Evaluating energy saving system of data centers based on AHP and fuzzy comprehensive evaluation model

Yingni Jiang1, a

1 Institute of equipment engineering, Engineering University of CAPF, Xi’an 710086, China

a 13772146702@163.com

Abstract. Due to the high energy consumption of communication, energy saving of data centers must be enforced. But the lack of evaluation mechanisms has restrained the process on energy saving construction of data centers. In this paper, energy saving evaluation index system of data centers was constructed on the basis of clarifying the influence factors. Based on the evaluation index system, analytical hierarchy process was used to determine the weights of the evaluation indexes. Subsequently, a three-grade fuzzy comprehensive evaluation model was constructed to evaluate the energy saving system of data centers.

1. Introduction

Energy consumption of data centers accounts the main part of that of the communication network. Most of the old data centers have low energy efficiency because of poor design and technical level. Therefore, energy saving work of data centers is imminent. Scientific evaluation of energy saving of data centers is an important basis for carrying out communication energy conservation. Therefore, it is of great significance to establish an energy saving evaluation system of data centers.

Energy saving standards of data centers in developed countries have begun to take shape [1-3]. But different national conditions result in a big difference in evaluation indexes [4, 5]. And the suitable model to evaluate the energy saving system of data centers has never been reported till now.

This work tries to establish an energy saving evaluation index system of data centers of China. In addition, analytic hierarchy process and the fuzzy comprehensive evaluation method are used to evaluate this energy saving system of data centers. Finally, the validity of the model is verified by case study.

2. Constructing the evaluation index system

In this work, two first grade indexes, six second grade indexes and twenty-one third grade indexes are selected to construct the evaluation system. Table 1 shows the index system of energy saving system of data centers.
Objectives	First grade indexes	Second grade indexes	Third grade indexes
	Comprehensive energy efficiency	Energy efficiency	Power usage effectiveness (PUE)
		Safety stability	Data center environment security
			Communication network security
Energy saving evaluation of data centers A	Building thermal		Location in layout
			Heat insulation design of building envelope
			Seal of building envelope
	Equipment selection		Communication equipment selection
			Air conditioning equipment selection
			Power equipment selection
			Other equipment selection
	Energy saving technology		Communication system energy saving technology
			Power system energy saving technology
			Energy saving technology of air conditioning system
			Other equipment energy saving technology
			Green Building Technology
			New energy technology
	Green management		Statistical basis
			Organization construction and operation
			Specification establishment and Implementation
			Green energy saving assessment
			Improvement and promotion

3. Determining weighting factors by AHP

3.1. Constructing judgment matrix (A)

The analytic hierarchy process method is applied to determine the weights of the various factors in Table 1. A judgment matrix (A) is established as follows:
$A = (a_{ij}) \ (i = 1,2,\ldots, \text{the number of layers}; \ j = 1,2,\ldots, \text{the number of elements})$

The term a_{ij} represents the relative importance of a_i compared to a_j, the value of a_{ij} is determined by a 9-point scale [6].

3.2. Calculating the weights of evaluation indexes

In this work, six experts were invited to evaluate the impact of each index on the operation ability. Then the specific score of every indicator was gained on the basis of a percentage grading system. The results are shown in Table 2.

Table 2 Weights of the evaluation indexes.

(a) First grade indexes

Name	Code	Weight
Comprehensive energy efficiency	B₁	0.3409
Application of energy saving measures	B₂	0.6591

(b) Second grade indexes

Name	Code	Weight
Energy efficiency	C₁₁	0.2807
Safety stability	C₁₂	0.0602
Building thermal	C₂₁	0.0521
Equipment selection	C₂₂	0.1061
Energy saving technology	C₂₃	0.2883
Green management	C₂₄	0.2127

(c) Third grade indexes

Name	Code	Weight
Power usage effectiveness (PUE)	D₁₁₁	0.2807
Data center environment security	D₁₂₁	0.0233
Communication network security	D₁₂₂	0.0369
Location in layout	D₂₁₁	0.0137
Heat insulation design of building envelope	D₂₁₂	0.0213
Seal of building envelope	D₂₁₃	0.0171
Communication equipment selection	D₂₂₁	0.0344
Air conditioning equipment selection	D₂₂₂	0.0442
Power equipment selection	D₂₂₃	0.0228
Other equipment selection	D₂₂₄	0.0047
Communication system energy saving technology	D₂₃₁	0.0557
Power system energy saving technology	D₂₃₂	0.0849
Energy saving technology of air conditioning system	D₂₃₃	0.0947
Other equipment energy saving technology	D₂₃₄	0.0085
Green Building Technology	D₂₃₅	0.0140
4. The construction of a fuzzy comprehensive evaluation model

4.1. Determination of factor set
First, the evaluation factor set of energy saving system of data centers should be determined on the basis of Table 1. For example, the first grade factor set is \(U = \{B_1, B_2\} \).

