INTRODUCTION
The formation and mineralization of soil organic carbon (SOC) are crucial for climate regulation, food provisioning, cultural heritage, habitat for organisms, and nutrient cycling (1, 2), but they remain poorly understood and quantified, particularly in different soil fractions. Separating SOC into particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) is fundamental to understand the underlying processes that explain SOC formation and mineralization (3, 4). Previous studies have shown that MAOC has a relatively long persistence in the soil but requires large quantities of nitrogen for its formation and has limited storage capacity. In contrast, the POC fraction is more vulnerable to disturbance but has a lower nitrogen demand and can potentially accumulate indefinitely (3). Chemical recalcitrance of soil organic molecules and their location within large aggregates constrain POC mineralization, whereas in the MAOC fraction mineralization is constrained by physical-chemical protection, resulting from carbon (C) occlusion within microaggregates and adsorption onto mineral surfaces (5, 6). Previous research proposes that SOC formation is mainly explained by physical-chemical protection (Fig. 1A). On the other hand, “living plant experiments” consider potential protection mechanisms of SOC promoted by living roots (7). By analyzing and comparing different experimental approaches, we estimated SOC_FEs, POC_FEs, and MAOC_FEs of aboveground inputs, roots, and rhizodeposition separately using data from 35 studies and 197 observations that applied 13C as a tracer of plant inputs into the soil (Table 1). On the one hand, we compiled “litter incubation experiments” wherein the POC and aboveground inputs were added to the soil and SOC derived from each input was quantified through time (Fig. 1A). Our database includes litter incubation experiments that added litter and roots from crop and grass species, as well as forest leaves and fine roots, which performed either in controlled laboratory conditions or in the field (see Table 1 for details; 61% of the litter incubation experiments were performed in the field). Such experiments have traditionally evaluated SOC_FEs, although they do not include C-inputs from rhizodeposition and tend to ignore potential protection mechanisms of SOC promoted by living roots (Fig. 1A). On the other hand, “living plant experiments” consider the interactions of living plants with the soil matrix when estimating SOC_FEs. Our review includes living plant experiments that evaluated crop and grass species growing not only mainly in the field but also under controlled laboratory conditions (see Table 1 for details). In these experiments, rhizodeposition occurs throughout the growing season, whereas root and shoot biomass are incorporated into the soil primarily as a pulse after plant harvest (Fig. 1B). Because these different experimental approaches have important effects on SOC_FEs estimates, we combined them to estimate the SOC_FEs.
Table 1. Summary of the reviewed articles. RN, reference number; Ag, aboveground plant residues; NR, net rhizodeposition was estimated; NR*, net rhizodeposition was measured; MAP, mean annual precipitation; MAT, mean annual temperature; NA, not applicable.

RN	C-input source	Experiment type	SOC fractions*	Method for new-C estimation	Environment condition	Plant species	Soil texture	MAP (mm)	MAT (°C)	Residue management	Time (years)
(39)	Roots	Litter incubation	SOC	Labeling	Field	*Triticum* sp.	Silt loam and silty clay loam	697	10.5	Mixed with soil	3
(40)	Ag, roots	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Pinus ponderosa*	Sandy loam	1774	17	Mixed with soil	1.6
(41)	Roots	Litter incubation	SOC	Labeling	Field	*Triticum* sp.	Sandy clay loam, loamy and silty clay	528, 1062, 1150, and 1052	16.7, 5.1, 4.5, and 4.7	Mixed with soil	1
(42)	Ag	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Andropogon gerardii*	Silty clay	835	12.9	On soil surface	3
(43)	Ag	Litter incubation	SOC, POC, and MAOC	Natural abundance	Controlled	*Eucalyptus* sp.	Sandy clay loam	NA	NA	Mixed with soil	0.66
(44)	Ag	Litter incubation	SOC	Labeling	Field	*Acer saccharum*	Clay	1098	3.8	On soil surface	1
(45)	Roots	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Triticum* sp.	Silt loam and silty clay loam	1155 and 1062	4.4 and 5.8	Mixed with soil	1 and 3
(46)	Ag, roots	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Pinus ponderosa*	Sandy loam	1774	17	Mixed with soil	5
(47)	Ag, roots	Litter incubation	SOC, POC, and MAOC	Labeling	Controlled	*Zea mays* L.	Silty loam	NA	NA	Mixed with soil	0.23
(48)	Ag, roots	Litter incubation	SOC	Labeling	Field	*Pinus ponderosa*	Silty clay loam	1774	17	Mixed with soil	
(49)	Ag, roots	Litter incubation	SOC	Natural abundance	Controlled	*Populus simonii* Carr.	Loamy sand	NA	NA	Mixed with soil	0.74
(50)	Ag	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Beech forest*	ND	930	8.4	On soil surface	1
(51)	Ag	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Sinapis alba*	Silt loam	803	7.4	Mixed with soil	1.56
(52)	Ag	Litter incubation	SOC	Labeling	Field	*Populus nigra*	Loam	734	15	On soil surface	0.92
(53)	Roots	Litter incubation	SOC, POC, and MAOC	Labeling	Controlled	*Oilseed rape*	Sandy loam	NA	NA	Mixed with soil	0.37
(54)	Roots	Litter incubation	SOC, POC, and MAOC	Labeling	Field	*Triticum* sp.	Silt loam and silty clay loam	600	10.5	Mixed with soil	3
(55)	Ag, roots	Litter incubation	SOC	Labeling	Controlled	*Liquidambar styraciflua* L.	Silty clay loam	NA	NA	Ag on surface and roots mixed with soil	0.07

