Flag leaf vein traits and their correlation with photosynthesis and grain yield in wheat genotypes of differing ploidy

H.M. XU¹, Y.L. CHEN², and Y.Y. LI*¹

College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China¹
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China²

Abstract

Leaf venation and coupled physiological function of wild plants co-evolve during the natural selection. How artificial selection affects leaf vein traits and coordinated physiological functions of main crops are largely unknown. This study examined the changes of leaf vein traits and their correlation with gas exchange of flag leaves and yield in eight wheat genotypes of differing ploidy under the same growing conditions. The results indicate that flag leaf vein density (VLA), major-vein density (VLA-major), and minor-vein density (VLA-minor) decreased whereas the proportion of minor-vein length and interveinal distance between small longitudinal veins (IVD) increased during the polyploidization process, and the major advance occurred from the period from diploids to tetraploids. The VLA, VLA-major, and VLA-minor were closely coordinated with maximum net photosynthetic rate (Pn) and photosynthetic N use efficiency (PNUE), but not with stomatal conductance. The proportion of minor-vein length and IVD were negatively related with PN and PNUE but positively related with N content per area (Nc.area) during wheat evolution. A higher proportion of minor-vein length and IVD, and a lower VLA-major in flag leaves along with a larger Nc.area were largely responsible for the increased yield in modern cultivars. The decreased redundancy of leaf vein density and increased minor-vein proportion in modern cultivars can confer a yield advantage during wheat evolution.

Additional key words: evolution, gas exchange, leaf N content, stomatal conductance, Triticum aestivum.

Introduction

Leaf veins are an important constituents of leaf structure. They provide mechanical support, transport nutrients and water for photosynthesis and transpiration through the xylem, and transport photosynthates and signal molecules from the mesophyll to the rest of the plant through the phloem (Niklas 1999, Roth-Nebelsick et al. 2001). Depending on climatic and environmental conditions during leaf development, leaf vein traits are highly diverse across and within species (Uhl and Mosbrugger 1999, Boyce et al. 2008, Sack et al. 2012, Sack and Scoffoni 2013). Leaf vein traits have shown repeated evolutionary trajectories across major plant groups. Throughout 380 million years of evolution, angiosperm vein densities (vein length per leaf area, VLA) have reached 8 ~ 25 mm mm⁻² (about 2 mm mm⁻² in non-angiosperms) with increasing number of vein orders. High value of leaf VLA enables unparalleled photosynthetic rate and transpiration rate in the angiosperms than their competitors, thus dominate in a range of habitats than other plant lineages (Boyce et al. 2009). In the evolution of C₃ within eudicot genera Cleome and Flaveria, leaf VLA increased from C₃ to C₄/C₃ intermediate and C₄ species (Marshall et al. 2007, McKown and Dengler 2007). C₄ grasses have evolved a higher VLA (2.1 times of C₃ grasses), denser transverse veins and denser small longitudinal veins than the C₃ grasses without significant difference in large longitudinal veins (Ueno et al. 2006). Increasing VLA may initially have little effect on the performance of an effective CO₂ concentration mechanism, but may enhance the water status of C₄ leaves in hot environments (Sage 2004). Compared to the natural evolution, crop evolution is mainly made by artificial selection. Wheat, as one of the oldest and most important of cereal crops worldwide, began to domesticate ~10 000 years ago (Tanno and Wilcox 2006). Modern cultivars of the Triticum aestivum hexaploids with large grain yield were domesticated from the more primitive diploids and...
tetraploids, and polyploidization played an important role
during the cultivation and breeding of wheat. How the leaf
vein traits changed during this polyploidization process
was largely not clear.

Leaf vein traits have been reported to closely associate
with leaf physiological function. Generally, high VLA
values are positively correlated with higher leaf hydraulic
conductance, greater stomatal density and stomatal
conductance, and higher rate of gas exchange per unit
leaf area (Sack and Froel 2006, Brodribb et al. 2007,
Brodribb and Jordan 2011, Zhang et al. 2012, Sack and
Scoffoni 2013). But this is not so under all cases. Negative
(Nardini and Salleo 2000, Sack and Scoffoni 2012) and no
correlations (Flessas et al. 2013, Xiong et al. 2015, Gleason
et al. 2016) have also been reported between leaf VLA
and leaf hydraulic conductance. Leaf VLA is negatively
correlated with leaf net photosynthetic rate (P_N) and
stomatal conductance (g_s) in rice cultivars under different
water status (Tabassum et al. 2016). Leaf VLA shows
no apparent association with stomatal conductance and
maximal net CO$_2$ assimilation across a diverse group of 35
evergreen Australian angiosperms (Gleason et al. 2016).
These inconsistent results indicate that the evolutionary
drivers linking leaf vein traits and hydraulic efficiency
or gas exchange are not fully understood. Moreover, leaf
VLA was reported to be positively related with N and P
resorption efficiencies across 17 dipterocarp tree species
(Zhang et al. 2015). Another study found that leaf VLA
is not correlated with leaf N content per area (N_{m}), but
interveinal distance is positively correlated with leaf N_{m}
among 11 rice cultivars (Xiong et al. 2015). How leaf
vein traits are coordinated with these leaf physiological
functions during wheat evolutionary process is yet to be
known. Knowledge on such comprehensive correlations
between leaf vein traits and leaf physiological traits is
critical for enhancing our understanding of leaf structural
attributes to crop water use and photosynthesis.

