Stemphylium revisited

J.H.C. Woudenberg¹, B. Hanse², G.C.M. van Leeuwen³, J.Z. Groenewald¹, and P.W. Crous¹,⁴,⁵*

¹Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3884 CT Utrecht, The Netherlands; ²IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; ³National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; ⁴Wageningen University, Laboratory of Phytopathology, Drievendaelsteenweg 1, 6708 PB Wageningen, The Netherlands; ⁵Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa

*Correspondence: P.W. Crous, p.crous@westerdijk institute.nl

Abstract: In 2007 a new Stemphylium leaf spot disease associated with a Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydrogenase were also sequenced for a subset of isolates (N = 149). This resulted in a multi-gene phylogeny of the genus Stemphylium containing 28 species-clades, of which five were found to represent new species. The majority of the sugar beet isolates, including isolates from the Netherlands, Germany and the UK, clustered together in a species clade for which the name S. betica was recently proposed. Morphological studies were performed to describe the new species. Twenty-two names were reduced to synonymy, and two new combinations proposed. Three epitypes, one lectotype and two neotypes were also designated in order to create a uniform taxonomy for Stemphylium.

INTRODUCTION

In 2007 a new leaf spot disease associated with a Stemphylium sp. was first discovered on sugar beet (Beta vulgaris) in the Netherlands, which subsequently spread rapidly throughout the country in the following years (Hanze 2013). The causal agent was recently formally named as Stemphylium betica (Crous et al. 2016), but the sexual itself was not treated in that study.

Stemphylium is a dematiaceous hyphomycete, which can be distinguished from other hyphomycetes forming phaeoidicyospores based on the percurrent rejuvenation of its conidiophores, and apically swollen conidigenous cells. Other closely related genera mostly display a geniculate, sympodial proliferation, e.g. Alternaria (Simmons 2007). Stemphylium, with S. botryosum as type species, forms a well-defined monophyletic genus in the family Pleosporaceae, Pleosporales (Cámara et al. 2002; Inderbitzin et al. 2009). However, the sexual morph to which Stemphylium is linked, Pleospora, is known to be polyphyletic. The type species of Pleospora, Pleospora herbarum, has Stemphylium herbarum as asexual morph (Simmons 1985), but several Pleospora spp. have been linked to a range of different assexual genera (e.g. Inderbitzin et al. 2006; De Gruyter et al. 2013; Aryawansa et al. 2015; Crous & Groenewald 2017). The latest comprehensive phylogenetic study on Pleospora species with Stemphylium asexual morphs was published in 2009 (Inderbitzin et al. 2009), which left many unnamed and potentially new Stemphylium species. The Pleospora herbarum clade sensu Inderbitzin et al. (2009) illustrated the problems with identification in the genus. Based on a multi-gene phylogeny five species should be synonymised, but RAPD fingerprints (Chaisrisook et al. 1995), morphology and ecology studies supported them to be separate species. Some researchers therefore chose to retain all the species names (e.g. Inderbitzin et al. 2009), while others again chose to synonymise them (e.g. Köhl et al. 2009). With the uptake of the one fungus-one name initiative in the International Code of Nomenclature for algae, fungi and plants (ICN, McNeill et al., 2012), name changes in these genera became necessary. The use of Stemphylium over Pleospora has subsequently been recommended by the Working Group on Dothideomycetes of the International Committee on the Taxonomy of Fungi (Rossman et al. 2015).

The aim of the present study was to construct a phylogenetic overview of the genus Stemphylium. All available Stemphylium and Pleospora isolates from the CBS collection, together with Stemphylium isolates collected from sugar beet from different parts of the Netherlands as well as from the UK and Germany, were included in the study. The internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) were sequenced to construct a draft overview phylogeny. Using a reduced set of isolates, the phylogenetic informativeness of six commonly used protein-coding genes, namely partial actin (act4), beta-tubulin (tub2), calmodulin (cmd4), translation elongation factor 1-alpha
(tef1), glyceraldehyde-3-phosphate dehydrogenase (gapdh) and DNA-directed RNA polymerase second largest subunit (rpb2) were also evaluated. Based on these results, the two most promising genes were additionally sequenced for the genus *Stemphylium*, and used to construct a multi-gene phylogeny.

MATERIALS AND METHODS

Isolates

Four-hundred-and-forty-one isolates were included in this study, comprising of 418 *Pleospora* and *Stemphylium* isolates from the culture collection of the Westerdijk Fungal Biodiversity Institute (CBS), Utrecht, the Netherlands (Supplementary Table 1) and 23 isolates received from the IRS (the research and knowledge centre for sugar beet cultivation in The Netherlands), Bergen op Zoom, the Netherlands (Supplementary Table 2). The dataset includes 48 (ex-)type strains. Freeze-dried strains from the CBS culture collection were revived in 2 mL malt/peptone (50% /50%) directly from the −185 °C storage. For the isolation methods of the IRS isolates see Hanse et al. (2015).

Morphology

Isolates were grown on potato carrot agar (PCA, Crous et al., 2009) and synthetic nutrient-poor agar (SNA, Nirenberg, 1976) at moderate temperatures under CoolWhite fluorescent light with an 8 h photoperiod. After 7 and 14 d the growth rates were measured and the colony characters noted. Colony colours were rated according to Rayner (1970). Morphological descriptions of asexual structures were made for isolates grown on SNA for 7 d. Slides were prepared with the cellotape technique (Schubert et al. 2007) using Titan Ultra Clear Tape (Conglom Inc., Toronto, Canada) and Shear’s medium as mounting fluid. Morphological descriptions of sexual structures were made for isolates grown on PCA for 14 d, with 85 % lactic acid as mounting fluid. The mean plus/minus standard deviation values were derived from measurements of 30 structures, with extremes given in parentheses. Photographs of characteristic structures were made with a Zeiss Axio Imager A2 microscope equipped with a Nikon DS-Ri2 high-definition colour camera using differential interference contrast (DIC) optics and the Nikon software NIS-elements D v. 4.50 and Adobe Bridge CS5.1 and Adobe Photoshop CS5 Extended, v. 12.1, were used for the final editing and photographic preparation. Nomenclatural data were deposited in MycoBank (Crous et al. 2004).

DNA isolation, PCR and sequencing

DNA extraction was performed using the Wizard® Genomic DNA purification kit (Promega, Madison, USA) according to the manufacturer’s instructions. The ITS region, gapdh, tef1 and rpb2 gene regions were amplified and sequenced with respectively the primers V9G (De Hoog and Gerrits van den Ende, 1989)ITS4 (White et al. 1990), gpd1/gpd2 (Berbee et al. 1999), EF1-728/EF1-986R (Carbone & Kohn 1999), and RPB2-5F2 (Sung et al. 2007)/RPB2-7cR (Liu et al. 1999) as described in Woudenberg et al. (2013). The actA gene region was amplified and sequenced with ACT-512F/ACT-783R (Carbone & Kohn 1999) as described in De Gruyter et al. (2009). For the tub2 gene region several primer combinations and PCR programs were tested, but no PCR product could be obtained. The cmdA gene region was amplified and sequenced with the primers CALDF1/CALDR2 (Lawrence et al. 2013). The PCR mixture consisted of 1 μl 50× diluted genomic DNA, 1× NH4+ reaction buffer (Bioline, Luckenwalde, Germany), 2 mM MgCl2, 20 μM of each dNTP, 0.2 μM of each primer and 0.25 U Taq DNA polymerase (Bioline). The PCR conditions consisted of an initial denaturation step of 5 min at 94 °C followed by 35 cycles of 30 s at 94 °C, 30 s at 59 °C and 1 min at 72 °C, and a final elongation step of 7 min at 72 °C. The PCR products were sequenced in both directions using a BigDye Terminator v. 3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Bleiswijk, the Netherlands) and analysed with an ABI Prism 3730xl DNA Analyser (Thermo Fisher Scientific) according to the manufacturer’s instructions. Consensus sequences were computed from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). Generated sequences were deposited in GenBank (Table 1, Supplementary Table 1).

Identification of best loci

Based on the ITS sequence results and former sequence data (Inderbitzin et al. 2009), seven isolates representing clade 10 (Fig. 1), namely CBS 378.54, CBS 116598, CBS 116599, CBS 134496, CBS 136590, GV11-196-a1-3 and IFZ2013-024, were selected to determine which gene would be the most informative in distinguishing species within this clade. In addition to ITS, the actA, cmdA, gapdh, rpb2 and tef1 gene regions were amplified and sequenced as described above. Unfortunately the beta-tubulin PCR did not give any results, even when following previously published PCR primers and methods (Bt2a/Bt2b, Glass & Donaldson 1995) which are supposed to work on *Stemphylium* species (Lawrence et al. 2013). A sequence comparison from the five additional gene regions of the seven selected isolates was made in Bio Numerics v. 4.61 (Applied Maths) and by eye (Table 2).

Phylogenetic analyses

In Bio Numerics v. 4.61 (Applied Maths), a quick UPGMA phylogeny was constructed from the ITS sequences of the 441 included isolates to assign them to clusters of closely related or identical isolates. For those isolates belonging to the *Stemphylium* clade, a multiple sequence alignment of the ITS sequences was generated with MAFFT v. 7.271 (http://mafft.cbrc.jp/alignme nt/server/index.html) using the FFT-NS-i method. With Findmodel (http://www.hiv.lanl.gov/content/sequence/findmodel/findmo del.html) the best nucleotide substitution model was determined. Bayesian analyses were performed with MrBayes v. 3.2.1 (Huelsenbeck & Ronquist 2001; Ronquist & Huelsenbeck 2003). The Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a random tree topology. The sample frequency was set at 1 000 and the temperature value of the heated chain was set at 0.1. The run stopped when the average standard deviation of split frequencies reached below 0.01. Burn-in was set to 25 % after which the likelihood values were
Table 1. Collection details and GenBank accession numbers of the *Stemphylium* cultures included in the multi-gene phylogeny.

Name	Old name¹	Strain number²	Other collection number²	Host/Substrate	Country	GenBank accession numbers
						ITS gapdh cmdA
Alternaria alternata		GV14-634a1		*Chenopodium album*	Netherlands	KU850502 KU850649 KU850790
Stemphylium amaranthi	S. phaseolina⁷	CBS 124650	HSAUP VI1538	*Phaseolus vulgaris*	China	KU850503 KU850650 KU850791
		CBS 124651	HSAUP VII1682	*Phaseolus vulgaris*	China	KU850504 KU850651 KU850792
		CBS 124746⁷	HSAUPyf1835	*Amaranthus retroflexus*	China	KU850505 KU850652 KU850793
		CBS 124750	HSAUPyf1902	*Malus sieversii*	Chile	KU850506 KU850653 KU850794
*S. microsporum*⁷		CBS 124984	HSAUPyf2018	*Raphanus sativus*	China	KU850508 KU850655 KU850796
Stemphylium astragali		CBS 136589	E.G.S. 48.098	*Lotus pendunculatus*	New Zealand	KU850510 KU850657 KU850798
Stemphylium armeriae comb. nov.	P. armeriae	CBS 338.73		*Ameria martima*	UK	KU850511 KU850658 KU850799
Stemphylium beticola		CBS 378.54	E.G.S. 08.174	*Astragalus sp.*	Japan	KU850512 KU850659 KU850800
		CBS 116699	UAMH 10489	*Lychnis sp.*	Canada	KU850513 KU850660 KU850801
		CBS 133512	E.G.S. 30.152	*Pisum sativum*	Canada	KU850514 KU850661 KU850802
		CBS 133892	E.G.S. 38.090	*Lens culinaris*	USA	KU850516 KU850663 KU850804
		CBS 136590	E.G.S. 48.097	*Passiflora edulis*	New Zealand	KU850517 KU850664 KU850805
		CBS 136699	E.G.S. 48.126	*Panax sp.*	USA	KU850518 KU850665 KU850806
		CBS 137492	E.G.S. 50.095	*Spinacia oleracea*	USA	KU850519 KU850666 KU850807
		CBS 141024⁷	GV11-265a	*Beta vulgaris*	Netherlands	KU850520 KU850667 KU850808
		CBS 141025	GV12-288-2	*Beta vulgaris*	Netherlands	KU850521 KU850668 KU850809
		CBS 141026	GV12-474-a1	*Beta vulgaris*	Netherlands	KU850522 KU850669 KU850810
		GV11-196a1-3		*Beta vulgaris*	Netherlands	KU850523 KU850670 KU850811
		GV12-275a1		*Beta vulgaris*	Netherlands	KU850524 KU850671 KU850812
		GV12-276a1		*Beta vulgaris*	Netherlands	KU850525 KU850672 KU850813
		GV12-287a1		*Beta vulgaris*	Netherlands	KU850526 KU850673 KU850814
		GV12-336a1		*Beta vulgaris*	Netherlands	KU850527 KU850674 KU850815
		GV12-356a1		*Beta vulgaris*	Netherlands	KU850528 KU850675 KU850816
		GV12-367a1		*Beta vulgaris*	Netherlands	KU850529 KU850676 KU850817
		GV12-368a1		*Beta vulgaris*	Netherlands	KU850530 KU850677 KU850818
		GV12-403a1		*Beta vulgaris*	Netherlands	KU850531 KU850678 KU850819

Table continued on next page
Table 1. (Continued).