continued to next page
RN	C-input source	Experiment type	SOC fractions*	Method for new-C estimation	Environment condition	Plant species	Soil texture	MAP (mm)	MAT (°C)	Residue management	Time (years)
56	Roots	Litter incubation	SOC	Labeling	Field	Acer rubrum	Sand	838	6.8	Mixed with soil	1 and 2
57	Ag, roots	Litter incubation	SOC, POC, and MAOC	Labeling	Controlled	Triticum sp.	Silt	NA	NA	Mixed with soil	0.18
58	Ag, roots	Litter incubation	SOC	Natural abundance	Controlled	Canavalia ensiformis and Gliricidia sepium	Clay	NA	NA	Mixed with soil	2
59	Ag, roots	Litter incubation	SOC, POC, and MAOC	Natural abundance and labeling	Controlled	Fagus sylvatica L. and Fraxinus excelsior L.	Silt loam	NA	NA	Mixed with soil	0.56
60	Ag	Litter incubation	SOC, POC, and MAOC	Natural abundance	Controlled	Zea mays L.	Silt loam	NA	NA	Mixed with soil	0.13
61	Ag, roots, NRm	Living plant	SOC	Labeling	Field	Secale cereale	Fine-loamy	1055	8.2	No-Till	0.42 and 1.42
62	Ag, roots, NR	Living plant	SOC, POC, and MAOC	Natural abundance	Field	Zea mays L.	Silt loam	650	10.5	Tillage	4
63	Ag, roots, NR	Living plant	SOC	Treatments	Field	Zea mays L.	Silt loam	970	10	Tillage	6, 10 and 12
64	Ag, roots, NR	Living plant	SOC	Natural abundance	Field	Zea mays L., Hordeum vulgare L., Triticum aestivum L., Trifolium pratense L., Phleum pratense L.	Silt loam	1200	4	Tillage	15
65	Ag and roots, NR	Living plant	SOC	Natural abundance	Field	Zea mays L., Triticum sp.	Clay loam	551	5.7	No-Till and tillage	13
66	Ag, roots, NR	Living plant	SOC, POC, and MAOC	Labeling	Field	Vicia dasycarpa Ten.	Silt loam and silty clay loam	450	16.5	Tillage	0.37
67	Ag, roots, NR	Living plant	SOC	Treatments	Field	Zea mays L.	Silty clay loam	906	10	Tillage	11

continued to next page
RN	C-input source	Experiment type	SOC fractions*	Method for new-C estimation	Environment condition	Plant species	Soil texture	MAP (mm)	MAT (°C)	Residue management	Time (years)
(67)	Ag, roots, NR	Living plant	POC	Natural abundance	Field	Zea mays L. and Glycine max L.	Silt loam	1200	17	No-Till	2
(68)	Ag, roots, NRm	Living plant	SOC	Labeling	Field	Vicia villosa Roth subsp. Villosa	Clay loam	1053	13	Tillage	0.41
(69)	Ag, roots, NRm	Living plant	SOC	Labeling	Field	Triticum aestivum L., Pisum sativum L., and Vicia sativa L.	Sandy loam	769	19.3	No-Till	0.49

*POC: includes either the fractions with particle size higher than 53 μm or the light fraction separated by density (3). MAOC: includes either the fractions with particle size lower than 53 μm or the heavy fraction separated by density. It was assumed that SOC is equal to the sum of POC plus MAOC; therefore, when the studies reported only one fraction and total SOC, the second fraction was calculated by difference (70).
of roots, aboveground inputs, and rhizodeposition separately, specifically selecting papers that measured POC and MAOC contents to estimate POC_{FE} and MAOC_{FE} of all C-input sources.

RESULTS AND DISCUSSION

Formation efficiencies of belowground and aboveground inputs into total SOC

Within the reviewed experiments, SOC formation efficiencies (SOC_{FE}) were relatively stable at different C-input levels (Fig. 2), as shown by the linear relationships between C-inputs and C in new SOC in both experimental methods (litter incubations and living plant experiments). Average aboveground-input-SOC_{FE} and root-input-SOC_{FE} were similar in litter incubation experiments (0.31 and 0.36, respectively) (Fig. 2A) but differed markedly in living plant experiments where average aboveground-input-SOC_{FE} was 0.11, one-third the value of average belowground-input-SOC_{FE} of 0.31 (belowground inputs included roots and rhizodeposition in this type of experiments) (Fig. 2B). These results suggest that SOC_{FE} of traditional litter incubation experiments may overestimate real SOC_{FE} occurring under normal field conditions, particularly for aboveground inputs. In addition, the higher belowground-input-SOC_{FE} as compared to aboveground-inputs-SOC_{FE} observed only in experiments with living roots suggests that reasons other than biochemical composition likely explain the higher retention of belowground inputs into bulk SOC. Our estimates agree with recently reported values for aboveground-input-SOC_{FE} but are lower than reported values for belowground-input-SOC_{FE} (12) because our calculations include rhizodeposition amounts plus roots (as belowground inputs) in the SOC_{FE} estimation. Because belowground-input-SOC_{FE} is typically calculated as the ratio between root biomass and belowground-derived-SOC, ignoring rhizodeposition as an input, reported values of belowground-input-SOC_{FE} in living plant experiments may overestimate real formation efficiencies by almost 50% because net rhizodeposition is not included in the denominator (assuming a net rhizodeposition:root ratio of 0.5; see Table 2). Overall, our results suggest that SOC_{FE} values measured in litter incubation experiments may not represent decomposition dynamics under field conditions with living plants and highlight the importance of estimating SOC_{FE} in ways that consider all plant inputs including rhizodeposition.

