Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β.

Siddharth Bakshi, Jordan Taylor, Sam Strickson, Thomas McCartney and Philip Cohen

The double-stranded RNA mimetic poly(I:C) and LPS activate Toll-like Receptor 3 (TLR3) and TLR4, respectively, triggering the activation of TANKBinding Kinase 1 (TBK1) complexes, the phosphorylation of Interferon Regulatory Factor 3 (IRF3) and transcription of the Interferon β (IFNβ) gene. Here, we demonstrate that the TANK-TBK1 and Optineurin (OPTN)-TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone-marrow-derived macrophages (BMDM) from TANK knock-out (KO) mice crossed to knock-in mice-expressing the ubiquitin-binding-defective OPTN[D477N] mutant. In contrast, IRF3 phosphorylation and IFNβ production were not reduced significantly in BMDM from OPTN[D477N] knock-in mice and only reduced partially in TANK KO BMDM. The TLR3/TLR4- dependent phosphorylation of IRF3 and IFNβ gene transcription was not decreased in macrophages from OPTN[D477N] crossed to mice deficient in IκB kinase ε (IKKe), a TANK-binding kinase related to TBK1. In contrast to the OPTN-TBK1 complex, TBK1 associated with OPTN[D477N] did not undergo phosphorylation at Ser172 in response to poly(I:C) or LPS, indicating that the interaction of ubiquitin chains with OPTN is required to activate OPTN-TBK1 in BMDM. The phosphorylation of IRF3 and IFNβ production induced by Sendai virus infection was unimpaired in BMDM from TANK KO x OPTN[D477N] mice, suggesting that other/additional TBK1 complexes control the RIG-I-Like Receptor-dependent production of IFNβ. Finally, we present evidence that in human HACAT cells the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase(s).
Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β.
Siddharth Bakshi¹, Jordan Taylor¹, Sam Strickson¹, Thomas McCartney¹ and Philip Cohen¹ (¹MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.)

Correspondence to:- Philip Cohen p.cohen@dundee.ac.uk

Abstract. The double-stranded RNA mimetic poly(I:C) and LPS activate Toll-like Receptor 3 (TLR3) and TLR4, respectively, triggering the activation of TANK-Binding Kinase 1 (TBK1) complexes, the phosphorylation of Interferon Regulatory Factor 3 (IRF3) and transcription of the Interferon β (IFNβ) gene. Here, we demonstrate that the TANK-TBK1 and Optineurin (OPTN)-TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone-marrow-derived macrophages (BMDM) from TANK knock-out (KO) mice crossed to knock-in mice-expressing the ubiquitin-binding-defective OPTN[D477N] mutant. In contrast, IRF3 phosphorylation and IFNβ production were not reduced significantly in BMDM from OPTN[D477N] knock-in mice and only reduced partially in TANK KO BMDM. The TLR3/TLR4-dependent phosphorylation of IRF3 and IFNβ gene transcription was not decreased in macrophages from OPTN[D477N] crossed to mice deficient in IκB kinase ε (IKKe), a TANK-binding kinase related to TBK1. In contrast to the OPTN-TBK1 complex, TBK1 associated with OPTN[D477N] did not undergo phosphorylation at Ser172 in response to poly(I:C) or LPS, indicating that the interaction of ubiquitin chains with OPTN is required to activate OPTN-TBK1 in BMDM. The phosphorylation of IRF3 and IFNβ production induced by Sendai virus infection was unimpaired in BMDM from TANK KO x OPTN[D477N] mice, suggesting that other/additional TBK1 complexes control the RIG-I-Like Receptor-dependent production of IFNβ. Finally, we present evidence that in human HACAT cells the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase(s).

Summary Statement.
Viral double-stranded RNA and bacterial LPS activate Toll-Like Receptors 3 and 4, respectively, activating a signaling pathway that induces the production of Interferon β. Here we show that the TANK-TBK1 and Optineurin-TBK1 heterodimers participate in the activation of Interferon Regulatory Factor 3, a key transcription factor regulating interferon β production.

Short title:- TBK1 complexes activating IRF3
Key words:- interferon, IRF3, LPS, TBK1, TLR3, ubiquitin

Abbreviations:- Dulbecco’s Modified Eagle’s Medium (DMEM); IκB kinase (IKK); Interferon (IFN); IRF3 (Interferon Regulatory Factor 3); LPS (lipopolysaccharide); Macrophage-Colony Stimulating Factor (M-CSF); mouse embryonic fibroblast (MEF); MyD88 (Myeloid Differentiation primary response gene 88); Polymerase Chain Reaction (PCR); Optineurin (OPTN); Toll-Like Receptor (TLR); BMDM (bone marrow-derived macrophages); double-stranded (ds); TBK1, TANK-binding
kinase 1); TGFβ-activated kinase-1 (TAK1); TRAF family member associated NF-κB activator (TANK) TRIF (TIR-domain-containing adapter-inducing IFNβ);

Introduction

Type 1 interferons (IFNs) have critical roles in host defense against viral and bacterial pathogens. The engagement of Toll-Like Receptor 3 (TLR3) by viral double stranded (ds) RNA, or TLR4 by bacterial lipopolysaccharide (LPS), triggers the production of IFNβ by a signaling network that requires first, the recruitment of the adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β, also known as TICAM1) [1], second, the activation of the IκB kinase-related enzymes TBK1 (TRAF family member-associated NF-kappa-B activator (TANK)-binding kinase 1) [2] and IκB kinase ε (IKKε) [3-5] and third the phosphorylation of Interferon Regulatory Factor 3 (IRF3) [6]. The phosphorylation of IRF3 at C-terminal serine residues, such as Ser396 [7, 8], induces its dimerization and translocation to the nucleus where it binds to the promoter of the IFNβ gene and stimulates transcription [9-12]. Other TBK1-regulated proteins, such as the transcription factor Deformed Epidermal Auto-regulatory Factor 1 [13] and the RNA helicase DDX3X [14, 15], may also stimulate TLR3/TLR4-dependent IFNβ gene transcription.

