1. **Table S1a**: Dataset used in this study [taxonomy follows (Uetz & Hosek, 2015)]

Table S1b: Taxonomic coverage of turtle and squamate families used in this study

2. **Figure S1**

3. **Results using alternative SDM assignment for species with mixed or equivocal SDM as listed in Table S1:**
 - **Table S2**: MacroCAIC results using alternative SDM assignment
 - **Table S3**: BAMM estimation for the number of rate shifts in diversification. The number of rates shifts with the highest probability in each group is marked in bold.
 - **Table S4**: STRAPP results
 - **Table S5**: Summary of transition rate parameters estimates using the MK2 model with both Maximum Likelihood and Bayesian (MCMC) methodologies for the turtles, lizards, and squamate data sets using the alternative SDM assignment.
 - **Table S6**: Log likelihood differences (∆LL) obtained between the single (BM1) and two rate (BM2) Brownian motion models of evolution, and between the single (OU1) and two (OU2) optimaums, as estimated for life span in turtles, lizards, and squamates. \(\sigma^2_{\text{GSD}} \) and \(\sigma^2_{\text{TSD}} \), \(\text{Optimum}_{\text{GSD}} \), and \(\text{Optimum}_{\text{TSD}} \): estimated parameters for GSD and TSD lineages using the alternative SDM assignment.

4. **BiSSE ANALYSES**
Table S1a: Dataset used in this study. Taxonomy follows Uetz and Hosek (2015)

ID	Vernacular	Order	Family	NAME.Uetz.March.2016	on.tree	SDM	SDMA	LIFESPAN	Source.GSD (karyotypic where available or incubation otherwise)	Source.TSD	NOTES (SDM data or taxon name on tree if different)
1	Tuatara	Rhynocepe	Sphenodontidae	Sphenodon punctatus	yes	TSD	TSD	91	Nelson et al. (2004)		
2	Turtle	Chelonia	Geoemydidae	Mauremys annamensis	yes	TSD	TSD	80	Ewert et al. (2004)		
3	Turtle	Chelonia	Geoemydidae	Mauremys japonica	yes	TSD	TSD	40	Okada Y. et al. (2010)		
4	Turtle	Chelonia	Geoemydidae	Mauremys mutica	yes	TSD	TSD	23.9	Ewert and Nelson (1991)		
5	Turtle	Chelonia	Geoemydidae	Mauremys nigricens	yes	TSD	TSD	16.2	Ewert et al. (2004)		
6	Turtle	Chelonia	Geoemydidae	Mauremys reevesi	yes	TSD	TSD	22.1	Ling H. (1985)		
7	Turtle	Chelonia	Geoemydidae	Melanochelys trijuga	yes	TSD	TSD	18	Ewert and Nelson (1991)		
8	Turtle	Chelonia	Geoemydidae	Pangshura smithii	yes	GSD	GSD	16.8	Sharma et al. (1975)		
9	Turtle	Chelonia	Geoemydidae	Rhinoclemmys areolata	yes	TSD	TSD	30	Ewert and Nelson (1991)		
10	Turtle	Chelonia	Geoemydidae	Rhinoclemmys pulcherima	yes	TSD	TSD	20.4	Ewert and Nelson (1991)		
11	Turtle	Chelonia	Geoemydidae	Siebenrockiella crassicollis	yes	GSD	GSD	19.3	Carr and Bickham (1981)		
12	Turtle	Chelonia	Carettochelyidae	Carettochelys insculpta	yes	TSD	TSD	33	Webb et al. (1986)		
13	Turtle	Chelonia	Chelidae	Acantochelys radiolata	yes	GSD	GSD	NA	McBee et al. (1985)		
14	Turtle	Chelonia	Chelidae	Chelodina longicollis	yes	GSD	GSD	38.4	Ezaz et al. (2006)		
15	Turtle	Chelonia	Chelidae	Eleusa novaeguineae	yes	GSD	GSD	15.2	Ewert et al. (2004)		
16	Turtle	Chelonia	Chelidae	Elusor macrurus	yes	GSD	GSD	NA	Georges and McInnes. (1998)		
17	Turtle	Chelonia	Chelidae	Emydura macquarii	yes	GSD	GSD	20.9	Martinez et al. (2008)		
18	Turtle	Chelonia	Chelidae	Emydura subglobosa	yes	GSD	GSD	NA	Ewert and Nelson (1991)		
19	Turtle	Chelonia	Chelidae	Mesollemmys gibba	yes	GSD	GSD	24.2	Ewert et al. (2004)		
20	Turtle	Chelonia	Chelidae	Phrynops geoffroanus	yes	GSD	GSD	20.1	Ewert et al. (2004)		
21	Turtle	Chelonia	Chelidae	Phrynops hiliarii	yes	GSD	GSD	41	Ewert et al. (2004)		
22	Turtle	Chelonia	Cheloniidae	Caretta caretta	yes	TSD	TSD	25.2	Yntema and Mrosovsky (1979)		
23	Turtle	Chelonia	Cheloniidae	Chelonia mydas	yes	TSD	TSD	37	Mrosovsky et al. (1984)		
24	Turtle	Chelonia	Cheloniidae	Eretmochelys imbricata	yes	TSD	TSD	45	Mrosovsky et al. (1992)		
25	Turtle	Chelonia	Cheloniidae	Lepidochelys kempi	yes	TSD	TSD	40	Shaver D.J. et al. (1988)		
26	Turtle	Chelonia	Cheloniidae	Lepidochelys olivacea	yes	TSD	TSD	40	McCoy L. (1983)		
27	Turtle	Chelonia	Cheloniidae	Natator depressus	yes	TSD	TSD	40	Hewawisenth and Parmenter (2000)		
28	Turtle	Chelydridae	Chelydra serpentina	yes	TSD	TSD	50	Yntema C.L. (1976)			
29	Turtle	Chelydridae	Macrochelys temminckii	yes	TSD	TSD	18.2	Ewert and Nelson (1991)			
30	Turtle	Chelydridae	Dermatemydididae	Dermatemys mawii	yes	TSD	TSD	11.3	Vogt and Flores-Villela (1992)		
31	Turtle	Chelydridae	Dermochelydidae	Dermochelys coriacea	yes	TSD	TSD	NA	Rimbloet al. (1985)		
32	Turtle	Emydidae	Emydidae	Actinemys marmorata	yes	TSD	TSD	50	Ewert et al. (1994)		
33	Turtle	Emydidae	Emydidae	Chrysemys picta	yes	TSD	TSD	61	Ewert and Nelson (1991)		
34	Turtle	Emydidae	Emydidae	Clemmys guttata	yes	TSD	TSD	110	Ewert and Nelson (1991)		
35	Turtle	Emydidae	Emydidae	Emetreia reticularia	yes	TSD	TSD	24	Ewert and Nelson (1991)		
36	Turtle	Emydidae	Emydidae	Emydoidae blandingi	yes	TSD	TSD	77	Ewert and Nelson (1991)		
37	Turtle	Emydidae	Emydidae	Emys orbicularis	yes	TSD	TSD	120	Pieau C. (1974)		
38	Turtle	Emydidae	Emydidae	Glyptemys insculpta	yes	GSD	GSD	100	Montiel et al. (2015)		
39	Turtle	Emydidae	Emydidae	Graptemys barbouri	yes	TSD	TSD	62.8	Ewert and Nelson (1991)		
40	Turtle	Emydidae	Emydidae	Graptemys geographica	yes	TSD	TSD	60	Ewert and Nelson (1991)		
41	Turtle	Emydidae	Emydidae	Graptemys nigrolinea	yes	TSD	TSD	31.7	Ewert and Nelson (1991)		
42	Turtle	Emydidae	Emydidae	Graptemys ouachitensis	yes	TSD	TSD	20	Ewert and Nelson (1991)		
43	Turtle	Emydidae	Emydidae	Graptemys pseudogeographica	yes	TSD	TSD	20.3	Ewert and Nelson (1991)		
44	Turtle	Emydidae	Emydidae	Graptemys pulchra	yes	TSD	TSD	15	Bull et al. (1982)		
45	Turtle	Emydidae	Emydidae	Graptemys versa	yes	TSD	TSD	35.4	Ewert et al. (1994)		
46	Turtle	Emydidae	Emydidae	Heosemys grandis	yes	TSD	TSD	20	Ewert et al. (1994)		
47	Turtle	Emydidae	Emydidae	Malaclemys terrapin	yes	TSD	TSD	40	Ewert and Nelson (1991)		
48	Turtle	Emydidae	Emydidae	Pseudemys concinna	yes	TSD	TSD	14.1	Ewert and Nelson (1991)		
49	Turtle	Emydidae	Emydidae	Pseudemys nelsoni	yes	TSD	TSD	23.4	Ewert et al. (2004)		
50	Turtle	Emydidae	Emydidae	Pseudemys pensylvanicus	yes	TSD	TSD	44	Ewert and Nelson (1991)		
51	Turtle	Emydidae	Emydidae	Pseudemys texana	yes	TSD	TSD	NA	Ewert et al. (2004)		
52	Turtle	Emydidae	Terrapene carolina	yes	TSD	TSD	23.9	Ewert and Nelson (1991)			
53	Turtle	Emydidae	Terrapene ornata	yes	TSD	TSD	54.8	Ewert and Nelson (1991)			
54	Turtle	Emydidae	Trachemys decorata	yes	TSD	TSD	127	Ewert et al. (2004)			
55 Turtle Chelonia Emydidae Trachemys scripta yes TSD TSD 13.9 Ewert and Nelson (1991)

