Sepsis in Pregnancy: Some Old verses New Inclusions

Authors
Dr Arata Kumar Swain¹, Dr Arati Nayak²
¹Associate Professor, Deptt. of Anaesthesiology, PRM Medical College & Hospital, Baripada, Odisha
²Sr. O&G Specialist, Dr ACHMC & Hospital, Bhubaneswar, Odisha

Introduction
After having completed an uneventful pregnancy, some women remain healthy others suffer due to various disorders. Further in developing country like India, where malnutrition and anemia is rampant, women are more prone to get infected. There are chances of puerperal infection in the genital urinary tract and caesarean section, wound infection. Woman in post partum period are in need of greater awareness to prevent puerperal infection there by to prevent further problems in puerperal period.

The incidence and severity of these infections declined dramatically in the second part of the present century, for reasons including decreased virulence of the infecting organisms, in Sepsis and pregnancy. Sepsis and pregnancy. Sepsis is a common and potentially life-threatening condition caused by infection. ... Sepsis that occurs during pregnancy is called maternal sepsis. Sometimes called blood poisoning, sepsis is the body's inflammatory response to infection, but it can overload the body's ability to cope.

Understand the common causes of sepsis and organisms involved in obstetrics and gynaecology. ... recognise progression of infection towards severe sepsis and septic shock through available tools, such as the modified early obstetric warning systems (MEOWS), and instigate preventative measures.

Sepsis in obstetric patients further complicates the diagnosis as alterations in physiology related to pregnancy can mask sepsis indicators normally seen in the general population. If early signs of sepsis go unrecognized, septic shock can develop, leading to organ dysfunction and potential death. Maternal early warning tools have been designed to assist clinicians in recognizing early indications of illness. Through use of clinical pathway-specific tools, disease processes may be detected early, subsequently benefitting patients with aggressive treatment management and intervention.

Key points
Sepsis was the leading cause of death in the last Centre for Maternal and Child Enquiries report. Obesity and Caesarean section are significant risk factors for sepsis in otherwise healthy pregnant patients.
A high index of suspicion with prompt management is required for better outcomes. Educational programmes for staff, patients, and visitors are important measures.
Hand hygiene to minimize the risk of sepsis is paramount. Management of sepsis is in line with Surviving Sepsis Campaign guidelines.
Definitions Sepsis
Sepsis is broadly understood to exist when an infectious process has triggered the systemic inflammatory response syndrome (SIRS). SIRS is an inflammatory response to physiological insult which is characterized by the presence of: The presence of two or more of the above signs describes SIRS.\(^3\)

- hyperthermia (>38°C) or hypothermia (<36°C),
- tachycardia (>90 beats min\(^{-1}\)),
- tachypnoea (>20 bpm) or PaCO\(_2\)PaCO\(_2\) <32 mm Hg, and leucophilia (>12×10\(^9\) litre\(^{-1}\)) or leukopenia (<4×10\(^9\) litre\(^{-1}\)).

The most difficult aspect of the recognition of SIRS in pregnancy is the differentiation of the condition from the normal physiological changes of pregnancy with which it overlaps. The criteria for the diagnosis have been suggested by UKOSS (as the presence of two or more of the following) but have not yet been validated.\(^4\)

- i. Temperature >38°C or <36°C measured on two occasions at least 4 h apart.
- ii. Heart rate >100 beats min\(^{-1}\) measured on two occasions at least 4 h apart.
- iii. Respiratory rate >20 bpm measured on two occasions at least 4 h apart.
- iv. White cell count >17×10\(^9\) or <4×10\(^9\) litre\(^{-1}\) or with >10% immature band forms, measured on two occasions. In the Saving Lives report 2014, 5 the criteria taken from the UK Sepsis Trust differ in that the diagnosis can be made on single measurements of diagnostic criteria but have not been validated on pregnant women.

Puerperal sepsis
Puerperal sepsis is infection of the genital tract occurring at any time between rupture of membranes or labour and the 42nd day post-partum\(^6\) associated with two or more of the following: pelvic pain, fever, abnormal vaginal discharge, abnormal smell of discharge, or delay in reduction in the size of the uterus.

