Profiling the phyto-constituents of *Punica granatum* fruits peel extract and accessing its *in-vitro* antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme inhibitory properties

C. Mayasankaravalli a, K. Deepika a, D. Esther Lydia a,⇑, Reuben Agada b, Dluya Thagriki c, Chandramohan Govindasamy d, Veeramani Chinnadurai d, Othman Mohammed Othman Gatar d, Ameer Khusro e,⇑, Young Ock Kim f, Hak-Jae Kim f,⇑

a Food Chemistry and Food Processing, Loyola College, Nungambakkam, Chennai 34, India
b Department of Biochemistry, School of Life Sciences, Modibbo Adama University of Technology Yola, Nigeria
c CSIR-Indian Institute of Chemical Biology, Kolkata, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
d Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
e Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai 34, India
f Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea

ARTICLE INFO

Article history:
Received 6 July 2020
Revised 19 September 2020
Accepted 22 September 2020
Available online 6 October 2020

Keywords:
Antioxidant
Anti-obesity
Angiotensin-converting enzyme
FT-IR
GC-MS
P. granatum peel

ABSTRACT

This context was investigated to assess the *in vitro* antioxidant, anti-diabetic, anti-obesity, and angiotensin-converting enzyme (ACE) inhibition traits of *Punica granatum* fruits peel extract. Initially, among various extracts tested, aqueous and ethanolic peel extracts depicted the presence of diverse phytoconstituents. *In vitro* antioxidative properties of peel extracts were determined using standard methodologies. Results showed that aqueous and ethanolic extracts had IC50 values of 471.7 and 509.16 μg/mL, respectively in terms of 1,1-diphenyl 2,2-picrylhydrazyl scavenging. Likewise, IC50 values of aqueous and ethanol extract were obtained as 488.76 and 478.47 μg/mL towards the degradation of hydrogen peroxide. The ethanolic extract exhibited the highest inhibition of α-glucosidase by showing activity of 53.34 ± 2.0 to 15.18 ± 1.4 U/L in a dose dependent manner (100–1000 μg/mL). Ethanolic extract was reported as the most active inhibitor of lipase with an IC50 value of 603.50 μg/mL. Ethanolic extract showed increased inhibition of ACE in a concentration dependent manner (100–1000 μg/mL) with IC50 value of 519.45 μg/mL. Fourier transform-infrared spectrum revealed the availability of various functional groups in the ethanolic extract of peel. Gas chromatography-mass spectrometry chromatogram of peel extract illustrated 23 diversified chemical constituents including 1,2,3,4-butanetetrol, Dimethyl sulfone, 9-octadecenamide, and Pentadecanoic acid as predominant compounds. In summary, *P. granatum* fruits peel extract revealed promising antioxidant, anti-diabetic, anti-obesity, and anti-hypertensive properties.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Diabetes mellitus (DM) is a major chronic disease with persistent hyperglycaemia which is affecting global population at an alarming rate. In 2019, the global DM prevalence is estimated to be 9.3% (463 million people) and the total count is predicted to rise by 2045 (Saeedi et al., 2019). Diabetes mellitus can deteriorate various organ systems due to the metabolic aberrations and immune dysfunction which can lead to various complications such as retinopathy, nephropathy, neuropathy, and increased risk of cardiovascular diseases (Goyal and Jialal, 2020). The prevalence of co-morbidities like hypertension and obesity are seen commonly
among people with DM (Chaudhary et al., 2019). In DM, immune dysfunction occurring in a hyperglycaemic environment leads to the greater frequency of bacterial infections associated with acute and emphysematous pyelonephritis, abscess, gangrene, foot infections, and external otitis as well as fungal infections associated with cystitis and candidiasis (Casqueiro et al., 2012). Without integrated pharmaceutical and medical nutrition therapy, DM could be disabling, life-threatening, and expensive.

