Expression of recombinant antibodies

André Frenzel*, Michael Hust and Thomas Schirrmann

Abbottion Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany

Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

Keywords: recombinant antibody, procaroytes, yeast, fungi, insect cells, mammalian cell, transgenic organisms

INTRODUCTION

Today, antibodies are used for several applications in research, diagnostics, and therapy. They are used in many standard assays such as immunoblot, flow cytometry, or immunohistochemistry. In addition this, the emerging field of proteome research has a huge need of binders against different protein antigens and splice variants (1, 2). Moreover, recombinant antibodies are used for the diagnosis of different pathogens (3–5) or toxins (6, 7). In the past decade, several antibodies for therapeutic applications have been developed (8, 9), primarily targeting inflammatory or tumor diseases (10). In 2010, sales of approved therapeutic monoclonal antibodies in the USA and EU reached 50 billion US dollars (11).

For the detection of different antigens, polyclonal antibodies are widely used in research and diagnostics. These sera contain a large and diverse amount of different antibodies with unknown specificities. However, polyclonal non-human antibodies may exhibit an immune response in human beings that hampers the therapeutic use for example after snake bites (12). Therefore, the production of monoclonal antibodies (mAbs) by hybridoma technology was a significant milestone (13) for the generation of antibodies for therapeutic use. As this technology is based on the fusion of antibody producing spleen cells from immunized mice or rats with immortal myeloma cell lines, its main obstacle is the inefficient immune response to highly toxic or conserved antigens. In addition, nearly all antibodies which are currently in clinical development are of human-origin or at least humanized in some aspect (9, 14, 15) to prevent immunogenicity. Consequently, transgenic animals, especially mice, have been developed which contain a human immunoglobulin gene repertoire (16, 17) solving the problem of immunogenicity but not the need of an efficient immune response after immunization. Finally, in vitro selection technologies such as antibody phage display or ribosomal display provide a solution for the generation of human antibodies (18–22).

These new antibody generation technologies have increased the amount of antibodies for different applications and, therefore, also the need of efficient production systems. Immunoglobulin G (IgG) is a heterotetrameric molecule consisting of two heavy and two light chains, respectively, which are connected via disulfide bonds. Heavy and light chains (HC and LC) also contain intramolecular disulfide bonds for stabilization (23). These structural properties require a sophisticated folding apparatus as well as an oxidizing environment for the generation of disulfide bonds. Consequently, many traditionally expression hosts do not provide these mechanisms for efficient production of IgGs. Therefore, smaller antibody fragments have been developed which combine easier production with full antigen binding capacity of an IgG (Figure 1). In addition, the development of smaller fragments was the basis for most of the in vitro antibody generation systems (18–22). These antibody fragments can be used for applications, where epitope binding is sufficient for the desired effect including therapeutic applications such as virus neutralization or receptor blocking.

The smallest antigen binding fragment of immunoglobulins maintaining its complete antigen binding site is the Fv fragment, which consists only of variable (V) regions. A soluble and flexible amino acid peptide linker is used to connect the V regions to a scFv (single chain fragment variable) fragment for stabilization of the molecule (24), or the constant (C) domains are

Abbreviations: IgG, immunoglobulin G; mAb, monoclonal antibody.
antibodies (dAb) (36, 37). The smallest antibody fragments are bispecific antibody formats combining two different antigen binding domains like immunoglobulin CH3 domains (27, 28) or minibodies (miniAbs) comprising different formats consisting of scFvs linked to oligomerization domains like immunoglobulin CH3 domain (28), leucin zipper, helix turn helix motif streptavidin, or scFv-scFv tandems (29–31). Bispecific antibody formats combine two different antigen binding domains in one molecule (32–34). The smallest antibody fragments are VHH of cameloid heavy chain antibodies (35) and single domain antibodies (dAb) (36, 37).

For most therapeutic applications, the Fc moiety of an immunoglobulin is essential for the method of action as it mediates the effector functions such as cellular dependent cytotoxicity or the activation of the complement system. Therefore, antibody fragments have been fused to the Fc domain to regain effector functions and avidity (38, 39). Figure 1 depicts some of these antibody formats that have been developed for different applications.

ANTIBODY PRODUCTION IN PROKARYOTIC HOSTS

GRAM-NEGATIVE BACTERIA

Escherichia coli is the most important production system for recombinant proteins reaching volumetric yields in the gram per liter scale for extracellular production (40–42). For production of functional antibody fragments, the key to success was the secretion of both V chains into the periplasmic space of *E. coli* where the oxidizing environment allows the correct formation of disulfide bonds and the assembly to a functional Fv fragment (43). This strategy also allowed the first expression of functional Fab fragments in *E. coli* described in 1988 (44).

The production of recombinant antibodies in the reducing cytoplasmic compartment results mostly in non-functional aggregates (45). Recovery of functional antibody fragments from cytoplasmic inclusion bodies by complete denaturation and refolding (46) is often not efficient. Stable cysteine free mutants of some scFvs were successfully produced in the cytoplasm of *E. coli* (47, 48). *E. coli* strains with mutations in the glutathione and thioredoxin reductase in combination with coexpression of cytoplasmic chaperones GroEL/ES, trigger factor, DnaK/J as well as signal sequence-less variants of periplasmic chaperones DsbC and Skp increased the yield of functional Fab (49).

For the production of camelid single domain antibodies (VHH), coexpression of Erv1p sulfhydryl oxidase increased the yield in the cytoplasm (50).

Despite these efforts, most antibody fragments are produced in the periplasm of *E. coli* using N-terminal leader sequences targeting the periplasmic Sec pathway (51), for example signal peptides derived from outer membrane protein A (*OmpA*), alkaline phosphatase A (*PhoA*), or pectate lyase B (*PelB*) (52–54). Also the SRP pathway can be used for antibody fragment production (55). After expression, recombinant antibodies are usually isolated from the periplasmic fraction (56, 57) but also from the culture supernatant (58–61).

The yield of functional scFv fragments has been improved by co- or overexpression of GroES/L, peptidyl prolyl-cis-trans isomerase FkPa, or other folding helper proteins (62–66). Functional expression can also be increased by optimization of cultivation parameters, such as temperature, media, or additives. Here, the optimal parameters are dependent on the individual antibody fragment (58, 67). The production system itself influences the production rate. Very high yields of antibody fragments produced in *E. coli* are mainly provided by high-cell density fermentation in bioreactors: the expression of a hapten-specific scFv produced in a bioreactor (68) lead to yields up to 1.2 g/L compared to 16.5 mg/L yield of the same antibody obtained by optimized shake flask production (69), which can be mostly addressed to the over 100-fold higher cell density in the bioreactor. A recent production system is the LEX bubble column bioreactor. Yields in the LEX system of an anti-MUC1 scFv was ~30–40× higher and yields of an anti-lysozyme antibody was about 2× higher compared to shake flask incubation (67, 70). *E. coli* strain optimization, e.g., plasmid stability, can additionally improve production yield (71).

The Fab format requires expression, periplasmic transport, correct folding, and assembly of two different polypeptide chains. Among the different vector formats and arrangements, bicistronic vectors with the first cistron encoding the light chain and the...
second cistron encoding the Fd fragment are optimal (56). Even aglycosylated full-size IgGs were successfully produced in E. coli (72, 73). In our view, the raison d’être of complete IgG production in E. coli is doubtful.

Cell wall-less L-forms of the Gram-negative bacterium Proteus mirabilis were used for the production of miniAbs and scFv (30, 74), but yield of total scFv and of functional scFv were different and ranged from 83 to 127 mg/L of total scFv to just 9–12 mg/L of functional scFv (74). However, quite recently scFv were produced successfully in Pseudomonas putida with a yield of 0.5–3.6 mg/L. Interestingly, production yields were decreased by using scFv genes codon optimized for P. putida (75).

GRAM-POSITIVE BACTERIA
Gram-positive bacteria directly secrete proteins into the medium due to the lack of an outer membrane which could facilitate production of antibody fragments. The Gram-positive bacteria Bacillus brevis (76, 77), Bacillus subtilis (78, 79), and Bacillus megaterium (80–85) have already been successfully used for the production of different antibody fragments. In addition, B. megaterium does not produce alkaline proteases and provides high stability of plasmid vectors during growth allowing stable transgene expression during long term cultivation in bioreactors (86).

Lactobacilli are also tested for antibody production and are “generally regarded as safe” (GRAS) microorganisms. To date, two lactobacillus strains were used for the production of scFvs, Lactobacillus zeae/casei (87,88), and Lactobacillus paracasei (35,89). The GRAS status of lactobacilli allows their direct use for oral application for example for production of anti-Streptococcus mutans antibody fragments to prevent tooth decay (88).

EUKARYOTIC HOSTS USED FOR ANTIBODY PRODUCTION
YEASTS
Eukaryotic cells have developed an advanced folding, post-translational, and secretion apparatus which enhances the secretory production of antibodies, including full immunoglobulins compared to bacteria. Yeasts combine the properties of eukaryotic cells short generation time and ease of genetic manipulation with the robustness and simple medium requirements of unicellular microbial hosts. Moreover, yeasts have been used for fermentation in food production for several millennia in human history; they do not produce bacterial endotoxins and have gained the GRAS status paving the way toward production of therapeutic proteins (90,91). Pichia pastoris represents the major yeast strain used for recombinant antibody production (92). Other yeasts like Saccharomyces cerevisiae, Hansenula polymorpha, Schizosaccharomyces pombe (93,94), Schwanniomyces occidentalis, Kluyveromyces lactis, and Yarrowia lipolytica (95) have also been described for protein production but have played only a minor role. P. pastoris shows overall optimal capacity for the production and secretion of heterologous proteins than S. cerevisiae and does not secrete large amounts of its own protein which simplifies the downstream processing. Moreover, P. pastoris prefers respiratory growth resulting in high-cell densities of more than 100 g/L dry weight (96). Probably the most prominent feature of P. pastoris is the metabolism of methanol as sole carbon source. The alcohol oxidase 1 (AOX1) promoter is strictly controllable by methanol and commonly used for recombinant protein expression. The secretory production of heterologous proteins including antibodies requires an aminoterminal signal sequence targeting the yeast’s secretory pathway. S. cerevisiae mating factor alpha (alpha-factor) pre-pro peptide is the most commonly used secretory signal sequence and is followed by appropriate proteolytic cleavage sites sensitive for the Golgi resident endoprotease KEX2 for efficient release of antibodies during secretion, which is often used in combination with ST13 exoprotease sites (97).

Expression of scFv antibody fragments in P. pastoris was first shown by Ridder et al. in 1995 (98). Yields for different scFvs ranged from 70 mg/L (99) to 250 mg/L (100). Up to 8 g/L functional scFv were obtained under optimized conditions in bioreactors with coexpression of Bip (101). Llama VHs achieved over 100 mg/L yield in S. cerevisiae even in shake flask cultivation (102). Production of more complex, yet still single-gene-encoded formats such as dimeric scFv-Fc antibodies in P. pastoris achieved production levels of 10–30 mg/L (103). Antibody formats encoded by two genes such as Fab and IgG required the fusion of the two different antibody chains to the aminoterminal secretory signal sequence and their cotransformation. The yield of Fabs produced in yeast ranged from 1 to 50 mg/L by shake flask cultivation and up to 0.5 g/L in bioreactors (96).

Limited data concerning full-sized IgG expression in yeast is available. In an early study, a mouse-human chimeric antibody and its Fab fragment were produced in S. cerevisiae with a yield of 50–80 µg/L IgG and 200 µg/L Fab, respectively. The chimeric IgG mediated tumor specific binding and ADCC (antibody dependent cellular cytotoxicity) but no CDC (complement dependent cytotoxicity) (104). Using P. pastoris up to 1.4 g/L of a human IgG1 could be expressed in a 40-L bioreactor (105).

Lower transformation rates compared to E. coli must be considered for antibody library generation rather than for antibody production. Moreover, the frequency of homologous transformation in yeast is higher compared to higher eukaryotes facilitating the process of making stable expression clones. Specific issues of heterologous protein expression in yeast can be circumvented by optimizing gene sequences, for example by avoiding AT-rich stretches which can cause premature transcriptional termination. The productivity of antibody fragments in yeasts was increased by DNA shuffling (106).

