Recolouring weakly chordal graphs and the complement of triangle-free graphs

Owen Merkel

July 6, 2021

Abstract

For a graph G, the k-recolouring graph $R_k(G)$ is the graph whose vertices are the k-colourings of G and two colourings are joined by an edge if they differ in colour on exactly one vertex. We prove that for all $n \geq 1$, there exists a k-colourable weakly chordal graph G where $R_{k+n}(G)$ is disconnected, answering an open question of Feghali and Fiala. We also show that for every k-colourable $3K_1$-free graph G, $R_{k+1}(G)$ is connected with diameter at most $4|V(G)|$.

1 Introduction

Let G be a finite simple graph with vertex-set $V(G)$ and edge-set $E(G)$. For a positive integer k, a k-colouring of G is a mapping $\alpha : V(G) \rightarrow \{1, 2, \ldots, k\}$ such that $\alpha(u) \neq \alpha(v)$ whenever $uv \in E(G)$. The k-recolouring graph, denoted $R_k(G)$, is the graph whose vertices are the k-colourings of G and two colourings are joined by an edge if they differ in colour on exactly one vertex. We say that G is k-mixing if $R_k(G)$ is connected. If G is k-mixing, the k-recolouring diameter of G is the diameter of $R_k(G)$. We say that G is quadratically k-mixing if the k-recolouring diameter of G is $O(|V(G)|^2)$.

Bonamy, Johnson, Lignos, Patel, and Paulusma [4] showed that a k-colourable chordal or chordal bipartite graph is quadratically $(k+1)$-mixing. The authors also asked whether this statement holds more generally for perfect graphs. This was answered negatively by Bonamy and Bousquet [3] using an example of Cereceda, van den Heuvel, and Johnson [5] who showed that for all $k \geq 3$, there exists a bipartite graph that is not k-mixing. This started an investigation into other classes of perfect graphs which have this special property: chordal and chordal bipartite [4], P_4-free [3], distance-hereditary [2], P_4-sparse [1], co-chordal, and 3-colourable (P_5, P_6, C_5)-free [7].

The property of being $(k+1)$-mixing does not extend to the class of weakly chordal graphs. Feghali and Fiala [7] showed that for all $k \geq 3$, there exists a k-colourable weakly chordal graph that is not $(k+1)$-mixing. The authors left as an open problem whether there exists an integer $l \geq k+1$ for which every k-colourable weakly chordal graph is l-mixing. We answer this question in the negative with the following theorem.

Theorem 1. For all $n \geq 1$, there exists a k-colourable weakly chordal graph that is not $(k+n)$-mixing.

This question has also been investigated for the class of graphs defined by forbidding an induced path. That is, determining the values of t for which a k-colourable P_t-free graph is $(k+1)$-mixing. Bonamy and Bousquet [3] showed that a k-colourable P_4-free graph is $(k+1)$-mixing, and using the same example of Cereceda, van den Heuvel, and Johnson [5], showed [7].
that for all $k \geq 3$ and $t \geq 6$, there is a k-colourable P_t-free graph that is not $(k + 1)$-mixing. It was also mistakenly reported in [3] that there exists a k-colourable P_5-free graph that is not $(k + 1)$-mixing (see [9]). This leaves $t = 5$ as the last open case.

In this paper, we investigate this question for a subclass of P_5-free graphs, namely $3K_1$-free graphs. This class of graphs also includes the perfect class of co–bipartite graphs.

Theorem 2. If G is a k-colourable $3K_1$-free graph, then G is $(k + 1)$-mixing and the $(k + 1)$-recolouring diameter of G is at most $4|V(G)|$.

The proof of Theorem 2 leads to a polynomial time algorithm to find a path of length at most $4|V(G)|$ between any two $(k + 1)$-colourings of G in the recolouring graph.

The rest of the paper is organized as follows. In Section 2 we give definitions and notation used throughout the paper. We prove Theorem 1 in Section 3 and we prove Theorem 2 and in Section 4. We end with some discussion on future work in Section 5.

