First-principles results for electromagnetic properties of sd shell nuclei

Archana Saxena* and Praveen C. Srivastava†

Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247 667, India

(Dated: August 23, 2017)

In this work we present ab initio shell-model calculations for electric quadrupole moments and magnetic dipole moments of sd shell nuclei using valence-space Hamiltonians derived from two ab initio approaches: the in-medium similarity renormalization group (IM-SRG) and the coupled-cluster effective interaction (CCEI). Results are in a reasonable agreement with the available experimental data as well as with the results from the phenomenological USDB effective interaction. This work will add more information to the available ab initio results for the spectroscopy of sd shell nuclei.

PACS numbers: 21.60.Cs, 21.30.Fe, 21.10.-k, 23.20.-g, 21.10.Ky, 27.20.+n, 27.30.+t

I. INTRODUCTION

The study of atomic nuclei using first principles is an important topic in the nuclear structure physics. The anomalous behavior for nuclei close to the drip line can now be explained using ab initio approaches. The inclusion of three-body forces was found to be crucial for explaining the exact location of the drip-line for oxygen and calcium isotopes [1, 2]. Although ab initio calculations are difficult for heavier nuclei, recently spectroscopy of sd shell nuclei using different ab initio approaches has been reported in the literature. Using the in-medium similarity renormalization group (IM-SRG) approach, ab initio predictions for the ground and excited states of doubly open-shell sd nuclei have been reported in Ref. [3]. Also ab initio coupled-cluster effective interaction (CCEI) was derived and used to calculate the levels in p and sd shell nuclei successfully [4-6]. A mass-dependent effective Hamiltonian in a $4\hbar$ model space for the sd shell nuclei, starting from a no core shell model Hamiltonian in a $4\hbar$ model space with the realistic J-matrix Inverse Scattering Potential, fitted to nuclei with masses up to $A = 16$ (JISP16) and chiral next-to-next-to-next-to-leading order (N3LO) NN interactions, has been reported in Ref. [7]. The recent experimental results of 24F have been theoretically interpreted with IM-SRG in Ref. [8] and a coupled-cluster interpretation has been presented for recently populated levels in 25F [9]. In all these papers, the focus was on the spectroscopy of p and sd shell nuclei.

In the present work, our motivation is to test the ab initio Hamiltonians derived from the two approaches, IM-SRG and CCEI, by calculating electromagnetic properties of sd shell nuclei. The results of this work will add to the earlier studies in Refs. [3-5, 7], where only spectroscopic properties (spins, parities, and level energies) of these nuclei were reported. We compare our results to the available experimental data as well as with the calculations using the phenomenological USDB shell-model interaction [10].

The paper is organized as follows. In Sec. II, we present the details about the Hamiltonians from ab initio approaches. In Sec. III, we present the theoretical results along with the experimental data wherever these are available. Finally, a summary and conclusions are presented in Sec. IV.

II. HAMILTONIAN

In this work, we have performed shell-model calculations for which the valence-space Hamiltonian was derived using two modern ab initio approaches: in-medium similarity renormalization group (IM-SRG) [3] and coupled-cluster effective interaction (CCEI) [4]. We have also compared the results with calculations using the phenomenological USDB effective interaction [10]. For the diagonalization of the matrices we have used the shell-model code NUSHELLX [11].

Using in-medium similarity renormalization group (IM-SRG) [12] based on chiral two- and three-nucleon interactions, Stroberg et al. derived mass-dependent Hamiltonians for sd shell nuclei [3].

The starting Hamiltonian H is normal-ordered with respect to $|\Phi_0\rangle$:

$$H = E_0 + \sum_{ij} f_{ij} \{a_i^\dagger a_j\} + \frac{1}{2!^2} \sum_{ijkl} \Gamma_{ijkl} \{a_i^\dagger a_j^\dagger a_k a_l\}$$

$$+ \frac{1}{3!^2} \sum_{ijklmn} W_{ijklmn} \{a_i^\dagger a_j^\dagger a_k^\dagger a_l^\dagger a_m a_n\}, \quad (1)$$

where the normal-ordered strings of creation and annihilation operators obey $\langle \Phi_0 | \{a_i^\dagger \ldots a_j\} | \Phi_0 \rangle = 0$. The normal-ordered zero-, one-, two- and three-body terms are E_0, f_{ij}, Γ_{ijkl}, and W_{ijklmn}, respectively (see Ref. [13] for further details). Here, a continuous unitary transformation, parametrized by the flow parameter s, is applied to the initial normal-ordered A-body Hamiltonian:

$$H(s) = U^\dagger(s) H(0) U(s) = H^d(s) + H^{sd}(s), \quad (2)$$

*archanasaxena777@gmail.com
†pcsrilph@iitr.ac.in
where, $H^d(s)$ is the diagonal part of the Hamiltonian and $H^{ad}(s)$ is the off-diagonal part of the Hamiltonian. The evolution of $H(s)$ with s is given by

$$\frac{dH(s)}{ds} = [\eta(s), H(s)], \quad \text{(3)}$$

where $\eta(s)$ is the anti-Hermitian generator of unitary transformation

$$\eta(s) = \frac{dU(s)}{ds}U^\dagger(s) = -\eta^\dagger(s). \quad \text{(4)}$$

The off-diagonal matrix elements become zero as $s \to \infty$ for an appropriate value of $\eta(s)$. Here, the sd valence space is decoupled from the core and higher shells as $s \to \infty$. Now we use this resulting Hamiltonian in the shell-model calculations with $\hbar \Omega = 24$ MeV. Further details about the parameters are given in Ref. [3].