56 Turtle Chelonia Kinosternidae Claudioius angustatus yes GSD GSD 16.1 Vogt and Flores-Villela (1992)

57 Turtle Chelonia Kinosternidae Kinosternon acutum yes TSD TSD NA Janzen and Paukstis (1991)

58 Turtle Chelonia Kinosternidae Kinosternon alamosae yes TSD TSD 29.6 Ewert et al. (2004)

59 Turtle Chelonia Kinosternidae Kinosternon arizonense yes TSD TSD 25 Ewert and Nelson (1991)

60 Turtle Chelonia Kinosternidae Kinosternon baurii yes TSD TSD 59.6 Ewert et al. (2004)

61 Turtle Chelonia Kinosternidae Kinosternon creaseri yes TSD TSD 25 Ewert et al. (2004)

62 Turtle Chelonia Kinosternidae Kinosternon flavescens yes TSD TSD 59.6 Ewert et al. (1994)

63 Turtle Chelonia Kinosternidae Kinosternon hirtipes yes TSD TSD NA Ewert et al. (1994)

64 Turtle Chelonia Kinosternidae Kinosternon leucostomum yes TSD TSD 40 Ewert and Nelson (1991)

65 Turtle Chelonia Kinosternidae Kinosternon scorpioides yes TSD TSD 44.7 Ewert and Nelson (1991)

66 Turtle Chelonia Kinosternidae Kinosternon sonoriense yes TSD TSD 44.7 Ewert et al. (2004)

67 Turtle Chelonia Kinosternidae Kinosternon subrubrum yes TSD TSD 40 Ewert et al. (2004)

68 Turtle Chelonia Kinosternidae Staurotypus salvini yes GSD GSD 20.4 Ewert and Nelson (1991)

69 Turtle Chelonia Kinosternidae Staurotypus triporcatus yes GSD GSD 16.7 Ewert and Nelson (1991)

70 Turtle Chelonia Kinosternidae Sternotherus carinatus yes TSD TSD 26.3 Ewert and Nelson (1991)

71 Turtle Chelonia Kinosternidae Sternotherus minor yes TSD TSD 33.5 Ewert and Nelson (1991)

72 Turtle Chelonia Kinosternidae Sternotherus odoratus yes TSD TSD 29.3 Ewert and Nelson (1991)

73 Turtle Chelonia Pelomedusidae Pelomedusa subrufa yes TSD TSD 13.8 Ewert and Nelson (1991)

74 Turtle Chelonia Pelomedusidae Pelsios castaneus yes TSD TSD 24 Ewert and Nelson (1991)

75 Turtle Chelonia Podocnemididae Podocnemis erythrocephala yes TSD TSD 37.5 Vogt R.C. (2000)

76 Turtle Chelonia Podocnemididae Podocnemis expansa yes TSD TSD 37.4 Valenzuela N. (2001)

77 Turtle Chelonia Podocnemididae Podocnemis lewyana yes TSD TSD 14.0 Peaz et al. (2009)

78 Turtle Chelonia Podocnemididae Podocnemis sextuberculata yes TSD TSD 25.3 Vogt R.C. (2008)

79 Turtle Chelonia Podocnemididae Podocnemis unifilis yes TSD TSD 23.4 de Souza and Vogt (1994)

80 Turtle Chelonia Testudinidae Aldabrachelys gigantea yes TSD TSD 152 Janzen and Paukstis (1991)

81 Turtle Chelonia Testudinidae Chelonoidis niger yes TSD TSD 33.5 Janzen and Paukstis (1991)

82 Turtle Chelonia Testudinidae Gopherus agassizii yes TSD TSD 177 Spotila et al. (1994)

83 Turtle Chelonia Testudinidae Gopherus polyphemus yes TSD TSD 60 Demuth J.P. (2001)

84 Turtle Chelonia Testudinidae Testudo graeca yes TSD TSD 138 Pleau C. (1971)

85 Turtle Chelonia Testudinidae Testudo hermanni yes TSD TSD 50 Eendebak B.T. (1995)

86 Turtle Chelonia Trionychidae Apalone mutica yes GSD GSD 20 Ewert and Nelson (1991)

87 Turtle Chelonia Trionychidae Apalone spinifera yes GSD GSD 25.2 Badenhorst et al. (2013)

88 Turtle Chelonia Trionychidae Pelodiscus sinensis yes GSD GSD 24 Kawai et al. (2007)

89 lizard Squamata Agamidae Agama agama yes TSD TSD 8 Charnier M. (1966)

90 lizard Squamata Agamidae Agama impalaenar yes TSD TSD 6 El Mouden et al. (2001)

91 lizard Squamata Agamidae Amphibolurus muricatus yes TSD TSD 4 Harlow (2004)

92 lizard Squamata Agamidae Amphibolurus norrisi yes GSD GSD 7 Harlow (2004)

93 lizard Squamata Agamidae Calotes versicolor yes TSD TSD 5 Inamdar et al. (2012)

94 lizard Squamata Agamidae Chamydosaurus kingii yes TSD TSD 15 Harlow (2004)

95 lizard Squamata Agamidae Chamaeleo decresii yes TSD TSD 9 Harlow (2004)

96 lizard Squamata Agamidae Chamaeleo fordi yes GSD GSD 2 Harlow (2004)

97 lizard Squamata Agamidae Chamaeleo ortsii yes TSD TSD 11 Harlow (2004)

98 lizard Squamata Agamidae Chamaeleo pictus yes TSD GSD NA Uller et al. (2006) Harlow (2004)

99 lizard Squamata Agamidae Diporipho albilabris yes GSD GSD NA Harlow (2004)

100 lizard Squamata Agamidae Diporipho bilineata yes GSD GSD NA Harlow (2004)

101 lizard Squamata Agamidae Diporipho nobbi yes GSD GSD 3.2 Harlow (2004)

102 lizard Squamata Agamidae Hylisaurus spinipes yes GSD GSD 10 Harlow (2004)

103 lizard Squamata Agamidae Intellagama lesueurii yes TSD TSD 28 Harlow (2004)

104 lizard Squamata Agamidae Lophognathus burnsi no TSD GSD NA Harlow (2004)

105 lizard Squamata Agamidae Lophognathus gilberti yes TSD TSD NA Harlow (2004)

106 lizard Squamata Agamidae Gowilot toxofloris yes TSD TSD NA Harlow (2004)

107 lizard Squamata Agamidae Paralaudakia caucasia yes TSD TSD 13 Harlow (2004)

108 lizard Squamata Agamidae Phrynocephalus valangali yes GSD GSD NA Zeng et al. (1997)

109 lizard Squamata Agamidae Pogona barbata yes GSD GSD 13 Harlow (2004)

110 lizard Squamata Agamidae Pogona minor yes GSD GSD 6 Harlow (2004)

111 lizard Squamata Agamidae Pogona vitticeps yes GSD TSD 12 Ezaz et al. (2005) Holleley et al. (2015) GSD+TSD

