Edge-preserving self-healing: keeping network backbones densely connected

Atish Das Sarma
Google Research, Google Inc.
Mountain View, CA, USA - 94041.
E-mail: atish.dassarma@gmail.com

Amitabh Trehan
Faculty of Industrial Engineering and Management,
Technion - Israel Institute of Technology,
Haifa, Israel - 32000.
E-mail: amitabh.trehan@gmail.com

Abstract—Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. The general goal of self-healing distributed graphs is to maintain good connectivity throughout the network. This comes with the constraint that with every failure, one is allowed to only make bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11] in a line of work that has yielded gradual improvements in the properties ensured on the graph. The competing requirements normally imposed are that of maintaining small degrees, while ensuring high connectivity in terms of shortest path dilation. In a recent work in PODC'11, an additional requirement on expansion was added, and an improved self-healing algorithm for maintaining the same was presented. This work motivates a strong general phenomenon of edge-preserving healing that aims at obtaining self-healing algorithms with the constraint that all original edges in the graph (not deleted by the adversary), be retained in every intermediate graph. This naturally further restricts the ability to add new edges during failures, due to the degree bound constraints.

None of the previous algorithms, in their nascent form, are explicitly edge preserving. In this paper we show that the previous algorithms can be suitably modified with very simple changes such that all the previous properties are maintained, and in addition, the algorithms are edge-preserving. Towards this end, we present a general self-healing model that unifies the previous algorithms and shall hopefully be a definitive model. The main contribution of this paper is not in the technical complexity, rather in the simplicity with which the edge-preserving property can be ensured and the message that this is a crucial property with several benefits. In particular, we highlight the power of edge-preserving self-healing algorithms by showing that, almost as an immediate corollary, subgraph densities are preserved or increased. Maintaining density is a notion that is clearly motivated by the fact that in certain distributed networks, certain nodes may require and initially have a large number of inter-connections (perhaps due to their larger bandwidth/communication requirements). It is vital that a healing algorithm, even amidst failures, respect these requirements; this is something that was not guaranteed by any of the previous algorithms. Our suggested modifications yield such subgraph density preservation as a by product. In addition, edge preservation helps maintain any subgraph induced property that is monotonic. Also, algorithms that are edge-preserving require minimal alteration of edges which can be an expensive cost in healing - something that has not been modeled in any of the past work. All the algorithms and proofs presented are simple and yet powerful enough to guarantee edge preservation in addition to all previous requirements.

I. INTRODUCTION

With the advent of the internet, the growth of large communication networks, and the staggering rate of interaction and data exchange, the need for self maintaining distributed networks has grown tremendously. While such huge networks provide an excellent backbone for processing and exchanging data at a scale that was unimaginable before, they also call for radically improved and novel techniques that are efficient and fault tolerant at the same magnitude. At this scale, managing resources centrally is untenable. It is imperative that we design distributed and localized healing algorithms for failures, that achieve and maintain all desired global connectivity properties. The challenge lies in several dimensions: (a) localized distributed algorithms have the inability to look far into the network and so maintaining global properties is unclear, (b) several of the properties desired may themselves be conflicting on first sight such as ensuring upper bounds on degrees while maintaining low stretch and high expansion (c) the rate and nature of failures can be completely arbitrary (or adversarial) and thus, hard to predict, and finally yet very importantly (d) reacting to failures by deleting and adding new communication edges can be expensive in both cost and time.

This line of work adopts a responsive approach, in the sense that it responds to an attack (or component failure) by changing the topology of the network. This approach works irrespective of the initial state of the network, and is thus orthogonal and complementary to traditional non-responsive techniques. In this setting, these papers seek to address the important and challenging problem of efficiently and responsively maintaining global invariants in a localized, distributed manner.

Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. Several self-healing algorithms have been suggested in the recent literature in a line of work that has yielded gradual improvements in the properties ensured on the graph. The competing requirements normally imposed are that of maintaining small degrees, while ensuring high connectivity in terms of shortest path dilation. In a recent work, an additional requirement of expansion was added, and an improved self-healing algorithm for maintaining the

Abstract—Healing algorithms play a crucial part in distributed peer-to-peer networks where failures occur continuously and frequently. The general goal of self-healing distributed graphs is to maintain good connectivity throughout the network. This comes with the constraint that with every failure, one is allowed to only make bounded alterations locally. Several self-healing algorithms have been suggested in the recent literature [IPDPS'08, PODC'08, PODC'09, PODC'11] in a line of work that has yielded gradual improvements in the properties ensured on the graph. The competing requirements normally imposed are that of maintaining small degrees, while ensuring high connectivity in terms of shortest path dilation. In a recent work, an additional requirement of expansion was added, and an improved self-healing algorithm for maintaining the

Supported in part at the Technion by a fellowship of the Israel Council for Higher Education.
same was presented. This work motivates a strong general phenomenon of *edge-preserving* healing that aims at obtaining self-healing algorithms with the constraint that all the original edges in the graph (not deleted by the adversary), be retained in *every* intermediate graph. This naturally further restricts the ability to add new edges during failures, due to the degree bound constraints. This is the primary focus of our paper and we motivate this further in the next paragraph.

