Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance

Lovelace J. Luquette, Craig L. Bohrson, Max A. Sherman & Peter J. Park

Recent advances in single cell technology have enabled dissection of cellular heterogeneity in great detail. However, analysis of single cell DNA sequencing data remains challenging due to bias and artifacts that arise during DNA extraction and whole-genome amplification, including allelic imbalance and dropout. Here, we present a framework for statistical estimation of allele-specific amplification imbalance at any given position in single cell whole-genome sequencing data by utilizing the allele frequencies of heterozygous single nucleotide polymorphisms in the neighborhood. The resulting allelic imbalance profile is critical for determining whether the variant allele fraction of an observed mutation is consistent with the expected fraction for a true variant. This method, implemented in SCAN-SNV (Single Cell Analysis of SNVs), substantially improves the identification of somatic variants in single cells. Our allele balance framework is broadly applicable to genotype analysis of any variant type in any data that might exhibit allelic imbalance.

1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 2 Ludwig Center at Harvard, Boston, MA, USA. Correspondence and requests for materials should be addressed to P.J.P. (email: peter_park@hms.harvard.edu)
Single-cell DNA sequencing (scDNA-seq) has recently emerged as an efficient and scalable tool to study genetic heterogeneity in multicellular organisms. Although whole-genome sequencing of bulk tissues has been used to identify somatic mutations, its sensitivity for mutations present in a low fraction of cells is limited. For example, mutations shared by fewer than 5% of cells are difficult to detect even with 100× sequencing. scDNA-seq, on the other hand, offers the possibility of detecting mutations of essentially any frequency as long as they are present in the selected single cell. In addition, co-occurrence patterns among multiple mutations across single cells can define subclonal populations and reveal evolutionary dynamics within a cell population. Recent applications of scDNA-seq have elucidated subclonal evolution processes in breast carcinoma and revealed a biological mechanism capable of generating chromothripsis, disastrous DNA damage often observed in cancer cells. In our own work, we have used scDNA-seq to reconstruct cellular lineage in the brain using somatic mutations as markers and to uncover the accumulation of single nucleotide mutations in aging human neurons.

The genome of a single cell must first be extracted and extensively amplified to produce sufficient DNA for sequencing on standard high-throughput sequencing platforms. Of the handful of whole-genome amplification (WGA) protocols currently available, multiple displacement amplification (MDA) is presently considered the most suitable for genome-wide detection of single nucleotide variants (SNVs) and short insertions and deletions due to its ability to amplify the majority of a human genome with a high-fidelity polymerase. However, MDA is a non-linear amplification process and therefore suffers from non-uniform amplification of the genome, creating high variability in sequencing depth along the genome. The same non-uniform amplification process can also cause differences in amplification between homologous copies of the same DNA because they are amplified essentially independently (Fig. 1a). In human cells, for example, the maternal copy of a gene can be amplified to a different level than the paternal copy, leading to a large disparity in the number of sequencing reads generated from each allele. This allelic imbalance is common in MDA-amplified DNA libraries and substantially complicates the identification of somatic mutations—which appear as heterozygous variants—in scDNA-seq data.

In scDNA-seq applications aiming to identify somatic SNVs, computational filtering of physical artifacts that arise spontaneously during cell lysis, DNA extraction, library preparation, and WGA is essential, as the number of artifacts can vastly exceed the number of true somatic mutations and obscure biologically relevant signals. Artifacts occurring before amplification or in the early stages of amplification could affect a substantial fraction of the few DNA copies at any genomic locus (Fig. 1b). Subsequently, allelic imbalance can further confound detection of such artifacts by over-amplifying the artifact-harboring allele relative to its homolog and can make true mutations harder to detect by under-amplifying the mutation-harboring allele (Fig. 1c). As a result, variant allele fraction (VAF)—the fraction of sequencing reads supporting a heterozygous variant—may deviate substantially from the expected ~50% and is not as informative as it is in bulk sequencing for distinguishing artifacts from true mutations. The effect of allelic imbalance on VAF is often substantial and is evident by examining the VAFs of known heterogeneous SNPs in single-cell data (Fig. 1d). Because the VAF of true heterozygous variants in single-cell data should follow the fraction of DNA amplicons from the variant-harboring allele while artifacts do not, the observed VAF of a putative mutation must be appraised considering the allelic-specific amplification balance at that position.

To properly evaluate VAFs in the context of genotyping, we developed a spatial model to estimate allele-specific amplification balance (AB) at any genomic locus. A genome-wide AB curve is constructed by measuring AB at a large set of heterozygous SNPs (obtained prior to scDNA-seq) and inferring AB in the intervening regions. Specifically, the model considers how AB measurements at heterozygous SNPs (hSNPs) correlate with AB away from hSNPs and how to properly combine information from multiple hSNPs in a large neighborhood. This approach proves particularly fruitful in MDA-amplified libraries in which the characteristically long amplicon lengths (typically ~5–10 kb) cause the AB to change relatively slowly along the genome.

The AB model enabled the development of a novel somatic SNV genotyper called SCAN-SNV (single-cell analysis of SNVs). SCAN-SNV removes scDNA-seq artifacts by requiring candidate sSNV VAFs to both match the estimated local AB and not match VAFs consistent with common scDNA-seq artifacts. SCAN-SNV also employs a novel method to estimate artifact burden and an upper limit on the number of true somatic mutations prior to genotyping, which helps to address situations in which the artefactual mutations substantially outnumber somatic mutations. Standard SNV genotypers designed for bulk data have been shown to perform very poorly when applied to single cells, primarily by calling a large number of artifacts as true mutations. Our comparative analyses show that SCAN-SNV substantially outperforms both Monovar and SC caller, with a 3-fold decrease in false discovery rate while maintaining similar sensitivity.
can be a noisy estimator of AB at typical whole-genome sequencing depths. For example, an approximate 95% AB confidence interval in Fig. 2a ranges from 86 to 100% and would widen at lower sequencing depth. It is therefore important to model this noise and to incorporate data from as many informative hSNPs as possible to increase the precision of the estimate.

Estimating allele balance genome-wide. To address these issues, we developed a genome-wide AB model that conceptualizes AB as a smooth curve along the genome representing the fraction of DNA amplicons derived from one (arbitrarily chosen) of the two alleles. The model is based on the principle that AB measured at an hSNP is most applicable in the immediate vicinity and alleles. The model is based on the principle that AB measured at a site of interest, the Gaussian process produces a Bayesian posterior AB distribution using the learned correlation function. At a site of interest, the Gaussian process produces a Bayesian posterior AB distribution using the learned correlation function.

