Comparative Evaluation of the Inhibitory Potential of Synthetic N-Heterocycles, Cu/Fe$_3$O$_4$@SiO$_2$ Nanocomposites and Some Natural Products against Non-Resistant and Antibiotic-Resistant *Acinetobacter baumannii*

Jalal Mardaneh1, Hamid Beyzaei2, Seyed Hadi Hashemi3, Behzad Ghasemi$^4^*$, Abbas Rahdar5

1Department of Microbiology, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
2Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
3Department of Clinical Sciences, Faculty of Veterinary Medicine, Zabol University, Zabol, Iran.
4Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran.
5Department of Physics, Faculty of Science, University of Zabol, Zabol, Iran.

Keywords:
- Antimicrobial activity
- Acinetobacter baumannii
- Nanocomposites
- Curcuma longa
- Green tea catechins
- Trachyspermum ammi

Abstract

Background: *Acinetobacter baumannii* is a common infectious agent in hospitals. New antimicrobial agents are identified and prepared to combat these bacterial pathogens. In this context, the blocking potentials of a series of synthesized N-heterocyclic compounds, Cu/Fe$_3$O$_4$@SiO$_2$ nanocomposites, glycine, poly-L-lysine, nisin and hydroalcoholic extracts of *Trachyspermum ammi*, *Curcuma longa* and green tea catechins were evaluated against non-resistant and multidrug-resistant strains of *A. baumannii*.

Methods: Solutions of heterocyclic derivatives and hydroalcoholic extracts of *Trachyspermum ammi*, *Curcuma longa* and green tea catechins were prepared at initial concentration of 10240 µg ml$^{-1}$ in 10% DMSO. Other compounds were dissolved in water at the same concentrations. Their inhibitory activity was assessed by determination of IZD, MIC and MBC values.

Results: Glycine, poly-L-lysine, nisin, *Curcuma longa* and green tea catechins extracts, and thiazoles 3a, 3d and 3f were ineffective at their initial concentrations. Heterocyclic derivatives 7a-f, 3d, 3e and 3h, Cu/Fe$_3$O$_4$@SiO$_2$ nanocomposites and *Trachyspermum ammi* extract could block the growth of bacterial strains with IZDs (7.40-15.51 mm), MICs (32-1024 µg ml$^{-1}$) and MBCs (128-2048 µg ml$^{-1}$).

Conclusion: Among synthetic chemicals and natural products, the best antimicrobial effects were recorded with (E)-2-(5-acetyl-4-methylthiazol-2-yl)-2-(thiazolidin-2-ylidene)acetonitrile (7b) and the extract of *Trachyspermum ammi*. It is imperative that their toxic and histopathologic effects were assessed in future researches. It is predicted that the essential oil of *Trachyspermum ammi* will improve its antibacterial activities.

Introduction

Acinetobacter baumannii is an aerobic Gram-negative bacillus that causes hospital-acquired infections such as pneumonia, meningitis, endocarditis and urinary tract infections.1 Strains of *A. baumannii* were resistant to the most commonly prescribed antibiotics due to their overuse. Resistant bacteria are difficult inhibited, and expensively treated.2 As a result, new antibacterial agents must be designed and identified to confront these important pathogens. The medicinal properties of many herbs have been known. Although chemical drugs have been widely used in recent years, but their unpleasant side effects have pushed the researchers to natural alternatives.3

Trachyspermum ammi is belonging to *umbelliferae* family grows in India, Iran, Iraq and Afghanistan. Its fruit consumed as spice, and prescribed to treat common cold, asthma, diarrhoea, appetite loss, stomach spasms and bloating.4 In addition, antioxidant, antiparasitic, antifungal, antinematodal, antiviral and antimosquito activities of different parts of this plant were proved in previous researches.4 *Trachyspermum ammi* could inhibit the growth of *Escherichia coli* and *Staphylococcus aureus*.5 Green tea catechins are produced from the fermented leaves of the *Camellia sinensis* plan. It is a herbal antioxidant.
Curcuma longa is an ancient condiment that cultivated in India and China. It helps to the improvement of wounds, purification of blood, and reduction of inflammatory and blood cholesterol.\(^7\) It could block the growth of S. aureus and E. coli.\(^11\)

Copper plays a variety of critical roles in function of the body’s tissues and organs such as metabolism, enzyme activity, production of brain cells and scavenging of free radicals.\(^12\) The antimicrobial properties of copper have made it as efficient agent to treat bacterial and fungal infections.\(^13\)

Poly-L-lysine homo polymer is produced from anaerobic bacteria fermentation. It doesn’t show any toxicity on the nervous, immune and reproductive systems of rats.\(^14\) It is used as food preservative due to its inhibitory effects on various Gram-positive and Gram-negative bacterial pathogens.\(^15\)

Glycine as the simplest amino acid has low toxicity for humans in small doses. It protects the body against oxidative stress resulting from alcohol consumption. Its inhibitory effects were studied on Helicobacter pylori.\(^16\)

Nisin peptide contains 34 amino acids, which produced naturally and industrially from the Lactococcus lactis.\(^17\) It as antimicrobial agent inhibits the growth of pathogens such as Staphylococcus aureus, Salmonella typhimurium and Candida albicans. These factors, together with the fact that nisin does not alter gut flora profile, have led to its recommendation as a food preservative by the World Food and Drug Administration.\(^18\)