Pregnancy and susceptibility to infection: myth or fact?
Although an association between ‘pregnancy and immunosuppression’ is a general belief, there is no clear evidence that pregnant women are really susceptible to infections.\(^7\)

During pregnancy, immune cells (macrophages, Natural Killer cells) infiltrate the decidua and accumulate around invading trophoblast cells, contributing to implantation, decidual formation, and angiogenic response; thus, maintaining pregnancy.

The patterns of cytokine levels, responses to pathogens, and cell-mediated immunity vary through the three trimesters of pregnancy. Pregnancy is thus a state of modified not suppressed immune function and there is no evidence that women are more susceptible to infection.

Microbiology
The principle organisms identified were Group A Streptococcus, Streptococcus pneumoniae, Escherichia coli. In a small number of cases no organism was identified.

Group A streptococcal puerperal sepsis
Group A streptococcus (β haemolytic S. pyogenes) is a gram-positive coccus which grows in long chains or pairs. About 5–30% of the population are asymptomatic carriers and it is commensal in the skin and throat. It spreads easily by person-to-person contact or by droplet dispersion.\(^8\) The immune state of the host determines the presentation and ranges from no symptoms or mild respiratory, cutaneous, and soft
tissue infections to serious invasive infections. Clinically, invasive group A streptococcus (GAS) infection has the potential to cause life-threatening conditions such as post-partum endometritis, streptococcal toxic shock syndrome, necrotizing fasciitis, and rapidly progressive septicaemia and death.

In pregnancy, organisms may be transferred from throat or nose via hands to the perineum. After delivery or membrane rupture, vaginal bacteria ascend into the uterus where blood and necrotic decidual tissue provide excellent growth media for multiplication; causing mild non-specific influenza-like symptoms, endometritis, bacteraemia, or wound infection.

Risk factors for infection
Otherwise healthy pregnant patients may have obstetric and non-pregnancy factors which increase the risk of sepsis (Table 1).

Table 1	Risk factors for sepsis
Obstetric factors	Amniocentesis
During pregnancy	Cervical suture
During vaginal delivery	Prolonged rupture of membranes
	Prolonged labour
	Vaginal trauma
Surgical procedures	Episiotomy
	Caesarean section
	Retained products
Non-obstetric factors	Obesity
	Diabetes
	Immunosuppression
	Anaemia
	Socioeconomic deprivation
	History of pelvic inflammatory disease
	Black or other ethnic minority group

Overall, Caesarean section and obesity are the most common factors (CMACE), but it is important to remember other causes of sepsis or septic shock during pregnancy and puerperium as listed in Table 2.

Table 2	Causes of sepsis
Genital tract causes:	chorioamnionitis, endometritis, septic abortion, wound infection
after vaginal tear, episiotomy, or Caesarean section	
Renal causes:	lower urinary tract infection, pyelonephritis
Respiratory causes:	pneumonia—bacterial, viral; tuberculosis
Intraperitoneal causes:	ruptured appendix, acute appendicitis, acute cholecystitis, bowel infarction
Other causes:	breast infection, septic pelvic thrombophlebitis, necrotizing fasciitis, malaria, miliary tuberculosis

Role of anaesthetists and management of septic obstetric patients
Obstetric anaesthetists use critical care skills as part of the team in the recognition, assessment, and management of septic obstetric patients; the role includes management of resuscitation, control of infection, providing anaesthesia for surgical intervention, transfer of patients to the imaging suite or intensive care, postoperative care, and also prevention.

Recognition of obstetric sepsis
As a consequence of altered physiology, signs and symptoms suggesting sepsis are less distinctive during pregnancy. For example, tachycardia is an early sign of sepsis, but basal heart rate is already raised as a result of physiological adaptation in obstetric patients.

In non-pregnant patients, sepsis presents as unregulated vasodilation leading to a state of relative hypovolaemia but in pregnancy, there is already vasodilatation, caused by raised level of progesterone, and compensated by increased blood volume. The increased blood volume may mask cardiovascular signs in early sepsis.9 Sepsis-induced anaerobic metabolism and lactic acidosis can cause profound tachypnoea, but an increase in respiratory rate may be potentially mistaken for
the progesterone-induced hyperventilation of pregnancy.
Since the physiological parameters are less reliable, detailed history, and a high index of suspicion is paramount in the recognition of sepsis in pregnancy.
Clinical presentation varies depending on the source of infection, as summarized in Table 3.