112 lizard Squamata Agamidae Rankinia diemensis yes GSD GSD 10 Harlow (2004)
Lizard	Squanata	Agamidae	Steiglaima stellio	yes	TSD	TSD	10.4	Harlow (2004)		
Lizard	Squanata	Agamidae	Tymanopropys tetraporophora	yes	GSD	GSD	NA	Harlow (2004)		
Lizard	Squanata	Anguidae	Elgaria multicarinata	yes	TSD	GSD	15	Telemeco RS. (2015)	Weak data for each SDM.	
Lizard	Squanata	Carphodactylidae	Underwoodiaurus mili	yes	GSD	GSD	18	Pokorna et al. (2014)		
Lizard	Squanata	Chamaeleonidae	Chamaeleo calyptratus	no	GSD	GSD	5	Andrews (2005)		
Lizard	Squanata	Chamaeleonidae	Chamaeleo chamaeleon	yes	TSD	GSD	6	Andrews (2005)	Small sample size.	
Lizard	Squanata	Chamaeleonidae	Furcifer lateralis	yes	TSD	GSD	3	Andrews (2005)	Small sample size.	
Lizard	Squanata	Chamaeleonidae	Furcifer pardalis	yes	TSD	GSD	6	Viets et al. (1994)		
Lizard	Squanata	Corytophanidae	Basiliscus plumifrons	yes	GSD	TSD	13	Viets et al. (1994)		
Lizard	Squanata	Crotaphytidae	Crotaphythus insularis	yes	GSD	GSD	NA	Rovatsos et al. (2014)		
Lizard	Squanata	Dibamidae	Dibanus novaeguineae	yes	GSD	GSD	NA	Cole and Gans (1997)		
Lizard	Squanata	Diplodactylidae	Correlophus ciliatus	yes	GSD	TSD	26	Gamble et al. (2015)	Harlow (2004)	GSD+TSD
Lizard	Squanata	Diplodactylidae	Correlophus sarasinorum	yes	TSD	TSD	3.6	Gamble et al. (2015)		
Lizard	Squanata	Diplodactylidae	Mniarogekko chahoua	yes	TSD	GSD	5	Harlow (2004)		
Lizard	Squanata	Diplodactylidae	Rhacodactylus auriculatus	yes	TSD	TSD	20	Harlow (2004)		
Lizard	Squanata	Diplodactylidae	Rhacodactylus leachianus	yes	TSD	GSD	30	Harlow (2004)		
Lizard	Squanata	Eublepharidae	Coleonyx brevis	yes	GSD	GSD	5	Pokorná et al. (2010)		
Lizard	Squanata	Eublepharidae	Coleonyx elegans	yes	GSD	GSD	11	Pokorná et al. (2010)		
Lizard	Squanata	Eublepharidae	Coleonyx mitratus	yes	GSD	GSD	NA	Kratochvíl et al. (2008)		
Lizard	Squanata	Eublepharidae	Coleonyx variegatus	yes	GSD	GSD	NA	Pokorná et al. (2010)		
Lizard	Squanata	Eublepharidae	Eublepharis macularius	yes	TSD	TSD	9.4	Viets et al. (1994)		
Lizard	Squanata	Eublepharidae	Goniurosaurus kuroiwaiae	yes	TSD	GSD	NA	Viets et al. (1994)		
Lizard	Squanata	Eublepharidae	Goniurosaurus orientalis	no	TSD	GSD	NA	Gamble (2010)		
Lizard	Squanata	Eublepharidae	Goniurosaurus splendens	no	TSD	GSD	NA	Gamble (2010)		
Lizard	Squanata	Eublepharidae	Hemideinaeau cadicinctus	yes	TSD	TSD	16.2	Viets et al. (1994)		
Lizard	Squanata	Gekkonidae	Chnistinus marmoratus	yes	GSD	GSD	12.8	King, M., Rofe R. (1976)		
Lizard	Squanata	Gekkonidae	Dixoniun siamensis	yes	GSD	GSD	NA	Ota et al. (2001)		
Lizard	Squanata	Gekkonidae	Gehrya australis	yes	GSD	GSD	10	King M. (1983)		
Lizard	Squanata	Gekkonidae	Gehrya multitata	yes	GSD	GSD	9.25	Gamble et al. (2015)		
Lizard	Squanata	Gekkonidae	Gehrya nana	yes	GSD	GSD	NA	Moritz, C. (1986)		
Lizard	Squanata	Gekkonidae	Gehrya purpurascens	yes	GSD	GSD	NA	Moritz, C. (1984)		
Lizard	Squanata	Gekkonidae	Gehyra gecko	yes	GSD	GSD	23.5	Moritz C. (1990)		
Lizard	Squanata	Gekkonidae	Gehyra hokousensis	yes	GSD	GSD	NA	Shibaik Y. et al. (2009)		
Lizard	Squanata	Gekkonidae	Gehyra japonicus	yes	GSD	TSD	NA	Yoshiha and Msahiro (1974)	Tokunaga, S. (1985)	GSD+TSD
Lizard	Squanata	Gekkonidae	Hemidactylus frenatus	yes	GSD	GSD	7	Gamble et al. (2015)		
Lizard	Squanata	Gekkonidae	Hemidactylus mabouia	yes	GSD	GSD	2.6	Gamble et al. (2015)		
Lizard	Squanata	Gekkonidae	Hemidactylus platyrurus	yes	GSD	GSD	NA	Trifonov et al. (2011)		
Lizard	Squanata	Gekkonidae	Hemidactylus turgicus	yes	GSD	GSD	9	Gamble et al. (2015)		
Lizard	Squanata	Gekkonidae	Hemidactylus vietnamicus	no	GSD	GSD	NA	Moritz C. (1990)		
Lizard	Squanata	Gekkonidae	Heteronotia binoei	yes	GSD	GSD	13.6	Moritz C. (1990)		
Lizard	Squanata	Gekkonidae	Lepidodactylus lugubris	yes	GSD	GSD	2.75	Volobouev and Pastour (1988)		
Lizard	Squanata	Gekkonidae	Paroedura karstophila	yes	GSD	GSD	NA	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Paroedura lohatara	yes	GSD	GSD	NA	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Paroedura masobe	yes	GSD	GSD	NA	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Paroedura omicops	yes	GSD	GSD	NA	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Paroedura picta	yes	GSD	GSD	5	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Paroedura stomphfi	yes	GSD	GSD	NA	Koubová et al. (2014)		
Lizard	Squanata	Gekkonidae	Phelsuma abboti	yes	TSD	TSD	NA	Viets et al. (1994)		
Lizard	Squanata	Gekkonidae	Phelsuma cepediana	yes	GSD	TSD	9.3	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma dubia	yes	GSD	GSD	4.6	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma grandis	no	TSD	TSD	20	Viets et al. (1994)		
Lizard	Squanata	Gekkonidae	Phelsuma guentheri	yes	TSD	GSD	17.9	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma guimbeaux	yes	TSD	GSD	8	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma laticauda	yes	TSD	TSD	8.7	Viets et al. (1994)		
Lizard	Squanata	Gekkonidae	Phelsuma lineata	yes	TSD	GSD	10	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma madagascariensis	yes	TSD	GSD	13.6	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Lizard	Squanata	Gekkonidae	Phelsuma ornata	yes	GSD	GSD	NA	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)	
Family	Genus	Species	TSD	TSD	NA	Authors	Year			
------------------------	----------------	------------------	-----	-----	----	----------------------------	------			
Squamata	Gekkonidae	Phelsuma pusilla	yes	TSD	NA	Viets et al. (1994)				
Squamata	Gekkonidae	Phelsuma sundbergi	yes	GSD	15.9	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)			
Squamata	Phylocladulidae	Tarentola angustimentalis	yes	TSD	NA	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)			
Squamata	Phylocladulidae	Tarentola annularis	yes	TSD	19.8	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)			
Squamata	Phylocladulidae	Tarentola boettigeri	yes	TSD	6.1	Viets et al. (1994)				
Squamata	Phylocladulidae	Tarentola delalandii	yes	TSD	7	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)			
Squamata	Phylocladulidae	Tarentola gomeresis	yes	TSD	NA	Viets et al. (1994)	Weak TSD data (Valenzuela 2004)			
Squamata	Phylocladulidae	Tarentola mauritania	yes	TSD	14	Viets et al. (1994)				
Squamata	Gymnophthalmida	Calypommatomus leiolepisis	yes	GSD	GSD	NA	Yonenaga-Yassuda et al. (1998)			
Squamata	Gymnophthalmida	Calypommatomus nicterus	yes	GSD	GSD	NA	Yonenaga-Yassuda et al. (1998)			
Squamata	Gymnophthalmida	Calypommatomus sinebrachatus	yes	GSD	GSD	NA	Yonenaga-Yassuda et al. (1998)			
Squamata	Gymnophthalmida	Gymnophthalmus pleei	yes	GSD	GSD	NA	Cole et al. (1990)			
Squamata	Gymnophthalmida	Micralephasaurus nicolous	yes	GSD	GSD	NA	Yonenaga-Yassuda and Rodrigues (1999)			
Squamata	Gymnophthalmida	Micralephasaurus maximilliani	yes	GSD	GSD	NA	Yonenaga-Yassuda and Rodrigues (1999)			
Squamata	Nothobachia ablephara	yes	GSD	GSD	NA	Pellegrino et al. (1999)				
Squamata	Helodermatidae	Heloderma suspectum	yes	GSD	43	Pokorn et al. (2014)				
Squamata	Dactylolidae	Anolis acutus	yes	GSD	GSD	NA	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis allisoni	yes	GSD	1.67	Rovatsos et al. (2014)				
Squamata	Dactylolidae	Anolis argenteolus	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis baracoae	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis barbarus	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis bartschi	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis bisaculatus	yes	GSD	GSD	7	Gorman (1965)			
Squamata	Dactylolidae	Anolis biporcutas	yes	GSD	GSD	3.1	Gorman (1973)			
Squamata	Dactylolidae	Anolis boulenegerianus	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis brevirostris	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis carolinensis	yes	GSD	GSD	11	Viets et al. (1994)			
Squamata	Dactylolidae	Anolis caudalis	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis coelestinus	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis conspersus	yes	GSD	GSD	NA	Gorman and Atkins (1968)			
Squamata	Dactylolidae	Anolis cooki	yes	GSD	GSD	NA	Gorman et al. (1968)			
Squamata	Dactylolidae	Anolis crassulus	yes	GSD	GSD	NA	Gorman and Atkins (2014)			
Squamata	Dactylolidae	Anolis cristatellus	yes	GSD	GSD	6.9	Gorman et al. (1968)			
Squamata	Dactylolidae	Anolis deschenisis	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis distichus	yes	GSD	GSD	NA	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis equestris	yes	GSD	GSD	16.5	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis evermanni	yes	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis ferreus	yes	GSD	GSD	NA	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis fuscauratus	yes	GSD	GSD	NA	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis garmani	yes	GSD	GSD	10	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis gingvinus	yes	GSD	GSD	NA	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis grahami	yes	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis gundlachi	yes	GSD	GSD	3	Gorman et al. (1968)			
Squamata	Dactylolidae	Anolis krugi	yes	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis leachii	yes	GSD	GSD	7	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis lineatopus	yes	GSD	GSD	1	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis lividus	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis luteohelebas	yes	GSD	GSD	2.9	Rovatsos et al. (2014)			
Squamata	Dactylolidae	Anolis marmoratus	yes	GSD	GSD	NA	Gorman and Atkins (1969)			
Squamata	Dactylolidae	Anolis monensis	yes	GSD	GSD	NA	Gorman and Stamm (1975)			
Squamata	Dactylolidae	Anolis nebuloides	no	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis nebulosus	no	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis nubilus	yes	GSD	GSD	NA	Gamble et al. (2014)			
