Abstract The aim of this research was to introduce a simulation-based approach for determination of the Forming limit curve (FLC) in two-layer metallic sheets. In this study, the FLC of aluminum-1100/copper-C10100 two-layer sheets were obtained through numerical simulations and experimental investigations. In order to construct the FLC, two different criterions including the acceleration (i.e., the second order of derivatives) of equivalent plastic strain and major strain were applied to obtain the onset of necking in the materials. Based on these methods, the localized necking would be started when the acceleration of the equivalent plastic strain or the major strain got its maximum value. To verify the numerical predictions, the experimental works were accomplished on the aluminum-1100/copper-C10100 two-layer sheets and a good agreement between the proposed methods and experimental works was observed.

Keywords Two-layer sheet · Finite element analysis · Forming · Experiment

1 Introduction

In recent years, the application of two-layer metallic sheets has been increased to manufacture the products with particular specifications, containing excellent mechanical and functional properties. These kinds of products are utilized in several applications such as industrial (the aerospace, electrical industries, and medical instruments) and domestic application [1–3]. Sheet formability and excessive localized thinning are two relevant problems that both academic and industrial researchers are constantly trying to solve. Due to that, the formability limit prediction in sheet metal forming processes assumes primary importance in all the manufacturing scenarios [4]. Forming limit curves (FLCs) are applied to determine the sheet metal formability. The laboratory test results have demonstrated that the FLCs are affected by several factors containing strain rate [5, 6], strain hardening index and anisotropy coefficients [7, 8], heat treatment [9, 10], grain size and microstructure [11], strain path changes [12–14], and sheet thickness [15–17].

After the presentation of the FLC concept by Keeler and Backofen [18], many researchers such as Ito et al. [19], Aghaie-Khafri and Mahmudi [20], Safikhani et al. [21], Situ et al. [22], Mohebbi and Akbarzadeh [23], Bong et al. [24], Chalal et al. [25], and Ben Bettaieb et al. [26] developed some numerical and analytical models to determine the sheet metal formability. However, a few attentions have been paid to study the behavior of multilayer sheets. Semiatin and Piehler carried out the first study on multilayer materials [27]. Yoshiida and Hino [28] investigated the laminated sheet formability both numerically and experimentally. They found that the FLC of the laminates lied between the FLC of its parent material. Weiss et al. [29] tried to determine the laminated sheet formability in different temperatures to specify its effect on the formability of this kind of sheets. Aghchial et al. [30] predicted the formability of aluminum/steel two-layer metallic sheet both theoretically and experimentally. Their study demonstrated that the formability of two-layer metallic sheet lied between its parent material formability. Tseng et al. [31] investigated the deformation of Ti/Al-clad metal sheets. Several significant process parameters, such as holding force, friction, counter
pressure and time. Afshin et al. [34] carried out a comprehensive investigation on warm deep drawing on Al 1050/St 304 and Al 5052/St 304-laminated sheets experimentally. They accomplished several tests to obtain the influence of annealing temperature and time. Afshin et al. [34] carried out a comprehensive investigation on warm deep drawing on Al 1050/St 304 and Al 5052/St 304-laminated sheets experimentally. They accomplished several tests to obtain the influence of annealing on the tensile properties of material decreased by increasing the annealing temperature and time. Afshin et al. [34] carried out a comprehensive investigation on annealing on the tensile strength of multilayered Al-Cu composites. Their research illustrated that the tensile strength of Al-Cu composites decreased by increasing the annealing temperature and time.

Although the fracture occurs by previous necking in several sheet metal forming processes, there are processes or conditions where fracture can develop without previous necking [35]. The scope of this work is limited to situations where necking occurs before failure by fracture.

In this study, two different FE models were utilized to determine the formability of aluminum-1100/copper-C10100 two-layer metallic sheets. Although many investigations have been carried out to determine the formability of aluminum and copper one-layer materials [36–40], according to the knowledge of the authors, it is the first time to determine the FLC of aluminum-1100/copper-C10100 two-layer sheet using FE modeling and experiment.