The critical importance of this pathway in vivo has been revealed by the identification of mutations in the genes encoding TLR3, TRIF, TBK1 or IRF3 that impair IFNβ production and underlie Herpes Simplex virus Encephalitis (HSE), a devastating disease of the Central Nervous System in young children [16, 17]. On the other hand, the overproduction of IFNβ by the TLR4/TRIF signaling network causes endotoxaemia and endotoxic shock, since IFNβ knock-out mice or mice lacking expression of the type1 IFN receptor are resistant to LPS-induced sepsis [18-20].

The RNA helicases RIG-I and MDA-5 also recognize RNA molecules formed during the replication of single-stranded RNA viruses [21-23] and trigger the activation of TBK1, the phosphorylation of IRF3 and IFNβ gene transcription. However, these RIG-I-Like (RLR) receptors do not signal via TRIF, but by the adaptor termed mitochondrial antiviral signalling protein (MAVS) (also known as IPS-1, VISA and CARDIF) [24-27].

More recently, TBK1 was reported to have a dual role in these pathways. First it phosphorylates TRIF and MAVS [28], which permits the interaction of the transcription factor IRF3 (Interferon Regulatory Factor 3) with these proteins; second it phosphorylates IRF3 at amino acid residues that include Ser396 [29]. One attractive feature of this mechanism is that it can explain why the activation of TLR3 and TLR4, but not the activation of TLRs that signal via the adaptor MyD88 (Myeloid Differentiation primary response gene 88), trigger IRF3 phosphorylation [28], even though TBK1 is activated robustly when any TLR is activated [30].

TBK1 does not exist as a single entity in cells but as a variety of heterodimers in which it forms complexes with TANK [2], 5-azacytidine-induced protein 2 (also called NAP1) [31], SINTBAD (Similar to NAP1 TBK1 Adaptor) [32] and the ubiquitin-binding protein Optineurin (OPTN) [33]. IKKe also interacts with TANK [34], NAP1 [31] and SINTBAD [32], but not with optineurin [33, 35]. NAP1 was reported to interact with TRIF, whereas TANK did not [36], and RNA interference studies suggested that NAP1 was required for both TLR3-dependent and RIG-I/MDA-dependent polymerization of IRF3 and IFNβ production [36, 37]. The shRNA knock-down of NAP1, SINTBAD or TANK also led to decreases in Sendai virus-
induced IFNβ gene transcription in overexpression studies performed in human 293 cells. However, studies with TANK KO mice failed to find any involvement of TANK in viral responses but instead revealed that it was a negative regulator of TLR signaling. As a consequence, TANK knock-out mice overexpressed pro-inflammatory cytokines and developed autoimmune nephritis, which could be prevented by crossing to MyD88 knock-out mice [38]. Subsequently, the TANK-TBK1 and TANK-IKKε complexes were found to phosphorylate the catalytic and regulatory subunits of the canonical IKK complex on sites that inhibit their catalytic activity, explaining how TANK restricts MyD88 signaling [30, 34]. TANK plays a key role in facilitating this process via its interaction with the NEMO (NF-κB essential modulator) component of the IKK complex [39, 40].

In this paper, we have re-investigated the roles that TANK and optineurin have in TLR3- and TLR4-dependent IFNβ production after crossing TANK knockout (KO) mice with knock-in mice in which optineurin is replaced by a ubiquitin-binding-deficient mutant. These studies have demonstrated that the TANK-TBK1 and OPTN-TBK1 complexes both participate in these signaling networks.

Materials and Methods

Materials. MRT67307, a potent inhibitor of TBK1 and IKKε [30], was dissolved in dimethyl sulfoxide and stored at -20°C as a 10 mM solution. LPS (Escherichia coli strain O5:B55) was from Alexis Biochemicals (ALX-581-013-L002) and poly(I:C) from InvivoGen (tlrl-pic). Macrophage colony-stimulating factor (M-CSF) was purchased from R&D Systems (216-MC-025), FuGene® HD transfection reagent from Promega (E2311).

Antibodies. Antibodies for immunoprecipitation were raised in sheep against amino acid residues 520-531 of human OPTN (sheep number S685D, 4th and 5th bleeds) and the full length human TANK protein (sheep number S278C, 3rd bleed), and were generated by the antibody production team of the Medical Research Council Protein Phosphorylation and Ubiquitination Unit, University of Dundee (coordinated by Dr James Hastie). They can be ordered from the reagents section of the MRC-PPU website (https://mrcppureagents.dundee.ac.uk/). The following antibodies for immunoblotting were purchased from Cell Signaling Technology: TANK (Cat#2141), TBK1 (Cat#3504), TRIF (Cat#4596), IKKε (Cat#3416), GAPDH (Cat#2118), JNK1/2 (Cat#9258), p38(Cat#9212), TBK1 phosphorylated at Ser172 (Cat#5483), IKKε phosphorylated at Ser172 (Cat#8766), TAK1 (TGFβ-activated kinase 1) (Cat#4505), I KKα phosphorylated at Ser176 and Ser180 and I KKβ phosphorylated at Ser177 and Ser181 (Cat#2677) IRF3 phosphorylated at Ser396 (Cat#4947), JNK1 and JNK2 dually phosphorylated at their Thr-Pro-Tyr motifs (Cat#4668), and p38α MAP kinase dually phosphorylated at its Thr-Gly-Tyr motif (Cat#9211). An anti-OPTN antibody was obtained from Abcam, (Cat#ab23667), an antibody that recognizes all forms of IRF3 was from Proteintech (Cat#11312-1-AP) and an antibody that recognizes all forms of I KKβ was from Merck-Millipore (Cat#05-535). Rabbit- and sheep-specific secondary antibodies conjugated to horse-radish peroxidase were from Thermo Scientific.

