S-Nitrosylation of mitochondrial caspases

Joan B. Mannick

University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Cell Biology Commons, and the Immunology and Infectious Disease Commons

Repository Citation
Mannick JB, Schonhoff CM, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston BM. (2001). S-Nitrosylation of mitochondrial caspases. Open Access Publications by UMass Chan Authors. https://doi.org/10.1083/jcb.200104008. Retrieved from https://escholarship.umassmed.edu/oapubs/926

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
S-Nitrosylation of mitochondrial caspases

Joan B. Mannick,1 Christopher Schonhoff,1 Natalia Papeta,2 Pedram Ghaforifar,1 Marten Szibor,1 Kezhong Fang,3 and Benjamin Gaston3

1Department of Medicine, University of Massachusetts Medical School, Shrewsbury, MA 01545
2Department of Medicine, Beth Israel Hospital, Boston, MA 02115
3Department of Pediatrics, University of Virginia Health Sciences Center, Charlottesville, VA 22908

Caspase-3 is a cysteine protease located in both the cytoplasm and mitochondrial intermembrane space that is a central effector of many apoptotic pathways. In resting cells, a subset of caspase-3zymogens is S-nitrosylated at the active site cysteine, inhibiting enzyme activity. During Fas-induced apoptosis, caspases are denitrosylated, allowing the catalytic site to function. In the current studies, we sought to identify the subpopulation of caspases that is regulated by S-nitrosylation. We report that the majority of mitochondrial, but not cytoplasmic, caspase-3zymogens contain this inhibitory modification. In addition, the majority of mitochondrial caspase-9 is S-nitrosylated. These studies suggest that S-nitrosylation plays an important role in regulating mitochondrial caspase function and that the S-nitrosylation state of a given protein depends on its subcellular localization.

Introduction

Apoptosis is a tightly regulated cell death program that removes excess or unwanted cells from organisms. Dysregulated apoptosis may be involved in the pathogenesis of diseases such as cancer, neurodegeneration, and autoimmunity (Thompson, 1995). The apoptotic program is executed by the caspase family of cysteine proteases that are expressed as inactive zymogens in cells and cleaved to form active tetrameric enzymes. Initiator caspases (e.g., caspases-8, -9, and -10) activate downstream effector caspases (e.g., caspases-3, -6, and -7), which in turn cleave specific cellular targets, resulting in cell death (Thornberry and Lazebnik, 1998).

Mitochondria serve as a central integrator of many apoptotic pathways. Several proapoptotic molecules are stored in the mitochondrial intermembrane space including apoptosis inhibitory factor (Susin et al., 1996, 1999b), cytochrome c (Li et al., 1997b), and a subset of caspase-2, -3, and -9zymogens (Mancini et al., 1998; Krajewski et al., 1999; Susin et al., 1999a). When mitochondria receive an apoptotic signal, these proteins are released into the cytoplasm, triggering the cell suicide program. The percentage of caspasezymogens found in mitochondria is variable. In rat heart and brain, 90% of caspase-9zymogens are mitochondrial (Krajewski et al., 1999), whereas only 10% of caspase-3zymogens are found in mitochondria in HeLa cells (Mancini et al., 1998). Since caspases are activated in a cascade fashion, activation and release of a small pool of mitochondrial caspases may activate a much larger pool of cytoplasmic caspases. In addition, sequestering caspases in mitochondria may prevent inappropriate apoptosis by removing the proteases from cytoplasmic targets.

