Quantum Control of Many-Body Systems by the Density

S. E. B. Nielsen, 1 M. Ruggenthaler, 1 and R. van Leeuwen 2, 3

1Institut für Theoretische Physik, Universität Innsbruck - Technikerstraße 25, 6020 Innsbruck, Austria
2Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
3European Theoretical Spectroscopy Facility (ETSF)

(Dated: December 12, 2014)

In this work we focus on a recently introduced method 1 to construct the external potential v that, for a given initial state, produces a prescribed time-dependent density in an interacting quantum many-body system. We show how this method can also be used to perform flexible and efficient quantum control. The simple interpretation of the density (the amount of electrons per volume) allows us to use our physical intuition to consider interesting control problems and to easily restrict the search space in optimization problems. The method’s origin in time-dependent density-functional theory makes studies of large systems possible. We further discuss the generalization of the method to higher dimensions and its numerical implementation in great detail. We also present several examples to illustrate the flexibility, and to confirm that the scheme is efficient and stable even for large and rapid density variations irrespective of the initial state and interactions.

PACS numbers: 31.15.ee, 32.80.Qk, 71.15.Mb

I. INTRODUCTION

Our capability to perform accurate computer simulations of physics at the atomic scale is crucial for modern technology as such simulations have the potential to replace expensive laboratory tests. Ideally, one could for example investigate all the processes that take place in a computer chip or when a drug is administered by simply running a computer program. Such simulations are however strongly limited by the fact that most quantum mechanical problems are time-dependent many-body problems, with wave-function formulations that quickly grow computationally intractable with system size. Finding the physical properties of large systems thus remains a bottleneck for further progress in many areas of physics, chemistry and many derived fields, motivating alternative approaches like time-dependent density-functional theory (TDDFT) 2, 3. This theory allows for cheaper many-body calculations, albeit with less control over the precision as it relies on approximations to the so-called exchange-correlation potential.

Based on a recent fixed-point formulation of TDDFT 4, 5, we presented a numerical method in 1 to construct the external potential that, for a given initial state, produces a prescribed time-dependent density in an interacting quantum many-body system. This novel procedure is highly efficient and stable even for large and rapid density variations irrespective of the initial state and two-electron interaction. It allows us to efficiently compute any property as a functional of the initial state and density, with almost arbitrary accuracy if desired, including the exact Kohn-Sham and exchange-correlation potentials. This is an explicit realisation of the Runge-Gross result 6 that any observable is a functional of the density and initial state, and allows us to investigate virtually all aspects of TDDFT in an unprecedented way, in the end hopefully leading to better, more physically motivated, exchange-correlations potentials (that it can benchmark).

Now, to design a computer chip or drug, it is not only important to be able to simulate what happens when we apply a certain external potential to a quantum system (as is the usual application of TDDFT). Often, we need to answer the reverse question, known as control theory. Namely, if we want a system to react in a certain way, like going from its ground state to a specific excited state, what external potential should we apply to it?

While our numerical method has its origin in TDDFT, and TDDFT was the main focus of our original letter 1, it also represents a very interesting novel control scheme, which will be the main focus of the present paper. Indeed, as the density forms a very convenient control objective, it strongly augments the many important control schemes 7–10 already of extensive use in chemistry, laser physics, quantum optics 11 and the physics of ultracold gases 12. Since the density has a particularly simple interpretation (the amount of electrons per volume), it is one of the most intuitive observables to prescribe what we want a system to do. For instance, if we want only a specific part of a molecule to rotate, this is easily described by the density. Further, in our procedure we prescribe a specific path, i.e. we prescribe what the density must be at all times. This is called tracking, and is known for its great efficiency, as it can be implemented locally, i.e. stepwise in time. Hence it is also known as a local control theory (LCT). Now, the crucial reason that tracking is not more used, in spite of its great efficiency and conceptual simplicity, is that standard tracking schemes lack the crucial guarantee that their control objectives actually can be achieved, leading to failure or at best major numerical challenges. There is simply no potential that can achieve the desired path, unless the path is prescribed with appropriate care. The density is thus special in that the van Leeuwen theorem of TDDFT 13 in practise always guarantees the existence of such a potential for this tracking objective, making tracking possible (in TDDFT terms...
the density must be \(\nu \)-representable, which is a very mild restriction). In control theory (unlike TDDFT), we are also often more interested in an optimal rather than a prescribed path. For instance, we may ask for the least energetic external potential that brings a system from its ground state to a specific excited state or transfers charge from one part of a molecule to another (achieved by following some optimal path). The standard optimal control theory (OCT) methods, however, require thousands of global iterations \([7] \), and are thus only feasible for very small systems. Therefore a physically reasonable restriction of the search space is desirable. While such a restriction in terms of the wave functions is very challenging, the restriction to certain density profiles is much simpler. Since we know the set of densities that can be achieved we can use tracking to find the external potential that yields these densities, thereby essentially doing OCT in an efficient, local, manner. Thus we gain both the efficiency of LCT and flexibility of OCT (to a very high extend).

We point out that our method goes beyond the usual dipole approximation. While the dipole approximation is a very important special case, as it is generally the dominant laser-molecule interaction, treating more advanced fields is fundamentally important, as a tool to gain further insight into quantum dynamics and to allow for more general local-control objectives. That is, given a dipole field \(\mathbf{E}(t) \), only a quantity like the dipole moment \(\mathbf{\mu}(t) \) can be locally controlled, while a general potential \(v(\mathbf{r}, t) \), a quantity like the density \(n(\mathbf{r}) \) can be controlled (the freedom of the control field and objective must match). Such control objectives become experimentally important, for instance, in the physics of ultracold gases, where a high temporal and spatial control over the applied external fields is possible. In the dipole case, our approach reduces to a known method to control the dipole moment. However, by connecting it with TDDFT, some less well-known crucial properties of that approach become immediately clear, e.g., that dipole tracking is one of the few other cases besides the density that are controllable.

Finally, to make the control of realistic systems feasible, our method should be compatible with an efficient many-body method. But, since the present method was derived within the framework of TDDFT, it can trivially take advantage of any TDDFT approximation, and thus makes ab-initio control of big quantum systems possible.

Outline - In Section \(\text{VII} \) we review LCT in its simplest form to establish its basic idea. In Section \(\text{III} \) we then advance this idea by presenting different more advanced strategies to implement LCT, since a naive implementation in our case turns out to be extremely unstable. Based on this, we then present the full algorithm in Section \(\text{V} \). Then, in Section \(\text{V} \) we show how we can work with an auxiliary non-interacting system instead of the true interacting system using TDDFT approximations, before we in Section \(\text{VII} \) present different strategies to do OCT with our LCT. Finally we give examples for the different possible applications of our LCT in Section \(\text{VII} \). In the appendices we provide details about boundary conditions, the numerical spatial representation and different propagation routines.

II. LOCAL CONTROL THEORY

Throughout this paper we study the class of \(N \)-electron systems governed by a time-dependent non-relativistic spin-free Hamiltonian (atomic units are used throughout)

\[
\hat{H}(t) = \hat{T} + \hat{W} + \hat{V}(t) = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i>j=1}^{N} w(r_{ij}) + \sum_{i=1}^{N} v(\mathbf{r}, t),
\]

where \(\hat{T} \) is the kinetic energy operator, \(\hat{W} \) the two-electron interaction operator, \(\hat{V}(t) \) the external potential operator, \(\nabla_i \) the gradient with respect to the spatial coordinate \(\mathbf{r}_i \) and \(r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| \). We usually take the internal two-electron interaction to be purely Coulombic, i.e. \(w(r_{ij}) = r_{ij}^{-1} \), but other options are also possible, of which zero interaction turns out to be most important.

To review tracking in its simplest form, we will for now assume the only freedom we have to control the dynamics of the quantum system is to adjust the field strength \(\varepsilon(t) \) of a linearly polarised laser field (say in the \(x \)-direction) in dipole approximation, i.e.,

\[
\hat{V}(t) = \hat{V}_0(t) - \varepsilon(t) \hat{\mu}_x,
\]

where \(\hat{V}_0(t) \) is fixed and usually time-independent. Here \(\hat{\mu}_x = -\sum_{i=1}^{N} x_i \) is the \(x \)-component of the dipole operator. With \(\hat{H}_0(t) = \hat{T} + \hat{V}_0(t) + \hat{W} \), the Hamiltonian then reads

\[
\hat{H}(t) = \hat{H}_0(t) - \varepsilon(t) \hat{\mu}_x.
\]

This is not a lot of freedom, and hence it is also quite limited which control objectives can actually be achieved. The control objective must be a scalar as it cannot be more general than the freedom we have to achieve it.

Accordingly, we consider the control objective of obtaining a prescribed time-evolution of the expectation value \(S(t) = \langle \Psi(t) | \hat{O}(t) | \Psi(t) \rangle \) of a scalar observable \(\hat{O}(t) \). This observable \(\hat{O}(t) \) could for example be the projection operator onto the first excited state \(|1\rangle \langle 1| \), in which case \(S(t) \) is simply the population of the first excited state. If we then prescribe that \(S(t) \) should go from 0 to 1 in some specific way, and we start out in the ground state, well then we are simply asking that the system goes from its ground state to first excited state in this specific manner.

\[\text{1} \] \(S(t) \) must of course be consistent with the initial state \(|\Psi_0 \rangle \), i.e.,

\[S(t_0) = \langle \Psi_0 | \hat{O}(t_0) | \Psi_0 \rangle \] where \(t_0 \) is the initial time.
To actually obtain the field strength $\varepsilon(t)$ that achieves this control objective, there exist a clever combination of tricks. We start by taking the time-derivative of $S(t)$, using the time-dependent Schrödinger equation (TDSE),

$$i\partial_t |\Psi(t)\rangle = \left[\hat{H}_0(t) - \varepsilon(t)\hat{\mu}_x\right]|\Psi(t)\rangle,$$

for the time-derivatives of the wave function. This yields the Ehrenfest theorem for $S(t)$,

$$\partial_t S = \langle \Psi | \partial_t \hat{O} - i \left[\hat{O}, \hat{H}_0\right] + i \varepsilon \left[\hat{O}, \hat{\mu}_x\right] |\Psi\rangle,$$ \hspace{1cm} (4)

where we can easily isolate the field strength $\varepsilon(t)$

$$\varepsilon(t) = \frac{\partial_t S(t) + \langle \Psi(t)|i \left[\hat{O}(t), \hat{H}_0(t)\right] - \partial_t \hat{O}(t)|\Psi(t)\rangle}{\langle \Psi(t)|i \left[\hat{O}(t), \hat{\mu}_x\right] |\Psi(t)\rangle}.$$ \hspace{1cm} (5)

Hence we obtain an equation for the desired field strength $\varepsilon(t)$ in terms of only the known $S(t)$ and wave function $|\Psi(t)\rangle$. So our only problem in calculating the desired field strength $\varepsilon(t)$ is that we do not know the wave function $|\Psi(t)\rangle$ that corresponds to this field-strength. However, numerically this problem essentially resolves itself when using time-stepping, as we shall now see.