3
Mice, cell culture, cell stimulation and cell lysis –
Heterozygous TANK KO mice (a gift from Professors Osamu Takeuchi and Shizuo Akira) [38] and IKKε KO mice (a gift from Dr Alastair Reith GlaxoSmithKline, Stevenage, UK) were crossed to OPTN[D477N] mice [35] to generate TANK KO x OPTN[D477N] and IKKε KO x OPTN[D477N] mice, respectively. BMDM were obtained by differentiating bone marrow obtained from the femur and tibia with M-CSF or L929 preconditioned medium as the source of M-CSF [41]. Adherent BMDM were re-plated into 12-well tissue culture plates (5 x 10^5 cells/well) or 10 cm tissue culture grade plates (5 x 10^6 cells/plate) using fresh culture medium. After re-plating, the BMDM were stimulated with the TLR ligands indicated in the figure legends. The human keratinocyte HACAT cell line was cultured in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% foetal bovine serum (FBS), 2 mM L-glutamine and antibiotics (100 Units/ml penicillin, 0.1 mg/ml streptomycin). Where indicated, cells were incubated for 1 h with MRT67307 dissolved in DMSO or an equivalent volume of DMSO for control incubations.

The cells were rinsed in ice-cold PBS and extracted in ice cold lysis buffer (50 mM Tris/HCl pH 7.5, 1 mM EGTA, 1 mM EDTA, 1% (v/v) Triton X-100, 1 mM sodium ortho-vanadate, 50 mM NaF, 5 mM sodium pyrophosphate, 0.27 M sucrose, 10 mM sodium 2-glycerophosphate, 1 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine, 1mM DTT). Cell lysates were clarified by centrifugation at 14,000 × g for 30 min at 4°C and the supernatants (cell extracts) were collected and their protein concentrations determined by the Bradford procedure.

Generation of TRIF- or TAK1-deficient HACAT cells.
HACAT cells (2 x 10^5 cells) were plated on to a 10 cm diameter tissue culture grade plate and transfected the next day with 1 µg each of guide (g) RNA plasmid targeting the gene of interest. FuGene® HD transfection reagent (5 µl per 1 µg of plasmid DNA) was used for transfection. At 24 h and 48 h post-transfection, fresh media containing 2 µg/ml of puromycin was added to the cells, while 72 h after transfection the puromycin-containing medium was replaced by medium lacking puromycin. After a further 48 h, cells were single-cell plated into 96 well plates and left for 2-3 weeks until colonies began to form. The colonies were then analyzed for the expression of TRIF and TAK1 by immunoblotting.

Immunoblotting and Immunoprecipitation.
Immunoblotting was performed using the ECL detection system (GE Healthcare). To immunoprecipitate TANK and OPTN, 1.0 mg of cell extract protein was incubated for 2 h or 4 h with 3.0 µg anti-TANK or 6.0 µg of anti-OPTN. Protein-G-Sepharose beads (20µl) were added and, after end-over-end rotation for 1 h at 4°C, the beads were collected by centrifugation, washed three times with cell lysis buffer, denatured in SDS, subjected to SDS-PAGE, transferred to PVDF membranes and immunoblotted.

Quantitative RT-PCR and ELISA.
Total RNA was extracted from macrophages using the MicroElute Total RNA kit (Omega bio-tek). RNA was reverse transcribed using iScript cDNA synthesis kit (Bio-Rad) following the manufacturer’s instructions. PCR mixes were assembled using the SsoFast™ EvaGreen® Supermix (Bio-Rad). Reactions were performed with
the SYBR Green (plus melting curve analysis) programme on the C1000 thermal cycler quantitative PCR system (Bio-Rad). All reactions were performed in duplicate. The concentration of IFNβ released into the cell culture medium was determined by using the LegendMax mouse IFNβ-ELISA kit (Biolegend). The primer sequences used in this paper are given in Table S1.

Quantitation of immunobLOTS of phosphorylated IRF3.
This was performed using Image J software and normalized to immunoblots obtained with antibodies that recognize all forms of IRF3.

Statistical analyses.
Statistical analyses were performed using GraphPad Prism software. Quantitative data was presented as the arithmetic mean ± SEM. Statistical significance of differences between wild type and the other genotypes was assessed using two-way ANOVA with Bonferroni post-test to compare each genotype to the control wild type sample, unless stated otherwise. Differences in means were considered significant if p<0.05; * p<0.05, **p<0.01, ***p<0.001. n.s. means not-significant.

Results

TANK-TBK1 and OPTN-TBK1 control TLR3/4-dependent phosphorylation of IRF3 and IFNβ gene transcription in bone marrow-derived macrophages.

OPTN is the protein with the greatest amino acid sequence similarity to NF-κB Essential Modifier (NEMO), the regulatory component of the canonical 1κB kinase (IKK) complex. The proteins have similar ubiquitin-binding domains and, like NEMO, OPTN binds to Met1-linked ubiquitin (M1-Ub) and Lys63-linked ubiquitin (K63-Ub) chains, but not to Lys48-linked ubiquitin chains [35]. To investigate which TBK1 complexes are required for IRF3 phosphorylation and IFNβ production, we crossed knock-in mice expressing the ubiquitin-binding-defective OPTN[D477N] mutant [35] to TANK knock-out (KO) mice [38], generating TANK KO x OPTN[D477N] mice. Stimulation of bone marrow-derived macrophages (BMDM) with the dsRNA-mimetic poly(I:C) to activate TLR3, or LPS to activate TLR4 induced the production of IFNβ mRNA (**Figs 1A and 1B**) and secretion of IFNβ (**Figs 1C and 1D**), which were partially reduced in BMDM from the TANK KO, not reduced significantly in BMDM from OPTN[D477N] mice, but greatly reduced in BMDM from the TANK KO x OPTN[D477N] mice. Consistent with these findings, the TLR3-dependent phosphorylation of IRF3 at Ser396 was also reduced considerably in BMDM from the TANK KO x OPTN[D477N] mice (Top two panels of **Figs 2A and Fig S1A**) and the TLR4-dependent phosphorylation of IRF3 was undetectable (top two panels of **Figs 2B and Fig S1B**). Consistent with these observations, the LPS-dependent secretion of IFNβ was reduced more strikingly than the poly(I:C)-stimulated secretion of IFNβ in BMDM from TANK KO x OPTN[D477N] mice. However, the TLR3- or TLR4-dependent phosphorylation of TBK1 at Ser172 was only reduced modestly in BMDM from TANK KO x OPTN[D477N] mice (**Figs 2A and 2B, panels 3 and 4**), indicating that poly(I:C) and LPS activate other TBK1 complexes distinct from TANK-TBK1 and OPTN-TBK1.

