Supporting information

The Synthesis of Highly Functionalized 2-Pyranone from Silyl Ketene

Yuanhui Xiang,* Arnold L. Rheingold,⁎ and Emily B. Pentzer⁎⁎

⁎Case Western Reserve University, Department of Chemistry, 10900 Euclid Ave. Cleveland, OH, USA 44106
⁎University of California San Diego, Department of Chemistry, 9500 Gilman Drive La Jolla, CA, USA 92093
*ebp24@cas.edu
General Considerations. All operations were conducted under an inert atmosphere. All 1H, 13C, 29Si, HSQC, HMBC and NOESY NMR were collected on Bruker Ascend III HD 500MHz NMR instrument equipped with prodigy probe and shifts are reported relative to residual solvent peak, as noted. All NMR spectra were collected using CDCl$_3$ as the solvent unless otherwise noted. FTIR spectra were acquired using an Aglient Cary 630 FT-IR in ATR mode. Melting points were determined using. Melt-TEMP 50/60 cycle apparatus. ESI spectra were obtained on THERMO Finniagn LCQ DECA ion trap mass spectrometer equipped with an external AP ESI ion source.

Materials. All purchased chemicals were used directly as received, unless otherwise stated. LDA solution, tert-butyldiphenylsilylchloride, 1BuOLi solution and acetic acid was purchased from sigma aldrich. Dioxane was purchased from fishier and dried over CaH$_2$ under reflux for 8 hours and used immediately or stored in the schlenk flask.

Other Systems Explored. The transformation reported herein (silyl ketene to 2-pyranone) was attempted with many other silyl groups, solvents, and catalysts; the formation of 2 in high yield was only realized with the system reported herein, with all other conditions leading to a complex mixture of products, as determined by TLC and 1H NMR. Similar reactions were explored with trimethylsilyl (TMS) ketene, triethylsilylketene (TES), tert-butylmethyldimethylsilyl ketene (TBDMS), triisopropylsilyl (TIPS) ketene, methyldiphenylsilyl (MDPS) ketene, phenyldimethyldimethylsilyl (PDMS) ketene, and triphenylsilyl (TPhS) ketene in dry hexane, cyclohexane, toluene, THF and 1,4-dioxane, with the counterion of Li$^+$, Na$^+$, K$^+$ and NH$_4^+$ and anion of MeO$^-$, 1BuO$^-$ and LDA.

Materials Preparation
Preparation of Triisopropylsilylketene (TBDPS ketene, 1): (Z)-1-bromo-2-tert-butoxylethene (S1) was prepared using the previously established protocol. [1] An LDA (2mol/L in THF-ethylbenzene-hexane) in THF (48 mL, 0.096 mol LDA) was added to dry THF (48 mL) in an oven-dried round bottom flask placed under N₂, cooled to -78 °C in a dry ice-acetone bath. A mixture S1 (7.08 g, 0.04 mol) and dry THF (16 mL) was prepared in an addition funnel and added dropwise to LDA solution. After complete addition, the reaction was warmed to room temperature naturally and stirred for 3 hours. The vessel was then cooled to -20 °C using a salt water ice bath and tert-butyldiphenylsilyl chloride (12.1 mL, 0.048 mol) was then added and the resulting solution again warmed to room temperature and stirred for 4 hours. The mixture was then transferred to a separation funnel containing an aqueous solution of saturated NaHCO₃ (80 mL). The organic layer was isolated and the aqueous layer washed with hexane (2 x 20 mL). The combined organic layers were washed with 0.5 N HCl (2 x 80 mL), water (120 mL), and an aqueous solution of saturated NaCl (120 mL); the organic phase was dried over Na₂SO₄, then filtered and solvent removed under reduced pressure. The isolated crude product was run through a plug column of silica gel, with eluent of 2.5 vol% NEt₃ in hexanes. A pale, yellow oil was obtained, placed under an inert environment (N₂) and then heated to 85 °C for 2 hours (or until disappearance of the alkyne stretching frequency in the FTIR spectrum). Compound 1 was isolated by vacuum distillation (41%, 4.2 g, 0.016 mol) as a transparent oil. ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 6.5 Hz, 4H), 7.46 (dq, J = 14.0, 7.0 Hz, 6H), 2.30 (s, 1H), 1.14 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 178.96, 135.99, 134.15, 129.99, 128.14, 27.49, 19.45, -3.23. ²⁹Si NMR (99 MHz, CDCl₃) δ -3.59.
Preparation of (Z)-4,6-bis(tert-butyldiphenylsilyl)-3-((tert-butyldiphenylsilyl)oxy)-hex-2-en-5-ynoic acid (2): To a round bottom flask, a THF solution of tBuOLi (1 M, 0.33 mmol) was diluted with dry dioxane (2 mL) at 25°C. Then TBDPS-ketene (1mmol, 0.28g) was added dropwise. After the addition, the mixture was stirred at 25°C for ~30 s. Then neat acetic acid (0.02 g, 0.33mmol) was add. Then the whole mixture was loaded on the column and the final product was obtained by eluting with Hexane : Et₂O = 2 :1 and was pure enough for the next step reaction with the yield of 50%. The spectrum pure title product was obtained after recrystallization from diethyl ether as a white solid (mp = 166 °C).

\[^1H \text{NMR (500 MHz, CDCl}_3\text{)} \delta 8.08 \text{ (d, J = 7.0 Hz, 2H), 7.70 (dd, J = 15.0, 6.8 Hz, 5H), 7.59 (d, J = 7.0 Hz, 2H), 7.54 (d, J = 7.0 Hz, 2H), 7.40 – 7.24 (m, 15H), 7.18 – 7.06 (m, 7H), 6.03 (s, 1H), 4.43 (s, 1H), 1.16 (s, 9H), 1.03 (s, 9H), 0.73 (s, 9H).} \]

\[^{13}C \text{NMR (126 MHz, CDCl}_3\text{)} \delta 170.98, 170.52, 137.22, 136.96, 135.96, 135.94, 135.42, 135.24, 133.72, 132.48, 132.01, 131.33, 130.10, 129.96, 129.88, 129.56, 129.43, 129.20, 129.17, 127.79, 127.73, 127.56, 127.52, 127.43, 127.27, 108.25, 99.49, 82.87, 28.73, 27.35, 26.41, 25.27, 19.63, 19.25, 18.70. \]

\[^{29}Si \text{NMR (99 MHz, CDCl}_3\text{)} \delta -2.13, -2.74, -18.31. \]

Preparation of 5-(tert-butyldiphenylsilyl)-6-((tert-butyldiphenylsilyl)methyl)-4-((tert-butyldiphenylsilyl)oxy)-2H-pyran-2-one (3): Compound 2 (0.3g,0.36mmol) was dissloved in dry dioxane (2 mL) under N₂ and stirred at 70°C. After complete consumption of 2, the solvent was removed under reduced pressure, and the viscous residue was subjected to column chromatography (elutent of hexanes:ethyl acetate, 10:1, v:v). Byproduct 10 and the compound 3 were isolated (R_f values of 0.8 and 0.5, respectively).
Compound 3 (75%, 0.23g, 0.27mmol, white solid, mp = 160 °C): 1H NMR (500 MHz, CDCl$_3$) δ 7.47 – 7.25 (m, 25H), 7.17 (t, J = 7.5 Hz, 4H), 7.02 (d, J = 7.0 Hz, 4H), 5.16 (s, 1H), 2.43 (s, 2H), 0.96 (s, 9H), 0.86 (s, 9H), 0.74 (s, 9H). 13C NMR (126 MHz, CDCl$_3$) δ 173.21, 172.87, 163.43, 136.80, 136.49, 136.30, 135.43, 133.95, 131.75, 130.34, 129.67, 129.63, 128.34, 128.09, 127.78, 104.50, 97.14, 30.85, 28.77, 28.16, 24.82, 20.22, 20.14, 18.84. 29Si NMR (99 MHz, CDCl$_3$) δ 1.09, -2.24, -6.13.

Compound 10 (15%, 0.045g, 0.054mmol, light yellow oil): 1H NMR (500 MHz, CDCl$_3$) δ 7.75 – 7.70 (m, 4H), 7.64 (d, J = 7.0 Hz, 4H), 7.57 – 7.53 (m, 4H), 7.38 – 7.13 (m, 26H), 5.00 (s, 1H), 2.87 (s, 2H), 1.01 (s, 18H), 0.94 (s, 9H). 13C NMR (126 MHz, CDCl$_3$) δ 167.99, 157.32, 136.13, 136.04, 135.92, 135.87, 135.78, 135.73, 135.48, 134.16, 133.03, 131.75, 130.47, 130.45, 129.56, 128.35, 128.17, 128.03, 127.88, 105.35, 93.68, 93.14, 43.86, 27.57, 27.18, 26.96, 19.91, 19.58, 19.00. 29Si NMR (99 MHz, CDCl$_3$) δ -0.58, -4.98, -17.47.

