Crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenylethyl 3-nitroso-2-phenylimidazo-[1,2-a]pyridine-8-carboxylate

Fouad El Kalai, a Cemile Baydere, b* Necmi Dege, b Abdulmalik Abudunia, c* Noureddine Benchata and Khalid Karrouchid

*Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohammed I University, 60000 Oujda, Morocco. bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139-Samsun, Turkey. cDepartment of Pharmacology, Faculty of Clinical Pharmacy, University of Medical and Applied Sciences, Yemen, and dLaboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco. *Correspondence e-mail: cemle28baydere@hotmail.com, abdulmalikabudunia@gmail.com

The title compound, C22H15N3O4, is built up from a central imidazo[1,2-a]-pyridine ring system connected to a nitroso group, a phenyl ring and a 2-oxo-2-phenylethyl acetate group. The imidazo[1,2-a]-pyridine ring system is almost planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 22.74 (5) and 45.37 (5)°, respectively, with the phenyl ring and the 2-oxo-2-phenylethyl acetate group. In the crystal, the molecules are linked into chains parallel to the b axis by C—H···O hydrogen bonds, generating R21(5) and R44(28) graph-set motifs. The chains are further linked into a three-dimensional network by C—H···π and π-stacking interactions. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H···H (36.2%), H···C/C···H (20.5%), H···O/O···H (20.0%), C···O/O···C (6.5%), C···N/N···C (6.2%), H···N/N···H (4.5%) and C···C (4.3%) interactions.

1. Chemical context
Numerous drugs contain N-heterocycles as the core structure, including imidazo[1,2-a]pyridine and its derivatives, which are used in medicinal chemistry (Swainston Harrison & Keating, 2005; Deep et al., 2017) or that exhibit diverse biological properties, such as antibacterial (Mishra et al., 2021), antitubercular (Wang et al., 2019), tyrosinase inhibitory (Damghani et al., 2020), HIV inhibitory (Bode et al., 2011), antidiabetic (Saeedi et al., 2021), anti-inflammatory (Gundlewad et al., 2020) or anticancer activities (Yu et al., 2020; Sigalapalli et al., 2021). Encouraged by these features and in a continuation of our exploration of the synthesis, molecular structures and Hirshfeld surface analysis of new N-heterocyclic compounds (Daoui et al., 2021, 2022; El Kalai et al., 2021a,b), we report herein the crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-a]pyridine-8-carboxylate, C22H15N3O4 (I).
the two aromatic rings (C1–C6 and C17–C22) is 59.63 (5)°. The dihedral angle between the phenyl ring (C1–C6) and the 2-oxo-2-phenylethyl acetate group (C14–C22), respectively. The mean plane through the fused ring system makes dihedral angles of 22.74 (5)° and 45.37 (5)° for atom C11. The mean plane through the fused ring system is planar with an r.m.s deviation of 0.017 Å and a maximum deviation of 0.028 (1) Å.

The molecular conformation is stabilized by two weak intramolecular hydrogen bonds are indicated by dashed lines. Intramolecular hydrogen bonds are indicated by dashed lines. The molecular conformation is stabilized by two weak intramolecular C9—H9···C110 ring motifs (Table 1, Fig. 1).

2. Structural commentary

The molecular structure of (I) is shown in Fig. 1. The imidazo[1,2-a] pyridine ring system is planar with an r.m.s deviation of 0.017 Å and a maximum deviation of 0.028 (1) Å for atom C11. The mean plane through the fused ring system makes dihedral angles of 22.74 (5)° and 45.37 (5)° with the phenyl ring (C1–C6) and the 2-oxo-2-phenylethyl acetate group (C14–C22), respectively. The dihedral angle between the two aromatic rings (C1–C6 and C17–C22) is 59.63 (5)°. The molecular conformation is stabilized by two weak intramolecular C9—H9···O1 and C1—H1···N1 hydrogen bonds, generating S(6) ring motifs (Table 1, Fig. 1).

