Synthesis, spectroscopic properties, crystal structures, DFT studies, and the antibacterial and enzyme inhibitory properties of a complex of Co(II) 3,5-difluorobenzoate with 3-pyridinol

Mustafa Sertçelik

Abstract
A new complex, [Co(DFB)₂(3-Pyr)₂(H₂O)₂] (where DFB = 3,5-difluorobenzoate, 3-Pyr = 3-pyridinol), is synthesized and characterized using different techniques (elemental analysis, Fourier transform infrared spectroscopy, and single-crystal X-ray diffraction). Looking at the crystal structure of the complexes, the cobalt atom is coordinated by two nitrogen atoms from two 3-Pyr ligands, two carboxylate oxygen atoms from two DFB anions, and two oxygen atoms from two water molecules. The complex has distorted octahedral geometry around the cobalt atom center complex and crystallizes in the P2₁/n space group (monoclinic system). Geometry optimization, frequency analysis, and energy quantum chemical calculations on the complex are performed by Density Functional Theory [B3LYP/6-31G (d,p) basis set] to predict the molecular properties. The novel complex is tested against the metabolic isoenzymes human carbonic anhydrases I and II. The novel complex shows Kᵢ values of 317.26 ± 23.25 µM against hCA I and 255.41 ± 48.05 µM against hCA II; the IC₅₀ values for these isoenzymes are 274.37 and 204.33 µM.

Keywords
Cobalt complex, 3,5-difluorobenzoate, 3-pyridinol, Density Functional Theory studies, antibacterial, enzyme inhibition

Date received: 9 March 2020; accepted: 17 April 2020
lowering of the intracellular blood pressure has been deemed beneficial. Acetazolamide is also used for the treatment and prevention of acute mountain sickness (also known as altitude sickness) and in some types of epilepsy.

In this study, a new complex of Co(II) 3,5-difluorobenzoate (DFB) with 3-pyridinol, [Co(C,H,F,O,),(C,H,NO),(H,O)], was synthesized and its structure was characterized by elemental analysis, Fourier-transform infrared (FT-IR) spectroscopy, and single-crystal X-ray diffraction methods. In addition, the antibacterial properties of the complex were investigated by the agar-well diffusion method against Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus. Geometry optimization and frequency analysis of the difluorobenzoate complex was performed using the DFT/B3LYP/6-31G(d,p) method. The TD-DFT/B3LYP/6-31G(d,p) method was used to obtain the molecular orbital energies of the complex.

Results and discussions

X-ray structural determination

The experimental details are given in Table 1. The asymmetric unit of the centrosymmetric title compound contains one half of the complex molecule (Figure 1). The metal atom is located on a center of symmetry (Figure 2). The molecule contains two DFB and two 3-Pyr ligands and two coordinated water molecules, all ligands being monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1′, O4′) in the equatorial plane around the Co atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms (N1, N1′) of the 3-Pyr ligands in the axial positions (Figure 2). The near equality of the C1–O1 [1.250 (4) Å] and C1–O2 [1.256 (4) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (4) Å in [Mn(diethylnicotinamide),4(4-chlorobenzoato),2(benzoato)4]2− (VII).

![Figure 1](image_url)

Table 1. Experimental details.

Crystal data	
Chemical formula	Co3H2CoF4N2O6
M, g/mol	599.35
Crystal system, space group	Monoclinic, P21/n
Temperature (K)	296
No. of measured, independent, and observed reflections	15,871, 2469, 2278
No. of parameters	191
SHELXS97, SHELXL97, ORTEP-3 for Windows, WinGX publication routines, and PLATON	

Co1 and O3 are −0.0891 (1) and −0.003 (3) Å away from the adjacent A and B rings, respectively. Hence, they are nearly co-planar with the corresponding rings. The dihedral angle between the planar carboxylate group (O1/O2/C1) and the adjacent benzene ring A (C2–C7) is 15.9 (2)°, while that between benzene ring A and pyridine ring B (N1/C8–C12) is A/B = 74.4 (1)°. In the crystal structure, the O–H···O hydrogen bonds (Table 3) link the molecules into a network.
of the structure. The π–π contacts between the benzene rings, Cg1–Cg1 [symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) −x + 3/2, y + 1/2, −z + 3/2; (iii) x−1, y, z; (iv) −x−1, −y + 1, −z + 1.] may further stabilize the structure, with a centroid–centroid distance of 3.804 Å.

