SHORT COMMUNICATION

Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects

P Lopez-Legarrea1,2, R de la Iglesia1, AB Crujeiras3,4,5, M Pardo3,4, FF Casanueva6, MA Zulet1,3 and JA Martinez1,3

IRisin is assumed to be a relevant link between muscle and weight maintenance as well as to mediate exercise benefits on health. The aim of this study was to assess the possible associations between irisin levels and glucose homeostasis in obese subjects with metabolic syndrome (MetS) following an energy-restricted treatment. Ninety-six adults with excessive body weight and MetS features underwent a hypocaloric dietary pattern for 8 weeks, within the RESMENA randomized controlled trial (www.clinicaltrials.gov; NCT01087086). After the intervention, dietary restriction significantly reduced body weight and evidenced a dietary-induced decrease in circulating levels of irisin in parallel with improvements on glucose homeostasis markers. Interestingly, participants with higher irisin values at baseline (above the median) showed a greater reduction on glucose (P = 0.022) and insulin (P = 0.021) concentrations as well as on the homeostasis model assessment index (P = 0.008) and triglycerides (P = 0.006) after the dietary intervention, compared with those presenting low-irisin baseline values (below the median). Interestingly, a positive correlation between irisin and carbohydrate intake was found at the end of the experimental period. In conclusion, irisin appears to be involved in glucose metabolism regulation after a dietary-induced weight loss.

Nutrition & Diabetes (2014) 4, e110; doi:10.1038/nutd.2014.7; published online 24 February 2014

INTRODUCTION

Obesity is a worldwide health burden, accompanied by a number of comorbidities including glucose intolerance, insulin resistance and type 2 diabetes.1 In this context, the myokine irisin,2 which is a cleavage product of the type I membrane protein fibronectin type III domain-containing 5, has been hypothesized as a target to counteract obesity and type 2 diabetes.3,4 Irisin is expressed in the muscle and the adipose tissue and has been associated with adiposity and body weight in animals5,6 and humans.7,8 However, the precise role and underlying mechanisms concerning irisin actions and signaling pathways remain incompletely understood.

The aim of this research was to assess changes on circulating irisin concentrations in obese subjects presenting metabolic syndrome (MetS) features after a treatment designed to lose weight and to analyze the potential relationships of this myokine with glucose homeostasis after dieting.

MATERIALS AND METHODS

Study protocol

This research reports the findings of the 8-week intervention period of the RESMENA randomized intervention trial (www.clinicaltrials.gov; NCT01087086), which was conducted following the CONSORT 2010 criteria. A full list of inclusion criteria, as well as a complete description of the study methodology can be found in earlier publications.9,10 Briefly, participants were randomized into two intervention groups, with the same energy restriction (~30% E), but differing mainly in the carbohydrate/protein ratio and meal frequency: control group supplying 55% E from energy restriction (~30% E), but differing mainly in the carbohydrate/protein ratio and meal frequency: control group supplying 55% E from CHO and 15% E from proteins within a 3–5 meals per day pattern, and RESMENA group providing 40% E from CHO and 30% E from proteins within a 7 meals per day plan.

Subjects

Ninety-six adults (mean age = 50 years old; range 21–70 years old) with excessive body weight (mean body mass index = 35.9 kg m⁻²; range 26.9–49.4 kg m⁻²) suffering MetS according to the International Diabetes Federation criteria completed the intervention period. All the participants gave a written informed consent to participate as approved by the Ethics Committee of the University of Navarra (065/2009) and in accordance with the Declaration of Helsinki.

