T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules

Inaam Mohammed Ali Hadi\(^1\) \quad Shukur Neamah Al-Aeashi\(^2\) \quad Farhan Dakhil Shyaa\(^3\)

\(^1\) Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad, Iraq.
\(^2\) Department of Mathematics, College of Education, University of Kufa, Kufa, Iraq.
\(^3\) Department of Mathematics, College of Education, University of Al-Qadisiyah, Qadisiyah, Iraq.

Corresponding author: innaam1976@yahoo.com, shukur.mobred@uokufa.edu.iq, farhan.shuay@qu.edu.iq
ORCID ID: https://orcid.org/0000-0002-1058-7410, https://orcid.org/0000-0002-9886-3247, https://orcid.org/0000-0003-1123-1974

Received 24/2/2019, Accepted 25/4/2020, Published Online First 6/12/2020, Published 1/3/2021

This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract:

A new generalizations of coretractable modules are introduced where a module \(\mathcal{M}\) is called t-essentially (weakly t-essentially) coretractable if for all proper submodule \(K\) of \(\mathcal{M}\), there exists \(0 \neq f \in \text{End}(\mathcal{M})\), \(f(K) = 0\) and \(\text{Im} f \subseteq_{\text{ess}} \mathcal{M}\) (\(\text{Im} f + K \subseteq_{\text{ess}} \mathcal{M}\)). Some basic properties are studied and many relationships between these classes and other related one are presented.

Key words: Coretractable module, Essentially coretractable module, T-essentially coretractable module, Weakly t-essentially coretractable module, Weakly essentially coretractable module.

Introduction:

In this work, all rings have identity and all modules are unitary left \(R\)-modules. A coretractable module appeared in\(^1\). However, Amini\(^2\), studied this class of modules, where \(\mathcal{M}\) is called coretractable if for all proper submodule \(K\) of \(\mathcal{M}\), there exists \(0 \neq f \in \text{Hom}(\mathcal{M}/K, \mathcal{M})\) (\(1\)). Next, Hadi and Al-Aeashi defined strongly coretractable module where a module \(\mathcal{M}\) is called strongly coretractable if for each a proper submodule \(K\) of \(\mathcal{M}\), there exists a nonzero homomorphism \(f: \mathcal{M}/K \to \mathcal{M}\) such that \(\text{Im} f + K = \mathcal{M}\) (\(3\)). A submodule \(K\) of \(\mathcal{M}\) is called essential in \(\mathcal{M}\) if \(K \cap S = 0\), \(S \leq \mathcal{M}\) implies \(S = 0\) (\(4\)), and \(K\) is t-essential submodule \(K \leq_{\text{ess}} \mathcal{M}\) if for every submodule \(S\) of \(\mathcal{M}\), \(S \cap K \subseteq Z_2(S)\) implies that \(S \subseteq Z_2(\mathcal{M})\), where \(Z_2(\mathcal{M})\) is called the second singular submodule and is defined by \(Z_2(\mathcal{M}) = Z_1(\mathcal{M}/Z_1(\mathcal{M}))\). Clear that every essential submodule is t-essential, but not conversely. However they are coincide in the class of nonsingular module (\(5\)).

In\(^6\), Hadi and Al-Aeashi introduced two classes related coretractable modules which are essentially coretractable and weakly essentially coretractable modules, where each of these classes is contained in the class of coretractable modules. A module \(\mathcal{M}\) is called essentially coretractable if for each proper submodule \(K\) of \(\mathcal{M}\), there exists \(0 \neq f: \mathcal{M}/K \to \mathcal{M}\) such that \(\text{Im} f \subseteq_{\text{ess}} \mathcal{M}\) and \(\mathcal{M}\) is weakly essentially coretractable if \(\text{Im} f + K \subseteq_{\text{ess}} \mathcal{M}\) (\(6\)). In \(\S\) \(2\) The notion t-essentially coretractable was studied, a module \(\mathcal{M}\) is called t-essentially coretractable if for each proper submodule \(K\) of \(\mathcal{M}\), there exists \(0 \neq f: \mathcal{M}/K \to \mathcal{M}\) such that \(\text{Im} f \subseteq_{\text{ess}} \mathcal{M}\). Also give some connections between it and other related classes of modules. In \(\S\) \(3\), the notion weakly t-essentially coretractable modules are introduced and studied, as a generalization of weakly essentially coretractable module, \(\mathcal{M}\) is called weakly t-essentially coretractable if for each proper submodule \(K\) of \(\mathcal{M}\), there exists \(0 \neq f: \mathcal{M}/K \to \mathcal{M}\) such that \(f(\mathcal{M}/K) + K \subseteq_{\text{ess}} \mathcal{M}\). Many other connections between these classes and other related are given. Recall that a module \(\mathcal{M}\) is called epicoretractable if for each proper submodule \(K\) of \(\mathcal{M}\), there exists an epimorphism \(f \in \text{Hom}(\mathcal{M}/K, \mathcal{M})\) (\(7\)). A module \(\mathcal{M}\) is called hopfian if each epimorphism \(f \in \text{End}(\mathcal{M})\), then \(f\) is monomorphism. And \(\mathcal{M}\) is antihopfian module if \(\mathcal{M}/K \cong \mathcal{M}\) for all proper submodule \(K\) of \(\mathcal{M}\) (\(8\)). Clearly any antihopfian module is epicoretractable. An R-module \(\mathcal{M}\) is called quasi-Dedekind if for each proper submodule \(K\) of \(\mathcal{M}\), \(\text{Hom}(\mathcal{M}/K, \mathcal{M}) = 0\) (\(9\)) and \(\mathcal{M}\) is coquasi-Dedekind module if for each \(\neq 0 \neq f \in \text{End}(\mathcal{M})\), \(f\) is an epimorphism (\(10\)). A module \(\mathcal{M}\) is called C-coretractable (Y-coretractable) if for all proper closed (y-closed)
submodule K of $ℳ$, there exists $0\neq f:ℳ/K\rightarrow ℳ^\ast$ (11), where a submodule N of $ℳ$ is called y-closed if $ℳ/N$ is nonsingular module"(4). Note that every y-closed submodule of $ℳ$ is closed but the converse may not be true. They are equivalent if $ℳ$ is nonsingular (4).

