Genetic and molecular bases of photoperiod responses of flowering in soybean

Satoshi Watanabe¹, Kyuya Harada¹ and Jun Abe*²

¹) National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
²) Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan

Flowering is one of the most important processes involved in crop adaptation and productivity. A number of major genes and quantitative trait loci (QTLs) for flowering have been reported in soybean (Glycine max). These genes and QTLs interact with one another and with the environment to greatly influence not only flowering and maturity but also plant morphology, final yield, and stress tolerance. The information available on the soybean genome sequence and on the molecular bases of flowering in Arabidopsis will undoubtedly facilitate the molecular dissection of flowering in soybean. Here, we review the present status of our understanding of the genetic and molecular mechanisms of flowering in soybean. We also discuss our identification of orthologs of Arabidopsis flowering genes from among the 46,367 genes annotated in the publicly available soybean genome database Phytozome Glyma 1.0. We emphasize the usefulness of a combined approach including QTL analysis, fine mapping, and use of candidate gene information from model plant species in genetic and molecular studies of soybean flowering.

Key Words: soybean, flowering, photoperiod sensitivity, maturity gene.

Introduction

Soybean (Glycine max (L.) Merr.) is grown over a wide range of latitudes, from equatorial to at least 50 degrees north and 35 degrees south. However, the cultivation area of each cultivar is restricted to a very narrow range of latitudes. The wide adaptability of soybean has been created by natural variation in the major genes and quantitative trait loci (QTLs) controlling flowering. At present, nine major genes have been reported to control time to flowering and maturity in soybean: E1 and E2 (Bernard 1971), E3 (Buzzell 1971), E4 (Buzzell and Voldeng 1980), E5 (McBlain and Bernard 1987), E6 (Bonato and Vello 1999), E7 (Cober and Voldeng 2001a), E8 (Cober et al. 2010), and J (Ray et al. 1995).

Linkage analyses have located these genes to molecular linkage groups (MLGs) C1 (Gm04) for E8 (Cober et al. 2010), C2 (Gm06) for E1 and E7 (Cober and Voldeng 2001a, Molnar et al. 2003), I (Gm20) for E4 (Abe et al. 2003, Molnar et al. 2003), L (Gm19) for E3 (Molnar et al. 2003) and O (Gm10) for E2 (Akkaya et al. 1995, Cregan et al. 1999). At all of the loci except for E6 and J, dominant alleles delay time to flowering to different extents, interacting with the environment and with genotypes at other loci. The recessive alleles e6 and j were identified in crosses with late-flowering cultivars carrying a long-juvenile trait to condition later flowering (Bonato and Vello 1999, Ray et al. 1995). In addition to these major genes, many QTLs controlling time to flowering have been reported (Chapman et al. 2003, Cheng et al. 2011, Funatsuki et al. 2005, Githiri et al. 2007, Keim et al. 1990, Khan et al. 2008, Komatsu et al. 2007, Lee et al. 1996, Liu et al. 2007, 2011, Liu and Abe 2010, Mansur et al. 1993, Orf et al. 1999, Poopronpan et al. 2006, Tasma et al. 2001, Wang et al. 2004, Watanabe et al. 2004, Yamanaka et al. 2001, Zhang et al. 2004). Some of these QTLs most likely correspond to one of the known major genes, such as E1, E2, E3, E4, or E8 (Cheng et al. 2011, Funatsuki et al. 2005, Githiri et al. 2007, Khan et al. 2008, Liu and Abe 2010, Watanabe et al. 2004, Yamanaka et al. 2005). Some of these QTLs are described in the Soybase database (http://soybase.org/). The major genes and QTLs for flowering often influence agronomic traits other than flowering and maturity, such as plant height and yield (Chapman et al. 2003, Cober and Morrison 2010, Lee et al. 1996, Mansur et al. 1993, Wang et al. 2004, Zhang et al. 2004), degree of cleistogamy (Khan et al. 2008, Takahashi and Abe 1994), and seed coat pigmentation and cracking caused by chilling stress (Githiri et al. 2007, Takahashi and Abe 1999). Understanding of their molecular bases and their interactions with the environment may therefore be necessary to determine genotypic combinations that will lead to a higher or more stable yield in the cropping season of a particular region. In this review, we summarize the results obtained...
from previous studies of major genes and QTLs for flowering and those from recent molecular dissections of the maturity genes E2, E3 and E4 and of soybean orthologs of the Arabidopsis FLOWERING LOCUS T gene. We also describe soybean orthologs for Arabidopsis flowering genes deposited in the Williams 82 genome database, and we discuss the resolution of QTL mapping and the positioning of these orthologs on genetic and physical maps. The information on soybean orthologs of Arabidopsis flowering genes should be helpful in the search for candidate genes for targeted major loci and QTLs for flowering in soybean, and in the development of functional DNA markers for use in breeding programs.

Genetic bases for responses of flowering to artificially induced long daylength

Most soybean cultivars have a short-daylength (SD) requirement for floral induction. Flowering is usually suppressed under long-daylength (LD) conditions but induced when the daylength is shorter than a critical length. This sensitivity to photoperiod varies among cultivars: in particular, it is weak or absent in soybean cultivars adapted to high latitudes. Four major genes (E1, E3, E4 and E7) have been well characterized for their responses to LD artificially induced by fluorescent and incandescent lamps with different red to far-red quantum (R:FR) ratios (Buzzell 1971, Buzzell and Voldeng 1980, Cober et al. 1996a, 1996b, 2001, Cober and Voldeng 2001a, 2001b, Kilen and Hartwig 1971, Saindon et al. 1989a, 1989b). The E3 locus was first identified by extending natural daylength to 20 h with the use of cool-white fluorescent lamps with a high R:FR ratio; the e3e3 recessive homozygote alone can initiate flowering under fluorescence-induced LD (FLD) (Buzzell 1971, Kilen and Hartwig 1971). The E4 locus was identified by extending the natural daylength to 20 h with incandescent lamps with a low R:FR ratio (Buzzell and Voldeng 1980). A homozygous recessive e4e4 genotype is necessary for plants homozygous for the e3 allele to flower under incandescence-induced LD (ILD) without any marked delay in flowering (Buzzell and Voldeng 1980, Saindon et al. 1989a). However, the e4e4 genotype cannot on its own confer insensitivity to FLD. E3 and E4 most likely control flowering under LD conditions with a wide range of R:FR ratios in a non-additive manner.

The known flowering loci, E1, E7 and E8, are also involved in the control of sensitivity to ILD, particularly in the double-recessive e3e3e4e4 genotype background (Cober et al. 1996b, 2001, 2010, Cober and Voldeng 2001a, 2001b). E1 has the largest effect on flowering (Bernard 1971, McBlain et al. 1987, Upadhyay et al. 1994). However, a near-isogenic line (NIL) of cv. Harosoy homozygous for E1, e3 and e4 (OT93-28) initiated flowering at the same time as the NIL homozygous for e1, e3 and e4 (OT85-9) under FLD, suggesting that E1 does not influence time to flowering under LD with a high R:FR ratio (Cober et al. 1996b). In contrast, E1 exhibits a marked inhibitory effect on flowering under ILD with a R:FR ratio of less than 1.0 (Cober et al. 1996b, Thakare et al. 2010). A homozygous recessive e7e7 genotype further weakens the response of plants homozygous for e1, e3 and e4 to ILD (Cober and Voldeng 2001a, Cober et al. 2001). However, the e7e7 genotype does not confer a complete loss of photoperiod sensitivity (Cober et al. 2001). Another recessive allele, e8, is involved in the genetic difference in flowering time observed between breeding lines of genotype e1e1e3e3e4e4e7e7 (Cober et al. 2010).

