Hydrothermal synthesis of CuO@MnO₂ on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications

Vijay Kakani¹, Sivalingam Ramesh², H. M. Yadav³, Chinna Bathula⁴, Praveen Kumar Basivi⁵, Ramasubba Reddy Palem⁶, Heung Soo Kim², Visweswara Rao Pasupulett⁷,⁸, Handol Lee⁹,¹⁰ & Hakil Kim¹⁰

Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been used to fabricate nanostructured materials for various energy devices, such as supercapacitors, sensors, batteries, and electrocatalysts. Nitrogen-doped carbon-based electrodes have been widely used to improve supercapacitor applications via various chemical approaches. Based on previous studies, CuO@MnO₂ and CuO@MnO₂/N-MWCNT composites were synthesized using a sonication-supported hydrothermal reaction process to evaluate their supercapacitor properties. The structural and morphological properties of the synthesized composite materials were characterized via Raman spectroscopy, XRD, SEM, and SEM–EDX, and the morphological properties of the composite materials were confirmed by the nanostructured composite at the nanometer scale. The CuO@MnO₂ and CuO@MnO₂/N-MWCNT composite electrodes were fabricated in a three-electrode configuration, and electrochemical analysis was performed via CV, GCD, and EIS. The composite electrodes exhibited the specific capacitance of ~184 F g⁻¹ at 0.5 A g⁻¹ in the presence of a 5 M KOH electrolyte for the three-electrode supercapacitor application. Furthermore, it exhibited significantly improved specific capacitances and excellent cycling stability up to 5000 GCD cycles, with a 98.5% capacity retention.

Recently, electronic devices for storage applications comprising nanometer-scale materials with excellent capacitance and cyclic stability are being rapidly developed. Numerous methods for fabricating electrode materials for practical applications have been reported in various supercapacitor, battery, and fuel-cell studies. In particular, supercapacitors have received considerable attention owing to their excellent life cycles and high-power density results. Supercapacitors can be categorized as electric double-layer capacitors (EDLC) and pseudocapacitors, depending on their complex electrochemical reaction. In the case of the EDLCs, energy is collected by the electrostatic adsorption of charges on the electrode surface in the parallel plate capacitor. In pseudocapacitors, energy is collected via reversible Faradaic responses on the material electrode surface.

Carbon-based electrode materials are an appropriate choice for supercapacitor applications because of their excellent specific capacitance and power density. An alternative approach is to use potential electrode...
materials such as Co3O4, MnO2, NiO, CuO, Fe3O4 and V2O5, which have been widely used in supercapacitor applications12-14. The higher specific capacitance of these materials is because of the presence of metal oxides, which exhibit more pronounced redox behavior than the carbon in carbon-based electrodes; thus, a specific capacitance and excellent electrochemical stability are realized via irreversible reactions16-18. Notably, copper is an excellent electrode material because it is nontoxic, abundantly available, low-cost, and easy to fabricate into an electrode for supercapacitor applications17-19. Zhang et al. reported that flower-like CuO nanostructured materials yielded a capacitance value of 134 F g-1 in the presence of a 1 M KOH electrolyte18. In addition, mesoporous copper oxide nanoribbons were fabricated on nickel foam electrodes, with a capacitance of 137 F g-1. Wang et al. fabricated nanosheets with a capacitance of \sim 569 F g-1.

