Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is an incurable neurodegenerative condition, characterized by the loss of upper and lower motor neurons. It affects 1–1.8/100,000 individuals worldwide, and the number of cases is projected to increase as the population ages. Thus, there is an urgent need to identify both therapeutic targets and disease-specific biomarkers—biomarkers that would be useful to diagnose and stratify patients into different sub-groups for therapeutic strategies, as well as biomarkers to follow the efficacy of any treatment tested during clinical trials. There is a lack of knowledge about pathogenesis and many hypotheses. Numerous “omics” studies have been conducted on ALS in the past decade to identify a disease-signature in tissues and circulating biomarkers. The first goal of the present review was to group the molecular pathways that have been implicated in monogenic forms of ALS, to enable the description of patient strata corresponding to each pathway grouping. This strategy allowed us to suggest 14 strata, each potentially targetable by different pharmacological strategies. The second goal of this review was to identify diagnostic/prognostic biomarker candidates consistently observed across the literature. For this purpose, we explore previous biomarker-relevant “omics” studies of ALS and summarize their findings, focusing on potential circulating biomarker candidates. We systematically review 118 papers on biomarkers published during the last decade. Several candidate markers were consistently shared across the results of different studies in either cerebrospinal fluid (CSF) or blood (leukocyte or serum/plasma). Although these candidates still need to be validated in a systematic manner, we suggest the use of combinations of biomarkers that would likely reflect the “health status” of different tissues, including motor neuron health (e.g., pNFH and NF-L, cystatin C, Transthyretin), inflammation status (e.g., MCP-1, miR451), muscle health (miR-338-3p, miR-206) and metabolism (homocysteine, glutamate, cholesterol). In light of these studies and because ALS is increasingly perceived as a multi-system disease, the identification of a panel of biomarkers that accurately reflect features of pathology is a priority, not only for diagnostic purposes but also for prognostic or predictive applications.

Keywords: circulating biomarkers, ALS, patients stratification, multi-system biomarkers, motor neuron disease
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder with an adult onset around 54–67 years old (1). Its clinical hallmark is the degeneration of both upper and lower motor neurons (2, 3), leading to progressive muscle atrophy and weakness, and ultimately to paralysis. Death, often resulting from swallowing problems and respiratory failure (4, 5), generally occurs within 2–4 years from disease onset (6–8), although 5–10% of ALS patients survive over 10 years (7). ALS has a median incidence of about 2.8 cases per 100,000 persons per year and a median prevalence about 5.4 cases per 100,000 persons for a median age at 61.8 ± 3.8 years (1). The incidence and prevalence thus increases with age and reaches a cumulative lifetime risk of 1 in 400 after 80 years old (9, 10). Due to the projected aging of the global population, ALS cases are expected to increase by 69% in the next 25 years (11), underlining the urgent need to identify causes, biomarkers and therapeutic targets for ALS.

The causes of ALS are largely unknown, with ~90% of cases being sporadic (sALS) while only ~10% are familial ALS (fALS) (12). Intensive research since the 1990’s has aimed to unravel the mechanisms involved in motor neuron degeneration. These studies suggest that ALS is a complex disease driven by a combination of several systemic parameters. To date, up to 30 genes (Figure 1) are described as monogenic causes of ALS, with the most frequent being C9orf72, SOD1, FUS, and TARDBP/TDP43 (13–15). In motor neurons, these identified mutations are functionally associated with an alteration of electrophysiological properties (16), accumulation of stress marks (17) and sensitivity to stress (18) (Figure 2). However, these monogenic forms

![Figure 1](image-url)
explain only 15% of sporadic cases and 66% of familial cases (12) (Figure 1).

Furthermore, the penetrance of these disease-associated mutations is quite variable and can increase with age (12, 19). The variability in penetrance as well as the lack of identification of a single associated gene mutations in 85% of sALS suggests that some ALS cases have a multigenic component, and/or involve epigenetic modification, and/or result from DNA damage, environmental risk factors, or viral infections (9, 14, 20–23) (Figure 2). In these cases, it is likely a combination of these factors that leads to cellular dysfunction such as glutamate-mediated excitotoxicity (24), abnormal protein aggregation (25), mitochondrial disorganization and dysfunction (26, 27) contributing to the oxidative stress (28–30) (Figure 2). Adding to the complexity of ALS, several studies suggest that not only the motor neurons are affected but also the surrounding cells, and that these cells participate in the propagation and burden of the disease. For instance, activated microglia cells release superoxide and nitric oxide metabolites, elements that are toxic to neuronal cells (31). Astrocytes can also participate in the propagation of neurotoxic elements (32, 33) such as SOD1 aggregates (34–36), and a failure of astrocytes to remove extracellular glutamate may mediate excitotoxicity (37–39). Ultimately, the intracellular dysfunction of the motor neuron combined with aberrant secretion of neurotoxic elements of surrounding cells leads to motor neuron stress, aberrant electrophysiological properties, and consequently to motor neuron death (Figure 2).

In the absence of a reliable diagnostic test for ALS, diagnosis is based on clinical and electrophysiological criteria such as evidence for progressive involvement of both upper and lower motor neurons and exclusion of diseases mimicking ALS as set out in the Revised El Escorial Criteria (REEC), Airlie House criteria (AHC) and Awaji criteria (2, 40). The process of diagnosis can be lengthy and there is a typical diagnostic delay of 9-15 months from onset to diagnostic confirmation (41). Considering that the average survival from onset is 2–4 years (6–8) and that efficacy of Riluzole is improved by early treatment (42), there is an urgent need to improve diagnostic speed and accuracy for ALS. One way of achieving this is the identification of biomarkers specific to ALS pathology, to enable the development a reliable fast diagnostic test. As well as diagnostics, it is also important to identify prognostic biomarkers that can be used to monitor the status of the pathology—various candidates may serve both these purposes. The identification of ALS biomarkers will contribute to a better understanding of the disease pathogenesis, and permit targeted drug development and patient stratification for more efficient clinical trials, assuming that different sub-cohorts of ALS patients respond differently to treatments. Biomarker discovery can be achieved by examining the “omics” contents of ALS patient tissues.

The present review has two aims: (1) to identify pathways commonly affected in genetic forms of ALS, and stratify the patients accordingly, and (2) to explore previous genomic, transcriptomic, proteomic, metabolomic and miRNomic studies of ALS published during the last decade, and summarize the findings, highlighting potential biomarker candidates for ALS disease management and treatment.