Thiazoles, imidazolidines and tetrahydropyrimidines are three classes of heterocyclic compounds that found in many natural products and biological compounds. Some thiazole derivatives were used to treat cancer, AIDS, blood lipids and hypertension diseases.\(^19\) Some synthesized thiazoles showed anti-inflammatory and antioxidant activities as well as blocking properties on anopheles mosquitoes or trypanosomes and fungi Candida albicans.\(^20\)

Antimicrobial effects of thiazole derivatives were evaluated against a broad spectrum of bacterial pathogens such as Pseudomonas aeruginosa, Staphylococcus epidermidis and Bacillus subtilis.\(^21\) Imidazolidine ring is present in midazolam, phenytoin and ketocanozole that applied as anesthetic, anti-seizure and antifungal medicines.\(^22-31\) In addition, antibacterial effect of synthetic imidazolidines were assessed on S. aureus, Pseudomonas aeruginosa and E. coli.\(^22,33\) Antifungal, antimalarial, anticancer and anti-inflammatory activities were observed with compounds containing tetrahydropyrimidine core.\(^34-38\)

Tetrahydropyrimidine derivatives could efficiently confront Pseudomonas aeruginosa and Klebsiella pneumoniae.\(^39\)

To expand and discover new antimicrobial agents, inhibitory potentials of synthetic thiazole, imidazole and tetrahydropyrimidine derivatives, Cu/Fe\(_2\)O\(_4\)@SiO\(_2\) nanocomposites, glycine, poly-L-lysine, nisin and hydroalcoholic extract of Trachyspermum ammi, Curcuma longa and green tea catechins were studied against non-resistant and antibiotic-resistant strains of A. baumannii.

Materials and Methods

Preparation of nisin, glycine and poly-L-lysine

Nisin was dissolved in sterile 2% HCl, heated in water bath at 80 °C for 7 min, and sterilized by 0.22 µm syringe filter. Glycine and poly-L-lysine were dissolved in water, and sterilized under the same conditions.\(^15,16\)

Preparation of hydroalcoholic extracts

Trachyspermum ammi seeds and Curcuma longa rhizomes were collected at harvest stages from Chah-Nimeh of Sistan region; green tea leaves were also obtained from Lahijan. Voucher specimens were deposited at the University of Zabol Herbarium. 10 g of milled plant was soaked in 100 ml of aqueous ethanol 50% for 72 h in total darkness. The mixture was filtered off, and the solvent was evaporated under vacuum to give concentrated extract. The powder extract was obtained by spray drying technique. Extract was dissolved in 10% DMSO at initial concentrations of 10240 μg ml\(^{-1}\), and sterilized by 0.22 μm syringe filter.\(^40\)

Preparation of Cu/Fe\(_2\)O\(_4\)@SiO\(_2\) nanocomposites

The Fe\(_2\)O\(_4\) nanoparticles were prepared using electrochemical system as previously reported.\(^41\) A solution containing 0.90 g of copper chloride in 50 ml of aqueous ethanol 50% was added to a stirred mixture in an electrochemical cell including 0.27 g of Fe\(_2\)O\(_4\)@SiO\(_2\) in 50 ml of aqueous ethanol 50%. Then, 1.6 ml acetic acid and 8 ml ethylene glycol were added dropwise to them over 4 h under reduced pressure. Finally, the particles were separated using a magnet, washed with distilled water and calcined at 180 °C for 13 h to give Cu/Fe\(_2\)O\(_4\)@SiO\(_2\) nanocomposites.\(^41\)

Synthesis of thiazoles 3a-f

A mixture including 1 mmol of thiouamide 1 (0.23 g.), 1-bromocarboxyl compounds 2a-f and sodium bicarbonate (0.08 g) in 1 ml DMF was stirred at ambient temperature (Figure 1). When the reaction was completed, the reaction mixture was added to crushed ice; the solid was gathered and recrystallized from methanol.\(^42\)

Synthesis of imidazolidines 6a-c and tetrahydropyrimidines 6d-f

A mixture including 10 mmol of both carbon disulfide 5 (0.76 g), diaminoolkanes 4a-h as well as 2.5 mmol of MgO nanoparticles (0.1 g) was stirred in 20 ml ethanol at ambient temperature (Figure 2). After the reaction was completed, 10 ml DMSO was added to it, and the mixture was filtered off to remove MgO nanoparticles. The obtained solution was added to crushed ice. The solid was gathered and washed with water and ethanol several times.\(^35\)
Inhibitory Evaluation of Chemical and Natural Compounds on *Acinetobacter baumannii*

Preparation of bacterial suspension
Non-resistant strain (PTCC 1855) and strain resistant to cefotaxime, amikacin, levofloxacine, trimethoprim-

sulfamethoxazole, imipenem, gentamicin, ciprofloxacin, meropenem and ceftazidime (PTCC 1797) of *A. baumannii* were prepared from the Persian Type Culture Collection (PTCC).

Dr. Seyed Javadein from urine culture of a 60-year-old woman suffered from recurrent UTI. Finally, the 0.5 McFarland turbidity standard of each bacterial strain was prepared in Mueller-Hinton broth (MHB) medium.

Inhibition zone diameter (IZD) measurement
100 μl of bacterial suspension was spread on a plate 10 cm containing Mueller-Hinton agar (MHA). Some blank discs were placed on it. 10 μl of 10240 and 17.6 μg ml⁻¹ compounds and antibiotics respectively, were poured onto them. The plates were incubated at 37 °C for 24 h. Finally, the IZD values were measured by caliper.

