Growth temperature and genotype both play important roles in sorghum grain phenolic composition

Gangcheng Wu1, Stuart K. Johnson1, Janet F. Bornman2, Sarita J. Bennett3, Michael W. Clarke4, Vijaya Singh5 & Zhongxiang Fang5,6

Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C) and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum P1563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future.

Sorghum (Sorghum bicolor (L.) Moench) is an important global cereal crop due to its tolerance to high temperatures and arid conditions. The total global sorghum production was around 62.3 million tonnes in 2013 and more than 50% of that was produced in the African and Asian regions1. In these two regions, sorghum grains are used as food, such as flat breads, or porridges2. However, in developed countries such as the USA and Australia, sorghum grain is primarily used for animal feed and ethanol production3.

It has been reported that some sorghum genotypes have high levels of phenolic compounds and strong antioxidant activities4. The consumption of foods with high levels of phenolic compounds may assist in prevention of certain age-related diseases5,6. Results of epidemiological studies suggested that dietary intake of phenolic abundant foods may reduce the incidence of cardiovascular disease, coronary heart disease and a variety of cancers7,8. In addition, the polyphenols, such as 3-deoxyanthocyanidins, specific to sorghum, have reportedly good anti-inflammatory properties2. The level of phenolic compounds in sorghum grains vary widely with genotype as previously reported9,10. However, most studies only evaluated the polyphenols as a collective group, and information on the differences in specific polyphenols among sorghum genotypes is limited. Though some specific polyphenols in several sorghum genotypes were HPLC analyzed11, others without authentic standards might not be identified by HPLC without mass spectrometry.

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment have predicted that the global temperature will increase by 1.8 to 4.0 °C by 210012. Understanding variability of polyphenol composition under increased temperature is helpful because the concentration and profile of polyphenols can affect the nutritional values of sorghum grain. Published studies investigating how increased temperature influences the phenolic

1Food Science and Technology Program, School of Public Health, Curtin University, Perth, WA 6845, Australia. 2International Institute of Agri-Food Security (IIAFS), Curtin University, PO Box U1987, Perth, WA 6845, Australia. 3Department of Environment and Agriculture, School of Science, Curtin University, Perth, WA 6845, Australia. 4Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia. 5Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia. 6Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia. Correspondence and requests for materials should be addressed to Z.F. (email: zhongxiang.fang@unimelb.edu.au)
Identification of free and bound phenolic compounds in sorghum grains by HPLC-DAD-ESIMS and respective standards (std). *Rt = Retention time. *sh = shoulder.

Table 1. Identification of free and bound phenolic compounds in sorghum grains by HPLC-DAD-ESIMS and respective standards (std).

Peak No.	Rt (min)	\(\lambda_{\text{max}} \) (nm)	m/z [M - H]	m/z MS² (Abundance %)	Tentative identification
1	10.9	280	577	425 (60), 289 (26)	Procyanidin B1
2	13.1	298 (sh), 326 (sh)	253	179 (1), 161 (78), 135 (55)	2-O-caffeoylglycerol
3	13.5	280, 310	137	109 (15)	Protocatechuic aldehyde
4	14.4	298 (sh), 326 (sh)	253	179 (1), 161 (78), 135 (55)	1-O-caffeoylglycerol
5	15.0	297, 322	179	135 (100)	Caffeic acid (std)
6	15.8	282	449	287 (8), 151 (100), 135 (41)	Eriodictyl-7-O-glucoside
7	16.1	280, 490	269	241 (41), 225 (27), 169 (19), 133 (30)	Luteolinidin (std)
8	17.7	310	237	163 (20), 145 (50), 119 (31)	2-O-p-coumaroylglycerol
9	18.2	275, 470	253	225 (10), 209 (70), 179 (40), 117 (65)	Apigenidin (std)
10	19.1	283	433	287 (100), 151 (59)	Eriodictyl deoxyhexoside
11	19.2	310	163	119 (100)	p-coumaric acid
12	20.8	295, 325	193	178 (42), 134 (100)	Ferulic acid (std)
13	21.6	288	303	285 (100), 217 (9), 177 (18), 125 (35)	Taxifolin (std)
14	24.3	285	303	285 (10), 177 (18), 125 (35)	Taxifolin isomer
15	26.7	295, 325	193	134 (100)	Ferulic acid isomer
16	28.5	300 (sh), 326 (sh)	415	253 (100), 179 (100), 161 (11), 135 (85)	1,2-O-dicaffeoylglycerol
17	29.4	300 (sh), 326 (sh)	415	253 (100), 179 (100), 161 (11), 135 (85)	1,3-O-dicaffeoylglycerol
18	30.6	287	287	151 (10)	Luteolin (std)
19	31.1	252, 347	285	241 (1), 217 (3), 199 (3), 175 (3), 151 (17), 133 (13), 107 (3)	Eriodictyl
20	33.4	219, 315	399	253 (80), 235 (11), 179 (25), 163 (86), 145 (35), 119 (100), 135 (57)	Coumaroyl-caffeoylglycerol
21	34.2	295 (sh), 325 (sh)	429	253 (70), 235 (11), 193 (100), 175 (32), 161 (53), 135 (41)	Feruloyl-caffeoylglycerol
22	35.9	266, 322	269	225 (10), 201 (30), 183 (10), 149 (32), 117 (100)	Apigenin (std)
23	36.2	295	271	177 (10), 151 (50), 119 (20), 107 (20)	Naringenin (std)

