VEGF as a potential molecular target in periodontitis: a meta-analysis and microarray data validation

Bo Ren†, Que Feng†, Shan He†, Yanfeng Li*, Jiadong Fan*, Guangquan Chai*, Le Liu, Haiyun Liu, Chunhao Yang, Yingdi Wang, Huihui Liu, Huanyue Liu and Yafan Song

Abstract

Background: Anti-vascular endothelial growth factor (VEGF) has been used as a therapeutic drug for the treatment of some human diseases. However, no systematic evidence is performed for assessing the role of VEGF in periodontitis. We carried out a comprehensive analysis to explore the role of VEGF in patients with periodontitis.

Methods: Multiple databases were searched for eligible studies. The pooled standardized mean difference (SMD) and odds ratio (OR) with the corresponding 95% confidence interval (CI) were applied to evaluate the effect sizes. Clinical data validation from microarray analysis was used. Pathway and process enrichment analysis were also investigated.

Results: Finally, 16 studies were included in this analysis. Overall, there was a significantly higher level of VEGF expression in periodontitis than in healthy control groups (OR = 16.64, 95% CI = 6.01–46.06, \(P < 0.001 \); SMD = 2.25, 95% CI = 1.25–3.24, \(P < 0.001 \)). Subgroup analysis of ethnicity showed that VEGF expression was still correlated with periodontitis in the Asian and European populations. No correlation was observed between VEGF expression and age, gender, and pathological type. A large clinical sample data (427 periodontitis patients and 136 healthy controls) further validated that VEGF expression was higher in periodontitis than in healthy control groups (\(P = 0.023 \)). VEGF was involved in many functions such as blood vessel development, response to growth factor, cell proliferation, and cell adhesion.

Conclusions: High levels of VEGF were credible implications for the development of periodontitis. Anti-VEGF therapy may be valuable for the treatment of periodontitis in clinical management.

Keywords: VEGF, Function, Periodontitis, Development, Clinical
Background
Periodontitis, one of the most common inflammatory diseases, is caused by the host inflammatory response and the oral microbiome and affects periodontal connective tissue [1, 2]. Periodontitis is recognized as a major public health problem with the global cost burden. It impacts approximately 10–15% of the population in the world [3, 4]. The diagnosis of periodontitis is currently based on clinical rather than etiologic aspect, which can result in limited therapeutic guidance [5]. Hence, it is of great importance to explore potential molecular targets and further conduct effective prevention for patients with periodontitis.

Genetic and epigenetic molecular mechanisms are shown to be contributed to the development of periodontitis [6, 7]. Angiogenesis is closely related to some biological processes (i.e., embryonic development, reproduction, tissue repair, and wound repair) and may play a key role in the pathogenesis of some inflammatory diseases such as periodontitis [8, 9]. Vascular endothelial growth factor (VEGF), mapped to the 6p21.3 chromosome, is a critical potent pro-angiogenic factor and has been implicated in angiogenesis [10]. VEGF is involved in many biological functions such as cell proliferation, cell adhesion, and chemotaxis [11, 12]. VEGF expression has been reported to be higher in some cancers than in healthy control groups and to be correlated with poor prognosis [13, 14]. As an anti-angiogenic drug, anti-VEGF by the U.S. FDA approval has been administered for the therapy of some cancers [15]. However, the role of VEGF in the pathogenesis of periodontitis has not been fully elucidated. The results on VEGF in periodontitis were still conflicting. For example, VEGF expression shows no difference between periodontitis and healthy control groups [16]. Balci 2019 et al. reported that VEGF expression was higher in periodontitis than in healthy control groups [17].

Therefore, in order to explore a full insight into the role of VEGF expression in periodontitis, we first performed a meta-analysis based on available studies. Moreover, independent clinical data were also used to verify the results and pathway and process analyses were also investigated in periodontitis, which could provide systematic evidence for a better understanding of periodontitis etiology and develop potential therapeutic targets in clinical practice.

Methods
Search strategy
The current meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement [18]. We performed a comprehensive literature search from the PubMed, Embase, Web of Science, Wanfang, and CNKI databases for studies published until March 19, 2020. The keywords and search terms used were shown as follows: "vascular endothelial growth factor OR VEGF OR VEGF-A OR VEGFA", "periodontitis OR periapical periodontitis OR periodontal abscess OR periodontal disease". We also hand searched the reference lists from the included publications to identify additional studies.