There is another ab initio approach, named the coupled cluster effective interaction, which we use in this paper for calculating the electromagnetic properties of nuclei in the sd shell. The effective interaction developed from this approach has already been successfully used to calculate the spectroscopy for open sd shell deformed nuclei [4]. For the effective interaction from this approach, we have also used a Hamiltonian which is A-dependent:

$$\hat{H}_A = \sum_{i<j} \left(\frac{(\mathbf{p}_i - \mathbf{p}_j)^2}{2mA} + \hat{V}^{(i,j)}_{NN} \right) + \sum_{i<j<k} \hat{V}^{(i,j,k)}_{3N}. \quad \text{(5)}$$

The NN and NNN parts are taken from a next-to-next-to leading order (N2LO) chiral nucleon-nucleon interaction and a next-to-next-to-next-to leading order (N3LO) chiral three-body interaction, respectively. A cutoff scale $\Lambda = 500$ MeV is used for the NN part and $A = 400$ MeV for the NNN part. These interactions are constructed using the similarity transformation group method (see Ref. [5] for further details). In this approach, a Hartree-Fock ground state in 13 oscillator major shells with $\hbar \Omega = 20$ MeV is used. The CCEI Hamiltonian for shell-model calculations can then be expanded as

$$H_{\text{CCEI}} = H_0^{A_0} + H_0^{A_1} + H_1^{A_1} + H_1^{A_1+2} + \cdots. \quad \text{(6)}$$

Here $H_0^{A_0}$, $H_0^{A_1}$, and $H_0^{A_1+2}$ are called core, one-body, and two-body cluster Hamiltonians, respectively. This expansion is known as the valence cluster expansion. Similar to this Hamiltonian, any operator can be expanded in the valence space for the shell model calculations.

The two-body term is computed using the Okubo-Lee-Suzuki (OLS) similarity transformation. We get a non-Hermitian effective Hamiltonian in this procedure. The metric operator $S^\dagger S$ is used to make the Hamiltonian Hermitian. The resultant effective Hamiltonian Hamiltonian used for the shell model is $[S^\dagger S]^{1/2}H_{\text{CCEI}}[S^\dagger S]^{-1/2}$. Here, S is a matrix that diagonalizes H_{CCEI}.

Finally, we have also compared our ab initio results with the shell model calculations using the phenomenological USDB interaction. The USDB interaction is fitted to two-body matrix elements [10], originally derived from a G-matrix approach. This interaction is fitted by varying 56 linear combinations of two-body matrix elements.

The shell model code NUSHELLX@MSU is a set of wrapper codes written by Brown. It uses a proton-neutron basis. With this code, it is possible to diagonalize J-scheme matrix dimensions up to ~ 100 million.

III. RESULTS AND DISCUSSIONS

The magnetic dipole moment is defined as the expectation value of the dipole operator in the state with maximum M projection as

$$\mu = \langle J; M = J | \sum_i g_i(i)l_{z,i} + \sum_i g_s(i)s_{z,i} | J; M = J \rangle. \quad \text{(7)}$$

Here, g_i and g_s are the orbital and spin gyromagnetic ratios, respectively. By applying the Wigner-Eckart theorem,

$$\mu = \frac{J}{[J(J + 1)(2J + 1)]^{1/2}} \times \langle J | \sum_i g_i(i)\mathbf{l}_i + [g_s(i) - g_i(i)]\mathbf{s}_i | J \rangle. \quad \text{(8)}$$

The electric quadrupole moment operator is defined as

$$Q_z = \sum_{i=1}^A Q_z(i) = \sum_{i=1}^A e_i(3z_i^2 - r_i^2). \quad \text{(9)}$$

The spectroscopic quadrupole moment (Q_s) is defined as

$$Q_s(J) = \langle J, M = J | Q_z^0 | J, M = J \rangle = \sqrt{\frac{J(2J - 1)}{(2J + 1)(2J + 3)(J + 1)}} \langle J | Q | J \rangle. \quad \text{(10)}$$

We have used the harmonic-oscillator parameter $\hbar \Omega = 45A^{-1/3} - 25A^{-2/3}$ MeV for all the three calculations. The calculated values of the electromagnetic properties of sd shell nuclei with $e_p = 1.5e$, $e_n = 0.5e$, and $g_s^{\text{eff}} = g_s^{\text{free}}$ using the two ab initio interactions as well as the phenomenological USDB shell-model interaction in the sd model space, along with the experimental data, are
shown in the Tables I and II. In Ref. [14], the suitable values of \(g \) factors and effective charges for \(sd \) shell nuclei are given. However, in the present work, we have compared magnetic and quadrupole moments with two \textit{ab initio} effective interactions along with phenomenological USD\textit{B} effective interaction using free-nucleon \(g \) factors and standard values of effective charges in our calculations. The magnetic moments have been taken from Ref. [15] and more recent data were obtained from a compilation maintained by Mertzimekis under the IAEA auspices [16]. Recently, the experimental quadrupole moments for \(sd \) shell nuclei have been evaluated and the recommended values were presented in Ref. [17] along with shell-model calculations using the USD and SDPF-U interactions. We have used these experimental quadrupole moments in Table II. The values not available in this evaluation are taken from the specified references.

The experimental static and dynamic moments for Ne, Na, Mg and Al isotopes up to 20 neutrons, at the borders of (or inside) the island of inversion, are reported in Refs. [18–32]. For explaining the intruder configuration of neutron-rich nuclei (\(\sim N = 20 \)), we need the \(sd – pf \) model space. Using the SDPF-U-MIX effective interaction in the Ref. [33], it was shown the island of inversion region emerges around \(N = 20 \) and \(N = 28 \) for Ne to Al isotopes. The island of inversion is also known as island of deformation, which is due to nucleon-nucleon correlations. Because of the correlation energy, we get a deformed ground-state band and the spherical mean field breaks. The normal-order filling of orbits in the case of island of inversion candidates (\(^{30}\text{Na}, ^{31}\text{Na}, ^{31}\text{Mg}, \) and \(^{33}\text{Al} \)) vanishes, where \(^{33}\text{Al} \) is found to be at the border of the island of inversion [32]. The IM-SRG and CCEI \textit{ab initio} effective interactions contain excitations of particles within different shells (\(\sim 13 \) oscillator major shells), projected to a particular \(sd \) model space. The static and transitional quadrupole moments of nuclei lying in the island of inversion region show a drastic enhancement of quadrupole collectivity compared to neighboring nuclei. This has been attributed to a combination of a reduction in the \(N = 20 \) shell gap due to the tensor part of the nucleon-nucleon monopole interaction and enhanced quadrupole correlations induced by neutron excitations across this reduced shell gap. The moments of these isotopes have been very well described using the phenomenological shell-model interactions in an enhanced \(sd-pf \) model space where such neutron excitations are included, as illustrated e.g. in Refs. [24, 27, 32, 34]. The spectroscopy of other \(sd \) shell isotopes, including their moments, has been very well described by shell-model calculations in the \(sd \) valence space using the phenomenological effective interactions, such as USDB [14]. However, the recent \textit{ab initio} calculations reproduce also very well the spectroscopy of these \(sd \) shell isotopes, even improving an accurate description of their structure. It will be interesting to see how well they reproduce the ground-state static and dynamic moments.