Results

Identification of phenolic compounds. The HPLC retention time (Rt), UV absorption maxima and parent and fragment ions of 23 different phenolic compounds positively or tentatively identified in the samples are listed in Table 1. Representative chromatograms of the free polyphenolics in the red-pericarp genotype CHH2 (Fig. 1) are presented. To assist the interpretation of MS fragmentation patterns, the 23 compounds were classified into five groups according to their chemical structures.

Phenolic acids. Phenolic acids consist of hydroxybenzoic acids and hydroxycinnamic acids. Only peak 3 was tentatively identified as a derivative of hydroxybenzoic acids. Its MS spectra showed a pseudomolecular ion [M-H]- at m/z 137 and a prominent fragment ion at m/z 109 via loss of a CO group, corresponding to protocatechuic aldehyde. The UV spectra with \(\lambda_{\text{max}} \) at 280 and 310 nm were consistent with those of protocatechuic aldehyde.

Three hydroxycinnamic acids, namely caffeic acid (peak 5), p-coumaric acid (peak 11) and ferulic acid (peak 12), were identified, giving the deprotonated molecule [M-H]- at m/z 179, 163, and 193 and distinguished fragment ions at m/z 135, 119, and 135, respectively. These hydroxycinnamic acids showed the loss of a CO₂ group from the carboxylic acid functional group. Ferulic acid (peak 12) also lost a CH₃ group demonstrating a [M-H-15]- anion at m/z 178 (Table 1). The caffeic and ferulic acids in the samples were further identified by comparison with the HPLC Rt, UV and MS spectra of the authentic standards. Peak 15 had similar UV and MS spectra to ferulic acid, and was tentatively identified as ferulic acid isomer.

Several derivatives of hydroxycinnamic acids were identified. Peaks 2 and 4 had deprotonated molecule [M-H]- at m/z 253 and fragmentation patterns with ions at m/z 179 [caffeic acid –H]- and 135 [caffeic acid –H-CO₂]-, suggesting the possible occurrence of a caffeic acid residue. The UV \(\lambda_{\text{max}} \) of these two peaks were at...
297 and 326 nm, which was the same as that of caffeic acid. The [M-H-74]$^-$ ion at m/z 179 in peaks 2 and 4 is typical of that produced by the loss of a glycerol residue. Hence, peaks 2 and 4 were tentatively deduced as either 1-O-cafeoylglycerol or 2-O-cafeoylglycerol17, since it was not possible to ascertain the substituent group positions. Peak 8 had the same UV λ_{max} of 310 nm as that of p-coumaric acid. MS spectra showed a deprotonated molecule [M-H]$^-$ at m/z 237 with fragment ions at m/z 145 and 119. Fragment ions at m/z 163 and 119 appeared to correspond to deprotonated and decarboxylated p-coumaric acid, indicating the presence of p-coumaric acid. According to the above, this compound which lost the glycerol residue can produce a 163[M-H-74]$^-$ anion. Therefore, this compound was tentatively identified as 1-O-p-coumaroylglycerol or 2-O-p-coumaroylglycerol17. The UV spectral characteristics of peaks 16 and 17 were similar to that of caffeic acid with λ_{max} at about 326 nm, suggesting derivatives of caffeic acid. They had deprotonated molecule [M-H]$^-$ at m/z 415 and fragmentation patterns with ions at m/z 253, 179 [cafeic acid –H]$^-$, 161 [cafeic acid –H$_2$O]$^-$ and 135 [cafeic acid –H-CO$_2$]$^-$, which supported the presence of a caffeic acid residue. The fragment ion of m/z at 253 (415-162) could correspond to dehydrated caffeic acid attached to the caffeoylglycerol. From a comparison of literature data of UV and MS spectra, these two peaks were tentatively identified as either 1,2-O-dicafeoylglycerol or 1,3-O-dicafeoylglycerol17. The deprotonated molecule ion [M-H]$^-$ showed peaks of 20 and 21 at m/z 399 and 429, respectively. Both peaks contained the same ions at m/z 253, indicating that these two compounds may also contain a caffeoylglycerol residue. Peak 20 also showed two prominent ions at m/z 163 [p-coumaric acid–H]$^-$ and 235 [M-H–p-coumaric acid]$^-$, suggesting it could have been derived from the loss of a p-coumaric acid residue. For peak 21, some fragment ions at m/z 235 and 193 were detected. The ion at m/z 235 (M-H-154) indicated the loss of a ferulic acid moiety, while another ion at m/z 193, corresponded to deprotonated ferulic acid, suggested the presence of a ferulic acid moiety. After comparisons with the literature17, peaks 20 and 21 were tentatively identified as p-coumaroyl-cafeoylglycerol and feruloyl-cafeoylglycerol, respectively.