Table 3
Clinical features
General symptoms: fever, rash, diarrhoea or vomiting, sore throat, shortness of breath, altered mental status, Specific symptoms: abdominal or pelvic pain or tenderness, vaginal discharge, premature contractions, sickle cell crisis, Signs: pyrexia (>38°C), hypothermia (36°C), tachycardia (>100 beats min⁻¹), tachypnoea, arterial hypotension (SAP<90 mm Hg, MAP<70 Hg or SAP decrease >40 mm Hg in adults or <2 SD below normal for age), cool extremities, reduced capillary refill, acute oliguria., early pregnancy loss, fetal bradycardia, fetal tachycardia, intrauterine fetal death, Lab findings: leukocytosis, leukopenia, normal WBC with >10% immature forms, raised CRP, raised blood lactate, hyperglycaemia in the absence of diabetes, thrombocytopenia, coagulopathy, raised creatinine, hypoaoemia (Pa O2Pa O2/FIO2FIO2<300), hyperbilirubinaemia

The CMACE report¹ has particularly identified the presence of tachypnoea, neutropenia, and hypothermia as the most ominous signs.
Diarrhoea is a common symptom of pelvic sepsis and the combination of abdominal pain and abnormal or absent fetal heart rate may signify sepsis rather than placental abruption.
The raised white cell count (WCC) of pregnancy decreases after delivery, but a WCC that fails to reach normal levels or decreases rapidly may indicate severe infection.¹⁹

Resuscitation and management
The aim of management is to maintain oxygenation and perfusion of vital organs and placenta while identifying and treating infection. Survival has been shown to be improved by using the Surviving Sepsis campaign guidance⁹,¹⁰ and administered in the first hour of diagnosis.¹¹
Sepsis bundles (as mentioned in Table 4) are a group of interventions designed to allow the team to follow the timing, sequence, and goals of individual elements of care to improve the outcome.¹²

Table 4
Sepsis bundles¹
Within 1 h, the ‘Sepsis Six’ has to be followed: Administer high-flow oxygen
Take blood cultures both aerobic and anaerobic without delay. At least two sets of blood culture should be obtained, one drawn percutaneously and one from a vascular site, unless the device was recently inserted
Administer broad-spectrum antibiotics
Fluid resuscitation—administer 20 ml kg⁻¹ crystalloid for hypotension or if lactate ≥4 mmol litre⁻¹
Measure serum lactate
Catheterize and measure accurate hourly urine output
Within 6 h:
Administer vasopressors (for hypotension that does not respond to initial fluid resuscitation) to maintain MAP≥65 mm Hg
In the event of persistent arterial hypotension despite volume resuscitation (septic shock) or initial lactate ≥4 mmol litre⁻¹, measure CVP and ScvO2ScvO2 and maintain CVP 8–12 mm Hg, ScvO2ScvO2 70% and mixed venous saturation 65%
Serial measurement of lactate if initial lactate was elevated
The Key message from ‘Saving Lives, Improving Care 2014’ is ‘Timely recognition, Fast administration of intravenous antibiotics and Quick involvement of experts-senior review is essential’. Other recommendations for
management: The pregnant woman should be managed in the left lateral position to avoid aortocaval compression. Samples for baseline blood tests such as full blood count, coagulation profile, renal function tests, and C-reactive protein should also be sent at presentation.

i. Fluids: perform crystalloid fluid challenge until there is haemodynamic improvement based on central venous pressure (CVP)-directed sepsis goals. Obstetric patients at term have a greatly increased fluid volume, may have preeclampsia, or be receiving uterotonic drugs that lead to fluid retention. They are at risk of developing pulmonary oedema and non-invasive cardiac output monitoring should be considered to guide fluid resuscitation.

ii. Vasopressors and inotropes: norepinephrine is the first choice as a vasopressor to maintain mean arterial pressure (MAP) ≥ 65 mm Hg. If MAP is not achievable, epinephrine can be added. Vasopressin is not recommended as an initial agent, but can be added later to reduce the dosage of norepinephrine. In the presence of myocardial dysfunction or ongoing signs of hypoperfusion despite achieving adequate intravascular volume and MAP, dobutamine should be administered.

iii. Corticosteroids should be avoided; may be considered if haemodynamic instability continues despite resuscitation.

iv. In the absence of ischaemic heart disease or signs of hypoperfusion, it is suggested to maintain haemoglobin at 70–90 g litre⁻¹.

v. Sepsis is associated with coagulopathy; monitoring and correction of coagulopathy is required.

vi. Early advice form an infectious disease physician or microbiologist should be sought; this is essential in instances where the woman fails to respond to the first choice antibiotic.