For the oxygen isotopes, the calculated values of the magnetic moments with IM-SRG and CCEI show almost similar results. We have reported the magnetic moments for \(^{17–20}\text{O} \) and quadrupole moments for \(^{17–19}\text{O} \) isotopes. For \(^{17}\text{O} \), the calculated magnetic moment and quadrupole moment values using all the interactions are similar, because this is the single-particle moment (similarly for \(^{17}\text{F} \)). The calculated magnetic moment of the \(4^+ \) state of \(^{18}\text{O} \) and of the \(5/2^+ \) (g.s.) for \(^{19}\text{O} \) and \(2^+ \) state of \(^{20}\text{O} \) are showing negative sign, while the sign has not yet been confirmed experimentally. For \(^{18}\text{O} \), both \textit{ab initio} interactions give the opposite sign of the quadrupole moment with USD\textit{B} interaction; however, the sign from an experiment is not yet confirmed. The calculated value of magnetic moments for \(^{17,18,20}\text{F} \) isotopes (g.s. and some isomers) are close to the experimental data. However, \textit{ab initio} interactions give slightly different values in comparison to the experimental data for \(^{19,21}\text{F} \). In the case of quadrupole moments, experimental sign of \(^{17–22}\text{F} \) isotopes are not yet confirmed. All the interactions give the same sign.

The experimental data for magnetic moments of Ne isotopes are available from \(^{19}\text{Ne} \) to \(^{26}\text{Ne} \), while the quadrupole moments are available for \(^{21,22,23}\text{Ne} \). In Ref. [36], shell-model results of magnetic moments are reported with USD and CW interactions for odd \(^{23,25}\text{Ne} \) isotopes. Shape changes are reported to occur from collective to single particle in Ne isotopes when moving from \(^{19}\text{Ne} \) to \(^{25}\text{Ne} \). It is shown that the magnetic moment is more sensitive than the quadrupole moment for deciding the structure of the nucleus. Our calculated results using \textit{ab initio} approaches for magnetic moments are showing reasonable agreement with the experimental data except for \(^{23,25}\text{Ne} \) isotopes. We have reported the quadrupole moments for \(^{20–25}\text{Ne} \) isotopes. Both \textit{ab initio} results are in good agreement with the experimental data. In the case of \(^{20}\text{Ne} \), the calculated \(Q_{2+} \) with all the three interactions is approximately \(-0.15 \) eb, while experimental value is \(-0.23(3) \) eb.

In the \(^{26–31}\text{Na} \) chain [23], it is claimed that the experimental results of the magnetic moments for \(^{26–29}\text{Na} \) are well described with \(sd \) model space using the USD Hamiltonian. The disagreement appears for the \(^{30–31}\text{Na} \) magnetic moments. The \(^{30,31}\text{Na} \) isotopes are suggested to be members of the island of inversion, as shown by Utsumo \textit{et al.} [37]. We have calculated the magnetic moments for the g.s. for \(^{20–31}\text{Na} \) isotopes. In the case of \(^{21,22}\text{Na} \) and \(^{24}\text{Na} \), the magnetic moments are also given for the first excited state. The results obtained from \textit{ab initio} approaches for the g.s. are in reasonable agreement with the experimental values (Fig. 1). In the case of \(^{24}\text{Na} \), for the magnetic moment (for the first excited state), the sign is reverse using IM-SRG while CCEI gives the sign which is in agreement with the experimental data. We have calculated the quadrupole moments for \(^{20–23}\text{Na} \) and \(^{25–31}\text{Na} \). For \(^{26}\text{Na} \), \textit{ab initio} IM-SRG interaction is giving same sign of the quadrupole moment as in the phenomenological effective interaction. Experimentally, the sign has not yet been confirmed. In the case of \(^{30}\text{Na} \),