Flavonols. Peak 1 had a deprotonated molecular ion [M-H]$^-$ at m/z 577 and fragment ions at m/z 425 and 289 (Table 1). The ion at m/z 425 [M-H-152] can be produced by the removal of a B-ring from the heterocyclic ring of catechin derivatives with the Retro-Diels-Alder rearrangement in the ESI negative ion mode16. The most intense ion at m/z 289 [M-H-289]$^-$ was considered to be specific for a C—C interflavan linkage in the catechin dimer19. The UV spectra of peak 1 were similar to that of (+)-catechin with λ_{max} at 280 nm. Therefore, this peak was tentatively identified as procyanidin B, which was supported by its MS and UV spectra in the literature20. Flavonols. Most flavones have two characteristic UV absorption bands in the region 250–285 nm and 320–385 nm. Band I(320–385 nm) is produced by the B-ring, while Band II(250–285 nm) by the A-ring21. Peaks 19 and 22 (Fig. 2) were positivity identified as the flavones luteolin and apigenin respectively by comparison with Rt, UV and mass spectral data (Table 1) of the authentic standards.

Flavanones and dihydrolavonones. Several flavanones were identified in sorghum grains. Peak 23 was positively identified as naringenin by comparing its Rt, UV and mass spectral data with the authentic standard. The deprotonated molecule ion [M-H]$^-$ of peak 18 was at m/z 287, suggesting this compound might be eriodictyol or dihydrokaempferol with the molecular mass of 288. The peak 18 also showed the characteristic fragmentation ion at m/z 151 and UV spectra of eriodictyol, which exhibited a strong absorption in the region of 270–295 nm. Referring to MS and UV spectra of eriodictyol from the literature, peak 18 was tentatively identified as eriodictyol15. Peaks 6 and 10 showed the deprotonated molecule ions [M-H]$^-$ at m/z 449 and 433, respectively. The fragmentation ions at m/z 287 and 151, corresponding to an eriodictyol moiety, were also observed. The UV spectra of these two peaks also showed similar absorption in the region 270–295 nm as that for eriodictyol, indicating they might be derivatives of eriodictyol. It is well known that most of the flavonoids can conjugate sugars, and their derivatives are present as the glycosides of O- or C-forms22. The peak 6 produced a fragmentation ion at m/z

Figure 1. Representative chromatograms of sorghum whole grain phenolic compounds (A) Free phenolic compounds from genotype CHH12 grown at OT. (B) Free phenolic compounds from CHH12 grown at HT.
287 \[\text{M-H-162}\] by possible loss of a glucoside, and the same fragmentation ion 287 \[\text{M-H-146}\] was also produced via the possible loss of a deoxyhexoside from peak 10. Therefore, peaks 6 and 10 were tentatively identified as eriodictyol-7-O-glucoside and eriodictyol deoxyhexoside, respectively.23

The compound of peak 13 was positively identified as the hydroflavonol taxifolin by comparison of Rt, UV and mass spectral data (Table 1) with the authentic standard. Since peak 14 had similar UV and MS spectra to that of peak 13, it was tentatively identified as taxifolin isomer.

3-Deoxyanthocyanidins. Two compounds, corresponding to peaks 7 and 9, exhibited the distinctive UV spectra of 3-deoxyanthocyanidins. Typical 3-deoxyanthocyanidins produce two UV absorption peaks in the 450–560 nm region due to the B ring hydroxy cinnamoyl system and in the 240–280 nm region due to the A ring benzoyl system. Compared with the Rt, MS and UV spectra of available standards, peaks 7 and 9 were unambiguously identified as luteolinidin and apigeninidin respectively.

