Semiring identities of the Brandt monoid*

Mikhail Volkov
Institute of Natural Sciences and Mathematics
Ural Federal University
m.v.volkov@urfu.ru

Abstract

The 6-element Brandt monoid B^1_2 admits a unique addition under which it becomes an additively idempotent semiring. We show that this addition is a term operation of B^1_2 as an inverse semigroup. As a consequence, we exhibit an easy proof that the semiring identities of B^1_2 are not finitely based.

We assume the reader’s acquaintance with basic concepts of universal algebra such as an identity and a variety; see, e.g., [1, Chapter II].

The 6-element Brandt monoid B^1_2 can be represented as a semigroup of the following zero-one 2×2-matrices

\[
\begin{pmatrix}
0 & 0 \\ 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\ 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 \\ 1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\ 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\ 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 \\ 0 & 1
\end{pmatrix}
\]

under the usual matrix multiplication \cdot or as a monoid with presentation

$$
\langle E_{12}, E_{21} \mid E_{12} E_{21} E_{12} = E_{12}, E_{21} E_{12} E_{21} = E_{21}, E_{12}^2 = E_{21}^2 = 0 \rangle.
$$

Quoting from a recent paper [3], ‘This Brandt monoid is perhaps the most ubiquitous harbinger of complex behaviour in all finite semigroups’. In particular, (B^1_2, \cdot) has no finite basis for its identities (Perkins [13,14]) and is one of the four smallest semigroups with this property (Lee and Zhang [10]).

The monoid (B^1_2, \cdot) has a natural involution that swaps E_{12} and E_{21} and fixes all other elements. In terms of the matrix representation (1) this involution is nothing but the usual matrix transposition; we will, however, use the notation $x \mapsto x^{-1}$ for

*Supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2020-1537/1)
the involution, emphasizing that x^{-1} is the unique inverse of x. Recall that elements x, y of a semigroup (S, \cdot) are said to be inverses of each other if $x y x = x$ and $y x y = y$. A semigroup is called inverse if every its element has a unique inverse; inverse semigroups can therefore be thought of as algebras of type $(2,1)$. Being considered as an inverse semigroup, the monoid $(B_2^1, \cdot, ^{-1})$ retains its complex equational behaviour: B_2^1 has no finite basis for its inverse semigroup identities (Kleiman [6]) and is the smallest inverse semigroup with this property (Kleiman [5, 6]).

In the present note we consider equational properties of yet another enhancement of the monoid (B_2^1, \cdot) with an additional operation, this time binary. Recall that an additively idempotent semiring an algebra $(S, +, \cdot)$ of type $(2,2)$ such that the additive reduct $(S, +)$ is a semilattice (that is, a commutative idempotent semigroup), the multiplicative reduct (S, \cdot) is a semigroup, and multiplication distributes over addition on the left and on the right, that is, $(S, + , \cdot)$ satisfies the identities $x(y + z) = xy + xz$ and $(y + z)x = yx + zx$. In papers which motivation comes from semigroup theory, objects of this sort sometimes appear under the name semilattice-ordered semigroups, see, e.g., [8] or [12]. We will stay with the term ‘additively idempotent semiring’, abbreviated to ‘ai-semiring’ in the sequel.

Our key observation is the following:

Lemma 1. Let $(S, \cdot, ^{-1})$ be an inverse semigroup satisfying the identity

$$x^n \approx x^{n+1}$$

for some n. Define

$$x \oplus y := (xy^{-1})^n x.$$

Then (S, \cdot, \oplus) is an ai-semiring.

Proof. Let $E(S)$ stand for the set of all idempotents of S. The relation

$$\leq := \{(a, b) \in S \times S \mid a = eb \text{ for some } e \in E(S)\}$$

is a partial order on S referred to as the natural partial order; see [15] Section II.1 or [9] pp. 21–23. We need two basic properties of the natural partial order:

1) \leq is compatible with both multiplication and inversion;
2) $a \leq b$ if and only if $a = bf$ for some $f \in E(S)$.