To keep things as simple as possible for now, let us here consider Euler time-stepping on an equidistant time-grid with points $t_n = n\Delta t$. We start by calculating $\varepsilon(t_0)$ at the initial time $t = t_0$ from the initial state $|\Psi(t_0)\rangle$ by Eq. (5), and then we use Euler time-stepping with the corresponding Hamiltonian $\hat{H}(t_0)$ to find $|\Psi(t_1)\rangle$ as $|\Psi(t_1)\rangle = |\Psi(t_0)\rangle - i\Delta t \hat{H}(t_0)|\Psi(t_0)\rangle$. By repeating this, we can simply step through time, obtaining the desired field strength $\varepsilon(t)$ as we go.

So the tracking idea is both conceptually very simple and computationally efficient (we simply step through time once and we are done). However, there is an issue. Even if we have ensured that the freedom of the control objective and control field match, there is still generally no guarantee that the control objective is achievable, since $\varepsilon(t)$ can become infinite, when Eq. (5) is singular. Our population control example thus generally fails! \hspace{1cm} \(2\)

On the other hand, the dipole moment $\mu_x(t)$ and the density $n(r,t)$ are very special since they couple directly to the external control fields $\varepsilon(t)$ and $v(r,t)$ in Eq. (3) and Eq. (11) respectively. These so-called conjugate observables $\mu_x(t)$ and $n(r,t)$ can be shown to be practically almost always achievable by the the van Leeuwen theorem of TDDFT $[13, 14]$. This special property is based on the fact that two different external fields of a specified form lead usually to different conjugate observables. This is nicely reflected in non-singular tracking equations (analogues of Eq. (3)), which means there always exists a finite field strength giving the desired change in $S(t)$. Hence the control objective is indeed possible. To see this in the dipole case, first note that for $\hat{O}(t) = \hat{\mu}_x$ and hence $S(t) = \mu_x(t)$ the Ehrenfest theorem becomes

$$\partial_t \mu_x = -i\langle \Psi | \hat{\mu}_x, \hat{T} \rangle |\Psi\rangle = -p_x.$$

So in this case we take the second time-derivative of $\mu_x(t)$ by applying the Ehrenfest theorem to $-p_x$, to obtain

$$\partial_t^2 \mu_x = \langle \Psi | \hat{\mu}_x, \hat{\mu}_x + \hat{W} \rangle - i\varepsilon [\hat{\mu}_x, \hat{\mu}_x] |\Psi\rangle.$$

The term \hat{W} vanishes since it can be expressed as a divergence which integrates to zero $[15]$. By then introducing the one-electron density operator

$$\hat{n}(r) = \sum_{i=1}^N \delta(r - r_i),$$ \hspace{1cm} (6)

we easily find the promised singularity free equation for the desired tracking field strength $[13]

$$\varepsilon(t) = \frac{1}{N} \partial_t^2 \mu_x(t) - \frac{1}{N} \int n(r,t) \partial_x v_0(r,t) dr.$$ \hspace{1cm} (7)

To see how we can derive an analogue of Eq. (5) in the density case, and that it indeed also is singularity free, the story goes exactly the same as in the dipole case. We will simply take the second time-derivative of $n(r,t)$, exactly as we did for $\mu_x(t)$ to obtain Eq. (7)4. To do this,

2 A way to circumvent this problem in the case of a time-independent operator \hat{O} commuting with \hat{H}_0, like the operator $|1\rangle\langle 1|$, with a similar efficiency as tracking is to use $\varepsilon(t) = -i\langle \Psi(t)|[\hat{O}, \hat{\mu}_x]|\Psi(t)\rangle$. By Eq. (4) this ensures $\partial_t S(t) \geq 0$, i.e., $S(t)$ is monotonically increasing. This means that the population always gets closer to its maximal value 1. This does however leave the exact form of the path open. Note that in general the assumptions on $\hat{O}(t)$ are needed for this idea, as this maximization of the expectation value only has sense for time-independent operators, and no field strength can make $\hat{S}(t) \geq 0$ if $i\langle \Psi(t)|[\hat{O}, \hat{\mu}_x]|\Psi(t)\rangle = 0$ and $-i\langle \Psi(t)|[\hat{O}, \hat{H}_0]|\Psi\rangle < 0$. The reason for using this alternative expression for $\varepsilon(t)$ is that it unlike Eq. (5) is singularity-free.

3 Other examples are the restriction to external fields of the form $\varepsilon(t) x^k$ which then have as possible conjugate observable $-\int x^k n(r,t) dr$.

4 Indeed, as $n(r,t)$ and $\mu_x(t)$ are related by $\mu_x(t) = -\int dr \varepsilon(r,t)$, so are Eqs. (7) and (10). To see this explicitly, multiply Eq. (10) by x and integrate (using partial integration for the two first terms),

$$\int n(r,t) \partial_x v(r,t) dr = \int Q_x(|v|, r) dr + \partial_t^2 \mu_x(t).$$

The Q_x-term vanish since it also can be written as a divergence, so this is indeed a rearrangement of Eq. (7), when we in accordance with Eq. (4) set $v(r,t) = v_0(r,t) + \varepsilon(t)x$. In this sense, dipole tracking may indeed be viewed as a special case of density tracking.
we first introduce the current operator
\[\hat{j}(r) = \frac{1}{2i} \sum_{i=1}^{N} \left(\delta(r-r_i) \nabla_i - \nabla_i \delta(r-r_i) \right). \]

The expectation values \(n(rt) \) and \(j(rt) \) of the density and current operators satisfy equations of motion given by
\[
\begin{align*}
\partial_t n(rt) &= -\nabla \cdot j(rt) \quad (8) \\
\partial_t j(rt) &= -n(rt) \nabla v(rt) + Q(rt),
\end{align*}
\]
where \(Q(rt) \) is the expectation value of the internal local-force operator \(Q(r) = -i [\hat{j}(r), \hat{T} + \hat{W}] \). Eqs. \((8) \) and \((9) \) imply
\[
-\nabla \cdot (n(rt) \nabla v(rt)) = q([v], rt) - \partial^2 n(rt),
\]
where \(q([v], rt) = -\nabla \cdot Q(rt) \). For a fixed density and initial state this is an implicit equation for the potential \(v \) when we regard \(q([v], rt) \) as a functional of \(v \) through the time-dependent many-body state \(|\Psi([v], t)\rangle \) obtained by the TDSE with potential \(v \) and given fixed initial state. Indeed, the operator \(\nabla \cdot n(rt) \nabla \) can be inverted (see also Appendix \([A] \) and thus Eq. \((10) \) is singularity free.

So in principle we can now already do density tracking. There is but one issue: a naive implementation like this, using Euler time-stepping, turns out to be very unstable in the density case (unlike in the other cases presented). While the Euler method mathematically is guaranteed to converge for small enough time-steps (at least when we stay away from singularities), it is numerically very inefficient and can fail in practice due to round-off errors, which it does in the density case. This comes back to the fact that the density (at a given point) may change by orders of magnitude, so we have to be very precise for it to stay correct. If we do not, an extremely strong artificial potential is needed to compensate for it. So, in order to stabilize the scheme in the density case, and significantly increase the performance in all the cases, we discuss various advanced time-stepping strategies in the next Section. We then return to how the density case is really done in Section \([V] \). As a convenient extra bonus, the change of time-step strategy also allows us to get rid of the complicated quantity \(q \).

III. TIME-STEP PROCEDURES

Formally, the exact time-evolution operator is given by
\[
\hat{U}(t_0, t) = \mathcal{T} \exp \left(-i \int_{t_0}^{t} dt' \hat{H}(t') \right),
\]
where time-ordering \(\mathcal{T} \) is needed unless \([\hat{H}(t), \hat{H}(t')] = 0 \). But how do we apply this operator in a simple way? Well, let us first of all (like previously in the Euler case) split the time-axis into equidistant pieces of length \(\Delta t \), \(t_n = n \Delta t \), as illustrated in Fig. [1]. It can then be shown that for \(\Delta t \to 0 \) the following procedure yields the exact time-propagation:\(^5\)

Given the initial state \(|\Psi_0\rangle \) at time \(t_0 \), we can simply propagate the wave function to time \(t_1 \) by using the time-evolution operator for a time \(\Delta t \), \(\hat{U}(\Delta t) = e^{-i \hat{H} \Delta t} \), which we from now on will call the time-step operator.\(^7\) This way it becomes extremely easy to handle the time-dependence of the Hamiltonian \(\hat{H}(t) \), since for the \(n^{th} \) time-step we simply use the midpoint Hamiltonian \(\hat{H}(t_n) = \hat{H}(\frac{1}{2}(t_{n-1} + t_n)) \), as illustrated in Fig. [1] A. The price we pay is that we have to apply the time-step operator a lot of times. However, since \(\Delta t \) is small, we can use simple and effective approximations for the time-step operator (as explained in Appendix \([C] \), leaving the numerical cost reasonable.

The above strategy is the obvious choice numerically, and works very well, for the case where the Hamiltonian does not depend on the wave function. However, in our case, where the Hamiltonian depends on the wave function \(|\Psi(t)\rangle \) (and target \(S(t) \)), i.e., \(\hat{H}[\Psi, S] \), we are unable to calculate the midpoint Hamiltonian, since we do not know the midpoint wave function a priori.

The simplest strategy in this case is then to just use the on-point Hamiltonian \(\hat{H}(t_n) \) instead of the midpoint Hamiltonian \(\hat{H}(t_{n+1}) \) (as indicated in Fig. [1] B above the arrows). However, this is clearly not very precise, or even physical, as it breaks the time-reversal symmetry. Thus it requires relatively small time-steps to work, leaving it numerically inefficient. However, having calculated \(|\Psi(t_{n+1})\rangle \) approximatively, with the help of the on-point Hamiltonian \(\hat{H}(t_n) \) we can obtain an approximate midpoint Hamiltonian, which can then be used to improve \(|\Psi(t_{n+1})\rangle \). This is an effective way to get most of the ”midpoint effect”. Note that it is also possible to only use midpoint Hamiltonians in this situation, as illustrated in Fig. [1] C. However, this strategy requires an equidistant time-grid, preventing (much more efficient) adaptive time-steps. To initialize this strategy, we compute \(|\Psi(t_0)\rangle \) and \(|\Psi(t_1)\rangle \) by propagating \(|\Psi_0\rangle \) using the Hamiltonian \(\hat{H}(t_1) \), instead of the midpoint Hamiltonians (just as in Fig. [1] B)\(^8\). We can then calculate the

\(^5\) All strategies presented here can easily use adaptive time-steps to significantly improve the performance, except the one of Fig. [1] C.

