Chemical Compositions and Biological Activities of *Scutellaria* Genus Essential Oils (Lamiaceae)

Jamal Kasaian¹, Peiman Alesheikh¹ and Ameneh Mohammadi¹, *

¹Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

*Corresponding author: Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran. Email: ameneh.mohamadi@yahoo.com

Received 2017 October 22; Revised 2018 June 12; Accepted 2018 September 29.

Abstract

Context: Essential oils are secondary metabolites with versatile organic structures that, due to their compounds, have useful medicinal properties. There are about 250 species of the genus of *Scutellaria* perennial flowering plants from the Lamiaceae family. Its application for the treatment of allergy, inflammatory, hyperlipidemia, arteriosclerosis, hypertension, and hepatitis has a long history.

Evidence Acquisition: Various studies on the chemical compounds of the *Scutellaria* genus have identified several compounds, especially essentials oils. The current review is based on the evidence found in Chemical Abstract, Science Direct, Scopus, PubMed, Web of Knowledge, and Google Scholar databases.

Results: Many studies on the chemical components of essential oils from the *Scutellaria* genus have identified several compounds. We summarized the chemical compositions and biological activities of *Scutellaria* essential oils. Hexadecanoic acid, germacrene D, β-caryophyllene, linalool, β-farnesene, and eugenol are the main compounds in essential oils of this genus. Despite many reports about essential oils of *Scutellaria* species (more than 38), a large number of species have not been studied yet. Therefore, several studies should be conducted on the chemical compounds and biological activities of unstudied *Scutellaria* essential oils.

Conclusions: This review has summarized reports on the chemistry and biological activities of *Scutellaria* essential oils, such as antioxidant, antimicrobial, antifeedant, phytotoxic, and acaricidal toxicities, based on the recent literature.

Keywords: *Scutellaria*, Lamiaceae, Essential Oils, Chemical Composition, Biological Activities

1. Context

The *Scutellaria* genus that can be found in East Asia, the United States, and Europe include perennial flowering plants in the Lamiaceae (mint) family, which contains 350 species (1, 2). There are about 300 species of this genus in Asia (3-6). In Iran, the *Scutellaria* genus is represented by 27 species, which 12 of them are endemic (7). *Scutellaria* genus has been used for the treatment of hyperlipidemia, allergy, inflammatory, arteriosclerosis, hepatitis, and hypertension for hundreds of years (8). It’s about 2000 years that Asian medicine, especially Chinese medicine, is using *Scutellaria* for the treatment of fevers, colds, diphtheria, and high blood pressure (9). The genus of *Scutellaria* has several therapeutic properties such as antitumor, hepatoprotective, antioxidant, anti-inflammatory, anticonvul- sant, antibacterial, and antiviruses activities (8). Also, *Scutellaria* species are useful in treating nervous system problems, including anxiety, insomnia, and hysteria (2). More than 295 compounds have been isolated from this genus (10, 11), such as flavonoids (12), phenylethanoid glycosides, and terpenes (Iridoid glycosides, monoterpenes, diterpenes, and triterpenoids) (13). Flavonoids (almost flavones) are common bioactive compounds of the *Scutellaria* genus (14).

Essential oils are secondary metabolites with versatile organic structures that have useful medicinal properties (15). They can be extracted from plants using classical and advanced techniques (16). There are various methods to extract essential oils, such as hydrodistillation, steam distillation, microwave, organic solvent extraction, supercritical CO₂, and ultrasonic and high-pressure solvent extraction (17, 18). Various factors affect the compositions of the essential oils, including geographical and climatic conditions, harvesting time, physiological age, plant storages, extraction methods, kind of drying. Besides, it should be noted that various parts of the plant contain different compositions (19-22). The major essential oil compounds are terpenoids, which are classified as monoter-
Monoterpene Hydrocarbons (%)

Sesquiterpene Hydrocarbons (%)

Monoterpene Hydrocarbons (%)	Sesquiterpene Hydrocarbons (%)
0	0
5	10
10	15
15	20
20	25

2. Evidence Acquisition

The recent literature about the essential oils of different species of Scutellaria was reviewed (26-32). Although some review studies are conducted on the Scutellaria genus (8, 13) but evidence about the Scutellaria essential oils is not sufficient. Therefore this review was focused on the chemical compounds and biological activities of the Scutellaria genus essential oils.