The minimum inhibitory concentration (MIC) determination
Bacterial suspensions were diluted to 300 times with MHB. 20 μl of compounds dissolved in DMSO (20480, 10240, 5120, 2560, 1280, 640, 320, 160, 80, 40, 20, 10 μg ml⁻¹), 80 μl of MHB and 100 μl of diluted microbial suspensions were added to all wells of a twelve-row of 96-well microliter plate. The plates were incubated at 37 °C for 20 h under shaking at 100 rpm. The MIC values were determined as the lowest concentration of compounds without visible turbidity.

The minimum bactericidal concentration (MBC) determination
Samples of all wells without visible turbidity in the former test were cultured in MHA. The plates were incubated at 37 °C for another 24 h. The lowest concentration that resulted in no bacterial survived, was considered as the MBC value.

Results
In this context, spindle-shaped Cu/Fe₃O₄@SiO₂ nanocomposites were prepared with mean diameter of 80 nm according to the FE-SEM micrograph (Figure 3-A). Their size distribution were characterized by DLS to obtain

Figure 1. The synthesis of thiazoles 3a-f

Chemical Structure	Formula
3-Methyl-4-(4-methylthiazol-2-yl)-1-phenyl-1H-pyrazol-5-amine	(3a)
1-(2-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-4-methylthiazol-5-yl)ethan-1-one	(3b)
Ethyl 2-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-4-methylthiazole-5-carboxylate	(3c)
Ethyl 2-(5-amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)thiazole-4-carboxylate	(3d)
2-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)thiazole-4(5H)-one	(3e)
2-(5-Amino-3-methyl-1-phenyl-1H-pyrazol-4-yl)-5-methylthiazol-4(5H)-one	(3f)

Figure 2. The synthesis of imidazolidines 6a-c and tetrahydropyrimidines 6d-f

Chemical Structure	Formula
Imidazolidine-2-thione	(6a)
4,4-Dimethylimidazolidine-2-thione	(6b)
Octahydro-2H-benzimidazole-2-thione	(6c)
Tetrahydropyrimidine-2(1H)-thione	(6d)
5,5-Dimethyltetrahydropyrimidine-2(1H)-thione	(6e)
4-Ethyltetrahydropyrimidine-2(1H)-thione	(6f)

Figure 3. FE-SEM micrograph (A) and size distribution by DLS (B) of synthesized Cu/Fe₃O₄@SiO₂ nanocomposites.
the mean hydrodynamic diameter (~ 50 nm), as is shown in Figure 3-B. PDI (polydispersity index) of the prepared nanocomposites was 0.368.

The magnetic property of nanoparticles was determined using vibration sample magnetization (VSM) technique (Table 1). Figure 4 shows the VSM curve of the Cu/Fe₃O₄@SiO₂ nanocomposites measured at room temperature under the applied magnetic field of 8000 Oe. No inhibitory activity was observed with imidazolidines 6a and 6c, tetrahydropyrimidine 6e, glycine, poly-L-lysine, nisin, *Curcuma longa* and green tea catechins extracts. Cu/Fe₃O₄@SiO₂ nanocomposites, thiazoles 3c-f and tetrahydropyrimidine 6d were only effective on non-resistant strain with IZD of 6.76-11.64 mm, MIC of 64-512 µg ml⁻¹ and MBC of 256-1024 µg ml⁻¹. Inhibitory effects of *Trachyspermum ammi* extract, thiazoles 3a,b, imidazolidine 6b and tetrahydropyrimidine 6f were proven on both non-resistant and antibiotic-resistant strains with IZD of 6.00-15.51 mm, MIC of 32-1024 µg ml⁻¹, and MBC of 64-2048 µg ml⁻¹. The best results belonged to thiazole derivative 3b (Table 2).

Discussion

In this study, antibacterial effects of plants extracts, peptides, an amino acid, metallic nanoparticles and heterocyclic derivatives were evaluated against non-resistant and resistant strains of *A. baumannii*. The synthesized nanocomposites were characterized with FE-SEM, DLS, VSM and PDI techniques. The obtained PDI implies that they can be applied in drug delivery due to their homogeneous distribution. According to the results obtained in Figure 4 and Table 1, it can be seen that the VSM curve of Cu/Fe₃O₄@SiO₂ nanometer-sized particles behaves like paramagnetic particles. The origin of magnetic property of Cu/Fe₃O₄@SiO₂ is related to the Fe₃O₄. These properties didn't change significantly in the presence of Cu atoms. So, the VSM curve of Fe₃O₄@SiO₂ will be same to that of Cu/Fe₃O₄@SiO₂.

No inhibitory activity was observed with glycine on *A. baumannii*. This amino acid blocks the growth of bacteria via prevention of the biosynthesis of bacterial cell wall peptidoglycan. Its inhibitory effects are more evident on

Table 1. Data of magnetic nanoparticles of samples.

Magnetic remanence (emu/g)	Coercivity (Oe)	Magnetic saturation (emu/g)
6.50	70	23.2

Table 2. Antibacterial effect of compounds on *A. baumannii*.