Hypertension is another common progressive disorder worldwide which leads to varied chronic diseases. Angiotensin converting enzyme (ACE) produced from the lungs converts angiotensin I into angiotensin II which causes vasoconstriction followed by hypertension. At present, antioxidants are widely used for their preventive role against cardiovascular diseases as well as potentiality for scavenging free radicals (Nwaji et al., 2016; Jäkälä and Vapaatalo, 2010). A huge population of the world is affected by hypertension, and this metabolic disorder is expected to increase globally in future (Mittal and Singh, 2010). In spite of adopting life style changes (exercise and healthy diets) as common preventive approaches, the administration of drugs is imperative at critical stages. Hence, there is urgency to prevent and cure hypertension associated disorders by identifying natural therapeutics.

Phytochemicals offer wide varieties of therapeutically active compounds, which are considered less toxic, safer, and cheaper with better drug delivery and therapeutic properties compared to synthetic compounds (Khusro et al., 2013; Al-Dhabi et al., 2015; Al-Dhabi and Arasu, 2016; Barathikannan et al., 2016; Park et al., 2016a; Park et al., 2016b; Cuong et al., 2017; Ilavenil et al., 2017; Parveen et al., 2018; Esther Lydia et al., 2019). Punica granatum or pomegranate belongs to Lythraceae family. Constituents of P. granatum fruits and its peel are known to depict varied biological properties (Barbosa-Filho et al., 2006; Janani and Esther Lydia, 2013; Barathikannan et al., 2016; Esther Lydia et al., 2020). P. granatum peel has several phytochemicals like polyphenolic compounds, phenolic acids, anthocyanins, and flavonoids as potent antioxidants (Middha et al., 2013; Madugula et al., 2017; Di Sotto et al., 2019).

Considering the pivotal therapeutic attributes of P. granatum, this investigation was aimed to demonstrate the in vitro antioxidant, anti-diabetic, anti-obesity, and ACE inhibitory traits of P. granatum fruits peel extract. Further, different types of bioactive components in P. granatum extract were identified using analytical assays.

2. Materials and methods

2.1. Collection of fruits

P. granatum fruits were procured from Pazhamudhir Nilayam, Chennai and peeled. Peels of the fruits were manually removed and was spread on a muslin cloth for 5–6 days for drying. Fruits peels were then subjected to grinding for further processing.

2.2. Sequential extraction

Sequential extraction of fruits peel was performed as per the method of Esther Lydia et al. (2019) using acetone, ethanol, distilled water, petroleum ether, and chloroform as solvents. Solvents extracts were used for further experimental analyses.

2.3. Phytochemical analysis

The presence of varied phytochemicals (carbohydrate, flavonoid, tannins, saponins, alkaloids, quinines, glycosides, cardio glycoside, terpenoids, phenols, coumarins, steroids, phytosteroids, and anthraquinone) in various solvent extracts of peel was determined as per the method of Harborne (1993).

2.4. In vitro antioxidative activities

2.4.1. 1, 1, diphenyl 2, 2, picrylhydrazyl (DPPH) scavenging assay

Among various extracts tested, the aqueous and ethanolic extracts were reported to be promising in terms of the presence of essential phytochemicals, and thus, only these two extracts were used for in vitro antioxidant activities and other analyses. The DPPH degrading properties of selected extracts of P. granatum peel at varied concentrations (100–1000 µg/ml) were determined as per the method of Shimada et al. (1992). Percentage (%) DPPH scavenging traits of peel extracts were calculated according to the equations as given below:

DPPH scavenging (\%) = [\(A_{\text{sample}} - A_{\text{blank}}\)/\(A_{\text{control}}\) × 100

2.4.2. Hydrogen peroxide (H\(_2\)O\(_2\)) degradation assay

Hydrogen peroxide scavenging traits of aqueous and ethanolic extracts of P. granatum peel at varied doses (100–1000 µg/ml) were estimated according to the methodology of Ruch et al. (1989) using the equation mentioned below:

Hydrogen peroxide degradation (%) = [(A0 - A1)/A0] × 100

where, A0 is the absorbance of the control and A1 is the absorbance of the sample.