TLR3 signals specifically via the adaptor protein TRIF, whereas TLR4 signals via MyD88 as well as TRIF. The decreased phosphorylation of TBK1 at Ser172
observed 15 min after stimulation with LPS in BMDM from TANK KO and TANK KO x OPTN[D477N] mice is explained by the TANK-TBK1 complex making a major contribution to the MyD88-dependent activation of TBK1 [34], which occurs more rapidly than the TRIF-dependent activation of TBK1. Since only the slower TRIF-dependent activation of TBK1 induces IFR3 phosphorylation at Ser396, this explains why the LPS-dependent phosphorylation of TBK1 precedes he phosphorylation of IFR3.

The mRNAs encoding TLR3, TLR4 and TRIF were not decreased in BMDM from the TANK KO, OPTN[D477N] or TANK KO x OPTN[D477N] mice (Figs S2A-S2C), indicating that the decreased phosphorylation of IFR3 and reduced production of IFNβ mRNA in BMDM from TANK KO x OPTN[D477N] mice was not explained by decreased expression of these receptor and adaptor molecules that are situated “upstream” of IFR3 in this signaling pathway. The expression of UNC93B, which interacts with TLR3 and localizes it to endosomal membranes [42], was also unimpaired in the TANK KO x OPTN[D477N] knock-in mice (Fig S2D). The expression of IFR3 in BMDM from TANK KO x OPTN[D477N] was similar to wild type mice, while the expression of TANK was similar in BMDM from OPTN[D477N] mice and the expression of OPTN was similar in TANK KO mice (Figs 2A and 2B).

IKKα, the protein kinase most closely related to TBK1, also forms a complex with TANK [34] and has been reported to contribute to TLR3 and TLR4-dependent IFNβ production in some cells (see Introduction). However, the poly(I:C)- or LPS-stimulated phosphorylation of IFR3 at Ser396 (Figs 2C and 2D, top two panels), IFNβ mRNA production and IFNβ secretion (Figs 3A-3D) were not impaired in macrophages from the OPTN[D477N] x IKKα KO mice. Indeed, IFNβ production was modestly elevated in the IKKα-deficient macrophages compared to wild type macrophages. Taken together, these experiments indicate that the OPTN-TBK1 and TANK-TBK1 complexes are required for the TLR3- and TLR4-dependent phosphorylation of IFR3 at Ser396 and the production of IFNβ in BMDM.

LPS-stimulation decreased the electrophoretic mobility of TANK and OPTN (Fig 2). This is caused by the phosphorylation of these proteins, since it was reversed by treatment with phage λ phosphatase (Fig S3). The LPS-induced decrease in the electrophoretic mobility of OPTN is less pronounced in the OPTN[D477N] mutant (Fig 2, panel 6 from top) indicating that it is phosphorylated less extensively than wild type OPTN. The OPTN[D477N] mutant was also expressed at higher levels than wild type OPTN. After stimulation with poly(I:C) for 1 or 2 h, there is an apparent decrease in the expression of TANK, which is largely restored after 4 h. The underlying molecular mechanism is unclear, but a possible explanation is that TANK undergoes a covalent modification that prevent its recognition by the TANK antibody.

The LPS- and poly(I:C)-dependent phosphorylation of the mitogen-activated protein (MAP) kinases, termed c-Jun N-terminal kinases 1 and 2 (JNK1/2) and p38α, was similar in BMDM from TANK KO x OPTN[D477N] and wild type mice up to one hour. However, the poly(I:C)-dependent activation of these MAP kinases then decreased much more rapidly between 1 and 4 hours in TANK KO x OPTN[D477N] BMDM compared to wild type BMDM (Figs 2A and 2B, panels 9 and 10 from top). These observations, which were made in two independent experiments, suggest that these TBK1 heterodimers may have a role in maintaining JNK1/2 and p38α activity during prolonged TLR3 activation. This could be important for sustaining ifnβ gene
transcription in mouse BMDM, since the JNK-dependent activation of the transcription factors c-Jun and ATF2 has been reported to coordinate the adenovirus-mediated induction of primary IRF3-responsive transcripts in conjunction with activated IRF3 [43].

Activation of the TANK-TBK1 and OPTN-TBK1 complexes.

To study the activation of the individual TANK-TBK1 and OPTN-TBK1 complexes, we immunoprecipitated TANK (Figs 4A and 4B) or OPTN (Figs 4C and 4D) from BMDM extracts and examined phosphorylation of the associated TBK1 catalytic subunit at Ser172. These experiments showed that poly(I:C)- or LPS-stimulation induced the activation of both the TANK-TBK1 and OPTN-TBK1 complexes. Importantly, the phosphorylation of TBK1 at Ser172 was reduced in the OPTN[D477N]-TBK1 complex compared to the OPTN-TBK1 complex (Figs 4C and 4D), implying that the interaction of OPTN with ubiquitin chains is required for the robust phosphorylation and activation of the OPTN-TBK1 complex.

TANK-TBK1 and OPTN-TBK1 are not rate limiting for Sendai virus-induced IRF3 phosphorylation and IFNβ gene transcription in BMDM.

To investigate whether the TANK-TBK1 and OPTN-TBK1 complexes were also rate limiting role for the RLR-dependent signaling pathway (see Introduction), we studied Sendai virus-induced IFNβ production in BMDM. These experiments showed that IRF3 phosphorylation at Ser396 and IFNβ secretion were similar in BMDM from TANK KO, OPTN[D477N], TANK KO x OPTN[D477N] and wild type mice (Fig S4). Therefore, in contrast to the TLR3- and TLR4-signaling networks, the TANK-TBK1 and OPTN-TBK1 complexes were not rate limiting for RLR-dependent IFNβ production under the conditions that were studied.

The Poly(I:C)-dependent phosphorylation of TBK1 at Ser172 in HACAT cells involves a novel “upstream” kinase.