Name	Old name	Strain number	Other collection number	Host/Substrate	Country	GenBank accession numbers		
						ITS gapdh cmdA		
GV13-425a1	Beta vulgaris	Netherlands	KU850532	KU850679	KU850820			
GV13-436c2	Beta vulgaris	Netherlands	KU850533	KU850680	KU850821			
GV14-693a1	Beta vulgaris	UK	KU850534	KU850681	KU850822			
IFZ2013-024	Beta vulgaris	Germany	KU850535	KU850682	KU850823			
IFZ2013-035	Beta vulgaris	Germany	KU850536	KU850683	KU850824			
IFZ2014-020	Beta vulgaris	Germany	KU850537	KU850684	KU850825			
Stemphylium botryosum	CBS 714.68^T	Medicago sativa	E.G.S. .04.118c; IMI 135456; MUCL 11717; QM 1379	Canada	KU850538	KU850685	KU850827	
Stemphylium callistephi	CBS 116596	Medicago sativa	E.G.S. .08.069; QM 7066	USA	KU850539	KU850686	KU850828	
Stemphylium canadense sp. nov.	CBS 116602^T	Salicornia sp.	UAMH 10491	Canada	KU850641	KU850782	KU850932	
Stemphylium chrysanthemicola sp. nov.	CBS 118081	Salicornia sp.	UAMH 10491	Canada	KU850642	KU850783	KU850933	
Stemphylium drummondii	CBS 346.83^T	Phlox drummondii	E.G.S. 31.008	New Zealand	KU850640	KU850781	KU850931	
Stemphylium etumianum S. vesicarium	CBS 668.80	Solanum lycopersicum	E.G.S. 29.099; IMI 386969	Greece	KU850540	KU850688	KU850830	
Stemphylium etumianum S. variabilis^T	CBS 109845^T	Solanum lycopersicum	E.G.S. 29.099; IMI 386969	New Zealand	KU850541	KU850689	KU850831	
Stemphylium etumianum S. vesicarium	CBS 122124	Solanum lycopersicum	HSAUPIV1508	Allium sativum	France	KU850542	KU850690	KU850832
Stemphylium etumianum S. capsici^T	CBS 122641	Solanum lycopersicum	HSAUP1559	Asphodelus aestivus	Greece	KU850543	KU850691	KU850833
Stemphylium gracilariae P. lycopersici	CBS 133528	Solanum lycopersicum	E.G.S. 30.002	India	KU850545	KU850693	KU850835	
Stemphylium gracilariae P. herbarum f. lactucum^T	CBS 308.36	Solanum lycopersicum	E.G.S. 53.123	Capsicum annuum	China	KU850546	KU850694	KU850836
Stemphylium halophilum comb. nov.	CBS 273.35	Lactuca sp.	ATCC 10737	Unknown	USA	KU850547	KU850695	KU850837
Stemphylium halophilum comb. nov.	CBS 482.90^T	Gracilaria sp.	E.G.S. 37.073; ATCC 669721	Israel	KU850549	KU850549	AF443883	KU850839
Stemphylium halophilum comb. nov.	CBS 115179	Leucospermum sp.	STE-U 5216; CPC 5216	Spain	KU850550	KU850697	KU850840	
Stemphylium halophilum comb. nov.	CBS 115180	Leucospermum sp.	STE-U 5217; CPC 5217	Spain	KU850551	KU850698	KU850841	
Stemphylium halophilum comb. nov.	CBS 125060	Cucumis melo	HSAUPpyf2377	China	KU850552	KU850699	KU850842	
Stemphylium halophilum comb. nov.	CBS 337.73^T	Limonium vulgare	E.G.S. 37.073; ATCC 669721	UK	KU850553	KU850700	KU850843	
Stemphylium halophilum comb. nov.	CBS 410.73	Armeria maritima	E.G.S. 37.073; ATCC 669721	UK	KU850554	KU850701	KU850844	
Species	Strain Code	Host	Country	Accession Numbers				
--	-------------	-------------------------------	---------------	-------------------				
Stemphylium ixeridis	CBS 124748^T	Ixeris denticulata	China	KU850590, KU850737, KU850881				
Stemphylium lancipes	CBS 101217	Aquilegia sp.	New Zealand	KU850594, KU850741, KU850885				
	CBS 116584	Aquilegia sp.	New Zealand	KU850595, AF443886, KU850896				
	CBS 133341^{TT}	Aquilegia canadensis	USA	KU850596, KU850742, KU85087				
Stemphylium loti	CBS 407.54^T	Lotus corniculatus	USA	KU850597, KU850743, KU850888				
Stemphylium lycii	CBS 115192	Protocarpa cynaroides	Portugal	KU850598, KU850744, KU850899				
	CBS 116582	Pistacia vera	USA	KU850599, KU850745, KU850890				
	CBS 124982	Apium graveolens	China	KU850600, KU850746, KU850891				
	CBS 125240	Cucurbita moschata	China	KU850601, KU850747, KU850892				
Stemphylium lycopersici	S. lancipes	PD 72/1118	Netherlands	KU850603, KU850749, KU850894				
S. vesicarium	CBS 436.76	Unknown	Indonesia	KU850604, KU850750, KU850895				
S. lycopersici	CBS 463.78	Solarum tuberosum	Senegal	KU850606, KU850752, KU850897				
S. xanthosomatis^T	CBS 116585	Xanthosoma sagittifolium	New Caledonia	KU850607, AY317010, KU850898				
	CBS 116587	Solarum lycopersicum	Dominant Republic	KU850608, KU850753, KU850899				
S. sophorae^T	CBS 120325	Sophora microphylla	China	KU850609, KU850754, KU850900				
S. oblongum^T	CBS 120326	Gossypium hirsutum	China	KU850610, KU850755, KU850901				
	CBS 122639^{XT}	Solarum lycopersicum	China	KU850611, KU850756, KU850902				
S. pyrina^T	CBS 122803	Pyrus sinkiangensis	China	KU850612, KU850757, KU850903				
	CBS 123008	Brassica pekinensis	China	KU850613, KU850758, KU850904				
S. pruni^T	CBS 124980	Prunus persica	China	KU850614, KU850759, KU850905				
S. plantaginis^T	CBS 124981	Plantago major	China	KU850615, KU850760, KU850906				
	CBS 124983	Clinopodium polycephalum	China	KU850616, KU850761, KU850907				
	CBS 135778	Salvia officinalis	New Zealand	KU850617, AY317026, KU850908				
Stemphylium majusculum	CBS 717.68^T	Lathyrus maritimus	USA	KU850618, AF443891, KU850909				
	CBS 133424	Lathyrus maritimus	USA	KU850619, AF443891, KU850910				