Squamata	Dactylolidae	Anolis oculatus	yes	GSD	GSD	NA	Gorman and Atkins (1967)			
Squamata	Dactylolidae	Anolis onca	yes	GSD	GSD	NA	Olmo and Signorino (2005)			
Squamata	Dactylolidae	Anolis opalinus	yes	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis ponceelius	yes	GSD	GSD	NA	Gorman (1973)			
Squamata	Dactylolidae	Anolis pulchellus	yes	GSD	GSD	NA	Gorman et al. (1968)			
lizard	Squamata	Dactyloidae	Anolis quercorum	yes	GSD	GSD	NA	Gamble et al. (2014)		
--------	----------	-------------	-----------------	-----	-----	-----	----	---------------------		
lizard	Squamata	Dactyloidae	Anolis roquet	yes	GSD	GSD	6.7	Rovatsos et al. (2014)		
lizard	Squamata	Dactyloidae	Anolis sabanus	yes	GSD	GSD	NA	Gorman and Atkins (1969)		
lizard	Squamata	Dactyloidae	Anolis sagrei	yes	GSD	GSD	8	de Smet (1978)		
lizard	Squamata	Dactyloidae	Anolis scriptus	yes	GSD	GSD	NA	Gorman et al. (1968)		
lizard	Squamata	Dactyloidae	Anolis stridulus	yes	GSD	GSD	1.6	Gorman and Atkins (1969)		
lizard	Squamata	Dactyloidae	Anolis trachyderma	yes	GSD	GSD	NA	Rovatsos et al. (2014)		
lizard	Squamata	Dactyloidae	Anolis wattsi	yes	GSD	GSD	NA	Gorman and Atkins (1969)		
lizard	Squamata	Dactyloidae	Anolis websteri	yes	GSD	GSD	NA	Gamble et al. (2014)		
lizard	Squamata	Corytophanidae	Basiliscus basiliscus	yes	GSD	GSD	9	Bohme W. (1975)		
lizard	Squamata	Corytophanidae	Cryptophytoptus collaris	yes	GSD	GSD	10	de Smet (1978)		
lizard	Squamata	Iguanidae	Cylcura nubila	yes	GSD	GSD	54	Rovatsos et al. (2014)		
lizard	Squamata	Squamata	Dipsoaurus dorsalis	yes	GSD	TSD	14.6	Hall (1972)		
lizard	Squamata	Tropiduridae	Eurolophosaurus amathites	yes	GSD	GSD	NA	Kasahara et al. (1987)		
lizard	Squamata	Tropiduridae	Eurolophosaurus nanuzae	yes	GSD	GSD	NA	Kasahara et al. (1987)		
lizard	Squamata	Iguanidae	Iguana iguana	yes	GSD	GSD	28	Rovatsos et al. (2014)		
lizard	Squamata	Liolemidae	Phymaturus palluma	yes	GSD	GSD	12	Lamborot and Navarro-Suarez (1984)		
lizard	Squamata	Polychrotidae	Polychrus acutirostris	yes	GSD	GSD	NA	Peccinini et al. (1971)		
lizard	Squamata	Polychrotidae	Polychrus marmoratus	yes	GSD	GSD	NA	Gorman et al. (1967)		
lizard	Squamata	Polychrotidae	Polychrus peruvianus	no	GSD	GSD	NA	Gorman et al. (1969)		
lizard	Squamata	Leioosauridae	Pristidactylus achalensis	no	GSD	GSD	11	Gorman et al. (1967)		
lizard	Squamata	Phrynosomatidae	Sceloporus aeneus	yes	GSD	GSD	NA	Hall (1971)		
lizard	Squamata	Phrynosomatidae	Sceloporus anahuacensis	no	GSD	GSD	NA	Leach and Sites (2009)		
lizard	Squamata	Phrynosomatidae	Sceloporus asper	no	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus bullieri	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus caudatus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus chrysoptictus	yes	GSD	GSD	NA	Gorman (1973)		
lizard	Squamata	Phrynosomatidae	Sceloporus clarkei	yes	GSD	GSD	NA	Cole (1970)		
lizard	Squamata	Phrynosomatidae	Sceloporus couchii	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus cozumelae	yes	GSD	GSD	NA	Cole (1978)		
lizard	Squamata	Phrynosomatidae	Sceloporus dugesii	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus gadowiae	yes	GSD	GSD	NA	Gorman (1973)		
lizard	Squamata	Phrynosomatidae	Sceloporus goldmani	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus gracilus	yes	GSD	GSD	8	Reed et al. (1990)		
lizard	Squamata	Phrynosomatidae	Sceloporus graminicus	yes	GSD	GSD	3	Hall and Selander (1973)		
lizard	Squamata	Phrynosomatidae	Sceloporus heterolepis	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus hunsakeri	yes	GSD	GSD	NA	Hall and Smith (1979)		
lizard	Squamata	Phrynosomatidae	Sceloporus jalapae	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus jarrovi	yes	GSD	GSD	2.8	Lowe et al. (1966)		
lizard	Squamata	Phrynosomatidae	Sceloporus lackii	yes	GSD	GSD	NA	Hall and Smith (1979)		
lizard	Squamata	Phrynosomatidae	Sceloporus lundellii	yes	GSD	GSD	NA	Cole (1970)		
lizard	Squamata	Phrynosomatidae	Sceloporus maculosus	yes	GSD	GSD	NA	Cole (1971)		
lizard	Squamata	Phrynosomatidae	Sceloporus megacephalus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus melanorhinus	yes	GSD	GSD	NA	Cole (1970)		
lizard	Squamata	Phrynosomatidae	Sceloporus merriami	yes	GSD	GSD	6	Cole (1971)		
lizard	Squamata	Phrynosomatidae	Sceloporus mucronatus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus nelsoni	yes	GSD	GSD	NA	Cole (1971)		
lizard	Squamata	Phrynosomatidae	Sceloporus occidentalis	yes	GSD	TSD	5	Viets et al. (1994)		
lizard	Squamata	Phrynosomatidae	Sceloporus orbiculatus	yes	GSD	GSD	16.25	Hall and Smith (1979)		
lizard	Squamata	Phrynosomatidae	Sceloporus ornatus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus palaciosi	yes	GSD	GSD	NA	Leach and Sites (2009)		
lizard	Squamata	Phrynosomatidae	Sceloporus polinsettii	yes	GSD	GSD	8	Cole et al. (1967)		
lizard	Squamata	Phrynosomatidae	Sceloporus pyrocephalus	yes	GSD	GSD	NA	Cole (1971)		
lizard	Squamata	Phrynosomatidae	Sceloporus scalaris	yes	GSD	GSD	5	Cole (1978)		
lizard	Squamata	Phrynosomatidae	Sceloporus serrifer	yes	GSD	GSD	6.7	Hall (1973)		
lizard	Squamata	Phrynosomatidae	Sceloporus siniferus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus spinosus	yes	GSD	GSD	NA	Hall (1972)		
lizard	Squamata	Phrynosomatidae	Sceloporus torquatus	yes	GSD	GSD	NA	Hall (1972)		
Lizard	Squamata	Phrynosomatidae	Sceloporus undulatus	yes	GSD	4	Reed et al. (1990)			
--------	----------	----------------	---------------------	-----	-----	---	------------------			
Lizard	Squamata	Phrynosomatidae	Sceloporus uniformis	no	GSD	NA	Gorman (1973)			
Lizard	Squamata	Phrynosomatidae	Sceloporus variabilis	yes	GSD	1.5	Hall (1972)			
Lizard	Squamata	Tropiduridae	Tropidurus hispidus	yes	GSD	2	Kasahara et al. (1987)			
Lizard	Squamata	Tropiduridae	Tropidurus psammonastes	yes	GSD	NA	Rodrigues et al. (1988)			
Lizard	Squamata	Tropiduridae	Tropidurus torquatus	yes	GSD	3	de Smet (1978)			
Lizard	Squamata	Phrynosomatidae	Uma inornata	yes	GSD	5	Kral B. (1969)			
Lizard	Squamata	Phrynosomatidae	Uta nolascensis	no	GSD	NA	Pennock et al. (1969)			
Lizard	Squamata	Phrynosomatidae	Uta palmeri	yes	GSD	NA	Pennock et al. (1969)			
Lizard	Squamata	Phrynosomatidae	Uta squamata	yes	GSD	NA	Pennock et al. (1969)			
Lizard	Squamata	Phrynosomatidae	Uta stansburiana	yes	GSD	4.8	Pennock et al. (1969)			
Lizard	Squamata	Lacertidae	Acanthodactylus erythrurus	yes	GSD	NA	Olmo et al. (1987)			
Lizard	Squamata	Lacertidae	Algyroides morroensis	yes	GSD	9.2	Odierna et al. (1993)			
Lizard	Squamata	Lacertidae	Algyroides nigropunctatus	yes	GSD	2.25	Odierna et al. (1993)			
Lizard	Squamata	Lacertidae	Darevskia armeniaca	yes	GSD	8	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Darevskia dahli	no	GSD	6	Kupriyanova (1992)			
Lizard	Squamata	Lacertidae	Darevskia mixta	yes	GSD	NA	Kupriyanova (1992)			
Lizard	Squamata	Lacertidae	Darevskia raddei	yes	GSD	6	Kupriyanova (1989)			
Lizard	Squamata	Lacertidae	Darevskia rostombekowi	yes	GSD	6	Kupriyanova (1989)			
Lizard	Squamata	Lacertidae	Darevskia unisexualis	no	GSD	7	Kupriyanova (1989)			
Lizard	Squamata	Lacertidae	Darevskia valentini	yes	GSD	7	Kupriyanova (1989)			
Lizard	Squamata	Lacertidae	Ereemias arguta	yes	GSD	NA	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Ereemias gramnica	yes	GSD	NA	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Ereemias multiocellata	yes	GSD	TSD	NA	Tang et al. (2012)	Zhang et al. (2010)	
Lizard	Squamata	Lacertidae	Ereemias velox	yes	GSD	NA	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Gallotia gallopit	yes	GSD	15	Olmo (1986)			
Lizard	Squamata	Lacertidae	Helicolobus lugubris	yes	GSD	NA	Odierna et al. (1990)			
Lizard	Squamata	Lacertidae	Hellenolacerta graeca	yes	GSD	NA	Olmo et al. (1987)			
Lizard	Squamata	Lacertidae	Iberolacerta aranica	yes	GSD	NA	Odierna et al. (2001)			
Lizard	Squamata	Lacertidae	Iberolacerta aurelioi	yes	GSD	16	Odierna et al. (1996)			
Lizard	Squamata	Lacertidae	Iberolacerta cyreni	yes	GSD	NA	Odierna et al. (1996)			
Lizard	Squamata	Lacertidae	Iberolacerta horvathi	yes	GSD	NA	Capula M. et al. (1989)			
Lizard	Squamata	Lacertidae	Iberolacerta monticola	yes	GSD	16	Rojo et al. (2012)			
Lizard	Squamata	Lacertidae	Lacerta agilis	yes	GSD	12	de Smet (1981)			
Lizard	Squamata	Lacertidae	Lacerta bilineata	yes	GSD	13	Olmo et al. (1985)			
Lizard	Squamata	Lacertidae	Lacerta brongersmai	yes	GSD	4	Ivanov and Fedorova (1970)			
Lizard	Squamata	Lacertidae	Lacerta brunoae	yes	GSD	7.75	Gorman (1969)			
Lizard	Squamata	Lacertidae	Lacerta viridis	yes	GSD	10	de Smet (1981)			
Lizard	Squamata	Lacertidae	Meroles cuneoirstris	yes	GSD	NA	Olmo et al. (1987)			
Lizard	Squamata	Lacertidae	Mesalina olivieri	yes	GSD	5	Gorman (1969)			
Lizard	Squamata	Lacertidae	Omosaurusa jayakari	yes	GSD	17	Fritz B. et al. (1991)			
Lizard	Squamata	Lacertidae	Ophiops elegans	yes	GSD	6	Bhatnagar and Yoniss (1976)			
Lizard	Squamata	Lacertidae	Pedioplanis narnaquensis	yes	GSD	NA	Odierna et al. (2004)			
Lizard	Squamata	Lacertidae	Phoenicolacerta kulzeri	yes	GSD	NA	Bosch et al. (2003)			
Lizard	Squamata	Lacertidae	Phoenicolacerta laevis	yes	GSD	4.55	Bosch et al. (2003)			
Lizard	Squamata	Lacertidae	Podarcis erhardii	yes	GSD	5	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Podarcis hispanicus	yes	GSD	13	Odierna et al. (1990)			
Lizard	Squamata	Lacertidae	Podarcis mellissensis	yes	GSD	3.9	de Smet (1981)			
Lizard	Squamata	Lacertidae	Podarcis muralis	yes	GSD	10.1	Viets et al. (1994)			
Lizard	Squamata	Lacertidae	Podarcis pityusensis	yes	TSD	18	Harlow (2004)	Weak TSD data (Valenzuela 2004)		
Lizard	Squamata	Lacertidae	Podarcis siculus	yes	GSD	3.7	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Podarcis tiliguerta	yes	GSD	15	Olmo et al. (1990)			