Preparation of 5-(tert-butyldiphenylsilyl)-6-((tert-butyldiphenylsilyl)methyl)-4-hydroxy-2H-pyran-2-one (11): First, 0.23g (0.27 mmol) 3 was dissloved with MeCN/H$_2$O (10 : 1) at room temperature. Then 0.03ml DB ws added and the mixture was stirred at room temperature for 30mins. Then the mixture was washed with 10ml sat. NH$_4$Cl solution. The aqueous phase was washed with DCM. Then the organic phase was combined and dried under Na$_2$SO$_4$ for 30min. Then the solvent was evaporated and the residue was laded on the column and eluted with Hex : EA = 5 : 1 first to get rid of the tert-butyldiphenylsilyl alcohol and then Hex : EtOH = 10 : 1 to get the titled compound as a white solid (0.1g, 0.16mmol, 61%). 1H NMR (500 MHz, CDCl$_3$) δ 7.47 (d, J = 7.0 Hz, 4H), 7.32 (t, J = 7.0 Hz, 3H), 7.26 (t, J = 7.0 Hz, 5H), 7.18 – 7.10 (m, 7H), 7.04 (t, J = 7.5 Hz, 4H), 5.44 (s, 1H), 2.03 (s, 2H), 1.00 (s, 10H), 0.63 (s, 9H). 13C NMR (126 MHz, CDCl$_3$) δ 176.87, 174.81, 166.53, 105.13, 89.13, 30.21, 27.90, 23.35, 20.08, 18.51. 29Si NMR (99 MHz, CDCl$_3$) δ -2.90, -6.29.
Preparation of 5-(tert-butyldiphenylsilyl)-6-((tert-butyldiphenylsilyl)methyl)-4-((tert-butyldiphenylsilyl)oxy)-2-bromo-pyran-2-one (12): First, 0.5g 3 was diluted with 3ml dry DCM and stirred at room temperature. Then 0.4ml Br$_2$/DCM solution (1.66M) was added dropwisely. After the addition, the mixture was kept stirred in the dark for 3hrs. Then the mixture was loaded on the column and eluted with Hex:EA = 5 : 1 to get the titled compound as a white solid with the yield of 30% (0.12g). 1H NMR (500 MHz, CDCl$_3$) δ 7.64 (d, J = 6.5 Hz, 3H), 7.43 (d, J = 7.0 Hz, 3H), 7.34 – 7.31 (m, 5H), 7.26 (t, J = 7.0 Hz, 7H), 7.20 (d, J = 7.0 Hz, 4H), 6.42 (s, 1H), 2.08 (s, 2H), 1.00 (s, 9H), 0.68 (s, 10H). 13C NMR (126 MHz, CDCl$_3$) δ 173.73, 167.82, 158.96, 102.00, 87.84, 30.05, 27.90, 23.15, 20.05, 18.62. 29Si NMR (99 MHz, CDCl$_3$) δ 2.33, -1.27.
Figure S1: Characterization of 1: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) FTIR; E) Gas chromatogram; F) Mass spectrum from GC-MS.

A)

B)
Figure S2: Characterization of 2: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) HSQC NMR; E) HMBC NMR; F) NOESY NMR; G) FTIR; H) Electrospray ionization mass spectrum.

A)

B)
G)

H)
Figure S3: Characterization of 3: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) HSQC NMR; E) HMBC NMR; F) NOESY NMR; G) FTIR; H) Electrospray ionization mass spectrum.

A)

B)
Figure S4: Full 1H NMR spectra before and after 13 and 78 hours of heating 2 in dioxane with the chemical shifts of starting material 2, product 3, intermediate 6, and byproduct 10 identified by boxes of the relevant colors.
Figure S5. Characterization of 10: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) HSQC NMR; E) HMBC NMR; F) NOESY NMR; G) FTIR; H) Electrospray ionization mass spectrum.

A)

B)
Figure S6. Proposed structure of compound 6 based on NMR spectrum of the reaction mixture at 13 hours: A) 1H NMR; B) 13C NMR; C) HSQC NMR; D) HMBC NMR. (Peaks labeled as 2, 10, 3 stand for compound 2, compound 10 and compound 3, respectively.)
Figure S7. Characterization data for compound 11: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) FTIR; E) Electronspray ionization mass spectrum.

A)
Figure S8. Characterization data for compound 12: A) 1H NMR; B) 13C NMR; C) 29Si NMR; D) FTIR; E) Electronspray ionization mass spectrum.

A)

B)
Appendix 1. XRD characterization data. The thermal ellipsoid probability of the X-ray structures is 50%.

Table S1. Crystal data and structure refinement for Compound 2.

Identification code	Compound 2	
Empirical formula	C54 H60 O3 Si3	
Formula weight	841.29	
Temperature	100.0 K	
Wavelength	1.54178 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	\(a = 13.7333(5) \text{ Å}\) \(\beta = 90.326(2)^\circ\)	
	\(b = 14.5236(5) \text{ Å}\) \(\beta = 109.495(2)^\circ\)	
	\(c = 15.4513(5) \text{ Å}\) \(\beta = 93.507(2)^\circ\)	
Volume	2898.63(18) Å³	
\(Z\)	2	
Density (calculated)	0.964 Mg/m³	
Absorption coefficient	1.015 mm⁻¹	
\(F(000)\)	900	
Crystal size	0.3 x 0.27 x 0.24 mm³	
Theta range for data collection	3.035 to 68.326°.	
Index ranges	-14<=h<=16, -17<=k<=17, -18<=l<=18	
Reflections collected	36276	
Independent reflections	10419 \([R(int) = 0.0523]\)	
Completeness to theta	67.679°	97.90%
Description	Value	
---	---	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7531 and 0.6285	
Refinement method	Full-matrix least-squares on F$_2$	
Data / restraints / parameters	10419 / 0 / 551	
Goodness-of-fit on F$_2$	1.068	
Final R indices [I>2sigma(I)]	R$_1$ = 0.0516, wR$_2$ = 0.1340	
R indices (all data)	R$_1$ = 0.0646, wR$_2$ = 0.1417	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.129 and -0.387 eÅ3	
SQUEEZE	155e/uc (4 DCM = 168e/uc)	
Table S2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\text{Å}^2 \times 10^3$) for compound 2. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U(\text{eq})$
Si(1)	7230(1)	7633(1)	5169(1)	22(1)
Si(2)	5712(1)	8485(1)	1845(1)	26(1)
Si(3)	7346(1)	4711(1)	2772(1)	23(1)
O(3)	6377(1)	8002(1)	2837(1)	24(1)
O(1)	9021(1)	10313(1)	3954(1)	32(1)
O(2)	9359(1)	8997(1)	4713(1)	30(1)
C(6)	8783(2)	9443(1)	4091(1)	23(1)
C(28)	7734(2)	2961(1)	3605(2)	31(1)
C(3)	7732(2)	7528(1)	4135(1)	21(1)
C(45)	6551(2)	8532(1)	1112(2)	30(1)
C(29)	5932(2)	4325(1)	2269(2)	24(1)
C(12)	6443(2)	9417(2)	4974(2)	31(1)
C(1)	7462(2)	5867(1)	3314(2)	25(1)
C(35)	8050(2)	4766(2)	1902(2)	29(1)
C(24)	8723(2)	4231(2)	4547(2)	29(1)
C(5)	7792(2)	9098(1)	3440(1)	23(1)
C(2)	7572(2)	6611(1)	3690(1)	22(1)
C(17)	5843(2)	7171(1)	4872(2)	29(1)
C(7)	7280(2)	8904(1)	5450(2)	25(1)
C(25)	9183(2)	3625(2)	5231(2)	37(1)
C(23)	7988(2)	3914(1)	3719(2)	24(1)
C(39)	5364(2)	9665(2)	2094(2)	30(1)
C(27)	8200(2)	2354(2)	4287(2)	35(1)
C(44)	5778(2)	10472(2)	1819(2)	35(1)
C(40)	4695(2)	9772(2)	2599(2)	37(1)
C(51)	4560(2)	7637(2)	1324(2)	37(1)
C(46)	7402(2)	7981(2)	1299(2)	33(1)
C(36)	8160(2)	3792(2)	1568(2)	36(1)
C(4)	7318(2)	8261(1)	3450(1)	21(1)
C(33)	4400(2)	3635(2)	1091(2)	36(1)
C(32)	3814(2)	3749(2)	1642(2)	41(1)
C	5527(2)	11337(2)	2027(2)	41(1)
-------	---------	----------	---------	-------
C(10)	7281(2)	10806(2)	5815(2)	48(1)
C(8)	8120(2)	9381(2)	6104(2)	39(1)
C(11)	6444(2)	10357(2)	5153(2)	43(1)
C(50)	6326(2)	9050(2)	308(2)	38(1)
C(34)	5442(2)	3923(2)	1398(2)	34(1)
C(16)	7748(3)	5913(2)	5961(2)	48(1)
C(13)	8087(2)	6952(2)	6153(2)	33(1)
C(18)	5255(2)	7483(2)	5373(2)	38(1)
C(37)	7488(2)	5347(2)	1078(2)	39(1)
C(38)	9141(2)	5219(2)	2385(2)	40(1)
C(9)	8121(2)	10317(2)	6285(2)	49(1)
C(15)	7936(2)	7242(2)	7058(2)	38(1)
C(30)	5331(2)	4412(2)	2824(2)	46(1)
C(26)	8920(2)	2687(2)	5101(2)	37(1)
C(53)	4956(2)	6688(2)	1242(2)	36(1)
C(19)	4252(2)	7127(2)	5236(2)	42(1)
C(41)	4443(2)	10637(2)	2804(2)	47(1)
C(49)	6910(2)	9032(2)	-263(2)	46(1)
C(47)	7984(2)	7952(2)	724(2)	43(1)
C(48)	7740(2)	8483(2)	-61(2)	48(1)
C(31)	4286(2)	4129(2)	2523(2)	58(1)
C(20)	3798(2)	6464(2)	4589(2)	51(1)
C(42)	4856(2)	11422(2)	2513(2)	49(1)
C(14)	9232(2)	7085(2)	6250(2)	52(1)
C(52)	3836(2)	7576(2)	1882(3)	66(1)
C(22)	5322(2)	6550(2)	4142(2)	52(1)
C(54)	3957(2)	7960(2)	350(2)	61(1)
C(21)	4310(2)	6209(2)	3999(3)	61(1)
Table S3. Bond lengths [Å] and angles [°] for compound 2.