(continued on next page)
Name	Old name¹	Strain number²	Other collection number²	Host/Substrate	Country	GenBank accession numbers
Stemphylium novae-zelandiae sp. nov.	CBS 138157	E.G.S. 52.147	Avicennia resinifera	New Zealand		KU850630 KU850771 KU850921
	CBS 138295^T	E.G.S. 52.148	Avicennia resinifera	New Zealand		KU850631 KU850772 KU850922
Stemphylium paludiscirpi	CBS 109842^T	E.G.S. 31.016; IMI 386966	Scirpus sp.	USA		KU850620 KU850762 KU850911
Stemphylium sarciniforme	CBS 335.33	ATCC 10828	Trifolium pratense	USA		KU850621 KU850763 KU850912
	CBS 364.49	ATCC 10828	Trifolium pratense	USA		KU850622 KU850764 KU850913
	CBS 110049	E.G.S. 31.011	Cicer arietinum	Iran		KU850591 KU850738 KU850882
	CBS 116579	E.G.S. 38.121	Trifolium pratense	USA		KU850623 KU850739 KU850883
	CBS 116581	E.G.S. 29.188	Cicer arietinum	Iran		KU850592 KU850765 KU850915
	CBS 133723	E.G.S. 36.006	Trifolium pratense	USA		KU850624 KU850765 KU850915
	CBS 136810	E.G.S. 49.033	Cicer arietinum	Iran		KU850593 KU850740 KU850884
	CBS 138345	E.G.S. 53.018	Trifolium pratense	New Zealand		KU850625 KU850766 KU850916
Stemphylium simmonsii sp. nov.	CBS 716.68	ATCC 18518; IMI 135458; MUCL 11718; QM 8729	Commelina sp.	USA		KU850632 KU850773 KU850923
S. globuliferum	CBS 116598	UAMH 10487	Phragmites sp.	Canada		KU850633 KU850774 KU850924
	CBS 116603	UAMH 10493	Lactuca muralis	Canada		KU850634 KU850775 KU850925
	CBS 116604	UAMH 10949	Guem macrophyllum	Canada		KU850635 KU850776 KU850926
	CBS 133515	E.G.S. 30.153	Solarum lycopersicum	Canada		KU850636 KU850777 KU850927
S. globuliferum	CBS 133518^T	E.G.S. 30.154	Fragaria sp.	Canada		KU850637 KU850778 KU850928
	CBS 133894	E.G.S. 38.115	Trifolium pratense	USA		KU850638 KU850779 KU850929
S. globuliferum	CBS 134496	E.G.S. 42.138	Malus sylvestris	Australia		KU850639 KU850780 KU850930
Stemphylium solani	CBS 408.54	ATCC 11128	Solarum lycopersicum	USA		KU850626 KU850767 KU850917
	CBS 116586^T	E.G.S. 41.135	Solarum lycopersicum	USA		KU850627 KU850768 KU850918
	CBS 118082	E.G.S. 42.055; CBS 134293	Euphorbia marginata	USA		KU850628 KU850769 KU850919
Stemphylium symphyti	CBS 115268^T	E.G.S. 52.041	Symphytum uplandicum	New Zealand		KU850643 KU850784 KU850934
	CBS 118796	E.G.S. 52.041	Symphytum uplandicum	New Zealand		KU850644 KU850785 KU850935
	CBS 138069	E.G.S. 52.042	Borago officinalis	New Zealand		KU850645 KU850786 KU850936
	CBS 138070	E.G.S. 52.042	Borago officinalis	New Zealand		KU850646 KU850787 KU850937
Stemphylium trifolii	CBS 116580^T	E.G.S. 12.142	Trifolium repens	USA		KU850647 KU850788 KU850938
Stemphylium triglochinicola	CBS 718.68^T	ATCC 18516; IMI 1227746; IMI 135460; MUCL 11716; MUCL 18569; NRRL 5270; QM 8752	Triglochin maritima	UK		KU850648 KU850789 KU850939
Species	Accession Numbers	Location	Country	GenBank Accession Numbers		
----------------------	-------------------	-------------------	---------------	--------------------------		
Stemphylium vesicarium	CBS 155.24	Allium sp.	Unknown	KU850555, KU850702, KU850845		
	CBS 157.24	Abies sp.	Unknown	KU850556, KU850703, KU850846		
P. pomorum	CBS 184.25	Malus domestica	UK	KU850557, KU850704, KU850847		
	CBS 273.31	Unknown	Unknown	KU850558, KU850705, KU850848		
	CBS 274.31	Phaseolus vulgaris	Unknown	KU850559, KU850706, KU850849		
	CBS 327.36	Citrus sp.	Tunisia	KU850560, KU850707, KU850850		
	CBS 156.45	Dianthus canaryphyl	Netherlands	KU850561, KU850708, KU850851		
	CBS 322.49	Lathyrus odoratus	Netherlands	KU850562, KU850709, KU850852		
	CBS 370.51	Trigonella foenum-graecum	Netherlands	KU850563, KU850710, KU850853		
	CBS 386.59	Linum usitatissimum	Denmark	KU850564, KU850711, KU850854		
S. vesicarium	CBS 715.68	Unknown	Unknown	KU850558, KU850705, KU850848		
	CBS 406.76	Pisum sativum	Canada	KU850565, KU850712, KU850855		
	CBS 205.82	Allium cepa	Netherlands	KU850567, KU850714, KU850857		
S. herbarum	CBS 191.86	Medicago sativa	India	KC584239, AF443884, KU850858		
	CBS 192.96	Medicago sativa	Australia	KU850568, KU850715, KU850859		
S. vesicarium	CBS 311.92	Allium cepa	Netherlands	KU850569, KU850716, KU850860		
	CBS 486.92	Allium cepa	Netherlands	KU850570, KU850717, KU850861		
P. sedicola	CBS 109843	Sedum spectabile	New Zealand	KU850571, KU850718, KU850862		
	CBS 109844	Solanum lycopersicum	USA	KU850572, KU850719, KU850863		
P. tomatonis	CBS 115182	Leucadendron sp.	South Africa	KU850573, KU850720, KU850864		
	CBS 115204	Leucadendron sp.	Portugal	KU850574, KU850721, KU850865		
S. maili	CBS 122840	Malus sieversii	China	KU850575, KU850722, KU850866		
	CBS 123005	Fabaceae	China	KU850576, KU850723, KU850867		
S. alfalfae	CBS 123803	Allium sativum	China	KU850577, KU850724, KU850868		
S. etrumnum	CBS 124279	Malus domestica	Denmark	KU850578, KU850725, KU850869		
S. cremanthodii	CBS 124747	Cremanthodium discoideum	China	KU850579, KU850726, KU850870		
S. brassicicola	CBS 124749	Brassica pekinensis	China	KU850580, KU850727, KU850871		
	CBS 124751	Pyrus sikhingensis	China	KU850581, KU850728, KU850872		
	CBS 124752	Populus tomentosa	China	KU850582, KU850729, KU850873		
S. tomatonis	CBS 133474	Dahlia pinnata	China	KU850583, KU850730, KU850874		
S. alfalfae	CBS 133737	Solanum lycopersicum	USA	KU850584, KU850731, KU850875		
	CBS 406.76	Medicago sativa	Australia	KU850585, KU850732, KU850876		
stationary. Tracer v. 1.5.0 (Rambaut & Drummond 2009) was used to confirm the convergence of chains. A maximum-likelihood analysis including 500 bootstrap replicates using RAxML v. 7.2.6 (Stamatakis & Alachiotis 2010) was also run. Sequences of *A. alternata* (GV14-634-a1) were used as outgroup. The same steps were applied to generate the multi-gene phylogeny, on both the single gene alignments and the multi-gene alignment, with the only difference being that the L-INS-I method was used in MAFFT v. 7.271 for generating the multiple sequence alignment. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and, together with the alignments, deposited into TreeBASE (http://www.treebase.org).

RESULTS

Identification of best loci

The ITS, *rpb2* and *actA* gene regions were the least informative, since only two sequence alleles were observed, all splitting the seven isolates in the same two allele groups (Table 2). For the ITS sequences the sequence difference between the two allele groups is in two T-repeats, which are not considered informative by standard phylogeny software. Differences in repeat regions are normally regarded as sequence errors, and are not included in calculations for phylogenetic trees. However, when these differences are compared with the results from the other gene information, the difference in number of T-repeats does seem to be relevant in this case. The *tef1* gene region showed three different sequence alleles, additionally splitting CBS 134496 from the second allele group (Table 2). The *cmdA* and *gapdh* gene regions seem to have the highest potential of being most informative as respectively four and five different sequence alleles were observed (Table 2). Based on these results the *cmdA* and *gapdh* gene regions were sequenced for a selection of 150 isolates (including the outgroup isolate GV14-634-a1), representing all possible species in *Stemphylium* based on ITS sequence data and ecological data (Table 1).

ITS phylogeny

The initial UPGMA phylogeny constructed in Bionumerics v. 4.61 placed 356 isolates in the *Stemphylium* clade (data not shown). Together with the outgroup isolate GV14-634-a1, an *Alternaria alternata* isolate from sugar beet, these 357 isolates form the dataset of the *Stemphylium* ITS phylogeny. The aligned sequences contained 545 nucleotides with 101 unique site patterns. The TrN model with a gamma-distributed rate variation was suggested as model for the Bayesian analysis. The average standard deviation of split frequencies never reached below 0.01 while running MrBayes at different temperature values. Therefore, the temperature value was lowered to 0.05, and the run was stopped after 5 M generations for which the convergence of chains was confirmed in Tracer. After discarding the burn-in phase trees, the runs resulted in 7502 trees from which the majority rule consensus tree and posterior probabilities were calculated.

The phylogeny based on the ITS sequences divides the 356 *Stemphylium* isolates into 22 clades (Fig. 1). In clade 10, 33 isolates were found, 18 sugar beet isolates and 15 isolates from the CBS collection. The three sugar beet isolates from Germany...
and the one from the UK cluster here amidst the Dutch sugar beet isolates. The phylogenetic tree shows a straight vertical line for this clade, implying that the sequences are phylogenetically identical. However, by eye two different sequences are observed with a T repeat of 7 nt starting on position 139 in the ITS alignment (deposited in TreeBASE) in combination with a T repeat of 6 nt starting on position 491, versus a T repeat of 6 nt starting on position 139 in combination with a T repeat of 7 nt starting on position 491 in the alignment. Although not phylogenically recognised, this difference splits the CBS isolates in two subgroups, with seven isolates, CBS 378.54, CBS 116599, CBS 124651; Sinkiang Province, Tashkurgan, from Phloeospora vulgaris leaves, Oct. 2006, Y. Wang, CBS 124651; Sinkiang Province, Korla, from Amanthuretus retroflexus leaves, 17 Oct. 2008, Y.F. Pei (culture ex-type CBS 124746); Sinkiang Province, Yili, from Luffa cylindrica leaves, collection date unknown, Y.F. Pei (culture ex-type of S. luffae CBS 124985); Sinkiang Province, Yili, from Malus sieverii leaves, 10 Aug. 2009, Y.F. Pei (culture ex-type of S. microsporum CBS 124753).

Table 2. Gene test on selected isolates from clade 10 (see Fig. 1). The numbers in the body of the table represent the number of the sequence allele for the given locus.

Isolate number	Original name	Host	Location	ITS	actA	rpb2	tef1	cmdA	gapdh	tub2
CBS 116599	Pleospora sp.	Herbaceous dicot	Canada	1	1	1	1	1	1	np
GV11-196a1-3	Stemphylium sp.	Beta vulgaris	Netherlands	1	1	1	1	1	1	np
CBS 378.54	P. armeriae	Lycnhs sp.	Canada	1	1	1	1	1	2	np
IFZ2013-024	Stemphylium sp.	Beta vulgaris	Germany	1	1	1	1	2	1	np
CBS 136590	Pleospora sp.	Passiflora edulis	New Zealand	1	1	1	1	2	3	np
CBS 116598	Pleospora sp.	Phragmites sp.	Canada	2	2	2	2	3	4	np
CBS 134496	S. globuliferum	Malus syvlestris	Australia	2	2	np	3	4	5	np

Notes: The species S. amaranthi and S. microsporum were described based on morphological data only (Pei et al. 2009, 2010), and no sequence data were available on GenBank. Their morphological descriptions differ, especially their spore sizes (22–35 × 10–19 for S. amaranthi versus 15–24 × 9–15 for S. microsporum). However, our measurements of the ex-type isolate of S. microsporum (CBS 124753) resulted in a spore size of (24.5–27 × 35 (−42) × (12–13.5–16(−18)), which would fit the description of S. amaranthi. Both S. luffae and S. phaseolina are described based on morphological and molecular data, although in the later description of S. luffae, the sequences of S. phaseolina are not incorporated in the phylogenetic tree. The published ITS sequences of the ex-type isolate of S. luffae and S. phaseolina (GU182943 and GQ395369 respectively) are 100 % identical, but their gapdh sequences (GU182938 and GQ395374 respectively) are only 98 % identical. However, the gapdh sequence we obtained from the ex-type strain of S. luffae (KUB506565) is only 99 % identical to the originally published sequence (GU182938), and also the gapdh sequence we obtained from the ex-type strain of S. phaseolina (KUB506565) is only 99 % identical to the originally published sequence (GQ395374). This led to a 100 % identity of the gapdh sequences of the ex-type isolates of S. luffae and S. phaseolina. When looking at the described morphological characters, S. luffae and S. phaseolina also fit in the morphological species description of S. amaranthi. The only remark is that S. luffae and S. phaseolina are described with a conspicuously punctate conidial wall, although S. amaranthi was originally described with an inconspicuously micromaculate conidial wall.

Taxonomy

As a result of the multi-gene phylogenetic analysis, 22 species names are synonymised, and two new combinations and five new species proposed. Synonyms and descriptions of the new species and new combinations are provided below.

Stemphylium amaranthi Y.F. Pei & X.G. Zhang, Mycotaxon 109: 495. 2009.