Apoptosis is also regulated by intracellular nitric oxide (NO)* production. NO can be either pro- or antiapoptotic. The proapoptotic effects of NO may be mediated by DNA damage, leading to p53 activation (Messmer and Brune, 1996), proteasome inhibition (Glockzin et al., 1999), and/or cytochrome c release from mitochondria, resulting from activation of the mitochondrial permeability transition pore (Messmer et al., 1996; Balakirev et al., 1997; Hortelano et al., 1997) or damage of mitochondrial membrane phospholipids (Ushmorov et al., 1999). NO is thought to exert its antiapoptotic effects through upregulation of protective proteins such as heat shock protein 70 (Kim et al., 1997a), heme oxygenase (Kim et al., 1995), and Bcl-2 (Genaro et al., 1995; Suschek et al., 1999): an increase in cGMP levels (Kim et al., 1997a,b), a decrease in ceramide levels (De Nai dai et al., 2000), and/or S-nitrosylation of a critical cysteine residue expressed in the catalytic site of all caspase members (Dimmeler et al., 1997; Kim et al., 1997b, 2000; Li et al., 1997a; Mannick et al., 1999; Rossig et al., 1999).

*M. Szibor is currently on leave from the Institute of Pathophysiology, Martin-Luther-University, Halle, Germany.
Address correspondence to Joan B. Mannick, Dept. of Medicine, University of Massachusetts Medical School, Rose Reed Gordon Bldg., 222 Maple Ave., Shrewsbury, MA 01545. Tel.: (508) 856-7511. Fax: (508) 856-7578. E-mail: joan.mannick@umassmed.edu

Key words: nitric oxide; caspase-3; caspase-9; mitochondria; S-nitrosylation

© The Rockefeller University Press, 0021-9525/2001/09/1111/6 $5.00
The Journal of Cell Biology, Volume 154, Number 6, September 17, 2001 1111–1116
http://www.jcb.org/cgi/doi/10.1083/jcb.200104008
We reported previously that a subset of caspase-3 zymogens is inhibited by S-nitrosylation of the catalytic site cysteine in unstimulated human lymphocyte cell lines. Upon activation of the Fas apoptotic pathway, the zymogens are dinitrosylated, allowing the enzyme to function (Mannick et al., 1999). The studies did not identify the subpopulation of caspase-3 that is regulated by S-nitrosylation and did not analyze endogenous S-nitrosylation of other caspase zymogens. In the current studies, we determined whether mitochondrial caspase-3 is the subpopulation regulated by S-nitrosylation and whether caspase-9 zymogens also are endogenously S-nitrosylated.