Figure 2d illustrates how the model is trained and applied. The input data are the locations of phased, credible hSNPs from an external source (e.g., matched bulk sequencing data or a SNP database) and the number of reads supporting the variant and reference alleles at each hSNP in the single cell. To determine the likely AB values at the hSNP, read counts—not VAFs—are used in a binomial model to account for random fluctuations due read sampling. If adjacent hSNPs are located on opposite alleles, a sudden, but spurious, change in AB might appear (Fig. 2d, gray line), and this could severely impede learning the AB correlation properties. We solve this by phasing hSNPs and standardizing all AB measurements to an arbitrary but consistent allele. The AB model is trained by choosing the AB correlation function that maximizes the model likelihood over phased hSNPs. To infer AB at a site of interest, the Gaussian process produces a Bayesian posterior AB distribution using the learned correlation function to automatically find and combine information from all
informative hSNPs. To evaluate candidate sSNV mutations, we built three statistical tests based on AB predictions: (1) an allele balance consistency (ABC) test to determine whether a candidate single cell artifact (left, green) attains high VAF (44%). The region is affected by allelic imbalance as evidenced by the hSNP with VAF 94% (right, blue). The candidate sSNV should present with VAF ≥ 6% or VAF ≈ 94%. MDA polymerase (green) randomly dissociates from the template DNA belonging to one allele (black), creating amplicons (gray) of various lengths. Nearby sites are highly likely to be amplified by the same polymerase, but the probability decreases for more distant sites. This creates a correlation in allele-specific amplification levels between nearby sites (blue, orange). The process occurs independently on both homologous alleles, leading to a stable allele balance in a small genomic locus. Long amplicons cause allele-specific read depths (blue, paternal allele; pink, maternal allele) to change more slowly along the genome. When each allele is more stable, so is the allelic balance. The AB correlation function quantifies allele balance stability. Illustration of AB modeling and estimation. Reads at hSNPs can be assigned to alleles based on whether they contain reference- or variant-supporting bases. This allows allele-specific depth, and therefore AB, to be estimated at the hSNP. AB outside of hSNP loci is inferred (thick black line) using a Gaussian process parameterized by the AB correlation function. A binomial read sampling model determines how closely the inferred AB curve should follow the noisy hSNP measurements (error bars: 95% confidence intervals). Phasing hSNPs allows the paternal SNP (blue) VAF to be adjusted to (1 - VAF) to be consistent with the surrounding maternal SNPs, which is necessary to produce long-range allele balance estimates. The shown candidate sSNV, despite achieving very high VAF, is likely an error since it does not match the local amplification balance. The AB model applied to a 200 kb window around the candidate sSNV shown in (a). The artifact (red) at VAF = 44% is highly inconsistent with the model’s estimated AB of 89% (black line) and falls well outside of the 95% probability interval (gray envelope)

Fig. 2 The allele balance model helps to identify single cell artifacts. A single cell artifact (left, green) attains high VAF (44%). The region is affected by allelic imbalance as evidenced by the hSNP with VAF 94% (right, blue). The candidate sSNV should present with VAF ≥ 6% or VAF ≈ 94%. MDA polymerase (green) randomly dissociates from the template DNA belonging to one allele (black), creating amplicons (gray) of various lengths. Nearby sites are highly likely to be amplified by the same polymerase, but the probability decreases for more distant sites. This creates a correlation in allele-specific amplification levels between nearby sites (blue, orange). The process occurs independently on both homologous alleles, leading to a stable allele balance in a small genomic locus. Long amplicons cause allele-specific read depths (blue, paternal allele; pink, maternal allele) to change more slowly along the genome. When each allele is more stable, so is the allelic balance. The AB correlation function quantifies allele balance stability. Illustration of AB modeling and estimation. Reads at hSNPs can be assigned to alleles based on whether they contain reference- or variant-supporting bases. This allows allele-specific depth, and therefore AB, to be estimated at the hSNP. AB outside of hSNP loci is inferred (thick black line) using a Gaussian process parameterized by the AB correlation function. A binomial read sampling model determines how closely the inferred AB curve should follow the noisy hSNP measurements (error bars: 95% confidence intervals). Phasing hSNPs allows the paternal SNP (blue) VAF to be adjusted to (1 - VAF) to be consistent with the surrounding maternal SNPs, which is necessary to produce long-range allele balance estimates. The shown candidate sSNV, despite achieving very high VAF, is likely an error since it does not match the local amplification balance. The AB model applied to a 200 kb window around the candidate sSNV shown in (a). The artifact (red) at VAF = 44% is highly inconsistent with the model’s estimated AB of 89% (black line) and falls well outside of the 95% probability interval (gray envelope)

Fig. 2 The allele balance model helps to identify single cell artifacts. A single cell artifact (left, green) attains high VAF (44%). The region is affected by allelic imbalance as evidenced by the hSNP with VAF 94% (right, blue). The candidate sSNV should present with VAF ≥ 6% or VAF ≈ 94%. MDA polymerase (green) randomly dissociates from the template DNA belonging to one allele (black), creating amplicons (gray) of various lengths. Nearby sites are highly likely to be amplified by the same polymerase, but the probability decreases for more distant sites. This creates a correlation in allele-specific amplification levels between nearby sites (blue, orange). The process occurs independently on both homologous alleles, leading to a stable allele balance in a small genomic locus. Long amplicons cause allele-specific read depths (blue, paternal allele; pink, maternal allele) to change more slowly along the genome. When each allele is more stable, so is the allelic balance. The AB correlation function quantifies allele balance stability. Illustration of AB modeling and estimation. Reads at hSNPs can be assigned to alleles based on whether they contain reference- or variant-supporting bases. This allows allele-specific depth, and therefore AB, to be estimated at the hSNP. AB outside of hSNP loci is inferred (thick black line) using a Gaussian process parameterized by the AB correlation function. A binomial read sampling model determines how closely the inferred AB curve should follow the noisy hSNP measurements (error bars: 95% confidence intervals). Phasing hSNPs allows the paternal SNP (blue) VAF to be adjusted to (1 - VAF) to be consistent with the surrounding maternal SNPs, which is necessary to produce long-range allele balance estimates. The shown candidate sSNV, despite achieving very high VAF, is likely an error since it does not match the local amplification balance. The AB model applied to a 200 kb window around the candidate sSNV shown in (a). The artifact (red) at VAF = 44% is highly inconsistent with the model’s estimated AB of 89% (black line) and falls well outside of the 95% probability interval (gray envelope)
artificial test; a similar argument applies to regions with 4:1 allele balance and the amplification artifact test. As a result, SCAN-SNV rarely has power to call SNVs with VAF < ~40% at typical whole-genome sequencing depths of 30x.