Formation efficiency of aboveground, root, and rhizodeposition inputs into POC and MAOC

We found a significant effect of time on POC_{FE} (P < 0.001; Table 4). POC_{FE} decreased during the first year of experimentation, after which time it appears to stabilize, but MAOC_{FE} estimates were not significantly related to time (evaluated using linear and nonlinear models) (Fig. 3). The different formation mechanisms of POC and
MAOC could explain these results. POC is largely made up of relatively undecomposed fragments of plant residues, whereas MAOC consists of microscopic fragments of organic material associated with soil minerals (7). Therefore, it is expected that new POC derived from plant inputs follows a decomposition pattern similar to that from litter inputs, and therefore, POCFE decreases across time. However, it is likely that new MAOC has a different decomposition pattern because it is rapidly formed during early stages of litter decomposition and then remains relatively stable because of soil protection (3). Thus, we expected a smaller or lack of correlation of MAOCFE with experimental time. We found these same results when analyzing two particular experiments in our dataset that resampled soils through experimental time and estimated POCFE and MAOCFE variations (see fig. S2).

![Figure 2](https://www.science.org)

Fig. 2. Relationships between C-inputs and new SOC formation in litter incubation experiments and living plant experiments. Panel A shows litter incubation experiments and panel B living plant experiments. Average SOC formation efficiencies (SOCFE) are shown for each type of inputs and experimental method. Regression lines are shown in red, and CI_{intercept} and CI_{slope} are the 95% confidence intervals (for the intercept and slope, respectively). Belowground C-inputs in living plant experiments include net rhizodeposition (see Materials and Methods).

Table 2. Mean, SD, and sample size (n) net rhizodeposition-to-root ratios observed in this paper and in Pausch and Kuzyakov review (10).

Ratio	Land use	Mean	SD	n	Reference
Net rhizodeposition/root	Crops	0.54	0.07	99	
biomass	Grasses	0.50	0.06	128	Pausch and Kuzyakov (10)
	Trees	0.49	0.11	9	
	Crops and cover crops	0.44	0.12	7	This review
	All	0.51	0.07	243	Weighted average
After correcting for time effects, we found that belowground inputs have substantially higher formation efficiencies than aboveground inputs, not only in total SOC but also in both POC and MAOC fractions, with differential effects of roots, rhizodeposition, and aboveground inputs in the formation efficiencies of each soil fraction. In living plant experiments that reflect real plant growing conditions, belowground-POC_{FE} (roots and rhizodeposition) was ~180% higher than aboveground-input-POC_{FE}, with similar results for MAOC (~170% increase) (Fig. 4). However, different mechanisms seem to explain the observed higher POC_{FE} and MAOC_{FE} of roots and rhizodeposition, as discussed below.

Our results for the MAOC fraction suggest that plant rhizodeposition is critical for building SOC in stabilized pools because average net rhizodeposition-MAOC_{FE} in living plant experiments was high (0.46 ± 0.21; Fig. 4B) compared to the MAOC_{FE} of roots or aboveground inputs (~0.07; Fig. 4B). Belowground-MAOC_{FE} in living plant experiments (0.19 ± 0.07) was nearly three times higher than MAOC_{FE} of aboveground inputs (0.07 ± 0.03) in the same type of experiment, whereas root-input-MAOC_{FE} did not differ from aboveground-input-MAOC_{FE} in litter experiments (Fig. 4B). These results suggest that the presence of living roots is a more efficient way to increase MAOC. Our calculations show that the majority (more than 75%) of total belowground derived MAOC was contributed by rhizodeposition (Fig. 5). These results assume a net rhizodeposition:root biomass ratio of 0.51 (± 0.07, n = 242) extracted from a literature synthesis (Table 2), but a sensitivity analyses revealed that our estimates remain unchanged for a wide range of net rhizodeposition:root biomass ratio, varying only with net rhizodeposition:root biomass ratios lower than ~0.3, which are uncommon given that 0.3 is two SDs away from the mean (see the Supplementary Materials and fig. S1 for details).

Although several studies show that rhizodeposition promotes SOC decomposition (i.e., priming) (14, 15), our results suggest that in the MAOC fraction it may have the opposite result—MAOC formation. This result may occur because rhizodeposition is rich in simple carbohydrates (16) that are easily consumed by microbial activity that produce microbial necromass and microbial-derived compounds. These compounds are recovered in the dissolved organic C fraction, which is the dominant and more efficient pathway of MAOC formation (7, 13). In addition, sorption of other low–molecular weight compounds (e.g., organic acids) from rhizodeposition could be another pathway of MAOC formation. When fine minerals of soil (clay + silt) are nonsaturated with organic compounds (17), these simple molecules have a strong capacity to interact with minerals and contribute to MAOC formation (13, 18). Furthermore, MAOC_{FE} of roots and aboveground inputs was not different in litter incubation experiments (~0.11), therefore suggesting that biochemical composition is less important for retaining C in this stable SOC fraction (Fig. 4B).

Mycorrhizal contribution to rhizodeposition is unclear but could partly explain the high net rhizodeposition-MAOC_{FE} found in our study. Substantial quantities of rhizosphere exudates come from extraradical hyphae secretions, and, in contrast, death and turnover of mycorrhizal tissues may also contribute substantially as C-inputs to soil decomposers, therefore increasing microbial necromass and microbial-derived compounds (19). As discussed above, these two pathways (increasing the microbial necromass or producing low–molecular weight compounds) are key C-inputs for MAOC formation. Most of the data analyzed in our study came from croplands (Table 1), where fertilization practices or tillage could have reduced mycorrhizal abundance. Therefore, MAOC formation rates from rhizodeposition could be potentially higher in nonmanaged and more natural ecosystems with abundant mycorrhizal colonization.

