Neural network of bipolar disorder: Toward integration of neuroimaging and neurocircuit-based treatment strategies

Bo Bi, Dongfang Che and Yuyin Bai © The Author(s) 2022

INTRODUCTION
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dysfunctions in three domains including emotional processing, cognitive processing, and psychomotor dimensions. However, the neural underpinnings underlying these clinical profiles are not well understood. Based on the reported data, we hypothesized that (i) the core neuropathology in BD is damage in fronto-limbic network, which is associated with emotional dysfunction; (ii) changes in intrinsic brain network, such as sensorimotor network, salience network, default-mode network, central executive network are associated with impaired cognition function; and (iii) beyond the dopaminergic-driven basal ganglia-thalamo-cortical motor circuit modulated by other neurotransmitter systems, such as serotonin (subcortical–cortical modulation), the sensorimotor network and related motor function modulated by other non-motor networks such as the default-mode network are involved in psychomotor function. In this review, we propose a neurocircuit-based clinical characteristics and taxonomy to guide the treatment of BD. We draw on findings from neuropsychological and neuroimaging studies in BD and link variations in these clinical profiles to underlying neurocircuit dysfunctions. We consider pharmacological, psychotherapy, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions in BD. Finally, it is suggested that the methods of testing the neurocircuit-based taxonomy and important limitations to this approach should be considered in future.
advancement of sophisticated neuroimaging techniques, recent neuroimaging studies of BD demonstrate abnormalities in neural circuits supporting emotional response and regulation, and cognition processing, and producing and controlling motor behavior and the integration of sensory information. Therapeutic approaches based on the patterns of alterations in these neurocircuits and clinical factors varying across individuals could improve treatment efficacy and guide clinical practice. However, it remains unclear how these different clinical profiles are associated with specific pathophysiological mechanisms involved, in particular the brain regions and networks that ultimately support these functions or their usefulness in guiding treatment selection.

In this review, we enlarge on previous models of the neurocircuitry of BD to propose a heuristic neurocircuit-based taxonomy, which could be used to guide the diagnosis and treatment of the disorder in future. We present hypothetical links between underlying neurocircuit dysfunctions and the three domains of clinical presentation in BD and discuss how treatments that more specifically target these circuits may benefit patients and improve therapeutic response. We suggest ways in which this neurocircuit-based taxonomy could be tested in future research to support or refute our proposed links between aspects of clinical phenomenology across different mood states, specific neurocircuit alterations, and treatment methods. Likewise, the neurocircuits are not as segregated as they may appear in the following sections and highly interactive, and the neurocircuits are certainly more complex and not limited to the neurocognitive and behavioral alterations we describe here.

EMOTIONAL REGULATION AND PROCESSING DYSFUNCTIONS OF NEURAL NETWORK IN BD

Emotional hyper-reactivity and mood instability have a detrimental impact on functioning, relapses, and suicide attempts in BD patients. Excessive reactivity to negative events might be a core dimension of BD and could represent an endophenotype during both manic and mixed states in comparison to patients in remitted phases [7, 20]. Research in the field of affective neuroscience conducting neuroimaging studies sheds light on correlations between activities in different brain regions, and the findings can provide insights on the role of different regions in emotion regulation. In the past few decades, the increasing neuroimaging studies have demonstrated that the frontal-limbic connectivity abnormally is a promising biomarker of the pathophysiology and maintenance of BD, which can be considered as the core of affectivity [12, 21].

We will first provide an overview of the prefrontal cortical regions including the anatomy and the fronto-limbic functional connectivity that have been implicated in emotional processing. The functional localization and division of the human prefrontal cortex are orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and ACC [22]. The ventromedial prefrontal cortex (vmPFC) which develop relatively early comprises OFC, dmPFC, and ACC and are involved especially in the control of emotional behaviors, whereas the lateral prefrontal cortical regions (dlPFC and vlPFC) develop relatively late and are involved in higher executive functions [23]. The former neural system may be involved in automatic subprocesses, whereas the latter neural system may subserve voluntary subprocesses (Fig. 1). The combination of the functional and structural abnormalities in neural systems implicated in voluntary and automatic subprocesses of emotion regulation may underlie the mood instability of BD [24]. Those regions are the most densely connected with the amygdala and other subcortical limbic and paralimbic regions [25].

The fronto-limbic circuit includes subcortical and cortical brain regions involved in generating emotional responses (amygdala and nucleus accumbens) and evaluating whether those responses are appropriate or require regulation (vmPFC) [26]. The vmPFC regions relate to each other to form a network structurally and functionally that generates emotional responses and evaluates whether those responses are appropriate or require regulation (vmPFC). The ventral affective circuit is also connected with the hippocampus and the dorsal cognitive circuits, which includes dlPFC, dmPFC, dorsal caudate, and thalamus, and is involved in executive functions (e.g., working memory, planning) as well as emotional regulation (Fig. 2).

It is hypothesized that the abnormal emotional ventral system and hypoactive dorsal system result in a loss of homeostasis in emotional processing, which may contribute to mood liability in BD disorder. This ventral network is involved in identifying salient emotional stimuli and in mediating autonomic responses; while the dorsal system is usually involved in selective attention, planning and explicit regulation of emotional states, with its hypoactivation being underpinning of the unstable cognitive control of emotions and affect in BD [27]. The deficits of emotional processing and regulation in BD involve decreased activity of vlPFC and increased acuity of amygdala, striatal, and
mPFC [28, 29]. These abnormalities may be predominately within the left vmPFC regions implicated in automatic emotion regulation, and neuroimaging studies have demonstrated greater subcortical limbic activity (including amygdala, ventral striatum, and hippocampus) to emotional stimuli in adult BD during mania, depression and euthymic, compared to healthy individuals. Patients with BD showed hypoactivation of vlPFC, which also persist in euthymia and might represent a trait feature of BD [30]. More recent work suggests that BD patients show reduced connectivity between the vlPFC, ACC, OFC, and limbic areas across mood states [31–33].