Tuning calling thresholds to account for artifact prevalence.

For the statistical tests derived from the AB model, p-value thresholds for calling must be set. Because scDNA-seq artifacts tend to be enriched at low VAF (Fig. 3, red curve), we reasoned that increasing the stringency of p-value thresholds for low VAF candidate mutation rates would increase accuracy. In particular, a p-value threshold \(\alpha \) can be related to the false discovery rate by

\[
FDR \approx \frac{\alpha N_A}{\alpha N_A + (1 - \beta)N_T},
\]

where \(\beta \) is the type II error rate resulting from the choice of \(\alpha \); \(N_T \) and \(N_A \) are the number of true mutations and artifacts in the candidate sSNV set, respectively. Given suitable estimators of \(N_T \) and \(N_A \), it would be possible to adjust \(\alpha \)-value thresholds for low VAF classes that are contaminated with artifacts.

SCAN-SNV: genotyping sSNVs in MDA-amplified single cells.

We combined the AB model and automatic threshold tuning to create SCAN-SNV (Fig. 4). An overview of the method follows. First, GATK\(^{11}\) HaplotypeCaller is jointly applied to both single cell and bulk sequencing data to generate a genome-wide list of credible hSNPs (blue circle). Phased hSNPs serve as a training set to learn AB correlation patterns, predict AB at candidate sSNV loci and estimate artifact prevalence. Only candidate sSNVs passing all filters are reported as putative mutations to increasing stringency for sSNV classes that are contaminated by a large artifact burden.

![Fig. 3 SCAN-SNV FDR tuning strategy](image-url) - Somatic SNVs and hSNPs are supported by 50% of DNA prior to amplification in single cells. The shapes of VAF distributions for the two mutation types should be similar because both are equally affected by allelic imbalance, but artifacts in the candidate sSNV set (red line) usually create an enrichment at low VAF compared with hSNPs (black line). VAFs for the unknown number of true mutation among candidate sSNVs (green area) should be distributed similarly to hSNPs. Potential values for the total number of true sSNVs \(N \) (dashed lines) can be evaluated by first distributing the \(N \) mutations according to the hSNP VAFs and then ensuring the predicted numbers of sSNVs at each VAF do not exceed the number of candidates at that VAF. The largest such \(N \) provides an upper bound on the number of somatic mutations. Given \(N_a \), a lower bound on the fraction of artifacts amongst sSNVs at any VAF can be estimated.
somatic SNVs. Finally, when multiple related single cells are sequenced, an optional joint calling mode which relies on repeated observations of allele balance consistency across samples can be applied (see Methods).

Assessing the performance of SCAN-SNV. It is difficult to validate somatic SNVs in scDNA-seq data because the genome of a single cell is consumed during WGA, i.e., DNA extraction and amplification cannot be replicated to identify artifacts. Validation of putative sSNVs by deep sequencing of excess amplified DNA not used for initial sequencing can be confounded by the artifacts that were introduced in the amplified DNA; validation in the original tissue by very high-depth amplicon sequencing is possible but only for clonal sSNVs with VAFs that are not too small. We therefore assessed SCAN-SNV and other callers using two approaches: a synthetic data set and a kindred cell system.

Performance assessment on simulated data. We first assessed SCAN-SNV using a synthetic diploid (SD) male chromosome X benchmarking data set. Hemizygous male X chromosomes have been previously exploited in single-cell studies for estimating FDR, utilizing the fact all true mutations on the hemizygous chromosome should have VAF close to 100%. However, a hemizygous X chromosome cannot reproduce the challenge of calling variants on a diploid chromosome because the AB should be either 0 or 1 along most of the chromosome. We therefore created synthetic diploid (SDs) X chromosomes by mixing chromosome X reads from the single cells of two different male donors with spiked-in mutations serving as a truth set. Unlike purely simulated approaches, the SD X chromosomes retain the patterns and characteristics of true MDA artifacts. Disadvantages of SDs include the fact that data from different amplifications are combined (although the same amplification protocol was followed) and that chromosome X has a lower SNP density than autosomes, which can disadvantage callers that depend on local hSNPs (such as SCAN-SNV and SCcaller).

Briefly, reads from single cells were processed prior to mixing by first identifying endogenous SNPs and sSNVs and then spiking in 500 randomly placed mutations using BAMSurgeon to utilizing the fact all true mutations on the hemizygous chromosome should have VAF close to 100%. However, a hemizygous X chromosome cannot reproduce the challenge of calling variants on a diploid chromosome because the AB should be either 0 or 1 along most of the chromosome. We therefore created synthetic diploid (SDs) X chromosomes by mixing chromosome X reads from the single cells of two different male donors with spiked-in mutations serving as a truth set. Unlike purely simulated approaches, the SD X chromosomes retain the patterns and characteristics of true MDA artifacts. Disadvantages of SDs include the fact that data from different amplifications are combined (although the same amplification protocol was followed) and that chromosome X has a lower SNP density than autosomes, which can disadvantage callers that depend on local hSNPs (such as SCAN-SNV and SCcaller).

We undertook a more comprehensive approach to validation, taking advantage of the information provided by the additional nine single cell-derived samples (mean total coverage 264x) from the same cell line. We integrated calls from both GATK and samtools to classify sSNVs as likely TPs, likely FPs, and unknown, depending on the patterns of shared support across all 12 single cell-derived samples (see Methods, Supplementary Table 2). Briefly, likely TP sSNVs must be supported by at least 50 total reads across all 13 samples, a minimum number of mutation-harboring reads across the kindred group (number determined by a mock analysis of non-kindred samples, see Methods, Supplementary Fig. 4) and by at least two kindred samples. Furthermore, to exclude recurrent artifacts, they must not be supported any of the remaining non-kindred samples. Likely TP sSNVs supported by all three kindred samples exclusively (‘triple exclusive’; TRE) are the highest confidence somatic mutations and are used to assess genotyper sensitivity. The remaining sSNVs, which are either supported by one kindred sample (singletons) or by samples outside of the kindred group, are classified as likely FPs (see Methods, Supplementary Table 2). Most singletons are physical scDNA-seq artifacts and the small number of true mutations private to a single cell cannot be validated by the kindred system. sSNVs supported by out-of-kindred group samples (which could be true, subclonal mutations) also appear to be primarily FPs, since they occur with reproducibly low VAFs across samples (mean VAF = 16%) when true somatic mutations inherited by multiple single-cell samples should not have consistently low VAFs (Fig. 6b). We therefore assessed FDR by the fraction of likely FP sSNV calls over all positive calls.