2 Preliminaries

For a graph G, a **clique** of G is a set of pairwise adjacent vertices and a **stable set** is a set of pairwise non-adjacent vertices. A graph G is $3K_1$-free if the maximum number of vertices in a stable set of G is at most 2. The **clique number** of G, denoted by $\omega(G)$, is the maximum number of vertices in a clique of G. The **chromatic number** of G, denoted by $\chi(G)$, is the minimum k such that G is k-colourable. Clearly, $\chi(G) \geq \omega(G)$. A graph G is perfect if for all induced subgraphs H of G, $\chi(H) = \omega(H)$.

The **complement** of G, denoted \overline{G}, is the graph with vertex-set $V(G)$ such that $uv \in E(G)$ exactly when $uv \notin E(G)$. A graph is **bipartite** if its vertices can be partitioned into two stable sets and a graph is **co–bipartite** if it is the complement of a bipartite graph. A **hole** is a chordless cycle on at least five vertices and an **antihole** is the complement of a hole. A hole is **even** or **odd** if it has an even or odd number of vertices, respectively. For a set of graphs \mathcal{H}, we say that G is \mathcal{H}-free if G does not contain an induced subgraph isomorphic to any graph in \mathcal{H}. A graph is **perfect** if and only if it is (odd hole, odd antihole)-free [6]. A graph is **weakly chordal** if it is (hole, antihole)-free. Clearly, a graph G is weakly chordal if and only if \overline{G} is weakly chordal.

For a vertex $v \in V(G)$, the **open neighbourhood** of v is the set of vertices adjacent to v in G. The **closed neighbourhood** of v is the set of vertices adjacent to v in G together with v. For $X, Y \subseteq V(G)$, we say that X is **complete** to Y if every vertex in X is adjacent to every vertex in Y. If no vertex of X is adjacent to a vertex of Y, we say that X is **anticanonically** to Y. Let G and H be vertex-disjoint graphs and let $v \in V(G)$. By **substituting** H for the vertex v of G, we mean taking the graph $G - v$ and adding an edge between every vertex of H and every vertex of $G - v$ that is adjacent to v in G.

For a colouring α of G and $X \subseteq V(G)$, we say that the colour c **appears** in X if $\alpha(x) = c$ for some $x \in X$. A k-colouring of a graph G is called **frozen** if it is an isolated vertex in the recolouring graph $R_k(G)$. In other words, for every vertex $v \in V(G)$, each of the k colours appears in the closed neighbourhood of v.

3 Frozen colourings of weakly chordal graphs

In this section we prove Theorem 1. One technique to prove that a graph G is not k-mixing is to exhibit a frozen k-colouring of G. We construct a family of graphs $\{G_n \mid n \geq 1\}$ such that G_n is a k-colourable weakly chordal graph that has a frozen $(k + n)$-colouring. See Figure 1 for a 3-colouring and a frozen 4-colouring of G_1. For $n \geq 2$, we recursively construct G_n by substituting G_{n-1} into four vertices of G_1 (see Figure 2).
We first prove that substituting a weakly chordal graph for some vertex of a weakly chordal
graph results in a weakly chordal graph. We note that there might be a proof of this in the
literature, and for example, Lovász proved an analogous theorem for perfect graphs [8].

Theorem 3. Substituting a weakly chordal graph for some vertex of a weakly chordal graph
results in a weakly chordal graph.

Proof. Let G_1 and G_2 be vertex-disjoint weakly chordal graphs and let $v \in V(G_1)$. Let G be
the graph obtained by substituting G_2 for the vertex v of G_1.