3. Supramolecular features

In the crystal, molecules are linked by C9—H9···O1ii and C10—H10···O2iii hydrogen bonds, forming chains that propagate parallel to the b axis and enclose $R_2^1(5)$ ring motifs (Table 1, Fig. 2). Additionally, intermolecular C15—H15A···O4i and C15—H15B···O1ii hydrogen bonds with $R_2^1(28)$ ring motifs are also present, generating a three-dimensional supramolecular network that also comprises a weak C22—H22···Cg4iv interaction (Cg4 is the centroid of the C17–C22 phenyl ring) as well as π···π stacking interactions involving the centroids (Cg1 and Cg2) of the N2/C13/N3/C7–C8 and N2/C9–C13 rings with a centroid-to-centroid distance Cg1···Cg2 (x, 1/2 − y, −1/2 + z) of 3.5750 (9) Å and a slippage of 0.685 Å (Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016) using 2-phenylimidazo[1,2-a]pyridin-3-amine as the main skeleton revealed the presence of 54 structures with different substituents on the imidazo[1,2-a]pyridine ring. The two structures most similar to (I) are N-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (MIXZOJ; Anaflous et al., 2008) and 4-[7-methyl-2-phenylimidazo[1,2-a]pyridin-3-yl]carbonimidoyl]-phenol (TUQCEP; Elaatiaoui et al., 2015). In MIXZOJ, C15H13N3O, the crystal structure consists of molecular columns that are interconnected by N—H···N hydrogen bonds along the b-axis direction. The torsion angle between the imidazo[1,2-a]pyridine ring system and the phenyl ring is 9.04 (5)°. In TUQCEP, C21H17N3O, the fused ring system is almost planar (r.m.s. deviation = 0.31 Å) and forms dihedral angles of 64.97 (7)° and 18.52 (6)° with the phenyl ring and the (iminomethyl)phenol group, respectively. In its crystal, molecules are linked by pairs of C—H···π interactions into centrosymmetric dimeric units, which are further connected by O—H···N hydrogen bonds, forming layers parallel to (101).

5. Hirshfeld surface analysis

Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compound, using Crystal Explorer (Turner et al., 2017). The Hirshfeld surface was generated with a standard (high) surface resolution and with the three-dimensional d_{norm} surface plotted over a fixed colour scale of −0.1706 (red) to 1.2371 (blue) a.u. (Fig. 3a). The shape-index map of the title molecule was generated in the range −1 to 1 Å (Fig. 3b), revealing the presence of red and blue triangles that are indicative of the presence of π···π stacking interactions. The curvedness map of the title complex

Table 1

D—H···A	D—H	H···A	D···A	D—H···A
C15—H15A···O4i	0.97	2.54	3.1257 (19)	119
C15—H15B···O1ii	0.97	2.61	3.4841 (18)	150
C9—H9···O1	0.93	2.46	3.1176 (16)	128
C10—H10···O2iii	0.93	2.67	3.2343 (17)	119
C9—H9···O1	0.93	2.35	2.8736 (18)	116
C1—H1···N1	0.93	2.51	3.081 (2)	120
C22—H22···O4iv	0.93	2.80	3.657 (2)	153

Symmetry codes: (i) $x+y+z$; (ii) $x+1, y+1/2, z+1$; (iii) $-x+y-1/2, z+1/2$; (iv) $x, y-1/2, z-1$.

Figure 1

The molecular structure of (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are indicated by dashed lines.

Figure 2

A view along the a axis of the crystal structure of (I). Blue, black, purple and orange dashed lines symbolize intermolecular C15—H15A···O4i, C15—H15B···O1ii, C9—H9···O2iii and C10—H10···O2iii hydrogen bonds, respectively; π···π and C—H···π interactions are shown as green dashed lines.
was generated in the range -4.0 to 4.0 Å (Fig. 3c) and shows flat surface patches characteristic of planar stacking. The Hirshfeld surface representations with the function d_{norm} plotted onto the surface are shown for the H–H, H–C/C–H, H–O/O–H, C–O/O–C, C–N/N–C, H–N/N–H and C–C interactions in Fig. 4a–g, respectively. The overall two-dimensional fingerprint plot is illustrated in Fig. 5a, with those delineated into H–H, H–C/C–H, H–O/O–H, C–O/O–C, C–N/N–C, H–N/N–H and C–C contacts associated with their relative contributions to the Hirshfeld surface in Fig. 5b–h, respectively. The most important intermolecular interaction is H–H, contributing 36.2% to the overall crystal packing (Fig. 5b). H–/C–H contacts, with a 20.5% contribution to the Hirshfeld surface, indicate the presence of the weak C–H–π interaction (Table 1). Two pairs of characteristic wings in the fingerprint plot with pairs of tips at $d_e + d_i = 2.74$ Å are present (Fig. 5c). H–O/O–H contacts arising from intermolecular C–H–O hydrogen bonding make a 20.0% contribution to the Hirshfeld surface and are represented by a pair of sharp spikes in the region $d_e + d_i = 2.34$ Å (Fig. 5d). The C–C contacts are a measure of π–π stacking interactions and contribute 4.3% of the Hirshfeld surface (Fig. 5h). The contributions of the other contacts to the Hirshfeld surface are C–O/O–C of 6.5%, C–N/N–C of 6.2% and H–N/N–H of 4.5%.