2.5. In vitro \(\alpha\)-glucosidase activities

\(\alpha\)-glucosidase activities of aqueous and ethanolic extracts were estimated as per the method of Esther Lydia et al. (2019).

2.6. In vitro anti-obesity test

Porcine pancreatic lipase (PPL type II) inhibitory properties of aqueous and ethanolic extracts of P. granatum peel were estimated following the methodology of Zheng et al. (2010). The inhibitory characteristic was estimated as per the equation mentioned below:

Lipase inhibitory activity (%) = 1 - [(B - b)/(A - a) × 100

where, A - activity without the inhibitor, a - negative control without the inhibitor, B - activity with inhibitor, and b - negative control with inhibitor.

2.7. In vitro anti-hypertensive activities

Anti-hypertensive properties of extracts were determined in terms of ACE inhibition using UV–Vis spectrophotometer based on hippuric acid formation ability from hippuryl-L-histidyl-L-leusine (HHL) catalyzed by ACE (Chaudhary et al., 2014). Angiotensin converting enzyme (50 µL; 25 mU/mL) was mixed with 50 µL of the test solution at 37 \(^\circ\)C for 10 min. On the other hand, substrate (150 µL; 8.3 mM of HHL in 50 mM sodium borate buffer containing 0.5 M sodium chloride, pH 8.2) was mixed with solution and kept for 30 min at room temperature. Further, 250 µL of 1 M HCl was added into the mixture to stop the reaction, followed by the addition of 0.5 mL of ethyl acetate and centrifugation of mixture at 800 g for 10 min. Upper component (0.2 mL) was collected and evaporated under vacuum. Hippuric acid was mixed with distilled water and read spectrophotometrically at 228 nm. Ramipril (3.6 ng/mL) was used as standard and ACE inhibition was estimated according to the equation given below:

ACE inhibition (%) = 1 - [(A - B)/C × 100]
where, A is the optical density at 228 nm with ACE but without inhibitor, B is the optical density of both ACE and inhibitor, C is the optical density without ACE and inhibitor.

2.8. Analytical assays

2.8.1. Fourier transform infra-red (FT-IR) spectroscopy

The FT-IR spectrum of ethanolic extract was carried out according to the methodology of Khusro et al. (2014).

2.8.2. Gas chromatography-mass spectrometry (GC-MS)

The GC-MS spectrum of ethanolic extract was performed as per the procedure of Esther Lydia et al. (2019) and relative peak areas were calculated.

2.9. Statistical analyses

Experiments were performed in triplicate and values were represented as mean ± standard deviation.

3. Results

3.1. Phytocomponent analysis

Table 1 illustrates the presence of fundamental preliminary phytochemical components in different solvent extracts of *P. granatum* peel. The investigation uncovered the availability of disparate phytochemicals in aqueous peel extract. Ethanol extract was also reported rich in carbohydrates, tannins, flavonoids, alkaloids, quinones, glycosides, cardiac glycosides, terpenoids, phenols, coumarins, and steroids. In contrary, acetone extract demonstrated the availability of limited phytoconstituents while chloroform extract contained tannins, alkaloids, quinones, terpenoids, and steroids. Quinones and phenols were observed only phytochemically present in petroleum ether extract.

3.2. Antioxidant activities

The potential of *P. granatum* peel extracts to scavenge *H₂O₂* is expressed in Fig. 1b. The extracts exhibited *H₂O₂* degradation at distinct concentrations, however, the aqueous extract of fruit peel exhibited a high *H₂O₂* restraint impact at various concentrations (100–400 μg/mL), while at 700 to 1000 μg/mL, ethanolic extract possessed a higher potential in degrading *H₂O₂* with scavenging rate of 73.12 ± 1.7, 75.64 ± 1.6, 78.16 ± 1.7, and 80.68 ± 1.6%. IC₅₀ values of aqueous and ethanolic extract, and standard were obtained as 488.76, 478.47, and 388.20 μg/mL, respectively.

