Reprogramming cells to study vacuolar development

Mistianne Feeney1,2,3*, Lorenzo Frigerio1, Susanne E. Kohalmi1, Yuhai Cui1,2 and Rima Menassa1,2

1 Department of Biology, University of Western Ontario, London, ON, Canada
2 Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
3 School of Life Sciences, University of Warwick, Coventry, UK

Edited by:
Marie Dugas, University of Wisconsin at Madison, USA

Reviewed by:
Douglas Mitchison, University of Calgary, Canada
Diane C. Bassham, Iowa State University, USA
Marcela Rojas-Pierce, North Carolina State University, USA

*Correspondence:
Mistianne Feeney, School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
e-mail: m.feeney@warwick.ac.uk

INTRODUCTION

One of the most dramatic cellular changes that occur over the lifetime of a flowering plant happens during the transition between vegetative and embryonic developmental phases. Vegetative cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types that are found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.

Keywords: Arabidopsis thaliana, cellular reprogramming, developmental transition, LEAFY COTYLEDON2, lytic vacuole, protein storage vacuole, vacuole biogenesis

During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types that are found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.

Keywords: Arabidopsis thaliana, cellular reprogramming, developmental transition, LEAFY COTYLEDON2, lytic vacuole, protein storage vacuole, vacuole biogenesis

During different developmental stages of the plant life cycle, vacuoles assume diverse functions in response to the changing needs of the cell, and their morphology will be significantly different (Marty, 1999; Zouhar and Rojo, 2009). Due to its short size, the lytic vacuole (LV) is the most prominent organelle in the vegetative plant cell. Its counterpart, present in Arabidopsis seeds, is the protein storage vacuole (PSV) which looks nothing like the LV (Figures 1A,B). It is remarkable how such a large organelle (LV) can transform (Zheng and Staehelin, 2011) or be replaced (Hub et al., 1995) by much smaller and more numerous PSVs and vice versa. Another intriguing issue is how the two vacuoles can have such drastically different functions; the LV is essential for water (Brebé et al., 2009) and ion homeostasis (Iasenkov et al., 2001), and also acts as a cellular waste bin (Li and Vierstra, 2012). In contrast, the PSV stores protein (Scarafroni et al., 2001) and mineral reserves (Oetag et al., 2002) and therefore acts as a cellular pantry. PSVs are present as storage organelles in three of the world’s major food crops (Varshney et al., 2012); rice (Kawakatsu et al., 2010), wheat (Begvar et al., 2011), and maize (Reyes et al., 2011) and are prevalent in other important food sources such as nuts, legumes, and other cereals (Bethke et al., 1998; Hara-Nishimura et al., 1998; Robinson et al., 2005). Indeed,
FIGURE 1 | Transmission electron microscope images of Arabidopsis leaf (A) and seed (B) cells. Asterisk shows the LV and arrows point to PSVs. Bars = 2 μm.

PSVs play an important role in supplying essential nutrients for our dietary needs. Here we discuss how cellular reprogramming can be used to learn more about LV to PSV transitions in Arabidopsis.

LYTIC VACUOLE STRUCTURE AND FUNCTION

The central LV is the largest and most instantly recognizable organelle in a vegetative plant cell. It can account for up to 90% of the total cell volume (Jolliffe et al., 2005). As such, the LV squeezes the cytoplasm and other organelles between the tonoplast and plasma membrane (Figure 1A). LVs are present in the cells of young seedlings shortly after germination and generally exist in all cells throughout vegetative growth (Gattolin et al., 2009; Zheng and Staehelin, 2011).

The LV lumen contains water, numerous hydrolase enzymes, and is maintained at pH 5.5-6 (Martinière et al., 2013). The tonoplast plays a major role in maintaining this luminal environment. The tonoplast is a selective membrane that contains a large number of channel and transport proteins that mediate the movement of organic and ionic substances between the cytoplasm and vacuole (Carter et al., 2004; Jaquinod et al., 2007; Müntz, 2007). To maintain an acidic luminal pH, vacuolar ATPase (V-ATPase) and pyrophosphatase (V-PPase) catalyze ATP-dependent proton transfer across the tonoplast. Their activity creates a proton gradient and membrane potential which energizes secondary active transport across the tonoplast (Yang et al., 2007; Krebs et al., 2010). The movement of inorganic metabolites is mediated by specific ion channels (Voeller et al., 2006) or transporters (Brini et al., 2007), while organic substances are moved by ATP-binding cassette (ABC) transporters (Shi et al., 2007; Song et al., 2010). The movement of water across the tonoplast is facilitated by water channels called aquaporins (Maurel et al., 2008). Within the vacuole lumen, numerous hydrolase enzymes are present such as proteases, glycosidases, lipases, nucleases, and peroxidases (Carter et al., 2004).