Figure 3
(a) d_{norm} mapped on the Hirshfeld surface to visualize the intermolecular interactions, (b) shape-index map of the title compound and (c) curvedness map of the title compound using a range from -4 to 4 Å.

Figure 4
The Hirshfeld surface representations of (I) with the function d_{norm} plotted onto the surface for (a) H–H, (b) H–C/C–H, (c) H–O/O–H, (d) C–O/O–C, (e) C–N/N–C, (f) H–N/N–H and (g) C–C interactions.

Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H–H, (c) H–C/C–H, (d) H–O/O–H, (e) C–O/O–C, (f) C–N/N–C, (g) H–N/N–H and (h) C–C interactions, together with their relative contributions.
6. Synthesis and crystallization

To a solution of 2-oxo-2-phenylethyl 2-phenylimidazo[1,2-α]-pyridine-8-carboxylate (0.71 g, 2 mmol) in acetic acid (50 ml), sodium nitrite (1.4 g, 2 mmol) was added at room temperature. The resulting precipitate was washed with water and extracted with dichloromethane (3 × 20 ml). The combined dichloromethane extracts were dried over anhydrous sodium sulfate and filtered. The remaining solution was concentrated under reduced pressure. The residue was purified chromatographically on a neutral alumina gel column using dichloromethane as eluent. Single crystals were obtained by slow evaporation of a dichloromethane solution at room temperature (yield 80%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å for methylene \([U_{eq}(H) = 1.5U_{eq}(C)]\), C—H = 0.93 Å for aromatic \([U_{eq}(H) = 1.2U_{eq}(C)]\) and C—H = 0.98 Å for methane \([U_{eq}(H) = 1.2U_{eq}(C)]\) H atoms.

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). Authors’ contributions are as follows: conceptualization, FE, CB, and ND; formal analysis, CB and ND; writing (original draft), CB and KK; writing (review and editing of the manuscript), CB and KK; resources, AA; supervision, NB and KK.

References

Anaflous, A., Albay, H., Benchat, N., El Bali, B., Duşek, M. & Fejfarová, K. (2008). Acta Cryst. E64, e926.

Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuysen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237.

Damghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876.

Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27.

Daoui, S., Muwafaq, I., Cinar, E. B., Abudunia, A., Dege, N., Benchat, N. & Karrouchi, K. (2022). Acta Cryst. E78, 8–11.

Deep, A., Bhatia, R. K., Kaur, R., Kumar, S., Jain, U. K., Singh, H., Batra, S., Kaushik, D. & Deb, P. K. (2017). Curr. Top. Med. Chem. 17, 238–250.

El Kalai, F., Karrouri, K., Babyere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandon, S. A. (2021b). J. Mol. Struct. 1223, 129213.

El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandañ, S. A. (2021a). J. Mol. Struct. 1222, 128876.

El Kalai, F., Karrouchi, K., Babyere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.

El Kalai, F., Karrouchi, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Gundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221–226.

El Kalai, F., Cinar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouri, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.

Table 2

Crystal data	Chemical formula	C_{22}H_{15}N_{3}O_{4}
Crystal system, space group	Monoclinic, P2_{1}/c	
Temperature (K)	296	
a, b, c (Å)	15.9256 (14), 14.8256 (14), 7.6787 (6)	
β (°)	90.566 (7)	
V (Å³)	1812.9 (3)	
Z	4	
Radiation type	Mo Kα	
μ (mm⁻¹)	0.10	
Crystal size (mm)	0.56 × 0.38 × 0.15	

Data collection

Diffractometer: Stoe IPDS 2
Absorption correction: Integration (X-RED32; Stoe & Cie, 2012)

Table 2

Crystal data	Chemical formula	C_{22}H_{15}N_{3}O_{4}
Crystal system, space group	Monoclinic, P2_{1}/c	
Temperature (K)	296	
a, b, c (Å)	15.9256 (14), 14.8256 (14), 7.6787 (6)	
β (°)	90.566 (7)	
V (Å³)	1812.9 (3)	
Z	4	
Radiation type	Mo Kα	
μ (mm⁻¹)	0.10	
Crystal size (mm)	0.56 × 0.38 × 0.15	

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). Authors’ contributions are as follows: conceptualization, FE, CB, and ND; formal analysis, CB and ND; writing (original draft), CB and KK; writing (review and editing of the manuscript), CB and KK; resources, AA; supervision, NB and KK.