In addition to the double-recessive genotype at E3 and E4 (e3e3e4e4), another genetic mechanism is also involved in the control of ILD insensitivity. Abe et al. (2003) found that a Japanese early-maturing cultivar, Sakamotowase, had a genetic system for ILD insensitivity different from that of the Japanese early-maturing cultivar Miharudaizu (e3e3e4e4). Mapping analysis indicated that both cultivars differed in their genotypes at the E1 and E4 loci. The genotype at E3 was assumed to be e3e3 in both cultivars because of their insensitivity to FLD; this was confirmed in a later study with the use of functional DNA markers (Liu and Abe 2010). Testcrosses with a Harosoy NIL for e3 (e1e1e3e3e4e4) further revealed that Sakamotowase has a novel gene for ILD insensitivity at, or tightly linked to, the E1 locus (Liu and Abe 2010). Therefore, at least two different systems are involved in the genetic control of ILD insensitivity in soybean.

Interaction between major genes and QTLs for flowering

Major genes and QTLs for flowering often interact with one another to determine time to flowering. For example, the effects of some major genes such as E2 (qFT2) and E3 (qFT3) are weakened or masked in early-flowering genetic backgrounds, such as those conditioned by a recessive allele at the E1 locus (Upadhyay et al. 1994, Watanabe et al. 2004, Yamanaka et al. 2001). The two QTLs qFT2 and qFT3, detected in a cross between a Japanese cultivar, Misuzudaizu, and a Chinese forage soybean line, Moshido Gong 503, exhibited only a small allelic effect on flowering time under an early-maturing background conditioned by the recessive allele at qFT1 (e1e1), but the allelic effects became marked in a late-maturing background (E1E1) (Yamanaka et al. 2001). Similarly, using cv. Clark NILs for the E1, E2, and E3 loci, Upadhyay et al. (1994) found no effect of allelic substitutions at either E2 or E3 in an e1e1 background, whereas the effect of the E1 allele was marked and almost the same as that of the E2 and E3 alleles combined. Furthermore, the E2 and E3 alleles each interact positively with the E1 allele to enhance the photoperiod-sensitivity (Upadhyay et al. 1994). A similar genetic interaction was observed in a combination of E4 with later-maturing genetic backgrounds (Saindon et al. 1989b). A marked allelic effect at E4 was observed in a segregating family with the E1E1 genotype (Abe et al. 2003). Accordingly, the E1 gene appears to control time to flowering epistatically over the other E genes.
E3 and E4 encode phytochrome A proteins

The different responses of E genes to LD conditions with different R : FR ratios have suggested that some of these genes are involved in phytochrome A (phyA)-regulated floral induction in soybean (Cober et al. 1996b, 2001). Liu et al. (2008) analyzed the sequence variation in a phyA homolog (GmphyA2) between NILs that were photoperiod sensitive and insensitive for E4. They found that a Ty1/copia-like retrotransposon designated SORE-1 was inserted in the first exon of the GmphyA2 gene of photoperiod-insensitive lines carrying the recessive e4 allele (Kanazawa et al. 2009, Liu et al. 2008). This insertion resulted in a premature stop codon causing a truncated and dysfunctional protein. Genetic mapping analysis confirmed that GmphyA2 cosegregated with E4 on MLG I (Gm20) (Abe et al. 2003, Liu et al. 2008). Furthermore, the NIL for e4 showed an impaired de-etiolation (greening) response under continuous FR-light conditions, as found in phyA null mutants of Arabidopsis (Neff and Chory 1998), rice (Takano et al. 2001, 2005), and pea (Weller et al. 1997, 2001). Taking these findings together, Liu et al. (2008) concluded that the E4 gene encodes the GmphyA2 protein and that the recessive e4 allele is a loss-of-function allele.

Soybean possesses a homoeologous copy of GmphyA2, namely GmphyA1, in MLG O (Gm10) (Choi et al. 2007, Liu et al. 2008). The function of GmphyA1 remains undetermined, because no genetic variant is available yet at this locus. However, two findings may indicate that GmphyA1, like E4, is involved in both de-etiolation response and flowering under FR-enriched LD conditions. First, the phyA function of the e4 allele in the de-etiolation response was not completely lost, whereas the phyA null mutants of Arabidopsis, pea, and rice all showed a complete loss of the de-etiolation response under continuous FR light (Neff and Chory 1998, Takano et al. 2001, 2005, Weller et al. 1997, 2001), suggesting that another phyA copy has a redundant function to E4. Second, a Harosoy NIL for double-recessive alleles at E3 and E4 (e3e3e4e4) did not respond to LD with a relatively high R : FR ratio (1.0–5.0) but showed delayed flowering under LD with a low R : FR ratio (<1.0) (Cober et al. 1996b, 2001). These redundant functions for de-etiolation and flowering suggest that GmphyA1 itself functions redundantly with E4 in both de-etiolation responses and photoperiod responses under FR-enriched light. However, sequence analyses of both homoeologs in wild (G. soja) and cultivated soybeans revealed that the nucleotide diversity at non-synonymous sites was lower in GmphyA1 than in GmphyA2, although the diversity at synonymous sites and non-coding regions was almost the same in the two loci, suggesting that GmphyA1 has been subject to more intense purifying selection than GmphyA2 (our unpublished data). Some degree of subfunctionalization may thus have occurred between the two phyA homoeologs. Further studies using dysfunctional mutants will be needed to determine the function of GmphyA1 in photoperiodic responses of flowering.

The E3 gene was also identified as a phyA homolog by fine-mapping around a QTL for flowering time (qFT3) (Watanabe et al. 2009). qFT3 is one of three major QTLs detected in a cross between Misuzudaizu and Moshido Gong 503, and on the basis of map position it has been suggested as a candidate for the maturity gene E3 in MLG L (Gm19) (Watanabe et al. 2004). Fine-mapping by using a residual heterozygous line (RHL) derived from this cross delineated qFT3 within a 93-kb region of a single TAC clone in which a phyA homolog, GmphyA3, was located. Sequence analyses of GmphyA3 revealed one amino acid (AA) substitution between the parental lines: the early-flowering allele from Moshido Gong 503 possesses an AA substitution from glycine to arginine at an AA site of phyA that is conserved across diverse plant species. Furthermore, an NIL of Harosoy homozygous for e3 contained a truncated protein caused by deletion of a segment covering a genomic region 13 kb long, beginning in the fourth exon and extending downstream. The identity between E3 and GmphyA3 was confirmed by using an artificially induced mutant lacking a 40-bp segment in the first exon; this mutation was detected by TILLING (Targeting Induced Local Lesions In Genomes). The mutant allele encoded a truncated protein and flowered earlier than the parental variety Bay under FLD (Watanabe et al. 2009). The control of photoperiodic response of flowering to FLD by e3 is therefore attributed to a dysfunctional GmphyA3 allele. Unlike the E4 locus, however, the E3 locus on its own is not involved in the control of de-etiolation response under continuous R or FR light (Liu et al. 2008).

As in the case of the homoeologs GmphyA1 and GmphyA2, soybean possesses a homoeolog of GmphyA3, namely GmphyA4, in MLG N (Gm03) (Watanabe et al. 2009). However, the GmphyA4 sequence of G. Williams 82, a cultivar used for whole-genome sequencing, is most likely dysfunctional because of a deletion in the third exon (Watanabe et al. 2009). Furthermore, neither a major gene nor a QTL controlling flowering time has so far been reported near the genomic position of GmphyA4.