In contrast to MAOC formation, root biomass was the more efficient C-source for forming POC because root-input-POC_{FE} was highest in litter incubation experiments (0.19 ± 0.07), even higher than belowground-input-POC_{FE} in living plant experiments (0.12 ± 0.06) where both root + rhizodeposition inputs are occurring jointly (Fig. 4A). This differential stabilization into POC is likely attributable to the chemical recalcitrance of roots because root-input-POC_{FE} was higher than aboveground-input-POC_{FE} (0.10 ± 0.07) in litter experiments (Fig. 4A). In such experiments, root and aboveground inputs are incubated under similar soil conditions without rhizodeposition, the main difference being their chemical composition. Our estimates also showed that the majority of belowground-derived-POC was contributed by roots (Fig. 5). However, because POC is usually...
a smaller fraction of total SOC in croplands (20), the chemical recalcitrance mechanism would usually play a minor role in the overall SOC formation (21, 22), with POC formation becoming relatively more important in forest and coarser textured soils (23). It was unclear from our data how root stimulation of soil aggregation promotes POC accumulation, as suggested previously (24, 25). The larger differences between aboveground-input-POC$_{FE}$ and belowground-input-POC$_{FE}$ in living plant experiments as compared to the difference between aboveground-input-POC$_{FE}$ and root-input-MAOC$_{FE}$ in litter incubation experiments may also suggest that root stimulation of soil aggregation could increase root conservation in POC in addition to its chemical recalcitrance.

Our results show that rhizodeposition increased MAOC formation (as explained above) but reduced POC formation, likely because it increased decomposition rates of new POC. Rhizodeposition seems to decrease POC$_{FE}$ based on observations comparing average root-input-POC$_{FE}$ in litter experiments (0.19 ± 0.07) with belowground-input-POC$_{FE}$ (root + rhizodeposition) in living plant experiments (0.12 ± 0.07) (Fig. 4A). Even assuming that rhizodeposition does not form POC because this soil fraction contains coarse plant materials and not simpler molecules of low molecular weight through rhizodeposition (9), and considering an average net rhizodeposition:root ratio of 0.5 ± 0.1 (Table 2), root-input-POC$_{FE}$ in living plant experiments would be 0.18, still lower than the observed in litter incubation experiments (0.19 ± 0.07). This lower root-input-POC$_{FE}$ in living plant experiments may be explained if root decomposition is increased by rhizodeposition inputs (26). This increased decomposition rate could explain the negative values of net rhizodeposition-POC$_{FE}$ (Fig. 4A) and the negative contribution of net rhizodeposition to belowground-derived-POC (Fig. 5). Other research suggests that rhizodeposition induces greater microbial activity and increases SOC mineralization (i.e., priming effect) (14), either by contributing compounds that serve as cometabolites or by facilitating the release of mineral protected C into more accessible pools (26). These
mechanisms not only could explain the increased decomposition rates of new POC but also could be operating on preexisting POC (i.e., “old POC”) producing a priming effect (not accounted for in our study). Therefore, in the presence of rhizodeposition, a higher proportion of roots and aboveground inputs may be respired due to an increase in POC decomposition rates (both new and old), as observed for new POC only in living plant experiments. Our results strongly suggest that rhizodeposition increases decomposition rates only for roots entering the POC fraction, where recalcitrance limits its decomposition (7), reconciling previous evidence showing that rhizodeposition may either induce SOC decomposition (in the POC fraction) or increase its formation (in the MAOC fraction).

Shoot:root effects on C-input contributions to POC and MAOC formation

When considering a shoot:root ratio of 1, 81% of the new SOC formed annually was derived from belowground inputs (root + rhizodeposition), but belowground contributions were 43% when the shoot:root ratio was 6 (Fig. 6A). SOC formation depends on both input formation efficiencies and total input amounts from vegetation. High aboveground inputs explain why even with shoot:root ratios of 6, our estimates show that SOC is mainly aboveground-derived, despite aboveground inputs having a relatively low POCFE and MAOCFE (Fig. 4). The relative contributions of aboveground and belowground
from 1 to 6, SOC FE decreased from 25 to 16%, representing a 36% shoot:root ratios (Fig. 6B). Therefore, when shoot:root ratios increased 327, SOC fractions is needed (34), which varies between 1 and 6 in our dataset (Fig. 6A and Table 3). To estimate C-input contributions to POC and MAOC formation, we combined three hypothetical shoot:root ratios (1, 3, and 6) with POC and MAOC formation efficiencies of aboveground input, roots, and rhizodeposition in living plant experiments (Fig. 4). For shoot:root ratios of 1 and 3, POC and MAOC were mainly formed from root and rhizodeposition inputs, respectively. However, when the shoot:root ratio increased to 6, both fractions were formed more from aboveground inputs (Fig. 6A). Overall, when considering all the experiments reviewed, SOCFE decreased with increasing shoot:root ratios (Fig. 6B). Therefore, when shoot:root ratios increased from 1 to 6, SOCFE decreased from 25 to 16%, representing a 36% decrease in total SOC formation efficiencies (Fig. 6A). These results confirm earlier studies, suggesting that increasing C allocation to roots (and rhizodeposition) may be an important tool for increasing SOC storage (13). Our estimates of root:shoot ratios do not consider crop harvesting, which would remove substantial amounts of aboveground biomass (grains) decreasing the proportion of POC and MAOC formed from aboveground inputs.

Predicting SOC dynamics is important for developing sustainable land use strategies in the context of global change. The latest discoveries in SOC dynamics are not typically included in traditional simulation models, and a new generation of models based on measurable SOC fractions is needed (3, 27, 28). Our findings on formation efficiencies of different C sources and shoot:root ratios could directly inform these models and improve management of the C cycle and soil C sequestration. We showed that roots and rhizodeposition are highly efficient C sources for POC and MAOC formation, respectively. Thus, the inclusion of plants with higher C allocation to belowground biomass may increase SOC stocks, especially in croplands where SOC stock depletion has occurred worldwide (29, 30). However, plant breeding has traditionally selected crops for aboveground C allocation because of its relation to harvestable products (31). Therefore, potential trade-offs between production and SOC formation (12), and multiple-objective breeding programs (32, 33), could emerge. A good strategy that would contribute to reducing these trade-offs could be the inclusion of service crops (cover crops) in agricultural rotations, with high root production and elevated rhizodeposition (34, 35). Our work shows that root production and rhizodeposition, often overlooked in agronomy and plant breeding programs, should be evaluated for novel C cycle management options.

