   |   b
## 7  M5  15.94 a   |   b  b   |   a
## 8  M6  24.65 a   |   b  a   |   b
## 9  M7  28.75 a   |   a  a   |   b
## 10 M8  30.34 a   |   a  a   |   b
## 11 M9  35.98 a   |   a  b   |   a
## 12 M10 44.35 a   |   b  a   |   a
## 13 M11 49.46 a   |   a  a   |   b
## 14 M12 56.82 a   |   a  b   |   a
## 15 M13 59.88 a   |   a  a   |   b
## 16 M14 62.73 a   |   b  b   |   a
## 17 M15 71.93 b   |   a  b   |   a
## 18 M16 74.99 a   |   b  a   |   a
## 19 M17 79.90 a   |   a  a   |   b
## 20 M18 84.30 a   |   a  b   |   a
## 21 M1  0.00 a   |   a  a   |   b
```

21 markers log-likelihood: -1118.765
1 M1 0.00 a | | a | | b
2 M2 6.71 a | | a | | b
3 M3 8.71 a | | a | | b
4 M4 13.41 a | | b | | b
5 M5 15.94 a | | b | | a
6 M6 24.65 a | | b | | a
7 M7 28.75 a | | a | | b
8 M8 30.34 a | | a | | b
9 M9 35.98 a | | a | | b
10 M10 44.35 a | | b | | a
11 M11 49.46 a | | b | | a
12 M12 56.82 a | | b | | a
13 M13 59.88 a | | b | | a
14 M14 62.73 a | | b | | a
15 M15 71.93 b | | a | | a
16 M16 74.99 a | | b | | a
17 M17 79.90 a | | b | | a
18 M18 84.30 a | | b | | a
19 M19 92.23 b | | a | | b
20 M20 94.70 a | | b | | a
21 M21 97.27 a | | b | | a
21 markers log-likelihood: -1051.795
$P1P2_seq.like
[1] -2170.561

The Parent 1 is the common parent between the populations, therefore, has the same linkage phase configuration. Parent 2 is different between the populations, and so is free phase configuration. The recombination fraction on the maps is the one estimated using the information of both populations based on HMM-EM from Quezada et al. (2021). The log-likelihood is computed for each map using the same recombination fractions for POP1, POP2, and POP1 and POP2 simultaneously.

We will use the RIPPLE algorithm. This function is current not optimized and may take an overnight for each linkage group. To avoid such waiting in this tutorial, the object `ripple_result_LG1` was already made available and the user does not need to run the following chunk.

```r
## It may take an overnight to run...
ripple_result_LG1 <- ripple_2pops(markers_names = order_LG1POP2,
                               data_P1 = POP1_geno,
                               data_P2 = POP2_geno,
                               twopts_POP1 = twopts_POP1,
                               twopts_POP2 = twopts_POP2,
                               LOD = 3,
                               max.rf = 0.5,
                               log10.mintol = -2,
                               max_it = 60,
                               window = 4)
```

Now we find the order that maximizes the log-likelihood of the map.

```r
## Which rippled order has the higher likelihood
max(ripple_result_LG1[[2]])
## [1] -2169.025
```
Which is such order

```r
which(ripple_result_LG1[[2]] == max(ripple_result_LG1[[2]]))[1]
```

[1] 386

Creating an object with such order

```r
final_order_LG1 <- ripple_result_LG1[[1]][386,]
```

Based on the RIPPLE results, the 386 has the highest likelihood which is also higher than the initial order from the POP2 map. Therefore, we will use it as our final linkage group order. It is worthy noting that this order matches with the one we simulated. Building and printing our final order of LG1:

```r
LG1_final <- rf_2pops(markers_names = final_order_LG1,
data_P1 = POP1_geno,
data_P2 = POP2_geno,
rftwopoints_P1 = twopts_POP1,
rftwopoints_P2 = twopts_POP2,
LOD = 3,
max.rf = 0.5,
log10.mintol = -6,
max_it = 60)
```

```r
LG1_final
```

```
## $P1
##
## Printing map:
##
## | Markers | Position | Parent 1 | Parent 2 |
## |---------|----------|----------|----------|
## | M1      | 0.00     | a | a | a | b |
## | M2      | 6.71     | a | a | a | b |
## | M3      | 8.71     | a | a | a | b |
## | M4      | 13.41    | a | b | a | b |
## | M5      | 15.94    | a | b | b | a |
## | M6      | 24.65    | a | b | a | b |
## | M7      | 28.75    | a | a | a | b |
## | M8      | 30.34    | a | a | a | b |
## | M9      | 35.98    | a | a | b | a |
## | M10     | 44.34    | a | b | a | a |
## | M11     | 49.46    | a | a | a | b |
## | M12     | 56.82    | a | a | b | a |
## | M13     | 59.89    | a | a | a | b |
## | M14     | 62.73    | a | b | b | a |
## | M15     | 71.58    | b | a | b | a |
## | M16     | 74.55    | a | b | a | a |
## | M17     | 81.04    | a | a | a | b |
## | M18     | 85.64    | a | a | b | a |
## | M19     | 91.56    | a | b | b | a |
## | M20     | 93.85    | b | a | a | a |
## | M21     | 98.76    | a | a | a | b |

## 21 markers log-likelihood: -1110.359
```

$P2

##

##

$P2
Printing map:

Markers Position Parent 1 Parent 2
1 M1 0.00 a | a a | b
2 M2 6.71 a | a a | b
3 M3 8.71 a | a a | b
4 M4 13.41 a | b a | b
5 M5 15.94 a | b a | a
6 M6 24.65 a | b b | a
7 M7 28.75 a | a b | a
8 M8 30.34 a | a a | b
9 M9 35.98 a | a b | a
10 M10 44.34 a | b a | b
11 M11 49.46 a | a b | a
12 M12 56.82 a | a b | a
13 M13 59.89 a | a b | a
14 M14 62.73 a | b a | b
15 M15 71.58 b | a a | a
16 M16 74.55 a | b a | a
17 M17 81.04 a | a b | a
18 M18 85.64 a | a a | b
19 M19 91.56 a | b a | a
20 M20 93.85 b | a b | a
21 M21 98.76 a | a b | a
21 markers log-likelihood: -1052.619

$P1P2_seq.like
[1] -2162.978

This procedure needs to be applied for all the other linkage groups.

References

Voorrips, R. E., Maliepaard, C. A. (2012). The simulation of meiosis in diploid and tetraploid organisms using various genetic models. *BMC Bioinformatics* 13, 248. doi:10.1186/1471-2105-13-248

Quezada, M., Amadeu, R.R., Vignale, B., Cabrera, D., Pritsch, C., Garcia, A.A.F. (2021). Construction of a high-density genetic map of *Acca sellowiana* (Berg.) Burret, an outcrossing species, based on two connected mapping populations. *Front. Plant. Sci.* doi: 10.3389/fpls.2021.626811