Despite the potential importance of leaf vein traits,
few studies have examined associations between these
traits and whole plant performance. Leaf vein traits are
weakly, but significantly related to tree demographic
performance (relative growth rate and mortality) along soil
environments for 54 co-occurring species in a subtropical
forest (Iida et al. 2016). Increasing leaf vein vensity via
mutagenesis in rice results in an enhanced photosynthetic
efficiency without increased transpiration (Feldman et al.
2017). Leaf VLA is positively correlated with the grain
yield in 292 rice landraces (Nawarathna et al. 2017),
suggesting that the higher VLA can be used in future rice
breeding programs. Whether leaf vein traits in wheat have
the similar associations with yield potential as in rice
remains unknown. Identification of the presence of such
leaf vein traits will be helpful to future wheat breeding.

Some morphological and physiological changes have
been reported among wheat species differing in ploidy
(Evans and Dunstone 1970, Austin et al. 1982, Zhang
et al. 2002, Xiong et al. 2006, Huang et al. 2007, Li et al.
2014, Wang et al. 2017). The diploids generally have
smaller leaf area, higher stomatal frequencies, and smaller
mesophyll cells than the hexaploids, net photosynthetic
rate is the highest in diploids, intermediate in tetraploids,
and the lowest in hexaploids (Austin et al. 1982), but the
hexaploids have higher root water uptake capacity, higher
yield and water use efficiency, as well as higher drought
resistance (longer survival duration and higher yield
stability under drought) (Zhang et al. 2002, Xiong et al.
2006, Wang et al. 2017). However, little is known about
variation of leaf vein traits and their potential importance
in leaf physiological function and yield increment during
the evolutionary process. Therefore, the aim of this
study was to examine the variation of leaf vein traits,
physiological function, yield, and their relationship in
eight wheat species of three different ploidy. We assumed
that during wheat evolution from diploids to tetraploids
and to hexaploids, leaf VLA increased as that directed by
natural selection, and leaf VLA is closely coordinated with
gas exchange and yield.

Materials and methods

Plants and treatments: Eight species, including two
diploids, two tetraploids, and four hexaploids, were used
in a field experiment in Yangling, Shaanxi Province in
China (Table 1 Suppl.). Soil was silty clay with pH 8.36,
bulk density 1.26 g cm$^{-3}$, organic matter 13.6 g kg$^{-1}$, total
N 0.82 g kg$^{-1}$, alkaline N 78.4 mg kg$^{-1}$, Olsen-P 14.2 mg
kg$^{-1}$, and available K 210.2 mg kg$^{-1}$. Seeds were sown on
11 October 2018 at a spacing of 5 × 15 cm in plots 2 × 3 m2.
There were three replicate plots of each species arranged in
randomized blocks. Each plot received 0.0225 kg(N) m$^{-2}$
and 0.012 kg(P$_{2}$O$_{5}$) m$^{-2}$, 70 % of N fertilizer and all
P fertilizer were applied before sowing, the left 30 %
of N fertilizer was applied with precipitation during the
jointing stage. The precipitation during the whole growth
season (11.10.2018 - 16.6.2019) was 252 mm, and 30 mm
of irrigation was added in the winter of 2018. During the
end of May 2019, the plots were sprayed with chemicals
at the manufacturer's recommended rate to prevent aphid.
Weeds were pulled out manually.

The flowering date of each species was labeled with
tags, and 13 main stems in each plot of each species
were labeled. Two tagged flag leaves were used for the
measurements of leaf area and leaf vein traits on the
fourth day after flowering, two tagged flag leaves were
used for the measurement of gas exchange parameters and
photosynthetic N use efficiency (PNUE) at the same period,
and the left nine flag leaves was used for determination of
leaf mass per area (LMA) and N remobilization efficiency.

Measurement of leaf vein traits: Two flag leaves per plot
per species were scanned with a scanner at first, and the leaf
images were analyzed for leaf area using imagej software
(https://imagej.en.softonic.com/), then the two leaves were
used to determined leaf vein traits, totally six leaves per
species. Two 0.5 cm2 pieces were quickly excised from
the middle portion of each leaf, and preserved in FAA
[37 % (m/v) aqueous formaldehyde, 50 % (v/v) ethanol,
and 13 % (m/v) glacial acetic acid] until use. The fixed
pieces were boiled in 70 % ethanol for about 10–20 min
and washed several times in distilled water, the leaf pieces were transferred to boiling 85 % (m/v) lactic acid for 20 min, and then stored in chloral hydrate-saturated ethanol before analysis (Ueno 1995). Four fields per pieces was randomly taken using a light microscope (CX31, Olympus, Tokyo, Japan) and attached digital camera system (M-shot, Sci-Tech Cor., Guangzhou, China), and above mentioned imageJ software was used to analyzed vein traits. Wheat vascular bundles can be categorized into four types: midvein (MV), large longitudinal veins (LLVs), small longitudinal veins (SLVs), and transverse veins (TVs) (Nelson and Dengler 1997). In the present study, the major-vein density (VLA\textsubscript{major}, mm mm-2) was the sum of the densities of the MV and LLVs, and the minor-vein density (VLA\textsubscript{minor}, mm mm-2) was the sum of the densities of the SLVs and TVs. Vein density and the proportion of minor-vein length [%] were also calculated, and interveinal distance between two neighboring SLVs (IVD) were also measured.