Results and discussion
The majority of mitochondrial but not cytoplasmic caspase-3 is S-nitrosylated
Mitochondrial and cytoplasmic cellular fractions were isolated from a human B cell line (10C9) using differential centrifugation. The purity of the subcellular fractions was confirmed by superoxide dismutase (SOD1) (cytoplasm), cytochrome c (mitochondrial intermembrane space), and cytochrome oxidase (mitochondrial matrix) immunoblot analysis (Fig. 1). Caspase-3 or control proteins were immunoprecipitated from the mitochondrial and cytoplasmic fractions using a caspase-3–specific monoclonal antibody or equal concentrations of an isotype-matched control antibody (Ig). Immunoprecipitated proteins were visualized on silver-stained gels (right) or caspase-3 Western blot analysis (left). Molecular weight markers, immunoglobulin heavy chain (HC), light chain (LC), and caspase-3 (C3) are shown. (A) Caspase-3 immunoprecipitation. Proteins were immunoprecipitated from mitochondrial (M) and cytoplasmic (C) cellular fractions using a caspase-3–specific monoclonal antibody (C3) or equal concentrations of an isotype-matched control antibody (Ig). Immunoprecipitated proteins were visualized on silver-stained gels (right) or caspase-3 Western blot analysis (left). Molecular weight markers, immunoglobulin heavy chain (HC), light chain (LC), and caspase-3 (C3) are shown. (B) S-Nitrosylation of caspase-3. The SNO-derived chemiluminescence signal of Ig control (Ig) and caspase-3 (C3) immunoprecipitations obtained from mitochondrial (M) and cytoplasmic (C) fractions of 10C9 cells are shown. NO chemiluminescence in arbitrary units is plotted on the y-axis, and time is plotted on the x-axis. The NO released from each sample is proportional to the area under the curve. The data are representative of 1 of 10 separate experiments. (C) Caspase-3 is S-nitrosylated endogenously. The SNO-derived chemiluminescence signal of mitochondrial caspase-3 immunoprecipitates from CEM cells after they had been grown for 48 h in the presence (+NMA) or absence (−NMA) of 4.5 mM L-NMA is shown. The data are representative of one of two separate experiments. (D) S-Nitrosylation of mitochondrial and cytoplasmic caspase-3. (A) Caspase-3 immunoprecipitation. Proteins were immunoprecipitated from mitochondrial (M) and cytoplasmic (C) cellular fractions using a caspase-3–specific monoclonal antibody (C3) or equal concentrations of an isotype-matched control antibody (Ig). Immunoprecipitated proteins were visualized on silver-stained gels (right) or caspase-3 Western blot analysis (left). Molecular weight markers, immunoglobulin heavy chain (HC), light chain (LC), and caspase-3 (C3) are shown. (A) Caspase-3 immunoprecipitation. Proteins were immunoprecipitated from mitochondrial (M) and cytoplasmic (C) cellular fractions using a caspase-3–specific monoclonal antibody (C3) or equal concentrations of an isotype-matched control antibody (Ig). Immunoprecipitated proteins were visualized on silver-stained gels (right) or caspase-3 Western blot analysis (left). Molecular weight markers, immunoglobulin heavy chain (HC), light chain (LC), and caspase-3 (C3) are shown. (B) S-Nitrosylation of caspase-3. The SNO-derived chemiluminescence signal of Ig control (Ig) and caspase-3 (C3) immunoprecipitations obtained from mitochondrial (M) and cytoplasmic (C) fractions of 10C9 cells are shown. NO chemiluminescence in arbitrary units is plotted on the y-axis, and time is plotted on the x-axis. The NO released from each sample is proportional to the area under the curve. The data are representative of 1 of 10 separate experiments. (C) Caspase-3 is S-nitrosylated endogenously. The SNO-derived chemiluminescence signal of mitochondrial caspase-3 immunoprecipitates from CEM cells after they had been grown for 48 h in the presence (+NMA) or absence (−NMA) of 4.5 mM L-NMA is shown. The data are representative of one of two separate experiments. Mitochondrial caspase-3 immunoprecipitates from control cells were divided into two samples, one of which was exposed to UV light for 10 min (+UV) and the other left untreated in the dark at room temperature for the same period (−UV). The SNO-derived chemiluminescence signal from UV-treated and untreated samples is shown. The data are representative of one of four separate experiments. (D) A higher percentage of mitochondrial than cytoplasmic caspase-3 is S-nitrosylated. S-nitrosylated proteins in cytoplasmic (C) and mitochondrial (M) fractions were selectively labeled with biotin and then purified over streptavidin-agarose as described previously (Jaffrey et al., 2001). The purified S-nitrosylated proteins were then analyzed by caspase-3 Western blot analysis. 1 out of 100 of the total protein in the mitochondrial or cytoplasmic starting sample (16 μg) was loaded in the lanes marked Total. Purified S-nitrosylated proteins obtained from each fraction were loaded in the lanes labeled SNO. Caspase-3 (C3) is indicated.
Figure 3. S-Nitrosylation of cytoplasmic and mitochondrial caspase-9. Caspase-9 immunoprecipitation. Proteins were immunoprecipitated from mitochondrial (M) or cytoplasmic (C) cellular fractions using a caspase-9–specific rabbit polyclonal antiserum (C9) or equal concentration of normal rabbit serum (NRS). Immunoprecipitated proteins were visualized on silver-stained gels (right) or caspase-9 Western blot analysis (left). In the silver-stained gel, immunoprecipitates from whole cell lysates are shown. Molecular weight markers, immunoglobulin heavy chain (HC), light chain (LC), and caspase-9 (C9) are shown. (B) S-Nitrosylation of caspase-9. The SNO-derived chemiluminescence signal of control normal rabbit serum (NRS) or caspase-9 (C9) immunoprecipitates obtained from mitochondrial (M) and cytoplasmic (C) fractions of BJAB cells and from 30 nM (30) and 60 nM (60) S-nitrosoglutathione standards are shown. The data are representative of 1 of 10 separate experiments.