Other samples guided by clinical suspicion of the focus of infection (throat swabs, midstream urine, high vaginal swab, wound swab, breast milk, stool, epidural site or CSF, swabs from baby) should also be obtained ideally before starting antibiotic therapy. If the MRSA status is unknown, a premoistened nose swab should be sent for screening.

Control of infection

Controlling the source of infection is paramount and it may require both medical and surgical intervention. Antibiotics should be administered in the first hour of recognition; delay is associated with a worse outcome. The doses of antibiotics in pregnancy are unchanged. Early involvement of a microbiologist is strongly recommended. The following is the recommended i.v. antibiotic therapy by CMACE.¹ Antifungals are not needed empirically in sepsis and these drugs should be avoided in pregnancy and lactation unless potential benefits outweigh the risk.

i. When the patient is not critically ill, coamoxiclav or cefuroxime or cefotaxime and metronidazole; in penicillin allergic cases, clarithromycin or clindamycin and gentamicin.

ii. When the patient is septic, piperacillin–tazobactem or meropenem or ciprofloxacin and gentamicin. Metronidazole may be considered for anaerobic cover.

iii. For group A streptococcal infection, clindamycin is more effective than penicillin.

iv. For MRSA cover, consider teicoplanin or linezolid.

Once antibiotic and haemodynamic therapies have been started, any potential surgical source of infection should be established. After detailed physical examination and satisfactory stabilization, radiological investigations (ultrasound scan, CT, and MRI of the abdomen and pelvis) should be considered and
revisited if there is an inadequate response to therapy or the clinical presentation suggests intra-abdominal pathology.
A surgical focus of infection as listed in Table 5 should be drained promptly.13

Table 5
Surgical procedures in sepsis management

Procedure
Evacuation of retained products of conception
Debridement of wound infection or fasciitis
Percutaneous drainage of abscesses
Stent or percutaneous nephrostomy for obstructive pyelonephritis
Delivery of fetus if chorioamnionitis is suspected
Hysterectomy for myometrial necrosis

If chorioamnionitis is suspected as the most likely cause of sepsis, early delivery of fetus should be considered. In extreme cases, hysterectomy may need to be considered if myometrial necrosis is the source of infection.

Non-obstetric sources of infection should be borne in mind and include appendicitis, pancreatic abscesses, or infarcted bowel.

The culture and bacterial sensitivities of an infected tissue should be performed to guide antibiotic therapy.

Anaesthesia for surgical intervention

The decision of delivering the fetus or continuing the pregnancy is influenced by patient's condition, gestational age, fetal status, presence of chorioamnionitis, and labour.

The well-being of the fetus is compromised if sepsis reduces maternal AP and placental perfusion, whereas the gravid uterus beyond 20 weeks may cause decrease in lung volumes and venous return.

Maternal sepsis may induce both labour and fetal death. Occasionally, if the risks of continuing pregnancy outweigh the benefits of delivery, administration of antenatal steroids should be considered to improve the outcome of a premature fetus.

The decision process should involve a multidisciplinary approach and discussion among obstetrician, neonatologist, microbiologist, intensivist, anaesthetist, and patient is essential.

If surgical intervention is needed, the anaesthetists are required to make the decision on regional or general anaesthesia.

Regional anaesthesia

Neuraxial block, which is a safety standard in obstetrics, is usually contraindicated in septic patients because: However, as with all clinical judgements, the decision to perform the surgery under regional or general anaesthesia must be considered on a case-by-case basis, assessing the risk–benefit ratio.

Septic vasodilated hypotensive patients may not tolerate the sympathetic block associated with spinal anaesthesia.

There may be associated coagulopathy or thrombocytopenia.

There is a risk of epidural abscess or meningitis; which is very small in patients treated with antibiotics as evidenced by isolated case reports and small studies.

General anaesthesia

General anaesthesia is highly likely to be required in a septic parturient. The principles of general anaesthesia in an obstetric patient should be followed and in the patient with haemodynamic instability, ketamine may be considered for induction of anaesthesia.