References

Anaflous, A., Albay, H., Benchat, N., El Bali, B., Duşek, M. & Fejfarová, K. (2008). Acta Cryst. E64, e926.

Bode, M. L., Gravestock, D., Moleele, S. S., van der Westhuysen, C. W., Pelly, S. C., Steenkamp, P. A., Hoppe, H. C., Khan, T. & Nkabinde, L. A. (2011). Bioorg. Med. Chem. 19, 4227–4237.

Damghani, T., Hadaegh, S., Khoshneviszadeh, M., Pirhadi, S., Sabet, R., Khoshneviszadeh, M. & Edraki, N. (2020). J. Mol. Struct. 1222, 128876.

El Kalai, F., Karrouri, K., Baydere, C., Daoui, S., Allali, M., Dege, N., Benchat, N. & Brandán, S. A. (2021b). J. Mol. Struct. 1223, 129213.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Gundlewad, G. B., Wagh, S. S. & Patil, B. R. (2020). Asia. J. Org. Med. Chem. 5, 221–226.

El Kalai, F., Cinar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouri, K. & Benchat, N. (2021a). J. Mol. Struct. 1228, 129435.
Crystal structure and Hirshfeld surface analysis of 2-oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-a]pyridine-8-carboxylate

Fouad El Kalai, Cemile Baydere, Necmi Dege, Abdulmalik Abudunia, Noureddine Benchat and Khalid Karrouchi

Computing details

Data collection: X-AREA (Stoe & Cie, 2012); cell refinement: X-AREA (Stoe & Cie, 2012); data reduction: X-RED (Stoe & Cie, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020), PLATON (Spek, 2020); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL (Sheldrick, 2015b), PLATON (Spek, 2020) and pubICIF (Westrip, 2010).

2-Oxo-2-phenylethyl 3-nitroso-2-phenylimidazo[1,2-a]pyridine-8-carboxylate

Crystal data

Parameter	Value
C_{22}H_{15}N_{3}O_{4}	Mr = 385.37
Monoclinic, P2_1/c	a = 15.9256 (14) Å
	b = 14.8256 (14) Å
	c = 7.6787 (6) Å
	β = 90.566 (7)°
	V = 1812.9 (3) Å^3
	Z = 4
F(000)	800
D_x	1.412 Mg m^{-3}
Mo Kα radiation	λ = 0.71073 Å
Cell parameters	from 18578 reflections
θ	1.9–32.8°
µ	0.10 mm^{-1}
T	296 K
Rod, green	0.56 × 0.38 × 0.15 mm

Data collection

Parameter	Value
Stoe IPDS 2	
Diffraclometer	
Radiation source	sealed X-ray tube, 12 x 0.4 mm
Plane graphite monochromator	
Detector resolution	6.67 pixels mm^{-1}
rotation method scans	
Absorption correction	integration
(X-RED32; Stoe & Cie, 2012)	
T_{min}	0.946, T_{max} = 0.969
27945 measured reflections	
6703 independent reflections	
3040 reflections with I > 2σ(I)	
R_{int}	0.070
θ_{min}	32.9°, θ_{max} = 2.6°
h, k, l	-24→24, -22→22, -10→11

Refinement

Parameter	Value
Refinement on F^2	
Least-squares matrix: full	
R[F^2 > 2σ(F^2)]	0.046
wR(F^2)	0.118
S	0.92
262 parameters	0 restraints
Hydrogen site location: inferred from neighbouring sites	
H-atom parameters constrained	
\[w = \frac{1}{\sigma^2(F_o^2) + (0.0506P)^2} \]
where \(P = (F_o^2 + 2F_c^2)/3 \)

\((\Delta/\sigma)_{\text{max}} < 0.001 \)