The LV participates in diverse physical and metabolic functions that are critical for the survival of a plant. A significant role of the LV is to allow the cell to increase its size without expending too much energy. This allows lower cost cellular growth as vacuoles largely consist of water and have a low density of organic compounds to synthesize (Zouhar and Rojo, 2009). One universally important function of the LV is its role in maintaining turgor pressure which determines the rigidity of the cell and is important for growth and mechanical stability of the plant (Müntz, 2007). In addition to physical functions, LVs play important metabolic roles by storing a large variety of compounds such as toxins (Riechers et al., 2010), salts (Krebs et al., 2010), heavy metals (Song et al., 2010), pigments (Reuveni et al., 2001; Zhang et al., 2006), and defense compounds (Zhao and Dixon, 2010). The low pH and numerous hydrolase enzymes present in the LV lumen allow it to play a fundamental role in the degradation of cytoplasmic materials from small molecules to organelles. This process involves autophagy, a conserved mechanism in eukaryotes whereby cell contents are transferred to the vacuole to be digested and recycled, typically in a non-selective manner (Bassham, 2007; Li and Vierstra, 2012). Generally, a basal level of autophagy functions constitutively for the turnover of cellular components (Wang et al., 2013). However, it can be induced to higher levels during particular developmental stages (Bassham et al., 2006) or in times of cell stress (Liu et al., 2012). Endocytic trafficking of proteins from the plasma membrane is an essential cellular transport system required for cell communication, cellular differentiation, and physiological responses to the environment (Otegui and Spitzer, 2008; Irani and Russinova, 2009; Richter et al., 2009). The LV plays a key role as the cellular endpoint where selected endocytosed proteins are sent for degradation (Otegui and Spitzer, 2008).
PROTEIN STORAGE VACUOLE STRUCTURE AND FUNCTION

The PSV is a specialized organelle that is unique to flowering plants (Olbrich et al., 2007; Gattolin et al., 2011). In shoot and root meristem cells, the existence of PSVs is thought to be due to the presence of seed-specific signals in the meristem (Olbrich et al., 2007). Whereas LVs typically occupy most of the cell space, PSVs are much smaller in size and range from 1.5 to 8 μm in diameter (Gillespie et al., 2005). PSVs are numerous and are usually positioned close to the center of the cell (Shimada et al., 2008; Figure 1B).

The PSV is a compartmentalized organelle (Liang et al., 2004; Bolte et al., 2011; Regvar et al., 2011). Comparatively less is known about the PSV tonoplast than the LV tonoplast (Iสายponov et al., 2010) but they are known to share some similarity in their composition of proteins (Hoh et al., 1995; Jiang et al., 2001; Isayenkov et al., 2011). The pH of the PSV lumen varies between 4.9 and 5.5 (Otegui et al., 2006). The defining feature of PSVs is their ability to accommodate seed storage proteins (SSPs). In fact, the appearance of PSVs in embryonic cells coincides with storage reserve accumulation during the maturation phase of embryogenesis (Mansfield and Briarty, 1992). Lesser recognized roles of PSVs are the storage of phosphorus and minerals (Otegui et al., 2002), protective compounds such as lectins (De Hoff et al., 2009) and chitinases (Neubaus et al., 1991), and proteolytic enzymes (Cruis et al., 2004). Like their LV counterparts, PSVs are also involved in autophagy. PSVs of wheat and maize sequester SSPs from endoplasmic reticulum (ER)-derived protein bodies (Levanyo et al., 1992) or prevacuolar-like compartments (Reyes et al., 2011) by autophagic mechanisms, respectively.