SCAN-SNV called 397 sSNVs in the kindred single cell IL-12 with an estimated FDR of 24% and an estimated sensitivity of
44% (Fig. 6c). As previously discussed, sSNVs and hSNPs should have similar VAF distributions. Indeed, above VAF = 50%, mutations called by SCAN-SNV follow the hSNP distribution (Fig. 6d bottom) reasonably well. However, there were very few SCAN-SNV calls below VAF = 50%, due to reduced power to distinguish low VAF true mutations from artifacts. Power to resolve the two cases depends on sequencing depth, and we anticipate that SCAN-SNV is capable of detecting more low VAF mutations in samples with higher depth.

SCAN-SNV performs favorably compared with SCcaller, which showed slightly increased sSNV sensitivity (44 vs. 50% of TREs recovered) but produced a call set highly enriched for likely FPs, leading to a ~3-fold increase in estimated FDR (24 vs. 64%). Independent of our assessment scheme, the large number of likely FPs called by SCcaller is evident by a considerable skew toward low VAF true mutations from artifacts. Power to resolve the two cases depends on sequencing depth, and we anticipate that SCAN-SNV is capable of detecting more low VAF mutations in samples with higher depth.

As shown in Fig. 6c, mutation signatures based on trinucleotide frequencies for TRE sSNVs are characterized by the pattern of C > A mutations similar to a previously observed signature associated with cell culture17. This is consistent with the anticipated mutagenic process acting in these samples, which were all taken from a human fibroblast cell line. The mutational pattern for SCAN-SNV calls in IL-12 was concordant with that of TRE sSNVs. However, SCcaller sSNVs for IL-12 were generally enriched for T > C and T > G mutations and contained pronounced peaks for mutations that would create homopolymer runs (e.g., ACA > AAA, GCG > GGG, etc.). We speculate that these peaks may correspond to artefactual calls in repetitive regions such as microsatellites, where accurate alignment is particularly difficult. Monovar calls contained peaks at all ANA and TNT contexts (first and last columns of each color group) and shared SCcaller’s enrichment for T > C and T > G mutations in general. Monovar in multi-sample mode shared these characteristics and also contained a striking peak for TCA > TAA mutations, which may point to a reason for the increase in FPR (Supplementary Fig. 2).

Detection of atypical MDA amplification. SCAN-SNV was also applied to the other kindred single cell, IL-11. In this cell, 196 sSNVs were called with an estimated FDR of 26% and TRE
sensitivity of 19% (Fig. 6f). SCAN-SNV again compared favorably with SCcaller in FDR, attaining a ~3-fold reduction (26 vs. 74%), similar to IL-12. But it showed marked reduction in sSNV sensitivity compared with SCcaller (19 vs. 39%) and its own performance on IL-12 (explained below). Monovar’s single-sample sensitivity also suffered (8 vs. 34%), but its sensitivity in joint mode was unaffected (56 vs. 54%). Again, however, Monovar’s FDR remained exceptionally high (97–99%).

Despite the fact that both kindred cells were very closely related and processed according to the same protocols, SCAN-SNV immediately revealed two clear differences in the quality of the two sequencing libraries that may explain the change in genotyping accuracy. First, hSNPs in IL-11 were considerably more concentrated around VAF = 50% than in IL-12 (Fig. 6d, g, bottom). Second, AB correlation decayed more quickly at short distances in IL-11 than in IL-12. hSNP VAF distributions and AB correlation functions for the six additional, non-kindred MDA-amplified single cells also closely matched the VAF and AB patterns of either IL-11 or IL-12 (Fig. 7a, b), forming two distinct classes: well-balanced MDA products resembling IL-11 and imbalanced products resembling IL-12. The same two classes could also be created by separating single cells on the basis of genome-wide copy number profiles, which were computed for all samples using Ginkgo18 (Supplementary Fig. 3). It is natural to assume these differences are caused by random variability in the quality of WGA; however, the observation that samples cluster into two distinct classes rather than varying more continuously is inconsistent with this hypothesis.
Identification of an accidental doublet. One explanation for the well-balanced MDA products is that the cells had increased DNA content prior to amplification. For example, when amplification begins with two genomes rather than one, the additional copies reduce the variability in read depth and lead to more balanced amplification between alleles—a fact which has been exploited previously. In the present data set, the increase in DNA content could have been due to (i) cells in G2 or early M phase; or (ii) the accidental isolation of two cells rather than one (a doublet). In either scenario, AB correlation should decay more rapidly since each allele is initially represented by two copies which are amplified independently. Indeed, when we simulated this increased DNA content by combining reads from two imbalanced samples (see Methods), its hSNP VAF distributions and AB correlation functions matched those of well-balanced products (Fig. 7a, b, dashed lines).

Further analysis of sSNV VAF distributions revealed that IL-11 is highly likely to be a doublet. Unlike hSNPs, sSNVs may or may not be shared by both cells in the doublet. Unshared sSNVs would be present on 25% of DNA prior to amplification whereas shared sSNVs would be supported by 50% (Fig. 7c). Therefore, a positive indicator for a doublet is a peak at VAF = 25% for IL-11 but not in IL-12.

An accidental doublet explains SCAN-SNV’s reduced sensitivity for IL-11: sSNVs not shared by both cells in the doublet would...
be filtered because they occur at the same VAF expected by our model of pre-amplification artifacts.

Performance on single tumor cells. SCAN-SNV was developed with the assumption that all DNA sequences are diploid. When this assumption does not hold, e.g., when sequencing single cells from tumors, it may perform suboptimally. To test its performance in aneuploid cells, we applied it and other callers to four single estrogen receptor positive breast cancer (ERBC) cells that harbor several chromosome-level copy number changes. This data set was not sufficient to construct a truth set, so callers were judged by the fraction of sSNVs that were supported either in bulk sequencing of the same ERBC cancer cell population or in multiple single cells (clonal support). SCAN-SNV’s calls were most frequently clonally supported (55% clonal support, 955 total sSNV calls, Supplementary Fig. 4a) whereas other callers either produced relatively few calls (SCcaller, 35% clonal support, 532 calls) or recovered more clonally supported sSNVs at the cost of many suspect calls (Monovar and MuTect, 5–7% clonal support and 18,049–66,008 calls) (Supplementary Fig. 4b). Clonal support rates for SCAN-SNV calls were computed separately for haploid, diploid and triploid chromosomes to explore the effects of violating the diploid assumption (Supplementary Fig. 4c). Haploid chromosomes showed slightly increased clonal support (mean 60%) compared with diploid and triploid chromosomes (48% and 52%, respectively). Increased performance on haploid chromosomes is expected since true mutations will have VAFs near 100% while the similar performance for diploids and triploids provides evidence that SCAN-SNV can gracefully handle some violations of its diploid assumption. We caution that chromosome-level copy number changes are mild violations of the diploid assumption and that performance may degrade under more severe violations such as chromothripsis, structural variants, and sub-chromosomal copy number variants (CNVs).

