Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Comment on Saposnik et al, page 3442

Soluble protein C receptor: why?

Margarethe Geiger MEDICAL UNIVERSITY OF VIENNA

In this issue of Blood, Saposnik and colleagues show that soluble endothelial-cell protein C receptor (sEPCR) is derived not only from proteolytic ectodomain shedding, but also from alternative splicing of A3 haplotype mRNA transcripts and direct secretion of a truncated sEPCR form.

The serine protease activated protein C (APC) is a major natural anticoagulant, which proteolytically inactivates the clotting factors Va and VIIIa. In addition, APC has potent anti-inflammatory and cytoprotective capabilities. PC circulates in plasma as a zymogen and is activated by thrombin bound to its endothelial receptor, thrombomodulin. Another protein important for the activation of PC is the endothelial protein C receptor (EPCR), which binds protein C and further enhances its activation by the thrombin/thrombomodulin complex.

EPCR is a 46-kilodalton (kDa) type I transmembrane protein, which is expressed mainly on the luminal endothelial cell surface of large blood vessels and which is homologous to major histocompatibility complex class I/CD1 family proteins. In addition to the transmembrane EPCR, a soluble form of EPCR (sEPCR) has been described in plasma. sEPCR binds PC/APC with an affinity similar to that of membrane EPCR. Binding of APC to sEPCR interferes with binding of APC to phospholipids and inactivation of factor Va. Furthermore, binding of PC to sEPCR does not enhance APC generation, suggesting a procoagulant effect of sEPCR.

Plasma levels of sEPCR show bimodal distribution: 80% of the healthy population have plasma levels between 75 ng/mL and 178 ng/mL, and 20% have levels between 200 ng/mL and 700 ng/mL. There are polymorphisms in the human EPCR gene that define at least 3 different haplotypes. One of them (haplotype A3) is associated with increased plasma levels of soluble EPCR. These increased plasma levels have been partially explained by increased shedding of this form.

Saposnik and colleagues have now identified a truncated form of EPCR mRNA that is much more abundant in A3 haplotype EPCR. The deleted sequence (390 base pairs) corresponds to the entire coding region of exon 4 and to a large part of its noncoding region. The truncated mRNA therefore encodes a protein that lacks the transmembrane and intracellular domains, and has a theoretical new C-terminal stretch of 56 amino acids. By transfecting cells with a cDNA that encodes the recombinant EPCR isoform, they also show that this form is not retained in the membrane, but rather is secreted. They also identify a sEPCR form in plasma samples from A3-carrying subjects, which is the same size as the protein arising from the alternatively spliced EPCR mRNA, suggesting that higher plasma levels of sEPCR in the A3-carrying population result not only from increased ectodomain shedding of membrane EPCR, but also from alternative mRNA splicing. Such a dual mechanism
Sizing up platelet defects

Paul F. Bray CARDEZA FOUNDATION FOR HEMATOLOGIC RESEARCH

In this issue of Blood, Ghevaert and colleagues show that a mutation in the cytoplasmic domain of integrin β3 is associated with dominantly inherited macrothrombocytopenia. This mutation is predicted to disrupt a conserved salt bridge with integrin αIIb, and constitutively activates the integrin.

Large platelets are often encountered in the evaluation of thrombocytopenias, but most often these are acquired conditions. A rather long list of inherited thrombocytopenias is now appreciated. Among the macrothrombocytopenias, the most commonly responsible genetic variations are heterozygosity for mutations in platelet glycoprotein Ibα and the Q43P polymorphism of β1 tubulin. The molecular regulation of platelet size is poorly understood, but circumstantial evidence supports a role for the platelet cytoskeleton and microtubular system. The lion’s share of this evidence stems from the study of genetic defects in inherited disorders of platelet size. Although these disorders are quite uncommon, an understanding of the molecular basis of platelet size is important because subjects with abnormally high platelet volumes have enhanced platelet reactivity and are at risk for recurrent ischemic coronary syndromes.2

Ghevaert and colleagues performed a thorough series of studies characterizing a pedigree for macrothrombocytopenia, with the mean platelet volume of the propositus measuring a whopping 17 fL. All affected individuals had heterozygous mutations: P53L in the gene encoding GPIbα (GP1BA), and D723H in the gene encoding integrin β3 (INTB3). At least 4 syndromes (Bernard–Soulier, DiGeorge, benign Mediterranean macrothrombocytopenia, and platelet-type von Willebrand disease) are associated with macrothrombocytopenia and GP1BA mutations. However, convincing data were provided to suggest that the GP1BA P53L mutation was not responsible for the phenotype in this pedigree, and molecular modeling predicted that the GP1BA P53L substitution would not affect von Willebrand factor binding. Platelets from subjects with the INTB3 D723H mutation showed spontaneous αIIbβ3 activation, and CHO cells expressing αIIbβ3-D723H displayed enhanced binding to immobilized fibrinogen. Intriguingly, in vitro–differentiated megakaryocytes with the β3-D723H mutation exhibited larger proplatelet buds than the wild type.

It was not long ago that molecular genetic studies were rather primitive compared with the thorough multidisciplinary approaches used by Ghevaert and colleagues to characterize this pedigree. Several novel findings are presented and questions raised. First,