Compounds	Non-resistant strain	Resistant strain	Non-resistant strain	Resistant strain		
	IZD (mm)	MIC (µg ml⁻¹)	MBC (µg ml⁻¹)	IZD (mm)	MIC (µg ml⁻¹)	MBC (µg ml⁻¹)
3a	6.48	512	1024	6.13	1024	2048
3b	14.74	32	64	11.36	64	128
3c	11.64	512	1024	-	-	-
3d	9.82	64	256	-	-	-
3e	8.21	128	512	-	-	-
3f	11.52	64	256	-	-	-
6a	-	-	-	-	-	-
6b	10.32	128	512	9.42	128	512
6c	-	-	-	-	-	-
6d	7.44	256	1024	-	-	-
6f	8.62	512	2048	7.85	512	2048
Cu/Fe₃O₄@SiO₂ NCs	6.76	512	1024	-	-	-
Trachyspermum ammi extract	15.51	64	128	12.63	256	512
Glycine	-	-	-	-	-	-
Nisin	-	-	-	-	-	-
Poly-L-lysine	-	-	-	-	-	-
Curcuma longa extract	-	-	-	-	-	-
Green tea catechins extract	-	-	-	-	-	-
Imipenem	18.36	8	16	-	-	-

No inhibitory effects in the initial concentrations, IZD (mm), MIC (µg ml⁻¹), MBC (µg ml⁻¹)
Gram-positive bacteria. Glucose in zwitterionic form, is called glycine betaine, can stop the growth of A. baumannii by plasma membrane proton pump inhibition. Poly-L-lysine did not show inhibitory activity on A. baumannii. This peptide can destruct bacterial proteins, and alter bacterial morphology. It changes the electrical conductivity and penetrability of bacterial membranes as well as the cellular metabolisms. The pH and temperature of a culture medium affect on its antimicrobial potentials. Nisin was ineffective on A. baumannii. It pierces the cell membrane, changes ionic exchanges, and disrupts ATP production. It is mostly effective on Gram-positive bacteria due to the presence of an additional outer membrane in Gram-negative strains. Even though inhibitory effect of nisin has been reported against E. coli.

Extracts of Curcuma longa and green tea catechins can't stop the growth of A. baumannii. Antimicrobial effects of green tea catechins especially against Gram-positive strains are caused by the destruction of phospholipid membranes. The researchers believe that phenolic compounds of Curcuma longa play an essential role in dealing bacterial pathogens. Inhibitory effect was observed with Trachyspermum ammi extract on both non-resistant and resistant strains of A. baumannii. Thymol as its most important component is responsible for antimicrobial properties of this plant. It blocks bacteria via membrane inflation. Electron microscopic find in showed that extract causes an increase in extracellular potassium levels and ATP as well as change in shape of Bacillus cereus. In addition, antibacterial effects of Trachyspermum ammi have been reported on Gram-negative strains such as Pseudomonas aeruginosa, Salmonella typhimurium and Enterobacter aerogenes.

In this study, antibacterial potentials of Cu/FeO$_3$@SiO$_2$ nanocomposites were also screened on A. baumannii. Cu NPs are antimicrobial agents that inhibit the growth of bacteria using degradation of DNA, oxidation of protein, peroxidation of lipid and generation of reactive oxygen species. Antibacterial effects of nanoparticles are related to their size and morphology as well as growth media and carrier. Antibacterial activities of the synthesized n-Cu@T-ZnO nanocomposites were studied on Escherichia coli and Staphylococcus aureus. Their inhibitory effects were higher than those of pristine T-ZnO and the n-Cu nanoparticles. The polymers were widely used as the carrier in incorporation with copper nanoparticles, these nanocomposites are effective on a variety of harmful organisms and microorganisms. Inhibitory activity of copper-doped montmorillonite nanocomposites were also evaluated against E. coli and S. aureus. It is important to mention that the Fe$_3$O$_4$ nanostructures as the most magnetic nanoparticles, have received a wide attention in the biomedical applications, especially for targeted gene/drug delivery systems due to their outstanding features in magnetism, lower toxicity, biocompatibility, biodegradability, and so on. The Fe$_3$O$_4$ nanostructures are easy to oxidize and aggregate, and thus they are often made with different coating agents such as SiO$_2$ as stabilizers to realize superior properties for gene/drug delivery.

Thiazoles are potent antibacterial agents against both Gram-positive and Gram-negative pathogenic bacteria. In this study, all synthetic thiazole derivatives were effective on the non-resistant strain of A. baumannii. However, only two derivatives 3a, b could inhibit its resistant strain. It has been suggested that thiazoles inhibit eCKASIII or FabH enzymes, which are required for the synthesis of fatty acids in bacteria, and DNA gyrase enzyme, a catalyst for ATP-dependent DNA, and Hfq protein, which is essential for replication of bacteria. The substituents attached or fused to thiazole ring affect its inhibitory activities. It seems that pyrazole substituent has improved antibacterial activity of thiazole derivatives.

Inhibitory potentials of imidazolidine derivatives were studied on E. coli, P. aeruginosa and A. baumannii. Inhibitory effect of imidazolidine 6b was also proven against A. baumannii. It is proposed that imidazolidine derivatives can inhibit dihydrofolate reductase (which plays a key role on the synthesis of tetrahydrofoleric acid) as well as lipid synthesis. Nitroimidazole derivatives can also stop bacteria via free radical generation. Tetrahydropyrimidine derivatives 6b and 6f inhibit strains of A. baumannii. It is proposed that tetrahydropyrimidines act as channel blockers or inhibitors of cell surface receptors in the face with bacteria. Some synthesized tetrahydropyrimidines showed excellent antimicrobial activities on Gram-negative and Gram-positive bacteria. Williams et al. assessed the inhibitory potency of some synthetic tetrahydropyrimidines on A. baumannii by measuring the MIC values.