Stemphylium armeriae (Corda) Woudemb. & Crous, comb. nov. MycoBank MB820657.
CBS 11691* Stemphylium lucomagnoense
CBS 133935
CBS 17.68* Stemphylium majusculum
CBS 133424
CBS 136799
CBS 136943
CBS 137081
CBS 137085
CBS 482.90* Pleospora gracillariæ
CBS 308.39
CBS 273.55* Pleospora herbarum f. lactucum
CBS 138503
CBS 138502
CBS 137479
CBS 137045
CBS 136908
CBS 136796
CBS 136726
CBS 136570
CBS 133406
CBS 116583** Stemphylium astragali
CBS 115186
CBS 133472
CBS 133403
CBS 133463
CBS 137460
CBS 115179
CBS 133479

CBS 125060* Stemphylium cucumis
CBS 338.73 Pleospora armeriae

CBS 124747* Stemphylium cromanthoidi
CBS 124751, CBS 124803
CBS 136743 Stemphylium vesicarium
CBS 136732 Stemphylium vesicarium
CBS 133821, CBS 139800
CBS 156.45, CBS 406.76
CBS 191.98* Stemphylium herbarum
CBS 136900, CBS 138090
CBS 137491, CBS 138333
CBS 138484, CBS 138765
CBS 155.24, CBS 157.24
CBS 205.82, CBS 273.31
CBS 311.92 Stemphylium vesicarium
CBS 486.92 Stemphylium vesicarium
CBS 133826 Stemphylium vesicarium

CBS 136815, CBS 136138
CBS 133541, CBS 133478
CBS 136951 Stemphylium vesicarium
CBS 136887, CBS 136955
CBS 133834, CBS 125242
CBS 134977, CBS 133677
CBS 133914, CBS 133737
CBS 71.06 Stemphylium vesicarium
CBS 136802 Stemphylium vesicarium
CBS 109844* Stemphylium tomatonis
CBS 133467, CBS 133672
CBS 133477, CBS 370.51
CBS 368.59, CBS 136953

CBS 135741 Stemphylium vesicarium
GV11-355-a-5, CBS 136935

CBS 109843* Stemphylium sedicola
CBS 115182, CBS 135787
CBS 136588 Stemphylium vesicarium
CBS 136587 Stemphylium vesicarium
CBS 133905, CBS 136308
CBS 133659, CBS 136813
CBS 138988, CBS 137082
CBS 133668, CBS 124752
CBS 138421, CBS 136804
CBS 138824, CBS 137139

CBS 137922, CBS 133519
CBS 322.49, CBS 139010
CBS 133663, CBS 133893

CBS 138817 Stemphylium vesicarium
CBS 122640* Stemphylium malii

CBS 138069, CBS 133481

CBS 192.88* Stemphylium alfalfae
CBS 133474, CBS 137490
CBS 133172 Stemphylium vesicarium
CBS 136851 Stemphylium vesicarium
CBS 133633, CBS 136897

CBS 124748* Stemphylium brassicicola
CBS 138938, CBS 136934
CBS 136813 Stemphylium vesicarium
CBS 133640 Stemphylium vesicarium
CBS 133473, CBS 133475
CBS 137155, CBS 133459
CBS 136950, CBS 123005
CBS 134279, CBS 134156
CBS 136071 Stemphylium vesicarium
CBS 135759 Stemphylium vesicarium
CBS 136760 Stemphylium vesicarium
CBS 136745, CBS 136814
CBS 137145, CBS 138620

CBS 154.20* Pleospora pomoorum
CBS 138625, CBS 136353
CBS 136724 Stemphylium vesicarium
CBS 133652, CBS 136586
CBS 274.31, CBS 307.36

CBS 136744 Stemphylium vesicarium
CBS 136736 Stemphylium vesicarium
CBS 136807, CBS 136733
CBS 115204, CBS 133676
CBS 133673, CBS 136812
Fig. 1. (Continued).

STEMPHYLIUM REVISITED

STEMPHYLIUM etumum

STEMPHYLIUM botryosum

STEMPHYLIUM lyopersici

STEMPHYLIUM lancipes

STEMPHYLIUM solani

STEMPHYLIUM symphyli

STEMPHYLIUM callistephi

www.studiesinmycology.org

87
Basionym: Sphaeria armeriae Corda, Icon. Fungorum hucusque Cogn. 4: 41, t. 8:119. 1840.

Synonyms: Pleospora armeriae (Corda) Ces. & De Not., Comment. Soc. Crittog. Ital. 1: 218. 1863. Pleospora herbarum f. armeriae (Corda) Sacc., Syll. Fungorum (Abellini) 2: 247. 1883. Pyrenophora armeriae (Corda) Berl., Nuovo Giorn. Bot. Ital. 20: 242. 1888. Pleospora herbarum var. armeriae (Corda) J. Webster, Trans. Brit. Mycol. Soc. 44: 418. 1961.

Specimen examined: UK, England, Budleigh Salterton Salt Marsh, from Armeria maritima, 12 Aug. 1972, J. Webster, CBS 338.73.

Notes: Sphaeria armeriae was described from flower stalks of Armeria vulgaris (= A. maritima) in Germany (Corda 1840). Later it was transferred to the genus Pleospora (Cesati & De Notaris 1863). Saccardo (1883) treated it as a form of *P. herbarum*, while others treated it as synonym of *P. herbarum* (Winter 1887; Müller 1951). Wehmeyer (1952) and Webster & Lucas (1961) both studied the holotype specimen (Herb A.C.I. Corda no. 155637), and concluded that it was immature; no fully mature ascospores could be found. A study comparing *P. herbarum* var. armeriae isolates from *Armeria* with cultures of *P. herbarum* from other hosts in culture, showed conidia similar to the Stemphylium type (Webster & Lucas 1961). However, they did observe a
STEMPHYLIUM REVISITED

difference in the ascus width between the two species, with var. armeriae having wider asci. Isolate CBS 338.73 was deposited in the CBS collection as S. herbarum var. armeriae by J. Webster, the author of this variety. We therefore propose the new combination for Sphaeria armeriae as Stemphylium armeriae.

Stemphylium astragali (Yoshii) W. Yamam., Trans. Mycol. Soc. Japan 2: 92. 1960.
Basionym: Thyrospora astragali Yoshii, J. Pl. Protect. 16: 536. 1929.

Specimen and material examined: Japan, (lectotype designated here of T. astragali, Journal of Plant Protection, Tokyo 16: illustration on page 534, 1929, Yoshii H, MBT375577), Fukuoka, from Astragalus sp., collection date unknown, H. Yoshii, (epitype designated here of T. astragali CBS H-23050, MBT375505, culture ex-epitype CBS 116583 = E.G.S. 08.174).

Notes: Stemphylium astragali, with Thyrospora astragali as basionym, does not refer to a holotype specimen in its original description (Yoshii 1929), nor could we locate one. However, in 1956 Yoshii sent an isolate (CBS 116583) named Thyrospora astragali to Emory G. Simmons, who recognised this as an authentic isolate. Since no holotype specimen is known, we designated the original illustration on page 534 as lectotype, and propose CBS 116583 as ex-epitype culture of Thyrospora astragali here.

Stemphylium beticola Woudenb. & Hanse, Persoonia 36: 403. 2016. Fig. 3.

Conidiophores solitary, straight to flexuous, occasionally branched, septate, smooth, pale brown, (41–) 45–72(–88) × 4–5 μm, bearing 1–3 darkened percurrent rejuvenation sites. Conidiogenous cells swollen at the apex, darkened, 5–6 μm wide. Conidia solitary, conidium body pale olive-brown, verrucose, ellipsoid to cylindrical, (21–) 22–26(–30) × (13–)14–16(–18) μm. L/W = 1.6, with 2–4 transverse septa and 1–3 longitudinal and 0–2 oblique septa per transverse sector. Constricted at 1–2 darkened transverse septa. Occasionally with an apical secondary conidiophore. Immature ascomata of sexual morph observed on agar, pseudeoclips globose, ellipsoid or irregular, single or aggregated, ranging from 100 to 300 μm tall (from Crous et al. 2016).

Culture characteristics: After 7 d cultures on SNA flat, fimbricate, colourless with abundant black ascomatal initials in the agar, aerial mycelium is scarce, white, colonies reaching 45–55 mm diam.; cultures on PCA flat, entire to undulate, colourless with abundant black ascomata in the agar, aerial mycelium is sparse floccose, (greenish) olivaceous; colonies reaching 50–60 mm diam.

Specimens examined: Netherlands, Noord-Brabant, Langenboom, on leaves of Beta vulgaris, 17 Aug. 2011, P. Wilting, (holotype CBS H-22486, culture ex-type CBS 141024 = GV11-265a); Groningen, Nieuwe Pekela, on leaves of Beta vulgaris, 17 July 2012, J. Lingbeek, GV12-286-2 = CBS 141025; Drenthe, Eerste Eelde, on leaves of Beta vulgaris, 11 Sept. 2012, B. Hanse, CBS 141026 = GV12-474a1.

Notes: Stemphylium beticola causes a leaf spot disease on sugar beet (Beta vulgaris) (Hanse et al. 2015), which has been detected in multiple European countries (Crous et al. 2016). Host range tests demonstrated that the species was not restricted to Beta vulgaris (Hanse et al. 2015), which is confirmed in this study by the clustering of multiple isolates from different hosts in the S. beticola clade. This study further shows that S. beticola also occurs in the USA, Canada and New Zealand. Molecularly it is closely related to S. simmonsii, another species with a broad host range, but which does not include isolates from Europe. They can be separated morphologically by their ascomata, which have dark hyphal outgrows in S. simmonsii.

Stemphylium canadense Woudenb. & Crous, sp. nov. Myco-Bank MB820658. Fig. 4.

Etymology: Named after the country from which it was collected, Canada.

Conidiophores solitary, straight to flexuous, occasionally branched, septate, smooth, light olive brown, (46–) 62.5–107(–137.5) × (3–)4–5.5(–7) μm, bearing 1–2 thickened, darkened, percurrent rejuvenation sites. Conidiogenous cells swollen at the apex, darkened, (5.5–)6.5–8.5(–10.5) μm wide. Conidia solitario, conidium body pale olive brown, verrucose, ovoid with pointed apex, (37.5–)43.5–59(–71.5) × (13.5–)15–18(–20) μm, L/W = 3.1, with 5–8 transverse septa and 1–2(–3) longitudinal or oblique septa per transverse sector. Constricted at multiple darkened transverse septa. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, entire, aerial mycelium is scarce, woolly, white, colonies colourless, with pale olivaceous grey centre, colonies 20–29 mm diam.; cultures after 7 d on PCA effuse, entire, aerial mycelium scarce, fine felty to woolly, olivaceous grey, colonies colourless with greenish olivaceous zones, colonies reaching 20–31 mm diam.

Specimens examined: Canada, British Colombia, near Roberts Bank Port, from Salicornia sp., 24 May 2001, A. & R. Bandoni (holotype F 14991, culture ex-type CBS 116602 = UAMH 10491); British Columbia, Hornby Island, beach of Cape Gumey, from Salicornia sp., collection date unknown, A. & R. Bandoni, CBS 118081 = UAMH 10492.

Notes: Stemphylium canadense includes two cultures (CBS 116602 and CBS 118081) isolated from Salicornia sp. in Canada. In fig. 2 of Inderbitzin et al. (2009) these two isolates were already mentioned as an unnamed species in Clade E1. A Pleospora sp. has already been described from Salicornia sp. in France, namely Pleospora salicorniae (Dangeard 1888). However no sexual morph was observed in our isolates of Stemphylium canadense, and therefore we could not confirm conspecificity.

Stemphylium chrysanthemicos Woudenb. & Crous, sp. nov. Myco-Bank MB820659. Fig. 5.

Etymology: Named after the host genus from which it was collected, Chrysanthemum.

Conidiophores solitary, straight to curved, occasionally branched, septate, smooth, sub-hyline, (71–)106–186(–282) × (3–)4–5 μm, bearing multiple darkened percurrent rejuvenation sites. Conidiogenous cells swollen at the apex, sub-hyline, (5–) 5.5–7(–7.5) μm wide. Conidia solitario, conidium body brown, verrucose, ellipsoid to cylindrical, (24.5–)26–29(–30.5) × (11–)
A. alternata synonymised species names. Ex-type strains are in Bayesian posterior probabilities > 0.95 (PP) are given at the nodes. Thickened lines indicate a BS of 100 % and a PP of 1.0. Species names between parentheses represent

Fig. 2. Maximum likelihood tree based on the combined ITS, gapdh and cmdA sequence alignment of 150 isolates. The RAxML bootstrap support values > 75 % (BS) and Bayesian posterior probabilities > 0.95 (PP) are given at the nodes. Thickened lines indicate a BS of 100 % and a PP of 1.0. Species names between parentheses represent synonymised species names. Ex-type strains are in bold face and indicated with *T* (or **NT** or **ET** when respectively neo- or epi-typified in this study). The tree was rooted to *A. alternata* GV14-634a1.

