Lazard’s elimination (in traces) is finite-state recognizable

Gérard DUCHAMP† and Jean-Gabriel LUQUE‡

†Laboratoire d’Informatique de Paris Nord Université Paris 13
(LIPN UMR 7030 du CNRS),
Avenue J.-B. Clément 93430 Villetaneuse, France
Gérard.Duchamp@lipn.univ-paris13.fr

‡ Laboratoire d’informatique de l’Institut Gaspard Monge
(UMR 8049 IGM-LabInfo),
Université de Marne-la-Vallée,
5, Boulevard Descartes,
775454 Champs-sur-Marne, France
Jean-Gabriel.Luque@univ-mlv.fr

August 30, 2016

Abstract
We prove that the codes issued from the elimination of any sub-
alphabet in a trace monoid are finite-state recognizable. This implies
in particular that the transitive fatorizations of the trace monoids are
recognizable by (boolean) finite-state automata.

Keywords: Trace monoid; Lazard’s elimination; automata with
multiplicities.

1 Introduction
Schützenberger ([5] Chapter 5) introduced the notion of a factorization of a
monoid M

$$M = \prod_{i \in I} M_i$$

(1)
where \((M_i)_{i \in I}\) is a subfamily of submonoids of the given monoid \(M\). When \(M = A^*\) is a free monoid, at the both ends of the chain, one has complete factorizations like Lyndon and Hall factorizations and the bisections \(|I| = 2\) [7].

A nice way to produce factorizations is to start with a bisection \(M = M_1M_2\) and refine the factors using a uniform process. Doing this, we could obtain a complete factorization for every trace monoid [3]. Trace monoids are defined as follows. Consider an alphabet \(\Sigma = \{x_1, \ldots, x_n\}\) and a commutation relation \(\vartheta\) (i.e. a reflexive and symmetric relation) on \(\Sigma\). The trace monoid \(M(\Sigma, \vartheta)\) is the quotient

\[
M(\Sigma, \vartheta) = \Sigma^*/\equiv_{\vartheta}
\]

(2)

where \(\equiv_{\vartheta}\) is the congruence generated by the relators \(ab \equiv ba\) where \((a, b) \in \vartheta\).

Later on, we adressed the question of bisecting a trace monoid so that the left factor be generated by a subalphabet (Lazard bisection) and the right factor be a trace monoid [5]. Doing so, we obtained a complete description of the factors and graph-theoretical criteria for the factorization. We conjectured that the trace codes so obtained could be recognized by finite-state automata [5].

In this paper, we prove that the answer to the conjecture is positive. This will be a consequence of the more general result that if a trace monoid \(M(\Sigma, \vartheta)\) is bisected as

\[
M(\Sigma, \vartheta) = L.M(B, \vartheta_B)
\]

(3)

with \(B \subset \Sigma\) and \(\vartheta_B = \vartheta \cap (B \times B)\), then the minimal generating set \(\beta(L)\) of \(L\) is recognizable by a finite-state, effectively constructible automaton. Here, we prove this fact and give the construction of the automaton.

The paper is organised as follows:

In section 2, we recall basic notions related to trace monoids and recognizability. In section 3, we prove that the left factor of a Lazard bisection is a recognizable set and we describe the construction of a deterministic automaton recognizing it in section 4. To end with, we explain in section 5 how to construct a deterministic automaton which recognizes the generating set of the left factor of such a bisection.

2 Trace Monoids

Trace monoids were introduced by Cartier and Foata with the purpose of studying some combinatorial problems linked with rearrangements (see [2]).
Next, this notion has been studied by Mazurkiewicz and many schools of Computer Sciences in the context of concurrent program schemes (see [9, 10]).

Let \(x \in \Sigma \) be a letter and denote \(\text{Com}(x) \) the set of letters which commute with \(x \)

\[
\text{Com}(x) = \{ z | (x, z) \in \vartheta \}. \tag{4}
\]

In particular, one has \(x \in \text{Com}(x) \). Let \(w \in M(\Sigma, \vartheta) \) be a trace, we will denote

\[
\text{T}A(w) = \{ x \in \Sigma | w = ux, u \in M(\Sigma, \vartheta) \} \tag{5}
\]

the terminal alphabet of \(w \).