\[
\begin{array}{cccccc}
\text{Nuclei} & \text{State} & E_x (\text{keV}) & \mu_{\text{exp}} & \mu_{\text{HM-SRG}} & \mu_{\text{CCEI}} & \mu_{\text{USD}} \\
\hline
^{17}\text{O} & 5/2^+ & 0 & -1.89379(9) & -1.913 & -1.913 & -1.913 \\
^{18}\text{O} & 2^+ & 1982 & -0.57(3) & -1.094 & -1.022 & -0.799 \\
 & 4^+ & 3555 & 2.5(4) & -2.455 & -2.438 & -2.172 \\
^{19}\text{O} & 5/2^+ & 0 & 1.53195(7) & -1.509 & -1.518 & -1.531 \\
 & 3/2^+ & 96 & -0.72(9) & -0.885 & -0.869 & -0.945 \\
^{20}\text{O} & 2^+ & 1674 & 0.70(3) & -0.921 & -0.926 & -0.716 \\
^{19}\text{F} & 5/2^+ & 0 & +4.7213(3) & +4.793 & +4.793 & +4.793 \\
^{18}\text{F} & 3^+ & 937 & +1.177(12) & +1.847 & +1.826 & +1.872 \\
 & 5^+ & 1121 & +2.86(3) & +2.880 & +2.880 & +2.880 \\
^{19}\text{F} & 1/2^+ & 0 & +2.688868(8) & +2.917 & +2.932 & +2.898 \\
 & 5/2^+ & 197 & 3.595(13) & +3.560 & +3.611 & +3.584 \\
^{20}\text{F} & 2^+ & 0 & +2.09335(9) & +2.171 & +2.183 & +2.092 \\
^{21}\text{F} & 5/2^+ & 0 & 3.9194(12) & +3.393 & +3.345 & +3.779 \\
^{22}\text{F} & 4^+ & 0 & (+)2.6944(4) & +2.535 & +2.477 & +2.540 \\
^{19}\text{Ne} & 1/2^+ & 0 & -1.8846(8) & -2.060 & -2.092 & -2.037 \\
 & 5/2^+ & 238 & -0.740(8) & -0.608 & -0.669 & -0.673 \\
^{20}\text{Ne} & 2^+ & 1634 & +1.08(8) & +1.036 & +1.037 & +1.020 \\
 & 4^+ & 4247 & +1.5(3) & +2.086 & +2.095 & +2.052 \\
^{21}\text{Ne} & 3/2^+ & 0 & -0.661797(5) & -0.665 & -0.586 & -0.750 \\
 & 5/2^+ & 351 & 0.49(4) & -0.350 & -0.365 & -0.574 \\
^{22}\text{Ne} & 2^+ & 1275 & +0.65(2) & +0.616 & +0.550 & +0.748 \\
 & 4^+ & 3357 & +2.2(6) & +1.623 & +1.332 & +2.044 \\
^{23}\text{Ne} & 5/2^+ & 0 & -1.077(4) & -0.854 & -0.786 & -1.050 \\
^{24}\text{Ne} & 1/2^+ & 0 & -1.0062(5) & -0.657 & -0.924 & -0.928 \\
^{25}\text{Ne} & 2^+ & 0 & +0.3694(2) & +0.390 & +0.330 & +0.446 \\
^{21}\text{Na} & 3/2^+ & 0 & +2.83630(10) & +2.445 & +2.388 & +2.489 \\
 & 5/2^+ & 332 & 3.7(3) & +3.194 & +3.196 & +3.196 \\
^{22}\text{Na} & 3^+ & 0 & +1.746(3) & +1.798 & +1.806 & +1.791 \\
 & 1^+ & 583 & +0.523(11) & +0.506 & +0.529 & +0.518 \\
^{23}\text{Na} & 3/2^+ & 0 & +2.2176556(6) & +1.972 & +1.887 & +2.098 \\
^{24}\text{Na} & 4^+ & 0 & +1.6903(8) & +1.377 & +1.285 & +1.631 \\
 & 1^+ & 472 & -1.93(1) & -0.908 & -0.881 & -1.865 \\
^{25}\text{Na} & 5/2^+ & 0 & +3.683(4) & +2.934 & +3.361 & +3.367 \\
^{26}\text{Na} & 3^+ & 0 & +2.851(2) & +2.296 & +2.360 & +2.632 \\
^{27}\text{Na} & 5/2^+ & 0 & +3.895(5) & +3.230 & +3.623 & +3.647 \\
^{28}\text{Na} & 1^+ & 0 & +2.426(5) & +2.146 & +1.760 & +2.081 \\
^{29}\text{Na} & 3/2^+ & 0 & +2.449(8) & +2.181 & +2.198 & +2.438 \\
^{30}\text{Na} & 2^+ & 0 & +2.083(10) & +2.245 & +2.883 & +2.418 \\
^{31}\text{Na} & 3/2^+ & 0 & +2.305(8) & +2.535 & +2.551 & +2.614 \\
^{23}\text{Mg} & 5/2^+ & 0 & -0.983(7) & -0.342 & -0.351 & -0.848 \\
^{24}\text{Mg} & 3/2^+ & 0 & -0.5364(3) & -0.305 & -0.218 & -0.410 \\
^{25}\text{Mg} & 2^+ & 1369 & +1.076(26) & +1.050 & +1.094 & +1.026 \\
 & 4^+ & 4123 & +1.6(12) & +2.103 & +2.169 & +2.070 \\
 & 2^+ & 4238 & +1.2(4) & +1.072 & +1.062 & +1.037 \\
 & 4^+ & 6010 & +2.0(16) & +2.095 & +2.115 & +2.048 \\
^{25}\text{Mg} & 5/2^+ & 0 & -0.85545(8) & -0.617 & -0.197 & -0.849 \\
^{26}\text{Mg} & 2^+ & 1809 & +1.0(3) & +1.024 & +1.281 & +1.739 \\
^{27}\text{Mg} & 1/2^+ & 0 & -0.411(2) & +0.197 & -0.256 & -0.412 \\
\end{array}
\]
FIG. 1: Comparison between the experimental and theoretical magnetic dipole moments for F, Ne, Na, Mg, Al, Si, and P isotopes. The calculated shell model signs are used in the cases when it was not measured.
the results obtained from theory are far from the experimental value because ^{30}Na is an element of the island of inversion. To explain the quadrupole moment for ^{30}Na we need pf model space. Utsumo et al. [37], performed theoretical calculations in $sdf_{7/2}p_{3/2}$ model space using SDPF-M interaction [47] for $^{27,29}\text{Na}$ isotopes using the Monte Carlo shell-model approach.

For Mg isotopes, the sd shell-model space is able to explain the experimental data reasonably well up to ^{29}Mg with all the three interactions. However, in the case of ^{27}Mg, IM-SRG interaction gives opposite sign with the experimental data. In the case of ^{23}Mg, for $Q(3/2^+)$, the experimental sign has not yet been confirmed. Recently, the sign of magnetic moment has been measured using laser spectroscopy at CERN-ISOLDE [48]. Shell model calculations predict a positive sign for the quadrupole moment. In the case of ^{27}Mg, the negative magnetic moment for the ground state is dominated by the $\nu s_{1/2}$ configuration. The IM-SRG fails to reproduce the correct sign of its magnetic moment, although it is also predicting $\nu s_{1/2}$ configuration for the ground state. For ^{29}Mg, the g.s. spin is $I = 3/2$ ($\nu d_{3/2}$), and all interactions give the correct sign of the magnetic moment. The sd model space is not able to reproduce correctly the measured ground state $1/2^+$ for ^{31}Mg. For this isotope, a strongly prolate deformed ground state is reported in Ref. [20]. Recent theoretical results reveal the existence of $2p - 2h$ and $4p - 4h$ configurations for ^{32}Mg [49].