3. Results

3.1. Chemical Compositions of Scutellaria Genus Essential Oils

Many studies have shown variations in the chemical compounds of Scutellaria genus essential oils. Several factors affect the variations in the essential oil compositions, including harvesting time, soil PH, drying conditions, geographic location, kind of subspecies, part of the plant, and extraction method (19-22).

The oils extracted from different Scutellaria species have similar compounds (Table 1). The compositions of essential oils are classified in Figures 1 to 4; the sesquiterpenes are the most common compound of the Scutellaria essential oils. Hexadecanoic acid, Germacrene D, β-caryophyllene, Linalool, β-Farnesene, and Eugenol are the main compounds of the essential oils of this genus. The structures of these compounds are shown in Figure 5. Several hydrocarbons and oxygenated terpenoid compounds have been identified from Scutellaria species (Figures 2 to 5). Hexadecanoic acid is a saturated fatty acid in plants, animals, and microorganisms (33). Germacrene D is a precursor of various sesquiterpenes such as cadinenes and selinenes (34, 35). Germacrene D has insecticidal activity against mosquitoes (36), aphids (37), and ticks (38). β-caryophyllene is a natural sesquiterpene with dietary phytocannabinoid that has therapeutic potential for anxiety, neuropathic pain, ulcerative colitis, endometriosis, and renal protection (39-42). Linalool is a monoterpenic compound that is found in many plants; it is effective against several bacteria and fungi and possesses anti-inflammatory, antinociceptive, and antihyperalgesic activities (43). β-Farnesene is a strong pheromone in most aphid species (44).

Despite the many reports about essential oils of Scutellaria species (more than 38), a large number of species have not been studied yet. Therefore, more studies on the chemical composition of unstudied Scutellaria essential oils are needed for a better understanding of the potential medicinal properties of these essential oils.
3.2. Antioxidant Activity

There are reports on the biological activities of Scutellaria genus essential oils, and most of the studies have investigated the antimicrobial activity of essential oils from this genus. The antimicrobial activity of these oils could be due to the components such as linalool, eugenol, and other long-chain alcohols (73). Moreover, other compounds such as thymol and alpha-terpineol could also contribute to the antimicrobial activity of the essential oil (74, 75). Yu et al. (2004) investigated the antibacterial activities of S. barbata essential oils against 17 microorganisms (Enterococcus faecalis, Staphylococcus aureus, Serratia marcescens, Escherichia coli, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Staphylococcus hemolyticus, Staphylococcus epidermidis, Candida tropicalis, Staphylococcus simulans, Citrobacter freundii, Salmonella paratyphi-A, Shigella flexneri, Klebsiella pneumoniae, Salmonella typhi, Serratia liquefaciens, and Candida albicans) using the disc diffusion and broth microdilution methods. According to their results, the essential oil demonstrated a strong bactericidal effect; S. epidermidis was the most sensitive microorganism (29 mm inhibition zone and 0.77 mg/mL MBC), and C. albicans was the most resistant to the extract (7 - 9 mm inhibition zone and 1.5 mg/mL MBC) (69). Based on the results reported by Zhu et al. (2016), the essential oils from S. strigillosa had higher antimicrobial effects on gram-positive bacteria than gram-negative bacteria and fungus (53). Another study by Pant et al. (2012) demonstrated that the essential oils of S. grossa had significant antibacterial activity against B. subtilis, E. faecalis, K. pneumonia, and S. entherica (65). Skaltsa (2005) reported a moderate activity against S. aureus and B. cereus for the essential oils of S. rupestris and S. sieberi that were collected from Greece (28). In a study by Skaltsa et al. (2000), it was revealed that the essential oil of S. albid subsp albid was moderately active against E. coli, S. aureus, B. subtilis, P. aeruginosa, and S. cerevisiae, which can be recommended.

3.2.1. Antioxidant Activity

compared to the results on the antioxidant activity of Scutellaria extracts (70-72), the essential oils of Scutellaria species only have moderate antioxidant activity (57). Zokirjonovna et al. (2016) evaluated the antioxidant activity of essential oils of three Uzbek Scutellaria species (i.e., S. imaculata, S. ramosissima, and S. schchristanica). The Scutellaria essential oils of these species exhibited moderate antioxidant activity due to the presence of eugenol, thymol, and carvacrol, but it was weaker than ascorbic acid (57).