The phyA protein is an effective FR sensor that is involved, directly and/or via interactions with other photoreceptors, in various developmental processes such as seed germination, de-etiolation, and phototropic responses in etiolated seedlings; it is also involved in early neighbor detection, shade perception, resetting of circadian rhythms, and flowering in light-grown plants (reviewed by Casal et al. 1997). In addition, Franklin et al. (2007) and Franklin and Whitelam (2007) revealed that phyA also functions as an R-light photoreceptor, particularly in R light with high photon irradiance. The different responses of E3 and E4 to LD conditions with different R : FR ratios suggest that the two genes participate in different aspects of the phyA functions controlled by the Arabidopsis phyA gene.

The possible roles of the other photoreceptors, such as phytochrome B (phyB) and cryptochrome (CRY), in the photoperiodic pathway of flowering have not been fully
addressed in soybean. Zhang et al. (2008) revealed that a soybean
CRY1 ortholog, GmCRY1a, rescued the Arabidopsis
late-flowering cry2 mutant in ectopic expression analysis
with a CaMV35S::GFP-GmCRY1a construct, suggesting that
the GmCRY1a protein promotes floral initiation.
Furthermore, the GmCRY1a protein exhibited a pattern of
photoperiod-dependent rhythmic expression that was cor-
related with the photoperiodic flowering and latitudinal dis-
tributioncline of soybean cultivars. However, the genetic var-
iation affecting the circadian expression pattern remains
unknown and is suggested to reside outside GmCRY1a itself
(Zhang et al. 2008). Recently, Cheng et al. (2011) found a
QTL near the region of MLG C1 (Gm04) in which E8 and
GmCRY1a are located (Cober et al. 2010, Matsumura et al.
2009). It is thus necessary to determine whether the natural
variation in GmCRY1a expression is the cause of differences
in flowering time.

E2 is a soybean ortholog of the Arabidopsis
GIGANTEA gene

A candidate gene for E2 was identified through map-based
cloning of qFT2, a QTL for flowering detected in a region of
MLG O (Gm10) where E2 was previously mapped (Akkaya
et al. 1995, Cregan et al. 1999), in a cross between
Misuzudaizu and Moshido Gong 503 (Watanabe et al.
2004). By fine-mapping of the progeny of an RHL derived
from this cross, Watanabe et al. (2011) successfully mapped
quartet2 within a 94-Kbp region in a single BAC clone contain-
ing a Williams 82 genomic region in which nine annotated
genes were predicted. One of the genes, Glyma10g36600,
showed a high degree of similarity to the Arabidopsis
GIGANTEA (GI) gene. Sequence analyses revealed that the
Glyma10g36600 sequences in Misuzudaizu, the donor par-
ent for the early-flowering allele of qFT2, and cv. Harosoy,
which carries a recessive e2 allele, contained a premature
stop codon caused by a single nucleotide substitution in
exon 10 and would therefore produce a truncated and dys-
functional GI-like protein; in contrast, the sequences in
Moshido Gong 503, the donor for the late-flowering allele of
quartet2, and a Harosoy NIL for E2 did not contain the pre-
mature stop codon. These results suggested that quartet2 (E2)
encodes a soybean GI ortholog. This hypothesis was further
supported by the analysis of a GI mutant detected by TILLING
from an EMS-mutagenesis population of cv. Bay. The
mutant line, which harbored a premature stop codon in
exon 10, flowered earlier than Bay (E2/E2) (Watanabe et al.
2011).

GI encodes a nuclear-localized membrane protein that
functions upstream of CONSTANS (CO) and FLOWERING
LOCUS T (FT) in Arabidopsis (Fowler et al. 1999, Hug et al.
2000, Koornneef et al. 1998, Mizoguchi et al. 2005). GI
coupled with a blue-light receptor protein (FLAVIN
BINDING, KELCH REPEAT, F-BOX 1 [FKF1]) forms a
blue-light-dependent complex that degrades a repressor
protein (CYCLING DOF FACTOR 1 [CDF1]) that binds the

promoter region of CO; degradation of the repressor protein
thereby induces CO expression (Imaizumi et al. 2003, 2005,
Nelson et al. 2000, Sawa et al. 2007). Another function of
GI is the regulation of a CO-independent pathway that coop-
erates with other transcriptional factors such as TARGET OF
EGRI PROTEIN 1 (TOE1) to control FT expression via
microRNAs (Jung et al. 2007). Furthermore, GI also directly
controls the expression of FT in Arabidopsis (Sawa and Kay
2011). As in other plant species, it is reasonable to assume
that GI-regulated pathways, which may be either CO-
dependent or CO-independent, are involved in control of
photoperiodic flowering in soybean as well.

Soybean FLOWERING LOCUS T orthologs

One of the striking findings obtained from the extensive mo-
lecular dissections of flowering in Arabidopsis and rice is
that the product of FT, FT protein, is a florigen that moves
through the phloem to the shoot apex (Corbesier et al. 2007,
Jaeger and Wigge 2007, Mathieu et al. 2007, Notaguchi et al.
2008, Tamaki et al. 2007), and its function is highly con-
served across unrelated species (Böhlenius et al. 2006,
Hayama et al. 2007, Hsu et al. 2006, Izawa et al. 2002,
Kojima et al. 2002, Lifschitz et al. 2006, Yan et al. 2006).
Kong et al. (2010) found that soybean possesses at least ten
FT homologs, which consist of five sets of tandemly linked
gene pairs. These pairs are separated into three clades, each
corresponding to one of three clades of pea (Pisum sativum)
FT genes, PsFTa, PsFTb and PsFTc (Hecht et al. 2011).

Expression analyses of cv. Harosoy and its NILs grown
in SD and LD conditions have indicated that two of the ten
FT homologs, GmFT2a (Glyma16g26660) and GmFT5a
(Glyma16g04830), showed highly upregulated expression
under SD (inductive conditions for flowering), but highly
suppressed expression under LD (non-inductive conditions)
(Kong et al. 2010, Thakare et al. 2010). Ectopic expression
analyses of GmFT2a and GmFT5a driven by the CaMV35S
promoter showed that these genes can promote floral ini-
tiation in Arabidopsis ecotype Colombia (Col-0) and comple-
mence the function of FT mutants ft-1 and ft-3, providing
additional evidence that the GmFT2a and GmFT5a gene
products function as florigens in Arabidopsis (Kong et al.
2010, Thakare et al. 2011). Similarly, Arabidopsis FT ecot-
ically expressed in soybean by using the Apple latent
spherical virus vector can promote flowering in both in-
determinate and determinate soybean cultivars under non-
inductive conditions (Yamagishi and Yoshikawa 2010).
These results indicate that FT is a key player in floral ini-
tiation in soybean as well.

Expression of GmFT2a and GmFT5a is under the control of
phyA homologs E3 and E4 (Kong et al. 2010). An NIL of
cv. Harosoy homozygous for phyA mutants e3 and e4
showed a high level of expression of both GmFT2a and
GmFT5a under LD, whereas expression of both genes was
highly suppressed in the photoperiod-sensitive cv. Harosoy
(E3E3E4E4). In Arabidopsis, the combination of phyA and
CRY2 promotes flowering through stabilization of the CO protein (Valverde et al. 2004). This promotive function of phytochrome A in flowering is also observed in pea (an LD plant) and rice (an SD plant); phyA mutants in both species delayed flowering under inductive light conditions (Takano et al. 2005, Weller et al. 2001). This is in contrast to the soybean e3 and e4 mutant alleles, which cause no flowering delay under inductive (SD) conditions (Cober et al. 1996b, Cober and Voldeng 2001b). Furthermore, night-break experiments in rice demonstrate that transcription of Hd3a (a rice FT ortholog) is determined mainly by light-signal transduction dependent on PHYB, not PHYA (Ishikawa et al. 2005, 2009). The relative roles of photoreceptors in photoperiodic flowering may therefore vary among plant species. The genetic variation in photoperiodic expression of the soybean FT homologs is most likely attributable to allelic variation of each of the two phyA homologs.