VACUOLE CONVERSION DURING EMBRYONIC AND VEGETATIVE GROWTH AND DEVELOPMENT

MULTIPLE VACUOLES IN PLANT CELLS

As discussed, seed plants have two principal, functionally distinct vacuole types, LVs and PSVs (Becker, 2007; Ibl and Stoger, 2012). This has raised questions about whether the two vacuoles co-exist in cells. To address this question, the two vacuole types must be distinguished. LVs and PSVs can be differentiated by the presence of tonoplast intrinsic protein (TIP) isoforms (Jiang et al., 1999; Gattolin et al., 2010). TIPs are aquaporins that are specifically localized to tonoplasts (Maier et al., 2009). Arabidopsis has 10 TIP isoforms and two of these are used to discriminate between LVs and PSVs, TIP1;1 and TIP3;1, respectively (Johanson et al., 2007). During germination, storage reserves are mobilized to provide nutrients and energy for the growing embryo (Pritchard et al., 2002; Tan-Wilson and Wilson, 2012). As protein and mineral reserves are released, PSVs are replaced by LVs. The LV subsequently increases in volume to create turgor and support cell growth and expansion (Mansfield and Briarty, 1996). In Arabidopsis, it takes approximately 3.5 d for the PSV to LV transition to occur (Hunter et al., 2007). PSV to LV transitions are also observed in root cells. PSVs are present in the radicle as it emerges from the seed coat. As the root elongates, meristematic regions of the root tip contain PSVs while LVs transition to LVs in the distal regions of elongating roots (Olbrich et al., 2007; Gattolin et al., 2011; Zheng and Staehelin, 2011).

How do such morphologically distinct vacuoles replace each other in the cell during vegetative and embryonic transitions? We envisage two possible scenarios: either a new vacuolar type arises by remodeling of the pre-existing vacuole, or a new vacuole is formed de novo and very rapidly supersedes the existing one.

Vacuole remodeling

One means by which different vacuolar types may replace each other is by remodeling or reprogramming the vacuole that is already present in the cell. Several studies support this hypothesis. During Arabidopsis germination and seedling development, Mansfield and Briarty (1996) observed multiple PSVs fusing to form a LV after the mobilization of most protein reserves. Olbrich et al. (2007) observed the formation of a single vacuole in barley and pea root tip cells. Close to the root tip, cells contain PSVs with TIP3;1 in their tonoplast. As root cells differentiate, the enlarging vacuole becomes a PSV-LV hybrid as indicated by the presence

During Arabidopsis embryogenesis, a large LV forms in the fertilized zygote. The zygote then divides to produce a vacuolated basal cell (which will form the suspensor) and a non-vacuolated apical cell (which will give rise to the embryo; De Smet et al., 2010). As the embryo continues to divide, LVs develop in all cells (Zouhar and Rojo, 2009). During the maturation phase of embryogenesis, LVs are replaced by PSVs which will accumulate SSPs and mineral reserves (Mansfield and Briarty, 1991).

PSV to LV transition

During germination, storage reserves are mobilized to provide nutrients and energy for the growing embryo (Pritchard et al., 2002; Tan-Wilson and Wilson, 2012). As protein and mineral reserves are released, PSVs are replaced by LVs. The LV subsequently increases in volume to create turgor and support cell growth and expansion (Mansfield and Briarty, 1996). In Arabidopsis, it takes approximately 3.5 d for the PSV to LV transition to occur (Hunter et al., 2007). PSV to LV transitions are also observed in root cells. PSVs are present in the radicle as it emerges from the seed coat. As the root elongates, meristematic regions of the root tip contain PSVs while LVs transition to LVs in the distal regions of elongating roots (Olbrich et al., 2007; Gattolin et al., 2011; Zheng and Staehelin, 2011).

How do such morphologically distinct vacuoles replace each other in the cell during vegetative and embryonic transitions? We envisage two possible scenarios: either a new vacuolar type arises by remodeling of the pre-existing vacuole, or a new vacuole is formed de novo and very rapidly supersedes the existing one.
of both TIP3;1 and TIP1;1 and storage proteins in the lumen. The hybrid vacuole then gradually differentiates into a LV with increasing amounts of TIP1;1 and decreasing amounts of TIP3;1 in the tonoplast. Similarly, Zheng and Stachelin (2011) observed that PSVs in tobacco root tips were transformed into LVs. This PSV to LV transition involves unique, highly tissue-specific spatial and temporal changes in vacuole architecture. In addition, within some cell types, the transformation was shown to involve autophagosome formation and engulfment by the developing LV (Zheng and Stachelin, 2011).