MnO2 has emerged as a promising electrode material for supercapacitor applications owing to its high theoretical specific capacitance, high electrochemical activity, and environmental friendliness20-22. However, the low conductivity (10-5 to 10-6 S cm-1) and unstable structure of MnO2, which causes poor electrochemical cyclability, limits its application. To address these limitations and improve the electrochemical behavior of supercapacitors, several studies have attempted to design nano-MnO2 structures. It has been reported that the electrochemical performance of MnO2 depends on its morphology, surface area, and crystal structure. Zhang et al. reported MnO2-based electrodes for supercapacitors with different crystal structures and morphological behaviors synthesized via a hydrothermal process. Nano-a-MnO2 ball with a low degree of crystallinity exhibited a high specific capacitance of 200 F g-1 and excellent cyclic stability Rusi et al. also synthesized a-MnO2 with a low-crystalline electrode via electrochemical deposition using a manganese acetate tetrahydrate electrolyte. The assembled MnO2 electrode, characterized via a cyclic voltammetry test in the Na2SO4 electrolyte at a scan rate of 1 mV s-1, exhibited a high specific capacitance of 238 F g-1 and excellent stability, with an 84% capacitance retention over 1900 cycles. By contrast, CuO, which is an active material that contributes to pseudocapacitance, possesses a high specific surface area, is highly conductive and environmentally friendly, and can be incorporated with MnO2. Furthermore, the synergetic effect also plays an important role in improving the performance of the MnO2–CuO composite on the carbon surface. Therefore, a material comprising both MnO2 and CuO will exhibit better electrochemical performance, conductivity, cycling stability, and morphological properties than individual MnO2 and CuO materials. Therefore, this study focused on CuO@MnO2 and CuO@MnO2/N-multiwalled carbon nanotube (MWCNT) composites synthesized via a hydrothermal reaction process using a three-electrode configuration for supercapacitor applications. The nanocrystalline structure and morphological properties of the resulting composites were investigated via FE-SEM. In addition, the electrochemical properties of the composite electrodes were analyzed using CV, GCD, and EIS in the presence of a 5M KOH electrolyte.

Experimental methods

Materials. MWCNTs, copper nitrate penta hydrate Cu(NO3)2·5H2O, potassium permanganate (KMnO4), manganese (II) acetate (C9H8MnO4), hydrochloric acid (HCl), sulfuric acid (H2SO4), phosphoric acid (H3PO4), ammonia (NH3, 30%), absolute ethanol (C2H5OH), N-methyl pyrrolidinone (NMP), and polyvinylidene fluoride (PVDF) were obtained from Sigma-Aldrich Chemicals, and the overall electrochemical experiments were performed using double distilled (DD) water.

Synthesis of CuO@MnO2/N-MWCNT composite. The required MWCNT and nitrogen-doped MWCNT syntheses are described in our previous reports20,21. In summary, to synthesize the CuO@MnO2 composite, 0.65 of N-MWCNTs was diffused in 200 mL of double DD water via sonication for 2 h to achieve complete dispersion of the tubes. For this, 0.3 moles of copper nitrate CuSO4·5H2O and 0.3M manganese acetate/KMnO4 were added, followed by 20 mL of 30% ammonia, and the solution was stirred at 90 °C for 12 h. At this point, the reaction mixture was transferred to an autoclave reactor, and the hydrothermal reaction was carried out at 200 °C for 8 h. The precipitated CuO@MnO2/N-MWCNT composite material was filtered and washed repetitively with a 1:1 solution of DD water/ethanol and purified at 90 °C for 12 h. The dried composite was stored in an airtight bottle and subjected to structural, morphological, and electrochemical analyses. A schematic of the CuO@MnO2/N-MWCNT composite synthesis is shown in Fig. 1.

Fabrication of electrodes for supercapacitor study. The composite was fabricated via a three-electrode configuration and its electrochemical properties were determined using CV, GCD, and EIS analyses. The material (85:15:5) was mixed with N-methyl pyrrolidinone (NMP) using a uniform paste. Subsequently, this paste was coated uniformly on a strip of a nickel wire (1 × 1 cm-2) current collector and vacuum-dried. For electrode configuration and its electrochemical properties were determined using CV, GCD, and EIS analyses. The composite materials were characterized using Raman, XRD, SEM, SEM–EDS, TEM, and CV analyses for supercapacitor application. XRD results of the composite materials were obtained using a Rigaku Rotaflex (RU-200B) X-ray diffractometer. The composite materials were analyzed using a He–Ne laser beam in the RM 200 Raman spectral microscope, and the morphological properties of the composite samples were determined using FE-SEM (JEOL) and SEM–EDX analyses. The electrochemical properties of the composite materials were determined based on CV, GCD and EIS results via CHI 7081C (CH Instruments, workstation Inc., USA).
Results and discussion