\(^6\) A prerequisite that this is true is that the Hamiltonian does not change discontinuously in time, i.e., the potential \(v(rt) \) is at least continuous in time \([10] \). In practise \(\Delta t \) should be so small that \(\hat{H}(t) \) almost stays constant within each piece.

\(^7\) The exact time-evolution operator for small enough \(\Delta t \) may also be written as \(\exp(\Omega) \), with a convergent infinite series for \(\Omega \), known as a Magnus series. Truncating this series to 2\(^{nd} \) order yields the time-step operator we use. For problems involving very high frequencies, higher order Magnus expansions are advantageous, like the 4\(^{th} \) order expansion \(\exp(-i\hat{H}(t_1)\Delta t - i\frac{\Delta t}{2} [\hat{H}(t_1) + \hat{H}(t_2)] - \frac{i\Delta t^2}{2} [\hat{H}(t_2), \hat{H}(t_1)] \), where \(t_{1,2} = t + (\frac{1}{2} \pm \sqrt{\frac{3}{4}}) \Delta t \). However, this is beyond our scope.

\(^8\) While this initialization is not as good as the actual propagation,
“midpoint” Hamiltonian for the steps of length $2\Delta t$, e.g. \(H(t_1) \). So this is really a clever way to solve the issue of calculating the Hamiltonian. Note however, that only even, respectively odd times \(t_n \) are connected to each other, leading to somewhat different errors of even and odd \(|\Psi(t_n)\rangle \), and hence slightly oscillatory expectation values. Yet another alternative for this type of wave-function-dependent Hamiltonians is to extrapolate the Hamiltonian to the midpoint (in Fig. 1A one would thus use the extrapolated midpoint Hamiltonian) \(^9\).

Strategies B, C and extrapolation usually work well for LCT, however, in the case of density control this is no longer true, as it is much harder to stabilise. In this case, we therefore need an entirely different time-stepping strategy that focuses on the fact that we have a control target that we want to achieve.

We start by making an initial guess for the midpoint Hamiltonian \(\hat{H}_0(t_{n+1}) \), e.g. by (linear) extrapolation. Provided we can come up with an update formula,
\[
\hat{H}_{k+1}(t_{n+1}) = \hat{H}_k(t_{n+1}) + f(S_k(rt_{n+1}) - S(rt_{n+1})),
\]
that corrects the midpoint Hamiltonian based on how far the actual path \(S_k(rt_{n+1}) \) is from the prescribed path \(S(rt_{n+1}) \), i.e. based on the residual \(S_k(rt_{n+1}) - S(rt_{n+1}) \), we can repeat this until both paths practically coincide, and move to the next time-step, as illustrated in Fig. 1D. Note that, since in the Hamiltonian only the external field may change, we may equivalently rewrite Eq. (12) as
\[
\hat{v}_{k+1}(rt_{n+1}) = \hat{v}_k(rt_{n+1}) + f(v_k(rt_{n+1}) - v(rt_{n+1})).
\]

The huge advantage of this strategy is that it always tries to compensate any error in the time-propagation by changing the midpoint Hamiltonians to ensure that the path stays correct. Thus, even if \(S(rt) \) changes by orders of magnitude, as in our case, it will likely still get it right (while the potential we find is not quite equal the exact). Using any of the above strategies any error in \(S(rt) \) will never be corrected, except by sheer luck, and what may be a small error to start with, may become a major error if \(S(rt) \) changes by orders of magnitude, causing a break down. In short, strategy D is generally slightly more expensive, but much more stable. We shall also see in Section [V] that it easily allows nice further stabilising techniques, like ensuring that the continuity equation holds. In our case, the update formula (13) is also much simpler than Eq. (10), allowing for a simpler implementation.

In the appendices [C] and [D] we discuss further numerical aspects of time-propagation.

To make use of our new time-stepping strategy, we need to derive an update formula (13). To do this we first note that Eq. (10) can be solved iteratively. To do so, we define an iterative sequence \(v_k \) of potentials by the iterative solution of
\[
-\nabla \cdot (n(rt)\nabla v_{k+1}(rt)) = q([v_k],rt) - \partial_t^2 n(rt).
\]
In previous works [4, 5] we showed, for general initial states and interactions, that under mild restrictions on the density the sequence \(v_k \) converges in Banach-norm sense to a potential \(v \) that produces the prescribed density \(n \) and is the fixed-point of the equation. To obtain an equation that only depends on densities, we use Eq. (10) for a system with potential \(v_k \) to eliminate the quantity \(q \) from Eq. (14),
\[
-\nabla \cdot (n(rt)\nabla v_{k+1}(rt)) = \partial_t^2 [n([v_k],rt) - n(rt)] - \nabla \cdot (n([v_k],rt)\nabla v_k(rt)).
\]
As \(v_k \) approaches \(v \), \(n[v_k] \) approaches \(n \), so we can replace the last \(n[v_k] \) by \(n \) in the near convergence region,
\[
-\nabla \cdot (n(rt)\nabla [v_{k+1}(rt) - v_k(rt)]) = \partial_t^2 [n([v_k],rt) - n(rt)].
\]
Since we can invert the operator \(-\nabla \cdot n(rt)\nabla \) this shows us how we can update \(v_k \) given the residual \(n[v_k] - n \), and (once time-discretized) is our desired update formula.

A) \(\Psi \xrightarrow{H} \Psi \xrightarrow{H} \Psi \xrightarrow{H} \Psi \)

B) \(\Psi \xrightarrow{(H)} \Psi \xrightarrow{(H)} \Psi \xrightarrow{(H)} \Psi \)

C) \(\Psi \xrightarrow{\hat{H}} \Psi \xrightarrow{\hat{H}} \Psi \xrightarrow{\hat{H}} \Psi \)

D) \(\Psi \xrightarrow{\hat{H}_k} \Psi \xrightarrow{\hat{H}_k} \Psi \xrightarrow{\hat{H}_k} \Psi \)

FIG. 1: Different time-stepping strategies. \(\hat{H} \) are on-point Hamiltonians and \(\hat{H} \) are midpoint Hamiltonians respectively.

A) Standard time-stepping strategy for known Hamiltonians. B) Using the on-point Hamiltonian for making a time step and then use this state to prescribe an approximate midpoint Hamiltonian. C) Extrapolating a new initial state between 0 and \(\Delta t \) and using the on-point Hamiltonians as midpoint Hamiltonians for two parallel time-stepping procedures. D) Making an initial guess for the midpoint Hamiltonian and updating it until the control target at the next time step is achieved.

IV. DENSITY LOCAL-CONTROL THEORY

9 Strategies B, C and the extrapolation method apply equally well to Kohn-Sham theory, where the Hamiltonian depends on the wave function through the density (also on previous times, although in practise this dependence is usually ignored).
To also make use of the current (which will help us in stabilising the numerics), we note that using the continuity equation this may also be written as
\[
\nabla \cdot (n(r)t\nabla [v_{k+1}(r,t) - v_k(r,t)]) = \partial_t \left[\nabla \cdot j(v_k, r,t) + \partial_t n(r,t) \right].
\] (17)

Note that Eq. (16) only is converged if \(v_k\) really yields \(n\), while Eq. (17) first is converged when \(v_k\) really yields a \(j[v_k]\), that together with \(n\) satisfy the continuity equation. By combining these, we require both \(n\) and \(j\) to be as correct as possible, even when numerical errors try to build up. Consequently we find
\[
-\nabla \cdot (n(r)t\nabla [v_{k+1}(r,t) - v_k(r,t)]) = (1 - \mu)\partial_t^2 \left[n([v_k], r,t) - n(r,t) \right] - \mu \partial_t \left[\nabla \cdot j([v_k], r,t) + \partial_t n(r,t) \right],
\] (18)
where \(\mu\) is a parameter at our disposal.

Finally, we implement the update formula Eq. (18) stepwise in time\(^{10}\). By denoting \(\Delta t = t_{n+1} - t_n\), using only times \(t_m\) with \(m \leq n + 1\) for the derivatives and employing the fact that we have already converged up to time \(t_n\), we find from Eq. (18) by a discretization with respect to time
\[
-\nabla \cdot (\tilde{n}(r_{t_{n+1}})\nabla [\tilde{v}_{k+1}(r_{t_{n+1}}) - \tilde{v}_k(r_{t_{n+1}})]) \Delta t^2
= A \left[n([v_k], r_{t_{n+1}}) - n(r_{t_{n+1}}) \right]
- B \Delta t \left[\nabla \cdot j([v_k], r_{t_{n+1}}) + \partial_t n(r_{t_{n+1}}) \right].
\] (19)

The constants \(A\) and \(B\) depend on the discretization scheme and the \(\mu\) of Eq. (19), which effectively leaves the choice of their values at our disposal. In practise we generally employ values between 0.5 and 1.

All that is left to do is to find a way to solve the above Sturm-Liouville problem, i.e., invert the self-adjoint operator \(-\nabla \cdot n(r)t\nabla\). To do so we need to choose boundary conditions on \(v\) which are in accordance to the quantum system we want to look at (see Appendix A). After discretisation with respect to space (see Appendix B) we can then for example use relaxation methods (possible accelerated by multi-grid methods for very high efficiency) to solve the resulting inversion problem. This allows us to also consider two- and three-dimensional quantum systems, while in our previous work\(^\text{11}\) we were restricted to one-dimensional multi-particle problems, where a direct integration of the Sturm-Liouville operator is possible\(^\text{11}\).

The resulting algorithm usually converges within 5 to 10 iterations for each time-step, making it essentially as fast as the time-propagation scheme.

V. TDDFT VERSION

While the stepwise approach reduces the cost of our method to a few times that of a normal time-propagation, it is still way too expensive to apply to anything larger than a few electrons. However, our method apply equally well to non-interacting and interacting systems, and in this section we will show that by applying our method to an auxiliary non-interacting system, we can actually obtain the external potential of the interacting system by just subtracting a TDDFT approximation.