By contradiction, suppose G contains a hole H. Then H must contain at least 2 vertices
v_1, v_2 of G_2 since G_1 is a weakly chordal graph. Furthermore, since G_2 is a weakly chordal
graph, H must contain at least one vertex x in G_1 that is either adjacent to v_1 or v_2 in G. But
any vertex of $G - G_2$ that has a neighbour in G_2 is complete to G_2. So x must be adjacent to
both v_1 and v_2. Since x can have at most two neighbours in H and since H is a hole, H cannot
contain any more neighbours of x. Then H cannot contain another vertex from G_2 since x is
complete to G_2. But any other vertex of H adjacent to v_1 or v_2 must be adjacent to both v_1
and v_2, so H cannot be a hole, a contradiction.

Now suppose that G contains an antihole. Note that \overline{G} is obtained by substituting the weakly
chordal graph $\overline{G_2}$ into the vertex v of the weakly chordal graph $\overline{G_1}$. But since G contains
an antihole, \overline{G} contains a hole, a contradiction. \hfill \Box

Lemma 1. For all $n \geq 1$, G_n is a weakly chordal graph.

Proof. The proof is by induction on n. It is easy to verify that G_1 is weakly chordal and so the
statement holds for $n = 1$. By the induction hypothesis, G_{n-1} is a weakly chordal graph. The
graph G_n is constructed by substituting G_{n-1} into 4 vertices of G_1. Since G_1 and G_{n-1} are
both weakly chordal graphs, it follows from Theorem 3 that G_n is a weakly chordal graph. \hfill \Box

We are now ready to prove Theorem 1, which follows from Lemma 2 and 3. Recalling the
notation used in Figure 2, note that in G_n and for $v \in \{w, x, y, z\}$, v is complete to exactly
three copies of G_{n-1} and anticomplete to the other copy of G_{n-1}. For $v \in \{w, x, y, z\}$, let G^{w}_{n-1}
denote the copy of G_{n-1} in G_n that is anticomplete to v.

Lemma 2. For all $n \geq 1$, $\chi(G_n) = \omega(G_n) = 2n + 1$.

Proof. The proof is by induction on n. The statement holds for $n = 1$ since G_1 is 3-colourable
and contains a clique of size 3 (see Figure 1). By the induction hypothesis, $\chi(G_{n-1}) = \omega(G_{n-1}) = 2n - 1$. Fix a $(2n - 1)$-colouring α of G_{n-1}. We show how to extend α to a
$(2n + 1)$-colouring of G_n. Since each copy of G_{n-1} is pairwise anticomplete, we can colour each
copy of G_{n-1} identically using α. To complete this colouring of G_n, we make $\alpha(w) = \alpha(z) = 2n$
and $\alpha(x) = \alpha(y) = 2n + 1$. Since $wz, xy \notin E(G)$, this gives a proper $(2n + 1)$-colouring of

![Figure 1: A 3-colouring and frozen 4-colouring of G_1.](image)
G_n. To find a clique of size 2n + 1 in G_n, take a clique K of size 2n - 1 in G^z_{n-1}. Then since wx \in E(G) and since \{w, x\} is complete to G^w_{n-1}, it follows that K \cup \{w, x\} is a clique of size 2n + 1 in G_n.

Lemma 3. For all n \geq 1, G_n has a frozen (3n + 1)-colouring.

Proof. The proof is by induction on n. The statement holds for n = 1 since G_1 has a frozen 4-colouring (see Figure 1). By the induction hypothesis, G_{n-1} has a frozen (3n - 2)-colouring. To construct a frozen (3n + 1)-colouring \alpha of G_n, we take a frozen (3n - 2)-colouring of each copy of G_{n-1} in G_n using a different set of colours.

For v \in \{w, x, y, z\}, let \alpha_v v denote the colouring of G_n restricted to the subgraph G^w_{n-1}. Let \alpha^w be a frozen (3n - 2)-colouring of G^w_{n-1} using the colours \{1, 2, \ldots, 3n - 2\}. Let \alpha^x, \alpha^y, \alpha^z be frozen (3n - 2)-colourings of G^x_{n-1}, G^y_{n-1}, G^z_{n-1} using the colours \{1, 2, \ldots, 3n - 3, 3n - 1\}, \{1, 2, \ldots, 3n - 3, 3n\}, \{1, 2, \ldots, 3n - 3, 3n + 1\}, respectively. Since each each copy of G_{n-1} is pairwise anticomplete, this creates no conflicts. To complete this colouring of G_n, make \alpha(w) = 3n - 2, \alpha(x) = 3n - 1, \alpha(y) = 3n, and \alpha(z) = 3n + 1. Note that for each v \in \{w, x, y, z\}, \alpha(v) only appears on v and in G^v_{n-1}. Since v is anticomplete to G^w_{n-1}, this creates no conflicts. Therefore, \alpha is a proper (3n + 1)-colouring of G_n.

