A propensity score-matched analysis of advanced energy devices and conventional monopolar device for colorectal cancer surgery: comparison of clinical and oncologic outcomes

Woo Jin Song, Sung Uk Bae, Woon Kyung Jeong, Seong Kyu Baek
Department of Surgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea

INTRODUCTION

Laparoscopic surgery has gained increasing acceptance for colorectal cancer (CRC) treatment beyond clinical trials since the first report of this minimally invasive surgery (MIS) in 1991 [1]. Robotic surgical systems in MIS were developed recently, in part to overcome several inherent limitations of laparoscopic surgery [2,3]. MIS for resection of CRC is as effective as open surgery with no negative effect on the overall (OS) and disease-free survival (DFS) rate of patients [4]. Furthermore, •This study was presented as an oral presentation for surgical residents at the Annual Congress of KSS 2021 & 73rd Congress of the Korean Surgical Society, Seoul, Korea on November 4–6, 2021.

Copyright © 2022, the Korean Surgical Society
Annals of Surgical Treatment and Research is an Open Access Journal. All articles are distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
this procedure is associated with lower mortality, lower complication rates, and a shorter median length of hospital stay than open approach [5,6].

In gastrointestinal oncologic surgery, lymphovascular dissection around the major feeding vessels is one of the most important parts. However, it is not easy to safely perform oncologic radical surgery without complications such as massive bleeding [7]. Since Dr. Bovie developed electrosurgery in the 1920s, conventional monopolar electrosurgery devices have been widely used for mesentery dissection and vessel control in MIS of CRC [8]. However, it has several shortcomings including the risk of collateral thermal injury, difficult hemostasis, intraperitoneal temperature variations, smoke production, and necessitating the use of additional tools such as bipolar graspers, sutures, and clips [9]. Several surgical energy devices have been developed in order to overcome these problems, including the electrothermal bipolar vessel sealer, ultrasonic coagulating shears, and devices that integrate both ultrasonic and advanced bipolar energy. These devices revolutionized laparoscopic surgery, allowing for rapid dissection and reliable hemostasis, leading to the ability to perform more complex procedures [10]. Because of various advantages, the use of advanced energy devices is gradually increasing and being applied to CRC surgery [9,11,12]. Some previous studies have proved the safety, efficiency, and versatility of advanced surgical energy devices, having superiority for short-term outcomes such as the amount of blood loss and operation time in CRC surgery to conventional monopolar devices [8,11,13].

Recent studies on energy devices have focused on short-term surgical and short-term clinical outcomes. However, there is no study on the long-term oncologic outcomes of MIS according to types of surgical energy devices. We hypothesized that energy devices may affect the oncologic outcome because they have more tumoricidal and sealing effects around lymphovascular chains than conventional monopolar devices. The purpose of this study was to investigate the impact of surgical energy devices on both operative and oncologic outcomes of MIS for CRC.

METHODS

The study was approved by the Institutional Review Board of Keimyung University Dongsan Medical Center (No. DSMC 2022-05-083). The requirement for informed consent was waived because of the retrospective nature of the study.

Patients

Between August 2015 and December 2017, a total of 316 patients underwent laparoscopic or robotic CRC surgery at Keimyung University Dongsan Medical Center. Exclusion criteria were patients with synchronous or previous malignancies (n = 4), received palliative resections or emergency surgery (n = 7), presenting distant metastasis (n = 3), diagnosed with malignancies other than adenocarcinoma (n = 3), and patients having missing data (n = 2). The study groups included 80 patients who underwent surgery using...
a conventional monopolar device and 217 patients using an advanced energy device. To minimize the influence of covariates affecting the outcomes, propensity score matching was performed, produced 63 pairs in each group, and a total of 126 patients were finally enrolled in this study (Fig. 1). Information regarding patient demographics, perioperative outcomes, postoperative outcomes, pathologic outcomes, and oncologic outcomes was obtained from a prospectively collected data.