In 1999, then the stoichiometry of SNO to caspase suggests that ~85% of caspase-3 zymogens in mitochondria are S-nitrosylated compared with only 17% of zymogens in the cytoplasmic fraction (see Fig. 4). Treatment of cells with the NO synthase inhibitor Nω-monomethyl-L-arginine (L-NMA) for 48 h before immunoprecipitation or treatment of the immunoprecipitates with UV light for 10 min decreased the level of NO detected in the immunoprecipitates, suggesting that the NO signal is not an artifact of protein purification (Fig. 2 C). To confirm our chemiluminescence results, we analyzed caspase-3 S-nitrosylation using a recently described technique in which S-nitrosylated proteins are selectively biotinylated, purified over streptavidin-agarose, and then detected by immunoblot (Jaffrey et al., 2001). Although the concentration of caspase-3 was much higher in the cytoplasm than in the mitochondrial lysates, similar levels of S-nitrosylated caspase-3 were detected in each fraction (Fig. 2 D). This data also suggests that a higher percentage of mitochondrial than cytoplasmic caspase-3 is S-nitrosylated.

To rule out preferential denitrosylation of cytoplasmic caspase-3 during sample preparation, we spiked our cytoplasmic preparations with 60 nM of in vitro S-nitrosylated caspase-3 and then analyzed S-nitrosylated caspase-3 recovery in our immunoprecipitates. The SNO/protein stoichiometry of caspase-3 immunoprecipitates obtained from the spiked cytosolic preparations was 0.75, very similar to the stoichiometry (0.85) of mitochondrial caspase-3 immunoprecipitates. This data suggests that caspase-3 is not preferentially denitrosylated in our cytosolic preparations. In addition, treatment of cells with L-NMA (5 mM) throughout the time of cell lysis and immunoprecipitation had no effect on mitochondrial caspase-3 S-nitrosylation (unpublished data). Therefore, increased S-nitrosylation of mitochondrial caspase-3 is not likely to be due to an increased exposure to NO synthase (NOS) activity during sample preparation.

The possible sources of NO-related species that S-nitrosylate mitochondrial caspase-3 include a putative mitochondrial NOS (Kobzik et al., 1995; Ghaforifar and Richter, 1997; Tatoyan and Giulivi, 1998), NO produced by cytoplasmic NOS, which diffuses into the mitochondria, or transnitrosation from S-nitrosylated species within mitochondria such as S-nitrosoglutathione. To determine if increased S-nitrosylation of mitochondrial caspase-3 is due to increased NO production within mitochondria, we analyzed whether cytoplasmic caspase-3 S-nitrosylation is increased when cells are exposed to increasing concentrations of an NO donor. Exposure of cells to 0, 10, 100, or 1,000 μM of the NO donor S-nitrosopenicillamine for 24 h did not increase S-nitrosylation of immunoprecipitated cytoplasmic caspase-3 (unpublished data). Therefore, factors in the subcellular microenvironment of cytoplasmic and mitochondrial caspase-3 other than NO concentration are likely to be important determinants of S-nitrosylation.

