Locality and non-locality

Ilija Barukčić

[https://doi.org/10.5281/zenodo.4065408]

Received: October 4, 2020 - accepted: October 4, 2020 - published: October 4, 2020 - version 1

Abstract—Aim: Whether, under all the circumstances considered, a relativistic concept of locality and non-locality may fully reproduce the quantum probabilities for outcomes of experiences, is re-investigated. Methods: The usual methods and rules of statistics, probability theory and quantum mechanics were used. Results: The interior logic of the variance has been re-investigated. A relationship between the Pythagorean theorem and the variance has been established. A n-dimensional Pythagorean theorem has been derived. The problem of locality and non-locality and the relationship to the variance has been analysed. Conclusion: It may no longer stay an open question how to deal with the notions of locality and non-locality.

Index Terms—Locality, Non-locality, Pythagorean theorem, Unified field theory, Causality.

I. Introduction

The Pythagorean Theorem and Euler’s identity are arguably one of the most beautiful equations in mathematics. However, in physics, the Pythagorean Theorem is of importance too. Meanwhile, there are more than 371 Pythagorean Theorem proofs known. Pythagoras of Samos, as one of the well known ancient Greek philosophers, lived from ca. 570 to ca. 490 before current era (BCE). There is neither evidence that Pythagoras is an author of original scientific and other publications nor are there any detailed accounts of his thought written by contemporaries available. Euclid of Megara (ca. 435 – ca. 365 BC), the “founder of geometry” and a pupil of Socrates lived about 200 years later than Pythagoras but does not give any credit to Pythagoras in connection with Proposition 47 in his book Elements. The glorification of Pythagoras is immortally linked with the Pythagorean Theorem which itself seems to stem from to the authority of several Greek and Latin authors like Plutarch and Cicero. However, these authors wrote half a millennium after Pythagoras and in turn, rely on a single source – Apollodorus. In other words, it is unknown, what the historical Pythagoras actually did and thought and what were the practices and beliefs of Pythagoras. However, in order to determine the historical origin of the Pythagorean Theorem, it is important to consider the concrete evidence of the discovery and of the proof of the Pythagorean Theorem by Babylonian mathematicians more than 1000 years before Pythagoras was born. Moreover, the implications of the Pythagorean Theorem seemingly has no ending.

II. Material and methods

A logically sound definition of a mathematical object is extremely valuable for any further scientific investigation. However, even this publication has no answer for the question what is the mathematical definition of a mathematical definition?

1) Definition:

2) The number +0:

Definition II.1 (The number +0). Let c denote the speed of light in vacuum, let ε₀ denote the electric constant and let μ₀ denote the magnetic constant. Let L denote the imaginary number. The number +0 is defined as the expression

\[+0 \equiv +1 - 1 \]

\[\equiv +1 + i^2 \equiv +1 + e^{i\pi} \]

\[\equiv + (c^2 \times \epsilon_0 \times \mu_0) + e^{i\pi} \] (1)

while ‘+’ or denotes the equals sign used to indicate equality and ‘-’ denotes minus signs used to represent the operations of subtraction and the notions of negative as well. ‘+ ‘denotes the plus used to represent the operations of addition and the notions of positive as well.

Remark II.1. Roger Cotes (1682 – 1716) or Leonhard Euler’s (1707 – 1783) identity is regarded as one of the most beautiful equations. In this context, it is provisionally presumed, that Euler’s identity is logically sound and correct. However, the definition of the basic numbers +1 and +0 in terms of Euler’s identity and physical constants offer us the possibility to test classical logic or mathematical theorems et cetera by reproducible physical experiments. In particular, it is very remarkable that Leibniz himself published in 1703 the first self-consistent binary number system representing all numeric values while using typically 0 (zero) and 1 (one).

3) The number +1:

Definition II.2 (The number +1). Again, let c denote the speed of light in vacuum, let ε₀ denote the electric constant and let μ₀ denote the magnetic constant. Let i
denote the imaginary number i. The number $+1$ is defined as the expression

$$+1 = +1 + 0 = +1 - 0 = -e^{i\pi} \equiv + (\epsilon \times \epsilon_0)$$

(2)

while again ‘\equiv’ or ‘\equiv’ may denote the equality sign \equiv or equality sign \equiv, used to indicate equality and ‘’ \equiv’ denotes minus signs used to represent the operations of subtraction and the notions of negative as well. $'+'$ denotes the plus $+1$ signs used to represent the operations of addition and the notions of positive as well.

4) Wave function:

Definition II.3 (Wavefunction). Let $p(X_i)$ represent the probability from the point of view of a stationary observer R for finding a certain particle X at a given point in space at a given time / Bernoulli trial t. Let $E(X_i)$ denote the expectation value of X_i. Let $E(X_i)$ denote the expectation value of X_i. Let $\sigma(X_i)$ denote the standard deviation of X_i. Let $(X_i)^2$ denote the variance of X_i. Let the wavefunction represent the probability amplitude $X_i(t)$ of an event or of finding an event (i. e. a particle) at a given point in space at a given (period of) time / Bernoulli trial t. In general, it is

$$p(X_i) = \frac{E(X_i)}{\sigma(X_i)}$$

(3)

From this definition follows that

$$\Psi(R,X_i) = \frac{1}{\Psi^*(R,X_i) \times p(X_i)}$$

(4)

Lemma II.1. It is

$$\Psi(R,X_i) = \Psi(R,X_i)$$

Proof. Multiplying the equation

(5)

by the term $f(R,X_i)/f(R,X_i)$ it is

$$\Psi(R,X_i) = \frac{\Psi(R,X_i)}{f(R,X_i)} \times f(R,X_i)$$

(6)

At the same time it has to be that $\Psi(R,X_i) = \frac{\Psi(R,X_i)}{f(R,X_i)} \times f(R,X_i)$ and it follows that

$$\Psi(R,X_i) = \frac{\Psi(R,X_i)}{f(R,X_i)}$$

(7)

Quod erat demonstrandum.

