Highlights

A Review of High-Performance Computing and Parallel Techniques Applied to Power Systems Optimization

Ahmed Al-Shafei, Hamidreza Zareipour, Yankai Cao

- Bird’s-eye view of high-performance computing adoption in power system optimization studies.
- Opportunities and challenges presented in current implementations and literature.
- Framework suggestion to encourage collaboration and accelerate parallel computing adoption.
A Review of High-Performance Computing and Parallel Techniques Applied to Power Systems Optimization

Ahmed Al-Shafeia, Hamidreza Zareipoura and Yankai Caob,*

\textbf{ARTICLE INFO}

\textit{Keywords:}
Parallel Computing
Optimization
Power System Studies
Grid Transition
Smart Grid
Cloud Computing
High Performance Computing

\textbf{ABSTRACT}

The accelerating technological landscape and drive towards net-zero emission made the power system grow in scale and complexity. Serial computational approaches for grid planning and operation struggle to execute necessary calculations within reasonable times. Resorting to high-performance and parallel computing approaches has become paramount. Moreover, the ambitious plans for the future grid and IoT integration make a shift towards utilizing Cloud computing inevitable. This article recounts the dawn of parallel computation and its appearance in power system studies, reviewing the most recent literature and research on exploiting the available computational resources and technologies today. The article starts with a brief introduction to the field. The relevant hardware and paradigms are then explained thoroughly in this article providing a base for the reader to understand the literature. Later, parallel power system studies are reviewed, reciting the study development from older papers up to the 21st century, emphasizing the most impactful work of the last decade. The studies included system stability studies, state estimation and power system operation, and market optimization. The reviews are split into Central Processing Unit (CPU) based, Graphical Processing Unit (GPU) based, and Cloud-based studies. Finally, the state-of-the-art is discussed, highlighting the issue of standardization and the future of computation in power system studies.

\textbf{Contents}

1 Introduction 4

2 Parallel Hardware 5
2.1 CPUs 6
2.2 GPUs 7
2.3 Other Hardware 8

3 Aggregation and Paradigms 8
3.1 Grid Computing 9
3.2 Cloud Computing 9
3.2.1 Virtualization 10
3.2.2 Containers 10
3.2.3 Fog Computing 10
3.3 Volunteer Computing 11
3.4 Granularity 11
3.5 Centralized vs Decentralized 11
3.6 Synchronous vs Asynchronous 12
3.7 Problem Splitting and Task Scheduling 12
3.8 Parallel Performance Metrics 13

*Corresponding author.

ahmed.alshafei@ucalgary.ca (A. Al-Shafei); hzareipo@ucalgary.ca (H. Zareipour); yankai.cao@ubc.ca (Y. Cao)

ORCID(s):
HPC Applications to Power System Optimization

4 Power Flow

4.1 MIMD Based Studies ... 14
4.2 SIMD Based Studies .. 15
 4.2.1 Development .. 15
 4.2.2 State of the Art .. 15

5 Optimal Power Flow

5.1 MIMD Based Studies .. 17
 5.1.1 Development .. 17
 5.1.2 State of the Art .. 17

6 Unit Commitment

6.1 MIMD Based Studies .. 19
 6.1.1 Development .. 19
 6.1.2 State of the Art .. 20

7 Power System Stability

7.1 MIMD Based Studies .. 23
 7.1.1 Development .. 23
 7.1.2 State of the Art .. 25
7.2 SIMD Based Studies .. 25
 7.2.1 Development .. 25
 7.2.2 State of the Art .. 26

8 System State Estimation

8.1 MIMD Based Studies .. 28
 8.1.1 Development .. 28
 8.1.2 State of the Art .. 28
8.2 SIMD Based Studies .. 28
 8.2.1 Development .. 28
 8.2.2 State of the Art .. 28

9 Unique Formulations & Other Studies

9.1 SIMD Based Studies .. 29
 9.2 MIMD Based Studies .. 29

10 Grid and Cloud Computing Based Studies

10.1 Development ... 30
10.2 State of the Art .. 30

11 Discussion

11.1 Software and Solvers ... 33
11.2 Challenges in the Literature .. 35
11.3 Future and Recommendations ... 36

12 Conclusion

.. 38

13 Appendix

.. 49
Abbreviations

Abbreviation	Description
MIMD	Multiple Instruction Multiple Data
SIMD	Single Instruction Multiple Data
CPU	Central Processing Unit
GPU	Graphical Processing Unit
RAM	Random Access Memory
ACOPF	AC Optimal Power Flow
DCOPF	DC Optimal Power Flow
ED	Economic Dispatch
OPF	Optimal Power Flow
PF	Power Flow
UC	Unit Commitment
SCUC	Security Constrained Unit Commitment
API	Application Programming Interfaces
FPGA	Field Programmable Gate Arrays
CUDA	Compute Unified Device Architecture
MPI	Message Passing Interface
HPC	High Performance Computing
VO	Virtual Organization
AWS	Amazon Web Services
PVM	Parallel Virtual Machines
PNNL	Pacific Northwest National Laboratory
OS	Operating System
NR	Newton Raphson
IPM	Interior Point Method
FDPF	Fast-Decoupled Power Flow
SOR	Successive Over-relaxation
GMRES	Generalized Minimal Residual Method
SLS	Sparse Linear Systems
SCOPF	Security Constrained Optimal Power Flow
SSA	System Stability Analysis
APP	Auxiliary Problem Principle
ADMM	Alternating Direction Method of Multiplier
MILP	Mixed Integer Non-Linear Programming
NLP	Non-Linear Programming
MINLP	Mixed Integer Non-Linear Programming
PMU	Phasor Measurement Unit
WLS	Weighted Least Square
TSCOPF	Transient Stability Constrained OPF
CPLP	Confidentiality-Preserving Linear Programming
DSM	Demand Side Management
TSCUC	Transient Stability Constrained UC
ACPF	AC Power Flow
PPF	Probabilistic Power Flow
EMT	Electromagnetic Transient
MC	Monte Carlo
RE	Renewable Energy
DER	Distributed Energy Sources
DCPF	DC Power Flow
SLR	Surrogate Lagrangian Relaxation
ATC	Analytical Target Cascading
SSE	System State Estimation
1. Introduction

Power systems problems are growing not only in scale but also in complexity. The goals toward grid decarbonization, the changing grid topology, electricity market decentralization, and modernization mean innovations and new elements are continuously introduced to the inventory of factors considered in grid operation and planning. Moreover, with the accelerating technological landscape and policy changes, the number of potential future paths to Net-Zero increases, and finding the optimal transition plan becomes an inconceivable task.

North America [1], the EU [2] and many other countries [3] set target to completely retire coal plants earlier than 2035 and decarbonize the power system by 2050. In addition, the development of Carbon Capture and Storage Facilities is growing [4]. Renewable energy penetration targets are set, with evidence of fast-growing proliferation across the globe, including both transmission connected Variable Renewable Energy (VRE) [5] and behind the meter distributed resources [6]. The demand profile is changing with increased electrification of various industrial sectors [7] and the transportation sector [8] building electrification, energy efficiency [9] [10] and the venture into a Sharing Economy [11].

The emerging IoT, facilitated by low latency, low-cost next-generation 5G communication networks, helps the roll-outs of advanced control technologies and Advanced Metering Infrastructure [12] [13]. This gives more options for contingency remedial operational actions to increase the grid reliability and cost-effectiveness, such as Transmission Switching [14], Demand Response [15], adding more micro-grids, and other Transmission-Distribution co-ordination mechanisms [16]. Additionally, they allow lower investment in transmission lines and look for other future planning solutions such as flow management devices and FACTs [17], Distributed Variable Renewable Energy [18] and Bulk Energy Storage [19].

Moreover, the future grid faces non-parametric uncertainties in the form of new policies such different as carbon taxation, pricing and certifications schemes [20], feed-in-tariffs [21] and time of use tariffs [22], and other incentives. More uncertainties are introduced in smart grid visions and network topological and economic model conceptual transformations. These include the Internet of Energy [23], Power-to-X integration [24], the transactive grid through Peer-to-Peer energy trading facilitated by distributed ledgers or Blockchain Energy [25]. Such disruptions create access to cheap renewable energy and potential revenue streams for prosumers and encourage load shifting and dynamic pricing. Many of these concepts already have pilot projects in various locations in the world [26]. With all those mentioned above, cost-effective real-time operations, decision-making while maintaining reliability becomes extremely difficult, much less planning the network transition to sustain such a dynamic nature and stochastic future.

Many current power system operational models are non-convex, mixed-integer, and non-linear programming problems [27] and incorporate stochastic framework accounting for weather, load, and contingency planning [28]. Operators must solve such problems for day-ahead and real-time electricity markets and ensure meeting reliability standards. In NERC, for example, the reliability standards require transmission operators to perform a real-time reliability assessment every 30 minutes [29]. The computational burden to solve these decision-making problems, even with our current grid topology and standards, forces the recourse to cutting-edge computational technology and high-performance computing strategies for online real-time applications and offline calculations to achieve tractability.

Operators already use high-performance computation facilities or services. Areas where High Performance Computing (HPC) is utilized are Transmission and Generation Investment Planning, Grid Control, Cost Optimization, Losses Reduction, Power System Simulation and Analysis and Control Room Visualization, as seen in [30], and [31]. However, for operational purposes where problems need to be solved on a short time horizon, system models are usually simplified, and heuristic methods are used, relying on the experience of operators such as in [32]. As a consequence, these models tend to be conservative in fashion, reaching a reliable solution at the expense of reduced efficiency [33]. According to The Federal Energy Regulatory Commission, finding more accurate solution techniques for highly complex problems such as AC Optimal Power Flow (ACOPF) could potentially save billions of dollars [34]. This motivates the search for methods to produce high-quality solutions in a reasonable time. Finding appropriate techniques, formulations, and proper parallel implementation on HPCs for power system studies has been a research area of interest. Progress has been made to make solving complex, accurate power system models for real-time decisions favorable.

The first work loosely related to parallelism on a high-level task in a power system might have been by Harvey H. Happ in 1969 [35] where a hierarchical decentralized multi-computer configuration was suggested targeting Unit Commitment (UC) and Economic Dispatch (ED). Other similar work in multi-level multi-computer frameworks followed soon targeting Security and voltage control in the 70s [36, 37, 38]. P.M. Anderson from the Electrical Power Research Institute created a special report in 1977, collecting various studies and simulations performed at the time exploring
the potential applications for power system analysis on parallel processing machines [39]. Also, several papers came out suggesting new hardware to accommodate power system-related calculations [40].

In 1992, C. Tylasky et al. made what might be the first comprehensive review about the state of the art of parallel processing for power systems studies [41]. It discussed challenges that are still relevant today, such as different machine architectures and transparency and portability of the codes used. A few parallel power system study reviews have been conducted throughout the development of computational hardware. Some had similar goals to this paper reviewing HPC applications for power systems [42] [43] and on distributed computing for online real-time applications [44]. Computational paradigms changed exponentially, reducing those reviews to pieces of history. The latest relevant, comprehensive reviews in the topic were by R. C. Green et al. for general power system applications [45], and again focused on innovative smart grid applications [46]. These two handle a variety of topics in power systems.

This work adds to existing reviews a fresh overview of state of the art. It distinguishes itself by providing the full context and history of parallel computation and HPC in power system optimization and its development up to the latest work in the field. Moreover, it focuses on deterministic equation solving and mathematical optimization problems ignoring metaheuristics or machine learning solution methods. It also provides a thorough base and background for newcomers to the field of power system optimization in terms of both computational paradigms and applied algorithms. Finally, it brings to light the necessity of integrating HPC in future studies amidst the energy transition and suggests a framework that encourages future collaboration to accelerate HPC deployment.

This paper is organized as follows: Sections 2 & 3 Identify the main HPC components and parallel computation paradigms. The next six sections review parallel algorithms under both Multiple Instruction Multiple Data (MIMD) and Single Instruction Multiple Data (SIMD) paradigms split into their early development and state of the art for each study, starting with Section 4 Power Flow (PF). Section 5 Optimal Power Flow (OPF). Section 6 UC. Section 7 Power System Stability Studies. Section 8 System State Estimation (SSE). Section 9 Reviews Unique Formulations & Studies. Section 10 Reviews Grid and Cloud Computation application studies. In these studies, novel approaches and algorithms and modifications to existing complex models are made, parallelizing them to achieve tractability or reducing their processing time below that needed for real-time applications. Many of the studies showed promising outcomes and made a strong case for further opportunities in using complex system models on HPC and Cloud for operational applications. Section 11 highlights and discusses the present challenges in the studies and re-projects the future of HPC in power systems and energy markets and recommends a framework for future studies. Section 12 concludes the review.

This review does not include machine learning or meta-heuristic parallel applications such as particle swarm and genetic algorithms. Furthermore, while it does include some studies related to co-optimization of Transmission and Distribution systems, the study excludes parallel analysis and simulations of distribution systems. It is also important to note that this review does not include Transmission and generation system planning problems or models related to grid transitioning because of the lack of parallel or HPC application in the literature on such models, which is addressed in the discussion section.

2. Parallel Hardware

Parallel computation involves breaking down a task into several ones and distributing the separate tasks to multiple workers to be performed simultaneously with some coordination mechanism and communication in place. Depending on the nature of the code or algorithm, parallel programs can be performed on a single processing unit or a single computer with multiple processors, given that the computer falls under a parallel system classification. As long as multiple workers execute tasks simultaneously, there is parallelism. A worker here is a loose term, and pieces of hardware such as a Multi-core processor can be considered as a worker containing workers or its own (the cores). This depends on the implemented parallel algorithm and how it is defined.

Predominantly, parallel machines can be placed under two categories based on The Von Neumann architecture [47], MIMD and SIMD machines. MIMD includes any machines where multiple heterogeneous instructions or operations can be carried on the pool of available data. A multi-core CPU is the main example, as each core has the functionality to perform full instructions. However, the obvious one is a multi-node computer cluster since it contains multiple CPUs. SIMD architecture, on the other hand, performs the same operation on multiple data points as the name implies. Fig. 1 demonstrates the abstract idea behind the two.

The versatility of MIMD illustrated in Fig. 1 is traded off with simplicity in SIMD. Also, note that instructions are not limited to arithmetics and can take different forms (logical, transfer, etc.). The first-ever general-purpose pro-
grammable microprocessor was made in the 70s (intel 4004), and more powerful intel microprocessors were developed later [48]. These processors were too costly to scale and create MIMD supercomputers. That changed, however, in the 90s as the drop in price-to-performance ratio of general-purpose microprocessors meant they superseded vector processors in supercomputers [49]. Transputers and microprocessors designed specifically for aggregation and scalability started dominating parallel computing systems as well [50]. This shift from SIMD to MIMD can also be observed in power system studies as more MIMD suitable algorithms were being used. More “grain” started to be added to algorithms, where entire subproblems are sent to each processor, even though MIMD machines at the time did not have a large number of processors. This fact is reflected in the earlier studies mentioned in this paper, which weren’t vastly broken down.

2.1. CPUs

CPUs were initially optimized for scalar programming and executing complex logical tasks effectively. They kept developing as sequential task processors up until 2005 when their development hit a power wall [51]. Since then, they have relied on multiple cores to increase their performance. CPUs of the modern era function as miniature superscalar computers containing multiple cores capable of complex logical operations, enabling pipelining, task-level parallelism and multi-threading [52]. They contain an extra SIMD layer that supports data-level parallelism, vectorization, and vector processing from a typical eight 64-bit register. They can contain up to 32, 512-bit vector registers and units such as Fused-Multiply Add that combine addition and multiplication in one step [53] [54]. Furthermore, CPUs use a hierarchy of memory and caches that allow the execution of sequences of instructions on multiple data points very quickly; this hierarchy can be observed in the illustration in Fig. 2.

Fig. 2 shows caches from high-speed, low-capacity registers that are closest to the CPU cores to lower-speed, higher-capacity caches descending from L1 to L2 to L3 caches that save data for the processors. They give the CPU a distinct functional advantage over GPUs in that data is readily accessible, allowing the complex operations without fetching data from main memory.

CPUs employ a variety self optimizing techniques such as “Speculation”, “Hyperthreading or “Simultaneous Multi-threading”, “Auto vectorization” and “task dependency detection” [52]. The emphasis on those features and low latency make modern CPUs very efficient in enhancing the performance of multiple general complex tasks and functions without much interference or specific instructions. Workstation CPUs can have up to 16 processing cores, and server-level CPUs can have up to 128 cores in certain products [56].

Often, any software that utilizes Multi-threading uses a portable Application Programming Interfaces (API) such as Cilk or OpenMP, which allows function and loop level parallelism to be achieved. However, the true value of scaling parallel algorithms today is achieved by using several CPUs in multi-processing to solve massive decomposed problems, which is facilitated by APIs such as Message Passing Interface (MPI). Multi-threading is usually embedded at the process level in the compiled code. E.g., when the distributed subproblems of a decomposed optimization problem are solved on every CPU using a general solver which applies multi-threading techniques.
2.2. GPUs

GPUs function very similarly to Vector Processing Units or Array processors, which used to dominate supercomputer design. They are additional components to a “Host” machine that sends kernels which is essentially the CPU. GPUs were originally designed to render 3D graphics. They are especially good at vector calculations. The representation of 3D graphics has a “grid” nature and requires the same process for a vast number of input data points. This execution has been extended to many applications in scientific computing and machine learning, solving massive symmetrical problems or performing symmetrical tasks. GPUs have many streaming processors with a bank of registers, low latency shared memory, warp scheduler, and many cores and multi-processors. Each contains an instruction cache and access to global memory. It also contains ALUs capable of vectorizing basic mathematical operations, including trigonometric functions. Unlike CPUs, achieving efficiency in GPUs parallelism is a more tedious task due to the fine-grained SIMD nature and rigid architecture. Fig. 3 shows a simple breakdown of GPU instruction cycle.

The GPU (Device) interfaces with the CPU (Host) through PCI express bus from which it receives instruction “Kernels”. In each cycle, a Kernel function is sent and processed by vast amounts of GPU threads with limited com-
munication between them. Thus, the symmetry of the parallelized task is a requisite, and the number of parallel threads has to be of a specific multiple factor to avoid the sequential execution of tasks. Specifically, they need to be executed in multiples of 32 threads (a warp) and multiples of 2 streaming processors per block for the highest efficiencies.

GPUs can be programmed in C or C++. However, many APIs exist to program GPUs such as OpenCL, HIP, C++ AMP, DirectCompute, and OpenACC. These APIs provide high-level functions, instructions, and hardware abstractions, making GPU utilization more accessible. The most relevant interface is the Compute Unified Device Architecture (CUDA) by NVIDIA since it dominates the GPU market in desktop and HPC/Cloud [57]. CUDA's libraries make NVIDIA's GPU's power much more accessible to the scientific and engineering communities. CUBLAS, for example, is a basic linear algebra subroutine and CUSPARSE is a sparse matrix operation library. Both alleviate the burden of fine-tuning and scheduling these operations for GPU. Libraries of several programming languages, such as scikit-learn for Python, already use CUDA in some of their functions and packages (scikit-CUDA). CUDA also includes a Unified Shader pipeline that allows on-chip ALU with a program to perform general-purpose computation. CUDA moved the limitation of using GPUs for 3D graphics to general scientific computing such as fluid dynamics and financial modeling.

Power system network nodes have very few interconnections, resulting in a sparse matrix system. That is a little problematic for GPU processing as they are designed for dense systems associated with graphics processing. GPUs use registries and cache memory, but those caches are not tailored to reduce latency and are not adjacent to cores. Moreover, GPU's different architecture may cause discrepancy and lower accuracy in results as floating points are often rounded in a different manner and precision than in CPUs [58]. Nevertheless, these challenges can be worked around with CUDA and sparse techniques that reduce the number of ALUs required to achieve a massive speedup. Finally, GPUs can offer a huge advantage over CPUs in terms of energy efficiency and cost if their resources were used effectively and appropriately.

2.3. Other Hardware

There are two more notable parallel devices to mention. One is the Field Programmable Gate Arrays (FPGA). This chip consists of configurable logic blocks, allowing the complete user flexibility in programming the internal hardware and architecture of the chip itself. They are attractive as they are parallel, and their logic can be optimized for desired parallel processes. However, they consume a considerable amount of power compared to other devices, such as the Advanced RISC Machine. Those are processors that consume very little energy due to their reduced instruction set, making them suitable for portable devices and applications [59].

3. Aggregation and Paradigms

In the late 70s, project ARPANET took place [60] UNIX was developed [61], and advancement in networking and communication hardware was achieved. The first commercial LAN clustering system/adaptor, ARCNET, was released in 1977 [62] and hardware abstraction sprung in the form of virtual memory, such as OpenVM, which was adopted by operating systems and supercomputers [63]. Around that same time, the concept of computer clusters was forming. Many research facilities and customers of commercial supercomputers started developing their in-house clusters of more than one supercomputer, which leads us to HPC.

HPC facilities are a network of high-performing aggregate computational hardware. They enable vast parallelism of computation, leading to higher computational capacity and speed, and their true potential lies in the distributed nature of hardware and memory. Fig. 4 shows how aggregations starts with components on a compute node (CPU, Random Access Memory (RAM) & GPU). Several nodes and big data storage are connected, forming a cluster through InfiniBand, and finally, clusters are connected to geographically separate clusters through the internet, forming a Grid and Cloud. The communication between processes through aggregate hardware is aided by high-level software such as MPI available in various implementations and packages such as Mpi4py in Python. Higher-level interfaces exist, such as Apache (Hadoop Airflow and Spark), Slurm, and mrjob, to aid in data management, job scheduling, and other routines.

Specific clusters might be designed or equipped with components geared more towards specific computing needs or paradigms. HPC usually includes tasks with rigid time constraints (minutes to Days, maybe weeks) that require a large amount of computation. The High Throughput Computing (HTC) paradigm, which has been introduced in 1996 [64], involves tasks that require a large amount of computation, taking a very long time (months to years). An example would be chip simulations done by chip manufacturers or high-energy physics applications. Many Task Computing
(MTC) paradigm involves computing various distinct HPC tasks and revolves around the management of applications that require a high level of communication and data management and are not entirely parallel [65]. The aggregation of heterogeneous clusters and supercomputers to form Grid or Cloud facilities provides users or participants the flexibility to perform tasks under any previously mentioned paradigms.

3.1. Grid Computing

The 90s was when the World Wide Web and the information age spurred, connecting computers worldwide. This set off the trend of wide-area distributed computing and “Grid Computing”. Ian Foster coined the term with Carl Kesselman and Steve Tuecke, who developed the Globus toolkit that provides grid computing solutions [66]. In Grid Computing, massive heterogeneous aggregate computing resources are shared and utilized on demand by many organizations and coalitions such as NASA 3-EGEE, Open Science Grid, the European Grid Infrastructure 1-Way, and EGI in Europe, Worldwide LHC Computing Grid, and WestGrid Canada.

The computational resources of Grid computing facilities are distributed geographically and are not subject to a central controller or owner. The resources are managed and coordinated through Virtual Organization (VO), which can be institutions or teams of individuals with shared competencies and interests. Namely, those are experts in “Meta-computing,” a field that emerged with grid computing. The scope, physical boundaries of control, and responsibility of VOs are malleable and change over clusters.

Hardware virtualization and interactive applications are rare in Grids and usually discouraged by grid organizations for reliability/security reasons. Because grid computing is mainly adopted by research and scientific organizations, its infrastructure tends to be very secure and holds a private network of users sponsored by their organizations. The provenance of workflow and performance monitoring are also features of grids for scientific reproducibility. Computation services are usually executed on a batch job basis with queues and wait times, charging users or their groups by the CPU hours or equivalent. Specific credit of CPU hours is given for every user/group of users. The extent to which the credit is exhausted by a user/group plays a role in determining a requested job’s priority and position in the job queue. Grids computing is suitable for sensitive closed-ended, and non-urgent applications as resources are not readily available on demand.