Genetic Markers for ALS Patient Stratification

The first gene identified to be associated with ALS was SOD1 in 1993 (43). Since then 29 new genes have been identified (13–15),
representing the most frequent genetic mutations included in current diagnostic processes (13, 44) (Figure 1). These 30 genes offer crucial clues in understanding the pathogenesis of ALS—some of the gene products interact with each other (14)—and enable the identification of diverse cellular pathways that are disrupted in ALS patients (Table 1). Even if most ALS cases are sporadic, the pathways disrupted in familial cases may also be affected in sporadic cases, as both sALS and fALS can share common molecular signatures or functional biological effects such as FUS or TDP43 protein aggregations or accumulation of stress granules formation (45), disruption in RNA processing (46), or disruption of autophagy and mitochondrial functions (47). When sorting the genes associated to ALS according to their primary cellular functions, several categories of dominantly affected pathway can be highlighted, such as (1) mitochondrial metabolism and turnover, (2) axonal transport and the cytoskeleton, (3) autophagy and proteostasis, (4) endosomal and vesicular trafficking, (5) DNA repair, and (6) ribostasis/RNA alteration/Nucleocytoplasmic transport—with most of the genes being involved in multiple pathways. It may be possible to group patients into strata depending on which combination of pathways is dysregulated, and to recruit patients accordingly for translational research and clinical trials. We have cautiously assigned each causal gene to one of 14 strata, depending on the profile of its affected pathways (Table 1). These groupings represent our effort to summarize current understanding and are not intended to be definitive—indeed, it will be important to modify and update them on an ongoing basis with improvements in the knowledge of protein function and the impact of mutations. Although these 14 strata are directly applicable to only 20% of total ALS cases (Figure 1), future work may determine whether (and which of) these molecular signatures are implicated in the remaining cases.

The Search for Circulating Biomarkers

The identification of circulating markers associated with ALS pathology would be important tools to provide early disease diagnosis and to track progression or treatment. There has been a concerted focus aimed at identifying such biomarkers in different body fluids over the past 20 years. In Table S1, we summarized 76 studies that investigated proteins, miRs, mRNAs, and metabolites as potential biomarkers in cerebrospinal fluid (CSF) or blood (blood cells, serum or plasma). To date, little has been done investigating urine-based biomarkers, and thus urine biomarker analyses are not reported in the current review. CSF is the most frequently used sample source, and several studies (Table S1) report a consistent decrease in protein levels of transthyretin—involved in neurogenesis, nerve repair and axonal growth (171)—and cystatin C—an endogenous cysteine protease inhibitor that can protect motor neurons against neurotoxicity by stimulating autophagy and inhibition of cathepsin B (172). In addition, CSF cystatin C protein levels positively correlated with the survival of ALS patients and could be thus potentially used as a prognostic biomarker (173). However, both transthyretin and cystatin C decreases are not specific to ALS patients and a similar pattern is observed in other neurodegenerative diseases (173) such as Alzheimer’s (171), suggesting that the protein levels of both transthyretin and cystatin C level are a common signature for neuron vulnerabilities and neurodegeneration. The protein levels of neurofilament light chain (NF-L) and the phosphorylated form of neurofilament heavy chain (pNFH) were also consistently found to be increased in the CSF of ALS patients across multiple studies (Table S1), with a high level of either NF-L or pNFH predicting a shorter life expectancy (174–178). NF-L and pNFH are markers for axonal damage (179). In this context, similarly to M-creatine kinase for myofiber fragility in muscular dystrophy (180), NF-L and pNFH thus directly reflect the health of the neurons—the cells specifically impacted by ALS.

Combining NF-L and pNFH with other markers that reflect the “health status” of other tissues such as glial cells, skeletal muscle, or inflammatory response, may represent a useful addition, as ALS is now perceived as a multisystemic disease. Such a multi-marker approach may represent a useful complement to a panel of biomarkers to test the efficacy of drugs in clinical trials. In this respect, miR-451—an inhibitor of microglial cell activation (181)—was consistently decreased in leukocytes of ALS patients (Table S1), while the pro-inflammatory MCP-1, secreted by the glial cells and neurons (182), was found to be increased in both serum and plasma (Table S1). Both miR-451 and MCP-1 could thus potentially inform the status of inflammatory cell recruitment and activation (181, 182). In addition, miR-206, which is essential for skeletal muscle growth and regeneration (183), as well as miR-338-3p, a regulator of neuromuscular junctions (184), are consistently upregulated in leukocytes—with miR-206 also consistently reported to be upregulated in serum and plasma samples across multiple studies (Table S1). In this context, miR-206 and miR-338-3p could be clinically useful candidate biomarkers of the health status of skeletal muscle (185).

Regarding circulating mRNAs, no obvious consistent candidates have been identified yet across previous studies (Table S1). With regard to analyses of circulating metabolite candidates, huge variation is observed between studies, though there was a general tendency for upregulation of specific metabolites in serum and plasma (Table S1), which is consistent with the hypermetabolism observed in some ALS patients (186). For instance, creatine, which is linked to cell energy metabolism, was consistently increased in CSF and plasma across studies (Table S1). Pyruvate and glucose were also found to be increased in CSF and plasma of ALS patients (Table S1), potentially reflecting a dysregulation of glycolytic metabolism as observed in SOD1-G93A motor neurons (187), and in some ALS cases (188, 189). This upregulation of glycolysis correlates with a shorter survival time and thus could be used as a prognostic biomarker (188, 189). Similarly, the upregulation of cholesterol and LDL observed in CSF and plasma across studies (Table S1) could also reflect a global dysregulation of lipid metabolism in ALS patients (190, 191). Other neurotoxic metabolites, such as homocysteine, were consistently increased in all body fluids (Table S1). Altogether, these data suggest a global dysregulation of the energy metabolism in ALS patients.

Other types of molecules could be investigated as biomarkers in ALS, such as long non-coding RNA (IncRNA), which can act in cis to either silence or enhance the expression of proximal genes.
TABLE 1 | Summary of the 30 genes presently known to have monogenic association with ALS, and their primary functions.

Gene name, full name	References	Mitochondria	Axonal transport	Cytoskeleton	Autophagy	Proteostasis	Endosomal trafficking	Vesicular trafficking	DNA repair	Ribosoma	Global RNA alteration	Nucleocytoplasmic transport	Suggestion of possible Strata
SOD1, Cu,Zn-superoxide dismutase-1	(48–52)	x											
OPTN, Optineurin	(53–58)		x										
CHCHD10, Coiled-coil-helix-coiled-coil-helix domain containing 10	(59–63)												
NEK1, NIMA related kinase 1	(64–71)												x
KIF5A, kinesin family member 5A	(15.72,73)												
NEFH, Neurofilament heavy subunit	(74–80)												3
TUBA4A, Tubulin alpha 4a	(81–86)												
DCTN1, Dynactin subunit 1	(87–90)												4
PFN1 , Profilin 1	(55,91–94)												5
ELP3, Elongator protein 3	(95–98)												6
C9orf72, Chromosome 9 open reading frame 72	(18,99–106)												7
CHMP2B, Charged multivesicular body protein 2B	(50,107–114)												
VCP, Valosin-containing protein	(50,55,115–121)												
FIG4, Phosphoinositide 5-phosphatase	(18,50,122–124)												8
VAPB, Vesicle-associated membrane protein B	(55,125–129)												
UBQLN2, Ubiquilin 2	(55,130–134)												9
TBK1, TANK binding kinase 1	(55,58,64,135)												
SQSTM1, Sequestosome 1	(50,55,136,137)												
CCNF, Cyclin F	(65,138–140)	x											
TARDBP, TAR DNA binding protein	(45,50,138,141,142)												10
hnrNPA1, Heterogeneous nuclear ribonucleoprotein A1	(138,143,144)												
hnrNPA2B1, Heterogeneous nuclear ribonucleoprotein A2/B1	(144–148)												
ALS2, Alsin	(65,149–151)												11
SPG11, Spatacine vesicle trafficking associated	(152,153)												
C21orf2, Cilla and flagella associated protein 410	(154)												12
SETX, Senataxin	(155–158)												13
FUS, Fused in sarcoma	(55,138,159–162)												
ATXN2, Ataxin 2	(45,138,163,164)												14
ANG, Angiogenin	(165–168)												
MATR3, Matrin 3	(138,169,170)												