Take any $a, b \in S$ and suppose that $c \leq a$ and $c \leq b$. Then $c^{-1} \leq b^{-1}$ whence by the compatibility with multiplication

$$c = (cc^{-1})^n c \leq (ab^{-1})^n a = a \oplus b.$$

In presence of the identity (2), $(ab^{-1})^n = (ab^{-1})^{n+1} = \cdots = (ab^{-1})^{2n}$. Hence

2
\[a \oplus b = (ab^{-1})^n \cdot a \leq a. \]

Further,

\[
\begin{align*}
 a \oplus b &= (ab^{-1})^n a = (ab^{-1})^{n+1} a = \cdots = (ab^{-1})^{2n-1} a = \\
 & \cdot (ab^{-1})^{n-1} a = (ab^{-1})^n \cdot a(b^{-1}a)^{n-1} = \text{(using } b^{-1} = b^{-1}bb^{-1}) \ \\
 & \cdot (b^{-1}a)^n \leq b \cdot (b^{-1}a)^n \leq b
\end{align*}
\]

since \((b^{-1}a)^n \in E(S)\). We see that \(a \oplus b\) is nothing but the infimum of \(\{a, b\}\) with respect to the natural partial order. Thus, \((S, \oplus)\) is a semilattice. It is known \cite[Proposition 1.22]{16}, see also \cite[Proposition 19]{9} that if a subset \(H \subseteq S\) possesses an infimum under the natural partial order, then so do the subsets \(sH\) and \(Hs\) for any \(s \in S\), and \(\inf(sH) = s(\inf H)\), \(\inf(Hs) = (\inf H)s\). This implies that multiplication distributes over \(\oplus\) on the left and on the right.

Remark 1. The essence of Lemma \(1\) is known. Leech, in the course of his comprehensive study of inverse monoids \((S, \cdot, ^{-1}, 1)\) that are inf-semilattices under the natural partial order, has verified that \((S, \leq)\) is an inf-semilattice whenever \(S\) is a periodic combinatorial\(1\) inverse monoid; see \cite[Example 1.21(d), item (iv)]{11}. Of course, the requirement of \(S\) being a monoid is not essential: if a semigroup \(S\) periodic and combinatorial then so is the monoid \(S^1\) obtained by adjoining a formal identity to \(S\). Clearly, if a semigroup satisfies \(\mathcal{L}\), then it is both periodic and combinatorial whence Leech’s observation applies. We have preferred the above direct proof of Lemma \(1\) because we need a \((\cdot, ^{-1})\)-term for the semilattice operation, and such a term is not explicitly present in \cite{11}.

Obviously, the 6-element Brandt monoid satisfies the identity \(x^2 \approx x^3\). Thus, Lemma \(1\) applies, and \((B_2^1, \oplus, \cdot)\) is an ai-semiring. It is known (and easy to verify) that \(\oplus\) is the only addition on \(B_2^1\) under which \(B_2^1\) becomes an ai-semiring.

Our main result states that, similarly to the plain semigroup \((B_2^1, \cdot)\) and the inverse semigroup \((B_2^1, \cdot, ^{-1})\), the ai-semiring \((B_2^1, \oplus, \cdot)\) admits no finite identity basis. Its proof employs a series of inverse semigroups \(C_n, n = 2, 3, \ldots, \) constructed in \cite{6} as semigroups of partial one-to-one transformations. Here, to align with the matrix representation chosen for the \(B_2^1\), we describe them as semigroups of zero-one matrices.

The set \(R_m\) of all zero-one \(m \times m\)-matrices which have at most one entry equal to 1 in each row and column forms an inverse monoid under usual matrix multipli-

\(1\)A semigroup \(S\) is **periodic** if all monogenic subsemigroups of \(S\) are finite and **combinatorial** if all subgroups of \(S\) are trivial.
cation \cdot and transposition. The inverse monoid R_m is called the rook monoid\(^2\) as its matrices encode placements of nonattacking rooks on an $m \times m$ chessboard.

Let $m = 2n + 1$ and define $m \times m$-matrices c_1, \ldots, c_n by

$$c_k := E_{k+1k} + E_{n+k\ n+k+1}, \ k = 1, \ldots, n,$$

where, as usual, E_{ij} denotes the $m \times m$-matrix unit with an entry 1 in the (i, j) position and 0’s elsewhere. For instance, if $n = 2$, then c_1 and c_2 are the following 5×5-matrices:

$$c_1 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad c_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$

Let C_n be the inverse subsemigroup of the rook monoid R_m generated by the matrices c_1, \ldots, c_n. As a plain subsemigroup, C_n is generated by c_1, \ldots, c_n and their inverses (i.e., transposes) $c_1^{-1}, \ldots, c_n^{-1}$.