T-Essentially Coretractable Modules

The concept of t-essentially coretractable modules are introduced with some of its properties.

Definition 1: A module $ℳ$ is called t-essentially coretractable if for all proper submodule K of $ℳ$, there exists $0\neq f:ℳ/K\rightarrow ℳ$ such that $f(ℳ/K)\leq_{ess} ℳ$. A ring $ℛ$ is called t-essentially coretractable if $ℛ$ is a t-essentially coretractable $ℛ$-module.

Examples and Remarks 1:

(1) It is clear that a module $ℳ$ is t-essentially coretractable if and only if $∀ K < ℳ$, there exists $f\in \text{End}(ℳ)$, $f(K)=0$ and $\text{Im} f \leq_{ess} ℳ$.

(2) For every $ℛ$-module, the following implications are hold:

- essentially coretractable module $⇒$ t-essentially coretractable module $⇒$ coretractable module.

The converse of each implication may be not hold, as the following examples show:

The $ℤ$-module $ℤ_6$ is not essentially coretractable see (6, Example(2.2(3))), but $ℤ_6$ is coretractable module. Also $ℤ_6$ as $ℤ$-module t-essentially coretractable since for each $N\leq ℤ_6$, $\exists f\in \text{End}(ℤ_6)$ and $f(N)=0$ and $\text{Im} f \leq_{ess} ℤ_6$. For $ℤ_6$, $0\neq f:ℤ_6/ℤ \rightarrow ℤ_{6}$ (because $\text{Im} f = ℤ_6/ℤ = ℤ_6$), $\text{Im} f = ℤ_6$ and by (5), f is essentially coretractable.

(3) If $f:ℤ_6/ℤ \rightarrow ℤ_6$, then f is not t-essentially coretractable in $ℤ_6$.

(4) Clearly every antihopfian module is t-essentially coretractable (since every antihopfian is essentially coretractable (6) which implies t-essentially coretractable).

(5) Every t-essentially coretractable module is C-coretractable, Y-coretractable module. The converse is not true, see $ℤ$ as $ℤ$-module is C-coretractable and it is not t-essentially coretractable.

(6) A module $ℳ$ is t-essentially coretractable if and only if $ℳ$ is t-essentially coretractable $ℛ$-module ($ℛ= ℛ\cap \text{ann} ℳ$).

(7) If $ℛ$ is t-essentially coretractable ring, $ℳ$ is faithful cyclic $ℛ$-module. Then $ℳ$ is t-essentially coretractable.

(8) A ring $ℛ$ is t-essentially coretractable if and only if for each proper ideal I of $ℛ$, there exists $r\in ℛ$, $r\neq 0$ such that $r\in \text{ann} ℳ$ and $r\leq_{ess} ℳ$.

STOP
for each \(K \ll M, \exists f \in \text{Hom}(M/K, M) \), \(\text{Im} f + Z_0(M) = M \).

Proof: \((\Rightarrow)\) If \(M \) is \(t \)-essentially coretractable, so for all \(K \ll M \), \(\exists 0 \neq f : M/K \to M \), \(\text{Im} f \ll_e M \). Hence \(\text{Im} f + Z_0(M) \ll_e M \) by (5, Proposition 1.1) which implies \(\text{Im} f + Z_0(M) \ll_e M \). Thus \(\text{Im} f + Z_0(M) = M \) by (5, Corollary 2.7).

\((\Leftarrow)\) By hypothesis for each \(K \ll M, \exists f \in \text{Hom}(M/K, M) \), \(\text{Im} f + Z_0(M) = M \), hence \(\text{Im} f + Z_0(M) \ll_e M \) and by (5, proposition 1.1), \(\text{Im} f \ll_e M \).