Bond	Length [Å]
Si(1)-C(3)	1.947(2)
Si(1)-C(17)	1.883(2)
Si(1)-C(7)	1.887(2)
Si(1)-C(13)	1.908(2)
Si(2)-O(3)	1.6828(15)
Si(2)-C(45)	1.865(3)
Si(2)-C(39)	1.878(2)
Si(2)-C(51)	1.889(2)
Si(3)-C(29)	1.883(2)
Si(3)-C(1)	1.846(2)
Si(3)-C(35)	1.900(2)
Si(3)-C(23)	1.881(2)
O(3)-C(4)	1.352(2)
O(1)-H(1)	0.8400
O(1)-C(6)	1.321(2)
O(2)-C(6)	1.237(2)
C(6)-C(5)	1.454(3)
C(28)-H(28)	0.9500
C(28)-C(23)	1.402(3)
C(28)-C(27)	1.388(3)
C(3)-H(3)	1.0000
C(3)-C(2)	1.466(3)
C(3)-C(4)	1.504(3)
C(45)-C(46)	1.408(3)
C(45)-C(50)	1.410(3)
C(29)-C(34)	1.394(3)
C(29)-C(30)	1.384(3)
C(12)-H(12)	0.9500
C(12)-C(7)	1.401(3)
C(12)-C(11)	1.392(3)
C(1)-C(2)	1.201(3)
C(35)-C(36)	1.534(3)
C(35)-C(37)	1.537(3)
C(35)-C(38)	1.537(3)
C(24)-H(24) 0.9500	
C(24)-C(25) 1.387(3)	
C(24)-C(23) 1.393(3)	
C(5)-H(5) 0.9500	
C(5)-C(4) 1.346(3)	
C(17)-C(18) 1.384(3)	
C(17)-C(22) 1.404(4)	
C(7)-C(8) 1.396(3)	
C(25)-H(25) 0.9500	
C(25)-C(26) 1.384(4)	
C(39)-C(44) 1.403(3)	
C(39)-C(40) 1.404(4)	
C(27)-H(27) 0.9500	
C(27)-C(26) 1.378(4)	
C(44)-H(44) 0.9500	
C(44)-C(43) 1.387(3)	
C(40)-H(40) 0.9500	
C(40)-C(41) 1.385(3)	
C(51)-C(53) 1.532(3)	
C(51)-C(52) 1.517(4)	
C(51)-C(54) 1.547(4)	
C(46)-H(46) 0.9500	
C(46)-C(47) 1.380(4)	
C(36)-H(36A) 0.9800	
C(36)-H(36B) 0.9800	
C(36)-H(36C) 0.9800	
C(33)-H(33) 0.9500	
C(33)-C(32) 1.369(4)	
C(33)-C(34) 1.386(3)	
C(32)-H(32) 0.9500	
C(32)-C(31) 1.390(4)	
C(43)-H(43) 0.9500	
C(43)-C(42) 1.378(4)	
C(10)-H(10) 0.9500	
C(10)-C(11) 1.382(4)	
C(10)-C(9) 1.382(4)	
C(8)-H(8) 0.9500	
C(8)-C(9) 1.385(4)	
C(11)-H(11) 0.9500	
C(50)-H(50) 0.9500	
C(50)-C(49) 1.377(4)	
C(34)-H(34) 0.9500	
C(16)-H(16A) 0.9800	
C(16)-H(16B) 0.9800	
C(16)-H(16C) 0.9800	
C(16)-C(13) 1.548(4)	
C(13)-C(15) 1.541(3)	
C(13)-C(14) 1.530(4)	
C(18)-H(18) 0.9500	
C(18)-C(19) 1.388(4)	
C(37)-H(37A) 0.9800	
C(37)-H(37B) 0.9800	
C(37)-H(37C) 0.9800	
C(38)-H(38A) 0.9800	
C(38)-H(38B) 0.9800	
C(38)-H(38C) 0.9800	
C(9)-H(9) 0.9500	
C(15)-H(15A) 0.9800	
C(15)-H(15B) 0.9800	
C(15)-H(15C) 0.9800	
C(30)-H(30) 0.9500	
C(30)-C(31) 1.387(4)	
C(26)-H(26) 0.9500	
C(53)-H(53A) 0.9800	
C(53)-H(53B) 0.9800	
C(53)-H(53C) 0.9800	
C(19)-H(19) 0.9500	
C(19)-C(20) 1.347(4)	
C(41)-H(41) 0.9500	
C(41)-C(42) 1.386(4)	
C(49)-H(49) 0.9500	
C(49)-C(48) 1.381(4)	
Bond	Length
----------------------	----------
C(47)-H(47)	0.9500
C(47)-C(48)	1.397(4)
C(48)-H(48)	0.9500
C(31)-H(31)	0.9500
C(20)-H(20)	0.9500
C(20)-C(21)	1.385(4)
C(42)-H(42)	0.9500
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(52)-H(52A)	0.9800
C(52)-H(52B)	0.9800
C(52)-H(52C)	0.9800
C(22)-H(22)	0.9500
C(22)-C(21)	1.391(4)
C(54)-H(54A)	0.9800
C(54)-H(54B)	0.9800
C(54)-H(54C)	0.9800
C(21)-H(21)	0.9500
C(17)-Si(1)-C(3)	112.20(10)
C(17)-Si(1)-C(7)	107.32(10)
C(17)-Si(1)-C(13)	109.37(11)
C(7)-Si(1)-C(3)	106.60(9)
C(7)-Si(1)-C(13)	113.44(10)
C(13)-Si(1)-C(3)	107.95(9)
O(3)-Si(2)-C(45)	107.38(9)
O(3)-Si(2)-C(39)	109.40(9)
O(3)-Si(2)-C(51)	103.69(10)
C(45)-Si(2)-C(39)	111.89(11)
C(45)-Si(2)-C(51)	109.85(11)
C(39)-Si(2)-C(51)	114.11(11)
C(29)-Si(3)-C(35)	114.06(10)
C(1)-Si(3)-C(29)	108.46(9)
C(1)-Si(3)-C(35)	108.74(10)
C(1)-Si(3)-C(23)	106.57(9)
C(23)-Si(3)-C(29) 108.63(9)	
C(23)-Si(3)-C(35) 110.11(10)	
C(4)-O(3)-Si(2) 129.69(13)	
C(6)-O(1)-H(1) 109.5	
O(1)-C(6)-C(5) 112.31(17)	
O(2)-C(6)-O(1) 122.07(19)	
O(2)-C(6)-C(5) 125.61(18)	
C(23)-C(28)-H(28) 119.3	
C(27)-C(28)-H(28) 119.3	
C(27)-C(28)-C(23) 121.4(2)	
Si(1)-C(3)-H(3) 106.1	
C(2)-C(3)-Si(1) 115.56(14)	
C(2)-C(3)-H(3) 106.1	
C(2)-C(3)-C(4) 111.54(17)	
C(4)-C(3)-Si(1) 110.75(13)	
C(4)-C(3)-H(3) 106.1	
C(46)-C(45)-Si(2) 120.69(18)	
C(46)-C(45)-C(50) 116.5(2)	
C(50)-C(45)-Si(2) 122.61(18)	
C(34)-C(29)-Si(3) 125.72(17)	
C(30)-C(29)-Si(3) 117.35(17)	
C(30)-C(29)-C(34) 116.9(2)	
C(7)-C(12)-H(12) 119.3	
C(11)-C(12)-H(12) 119.3	
C(11)-C(12)-C(7) 121.5(2)	
C(2)-C(1)-Si(3) 177.5(2)	
C(36)-C(35)-Si(3) 110.72(16)	
C(36)-C(35)-C(37) 109.98(19)	
C(36)-C(35)-C(38) 108.24(19)	
C(37)-C(35)-Si(3) 111.16(16)	
C(38)-C(35)-Si(3) 107.63(16)	
C(38)-C(35)-C(37) 109.0(2)	
C(25)-C(24)-H(24) 119.4	
C(25)-C(24)-C(23) 121.2(2)	
C(23)-C(24)-H(24) 119.4	
C(6)-C(5)-H(5) 117.2	
C(4)-C(5)-C(6) 125.62(19)	
C(4)-C(5)-H(5) 117.2	
C(1)-C(2)-C(3) 178.1(2)	
C(18)-C(17)-Si(1) 119.26(17)	
C(18)-C(17)-C(22) 115.7(2)	
C(22)-C(17)-Si(1) 125.03(18)	
C(12)-C(7)-Si(1) 119.26(16)	
C(8)-C(7)-Si(1) 123.72(17)	
C(8)-C(7)-C(12) 117.0(2)	
C(24)-C(25)-H(25) 119.9	
C(26)-C(25)-C(24) 120.2(2)	
C(26)-C(25)-H(25) 119.9	
C(28)-C(23)-Si(3) 120.01(17)	
C(24)-C(23)-Si(3) 122.57(16)	
C(24)-C(23)-C(28) 117.4(2)	
C(44)-C(39)-Si(2) 122.35(19)	
C(44)-C(39)-C(40) 117.0(2)	
C(40)-C(39)-Si(2) 120.58(18)	
C(28)-C(27)-H(27) 120.0	
C(26)-C(27)-C(28) 119.9(2)	
C(26)-C(27)-H(27) 120.0	
C(39)-C(44)-H(44) 119.3	
C(43)-C(44)-C(39) 121.3(3)	
C(43)-C(44)-H(44) 119.3	
C(39)-C(40)-H(40) 119.3	
C(41)-C(40)-C(39) 121.5(2)	
C(41)-C(40)-H(40) 119.3	
C(53)-C(51)-Si(2) 108.50(16)	
C(53)-C(51)-C(54) 108.8(2)	
C(52)-C(51)-Si(2) 112.51(18)	
C(52)-C(51)-C(53) 110.1(2)	
C(52)-C(51)-C(54) 108.8(3)	
C(54)-C(51)-Si(2) 108.00(19)	
C(45)-C(46)-H(46) 119.2	
C(47)-C(46)-C(45) 121.6(2)	
C(47)-C(46)-H(46) 119.2	
C(35)-C(36)-H(36A) 109.5	
C(35)-C(36)-H(36B) 109.5	
C(35)-C(36)-H(36C) 109.5	
H(36A)-C(36)-H(36B) 109.5	
H(36A)-C(36)-H(36C) 109.5	
H(36B)-C(36)-H(36C) 109.5	
O(3)-C(4)-C(3) 112.41(16)	
C(5)-C(4)-O(3) 122.07(18)	
C(5)-C(4)-C(3) 125.49(18)	
C(32)-C(33)-H(33) 119.9	
C(32)-C(33)-C(34) 120.2(2)	
C(34)-C(33)-H(33) 119.9	
C(33)-C(32)-H(32) 120.4	
C(33)-C(32)-C(31) 119.1(2)	
C(31)-C(32)-H(32) 120.4	
C(44)-C(43)-H(43) 119.8	
C(42)-C(43)-C(44) 120.4(3)	
C(42)-C(43)-H(43) 119.8	
C(11)-C(10)-H(10) 120.3	
C(11)-C(10)-C(9) 119.4(2)	
C(9)-C(10)-H(10) 120.3	
C(7)-C(8)-H(8) 119.2	
C(9)-C(8)-C(7) 121.6(2)	
C(9)-C(8)-H(8) 119.2	
C(12)-C(11)-H(11) 120.0	
C(10)-C(11)-C(12) 120.1(2)	
C(10)-C(11)-H(11) 120.0	
C(45)-C(50)-H(50) 118.9	
C(49)-C(50)-C(45) 122.2(2)	
C(49)-C(50)-H(50) 118.9	
C(29)-C(34)-H(34) 119.0	
C(33)-C(34)-C(29) 121.9(2)	
C(33)-C(34)-H(34) 119.0	
H(16A)-C(16)-H(16B) 109.5	
H(16A)-C(16)-H(16C) 109.5	
H(16B)-C(16)-H(16C) 109.5	
Bond	Angle
-----------------------------	--------
C(13)-C(16)-H(16A)	109.5
C(13)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5
C(16)-C(13)-Si(1)	108.52(18)
C(15)-C(13)-Si(1)	109.53(16)
C(15)-C(13)-C(16)	108.4(2)
C(14)-C(13)-Si(1)	112.36(16)
C(14)-C(13)-C(16)	108.1(2)
C(14)-C(13)-C(15)	109.8(2)
C(17)-C(18)-H(18)	118.8
C(17)-C(18)-C(19)	122.4(2)
C(19)-C(18)-H(18)	118.8
C(35)-C(37)-H(37A)	109.5
C(35)-C(37)-H(37B)	109.5
C(35)-C(37)-H(37C)	109.5
H(37A)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5
C(35)-C(38)-H(38A)	109.5
C(35)-C(38)-H(38B)	109.5
C(35)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(10)-C(9)-C(8)	120.4(2)
C(10)-C(9)-H(9)	119.8
C(8)-C(9)-H(9)	119.8
C(13)-C(15)-H(15A)	109.5
C(13)-C(15)-H(15B)	109.5
C(13)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(29)-C(30)-H(30)	119.2
C(29)-C(30)-C(31)	121.7(2)
C(31)-C(30)-H(30)	119.2
C(25)-C(26)-H(26) 120.1	
C(27)-C(26)-C(25) 119.8(2)	
C(27)-C(26)-H(26) 120.1	
C(51)-C(53)-H(53A) 109.5	
C(51)-C(53)-H(53B) 109.5	
C(51)-C(53)-H(53C) 109.5	
H(53A)-C(53)-H(53B) 109.5	
H(53A)-C(53)-H(53C) 109.5	
H(53B)-C(53)-H(53C) 109.5	
C(18)-C(19)-H(19) 119.6	
C(20)-C(19)-C(18) 120.8(2)	
C(20)-C(19)-H(19) 119.6	
C(40)-C(41)-H(41) 119.9	
C(40)-C(41)-C(42) 120.1(3)	
C(42)-C(41)-H(41) 119.9	
C(50)-C(49)-H(49) 120.0	
C(50)-C(49)-C(48) 119.9(3)	
C(48)-C(49)-H(49) 120.0	
C(46)-C(47)-H(47) 119.9	
C(46)-C(47)-C(48) 120.1(3)	
C(48)-C(47)-H(47) 119.9	
C(49)-C(48)-C(47) 119.7(3)	
C(49)-C(48)-H(48) 120.2	
C(47)-C(48)-H(48) 120.2	
C(32)-C(31)-H(31) 119.9	
C(30)-C(31)-C(32) 120.2(3)	
C(30)-C(31)-H(31) 119.9	
C(19)-C(20)-H(20) 120.6	
C(19)-C(20)-C(21) 118.7(3)	
C(21)-C(20)-H(20) 120.6	
C(43)-C(42)-H(41) 119.6(2)	
C(43)-C(42)-H(42) 120.2	
C(41)-C(42)-H(42) 120.2	
C(13)-C(14)-H(14A) 109.5	
C(13)-C(14)-H(14B) 109.5	
C(13)-C(14)-H(14C) 109.5	
Bond	Angle
----------------------	--------
H(14A)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
C(51)-C(52)-H(52A)	109.5
C(51)-C(52)-H(52B)	109.5
C(51)-C(52)-H(52C)	109.5
H(52A)-C(52)-H(52B)	109.5
H(52A)-C(52)-H(52C)	109.5
H(52B)-C(52)-H(52C)	109.5
C(17)-C(22)-H(22)	119.4
C(21)-C(22)-C(17)	121.2(3)
C(21)-C(22)-H(22)	119.4
C(51)-C(54)-H(54A)	109.5
C(51)-C(54)-H(54B)	109.5
C(51)-C(54)-H(54C)	109.5
H(54A)-C(54)-H(54B)	109.5
H(54A)-C(54)-H(54C)	109.5
H(54B)-C(54)-H(54C)	109.5
C(20)-C(21)-C(22)	120.5(3)
C(20)-C(21)-H(21)	119.8
C(22)-C(21)-H(21)	119.8