Participant’s dietary intake was assessed by means of 48-h weighed records at baseline and at the end of the intervention and further analyzed using the DIAL software (Alcea Ingenieria, Madrid, Spain). Subjects were asked to maintain their usual activity levels during the study, which was monitored at the beginning and endpoint with a validated 24-h physical activity questionnaire.9

Anthropometric measurements and body composition determinations were performed, as described elsewhere.9 Overnight fasting plasma levels of glucose and triglycerides were measured in an autoanalyzer Pentra C-200 (HORIBA ABX, Madrid, Spain) with specific kits from this company. Insulin concentrations were determined with an enzyme-linked immunosorbent assay kit (Merodia, Uppsala, Sweden) in a Triturus autoanalyzer (Grifols SA, Barcelona, Spain) and the homeostasis model (homeostatic model assessment-insulin resistance (HOMA-IR)) was applied to estimate insulin resistance.

Irisin plasma levels were determined using a commercial enzyme-linked immunosorbent assay kit following the manufacturer’s instructions (Irisin ELISA kit EK-067-52; Phoenix Pharmaceuticals, Inc., Burlingame, CA, USA),
on a spectrophotometric reader at a wavelength of 450 nm (Versamax Microplate Reader, East Falmouth, MA, USA). This test provided a range of detection of 0.066–1024 ng ml\(^{-1}\) and exhibited a coefficient of variation of 6–10% inter- and intra-assay. The samples were kept at \(\sim 80\) °C and were analyzed immediately after the experiment was ended.

Statistical analysis

The sample size of this secondary analysis was calculated for an \(\alpha = 0.05\) and a power of 80% based on the waist circumference reduction, as described elsewhere.\(^2\) Normality distributions of the measured variables were determined according to the Shapiro–Wilk test. Irisin plasma levels were not normally distributed, but based on the sample size \((n>60)\) a parametric test was performed. Indeed, after analysis with a log transformation of irisin values the statistical outcomes were maintained. Differences between baseline and endpoint values within groups were analyzed by a paired \(t\)-test. Analyses between dietary groups were performed with unpaired \(t\)-tests. A multiple linear regression analysis was applied in order to assess the potential relationships among irisin with anthropometric and biochemical measurements (95% confidence interval). The median value of irisin baseline concentrations was considered as the cutoff for analyzing the effect of high- or low-irisin levels on glucose regulatory factors, as previously applied.\(^2\) This tool is based on the assignment of the studied population into two groups of disease risk. The association between irisin levels and carbohydrate intake was assessed using the parametric Pearson correlation. Specific statistical analyses (analysis of covariance) were performed after excluding outlier values in order to control the regression to the mean phenomenon. Statistical analysis was performed using SPSS15.1 software (SPSS Inc., Chicago, IL, USA). An alpha level of 0.05 was set up for determining statistically significant differences. Data are reported as mean ± s.e.

RESULTS

At the beginning of the intervention, there were no differences between groups in any of the anthropometric and routine biochemical markers \((P > 0.05)\). After the intervention, an improvement (reduction) was observed in these measurements with apparently equal effectiveness between the two dietary treatments \((P>0.05, \text{Table 1})\), except for adiponectin, which was increased in both groups, but without reaching statistical significance. Changes in irisin concentrations were similar \((P>0.05)\) in the control group \((-87.3 \pm 18.4 \text{ ng ml}^{-1}\) as compared with the RESMENA group \((-59.8 \pm 11.8 \text{ ng ml}^{-1}\)), after following the energy-restricted treatment. Therefore, both groups were merged for subsequent analyses. Considering the whole sample, participant’s mean body weight loss was \(-6.9 \pm 3.0\) kg and irisin plasma concentrations diminished (Figure 1a) in association with changes in body weight \((r = 0.21; P = 0.046)\) and fat mass \((r = 0.22; P = 0.037)\). As the main objective of this study was to evaluate the potential role of irisin on glucose homeostasis and given that some of the participants were diabetic, a preliminary analysis separating non-diabetic and diabetic participants was also performed. Differences were found for glucose concentrations and HOMA index between both groups after the nutritional intervention with energy restriction, but similar outcomes were found concerning irisin concentrations (data not shown).