Profiles of phenolic compounds. The list of phenolic compounds found in the free and bound forms of the different sorghum genotypes under OT and HT are shown in Table 2. Nearly all phenolic compounds identified across the sample collection (Table 1) were also identified in each individual sorghum sample, except for the white sorghum PI563516, which contained fewer phenolic species. In addition, the range of phenolic compounds in the sorghum grains was larger in the free form, and only brown sorghum IS 8525 showed a similar number of phenolic species in both the free and bound fractions. The phenolic profile in AQL33/QL36, PI563516 and CHH2 genotypes was changed when grown under higher temperatures (Table 2). For example, the free forms of luteolin and apigenin were not detectable in CHH2 genotype under HT though present under OT (Fig. 1A,B). These results indicated that the phenolic profile in sorghum grains was affected strongly by genotype and also by growth temperature.

Quantification of free, bound and total individual phenolic compounds. As total levels of phenolic compounds were presented in the previous paper, individual phenolic compounds were evaluated. In order to more easily evaluate the results of the individual compounds, they were classified into five groups. Each compound was quantified in free and bound fractions and as total (free + bound).

Hydroxycinnamic acids. Three hydroxycinnamic acids were quantified in the sorghum genotypes: caffeic acid, ferulic acid and ferulic acid isomer (Table 3). Free, bound and total fractions of these compounds were significantly influenced when comparing treatments and genotypes \((p \leq 0.05)\). HT resulted in significantly lower free caffeic acid concentration than OT across the sorghum genotypes, except for CHH1, which showed higher levels at HT, but showed no significant influences on free levels of ferulic acid and ferulic acid isomer of some genotypes (Ai4). HT showed no significant impacts on bound caffeic acid concentration of all genotypes, with the exception of CHH1 with higher levels at HT \((p \leq 0.05)\). The total levels of caffeic acid and ferulic acid varied widely \((p \leq 0.05)\) among these genotypes under both HT and OT, with PI563516 and IS 8525 having the lowest and highest levels, respectively (Table 3). The total ferulic acid concentration of all genotypes was extremely higher than other two phenolic acids, irrespective of temperature.

3-Deoxyanthocyanidins. Temperature, genotype and their interaction had significant influences on free, bound and total fractions of luteolinidin and apigeninidin accumulation (Table 4) \((p \leq 0.05)\). The accumulation trend of free luteolinidin showed a significant decline under HT in three genotypes, with the exception of two genotypes which did not contain the free luteolinidin, and free fraction of luteolinidin cannot be measured in PI 563516 at HT. The free form apigeninidin content changes followed the same pattern of free form luteolinidin under HT. Regardless of the treatment, Ai4 contained the highest free luteolinidin and apigeninidin concentrations under both temperatures. The levels of bound luteolinidin and apigeninidin showed various changes under HT. AQL33/QL36 and CHH2 accumulated the higher levels of bound luteolinidin and apigeninidin under both treatments, respectively.
Flavones. Two flavones: luteolin and apigenin were identified and quantified in the sorghum samples, and are shown in Table 4. Temperature, genotype and the interaction between the two factors had a significant effect on the flavone contents (p ≤ 0.05). Both free and bound luteolin and apigenin were not detected in the two sorghum genotypes of PI563516 and IS 8525. CHH2 contained detectable levels of free luteolin and apigenin at OT, but these flavones were not detected in this genotype at HT. Bound flavones accumulation also appears to be genotype dependent under HT. Generally, its concentration had no significant changes in CHH1, but significantly decreased in CHH2, AQL33/QL36 and Ai4 under HT. In fact, total luteolin and apigenin contents of CHH2 were higher than other genotypes under OT, but these of Ai4 reached to the highest level under HT.

Dihydroflavonol. The accumulation trend of two dihydroflavonols of taxifolin and taxifolin isomer are presented in Table 4 and their concentrations were significantly affected by temperature, genotype and their interaction (p ≤ 0.05). Compared to other sorghum genotypes, no flavonones in free nor bound form were detectable in PI563516 under both OT and HT. In general, free taxifolin and taxifolin isomer contents showed diverse changes in these genotypes under HT. However, the bound form of taxifolin was only detected in sorghum IS 8525 and was around 3 times higher than its free form in this genotype, but HT significantly reduced its concentration (p ≤ 0.05). Regardless of treatment, no bound taxifolin isomer was detected across all genotypes. These results suggest that these two compounds were mainly in the free form. The total values of taxifolin were generally higher in IS8525 as compared to others under both treatments.
Flavanones. Several flavanones (Table 1) were identified in the sorghum samples but only naringenin was quantified, due to a lack of available standards. Values of naringenin were significantly affected by genotype, temperature and their interaction ($p \leq 0.05$). Apart from sorghum P1563516, all other sorghum genotypes contained naringenin in free and bound forms (Table 4). The bound naringenin level was significantly higher than free forms in five genotypes, irrespective of treatments. Total naringenin content in CHH2, A14 and IS 8525 was significantly lower at HT than OT, but significantly higher in AQL33/QL36 ($p \leq 0.05$).