An SD-to-LD transfer experiment further demonstrated the difference in response to photoperiod between GmFT2a and GmFT5a. Expression of GmFT2a was strictly regulated by photoperiodic changes from SD to LD, whereas the response of GmFT5a to photoperiodic changes was gradual, and its expression was retained at low levels even after the plants were transferred to LD (Kong et al. 2010). These findings suggest that, in addition to the phyA-mediated photoperiod response, a second regulatory mechanism may also be involved in the differences in expression pattern between GmFT2a and GmFT5a. Under the phyA-mediated photoperiodic regulation system, GmFT2a and GmFT5a may redundantly and strongly induce flowering under shorter daylengths, but under longer daylengths GmFT5a alone may promote flowering in a photoperiod-independent manner. These two FT homologs may therefore coordinate control flowering in soybean.

In addition to E3 and E4, E2 influences the mRNA abundance of FT homologs. Watanabe et al. (2011) found a clear association between flowering time and the GmFT2a expression in two sets of NILs for the E2 locus; dysfunctional e2 alleles promoted GmFT2a expression and conditioned earlier flowering. However, they could not observe significant differences in the GmFT5a expression between the NILs. These results suggest that the E2 gene (GmGla) mainly controls flowering time through the regulation of GmFT2a (Watanabe et al. 2011). The different responses to photoperiodic changes observed between GmFT2a and GmFT5a (Kong et al. 2010) may thus be caused by involvement of the Gl (E2)-regulated pathway in GmFT2a expression, but not in GmFT5a expression. More detailed studies are needed to test this hypothesis. On the other hand, Thakare et al. (2010) found no difference in the expression of several orthologs of Arabidopsis flowering-time genes, including FT, CO, GI, and TIMING OF CAB EXPRESSION 1 (TOC1), between genotypes E1E1 and e1e1 (both in an e3e3e4e4 genetic background) in young seedlings 8 days after planting under ILD. However, differences in the expression of GmFT2a and GmFT5a between the E1E1 and e1e1 genotypes became marked 10 days after planting under these conditions: the E1 allele inhibited the expression of both FT homologs compared with the e1 allele (Thakare et al. 2011).

Soybean orthologs of Arabidopsis flowering genes

Extensive molecular dissections of flowering by using artificially induced mutants in Arabidopsis have revealed that at least 100 genes are involved (Ehrenreich et al. 2009, Hetch et al. 2005, Quecini et al. 2007). Natural variation in flowering time in major crops such as rice, wheat, and pea has been often reported to result from the variation in orthologs of Arabidopsis flowering genes. Examples include Hdl1 (CO) and Hd3a (FT) in rice (Kojima et al. 2002, Yano et al. 2000), Vrn1 (APETALA1) and Vrn3 (FT) in wheat (Yan et al. 2003, 2006), and LATE FLOWERING (TERMINAL FLOWER 1; TFL1), LATE BLOOMER1 (GI) and GIGAS (FT) in pea (Foucher et al. 2003, Hecht et al. 2007, 2011). Genomic information on soybean orthologs of Arabidopsis flowering genes, such as the number of orthologs and their genomic positions, may therefore provide useful clues for dissecting the molecular bases of flowering in soybean. Several studies have already identified and characterized the soybean orthologs of Arabidopsis photoreceptors, clock-associated genes, and flower-identity genes as flowering genes (Kong et al. 2010, Liu et al. 2007, 2008, 2010, Matsumura et al. 2009, Tasma and Shoemaker 2003, Thakare et al. 2010, 2011, Tian et al. 2010, Watanabe et al. 2009, 2011, Xue et al. 2011, Zhang et al. 2008).

We extracted the orthologs of 109 non-overlapping Arabidopsis flowering genes (cited by Ehrenreich et al. 2009, Hetch et al. 2005, Quecini et al. 2007) from the Williams 82 genome database (Phytozome Glyma 1.0; http://www.phytozome.net/). We detected a total of 333 orthologs of 92 Arabidopsis genes from among a total of 46,367 annotated genes (Table 1, Supplemental Table 1 and Supplemental Fig. 1). This survey indicated that soybean possesses orthologs for most of the Arabidopsis flowering genes. It also highlights a striking but expected feature resulting from the paleopolyploidy of the soybean genome (Cannon and Shoemaker 2012, Schmutz et al. 2010): soybean clearly has multiple copies of most of the Arabidopsis flowering genes. Furthermore, relatively large syntenic blocks exist in the homoeologous regions of three pairs of chromosomes, Gm04 (MLG C1) and Gm 06 (MLG C2), which contain two sets of blocks of 6 and 8 orthologs each Gm03 (MLG N) and Gm19 (MLG L), which contain blocks of 12 orthologs each and Gm10 (MLG G) and Gm20 (MLG I), which contain blocks of 5 orthologs each (Fig. 1). The functions of these multiple orthologs in the control of soybean flowering should be clarified in further studies. As suggested by functional analyses of the multiple homologs of phyA (Liu et al. 2008, Watanabe et al. 2009), FT (Kong et al. 2010) and TFL1 (Liu et al. 2010, Tian et al. 2010), it is reasonable to speculate that, within each set of duplicated genes, each gene has a function...
either redundant to, or differentiated from, the others, thus generating more diverse and more complex flowering behaviors in soybean.

Information on the physical position of orthologs to known *Arabidopsis* genes (Supplemental Table 1 and Supplemental Fig. 1) may help to identify candidate genes for targeted major loci and QTLs. Fig. 2 is an example showing the usefulness of physical map information in identifying candidate genes responsible for three flowering QTLs detected in a cross between Misuzudaizu and Moshiro Gong 503 (Watanabe et al. 2004, 2009, 2011; Yamanaka et al. 2001, 2005). The positions of DNA markers tagging the three QTLs, which were originally detected in an RIL population derived from these two parents, delineated their genomic positions in specific regions of Gm06 (MLG C2), Gm10 (MLG O) and Gm19 (MLG L). Fine-mapping and QTL analysis detected two DNA markers separated by a genetic distance of 2 cM, Satt365 and Satt489, for *qFT1* (Yamanaka et al. 2005). The region flanked by the two markers corresponds to a physical distance of approximately 3 Mbp in a pericentromeric region where repetitive sequences are very rich and recombination is severely inhibited (Cannon and Shoemaker 2012; Schmutz et al. 2010). The genome sequence information predicted only one ortholog of an *Arabidopsis* flowering gene, REPRESSOR OF GA1-3 (Glyma06g23940) in the region (Fig. 2). Considering the involvement of *qFT1* (*E1*) in photoperiod sensitivity, however, this ortholog is not likely to be the responsible gene, although further studies are needed to confirm its identity. Similarly, QTL mapping placed *qFT2* (*E2*) and *qFT3* (*E3*) in regions on Gm10 (MLG O) and Gm19 (MLG L), respectively; each QTL is flanked by two SSR markers, which are separated by ca. 11 cM and 15 cM, respectively (Watanabe et al. 2004). These regions contain one and three orthologs for *qFT2* and *qFT3*, respectively, although the physical distances between the markers are still over 1.0 Mbp (Fig. 1). Fine-mapping studies further narrowed these regions into regions of less than 100 Kbp within single genomic DNA clones, and finally a single ortholog could be evaluated and identified as a candidate gene for each *qFT* (Watanabe et al. 2009, 2011). Hence, fine-mapping subsequent to QTL analysis, together with a candidate gene approach based on the

Fig. 1. Syntenic blocks containing soybean orthologs of *Arabidopsis* flowering genes in homoeologous regions of different chromosomes. The orthologs, represented by *Arabidopsis* gene symbols, are shown in their positions on the soybean physical maps. The orthologs within each set of syntenic blocks are arranged in the same order, but the blocks are sometimes inverted relative to one another. st and en indicate start and end of chromosome, respectively.
Photoperiod responses of flowering in soybean

Concluding remarks

It will probably not be so easy to identify the molecular bases of the major genes and QTLs for flowering in soybean, although novel genes that have no corresponding *Arabidopsis* flowering gene should not be excluded from consideration as candidate genes.