Lizard	Squamata	Lacertidae	Podarcis wagleri	no	GSD	NA	Capriglione et al. (1994)			
Lizard	Squamata	Lacertidae	Psammodromus algirus	yes	GSD	2.75	de Smet (1981)			
Lizard	Squamata	Phrynosomatidae	Sceloporus parvus	yes	GSD	Cole (1978)				
Lizard	Squamata	Lacertidae	Takydromus sexlineatus	yes	GSD	1.5	Olmo et al. (1984)			
Lizard	Squamata	Lacertidae	Teira dugesii	yes	GSD	16	Olmo and Signorino (2005)			
Lizard	Squamata	Lacertidae	Timon lepidus	yes	GSD	34	Olmo et al. (1987)			
345	lizard	Squamata	Lacertidae	Zoootoca vivipara	yes	GSD	12	Chevaller et al. (1979)		
346	lizard	Squamata	Leiocephalidae	Leiocephalus carinatus	yes	GSD	10.8	Rovatsos et al. (2014)		
347	lizard	Squamata	Opluridae	Chalarodon madagascariensis	yes	GSD	NA	Rovatsos et al. (2014)		
348	lizard	Squamata	Opluridae	Oplurus fierinesis	yes	GSD	NA	Rovatsos et al. (2014)		
349	lizard	Squamata	Phrynosomatidae	Petrodurus thalassinus	yes	GSD	20	Rovatsos et al. (2014)		
350	lizard	Squamata	Phrynosomatidae	Sceloporus malachiticus	yes	GSD	NA	Rovatsos et al. (2014)		
351	lizard	Squamata	Diplodactyloidea	Oedura marmorata	yes	GSD	21.2	Moritz C. (1990)		
352	lizard	Squamata	Phyllodactyloidea	Phyllodactylus lanei	yes	GSD	NA	Moritz C. (1990)		
353	lizard	Squamata	Phyllodactyloidea	Thecadactylus rapicauda	yes	GSD	6.9	Schmid et al. (2014)		
354	lizard	Squamata	Pygopodidae	Aprasia parapulchella	yes	GSD	NA	Matsubara et al. (2013)		
355	lizard	Squamata	Pygopodidae	Delma inornata	yes	GSD	NA	King M. (1990)		
356	lizard	Squamata	Pygopodidae	Lialis burtonis	yes	GSD	NA	Gorman and Gress (1970)		
357	lizard	Squamata	Scincidae	Bassiana duperreyi	yes	GSD+TSD	7	Quinn et al. (2009)		
358	lizard	Squamata	Scincidae	Eulamprus heatwolei	yes	TSD	TSD	NA	Langkilde and Shine (2005)	
359	lizard	Squamata	Scincidae	Eulamprus tympanum	yes	TSD	TSD	15	Valenzuela et al. (2003)	
360	lizard	Squamata	Scincidae	Mabuya mabouya	yes	GSD	NA	Becak et al. (1972)		
361	lizard	Squamata	Scincidae	Niveoscincus ocellatus	yes	TSD	12	Wapstra et al. (2004)		
362	lizard	Squamata	Scincidae	Oligosoma maccanni	yes	GSD	NA	Hare et al. (2011)		
363	lizard	Squamata	Scincidae	Oligosoma oliveri	yes	GSD	NA	Hardy G.S. (1979)		
364	lizard	Squamata	Scincidae	Oligosoma suteri	yes	GSD	12	Hare et al. (2012)		
365	lizard	Squamata	Scincidae	Pleistodon fasciatus	yes	GSD	4.9	Viets et al. (1994)		
366	lizard	Squamata	Scincidae	Pleistodon obsoletus	yes	GSD	7.33	Viets et al. (1994)		
367	lizard	Squamata	Scincidae	Pseudemoia bainini	no	GSD	NA	Hutchinson and Donnellan (1992)		
368	lizard	Squamata	Scincidae	Pseudemoia cryodroma	no	GSD	NA	Hutchinson and Donnellan (1992)		
369	lizard	Squamata	Scincidae	Pseudemoia extremita	yes	GSD	5	Hutchinson and Donnellan (1992)		
370	lizard	Squamata	Scincidae	Pseudemoia pagenstecheri	yes	GSD	NA	Hutchinson and Donnellan (1992)		
371	lizard	Squamata	Scincidae	Pseudemoia rawlinsoni	no	GSD	NA	Hutchinson and Donnellan (1992)		
372	lizard	Squamata	Scincidae	Pseudemoia spenceri	no	GSD	NA	Hutchinson and Donnellan (1992)		
373	lizard	Squamata	Scincidae	Saproscincus czechurai	yes	GSD	NA	Donnellan (1991)		
374	lizard	Squamata	Scincidae	Scincella lateralis	yes	GSD	4	Olmo (1986)		
375	lizard	Squamata	Scincidae	Sphenomorphus indicus	yes	TSD	TSD	6	Ji et al. (2006)	
376	lizard	Squamata	Sphaerodactylidae	Aristelliger expectatus	no	GSD	NA	Gamble et al. (2015)		
377	lizard	Squamata	Sphaerodactylidae	Gonatodes ceciliae	yes	GSD	NA	McBree et al. (1987)		
378	lizard	Squamata	Sphaerodactylidae	Sphaerodactylus macrolepis	yes	GSD	NA	Gamble et al. (2015)		
379	lizard	Squamata	Sphaerodactylidae	Sphaerodactylus nicholsi	yes	GSD	NA	Gamble et al. (2015)		
380	lizard	Squamata	Teiidae	Aspidoscelis inornata	yes	GSD	NA	Viets et al. (1994)		
381	lizard	Squamata	Teiidae	Aspidoscelis tigris	yes	GSD	8	Cole et al. (1969)		
382	lizard	Squamata	Teiidae	Aspidoscelis uniparens	no	GSD	NA	Viets et al. (1994)		
383	lizard	Squamata	Tropiduridae	Uranoscodon supercilius	yes	GSD	4.8	Rovatsos et al. (2014)		
384	lizard	Squamata	Varanidae	Varanus acanthurus	yes	GSD	10	Olmo (1986)		
385	lizard	Squamata	Varanidae	Varanus albigularis	yes	GSD	16.7	King and King (1975)		
386	lizard	Squamata	Varanidae	Varanus exanthematicus	yes	GSD	17	King and King (1975)		
387	lizard	Squamata	Varanidae	Varanus gouldii	yes	GSD	18.3	Matsubara et al. (2014)		
388	lizard	Squamata	Varanidae	Varanus komodoensis	yes	GSD	62	Sulandari et al. (2014)		
389	lizard	Squamata	Varanidae	Varanus niloticus	yes	GSD	14.6	King and King (1975)		
390	lizard	Squamata	Varanidae	Varanus rosenbergi	yes	GSD	NA	Matsubara et al. (2014)		
391	lizard	Squamata	Varanidae	Varanus salvator	yes	TSD	TSD	15.7	Harlow (2004)	Weak TSD data (Valenzuela 2004)
392	lizard	Squamata	Varanidae	Varanus varius	yes	GSD	22	King and King (1975)		
393	snake	Squamata	Boidae	Acrantophis dumerili	yes	GSD	26	Mengden and Stock (1980)		
394	snake	Squamata	Boidae	Boa constrictor	yes	GSD	40.4	Olmo (2005)		
395	snake	Squamata	Pythonidae	Lialis olivaceus	yes	GSD	NA	Mengden and Stock (1980)		
396	snake	Squamata	Pythonidae	Morelia spilota	yes	GSD	19.6	Mengden and Stock (1980)		
397	snake	Squamata	Boidae	Sarchinia madagascariensis	yes	GSD	21.8	Mengden and Stock (1980)		
398	snake	Squamata	Pythonidae	Similia boeleni	yes	GSD	20.1	Mengden and Stock (1980)		
399	snake	Squamata	Colubridae	Ahaetulla nasuta	yes	GSD	NA	Sharma and Nakhasi (1979)		
400	snake	Squamata	Natricidae	Amphlysa stolatum	yes	GSD	NA	Ray-Chaudhuri et al. (1971)		
401	snake	Squamata	Colubridae	Argyroglena fasciata	no	GSD	NA	Ray-Chaudhuri et al. (1971)		
402	snake	Squamata	Colubridae	Bogetophis subocularis	yes	GSD	23.8	Baker et al. (1971)		
Snake Family	Genus	Species	Habitat	Taxonomic Rank	Notes					
-------------	-------	---------	---------	----------------	-------					
Boiga forsteni	Elaphe quadrivirgata	Yes	GSD	NA	Ray-Chaudhuri et al. (1971)					
Boiga trigonata	Gerarda prevostiana	Yes	GSD	8.2	Ray-Chaudhuri et al. (1971)					
Hamalopsidae	Cerberus rynchoch rudis	Yes	GSD	NA	Singh, L. (1972)					
Chironius bicarinatus	Dipsadidae	Yes	GSD	NA	Bekac (1965)					
Chironius quadricarinatus	Dipsadidae	Yes	GSD	NA	Bekac et al. (1966)					
Chrysophea ornata	Dipsadidae	Yes	GSD	4.3	Sharma and Nakhasi (1979)					
Clelia clelia	Dipsadidae	Yes	GSD	11.5	Bekac (1965)					
Coelognathus radia	Dipsadidae	Yes	GSD	NA	Singh et al. (1979)					
Dendrelaphis punctulatus	Dipsadidae	No	GSD	18	Mengden (1982)					
Drymarchon corais	Dipsadidae	Yes	GSD	25.9	Bekac (1965)					
Drymarchon couperi	Dipsadidae	No	GSD	25.45	Bekac et al. (1964)					
Elaphe climacophora	Dipsadidae	Yes	GSD	13.1	Itoh et al. (1970)					
Elaphe quadrivirgata	Dipsadidae	Yes	GSD	16.8	Itoh et al. (1970)					
Erythrolamprus almadensis	Dipsadidae	Yes	GSD	NA	Bekac et al. (1975)					
Erythrolamprus miliaris	Dipsadidae	Yes	GSD	NA	Bekac et al. (1966)					
Eugrepiofis conspilicata	Dipsadidae	Yes	GSD	NA	Toriba (1990)					
Geophis olmarusmanus	Dipsadidae	No	GSD	NA	Hardy (1976)					
Gerarda prevostiana	Dipsadidae	Yes	GSD	NA	Singh et al. (1970)					
Hebius pryeri	Dipsadidae	No	GSD	NA	Toriba (1990)					
Hebius vibakari	Dipsadidae	No	GSD	NA	Toriba (1990)					
Hydromorphus concolor	Dipsadidae	Yes	GSD	NA	Solzrano et al. (1989)					
Lycodon aulicus	Dipsadidae	Yes	GSD	NA	Nakamura, K. (1935)					
Lycodon semicarinatus	Dipsadidae	Yes	GSD	NA	Toriba (1990)					
Macropisthodon rudis	Dipsadidae	Yes	GSD	NA	Nakamura, K. (1935)					
Mastigodryas bifossatus	Dipsadidae	No	GSD	NA	Bekac (1965)					
Mastigodryas bifossatus	Dipsadidae	Yes	GSD	NA	Bekac et al. (1975)					
Natricidae	Tropidodryas serra	Yes	GSD	9.2	Kobel (1967)					
Natricidae	Natricus tesselata	Yes	GSD	14	de Smet (1978)					
Dipsadidae	Oxyrhopus petolarius	Yes	GSD	NA	Bekac (1969)					
Pantherophis alleghaniensis	Dipsadidae	Yes	GSD	NA	Baker et al. (1971)					
Pantherophis obsoletus	Dipsadidae	Yes	GSD	33.9	Mengden and Stock (1980)					
Philodryas aestiva	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Philodryas chamissonis	Dipsadidae	No	GSD	NA	Moreno et al. (1987)					
Philodryas ocellata	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Philodryas patagoniensis	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Pseudobra nigra	Dipsadidae	Yes	GSD	NA	Bekac et al. (1975)					
Ptyas mucosa	Dipsadidae	Yes	GSD	11.3	Ray-Chaudhuri et al. (1971)					
Rhabdophis tigrinrus	Dipsadidae	Yes	GSD	NA	Itoh et al. (1970)					
Rhabdophis tigrinus	Dipsadidae	Yes	GSD	NA	Bekac et al. (1975)					
Pantherophis alleghaniensis	Dipsadidae	Yes	GSD	NA	Rossman and Eberle (1977)					
Pantherophis percarinata	Dipsadidae	Yes	GSD	NA	Rossman and Eberle (1977)					
Philodryas asthenes	Dipsadidae	Yes	GSD	17.5	Bekac (1965)					
Philodryas asthenes	Dipsadidae	Yes	GSD	2	Baker et al. (1972)					
Thamnodynastes hypoconia	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Thamnodynastes strigatus	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Thamnodynastes marcianus	Dipsadidae	Yes	GSD	7	Mengden and Stock (1980)					
Tomodon dorsatum	Dipsadidae	Yes	GSD	NA	Bekac et al. (1966)					
Tropidodryas serra	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Tropidodryas mairii	Dipsadidae	No	GSD	NA	Mengden (1981)					
Xenochrophis piscator	Dipsadidae	Yes	GSD	9	Singh et al. (1968)					
Xenodon merremi	Dipsadidae	Yes	GSD	NA	Bekac et al. (1965)					
Xenodon merremi	Dipsadidae	Yes	GSD	NA	Bekac (1969)					
Zamenis longissimus	Dipsadidae	Yes	GSD	3.55	de Smet (1978)					
Acanthophis antarcticus	Elapidae	Yes	GSD	9.3	Mengden (1982)					
Acanthophis praenlus	Elapidae	Yes	GSD	NA	Mengden (1982)					
Acanthophis pyrhus	Elapidae	No	GSD	3.4	Mengden (1982)					
Alpysurus fuscus	Elapidae	Yes	GSD	NA	Mengden (1982)					
Alpysurus laevis	Elapidae	Yes	GSD	NA	Mengden (1982)					