Discussion

In this study several compounds were identified for the first time in sorghum grain. For example, feruloyl-cafeoylglycerol, which is known to be present in *Ananas comosus* L. leaves17, was tentatively identified in the sorghum grain. Similarly, two flavonoid compounds of eriodictyol deoxyhexoside and taxifolin isomer were also tentatively identified. It has been reported the presence of catechin in red sorghum PAN 386015. This compound was not however detected in the six sorghum genotypes used in the present study. The two ubiquitous sorghum 3-deoxyanthocyanidins, apigeninidin (yellow) and luteolinidin (orange) were determined in our sorghum genotypes. The two other 3-deoxyanthocyanidins of 5-methoxyluteolinidin and 7-methoxyapigeninidin have not been detected in our samples, but been reported in sorghum genotypes with lemon-yellow pericarp previously23. Additionally, certain phenolic acids, such as gallic and cinnamic acids were identified in sorghum grain24, however these compounds were not detected in the present study. Some phenolic acid esters of glycerol, including dicafeoylglycerol and caffeoylglycerol, have been found in other sorghum grains25, while the isomers of these phenolic acid esters of glycerol are reported for the first time in the present study. The results of the study confirm previous reports that the phenolic profile in sorghum grain is strongly affected by the genotype. There were some putative polyphenol peaks that were present in the HPLC-DAD-ESIMS chromatograms (Fig. 1) that could not be identified, likely due to their low UV-signal and molecular mass fragments.

The free, bound and total content of individual compounds in the sorghum genotypes in the present study was found to be in the range as previously reported22–27. Most of the phenolic compounds in sorghum grains were found in both free and bound forms (Fig. 1, Tables 3 and 4). For several individual compounds, such as caffeic acid, ferulic acid and naringenin, they mainly occurred in the bound form, which was in agreement with other studies15,28. It has been suggested that dietary intake of free or soluble conjugated forms rather than bound forms being absent in this genotype (Table 2). In addition, luteolinidin and apigeninidin were present in white sorghum PI563516 containing the least amount of flavonoids, with some common flavonoids, such as luteolin, apigenin and naringenin, being absent in this genotype (Table 2). In addition, luteolinidin and apigeninidin were present in white sorghum 02CA479629, but the levels were lower than in P1563516 in the present study. It has been reported that the biosynthesis of phenolic compounds in plants is regulated by enzymes such as phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI) and UDP glucose flavonoid-glucosyltransferase (UFGT)31. Enzyme activities, which have potential influences on phenolic biosynthesis, varied among genotypes. McCullum and Walker32 reported that red wheat genotypes contained higher levels of both PAL and CHI than white genotypes during early grain development, which can lead to higher synthesis of flavonoids. The similar results were also observed in two different apple genotypes, and PAL, CHI and UFGT activities of red-skinned genotype was several-fold higher than green-skinned genotype at all stages, so a greater accumulation of flavonoids in red-skinned genotype33. In the present study, similar results were obtained in sorghum grains as well. The total 3-deoxyanthocyanidins, flavones, dihydroflavonol and flavanone concentrations of colored sorghum were higher than white sorghum, indicating that these PAL, CHI and UFGT enzyme activities might be higher in colored sorghum.

The impact of high temperature on sorghum grain phenolic compounds was diverse across sorghum genotypes. The possible reason was that the phenolic metabolism pathway was also influenced by temperature. As the first step in the biosynthesis of phenolic compounds was catalyzed by PAL, the PAL activity might have correlation with phenolic levels32. Rivero et al.34 reported that high temperature could increase the PAL activity in tomato, and the total phenolic compounds were increased under high temperature stress. Based on the present study, it can be proposed that the phenolic changes under high temperature in sorghum grain may be caused by PAL activity change. For individual polyphenols, their changes might be related to some specific enzyme activity changes. For example, anthocyanin concentration of grape berries grown at a constant 30 °C was lower than those grown at 30 °C/15 °C(day/night), and anthocyanin accumulation correlated strongly with UFGT activity35. However, the biosynthetic pathways of 3-deoxyanthocyanidin in sorghum may be different from anthocyanin biosynthesis in other plants, and the enzymes involved in 3-deoxyanthocyanidin synthesis have still remained unexplored36. In the present research, it was noted that the abundance of free luteolinidin and apigeninidin was markedly decreased under high temperature, and these changes might be related to enzymes. Further research is required to explore enzymes in the metabolic pathway of 3-deoxyanthocyanidin of sorghum grains under high temperature conditions.