The Interleukin-1 (IL-1)-dependent phosphorylation of TBK1 at Ser172 in mouse embryonic fibroblasts (MEFs) is catalyzed by IKKβ and by TBK1 itself, and is therefore prevented by incubating IKKα-deficient MEFs with an IKKβ inhibitor plus a dual TBK1/IKKε inhibitor, but not by either inhibitor alone. Since the Interleukin-1-dependent activation of IKKα and IKKβ in MEFs is catalyzed by the protein kinase TAK1 (TGFβ-activated kinase 1, also called MAP3K7), the IL-1-dependent phosphorylation of TBK1 can also be suppressed by a TBK1 inhibitor in MEFs from knock-in mice expressing a kinase-inactive form of TAK1 [30]. In contrast, the Tumour Necrosis Factor-induced activation of TBK1 in IKKα-deficient MEFs is prevented by the inhibition of IKKβ alone [30].

MEFs do not respond robustly to either poly(I:C) or LPS, and TAK1 knock-out/knock-in mice display early embryonic lethality. To investigate which protein kinases activate TBK1 in the TLR3/TLR4-TRIF signaling network, we therefore used human keratinocyte HACAT cells, which respond to poly(I:C) [44] (Fig 5A). The poly(I:C)-dependent phosphorylation of IRF3 at Ser396 in HACAT cells was mediated by the activation of TLR3, since it was abolished by the knock-out of TRIF (Fig 5A). We next disrupted the gene encoding the TAK1 catalytic subunit in HACAT cells by CRISPR/Cas9 gene editing technology and found that the poly(I:C)-dependent activation of the canonical IKK complex, JNK1/2 and p38α MAP kinase
were abolished (Fig 5B), but the phosphorylation of IRF3 at Ser396 was unaffected (Fig 5C). However, the phosphorylation of TBK1 at Ser172 was only reduced modestly, even when the TAK1 KO cells were additionally incubated with the dual TBK1/IKKe inhibitor MRT67307 prior to stimulation with poly(I:C) to prevent the autophosphorylation of TBK1 at Ser172 (Fig 5C). Taken together, these experiments indicate that the poly(I:C)-dependent phosphorylation of TBK1 at Ser172 involves a novel TBK1-activating kinase distinct from IKKα, IKKβ and TBK1 itself. Incubation of the wild type HACAT cells with MRT67307 increased the poly(I:C) dependent phosphorylation of TBK1 at Ser172 (Fig 5C). This observation, which has been made previously in other cells [30], indicates that TBK1 controls a feedback loop that restricts its own activation.

Interestingly, although the poly(I:C)-dependent phosphorylation of IRF3 at Ser396 was unimpaired in TAK1 KO HACAT cells (Fig 5C), IFNβ gene transcription was abolished (Fig 5D) demonstrating that TAK1 controls IFNβ gene transcription by a mechanism that is independent of IRF3 phosphorylation at Ser396. This might be explained by the suppression of JNK1/2 in TAK1 KO HACAT cells (Fig 5B), since JNKs have been reported to control IFNβ gene transcription by phosphorylating IRF3 at Ser173 [45].

Discussion

Although it is well established that the activation of TBK1 and the phosphorylation of IRF3 are key events in the TLR3/4 signaling pathway leading to IFNβ gene transcription, the molecular events that trigger the activation of TBK1 and the phosphorylation of IRF3 are still incompletely understood. Here, we have shown that the TANK-TBK1 and OPTN-TBK1 complexes are rate-limiting for the TLR3/4-dependent phosphorylation of IRF3 (Figs 2A and 2B) and ifnb gene transcription (Fig 1) whereas the TANK-IKKε heterodimer is not (Figs 2C, 2D and 3). However, our results do not exclude roles for other TBK1 heterodimers in this pathway, such as the NAP1-TBK1 and SINTBAD-TBK1 heterodimers which might, for example, mediate the TBK1-catalysed activation of other proteins that control this process, such as DDX3X [14, 15]. Moreover, the TANK-TBK1 and OPTN-TBK1 heterodimers were not rate-limiting for Sendai virus-induced IRF3 phosphorylation and IFNβ secretion, indicating the involvement of additional/other TBK1 heterodimers in the RIG-I/MDA5 pathway (Fig S4). Our experiments have also revealed that the poly(I:C)/TRIF-dependent phosphorylation of TBK1 at Ser172 in human HACAT cells involves a protein kinase(s) distinct from or additional to the canonical IKK complex and TBK1 itself (Fig 5), which are the protein kinases known to phosphorylate TBK1 at Ser172 in the IL-1- and TNF-signaling pathways [30].

We observed that the poly(I:C)- or LPS-induced phosphorylation of Ser172 in the OPTN-TBK1 complex is prevented in the OPTN[D477N]-TBK1 heterodimer (Fig 4), implying that the interaction of ubiquitin chains with OPTN is required to activate the TBK1 catalytic subunit in this complex. Consistent with this finding, the poly(I:C) or LPS-stimulated phosphorylation of OPTN was reduced in macrophages expressing the ubiquitin-binding-defective OPTN[D477N] mutant (Fig 2); TBK1 is known to phosphorylate OPTN at Ser177 [35, 46]. The activation of the OPTN-TBK1 complex in the TLR3/4 signaling pathway therefore appears to resemble the IL-1-dependent activation of the NEMO-IKKβ complex where the formation of Met1-linked ubiquitin chains (catalyzed by the Linear Ubiquitin Assembly Complex) and their binding to
NEMO are required before TAK1 can phosphorylate the activation loop of IKKβ at Ser177 [47]. In the Interleukin-1 signaling pathway, the Met1-linked ubiquitin oligomers are attached covalently to preformed Lys63-linked ubiquitin oligomers, providing a mechanism for the co-recruitment of the canonical IKK complex and its activator TAK1 [48]. Hybrid ubiquitin chains containing both Met1- and Lys63-ubiquitin linkages are also formed when TLR3-TRIF signaling pathway is activated [49]. It is therefore tempting to speculate that these hybrid ubiquitin chains recruit the OPTN-TBK1 complex to its as yet unknown activating kinase.

Declarations of Interest. None to declare

Funding information.
The work reported in the paper was supported by a Wellcome Trust Senior Investigator Grant (WT100294) (to P.C.), by a Wellcome Trust Prize Studentship (to J.T), and by Boehringer Ingelheim, GlaxoSmithKline and Merck-Serono.