5) The variance:

Definition II.4 (The variance). Sir Ronald Aylmer Fisher (1890 – 1962), an English statistician, “the single most important figure in 20th century statistics” \equiv coined the term variance as follows: “It is therefore desirable in analysing the causes of variability to deal with the square of the standard deviation as the measure of variability. We shall term this quantity the Variance ...” [see \equiv p. 399] Again, let $p(X_i)$ represent the probability from the point of view of a stationary observer R for finding a certain particle X at a given point in space at a given time / Bernoulli trial t. Let $E(X_i)$ denote the expectation value of X_i. The expectation value of X_i is defined as

$$E(X_i) = \langle p(X_i) \rangle \times (X_i)$$

(8)

The expectation value of the other of X_i, of the local hidden variable of X_i, of the complementary of X_i, of the opposite of X_i, of the anti X_i denoted by \tilde{X}, is defined as

$$E(\tilde{X}) = \langle 1 - p(X_i) \rangle \times (X_i)$$

(9)

Let $E(X_i)$ denote the expectation value of X_i. The expectation value of X_i is defined as

$$E(X_i) = \langle p(X_i) \rangle \times (X_i) \times \sigma(X_i)$$

(10)

Let $\sigma(X_i)$ denote the standard deviation of X_i. Let $\sigma(X_i)$ denote the variance of X_i. In general, the variance [see \equiv p. 42] is defined as

$$\sigma(X_i)^2 = \langle p(X_i) \rangle \times (X_i)^2 = \langle p(X_i) \times (X_i) \times (X_i) \rangle$$

(11)

Let $\sigma(X_i)$ denote the standard deviation of X_i. Let $\sigma(X_i)^2$ denote the variance of X_i. In general, the variance [see \equiv p. 42] is defined as

$$\sigma(X_i)^2 = \langle p(X_i) \rangle \times (X_i)^2 = \langle p(X_i) \times (X_i) \times (X_i) \rangle$$

(12)

From equation \equiv follows that

$$p(X_i) \times (1 - p(X_i)) = \frac{\sigma(X_i)^2}{(X_i)^2}$$

(13)
6) The complex conjugate:

Definition II.5 (The complex conjugate). The conjugate of a complex number denoted as \(\text{conjugate}(a (R_X t) + (i \times b (R_X t))) \), where \(i \equiv -1 \) is the imaginary \([20]\), is defined as

\[
\text{conjugate}(a (R_X t) + (i \times b (R_X t))) = (a (R_X t) - (i \times b (R_X t)))
\]

As proofed somewhere else, any complex number multiplied by its complex conjugate is a real number. It is

\[
(a (R_X t) + (i \times b (R_X t))) \times (a (R_X t) - (i \times b (R_X t)))
\]

\[
\equiv (a (R_X t))^2 - (i \times b (R_X t))^2
\]

\[
\equiv (a (R_X t))^2 + (b (R_X t))^2
\]

7) The right-angled triangle:

Definition II.6 (The right-angled triangle). A right-angled triangle is a triangle in which one angle is 90-degree angle. Let \(g_{Ct} \) denote the hypotenuse, the side opposite the right angle (side \(g_{Ct} \) in the figure 1). The sides \(a_t \) and \(b_t \) are called legs. In a right-angled triangle \(ABC \), the side \(AC \), which is abbreviated as \(b_t \), is the side which is adjacent to the angle \(\alpha \), while the side \(CB \), denoted as \(a_t \), is the side opposite to angle \(\alpha \). The following figure 1 may illustrate an aright-angled triangle \([see \ [18]\].

![Figure 1. A right-angled triangle](image)

8) The n-dimensional Pythagorean theorem:

Definition II.7 (The n-dimensional Pythagorean theorem). The famous Pythagorean theorem of Euclidean geometry is attributed to the Greek thinker Pythagoras of Samos (6th century, B.C.). The same is defined as

\[
(a (R_X t) + (i \times b (R_X t))) \times (a (R_X t) - (i \times b (R_X t)))
\]

\[
\equiv (a (R_X t))^2 - (i \times b (R_X t))^2
\]

where \(a_t \) may denote the point of view of a co-moving observer while \(b_t \) may denote the point of view of a stationary observer at a certain point in space-time \(\tau \). In general, it is

\[
(a_t)^2 \equiv a_t \times C_t
\]

or

\[
(a_t)^{2n} \equiv a_t^n \times C_t^n
\]

Equally, it is

\[
b_t^2 \equiv a_t \times C_t
\]

or

\[
b_t^{2n} \equiv a_t^n \times C_t^n
\]

where \(n \) denotes the number of dimensions. The Pythagorean theorem can be extended to higher dimensions \([see \ [52]\] too. In general, the Pythagorean theorem is based on the fundamental relationship \([see \ [14]\]

\[
(x_t + y_t) \equiv C_t^n
\]

Under conditions where \(x_t \) and \(y_t \) are described by a wavefunction, the superposition principle, first stated by Daniel Bernoulli (1700 – 1782) in 1753 ("Later (1753), Daniel Bernoulli formulated the principle of superposition ..."\(\text{[see \ [36] p. 2]}) demands that \(\Psi (x_t + y_t) \equiv \Psi (x_t) + y_t \equiv \Psi (y_t) \).

In the n-dimensional case, the relationship before becomes

\[
(x_t + y_t)^n \equiv C_t^n
\]

The Pythagorean theorem becomes something like

\[
(x_t + y_t)^n \times C_t^n \equiv C_t^n \times C_t^n
\]

or as

\[
\sum_{t} a_t^n \times C_t^n \equiv \sum_{t} C_t^n \times C_t^n \equiv C_t^{2n}
\]

and at the end the n-dimensional Pythagorean theorem follows as

\[
\sum_{t} a_t^{2n} + b_t^{2n} \equiv C_t^{2n}
\]

Remark II.2. In general, it is \([see \ [14]\]

\[
\Delta^2 \equiv (x_t) \times (y_t)
\]

(see figure 1). Under conditions where

\[
E (x_t) + E (y_t) \equiv C_t
\]

we obtain the identity of

\[
\Delta^2 \equiv \sigma (R_X t)^2
\]

