Derivation of the universal decay cascade distribution

Vyacheslavs Kashcheyevs
Faculty of Physics and Mathematics, University of Latvia, Riga LV-1002, Latvia

A detailed derivation of the decay cascade probability distribution stated in Eqs. (4)-(6) and (11) of Phys. Rev. Lett. 104, 186805 (2010) [arXiv:0901.4102] by Kashcheyevs and Kaestner is provided. Recurrence relations are solved explicitly and connections between solutions in different limits are demonstrated.

I. MATHEMATICAL DEFINITION OF THE DECAY CASCADE MODEL

The probability distribution $P_n(t)$ is governed by the equation

$$\frac{dP_n(t)}{dt} = -\Gamma_n(t)P_n(t) + \Gamma_{n+1}(t)P_{n+1}(t),$$ \hspace{1cm} (KK-1)

for $n \geq 0$ and with $\Gamma_0 \equiv 0$. Normalization and initial conditions are

$$\sum_{n=0}^{N} P_n(t) = 1, \hspace{1cm} (1)$$

$$P_n(t_0) = \begin{cases} 1, & n = N \\ 0, & n \neq N. \end{cases} \hspace{1cm} (KK-2)$$

Equation (KK-1) is a general kinetic equation for a birth-death Markov process for time- and population-size-dependent rates. Here we will be interested in the asymptotic values of P_n as the transition rates Γ_n gradually decrease to zero as function of time.

The original publication discussing solutions to the above model in the context of dynamic quantum dot initialization is denoted KK; equations marked here as KK-1, KK-2 etc. match the equations in KK with the corresponding numbers.

II. IMPLICIT EXACT SOLUTION

In KK, the following exact iterative solution, valid for $t > t_0$, is presented

$$P_n(t) = \int_{t_0}^{t} e^{-\int_{t_0}^{t'} \Gamma_n(\tau)d\tau} \Gamma_{n+1}(t') P_{n+1}(t') dt', \hspace{1cm} (KK-3)$$

$$P_{N+1}(t) = \delta(t-t_0)/\Gamma_{N+1}(t_0). \hspace{1cm} (2)$$

Condition (2) is introduced formally, in order for the general formula (KK-3) to accommodate the initial condition (KK-2); the delta functions are regularised as $\int_{t_0}^{t} \delta(t-t_0) = 1$ for $t > t_0$.

Equation (KK-3) is just the standard solution of a single linear first order differential equation (KK-1) for an unknown function $P_n(t)$ with $P_{n+1}(t)$ treated as known. One can verify that (KK-3) solves (KK-1) by direct substitution:

$$\frac{dP_n(t)}{dt} = e^{-\int_{t_0}^{t} \Gamma_n(\tau)d\tau} \Gamma_{n+1}(t) P_{n+1}(t) + \int_{t_0}^{t} \frac{d}{dt} \left[e^{-\int_{t_0}^{t'} \Gamma_n(\tau)d\tau} \Gamma_{n+1}(t') P_{n+1}(t') \right] dt'$$

$$= \Gamma_{n+1}(t) P_{n+1}(t) + \int_{t_0}^{t} e^{-\int_{t_0}^{t'} \Gamma_n(\tau)d\tau} \frac{d}{dt} \left[-\int_{t'}^{t} \Gamma_n(\tau)d\tau \right] \Gamma_{n+1}(t') P_{n+1}(t') dt'$$

$$= \Gamma_{n+1}(t) P_{n+1}(t) - \Gamma_n(t) P_n(t).$$
III. EXPLICIT SOLUTION FOR TIME-INDEPENDENT RATE RATIO \(\Gamma_n(t)/\Gamma_{n-1}(t) = \text{const} \)

The first solution described in KK corresponds to the case of

\[
\Gamma_n(t) = \frac{X_n}{X_1} \Gamma_1(t),
\]

with \(X_n = \exp \sum_{k=1}^{n} \delta_k \) being time-independent constants.

For the rates obeying the condition (3), the general solution can be constructed in the following form \(^1\)

\[
P_n(t) = \sum_{k=n}^{N} R_{nk} e^{-\int_{t_0}^{t} \Gamma_k(t') dt'},
\]

with constant coefficients \(R_{nk} \) that need to be determined.