The antioxidant activity of total phenolic compounds of sorghum grain determined by 2′,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays were presented in the previous paper24, and their antioxidant activity was contributed by profiles and levels
Table 4. Free, bound and total individual flavonoids content (µg/g, db) of six genotypes of sorghum grain grown at OT and HT. a,b,c,d,e Values with different superscripts in the same row are significantly different (p ≤ 0.05). a,b,c,d,e Values with different superscripts in the same column in the same dependent variable are significantly different (p ≤ 0.05). Abbreviations: nd = not detected; na = data not available; LUT = luteolinidin; API = apigeninidin; LU = luteolin; AP = Apigenin; TA = taxifolin; TAI = taxifolin isomer; NAR = naringenin.

Table 4. Free, bound and total individual flavonoids content (µg/g, db) of six genotypes of sorghum grain grown at OT and HT. a,b,c,d,e Values with different superscripts in the same row are significantly different (p ≤ 0.05). a,b,c,d,e Values with different superscripts in the same column in the same dependent variable are significantly different (p ≤ 0.05). Abbreviations: nd = not detected; na = data not available; LUT = luteolinidin; API = apigeninidin; LU = luteolin; AP = Apigenin; TA = taxifolin; TAI = taxifolin isomer; NAR = naringenin.
ferulic acid is higher than caffeic acid. Additionally, not all individual flavonoids show high antioxidant activity. For example, apigenin, luteolin and taxifolin have higher antioxidant activity than naringenin and apigenin. Therefore, the levels of individual phenolic compounds might decide the antioxidant activity of sorghum grain. Durum wheat pasta with different levels of red sorghum flour or white sorghum flour was made, and it was found that the wheat pasta with red sorghum flour which contained high levels of individual phenolic acids showed higher antioxidant capacity than white sorghum flour. In this research, IS 8525, CHH1 and CHH2 had higher levels of ferulic acid, caffeic acid than others, and higher antioxidant activity was obtained in these genotypes as well. As the antioxidant activity of sorghum grain had a strong correlation with phenolic content, HT can also change the antioxidant activity of sorghum grain. Individual polyphenols of IS8525 significantly declined under HT, and total antioxidant activity of it decreased. Compared to other research, the individual phenolics of strawberry increased when growth temperature increased from 18/12 °C to 30/22 °C (day/night), resulting in a significant increase in antioxidant capacity. The phenolic changes of sorghum grain under temperature treatments are important for humans, due to their free radical scavenging and biological properties. In this research, the sorghum genotype IS 8525 had extremely high levels of phenolic acid, caffeic acid and taxifolin compared to others under both temperatures, suggesting that this genotype may be suitable for use in health-functional food formulation.

In conclusion, with the use of the rapid analytical procedure of HPLC-DAD-ESIMS, the phenolic compounds in 6 sorghum genotypes under two different growth temperatures were determined. The profiles and contents of phenolic compounds in sorghum grains were significantly influenced by the genotype, growth temperature and their interaction. This study has attempted to further our understanding of the variations of polyphenols in sorghum under the projected higher temperature conditions in certain regions, as well as indicating the potential for particular sorghums to be used as a nutritious food source depending on growth temperature and genotype.

Methods
Sorghum genotypes. Six sorghum genotypes including three red pericarp hybrid lines (CCH1, CCH2 and AQL33/QL36) and three inbred lines (AI4 red pericarp; PI563516, white pericarp; IS 8525, brown pericarp) were used in this study (Fig. 3).

Experimental design. The details of sorghum growing conditions have been described previously. Briefly, two separate growth chambers were used to control all environmental factors and provide two temperature regimes: optimal temperature (OT, 32 °C day/21 °C night) and high temperature (HT, 38 °C day/21 °C night) at the Controlled Environment Facility, Queensland Bioscience Precinct, The University of Queensland, Brisbane, Australia, 2012. The night temperature was gradually increased at a rate of 3 °C/hour to the maximum temperatures commencing from 1 h after the light period began. The maximum temperatures were kept constant for 7 h and 3 h in the OT and HT chambers, respectively. The temperature was then decreased at a rate of 3 °C/hour until the minimum temperature was obtained in both chambers. Therefore, the main environmental difference between the two treatments was only the temperature in the middle of the light period. The experiment was a completely randomised block design (using 6 genotypes) within two temperature treatments and three replications (individual plants). Grains were harvested at maturity, manually cleaned and air-dried until a moisture content of around 10% was reached. The dried samples from each replicate were individually vacuum-packed in moisture proof packaging and kept at −20 °C in the dark until analysis.

Extraction of free and bound phenolic compounds. The whole grain samples were milled (CEMOTEC 1090, Foss Tecator, Hoganas, Sweden) to pass 100% through a 500μm sieve. The free and bound phenolic compounds were extracted. All extractions were evaporated to dryness using a rotary vacuum evaporator. The resulting solid was re-dissolved in methanol to a final volume of 10 ml and stored under N2 at −20 °C in the dark until analysis.