Mitochondrial caspase-3 is denitrosylated after Fas stimulation

We have reported previously that S-nitrosylated caspase-3 zymogen obtained from whole cell lysates is denitrosylated after Fas stimulation (Mannick et al., 1999). To determine if mitochondrial caspase-3 is denitrosylated after Fas stimulation, we immunoprecipitated caspase-3 from mitochondrial fractions of cells obtained at 0 or 2–3 h after stimulation with Fas agonist antibody (Clone CH-11, 60 ng/ml; Upstate Biotechnology). Mitochondrial caspase-3 S-nitrosylation decreased 79 ± 12% (mean ± SEM, n = 4, p = 0.01, paired Student’s t test) after Fas stimulation, indicating that mitochondrial caspase-3 is denitrosylated during Fas-induced apoptosis.

The majority of mitochondrial but not cytoplasmic caspase-9 is S-nitrosylated

Caspase-3 is the only caspase zymogen which has been shown to be S-nitrosylated by endogenous NOS activity in cells. To determine if other caspase zymogens are endogenously S-nitrosylated, S-nitrosylation of mitochondrial and cytoplasmic caspase-9 zymogens was analyzed. Caspase-9 was immunoprecipitated from mitochondrial and cytoplasmic fractions of two human B cell lines, BJAB and 10C9. These cell lines were chosen because they express relatively high levels of mitochondrial caspase-9, allowing sufficient protein to be immunoprecipitated to assess the presence of
S-nitrosylation is not required to target caspase-3 to mitochondria

It is possible that S-nitrosylation, like phosphorylation, localizes proteins to specific subcellular compartments (Teruel and Meyer, 2000). To determine if S-nitrosylation targets caspase-3 to mitochondria, cells were grown for 48 h in the presence of NOS inhibitors. NOS inhibition increased caspase-3 S-nitrosylation (Fig. 2 C) but had no effect on mitochondrial caspase-3 levels (Fig. 5 A). In addition, mutation of the catalytic site cysteine of caspase-3 to an alanine did not alter mitochondrial caspase-3 levels (Fig. 5 B), despite inhibiting caspase S-nitrosylation (Mannick et al., 1999). These data suggest that S-nitrosylation is not required to target caspase-3 to mitochondria.

In summary, the results demonstrate that the majority of mitochondrial, but not cytoplasmic, caspase-3zymogens are S-nitrosylated in resting cells. Since caspase-3 is S-nitrosylated in resting cells, S-nitrosylation may prevent inappropriate caspase autoactivation in mitochondria when zymogens are brought into relatively close proximity in the intermembrane space.

S-Nitrosylation of proteins has been suggested to play a role comparable to phosphorylation in regulating signaling pathways (Stamler et al., 1992). Phosphorylation involves the reversible covalent attachment of a phosphate group to serine, threonine, or tyrosine residues on proteins, whereas nitrosylation involves the reversible covalent attachment of an NO-derived nitroso group to cysteine residues.
an NO group to cysteine residues. One of the differences between phosphorylation and S-nitrosylation is that the SNO bond is easily reduced and therefore less stable than the protein–phosphate bond. This has made characterization of SNO proteins difficult and led to questions regarding their intracellular stability. The factors that influence intracellular SNO protein formation and stability include pO2 (Eu et al., 2000), pH, redox environment (Stamler, 1994; Stamler et al., 1997), the intracellular location of NOS, the different chemistries of the various NO species that react with thiols (Stamler, 1994), the reactivity of the target thiol itself, which can vary sixfold (Stamler et al., 1997), and the possibility of enzymes comparable to kinases and phosphatases that catalyze the attachment or removal of NO groups from thiols (Stamler et al., 1997; Gaston, 1999; Fang et al., 2000). Of note, the rate constant for formation of the inorganic S-nitrosylating intermediate nitrogen dioxide from NO is substantially higher in lipid membranes (which are abundant in mitochondria) than in aqueous solution (Liu et al., 1998).