MATERIALS AND METHODS

Literature search and database building

We searched for peer-reviewed studies that evaluated SOC formation from aboveground and/or belowground inputs in Scopus (www.scopus.com). The following combination of terms was used: (“decomposition” OR “humification” OR “mineralization” OR “stabilization”) AND (“soil organic carbon” OR “soil organic matter” OR “SOM” OR “SOC”) AND (“root” OR “litter” OR “belowground” OR “aboveground”) AND (“isotopes” OR “label” OR “labelled” OR “labeling” OR “labeled”). The search resulted in 248 articles. To build a database with the papers, a two-step selection process was carried out. First, titles and abstracts of all articles were examined to exclude those that clearly do not focus on SOC formation. Second, only full papers that met the above criteria were reviewed and the papers where SOC, POC, or MAOC formation efficiency was reported, or could be calculated from data, were kept. When a study...
had measurements through time, we emphasize the final (i.e., longest) sampling time. The isotopic techniques used as tracers included the isotopic labeling of plants or the use of plant species with a different natural abundance of ^{13}C (C_3 versus C_4 species). In addition to the selected papers, two older articles were also included in our review, because they were pioneer works in the topic, and although they did not use isotope tracers, their experimental setup allowed us to estimate separately belowground from aboveground SOC formation efficiencies (36, 37). The final database included 35 articles with 197 observations (Table 1).

Experiments were divided into litter incubation experiments and living plant experiments (Table 1), as explained in Introduction (Fig. 1). In litter incubation experiments, roots and aboveground plant tissues were added to the soil and, after a time period, the amount of new SOC formed from these tissues was measured (Fig. 1A). These experiments were carried out under controlled conditions in the laboratory or in the field (in situ) and assessed crops and forest litter. We included forest and grass treatments because no statistical differences were found between vegetation types (fig. S3). The living plant experiments have two phases. The first phase included the crop’s growing period, from sowing to crop termination. During this period of crop growth, C accumulates in aboveground and roots tissues, while gross rhizodeposition occurs and net rhizodeposition can be measured at crop termination in the soil (Fig. 1B). C accumulated at crop termination in roots and net rhizodeposition is considered as the total belowground inputs, and C accumulated in aboveground litter as the total aboveground inputs (Fig. 1B). In the second phase of living plant experiments, aboveground, roots, and net rhizodeposition begin to decompose and form new SOC (similar to the litter incubation experiments; Fig. 1A). All the living plant experiments were carried out under field conditions, excepting Comeau et al. (38), where plants were grown under greenhouse conditions.

Data analysis
The data collected from the reviewed papers included experimental method (litter incubation or living plant experiment), soil texture, soil depth, experiment time, initial SOC, total new SOC, new SOC in each soil fraction (POC or MAOC), and C-input sources [aboveground, root, or net rhizodeposition (when available)]. When net rhizodeposition was neither measured nor estimated, it was assumed as 50% of root biomass (Table 2). Because data distribution was not normal [tested with Shapiro test (71)], differences between groups (Fig. 4) were assessed with Wilcoxon test (72). All statistical analyses were performed with R software version 4.0.2 with stats package (73).

Estimates of formation efficiencies of aboveground, roots, and rhizodeposition into POC and MAOC
Formation efficiencies of a given C-input (aboveground, root, and belowground) were estimated by dividing the amount of input by the amount of new SOC (POC or MAOC) formed from that C-input (Eq. 1)

$$
\text{C-input-SOC}_{\text{FE}} = \frac{\text{New C derived from C-input/input amount}}{(1 - f_{\text{nr}}) * \text{root-SOC}_{\text{FE}}}
$$

To differentiate POC and MAOC formation efficiencies originated from rhizodeposition or roots, two steps were made. First, we considered that belowground-input-POC$_{\text{FE}}$ and belowground-input-MAOC$_{\text{FE}}$ are a weighted average of net rhizodeposition and root formation efficiencies (Eqs. 2 and 3)

$$
\text{Belowground-input-POC}_{\text{FE}} = f_{\text{nr}} * \text{net rhizodeposition-POC}_{\text{FE}} + (1 - f_{\text{nr}}) * \text{root-POC}_{\text{FE}}
$$

$$
\text{Belowground-input-MAOC}_{\text{FE}} = f_{\text{nr}} * \text{net rhizodeposition-MAOC}_{\text{FE}} + (1 - f_{\text{nr}}) * \text{root-MAOC}_{\text{FE}}
$$

where Belowground-input-POC$_{\text{FE}}$ is the formation efficiency of belowground input to POC, f_{nr} is the fraction of belowground input that is net rhizodeposition, net rhizodeposition-POC$_{\text{FE}}$ is the formation efficiency of net rhizodeposition to POC, root-POC$_{\text{FE}}$ is the formation efficiency of roots to POC, Belowground-input-MAOC$_{\text{FE}}$ is the formation efficiency of belowground inputs to MAOC, net rhizodeposition-MAOC$_{\text{FE}}$ is the formation efficiency of net rhizodeposition to MAOC, and root-MAOC$_{\text{FE}}$ is the formation efficiency of roots to MAOC. It is important to note that in previous works that estimate SOC formation efficiencies [see review by Jackson et al. (12)], estimates are based only on root biomass, ignoring rhizodeposition inputs, and therefore, SOC formation efficiencies of roots are overestimated and will be lower if rhizodeposition is considered as an input.