The finite element methods used in this research contained the following: (1) acceleration of the equivalent plastic strain (PEEQ,1) and (2) acceleration of the major strain (LE11,2) to predict the forming limit of two-layer sheets. Although many criterions have been used to predict the formability of one-layer metallic sheets [41], the “acceleration of the equivalent plastic strain” and “acceleration of the major strain” criterions have been employed for the first time to determine the FLCs of aluminum-1100/copper-C10100 two-layer metallic sheets in order to determine the efficiency of these criterions in prediction of formability in two-layer metallic sheets.

The FLC of two-layer sheets were obtained by a stretching process with hemispherical punch, and the simulation results demonstrated a good agreement with the experimental test results. The FEM results demonstrated that the proposed methods were fairly accurate and computationally inexpensive. It could be easily implemented for FLC generation in a laboratory setting with little need for user input and subjectivity.

2 Experimental work

2.1 Materials

The two-layer metallic blanks (aluminum-1100/copper-C10100) were utilized in this research. The composition of the aluminum-1100 and copper-C10100 layer are given in Tables 1 and 2, respectively.

The aluminum-1100/copper-C10100 two-layer metallic sheets were fabricated using explosive welding which was utilized for an excellent joining of aluminum and copper sheets [42]. The total thickness of aluminum-1100 and copper-C10100 sheets was both 1 mm and the two-layer blank was made of 0.37 mm copper and 0.63 mm aluminum sheets. A STM-50 (SANTAM Company) electronic tensile machine was employed to accomplish the tensile tests. The mechanical and material properties of each layer were determined by standard test using specimens which were prepared according to ASTM-E8 specification at a constant crosshead speed of 2 mm/min [43]. The tensile test samples and dimension of the specimens used in this research are shown in Fig. 1. The mechanical and material properties of each layer are presented in Table 3.

2.2 Punch stretching test

The punch stretching tests were performed with a hemispherical punch of 100-mm diameter according to the procedure suggested by Nakazima [44] on a 30-t hydraulic press (Fig. 2). The specimens with different geometries were used to obtain the FLC in this study. Figure 3 shows the geometries of the used specimens to obtain the FLC [45].

Moreover, in order to measure the principal strains after performing the tests to obtain the FLC, the circular grids were marked on the copper side of the aluminum-1100/copper-C10100 two-layer metallic blanks by the electrochemical etching method.

The circles changed to ellipses after deformation. The minor and major diameters of the ellipses were measured using a Mylar transparent tape. The engineering strains were determined using Eq. (1) and Eq. (2), respectively, and then converted to true strains:

Base	0.355	0.456	0.0084	0.0803	0.014	0.0017	0.0026	
Zn	0.0091	0.001	0.0041	0.00069	0.0005	0.0088	0.0011	0.0012

1. In ABAQUUS software, PEEQ refers to the equivalent plastic strain
2. In ABAQUUS software, LE11 refers to the major component of logarithmic strain
\[\varepsilon_{\text{Major}}(\%) = \frac{a-d}{d} \times 100 \]
\[\varepsilon_{\text{Minor}}(\%) = \frac{b-d}{d} \times 100 \]

where \(a\), \(b\), and \(d\) denote the ellipse's major and minor diameters and the initial circle's diameter, respectively. The FLC was obtained by separating the safe zone from the unsafe zone containing the necked and fractured ellipses.