\(\Delta \rho_{\text{max}} = 0.15 \text{ eÅ}^{-3} \)

\(\Delta \rho_{\text{min}} = -0.16 \text{ eÅ}^{-3} \)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	\(U_{\text{eq}} \)
O3	0.63005 (6)	0.31601 (7)	0.48667 (14)	0.0542 (3)
O2	0.58609 (6)	0.39797 (6)	0.25605 (15)	0.0595 (3)
N3	0.40012 (7)	0.34790 (7)	0.20621 (16)	0.0441 (3)
N2	0.39287 (6)	0.19477 (7)	0.20006 (16)	0.0435 (3)
O4	0.75836 (8)	0.26469 (8)	0.30406 (19)	0.0788 (4)
O1	0.25639 (7)	0.09653 (7)	0.0672 (2)	0.0780 (4)
N1	0.25076 (8)	0.18024 (9)	0.06361 (19)	0.0599 (4)
C14	0.58089 (8)	0.33230 (9)	0.34708 (19)	0.0416 (3)
C12	0.52135 (8)	0.25563 (8)	0.31845 (18)	0.0414 (3)
C13	0.44102 (8)	0.27009 (8)	0.24261 (18)	0.0404 (3)
C7	0.32472 (8)	0.32353 (9)	0.13986 (19)	0.0441 (3)
C17	0.86457 (9)	0.34187 (9)	0.46238 (19)	0.0464 (3)
C8	0.31681 (8)	0.22879 (9)	0.1315 (2)	0.0465 (3)
C6	0.26278 (8)	0.39215 (9)	0.08286 (19)	0.0459 (3)
C11	0.54667 (9)	0.16813 (9)	0.3493 (2)	0.0483 (3)
H11	0.598339	0.157821	0.403177	0.058*
C16	0.77582 (9)	0.32058 (9)	0.4145 (2)	0.0495 (3)
C15	0.70537 (8)	0.36842 (9)	0.5070 (2)	0.0498 (3)
H15A	0.719202	0.375040	0.629688	0.060*
H15B	0.697194	0.428055	0.457752	0.060*
C18	0.85553 (9)	0.40814 (10)	0.5833 (2)	0.0524 (4)
H18	0.843669	0.443252	0.632786	0.063*
C9	0.42025 (9)	0.10793 (9)	0.2257 (2)	0.0508 (4)
H9	0.387103	0.059250	0.191712	0.061*
C10	0.49660 (9)	0.09435 (9)	0.3016 (2)	0.0529 (4)
H10	0.515667	0.035964	0.321857	0.063*
C5	0.28989 (9)	0.47829 (10)	0.0411 (2)	0.0537 (4)
H5	0.346539	0.492649	0.052027	0.064*
C4	0.23357 (10)	0.54324 (11)	-0.0168 (2)	0.0618 (4)
H4	0.252468	0.600751	-0.044788	0.074*
C19	0.96856 (10)	0.42184 (11)	0.6299 (3)	0.0645 (4)
H19	0.982383	0.465939	0.711376	0.077*
C3	0.14938 (11)	0.52236 (12)	-0.0328 (2)	0.0669 (5)
H3	0.111528	0.565477	-0.073272	0.080*
C1	0.17725 (9)	0.37247 (11)	0.0689 (3)	0.0633 (4)
H1	0.157736	0.315422	0.098519	0.076*
Atomic displacement parameters (Å²)