Several algorithms have been designed to obtain self-healing in such distributed networks, and in a series of papers, some of these concerns have been addressed. One challenge in particular, however, has received little attention: namely, the cost of deleting and adding new edges. Past work has bounded this cost by restricting the number of edges that can be deleted or added. However, none of the works appeal to the concept of *minimizing* the edge deletions of the network, at any healing stage. The most recent algorithm, and arguably the best for this purpose, is based on a concept of *density* that aims at obtaining a stronger interconnection within a set of nodes, while retaining *every* subset of nodes present or inserted in the system. In fact, it is conceivable that they would incur initiation and termination costs for new connections and dropping connections, whenever making an alteration in the networks. Our algorithms also help these networks retain their backbone connections and thereby minimize any reconstruction/configuration costs.

Our Model: Our model - The General Self-healing model is a generalization of the models used in [1]–[5]. We describe it here briefly. We assume that the network is initially a connected graph over *n* nodes. An adversary repeatedly attacks the network. This adversary knows the network topology and our algorithm, and it has the ability to delete arbitrary nodes from the network or insert a new node in the system which can connect to any subset of nodes currently in the system. However, we assume the adversary is constrained in that it in any time step it can only delete or insert a single node. In this context, the self-healing algorithm is supposed to fulfill certain success metrics, according to the particular requirements of the problem. The detailed model is described in Section II.

Our Contributions.

- We introduce edge preservation as a novel consideration for healing algorithms, motivated by the cost associated with switching physical network communication lines.
We show edge preservation not only reduces the cost but also results in desirable network structural consequences such as preserving or improving various monotonic graph properties. In particular, we motivate and use density as a running example for an interesting monotonic property. We then consider density as a novel constraint for the design of self-healing algorithms.

- We generalize and strengthen previous algorithms to consider edge-preservation, and in particular maintaining or increasing all subgraph densities, as a constraint to the algorithmic problem. This enforces the constraint of maintaining any strong connectivity structure between hub nodes, or nodes with high bandwidth/communication.
- Finally, we present proofs for the unified algorithm presented in this paper by showing strong guarantees on the density constraint, as well as show how the previously considered measures, such as connectivity, diameter, degree constraint, network stretch, and expansion, continue to hold without being compromised. Our proofs are simple and the algorithm and proof essentially fall out from a fairly simple generalization of the previous techniques by a small modification that enforces the edge-preserving property.

Related Work: This work builds upon previous works of self-healing. It investigates the algorithms discussed in [1]–[5]: In particular, we introduce an edge-preserving (formally defined later) version of the algorithm Xheal and show that this new version self-heals subgraph density.

These works show a progressive increase in the number of properties self-healed and increasing sophistication in the techniques used. The earliest works [1], [6] maintained connectivity while ensuring low degree increase. Later, Hayes, Rustagi, Saia and Trehan introduced the Forgiving Tree [2], which is a tree maintenance algorithm, that while being much more efficient also maintained the diameter of the network. However, it does not handle insertion (this is still an open problem in the tree maintenance setting). Hayes, Saia and Trehan later introduced the Forgiving Graph [3], which improved upon Forgiving Tree by not only handling insertions but also maintaining network stretch (which is a stronger property than network diameter). All the above algorithms use tree-like structures for self-healing; Pandurangan and Trehan instead use expander structures in Xheal [5] and show that they can also self-heal Network expansion in addition to the previous properties. Our work augments these previous works by adding a new desirable property for self-healing algorithms, adding subgraph density to the list of properties maintained, analyzing the previous algorithms for these properties and modifying them (when required).

Further, the problem of finding densest subgraphs is well-studied. Finding a maximum density subgraph on an undirected graph can be solved in polynomial time [7], [8]. However, the problem becomes NP-hard when a size restriction is enforced. In particular, finding a maximum density subgraph of size exactly k is NP-hard [9], [10] and no approximation scheme exists under a reasonable complexity assumption [11]. Khuller and Saha [12] considered the problem of finding densest subgraphs with size restrictions and showed that these are NP-hard. Khuller and Saha [12] and also Andersen and Chellapilla [13] gave constant factor approximation algorithms. There are several more papers related to finding dense subgraphs, both theoretical and practical, but we avoid listing a comprehensive survey of this literature and refer the reader to the references in the aforementioned papers. The nice aspect of our self-healing algorithms approach is that it completely bypasses the problem of actually computing dense subgraphs; the density of any subgraph is simply retained (or increased) as an immediate consequence of the edge-preserving property.