Discussion

Analysis of scDNA-seq data presents many challenges. For sSNV detection, they include filtration of high VAF artifacts caused by cell lysis, whole-genome amplification and recurrent analysis artifacts such as read misalignments. Our analyses suggest that most single-cell genotypers have similar sensitivities for detecting somatic SNVs in diploid cells but commit false positive errors at substantially different rates. SCAN-SNV achieves unprecedented specificity by estimating allelic imbalance and only calling mutations when sufficient power is available to avoid false positives. The efficacy of our methodology was further confirmed by the unanticipated detection of a doublet.

In particular, SCAN-SNV outperforms SCcaller, the only published genotyper for non-clonal SNVs in scDNA-seq data. The only other genotyper designed for single cells is Monovar, and 18,049 filtered because they occur at the same VAF expected by our model of pre-amplification artifacts.

Methods

hSNP training set construction. SCAN-SNV determines hSNPs by joint application of GATK HaplotypeCaller to all single cell and bulk BAMS and subsequently applying SHAPEIT2 to autosomal, biallelic, single nucleotide non-reference sites called in the bulk sample. The 1000 Genomes Phase 3 integrated haplotype panel dated October 2014 is used for analyses in this report. Only heterozygous SNPs that were successfully phased by this process were treated as credible hSNPs.

Modeling allele balance. Let Y_i, D_i, and X_i be the observed number of mutation supporting reads, total reads and genomic position (in base pairs) at locus i. We model the allele balance B_i as a latent variable by $Y_i|D_i, X_i, B_i \sim Bin(D_i, \frac{1}{2})$, $B_i|\alpha, \beta, c, d \sim GP(0, k(X_i, x)),$

$$k(x_i, x_j) = \exp \left(-a \sqrt{x_i - x_j} \right) + \exp \left(-\frac{b}{x_i^2 + x_j^2} \right),$$

where GP refers to a Gaussian process, $k(x_i, x_j)$ is the covariance function (an unnormalized version of the correlation function discussed in the main text) and a, b, c, and d are model parameters. All observations (Y_i and D_i) are conditionally independent given B_i. A latent variable model is appropriate for modeling AB since it is a property of the amplified DNA that is only indirectly observed by sequencing reads. Because a Gaussian process is used to model AB, we allow B_i to range over $(-\infty, \infty)$ and convert it to a value in $[0, 1]$ using the logistic transform $1/(1 + e^{-x})$. Although we will often refer to B_i as allele balance, the logistic transform must be applied to arrive at the intuitive interpretation of AB as the fraction of amplified DNA derived from one allele. The form of the covariance function is not crucial; we chose it for ease of implementation in R but any function $k(x_i, x_j)$ that integrates at the mean to zero and returns 0 for $x_i = x_j$ is acceptable.
to long-range effects driven by MDA amplicon size. A noteworthy property of \(k(x_i, x_j)\) is that it gives the covariance between two AB values at positions \(x_i\) and \(x_j\) using only the distance between the two sites \(|x_i - x_j|\).

Fitting the allele balance correlation function

The covariance function \(k\) contains all modeling parameters. Parameters are fit separately for each chromosome by maximizing the likelihood function using a grid search. The likelihood function is

\[
\mathcal{L}(a, b, c, d; \tilde{Y}, \tilde{D}, \tilde{X}) = \int_{\mathbb{B}} p(\tilde{Y} | \tilde{B}, D, P(\tilde{B}|\tilde{Y}, \tilde{D}, a, b, c, d) d\tilde{B}.\]

The marginal distribution is

\[
\mathbb{E}[\mathcal{L}(a, b, c, d; \tilde{Y}, \tilde{D}, \tilde{X})] = \int_{\mathbb{B}} f_{\tilde{B}|\tilde{Y}, \tilde{D}}(\tilde{B} | \tilde{Y}, \tilde{D}) d\tilde{B}.
\]

Here, \(\mathbb{E}[\cdot]\) denotes the expected value of the integrand.

Predicting allele balance at somatic SNV candidates

Using the heuristic for \(\rho^*\), we then choose the AB that most closely matches the VAF of the candidate sSNV using the heuristic

\[
\rho^* = \arg \min_{\rho < \rho_{\text{cutoff}}} \{ \text{VAF} - \frac{1}{1 + e^{-\rho}} \}. \tag{9}
\]

The ABC null model is then

\[
Y|B \sim \text{Bin}(D_{\rho^*}), \quad B|\rho^*, \sigma^2 \sim N(\mu^*, \sigma^2). \tag{10}
\]

The probability of \(y\) reads supporting the sSNV is found by marginalizing over the posterior AB distribution

\[
P(Y = y|\mu^*, \sigma^2) = \int P(Y = y|B = b) \cdot P(B = b|\mu^*, \sigma^2) db \tag{11}
\]

The integral is approximated using Gauss-Hermite quadrature with 128 nodes. Let \(k\) be the observed number of variant-supporting reads at a locus. The ABC p-value \(p_{\text{ABC}}\) is computed by summing all events with lower probability of occurrence than \(k\):

\[
p_{\text{ABC}} = \frac{1}{\hat{D}} \sum_{y : P(Y = y|\mu^*, \sigma^2) \leq P(Y = k|\mu^*, \sigma^2)} P(Y|B = 1) \quad \text{(pre-amplification)} \tag{13}
\]

The expected number of true sSNVs at each VAF can be computed for any amplification errors, which often occur during cell lysis, and first-round amplification errors. The artifactual tests follow the ABC test except that the null model includes the possibility of the error occurring on either allele, meaning there is no need to compute \(\rho^*\). Let allele 1 be the allele directly modeled by \(B\) and allele 2 be the other allele. Then the null model reflects the mixture distribution given by

\[
Y|B, \text{allele} 1 \sim \text{Bin}(D_{1}, \frac{1}{1 + e^{-\rho}}); \quad Y|B, \text{allele} 2 \sim \text{Bin}(D_{1}, \frac{1}{1 + e^{-\rho}}) \quad \text{(pre-amplification)} \tag{14}
\]

The non-amplification artifacts are two, meaning that a pre-amplification artifact is expected to occur on half of amplicons derived from the artifact-harboring allele. This corresponds to two assumptions: (1) pre-amplification artifacts are single-stranded and (2) the two strands are equally amplified. Amplification artifacts are modeled with \(f\), reflecting the following ideal amplification scenario. DNA from one allele is initially double-stranded. Suppose both strands of the allele are fully replicated exactly once before any other replication occurs, producing four strands of DNA. Polymerase incorporation errors occurring during this process will therefore be present on one-fourth of strands from this allele. Assume amplification of the four strands continues without additional errors, eventually producing approximately equal numbers of amplicons from each strand. A misincorporation error in the first round will therefore be supported by one-quarter of molecules in the amplicon pool for this allele.

