A case report of successful endovascular repair of a giant 15 cm diameter asymptomatic thoracic aortic aneurysm

Mauricio González-Urquijo, Víctor A. Dominguez-Porras, Luis G. Tellez-Martinez, Gerardo Lozano-Balderas, Eduardo Flores-Villalba, Mario Alejandro Fabiani

Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud

ARTICLE INFO

Article history:
Received 5 February 2018
Received in revised form 6 August 2018
Accepted 20 August 2018
Available online 25 August 2018

Keywords:
Thoracic aortic aneurysm
Giant thoracic aortic aneurysm
Endovascular aortic repair

ABSTRACT

INTRODUCTION: Giant thoracic aortic aneurysms (TAA) are extremely uncommon, and there are only a few cases reported in the literature. Most patients presented with symptoms before the size of the aneurysm reached a magnitude >10 cm, and most of the reported cases were treated with open repair. PRESENTATION OF CASE: Here we report a 15 cm asymptomatic thoracic aortic aneurysm of a 72-year-old male patient, treated successfully with thoracic endovascular aortic repair (TEVAR). The patient was discharged asymptomatic on postoperative day 2. DISCUSSION: Only 20 case reports of giant TAA were found in the literature, and this is the biggest TAA reported treated with TEVAR. This procedure is a promising treatment as morbidity and mortality is lower when compared with open aortic repair (OAR).

CONCLUSION: Even though there is limited documented experience, use of TEVAR seems a safe and promising option in the treatment of giant thoracic aneurysms as presented in this case.

© 2018 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thoracic aortic aneurysm (TAA) is defined as a loss of parallelism of the aortic walls, resulting in saccular, fusiform, or diffuse dilation, 1.5 times greater than the superjacent aorta [1]. Giant TAA is considered when widening exceeds 10 cm in diameter [2]. Thoracic aneurysms affect 10 of every 100,000 elderly adults, and are less common than their abdominal counterparts [3,4].

We present a case of a 72-year-old male presenting a 15 cm asymptomatic TAA, successfully treated by TEVAR. A review of the literature is also presented.

The work has been reported in line with the SCARE criteria [5].

2. Presentation of case

A 72-year-old male with no past history of smoking, and with medical history of hypertension, dyslipidemia and benign prostate hyperplasia treated with angiotensin-converting-enzyme inhibitor, atorvastatin, tamsulosin, and finasteride respectively, presented with a giant descending thoracic aortic aneurysm. Diagnosis was incidentally found after a CT-scan was performed for polycystic kidney disease. Tomography revealed an unruptured aortic aneurysm, affecting the distal part of the aortic arch and the descending aorta, with a maximum diameter of 15.6 cm (Fig. 1A, B). The patient didn’t have any mass effect manifestation such as dyspnea, cough, chest pain, or any other symptom. At that time, the patient underwent a laparoscopic left nephrectomy, which went unremarkable, at a small town 1000 miles away from our teaching hospital.

The patient arrived to our hospital two months after the kidney surgery. He had a complete cardiac assessment with no abnormalities in cardiac function, and serum creatinine of 0.9 mg/dl. No contraindications for surgery were presented, and TEVAR was performed. An open approach to the right common femoral artery was done under general anesthesia. A Medtronic-Valiant 34-30-200 thoracic endograft (Santa Rosa, CA Medtronic) was placed distally to the left subclavian artery and a Medtronic-Valiant 30-30-200 thoracic endograft (Santa Rosa, CA Medtronic) was positioned proximally to the origin of the celiac trunk, with 5 cm overlapping. No blood pressure reduction during deployment was needed, nor CSF drainage. An angiogram showed complete exclusion of the aneurysm without endoleaks (Fig. 2).

Patient recovered satisfactorily and was discharged on postoperative day two. No complications were seen in the CT angiography at four-month follow-up (Fig. 3). At 24-month follow up the patient is doing well without complications.

*Corresponding author.
E-mail addresses: mauricio.gzu@gmail.com (M. González-Urquijo), victordgp@gmail.com (V.A. Dominguez-Porras), luistellez23@gmail.com (L.G. Tellez-Martinez), dr.lozanobalderas@gmail.com (G. Lozano-Balderas), Eduardofloresvillalba@itesm.mx (E. Flores-Villalba), alefabiani@gmail.com (M.A. Fabiani).

https://doi.org/10.1016/j.ijscr.2018.08.036
2210-2612 © 2018 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
3. Discussion

Most TAAs occur in the ascending aorta followed by the descending thoracic aorta, and the aortic arch. The average age at the time of diagnosis is around the 60–70 years range [4,6,7]. Women with degenerative TAA have greater aneurysm growth rates than men, independently of body size or other clinical variables [7].