Second, we solved Eqs. 2 and 3 to estimate net rhizodeposition-POC$_{\text{FE}}$ and net rhizodeposition-MAOC$_{\text{FE}}$ (Eqs. 4 and 5) for each living plant experiment

$$
\text{Net rhizodeposition-POC}_{\text{FE}} = \text{Belowground-input-POC}_{\text{FE}} - \frac{f_{\text{nr}} * \text{root-POC}_{\text{FE}}}{f_{\text{nr}}}
$$

$$
\text{Net rhizodeposition-MAOC}_{\text{FE}} = \text{Belowground-input-MAOC}_{\text{FE}} - \frac{f_{\text{nr}} * \text{root-MAOC}_{\text{FE}}}{f_{\text{nr}}}
$$

where

1. Belowground-POC$_{\text{FE}}$ and belowground-MAOC$_{\text{FE}}$ were taken from the observed values in living plant experiments.
2. Root-POC$_{\text{FE}}$ and root-MAOC$_{\text{FE}}$ were assumed to be the median of observed values in the litter incubation experiments (0.18 and 0.06, respectively) because in these experiments roots are added to the soil manually and therefore no rhizodeposition exists. We used the median instead of the average for this assumption because median is a measure of central tendency not distorted by skewed data (74).
3. The net rhizodeposition:root ratio was assumed to be 0.5, and therefore, the fraction of net rhizodeposition (f_{nr}) used was 0.33 of total belowground inputs (see Table 2).

Estimates of the relative contributions of root and net rhizodeposition to the total belowground-derived SOC pool
After solving Eqs. 4 and 5, we estimated the contributions of roots and net rhizodeposition to new POC and new MAOC as a percentage of total belowground inputs (Fig. 5), with Eqs. 6 to 9 as follows

$$
\text{Root contribution to POC} (%) = \left(\frac{(1 - f_{\text{nr}}) * \text{root-POC}_{\text{FE}}}{f_{\text{nr}} * \text{net rhizodeposition-POC}_{\text{FE}} + (1 - f_{\text{nr}}) * \text{root-POC}_{\text{FE}}} \right) * 100
$$

$$
\text{Net rhizodeposition contribution to POC} (%) = \left(\frac{f_{\text{nr}} * \text{net rhizodeposition-POC}_{\text{FE}}}{f_{\text{nr}} * \text{net rhizodeposition-POC}_{\text{FE}} + (1 - f_{\text{nr}}) * \text{root-POC}_{\text{FE}}} \right) * 100
$$

Villarino et al., Sci. Adv. 2021; 7 : eabd3176 14 April 2021

11 of 13
Root contribution to MAOC (%) = \((1-f_{nt})\times f_r\times MAOC_{FE}\) / \((f_{nt}\times f_r\times MAOC_{FE} + (1-f_{nt})\times f_r\times MAOC_{FE})\times 100\) (8)

Net rhizodeposition contribution to MAOC (%) = \((f_{nt}\times f_r\times MAOC_{FE}) / (f_{nt}\times f_r\times MAOC_{FE} + (1-f_{nt})\times f_r\times MAOC_{FE})\times 100\) (9)

Estimates of new POC and MAOC formation under varying shoot:root ratios

The contribution of different C-inputs to SOC pools depends not only on formation efficiencies but also on the relative amount of inputs added to the soil, which depends on plant allocation patterns (i.e., shoot:root ratio). To evaluate the impact of different shoot:root ratios on SOC formation, we performed an additional analysis (Fig. 6). We varied the relative contributions of C-inputs assuming shoot:root ratios of 1, 3, and 6 (which are within the reported range in the reviewed experiments; see Table 4) and multiplied them by the aboveground-input-POC, root-POC, net rhizodeposition-POC, aboveground-input-MAOC, root-MAOC, or net rhizodeposition-MAOC estimated for each experiment to calculate the relative contributions (in percentage) of each C-input to the different pools of new SOC formed, as follows

New C derived from aboveground (%) = 100 \times f_a \times \text{aboveground-POC or MAOC}_{FE} (10)

New C derived from root (%) = 100 \times f_r \times \text{root-POC or MAOC}_{FE} (11)

New C derived from net rhizodeposition (%) = 100 \times f_{nt} \times \text{net rhizodeposition-POC or MAOC}_{FE} (12)

where \(f_a\), \(f_r\), and \(f_{nt}\) are the fractions of total input (\(f_a + f_r + f_{nt} = 1\)) that is aboveground, root, or net rhizodeposition, respectively. These fractions vary with the different shoot:root ratios considered.

SUPPLEMENTARY MATERIALS

Supplemental material for this article is available at http://advances.sciencemag.org/cgi/content/full/7/16/eabd3176/DC1