A. Derivation of \(R_{nk} \)

For \(n = N \), the initial conditions \(P_N(t_0) = 1, P_{N+1}(t_0) = 0 \) and equation (4) for \(P_N(t) \) give

\[
P_N(t) = e^{-\int_{t_0}^{t} \Gamma_N(t') dt'} \implies R_{NN} = 1.
\]

The initial condition \(P_n(t_0) = 0 \) for \(n < N \), applied to (4), implies:

\[
\sum_{k=n}^{N} R_{nk} = 0, \quad n < N.
\]

For \(n < N \) the substituting (4) into the differential equation (4) gives

\[
\frac{dP_n(t)}{dt} = -\sum_{k=n}^{N} R_{nk} \Gamma_k(t) e^{-\int_{t_0}^{t} \Gamma_k(t') dt'}
\]

\[
-\Gamma_n(t) P_n(t) + \Gamma_{n+1}(t) P_{n+1}(t) = -\Gamma_n(t) \sum_{k=n}^{N} R_{nk} e^{-\int_{t_0}^{t} \Gamma_k(t') dt'} + \Gamma_{n+1}(t) \sum_{k=n+1}^{N} R_{n+1,k} e^{-\int_{t_0}^{t} \Gamma_k(t') dt'}
\]

Now we invoke the condition (3) which allows us to equate the coefficients of \(e^{-\int_{t_0}^{t} \Gamma_k(t') dt'} \) between (7) and (8):

\[
X_k R_{nk} = X_n R_{nk} + X_{n+1} R_{n+1,k}, \quad n < k \leq N
\]

\[
R_{n-1,k} = \frac{X_n}{X_k - X_{n-1}} R_{n,k}, \quad n \leq k \leq N
\]

Equations (6) and (9) give the sought-after recurrence relations:

\[
R_{nk} = R_{kk} \prod_{m=n+1}^{k} \frac{X_m}{X_k - X_{m-1}}, \quad n < k \leq N
\]

\[
R_{kk} = -\sum_{m=k+1}^{N} R_{km}, \quad k < N
\]

Equations (KK-5’) and (KK-6’) together with (5) are equivalent to Eqs. (5) and (6) of KK with \(C_k \equiv R_{kk} \) and \(Q_{kn} \equiv R_{kn}/R_{kk} \).

\(^1\) This form was inspired by studying explicit solutions for \(\Gamma_n(t) \sim e^{-t} \) and \(N = 1, 2, 3 \) with the means of a computer algebra system Mathematica.
B. Explicit solution of recurrence relations

The recurrence relations (KK-5) and (KK-6) admit the following explicit solution:

\[R_{nk} = \prod_{m=n+1}^{N} X_m \prod_{\substack{m=n+1 \atop m \neq k}}^{N} \frac{1}{X_k - X_m}. \] (10)

The solution (10) can be obtained for finite \(n \) and \(k \) by means of computer algebra, and proven in general form by induction.

Since integration over time preserves the condition (3), we can choose

\[X_n = \int_{t_0}^{t} \Gamma_n(t) \, dt \] (11)

and write down the solution explicitly:

\[P_n(t) = \sum_{k=n}^{N} e^{-X_k} \prod_{\substack{m=n+1 \atop m \neq k}}^{N} \frac{1}{X_k - X_m}. \] (12)

The solution (12) agrees precisely with the solution for \(N = 3 \) and \(\Gamma_n = \text{const} \) obtained by Miyamoto et al. [3].

IV. SOLUTION IN THE LIMIT OF TIME-SCALE SEPARATION BETWEEN CASCADE STEPS

A more general solution that does not rely on condition (3) is derived in KK in the limit of decay time-scale separation between consecutive steps of the cascade. This is motivated as follows:

\(P_{n+1}(t) \) stops changing appreciably over a timescale on the order of \(\Gamma_{n+1}(t) \) during which \(P_n(t) \) changes only due to probability flux from state \((n+1)\), with negligible decay down the cascade to state \((n-1)\). This condition corresponds to \(\Gamma_{n+1}(t) \gg \Gamma_n(t) \) during the relevant time interval.