Similar values were found concerning physical activity assessments at the beginning and at the end of the intervention in both dietary groups. Moreover, the regression analysis showed no relationships between physical activity factor and irisin levels changes \((P = 0.736)\). An association of circulating glucose \((B = -0.134, 95\% \text{ confidence interval: } -0.245 \text{ to } -0.024; P = 0.018)\) and irisin concentrations changes was found, irrespective of confounding factors: gender, age, diet, body weight loss and irisin baseline values.

Interestingly, after adjusting for gender, age and weight loss, participants belonging to the high-irisin group at baseline \((>308.0 \text{ ng ml}^{-1})\) evidenced significantly greater reductions (Figure 1b) on glucose \((P = 0.022)\), insulin \((P = 0.021)\), HOMA index \((P = 0.008)\) and triglycerides \((P = 0.006)\), compared with those belonging to the low-irisin group at baseline \((<308.0 \text{ ng ml}^{-1})\). Furthermore, the decrease in irisin concentrations was significantly greater \((P < 0.001)\) within the group with high-irisin values at baseline \((-126.6 \pm 15.9 \text{ ng ml}^{-1})\) than within the lower irisinemia group \((-18.2 \pm 9.1 \text{ ng ml}^{-1})\). After 8 weeks of nutritional intervention, irisin concentrations were positively correlated with carbohydrate intake (cereals, pulse, fruits and vegetables; \(r = 0.234, P = 0.023\); Figure 1c).

DISCUSSION

This study evidenced that irisin \(\text{per se}\) may exert an effect on the reduction of glucose, insulin and triglycerides concentrations after prescribing an 8-week nutritional intervention to obese subjects with MetS traits.

Irisin is a recently discovered muscle-derived hormone, whose secretion is induced by exercise.\(^2\) This myokine has been shown to be able to increase energy expenditure, and therefore, it has been proposed to have a potential role in obesity and diabetes treatments.\(^1,2,12–14\) Since discovery, a number of original studies have addressed various aspects of the biology of irisin.\(^3,5\) However, the regulation and specific role of irisin in human’s glucose metabolism remain still unclear. Thus, the main objective of the current research was to investigate the potential relationships between irisin concentrations and glucose homeostasis, after dieting.

Table 1. Changes in selected anthropometric and biochemical parameters within each dietary group (control and RESMENA) after the 8-week intervention and comparison between groups

	Control group	RESMENA group	Difference between diet groups \((P\text{-value})\)
	Baseline	Endpoint	\(P\)-value
Body weight (kg)	99.5 ± 2.8	92.7 ± 2.7	<0.001
BMI (kg m\(^{-2}\))	36.2 ± 0.7	33.7 ± 0.7	<0.001
Fat mass (%)	39.1 ± 1.1	36.2 ± 1.1	<0.001
Fat mass (kg)	39.0 ± 1.6	33.7 ± 1.5	<0.001
Glucose (mg dl\(^{-1}\))	121.0 ± 5.0	108.0 ± 2.0	0.006
Insulin \((\mu\text{U ml}^{-1})\)	15.3 ± 1.7	9.3 ± 1.1	<0.001
HOMA	4.7 ± 0.6	2.6 ± 0.3	<0.001
Triglycerides \((\text{mg dl}^{-1})\)	176 ± 13	145 ± 10	0.005
Irisin \((\text{ng ml}^{-1})\)	412.3 ± 31.6	326.7 ± 22.6	<0.001
Leptin \((\text{ng ml}^{-1})\)	224.2 ± 2.3	148.4 ± 1.8	<0.001
Adiponectin \((\text{ng ml}^{-1})\)	13.6 ± 1.5	13.8 ± 1.3	0.863

Abbreviations: BMI, body mass index; HOMA, homeostasis model assessment.
The study was designed as a randomized controlled nutritional intervention comparing two energy-restricted dietary treatments. Both control and RESMENA dietary strategies proved to be effective for improving MetS disturbances by lowering anthropometric and biochemical markers, being these outcomes in agreement with other studies concerning hypocaloric diets. However, no differences between treatments were observed for any of the studied variables including irisin. For that reason, the sample was merged and considered as a whole for the subsequent analyses regarding irisin concentrations and its potential associations with glucose metabolism.