Infrared spectra

In the IR spectra of the complex, the ν(O–H) vibration of the coordinated water molecules is seen at 3504 cm⁻¹. When we examine the synthesized complex, the carbonyl group COO⁻ asymmetric and symmetrical vibrations are observed at 1541–1390 cm⁻¹, respectively. The vibration of the coordinated water molecules is seen at 1052 cm⁻¹. In the IR spectra of the complex, the ν(O–H) vibration of water. In general, the calculated and theoretical FT-IR spectra were compared with the experimental data. The calculated bond lengths and angles are in agreement with the experimental data. The experimental value for the Co1–O2 distance is 2.049 Å and the calculated value is 1.942 Å. The Co1–N1 distance was 2.146 Å, while the calculated value is 1.962 Å. The Co1–O4 distance was found experimentally to be 2.149 Å and calculated theoretically as 2.274 Å, while the O1–C1 distance is the same experimentally and theoretically as 1.250 Å. The O2–C1 bond distance was reported experimentally as 1.256 Å and calculated theoretically as 1.285 Å. Co1–O2 and O2–C1 bonds are rotatable; however, the Co1–N1, Co1–O4, and O1–C1 bonds are not rotatable.

The experimental angle value of O2–Co1–N1 is 89.48° and the computational value is 89.77°. The experimental and theoretically calculated values for O2–Co1–O4 are 88.99° and 85.07°, respectively. The experimental and the theoretically calculated values for N1–Co1–O4 are 90.88° and 86.38°, respectively, while O1–C1–O2 is 124.4° experimentally and 126.69° theoretically.

All the molecular orbital energies (highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and energy gaps (E_{GAP} = E_{HOMO} − E_{LUMO}) of the complex were studied in dimethyl sulfoxide (DMSO). The energy gap value (eV) of the complex was calculated as 3.998 eV. This value is 3.763 eV in the gas phase. The energy gap, ionization potential, polarizability, dipole moment, electronegativity, electrophilicity index, electron affinity, and softness and hardness values of the complex are given in Table 5.

The electron density of the synthesized complex was investigated in DMSO. The blue region is electropositive, the reddish region is electronegative, and the green region is neutral. The carboxylate group (O2–C1–O1 and opposite) that interacts with water is electronegative. The hydrogen atom in the hydroxy group attached at the third position of the pyridine ring is electropositive and its oxygen atom is slightly electronegative. The other regions in the molecule are neutral (green).

Vibrational frequency analysis was studied for the complex in the gas phase and the calculated FT-IR spectra were compared with the experimental FT-IR spectra. The peak at about 3800 cm⁻¹ in the calculated spectrum is related to the hydroxy group on the pyridine. The large peak for the complex at 3143 cm⁻¹ shows an interaction of the carboxylate group with water. In general, the calculated and theoretical FT-IR spectra values are in agreement with each other (Figure 6).
Table 4. Calculated thermochemical values of the complex with B3LYP/6-31G(d,p) level of theory in gas phase.

	ε_0 (Hartree)	$\varepsilon_0 + \varepsilon_{ZPE}$ (Hartree)	$\varepsilon_0 + \varepsilon_{corr}$ (Hartree)	$\varepsilon_0 + H_{corr}$ (Hartree)	$\varepsilon_0 + G_{corr}$ (Hartree)
Complex	−3420.077	−3419.659	−3419.620	−3419.619	−3419.735
H$_2$O	−76.420	−76.398	−76.396	−76.395	−76.417

ε_{corr} is the total internal thermal energy, C_{tot} is the total constant volume heat capacity and S_{tot} is the total entropy. G_{corr} is the correction for the Gibbs free energy. H_{corr} is the correction for the enthalpy.