The list of genes is taken from Volk et al. (13) and Chia et al (14). The references given in the second column indicate papers providing experimental evidence of the primary pathways (or molecular functions) affected in cell and animal models harboring the respective mutation. These pathways are given in columns 3–13—it should be noted that our understanding of the implicated pathways may change in future as more is known regarding the effects of mutations. We grouped together pathways commonly affected across genetic forms of ALS, and we suggest 14 potential strata based on the profiles of affected pathways. These groupings represent our effort to summarize current understanding and are not intended to be definitive—indeed, it will be important to modify and update them on an ongoing basis as the knowledge of protein loss and gain of function improves.
Biomarker categories	Biomarker name	CSF	Serum	Plasma	BMC/Leukocytes	References
	Transthyretin		↓↓			(203,204)
	Cystatin C					(173,175,203–205)
	A peptic fragment of the neurosecretory protein VGF					(205,206)
	C-reactive protein (CRP)	↑		↑		(204,207)
	Neurofilament heavy chain phosphorylated pNFH	↑↑↑↑	↑↑	↑		(174–178)
	Neurofilament light chain (NF-L)	↑↑		↑		(174,208)
	Chitotriosidase	↑↑				(175,179)
	MCP1- alpha	↑↑				(209,210)
	TDP43	↑↑				(211,212)
	miR-451		↓↓			(184,213)
	miR-338-3p			↑↑		(184,214)
	miR-206	↑↑↑↑	↑↑	↑		(169,202,215–217)
	miR-133b	↑↑				(217,218)
	Pyruvate	↑↑				(219,220)
	Ascorbate	↑↑				(219,221)
	Glutamine		↓↓			(222–224)
	Aspartate	↑↑				(225,226)
	Serine	↑↑				(224,225)
	Glucose	↑↑				(227,228)
	Creatine	↑↑				(220,224,228)
	Creatinine		↓↓			(220,224,228)
	α-hydroxybutyrate	↑↑				(220,224,228)
	Cholesterol	↑↑				(190,224,229)
	Homocysteine	↑↑				(230–232)
	Glutamate	↑↑				(223,226,223)

This table is a summary of the detailed Table S1. Data are organized per category of molecule investigated. In each category, the source material is indicated as follows: Gold = CSF, Light blue = Serum, Dark Blue = Plasma, Gray = Blood cells. ↑ = Concentration increased in ALS patients compared to controls, ↓ = Concentration decreased in ALS patients compared to controls. The number of arrows indicates the number of papers describing the increase or decrease of the biomarker considered, in a given tissue. The papers describing these changes are referenced in the last column.
FIGURE 3 | Summary of candidate biomarkers consistently found across studies. Candidates observed in CSF are highlighted in brown, in leukocytes in gray, in serum light blue and in plasma dark blue. These candidate biomarkers reflect the motor neuron health, the inflammatory status, skeletal muscle health, and metabolism status—as indicated in each text block. Some of these candidates were found in postmortem central nervous tissue or on muscle biopsies. NMJ, neuromuscular junction.

(192) and which are known to have a key role in normal neuronal development, as well as in development and progression of neurodegenerative diseases [see (193) for review]. The lncRNA have also been detected in body fluids and have been suggested as potential diagnostic and/or prognostic biomarkers in, but not only, lung cancer (194), triple negative breast cancer (195) and cardiovascular diseases (196). In this context, lncRNA could be investigated as new biomarker candidates for neurodegenerative diseases (193), including ALS.

EXPLORING POTENTIAL ALS SIGNATURES IN TISSUE

Studying changes at the molecular level of specific tissues affected in ALS should improve our understanding of the disease mechanisms and multi-systemic impact.

Postmortem brain or spinal cord have been widely investigated. Accumulation of pNF-H and NF-L in brain tissue (Table S2) positively correlate with the accumulation of these markers in CSF (Table S1), and may be reflective of motor neuron breakdown (179). Similarly, miR-146a and miR-338-3p, both increased in spinal cord (Table S2), are also detected at a greater level in circulating blood cells of ALS patients (Table S1). These two miRNAs are involved in the regulation of the inflammatory response (197) and the neuromuscular junction (184, 198). In addition, miR-206, a skeletal muscle growth regulator (183), is increased in ALS muscles across studies [Table S1, 2 studies show significant increases (199, 200), the third study only shows a tendency toward an increase in levels (201)]. Together these data reinforce the suggestion that these candidate biomarkers may have utility in determining the status of motor neurons, inflammatory cells and muscle in ALS at different stages of the disease.

When looking at the proteomic and transcriptomic signature of ALS tissues, most observations have not been reproduced across studies. This lack of repeatability could be attributed to numerous factors, such as: different study populations; different types of control subject; different sample sources; different stages of the disease; and the use of different methodological strategies (Table S2).
However, when looking at the different pathways affected in nervous or muscle tissues, we can identify dominant signatures. For instance, skeletal muscle exhibits a dysregulation of pathways involved in muscle atrophy/growth, cytoskeletal maintenance and metabolism, while the central nervous system exhibits inflammatory and excitotoxicity features accompanied by disruptions in axonal transport, cell death, autophagy, metabolism, and RNA processing (Table S2). Concordantly, the systematic decrease of N-acetyl-aspartate observed in vivo by magnetic resonance spectrometry in the central nervous system across studies reflects (Table S2) neuron degeneration. These markers likely capture most strongly the endpoints of ALS disease, including degeneration processes in motor neuron death, and muscle denervation and atrophy, and it will be important for future studies to identify biomarkers that track early features of the disease.

CONCLUSION

The number of monogenic forms, combined with potential multisystemic contributions to ALS pathology, render it difficult first to unravel physiopathological events, and then to understand which of these events could be pharmacologically targeted. However, by taking a wide-angle view of the pathways affected in different monogenic forms of the disease, it is possible to discern patient strata, with each stratum potentially representing a separate target for therapeutic intervention. Such a strategy is directly applicable to monogenic forms of ALS—known in ∼20% of current ALS cases—and future work may discover the extent to which each of these potential targets are transferrable to the 80% of cases in which causal links (genetic or otherwise) have not been identified. Identifying biomarkers to diagnose ALS patients and predict their progression (prognostic biomarkers) may also lead to the identification of patient strata in these non-causally linked forms of ALS.