For a non-interacting system, the wave function \(|\Psi(t)\rangle\) can be represented by orbitals \(\phi_i(r,t)\), provided the initial state \(|\Phi_0\rangle\) is given in terms of orbitals. To do the time-propagation in this case, we thus only need to propagate each individual orbital \(\phi_i(r,t)\) using
\[
\hat{H}(t) = -\frac{1}{2} \nabla^2 + v_s(r_t),
\]
where we employed the usual convention to denote an external potential that acts on a non-interacting system by \(v_s\). The density can then also be expressed in terms of the orbitals by
\[
n(r_t) = \sum_{i=1}^N |\phi_i(r,t)|^2.
\]

Thus time-propagation, and therefore also our method, are much less numerically demanding for non-interacting systems. This fact is used in the Kohn-Sham approach to TDDFT, where one uses an auxiliary non-interacting system to predict the density of an interacting reference system. To force the non-interacting Kohn-Sham system to have the same density as the interacting one, an auxiliary field the so-called Hartree-exchange-correlation (Hxc) potential
\[
v_{\text{Hxc}}[\Psi, \Phi, n] = v_s[\Psi, n] - v[\Psi, n],
\] (20)
is introduced (see\(^\text{23}\) for details). Its individual terms \(v_s[\Psi, n]\) and \(v[\Psi, n]\) are the control fields that force the different quantum systems, starting from \(|\Phi_0\rangle\) and \(|\Psi_0\rangle\) respectively, to produce the same density \(n(r_t)\) via propagation. The Hxc functional is then usually rewritten as
\[
v_{\text{Hxc}}[\Psi, \Phi, n] = v_H[n] + v_{\text{xc}}[\Psi, \Phi, n]
\]
where the Hartree potential (i.e., the classical interaction contribution)
\[
v_H([n], r_t) = \int d\mathbf{r}'n(r_t')w(|\mathbf{r} - \mathbf{r}'|)
\]

\(^{10}\) Since we iterate the update formula for every time step, the converged potential of the previous time step is a very good initial guess for the potential at the present time step. This justifies that we employ the simplified update formula where we used \(n[v_k] \simeq n\). Even in the initial time step (where we have no previous potential to take as initial guess) we never experienced any problems with this.

\(^{11}\) There the choice of appropriate boundary conditions give rise to non-trivial integration constants\(^\text{11}\).
is made explicit. The resulting unknown part is called as the exchange-correlation (xc) potential $v_{xc}[\Psi_0, \Phi_0, n]$ and is an intensively studied quantity in TDDFT, for which decent approximations exist. Thus, to calculate the control field that generates for a given initial state $|\Psi_0\rangle$ (in the interacting system) a prescribed density n, i.e., $v[\Psi_0, n]$, we simply calculate $v_s[\Phi_0, n]$ for some initial state Φ_0 (having the same initial density and time-derivative of the density as the interacting problem, usually found by ground-state DFT), and then we subtract a TDDFT approximation v_{xc}^app to obtain $v[\Psi_0, n]$, i.e.,

$$v[\Psi_0, n] \simeq v_s[\Phi_0, n] - v_H[n] - v_{xc}^\text{app}[\Psi_0, \Phi_0, n]. \quad (21)$$

How this works in practice for a simple approximation (which ignores the dependence on $|\Phi_0\rangle$ and $|\Psi_0\rangle$ as is usually the case for most approximate xc potentials) will be shown in Section VII.

VI. OPTIMAL CONTROL THEORY

Our density-control method also allows us to do OCT, i.e., to find the path that optimizes the time-integral of the expectation value of a possibly time-dependent observable $\hat{O}(t)$12 over a fixed time interval $[t_0, T]$, i.e., we search for the $|\Psi(t)\rangle$ that optimises

$$J[\Psi] = \int_{t_0}^{T} dt \langle \Psi(t) | \hat{O}(t) | \Psi(t) \rangle$$

for a fixed initial state. To find this optimal path we have to search over all wave functions that satisfy the TDSE (which in standard OCT is done using a Lagrange multiplier to ensure that $|\Psi(t)\rangle$ satisfies the TDSE). This is extremely involved since even algorithms optimized for this will have to update $|\Psi(t)\rangle$ thousands of times before the search approaches the optimal wave function 7, and each of these updates involves a time-propagation of the full many-body state. The search would be much simpler (and thus faster) if we could somehow restrict it to only a small class of relevant wave functions, which is exactly what our algorithm offers. Basically, it is hard to restrict the time-dependent wave functions explicitly, since they must satisfy the TDSE and we have little intuition about these states. It is much easier in the case of the densities. Since most time-dependent densities are valid (if they have the same density and time-derivative of the density as the initial state and are smooth enough in time and space 4 [5] [13]) we can apply our physical intuition to restrict to sensible density profiles.

To actually do this density-based OCT, we first employ the fact that we can label all wave functions by their respective density (which is a consequence of the Runge-Gross theorem 6) $|\Psi(|\Psi_0, n|, t)\rangle$. Thus, instead of optimizing with respect to the wave function we can equivalently optimize with respect to the density, i.e.,

$$J[\Psi_0, n] = \int_{t_0}^{T} dt \langle \Psi(|\Psi_0, n|, t) | \hat{O}(t) | \Psi(|\Psi_0, n|, t) \rangle.$$

Of course, the full optimization over all possible densities is numerically as expensive as the optimization with respect to the wave functions. However, if we restrict the set of allowed densities we can greatly reduce the numerical costs of such an optimization. For instance, if we want to minimize the required field energy $J[n] = \int_{t_0}^{T} dt \int \mathbf{dr} (\nabla v(|\Psi_0, n|, \mathbf{r}))^2$ for a rigid translation of the initial density to some specific point at $t = T$, we can use linear combinations of densities that all will arrive at the specific point at $t = T$. How this can be done in practice is shown in Section VII.

Of course, we can combine this approach to OCT with the ideas introduced in the previous section. Instead of making an optimization in the fully interacting quantum system we can consider the non-interacting Kohn-Sham system. However, this requires that we can express J of the interacting system in terms of the density or the orbitals of the Kohn-Sham system, which can rarely be done exactly (see for a short list of such cases below). Thus we face the same challenges as standard OCT when employed together with TDDFT, i.e., we usually only have crude approximations to the observables of the interacting system.

This brings us to another possibility of combining local density control with OCT. In the special case where we can express, or adequately approximate, the functional in terms of the density only, we can split the OCT problem up into finding an optimal density and then use tracking, thus completely avoiding the extremely expensive optimization in terms of the wave functions. This includes the important class of observables based on the spatial operator \mathbf{r}, since the expectation value of such an operator $\hat{f}(\mathbf{r})$ is given by $\hat{f}(t) = \int \mathbf{dr} \hat{f}(\mathbf{r}) n(\mathbf{r})$. For instance, the dipole acceleration, which is proportional to the radiation of the quantum system, is given by $\hat{j}(t) = \int \mathbf{dr} \mathbf{r} \hat{\mathbf{r}}(\mathbf{r})$. It also includes the particle-number operator restricted to a specific region, e.g., around the initial location of the system ($\hat{f}(\mathbf{r}) = 1$ near the initial location and zero elsewhere), which approximates the number of bound and ionized electrons (since both have to add up to N) 2. Further, also the divergence of the current \mathbf{j} and the local force \mathbf{Q} are given in terms of the density through the continuity equation and local-force equation. Unfortunately, there are not many other cases13. An analytical example of such an explicitly den-

12 In principle we allow for a sum of time-dependent observables which can depend themselves on the wave function and can give different times a different importance by multiplying with a weighting function.

13 Although the Runge-Gross theorem 6 proves that every observable is a unique functional of the density and initial state, the explicit form of these functionals is only known in very rare cases.
density based optimization can also be found in Section VII.

We finally emphasize that one can employ these optimal control ideas also with other local-control schemes, such as dipole tracking, provided that we only have \(\varepsilon(t) \) to vary. In other cases, such as population tracking, we cannot combine our LCT and OCT straightforwardly since we do not know the set of valid time-dependent populations.

VII. EXAMPLES

To illustrate the capabilities of our numerical procedure, we focus on a simple model system (in 1D and 2D), that is easy to introduce. This lets us keep the focus on what is actually possible, instead of details of specific systems. While 3D systems also are feasible with our method, we refrained from considering those in this work since they are harder to illustrate. In particular, the following examples show that our algorithm converges for large and rapid density changes of orders of magnitude irrespective of the initial state, the interactions and the dimensionality of the quantum system.

A. 1D Model System

In all these cases, we consider \(N \) electrons on a quantum ring of length \(L = 10 \) over a time interval of length \(T = 20 \). We start by calculating an initial state \(|\Psi_0\rangle \), which in all cases is a ground state or excited state of a (properly periodic) Hamiltonian with external potential \(v_0 \) and interaction \(w \) given by

\[
v_0(x) = -\cos\left(\frac{2\pi x}{L}\right),
\]

\[
w(x_1, x_2) = \lambda \cos\left(\frac{2\pi(x_1 - x_2)}{L}\right),
\]

where \(\lambda \) is the interaction strength. The initial density is denoted by \(n_0(x) \). We then construct the (spatially periodic) time-dependent densities \(n_1(x,t) \) and \(n_2(x,t) \) by:

\[
n_1(x,t) = n_0(x - r(t)),
\]

\[
n_2(x,t) = \frac{1}{2} [n_0(x - r(t)) + n_0(x + r(t))],
\]

\[
r(t) = \frac{L}{2} \left[1 - \cos\left(\frac{\pi t}{T}\right)\right].
\]

The density \(n_1 \) describes a situation where the initial density \(n_0 \) is rigidly translated around the ring exactly once, whereas the density \(n_2 \) describes a situation where the initial density \(n_0 \) is split in equal halves \(\frac{1}{2} n_0 \) that are rigidly translated in opposite directions to rejoin at times \(\frac{1}{2} T \) and \(T \). These examples are very challenging, since the external potential has to move the densities by orders of magnitude (for a fixed position \(x \)), and, in the case of a splitting, ensure the wave function splits and recombines correctly. We have then used our algorithm to calculate the potentials that produce these prescribed densities \(n_1 \) and \(n_2 \) via time-propagation of the initial state \(|\Psi_0\rangle \) by the TDSE. This was done for the interaction strengths \(\lambda = 1 \) and \(\lambda = 0 \), corresponding to interacting and non-interacting situations below, respectively.

1. Interacting

Here we consider 2 cases. In the first case we take the initial state \(|\Psi_0\rangle \) to be the 2 electron singlet ground state\(^{14}\) (which has a symmetric spatial wave function), while in the second case we take the initial state to be the 3 electron state with all spin up (or down) (which has an anti-symmetric spatial wave function). The corresponding potentials (including the static potential \(v_0 \)) and densities (insets) for both cases are shown in Fig. 2.