Study selection
If studies fulfilling the following inclusion criteria were included in this meta-analysis: 1) periodontitis patients were clinically or pathologically diagnosed and healthy control group without history of periodontitis and other diseases; 2) the expression level of VEGF was reported from original clinical studies; 3) studies provided available data for calculating standardized mean difference (SMD) or odds ratio (OR) with 95% confidence interval (CI). If authors published multiple papers using overlapping sample study population, we only included the study containing most comprehensive information or the recent study. If data were not directly reported, we would contact the corresponding author via email. Exclusion criteria were mainly listed as follows: 1) periodontitis patients with systematic disorders such as diabetes mellitus, etc.; 2) case reports, reviews, conference abstracts, editorial letters, comments, or non-human researches; 3) duplicate studies; 4) studies with insufficient available data.

Data extraction
The following data were extracted from the eligible publications: first author’s surname, publication year, country, ethnicity, sample size, age of participants (mean or median age), VEGF levels (mean and standard deviation), VEGF expression levels (frequency), and test method, etc. If the data were not directly reported, we would contact the corresponding author through email as possible as we can. If there were any disagreements, disagreements were resolved by the discussion of all authors.

Further clinical data validation from microarray analysis
The normalized gene expression profiles of microarray datasets for periodontitis were obtained from the Gene Expression Omnibus (GEO). Three datasets of tissue samples with periodontitis, GSE10334, GSE16134, and GSE23586 were used. For the GSE23586 dataset, we conducted a log2 transformation. To achieve a large sample population, batch effects were adjusted with the ComBat function for these three datasets [19]. Finally, 563 tissue samples involving in 427 patients with periodontitis and 136 healthy controls were identified for VEGF expression analysis.
Pathway and process enrichment analysis
The Spearman correlation between VEGF and genes was calculated in periodontitis, and the corresponding genes with the correlation with >0.4 were selected. Based on these significant genes, Metascape, an effective and efficient tool for experimental biologists [20], was applied to investigate the function of VEGF.

Statistical analysis
With regard to data of mean and standard deviation (SD), the SMDs with 95% CIs were used to compare the levels of VEGF in the patients with periodontitis and the levels in healthy controls. For categorical data, the pooled ORs and their corresponding 95% CIs were used. The random-effects model was applied to estimate the pooled effect size (SMD and OR) in this meta-analysis. Heterogeneity among the studies was measured using Cochran’s Q statistics test [21], the statistical heterogeneity was significant for a Q test P-value < 0.1. When significant heterogeneity was detected, a sensitivity analysis through deleting each study was carried out to determine the stability of the pooled results. Publication bias was conducted by using the Begg’s and Egger’s test [22, 23]. This meta-analysis was performed using Stata software, version 12.0 (Stata Corp., College Station, TX, USA).

For bioinformatics validation data, the difference of VEGF between periodontitis and healthy control groups was analyzed with the Wilcoxon signed-rank test. Spearman correlation coefficient between VEGF and genes was analyzed. The corresponding analyses were conducted using the R software version 3.5.1 (Institute for Statistics and Mathematics, Vienna, Austria).

Results
Study characteristics
The flow diagram of the initial search strategy is shown in Fig. 1. According to the inclusion criteria, 16 studies from 13 publications containing 1532 participants (566 patients with periodontitis and 966 healthy controls) were identified [17, 24–35]. These studies were published between 2000 and 2019 and were conducted in Turkey, India, China, Japan, Italy, and Poland. Of these studies, three studies reporting categorical data evaluated
the correlation of VEGF between periodontitis and healthy control groups [29, 32, 34]; the remaining studies reporting mean and standard deviation (SD) evaluated the difference between the VEGF expression levels in periodontitis. The main characteristics of the included publications are summarized in Table S1, Table 1.

VEGF expression in periodontitis and normal controls

For categorical data, the results from three studies showed that VEGF expression was higher in the periodontitis group than the healthy control group (OR = 16.64, 95% CI = 6.01–46.06, \(P < 0.001 \)), including 67 periodontitis patients and 77 healthy controls (Fig. 2).

For continuous data, the pooled results from 13 studies also demonstrated a significant association between VEGF expression and periodontitis (SMD = 2.25, 95% CI = 1.25–3.24, \(P < 0.001 \)), including 566 periodontitis patients and 889 healthy controls (Fig. 3).