Especially general relativity is related to the Pythagorean theorem. General relativity is a theory of the geometrical properties of space-time too while the metric tensor \(g_{\mu\nu} \) itself is of fundamental importance for general relativity. The metric tensor \(g_{\mu\nu} \) is something like the generalisation of Riemannian geometry without the quadratic restriction and justifies the attempt to systematize and to extend the possibilities of general relativity.
Einstein himself brings it again to the point. [see 27, p. 17] Knowledge of nature are enabled by suitable axioms [25] too. Rightly or wrongly, long lasting advances in our understanding of nature originated in a manner almost diametrically opposed to induction. The truly great advances in our understanding of nature are chosen carefully can be of use to avoid logical inconsistency and equally preventing science from supporting particular ideologies. Einstein’s previous position now been translated into Einstein’s special theory of relativity insist that it is not guaranteed that the notion of an absolute contradiction is justified, Einstein’s special theory of relativity insist that contradictions are objective and real. That this is so highlights the fact that from the standpoint of a co-moving observer, under certain circumstances, a path is a straight line and nothing else. However, under the same circumstances of special theory of relativity where the relative velocity $v > 0$, from the standpoint of a stationary observer the same path is a not a straight line, the path is curved. The justified question is, why should and how can an identical be a contradictory too? A considerable obstacle to understanding contemporary usage of the term contradiction, however, is that contradiction does not seem to be a unitary one. How can something be both, itself (a path is a straight line from the standpoint of a co-moving observer at a certain point in space-time) and the other of itself, its own opposition (the same path is not a straight line, the same path is curved, from the standpoint of a stationary observer at a certain point in space-time) [16].

Albert Einstein’s (1879-1955) message translated into English as: Basic law (axioms) and conclusions together form what is called a ‘theory’ has still to get round. However, it is currently difficult to ignore completely these historical and far reaching words of wisdom. The same taken more seriously and put into practice, will yield an approach to fundamental scientific problems which is more creative and sustainably logically consistent. Historically, Aristotle himself already cited the law of excluded middle and the law of contradiction as examples of axioms. However, lex identitatis is an axiom too, which possess the potential to serve as the most basic and equally as the most simple axiom of science. Something which is really just itself is equally different from everything else. In point of fact, is such an equivalence which everything has to itself inherent or must the same be constructed by human mind and consciousness. Following Gottfried Wilhelm Leibniz (1646-1716):

Curvature	YES	NO	
Momentum	YES	0	0
	NO	$\cdot (\Lambda \times g_{\mu \nu}) + \frac{R}{2} \times g_{\mu \nu}$	$R \times g_{\mu \nu}$ - $\Lambda \times g_{\mu \nu}$

Table I

Einstein field equations and the Lambda vacuum solution

B. Axioms

1) Axioms in general: Axioms [32] and rules which are chosen carefully can be of use to avoid logical inconsistency and equally preventing science from supporting particular ideologies. Rightly or wrongly, long lasting advances in our knowledge of nature are enabled by suitable axioms [25] too. Einstein himself brings it again to the point. [see 27, p. 17]

"Die wahrhaft großen Fortschritte der Naturerkenntnis sind auf einem der Induktion fast diametral entgegengesetzten Wege entstanden."

Einstein’s previous position now been translated into English: The truly great advances in our understanding of nature originated in a manner almost diametrically opposed to induction. It is worth mentioning in this matter, Einstein himself advocated especially basic laws (axioms) and conclusions derived from the same as a main logical foundation of any ‘theory’.

"Grundgesetz (Axiome) und Folgerungen zusammen bilden das was man eine ‘Theorie’ nennt."

Albert Einstein’s (1879-1955) message translated into English as: Basic law (axioms) and conclusions together form what is called a ‘theory’ has still to get round. However, it is currently difficult to ignore completely these historical and far reaching words of wisdom. The same taken more seriously and put into practice, will yield an approach to fundamental scientific problems which is more creative and sustainably logically consistent. Historically, Aristotle himself already cited the law of excluded middle and the law of contradiction as examples of axioms. However, lex identitatis is an axiom too, which possess the potential to serve as the most basic and equally as the most simple axiom of science. Something which is really just itself is equally different from everything else. In point of fact, is such an equivalence which everything has to itself inherent or must the same be constructed by human mind and consciousness. Following Gottfried Wilhelm Leibniz (1646-1716):

`+ 1` is to say that both are the same.

or $A = A$, $B = B$ or $+1 = +1$. In this context, lex contradictionis, the negative of lex identitatis, or $+0 = +1$ is of no minor importance too.

2) Axiom I. Lex identitatis: To say that $+1$ is identical to $+1$ is to say that both are the same.

$+ 1 \equiv +1$ (29)

However, even such a numerical identity which seems in itself wholly unproblematic, for it indicates just to a relation which something has to itself and nothing else, is still subject to controversy. Another increasingly popular view is that the same numerical identity implies the controversial view that we are talking about two different numbers $+1$. The one $+1$ is on the left side on the equation, the other $+1$ is on the right side of an equation. The basicness of the relation of identity implies the contradiction too while circularity is avoided. In other words, how can the same $+1$ be identical to itself and be equally different from itself? We may usefully state that identity is an utterly problematic notion and might be the most troublesome of all.

3) Axiom II. Lex contradictionis:

$+ 0 \equiv +1$ (30)

A considerable obstacle to understanding contemporary usage of the term contradiction, however, is that contradiction does not seem to be a unitary one. How can something be both, itself (a path is a straight line from the standpoint of a co-moving observer at a certain point in space-time) and the other of itself, its own opposition (the same path is not a straight line, the same path is curved, from the standpoint of a stationary observer at a certain point in space-time) [16]. We may simply deny the existence of objective or of any other contradictions. Furthermore, even if it remains especially according to Einstein’s special theory of relativity that it is not guaranteed that the notion of an absolute contradiction is justified, Einstein’s special theory of relativity insist that contradictions are objective and real. That this is so highlights the fact that from the standpoint of a co-moving observer, under certain circumstances, a path is a straight line and nothing else. However, under the same circumstances of special theory of relativity where the relative velocity $v > 0$, from the standpoint of a stationar
4) Axiom III. Lex negationis:

\[- (0) \times (+0) \equiv (+1) \] (31)

where \(-\) denotes the (natural/logical) process of negation [see 17].