Symmetry transformations used to generate equivalent atoms:
Table S4. Anisotropic displacement parameters (Å²x 10³) for compound 2. The anisotropic displacement factor exponent takes the form:

\[-2\pi^2 \left[h^2 a^* U_{11} + \ldots + 2hk a^* b^* U_{12} \right] \]

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Si(1)	23(1)	17(1)	28(1)	-2(1)	10(1)	1(1)
Si(2)	24(1)	22(1)	26(1)	-6(1)	1(1)	2(1)
Si(3)	27(1)	16(1)	23(1)	-4(1)	6(1)	1(1)
O(3)	22(1)	20(1)	27(1)	-3(1)	3(1)	-2(1)
O(1)	30(1)	19(1)	34(1)	2(1)	-2(1)	-7(1)
O(2)	24(1)	18(1)	37(1)	2(1)	-2(1)	-2(1)
C(6)	25(1)	17(1)	26(1)	-1(1)	6(1)	-1(1)
C(28)	32(1)	19(1)	40(1)	-3(1)	12(1)	2(1)
C(3)	20(1)	17(1)	25(1)	-3(1)	6(1)	-1(1)
C(45)	31(1)	23(1)	29(1)	-7(1)	3(1)	0(1)
C(29)	31(1)	16(1)	26(1)	0(1)	9(1)	0(1)
C(12)	34(1)	22(1)	36(1)	-4(1)	9(1)	2(1)
C(1)	26(1)	20(1)	28(1)	0(1)	7(1)	1(1)
C(35)	33(1)	25(1)	30(1)	-4(1)	12(1)	1(1)
C(24)	31(1)	26(1)	30(1)	-2(1)	9(1)	3(1)
C(5)	23(1)	19(1)	24(1)	-2(1)	2(1)	-2(1)
C(2)	20(1)	21(1)	24(1)	-1(1)	6(1)	1(1)
C(17)	28(1)	21(1)	40(1)	-6(1)	17(1)	-1(1)
C(7)	29(1)	23(1)	25(1)	-4(1)	11(1)	0(1)
C(25)	38(1)	40(1)	30(1)	3(1)	7(1)	7(1)
C(23)	25(1)	22(1)	28(1)	-2(1)	11(1)	3(1)
C(39)	32(1)	26(1)	22(1)	-4(1)	-3(1)	6(1)
C(27)	38(1)	21(1)	53(2)	7(1)	23(1)	7(1)
C(44)	34(1)	28(1)	32(1)	-7(1)	-2(1)	2(1)
C(40)	52(2)	33(1)	26(1)	0(1)	10(1)	10(1)
C(51)	28(1)	34(1)	42(1)	-15(1)	2(1)	0(1)
C(46)	37(1)	27(1)	34(1)	-1(1)	11(1)	2(1)
C(36)	38(1)	34(1)	38(1)	-7(1)	18(1)	5(1)
C(4)	21(1)	20(1)	22(1)	-6(1)	6(1)	1(1)
C(33)	32(1)	45(1)	28(1)	-5(1)	5(1)	-2(1)
C(32)	34(1)	40(1)	50(2)	-9(1)	15(1)	-9(1)
	53(2)	24(1)	34(1)	-2(1)	-3(1)	4(1)
---	-------	-------	-------	-------	-------	-----
C(10)	53(2)	24(1)	34(1)	-2(1)	-3(1)	4(1)
C(8)	42(1)	30(1)	38(1)	-5(1)	4(1)	-6(1)
C(11)	46(2)	24(1)	62(2)	-1(1)	23(1)	7(1)
C(50)	41(1)	35(1)	29(1)	0(1)	2(1)	2(1)
C(34)	31(1)	42(1)	29(1)	-8(1)	8(1)	2(1)
C(16)	75(2)	31(1)	50(2)	11(1)	36(2)	16(1)
C(13)	35(1)	34(1)	36(1)	10(1)	20(1)	9(1)
C(18)	34(1)	36(1)	46(2)	-15(1)	20(1)	-3(1)
C(37)	53(2)	34(1)	32(1)	2(1)	18(1)	4(1)
C(38)	40(1)	43(1)	41(1)	-11(1)	19(1)	-11(1)
C(9)	63(2)	32(1)	43(2)	-12(1)	9(1)	-15(1)
C(15)	43(2)	38(1)	33(1)	5(1)	13(1)	1(1)
C(30)	52(2)	47(2)	40(2)	-21(1)	25(1)	-22(1)
C(26)	36(1)	38(1)	40(1)	15(1)	16(1)	15(1)
C(53)	37(1)	28(1)	40(1)	-11(1)	9(1)	-5(1)
C(19)	33(1)	41(1)	63(2)	-4(1)	30(1)	4(1)
C(41)	69(2)	41(2)	37(1)	-4(1)	22(1)	17(1)
C(49)	58(2)	45(2)	30(1)	0(1)	10(1)	-3(1)
C(47)	42(2)	39(1)	51(2)	-3(1)	20(1)	3(1)
C(48)	57(2)	51(2)	42(2)	-6(1)	26(1)	-10(1)
C(31)	54(2)	65(2)	65(2)	-34(2)	39(2)	-29(2)
C(20)	34(2)	48(2)	78(2)	-14(2)	30(1)	-13(1)
C(42)	75(2)	31(1)	34(1)	-7(1)	8(1)	19(1)
C(14)	38(2)	73(2)	52(2)	31(2)	19(1)	24(1)
C(52)	42(2)	71(2)	90(3)	-41(2)	32(2)	-22(2)
C(22)	43(2)	49(2)	69(2)	-23(1)	29(2)	-10(1)
C(54)	48(2)	45(2)	60(2)	-16(1)	-23(2)	5(1)
C(21)	47(2)	58(2)	77(2)	-26(2)	25(2)	-18(1)
Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^-3) for compound 2.