Structural properties. Figure 2a shows the diffraction patterns of the CuO@MnO2/N-MWCNT composite material for supercapacitor applications. The peaks marked in green at 28.50°, 37.30°, 42.80°, 56.80°, 59.40°, and 72.50° corresponding to the (100), (101), (111), (113), (200), (220), (202), (400), (211), (220), (330), (400), and (420) planes of MnO2, respectively, matched with the data in PDF file no.44-0141. The 2θ peaks marked in red at 30.50°, 32.50°, 35.50°, 38.70°, 48.80°, 53.25°, 58.65°, 61.50°, 66.20°, 68.10°, 72.40°, and 75.20° corresponded to (110) (111) (202) (112), (020), (202), (113), (311), and (004) planes, respectively. The obtained results agreed with those of the CuO (JCPDS file no. 72-0629) monoclinic structure in the composite materials. In this XRD pattern, CuO@MnO2 was decorated on the N-MWCNT surface. Therefore, the MnO2/CuO in the composite materials was recognized as MnO2 with cubic and monoclinic CuO structure20,21.

The Raman spectra of the composites are shown in Fig. 2b. The Raman shifts at ∼1343, ∼1570, and 2450 cm−1 were ascribed to the three distinct peaks of the N-MWCNT composite. The D band was assigned to the lattice defect of the phonon mode of vibration from the N-MWCNT surface. The G band signifies the C–C (vibrational modes) and double-degenerate phonon modes of E2g symmetry. The G band is associated with the vibrational modes of the sp2-bonded carbon atoms in the graphitic layer from the N-MWCNT, whereas the D band is associated with the breathing mode of sp2 bonding, which is present in disordered graphite. We observed that N doping enhanced the D-band intensity of the composite sample. The peak intensity ratio between the D and G bands (ID/IG) was 1.05 for the pristine N-MWCNT [ref], and 1.28 and 1.30, respectively, for the composite samples. This D enhancement indicates that N doping produces lattice defects in the graphitic layers11,22,23.
The lower wave region of the metal oxides was formed with less intense Ag, Bg1, and Bg2 vibration modes, as discussed previously for metal oxide materials24–27.

Morphological properties of the CuO@MnO₂ composite. The surface morphology of the composite was studied using SEM and SEM–EDS, and the results are shown in Figs. 3 and 4, respectively. The results revealed that the N-MWCNT tubes and CuO@MnO₂ exhibited well-decorated nanotubes with an outer diameter of about ~20–30 nm and an inner thickness of ~10–20 nm (Fig. 4e). The SEM–EDS morphology of the composite is shown in (Supplementary Fig. S1). The results confirmed that C, O, N, Cu, and MnO₂ were present in the synthesized composite materials. The morphological behavior of CuO- and MnO₂-based materials has been previously reported in the literature28–30.

Electrochemical properties of the composite electrodes. The electrochemical properties of MnO₂ and CuO oxides, and carbon-based materials have been investigated in several studies31,32, as these materials have potential electrode properties and cyclic stability, rendering them suitable for supercapacitor applications. In this study, the fabrication of CuO@MnO₂ and CuO@MnO₂/N-MWCNT composites was examined using a three-electrode configuration in the presence of a 5 M KOH electrolyte, and the results are shown in Figs. 5 and 6. The CV results for the composite are presented in Figs. 5 and 6a. The redox peaks were clearly observed for the CuO@MnO₂ and CuO@MnO₂/N-MWCNT composites. The excellent redox behavior of the composites was attributed to the reversible redox reaction between the active electrode materials and the electrolyte. The altered scan rates applied from the (10 to 100) mV/s results indicate that a similar trend of the electrochemical behaviors and rate capabilities occurred in the presence of the 5 M KOH electrolyte. The obtained results became more pronounced with scan rates and peak shifts toward positive and negative potentials owing to the polarization effect and electron transfer rates between the Cu and Mn oxides on the carbon surface33–37. The improved electrochemical behavior was strongly related to the chemical composition and morphology of the synthesized composite or 5 M KOH electrolyte for supercapacitor applications38,39.