Inefficient secretion of larger heterologous proteins (>30 kDa), proteolysis of secreted proteins during high-cell density fermentation, and inappropriate glycosylation of human glycoproteins are serious issues which required engineering of yeast strains. Overexpression of the chaperone immunoglobulin binding protein (Bip) or protein disulfide isomerase (PDI) in S. cerevisiae increased scFv secretion titers twofold to eightfold, with an average yield of 20 mg/L in shake flask culture (107). Yeasts tend to hyperglycosylate heterologous proteins even at positions not glycosylated in the native mammalian host, which can influence activity of antibodies and is a potential source of immunogenicity or adverse reactions in human patients. P. pastoris exhibits much lower hyperglycosylation than S. cerevisiae, and its N-linked carbohydrate structures are already similar to the mammalian high-mannose core unit Man4GlcNAc2 (108). Moreover, genetically modified glyco-engineered P. pastoris strains have been generated which
produce humanized glycosylation patterns (109–113). The therapeutic IgG antibodies produced in glyco-engineered yeast achieved results that were comparable to its counterpart Trastuzumab that has been produced in mammalian cells (114). Unlike IgGs produced in wildtype yeast, those produced in glyco-engineered yeasts were able to mediate antibody-mediated effector functions. Production processes employing glyco-engineered yeasts are currently optimized for commercial antibody production (115) as well as for high throughput screening (116).

FILAMENTOUS FUNGI

Filamentous fungi of the genera *Trichoderma* and *Aspergillus* have the capacity to secrete large amounts of proteins and metabolites into the medium (117). They are widely used in the food and biotechnological industry, for example *A. niger* for citric acid production. Moreover, *A. niger* (subgenus *A. awamori*) and *Aspergillus oryzae* gained obtained GRAS status. Two promoters are typically used for the expression of antibodies in fungi: the glucoamylase promoter (glaA) (118) and the endoxylanase A promoter (exlA) (119). Antibody chains are usually fused to the amino-terminus of glucoamylase in *Aspergillus* and cellulobiohydrolase I in *Trichoderma* spec., respectively, in order to obtain optimal secretion (120). Moreover, protease cleavage sites like KexB are introduced to release the antibody from glucoamylase before secretion (118).

Yields of up to 1.2 g/L IgG were achieved in *A. niger* when both antibody chains were fused to glycoamylase. In *Trichoderma reesei*, 150 mg/L of a Fab fragment was obtained when both chains were fused with cellulobiohydrolase I increasing yields 100-fold higher than with its natural signal peptide (121). *A. awamori* was used for the production of several scFvs, llama VHHs and antibody enzyme fusion proteins (117, 119, 122). A yield of 73.8 mg/L of an anti-EGFR-VHH was achieved in *A. oryzae* by using a Taka-amylase A signal sequence and 28 amino acids from the aminoterminal region of *Rhizopus oryzae* lipase (123).

Fungal proteases can result in protein degradation which was addressed by deletion mutants. *Chrysosporium lucknowense* C1 contains a triple protease deletion (Delta-alp1, Delta-pep4, Delta-alp2) and was successfully used in small-scale productions for screening as well as in high scale bioreactor productions (124).

PROTOZOA

Recently, the eukaryotic parasite *Leishmania tarentolae* has been explored as an expression system for different proteins (125, 126). One major advantage of this expression system is the mammalian-like glycosylation pattern: this protozoa is able to perform O-glycosylation as well as N-glycosylation, which is highly conserved in mammalians (127). Consequently, *L. tarentolae* has been begun to be used for the production of recombinant antibodies: analysis of different signal peptides lead to a protein yield of 2–6 mg/L purified scFv (128).

INSECT CELLS

Insect cells represent a very versatile eukaryotic expression system. They can be efficiently transfected with insect-specific viruses from the family *Baculoviridae*, particularly the *Autographa californica* nuclear polyhedrosis virus (AcNPV). Baculoviruses are highly species-specific and are considered as safe for humans, mammals and plants. Infection of human hepatocytes and mammalian cell lines including stable transduction has been demonstrated in cell culture without evidence of viral replication or gene expression under the control of baculoviral promoters (129, 130). Non-essential baculovirus genes involved in the viral life cycle, like *Polyhedrin*, *P10*, or *Basic* can be replaced by heterologous genes. The flexible viral envelop allows packaging of large heterologous gene sequences of more than 20 kb. Heterologous genes under the control of the strong polyhedron promoter are expressed at levels ranging from 0.1 to 50% of the total insect cell protein. Baculoviral protein expression is normally performed in insect cell lines like SF-9 and SF-21 of *Spodoptera frugiperda*, DS2 cells of *Drosophila melanogaster*, or High Five cells (BTL-TN-5B1-4) of *Trichoplusia ni*. High Five cells have certain advantages over SF-9 cells for recombinant protein expression because they secrete up to 25-fold higher protein levels (131), have a more rapid doubling time, allow quick adaptation to serum-free medium and grow in suspension culture. In contrast, SF-9 and SF-21 cells are recommended for producing high-titer viral stocks due to higher transfection efficiency. Recombinant protein production can be performed in small-scale using plates or shake flasks as well as in large scale using Spinner flasks or bioreactors. Important parameters for optimizing baculoviral protein production are multiplicity of infection (m.o.i.), production length (usually up to 96 h), addition of protease inhibitors due to the release of viral proteases, temperature (usually 25–30°C), and media pH (pH 6.0–6.4).

Secreted monomeric anti-phOx scFv were obtained at levels of up to 32 mg/L in a 6-L bioreactor with 10⁶ cells per liter after 72 h with an m.o.i. of 1 (132). Production yields of 6–18 mg/L have been achieved for various IgGs (133). Immunoglobulins produced in High Five cells showed mammalian-like terminal galactosyl residues β(1,4)-linked to the biantennary GlcNAc residues. In contrast, the absence of sialylation, the formation of paucimannosidic structures and the presence of potentially allergenic α(1,3)-fucose linkages are different to mammalian glycosylation (134). Nevertheless, IgGs produced in insect cells were able to mediate effector functions like complement binding (135, 136) and ADCC (137). Insect cell protein expression was improved using protease deficient baculovirus strains or cell lines with additional glycosyltransferase gene modifications to obtain glycosylation patterns comparable to mammalian cell lines (138–141).

Expression of IgGs in insect cells under control of the strong *Polyhedron* promoter resulted in an extensive aggregation, probably caused by overloading the cellular folding and post-translational processing apparatus (142).

Overexpression of the ER resident chaperone binding protein (Bip) significantly enhanced levels of soluble and secreted IgGs in *T. ni* cells (143). Enhanced secretion of IgGs was also achieved by coexpression of protein disulfide isomerase (PDI) or the human cytosolic chaperone hsp70 in *T. ni* cells (138).

Due to strong usage of the cellular metabolism during baculoviral protein expression a high diversity in the post-translational modification was observed. Alternatively to baculoviral expression, insect cells can also be transfected with expression plasmids in a transient or stable manner. Here, usually Schneider 2 (S2) cells of *D. melanogaster* are used. Secretory production requires a signal sequence like the honeybee mellitin leader. Stable transfection
of Drosophila cell lines with monomeric and dimeric antibody fragments resulted in yields of up to 25 μg/mL (144).

Immunoglobulin G production using the baculovirus expression system demonstrated IgG effector function such as complement binding (135, 136). 10 μg/mL of anti-Rhesus D antibody produced in SF-9 cells mediated lysis of Rh+ red blood cells by ADCC (137).

MAMMALIAN CELLS

Today, 60–70% of all recombinant protein pharmaceuticals and 95% of the currently approved therapeutic antibodies are still produced in mammalian cell lines despite relatively high production costs and difficult in handling. However, the advanced mammalian folding, secretion and post-translational apparatus is capable of producing antibodies indistinguishable from those in the human body with least concerns for immunogenic modifications. Moreover, it is also highly efficient for secretion of large and complex IgGs and in combination with the folding and post-translational control it results in high product quality which reduces efforts and costs in the subsequent and more expensive downstream processing steps. The risks of contamination by pathogens or bovine spongiform encephalopathy (TSE/BSE) agents have been eliminated by well-documented Good Manufacturing Practice (GMP) compliant designer cell substrates and chemical defined media without the need of supplementing animal serum components (145). In 2004, mammalian cell culture technology reached production levels of approximately 5 g/L IgGs in Chinese hamster ovary (CHO) cells (146). Today, industrial IgG production levels often exceed 12 g/L as the result of a steadily ongoing progress in mammalian cell culture technology, which is mainly due to improved high producer cell lines, optimized production media, and prolonged production processes at high-cell densities. The highest reported IgG production titer we found was obtained in the human embryonic retinal cell line Per.C6 [Crucell, Leiden, Netherlands, (147)] with 27 g/L. Generally, the productivity of recombinant mammalian cell lines increased from initially 10 pg antibody per cell per day (pcd) in 1986 to about 90 pcd in 2004. Today, the antibody production levels usually rarely exceed 100 pcd because higher cellular productivity usually corresponds to lower maximum cell densities in the production process. Producer cell lines have also been genetically engineered regarding product homogeneity, improved metabolism, reduced apoptosis, and inducible cell cycle arrest (148, 149) which allows prolonged production times for almost 3 weeks at high-cell viability and cell densities.

Chinese hamster ovary (CHO) cells are the most common cells applied in the commercial production of biopharmaceuticals. This cell line isolated in the 1950s gave rise to a range of genetically different progeny, such as K1-, DuKX B11-, DG44-cell lines and others which differ in protein product quality and achievable yield. In addition, Per.C6 cells, mouse myeloma NS0 cells, baby hamster kidney (BHK) cells and the human embryonic kidney cell line HEK293 received regulatory approval for recombinant protein production. Although glycosylation patterns of mammalian glycoproteins are very similar to that in humans (150), even small differences can influence pharmacokinetics and effector functions of antibodies. Alternative designer cell lines with improved glycosylation patterns have been generated, for example human neuronal precursor cell line AGE1.HN (Probiogen, Berlin, Germany) supporting specific and complex glycostructures for the production of antibodies which require specific post-translational modifications or suffer from instability or susceptibility for proteolysis (151). CHO cell variant Lec13 (Glycotope) also produces human IgG1 with N-Linked glycans lacking fucose which improves on Fc-gammaRIII binding and ADCC (152).

Stable production of antibodies in mammalian cells

The generation of stable master cell lines is a prerequisite for GMP compliant IgG production in the therapeutic sector in order to guarantee long term production stability. Here, the antibody gene expression cassettes have to be stably integrated into the host cell genome.

Strong promoters like the immediate early cytomegalovirus (CMV) or the cellular elongation factor (EF) 1-alpha promoter and polyadenylation sites from the simian virus (SV) 40 or the bovine growth hormone (BGH) for improved mRNA stability and translation efficiency are usually implemented into the expression vector. Furthermore, splicing of mRNA is known to promote mRNA packaging and transfer into the cytosol in order to stabilize and enhance gene expression as well as to reduce silencing of heterologous transgenes (153, 154). For IgG expression, two different genes must be stably transfected into one cell clone, either by cotransfection or by using bicistronic expression vectors. Bicistronic vectors employing internal ribosomal entry sites (IRES) allow the translation of two or more cistrons from the same transcript (155). The encephalomyelitis virus (ECMV) IRES has shown the highest efficiency in various mammalian cell lines. Mutated IRES derivatives allow the control of translation efficiency in relation to the cap-dependent cistron. The ratio between light and heavy chain has great impact on the secretion level of functional IgGs (156). The long term stability of ECMV IRES containing bicistronic constructs has been demonstrated even in the absence of selection pressure over months (157).