Measurement of gas exchange, intrinsic water use efficiency (WUE\textsubscript{i}), and photosynthetic N use efficiency (PNU\textsubscript{E}): Gas exchange was measured using a portable gas-exchange system (LI-6400, LI-Cor, Lincoln, NE, USA) from 9:30 to 11:30 on sunny days, and the radiation source was set to a photosynthetic photon flux density (PPFD) of 1 200 μmol m-2 s-1. The ambient temperature, relative humidity, and CO\textsubscript{2} concentration were 28.4 - 33.2 °C, 35.5 - 46.8 % and 400 - 412 μmol mol-1, respectively. The leaf enclosed in the chamber of the portable gas-exchange system was marked for identifying the projected areas after each measurement. Then the leaf was cut and taken to the lab for determination of N content per area (N\textsubscript{area}). Leaf N content was determined using an Auto-Kjeldahl method (Kjellec system 2300 Distilling Unit, Foss, Hoganas, Sweden). The WUE, was calculated as P\textsubscript{c}/g\textsubscript{s}, and the PNU\textsubscript{E} was calculated as P\textsubscript{c}/N\textsubscript{area}.

Measurement of N remobilization efficiency (NRE) and leaf mass per area (LMA) in flag leaves: The NRE was used to represent the phloem transport capacity. N content based on leaf area and dry mass was determined on three days. Flag leaf N content reached the maximum on the date of flowering for modern wheat cultivars (Cai et al. 2008), but we are not sure if this was true in primitive wheat species. So, we sampled on the date of flowering, the physiological parameters, biomass and yield were fitted by linear models. The nested ANOVA was conducted by a “two-level nested anova” EXCEL file provided by Dr. J.H. McDonald on the webpage (http://www.biosathandbook.com/nestedanova.html), all other statistics were conducted using SPSS Statistics 20.0 software (IBM Corporate, Armonk, USA).

Results

Both flag leaf area and LMA in diploids were significantly lower than in tetraploids and hexaploids. Flag leaf area was the lowest in diploids (11.43 cm2), intermediate in hexaploids (26.19 cm2), and the largest in tetraploids (31.80 cm2). The LMA increased from 40.96 g m-2 in diploids to 56.72 g m-2 in tetraploids, and 53.36 g m-2 in hexaploids. For leaf vein traits, diploids had significantly higher VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor}, and lower proportion of minor-vein length and IVD than tetraploids and hexaploids. No significant difference of the above vein traits was found between tetraploids and hexaploids except VLA\textsubscript{major}, which was 14.7 % higher in tetraploids than in hexaploids (Table 1). These results suggested that the evolution of wheat leaf vein traits mainly occurred during the period from diploids to tetraploids. VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} were significantly and positively correlated (VLA vs. VLA\textsubscript{major}: R2 = 0.87, P < 0.01; VLA vs. VLA\textsubscript{minor}: R2 = 0.96, P < 0.001; VLA\textsubscript{major} vs. VLA\textsubscript{minor}: R2 = 0.72, P < 0.01), and they were negatively correlated with IVD (R2 = 0.96, P < 0.001 for VLA; R2 = 0.83, P < 0.01 for VLA\textsubscript{major}; R2 = 0.94, P < 0.001 for VLA\textsubscript{minor}). Proportion of minor-vein length was negatively correlated with VLA\textsubscript{major} (R2 = 0.79, P < 0.01).

VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} across wheat genotypes of differing ploidy decreased with leaf area (pseudo R2 = 0.74, P < 0.01 for VLA; pseudo R2 = 0.66, P < 0.05 for VLA\textsubscript{major}, and pseudo R2 = 0.76, P = 0.05 for VLA\textsubscript{minor} (Fig. 1.4)), while proportion of minor-vein length and IVD increased with leaf area (pseudo R2 = 0.46, P = 0.06 for proportion of minor-vein length; pseudo R2 = 0.53, P < 0.05 for the

\[\text{NRE} \text{ (Zhang et al. 2014)} \text{ as NRE [\%]} = \left(\frac{N_{\text{max}} - N_{\text{maturity}}} {N_{\text{maturity}}} \right) \times 100 / N_{\text{max}}, \text{ where N_{\text{maturity}} is the N content per dry matter at maturity.} \]

Grain yield: At physiological maturity of each species, 1 m2 of each plot was harvested to determine aboveground biomass and grain yield; biomass and grain were weighted after oven-drying at 80 °C for 3 d.

Statistical analyses: Two-level nested analysis of variance (ANOVA) was used to assess the significance of leaf vein and physiological parameters across different wheat ploidy. A post-hoc multiple comparison was conducted using the Tukey-Kramer method if the effect of ploidy was significant. A principal component analysis (PCA) was analyzed to examine multivariate associations of leaf traits. The allometric relationships between leaf vein traits and leaf area, LMA were modeled by power functions, and the regressions between leaf vein traits and leaf physiological parameters, biomass and yield were fitted by linear models. The nested ANOVA was conducted by a “two-level nested anova” EXCEL file provided by Dr. J.H. McDonald on the webpage (http://www.biosathandbook.com/nestedanova.html), all other statistics were conducted using SPSS Statistics 20.0 software (IBM Corporate, Armonk, USA).
I innoculated with the interaction distance between two neighboring small longitudinal veins (IVD) in eight wheat genotypes, including two diploids (D1 and D2), two tetraploids (T1 and T2), and four hexaploids (H1-FC3, H2-ZM101, H3-CW134, and H4-XY6). Means ± SEs, n = 6. Different letters indicate significant differences between wheat genotypes of differing ploidy at P < 0.05.