Identifying such biomarkers in ALS is a significant challenge as it involves the assessment, not only of motor neuron health status, but also that of other cell types affected in ALS such as astrocytes, microglia, skeletal muscle and inflammatory cells. In this review, we collated across a large number of recently published studies on ALS biomarkers covering several different cell and tissue types (76 studies on body fluids and 42 studies on tissues), and identified only a relatively few candidates that are consistently identified as potential biomarkers across multiple independent studies. These candidate biomarkers are predominantly reflective of motor neuron health, the inflammatory status, and skeletal muscle health (Figure 3). As ALS is increasingly recognized as a multi-systemic disease, it is thus important to track the progression or the recovery of these multiple tissues during clinical trials. In addition, some of these candidates have been confirmed in murine models, e.g., miR-206 in SOD1-G93A mice reflects disease progression in the murine model (202), making them interesting candidates for assessment in pre-clinical studies. As a multi-systemic disease, it is likely that a panel of biomarkers will be needed to fully capture features of ALS pathology.

Considering the different source tissues and the potential implication of each of these in the pathology, our capacity to detect them in accessible fluids, and also the desire to have biomarkers that are confirmed in multiple studies, we would suggest that a useful approach to obtain an overall picture of disease progress in any given patient, may be to combine biomarker candidate molecules from across those listed in Table 2. For example, of biomarkers confirmed in multiple studies, we could suggest a panel of Cystatin C, pNFH and NF-L, all reflecting neuronal survival, MCP1 as a pro-inflammatory marker, the MiRs 206 and 133b reflecting muscle origin and neuromuscular junction, respectively, and some indicators of dysregulated metabolism such as homocysteine, glutamate, or cholesterol. Such a panel (or a variation of it with similarly diverse properties in terms of tissue origin), would be useful to assess the overall “health status” of different tissues. However, all of the biomarkers so far proposed require further validation, as would any specific combination of them.

The development of a heterogeneous multi-biomarker panel—likely including robust new biomarkers and the biomarkers cited in this report—could be seen as a priority, not only for diagnostic purposes but also for prognostic or predictive applications.

AUTHOR CONTRIBUTIONS

UV, VM, and MS collated the data from the literature, and wrote the paper. WD and SD organized the data, wrote the paper. AB, WD, and SD edited the paper.

ACKNOWLEDGMENTS

This work was financed by TARGET-ALS (ViTAL consortium, PI: SD), ARsLA (TEAM consortium, PI: SD), European Union Regional Development Fund (ERDF) EU Sustainable Competitiveness Programme for N. Ireland, Northern Ireland Public Health Agency (HSC R&D) & Ulster University (PI: AB). UV’s post-doctoral position is financed by Target-ALS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2019.00400/full#supplementary-material

REFERENCES

1. Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. (2013) 41:118–30. doi: 10.1159/000351153
2. Al-Chalabi A, Hardiman O, Kiernan MC, Chiò A, Rix-Brooks B, van den Berg LH. Amyotrophic lateral sclerosis: moving towards...
Vijayakumar et al. The Search for Circulating Biomarkers for ALS

1. Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol. 2018; 138:225–38. doi: 10.1016/B978-0-12-80973-2.00013-6

2. Majounie E, Renton AE, Mok K, Dopper EGP, Waite A, Rollinson D, et al. Novel genes associated with amyotrophic lateral sclerosis. Lancet Neurol. 2018; 17:1353–66. doi: 10.1016/j.laneurol.2018.05.017

3. Chia R, Chiò A, Traynor BJ. Amyotrophic lateral sclerosis patient-derived motor neurons. Front Mol Neurosci. 2014; 7:1–11. doi: 10.3389/fnmol.2014.00015

4. Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Lancet Neurol. 2017; 16:724–8. doi: 10.1016/S1474-4422(17)30148-9

5. Majounie E, Renton AE, Mok K, Dopper EGP, Waite A, Rollinson D, et al. Novel genes associated with amyotrophic lateral sclerosis. Lancet Neurol. 2018; 17:1353–66. doi: 10.1016/j.laneurol.2018.05.017

6. Talbott EO, Malek AM, Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol. 2018; 138:225–38. doi: 10.1016/B978-0-12-80973-2.00013-6

7. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: a critical review. Amyotrophic Lateral Scler. (2009) 10:31–23. doi: 10.1080/17489090802566824

8. del Aguila MA, Longstreth WT, McGuire V, Koepsell TD, van Belle G. Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology. (2003) 60:813–9. doi: 10.1212/01.WNL.0000049742.47790.3B

9. Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. (2017) 377:1602. doi: 10.1056/NEJMc1710379

10. Broussalis E, Grinzinger S, Kunz AB, Killer-Oberpfalzer M, Haschke-Becher E, Hartung H-P, et al. Late age onset of amyotrophic lateral sclerosis is often not considered in elderly people. Acta Neurol Scand. (2018) 137:239–34. doi: 10.1111/ane.12869

11. Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. (2016) 7:12408. doi: 10.1038/ncomms12408

12. Turner MR, Al-Chalabi A, Chiò A, Hardiman O, Kiernan MC, Rohrer JD, et al. Genetic screening in sporadic ALS and FTD. J Neurol Neurosurg Psychiatry. (2017) 88:1042–4. doi: 10.1136/jnnp-2017-315995

13. Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Med Genet. (2018) 30:252–8. doi: 10.1016/s1182-6085(18)30127-8

14. Chia R, Chiò A, Traynor BJ. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. (2018) 17:994–1002. doi: 10.1016/S1474-4722(17)30041-5

15. Nicolas A, Kenna KP, Renton AE, Ticocci N, Faghri F, Chia R, et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron. (2018) 97:1268–83.e6. doi: 10.1016/j.neuron.2018.02.027

16. Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SSW, Sandoe J, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. (2014) 7:1–11. doi: 10.1016/j.celrep.2014.03.019

17. Seminary ER, Sison SL, Ebert AD. Modeling protein aggregation and the heat shock response in ALS iPSC-derived motor neurons. Front Neurosci. (2018) 12:86. doi: 10.3389/fnins.2018.00086

18. Shi Y, Lin S, Staats KA, Li Y, Chang W-H, Hung S-T, et al. Haploinsufficiency of Cu/Zn superoxide dismutase gene is associated with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA. (2006) 103:16021–6. doi: 10.1073/pnas.0607421103

19. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. (2007) 10:615–22. doi: 10.1038/nrn1876

20. Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. (2011) 29:284–8. doi: 10.1038/nbt.1957

21. Basso M, Pozzi S, Tortaroli M, Fiordaliso F, Bisighini C, Pasetto L, et al. Mutant copper–zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem. (2013) 288:15699–711. doi: 10.1074/jbc.M112.425066

22. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. (2008) 3:637–48. doi: 10.1016/j.stem.2008.09.017

23. Marchetto MCM, Muotri AR, Yu Y, Smith AM, Cezar GG, Gage FH. Non-cell-autonomous effect of human SOD1G93A astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell. (2008) 3:649–57. doi: 10.1016/j.stem.2008.09.017

24. Rothstein JD, Martin LJ, Kudn RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. (1992) 326:1464–8. doi: 10.1056/NEJM199205283262204

25. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kudn RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. (1996) 16:875–86.