There are different methods to enhance antibody expression by increasing the number of antibody gene copies in the genome through gene amplification. The two major systems on the market are based on dihydrofolate reductase (DHFR) or glutamyl synthetase (GS) selection. Yield and functionality of an IgG1 produced in Δdhfr− CHO and GS-NS0 are equivalent (158) and reached 1.8 g/L in GS-NS0 cells (159). However, gene amplification also causes genetic instability, and after removing the selection pressure the yield of antibodies can be reduced again. Moreover, high producer cell lines often contain only a few copies of the antibody genes. For example, up to 2.7 g/L final antibody concentration were obtained from NS0 cells containing three vector copies per cell (160). Other factors than the number of gene copies play an important role to achieve high production levels of antibodies. Therefore, industrial antibody expression platforms employ efficient screening systems in order to isolate the best of the high producers. However, there are also strategies to facilitate the isolation of high producer clones (161). To overcome negative effects of the integration site, protective cis-regulatory elements include insulators, boundary elements, scaffold/matrix attachment regions (S/MARs) (162), chromatin opening elements...
and up-scaling to 2 L and achieved production levels of more than 0.6 g/L by simple shake flask cultivation. Improved production media, fed-batch supplementation, and well-controlled cultivation time, both enhancing the yield. Backliwal and colleagues bioreactor processes allow higher cell densities and prolonged production without any need to generate producer cell lines (169, 170). The 2A/furin technology allows expression of both IgG chains as a single gene due to post-translational auto-cleavage of the viral protease 2A encoded by the linker and subsequent processing by the Golgi protease furin (171, 172).

Transgenic organisms

Transgenic plants

The development of transgenic plants for the expression of recombinant antibodies is becoming interesting, especially when high amounts are required. Up-scaling of this production system can be achieved more easily compared to other systems such as mammalian cell culture, where up-scaling of the fermentation process leads to increasing production costs. In theory, the costs of an IgA expressed in plants are only 1–10% compared to the expression in hybridoma cells (185).

The generation of genetically modified dicotyledonous plants is mainly done by the transfer of the expression cassette of the transgene with the help of *Agrobacterium tumefaciens*. In principle, the gene of interest is cloned into the T-DNA of a binary plasmid (186, 187) which is flanked by two 25 bp imperfect repeats. In most cases, the expression of the transgene is under the control of one or two (188) copies of the constitutive cauliflower mosaic virus (CaMV). In addition, a selection marker is located on the T-DNA and transferred into the host genome for effective screening of successfully transformed plants. After integration of the T-DNA into the host genome by non-homologous recombination complete plants can be regenerated from transformed pieces of the plant [RB (189)]. As this procedure requires several months of transformation and special regeneration protocols, transient expression systems have been developed which allow time saving production of recombinant proteins: McCormick and colleagues designed a tobacco mosaic virus (TMV) based vector for the secretory expression of different scFvs for the treatment of non-Hodgkin's lymphoma (190). Expression yields in *Nicotiana benthamiana* were up to 100–800 µg/mL in the crude secretory extract. Same technique has been applied for the expression of idiotype-scFvs for personalized vaccination of follicular B-cell lymphoma patients in a phase I clinical study (191). In this study, nearly half of the treated patients developed an antigen specific immune response despite differences in glycosylation pattern.

Differences in the glycosylation pattern between mammalia and plants are one of the main obstacles researchers have to overcome when developing therapeutic antibodies expressed in plants. Although plants are able to perform complex glycosylation, differences in glycosylation patterns, in particular β1,2-xyllose and α1,3-fucose, can lead to immunogenicity of the therapeutic proteins (192–194). Therefore, different strategies have been developed to express recombinant proteins with a more mammalian-like glycosylation pattern. The first one is the retention of the protein in the endoplasmic reticulum (eR) as eR-associated N-glycosylation leads to the generation of oligomannose-type N-glycans which are identical in plants and mammalians (192, 195). One side effect of this localization is the accumulation to higher levels in the eR (196, 197). A second approach for the expression of proteins with mammalian-like glycosylation patterns is the usage of glyco-engineered plants. In most cases, RNA interference (RNAi) is used for the down-regulation of endogenous beta1,2-xylotransferase and alpha1,3-fucosyltransferase leading to a reduction of the xylosylated and core-fucosylated N-glycans (198–200). A second type of glyco-engineering in plants is the coexpression of genes which facilitates the expression of human-like N-glycans (201) or even
the in planta protein sialylation by the coexpression of six mammalian genes (202). An increasing effort has been put into the adaptation of N-glycosylation, but there are also some efforts in the engineering of sialylated mucin-type O-glycans to achieve the most human-like glycosylation patterns (203, 204). Alternatively, non-glycosylated antibodies which mediate protection against an inhalation anthrax spore challenge in non-human primates showed an improvement of the half-life in serum (205). Rodriguez and colleagues showed that the aglycosylated form of Nimotuzumab (currently in a phase II clinical study in the USA and Canada) produced in tobacco shares the in vitro and in vivo properties as well as the antitumor effect in nude mice with the glycosylated form (206).

Transient expression of an antibody in plants can be achieved using viral vectors. The main problem with this approach is the low infectivity with these vectors. Therefore, the more efficient transfer of A. tumefaciens was combined with the speed and high expression rate of plant RNA viruses (207). This system has been used for the expression of monoclonal antibodies in Nicotiana benthamiana with yields up to 0.5 g/kg fresh weight (208).

In principle, most plantbodies are expressed in tobacco (N. tabacum or N. benthamiana), but there are also production systems in Lemma minor (duckweed) (209–211), rice cell culture (212), Arabidopsis thaliana seeds (213, 214), Medicago sativa (alfalfa) (215), lettuce (216), and maize (217). HIV-1 neutralizing antibody 2G12 was expressed in the endosperm of maize and showed similar or even better neutralizing properties as its CHO-derived counterpart (218).

Besides the transformation of whole plants or at least organs, monoclonal BY-2 tobacco cell lines that grow in suspension have been developed (219). Flow cytometric analysis has been used to enrich cells expressing a fluorescent marker which was located on the same T-DNA with the antibody gene. Using this method for the enrichment of high expressing cells, production could be increased up to 13-fold and was shown to be stable for 10–12 months.

Much effort has been set into the establishment and development of plants producing antibodies for therapy, but so far none of these products has appeared on the market, despite of the estimated dramatic reduction of production costs (220). Nevertheless, at least two plant derived antibodies have been used in clinical trials: CaroRX was developed by Planet Biotechnol-}

CONCLUDING REMARKS

Today, mammalian cell lines represent the most widely used expression system for the production of recombinant antibodies. Several other hosts are being developed which are even able to produce antibodies with human-like glycosylation patterns. In addition to this, there are several applications where the glycosylation

www.frontiersin.org
Table 1 | Production of recombinant antibodies by host.

Host	Antigen	Antibody format (clone)	Production system	Yield	Reference
GRAM-NEGATIVE BACTERIA					
Escherichia coli	Digoxin	Fab (26–10)	Shake flask	0.8 mg/L/OD₆₀₀	Levy et al. (49)
Escherichia coli	CD18	F (ab’₂)	Fermentor	2.5 g/L	Chen et al. (247)
Escherichia coli	Lysozyme	scFv (D1.3)	250/400 mL shake flasks	0.3–1.0 mg/L	Jordan et al. (84), Monsellier and Bedouelle (248), Thie et al. (70)
Escherichia coli	CRP	scFv (LA13-IIE3)	300 mL shake flask	0.55 mg/L	Jordan et al. (83)
Escherichia coli	Lysozyme	scFab (D1.3)	300 mL shake flask	9.5 µg/L	
Escherichia coli	MUC1	VHH	100 L shake flask	10 mg/L	Rahbarizadeh et al. (249)
Escherichia coli	*Clostridium difficile*	VHH (14 different)	Shake flask?	1.2–72.3 mg/L	Hussack et al. (250)
Escherichia coli	MUC1	scFv (2 different)	250 mL shake flask	0.46/1.3 mg/L	Thie et al. (70)
Escherichia coli	p815<ER3>	Fab	10 L fermenter	1–2 g/L	Carter et al. (251)
Escherichia coli	Atrazine	Fab (K411B)	2 L fermenter	13.8 mg/L	Wiebe et al. (68)
Escherichia coli	PPL	VL dAb	1.5 L fermenter	35–65 mg/L	Cossins et al. (252)
Escherichia coli	phOx	scFv	50 mL shake flask	16.2 mg/L	Kipriyanov et al. (69)
Escherichia coli	phOx	scFv	3 L fermenter	1.2 g/L	Sletta et al. (68)
Escherichia coli	Scorpion toxin Cn2	scFv; Fab (BCF2)	n. d.	0.3 mg/L; 1.0 mg/L	Quintero-Hernández et al. (253)
Escherichia coli	TNF alpha	scFv	Shake flask?	45 mg/L	Yang et al. (254)
Escherichia coli	HSP70	Fab (cHsp70.1)	8 L fermenter	> 15 mg/L	Friedrich et al. (64)
Escherichia coli	Tissue factor	IgG	10 L fermenter	130–150 mg/L	Simmons et al. (73)
Escherichia coli	TAG-72	Fv (B72.3)	Shake flask; fermentor	40 mg/L; 450 mg/L	King et al. (255)
Escherichia coli	VEGF	scFv; SUMO	50 mL shake flask	50.3 mg/L	Ye et al. (256)
Escherichia coli	HIV capsid	scFv, engineered	Shake flask	12 mg/L	Nadkarni et al. (257)
Escherichia coli	Ovarian carcinoma/CD3	scFv–scFv	250 mL shake flask	1.2 g/L	Zhao et al. (71)
Escherichia coli	Fibroblast growth factor receptor FGFR1	VHH	Shake flask	10–15 mg/L	Veggiani and de Marco (50)
Escherichia coli	Human prion	scFv	Shake flask	35 mg/L	Padioule-Lefevre et al. (258)
Escherichia coli	Lysozyme	scFv (D1.3)	LEX bioreactor (1.5 L)	~2 mg/L	Miethe et al. (67)
Escherichia coli	MUC1	scFv (HT186-D11)	LEX bioreactor (1.5 L)	~40 mg/L	
Escherichia coli	CD30	scFv (SH313-B6)	LEX bioreactor (1.5 L)	~38 mg/L	
Escherichia coli	Crf2	scFv (MS112-IIB1)	LEX bioreactor (1.5 L)	~4.5 mg/L	
Escherichia coli	Tubulin	scFv (different ones)	Shake flask (intracellular)	up to 50 mg/L	Philibert et al. (259)
Escherichia coli	n. d.	Fab	20 L; 75 L fed-batch bioreactor	0.7 g/L; 0.5 g/L	Nesbith et al. (260)

(Continued)
Host	Antigen	Antibody format (clone)	Production system	Yield	Reference
Proteus mirabilis	FAP	scFv (OS4)	50 mL shake flask	~12 mg/L	Rippmann et al. (74)
Proteus mirabilis	Phosphorylcholine	scFv-dHLX	n. d.	10–18 mg/L	Kujau et al. (30)
Pseudomonas putid	Lysozyme	scFv (D1.3)	200 mL shake flask	1.5 mg/L	Dammeyer et al. (75)
Pseudomonas putid	MUC1	scFv (HT186-D11)	200 mL shake flask	3.6 mg/L	
Pseudomonas putid	CRP	scFv (TO85-D4)	200 mL shake flask	2.9 mg/L	

GRAM-POSITIVE BACTERIA

Host	Antigen	Antibody format (clone)	Production system	Yield	Reference
Bacillus brevis	uPA	Fab	2 L shake flask	100 mg/L	Inoue et al. (76)
Bacillus megaterium	Lysozyme	scFv (D1.3)	400 mL shake flask	0.41 mg/L	Jordan et al. (84)
Bacillus megaterium	CRP	scFv (LA13-IIE3)	300 mL shake flask	0.39 mg/L	Jordan et al. (83)
Bacillus megaterium	Lysozyme	scFab (D1.3)	300 mL shake flask	3.5 µg/L	Jordan et al. (83)
Bacillus subtilis	Digoxin	scFv	n. d.	12 mg/L	Wu et al. (78)
Lactobacillus paracasei	Rotavirus	VHH	n. d.	~1 mg/L	Pant et al. (35)
Streptomyces lividans	Lysozyme	Fv	n. d.	~1 mg/L	Ueda et al. (261)