The next lemma collects properties of the semigroups C_n that we need.

Lemma 2. (i) The semigroup (C_n, \cdot) does not belong to the semigroup variety generated by the monoid $(B_1 \cdot, \cdot)$.

(ii) The semigroup (C_n, \cdot) satisfies the identity $x^2 \approx x^3$.

(iii) For each $k = 1, \ldots, n$, $M_k(n) := C_n \setminus \{c_k, c_k^{-1}\}$ forms an inverse subsemigroup of the inverse semigroup $(C_n, \cdot, -1)$.

(iv) For each $k = 1, \ldots, n$, the inverse semigroup $(M_k(n), \cdot, -1)$ belongs to the inverse semigroup variety generated by the inverse monoid $(B_2^1, \cdot, -1)$.

Proof. (i) This property was established in \cite{7} Lemma 3] by exhibiting, for each $n \geq 2$, a semigroup identity that holds in (B_2^1, \cdot) and fails in (C_n, \cdot).

(ii) This is easy to verify (and also follows from the proof of Lemma 1 in \cite{6}).

(iii) This is clear (and is a part of Lemma 1 in \cite{6}).

(iv) This is Property (C) in \cite{6}. \hfill \square

Remark 2. Items (i)–(iii) of Lemma 2 are easy. In contrast, the proof of (iv) in \cite{6} is long and complicated. We mention in passing that now the proof can be radically simplified by using a deep result by Kadourek [4] who provided an effective membership test for the inverse semigroup variety generated by $(B_2^1, \cdot, -1)$.

\(^2\)The rook monoid is nothing but the matrix representation of the symmetric inverse monoid; see \cite{15} Section IV.1 or \cite{9} p. 6. The name ‘rook monoid’ was suggested by Solomon [17].
Theorem 3. The semiring identities of the additively idempotent semiring \((B_2^1, +, \cdot)\) admit no basis involving only finitely many variables, and hence, no finite basis.

Proof. Arguing by contradiction, assume that \((B_2^1, +, \cdot)\) has an identity basis \(\Sigma\) such that each identity \(u \approx v\) in \(\Sigma\) involves less than \(n\) variables. Consider the inverse semigroup \((C_n, \cdot, \cdot^{-1})\). By Lemmas 1 and 2(ii), the addition defined by \(x + y := (xy^{-1})^2 x\) makes \((C_n, +, \cdot)\) an ai-semiring. Consider an arbitrary evaluation \(\varepsilon\) of variables \(x_1, \ldots, x_\ell\) involved in the identity \(u \approx v\) in this ai-semiring. By the pigeonhole principle, there exists an index \(k \in \{1, \ldots, n\}\) such that neither \(c_k\) nor \(c_k^{-1}\) belongs to the set \(\{\varepsilon(x_1), \ldots, \varepsilon(x_\ell)\}\) as this set contains at most \(\ell < n\) elements. Thus, \(\{\varepsilon(x_1), \ldots, \varepsilon(x_\ell)\} \subset M_k(n)\).

Since \(x + y\) expresses as \((-1)^\cdot\)-term, one can rewrite the identity \(u \approx v\) into an identity \(u' \approx v'\) in which \(u'\) and \(v'\) are \((-1)^\cdot\)-terms. Since \(u \approx v\) holds in \((B_2^1, +, \cdot)\), the rewritten identity \(u' \approx v'\) holds in the inverse semigroup \((B_2^1, \cdot, \cdot^{-1})\). By Lemma 2(iv) the latter identity holds also in the inverse semigroup \((M_k(n), \cdot, \cdot^{-1})\), and so \(u'\) and \(v'\) take the same value under every evaluation of the variables \(x_1, \ldots, x_\ell\) in \(M_k(n)\). Hence \(\varepsilon(u) = \varepsilon(u') = \varepsilon(v') = \varepsilon(v)\). We conclude that the identity \(u \approx v\) holds in the ai-semiring \((C_n, +, \cdot)\). Since an arbitrary identity from \(\Sigma\) holds in \((C_n, +, \cdot)\), this ai-semiring belongs to the ai-semiring variety generated by \((B_2^1, +, \cdot)\). This, however, contradicts Lemma 2(i), according to which even the semigroup reduct \((C_n, \cdot)\), does not belongs to semigroup variety generated by \((B_2^1, \cdot)\).