A. Preliminaries

Let $G = (V,E)$ be an undirected graph and $S \subseteq V$ be a set of nodes.

Graph Density: The density of a graph $G(V,E)$ is defined as $|E|/|V|^2$.

SubGraph Density: The density of a subgraph defined by a subset of nodes S of $V(G)$ is defined as its induced density. We will use $\text{den}(S)$ to denote the density of the subgraph induced by S. Therefore, $\text{den}(S) = \frac{|E(S)|}{|S|^2}$. Here $E(S)$ is the subset of edges (u,v) of E where $u \in S$ and $v \in S$. In particular, when talking about the density of a subgraph defined by set of vertices S induced on G, we use the notation $\text{den}_G(S)$. However, when clear from context, we omit the subscript G.

Edge Expansion: We denote $\overrightarrow{S} = V - S$. Let $|E_{S,\overrightarrow{S}}| = \{|(u,v) \in E | u \in S, v \in \overrightarrow{S}\}$ be the number of edges crossing the cut (S,\overrightarrow{S}). We define the volume of S to be the sum of the degrees of the vertices in S as $\text{vol}(S) = \sum_{x \in S} \text{degree}(x)$. The edge expansion of the graph ν_G is defined as, $\nu_G = \min_{|S| \leq |V|/2} \frac{|E_{S,\overrightarrow{S}}|}{|S|}$.

II. General Self-Healing Model

This model was introduced in [3], [4]. Somewhat similar models were also used in [1], [2], [5]. We now describe the details. Let χ be a self-healing algorithm. Let $G = G_0$ be an arbitrary graph on n nodes, which represent processors in a distributed network. In each step, the adversary either deletes or adds a node. After each deletion, the algorithm gets to add some new edges to the graph, as well as deleting old ones. At each insertion, the processors follow a protocol to update their information. χ’s goal is to maintain a certain set of properties e.g. those given in Figure 2. At the same time, the algorithm wants to minimize the resources spent on this task, which usually also includes keeping node degree small.

Initially, each processor only knows its neighbors in G_0, and is unaware of the structure of the rest of G_0. After each deletion or insertion, only the neighbors of the deleted or inserted vertex are informed that the deletion or insertion has occurred. After this, processors are allowed to communicate (synchronously or asynchronously depending on the constraints) by sending a limited number of messages to their direct neighbors. We assume that these messages are always sent and received successfully. The processors may
Each node of G_0 is a processor. Each processor starts with a list of its neighbors in G_0. Pre-processing: Processors may send messages to and from their neighbors.

for $t := 1$ to T **do**
Adversary deletes or inserts a node v_t from/into G_{t-1}, forming U_t.

if node v_t is inserted **then**
The new neighbors of v_t may update their information and send messages to and from their neighbors.

if node v_t is deleted **then**
All neighbors of v_t are informed of the deletion.

Recovery phase:
Nodes of U_t may communicate (synchronous/asynchronous, in parallel) with their immediate neighbors. These messages are never lost or corrupted, and may contain the names of other vertices.

During this phase, each node may insert edges joining it to any other nodes as desired. Nodes may also drop edges from previous rounds if no longer required. At the end of this phase, we call the graph G_t.

Success metrics:
- **Maintaining properties:** Maintain certain well stated invariants/ minimize certain(local/global) “complexity” measures.
- **Recovery time:** The maximum total time for a recovery round, assuming it takes a message no more than 1 time unit to traverse any edge and we have unlimited local computational power at each node.
- **Communication complexity:** Number of messages used for recovery.

Consider the graph G'_t which is the graph, at timestep t, consisting solely of the original nodes (from G_0) and insertions without regard to deletions and healings.

1) **Connectivity.** If G'_t is connected, so is G_t.
2) **Degree increase.** $\max_{v \in G_t} \deg(v; G_t) > \deg(v; G'_t)$.
3) **Density.** $\text{den}(G_t) \geq \text{den}(G'_t)$.
4) **Edge expansion.** $h(G_t) \geq \min(\alpha, \beta h(G'_t))$; for constants $\alpha, \beta > 0$.
5) **Diameter.** $\text{diam}(G_t)/\text{diam}(G'_t)$.
6) **Network stretch.** $\max_{x, y \in G_t} \frac{\text{d}(x, y; G_t)}{\text{d}(x, y; G'_t)}$, where, for a graph G and nodes x and y in G, $\text{d}(x, y; G)$ is the length of the shortest path between x and y in G.