	U¹¹	U¹²	U¹³	U¹²	U¹³	U¹³
O3	0.0450 (5)	0.0615 (6)	0.0559 (7)	−0.0123 (4)	−0.0143 (5)	0.0119 (5)
O2	0.0558 (6)	0.0431 (5)	0.0792 (8)	−0.0076 (4)	−0.0223 (5)	0.0138 (5)
N3	0.0351 (5)	0.0412 (5)	0.0558 (7)	−0.0003 (4)	−0.0046 (5)	0.0017 (5)
N2	0.0354 (5)	0.0418 (6)	0.0534 (7)	−0.0037 (4)	−0.0030 (5)	0.0028 (5)
O4	0.0687 (7)	0.0791 (8)	0.0882 (9)	0.0000 (6)	−0.0168 (7)	−0.0363 (7)
O1	0.0631 (7)	0.0515 (6)	0.1188 (11)	−0.0111 (5)	−0.0220 (7)	−0.0053 (6)
N1	0.0451 (7)	0.0562 (7)	0.0783 (10)	−0.0071 (6)	−0.0122 (6)	−0.0018 (7)
C14	0.0327 (6)	0.0428 (7)	0.0492 (8)	0.0027 (5)	−0.0041 (6)	0.0002 (6)
C12	0.0360 (6)	0.0430 (7)	0.0451 (8)	−0.0008 (5)	−0.0008 (6)	0.0031 (6)
C13	0.0362 (6)	0.0389 (6)	0.0461 (8)	−0.0031 (5)	0.0003 (6)	0.0024 (6)
C7	0.0348 (6)	0.0467 (7)	0.0508 (8)	−0.0018 (5)	−0.0025 (6)	0.0013 (6)
C17	0.0450 (7)	0.0460 (7)	0.0481 (8)	−0.0002 (5)	−0.0044 (6)	0.0044 (6)
C8	0.0352 (6)	0.0478 (7)	0.0565 (9)	−0.0034 (5)	−0.0068 (6)	0.0020 (6)
C6	0.0382 (7)	0.0485 (7)	0.0511 (9)	0.0024 (5)	−0.0056 (6)	−0.0015 (6)
C11	0.0391 (7)	0.0487 (7)	0.0569 (9)	0.0006 (6)	−0.0046 (6)	0.0084 (6)
C16	0.0525 (8)	0.0448 (7)	0.0511 (9)	−0.0020 (6)	−0.0115 (7)	0.0009 (6)
C15	0.0424 (7)	0.0488 (7)	0.0579 (9)	−0.0040 (6)	−0.0137 (6)	0.0008 (7)
C18	0.0424 (7)	0.0526 (8)	0.0621 (10)	0.0019 (6)	−0.0039 (7)	−0.0011 (7)
C9	0.0479 (8)	0.0384 (7)	0.0659 (10)	−0.0038 (6)	−0.0058 (7)	0.0021 (6)
C10	0.0482 (8)	0.0385 (7)	0.0719 (11)	0.0012 (6)	−0.0054 (7)	0.0077 (7)
C5	0.0432 (7)	0.0497 (8)	0.0680 (11)	0.0025 (6)	−0.0064 (7)	0.0001 (7)
C4	0.0622 (10)	0.0507 (8)	0.0727 (12)	0.0089 (7)	−0.0027 (8)	0.0057 (8)
C19	0.0520 (9)	0.0631 (9)	0.0780 (12)	−0.0102 (7)	−0.0117 (8)	−0.0004 (9)
C3	0.0594 (10)	0.0706 (10)	0.0704 (12)	0.0231 (8)	−0.0138 (8)	0.0037 (9)
C1	0.0421 (8)	0.0605 (9)	0.0871 (13)	−0.0009 (7)	−0.0118 (8)	0.0028 (8)
C22	0.0569 (9)	0.0647 (10)	0.0702 (12)	0.0109 (7)	−0.0026 (8)	−0.0061 (8)
C20	0.0408 (8)	0.0788 (11)	0.0959 (15)	−0.0031 (8)	−0.0076 (8)	0.0195 (11)
C2	0.0422 (8)	0.0765 (11)	0.0990 (15)	0.0007 (8)	−0.0172 (8)	−0.0003 (10)
C21	0.0534 (9)	0.0793 (12)	0.0880 (15)	0.0150 (9)	0.0052 (9)	0.0043 (10)

Geometric parameters (Å, °)

