加速度センサをはかる

Calibration of an Accelerometer

1. はじめに

スマートフォンやゲーム機のコントローラなど、今や加速度センサは身近なところまで広く普及している。この加速度センサの校正手法はこれまでにISO16063(1)やISO5347(2)などで定義されているが、これらの手法は加速度センサのパッケージの方向とセンサ主軸方向が一致していることが前提となっている。しかし、この前提は必ずしも保証されているとは言えない。たとえば3軸センサを例にとってみても、製造工程の都合上必ずしもセンサ同士が直交しているとは限らないのである。

簡単なため図1のように二次元の2軸センサの例を見てみよう。xy軸方向に二つのセンサが配置され、x軸方向のセンサをセンサ1、y軸方向のセンサをセンサ2とする。図1(a)に示すようにセンサ1がy軸方向に角度θだけ傾けていたとする。2つのセンサの感度はそれぞれk₁k₂[V/g]という値とする。y軸方向に1gの加速度がかかった場合、センサ1はk₁sinθ[V]、センサ2はk₂[V]の電圧を出力することになる。もし二つのセンサが直交していると仮定した場合、入力加速度ベクトルαは図1(b)に示すようにα=(gsinθ,g)と計算される。精密に加速度の向きと大きさを計測したい場合、センサが直交していないことは測定誤差の原因となることが理解いただける。

ここまで読んで、多軸同時に測定するだけなら重力を利用してセンサを何方向かに傾けて測定すればよいではないかとお考えになるような鋭い方も多いだろう。しかし実際の話はそう簡単ではない。加速度センサはオフセット電圧と呼ばれる基準圧電圧があまりわずかながら常に変動している。したがって、センサを静止させて3軸同時に重力を測定したとしても、センサからの出力電圧は一定ではない。重力の一定一定加速度を利用する方法では、このセンサ出力電圧の不安定さが建物の振動など、センサが置かれた環境に由来するノイズなのか、センサ自身の発するノイズなのかを区別することは困難である。したがって、物体の傾斜などを示したい場合、この加速度センサの出力電圧は時間の経過とともに変動する。そこでこのような場合、加速度センサの出力電圧の値は計測器の測定時に校正が必要となる。

2. 提案するセンサ校正手法

従来の校正手法は、単軸ごとに高精度のリニアモータなどで精密な正弦波を入力して感度の変動を検査している。これに対して本研究は、加速度センサの姿勢を実験室内の姿勢で持続したまま回転運動を入力する方法を提案する。両者の差を示したもののが図3である。従来法ではセンサ出力電圧の差が、配置角度のずれのいかなるか、センサの出力電圧の値を区別するためには、0°、90°、180°の3つの角度を設ける必要がある。これに対して提案手法は正弦波の入力電圧によってセンサ出力電圧を、回転運動入力と出力電圧の位相差によってサンプル角度をそれぞれせて求めることができる。

図1 直交していない多軸加速度センサ

(a) θだけ様出力されたセンサ
(b) 算出される加速度ベクトル

NII-Electronic Library Service
提案手法によって各センサの主軸方向と角度を全て知ることができれば、座標変換と角度補正によってセンサ同士の一部を正しく直交させていくことも、入力加速度を正確な三元ベクトルとして算出することが可能である。入力加速度の計算に必要なセンサの特性は、九つの成分を持つ2階のテンソルTで表現される。本研究では、上記テンソルTを角度で表現する方法を提案し、実験で示される。

したがって本手法を利用すれば、センサの角度は一様に正しく直交させることができ、センサの角度が正確に直交する場合には、速度が発生するため、試作した機構が用いられていることが望ましい。生産コストの低減も期待できる。

3. 提案機構と実験結果

提案機構の概念図を図4(a)に示す。加速度センサを配置するテーブルを2本以上の平行リンクで結び、どれか一つの軸を回転させばセンサは外枠に対して姿勢を保たれたまま自動で姿勢修正を行うことになる。センサを所定の姿勢に固定すれば、3軸同時正弦波の加速度が入力されることになる。試作機では機械的な安定性や加速度特性を考慮して本3本のリンクを用いている。

また、質量バランスのために各リンクにカウンタウェイトを配置している。

機械の特性上、センサの取付位置が変更しても回転半径に差異が生じない。また、原理的に回転軸角度が一定ならば必要とするトルクは粘性抵抗から生じるだけになる機構であるため、安定した入力加速度の発生が可能である。図4(b)に示す試作機の図4(b)に示す。本機構は回転角度および回転速度1回転あたり324,000パルスが得られるロータリエンコーダを使用しており、高精度な測定が可能である。

実際にあるMEMSデバイスの3軸加速度センサを本装置で検定したところ、センサに応じて方向を変える場合、実験で示される。本手法はセンサ個別に主軸方向と角度を同定できるため、センサの方向を把握する場合の対応が可能である。

4. 結論と今後の課題

平行リンクと円運動を利用した加速度センサの多軸同時検定方法を提案した。試作した構造によってあるMEMSデバイスの3軸センサを測定したところ、各センサの角度および方向成分を高精度で測定することができた。また、本研究は白山工業（株）による実装案内金を得て行われており、深く謝意を表したい。

文 献
(1) ISO 16063-1, Methods for the Calibration of Vibration and Shock Transducers Part 1: Basic Concepts, (1998).
(2) ISO 5347, Methods for the Calibration of Vibration and Shock Pick-ups, (1993).
(3) 梅田章ほか、三次元振動発生機とレーザ干渉計による三次元加速度計の三次元加速度計としての校正に関する研究。日本機械学会論 文集, C, 70-697 (2007), 38-43.