NA indicates not applicable or not available.
#	Species	Family	Genus	Species	Order	Status	References
461	Drysdalia coronoides	Elapidae	Drysdalia	coronoides	Squamata	yes	Ray-Chaudhuri et al. (1971)
462	Drysdalia rhodogaster	Elapidae	Drysdalia	rhodogaster	Squamata	no	Mengden (1982)
463	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
464	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
465	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
466	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
467	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
468	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
469	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
470	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
471	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
472	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
473	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
474	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
475	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
476	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
477	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
478	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
479	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
480	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
481	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
482	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
483	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
484	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
485	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
486	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
487	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
488	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
489	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
490	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
491	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
492	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
493	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
494	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
495	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
496	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
497	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
498	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
499	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
500	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
501	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
502	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
503	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
504	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
505	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
506	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
507	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
508	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
509	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
510	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
511	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
512	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
513	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
514	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
515	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
516	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)
517	Drysdalia mastersii	Elapidae	Drysdalia	mastersii	Squamata	yes	Singh et al. (1974)

Note: The above list includes only the species that are mentioned in the document. The full list is too long to include here.
518 snake Squamata Elapidae Parasuta nigriceps	no	GSD	GSD	NA	Mengden (1982)
519 snake Squamata Elapidae Pseudechis australis	yes	GSD	GSD	11.1	Mengden (1982)
520 snake Squamata Elapidae Pseudochis butleri	yes	GSD	GSD	NA	Mengden (1982)
521 snake Squamata Elapidae Pseudochis guttatus	yes	GSD	GSD	NA	Mengden (1982)
522 snake Squamata Elapidae Pseudochis porphyriacus	yes	GSD	GSD	25	Mengden (1982)
523 snake Squamata Elapidae Pseudonaja affinis	no	GSD	GSD	NA	Mengden (1982)
524 snake Squamata Elapidae Pseudonaja nuchalis	no	GSD	GSD	NA	Mengden (1982)
525 snake Squamata Elapidae Pseudonaja textilis	yes	GSD	GSD	15	Mengden (1982)
526 snake Squamata Elapidae Simoselaps bertholdii	yes	GSD	GSD	NA	Mengden (1982)
527 snake Squamata Elapidae Suta punctata	no	GSD	GSD	NA	Mengden (1982)
528 snake Squamata Elapidae Suta suta	yes	GSD	GSD	12	Mengden (1982)
529 snake Squamata Elapidae Tropidechis carinatus	yes	GSD	GSD	9	Mengden (1982)
530 snake Squamata Pythonidae Simalia amethystina	yes^{xx}	GSD	GSD	13.8	Mengden and Stock (1980)
531 snake Squamata Viperidae Agkistrodon contortrix	yes	GSD	GSD	29.8	Baker et al. (1972)
532 snake Squamata Viperidae Atropoides nummifer	yes	GSD	GSD	19	Gutiierrez and Bolanos. (1979)
533 snake Squamata Viperidae Atropoides picadoi	yes	GSD	GSD	13	Gutiierrez and Bolanos. (1979)
534 snake Squamata Viperidae Bothriechis lateralis	yes	GSD	GSD	12.5	Gutiierrez and Bolanos. (1979)
535 snake Squamata Viperidae Bothriechis nigroviridis	yes	GSD	GSD	NA	Gutiierrez and Bolanos. (1979)
536 snake Squamata Viperidae Bothriechis schlegelii	yes	GSD	GSD	19.5	de Smet (1978)
537 snake Squamata Viperidae Bothrops alternatus	yes	GSD	GSD	15.2	Becak (1965)
538 snake Squamata Viperidae Bothrops asper	yes	GSD	GSD	20.4	Gutiierrez and Bolanos. (1979)
539 snake Squamata Viperidae Bothrops insularis	yes	GSD	GSD	NA	Becak et al. (1990)
540 snake Squamata Viperidae Bothrops jaranaca	yes	GSD	GSD	6.5	Becak et al. (1962)
541 snake Squamata Viperidae Bothrops jararacussu	yes	GSD	GSD	NA	Becak et al. (1990)
542 snake Squamata Viperidae Bothrops leucurus	yes	GSD	GSD	NA	Becak (1965)
543 snake Squamata Viperidae Bothrops moojeni	yes	GSD	GSD	NA	Becak et al. (1964)
544 snake Squamata Viperidae Bothrops neuwiedi	yes	GSD	GSD	15.1	Becak et al. (1990)
545 snake Squamata Viperidae Cerrophidion godmani	yes	GSD	GSD	15.8	Gutiierrez and Bolanos. (1979)
546 snake Squamata Viperidae Crotalus atrox	yes	GSD	GSD	27	Stewar et al. (1990)
547 snake Squamata Viperidae Crotalus catalinensis	yes	GSD	GSD	11.8	Stewar et al. (1990)
548 snake Squamata Viperidae Crotalus cerastes	yes	GSD	GSD	27.3	Ohno, S. (1967)
549 snake Squamata Viperidae Crotalus durissus	yes	GSD	GSD	19.6	Becak (1965)
550 snake Squamata Viperidae Crotalus enyo	yes	GSD	GSD	17.1	Stewar et al. (1990)
551 snake Squamata Viperidae Crotalus molossus	yes	GSD	GSD	20.7	Baker et al. (1971)
552 snake Squamata Viperidae Crotalus ruber	yes	GSD	GSD	19.2	Stewar et al. (1990)
553 snake Squamata Viperidae Crotalus scutulatus	yes	GSD	GSD	14.4	Stewar et al. (1990)
554 snake Squamata Viperidae Daboia russelli	yes	GSD	GSD	15	Ray-Chaudhuri and Singh (1972)
555 snake Squamata Viperidae Echis carinatus	yes	GSD	GSD	23.8	Singh et al. (1970)
556 snake Squamata Viperidae Lachesis muta	yes	GSD	GSD	31.6	Becak and Becak (1969)
557 snake Squamata Viperidae Macroovipera lebetina	yes	GSD	GSD	13.3	de Smet (1978)
558 snake Squamata Viperidae Porphydium nasutum	yes	GSD	GSD	NA	Gutiierrez and Bolanos. (1979)
559 snake Squamata Viperidae Vipera ammodytes	yes	GSD	GSD	22	Saint Giron (1977)
560 snake Squamata Viperidae Vipera aspis	yes	GSD	GSD	25	Koubel (1967)
561 snake Squamata Viperidae Vipera berus	yes	GSD	GSD	19	Koubel (1967)
562 snake Squamata Viperidae Vipera laetastei	yes	GSD	GSD	14	Saint Giron (1977)
563 snake Squamata Viperidae Vipera monticola	no	GSD	GSD	NA	Saint Giron (1977)
564 snake Squamata Viperidae Vipera renardi	yes	GSD	GSD	NA	Saint Giron (1977)
565 snake Squamata Viperidae Vipera seoanei	yes	GSD	GSD	NA	Saint Giron (1977)
566 snake Squamata Viperidae Vipera ursinii	yes	GSD	GSD	NA	Koubel (1967)
Order	Vernacular	Species	Known SDM	Known SDM
Squamata lizards Agamidae	449	26	5.6	
Squamata lizards Anguidae	75	1	1.3	
Squamata lizards Anniellidae	6	0	0	
Squamata lizards Carphodactyliidae	2	1	3.3	
Squamata lizards Chamaeleonidae	202	4	2.0	
Squamata lizards Cordylidae	67	0	0	
Squamata lizards Corytophanidae	9	2	22.2	
Squamata lizards Crotaphytidae	12	2	16.7	
Squamata lizards Dactyliidae	400	51	12.8	
Squamata lizards Dibamidae	23	1	4.3	
Squamata lizards Diplodactyliidae	137	6	4.4	
Squamata lizards Diploglossidae	51	0	0	
Squamata lizards Eublepharidae	36	9	25.0	
Squamata lizards Ekelonidae	1063	34	3.2	
Squamata lizards Gerrhosauridae	37	0	0	
Squamata lizards Gymnophthalmidae	253	7	2.8	
Squamata lizards Helodermatidae	2	1	50.0	
Squamata lizards Hoplocercidae	19	0	0	
Squamata lizards Iguanidae	41	3	7.3	
Squamata lizards Lacertidae	322	47	14.6	
Squamata lizards Lanthanotidae	1	0	0	
Squamata lizards Leiocephalidae	29	1	3.4	
Squamata lizards Leiosauridae	13	1	5.0	
Squamata lizards Liolaemidae	298	1	0.3	
Squamata lizards Opluridae	8	2	25.0	
Squamata lizards Phrynosomatidae	148	48	32.4	
Squamata lizards Phyllodactylidae	134	8	6.0	
Squamata lizards Polychrotidae	7	3	42.9	
Squamata lizards Pygopodidae	46	3	6.5	
Squamata lizards Scincidae	1602	19	1.2	
Squamata lizards Shinisauridae	1	0	0	
Squamata lizards Sphaerodactylidae	215	4	1.9	
Squamata lizards Teiidae	151	3	2.0	
Squamata lizards Tropiduridae	128	6	4.7	
Squamata lizards Varanidae	78	9	11.5	
Squamata lizards Kentorididae	34	0	0	
Squamata lizards Xenosauridae	10	0	0	
Squamata snakes Aniliidae	1	0	0	
Squamata snakes Anomalepididae	18	0	0	
Squamata snakes Anomochilidae	3	0	0	
Squamata snakes Boidae	19	3	1.6	
Squamata snakes Bolieridae	2	0	0	
Squamata snakes Colubridae	851	23	2.7	
Squamata snakes Cylindrophidae	13	0	0	
Squamata snakes Dipadidae	754	18	2.4	
Squamata snakes Elapidae	289	74	25.6	
Squamata snakes Eulophidae	73	0	0	
Squamata snakes Gorgophiidae	18	0	0	
Squamata snakes Homalopsidae	53	2	3.8	
Squamata snakes Lamprophiidae	308	0	0	
Squamata snakes Leptotyphlopidae	126	0	0	
Squamata snakes Leiocephalidae	1	0	0	
Squamata snakes Natricidae	226	14	6.2	
Squamata snakes Pareatidae	20	0	0	
Squamata snakes Pareatidae	10	0	0	
Squamata snakes Pythonidae	40	4	10.0	
Squamata snakes Tropidophiidae	34	0	0	
Squamata snakes Typhlopidae	263	0	0	
Squamata snakes Uropeltidae	54	0	0	
Squamata snakes Viperidae	331	36	10.9	
Squamata snakes Xenonematidae	18	0	0	
Squamata snakes Xenopeltidae	2	0	0	
Squamata snakes Xenotyphlopidae	1	0	0	
Chelonia turtles Carettochelyidae	1	1	100	
Chelonia turtles Chelidae	58	9	15.5	
Chelonia turtles Cheloniidae	6	6	100	
Chelonia turtles Chelydridae	5	2	40.0	
Chelonia turtles Dermatemysidae	1	1	100	
Chelonia turtles Dermochelyidae	1	1	100	
Chelonia turtles Emydidae	52	23	44.2	
Chelonia turtles Geoemydidae	69	11	15.9	
Chelonia turtles Kinosternidae	25	17	68.0	
Chelonia turtles Platysternidae	2	2	7.4	
Chelonia turtles Podocnemididae	8	5	62.5	
Chelonia turtles Testudinidae	58	6	10.3	
Chelonia turtles Triocychidae	25	3	9.4	
2. Figure S1