Intra AP, CVP, and cardiac output monitoring are helpful, especially for the postoperative phase.

The oxytocin bolus should be administered using an infusion pump over 5 min to avoid haemodynamic instability.14

The decision to extubate or transfer to critical care is influenced by severity of sepsis and an appreciation of the altered physiology of pregnancy.

After operation, oxygen is recommended to meet the increased demand.

Analgesia should be maintained with paracetamol and opioids. Non-steroidal anti-inflammatory drugs are contraindicated because septic patients have deranged renal function and coagulation
profile and they may mask the presentation of invasive streptococcal infection, leading to delay in intervention.

Postoperative care and transfer to critical care

After surgery, high dependency unit care is needed for continuous close observations of vital parameters. If the patient is critically ill with features of severe sepsis as mentioned in Table 6, transfer to critical care is needed for mechanical ventilation, vasopressor support, or haemofiltration.

Table 6

Indications for transfer to critical care unit

Respiratory	Cardiovascular	Renal	Neurological	Miscellaneous
Airway protection, pulmonary oedema, ARDS	Persistent hypotension or raised serum lactate despite fluid resuscitation	Acute renal failure	Decreased conscious level	Multiorgan failure

Documentation, communication and lessons learnt

At all stages of management, effective communication among team members and good documentation is vital. It has also been recommended that a high quality multidisciplinary serious incident/root cause analysis should be carried out on all maternal deaths and all women with severe sepsis by the unit in which the women was cared for.

Prevention

As health professionals, education for ourselves and for our patients of the most basic aspects of hygiene and disease is needed to reduce the morbidity and mortality from severe maternal sepsis.

Early warning scores are extensively and effectively used in acute settings for early identification of critically ill patients. The physiological changes of pregnancy render these scoring systems inappropriate for obstetric patients. Although maternity hospitals have introduced a modified early obstetric warning scoring system, there is not yet a nationally agreed system in the UK.

The detailed history, meticulous physical examination, and high index of suspicion, particularly in a high-risk group of obstetric patients, are essential for early recognition of sepsis.

Routine vaginal swab culture from pregnant women should be considered and the presence of GAS should be treated promptly before delivery to avoid a potentially lethal situation.

In an obstetric patient undergoing Caesarean section, preoperative measures can reduce the risk of wound infection. The measures include abstaining from smoking (30 days) before surgery, glycaemic control in diabetics, treating any existing infection before elective section, showering with an antiseptic agent the night before surgery, hair removal by clippers, vaginal cleansing, and antimicrobial prophylaxis.

In addition to prophylactic antibiotic at induction in a Caesarean delivery, further doses after 4 h in prolonged surgical cases or those associated with excessive blood loss should be considered.

Wide ranging and comprehensive measures are required to prevent and monitor infection as mentioned in Table 7.

Table 7

Measures for prevention

Staff	Educational programmes to ensure
1)	Avoidance of hand contamination and frequent use of alcohol gel
2)	Use of personal protective equipment— gloves, disposable aprons, gowns, face mask and eye protection
3)	Availability of infection control guidelines
4)	Team training to follow guidance in emergency situations
5)	Use of modified early warning scoring systems and education to enable early identification of septic patients
6) Involvement of infection control surveillance teams to monitor progress
Patient and visitors: education about

Limiting contact
Hand washing and alcohol gel
Recognition and reporting symptoms
Correct handling, storage and disposal of healthcare waste
Recent evidence indicates that the incidence of infection after Caesarean section is lower when the antibiotic is administered before skin incision rather than after cord clamping.

Future developments
Although individual hospitals have started a modified early obstetric warning scoring system taking account of physiological changes of pregnancy, it has yet to be approved at national level.
Until now, there have been no published results of a national epidemiological survey on severe maternal sepsis. The UK Obstetric Surveillance system has recently conducted a study to describe the incidence, associated risk factors, causative organisms, management, and outcomes during the year 2011–2012. The interim data analysis has indicated that there appears to be a significant difference in several demographic, clinical, and delivery characteristics between cases and controls.3
The increasing incidence of obesity in the UK is associated with increased rates of infection in pregnancy and after both operative and vaginal births. Proposals to reduce infections include topical antibiotic regimes, subcutaneous wound closure, complex wound dressings, and altered doses of i.v. antibiotics. These women need close surveillance.
The anaesthetist has a role in the reduction of infection rates promoting good operating theatre practice and compliance with infection control protocols and surveys.