Moreover, dysregulation of the amygdala by PFC seems to be crucial to better understand the pathophysiology of the disease. The amygdala is an evolutionarily ancient critical area within the fronto-limbic system that is responsible for flight/flight responses to threats, and is hyperactive in mania, whereas contrasting results have been found during depression [34]. Systematic review on functional connectivity between the amygdala and its projecting areas highlights the essential role of the amygdala in attributing the stimulus’s valence, influencing emotional, and behavioral responses [35]. Several investigators observed increased left amygdala activation in the manic group during facial affect matching, while other groups reported similar findings in BD individuals during depression and remission and with other tasks. Table 1 for a summary of the fronto-limbic system results of functional magnetic resonance imaging emotion studies in bipolar.

TREATMENTS TARGETING DYSFUNCTIONAL EMOTION REGULATION AND PROCESSING IN BD
Most of the treatment regimens of BD owe their discovery to combination of fortune, intellectual rigor, and the careful observation of human and animal phenotypes [36]. The understandings of neuroanatomical basis and pathophysiological underpinnings of BD are increasingly reflected in the treatments moving into clinical trial. Pharmacotherapy, cognitive-behavior intervention, and neuromodulation have been applied across all phases of the bipolar illness and are considered as evidence-based treatments for BD.

Current pharmacotherapy for BD is based on administration of mood stabilizers (lithium, valproate, carbamazepine, and lamotrigine) and increasingly, on the administration of second-generation antipsychotics. It is worth mentioning that lithium appeared to induce a rapid suppression of amygdala overactivation and to show substantial treatment response in BD. Results from neuroimaging studies in patients with BD treated with lithium support the hypothesis that enhancement of neuroplasticity is a potential mechanism underlying the therapeutic effects of lithium. Such studies have also revealed brain changes in both gray and white matter, especially in hippocampal volume [37, 38].

Currently, an increasing number of meta-analyses have evaluated the efficacy of cognitive-behavioral therapy (CBT) for BD [39–41]. CBT is based on the hypothesis that BD involves dysregulated cognitive reappraisal, which involves reconceptualization of the emotion-elicitng situations in a way that will decrease emotional intensity. The cognitive reappraisal aspect of CBT engages dorsal cognitive circuitry, i.e., the top-down dorsal prefrontal regions to downregulated overactivated fronto-limbic activity, which may benefit individuals with impaired emotion regulation (dorsal cognitive circuit dysfunction) [26]. CBT seems to be mediated by modulation of the amygdala-diPFC connectivity, and these findings lead to the hypothesis that the disturbance in effective connectivity from the dlPFC to the amygdala while reappraising in BD patients is due to insufficient prefrontal control. CBT, although not explicitly addressed in treatment, has been shown to reduce emotional symptomatology [42].

Neuromodulation holds promise for a vast number of medically refractory neurological and psychiatric disorders and has been guided by advances in neuroimaging and neurophysiology, which had led to new strategies for better targeting, identification of optimal stimulation sites, and understanding of its therapeutic mechanisms. Repetitive transcranial magnetic stimulation (TMS) is a dominant noninvasive stimulation treatment that delivers short magnetic pulses via an electromagnetic coil and is operated to transiently stimulate or inhibit specific brain regions. TMS has had a growing impact on the treatment of unipolar depression and has already been approved by the FDA for use in treatment-resistant depression [43]. Although there is no clear evidence available to base upon for using TMS in treatment of BP, but it is readily advantageous in similarly leveraging for use in treatment-resistant bipolar depression.

A recent review on TMS for BD suggests the potential of repetitive TMS for reducing depressive symptoms [44]. It has been shown that the TMS protocol over the right dlPFC yields a particular benefit for mania, while over the left dlPFC leads to improvement in depressive symptoms [45]. The first
Table 1. The fronto-limbic system results of fMRI emotion studies in bipolar.

Study	N	Paradigm	Method	Connections	Main findings
Versace et al. (2010)	E=17	Happy or sad faces	FC	Amy–OFC	For sadness: D > E > HS
	D=14				For happiness: D < HS
	HS=24				
Brady et al. (2017)	M=26	N	rsfMRI	Amy–ACC	M < E
	E=10		FC	Amy–SMN	M > E
	BD = 10				
Townsend et al. (2013)	E=26	Emotional task	PPI	Amy–VLPFC, ACC.	HS > E
	HS=26				
Vizueta et al. (2012)	D=21	Emotional task	FC	Amy–OFC	HS > D
	HS=21				
Anticevic et al. (2013)	E=68	N	Global brain connectivity and ROI	Amy–DLPFC	HS > E BD-1
	HS=51				
Radaelli et al. (2014)	D=52	Emotional task	Dynamic causal modeling	DLPFC–Amy	HS > D
	HS=40				
Lippard et al. (2021)	M=42	Emotional task	FC	ACC–Caudate	Non-R > HS
	R=21			ACC–Amy	R > baseline
	HS=41				
Mullin et al. (2012)	E=22	Emotional task	Ganger causality	ACC–Amy	HS > E
	HS=19				
Guo et al. (2020)	E=16	Cognitive task	FOCA	OFC–Amy	E < HS
	HS=16			SFG–Insula	
Hafeman et al. (2017)	BD=22	Emotional task	FC	VLPFC–Amy	B > HS/ADHD
	ADHD=30				
	HS=26				

BD bipolar, E euthymic, M mania, D depression, HS healthy subjects, FC functional connectivity, Amy amygdala, VLPFC ventrolateral prefrontal cortex, DLPFC dorsolateral prefrontal cortex, OFC orbitofrontal cortex, MPFC medial prefrontal cortex, ACC anterior cingulate cortex, ROI region of interest, PPI psychophysiological interaction, FOCA four-dimensional consistency of local neural activities, SFG superior frontal gyrus, ADHD attention deficit hyperactivity disorder.