3.2. Cloud Computing

Cloud computing is essentially the commercialization and effective scaling of Grid Computing driven by demand, and it is all about the scalability of computational resources for the masses. The existence of grid computing, alongside the cheapening and development of high-speed networks, Solid State Drive storage, high-speed internet, and multi-processors such as the IBM POWER4 and Intel core duo, paved the way for Cloud Computing in the mid-2000s. It mainly started with Amazon’s demand for computational resources for its e-commerce activities, which precipitated amazon to start the first successful infrastructure as a service-providing platform with Elastic Compute Cloud [67] for other businesses that conduct similar activities. Later on, amazon also started hosting Platform-as-Service and Software-as-Service.

The distinct abstractions and concepts that define cloud computing are an implication of the business model for Grid
Cloud computing is way more flexible and versatile than Grid in accommodating different customers and applications. Cloud computing relies heavily on virtualization (both Software and machine virtualization), allowing the sharing of resources and using resources for native interactive applications, hence easy commercialization. It makes Cloud inherently less secure, less efficient in performance than Grid, and a bit more challenging to manage, yet way more scalable, on-demand, and overall more resource-efficient. Users can customize or start pre-defined “Instances” of virtual hardware and are charged by the hour, for instance, running time, regardless of the actual usage of resources. Cloud achieves a delicate balance between efficiency and the cost of computation.

Today, Amazon Web Services (AWS), Microsoft Azure, Oracle Cloud, Google Cloud, and many other cloud commercial services provide massive computational resources for online-based companies such as Netflix, LinkedIn, Facebook, application services such as Adobe, media companies such as BBC, ESPN, energy industry such as GE and Shell, tech Companies such as Apple and IBM, real estate and hospitality such as AirBnB, banks and financial services such as HSBC and Paypal, medical companies such as Jhonson and Jhonson and intelligence and defense such as NSA. The thirst for computational resources is ever-increasing in all sectors, and indeed, it is also growing in the electrical power sector. It only makes sense that the energy and electrical power industries are following the same path due to the widely massive adoption of HPC and cloud services, especially in sensitive sectors such as financial and defense.

3.2.1. Virtualization

In 1984, the creators of OpenVM developed the VMScalable cluster, which consists of several OpenVMS machines. The appearance of virtualization caused a considerable leap in massive parallel computing, especially after the software tool Parallel Virtual Machines (PVM) [68] was created in 1989. It bridged a huge software gap that allowed heterogeneous hardware to be clustered together. Since then, tens and hundreds of virtualization platforms have been developed and are used today on the smallest devices with processing power [69]. While virtualization is heavily adopted in Cloud, it is not strict to it. It can be implemented even on a single processor computer. Virtualization allows the sharing of resources in a pool. For example, one can emulate four fully functioning virtual laptops on the hardware of a single laptop. The only catch is that each virtual laptop cannot fully exhaust its “promised” available resource simultaneously.

Another example would be virtualizing a computer or machine (e.g. gaming console) on a completely different one (laptop). The underlying machine has the hardware capability of emulating all the processes of the virtualized one. Therefore, less hardware can be allocated or invested in Cloud computing for a more extensive user base. Often, the percentage of hardware being used is low compared to the requested hardware. Idle hardware is reallocated to other processes that need it. The instances initiated by users float on the hardware like clouds shifting and moving, shrinking and expanding depending on the actual need of the process.

3.2.2. Containers

While virtualization makes hardware processes portable, containers make software portable. Developing applications, software, or programs in containers allows them to be used on any Operating System (OS) as long as it supports container engines. That means one can develop a Linux-based software (e.g., that works on Ubuntu 20.04) in a container and run that same application on a machine with Windows OS or iOS installed. Fig. 5 compares virtual machines with container layers. The software and libraries needed to support the application sit on the container engine installed on the Host computers OS, which provides the needed compatibility by recognizing the application's native OS in the container. In contrast, virtualization requires an additional layer of OS to make to run the application.

Containers can also run on bare metal, which removes latency and reduces dependency and the complexity of application and software development. Containers are a big deal because they provide complete flexibility and interchangeability for service-based applications that utilize different high-performance computing facilities. An application can be developed once using containers and used by multiple clients on their on-premise cluster or a cloud service of their choice. Docker and Apptainer (formerly known as singularity) are commonly used containerization engines in Cloud and Grid receptively [70] [71].

3.2.3. Fog Computing

Cloudlets, edge nodes, and edge computing are all related to an emerging IoT trend, Fog Computing. Fogs are computed nodes associated with a cloud that are geographically closer to the user end or control devices. Fogs mediate between extensive data or cloud computing centers and users. This topology aims to achieve data locality, giving several advantages such as low latency, higher efficiency, and decentralized computation. The fog computing paradigm has the disadvantages of low computational power, communication infrastructure requirement, and security risks.
3.3. Volunteer Computing

Volunteer computing is an interesting distributed computing model that originated in 1996 by Great Internet Mersenne Prime Search [72] allowing individuals connected to the internet to donate their personal computer idle resources for a scientific research computing task. Volunteer computing remains active today with many users and various middleware and projects, both scientific and non-scientific, primarily based on BOINC [73], and in commercial services such as macOS Server Resources, [74].

3.4. Granularity

Superficially, the terms “Fine-Grained” and “Coarse-grained” algorithms describe how parts of a sequential code can be parallelized. However, the line which separates a fine-grained from a coarse one is blurry so is the convention of using the terms, making the associations below relevant. Fine-grained parallelism appears in algorithms that frequently repeat a simple homogeneous operation on a vast data set. They are often associated with embarrassingly parallel problems. The problems can be divided into many highly, if not wholly symmetrical simple tasks, providing high throughput. Fine-grained algorithms are also often associated with multi-threading and shared memory resources.

Coarse-grained algorithms imply moderate or low task parallelism that sometimes involves heterogeneous operations. Today, coarse-grained algorithms are almost synonymous with Multi-Processing, where the algorithms use distributed memory resources to divide tasks onto different processors or logical CPU cores. They can embed fine-grained algorithms, for example, at the solution task of an optimization problem, where the repetitive matrix and vector operations are performed. In decomposed problems, commercial solvers are often used to find the solution to each sub-problem. The solvers themselves may and often have embedded multi-threading parallelism. The steps of the algorithms used by the solver are also broken down and divided between threads to speed up the solution process.

3.5. Centralized vs Decentralized

Centralized algorithms refer to problems with a single objective function, solved by a single processor, with data stored at a single location. When a centralized problem is decomposed into N subproblems, sent to N number of processors to be solved, and retrieved by the central controller to update variables, re-iterate, and verify convergence, the algorithm becomes a “Distributed” algorithm. The terms distributed and decentralized are often used interchangeably and are often confused in the literature. There is an important distinction to make between them. A Decentralized Algorithm is where the decomposed subproblems do not have a central coordinator or a master problem. Instead, the processes responsible for the subproblems communicate with neighboring processes to reach a solution consensus. (several local subproblems with coupling variables where subproblems communicate without a central coordinator.)

For small-scale problems, centralized algorithms are preferred, and distributed algorithms are not helpful mainly due to bottlenecks of communication overhead. In large-scale complex problems with many variables and constraints, distributed algorithms outperform centralized algorithms. The speedup keeps growing with the problem size if the problem has "strong scalability." Distributed algorithms subproblems share many global variables. It means a higher communication frequency as all the variables need to be communicated back and forth to the central coordinator.
Moreover, in some real-life problems, central coordination of distributed computation might not be possible. For example, suppose a Multi-area ED problem is decomposed to be solved by each power pool of independent system operators from different interconnected jurisdictions or countries separately. A central coordinator might not exist in that case, and it might be hard to assign such authority.

Fully decentralized algorithms might solve this problem as their processes communicate laterally, and only neighboring processes have shared variables. They remove the need for a central coordinator, which helps achieve lower latency and fewer iterations since there are fewer global variables than distributed algorithms. Fig. 6 illustrates the three schemes.

![Figure 6: Information exchange between processors in different parallel schemes, Centralized (a), Decentralized (b) Distributed (c)](image)

The arrows point in the direction of communication. In a centralized case displaying a single general-purpose processor, parallelism could still exist in the form of multi-threading. However, all three paradigms can be executed on a single processor, limited by the number of possible threads.

3.6. Synchronous vs Asynchronous

Synchronous algorithms are ones where the parallelism steps are synchronized, and the overall sequential process does not move forward until all the parallel tasks are executed. Synchronous algorithms are more accurate and efficient if all the tasks have similar complexity and require similar execution times, which is often the case when the tasks and data are symmetrical. However, that is usually not the case in power system optimization studies. In decomposed power system problems, the subproblems of different regions or periods (depending on the problem and its decomposition) might be harder to solve than others. The computational power in certain regions might be more complex than in others. Suppose computation is geographically distributed, such as in fog computing. In that case, the difference in distance between regions creates different communication delays, which adds to the level of stochasticity of subproblem task time. In these cases, synchronous algorithms tend to be relatively inefficient. Even if almost all tasks are completed, a single delayed task can hold the process idle in the parallel step.

Asynchronous algorithms specifically target this challenge as they allow the algorithm to proceed and idling workers take new tasks even if not all the adjacent processes are complete. Using asynchronous algorithms might be helpful, very efficient, and might outperform synchronous algorithms in many real-life cases with asymmetrical sub-problems. However, when the information processed in the parallel tasks is dependent on each other, such as in distributed and iterative algorithms, asynchronous algorithms compromise solution accuracy and cause an increase in the number of iterations. To achieve better results, often, the algorithm needs to ensure "Formation" is in place in the Asynchronous decomposition, meaning that while subproblems might have a deviation in the direction of convergence, they should keep a global tendency toward the solution, much like bird flocks heading in the same direction.

3.7. Problem Splitting and Task Scheduling

The above subsection speaks closely to and falls under the issue of problem splitting and parallel task scheduling. In Shared Memory parallelism or Multi-threading, synchronization is required to avoid "Race Conditions" that cause numerical errors as multiple threads try to access the exact memory location or variable simultaneously. Hence synchronization does not necessarily imply that processes will execute every instruction simultaneously but rather in a coordinated manner.

Coordination mechanisms involve pipe-lining or task overlapping, which can increase efficiency and reduce the latency of parallel performance. For example, for synchronous algorithms with asymmetrical tasks, sub-tasks that
take the longest time to process can be shared with the idle, less burdened workers if no dependencies or task interactions prevent such reallocation. Dependency analysis is occasionally carried out when splitting a problem or a task by structure or decoupling a system. For example, power system network models naturally produce block-diagonal-bordered sparse matrices, which can be factorized using LU factorization in order to parallelize their solution. In order to do that, however, dependencies must be found in an ordering step, where graph theory and Diakoptics are often used to highlight those dependencies and solve the independent blocks in parallel completely. In an elaborate parallel framework such as in multi-domain simulations or smart grid applications, task scheduling becomes its own complex optimization problem, often solved heuristically. However, there exist packages such as DASK [75] which can help in optimal task planning and parallel task scheduling as shown in Fig. 7.

![Typical task graph generated and optimized by DASK](image)

Figure 7: Typical task graph generated and optimized by DASK [75]. The original schedule (a) the optimized schedule (b).

DASK is a python library for parallel computing which allows easy task planning and parallel task scheduling optimization. The boxes in Fig. 7 represent data, and circles represent operations. The management of tasks and process manipulation with schemes such as blocking and non-blocking communication that exits in MPI and other parallel computing APIs allow enormous versatility in task scheduling and allocation. With a cleverly written sequential code, one can create an extremely efficient parallel code squeezing every bit of the available resources.

3.8. Parallel Performance Metrics

The main driver behind using parallel computation is to significantly reduce solution time, sometimes to speed up an already simple problem, and other times to merely achieve tractability for a complex problem. In either case, both solution time and accuracy are sought as measures of the success of the parallel algorithm.

According to the Amdahl law of strong scaling, there is an upper limit to the speedup achieved for a fixed size problem. Dividing a specific fixed size problem into more subproblems does not result in a speedup linearly. However, if the parallel portion of the algorithm increases, then proportionally increasing the subproblems or the number of processors could continuously increase the speedup according to Gustafson’s Law of strong scaling. The good news is that Gustafson’s law applies to large decomposed power system problems.

There are three types of metrics most frequently used in the literature. One is the speedup, which is the ratio of the serial algorithm latency to the parallel algorithm latency. The second is Efficiency, which is the speedup ratio to the number of processors used. The last one is the scalability, the ratio of the parallel algorithm latency on a single core to the parallel algorithm latency over N cores.

This speedup metric is often used unfairly. For example, in decomposition algorithms, solving subproblems is parallelized, then the performance comparison is drawn against the same serial algorithm (i.e., the scalability equation used but referred to as speedup). The parallel algorithm must be compared to the best serial algorithm that can achieve the same task to have a truly fair comparison. This alludes to the fact that there are several approaches for the speedup metric, which should be discussed in parallel algorithm studies for higher transparency as done in [76].
A Linear Speedup is considered optimal, while sublinear speedup is the norm because there is always a serial portion in a parallel code. However, there are cases where superlinear speedup is achieved in some studies. This is often due to a playfield change and deep modifications in algorithms’ features, leading to unfair comparisons. For example, when the parallel algorithm’s cache memory usage is optimized or distributed memory is used, allowing faster access to memory than serial processes.

Energy efficiency in parallel coding is also an important factor, especially for users who use in-house HPC facilities. Using multi-threading causes the energy consumption of multi-processors to increase drastically [77]. So in the case of resource abundance, it might make more sense to multi-process rather than multi-thread.

Both sequential and parallel programs are vulnerable to major random errors caused by the Cosmic Ray Effect [78] which has been known to cause terrestrial computational problems[79]. Soft errors might be of some concern regarding real-time power system applications. However, In parallel programming, especially in multi-processing, re-ordering floating-point computations is unavoidable; thus, a tiny deviation in accuracy from the sequential counterpart is expected and should be tolerated given that the speedup achieved justifies it.

When creating a parallel algorithm, emphasis on the quality of the serial portion of the algorithm must be taken, which is often not done. A parallel algorithm, after all, is contained and executed by a serial code. Thus, it is vital to have an excellent serial code focusing on data locality and a good parallel strategy.

All the computing paradigms mentioned above are points to tweak and consider when creating and applying any parallel algorithm. Often compromises between speedup and accuracy are made; the final choice of parameters, in the end, depends on the need for the algorithm.

4. Power Flow

PF studies are central to all power system studies involving network constraints. The principal goal of PF is to solve the network’s bus voltages and angles to calculate the flows of the network. For some applications, PF is solved using DC power flow equations, which are approximations based on realistic assumptions. Solving these equations is easy and relatively fast and results in an excellent approximation of the network PF [27]. On the other hand, to obtain an accurate solution, non-linear full AC Power flow equations need to be solved, and these require numerical methods of approximation. The most popular ones in power system analysis are the Newton Raphson (NR) method and the Interior Point Method (IPM) [34]. However, using these methods is computationally expensive and too slow for real-time applications, making them a target for parallel execution.

4.1. MIMD Based Studies

Parallelism in PF in some earlier studies was achieved by restructuring the hardware to suit the algorithm. In what might be the first parallel power flow implementation, Taoka H. et al. designed their own multi-processor system around the Gauss Iterative method in 1981, such that each 8085 processor in the system would solve the power flow for each bus [80]. Instead of modifying the algorithm, the hardware itself was tailored to it, achieving a linear speedup in comparison to the sequential implementation in [81]. Similarly, a year after, S. Chan and J. Faizo [82] reprogrammed the CDC supercomputer to solve the Fast-Decoupled Power Flow (FDPF) algorithm in parallel. FPGAs, were also used to parallelize LU decomposition for PF [83] [84]. The hardware modification approach, while effective, is, for the most part, impractical, and it is common sense to modify algorithms to fit existing scalable hardware.

The other way to parallelize PF (or OPF) is through network partitioning. While network partitioning usually occurs at the problem level in OPF, in PF, the partitioning often happens at the solution/matrix level. Such partitioning methods for PF use sparsity techniques involving LU decomposition, forward/backward substitution and diakoptics that trace back to the late 60s predominantly by H. H. Happ [85] [86] for load flow on typical systems [87] [88] and dense systems [38]. Parallel implementation of PF using this method started in the 80s on array processors such as the VAX11 [89] and later in the 90s on the iSC hypercube [90]. Techniques such as FDPF were also parallelized on the iPSC using Successive Over-relaxation (SOR) on Gauss-Sidel (GS) [91], and on vector computers such as the Cray X/MP using Newtons FDPF [92] [93]. PF can also be treated as an unconstrained non-linear minimization problem, which is precisely what E. Housos and O. Wing [94] did in order to solve it using a parallelizable modified conjugate directions method.

When general processors started dominating parallel computers, their architecture homogenized, and the enhancements achieved by parallel algorithms became comparable and easier to experiment with. It enabled a new target of
optimizing the parallel techniques themselves. Chen and Chen used transputer-based clusters to test the best workload/node distribution on clusters, and [95] and a novel BBDF approach for power flow analysis [96]. The advent of MPI allowed the exploration of scalability with the Generalized Minimal Residual Method (GMRES) in [97], and the multi-port inversed matrix method [98] as opposed to the direct LU method. Beyond this point, parallel PF shifted heavily towards using SIMD hardware (GPUs particularly) except few studies involving elaborate schemes. For example, Transmission/Distribution or smart grid PF calculation [99] or Optimal network partitioning for fast PF calculation [100].

4.2. SIMD Based Studies

4.2.1. Development

GPU dominates recent parallel power system studies. The first power flow study implementation might have been by using a preconditioner Biconjugate Gradient Algorithm and sparsity techniques to implement the NR method on a NVIDIA Tesla C870 GPU [101]. Some elementary approaches parallelized the computation of connection matrices for networks where more than one generator could exist on a bus on a NVIDIA GPU [102]. CPUs were also used in SIMD-based power flow studies since modern CPUs exhibit multiple cores; hence multi-threading with OpenMP can be used to vectorize NR with LU factorization [103]. Some resorted to GPUs to solve massive batches of PF for Probabilistic Power Flow (PPF) or contingency analysis, thread per scenario, such as in [104]. Others modified the power flow equations to improve the suitability and performance on GPU [105] [106].

While many papers limit their applications to NVIDIA GPUs by using CUDA, OpenCL, a general parallel hardware API, has also been used occasionally [107]. Some experimented with and compared the performance of different CUDA routines on different NVIDIA GPU models [108]. Similar experimentation on routines was conducted to solve ACOPF using FDPF [109]. In [110], NR, Gauss Sidel, and Decoupled PF were tested and compared against each other on GPU. Improvement on Newtons Method and parallelizing different steps of it were performed previously [111]. Asynchronous PF algorithms were applied on GPU, which sounds difficult as the efficiency of GPUs depends on synchronicity and hegemony, [112]. Even with the existence of CUDA, many still venture into creating their routines with OpenCL [113] [114] or direct C coding [115] of GPU hardware to fit their needs for PF. Very recently a few authors made thorough overviews for parallel power flow algorithms on GPU covering general trends [116] [117] and specifically AC power flow GPU algorithms [118]. In the State of the Art subsection, the most impactful work is covered.

4.2.2. State of the Art

A lot of the recent work in this area focuses on pre-conditioning and fixing ill-conditioning issues in iterative algorithms for solving the created Sparse Linear Systems (SLS). An ill-conditioned problem exhibits a huge change in output with respect to a minimal change in input, making the solution to the problem hard to find iteratively. Most sequential algorithms are LU-based direct solvers as they do not suffer from ill-conditioning. However, Iterative solvers such as the Conjugate Gradient method, which have been around since the 90s [119], are re-gaining traction for their scalability and parallel computing advancement.

The DC Power Flow (DCPF) problem was solved using Chebyshev pre-conditioner and conjugate gradient iterative method in a GPU (448 cores Tesla M2070) implementation in [120] [121]. The vector processes involved are easily parallelizable in the most efficient way with CUDA libraries such as CUBLAS and CUSPARSE, which are Basic Linear Algebra Subroutine and Sparse Matrix Operation Libraries. In this work, comparisons of sparse matrix storage formats were used, such as the Compressed Sparse Row (CSR) and Block Compressed Sparse Row (BSR). On the largest system size, a speedup of 46x for the pre-conditioning step and 10.79x for the conjugate gradient step was achieved compared to a sequential Matlab implementation (8-core CPU).

Later, the same author went on to Parallelize the FDPF using the same hardware and pre-conditioning steps [122]. Two real systems were used, the Polish system, which had groups of locally connected systems, and the Pan-European system, which consisted of several large coupled systems. This topology difference results in a difference in the sparsity patterns of the SLS matrix, which brings a unique perspective. Their proposed GPU-based FDPF was implemented with Matlab on top of MatPower v4.1. In their algorithm, the CPU regularly corresponds with the GPU, sending information back and forth over one iteration. Their tests showed that the FDPF performed better on the Pan-European system because the system’s connections were more ordered than the Polish system. CPU-GPU communication frequently occurred in their algorithm steps, most likely bottlenecks the speedup of their algorithm (less
Instead of adding pre-conditioning steps, M. Wang et al. [123] focus on improving the continuous Newtons method such that a stable solution is found even for an ill-conditioned power flow problem. For example, if any load or generator power exceeds 3.2pu in the IEEE-118 test case, the NR method fails to converge; even if the value is realized in any iteration, their algorithm will still converge to the solution with their method. This was achieved using different order numerical integration methods. The CPU loads data into GPU and extracts the results upon convergence only, making the algorithm very efficient. The approach substantially improved over the previous work by removing the pre-conditioning step and reducing CPU-GPU communication (speedup of 11x compared to CPU-only implementation).

Sometimes, dividing the bulk of computational load between the CPU and GPU (a hybrid approach) can be more effective depending on the distribution of processes. In one hybrid CPU-GPU approach, a heavy emphasis on the sparsity analysis of PF generated matrices were made in [124]. When using a sparse technique, the matrices operated on are reduced to ignore the 0 terms. For example, the matrix is turned into a vector of indices referring to the non-zero values to confine operations to these values. Seven parallelization schemes were compared, varying the techniques used (Dense vs. Sparse treatment), the majoring type (row vs. column), and the threading strategy. Row/column-major signifies whether the matrix same row/column data are stored consecutively. The thread invocation strategies varied in splitting or combining the calculation of P and Q of the mismatch vectors. In this work, two sparsity techniques were experimented with, showing a reduction of operations down to 0.1% of the original number and two or even three orders of magnitude performance enhancement for power mismatch vector operations. In 100 trials, their best scheme converged within six iterations on a 4-core host and a GeForce GTX 950M GPU, with a small deviation in solution time between trials. CPU-GPU communication took about 7.79%-10.6% of the time, a fairly low frequency. However, the proposed approach did not consistently outperform a CPU-based solution with all of these reductions. The authors suggested that this was due to using a higher grade CPU hardware than the GPU.

Zhou et al. might have conducted the most extensive research in GPU-accelerated batch solvers in a series between 2014-2020. They fine-tune the process of solving PPF for GPU architecture in [125] [126]. The strategies used include Jacobian matrix packaging, contiguous memory addresses, and thread block assignment to avoid divergence of the solution. Subsequently, they use the LU-factorization solver from previous work to finally create a batch-DPF algorithm [127]. They test their batch-DPF algorithm on 3 cases: 1354-bus, 3375-bus, and 9241-bus systems. For 10,000 scenarios, they solved the largest case within less than 13 seconds, showing the potential for online application.

Most of the previous studies solve the PF problem in a bare and limited setup when compared to the work by J. Kardos et al. [128] that involves similar techniques in a massive HPC framework. Namely, preventative Security Constrained Optimal Power Flow (SCOPF) is solved by building on an already existing suite called BELTISTOS [129]. BELTISTOS specifically includes SCOPF solvers and has an established Schurs Complement Algorithm that factorizes the KKT conditions, allowing for a great degree of parallelism in using IPM to solve general-purpose Non-Linear Programming (NLP) problems. Thus, the main contribution of this work is in removing some bottlenecks and ill-conditioning that exist in Schur’s Complement steps introducing a modified framework (BELTISTOS-SC). The parallel Schur algorithm is bottlenecked by a dense matrix associated with the solution’s global part. This matrix is solved in a single process. Since GPUs are meant to be used for dense systems, they factorize the system and apply forward-backward substitution, solving it using cuSolve, a GPU accelerated library to solve dense linear algebraic systems.