Conclusion

In this study, good to excellent antibacterial effects were observed with Trachyspermum ammi extract, thiazolyl pyrazoles 3a and 3b, imidazolidine-2-thione 6b, tetrahydropyrimidine-2-thione 6f and Cu/FeO$_3$@SiO$_2$ nanocomposites against both non-resistant and multidrug-resistant strains of A. baumannii. While, the extracts of Curcuma longa and green tea catechin, nisin, poly-L-lysine, glycine and cyclic thioureas 6a, 6c and 6e were ineffective on tested strains. Thiazole 3b exhibited the best inhibitory activities. Effective compounds especially natural plant extract and nanoparticles can be introduced as efficient antimicrobial agents if their toxicity tests were satisfactory.

Acknowledgments

This work was financial support by the Gonabad University of Medical Sciences, Iran under Grant [number IR.GMU.REC.1397.134]. The authors appreciate of University of Management and research Deputy of Gonabad University of Medical Sciences, Iran.

Conflict of Interests

The authors report no conflicts of interest.
References
1. Li P, Huang Y, Yu L, Liu Y, Niu W, Zou D, et al. Isolation and whole-genome sequence analysis of the imipenem heteroresistance Acinetobacter baumannii clinical isolate HRAB-85. Int J Infect Dis. 2017;62:94-101. doi:10.1016/j.ijid.2017.07.005.
2. Karami-Zarandi M, Douraghi M, Vaziri B, Adibhesami H, Rahbar M, Yaseri M. Variable spontaneous mutation rate in clinical strains of multidrug-resistant Acinetobacter baumannii and differentially expressed proteins in a hypermutator strain. Mutat Res Fundam Mol Mech Mutagen. 2016;800-802:37-45. doi:10.1016/j.mrfmmm.2017.06.002.
3. Parekh J, Chanda S. In vitro antibacterial activity of the crude methanol extract of wood fordia fruticosa kurz. Flower (Lythraceae). Braz J Microbiol. 2007;38(2):204-7. doi:10.1590/S1517-83822007000200004.
4. Vitali LA, Beghelli D, Biapa-Nya PC, Bistoni O, Cappellacci L, Damiano S. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem. 2016;9(6):775-86. doi:10.1016/j.arabjc.2016.05.002.
5. Mehdizadeh T, Hashemzadeh MS, Nazarizadeh A, Neyriz-Naghadehi M, Tafarizadeh S, Parvez MAK, et al. Antibacterial effect of novel thiazole, imidazole, and tetrahydropyrimidine derivatives against Listeria monocytogenes. J Pharmacogn. 2016;3(4):51-8.
6. Gramza-Michalowska A, Kobus-Cisowska J, Kmiecik D, Koseczek J, Helak B, Dziedzic K, et al. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016;211:448-54. doi:10.1016/j.foodchem.2016.05.048.
7. Anand J, Rai N. Anticandidal synergistic activity of green tea catechins, antimycotics and copper sulphate as a mean of combinational drug therapy against candidiasis. J Mycol Med. 2017;27(1):33-45. doi:10.1016/j.jymed.2016.08.004.
8. Jang SI, Jun MH, Lillehoj HS, Dalloul RA, Kong IK, Kim S, et al. Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet Parasitol. 2007;144(1-2):172-5. doi:10.1016/j.vetpar.2006.09.005.
9. Parvez MAK, Saha K, Rahman J, Munmun RA, Rahman MA, Dey SK, et al. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon. 2019;5(7):e02126. doi:10.1016/j.heliyon.2019.e02126.
10. Adeyemi DO, Awoniran PO. Curcuma longa extracts suppress pathophysiology of experimental hepatic parenchymal cell necrosis. Pathophysiology. 2019;26(2):153-62. doi:10.1016/j.pathophys.2019.04.002.
11. Afrose R, Saha SK, Banu LA, Ahmed AU, Shahidullah AS, Gani A, et al. Antibacterial effect of Curcuma longa (Turmeric) against Staphylococcus aureus and Escherichia coli. Mymensingh Med J. 2015;24(3):506-15.
12. Bastos CAP, Faria N, Wills J, Malmborg P, Scheers N, Rees P, et al. Copper nanoparticles have negligible direct antibacterial impact. NanoImpact. 2020;17:100192. doi:10.1016/j.namn.2019.100192.
13. Dobracka R, Długaszewska J. Antimicrobial activity of the biogenically synthesized core-shell Cu@Pt nanoparticles. Saudi Pharm J. 2018;26(5):643-50. doi:10.1016/j.jspsj.2018.02.028.
14. Wei M, Ge Y, Li C, Chen Y, Wang W, Duan B. Antifungal activity of ε-poly-L-lysine on Trichothecium roseum in vitro and its mechanisms. Physiol Mol Plant Pathol. 2018;103:23-7. doi:10.1016/j.pmpp.2018.04.005.
15. Chen XS, Wang KJ, Zheng GC, Zhong YG, Mao G. Preparation, characterization and antimicrobial activity of ε-poly-L-lysine with short chain length produced from glycerol by Streptomyces albus. Process Biochem. 2018;68:22-9. doi:10.1016/j.probio.2018.03.001.
16. Mimami M, Ando T, Hashikawa SN, Torii K, Hasegawa T, Israel DA, et al. Effect of glycine on Helicobacter pylori in vitro. Antimicrob Agents Chemother. 2004;48(10):3782-8. doi:10.1128/AAC.48.10.3782-378.2004.
17. Su M, Yao S, Gu L, Huang Z, Mai S. Antibacterial effect and bond strength of a modified dental adhesive containing the peptide nisin. Peptides. 2018;99:189-94. doi:10.1016/j.peptides.2017.10.003.
18. Safari R, Yaghoubzadeh Z. The combined effect of nisin, sodium acetate to increase the shelf life of trout in form completely empty stomach. Iran J Fish Sci. 2016;24(4):155-69.
19. Ghasemi B, Beyzaei H, Majidiani H. A comparative study on the antibacterial effects of some newly synthesized thiazole, imidazolidine and tetrahydropyrimidine derivatives against Bacillus cereus and Salmonella typhimurium. Pharm Sci. 2016;22(1):54-9. doi:10.15171/PS.2016.10.
20. Ghasemi B, Beyzaei H, Hashemi H. Study of antibacterial effect of novel thiazole, imidazole, and tetrahydropyrimidine derivatives against Listeria Monocytogenes. Ann Mil Health Sci Res. 2015;13:101-5.
21. Yallur BC, Katrahalli U, Krishna PM, Hadagali MD. BSA binding and antibacterial studies of newly synthesized 5,6-dihydroimidazo[2,1-b]thiazole-2-carbaldehyde. Spectrochim Acta Part A. 2019;222(5):117192. doi:10.1016/j.saa.2019.117192.
22. Berg AK, Myrvik MJ, Van-Ess PJ. Pharmacokineti, pharmacodynamics, and tolerability of USL261, midazolam nasal spray: Randomized study in healthy geriatric and non-geriatric adults. Epilepsy Behav. 2017;71:51-9. doi:10.1016/j.yebeh.2017.02.023.
23. Nascimento FA, Takeshita BT, Kowacs PA. Phenytin-induced isolated chronic, nocturnal dry cough. Epilepsy Behav Case Rep. 2017;5:44-5. doi:10.1016/j.ebcrc.2016.03.002.
Inhibitory Evaluation of Chemical and Naural Compounds on Acinetobacter baumannii