26. Medina L, Figueroedo-Cardenas G, Rothstein JD, Reiner A. Differential abundance of glutamate transporter subtypes in amyotrophic lateral sclerosis (ALS)-vulnerable versus ALS-resistant brain stem motor cell groups. Exp Neurol. (1996) 142:287–95. doi: 10.1006/exnr.1996.0198

27. Okita T, Nodera H, Shibuta Y, Nodera A, Asanuma K, Shimatani Y, et al. Can Awaji ALS criteria provide earlier diagnosis than the revised El Escorial criteria? J Neurol Sci. (2011) 302:29–32. doi: 10.1016/j.jns.2010.12.007

28. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol. (2011) 7:639–49. doi: 10.1038/nrneurol.2011.153

29. Miller RJ, Mitchell JD, Moore DH, Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane database Syst Rev. (2012) 2012:CD001447. doi: 10.1002/14651858.CD001447.pub3

30. Rosen DR, Siddique T, Patterson D, Figliewicz DA, Sapp P, Hentati A, et al. Mutations in Cux/Zn superoxide dismutase gene are associated
with familial amyotrophic lateral sclerosis. *Nature*. (1993) 362:59–62. doi: 10.1038/36259a0

44. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. *Blood*. (2011) 117:182-9. doi: 10.1182/blood-2011-03-319926

45. Monahan Z, Shewmaker F, Pandey UB. Stress granules at the intersection of autophagy and ALS. *Brain Res*. (2016) 1649:189–200. doi: 10.1016/j.brainres.2016.05.022

46. Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). *Biochim Biophys Acta*. (2015) 1852:679–84. doi: 10.1016/j.bbadis.2014.08.010

47. Edens BM, Miller N, Ma Y-C. Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. *Front Cell Neurosci*. (2016) 10:44. doi: 10.3389/fncel.2016.00044

48. Kitamura A, Inada N, Kubota H, Matsumoto G, Morimoto RI, et al. CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. *EMBO Mol Med*. (2018) 10:585. doi: 10.1002/emmm.201805496

49. An T, Shi P, Duan W, Zhang S, Yuan P, Li Z, et al. Oxidative stress and mitochondrial stress response. *Acta Neuropathol Commun*. (2015) 3:20150092

50. Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. *Nat Commun*. (2017) 8:15558. doi: 10.1038/ncomms15558
81. Howes SC, Alushin GM, Shida T, Nachury MV, Nogales E. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell. (2014) 25:257–66. doi: 10.1091/mbc.E13-07-0387
82. Laird FM, Farah MH, Ackerley S, Hoké A, Maragakis N, Rothstein JD, et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci. (2008) 28:1997–2005. doi: 10.1523/JNEUROSCI.4231-07.2008
83. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. (2014) 84:324–31. doi: 10.1016/j.neuron.2014.09.027
84. Hafezparast M, Ahmad-Annuar A, Hummerich H, Shah P, Ford M, Baker M, Rutherford NJI, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. (2011) 72:245–56. doi: 10.1016/j.neuron.2011.09.011
85. Schäfer MK, Bellouze S, Jacquier A, Schaller S, Richard L, Mathis S, et al. Sensory neuropathy in progressive motor neuronopathy (pnm) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol. (2017) 27:459–71. doi: 10.1111/bpa.12422
86. Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A. Changes in biophysical characteristics of PFN1 due to mutation causing amyotrophic lateral sclerosis. Mol Biol Cell. (2014) 25:257–66. doi: 10.1091/mbc.E13-07-0387
87. Kiaei M, Balasubramaniam M, Govind Kumar V, Shmookler Reis RJ, et al. Sensory neuropathy in progressive motor neuronopathy (pnm) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol. (2017) 27:459–71. doi: 10.1111/bpa.12422
88. Hafezparast M, Ahmad-Annuar A, Hummerich H, Shah P, Ford M, Baker M, Rutherford NJI, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. (2011) 72:245–56. doi: 10.1016/j.neuron.2011.09.011
89. Vohra BPS, Sasaki Y, Miller BR, Chang J, DiAntonio A, Milbrandt J. Tuberous sclerosis. Curr Biol. (2018) 28:1303–12. doi: 10.1016/j.cub.2018.04.046
90. Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. (2014) 84:324–31. doi: 10.1016/j.neuron.2014.09.027
91. Kiaei M, Balasubramaniam M, Govind Kumar V, Shmookler Reis RJ, et al. Sensory neuropathy in progressive motor neuronopathy (pnm) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol. (2017) 27:459–71. doi: 10.1111/bpa.12422
92. Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A. Changes in biophysical characteristics of PFN1 due to mutation causing amyotrophic lateral sclerosis. Mol Biol Cell. (2014) 25:257–66. doi: 10.1091/mbc.E13-07-0387
83. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron. (2014) 84:324–31. doi: 10.1016/j.neuron.2014.09.027
84. Hafezparast M, Ahmad-Annuar A, Hummerich H, Shah P, Ford M, Baker M, Rutherford NJI, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. (2011) 72:245–56. doi: 10.1016/j.neuron.2011.09.011
85. Schäfer MK, Bellouze S, Jacquier A, Schaller S, Richard L, Mathis S, et al. Sensory neuropathy in progressive motor neuronopathy (pnm) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol. (2017) 27:459–71. doi: 10.1111/bpa.12422
86. Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A. Changes in biophysical characteristics of PFN1 due to mutation causing amyotrophic lateral sclerosis. Mol Biol Cell. (2014) 25:257–66. doi: 10.1091/mbc.E13-07-0387
87. Kiaei M, Balasubramaniam M, Govind Kumar V, Shmookler Reis RJ, et al. Sensory neuropathy in progressive motor neuronopathy (pnm) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol. (2017) 27:459–71. doi: 10.1111/bpa.12422
the SUMOylation of VCP and lead to impaired stress response. J Biol Chem. (2016) 291:14373–84. doi: 10.1074/jbc.M116.729343

120. Llewellyn KL, Walker N, Nguyen C, Tan B, BenMohamed L, Kimonis VE, et al. A fine balance of dietary lipids improves pathology of a murine model of VCP-associated multisystem proteinopathy. PloS ONE. (2015) 10:e0131995. doi: 10.1371/journal.pone.0131995

121. Papadopoulos K, Kirchner P, Bug M, Grum D, Koever L, Schulze N, et al. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. (2017) 36:135–50. doi: 10.15252/embj.201695148