As it is shown in [3], Lazard elimination occurs in the context of traces. Let \(B \) be a subalphabet of \(\Sigma \) and \(\vartheta_B = \vartheta \cap (B \times B) \). The trace monoid splits into two submonoids

\[
M(\Sigma, \vartheta) = LM(B, \vartheta_B) \tag{6}
\]

where \(L \) is the submonoid consisting in the traces whose terminal alphabet is a subset of \(\Sigma \setminus B \). Furthermore the decomposition is unique, which suggests that the following equality occurs in \(Z\langle \Sigma, \vartheta \rangle = Z[M(\Sigma, \vartheta)] \), the algebra of series corresponding to \(Z[M(\Sigma, \vartheta)] \) [4]. Thus,

\[
M(\Sigma, \vartheta) = L_SM(B, \vartheta_B) \tag{7}
\]

where \(S \) denotes the characteristic series of a subset \(S \subset M(\Sigma, \vartheta) \) i.e.

\[
S = \sum_{w \in S} w \in Z\langle \langle \Sigma, \vartheta \rangle \rangle. \tag{8}
\]

Let \(\phi \) be the natural surjection \(\Sigma^* \to M(\Sigma, \vartheta) \), the set of the representative words of a trace \(t \) is defined as \(\text{Rep}(t) = \phi^{-1}(t) \). We can extend this definition to trace languages \(\text{Rep}(L) = \phi^{-1}(L) = \bigcup_{t \in L} \phi^{-1}(t) \). A trace language is said recognizable if and only if its representative set is, and we say that an automaton recognizes \(L \) if and only if it recognizes \(\text{Rep}(L) \).

Example 1 Let \(a \) and \(b \) be two commuting letters, then the set \(\text{Rep}\{ab\} \) is recognized by the automaton
In fact, one can prove that a rational language is a set of representatives (i.e. it is saturated w.r.t. the congruence \equiv_θ) if and only if the corresponding minimal automaton shows complete squares as above.

We will denote $\text{Rec}(\Sigma, \vartheta)$ the set of recognizable sets of traces.

3 Recognizing the left factor

The \mathbb{Z}-rationality of the left factor L is a direct consequence of the unicity of the decomposition, which, in term of formal series, reads

$$M(\Sigma, \vartheta) = \frac{L M(B, \vartheta_B)}{\mathcal{S}}.$$ \hspace{1cm} (9)

where \mathcal{S} denotes the \mathbb{Z}-characteristic series of the set S (i.e. $\mathcal{S} = \sum_{x \in S} x$).

Indeed, by a classical result due to Cartier and Foata ([2] Theorem 2.4) the \mathbb{Z}-characteristic series of $M(\Sigma, \vartheta)$ is rational when the alphabet Σ is finite\(^a\) :

$$M(\Sigma, \vartheta) = \frac{1}{\sum_{\{a_1, \ldots, a_n\} \in \text{Cliques}(\Sigma)} (-1)^n a_1 \cdots a_n}.$$ \hspace{1cm} (10)

where the sum at the denominator is taken over the set $\text{Cliques}(\Sigma)$ of the cliques of Σ (i.e. commutative sub-alphabets). Hence, one obtains the

\(^a\)The formula holds also when the alphabet is infinite but the denominator is then a series.
rational equality

\[
L = \frac{1}{\sum_{\{a_1,\ldots,a_n\} \in \text{Clique}(\Sigma)} (-1)^n a_1 \cdots a_n} \times \left(\sum_{\{b_1,\ldots,b_n\} \in \text{Clique}(B)} (-1)^n b_1 \cdots b_n \right)
\]

(11)

Nevertheless, this remark is not sufficient to show that \(L \) is recognizable as a language. Furthermore, for traces, one has the strict inclusion \(\text{Rec}(\Sigma, \vartheta) \subset \text{Rat}(\Sigma, \vartheta) \). To prove that \(L \) is recognizable it suffices to find a construction of \(\text{Rep}(L) \) using only recognizable operations. For each letter \(x \in \Sigma \), let \(\text{TN}_x \) be the set of representative words of traces whose terminal alphabet does not contain \(x \). Remarking that \(\text{Rep}(L) \) is the representative set of the traces whose terminal alphabet contains no letter of \(B \), one has

\[
\text{Rep}(L) = \bigcap_{b \in B} \text{TN}_b.
\]

(12)

Hence, \(\text{Rep}(L) \) is recognizable if each \(\text{TN}_b \) is. But, one can easily verify that automaton \(A_b \) recognizes \(\text{TN}_b \). Thus, we have the proposition

Proposition 1 \(L \) is a recognizable submonoid of \(M(\Sigma, \vartheta) \).

