A SHORT PROOF OF SOLUTION FORMULAS FOR
THE LINEAR DIFFERENTIAL EQUATIONS
WITH CONSTANT COEFFICIENTS

Evgeniy Pustylnik

Technion, Haifa 32000, Israel
E-mail: evg@technion.ac.il

Abstract. The solution of equations from the title is well known since the Euler’s
time. However, its proof in the case of multiple roots of the characteristic polynomial
is rather long and technical and even appearance of the factors x^m looks artificial.
A new proof, proposed below, seems not only shorter, but also more comprehensible
for the students of any level.

1. Most textbooks, devoted to ordinary differential equations, have special sections on the linear equations with constant coefficients (see, e.g., very popular books[1], [2] etc.). The methods of proofs are classical and similar everywhere, mainly
suited to engineering (non-mathematician) students. However, in the case of multiple roots of the corresponding characteristic polynomials, the proofs become either too long (if detailed enough) or too concise, requiring great own efforts of readers.
Consequently, many lecturers simply omit the proofs, making all formulas rather
mysterious for the students. In the present note we try to avoid this obstacle.

2. Let $L = L[y]$ be a linear differential operator with constant coefficients

$$L[y] = y^{(n)} + p_1y^{(n-1)} + \ldots + p_{n-1}y' + p_ny$$

and let $P = r^n + p_1r^{n-1} + \ldots + p_{n-1}r + p_n$ mean its characteristic polynomial.
When the operators have the subscripts L_1, L_2, \ldots, the same subscripts will be
used for the corresponding polynomials.

Obviously, all operators as well as their characteristic polynomials form isomor-
phic linear spaces. Moreover, these spaces are isomorphic commutative algebras
if the product of operators is understood as their composition: $L_1L_2 = L_1(L_2) = L_2(L_1)$ (the commutativity is due to the constant coefficients). As a result, the
standard decomposition of a characteristic polynomial

$$P(r) = (r - r_1)^{m_1}(r - r_2)^{m_2}\ldots(r - r_k)^{m_k},$$

where all the numbers r_1, r_2, \ldots, r_k are different, implies an analogous decompo-
sition $L = L_1L_2\ldots L_k$, in which every L_i, $i = 1, \ldots, k$, has the simplest character-
istic polynomial $P_i(r) = (r - r_i)^{m_i}$.

1991 Mathematics Subject Classification. 34A05, 34A30.
Key words and phrases. Linear differential operator, constant coefficients.
Lemma 1. Let an operator L have the above mentioned decomposition and let a function $y(x)$ be such that $L_i[y] = 0$ for some $i = 1, \ldots, k$. Then $y(x)$ is a solution of the whole equation $L[y] = 0$.

Proof. The commutativity of operators allows us to move $L_i[y]$ to any place in the product, e.g., to assume that $i = k$. Then

$$L[y] = L_1 L_2 \ldots L_{k-1} L_k[y] = L_1 L_2 \ldots L_{k-1}[0] = 0.$$

Now we proceed to solution of equations with the simplest characteristic polynomials. For convenience, we temporarily omit the subscripts in notation of operators.

Lemma 2. Let L be a differential operator with the characteristic polynomial $P(r) = (r - a)^m$. Then the general solution of the equation $L[y] = 0$ is

$$y(x) = (C_1 + C_2 x + \ldots + C_m x^{m-1}) e^{ax},$$

where C_1, C_2, \ldots, C_m are arbitrary constants.

Proof. Let us write $P(r)$ with binomial coefficients

$$P(r) = \sum_{i=0}^{m} \binom{m}{i} r^{m-i} (-a)^i,$$

then the differential equation will be

$$L[y] = \sum_{i=0}^{m} \binom{m}{i} (-a)^i y^{(m-i)} = 0.$$

Now we multiply both sides of this equation by the function $v = e^{-ax}$ so that $v^{(i)} = (-a)^i e^{-ax}$. Thus the differential equation obtains the form

$$\sum_{i=0}^{m} \binom{m}{i} v^{(i)} y^{(m-i)} = 0.$$

But the left-hand side of this equality is exactly the Leibnitz expression for the derivative $(vy)^{(m)}$, so that $(vy)^{(m)} = 0$. This implies that vy is an arbitrary polynomial of the degree $m - 1$, namely, $vy = C_1 + C_2 x + \ldots + C_m x^{m-1}$. Dividing by $v = e^{-ax}$, we get the proof of Lemma.