GCD analysis was performed at current densities of 0.5, 1.0, 1.5, 2 and 2.5 A g⁻¹ in the 0.0–0.6 V range, and the results are shown in Figs. 5b and 6b. The specific capacitance values were calculated using the equations reported in a previous study40,41. The composite electrodes exhibit triangular forms, which indicate reversible redox reactions in the electrochemical process. The outcome capacitance values of CuO@MnO₂ were calculated as 61.54, 53.8, 46.15, 27.69 and 26.90 F g⁻¹ at current densities of 0.5, 1.0, 1.5, 2, and 2.5 A g⁻¹, respectively. The CuO@MnO₂/N-MWCNT composite yields values of 184, 165, 154, 123, and 116 F g⁻¹ at the same current density. The variation of specific capacitance with current density is shown in Figs. 5c and 6c. The increase in specific
capacitance was almost threefold owing to the interaction of the metal oxide nanoparticles with the nitrogen-doped carbon nanotubes. The cyclic stabilities of the composite electrodes prepared from the composites are shown in Figs. 5d and 6d. This result reveals that the GCD test was performed at a current density of 0.5 A g\(^{-1}\) for 5000 cycles. The specific capacitance of the composite electrode was 98.5\% of its initial value, indicating the excellent stability retention and the performance of the composite electrode materials in terms of enhanced electrochemical properties with a 5 M KOH electrolyte. The unique morphologies of the synthesized composite materials may prevent aggregation and volume expansion during long-term cycling, which is useful for achieving structural stability of the electrodes\(^{42,43}\).

The results revealed that the synthesized composites exhibited superior specific capacitance values compared with those fabricated in previous studies (Table 1). The improvement in the specific capacitance of the CuO@MnO\(_2\) and CuO@MnO\(_2\)/N-MWCNT composite electrodes resulted from the surface properties and improved morphological properties of the electrodes. The specific capacitances of the CuO@MnO\(_2\) and CuO@

Figure 4. (a–e) SEM morphology of the CuO@MnO\(_2\)/N-MWCNT composite.
MnO$_2$/N-MWCNT composite electrode materials were better than those of other electrodes with previously reported materials, as shown in Table 112,43. The improvement in the electrochemical properties depends on the Faradaic redox reactions of the Cu (I)/Cu(II) and Mn (Mn$^{2+}$) transitions and increases the capacitances, facilitating supercapacitor applications43,44. Furthermore, the electrochemical behaviors of the synthesized CuO@MnO$_2$ and CuO@MnO$_2$/N-MWCNT composite electrodes were studied via impedance spectroscopy (EIS) analysis, and the fabricated electrodes of composite (EIS) results are presented in Figs. 5e and 6e. The composite showed excellent electrochemical properties in the lower frequency region in the presence of the electrolyte, indicating that the electrochemical capacitive behavior of the composite electrode materials determines the parameters that affect the electrochemical performances$^{45-47}$. Furthermore, the Cu$^{2+}$/Cu$^+$ and Mn$^{2+}$ to Mn$^+$ redox reactions

Figure 5. Results of electrochemical CV analysis. (a) CV; (b) GCD; (c) variation of specific capacitance with current density; (d) cyclic stability; and (e) EIS of the CuO@MnO$_2$ composite electrode.
improve the electrochemical behavior of the electrode materials in the lower wave frequency region, making these composites potentially suitable for supercapacitor applications.

Conclusion

CuO@MnO$_2$ and CuO@MnO$_2$/N-MWCNT composites synthesized via a sonication-assisted process and hydrothermal reaction process exhibited excellent morphological properties and improved electrochemical behavior. Moreover, the CuO@MnO$_2$/N-MWCNT composite electrodes exhibited excellent electrochemical properties with a high specific capacitance of 184 F g$^{-1}$ at a current density of 0.5 A g$^{-1}$ in the presence of 5 M KOH electrolytes. In particular, a capacity retention of 98.5% at 0.5 A g$^{-1}$ was maintained over 5000 continuous GCD cycles. This enhancement in the electrochemical properties of the material was attributed to the surface properties.

Figure 6. Results of electrochemical CV analysis. (a) CV; (b) GCD; (c) variation of specific capacitance with current density; (d) cyclic stability; and (e) EIS of the CuO@MnO$_2$/N-MWCNT composite electrode.
Table 1. Comparison of the electrochemical properties of the synthesized CuO@MnO2 and CuO@MnO2/N-MWCNT composite with those of composite materials reported in the literature.