Meta-analysis of 19 randomized controlled trials of TMS in the treatment of acute bipolar depression in 181 patients suggests that TMS is efficacious, with overall treatment efficacy in BD comparable with in major depression disorder (MDD). Furthermore, the TMS treatment is safe with regard to treatment-emergent affective switches [46]. A preliminary study also showed that deep TMS is a potentially effective and well-tolerated add-on for pharmacotherapy in resistant bipolar depressed patients [47, 48]. The reviewed evidence collectively suggests the potential of TMS in treating BD in both depression and mania phase. However, it should be noted that there is no adequately powered trial conducted yet to further support the efficacy of TMS in BD. When compared with sham treatments, most RCTs found no significant differences in depression symptoms [49]. Paul et al. examined the effectiveness of sequential (to the right dIPFC and then the left dIPFC) bilateral repetitive transcranial magnetic stimulation in the treatment of bipolar depression and found there was no significant difference in mean reduction in depression rating scale scores or response rates between active and sham stimulation [50]. The clear diagnosis of bipolar in the depressive phase, a stable platform of medications (we suggest mood stabilizer and antipsychotics), and a personalized approach to TMS stimulation are essential and likely needed. Table 2 for summary of rTMS and tDCS clinical trials in BD.

Cognitive alterations of neural network in BD

Mounting evidence suggests BD is associated with common cognitive deficits, including executive function, memory, social cognition, and response timing [51–53]. A large body of neuroimaging research has focused on topological network analyses of brain circuit, suggesting that modular and hierarchical structural networks are particularly suited for the functional integration of local neuronal operations that underlie cognitive function [54]. Synchronous activity and antisynchronous activity between neural elements at rest reflects the physiological process underlying complex cognitive ability. The tightly interconnected brain networks have emerged as the fundamental, dynamically organized elements of human brain function, consisting of patterns of synchronized activity across different brain regions [55–57]. These intrinsic brain networks are composed of hubs involved in important cognitive functions such as behavioral regulation and attention control and has transdiagnostic features that can serve as markers of affective and psychotic pathologies [58]. How cognitive processing emerges from interacting elements within the entire brain can be more meaningfully probed using a network theory framework. Neuroimaging research has revealed that the intrinsic brain activity, which is organized in distinct large-scale networks has been implicated in a variety of cognitive functions that are commonly disrupted in BD [59].

Although the neurophysiological basis of cognition and emotion are typically studied independently, recent work in this field increasingly highlight evidence showing substantial overlap in brain regions and networks involved in both emotion and cognitive processes. Cognition-emotion integration requires the dynamic coordination and flexible switching between four functional networks that are linked to key adaptive processes, including emotion regulation, goal-directed attentional control, decision making, and self-monitoring [60].

The DMN, also known as the “task-negative network”, was initially identified as brain regions showing consistently synchronized deactivation during tasks and prominent activation during rest [61] (Fig. 3). The CEN, also known as the “cognitive control...
network, includes the dlPFC, dorsal ACC, posterior parietal cortex, inferior temporal gyrus, and is involved in attention-demanding cognitive tasks and shows increased activity in frontal and parietal regions associated with top-down modulation of attention and working memory tasks [56, 62] (Fig.3). The DMN and the CEN are regions associated with top-down modulation of attention and cognitive tasks and shows increased activity in frontal and parietal inferior temporal gyrus, and is involved in attention-demanding cognitive tasks and shows increased activity in frontal and parietal regions associated with top-down modulation of attention and working memory tasks. mPFC medial prefrontal cortex, PCC posterior cingulate cortex, PCU precuneus cortex, lateral temporal cortex (LTC), temporal pole (TempP), hippocampus (Hip) is involved in, respectively, in multiple cognitive and affective functions, such as emotional processing, self-referential mental activity, mind wandering, recollection of experiences and possibly exerts a modulatory role during attentional demanding tasks. The central executive network (CEN), also known as the ‘cognitive control network, includes the dorsolateral prefrontal cortex (dlPFC), dorsal ACC, posterior parietal cortex, inferior temporal gyrus, and precentral gyrus, and is involved in attention-demanding cognitive tasks and shows increased activity in frontal and parietal regions associated with top-down modulation of attention and working memory tasks. The default mode network (DMN) extends from the prefrontal medial cortex (mPFC) to the posterior cingulate cortex (PCC), PCU precuneus cortex, lateral temporal cortex (LTC), temporal pole (TempP), hippocampus (Hip) is involved in, respectively, in multiple cognitive and affective functions, such as emotional processing, self-referential mental activity, mind wandering, recollection of experiences and possibly exerts a modulatory role during attentional demanding tasks. The central executive network (CEN), also known as the ‘cognitive control network, includes the dorsolateral prefrontal cortex (dlPFC), dorsal ACC, posterior parietal cortex, inferior temporal gyrus, and precentral gyrus, and is involved in attention-demanding cognitive tasks and shows increased activity in frontal and parietal regions associated with top-down modulation of attention and working memory tasks. mPFC medial prefrontal cortex, PCC posterior cingulate cortex, PCU precuneus cortex, LTC lateral temporal cortex, Hip hippocampus, dlPFC dorsolateral prefrontal cortex, dACC dorsal ACC, dmPFC dorsomedial prefrontal cortex, PPC posterior parietal cortex, ITG inferior temporal gyrus.

Fig. 3 The default mode network extending from the prefrontal medial cortex (mPFC) to the posterior cingulate cortex (PCC), PCU precuneus cortex, lateral temporal cortex (LTC), temporal pole (TempP), hippocampus (Hip) is involved in, respectively, in multiple cognitive and affective functions, such as emotional processing, self-referential mental activity, mind wandering, recollection of experiences and possibly exerts a modulatory role during attentional demanding tasks. The central executive network (CEN), also known as the ‘cognitive control network, includes the dorsolateral prefrontal cortex (dlPFC), dorsal ACC, posterior parietal cortex, inferior temporal gyrus, and precentral gyrus, and is involved in attention-demanding cognitive tasks and shows increased activity in frontal and parietal regions associated with top-down modulation of attention and working memory tasks. mPFC medial prefrontal cortex, PCC posterior cingulate cortex, PCU precuneus cortex, LTC lateral temporal cortex, Hip hippocampus, dlPFC dorsolateral prefrontal cortex, dACC dorsal ACC, dmPFC dorsomedial prefrontal cortex, PPC posterior parietal cortex, ITG inferior temporal gyrus.