Table 5. The calculated parameters of the complex using B3LYP/6-31G(d,p) basis set at DFT/TD-DFT.

	Value
Polarizability (α)	327.056
LUMO energy (E_{LUMO})	−1.274
HOMO energy (E_{HOMO})	−5.272
Energy gap (E_{Gap})	3.998
Dipole moment (μ)	0.000252
Ionization potential (I)	5.272
Electron affinity (A)	1.274
Electronegativity (χ)	3.273
Chemical hardness (η)	1.999
Global softness (σ)	0.250
Electrophilicity index (ω)	0.003

$E_{\text{Gap}} = E_{\text{HOMO}} - E_{\text{LUMO}}$
$I = -E_{\text{HOMO}}$
$A = -E_{\text{LUMO}}$
$\chi = (I + A)/2$
$\eta = (I - A)/2$
$\sigma = 1/(2\eta)$
$\omega = \chi^2/(2\eta)$

Dipole moment unit is Debye (D). Polarizability unit is Hartree (a.u.). HOMO and LUMO energy, energy gap, electron affinity, ionization potential, chemical hardness, global softness, electronegativity, and electrophilicity index unit is electron volt (eV).

LUMO: lowest unoccupied molecular orbital; HOMO: highest occupied molecular orbital.
The complex significantly inhibited hCA II with K_i in the low micromolar range. K_i value was determined to be 317.26 ± 84.90 µmol/L against hCA II (Table 7). In comparison, the K_i for the standard CA inhibitor acetazolamide (AZA), a definitive hCA II inhibitor, was 433.22 ± 84.90 µmol/L against hCA II.

Conclusion

In this study, a new complex, [Co(DFB)$_2$(3-Pyr)$_2$(H$_2$O)$_2$], has been synthesized. The CoII atom is coordinated in a monodentate fashion with the oxygen atoms of the DFB anions, the nitrogen atoms of the 3-Pyr ligands, and the oxygen atoms of coordinated water molecules. The ratio of cobalt/DFB/3-Pyr ligands was determined as 1:2:2. The N2–O4 bonding sets around the metal center formed a distorted octahedral geometry. Geometry optimization, vibrational frequency analyses, and the molecular energy values (molecular orbitals) of the complex were studied using the B3LYP/6-31G(d,p) basis set in DFT/TD-DFT calculations. The experimental and theoretical values were compared with each other. The HOMO and LUMO energy values are negative, indicating that the structure is stable. The theoretical results obtained in this study are useful to obtain new complex derivatives as antimicrobial agents. The antimicrobial activity of the complex was investigated against *P. aeruginosa* (ATCC 27853), *K. pneumoniae* (ATCC 4352), *E. coli* (ATCC 25922), and Gram-positive *S. aureus* (ATCC) 6538. In addition, the complex had similar effects to those of commercially available neomycin X3385 and streptomycin X3385, but was less effective than ampicillin X3261. This novel complex would further studied for potential benefit from therapy of diseases such as epilepsy, gastric and duodenal ulcers, mountain sickness, glaucoma, osteoporosis, and neurological disorders.

Experimental

3,5-Difluorobenzoic acid (Alfa Aesar™), 3-pyridinol (Merck), sodium bicarbonate (Merck), and cobalt(II) sulphate heptahydrate (Merck) were used without any further purification. The C, H, and N percentages were measured using a LECO CHNS-932 elemental analyzer. FT-IR spectra were recorded on a Perkin Elmer Frontier™ FT-IR spectrometer from solid samples using a Diamond ATR accessory in the range of 4000–600 cm$^{-1}$. The crystal structure of the complex was determined on a Bruker SMART BREEZE CCD diffractometer.