Our findings are the first to suggest the S-nitrosylation state of a given protein may depend on its subcellular location. Since many of the factors listed above that influence the formation and stability of S-nitrosylated proteins are likely to vary between subcellular compartments, it is possible that certain cellular microenvironments, such as the mitochondrial intermembrane space, are privileged sites favoring SNO protein stability. During apoptosis, mitochondrial caspase-3 is released into the cytoplasm, and caspase-3 is denitrosylated (Mancini et al., 1998; Mannick et al., 1999; Samali et al., 1999). We speculate that movement of proteins out of privileged sites into environments that do not favor SNO stability may be a mechanism involved in protein activation by denitrosylation.

Materials and methods

Materials
RPMA 1640, FCS, penicillin, streptomycin, and l-glutamine were purchased from Cellgro/Mediatech. Caspase-3, caspase-9, cytochrome c, and SOD1 antibodies were purchased from BD Transduction Laboratories. Cytochrome oxidase antibody (subunit I1V) was purchased from Molecular Probes. Control normal rabbit serum was obtained from the laboratory of Dr. William Marshall (University of Massachusetts Medical School, Worcester, MA). All other chemicals were purchased from Sigma-Aldrich.

Cell lines
10C9 and BJAB are human Burkitt’s lymphoma B cell lines. CEM is a human T cell line, and U937 is a human monomyelocytic leukemia cell line. BJAB was obtained from the laboratory of Dr. Elliott Kieff (Harvard Medical School, Boston, MA). CEM and U937 were obtained from the laboratory of Dr. Robert Finberg (University of Massachusetts Medical School), and 10C9 was purchased from American Type Culture Collection. MCF-7 cells stably transfected with WT and mutant caspase-3 were generated as described previously (Mannick et al., 1999). Cells were grown at 37\(^{\circ}\)C in RPMI 1640 supplemented with 10% fetal bovine serum. All culture media were supplemented with 100 U/ml penicillin, 100 \(\mu\)g/ml streptomycin, 10 \(\mu\)M L-glutamine, 100 \(\mu\)M NaCl, 50 mM Tris, pH 8, 100 \(\mu\)M EDTA, and protease inhibitors. Insoluble material was pelleted for 10 min at 10,000 g for 4\(^{\circ}\)C. The supernatant was precleared as described previously (Mannick et al., 1999). Cellular proteins were immunoprecipitated in the dark with 5 \(\mu\)l of an anti-caspase-3 IgG2a monoclonal antibody, 5 \(\mu\)g of a control IgG2a antibody (Sigma–Aldrich), 1 \(\mu\)l of a 1:5 dilution of rabbit anti-caspase-9 polyclonal antiserum or equal concentrations of control normal rabbit serum. The antigen–antibody complexes were isolated with protein A-Sepharose beads for 2 h at 4\(^{\circ}\)C. The beads were then washed five times in high salt buffer to which 1 mM s-ethyl-maleimide was added to block free thiols and thereby prevent artifactual S-nitrosylation. Antigen–antibody complexes were removed from the protein A-Sepharose beads by three 10-min incubations in 70 \(\mu\)l of 100 mM glycine (pH 3) at 4\(^{\circ}\)C before NO measurements.

S-Nitrosylation measurements
Caspase S-nitrosylation was detected by reduction/chemiluminescence as described previously (Fang et al., 1998) with minor modifications. Immunoprecipitated samples (after separation from beads) were injected into 5 ml of a solution containing 100 \(\mu\)M CuCl\(_2\), 1 mM cysteine, and 0.01% antifoam (pH 3.5, 50\(^{\circ}\)C) purged continuously with argon or helium (grade 5; BOC gases). NO evolved was measured by chemiluminescence (Sievers). Data were interpreted as raw photoelectric output (integrated using Sievers software) and as absolute NO evolved (using NO standards generated by S-nitrosothiolagone).

Detection of S-nitrosylated caspase-3 on gels
S-nitrosylated proteins in mitochondrial and cytoplasmic fractions were selectively biotinylated and purified as described previously (Jaffrey et al., 2001). The purified proteins were then analyzed by caspase-3 Western blot analysis.