4.2. Establishment of comments set
The comments set indicates different grades from low to high to reflect the performance of the evaluated object of various indexes. We can determine comments set as: \(V = \{V_1, V_2, V_3, V_4, V_5\} = \{\text{excellent, good, moderate, poor, bad}\} \). The comments set and the responding scores for energy saving system of data centers are shown in Table 3.

Criteria	excellent	good	medium	poor	worst
Scores of criteria	(80,100]	(60,80]	(40,60]	(20,40]	[0,20]

4.3. Determination of weight set
According to the weights of each evaluation index in Table 2, the weight set can be determined. For example, \(P_1 = [1] \), \(P_2 = [0.3869 \quad 0.6131] \), etc.

4.4. Determination of the fuzzy relationship matrix

4.4.1. Establishment of the membership function
The methods to determine membership function are varied [7]. In this paper, the membership function is selected as follows:

\[
r_{y1}(x) = \begin{cases} e^{-\frac{(x-90)^2}{100}} & x \in [0,80] \\ e^{-\frac{(x-100)^2}{200}} & x \in (80,100] \\ \end{cases} \tag{1}
\]

\[
r_{y2}(x) = e^{-\frac{(x-70)^2}{100^2}} \tag{2}
\]

\[
r_{y3}(x) = e^{-\frac{(x-50)^2}{100^2}} \tag{3}
\]

\[
r_{y4}(x) = e^{-\frac{(x-30)^2}{100^2}} \tag{4}
\]

\[
r_{y5}(x) = \begin{cases} e^{-\frac{x^2}{200^2}} & x \in [0,20) \\ e^{-\frac{(x-10)^2}{100^2}} & x \in [20,100] \\ \end{cases} \tag{5}
\]
where \(x \) is the index score, \(r_{x1}(x), r_{x2}(x), r_{x3}(x), r_{x4}(x), r_{x5}(x) \) are membership of the index score \(x \) belonging to the rank of \(V_1, V_2, V_3, V_4, V_5 \) respectively.

4.4.2. Determination of the fuzzy relationship matrix based on the membership function

(1) Comments set of single factor
Comments set of single factor consists of the membership of this factor belonging to the \(V_1, V_2, V_3, V_4, V_5 \) rank. The comments set \(r_{ik} \) of index \(D_{ik} \) is given as:

\[
r_{ik} = \left\{ r_{V1(ik)} , r_{V2(ik)} , r_{V3(ik)} , r_{V4(ik)} , r_{V5(ik)} \right\}
\]

(6)

(2) Fuzzy relationship matrix
The fuzzy comprehensive evaluation matrix \(R_y \) of index \(C_y \) can be defined as follows:

\[
R_y = \begin{bmatrix}
 r_{y1} & r_{V1(y1)} & r_{V2(y2)} & r_{V3(y3)} & r_{V4(y4)} & r_{V5(y5)} \\
 r_{y2} & r_{V1(y2)} & r_{V2(y2)} & r_{V3(y2)} & r_{V4(y2)} & r_{V5(y2)} \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 r_{ym} & r_{V1(ym)} & r_{V2(ym)} & r_{V3(ym)} & r_{V4(ym)} & r_{V5(ym)}
\end{bmatrix}
\]

(7)

where \(m \) is the number of the index of \(C_y \). \(r_{ym} \) represents the membership of \(D_{ik} \) belonging to \(V_1, V_2, V_3, V_4, V_5 \) rank.

4.5. Obtaining the comprehensive evaluation vector
Comprehensive evaluation vector can be obtained by synthesizing the judgment matrix with the weight matrix using a suitable operator.

\[
Q = P \circ R
\]

(8)

where \(Q \) is the comprehensive evaluation vector, \(P \) is the weight matrix, \(R \) is the judgment matrix. \(\circ \) is a weighted averaging operator.

Finally, on the basis of maximum membership degree principle, the evaluation grade of the evaluated object can be determined.

5. Case study

5.1. Evaluation object
This data center built in 2012 has an area of 205m². It has 18 switching equipments, 66 servers and 6 dedicated air conditioners, a dedicated electricity meter, efficient UPS system and video surveillance system. The building layout and equipment configuration reflect energy saving obviously. The data center also applied air flow organization optimization, air-conditioning inverter technology, high voltage DC power supply and other energy saving technology.

According to the actual situation of this data center, the indexes scores given by experts are shown in Table 4.
Table 4 Indexes scores of a data center.