Synthesis of the complex

To obtain sodium DFB, 3,5-difluorobenzoic acid (1.58 g, 10 mmol) and sodium bicarbonate (0.84 g, 10 mmol) were stirred at 60 °C in 100 mL of distilled water until complete removal of CO$_2$ gas. Next, CoSO$_4$.7H$_2$O (1.42 g, 5 mmol) and 3-pyridinol (1.22 g, 10 mmol) were dissolved in water (50 mL), and the obtained solution was added to the cobalt sulfate solution. The resulting mixture was allowed to crystallize. After 6–7 days, pink single crystals were obtained; crystals were filtered and washed with distilled water and then dried at room temperature. Anal. Calcd (%) for $C_{24}H_{20}CoF_4N_2O_8$ (molecular weight (MW) = 599.35): C, 48.09; H, 3.36; N, 4.72; Selected IR bands (cm$^{-1}$): δ(OH)$_{H_2O}$ 3504, ν(C–N)$_{py}$ 1052, ν(COO$^\cdot$)$_{as}$ 1541, ν(COO$^\cdot$)$_{s}$ 1390, (Δν 151), ν(Co–O) 643.
Computational details

The Gaussian 09 program \(^42\) was used for theoretical calculations and GaussView 6.0 \(^43\) and Avogadro \(^44\) were used to visualize the calculated values. The 6-31G(d,p) basis set of the B3LYP (Becke-3-Lee-Yang-Parr) \(^45,46\) functional correlation in Density Functional Theory (DFT) was used for geometry optimization and frequency analyses of the complex. In addition to the calculations in the gas phase, all stages were repeated in the DMSO as the solvent in order to investigate the solvent effects. TD-DFT (Time Dependent–Density Functional Theory) calculations were also calculated using the B3LYP/6-31G(d,p) basis set. The excited state properties were calculated as 50 single excited states via TD-DFT. Electron-density surfaces were displayed according to the self-consistent field (SCF) density matrix. All calculations were compared with experimental data.

Antibacterial properties

The antibacterial properties of the synthesized complex were investigated against Gram-positive \(S.\) aureus (ATCC 6538), Gram-negative \(E.\) coli (ATCC 25922), \(P.\) aeruginosa (ATCC 27853), and \(K.\) pneumoniae (ATCC 4352). Microorganisms obtained from microbiological environmental protection laboratories were cultivated in the research laboratories of Kafkas University Faculty of Engineering and Architecture and the obtained bacteria were used in experiments. The antimicrobial effects of the resulting molecules were investigated as biological applications in Mueller–Hinton agar (MHA) medium. First, the Mueller–Hinton broth (MHB) for activation of the bacterial stock was carried out for 24 h with incubation at 37°C. Bacteria which were standardized with 0.5 McFarland standard were seeded in sterile prepared petri dishes; 0.05 g of the synthesized complex was dissolved in 5 mL of DMSO and homogeneous solutions were prepared. Samples (50 \(\mu\)L) from the stock solutions were transferred into wells drilled 4 mm in diameter using an automated pipette. The inhibition zone was incubated at 37°C ± 1°C for 18–24 ± 2 h to determine the diameters.\(^{47-50}\) All inhibition zones were measured in millimeter.

Author’s Note

Crystallographic data for complex reported in this article have been deposited with the Cambridge Crystallographic Data Center as Supplementary Publication No. CCDC 1972765. Copies of these data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336033, or online via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk. The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Acknowledgements

I would like to thank Tuncer Hökelek, who provided support for X-ray analysis, Parham Taslimi, who provided support for the enzyme inhibition studies, and Mücahit Özdemir for his support in the DFT calculations.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Mustafa Sertçelik https://orcid.org/0000-0001-7919-7907

Supplemental material

Supplemental material for this article is available online.

References

1. Desiraju GR. Crystal engineering: the design of organic solids. Amsterdam, New York: Elsevier, 1989.

Table 6. Antibacterial zone diameters of complexes (mm).