Clinical evaluation and treatment

All of the patients underwent a colonoscopy, biopsy, and staging imaging studies including computed tomography of the chest, abdomen, and pelvis. In addition, positron emission tomography scans were carried out in select patients. Following the original description [14], we applied the general principles of complete mesocolic or mesorectal excision and central vascular ligation for CRC. The primary tumor was resected by sharp dissection of the visceral plane from the parietal fascia layer along with the entire regional mesocolon in an intact package. For right-sided colon cancer, radical lymphadenectomy was performed along the primary feeding vessels following a vertical line to expose the superior mesenteric vein. For left-sided colon or rectal cancer, high or selective ligation of the inferior mesenteric artery along with lymph node dissection was performed based on the tumor location. The postoperative follow-up and adjuvant treatment were performed according to National Comprehensive Cancer Network guidelines and individual indication.

In this study, we divided the patients into the monopolar energy group and advanced energy group according to the type of energy device used during lymph node dissection and vessel control. The conventional monopolar electrosurgery device was used in the monopolar energy group. Ultrasonic shears (Harmonic ACE, Ethicon Endo-Surgery, Cincinnati, OH, USA) or integrated bipolar and ultrasonic device (Thunderbeat, Olympus Medical Systems Corp., Tokyo, Japan) was used in the advanced energy group.

Evaluation of parameters

The tumors located in ascending or transverse colon were classified as right-sided tumors, and the tumors located in descending, sigmoid or rectum were classified as left-sided tumors. Conversion was defined if the surgical technique was interrupted during surgery; MIS techniques to open surgery; Clavien-Dindo classification, and if a patient had multiple surgical complications, the most severe of them was counted as morbidity.

Tumor stages were classified according to the American Joint Committee on Cancer staging system, 7th edition. OS time was defined as the time between the date of surgery and the date of death or last follow-up visit, and DFS time was defined as the time elapsed between the date of surgery and tumor progression. Patients who died from other causes or were alive without progression or recurrence at the most recent follow-up were treated as censored in the analysis of DFS time. Recurrence was defined as the presence of a radiologically- and/or histologically-confirmed tumor, and the location of recurrence was defined as the first site of recurrence after complete resection. If cancer recurrence occurred in the surgical field, it was defined as local recurrence. Conversely, if cancer recurred outside the surgical field, it was defined as systemic recurrence.

Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics ver. 25 (IBM Corp., Armonk, NY, USA) and SAS software ver. 9.4 (SAS Institute, Cary, NC, USA). Categorical variables were analyzed using the chi-square or Fisher exact test, and continuous variables were analyzed using the independent t-test or Mann-Whitney U-rank test. Survival curves and disease-free intervals were obtained using the Kaplan-Meier method. The differences in OS and DFS rates were assessed using the log-rank test. P-values less than 0.05 were considered to indicate statistical significance.

We estimated propensity scores with logistic regression to mitigate the confounding influence of the following covariates: tumor lesion, preoperative level of CEA, and operation technique, because these variables were significantly different between the monopolar energy group and advanced energy group in patient baseline characteristics. P-value for the Hosmer-Lemeshow goodness-of-fit test of propensity score matching model was 0.382. After matching, no significant differences in the baseline characteristics were shown.

RESULTS

Patients’ characteristics

Demographic characteristics were similar between the 2 study groups such as age, sex, body mass index, tumor's location, preoperative existence of obstruction, preoperative CEA, American Society of Anesthesiologists (ASA) physical status (PS) classification, and operation technique after the propensity score matching was performed (Table 1).

Operative outcomes

The median operation time was equivalent between the monopolar energy group and the advanced energy group (212.2 minutes vs. 214.0 minutes, P = 0.908). The amount of blood loss (72 mL vs. 54 mL, P = 0.123), conversion cases to open surgery (11.1% vs. 4.8%, P = 0.187), and intraoperative complications
Annals of Surgical Treatment and Research

(9.5% vs. 4.8%, P = 0.299) were higher in the monopolar energy group, but the differences were not statistically significant. In the monopolar energy group, the majority cause of conversion was severe adhesion (4 cases, 6.3%), and most intraoperative complications were injury to adjacent organs (5 cases, 7.9%) (Table 2).