	x	y	z	U(eq)
H(1)	9569	10501	4371	47
H(28)	7232	2726	3049	37
H(3)	8498	7666	4390	25
H(12)	5861	9116	4519	37
H(24)	8912	4873	4644	35
H(5)	7449	9497	2966	28
H(25)	9681	3855	5792	44
H(27)	8022	1710	4193	42
H(44)	6241	10426	1483	42
H(40)	4408	9239	2804	45
H(46)	7580	7620	1834	39
H(36A)	8538	3433	2095	53
H(36B)	8540	3835	1133	53
H(36C)	7471	3489	1265	53
H(33)	4091	3357	496	44
H(32)	3094	3572	1426	50
H(43)	5818	11875	1834	50
H(10)	7280	11446	5946	57
H(8)	8705	9056	6434	47
H(11)	5869	10691	4819	51
H(50)	5752	9425	154	45
H(34)	5835	3845	1003	41
H(16A)	7032	5804	5949	72
H(16B)	8203	5552	6447	72
H(16C)	7795	5726	5367	72
H(18)	5548	7958	5828	45
H(37A)	6812	5037	738	59
H(37B)	7903	5418	673	59
H(37C)	7389	5956	1299	59
H(38A)	9090	5862	2549	61
H	1st Value	2nd Value	3rd Value	4th Value
-----	-----------	-----------	-----------	-----------
H(38B)	9548	5197	1972	61
H(38C)	9481	4884	2943	61
H(9)	8703	10624	6734	59
H(15A)	8205	7884	7219	57
H(15B)	8309	6841	7549	57
H(15C)	7197	7188	6981	57
H(30)	5642	4672	3426	55
H(26)	9235	2274	5571	44
H(53A)	5418	6734	876	55
H(53B)	4368	6247	942	55
H(53C)	5337	6475	1856	55
H(19)	3880	7354	5604	51
H(41)	3986	10692	3144	57
H(49)	6742	9396	-795	55
H(47)	8551	7571	863	52
H(48)	8143	8467	-455	58
H(31)	3892	4194	2919	70
H(20)	3140	6178	4538	61
H(42)	4679	12015	2648	58
H(14A)	9333	6849	5692	79
H(14B)	9645	6749	6780	79
H(14C)	9453	7744	6338	79
H(52A)	4220	7406	2511	99
H(52B)	3272	7107	1602	99
H(52C)	3549	8175	1894	99
H(22)	5666	6360	3737	62
H(54A)	3744	8586	391	92
H(54B)	3342	7540	73	92
H(54C)	4402	7958	-31	92
H(21)	3967	5799	3493	73
Table S6. Crystal data and structure refinement for compound 3.

Identification code	Compound 3
Empirical formula	C54 H60 O3 Si3
Formula weight	841.29
Temperature	100.0 K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	\(a = 12.5118(9) \text{ Å}\), \(\alpha = 68.488(2)^\circ\).
	\(b = 12.5949(11) \text{ Å}\), \(\beta = 89.117(2)^\circ\).
	\(c = 16.5326(15) \text{ Å}\), \(\gamma = 75.576(2)^\circ\).
Volume	2339.1(3) Å³
Z	2
Density (calculated)	1.194 Mg/m³
Absorption coefficient	0.144 mm⁻¹
F(000)	900
Crystal size	0.32 x 0.3 x 0.28 mm³
Theta range for data collection	1.687 to 26.395°
Index ranges	\(-15 < h < 12, -15 < k < 15, -20 < l < 20\)
Reflections collected	33116
Independent reflections	9529 [R(int) = 0.0718]
Completeness to theta	25.242°
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.4874 and 0.4488
Refinement method	Full-matrix least-squares on \(F^2\)
Data / restraints / parameters	9529 / 0 / 550
-------------------------------	----------------
Goodness-of-fit on F²	1.027
Final R indices [I>2sigma(I)]	R₁ = 0.0483, wR₂ = 0.1132
R indices (all data)	R₁ = 0.0674, wR₂ = 0.1267
Extinction coefficient	n/a
Largest diff. peak and hole	0.366 and -0.376 eÅ⁻³
Table S7. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for compound 3. U_{eq} is defined as one third of the trace of the orthogonalized U^0 tensor.

	x	y	z	U_{eq}
Si(2)	4165(1)	4270(1)	3246(1)	13(1)
Si(3)	1477(1)	2226(1)	3443(1)	14(1)
Si(1)	2794(1)	7449(1)	408(1)	16(1)
O(1)	3259(1)	4726(1)	687(1)	17(1)
O(3)	2489(1)	2931(1)	3116(1)	15(1)
O(2)	2631(1)	3653(1)	101(1)	26(1)
C(22)	3062(2)	4968(2)	3812(1)	14(1)
C(3)	2822(2)	3425(2)	2310(1)	14(1)
C(38)	1569(2)	1891(2)	4644(1)	14(1)
C(39)	1613(2)	2745(2)	4984(1)	16(1)
C(6)	3098(2)	8666(2)	688(1)	20(1)
C(23)	3213(2)	4877(2)	4674(1)	18(1)
C(4)	2549(2)	3163(2)	1627(1)	16(1)
C(1)	3574(2)	4949(2)	1389(1)	14(1)
C(27)	2035(2)	5646(2)	3354(1)	16(1)
C(33)	6034(2)	5042(2)	2400(1)	18(1)
C(44)	1867(2)	817(2)	3248(1)	17(1)
C(2)	3471(2)	4266(2)	2227(1)	14(1)
C(5)	2804(2)	3793(2)	771(1)	17(1)
C(31)	6705(2)	6615(2)	2502(1)	21(1)
C(54)	3928(2)	6064(2)	1051(1)	17(1)
C(34)	5033(2)	2706(2)	3966(1)	17(1)
C(29)	5131(2)	6118(2)	3252(1)	16(1)
C(32)	6775(2)	5732(2)	2170(1)	20(1)
C(25)	1359(2)	6056(2)	4604(1)	21(1)
C(40)	1701(2)	2480(2)	5874(1)	20(1)
C(43)	1616(2)	745(2)	5242(1)	21(1)
C(26)	1191(2)	6177(2)	3748(1)	19(1)
C(11)	2313(2)	9748(2)	532(1)	25(1)
C(41)	1754(2)	1340(2)	6451(1)	24(1)
C(12)	1383(2)	7257(2)	722(1)	20(1)
-------	---------	---------	--------	-------
C(7)	4176(2)	8563(2)	988(1)	23(1)
C(37)	5481(2)	2001(2)	3392(2)	25(1)
C(28)	5179(2)	5219(2)	2939(1)	15(1)
C(42)	1713(2)	477(2)	6131(2)	26(1)
C(30)	5892(2)	6799(2)	3045(1)	19(1)
C(45)	2978(2)	247(2)	3269(2)	24(1)
C(50)	56(2)	3216(2)	2926(1)	18(1)
C(24)	2374(2)	5410(2)	5070(1)	20(1)
C(35)	4397(2)	1988(2)	4671(1)	21(1)
C(17)	842(2)	6638(2)	384(1)	24(1)
C(18)	2876(2)	7877(2)	-817(1)	28(1)
C(53)	-834(2)	2686(2)	3472(2)	24(1)
C(16)	-236(2)	6581(2)	550(2)	31(1)
C(36)	6031(2)	2811(2)	4442(2)	25(1)
C(10)	2594(2)	10670(2)	667(2)	31(1)
C(47)	2520(2)	-1365(2)	3038(2)	29(1)
C(13)	792(2)	7786(2)	1262(1)	27(1)
C(51)	-62(2)	4442(2)	2962(2)	23(1)
C(52)	-178(2)	3382(2)	1972(2)	28(1)
C(14)	-290(2)	7726(2)	1434(2)	34(1)
C(19)	2984(2)	6859(2)	-1129(2)	32(1)
C(46)	3299(2)	-824(2)	3164(2)	31(1)
C(8)	4453(2)	9494(2)	1115(2)	29(1)
C(9)	3661(2)	10544(2)	957(2)	31(1)
C(49)	1096(2)	256(2)	3111(2)	35(1)
C(15)	-805(2)	7137(2)	1064(2)	34(1)
C(48)	1425(2)	-820(2)	3012(2)	41(1)
C(20)	1807(3)	8838(2)	-1281(2)	49(1)
C(21)	3883(3)	8375(3)	-1079(2)	56(1)
Table S8. Bond lengths [Å] and angles [°] for compound 3.