Table 1. Flag leaf area [cm²], leaf mass per area (LMA) [g m⁻²], vein density [mm m⁻²], proportion of minor-vein length (Proportion) [%], and interveinal distance between two neighboring small longitudinal veins (IVD) [mm] in eight wheat genotypes, including two diploids (D1 and D2), two tetraploids (T1 and T2), and four hexaploids (H1-FC3, H2-ZM101, H3-CW134, and H4-XY6). Means ± SEs, n = 6. Different letters indicate significant differences between wheat genotypes of differing ploidy at P < 0.05.

Genotype	Leaf area	LMA	Vein density	Proportion	IVD	
	cm²	g m⁻²	major	minor	total	
D1	12.90 ± 1.29	41.93 ± 0.83	1.42 ± 0.03	4.21 ± 0.05	5.63 ± 0.04	74.84 ± 0.54
D2	9.96 ± 1.08	39.98 ± 0.79	1.32 ± 0.05	4.28 ± 0.08	5.60 ± 0.09	76.47 ± 0.74
Diploid mean	11.43 ± 0.92 c	40.96 ± 0.62 b	1.37 ± 0.03 a	4.25 ± 0.05 a	5.61 ± 0.05 a	75.66 ± 0.50 b
T1	35.34 ± 1.91	55.72 ± 1.13	0.84 ± 0.04	3.43 ± 0.05	4.26 ± 0.04	80.33 ± 0.87
T2	28.26 ± 1.39	57.72 ± 1.72	0.88 ± 0.04	3.15 ± 0.10	4.03 ± 0.11	78.09 ± 0.96
Tetraploid mean	31.80 ± 1.55 a	56.72 ± 1.05 a	0.86 ± 0.03 b	3.29 ± 0.07 b	4.15 ± 0.06 b	79.21 ± 0.70 a
H1-FC3	29.33 ± 2.66	51.07 ± 0.62	0.75 ± 0.03	3.29 ± 0.17	4.03 ± 0.16	81.63 ± 1.13
H2-ZM101	19.96 ± 1.62	52.01 ± 1.19	0.74 ± 0.03	3.13 ± 0.07	3.87 ± 0.05	80.89 ± 0.87
H3-CW134	24.33 ± 1.85	52.77 ± 1.31	0.78 ± 0.03	3.84 ± 0.10	4.62 ± 0.09	83.09 ± 0.79
H4-XY6	31.14 ± 1.62	57.59 ± 1.20	0.73 ± 0.05	2.91 ± 0.10	3.64 ± 0.07	79.84 ± 1.53
Hexaploid mean	26.19 ± 1.30 b	53.36 ± 0.74 a	0.75 ± 0.02 c	3.29 ± 0.09 b	4.04 ± 0.09 b	81.36 ± 0.58 a

IVD (Fig. 1 B,C). Due to the strong correlation between flag leaf area and LMA (R² = 0.81, P < 0.01), the variation of leaf vein traits with LMA followed the same trend as with leaf area (Fig. 1 Suppl.). The allometric relationships may partly explain the trend of leaf vein traits during the wheat polyploidization.

The diploids had 20.1 and 25.3 % higher in Pn, 90.2 and 88.1 % higher PNUe, 35.8 and 32.3 % lower in Narea than tetraploids and hexaploids, respectively. No difference of these parameters was observed between tetraploids and hexaploids. There was no difference in g⃗, WUE⃗, and NRE among genotypes with differing ploidy (Table 2). The Pn was not correlated with g⃗ (R² = 0.21, P > 0.05), PNUe, was positively correlated with Pn (R² = 0.90, P < 0.001), WUE⃗, was negatively correlated with g⃗ (R² = 0.86, P < 0.01), and Narea was negatively correlated with Pn (R² = 0.75, P < 0.01) and PNUe (R² = 0.94, P < 0.001) (Fig. 2 Suppl.).