EUKARYOTES

Host	Antigen	Antibody format (clone)	Production system	Yield	Reference
Yarrowia lipolytica, Kluyveromyces lactis	Ras	scFv	Shake flasks	10–20 mg/L	Swennen et al. (262)
Pichia pastoris	Muc1	VHH	Baffled flasks	10–15 mg/L	Rahbarizadeh et al. (263)
Pichia pastoris	TNFa	VHH-Fc	Shake flasks	5 mg/L	Ji et al. (264)
Pichia pastoris	AaHI	VHH	Shake flasks	17 mg/L	Ezzine et al. (265)
Pichia pastoris	B-type natriuretic peptide	scFv	Shake flasks	150 mg/L	Maeng et al. (266)
Pichia pastoris	Atrazine	Fab-HRP	Shake flasks	3–10 mg/L	Koliaisnikov et al. (267)
Pichia pastoris	Muc1	Bibody, tribody	Shake flasks	12–36 mg/L	Schoonooghe et al. (268)
Saccharomyces cerevisiae	71 Different	VHH	Shake flasks	<1 to > 100 mg/L	Gorlani et al. (269, 270)
Pichia pastoris	HER2	scFv	Shake flasks	15–20 mg/L	Sommaruga et al. (271)
Pichia pastoris	n. d.	scFv	n. d.	300 mg/L	Khatri et al. (272)
Pichia pastoris	Keratin 8	sc (FvL)	Baffled shake flasks	4–5 mg/L	Jafari et al. (273)
Pichia pastoris	n. d.	IgG	0.5 L bioreactor	0.5–1 g/L	Barnard et al. (274)
Pichia pastoris	Rabies virus	scFv-Fc	80 L fermenter	60 mg/L	Wang et al. (275)
Pichia pastoris	HER2	IgG	3 L bioreactor	148–227 mg/L	Chen et al. (276)

(Continued)
Host	Antigen	Antibody format (clone)	Production system	Yield	Reference		
Filamentous fungi	Aspergillus niger var. awamori	ErbB2	IgG, Fab	Shake flasks	0.9 g/L; 0.2 g/L	Ward et al. (118)	
	Aspergillus niger var. awamori	Lysozyme	scFv	7 L fermenter	108.9 mg/L	Sotiriadis et al. (277)	
	Aspergillus oryzae	EGFR	VHH	Shake flasks	73.8 mg/L	Okazaki et al. (123)	
Protozoa	Leishmania tarentolae	16 Different scFv	scFv	Shake flasks	0.04–3.38 mg/L	Klatt and Konthur (128)	
Insect cells	Trichoplusia ni larvae	Rotavirus	VHH	Living larvae	257 mg/L	Gómez-Sebastián et al. (278)	
	Spodoptera frugiperda	Blood coagulation factor VIII	scFv	Shake flasks	3.2–10 mg/L	Kurasawa et al. (279)	
	Drosophila, S2	Glycoprotein H	Fab	Spinner flasks	16 mg/L	Backovic et al. (280)	
	Drosophila, S2	HIV	IgG	n. d.	5–35 mg/L	Johansson et al. (281)	
	Drosophila, S2	Bovine viral diarrhea virus, hepatitis C virus	scFv	n. d.	5–12 mg/L	Gilmartin et al. (282)	
	Spodoptera frugiperda, SF-9	gp41	IgG	T-flasks	3 mg/L	Palmberger et al. (283)	
	Trichoplusia ni	gp41	IgG	T-flasks	12 mg/L	Palmberger et al. (283)	
	SfSWT-1 Mimic	gp41	IgG	T-flasks	3 mg/L	Palmberger et al. (283)	
MAMMALIAN CELLS	Transient	HEK293T	CD200, SIRPγ	Fab	Genejuice, roller bottles	4 mg/L	Nettleship et al. (284)
	HEK293T	n. d.	IgG	HEKfectin, tissue culture plates	1–14 mg/L	Li et al. (155)	
	CHO	n. d.	IgG1, IgG4	Lipofectamine	140 mg/L	Codamo et al. (285)	
	HEK293F	n. d.	IgG	293fectin	100–400 mg/L	Van Berkel et al. (286)	
	CHO DG44	RhD	IgG	PEI, square-shaped bottles	90 mg/L	Wulhfard et al. (287)	
	HEK293E	n. d.	IgG	PEI, square-shaped bottles	200 mg/L	Backliwal et al. (288)	
	CHO	n. d.	IgG	PEI, square-shaped bottles	60–80 mg/L	Wulhfard et al. (289)	
	HEK293E	RhD	IgG	PEI, square-shaped bottles	1.1 g/L	Backliwal et al. (177)	
Stable	CHO-K1	n. d.	IgG	Lipofectamine	0.05–0.45 mg/L	Li et al. (155)	
	CHO	HIV-1	scFv-Fc	PEI	5.78–45.49 mg/L	Mader et al. (290)	
Table 1 | Continued

Host	Antigen	Antibody format (clone)	Production system	Yield	Reference
CHO	n. d.	IgG	Electroporation	4 g/L	Kober et al. (291)
NS0	n. d.	IgG	5 L bioreactor, fed-batch	800 mg/L	Spens and Häggström (292)
NS0	n. d.	IgG	2–100 L bioreactor	2.64 g/L	Burky et al. (293)
per.C6	n. d.	IgG	Hollow fiber bioreactor	1 g/L	Jones et al. (147)
per.C6	n. d.	IgG	Roller bottle culture	50–100 mg/L	Jones et al. (147)
CHO	n. d.	IgG	Shake flasks	0.5–2 g/L	Tchoudakova et al. (294)
CHO	n. d.	IgG	Shake flasks	100 mg/L	Agrawal et al. (295)
CHO	HER2	IgG	Orbital shaking bioreactor	152 mg/L	Huang et al. (296)

Transgenic plants

Chlamydomonas reinhardtii	CD22	Immunotoxin, exotoxin A	Particle bombardement	0.2–0.4% of chloroplasts	Tran et al. (297)
Nicotiana tabacum BoNT/A	scFv	Agrobacterium tumefaciens		20–40 mg/kg	Almquist et al. (298)
Nicotiana benthamiana HIV	IgG	CPMV		105.1 mg/kg	Sainsbury et al. (299)
Nicotiana tabacum HCC	scFv-RNase	Agrobacterium tumefaciens		0.75–1.99 µg/g	Cui et al. (300)
Nicotiana benthamiana Ebola virus GP1	IgG	Agrobacterium tumefaciens		0.4–0.5 mg/g	Huang et al. (301)

Transgenic animals

Mouse	HBV	IgG	Milk	178 mg/mL	Zhang et al. (302)
Mouse	CD147	Chimeric IgG	Milk	1.1–7.4 mg/mL	Wei et al. (303)
Mouse	Hepatitis A virus	IgG	Milk	32 mg/mL	Zhang et al. (304)
Mouse	HER2	scFv-Fc	Milk	~120 ng/mL	Yuskevich et al. (305)
Chicken	CD2, prion peptide	Chimeric IgG	Egg white	<150 µg/mL	Kominakira et al. (306)

AaHI, toxin class I of Androctonus australis hector scorpion venom; BoNT/A, Botulinum toxin serotype A; CPMV, cowpea mosaic virus; FAP, fibroblast activation protein alpha; HCC, hepatocellular carcinoma; phOx, 2-phenyl-oxazoline-5-one; PEI, polyethyleneimine; PPL, peptostreptococcal protein L; RhD, rhesus factor D; uPA, urokinase type plasminogen activator.

Pattern does not play a critical role, such as for in vitro diagnostics or in research. Therefore, bacteria, yeasts, filamentous fungi, and insect cells can be employed in order to lower the production costs of these products. In principle, transgenic plants and animals have the highest potential for up-scaling processes to theoretically unlimited production amounts. An overview of recombinant antibodies produced in different hosts is shown in Table 1. There, however, it must be discriminated between the yield of functional antibodies after purification and the total yield.

Antibody phage display is now a widespread method for the development of antibody fragments such as scFv or Fab. The expression host used in this technology is E. coli which is known to be the best genetically examined organism providing a large set of molecular biological tools for genetic engineering. Consequently, both antibody generation and production can be performed without changing the production system. Using high-cell density fermentation, the yield can be up to 1–2 g/L depending on the individual antibody fragment. Antibody fragments expressed in E. coli are mainly secreted into the periplasm and have to be extracted from there. Gram-positive bacteria lack the outer membrane and are well suited for biotechnological processes due to their powerful secretion apparatus which allow easy purification directly from the cultivation supernatant. However, antibody production systems employing Gram-positive bacteria are still in the
developmental stage. However, larger antibody formats are very difficult to express in bacteria, if they can be expressed at all. Furthermore, the lack of a glycosylation apparatus limits their use, if effector functions are needed.

Yeasts, as an eukaryotic organism, has the capacity to perform post-translational modifications. In addition, they can be used even in high throughput processes and glyco-engineering enables the expression of recombinant proteins with human-like glycosylation. Nevertheless, the production of full-size immunoglobulins remains a challenge. Compared to yeasts, filamentous fungi are more difficult for the generation of transformed clones, but they have a long tradition for the usage in biotechnology and they have partially been used for the expression of IgGs. In contrast, in a developmental stage. However, the mammalian-like glycosylation of recombinant proteins and antibodies has just been started and is still in a developmental stage. However, the mammalian-like glycosylation pattern presents them a promising candidate for further exploitation.

Insect cells contain a better suited protein folding and secretion apparatus than prokaryotes. Their high robustness combined with less sophisticated requirements for fermentation provide some advantages compared to mammalian cells. However, the development of stable insect cell lines and process technology is not developed as far. Consequently, mammalian cell lines are most widely used for the production of therapeutic antibodies as they provide a sophisticated folding and secretion apparatus as well as human-like glycosylation. For the production of high levels of recombinant antibodies high technical efforts are needed leading to relatively high costs. The maximum reported yield of functional IgG was 5 g/L which cannot be achieved using other expression systems so far, but up-scaling of the production does not lead to a high reduction of the production costs.

For an efficient reduction of production costs, transgenic plants can be used as they represent a highly scalable expression system; cultivation can be easily expanded without a gross increase in costs. In contrast, the generation of transgenic plants remains very complex and difficult. The most important obstacle of transgenic plants is the downstream processing as tons of plant material may have to be processed. However, antibody production in milk or eggs of animals would also be highly scalable and permits easy downstream processing. Several livestock animal species have been developed for the expression of recombinant proteins, but generation of transgenic animals also is very laborious. An interesting approach is the combination of human transgenic animals with hybridoma technology for the development of human antibodies.

In principle, there is no “universal” production system which can guarantee high yields of recombinant antibody, particularly as every antibody-based molecule itself will cause its own issues in terms of expression.