References

1. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K. and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301, 640-643

2. Pomerantz, J. L. and Baltimore, D. (1999) NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694-6704

3. Shimada, T., Kawai, T., Takeda, K., Matsumoto, M., Inoue, J., Tatsumi, Y., Kanamaru, A. and Akira, S. (1999) IKK-i, a novel lipopolysaccharide-inducible kinase that is related to IκB kinases. Int Immunol. 11, 1357-1362

4. Bonnard, M., Mirtsos, C., Suzuki, S., Graham, K., Huang, J., Ng, M., Itie, A., Wakeham, A., Shahnian, A., Henzel, W. J., Elia, A. J., Shillinglaw, W., Mak, T. W., Cao, Z. and Yeh, W. C. (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976-4985

5. Tojima, Y., Fujimoto, A., Delhase, M., Chen, Y., Hatakeyama, S., Nakayama, K., Kaneko, Y., Nimura, Y., Motoyama, N., Ikeda, K., Karin, M. and Nakanishi, M. (2000) NAK is an IκB kinase-activating kinase. Nature. 404, 778-782

6. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M. and Maniatis, T. (2003) IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 4, 491-496

7. Servant, M. J., Grandvaux, N., tenOever, B. R., Duguay, D., Lin, R. and Hiscott, J. (2003) Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem. 278, 9441-9447

8. Panne, D., McWhirter, S. M., Maniatis, T. and Harrison, S. C. (2007) Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem. 282, 22816-22822

9. Wathelet, M. G., Lin, C. H., Parekh, B. S., Ronco, L. V., Howley, P. M. and Maniatis, T. (1998) Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol Cell. 1, 507-518

10. Lin, R., Heylbroeck, C., Pitha, P. M. and Hiscott, J. (1998) Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation,
transactivation potential, and proteasome-mediated degradation. Mol Cell Biol. 18, 2986-2996
11 Yoneyama, M., Suhara, W., Fukuhara, Y., Fukuda, M., Nishida, E. and Fujita, T. (1998) Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17, 1087-1095
12 Weaver, B. K., Kumar, K. P. and Reich, N. C. (1998) Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol. 18, 1359-1368
13 Orduereu, A., Enesa, K., Nanda, S., Le Francois, B., Peggie, M., Prescott, A., Albert, P. R. and Cohen, P. (2013) DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA. J Biol Chem. 288, 24569-24580
14 Soulat, D., Burckstummer, T., Westermayer, S., Goncalves, A., Bauch, A., Stefanovic, A., Hantschel, O., Bennett, K. L., Decker, T. and Superti-Furga, G. (2008) The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135-2146
15 Schroder, M., Baran, M. and Bowie, A. G. (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKe-mediated IRF activation. EMBO J. 27, 2147-2157
16 Herman, M., Ciancanelli, M., Ou, Y. H., Lorenzo, L., Klaudel-Dreszler, M., Pauwels, E., Sancho-Shimizu, V., Perez de Diego, R., Abhyankar, A., Israelsson, E., Guo, Y., Cardon, A., Rozenberg, F., Lebon, P., Tardieu, M., Heropolitanska-Pliszka, E., Chaussabel, D., White, M. A., Abel, L., Zhang, S. Y. and Casanova, J. L. (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 209, 1567-1582
17 Sancho-Shimizu, V., Perez de Diego, R., Lorenzo, L., Halwani, R., Alangari, A., Israelsson, E., Fabrega, S., Cardon, A., Maluenda, J., Tatematsu, M., Mahvelati, F., Herman, M., Ciancanelli, M., Guo, Y., AlSum, Z., Alkhamis, N., Al-Makadma, A. S., Ghadir, A., Boucherit, S., Plancoulaine, S., Picard, C., Rozenberg, F., Tardieu, M., Lebon, P., Jouanguy, E., Rezaei, N., Seya, T., Matsumoto, M., Chaussabel, D., Puel, A., Zhang, S. Y., Abel, L., Al-Muhsen, S. and Casanova, J. L. (2011) Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 121, 4889-4902
18 Karaghisioff, M., Steinborn, R., Kovarik, P., Kriegshauser, G., Baccarini, M., Donabauer, B., Reichart, U., Kolbe, T., Bogdan, C., Leanderson, T., Levy, D., Decker, T. and Muller, M. (2003) Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat Immunol. 4, 471-477
19 Mahieu, T., Park, J. M., Revets, H., Pasche, B., Lengeling, A., Staelens, J., Wullaert, A., Vanlaere, I., Hocheplied, T., van Roy, F., Karin, M. and Libert, C. (2006) The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-β production. Proc Natl Acad Sci U S A. 103, 2292-2297
20 Dejager, L., Vandeveyver, S., Ballegeer, M., Van Wonterghem, E., An, L. L., Riggs, J., Kolbeck, R. and Libert, C. (2014) Pharmacological inhibition of type I interferon signaling protects mice against lethal sepsis. J Infect Dis. 209, 960-970
21 Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaiizumi, T., Miyagishi, M., Taira, K., Akira, S. and Fujita, T. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 5, 730-737
22 Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O. and Akira, S. (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity. 23, 19-28
23 Gitlin, L., Barchet, W., Gilfillan, S., Cella, M., Beutler, B., Flavell, R. A., Diamond, M. S. and Colonna, M. (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic-polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A. 103, 8459-8464
24 Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. J., Takeuchi, O. and Akira, S. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 6, 981-988
25 Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R. and Tschopp, J. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 437, 1167-1172
26 Seth, R. B., Sun, L., Ea, C. K. and Chen, Z. J. (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell. 122, 669-682
27 Xu, L. G., Wang, Y. Y., Han, K. J., Li, L. Y., Zhai, Z. and Shu, H. B. (2005) VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol Cell. 19, 727-740
28 Liu, S., Cai, X., Wu, J., Cong, Q., Chen, X., Li, T., Du, F., Ren, J., Wu, Y. T., Grishin, N. V. and Chen, Z. J. (2015) Phosphorylation of innate immune adapter proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 347, aaa2630
29 Perry, A. K., Chow, E. K., Goodnough, J. B., Yeh, W. C. and Cheng, G. (2004) Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med. 199, 1651-1658
30 Clark, K., Peggie, M., Plater, L., Sorcek, R. J., Young, E. R., Madwed, J. B., Hough, J., McIrver, E. G. and Cohen, P. (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J. 434, 93-104
31 Fujita, F., Taniguchi, Y., Kato, T., Narita, Y., Furuya, A., Ogawa, T., Sakurai, H., Joh, T., Itoh, M., Delhase, M., Karin, M. and Nakanishi, M. (2003) Identification of NAP1, a regulatory subunit of IkB kinase-related kinases that potentiates NF-κB signaling. Mol Cell Biol. 23, 7780-7793
32 Chau, T. L., Gioia, R., Gatot, J. S., Patrascu, F., Carpentier, I., Chapelle, J. P., O'Neill, L., Beyaert, R., Piette, J. and Chariot, A. (2008) Are the IKKs and IKK-related kinases TBK1 and IKK-ε similarly activated? Trends Biochem Sci. 33, 171-180
33 Morton, S., Hesson, L., Peggie, M. and Cohen, P. (2008) Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582, 997-1002
34 Clark, K., Takeuchi, O., Akira, S. and Cohen, P. (2011) The TRAF-associated protein TANK facilitates cross-talk within the IkB kinase family during Toll-like receptor signaling. Proc Natl Acad Sci U S A. 108, 17093-17098
35 Gleason, C. E., Ordureau, A., Gourlay, R., Arthur, J. S. and Cohen, P. (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β. J Biol Chem. 286, 35663-35674
36 Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M. and Seya, T. (2005) Cutting Edge: NF-κB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol. 174, 27-30
37 Sasai, M., Shingai, M., Funami, K., Yoneyama, M., Fujita, T., Matsumoto, M. and Seya, T. (2006) NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol. 177, 8676-8683
38 Kawagoe, T., Takeuchi, O., Takabatake, Y., Kato, H., Isaka, Y., Tsujimura, T. and Akira, S. (2009) TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol. 10, 965-972
39 Zhao, T., Yang, L., Sun, Q., Arguello, M., Ballard, D. W., Hiscott, J. and Lin, R. (2007) The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat Immunol. 8, 592-600
40 Chariot, A., Leonardi, A., Muller, J., Bonif, M., Brown, K. and Siebenlist, U. (2002) Association of the adaptor TANK with the IxB kinase (IKK) regulator NEMO connects IKK complexes with IKKe and TBK1 kinases. J Biol Chem. 277, 37029-37036
41 Pauls, E., Nanda, S. K., Smith, H., Toth, R., Arthur, J. S. and Cohen, P. (2013) Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J Immunol. 191, 2717-2730
42 Brinkmann, M. M., Spooner, E., Hoebe, K., Beutler, B., Ploegh, H. L. and Kim, Y. M. (2007) The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol. 177, 265-275
43 Nociari, M., Ocheretina, O., Murphy, M. and Falck-Pedersen, E. (2009) Adenovirus induction of IRF3 occurs through a binary trigger targeting Jun N-terminal kinase and TBK1 kinase cascades and type I interferon autocrine signaling. J Virol. 83, 4081-4091
44 Zinngrebe, J., Rieser, E., Taraborrelli, L., Peltzer, N., Hartwig, T., Ren, H., Kovacs, I., Endres, C., Draber, P., Darding, M., von Karstedt, S., Lemke, J., Dome, B., Bergmann, M., Ferguson, B. J. and Walczak, H. (2016) --LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation. J Exp Med. 213, 2671-2689
45 Zhang, B., Li, M., Chen, L., Yang, K., Shan, Y., Zhu, L., Sun, S., Li, L. and Wang, C. (2009) The TAK1-JNK cascade is required for IRF3 function in the innate immune response. Cell Res. 19, 412-428
46 Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., Dotsch, V., Bumann, D. and Dikic, I. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 333, 228-233
47 Zhang, J., Clark, K., Lawrence, T., Peggie, M. W. and Cohen, P. (2014) An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. Biochem J. 461, 531-537
48 Emmerich, C. H., Ordureau, A., Strickson, S., Arthur, J. S., Pedrioli, P. G., Komander, D. and Cohen, P. (2013) Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci U S A. 110, 15247-15252
49 Emmerich, C. H., Bakshi, S., Kelsall, I. R., Ortiz-Guerrero, J., Shpiro, N. and Cohen, P. (2016) Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun. 474, 452-461
Figure Legends.