The PCA axis 1, accounting for 64.8 % of the total variation, showed strong loadings on all five leaf vein traits and some physiological parameters like Pn, PNUe, and Narea. PCA axis 2, accounting for 20.6 % of the total variation, showed strong loadings on g⃗ and WUE⃗ (Fig. 3 Suppl.). The VLA, VLA major, and VLA minor were significantly and positively correlated with Pn (R² = 0.81, P < 0.01 for VLA; R² = 0.90, P < 0.001 for VLA major and R² = 0.67, P < 0.05 for VLA minor) and PNUe (R² = 0.84, P < 0.01 for VLA; R² = 0.95, P < 0.001 for VLA major and R² = 0.71, P < 0.01 for VLA minor) (Fig. 2), but proportion of minor-vein length and IVD were significantly and negatively correlated with Pn (R² = 0.69, P < 0.05 for proportion of minor-vein length and R² = 0.77, P < 0.01 for IVD) (Fig. 2) and PNUe (R² = 0.70, P 0.05 for proportion of minor-vein length and R² = 0.75, P < 0.01 for IVD) (Fig. 2). The VLA, VLA major, and VLA minor decreased with increased Narea, but proportion of minor-vein length and IVD increased with Narea (Figs. 2 and 3).
Biomass was positively related to leaf area ($R^2 = 0.63$, $P < 0.05$), proportion of minor-vein length ($R^2 = 0.67$, $P < 0.05$), and N_{area} ($R^2 = 0.58$, $P < 0.05$), but negatively related to VLA$_{major}$ ($R^2 = 0.61$, $P < 0.05$), P_N ($R^2 = 0.55$, $P < 0.05$), and PNUE ($R^2 = 0.58$, $P < 0.05$) (Table 2 Suppl.). Grain yield was positively related with proportion of minor-vein length ($R^2 = 0.88$, $P < 0.01$), IVD ($R^2 = 0.51$, $P < 0.05$), and N_{area} ($R^2 = 0.49$, $P = 0.053$), but negatively related with VLA ($R^2 = 0.49$, $P = 0.055$), VLA$_{major}$ ($R^2 = 0.75$, $P < 0.01$), P_N (0.62, $P < 0.05$), N_{area} ($R^2 = 0.49$, $P = 0.053$), and PNUE ($R^2 = 0.58$, $P < 0.05$) (Table 2 Suppl.). The above relationship suggested that higher proportion of minor-vein length, larger IVD, and increased N content contribute to the biomass and yield improvement during the process of wheat evolution.

Discussion

During the evolution of wheat, VLA, VLA$_{major}$, and VLA$_{minor}$ all show the trend to decrease, while proportion of minor-vein length and IVD increased (Table 1). This trend differs from that exhibited in angiosperm and C$_4$ grasses evolution (Boyce et al. 2009, Ueno et al. 2006). The variation of wheat leaf vein traits across differing ploidy can be partly explained by the developmental algorithm for vein formation during leaf expansion, showing declined major-vein density with increasing leaf size, and minor-vein density independent of leaf size (Sack et al. 2012). Generally, major veins include the first three orders of veins, and vein density of these three orders declines with leaf area (Sack et al. 2012). The first two orders of veins (midrib and large longitudinal veins) of wheat leaves are directly connected with leaf sheath, and participate in water transport to leaves, photosynthate export, etc. (Altus and Canny 1985). The VLA$_{major}$ in the present study only covered the first two orders of veins and it decreased due to the increased flag leaf area during wheat evolution process. Vein density of the third order of veins (small longitudinal veins) also decreased with increased leaf area and it contributed more than 60% to VLA and 75% to VLA$_{minor}$ (data not shown), resulting in decreased VLA and VLA$_{minor}$ during wheat evolutionary process. Meanwhile, we found that proportion of minor-vein length and IVD increased with the increase in leaf area (Fig. 1). Although there is no mechanic association between LMA and vein traits (Sack et al. 2013), the changes of vein traits with LMA also showed the same trend as those with flag leaf area during the study since LMA and leaf area are closely related.

Higher VLA in diploid than in tetraploid and hexaploid species may favour their photosynthesis. The earlier studies (Evans and Dunstone 1970, Austin et al. 1982) and present study all supported that the more primitive diploids have higher net photosynthetic rate than modern hexaploid cultivars. Except the role of mechanical support, major-vein density has been found to play a role in determining the water transport capacity, in damage tolerance of the vein system, and in leaf drought tolerance (Sack et al. 2008, Scoffoni et al. 2011). Thus larger major-vein density in diploids provide better water transport and so enable their better survival in harsh environments than tetraploids and hexaploids although some research do not support this (Xiong et al. 2006, Wang et al. 2017). The minor veins
(transverse veins and small longitudinal veins) of wheat leaves play a vital role in lateral transport of photosynthates from the small to the large longitudinal veins (Altus and Canny 1982) because they have large surface area for uploading photosynthates from the surrounding mesophyll. Thus, diploids have acquired a better photosynthetic translocation system than the tetraploids and hexaploids to match with their higher photosynthetic capacity. The decreased VLA\textsubscript{major} in tetraploid and hexaploid species may reduce the carbon cost for construction, and lower vein projected area might potentially enhance mesophyll radiation capture (Sack and Scoffoni 2013), and larger IVD may allow more mesophyll cells occupy (Austin \textit{et al.} 1982).