ML ancestral reconstruction of sex-determining mechanisms in (A) squamates, and using the alternative SDM classification in (B) squamates and (C) lizards.
3. Results using alternative SDM assignment for species with mixed or equivocal SDM as listed in Table S1

Group	MNS a	r²	Slope	p value	Simulation p value
Turtles	10	-0.05	3.56	0.717	0.76
	20	0.06	33.30	0.276	0.34
	30	0.71	66.90	0.046	0.17
	40	0.71	66.90	0.046	0.19
Lizards	10	-0.01	-1.42	0.858	0.77
	20	-0.02	2.91	0.879	0.88
	30	-0.02	-10.04	0.683	0.62
	40	-0.03	-14.05	0.592	0.60
Squamates	10	-0.01	-1.63	0.832	0.84
	20	-0.02	1.97	0.913	0.90
	30	-0.02	-11.21	0.634	0.55
	40	-0.02	-15.22	0.538	0.44

a MNS: minimal number of species included for computing contrasts.
Table S3: BAMM estimation for the number of rate shifts in diversification. The number of rate shifts with the highest probability in each group is marked in bold.

Group	Number of Shifts	Probability
Turtles	1	**0.81**
	2	0.18
	3	0.02
	4	0.00
Lizards	1	0.05
	2	0.08
	3	0.09
	4	0.13
	5	0.06
	6	0.08
	7	**0.19**
	8	0.15
	9	0.09
	10	0.04
	11	0.02
	12	0.01
	13	0.00
	14	0.00
Squamates	2	0.04
	3	0.05
	4	0.03
	5	0.03
	6	0.04
	7	0.05
	8	0.07
	9	0.08
	10	0.08
	11	0.06
	12	0.04
	13	0.04
	14	0.05
	15	0.11
	16	**0.12**
	17	0.08
	18	0.03
	19	0.01
	20	0.00
	21	0.00
Table S4: Summary of transition rate parameters estimates using the MK2 model with both Maximum Likelihood and Bayesian (MCMC) methodologies and BiSSE for the turtles, lizards, and squamate data sets using the alternative SDM assignment.

Group	Analysis	\(q_{GT} \)	\(q_{TG} \)	Significance \(^{a}\)	Simulation \(p \)-value
Turtles	Maximum Likelihood	8.6e-07	0.0017	0.10	0.15
	MCMC	0.0015	0.0022	0.76	0.06
	BiSSE	6.5e-06	0.0018	0.10	0.14
Lizards	Maximum Likelihood	0.0015	0.0177	\(6.6e-06 \)	\(<0.001\)
	MCMC	2.0e-03	0.0180	1	\(<0.001\)
	BiSSE	0.0015	0.0177	\(6.6e-06 \)	\(<0.001\)
Squamates	Maximum Likelihood	7.0e-04	0.0177	\(3.2e-09 \)	\(<0.001\)
	MCMC	9.5e-04	0.0181	1	\(0.001\)
	BiSSE	7.0e-04	0.0177	\(3.2e-08 \)	\(<0.001\)

\(^{a}\) Significance is estimated with Likelihood-ratio-test for the MK2 and BiSSE Maximum Likelihood analyses; Significance of the MCMC analyses is estimated by calculating the proportion of MCMC steps (i.e., the posterior probability, \(PP \)) in which \(q_{TG} \) was higher than \(q_{GT} \). \(PP \) value above 0.975 or below 0.025 indicates a significant difference between the two rates.

Table S5: Log likelihood differences (\(\Delta LL \)) obtained between the single (BM1) and two rate (BM2) Brownian motion models of evolution, and between the single (OU1) and two (OU2) optimums, as estimated for lifepan in turtles, lizards and squamates. \(\sigma^2_{GSD} \) and \(\sigma^2_{TSD} \), Optimum\(_{GSD} \), and Optimum\(_{TSD} \): estimated parameters for GSD and TSD lineages using the alternative SDM assignment.

Group	LogLiks BM1	LogLiks BM2	BM p-value\(^{a}\)	\(\sigma^2_{GSD} \)	\(\sigma^2_{TSD} \)	LogLiks OU1	LogLiks OU2	OU p-value\(^{b}\)	Optimum GSD	Optimum TSD
Turtles	-90.7	-84.7	\(0.0005 \)	0.36	2.84	-72.9	-70.1	\(0.0181 \)	22.6	35.9
Lizards	-192.9	-190.3	\(0.0234 \)	3.21	1.71	-163.8	-162.4	0.0928	7.8	10.6
Squamates	-246.4	-245.3	0.1270	2.53	1.71	-220.7	-220.7	0.7048	9.4	10.2

\(^{a}\)p-value comparing the fit of a single and two rate BM models based on the likelihood ratio test.
\(^{b}\)p-value comparing the fit of a single and two OU models based on the likelihood ratio test. Significant \(p \)-values are marked in bold.
4. BiSSE ANALYSES

GENERAL METHODS

We applied the BiSSE framework (Maddison et al., 2007) as implemented in diversitree version 0.9.7 (FitzJohn, 2012), using the “skeletal” tree approach (FitzJohn et al., 2009) which accounts for the sampling fraction of species in the phylogeny out of the total number of species in the clade (assuming an equal sampling fraction for both TSD and GSD). This method was used to estimate the speciation rates of lineages in states GSD and TSD (λ_G and λ_T, respectively), extinction rates (µ_G and µ_T) and transition rates from GSD to TSD (q_{G→T}) and from TSD to GSD (q_{T→G}). The net diversification rate in each state (r_G and r_T), was calculated as r_G = λ_G - µ_G and r_T = λ_T - µ_T.

We used maximum likelihood (ML) to test whether GSD and TSD lineages (1) speciate at different rates, (2) go extinct at different rates, and (3) whether the transition rate from GSD to TSD is different than from TSD to GSD. These three, non-mutually-exclusive, hypotheses were tested by comparing the following BiSSE models, starting with the null model, M0, in which λ_G = λ_T, µ_G = µ_T, and q_{G→T} = q_{T→G}, up to the most general model in which all rate parameters are allowed to differ between GSD and TSD (Table S6). To increase the probability of finding the global optimum, we started the ML search from 100 different points uniformly sampled along the range [0,1] of each of the model rate parameters. The Akaike information criterion (AIC) was used to choose between the competing models (Arnold, 2010).

Model (number of parameters)	Speciation	Extinction	Transition
M0 (3)	λ_G = λ_T	µ_G = µ_T	q_{G→T} = q_{T→G}
Ms (4)	λ_G ≠ λ_T	µ_G = µ_T	q_{G→T} = q_{T→G}
Me (4)	λ_G = λ_T	µ_G ≠ µ_T	q_{G→T} = q_{T→G}
Mq (4)	λ_G = λ_T	µ_G = µ_T	q_{G→T} ≠ q_{T→G}
Mse (5)	λ_G ≠ λ_T	µ_G ≠ µ_T	q_{G→T} = q_{T→G}
Msq (5)	λ_G ≠ λ_T	µ_G = µ_T	q_{G→T} = q_{T→G}
Meq (5)	λ_G = λ_T	µ_G ≠ µ_T	q_{G→T} ≠ q_{T→G}
Mseq (6)	λ_G ≠ λ_T	µ_G ≠ µ_T	q_{G→T} ≠ q_{T→G}
Estimation of diversification rates could be influenced by additional factors other than the trait of interest (here SDM), that can alter the tree shape in a way that elevates the false-positive rate (FitzJohn, 2012, Rabosky & Goldberg, 2015). We thus compared the log-likelihood difference (ΔLL) for the competing models as inferred using our empirical data against those obtained using data generated by simulating characters that do not influence diversification. Specifically, we used a parametric bootstrapping approach to obtain the null distribution of the competing BiSSE models (i.e., equal versus unequal speciation models). We simulated 100 random distributions of neutral characters (assuming no effect on diversification) on the same empirically-derived phylogenies of turtles and lizards. To obtain the simulated parameter values, we first estimated the two transition rates (GSD to TSD and TSD to GSD) according to a BiSSE model with equal extinction and speciation (Mq) and the root state set to TSD (which was inferred as the root state, see Results). We then simulated a binary trait along the tree [using sim.character function within the package diversitree (FitzJohn, 2012)] with the transition rates estimated using the MK2 model (with the root state set to TSD). We then applied BiSSE to compare between a model of unequal speciation (denoted Msq for unequal speciation and transition rates) with a nested model that assumes equal speciation rates but unequal transition rates (denoted Mq for unequal transition rates). In both models, extinction is modeled as equal because extinction rates are difficult to estimate and are particularly sensitive to sampling biases (see Results). This procedure resulted in an expected distribution of ΔLL under the null model. Finally, the empirically-derived ΔLL between models Msq and Mq in the real data was compared to the corresponding simulated distributions to obtain a p value according to the proportion of simulated ΔLL values in the simulated data that were equal or greater than the observed value. We applied BiSSE twice, first with the complete trees, to make use of as much phylogenetic data as possible, and second, after the trees were pruned to include only taxa with known SDM, so that the results could be compared to the results of the rest of the analyses.