REFERENCES

1. Colwill K, Renewable Protein Binder Working Group, Graslund S. A roadmap to generate animal-based binders to the human proteome. Nat Methods (2011) 8:551–8. doi:10.1038/nmeth.1607
2. Mehan MR, Ostroff R, Wilcox SK, Steele F, Schneider D, Jarvis TC, et al. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv Exp Med Biol (2013) 735:283–300.
3. Foudel AM, Fatatari Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip (2012) 12:3249–66. doi:10.1039/c2lc40630f
4. Utamchandani M, Neo JL, Ong BNZ, Moochalala S. Applications of microarrays in pathogen detection and biodetection. Trends Biotechnol (2009) 27:53–61. doi:10.1016/j.tibtech.2008.09.004
5. Van Breemen D, Costers S, Vanhove M, Gagnon CA, Rodriguez-Gomez IM, Gdohof M, et al. Porcine reproductive and respiratory syndrome virus (PRRSV)-specific mAbs supporting diagnostics and providing new insights into the antigenic properties of the virus. Vet Immunol Immunopathol (2011) 141:246–57. doi:10.1016/j.vetimm.2011.03.008
6. Van Hoven KH, Dale C, Foster P, Body B. Comparison of three enzyme-linked immunosorbent assays for detection of immunoglobulin G antibodies to tetanus toxoid with reference standards and the impact on clinical practice. Clin Vaccine Immunol (2008) 15:1751–4. doi:10.1128/CVI.00254-08
7. Zasada AA, Rastawicki W, Śmialowicz R, Kłosik J, Jagielski M. Comparison of seven commercial enzyme-linked immunosorbent assays for the detection of anti-diphtheria toxin antibodies. Eur J Clin Microbiol Infect Dis (2013) 32:891–7. doi:10.1007/s10096-013-1823-y
8. Dubel S editor. Handbook of Therapeutic Antibodies. Weinheim: Wiley-VCH (2008). doi:10.1002/9783527671970
9. Reichert JM. Which are the antibodies to watch in 2013? MAbs (2013) 5:1–4. doi:10.4161/mabs.22976
10. Eisenberg SA, Biologische Therapie. J Infus Nauz (2012) 35:301–13. doi:10.1097/NAN.0b013e31826579aa
11. Dimitrov DS. Therapeutic proteins. In: Voynov V, Caravella JA editors. Therapeutic Proteins, Methods in Molecular Biology. Clifton, NJ: Humana Press (2012). p. 1–26.
12. Wilde H, Thipkong P, Sitrivija V, Chaiyabutr N. Heterologous antiserum and antivenins are essential biological perspectives on a worldwide crisis. Am Intern Med (1996) 125:233–6. doi:10.7326/0003-4819-125-3-19960810-00010
13. Kohler G, Milstein C. Continuously cultured of fused cells secreting antibody of predefined specificity. Nature (1975) 256:495–7. doi:10.1038/256495a0
14. Reichert JM. Antibody-based therapeutic to watch in 2011. MAbs (2011) 3:76–99. doi:10.4161/mabs.3.1.13895
15. Reichert JM. Antibodies to watch in 2010. MAbs (2010) 2:184–100. doi:10.4161/mabs.2.1.10677
16. Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature (1989) 337:562–6. doi:10.1038/337562a0
17. Taylor LD, Carmack CE, Schramm SR, Mashayekh R, Higgins KM, Koo CC, et al. A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res (1992) 20:6287–95. doi:10.1093/nar/20.23.6287
18. Breitling F, Dubel S, Seehaus T, Klewninghaus I, Littke M. A surface expression vector for antibody screening. Gene (1991) 104:147–53. doi:10.1016/0378-1119(91)90244-6
19. Edwards BM, He M. Evolution of antibodies in vitro by ribosome display. Methods Mol Biol (2012) 907:281–92.
20. Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol (2005) 23:1105–16. doi:10.1038/nbt1126
21. Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules (2011) 16:412–26. doi:10.3390/molecules16041014
22. Thom G, Groves M. Ribosome display. Methods Mol Biol (2012) 901:101–16. doi:10.1007/978-1-61779-931-0_6
23. Edelman GM. Antibody structure and molecular immunology. Science (1973) 180:830–40. doi:10.1126/science.180.4888.830
24. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science (1988) 242:423–6. doi:10.1126/science.3104379
Targeting and killing of globoblastoma with activated T cells armed with bispecific antibodies. BMC Cancer (2013) 13: 83. doi:10.1186/1415-2407-13-83

35. Pant N, Hulberg A, Zhao Y, Svensson L, Pan-Hammarsstrom Q, Johansen K, et al. Lactobacilli expressing variable domain of llama heavy-chain antibody fragment (lactobodies) confer protection against rotavirus-induced diarrhea. J Infect Dis (2006) 194: 1586–8. doi:10.1086/508747

36. Holt LJ, Herrick C, Jespers LS, Woollen BP, Tomlinson IM. Domain antibodies: proteins for therapy. Trends Biotechnol (2003) 21: 484–90. doi:10.1016/j.tibtech.2003.08.007

37. Tang Z, Meng M, Gao W, Phung Y, Chen W, Chaudhary A, et al. A human single-domain antibody elicits potent anti-tumor activity by targeting an epitope in mesothelin close to the cancer cell surface. Mol Cancer Ther (2013) 12: 416–26. doi:10.1158/1535-7163.MCT-12-0731

38. Powers DB, Amersdorfer P, Moll M, Nielsen UB, Shalaby MR, Adams GP, et al. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol (1998) 280:117–27. doi:10.1006/jmbi.1998.1840

39. Wan L, Zhu S, Zhu J, Yang H, Li S, Li Y, et al. Production and characterization of a CD25-specific scFv-Dhlx in cell-enshanced affinity to antigen. Proteus Hybrids (2013) 251:123–35. doi:10.1016/j.s0022-1759(00)00290-8

40. Wan L, Zhu S, Zhu J, Yang H, Li S, Li Y, et al. Production and characterization of a CD25-specific scFv-Fe antibody secreted from Pichia pastoris. Appl Microbiol Biotechnol (2012) 97:3855–63. doi:10.1007/st00253-012-4652-9

41. Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnology Lett (2009) 31:1661–70. doi:10.1007/s10529-009-0777-3

42. Schmidt FR. Recombinant expression systems in the pharmaceutical industry. Adv Microb Biotechnol (2005) 65: 363–72. doi:10.1007/st00253-004-1656-9

43. Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol (2006) 72:211–22. doi:10.1007/st00253-006-0465-0

44. Skerra A, Pluckthun A. Assembly of functional periplasmic Fv fragment in Escherichia coli. Science (1988) 240:1038–41. doi:10.1126/science.3285470

45. Better M, Chang GP, Robinson RR, Horwitz AH. Escherichia coli secretion of an active chimeric antibody fragment. Science (1988) 240:1041–3. doi:10.1126/science.3285471

46. Worn A, Auf der Maur A, Escher D, Homegger A, Barberis A, Plückthun A. Correlation between in vitro stability and in vivo performance of anti-NGCN4 intrabodies as cytotoxic plasmidic inhibitors. J Biol Chem (2000) 275:2795–803. doi:10.1074/jbc.275.4.2795

47. Martineau P, Jones P, Winter G. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J Mol Biol (1988) 280:117–27. doi:10.1006/jmbi.1997.1457

48. Worn A, Plückthun A. Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry (1998) 37:13120–7. doi:10.1021/bi800712q

49. Levy R, Weiss R, Chen G, Iversen BL, Georgiou G. Production of correctly folded Fab anti-body fragment in the cytoplasm of Escherichia coli trxB gox mutants via the coexpression of molecular chaperones. Protein Expr Purif (2001) 23:338–47. doi:10.1006/prep.2001.1520

50. Veggianni G, de Marco A. Improved quantitative and qualitative production of single-domain intrabodies mediated by the coexpression of Erv1p sulfhydryl oxidase. Protein Expr Purif (2011) 79:111–4. doi:10.1016/j.prep.2011.03.005

51. Rusch SL, Kendall DA. Interactions that drive Sec-dependent bacterial protein transport. Biochemistry (2007) 46:9665–73. doi:10.1021/bi7010064

52. Ge L, Knappik A, Pack P, Freund C, Plückthun A. Expressing Antibodies in Escherichia coli, in: Antibody Engineering. New York: Oxford University Press (1995), p. 229–66.

53. Sletta H, Tøndervik A, Hakvåg S, Johansen K, et al. Lactobacilli as cytoplasmic inhibitors. J Biol Chem (2007) 282:12097–103. doi:10.1074/jbc.M609054200

54. Tschibnara H, Takekoshi M, Cheng X-J, Nakata Y, Takeuchi T, Ibara S. Bacterial expression of a human monoclonal antibody-alkaline phosphatase conjugate specific for Entamoeba histolytica. Clin Diagn Lab Immunol (2004) 11:216–8.

55. Thie H, Schirrmann T, Paschke M, Dubel S, Hurt M. SRP and Sec pathway leader peptides for anti-body phage display and antibody fragment production in E. coli. Biotechnol (2008) 25:49–54. doi:10.1016/j.bte.2008.01.001

56. Kirsch M, Zaman M, Meier D, Dubel S, Hurt M. Parameters affecting the display of antibodies on phage. J Immunol Methods (2005) 301:175–85. doi:10.1016/j.jim.2005.04.017

57. Ward ES. Antibody engineering using Escherichia coli as host. Adv Pharmacol (1993) 24:1–20. doi:10.1016/S0154-5589(08)60931-X

58. Hurt M, Steinwand M, Al-Halabi L, Helmansing S, Schirrmann T, Dubel S. Improved microtitre plate production of single chain Fv fragments in Escherichia coli. N Biotechnol (2009) 25:424–8. doi:10.1016/j.nbt.2009.03.004

59. Lauer B, Otteleen I, Jacobsen HJ, Reinard T. Production of a single-chain variable fragment antibody against fumonisin B1. J Agric Food Chem (2005) 53:699–904. doi:10.1021/jf048651s

60. Mersmann M, Meier D, Mersmann J, Helmansing S, Nilsson P, Graveslund S, et al. Towards proteome scale antibody selections using phage display. N Biotechnol (2010) 27:118–28. doi:10.1016/j.nbt.2009.10.007

61. Mi J, Yan J, Guo Z, Zhao M, Chang W. Isolation and characterization of an anti-recombinant erythro- poetin single-chain antibody fragment using a phage display antibody body library. Anal Biochem (2005) 338:218–23. doi:10.1016/j. nbt.2005.06.001

62. Bothmann H, Plückthun A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol (1998) 16:576–80. doi:10.1038/nbt0498-576

63. Bothmann H, Plückthun A. The periplasmic Escherichia coli pep-tidase AspN as cis-trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem (2000) 275:17100–5. doi:10.1074/jbc.M10233199