Past studies showed VLA (especially VLA\textsubscript{minor}) is closely correlated with g\textsubscript{s}, and P\textsubscript{N} at intraspecific and interspecific levels (Sack and Froel 2006, Brodribb \textit{et al.} 2007, Brodribb and Jordan 2011, Zhang \textit{et al.} 2012, Sack and Scoffoni 2013). This study also supported the strong positive association between VLA and P\textsubscript{N} (Fig. 2), but leaf vein density and g\textsubscript{s} was decoupled (Fig. 3 Suppl.). The P\textsubscript{N} and g\textsubscript{s} also decoupled across wheat genotypes of differing ploidy (Fig. 3 Suppl.). In an early study by Austin \textit{et al.} (1982), the mean g\textsubscript{s} of the diploids was only 5 % greater than that of genotypes in this study; g\textsubscript{s} in diploids was 17.1 % higher than that of hexaploid cultivars with no statistic difference, indicating leaf internal anatomical features rather than the difference of g\textsubscript{s} mainly drive the variation in photosynthetic rate. Anatomically, small leaf size, small mesophyll cell size, and close spacing of veins are correlated with high photosynthetic rate in primitive genotypes (Dunstone and Evans 1974). Water supply capacity of leaves did not constrain water loss and CO\textsubscript{2} diffusion under present ample soil water condition. Although there are reports of increased water and nutrient use efficiency during the wheat evolution process (Zhang \textit{et al.} 2002, Xiong \textit{et al.} 2006, Huang \textit{et al.} 2007), we did not find this at leaf level. Leaf WUE, did not change and PNUE decreased (Table 2), which were possibly related with the selected genotypes and different expressions in water and nutrient use efficiency at different organ levels. Leaf veins traits were closely associated with PNUE but not related with WUE, since WUE, was mainly determined by g\textsubscript{s}, and PNUE was mainly determined by P\textsubscript{N} (Fig. 3 Suppl.). Theoretically, leaves acclimated to higher nutrient supplies would have vein traits associated with higher leaf hydraulic conductance and gas exchange rate (Sack and Scoffoni 2013). VLA across rice cultivars was independent of N\textsubscript{area}, but IVD was positively correlated with N\textsubscript{area} (Xiong \textit{et al.} 2015). In this study, we found N\textsubscript{area} was negatively correlated with VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor}, which was possibly related with the selected genotypes and different expressions in water and nutrient use efficiency at different organ levels.

![Fig. 2. Relationships between net photosynthetic rate (P\textsubscript{N}) or photosynthetic N use efficiency (PNUE), and leaf vein density (A,D, respectively), proportion of minor-veins (B,E, respectively) and interveinal distance(C,F, respectively) in wheat genotypes with differing ploidy. Means ± SEs, n = 6. * - P < 0.05, ** - P < 0.01, *** - P < 0.001.](image)
and positively correlated with proportion of minor-vein length as well as IVD (Fig. 3). This can be explained by the developmental algorithm for vein formation (Sack et al. 2012) because leaf higher N content is accompanied with larger leaf area ($R^2 = 0.88, P < 0.01$). Although higher N content stimulated proportion of minor-vein length, N remobilization efficiency did not change during wheat evolution, the reason may be related to enlarged interveinal distance at higher N content, which increased distance for photosynthesize transport to phloem. Leaf phloem transport was a complex process, and N remobilization efficiency may be affected by many factors, such as the distribution of phloem in the vein network, and on species’ loading strategies, post-flowering leaf duration period, grain sink size, etc. Even tetraploids and hexaploids had higher N_{area}, their P_N was lower than that of diploids, showing high N content in the tetraploids and hexaploids did not increase photosynthesis, contrasted with the studies claiming that leaf N content was closely linked to maximum assimilation across species (Field and Mooney 1986, Harrington et al. 1989, Wright et al. 2004). The reason may be related to lower N content allocation to the photosynthetic apparatus or high N demand in tetraploids and hexaploids.

The biggest evolution advance of leaf vein and physiological traits occurred during the period from diploids to tetraploids, thereafter they changed little. Tetraploid Triticum dicoccoides (AABB) hybridized with Aegilops squarrosa (DD) to give rise to the cultivated hexaploid wheats. So, the increased D genome changed the leaf vein traits and physiological function a little and did not increase the photosynthesis. Watanabe et al. (1997) found that the increased doses of the D genome reduces photosynthesis, but the depression is dependent on the source of the D genome. This study partly supports their finding. Although there were not much difference in vein traits and physiological function between tetraploids and hexaploids, hexaploids achieved a higher yield than tetraploids, the relevant mechanism needs further study.

We found at leaf level, that larger biomass mainly attributed to the increase in leaf area, proportion of minor-vein length and N_{area}, while high yield was mainly attributed to increased proportion of minor-vein length, IVD, and N_{area} during the process of wheat evolution. It was not possible to determine the relative importance of each trait, but both VLA_{major} and proportion of minor-vein length showed closer association with yield than other leaf traits, and also linked with leaf physiological function like N_{area}, P_N, and PNUE, so they are important leaf attributes for yield increase in modern cultivars. Modern wheat genotypes may improve the carbon allocation proportion to grain production due to artificial selection by lowering carbon construction cost in leaf main veins (decreased VLA_{major}) and/or by optimizing carbon distribution pattern among different orders of leaf vein system (increased proportion of minor-vein length). In contrast to the study in rice, where VLA was positively correlated with the grain yield (Feldman et al. 2017, Nawarathna et al. 2017), the potential of vein traits in future wheat breeding needs further testing.

Modern cultivars of the hexaploid Triticum aestivum produce larger grain yield than the more primitive diploid and tetraploid species despite they have lower P_N (Evans and Dunstone 1970, Austin et al. 1982). So, P_N is not the reason of yield increase during wheat domestication, the increase in harvest index, grain, and leaf size, aboveground biomass, the proportion of dry mass mobilized to the grain and water and nutrient use efficiency may be the other major factors.