3 Finite element modeling

The ABAQUS/Explicit FE software \([46]\) was used to model the biaxial stretch-forming test in order to investigate the aluminum-1100/copper-C10100 two-layer metallic sheet-forming limits. The whole finite element modeling of biaxial stretch-forming test should be based on the actual biaxial stretch-forming test. The setting of the numerical simulation was based on the hemispherical punch and different shapes of specimens as mentioned in the experimental section (see Figs. 2 and 3). All the analyses were realized using an explicit finite element approach. Figure 4 shows the geometrical setup which was simulated in the FE software. Since the punch, die, and blank holder had negligible deformation, they were simulated as an analytical rigid part. Moreover, the blank was considered as a deformable part and it was meshed by shell elements (four nodes, reduced integration elements, ABAQUS type S4R) \([47]\). It is suggested that the minimum length of element should be higher than the shell thickness (the thickness of test specimens were in total 1.0 mm). For example, based on the mesh sensitivity study, element size of 2 mm was selected as optimum element size for all finite element simulations when the thickness of the test specimen was approximately 1 mm \([45]\). Thus, at the numerical simulations, the element size of the blanks was set to 2 mm. For example, based on the selected element size, a 75-mm sample contained 4105 elements and 4253 nodes. Also, the tensile properties of each layer were then introduced to the software in order to generate the major and minor strains in punch-stretching process. Each layer was used in the power hardening law to model its behavior.

In order to cover the full range of the FLC, different specimens with different dimensions were modeled to simulate the tension–compression to tension–tension side of the FLC. Friction coefficient was taken to be 0.15 between the surfaces. The blank holder and the punch could move through the punch’s axis while the die was fixed. Major and minor strains were recorded after each time step to evaluate the numerical FLC.

Figure 5 demonstrates the FE model included of the blank, the blank holder, the punch and the die.

3.1 Analytical necking criterion

Selecting an appropriate necking criterion is important to determine the start of plastic instability in sheet metal forming (Fig. 6). As previously mentioned, in this research, the two necking criterions, containing the acceleration of major strain and the acceleration of equivalent plastic strain, were employed to predict the onset of plastic instability. Two novel criterions to detect the start of plastic instability in the two-layer sheet were suggested to determine the FLC. The forming limits of the two-layer sheets were predicted considering the history of the equivalent plastic strain and the major strain by taking the second order of derivative. For
a given strain path, the limit strain was determined at the maximum value of the strain acceleration. Analyzing of the major and the equivalent plastic strains and their accelerations are presented in detail in the Sects. 3.1.1 and 3.1.2 below. This analysis was repeated for all specimen geometries to obtain the FLC of aluminum-1100/copper-C10100 two-layer metallic sheets.

3.1.1 The acceleration of the major strain criterion

The necking time of a special specimen could be determined by using this method. To obtain the FLC numerically, it was essential to predict at which time and where the necking phenomena occurred in the aluminum-1100/copper-C10100 two-layer metallic sheets. It was possible to predict the necking time of the analyzed specimen using its acceleration of the major strain. This criterion was first presented by Situ [48] which was based on the major strain acceleration (or second derivative) in the sheet and defined by the following relation:

\[
\varepsilon_1 = \left(\frac{d^2 \varepsilon_1}{dt^2} \right)
\]

(3)

where \(\varepsilon_1 \) is the major strain, and the logarithmic strain \((LE^3) \) defined as follows in ABAQUS software [49]:

\[
\varepsilon^L = \ln V = \sum_{i=1}^{3} \ln \lambda_i n_i n_i^T
\]

(4)

where \(V = \sqrt{F F^T} \) is the left stretch tensor, \(\lambda_i \) are the principal stretches, and \(n_i \) are the principal stretch directions in the current configuration. The components of logarithmic strain shown as \(LE_{ij} \) for \(i \leq j \leq 3 \).

First of all, the localized necking region was identified. This area could be detected as an unstable local reduction in the blank thickness. After the start of plastic instability in the material, all the strain became focused in this area and in the outside of this zone, the strain rate was reduced gradually until it finally would be disappeared. The time evaluation of major strain at various aligned points along a section perpendicular to the necking area is shown in Fig. 7. It could be seen that the strain level of some points (A and B) enhanced uniformly, while the other points (C, D, and E) ceased to strain and even undergo some elastic unloading immediately before fracture.