De novo vacuole formation

An alternative hypothesis to explain how different vacuole types arise involves the independent generation of a vacuole within a cell that already has a pre-existing vacuole. A key study to support this theory was conducted by Hob et al. (1995) who investigated the formation of PSVs in pea cotyledons during seed development. The authors observed the development of a tubular PSV structure which overtook the pre-existing LV. A second example backing this hypothesis is the demonstration that vacuoles can be regenerated from vacuolated protoplasts (Hortensteiner et al., 1992; Di Sansebastiano et al., 2001). Using autophagy inhibitors, an autophagy-like mechanism was demonstrated to be involved in vacuole biogenesis of vacuolated tobacco protoplasts (Xiao et al., 2007). However, the mechanism is distinct from conserved autophagy pathways (Bassham, 2007). Most recently, Viotti et al. (2013) also demonstrated the formation of autophagosome-like structures which give rise to LVs in Arabidopsis root tip cells but showed that these structures were not formed by the core autophagy machinery.

If the de novo theory holds true, then where does the membrane for a new vacuole originate? If an autophagy-like mechanism is involved in biogenesis, perhaps the tonoplast is generated by a process similar to autophagosome formation (Li and Vierstra, 2012). In autophagosome formation, the first step is the formation of an isolation membrane which occurs in the cytoplasm close to the vacuole. This process involves the recruitment of several autophagy-related (ATG) proteins which assemble in a coordinated manner to form a cup-shaped membrane structure that elongates and eventually engulfs material to be transported to the vacuole (Mizushima, 2007; Nakatogawa et al., 2009). Mutants defective in vacuole formation have been identified (Zouhar and Rojo, 2009). Most mutations affect factors involved in membrane fusion. An essential gene involved in vacuole biogenesis has been identified as VACUOLELESS2 (VCL2) through a mutant screen (Rojo et al., 2001). Loss-of-function vcl2 embryos were unable to form vacuoles. Mutants accumulated large numbers of autophagosomes which were unable to fuse to form the vacuole but instead fused with the plasma membrane and deliver their vacuolar contents to the apoplast. Thus, VCL2 is proposed to be involved in regulating the fusion of autophagosomes to form a LV (Zouhar and Rojo, 2009). Tonoplasts have also been proposed to originate from the ER or the Golgi apparatus (Marty, 1978; Robinson and Hinze, 1997; Stachelin, 1997; Neubauer and Rogers, 1998). Using mutants and pharmacological inhibitors which affect the biosynthetic secretory pathway, Viotti et al. (2013) demonstrated that tonoplast proteins and lipids were derived from the ER and were delivered directly, via a Golgi-independent route, to form the LV tonoplast.

REPROGRAMMING CELLS TO STUDY ORGANELLE DYNAMICS: VACUOLES

As an alternative to studying PSV formation in developing seeds, we asked if it was possible to induce the formation of PSVs in vegetative cells. Cues prompting vegetative cells to switch to PSV formation are not well understood. Despite the fact that SSVs are the major storage reserves that accumulate in PSVs, their forced synthesis in vegetative tissues has not been demonstrated to promote PSV formation. Constitutive expression of phaseolin in alfalfa vegetative tissues did not result in a significant accumulation of the protein in cells of non-seed organs (Baggs et al., 1992). Further, phaseolin was shown to accumulate and be degraded in the LV and, in part, secreted upon overexpression in tobacco (Frigerio et al., 1998). In transgenic Arabidopsis plants overexpressing a chimeric 2S albumin gene, novel precursor-accumulating (PAC)-like vesicles were induced to form in leaves (Hayashi et al., 1999). Within a plant, PSVs are abundant in seed tissues and are also observed in meristematic cells in vegetative tissues (Obrich et al., 2007). Thus it seems that for PSVs to exist, cells must be programmed to be in an embryonic state.