O3—C14	1.3431 (16)	C15—H15A	0.9700			
O3—C15	1.4365 (16)	C15—H15B	0.9700			
O2—C14	1.2018 (16)	C18—C19	1.381 (2)			
N3—C7	1.3491 (16)	C18—H18	0.9300			
Bond	Length	Angle	Bond	Length		
----------------------	---------	---------------	----------------------	---------		
N3—C13	1.3526	117.98 (11)	H15A—C15—H15B	108.4		
N2—C9	1.3729	110.88 (10)	C6—C12—C13	119.9		
N2—C13	1.3918	110.15 (11)	C11—C12—C13	119.9		
N2—C8	1.4092	118.33 (11)	C11—C12—C14	119.9		
O4—C16	1.2157	120.15 (11)	C11—C12—C14	119.9		
O1—N1	1.2446	117.93 (11)	C12—C13—C12	120.1		
N1—C8	1.3732	112.44 (10)	C12—C13—C14	120.1		
C14—C12	1.4951	112.44 (10)	C12—C13—C12	120.1		
C12—C11	1.3783	112.44 (10)	C12—C13—C12	120.1		
C12—C13	1.4166	112.44 (10)	C12—C13—C12	120.1		
C7—C8	1.4115	112.44 (10)	C12—C13—C12	120.1		
C7—C6	1.4803	112.44 (10)	C12—C13—C12	120.1		
C17—C18	1.390	112.44 (10)	C12—C13—C12	120.1		
C17—C22	1.391	112.44 (10)	C12—C13—C12	120.1		
C17—C16	1.4907	112.44 (10)	C12—C13—C12	120.1		
C6—C5	1.387	112.44 (10)	C12—C13—C12	120.1		
C6—C1	1.396	112.44 (10)	C12—C13—C12	120.1		
C11—C10	1.4002	112.44 (10)	C12—C13—C12	120.1		
C11—H11	0.9300	112.44 (10)	C12—C13—C12	120.1		
C16—C15	1.511	112.44 (10)	C12—C13—C12	120.1		
C14—O3—C15	117.98	118.33 (11)	C11—C12—C12	120.1		
C7—N3—C13	105.94	118.33 (11)	C11—C12—C12	120.1		
C9—N2—C13	123.04	118.33 (11)	C11—C12—C12	120.1		
C9—N2—C8	131.29	118.33 (11)	C11—C12—C12	120.1		
C13—N2—C8	105.67	118.33 (11)	C11—C12—C12	120.1		
O1—N1—C8	117.36	118.33 (11)	C11—C12—C12	120.1		
O2—C14—O3	124.53	118.33 (11)	C11—C12—C12	120.1		
O2—C14—C12	125.28	118.33 (11)	C11—C12—C12	120.1		
O3—C14—C12	110.15	118.33 (11)	C11—C12—C12	120.1		
C11—C12—C13	118.33	118.33 (11)	C11—C12—C12	120.1		
C11—C12—C14	120.41	118.33 (11)	C11—C12—C12	120.1		
C13—C12—C14	120.94	118.33 (11)	C11—C12—C12	120.1		
N3—C13—N2	111.88	118.33 (11)	C11—C12—C12	120.1		
N3—C13—C12	130.17	118.33 (11)	C11—C12—C12	120.1		
N2—C13—C12	117.93	118.33 (11)	C11—C12—C12	120.1		
N3—C7—C8	111.24	118.33 (11)	C11—C12—C12	120.1		
N3—C7—C6	121.04	118.33 (11)	C11—C12—C12	120.1		
C8—C7—C6	127.70	118.33 (11)	C11—C12—C12	120.1		
C18—C17—C22	119.06	118.33 (11)	C11—C12—C12	120.1		
C18—C17—C16	122.36	118.33 (11)	C11—C12—C12	120.1		
C22—C17—C16	118.53	118.33 (11)	C11—C12—C12	120.1		
N1—C8—N2	127.33	118.33 (11)	C11—C12—C12	120.1		
N1—C8—C7	127.34	118.33 (11)	C11—C12—C12	120.1		
N2—C8—C7	105.26	118.33 (11)	C11—C12—C12	120.1		
C5—C6—C1	118.72	118.33 (11)	C11—C12—C12	120.1		
C5—C6—C7	119.55	118.33 (11)	C11—C12—C12	120.1		
C1—C6—C7	121.73	118.33 (11)	C11—C12—C12	120.1		
Bond/Angle	Value (deg)	Bond/Angle	Value (deg)			
-----------	------------	-----------	------------			
C12—C11—C10	121.69 (12)	C17—C22—H22	119.7			
C12—C11—H11	119.2	C21—C20—C19	119.80 (15)			
C10—C11—H11	119.2	C21—C20—H20	120.1			
O4—C16—C17	121.74 (14)	C19—C20—H20	120.1			
O4—C16—C15	118.84 (13)	C3—C2—C1	120.74 (15)			
C17—C16—C15	119.41 (12)	C3—C2—H2	119.6			
O3—C15—C16	108.54 (11)	C1—C2—H2	119.6			
O3—C15—H15A	110.0	C22—C21—C20	120.14 (17)			
C16—C15—H15A	110.0	C22—C21—H21	119.9			
O3—C15—H15B	110.0	C20—C21—H21	119.9			
C16—C15—H15B	110.0					