Thus, it could be deduced that the first set of points was situated in the localized necking area, while the second set of points was situated in regions adjacent to the localized necking area. Therefore, the necking zone width could be determined as shown in Fig. 7.

The time when the acceleration of the major strain got its maximum value was assumed as the start of the necking phenomena in the aluminum-1100/copper-C10100 two-layer metallic sheets. The element at which the maximum of acceleration of major strain first appeared in the necking area at the critical side of the two-layer composite sheet was assumed as the element in which the onset of plastic instability started. At the end of the simulation, the major strain history was extracted from the output file of the FE model and its second derivative was then plotted (Fig. 8). The time of necking (tecking) was predicted from this curve.

The major strain and minor strain at point A and at the time corresponded to the onset of plastic instability (tecking) were extracted from the FE result file, in order to construct the FLC (Fig. 9). This procedure was repeatedly performed for all simulated specimen geometries of each aluminum-1100/copper-C10100 two-layer metallic sheets.

Material	Specific gravity, (kg/m³)	Young Module, E (GPa)	Yield Strength, YS (MPa)	Strength coefficient, K (MPa)	Strain hardening index, n
Copper-C10100	8940	115	306	540	0.11
Aluminum-1100	2710	69	122	232	0.12

3 In ABAQUS software, LE refers to the logarithmic strain

Fig. 2 A tool setup for FLC
The acceleration of the equivalent plastic strain criterion

The procedure to predict the FLC by this criterion was the same as the acceleration of major strain criterion. The corresponding equation could be defined as follows [49]:

\[
\varepsilon_{\text{plastic}} = \varepsilon_{\text{plastic}}^0 + \int_0^t \frac{2}{3} \varepsilon_{\text{plastic}} \cdot \dot{\varepsilon}_{\text{plastic}} \, dt
\]

(5)

where \(\varepsilon_{\text{plastic}}^0 \) is the primary equivalent plastic strain and \(\dot{\varepsilon}_{\text{plastic}} \) is the plastic strain rate.

In this research, these two criterions were presented as a necking criterion to determine the FLC in the aluminum1100/copper-C10100 two-layer composite sheets for the first time.

The strain histories of the major and the equivalent plastic strains were compared in Fig. 10. Also, Fig. 11 shows their relation. These figures illustrate that the relation between these
criterions is linear. Thus, the maximum value of their acceleration happens at the similar time and so their FLC would be the same. Thus, it is expected that the two criterions demonstrate the similar results.

Strain-based FLCs are typically determined under linear loading conditions before the onset of necking. Figure 12 demonstrates that the strain path was almost linear up to onset of necking in the FE model used in this work, which implied that the FLCs obtained in this research were acceptable.

Figure 13 shows the equivalent plastic strain and the major strain distributions for a 75-mm wide specimen.
4 Results and discussion

In this research, the results of the simulated stretch-forming test for aluminum-1100/copper-C10100 two-layer composite sheets were presented. The two different necking criterions, containing the acceleration of equivalent plastic and major strains, were applied to identify the start of plastic instability in the aluminum-1100/copper-C10100 two-layer metallic sheet material to construct the FLC. The simulation results illustrated a good agreement with experimental test investigation which verified the applicability of the present necking criterions.

4.1 Comparison of necking locations in two-layer sheets

The equivalent plastic strain and the major strain distributions for a 75-mm wide specimen are shown in Fig. 13. It could be seen that the strain distributions showed almost similar results for the both necking criterions and the necking locations were almost the same. The necking locations determined by the numerical simulation were compared with the experimental result for the three different strain paths as Fig. 14.

4.2 Forming limit curve of Al–Cu two-layer composite sheet

The predicted FLCs were compared with the forming limit curve obtained experimentally for aluminum-1100/copper-C10100 two-layer composite sheets (Fig. 15). It could be concluded from Fig. 15 that these methods were in good agreement with the experimental test results for the Al–Cu two-layer sheets.