Genetic research has uncovered a number of genes that play critical roles in establishing or repressing embryonic cell fate (Braybrook and Harada, 2008; Zhang and Ogas, 2009; Li et al., 2013b). Several transcription factors such as LEAFY COTYLEDON1 (LEC1; Lotan et al., 1998), LEC2 (Stone et al., 2001), FUSCA3 (FUS; Gazzarrini et al., 2004), BABYBOOM (BBM; Boulier et al., 2001), WUSCHEL (WUS; Zuo et al., 2002), EMBRYOMAKER (EMK; Tsuwasomo et al., 2010), and MYB118 (Wang et al., 2009) act during embryogenesis to promote seed developmental programs. In contrast, negative seed regulators such as PICKLE (PKL; Ogas et al., 1999), PICKCOMB REPRESSIVE COMPLEX 2 (PRC2; Bouyer et al., 2011), SET DOMAIN GROUP 8 (SDG8; Tang et al., 2012b), BRAHMA (BRM; Tang et al., 2008), VPI1/ARGC3: ACID INSENSITIVE 3-LIKE (VAL) genes (Suzuki et al., 2007) and microRNA166 (miR166; Tang et al., 2012a) are responsible for suppressing the seed program in vegetative tissues. Thus, overexpression or downregulation of these positive and negative seed regulators, respectively, will induce a seed-specific developmental program causing vegetative tissues to exhibit embryonic characteristics. This scenario presents an opportunity to study the cellular and subcellular changes that take place during this developmental transition.

The maturation phase of embryogenesis represents an exciting window of time to study organelle dynamics. One of the most distinctive activities that take place is a high level of storage reserve accumulation (Mansfield and Briarty, 1992). In Arabidopsis seeds, lipids and proteins usually accumulate up to 30–40% each of the seed dry weight. Lipids are stored in oil bodies which originate from the ER membrane (Hsieh and Huang, 2004) and PSVs arise to accumulate SSVs as discussed (Mansfield and Briarty, 1992). The events that take place during the maturation phase are controlled by the complex seed regulatory network introduced above (Santos-Mendoza et al., 2008). A key part of this control is achieved
through the activities of a small number of transcriptional regulators; LEC1, LEC2, FUS3, and ABSCISIC ACID INSENSITIVE3 (ABI3; Zhang and Ogas, 2009). Genetic studies showed that vegetative tissues overexpressing these transcription factors would begin to exhibit seed traits (Gazzarrini et al., 2004; Kagaya et al., 2005; Stone et al., 2008; Junker et al., 2012).

A wealth of genetic knowledge has been gathered on LEC2 activities (Stone et al., 2001, 2008; Kroj et al., 2003; Santos Mendoza et al., 2005; Braybrook et al., 2006; To et al., 2006; Baud et al., 2007). To learn more about the cellular changes that occur during the vegetative to embryonic transition, a dexamethasone (DEX)-inducible LEC2-GR expression system was exploited in Arabidopsis (Feeney et al., 2013). The overexpression of LEC2 triggers massive cellular reorganization in leaves and causes these vegetative organs to exhibit embryonic characteristics. Among the many cellular and subcellular changes, the replacement of LVs with PSV-like organelles was most notable. In these leaf cells, the large LV is replaced by smaller and more numerous vacuoles that contain SSP aggregates. Upon further investigation using immunogold labeling with tonoplast and luminal markers, it was established that the small vacuoles had the features of developing PSVs (Feeney et al., 2013). Indeed, the presence of the PSV-specific TIP3;1 protein on the tonoplast (Gattolin et al., 2011) and accumulation of SSPs within the lumen of the small vacuoles indicates that the leaf vacuoles assumed a storage role (Jauh et al., 1999; Hunter et al., 2007; Olbrich et al., 2007). Furthermore, confocal analysis revealed a unique embryo-like vacuolar morphology (Figures 2B,E). To visualize the tonoplast of these developing leaf PSVs, 35S:LEC2-GR plants co-expressing TIP3;1-YFP under its native promoter was generated. The native TIP3;1 promoter is developmentally regulated and thus the TIP3;1-YFP fusion is specifically expressed in seed tissues and accumulated on PSV tonoplasts (Hunter et al., 2007). As DEX-induced plants overexpressing LEC2 began to acquire embryogenic characteristics (Feeney et al., 2013), TIP3;1-YFP became detectable on the tonoplast of leaf cells, indicating that vacuoles were PSVs (Figures 2B,E). Highly fluorescent TIP3;1-YFP-labeled tonoplast folds and bulbs appeared (Saito et al., 2002, 2011). These are characteristic vacuolar morphologies of young cells (Figure 2A). However, the tonoplast also retained the characteristic configuration of a large LV lining the periphery of the cell. To highlight the vacuole lumen, tissues were stained with neutral red and revealed that the lumen appears to occupy the entire leaf cell (Figure 2B) unlike seed PSVs (Figure 2C). In addition, vacuolar lumina began to exhibit autofluorescence (Figure 2E), which was not observed in uninduced leaves (Figure 2D). Autofluorescent vacuole lumina are usually observed in seed PSVs (Figure 2F; Fuji et al., 2007; Hunter et al., 2007; Bolte et al., 2011). Therefore, leaf vacuole tonoplasts were extensively remodeled but their lumina remained large and filled the entire cell (Figures 2B,E).