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES

1. K. Adhikari, A. E. Hartemink, Linking soils to ecosystem services—A global review. *Geoderma* **262**, 101–111 (2016).
2. K. Lorez, R. Lal, Soil Organic Carbon—An Appropriate Indicator to Monitor Trends of Land and Soil Degradation Within the SDG Framework? (Umweltbundesamt, 2016); www.umweltbundesamt.de/en/publikationen/soil-organic-carbon-an-appropriate-indicator-to.
3. J. M. Lavallée, J. L. Soong, M. F. Cotrufo, Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. *Glob. Chang. Biol.* **26**, 261–273 (2019).
4. M. F. Cotrufo, M. G. Ranalli, M. L. Haddix, J. Six, E. Lugato, Soil carbon storage informed by particulate and mineral-associated organic matter. *Nat. Geosci.* **12**, 989–994 (2019).
5. M. Kleber, K. Eusterhues, M. Keiluweit, C. Mikutta, P. S. Nico, Advances in Agronomy (Elsevier, 2015), vol. 130, pp. 1–140.
6. I. Kögler-Knabner, G. Guggenberger, M. Kleber, E. Kandel, K. Kalbitz, S. Scheu, K. Eusterhues, P. Leinweber, Organo-mineral associations in temperate soils: Integrating plant litter quality, microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. *Sci. Rep.* **9**, 10294 (2019).
7. S. D. Frey, Mycorrhizal fungi as mediators of soil organic matter dynamics. *Annu. Rev. Ecol. Evol. Syst.* **50**, 237–259 (2019).
8. B. T. Christensen, Physical fractionation of soil and structural and functional complexity in organic matter turnover. *Eur. J. Soil Sci.* **52**, 345–353 (2001).
9. J.A. Dungait, D. W. Hopkins, A. S. Gregory, A. F. Whitmore, J. S. Lennard, A. E. Geyer, G. Hempel, K. Kaiser, T. Kotlizbucher, G. Guggenberger, Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient. *Sci. Rep.* **9**, 10294 (2019).
10. M. W. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögler-Knabner, J. Lehmann, D. A. Manning, P. Nannipieri, D. P. Rasse, S. Weimer, S. E. Trumbore, Persistence of soil organic matter as an ecosystem property. *Nature* **478**, 49–56 (2011).
11. H. S. Villarino, G. A. Studdert, P. Baldassini, M. G. Cendoya, L. Ciuffoli, M. Mastrángelo, G. Piñeiro, Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. *Sci. Total Environ.* **575**, 1056–1065 (2017).
12. J. M. Tisdall, J. M. Oades, Organic matter and water-stable aggregates in soils. *J. Soil Sci.* **33**, 141–163 (1982).
13. V. Poirier, C. Roumet, D. A. Angers, A. D. Munson, Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. *Plant Soil* **424**, 289–302 (2018).
14. M. Keiluweit, J. J. Bourguignon, P. S. Nico, J. Pett-Ridge, P. K. Weber, M. Kleber, Mineral protection of soil carbon counteracted by root exudates. *Nat. Clim. Chang.* **5**, 588–595 (2015).
15. R. Abramoff, X. Xu, M. Hartman, S. O’Brien, W. Feng, E. Davidson, A. Finzi, D. Moorhead, J. Schimel, M. Torn, The Millennial model: In search of measurable pools and transformations for modeling soil carbon in the new century. *Biogeosciences* **16**, (2019).
16. A. D. Robertson, K. Paustian, S. Ogle, M. D. Wallenstein, E. Lugato, M. F. Cotrufo, Unifying soil organic matter formation and persistence frameworks: The MEMS model. *Biogeosciences* **16**, (2019).
17. P. Smith, J. I. House, M. Bustamante, J. Sobocka, R. Harper, G. Pan, P. C. West, J. M. Clark, T. Adhya, C. Rumpel, Global change pressures on soils from land use and management. *Glob. Chang. Biol.* **22**, 1008–1028 (2016).
18. L. B. Guo, R. Gifford, Soil carbon stocks and land use change: A meta analysis. *Glob. Chang. Biol.* **8**, 345–360 (2002).
19. R. Millia, P. Garcia-Palacios, S. Mateusaz, Looking at past domestication to secure ecosystem services of future croplands. *J. Ecol.* **105**, 885–889 (2017).
20. D. B. Kell, Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. *Ann. Bot.* **108**, 407–418 (2011).
21. T. E. Crews, B. E. Rumsey, What agriculture can learn from native ecosystems in building soil organic matter: A review. *Sustainability* **9**, 578 (2017).
22. P. Pinto, M. E. F. Long, G. Piñeiro, Including cover crops during fallow periods for increasing ecosystem services: Is it possible in croplands of Southern South America? *Ecosyst. Environ.* **248**, 48–57 (2017).
35. L. Garcia, G. Damour, C. Gaylor, Y. Le Bissonnais, A. Metay. Trait-based approach for agroecology: Contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant Soil 435, 1–14 (2019).

36. W. Larson, C. Clapp, W. Pierre, Y. Morachan, Effects of increasing amounts of organic residues on continuous crops: Organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64, 204–209 (1972).

37. S. A. Barber, Crop residue management and soil organic matter. Agron. J. 71, 625–627 (1979).

38. W. Larson, C. Clapp, W. Pierre, Y. Morachan, Effects of increasing amounts of organic residues on continuous crops: Organic carbon, nitrogen, phosphorus, and sulfur. Agron. J. 64, 204–209 (1972).

39. J. A. Bird, M. Kleber, M. S. Torn, 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Org. Geochem. 39, 465–477 (2008).

40. P. Casals, J. Garcia-Pausas, F. Montane, J. Romanyà, P. Rovira, Root decomposition in grazed and abandoned dry Mediterranean dehesa and mesic mountain grasslands estimated by standard labelled roots. Agric. Ecosyst. Environ. 139, 759–765 (2010).

41. M. de Sales Moreira Demolin, R. N. de Sousa, I. R. da Silva, R. da Silva Teixeira, J. C. L. Neves, G. de Oliveira Mendes, Effect of mineral nitrogen on transfer of 13C carbon from eucalyptus harvest residue components to soil organic matter fractions. Rev. Bras. Ciência Solo 41 (2017).

42. M. Egli, S. Hafner, C. Derungs, J. Ascher-Jenull, F. Camin, G. Sartori, G. Raab, B. Lontempo, M. Paolini, L. Ziller, Decomposition and stabilization of Norway spruce needle-derived material in Alpine soils using a 13C-labelling approach in the field. Biogeochemistry 131, 321–338 (2016).

43. T. J. Fahey, J. B. Yavitt, R. E. Sherman, J. C. Maerz, P. M. Groffman, M. C. Fisk, P. J. Bohlen, Earthworm effects on the incorporation of litter C and N into soil organic matter in a sandy maple forest. Ecol. Appl. 23, 1185–1201 (2013).

44. J. Garcia-Pausas, P. Casals, P. Rovira, S. Vallecillo, J. Romanyà, Decomposition of labelled roots and root-C and -N allocation between soil fractions in mountain grasslands. Soil Biol. Biochem. 49, 61–69 (2012).

45. P. J. Hatton, C. Castanha, M. S. Torn, J. A. Bird, Litter type control on soil C and N dynamics in soil organic matter. Soil Biol. Biochem. 40, 1823–1835 (2008).