In vitro S-nitrosylation of caspase-3
Immunoprecipitated caspase-3 zymogen eluted from protein A-Sepharose beads in 100 mM glycine (pH 3) was reduced with 20 mM DTT for 30 min on ice. The DTT was removed by passage over a Sephadex G-25 column (Amersham Pharmacia Biotech) preequilibrated with buffer B (100 mM Hepes, pH 7.4, 140 mM NaCl, 100 \(\mu\)M EDTA, and protease inhibitors). The protein was then incubated with 200 \(\mu\)M S-nitroso-cysteine for 1 h on ice and purified by passage over a Sephadex G-25 column. The extent of caspase-3 S-nitrosylation was determined by chemiluminescence as described above.

Western blot and silver stain analysis
Immunoprecipitated proteins or control BSA standards were separated on 12% SDS-PAGE. The gels were either silver stained as per the manufacturer’s instructions (Sigma–Aldrich), or proteins were transferred to nitrocellulose and Western blots were performed as described previously (Mannick et al., 1999).

References
Balakiriev, M., V.V. Khramtsov, and G. Zimmer. 1997. Modulation of the mitochondrial permeability transition by nitric oxide. Eur. J. Biochem. 246:710-718.
De Nadai, C., P. Sentili, O. Canton, J.P. Lierwemont, C. Sciorati, R. Barsacchi, S. Moncada, J. Meldolesi, and E. Clementi. 2000. Nitric oxide inhibits tumor necrosis factor-\(\alpha\)-induced apoptosis by reducing the generation of cer-
amide. Proc. Natl. Acad. Sci. USA 97:5480–5485.

Dimmeler, S., J. Haendeler, M. Nehls, and A.M. Zeiher. 1997. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1β-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J. Exp. Med. 185:601–607.

Ei, J.P., J. Sun, L. Xu, J.S. Stamler, and G. Meissner. 2000. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell. 102:499–509.

Fang, K., N.V. Ragdale, R.M. Carey, T. MacDonald, and B. Gaston. 1998. Reductive assays for S-nitrosi- diates: implications for measurements in biological systems. Biochem. Biophys. Res. Commun. 252:535–540.

Fang, K., R. Johns, T. Macdonald, M. Kinter, and B. Gaston. 2000. S-nitrosoglutathione breakdown prevents airway smooth muscle relaxation in the guinea pig. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L716–L721.

Gaston, B. 1999. Nitric oxide and thiol groups, Biochim. Biophys. Acta. 1411:323–353.

Genaro, A.M., S. Horrelano, A. Alvarez, C. Martinez, and L. Bosca. 1995. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J. Clin. Invest. 95:1884–1890.

Ghafoorifar, P., and C. Richter. 1997. Nitric oxide synthase activity in mitochondria. FEBS Lett. 418:291–296.

Glockzin, S., A. von Knethen, M. Scheffner, and B. Brune. 1999. Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J. Biol. Chem. 274:19581–19586.

Hortelano, S., B. Dallaporta, N. Zamzami, T. Hirsch, S.A. Susin, I. Marzo, L. Bosca, and G. Kroemer. 1997. Nitric oxide induces apoptosis via triggering mitochondrial permeability transition. FEBS Lett. 410:373–377.

Jaffrey, S.R., H. Erdjument-Bromage, C.D. Ferris, P. Tempst, and S.H. Snyder. 2001. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3:193–197.

Kim, Y.M., H. Bergonia, and J.R. Lancaster, Jr. 1995. Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 374:228–232.

Kim, Y.M., M.E. de Vera, S.C. Watkins, and T.R. Billiar. 1997a. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J. Biol. Chem. 272:1402–1411.

Kim, Y.M., R.V. Talanian, and T.R. Billiar. 1997b. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 272:31138–31148.

Kim, Y.M., T.H. Kim, H.T. Chung, R.V. Talanian, X.M. Yin, and T.R. Billiar. 2000. Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apoptosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology. 32:770–778.