They performed their experiments using a multicore Cray XC40 computer at the Swiss National Supercomputing Centre. They used 18 2.1Ghz cores, and NVIDIA Tesla P100 with 16GB memory, and many other BELTISTOS and hardware-associated libraries. They tested their modification on several system sizes from PEGASE1354 to PEGASE13659. Their approach sped up the solution of the Dense Schur Complement System by 30x for the largest system over CPU solution of that step, achieving notable speed up in all systems sizes tested. They later performed a large-scale performance study, where they increased the number of computing cores used from 16 to 1024 on the cluster. The BELTISTOS-SC augmented approach achieved up to 500x speedup for the PEGASE1354 system and 4200x for the PEGASE9241 when 1024 cores are used, demonstrating strong scalability up to 512 cores.

5. Optimal Power Flow

Like PF, OPF studies are the basis of many operational assessments such as System Stability Analysis (SSA), UC, ED, and other market decisions [27]. Variations of these assessments include Security Constrained Economic Dispatch (SCED) and SCOPF, both involving contingencies. OPF ensures the satisfaction of network constraints over
cost or power loss minimization objectives. The full ACOPF version has non-linear, non-convex constraints, making it computationally complex and hard to reach a global optimum. DC Optimal Power Flow (DCOPF) and other methods such as decoupled OPF linearize and simplify the problem, and when solved, they produce a fast but sub-optimal solution. Because DCOPF makes voltage and reactive power assumptions, it becomes less reliable with increased Renewable Energy (RE) penetration. RE deviates voltages and reactive powers of the network significantly. This is one of the main drivers behind speeding up ACOPF in real-time applications for all algorithms involving it. The first formulation of OPF was in 1962 by J. Carpenter [130], which was followed by an enormous volume of OPF formulations and studies as surveyed in [131].

5.1. MIMD Based Studies

5.1.1. Development

OPF and SCOPF decomposition approaches started appearing in the early 80s using P-Q decomposition [132] [133] and including corrective rescheduling [134]. The first introduction to parallel OPF algorithms might have been by Garng M Huang and Shih-Chieh Hsieh in 1992 [135], who proposed a “textured” OPF algorithm that involved network partitioning. In a different work, they proved that their algorithm would converge to a stationary point and that with certain conditions, optimality is guaranteed. Later they implemented the algorithm on the nCUBE2 machine [136] showing that both their sequential and parallel textured algorithm is superior to non-textured algorithms. It was atypical for studies at the time to highlight portability, which makes Huangs work in [91] special. It contributed another OPF algorithm using Successive Overrelaxation by making it “Adaptive," reducing the number of iterations. The code was applied on the nCUBE2 and ported to Intel iPSC/860 hypercube demonstrating its portability.

In 1990 M. Teixeria et al. [137] demonstrated what might be the first parallel SCOPF on a 16-CPU system developed by the Brazilian Telecom R&D center. The implementation was somewhat “makeshift” and coarse to the level where each CPU was installed with a whole MS/DOS OS for the multi-area reliability simulation. Nevertheless, it outperformed a VAX 11/780 implementation and scaled perfectly, was still 2.5 times faster than running on, and exhibited strong scalability.

Distributed OPF algorithms started appearing in the late 90s with a coarse-grained multi-region coordination algorithm using the Auxiliary Problem Principle (APP) [138][139][140]. This approach was broadened much later by [141] using Semi-Definite Programming and Alternating Direction Method of Multiplier (ADMM). Prior to that, ADMM was also compared against the method of partial duality in [142]. The convergence properties of the previously mentioned techniques and more were compared comprehensively in [143].

The asynchronous parallelization of OPF first appeared on preventative [144] and corrective SCOPF [145] targeting online applications [44] motivated by the heterogeneity of solution time of different scenarios. Both SIMD and MIMD machines were used, emphasizing portability as “Getsub and Fifo” routines were carried out. On the same token, MPI protocols were used to distribute and solve SCOPF decomposing the problem with GRMES and solving it with the non-linear IPM method varying the number of processors [146]. Real-time application potential was later demonstrated by using Benders Decomposition instead for distributed SCOPF [147]. Benders decomposition is one of the most commonly used techniques to create parallel structures in power system optimization problems and shows up in different variations in the present literature, as illustrated in Fig. 8 shows. Benders Decomposition is applied by fixing the complicating variables of the objective function to a different value in every iteration and constructing a profile with benders cuts to find the minimum objective function value with respect to the complicating variables. If the profile is non-convex, then optimality is not guaranteed since the value is changed in steps descending the slope of the cuts.

5.1.2. State of the Art

As mentioned previously, involving AC equations in large-scale power system studies is crucial and might soon become the standard. The difficulty of achieving this feat varies depending on the application. For example, precise nodal price estimation is attained by solving ACOPF multiple times under different system states (Probabilistic ACOPF). This can be effortlessly scaled as each proposed scenario can be solved independently, but a large number of scenarios can exhaust available resources. This is when researchers resort to scenario reduction techniques such as Two-Point Estimation [148]. In this study, it was applied on 10k Monte Carlo (MC) scenarios, and the reduced set was used to solve a conically relaxed ACOPF model following the approach in [149]. Using 40 cores from the HPC cluster of KTH Royal Inst of Tech, the approach resulted in an almost linear speedup with high accuracy on all test cases.
In contrast, parallelizing a single ACOPF problem itself is much more complicated. However, the same authors did it readily since their model was already decomposable due to the conic relaxation [150]. Here, the choice of network partitions is treated as an optimization problem to realize the least number of lines between sub-networks. A graph partitioning algorithm and a modified benders decomposition approach were used, providing analytical and numerical proof that they converge to the same value as the original benders. This approach achieved a lower-upper bound gap of around 0-2%, demonstrating scalability. A maximum number of 8 partitions (8 subproblems) were divided on a 4-core 2.4GHz workstation. Beyond four partitions, hyperthreading or sequential execution must have occurred. This is a shortcoming as only four threads can genuinely run in parallel at each time. Hyper-threading only allows a core to alternate between two tasks. Their algorithm might have even more potential if distributed on an HPC platform.

The ACOPF formulation is further coupled and complicated when considering Optimal Transmission Switching (OTS). The addition of binary variables ensures the non-convexity of the problem turning it from a NLP to a Mixed Integer Non-Linear Programming (MINLP). In Lan et al. [151] this formulation is parallelized for battery storage embedded systems, where temporal decomposition was performed recording the State of Charge (SoC) at the end of each 6 hours (4 subproblems). They employed a two-stage scheme with an NLP first stage to find the ACOPF of a 24-hour time horizon and a transmission switching second stage. The recorded SOCs of the first stage are added as constraints to the corresponding subproblems, which are entirely separable. They tested the algorithm IEEE-188 test case and solved it with Bonmin with GAMS on a 4-core workstation. While the coupled ACOPF-OTS formulation achieved a 4.6% Optimality gap at a 16h41m time limit, their scheme converged to a similar gap within 24m. The result is impressive considering the granularity of the decomposition. This is yet another example where a better test platform could have shown more exciting results as the authors were limited to parallelizing four subproblems. Algorithm-wise, an asynchronous approach or better partition strategy is needed as one of the subproblems took double the time of all the others to solve.

The inclusion of voltage and reactive power predicate the benefits gained by ACOPF. However, it is their effect on the optimal solution that matters, and there are ways to preserve that while linearizing the ACOPF. The DCOPF model is turned into a Mixed Integer Non-Linear Programming (MILP) in [152] by adding on/off series reactance controllers (RCs) to the model. The effect of the reactance is implied by approximating its value and adding it to the DC power flow term as a constant without actually modeling reactive power. The binary variables are relaxed using the Big M approach to linearize the problem, derive the first-order KKT conditions, and solve it using the decentralized iterative approach. Each node solved its subproblem, making this a fine-grained algorithm, and each subproblem had coupling variables with adjacent buses only. The approach promised scalability, and its convergence was proven in [153]. However, it was not implemented in parallel, and the simulation-based assumptions are debatable.

Decentralization in that manner reduces the number of coupling variables and communication overhead. However, this also depends on the topology of the network, as shown in [111]. In this work, a stochastic DCOPF formulation incorporating demand response was introduced. The model network was decomposed using ADMM and different partitioning strategies where limited information exchange occurs between adjacent subsystems. The strategies were implemented using MATLAB and CPLEX on a 6-bus to verify solution accuracy and later on larger systems. The
ADMMBased Fully Decentralized DCOPF and Accelerated ADMM for Distributed DCOPF were compared. Recent surveys on Distributed OPF algorithms showed that in OPF decomposition and parallelization, ADMM and APP are preferred in most of the studies as a decomposition technique [154][150]. The distributed version converged faster, while the decentralized version exhibited better communication efficiency. More importantly, a separate test showed that decentralized algorithms work better on subsystems that exhibit less coupling (are less interconnected) and vice versa. Breeding the idea that decentralized algorithms are better suited for ring or radial network topologies while distributed algorithms are better for meshed networks [155][154].

Distribution networks tend to be radial. A ring topology is rare except in microgrids. Aside from their topology, they have many differences compared to transmission networks causing the division of their studies and OPF formulations. OPF for Transmission-Distribution co-optimization makes a great case for HPC use in power system studies as co-optimizing the two together is considered peak complexity. S. Tu et al.[156] decomposed a very large-scale ACOPF problem in the Transmission-Distribution network co-optimization attempt. They devised a previously used approach where the whole network was divided by its feeders, where each distribution network had a subproblem [99][157]. The novelty in their approach lies in a smoothing technique that allows gradient-based non-linear solvers to be used, particularly the Primal-Dual-Interior Point Method, which is the most commonly used method in solving ACOPF. Also, a two-stage stochastic algorithm was implemented to account for the uncertainties in distributed energy generation.

S. Tu et al. used an augmented IEEE-118 network, adding distribution systems to all busses, resulting in 9206 buses. Their most extreme test produced 11,632,758 bus solutions (1280 scenarios). Compared to a generic sequential PDIPM, the speedup of their parallelized approach increased linearly with the number of scenarios and scaled strongly by increasing the number of cores used in their cluster. In contrast, the serial solution time increased superlinearly and failed to converge within a reasonable time in a relatively trivial number of scenarios. While their approach proved to solve large-scale ACOPF much faster than a serial approach, it falls short in addressing Transmission-Distribution co-optimization because it merely considered the distribution network as sub-networks with the same objective as the transmission, which is unrealistic.

6. Unit Commitment

The UC problem goes back to the 60s [158]. In restructured electricity markets, Security Constrained Unit Commitment (Security Constrained Unit Commitment (SCUC)) is used to determine the generation schedule at each time point at the lowest cost possible while maintaining system security. A typical formulation used in today’s industry can be found in [159]. Often, implementations use immensely detailed stochastic models involving N-1 or N-2 contingencies [160], ACOPF constraints, and incorporating RE resources Distributed Energy Sources (DER) [161] and distribution networks [162]. This leads to a large number of scenarios and a tremendously complex problem. Decomposition of the problem using Lagrangian Relaxation (LR) methods is very common [33][163] and many formulations are ready to segue for HPC parallel implementation. This includes global optimal solution methods for AC-SCUC as in [164]. Recent literature on parallel UC is abundant, making this section the largest in this review.

6.1. MIMD Based Studies

6.1.1. Development

Simulations of Parallel environments to implement parallel UC algorithms started appearing around 1994 modeling hydrothermal systems [165] and stochasticity [166] on supercomputers [167] workstation networks [168]. The earliest UC implementations on parallel hardware used embarrassingly parallel metaheuristics, such as simulated annealing [169] and other genetic algorithms [170][171]. However, the first mathematical programming approach might have been by Misra in 1994 [167] using dynamic programming and vector processors. Three years later, K.K. Lau and M.J. Kumar also used dynamic programming to create a decomposable master-slave structure of the problem. It was then distributed over a network of workstations using PVM libraries, with each subproblem solved asynchronously [168]. These, however, were not network-constrained problems.

Only in 2000, Murillo-Sanchez and Robert J. Thomas [172] attempt full non-linear AC-SCUC in parallel by decomposing the problem using APP, but failed to produce any results, upholding the problems complexity. In quite an interesting case, volunteer computing with the BOINC system was used to parallelize the MC simulations of stochastic load demand in UC problem with hydro-thermal operation [173]. However, that did not include network constraints either. There has been some work in decomposition algorithms for network constrained UC but rarely applied on a practical parallel setup. Most parallel implementations happened in the last decade.
6.1.2. State of the Art

Papavasillio et al. [174], set up the framework of a scenario-based two-stage stochastic framework of UC with reserve requirement for wind power integration emphasizing wind forecasting and scenario selection methodology. In later work, Papavasiliou compared a benders decomposition approach that removes the second stage bottleneck and a Lagrangian Relaxation (LR) algorithm based on [163] where the impact of contingencies on decisions was implied in the constraints [161]. The LR approach proved to be more scalable for that formulation. As a result, Papavasillo chose LR approach to solving the same formulation by adding DC network constraints [175]. Even though the wind scenarios were carefully selected, there existed instances where specific subproblems took about double the time of the following most complex subproblem. In a follow-up work, Aravena and Papavasillio resorted to an asynchronous approach in [176] that allows time-sharing. This work showed that the synchronous approach to solving subproblems could be highly inefficient as the idle time of computational resources can reach up to 84% compared to the asynchronous algorithm.

While many SCUC parallel formulations use DC networks, the real challenge is using ACOPF, as exhibited in earlier failed attempts [172]. In [177] the conic relaxation approach mentioned earlier [149] was used to turn the AC-SCUC into a Mixed Integer Second Order Conic (MISOC) program. It allowed the decomposition of the problem to a master problem, where UC is determined, and a subproblem where the ACOPF is solved iteratively. In their approach, the active power is variable in the master problem is fixed, and only the reactive power is solved to check if the commitment is feasible. Fixing the active power allows for time decomposition since ramping constraints no longer apply in the subproblems. They compared the computational efficiency of their approach against a coupled DC-SCUC and AC-SCUC, solved using commercial solvers such as GAMS, DICOPT, and SBB. Their approach took only 3.3% of the time taken by previous similar work [178] to find a solution at a 0.56% gap. However, their approach faced accuracy and feasibility issues, and the parallelism strategy was unclear since they created eight subproblems while using three threads.

Temporal decomposition was also used on a unique formulation, Voltage Stability Constrained SCUC (VSC-SCUC) [179]. The problem is an MINLP with AC power flow constraints and added voltage stability constraints that use an index borrowed from [180]. APP decomposition was used to decompose the model into 24 subproblems, and it was compared against conventional AC-SCUC on several test cases. It converged after 55 iterations compared to 44 by the AC-SCUC solution on the IEEE-118 case. The structure and goals achieved by VSC-SCUC make tractability challenging, deeming the approach itself promising. However, the study fell short of mentioning any details about the claimed parallel routine used.

Nevertheless, SCUC decentralization is valued for more than performance enhancement. It can help achieve privacy and security, and it fits the general future of the smart grid, IoT, and market decentralization. In a market where the ISO sets prices of energy and generators are merely price takers, a decentralization framework called “Self-Commitment” can be created from the UC formulation [181]. Inspired by self-commitment, Feizollahi et al. decentralize the SCUC problem relevant to bidding markets, including temporal constraints [182]. They implement a “Release-and-Fix” process which consists of three ADMM stages of decomposing the network. The first stage finds a good starting point by solving a relaxed model. The second and third stages are iterative, where a feasible binary solution is found, followed by a refinement of the continuous variables. They used two test cases (3012 and 3375-bus) and applied different partitions from 20 to 200 sub-networks with different root node (co-ordinator node) combinations. They also varied the level of constraints in 3 cases, from no network up to AC network and temporal constraints. A sub 1% gap was achieved in all cases, outperforming the centralized solution in the most complicated cases and showing scalability where the centralized solution was intractable. The scalability saturated, however, at 100 partitions, and one of the key conclusions was that the choice of the root node and partition topologies are crucial to achieving gains.

Multi-Area formulations often involve ED, but rarely UC, as done in [183]. The UC formulation in this study includes wind generation. The wind uncertainty is incorporated using Adjustable Interval Robust Scheduling of wind power, a novel extension of Interval Optimization Algorithms, a chance-constrained algorithm similar to Robust Optimization. The resulting Mixed-Integer Quadratic Programming (MIQP) model is decentralized using an asynchronous consensus ADMM approach. They verified the solution quality on a 3-area 6-bus system (achieving a 0.06% gap) and then compared their model against Robust Optimization and Stochastic Optimization models on a 3-area system composed of IEEE-118 bus system each. For a lower CPU time, their model achieved a much higher level of security than the other mentioned models. The study mentions that the parallel procedure took half the time the sequential implementation did, promising scalability. However, no details were given regarding the parallel scheme used and implementation.
Similarly, Ramanan et al. employed an asynchronous consensus ADMM approach to achieve multi-area decen-
tralization slightly differently as their formulation is not a consensus problem [184]. Here, the algorithm is truly
decentralized as the balance in coupling variables needs only to be achieved between a region and its neighboring one.
The solution approach is similar to that of the one from [174] where UC and ED are solved iteratively. They divided the
IEEE 118 bus into ten regions; each region (subproblem) was solved by one intel Xeon 2.8Ghz processor. They
ensure asynchronous operation by adding 0.2 seconds of delay for some subproblems. The mean results of 50 runs
demonstrated the time-saving and scaling potential of the asynchronous approach that was not evident in other similar
studies [185]. However, the solution quality significantly varied and deteriorated, with an optimality gap reaching 10%
for some runs, and no comparison was drawn against a centralized algorithm.

In later work, the authors improved the asynchronous approach by adding some mechanisms, such as solving local
convex relaxations of subproblems while consensus is being established. This allowed the subproblem to move to
the next solution phase if the binary solution is found to be consistent over several iterations [186]. In addition, they
introduced a globally redundant constraint based on production and demand to improve privacy further. Moreover,
they used point-to-point communication without compromising the decentralized structure. They implemented their
improved approach on an IEEE-3012 bus divided into 75, 100, and 120 regions. A 2.8Ghz core was assigned to solve
each region and controller subproblem. They compared their approach this time against Feizollahis implementation
from 2015 [182] and a centralized approach. The idle time of the synchronous approach was higher than the compu-
tation time of the Asynchronous approach, doubling the scalability for higher region subdivisions. The gap achieved
in all cases was larger than that of the Centralized solution by around 1.5%, which is a huge improvement considering
the previous work and the 18x speedup achieved.

Consensus ADMM methods typically do not converge for MILP problems like UC without a step size diminishing
property [187]. Lagrangian methods, in general, are known to suffer from a zigzagging problem. To overcome that
issue, the Surrogate Lagrangian Relaxation (SLR) algorithm was used in [188] to create a distributed asynchronous
UC. In later work, their approach was compared against a Distributed Synchronous SLR, and a sequential SLR [189]
using four threads to parallelize the subproblems. With that, better scalability against the synchronous approach was
demonstrated, and a significant speedup was achieved (12x speed up to achieve a 0.03% duality gap in one instance).

To avoid the same zigzagging issue, but for Multi-Area SCUC, Kargarian et al. opted for Analytical Target Cas-
cading (ATC) since multiple options exist for choosing the penalty function in ATC [190]. They take the model from
[191] and apply ATC from [192] to decompose the problem into a distributed bi-level formulation with a central
co-ordinator being the leader and subproblems followers. In this work, they switched the hierarchy by putting the
co-ordinator, making it the follower instead of the leader. This convexified the followers’ problem, allowing the use
of KKT conditions, turning it into a Mixed Complementarity Problem (MCP). Those steps turned the formulation into a
decentralized one as only neighboring subproblems became coupled. They numerically demonstrated that with their
reformulation, the convergence properties of ATC still upheld virtually and that the convex quadratic penalty func-
tions act as local convexifiers of the subproblems. Moreover, they demonstrated numerically how the decentralized
algorithm is less vulnerable to cyber attacks. Unfortunately, the approach was not implemented practically in parallel;
rather, the parallel solution time was estimated based on the sequential execution of the longest subproblem.

In a similar work tackling Multi-Area SCUC, a variation of ACT is used [193] where the master problem de-
determines the daily transmission plan, and each area becomes an isolated SCUC subproblem. This problem is much
more complicated as it involves AC power flow equations, HVDC tie-lines, and wind generation. The power injection
of the tie-lines is treated as a pseudo generator with generation constraints that encapsulate the line flow constraints.
This approach removes the need for consistency constraints used in traditional ATC-based distributed SCUC like the
ones used in [192]. In the case study, they subdivide several systems into 3-Area networks and split their work into
three threads. Comparisons were drawn against a centralized implementation, the traditional distributed from, and
four different tie-line modes of operation varying load and wind generation. Their approach consistently converged at
lower times than the traditional ATC algorithm. It slightly surpassed the centralized formulation on the most extensive
network of 354-bus, which means the approach has the potential for scalability.

Finding the solution of a UC formulation that involves the transmission network, active distribution network, mi-
crogrids, and DER is quite a leap in total network coordination. This challenge was assumed by [162] in a multi-level
interactive UC (MLI-UC). The objective function of this problem contained three parts: the cost of UC at the transmis-
sion level, the cost of dispatch at the distribution level, and the microgrid level. The three levels’ network constraints
were decomposed using the ATC algorithm, turning it into a multi-level problem. A few reasonable assumptions were
made to aid in the tractability of the problem. The scheme creates a fine-grained structure at the microgrid level and
a coarser structure at the distribution level, both of which were parallelized. The distribution of calculation and information exchange between the three levels provides more information regarding costs at each level and the Distribution of Locational Marginal Pricing (DLMP).

Most of the previous work in power system problems - apart from UC - focuses on the solution process rather than the database operations involved. In [194], a parallel SCUC formulation for hydro-thermal power systems is proposed, incorporating pumped hydro. This paper uses graph computing technologies and graph databases (noSQL) rather than relational databases to parallelize the formulation of their MIP framework. Their framework involves Convex Hull Reformulation and Special Ordered Set method to reduce the number of variables of the model, constrained relaxation techniques [195], and LU decomposition. The graph-based approach showed significant enhancement over speedup over a conventional MIP solution method on a Tigergraph v2.51 database. Similar applications of noSQL were explored in other power system studies [196, 197, 198].

In real industrial applications, there is a lower emphasis on the accuracy of the solution, and a high-speed “good enough” policy is adopted, often using heuristics extensively. Midwest ISO (MISO) published a few papers showing the development of their Day-Ahead DC UC decision making in 2016 [199], 2020 [32] and 2021[200]. Their HPC parallel approaches introduce novel strategies as part of the HIPPO project [201] focusing on finding smart heuristics to speed up SCUC decomposition and distributed methods. MISO has been using CPLEX to solve day ahead SCUC and SCED for 50,000 binary variables and 15,000 transmission constraints over 36 hourly intervals, and they limit the day ahead of SCUC to 1200s. Fig. 9 illustrates the processes run by the HIPPO system in parallel. They run several algorithms in parallel to ensure continuity. If the most accurate fails to converge within their time limit, the solution of the next most accurate algorithm is taken instead, such as SCED. The convergence criterion of optimality gap is 0.1% which amounts to about $24,000. They use surrogate ADMM, Lazy transmission constraints from experience, and a Polishing-E method, which reduces the set of possible generators and an Uplift function to choose a good set of generators.

![Figure 9: HIPPO Concurrent Optimizer (vertically aligned processes run in parallel)](image-url)

In their latest work [200] they introduce a neighboring search algorithm that improves their E-polishing algorithm and the selection of a set of lazy constraints. This HIPPO system uses 18 nodes 24 2.3GHz 64GB RAM on the Pacific Northwest National Laboratory (PNNL) HPC cluster and uses Gurboi to solve their problems. They compared in their study the time it takes to sequentially solve 110 different SCUC problems of different complexities against using HIPPO. They showed that problems that take a long time sequentially experience a more drastic speed up with HIPPO, meaning their system scales efficiently. One problem that took 2000 seconds in full sequential MIP was solved in 200s with HIPPO. For all the tested cases, the highest solution time on the MISO network using HIPPO was 633s, under the required standard time limit for finding solutions. In addition, they explore the possibility of solving 15-minute rather than an hourly interval as it is more appropriate for RE generation. They solve the MIP for one hour and then feed that solution to the 15-Minute interval problem as an initial point. Compared to using root relaxation for solving 15-minute intervals, a huge jump in speed up is achieved once again for the more complex problems.