Frenzel et al. Recombinant antibody production systems
antibodies from libraries expressed in Escherichia coli. Nat Biotechnol (2007) 25:563–5. doi:10.1038/nbt1296
73. Simmons LC, Reilly D, Klimiowski L, Raju TS, Meng G, Sims P, et al. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods (2002) 263:133–47. doi:10.1016/S0022-1759(02)00036-4
74. Rippmann JP, Klein M, Hoinisch C, Brooks B, Rettig WJ, Gumber J, et al. Procarboxylic expression of single-chain variable fragment (scFv) antibodies: secretion in L-form cells of Proteus mirabilis leads to active production and overcomes the limitations of periplasmic expression in Escherichia coli. Appl Environ Microbiol (1998) 64:4862–9.
75. Dammeyer T, Steinwand M, Krüger S-C, Dübel S, Timms KN. Efficient production of a functional mouse/human chimeric Fab against human urikase-type plasminogen activator by Bacillus brevis. Appl Microbiol Biotechnol (1997) 48:487–92. doi:10.1007/s0025300051084
76. Shirizo T, Shinozaki-Kawahara N, Hayakawa M, Shibata Y, Hashizume T, Fukushima K, et al. Production of a single-chain variable fraction capable of inhibiting the Streptococcus mutans glucosyltransferase in Bacillus brevis: construction of a chimeric shuttle plasmid secreting its gene product. Biochim Biophys Acta (2003) 1626:57–64. doi:10.1016/S0167-4781(03)00088-1
77. Wu SC, Ye R, Wu XQ, NC, Song SL. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by co-production of molecular chaperones. J Bacteriol (1998) 180:2830–5.
78. Wu S-C, Teung JC, Duan Y, Ye R, Szarka SJ, Habibi HR, et al. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: effects of wall-bound protease on antibody fragment production. Appl Environ Microbiol (2002) 68:3261–9. doi:10.1128/AEM.68.7.3261-3269.2002
79. David F, Steinwand M, Hust M, Bohle K, Ross A, Dubel S, et al. Antibody production in Bacillus megaterium: strategies and physiological implications of scaling from microtiter plates to industrial bioreactors. Biotechnol J (2011) 6:1516–31. doi:10.1002/biot.201000417
80. David F, Westphal R, Banki B, John D, Franco-Lara E. Optimization of antibody fragment production in Bacillus megaterium: the role of metal ions on protein secretion. J Biotechnol (2010) 150:115–24. doi:10.1016/j.jbiotec.2010.07.023
81. Jordan E, Al-Halabi L, Schirrmann T, Hust M. Antibody production by the Gram-positive bacterium Bacillus megaterium. Methods Mol Biol (2009) 525:509–16. doi:10.1007/978-1-59745-354-1_27
82. Jordan E, Al-Halabi L, Schirrmann T, Hust M, Dubel S. Production of single chain Fab (scFab) fragments in Bacillus megaterium. Microb Cell Fact (2007) 6:38. doi:10.1186/1475-2859-6-2
83. Jordan E, Hust M, Roth A, Biedenbeck H, Timmers J, et al. Production of recombinant antibody fragments in Bacillus megaterium. Microb Cell Fact (2007) 6:2. doi:10.1186/1475-2859-6-2
84. Lüders S, David F, Steinwand M, Jordan E, Hust M, Dubel S, et al. Influence of the hydromechanical stress and temperature on growth and antibody fragment production with Bacillus megaterium. Appl Microbiol Biotechnol (2011) 91:81–90. doi:10.1007/s00253-011-3193-7
85. Vary PS. Prime time for Bacillus megaterium. Microbiology (1994) 140(Pt 5):1011–13. doi:10.1099/13508724-1-10011-0
86. Chancery CJ, Khanna KV, Seegers JFM. Zhang GW, Hildreth J, Langen A, et al. Lactobacilli-expressed single-chain variable fragment (scFv) specific for intercellular adhesion molecule 1 (ICAM-1) blocks cell-associated HIV-1 transmission across a cervical epithelial monolayer. J Immunol (2006) 176:5827–36.
87. Krüger C, Hu Y, Pan Q, Marchetti H, Hultberg A, Delvar D, et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol (2002) 20:702–6. doi:10.1038/nbt0702-702
88. Marcotte H, Köll-Klaus P, Hultberg A, Zhao Y, Gumr R, Mandar R, et al. Expression of single-chain antibody against RgPA protease of Porphyromonas gingivalis in Lactobacillus. J Appl Microbiol (2006) 100:256–63. doi:10.1111/j.1365-2672.2005.02786.x
89. De Pourcq K, Verrecken W, Dewerte IV, Valevka A, Van Hecke A, Callewaert N. Enginee- ring the yeast Yarrowia lipolytica for the production of therapeutic proteins homo- geneously glycosylated with Man, GlcNAc and Man, GlcNAc. Microb Cell Fact (2012) 11:53. doi:10.1186/1475-2859-11-53
90. Schreuder MP, Moore AT, Tsokhia HY, Verrips CT, Kils FM. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol (1996) 14:115–20. doi:10.1016/1079-9940(96)01017-2
91. Jeong KJ, Iang SH, Yilmuragan N. Recombinant antibodies: engi- neering and production in yeast and bacterial hosts. Biotechnol J (2011) 6:16–27. doi:10.1002/biot.201000381
92. Davis GT, Bedzyk WD, Voss EW, Jacobs TW. Single chain antibody (SCA) encoding genes: one-step construction and expression in eukaryotic cells. Biotechnology (N Y) (1991) 9:165–9. doi:10.1038/nbt0291-165
93. Fleer R. Engineering yeast for high level expression. Curr Opin Biotechnol (1992) 3:486–96. doi:10.1016/0959-4616(92)90076-U
94. Buckholz RG, Gleeson MA, Yeast systems for the commercial production of recom- mercial monoclonal antibody fragments. Biotechnology (N Y) (1991) 59:1067–72. doi:10.1038/nbt0191-1067
95. Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D. Engi- neering of Pichia pastoris for improved production of anti- body fragments. Biotechnol Bioeng (2004) 96:353–61. doi:10.1002/bit.20851
96. Emberson LM, Trivet AJ, Blower PJ, Nichols PH. Expression of an anti-CDD3 single-chain antibody by Pichia pastoris. Immuno- methods (2005) 305:135–51. doi:10.1016/j. 1061.3545.2005.04.005
97. Ridder R, Schmitz R, Legay F, Gram H. Generation of rabbit monoclonal antibodies from a combinatorial phage dis- play library and their production in the yeast Pichia pastoris. Biotech- nology (N Y) (1995) 13:255–60. doi:10.1038/nbt0395-255

Frontiers in Immunology | B Cell Biology

July 2013 | Volume 4 | Article 217 | 14
Recombinant antibody production systems

99. Gurkan C, Syemonides SN, Ellar DJ. High-level production in Pichia pastoris of an anti-p18SHER-2 single-chain antibody fragment using an alternative secretion expression vector. Biotechnol Bioeng (2004) 95:115–22. doi:10.1002/bit.203099.

100. Eldin P, Pauza ME, Hieda Y, Lin G, Murtough MP, Pentel PR, et al. High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. Immortal Methods (1997) 20:67–75. doi:10.1016/S0022-1656(96)00213-X.

101. Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol (2007) 74:381–9. doi:10.1007/s00253-006-0652-7.

102. Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT. Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. Res Immunol (1998) 149:589–99. doi:10.1016/S0222-1656(98)80011-4.

103. Liu J, Wei D, Qian F, Zhou Y, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science (2006) 313:1411–3. doi:10.1126/science.1130256.

104. Horwitz AH, Chang CP, Better AJ, et al. Production of complex human glycoproteins in yeast. Science (2003) 303:1244–6. doi:10.1126/science.1088146.

105. Potgieter TI, Cukam M, Drummond JE, Houston-Cummings NR, Li F, et al. Optimization of glycoengineered IgGs in glycoengineered Pichia pastoris. Nat Biotechnol (2006) 24:210–5. doi:10.1038/nbt1178.

106. Hamilton SR, Horwitz AH, Potgieter B, Ballew N, et al. Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol (2009) 139:318–25. doi:10.1016/j.jbiotec.2008.12.015.

107. Zhang N, Liu L, Dimitro CD, Cummings NRH, Cukam M, Jiang Y, et al. Glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog (2011) 27:1744–50. doi:10.1002/btp.695.

108. Ye J, Li J, Watts K, Hsu A, Walker M, McLaughlin K, et al. Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. J Biotechnol (2009) 139:318–25. doi:10.1016/j.jbiotec.2008.12.015.

109. Jiang Y, Li F, Button M, Cukam M, Moore R, Shaverney N, et al. A high-throughput purification of monoclonal antibodies from glycoengineered Pichia pastoris. Protein Expr Purif (2010) 74:9–15. doi:10.1016/j.pep.2010.04.016.

110. Joosten V, Lukman C, Van Den Hondel CA, Pentel PR. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact (2005) 2:1. doi:10.1186/1475-2859-2-1.

111. Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Meng DL, et al. Characterization of humanized antibody secreted by Aspergillus niger. Appl Environ Microbiol (2004) 70:2567–76. doi:10.1128/AEM.70.5.2567-2576.2004.

112. Joosten V, Gouka RJ, van den Hondel CAMJ, Verrips CT, Lokman BC. Expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori. Appl Microbiol Biotechnol (2005) 66:384–92. doi:10.1007/s00253-004-1689-0.

113. Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT. Production of single-chain antibody fragment V(HH) against Acetylcholinesterase in Pichia pastoris. J Biotechnol (2003) 96:115–22. doi:10.1016/S0168-1656(03)00093-0.

114. Frenzel et al. Recombinant antibody production systems

www.frontiersin.org
July 2013 | Volume 4 | Article 217 | 15

115. Frenzel et al. Recombinant antibody production systems

116. Frenzel et al. Recombinant antibody production systems

117. Frenzel et al. Recombinant antibody production systems

118. Frenzel et al. Recombinant antibody production systems

119. Frenzel et al. Recombinant antibody production systems

120. Frenzel et al. Recombinant antibody production systems

121. Frenzel et al. Recombinant antibody production systems

122. Frenzel et al. Recombinant antibody production systems

123. Frenzel et al. Recombinant antibody production systems
virus expressed in baculovirus-infected insect cells. Virus Res (1995) 38:269–77. doi:10.1016/0168-1702(95)00051-Q
136. Zu Ptulitz J, Kabasek WL, Duchène M, Marget M, von Specht BU, Domdey H. Antibody production from baculovirus-infected insect cells. Biotechnology (N Y) (1990) 8:651–4. doi:10.1038/bi0790-651
137. Edelman L, Margarite C, Chaabibi H, Monschäte E, Blanchard D, Cardona A, et al. Obtaining a functional recombinant antibody using the baculovirus-infected cell expression system. Immunology (1997) 91:13–9. doi:10.1046/j.1365-2567.1997.00219.x
138. Ailor E, Betenbaugh MJ. Modifying secretion and post-translational processing in insect cells. Curr Opin Biotechnol (1999) 10:142–5. doi:10.1016/S0958-6947(99)80024-X
139. Aumiller JJ, Mabashi-Asazuma H, Domdey H. Antibody production systems for humanized recombinant glycoprotein production. Virology (2003) 310:1–7. doi:10.1006/viro.2002.0432
140. Jarvis DL. Developing baculovirus-infected cell expression systems for humanized recombinant glycoprotein production. Nature Biotechnol (1994) 109:349–61. doi:10.1038/nbt0994-349
141. Tomiy A, Betenbaugh MJ, Lee YC. Recombinant antibody production systems in insect cells. Trends Biotechnol (2003) 21:142–5. doi:10.1016/S0999-2785(03)00107-1
142. Reavy B, Zieger D, Dipietro J, McIntosh SM, Torrance L, Mayo M. Expression of functional recombinant antibody molecules in insect cell expression systems. Proteomics Exp (2007) 7:18121–8. doi:10.1002/prep.11919
143. Seams TC, Gould SJ, DiStefano DJ, Silberklang M, Robinson DK. Use of lipid emulsions as nutritional supplements in mammalian cell culture. Ann N Y Acad Sci (1994) 745:240–3. doi:10.1111/j.1749-6632.1994.tb44377.x
144. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol (2004) 22:1393–8. doi:10.1038/nbt1026
145. Jones D, Kroos N, Anema R, van Montfort B, Vooyas A, van der Kraats S, et al. High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol Prog (2003) 19:163–8. doi:10.1021/bp025574h
146. Butler M. Animal cell cultures: recent achievements and perspectives in the production of bio-pharmaceuticals. Appl Microbiol Biotechnol (2003) 68:283–91. doi:10.1007/s00253-003-1980-8
147. Fussenger M, Bailey JE. Molecular regulation of cell cycle progression and apoptosis in mammalian cell implications for biotechnology. Biotechnol Prog (1998) 14:807–33. doi:10.1021/bp9800891
148. Lifly MR, Hale C, Byye S, Keen MJ, Phillips J. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology (1995) 5:813–22. doi:10.1093/glycob/5.8.813
149. Niklas J, Schrader E, Sandig V, Noll T, Heinze E. Quantitative characterization of metabolic and metabolic shifts during growth of the new human cell line AGEL.HN using time resolved metabolic flux analysis. Bioprocess Bioeng (2001) 34:53–53. doi:10.1002/biop.100049
150. Shields RL, Lai J, Reck C, O’Connell LY, Hong K, Meng YG, et al. Lack of laccase on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma III and antibody-dependent cellular toxic- ity. J Biol Chem (2002) 277:26733–40. doi:10.1074/jbc.M202692090
151. Le Hir H, Nott A, Moore MJ. Roles of introns in the expression and regulation of the human beta-2 microglobulin gene. Nucleic Acids Res (1982) 10:2313–23. doi:10.1093/nar/10.5.2313
152. Away J, Hsu TA, Betenbaugh MJ. Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia ni insect cells. Biotechnol Prog (1997) 13:96–104. doi:10.1021/bp960088d
153. Baer A, Betenbaugh MJ, Lee YC. Humanization of lepidopteran insect-cell produced glyco- proteins. Acc Chem Res (2003) 36:613–20. doi:10.1021/ar020202y
154. Hasenmann CA, Capra JD. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc Natl Acad Sci U S A (1990) 87:3942–6. doi:10.1073/ pnas.87.10.3942
155. Reavy B, Zieger D, Dipietro J, McIntosh SM, Torrance L, Mayo M. Expression of functional recombinant antibody molecules in insect cell expression systems. Proteomics Exp (2007) 7:18121–8. doi:10.1002/prep.11919
156. Li J, Menzel C, Meier D, Zhang C, Dubel S, Jostock T. A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods (2007) 318:113–24. doi:10.1016/j.jim.2006.10.010
157. Li J, Zhang C, Jostock T, Dubel S. Analysis of IgG heavy chain to light chain ratio with mutant Enocephalomyocarditis virus internal ribosome entry site. Protein Eng Des Sel (2007) 20:491–6. doi:10.1093/protein/gem038
158. Omasa T. Gene amplification and its application in cell and tissue engineering. J Biotechnol (2002) 94:600–5. doi:10.1016/S0168-1656(02)00423-9
159. Gorman CM, Howard BH, Reeves R. Expression of recombinant plasmids in mammalian cells is enhanced by soybean cutrylate. Nucleic Acids Res (1983) 14:7631– 48. doi:10.1093/nar/14.11.7631
160. Claussen BJ, Brown MH, Garnett D, Somoza C, Barclay AN, Willis AC, et al. The hinge region of the CDB alpha chain: structure, anti- genicity, and utility in expression of immunoglobulin superfamly domains. Int Immunol (1992) 4:215–35. doi:10.1093/intimm/4.2.215
161. Jostock T, Zehe C, Bode J. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng (2012) 109:2599–611. doi:10.1002/bit.24527
162. Nehlsen K, Schucht R, da Gama-Norton L, Krömer W, Baer A, Caryll A, et al. Recombinant protein expression by targeting pre- selected chromosomal loci. BMC Biotechnol (2009) 9:100. doi:10.1186/1472-6750-9-100
163. Fang J, Yi S, Simmons A, Tu GH, Nguyen M, Harding TC, et al. An antibody delivery system for reg- ulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol Ther (2007) 15:1153–9.
164. Jostock T, Dragic Z, Fang J, Jooss K, Wilms B, Knopf H-P. Combination of the 2A/furin technol- ogy with an animal component free cell line development platform process. Appl Microbiol Biotechnol (2010) 87:1517–24. doi:10.1007/s00253-010-2625-2
165. Wilke S, Grebke L, Maffenbeier V, Vager J, Gossen M, Joeszewski I, et al. Streamlining homogeneous gly- coprotein production for biophys- ical and structural applications by reducing the design of cell culture conditions. PLoS ONE (2011) 6:e27829. doi:10.1371/journal.pone.0027829
166. Geisse S, Fux C. Recombinant protein production by transient gene transfer into Mammalian
cells. Methods Enzymol (2009) 465:223–38. doi:10.1016/S0076-5379(09)3015-9