For $^{25-28,30-33}\text{Al}$ isotopes, the sd model space is able to correctly reproduce the magnetic moments. In most of the isotopes, CCEI results are in reasonable agreement with the experimental data. For $^{25-28,30-33}\text{Al}$ isotopes, the sign for the g.s. magnetic moment is not yet confirmed, theoretically all the three interactions predict positive sign. The calculated $\mu(2^+)$ and $\mu(3^+)$ for ^{28}Al with IM-SRG and CCEI are not showing good agreement with the experimental data. Also, $ab\text{ initio}$ interactions are giving smaller values of the magnetic moment for ^{27}Al.

Nuclei	State	E_x (keV)	μ_{exp}	$\mu_{\text{IM-SRG}}$	μ_{CCEI}	μ_{USDD}
^{29}Mg	$3/2^+$	0	+0.9780(6)	+1.114	+1.470	+1.071
^{31}Mg	$1/2^+$	0	−0.88355(15)	−0.563	+1.406	−0.923
^{23}Al	$5/2^+$	0	+3.889(5)	+3.716	+3.681	+3.866
^{25}Al	1^+	426	2.99(9)	+2.660	−2.071	+2.985
^{29}Al	$5/2^+$	0	3.6455(12)	+3.462	+3.142	+3.655
^{31}Al	5^+	0	+2.804(4)	+2.850	+2.907	+2.839
^{27}Si	$5/2^+$	0	(+)0.8554(4)	+0.117	+0.337	−0.678
^{29}Si	2^+	1779	1.1(2)	+1.040	+1.093	+1.031
^{31}Si	$1/2^+$	0	−0.55529(3)	−0.010	−0.575	−0.503
^{33}Si	2^+	2235	+0.8(2)	+0.839	+1.939	+0.732
^{39}P	$3/2^+$	0	1.21(3)	+1.212	+1.803	+1.206
^{31}P	$1/2^+$	0	+1.13160(3)	+0.081	+1.694	+1.087
^{33}P	$3/2^+$	1270	+0.30(8)	+0.318	−0.063	+0.167
^{35}P	$5/2^+$	2230	+2.8(5)	+2.260	+3.097	+2.218
^{37}S	$1/2^+$	0	−0.2524(3)	−0.764	+0.177	−0.021
^{39}S	2^+	2231	+0.9(2)	+1.022	+0.980	+1.010
^{41}S	4^+	4459	+1.6(6)	+2.046	+1.840	+2.028

*Here we have reported the shell model result of second 1^+ state, because calculated order of levels are $1^+ - 4^+ - 1^+$, while the experimental g.s. is 4^+.
mentally, the sign of the quadrupole moment is confirmed only for 26,27Al isotopes. For 26Al, the CCEI result for quadrupole moment is in reasonable agreement with experimental data, while for 27Al, the result of quadrupole moment with IM-SRG is better than CCEI.

In the Si chain, the magnetic moments for 27,29,33Si isotopes are calculated for the g.s. while for 28,30Si isotopes they are for the first excited state. For 28,29Si isotopes, the magnetic moments from the CCEI approach are in reasonable agreement. The calculated $\mu(1/2^+)$ for 29Si is suppressed with IM-SRG in comparison with the experimental data. The \textit{ab initio} interactions are giving
FIG. 2: Comparison between experimental and theoretical quadrupole moments for F, Ne, Na, Mg and Al isotopes. The calculated shell model signs are used in case when it was not measured.

smaller values with the opposite sign of $\mu(5/2^+)$ for ^{27}Si in comparison to the experimental data and with USDB interaction; however, the experimental sign is tentative. The quadrupole moment is calculated for ^{27}Si, ^{28}Si, and ^{30}Si. For ^{30}Si, all the three interactions fail to reproduce the correct sign of the quadrupole moment.

We have also reported the magnetic moments of $^{28,29,31,32}\text{P}$, and all the calculated results support positive signs for P isotopes in the g.s. except ^{32}P. For ^{32}P, IM-SRG supports the experimental sign but the magni-
The quadrupole/magnetic moments are calculated in the present work. We have reported occupancies of those nuclei for which the proton and neutron orbitals for $^{19-22}$F, $^{19-23}$Ne, $^{20-31}$Na, $^{21-31}$Mg, $^{23,25-28,30-33}$Al, 27,29,31Si and $^{28-29,31-32}$P isotopes with CCEI for the g.s. The occupancies of $d_{3/2}$, $d_{5/2}$ and $s_{1/2}$ proton and neutron orbitals for $^{19-22}$F, $^{19-23}$Ne, $^{20-31}$Na, $^{21-31}$Mg, $^{23,25-28,30-33}$Al, 27,29,31Si and $^{28-29,31-32}$P isotopes with CCEI for the g.s. are calculated in the present work.
tude is larger in comparison with the experimental value. We have also calculated the magnetic moment of 31,32S and the quadrupole moment of 32,33S. The CCEI results for magnetic moments (32S) and quadrupole moments (33S) are in reasonable agreement with the experimental data.

The calculated g factors with ab initio interactions for the yrast levels in even-even $N = Z$ nuclei are ~ 0.5. Thus, the calculated value is in agreement with the experimental value as reported in Ref. [50].

In Fig. 1, we have shown the comparison between the experimental and theoretical magnetic dipole moments for F, Ne, Na, Mg, Al, Si, and P isotopes. From this figure, it is clear that ab initio interactions are not giving value close to the experimental data for heavier Z nuclei. The deviation between the calculated and the experimental data is large for P isotopes. In the Figs. 1 and 2, we have shown comparison only for the g.s. of those nuclei which have confirmed experimental signs. Apart from this, we have also plotted the g.s. of those data for which all the interactions are giving the same sign but their experimental signs are not yet confirmed.

The g.s. quadrupole moments for F, Ne, Na, Mg and Al isotopes are shown in the Fig. 2. All the interactions are giving reasonable results for the F isotopes. For the 22Na, the calculated quadrupole moment is larger in comparison with the experimental data for all the three interactions. For 25Na, ab initio interactions give larger $Q(5/2^+)$ values in comparison with the experimental data; however, the result with USDB interaction is reasonable.