It is to be noted that a direct summand of coretractable module need not be coretractable (12). Also it is to be noted that any direct summand of essentially coretractable module is essentially coretractable see (6, corollary (2.7)), however if \(M = \Omega \Lambda N \) is a \(Z_2 \)-torsion R-module and \(C \) is a cogenerator (where an R-module \(M \) is called a cogenerator if for any R-module \(N \) and \(0 \neq x \in N \), there exists \(f : N \to M \) such that \(f(x) \neq 0 \), (12)) and \(N \) is an R-module, then \(M \) is coretractable module by (12, proposition (1.5)) and so by proposition (6) \(M \) is \(t \)-essentially coretractable but \(N \) need not be coretractable and hence \(N \) need not be \(t \)-essentially coretractable. Recall that "A module \(M \) is compressible if it can be embedded in any nonzero its submodule" (13).

Proposition 6: Let \(M \) be a compressible \(t \)-essentially coretractable module and \(D \) be a direct summand of \(M \), then \(D \) is \(t \)-essentially coretractable.

Proof: Since \(D \ll \Omega \Lambda M \), so \(M = \Omega \Lambda D \oplus W \) for some \(W \ll M \). Let \(K \ll D \), hence \(\Omega \Lambda D \ll M \) and so \(\exists 0 \neq f : K \ll W \to M \) with \(\text{Im} f \ll_e M \). Now since \(\frac{M}{K \ll W} =\frac{D}{K} \ll M \) and \(M \) is compressible module, so \(\exists g : D \to D, g \) is monomorphism. Then \(g(\frac{D}{K}) \ll D \) and \(g(\frac{D}{K}) = g(\frac{D}{K}) \). But \(\text{Im} f \ll_e M \) and \(g \) is monomorphism, so \(g(\frac{D}{K}) \ll_e D \) by (14, proposition (1.1.23)). Also \(g \neq 0 \), because if \(g \neq 0 \) that is \(g(\frac{D}{K}) = 0 \) so \(g(\frac{D}{K}) = 0 \) which is contradiction.

Proposition 7: Let \(Y \) be a \(y \)-closed submodule of \(t \)-essentially coretractable module \(M \). Then \(\frac{M}{Y} \) is \(t \)-essentially coretractable module.

Proof: Let \(W/Y \ll M/Y \), hence \(W \ll M \) and so \(\exists f : M \to M, f(W) = 0 \) and \(\text{Im} f \ll_e M \). Define \(g : \frac{M}{Y} \to \frac{M}{Y} \) by \(g(m + Y) = f(m) + Y \), \(g \) is well defined and homomorphism with \(g(Y) = 0 \). \(\text{Im} g \ll_e M \) which implies \(\text{Im} f + Y \ll_e M \) so \(\text{Im} f + Y + Z_0(M) \ll_e M \) by (5, Proposition 1.1). Beside this \(Y \) is closed submodule of \(M \) (since it is \(y \)-closed) and hence \(\text{Im} f + Y + Z_0(M) \ll_e M \) by (4). This implies that \(\text{Im} f + Y + Z_0(M) \ll_e M \) by (4). Thus \(\text{Im} f + Y + Z_0(M) \ll_e M \).

Corollary 1: Let \(f : M \to M \) be an epimorphism and \(ker f \) be \(y \)-closed submodule of \(M \). Then \(M' \) is \(t \)-essentially coretractable module whenever \(M \) is \(t \)-essentially coretractable module.

Proof: By the 1st fundamental Theorem \(\frac{M}{ker f} \equiv M' \). But \(\frac{M}{ker f} \) is \(t \)-essentially coretractable module by Proposition 7. Thus \(M' \) is \(t \)-essentially coretractable module.

Corollary 2: Let \(M \) be a \(t \)-essentially coretractable module. Then \(\frac{Z_2(M)}{Z_2(M)} \) is \(t \)-essentially coretractable module.

Proof: Since \(Z_2(M) \) is \(y \)-closed, then the required condition hold by Proposition 7.

Corollary 3: Let \(M = \Omega \Lambda D \oplus W \) be a \(t \)-essentially coretractable module such that \(Z_2(M) \subseteq W \). Then \(D \) is \(t \)-essentially coretractable module.

Proof: Let \(M = \Omega \Lambda D \oplus W \). Since \(W \) is \(y \)-closed summand, so \(W \ll M \), \(Z_2(M) \subseteq W \) by hypothesis and hence \(W \ll W \)-closed submodule. Hence by Proposition 7, \(M \) is \(t \)-essentially coretractable module but \(\frac{M}{W} \equiv D \). Thus \(D \) is \(t \)-essentially coretractable module.

Note that "a finite direct sum of coretractable modules is coretractable module", see (2, Proposition (2.6)).

Remark 2: The direct sum of \(t \)-essentially coretractable modules need not be \(t \)-essentially coretractable module, for example: Let \(M = \Omega \Lambda Z_2 \oplus Z_2 \)-module. \(M \) is not \(t \)-essentially coretractable but \(Z_2 \) is \(t \)-essentially coretractable \(Z_2 \)-module.