The experimental tests were repeated for each mode of forming, and two points for each specimen sketch (for each
mode of forming) have been determined and mean values of major and minor strains for each specimen sketch have been reported in Fig. 15. This figure showed that there was a low difference between the results of FEM and experiment for the FLD₀ (i.e., major strain in plane strain state). This difference could be due to the errors in strain measurement by the conventional “circle grid analysis” method [50, 51]. Therefore, it could be deduced that the FE results were in acceptable agreement with experimental investigations.

5 Conclusions

This research presented the study on the FLC’s determination of the aluminum-1100/copper-C10100 two-layer composite sheets. The two different numerical methods were applied to obtain the FLCs. The numerical results for the FLCs were verified by comparing them with experimental tests. These numerical models contained (1) acceleration of equivalent plastic strain and (2) acceleration of major strain ($\frac{d^2\varepsilon_1}{dt^2}$). These criterions were used for the first time to predict the FLC of the Al–Cu two-layer composite sheets. Both of these models demonstrated the same results. The proposed methods
were fairly accurate and computationally inexpensive. Results from the suggested numerical simulations were in fairly good agreement with experimental investigations.

Acknowledgments The author would like to acknowledge the financial support of the Iran National Science Foundation (INSF).

Appendix: Notation

Symbol	Description
FLC	Forming limit curve
FLD	Forming limit diagram
FLD0	Major strain in plane strain state
K	Strength coefficient
n	Strain hardening index
E	Young Module
YS	Yield strength
v	Poisson’s ratio
\(\varepsilon\)	True strain
\(\varepsilon_1\)	Major strain
\(\varepsilon_2\)	Minor strain
\(\varepsilon_3\)	Thickness strain
PEEQ	Equivalent plastic strain
LE	Logarithmic strain
LE11	Major component of logarithmic strain
V	Left stretch tensor
\(\lambda_i\)	Principal stretches
\(n_i\)	Principal stretch directions