Bond/Angle	Value (deg)	Bond/Angle	Value (deg)
C15—O3—C14—O2	−14.9 (2)	C8—C7—C6—C1	23.0 (3)
C15—O3—C14—C12	163.13 (11)	C13—C12—C11—C10	2.5 (2)
O2—C14—C12—C11	141.14 (16)	C14—C12—C11—C10	−171.16 (15)
O3—C14—C12—C11	−36.82 (19)	C18—C17—C16—O4	177.35 (15)
O2—C14—C12—C13	−32.3 (2)	C22—C17—C16—O4	−5.1 (2)
O3—C14—C12—C13	149.69 (13)	C18—C17—C16—C15	−3.6 (2)
C7—N3—C13—N2	0.14 (16)	C22—C17—C16—C15	173.89 (14)
C7—N3—C13—C12	−178.13 (15)	C14—O3—C15—C16	−89.28 (14)
C9—N2—C13—N3	−179.58 (13)	O4—C16—C15—C13	19.49 (19)
C8—N2—C13—N3	0.31 (16)	C17—C16—C15—O3	−159.56 (12)
C9—N2—C13—C12	−1.1 (2)	C22—C17—C18—C19	−1.0 (2)
C8—N2—C13—C12	178.82 (12)	C16—C17—C18—C19	176.52 (14)
C11—C12—C13—N3	176.84 (15)	C13—N2—C9—C10	2.4 (2)
C14—C12—C13—N3	−9.5 (2)	C8—N2—C9—C10	−177.50 (15)
C11—C12—C13—N2	−1.3 (2)	C2—C3—C4—C5	0.2 (3)
C14—C12—C13—N2	172.27 (13)	N2—C9—C10—C11	−1.2 (2)
C13—N3—C7—C8	−0.56 (17)	C12—C11—C10—C9	−1.2 (3)
C13—N3—C7—C6	−179.33 (13)	C1—C6—C5—C4	−1.3 (2)
O1—N1—C8—N2	2.6 (2)	C7—C6—C5—C4	178.39 (15)
O1—N1—C8—C7	179.29 (16)	C6—C5—C4—C3	0.2 (3)
C9—N2—C8—N1	−3.5 (3)	C17—C18—C19—C20	0.4 (2)
C13—N2—C8—N1	176.62 (15)	C5—C4—C3—C2	1.0 (3)
C9—N2—C8—C7	179.26 (15)	C5—C6—C1—C2	1.2 (3)
C13—N2—C8—C7	−0.61 (15)	C7—C6—C1—C2	−178.44 (16)
N3—C7—C8—N1	−176.49 (15)	C18—C17—C22—C21	0.7 (2)
C6—C7—C8—N1	2.2 (3)	C16—C17—C22—C21	−176.95 (16)
N3—C7—C8—N2	0.74 (17)	C18—C19—C20—C21	0.4 (3)
C6—C7—C8—N2	179.42 (14)	C4—C3—C2—C1	−1.0 (3)
N3—C7—C6—C5	21.9 (2)	C6—C1—C2—C3	−0.1 (3)
C8—C7—C6—C5	−156.69 (16)	C17—C22—C21—C20	0.2 (3)
N3—C7—C6—C1	−158.46 (15)	C19—C20—C21—C22	−0.8 (3)
Hydrogen-bond geometry (Å, °)

Cg_4 is the centroid of the C17–C22 phenyl ring.

D—H···A	D—H	H···A	D···A	D—H···A
C15—H15A···O4i	0.97	2.54	3.1257 (19)	119
C15—H15B···O1ii	0.97	2.61	3.4841 (18)	150
C9—H9···O2iii	0.93	2.46	3.1176 (16)	128
C10—H10···O2iii	0.93	2.67	3.2243 (17)	119
C9—H9···O1	0.93	2.35	2.8736 (18)	116
C1—H1···N1	0.93	2.51	3.081 (2)	120
C22—H22···Cg4iv	0.93	2.80	3.657 (2)	153

Symmetry codes: (i) x, $-y+1/2$, $z+1/2$; (ii) $-x+1$, $y+1/2$, $-z+1/2$; (iii) $-x+1$, $y-1/2$, $-z+1/2$; (iv) x, $-y+1/2$, $z-1/2$.

Acta Cryst. (2022), E78, 322-325