Recall that "a module \(M \) is called duo if every submodule of \(M \) is fully invariant, where a submodule \(N \) of \(M \) is called fully invariant if for each \(f \in \text{End}(M) \), \(f(N) \subseteq N \) (15). "A submodule \(N \) of an R-module \(M \) is called stable if for each homomorphism \(f : N \to M, f(N) \subseteq N \) (16).

Proposition 8: Let \(M = M_1 \oplus M_2 \) be a duo module. Then \(M \) is \(t \)-essentially coretractable and only if \(M_1 \) and \(M_2 \) are \(t \)-essentially coretractable modules, provided that for each \(K \ll M, K \cap M_1 \ll M_1 \) and \(K \cap M_2 \ll M_2 \).

Proof: \((\Rightarrow)\) Let \(K \ll M \). Since \(M \) is duo module, \(K = (K \cap M_1) \oplus (K \cap M_2) \) (15). Put \(K_1 = K \cap M_1 \) and \(K_2 = K \cap M_2 \). Hence by hypothesis \(K_1 \ll M_1 \) and \(K_2 \ll M_2 \). As \(M_1 \) and \(M_2 \) are \(t \)-essentially coretractable modules, so \(\exists 0 \neq f_1 : \frac{M_1}{K_1} \to M_1 \) and \(\frac{M_2}{K_2} \to M_2 \) with \(\text{Im} f_1 \) and \(\text{Im} f_2 \) are \(t \)-essential submodules of \(M_1 \) and \(M_2 \) respectively. Define \(h : \frac{M_1}{K_1} \oplus \frac{M_2}{K_2} \to M \) by \(h(x + K_1, y + K_2) = (f_1(x + K_1), f_2(y + K_2)) \),
g(\gamma+K_2), h is a homomorphism. Imh= Imf(\oplus Img)\leq_m M_1 \oplus M_2= M, but \frac{M}{K} \cong (\frac{M_1}{K_1} \oplus \frac{M_2}{K_2}).

see Kasch hence there exists an isomorphism \alpha, where \alpha: \frac{M}{K} \rightarrow \frac{M_1}{K_1} \oplus \frac{M_2}{K_2} and so \alpha:h: \frac{M}{K} \rightarrow M. As Im(\alpha h)= (\alpha Imh), Imh\leq_m M and \alpha is isomorphism so that \alpha(Imh) \leq_m M that is Im(\alpha h) \leq_m M= M_1M_2. Thus M is t-essentially coretractable.

(\Rightarrow) To prove M_1 is t-essentially coretractable module. Let K \subseteq M_1. Then K \oplus M_2 \leq M and since M is t-essentially coretractable, \exists 0 \neq f \in \text{End}(M) and f(K \oplus M_2)=0 and Imf \leq_m M. Now f(K \oplus M_2)=0 implies to f(K)=0 and f(M_2)=0. Let g=f|_{M_1}: M_1 \rightarrow M. Since M_1 is a fully invariant direct summand of M, M_1 is stable; that is g(M_1) \subseteq M_1 and hence f(M_1) \subseteq M_1. It follows that g(M_1)=f(M_1) \oplus M_2= f(M_1) \oplus M_2. Theorem M_1 \oplus (0) \leq_m M_1 \oplus M_2 which implies to g(M_1) \leq_m M_1. Also g(K)=f(K)=0. Thus M_1 is t-essentially coretractable module.

Recall that an R-module M is called a multiplication module if for each submodule N of M, there exists a right ideal in R such that M1=N"(17).

Proposition 9: Let M be a finitely generated faithful multiplication module. Then M is t-essentially coretractable if and only if R is t-essentially coretractable module, where R is a commutative ring.

Proof: (\Rightarrow) Let I \subseteq R. Then N=M1 \leq M since M is a finitely generated faithful multiplication module. As M is t-essentially coretractable, \exists f \in \text{End}(M), f(N)=0 and Imf \leq_m M. But M is finitely generated multiplication module, so \exists 0 \neq r \in R such that f(r)=mr \forall m \in M. Define g: R \rightarrow R by g(a)=ar \forall a \in R. Clearly g is an R-homomorphism and g(I)=I and g(R)=R. Since f(N)=f(M1)=f(M1 \oplus M_2)=f(M1)\oplus M_2=0, then Imf=ImM=0 and so I=0, that is g(I)=0. Also Imf=ImM \leq M implies that \langle r \rangle \leq R by (14, Lemma(1.1.24)). Thus g(R) \leq R. Hence R is t-essentially coretractable.

(\Leftarrow) Let N \leq M. Since M is a multiplication module, then N=M1 for some I \subseteq R. But M is a finitely generated faithful multiplication module, so I=1. As R is t-essentially coretractable, so by Rem. & Exa. (1(9)), \exists r \in R, r \neq 0 such that r \in annM and \langle r \rangle \leq R. Now, define f: M \rightarrow M by f(m)=mr \forall m \in M. It is clear that f is an R-homomorphism, f(N)=f(M1)=f(M1 \oplus M_2)=f(M1)\oplus M_2=0 and f(M)=Mr=M \langle r \rangle since \langle r \rangle \leq R, then by (14, Lemma(1.1.24)), Mr \leq M; that is f(M) \leq_m M. Thus M is t-essentially coretractable module.