24. Kujawski C, Czaja K, Hodtowska-Siewert E, Dettlaff K, Zwaawiak J, Kujawski R, et al. Structural and spectroscopic properties of itraconazole and ketoconazole – Experimental and theoretical studies. J Mol Struct. 2017;1146:259-66. doi:10.1016/j.molstruc.2017.05.128

25. Wang G, Wang Y, Wang L, Han L, Hou X, Fu H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as BCL-2 inhibitors. Bioorg Med Chem. 2015;23(23):7359-65. doi:10.1016/j.bmc.2015.10.023

26. Husain A, Ahmad A, Alam Khan S, Asif M, Bhutani R, Al-Abbasi FA. Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolinedione derivatives in search of potent anti-inflammatory agents. Saudi Pharm J. 2016;24(1):104-14. doi:10.1016/j.jspj.2015.02.008

27. Marhadour S, Marchand P, Pagniez E, Bazin MA, Picot C, Lozach O, et al. Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur J Med Chem. 2012;58:543-56. doi:10.1016/j.ejmech.2012.10.048

28. Robert JM, Sabourin C, Alvarez N, Robert-Piessard S, Le Baut G, Le Pape P. Synthesis and anti leishmanial activity of new imidazolidin-2-one derivatives. Eur J Med Chem. 2003;38(7-8):711-8. doi:10.1016/s0223-5234(03)00119-3

29. Wittne K, StipkovicBabic M, Makue D, Plavec J, KraljevicPavelić S, Sedic M. Novel 1,2,4-triazole and imidazole derivatives of L-ascorbic and imino-ascorbic acid: Synthesis, anti-HCV and antitumor activity evaluations. Bioorg Med Chem. 2012;20(11):3675-85. doi:10.1016/j.bmc.2012.01.054

30. Czopek A, Salat K, Byruts H, Rychtjk J, Rychtym K, Siwek A, et al. Antinociceptive activity of novel amide derivatives ofimidazolidine-2,4-dione in a mouse model of acute pain. Pharm Rep. 2016;68(3):529-35. doi:10.1016/j.pharep.2015.12.007

31. Wang MY, Jin YY, Wei HY, Zhang LS, Sun SX, Chen XB. Synthesis, biological evaluation and 3D-QSAR studies of imidazolidine-2,4-dione derivatives as novel protein tyrosine phosphatase 1B inhibitors. Eur J Med Chem. 2015;103:91-104. doi:10.1016/j.ejmech.2015.08.037

32. Wazeer MIM, Anvarhusein A. Complexations of Hg(CN), with imidazolidine-2-thione and its derivatives: Solid state, solution NMR and antimicrobial activity studies. Spectrochim Acta A Mol Biomol Spectros. 2007;68(5):1207-12. doi:10.1016/j.saa.2007.01.022

33. Matys A, Podlewskal S, Witek K, Witek J, Bojarski AJ, Schabikowski J, et al. Imidazolidine-4-one derivatives in the search for novel chemosensitizers of Staphylococcus aureus MRSA: Synthesis, biological evaluation and molecular modeling studies. Eur J Med Chem. 2015;101:313-25. doi:10.1016/j.ejcl.2015.12.004