III. Results

A. The local hidden variable

Theorem III.1 (The local hidden variable). Let \(R X_i \) denote something, a random variable as seen from the point of view of a stationary observer \(R \), a quantum mechanical entity et cetera existing independently and outside of human mind and consciousness. Let the probability of \(R X_i \) be \(p (R X_i) \), let the expectation value of \(R X_i \) be

\[E (R X_i) \equiv p (R X_i) \times (R X_i) \] (32)

. Let the expectation value of the other of \(R X_i \), of 'the local hidden variable' of \(R X_i \), of the complementary of \(R X_i \), of the opposite of \(R X_i \) be

\[E (R X_i) \equiv (1 - p (R X_i)) \times (R X_i) \] (33)

In general, it is

\[R X_i \equiv E (R X_i) + E (R X_i) \] (34)

Proof by modus ponens.. If the premise

\[+1 = +1 \] (Premise) (35)

is true, then the conclusion

\[R X_i \equiv E (R X_i) + E (R X_i) \] (36)

is also true, the absence of any technical errors presupposed. The premise

\[+1 \equiv +1 \] (37)

is true. Multiplying this premise (i.e. axiom) by \(R X_i \) it is

\[R X_i \equiv R X_i \] (38)

Equation [38] can be rearranged as

\[R X_i \equiv (+1) \times R X_i \] (39)

too or as

\[R X_i \equiv (1 + 0) \times R X_i \] (40)

and equally as

\[R X_i \equiv (1 + p (R X_i) \times (R X_i) \times R X_i \] (41)

or as

\[R X_i \equiv (p (R X_i) + (1 - p (R X_i))) \times R X_i \] (42)

too. Equation [42] simplifies as

\[R X_i \equiv (p (R X_i) \times R X_i) + ((1 - p (R X_i)) \times R X_i) \] (43)

Equation [43] simplifies further according to the definition given (see equation [32]) as

\[R X_i \equiv E (R X_i) + ((1 - p (R X_i)) \times R X_i) \] (44)

However, equation [44] itself simplifies again according to the definition given (see equation [43]) as

\[R X_i \equiv E (R X_i) + E (R X_i) \] (45)

In other words, our conclusion is true.

Quod erat demonstrandum.

B. The inner contradiction

Theorem III.2 (The inner contradiction). In general, it is

\[\sigma (R X_i)^2 \equiv E (R X_i) \times E (R X_i) \] (46)

Proof by modus ponens.. If the premise

\[+1 = +1 \] (Premise) (47)

is true, then the conclusion

\[\sigma (R X_i)^2 \equiv E (R X_i) \times E (R X_i) \] (48)

is also true, the absence of any technical errors presupposed. The premise

\[+1 \equiv +1 \] (49)

is true. Multiplying this premise (i.e. axiom) by \(R X_i \)

\[R X_i \equiv R X_i \] (50)

According to theorem III.1 equation [43] it is \(R X_i \equiv E (R X_i) + E (R X_i) \). Equation [50] changes to

\[R X_i \equiv E (R X_i) + E (R X_i) \] (51)

Rearranging equation [51] it is

\[R X_i - E (R X_i) \equiv E (R X_i) \] (52)

Taking the expectation value, it is [see [33] p. 42]

\[E (R X_i - E (R X_i)) \equiv \sigma (R X_i) \equiv E (E (R X_i)) \] (53)

Squaring equation [53] it is

\[\sigma (R X_i)^2 \equiv E (R X_i - E (R X_i))^2 \equiv E (E (R X_i))^2 \] (54)

According to Kolmogorov [see [33] p. 42], it is easy to calculate that \(\sigma (R X_i)^2 \equiv \sigma (R X_i) \times \sigma (R X_i) \equiv E (R X_i)^2 - (E (R X_i))^2 \). In general, we obtain

\[\sigma (R X_i)^2 \equiv E (R X_i)^2 - (E (R X_i))^2 \equiv E (E (R X_i))^2 \] (55)

However, equation [55] can be simplified further. The expectation value of \(R X_i \) is defined (see equation [6]) as \(E (R X_i) \equiv p (R X_i) \times (R X_i) \). The expectation value of \(R X_i \) is defined (see equation [41]) as \(E (R X_i)^2 \equiv p (R X_i) \times (R X_i)^2 \equiv p (R X_i) \times (R X_i) \). Equation [55] changes to

\[\sigma (R X_i)^2 \equiv (p (R X_i) \times (R X_i) - (p (R X_i)) \times (R X_i))^2 \equiv E (E (R X_i))^2 \] (56)
and equally to
\[\sigma(X_i)^2 = \langle p(X_i) \times (X_i - p(X_i))^2 \rangle = E(E(X_i^2)) \]

Equation [57] can be simplified as
\[\sigma(X_i)^2 = (X_i - p(X_i))^2 \times (1 - p(X_i))) = E(E(X_i^2)) \]

We rearrange equation [59] further. It is
\[\sigma(X_i)^2 = X_i \times (p(X_i) \times X_i \times (1 - p(X_i))) = E(E(X_i^2)) \]

Equation [60] simplifies (see definition II.4 equation [10]) as
\[\sigma(X_i)^2 = (X_i \times p(X_i)) \times E(X_i) = E(E(X_i^2)) \]

Furthermore, equation [61] simplifies (see definition II.4 equation [9]) as
\[\sigma(X_i)^2 = E(X_i) \times E(X_i) = E(E(X_i^2)) \]

At the end, it is
\[\sigma(X_i)^2 = E(X_i) \times E(X_i) \]

In other words, our conclusion is true.

Quod erat demonstrandum.

Remark III.1. The variance is determined by the relationship between something and its own other as \(\sigma(X_i)^2 = E(X_i) \times E(X_i) \) and appears to be equally a measure of the inner contradiction between something and its own other too. The greater the variance, the greater the inner contradiction between something and its own other, between the rich and the non-rich, between the healthy and the non-healthy, between the local and the non-local et cetera.