46. C. E. H. Pries, J. A. Bird, C. Castanha, P.-J. Hatton, M. S. Torn, Long term decomposition: The influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeosciences 134, 5–16 (2017).

47. Y.-L. Hu, D.-H. Zeng, X.-Q. Ma, S. X. Chang, Root rather than litter input drives soil carbon sequestration after afforestation on a marginal cropland. For. Ecol. Manage. 362, 38–45 (2016).

48. A. Kammer, F. Hagedorn, Mineralisation, leaching and stabilization of 13C-labelled leaf and twig litter in a beech forest soil. Biogeochemistries 8, 2195–2208 (2011).

49. A. Kolb, M. von Lützow, C. Rumpel, J. C. Munch, I. Kögel-Knabner. Dynamics of 13C-labelled mustard litter (Sinapis alba) in particle-size and aggregate fractions in an agricultural cropland with high- and low-yield areas. J. Plant Nutr. Soil Sci. 170, 123–133 (2007).

50. M. Rubino, J. Durgant, R. Evershed, T. Bertolini, P. De Angelis, A. D’Onofrio, A. Lagomarsino, C. Lubritto, A. Merola, F. Terrasi, Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidence from a 13C labelled-litter experiment. Soil Biol. Biochem. 42, 1009–1016 (2010).

51. S. A. Barber, Crop residue management and soil organic matter. Agron. J. 64, 204–209 (1972).

52. F. Santos, K. Nemetzoff, K. Bird, Rapid fine root C and N mineralization in a northern temperate forest soil. Biogeochemistry 128, 187–200 (2016).

53. M. Shahbaz, Y. Kuziyakov, F. Heitkamp, Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma 304, 76–82 (2017).

54. J. Sierra, N. Motisi, Shift in C and N humification during legume litter decomposition in an acid tropical Ferralsol. Soil Res. 50, 380–389 (2012).

55. C. Steffen, M. Helfrich, R. G. Joergensen, V. Essfeller, H. Flessa, Translocation of 13C-labelled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) during decomposition—A laboratory incubation experiment. Soil Biol. Biochem. 83, 125–137 (2015).

56. C. Wachendorf, M. Potthoff, B. Ludvig, R. G. Joergensen, Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia 57, 161–169 (2014).

57. E. E. Austin, K. Wickings, M. D. McDaniel, G. P. Robertson, A. S. Grandy, Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9, 1252–1263 (2016).

58. J. Balesdent, M. Babalane, Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 28, 1261–1263 (1996).

59. M. Bolinder, D. Angers, M. Giroux, M. Lavenderie. Estimating C inputs retained as soil organic matter from (Zea mays L.). Plant Soil 215, 85–91 (1999).

60. C. E. Clapp, R. R. Allmaras, M. F. Laye, D. R. Linden, R. H. Dowdy, Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res. 55, 127–142 (2000).

61. A. Ghafour, C. Poepplau, T. Kätterer, Fate of straw- and root-derived carbon in a Swedish agricultural soil. Biol. Fertil. Soils 53, 257–267 (2017).

62. J. Y. Kong, J. Six, Tracking root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci. Soc. Am. J. 74, 1201–1210 (2010).

63. S. R. Mazzilli, A. R. Kemanian, O. R. Ernst, R. J. Buol, G. Piñeiro, Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till and soybean crops. Soil Biol. Biochem. 85, 22–30 (2015).

64. P. Puget, L. Drinkwater, Short-term dynamics of Root- and shoot-derived carbon from a leguminous green manure. Soil Sci. Soc. Am. J. 65, 771–779 (2001).

65. M. M. Tahir, S. Recous, C. Alca, R. Schmatz, G. E. Pilecco, S. J. Giacomini, In situ root decomposition faster than shoots left on the soil surface under subtropical no-till conditions. Biol. Fertil. Soils 52, 853–865 (2016).

66. A. Gehbauer, E. F. Willcoxon, D. E. Schaeffer, D. A. Weigand, G. M. Phaneuf, D. R. H. Wardle, M. L. Vandegehuchte, A. J. Horton, U. N. Nielsen, K. Denef, E. A. Shaw, C. M. de Tomasel, W. Parton, D. H. Wall, M. F. Cotrufo, Soil microbial properties support ecosystem productivity and soil C accrual: Evidence from a litter decomposition study in the tallgrass prairie. Soil Biol. Biochem. 92, 230–238 (2016).

Acknowledgments: We are grateful to K Georgiou, A. Malhotra, and M. Oesterheld for providing comments on previous manuscript drafts. Funding: This work was supported by grants from PICT-2018-03786, Argentina; Gordon and Betty Moore Foundation (Grant GBMF5439); CSIC I+D 321; and INNOVAGRO FSA 148819 and FSA 148651 from ANL, Uruguay. R.B.J. acknowledges support from the Gordon and Betty Moore Foundation (GBMF5439 "Advancing Understanding of the Global Methane Cycle" to Stanford University). Author contributions: All authors contributed to receive the ideas and manuscript development. S.H.V. collected the data and performed all the statistical analyses with substantial intellectual and methodological inputs from P.P., R.B.J., and G.P. S.H.V. wrote the first draft of the manuscript, and all authors contributed to subsequent revisions. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 13 June 2020 Accepted 24 February 2021 Published 14 April 2021 10.1126/sciadv.abd3176

Citation: Villarino et al., Sci. Adv. 7, eabd3176 (2021).
Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions
Sebastián H. Villarino Priscila Pinto Robert B. Jackson Gervasio Piñeiro

Sci. Adv., 7 (16), eabd3176. • DOI: 10.1126/sciadv.abd3176

View the article online
https://www.science.org/doi/10.1126/sciadv.abd3176
Permissions
https://www.science.org/help/reprints-and-permissions