The occupancies of $d_{5/2}$, $d_{3/2}$, and $s_{1/2}$ proton and neutron orbitals for $^{19-22}$F, $^{19-23}$Ne, $^{20-31}$Na, $^{21-31}$Mg, $^{23,25-28,30-33}$Al, 27,29,33Si and $^{28-29,31-32}$P isotopes with CCEI for the g.s are shown in Fig. 3. In general, the role of the $d_{5/2}$ orbital is important as neutron number increases.

For 30Na (expt. g.s. is 2^+), IM-SRG and CCEI effective interactions predict g.s. as 0^+, while USDB predicts 2^+. For 30Na, the calculated magnetic moment with IM-SRG interaction is in reasonable agreement with the experimental data; however, all three interactions give opposite signs for quadrupole moment in comparison with the experimental data. For 31Na (experimental g.s. is $3/2^+$), CCEI predicts the correct g.s. while USDB and IM-SRG give $5/2^+$. For this nuclei, the magnetic moments predicted by ab initio interactions are similar, whereas the quadrupole moment predicted by CCEI is close to the experimental data. For 31Mg (experimental g.s. is $1/2^+$), ab initio and USDB interactions give g.s. of $3/2^+$. The calculated magnetic moment with CCEI is far from the experimental value and also the sign is not correct. For 33Al, all the three interactions give the g.s. as $5/2^+$, although experimentally it is not yet confirmed. The IM-SRG gives value of magnetic moment close to the experimental data for this isotope. In the case of quadrupole moment, sign is not yet confirmed experimentally, but the magnitude is in reasonable agreement with experimental value with all the three interactions.

The wave functions of the nuclei which show disagreement between ab initio results and with the experimental data and USDB results are shown in Table III. For 27Al, both ab initio interactions give same structure. The ab initio results for μ_{2+} are not in a good agreement with the experimental data. In 28Al, the CCEI result for μ_{2+} is very far from IM-SRG and USDB interactions as well as with the experimental data; also, the wave function is different from IM-SRG and USDB. In the case of CCEI interaction for the 28Al(μ_{2+}) result, we have one unpaired proton and one unpaired neutron in $s_{1/2}$ orbits whereas in USDB and IM-SRG interactions, we have one unpaired neutron in $s_{1/2}$ orbits, and one unpaired proton in $d_{5/2}$ orbit. Although, USDB and IM-SRG are also not in very good agreement with the experimental data. In 32Al, all the three interactions give same structure for the wave function but still CCEI result for $Q(1^+)$ is far from the experimental data. In 27Si, the structures of wave function for CCEI interaction is due to two unpaired protons and one unpaired neutron, whereas in IM-SRG and USDB interactions come from one unpaired neutron in $d_{5/2}$ orbit. In the case of 30Si, the CCEI result for $Q(2^+_1)$ is very far from the experimental wave function, the structure comes because of the two unpaired protons which are in $s_{1/2}$ and $d_{5/2}$ orbits, while for IM-SRG and USDB interactions, the two unpaired neutrons are in $d_{3/2}$ and $s_{1/2}$ orbits.

For 31P ($\mu_{1/2}^+, \mu_{5/2}^+$), 32S ($Q(2^+_1)$) and 33S ($Q(3/2^+_1)$), the structures of wave functions for IM-SRG are very different from USDB and CCEI interactions. For these nuclei, we can see results from Tables I and II that show the IM-SRG results are very far from the experimental data. For 28Na, 25Mg, 32Al, 29Si, and 29P all three calculations give the same structure of the wave functions. But we can see from Table I a deviation of one of the ab initio results with the other two interactions and the experimental data. For 30P, all the three calculations give same structure but the magnitude of USDB result is closer to the experimental data. However, the experimental sign has not yet been confirmed.

IV. SUMMARY

In the present work using two ab initio approaches we have reported the quadrupole and magnetic moments for sd shell nuclei with the shell model. We perform calculations with effective interactions derived from in-medium similarity renormalization and coupled-cluster approaches. Along with ab initio interactions, we have also compared these results with the phenomenological USDB interaction. The results show reasonable agreement with the available experimental data. This work will add more information to previously known spectroscopic properties of sd shell nuclei from ab initio approaches.
Nuclei	Spin	IM-SRG	Probability	CCEI	Probability	USDB	Probability
28Na	μ_{1+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1)$	41.71%	$\pi(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1) \otimes \nu(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1)$	43.52%	$\pi(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1) \otimes \nu(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1)$	51.85%
25Mg	$\mu_{5/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	16.99%	$\pi(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1) \otimes \nu(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1)$	18.14%	$\pi(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1) \otimes \nu(d_{3/2}^1 d_{5/2}^1 s_{1/2}^1)$	26.20%
27Al	$\mu_{5/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	6.46%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	12.92%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	27.19%
28Al	μ_{3+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	14.98%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	29.47%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	37.28%
32Al	Q_{1+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	71.50%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	65.89%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	78.19%
27Si	$\mu_{5/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	9.27%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	13.24%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	27.35%
29Si	$\mu_{1/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	11.62%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	29.18%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	32.52%
30Si	Q_{2+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	8.21%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	33.80%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	25.39%
28P	μ_{3+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	8.61%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	29.43%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	37.24%
29P	$\mu_{1/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	10.38%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	28.56%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	32.60%
31P	$\mu_{1/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	6.46%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	66.90%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	34.38%
32S	Q_{1+}	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	4.72%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	36.14%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	11.36%
33S	$Q_{1/2+}$	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	7.93%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	77.18%	$\pi(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0) \otimes \nu(d_{3/2}^0 d_{5/2}^0 s_{1/2}^0)$	47.69%
Acknowledgment:

We would like to thank Gerda Neyens for many useful suggestions and comments on this manuscript. P.C.S. would like to thank S. R. Stroberg for discussions on IM-SRG. A.S. acknowledges financial support from MHRD (Government of India) for her Ph.D. thesis work. P.C.S. acknowledges financial support from faculty initiation grants.