C. The probability of a single event

Theorem III.3 (The probability of a single event). The complex conjugate is of use to find the probability of a single event. A wave-function which defines the probability amplitude may be determined as a complex function like \(\Psi \langle X_i \rangle \equiv (a(X_i) + (i \times b(X_i))) \) while the complex conjugate of the wave-function is determined as \(\Psi^*(X_i) \equiv (a(X_i) - (i \times b(X_i))) \) The probability of a single event is defined in terms of the complex conjugate as
\[\Psi \langle X_i \rangle \times \Psi^*(X_i) \equiv (a(X_i) + (i \times b(X_i))) \times (a(X_i) - (i \times b(X_i))) \]
\[\equiv (a(X_i)^2 - (i^2 \times b(X_i)^2)) \equiv (a(X_i)^2 + b(X_i)^2) \]

Proof by modus ponens.. If the premise
\[+1 = +1 \]

is true, then the conclusion
\[\Psi \langle X_i \rangle \times \Psi^*(X_i) \equiv (a(X_i)^2 + b(X_i)^2) \]

is also true, the absence of any technical errors presupposed. The premise
\[+1 = +1 \]

is true. Multiplying this premise (i.e. axiom) by \(\Psi \langle X_i \rangle \times \Psi^*(X_i) \) it is
\[\Psi \langle X_i \rangle \times \Psi^*(X_i) \equiv \Psi \langle X_i \rangle \times \Psi^*(X_i) \]

The wave-function is determined as a complex function like \(\Psi \langle X_i \rangle \equiv (a(X_i) + (i \times b(X_i))) \) while the complex conjugate of the wave-function is determined as \(\Psi^*(X_i) \equiv (a(X_i) - (i \times b(X_i))) \). Substituting these relationships into equation [68] we obtain
\[\Psi \langle X_i \rangle \times \Psi^*(X_i) \equiv (a(X_i) + (i \times b(X_i))) \times (a(X_i) - (i \times b(X_i))) \]
\[\equiv (a(X_i)^2 - (i^2 \times b(X_i)^2)) \equiv (a(X_i)^2 + b(X_i)^2) \]

Quod erat demonstrandum.

D. Anti Chebyshev - The Chebyshev equality

Theorem III.4 (Anti Chebyshev - The Chebyshev equality). The Pafnuty Lvovich Chebyshev’s (1821 – 1894) inequality (also called the Irénée-Jules Bienaymé [12] (1796 – 1878) – Chebyshev inequality) was proved by Chebyshev [40] in 1867 and late by his student Andrey Markov (1856–1922) in his 1884 Ph.D. thesis. Chebyshev’s inequality [see [33], p. 42] is defined as \p{(X_i) = \frac{\sigma(X_i)^2}{E(X_i^2)}} \leq \frac{\sigma(X_i)^2}{E(X_i^2)} \]
and provides in this form only an approximate value of the exact probability of a single event. The exact value of the probability of a single event (Chebyshev’s equality) is given by
\[p(X_i) = 1 - \frac{\sigma(X_i)^2}{E(X_i^2)} \]

Proof by modus ponens.. If the premise
\[+1 = +1 \]

is true, then the conclusion
\[p(X_i) = 1 - \frac{\sigma(X_i)^2}{E(X_i^2)} \]

is also true, the absence of any technical errors presupposed. The premise
\[+1 = +1 \]
is true. Multiplying this premise (i.e. axiom) by the variance \(\sigma(RX_i)^2\)
\[
\sigma(RX_i)^2 \equiv \sigma(RX_i)^2
\] (75)
Equation 75 can be rearranged (see definition II.4, equation 12) as
\[
E(RX_i)^2 - (E(RX_i))^2 \equiv \sigma(RX_i)^2
\] (76)
or as
\[
E(RX_i)^2 \equiv (E(RX_i))^2 + \sigma(RX_i)^2
\] (77)
The normalised form of the variance follows as
\[
\frac{(E(RX_i))^2}{E(RX_i)^2} + \sigma(RX_i)^2 \equiv \pm 1
\] (78)
Rearranging equation 78, it is
\[
\frac{(E(RX_i))^2}{E(RX_i)^2} \equiv 1 - \frac{\sigma(RX_i)^2}{E(RX_i)^2}
\] (79)
Equation 79 simplifies (see definition II.3, equation 3) as
\[
p(RX_i) \equiv 1 - \frac{\sigma(RX_i)^2}{E(RX_i)^2}
\] (80)
Quod erat demonstrandum.

E. Anti Fermat - Refutation of Fermat’s Last Theorem

Theorem III.5 (Refutation of Fermat’s Last Theorem). Fermat’s last theorem known as \((a^n + b^n = c^n)\) while no three positive integers \(a, b, c\) can satisfy the equation for any integer value of \(n\) greater than 2, is refuted.

Proof by modus ponens. If the premise
\[
+1 = +1
\] (Premise)
(81)
is true, then the conclusion
\[
(a^n + b^n) \equiv c^n
\] (82)
is also true, the absence of any technical errors presupposed, and Fermat’s last theorem is refuted. The premise
\[
+1 \equiv +1
\] (83)
is true. Multiplying this premise (i.e. axiom or equation 83) by \(c^n\), it is
\[
+1 \times c^n \equiv +1 \times c^n
\] (84)
or
\[
c^n \equiv c^n
\] (85)
Pierre de Fermat’s (1607 - 1665) Last Theorem (i.e. Obervesio Domini Petri de Fermat) published 1670 in the book Diophantus’s Arithmetica by Fermat’s son, often considered simply as one of the most notable unsolved problems of mathematics, states that \((a^n + b^n) \equiv c^n\) while no three positive integers \(a, b, c\) satisfy the equation for any integer value of \(n\) greater than 2. Equation 85 changes to
\[
(a^n + b^n) \equiv c^n
\] (86)
Investigating the behaviour of Fermat’s Last Theorem under conditions where \(a = +0\), we obtain
\[
((a_i \equiv +0)^n + (b_i^n) \equiv c_i^n
\] (87)
or
\[
(b_i^n) \equiv c_i^n
\] (88)
In other words, at least one integer, the positive zero, is in compliance with Fermat’s Last Theorem. Consequently, Fermat’s Last Theorem is refuted. Quod erat demonstrandum.

Remark III.2. Andrew Wiles’s 1995 corrected proof of Fermat’s Last Theorem appears to be only of very limited value. Three distinct positive integers \((a = +0), b, c\) can satisfy Fermat’s equation
\[
(a^n + (b^n) \equiv c^n
\] (89)
In this context, there is reason to believe that it will be disputed that the positive zero \((+0)\) is an integer. Well, in this case, a clear and convincing answer should be given to the question why a positive zero is not an integer. What than is a positive zero, a non-integer, an anti-integer, …?