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, aerial mycelium is fine felty, grey olivaceous, colonies colourless, pale olivaceous grey coloured by aerial conidia, black hyphal plaques at the bottom of the plate, colonies reaching 42 mm

13.5–15.5 (–16.5) μm, LW = 1.9, with 2–3 transverse septa and 1 (–2) longitudinal or oblique septa per transverse sector. Constricted at 1–2 darkened transverse septa. Forms hyphal plaques at the bottom of PCA plates. Sexual morph not observed.

Fig. 2. (Continued).
diam; cultures on PCA flat, entire, aerial mycelium is floccose, pale olivaceous grey, colonies colourless with grey olivaceous rings, centre olivaceous, black hyphal plaques at the bottom of the plate; colonies reaching 46 mm diam.

Specimen examined: New Zealand, from Chrysanthemum sp., before May 1973, K.S. Milne (holotype CBS H-23045, culture ex-type CBS 117255 = E.G.S. 31.008).

Notes: Characteristic for the new species S. chrysanthemicola are the hyphal plaques which are formed at the bottom of the agar plates. These hyphal plaques are also observed in S. novae-zelandiae but after 14 d on PCA only.

Stemphylium drummondii Nirenberg & Plate, Phytopathol. Z. 107: 365. 1983.
Synonyms: Pleospora drummondii Nirenberg & Plate, Phytopathol. Z. 107: 365. 1983.
Stemphylium spinaciae B.J. Li, Yan F. Zhou & Y.L. Guo, Mycosystema 30: 380. 2011.

Notes: Comparison of the ITS (HQ622100) and gapdh (JF489118) sequence of the type of S. spinaciae (Zhou et al. 2011) with the type of S. drummondii showed identical ITS sequences and nearly identical gapdh sequences (1 nt difference in 374 nt). Together with the matching spore size (S. spinaciae 20–40 × 17.5–25 μm, S. drummondii 33.8 × 22.6 μm), we propose to synonymise these species. The description of a smooth conidial wall in S. spinaciae, which is incongruent with the verrucose conidia in S. drummondii, is questioned, since in fig. 1D of the original description (Zhou et al. 2011) verrucose conidia can be seen.

Stemphylium eturmiunum E.G. Simmons, Harvard Pap. Bot. 6: 204. 2001.
Synonyms: Pleospora eturmiuna E.G. Simmons, Harvard Pap. Bot. 6: 206. 2001.
Stemphylium variabilis Yong Wang bis & X.G. Zhang, Mycologia 102: 711. 2010.
Stemphylium capsici Yong Wang bis & X.G. Zhang, Mycotaxon 96: 80. 2006.

Specimens examined: China, Yunnan Province, Dali, from Capsicum annuum leaves, 5 Aug. 2002, X.G. Zhang (culture ex-type of S. capsici CBS 138495 = E.G.S. 53.123). France, Angres, from Allium sativum leaves, Aug. 2006, X.G. Zhang (culture ex-type of S. variabilis CBS 122641). New Zealand, Levin, from Solanum lycopersicum fruit, 1969, G.F. Laundon (culture ex-type of P. eturmiuna CBS 109845 = E.G.S. 29.099).

Notes: Morphological examination supports the synonymy of S. capsici and S. variabilis under S. eturmiunum (Fig. 6). Stemphylium capsici was described based on morphology only (Wang & Zhang 2006). Although the description of S. capsici describes smooth-walled conidia, our morphological examination of the ex-type isolate (CBS 138495) clearly shows densely verrucose conidia (Fig. 6B). Stemphylium variabilis was described based on morphological characters and molecular phylogenetic analyses (Wang et al. 2010). However, some sequence differences between the published sequences of S. variabilis (ITS GQ395366, gapdh GQ395373) and our sequences (ITS KU850543, gapdh KU850691, 3 and 4 nt...
difference respectively) placed S. variabilis in synonymy with S. eturmiunum instead of the close phylogenetic relationship published originally. Morphologically the variable shape of conidia and abundant secondary conidiophores were mentioned as being unique for S. variabilis, and different from the broadly ovoid or ellipsoidal conidia of S. eturmiunum (Wang et al. 2010). However, our morphological examination did not show extensive secondary conidiophore formation or highly variable shaped conidia in the type isolate of S. variabilis (CBS 122641, Fig. 6C).

Stemphylium gracilariae E.G. Simmons, Mem. New York Bot. Gard. 49: 305. 1989.
Synonyms: Pleospora herbarum f. lactucum Padhi & Snyder, Phytopath. 44: 179. 1954. (nom. inval.)
Pleospora gracilariae E.G. Simmons & S. Schatz, Mem. New York Bot. Gard. 49: 305. 1989.
Stemphylium cucumis Y.F. Pei & X.G. Zhang, Mycol. Progr. 10: 167. 2011.

Specimens examined: China, Sinkiang province, Korla, from Cucumis melo leaves, collection date unknown, Y.F. Pei (culture ex-type of S. cucumis CBS 125060). Israel, from Gracilaria sp., collection date unknown, S. Schatz (culture ex-type of S. gracilariae CBS 482.90 = E.G.S. 37.073). Spain, Tenerife, from Leucospermum sp. (Rigoletto), 1 Apr. 2000, S. Denman, CBS 115179; Tenerife, from Leucospermum sp. (Succession), 1 Apr. 2000, S. Denman, CBS 115180. USA, California, from Solanum lycopersicum fruit, collection date unknown, G.B. Ramsey, CBS 308.36 = ATCC 10737. Unknown, from leaf of Lactuca sp., collection date unknown, W.C. Snyder (culture ex-type P. herbarum f. lactucum CBS 273.55).

Notes: In this study CBS 273.55 is recognised as ex-type culture of Pleospora herbarum f. lactucum based on the study of the original data deposited in the CBS culture collection archive. This correspondence showed that the isolate was deposited in the collection by the original author of the species (W.C. Snyder), after a request from the curator of the CBS collection to deposit the new species. Therefore P. herbarum f. lactucum will be synonymised with S. gracilariae instead of P. herbarum under which name it is currently synonymised. The description of S. cucumis was based on morphology and molecular phylogenetic analyses (Pei et al. 2011). Although their phylogenetic tree places S. cucumis distant from S. gracilariae, their sequences published for S. gracilariae and S. cucumis are identical (S. cucumis GU182942, GU182939, S. gracilariae AF442784, AF443883, for ITS and gapdh respectively). In the tree, S. cucumis was probably exchanged with S. luffae which is placed in close phylogenetic relation with S. gracilariae in the tree. However, sequence comparisons between the ex-type isolate of S. luffae and S. gracilariae show multiple nucleotide differences. The morphological description of S. cucumis also fits the description of S. gracilariae and is therefore synonymised here. Culture CBS 308.36, isolated from tomato in California, USA, was stored as Pleospora lycopersici in the CBS collection.
However, the original description of *P. lycopersici* was from *Solanum lycopersicum* in Belgium (Marchal & Marchal 1921). Therefore, based on this single strain, we choose not to synonymise *P. lycopersici* with *S. gracilariae* at this point pending the collection of more isolates.

Stemphylium halophilum (J. Webster) Woudenb. & Crous, comb. nov. MycoBank MB820660. Basionym: *Pleospora halophila* J. Webster, in Subramanian, Taxonomy of Fungi, (Proc. Int. Symp. Madras 1973) Part 2 (Madras): 349. 1984.

Specimens examined: UK, England, Devon, Exeter, Dawlish Warren, from *Limonium vulgare*, coll. date unknown, J. Webster (holotype HME 3143, culture ex-type CBS 337.73); England, Devon, near Exeter, from *Armeria maritima*, 10 Aug. 1972, J. Webster, CBS 410.73.

Note: The transfer of *P. halophila* to the genus *Stemphylium* is in congruence with an earlier study based on the large subunit 28S nr DNA (Kodsueb et al. 2006).

Stemphylium lancipes (Ellis & Everh.) E.G. Simmons, Mycologia 61: 21. 1969. Basionym: *Alternaria lancipes* Ellis & Everh., J. Mycol. 4: 45. 1888.

Specimens examined: New Zealand, from *Aquilegia* sp., collection date and collector unknown, CBS 116584 = E.G.S. 46.182; from *Aquilegia* sp., Jul. 1998, HM Dance, CBS 101217. USA, Kansas, from *Aquilegia canadensis*, collection date and collector unknown (epitype designated here CBS H-23043, MBT375502, culture ex-epitype CBS 133314 = E.G.S. 10.022).

Notes: The type material from *Alternaria lancipes*, basionym of *Stemphylium lancipes*, was originally described from *Argemone* sp. collected in Manhattan, Kansas, USA (Ellis & Everhart 1888). The holotype material, stored at the NY herbarium (ID 00830044), was studied by Emory G. Simmons, who subsequently transferred the species to the genus *Stemphylium* (Simmons 1969). However, two other collections from the same locality are on *Aquilegia* sp., which yielded the isolate Emory G. Simmons studied (Simmons 1969). Here we propose this isolate (CBS 133314), isolated from *Aquilegia canadensis* in Kansas, USA, as epitype of *A. lancipes*.

Stemphylium lucamagnoense Woudenb. & Crous, sp. nov. MycoBank MB820661. Fig. 7.

Etymology: Named after the place of isolation, Lucamagno, the Lukmanier Pass in Switzerland.

On PCA after 14 d: Conidiophores solitary, straight to flexuous, occasionally branched, septate, smooth, sub-hyaline, (34–) 46–95(–119) × (2.5–)3–4(–4.5) μm, bearing multiple darkened percurrent rejuvenation sites. Conidiogenous cells swollen at the apex, darkened, (4–)5–6.5(–7.5) μm wide. Conidia solitary or in
short chains of 2 conidia, conidium body is dark brown, inconspicuously verrucose, ellipsoid to broad ovoid, (18.5–) 20–27(−31) × (9.5–)11–16(–18) μm, L/W = 1.8, with (2–)3 transverse septa and 1–2 longitudinal or oblique septa per transverse sector. Constricted at 1–3 darkened transverse septa. Immature ascomata of sexual morph observed in agar, pseudothecia globose or broad ovoid, single, covered with dark hyphal outgrowths, ranging in size to 485 μm tall.

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, aerial mycelium is scarce, colonies colourless, no sporulation, colonies 5 mm diam; cultures after 7 d on PCA flat, entire, aerial mycelium woolly, pale olivaceous grey, colonies greenish olivaceous with two olivaceous rings, young colourless ascomata in agar which become black after 14 d, colonies reaching 28–40 mm diam.

Specimen examined: Switzerland, Ticino, Lucomagno, from Minuartia hybrida, 19 Jun. 1981, P.G. Crivelli (holotype CBS H-23046, culture ex-type CBS 116601 = E.G.S. 37.017).

Notes: Culture CBS 116601 was deposited as Pleospora gigaspora in the CBS collection, as diagnosed by Crivelli (Inderbitzin et al. 2009). Pleospora gigaspora was originally described from dead shoots of "herbarum majorum" from the inlands of "Maris glacialis, Kildin", Russia (Karsten 1884), with smooth ascomata of 300–400 μm and no description of the asexual morph. Since our species has dark hyphal outgrowths on its ascomata and is obviously different, we provided this species with a new name. Pleospora minuartiae is described from dry leaves of Minuartia taurica from Mt. Babugan-Yayla, Tauria, Crimea, Ukraine (Gucevicz 1972). This species is described with small ascomata measuring 140–180 μm, which significantly differs from our species for which ascomata of up to 485 μm tall are observed. Since there is also a morphologically different Pleospora species named after the country of isolation, P. helvetica with small ascomata measuring 180–200 μm (Niesl 1867), we named our isolate after the place of isolation, Lucomagno, the Lukmanier Pass.