Bond	Length [Å]
Si(2)-C(22)	1.875(2)
Si(2)-C(2)	1.909(2)
Si(2)-C(34)	1.932(2)
Si(2)-C(28)	1.8941(19)
Si(3)-O(3)	1.6951(13)
Si(3)-C(38)	1.871(2)
Si(3)-C(44)	1.864(2)
Si(3)-C(50)	1.900(2)
Si(1)-C(6)	1.877(2)
Si(1)-C(54)	1.907(2)
Si(1)-C(12)	1.880(2)
Si(1)-C(18)	1.903(2)
O(1)-C(1)	1.375(2)
O(1)-C(5)	1.392(2)
O(3)-C(3)	1.357(2)
O(2)-C(5)	1.214(2)
C(22)-C(23)	1.400(3)
C(22)-C(27)	1.401(3)
C(3)-C(4)	1.357(3)
C(3)-C(2)	1.456(3)
C(38)-C(39)	1.396(3)
C(38)-C(43)	1.406(3)
C(39)-H(39)	0.9500
C(39)-C(40)	1.385(3)
C(6)-C(11)	1.404(3)
C(6)-C(7)	1.403(3)
C(23)-H(23)	0.9500
C(23)-C(24)	1.389(3)
C(4)-H(4)	0.9500
C(4)-C(5)	1.422(3)
C(1)-C(2)	1.361(3)
C(1)-C(54)	1.485(3)
C(27)-H(27)	0.9500
C(27)-C(26)	1.390(3)
C(33)-H(33) 0.9500	
C(33)-C(32) 1.382(3)	
C(33)-C(28) 1.409(3)	
C(44)-C(45) 1.391(3)	
C(44)-C(49) 1.394(3)	
C(31)-H(31) 0.9500	
C(31)-C(32) 1.392(3)	
C(31)-C(30) 1.379(3)	
C(54)-H(54A) 0.9900	
C(54)-H(54B) 0.9900	
C(34)-C(37) 1.535(3)	
C(34)-C(35) 1.538(3)	
C(34)-C(36) 1.543(3)	
C(29)-H(29) 0.9500	
C(29)-C(28) 1.396(3)	
C(29)-C(30) 1.393(3)	
C(32)-H(32) 0.9500	
C(25)-H(25) 0.9500	
C(25)-C(26) 1.380(3)	
C(40)-H(40) 0.9500	
C(40)-C(41) 1.387(3)	
C(43)-H(43) 0.9500	
C(43)-C(42) 1.383(3)	
C(26)-H(26) 0.9500	
C(11)-H(11) 0.9500	
C(11)-C(10) 1.384(3)	
C(41)-H(41) 0.9500	
C(41)-C(42) 1.384(3)	
C(12)-C(17) 1.404(3)	
C(12)-C(13) 1.399(3)	
C(7)-H(7) 0.9500	
C(7)-C(8) 1.388(3)	
C(37)-H(37A) 0.9800	
C(37)-H(37B) 0.9800	
C(37)-H(37C) 0.9800	
C(42)-H(42) 0.9500	
C(30)-H(30) 0.9500	
C(45)-H(45) 0.9500	
C(45)-C(46) 1.382(3)	
C(50)-C(53) 1.548(3)	
C(50)-C(51) 1.536(3)	
C(50)-C(52) 1.535(3)	
C(24)-H(24) 0.9500	
C(35)-H(35A) 0.9800	
C(35)-H(35B) 0.9800	
C(35)-H(35C) 0.9800	
C(17)-H(17) 0.9500	
C(17)-C(16) 1.386(3)	
C(18)-C(19) 1.525(3)	
C(18)-C(20) 1.545(4)	
C(18)-C(21) 1.532(3)	
C(53)-H(53A) 0.9800	
C(53)-H(53B) 0.9800	
C(53)-H(53C) 0.9800	
C(16)-H(16) 0.9500	
C(16)-C(15) 1.374(4)	
C(36)-H(36A) 0.9800	
C(36)-H(36B) 0.9800	
C(36)-H(36C) 0.9800	
C(10)-H(10) 0.9500	
C(10)-C(9) 1.378(3)	
C(47)-H(47) 0.9500	
C(47)-C(46) 1.378(3)	
C(47)-C(48) 1.365(3)	
C(13)-H(13) 0.9500	
C(13)-C(14) 1.394(3)	
C(51)-H(51A) 0.9800	
C(51)-H(51B) 0.9800	
C(51)-H(51C) 0.9800	
C(52)-H(52A) 0.9800	
C(52)-H(52B) 0.9800	
C(52)-H(52C) 0.9800	
C(14)-H(14) 0.9500	
C(14)-C(15) 1.387(4)	
C(19)-H(19A) 0.9800	
C(19)-H(19B) 0.9800	
C(19)-H(19C) 0.9800	
C(46)-H(46) 0.9500	
C(8)-H(8) 0.9500	
C(8)-C(9) 1.378(3)	
C(9)-H(9) 0.9500	
C(49)-H(49) 0.9500	
C(49)-C(48) 1.385(3)	
C(15)-H(15) 0.9500	
C(48)-H(48) 0.9500	
C(20)-H(20A) 0.9800	
C(20)-H(20B) 0.9800	
C(20)-H(20C) 0.9800	
C(21)-H(21A) 0.9800	
C(21)-H(21B) 0.9800	
C(21)-H(21C) 0.9800	
C(22)-Si(2)-C(2) 107.77(9)	
C(22)-Si(2)-C(34) 114.51(9)	
C(22)-Si(2)-C(28) 106.87(9)	
C(2)-Si(2)-C(34) 111.42(9)	
C(28)-Si(2)-C(2) 110.68(9)	
C(28)-Si(2)-C(34) 105.50(8)	
O(3)-Si(3)-C(38) 101.68(8)	
O(3)-Si(3)-C(44) 108.41(8)	
O(3)-Si(3)-C(50) 112.08(8)	
C(38)-Si(3)-C(50) 110.11(9)	
C(44)-Si(3)-C(38) 109.51(9)	
C(44)-Si(3)-C(50) 114.28(9)	
C(6)-Si(1)-C(54) 105.35(9)	
C(6)-Si(1)-C(12) 110.85(10)	
C(6)-Si(1)-C(18) 106.93(9)	
Bond	Angle (°)
----------------------	------------
C(12)-Si(1)-C(54)	111.13(9)
C(12)-Si(1)-C(18)	110.73(10)
C(18)-Si(1)-C(54)	111.66(10)
C(1)-O(1)-C(5)	123.13(15)
C(3)-O(3)-Si(3)	130.74(12)
C(23)-C(22)-Si(2)	123.44(15)
C(23)-C(22)-C(27)	117.16(18)
C(27)-C(22)-Si(2)	119.38(15)
O(3)-C(3)-C(4)	121.99(17)
O(3)-C(3)-C(2)	115.46(17)
C(4)-C(3)-C(2)	122.55(18)
C(39)-C(38)-Si(3)	122.16(15)
C(39)-C(38)-C(43)	117.45(19)
C(43)-C(38)-Si(3)	120.38(15)
C(38)-C(39)-H(39)	119.2
C(40)-C(39)-C(38)	121.59(18)
C(40)-C(39)-H(39)	119.2
C(11)-C(6)-Si(1)	122.82(16)
C(7)-C(6)-Si(1)	119.96(16)
C(7)-C(6)-C(11)	116.93(19)
C(22)-C(23)-H(23)	119.2
C(24)-C(23)-C(22)	121.65(19)
C(24)-C(23)-H(23)	119.2
C(3)-C(4)-H(4)	119.8
C(3)-C(4)-C(5)	120.48(18)
C(5)-C(4)-H(4)	119.8
O(1)-C(1)-C(54)	108.14(16)
C(2)-C(1)-O(1)	122.44(17)
C(2)-C(1)-C(54)	129.24(18)
C(22)-C(27)-H(27)	119.3
C(26)-C(27)-C(22)	121.42(19)
C(26)-C(27)-H(27)	119.3
C(32)-C(33)-H(33)	118.8
C(32)-C(33)-C(28)	122.42(19)
C(28)-C(33)-H(33)	118.8
C(45)-C(44)-Si(3)	119.97(15)
C(45)-C(44)-C(49) 116.6(2)	
C(49)-C(44)-Si(3) 123.38(17)	
C(3)-C(2)-Si(2) 119.80(14)	
C(1)-C(2)-Si(2) 125.76(14)	
C(1)-C(2)-C(3) 114.32(17)	
O(1)-C(5)-C(4) 115.51(17)	
O(2)-C(5)-O(1) 116.07(18)	
O(2)-C(5)-C(4) 128.34(18)	
C(32)-C(31)-H(31) 120.1	
C(30)-C(31)-H(31) 120.1	
C(30)-C(31)-C(32) 119.84(18)	
Si(1)-C(54)-H(54A) 108.4	
Si(1)-C(54)-H(54B) 108.4	
C(1)-C(54)-Si(1) 115.32(14)	
C(1)-C(54)-H(54A) 108.4	
C(1)-C(54)-H(54B) 108.4	
H(54A)-C(54)-H(54B) 107.5	
C(37)-C(34)-Si(2) 109.74(14)	
C(37)-C(34)-C(35) 108.40(17)	
C(37)-C(34)-C(36) 108.06(17)	
C(35)-C(34)-Si(2) 114.21(13)	
C(35)-C(34)-C(36) 107.03(17)	
C(36)-C(34)-Si(2) 109.21(14)	
C(28)-C(29)-H(29) 119.2	
C(30)-C(29)-H(29) 119.2	
C(30)-C(29)-C(28) 121.64(19)	
C(33)-C(32)-C(31) 119.36(19)	
C(33)-C(32)-H(32) 120.3	
C(31)-C(32)-H(32) 120.3	
C(26)-C(25)-H(25) 120.1	
C(26)-C(25)-C(24) 119.89(19)	
C(24)-C(25)-H(25) 120.1	
C(39)-C(40)-H(40) 120.1	
C(39)-C(40)-C(41) 119.9(2)	
C(41)-C(40)-H(40) 120.1	
C(38)-C(43)-H(43) 119.5	
C(42)-C(43)-C(38) 121.0(2)	
C(42)-C(43)-H(43) 119.5	
C(27)-C(26)-H(26) 120.0	
C(25)-C(26)-C(27) 120.09(19)	
C(25)-C(26)-H(26) 120.0	
C(6)-C(11)-H(11) 119.3	
C(10)-C(11)-C(6) 121.4(2)	
C(10)-C(11)-H(11) 119.3	
C(40)-C(41)-H(41) 120.2	
C(42)-C(41)-C(40) 119.6(2)	
C(42)-C(41)-H(41) 120.2	
C(17)-C(12)-Si(1) 121.70(17)	
C(13)-C(12)-Si(1) 121.55(16)	
C(13)-C(12)-C(17) 116.6(2)	
C(6)-C(7)-H(7) 119.3	
C(8)-C(7)-C(6) 121.4(2)	
C(8)-C(7)-H(7) 119.3	
C(34)-C(37)-H(37A) 109.5	
C(34)-C(37)-H(37B) 109.5	
C(34)-C(37)-H(37C) 109.5	
H(37A)-C(37)-H(37B) 109.5	
H(37A)-C(37)-H(37C) 109.5	
H(37B)-C(37)-H(37C) 109.5	
C(33)-C(28)-Si(2) 121.99(15)	
C(29)-C(28)-Si(2) 121.53(15)	
C(29)-C(28)-C(33) 116.47(17)	
C(43)-C(42)-C(41) 120.4(2)	
C(43)-C(42)-H(42) 119.8	
C(41)-C(42)-H(42) 119.8	
C(31)-C(30)-C(29) 120.24(19)	
C(31)-C(30)-H(30) 119.9	
C(29)-C(30)-H(30) 119.9	
C(44)-C(45)-H(45) 119.2	
C(46)-C(45)-C(44) 121.6(2)	
C(46)-C(45)-H(45) 119.2	
C(53)-C(50)-Si(3) 108.59(14)	
Bond	Angle
------	-------
C(51)-C(50)-Si(3)	109.02(13)
C(51)-C(50)-C(53)	107.74(17)
C(52)-C(50)-Si(3)	114.43(15)
C(52)-C(50)-C(53)	108.81(17)
C(52)-C(50)-C(51)	108.05(17)
C(23)-C(24)-H(24)	120.1
C(25)-C(24)-C(23)	119.76(19)
C(25)-C(24)-H(24)	120.1
C(34)-C(35)-H(35A)	109.5
C(34)-C(35)-H(35B)	109.5
C(34)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(12)-C(17)-H(17)	118.9
C(16)-C(17)-C(12)	122.1(2)
C(16)-C(17)-H(17)	118.9
C(19)-C(18)-Si(1)	114.41(15)
C(19)-C(18)-C(20)	108.0(2)
C(19)-C(18)-C(21)	107.9(2)
C(20)-C(18)-Si(1)	108.01(17)
C(21)-C(18)-Si(1)	108.76(16)
C(21)-C(18)-C(20)	109.7(2)
C(50)-C(53)-H(53A)	109.5
C(50)-C(53)-H(53B)	109.5
C(50)-C(53)-H(53C)	109.5
H(53A)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53C)	109.5
H(53B)-C(53)-H(53C)	109.5
C(17)-C(16)-H(16)	120.1
C(15)-C(16)-C(17)	119.8(2)
C(15)-C(16)-H(16)	120.1
C(34)-C(36)-H(36A)	109.5
C(34)-C(36)-H(36B)	109.5
C(34)-C(36)-H(36C)	109.5
H(36A)-C(36)-H(36B)	109.5
H(36A)-C(36)-H(36C) 109.5	
C(11)-C(10)-H(10) 119.8	
C(9)-C(10)-C(11) 120.3(2)	
C(9)-C(10)-H(10) 119.8	
C(46)-C(47)-H(47) 120.6	
C(48)-C(47)-H(47) 120.6	
C(48)-C(47)-C(46) 118.9(2)	
C(12)-C(13)-H(13) 119.3	
C(14)-C(13)-C(12) 121.4(2)	
C(14)-C(13)-H(13) 119.3	
C(50)-C(51)-H(51A) 109.5	
C(50)-C(51)-H(51B) 109.5	
C(50)-C(51)-H(51C) 109.5	
H(51A)-C(51)-H(51B) 109.5	
H(51A)-C(51)-H(51C) 109.5	
H(51B)-C(51)-H(51C) 109.5	
C(50)-C(52)-H(52A) 109.5	
C(50)-C(52)-H(52B) 109.5	
C(50)-C(52)-H(52C) 109.5	
H(52A)-C(52)-H(52B) 109.5	
H(52A)-C(52)-H(52C) 109.5	
H(52B)-C(52)-H(52C) 109.5	
C(13)-C(14)-H(14) 120.0	
C(15)-C(14)-C(13) 120.0(2)	
C(15)-C(14)-H(14) 120.0	
C(18)-C(19)-H(19A) 109.5	
C(18)-C(19)-H(19B) 109.5	
C(18)-C(19)-H(19C) 109.5	
H(19A)-C(19)-H(19B) 109.5	
H(19A)-C(19)-H(19C) 109.5	
H(19B)-C(19)-H(19C) 109.5	
C(45)-C(46)-H(46) 119.7	
C(47)-C(46)-C(45) 120.6(2)	
C(47)-C(46)-H(46) 119.7	
C(7)-C(8)-H(8) 119.9	
Bond	Angle (°)
----------------------	-----------
C(9)-C(8)-C(7)	120.2(2)
C(9)-C(8)-H(8)	119.9
C(10)-C(9)-C(8)	119.8(2)
C(10)-C(9)-H(9)	120.1
C(8)-C(9)-H(9)	120.1
C(44)-C(49)-H(49)	119.3
C(48)-C(49)-C(44)	121.5(2)
C(48)-C(49)-H(49)	119.3
C(16)-C(15)-C(14)	119.9(2)
C(16)-C(15)-H(15)	120.0
C(14)-C(15)-H(15)	120.0
C(47)-C(48)-C(49)	120.9(2)
C(47)-C(48)-H(48)	119.6
C(49)-C(48)-H(48)	119.6
C(18)-C(20)-H(20A)	109.5
C(18)-C(20)-H(20B)	109.5
C(18)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(18)-C(21)-H(21A)	109.5
C(18)-C(21)-H(21B)	109.5
C(18)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5

