杉本 靖博（阪大）

「Nonlinear control by coupled oscillator: from nonholonomic systems to quasi-passive dynamic walker」

Q. 論文賞を受けられた御感想をお聞かせ下さい。
このような名誉ある賞を頂き、著者一同大変光栄に思っております。「非ホロノミックシステム」と「受動的動歩行」という一見関連のなさそうな対象を、「非線形振動子」という仲人をもってマリアージュさせることができた本論文の成果を、私たち自身興味深く感じていますが、それを高く評価して頂きうれしい限りです。論文の査読者の方々、編集者の方々、そして選考委員の方々に深く御礼申し上げます。

Q. 論文賞を受けられた御研究について教えて下さい。
非線形振動子のモデルの一つとしてよく知られる蔵本モデルを用いた非線形制御則を提案し、様々なシステムに適用できることを示した研究です。まず、非ホロノミックシステムの標準系として知られるBrockett Integratorに対し、提案した制御則を適用することでシステムを安定化できることを示しました。次にBrockett Integratorと数学的に等価である二輪車両の運動学モデルについても、提案した制御則にて制御できることを示しました。更に、私たちの先行研究において二輪車両と同じ拘束条件を持つことが明らかとなっていっている準受動的動歩行ロボットに対しても、同じ制御則を用いることができることを実験的に示しました。

Q. 現在、御興味を持たれている研究テーマを教えて下さい。
最近は、人工物の運動解析や制御だけでなく、生物が見せる適応的な運動発現メカニズムにも興味を持っています。

Q. 今後の抱負をお聞かせ下さい。
これまで、受動的動歩行と呼ばれる理学的にも工学的にも興味深い現象や、人工筋の一つとされるMcKibben型空気圧アクチュエータを対象に、ロボット自験の機構やアクチュエータが持つ特性が安定でダイナミックな運動実現にどう寄与しているかを数理的に明らかにし、それを制御に応用していくとする研究を続けています。生物の適応的な運動実現においても、上位の脳神経系からの制御だけでなく、機構やアクチュエータが持つ特性が重要であると考えています。実際の生物の構造を調べたり、運動の計測実験を行いつつ、最終的にはそのメカニズムを数理的に明らかにしていきたいです。

Q. 読者へのメッセージをどうぞ！
様々な分野の方々と交流し、分野横断的な研究を積極的に行っていきたいと思います。今後とも、よろしくお願い致します。

第6回（平成28年度）NOLTA論文賞

平成28年度NOLTA論文賞を受賞した、論文の著者にインタビューしました。

杉本 靖博（阪大）

「Nonlinear control by coupled oscillator: from nonholonomic systems to quasi-passive dynamic walker」

Q. 現在、御興味を持たれている研究テーマを教えて下さい。
最近は、人工物の運動解析や制御だけでなく、生物が見せる適応的な運動発現メカニズムにも興味を持っています。

Q. 今後の抱負をお聞かせ下さい。
これまで、受動的動歩行と呼ばれる理学的にも工学的にも興味深い現象や、人工筋の一つとされるMcKibben型空気圧アクチュエータを対象に、ロボット自験の機構やアクチュエータが持つ特性が安定でダイナミックな運動実現にどう寄与しているかを数理的に明らかにし、それを制御に応用していくとする研究を続けています。生物の適応的な運動実現においても、上位の脳神経系からの制御だけでなく、機構やアクチュエータが持つ特性が重要であると考えています。実際の生物の構造を調べたり、運動の計測実験を行いつつ、最終的にはそのメカニズムを数理的に明らかにしていきたいです。

Q. 読者へのメッセージをどうぞ！
様々な分野の方々と交流し、分野横断的な研究を積極的に行っていきたいと思います。今後とも、よろしくお願い致します。

第6回NOLTA論文賞対象論文

(1) Y. Sugimoto, T. Kibayashi, M. Ishikawa, K. Osuka, “Nonlinear control by coupled oscillator: from nonholonomic systems to quasi-passive dynamic walker,” Nonlinear Theory and Its Applications, IEICE, vol.6, no.4, pp.475-487, Oct. 2015.