Figure 3. Relative abundance of oxygenated sesquiterpene in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albid subsp albid (47); 3: S. albid subsp colchica (47); 4: S. albid subsp condensata (47); 5: S. albid subsp velenovskiy (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baikalensis (Chinese Medicinal Plants) (52); 9: S. baicalensis (UC Berkeley Botanical Gardens) (52); 10: S. baikalensis (Horizon Herbs) (52); 11: S. cypria var. elatior (59); 12: S. cypria var. aureus, B. subtilis, P. aeruginosa, S. epidermidis, K. pneumonia, and S. entherica (65). Skaltsa (2005) reported a moderate activity against S. aureus and B. cereus for the essential oils of S. rupestris and S. sieberi that were collected from Greece (28). In a study by Skaltsa et al. (2000), it was revealed that the essential oil of S. albid subsp albid was moderately active against E. coli, S. aureus, B. subtilis, P. aeruginosa, and S. cerevisiae, which can be recommended.

Figure 4. Relative abundance of oxygenated monoterpenes in the essential oils of Scutellaria species. 1: S. Albida (27); 2: S. albid subsp albid (47); 3: S. albid subsp colchica (47); 4: S. albid subsp condensata (47); 5: S. albid subsp velenovskiy (47); 6: S. barbata (69); 7: S. barbata (50); 8: S. baikalensis (Chinese Medicinal Plants) (52); 9: S. baikalensis (UC Berkeley Botanical Gardens) (52); 10: S. baikalensis (Horizon Herbs) (52); 11: S. cypria var. elatior (59); 12: S. cypria var. aureus, B. subtilis, P. aeruginosa, S. epidermidis, K. pneumonia, and S. entherica (65). Skaltsa (2005) reported a moderate activity against S. aureus and B. cereus for the essential oils of S. rupestris and S. sieberi that were collected from Greece (28). In a study by Skaltsa et al. (2000), it was revealed that the essential oil of S. albid subsp albid was moderately active against E. coli, S. aureus, B. subtilis, P. aeruginosa, and S. cerevisiae, which can be recommended.

Jundishapur J Nat Pharm Prod. 2020;15(3):e62279.
be attributed to high levels of linalool and nerolidol content (27). Dereboylu et al. (2012) investigated the antimicrobial activities of the volatile compounds of S. sibthorpii, S. cypria var. cypria, and S. cypria var. elatior against 7 bacteria and one fungus (S. aureus, B. subtilis, S. typhimurium, E. faecalis, E. coli, P. aeruginosa, K. pneumonia, and C. albicans) and reported that S. aureus was the most sensitive microorganism (58). The antibacterial activity of S. repens essential oil was tested on S. aureus, E. faecalis, A. tumefaciens, E. chrysanthemi, X. phaseoli, E. coli, S. enterica, K. pneumoniae, and P. multocida (67), and according to the results, the essential oil showed a high level of antibacterial activity. The maximum zone of inhibition was 23 mm for E. coli, 18 mm for E. faecalis, 15 mm for K. pneumonia, and 12 mm for B. subtilis (67). The antimicrobial activities of Scutellaria essential oils are summarized in Table 2.

3.2.3. Antifeedant Activity

In the study performed by Formisano et al. (2013), the essential oils of three Scutellaria species (S. brevibracteata, S. hastifolia and S. orientalis ssp. alpina) are studied against the feeding and egg-laying behavior of Spodoptera littoralis. The results of the insect assays showed that the essential oil of S. hastifolia was the only oil that could deter Spodoptera littoralis larvae from feeding on treated discs, whereas both S. brevibracteata and S. hastifolia could deter female moths from laying eggs on papers treated with their extracts (47). In another study, Rosselli et al. (2007) reported that essential oil of S. rubicunda subsp. linnaeana has antifeedant activity against Spodoptera littoralis (26). In their study, the essential oil of plant stimulated a dose-dependent positive feeding response from larvae of S. littoralis (feeding index (FI) 50% = 925 ppm; FI at 100 ppm = 44.85). A study on S. rubicunda subsp. linnaeana revealed that aerial parts of the plant that contains scutecyprol B, scutalbin C, and scutecyprol B had antifeedant activity against larvae of five
Table 2. Antibacterial and Antifungal Activities of Scutellaria Species