First, changes on irisin concentrations after the 8 weeks of nutritional intervention were evaluated. This study evidenced that irisin plasma concentrations decreased after the energy restriction program and the subsequent weight loss, independently of the dietary group. This finding is in agreement with a previous study that reported a reduction in irisin levels after surgically induced weight markdown.

Then, the potential role of irisin on glucose homeostasis-related parameters was analyzed in order to reach the main objective of the research. The prime finding of the current investigation was that higher irisin concentrations at the beginning of the intervention were associated with greater reductions on glucose and insulin concentrations as well as on the HOMA index, independently of body weight loss. Although this outcome should be carefully examined, similar results have been reported in children by Al-Daghri et al. where a crucial role for irisin in glucose homeostasis was suggested. On the other hand, those individuals with higher irisin concentrations at the beginning of the intervention also achieved higher beneficial effects regarding the lowering of triglycerides concentrations. This effect could be explained by the fact that triglycerides levels have been revealed to positively correlate with glucose levels. Thus, the effects of irisin on the changes of glucose concentrations may have been subsequently reflected on triglycerides. In addition, taking into account that irisin has been evidenced to increase energy expenditure, the greater reduction observed in triglycerides according to the high-irisin levels at baseline may be also due to a higher utilization of triglycerides as energy substrate. Previous studies have also evidenced an inverse association of irisin levels with triglycerides concentrations. Taking together these outcomes, it can be suggested that irisin may be involved in the regulation of glucose homeostasis in obese subjects presenting MetS features. Thus, irisin could mean a physiological adaptation to improve glucose tolerance, which is often impaired in obese subjects. Indeed, this behavior has been observed predominantly in individuals with metabolic disease as it is the condition of our study population. However, other studies reported associations between plasma irisin levels and important metabolic factors in non-diabetic subjects, but not in individuals with type 2 diabetes. Our suggested corollary would be that irisin is increased in metabolically altered situations and may diminish as a consequence of the weight loss, as irisin is then ‘less’ needed to restore the altered metabolic state. Thus, the theory about a possible irisin resistance appears similar to the well-known leptin insensitivity in obesity and cannot be discarded as has been reported for leptinemia and insulinemia after dieting.

The association between irisin concentrations and carbohydrate intake was related to the consumption of some sources of carbohydrates (cereals, pulse, fruits and vegetables). This outcome may be explained because the dietary modifications during the hypocaloric intervention evolved with shifts in carbohydrate consumption within the energy restriction. Thus, irisin could be increased in response to the dietary pattern, depending on the carbohydrate content, in order to prevent/improve the rise on glucose, insulin or HOMA index values, linked to latter damage on multiple organs. This finding is interesting given that modifying the macronutrient distribution is a recurrent approach for treating obese and MetS patients.

The observed results appear to be irrespective to the physical activity, as patients in this study maintained the same physical activity level along the intervention. The statistical adjustments for sex did not revealed specific differences between males and females concerning the analyzed irisin outcomes. A limitation of this study is that it demonstrated an association but not evidenced causation. Moreover, the methods to assess the dietary intake and physical activity were based on questionnaires, which could bias the results interpretation. Also, some other relevant measurements in relation to glucose metabolism, such as OGTT or Clamp-test would be appropriate. However, the design of the current trial based on a...
Nutritional intervention involving a quite large human sample is indeed a valuable feature enabling pre- and post-test comparisons within subjects. An effect of regression to the mean could not be attributed since pertinent statistical procedures were performed in order to control this phenomenon.

This research concerns the investigation of a potential role of irisin on impaired glucose homeostasis associated to obesity and, consequently, the metabolic interplay on glucose metabolism and insulin secretion control. Indeed, the search of predictive laboratory markers is of value for clinical practice.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the Government of Navarra (48/2009), the LE and MP by the ISCIII (Sara Borrell C09/00365 and Miguel Servet schemes). This research is collaborative study of the CIBERobn program on Fisiopatologia de la Obesidad y la Nutricion funded by the Institute Carlos III of the Spanish Ministry of Health, Madrid.