Stemphylium lycopersici (Enjoji) W. Yamam., Trans. Mycol. Soc. Japan 2: 93. 1960. Fig. 8. Basionym: Thyrospora lycopersici Enjoji, J. Pl. Protect. 18: 52. 1931.

Synonyms: Stemphylium xanthosomatis B. Huguenin, as “xanthosoma”, Bull. Soc. Mycol. France 81: 697. 1966. Stemphylium planatinis Yong Wang bis & X.G. Zhang, Mycotaxon 96: 79. 2006. Stemphylium pruni Yong Wang bis & X.G. Zhang, Mycotaxon 96: 78. 2006. Stemphylium oblongum Yong Wang bis & X.G. Zhang, Nova Hedwigia 88: 201. 2009. Stemphylium pyrina Yong Wang bis & X.G. Zhang, Mycol. Progr. 8: 303. 2009. Stemphylium sphaerai Yong Wang bis & X.G. Zhang, Nova Hedwigia 88: 200. 2009. Stemphylium platycodonitis J.X. Deng & S.H. Yu, Mycol. Progr. 13: 479. 2014.

Specimens examined: China, Guizhou Province, Guiyang, from Solanum lycopersicum leaves, collection date unknown, Y. Wang (neotype designated here of T. lycopersici CBS H-23051, MBT37506, culture ex-neotype CBS 122639); Guizhou Province, Guiyang, from Prunus persica leaves, 16 Aug. 2003, Y. Wang (culture ex-type of S. pruni CBS 124980); Shandong Province, Taian, from Gossypium hirsutum leaves, 3 Oct. 2004, X.G. Zhang (culture ex-type of S. oblongum CBS 120326); Shandong Province, Mountain Tai, from Plantago major leaves, 5 Oct. 2003, Y. Wang (culture ex-type of S. plantaginis CBS 124981); Shandong Province, Mountain Tai, from Sophora microphylla leaves, 3 Oct. 2004, Y. Wang (culture ex-type of S. sophorae CBS 120325); Sichuan Province, Koria, from Pyrus sinyangensis leaves, 9 Aug. 2006, Y. Wang (culture ex-type of S. pyrina CBS 122203). New Caledonia, Nouméa, from Xanthosoma sagittifolium, 1962, B. Huguenin (culture ex-type of S. xanthosomatis CBS 116585 = E.G.S. 17.137 = IMI 98083).

Notes: Stemphylium lycopersici, with Thyrospora lycopersici as basionym, was originally described from Solanum lycopersicum in Japan, but lacks a holotype specimen (Enjoji 1931). The culture CBS 116587, isolated from Solanum lycopersicum in the Dominican Republic, was considered by Emory G. Simmons to fit the concept of this species (Inderbitzin et al. 2009). Here we propose CBS 122639, isolated from Solanum lycopersicum in
China, as ex-neotype of *T. lycopersici*, since this isolate is from a geographically closer location, and also clusters in the same phylogenetic species clade. The type-isolate of *S. platycodontis* (CNU 111092) is not included in this study, but another one is included, namely CBS 333.73, also isolated from *Plantycodon* sp. and regarded as *S. platycodontis* (Deng et al. 2014). *Stemphylium platycodontis* was described based on phylogenetic study of the ITS, *gapdh* and *tef1* partial gene sequences in combination with morphology studies. When comparing the ITS, *gapdh* and *cmdA* sequence of isolate CBS 333.73, only the *gapdh* sequence is unique for the two isolates from *Plantycodon*, with only 1 nt difference. Together with the minor morphological differences described, slightly larger spore size (*S. platycodontis* 33–80 × 12–22, *S. lycopersici* 21–60 × 12–24 μm) and no production of brown pigment in PDA of *S. platycodontis*, we propose to synonymise *S. platycodontis* under *S. lycopersici*.

Five synonymised species under *S. lycopersici* were described based on morphology alone. *Stemphylium oblongum*, *S. plantaginis*, *S. pruni*, *S. pyrina* and *S. sophorae* were described as new species from China (Wang & Zhang 2006; Wang et al. 2009; Wang & Zhang 2009), with some even appearing in the same manuscript. However, the broad conidial size range (21–60 × 12–24 μm) and described shape of conidia (ellipsoidal, ovoid, short cylindrical or shortly obclavate) of *S. lycopersici* by Yamamoto (1960), results in the fact that all described species fit the concept of *S. lycopersici*. The only difference in the descriptions is the structure of the conidial wall. This ranges from smooth (*S. plantaginis* and *S. pruni*) to densely tuberculate (*S. pyrina*) including descriptions with both smooth and finely postulate/micromaculate conidia (*S. oblongum* and *S. sophorae*).

The description of *Stemphylium lycopersici* mentions echinulate (with sharply pointed spines) conidia. Morphological examination showed that all studied isolates have roughened conidia (Fig. 8), including the ex-type isolates of *S. plantaginis* (CBS 124981, Fig. 8E–F) and *S. pruni* (CBS 124980, Fig. 8G).

Stemphylium subglobuliferum was described based on a phylogenetic study of the ITS and *gapdh* partial gene sequences in combination with morphological studies (Xue et al. 2005). The ITS sequence of *S. subglobuliferum* (AY751454) is 100 % identical with *S. lycopersici*, and the *gapdh* sequence (AY751459) only has 1 unique nt compared to our *S. lycopersici* *gapdh* sequences. However, *S. subglobuliferum* was described as a new species based on the smaller spore size (9–20 × 5–13) and smooth conidial wall. A re-examination of the type-isolate is needed to clarify if this is indeed another synonym of *S. lycopersici*.

Based on our specimens examined, *Stemphylium lycopersici* has a broad host range infecting plant leaves from at least six different families (*Araceae*, *Fabaceae*, *Malvaceae*, *Plantaginaceae*, *Rosaceae* and *Solanaceae*).

Stemphylium novae-zelandiae Woudenb. & Crous, sp. nov. MycoBank MB820662. Fig. 9.

Etymology: Named after the country where it was isolated, New Zealand.

Conidiophores solitary, straight to flexuous, unbranched, septate, smooth, sub-hyaline, (46.5–)64.5–111(–144.5) × (2.5–)3–4.5(–5.5) μm, bearing 1–2 thickened percurrent rejuvenation....
sites. Conidiogenous cells swollen at the apex, darkened, (5–) 6–7.5(–8.5) μm wide. Conidia solitary, conidium body is light olive brown, verrucose, cylindrical, (31–)34–40.5(–45.5) × (9–) 11–13(–14.5) μm, L/W = 3.1, with 3–5(–7) transverse septa and 1–2 longitudinal or oblique septa per transverse sector. Constricted at 2–3 darkened transverse septa. Forms hyphal plaques at the bottom of PCA plates after 14 d. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, entire, aerial mycelium is scarce, wooly, white, colonies colourless, with three pale olivaceous grey rings and centre, colonies 20–24 mm diam; cultures after 7 d on PCA flat, entire, aerial mycelium fine felty, pale olivaceous grey, colonies white to olivaceous buff with two grey olivaceous rings and a greenish olivaceous outer ring, colonies reaching 35 mm diam.

Specimens examined: New Zealand, Waitakaruru, from dead leaf of Avicennia resinifera, 10 Sep. 2006, C.F. Hill (holotype CBS H-23047, culture ex-type CBS 138295 = E.G.S. 52.148 (06/5200B)); additional strain from the same source CBS 138157 = E.G.S. 52.147 (06/5200A).

Notes: To avoid confusion with the species Pleospora avicenniae (Borse 1987), we named the species after the country where it was isolated, New Zealand, instead of the host of isolation. Recently Pleospora avicenniae was placed in the new genus Halojulella based on a morphological and molecular examination (Ariyawansa et al. 2013). As in S. chrysanthemicola, S. novaezelandiae forms hyphal plaques at the bottom of the PCA plate but these are only observed after 14 d.

Stemphylium simmonsii Woudenb. & Crous, sp. nov. MycoBank MB820663. Fig. 10.

Etymology: Named after Emory G. Simmons, who extensively studied Pleospora and Stemphylium species.

Conidiophores solitary, straight to flexuous, occasionally branched, septate, smooth, sub-hyaline, (18–) 30–93(–159) × (2–)3–4(–5) μm, bearing multiple darkened percurrent rejuvenation sites. Conidiogenous cells swollen at the apex, darkened, (4.5–)5–6.5(–7.5) μm wide. Conidia solitary, conidium body is pale olive brown, verrucose, ellipsoid to broad ovoid, (18–)20.5–24.5(–28) × (11–)13–16(–18.5) μm, L/W = 1.6, with (2–)3 transverse septa and (1–)2(–3) longitudinal or oblique septa per transverse sector. Often constricted at the middle, darkened transverse septum. Immature ascomata of sexual morph observed in and on agar, pseudothecia subglobose or broad ovoid, single, covered with dark hyphal outgrowths, ranging from 175 to 365 μm tall.

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, aerial mycelium is fine felty, pale olivaceous grey, colonies colourless, pale olivaceous grey coloured by aerial conidia in rhizoid shape, colonies 45–55 mm diam; cultures on PCA flat, entire, aerial mycelium scarce, wooly, pale olivaceous grey, colonies colourless with three grey olivaceous rings, and centre olivaceous to iron-grey with ascomata in and on agar, colonies reaching 60 mm diam.
Specimens examined: Australia, from Malus sylvestris fruit, 1 Apr. 1976, C. Robertson, CBS 134496 = E.G.S. 42.138. Canada, from Fragaria sp., before 1971, C.O. Gourlay (holotype CBS H-23048, culture ex-type CBS 133515 = E.G.S. 30.153; British Colombia, Ladner, from Phragmites sp. leaves, 7 Feb. 1999, A. & R. Bandoni & S. landvik & P. Inderbitzin, CBS 116598 = UAMH 104876; British Colombia, Sidney, from Lactuca muralis, 22 May 2001, M.E. Barr, CBS 116603; British Colombia, Sidney, from Geum macrophyllum, 22 May 2001, M.E. Barr, CBS 116604. USA, Maryland, Laurel, from Commelina sp. leaf, 14 Aug. 1966, E.G. Simmons, CBS 716.68. = E.G.S. 17.151 = ATCC 18518 = IMI 135458 = MUCL 11718; Massachusetts, Hadley, from Trifolium pratense leaf, 20 Jun. 1985, E.G. Simmons, CBS 133894 = E.G.S. 38.115.

Notes: Three examined isolates were named S. globuliferum by E.G. Simmons (CBS 716.68, CBS 133894, CBS 134496). Since the original description of M. globuliferum was from Lotus corniculatus (Fabaceae) from Gotland, Sweden (Vestergren 1896), we did not follow this identification but introduced the new name S. simmonsii. Morphologically S. simmonsii resembles S. botryosum, which is phylogenetically only distantly related. Phylogenetically it is closely related to S. beticola, which can easily be distinguished from S. simmonsii by its glabrous ascomata (Fig. 3D–E; S. simmonsii has ascomata with dark hyphal outgrows, Fig. 10E). See the general discussion below for additional information.

Stemphylium novae-zelandiae G.F. Weber, Phytopathol. 20: 516. 1930.

Synonym: Thyrospora solani (G.F. Weber) Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 51: 115. 1931.

Specimens examined: USA, Indiana, Darlington, from Solanum lycopersicum, Sep. 1993, E.G. Simmons (epitype designated here CBS H-23049, MBT375504, culture ex-epitype CBS 116586 = E.G.S. 41.135); Kansas, Riley County, from Euphorbia marginata leaf, 6 Nov. 1994, D. Stuterille, CBS 116802 = E.G.S. 42.055; South Carolina, Charleston, from Solanum lycopersicum, 1952, C.F. Andrus, CBS 133894 = E.G.S. 42.055.