F. The n-dimensional Pythagorean theorem

Theorem III.6 (The n-dimensional Pythagorean theorem). The Pythagorean theorem as attributed to the Greek thinker Pythagoras of Samos (6th century, B.C.) is defined as
\[
a^2 + b^2 = c^2
\] (90)
where \(a\) may denote the point of view of a co-moving observer while \(c\) may denote the point of view of a stationary observer at a certain point in space-time. In general, the n-dimensional Pythagorean theorem is given by the equation
\[
((a_i^2 + (b_i^2))^n \equiv c_i^{2n}
\] (91)
Proof by modus ponens. If the premise
\[
+1 = +1
\] (Premise)
(92)
is true, then the conclusion
\[
(a_i^2 + (b_i^2))^n \equiv c_i^{2n}
\] (93)
is also true, the absence of any technical errors presupposed. The premise
\[
(+1) \equiv (+1)
\] (94)
is true. Multiplying this premise by \(c_i\) it is
\[
x_i \equiv x_i
\] (95)
Adding \(x_i\) to equation 95 it is
\[
x_i + x_2 \equiv x_1 + x_2
\] (96)
Equation 96 changes (see definition II.7, equation 21) to
\[
x_i + x_2 \equiv c_1
\] (97)
which is equally the general foundation of the Pythagorean theorem [see [14]. However, the Pythagorean theorem can be extended to higher dimensions [see [52] too. In the n-dimensional case, equation [97] becomes

\[(x_1 + x,2^n)^n = \left(\sum (x_1 + x,2^n) \times \ldots \times (x_1 + x,2^n) \times \ldots \right)^n \equiv \alpha C_t^n \quad (98)\]

Multiplying equation [98] by the term \(\alpha C_t^n\) we obtain

\[\left(\sum (x_1 + x,2^n) \times \ldots \times (x_1 + x,2^n) \times \ldots \right)^n \equiv \alpha C_t^n \quad (99)\]

Equation [99] simplifies as

\[\left(\sum (x_1 + x,2^n) \times \ldots \times (x_1 + x,2^n) \times \ldots \right) \equiv \alpha C_t^n \quad (100)\]

In general, it is \(\alpha a_t^2 \equiv \alpha x_1 \times \alpha C_t\) (see definition [12], equation [17]). Equation [100] simplifies as

\[\left(\sum (a_t^2) + (b_t^2) \times \alpha C_t\right)^n \equiv \alpha C_t^{2n} \quad (101)\]

Furthermore, it is \(\alpha b_t^2 \equiv \alpha x_t \times \alpha C_t\) (see definition [12], equation [19]). The n-dimensional Pythagorean theorem follows as

\[\left(\sum (a_t^2) + (b_t^2)\right)^n \equiv \alpha C_t^{2n} \quad (102)\]

In other words, our conclusion is true.

Quod erat demonstrandum.

G. The n-dimensional Pythagorean theorem II

Theorem 3.7 (The n-dimensional Pythagorean theorem II).

\[\left(\sum (a_t^2) + (b_t^2)\right)^n \equiv \alpha C_t^{2n} \quad (103)\]

Proof by modus ponens. If the premise

\[1 = +1 \quad (\text{Premise}) \quad (104)\]

is true, then the conclusion

\[\left(\sum (a_t^2) + (b_t^2)\right)^n \equiv \alpha C_t^{2n} \quad (105)\]

is also true, the absence of any technical errors presupposed. The premise

\[+1 \equiv +1 \quad (106)\]

is true. Multiplying this premise (i.e., axiom) by the term \(\alpha C_t^2\), it is

\[\alpha C_t^2 \equiv \alpha C_t^2 \quad (107)\]

The make a long story short, the Pythagorean theorem is defined as

\[a_t^2 + b_t^2 \equiv \alpha C_t^2 \quad (108)\]

Raising to the power n, the n-dimensional Pythagorean theorem is given as

\[\left(\sum (a_t^2) + (b_t^2)\right)^n \equiv \alpha C_t^{2n} \quad (109)\]

Quod erat demonstrandum.

Remark III.3. It follows from equation [109] the normalised n-dimensional Pythagorean theorem as

\[\left(\sum (a_t^2) + (b_t^2)\right)^n \equiv \alpha C_t^{2n} \quad \equiv +1 \quad (110)\]

Fermat’s Last Theorem states that \((a_t^n) + (b_t^n) \equiv \alpha C_t^n\), while no three positive integers a, b, and c satisfy the equation for any integer value of n greater than 2. Rearranging Fermat’s Last Theorem, we obtain

\[\left(\sum (a_t^n) + (b_t^n)\right)^2 \equiv \alpha C_t^n \quad (111)\]

while a lot of positive integers \(a_t^n, b_t^n,\) and \(c_t^n\) satisfy equation [111] for any integer value of n (and even greater than 2). Simplifying equation [111] leads to a more general form of the equation before as

\[\left(\sum (a_t^n) + (b_t^n)\right)^2 \equiv \alpha C_t^n \quad (112)\]

and Fermat’s Last Theorem appears to pass over into the n-dimensional Pythagorean theorem. The metric tensor \(g_{\mu\nu}\) of general relativity on a space is more or less a generalisation of Pythagoras’ theorem for the distance for a certain distance between two points separated by different distances and reproduces the usual form of the Pythagorean Theorem. In general it is

\[g_{\mu\nu} dx^\mu dx^\nu \equiv ds^2 \quad (113)\]

while reproducing the usual form of the Pythagorean Theorem. The n-dimensional form follows as

\[g_{\mu\nu} dx^\mu dx^\nu \equiv (ds^2)^n \equiv \alpha C_t^{2n} \quad (114)\]