Association of VEGF expression with the clinical and pathological characteristics of periodontitis

Data from two studies with 27 periodontitis patients showed no association between VEGF expression and age (≥ 50 vs. < 50 years: OR = 0.23, 95% CI = 0.02–2.72, \(P = 0.241 \)) and gender (male vs. female: OR = 0.38, 95% CI = 0.05–2.87, \(P = 0.35 \)) (Fig. 4a). Additionally, data from two studies involving 32 patients with periodontitis showed no correlation between VEGF expression and disease type (aggressive vs. chronic periodontitis: SMD = 2.85, 95% CI = −2.22–7.92, \(P = 0.27 \)) (Fig. 4b).

Table 1 Study characteristics of the included studies on VEGF levels

First author	Country	Ethnicity	Age	Method	Histology	Source of Ab	Staining	Case (N)	Control (N)	Mean	SD	Mean	SD
Yuan 2000	China	Asian	32	IHC	Periodontitis	NA	Cytoplasm	15	15	0.6	0.27	0.38	0.21
Kubota 2001	Japan	Asian	28–42	RT-PCR	Aggressive periodontitis	NA	NA	6	8	5.34	1.36	3	1.27
Kubota 2001	Japan	Asian	55–71	RT-PCR	Chronic periodontitis	NA	NA	6	9	4.95	0.91		
Lucarini 2009	Italy	European	47	IHC	Periodontitis	dil. 1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA	Epithelial cells	16	16	40	14.14	10	2.6
Artese 2010	Italy	European	< 35	IHC	Aggressive periodontitis	diluted at 1:100	Oral epithelium	6	7	74	2.28	27.85	1.95
Artese 2010	Italy	European	> 35	IHC	Chronic periodontitis	diluted at 1:100	Oral epithelium	14	14	56.28	3.51		
Loo 2011	China	Asian	48	ELISA	Chronic periodontitis	Diacline, France	NA	280	250	126.3	56.086	42.76	14.17
Kasprzak 2012	Poland	European	43	IHC	Chronic periodontitis	clone VG1, 1:50, DAKO	HEVs and ordinary/inflammatory infiltrate cells	40	15	3.57	5.02	0.02	0.04
Tian 2013	China	Asian	54	ELISA	Chronic periodontitis	Phoenix Pharmaceuticals, Inc., USA	NA	122	532	127.88	52.13	40.13	13.63
Balci 2019	Turkey	European	47.25	IHC	Chronic periodontitis	diluted: 1:100, Abcam	Inflammatory cells	16	16	219.72	30.48	93.29	51.07
Taskan 2019	Turkey	European	40.37	IHC	Periodontitis (D-GradeB)	diluted: 1:250	Inflammatory cells	15	15	98.74	3.73	122.7	17.37
Taskan 2019	Turkey	European	35.25	IHC	Periodontitis (D-GradeC)	diluted: 1:250	Inflammatory cells	15	15	98.25	4.09		
Li 2014	China	Asian	35–76	IHC	Chronic periodontitis	NA	Endothelial cells, stromal cells/inflammatory cells	15	15	83.53	7	41.87	5.97

RT-PCR reverse transcription-polymerase chain reaction, *ELISA* enzyme-linked immunosorbent assay, *IHC* immunohistochemistry, *Ab* antibody, *N* the number of the study population, *SD* standard deviation
Subgroup analysis
Subgroup analyses were carried out based on the available information (Table 1). The results by ethnicity showed that VEGF expression was correlated with periodontitis in Asians (SMD = 2.53, \(P < 0.001\)) and Europeans (SMD = 2.53, \(P = 0.02\)).

In the subgroup analysis of the testing method, we found that VEGF expression was sensitive to reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC) methods (all \(P\) values < 0.01).

Heterogeneity analysis
As shown in Table 1, because all \(P\) values of heterogeneity were not more than 0.1, subgroup analyses based on ethnicity, testing method, and sample size demonstrated that these factors could not explain the potential sources of heterogeneity. In the sensitivity analysis, we removed each individual study to assess the influence and change of the re-calculated results. The results showed that no individual study significantly change heterogeneity and the pooled results (Table S2).

Publication bias
Using the Begg’s and Egger’s test, no publication bias was observed between VEGF and periodontitis (all \(P\) values > 0.05) (Fig. S1).