Synthesized composites	Fabrication methods	Capacitance (F g⁻¹)	Cyclic stability	Ref.
CuO/MOF carbon composite	Chemical electrochemical etching	151 F g⁻¹ at 1	10% loss after 2500 cycles	40
CuO/NIO/RGO composite	Sonication assisted solvothermic process	395 F g⁻¹ at 0.5 A g⁻¹	11% loss after 5000 cycles	80
MWCNT/NIO/PPY composite	Thermal reduction process	239.5 F g⁻¹ at 0.5 A g⁻¹	2.68% loss after 1000 cycles	10
MnO2/CuO core shell materials	One step hydrothermal process	167.2 F g⁻¹ at 0.3 A g⁻¹	11.4% loss after 5000 cycles	32
Leaf like CuO-Cu(OH)₂ electrode	One step anodization method	1.954 F cm⁻² at 2 A g⁻¹	19.5% loss after 2000 cycles	35
Flower like CuO	Chemical precipitation method	133.6 F g⁻¹ at 2 A g⁻¹	5.2% loss after 200 cycles	34
MnO2/CNT/CP composite	Chemical vapor deposition	200 F g⁻¹ at 1 m A/cm²	1% loss after 1000 cycles	26
CuO@MnO2/N-MWCNT composite	Sonication supported hydrothermal synthesis	184 F g⁻¹ at 0.5 A g⁻¹	1.5% loss after 5000 cycles	Current study

and improved morphological behavior of the material. The synthesized composite electrodes exhibited excellent electrochemical, morphological, and cyclic stabilities, rendering them suitable for supercapacitor applications.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Received: 6 April 2022; Accepted: 18 July 2022
Published online: 20 September 2022

References
1. Lou, X. W., Archer, L. A. & Yang, Z. Hollow micro-/nanostuctures: Synthesis and applications. Adv. Mater. 20, 3987–4019 (2008).
2. Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical super-capacitors. Chem. Soc. Rev. 41, 797–828 (2012).
3. Ouyang, L., Hsiao, C.-H., Chen, Y.-C., Lee, C. Y. & Tai, N. H. Fabrication of Ni-Mn LDH/Co3O4 on carbon paper for the application in supercapacitors. Surf. Interface Anal. 28, 101574 (2021).
4. Fan, Z. et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21, 2366–2375 (2011).
5. Ramesh, S. et al. Core shell nanostructured of Co3O4@RuO2, assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application. J. Alloy. Compd. 877, 160297–160297 (2021).
6. Racik, M. et al. Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Physica E 119, 114033 (2020).
7. Lei, Z., Zhang, J. & Zhao, X. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. A 22, 153–160 (2012).
8. Ramesh, S. et al. Nanostructured CuO/Co3O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors. Compos. B Eng. 166, 74–85 (2019).
9. Bathula, C., Rabani, I. & Ramesh, S. Highly efficient solid-state synthesis of Co3O4 on multiwalled carbon nanotubes for supercapacitors. J. Alloy. Compd. 887, 161307–161307 (2021).
10. Li, Q. et al. Design and synthesis of MnO2/Ni/N-MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett. 12, 3803–3830 (2012).
11. Zhang, H. & Zhang, M. Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors. Mater. Chem. Phys. 108, 184–188 (2008).
12. Khan, M. A., Wahab, Y., Muhammad, R., Tahir, M. & Sakrani, S. Catalyst-free fabrication of novel ZnO/CuO Core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties. Appl. Surf. Sci. 435, 718–732 (2018).
13. Ramesh, S. et al. Fabrication of nanostructured SnO2@Co3O4/nitrogen doped graphene oxide composite for symmetric and asymmetric storage devices. J. Mater. Res. Technol. 9, 4183–4193 (2020).
14. Ramesh, S., Karuppusamy, K., Kim, H. S., Kim, H. S. & Kim, J.-H. Hierarchical flowerlike 3D nanostructure of Co3O4@MnO2/N-doped graphene oxide (NGO) hybrid composite for a high-performance supercapacitor. Sci. Rep. 8, 16543 (2018).
15. Zhang, Y. X., Li, F. & Huang, M. One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater. Lett. 12, 203–206 (2013).
16. Feng, Q., Kanoh, H. & Ooi, K. Manganese oxide porous crystals. J. Mater. Chem. 9(2), 319–333 (1999).
17. Zhou, Y. et al. High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon 184, 504–513 (2021).
18. Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Electrochim. Acta 74, 1158–1165 (2012).
19. Gueon, D. & Moon, J. H. Nitrogen-doped carbon nanotube spherical particles for supercapacitor applications: Emulsion-assisted compact packing and capacitance enhancement. ACS Appl. Mater. Interfaces 7, 20883–20889 (2015).
20. Huang, M., Li, F., Dong, F., Zhang, Y. X. & Zhang, L. L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3(43), 21380–21423 (2015).
21. Zhang, Y., Guo, W. W., Zhang, Z. T. X. & Fan, Y. X. Engineering hierarchical Di-atom@CuO@MnO2 hybrid for high performance supercapacitor. Appl. Surf. Sci. 427, 1158–1165 (2018).
22. Guo, X. L., Li, G., Kuang, M. & Zhang, Y. L. Tailoring kirkendall effect of the KCu7S4 microwires towards CuO/MnO2 core-shell nanostructures for supercapacitors. Electrochim. Acta 174, 87–92 (2015).
23. Wang, J. G., Huang, Y. Y. & Kang, Z. H. Synthesis and electrochemical performance of MnO2/CNTs-embedded carbon nanofibers nanocomposites for supercapacitors. Electrochim. Acta 75, 213–219 (2012).
31. Yu, L., Zhang, G., Yuan, C. & Lou, X. Hierarchical NiCo2O4@MnO2 core-shell heterostructure nanowire arrays on Ni foam.