Acknowledgement

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (for S. Watanabe, J. Abe), and a grant from the Ministry of Agriculture,
Gene	Abbreviation	Gene function	Soybean homologous genes	Characterized genes in soybean
AT1G8090		5′-3′ exonuclease family protein	Glyma07g11320	
AT2G25920		3′-5′ exonuclease domain-containing protein/K homology domain-containing protein	AT2G25910.2	
AT5G62640		proline-rich family protein	Glyma05g1510, Glyma7g10370	
AT5G62310	ADO3, FKF1	flavin-binding, kelch repeat, F box 1		
AT4G19960		K-box region and MADS-box transcription factor family protein	Glyma05g29590, Glyma05g12730, Glyma13g29510, Glyma15g09500	
AT3G61120	AGL13	AGAMOUS-like 13		
AT4G1880	AGL14	AGAMOUS-like 14		
AT3G57230	AGL16	AGAMOUS-like 16		
AT2G26360	AGL17	AGAMOUS-like 17		
AT4G2950	AGL19, GL19	AGAMOUS-like 19		
AT2G45650	AGL21	AGAMOUS-like 21		
AT4G37940	AGL22	AGAMOUS-like 22		
AT2G45650	AGL6	AGAMOUS-like 6		
AT5G69110	AGL8, FUL	AGAMOUS-like 8		
AT3G4210	ANR1, AGL44	AGAMOUS-like 44		
AT1G69120	APL1, AGL7	K-box region and MADS-box transcription factor family protein	Glyma01g38180, Glyma05g31810, Glyma05g07380, Glyma06g22650, Glyma08g27680, Glyma7g08890, Glyma18g50910	
AT4G0920	AP2, FLO2, FLI	Integrase-type DNA-binding superfamily protein		
AT3G5430	AP3, ATAP3	K-box region and MADS-box transcription factor family protein	Glyma01g38180, Glyma05g31810, Glyma05g07380, Glyma06g22650, Glyma08g27680, Glyma7g08890, Glyma18g50910	
AT5G24470	APRR5, PRR5	pseudo-response regulator 5		
AT2G46790	APRR9, PRR9, TLJ	pseudo-response regulator 9		
AT2G27550	ATC	centroradialis	G lam a10g08340, G lam a2g30940, G lam a13g22030, G lam a13g39360	
AT5G2430	ATCOL4, COL4	CONSTANS-like 4	G lam a04g06240, G lam a06g06300, G lam a07g08920, G lam a08g24550, G lam a12g0320, G lam a4g21260, G lam a18g11180, G lam a18g11400	
AT5G7660	ATCOL5, COL5	CONSTANS-like 5	G lam a3g01290, G lam a7g07420	
AT5G3510	ATGD1A, GD1A	alpha/beta-Hydrolases superfamily protein	G lam a01g3010, G lam a03g30460, G lam a10g02790	
AT5G3010	ATGD1B, GD1B	alpha/beta-Hydrolases superfamily protein	G lam a01g3010, G lam a03g30460, G lam a10g02790	
AT5G3270	ATGD1C, GD1C	alpha/beta-Hydrolases superfamily protein	G lam a01g3010, G lam a03g30460, G lam a10g02790	
AT2G17770	BZIP27	basic region/leucine zipper motif 27	G lam a1g36810	
AT2G46830	CCA1	circadian clock associated 1	G lam a07g05410	
AT5G62430	CDF	cycling DOF factor 1		
AT5G1580	CO, FG	B-box type zinc finger protein with CTT domain		
AT5G1580	COL1, ATCOL1	CONSTANS-like 1		
AT3G02380	COL2, ATCOL2	CONSTANS-like 2		
AT2G24790	COL3, ATCOL3	CONSTANS-like 3		
AT4G0920	CR1, BL1, HY4, OOP2, ATCRY1	cryptochrome 1		
AT1G04400	CR2, PPA, AT-PHH1, PHH1, ATCRY2	cryptochrome 2		
AT1G18100	E12A11, MFT	PEBP (phosphatidylethanolamine-binding protein) family protein	G lam a5g34030, G lam a08g05650	
Gene	Abbreviation	Gene function	Soybean homologous genes	Characterized genes in soybean
--------	--------------	--	--------------------------	--------------------------------
AT1G2140	EBS	PHD finger family protein/bromo-adjacent homology (BAH) domain-containing protein	Glyma06g12850, Glyma12g20980, Glyma12g35680, Glyma13g347400, Glyma19g23530	Glyma19g23530
AT2G20930	ELF3, PYK20	Hydroxyproline-rich glycoprotein family protein	Glyma04g32020, Glyma07g01600, Glyma08g21110, Glyma14g10530, Glyma17g4980	Glyma17g4980
AT2G40080	ELF4	Protein of unknown function (DUF1313)	Glyma11g3270, Glyma14g06480, Glyma18g03130	Glyma11g3270
AT5G07930	ELF6	Zn finger (C2H2 type) family protein/translation factor jumonji (Jmj) family protein	Glyma10g35350, Glyma20g32160	Glyma10g35350
AT1G79370	ELF7	Hydroxyproline-rich glycoprotein family protein	Glyma07g1830, Glyma08g21490	Glyma07g1830
AT2G06210	ELF8, VIP6	binding	Glyma05g24180, Glyma09g07980, Glyma15g19450	Glyma05g24180
AT5G1530	EMF1	Embryonic flower 1 (EMF1)	Glyma04g08680, Glyma06g08790	Glyma04g08680
AT5G51230	EMF2, VEF2, CYR1, AtEMF2	VES-F-box of polycomb protein	Glyma10g23370, Glyma10g23420, Glyma11g03950, Glyma20g16680	Glyma10g23370
AT4G15880	ESD4, ATESD4	Cysteine proteases superfamily protein	Glyma06g17320, Glyma07g37640, Glyma09g04970, Glyma15g15890, Glyma17g34530	Glyma06g17320
AT4G16280	FCA	RNA binding/abscisic acid binding	Glyma09g13020, Glyma09g04970	Glyma09g13020
AT4G35900	FD, FD-1, atflc14	Basic-leucine zipper (bZIP) transcription factor family protein	Glyma03g31080, Glyma03g31110, Glyma19g33950, Glyma19g33950	Glyma03g31080
AT2G33835	FES1	Zinc finger C-x8-C-x5-C-x3-H type family protein	Glyma09g07120, Glyma10g07120, Glyma13g07120, Glyma13g07120	Glyma09g07120
AT5G10140	FLC, FLEF, AGL25	K-box region and MADS-box transcription factor family protein	Glyma02g07650, Glyma08g28470, Glyma08g47810, Glyma08g47820, Glyma16g04830, Glyma16g04840, Glyma16g04850, Glyma19g28400	Glyma02g07650
AT3G01950	FPA	RNA binding	Glyma07g37640, Glyma10g04970, Glyma15g15890, Glyma17g34530	Glyma07g37640
AT5G24860	FPF1, ATRF1	Flowering promoting factor 1	Glyma04g14070, Glyma04g14070, Glyma04g14070, Glyma04g14070	Glyma04g14070
AT4G09650	FRL1, FRA	FRIGIDA-like protein	Glyma04g14070, Glyma04g14070, Glyma04g14070, Glyma04g14070	Glyma04g14070
AT5G61840	FRL2	FRIGIDA-like 2	Glyma04g14070, Glyma04g14070, Glyma04g14070, Glyma04g14070	Glyma04g14070
AT1G65480	FT	PEBP@phosphatidyethanolamine-binding protein)family protein	Glyma02g07650, Glyma03g31080, Glyma03g31110, Glyma19g28400	Glyma02g07650
AT2G19520	FVE, AGC1, MS4, NAC4, NAC94, ATMS4	Transducin family protein/WD-40 repeat family protein	Glyma02g07650, Glyma03g31080, Glyma06g17320, Glyma15g18450	Glyma02g07650
AT1G34840	FYO	Transducin/WD40 repeat-like superfamily protein	Glyma02g07650, Glyma03g31080, Glyma06g17320, Glyma15g18450	Glyma02g07650
AT4G02780	GA1, ABC31, ATCPS1, CPS, CPSI	Terpenoid cyclases/Pretein prenyltransferases superfamily protein	Glyma03g31080, Glyma04g14070, Glyma04g14070, Glyma19g28400	Glyma03g31080
AT1G4920	GAI, RG142	GRAS family transcription factor protein	Glyma02g08240, Glyma05g03020, Glyma05g27190, Glyma08g10140, Glyma20g34260	Glyma02g08240
AT1G2270	GI, FB	Gigantea protein (GI)	Glyma09g07240, Glyma09g07240, Glyma20g39080	Glyma09g07240
AT2G39810	HOS1	Ubiquitatin protein ligases	Glyma04g14070, Glyma10g03840	Glyma04g14070
AT5G23150	HUA2	Tudor/PWWP/MBT domain-containing protein	Glyma11g03070, Glyma14g02890	Glyma11g03070
AT4G02560	LD	Homeodomain-like superfamily protein	Glyma03g31080, Glyma04g14070, Glyma05g03020	Glyma03g31080
AT5G61850	LFY, LFY3	Floral meristem identity control protein LEAFY (LFY)	Glyma04g14070, Glyma04g14070, Glyma04g14070, Glyma20g19600	Glyma04g14070
AT1G1060	LH1, LH51	Homeodomain-like superfamily protein	Glyma03g31080, Glyma06g19380, Glyma09g45030	Glyma03g31080
AT2G8915	LKP2, ADO2	LOV KELCH protein 2	Glyma04g15150, Glyma3g30403, Glyma20g11040	Glyma04g15150
AT2G61100	MBP3, ATMBP3	myb-domain protein 33	Glyma03g31080, Glyma06g19380, Glyma09g45030	Glyma03g31080
AT3G46640	PCLI	Homeodomain-like superfamily protein	Glyma03g31080, Glyma06g19380, Glyma09g45030	Glyma03g31080
AT1G25540	PFT1	Phloem tissues and flowering time regulatory protein (PFT1)	Glyma04g14070, Glyma04g14070, Glyma04g14070, Glyma20g19600	Glyma04g14070
Table 1. (continued)