Complex	\(P.\) aeruginosa	\(K.\) pneumonia	\(E.\) coli	\(S.\) aureus
Ampicillin X3261	26	16	15	20
Neomycin X3385	36	35	34	37
Streptomycin X3385	17	16	16	13

Table 7. The enzyme inhibition results of novel complex against human carbonic anhydrase isoenzymes I and II (hCA I and II).

Compounds	\(IC_{50}\) (\(\mu\)M)	\(K_i\) (\(\mu\)M)				
	hCA I	hCA II	hCA I	hCA II		
Novel Co (II) Complex	274.37	0.9736	204.33	0.9904	317.26 ± 23.25	255.41 ± 48.05
AZA\(^a\)	394.30	0.9683	337.86	0.9693	433.22 ± 55.30	384.14 ± 84.90

\(^a\)Acetazolamide (AZA) was used as a control for hCA I and II.
2. Saha S, Mishra MK, Reddy CM, et al. Acc Chem Res 2018; 51: 2957.
3. Singh R, Gautam N, Mishra A, et al. Indian J Pharmacol 2011; 43: 246.
4. Linder MC and Hazegh-Azam M. Am J Clin Nutr 1996; 63: 797.
5. Yamada K. Cobalt: its role in health and disease. In: Sigel A, Sigel H and Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Dordrecht: Springer Netherlands, 2013, p. 295.
6. Bito T and Watanabe F. Exp Biol Med 2016; 241: 1663.
7. Hatamie S, Ahadian MM, Zomorod MS, et al. Mater Sci Eng C-Mater Biol Appl 2019; 104: 109862.
8. Shahzadi T, Zaib M, Riaz T, et al. Arab J Sci Eng 2019; 44: 6435.
9. Gulea AP, Mitkevich NL, Chumakov YM, et al. Russ J Gen Chem 2019; 89: 1415.
10. Mayakannan M, Gopinath S and Vetrivel S. Mater Chem Phys 2019: 122282.
11. Yousef TA, Abu El-Reash GM, Abu AL-, et al. J Mol Struct 2019; 1197: 564.
12. Yang W, Liu H, Li M, et al. J Inorg Biochem 2012; 116: 97.
13. Khalaf-Alla PA. Appl Organomet Chem 2020; 34: e5628.
14. Nandanwar SK, Borkar SB, Wijaya BN, et al. Chemistryselect 2020; 5: 3471.
15. El-Tabl AS, El-Bahnasawy RM, Shakdofa MME, et al. J Chem Res 2010; 34: 88.
16. Abdel-Rahman LH, Abdelhamid AA, Abu-Dief AM, et al. J Mol Struct 2020; 1200: UNSP 127034.
17. Huseynova M, Medjdov A, Taslimi P, et al. Bioorganic Chem 2019; 83: 55.
18. Supuran C. T. Nat Rev Drug Discov 2008; 7: 168.
19. Lomelino CL, Mahon BP, McKenna R, et al. Bioorg Med Chem 2016; 24: 976.
20. Abbate F, Casini A, Owa T, et al. Bioorg Med Chem Lett 2004; 14: 217.
21. Cornelio B, Laronze-Cochard M, Miambo R, et al. Eur J Med Chem 2019; 175: 40.
22. Aksu K, Ozgeris B, Taslimi P, et al. Arch Pharm 2016; 349: 944.
23. Hökelek T, Çaylak N and Necefoğlu H. Acta Crystallogr Sect E Struct Rep Online 2008; 64: 505.
24. Hökelek T and Necefoğlu H. Acta Crystallogr Sect E Struct Rep Online 2007; 63: 821.
25. Hökelek T, Çaylak N and Necefoğlu H. Acta Crystallogr Sect E 2007; 63: 2561.
26. Hökelek T, Necefoğlu H and Balci M. Acta Crystallogr C 1995; 51: 2020.
27. Hökelek T and Necefoğlu H. Acta Crystallogr Sect C 1996; 52: 1128.