34. Nanjibhai Akhaja T, Priyakant Raval J. Design, synthesis and in vitro evaluation of tetrahydropyrimidinone-isatin hybrids as potential antitubercular and antimalarial agents. Chin Chem Lett. 2012;23(7):785-8. doi:10.1016/j.ccl.2012.05.004

35. Nanjibhai Akhaja T, Priyakant Raval J. Design, synthesis, in vitro evaluation of tetrahydropyrimidine–isatin hybrids as potential antibacterial, antifungal and antitubercular agents. Chin Chem Lett. 2012;23(4):446-9. doi:10.1016/j.ccl.2012.01.040

36. Lou J, Yang X, Rao Z, Qi W, Li J, Wang H, et al. Design and synthesis of 6-oxo-1,4,5,6-tetrahydropyrimidine-5-carboxylate derivatives as neuraminidase inhibitors. Eur J Med Chem. 2014;83:466-73. doi:10.1016/j.ejmech.2014.06.059

37. Raju BC, Rao RN, Suman P, Yogeesswari P, Siriram D, Shaik TB, et al. Synthesis, structure–activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorg Med Chem Lett. 2011;21(10):2855-9. doi:10.1016/j.bmCL.2011.03.079

38. Lokwani DK, Mokale SN, Shinde DB. 3D QSAR studies based in silico screening of 4,5,6-triphenyl-1,2,3,4-tetrahydropyrimidine analogs for anti-inflammatory activity. Eur J Med Chem. 2014;73:233-42. doi:10.1016/j.ejmech.2013.10.083

39. Hussein WM, Fatahalla SS, Mohamed ZM, McGearry RP, Schenk G, Ollis DL, et al. Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des. 2012;80(4):500-15. doi:10.1111/j.1747-0285.2012.01440.x

40. Scoparo CT, Borato DG, Souza LM, Dartora N, Luisa M, Maria-Ferreira D, et al. Gastroprotective bioguiding fractionation of hydro-alcoholic extracts from green- and black-teas (Camellia sinensis). Food Res Int. 2014;64:577-86. doi:10.1016/j.foodres.2014.07.043

41. Taimoor SY, Rahdar A, Mulhand MA, Sadeghfar F, Hajinezhad MR, Jahantigh M, et al. The synthesis and characterization of a magnetite nanoparticle with potent antibacterial activity and low mammalian toxicity. J Mol Liq. 2018;265:96-104. doi:10.1016/j.molliq.2018.05.050

42. Beyzaei H, Aryan R, Molashahi H, Zahedi MM, Samzadeh-Kermani A, Ghasemi B. MgO nanoparticle-catalyzed, solvent-free Hantzsch synthesis and broad-spectrum antibacterial evaluation of new substituted thiazoles. J Iran Chem Soc. 2014;11(4):291-302. doi:10.1007/s12010-017-2544-y

43. Beyzaei H, Kooshki S, Aryan R, Zahedi MM, Samzadeh-Kermani A, Ghasemi B. MgO nanoparticle-catalyzed synthesis and broad-spectrum antibacterial activity of imidazolidine and tetrahydropyrimidine-2-thione derivatives. Appl Biochem Biotechnol. 2018;184(1):291-302. doi:10.1007/s12010-017-2544-y

44. Beyzaei H, Aryan R, Moghadam-Manesh M, Ghasemi B, Karimi P, Delarami HS, et al. Evaluation
and structure–activity relationship analysis of a new series of 4-imino-5H-pyrazolo[3,4-d]pyrimidin-5-amines as potential antibacterial agents. J Mol Struct. 2017;1144:273-9. doi:10.1016/j.molstruc.2017.05.050

45. Danaei M, Dehghankhodd M, Ataei S, Hasanazadeh Davarani F, Javanrnard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/pharmaceutics10020057

46. Schwartz AC, Quecke W, Brenschede G. Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: evidence on the regulation of amino acid reduction. Z Allg Mikrobiol. 1979;19(3):211-20. doi:10.1002/jobm.3630190309

47. Cosquer A, Ficamos M, Jebar M, Gorbel JC, Choquet G, Fontenelle C, et al. Antibacterial activity of glycine betaine analogues: involvement of osmoprotectors. Bioorg Med Chem Lett. 2004;14(9):2061-5. doi:10.1016/j.bmcl.2004.02.045

48. Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, et al. Antibacterial activity and mechanism of action of e-poly-L-lysine. Biochem Biophys Res Commun. 2013;439(1):148-53. doi:10.1016/j.bbrc.2013.08.001

49. Ye J, Li A, Chu T, Pan X, He B. Poly-lysine supported cross-linked enzyme aggregates of penicillin G acylase and its application in synthesis of β-lactam antibiotics. Int J Biol Macromol. 2019;140:423-8. doi:10.1016/j.ijbiomac.2019.08.021

50. Sahl HG, Bierbaum G. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol. 1998;52(1):41-79. doi:10.1146/annurev.micro.52.1.41

51. Marchese A, Coppo E, Sobolev AR, Rossi D, Mannina L, Daglia M. Influence of in vitro simulated gastroduodenal digestion on the antibacterial activity, metabolic profiling and polyphenols content of green tea (Camellia sinensis). Food Res Int. 2014;63:182-91. doi:10.1016/j.foodres.2014.01.036