References

1. Karajibani E, Hashemi R, Sedighi M (2015) Determination of forming limit curve in two-layer metallic sheets using the finite element simulation. Proc IMechE Part L: J Materials: Design and Applications. doi:10.1177/1464420715593565
2. Bagherzadeh S, Mirnia MJ, Mollaei Dariani B (2015) Numerical and experimental investigations of hydro-mechanical deep drawing process of laminated aluminum/stainless sheets. J Manuf Process 18: 131–140
3. Karajibani E, Hashemi R, Sedighi M (2016) Experimental determination of forming limit diagram in aluminum-copper two-layer metallic sheets, in Persian. J Sci Technol Composites 2(4):45–50
4. Hashemi R, Karajibani E (2016) Forming limit diagram of Al-Cu two-layer metallic sheets considering the Marciniak and Kuczynski theory. Proc IMechE Part B: J Eng Manuf. doi:10.1177/095440541664419
5. Altmeyer G, Abed-Meraim F, Balan T (2009) Formability prediction of thin metal sheets using various localization criteria. Int J Mater Form 2:423–426
6. Zhang C, Chu X, Guines D, Leotoing L, Ding J, Zhao G (2015) Dedicated linear–Voce model and its application in investigating temperature and strain rate effects on sheet formability of aluminum alloys. Mater Des 67:522–530
7. Min J, Jr LGH, Lin J, Carter JT (2013) Analytical method for forming limit diagram prediction with application to a magnesium ZEK100-O alloy. J Mater Eng Perform 22:3324–3336
8. Hashemi R, Madoliat R, Afshtar A (2016) Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes. Int J Mater Form 9(3):297–303
9. Babu NBK, Davidson MJ, Rao AN, Balasubramanian K, Govindaraju M (2014) Effect of differential heat treatment on the formability of aluminum tailor welded blanks. Mater Des 55:35–42
10. Wang K, Carsley JE, Zhang L, Stoughton TB, Li J, Carlson BE (2014) Forming limits of an age hardenable aluminum sheet after pre-straining and annealing. Int J Mech Sci 82:13–24
11. Aghchaei AJ, Shakeri M, Mollaei Dariani B (2013) Influences of material properties of components on formability of two-layer composite sheets. Int J Adv Manuf Technol 66:809–823
12. Assempour A, Hashemi R, Abrinia R, Ganjiani M, Masoumi E (2009) A methodology for prediction of forming limit stress diagrams considering the strain path effect. Comput Mater Sci 45(2): 195–204
13. Uppaluri R, Venkata Reddy N, Dixit PM (2011) An analytical approach for the prediction of forming limit curves subjected to combined strain paths. Int J Mech Sci 53:365–373
14. Nurcheshmeh M, Green DE (2011) Investigation on the strain-path dependency of stress-based forming limit curves. Int J Form 4:25–37
15. Tseng HC, Hung C, Huang CC (2010) An analysis of the formability of aluminum/copper clad metals with different thicknesses by the finite element method and experiment. Int J Adv Manuf Technol 49:1029–1036
16. Dilmec M, Halkaci HS, Ozurtk F, Livatyali H, Yigit O (2013) Effects of sheet thickness and anisotropy on forming limit curves of AA2024-T4. Int J Adv Manuf Technol 67:2689–2700
17. Dehghani F, Salimi M (2016) Analytical and experimental analysis of the formability of copper-stainless steel 304 L clad metal sheets in deep drawing. Int J Adv Manuf Technol 82:163–177
18. Keeler SP, Backoën WA (1963) Plastic instability and fracture in sheets stretched over rigid punches. Trans ASM 56:25–48
19. Ito K, Satoh K, Goya M, Yoshida T (2000) Prediction of limit strain in sheet metal-forming processes by 3D analysis of localized necking. Int J Mech Sci 42:2233–2248
20. Aghaie-Khafri M, Mahmudi R (2004) Prediction of plastic instability and forming limit diagrams. Int J Mech Sci 46:1289–1306
21. Safikhani AR, Hashemi R, Assempour A (2009) Some numerical aspects of necking solution in prediction of sheet metal forming limits by strain gradient plasticity. Mater Des 30:727–740
22. Situ Q, Jain MK, Metzger DR (2011) Determination of forming limit diagrams of sheet materials with a hybrid experimental–numerical approach. Int J Mech Sci 53:707–719
23. Mohabbi MS, Akbarzadeh A (2012) Prediction of formability of tailor welded blanks by modification of MK model. Int J Mech Sci 61:44–51
24. Bong HJ, Barlat F, Lee M, Ahn DC (2012) The forming limit diagram of ferritic stainless steel sheets: experiments and modeling. Int J Mech Sci 64:1–10
25. Chalal H, Abed-Meraim F (2015) Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach. Mech Mater 91:152–166