175. Baldi I, Hacker DL, Adam M, Wurm FM. Recombinant protein production by large-scale transient gene expression in mammalian cell cultures: the art and future perspectives. Biotechnol Lett (2007) 29:677–84. doi:10.1007/s10529-006-9297-y

176. Backliwal G, Hildinger M, Chenuet S, Wurm FM. Recombinant protein production by transient gene expression in mammalian cells. A versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol (2000) 42:819–32. doi:10.1023/A:1001638018610

177. Hekema A, Hirsch PR, Hooykaas PJF, Schilperoort RA. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature (1983) 303:179–80. doi:10.1038/303179a0

178. Amian AA, Papenbrock J, Jacob- sen H-J, Hassan F. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops (2011) 2:104–9. doi:10.1186/gm122.2.16125

179. Horsch RB, Fry JE, Hoffmann NL, meinen P, Pick H, Kalangara A, Chatellard P, Friedrich K, Roosien J, de Boer J, et al. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A (2002) 99:14640–5. doi:10.1073/pnas.192581499

180. Lousign M, Perret S, Kelly J, Boeder D, Caz R, Bioso L, et al. Stable high volumetric production of glycosylated human recombinant IFNα/IFNβ in HEK293 cells. BMC Biotechnol (2008) 8:65. doi:10.1186/1472-6750-8-65

181. Zhang J, MacKenzie R, Durocher Y. Production of chimeric heavy-chain antibodies. Methods Mol Biol (2009) 525:323–36. doi:10.1007/978-1-9475-544-35. doi:10.1007/978-1-9475-544-35

182. Daniell H, Streatfield SJ, Wycoff sen H-J, Hassan F. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. A simple and general method for transferring genes into plants. Science (1985) 227:1229–31. doi:10.1126/science.227.4691.1229

183. McCormick AA, Reif SJ, Cameron TI, Vogelmann L, Fronedelli M, Levy R, et al. Individualized human scFv vaccines produced in plants: humoral anti-idiotypic responses in vaccinated mice confirm relevance to the tumor Ig. J Immunol Methods (2003) 278:95–104. doi:10.1016/S0022-1759(03)00288-4

184. McCormick AA, Reddy S, Reif SJ, Cameron TI, Czerwinski DR, Vogelmann L, et al. Plant-produced idiotypic vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. Proc Natl Acad Sci U S A (2008) 105:10131–6. doi:10.1073/pnas.0803636105

185. Gomord V, Chamberlain P, Jeffers R, Faye L. Biopharmaceutical production in plants: problems, solutions, and opportunities. Trans Biotechnol (2005) 23:559–65. doi:10.1016/j.tibtech.2005.09.003

186. Jin C, Altmann F, Strasser R, Mach L, Schahs M, Knürrt R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glyco- biology (2008) 18:235–41. doi:10.1093/glycob/cwn137

187. Walsh G, Jeffers R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol (2006) 24:1241–51. doi:10.1038/nbt1252

188. Gomord V, Demant LA, Fichette-Laine AC, Satiat-Jeunemaitre B, Hawes C, Faye L. The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J (1997) 11:313–25. doi:10.1046/j.1365-313X.1997.002031.x

189. Schouten A, Roosien I, de Boer JM, Wilmink A, Rosso MN, Bosch D, et al. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett (1997) 415:235–41. doi:10.1006/fslt.1997.1129-0

190. Schouten A, Roosien I, van Engelen FA, de Jong GA, Borst-Vrensens AW, Zilverenart JF, et al. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be tar- geted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol (1996) 30:781–93. doi:10.1007/bf00019011

191. Schahs M, Strasser R, Stallmann I, Knürrt R, Rademacher T, Steinckenh H. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J (2007) 5:657–63. doi:10.1111/j.1467-7652.2007.00273.x

192. Strasser R, Stallmann I, Schahs M, Stiegler G, Quen德尔 H, Mach L, et al. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N- glycans structure. J Biol Chem (2009) 284:392–402. doi:10.1074/jbc.M108006620

193. Vézina L-P, Faye L, Lerouge P, Vézina-Lallier E, Beretta S, et al. Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol J (2009) 7:442–55. doi:10.1111/j.1467-6675.2009.00414.x

194. Jez I, Castillio A, Grass J, Vorauer-Uhl K, Sterovsky T, Altman F, et al. Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J (2013) 8:571– 82. doi:10.1002/biot.201203663

195. Castillio A, Neumann L, Daskalova S, Mason HS, Steinkenhler H, Altman F, et al. Engineer- ing of sialylated mucin-type O- glycosylation in plants. J Biol Chem (2012) 287:36518–26. doi:10.1074/jbc.M112.402685

196. Yang Z, Drew DF, Jorgensen B, Mandel U, Bach SS, Ulvskov P, et al. Engineering mammalian mucin-type O- glycosylation in plants. J Biol Chem (2012) 287:11911–23. doi:10.1074/jbc.M112.312918

197. Martt V, Chiucheria J, Stewart ML, Misyukhuk B, Bi H, Reifeny- der CJ, et al. A non-glycosylated, plant-produced human mono- clonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Hum Vaccin (2011) 7:88–90. doi:10.4161/hv.7.0.14586

198. Rodríguez M, Pérez L, Gavilonda JV, Garrido G, Bequet-Romero M, Hernández I, et al. Compari- tive in vitro and experimen- tal in vivo studies of the anti- epidermal growth factor recep- tor antibody nimotuzumab and its aglycosylated form produced in transgenic tobacco plants. Plant Biotechnol J (2013) 11:53–65. doi:10.1111/pbi.12006

199. Marillonnet S, Thoeringer C, Kandria R, Klímyuk V, Gleba Y. Systemic Agrobacterium tumefa- ciens-mediated transfection of viral replisors for efficient tran- sient expression in plants. Nat Biotechnol (2005) 23:718–23. doi:10.1038/nbt1094

200. Giritich A, Marillonnet S, Engler C, van Eldik G, Betterman J, Klímyuk V, et al. Rapid high-yield expres- sion of full-size IgG antibodies in plants coincident with noncom- peting viral vectors. Proc Natl Acad Sci U S A (2006) 103:14751–6. doi:10.1073/pnas.0606631103

201. Barros GOF, Woodward SL, Nikolov ZL. Phenolics removal from transgenic Lemna minor extracts expressing mAb and impact on mAb production cost. Biotechnol Prog (2011) 27:410–8. doi:10.1002/bptp.543
210. Naik AD, Menegatti S, Reese HR, Gurgel PV, Carbomell RG. Process for purification of monoclonal antibody expressed in transgenic Lemna plant extract using dextran-coated charcoal and hexamer peptide affinity resin. J Chromatogr A (2012) 1260: 61–6. doi:10.1016/j.chroma.2012.08.043

211. Woodard SL, Wilken LR, Barros GOF, White SG, Nikolov ZL. Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development. Biotechnol Bioeng (2009) 104:562–71. doi:10.1002/bit.22428

212. Torres E, Vaquerio C, Nicholson L, Sack M, Stoger E, Drossard J, et al. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res (1999) 8:419–49. doi:10.1023/A:1000869021954

213. Buck SD, Virdi V, Meyer TD, Wilde T orres E, Vaquero C, Nicholson L, et al. Transgenic Lemna plant extract oclonal antibody expressed in transgenic Lemna for purification process development. Plant Biotechnol J (2012) 10:936–44. doi:10.1111/j.1677-7652.2012.00722.x

214. Kluehdi J, Huber S, Ferullo JM, Bazzin R, Darveau A, Castonguy Y, et al. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng (1999) 64:135–45. doi:10.1002/(SICI)1097-0290(19990207)64:2<135::AID-BIT2>3.3.CO;2-H

215. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med (1996) 2:601–06. doi:10.1038/nnm0598-601

216. Larrick JW, Yu L, Chen J, Jaswal SY, Wycoff K, Production of antibodies in transgenic plants. Res Immunol (1998) 149:603–8. doi:10.1016/S0093-691X(97)82341-2

217. Wycoff KL. Secretory IgA antibodies from plants.Curr Pharm Des (2005) 11:2429–37. doi:10.2174/138161205775080

218. McCormick AA. Tobacco derived cancer vaccines for non-Hodgkin’s lymphoma: perspectives and progress. Hum Vaccin (2011) 7:305–12. doi:10.4161/hv.7.6.14163

219. Hornfell G, Becker W, Wolf F, Kalden JR, Burmester GR. Human anti-mouse immunoglobulin antibodies as disturbing factors in TSH determination. Klin Wochenschr (1991) 69:220–3. doi:10.1007/BF01646945

220. Hornfell G, Winkler T, Kalden JR, Emmrich F, Burmester GR. Human anti-mouse antibody response induced by anti-CD4 monoclonal antibody therapy in patients with rheumatoid arthritis. Clin Immunol Immunopathol (1991) 59:89–103. doi:10.1016/0091-2299(91)90084-N

221. Castilla J, Pintado B, Sola I, Sanchez-Morgado JM, Enjuanes L. Lactogenic immunity in transgenic mice producing recombinant antibodies neutralizing coronavirus. Adv Exp Med Biol (1998) 440:675–86. doi:10.1007/978-1-4615-3311-1_87

222. Limonta J, Pedraza A, Rodriguez A, Freyre PM, Barral AM, Castro FO, et al. Production of active anti-CD6 mouse/human chimeric antibodies in the milk of transgenic mice. Immunotechnol (1995) 1:107–13. doi:10.1016/S1007-2935(95)00010-0

223. Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, et al. Antitransferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. J Immunol Methods (1999) 231:159–67. doi:10.1016/S0022-1759(99)00154-4

224. Gavin WG, Pollock D, Fell P, Yelton D, Cammuso C, Harrington M, et al. Expression of the antibody hBR96-2 in the milk of transgenic mice and production of hBR96-2 transgenic goats. Theriogenology (1997) 47:2114. doi:10.1016/S0093-691X(97)82341-2

225. Zhu L, van de Lavoour M-C, Albanese J, Beenhouwer DO, Cardarelli PM, Cuisin S, et al. Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol (2005) 23:1159–69. doi:10.1038/nbt1113

226. Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA, et al. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad U S A (1998) 95:6709–13. doi:10.1073/pnas.86.17.6709

227. Kuroiwa Y, Kashiwabara K. Trapping HIV-1 gp140 from mice bearing monoclonal antibodies to HIV-1 gp120. J Immunol (1998) 161:2143–52. doi:10.4049/jimmunol.161.4.2143