Postoperative outcomes

There were no apparent differences in the tolerance of diet and length of hospital stay between the 2 groups. The morbidity rates within 30 days (34.9% in the monopolar energy group, 27.0% in the advanced energy group; P = 0.035) and their

Table 1. Patients’ characteristics

Characteristic	Before matching	Propensity score-matched						
	Monopolar group	Advanced group	Monopolar group	Advanced group	P-value	Monopolar group	Advanced group	P-value
	(n = 80)	(n = 217)	(n = 63)	(n = 63)		(n = 63)	(n = 63)	
Age (yr)	66.7 ± 9.8	66.7 ± 11.9	0.989	66.4 ± 10.0	65.5 ± 11.6	0.634	0.716	
Male sex	49 (61.3)	127 (58.5)	0.672	37 (58.7)	39 (61.9)	0.716		
Body mass index (kg/m²)	28.8 ± 43.1	24.3 ± 3.6	0.357	23.9 ± 3.8	25.0 ± 3.3	0.094		
Past abdominal surgery	12 (15.0)	44 (20.3)	0.302	10 (15.9)	14 (22.2)	0.364	0.473	
Lesion				0.007	0.073			
Colon	39 (48.8)	143 (65.9)	0.176	30 (47.6)	26 (41.3)	0.127		
Rectum	41 (51.2)	74 (34.1)	0.357	33 (52.4)	37 (58.7)	0.127		
Obstruction	14 (17.5)	25 (11.5)	0.007	12 (19.0)	6 (9.5)	0.127		
Preoperative CEA (ng/mL)	3.5 ± 3.5	5.4 ± 11.3	0.031	3.54 ± 3.8	2.65 ± 2.1	0.109		
Preoperative CCRT	12 (15.0)	23 (10.6)	0.243	8 (12.7)	15 (23.8)	0.106		
ASA PS classification			0.404	0.714	0.999			
I	26 (32.5)	64 (29.5)	0.176	22 (34.9)	18 (28.6)	0.472		
II	45 (56.3)	119 (54.8)	0.357	32 (50.8)	38 (60.3)	0.355		
II	9 (11.3)	34 (15.7)	0.007	9 (14.3)	7 (11.1)	0.007		
Operative technique				0.007	>0.999			
Laparoscope	30 (37.5)	179 (82.5)	0.007	28 (44.4)	28 (44.4)	0.007		
Robot	50 (62.5)	38 (17.5)	0.007	35 (55.6)	35 (55.6)	0.007		

Values are presented as mean ± standard deviation or number (%). ASA, American Society of Anesthesiologists; PS, physical status; CCRT, concomitant chemoradiotherapy.

Table 2. Operative outcomes

Variable	Monopolar group	Advanced group	P-value
Operation time (min)	212.2 ± 72.4	214.0 ± 95.4	0.908
Blood loss (mL)	72 ± 69	54 ± 63	0.123
Conversion to open surgery	7 (11.1)	3 (4.8)	0.187
Adhesion	4 (6.3)	1 (1.6)	
Body habitus	2 (3.2)	1 (1.6)	
Locally advanced cancer	1 (1.6)	1 (1.6)	
Intraoperative complication	6 (9.5)	3 (4.8)	0.299
Bleeding	1 (1.6)	2 (3.2)	
Injury to organs	5 (7.9)	1 (1.6)	

Values are presented as mean ± standard deviation or number (%).