7. Power System Stability

Power system stability studies in this section include Static, Transient, and Dynamic Stability. A power system is considered stable if it can regain operating equilibrium with the entire system intact after being subjected to a
disturbance. Depending on the type of study, the stability metric could be the line flows, the generator rotor angle, or bus voltage and frequency [202] [203]. Parallelism of those types of power system studies has been one of the most abundant and earliest to investigate, especially in transient stability. Most of these studies are performed offline, and the goal is to speed them up to solve them in real-time.

7.1. MIMD Based Studies

7.1.1. Development

Power system operators need to detect system states or schedules that carry the risk of steady-state emergency if single or multiple equipment failures occur. This is to alleviate that risk either by changing the system state to avoid such an emergency (preventative measure) or by employing a form of a control strategy that would mitigate that emergency if it occurs (corrective measure) [202]. Contingency screening, in particular, is an embarrassingly parallel task and one of the easiest to parallelize, as it involves splitting several conventional power flow problems equivalent to the number of possible contingencies over multiple job arrays.

In earlier studies, the parallel steady-state analysis involved parallelizing the different contingency cases and not the power flow algorithm. The first successful attempt at distributed contingency screening might have been in [204] where the process was distributed over four DN425 processors. By adding pre-filtering schemes and strategies to reduce the computational burden, real-time static security assessment was already achieved in the early 2000s using multi-processing [205] [206]. Further studies in enhancing the allocation of resources and dynamic load balancing in order to reduce the idling time of processors were done by PNNL on their local cluster with the aid of MPI [207] [208]. The same research team followed up the work by applying parallel betweenness centrality to identify the high-impact transmission lines in the screening process.

Some work in the area emphasized processor load balancing to task scheduling for contingency screening, from master-slave scheduling to proactive task scheduling. Incorporating both multi-processing and multi-threading on various systems and using various concurrent programming languages such as D [209] and X10 [210]. Most of the work today for static security involves improvement in whole EMS systems and software, and most of the modern work involves the efficient allocation of cloud-based resources. However, more elaborate schemes are appearing that involve parallelizing the OPF within the contingency analysis, which opens room for improvement, especially when considering more complicated OPF and post contingency network models.

Dynamic stability is another form of steady-state analysis that evaluates the system condition and oscillatory behavior after very small signals and disturbances that last for up to 30 seconds due to fluctuations in generation and load levels or controllers. It is an obvious parallelism candidate since it is the most intensive computational task in power system studies, as it models the electro-mechanical interaction between system components and their controllers. It is also one of the most important and directly related to secure operation.

Fig. 10 illustrates the two goal-posts of dynamic simulation during its development. Real-time simulation means the computational time matches the duration of the simulated interaction. Faster than real-time simulation means the computational time is lower than the duration of the simulated interaction. The goal for achieving practical real-time parallel dynamic simulations was already being set in the 90s [211]. Pioneering applications used the Conjugate Gradient method on the Cray Y-MP, iPSC/860, and IBM 3090 mainframe [212] [213]. Parallel dynamic simulation studies quickly moved to large system implementations emphasizing balanced network partitioning and computational load and creating parallel software tools in the 2000s[214]. Faster than real-time simulations became the default, and the first faster than real-time parallel dynamic simulation was achieved on the WECC system for the first time in 2013 [215].

Transient stability studies are made to ensure that after large disturbances such as circuit breaker trips or load loss, the system remains synchronized and can return to normal conditions. Parallel transient stability was explored in abundance as they are critical, and the trapezoidal integration method makes them disposed to parallelism. Fernando L. Alvarado, in an impactful paper [216], demonstrated analytically that for time T and with some $\frac{T}{2}$ processors, transient stability differential equations could be solved in time order of $log_2 T$ using the trapezoidal method with potentially better convergence properties than serial implementation. The Electric Power Research Institute made a report in 1977 exhibiting various works exploring potential parallel applications for power system analysis [39].

Most of the work until that point discussed potential parallel methods for to apply on parallel machines such as Cray-1, CDC STAR-100, IBM 370-195, and ILLIAC. Moreover, much like power flow development, a lot proposed parallel architectures that would exploit the parallelism in using methods such as Chaotic Relaxation, BBDF Gauss-
Seidel, and Newton's method [217] [218]. Some simulated the performance of new microcomputer and processor architectures using networks of computers or existing supercomputers, such as the CDC 6600 [219] [220].

The first parallel implementation of transient stability might have been the first parallel power system study implementation by F. Orem and W. It was solved using a CDC 6500 equipped with an AP-120B array processor hosted on a computer. Comparisons on different hardware such as vector processors vs. array processors or Cray-1 vs. IBM-3081D were made using the trapezoidal integration method with linear and non-linear loads [221] [222]. Different decomposition methods started being introduced in the literature, including parallel-in-space and parallel-in-time approaches. The combination of the two was achieved while using “Nested Iteration” and time-windowing to enhance convergence in [223],[224] and [225].

The variety of algorithms used and the discovery of different parallelism paradigms in transient stability simulation were promising for parallelism in power system studies in general. SOR and The Maclaurin-Newton Method (MNM) were used on the Alien, and IPSC machines in [226] [227]. The waveform relaxation method (WRM) was proposed by [228] to decompose the non-linear system into several dynamical subsystems to be solved in parallel, followed by [229] and [230]. A Parallel-in-Frequency paradigm was introduced with a demonstration of the possibility of vector processing coarse-grained algorithm [231]. More complicated fine/coarse-grained frameworks combining general processing (CRAY Y-MP9/464) and vector processing [232].

The possibility for real-time simulation was first demonstrated on the NCube2 HypeCube [233]. HyperCube machines were popular in the early 90s for transient studies exhibiting various techniques such as SOR [234] and LU factorization path trees with different communication scheduling techniques [235] [90].

Message passing in heterogeneous clusters started appearing in the late 90s. Real-time Contingency and Transient stability with PMV [236] and other formulations with MPI [237] [238]. Faster than real-time transient stability simulation was achieved combining MPI and multi-threading techniques with network and time-domain decomposition in [239],[214] and [240]. Later algorithms were used [241]. A full rundown on most of the techniques used until that point for large-scale transient stability studies can be found in [242].

Electromagnetic Transient studies (EMT) are transient studies that assess systems overcurrents and overvoltages due to fault conditions or large disturbances. Electromagnetic Transient (EMT) simulations are the most accurate tools to describe fast dynamics of power systems, hence most computationally intensive. Software such as PSCAD uses an EMTP-type program or EMtp, which is the most wildly used algorithm for this type of study. Parallel EMT studies were first proposed in the early 90s on MIMD hardware [243] and implemented using network partitioning techniques on a hypercube machine with care to load balancing [244]. Since then, various parallel approaches have been used, parallelizing the problem in space and time. The Very Dishonest Newton method as implemented on multi-computer setup [245], on FPGAs real-time simulation of EMT was aimed for [246]. Techniques such as system partitioning and solving short time-steps for more dynamic parts and long time-steps for others in combination with multi-processing have been proposed in[247] but with no actual implementation.

Most of the recent work today in power system stability studies, particularly transient stability, takes place on SIMD architecture (GPUs specifically). The traditional way to perform the study is similar to that of regular transient studies. Thus, in-space-in-time decomposition can be achieved with similar techniques such as LU factorization [238], forward...
and backward substitutions [245], and graph theory [248] to be solved in parallel.

7.1.2. State of the Art

When it comes to probabilistic studies performed in contingency analysis, not many studies apply the N-2 criterion. Duan et al. performed N-2 contingency analysis generating with Probabilistic Power Flow (PPF) for each contingency case [249]. With an IEEE-300 test case, using AC power flow equations and the NR method, and 1000 MC system state scenarios, the solution was distributed on the Danzek HPC cluster at Manchester. The solution time was 168 hours. The only thing that this work offers is a testimony to the complexity of full AC Power flow equations. N-2 criterion merely increases the number of embarrassingly parallel tasks. Any real improvement needs to be made either with a finer decomposition of the embedded power flow problems or by incorporating complexity formulations used.

In another N-2 reliability contingency analysis, transmission switching was incorporated for corrective action [250]. This work performed a dynamic stability analysis of the corrective transmission switching action to ensure its viability. AC power flow equations were used, and the analysis was conducted on the PJM interconnections (15.5k bus system). Both transmission and generation contingencies were considered creating around 1.4m contingencies. Heuristics were used to reduce the additional computation. The approach was very effective as the solution time was reduced to 96s using 128 threads (compared to 999s with eight threads). This contrast between this result and the previous study demonstrates the importance of having a good parallel scheme.

One of the major challenges that face current implementations is the lack of standardization, as reflected in studies such as S. Jin et al. [251] which compared four different parallel implementations of the dynamic model. Some implementations were run on the IEEE-288 bus system and others on the WECC system, using different supercomputers with different hardware allocations for each implementation. This variety resulted in valuable but difficult to compare observations due to the unequal testing grounds. The work concludes that the direct integration method with a fast direct LU solver is the recommended approach for HPC dynamic simulation as it enables faster than a real-time solver. Nevertheless, the recommendation is based on trials that are hard to compare fairly.

In an impactful series of work, P. Aristidou et al. implemented a parallel dynamic simulation on a transmission-distribution network using the Very Dishonest Newtons Method (VDHN) and Schur-Complement based decomposition in 2014 [252] 2015 [253] and 2016 [254]. Their most significant test case included 15226 buses, 21765 branches, and detailed 3483 generator models, including their excitation systems and governors, voltage regulators, and power system stabilizers. The software was written using standard Fortran language with OpenMP directives. The authors were very thorough in analyzing the performance, as their approach was compared against several, including fast and widely implemented sequential algorithms in terms of speedup and scalability. They tested their algorithm on various platforms, with the highest speedup achieved being x4.7 on 24-core AMD processor-based systems. Faster than real-time dynamic simulation of the entire WECC system, interconnection (17000 buses) was achieved in [109]. The simulation included machine models, exciter, governor, relay, and network models. With 16 core cores, they simulated a 0.05s 3-phase fault lasting for the 20s, with 0.005s time steps, within 15.47s. They achieved this feat using an open-source HPC framework called GridPack, which they developed. GridPack is further explored in the discussion section of this review.

7.2. SIMD Based Studies

7.2.1. Development

SIMD architecture has long been used for transient and dynamic simulations to solve the non-linear differential-algebraic equations (DAE) and parallelize the trapezoidal rule, and GPUs have been used in power system studies as early as 2007 [255].

The first paper using GPU for static stability was published the same year CUDA was released, where DC Power flow contingency analysis was performed to solve the Gauss-Jacobi algorithm [255]. The paper used a NVIDIA 7800 GTX card and direct instructions as opposed to a CUDA interface. GPU-based contingency analysis studies have recently been enhanced with pre-conditioning methods such as the Krylov theory[256]. Pre-conditioned Conjugate Gradient method [257] and compensation method and FDPF to parallelize AC Power Flow (ACPF) within contingency analysis[258].

For transient stability, A parallel program was developed and used by engineers in Hydro-Quebec in 1995, which simulates transient stability by parallelizing the Very Dishonest Newtons Method (VDHN) with LU Decomposition on the shared memory machine Sequent Symmetry S81. [76]. Waveform-Relaxation method was used later on the same
The first re-purposing of non-GPU image processing hardware for power system studies might have been in 2003 in [248], where PULSE IV image processor was used to achieve real-time transient stability simulation on WSCC 9 bus test case.

The first huge leap in performance was by Jalili-Marandi et al., in a hybrid approach achieving a speedup of up to x344 for a 1248-bus system compared to CPU only approach [260]. Later Jalili-Marandi et al. refined the algorithm to perform all the calculations on GPU on an almost purely SIMD-based approach. Which proved to be more effective beyond 500-bus size systems [261]. In their last work, they showed the potential of GPU augmentation to enhance the inner solution performance. An instantaneous relaxation technique involving full newton iteration, implicit integration, and a sparse LU linear solver was tailored to run simultaneously on four T10 GPUs. A 9985 bus system generates a 22272x22272 matrix and 99.69% sparsity, which was solved within 5 minutes [262].

Yu et al. [263] performed another hybrid-based transient stability study by constructing a Jacobian Free Newton Generalized Minimal Residual method, which approximates the Jacobian vector products using the finite difference technique. While it eliminates a jacobian matrix step, it still requires heavy matrix-vector multiplication for a preconditioning step, making it suitable for GPU. This approach proved scalability starting from a 216-bus sized system, and it outperformed the newton based transient simulation solver PSAT. This approach showed better consistency performance enhancements for various sized systems compared to a similar work, where a pre-conditioning step was parallelized prior to the GMRES method [264]. Yet, using pre-conditioned GRMES in a combination of in-time coarse-grained schemes and in-space fine-grained schemes with GPU acceleration as in [265] showed universal scalability whether the number of GPUs used or the problem size increased.

There have been a few GPU-based parallel EMTP-type simulators for EMT studies. Some integrating wind farms to the models [266]. Others added complicated controls to large-scale systems with PV, transformers, and reactive components. [267]. GPUs were used primarily to solve the linear algebraic equations associated with the algorithm, while the CPU performed most of the other parts. However, “Full” GPU-based parallel solvers that parallelize numerous other steps of the algorithm were developed recently [268].

7.2.2 State of the Art

The most relevant recent work in power system stability mainly involved SSA and EMT. In [269], Zhou et al. continue their work in N-1 SSA, this time treating the DC power flow contingency screening part, where only branch thermal violation is accounted for. This study tries to apply the Critical Contingency list contingency screening on GPU. DCPF-based Contingency screening involves dense vector operations. This paper claims to be the first of its kind to present a novel GPU-accelerated algorithm for DC contingency screening, where they optimize the data transmission, parallelization, memory access, and CUDA streams in their algorithm. The presented algorithm was tested on 300-bus, 3012-bus, and 8503-bus systems. The hardware used was A Tesla K20C GPU, and the host was Intel Xeon E5-2620 2 GHz CPU. They compared the performance against a single-threaded CPU-based algorithm implemented on a higher-end Intel Core i7-3520M 2.90 GHz CPU and 4 GB memory notebook. Their largest test case exhibited a speedup of 47x over the sequential case, demonstrating their approach’s scalability. They achieved it by reducing the data transmission by x50, further optimizing task allocation and thread/block redistribution, and using memory coalescing to enhance memory access. The last improvement is particularly important as memory handling is often ignored in the field, yet it is very crucial. Fig. 11 demonstrates the impact category of the coalescing strategy used. Single threads often access different chunks of memory locations at the same time; when GPUs are most efficient when multiple threads access contiguous memory locations at the same time, this is called coalesced memory access.

![Memory Access Diagram](image)

Figure 11: Illustration of strided memory access (a) and Coalesced memory access (b)

To tackle the same problem by Zhou et al., Chen et al. [270] uses a slightly different GPU implementation, which
exhibits a pipelined fashion. They employ a two-layered parallel method. In the first layer, they apply a hierarchical path tree parallel LU decomposition for all contingency cases. In the second layer, they solve the decomposed problems for every contingency in parallel. I.e., the first layer process is repeated for every contingency case in parallel, sending groups of threads for each contingency. This means that the same process will run for several contingencies simultaneously, subject to the GPU’s number of thread blocks allowed to run simultaneously. They employed an asynchronous scheme, where the CPU performs convergence checks. It receives the output convergence of three cases simultaneously; if one contingency calculation converges, the next one in line is sent to that available thread block. In their work, they pay attention to data management and utilize the cache architecture of GPU to improve their process. They compared their GPU approach against a KLU-based commercial suit that solves the problem on CPU. On the largest case and using 32 GPU thread groups, their algorithm showed a 9.22x speedup over a single thread CPU solution and a 3x speedup on a 4-threaded CPU solution. In this study, the importance of matching thread number to warp number is demonstrated because using 32 thread groups did not make a massive difference to the speedup against 16 thread groups.

In [271], Zhou et al. expand on their previous work and attempt to skip the screening step, directly solving ACPF for all cases in a batch-ACPF solver. Their framework packages the batch-ACPF into a new problem through which a high degree of parallelism can be achieved. They created dependency graphs and used QR left-looking algorithm for its numerical stability compared to LU decomposition. They compared their solver against commercial multi-threaded CPU-based SLS solvers KLU and PARASIDO in several test cases. On an 8503-bus system, their solver took 2.5 seconds vs. 9.9s (4x speedup) on a 12-threaded KLU solution and 144.8 seconds (57.6x speedup) on a sequential single-threaded solution. At face value, a GPU approach is superior. However, due to memory bandwidth limitations, adding more than ten CPU solvers would not have enhanced the commercial solver performance. Thus performance-wise (core to core), this conclusion cannot be drawn. Economically speaking, the GPU is far more superior, as adding a single GPU is much cheaper than several equivalents compute nodes.

Following the trend of resurrecting iterative solvers for PF applications mentioned earlier, in 2020, Zhou et al. designed a GPU-accelerated Preconditioned Conjugate Gradient solver to solve the same ACPF for N-1 SSA. They test their GPU-designed algorithm on 118, 1354, 2869, and 10828 bus systems, the last system being the east china power grid. The number of contingencies was respectively 177, 1728, 4204, and 11062. They compared their approach to 2 solution algorithms: 1- Complete LU SSA solution, which was implemented on a single core. 2- Rank-one update-based solution implemented on a single, 4, and 8 cores supported by a multi-threaded solver. The hardware specs were similar to previous studies. With their GPU implementation of this algorithm on the east china power grid, the solution speedup was 4.9x compared to the eight-core multi-threaded CPU implementation. Zhou’s works show that solvers for power system-related problems tailored for GPUs have considerable potential.

When it comes to EMT, the first record of GPU use is in [272], where co-processing of vector operations for 117 bus networks on GPU had double the speed of PSCAD, a CPU based software. In later work, they reduced the communication between the CPU and GPU and derived a GPU-specific algorithm to achieve close to x40 speedup on a 3861 bus network [273]. A similar implementation that aimed to reduce communication time, fully and efficiently exploit the SIMD architecture in EMT was also conducted in [274].

Earlier work by Zhou et al. was a GPU implementation of Electromagnetic Transient Simulation [275]. They utilize both SIMD and scalar operations and emphasize the importance of avoiding simultaneous memory access when parallel processing. The homogeneity of tasks was ensured where elements that are modeled similarly were grouped; for example, all RLC elements were processed in the same kernel with a unified lumped model. Separate Kernels were made for the Universal Line Model (ULM) in four stages, where every stage kernels were executed simultaneously. The Unified Machine Model (UMM) simulation, the third ubiquitous task, was also divided and managed in detail. The level of parallelism in this work is massive and attempts to squeeze every parallel structure in the problem and ounce of performance from the GPU. The algorithm was tested on 8 test cases from 40 bus up to 2458 bus systems. They used a NVIDIA Tesla C2050 GPU with 448 cores and 3GB memory and an AMD Phenom 4 core 3.2GHz CPU. The total simulation time was 100 milliseconds at 20-microsecond. On that setup, the speedup of 5.63x was achieved compared to an optimized commercial software EMTP-RV.

Finally, in one of the most impactful papers by the same authors, a huge test case containing 240,000 buses was decomposed with propagation delay [276]. The system was divided into linear, non-linear, and control subsystems. Also, the jacobian domain and the voltage calculations were parallelized, creating another decomposition layer, resulting in a highly fine-grained problem. Two GP104 GPUs were used where all the iterations were processed, and convergence was checked. Using a single GPU against the EMTP-RV resulted in a 15x speedup. Moreover, GPU linear scaling was
demonstrated by achieving double the speedup (30x) by adding the second GPU. However, it is important to note that the 240,000 bus system was an augmentation of the IEEE-39 bus system.

8. System State Estimation

Power SSE is a centerpiece of control centers. Thousands of voltage measurements are collected from SCADA systems and Phasor Measurement Unit (PMU) and processed to understand the conditions of the grid better. SSE studies provide accurate and reliable estimates of the phase angle and bus voltages from incomplete system measurements.

8.1. MIMD Based Studies

8.1.1. Development

Parallelizing SSE, much like other studies, started with simulations. Y Wallach and E. Handschin proposed a distributed master-slave topology [277], showing that merely partitioning the network would achieve speed gains. Later in 1982, C. W. Brice and R. K. Cavin simulated the potential performance of distributed and decentralized algorithms on parallel hardware for state estimation, where one is communication-intensive, the other is computationally intensive [278]. Different SSE decomposition techniques and parallel simulations were carried out over the 80s and 90s. Those include the block partitioning to decompose the state estimation problem by the network simulating the performance on a MIMD machine [279], parallel forward-backward substitution [280], recursive quadratic programming [281], Dantzig-Wolfe Decomposition Algorithm [282], and other simulations [283]. The first practical implementation was in the year 2000 using APP[284] [285].

The Weighted Least Square (WLS) algorithm is the most commonly used in SSE. WLS contains a matrix inversion step, which can be solved using LU decomposition. The first parallel WLS solver implementation might have been in [286] where shared memory vs. MPI schemes solving the linear system of equations were compared. The exploitation of parallelism in the Khan Filtering Method only showed up in 2009 [287], when its been in use since the 70s to improve the prediction aspect of SSE.

8.1.2. State of the Art

The most relevant work made in this area on MIMD is by Korres et al.. They used an efficient distributed WLS algorithm to perform multi-area state estimation in parallel using MPI [288]. They tested the algorithm with several processors from 1 up to 60, solving problems using the scientific toolkit PETSc which contains parallel optimization linear and non-linear solvers. They employed different communication/coordination strategies and control area partition numbers and sizes to estimate the state of an 1180 bus system (10x IEEE-118 system) in two cases, where case 2 exhibited more interconnections between “slave” areas. The algorithm was implemented on the National Technical University of Athens cluster consisting of 11 Intel Core 2 Duo E8200 PC nodes. However, in this work, scalability was demonstrated, but it lacked a speedup comparison against the fastest sequential algorithm.

8.2. SIMD Based Studies

8.2.1. Development

Most of the development of state estimation occurred over MIMD studies. The earliest significant SIMD application occurred in[248] where the PULSE IV, a scalable SIMD Chip, was designed to help achieve faster than real-time application in 2003.

8.2.2. State of the Art

Several uncommon SSE techniques were customized to GPU, such as the Fast Decoupled State Estimation [289] and selective column identification in the numerical differentiation [290] [291]. The WLS algorithm is the most commonly used for electrical SSE. WLS contains a matrix inversion step, which can be solved using LU decomposition. That is what Karimipour et al. did in [292] where they implemented all the steps of the solution algorithm from the Admittance matrix formation to the convergence check on GPU. The GPU used was a 512 core NIVIDIA with double-precision peak performance and the Intel Xeon E5-2610 2GHz CPU as a host. The test system used was an IEEE-39-bus system, duplicated and interconnected to create larger systems of up to 4992 buses. They achieved a speedup of up to 38 for the largest system compared to a sequential CPU implementation. The algorithm exhibited strong scalability, and they estimated that the maximum theoretical speedup achievable by that GPU is 312x for this algorithm. Notably, they also
address the issue of solution discrepancy due to the hardware architectural difference. They did it by considering both Correlated and Uncorrelated Gaussian Noise in the measurement samples (to consider bias) in small test cases, which is supposed to lead to larger errors in the final result. The Errors that occurred on the GPU solution matched those in the CPU solution, which confirmed the robustness of their algorithm.

Later Karimipour et al. produced a GPU parallelized Dynamic State Estimation based on Kalman Filters [293] on a Tesla S2050 GPU. Compared to a quad-core CPU, the approach achieved a speedup of x10 for a 19968 bus system with 5120 generators exhibiting close to 0 error of estimation. They extended and refined the approach by increasing the GPU portion of work and utilizing PMUs, and SCADA measurements [294]. For a smaller system (4992-bus), they achieved a higher speedup (15x) with high voltage precision (0.002 p.u. and 0.05 rad error). Finally, they made the algorithm robust against coordinated false data injection enabling its detection through the parallel algorithm and optimized, secure PMU installation [295].