These results suggest that in response to DEX-inducible LEC2
A number of genetic factors have been revealed to promote cellular reprogramming and some are highlighted above. To bring about cell reprogramming, they may also display unique activities that affect distinct cellular processes (Baud et al., 2007; Jia et al., 2013a). These aspects should be taken into consideration when choosing a reprogramming system to study a particular cellular process. In the case of vacuoles, several factors may cause vacuolar transitions in vegetative tissues. We have demonstrated that LEC2 overexpression causes LVs to transition to PSVs and results from overexpression studies with LEC1 (Junker et al., 2012) and FUS3 (Gazzarini et al., 2004) are suggestive that these transcription factors can also bring about a change in vacuole type.

CONCLUSION

Cellular reprogramming may be a useful means of allowing the study of cellular processes that take place during the short transition period between two developmental programs. Several genes have been discovered that control embryonic cell identity by establishing or repressing the seed developmental program (Braybrook and Harada, 2008; Zhang and Ogars, 2009; Jia et al., 2013b). In the example presented in this review, overexpression of LEC2 was used to activate the seed developmental program in Arabidopsis seeds (Santos Mendoza et al., 2005; Stone et al., 2008). This study of cellular processes that take place during the short transition period between two developmental programs. Several genes have been discovered that control embryonic cell identity by establishing or repressing the seed developmental program (Braybrook and Harada, 2008; Zhang and Ogars, 2009; Jia et al., 2013b). In the example presented in this review, overexpression of LEC2 was used to activate the seed developmental program in Arabidopsis seeds (Santos Mendoza et al., 2005; Stone et al., 2008). This example demonstrated that LEC2 overexpression causes LVs to transition to PSVs and results from overexpression studies with LEC1 (Junker et al., 2012) and FUS3 (Gazzarini et al., 2004) are suggestive that these transcription factors can also bring about a change in vacuole type.

ACKNOWLEDGMENTS

We thank I. J. Harada for his ideas and helpful discussions and J. McNeil for reviewing the manuscript. This work was supported by the A-base Funding Program of Agriculture and Agri-Food Canada. Work in the Frigerio lab was funded by a grant from the Leverhulme Trust (RPG-327).

REFERENCES

Abdel-Mohsen, N., Li, T., Kovales, V., Venkataraman, S., Dombrowski, E., Matsumoto, K., et al. (2000). The plant vascular sorting receptor ASEP is involved in transport of NED-terminal propeptide-containing vascular proteins in Arabidopsis thaliana. J. Cell Biol. 150, 1335–1344. doi: 10.1083/jcb.150.6.1335

Bagga, S., Sutton, D., Kemp, J., and Sengupta-Gopalan, C. (1992). Constitutive expression of the phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol. Biol. 19, 951–958. doi: 10.1007/BF00045827

Bassham, D. C. (2007). Plant autophagy—more than starvation response. Curr. Opin. Plant Biol. 10, 587–591. doi: 10.1016/j.pbi.2007.06.008

Bassham, D. C., Laporte, M., Marty, F., Moret, M., Ohsumi, Y., Olsen, L. J., et al. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2–11.