122. Kon T, Mori F, Tanji K, Miyak Y, Toyoshima Y, Yoshida M, et al. A LS-FTLD causes VCP-associated multisystem proteinopathy, in patients with ALS. Am J Hum Genet. (2009) 84:85–88. doi: 10.1016/j.ajhg.2008.12.010

123. Lenk GM, Meisler MH. Mouse models of PI(3,5)P2 deficiency with impaired lysosome function. Methods Enzymol. (2014) 534:245–60. doi: 10.1016/B978-0-12-397926-1.00014-7

124. Kon T, Mori F, Tanji K, Miyak Y, Toyoshima Y, Yoshida M, et al. ALS-FTLD causes VCP-associated multisystem proteinopathy, in patients with ALS. Am J Hum Genet. (2009) 84:85–88. doi: 10.1016/j.ajhg.2008.12.010

125. Nishimura AL, Mitne-Neto M, Silva HCAA, Richieri-Costa A, Middleton S, et al. Mutations in UBQLN2 cause dominant X-linked juvenile neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neurodegeneration. (2014) 34:19–26. doi: 10.1111/neup.12056

126. Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet. (2009) 84:85–88. doi: 10.1016/j.ajhg.2008.12.010

127. Vinay Kumar C, Kumar KM, Satha Ch Ramaiah S, Anbarasu A. A mutation in the vesicle-trafficking protein VAPB causes loss of function with ALS. Am J Hum Genet. (2008) 84:85–88. doi: 10.1016/j.ajhg.2008.12.010

128. Papadopoulos C, Kirchner P, Bug M, Grum D, Koever L, Schulze N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile neuronal nuclear inclusions, in polyglutamine and intranuclear inclusion body diseases. Neurodegeneration. (2014) 34:19–26. doi: 10.1111/neup.12056

129. Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, et al. Amyotrophic lateral sclerosis (ALS) and lower motor neuron degeneration. Brain. (2014) 137:2115–2162. doi: 10.1093/brain/awt232

130. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Nat Genet. (2008) 40:457–73. doi: 10.1038/ng.1132

131. Blokhuis AM, Groen EIN, Koppers M, van den Berg LH, Pasterkamp J, et al. Investigating the contribution of VAPB/ALS8 loss of function to ALS2-mediated endosomal lumen sealing. J Cell Sci. (2013) 21:2350–60. doi: 10.1242/jcs.220061

132. Goode A, Rea S, Sultana M, Shaw B, Searle MS, Layfield R. ALS-FTD associated mutations of SQSTM1 impact on Keap1–Nrf2 signalling. Mol Cell Neurosci. (2016) 76:52–8. doi: 10.1016/j.mcn.2016.08.004

133. Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, et al. Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet. (2013) 22:4293–305. doi: 10.1093/hmg/ddt279

134. Chen T, Huang B, Shi X, Gao L, Huang C, Muant UBQLN2P497H in motor neurons leads to ALS-like phenotypes and defective autophagy in rats. Acta Neuropathol Commun. (2015) 135:77–94. doi: 10.1038/s41398-013-1125-6

135. Deng H-X, Chen W, Hong S-T, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. (2011) 477:211–15. doi: 10.1038/nature10355

136. Jin T, Huang B, Shi X, Gao L, Huang C, Muant UBQLN2P497H in motor neurons leads to ALS-like phenoytes and defective autophagy in rats. Acta Neuropathol Commun. (2015) 135:77–94. doi: 10.1038/s41398-013-1125-6

137. Sandonà S, Paino MT, Rupta ME, Lucan SC, Kapeli K, et al. Protein-RNA networks regulated by normal and ALS-associated mutant HNRNP A2B1 in the nervous system. Neuron. (2016) 92:780–95. doi: 10.1016/j.neuron.2016.09.050

138. Sato K, Otomo A, Ueda MT, Hiratsuka Y, Suzuki-Utsunomiya K, Sugiyama J, et al. Altered oligomeric states in pathogenic ALS2 variants associated with juvenile motor neuron diseases cause loss of ALS2-mediated endosomal function. J Biol Chem. (2018) 293:1913–35. doi: 10.1074/jbc.RA117.803489

139. Kim HJ, Kim NC, Wang Y-D, Scarbrough EA, Moore J, Diz A, et al. Mutations in prion-like domains in hnrNPA2B1 and hnrNPA1 cause multisystem proteinopathy and ALS. Nature. (2013) 495:467–73. doi: 10.1038/nature12192

140. Martínez FJ, Pratt GA, Van Nostrand EL, Batra R, Huelga SC, Kapeli K, et al. Protein-RNA networks regulated by normal and ALS-associated mutant HNRNP A2B1 in the nervous system. Neuron. (2016) 92:780–95. doi: 10.1016/j.neuron.2016.09.050

141. Goode A, Rea S, Sultana M, Shaw B, Searle MS, Layfield R. ALS-FTD associated mutations of SQSTM1 impact on Keap1–Nrf2 signalling. Mol Cell Neurosci. (2016) 76:52–8. doi: 10.1016/j.mcn.2016.08.004

142. Sato K, Otomo A, Ueda MT, Hiratsuka Y, Suzuki-Utsunomiya K, Akatsuka A, Koike M, et al. Loss of ALS2/awp325 elates motor dysfunction in a SOD1H46R expressing mouse ALS model by disturbing endolysosomal trafficking. PloS ONE. (2010) 5:e9805. doi: 10.1371/journal.pone.009885

143. Francisco X, Lin H, Wang X, Xue Z, Qin J, Zhang P. The NEK1 interactor, awp325 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. (2017) 36:135–50. doi: 10.15252/embj.201695148

144. Fang X, Lin H, Wang X, Xue Z, Qin J, Zhang P. The NEK1 interactor, awp325 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J. (2017) 36:135–50. doi: 10.15252/embj.201695148

145. Branchu J, Boutry M, Sourd L, Depp M, Leone C, Corriger A, et al. Loss of spastin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration. Neurobiol Dis. (2017) 102:21–37. doi: 10.1016/j.nbd.2017.02.007

146. Orlacchio A, Babalini C, Borreca A, Patrone C, Massa R, Basaran S, et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain. (2010) 133:591–598. doi: 10.1093/brain/awp525

147. Zhao M, Kim JR, van Bruggen R, Park J. RNA-binding proteins in amyotrophic lateral sclerosis. Mol Cells. (2018) 41:818–29. doi: 10.14348/molcells.2018.0243

148. Goode A, Rea S, Sultana M, Shaw B, Searle MS, Layfield R. ALS-FTD associated mutations of SQSTM1 impact on Keap1–Nrf2 signalling. Mol Cell Neurosci. (2016) 76:52–8. doi: 10.1016/j.mcn.2016.08.004
from sporadic amyotrophic lateral sclerosis patients. Neurogenetics. (2014) 15:243–53. doi: 10.1007/s10048-014-0420-2

215. Vrabec K, Boštjančić E, Kortink B, Leonardis L, Dolenč Grošelj L, Zidar J, et al. Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients. Front Mol Neurosci. (2018) 11:196. doi:10.3389/fnmol.2018.00106