In [296] the Dishonest Gauss Method in the WLS algorithm is used, where the Jacobian update is not executed at every iteration. The algorithm was implemented on a Tesla K20c GPU, fragmenting the original by vectorizing multiplication and multi-threading addition processes. They investigate the method’s accuracy and show that to get an accuracy of 100%, the Jacobian needs to be updated every seven iterations. They also demonstrate the algorithm’s robustness by applying different noise levels to see its effect on accuracy, showing the method ranges between 98% - 100% at different levels of noise. A complete mathematical analysis of the convergence of their method was conducted in [297]. Real-Time Digital Simulators measurements were used while adding errors that vary from 1-15%, and 30 samples per second were taken, a typical PMU sampling Rate. On an IEEE 118 system and a 3-second duration, their algorithm achieved a 15x speedup over what is claimed to be the best existing CPU implementation.

9. Unique Formulations & Other Studies

9.1. SIMD Based Studies

Almost all of the previous studies involve optimization problems, and those can be augmented and combined in various ways to achieve various objectives. Thus, a few unique and computationally expensive formulations in the literature sprouted with parallel implementation. A common one is an OPF problem that ensures the voltage stability in the solution, the Transient Stability Constrained OPF (TSCOPF). Adding such constraints complicates the problem, but it was shown that by using techniques such as Benders decomposition [298] and reduced space IPM [299] a remarkably faster solution can be achieved prior to parallelizing the subproblems.

In one formulation by [300], the TSCOPF is combined with UC to create a Transient Stability Constrained UC (TSCUC). This formulation was decomposed temporally using APP, and 24 cores were used to solve it on the IEEE-300 system. The model showed notable scalability; the solution time was reduced from 16h to 1h. Furthermore, using the same pre-defined contingency, transient stability of the first-hour interval of the solution was examined and compared to a standard SCUC solution. The TSCUC solution maintained whole system stability without any alteration, whereas the SCUC solution failed to regain stability even by modifying the power output post solution. Meaning the proposed model guarantees stability as opposed to the conventional one.

Deviating slightly to the security side, interesting work by [301] investigates mitigating the disturbance effect of geomagnetic storms on power systems. Those manifest as low-frequency, quasi-DC, high-impact extreme events. Tools for large and complex power systems to mitigate this problem do not exist; thus, this paper proposes a parallel solution approach to conduct optimal secure operation planning considering geomagnetic storm disturbances (GMD). They include Geomagnetic Induced Current (GIC) into an ACOPF model and turn it into an MINLP by modeling GIC blocking components holding three states, bypass, resistor, and capacitor. APP is used to decompose the problem into two problems, an NLP, solving for ACOPF, and a MILP which determines the state of switchable network components and calculates the GIC flow. The two subproblems can be solved independently and in parallel-coupled by a third model. Tests were performed on a multi-core workstation showing the utility of this approach in mitigating GIC for a 150-bus network. However, the authors did address that their extensive experience with the method guarantees that their APP approach results in an effective solution.

9.2. MIMD Based Studies

There have been a few venturesome studies, such as in [302] which used GPUs to accelerate a stability analysis involving both transmission and distribution systems into the network, which achieved some performance improve-
HPC Applications to Power System Optimization

ment, but the speedup factor might not justify the use of power. In other formulations, the gas and thermal systems are modeled and coupled into the electrical system to calculate the energy flow using the Inexact Newtons method and GMRES pre-conditioning [303]. Contrary to previous studies on GPUs, this study showed that the larger the system, the more time required. This is a testimony that care must be taken in routines and schemes that would scale with the hardware. Finally, the last notable work is in the AC TSC-OPF using GPU acceleration [304]. The reduced-space IPM was used in this study, and it was the portion that was decomposed and parallelized on GPU using Schur’s complement. They used a 12951 bus system in the largest case and compared their GPU accelerated algorithm to a single sequential core and parallel 16-core CPU implementations. Their algorithm achieved a speedup of x24 and x6.5, respectively.

10. Grid and Cloud Computing Based Studies

10.1. Development

The use of HPC facilities in the electrical power industry is not uncommon in various offline and some online applications, especially ones related to smart grids and microgrid planning [43]. For example, California Independent System Operator (CAISO) uses HPC to perform various real-time assessments of the network, such as reliability assessments [31]. Facing the huge computational load, ISO-NE installed an on-premise computer cluster in 2007 using EnFuzion as a job manager [305]. They later faced challenges in choosing the optimal size for clusters and investment in computational power since the peak computing jobs and average ones were very different. Hence it made sense to move some non-emergent applications to Cloud. In fact, ISO-NE had already initiated a project to adopt cloud computing with emphasis on achieving privacy and security [306] [307]. When facilities begin to struggle to meet the increasing requirement of deployed power system applications, it makes sense to resort to cloud services. Cloud computing really expands the realm in which algorithms and systems can be parallelized and exhausted. Regulators and players won’t have to worry about the availability of resources anymore but only squeeze out every inch of performance and manage the “rented” resources. Un-needed capital investment can be avoided, and real-time data can be shared with third parties.

When it comes to Grid and Cloud computing studies, performance enhancement is often sought through scalability and resource availability rather than optimizing for specific hardware. While this works very well, the combination of fine optimization would be much more powerful. But this might be only possible through the Grid rather than the Cloud model since it is more controllable. Most of the work in this area is very recent, but it starts with a few studies on Grid Computing. In an application that is very similar to the Cloud computing paradigm, the work by Morante et al. [308] might have been the first modular and hardware scalable implementation of parallel contingency analysis on a grid of 8 heterogeneous computers. A middleware called Hierarchical Metacomputers (HiMM) was used to allocate resources economically based on resource adequacy and a given budget value. By increasing the budget value, their middleware managed to lower the execution time by exploiting more expensive, more powerful resources. Other papers from the time explored the idea of monitoring and control of the power system using decentralized schemes on grid computing [309]. A few more studies explored Grid-based frameworks and applications, such as Huang et al. [310][311] and Ali M. [312], load flow on Grid by Al-Khannak et al. [313], and dynamic security assessment by Xingzhi Wang et al. [314]. In 2010, the literature almost completely shifted towards cloud computing and particularly an integrated framework combining smart Grid with Cloud, given the advent of AMI and big data at the dawn of that year. Several frameworks and models for smart grid co-ordination [315] [316] and power system assessment [317] using cloud appeared that year and later [318]. Ideas such as cloud-based demand response were being explored [319], and many papers suggested network architecture and control topologies that are realizable with cloud [320].

10.2. State of the Art

In [321] a finer scope was taken on task management of massive parallel contingency analysis using Hadoop Distributed File System on the Cloud. They applied an N-1 transmission line contingency analysis and used the NR method to solve the power flows. First, the system distributes the contingency and other parameters to separate nodes such that each node solves a contingency case. What’s unique about their job management scheme is that when the number of cores increases, the network bandwidth automatically increases as well, further increasing the performance. With this approach, they could perform a full AC contingency analysis for a real network in less than 40s.

For certain applications, such as Demand Side Management (DSM), fixed resources become an even greater issue as the amount of information processing and the computational requirement fluctuates based on the availability/flexibility...
of demand-side resources, which dictates the complexity of the problem at every instance. One of the options that are becoming more attractive is using cloud computing services, which could be much cheaper than expanding existing facilities. Using such services means an optimal allocation of the computational resource becomes much more crucial as cloud services are often billed based on the consumed resources and pay-as-you-go terms [322]. In 2016 Z. Cao et al.[323] handled this issue with a source allocation algorithm that finds the optimal cloud computing resources for Demand Side Management (DSM) instances. Commercial cloud computing resources differ from regular HPC clusters in the sense that there exists a greater variety in architecture, and the performance compactness might be lower than that of specialized HPCs used in research.

Interesting network paradigms could be created given that computational resources can be flexible and scaled as cloud services provide. Sheikhi[324] explores the idea of an “Energy Hub” where customers can be active in Demand Response Management by reducing their direct electricity consumption and using the output of the combined heat and power from the energy hub that the gas supplier supplies. This does not change customers’ electricity consumption level, but the demand has reduced from the electrical supplier’s point of view. This Energy Hub + Smart meter is now a Smart Energy Hub, and single or multiple customers could share it. The problem was formulated in a game theory approach where the Smart Energy hub is a price anticipator, which tries to predict the consequences of its own action on the price and chooses the optimal load shifting schedule to reduce the cost on customers on those bases. In a similar fashion to [325], the smart energy hubs read and control the outputs and send data to the Cloud to be aggregated and computed for decision-making, solving the game according to the cost function. They simulated their approach and showed that it resulted in a decrease in energy price compared to no DSM game. Also, they compared the communication cost of direct messaging configuration vs. cloud configuration, where Cloud showed lower cost making the platform more suitable for such applications.

On a much more refined and more local scale, Wang et al. [326] attempt to decentralize the problem of Dynamic Economic Dispatch (DED), i.e., energy management in real-time, by using inverter Digital Signal Processor (DSP) chips and cloud computing. The paper solves a multi-parametric quadratic programming optimization problem, which has been highly applied in the area of coordinated power system ED and TSO-DSO network coordinated dispatch. The solution involves two parts and is decomposed into two subproblems: 1- An offline calculation that Cloud carries out. 2- Real-time decision-making that the DSP carries out. In the cloud computing part, distributed renewable generation and loads are forecasted to create piecewise expressions. Every 4 hours, the expressions and information are sent to inverters such that the DSP chip can solve and optimize the output based on the real-time input of load and RE. The Cloud provides flexibility and handles the highest computation burden while simplifying the subproblem solved by the inverter.

On a 14 node test case with PV, wind, Grid, diesel, and battery system, with they drew a comparison between their approach and a traditional implementation on an i7 regular laptop. AWSinstances were created, and a real DSP chip was used. Their test showed that by moving offline computations to Cloud, it is solved within 34us compared to the traditional algorithm (372ms). This is a colossal speedup but might not be fair since the traditional algorithm creates a whole new deterministic problem every time it collects new values. The main gist is that it achieves the needed solution time for using DSP since the calculations on the inverter must be lower than 100us not to cause issues and interruptions. Sharing the inverter’s chip rather than adding local controllers lowers investment and maintenance costs, and the distributed nature makes it robust against single-point failure. However, care needs to be taken in the job timing such that the control functionality of the inverter is not interrupted.

Addressing the security concerns of Cloud, F. Ma et al. also proposed a cost-oriented model to optimize computing resource allocation, specifically for demand-side management problems using simulated annealing and modified priority list algorithms [30]. The objective function parameters are based on actual Amazon cloud service pricing. This cost-oriented model was compared to a traditional O2O model, which allocates resources based on the peak computational load for the renting period. The proposed optimization method showed a significant cost reduction over the traditional source allocation method. There is a security concern that comes with outsourcing sensitive processes. For other players in a free market, there is an economic benefit to engaging in cyberattacks and accessing information from competitors’ processes such as ED, as it could help with their bidding strategies. In their study, they explain the use of the Virtual Private Cloud (VPC) scheme, which isolates their portion of the Cloud such that their resources are not shared with other organizations or applications even if idle. It is supposed to increase the security of the outsourcing process. Yet, one can see how the spread of such a strategy would create an impediment to the scalability and efficiency of the Cloud.

The previous study was part of a diverse paper showcasing the challenges and experiences gained by ISO-Newengland
in moving to cloud services. In their move their applications, they used Axceleon CloudFuzion [327] job balancer, which provides high failure tolerance and job monitoring. The work involves heuristics and operational decisions, providing a great insight into the methodologies and equations used to choose the number of instances and squeeze every bit out of the rented hour. An N-2 contingency analysis was performed on a test case that takes 470h on a regular workstation; the case jobs were done in less than an hour with their scheme. CloudFuziaon wasn’t flawless, however, as its workflow was often interrupted by manual steps (which meant it had to be monitored). Thus ISO-NE started a project with Axceleon to develop an independent power system simulation platform for cloud computing that addresses that issue, fully automating processes after receiving the user input. In a 2019 study [305] they demonstrated that their platform managed to run multiple instances reaching near 100% CPU utilization of the instances launched for certain jobs and capable of many task computing and co-simulations.

While the work above used a service-level security mechanism, Sarker and Wang [328] wanted to ensure security, assuming that the cloud in-house security infrastructure is compromised. They transform the ED problem into a Confidentiality-Preserving Linear Programming (CPLP) formulation [329][330] to achieve holistic security, such that all sensitive information remains unknown by competitors. The approach protects against attacks from passive and active entities on the Cloud (administrators and customers). It works by converting inequality to equality constraints and multiplying the coefficients by randomly generated positive real numbers twice (a mononomial matrix U then H), which are held privately. The resultant constraint matrix is sent to the Cloud, and the equipment information implied in the constraint coefficients remains obscure to any attackers. This work enhances the security matrix reduction of CPLP. Since the feasible region of the CPLP that is produced after those operations is the same as the original LP problem, solving for those new constraints (the CPLP) yields the same solution as the LP. A test of the algorithm was performed on a 2383-bus Polish system, including 327 generators solved using CPLEX, comparing its performance on four different cloud instances. The method showed scalability, but it wasn’t tested against a regular ED algorithm.

Another paradigm that Cloud facilitates is the Many Task Computing paradigm. It facilitates Co-Simulations which involve solving many optimization problems and performing many studies apart then connecting them. In [331] they perform a large co-simulation by decomposing a network into heterogeneous partitions that are unique to each other, creating different problems for each partition (e.g., generators, passive components, loads, etc.). The dynamic resource allocation ability fits well with large-scale co-simulations because 1- different components have different transient reactions. 2- They might require different timesteps depending on transient status. 3- Each problem could have a different formulation (NLP, MILP, etc.) and require different solution times. The paper demonstrates the achievable co-simulation performance and interfacing on the Cloud using existing commercial tools. For example, in one instance, the network was divided into multiple Simulink models, launching Matlab script simulations in different processes. In another trial, a compiled MPI C code was used and Simulink executables to run the simulation.

11. Discussion

Parallel Applications for power systems started showing up around the late 60s and early 70s, around the same time when a commercial market for supercomputers and clusters was sprouting. At that stage, parallel computers were still experimental in nature, and oftentimes their design targeted a specific problem type or structure. Very few computers were suitable for power system studies as most had low arithmetic precision that’s equal to or less than 32-bit, which has been shown to be inadequate for direct solution methods [332].

At an abstract level, computer hardware architecture and its uses in power system studies are still the same. What used to be a “computer” or “host” is today’s CPU, and SIMDs like array processors were used just like today’s GPUs would be used for power system studies. Algorithms which include diakoptics/tearing and tree graphs, used to be a common theme at the start of vectorization and fine-grained parallelism, and it is still used in current GPU power system studies. Another example of similarity is that one of the issues faced at the time was that transient simulation timestep iterations sometimes required substantial logic and data to model for each node [333]. This means it would create a burden on the computer that hosts the array processes and cause communication bottlenecks. This is very analogous to what happens today in GPU-CPU optimization algorithms. Ironically, S. Jose argued in 1982 [333] for the need for a general-purpose processor to tackle the previous issues and since vector/array computers pose software hurdles and challenges that are too great to justify the enhancements achieved. Yet the same challenges are faced today, just at a different scale and magnitude (i.e., GPU-CPU interfacing / Cloud Implementations). A major shift in the field occurred around the 90s; around the same time, general-purpose processors experienced significant innovation and cost reduction, and more parallel optimization algorithms started appearing. Studies in power system stability
became abundant and UC algorithms debuted with most papers using metaheuristics to solve the problem. While implementation would have been arguably doable, simulations of parallel hardware still existed because more care was placed on implementation optimization and ensuring the practicality/portability of the parallel algorithms. The meaning or extent of what is considered coarse-grained and fine-grained algorithms shifted over time.

The main direction for HPC incorporation in power system studies application is moving towards real-time applications, much more so than offline applications. From the literature, it seems that renewable energy generation is the urgent driver for resorting to using AC formulations in real-time applications, followed by annual cost savings of replacing DC formulations. Benders decomposition and Lagrangian relaxation seem to be the most common combination in decomposing stochastic full AC problems. In larger systems, the application of parallel computation is clearly more advantageous, while in smaller systems, serial programming performs better or at least matches parallel computational approaches, mainly due to the communication overhead as an increased number of processes means longer and more communication time between them. The extent of this effect depends highly on the strategies used in parallelization as well as the cluster architecture and hardware used. GPUs, for example, exhibit extreme parallelism in processing architecture yet had superior performances over a more coarse CPU implementation shown previously [334]. Many organizations and research teams are developing public tools and frameworks to help incorporate HPC into power system studies. PNNL developed HIPPO [335] a tool to help grid operators tackle SCUC by leveraging optimization algorithms for HPC deployment. PNNL also initialized the development of another framework for power system simulations called GridPack, which falls under a larger suite called GridOPTICS [336]. While such tools facilitate the use of multi-processor parallelization, others such as Nividia CUDA [337] evolved GPUs - which have an immensely parallel architecture - to become easily programmable and spouted the trend of using GPUs for scientific calculations showing a promising future.

On-premise HPC is not future-proof as the grid organism keeps on evolving. A power system with n components with each component having m states can have m^n over all possible states. The Grid is quickly adding more components in terms of quantity and variety, AMI, EVs, IoT, etc. All power studies will keep on growing, and control rooms and operators will also need immediate visualizations for easy information analysis. This means that power system operators will inevitably resort to Cloud services. However, cloud computing has many of its own challenges related to policy, security, and cooperation before any solid adaptation is made. The Optimal placement of data centers depends on various stochastic factors, and the lack of interoperability between providers of cloud services doesn’t make this problem any easier. Regulatory compliance in terms of security and access is extremely hard to ensure. Data and process locations are unknown, and it becomes hard to investigate any dysfunction or intrusion. An Efficient recovery mechanism needs to always be in place, and even if the host company’s structure or owner-ships change, long-term data viability must be in place. Moreover, the business case for moving to cloud computing needs to be established first, which is different for every entity, and it is difficult to predict the future costs of the services. Lots of preparation and tools need to be created locally to ensure stable operation and inseparability and security, such as handling software licensing issues and data coordination/processing.

Computation aggregation evolved from a single processor to a processor and accelerator to a multi-processor system, Beowulf clusters and multi-core processors then grid. And even at a small level, much like vector arrays and ALUs were added to processors, future CPUs and GPUs will be integrated into the same device, and the cycle continues. In the future, the Cloud will be an integral part of all operational entities, including the electrical industry. The future electrical Grid and Cloud will look very different from today, both will be dynamic and transactive and will have a reciprocal relationship where the Cloud acts as the brain of the electrical network, and both will probably be driven by similar forces.

11.1. Software and Solvers

Commercial solver use can be traced back to the sixties with solvers such as the LP/90/94 [338] in conjunction with the development of the field of mathematical programming. Thus today, there is an abundance of open source and commercial solvers that race to employ the best techniques to solve standard problem formulations. This is evident in Fig. 12 showing the variety of solvers used.

To a large degree, commercial solvers simplified optimization for engineers allowing them to focus on modeling, leading to the subfield of model decomposition. Nevertheless, a few challenges arise when using commercial solvers instead of employing a specific solution algorithm to the problem. The heuristics involved in solver design could create a vast disparity in performance even for solvers within the same caliber solving the same type of problem. Also, the ability of a solver to identify and exploit the structure of the model heavily determines whether the model can be solved...
within a reasonable time. If the solver fails to accomplish this step, it might exhibit exponential growth in running time as indicated by complexity analysis. Moreover, hidden bugs and issues with the source code of the solvers could exist, particularly true for commercial solvers.

Established commercial solvers with full-time development teams such as CPLEX and Gurobi exhibit a more comprehensive dictionary of identifiable problem structures to accommodate the large user base. They are robust, scalable, and capable of handling large search spaces with multithreading and HPC exploitation capabilities. Moreover, they are easy to install and interface with many programming languages. Fig 12 shows the hierarchy of occurrences of different solvers in the surveyed literature, and it can be observed that the previously mentioned solvers dominate the literature for the previously mentioned reasons. But not to deter from experimenting with non-commercial solvers as they may be superior for specific problems. It is also worth noting that all the well-established general solvers in the tier of CPLEX and Gurobi are CPU-based and none exploit GPUs in their processes, an area worth exploring [339].

Compiled and procedural languages such as C and Fortran dominate the literature due to their superior performance, as shown in Fig. 13 (a). However, other multi-paradigm multi-paradigm and object-oriented languages (Matlab and python) started to infiltrate the literature due to their simplicity and convenient libraries. Other concurrent programming-oriented languages that might be of interest include Charm, Chapel, Cython, and Julia. Chapel has more advanced parallelism than Julia, while Julia has gained huge popularity since its release recently. Julia is expected to populate future literature due to its heavy emphasis on optimization and C-like performance. In terms of Parallel APIs, the fast adaptation of CUDA as shown in Fig. 13 (b) testifies the thirst for massive throughput and suggests that in terms of GPU-based power system optimization studies, there is to come.

There exist some integrated high-level frameworks designed to scale certain power system studies on HPC such as BELTISTOS [129], which solves multi-period, security-constrained, and stochastic OPF problems incorporating multi-level solution strategy implemented in PARDISO. However, when compared to GridPack, this framework seems quite limited. As part of the HIPPO project mentioned earlier [201], PNNL developed the software framework GridPack™ that lowers the barrier for power system research and analysis in creating parallel models for HPC implementation [340].

Grid pack automates processes such as determining the Y-Bus of the network and solving PF equations, integrating algebraic differential equations, coupling simulation components, distributing network and matrix representations of the network, and employing linear and non-linear solvers. GridPack has a partitioner that partitions the network module buses into several processors where it maximizes the interconnections between buses within the same processor and minimizes the ones between separate processors. It’s based on “Parmetis” partitioning software, which achieves graph
Figure 13: The occurrences of programming languages (left) and APIs (right) in the reviewed literature. *MPI includes MPICH, mpi4py, MultiMATLAB. UC: Unix Command

mesh partitioning, matrix reordering, etc. The matrices of the distributed matrices of the partitioned network are then distributed by mappers, which determine the contribution buses and branches from each processor by getting the dimensions and locations of elements. The math module generates those matrices and supplies linear and non-linear solvers built on the PETSc library. GridPack also has libraries of already developed, ready-to-use parallel applications. This includes different types of contingency analysis, initialization of dynamic simulation, power flow, and voltage stability analysis.

11.2. Challenges in the Literature

This review did not delve into deep comparisons between the different approaches due to the lack of standardization in various aspects of the studies, making it hard to draw meaningful comparisons. These challenges start with network topologies, sizes, a difference in hardware, and a mere lack of information. This is further discussed later in this subsection and can be observed in Table 1 in the Appendix.

First, the variety of test cases between studies causes a solution universality issue. Many solution approaches exploit the structure and properties of the problem, such as sparsity and asymmetry, which vary with different network topologies and the number of bus interconnections. The effect of that was evident in [122] where the parallel FDPF scheme performed better on the Pan-European system than the Polish system because it had a more orderly topology. Some studies boast remarkable results on massive synthetic bus systems that are an augmentation of the same small bus system connected with tie lines, such as in [276] where the IEEE-39 case was copied and connected over 6000 times. This creates a level of symmetry that does not exist in natural systems, one that certainly affects the performance rendition. Moreover, some SIMD-based studies use made-up or modified power systems that are very dense, which suits what the hardware is designed for but presents a false or exaggerated sense of performance accomplishment since real systems are generally sparse.

The second challenge is the lack of details in the experimentation setup essential for replication. Some papers provide the model of the hardware used without the number of threads or processes used and vice versa. Others claim a parallel application without mentioning the communication scheme used or the number of subproblems created. Furthermore, some papers use or compare iterative algorithms such as “Traditional ADMM/LR” or other generic algorithms without providing the user-adjusted parameters/heuristics involved in tweaking such algorithms, making it impossible to replicate and verify the results. Also, barely any of the studies explicitly mention the number and type of constraints and variables generated by the formulation and test cases used.

There is also no standardization in the metrics used to evaluate performance. Some studies use absolute speedup; some use relative speedups. Some compare their parallel approach to a different parallel approach which is weak
because the comparison loses its meaning if the proposed parallel approach is inferior to a sequential one. Some suffice by comparing their own parallelized approach to itself applied sequentially (scalability metric), which is problematic because decomposed task could perform worse than a coupled one when applied sequentially.