Recent evidence from fMRI studies point to aberrant activity of networks in BD as common neuronal correlates of cognitive impairment [64–67]. It has been shown that cognitive impairments arise from disruption of neuroplasticity and associated functional as well as structural changes in cognition-relevant neurocircuits, with identified abnormalities in above four networks [8, 9, 68, 69]. The major finding indicates that BD is associated with alterations in both frontal and posterior DMN structures, mainly in the prefrontal, posterior cingulate and inferior parietal cortex [66]. Moreover, the hyperactivity of DMN has been clearly shown to ruminations and excessive internal (self-focused) thought, potentially playing a core role in depressive states. Martino et al. conducted a series of studies on BD investigating the different phases separately. It was found that the network balance in intrinsic brain activity was tilted toward the DMN in the depression phase but was shifted toward the SMN during mania [9]. The functional connectivity analyses revealed significantly stronger positive correlations between dlPFC and DMN (subgenual cingulate cortex) regions in asymptomatic patients with BD, suggesting BD patients may have greater difficulty switching from internally focused processing to task-related processing in the presence of competing cognitive-affective demands, compared to controls [70, 71]. Thus, the cognitive impairments in BD are likely caused by a failure to recruit key regions in the CEN to suppress task irrelevant DMN activity during cognitive performance [72].

In addition to decreased frontoparietal CEN recruitment, cognitive dysregulation in BD is also associated with disrupted

Table 2. Summary of rTMS and tDCS clinical trials in bipolar disorder.

Study	N	Design	Mood episode	Sessions	Main findings
Grisaru et al. (1998)	16	Randomized study	Mania	10	YMRS ↓ CGI ↓
Tavares et al. (2017)	50	RCT	Depression	20	HAMD ↓
Fitzgerald et al. (2016)	49	RCT	Depression	20	N.S
Kazemi et al. (2016)	30	Randomized study	Depression	20	Bilateral > Unilateral
Hare et al. (2011)	19	Open study	Depression	20	HAMD ↓
Hu et al. (2016)	38	RCT	Depression	20	HAMD ↓ MADRS ↓
Dell’Osso et al. (2015)	33	Randomized study	Depression	20	Verbal memory↑ executive functions↑
Kazemi et al. (2018)	20	Open study	Depression	10	N.S
Tortella et al. (2021)	59	Open study	Depression	10	N.S
Minichino et al. (2015)	21	Open study	Depression	15	Visuospatial memory↑ executive functions↑

YMRS young manic rating scale, CGI clinical global impression, HAMD Hamilton rating scale for MADRS Montgomery–Asberg depression rate scale N.S. not significant.
SN recruitment [73]. A recent study has shown that bipolar depression is distinguished from both unipolar depression and healthy controls by significantly altered bilateral dorsal anterior insula functional connectivity to the left inferior parietal lobule (IPL), a key node of the frontoparietal CEN [74]. Another major finding is the cardinal role of the SN in BD disorder, characterized by a decrease in FC in several frontal and parietal regions and an increase in FC with the postcentral gyrus, precentral gyrus, temporal, and occipital regions. This conclusion is consistent with the meta-analysis suggesting the frontoparietal network may be the core common deficit in psychiatric disorders [75]. It has also been shown that cognitive impairment occurs across the psychosis spectrum and is associated with reduced cingulo-opercular network (CON), and subcortical network efficiency observed across the psychosis spectrum [76]. For example, a recent meta-analysis focused on the structural and functional brain abnormalities in unaffected relatives of individuals with BD. The results revealed hyperactivations in the fronto-striatal regions as well as hypoactivation in parietal regions during cognitive tasks, activation in the amygdala during emotional processing, and in the OFC during reward-related tasks [77]. In unaffected relatives, the right inferior frontal gyrus had greater volume and higher activation during cognitive tasks [77]. Regarding the preclinical studies investigating cognitive function in BD, we conclude the patients’ cognitive impairments may also be exacerbated by a failure to suppress neural activity in the DMN, most consistently the medial PFC and be associated with the aberrant encoding and working memory-related activity in the fronto-parietal, temporal regions during acute mood episodes and remission [78, 79]. A highly consistent finding was that aberrant functional connectivity within subcortical and PFC structures was linked with impaired working memory performance in BD [80, 81].

In BD, graph analysis studies indicate distinctive abnormalities of node-level and inter-hemispheric connectivity patterns, altered DMN dysconnectivity and decreased white matter organization of anterior limbic system tracts supported by reductions in efficiency and clustering connecting cingulate and subcortical limbic structures [82]. Magioncalda et al. proposed that BD was primarily characterized by immune-inflammatory factors causing white matter damage mainly encompassing the limbic network. Consequent phasic reconfigurations of intrinsic brain activity might superimpose onto structural damage in gray matter. The extent of gray matter damage could be related to cognitive deterioration that persist even during euthymia [83]. Specifically, the decreased organization of posterior white matter has been linked to impaired cognitive functions rather than emotional symptoms of BD [84]. White matter abnormality is a consistent finding in BD, as shown by several structural imaging studies since the 1990s and diffusion magnetic resonance imaging studies since the 2000s [85]. The longitudinal investigations measuring dynamics of functional connectivity across different mood states in the same patients, have shown that interoceptive sensorimotor activation pattern is more frequent during hypomania compared to other mood states, and is predictive for more severe symptoms of irritability and motor agitation. In contrast, a default-mode activation pattern is more frequent during depression compared to other mood states and compared to controls [86]. The white matter changes seem to represent a core and stable alteration in BD, while alterations in brain network balances seem to vary across the manic and depressive phases (Table 3).

TREATMENTS TARGETING COGNITION REGULATION NETWORK DYSFUNCTIONS IN BD

In the past several years, studies have explored the application of rTMS in BD utilizing resting state electroencephalography (EEG) data. Changes in resting state networks (RSNs) between pre and post rTMS were explored utilizing EEG functional network analysis, evaluated by exact low-resolution electromagnetic tomography. Bilateral stimulation of dIPFC produced changes in the activity of the SMN and resulted in significant changes in the executive functions, verbal memory, and depression symptoms [87]. One study exploring deep (H1-coil) rTMS interventions focused on the dIPFC for cognitive improvement in BD shows that the deep rTMS is a safe antidepressant intervention in bipolar patients, who usually present marked cognitive impairment. Another randomized, placebo-controlled, double-blind trial also revealed that no cognitive impairment was found for BD patients treated with transcranial direct current stimulation over the dIPFC [88]. The optimal brain area to be stimulated to promote cognitive enhancement is the critical issue [89].

