Electronic Supplementary Information

Planar Graphitic ZnS, Buckling ZnS Monolayers and Rolled-up Nanotubes as Nonlinear Optical Materials: First-Principles Simulation

Lei Hu¹*, Wencai Yi², Jianting Tang¹, Tongde Rao¹, Zuju Ma³, Chuanbo Hu¹, Lei Zhang Tingzhen Li¹*

¹School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404100, China
²Laboratory of High Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, China
³School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, China

Email: huleisanxu@163.com, leihu@sanxiau.edu.cn, litingzhen@163.com

Keywords: planar ZnS monolayer; buckling ZnS monolayer; ZnS single-walled nanotube; second harmonic generation; nonlinear optical property; first-principles; mid-infrared

1. Band structure and interlayer distance of wurtzite ZnS

![Figure S1](image)

Figure S1 (a) band structure calculated with HSE06 functional and (b) interlayer distance of wurtzite ZnS

As can be seen, wurtzite ZnS crystal exhibits a direct bandgap, with the VBM and CBM both
located at the Γ (0.0, 0.0, 0.0) point. The band gap of wurtzite ZnS crystal is 3.51 eV, which is close to the experimental value 3.77 eV \(^1\). As shown in Figure 1S(b), similar to planar g-SiC \(^2\), the effective thickness of planar g-ZnS is set as the interlayer distance 3.898 Å of wurtzite ZnS crystal.

2. Band structure of planar g-ZnS

![Figure S2](image)

Figure S2 (a) Band structure of planar g-ZnS monolayer calculated using HSE06 functional, and (b) high symmetry k-point path in the Brillouin zone path Γ (0, 0, 0) \rightarrow K (-1/3, 2/3, 0) \rightarrow M (0, 1/2, 0) \rightarrow Γ (0, 0, 0).

As suggested by Figure S2, planar g-ZnS monolayer has a direct band gap of 3.80 eV at the Γ point.

3. Band structure of buckling R-ZnS monolayer

Figure S3 suggests buckling R-ZnS monolayers have direct bandgaps with the VBM and CMB located at the Γ point. The bandgaps of buckling R-ZnS are steady around 3.90 eV with a small variance of \sim 0.10 eV.

![Figure S3](image)

Figure S3 Band structure of buckling R\(_1\)-ZnS, R\(_2\)-ZnS, R\(_3\)-ZnS, R\(_4\)-ZnS and R\(_5\)-ZnS calculated using HSE06 functional. The high symmetry k-point path in the Brillouin Zone, as shown in (c), is chosen as Γ (0, 0, 0) \rightarrow K (-1/3, 2/3, 0) \rightarrow M (0, 1/2, 0) \rightarrow Γ (0, 0, 0).
4. Band structure and total density of electronic states of a representative (12, 0) ZnS SWNT

Zigzag and chiral ZnS SWNTs show similar electronic structures. As a representative, the band structure and total density of electronic states are given in Figure S4. As can be seen, ZnS (12, 0) SWNT exhibits a direct band gap at the Γ (0.0, 0.0, 0.0) point, and a sharp peak in the top of valence bands.

![Figure S4 Band structure and total density of electronic states of a (12, 0) ZnS SWNT](image)

5. SHG intensity estimation of planar g-ZnS, buckling R-ZnS and ZnS SWNTs

According to the electric dipole theory, the SHG intensity $I_{2\omega}$ is proportional to $\frac{|\chi^{(2)}_{xxxy}|^2 d^2}{n_\omega n_{2\omega}^2}$, where d is the effective thickness of monolayers, n_ω and $n_{2\omega}$ are respectively the refractive index at frequency ω of excitation laser and at frequency 2ω of SHG field. Previous experiments demonstrate the nonresonant SHG intensity of monolayer GaSe is stronger than that of monolayer MoS$_2$, WS$_2$, WSe$_2$ and BN. Here, we make a comparison of SHG intensities of monolayer g-ZnS, GaSe and MoS$_2$. The theoretical n_ω, $n_{2\omega}$ at 1600 nm and effective thickness of planar g-ZnS in Table S1, and that of monolayer GaSe and MoS$_2$ is also shown for comparison. The theoretical SHG coefficients $\chi^{(2)}_{xxxy}$ at an excitation wavelength of 1600 nm for monolayer GaSe and planar g-ZnS are 75 pm/V and 42 pm/V, respectively. The estimated ratio of SHG intensities at 1600 nm between monolayer g-ZnS and GaSe is ~0.2. Experiments show the SHG intensity of single-layer MoS$_2$ at 1600 nm is less than 1/10 that of single-layer GaSe. Therefore, the nonresonant SHG
intensity of planar g-ZnS at 1600 nm is stronger than that of single-layer MoS$_2$, which mainly originates from smaller optical refractive indices of planar g-ZnS.

Table S1. n_ω, $n_{2\omega}$ at 1600 nm and effective thickness d (Å) of monolayer GaSe, planar g-ZnS, MoS$_2$ and buckling R-ZnS

Materials	GaSe	g-ZnS	MoS$_2$	R$_1$-ZnS	R$_2$-ZnS	R$_3$-ZnS	R$_4$-ZnS	R$_5$-ZnS
d	7.99	3.90	6.0	3.92	3.93	4.18	4.25	4.35
n_ω	2.70	2.15	4.0	2.16	2.16	2.15	2.16	2.17
$n_{2\omega}$	2.77	2.18	4.5	2.19	2.19	2.17	2.18	2.20

As shown in Figure 2 of the main manuscript, the SHG coefficient of planar g-ZnS nearly keeps constant from zero to 1.0 eV, e.g. 42 pm/V at 1600 nm versus 37.4 pm/V at the static limit, which indicating their nonresonant SHG intensities nearly keep constant. Moreover, the nonresonant SHG regime of planar g-ZnS covers the whole mid-infrared regime (2-8 μm), so planar g-ZnS has a potential application in the mid-infrared regime.

Table S2. n_ω and $n_{2\omega}$ at 1600 nm of ZnS SWNTs

Materials	(6,0)	(8,0)	(9,0)	(12,0)	(16,0)	(18,0)	(20,0)	(4,2)	(6,3)
n_ω	2.15	2.16	2.15	2.16	2.14	2.13	2.16	2.17	
$n_{2\omega}$	2.19	2.20	2.18	2.19	2.20	2.17	2.16	2.19	2.21

Furthermore, the optical refractive indices n_ω and $n_{2\omega}$ of buckling R-ZnS [cf. Table S1] and ZnS SWNTs [cf. Table S2] are nearly not modified in comparison with that of planar g-ZnS. Resultantly, small refractive indices will also enhance SHG signals of buckling R-ZnS and ZnS SWNTs.

References

1. J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee and X. M. Meng, *Lasing in ZnS nanowires grown on anodic aluminum oxide templates*, Appl. Phys. Lett., 2004, 85, 2361.
2. I. J. Wu and G. Y. Guo, *Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes*, Phys. Rev. B, 2008, 78, 035447.
3. X. Zhou, J. Cheng, Y. Zhou, T. Cao, H. Hong, Z. Liao, S. Wu, H. Peng, K. Liu and D. Yu, *Strong Second-Harmonic Generation in Atomic Layered GaSe*, J. Am. Chem. Soc., 2015, 137, 7994.
4. L. Hu, X. Huang and D. Wei, *Layer-independent and layer-dependent nonlinear optical properties of two-dimensional GaX (X = S, Se, Te) nanosheets*, Phys. Chem. Chem. Phys., 2017, 19, 11131.