Microorganism	S. barbata	S. strigillosa	S. grossa	S. rupestris sp. adenotricha	S. sieberi	S. albida sp. albida	S. cypria var. cypria	S. sibthorpis	S. repens
S. aureus	√	√	-	-	√	-	-	-	-
E. coli	√	-	-	-	√	√	-	-	√
P. aeruginosa	√	√	-	-	-	-	-	-	√
S. epidermidis	√	-	-	-	-	-	-	-	-
S. heamalyticus	-	-	-	-	-	-	-	-	-
S. simulans	-	-	-	-	-	-	-	-	-
E. faecalis	√	-	-	-	-	-	-	-	√
C. freundii	√	-	-	-	-	-	-	-	-
K. pneumoniae	√	-	-	-	-	-	-	-	√
S. flexneri	√	-	-	-	-	-	-	-	-
S. paratyphi	-	-	-	-	-	-	-	-	-
S. liquefaciens	√	-	-	-	-	-	-	-	-
S. marcescens	√	-	-	-	-	-	-	-	-
S. malthophilia	√	-	-	-	-	-	-	-	-
C. albicans	√	√	-	-	-	-	-	-	-
C. tropicalis	√	-	-	-	-	-	-	-	-
B. subtilis	-	-	-	√	-	-	-	-	√
S. cerevisiae	-	-	-	-	√	-	-	-	-
S.enterica	-	-	-	-	-	-	-	-	-
B. cereus	-	-	-	√	√	-	-	-	-
M. flavus	-	-	-	-	-	-	-	-	-
P. mirabilis	-	-	-	-	-	-	-	-	-
S. thypihimium	-	-	-	-	-	-	-	-	√
X. phaseoli	-	-	-	-	-	-	-	-	-
E.chrysanthemi	-	-	-	-	-	-	-	-	√
A.tumefaciens	-	-	-	-	-	-	-	-	√
P. multocida	-	-	-	-	-	-	-	-	-

*aMicroorganism was not tested or essential oil had little activity or it was inactive.

3.2.4. Phytotoxic Effect

The phytotoxic effect of S. strigillosa essential oil was evaluated by conducting bioassays against amaranth and bluegrass (amaranthus is a cosmopolitan genus of annual or short-lived perennial plants, and bluegrass refers to several species of grasses of the genus Poa). 3 µL/mL of essential oil could completely inhibit amarathus seedling growth and caused a significant inhibitory effect on bluegrass (53).

3.2.5. Acaricidal Toxicities Activity

The acaricidal activity of S. barbata essential oil was higher than the activity observed in the positive controls (benzyl benzoate), which was evaluated via fumigant and contact toxicity bioassays against Dermatophagoides farinae, D. pteronyssinus, and Tyrophagus putrescentiae (45).
4. Conclusions

Scutellaria is a genus in the Lamiaceae family and for thousands of years, has been used as a medicine (76, 77). In recent years, many studies are performed on the essential oils of different species of *Scutellaria* (8, 13, 26-32). However, many species of the *Scutellaria* genus are not investigated, and therefore many studies can be performed on the components and biological activities of uninvestigated *Scutellaria* essential oils.

In the current review, chemical compositions of essential oils and biological activities (antioxidant, antimicrobial, anti-feedant, phytotoxic, and acaridical activities) of the *Scutellaria* genus are summarized. Hexadecanoic acid, germacrene D, β-caryophyllene, linalool, β-farnesene, and eugenol were the main compounds. (several compounds of these oils have medicinal properties). This review can serve as a reference for natural products and ethnopharmacology fields.

Footnotes

Authors’ Contribution: This work was performed by the collaboration of all authors. Ameneh Mohammadi contributed to the study design, data collection, assessment of documents, data analysis, writing the first draft, and managing the research. Jamal Kasaian was a supervisor of the research project and contributed with original data, critical editing, and reviewing the manuscript. Peiman Alesheikh was the second supervisor of the research project and cooperated in the clinical process, assessment of neonates, critical editing, and reviewing the manuscript. All authors read and approved the final manuscript.

Financial Disclosure: The authors declare no conflict of interest.