Corollary 4: Let M be a finitely generated faithful multiplication module over a commutative ring R. Then the following are equivalent:

(1) M is t-essentially coretractable module;
(2) R is t-essentially coretractable ring;
(3) End(M) is t-essentially coretractable ring.

Proof: (1)\Rightarrow (2) It holds by proposition(9).

(2)\Leftrightarrow (3) Since M is finitely generated faithful multiplication module, \forall f \in \text{End}(M), \exists 0 \neq f \in R \rightarrow End(M) such that f(M)/W=W \leq _M M. A ring R is called weakly t-essentially coretractable if R is a weakly t-essentially coretractable R-module.

Weakly t-Essentially Coretractable Modules

Definition 2: A module M is called weakly t-essentially coretractable if \forall W \leq M, \exists 0 \neq f \in R \rightarrow M such that f(M)/W=W \leq _M M. A ring R is called weakly t-essentially coretractable if R is a weakly t-essentially coretractable R-module.

Examples and Remarks 3:

(1) A module M is weakly t-essentially coretractable if and only if \forall W \leq M, \exists 0 \neq f \in R \rightarrow End(M), f(W)=0 and Imf+W \leq _M M.

Proof: Clear.

(2) It is clear that any essentially coretractable module is weakly t-essentially coretractable. The converse of this part is not true, consider the following: Z_{12} as Z-module is weakly t-essentially coretractable and not essentially coretractable see (6).

(3) Every weakly t-essentially coretractable module is coretractable module.

(4) By Rem. & Exa. (1(3)), the semisimple and t-essentially coretractable modules are independent. However a semisimple module is weakly t-essentially coretractable module.

Proof: Let W \leq M. M is semisimple module, so \exists D \leq B, W \oplus D=M hence M/W \cong D. Let f=i-g, where i is the inclusion map from D into M and g is an isomorphism between M/W and D. It is clear that f \neq 0 and Im f +W \leq _M M. Therefore M is weakly t-essentially coretractable module.

By applying (4), consider Z_{12} \oplus Z_2 as Z_{12} module is weakly t-essentially coretractable, but not t-essentially coretractable module. Also the converse may not be true, for example see Z_{12} as Z-module is weakly t-essentially coretractable but not semisimple module.

(5) It is clear that any module over semisimple ring R is semisimple and hence it is weakly t-essentially coretractable module by Rem. & Exa. (3(4)).
(6) A module \(\mathcal{M} \) is weakly t-essentially coretractable \(R \)-module if and only if \(\mathcal{M} \) is weakly t-essentially coretractable \(\bar{R} \)-module (where, \(\bar{R}=R/\text{ann}\mathcal{M} \)).

(7) Let \(M \) be a nonsingular \(R \)-module. Then \(M \) is weakly essentially coretractable if and only if weakly t-essentially coretractable.

Proof: It follows directly since essential and t-essential concepts are coincide in nonsingular modules (14, corollary(1.1.19)).

(8) Every strongly coretractable (respectively, epicontractable) module is weakly t-essentially coretractable, since for each \(W \subsetneq M \), \(\exists f \in \text{End}(M) \) with \(\text{Im}f+W=M \) and so \(\text{Im}f+W \leq_{\text{t-ess}} M \).

One can see that \(Z_4 \) as \(Z \)-module does not satisfy the converse.

(9) A ring \(R \) is weakly t-essentially coretractable if and only if for each proper ideal \(I \) of \(R \), there exists \(r \in R \), \(r \neq 0 \) such that \(r \in \text{ann}I \) and \(\langle r \rangle + I \subsetneq I \).

Proposition 10: Let \(M \) be a nonsingular uniform module. Then the following statements are equivalent:

1. \(M \) is essentially coretractable;
2. \(M \) is t-essentially coretractable;
3. \(M \) is weakly t-essentially coretractable;
4. \(M \) is weakly essentially coretractable.

Proof: (1) \(\iff \) (2) It follows by Proposition (1).

(2) \(\Rightarrow \) (3) Let \(W \subsetneq M \). Since \(M \) is t-essentially coretractable, so \(\exists f \in \text{End}(M) \), \(f(W)=0 \), \(\text{Im}f \leq_{\text{t-ess}} M \) and hence \(\text{Im}f+W \leq_{\text{t-ess}} M \). Thus \(M \) is weakly t-essentially coretractable.

(3) \(\Rightarrow \) (4) Let \(K \subsetneq M \), since \(M \) is weakly t-essentially coretractable, so \(\exists f: M/K \rightarrow M \) and \(\text{Im}f+K \leq_{\text{t-ess}} M \). But \(M \) is nonsingular hence \(\text{Im}f+K \leq_{\text{t-ess}} M \), therefore \(M \) is weakly essentially coretractable.