Figure 1. IFNβ production is suppressed in BMDM from TANK KO x OPTN[D477N] mice.
BMDM from wild type (WT) mice (closed bars), TANK KO mice (open bars), OPTN[D477N] mice (striped bars) and TANK KO x OPTN[D477N] mice (hatched bars) were stimulated with 10 μg/ml poly(I:C) (A, C) or 100 ng/ml LPS (C, D) for the times indicated. (A, B) The IFNβ mRNA produced was measured relative to 18S ribosomal mRNA and normalized to the level of wild type IFNβ mRNA (100%) measured after 2 h stimulation with poly(I:C) (A) or 1 h stimulation with LPS (B). (C, D) The amount of IFNβ in the cell culture medium was measured by ELISA after 8 h stimulation with poly(I:C) (C) or 4 h stimulation with LPS (D). (A-D) The results are presented as arithmetic mean (+SEM for four independent experiments) carried out on BMDM from nine different mice.

Figure 2. Poly(I:C)- or LP-induced phosphorylation of TBK1, IRF3 and MAP kinases in BMDM from different mouse lines.
(A-D) BMDM from wild type (WT) mice and TANK KO mice (A, B), IKKε KO mice (C, D), OPTN[D477N] mice and either OPTN[D/N] x TANK KO mice (A, B) or OPTN[D/N] x IKKε KO mice (C, D) were stimulated with 10 μg/ml poly(I:C) or 100 ng/ml LPS for the times indicated. Aliquots of the cell extracts (20 μg protein) were subjected to SDS-PAGE and immunoblotted with antibodies that recognize TBK1 or IKKε phosphorylated at Ser172 (pTBK1 and pIKKε, respectively), IRF3 phosphorylated at Ser396 (pIRF3), JNK1 and JNK2 phosphorylated at their Thr-Pro-Tyr motifs (p-JNK1/2) and p38α phosphorylated at its Thr-Gly-Tyr motif (p-38α), and with antibodies that recognize all forms of TBK1, IKKε, IRF3, TANK and OPTN. Antibodies to GAPDH were used as a loading control.