Pathophysiology of TAA formation involves the process of cystic medial necrosis, where focal degeneration of the elastic and muscle tissue within the tunica media of the aortic wall occurs. The aortic wall subsequently weakens and dilates as a result of the high pressure of intraluminal blood flow [6]. This definition differentiates an aneurysm from a false aneurysm, with the latter being a perivascular pulsatile hematoma secondary to a vessel injury often seen after endovascular procedures. A third type of aneurysm is the mycotic counterpart, which is defined by the presence of two or more of the following features: sepsis, positive blood culture, positive culture from the aneurysmal wall, or a characteristic radiological appearance [8]. Another type of aneurysm is the one following an acute event of aortic dissection.

In this case, the patient was diagnosed with hypertension 30 years before intervention, which constitutes the main risk factor predisposing for TAAs, aortic dissection and rupture, accounting for 50–60% of deaths. Patients with aneurysms greater than 10 cm have a 5-year survival of 15% [2,4,7]. In retrospect, our patient’s aneurysm should have been repaired first before performing the nephrectomy due to the high risk of rupture that it presented.

Signs and symptoms that might present with a TAA include a diastolic murmur or, less often, patients may present with congestive heart failure. On the other hand, giant TAAs may suffer a local mass effect, such as compression of the trachea or mainstem bronchus, provoking fatigue, nausea, cough, dyspnea, wheezing, chest pain, or recurrent pneumonitis [1,6,9]. Additionally, typical symptoms of aortic rupture include the abrupt onset of severe pain in the chest, neck, back, and/or abdomen [6]. Aortoesophageal fistulae (AEFs), which have also been described as complications in giant TAA, are classified as being either primary or secondary. The first are the results of intrinsic disease, such as TAA, esophageal cancer, mediastinal tubercular infections, or incurred injury from foreign body ingestion, trauma or caustic erosions as from lye consumption, whereas the latter are communications between the esophagus and the repaired aorta. Chiari’s triad for this fatal disor-

Fig. 1. a) Coronal MPR CT image obtained with intravenous contrast in arterial phase shows a sacular aneurism of the descending aorta, with the presence of an intramural thrombus (arrows). There is no extravasation of the contrast media from the true lumen (arrowhead). b) Axial MPR image shows calcification of the aortic wall (arrowhead). The true lumen (arrowhead) measures 7.4 cm; the aneurysm measured in the perpendicular plane has a diameter of 15.6 cm.

Fig. 2. TEVAR (A) Invasive angiography depicts the thoracic aneurism before repair. There is no extravasation of the contrast. (B) Invasive angiography posterior the placement of two endoprosthesis. There are no endoleaks.

Fig. 3. CT angiogram at a four-month follow up. The endoprosthesis is well positioned with no endoleaks.
Age (yrs), Sex	Reference	Size (transverse diameter), Location	Presentation	Comorbidities and risk factors	Type of repair	Outcome
75, F	Refaat et al.	10cm, ascending	Dyspnea and impaired consciousness	None	Non-surgical	Recovers short-term. unknown
63, M	Wang et al.	10.3 cm aortic arch	Cough, hoarseness and dyspnea for more than 1 week	None	Non-surgical	Dies same day
61, M	Enríquez-Puga et al.	11.3 cm, ascending (root)	Dyspnea and chest pain asymptomatic	aortic prosthesis, aortic valve prosthesis	Open repair. Bentall procedure, Open repair. Hemashiel woven graft 34 mm	Discharged POD 8
28, M	Gónçalves et al.	16cm, ascending	Dyspnea	Hypertensive	Non-surgical	Discharged POD 10
70, M	Philippakis	10cm	back pain	Renal failure and cardiac insufficiency smoker, hypertensive, CKD, COPD	Open repair. Bentall procedure	Discharged POD 3
76, F	Lamrani et al.	11cm, decending	Dyspnea, cardiac insufficiency	None	Open repair. Bentall procedure	Discharged POD 7
75, M	Garrido et al.	15cm, arch	Cardio-vocal syndrome: dysphonia, dysphagia, dyspnea, chest pain	None	Open repair. Bentall procedure	Dies 12 days after evaluation
77, F	Jmaa-Hela et al.	13.97 cm, ascending (root)	Dyspnea	Hypertension, aortic valve calcification, Marfan syndrome	Open repair. Bentall procedure	Discharged POD 7
78, F	Adebekanne et al.	10.2 cm, ascending	Dyspnea	Syphilis.	Open repair. Bentall procedure	Died in OR
33, M	Shah et al.	13cm, ascending	Asymptomatic	None	Open repair. Bentall procedure	Died 12 days after evaluation
76, M	Tomey et al.	11.5 cm, ascending	Dyspnea, presyncope; aortitis and atherosclerosis	None	Open repair. Bentall procedure	Died 12 days after evaluation
76, M	Rajab et al.	11.4 cm ascending	Dyspnea and leg swelling, lumbalgia, nausea, fatigue	None	Open repair. Bentall procedure	Died in OR
39, M	Topcuoglu et al.	15cm, descending	Dyspnea	Hypertension, aortic coarctation	Open repair. dacron graft 16 mm	Died in OR
85, F	Kaptanakis et al.	14.8 cm, descending	dyspnea, dysphagia,	None	Non-surgical	Died in OR
88, F	Okura et al.	10.5 cm, ascending	Asymptomatic	None	Non-surgical	Died in OR
66, M	Fatimah et al.	11cm, ascending	Dyspnea	aortic valve regurgitation, mitral valve regurgitant NYHA III, permanent AF, CKD, DMZ, AAA repair 10 years earlier	Open repair. Bentall procedure	Died 12 days after evaluation
64, M	Pietrzyk et al.	10.5 cm, ascending and aortic arch.	Dyspnea	None	Open repair. bentall procedure	Died 12 days after evaluation
72, M	Moutakalllah et al.	11cm, ascending	Dyspnea, orthopnea, SVCS	Heart failure	Open repair. bentall procedure	Died 12 days after evaluation
82, F	Cerea et al.	11cm, ascending and aortic arch.	Acute chest pain	Hypertension, Diabetes	Open repair. bentall procedure	Died 12 days after evaluation
Unknown	Sansone et al.	13cm, ascending	Asymptomatic	Past history of aortic valve replacement	Open repair. bentall procedure	Died 12 days after evaluation