Fig. 3. Relationships between leaf vein density (A), proportion of minor-veins (B) and interveinal distance (C), and N content per area (N_{area}) in wheat genotypes with differing ploidy. Means ± SEs, $n = 6$. * - $P < 0.05$, ** - $P < 0.01$.
The VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} decreased while proportion of minor-vein length and interveinal distance increased during wheat evolution, and the major advance occurred from diploids to tetraploids. VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} were closely correlated with \(P \text{area} \) and P\text{NUE} but not with \(g \). Proportion of minor-vein length and interveinal distance was positively related with \(N \text{area} \) and negatively with \(P \text{area} \) and P\text{NUE}, respectively, during wheat evolution. Higher proportion of minor-vein length and interveinal distance, lower VLA\textsubscript{major} along with increased \(N \text{area} \) in flag leaves were largely responsible for the increased yield in modern cultivars. This study demonstrates that evolution of leaf vein density in wheat is different from those in wild plants, but a high coordination still exists between leaf vein density and \(P \text{area} \). The study highlights the proportion of minor-vein length, IVD, and VLA\textsubscript{major} as the potential indexes for future wheat high yield breeding.

Conclusions

The VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} decreased while proportion of minor-vein length and interveinal distance increased during wheat evolution, and the major advance occurred from diploids to tetraploids. VLA, VLA\textsubscript{major}, and VLA\textsubscript{minor} were closely correlated with \(P \text{area} \) and P\text{NUE} but not with \(g \). Proportion of minor-vein length and interveinal distance was positively related with \(N \text{area} \) and negatively with \(P \text{area} \) and P\text{NUE}, respectively, during wheat evolution. Higher proportion of minor-vein length and interveinal distance, lower VLA\textsubscript{major} along with increased \(N \text{area} \) in flag leaves were largely responsible for the increased yield in modern cultivars. This study demonstrates that evolution of leaf vein density in wheat is different from those in wild plants, but a high coordination still exists between leaf vein density and \(P \text{area} \). The study highlights the proportion of minor-vein length, IVD, and VLA\textsubscript{major} as the potential indexes for future wheat high yield breeding.

References

Altis, D.P., Canny, M.J.: Water pathways in wheat leaves I. The division of fluxes between different vein types. - Aust. J. Plant Physiol. 12: 173-181, 1985.

Austin, R.B., Morgan, C.L., Ford, M.A., Bhagwat, S.G.: Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species. - Ann. Bot. 49: 177-189, 1982.

Boyce, C.K., Brodribb, T.J., Field, T.S., Zwieiemcki, M.A.: Angiosperm leaf vein evolution was physiologically and environmentally transformative. - Proc. roy. Soc. B 276: 1771-1776, 2008.

Brodribb, T.J., Field, T.S., Jordan, G.J.: Leaf maximum photosynthetic rate and venation are linked by hydraulics. - Plant Physiol. 144: 1890-1898, 2007.

Brodribb, T.J., Jordan, G.J.: Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. - New Phytol. 192: 437-448, 2011.

Cai, R.G., Zhang, M., Yin, Y.P., Wang, P., Zhang, T.B., Gu, F., Dai, Z.M., Liang, T.B., Wu, Y.H., Wang, Z.L.: Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application in wheat during grain filling. - Sci. agr. sin. 41: 53-62, 2008.

Dunstone, R.L., Evans, L.T.: Role of changes in cell size in the evolution of wheat. - Aust. J. Plant Physiol. 1: 157-165, 1974.

Dunstone, R.L., Gifford, R.M., Evans, I.T.: Photosynthetic characteristics of modern and primitive wheat species in relation to ontogeny and adaptation to light. - Aust. J. biol. Sci. 26: 295-307, 1973.

Evans, L.T., Dunstone, R.L.: Some physiological aspects of evolution in wheat. - Aust. J. biol. Sci. 23: 725-741, 1970.

Feldman, A.B., Leung, H., Baraoidan, M., Elmo-do-Mabitakan, A., Canicosa, I., Quick, W.P., Sheehy, J., Murchie, E.H.: Increasing leaf vein density via mutagenesis in rice results in an enhanced rate of photosynthesis, smaller cell sizes and can reduce interveinal mesophyll cell number. - Front. Plant Sci. 8: 1883, 2017.

Field, C., Mooney, H.: The photosynthesis-nitrogen relationship in wild plants. - In: Givnish, T.J. (ed.): On the Economy of Plant Form and Function. Pp. 25-55. Cambridge Press, Cambridge 1986.

Flexas, J., Scoffoni, C., Gago, J., Sack, L.: Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. - J. exp. Bot. 64: 3965-3981, 2013.

Gleason, S.M., Blackman, C.J., Chang, Y., Cook, A.M., Laws, C.A., Westoby, M.: Weak coordination among petiole, leaf vein, and gas-exchange traits across Australian angiosperm species and its possible implications. - Ecol. Evol. 6: 267-278, 2016.

Harrington, R.A., Brown, B.J., Reich, P.B., Fownes, J.H.: Ecophysiology of exotic and native shrubs in Southern Wisconsin. II. Annual growth and carbon gain. - Oecologia 80: 368-373, 1989.

Huang, M.L., Deng, X.P., Zhao, Y.Z., Zhou, S.L., Inanaga, S., Yamada, S., Tanaka, K.: Water and nutrient use efficiency in diploid, tetraploid and hexaploid wheat. - J. integr. Plant Biol. 49: 706-715, 2007.

Iida, Y., Sun, I.F., Price, C.A., Chen, C.T., Chen, Z.S., Chiang, J.M., Huang, C.L., Swenson, N.G.: Linking leaf veins to growth and mortality rates: an example from a subtropical tree community. - Ecol. Evol. 6: 6085-6096, 2016.

Li, P.F., Cheng, Z.G., Ma, B.L., Palta, J.A., Kong, H.Y., Mo, F., Wang, J.Y., Zhu, Y., Lv, G.C., Batool, A., Bai, X., Li, F.M., Xiong, Y.C.: Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy. - PLoS ONE 9: e95825, 2014.