4 A deterministic automaton for a terminal condition

One can compute a deterministic automaton recognizing \(L \) generalizing the construction of \(A_b \). We consider an automaton \(A_B = (S_B, I_B, F_B, T_B) \) such that:

1. The set \(S_B \) of its states is the set of all the sub-alphabets of \(B \),
2. There a unique initial state \(I_B = \{\emptyset\} \),
3. There a unique final state \(F_B = \{\emptyset\} = I_B \),
4. The transitions are

\[
T_B = \{(B', x, (((B' \cup \{x\}) \cap \text{Com}(x)) \cap B)) \}_{B' \subset B, x \in \Sigma}.
\]
One has

Proposition 2 The automaton A_B is a complete deterministic automaton recognizing $\text{Rep}(L)$.

Proof It is straightforward to see that such an automaton is complete and deterministic. Now, let us prove that it recognizes $\text{Rep}(L)$. As A_L is complete deterministic, for each word $w = a_1 \cdots a_n$ we can consider a state s_w which is the state of A_B after reading w. More precisely, we can define s_w as $s_w = s_n$ in the following chain of transitions

\[(\emptyset, a_1, s_1), (s_1, a_2, s_2), \cdots, (s_{n-1}, a_n, s_n = s_w).\] (13)

We first prove that if w is a word then $s_w = TA(t_w) \cap B$ where t_w denotes the trace admitting w as representative word. We use an induction process, considering as starting point: $(\emptyset, x, \{x\} \cap B)$ where $x \in \Sigma$. Let $w = a_1 \cdots a_n$ be a word of length n, such that s_w is the intersection between B and the terminal alphabet of trace t_w. Let $a_{n+1} \in \sigma$ be an other letter. One has, $(s_w, a_{n+1}, s_{wa_{n+1}}) \in T_B$. Hence, the set $s_{wa_{n+1}}$ is

\[s_{wa_{n+1}} = (s_w \cup \{a_{n+1}\}) \cap \text{Com}\{a_{n+1}\} \cap B = TA(t_w a_{n+1}) \cap B = TA(t_{wa_{n+1}}) \cap B.\] (14)

This proves our assertion. Then, the set of words w such that $s_w = \emptyset$ is exactly the set of representative words of L. \[\boxdot\]

Example 2 We consider the trace alphabet given by the following commutation graph

```
  e
 / \         \ / \\
 e -- d --- a ---- b
```

If we set $B = \{a, b\}$, then L is recognized by the following automaton (in the figure the only initial state and the only final state is \emptyset):
Each submonoid M of a trace monoid has an unique generating set which is the subset $G(M) = M \setminus M^2$.\footnote{The fact that $G(M)$ generates M is straightforward and the unicity comes from that the \mathbb{Z}-characteristic series of $G(M)$ is the inverse of the \mathbb{Z}-characteristic series of M in $\mathbb{Z}⟨⟨A⟩⟩$.}

In this section, we prove that $G(L)$ is recognizable and we construct an automaton $A_β$ which recognizes it. The automaton $A_β$ is obtained from A_B by adding two states F, H, choosing F as final state instead of \emptyset and modifying the transitions in such a way that if a letter of $Z = A - B$ is read, the state reached belongs in F, H and the other states become unreachable.