46. Ramesh, K. S.

44. Zhang, Y. X.

53. Liu, C., Li, F. & Cheng, M. L. P. Advanced materials for energy storage.

47. Purushothaman, K. K., Saravanakumar, B., Babu, I. M., Sethuraman, B. & Muralidharan, G. Nanostructured CuO/reduced graphene oxide composite for high-performance supercapacitor electrodes.

51. Reddy, A. L. M. & Ramaprabhu, S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes.

52. Kathalingam, A.

55. Kakani, V.

27. Wang, G., Huang, J., Chen, S., Gao, Y. & Cao, D. Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam.

38. Zhao, Y., Jiang, P. & Xie, S. S. ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors.

39. Kumar, R., Manoj, D. & Santhanalakshmi, D. J. Optimization of site-specific adsorption of oleylamine capped CuO nanoparticles on TiO2 for electrochemical determination of guanine.

101.

111.

23. Kundu, S. K., Mandal, A. K., Roy, A. K., Paul, S. & Bhattacharyya, T. H. Influence of CuO content on the electrochemical performance of CuO/CNT composite electrodes.

J. Phys. Chem. C 114, 10500–10509 (2010).

Karuppasamy, K. et al. Highly porous, hierarchical microgolubes of CuO/Ni embedded N-doped carbon matrix for high performance asymmetric supercapacitors.

Appl. Surf. Sci. 529, 147147–147157 (2020).

Reddy, A. L. M. & Ramaprabhu, S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes.

J. Phys. Chem. C 111, 7727–7734 (2007).

Kathalingam, A. et al. Nanosheet-like ZnO@MnO2 doped graphene oxide/polyaniline composite for supercapacitor application: Effect of polyaniline incorporation.

J. Alloy. Compd. 830, 154734–154734 (2020).

Liu, C., Li, F. & Cheng, M. L. P. Advanced materials for energy storage. Adv. Mater. 22, 28–62 (2010).

Abdullah, A., Parveen, N., Ahmad, F., Alam, M. W. & Ansari, S. A. Self-assembled cube-like copper oxide derived from a metal-organic framework as a high-performance electrochemical supercapacitive electrode material.

Sci. Rep. 9, 1–10 (2019).

Kakani, V. et al. Facile synthesis of CuO/NiO/nitrogen doped RGO by ultrasonication for high performance supercapacitors.

J. Alloy. Compd. 847, 156411–156421 (2020).

Author contributions

Conceptualization: V.K. and S.R.; draft preparation: V.K. and S.R.; execution: V.K. and S.R.; data analysis: H.M.Y., C.B., R.R.P., H.S.K., P.K.B., and V.R.P.; draft editing and review: V.K., S.R., and H.L.; validation and supervision: S.R., H.L., and H.K.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-16866-3.

Correspondence and requests for materials should be addressed to H.L. or H.K.

Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022