The third challenge is the lack of parallel implementation of long-term grid planning models akin to Transmission System Planning or Generation System Planning or their combination. This type of study that helps us plan the transition to the future network struggle with a very small number of factors, accuracy, and uncertainty, and on small test cases that many studies started resorting to decomposition algorithms [341] mainly benders decomposition to decouple investment variables in the models. Yet, it seems that almost non of the studies use or resort to parallel and high-performance computing, which is a huge lost opportunity as we need to add as many factors as possible to find the real optimal path of transitioning and investment given all the future policies technologies and scenarios that we can speculate at the moment.

The final significant challenge is the lack of standardization in software and hardware used in the studies. The main issue with software is in the variety of solvers used in papers that employ model decomposition schemes. Commercial solvers operate as black boxes that use different techniques, some of which are trade secrets. They are coded with different efficacies and have their bugs and problems, amplifying the confusion in interpretation.

The lack of hardware standardization in the literature has been highlighted since the 90s [342]. Even very recently, within supposedly comparative work where four different parallel schemes were compared, each scheme was performed on a different supercomputer and a different test case [251]. The single study that provided a meaningful cross-hardware comparison was [108]. They experimented with different CUDA routines on different but closely related NVIDIA GPU models, showing that their approach was not superior on every model proving the importance of hardware normalization.

One way to help tackle the challenge of hardware standardization is by using cloud service instances, such as AWS, as a benchmark, as they are easily accessible globally. Especially since Virtual CPUs (vCPUs) handle the standardization of the heterogeneous hardware and usage (an Elastic Compute Unit is equivalent to the computing power of a 1.0-1.2GHz 2007 Opteron or 2007 Xeon Processor [343]. Moreover, it fits the industry’s trend of shifting computational power to the Cloud. Also, these services come with metric tools that allow the user to look into the actual hardware usage and CPU and memory efficiency of their algorithm. This leads us to the last point: most previous studies merely glance over memory and treat memory resources as a bottleneck rather than a shared and finite resource. More focus on data and memory efficiency is needed. Future studies need to mention the maximum amount of data that needs to be processed and the actual memory usage of their approaches.

11.3. Future and Recommendations

At this point, the role cloud computation would play in power system HPC applications and the future Grid is almost unquestionable due to its sheer scale and versatility. The Cloud acting as the brain of the Grid fits the notion of the living organism envisioned by many for the Future Grid. In a few studies, the Cloud has been recognized as the centerpiece for distributed computing paradigms such as fog computing and AMI resource leveraging. With that said, the increasing dependence on centralized cloud computing services is antithetical to the goal of energy decentralization/independence. Yet the trend couldn’t be more natural, manifesting a cycle, how it almost recreates the onset of electrical generation monopolies. The decentralization of computational resources for power systems over micro users, however, doesn’t seem to be that far-fetched of an idea, especially with currently existing applications such as blockchains and volunteer computing.

A lot of the earlier parallel computing studies for power systems modified or created the hardware around algorithms used [80]. This hardware manipulation to suit limited computational purposes is making a comeback due to moors law and other limitations. Analog computing hardware is making a comeback as it is way more efficient in matrix multiplications. Rather than turning on and off, analog transistors encode a range of numbers based on the conductance magnitude, which is dictated by the gate. Their level of precision, however, makes them mainly suitable for AI chips and algorithms. Provided that their future precision becomes comparable to digital computers, they might be a contender to GPUs in mathematical optimization matrix operations.

The advancement in Quantum Computing research is creating a creeping disruptor of classical computation and algorithms as we know them. It has been shown that current Quantum Computers can solve combinatorial optimization problems that resemble ones related to energy system problems. Namely on the IBM’s D-WAVE solving facility location problem [344]. The potential of applying quantum computation for dynamic stability simulations, OPF and UC was discussed in the early 2000s [345]. In fact, the mixed-integer quadratic UC problem can be transformed into
a Quadratic Unconstrained Binary Optimization (QUBO) by discretizing the problem space, a form that can be turned into a quantum program. In a merely experimental effort, this was actually implemented by [344], the test systems were very small, from 3 to 12 units, and the solutions of the D-Wave were accurate for a smaller number of units but quickly started deviating. The DC power flow was also implemented on the D-Wave with an HHL algorithm process on a 3-bus test case showing accuracy [346]. These might be the first experimental efforts in employing quantum computation for operational power system studies.

Looking back at the studies, one can observe that our current parallel studies don’t come anywhere near covering the potential variables of the future Grid. The models are highly simplified and filled with assumptions. The amount of detail, planning factors, and uncertainties are not close to what needs to be considered in grid modernization and future transition. Yet the accuracy and computational performance of the solutions are sometimes not impressive. And even when decomposition techniques are used, and the created parallel structures are exploited with HPC, often we are faced with not-so-impressive outcomes, probably due to the lack of understanding and ingenuity in employing the parallel and decomposition and parallel techniques. The hardware that is used in many of the studies is often limited to a multi-core processor limiting the potential throughput. A complicated brain is needed to operate the complicated organism that is the future Grid. In the face of the Grid transformational changes, the power system community needs to start heavily adapting HPC techniques and utilization, incorporating them into future operational and planning studies. Moreover, a high level of transparency and collaboration is needed to accelerate the adaptation of parallel techniques making such knowledge the norm in power system studies for the Future Grid.

The lack of standardization makes it very hard to replicate techniques from different works. Therefore, it is very important to have a standard framework and minimum information requirement in future power system study publications. This is especially important to ensure published models and techniques validity, given the scientific reproducibility crisis [347] [348] [349]. The following points should serve as a guideline for future parallel studies in the field:

i. A small validation test case, including any modifications, should be presented with all of the parameters and results.

ii. All the model expressions must be fully indexed without brevity or detail omissions. This includes both the model pre and post-decomposition. If possible, the full extended model specific to the validation test case should be provided.

iii. The pseudocode of the algorithm and flow chart demonstrating the parallel task splitting and synchronization should be included. The values of any tuning factors or heuristic parameters used should be provided.

iv. All the platforms, software tools used, parallel strategies and metrics should be specified, this includes:

(a) Operating system (e.g. Windows 10)
(b) Coding language (e.g. Python or Julia)
(c) Commercial solvers & version (e.g. Gurobi 9.0.1)
(d) Parallelization API or package (e.g. mpi4py)
(e) Processes communication protocol (e.g. point-to-point or collective, etc.)
(f) Machine used (e.g. local university cluster, personal laptop)
(g) Type of worker allocated and all its model specs (e.g. 8-core 2.1 GHz 4mb intel i-7400)
(h) Memory allocated and technology (e.g. 10GB DDR5 RAM)

(i) Number of processes, threads & allocation per worker (e.g. the 100 subproblems were divided on 5CPUs (20 sub-problem/processes per CPU, each subproblem was solved using 6 threads (12 hyper-threads) automatically allocated by the solver.

(j) Average & Peak efficiency of memory and CPU usage. (e.g. CPUS efficiency: 100% peak and 91% average. Memory utilization: 80% peak and 40% average.

v. A test should be carried out on test cases incrementally increasing in size with a variety of network topologies to demonstrate the scalability and universality of the proposed method. And an effort should be placed to compare the speed up to the fastest known algorithm.
12. Conclusion

In this article, the beginnings of parallel computation and its appearances in power system studies were recounted, and the recent research and literature were reviewed. Several past reviews conducted that were previously conducted were cited, distinguishing this work from them. The significance of hardware, paradigms, and the history of parallel computing was then discussed. Studies of parallel power systems were summarized later, starting by reciting the development of studies up until the 21st century, with emphasis on the most impactful papers from the last decade. Studies included analyses of the stability of the power systems, state estimation and operation of the power systems, and market optimization. The state-of-the-art was also discussed, highlighting the need for standardization in the literature and showcasing the future of computation in power system studies. Given the grid modernization and transition towards net-zero emission, power systems are increasingly becoming more complex and resorting to high-performance, and parallel computing and cloud computing has never been more important.

Acknowledgement

We thank Manuel Zamudio Lopez (University of Calgary) for his comments on the manuscript.

References

[1] The White House. Building on past u.s. Leadership, including efforts by states, cities, tribes, and territories, the new target aims at 50-52 percent reduction in u.; 2021. [Online; accessed 29-Nov-2021]. Available from: https://bit.ly/3xEDGSn.
[2] Coal Exit; 2022. [Online; accessed 25-May-2022]. https://beyond-coal.eu/coal-exit-timeline/.
[3] Carbon Brief; 2020. [Online; accessed 29-Nov-2021]. Available from: https://bit.ly/3HFuvFR.
[4] IEA; 2022. [Online; accessed 25-May-2022]. https://bit.ly/3QB9Fh.
[5] Ritchie H, Roser M, Rosado P. Energy. Our World in Data 2020 Nov. Available from: https://ourworldindata.org/energy.
[6] IEA; 2022. [Online; accessed 25-May-2022]. https://bit.ly/3njRMEd.
[7] Iid R. Markets. Industrial electrification growth opportunities - research and markets; 2022. [Online; accessed 25-May-2022]. Available from: https://bit.ly/3QKmIej.
[8] IEA; 2021. Available from: https://bit.ly/3bcrGP.
[9] Gonzalez-Torres M, Pérez-Lombard L, Coronel JF, Maestre IR, Yan D. A review on buildings energy information: trends, end-uses, fuels and drivers. Energy Reports 2022;8:626-37. Available from: https://www.sciencedirect.com/science/article/pii/S23524872101427X.
[10] Industry B; 2021. Available from: https://bit.ly/3HFyceH.
[11] Zhu X, Liu K. A systematic review and future directions of the sharing economy: business models, operational insights and environment-based utilities. J Cleaner Prod 2021;290:125209. Available from: https://www.sciencedirect.com/science/article/pii/S0959652620352537.
[12] EIA. Annual electric power industry report; 2021. Available from: https://www.eia.gov/tools/faqs/faq.php.
[13] Borenius S, Hämmäinen H, Lehtonen M, Ahokangas P. Smart grid evolution and mobile communications—scenarios on the finnish power grid. Electr Pow Syst Res 2021;199:107367. Available from: https://www.sciencedirect.com/science/article/pii/S0378779621003485.
[14] Hua H, Liu T, He C, Nan L, Zeng H, Hu X, et al. Day-ahead scheduling of power system with short-circuit current constraints considering transmission switching and wind generation. IEEE Access 2021;9:110735-45.
[15] Daly P, Qazi HW, Flynn D. Rocofo-constrained scheduling incorporating non-synchronous residential demand response. IEEE Trans Power Syst 2019;34(5):3372-83.
[16] Nawaz A, Wang H. Distributed stochastic security constrained unit commitment for coordinated operation of transmission and distribution system. CSEE Journal of Power and Energy Systems 2021;7(4):708-18.
[17] Luburi/uni0107 Z, Pandži/uni0107 H, Carrión M. Transmission expansion planning model considering battery energy storage, tcsc and lines using ac opf. IEEE Access 2020;8:203429-39.
[18] Zhao Z, Zhang N, Yang J, Kang C, Smith C, O’Malley MJ, et al. Transmission expansion planning test system for ac/dc hybrid grid with high variable renewable energy penetration. IEEE Trans Power Syst 2020;35(4):2597-608.
[19] Gonzalez-Romero IC, Wogrin S, Gomez T. Proactive transmission expansion planning with storage considerations. Energy Strategy Reviews 2019;24:154-65. Available from: https://www.sciencedirect.com/science/article/pii/S2221467X19300227.
[20] Basics CT. State and trends of carbon pricing 2021; 2021. Available from: https://www.c2es.org/content/carbon-tax-basics/.
[21] Prahasanto I, Sinisuka N, Nurdin M, Nugraha H. A review of feed-in tariff model (fit) for photovoltaic (pv). In: 2019 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS); 2019. p. 076-9.
[22] Oprea SV, Bâra A. Setting the time-of-use tariff rates with nosql and machine learning to a sustainable environment. IEEE Access 2020;8:25521-30.
[23] Shahzad Y, Javed H, Farman H, Ahmad J, Jan B, Zubair M. Internet of energy: opportunities, applications, architectures and challenges in...
HPC Applications to Power System Optimization

smart industries. Computers & Electrical Engineering 2020;86:106739. Available from: https://www.sciencedirect.com/science/article/pii/S0045790620305942.

[24] Kaya O, van der Roest E, Vries D, Keiczky T. Hierarchical model predictive control for energy management of power-to-x systems. In: 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe); 2020. p. 1094-8.

[25] Bokkisam HR, Singh S, Acharya RM, Selvan MP. Blockchain-based peer-to-peer transactive energy system for community microgrid with demand response management. CSEE Journal of Power and Energy Systems 2022;8(1):198-211.

[26] Ledger P. Utility tokens and erc-20 icos: where are we now? 2022. Available from: https://gbbcouncil.org/wp-content/uploads/2020/05/GBBC-Open-Source-Ideas-Special-Report-Utility-Tokens-and-ERC-20-ICOS.pdf.

[27] Conejo AJ, Baringo L. Power electronics and power systems power system operations. Springer Cham; 2019. Available from: http://www.springer.com/series/6403.

[28] Cooper William W SLM, Joe Z. International series in operations research & management science introduction. vol. 139. Springe; 2010.

[29] NERC. Reliability standards for the bulk electric systems of north america. Standard 2019:1-1044. Available from: http://www.nerc.com/docs/standards/rs/Reliability(_).Standards(_).Complete(_).Set.pdf.

[30] Alam A, Gopinathan G, Shrestha B, Zhao R, Wu J, Xu R. High preformance computing for operations and transmisson planning at caiso. 2018 IEEE/PES Transmission and Distribution Conference and Exposition 2018:3-7.

[31] Chen Y, Member S, Wang F, Ma Y, Yao Y. A distributed framework for solving and benchmarking security constrained unit commitment with warm start. IEEE Trans Power Syst 2020;35(1):711-20.

[32] Chen Y, Mem S, Wang F, Ma Y, Yao Y. A distributed framework for solving and benchmarking security constrained unit commitment with warm start. IEEE Trans Power Syst 2020;35(1):711-20.

[33] Constantinou EM, Zavala VM, M Rocklin SL, Anitescu M. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Trans Power Syst 2011;26(1):431-41.

[34] O’Neill R, Castillo A, Cain B. Optimal power flow and formulation papers; 2013.

[35] Kaya O, van der Roest E, Vries D, Keviczky T. Hierarchical model predictive control for energy management of power-to-x systems. In: IiRCG, Wang L, Alam M. High performance computing for electric power systems: applications and trends. 2011 IEEE Power and Energy Society General Meeting 2011:1-8.

[36] Happ HH, Urdjit MM. Multicomputer configurations and diakiptics: real power flow in power pools. IEEE Trans Power App Syst 1969;PAS-88(6):789-96.

[37] Ewart DN, Kirchmayer LK. Automation and utility system security. IEEE Spectr 1971;8(7):37-42.

[38] Narita S, Hamnam MSA. Multicomputer control of system voltage and reactive power on real-time basis. IEEE Trans Power App Syst 1973;PAS-92(1):278-86.

[39] Wu F. Solution of large-scale networks by tearing. IEEE Trans Circuits Syst 1976;23(12):706-13.

[40] Anderson PM. Exploring applications of parallel processing to power system analysis problems. Seminar Proceeding Special Report. Electric Power Research Institute; 1977.

[41] Podmore R. Application of an array processor for power system network computations. Build Environ 1982;17(2):95-105.

[42] Tylavsky CcDi, Bose A, Alvarado MF, Betancourt R, Clemens K, Heydt GT, et al. Parallel processing in power systems computation. IEEE Trans Power Syst 1992;7(2):629-38.

[43] Bose A. Parallel processing in dynamic simulation of power systems. Sadhana 1993;18(5):815-41.

[44] Falcao DM. High performance computing in power system applications. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1996;1215(June):v.

[45] Darwiche A. The design of exponential time algorithms. Annals of Mathematics and Artificial Intelligence 1993;9(1):35-57.

[46] Hey AJG. Supercomputing with transputers—past, present and future. In: Proceedings of the 4th International Conference on Supercomputing ICS ’90. New York, NY, USA: Association for Computing Machinery; 1990. p. 479-89.

[47] Bose P. Power wall. In: Padua D, editor. encyclopedia of parallel computing Boston, MA: Springer US; 2011. p. 1593-608.

[48] Intel. Intel xeon silver 4110 processor. Inter Coorporation; 2018. Available from: https://www.intel.com/content/www/us/en/products/sku/123547/intel-xeon-silver-4101-processor-11m-cache-2-10-ghz.html.

[49] Stringer L. Stringer L, editor. Vectors: how the old became new again in supercomputing. hpcwire; 2016. Available from: http://www.sciencedirect.com/science/article/pii/B9780128150719000142.

[50] Ramesh VC. On distributed computing for on-line power system applications. Electrical Power & Energy Systems 1996;18(8):527-33.

[51] IiRCG, Wang L, Alam M. High-performance computing for electric power systems: applications and trends. 2011 IEEE Power and Energy Society General Meeting 2011:1-8.

[52] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[53] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[54] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[55] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[56] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[57] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[58] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].

[59] Intel. Intel AVX-512 - instruction set for packet processing. Intel Corporation; 2021. [Online; accessed 29-Nov-2021].
HPC Applications to Power System Optimization

[59] ARM. ARM, editor. Defining the future of computing. Arm | The Architecture for the Digital World; 2022. Available from: https://www.arm.com/.

[60] Leiner BM, Cerf VG, Clark DD, Kahn RE, Kleinrock L, Lynch DC, et al. Brief history of the internet. Internet Society; 1997. Available from: https://www.sciencedirect.com/science/article/pii/S0142061599000538.

[61] Spinnellis D. A repository of unix history and evolution. Empirical Softw Eng 2017 Jun;22(3):1372-404.

[62] Stott M. ARCNETworks. Arcnets Trade Association; 1998. Available from: https://www.darpa.mil/about-us/timeline/arpanet.

[63] Majidha Fatihma KM, Santhiyakumari N. A survey on evolution of cloud technology and virtualization. In: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV); 2021. p. 428-33.

[64] Beck A, Beck A, editor. High throughput computing: an interview with miron livny. Research.cs.wisc.edu; 2021. [Online; accessed 29-Nov-2021].

[65] Adobe. Adobe, editor. Adobe creative cloud. Adobe; 2022. [Online; accessed 29-Nov-2021].

[66] Globus. Globus, editor. Globus toolkit. Toolkit.globus.org; 2021. [Online; accessed 29-Nov-2021].

[67] Amazon. Overview of amazon web services: aws whitepaper. Amazon Web Services; 2022. [Online; accessed 29-Nov-2021].

[68] Geist GA, Sunderam VS. Network-based concurrent computing on the pvm system. Concurency: Pract Exper 1992 Jun;4(4):293-311.

[69] UTIM. UTIM, editor. Run virtual machines on iOS. UTIM; 2022. Available from: https://getutm.app/.

[70] Apptainer. Apptainer, editor. Apptainer container engine. Apptainer; 2022. Available from: https://bit.ly/3bc1CXb.

[71] Docker. Docker, editor. Docker container engine. Docker; 2022. Available from: https://www.docker.com/.

[72] Mersenne. Mersenne, editor. Great internet mersenne prime search - primenet. GIMPS; 2022. [Online; accessed 15-Mar-2022].

[73] BOINC. BOINC, editor. News from boinc projects. BOINC; 2022. [Online; accessed 15-Mar-2022].

[74] Apple. Apple, editor. MacOS server. Apple; 2022. [Online; accessed 15-Mar-2022].

[75] DASK. DASK, editor. Task graph optimization. DASK; 2022. [Online; accessed 15-Mar-2022].

[76] Wu JQ, Bose A, Huang JA, Valette A, Lafrance F. Parallel implementation of power system transient stability analysis. IEEE Trans Power Syst 1995;10(3):1226-33.

[77] Mccool MD. Parallel programming, chapter 2. No. March in 1. Morgan Kaufmann; 2012.

[78] Adams L. Cosmic ray effects in microelectronics. Microelectron J 1985;16(2):17-29. Available from: https://www.sciencedirect.com/science/article/pii/S014206150600192X.

[79] Government A. Aviation safety investigations & reports: In-flight upset - Airbus A330-303, VH-QPA, 154 km west of learmonth, WA, 7 October 2008. Australian Transport Safety Bureau; 2021. [Online; accessed 29-Nov-2021].

[80] Taoka H, Abe S, Takeda S. Multiprocessor system for power system analysis. Ifac Work S 1981:101-6.

[81] Ward JB, Hale HW. Digital computer solution of power-flow problems [includes discussion]. Transactions of the American Institute of Electrical Engineers Part III: Power Apparatus and Systems 1956;75(3):398-404.

[82] Carre BA. Solution of load-flow problems by partitioning systems into trees. IEEE Trans Power App Syst 1968;PAS-87(11):1931-8.

[83] Happ HH. Z diakoptics - torn subdivisions radially attached. IEEE Trans Power App Syst 1967;PAS-86(6):751-69.

[84] Andretich RG, Brown HE, Happ HH, Person CE. The piecewise solution of the impedance matrix load flow. IEEE Trans Power App Syst 1968;PAS-87(10):1877-82.

[85] Stott M. ARCNETworks. Arcnets Trade Association; 1998. Available from: https://getutm.app/.

[86] Grexa T, Tytla DJ, Bose A. Coarsegrainschedulinginparalleltriangularfactorizationsolutionofpowersystemmatrices. IEEE Trans Power Syst 1985;PER-5(12):29-30.

[87] Beck A. Beck A, editor. High throughput computing: an interview with miron livny. Research.cs.wisc.edu; 2021. [Online; accessed 29-Nov-2021].

[88] Amazon. Overview of amazon web services: aws whitepaper. Amazon Web Services; 2022. [Online; accessed 29-Nov-2021].

[89] Adams L. Cosmic ray effects in microelectronics. Microelectron J 1985;16(2):17-29. Available from: https://www.sciencedirect.com/science/article/pii/S014206150600192X.

[90] LauK, Tylavsky DJ, Bose A. Coarse grain scheduling in parallel triangular factorization and solution of power system matrices. IEEE Trans Power Syst 1991;6(2):708-14.

[91] Mersenne. Mersenne, editor. Great internet mersenne prime search - primenet. GIMPS; 2022. [Online; accessed 15-Mar-2022].

[92] Wu JQ, Bose A, Huang JA, Valette A, Lafrance F. Parallel implementation of power system transient stability analysis. IEEE Trans Power Syst 1995;10(3):1226-33.

[93] Mccool MD. Parallel programming, chapter 2. No. March in 1. Morgan Kaufmann; 2012.

[94] Adams L. Cosmic ray effects in microelectronics. Microelectron J 1985;16(2):17-29. Available from: https://www.sciencedirect.com/science/article/pii/S014206150600192X.

[95] Government A. Aviation safety investigations & reports: In-flight upset - Airbus A330-303, VH-QPA, 154 km west of learmonth, WA, 7 October 2008. Australian Transport Safety Bureau; 2021. [Online; accessed 29-Nov-2021].

[96] Taoka H, Abe S, Takeda S. Multiprocessor system for power system analysis. Ifac Work S 1981:101-6.

[97] Carre BA. Solution of load-flow problems by partitioning systems into trees. IEEE Trans Power App Syst 1968;PAS-87(11):1931-8.

[98] Happ HH. Z diakoptics - torn subdivisions radially attached. IEEE Trans Power App Syst 1967;PAS-86(6):751-69.

[99] Andretich RG, Brown HE, Happ HH, Person CE. The piecewise solution of the impedance matrix load flow. IEEE Trans Power App Syst 1968;PAS-87(10):1877-82.

[100] Takatoo M, Abe S, Bando T, Hitosawa K, Goto M, Kato T, et al. Floating vector processor for power system simulation. IEEE Power Eng Rev 1985;PER-5(12):29-30.

[101] Leiner BM, Cerf VG, Clark DD, Kahn RE, Kleinrock L, Lynch DC, et al. Brief history of the internet. Internet Society; 1997. Available from: https://www.sciencedirect.com/science/article/pii/S0142061599000538.

[102] Amazon. Overview of amazon web services: aws whitepaper. Amazon Web Services; 2022. [Online; accessed 29-Nov-2021].

[103] Globus. Globus, editor. Globus toolkit. Toolkit.globus.org; 2021. [Online; accessed 29-Nov-2021].