2. Non-Interacting

Here we consider 4 different cases of splitting, where we take the initial states to be the 2, 6, 10 and 14 electron ground states\(^{15}\). Since the electrons do not interact,

\[\text{FIG. 2: (color online) The potentials (including the static } v_0 \text{) that (a) translate and (b) split the 2-electron density and that (c) translate and (d) split the 3-electron density.}\]

\[\text{\footnotesize\(^{14}\) We have considered this example already in [1]. However, since we will use it later to benchmark TDDFT approximations we present it also here.}\]

\[\text{\footnotesize\(^{15}\) In the cases of 4 and 8 particles the algorithm becomes unstable. This is because the excited state orbitals dominate the density near their nodes and extremely strong potentials are needed to}\]
we can construct these ground states by computing the one-electron eigenstates of Fig. 3, and use them as initial orbitals by the Aufbau principle. We then do the splitting, to get the potentials of Fig. 4. Note how we can treat much larger non-interacting systems, than interacting, due to the linear scaling of non-interacting problems.

FIG. 4: (color online) The potentials (including the static v_0) that split (a) the 2- (b) 6- (c) 10- and (d) 14-electron density.

3. Interacting by Non-Interacting

To see how we can take advantage of the fact that we numerically can treat much larger non-interacting systems than interacting, we employ the idea presented in Section V. As an example, we approximate the splitting of the interacting 2-electron problem of Section VII A 1 by working with an auxiliary non-interacting system. While this procedure is of course intended to approximate the control field of large interacting systems, by considering a simple case instead, we can easily test how well this idea works in practise.

To do this, we need to employ an approximation to the unknown functional $v_{xc}[\Psi_0, \Phi_0, n]$ as discussed in Section V. While in principle these functionals depend on the initial states of the interacting and the non-interacting system, in practise one tries to avoid these formal dependences. This can be done if one starts the propagation from interacting and non-interacting ground states that have the same density [2, 3]. In this case $v_{xc}[n]$ only depends on the density and we can use ground-state DFT [17] to determine an approximation to the ground-state density. Thus, strictly speaking, we have two different approximations in this DFT scheme. One that approximates the initial density (or equivalently the ground-state Kohn-Sham potential) and one that approximates $v_{xc}[n]$. As almost always done in TDDFT we will employ for both problems the same approximation. In the special case of two electrons in a singlet state, the exact exchange approximation to $v_{xc}[n]$ is particularly simply, and hence an obvious choice. Indeed, in this case, this approximation is just half the Hartree potential, i.e.,

control the density when it goes to zero.
\[v_{xc}[n] \simeq -\frac{1}{2} v_H[n] \]

From this we can determine the approximate Kohn-Sham ground state \(|\Phi_0\rangle\), which in turn approximates the ground state density of the interacting 2-particle problem of Section VII A 1. Given these functions we simply prescribe \(n_2(x,t)\) based on the approximate density and compute the external potential \(v_s(x,t)\) that yields this density from the initial state \(|\Phi_0\rangle\), just like for the non-interacting systems in Section VII A 2. Subtracting the exact exchange approximation \(v_{\text{x}}[n_2] \simeq \frac{1}{2} v_{\text{H}}[n_2]\) for the density \(n_2(x,t)\), we then obtain our approximation to \(v[\Psi_0, n_2]\), which we compare to the exact in Fig. 5.

![FIG. 5: (color online) (a) Approximate potential and density for the exact-exchange approximation and (b) exact potential and density in the case of a 2-particle spin-singlet problem. Note that we only plotted \(t \in [0, 10]\).](image)

4. Benchmarking Exchange-Correlation Approximations

To apply the approach of Section V to larger systems, or to use TDDFT in general, users need some knowledge of how well different approximations work in various cases. Therefore, mainly for developers of \(v_{\text{xc}}\) approximations, we will here give an example of how one can construct the exact \(v_{\text{xc}}\) for very small systems, which can then be used to benchmark the various approximations, and provide novel insight into the properties of the exact Hxc potential.

To do this, we first compute the exact Kohn-Sham initial state \(|\Phi_0\rangle\) corresponding to the ground state density of \(|\Psi_0\rangle\), which is itself the ground state of the non-interacting Kohn-Sham Hamiltonian for the Kohn-Sham ground-state potential \(v_s[n_0]\). A very simple but not most efficient and stable way to do this is to start with an initial guess \(v^0\) for the potential and compute the corresponding non-interacting ground state density \(n^0\). Then we update the potential by \(v^{i+1} = \frac{2}{n_0} v^i\), with \(n_0\) the density we want, until convergence \(v^i \rightarrow v_s[n_0]\) and \(\Phi^i \rightarrow \Phi_0\).

In a next step we then determine the potential \(v_s[\Phi_0, n]\) that generates the density of the interacting problem (in this case the density \(n_2\) of the 2-particle problem of Section VII A 1) in the non-interacting system and subtract the potential \(v[\Psi_0, n]\) of the interacting system, i.e., Eq. (20). This determines the exact Hxc potential for this case. The approximate Hxc potential is then determined by plugging the exact density into the approximate functional, in our case we consider \(v_{\text{Hxc}}[n_2] = \frac{1}{2} v_{\text{H}}[n_2]\). How they compare is displayed in Fig. 6. Similar to our previous examples, we see that the approximation is reasonable for roughly half of the time interval. However, while the exact-exchange approximation is “adiabatic” (it only depends on the density at the same time), and thus by construction symmetric around \(t = 10\), the exact Hxc potential depends on all previous times. Therefore this strong deviation is a clear indication of the non-adiabaticity of the Hxc potential in this problem.
FIG. 7: (color online) (a) Approximate (exact-exchange) and exact Hxc potential for the splitting of the interacting 2-particle system.

B. 2D Model System

To illustrate that the method also works the same in two dimensions, we consider an analogous 2D model system, for which

\[
v_0(x, y) = -\cos\left(\frac{2\pi x}{L}\right) - \cos\left(\frac{2\pi y}{L}\right),
\]

\[
w(x_1, y_1, x_2, y_2) = \lambda \cos\left(\frac{2\pi (x_1 - x_2)}{L}\right) + \lambda \cos\left(\frac{2\pi (y_1 - y_2)}{L}\right),
\]

and where we still take \(L = 10 \) (both sides) and \(T = 20 \), and still use periodic BCs. We then compute an initial state as before, and construct a time-dependent density

\[
n(xyt) = \frac{1}{4}[n_0(x-r(t), y) + n_0(x+r(t), y) + n_0(x, y-r(t)) + n_0(x, y+r(t))],
\]

which describes a splitting in 4, instead of just 2 as before. We employ the same \(r(t) \) as in the 1D case and again use our algorithm to compute \(v \).

1. **One Particle**

In our first case, we simply consider a single electron, and take the initial state to be the ground state of the above potential \(v_0 \). Snapshots of the resulting two-dimensional potential and the respective (splitted) density are given in Fig. 8. While a representative presentation of the two-dimensional potential would need much more snapshots, the pictures illustrate that the potential changes a lot throughout time.

2. **Many Particles**

Here we consider the 10 electron ground state of the above \(v_0 \) for \(\lambda = 0 \). The orbitals that form this multi-particle state are easily found as they are the products of the orbitals of Fig. 3. This is the case, since \(v_0 \) decouples in an \(x \) and \(y \) component. The resulting external potential that splits the corresponding ground-state density into four parts is illustrated in Fig. 9. Again we point out, that many more snapshots would be required to give a representative presentation of the 2D potential.

16 This interaction is a bit unusual since it depends on the direction, and thus is different for \(x_1 - x_2 = \sqrt{2}, y_1 - y_2 = 0 \) and \(x_1 - x_2 = 1, y_1 - y_2 = 1 \). However, the algorithm can also handle such a case.

17 If we do a translation or splitting into 2 parts we can get the 2D potentials also from a 1D calculation, since one direction is then constant. This can be used to verify that the algorithm works equally well in one or two dimensions.
FIG. 9: (color online) Snapshots of the potential and splitted density (insets) for 10 non-interacting 2D particles at different times. (a) t=1.67, (b) t=5, (c) t=8.33, (d) t=11.67, (e) t=15 and (f) t=18.33.

C. Optimal Control Theory

Here we will first give an example of our general approach to OCT, i.e., how we can restrict the search space, and afterwards we will give a simple analytic example of how we can very easily treat the special case, where the functional can be expressed by the density only, by first optimizing the density and then using our routine.

1. By Restricted Search

We consider again the interacting two-particle system of Section VII A. Now, however, instead of prescribing the path $r(t)$ we want to find an optimal path that either translates the density around the ring in the given time T, or splits the density into equal halves and rejoins them at T, while minimizing the external field strength functional $J[n] = \int_0^T dt \int \Delta r^n([\Psi_0,n], xt)^2$. To do this we employ the basis $r_n(t) = 0.5L(1.0 - \cos((2n+1)\pi t/T))$.

This way $r(t)$ becomes a function of the coefficients $c_n(t)$,

$$r(t) = \left(1 - \sum_{n=1}^{N_B} c_n \right) r_0(t) + \sum_{n=1}^{N_B} c_n r_n(t),$$

for $n > 0$. Since we then can compute for every $n[r] = n[\{c_n\}]$ with our algorithm the corresponding $v[n] = v[\{c_n\}]$, $J[\{c_n\}]$ and hence $J[\{c_n\}]$, we can minimize this last functional with respect to $\{c_n\}$. This means minimizing a function of N_B variables, where each function evaluation requires calculating a $v[\Psi_0,n]$ with our algorithm. There exist many numerical methods for such minimization procedures. We have used the very simple downhill-simplex method, and even with this very slowly converging method, calculations for interacting 2-electron systems are possible on a normal computer. This is numerically much cheaper then standard OCT methods, where there is no simple way to restrict the problem to a small basis set. We can adopt the freedom of motion and also the number of basis functions to match the available computer power.

The optimal paths $r(t)$ are displayed in Fig. 10, where the green path corresponds to the optimal translation and the red one to optimal splitting. For reference we have given the linear path in blue, which is actually the solution of an analytic optimization presented in the next subsection.

FIG. 10: (color online) The path $r(t)$ that minimize the external field energy for translation (green), splitting (red) and a linear path for reference (blue).

In Fig. 11 we have then displayed the external potentials and densities (in the inset) that correspond to these optimal paths $r(t)$.
2. By Optimal Density

Now we consider a case, where we can prescribe every constraint in terms of the density explicitly, and thus can divide the problem in first determining an optimal density and then calculating the associated potential with our algorithm.