The studies on the neural correlates of TMS-induced cognitive function have shown that fMRI-based neurofeedback targeted at dIPFC and superior frontal gyrus and suppression of activity in DMN regions like the hippocampus in which activity was correlated with working memory performance resulted in cognitive improvement [90, 91]. Miskowiak et al. found that 8 weeks of treatment with erythropoietin (EPO) increased working memory capacity in UD and BD, which was accompanied by enhanced task-related activity in the right superior frontal gyrus and deactivation of the left hippocampus. Furthermore, Meusel et al. showed that cognitive remediation therapy increased task-
related activity in lateral PFC, medial frontal gyrus, superior temporal, and lateral parietal regions. Similarly, Haldane et al. found that lamotrigine treatment in remitted BD patients increased working memory-related activation over time in bilateral superior frontal gyri, cingulate gyri, and left medial frontal gyrus, even in the absence of changes in performance [92]. A preliminary study in youth with BD reported that the patients with bipolar depression treated with lamotrigine had decreased amygdala activation while viewing negative stimuli as depressive symptoms improved [93]. The same research group reported that potentially less efficient baseline activation of left dlPFC and increased baseline activation of left vlPFC during an affective task predicted greater treatment response of quetiapine in youth BD patients [94]. This study provides a neural signature for bipolar patient and indicates that individuals with BD can show both hypoactivity in the dlPFC and prolonged activation of mPFC simultaneously, suggesting the dorsal and ventral prefrontal subregions as promising candidates for biological markers of treatment response in bipolar depression. A better understanding of how these brain regions respond to different treatments may help guide more personalized treatments for patients with BD.

To date, nonpharmacological approach has been implemented to remediate cognitive impairments among people with BD using computerized cognitive training [95]. The cognitive remediation (CR) could tackle trait-like neurocognitive deficits in various cognitive domains such as attention, executive functions, verbal memory and learning, and social cognition. One study investigating the neural correlates induced by CR using fMRI showed increased activation in the left hippocampus that correlated with improvements in a recollection memory task, as well as increased activations in lateral and medial prefrontal and lateral parietal regions that correlated with memory improvements in a 2-back memory task [91].

PSYCHOMOTOR ALTERATIONS OF NEURAL NETWORK IN BD

Although historically neglected, one of the most important findings in research of core behavioral features of BD is hyperactivity, reckless actions, impulsivity, and agitation during the manic phase, as well as physical and mental sluggishness, akinesia, volitional inhibition, and decreased activity levels during the depressive phase of illness. Manic and depressive episodes of BD show opposite psychomotor symptoms and the exact neurophysiological mechanism of psychomotor excitation and inhibition in mania and depression remain unclear. There are only a few MRI studies on the neural correlates of psychomotor phenomena. These psychomotor symptoms may depend on distinct patterns of alterations in the SN, DMN, and CEN [9, 96, 97]. The SMN and related motor function are modulated by non-motor networks, such as DMN and CEN. The SMN mainly comprises the motor cortex (precentral gyrus, premotor and supplementary motor cortex) and middle cingulate cortex, somatosensory cortex (postcentral gyrus and parietal cortex), auditory cortex (superior temporal gyrus), as well as visual cortex (occipital cortex and associated dorsal parietal and inferior temporal areas), and is involved in exteroceptive awareness and motor activity [98]. The SMN is functionally connected with distinct regions of the thalamus, coherently with the structural connections, constituting segregated thalamo-cortical loops. The thalamo-cortical loops modulate the intrinsic activity and are directly connected with the external or internal environment, such that the sensory cortices receive inputs from the environment...
through the sensorial thalamic nuclei, while the motor and other specific cortices send outputs to the effector systems [99]. The thalamo-cortical loops are also connected with the basal ganglia and constitute different in-parallel cortico-striatopallido-thalamo-cortical loops. A recent study has reported that the BD patients show reduction in the cohesiveness of the SMN that likely disrupts the processing of sensorimotor information within the brain [100]. The alterations of interhemispheric dysfunction in SMN via corpus callosum using diffusion tensor imaging were reported in BD patients, which could be one of the pathophysiological bases of BD [101]. Other work has indicated that distinct changes within SMN and DMN during different phases of BD, i.e. predominant disruption of local connectivity within the SMN during depression, while disruption of both local and distant connectivity in the DMN during mania, consistent with the evidence showing an opposite pattern of alterations in mania and depression [102]. Recently, Martino and Magioncalda proposed a new theory that different combinations in neurotransmitter signaling favor network balancing into distinct functional brain states, which manifest in different combinations of excitation or inhibition in psychomotor, affectivity, and thought, resulting in the manic, depressive, and mixed states of BD [13]. In this model, intrinsic brain activity is organized in distinct units in accordance with connectivity patterns and related setting of input/output processing, underlying different behavioral/phenomenological dimensions. An external unit (mainly involving the SMN) responds to the external environment and sets the exteroceptive input/somatomotor output processing, underlying the psychomotor dimension. An internal unit (mainly involving the SN) responds to the internal/bodily environment and sets the interoceptive input/visceromotor output processing, underlying the affective dimension. An index of intrinsic neuronal activity that favors the motor response to incoming stimuli, the more of neuronal variability in the SMN, the more excitation of psychomotor activity following cyclothymic temperament. Neuronal variability in SMN is higher in cyclothymic temperament and lower in depressive temperament [103]. The disbalance between SMN and DMN has been detected in BD, which a predominance of SMN occurs in mania along with greater global signal representation in SMN areas and reduced connectivity within the DMN [9]. Conversely, a predominance of DMN occurs in depression, as suggested by tilting in SMN/DMN balance toward the DMN at the expense of SMN [9, 104]. Northoff et al has proposed that the psychomotor mechanisms and their biochemical modulation were an example of a dimensional approach as suggested in RDoC and spatiotemporal psychopathology [19]. They identified three neural mechanisms: (i) serotoninergic modulation of dopamine-based subcortical–cortical motor circuit, (ii) reciprocal balances of DMN and sensory networks with SMN, and (iii) local synchronization of SMN with the brain’s global activity [19].