[104] Amazon. Overview of amazon web services: aws whitepaper. Amazon Web Services; 2022. [Online; accessed 29-Nov-2021].

[105] Globus. Globus, editor. Globus toolkit. Toolkit.globus.org; 2021. [Online; accessed 29-Nov-2021].
[169] Numnonda T, Annakagge UD, Pahalawaththa NC. Unit commitment using stochastic optimization. Proceedings of the International Conference on Intelligent Systems Applications to Power Systems, ISAP 1996;1(2):428-33.

[170] Yang HT, Yang PC, Huang CL. Optimization of unit commitment using parallel structures of genetic algorithm. In: Proceedings 1995 International Conference on Energy Management and Power Delivery EMPC ’95, vol. 2; 1995. p. 577-82 vol.2.

[171] Yang HT, Yang PC, Huang CL. A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks. IEEE Power Eng Rev 1997;17(5):58-9.

[172] Murillo-s CE, Thomas RJ. Parallel processing implementation of the unit commitment problem with full ac power flow constraints. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences 2000;30(c):1-9.

[173] Baslis CG, Papadakis SE, Bakirtzis AG. Simulation of optimal medium-term hydro-thermal system operation by grid computing. IEEE Trans Power Syst 2009;24(3):1208-17.

[174] Papavasiliou A, Oren SS, O’Neill RP. No title resistor requirements for wind power integration: a scenario-based stochastic programming framework. IEEE Trans Power Syst 2011;26:2197-206.

[175] Papavasiliou A, Oren SS, Rountree B. Applying high performance computing to transmission-constrained stochastic unit commitment for renewable energy integration. IEEE Trans Power Syst 2015;30(3):1109-20.

[176] Aravena I, Papavasiliou A. A distributed asynchronous algorithm for the two-stage stochastic unit commitment problem. In: 2015 IEEE Power Energy Society General Meeting; 2015. p. 1-5.

[177] Bai Y, Zhong H, Xia Q, Kang C, Xie L. A decomposition method for network-constrained unit commitment with ac power flow constraints. Energy 2015;85:595-603.

[178] Bai X, Wei H, Fujisawa K, Wang Y. Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems 2008;30(6):383-92. Available from: https://www.sciencedirect.com/science/article/pii/S0142061507001378.

[179] Khanabadi M, Wang C. Security-constrained unit commitment considering voltage stability: a parallel solution. 2016 North American Power Symposium (NAPS) 2016.

[180] Kargarian A, Raofat M, Mohammadi M. Reactive power market management considering voltage control area reserve and system security. Appl Energy 2011;88(11):3832-40. Available from: https://www.sciencedirect.com/science/article/pii/S0306261911002467.

[181] Siashans R, Oren S, O’neill R. Chapter 6 - the cost of anarchy in self-commitment-based electricity markets. In: Siashans R, editor. Competitive Electricity Markets Elsevier Global Energy Policy and Economics Series. Oxford: Elsevier; 2008. p. 245-66. Available from: https://www.sciencedirect.com/science/article/pii/S0306261911002467.

[182] Feizollahi MJ, Costley M, Ahmed S, Grijalva S. Large-scale decentralized unit commitment. International Journal of Electrical Power and Energy Systems 2015;73:97-106.

[183] Doostizadeh M, Aminifar F, Lesani H, Ghasemi H. Multi-area market clearing in wind-integrated interconnected power systems: a fast parallel decentralized method. Energy Convers Manage 2016;113:131-42.

[184] Ramanan P, Yildirim M, Gebrael N, Ramanan P, Gebrael N. Asynchronous decentralized framework for unit commitment in power systems. IEEE Trans Power Syst 2017;665-74.

[185] Shi W, Ling Q, Yuan K, Wu G, Yin W. On the linear convergence of the admm in decentralized consensus optimization. IEEE Trans Signal Processing 2014;62(7):1750-61.

[186] Ramanan P, Yildirim M, Chow E, Gebrael N. An asynchronous , decentralized solution framework for the large scale unit. IEEE Trans Power Syst 2019;34(3):3677-86.

[187] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 2011 Jan;3(1):1-122.

[188] Bragin MAS, Luh PB. Distributed and asynchronous economic dispatch. 2017 IEEE Power & Energy Society General Meeting 2017.

[189] Bragin MA, Yan B, Luh PB. Distributed and asynchronous coordination of a mixed-integer linear system via surrogate lagrangian relaxation. IEEE Trans Automat Sci Eng 2021;18(1):1191-205.

[190] Kargarian A, Mehtstash M, Falahati B. Decentralized implementation of unit commitment with analytical target cascading. IEEE Trans Power Syst 2018;33(3):9398-1-93.

[191] Fu Y, Li Z, Wu L. Modeling and solution of the large-scale security-constrained unit commitment. IEEE Trans Power Syst 2013;28(4):3524-33.

[192] Kargarian A, Fu Y, Li Z. Distributed security-constrained unit commitment for large-scale power systems. IEEE Trans Power Syst 2015;30(4):1925-36.

[193] Ming Z, Junyi Z, Gengyin L, Jianwen R. Distributed dispatch approach for bulk ac / dc hybrid systems with high wind power penetration. IEEE Trans Power Syst 2018;33(3):3325-36.

[194] Wei L, Liu G, Member S, Yan S, Member S. Graph computing based security constrained unit commitment in hydro-thermal power systems incorporating pumped hydro storage. CSEE Journal of Power and Energy Systems 2020:1-11.

[195] Fu Y, Shahidehpour M. Fast scuc for large-scale power systems. IEEE Trans Power Syst 2007;22(4):2144-51.

[196] Feng W, Yuan C, Dai R, Liu G, Li F. Graph computation based power flow for large-scale ac/dc system. In: 2018 International Conference on Power System Technology (POWERCON); 2018. p. 468-73.

[197] Yuan C, Zhou Y, Liu G, Dai R, Lu Y, Wang Z. Graph computing-based ws fast decoupled state estimation. IEEE Trans Smart Grid 2020;11(3):2440-51.

[198] Shi Q, Yuan C, Feng W, Liu G, Dai R, Wang Z, et al. Enabling model-based lti for large-scale power system security monitoring and enhancement with graph-computing-based power flow calculation. IEEE Access 2019;7:167010-8.

[199] Chen Y, Casto A, Wang F, Wang Q, Wang X, Wan J, et al. Improving large scale day-ahead security constrained unit commitment performance.
IEEE Trans Power Syst 2016;31(6):4732-43.

Chen Y, Member S, Pan F, Holzer J, Rothberg E. A high performance computing based market economics driven neighborhood search and polishing algorithm for security constrained unit commitment. IEEE Trans Power Syst 2021;36(1):292-302.

PNNL. PNNL, editor. High-performance computing helps grid operators manage increasing complexity. High-Performance Computing Helps Grid Operators Manage Increasing Complexity; 2020. [Online; accessed 29-Nov-2021]. https://bit.ly/3tLaU86.

Stott B, Alsc A, Monticelli AJ. Security analysis and optimization. Proc IEEE 1987;75(12):1623-44.

Balu N, Bertram T, Bose A, Brandwajn V, Cauley G, Curtice D, et al. On-line power system security analysis. Proc IEEE 1992;80(2):262-82.

Hao S, Papalexopoulos A, Peng T. Distributed processing for contingency screening applications. IEEE Trans Power Syst 1995;10(2):838-44.

Mendes JC, Saavedra OR, Feitosa SA. A parallel complete method for real-time security analysis in power systems. IEEE Trans Power Syst 2000;56:27-34.

Balduino L, Alves ACB. Parallel processing in a cluster of microcomputers with application in contingency analysis. In: 2004 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956); 2004. p. 285-90.

Huang Z, Chen Y, Nieplocha J. Massive contingency analysis with high performance computing. IEEE Power & Energy Society General Meeting 2009:1-8.

Huang Q, Zhou M, Zhang Y, Wu Z. Exploiting cloud computing for power system. International Conference on Power System Technology 2010:1-6.

Khaitan SK, McCalley JD. Parallelizing power system contingency analysis using d programming language. In: 2013 IEEE Power Energy Society General Meeting; 2013. p. 1-5.

Khaitan SK, McCalley JD. Scale: a hybrid mpi and multithreading based work stealing approach for massive contingency analysis in power systems. Electr Pow Syst Res 2014;114:118-25. Available from: https://www.sciencedirect.com/science/article/pii/S0378779614001576.

Sekine Y, Takahashi K, Sakaguchi T. Real-time simulation of power system dynamics. International Journal of Electrical Power & Energy Systems 1994;16(3):145-56. Special Issue 11th Power Systems Computation Conference. Available from: https://www.sciencedirect.com/science/article/pii/0142061594900043.

Pai MA, Sauer PW, Kulkarni AY. Conjugate gradient approach to parallel processing in dynamic simulation of power systems. In: 1992 American Control Conference; 1992. p. 1644-7.

Decker JC. Falcao DM, Kaszkurewicz E. Conjugate gradient methods for power system dynamic simulation on parallel computers. IEEE Trans Power Syst 1996;11(3):1281-27.

Shu J, Xue W, Zheng W. A parallel transient stability simulation for power systems. IEEE Trans Power Syst 2005;20(4):1709-17.

Jin S, Huang Z, Diau R, Wu D, Chen Y. Parallel implementation of power system dynamic simulation. IEEE Power and Energy Society General Meeting 2013.

Alvarado FL. Parallel solution of transient problems by trapezoidal integration. IEEE Trans Power App Syst 1979;PAS-98(3):1080-90.

Hatcher WL, Brasch FM, Van Ness JE. A feasibility study for the solution of transient stability problems by multiprocessor structures. IEEE Trans Power App Syst 1977;96(6):1789-97.

Hatcher I, William. Lloyd H, editor. A special purpose multiprocessor for the simulation of dynamic systems. Naval Postgraduate School; 1976. Available from: https://calhoun.nps.edu/handle/10945/17950.

Brasch FM, Van Ness JE, Sang-Chul K. The use of a multiprocessor network for the transient stability problem. IEEE Conference Proceedings Power Industry Computer Applications Conference 1979:337-44.

Khaitan SK, McCalley JD, Kang SC. Simulation of a multiprocessor network for power system problems. IEEE Trans Power Syst 1982;PAS-101(2):295-301.

Taoka H, Abe S, Takeda S. Fast transient stability solution using an array processor. IEEE Trans Power App Syst 1983;PAS-102(12):3835-41.

Taoka H, Abe S. Fast transient stability solution adapted for an array processor. IEEE Transactions on Power and Energy 1984;104(5):297-304.

La Scala M, Bose A, Tylavsky DJ, Chai JS. A highly parallel method for transient stability analysis. IEEE Trans Power Syst 1990;5(4):1439-46.

Brasch FM, Van Ness JE, Sang-Chul K. The use of a multiprocessor network for the transient stability problem. IEEE Conference Proceedings Power Industry Computer Applications Conference 1979:337-44.

Mendes JC, Saavedra OR, Torelli F, Trovato M. A parallel complete method for transient stability analysis. IEEE Trans Power Syst 1995;10(4):1168-77.

La Scala M, Sbrizzi R, Torelli F. A pipelined-in-time parallel algorithm for transient stability analysis. Test 1991;6(4):1281-27.

Zhao N, Bose A. A dynamic partitioning scheme for parallel transient stability analysis. IEEE Trans Power Syst 1992;7(2):940-6.

Chat JS, Bose A. Bottlenecks in parallel algorithms for power system stability analysis. IEEE Trans Power Syst 1993;8(1):9-15.

Ilic’-Spong M, Crow ML, Pai MA. Transient stability simulation by waveform relaxation methods. IEEE Trans Power Syst 1987;2(4):943-9.

La Scala M, Bose A, Tylavsky DJ, Chai JS. A highly parallel method for transient stability analysis. IEEE Trans Power Syst 1990;5(4):1439-46.

Crow ML. The parallel implementation of the waveform relaxation method for the simulation of structure-protected power systems. In: 1990 IEEE International Symposium on Circuits and Systems (ISCAS); 1990. p. 1285-8 vol.2.

Tylavsky DJ, Nagaraj S, Crouch PE, Gaye AA, Jarriel LF. Parallel-vector processing synergy and frequency domain transient stability simulations. Electr Pow Syst Res 1993;28(2):89-97.

Granelli GP, Montagna M, La Scala M, Torelli F. Relaxation-newton methods for transient stability analysis on a vector/parallel computer. IEEE Trans Power Syst 1994;9(2):637-43.

Taoka H, Iyoda I, Noguchi H, Sato N, Nakazawa T. Real-time digital simulator for power system analysis on a hypercube computer. IEEE Trans Power Syst 1992;7(1):1-10.

Chai JS, Zhu N, Bose A, Tylavsky DJ. Parallel newton type methods for power system stability analysis using local and shared memory multiprocessors. IEEE Trans Power Syst 1991;6(4):1539-45.
Ahmed Al-Shafei et al.: Preprint submitted to Elsevier

HPC Applications to Power System Optimization

Syst 1991;6(3):1337-43.

[236] Aloisio G, Bochicchio MA, La Scala M, Sbrizzai R. A distributed computing approach for real-time transient stability analysis. IEEE Trans Power Syst 1997;12(2):981-7.

[237] C Hong XM Shen. Parallel transient stability analysis on distributed memory message passing multiprocessors. IET Conference Proceedings 1997 Jan;304-9(5).

[238] Hong C. Implementation of parallel algorithms for transient stability analysis on a message passing multicomputer. 2000 IEEE Power Engineering Society Winter Meeting Conference Proceedings 2000:1410-5.

[239] Xue W, Shu J, Zheng W. Parallel transient stability simulation for national power grid of china. In: Proceedings of the Second International Conference on Parallel and Distributed Processing and Applications ISPA’04. Berlin, Heidelberg: Springer-Verlag; 2004. p. 765-76.

[240] Jikeng L, Xinya T, Xudong W, Weicheng W. Parallel simulation for the transient stability of power system. In: 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies; 2008. p. 1325-9.

[241] Lin Jikeng L, Xudong W, Xinya T. Asynchronous parallel simulation of transient stability based on equivalence. In: 2009 International Conference on Sustainable Power Generation and Supply; 2009. p. 1-5.

[242] Jalili-Marandi V. Acceleration of transient stability simulation for large-scale power systems on parallel and distributed hardware. University of Alberta; 2010.

[243] Werlen K, Glavitsch H. Computation of transients by parallel processing. IEEE Trans Power Delivery 1993;8(3):1579-85.

[244] Falcao DM, Kaszkurewicz E, Almeida HLS. Application of parallel processing techniques to the simulation of power system electromagnetic transients. IEEE Trans Power Syst 1993;8(1):90-6.

[245] Morales F, Rudnick H, Cipriano D. Electromechanical transients simulation on a multicomputer via the vdhn – maclaurin method. IEEE Trans Power Syst 2001;16(3):418-26.

[246] Dufour C, Jalili-Marandi V, Bélanger J. Real-time simulation using transient stability, electromagnetic transient and fpga-based high-resolution solvers. In: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis; 2012. p. 283-8.

[247] Peng Z, Shu-jun Y, Hai-lin Z, Shuo Z. Multi-rate electromagnetic transient simulation of large-scale power system based on multi-core. J Eng 2017;2017(October):1106-12.

[248] Beaudin S, Marceau RJ, Bois G, Savaria Y, Kandil N. An economic parallel processing technology for faster than real-time transient stability simulation. Eur Trans Electr Power 2003;13:105-12.

[249] Duan P, Xu S, Chen H, Yang X, Wang S, Hu E. High performance computing (hpc) for advanced power system studies. 2nd IEEE Conference on Energy Internet and Energy System Integration, EI 2018 - Proceedings 2018.

[250] Li X, Li F, Yuan H, Cui H, Hu Q. Gpu-based fast decoupled power flow with preconditioned iterative solver and inexact newton method. IEEE Trans Power Syst 2017;32(4):2695-703.

[251] Jin S, Huang Z, Diao R, Wu D, Chen Y. Comparative implementation of high performance computing for power system dynamic simulations. IEEE Trans Smart Grid 2017;8(3):1387-95.

[252] Aristidou P, Fabozzi D, Van Cutsem T. Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method. IEEE Trans Parallel Distrib Syst 2014;25(10):2561-70.

[253] Aristidou P, Van Cutsem T. A parallel processing approach to dynamic simulations of combined transmission and distribution systems. International Journal of Electrical Power and Energy Systems 2015;72:58-65.

[254] Aristidou P, Lebeau S, Van Cutsem T. Power system dynamic simulations using a parallel two-level schur-complement decomposition. IEEE Trans Power Syst 2016;31(5):3984-95.

[255] Gopal A, Niebur D, Venkatasubramanian S. Dc power flow based contingency analysis using graphics processing units. In: 2007 IEEE Lausanne Power Tech; 2007. p. 731-6.

[256] Tang K, Dong S, Zhu B, Ni Q, Song Y. Gpu-based real-time n-1 ac power flow algorithm with preconditioned iterative method. In: 2018 IEEE Power Energy Society General Meeting (PESGM); 2018. p. 1-5.

[257] Fu M, Zhou G, Zhao J, Feng Y, He H, Liang K. Gpu-based n-1 static security analysis algorithm with preconditioned conjugate gradient method. IEEE Access 2020;8:124066-75.

[258] Huang S, Dinavahi V. Real-time contingency analysis on massively parallel architectures with compensation method. IEEE Access 2018;6:44519-30.

[259] Hou L, Bose A. Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem. IEEE Trans Power Syst 1997;12(1):1053-60.

[260] Jalili-mardani V, Dinavahi V. Large-scale transient stability simulation on graphics processing units. 2009 IEEE Power& Energy Society General Meeting 2009:1-6.

[261] Jalili-mardani V, Member S, Dinavahi V, Member S. Simd-based large-scale transient stability simulation on the graphics processing unit. IEEE Trans Parallel Distrib Syst 2010;25(3):1589-99.

[262] Jalili-mardani V, Member S, Zhou Z, Member S. Large-scale transient stability simulation of electrical power systems on parallel gpus. IEEE Trans Parallel Distrib Syst 2012;23(7):1255-66.

[263] Yu Z, Huang S, Shi L, Chen Y. Gpu-based jfng method for power system transient dynamic simulation. 2014 International Conference on Power System Technology 2014;1(Powercon):20-2.

[264] Bajian J, Wencin G, Jiayi H, Fangzong W, Jing Y. Gpu based parallel simulation of transient stability using symplectic gauss algorithm and preconditioned gmres method. In: 2012 Power Engineering and Automation Conference; 2012. p. 1-5.

[265] Liao X, Wang F. Parallel computation of transient stability using symplectic gauss method and gpu. IET Generation, Transmission & Distribution 2016;10(15):3727-35.

[266] Gao W, Chen X. Distributed generation placement design and contingency analysis with parallel computing technology. Journal of Computers 2014;4(April 2009).

[267] Song Y, Chen Y, Huang S, Xu Y, Yu Z, Marti JR. Fully gpu-based electromagnetic transient simulation considering large-scale control.
systems for system-level studies. IET Generation, Transmission & Distribution 2017;11(11):2840-51.

[268] Song Y, Member S, Chen Y. Efficient gpu-based electromagnetic transient simulation for power systems with thread-oriented transformation and automatic code generation. IEEE Access 2018;6:25724-36.

[269] Zhou G, Zhang X, Lang Y, Bo R, Jia Y, Lin J, et al. Electrical power and energy systems a novel gpu-accelerated strategy for contingency screening of static security analysis. International Journal of Electrical Power and Energy Systems 2016;83:33-9.

[270] Chen D, Member S, Jiang H, Li Y, Xu D. A two-layered parallel static security assessment for large-scale grids based on gpu. IEEE Trans Smart Grid 2017;8(3):1396-405.

[271] Zhou G, Feng Y, Bo R, Member S, Chien L, Zhang X, et al. Gpu-accelerated batch-acpf solution for n-1 static security analysis. IEEE Trans Smart Grid 2018;9(3):1406-16.

[272] Deb Nath JK, Fung WK, Gole AM, Filizadeh S. Simulation of large-scale electrical power networks on graphics processing units. In: 2011 IEEE Electrical Power and Energy Conference; 2011. p. 199-204.

[273] Deb Nath JK, Gole AM, Fung WK. Graphics-processing-unit-based acceleration of electromagnetic transient simulations. IEEE Power Delivery 2016;31(5):2036-44.

[274] Song Y, Chen Y, Yu Z, Huang S, Chen L. A fine-grained parallel emtp algorithm compatible to graphic processing units. In: 2014 IEEE PES General Meeting | Conference Exposition; 2014. p. 1-6.

[275] Zhou Z, Member S, Dinavahi V, Member S. Parallel massive-thread electromagnetic transient simulation on gpu. 2015 IEEE Power & Energy Society General Meeting 2014;29(3):1045-53.

[276] Zhou Z, Dinavahi V. Fine-grained network decomposition for massively parallel electromagnetic transient simulation of large power systems. IEEE Power Energy Technol Syst J 2017;4(3):51-64.

[277] Wallach Y, Handschin E, Bongers C. Efficient parallel processing method for power system state estimation. SAE Preprints 1981;PAS-100(11):1402-6.

[278] Cavin RK. Multiprocessor static state estimation. IEEE Trans Power App Syst 1982;PAS-101(2):302-8.

[279] Asoki K. A parallel computation algorithm for static state estimation by means of matrix inversion lemma. IEEE Power Eng Rev 1987;2(3):624-31.

[280] Abur A, Tapadia P. Parallel state estimation using multiprocessors. Electr Power Syst Res 1990;18(1):67-73. Available from: https://www.sciencedirect.com/science/article/pii/0378779690900477.

[281] Lin SY. A distributed state estimator for electric power systems. IEEE Trans Power Syst 1992;7(2):551-7.

[282] El-Keib AA, Nieplocha J, Singh H, Maratukulam DJ. A decomposed state estimation technique for parallel processor implementation. IEEE Trans Power Syst 1992;7(3):1088-97.

[283] Falcao DM, Wu FF, Murphy L. Parallel and distributed state estimation. IEEE Trans Power Syst 1995:10(2):724-30.

[284] Ebrahimian R, Baldick R. State estimation distributed processing [for power systems]. IEEE Trans Power Syst 2000;15(4):1240-6.

[285] Carvalho JB, Barbosa FM. Distributed processing in power system state estimation. In: 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099). vol. 3; 2000. p. 1128-31 vol.3.

[286] Nieplocha J, Marquez A, Tipparaju V, Chavarria-Miranda D, Guttmromson R, Huang H. Towards efficient power system state estimators on shared memory computers. In: 2006 IEEE Power Engineering Society General Meeting; 2006. p. 5.

[287] Schneider KP, Huang Z, Yang B, Hauer M, Nieplocha Y. Dynamic state estimation utilizing high performance computing methods. In: 2009 IEEE/PES Power Systems Conference and Exposition; 2009. p. 1-6.

[288] Korres GN, Tzavellas A, Galinas E. A distributed implementation of multi-area power system state estimation on a cluster of computers. Electr Power Syst Res 2013;102:20-32. Available from: https://www.sciencedirect.com/science/article/pii/S0378779613000965.

[289] Xia Y, Chen Y, Ren Z, Huang S, Wang M, Lin M. State estimation for large-scale power systems based on hybrid cpu-gpu platform. In: 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2); 2017. p. 1-6.

[290] Magaña-Lemus E, Medina-Ríos A, Ramos-Paz A, Montesinos-González VH. Periodic steady state determination of power systems using graphics processing units. In: 2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE); 2013. p. 274-9.

[291] Magaña-Lemus E, Medina A, Ramos-Paz A. Periodic steady state solution of power systems by selective transition matrix identification, lu decomposition and graphic processing units. In: 2015 IEEE Power Energy Society General Meeting; 2015. p. 1-5.

[292] Karimipour H. Accelerated parallel wls state estimation for large-scale power systems on gpu. North American Power Symposium (NAPS) 2013;1(1).

[293] Karimipour H, Dinavahi V. On detailed synchronous generator modeling for massively parallel dynamic state estimation. In: 2014 North American Power Symposium (NAPS); 2014. p. 1-6.