Figure 3. IFNβ production is not suppressed in BMDM from IKKε x OPTN[D477N] mice.
BMDM from wild type (WT) mice (closed bars), IKKε KO mice (open bars, OPTN[D477N] mice (striped bars) and IKKε KO x OPTN[D477N] mice (hatched bars) were stimulated with 10 μg/ml poly(I:C) (A, C) or 100 ng/ml LPS (C, D) for the times indicated. (A, B) The IFNβ mRNA produced was measured relative to 18S ribosomal mRNA and normalized to the level of wild type IFNβ mRNA (100%) measured after 2 h stimulation with poly(I:C) (A) or 1 h stimulation with LPS (B). (C, D) The amount of IFNβ in the cell culture medium was measured by ELISA after stimulation for 8 h with poly(I:C) (C) or 4 h with LPS (D). (A-D) The results are presented as arithmetic mean (+SEM for three independent experiments) carried out on BMDM from eight different mice.

Figure 4. Poly(I:C)- or LPS-dependent activation of the individual TANK-TBK1 and OPTN-TBK1 complexes in BMDM.
(A, B) Wild type BMDM were stimulated with 10 μg/ml poly(I:C) (A) or 100 ng/ml LPS (B) for the times indicated as in Fig 1. TANK was immunoprecipitated from the extracts and phosphorylation of the TBK1 in the immunoprecipitates (pTBK1) was analysed by immunoblotting as described in Methods. The membranes were also immunoblotted with antibodies that recognize all forms of TBK1 and TANK. (C, D)
As in A, B except that OPTN was immunoprecipitated from the extracts of wild type and OPTN[D477N] mice and the presence of phospho-TBK1, total TBK1 and OPTN in the immunoprecipitates was analysed by immunoblotting.

Figure 5. Poly(I:C)-dependent phosphorylation of TBK1 and IFNβ gene transcription in TRIF KO and TAK1 KO HACAT cells.

(A) Poly(I:C)-dependent phosphorylation of TBK1 and IRF3 is abolished in TRIF KO HACAT cells. Cells were stimulated with 10 μg/ml poly(I:C) for the times indicated as in Fig 1 and the cell extracts (20 μg protein) were subjected to SDS-PAGE and immunoblotting with antibodies that recognize TBK1 phosphorylated at Ser172 (pTBK1) or IRF3 phosphorylated at Ser396 (pIRF3), and with antibodies that recognize all forms of TBK1, IRF3 and TRIF. Antibodies to GAPDH were used as a loading control. (B) TAK1 KO and wild-type (WT) HACAT cells were incubated for 1 h with 2.0 μM MRT67307 then stimulated with 10 μg/ml poly(I:C) for the times indicated. The cell extracts were processed as in A and immunoblotted with antibodies that recognize the phosphorylated, activated forms of IKKα/β, JNK1/2 and p38α MAP kinase (p38α) and all forms of TAK1, IKKβ, JNK and p38α. (C) The TAK1 KO and wild-type (WT) cells were incubated for 1 h with or without 2 μM MRT67307 prior to stimulation with poly(I:C). Other details are as in B. (D) wild type (WT) HACAT cells (open bars) and TAK1 KO HACAT cells (closed bars) were stimulated with poly(I:C). IFNβ mRNA production was then measured relative to HPRT1 mRNA and normalized to the level of IFNβ mRNA measured in WT cells (100%) after stimulation for 4 h with poly(I:C). The results are presented as arithmetic mean (±SEM for two independent experiments each performed in triplicate).
Figure 1

A - poly(I:C)

B - LPS

C - poly(I:C)

D - LPS

WT TANK KO OPTN[D477N] TANK KO x OPTN[D477N]

IFNβ mRNA/18s (% WT)

IFNβ mRNA/18s (% WT)

IFNβ (ng/ml)

IFNβ (ng/ml)

0 2 4 6 8

time (h)

0 2 4 6 8

time (h)

0 0.2 0.4 0.6

IFNβ (ng/ml)

0 0.2 0.4 0.6

IFNβ (ng/ml)
Figure 2

A. WT TANK KO OPTN[D/N]x TANK KO

B. WT TANK KO OPTN[D/N] OPTN[D/N]x

C. WT IKK KO OPTN[D/N] OPTN[D/N]x IKK KO

D. WT IKK KO OPTN[D/N] OPTN[D/N]x IKK KO

(poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4)

(LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60)

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60

pIRF3 IRF3 pTBK1 TBK1 TANK OPTN pIKKε IKKε pJNK1/2 p-p38εε GAPDH

poly(I:C) (h) 0 1 2 4 0 1 2 4 0 1 2 4 0 1 2 4

LPS (min) 0 15 30 60 0 15 30 60 0 15 30 60 0 15 30 60
Figure 4

A

poly(I:C) (h)	0	0	1	1	2	2
pTBK1						
TBK1						
TANK						

B

LPS (min)	0	30	60	60
pTBK1				
TBK1				
TANK				

C

poly(I:C) (h)	0	1	1	2	0	1	1	2
TANK KO								
TANK KO								

D

LPS (min)	0	30	60	60	0	30	60	60
TANK KO								
TANK KO								
OPTN								
Figure 5

A

	WT	TRIF KO clone 2	TRIF KO clone 20						
TRIF									
pIRF3									
IRF3									
pTBK1									
TBK1									
GAPDH									
poly(I:C) (h)	0	1	2	0	1	2	0	1	2

B

	WT HACAT	TAK1 KO HACAT							
pIKKα/β									
IKKβ									
pJNK1/2									
JNK1/2									
p-p38α									
p38α									
TAK1									
GAPDH									
MRT67307	-	+							
poly(I:C) (h)	0	1	2	0	1	2	0	1	2

C

WT HACAT | TAK1 KO HACAT
TAK1 | |
pIRF3 | |
TBK1 | |
GAPDH | |
| MRT67307 | - | + |
| poly(I:C) (h) | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |

D

	WT	TAK1 KO
IFNβ mRNA/HPRT1 (% WT)		
time(h)	0	4