Notes: Stemphylium solani was originally described from diseased tomato plants collected in Florida, USA (Weber 1930). The holotype material is stored in the Florida Agricultural Experiment Station Herbarium, now named University of Florida Herbarium, under the specimen number FLAS-F-13571. According to Emory G. Simmons, CBS 116586, isolated from Solanum lycopersicum from Indiana, USA, was a good representative of the species after examination of the type material (Inderbitzin et al. 2009). We follow his suggestion and designate CBS 116586 as ex-epitype culture of S. solani.

Stemphylium vesicarium (Wallr.) E.G. Simmons, Mycologia 61: 9. 1969, Fig. 11.

Basionym: Helminthosporium vesicarium Wallr. [as ‘Helmisporium’], Fl. Cryptog. German. 2: 166. 1833.

Synonyms: Macrosorium vesicarium (Wallr.) Sacc., Syll. Funqorum 4: 537. 1886.
Sphaeria herbarum Pers.: Fr, Syn. Meth. Fungorum 1: 78. 1801.
Pleospora herbarum (Pers.: Fr) Rabenh. ex Ces. & De Not.: Fr Comment. Soc. Crittog. Ital. 1:217. 1863.
Pleospora pomorum A.S. Horne, J. Bot. 58: 239. 1920.
Stemphylium herbarum E.G. Simmons, Sydowia 38: 291. 1986.
Pleospora alfalfae E.G. Simmons, Sydowia 38: 292. 1986.
Stemphylium alfalfae E.G. Simmons, Harvard Pap. Bot. 6: 202. 2001.
Pleospora sedicola E.G. Simmons, Harvard Pap. Bot. 6: 202. 2001.
Pleospora tomatonis E.G. Simmons, Harvard Pap. Bot. 6: 204. 2001.
Stemphylium tomatonis E.G. Simmons, Harvard Pap. Bot. 6: 204. 2001.
Stemphylium cremanthodii Y.F. Pei & X.G. Zhang, Mycotaxon 109: 494. 2009.
Stemphylium mali Yong Wang bis & X.G. Zhang, Mycol. Progr. 8: 303. 2009.
Stemphylium brassicicola Y.F. Pei & X.G. Zhang, Mycotaxon 111: 169. 2010.

See Index Fungorum for additional synonyms.

Specimens examined: Australia, Western Australia, Harvey, from Medicago sativa, 30 Jul. 1982, collector unknown (culture ex-type of P. alfalfae CBS 192.86 = E.G.S. 36.088 = IMI 269683). China, Sinkiang province, Korla, from Cremanthodium discoidium leaves, 16 Oct. 2008, Y.F. Pei (culture ex-type of S. cremanthodii CBS 124747); Sinkiang province, Korla, from Brassica pekinensis leaves, 7 Aug. 2009, Y.F. Pei (culture ex-type of S. brassicicola CBS 124749); Sinkiang Province, Yili, from Malus sieversii leaves, 19 Jul. 2005, Y. Wang (culture ex-type of S. mali CBS 122648); India, Uttar Pradesh, Jhansi, from Medicago sativa, 1983, H.K. Joshi (culture ex-type of S. herbarum CBS 191.86 = E.G.S. 36.138 = IMI 276975). New Zealand, Auckland, from Sedum spectabile leaf lesion, Mar. 2000, E.G. Simmons (culture ex-type of P. sedicola CBS 109843 = E.G.S. 48.005 = IMI 386967). UK, England, from Malus domestica fruit, collection date unknown, M.N. Kidd (neotype of P. pomorum designated here CBS H-23044, MBT375503, culture ex-neotype CBS 184.25). USA, California, Central Valley, from Solanum lycopersicum fruit, Oct. 1968, E.G. Simmons (culture ex-type of P. tomatonis CBS 109844 = E.G.S. 29.089 = IMI 386968).

Notes: Pleospora pomorum was originally described from spotted apples in Britain, without the designation of a holotype specimen (Horne 1920). A second publication on the species was done by Kidd & Beaumont (1924), who deposited isolate CBS 184.25, from apple fruit in England in the CBS collection. Since no holotype specimen is known, we propose CBS 184.25 as ex-neotype culture of Pleospora pomorum. Therefore, P. pomorum will be synonymised with S. vesicarium. The first molecular study of Stemphylium species showed that S. alfalfae, S. herbarum, and S. vesicarium were identical based on their ITS and gapdh sequences (Camara et al. 2002). A more extensive phylogenetic analysis on DNA sequences from four loci ITS, gapdh, tef1 and the intergenic spacer between vmaA and vpsA (Inderbitzin et al. 2009) showed the same clustering, and added the species.
DISCUSSION

This manuscript presents a molecular phylogenetic overview of species in the genus *Stemphylium* known from culture, initiated due to our inability to unequivocally identify a *Stemphylium* sp. causing yellow leaf spot in sugar beet. To be able to characterise the species, all currently known (and available) species of the genus had to be considered. However, the lack of (ex-)type material often makes it difficult to determine species names of fungi, described on morphology only, onto the modern DNA-based phylogenetic trees. To strengthen and stabilise the taxonomy of *Stemphylium*, three epitypes, one lectotype and two neotypes are proposed in the present study. However, some isolates represent names for which no ex-type isolate is present or for which it was difficult to designate an appropriate ex-epitype culture (highlighted with bold species names in Fig. 1).

Seven isolates were named *Stemphylium globuliferum* by Emory G. Simmons based on morphology. *Stemphylium globuliferum* was originally described as *Macrosorium globuliferum* from *Lotus corniculatus* (*Fabaceae*) from Gotland, Sweden (Vestergren 1896). Emory G. Simmons studied the holotype material (in UPS) and placed this species in *Stemphylium* (Simmons 1969). He described it as a common species, and isolated it from *Trifolium pratense* (*Fabaceae*). Four of the included isolates fall within the *S. botryosum* clade, and three within *Stemphylium simmonsii* sp. nov. Since none of these isolates originate from *Lotus corniculatus*, or are from Sweden (or even Europe), we choose not to use the name *Stemphylium globuliferum* for the new species, but rather provide it with a new name (*S. simmonsii* sp. nov.).

Stemphylium vesicarium, with *Helminthosporium vesicarium* as basionym, was originally described from *Allium sativum* in Germany (Wallroth 1833). Our dataset includes 25 isolates named *S. vesicarium* of which 20 were named, based on morphology, by Emory G. Simmons, who also studied the holotype specimen at STR. One isolate, not studied by him, clusters with *S. eturmiunum*, and the other 22 all cluster within the *Stemphylium vesicarium* clade (based on ITS, Fig. 1). Since none of the isolates originate from *Allium sativum* in Germany (or from a geographically close location), no ex-epitype culture is proposed for the species.

As already mentioned in the introduction, the *Pleospora herbarum* clade sensu Inderbitzin et al. (2009) illustrated the problems with identification in the genus *Stemphylium*. Molecular studies demonstrated the phylogenetic identity of the species *S. alfalfae*, *S. herbarum*, *S. sedicola*, *S. tomatonis*, and *S. vesicarium* (e.g. Câmara et al. 2002; Inderbitzin et al. 2009). However, differences in RAPD fingerprints (Chaisrisook et al. 1995) and morphology (Simmons 1969, 1985, 1989, 2001), seemed to support them to be separate species. It should be currently known (and available) species of the genus had to be considered. However, the lack of (ex-)type material often makes it difficult to determine species names of fungi, described on morphology only, onto the modern DNA-based phylogenetic trees. To strengthen and stabilise the taxonomy of *Stemphylium*, three epitypes, one lectotype and two neotypes are proposed in the present study. However, some isolates represent names for which no ex-type isolate is present or for which it was difficult to designate an appropriate ex-epitype culture (highlighted with bold species names in Fig. 1).

Seven isolates were named *Stemphylium globuliferum* by Emory G. Simmons based on morphology. *Stemphylium globuliferum* was originally described as *Macrosorium globuliferum* from *Lotus corniculatus* (*Fabaceae*) from Gotland, Sweden (Vestergren 1896). Emory G. Simmons studied the holotype material (in UPS) and placed this species in *Stemphylium* (Simmons 1969). He described it as a common species, and isolated it from *Trifolium pratense* (*Fabaceae*). Four of the included isolates fall within the *S. botryosum* clade, and three within *Stemphylium simmonsii* sp. nov. Since none of these isolates originate from *Lotus corniculatus*, or are from Sweden (or even Europe), we choose not to use the name *Stemphylium globuliferum* for the new species, but rather provide it with a new name (*S. simmonsii* sp. nov.).

Stemphylium vesicarium, with *Helminthosporium vesicarium* as basionym, was originally described from *Allium sativum* in Germany (Wallroth 1833). Our dataset includes 25 isolates named *S. vesicarium* of which 20 were named, based on morphology, by Emory G. Simmons, who also studied the holotype specimen at STR. One isolate, not studied by him, clusters with *S. lycopersici* (CBS 436.76), two isolates (one identified by him) cluster with *S. eturmiunum*, and the other 22 all cluster within the *Stemphylium vesicarium* clade (based on ITS, Fig. 1). Since none of the isolates originate from *Allium sativum* in Germany (or from a geographically close location), no ex-epitype culture is proposed for the species.

As already mentioned in the introduction, the *Pleospora herbarum* clade sensu Inderbitzin et al. (2009) illustrated the problems with identification in the genus *Stemphylium*. Molecular studies demonstrated the phylogenetic identity of the species *S. alfalfae*, *S. herbarum*, *S. sedicola*, *S. tomatonis*, and *S. vesicarium* (e.g. Câmara et al. 2002; Inderbitzin et al. 2009). However, differences in RAPD fingerprints (Chaisrisook et al. 1995) and morphology (Simmons 1969, 1985, 1989, 2001), seemed to support them to be separate species. It should be...
Table 3. Conidial characteristics of *Stemphylium* species synonymised under *S. vesicarium*.

Species	Conidial shape	Conidial size (μm)	Transverse septa	Longitudinal septa	Wall ornamentation	UB ratio	Reference
S. alfalfae	Oblong, subglobose	30–40 × 12–16	1–2	2–3	Minutely verrucose	ND	Simmons (1989)
S. brassicicola	Oblong, broadly ellipsoid	32–45 × 12–19	1–4–5	1–4	Conspicuously punctate to punctate	1–3	Simmons (1989)
S. crematodii	Oblong, sometimes inequilateral	18–31 × 9–19	1–3	3–5	Micromaculate	ND	Simmons (2001)
S. herbarum	Oblong, elongated	25–42 × 12–22	1–2	3–6	Conspicuously and densely verrucose	1–3	Simmons (1969)
S. momordicae	Oblong, broadly ellipsoid	35–55 × 18–20	2–3	4–7	Smooth or usually punctate	ND	Simmons (2001)
S. sedicola	Oblong, sometimes inequilateral	14–30 × 13–16	2–3	4–7	Punctate	ND	Wang et al. (2008)
S. tomatonis	Oblong, broadly ellipsoid or oblong	18–22 × 13–16	2–3	4–7	Conspicuously and densely verrucose	ND	Simmons (2009)

Note: ND: not determined.

CONCLUSIONS

In the genus *Stemphylium* 28 species can be distinguished based on (parts) of the ITS, *gapdh* and *cmdA* gene regions. From these noted that the RAPD studies were only based on a small number of isolates, (including only two *S. herbarum* isolates and one *S. vesicarum* isolate) and morphologically only small differences have been used to make a distinction among these species although they also share many characters (Camara et al. 2002, table 2 of Kurose et al. 2015). As a result, some researchers chose to retain all the species names (e.g. Inderbitzin et al. 2009), while others chose to synonymise them (e.g. Köhl et al. 2008, as *S. vesicarium*). To be able to construct a stable phylogenetic species concept in *Stemphylium* we proposed to synonymise these phylogenetically identical species under *S. vesicarium*. The conidial descriptions of the species now synonymised under *S. vesicarium* are summarised in Table 3.