TREATMENTS TARGETING PSYCHOMOTOR SYMPTOMS IN BD

The alterations in large-scale brain intrinsic activity, subcortical-cortical coupling, and neurotransmitters signaling, such as dopamine (DA) and serotonin (5-HT) have been independently detected in BD [9, 105, 106]. Based on the reported data, Conio et al. propose that the dopaminergic nigrostriatal and mesocorticolimbic pathway and serotonergic pathway modulate the balance of functional connectivity in SMN and DMN. The alterations in DA and 5-HT signaling lead to subcortical–cortical functional reorganization, which results in brain intrinsic activity (such as DMN and SMN) disbalancing, finally manifesting in manic or depressive states of BD [104]. Previous studies also demonstrate that altered DA and 5-HT transmission, which modulates activity of SMN and the DMN and balance between these networks, results in excitation or inhibition of affectivity, psychomotoricity, and thought [5, 13]. The use of some DA antagonists and partial agonists to treat acute mania, bipolar depression and maintenance treatment has been proved by the Food and Drug Administration (FDA). It is likely that the altered DA neurotransmission caused by the ligands, which is associated with FC and activity in the SMN, SN, and DMN, improves psychomotor activity as well as affective-related functions, and contributes to the clinical efficacy of these drugs.

The psychomotor abnormalities are characterized by specific symptom pattern and constellation of motor, emotional, and cognitive symptoms [107, 108]. The essential intermediate unit between the prefrontal areas and limbic affective areas during emotion regulation is the supplementary motor area (SMA), which has been involved in stimulus reconceptualization and cognitive demands [26]. The study investigating anatomy and function of the somatosensory cortex in euthymic bipolar women has shown increased resting state functional connectivity between the right somatosensory cortex and the brain regions involved with affective regulation (insula cortex, inferior frontal gyrus and OFC) [109]. Chronic motor cortex stimulation has been reported as a treatment method for Parkinson’s disease and...
neuropathic pain [110, 111]. A recent case series highlights the efficacy of add-on high-definition transcranial direct current stimulation (HD-tDCS) over sham stimulation in alleviating obsessive compulsive disorder with comorbid BD when anodal stimulation of pre-SMA was provided with right orbitofrontal placement of cathode [112]. The data from a few studies suggest that tDCS stimulating the prefronto-cerebellar improve the impaired neurorecognition, neurological soft signs, and sleep in BD during euthymia [113]. The improvement in sensory integration, motor sequencing and coordination, executive and visuospatial function after the tDCS session supports the hypothesis of prefronto-thalamic-cerebellar circuitry involvement in neurocognition with euthymic BD [114]. These stimulation methods (rTMS and tDCS) may be applied in SMN systems that the latter modulate subcortical–cortical motor circuits and thereby alleviate psychomotor symptoms.

CONCLUSION

The neurobiological models that draw links between internal cognitive deficits, emotional processing, psychomotor activity dysfunction and neurocircuitry are beneficial because this approach meaningfully increases our understanding of BD with respect to clinical management. We propose a heuristic model of how to integrate information generated by recent neuroimaging studies into guiding principles toward treatments of BD. We hypothesized that (1) the core pathological alteration in BD is damage of frontolimbic network that mainly results in emotional dysfunction; (2) beyond the changes in intrinsic brain network, such as SMN, SN, DMN, CEN are associated with alterations of cognitive function; and (3) beyond the dopamine-driven basal ganglia-thalamo-cortical motor circuit modulated by other neurotransmitter systems such as 5-HT (subcortical–cortical modulation), the SMN and related motor function modulated by other non-motor networks such as the
DMN are involved in psychomotor function. Although cognitive, emotional, and psychomotor domains are typically studied independently, basic research and emergent findings in BD suggest that there are important ties between cognitive deficits, the emotional and psychomotor disturbances observed in BD. Understanding these relationships is critical for elucidating relevant aspects related to functionality and vulnerability within BD and is essential for the development of novel treatment interventions. The following strategies based on neurocircuitry include: (1) enhancing PFC function to downregulate overactivated fronto-limbic activity via the engagement of top-down dorsal prefrontal regions, to alleviate impairments in emotion regulation; (2) modulating neurotransmitter transmission to balance the activities of excitatory and inhibitory neural networks involved in psychomotricity, affectivity and cognition; and (3) non-invasive neurostimulation in different cortical systems that modulate subcortical–cortical motor circuits to alleviate psychomotor symptoms. If the therapies of BD targeting specific circuit and corresponding clinical profiles, the treatment efficacy will be improved and guide clinical profiles.

REFERENCES

1. Solé B, Jiménez E, Torrent C, Reinares M, Bonnin CDM, Torres I, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20:670–80.

2. Faurholt-Jepsen M, Brage S, Vinberg M, Christensen EM, Knorr U, Jensen HM, et al. Differences in psychomotor activity in patients suffering from unipolar and bipolar affective disorder in the remitted or mild/moderate depressive state. J Affect Disord. 2012;14:457–63.

3. Brotman MA, Tseng WL, Olsavsky AK, Fromm SJ, Muhrer EJ, Rutenberg JG, et al. Fronto-limbic-straial dysfunction in pediatric and adult patients with bipolar disorder: impact of face emotion and attentional demands. Psychol Med. 2014;44:1639–51.

4. Caetano SC, Oivera RL, Glahn D, Fonseca M, Pliszka S, Soares JC. Fronto-limbic brain abnormalities in juvenile onset bipolar disorder. Biol Psychiatry. 2005;58:525–31.

5. Martino M, Magioncalda P, Conio B, Capobianco L, Russo D, Adavastro G, et al. Abnormal functional relationship of sensorimotor network with neurotransmitter-related nuclei via subcortical-cortical loops in manic and depressive phases of bipolar disorder. Schizophr Bull. 2020;46:163–74.

6. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171:829–43.

7. Henry C, Van den Bulke, Belliver F, Roy I, Swendsen J, M'Baila K, et al. Affective lability and affect intensity as core dimensions of bipolar disorders during euthymic period. Psychiatry Res. 2010;183:59–68.