We also allow a certain amount of pre-processing to be done before the first attack occurs. For example, we assume that all nodes know the address of all the neighbors of its neighbors (NoN). Our full model is described in Figure 1.

III. Edge-preserving Self Healing
Here, we introduce edge-preservation, which we contend is a strongly desirable property for self-healing. A self-healing algorithm is edge-preserving in our model if the original edges and those inserted by the adversary are never deleted by the algorithm. More formally, we state:

Edge Preserving: A self-healing algorithm χ is edge-preserving in the general self-healing model (Figure 1), if we have that, for all $u, v \in V(G_t)$, if $(u, v) \in E(G'_t)$, then $(u, v) \in E(G_t)$.

We also define the notion of an edge-monotonic property as follows:

Edge-monotonic graph property/function: Given a graph $G(V, E)$, and a subgraph $S \subseteq V(G)$, a subgraph property/function $f_G : S \rightarrow [0, \infty)$ is said to be edge-monotonic or edge-monotonically non-decreasing if for any two graphs $G_1(V, E_1)$, $G_2(V, E_2)$ with $E_1(S) \subseteq E_2(S)$, we have $f_{G_1}(S) \leq f_{G_2}(S)$. Further, the property is said to be edge-monotonically increasing if for $E_1(S) \subset E_2(S)$, we have $f_{G_1}(S) < f_{G_2}(S)$.

It is quite straightforward to maintain edge-monotonic graph properties once edge-preservation is achieved. We show this more formally in section IV for the algorithm xheal+ (described later) and the edge-monotonic property of density.

IV. Xheal+
Here, we describe xheal+, which is the algorithm xheal [5] modified to make it edge-preserving. The main difference from xheal is that we allow multiple ‘colorings’ (explained more formally later) for a single edge in xheal+. This enables us to detect if the edge was originally present or inserted by the adversary in the graph and has been recolored by the algorithm. At certain points in its execution, xheal removed edges from the graph; in xheal+, if the edge was not an ‘original’ edge, we delete the edge as in xheal, but otherwise, we simply remove the required label/color from the edge without deleting it. The algorithm is summarized in Figure 3 to make it easy to understand the modifications from xheal, we have added the symbol + to the lines we have changed. We have also rewritten some of the subroutines more clearly and added the subroutines given in Figures 8, 9, 10, and 11.

Here, we will not describe the details of the algorithm which are already given in [5]. However, we shall very briefly summarise the algorithm for completeness and explain in more detail the enhancements in xheal+. Let κ be a fixed parameter that is implementation dependent. For the purposes of this algorithm, we assume the existence of a κ-regular expander with edge expansion $\alpha > 2$. To describe the algorithm, in xheal+, we associate a set of colors (as opposed to a single color in xheal) with each edge of the graph i.e. for an edge e, $e.color$ is a set of colors associated with an edge. Each
color associates a property or functionality with an edge. We assume that the original edges of G and those added by the adversary are all colored black initially, i.e., for such an edge e, $e.color = \{\text{black}\}$. If (u, v) is a black (colored) edge, we say that $v(u)$ is a black (colored) neighbor of $u(v)$. In xheal+, the algorithm can later add functionality to the edge (add as part of primary or secondary clouds, as described later) by adding new colors to the set, and remove the functionality by simply removing that color.