Marshall, D.M., Muhaidat, R., Brown, N.J., Liu, Z., Stanley, S., Griffiths, H., Sage, R.F., Hibberd, J.M.: Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C\textsubscript{1} to C\textsubscript{4} photosynthesis. - Plant J. 51: 886-896, 2007.

McKown, A.D., Dengler, N.G.: Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). - Amer. J. Bot. 94: 382-399, 2007.

Nardini, A., Salileo, S.: Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? - Trees 15: 14-24, 2000.

Nawarathna, R.N., Dassanayake, K.B., Nissanka, S.P., Senewere, S., Salisbury, P.: Is phenotypic variability in leaf vein density in rice associated with grain yield? - J. Rice Res. Develop. 1: 1-9, 2017.

Nelson, T., Dengler, N.: Leaf vascular pattern formation. - Plant Cell 9: 1121-1135, 1997.

Niklas, K.J.: A mechanical perspective on foliage leaf form and function. - New Phytol. 143: 19-31, 1999.

Ocheltree, T.W., Nipper, J.B., Kirkham, M.B., Prasad, P.V.V.: Partitioning hydraulic resistance in Sorghum bicolor leaves reveals unique correlations with stomatal conductance during drought. - Funct. Plant Biol. 41: 25-36, 2014.

Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., Kerp, H.: Evolution and function of leaf venation architecture: a review. - Ann. Bot. 87: 553-566, 2001.

Sack, L., Dietrich, E.M., Streeter, C.M., Sanchez-Gomez, D., Holbrook, N.M.: Leaf palimate venation and vascular redundancy confer tolerance of hydraulic disruption. - Proc. nat. Acad. Sci. USA 105: 1567-1572, 2008.

Sack, L., Froel, K.: Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. - Ecology 87: 483-491.
Sack, L., Scoffoni, C.: Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM). - J. Visualized Exp. 70: e4179, 2012.
Sack, L., Scoffoni, C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. - New Phytol. 198: 983-1000, 2013.
Sack, L., Scoffoni, C., John, G.P., Poorter, H., Mason, C.M., Mendez-Alonzo, R., Donovan, L.A.: How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis. - J. exp. Bot. 64: 4053-4080, 2013.
Sack, L., Scoffoni, C., McKown, A.D., Frole, K., Rawls, M., Havran, J.C., Tran, H., Tran, T.: Developmentally based scaling of leaf venation architecture explains global ecological patterns. - Nat. Commun. 3: 837, 2012.
Sage, R.F.: The evolution of C4 photosynthesis. - New Phytol. 161: 341-370, 2004.
Scoffoni, C., Rawls, M., McKown, A.D., Cochard, H., Sack, L.: Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. - Plant Physiol. 156: 832-843, 2011.
Tabassum, M.A., Zhu, G.L., Hafeez, A., Wahid, M.A., Shaban, M., Li, Y.: Influence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress. - Sci. Rep. 6: 36894, 2016.
Tanno, K., Willcox, G.: How fast was wild wheat domesticated? - Science 311: 1886, 2006.
Ueno, O., Kawano, Y., Wakayama, M., Takeda, T.: Leaf vascular system in C3 and C4 grasses: a two-dimensional analysis. - Ann. Bot. 97: 611-621, 2006.
Ueno, O., Sentoku, N. Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. - Plant Cell Environ. 29: 257-268, 2006.
Uhl, D., Mosbrugger, V.: Leaf venation density as a climate and environmental proxy: a critical review and new data. - Palaeogeogr. Palaeoclimatol. Palaeoecol. 149: 15-26, 1999.
Wang, J.Y., Turner, N.C., Liu, Y.X., Kadambot, H., Siddique, M., Xiong, Y.C.: Effects of drought stress on morphological, physiological and biochemical characteristics of wheat species differing in ploidy level. - Funct. Plant Biol. 44: 219-234, 2017.
Watanabe, N., Kobayashi, S., Furuta, Y.: Effect of genome and ploidy on photosynthesis of wheat. - Euphytica 94: 303-309, 1997.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Demer, M., Flexas, J., Garnier, E., Groom, P.K., Gullas, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M., Niinemets, U., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R.: The worldwide leaf economics spectrum. - Nature 428: 821-827, 2004.
Xiong, Y.C., Li, F.M., Zhang, T.: Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. - Planta 224: 710-718, 2006.
Xiong, D.L., Yu, T.T., Zhang, T., Li, Y., Peng, S.B., Huang, J.L.: Leaf hydraulic conductance is coordinated with leaf morphoanatomical traits and nitrogen status in the genus Oryza. - J. exp. Bot. 66: 741-748, 2015.
Zhang, J.L., Zhang, S.B., Chen, Y.J., Zhang, Y.P., Poorter, L.: Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species. - J. Ecol. 103: 541-549, 2015.
Zhang, S.B., Guan, Z.J., Sun, M., Zhang, J.J., Cao, K.F., Hu, H.: Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. - PLoS ONE 7: e40080, 2012.
Zhang, Y.H., Sun, N.N., Hong, J.P., Zhang, Q., Wang, C., Xue, Q.W., Zhou, S.L., Huang, Q., Wang, Z.M.: Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. - J. integr. Agr. 13: 1680-1690, 2014.