Table 3. Postoperative outcomes

Variable	Monopolar group	Advanced group	P-value
Sips of water (day)	4.6 ± 2.4	4.7 ± 5.5	0.950
Soft diet (day)	7.7 ± 4.2	7.0 ± 5.5	0.417
Length of hospital stay (day)	9.8 ± 3.3	10.4 ± 6.2	0.472
Morbidity within 30 days	22 (34.9)	17 (27.0)	0.335
Prolonged postoperative ileus	5 (7.9)	2 (3.2)	
Pseudomembranous colitis	5 (7.9)	1 (1.6)	
Anastomotic leakage	3 (4.8)	1 (1.6)	
Intraabdominal abscess	0 (0)	1 (1.6)	
Urinary retention	1 (1.6)	0 (0)	
Heart complication	2 (3.2)	0 (0)	
Wound complication	2 (3.2)	2 (3.2)	
Hematochezia/melena	2 (3.2)	3 (4.8)	
Pneumonia	0 (0)	1 (1.6)	
Ischemic colitis	0 (0)	1 (1.6)	
Chyle leakage	2 (3.2)	5 (7.9)	0.440
Clavien-Dindo classification	6.203		
I	6 (9.5)	7 (11.1)	
II	11 (17.5)	8 (12.7)	
Illb	4 (6.3)	1 (1.6)	
Reoperation	4 (6.3)	1 (1.6)	0.365
Mortality within 30 days	0 (0)	0 (0)	
Postoperative CEA (ng/mL)	1.57 ± 1.21	1.29 ± 0.91	0.152
Postoperative chemotherapy	25 (39.7)	25 (39.7)	>0.999

Values are presented as mean ± standard deviation or number (%).
severity according to the Clavien-Dindo classification \(P = 0.620 \) were comparable between the groups. Anastomotic site leakage occurred in 4 patients (3 patients in the monopolar energy group and 1 patient in the advanced energy group) who received reoperation as primary repair or diverting stoma. On the other hand, anastomotic site stenosis occurred in 1 patient of the monopolar energy group; who received surgical dilatation of stricture. No mortalities occurred within 30 days in both study groups. The same proportion of patients from each group (39.7%) received postoperative adjuvant chemotherapy (Table 3).

Pathologic outcomes
There were no significant differences in the pathologic outcome of resected tumors, such as mass size, tumor differentiation, pathologic T or N stage, lymphovascular invasion, tumor budding, and perineural invasion. The median numbers of harvested lymph nodes (monopolar, 19.2 vs. energy device, 20.1; \(P = 0.662 \)) and the number of tumor-positive lymph nodes (monopolar, 0.6 vs. energy device, 0.7; \(P = 0.714 \)) were similar in the 2 groups (Table 4).

Oncologic outcomes
In our study, median lengths of follow-up periods were 52.0 months for the whole study population, 52.9 months in the monopolar energy group and 51.1 months in the advanced energy group. Overall, 16 patients had recurrence (11 in the monopolar energy group, 5 in the advanced energy group), and 14 patients died (9 in the monopolar energy group, 5 in the advanced energy group). During the follow-up periods, the 5-year OS rates of the monopolar and advanced energy groups were 84.6% and 91.6% \((P = 0.276) \), and the 5-year DFS rates were 78.0% and 84.6% \((P = 0.328) \), respectively. Recurrence rate (17.5% vs. 7.9%) was higher in the monopolar energy group than the advanced energy group, and more systemic recurrences occurred in the monopolar energy group (8 cases, 12.7% vs. 4 cases, 6.3%), though these distributions of recurrence were not significantly different between the 2 groups \((P = 0.108 \text{ and } P = 0.332, \text{ respectively}) \).

We hypothesized that advanced energy devices may affect oncologic outcomes as they have greater tumoricidal and sealing effects around the lymphovascular chain than conventional monopolar devices. To investigate this, we performed a subgroup analysis of stage III patients (17 patients in the monopolar energy group and 12 patients in the advanced energy group). During the same follow-up period, the 5-year OS rates (76.5% and 83.3%, respectively; \(P = 0.682 \)) and 5-year DFS rates (70.1% and 75.0%, respectively; \(P = 0.736 \)) were comparable between the 2 subgroups (Table 5).