3.3. α-glucosidase activities

The ethanolic extract depicted α-glucosidase inhibition by showing activity of 53.34 ± 2.0 to 15.18 ± 1.4 U/L in a concentration-dependent manner. In contrary, aqueous extract depicted activity of 65.48 ± 1.8 to 20.23 ± 1.3 U/L at varied concentrations tested (Fig. 2).

3.4. Anti-obesity properties

Fig. 3 illustrates lipase inhibitory potentials of aqueous and ethanolic extracts. With increase in concentrations, lipase inhibition also increased but the ethanolic extract was reported as the most active inhibitor of lipase with an IC₅₀ value of 603.50 μg/mL.

3.5. Anti-hypertensive activities

The inhibition of ACE activity using different concentrations of the extracts is shown in Fig. 4. Ethanol extract revealed increased inhibition of ACE at varied ranges (100–1000 μg/mL) with an IC₅₀ value of 519.45 μg/mL with respect to the aqueous extract.

3.6. FT-IR spectrum

The FT-IR spectrum of ethanolic extract of *P. granatum* peel is shown in Fig. 5. The characteristic absorption band exhibited C–I stretching/halo compound, C–H bending/alkane, P–O–C stretching/aromatic phosphates, S=O stretching/sulfoxide/sulfone, C–O stretching/alkyl aryl ether, N–O stretching/Nitro compound, C=C stretching/ketone, C=O stretching/aldehyde, and N–H stretching/amime.

3.7. GC-MS chromatogram

GC-MS chromatogram of the peel extract is illustrated in Table 2, incorporating the retention time and area of bioactive components present. Among those bioactive components, 1,2,3,4-butanetetrol (33.22%), Dimethyl sulfone (20.47%),

![Table 1](http://example.com/table1.png)

Table 1. Phytocomponents of *P. granatum* fruits peel extracts.

Phytochemicals	Aqueous extract	Ethanol extract	Acetone extract	Chloroform extract	Petroleum ether extract
Carbohydrates	+	+	+	+	+
Tannins	+	+	+	+	+
Saponins	+	+	+	+	+
Flavonoids	+	+	+	+	+
Alkaloids	+	+	+	+	+
Quinones	+	+	+	+	+
Glycosides	+	+	+	+	+
Cardiac glycosides	+	+	+	+	+
Terpenoids	+	+	+	+	+
Phenols	+	+	+	+	+
Coumarins	+	+	+	+	+
Steroids	+	+	+	+	+
Phytosteroids	–	–	–	–	–
Anthraquinone	–	–	–	–	–

*+: present; ‘−’: absent.
9-octadecenamide (13.14%), and Pentadecanoic acid (6.62%) were reported as the major compounds.

4. Discussion

In recent times, there is profound admiration in the estimation and utilization of medicinal plants as the well being of option/traditional medicine and some fundamental dietary supplements for maintaining several ailments relating to human health (Latha et al., 2019). The massive therapeutic significance of plants exclusively relies upon the bioactive composites, particularly phytochemicals that produce physiological effects on human health. In this regard, an alternative approach to diversiform chemical constituents of the medicinal plant becomes imperative to the scientific community to validate and document its medicinal applications just as precursors for organizing complex synthetic substances. Therefore, this investigation established a distinctive role of P. granatum fruits peel as adaptogenic and bio-therapeutics.
The phytochemical analysis of the fruits peel extracts exhibited the availability of diversified components in different solvent extracts. Findings supported the reports of Bhandary et al. (2012) and Sangeetha (2015) who observed the availability of identical phyto-constituents in different extracts of *P. granatum* fruits peel. These phytoconstituents are known to offer imperative biological activities on physiological systems (Karthikeyan and Vidya, 2019).