52. Hyytia E, Hielm S, Mokkila M, Kinnunen A, Korkeala H. Predicted and observed growth and toxigenesis by Clostridium botulinum type E in vacuum-packaged fishery products challenge tests. Int J Food Microbiol. 1999;47(3):161-9. doi:10.1016/s0168-1605(98)00173-1

53. Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bassami R. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem. 2010;120(3):765-70. doi:10.1016/j.foodchem.2009.11.008

54. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402-14. doi:10.1016/j.foodchem.2016.04.111

55. Paul S, Dubey RC, Maheswari DK, Chul Kang S. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control. 2011;22(5):725-31. doi:10.1016/j.foodcont.2010.11.003

56. Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25(13):135101. doi:10.1088/0957-4484/25/13/135101

57. Yu Q, Xu X, Wang C, Ma Y, Hui D, Zhou Z. Remarkably improvement in antibacterial activity by synergistic effect in n-Cu@T-ZnO nanocomposites. Compos Part B-Eng. 2017;110:32-8. doi:10.1016/j.compositesb.2016.10.085

58. Tamayo L, Azocar M, Kogan M, Riveros A, Paez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C. 2016;69:1391-409. doi:10.1016/j.msec.2016.08.041

59. Pourabolghasem H, Ghorbanpour M, Shayeigh R. Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J Phys Sci. 2016;27(2):1-12. doi:10.21315/jps2016.27.2.1

60. Ahmed R. Synthesis of phenyl-1, 3-thiazole substituted amino s-triazines and studying their biological activity. Indian J Sci Res. 2017;7(2):143-148.

61. Padmavathi V, Prema Kumari C, Venkatesh BC, Padmaja A. Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur J Med Chem. 2011;46(11):5317-26. doi:10.1016/j.ejmech.2011.08.032

62. Ghasemi B, Beyzaei H, Hashemi SH, Majidiani H. Study of antibacterial effect of novel thiazole, imidazole and tetrahydropropyridine derivatives against Escherichia coli. J Med Biotechnol. 2015;4(5-6):7-12.

63. Zha GF, Leng J, Darshini N, Shubhavathi T, Vivek HK, Asiri AM. Synthesis, SAR and molecular docking studies of benzo[d]thiazolehydrazones as potential antibacterial and antifungal agents. Bioorg Med Chem Lett. 2017;27(14):3148-55. doi:10.1016/j.bmcl.2017.05.032

64. Ghasemi B, Sanjari G, Sanjari Z, Majidiani H. Evaluation of anti-bacterial effects of some novel thiazole and imidazole derivatives against some pathogenic bacteria. Iran J Microbiol. 2015;7(5):281-6.

65. Stowe ED, Thompson RJ, Peng L, Su Z, Blackledge M, Draughn GL, et al. Membrane-permeabilizing activity of reverse-amide 2-aminoimidazole antibiofilm agents. Antimicrob Agents Chemother. 2010;54(12):4953-60. doi:10.1128/AAC.01465-10

66. Moussa Z, El-Sharief MAM, Abbas SY. New amidazolidineimidinothione derivatives: Synthesis, spectral characterization and evaluation of antitumor, antiviral, antibacterial and antifungal activities. Eur J Med Chem. 2016;122:419-28. doi:10.1016/j.ejmech.2016.06.051

67. Desai NC, Joshi VV, Rajpura KM, Makwana AH. A new synthetic approach and in vitro antimicrobial evaluation...
of novel imidazole incorporated 4-thiazolidinone motifs. Arabian J Chem. 2017;10:589-99. doi:10.1016/j.arabjc.2012.10.020

68. Madabhushi S, Mallu KK, Vangipuram VS, Kurva S, Poornachandra Y, Ganesh Kumar C. Synthesis of novel benzimidazole functionalized chiral thioureas and evaluation of their antibacterial and anticancer activities. Bioorg Med Chem Lett. 2014;24(20):4822-5. doi:10.1016/j.bmcl.2014.08.064

69. Shahid HA, Jahangir S, Yousuf S, Hanif M, Sherwan SK. Synthesis, crystal structure, structural characterization and in vitro antimicrobial activities of 1-methyl-4-nitro-1H-imidazole. Arabian J Chem. 2016;9(5):668-75. doi:10.1016/j.arabjc.2014.11.001

70. Atri P, Bhatia R, Gaur J, Arora B, Gupta A, Kumar N, et al. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arabian J Chem. 2017;10(2):206-14. doi:10.1016/j.arabjc.2014.05.007

71. Malani K, Thakkar SS, Thakur MC, Ray A, Doshi H. Synthesis, characterization and in silico designing of diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxylate derivative as anti-proliferative and anti-microbial agents. Bioorg Chem. 2016;68:265-74. doi:10.1016/j.bioorg.2016.09.001

72. Elumalaia K, Ashraf Ali M, Srinivasan S, Elumalai M, Eluri K. Antimicrobial and in vitro cytotoxicity of novel sulphanilamidedecondensed 1,2,3,4-tetrahydropyrimidines. J Taibah Univ Sci. 2017;11(1):46-56. doi:10.1016/j.jtusci.2015.01.005

73. Williams JD, Nguyen ST, Gu S, Ding X, Butler MM, Tashjian TF, et al. Potent and broad-spectrum antibacterial activity of indole-based bisamidine antibiotics: Synthesis and SAR of novel analogs of MBX 1066 and MBX 1090. Bioorg Med Chem. 2013;21(24):7790-806. doi:10.1016/j.bmc.2013.10.014