RESULTS

We first used the BiSSE approach (Maddison et al., 2007) to test whether SDM is associated with altered diversification rates in turtles and lizards. The Ms (unequal speciation) was identified as the best-fitted model for turtles (ΔAIC = 0), suggesting that speciation rates were higher for TSD than for GSD lineages, whereas extinction rates estimates were near zero and indistinguishable between SDMs (Table S7). We note that extinction rates are difficult to estimate and are particularly sensitive to sampling biases ([Rabosky, 2010]; but see (Beaulieu & O'Meara, 2015)].

In lizards, Msq (unequal speciation and transition) was the best model-fitted, suggesting that speciation rates were higher for GSD than for TSD lineages but that transition rate from TSD to GSD was significantly higher than the transition rate from GSD to TSD.

In squamates, Mseq (unequal speciation, extinction, and transition) was the best model-fitted, suggesting that speciation and extinction rates were higher for GSD than for TSD lineages but that transition rate from TSD to GSD was significantly higher than the transition rate from GSD to TSD. Most importantly however, results from our parametric bootstrapping procedure using neutral binary traits, showed that in all groups, at least 65% of the simulations resulted in ΔLL values that are equal or greater than the observed value. Thus, the observed differences in rates inferred using BiSSE are not significantly different than what can be expected by chance. When pruned trees were used, some of the estimated rates and chosen models were different. However, similar to the results obtained with the full trees, the parametric bootstrapping showed that in all groups, 42-58% of the simulations resulted in ΔLL values that are equal or greater than the observed value, suggesting, again, that the observed differences in rates are not significantly different than what can be expected by chance.
Table S7: Summary of parameters estimates using the best-fitted BiSSE model for the turtles, lizards, and squamates data sets using the full phylogenies. The Ms model (ΔAIC=0) was chosen in turtles, whereas Msq was chosen in lizards. λ = Speciation rate; μ = extinction rate; $q_{G\rightarrow T}$ = transition rate from GSD to TSD; $q_{T\rightarrow G}$ = transition rate from TSD to GSD. ΔAIC is the difference in AIC of each model relative to the best supported model. Parameter estimates are given based on the best supported model for each dataset.

Group	Parameter estimates	ΔAIC												
	λ	λ_T	μ_G	μ_T	$q_{G\rightarrow T}$	$q_{T\rightarrow G}$	M_0	M_s	M_e	M_q	M_{se}	M_{sq}	M_{eq}	M_{seq}
Turtles	0.0223	0.0463	0	0	0.0018	0.0018	23.8	0.0	23.1	23.1	2.0	2.0	25.1	4.0
Lizards	0.0319	0.1384	0	0	0.0063	0.1096	559.8	547.2	532.0	544.1	549.2	0.0	546.1	2.0
Squamates	0.0381	0.1691	0	0	0.0049	0.1327	960.3	1028.3	776.5	935.8	1002.2	0.0	776.8	2.0

Results using alternative SDM assignment for species with mixed or equivocal SDM (see text for details)

Group	Parameter estimates	ΔAIC												
	λ	λ_T	μ_G	μ_T	$q_{G\rightarrow T}$	$q_{T\rightarrow G}$	M_0	M_s	M_e	M_q	M_{se}	M_{sq}	M_{eq}	M_{seq}
Lizards	0.032	0.1415	0	0	0.007	0.1162	601.2	553.2	551.8	583.0	555.2	0.0	554.3	2.0
Squamates	0.0383	0.1724	0	0	0.0052	0.139	1010.2	1037.7	799.5	981.6	1011.5	0.0	800.3	2.0

Table S8: Summary of parameters estimates using the best-fitted BiSSE model for the turtles, lizards, and squamates data sets using the pruned phylogenies that contain only data with SDM information. The Ms model (ΔAIC=0) was chosen in turtles, whereas Msq was chosen in lizards. λ = Speciation rate; μ = extinction rate; $q_{G\rightarrow T}$ = transition rate from GSD to TSD; $q_{T\rightarrow G}$ = transition rate from TSD to GSD. ΔAIC is the difference in AIC of each model relative to the best supported model. Parameter estimates are given based on the best supported model for each dataset.

Group	Parameter estimates	ΔAIC												
	λ	λ_T	μ_G	μ_T	$q_{G\rightarrow T}$	$q_{T\rightarrow G}$	M_0	M_s	M_e	M_q	M_{se}	M_{sq}	M_{eq}	M_{seq}
Turtles	0.0273	0.0563	0.0101	0.0101	0.0019	0.0019	10	0	1.83	9.25	1.89	1.96	3.03	3.88
Lizards	0.3737	0.3584	0.3286	0.3286	0.0089	7.00E-04	16.92	13.31	16.04	1.21	12.5	0.21	1.01	
Squamates	0.4967	0.2449	0.4431	0.2088	3.00E-04	0.0124	37.32	21.52	20.64	12.89	21.77	1.11	1.77	0

Results using alternative SDM assignment for species with mixed or equivocal SDM (see text for details)

Group	Parameter estimates	ΔAIC												
	λ	λ_T	μ_G	μ_T	$q_{G\rightarrow T}$	$q_{T\rightarrow G}$	M_0	M_s	M_e	M_q	M_{se}	M_{sq}	M_{eq}	M_{seq}
Lizards	0.4378	0.2131	0.3986	0.1621	0.0011	0.0269	18.44	4.22	4.64	0.14	5.92	1.52	1.77	0
Squamates	0.4523	0.0796	0.3837	0.0205	7.00E-04	0.028	49.65	24.55	25.7	21.06	26.2	12.73	14.42	0
A Markov chain Monte Carlo (MCMC) sampling approach described in (FitzJohn et al., 2009) was used to estimate the posterior probability distributions for each of the six parameters. Posterior distributions were estimated using an exponential prior distribution (with mean set to twice the maximal ML rate estimate under a trait-independent model; \(\lambda_G = \lambda_T, \mu_G = \mu_T, q_{G \rightarrow T} = q_{G \rightarrow T} \)) placed on the six parameters. MCMC chains were started at the estimated parameters through ML, and were run for 10,000 steps; the first 10% of the steps were discarded as burn-in.

To test whether estimated extinction and speciation rates differ between TSD and GSD lineages, we calculated the percentage of BiSSE MCMC steps in which the GSD rate was higher than that of the TSD state (i.e., the posterior probability, \(PP \), of GSD lineages having a higher rate than TSD lineages). For example, to test whether extinction rates differ, we calculated the percentage of post burn-in steps in which \(\mu_G > \mu_T \), and interpreted \(PP(\mu_G > \mu_T) \geq 0.975 \) as significant support for the conclusion that GSD lineages go extinct at a higher rate than TSD ones, with the converse, \(PP(\mu_G > \mu_T) \leq 0.025 \), supporting higher TSD extinction.

To ensure that the MCMC search sample throughout the parameter space, we ran two chains starting from the top two MLE points. In the squamates/lizard datasets these two chains failed to converge, getting stuck in separate hills of the likelihood surface, leading to opposite interpretation of the data (Figure S1). The chain that resulted in higher TSD speciation (Figure S1a), which is compatible with the ML analysis presented in the main text, sampled the parameter space at substantially higher likelihood surface compared to the chain that resulted in higher GSD speciation (Figure S1b) (average difference between the two chain ca. 80 log-likelihood values).

Figure S2. BiSSE MCMC results of using the two best MLE points as the starting points for the MCMC sampler using the lizard dataset. Posterior probability density distributions from MCMC analyses are shown for speciation rates for GSD (pink) and TSD lineages (blue). The MCMC starting point values of each parameter are marked by vertical lines. The red lines show the prior distribution (set according to a trait-independent model). (a) MCMC chain was initiated from the best-fitted ML point, leading to estimation of higher speciation rate in TSD lineages. (b) MCMC chain was initiated from the second-best-fitted ML point, leading to estimation of higher speciation rate in GSD lineages.

SIMULATIONS TO TEST EFFECT OF MISSING DATA ON TRANSITION RATE ESTIMATES IN BiSSE

We also tested the effect of missing data on the estimation of the transition rates in BiSSE, given that information for a substantial portion of extant lizards is lacking. For this, we simulated random trees with 1,000 tips with equal speciation rates (\(\lambda = 0.1 \)), no extinction, and varying transition rates (\(q_{01} = 0.1, q_{10} = 0.1, 0.05, 0.025 \)) and carried out 100 simulations for each parameter combination. In each simulation, the data were analyzed by BiSSE with 100, 25, or 5% of the state data (Figure S3). The estimated transition rates are shown in Figure S3. The results illustrate that missing data leads to increased variance in the estimated transition rates, although the average estimation is rather accurate.
Figure S3. Effect of missing data on the estimation of transition rates in BiSSE. Columns correspond to the three level of data completeness (left: 100%, middle: 25%, and right: 5%) and rows correspond to three values of simulated q10 (top: 0.1, middle: 0.05, and bottom: 0.025). The black lines mark the simulated values and the red lines mark the median of the estimated values.

References
Arnold, T. W. 2010. Uninformative Parameters and Model Selection Using Akaike's Information Criterion. *Journal of Wildlife Management* 74: 1175-1178.
Beaulieu, J. M. & O'Meara, B. C. 2015. Extinction can be estimated from moderately sized molecular phylogenies. *Evolution* 69: 1036-1043.

FitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. *Methods in Ecology and Evolution* 3: 1084-1092.

FitzJohn, R. G., Maddison, W. P. & Otto, S. P. 2009. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. *Systematic Biology* 58: 595-611.

Maddison, W. P., Midford, P. E. & Otto, S. P. 2007. Estimating a binary character's effect on speciation and extinction. *Systematic Biology* 56: 701-710.

Rabosky, D. L. 2010. Extinction rates should not be estimated from molecular phylogenies. *Evolution* 64: 1816-1824.

Rabosky, D. L. & Goldberg, E. E. 2015. Model inadequacy and mistaken inferences of trait-dependent speciation. *Systematic Biology* 64: 340-55.

Uetz, P. & Hosek, J. 2015. The Reptile Database. (Accessed 20 March 2016). Available at http://www.reptile-database.org/.