To see that \alpha is a frozen colouring, first examine a vertex u in G^w_{n-1} for v \in \{w, x, y, z\}. By construction, there are 3n - 2 colours appearing on the closed neighbourhood of u in G^w_{n-1}. Also by construction, the remaining 3 colours are used to colour \{w, x, y, z\} \setminus \{v\}. Since each of \{w, x, y, z\} \setminus \{v\} is complete to G^w_{n-1}, all 3n + 1 colours appear on the closed neighbourhood of u and it cannot be recoloured. Now examine vertex v \in \{w, x, y, z\}. Since v is complete to each G^w_{n-1} for u \in \{w, x, y, z\} \setminus \{v\}, there are 3n colours appearing on the open neighbourhood of v. Since \alpha is a proper colouring, the last colour is being used to colour v and so it cannot be recoloured.

4 Recolouring the complement of triangle-free graphs

In this section we prove Theorem 2. Note that in any colouring of a 3K_1-free graph at most two vertices share the same colour. With this in mind, it is not hard to see that an optimal colouring of a 3K_1-free graph can be found in polynomial time by finding a maximum matching in the complement. We begin by proving the following lemma.

Lemma 4. Let G be a k-colourable 3K_1-free graph. In any (k + 1)-colouring of G, there exists a colour c that either does not appear in G or is used to colour exactly one vertex of G.
Proof. Let G be as in the statement of the lemma and fix some $(k+1)$-colouring of G. We can assume that all $k+1$ colours appear on the vertices of G since, if not, the first condition is satisfied. Now by contradiction assume that all $k+1$ colours appear twice on the vertices of G. We know that $|V(G)| \leq 2\chi(G)$ since we can partition the vertices of G into at most $\chi(G)$ stable sets, each having at most two vertices. But since all $k+1$ colours appear twice on the vertices of G, we have $|V(G)| \geq 2(k+1) > 2\chi(G)$, a contradiction. \qed

Let γ be a $\chi(G)$-colouring of G and let \mathcal{C} be the partition of the vertices of G given by the colour classes of γ. Given two colourings α and β of G, our strategy is to first recolour each to a $\chi(G)$-colouring α' and β' whose colour classes correspond exactly to the partition \mathcal{C}, and then use the following Renaming Lemma.

Lemma 5 (Renaming Lemma [3]). If α' and β' are two k-colourings of G that induce the same partition of vertices into colour classes, then α' can be recoloured into β' in $\mathcal{R}_{k+1}(G)$ by recolouring each vertex at most 2 times.

Proof of Theorem 2. Let G be a k-colourable $3K_1$-free graph and let α and β be two $(k+1)$-colourings of G. Fix a $\chi(G)$-colouring γ of G and let \mathcal{C} be the partition of $V(G)$ given by the colour classes of γ. Note that $|\mathcal{C}| = \chi(G)$ and each colour class $C \in \mathcal{C}$ has one or two vertices.

Claim 1. The colouring α can be recoloured into a $\chi(G)$-colouring α' of G such that α' and γ partition the vertices of G into the same colour classes by recolouring each vertex at most once.

We prove the claim by induction on $\chi(G)$. For $\chi(G) = 1$ the claim is trivial. Now assume the statement holds for $\chi(G) - 1$. By Lemma 4, there exists some colour c of α that either does not appear in G or appears on exactly one vertex of G.