(4) \(\iff \) (1) Since \(M \) is nonsingular uniform, then \(M \) is quasi-Dedekind by (18, Proposition(1.5)), and hence (4) \(\iff \) (1) by using (6, Proposition(3.9)).

Proposition 11: Let \(M \) be \(\mathbb{Z}_2 \)-torsion \(R \)-module. Then the following are equivalent:

1. \(M \) is coretractable;
2. \(M \) is t-essentially coretractable;
3. \(M \) is weakly t-essentially coretractable

Proof: (1) \(\iff \) (2) It follows by proposition(4).

(2) \(\Rightarrow \) (3) It is clear.

(3) \(\Rightarrow \) (1) It follows by Rem. & Exa. (3(3)).

Proposition 12: Let \(M \) be a weakly t-essentially coretractable module and \(D \) be a fully invariant direct summand of \(M \), then \(D \) is weakly t-essentially coretractable module.

Proof: Since \(D \leq \mathcal{M} \), so \(M=D \oplus W \) for some \(W \leq M \). Let \(K \subsetneq D \), hence \(K \oplus W < D \oplus W = M \) since \(M \) is weakly t-essentially coretractable, then \(\exists f \in \text{End}_R(M) \), \(f(K\oplus W)=0 \) and \(f(M)+(K\oplus W) \leq_{\text{t-ess}} M \).

Let \(g=f|_D:D \rightarrow M \). Since \(D \leq M \), \(D \) is fully invariant, so \(D \) is stable in \(M \) by (19, Lemma(2.1.6)), hence \(g \in \text{End}(D) \).

Claim \(g(D)+K \leq_{\text{t-ess}} D \). Since \(f(K+W)=0 \), so \(f(W)=0 \) and \(f(K)=0 \). Thus \(g(K)=0 \), \(f(M)=(f(D\oplus W)+f(D) \leq D \), but \(f(M)+(K\oplus W) \leq_{\text{t-ess}} M \) implies \(f(D)+(K\oplus W) \leq_{\text{t-ess}} M \).

Hence \((f(D)+K) \oplus W \leq_{\text{t-ess}} M=D \oplus W \), so that \(f(D)+K \leq_{\text{t-ess}} D \) (11). It follows that \(g(D)+K \leq_{\text{t-ess}} D \) and so \(D \) is weakly t-essentially coretractable module.

Corollary 5: Let \(M=M_1 \oplus M_2 \) and \(M \) be duo module. Then \(M \) is weakly t-essentially coretractable if and only if \(M_1 \) and \(M_2 \) are weakly t-essentially coretractable.

Proof: Since \(M \) is duo, \(M_1 \) and \(M_2 \) are fully invariant submodules, but \(M_1 \) and \(M_2 \) are direct summand, then by Proposition(12), \(M_1 \) and \(M_2 \) are weakly t-essentially coretractable modules.

Corollary 6: Let \(M=M_1 \oplus M_2 \) with \(\text{ann}M_1+\text{ann}M_2=R \). If \(M \) is weakly t-essentially coretractable module, then \(M_1 \) and \(M_2 \) are weakly t-essentially coretractable.

Proof: Since \(\text{ann}M_1+\text{ann}M_2=R \), then \(M_1=\text{ann}M_2 \) and \(M_2=\text{ann}M_1 \). Hence for each \(f:M_1 \rightarrow M \), \(f(M_1)=(f(M_1))\text{ann}M_2 \leq \text{ann}M_2=\text{ann}M_2 \text{ann}M_2=\text{ann}M_1 \) hence \(M_1 \) is a fully invariant. Similarity \(M_2 \) is a fully invariant. But \(M_1 \) and \(M_2 \) are direct summands. Thus they are weakly t-essentially coretractable modules by Proposition (12).

Recall that an \(R \)-module \(M \) is called a polyform if for any submodule \(L \subsetneq M \) and for any \(\varphi:L \rightarrow M \), \(\ker \varphi \) is not essential in \(L \). Equivalently, if for any submodule \(L \subsetneq M \) and for any \(\varphi:L \rightarrow M \), \(\ker \varphi \subsetneq L \) implies \(\varphi=0 \) "(9).

Proposition 13: Let \(M \) be a polyform module. If \(\bar{M} \) (where \(\bar{M} \) is the quasi-injective hull of \(M \)) is weakly t-essentially coretractable module, then \(M \) is weakly t-essentially coretractable.

Proof: Since \(M \) is polyform, so \(\text{End}(\bar{M}) \) is regular ring by (9, Theorem(2.1)). But \(\bar{M} \) is coretractable hence by (3, Proposition(2.1)), \(\bar{M} \) is semisimple and hence \(M \) is semisimple. Thus \(M \) is weakly t-essentially coretractable module.

It is known every nonsingular module is polyform, so one can get the following directly:

Corollary 7: Let \(M \) be a nonsingular module. If \(\bar{M} \) is weakly t-essentially coretractable module, then \(M \) is weakly t-essentially coretractable.
Proposition 14: Let \mathcal{M} be a nonsingular \mathcal{R}-module. Then the following statements are equivalent:

1. \mathcal{M} is coretractable;
2. \mathcal{M} is semisimple;
3. \mathcal{M} is weakly t-essentially coretractable;
4. \mathcal{M} is weakly essentially coretractable.