Name	Scores	Name	Scores
Power usage effectiveness (PUE)	56.8	Power system energy saving technology	70
Data center environment security	100	Energy saving technology of air conditioning system	80
Communication network security	81	Other equipment energy saving technology	0
Location in layout	65	Green Building Technology	50
Heat insulation design of building envelope	55	New energy technology	0
Seal of building envelope	100	Statistical basis	70
Communication equipment selection	100	Organization construction and operation	0
Air conditioning equipment selection	100	Specification establishment and Implementation	60
Power equipment selection	60	Green energy saving assessment	0
Other equipment selection	50	Improvement and promotion	0
Communication system energy saving technology	0		

5.2. Calculation of comprehensive evaluation matrix \(R_{ij} \)

After calculating the membership by indexes scores in Table 4, comprehensive evaluation relationship matrix can be obtained as follows:

\[
R_{11} = \begin{bmatrix}
0.1944 & 0.2133 & 0.2160 & 0.2020 & 0.1743 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.2325 & 0.2318 & 0.2131 & 0.1809 & 0.1417 \\
0.2070 & 0.2198 & 0.2154 & 0.1949 & 0.1628 \\
0.1917 & 0.2118 & 0.2161 & 0.2035 & 0.1769 \\
\end{bmatrix}
\]

\[
R_{12} = \begin{bmatrix}
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.1993 & 0.2158 & 0.2158 & 0.1993 & 0.1698 \\
0.1842 & 0.2077 & 0.2162 & 0.2077 & 0.1842 \\
\end{bmatrix}
\]

\[
R_{21} = \begin{bmatrix}
0.1944 & 0.2133 & 0.2160 & 0.2020 & 0.1743 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.2325 & 0.2318 & 0.2131 & 0.1809 & 0.1417 \\
0.2070 & 0.2198 & 0.2154 & 0.1949 & 0.1628 \\
0.1917 & 0.2118 & 0.2161 & 0.2035 & 0.1769 \\
\end{bmatrix}
\]

\[
R_{22} = \begin{bmatrix}
0.1944 & 0.2133 & 0.2160 & 0.2020 & 0.1743 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.2667 & 0.2437 & 0.2077 & 0.1634 & 0.1186 \\
0.1993 & 0.2158 & 0.2158 & 0.1993 & 0.1698 \\
0.1842 & 0.2077 & 0.2162 & 0.2077 & 0.1842 \\
\end{bmatrix}
\]
5.3. Determination of evaluation vector of C_{ij}

The evaluation vectors of C_{ij} can be obtained as follows by $Q_y = P_y \circ R_y$:

$$Q_{11} = [0.1944, 0.2133, 0.2160, 0.2020, 0.1743]$$

$$Q_{12} = [0.2457, 0.2364, 0.2110, 0.1741, 0.1328]$$

$$Q_{21} = [0.2203, 0.2244, 0.2131, 0.1881, 0.1541]$$

$$Q_{22} = [0.2486, 0.2362, 0.2098, 0.1730, 0.1325]$$

$$Q_{23} = [0.1868, 0.2053, 0.2120, 0.2061, 0.1897]$$

$$Q_{24} = [0.1520, 0.1849, 0.2108, 0.2253, 0.2270]$$

5.4. Determination of evaluation vector of B_i

The evaluation vectors of B_i can be obtained by Q_y as follows:

$$Q_1 = [0.2034, 0.2174, 0.2151, 0.1971, 0.1670]$$

$$Q_2 = [0.1881, 0.2052, 0.2114, 0.2056, 0.1897]$$

5.5. Determination of evaluation vector of A

The evaluation vectors of A can be obtained by Q_i as follows:

$$Q = [0.1934, 0.2093, 0.2127, 0.2027, 0.1820]$$

According to the principle of maximum membership degree, the energy saving grade of this data center is moderate.

6. Conclusions

This paper established an energy saving system evaluation model of China’s data centers on the basis of analytical hierarchy process and fuzzy comprehensive evaluation method. The effectiveness of the index system and the operability of the fuzzy comprehensive evaluation model were proved by a case study. This model is practical in energy saving system evaluation of different data centers. This study gives some references for energy saving construction of data centers in China.
References

[1] BCS (The British Cardiac Society), Certified Energy Efficient Datacenter Award), 2008. <http://www.ceeda-award.org/category/15888.html> (accessed 10.12.13).

[2] ECCDC (EU code of conduct for data centers), 2008. <http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative_data_centers.htm> (accessed 10.12.13).

[3] ESDC (Energy star for data centers), 2010. <http://www.energystar.gov/ia/partners/prod_development/downloads/DataCenterRating_General.pdf> (accessed 10.12.13).

[4] Zhang, G.J., Lv, J.D., Chen, W.X. Study on Energy Conservation and Emission Reduction’s Evaluation Index and Methods about Communication Base Station. Telecommunication Science [J], 2011. (3), 101-105.

[5] Guo, W.X. Study on energy saving and emission reduction of IDCs. Modern Telecommunication Technology [J], 2012 (10) 15-18.

[6] Saaty, T.L. Rank from comparisons and from ratings in the analytic hierarchy/network processes. European Journal of Operational Research [J], 2006 168(2) 557–570.

[7] Li, A.G., Zhang, Z.H., Meng, Y. Fuzzy Mathematics and Applications (the second edition). Beijing: Metallurgical Industry Press, 2005.