DISCUSSION
The current study showed that postoperative clinical outcomes, including operation time, amount of blood loss, length of hospital stay, and complication rates, did not differ between the groups using conventional monopolar devices and advanced surgical energy devices. In addition, we found that

Table 4. Pathologic outcome
Variable
Mass size, large diameter (cm)
Differentiation
Well
Moderate
Poorly, mucinous
\(pT \) stage
T1
T2
T3
T4
\(pN \) stage
N0
N1
N2
Stage (TNM, AJCC 7th ed)
I
II
III
Lymph node
Positive
Total
Lymphovascular invasion
Tumor budding
Perineural invasion

Values are presented as mean ± standard deviation or number (%). AJCC, American Joint Committee on Cancer.

Table 5. Oncologic outcomes
Variable
Follow-up (mo)
5-Yr OS rate (%)
5-Yr DFS rate (%)
Recurrence
Recurrence pattern
Systemic
Local
Both

Values are presented as mean ± standard deviation, percentage only, or number (%). OS, overall survival; DFS, disease-free survival.
The optimal technique for curative resection of colon cancer includes high ligation of the mesenteric vessels, wide excision of the colonic mesentery, and prevention of tumor cell spillage [21]. Especially, during lymph node dissection in CRC, surgeons should avoid spillage of residual tumor cells from lymphatic leakage because it can cause tumor recurrence and produce a poor prognosis [22,23]. It can be said that an advanced surgical energy device is more advantageous in the treatment of microscopic tumor cells around lymphovascular structures. We hypothesized that advanced surgical energy devices could allow less microscopic cancer cell spillage and have a more tumoricidal effect during lymph node dissection, and impact on oncological outcomes. However, there was no significant difference in postoperative chyle leakage rate and long-term oncologic outcomes between the monopolar energy group and advanced energy group, even if in the subgroup analysis of stage III patients. Additional preclinical studies and clinical studies using larger sample sizes on this issue are needed in the future.

In conclusion, the use of advanced surgical energy devices did not show a significant impact on operative and long-term outcomes compared with the conventional monopolar device in MIS for CRC.

ACKNOWLEDGEMENTS

Fund/Grant Support
None.

Conflicts of interest
No potential conflict of interest relevant to this article was reported.

ORCID iD
Woo Jin Song: https://orcid.org/0000-0002-9045-3657
Sung Uk Bae: https://orcid.org/0000-0002-7876-4196
Woon Kyung Jeong: https://orcid.org/0000-0001-8421-218X
Seong Kyu Baek: https://orcid.org/0000-0001-6427-8675

Author Contribution
Conceptualization, Formal Analysis, Project Administration: All authors
Investigation, Methodology: WJS, SUB
Writing – Original Draft: WJS, SUB
Writing – Review & Editing: All authors
REFERENCES

1. Jacobs M, Verdeja JC, Goldstein HS. Minimally invasive colon resection (laparoscopic colectomy). Surg Laparoendosc Endosc 1991;1:144-50.

2. Bae SU, Jeong WK, Baek SK. Robot-assisted colectomy for left-sided colon cancer: comparison of reduced-port and conventional multi-port robotic surgery. J Laparoendosc Adv Surg Tech A 2017;27:398-403.

3. Jaloun HE, Lee IK, Kim MK, Sung NY, Turkistani SA, Park SM, et al. Influence of the enhanced recovery after surgery protocol on postoperative inflammation and short-term postoperative surgical outcomes after colorectal cancer surgery. Ann Coloproctol 2020;36:264-72.

4. Colon Cancer Laparoscopic or Open Resection Study Group; Buuren M, Veldkamp R, Hop WC, Kuhry E, Jeekel J, et al. Survival after laparoscopic surgery versus open surgery for colon cancer: long-term outcome of a randomised clinical trial. Lancet Oncol 2009;10:44-52.