More precisely, one considers the automaton $A_β = (S_β, I_β, F_β, T_β)$ obtained from the automaton $A_B = (S_B, I_B, F_B, T_B)$ computed in the previous section as follows:

1. The set of its states $S_β$, is the set of the sub-alphabets of B plus two states F and H,
2. There is a unique initial state $I_β = \{\emptyset\}$,
3. There is a unique final state $F_β = \{F\}$,
4. The transitions are

\[
T_β = T_{B\rightarrow B} \cup T_{B\rightarrow F} \cup T_{B\rightarrow H} \cup T_{F\rightarrow H} \cup T_{H\rightarrow H}
\]
where

(a) $T_{B\to B} = \{(B', b, B'') \mid B', B'' \subset B, b \in B, (B', b, B'') \in T_B\}$,

(b) $T_{B\to F} = \{(B', z, F) \mid (B', z, \emptyset) \in T_B, B' \subset B, B' \neq \emptyset, z \in Z\}$,

(c) $T_{B\to H} = \{(B', z, H) \mid (B', z, B'') \in T_B, B', B'' \notin \{\emptyset, F, H\}, z \in Z\}$,

(d) $T_{F\to H} = \{(F, x, H) \mid x \in \Sigma\}$,

(e) and $T_{H\to H} = \{(H, x, H) \mid x \in \Sigma\}$.

Proposition 3 The automaton A_β recognizes $\text{Rep}(G(L))$.

Proof The automaton is almost the same as A_B. As for A_B, if a word of B^* is read, the automaton is in the state corresponding to its terminal alphabet. The difference appears when a letter of Z is read, if it is read from the \emptyset state the automaton goes to the state F. Consider now a word $w = w'z$ with $w' \in B^+$, $z \in Z$. We denote δ_w the state of the automaton after reading w (this definition makes sense as, like A_B, A_β is deterministic). Now, if $\{z\} = TA(w'z)$, then $(\delta_w', z, F) \in T_{B\to F}$ which means that w is recognized by A_β, otherwise $(\delta_w', z, H) \in T_{B\to H}$ and w is not recognized by A_β. Furthermore, for each $z \in Z$ and $b \in B$, $\delta_{w'zaw''} = H$ (for each $w', w'' \in \Sigma^*$). This ends the proof.

Example 3 Consider again the example (2). Then, β is recognized by the automaton

![Diagram](image-url)
6 Conclusion

The factorisations of free monoids (or in a more general setting of a monoid constructed by generators and relations) is a relevant topic in the context of the theory of codes [1]. Lazard bisections, or more generally rational bisections [7], play a role in the construction of bases of free Lie algebras [11] and the study of circular codes [1, 11]. A natural question asks if it is possible to generalize these properties to other monoids in particular when the free module over these monoids can be endowed with a shuffle coproduct [6]. The results contained in the paper consist in a step in the study of these problems for the trace monoids. The role played by the Lazard bisections in this context is not still completely known (see [3, 5] for some results).

References

[1] J. Berstel and D. Perrin, Theory of codes (Pure and applied Mathematics Acad. Press. Inc., 1995).

[2] P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lect. Not. In Math., 85 (1969).

[3] G. Duchamp and D. Krob, Factorisations dans le monoïde partiellement Commutatif libre, C.R. Acad. Sci. Paris, 312, série I (1991), 189-192.

[4] Duchamp G., Krob D., Combinatorics on traces, Ch II du ”Book of traces” (Ed. G. Rozenberg, V. Diekert), World Scientific (1995).

[5] G. Duchamp and J.-G. Luque, Transitive factorisations of partially Commutative free monoids and Lie algebras., Discrete Math., 246 (2002).

[6] G. Duchamp and J.G. Luque, Congruences compatible with the shuffle product, proceeding of Formal Power series and algebraic combinatorics FPSAC’00, Moscow, 2000

[7] G. Duchamp and J.-Y. Thibon, Bisections reconnaissables, Theoretical Informatics and Applications, 22 (1988), 113-128, (Gauthiers-Villars).

[8] N. Lothaire, Combinatorics on words, Cambridge University Press (1997).
[9] A. Mazurkievicz, *Concurrent program schemes and their interpretation*, (DAIMI Rep., PB 78, Aarhus University, 1977).

[10] A. Mazurkievicz, *Traces, histories and graph: instances of process monoid*, Lect. Not. in Comp. Sci., **176**, 115-133 (1984).

[11] C. Reutenauer, *Free Lie Algebras* (Oxford University Press, New-York, 1993)

[12] G. Rozenberg, V. Dieckert, *The Book of traces* (World Scientific, 1995).

[13] G.X. Viennot, *Heaps of pieces*, Lect. Notes in Math., **1234** (1986), 321-350.