Kohrlik, L., B. Stringer, J.L. Balligand, M.B. Reid, and J.S. Stamler. 1995. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial functional relationships. Biochem. Biophys. Res. Commun. 211:375–381.

Krajewska, S., M. Krajewska, I.M. Ellerby, K. Welsh, Z. Xie, Q.L. Deveraux, G.S. Salvesen, D.E. Bredesen, R.E. Rosenthal, and G. Fiskum. 1999. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA. 96:5752–5757.

Li, J., T.R. Billiar, R.V. Talanian, and Y.M. Kim. 1997a. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240:419–424.

Li, P., D. Nijhawan, J. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, and X. Wang. 1997b. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489.

Liu, X., M.J. Miller, M.S. Joshi, D.D. Thomas, and J.R. Lancaster. 1998. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl. Acad. Sci. USA. 95:2175–2179.

Mancini, M., D.W. Nicholson, S. Roy, N.A. Thornberry, E.P. Peterson, L.A. Casciola-Rosen, and A. Rosen. 1998. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140:1485–1495.

Mannick, J.B., A. Haulsladen, L. Liu, D.T. Hes, M. Zeng, Q.X. Miao, L.S. Kane, A.J. Gow, and J.S. Stamler. 1999. Gas-induced caspase denitrosylation. Science. 284:651–654.

Messmer, U.K., and B. Brune. 1996. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem. J. 319:299–305.

Messmer, U.K., U.K. Reed, and B. Brune. 1996. Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J. Biol. Chem. 271:20192–20197.

Rossig, L., B. Fichtlarcher, K. Breitschopf, J. Haendeler, A.M. Zeiher, A. Mulsch, and S. Dimmeler. 1999. Nitric oxide inhibits caspase-3 by S-nitrosylation in vivo. J. Biol. Chem. 274:6823–6826.

Samali, A., J. Cai, B. Zhitovtovsk, D.P. Jones, and S. Orrenius. 1999. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J. 18:2040–2048.

Stamler, J.S. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 78:931–936.

Stamler, J.S., D.L. Simon, J.A. Osborne, M.E. Mullins, O. Jaraki, T. Michel, D.J. Singel, and J. Losalzu. 1992. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA. 89:444–448.

Stamler, J.S., E.J. Toone, S.A. Lipton, and N.J. Sucher. 1997. (S)NO signals: translocation, regulation, and a consensus motif. Neuron. 18:691–696.

Suschek, C.V., V. Krichel, D. Bruch-Gerhartz, D. Berendt, J. Rmployt, K.D. Kroncke, and V. Kolb-Bachofen. 1999. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J. Biol. Chem. 274:6130–6137.

Susin, S.A., N. Zamzami, M. Castedo, T. Hirsch, P. Marchetti, A. Macho, E. Dau- ge, M. Grusken, and G. Kroemer. 1996. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184:1331–1341.

Susin, S.A., H.K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner, N. Larcheote, M.C. Prevost, P.M. Altazi, and G. Kroemer. 1999a. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189:381–394.

Susin, S.A., H.K. Lorenzo, N. Zamzami, I. Marzo, B.E. Snow, G.M. Brothers, J. Krumm, M. Kroncke, and V. Kolb-Bachofen. 1999. Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation. J. Biol. Chem. 274:6130–6137.

Tattersall, A., and C. Giulivi. 1998. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J. Biol. Chem. 273:11044–11048.

Teruel, M.N., and T. Meyer. 2000. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell. 103:181–184.

Thompson, C.B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science. 267:1456–1462.

Thornberry, N.A., and V. Lazebnik. 1998. Caspases: enzymes within. Science. 281:1312–1316.

Ushmer, A., F. Ratter, V. Lehmann, W. Droge, V. Schirrmacher, and V. Uman- sky. 1999. Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood. 93:2342–2352.