At any time step, the adversary can add a node (with its incident edges) or delete a node (with its incident edges). Addition is straightforward, the algorithm takes no action and the added edges simply get colored black (Notice the edge did not exist before, so this will be its first color; in a model where edges may be adversarially added to previously existing nodes, this may not hold). The self-healing algorithm is mainly concerned with what edges to add when a node is deleted and this is done based on the colors of the edges deleted as well as on other factors. In brief, the neighbors of the deleted node may be all black i.e., $e.color = \{\text{black}\}$ for all edges e deleted in this step, or not all black. If they are all black, the neighbors reconnect as a ‘primary’ cloud (Figure 7) i.e., as a κ-regular expander or as a clique if number of neighbors are less than κ (Figure 9). This cloud has its own color (e.g., it could be the label or ID of the deleted node); if a required edge does not exist, a new one is created and it takes this color, but if the edge already exists, in xheal+, this color is added to the color set of the edge (Figure 2). If the neighbors of the deleted node are not all black, this implies that the deleted node was part of at least one primary cloud (a node participates exactly once in a primary cloud for each of its deleted neighbor); we fix these primary clouds by redrawing (deleting/adding/reusing) some edges (Figure 4) to restore them to be expanders. In xheal+, since you are not allowed to remove original edges, there may be a need or advantage in doing this more efficiently reusing existing edges. Now, we select a ‘free’ node (explained later) from each of these primary clouds and construct a secondary cloud (Figure 5). A free node is simply a node which is not taking part in any secondary cloud, thus, a node can take part in at most one secondary cloud. When a node is a part of a secondary cloud, it is called a bridge node for the primary cloud it represents. Each Secondary cloud also has its own distinct color and this gets added onto the edge if it’s also used for secondary cloud duties. On deletion of a node, secondary cloud edges may also be lost, in which case we repair this cloud too (Figure 6). We do this by finding a new free node for the primary cloud that lost the bridge node (i.e., the deleted node), if need be, by borrowing from neighboring primary clouds. However, some times this may not be possible, in which case, we merge all the primary and secondary clouds affected and make a new primary cloud from all their nodes (Figure 8). Merging is an expensive operation but since it will not happen often, its cost is amortized over previous operations.

Edges may be deleted in the cloud fixing and merging operations, thus, these operations need to be edge preserving. Also, we have to ensure the nodes can communicate while the reconstruction is underway. To ensure this, we have added the algorithms MARKEDGES() (Figure 10), MAKEPOLYOGY() (Figure 9), and DELETEEDGES() (Figure 11). The algorithm MARKEDGES() prepares the clouds for construction or repair by removing the cloud’s color from the edges and marking those edges which can be safely removed (If an edge was originally present or added by the adversary, it will have the color black in its set and thus will not be marked). Notice that the edges themselves cannot be removed at this stage since these edges will form the network of communication for the present round of repair. MAKEPOLYOGY() is used to make the cloud edges; it checks for existence of a required edge for the cloud being constructed, if that edge already exists, it simply adds the color of the cloud to the color set of the edge. If an edge does not exist between the two nodes, a new edge is constructed and the edge’s color set is initialized by the color of the cloud. DELETEEDGES() is the subroutine called after a new cloud is in place to clean up. It checks all the marked edges to see which ones have no color left. This means these edges were not reused and they are also not original edges and can thus be deleted.
The proof only focuses on density, for ease of presentation. We now return to stating the main theorem of our paper in full generality and then turn to proving it formally. The proof only focuses on density, for ease of presentation.

\[\text{den}_G(S) = \frac{|E(S)|}{|S|} \] is an edge-monotonically increasing graph property. We now return to stating the main theorem of our paper in full generality and then turn to proving it formally. The proof only focuses on density, for ease of presentation.

Theorem 1: The algorithm xheal+:

1) provides the same self-healing guarantees as xheal.
2) further, for graph \(G_t \) (present graph) and graph \(G'_t \) (of only original and inserted edges), at any time \(t \), where a timestep is an insertion or deletion followed by healing:
 - For all \(\lambda(G_t) \geq \min(A, B) \), where \(\lambda(G_t) \) is the second smallest eigenvalue of the Laplacian of \(G_t \). A \(= \left(\lambda(G'_t) \right) \), B \(= \left(\frac{d_{\text{min}}(G'_t)}{d_{\text{max}}(G'_t)} \right) \).
 - \(\text{den}(S) \geq \text{den}_G(S) \) are the minimum and maximum degrees of \(G_t \).
3) for all \(x \in G_t \), \(\text{degree}_{G_t}(x) \leq \kappa \cdot \text{degree}_{G'_t}(y) + \kappa \), for a fixed constant \(\kappa > 0 \).
4) For all \(S \subseteq V(G_t) \), and any edge-monotonically non-decreasing function \(f_G \), we have \(f_G(S) \geq f_G(S) \).

Proof: Observe that a graph healed by xheal+ can only have more edges than one healed by xheal, since certain edges are prohibited to be deleted in xheal+. Also, they are identical algorithms in other aspects. Since both stretch can only be lower and expansion can only be higher if the edges are more,
Parts 1 and 2 follow (since these are proven to hold for xhead). Part 3 is not affected since it is a statement bounding the conductance of the graph in relation to the minimum degree and maximum degree of nodes. We only need to worry about parts 4 and 5. These follow from Lemmas 5 and 2.

A. Sub-graph Density Analysis via Edge Preserving Property

In Theorem 4 we claim that for all $S \subseteq V(G_t)$, $\text{den}_{G_t}(S) \leq \text{den}_{G'_t}(S)$. We initiate the proof of this lemma via a significantly stronger, and independently desirable, property that we call edge-preserving property:

Edge Preserving: For all $u,v \in V(G_t)$, if $(u,v) \in E(G'_t)$, then $(u,v) \in E(G_t)$.