First suppose the colour c appears in G and let u be the vertex coloured c. Let \mathcal{C} be the colour class of γ which contains u. If \mathcal{C} contains some other vertex v then, from α, recolour v with c. If instead c does not appear in G, we select u, v, and \mathcal{C} as follows. Take some colour class of α that is not a colour class of γ (if no such colour class exists we are done) and some vertex u in this colour class. From α, recolour u with the colour c. Let \mathcal{C} be the colour class of γ which contains u. If there is another vertex $v \in \mathcal{C}$ then recolour v to the colour c. This can be done since $uv \notin E$ and no other vertex is coloured c.

Let α_C be the current colouring of G restricted to $G - C$ with c taken out of its set of colours. Let γ_C be the colouring γ restricted to $G - C$.

Since γ is a $\chi(G)$-colouring of G, it follows that $\chi(G - C) = \chi(G) - 1$. Then α_C is a k-colouring of $G - C$ (since we removed the colour c) and $k \geq \chi(G - C) + 1$. By the induction hypothesis, α_C can be recoloured into a $(\chi(G - C) - 1)$-colouring α'_C, of $G - C$ such that α'_C and γ_C partition the vertices of G into the same colour classes by recolouring each vertex at most once. Since the colour of u and v are never used again, this recolouring sequence from α_C to α'_C can be extended to a recolouring sequence between α and α'. Since u and v are recoloured at most once, each vertex of G is recoloured at most once. This completes the proof of the claim.

Similarly, β can be recoloured into a $\chi(G)$-colouring β' such that β' and γ partition the vertices of G into the same colour classes by recolouring each vertex at most once. By Lemma 5, we can recolour α' into β' by recolouring each vertex at most twice. This gives us a recolouring sequence from α to β by recolouring each vertex at most 4 times. \qed

5 Conclusion

In this paper, we answered an open question of Feghali and Fiala by showing that for all $n \geq 1$, there exists a k-colourable weakly chordal graph with a frozen $(k+n)$-colouring. We also showed that every k-colourable $3K_1$-free graph is $(k+1)$-mixing with a linear $(k+1)$-recolouring diameter. It is an open problem whether a k-colourable P_3-free graph is $(k+1)$-mixing [9]. This
question has been answered for several subclasses of P_5-free graphs. These include when $k = 2$ [4], for co–chordal graphs, for (P_5, P_5, C_5)-free graphs and $k = 3$ [7], for P_4-sparse graphs [1], and now for $3K_1$-free graphs. It may be hard to answer this question for the entire class of P_5-free graphs and so it would be interesting to continue studying subclasses of P_5-free graphs for which this question can be answered.

Acknowledgements

The author thanks Carl Feghali for comments and discussion that greatly improved the paper. The author was partially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2016-06517.

References

[1] T. Biedl, A. Lubiw, O. Merkel. Building a larger class of graphs for efficient reconfiguration of vertex colouring. arXiv:2003.01818 [cs.DM], 2020.

[2] M. Bonamy, N. Bousquet. Recoloring graphs via tree decompositions. arXiv:1403.6386 [cs.DM], 2014.

[3] M. Bonamy, N. Bousquet. Recoloring graphs via tree decompositions. European Journal of Combinatorics, 69:200–213, 2018.

[4] M. Bonamy, M. Johnson, I. Lignos, V. Patel, D. Paulusma. Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of Combinatorial Optimization, 27:132–143, 2014.

[5] L. Cereceda, J. van den Heuvel, M. Johnson. Connectedness of the graph of vertex-colourings. Discrete Mathematics, 308:913–919, 2008.

[6] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164:51–229, 2006.

[7] C. Feghali, J. Fiala. Reconfiguration graph for vertex colourings of weakly chordal graphs. Discrete Mathematics, 343:111733, 2020.

[8] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2:253–267, 1972.

[9] O. Merkel. Building a larger class of graphs for efficient reconfiguration of vertex colouring. Master’s thesis, University of Waterloo, 2020. http://hdl.handle.net/10012/15842