SVCS: Superior Vena Cava Syndrome. POD: Post Operative Day. AF: atrial fibrillation. AAA: Aortic Abdominal Aneurysm. CKD: Chronic Kidney Disease. DM2: Diabetes Mellitus Type II.
The patient was diagnosed during evaluation for polycystic kidney disease. It is known that most patients with TAA are symptomatic and diagnosis is made incidentally during imaging studies for additional reasons [1,2,6,9]. Contrast enhanced CT scan and MR angiography are the preferred imaging methods to assess aneurysms, being both the gold standard for diagnosis [1,6].

Patients with aneurysms smaller than 6 cm are generally not candidates for surgery, unless they have symptoms or they present comorbidities, therefore they may be treated medically. Elective surgery may be carried out at a size of 5.5 cm for ascending and 6.5 cm for descending aortic aneurysms, repair is also suggested for patients with documented aneurysm growth of >1 cm per year. Propranolol has shown significantly slower rate of aortic dilatation, fewer aortic events, and lower mortality than treatment with non-β-blocker therapy [6,9].

TEVAR has been successfully performed under either general anesthesia (GA) and regional anesthesia (RA). The advantage of RA is that it allows the patient to remain awake, avoid tracheal intubation, and provide postoperative pain relief. Factors favoring GA include an endovascular repair with planned fenestrated or branched endografts, expecting a long technique duration; a need for debranching procedures or for aortic/iliac artery access and planned hemodynamic manipulations to create a mobile field during stent placement [12].

The most feared nonfatal complication in TAA’s repair is postoperative paraplegia secondary to interruption of the blood supply to the spinal cord [6]. The incidence of spinal cord ischemia (SCI) after TEVAR is generally less when compared to open aneurysm repair (OAR) but still occurs with a reported incidence of 0–13%; this is because blood flow to the spinal cord via distal aortic branches is not compromised during TEVAR because there is no aortic cross-clamping [13].

Cerebrospinal fluid drainage (CFD) has proven that its useful in preventing SCI [14]. For many years, we performed this preoperative measure in cases with long endovascular coverage, until systematic reviews failed to show that CFD prevents SCI in TEVAR [15]. Furthermore, many complications related to CFD have been reported [16,17]. Now, our strategy is more selective, and we only perform preoperative CFD in patients with high risk of developing SCI [18].

Only 20 case reports of giant TAA were found in the literature and detailed in Table 1. The average age was of 67.5 years (28–88). The mean diameter of aneurysm was 12 cm (10–16 cm). Sixteen (80%) patients reported symptoms. Thirteen (65%) of the patients were treated with open approach, and six (30%) patients were not operated on and only one (5%) of the patients was successfully treated with TEVAR. This case to our knowledge is the largest thoracic aneurysm treated with TEVAR.