At present, the emergence of synthetic oral anti-diabetic inhibitors has improved the performance in the management of DM, and its multifaceted complications as well as susceptibility to infections. But the regular use of these inhibitors comes with diluted effects. The present study revealed a protective efficacy of *P. granatum* fruits peel extracts against chronic hyperglycemia-induced oxidative stress linked to DM, thereby suggesting an approach to ameliorate its potential burden through the antioxidant application. In the antioxidant traits, aqueous and ethanolic extracts showed varied ranges of DPPH scavenging activities. The present findings agreed with the reports of Venkatadri et al. (2017) who illustrated pronounced degradation of DPPH at disparate concentrations of the extracts. However, this investigation uncovered that aqueous extract elicited the potent antioxidant activity, linking the fact that active phytochemicals of *P. granatum* fruits peel are readily dissolved in an aqueous medium. Plants rich in phytoconstituents, such as alkaloids, saponins, flavonoids, and phenols have been marked to protect the human body from free radicals, improves the normal metabolism of aerobic cells, and confer strong antioxidant defence mechanisms (Oboh et al., 2014). In this investigation, the DPPH degrading potential of aqueous extract suggests the availability of many hydroxyl groups in the structure of saponins as contained in the aqueous extract than ethanolic, acetone, chloroform, and petroleum ether extracts responsible for the enhancement of antioxidant activity in DM (Elekofehinti, 2015). Hydrogen peroxide deactivates enzymes by the oxidation of essential thiol (-SH) groups and reacts with Fe²⁺ similar to Cu²⁺ ions for forming hydroxyl radicals (Venkatadri et al., 2017).

In this study, *P. granatum* peel extracts showed moderate scavenging of H₂O₂ which might be due to glycosides found in the extracts. Diabetes mellitus is a multi-factorial disorder which causes several other complications such as diminished response of T-cells, neutrophil function, and humoral immunity disorders (Muller et al., 2005). Therefore, it demands multiple therapeutic approaches. α-glucosidase aids the digestion of dietary carbohydrates and starches to produce glucose for intestinal absorption, which thus prompts upsurge in blood glucose concentrations. In diabetics, this enzyme inhibition leads to delayed glucose absorption and lowering of postprandial hyperglycemia. In fact, Ngozi and Olatunbosun (2016) reported that α-glucosidase inhibition partially diminished the degree of HbA1c. In a similar manner, α-glucosidase inhibitors suppressed postprandial hyperglycemia in DM (Lordan et al., 2013). In the present study, ethanolic extract was observed as the most active agent to inhibit α-glucosidase with respect to the aqueous extract. The high α-glucosidase inhibitory trait might be because of saponins present in the extract. Saponins have been found to play a significant impact in the cause of diabetic complications, and its hypoglycemic effect is mediated by distinct mechanisms, particularly the restoration of insulin response, α-glucosidase activity inhibition, and gluconeogenesis inhibition (Elekofehinti, 2015). Furthermore, the prominent α-glucosidase inhibition characteristic of extracts might also be because of phenols and flavonoids. Wang et al. (2004) established
that hydroxyl group corresponds to the inhibition mechanism. In fact, it forms hydrogen bonds with the polar side chains of the amino acids, thereby modifying the molecular conformation of the enzyme along with its hydrophilic and hydrophobic characteristics, prompting a decline in enzyme activity.

In furtherance of the efforts to explore the anti-obesity potency of *P. granatum* fruits peel, we investigated pancreatic lipase activity, a key enzyme for lipid digestion and dietary fats absorption (Yang et al., 2014). Ethanolic extract of the peel was observed as itty, a key enzyme for lipid digestion and dietary fats absorption of tics, prompting a decline in enzyme activity. In addition, these metabolites present in the extract could also be promising agents for exhibiting ACE inhibitory traits.

5. Conclusions

The present study demonstrated that *P. granatum* fruits peel extract attenuated enzyme inhibition in DM, obesity, and hypertension. In addition, FT-IR and GC-MS analyses of ethanolic extract of fruits peel revealed the occurrence of diverse bioactive compounds. Further extensive studies are required to get a deeper insight of not only on in silico molecular docking mechanisms of the bioactive substances in the metabolic pathway of obesity and hypertension in DM but also pivotal therapeutic role of *P. granatum* fruits peel through in vivo studies.

Declaration of Competing Interest

The authors declared that they do not have any conflict in publishing this research article.