Gene Abbreviation	Gene function	Soybean homologous genes
AT5G21390		
AT5G21400		
AT5G21410		
AT5G21420		
AT5G21430		
AT5G21440		
AT5G21450		
AT5G21460		
AT5G21470		
AT5G21480		
AT5G21490		
AT5G21500		
AT5G21510		
AT5G21520		
AT5G21530		
AT5G21540		
AT5G21550		
AT5G21560		
AT5G21570		
AT5G21580		
AT5G21590		
AT5G21600		
AT5G21610		
AT5G21620		
AT5G21630		
AT5G21640		
AT5G21650		
AT5G21660		
AT5G21670		
AT5G21680		
AT5G21690		
AT5G21700		
AT5G21710		
AT5G21720		
AT5G21730		
AT5G21740		
AT5G21750		
AT5G21760		
AT5G21770		
AT5G21780		
AT5G21790		
AT5G21800		
AT5G21810		
AT5G21820		
AT5G21830		
AT5G21840		
AT5G21850		
AT5G21860		
AT5G21870		
AT5G21880		
AT5G21890		
AT5G21900		
Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, DD-2040 and SOY2003 for S. Watanabe and K. Harada).

Literature Cited

Abe, J., D.H. Xu, A. Miyano, K. Komatsu, A. Kanazawa and Y. Shimamoto (2003) Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci. 43: 1300–1304.

Akkaya, M.S., R.C. Shoemaker, J.E. Specht, A.A. Bhagwat and P.B. Cregan (1995) Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci. 35: 1439–1445.

Bernard, R.L. (1971) Two genes for time of flowering in soybeans. Crop Sci. 11: 242–244.

Böhlenius, H., T. Huang, L. Charbonnel-Campaa, A.M. Brunner, S. Jansson, S.H. Strauss and O. Nilsson (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312: 1040–1043.

Bonato, E.R. and N.A. Vello (1999) E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22: 229–232.

Buzzi, R.I. (1971) Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can. J. Genet. Cytol. 13: 707–707.

Buzzi, R.I. and H.D. Voldeng (1980) Inheritance of insensitivity to long day length. Soybean Genet. Newsl. 7: 26–29.

Cannon, S.B. and R.C. Shoemaker (2012) Evolutionary and comparative analyses of the soybean genome. Breed. Sci. 61: 437–444.

Casal, J.J., R.A. Sanchez and M.J. Yanovsky (1997) The function of phytochrome A. Plant Cell Environ. 20: 813–819.

Chapman, A., V.R. Pantalone, A. Ustun, F.L. Allen, D. Landaud-Ellis, R.N. Trigiano and P.M. Gresshoff (2003) Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica 129: 387–393.

Cheng, L., Y. Wang, C. Zhang, C. Wu, J. Xu, H. Zhu, J. Leng, Y. Bai, R. Guan, W. Hou et al. (2011) Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theor. Appl. Genet. 123: 421–429.

Choi, I.Y., D.L. Hyten, L.K. Matukumalli, Q. Song, J.M. Chaky, C.V. Quigley, K. Chase, K.G. Lark, R.S. Reiter, M.S. Yoon et al. (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176: 685–696.

Cober, E.R., J.W. Tanner and H.D. Voldeng (1996a) Genetic control of photoperiodic response in early-maturing, near-isogenic soybean lines. Crop Sci. 36: 601–605.

Cober, E.R., J.W. Tanner and H.D. Voldeng (1996b) Soybean photoperiod sensitivity loci respond differentially to light quality. Crop Sci. 36: 606–610.

Cober, E.R. and H.D. Voldeng (2001a) A new soybean maturity and photoperiod sensitivity locus linked to E1 and T. Crop Sci. 41: 698–701.

Cober, E.R. and H.D. Voldeng (2001b) Low R:FR light quality delays flowering of E7E7 soybean lines. Crop Sci. 41: 1823–1826.

Cober, E.R., D.W. Stewart and H.D. Voldeng (2001) Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines. Crop Sci. 41: 721–727.