We stay within the previous setting and ask for the optimal translated density \(n(x,t) = n_0(x-r(t)) \). Then we only have to optimize \(r(t) \), and the current is given by \(j(x,t) = (\partial_t r(t)) n(x,t) \). Now let us minimize \(\int_0^T (\int j(x,t)dx)^2 dt = N^2 \int_0^T \partial_t r^2(t) dt \) (where we have used \(\int n(x)dx = N \) and \(\int \partial_t n(x)dx = 0 \)) subject to \(r(0) = \partial_t r(0) = \partial_t r(T) = 0 \) and \(r(T) = L \). The analytic solution to this optimization problem is

\[
 r(t) = -2L \left(t - \frac{T}{2} \right)^3 + \frac{3L}{2} \left(t - \frac{T}{2} \right) + \frac{L}{2}
\]

and one can then use our density LCT to determine the corresponding potential. A further such analytic minimization can be found in the case of the constraint \(\int_0^T dt \int j^2(x,t)dx = \int_0^T \partial_t r^2(t) dt \), which leads (although it violates the initial and final conditions) to the linear solution \(r = Lt/T \), which is depicted also as a reference in Fig. 10.

While these problems are a bit artificial, it shows us that we can indeed split the OCT problem up into finding an optimal density and then use tracking to determine the potential, provided the functionals can be expressed in terms of the density.

VIII. CONCLUSION & OUTLOOK

In this work we have extensively discussed and generalized a recently introduced method \(\| \) to construct the external potential \(v \) that, for a given initial state, produces a prescribed time-dependent density in an interacting quantum many-body system. We focused on its potential in control theory, and argued for its great efficiency and flexibility. Basically, the simple interpretation of the density (the amount of electrons per volume) allows us to use our physical intuition to consider many interesting LCT phenomena, and to restrict the search space in OCT for efficiency. The close connection of this density-based control method with TDDFT makes studies of large systems efficient and realisable. We have further extended the method to 2D and 3D, and discussed the numerical implementation in great detail. We have also presented several examples to illustrate the flexibility, and to confirm that the scheme is efficient and stable even for large and rapid density variations irrespective of the initial state and interactions.

While our present implementation of the algorithm focuses mainly on theory development and simple model systems, it can be easily adopted to also consider realistic systems. It seems possible that this density-based control method can be used to predict control fields for real systems. A possible application could be ultracold quantum gases, where the electric potentials to manipulate Bose-Einstein condensates can be well-controlled temporally and spatially.

Acknowledgments

S.E.B.N. and M.R. acknowledge financial support by the Austrian Science Fonds (FWF projects J 3016-N16 and P 25739-N27). R.v.L acknowledges the academy of Finland for support.

Appendix A: Boundary Conditions

In this Appendix, we will discuss how to properly and efficiently apply the formal time-step operator \(\hat{U}(\Delta t) = e^{-i\hat{H}\Delta t} \), how to restrict the initial state and potential to ensure the resulting time-dependent wave function satisfies various basic physical properties, and how boundary conditions (BCs) are needed on a finite interval to ensure these properties. Surprisingly these rather abstract considerations have real numerical consequences and if not taken into account can lead to a breakdown of the algorithm.

Given the spectral form of a Hamiltonian,

\[
 \hat{H} = \sum_n E_n |n\rangle\langle n|,
\]

(A1)

where \(|n\rangle\langle n|\) is a projection onto the eigenstate \(|n\rangle\), the proper way to apply the time-step operator is to use,

\[
 \hat{U}(\Delta t) = \sum_n e^{-iE_n \Delta t} |n\rangle\langle n|.
\]

(A2)

Thus we need to expand the state in the eigenstates \(|\Psi\rangle = \sum_n \Psi_n |n\rangle\), and use that the time-evolution of each eigenstate is given by a simple exponential, characterised by its energy \(E_n \). This works for any normalisable state.
\(|\Psi|\Psi\rangle < \infty\), and correctly keeps the normalisation per construction, if the eigenstates \(|n\rangle\) form a basis for all normalisable \(|\Psi\rangle\), and all the eigenvalues \(E_n\) are real, i.e., \(\hat{H}\) is self-adjoint. To ensure these properties in our case of Hamiltonians of the form (1) we usually need to provide BCs due to the nature of the kinetic-energy operator as a differential operator.18

For instance, consider a single free electron in one dimension on a finite interval \([0, L]\). The differential operator \(-\frac{1}{2}\partial_x^2\) has general eigenfunctions of the form \(f_k(x) = a \exp(-ikx) + b \exp(ikx)\). By choosing two appropriate BCs (that fix \(a\) and \(b\) up to normalization) we single out a unique eigenbasis for all square-integrable wave functions (otherwise we would have too many functions and the \(f_k\) would not form a usual basis). While we can think of a lot of different BCs, we are in this work mainly concerned with either zero BCs, i.e., \(f_k(0) = f_k(L) = 0\), which leads to the eigenbasis

\[
|x|k\rangle = \frac{2}{L} \sin\left(\frac{k\pi x}{L}\right), \quad k \in \mathbb{N} \tag{A3}
\]

and the periodic BCs, i.e., \(f_k(0) = f_k(L)\) and \(\partial_x f_k(0) = \partial_x f_k(L)\), which leads to the eigenbasis

\[
|x|k\rangle = \frac{1}{L} e^{i2\pi kx/L}, \quad k \in \mathbb{Z}. \tag{A4}
\]

Consequently the two different resulting self-adjoint Hamiltonians of the form \(\hat{H} = \sum_k E_k |k\rangle\langle k|\) can then be used to propagate any normalizable initial state (and for the same wave function lead to two different time-propagations).

Now, while Eq. (A2) works for any normalisable \(|\Psi\rangle\), not all such states actually have finite energy, nor does the inner product \(\langle \Psi|\hat{H}|\Psi\rangle\) have sense for all such states, as it for example also can have infinite (e.g. when \(E\) is)19 Consequently, for such states also \(\langle \Psi|\hat{H}|\Psi\rangle = \langle \hat{H}|\Psi\rangle\) no longer has sense in general. This, however, is a basic requirement that our Hamiltonian is self-adjoint. These problems arise when we apply the Hamiltonian outside of its domain \(\mathcal{D}(\hat{H})\), i.e., the set of normalizable functions \(|\Psi\rangle\) with \(\hat{H}|\Psi\rangle\) normalisable again20. Hence to ensure these, and many other, basic physical properties21 a sufficient condition is \(|\Psi\rangle \in \mathcal{D}(\hat{H})\).

For time-propagation with a Hamiltonian of the form (1) this means we must restrict the initial state \(|\Psi_0\rangle\) and external potential \(\hat{V}(t)\) to ensure that the wave function \(|\Psi\rangle\) stays in \(\mathcal{D}(\hat{H})\) at all times. The easiest way to do this, is to ensure that \(\hat{T}|\Psi\rangle\), \(\hat{V}|\Psi\rangle\) and \(\hat{W}|\Psi\rangle\) are individually normalisable22. Hence, we limit \(\hat{V}\) and \(\hat{W}\) to those for which \(\hat{V}|\Psi\rangle\) and \(\hat{W}|\Psi\rangle\) are normalisable for all \(|\Psi\rangle \in \mathcal{D}(\hat{T})\). Then \(\mathcal{D}(\hat{H}) = \mathcal{D}(\hat{T})\), i.e., \(|\Psi\rangle\) is normalisable if and only if \(\hat{T}|\Psi\rangle\) is. By Eq. (A2) it then follows that \(\hat{U}(\Delta t)|\Psi\rangle \in \mathcal{D}(\hat{T})\) if and only if \(|\Psi\rangle \in \mathcal{D}(\hat{T})\). Using any of the time-stepping procedures of Section 11 which simply use multiple applications of Eq. (A2), with different \(E_n\) and \(|n\rangle\), it is then clear that if \(|\Psi_0\rangle \in \mathcal{D}(\hat{T})\), then \(|\Psi\rangle \in \mathcal{D}(\hat{T}) = \mathcal{D}(\hat{H})\) at all times, exactly as desired.

What is now left is to find simple conditions on the external potential and interaction such that they have the same domain as the kinetic-energy operator. For this we need a characterization of the domain \(\mathcal{D}(\hat{T})\) in terms of a spatial representation since the potentials and interactions are usually defined as a multiplicative operator in a spatial basis. We first take a look at our initial example of a particle on an interval \([0, L]\). There we have characterised the eigenfunctions by their respective BCs. As we discussed before, a sufficient condition for a normalizable state \(|\Psi\rangle\) to be in the domain of these kinetic-energy operators is that the eigenexpression fulfils \(\sum_k E_k^2|\Psi_k|^2 < \infty\). Obviously any state for which \(|\Psi_k| = 0\) for all \(k > K\), i.e., consisting of finitely many eigenfunctions, will automatically fulfil this condition and be part of \(\mathcal{D}(\hat{T})\). And it is also obvious that any such state will have the same BCs as the eigenfunctions. In fact, it can be shown18 that all functions in the domain of the kinetic-energy operator obey the same BCs as the eigenfunctions. Thus, any twice-differential wave function \(\Psi(x)\) that obeys the BCs is in the domain of \(\mathcal{D}(\hat{T})\), and we see by partial

18 The case of an infinite volume is slightly different, since then the kinetic-energy operator has non-normalizable (which are also called distributional or scattering) eigenstates, i.e., the Laplacian then has a continuous spectrum. Since then also the spectral representation is slightly different we disregard this more subtle case.

19 As an example, we consider the case where \(E_n = n^2\) and \(n \in \mathbb{N}\), corresponding to the above case of a free electron in 1D with zero BCs (and \(L = \pi\)). While \(|\Psi\rangle = \sum_n \frac{1}{\sqrt{n}} |n\rangle\) is normalisable since \(\langle \Psi|\Psi\rangle = \sum_n \frac{1}{n} < \infty\), it has infinite energy \(\langle \Psi|\hat{H}|\Psi\rangle = \sum_n 1 \rightarrow \infty\). If we also introduce \(|\Phi\rangle = \sum_n (-1)^{n+1} |n\rangle\), then \(\langle \Phi|\hat{H}|\Phi\rangle = \sum_n (-1)^{n+1}\), which does not converge, revealing another way the inner product can be meaningless.

20 If \(\langle \hat{H}|\Psi\rangle|\hat{H}|\Phi\rangle = \sum_n E_n^2|\Psi_n|^2\) is finite for \(|\Psi\rangle\) and \(|\Phi\rangle\), and

21 Like the continuity equation and canonical commutation relations (between the position and momentum operator)

22 Besides the form of the kinetic-energy operator we also usually cannot control the way the particles interact. Thus this condition on \(\hat{W}\) obviously restricts which interacting systems we can consider. On the other hand, since we can usually control the external potential \(\hat{V}\), the above condition limits what we can do to the system, e.g., potentials that are too singular might not be allowed.