[1] T. Otsuka, T. Suzuk, J.D. Holt, A. Schwenk, and Y. Akasji, Three-Body Forces and the Limit of Oxygen Isotopes, Phys. Rev. Lett. 105, 032501 (2010).
[2] J. D. Holt, T. Otsuka, A. Schwenk, and T. Suzuku, Three-body forces and shell structure in calcium isotopes, J. Phys. G 39, 085111 (2012).
[3] S. R. Stroberg, H. Herget, J. D. Holt, S. K. Bogner, and A. Schwenk, Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians, Phys. Rev. C 93, 051301(R) (2016).
[4] G. R. Jansen, M. D. Schuster, A. Signoracci, G. Hagen, and P. Navrätill. Open sd-shell nuclei from first principles, Phys. Rev. C 94, 011301(R) (2016).
[5] G.R. Jansen, J. Engel, G. Hagen, P. Navrätill. and A. Signoracci, Ab Initio Coupled-Cluster Effective Interactions for the Shell Model: Application to Neutron-Rich Oxygen and Carbon Isotopes, Phys. Rev. Lett. 113, 142502 (2014).
[6] P.C. Srivastava and V. Kumar, Spectroscopic factor strengths using ab initio approaches, Phys. Rev. C 94, 064306 (2016).
[7] E. Dikmen, A. F. Lisetskiy, B. R. Barrett, P. Maris, A. M. Shirokov, and J. P. Vary, Ab initio effective interactions for sd-shell valence nucleons, Phys. Rev. C 91, 064301 (2015).
[8] L. Cceres, A. Lepailleur, O. Sorlin, M. Stanoiu, D. Sohler, Z. Dombradic, S. K. Bogner, B. A. Brown, H. Herget, J. D. Holt et al., Nuclear structure studies of 24F, Phys. Rev. C 92, 014327 (2015).
[9] Z. Vajta, M. Stanoiu, D. Sohler, G. R. Jansen, F. Azaiez, Z. Dombradic, O. Sorlin, B. A. Brown, M. Belleguic, C. Borcea et al., Excited states in the neutron-rich nucleus 23F, Phys. Rev. C 89, 054323 (2014).
[10] B. A. Brown and W. A. Richter, New “USD” Hamiltonians for the sd shell, Phys. Rev. C 74, 034315 (2006).
[11] B. A. Brown and W. D. M. Rae, The Shell-Model Code NuShellX@MSU, Nuclear Data Sheets 120, 115 (2014).
[12] S.K. Bogner, R.J. Furnstahl and A. Schwenk, From low-momentum interactions to nuclear structure, Prog. Part. Nucl. Phys. 65, 94 (2010).
[13] K. Tsukiyama, S.K. Bogner and A. Schwenk, In-Medium Similarity Renormalization Group For Nuclei, Phys. Rev. Lett. 106, 220502 (2011).
[14] W. A. Richter, S. Mkhize, and B. Alex Brown, sd-shell observables for the USDA and USBD Hamiltonians, Phys. Rev. C 78, 064302 (2008).
[15] N. J. Stone, Atomic Data and Nuclear Data Tables 90, 75 (2005).
[16] IAEA https://www-nds.iaea.org/nuclearmoments/.
[17] M. De Rydt, M. Depuydt and G. Neyens, Atomic Data and Nuclear Data Tables 99, 391 (2013).
[18] H. Iwasaki, T. Motobayashi, H. Sakurai, K. Yoneya, T. Gomi, N. Aoi, N. Fukuda, Zs. Fip, U. Futakami, Z. Gaci et al., Quadrupole collectivity of 26Ne and the boundary of the island of inversion, Phys. Lett. B 620, 118 (2005).
[19] B.V. Pritychenko, T. Glaemacher, P.D. Cottle, M. Fuerbach, R.W. Ibotson, K.W. Kemper, V. Maddalena, A. Navin, R. Ronningen, A. Sakharuk et al., Role of intruder configurations in 26,28Ne and 30,32Mg, Phys. Lett. B 461, 322 (1999).
[20] G. Neyens, M. Kowalska, D. Yordanov, K. Blaum, P. Himpe, P. Lievens, S. Mallion, R. Neugart, N. Vermeulen, Y. Usuno, and T. Otsuka et al., Measurement of the Spin and Magnetic Moment of 31Mg: Evidence for a Strongly Deformed Intruder Ground State, Phys. Rev. Lett. 94, 022501 (2005).
[21] M. De Rydt, G. Neyens, K. Asahi, D.L. Balabanski, J.M. Daugas, M. Depuydt, L. Gaufdefroy, S. Grévy, Y. Hasama, Y. Ichikawa et al., Precision measurement of the electric quadrupole moment of 31Al and determination of the effective proton charge in the sd-shell, Phys. Lett. B 678, 344 (2009).
[22] P. Himpe, G. Neyens, D.L. Balabanski, G. Blier, D. Borremans, J. M. Daugas, F. de Oliveira Santos, M. De Rydt, K. Flanagan, G. Georgiev et al., g factors of 31,32,33Al: Indication for intruder configurations in the 33Al ground state, Phys. Lett. B 643, 257 (2006).
[23] M. Keim, U. Georg, A. Klein, R. Neugart, M. Neurath, S. Wilbert, P. Lievens, L. Vermeeren, B. A. Brown, and ISOLDE Collaboration, Measurement of the electric quadrupole moments of 26,29Na, Eur. Phys. J. A 8, 31 (2000).
[24] P. Doornenbal, H. Scheit, S. Takeuchi, N. Aoi, K. Li, M. Matsushita, D. Steppenbeck, H. Wang, H. Baba, E. Ideguchi et al., Mapping the deformation in the island of inversion: Inelastic scattering of 36Ne and 36Mg at intermediate energies, Phys. Rev. C 93, 044306 (2016).
[25] A.M. Hurst, C.Y. Wu, J.A. Becker, C.J. Harrison, P. Hackman, J.A. Stoyer, C.E. Svensson, R.A.E. Austin, G.C. Ball et al., Narrowing of the neutron sd-pf shell gap in 29Na, Phys. Lett. B 674, 168 (2009).
[26] M. Seidlitz, P. Reiter, R. Altenkirch, B. Bastin, C. Bauer, A. Blazhev, N. Bree, B. Bruyneel, P. A. Butler, J. Cedergren et al., Coulomb excitation of 29,30Na: Mapping the borders of the island of inversion, Phys. Rev. C 89, 024309 (2014).
[27] O. Niedermaier, H. Scheit, V. Bildstein, H. Boie, J. Fitting, R.von Hahn, F. Kock, M. Lauer, U.K. Pal, H. Podlech et al., “Safe” Coulomb Excitation of 39Mg, Phys. Rev. Lett. 94, 172501 (2005).
[28] M. Seidlitz, D. Mecher, P. Reiter, V. Bildstein, A. Blazhev, N. Bree, B. Bruyneel, J. Cedergren, E. Clement, T. Davinson et al., Coulomb excitation of 31Mg, Phys. Lett. B 700, 181 (2011).
[29] J. A. Church, C. M. Campbell, D.-C. Dinca, J. Enders, A. Gade, T. Glasmacher, Z. Hu, R. V. F. Janssens, W. F. Mueller, H. Oliver et al., Measurement of E2 transition strengths in 32,34Mg, Phys. Rev. C 72, 054320 (2005).
[30] D. Borremans, S. Teughels, N.A. Smirnova, D.L. Balabanski, N. Coulie, J.-M Daugas, F. deOliveira Santos, G. Georgiev, M. Lewitowicz, I. Matea et al., Spin and magnetic moment of ^{31}Al ground state, Phys. Lett. B \textbf{537}, 45 (2002).