8. Martino M, Magioncalda P, Huang Z, Conio B, Piaggio N, Duncan NW, et al. Contrast variability patterns in the default mode and sensorimotor net-works balance in bipolar depression and mania. Proc Natl Acad Sci USA. 2016;113:824–9.

9. Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral cortex (New York, NY: 1991). 2014;24:3116–30.

10. Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13:1–15.

11. Vai B, Bollentini I, Benedetti F. Corticolumbic connectivity as a possible biomarker for bipolar disorder. Expert Rev Neurother. 2014;14:631–50.

12. Martino M, Magioncalda P. Tracing the psychopathology of bipolar disorder to the functional architecture of intrinsic brain activity and its neurotransmitter modulation: a three-dimensional model. Molecular Psychiatry. 2021. https://doi.org/10.1038/s41380-020-00982-2.

13. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenn H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neuroscience. 2007;27:2349–56.

14. Dosenbach NU, Fair DA, Miezien FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. 2007;104:11073–8.

15. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. A dual-networks architecture of top-down control. Trends Cogn Sci. 2008;12:99–105.
United States: results observed with the first 100 consecutive cases of depression at an academic medical center. J Clin Psychiatry. 2012;73:567–73. 44. Gold AK, Ornelas AC, Cirillo P, Calderaro MA, Nardi AE, Nierenberg AA, et al. Clinical applications of transcranial magnetic stimulation in bipolar disorder. Brain Behav. 2019;9:e01419. 45. Grisaru N, Chudakov B, Yaroslavsky Y, Belmaker RH. Transcranial magnetic stimulation in mania: a controlled study. Am J Psychiatry. 1998;15:1608–10. 46. McGarr A, Karmani S, Arapapa R, Berlim MT, Thrithall J, Muradilhaharan K, et al. Clinical efficacy and safety of repetitive transcranial magnetic stimulation in acute bipolar depression. World Psychiatry. 2016;15:85–6. 47. Harel EV, Zangen A, Roht Y, Reti I, Braw Y, Levkovitz Y. H-coil repetitive transcranial magnetic stimulation for the treatment of bipolar depression: an add-on, safety and feasibility study. World J Biol Psychiatry. 2011;12:119–26. 48. Tavares DF, Myczkowski ML, Alberto RL, Valengo L, Rios RM, Gordon P, et al. Treatment of bipolar depression with deep TMS: results from a Double-Blind, Randomized, Parallel Group, Sham-Controlled Clinical Trial. Neuropsychopharmacology 2017;42:2593–601. 49. Hett D, Marwaha S. Repetitive transcranial magnetic stimulation in the treatment of bipolar disorder. Ther Adv Psychopharmacol. 2020;10.https://doi.org/10.1177/2045123820973790. 50. Fitzgerald PB, Hoy KE, Elliot D, McQueen S, Wambeek LE, Daskalakis ZJ. A meta-analysis of neuropsychological moderator variables. Bipolar Disord. 2011;13:334–42. 51. Bourne C, Aydemir O, Balanza-Martinez V, Bora E, Brissos S, Cavanagh JT, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand. 2013;128:149–62. 52. Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science 2013;342:1238411. 53. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360:1001–13. 54. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009;106:13040–5. 55. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41. 56. Bellani M, Bontempi P, Zovetti N, Gloria Rossetti M, Perlini C, Piccinelli M, et al. Abnormal functional connectivity between default and salience networks in pediatric bipolar disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:85–93. 57. Rai S, Griffiths KR, Breukelaar IA, Barreiros AR, Chen W, Boyce P, et al. Default-mode and fronto-parietal connectivity network during rest distinguishes asymptomatic patients with bipolar disorder and major depressive disorder. Transl Psychiatry. 2021;11:547. 58. Favre P, Poloian M, Fleury C, Bougerol T, Bacin M. Cerebral correlates of abnormal emotion conflict processing in euthymic bipolar patients: a functional MRI Study. PLOS ONE. 2015;10:e0134961. 59. Zarp Petersen J, Vaco C, Skovsen CF, Ott CV, Kjaerstad HL, Vieta E, et al. Neuronal underpinnings of cognitive impairment in bipolar disorder: a large data-driven functional magnetic resonance imaging study. Bipolar Disord. 2021. https://doi. org/10.1111/bdi.13100. 60. Goya-Maldonado R, Brodmann K, Meil T, Trost S, Dechent P, Gruber O. Differ- entiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum Brain Mapp. 2016;37:808–18. 61. Ellard KK, Zimmerman JP, Kaur N, Van Dijk KRA, Roffman JL, Nierenberg AA, et al. Functional connectivity between anterior insula and key nodes of frontoparietal executive control and salience networks distinguish bipolar depression from unipolar depression and healthy control subjects. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:473–84. 62. Tu PC, Bai YM, Li CT, Chen MH, Lin WC, Chang WC, et al. Identification of common thalamocortical dysfunction in four major psychiatric disorders. Schizophr Bull. 2019;45:1143–51. 63. Sheffield JM, Kandala S, Tammainga CA, Pearson LD, Keshavan MS, Sweeney JA, et al. Transdiagnostic associations between functional brain network integrity and cognition. JAMA Psychiatry. 2017;74:605–13. 64. Cattanussi G, Di Giorgio A, Wolf RC, Balestrieri M, Sambataro F. Neural sign- natures of the risk for bipolar disorder: a meta-analysis of structural and func- tional neuroimaging studies. Bipolar Disord. 2019;21:215–27. 65. Alonso-Lana S, Valenti M, Romaguera A, Sam C, Sarrió S, Rodríguez-Martínez A, et al. Brain functional changes in first-degree relatives of patients with bipolar disorder: evidence for default mode network dysfunction. Psychol Med. 2016;46:2513–21. 66. Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM. Changes in neural activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord. 2004;6:540–9. 67. McKenna BS, Sutherland AN, Legenkaya AP, Eyler LT. Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder. Bipolar Disord. 2014;16:289–99. 68. Stegmayer K, Usher J, Trost S, Henseler L, Tost H, Rietschel M, et al. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015;265:303–11. 69. O’Donoghue S, Holleran L, Cannon DM, McDonald C. Anatomical dysconnec- tivity in bipolar disorder compared with schizophrenia: a selective review of structural network analyses using diffusion MRI. J Affect Disord. 2017;209:217–28. 70. Magioncalda P, Martino A. A unified model of the pathophysiology of bipolar disorder. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01091-4. 71. Nortje G, Stein DJ, Radua J, Mataix-Cols D, Horn N. Systematic review and voxel- based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord. 2013;150:192–200. 72. Mahon K, Burdick KE, Szeszko PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neuropsychobiol Behav Rev. 2010;14:533–54. 73. Rey G, Bolton TAW, Gaviria J, Piguet C, Preti MG, Favre S, et al. Dynamics of amygdala connectivity in bipolar disorders: a longitudinal study across mood states. Neuropsychopharmacology. 2021;46:1693–701. 74. Kazemi R, Rostami R, Khomami S, Baghdadi G, Rezaei M, Hata M, et al. Bilateral transcranial magnetic stimulation on DLPFC changes resting state networks and cognitive function in patients with bipolar depression. Front Hum Neurosci. 2018;12:356. 75. Tortella G, Sampao-Jiuni-Benor, Moreno ML, Moffa AH, da Silva AF, Lafer B, et al. Cognitive outcomes of the bipolar depression electrical treatment trial (BETTER): a randomized, double-blind, sham-controlled study. Eur Arch Psychiatry Clin Neurosci. 2021;271:93–100. 76. Myczkowski ML, Fernandes A, Moreno M, Valengo L, Lafer B, Moreno RA, et al. Cognitive outcomes of TMS treatment in bipolar depression: safety data from a randomized controlled trial. J Affect Disord. 2018;235:20–6. 77. Miskowiak KW, Vinberg M, Glerup L, Paulson OB, Knudsen GM, Ehrenreich H, et al. Neural correlates of improved executive function following erythropoietin treatment in pediatric bipolar disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;1:45.
92. Haldane M, Jogiia J, Cobb A, Kozuch E, Kumari V, Frangou S. Changes in brain activation during working memory and facial recognition tasks in patients with bipolar disorder with Lamotrigine monotherapy. Eur Neuropsychopharmacol. 2008;18:48–54.