228. LeRoith T, et al. Generation of transgenic farm animals producing human monoclonal antibodies to human heavy chains from transgenic goats. Proc Natl Acad Sci U S A (2001) 98:6845–50. doi:10.1073/pnas.98.12.6845

229. Houdebine L-M. Production of pharmaceutical proteins by transgenic animals. Comp Immun Microbiol Infect Dis (2009) 32:107–21. doi:10.1016/j.cimid.2007.11.005

230. Green LL, Hardy MC, Maynard-Currie CE, Tsuda H, Louie DM, Mendez MJ, et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YAs. Nat Genet (1994) 7:13–21. doi:10.1038/ng0594-13

231. Lonberg N, Huszar D, Offner S, Ros F, Litke V, Zeitzer B, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE (2011) 6:e20104. doi:10.1371/journal. pone.0020104

232. Mendicino M, Ramaan J, Phillips C, Vaught T, Ball S, LeKoith T, et al. Generation of antibody- and B-cell-deficient pigs by targeted disruption of the I-region gene segment of the heavy chain locus. Transgenic Res (2011) 20:625–41. doi:10.1007/s11248-010-9444-x

233. Ramaan J, Mendicino M, Phillips C, Vaught T, Ball S, Monahan J, et al. Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res (2011) 20:633–53. doi:10.1007/s11248-010-9445-y

234. Judson J. Reconstitution of human immunoglobulin from pigs by transgenic engineering. Proc Natl Acad Sci U S A (1996) 93:15024–7. doi:10.1073/pnas.93.25.15024

235. Judson J. Human antibodies from transgenic animals. Curr Top Microbiol Immunol (2007) 309:1–37. doi:10.1007/978-1-84907-617-3

236. Judson J. Human antibodies from transgenic mice. Nat Rev Immunol (1995) 13:65–63. doi:10.1038/31967

237. Judson J. Human antibodies from transgenic animals. Nat Rev Immunol (2007) 7:132–8. doi:10.1038/nri2171

238. Kuroiwa Y, Kashiwabara K. Sathiyaseelan T, Jiao J, Matsushita H, Sathiyaseelan J, et al. Antigen-specific human polyclonal antibodies from human transgenic cows. Transgenic Res (2009) 18:713–8. doi:10.1007/s11248-012-9608-x

239. Grosse-Hovest L-M, Müller S, Minoia R, Wolf E, Zakhartchenko V, Wenigerkind H, et al. Transgenic farm animals producing therapeutically relevant antibodies. Frontiers in Immunology | B Cell Biology July 2013 | Volume 4 | Article 217 | 18
246. Osborn MJ, Ma B, Avis S, Binnie A, Dilley Y, Xang X, et al. High-affinity IgG antibodies developed naturally in Ig-knockout rats carrying germline human IgUs/Igα, Igλ bearing the rat CH region. J Immunol (2013) 190:1481–90. doi: 10.4099/jimmunol.1203041

247. Chen C, Sneider B, Nishihara JC, Joly JC, McFarland N, Anerson DC, et al. High-level accumulation of a recombinant anti-body fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prep spr) host strain. Biotechnol Bioeng (2004) 85:463–74. doi: 10.1002/bit.20014

248. Monsellier E, Bedouelle H. Improving the stability of an antibody variable fragment by a combination of knowledge-based approaches: validation and mechanisms. J Mol Biol (2006) 362:580–93. doi: 10.1016/j.jmb.2006.07.044

249. Rahbarizadeh F, Rasaee MJ, Hussack G, Arbabi-Ghahroudi M, Cossins AJ, Harrison S, Popplewell YAC-based human immunoglobulin transloci. Protein Eng Des Sel (2011) 24:791–9. doi: 10.1093/protein/gz038

250. Yang T, Yang L, Chai W, Li R, Xie J, Niu B. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phase display vector pCANTAB SE into pBV220. Protein Expr Purif (2011) 76:109–14. doi: 10.1016/j.pep.2010.10.006

251. King DJ, Byron OD, Mountain A, Weir N, Harvey A, Lawson AD, et al. Expression, purification and characterization of B7.2 Fv fragments. Biochem J (1993) 309:Pt 3:723–9.

252. Ye T, Lin Z, Lei H. High-level expression and characterization of an anti-VEGF165 single-chain variable fragment (scFv) by small ubiquitin-related modiﬁer fusion in Escherichia coli. Appl Microbiol Biotechnol (2008) 81:311–7. doi: 10.1007/s00253-008-1655-3

253. Nadkarni A, Kelley L-C, Momany G. Optimization of a mouse recombinant antibody fragment for efﬁcient production from Escherichia coli. Protein Expr Purif (2007) 52:119–29. doi: 10.1016/j.pep.2006.10.011

254. Padiouleau-Lefèvre S, Alexandre D, Dkhissi F, Clement G, Essono S, Blache C, et al. Expression and detection strategies for an scFv fragment retaining the same high affinity than Fab and whole antibody; implications for therapeutic use in prion diseases. Mol Immunol (2007) 44:1888–96. doi: 10.1016/j.molimm.2006.09.035

255. Alberti P, Stoessell A, Wang W, Sibler A-P, Bre C, Larroque C, et al. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol (2007) 7:81. doi: 10.1186/1472-6750-7-81

256. Nesbøth DN, Perez-Pardo M-A, Ali S, Ward I, Keshavkar-Moore E. Growth and productivity impacts of plasmidic nucleus expression in an Escherichia coli Fab’ fragment production strain. Biotechnol Bioeng (2012) 109:237–27. doi: 10.1002/bit.23316

257. Ueda Y, Tsumoto K, Watanabe K, Kumagai I. Synthesis and expression of a DNA encoding the Fv domain of an anti-lysozyme monoclonal antibody, 184HEL10, in Streptomyces lividans. Gene (1993) 129:129–34. doi: 10.1016/0378-1119(93)90708-B

258. Swinnen D, Paul M-F, Vernis L, Beckerich J-M, Fourrier A, Gaillardin C. Secretion of active anti-Ras single-chain Fv antibody by the yeastas Tarentella lipolytica and Kluyveromyces lactis. Microbiolology (2002) 148:41–50.
expression and characterization of a single-chain variable antibody fragment directed against blood coagulation factor VIII. *Protein Expr Purif* (2013) 88:201–6. doi:10.1016/j.pecp.2012.10.016

280. Backovic M, Johansson DX, Klupp BG, Mettenleiter TC, Persson MA, Rey FA. Efficient method for production of high yields of Fab fragments in *Drosophila* S2 cells. *Protein Eng Des Sel* (2010) 23:169–74. doi:10.1093/protein/gp088

281. Johansson DX, Drakenberg K, Korpipää P, Persson MA, Rey FA. High-level secretion of recombinant monoclonal antibodies in *Drosophila* S2 cells. *J Immunol Methods* (2007) 318:37–46. doi:10.1016/j.jim.2006.08.017

282. Gilmartin AA, Lamp B, Rümknaf T, Persson MA, Rey FA. High-level secretory production of antibody fragments in mammalian cell cultures. *Biotechnol Bioeng* (2008) 101(4):182–9. doi:10.1002/bit.21882

283. Pahlmberger D, Rendic D, Tauber P, Krammer F, Wilson IBH, Grabherr R. Insect cells for antibody production: evaluation of an alternative efficient method. *Biotechnol Bioeng* (2013) 110:E15–22. doi:10.1002/bit.24776

284. Nettleship JE, Ren J, Rahman N, Berrow NS, Hatherley D, Neil Barclay A, et al. Production of recombinant human single-chain Fv antibodies from *Drosophila* S2 cells. *Protein Expr Purif* (2008) 62:83–9. doi:10.1016/j.pep.2008.06.017

285. Codamo I, Munro TP, Hughes BS, Song M, Gray PE. Enhanced CHO cell-based transient gene expression with the epi-CHO expression system. *Mol Biotechnol* (2011) 48:109–15. doi:10.1007/s12033-010-9351-9

286. Van Berkel PHC, Gerritsen J, van Vossen F, Perk LD, Vink DL, de Vink JG, et al. Rapid production of recombinant human IgG with improved ADCC effector function in a transient expression system. *Biotechnol Bioeng* (2010) 105:350–7. doi:10.1002/bit.22535

287. Wülhfard S, Baldi L, Hacker DL, Wurm F. Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. *J Biotechnol* (2010) 148:128–32. doi:10.1016/j.jbiotec.2010.05.003

288. Backlwald G, Hildinger M, Knettel T, Delegrange F, Hacker DL, Wurm FM. Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. *Biotechnol Bioeng* (2008) 101:182–9. doi:10.1002/bit.21882

289. Wülhfard S, Tisot S, Bouchet S, Ceeve J, de Jesus M, Hacker DL, et al. Mild hyperthermia improves transient gene expression yields several fold in Chinese hamster ovary cells. *Biotechnol Prog* (2008) 24:586–605. doi:10.1021/bp070286c

290. Lader A, Prewein B, Zboray K, Casanova E, Kunert R. Exploitation of BAC versus plasmid expression vectors in recombinant CHO cells. *Appl Microbiol Biotechnol* (2012) 97(9):4049–54. doi:10.1007/s00253-012-4498-x

291. Koler L, Zehe C, Bode J. Optimized signal peptides for the development of high expressing CHO cell lines. *Biotechnol Bioeng* (2013) 110:1164–73. doi:10.1002/bit.24776

292. Spens E, Haggstrom L. Defined protein and animal component-free NSO fed-batch culture. *Biotechnol Bioeng* (2007) 98:1183–94. doi:10.1002/bit.21509

293. Burky JE, Wesson MC, Young A, Farnsworth S, Dionne B, Zhu Y, et al. Protein-free fed-batch culture of non-GS NSO cell lines for production of recombinant antibodizes. *Biotechnol Bioeng* (2007) 96:281–93. doi:10.1002/bit.21060

294. Tschudakova A, Hensel F, Murillo A, Eng B, Foley M, Smith L, et al. High level expression of functional human IgMs in human PER.C6 cells. *Mabs* (2009) 1:163–71. doi:10.4161/mabs.1.2.7945

295. Agrawal V, Silvac I, Ferret S, Bisson L, St-Laurent G, Murad Y, et al. Stable expression of chimeric heavy chain antibodies in CHO cells. *Methods Mol Biol* (2012) 911:287–303. doi:10.1007/978-1-6177-9686-18

296. Huang L, Li M-X, Lei Y, Wang Y-T, Xie K, Yang Y-L, et al. Expression, purification and activity determination of humanized anti-HER2 monoclonal antibody in CHO. *Chin Pharm J* (2012) 47:884–8.

297. Tran M, Van C, Barrera DJ, Peterson PL, Peinado CD, Bui J, et al. Production of unique immunotxin cancer therapies in algal chloroplasts. Proc Natl Acad Sci U S A (2013) 110:E15–22. doi:10.1073/pnas.1214638110

298. Almqist KC, McLean MD, Niu Y, Byrne G, Oelae-Popelka FC, Murrant C, et al. Expression of an anti-horbitul toxin in transgenic tobacco line. *Vaccine* (2006) 24:2079–86. doi:10.1016/j.vaccine.2005.11.014

299. Sainsbury F, Sack M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. *PLoS ONE* (2010) 5:e13976. doi:10.1371/journal.pone.0013976

300. Cui L, Peng H, Zhang R, Chen Y, Zhao L, Tang K. Recombinant hHscFv–RC-RNase protein yields high quality functional anti-HIV antibody. *Protein Expr Purif* (2012) 79:59–66. doi:10.1016/j.pep.2012.03.017

301. Sainsbury F, Sack M, Sjöstedt M, Stadlmann J, Quendler H, Fischer R, Lomonossoff GP. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. *PLoS ONE* (2010) 5:e13976. doi:10.1371/journal.pone.0013976

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 March 2013; accepted: 15 July 2013; published online: 29 July 2013.

Citation: Frenzel A, Hutt M and Schirrmann T (2013) Expression of recombinant antibodies. *Front. Immunol.* 4:217. doi:10.3389/fimmu.2013.00217

This article was submitted to Frontiers in B Cell Biology, a specialty of Frontiers in Immunology.

Copyright © 2013 Frenzel, Hutt and Schirrmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.