HPLC-DAD-ESIMS analyses. An Agilent 1290 UHPLC system equipped with binary pump, autosampler, thermostated column compartment, degasser, and diode array detector (DAD) was coupled to an Agilent 6460 LC-TOF LC-MS/MS system (Agilent Technologies, Palo Alto, CA, USA). The separation of phenolic compounds was performed on a Kinetex XB-C18 reversed phase-HPLC column (5 μm, 250 × 4.6 mm, Phenomenex, Torrance, CA, USA). The DAD was set to scan between 190 and 600 nm at steps of 2 nm. Solvent A consisted of 0.1% formic acid in LC-MS grade water (Honeywell Burdick & Jackson, Gillman, SA, Australia), and solvent B was LC-MS grade acetonitrile (Honeywell Burdick & Jackson, Gillman, SA, Australia). The sample injection volume was 5 μl with the following linear gradient elution: 5%−15% B (5 min), 15%−50% B (40 min), 50%−70% B (2 min), 70%−100% B (1 min), 100% B (7 min), 100%−5% B (1 min), 5% B (9 min). The flow rate was 0.5 ml/min. Mass spectra were performed in the ESI negative mode with a scan time of 2000 MS under the following conditions: gas (N2) 5 L/min at 300 °C, nebulizer 45 psi, sheath gas (N2) 11 L/min at 250 °C, capillary voltage −3.5 kV and nozzle voltage −500 V. Phenolic compounds were detected by full scan ranging from m/z 50 to 1300.

Identification and quantification of polyphenols. The phenolic compounds in sorghum samples were identified by their UV-Vis and ESIMS spectra. The authentic standards were also used to identify phenolic compounds based on the chromatographic comparisons. The external standard method was used to quantify phenolic compounds in samples under the above HPLC-DAD conditions. Standards were dissolved in methanol (1 mg/ml each), and diluted to several concentrations ranging from 0.001 to 0.1 mg/ml. Data acquisition, peak integration and calibrations were performed with the Agilent ChemStation software. Peak areas compared with calibration curves of the respective standards were used to calculate levels of phenolic compounds, and results
Statistical analysis. All data were reported as means ± SD of triplicate independent experiments analysed in triplicate. The main effects of genotype and temperature and their interaction were investigated by two-way or one way ANOVA with SPSS Statistics V20 (IBM Corp., Armonk, NY, USA). Significant differences were considered when \(p \leq 0.05 \).