Acknowledgement

We duly acknowledge the funding body University Grants Commission (Minor Project F. MRP-5503/15 SERO/UGC) for providing financial support to Dr. D. Esther Lydia. The authors also acknowledge sincerely the management of Loyola College, Chennai, India and Entomology Research Institute, Loyola College, Chennai, India for providing the facility for carrying out the research. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research Group No. (RG -1437-024).

Table 2

List of various compounds present in ethanolic extract of *P. granatum* fruits peel.

Peak Retention time	Area (%)	Compound name
1 7.341	20.47	Dimethyl sulfone
2 7.452	33.22	1,2,3,4-butanetetrol, Erythritol
4 7.645	1.53	Nickel (II) bis(N,N-diocetylthiodiocarbamate)
5 7.727	2.26	2-methyl methanethiosulphonate, Methyl 2-hydroxyethyl sulfoxide
6 8.091	1.46	Ethanol, 2,2,2-[1,2-phenylenedioxy]-2-chloro-1-ethadienyl]-oxy, bis-Thiophosphoric acid
7 8.239	1.86	Methane, (Methylsulfinyl) (Methylthio)-3,5-dinitrobenzene, 5,5-dioxide 3,3-diol
8 8.388	1.56	Dimethyl sulfide, 5,6-dihydro-4H-1-benzazepine-2,7-dione
9 8.470	1.49	2,2-sulfonylethanol
10 8.507	0.81	2,2-sulfonylethanol propanamide, 2-hydroxy-1-ethanol
11 8.603	1.63	2,2-chloroethyloctane butane, 2,3-dichloro-dimethyl sulfide
12 8.700	2.25	3,7-oxidane-1,1,8-tricarboxylic acid, 3,7-dimethyl, trimethyl ester, 1,4-Dimethyl pyridinium chloride, Formaldehyde oxime trimmer
13 9.643	1.37	Carbonic acid, 2-chloroethylnitrophenyl ester, 6-Methoxybenzofuroxan
14 10.572	2.58	1,2,3-benzenetol
15 10.884	1.78	Ethanol, 2,2-sulfonylethyl-1-propene, 1-methylthio-2-trifluoromethyl-1,3,3,3-tetrafluoropropylene glycol
16 11.909	1.34	4-Hepten-3-one, 4-methyl-benzeneamine, 2-methoxy-5-[1-(1H-pyrazol-1-yl)-1H-1,2,3,4-tetrazol-1-yl]-2H-1,4-oxazinquinone
17 19.956	0.56	4,8-bis (decoxy)-5-(4-flurobenzenenzoyl) naphthalene, 1,4-fluorobenzoyl-Vitexin
19 19.063	1.31	Tetradeacandamne, Decanamide, 2,2-dimethyl-tetrahydro-[1,4] dioxo 6,7-diol
20 20.638	13.14	9-ocadecaneamide, (2-Butanamide, 3,3,3-dimethyl-pentanamide)
22 20.823	1.38	Hexadecaneamide, Tetradeacandamne
23 23.349	6.62	Pentadecanoic acid, 2-hydroxyl-1-(hydroxymethyl) ethyl ester, Hexadecanoic acid. Octadecanoic acid

References

Al-Dhabi, N.A., Araus, M.V., Rejiniemmen, T.S., 2015. In vitro antibacterial, antifungal, antiinfluenza, antioxidant, and anticancer properties of isosativol isolated from endangered medicinal plant *Pittosporum tetraspermum*. Evidence-Based Complement. Alter. Med., 2015.

Al-Dhabi, N.A., Araus, M.V., 2016. Quantification of phytochemicals from commercial *Spirulina* products and their antioxidant activities. Evidence-Based Complement. Alter. Med. 2016.

Barathikannan, K., Venkatadri, B., Khusro, A., Al-Dhabi, N.A., Agastian, P., Arasu, M. V., et al., 2016. Chemical analysis of *Punica granatum* fruit peel and its in vitro and in vivo biological properties. BMC Complement. Alter. Med. 16, 264. https://doi.org/10.1186/s12906-016-1237-3.