We state and prove this in the following lemma.

Lemma 1: xhead+ is edge-preserving.

Proof: The proof follows from the algorithm. The algorithm explicitly makes sure that it never deletes an edge that was present in the original graph, or was inserted by an adversary. This is clear from the algorithms **MARKEDGES**(Fig. 10), **MAKEPOLY** (Fig. 9), and **DELETEEDGES**(Fig. 11), which are the only subroutines ultimately responsible for adding or deleting edges. The algorithm **MARKEDGES** marks the present edges which may possibly be affected by the reconstruction and those safe for deletion if not reused. **MAKEPOLY** reuses existing edges if they are part of the new clouds being formed or constructs new ones initializing the edge’s color vector. **DELETEEDGES** is the subroutine called after a new cloud is in place to clean up. It checks all the marked edges to determine the edges which are safe to be deleted by simply checking if their color set is empty. If the edge has no color i.e. empty color set, this means it was not an original or adversary inserted edge and has not been reused, and thus, can be safely deleted.

Now, we prove our main lemma about subgraph density. We are mainly concerned with lower bounding the density but in the following section, we also put in the upper bound for completeness.

Lemma 2: For all $S \subseteq V(G_t)$, $\text{den}_{G_t}(S) \leq \text{den}_{G'_t}(S) \leq \frac{\kappa}{|S|} \sum_{i=1}^{|S|} \deg_{G'_t}(x_i) + \frac{\kappa}{2}$.

Proof: Subgraph density is defined as $\text{den}(S) = \frac{|E(S)|}{|S|}$ for an induced subgraph of a subset S of $V(G)$. Consider any subset $S \subseteq V(G_t)$. Since xhead+ is edge-preserving and G'_t contains only original or adversary inserted edges, $E(G'_t) \subseteq E(G_t)$ and therefore $\text{den}_{G'_t}(S) \leq \text{den}_{G_t}(S)$.

B. Upper bounds on Density

In our paper we have been mainly concerned with making sure the density does not decrease. Here, for completeness, we also study how much the density can increase.

Lemma 3: For all $S \subseteq V(G_t)$, $\text{den}_{G_t}(S) \leq \text{den}_{G'_t}(S) \leq \frac{\kappa}{|S|} \sum_{i=1}^{|S|} \deg_{G'_t}(x_i \in S) + \frac{\kappa}{2} + \frac{\kappa}{2}$.

Proof: From Lemma 2 part 4 (or Lemma 5), it follows that for the subset S, if each node had the maximum degree increase and all the added edges were part of the induced subgraph $G_t(S)$, then $|E_{G_t}(S)| = |E_{G'_t}(S)| + \sum_{i=1}^{|S|} (\deg_{G_t} + \frac{\kappa}{2})$. In the equation, $\frac{\kappa}{2}$ comes from the fact that each edge contributes to the degree increase of two nodes. Dividing by S, the lemma follows. Notice that the worst case comes when there was no edge between any node of S in G'_t i.e. $|E_{G'_t}(S)| = 0$.

Let us consider the change in density of the present graph.

Lemma 4: The density of the present graph G_t, $\text{den}_{G_t}(V(G_t)) \leq (\kappa + 1).\text{den}_{G'_t}(V(G_t)) + \frac{\kappa}{2}$.

Proof: In the above statement, the l.h.s. represents the density of the present graph G_t and the r.h.s. the density of the subgraph induced by the present graph G_t on G'_t (Note that since G'_t suffers no deletions, $V(G_t) \subseteq V(G'_t)$). In Lemma 3 substituting $V(G_t)$ for S, we get,

$$\text{den}_{G_t}(V(G_t)) \leq \frac{|E_{G'_t}(V(G_t))|}{|V(G_t)|} + \frac{\kappa \sum_{i=1}^{|V(G_t)|} \deg_{G'_t}(x_i)}{|2|V(G_t)|} + \frac{\kappa}{2}$$

Since the number of edges, $|E_{G'_t}(V(G_t))|$ is $\sum_{i=1}^{|V(G_t)|} \deg_{G'_t}(x_i)$, we get the lemma.

C. Degree Analysis

Lemma 5: For all $x \in G_t$, $\deg_{G_t}(x) \leq \kappa.\deg_{G'_t}(x) + \kappa$, for a fixed parameter $\kappa > 0$.