H. Locality and non-locality

Even if different columns of the Copenhagen interpretation of quantum mechanics like Heisenberg’s uncertainty principle [6, 10, 12], Bell’s theorem/inequality [8, 11, 16] and the CHSH [8, 11] inequality and other aspects are already refuted, this need not to mean that a logically and mathematically sound concept of non-locality is without any sense. In this context, let P\(_R(X_t)\) denote the probability from the point of view of a stationary observer R for finding a certain particle X somewhere local at a given point in space at a given time / Bernoulli trial t. Let E\(_R(X_t)\) denote the expectation value of \(R_X\) for being local. The expectation value of locality of \(R_X\) is defined as

\[E(R_X) \equiv p(R_X) \times (R_X) \equiv \Psi(R_X) \times R_X \times \Psi^*(R_X) \quad (115)\]
The expectation value of being non-local, denoted by $E(rX_i)$, is defined as

$$E(rX_i) \equiv (1 - p(rX_i)) \times (rX_i) \equiv p(rX_i) \times (rX_i)$$

(116)

Theorem III.8 (Locality and non-locality).

$$\sigma(rX_i)^2 \equiv E(rX_i) \times E(rX_i)$$

(117)

$$+ 1 \equiv +1$$

(118)

Proof by modus ponens. If the premise

$$+1 = +1$$

(119)

is true, then the conclusion

$$\sigma(rX_i)^2 \equiv E(rX_i) \times E(rX_i)$$

(120)

is also true, the absence of any technical errors presupposed. The premise

$$+1 \equiv +1$$

(121)

is true. Multiplying this premise (i.e. axiom) by the probability of being local, $p(rX_i)$, it is

$$p(rX_i) \equiv p(rX_i)$$

(122)

which is equivalent with

$$p(rX_i) \equiv 0 + p(rX_i)$$

(123)

or with

$$p(rX_i) \equiv +1 - 1 + p(rX_i)$$

(124)

and with

$$p(rX_i) \equiv 1 - (1 - p(rX_i)) \equiv 1 - p(rX_i)$$

(125)

In general, it is

$$p(rX_i) \equiv 1 - p(rX_i)$$

(126)

Locality is determined by its own non-locality and vice versa. The one passes over into its own other and vice versa. The more something is local, the less it is non-local and vice versa. Multiplying equation (126) by the term $(rX_i^2 \times (1 - p(rX_i)))$ it is

$$\sigma(rX_i)^2 \equiv p(rX_i) \times rX_i^2 \times (1 - p(rX_i))$$

$$\equiv rX_i \times p(rX_i) \times rX_i \times (1 - p(rX_i))$$

$$\equiv rX_i \times p(rX_i) \times rX_i \times p(rX_i)$$

$$\equiv E(rX_i) \times E(rX_i)$$

(127)

Quod erat demonstrandum.

IV. Discussion

Investigating or developing specific concepts for non-locality in the light of empirical facts require logically sound mathematical or statistical methods too, in order to relate empirical facts with hypotheses of particular kind. Statistical methods and especially the variance is relied upon in almost all empirical scientific research. The correct understanding of the variance is of key importance to extrapolate from data to predictions and general facts and to communicate scientific findings the right way. Further debates that focuses on the relation between locality and non-locality may consider that the notions of locality and non-locality are completely described (see equation (127)) by variance as used in statistics and in other science. Locality and non-locality can be evaluated in the light of sample data by the variance too. Only under conditions where

$$\sigma(rX_i)^2 \equiv p(rX_i) \times rX_i^2 \times (1 - p(rX_i))$$

$$\equiv rX_i \times p(rX_i) \times rX_i \times (1 - p(rX_i))$$

$$\equiv rX_i \times p(rX_i) \times rX_i \times p(rX_i)$$

$$\equiv E(rX_i) \times E(rX_i)$$

$$\equiv 0$$

either the state of pure locality or the state of pure locality is given, otherwise not.

V. Conclusion

In combination with other already published [6], [8], [10]–[12], [16] papers, the problem of a logically consistent description of locality and non-locality is solved.

Acknowledgment

I am very grateful for being able to use the online Latex editor Overleaf.

Ilja Barukčić studied human medicine at the University Hamburg (1982–1989), Germany. His main field of research is the relationship between a cause and an effect and the associated issues. Ilja Barukčić published several papers among them papers like the equivalence of time and gravitational field [7], the relativistic [9] wave equation and the unified field theory [14] and articles on indeterminate forms. Ilja Barukčić succeeded [31, 33, 34, 55] in mathematizing the relationship between cause and effect [1–5], [13, 15]. Barukčić has been able to refute Heisenberg’s uncertainty principle [8], [10] and the CHSH [6], [7] inequality.
[27] A. Einstein, “Induktion and Deduktion in der Physik”, German, *Berliner Tageblatt and Handelszeitung*, Suppl. 4, Dec. 1919. [Online]. Available: https://einsteinpapers.press.princeton.edu/vol7-trans/124

[28] L. Euler, *Introductio in analysin infinitorum*, lat. apud Marcum-Michaelem Bouquet & socios, 1748. doi: 10.3931/e-rara-8740 [Online]. Available: http://www.e-rara.ch/doi/10.3931/e-rara-8740 (visited on 07/29/2019).

[29] P. Finsler, “Über Kurven und Flächen in allgemeinen Räumen”, German, PhD thesis, Georg-August Universität, Göttingen, 1918. [Online]. Available: https://gdz.sub.uni-goettingen.de/id/PPN321583582

[30] R. A. Fisher, “XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance.”, en, *Transactions of The Royal Society of Edinburgh*, vol. 52, no. 2, pp. 399–433, 1918, Publisher: Royal Society of Edinburgh Scotland Foundation, issn: 2053-5945, 0080-4568. doi: 10.1017/S0080456800012163 [Online]. Available: https://www.cambridge.org/core/journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/article/sxvthe-correlation-between-relatives-on-the-supposition-of-mendelian-inheritance/A60675052E0F7B8C561F66C670BC75DE (visited on 08/13/2020).

[31] J. A. G. González, “Metateoría de lo primero”, *Contrastes*. Revista Internacional de Filosofía, vol. 2, pp. 105–110, Jan. 1997. doi: 10.24310/Contrastescontrastes.v2i0.1754 [Online]. Available: http://www.revistas.uma.es/index.php/contrastes/article/view/1754/1696

[32] D. Hilbert, “Axiomatisches Denken”, German, PhD thesis, Georg-August Universität, Göttingen, 1918. [Online]. Available: https://doi.org/10.3931/e-rara-16898 (visited on 02/16/2019).