26. Ben Bettiaib M, Abed-Meraim F (2015) Investigation of localized necking in substrate-supported metal layers: comparison of bifurcation and imperfection analyses. Int J Plast 65:168–190
27. Semiatin SL, Piehler HR (1979) Forming limits of sandwich sheet materials. Metall Trans 10:095440541664419
28. Yoshida F, Hino R (1997) Forming limit of stainless steel-clad aluminum sheets under plane stress condition. J Mater Process Techn 63:66–71
29. Weiss M, Dingle ME, Rolfe BF, Hodgson PD (2007) The influence of temperature on the forming behavior of metal/polymer laminates in sheet metal forming. J Eng Mater Technol 129:530–537
30. Aghchai AJ, Shakeri M, Mollaei-Dariani B (2008) Theoretical and experimental formability study of two-layer composite sheet (Al1100/St12). Prog ImechE Part B: J Eng Manuf 222:1131–1138
31. H. C. Tseng, J. C. Hung, C. Hung, M. F. Lee, 2011, “Experimental and numerical analysis of titanium/aluminum clad metal sheets in sheet hydroforming”, Int J Adv Manuf Technol 54: 93–111.
32. Bagherzadeh S, Mollaei-Dariani B, Malekzadeh K (2012) Theoretical study on hydro-mechanical deep drawing process of biocomposite sheets and experimental observations. J Mater Process Technol 212:1840–1849
33. Yousefi Mehr V, Toroghinejad MR, Rezaeian A (2014) Mechanical properties and microstructure evolutions of multilayered Al–Cu composites produced by accumulative roll bonding process and subsequent annealing. Mater Sci Eng A 601:40–47
34. Afshin E, Kadkhodayan M (2015) An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes. Mater Des 87:25–35
35. Silva MB, Skjoedt M, Bay N, Martins PAF (2009) Revisiting single-point incremental forming and formability/failure diagrams by means of finite elements and experimentation. J Strain Anal Eng Des 44:221–234
36. Zhalehfar F, Hashemi R, Hosseinipour SJ (2014) Experimental and theoretical investigation of strain path change effect on forming limit diagram of AA5083. Int J Adv Manuf Technol 76:1343–1352
37. Zafar R, Lihui L, Rongjing Z (2015) Analysis of hydro-mechanical deep drawing and the effects of cavity pressure on quality of simultaneously formed three-layer Al alloy parts. Int J Adv Manuf Technol 80:2117–2128
38. Kim J, Suh J, Hoffmann H, Golle R (2011) Determination of uni-axial flow stress curve using aero-bulge test for very thin copper sheet. Adv Mater Res 264-265:608–613
39. M. Safwan (2011) Experimental study of formability of sheet metal in deep drawing process”, Bachelor Dissertation, Faculty of Mechanical Engineering, Pahang University, Malaysia
40. Ashrfi A, Khalili K (2015) Studying the stress-strain curve of C12200 copper tube using hydraulic bulge test in T shaped die. Modares Mechanical Eng 14:95–106
41. Abed-Meraim F, Balan T, Altmeier G (2014) Investigation and comparative analysis of plastic instability criteria: application to forming limit diagrams. Int J Adv Manuf Technol 71:1247–1262
42. Gulene B (2008) Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method. Mater Des 29:275–278
43. Metals Test Methods and Analytical Procedures, Annual Book of ASTM Standards, ASTM-E8 and ASTM-E517, West Conshohocken, PA Vol 03.01, 2000
44. Nakazima K, Kikuma T, Hasuka K (1971) Study on the formability of steel sheets. Yawata Tech Rep 284:678–680
45. Ozturk F, Lee D (2005) Experimental and numerical analysis of out-of-plane formability test. Int Mater Process Technol 170:247–253
46. ABAQUS Inc. (2009) ABAQUS/ExplicitManualVersion6–9.1
47. Korouyeh RS, Naeini HM, Liaghat G (2012) Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods. J Mater Eng Perform 22(11):3210–3221
48. Situ Q, Jain M, Bruhis M (2006) A suitable criterion for precise determination of incipient necking in sheet materials. Mater Sci Forum 519–521:111–116
49. ABAQUS User Guide, ABAQUS analysis user’s manual
50. M. Safwan (2011) Experimental study of formability of sheet metal in deep drawing process”, Bachelor Dissertation, Faculty of Mechanical Engineering, Pahang University, Malaysia
51. Mamusi H, Masoumi A, Hashemi R, Mahdvinejad R (2013) A novel approach to the determination of forming limit diagrams for tailor-welded blanks. J Mater Eng Perform 22(11):3210–3221
52. Korouyeh RS, Naeini HM, Liaghat G (2012) Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods. J Mater Eng Perform 21(10):2053–2061