Barbosa-Filho, J.M., Martins, V.K.M., Rabelo, L.A., Moura, M.D., Silva, M.S., Cunha, E.V. L., et al., 2006. Natural products inhibitors of the angiotensin-converting enzyme (ACE): a review between 1980–2000. Rev. Bras. Farmacogn. 16, 421–446.

Bhandary, S., Kumari, S., Bhat, V., Sharmila, K., Beka, M., 2012. Preliminary phytochemical screening of various extracts of *Punica granatum* peel, whole fruit, and seeds. J. Health Sci. 2, 35–38.

Bhandary, S., Kumari, S., Bhat, V., Sharmila, K., Beka, M., 2012. Preliminary phytochemical screening of various extracts of *Punica granatum* peel, whole fruit, and seeds. J. Health Sci. 2, 35–38.

Casqueiro, J., Casqueiro, J., Alves, C., 2012. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J. Endocrinol. Metab. 16 (Suppl1), S27–S36.

Cureus.5050. https://doi.org/10.7759/cureus.5050.

Chaudhary, S.K., Mukherjee, P.K., Maity, N., Nema, N.K., Bharda, S., Saha, B.P., 2014. *Ocimum sanctum* L. A potential angiotensin converting enzyme (ACE) inhibitor useful in hypertension. Indian J. Nat. Prod. Res. 5, 83–87.

Chaudhary, G., TameezUd Din, A., Chaudhary, F., TameezUd Din, A., 2019. Association of obesity indicators with hypertension in type 2 diabetes mellitus patients. Cureus 11, e5050. https://doi.org/10.7759/cureus.5050.

Hanhineva, K., Al-Dhabi, N.A., Arasu, M.V., 2014. In vitro antimicrobial, cytoprotective, antiinfluenza, antioxidant, and anticancer activities of *Punica granatum* peel. Evidence-Based Complement. Alter. Med., 2015.

Hwang, S., Lee, H., 2016. Natural products inhibitors of the angiotensin-converting enzyme (ACE): a review between 1980–2000. Rev. Bras. Farmacogn. 26, 421–446.

Chaudhary, G., TameezUd Din, A., Chaudhary, F., TameezUd Din, A., 2019. Association of obesity indicators with hypertension in type 2 diabetes mellitus patients. Cureus 11, e5050. https://doi.org/10.7759/cureus.5050.

Chaudhary, G., TameezUd Din, A., Chaudhary, F., TameezUd Din, A., 2019. Association of obesity indicators with hypertension in type 2 diabetes mellitus patients. Cureus 11, e5050. https://doi.org/10.7759/cureus.5050.

Chaudhary, G., TameezUd Din, A., Chaudhary, F., TameezUd Din, A., 2019. Association of obesity indicators with hypertension in type 2 diabetes mellitus patients. Cureus 11, e5050. https://doi.org/10.7759/cureus.5050.
Cuong, D.M., Arasu, M.V., Jeon, J., Park, Y.J., Kwon, S.-J., Al-Dhabi, N.A., Park, S.U., 2017. Medically important carotenoids from momordica charantia and their gene expressions in different organs. Saudi J. Biol. Sci. 24, 1913–1919. https://doi.org/10.1016/j.sjbs.2016.05.014.

Di Sotto, A., Locatelli, M., Macone, A., Toniole, C., Cesa, S., Carradori, S., 2019. Hypoglycemic, anticytotoxicity, and cytoprotective properties of a phenol-rich extract from waste peels of Punica granatum L. var. Dente di Cavalo DC2. Molecules 24, 3103. https://doi.org/10.3390/molecules24123103.

Elekofehinti, O.O., 2015. Saponins : Anti-diabetic principles from medicinal plants – A review. Pathophysiology 22, 95–103.

Esther Lydia, D., Gupta, C., Khusro, A., Salem, A.Z.M., 2019. Susceptibility of poultry microorganisms against new bacterial isolates – An in vitro study. J. Clin. Diagnos. Res. 11, ZC114–ZC117.