[33] J. A. G. González, “La matemática como una ciencia de la presencia”, *Contrastes. Revista Internacional de Filosofía*, vol. 2, pp. 105–110, Jan. 1997. doi: 10.24310/Contrastescontrastes.v2i0.1754 [Online]. Available: http://www.revistas.uma.es/index.php/contrastes/article/view/1754/1696

[34] G. W. F. v. Leibniz, “Explication de l’arithmétique binaire, qui se sert des seuls caractères 0 et 1 avec des remarques sur son utilité et sur ce qu’elle donne le sens des anciennes figures chinoises de Fohy”, *Mémoires de l’Académie des Sciences, Arts et Lettres de Berlin*, no. 12, pp. 105–110, Jan. 1703. [Online]. Available: https://hal.archives-ouvertes.fr/docs/00104781 (visited on 02/20/2019).

[35] ——, *Oeuvres philosophiques latines et françaises de feu Mr. de Leibniz*. Amsterdam (NL): Chez Jean Schreuder, 1765. [Online]. Available: https://archive.org/details/oeuvresphilosoph00leibuoft/page/n9 (visited on 01/16/2019).

[36] Leon Brillouin, *Wave Propagation In Periodic Structures Electric Filters And Crystal Lattices First Edition*, eng. New York (USA): Mcgraw-Hill Book Company, Inc., 1946. [Online]. Available: http://archive.org/details/in.ernet.dli.2015.166889 (visited on 10/04/2020).

[37] E. S. Loomis, *The Pythagorean proposition: its demonstrations analyzed and classified and bibliography of sources for data of the four kinds of “proofs”*, English. Washington: National Council of Teachers of Mathematics, 1968, OCLC: 115068738. [Online]. Available: https://archive.org/details/pythagoreannpropo0000loom_b2m3 (visited on 10/02/2020).

[38] E. Maor, *The Pythagorean Theorem: A 4,000-Year History*. Princeton University Press, 2007, isbn: 978-0-691-19688-6. doi: 10.2307/j.ctvh9w0ks [Online]. Available: https://www.jstor.org/stable/j.ctvh9w0ks (visited on 10/02/2020).

[39] L. Pacioli, *Summa de arithmetica, geometria, proportioni et proportionalita*, ita. Venice, 1494. [Online]. Available: http://doi.org/10.3931/e-rara-9150 (visited on 02/16/2019).

[40] B. Ratner, "Pythagoras: Everyone knows his famous theorem, but not who discovered it 1000 years before him", en, *Journal of Targeting, Measurement and Analysis for Marketing*, vol. 17, no. 3, pp. 229–242, Sep. 2009. issn: 1479-1862. doi: 10.1057/jt.2009.16 [Online]. Available: https://doi.org/10.1057/jt.2009.16 (visited on 10/02/2020).

[41] R. Recorde, *The whetstone of witte, whiche is the seconde parte of Arte metike: containing the extraction of Rootes: The Cosike practise, with the rule of Equation: and the woorkes of Surde Nombers*, English. London: Jhon Kyngstone, 1557. [Online]. Available: http://archive.org/details/TheWhetstoneOfWitte (visited on 06/05/2019).

[42] M. Rolle, *Traité d’algèbre ou principes généraux pour résoudre les questions de mathématique*. Paris (France): chez Estienne Michallet, 1690. [Online]. Available: https://www.e-rara.ch/doi/10.3931/e-rara-16898 (visited on 02/16/2019).

[43] M. Ruiz Espejo, “Review of Causality: New Statistical Methods, 2nd edn (by Ilija Barukcic; Books on Demand, Norderstedt DE, 2006): 34:1013–1014”, *Journal of Applied Statistics*, vol. 34, no. 8, pp. 1013–1014, Jan. 2007, issn: 0266-4763. doi: 10.1080/02664760701590707 [Online]. Available: http://isi.cbs.nl/sbr/images/V26-1_Apr06.pdf

[44] F. Tombe, “The 1856 Weber-Kohrausch Experiment (The Speed of Light)”, Oct. 2015.

[45] P. L. Tschébychef, “Des valeurs moyennes”, *Journal de Mathématiques Pures et Appliquées*, vol. 12, no. 2, pp. 177–184, 1867. doi: http://sites.mathdoc.fr/JMPA/PDF/JMPA_1867_2_12_A11_0.pdf [Online]. Available: http://sites.mathdoc.fr/JMPA/PDF/JMPA_1867_2_12_A11_0.pdf

[46] J. v. Uspensky, *Introduction To Mathematical Probability*. New York (USA): McGraw-Hill Company, 1937.
[48] W. E. Weber and R. Kohlrausch, “Ueber die Elektricitätsmenge, welche bei galvanischen Strömen durch den Querschnitt der Kette fliesst”, *Annalen der Physik und Chemie*, vol. 99, pp. 10–25, 1856. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-662-24693-1_14.

[49] W. Weber and R. Kohlrausch, “Elektrodynamische Maßbestimmungen: Insbesondere Zurückführung der Stromintensitätsmessungen auf mechanisches Maß”, *Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften*, vol. 5 (Leipzig: S. Hirzel), 1857.

[50] J. Widmann, *Behende und hübsche Rechenung auf allen Kauffmanschafft*. Leipzig (Holy Roman Empire): Conrad Kachelofen, 1489. [Online]. Available: http://hdl.loc.gov/loc.rbc/Rosenwald.0143.1.

[51] R. J. Wilson, *Euler’s pioneering equation: the most beautiful theorem in mathematics*, First edition. Oxford, United Kingdom: Oxford University Press, 2018, OCLC: ocn990970269, isbn: 978-0-19-879492-9.

[52] S. Yeng, T. Lin, and Y.-F. Lin, “The n-dimensional pythagorean theorem”, en, *Linear and Multilinear Algebra*, Apr. 2008, Publisher: Gordon and Breach Science Publishers. doi: 10.1080/03081089008817961 [Online]. Available: https://www.tandfonline.com/doi/pdf/10.1080/03081089008817961 (visited on 09/09/2020).

[53] P. M. Zesar, *nihil fit sine causa* - *Die Kausalität im Spanischen und Portugiesischen*: DIPLOMARBEIT. Magister der Philosophie. Wien: Universität Wien, Jan. 2013. [Online]. Available: http://othes.univie.ac.at/25095/1/2013-01-22_0506065.pdf.