93. Chang KD, Wagner C, Garrett A, Howe M, Reiss A. A preliminary functional magnetic resonance imaging study of prefrontal-amygdalar activation changes in adolescents with bipolar depression treated with lamotrigine. Bipolar Disord. 2008;10:286–31.

94. Chang K, DelBello M, Garrett A, Kelley R, Howe M, Adler C, et al. Neurofunctional correlates of response to quetiapine in adolescents with bipolar depression. J Child Adolesc Psychopharmacol. 2018;28:379–86.

95. Bellani M, Biagianti B, Zovetti N, Rossetti MG, Bressi C, Perlini C, et al. The effects of cognitive remediation on cognitive abilities and real-world functioning among people with bipolar disorder: a systematic review. Special Section on “Translational and Neuroscience Studies in Affective Disorders”. Section Editor, Maria Nobile MD, PhD. This section of JAD focuses on the relevance of translational and neuroscience studies in providing a better understanding of the neural basis of affective disorders. The main aim is to briefly summaries relevant research findings in clinical neuroscience with particular regards to specific innovative topics in mood and anxiety disorders. J Affect Disord. 2019;257:691–7.

96. Mamah D, Barch DM, Repovs G. Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. J Affect Disord. 2013;150:601–9.

97. Meda SA, Rauho G, Windemuth A, O’Neil K, Berwise C, Dunn SM, et al. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proc Natl Acad Sci USA. 2014;111:E2066–75.

98. Wang P, Kong R, Kong X, Liegeois R, Orban C, Deco G, et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci Adv. 2019;5:eaat7854.

99. Amaral D. The functional organization of perception and movement. In: Kandel E, Schwartz J, Jessell T, Siegelbaum S, Hudspeth A, (eds). Principles of Neural Science - Fifth edition. USA: McGraw Hill 2013. p 356–369.

100. Doucet GE, Bassett DS, Yao N, Glahn DC, Frangou S. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry. 2017;174:1214–22.

101. Ishida T, Donishi T, Iwatani J, Yamada S, Takahashi S, Ukai S, et al. Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis. Helyon 2017;3:e00335.

102. Russo D, Martino M, Magioncalda P, Inglese M, Amore M, Northoff G. Opposing changes in the functional architecture of large-scale networks in bipolar mania and depression. Schizophr Bull. 2020;46:971–80.

103. Conio B, Magioncalda P, Martino M, Tumati S, Capobianco L, Escelisior A, et al. Opposing patterns of neuronal variability in the sensorimotor network mediate cyclothymic and depressive temperaments. Hum Brain Mapp. 2019;40:1344–52.

104. Conio B, Martino M, Magioncalda P, Escelisior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Mol Psychiatry. 2020;25:82–93.

105. Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord. 2009;11:787–806.

106. Kato T. Current understanding of bipolar disorder: toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci. 2019;73:526–40.

107. Bernard JA, Mittal VA. Updating the research domain criteria: the utility of a motor dimension. Psychol Med. 2015;45:2685–9.

108. Sarkheil P, Odysseos P, Bee I, Zvyagintsev M, Neuner I, Mathiak K. Functional connectivity of supplementary motor area during finger-tapping in major depression. Compr Psychiatry. 2020;99:152166.

109. Minuzzi L, Syan SK, Smith M, Hall A, Hall GB, Frey BN. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder. Aust N Z J Psychiatry. 2018;52:1075–83.

110. Velasco F, Argüelles C, Carrillo-Ruiz JD, Castro G, Velasco AL, Jiménez F, et al. Efficacy of motor cortex stimulation in the treatment of neuropsychiatric pain: a randomized double-blind trial. J Neurosurg. 2008;108:698–706.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions of individuals with BD and their families to BD neuroimaging research, without whose selflessness, no discoveries would be possible. We would further like to acknowledge the efforts of investigators across the globe and their willingness to share data and results which spurs research on BD neuroimaging.

AUTHOR CONTRIBUTIONS

BB, as corresponding author, read the literatures and proposed the ideas, then recapitulated them. DC contributed in response to the reviewer’s question in revised manuscript. So, the author was added to the revised manuscript. YB edited figures 1–6.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Bo Bi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022