23 In terms of the eigenbasis \(|k\rangle\) of \(\hat{T}\) the simple conditions for a function to be in the domain are \(\sum_k |\Psi_k|^2 < \infty\) and \(\sum_k k^2|\Psi_k|^2 < \infty\).

24 Since \(\mathcal{D}(\hat{H}) = \mathcal{D}(\hat{T})\), this follows from the fact that \(\hat{H}|\Psi\rangle\) and \(\hat{U}(\Delta t)|\Psi\rangle\) have the same norm, i.e., \(\langle \Psi|\hat{H}|\Psi\rangle\) is normalisable again. Hence to ensure
integration that the basic physical condition
\[
\langle \Phi | \hat{T} \Psi \rangle = \int_0^L dx \, \Phi^*(x) \left(-\frac{1}{2} \partial_x^2 \right) \Psi(x) \quad (A5)
\]
is fulfilled for all functions in this set\(^{25}\). Thus while the basic operation \(-\frac{1}{2} \partial_x^2\) is the same for any kinetic-energy operator, e.g., either zero or periodic BCs, the set of functions for which it is self-adjoint can be different. Thus if we want to stabilise the domain during time-propagation, this means we need to keep the chosen boundary conditions for all times.

While we argued now in terms of a one-dimensional problem, we point out that the eigenfunctions of the kinetic-energy operator in higher dimensions are just products of the one-dimensional eigenfunctions. Hence the previous discussion equally well applies to a multi-dimensional box \([0, L]^{3N}\). Further the previous consideration directly leads to another way of seeing the BCs, namely, instead of enforcing a certain behaviour of the wave functions on the boundary, the solutions need to obey a certain periodicity in the whole space. This is obvious for the periodic BCs, which imply that the wave functions have to be repeated periodically on the whole space, while (maybe less known) for the zero BCs, we see from the behaviour of \(\sin(k\pi x/L)\) that the solutions need to be periodic on \(2L\), and odd about all endpoints of an subinterval with length \(L\).

With this characterization of the physical wave functions in terms of differentiability and BCs we can easily consider conditions on the potentials \(v(r\,t)\) and \(w(r)\) to stabilize the domain of the kinetic-energy operator. A simple (but not the most general) condition is that \(v\) and \(w\) are bounded functions. Employing, however, the fact that the wave functions are twice differentiable one can show \(^{18}\) that square-integrability of the potentials and interactions is enough. It is important to note, that mathematically no specific differentiability or boundary conditions have to be imposed on the potentials and interactions. However, if we view the finite-interval problem extended to the whole space, we see that the potential and the interaction have to be extended periodically in the periodic BCs case and even and double-periodic in the zero BCs case.

So this result is great, it is both well-known and very general. There is but one issue. Namely that any computer would get a heart-attack, if we asked it to compute all the eigenstates for anything but the simplest systems. And it does not exactly help that we have to repeatedly recalculate them (as the Hamiltonian differs in each step since \(v\) changes). So numerically, we usually want to use a simpler form of the evolution operator in spatial representation, and restrict ourselves to analytic potentials and initial states\(^{26}\). This allows us to formally use the much more effective time-step operator
\[
\hat{U}(\Delta t) = \sum_n \left(-i\hat{H}\Delta t \right)^n / n!, \quad (A6)
\]
where we apply \(\hat{H}\) by directly using the right-hand side of Eq. (1) instead of by using its eigen-expansion as in Eq. (A2)\(^{27}\). In this case, we must enforce the BCs by further restricting the initial state, external potential as well as the interaction to ensure the the wave function stays analytic and keeps satisfying the desired BCs during time-stepping, i.e., after applying Eq. (A6). Thus if we want the wave function to satisfy periodic BCs, the initial state and potential must fulfill periodic BCs.\(^{28}\) If we instead want the wave function to satisfy zero BCs, things get more complicated. To better understand this, let us first consider the case of free propagation \((v = 0)\), and limit us to a single electron in 1D, since the generalisation to more electrons and higher dimensions is straightforward. The Taylor expansion of the initial state at the boundary \(x = 0\) must then not contain any even term \(x^{2k}\), since applying Eq. (A6) leads to terms of the form \(x^{2k-2}\), which could then be non-zero at the boundary. Such terms would then lead to a non-zero wave function at the boundary and thus violating the zero BCs. This is also true when \(v \neq 0\), since if we have a \(x^2\) component in \(\Psi\) at \(x = 0\), the only potential that can make \(\hat{H}\Psi\) stay zero at the boundary is of the form \(v \sim x^{-2}\), which is not allowed by our basic mathematical considerations. In this manner we can rule out all higher even components of the wave functions. The odd terms of the wave functions are not problematic since they can never lead to a non-zero terms at \(x = 0\). Hence, to ensure that we have an odd wave function about the boundary the potential \(v\) must have no \(x^{2k+1}\) components. In this case the multiplication with the external potential never leads to even components of the wave functions at \(x = 0\). To conclude, \(\Psi\) must always be odd over the boundaries.

\(^{25}\) We point out, that only for wave functions in the domain of the kinetic-energy operator the equivalence \(\sum_k \langle \xi_k | x \rangle \langle x | \xi_k \rangle = -\frac{1}{2} \partial_x^2 \Phi(x)\) holds. Outside of the domain the self-adjoint operator is not well-defined while \(-\frac{1}{2} \partial_x^2 \Phi(x)\) might still exist.

\(^{26}\) This is not a real restriction since we can approximate any square-integrable function by analytic functions to any accuracy we want, e.g., one can use the eigenfunctions of the kinetic-energy operator.

\(^{27}\) Note that if \(\hat{H}\) is interpreted by its eigen-expansion in Eq. (A6), it is still only equivalent with Eq. (A2) if one can exchange the order of summation, which cannot always be done, even if the state the Hamiltonian acts on is nicely complex analytic\(^{19}\). Further, the reason Eq. (A6) does not apply to a general state in the domain of the Hamiltonian is that while acting once with \(\hat{H}\) on the state keeps it normalised, multiple applications of the Hamiltonian to the very same state can make it non-normalizable.

\(^{28}\) Since the initial state and potential are analytic, periodic BCs now means that all derivatives must be the same at 0 and \(L\).
while the potential v has to be even29. It is curious how these numerical Even-Odd restrictions are not mentioned in the general literature. However, given that a wrong treatment of the boundaries only will lead to errors in the (usually) irrelevant region near the boundary where $\Psi \sim 0$, it hardly matters if one is doing time-propagation (even if Ψ is wrong by orders of magnitude in this region). However, when doing our density-based LCT scheme, it is crucial to also treat the low density region correctly. Otherwise the potential can go completely crazy at the boundaries, since to get the correct wave function while violating the BCs requires the potential to compensate the errors and can lead to artificially large potentials. Since the relative errors that must be compensated tend to be large, this happens although the wave function is small near the boundary. These large and artificial potentials extremely quickly influence the relevant region far away from the boundary, leading to a complete breakdown of the procedure.

It is nice to see how the BCs also play a major part in ensuring that the inversion has sense. To invert the Sturm-Liouville (SL) equation (which together with time-propagation is actually all we need to do our density-based LCT method),

\[-\nabla \cdot (n(rt)\nabla v(rt)) = \zeta(rt), \quad (A7) \]

where $\zeta(rt)$ represent any of the right-hand sides of Eqs. (14) to (19), we must impose BCs that are consistent with basic physical requirements. By this we mean, that we need to impose BCs that are consistent with the fact that a change of gauge, i.e., adding a constant $c(t)$ to the potential, does not matter as well as that the resulting potential allows to perform the propagation without violating any constraints, e.g., the BCs. The first condition is required to be able to invert the problem uniquely. Since the SL operator has zero eigenvalues we can only invert the problem perpendicular to the zero eigenfunction. Further, the inhomogeneities $\zeta(rt)$ integrate to zero and are thus perpendicular to $c(t)$. We therefore want to choose BCs that make $c(t)$ the unique zero eigenfunction. That this is possible in our case can be most easily demonstrated in the 1D case, where the most general zero eigenfunction reads as

\[v_{\text{Hom}}(xt) = c(t) + d(t) \int_a^x \frac{dy}{n(yt)}. \quad (A8) \]

To see that $d(t)$ vanishes for zero and periodic BCs, implying the correct freedom, simply note $\int_a^b \frac{dy}{n(yt)} > 0$ as $n(yt) \geq 0$, so v_{Hom} cannot be periodic unless $d(t) = 0$. Since we want to have periodic potentials (obviously for the case of periodic wave functions, but also in the case of zero-BCs wave functions where we are periodic on twice the interval) we accordingly have $v_{\text{Hom}}(xt) = c(t)$. Further, for any square-integrable inhomogeneity we can invert the above SL equation perpendicular to the zero eigenfunction \cite{5, 20}. The resulting potential by construction obeys then the appropriate BCs. Thus the inversion fits with the conditions on our propagation.

Appendix B: Numerical Spatial Representation

Let us first consider periodic BCs since these are the easiest to implement. Thus, if we for simplicity first consider the case of one electron in one-dimensional space, i.e. on a ring, an obvious way to represent the wave function numerically is to introduce an equidistant grid on the ring, and then represent the wave function by its values at these points. Now, why do we prefer this particular spatial representation? Well, we want the wave function to be able to travel all the way around the ring, and be equally well represented wherever it is, which is exactly what this representation achieves. Further, in order to do the time-stepping, we really only need to be able to perform one operation on the wave function, namely apply the Hamiltonian to the wave function. But this, and many other operations, are easily performed in this representation, since to apply the potential operator to the wave function we simply multiply the value of the potential and wave function at the given point. To apply the kinetic operator, we need to be able to take (second order) spatial derivatives, but this is also easily done in the given representation, e.g. by the use of finite differences (usually we employ a 7th order finite differencing scheme) or fast Fourier transforms and multiplication in momentum space. Finally it is obvious how one should incorporate the BCs into the numerical definition of the Hamiltonian in this representation, since all we have to do is, that when we want to take a finite difference at a point near the boundary, we use points on both sides (using fast Fourier transforms it is incorporated naturally into the transforms). So although other better spatial representation may exist for specific cases, this choice is really the obvious general purpose spatial representation. Clearly, for one electron in 2D, we simply use a 2D grid. Likewise, for two electrons in 1D, we also use a 2D grid, since we need one dimension for each spatial coordinate. Finally, for two electrons in 2D, we need a 4D grid, and we are already reaching the limit of what a normal computer can handle, which is the price for being as general as we are.