Cober, E.R., S.J. Molnar, M. Charette and H.D. Voldeng (2010) A new locus for early maturity in soybean. Crop Sci. 50: 524–527.

Cober, E.R. and M.J. Morrison (2010) Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor. Appl. Genet. 120: 1005–1012.

Corbesier, L., C. Vincent, S. Jang, F. Fornera, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull et al. (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030–1033.

Cregan, P.B., T. Jarvis, A.L. Bush, R.C. Shoemaker, K.G. Lark, A.L. Kahler, N. Kaya, T.T. Van Toai, D.G. Lohnes, J. Chung et al. (1999) An integrated genetic linkage map of the soybean genome. Crop Sci. 39: 1464–1490.

Ehrenreich, I.M., Y. Hanzawa, L. Chou, J.L. Roe, P.X. Kover and M.D. Purugganan (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183: 325–335.

Foucher, F., J. Morrin, J. Courtiade, S. Cadiou, N. Ellis, M.J. Banfield and C. Pameau (2003) DETERMINATE and LATER FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15: 2742–2754.

Fowler, S., K. Lee, H. Otsouchi, A. Samach, K. Richardson, B. Morris, G. Coupland and J. Putterill (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18: 4679–4688.

Franklin, K.A. and G.C. Whitelam (2007) Phytchrome A in red light sensing. Plant Signal Behav. 2: 383–385.

Franklin, K.A., T. Allen and G.C. Whitelam (2007) Phytchrome A is an irradiance-dependent red light sensor. Plant J. 50: 108–117.

Funatsuki, H., K. Kawaguchi, S. Matsuba, Y. Sato and M. Ishimoto (2005) Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor. Appl. Genet. 111: 851–861.

Githiri, S.M., D. Yang, N.A. Khan, D. Xu, T. Komatsuda and R. Takahashi (2007) QTL analysis of low temperature induced flowering in soybean seed coats. J. Hered. 98: 360–366.

Hayama, R., B. Agashe, E. Luley, R. King and G. Coupland (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19: 2988–3000.

Hecht, V., F. Foucher, C. Ferrandiz, R. Macknight, C. Navarro, J. Morin, M.E. Vardy, N. Ellis, J.P. Beltran, C. Rameau et al. (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol. 137: 1420–1434.

Hecht, V., C.L. Knowles, J.K. Vander Schoor, L.C. Liew, S.E. Jones, M.J. Lambert and J.L. Weller (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144: 648–661.

Hecht, V., R.E. Laurie, J.K.V. Schoor, S. Ridge, C.L. Knowles, L.C. Liew, F.C. Sussmilch, I.C. Murlet, R.C. Macknight and J.L. Weller (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23: 147–161.

Hsu, C.V., Y. Liu, D.S. Luthe and C. Yucer (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18: 1846–1861.

Huq, E., J.M. Tepperman and P.H. Quail (2000) GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97: 9789–9794.

Imaizumi, T., H.G. Tran, T.E. Swartz, W.R. Briggs and S.A. Kay (2003) FK1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426: 302–306.

Imaizumi, T., T.F. Schultz, F.G. Harmon, L.A. Ho and S.A. Kay (2005)
FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293–297.

Ishikawa, R., T. Shinomura, M. Takano and K. Shimamoto (2005) Suppression of the floral activator HDa is the principal cause of the night break effect in rice. Plant Cell 17: 3326–3336.

Ishikawa, R., T. Shinomura, M. Takano and K. Shimamoto (2009) Phytochrome dependent quantitative control of HDa transcription is the basis of the night break effect in rice flowering. Genes Genet. Syst. 84: 179–184.

Izawa, T., T. Oikawa, N. Sugiyama, T. Tanisaka, M. Yano and K. Shimamoto (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev. 16: 2006–2020.

Jaeger, K.E. and P.A. Wigge (2007) FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054.

Jung, J.H., Y.H. Seo, J.P. Seo, J.L. Reyes, J. Yun, N.H. Chua and C.M. Park (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19: 2736–2748.

Kanazawa, A., B. Liu, F. Kong, S. Arase and J. Abe (2009) Adaptive evolution involving gene duplication and insertion of a novel Ty3/copia-like retrotransposon in soybean. J. Mol. Evol. 69: 164–175.

Keim, P., B.W. Diers, T.C. Olson and R.C. Shoemaker (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126: 735–742.

Khan, N.A., S.M. Githiri, E.R. Benitez, J. Abe, S. Kawasaki, T. Hayashi and R. Takahashi (2008) QTL analysis of cleistogamy in soybean. Theor. Appl. Genet. 117: 479–487.

Kilen, T.G. and E.E. Hartwig (1971) Inheritance of a light-quality sensitive character in soybeans. Crop Sci. 11: 559–561.

Kojima, S., Y. Takahashi, Y. Kobayashi, L. Monna, T. Sasaki, T. Araki and M. Yano (2002) HDa, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol. 43: 1096–1105.

Komatsu, K., S. Okuda, M. Takahashi, R. Matsunaga and Y. Nakazawa (2007) Quantitative trait loci mapping of pubescence density and flowering time of insect-resistant soybean (Glycine max L. Merr.). Genetics and Molecular Breeding 30: 635–639.

Kong, F., B. Liu, Z. Xia, S. Sato, B.M. Kim, S. Watanabe, T. Yamada, S. Tabata, A. Kanazawa, K. Harada et al. (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol. 154: 1220–1231.

Koomneef, M., C. Alonso-Blanco, H. Blankestijn-de Vries, C.J. Hanhart and A.J. Peet (1998) Genetic interactions among late-flowering mutants of Arabidopsis. Genetics 148: 885–892.

Lee, S.H., M.A. Bailey, M.A.R. Mian, E.R. Shipe, D.A. Ashley, P.W. Parrot, R.S. Hussey and H.R. Boerma (1996) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor. Appl. Genet. 92: 516–523.

Lifschitz, E., T. Eviatar, A. Rozman, A. Shalit, A. Goldshmidt, Z. Amsellem, J.P. Alvarez and Y. Eshed (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103: 6398–6403.

Liu, B., T. Fujita, Z.H. Yan, S. Sakamoto, D. Xu and J. Abe (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 100: 1027–1038.

Liu, B., A. Kanazawa, H. Matsunuma, R. Takahashi, K. Harada and J. Abe (2008) Genetic redundancy in soybean photosresponsive associated with duplication of the phytochrome A gene. Genetics 180: 995–1007.

Liu, B. and J. Abe (2010) QTL mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J. Hered. 101: 251–256.

Liu, B., S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. X. A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura et al. (2010) The soybean stem growth habit gene Dtl is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153: 198–210.

Liu, W., M.Y. Kim, Y.J. Kang, K. Van, Y.H. Lee, P. Srinives, D.L. Yuan and S.H. Lee (2011) QTL identification of flowering time at three different latitudes reveals homeologous genomic regions that control flowering in soybean. Theor. Appl. Genet. 123: 545–553.

Mansur, L.M., K.G. Lark, H. Kross and A. Oliveira (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor. Appl. Genet. 86: 907–913.

Mathieu, J., N. Warthmann, F. Kuttner and M. Schmid (2007) Export of FT protein from phytochroma companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17: 1055–1060.

Matsumura, H., H. Kitajima, S. Akada, J. Abe, N. Minaka and R. Takahashi (2009) Molecular cloning and linkage mapping of cryptochrome multigene family in soybean. Plant Genome 2: 1–11.

McBlain, B.A. and R.L. Bernard (1987) A new gene affecting the time of flowering and maturity in soybean. J. Hered. 78: 160–162.