Middha, S.K., Usha, T., Pandey, V., 2013. HPLC Evaluation of phenolic profile, nutritive content, and antioxidant capacity of extracts obtained from Punica granatum fruit peel. Adv. Pharm. Res., 296263. https://doi.org/10.1186/296263.

Mittal, B.V., Singh, A.R., 2010. Hypertension in the developing world: challenges and opportunities. Am. J. Kidney Dis. 55, 596–598.

Mohamed, S., 2014. Functional foods against metabolic syndrome (obesity, diabetes, hypertension, and dyslipidemia) and cardiovascular disease. Trends Food Sci. Technol. 35, 114–126.

Muller, L.M., Gorter, K.J., Hak, E., Goudzwaard, W.L., Schellevis, F.G., Hoepelman, A.I., 2005. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 41, 281–288.

Ngoci, R., Olutunbosun, S., 2016. FT-IR analysis of Sopium elipticum (Hochst) pax ethanol leaf extract and its inhibitory effects on pancreatic α-amylase and intestinal α-glucosidase activities in vitro. Egyptian J. Basic Appl. Sci. 3, 343–349.

Nwaji, N.N., Ojo, O.O., Aiyinla, Z.A., Ayajy-Smith, A.F., Mgbenka, U.R., Nkwor, A.N., et al., 2016. Antioxidant and angiotensin converting enzyme inhibition activity of Landophia ovarenisi. Int. J. Pharmacog. Phytochem. Res. 8, 871–880.

Oboh, G., Adelusi, T., Akinyemi, A.J., Ajanu, R.A., 2014. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by phenolic extracts of avocado pear leaves and fruit. Int. J. Biomed. Sci. 10, 208–216.

Park, C.H., Baskar, T.B., Park, S.-Y., Kim, S.-J., Arasu, M.V., Al-Dhabi, N.A., Kim, J.K., Park, S.U., 2016a. Metalloprotease profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules 21, 157.

Park, Y.J., Baskar, T.B., Yeo, S.K., Arasu, M.V., Al-Dhabi, N.A., Lim, S.S., Park, S.U., 2016b. Composition of volatile compounds and in vitro anticylindrical activity of nine Menthe spp. SpringerPlus. 5, 1628.

Park, Y.J., Park, S.-Y., Arasu, M.V., Al-Dhabi, N.A., Ahn, H.-G., Kim, J.K., Park, J.K., Park, S.U., 2017. Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules 22, 313.

Parveen, A., Kim, J.H., Oh, B.G., Subedi, I., Khan, Z., Kim, S.Y., 2018. Phytochemicals: Target-based therapeutic strategies for diabetic retinopathy. Molecules 23, 1519. https://doi.org/10.3390/molecules23071519.

Ruch, R.J., Cheng, S.J., Klausig, J.E., 1989. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10, 1003.

Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karurranga, S., Unwin, N., et al., 2019. Global and regional diabetes prevalence estimates for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843.

Sangeetha, Jayasprakash, 2015. Phytochemical screening of Punica granatum Linn. peel extracts. J. Acad. Ind. Res. 4, 160–162.

Shimada, K., Fukushima, K., Yahara, K., Nakamura, T., 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948.

Venkatadri, B., Khusro, A., Aarti, C., Ramesh Kumar, M.R., Agastian, P., 2017. In vitro assessment on medicinal properties and chemical composition of Michelia nilagirica bark. Asian Pac. J. Trop. Biomed. 7, 782–790.

Yang, M.H., Chin, Y.W., Yoon, K.D., Kim, J., 2014. Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). J. Enzyme Inhib. Med. Chem. 29, 1–6.

Zheng, C.D., Duan, Y.Q., Gao, J.M., 2010. Synergetic inhibition of metal ions and genistein on alpha-glucosidase. FEBS Lett. 576, 46–50.

Yang, M.H., Chin, Y.W., Yoon, K.D., Kim, J., 2014. Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). J. Enzyme Inhib. Med. Chem. 29, 1–6.