4. Conclusion

TEVAR is an emergent therapy to successfully treat TAA. Morbidity and mortality has been reportedly decreasing by this surgical approach. Even though there is limited documented experience, use of TEVAR seems a safe and promising option in the treatment of giant thoracic aneurysms as presented in this case. There is still a lot of work to do regarding minimally invasive vascular procedures, since this may play an important role on the future of vascular surgery.
[4] W.D. Clouse, J.W. Hallett Jr., H.V. Schaff, M.M. Gayari, D.M. Ilstrup, L.J. Melton III, Improved prognosis of thoracic aortic aneurysms, JAMA 280 (1998) 1926, http://dx.doi.org/10.1001/jama.280.22.1926.

[5] R.A. Agha, A.J. Fowler, A. Saeta, I. Barai, S. Rajmohan, D.P. Orgill, The SCARE statement: consensus-based surgical case report guidelines, Int. J. Surg. 34 (2016) 180–186, http://dx.doi.org/10.1016/j.ijsu.2016.08.014.

[6] E.M. Isselbacher, Contemporary Reviews in Cardiovascular Medicine Thoracic and Abdominal Aortic Aneurysms, 2005, pp. 816–828, http://dx.doi.org/10.1101/01.CIR.000015-5869.03857.7A.

[7] K. Cheung, M. Boodhwani, K. Chan, L. Beauchesne, A. Dick, T. Coutinho, Thoracic aortic aneurysm growth: role of sex and aneurysm etiology, J. Am. Heart Assoc. 6 (2017), e003792, http://dx.doi.org/10.1161/JAHA.116.003792.

[8] U. Jaffer, R. Gibbs, Mycotic thoracoabdominal aneurysms, Ann. Cardiothorac. Surg. 1 (2012) 417–425, http://dx.doi.org/10.3974/j.issn.2225-3192.2012.08.17.

[9] L.K. Findeiss, M.E. Cody, Endovascular Repair of Thoracic Aortic Aneurysms, vol. 1, 2011, pp. 107–117.

[10] E. Simão, F.L. Tozzi, P. Otochi, E. Magalhães, C. De Tolosa, C. Ricardo, B. Neves, F. Fortes, S. Paulo, Aortoesophageal fistula caused by aneurysm of the thoracic aorta: successful surgical treatment, case report, and literature review, J. Vasc. Surg. 30 (1999) 1150–1157.

[11] F.H.W. Jonker, R. Heijmen, S. Trimarchi, Acute management of aortobronchial and aortoesophageal fistulas using thoracic endovascular aortic repair, J. Vasc. Surg. 50 (2009) 999–1004, http://dx.doi.org/10.1016/j.jvs.2009.04.043.

[12] C. Nicolaou, M. Ismail, Thoracic endovascular aortic repair: update on indications and guidelines, Anesthesiol. Clin. 31 (2013) 451–478, http://dx.doi.org/10.1016/j.anclin.2013.01.001.

[13] R.J. Feezor, W.A. Lee, Strategies for detection and prevention of spinal cord ischemia during TEVAR, Semin. Vasc. Surg. 22 (2009) 187–192, http://dx.doi.org/10.1053/j.semvascsurg.2009.07.011.

[14] J.C. Hnath, M. Mehta, J.B. Taggart, Y. Sternbach, S.P. Roddy, P.B. Kreienberg, K.J. Oszvath, B.B. Chang, D.M. Shah, R.C.D. iii, Strategies to improve spinal cord ischemia in endovascular thoracic aortic repair: outcomes of a prospective cerebrospinal fluid drainage protocol, J. Vasc. Surg. 48 (2008) 836–840, http://dx.doi.org/10.1016/j.jvs.2008.05.073.

[15] C.S. Wong, D. Healy, C. Canning, J.C. Coffey, J.R. Boyle, S.R. Walsh, U. Kingdom, A systematic review of spinal cord injury and cerebrospinal fluid drainage after thoracic aortic endografting, J. Vasc. Surg. 56 (2012) 1438–1447, http://dx.doi.org/10.1016/j.jvs.2012.05.075.

[16] A.T. Cheung, A. Pochettino, D.V. Guvalkov, S.J. Weiss, S. Shanmugan, J.E. Bavaria, Safety of lumbar drains in thoracic aortic operations performed with extracorporeal circulation, Ann. Thorac. Surg. 76 (2003) 1190–1197.

[17] M.M. Wynn, M.W. Melli, G. Tefera, J.R. Hoch, C.W. Acher, Complications of spinal fluid drainage in thoracoabdominal aortic aneurysm repair: a report of 486 patients treated from 1987 to 2008, J. Vasc. Surg. 49 (2009) 29–35, http://dx.doi.org/10.1016/j.jvs.2008.07.076.

[18] A. Fabiani, Prevención y manejo de la isquemia medular en la cirugía de la aorta torácica vascular y endovascular, in: Cirugía La Aorta Torácica, 2010, pp. 211–214.

Open Access
This article is published Open Access at sciencedirect.com. It is distributed under the IJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.