Funding/Support: This study was supported by a grant from the North Khorasan University of Medical Sciences (funding code: 910027).

References

1. Bruno M, Piozzi F, Maggio AM, Simmonds MS. Anti-feedant activity of neolodan diterpenoids from two Sicilian species of Scutellaria. Biochem Syst Ecol. 2002;30(8):793-9. doi: 10.1016/s0305-1978(01)00143-0.

2. Cole IR, Saxena PK, Murch SJ. Medicinal biotechnology in the genus scutellaria. In Vitro Cel Dev Biol Plant. 2007;43(4):318-27. doi: 10.1007/s11627-007-9055-4.

3. Rechinger KH. Scutellaria L. In: Rechinger KH, editor. Flora Iranica. Graz: Akademische Druck-u.-Verlagsanstalt; 1982. p. 44-84.

4. Tatsu-Nami So Z. Scutellaria L. In: Ohwi J, editor. Flora of Japan. Washington DC: Smithsonian Institution; 1984. p. 770-2.

5. Huang QS. Scutellaria L. In: Li XY, Hedge IC, editors. Flora of China. 17. Missouri Botanical Garden Press; 1994. p. 75-101.

6. Edmondson JR. Scutellaria. In: Davis PH, editor. Flora of Turkey and the East Aegean Islands. 7. Edinburgh: University Press; 1982. p. 78-100.

7. Jamzad Z. A survey of Lamiaceae in the flora of Iran. Rostamîha. 2013;34(1):59-67.

8. Shang X, He X, He X, Li M, Zhang R, Fan P, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2010;128(2):279-313. doi: 10.1016/j.jep.2010.01.006. [PubMed: 20064593].

9. Phyllis A. Prescription for Herbal Healing. United States of America. 2002:122-3.

10.-Xiong Z, Jiang B, Wu PF, Tian J, Shi LI, Gu J, et al. Antidepressant effects of a plant-derived flavonoid baikalins involving extracellular signal-regulated kinases cascade. Biol Pharm Bull. 2011;34(2):253-9. doi: 10.1248/bpb.34.253. [PubMed: 2145537].

11. Bothmer R. Differentiation patterns in the Scutellaria albida group (Lamiaceae) in the Aegean area. Nordic J Botany. 2008;28:421-39. doi: 10.1111/j.1756-1549.1985.tb0672.x.

12. Boozari M, Mohammadi A, Asili J, Emami SA, Tayarani-Najaran Z. Growth inhibition and apoptosis induction by Scutellaria pinnatifida A. Ham. on HL-60 and K562 leukemic cell lines. Environ Toxicol Pharmacol. 2015;39(1):307-12. doi: 10.1016/j.etap.2014.12.002. [PubMed: 2554619].

13. Sripathi R, Ravi S. Ethnopharmacology, Phytoconstituents, Essential Oil Composition and Biological Activities of the genus Scutellaria. J Pharm Sci Res. 2017;9(3):275-87.

14. Nishikawa K, Furukawa H, Fujikoa T, Fuji H, Mihashi K, Shimomura K, et al. Flavone production in transformed root cultures of Scutellaria baicalensis Georgi. Phytochemistry. 1999;52(5):885-90. doi: 10.1016/s0031-9422(99)00306-4.

15. Mohamadhosseini M, Nekoei M. Chemical Compositions of the Essential Oils and Volatile Compounds from the Aerial Parts of *Verula ovina* Using Hydrodistillation, MAHD, SFME and HS-SPE Methods. J Essent Oil Bear Plants. 2014;17(5):747-57. doi: 10.1080/0972060x.2014.884951.

16. Mohamadhosseini M. Essential Oils Extracted Using Microwave-Assisted Hydrodistillation from Aerial Parts of Eleven Artemisia Species: Chemical Compositions and Diversities in Different Geographical Regions of Iran. Rec Nat Prod. 2017;11(2):314-29.

17. Oktol OO, Sadimenko AP, Afyolayin AJ. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2000;62(1):308-12. doi: 10.1016/j.foodchem.2009.09.084.