The species *S. sarciniforme* (Fig. 2, clade 19) is divided in two well-supported subclades. Five isolates from *Trifolium pratense* form one branch, and three isolates from *Cicer arietinum*, Iran, all isolated by W. J. Kaiser, form a separate branch. Isolate CBS 110049, from the *Cicer arietinum* clade, was submitted to the CBS collection in 2002 as ex-holotype of “*S. kaiserii*”, but this name was never published. Emory Simmons morphologically identified all isolates from this clade as *S. sarciniforme*, and also chemically the isolates from both clades are similar (B. Andersen, pers. comm.). Until more isolates become available, we choose to treat them here as *S. sarciniforme*.

After revision of the species identity and names, 28 species can be distinguished in the genus *Stemphylium* based on (parts) of the ITS, *gapdh* and *cmdA* gene regions (Fig. 2). From these 28 species, five new species are described, two new name combinations are introduced and 22 names are synonymised. Of the 22 synonymised names, seven are placed in synonymy with *S. lycopersici*, seven with *S. vesicarium*, three with *S. amaranthi*, two with *S. gracilariae* and *S. etumunium*, and one with *S. drummondii*. *Stemphylium subglobuliferum* might also be a synonym of *S. lycopersici* (see notes of *S. lycopersici*). The majority of the synonymised species (16 out of 22) were described from China based mostly on morphology and host-specificity. Clearly in the genus *Stemphylium*, identification on morphology and host-specificity alone is insufficient for correct species identification. Several other “new” species are described from China based solely on morphology, e.g. *S. allii-cepae*, *S. basellae*, *S. descurainiae*, *S. gossypii*, *S. hydrangeae*, *S. lactucae*, *S. momordicae*, *S. pisi* and *S. turiniforme* (Zhang & Zhang 2002; Zhang et al. 2003; Zhang & Zhang 2007; Zhou et al. 2012). Until molecular data of the ex-type isolates become available, the status of these species names remains unclear.

Based only on ITS sequences, 22 species can be identified to species level (Fig. 1). Only four clades (clade 1, 7, 10, and 22), containing in total 10 species names, have multiple species names associated with them. This means that for accurate species identification, an additional gene to the standard ITS barcode sequence is required in the case of these 10 species. This study will therefore be useful to other plant pathologists in the field trying to identify their *Stemphylium* species, not only by providing them with the correct name(s), but also in helping them choose appropriate loci that will ensure correct identification.
28 species, five are described as new species and a further two new combinations are proposed. Twenty-two names are reduced to synonymy. To create a stable taxonomy for Stemphylium, three epitypes, one lectotype and two neotypes are designated. Morphological examination alone is not suited for species identification in Stemphylium. For an accurate species identification, morphological studies should be combined with molecular data.

ACKNOWLEDGEMENTS

We would like to thank Carmen Wijnen (Westerdijk Institute, Evolutionary Phytopathology group) for help with DNA isolation and sequencing. The Netherlands Food and Consumer Product Safety Authority (NVWA) is acknowledged for financial support of the project.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.simyco.2017.06.001.

REFERENCES

Ariyawansa HA, Jones EBG, Suerstron S, et al. (2013). Halocaulaceae: a new family of the order Pleosporales. Phytotaxa 130: 14–24.

Ariyawansa HA, Thambubala KM, Manangoda DS, et al. (2015). Towards a natural classification and backbone tree for Pleosporales. Fungal Diversity 71: 85–130.

Berbee ML, Pinneyed M, Hubbard S (1999). Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964–977.

Cámara MPS, O'Neill NR, van Berkum P (2002). Phylogeny of Stemphylium spp. based on ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 94: 660–672.

Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 533–556.

Cesal V, De Notaris G (1963). Schema di classificazione degli sfericioli italici aschigeri puì o meno appartenenti al genere Sphaeria all'antico significato attribuibile al genere Persoon. Commentario della Società Crittologamica Italiana 1: 177–420.

Chaisisook C, Skinner DZ, Stutewille DL (1995). Molecular genetic relationships of five Stemphylium species pathogenic to alfalfa. Sydowia 47: 1–9.

Corda ACJ (1840). Icones Fungorum hucuacae Cognitum: 4. JG Calve, Prague, Czech Republic.

Crous PW, Gams W, Staeplers JA, et al. (2004). MycoBank: an online initiative to launch MycoBank into the 21st century. Studies in Mycology 50: 19–22.

Crous PW, Groenewald JZ (2017). The Genera of Fungi: 177. Springer Verlag.

Crous PW, Wang M, Wingfield MJ, Richardson DM, et al. (2016). Fungal Planet description sheets: 400–468. Persoonia 36: 316–458.

Dangeard MP (1888). Notes mycologiques. Bulletin de la Societé mycologique de France 4: 21–25.

De Gruyter J, Aveskamp MM, Woudenb JHC, et al. (2009). Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113: 508–519.

De Gruyter J, Woudenb JHC, Aveskamp MM, et al. (2013). Redescription of phoma-like anamorphs in Pleosporales. Studies in Mycology 75: 1–36.

De Hoog GS, Gerrits van den Ende AHG (1998). Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41: 183–189.

Deng JX, Paul NC, Li MJ, et al. (2014). Stemphylium platycodonitis sp. nov., isolated from Platycodon grandiflorus in Korea. Mycological Progress 13: 477–482.

Ellis JB, Everhart BM (1888). New species of Fungi from various localities. Journal of Mycology 4: 44–46.

Enjoji S (1931). Two diseases of tomato. Journal of Plant Protection, Tokyo 18: 49–53.

Glass NL, Donaldson GC (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Guerzoni SA (1972). Species novae fungorum generis Pleospora in plantis endemicis montium Tauricae inventae. Novosti Sistematiki Nizhshih Rastenii 9: 121–129.

Hanse B (2013). Research on Stemphylium spp. the causal agent of the yellow leaf spot disease in sugar beet in 2012. Iris, Bergen op Zoom, The Netherlands.

Hanse B, Raajmakers EEM, Schoone AML, et al. (2015). Stemphylium sp., the cause of yellow leaf spot disease in sugar beet (Beta vulgaris L.) in the Netherlands. European Journal of Plant Pathology 141: 1–12.

Korose A (1920). Diagnoses of fungi from “spotted” apples. The Journal of Botany 58: 238–242.

Huemorber B, Ronquiste F (2001). MBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

Indertitzin P, Mehta YR, Berbee ML (2009). Pleospora species with Stemphylium anamorphs: a four locus phylogeny resolves new lineages yet does not distinguish among species in the Pleospora herbarum clade. Mycologia 101: 329–339.

Indertitzin P, Shoemaker RA, O'Neill NR, et al. (2006). Systematics and mating system of two fungal pathogens of opium poppy: the heterothallic Crinella papaveraceae with a Brachycladium penicillatum assexual state and homothallic species with a B. papaveris assexual state. Canadian Journal of Botany 84: 1304–1326.

Karsten PA (1884). Fragmenta mycologica XI. Hedwigia 23: 37–39.

Kodsuba T, Chansaksaran V, Aptoot A, et al. (2006). The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial LSU rDNA. Mycologia 98: 571–583.

Köh J, Groenboom–De Haan B, Groos–Van De Geijn, et al. (2009). Pathogenicity of Stemphylium vesicarium from different hosts causing brown spot in pear. European Journal of Plant Pathology 124: 151–162.

Kurose D, Misawa T, Suzui T, et al. (2015). Taxonomic re-examination of several Japanese Stemphylium strains based on morphological and molecular phylogenetic analyses. Journal of General Plant Pathology 81: 358–367.

Lawrence DP, Gannibal PB, Piever TL, et al. (2013). The sections of Alternaria: formalizing species-group concepts. Mycologia 105: 530–546.

Liu YJ, Whelsen S, Hall BD (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808.

Marchal E, Marchal EM (2012). Contribution l'étude des champignons fructicoles de Belgique. Bulletin de la Société Royale de Botanique de Belgique 54: 109–139.

McNeill J, Barrie FR, Buck WR, et al. (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne code). Koeltz Scientific Books, Königstein, Germany [Regnum vegetabile no. 154.].

Müller E (1951). Die schweizerischen Arten der Gattungen Basidiomycetes lamentois. Commentario della Societá Crittologamica Italiana 91: 183–189.

Nirenberg HI (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium–Section Liseola. Mitteilungen aus der Botanischen Bundesanstalt–Land- und Forstwirtschaft Berlin–Dahlem 169: 1–117.

Page RDM (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358.

Pei YF, Geng Y, Wang Y, et al. (2009). Two new species of Stemphylium from Sinkiang, China. Mycotaxon 109: 493–497.

Pei YF, Wang Y, Geng Y, et al. (2010). Three new species of Stemphylium from Sinkiang, China. Mycotaxon 111: 167–173.

Pei YF, Wang Y, Geng Y, et al. (2011). Three novel species of Stemphylium from Sinkiang, China: their morphological and molecular characterization. Mycological Progress 10: 163–173.

Rambaut A, Drummond AJ (2009). Tracer v. 1.5. Available from: http://tree.bio.e.ucl.ac.uk/software/tracer/.

Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute, Kew, UK.

Ronquist F, Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Rossman AM, Crous PW, Hyde KD, et al. (2015). Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6: 507–523.
Saccardo PA (1883). Syllote Fungorum. In: Pyrenomycologiae universae, 2. PA Saccardo, Padua, Italy.

Schubert K, Groenewald JZ, Braun U, et al. (2007). Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales) with standardization of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology 58: 105–156.

Simmons EG (1969). Perfect states of Stemphylium. Mycologia 61: 1–26.

Simmons EG (1985). Perfect states of Stemphylium II. Sydowia 38: 284–293.

Simmons EG (1989). Perfect states of Stemphylium III. Memoirs of the New York Botanical Garden 49: 305–307.

Simmons EG (2001). Perfect states of Stemphylium IV. Harvard Papers in Botany 6: 199–208.

Simmons EG (2007). Alternaria. An Identification Manual. CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre, Utrecht, Netherlands.

Simmons EG (2011). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications (Innis MA, Gelfand DH, Sninsky JJ, et al., eds). Academic Press, San Diego, California, USA: 315–322.

Winter G (1887). Rabenhorst’s Kryptogamen-Flora. Pilze-Ascomyceten: 1. Abt. 2. Kummer, Leipzig, Germany.

Woudenberg JHC, Groenewald JZ, Binder M, et al. (2013). Alternaria redefined. Studies in Mycology 75: 171–212.

Xue F, Zhang X-G, Wang Y, et al. (2005). Taxonomic studies of Stemphylium from China II. Stemphylium subglobuliferum sp. nov., and four new records. Mycosistema 24: 322–329.

Yamamoto W (1960). Synonymous species of Alternaria and Stemphylium in Japan. Transactions of the Mycological Society of Japan 2: 88–93.

Yoshii H (1929). Studies on leaf spot disease of Milk vetch. Journal of Plant Protection, Tokyo 16: 533–537.

Zhang X-G, Wu Y-M, Zhang T-Y (2003). Taxonomic studies of Stemphylium from China. Mycotaxon 85: 247–252.

Zhang X-G, Zhang T-Y (2002). Taxonomic studies of Stemphylium from China I. Mycosistema 21: 324–326.

Zhang X-G, Zhang T-Y (2007). Taxonomic studies of Stemphylium from China III: four new species on plants of several families. Mycosistema 26: 477–483.

Zhou Y-F, Guo Y-L, Li B-J (2012). A new species of Stemphylium on Basella rubra. Mycosistema 31: 165–167.

Zhou Y-F, Shi Y-X, Xie X-W, et al. (2011). Leaf spot of spinach caused by Stemphylium spinaciae sp. nov. Mycosistema 30: 379–383.