Symmetry transformations used to generate equivalent atoms:
Table S9. Anisotropic displacement parameters (Å$^2 \times 10^3$) for compound 3. The anisotropic displacement factor exponent takes the form: $-2 \pi^2 [h^2 a^* U_{11} + \ldots + 2 h k a^* b^* U_{12}]$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Si(2)	11(1)	14(1)	15(1)	-7(1)	2(1)	-4(1)
Si(3)	14(1)	14(1)	15(1)	-6(1)	3(1)	-7(1)
Si(1)	24(1)	14(1)	12(1)	-5(1)	1(1)	-7(1)
O(1)	24(1)	14(1)	14(1)	-5(1)	2(1)	-8(1)
O(3)	16(1)	18(1)	13(1)	-6(1)	4(1)	-8(1)
O(2)	40(1)	27(1)	17(1)	-11(1)	3(1)	-16(1)
C(22)	15(1)	14(1)	17(1)	-7(1)	3(1)	-7(1)
C(3)	12(1)	11(1)	16(1)	-3(1)	2(1)	-1(1)
C(38)	10(1)	17(1)	17(1)	-6(1)	4(1)	-4(1)
C(39)	14(1)	16(1)	18(1)	-5(1)	3(1)	-4(1)
C(6)	32(1)	15(1)	14(1)	-5(1)	-1(1)	-7(1)
C(23)	16(1)	19(1)	19(1)	-8(1)	0(1)	-5(1)
C(4)	18(1)	13(1)	19(1)	-7(1)	2(1)	-7(1)
C(1)	13(1)	13(1)	18(1)	-8(1)	2(1)	-2(1)
C(27)	18(1)	16(1)	17(1)	-7(1)	3(1)	-7(1)
C(33)	16(1)	17(1)	24(1)	-12(1)	2(1)	-3(1)
C(44)	23(1)	16(1)	15(1)	-6(1)	4(1)	-7(1)
C(2)	12(1)	12(1)	18(1)	-8(1)	2(1)	-2(1)
C(5)	19(1)	15(1)	19(1)	-8(1)	2(1)	-6(1)
C(31)	18(1)	21(1)	26(1)	-5(1)	1(1)	-10(1)
C(54)	20(1)	15(1)	19(1)	-6(1)	5(1)	-8(1)
C(34)	14(1)	17(1)	19(1)	-6(1)	2(1)	-5(1)
C(29)	13(1)	19(1)	16(1)	-7(1)	0(1)	-3(1)
C(32)	15(1)	24(1)	22(1)	-8(1)	4(1)	-5(1)
C(25)	18(1)	23(1)	27(1)	-16(1)	9(1)	-5(1)
C(40)	18(1)	24(1)	20(1)	-12(1)	3(1)	-6(1)
C(43)	25(1)	19(1)	20(1)	-7(1)	6(1)	-10(1)
C(26)	15(1)	19(1)	24(1)	-10(1)	1(1)	-2(1)
C(11)	32(1)	18(1)	22(1)	-7(1)	-7(1)	-4(1)
C(41)	28(1)	29(1)	16(1)	-6(1)	5(1)	-10(1)
C(12)	23(1)	17(1)	15(1)	-2(1)	-3(1)	-2(1)
---	---	---	---	---	---	---
C(7)	29(1)	17(1)	22(1)	-7(1)	1(1)	-7(1)
C(37)	23(1)	19(1)	28(1)	-8(1)	5(1)	0(1)
C(24)	25(1)	24(1)	18(1)	-12(1)	5(1)	-11(1)
C(35)	19(1)	18(1)	20(1)	-3(1)	0(1)	-4(1)
C(45)	22(1)	18(1)	32(1)	-8(1)	2(1)	-6(1)
C(50)	16(1)	20(1)	20(1)	-10(1)	1(1)	-7(1)
C(24)	25(1)	24(1)	18(1)	-12(1)	5(1)	-11(1)
C(35)	19(1)	18(1)	20(1)	-3(1)	0(1)	-4(1)
C(17)	25(1)	22(1)	22(1)	-4(1)	-2(1)	-5(1)
C(18)	51(2)	22(1)	16(1)	-7(1)	7(1)	-19(1)
C(53)	18(1)	25(1)	35(1)	-16(1)	5(1)	-8(1)
C(16)	25(1)	30(1)	28(1)	1(1)	-5(1)	-9(1)
C(36)	18(1)	26(1)	27(1)	-5(1)	-4(1)	-5(1)
C(10)	45(2)	14(1)	28(1)	-7(1)	-8(1)	0(1)
C(47)	39(1)	18(1)	32(1)	-14(1)	1(1)	-2(1)
C(13)	32(1)	24(1)	19(1)	-5(1)	1(1)	-3(1)
C(51)	19(1)	19(1)	29(1)	-7(1)	-5(1)	-4(1)
C(52)	22(1)	37(1)	26(1)	-15(1)	-4(1)	-5(1)
C(14)	32(1)	30(1)	22(1)	-1(1)	9(1)	5(1)
C(19)	55(2)	32(1)	17(1)	-12(1)	11(1)	-23(1)
C(46)	28(1)	22(1)	39(2)	-11(1)	6(1)	0(1)
C(8)	32(1)	23(1)	34(1)	-10(1)	-2(1)	-10(1)
C(9)	48(2)	18(1)	33(1)	-11(1)	-4(1)	-13(1)
C(49)	22(1)	32(1)	65(2)	-33(1)	6(1)	-9(1)
C(15)	23(1)	32(1)	29(1)	6(1)	1(1)	-4(1)
C(19)	55(2)	26(1)	17(1)	-3(1)	-11(1)	-6(2)
C(20)	101(3)	67(2)	31(2)	-26(2)	36(2)	-67(2)
Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^-3) for compound 3.