[294] Karimipour H, Dinavahi V. Extended kalman filter-based parallel dynamic state estimation. IEEE Trans Smart Grid 2015;6(3):1539-49.

[295] Karimipoor H, Dinavahi V. On fast data fusion approach against dynamic state estimation on smart power grids. In: 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE); 2017. p. 388-93.

[296] Rahman A, Venayagamoorthy GK. Dishonest gauss newton method based power system state estimation on a gpu. Clemson University Power Systems Conference (PSC) 2016.

[297] Rahman MA, Venayagamoorthy GK. Convergence of the fast state estimation for power systems. SAIEE Africa Research Journal 2017;108(3):117-27.

[298] Kim MK, Park JK, Nam YW. Market-clearing for pricing system security based on voltage stability criteria. Energy 2011;36(2):1255-64. Available from: https://www.sciencedirect.com/science/article/pii/S0360544210006456.

[299] Geng G, Jiang Q. A two-level parallel decomposition approach for transient stability constrained optimal power flow. IEEE Trans Power Syst 2012;27(4):2063-73.

[300] Jiang Q, Zhou B, Zhang M. Parallel augment lagrangian relaxation method for transient stability constrained unit commitment. IEEE Trans ...
HPC Applications to Power System Optimization

[335] Pan F, Northwest P. PNNL, editor. Hippo: a computation tool for planning tomorrow’s electricity. PNNL; 2017. Available from: https://bit.ly/3HFxGNN.

[336] Palmer B, Perkins W, Chen Y, Jin S, Callahan D, Glass K, et al. Gridpack™: a framework for developing power grid simulations on high-performance computing platforms. Int J High Perform Comput Appl 2016;30(2):223-40.

[337] Nividia. Nividia, editor. Nividia on demand. Nividia; 2020. [Online; accessed 29-Nov-2021]. https://developer.nvidia.com/cuda-zone.

[338] Grötschel M. Special issue: optimization stories. Selected papers based on the presentations at the 21st international symposium on mathematical programming, ismp, berlin, germany, august 19–24, 2012. Doc Math 2012 Jan.

[339] Glockner G, Glockner G, editor. Does gurobi support gpus? Gurobi; 2021. [Online; accessed 29-Nov-2021]. https://bit.ly/3bbqjBA.

[340] Jin S, Chen Y, Diao R, Huang ZH, Perkins W, Palmer B. Power grid simulation applications developed using the gridpack™ high performance computing framework. Electr Pow Syst Res 2016;141:22-30.

[341] Koltsaklis NE, Dagoumas AS. State-of-the-art generation expansion planning: a review. Appl Energy 2018;230:563-89. Available from: https://www.sciencedirect.com/science/article/pii/S0306261918312583.

[342] Ng CP, Jabbour K, Meyer W. Loadflow analysis on parallel computers. In: Proceedings of the 32nd Midwest Symposium on Circuits and Systems.; 1989. p. 10-5 vol.1.

[343] Services AW. Services AW, editor. Amazon elastic compute cloud: user guide for linux instances. Amazon Web Services, Inc.; 2022. [Online; accessed 29-Nov-2021]. https://www.amazonaws.cn/en/ec2/instance-types/.

[344] Ajagekar A, You F. Quantum computing for energy systems optimization: challenges and opportunities. Energy 2019;179:76-89. Available from: https://www.sciencedirect.com/science/article/pii/S0360544219308254.

[345] Tylavsky DJ, Heydt GT. Quantum computing in power system simulation. In: 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491). vol. 2; 2003. p. 950-6 Vol. 2.

[346] Eskandarpour R, Ghosh K, Khodaei A, Zhang L, Paaso A, Bahramirad S. Quantum computing solution of dc power flow; 2020. ArXiv publication.

[347] Baker M. 1,500 scientists lift the lid on reproducibility. Nature 2016;533:452-4.

[348] Serra-Garcia M, Gneezy U. Nonreplicable publications are cited more than replicable ones. Sci Adv 2021;7(21). Available from: https://ucsdnews.ucsd.edu/pressrelease/a-new-replication-crisis-research-that-is-less-likely-be-true-is-cited-more.

[349] Cockburn A, Dragicevic P, Besançon L, Gutwin C. Threats of a replication crisis in empirical computer science. Commun ACM 2020;63:70-9.
13. Appendix

Table 1: Literature Survey

Year	Study	Techniques Used	Parallel Machine	Largest Case
1979	TSA¹	Trapezoidal Integration	CDC 6500 host & AP-1POB	1723-bus 2764-line 398-unit
1983	TSA	Trapezoidal Integration & Fourth-Order Runge-Kutta	VAX-11/780, AP-120B, IBM-3081D & Cray-1	103-bus 60-units
1990	PF	Path Graph Factorization & Fast Decoupled-load Flow	CRAY X/MP-48	8235-bus
1990	PF	LU decomposition & Newton-Raphson	Alliant FX/80	3459-bus 5819-line
1990	SCED²	Batch Solution	IAPX 286/287 (16 units)	IEEE 662
1991	PF	LU decomposition	IPSC/2 (32 cpus)	662-bus (midwestern U.S)
1991	TSA	Successive Over Relaxation – Newton	IPSC/2 & Alliant	662-bus (midwestern U.S)
1991	TSA	Second Order Runge-Kutta Method	iPSC/2	256-bus
1991	TSA	Gauss-Seidel Relaxation & Newton Method	VAXstation 2000	662-bus (midwestern U.S)
1992	DS³	Parallel Predictor Corrector & Newton-Raphson	Cray-2	50-unit
1992	DS	Generalized Minimal Residual method & Newton-Raphson	Cray Y-MP	39-bus
1992	TSA	Successive Over Relaxation – Newton	Alliant FX/8 (8 cpus)	662-bus (US midwestem)
1992	TSA	Gauss-Seidel Relaxation & Newton Method	NCube2 (512 cpus), AP-120B, VAX11/780, Cray-1 & IBM-3081D	103-bus 60-unit 412-line
1993	EMT	LU Decomposition & Newton-Raphson	AT386 (8 x Transputers)	1026-bus 2457-line
1993	TSA	Forward Backward Substitution & Frequency Domain Relaxation	Cray X/MP-116se & Cray Y/MP-8/8-64	1655-bus
1994	PF	Successive Overrelaxation, Gauss-Seidel & FDLF	NCUBE2 & iPSC/860 (32 cpus)	2429-bus (Texas)
1994	TSA	Gauss-Seidel Relaxation & Newton Method	CRAY Y-MP8/464 (4 cpus)	904-bus (US Network)
1994	SCUC	Dynamic Programming	CRAY Y-MP2/216	26-unit
1995	CA⁴	Matrix multiplication and Batch	Apollo DN400 (5 cpus)	2518-bus 665-unit 1983-bus 1651-contingencies
1995	ED	Textured Decomposition & Han-Powell Method	NCUBE2 (32 cpus)	228-bus
1995	PF	LU factorization & Newton Raphson & FDPF	Symmetry 81 (20 cpus)	1106-bus 1530 branch

¹Transient Stability Analysis
²Security Constrained Economic Dispatch
³Dynamic Stability
⁴Contingency Analysis
Year	Domain	Method	Description	Machine	Details
1995	TSA	LU factorization, & Trapazoidal rule & VDHN	Symmetry Ss1	2584-bus 6846-line 487-units	
1996	DS	Conjugate Gradient LU factorization & Newton-Raphson	IPSC/860 (8 cpus)	616-bus 88-unit 995-line (Brazilian southeastern region)	
1996	PF	W-Matrix & Dependency-Based Substitution Algorithm	CRA-Y X-MPU216 & CRAY Y-MPU464	11670-bus 17288-line	
1997	OPF	APP	Sun Sparc-20	753-bus 1100-line 209-load 12 Ties	
1997	OPF	APP	Sun Sparc-20	753-bus 1100-line 209-load 12 Ties	
1997	PF	LU factorization & conjugate gradient method	Sequent Symmetry (15 cpus)	8235-bus	
1997	TSA	Waveform Relaxation Method	Symmetry Ss1 (20 cpus)	2583-bus 6846-line 487-units	
1997	TSA	Shifted-Picard algorithm, Domain decomposition (contingency wise) and VDHN	IBM SP2 & DEC ALPHA AXP-3000/500 (8 workstations)	2583-bus 51-units	
1997	TSA	Factorization Path Tree & VDHN	IBM-SP2	616-bus 812-line 92-unit	
1997	SCUC	Dynamic Programming	Silicon Graphics 1P22 Network	34-unit	
2000	CA N-1	Dynamic-load Balancing	IBM RISC 6000 (4 workstations)	1663-bus 1711-contingencies (Brazil South Eastern)	
2000	PF	BBDF & Factorization Tree Algorithm	Intel 80486 & 6 transputers	288-bus	
2000	SSE	APP & Gauss – Newton Method	Sun Ultra workstation network	8047-bus 8-region 190-tie	
2000	TSA	Factorization Path Tree	IBM 9076 SP2 (16 cpus)	3021-bus power	
2000	SCUC	APP & Newton Raphson	-	IEEE 118	
2001	EMT	VDHN–Maclaurin Method	AT386 (8 transputers)	IEEE 300	
2002	PF	Newton-GMRES & Newton Raphson	1.0GHz Pentium (8 cpus)	30910-bus 39136-line	
2004	CA N-1	Batch Solution	2.3 GHz Pentium IV	810-bus 1340-line 1300-contingencies	
2004	TSA	Block Bordered Diagonal Form	700MHz Xeon Symmetry computer (12 cpus)	10188-bus 13499-lines 1072 units 3003-load	
2005	DS	hierarchical Block Bordered Diagonal Form (BBDF) & Newton-Raphson	Intel Xeon (12 cpus)	10188-bus 13499-line 1072-units 3003-load	
2005	OPF	Decoupling First-order KKT	166MHz Pentium (29 workstations)	584-bus 118-unit 937-line 11-tielines 5 region (Balkan-5)	
2005	OPF	Decoupling First-order KKT	166MHz Pentium (29 workstations)	584-bus 118-unit 937-line 11-tielines 5 region (Balkan-5)	
Year	Application	Methodology	Hardware	Scale	
------	-------------	-------------	----------	-------	
2005	PF	Block Bordered Diagonal Form & Newton Raphson	Intel 80486 & 6 transputers	288-bus	
2005	SCOPF	Preconditioned GMRES & Primal-Dual IPM	1.0GHz CPU (16 workstations)	3493-bus 6689-line and 79-contingencies	
2005	SCOPF	Preconditioned GMRES & Primal-Dual IPM	1.0GHz CPU (16 workstations)	3493-bus 6689-line and 79-contingencies	
2005	TSA	Block Bordered Diagonal Form	700MHz Xeon Symmetry computer (12 cpus)	2115 nodes 2614-line 248 genera-tors and 544-load	
2006	SSE	Conjugate Gradient & LU Factorization	SGI Altix3000 (32 cpus)	1177-bus 1770-line	
2007	PF	LU factorization of & Newton-Raphson & Fast Decoupled Power Flow	APEX20KE , EP2K1500EBC652-1x, FPGA (7 processors)	7917-bus (Northeastern US power grid)	
2008	TSA	Waveform Relaxation Method	IBM PC 1350 (6 x 2.4GHz Pentenium)	1923-bus 2280-line171-unit (Northen China)	
2009	CA N-1	Dynamic-load Balancing	Cray XMT (8 2-Core Intel Xeon cpus)	170000-bus 220648-line 512-contingencies	
2009	DS	LU decomposition & Newton-Raphson & Fast Poisson Solver & Fast Fourier Transformation	Intel Xeon CPU host & NVIDIA Tesla C870 GPU	4,000,000-bus	
2009	SSE	Extended Kalman Filter (EKF) & Newton-Raphson	2.33Ghz 8-Core Xeon E5345	200-unit	
2009	TSA	Trapezoidal rule & Gauss elimination & Back substitution	2.5GHz quad-core AMD Phenom host & Nvidia GeForce GTX 280	1248-bus 1244-line	
2009	TSA	Trapezoidal Integration & BBDF	IBM PC 1350 (6 x 2GHz Pentenium)	1923-bus 2280-line171-unit (Northen China)	
2009	SCUC	Monte Carlo	BOINC (100 workstations)	42-unit	
2010	CA N-1	Dynamic-load Balancing	NWICEB (128 cpus)	14000-bus 17346-contingencies (WECC)	
2010	CA N-1	Dynamic-load Balancing	500MHz Cray XMT (64 cpus)	170001-bus 220648-line 512-contingencies	
2010	ED	Barrier Optimization	-	IEEE 118	
2010	PF	Preconditioned Biconjugate Gradient & Newton-Raphson	2.83 GHz 2-Core host & Tesla C870 GPU	IEEE-118	
2010	TSA	LU Decomposition & Trapezoidal Integration	2.5GHz quad-core AMD Phenom host & Nvidia GeForce GTX 280	1248-bus 1244-line	
2011	DS	LU Decomposition & Distributed Integration	3.2 GHz AMD CPU (64 threads)	16072-bus 19622-line 2361-unit (WECC)	
2011	EMT	LU Decomposition & Trapezoidal Integration	2.13GHz 2-Core Intel & NVIDIA GTX GeForce 285	117-bus 21-unit	
Year	Domain	Methodology	Hardware	System Size	
------	--------	-------------	----------	-------------	
2012	PF	Forward Backward Substitution & Newton-Raphson	3.10GHz Intel i3-2100 host & NVIDIA GeForce GTS 450	Shandong System	
2012	TSA	Trapazoidal Integration & LU factorization & Newton-Raphson iteration	2.5GHz AMD Phenom 9850 host & 4 NVIDIA T10 GPU	9984-bus 2560-units	
2012	TSA	Symplectic Gauss Algorithm & Preconditioned GMRES	NVIDIA GTX 280	2383-bus (Polish)	
2013	CA N-1	Dynamic Master-Slave Scheduling	16 Threads	13030-bus 431-units 5950-load 512-contingencies	
2013	CA N-1	Dynamic Master-Slave Scheduling	16 Threads	13029-bus 431-unit 5950-load 2000-contingencies	
2013	CA N-1	Dynamic Master-Slave Scheduling	32 CPUS	13029-bus 431-units 5950-load 4000-contingencies	
2013	OPF	ADMM & Distributed Semi-Definite Programming	3.40 GHz Intel Core i7–2600 CPU	IEEE 37 + 10-bus microgrid	
2013	OPF	ADMM & Distributed Semi-Definite Programming	3.40 GHz Intel Core i7–2600 CPU	IEEE 37 + 10-bus microgrid	
2013	SSE	Runge-Kutta Fourth-Order & Newton-Raphson	2.2GHz Intel Xeon E5606 host & NVIDIA Tesla C2075	IEEE-118	
2013	SSE	LU decomposition & WLS	2.0 GHz 8-Core Intel Xeon E5-2620 & NVIDIA Fermi GPU	4992-bus	
2013	SSE	Cholesky factorization & Backward Forward Substitution & Weighted Least Square	2.66 GHz Intel Core 2 Duo E8200 PC (11 cpus)	1180-bus (10 x IEEE-118)	
2013	SCUC	LR & Benders	2.4 GHz CPU (30 cpus)	California ISO	
2014	CA N-1	Trapazoidal Integration & Dynamic Master-Slave Scheduling and others	256 CPUs	13029-bus 431-unit 5950-load 12488-line 10000-contingencies	
2014	DS	Jacobian-free Newton-GMRES	Xeon-E5-2620 host and NVIDIA K20	865-bus	
2014	EMT	Norton Equivalent Current & Node Injecting Current & Solving Nodal Voltage & Solving Inner Variables & Solving Control System	Intel Xeon E5645 & NVIDIA Tesla C2070	9-bus RLC circuit	
2014	EMT	LU Decomposition & Trapezoidal Integration	AMD cuo host & NVIDIA GPU	IEEE 39	
2014	SSE	Extended Kalman Filter	3.2 GHz 4-Core AMD PhenomTM II host TeslaTMS2050 GPU	19968-bus 5120 units 30720-measurments	
2015	DS	Schur-complement & VDHN	48-Core AMD Opteron Interlagos	14653-bus 15994-line 20-unit 1168- wind turbines 19419-load	
Year	Problem	Method	Hardware	Details	
------	---------	--------	----------	---------	
2015	DS	Backward Forward Substitution & Newton-Raphson	Xeon E5603 host and Nvidia GeForce GTX-460	283-bus	
2015	PF	Master–Slave-Splitting	-	IEEE-118 (augmented)	
2015	SSE	LU decomposition & Numerical Differentiation Method	2.2 GHz Intel Xeon E5606 host & NVIDIA Tesla C2075	IEEE-118	
2015	SSE	LU decomposition & Extended Kalman Filter	2.0 GHz 4-Core Intel Xeon E5-2620 host & NVIDIA Tesla S2050	Bus-4992 & 23152 measurements	
2015	SCUC	Convex Relaxation	2.4 GHz Intel Core i5	IEEE 118	
2015	SCUC	ADMM	3.4 GHz CPU	IEEE 4672	
2016	SCUC	Convex Relaxation	2.0 GHz and 3 GHz CPUs cluster	IEEE 3375	
2016	DS	Two-level Schur-complement & VDHN	2.60 GHz AMD Opteron Interlagos 6238 (44 cpus)	14653-bus 15994-line 23-unit 19419-load 438-pv 730-wind turbine	
2016	EMT	Sparsity Techniques & Matrix Vector Multiplications	Intel.core i7 CPU2600K host & NVIDIA GeForce GTX 590-GPU	3861-bus 534-line	
2016	OPF	Optimality Condition Decomposition & Newton-Raphson	3.2GHz Intel Core i5	1416-bus	
2016	OPF	Optimality Condition Decomposition & Newton-Raphson	3.2GHz Intel Core i5	1416-bus	
2016	PPF5	Monte Carlo	40-Cores at Royal Institute of Technology HPC facility	1354-bus (PEGASE)	
2016	PF	LU decomposition and forward & back substitution and path tree & Newton-Raphson	NVIDIA GK110	23215-bus	
2016	SSE	VDHN & WLS	NVIDIA Tesla K20c GPU	68-bus 81-line 166-measurments	
2016	TSA	Symplectic Gauss method & Newton method and GMRES	Intel Xeon 8C E5-2650 host & NVIDIA Tesla K20	2383-bus 327-units	
2016	SCUC	Binary Reduction	3.4 GHz 8-Core i7-3770	MISO Network	
2016	SCUC	APP	3.4 GHz CPU (8 cpus)	1168-bus	
2016	SCUC	APP	2.8 GHz CPU	IEEE 118	
2016	SCUC	ADMM	2.30-GHz intel Core i5 CPU	IEEE 118	
2017	CA N-1	LU Decomposition & Newton Raphson	Amazon EC2 v4 instance (256 x Cores Intel Xeon E5-2686)	1946-bus 390-unit 2589-line 2589-contingencies (KEPCO2015)	
2017	CA N-1	LU decomposition	NVIDIA Tesla K40 GPU	9241-bus 2048-contingencies (PEGASE)	
2017	CA N-1	Batch Solution	3.40 GHz 4-core Intel i7-3770	15500-bus 2800-unit 20500-line 13922-load 1.44m-contingencies (PJM)	

5Probabilistic Power Flow
Year	Application	Methodology	Processor Details	System Size	
2017	DS	LU decomposition & Dishonest Newton Method & Approximate Minimum Degree	1.2GHz AMD (16 cpus)	(WECC)	
2017	DS	LU decomposition	2.8 GHz Intel i7 (16 cpus)	17000-bus (WECC-Size)	
2017	EMT	Layered Directed Acyclic Graph & Unified Fused Multiply Add	24-Core 2x Intel Xeon E5-2620 host & NVIDIA Tesla K20x	IEEE 123	
2017	EMT	Jacobian Domain Decomposition & Compensation Network Decomposition & Propagation Delay partitioning & Vector Multiplication	Intel Xeon E-2620 host & 2 NVIDIA GP104 GPUs	79872-bus	
2017	OPF	ADMM	-	944-bus	
2017	OPF	ADMM	-	944-bus	
2017	PF	LU decomposition & Forward Backward Substitution, & Path Tree & Newton-Raphson	8-Core Intel Xeon E5-2650 host & a NVIDIA Telsa K20c	2383-bus	
2017	PF	Fast Decouple Power Flow & Inexact Newton Method	2.27GHz 8-Core Xeon E5607 host & NVIDIA Tesla M2070 GPU	11624-bus	
2017	SSE	WLS & Jacobian Information Matrix & Correction & Vector State computation.	Intel Xeon CPU E3- 1230 V5 & NVIDIA Tesla P100-PCIE-12GB	147841-bus	256784-line 661409-measurements
2017	SSE	LU decomposition & Forward Backward Substitution & Newton Method	2.2 GHz Intel Xeon host & NVIDIA Tesla C2075, GeForce GTX 650 & GTX 660	IEEE-118	
2017	SSE	Extended Kalman Filter	2.0 GHz 4-Core Intel XeonTM E5-2620 host & 4 Nvidia TeslaTMS2050 GPUs	IEEE-118	
2017	SCUC	ADMM & Surrogate Lagrange Relaxation	2.90GHz Intel i7-4910MQ	10000-unit	
2017	SCUC	ADMM	2.8 GHz CPU	IEEE-118	
2018	ED	APP	3.7 GHz CPU	IEEE 118	
2018	OPF	KTT	-	IEEE 118	
2018	OPF	KTT	-	IEEE 118	
2018	PF	Block Bordered Diagonal Form & Newton–Raphson	2.1 Ghz 8-core Intel Xeon (2cpus)	1354-bus (PEGASE)	
2018	PPF	LU factorization & Batch	2GHz Intel Xeon E5-2620 host & 2 NVIDIA Tesla K40 GPUs	9241-bus 10000-contingencies (PEGASE)	
2018	PPF	Fast Decoupled Power Flow & Layered Directed Acyclic Graph (Batched)	3.4GHz Intel Xeon E3-1230 v5 & NVIDIA Tesla P100	3659-bus 4092-unit 20,467-line 1024-load scenarios (PEGASE)	
2018	SCUC	ATC	3.2GHz 4-core (4 cpus)	117-bus 3-region	
2018	SCUC	ATC	3.1 GHz CPU	IEEE 142	
2019	EMT	LU Decomposition (Crout)	NVIDIA K20x & P100	IEEE 14	
2019	OPF	Benders Decomposition	2.4GHz 4-Core CPU	2869-bus (PEGASE)	
Year	Application	Method/Algorithm	CPU & GPU Configuration	Number of Buses/Contingencies	
------	-------------	------------------	--------------------------	------------------------------	
2019	OPF	Benders Decomposition	2.4GHz 4-Core CPU	2869-bus (PEGASE)	
2019	SCUC	APP	Intel Xeon Phi (99 cores)	1168-bus	
2019	SCUC	ADMM	3.6 GHz CPU	187-unit	
2019	UC	ADMM	2.80 GHz CPU	IEEE 3012	
2020	PF	Parallel Nodal Power Mismatch Vector & Newton-Raphson	2.60GHz 4-Core Intel i7 6700HQ host & NVIDIA GeForce GTX 950M	4068-bus	
2020	SCED	APP	3.7 GHz CPU	IEEE 118	
2020	SCOPF	Schur Complement	2.10 GHz 18-Core Intel Xeon E5-2695 v4 host & NVIDIA Tesla P100	13659-bus 20467-contingencies (PEGASE)	
2020	TSA	BBDF (Nested)	2.67 GHz 8-Core Intel Xeon E7-8837 (8 cpus)	24886-bus	
2020	UC	LU Decomposition & Fast Decoupled Power Flow	2.10 GHz 6-Cores (2 cpus)	2749-bus	
2020	SCUC	ADMM & Binary Reduction	2.3GHz CPUs (20 cores x 18 nodes)	MISO Network	
2020	SCUC	ADMM & Binary Reduction	2.3GHz CPUs (20 cores x 18 nodes)	MISO Network	
2021	SCUC	Multi-Level Formulation	Intel Xeon Cores (100 cores)	IEEE 118	
2021	SCUC	Binary Reduction		IEEE 118	
2021	SCUC	ATC	Intel i7-8700 k	IEEE 118	
2021	SCUC	ADMM	1.80GHz Intel i7-8550U	IEEE 13	