The mathematical part of the derivation proceeds as follows:

1. Summing equations (KK-3) for all \(dP_m/dt \) with \(m \geq n \) gives

\[\Gamma_{n+1}(t)P_{n+1}(t) = -\frac{d}{dt} \sum_{m>n} P_m(t). \] (13)

2. On the “slow” time-scale controlled by \(\Gamma_n(t) \), the function \(\sum_{m>n} P_m(t) \) is changing rapidly from 1 to its asymptotic value \(\sum_{m>n} P_m(t \to \infty) \) and hence can be approximated by a step function in time. \(t \to \infty \) corresponds to the time when the decay transitions no longer take place.

3. The derivative of a step function is proportional to a delta function and thus the exact integral (KK-3) can be approximated as follows:

\[P_n(t) = \int_{t_0}^{t} e^{-f_0^t \Gamma_n(\tau) \, d\tau} \left[\frac{\Gamma_n+1(t') P_{n+1}(t')}{\Gamma_n(t') \prod_{\substack{m=n+1 \atop m \neq k}}^{N} \frac{1}{X_k - X_m}} \right] \, dt' \approx e^{\int_{t_0}^{t} \Gamma_n(\tau) \, d\tau} \left[1 - \sum_{m>n} P_m(t \to \infty) \right]. \] (14)

Equation (14) essentially states that the decay of all previous states (higher than \(n \)) provides an initial condition for the decay of the \(n \)-th state. Based on (14), the condition on the final probabilities \(P_n(t \to \infty) \equiv P_n \) stated in KK is formulated:

\[P_n = e^{-X_n} \left(1 - \sum_{m=n+1}^{N} P_m \right). \] (15)

4. Equation (15) is solved by expressing \(P_{n-1} \) in terms of \(P_n \). Using (15) for \(P_n \) we can express \(\sum_{m>n} P_m = 1 - e^{X_n}P_n \) and

\[\sum_{m>n-1} P_m = 1 + (1 - e^{X_n})P_n. \] (16)
Substituting the sum (16) into (15) for P_{n-1}, we get the desired recurrence relation

$$P_{n-1} = e^{-X_{n-1}}(e^{X_n} - 1)P_n. \quad (17)$$

Starting from $P_N = e^{-X_N}$ and iterating (17) gives

$$P_{n-1} = e^{-X_N}\times(e^{X_N} - 1)\times(e^{X_{N-1}} - 1)\times(e^{-X_{N-2}}\times\ldots, \quad (18)$$

wherefrom the general form is easy to infer

$$P_n = e^{-X_n}\prod_{m=n+1}^{N}(1 - e^{-X_m}) \quad (\text{KK-11}).$$

Equation (KK-11) has also been applied to a generalised decay cascade scenario by Fricke et al. [4]. They consider the onset of decay steps at different times, $t_0 < \ldots < t_{n+1} < t_n < \ldots$, which in the notation of KK corresponds to

$$\Gamma_n(t) = \tilde{\Gamma}_n(t)\Theta(t - t_n^b), \quad (19)$$

where $\Theta(x)$ is a unit step function and $\tilde{\Gamma}_n(t)$ are smooth functions that decay to zero as for $t \to \infty$. The condition $X_n = \int_{t_0}^{\infty} \Gamma_n(t)dt \gg X_{n-1}$ justifies the sequential cascade approximation (14) and hence the probability distribution (KK-11).

[1] C. Gardiner, *Stochastic Methods: A Handbook for the Natural and Social Sciences* (Springer Verlag, 2009), 4th ed.
[2] V. Kashcheyevs and B. Kaestner, Phys. Rev. Lett. 104, 186805 (2010).
[3] S. Miyamoto, K. Nishiguchi, Y. Ono, K. M. Itoh, and A. Fujwara, Appl. Phys. Lett. 93, 222103 (2008).
[4] L. Fricke, M. Wulf, B. Kaestner, V. Kashcheyevs, J. Timoshenko, P. Nazarov, F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, et al., Phys. Rev. Lett. 110, 126803 (2013).