18. Mohamadhosseini M, Mahdavi B, Akhlaghi H. Characterization and Chemical Composition of the Volatile Oils from Aerial Parts of Eryngium bungei Bios. (Apiaceae) by Using Traditional Hydrodistillation, Microwave Assisted Hydrodistillation and Head Space Solid Phase Microextraction Methods Prior to GC and GC/MS Analyses: A Comparative Approach. J Essent Oil Bear Plants. 2013;16(5):563-23. doi: 10.1080/0972060x.2013.854484.

19. Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crop Prod. 2014;62:250-64. doi: 10.1016/j.indcrop.2014.05.055.

20. Mohamadhosseini M. Chemical Composition of the Essential Oils and Volatile Fractions from Flowers, Stems and Roots of *Salvia multi- caulis*vahl. By Using MAHD, SFME and HS-SPE Methods, J Essent Oil Plants. 2015;18(5):360-71. doi: 10.1016/j.jep.2015.02.044.47.

21. Mohamadhosseini M. Chemical Composition of the Volatile Fractions from Flowers, Leaves and Stems of *Salvia mirzayanii* by HS-SPE-GC-GCMS. J Essent Oil Bear Plants. 2015;18(2):464-76. doi: 10.1016/j.jep.2014.04.018.85.

22. Nekoei M, Mohamadhosseini M. Chemical Compositions of the Essential Oils from the Aerial Parts of Achillea wilhelmsii Using
Traditional Hydrodistillation, Microwave Assisted Hydro-distillation and Solvent-Free Microwave Extraction Methods: Comparison with the Volatile Compounds Obtained by Headspace Solid-Phase Microextraction. J Essent Oil Bear Plants. 2016;19(1):59-75. doi: 10.1080/14786419.2015.10643748.

Birke MA, Abassi SA, Krober T, Chamberlain K, Hooper AM, Guerin PM, et al. Anticancer and anti-inflammatory activity of the gum resin from the East African plant, Commiphora holtziana. J Pharm Pharmacol. 2012;64(1):144-66. doi: 10.1111/j.1475-6773.2011.01074.x. [PubMed: 21714762].

Benchaa C, Chaves AV, Fraser GR, Beauchemin KA, McAllister TA. Effects of essential oils and their components on in vitro rumen microbial fermentation. Canadian J Anim Sci. 2007;87(7):413-9. doi: 10.4141/cjas07072.

Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol. 2012;176(1-4):78-93. doi: 10.1016/j.anifeedsci.2012.07.010.

Jouany JP, Morgavi DP. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007;10(7):1443-66. doi: 10.1071/AN07000742. [PubMed: 17517311].

23. Molendijk CM, Aerts-Kerkhoven BM, Van Der Meer MM, Schouten JP, Grootaert P, et al. Transcriptional and physiological effects of the essential oil of Dracophyllum kotschyi in the mouse writhing test. J Pharm Pharmacol. 2004;57(1):76-9. doi: 10.1211/0022357047717763.

24. Skaltsa HD, Lazari DM, Mavromati AS, Tiligada EA, Constantinidis TA. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharmacol. 2004;55(1):76-7. doi: 10.1211/00223570375093.

25. Jouany JP, Morgavi DP. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal. 2007;10(7):1443-66. doi: 10.1071/AN07000742. [PubMed: 17517311].

26. Molendijk CM, Aerts-Kerkhoven BM, Van Der Meer MM, Schouten JP, Grootaert P, et al. Transcriptional and physiological effects of the essential oil of Dracophyllum kotschyi in the mouse writhing test. J Pharm Pharmacol. 2004;57(1):76-9. doi: 10.1211/0022357047717763.

27. Skaltsa HD, Lazari DM, Mavromati AS, Tiligada EA, Constantinidis TA. Antinociceptive effects of the essential oil of Dracocephalum kotschyi in the mouse writhing test. J Pharm Pharmacol. 2004;57(1):76-7. doi: 10.1211/00223570375093.
57. Mamadalieva NZ, Sharopov F, Satyal P, Azimova SS, Wink M. Composition of the essential oils of three Uzbek Scutellaria species (Lamiaceae) and their antioxidant activities. *Nat Prod Res*. 2017;31(10):1372-6. doi: 10.1080/14786419.2016.1222831. [PubMed: 27545226].

58. Dereboyu AE, Sarikahya NB, Sengonca NB, Kirmizigul S, Yasa I, Güclü S, et al. Glandular trichomes morphology, chemical composition and antimicrobial activity of the essential oil of three endemic Scutellaria taxa (Lamiaceae). *Asian J Chem*. 2012;24(1):491.