Proof: (1) ⇒ (2) By (12, proposition 1.3).

(2) ⇒ (3) By Rem. & Exa. (3(5)).

(3) ⇒ (4) It follows by Rem. & Exa. (3(7)).

(4) ⇒ (1) It is clear.

Proposition 15: Let \mathcal{M} be a finitely generated faithful multiplication module. Then \mathcal{M} is weakly t-essentially coretractable if and only if \mathcal{R} is weakly t-essentially coretractable ring, where \mathcal{R} is a commutative ring.

Proof: It is similar to the proof of proposition 9.

Corollary 8: Let \mathcal{M} be a finitely generated faithful multiplication module over a commutative ring \mathcal{R}. Then the following are equivalent:

1. \mathcal{M} is weakly t-essentially coretractable module;
2. \mathcal{R} is weakly t-essentially coretractable ring;
3. $\text{End}(\mathcal{M})$ is weakly t-essentially coretractable ring.

Proposition 16: Let \mathcal{M} be a weakly t-essentially coretractable and t-semisimple \mathcal{R}-module such that $\mathcal{N} \subseteq Z_2(\mathcal{M}) \forall \mathcal{N} \not\subset \mathcal{M}$. Then \mathcal{M} is t-essentially coretractable.

Proof: Let $\mathcal{N} \subset \mathcal{M}$. Since \mathcal{M} is weakly t-essentially coretractable \mathcal{R}-module, $\exists \mathcal{f} \in \text{End}(\mathcal{M})$, $f(\mathcal{N}) = 0$ and $\text{Im}f + N \subseteq \text{ann} \mathcal{M}$. Then by (5, proposition (1.1)), $\text{Im}f + N + Z_2(\mathcal{M}) \subseteq \text{ann} \mathcal{M}$. Since $\mathcal{N} \subseteq Z_2(\mathcal{M})$, then $\text{Im}f + Z_2(\mathcal{M}) \subseteq \text{ann} \mathcal{M}$. Again by (5, prediction (1.1)), $\text{Im}f \subseteq \text{ann} \mathcal{M}$. Thus \mathcal{M} is t-essentially coretractable module.

Recall that a ring \mathcal{R} is called completely coretractable ring (briefly, CC-ring) if every \mathcal{R}-module is coretractable.

Definition 3: A ring \mathcal{R} is called completely weakly t-essentially coretractable ring if every \mathcal{R}-module is weakly t-essentially coretractable.

Remarks and Examples 4:

1. It is clear that, every weakly t-essentially coretractable ring is CC-ring.
2. By Rem. & Exa. (3(5)), every semisimple ring is completely weakly t-essentially coretractable ring.
3. Recall that a ring \mathcal{R} is called Kasch if every simple \mathcal{R}-module can be embedded in \mathcal{R}"(2).

If \mathcal{R} is Kasch ring and $J(\mathcal{R}) = 0$, then \mathcal{R} is semisimple (2) and hence by Rem. & Exa. (4(2)), \mathcal{R} is completely weakly t-essentially coretractable ring.

4. If \mathcal{R} is Kasch ring and regular (in the sense of Von Neumann), then \mathcal{R} is semisimple by (2) and hence by Rem. & Exa. (4(2)), \mathcal{R} is completely weakly t-essentially coretractable ring.

(5) Since a dual Rickart ring is semisimple (2), then every dual Rickart ring is completely weakly t-essentially coretractable ring.

Proposition 17: Let \mathcal{R} be a commutative ring such that $\mathcal{R} = \mathcal{R}/\text{ann} \mathcal{M}$ is a weakly t-essentially coretractable \mathcal{R}-module. Then every cyclic \mathcal{R}-module is weakly t-essentially coretractable.

Proof: Let \mathcal{M} be a cyclic \mathcal{R}-module. Then $\mathcal{M} \cong \mathcal{R}$ is weakly t-essentially coretractable \mathcal{R}-module.

Corollary 9: Let \mathcal{R} be a commutative ring. Then the following are equivalent:

1. \mathcal{R} is completely weakly t-essentially coretractable;
2. Every cyclic \mathcal{R}-module is weakly t-essentially coretractable;
3. $\mathcal{R}/\text{ann} \mathcal{M}$ is weakly t-essentially coretractable \mathcal{R}-module.

Proposition 18: Let \mathcal{R} be a ring with $J(\mathcal{R}) = 0$. Then the following are equivalent:

1. \mathcal{R} is weakly t-essentially coretractable ring;
2. \mathcal{R} is completely weakly t-essentially coretractable ring;
3. \mathcal{R} is weakly t-essentially coretractable ring;
4. All free \mathcal{R}-module is weakly t-essentially coretractable;
5. All finitely generated free \mathcal{R}-module are weakly t-essentially coretractable.

Proof: (1) ⇒ (3) Since \mathcal{R} is weakly t-essentially coretractable ring, \mathcal{R} is coretractable and hence by (2, Lemma (3.7)), \mathcal{R} is semisimple.