Estimating artifactual prevalence

Under certain assumptions, it is possible to bound the number of true sSNVs in a set of candidate sSNVs using a large enough set of high confidence hSNPs. The necessary assumptions are that true sSNVs are present on 50% of DNA molecules prior to amplification (e.g., as would occur for a fully diploid genome) and that true sSNVs are not too concentrated in specific genomic regions, so that the sSNV VAF distribution resembles hSNP VAFs. Under these assumptions, the fraction of somatic SNVs at a specific VAF should not be too different from the fraction of hSNPs at that same VAF. Using hSNPs as a guide, the expected number of true sSNVs at each VAF can be computed for any \(N_f \geq 0\). When \(N_f\) is too large, the predicted number of true sSNVs for some VAFs will exceed the number of candidate sSNVs at that VAF, making it evident that the chosen \(N_f\) is likely inconsistent with the data.

We use a simulational simulation to evaluate the consistency of several possible values of \(N_f\) with the observed hSNPs and candidate sSNVs. Only successfully phased hSNPs are used for these simulations, and hSNPs \(H_2\) and sSNVs \(S\) falling into 20 equally sized VAF bins are counted such that

\[
H_1 = \#\{\text{hSNPs: 0.00 \leq VAF < 0.05}\}, \quad S_1 = \#\{\text{sSNVs: 0.00 \leq VAF < 0.05}\},
\]

\[
H_2 = \#\{\text{hSNPs: 0.05 \leq VAF < 0.10}\}, \quad S_2 = \#\{\text{sSNVs: 0.05 \leq VAF < 0.10}\},
\]

\[
H_{20} = \#\{\text{hSNPs: 0.95 \leq VAF \leq 1.00}\}, \quad S_{20} = \#\{\text{sSNVs: 0.95 \leq VAF \leq 1.00}\}. \tag{15}
\]

We assess the consistency of any value of \(N_f > 0\) with the data as follows. First, we simulate the number of sSNVs in each VAF bin 1000 times by drawing from a
multinomial distribution with parameters matching the binned hSNPs
\[\binom{S^0}{N^0} \sim \text{Multinom} \left(N^0, \frac{H^0}{N^0}, \ldots, \frac{H^0}{N^0} \right) \]
where \(H^0 = \sum H_i^0 \).

The fraction \(F_{N^0} \) of simulations consistent with the observed sSNV candidate estimates the fit of the null \(N^0 \) to the data.

\[F_{N^0} \leq \frac{1}{100} \sum_{N^0} \binom{S^0}{N^0} \leq S_0 \]
(17)

This process is repeated for several values of \(N^0 \) ranging from 1 to the total number of sSNV candidates. The upper bound on the somatic mutation burden is the largest \(N^0 \) such that \(F_{N^0} \geq 0.005 \). We choose such a lenient criterion to account for the fact that inconsistency occurs even if only a single VAF bin out of 20 exceeds the candidate sSNV count at that VAF.

Given the estimate of \(N^0 \), the expected numbers of true sSNVs and artifacts in VAF bin \(i \) are
\[N_T = N^0 \frac{H^0_i}{N^0} \quad N_{A,i} = \max \left(N^0 \left(1 - \frac{H^0_i}{N^0} \right) \right) \]
(18)

Since these values represent expectations, they may be <1. The arbitrary minimum value of 0.1 for the artifact burden is to avoid FDR estimates of 0%.

The preceding procedure is applied separately to sSNVs and hSNPs with the same sequencing depth; all sSNVs and hSNPs with depth greater than the 90th percentile of hSNPs are treated together. This produces \(N_{A,h} \) and \(N_{T,h} \), which estimate the number of true mutations and artifacts for each VAF and depth.

Determining p-value cutoffs. The ABC test uses a fixed cutoff of 0.05. p-value cutoffs for both artifact tests are tuned at every sSNV candidate to obey a user-fixed cutoff of 0.05.

The highest density regions\(^22\) are used to account for the multi-modal nature of the artifact models and the integer read counts. Given the artifact prevalence estimates from the previous section for the VAF and depth of the candidate sSNV, the expected FDR for a p-value cutoff \(c \) can be computed using the relationship provided in the main text. The largest \(\alpha \) satisfying the requested FDR \(\alpha \) at each VAF is used. This procedure does not formally control the FDR, as this would require formal models of \(N^0 \) and \(N_{A,h} \), rather than the heuristics used here.

Multi-sample calling. SCAN-SNV’s joint calling model is based on the idea that true mutations should match the estimated AB in every sample in which they are observed. We define a joint statistic \(A^j \) as the product of ABC p-values for all samples with any mutation supporting reads. Each ABC p-value is subject to a penalty factor of 1/10 if the standard deviation of the GP at the locus exceeds 1. J-statistics are also computed for 4000 randomly selected hSNPs which are then grouped based on the number of single cells supporting the hSNP. Ninetieth percentiles are computed for hSNP J-statistics and used as thresholds for sSNVs supported by the same number of samples. Unlike single-sample calls, joint calls are not filtered by the artifact statistical tests or excess indel and read clipping filters.

Excess indel and read clipping filters. Artefactual sSNVs may result from nearby indels and read clipping artifacts. One sign that a locus may be compromised in a single cell is a large number of sequencing reads with indels or soft- or hard clipping which is not also seen in the matched bulk. BWA-MEM reports these events in the CIGAR string as D, I, S, and H operations. We therefore sought to determine how many indel (I, D) or clipping (H, S) operations should be tolerated at somatic SNP candidates by comparing the rate of the same CIGAR operations in bulk at the same locus. We therefore compute the fraction of reads containing indel and clip operations for both bulk and single cell at each candidate sSNV and a set of 4000 randomly chosen hSNPs. The hSNPs are used to build 2-dimensional empirical distributions \((F_{\text{clip}}, F_{\text{indel}})\), where \(F_{\text{indel}} \) is the fraction of CIGAR operations of type OP (either indel or clip) spanning a single hSNP in the specified sample type T. Similar quantities are computed for each candidate somatic SNP. Candidates are filtered if they exceed the 90th percentile of either (i.e., indel or clip) hSNP empirical distribution.