59. Sina İçen M, Arabacı T, Köstekci S, Gürhan İ. Chemical Composition of the Essential Oil of Scutellaria orientalis L. subsp. virens (Boiss. Kotschy) J. R. Edm. from Turkey. *Hacettepe J Biol Chem*. 2013;31(4):190–2. doi: 10.15671/hjbc.2013.4.4.3.

60. Lawrence BM, Hogg JW, Terhune SJ, Morton JK, Gill LS. Terpenoid composition and antimicrobial activity of the essential oil of three endemic Scutellaria taxa (Lamiaceae). *Phytochemistry*. 2014;75318–24. doi: 10.1016/j.chemosphere.2014.09.020.

61. Nikbin M, Kazemipour N, Maghsoodlou MT, Valizadeh J, Sepehri-Nazar J. Essential Oil and Phenolic Compounds of Micromeria persica Boiss., Hymenocrater kotschyanus Jacq. in Cuba. *Phytomed*. 2014;31(4):368–71. doi: 10.1016/j.phytochem.2014.09.020.

62. Madani Mousavi SN, Delazar A, Nasemiyeh H, Khodaie L. Biological Activity and Phytochemical Study of Scutellaria platystegius Rech. f. and Scutellaria pinnatifida A. Hamilt. subsp. alpina (Borm.) Rech. f. *Phytochemistry*. 2014;95:215–24. doi: 10.1016/j.phytochem.2014.09.020.

63. Pattnaik S, Subramanyam VR, Bapaji M, Kole CR. Antibacterial and antifungal activity of aromatic constituents of essential oils. *Microbios*. 1997;89:358:39–46. [PubMed: 9218354].

64. Cosentino S, Tuberoso CI, Pisano B, Satta M, Mascia V, Arzedi E, et al. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. *Lett Appl Microbiol*. 1999;29(2):103–5. doi: 10.1046/j.1472-765x.1999.00605.x. [PubMed: 10499301].

65. Carson CF, Riley TV. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. *J Appl Bacteriol*. 1995;78(3):264–9. doi: 10.1111/j.1365-2672.1995.tb05025.x. [PubMed: 7770203].

66. Melkani AB, Negi A, Bisht CMS, Vasu D. Constituents of the essential oil from Scutellaria scandens D. *Don Indian Perfumer*. 2007;51(2):37–9.

67. Gousioudou C, Karioti A, Heilmann J, Skaltsa I. Iridoids from Scutellaria albida ssp. albida. *Phytochemistry*. 2007;68(1):799–804. doi: 10.1016/j.phytochem.2007.04.014. [PubMed: 17532352].
Table 1. Major Essential Oil Components (> 10%) of Scutellaria Species

