Reliability of manual vascular segmentation for retinal fractal dimension using peek retinatm (Article) (Open Access)

Esa, N.R.¹, Saidi, S.N.H.², Azemin, M.Z.C.³, Shukri, N.A.M.³, Ahmad, N.³, Yusof, F.³

¹Bachelor of Optometry (Hons.), Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Malaysia
²Candidate of Bachelor of Optometry (Hons), Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Malaysia
³Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Malaysia

Abstract

Fractal dimension (Df) has been identified as indirect measure in quantifying the complexity of retinal vessel network which is useful for early detection of vascular changes. Reliability studies of Df measurement on retinal vasculature, has been conducted on retinal images processed by using semi-automated software which only permits image with 45° field of view (FOV). Smartphone-assisted fundus camera retinal image has a maximum 30° FOV which warrant manual processing in measuring the Df. Retinal blood vessels need to be manually segmented to produce binary images for retinal vasculatures Df measurement. Therefore, this study was conducted to determine the intragrader and intergrader reliability of manual segmentation of the retinal vasculature Df measurement from retinal images taken using a smartphone-assisted fundus camera. Forty-five retinal images were captured using the Portable Eye Examination Kit Retina (Peek Retina™, Peek Vision Ltd, UK). Suitable image for Df analysis were selected based on gradable retinal image criteria which included: i) good image focus, ii) centered position of optic nerve head (ONH) and iii) significant blood vessel visibility. The images were cropped 0.5 disc diameters away from disc margin and resized to 500x500 pixels using GNU Image Manipulation Program Version 2.8.18 (GIMP, The GIMP Team, United States). Retinal vessels were manually traced by using layering capabilities for blood vessel segmentation. Df values of segmented blood vessels were measured by using Image J (National Institutes of Health, USA) and its plugin software, FracLac Version 2.5. Intragrader and intergrader reliability was determined by comparing the Df values between two readings measured one week apart by a grader and readings from two different graders, respectively, using intraclass correlation coefficient (ICC) and Bland-Altman graphical plots. Intragrader agreement for retinal Df showed good reliability with ICC of 0.899 (95% CI: 0.814-0.945). Bland Altman analysis indicated good agreement between Df values at different grading time (mean difference 0.0050; 95% CI:-0.0001-0.0101). Intergrader reliability for retinal Df was high with ICC of 0.814 (95% CI: 0.459-0.919). Bland Altman plot revealed good intergrader agreement for retinal Df between two graders with a bias value of 0.0158 (95% CI: 0.0092-0.0223). In conclusion, manual segmentation of retinal image captured by smartphone-assisted fundus camera has good reliability (0.75 < ICC < 0.9) for Df analysis to study the morphology of retinal vasculatures. © Blue Eyes Intelligence Engineering & Sciences Publication.
This study was supported by the Research Management Centre, International Islamic University Malaysia, under Research Initiatives Grant Scheme (RIGS 16-127-0291).

References (27)

1. Avakian, A., Kalina, R.E., Sage, E.H., Rambhia, A.H., Elliott, K.E., Chuang, E.L., Clark, J.I., (...), Parsons-Wingerter, P.
 Fractal analysis of region-based vascular change in the normal and non-proliferative diabetic retina
 (2002) Current Eye Research, 24 (4), pp. 274-280. Cited 87 times.
 doi: 10.1076/ceyr.24.4.274.8411
 View at Publisher

2. Tălu, S.
 Fractal analysis of normal retinal vascular network.
 (2011) Oftalmologia (Bucharest, Romania : 1990), 55 (4), pp. 11-16. Cited 19 times.

3. Liew, G., Wang, J.J., Mitchell, P., Wong, T.Y.
 Retinal vascular imaging: a new tool in microvascular disease research. (Open Access)
 (2008) Circulation. Cardiovascular imaging, 1 (2), pp. 156-161. Cited 187 times.
 doi: 10.1161/CIRCIMAGING.108.784876
 View at Publisher

4. Huang, F., Dashtbozorg, B., Zhang, J., Bekkers, E., Abbasi-Sureshjani, S., Berendschot, T.T.J.M., Ter Haar Romeny, B.M.
 Reliability of Using Retinal Vascular Fractal Dimension as a Biomarker in the Diabetic Retinopathy Detection (Open Access)
 (2016) Journal of Ophthalmology, 2016, art. no. 6259047. Cited 14 times.
 http://www.hindawi.com/journals/jop/
 doi: 10.1155/2016/6259047
 View at Publisher