If we take now $a = r_i$, $m = m_i$, $i = 1, \ldots, k$, given in the decomposition (1), we obtain from (2) the general solutions $y_i(x)$ for all equations $L_i[y] = 0$, discussed in Lemma 1. By the same Lemma, all $y_i(x)$ are solutions of the equation $L[y] = 0$ as well as any linear combination of them. Thus we arrive at the following main assertion.

Theorem. Let a linear differential operator $L[y]$ with constant coefficients has the characteristic polynomial $P(r)$ with the decomposition (1). Then the general solution of the differential equation $L[y] = 0$ has a form

$$y(x) = \sum_{i=1}^{k} (C_{i1} + C_{i2} x + \ldots C_{im_i} x^{m_i-1}) e^{r_i x},$$

(3)
where all C_{ij} are arbitrary constants.

Proof. It remains only to explain why (3) is the general solution. Taking in (3) all coefficients C_{ij} but one equal to zero, we obtain $m_1 + \ldots + m_k = n$ partial solutions $x^{m_i - 1} e^{r_i x}$, $l = 1, \ldots, m_i$, $i = 1, \ldots, k$. Their linear independence is well known with various simple proofs by induction.

Remark. All numbers here may be both real and complex. In the last case one can get real solutions, using the standard technique, such as Euler formula for exponent with complex argument.

3. The same method can be used for solution of non-homogeneous equations as well. Let $L[y]$ be the same operator as in Lemma 2 and let y be a solution of an equation $L[y] = f(x)$ with some integrable function f. Then the same proof as in Lemma 2 gives that $(e^{-ax} y)^{(m)} = e^{-ax} f(x)$, so that

$$y(x) = L^{-1}[f] = e^{ax} \int \cdots \int e^{-ax} f(x) \, dx = e^{ax} I_m[e^{-ax} f],$$

where I_m means an operator, inverse to $\frac{d^m}{dx^m}$. Of course, each integral is defined here up to arbitrary constant, hence equality (4) presents an explicit integral formula for the general solution of an equation $L[y] = f(x)$.

In the general case $L = L_1 L_2 \ldots L_k$ one has $L^{-1} = L_k^{-1} L_{k-1}^{-1} \ldots L_1^{-1}$, so that the solution of the equation $L[y] = f(x)$ can be found by iteration of formula (4):

$$f_1 = f, \quad f_{i+1} = e^{r_i x} I_{m_i} [e^{-r_i x} f_i], \quad i = 1, \ldots, k, \quad y = f_{k+1}(x).$$

If we “drag” all appearing integration constants through all subsequent integrals, we again obtain the general solution of the equation $L[y] = f(x)$. But in fact, all these constants may be omitted, because we already have the general solution (3) for the homogeneous equation and additionally need only one partial solution of the equation $L[y] = f(x)$.

Let us consider, for instance, a case of $f(x) = e^{bx} Q_j(x)$, mostly studied in the higher education. Here $Q_j(x)$ is a given polynomial of degree j and b may be either real or complex, covering thus the trigonometric functions sine and cosine as well. As can be easily verified via integrating by parts and omitting all integration constants, every integral of $e^{cx} Q_j(x)$ with $c \neq 0$ is a similar product $e^{cx} T_j(x)$ with the same c and j, but with new coefficients of the polynomial T_j. Hence, if $b \neq r_1$, we get

$$f_2(x) = e^{r_1 x} \int \cdots \int e^{(b-r_1)x} Q_j(x) \, dx = e^{bx} T_j(x).$$

Similar results will be obtained for all subsequent iterations until $b \neq r_i$, $i = 2, \ldots, k$, and we get a final form of solution $y = e^{bx} S_j(x)$, where only coefficients of the final polynomial $S_j(x)$ remain undetermined. Thus we can avoid all long and tedious integrations, using only the method of undetermined coefficients.

Of course, the last result is well known as simply following from differential and integral properties of the exponential and of the power functions. However, those arguments cannot explain what to do when $b = r_i$, that is, when the exponent from the right-hand side of a given equation coincides with one (at most!) root.
of the characteristic polynomial. At the same time, the formula (5) immediately shows that in this case the polynomial \(Q_j(x) \) remains alone in all \(m_i \) integrals, corresponding to the root \(r_i \), which increases its degree up to \(j + m_i \). Note that this increasing concerns all members of polynomial so that its smallest powers will disappear. At last, this will look as replacing the final polynomial \(S_j(x) \) by \(x^{m_i} S_j(x) \).

References

1. W. E. Boyce and R. C. DiPrima, *Elementary Differential Equations and Boundary Value Problems*, Willey and Sons, New York, 1997.

2. E. Hille, *Lectures on Ordinary Differential Equations*, Addison–Wesley, Reading, 1969.