216. Waller R, Goodall EE, Milo M, Cooper-Knock J, Da Costa M, Hobson E, et al. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging. (2017) 55:123–31. doi: 10.1016/j.neurobiolaging.2017.03.027

217. Tasca E, Pegoraro V, Merico A, Angelini C, Circulating microRNAs as biomarkers of muscle differentiation and atrophy in ALS. Clin Neuropathol. (2015) 36:22–30. doi:10.1016/j.clnp.200889

218. Raheja R, Regev K, Healy BC, Mazzola MA, Beynon V, Von Glehn F, et al. Correlating serum micromas and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. (2018) 58:261–9. doi: 10.1002/mus.26106

219. Blasco H, Corapia P, Moreau C, Veuv S, Fournier C, Vourch P, et al. 1H-NMR-based metabolic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE. (2010) 5:e13223. doi:10.1371/journal.pone.0013223

220. Lawton KA, Cudkowicz ME, Brown MV, Alexander D, Caffrey R, Wulf J, et al. Biochemical alterations associated with ALS. Amyotroph Lateral Scler. (2012) 13:110–8. doi:10.3109/14886375.2011.619197

221. Ibara Y, Nobukuni K, Takata H, Hayabaya T. Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neuro Res. (2005) 27:105–8. doi:10.1111/j.1743-2166.2005.00506.x

222. Wuolkkainen A, Norens P, Aaltonen J, Leinonen M, Voutilainen P, et al. Identification of potential CSF biomarkers in ALS. Neurology. (2010) 74:1045–54. doi:10.1212/WNL.0b013e3181eef163

223. Gudbjartsson T, Gudjonsson H, Gudlaugsson E, Erlendsson G, et al. Multi-platform mass spectrometry analysis of the CSF and blood proteome in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Frontotemporal Degener. (2015) 16:456–63. doi:10.3109/21687421.2015.1053490

224. Wuolkkainen A, Jonsson P, Ahlström M, Männistö S, Parkkari J, et al. Multi-platform mass spectrometry analysis of the CSF and blood proteome in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. Frontotemporal Degener. (2015) 16:456–63. doi:10.3109/21687421.2015.1053490

225. Mitchell RM, Simmons Z, Beard JL, Stephens HE, Connor JR. Plasma biomarkers associated with ALS and their relationship to iron homeostasis. Muscle Nerve. (2010) 42:95–105. doi:10.1002/mus.21625

226. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. (2004) 62:1758–65. doi:10.1212/01.WNL.0000132192.82104.07

227. Nardo G, Pozzi S, Pignataro M, Lauranzano E, Spano G, Garbelli S, et al. Amyotrophic lateral sclerosis multiprotein biomarkers in plasma and cerebrospinal fluid of amyotrophic lateral sclerosis. J Am Coll Nutr. (2004) 23:100–6. doi:10.1080/07315723.2004.10719352

228. Xiong X, Wei Q, Chen X, Li C, Cao B, Ou R, et al. Aberration of miR-338 expression in leukocytes from sporadic amyotrophic lateral sclerosis. Front Mol Neurosci. (2016) 9:69. doi:10.3389/fnmol.2016.00069

229. De Felice B, Annunziata A, fiorentino G, Borra M, Biffali E, Coppola C, et al. miR-338-3p is over-expressed in blood, CSF, serum and spinal cord
with amyotrophic lateral sclerosis. *Neurology.* (2008) 70:222–5. doi: 10.1212/01.wnl.0000297193.53986.6f

233. Cesarova Z, Lopes FS, do Lago CL, França MC, Colnaghi Simionato AV. Capillary electrophoresis tandem mass spectrometry determination of glutamic acid and homocysteine’s metabolites: potential biomarkers of amyotrophic lateral sclerosis. *Talanta.* (2017) 170:63–8. doi: 10.1016/j.talanta.2017.03.103

234. Brettschneider J, Lehmensiek V, Mogel H, Pfeifle M, Dorst J, Hendrich C, et al. Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS). *Neurosci Lett.* (2010) 468:23–7. doi: 10.1016/j.neulet.2009.10.053

235. Zhou J-Y, Afjehi-Sadat L, Assres S, Duong DM, Cudkowicz M, Glass JD, et al. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. *J Proteome Res.* (2010) 9:5133–41. doi: 10.1021/pr100409v

236. Liu J, Gao L, Zang D. Elevated levels of IFN-γ in serum and cerebrospinal fluid reveals differentially expressed miRNAs related to neural oxidative stress. *Brain.* (2013) 137:2938–50. doi: 10.1093/brain/awu249

237. Freischmidt A, Müller K, Zondler L, Weydt P, Mayer B, von Arnim CAF, et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis. *Neurobiol Aging.* (2015) 36:2660.e15–2660.e20. doi: 10.1016/j.neurobiolaging.2015.06.003

238. Matamala JM, Arias-Carrasco R, Sanchez C, Uhrig M, Bargstedt L, Matus S, et al. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. *Neurobiol Aging.* (2018) 64:123–38. doi: 10.1016/j.neurobiolaging.2017.12.020

239. Takahashi I, Hama Y, Matushima M, Hirotani M, Kano T, Hozen H, et al. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. *Mol Brain.* (2015) 8:67. doi: 10.1186/s13041-015-0161-7

240. Saris CG, Horvath S, van Vught PW, van Es MA, Blauw HM, Fuller TF, et al. Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients. *BMC Genomics.* (2009) 10:405. doi: 10.1186/1471-2164-10-405

241. Mougeot J-LC, Li Z, Price AE, Wright FA, Brooks BR. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. *BMC Med Genomics.* (2011) 4:74. doi: 10.1186/1755-8794-4-74

242. Zhao W, Beers DR, Hooten KG, Sieglafl DH, Zhang A, Kalyana-Sundaram S, et al. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes. *JAMA Neurol.* (2017) 74:677. doi: 10.1001/jamaneurol.2017.0357

243. Nachmany H, Wald S, Abekasis M, Bulvik S, Weil M. Two potential biomarkers identified in mesenchymal stem cells and leukocytes of patients with sporadic amyotrophic lateral sclerosis. *Dis Markers.* (2012) 32:211–20. doi: 10.3233/DMA-2011-0885

244. Lilo E, Wald-Altman S, Solmesky LJ, Ben Yaakov K, Gershoni-Emek N, Bulvik S, et al. Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1(G93A) mouse model. *Hum Mol Genet.* (2013) 22:4720–5. doi: 10.1039/hmg-dd1325

245. Wuolikainen A, Moritz T, Marklund SL, Laro S, et al. Serum microRNAs in sporadic amyotrophic lateral sclerosis detected by GC/TOMS. *PLoS ONE.* (2011) 6:e17947. doi: 10.1371/journal.pone.0017947

246. Spekre-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. *J Neurol. (2002)* 193:73–8. doi: 10.1007/s00415-010-5805-z