Running SCAN-SNV. SCAN-SNV is implemented using Snakemake\(^24\) and distributed as a Conda\(^23\) package. SCAN-SNV and all dependencies were installed using Conda into a blank environment and the scan_snv script was run with default parameters. External databases used were the human reference genome b37d4s (\(--ref \)), dbSNP 147 common variants (\(--dbsnp \)), and the 1000 Genomes Project phase 3 with X chromosome dated October 2014 provided by SHAPEIT (\(--shapeit-panel \)). SCAN-SNV was run on a SLURM cluster using the \(--mem \) flag. Candidate sSNVs that pass the ABC test, p-value amplification and amplification artifact tests using a target FDR of 10%, and excess indel and clipping tests are reported.

Running other somatic SNV callers. Scaller version 1.1 was run as previously reported\(^33\). BAMs were converted to pileups using samtools version 1.3 with the option \(-c 0\) and hSNPs and sSNVs were defined using the scan_snv script. The hSNPs were called by applying Scaller’s \(--varcall \) and \(--cutoff \) and reasoning v1.0 script in sequence with default parameters. As recommended on the GitHub README, passing somatic mutations were required to have VAF > 1/8, filter status = PASS, bulk status = ref/germline and must not have been observed in hSNP. The stringent artifact threshold corresponding to \(\alpha = 0.01 \) was used for assessment.

Monovar commit 7b47571 was downloaded and the somatic calling strategy reported previously\(^34\) was mimicked as closely as possible; no script is provided for identification of somatic mutations. All Mutect 2.1.3 calls were included, and minor allele frequency (MAF) filter was set to 0.001. MuTect2 was run with default parameters except \(--dbsnp \) and \(--ploidy 2 \) to the data. Mutovar was run with default parameters except \(--dbsnp \) and \(--ploidy 2 \) to the data. For joint calling, the VCF column FILTER=PASS was also required.

MuTect calls were produced by MuTect version 1.1.7. Although MuTect 2 performance would depend upon this panel and because no reference panel of normals is publicly available, MuTect was run with default parameters except \(--dt \) from MuTect 1 because it is unclear to what extent MuTect 2 performance. Running other somatic SNV callers.

Synthetic diploid read mixing. Aligned and processed BAMs for individuals 5087 and 5532 were downloaded from dbGaP study phs001485.v1.p1. Reads aligned to chromosome X were extracted from each BAM and downsampled to an average of 15x using samtools view’s \(-s \) option. Spike-in mutations were then added to each downsampled BAM as described below. Finally, a downsampled, spike-in carrying BAM from each individual was mixed with samtools merge to create a single BAM with ~30x mean depth (Supplementary Table 2).

Synthetic diploid spike-ins. First, a genomic blacklist was created to ensure that spike-in mutations would not intersect with endogenous variants or artifacts, pseudosautosomal regions (PARs), assembly gaps or common variant sites as reported by dbSNP 147. To identify potential endogenous variants and artifacts, GATK HaploTypoCaller was run jointly on all full-depth BAMs with default parameters. A 5 bp window centered at each position with non-reference reads output by GATK was added to the blacklist. Similarly, 5 bp windows centered at the position of every record in dbSNP 147 common were also added. Finally, the blacklist was completed by adding 26 assembly gaps annotated by UCSC (hgdownload.cse.ucsc.edu/goldenPath/hg19/database/gap.txt.gz) and the hg19 coordinates for PAR1 (60,001–6,699,200) and PAR2 (154,931–155,260,560). In total, 3750 spike-in mutations (corresponding to 15 branches with 250 mutations each) were created by choosing random positions from the non-blacklisted genome and a random non-reference base. Two hundred and fifty mutations were assigned to each branch of the phylogeny and spiked into one of the two downsampled diploid BAMs for all descended branches using BamSurgeon (Supplementary Table 2). Spike-ins were added at 100% VAF. Spike-in was considered successful if at least 1 alternate read survived BamSurgeon’s mutation and realignment process. The number of successful spike-ins ranged from 180 to 446, depending primarily on the breadth of coverage of each single cell. BamSurgeon was run with the following parameters:\(--force --mindel 0 --maxdepth 10000 --min-reads 0 --ignore snps --aligner mem \). BamSurgeon was modified by adding the parameters \(--i 400,90 \) to the BWA-MEM command because BWA often cannot infer insert size characteristics in the small windows around spike-in mutations. Without this addition, the PROP_PAIR_BAM flag is often not set, causing the mutation-carrying read to be ignored by samtools. Actual insert size mean and standard deviations ranged from 388 to 428 and 81 to 93, respectively, across all donor chromosome X BAMs.

Synthetic diploid assessment. Sensitivity was calculated as the fraction of successful spike-ins recovered. The number of FPs per SD was the number of
sSNV calls that were not known spike-ins or endogenous sSNVs. Endogenous sSNVs were determined by examining the full-depth single cell and bulk BAMs with samtools mpileup with --q 0 at every site called by any genotyper. A site was considered a putative endogenous sSNV if either: (1) the mean VAF of the sSNV across all samples with at least 2 alternate reads was >80% and bulk contained at least 2 reads at the locus with none supporting the sSNV; or (2) the mean VAF of the sSNV across all samples with at least 2 alternate reads was >90%, at least two single cells supported the sSNV and the bulk contained no reads at the locus.

Kindred cell system. Aligned and processed BAMs for the kindred system were downloaded from the NCBI Sequence Read Archive (SRA) using accession number SRP067062. All 13 BAMs were analyzed jointly by GATK HaplotypeCaller (with -r 10000 bp -dontUseSoftClippedBases) and bcftools call (with -mv indels -p 0.5) using minimum mapping qualities (MQs) of both 1 and 60. The --p 0.5 option was chosen to greatly increase samtools' sensitivity. All sites output by samtools and GATK with MQ ≥ 60 non-reference reads in any sample were classified using the following criteria. First, sites were classified as supported in bulk if mutation supporting reads were observed in sample SRR2976567 in either of the MQ = 60 or MQ = 1 runs. Sites with no mutation supporting reads across all ten non-kindred samples and at least 50 total reads across all samples were considered kindred exclusive and further separated into those supported by 1, 2, or 3 of the kindred samples. Kindred exclusive sites supported by all three samples were designated exclusive triple (TRE). An additional class of sites was defined as kindred exclusive if supported by all three kindred samples and at most 1 supporting read in a non-kindred sample was also created to account for sequencing errors since base quality scores were not considered. All remaining sites were classified as FP sites. Site classifications were further refined by a mock kindred group analysis (described below). Finally, samtools and GATK classifications were integrated according to Supplementary Table 2 to create the TRE, likely TP, likely FP and unknown designations in Fig. 6. In total, 569 TRE sites were used to integrate according to Supplementary Table 2 to create the TRE, likely TP, likely FP, uncertain designations in Fig. 6. In total, 569 TRE sites were used to compute sensitivity.