Conclusion
The deaths from severe sepsis reported in the most two recent CMACE reports highlighted the insidious and subtle signs that were commonly unrecognized by the mother and the health professionals who attended her. Educating professionals, patients, and using a modified early obstetric warning scoring system may help in recognizing obstetric patients with early sepsis. The outcome in septic parturients may be improved by early provision of time-sensitive interventions such as adequate hydration, initiation of broad-spectrum antibiotics, eliminating the source of infection, and multidisciplinary team management. Further work is needed in defining diagnostic haemodynamic criteria that may be more clinically specific in a septic obstetric patient.

Bibliography
1. Centre for Maternal and Child Enquiries (CMACE). Saving Mother's Lives: reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth report on confidential enquiries into maternal deaths in the United Kingdom. BJOG 2011; 118 (Suppl.1):1–203
2. Churchill D Rodger A Clift J Tuffnell D on behalf of the MBRRACE-UK sepsis chapter writing group. Think sepsis. In: Knight M, kenyon S, Brocklehurst P, Neilson J, Shakespeare J, kurinczuk JJ, eds on behalf of MBRRACE-UK. Saving Lives, Improving Mothers' CAre - Lessons Learnt to Inform Future Maternity Care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2009–12 . Oxford: National Perinatal Epidemiology Unit, University of Oxford, 2014; 27–44.
3. Bone RC Balk RA Cerra FBet al Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee.
American College of Chest Physicians and Society of Critical Care Medicine. Chest 1992; 101: 1644–55

4. UK Obstetric Surveillance System. Severe maternal sepsis. Seventh annual report of a joint working party. Available from http://www.nnpeu.ox.ac.uk/ukoss/current%20surveillance/

5. UK Sepsis Trust (2014) Primary care toolkit. Available from http://sepsistrust.org/wp-content/files_mf/1409322498GPtoolkit2014.pdf

6. World Health Organisation. The prevention and management of puerperal infections. Report of a technical working group. Geneva: Division of Family Health, Maternal Health and Safe Motherhood Programme, 1992. Available from http://www.whqlibdoc.who.int/hq/1995/WHO_FHE_MSM_95.4.

7. Mor G Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol 2010; 63: 425–33

8. Palaniappan N Menezes M Wilson P. Group A streptococcal puerperal sepsis: management and prevention. Obstet Gynaecol 2012; 14: 9–16

9. Guinn DA Abel DE Tomlinson MW. Early goal directed therapy for sepsis during pregnancy. Obstet Gynecol Clin North Am 2007; 34: 459–79

10. Dellinger RP Levy MM Rhodes Aet al Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41:580–619

11. Lucas DN Robinson PN Nel MR. Sepsis in obstetrics and the role of anaesthetist. Int J Obstet Anesth 2012; 21: 56–67

12. Daniels R Nutbeam T McNamara G Galvin C. The sepsis six and the severe sepsis resuscitation bundle: a prospective observational cohort study. Emerg Med J 2011; 28: 507–12 https://doi.org/10.1136/emj.2010.095067

13. Leaper DJ. Surgical infection. In: Williams N Bulstrode C O'Connell PR, eds. Bailey & Love's Short Practice of Surgery , 26th Edn. Boca Raton: CRC Press, 2013; 50–67, 478 Google Scholar

14. Thomas JS Koh SH Cooper GM. Haemodynamic effects of oxytocin given as i.v bolus or infusion on women undergoing caesarean section. Br J Anaesth 2007; 98: 116–9

15. Platt F Wray S. Role of anaesthetist in obstetric critical care. Best Pract Res Clin Obstet Gynaecol 2008; 22: 917–35

16. Rimawi BH Soper DE Eschenbach DA. Group A streptococcal infections in obstetrics and gynecology. Clin Obstet Gynecol 2012; 50: 864–74

17. Centers for Disease Control and Prevention. Healthcare associated infections. Available from www.cdc.gov/HAI/ssi.html (accessed 15 July 2012) Google Scholar

18. Barton JR Sibai BM. Severe sepsis and septic shock in pregnancy. Obstet Gynecol 2012; 120: 689–706.