Proof: The proof is essentially the same as in 5. Recall that we call the original edges or the edges inserted by the adversary as black edges since they have the color black as part of their color set. Intuitively, the same proof as that in xhead [5] holds since xhead does not depend on removing any black edges, and thus also covers the edge-preserving case. We give a brief proof counting the edges:

We bound the increase in degree of any node x that belongs to both G_t and G'_t. The degree of x in G'_t, $\deg_{G'_t}(x)$, is simply the count of its black edges. There are three cases:

1) x loses a black edge: In xhead+, this can only happen when the adversary deletes a node (since xhead+ is edge-preserving). Now, xhead+ may add upto κ edges by making x part of a primary or a secondary cloud. Thus, here, x’s degree can increase by a factor of κ

2) x loses an edge with a non-black color: This can happen due to adversarial node deletion or during reconstruction by the algorithm. This node deletion initiates a reconstruction of the κ-regular primary or secondary expander cloud (during which some non-black edges may be removed). At the end of this reconstruction, x remains part of the κ (or smaller)-regular degree cloud, and thus, does not increase its degree. Notice that only time the algorithm itself deletes non-black edges is during reconstruction and does not add any more edges in lieu of these deleted edges.

3) x becomes a bridge node: This means that x takes part in a secondary cloud for the first time, either for its own primary cloud or as a borrowed member by another cloud. Since the secondary cloud itself is a κ-regular
expander, x gains a degree of κ. However, x never takes part in more than one secondary cloud.

Thus, from the above, we get that $\text{degree}_{G_t}(x) \leq \kappa \cdot \text{degree}_{G'_t}(x) + \kappa$.

VI. OTHER EDGE-PRESERVING SELF-HEALING ALGORITHMS

We look at two other recent self-healing algorithms, Forgiving Graph [3] and Forgiving Tree [2]. Our analysis shows that these algorithms are implicitly edge-preserving in the sense that they may not work properly if the algorithm ever deleted original or adversary added edges. At a high level, these algorithms have virtual nodes and edges, which are a counterpart of the clouds in xheal+, and real nodes and edges, which will be like black edges in xheal+. The basic mechanism is to replace the deleted node by a 'Reconstruction Tree' of virtual nodes and edges (i.e. placeholder nodes simulated by the 'real' i.e. existing nodes in the network); this is shown in Figure 13 (from ??). Without going into details, it is simple to use this mechanism of virtual structures instead of the marking scheme used in xheal+ to ensure edge-preservation if the underlying algorithm does not explicitly delete original edges. Let us have a brief look at the measure of density (as an example of an edge-monotonically non-decreasing property) for these algorithms.

Fig. 13. Deleted node v replaced by its Reconstruction Tree. The triangle shaped nodes are 'virtual' helper nodes simulated by the 'real' nodes which are in the leaf layer.

A. Edge-preserving Forgiving Graph

Forgiving Graph confirms to the general self-healing model(Figure 1) maintaining as it’s success metrics connectivity, degree increase and network stretch. It has the following bound on degree increase (Adapted from Theorem 1 of [3]):

Lemma 6: For any node v in $V(G_t)$, after any number of time steps, t, $\text{degree}_{G_t}(v) \leq 3 \cdot \text{degree}_{G'_t}(v)$.

The edge-preserving property and the above lemma yield:

Lemma 7: For all $S \subseteq V(G_t)$, $\text{den}_{G'_t}(S) \leq \text{den}_{G_t}(S) \leq 3 \cdot \sum_{s \in S} \text{deg}_{G_t}(s) + \frac{3}{|S|}$. For the graph density i.e. for $S = V(G_t)$, $\text{den}_{G'_t}(V(G_t)) \leq \text{den}_{G_t}(V(G_t)) \leq 3\text{den}_{G'_t}(V(G_t))$.

B. Edge-preserving Forgiving Tree

Forgiving Tree is essentially a spanning tree maintenance algorithm and confirms to the general self-healing model(Figure 1) except that it does not handle node insertions. Thus, the comparison graph at any time $t \in G'_t$ is the same as the initial graph G_0. Forgiving Tree maintains as its success metrics connectivity, degree increase and network stretch. It has the following bound on degree increase (Adapted from Theorem 1 of [3]):

Lemma 8: For any node v in $V(G_t)$, after any number of time steps, t, $\text{degree}_{G_t}(v) \leq \text{degree}_{G'_t}(v) + 3$.

The edge-preserving property and the above lemma yield:

Lemma 9: For all $S \subseteq V(G_t)$, $\text{den}_{G'_t}(S) \leq \text{den}_{G_t}(S) \leq \text{den}_{G'_t}(S) + \frac{3}{|S|}$. For the graph density i.e. for $S = V(G_t)$, $\text{den}_{G'_t}(V(G_t)) \leq \text{den}_{G_t}(V(G_t)) \leq \text{den}_{G'_t}(V(G_t)) + \frac{3}{|S|}$.