Remark 3. To the best of my knowledge, the result of Theorem 3 has not been published up to now. However, after preparing the present article I have learnt that the result has also been obtained by colleagues in Xi’an and Melbourne but with an entirely unrelated proof.

I mention also a related paper by Dolinka [2] where he introduces a 7-element ai-semiring denoted \(\Sigma_7\) and proves that its identities are not finitely based. The semigroup reduct of \(\Sigma_7\) is just the monoid \(B_2^1\) with an extra zero adjoined so that \((\Sigma_7, \cdot, \cdot^{-1})\) and \((B_2^1, \cdot, \cdot^{-1})\) satisfy the same inverse semigroup identities. However, the addition in \(\Sigma_7\) is not derived from its inverse semigroup structure, and one can easily see that the semiring identities of \((\Sigma_7, +, \cdot)\) and \((B_2^1, +, \cdot)\) are essentially different. It should be also mentioned that in [2] Dolinka actually considers ai-semirings with 0 as algebras of type \((2,2,0)\).

Remark 4. Leech [11] defined an inverse algebra as an algebra \((A, \cdot, \cdot, \cdot^{-1}, 1)\) of type \((2,2,1,0)\) such that the reduct \((A, \cdot, \cdot^{-1}, 1)\) is an inverse monoid, the reduct \((A, \cdot)\) is a meet semilattice, and the natural partial order of the inverse monoid coincides with that of the semilattice. Clearly, \((B_2^1, \cdot, \cdot^{-1}, E)\) constitutes an inverse algebra in Leech’s sense, and the above proof of Theorem 3 can be easily adapted to show that \((B_2^1, \cdot, \cdot^{-1}, E)\) has no finite identity basis also as such algebra.
References

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra. Springer-Verlag, Berlin-Heidelberg-New York (1981)

[2] I. Dolinka, A nonfinitely based finite semiring. Int. J. Algebra Comput. 17(8), 1537–1551 (2007)

[3] M. Jackson and W.T. Zhang, From A to B to Z. Semigroup Forum (in print)

[4] J. Kadourek, On varieties of combinatorial inverse semigroups. I. Semigroup Forum 43, 305–330 (1991)

[5] E.I. Kleiman, On bases of identities of Brandt semigroups. Semigroup Forum 13, 209–218 (1977)

[6] E.I. Kleiman, Bases of identities of varieties of inverse semigroups. Sib. Math. J. 20, 530–543 (1979). [Translated from Sibirskii Matematicheskii Zhurnal 20, 760–777 (1979)]

[7] E.I. Kleiman, A pseudovariety generated by a finite semigroup. Ural. Gos. Univ. Mat. Zap. 13(1), 40–42 (1982) (Russian)

[8] M. Kufil and L. Polák, On varieties of semilattice-ordered semigroups. Semigroup Forum, 71, 27–48 (2005)

[9] M.V. Lawson, Inverse Semigroups. The Theory of Partial Symmetries. World Scientific, Singapore (1999)

[10] E.W.H. Lee and W.T. Zhang, Finite basis problem for semigroups of order six. London Math. Soc. J. Comput. Math. 18, 1–129 (2015)

[11] J. Leech, Inverse monoids with a natural semilattice ordering. Proc. London Math. Soc. s3-70(1), 146-182 (1995)

[12] D.B. McAlister, Semilattice ordered inverse semigroups. In J.M. André et al (eds.), Semigroups and Formal Languages, pp. 205–218. World Scientific, New Jersey (2007)

[13] P. Perkins, Decision Problems for Equational Theories of Semigroups and General Algebras. Ph.D. thesis, Univ. of California, Berkeley (1966)

[14] P. Perkins, Bases for equational theories of semigroups, J. Algebra 11, 298–314 (1969)

[15] M. Petrich, Inverse Semigroups. John Wiley & Sons, New York (1984)

[16] B.M. Schein, Completions, translational hulls and ideal extensions of inverse semigroups. Czechoslovak Math. J. 23(4), 575–610 (1973)

[17] L. Solomon, Representations of the rook monoid. J. Algebra 256(2), 309–342 (2002)