REFERENCES

1 Straughen JK, Trudeau S, Misra VK. Changes in adipose tissue distribution during pregnancy in overweight and obese compared with normal weight women. Nutr Diabetes 2013; 4: e84.
2 Bostrom P, Wu J, Jedrzychowski MP, Korde A, Ye L, Lo JC et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012; 481: 463–468.
3 Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—Correlation with body mass index, Peptides 2013; 39: 125–130.
4 Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW et al. Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications 2013; 27: 365–369.
5 Roberts MD, Bayless DS, Company JM, Jenkins NT, Padilla J, Childs TE et al. Elevated skeletal muscle irisin precursor FNDC5 mRNA in obese OLETF rats. Metabolism 2013; 62: 1052–1056.
6 Roca-Rivada A, Castelao C, Senin L, Landrove M, Baltar J, Crujeiras A et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8: e60563.
7 Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahone's F et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 2013; 98: E769–E778.
8 Huh JY, Panagiotou G, Mougiou V, Brinkoetter M, Varmvini MT, Schneider BE et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 2012; 61: 1725–1738.
9 Lopez-Legarrea P, de la Iglesia R, Abete I, Bondia-Pons I, Navas-Carretero S, Forga L et al. Short-term role of the dietary total antioxidant capacity in two hypocaloric regimes on obese with metabolic syndrome symptoms: the RESMENA randomized controlled trial. Nutr Metab (Lond) 2013; 10: 22.
10 Lopez-Legarrea P, De la Iglesia R, Abete I, Navas-Carretero S, Martinez JA, Zulet MA. The protein type within a hypocaloric diet affects obesity-related inflammation: the RESMENA project. Nutrition 2013; doi:10.1016/j.nut.2013.09.009.
11 Crujeiras AB, Goyenechea E, Abete I, Lage M, Carreira MC, Martinez JA et al. Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels. J Clin Endocrinol Metab 2010; 95: 5037–5044.
12 Castillo-Quan JL. From white to brown fat through the PGC-1alpha-dependent myokine irisin: implications for diabetes and obesity. Dis Model Mech 2012; 5: 293–295.
13 Kelly DP. Medicine. Irisin, light my fire. Science 2012; 336: 42–43.
14 Sanchis-Gomar F, Lippi G, Mayero S, Perez-Quilis C, Garcia-Gimenez JL. Irisin: a new potential hormonal target for the treatment of obesity and type 2 diabetes. J Diabetes 2012; 4: 196.
15 Bostrom PA, Fernandez-Real JM. Metabolism: irisin, the metabolic syndrome and follistatin in humans. Nat Rev Endocrinol 2014; 10: 11–12.
16 Katcher HI, Legro RS, Kunselman AR, Gillies PJ, Demers LM, Bagshaw DM et al. The effects of a whole grain-enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. Am J Clin Nutr 2008; 87: 79–90.
17 Al-Daghr2 N, Alkhafar K, Rahman S, Amer O, Vinodson B, Sabico S et al. Irisin as a predictor of glucose metabolism in children: sexually dimorphic effects. Eur J Clin Invest 2013; e-pub ahead of print 5 November 2013; doi:10.1111/eci.12196.
18 Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 2011; 60: 2441–2449.
19 Swick AG, Orena S, O’Connor A. Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat mass free. Metabolism 2013; 62: 1070–1073.
20 Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 2013; 59: 557–562.
21 Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab 2013; 98: 4899–4907.
22 Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK et al. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 2013; 100: 96–101.
23 Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011; 378: 169–181.
24 Makris A, Darcey VL, Rosenbaum DL, Komaroff E, Vander Veur SS, Collins BN et al. Similar effects on cognitive performance during high- and low-carbohydrate obesity treatment. Nutr Diabetes 2013; 3: e89.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/