Appendix C: Time-Step Operators

Having picked a time-stepping strategy as described in Section \ref{time}, all that is left to do time-propagation is to approximate the time-step operator (exponential). To

29 Using sufficiently many even terms, one can approximate odd potentials arbitrarily well. So analytically one can also treat potentials with odd components, and numerically one can get very close to these results.
obtain a good approximation, one should obviously try to build as much physics as possible into the approximation. Thus it is only natural to require that the approximation, at least to a high extend, should conserve the norm, meaning it must be unitary. In practise, this more or less only leaves a few options, here presented in order of strongly increasing efficiency (quite naturally coinciding with the chronological order, all these having been the method of choice at a time). We strongly recommend the use of the Lanzcos method, since its flexibility, superior efficiency and complete generality is well worth the slightly more involved implementation. The split-operator method then forms a very nice backup for controlling the time-stepping. We discourage the use of the Crank-Nicholson method, due to its poor efficiency and limitation to one electron in 1D, and the Second-Order Differencing method, due to its lack of true norm-conservation, and corresponding potential for oscillations. Indeed, these two methods are mainly included here to point out their limitations.

1. Crank-Nicholson (CN):

In this case we approximate the exponential by

$$1 - \frac{1}{2} \hat{H}_{1}^{1/2} \Delta t + \frac{1}{2} \hat{H}_{1}^{1/2} \Delta t$$

which is unitary as desired. To apply this operator, we have to solve a linear implicit equation for Ψ_{+1},

$$(1 + \frac{1}{2} \hat{H}_{1}^{1/2} \Delta t) \Psi_{+1} = \left(1 - \frac{1}{2} \hat{H}_{1}^{1/2} \Delta t\right) \Psi.$$

This is very involved compared with an explicit equation, except if \hat{H} is very sparse, and we can take advantage of this. Originally, this method was thus designed for one electron in 1D, using a 3 point finite difference for T, resulting in a tridiagonal matrix representation of the Hamiltonian, so it can be solved almost as efficiently as an explicit equation. While this can be extended to higher dimensions and more electrons using the alternating direction method, it is very involved. The method is thus essentially limited to one electron in 1D, and in this case present computers can solve the implicit equation very fast (even if the matrix is not tridiagonal).

2. Second-Order Differencing (SOD):

Using strategy C in Section III and approximating the time-step operator by a first order Taylor expansion we find

$$\Psi_{+1} = \Psi_{-1} - 2i \Delta t \hat{H} \Psi.$$

The only difference is that we here use Ψ instead of Ψ_{-1} in the last term. This makes the expression exact to second order, since it may also be obtained using a central 3 point finite-difference formula for the time-derivative in the TDSE. Besides restricting us to strategy C, and hence to an equidistant grid, this method is also not norm-conserving. However, we may also write this method as,

$$\begin{pmatrix} \Psi_{+1} \\ \Psi_{+2} \end{pmatrix} = \begin{pmatrix} 1 & -2i \Delta t \hat{H}_{1} \\ -2i \Delta t \hat{H}_{1} & 1 - 4 \Delta t^{2} \hat{H}_{0} \end{pmatrix} \begin{pmatrix} \Psi_{-1} \\ \Psi_{0} \end{pmatrix},$$

where this operator is conditionally unitary. Thus, the oscillation of strategy C are especially bad here. This method was popular, as it (in contrast to CN) is explicit and can be used completely generally. Straight away it is also very simple to implement. However, the oscillations are often a serious issue, and trying to improve this aspect, e.g. by using $\langle \Psi_{-1} | \hat{O} | \Psi_{0} \rangle$ to calculate expectation values (including the norm), it quickly becomes complicated. Higher order versions exist, but are more involved, and usually perform the same.

3. Split-Operator (SPO):

Here we split the operator into the clearly unitary

$$e^{-\frac{i}{2} \hat{V}_{+1/2} \Delta t} e^{-i K \Delta t} e^{-\frac{i}{2} \hat{V}_{+1/2} \Delta t}.$$

Assuming we use an equidistant-grid representation, to apply this operator we first apply the first part by multiplication. We then do a Fourier transform (periodic BCs) or sine transform (zero BCs), and then apply the kinetic part by multiplication in Fourier space, whereafter we transform back, and apply the last potential by multiplication on the real-space grid again. This method is simply and effective, however, the Lanczos method is still usually better.

4. Lanczos:

This method is special since it approximates $e^{-i \hat{H} \Delta t} \Psi$, which is what we really want to compute anyway, instead of just \hat{H}. This leads to higher precision, since it makes use of more information (namely Ψ). The idea is to first construct an orthonormal basis q_i for the so-called N-dimensional

$$U(t) = e^{-i \hat{H} t} \approx \sum_{n=0}^{N} a_n P_n (-i \hat{H} t)$$

30 A norm-conserving scheme is also often said to be neutrally stable (a stable scheme being one that conserve or decrease the norm). 31 A different scheme, which does not fit into the given structure, deserves mentioning. This scheme, based on Chebyshev polynomial expansion, is strongly recommended for time-independent Hamiltonians, but not for time-dependent Hamiltonians, so it is of no use to us.

32 Unfortunately it also breaks the time-reversal symmetry slightly, as the approximation will then depend on the non-midpoint $|\Psi\rangle$, and hence differ going back and forth in time. But it is a minor problem since the approximation is very good and only depends slightly on $|\Psi\rangle$. Further$|\Psi\rangle$ changes little in a time step.
Krylov subspace, i.e., for the subspace spanned by \(H_i \Psi \), for \(i \in [0, N] \) (the optimal value of \(N \) depends on the problem, but typically lies between say 6 and 20). To do this, start with \(q_0 = \Psi \), and for \(i \in [1, N] \) compute \(\hat{H} q_{i-1} \), and make it orthonormal to all \(q_j \), for \(j \in [0, i-1] \).

Now the approximation is to employ \(\sum_i |q_i \rangle \langle q_i| e^{-i\hat{H} \Delta t} |q_0 \rangle \) to finite order, i.e., the true result is approximated by its projection onto the Krylov subspace. But this is a very good approximation, since in the short time \(\Delta t \), very little of the wave function is likely to leave the Krylov subspace.

To compute the row \(\langle q_i|e^{-i\hat{H} \Delta t}|q_0 \rangle \) of the sub-matrix \(\langle q_i|e^{-i\hat{H} \Delta t}|q_j \rangle \), note that \(\langle q_i|e^{-i\hat{H} \Delta t}|q_j \rangle = (V \exp(-iD \Delta t)V^\dagger)_{ij} \), where we have introduced \(D \) and \(V \) as the diagonalisation of \(\langle q_i|\hat{H}|q_j \rangle \), i.e. \(\langle q_i|\hat{H}|q_j \rangle = (VDV^\dagger)_{ij} \).

Lanczos is also especially easy and effective in connection with adaptive time steps, since there is a simple, decent error estimate.

To compare the efficiency of these schemes, we first note that CN, SOD and SPO are all precise to second order. However, while CN and SOD do not care much about the higher order terms, apart from the requirement of norm-conservation, SPO gives a decent approximation to these, allowing for significantly longer time-steps. Lanczos performs even better since it is precise to the order of the Krylov subspace, and gets the part of the higher-order terms lying inside the Krylov subspace, which is a very good approximation. So for fast changing external potentials, it is not uncommon that the limitation on \(\Delta t \) is no longer by energies, but instead by the changes of \(V(t) \) that must be resolved. To conclude, limits on \(\Delta t \) for the different schemes are typically \(\Delta t < \frac{1}{2} |E_{\text{Grid}}|^{-1} \) (Eigenvalue) for CN and SOD, for split-operator \(\Delta t < |E_{\text{Interest}}|^{-1} \) and for Lanczos we need to able to resolve \(V(t) \) and \(\Delta t < |E_{\text{Krylov}}|^{-1} \).

33 Note \(\langle q_i|\hat{H}|q_j \rangle \) is tri-diagonal, since \(\hat{H} \) is Hermitian and \(\langle q_i|\hat{H}|q_j \rangle = 0 \) for \(i \geq j + 2 \), due to the fact that \(\hat{H}|q_j \rangle \) only contains \(|q_k \rangle \) with \(k \leq j + 1 \). So to construct \(|q_i \rangle \), we actually only need to make \(\hat{H}|q_{i-1} \rangle \) orthonormal to \(|q_{i-1} \rangle \), since it is already orthogonal to all \(|q_j \rangle \) for \(j \leq i - 2 \).

34 Unfortunately, what does leave the subspace courses a norm loss, so the approximation is not strictly norm-conserving, only stable. However, the loss is in principle a direct measure of the precision, so it is clear when there is a problem, and it is usually so small, that it gets washed out by other effects.
[1] S. E. B. Nielsen, M. Ruggenthaler, and R. van Leeuwen, Europhys. Lett. 101, 33001 (2013).
[2] C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Oxford University Press, Oxford, 2012.
[3] M. A. L. Marques et al., Time-Dependent Density Functional Theory, Springer, Heidelberg, 2012.
[4] M. Ruggenthaler and R. van Leeuwen, Europhys. Lett. 95, 13001 (2011).
[5] M. Ruggenthaler, K. J. H. Giesbertz, M. Penz, and R. van Leeuwen, Phys. Rev. A 85, 052504 (2012).
[6] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[7] I. Serban, J. Werschnik, and E. K. U. Gross, Phys. Rev. A 71, 053810 (2005).
[8] W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998).
[9] P. Gross, H. Singh, H. Rabitz, K. Mease, and G. M. Huang, Phys. Rev. A 47, 4593 (1993).
[10] W. Zhu and H. Rabitz, J. Chem. Phys. 119, 3619 (2003).
[11] S. Mancini, V. I. Man’ko, and H. M. Wiseman, J. Opt. B: Quantum Semiclass. Opt. 7, S177 (2005).
[12] S. Chu, Nature 416, 206 (2002).
[13] R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).
[14] M. Ruggenthaler, M. Penz, and D. Bauer, Physical Review A 81, 062108 (2010).
[15] I. Tokatly, Physical Review B 71, 165104 (2005).
[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics: Vol. 2: Fourier Analysis, Self-Adjointness, volume 20, Academic press New York, 1975.
[17] R. M. Dreizler and E. K. U. Gross, Density Functional Theory - An Approach to the Quantum Many-Body Problem, Springer-Verlag, Berlin, 1990.
[18] P. Blanchard and E. Brüning, Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Methods, volume 26, Springer, 2003.
[19] S. von Kowalevsky, Journal für reine und angewandte Mathematik 80, 1 (1875).
[20] M. Penz and M. Ruggenthaler, Journal of Physics A: Mathematical and Theoretical 44, 335208 (2011).