247. Benigni M, Ricci C, Jones AR, Giannini F, Al-Chalabi A, Battistini S. Identification of miRNAs as potential biomarkers in cerebrospinal fluid from amyotrophic lateral sclerosis patients. *Neuromolecular Med.* (2016) 18:551–60. doi: 10.1007/s12017-016-0396-8

248. Waller R, Wyles M, Heath PR, Kazoza M, Wollif H, Shaw PJ, et al. Small RNA sequencing of sporadic amyotrophic lateral sclerosis cerebrospinal fluid reveals differentially expressed miRNAs related to neuronal and glial activity. *Front Neurosci.* (2011) 5:731. doi: 10.3389/fnins.2011.00731

249. Butovsky O, Siddiqui S, Gabreili G, Lancer AJ, Bake B, Murugaiyan G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. *J Clin Invest.* (2012) 122:3063–87. doi: 10.1172/JCI62636

250. Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, Božič AL, et al. Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifestation carriers. *Brain.* (2014) 137:2938–50. doi: 10.1093/brain/awu249
277. Emde A, Eitan C, Liou L-L, Libby RT, Rivkin N, Magen I, et al.
278. Si Y, Cui X, Kim S, Wians R, Sorge R, Oh SJ, et al. Smads as muscle biomarkers.
279. Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ.
280. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al.
281. Mendonça DMF, Chimelli L, Martinez AMB. Quantitative evidence
282. Bernardini C, Censi F, Lattanzi W, Barba M, Calcagnini G, Giuliani A, et al. Mitochondrial network genes in the skeletal muscle of patients with amyotrophic lateral sclerosis. Muscle Nerve. (2012) 46:856–60. doi: 10.1002/mus.23411
283. Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, et al. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics. (2014) 108:55–64. doi: 10.1016/j.jprot.2014.05.004
284. Narayan M, Seeley KW, Jinwal UK. Identification of Apo B48 and other novel biomarkers in amyotrophic lateral sclerosis patient fibroblasts. Biomark Med. (2016) 10:453–462. doi: 10.2217/bmm-2016-0025
285. Paré B, Touzel-Deschênes L, Lamontagne R, Lamarre M-S, Scott F-D, Khuong HT, et al. Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skin derived from ALS patients. Acta Neuropathol Commun. (2015) 3:5. doi: 10.1186/s40478-014-0181-2
286. Mendonça DME, Chimelli L, Martinez AMB. Quantitative evidence for neurofilament heavy subunit aggregation in motor neurons of spinal cords of patients with amyotrophic lateral sclerosis. Brazilian J Med Biol Res. (2005) 38:925–33. doi: 10.1590/S0100-879X2005000600015
287. Kovanda A, Leonardis I, Zidar J, Koritink B, Dolenc-Groselj L, Ristic Kovicac S, et al. Differential expression of microRNAs and other small RNAs in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep. (2018) 8:5609. doi: 10.1038/s41598-018-23139-2
288. Campos-Melo D, Droppelmann CA, He Z, Volkening K, Strong MJ. Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain. (2013) 6:26. doi: 10.1186/1756-6000-6-26
289. Koval ED, Sharer C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum Mol Genet. (2015) 24:4127–35. doi: 10.1093/hmg/ddt261
290. Ishigaki S, Niwa J, Ando Y, Yoshihara T, Sawada K, Doyu M, et al. Mutations in CHMP2B in lower motor neuron predominant ALS-model mice. Hum Mol Genet. (2006) 7:201–10. doi: 10.1080/17482960600711966
291. Lederer CW, Torrisi A, Pantelidou M, Santana N, Cavallaro S. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics. (2007) 8:26. doi: 10.1186/1471-2164-8-26
292. Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G. Spinal cord mRNA profile in patients with ALS: comparison with transgenic mice expressing the human SOD-1 mutant. J Mol Neurosci. (2009) 38:85–93. doi: 10.1007/s12035-016-0078-x
293. Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS ONE. (2010) 5:e9872. doi: 10.1371/journal.pone.0009872
294. Riva N, Clarelli F, Domi T, Cerri F, Gallia F, Trimarco A, et al. Unraveling gene expression profiles in peripheral motor neuron from amyotrophic lateral sclerosis patients: insights into pathogenesis. Sci Rep. (2016) 6:39297. doi: 10.1038/srep39297
295. Wiedemann FR, Manfredi G, Mawer C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. (2002) 80:616–25. doi: 10.1002/jnc.100731x
296. Jones AP, Gunawardena WJ, Coutinho CM, Gatt JA, Shaw IC, Mitchell JD. Preliminary results of proton magnetic resonance spectroscopy in motor neurone disease (amyotrophic lateral sclerosis). J Neurol Sci. (1995) 129(Suppl.):85–9.
297. Gredal O, Rosenbaum S, Topp S, Karlsborg M, Strange P, Wedelin L. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology. (1997) 48:878–81.
298. Cwik VA, Hanstock CC, Allen PS, Martin WR. Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology. (1998) 50:72–7.
299. Ikeda K, Iwasaki Y, Kinoshita M, Ichijo M, Fujii H, Matsuoka Y, et al. Quantification of brain metabolites in ALS by localized proton magnetic resonance spectroscopy. Neurology. (1998) 50:576–7.
300. Carew JD, Nair G, Pineda-Alonso N, Usher S, Hu X, Benatar M. Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. (2011) 12:185–191. doi: 10.1186/17482986-2010.515223
301. Ikeda K, Murata K, Kawase Y, Kawabe K, Terao S, et al. Relationship between cervical cord H-magnetic resonance spectroscopy and clinico-electromyographic profile in amyotrophic lateral sclerosis. Muscle Nerve. (2013) 47:61–7. doi: 10.1002/mus.23467
302. Cistaro A, Pagani M, Montuschhi A, Calvo A, Moglia C, Canosa A, et al. The metabolic signature of C9ORF72-related ALS: FDG PET comparison.
with nonmutated patients. *Eur J Nucl Med Mol Imaging*. (2014) 41:844–52. doi: 10.1007/s00259-013-2667-5

300. Cheong I, Marjanska M, Deelchand DK, Eberly LE, Walk D, Öz G. Ultra-high field proton MR spectroscopy in early-stage amyotrophic lateral sclerosis. *Neurochem Res*. (2017) 42:1833–44. doi: 10.1007/s11064-017-2248-2

301. Foerster BR, Pomper MG, Callaghan BC, Petrou M, Edden RAE, Mohamed MA, et al. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy. *JAMA Neurol*. (2013) 70:1009–16. doi: 10.1001/jamaneurol.2013.234

302. Unrath A, Ludolph AC, Kassubek J. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. *J Neurol*. (2007) 254:1099–106. doi: 10.1007/s00415-006-0495-2

303. Kalra S, Hanstock CC, Martin WRW, Allen PS, Johnston WS. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. *Arch Neurol*. (2006) 63:1144–8. doi: 10.1001/archneur.63.8.1144

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Vijayakumar, Milla, Cynthia Stafford, Bjourson, Duddy and Duguez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.