McBlain, B.A., J.D. Hesketh and R.L. Bernard (1987) Genetic effect on reproductive phenology in soybean isolines differing in maturity genes. Can. J. Plant Sci. 67: 105–116.

Mizoguchi, T., L. Wright, S. Fujiwara, F. Cremer, K. Lee, H. Onouchi, A. Mouradov, S. Fowler, H. Kamada, J. Putterill et al. (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17: 2255–2270.

Molnar, S.J., S. Rai, M. Charette and E.R. Cober (2003) Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46: 1024–1036.

Neff, M.M. and J. Chory (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118: 27–35.

Nelson, D.C., J. Lasswell, L.E. Rogg, M.A. Cohen and B. Bartel (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331–340.

Notaguchi, M., M. Abe, T. Kimura, Y. Daimon, T. Kobayashi, A. Yamaguchi, Y. Tomita, K. Dohi, M. Mori and T. Araki (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49: 1645–1658.

Orf, J.H., K. Chase, F.R. Adler, L.M. Mansur and K.G. Lark (1999) Genetics of soybean agronomic traits: II. Interactions between yield trait loci in soybean. Crop Sci. 39: 1652–1657.

Paeppean, P., S. Wassee, T. Toojinda, J. Abe, S. Chanpan and P. Srinives (2006) Molecular marker analysis of days of flowering in vegetable soybean. Kasetsart J. 40: 573–581.

Quecini, V., M.I. Zacchi, J. Baldin and N.A. Vello (2007) Identification of soybean genes involved in circadian clock mechanism and photoperiodic control of flowering time by in silico analyses. Journal of Integrative Plant Biology 49: 1640–1653.

Ray, J.D., K. Hinson, E.B. Mankono and F.M. Malo (1995) Genetic control of a long-juvenile trait in soybean. Crop Sci. 35: 1001–1006.

Saindon, G., W.D. Beversdorf and H.D. Voldeng (1989a) Adjusting of
the soybean phenology using the E4 loci. Crop Sci. 29: 1361–1365.
Saindon, G., H.D. Voldeng, W.D. Beversdorf and R.I. Buzzell (1989b) Genetic control of long daylength response in soybean. Crop Sci. 29: 1436–1439.
Sawa, M., D.A. Nusinow, S.A. Kay and T. Imaizumi (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261–265.
Sawa, M. and S.A. Kay (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108: 11698–11703.
Schmutz, J., S.B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D.L. Hyten, Q. Song, J.J. Thelen, J. Cheng et al. (2010) Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.
Song, Q.J., L.F. Marek, R.C. Shoemaker, K.G. Lark, V.C. Concibido, X. Delannay, J.E. Specht and P.B. Cregan (2004) A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 109: 122–128.
Takahashi, R. and J. Abe (1994) Genetic and linkage analysis of low temperature-induced-browning in soybean seed coat. J. Hered. 85: 447–450.
Takahashi, R. and J. Abe (1999) Soybean maturity genes associated with seed coat pigmentation and cracking in response to low temperatures. Crop Sci. 39: 1657–1662.
Takano, M., H. Kanegae, T. Shionomura, A. Miyao, H. Hirochiksa and M. Furuya (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13: 521–534.
Takano, M., N. Inagaki, X. Xie, N. Yuzuruhi, F. Hihara, T. Ishizuka, M. Yano, M. Nishimura, A. Miyao, H. Hirochike and et al. (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17: 3311–3325.
Tamaki, S., S. Matsuo, H.L. Song, S. Yokoi and K. Shimamoto (2007) H3a3 protein is a mobile flowering signal in rice. Science 316: 1033–1036.
Tasma, I.M., L. Lorenzen, D. Green and R. Shoemaker (2001) Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Mol. Breed. 8: 25–35.
Tasma, I.M. and R.C. Shoemaker (2003) Mapping flowering time gene homologs in soybean and their association with maturity (E4) loci. Crop Sci. 43: 319–328.
Thakare, D., S. Kumudini and R.D. Dinkins (2010) Expression of flowering-time genes in soybean E1 near-isogenic lines under short and long day conditions. Planta 231: 951–963.
Thakare, D., S. Kumudini and R.D. Dinkins (2011) The alleles at the E1 locus impact the expression pattern of two soybean FT-like genes shown to induce flowering in Arabidopsis. Plant Cell (in press).
Tian, Z., X. Wang, R. Lee, Y. Li, J.E. Specht, R.L. Nelson, P.E. McClean, L. Qiu and J. Ma (2010) Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 107: 8563–8568.
Upadhyay, A.P., R.H. Ellis, R.J. Summerfield, E.R. Roberts and A. Qi (1994) Characterization of photothermal flowering responses in maturity isolines of soybean (Glycine (L.) Merrill) cv. Clark. Annals of Botany 74: 87–96.
Valverde, F., A. Mauroud, W. Soph, D. Ravenscroft, A. Samach and G. Coupland (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003–1006.
Wang, D., G.L. Graef, A.M. Prociupi and B.W. Diers (2004) Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 108: 458–467.
Watanabe, S., T. Tajuddin, N. Yamanaka, M. Hayashi and K. Harada (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed. Sci. 54: 399–407.
Watanabe, S., R. Hideshima, Z. Xia, Y. Tsubokura, S. Sato, Y. Nakamoto, N. Yamanaka, R. Takahashi, M. Ishimoto, T. Anai et al. (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182: 1251–1262.
Watanabe, S., Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, R. Takahashi, T. Anai, S. Tabata, K. Kitamura et al. (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188: 395–407.
Weller, J.R., I.C. Murfet and J.B. Reid (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol. 114: 1225–1236.
Weller, J.R., N. Beauchamp, L.H. Kerckhoff, J.D. Platten and J.B. Reid (2001) Interaction of phytochromes A and B in the control of deetiolation and flowering in pea. Plant J. 26: 283–294.
Xue, Z.G., X.M. Zhang, C.F. Lei, X.J. Chen and Y.F. Fu (2011) Molecular cloning and functional analysis of one ZEITLUPE homolog GmTZLI in soybean. Mol. Biol. Rep. (in press).
Yamagishi, N. and N. Yoshikawa (2010) Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta 233: 561–568.
Yamanaka, N., S. Ninomiya, M. Hoshi, Y. Tsubokura, M. Yano, N. Nagamura, T. Sasaki and K. Harada (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res. 8: 61–72.
Yamanaka, N., S. Watanabe, K. Toda, M. Hayashi, H. Fuchigami, R. Takahashi and K. Harada (2005) Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor. Appl. Genet. 110: 634–639.
Yan, L., A. Loukoianov, G. Tranquilli, M. Helguera, T. Fahima and J. Dubcovsky (2003) Positional cloning of the wheat vernalization gene VRNI. Proc. Natl. Acad. Sci. USA 100: 6263–6268.
Yan, L., D. Fu, C.L. A. Blechtl, G. Tranquilli, M. Bonafe’d, A. Sanchez, M. Valarik, S. Yasuda and J. Dubcovsky (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103: 19581–19586.
Yano, M., Y. Katayose, M. Ashikari, U. Yamouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umemura, N. Nagamura et al. (2000) Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12: 2473–2484.
Zhang, Q., H. Li, R. Hu, C. Fan, F. Chen, Z. Wang, X. Liu, Y. Fu and C. Lin (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc. Natl. Acad. Sci. USA 105: 21028–21033.
Zhong, W.K., Y.J. Wang, G.Z. Luo, J.S. Zhang, C.Y. He, X.L. Wu, J.Y. Gai and S.Y. Chen (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max (L.) Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 108: 1131–1139.