5. Juo YY, Hyder O, Haider AH, Camp M, Lidor A, Ahuja N. Is minimally invasive colon resection better than traditional approaches?: first comprehensive national examination with propensity score matching. JAMA Surg 2014;149:177-84.

6. Oh CK, Huh JW, Lee YJ, Choi MS, Pyo DH, Lee SC, et al. Long-term oncologic outcome of postoperative complications after colorectal cancer surgery. Ann Coloproctol 2020;36:273-80.

7. Milsom JW, Trencheva K, Sonoda T, Nandakumar G, Shukla PJ, Lee S. A prospective trial evaluating the clinical performance of a novel surgical energy device in laparoscopic colon surgery. Surg Endosc 2015;29:1161-6.

8. Allaix ME, Arezzo A, Giraudo G, Arolfo S, Mistrangelo M, Morino M. The Thunderbeat and other energy devices in laparoscopic colorectal resection: a single-center experience. J Laparoendosc Adv Surg Tech A 2018:28:1417-21.

9. Tou S, Malik AI, Wexner SD, Nelson RL. Energy source instruments for laparoscopic colorectal surgery. Cochrane Database Syst Rev 2011;(5):CD007886.

10. Milsom JW, Trencheva K, Sonoda T, Nandakumar G, Shukla PJ, Lee S. A prospective trial evaluating the clinical performance of a novel surgical energy device in laparoscopic colon surgery. Surg Endosc 2015:29:1161-6.

11. Hohenberger W, Weber K, Matzel K, Papadopoulos T, Merkel S. Standardized surgery for colonic cancer: complete mesocolic excision and central ligation: technical notes and outcome. Colorectal Dis 2009;11:354-65.

12. Liberman M, Kheresa M, Goudie E, Kazakov J, Thiffault V, Lafontaine E, et al. Pilot study of pulmonary arterial branch sealing using energy devices in an ex vivo model. J Thorac Cardiovasc Surg 2014:148:3219-23.

13. Seeboher D, Mogl M, Boas-Knoops S, Unger J, Schirmeier A, Chopra S, et al. Safety and efficacy of new integrated bipolar and ultrasonic scissors compared to conventional laparoscopic 5-mm sealing and cutting instruments. Surg Endosc 2012:26:2541-9.

14. Fagotti A, Vizzelli G, Fanfani F, Gallotta V, Rossitto C, Costantini B, et al. Randomized study comparing use of THUNDERBEAT technology vs standard electrosurgery during laparoscopic radical hysterectomy and pelvic lymphadenectomy for gynecologic cancer. J Minim Invasive Gynecol 2014;21:447-53.

15. Akagi Y, Adachi Y, Kinugasa T, Oka Y, Mizobe T, Shirouzu K. Lymph node evaluation and survival in colorectal cancer: review of population-based, prospective studies. Anticancer Res 2013;33:2839-47.

16. Nakamura Y, Hokuto D, Koyama F, Matsuo Y, Nomi T, Yoshikawa T, et al. The prognosis and recurrence pattern of right- and left-sided colon cancer in stage II, stage III, and liver metastasis after curative resection. Ann Coloproctol 2021;37:326-36.

17. Tanaka R, Gitelis M, Meiselman D, Abar B, Zapf M, Carbray J, et al. Evaluation of vessel sealing performance among ultrasonic devices in a porcine model. Surg Innov 2015;22:338-43.

18. Liang J, Fazio V, Lavery I, Remzi F, Hull T, Strong S, et al. Primacy of surgery for colorectal cancer. Br J Surg 2015;102:847-52.

19. Enriquez-Navascués JM, Borda N, Lizerazu A, Placer C, Elosegui JL, Ciria JP, et al. Patterns of local recurrence in rectal cancer after a multidisciplinary approach. World J Gastroenterol 2011;17:1674-84.

20. Kessler H, Hohenberger W. Extended lymphadenectomy in colon cancer is crucial. World J Surg 2013;37:1789-98.