Bassham, D. C. (2007). Plant autophagy—more than a starvation response. Curr. Opin. Plant Biol. 10, 587–591. doi: 10.1016/j.pbi.2007.06.008

Bethke, P. C., Swanson, S. J., Hillmer, S., and Jones, R. L. (1998). From storage compartment to lytic organelle: the metamorphosis of the aleurone protein storage vacuole. Ann. Bot. 82, 399–412. doi: 10.1093/aob/82.4.399

Bradybrook, S. A., and Harada, J. J. (2008). LECs go crazy in embryo development. Plant Cell Physiol. 49, 1142–1152. doi: 10.1093/pcp/pcr065

Braybrook, S. A., Stone, S. J., Park, S., Bui, A. Q., Le, B. H., Fischer, R. L., et al. (2006). Polycomb repressive complex 2 controls the embryo-to-seedling phase transition. Dev. Cell 11, 281–292. doi: 10.1016/j.devcel.2006.01.014

Braybrook, S. A., and Harada, J. J. (2008). LECs go crazy in embryo development. Trends Plant Sci. 13, 624–630. doi: 10.1016/j.tplants.2008.09.008

Brunner, D., Roudier, F., Hurel, M., Anderson, E. D., Goy, D., Nowack, M. K., et al. (2011). Polysaccharide repression complex 2 controls the embryo-to-seedling phase transition. Plant Cell 23, 103–115. doi: 10.1105/tpc.110.083280

Carter, C., Pat, S., Zhou, J., Wu, E. L., Geric, T., and Raikhel, N. V. (2004). The vegetative vacuole proteomes of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Physiol. 136, 358–365. doi: 10.1104/pp.104.049574

De Hoff, P., Bell, L., and Hinche, A. (2009). Plant lectin the non that bind to root symbiosis and plant defense. Mol. Gen. Genomics 282, 1–13. doi: 10.1007/s00438-009-0450-8

De Smid, I., van der Esser, E., van der Meer, J., and de Vries, G. (2010). Embryogenesis—the humble beginnings of plant life. Plant Physiol. 153, 939–970. doi: 10.1104/pp.110.153411

De Souza, D. P., Paris, N., Marc-Martin, S., and Neuhaus, J.-M. (2001). Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds. Plant Physiol. 126, 1142–1152. doi: 10.1104/pp.126.1.1142

Di Sansebastiano, G. P., Paris, N., Marc-Martin, S., and Neuhaus, J.-M. (2001). Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds. Plant Physiol. 126, 1142–1152. doi: 10.1104/pp.126.1.1142

Feeney, M., Frigerio, L., Gui, Y., and Mennag, R. (2015). Following vegetative to embryonic cellular changes in leaves of Arabidopsis overexpressing LEAFY COTYLEDON2. Plant Cell 26, 1881–1886. doi: 10.1105/tpc.115.1220996

“fpls-04-00493” — 2013/11/29 — 18:47 — page 6 — #6
Vitale, A., and Hinz, G. (2005). Sorting of proteins to storage vacuoles: how many

Varshney, R. K., Ribaut, J.-M., Buckler, E. S., Tuberosa, R., Rafalski, J. A., and

Voelker, C., Schmidt, D., Mueller-Roeber, B., and Czempinski, K. (2006). Members

Vitale, A., and Raikhel, N. V. (1999). What do proteins need to reach different

Wang, X., Niu, Q.-W., Teng, C., Li, C., Mu, J., Chua, N.-H., et al. (2009). Over-

Wang, Y., Yu, B., Zhao, J., Guo, J., Li, Y., Han, S., et al. (2013). Autophagy contributes

Willmann, M. R., Mehalick, A. J., Packer, R. L., and Jenik, P. D. (2011). MicroRNAs

Wang, J., Tse, Y. C., Hinz, G., Robinson, D. G., and Jiang, L. (2012). Storage globulins

Tang, X., Hou, A., Babu, M., Nguyen, V., Hartlado, L., Lu, Q., et al. (2008). The Arabidopsis RIMAP1 transcriptional co-repressor ATRip is involved in repression of seed maturation genes in karanji. Plant Physiol. 147, 1143–1157. doi: 10.1104/pp.110.171355

Tan-Wilson, A. L., and Wilson, K. A. (2012). Mobilization of seed protein reserves. Curr. Opin. Plant Biol. 15, 349–359. doi: 10.1016/j.pbi.2012.01.001

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 September 2013, revised: 21 October 2013, accepted: 15 November 2013; published online: 09 December 2013.

CrossRef: Ferrer, P., Prigé, L., Kohler, G. and Menanas, N. (2013). Use is open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium is permitted which does not comply with these terms.