[31] D. Kameda, H. Ueno, K. Asahi, M. Takemura, A. Yoshimi, T. Haseyama, M. Uchida, K. Shimada, D. Nagae, G. Kijima et al., Measurement of the electric quadrupole moment of ^{32}Al, Phys. Lett. B \textbf{647}, 93 (2007).

[32] H. Heylen, M. De Rydt, G. Neyens, M. L. Bissell, L. Caceres, R. Chevrier, J. M. Daugas, Y. Ichikawa, Y. Ishibashi, O. Kamalou et al., High-precision quadrupole moment reveals significant intruder component in ^{33}Al ground state, Phys. Rev. C \textbf{94}, 034312 (2016).

[33] E. Caurier, F. Nowacki and A. Poves, Merging of the islands of inversion at $N = 20$ and $N = 28$, Phys. Rev. C \textbf{90}, 014302 (2014).

[34] Y. Utsuno, T. Otsuka, T. Glasmacher, T. Mizusaki, and M. Honma, Onset of intruder ground state in exotic Na isotopes and evolution of the $N = 20$ shell gap, Phys. Rev. C \textbf{70}, 044307 (2004).

[35] Data extracted using the NNDC World Wide Web site from the ENSDF database.

[36] W. Geithner, B. A. Brown, K. M. Hilligse, S. Kappertz, M. Keim, G. Kotrotsios, P. Lievens, K. Marinova, R. Neugart, H. Simon, and S. Wilbert, Nuclear moments of neon isotopes in the range from neon: the nuclear quadrupole moments of carbon-11, oxygen-17, and neon-21, J. Phys. Chem. \textbf{96}, 627 (1992).

[37] N. J. Stone, Atomic Data and Nuclear Data Tables \textbf{111-112}, 1 (2016).

[38] D. Sundholm and J. Olsen, Finite element multiconfiguration Hartree-Fock calculations on carbon, oxygen, and neon: the nuclear quadrupole moments of carbon-11, oxygen-17, and neon-21, J. Phys. Chem. \textbf{96}, 627 (1992).

[39] A. Halkier, O. Christiansen, D. Sundholm, and P. Pyykkö, An improved value of the nuclear quadrupole moment of the 197 keV $I = 52$ excited state of ^{19}F, Chem. Phys. Lett. \textbf{271}, 273 (1997).

[40] P. Pyykkö, and A. J. Sadlej, Determination of the 23Na nuclear quadrupole moment from molecular data for NaF and NaCl, Phys. Lett. \textbf{227}, 221 (1994).

[41] G. Neyens, P. Himpe, D. L. Balabanski, P. Morel, L. Perrot, M. De Rydt, I. Stefan, C. Stodel, J. C. Thomas, N. Vermeulen et al., The “island of inversion” from a nuclear moments perspective and the g factor of ^{33}Si, Eur. Phys. J. Special Topics \textbf{150}, 149 (2007).

[42] D. Sundholm and J. Olsen, Finite element MCHF calculations on Mg(3s3p: 3P0): The nuclear quadrupole moment of ^{25}Mg, Nucl. Phys. A \textbf{534}, 360 (1991).

[43] D. Sundholm, and J. Olsen, Nuclear quadrupole moments of ^{33}Si and ^{35}Si, Phys. Rev. A \textbf{42}, 1160 (1990).

[44] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, et al., Varying shell gap and deformation in $N \sim 20$ unstable nuclei studied by the Monte Carlo shell model, Phys. Rev. C \textbf{60}, 054315 (1999).

[45] D. T. Yordanov, M. L. Bissell, K. Blaum, M. De Rydt, C. Geppert, J. Kramer, K. Kreim, M. Kowalska, A. Krieger, P. Lievens et al., Spin and magnetic moment of ^{23}Mg, J. Phys. G \textbf{44}, 075104 (2017).

[46] A. O. Macchiavelli, H. L. Crawford, C. M. Campbell, R. M. Clark, M. Cromaz, P. Fallon, M. D. Jones, I. Y. Lee, M. Salathe, B. A. Brown, and A. Poves, The $^{30}\text{Mg}(t,p)^{32}\text{Mg}$ “puzzle” reexamined, Phys. Rev. C \textbf{94}, 051305(R) (2016).

[47] A. Kusoglu, A. E. Stuchbery, G. Georgiev, B. A. Brown, A. Goasduff, L. Atanasova, D. L. Balabanski, M. Bostan, M. Danchev, P. Detistov et al., Magnetism of an Excited Self-Conjugate Nucleus: Precise Measurement of the g Factor of the 2^+_1 State in ^{24}Mg, Phys. Rev. Lett. \textbf{114}, 062501 (2015).