	x	y	z	U(eq)
H(39)	1582	3527	4594	19
H(23)	3907	4441	4997	21
H(4)	2184	2555	1721	20
H(27)	1913	5745	2762	19
H(33)	6103	4425	2187	22
H(31)	7216	7088	2354	26
H(54A)	4535	5972	671	21
H(54B)	4231	6184	1551	21
H(29)	4565	6270	3616	20
H(32)	7327	5607	1790	24
H(25)	780	6416	4873	25
H(40)	1724	3077	6090	23
H(43)	1582	145	5031	25
H(26)	497	6624	3427	23
H(11)	1574	9850	330	30
H(41)	1820	1153	7063	29
H(7)	4728	7841	1107	27
H(37A)	4861	1907	3094	37
H(37B)	5947	1221	3757	37
H(37C)	5923	2427	2958	37
H(42)	1751	-305	6525	32
H(30)	5851	7392	3279	22
H(45)	3530	602	3358	29
H(24)	2495	5331	5657	24
H(35A)	4103	2427	5044	31
H(35B)	4899	1225	5028	31
H(35C)	3784	1856	4392	31
H(17)	1228	6246	31	29
H(53A)	-817	1930	3423	36
H(53B)	-1567	3234	3253	36
Symbol	Value1	Value2	Value3	Value4
--------	--------	--------	--------	--------
H(53C)	-682	2558	4085	36
H(16)	-580	6159	309	37
H(36A)	6504	3186	4011	38
H(36B)	6458	2021	4825	38
H(36C)	5765	3292	4791	38
H(10)	2048	11393	559	37
H(47)	2742	-2104	2971	35
H(13)	1136	8194	1517	32
H(51A)	96	4356	3564	35
H(51B)	-820	4932	2752	35
H(51C)	461	4820	2591	35
H(52A)	321	3809	1609	42
H(52B)	-948	3837	1772	42
H(52C)	-58	2607	1928	42
H(14)	-674	8089	1804	40
H(19A)	3699	6280	-896	47
H(19B)	2939	7164	-1768	47
H(19C)	2384	6479	-924	47
H(46)	4065	-1190	3178	37
H(8)	5191	9408	1311	35
H(9)	3851	11179	1049	38
H(49)	329	621	3085	42
H(15)	-1550	7118	1166	41
H(48)	880	-1185	2926	49
H(20A)	1164	8517	-1112	74
H(20B)	1840	9090	-1914	74
H(20C)	1738	9519	-1110	74
H(21A)	3805	9069	-924	84
H(21B)	3930	8604	-1710	84
H(21C)	4557	7770	-771	84
Appendix 2.

Calculation of the compounds’ concentration at different time points:

Concentration of compound 2 at 0 hour is 0.17M.

Integral of 2 (Proton attached to sp2 hybridized carbon) at 0 hour is 15.89 compared to the internal standard Et₂O.

Integral of 2 (Proton attached to sp2 hybridized carbon) at X hour is I_2 compared to Et₂O.

Then the concentration of 2 at X hour is

$$C_2 = \frac{I_2}{15.89} \times 0.17$$

Integral of 3 (Proton attached to sp2 hybridized carbon) at X hour is I_3 compared to Et₂O.

Then the concentration of 3 at X hour is

$$C_3 = \frac{I_3}{15.89} \times 0.17$$

Integral of 6 (Proton attached to sp2 hybridized carbon) at X hour is I_6 compared to Et₂O.

Then the concentration of 6 at X hour is

$$C_6 = \frac{I_6}{15.89} \times 0.17$$

Integral of 10 (Proton attached to sp2 hybridized carbon) at X hour is I_{10} compared to Et₂O.

Then the concentration of 10 at X hour is

$$C_{10} = \frac{I_{10}}{15.89} \times 0.17$$
Table S11. Concentration of compound 2, 3, 10 and total concentration of 3&6 at different time points

Time (h)	Concentration of compound 2 integral (M)	Concentration of compound 3 integral (M)	Concentration of compound 6 integral (M)	Concentration of compound 10 integral (M)	Total concentration of 3 and 6 (M)
0	15.89	0	0	0	0.01925739
1	15.11	0.17	0.18	0.001925739	0.00908175
2	14.39	0.153952171	0.55	0.005684204	0.000213971
3	13.88	0.148495909	0.87	0.009307741	0.000855884
4	13.46	0.144002517	1.16	0.012410321	0.001604783
5	12.97	0.138760227	1.54	0.016475771	0.002674683
6	12.37	0.132341095	1.8	0.01925739	0.003637508
7	12.01	0.128489616	2.16	0.023108874	0.004921334
8	11.5	0.123033354	2.39	0.025569541	0.005991189
9	11.06	0.118325991	2.67	0.028565153	0.007595972
10	10.49	0.112227816	2.88	0.030811831	0.008665828
11	10.26	0.10976149	3.18	0.034021397	0.010056639
12	9.89	0.105806885	3.4	0.036375079	0.011447451
13	9.46	0.101208307	3.6	0.038514789	0.012731278
19	6.39	0.068363751	4.74	0.050711139	0.021825047
26	4.11	0.043971051	5.43	0.05809314	0.033700441
32	2.71	0.028993077	5.44	0.058200126	0.046752675
37	1.88	0.020113279	5.04	0.053920705	0.057665198
42	1.38	0.014764003	4.46	0.047715544	0.067721838
48	0.87	0.009407741	3.65	0.039049717	0.081095078
54	0.54	0.005777218	2.74	0.029314034	0.093505349
60	0.29	0.00310258	1.82	0.019471366	0.108269352
66	0.12	0.001283826	0.99	0.010501567	0.118539062
72	0.06	0.000641913	0.4	0.004279421	0.12410321
78	0	0	0	0	0.130094399
Appendix 3.

Rate law derivation.

Consumption rate of $2 = -(k_1+k_5)[2]$

The rate law of compound 2 can be described as:

$$\frac{d[2]}{dt} = -(k_1+k_5)[2] \quad (\text{Eq. 1})$$

Based on (Eq 1)

$$[2] = 0.17*e^{-(k_1+k_5)t}. \quad (\text{Eq. 2})$$

To obtain the rate law of $6+3$:

Production rate of $4 = k_1[2]$

Consumption rate of $4 = k_2[4]$

Production rate of $5 = k_2[4]$

Consumption rate of $5 = k_3[5]$

With stead-state approximation:

$$k_1[2] = k_2[4] = k_3[5] \quad (\text{Eq. 3})$$

Since compound 6 can be observed, the rate of its generation and consumption cannot be treated as equal based SSA. Thus the rate law of compound 6 can be expressed as:

$$\frac{d[6]}{dt} = k_3[5] - k_4[6]^\alpha \quad (\text{Eq. 4})$$

The rate law of compound 3 can be expressed as:

$$\frac{d[3]}{dt} = k_4[6]^\alpha \quad (\text{Eq. 5})$$

Combination of (Eq. 3), (Eq. 4) and (Eq. 5)

$$[3]+[6] = -\frac{0.17k_1}{k_1+k_5} e^{-(k_1+k_5)t} + \frac{0.17k_1}{k_1+k_5} \quad (\text{Eq. 6})$$

To obtain the rate law of compound 10:

Production rate of $7 = k_5[2]$

Consumption rate of $7 = k_6[7]$

Production rate of $8 = k_6[7]$

Consumption rate of $8 = k_7[8]$
Production rate of $9 = k_7[8]$
Consumption rate of $9 = k_8[9]$

With stead-state approximation:

$$k_5[2] = k_6[7] = k_7[8] = k_8[9]$$ \hspace{1cm} (Eq. 7)

The rate law of compound 10 can be described as:

$$\frac{d[10]}{dt} = k_8[9]$$ \hspace{1cm} (Eq. 8)

Combine (Eq 7) and (Eq 8)

$$[10] = -\frac{0.17k_5}{k_1+k_5} e^{-(k_1+k_5)t} + \frac{0.17k_5}{k_1+k_5}$$ \hspace{1cm} (Eq. 9)
Figure S7. Fitting result of the kinetic data with the derived rate law.
Reference:

1 Y. Xiang, D. J. Burrill, K. K. Bullard, B. J. Albrecht, L. E. Tragesser, J. McCaffrey, D. S. Lambrecht and E. Pentzer, *Polym. Chem.*, 2017, 8, 5381–5387.