Compound	Scutellaria species	Origin	Amount (%)	Ref.
Hexadecanoic acid				
	S. barbata	Korea	58.52	(45)
	S. albida subsp albida	Turkey	15.6	(46)
	S. albida subsp colchica	Turkey	12.9	(46)
	S. albida subsp velenovskyi	Turkey	17.3	(46)
	S. brevibracteata	Lebanon	12.6	(47)
	S. diffusa	Turkey	29.9	(48)
	S. heterophylla	Turkey	16.0	(49)
	S. barbata	China	28.6	(50)
Hydroxynaphthalene				
	S. barbata	Korea	12.22	(51)
	S. volubilis	United States	20.4	(52)
	S. baikalesensis	United States	12.4	(53)
		United States	27.5	(54)
		United States	13.0	(55)
	S. irwinowii	Iran	16.9	(56)
	S. strigillosa	China	37.78	(57)
	S. salvifisca	Turkey	40.0	(58)
	S. laeteviolacea	Japan	21.87	(59)
	S. orientalis subsp alpina	Iran	19.7	(60)
	S. orientalis subsp Virens	Iran	16.5	(61)
	S. ramosissima	Uzbekistan	23.96	(62)
	S. sitothorpsi	Turkey	42.01	(63)
	S. heterophylla	Turkey	21	(64)
	S. pinnatifida subsp alpina	Iran	20.7	(65)
Germacrene D				
	S. volubilis	Ecuador	17.5	(66)
	S. baikalesensis	US	22.3	(67)
	S. baikalesensis	US	23.1	(68)
	S. baikalesensis	US	41.5	(69)
	S. californica	US	56.6	(70)
	S. albida subsp albida	Turkey	14.2	(71)
	S. albida subsp velenovskyi	Turkey	20	(72)
	S. sieberti	Greece	14.2	(73)
	S. salvifisca	Turkey	11	(74)
	S. orientalis subsp alpina	Iran	15	(75)
	S. orientalis subsp Virens	Iran	13.4	(76)
	S. ramosissima	Uzbekistan	11.99	(77)
	S. sitothorpsi	Turkey	22.58	(78)
	S. brevibracteata	Lebanon	14.4	(79)
	S. hastifolia	Lithuania	12.9	(80)
Compound	Country	Percent	Ref.	
---------------------------------	-------------	---------	------	
α-Humulene				
S. havanensis Jacq.	Cuba	11.6	63	
S. volubilis	Ecuador	14.7	50	
Linalool				
S. albid subsp. albida	Turkey	20.4	46	
S. albid subsp. condensata	Turkey	28.5	46	
S. sieberi	Greece	22.7	28	
S. rupestris	Greece	38.8	28	
S. schachristanica	Uzbekistan	26.98	57	
S. cypria var. elatior	Turkey	10.92	58	
S. rubicunda	Italy	27.8	26	
Nerolidol				
S. albid subsp. condensata	Turkey	16.8	46	
Tetradecanoic acid				
S. albid subsp. velenovskyi	Turkey	10.2	46	
Cadinene				
S. lateriflora	Iran	27.0	64	
S. orientalis subsp. virens	Turkey	19.92	59	
Calamenene				
S. lateriflora	Iran	15.2	64	
S. litwinowii	Iran	20.3	52	
β-Farnesene				
S. galericulata	Canada	17.0	60	
S. parvula	Canada	17.0	60	
S. Wightiana bonii	India	22.07	63	
Bicyclo-germacrene				
S. salvifolia	Turkey	14.0	46	
Hexahydro farnesy acetone				
S. orientalis subsp. alpina	Lebanon	11.7	47	
1-octen-3-ol				
S. laeteviolacea	Japan	27.72	54	
S. grossa Wall ex Benth	India	32.0	65	
Terpinolene				
S. orientalis subsp. virens	Iran	15.6	56	
Acetophenone				
S. immaculata	Uzbekistan	30.39	57	
S. schachristanica	Uzbekistan	34.74	57	
Eugenol				
S. immaculata	Uzbekistan	20.61	57	
S. schachristanica	Uzbekistan	20.67	57	
S. cypria var. cypria	Turkey	23.05	58	
S. cypria var. cypria	Turkey	20.04	57	
Thymol				
S. immaculata	Uzbekistan	10.04	57	
Palmitic acid				
S. cypria var. cypria	Turkey	27.0	57	
S. cypria var. elatior	Turkey	46.76	57	
Phytol				
S. brevibracteata	Lebanon	10.7	47	
4-vinylguaiacol				
S. brevibracteata	Lebanon	10.2	47	
Ingredient	Plant Species	Location	Percentage	Reference
-----------------------------	-----------------------------------	----------	------------	-----------
β-Isabolol	*S. galericulata*	Canada	20.6	(60)
	S. parvula	Canada	20.6	(60)
Bergamotene	*S. galericulata*	Canada	13.4	(60)
	S. parvula	Canada	13.4	(60)
Methyl chavicol	*S. pinnatifida A. Hamilt Subsp. pinnatifida*	Iran	81.9	(66)
Aromadendrene	*S. repens*	India	0.3	(60)
β-Funebrene	*S. repens*	India	15.0	(60)
1,4-Benzenediol-2,5-dimethyl	*S. Wightiana benth*	India	21.53	(13)
Pipertone oxide	*S. Wightiana benth*	India	16.23	(13)
α-Humulene	*S. havanensis Jacq*	Cuba	11.8	(60)
Limonene	*S. angustifolia*	Laos	30.3	(60)
Fenchone	*S. angustifolia*	Laos	26.7	(60)
Alpha-pinene	*S. angustifolia*	Laos	31.3	(60)