References

1. Food and Agriculture Organization of the United Nations. (2013) Available at: http://faostat3.fao.org/browse/Q/QC/E. (Accessed on 1st December 2015).
2. Taleon, V., Dykes, L., Rooney, W. & Rooney, L. Environmental effect on flavonoid concentrations and profiles of red and lemon-yellow sorghum grains. J. Food Compos. Anal. 34, 178–185 (2014).
3. Mahasukhonthachat, K., Sopade, P. & Gidley, M. Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 96, 18–28 (2010).
4. Stofoska-Needham, A., Beck, E. J., Johnson, S. K. & TapSELL, L. C. Sorghum: an underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Rev. 31, 401–437 (2015).
5. Visioli, F. et al. Polyphenols and human health: a prospectus. Crit Rev. Food Sci. 51, 524–546 (2011).
6. Proteggente, A. R. et al. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res. 36, 217–233 (2002).
7. Hertog, M. G., Feskens, E. J., Kromhout, D., Hollman, P. & Katan, M. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 342, 1007–1011 (1993).
8. Hertog, M. G., Feskens, E. J., HoLLman, P. C., Katan, M. B. & Kromhout, D. Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr. Cancer. 22, 175–184 (1994).
9. Dykes, L., Rooney, L. W., Waniska, R. D. & Rooney, W. L. Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 53, 6813–6818 (2005).
10. Dicko, M. H., Gruppen, H., Traoré, A. S., Berkel, W. J. & Voragen, A. G. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J. Agric. Food Chem. 53, 2581–2588 (2005).
11. Khan, I., Yousif, A., Johnson, S. K. & Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 54, 578–586 (2013).
12. Intergovernmental Panel on Climate Change. IPCC Fourth Assessment Report (AR4). (2007) Available at: http://ipcc.ch/publications_and_data/ar4/syr/en/contents.html. (Accessed on 20th December 2015).
13. Wang, S. Y. & Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49, 4977–4982 (2001).
14. Islam, M. S., Yoshimoto, M., Ishiguro, K., Okuno, S. & Yamakawa, O. Effect of artificial shading and temperature on radical scavenging activity and polyphenolic composition in sweetpotato (Ipomoea batatas L.) leaves. J. Am Soc. Hortic Sci. 128, 182–187 (2003).
15. Svensson, L., Sekwati-Monang, B., Lutz, D. L., Schieber, A. & Gänzle, M. G. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J. Agric. Food Chem. 58, 9214–9220 (2010).
16. Luthria, D. L. & Liu, K. Localization of phenolic acids and antioxidant activity in sorghum kernels. J. Funct Foods. 5, 1751–1760 (2015).
17. Mda, C., Xiao, S., Li, Z., Wang, W. & Du, L. Characterization of active phenolic components in the ethanolic extract of Ananas comosus L. leaves using high-performance liquid chromatography with diode array detection and tandem mass spectrometry. J. Chromatogr A. 1165, 39–44 (2007).
18. Sun, W. & Miller, J. M. Tandem mass spectrometry of the B-type procyanidins in wine and B-type dehydrodicatechins in an autoxidation mixture of (+)-catechin and (−)-epicatechin. J. Mass Spectrom. 38, 438–446 (2003).
19. Guyot, S., Vercauteren, J. & Cheynier, V. Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase. Phytochemistry. 42, 1279–1288 (1996).
20. Sun, J., Liang, E., Bin, Y., Li, P. & Duan, C. Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules. 12, 679–693 (2007).
21. Rice-Evans, C. A., Miller, N. J. & Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956 (1996).
22. StobiecKi, M. Application of mass spectrometry for identification and structural studies of flavonoid glycosides. Phytochemistry. 54, 237–256 (2000).
23. Fang, Z., Zhang, M. & Wang, L. HPLC-DAD-ESIMS analysis of phenolic compounds in bayberries (Myrica rubra Sieh. et Zucc.). Food Chem. 100, 845–852 (2007).
24. Wu, G. et al. Effect of genotype and growth temperature on sorghum grain physical characteristics, polyphenol content and antioxidant activity. Cereal Chem. 128, 173–179 (2001).
25. Dykes, L., Peterson, G. C., Rooney, W. L. & Rooney, L. W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 60, 255–259 (1998).
26. Hahn, D., Fautbion, J. & Rooney, L. Sorghum phenolic acids, their high performance liquid chromatography separation and their relation to fungal resistance. Cereal Chem. 56, 470–475 (2012).
27. Taleon, V., Dykes, L., Rooney, W. L. & Rooney, L. W. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J. Cereal Sci. 56, 470–475 (2012).
28. Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).
29. Bravo, I. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 56, 317–333 (1998).
30. Adom, K. K. & Liu, R. H. Antioxidant activity of grains. J. Agric. Food Chem. 50, 6182–6187 (2002).
31. Cohen, S. D. & Kennedy, J. A. Plant metabolism and the environment: implications for managing phenolics. Crit Rev. Food Sci. 50, 620–643 (2010).
32. Mccallum, J. A. & Walker, J. R. Phenolic biosynthesis during grain development in wheat (Triticum aestivum L.) III. Changes in hydroxycinnamic acids during grain development. J. Cereal Sci. 13, 161–172 (1991).
33. Lister, C. E., Lancaster, J. E. & Walker, J. R. Developmental Changes in Enzymes Biosynthesis in the Skins of Red and. J. Sci. Food. Agric. 71, 330 (1996).
34. Rivero, R. M. et al. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160, 315–321 (2001).
35. Mori, K., Sugaya, S. & Gemma, H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic-amsterdam. 105, 319–330 (2005).
36. Shih, C. H., Chu, I. K., Yip, W. K. & Lo, C. Differential expression of two flavonoid 3′-hydroxylase cDNAs involved in biosynthesis of anthocyanin pigments and 3-deoxyanthocyanidin phytoalexins in sorghum. Plant. Cell Physiol. 47, 1412–1419 (2006).
37. Chandrasekara, A. & Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MS n. J. Funct Foods. 3, 144–158 (2011).
38. Nguyen, C. T. et al. Genetic variability in high temperature effects on seed-set in sorghum. Funct Plant Biol. 40, 439–448 (2013).

Acknowledgements
The Authors would like to thank Curtin International Postgraduate Research Scholarship (CIPRS). MC wishes to acknowledge funding from the National Collaborative Research Infrastructure Strategy through Metabolomics Australia and Bioplatforms Australia.

Author Contributions
G.W. did the main analysis of the experiments and wrote the draft of the manuscript. S.K.J. and Z.F. designed the experiments and wrote the manuscript. J.F.B. and S.J.B. wrote the manuscript. M.W.C. did the LC-MS analysis. V.S. did the sorghum growing experiment. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wu, G. et al. Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci. Rep. 6, 21835; doi: 10.1038/srep21835 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/