Mock kindred group analysis. Clonal sSNVs or artifacts may be exclusive to the kindred group due to chance alone (e.g., due to chance dropout in the remaining samples or differences in read lengths). We therefore applied the same classification procedure described above to mock kindred groups consisting of three randomly chosen samples. All possible mock groups were created except the group of three clonally expanded samples and groups containing heat lysed single cells. For each mock kindred exclusive mutation supported by two or three samples, we counted the total number of mutation supporting reads across the mock kindred group. Cutoffs corresponding to the 99th (samtools) and 75th (GATK) percentiles of total mutation supporting reads were separately computed for mock sites supported by two or three of the mock kindred samples. Finally, kindred exclusive sites classified as TP by SCAN-SNV were classified as filtered if the total number of mutation supporting reads across the kindred group did not exceed the appropriate cutoffs. For GATK, cutoffs were 5 and 7 for kindred exclusive sites with two or three supporting kindred samples, respectively. Samtools cutoffs were 5 and 9. See Supplementary Fig. 1 for a detailed mock analysis of TREs.

Increased DNA content simulation. BAMs for two single-cell samples with imbalanced hSNP VAF distributions (IL-12 and IL-2) were downsampled by 50% and combined into a single BAM using samtools. The two other imbalanced samples, HL-1 and HL-2, were not used because a different, heat-based cell lysis protocol was used that may have affected the shapes of their VAF distributions. Downsampling was repeated 10 times to account for potential variance due to read sampling. AB models were fit by SCAN-SNV on chromosome 1 for each mixed BAM. The 10 replicates were plotted as a single, representative curve in Fig. 7 since essentially no variation between the trials was observed.

Cancer analysis. Raw FASTQ files for four ERBC tumor cells (BCI-4), tumor bulk (BCT) and matched normal bulk (BCN) were downloaded from the NCBI SRA accession SRP031572. Reads were aligned with BWA-MEM to GRCh37 with decoy and postprocessed using Picard MarkDuplicates, GATK indel realignment and GATK base quality recalibration. Putative sSNVs from all callers were gathered and samtools mpileup --q 60 was used to determine read support for each mutation across all six samples. sSNVs were then classified according to Supplementary Table 3. Haploid, diploid, and triploid chromosomes were identified by previously reported copy number profiles obtained by sequencing the bulk tumor population and 50 single cells.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability Source single-cell sequencing data for synthetic diploid X chromosomes were downloaded from dbGaP study phs001465.v1.p1. Single-cell sequencing data for the kindred cell system were downloaded from NCBI SRA project SRP067062. Sequencing data for single tumor cells were downloaded from NCBI SRA project SRP013572. All other relevant data are available upon request.

Code availability Source code for SCAN-SNV is available for download at https://github.com/parklab/scan-snv. SCAN-SNV version 0.9 and r-scansev version 0.1 were used to produce all results in this study.

Received: 16 October 2018 Accepted: 8 August 2019

Published online: 29 August 2019

References

1. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. *Nature 512*, 155–160 (2014).
2. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. *Nature 522*, 179–184 (2015).
3. DePristo, M. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. *Science 330*, 94–98 (2015).
4. Lodato, M. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. *Science 359*, 555–559 (2018).
5. Huang, L., Ma, F., Chapman, A., Lu, S. & Xie, X. S. Single-cell whole-genome amplification and sequencing: methodology and applications. *Annu. Rev. Genomics Hum. Genet.* 16, 79–102 (2015).
6. Ewry, G., Lee, E., Park, P. J. & Walsh, C. A. Resolving rates of mutation in the brain using single neuron genomics. *eLife* 5, e12966 (2016).
7. de Bourcy, C. F. A. et al. A quantitative comparison of single-cell whole genome amplification methods. *PLoS One 9*, e105585 (2014).
8. Zhang, C. Z. et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. *Nat. Commun.* 6, 6822 (2015).
9. Zafar, H., Wang, Y., Nakhlé, L., Navin, N. & Chen, K. Monovar: single-nucleotide variant detection in single cells. *Nat. Methods 13*, 505–507 (2016).
10. Dong, X. et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. *Nat. Methods 14*, 491–493 (2017).
11. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* 43, 491–498 (2011).
12. Delaneau, O. & Marchini, J., The 1000 Genomes Project Consortium. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. *Nat. Commun.* 5, 3934 (2014).
13. Ewing, A. et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. *Nat. Methods 12*, 623–630 (2015).
14. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat. Biotechnol.* 31, 213–219 (2013).
15. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetic parameter estimation from sequencing data. *Bioinformatics* 27, 2887–2993 (2011).
16. Alexandrov, L. et al. Signatures of mutational processes in human cancer. *Nature 500*, 415–421 (2013).
17. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. *Nature 538*, 260–264 (2016).
18. Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. *Nat. Methods 12*, 1058–1060 (2015).
19. Bohrson, C. et al. Linked-read analysis identifies mutations in single-cell DNA sequencing data. *Nat. Genet.* 51, 749–754 (2019).
20. Rasmussen, C. & Williams, C. Gaussian Processes for Machine Learning (The MIT Press, 2006).
21. Blocker, A. W. fastGHQuad: Fast Rcpp implementation of Gauss-Hermite quadrature. R package version 1.0. https://CRAN.R-project.org/package=fastGHQuad.
22. Hyndman, R. Computing and graphing highest density regions. *Am. Stat.* 50, 120–126 (1996).
23. Lasken, R. & Stockwell, T. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. *RMC Biotechnol.* 7, 19 (2007).
24. Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. *Bioinformatics* 28, 2520–2522 (2012).
25. Conda, http://conda.io.
26. Tate, J. et al. COSMIC: the catalogue of somatic mutations in cancer. *Nucleic Acids Res.* 47, D941–D947 (2019).

Acknowledgements

This work was supported by the Bioinformatics and Integrative Genomics training grant (T32HG002295) from the National Human Genome Research Institute (L.J.L., C.L.B.), a
Brain Somatic Mosaicism Network grant (U01MH106883) from the National Institute of Mental Health (P.J.P., M.A.S.), and Ludwig Center at Harvard Medical School (P.J.P.).

Author contributions
L.J.L. conceived and implemented the method, supervised by P.J.P. L.J.L., C.L.B. and M. A.S. performed analyses.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-11857-8.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks Yong Wang and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.