VII. CONCLUSION

We have presented an efficient, distributed algorithm that withstands repeated adversarial node insertions and deletions by adding a small number of new edges after each deletion. It maintains key global invariants of the network while doing only localized changes and using only local information. Furthermore, it is edge-preserving, i.e. does not require any of the original edges to be deleted during any healing phase. This is a novel addition to all previous work and yields several desirable properties as a consequence including preserving subgraph densities. In addition, the algorithm maintains all previously studied global invariants. Firstly, assuming the initial network was connected, the network stays connected. Secondly, the (edge) expansion of the network is at least as good as the expansion would have been without any adversarial deletion, or at least a constant. Thirdly, the distance between any pair of nodes never increases by more than a $O(\log n)$ multiplicative factor than what the distance would be without the adversarial deletions. Lastly, the above global invariants are achieved while not allowing the degree of any node to increase by more than a small multiplicative factor.

Our work opens a new line of work towards obtaining healing algorithms that respect some initial structure - beyond just certain global measures. We have shown that edge-preservation is possible and that this leads to several desirable properties. Can we go beyond this to maintain even more properties of the initial graph, such as the spectrum (with some slack)? What about preserving some notion of proximity sketches with nodes? This seems to open a new line of work. Further, the goal of maintaining edge-preserving was two fold: First to obtain structural guarantees on local and global properties, and second to minimize the cost of modifications (termination or initiation of new communication edges). For the first, can we reach a theoretical characterization of what network properties are amenable to self-healing, especially, global properties which can be maintained by local changes? What about combinations of desired network invariants? For the latter, can the costs be modeled in more robust and direct manner? Another interesting orthogonal question is whether there are deterministic algorithms that can yield the same bounds on all metrics as the current randomized healing algorithm. We can also extend the work to different models and domains. We can look at designing algorithms for less flexible networks such as sensor networks, explore healing with non-local edges or more complex notions of failure.
REFERENCES

[1] J. Saia and A. Trehan, “Picking up the pieces: Self-healing in reconfigurable networks,” in IPDPS. 22nd IEEE International Symposium on Parallel and Distributed Processing. IEEE, April 2008, pp. 1–12. [Online]. Available: http://arxiv.org/pdf/0801.3710

[2] T. Hayes, N. Rustagi, J. Saia, and A. Trehan, “The forgiving tree: a self-healing distributed data structure,” in PODC ’08: Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing. New York, NY, USA: ACM, 2008, pp. 203–212.

[3] T. P. Hayes, J. Saia, and A. Trehan, “The forgiving graph: a distributed data structure for low stretch under adversarial attack,” in PODC ’09: Proceedings of the 28th ACM symposium on Principles of distributed computing. New York, NY, USA: ACM, 2009, pp. 121–130.

[4] A. Trehan, “Algorithms for self-healing networks,” Dissertation, University of New Mexico, 2010. [Online]. Available: http://proquest.umi.com/pqdlink?did=2085415901&Fmt=2&clientId=11910&RQT=309&VName=PQD

[5] G. Pandurangan and A. Trehan, “Asheal: localized self-healing using expanders,” in Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, ser. PODC ’11. New York, NY, USA: ACM, 2011, pp. 301–310. [Online]. Available: http://doi.acm.org/10.1145/1993806.1993865

[6] I. Boman, J. Saia, C. T. Abdallah, and E. Schamiloglu, “Brief announcement: Self-healing algorithms for reconfigurable networks,” in Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), 2006.

[7] A. V. Goldberg, “Finding a maximum density subgraph,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-84-171, 1984.

[8] E. Lawler, Combinatorial optimization - networks and matroids. Holt, Rinehart, and Winston, 1976.

[9] Y. Asahiro, R. Hassin, and K. Iwama, “Complexity of finding dense subgraphs,” Discrete Appl. Math., vol. 121, no. 1-3, pp. 15–26, 2002.

[10] U. Feige, G. Kortsarz, and D. Peleg, “The dense k-subgraph problem,” Algorithmica, vol. 29, 1999.

[11] S. Khuller, “Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique,” SIAM J Computing, vol. 36, no. 4, pp. 1025–1071, 2006.

[12] S. Khuller and B. Saha, “On finding dense subgraphs,” in ICALP (1), 2009, pp. 597–608.

[13] R. Andersen and K. Chellapilla, “Finding dense subgraphs with size bounds,” in WAW ’09: Proceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph, 2009, pp. 25–37.