(3) ⇒ (2) and (3) ⇒ (4) are clear by Rem. & Exa. (4(2)).

(4) ⇒ (5) It is clear.

(5) ⇒ (1) It is clear, since \mathcal{R} is a finitely generated free \mathcal{R}-module.

Remark 5: Since every commutative regular ring \mathcal{R} (in the sense of Von Neumann) satisfies $J(\mathcal{R}) = 0$, then proposition (18) is hold for commutative regular rings.

Corollary 11: If \mathcal{R} is a commutative regular (in the sense of Von Neumann) weakly t-essentially coretractable ring, then \mathcal{R} is a principal ideal ring (PIR).

Proof: By previous proposition, \mathcal{R} is semisimple. Hence every ideal generated by idempotent element. Thus \mathcal{R} is a principal ideal ring.

Conclusion:

In this paper, the notions of t-essentially and weakly t-essentially coretractable modules are defined as a generalization of essentially and
weakly essentially coretractable module. Also, several results are given. Further the completely weakly t-essentially coretractable rings are defined and investigated.

Authors’ declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

References:
1. Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting modules. Supplements and Projectivity in Module Theory. Springer Science & Business Media; 2008 Aug 17.
2. Amini B, Ershad M, Sharif H. Coretractable modules. J. Aust. Math. Soc. 2009; 86(3): 289–304.
3. Hadi IMA, Al-Aeashi SN. Strongly coretractable modules. Iraqi J. of science. 2017; 58(2C):1069–1075.
4. Goodearl KR. Ring theory, nonsingular rings and modules. New York, Marcel Dekker, 1976.
5. Asgari Sh, Haghany A, Tolooei Y. T-semisimple and T-semisimple rings. Comm. in Algebra. 2013; 41(5): 1882-1902.
6. Al-Aeashi SN, Shyaa FD, Hadi IMA. Essentially and weakly essentially coretractable modules. J. Phys.: Conf. Ser. 2019; 1234, 012107. DOI: 10.1088/1742-6596/1234/1/012107.
7. Hadi IMA, Al-Aeashi SN. Y-coretractable and strongly Y-coretractable modules. Asian J. Applied Sci. 2017; 5(2): 427-433.
8. Gang Y, Zhong-kui L. On hopfian and co-hopfian modules. Vietnam J. Math. 2007; 35: 73–80.
9. Hadi IMA, Al-Aeashi SN. The class of coretractable modules and some generalizations. GJPAM. 2018; 12(2): 811-820.
10. Naoum AG, Al-Hashimi BA, Yaseen S M. Coquasi-invertible submodule. Iraqi J. of science. 2006; 47(1): 154-159. DOI: 10.24996.ijs.58.2C.10.
11. Hadi IMA, Al-Aeashi SN. C-coretractable and strongly C-coretractable modules. Special Issus: 1st Scientific International Conference, College of Science, Al-Nahrain University. 2019: 65-72.
12. Hadi IMA, Al-Aeashi SN. Weakly coretractable modules. J. Phys.: Conf. Ser. 2018; 1003 012061. DOI: 10.1088/1742-6596/1003/1/012061.
13. Nguyen DHN, Ronnason C. On slightly compressible-injective modules. EJPAM 2018; DOI: 10.29020/nybg.ejpam.v11i3.3291.
14. Shyaa FD, A study of modules with related T-semisimple modules. Ph.D. Thesis, University of Baghdad, Iraq, 2018.
15. Ozcan A, Harmanci H, Smith PF. Duo modules. Glasgow Math. J. 2006; 48(3): 533-545.
16. Abbas MS, Salman HA. Fully small dual stable modules. IJS. 2018; 59(1B): 398-403. DOI: 10.24996/ijs.2018.59.1B.19.
17. El-Bast ZA, Smith PF. Multiplication modules. Comm. Algebra. 1988;16:755–779.
18. Hadi IMA, Al-Aeashi SN. Some results about coretractable modules. Journal of AL-Nahrain University. 2018; 25(1): 211–221.
19. Bailey SR. S-extending modules and related concepts. Ph.D. Thesis, University of Al-Mustansiriya, Baghdad, Iraq, 2007.

References:

المقدمة

المنكمشة المضادة الجوهرية والجوهرية الضعيفة من النوع-T

المقدمة

المنكمشة المضادة الجوهرية من النوع-T متمايزة عن المنكمشة المضادة الجوهرية من النوع-T حيث أن

\[\text{End}(M) = \{ f \mid f \in \text{End}(M), f(K) = 0, K \in \text{mod}(M) \} \]

بالنسبة للمنكمشات الجوهرية من النوع-T

\[\text{Imf} \leq \text{Ses}_w M \]

ذات الصلة.

الكلمات المفتاحية: وحدة قابلة للتجديد, وحدة قابلة للتحديد بشكل أساسي, وحدة قابلة للتجديد بشكل ضعيف, وحدة قابلة للتجميع بشكل أساسي.