Further clinical data validation and pathway and process enrichment analysis
A large study population with 427 patients with periodontitis and 136 healthy controls was used to validate VEGF expression in periodontitis and control groups. The result revealed that VEGF expression was still higher in periodontitis than in healthy controls (\(P = 0.023\)) (Fig. 5a). To determine the functions of VEGF, pathway and process enrichment analysis showed that VEGF was predominantly involved in blood vessel development, response to growth factor, cell proliferation, and cell adhesion, etc. (Fig. 5b).

Discussion
Periodontitis is widely prevalent in many countries and causes a major global social and economic impact. It is urgent and crucial to prevent and control periodontitis [4, 36]. Microbiome and environmental factors have been considered as potential risk factors for periodontitis.
In recent years, increasing evidence suggests that genomic programming is closely implicated in the pathogenesis of periodontitis [38–40]. VEGF, located on chromosome 6p21.3, is reported to be involved in many biological roles such as cell proliferation, cell adhesion, chemotaxis, regulation of blood vessel development, hematopoietic stem cell development, extracellular matrix remodeling, and inflammatory cytokine regeneration, etc. [10–12, 41, 42]. The role of anti-VEGF could serve as anti-vascular, anti-angiogenic, anti-permeability, or immunomodulator factor. In the era of precision medicine, the VEGF blockade could become a promising and optimal strategy for therapeutic intervention [43]. VEGF has been implicated in many diseases [44–46]. For example, VEGF -634G > C polymorphism is correlated with diabetic retinopathy risk [47]. VEGF expression can predict poor survival in esophageal carcinoma [46]. The expression of VEGF is associated with metabolic syndrome or its components [44]. Recently, some studies have reported that VEGF expression can be detected in periodontitis [17, 30, 31]. However, the results of VEGF expression in periodontitis and controls were still inconsistent [16, 17]. Here, we performed a systematic analysis to investigate whether VEGF could be a promising therapeutic method for periodontitis.

We determined whether VEGF expression was associated with periodontitis. The results of the current meta-analysis via pooling available publications showed that VEGF expression was significantly higher in patients with periodontitis than in healthy controls, which was in agreement with the previous studies on the correlation between periodontitis and healthy control groups [17, 24, 27, 29, 31]. An extensive clinical sample data (427 periodontitis patients and 136 healthy controls) was also used to validate the finding of our meta-analysis, and we observed that VEGF expression remained higher in periodontitis than healthy control groups. Further pathway and process enrichment analysis suggested that VEGF was also involved in blood vessel development, response to growth factor, cell proliferation, and cell adhesion.

Table 1: Comparison of VEGF expression between periodontitis and control groups

Study ID	SMD (95% CI)	% Weight
Yuan 2000	0.91 (0.16, 1.66)	85
Kubota 2001	1.79 (0.51, 3.07)	8.58
Kubota 2001	1.72 (0.42, 3.02)	8.10
Lucarini 2009	2.95 (1.93, 3.97)	8.49
Arteo 2010	1.91 (1.26, 2.51)	1.03
Arteo 2010	9.16 (6.37, 12.21)	4.95
Loo 2011	1.83 (1.78, 2.20)	9.29
Kasprzak 2012	0.82 (0.21, 1.44)	9.00
Tian 2013	3.24 (3.16, 3.70)	9.26
Li 2014	6.40 (4.58, 8.23)	7.09
Balci 2019	3.01 (1.98, 4.04)	8.47
Taskan 2019	-1.91 (-2.78, -1.04)	8.70
Taskan 2019	-1.94 (-2.82, -1.06)	8.69
Overall (I-squared = 96.5%, p = 0.000)	2.25 (1.25, 3.24)	100.00

NOTE: Weights are from random effects analysis.
Fig. 4 Association between VEGF expression and the clinical and pathological characteristics of periodontitis.

- **a** age (≥ 50 vs. < 50 years) and gender, (male vs. female);
- **b** pathological type (aggressive vs. chronic type). OR: odds ratio; CI: confidence interval; SMD: standardized mean difference.
etc. Moreover, subgroup analysis of ethnicity demonstrated that VEGF expression was still related to periodontitis in the Asian and European populations. These suggested that VEGF was closely involved in periodontitis pathogenesis and had the potential to become a therapeutic strategy in the treatment of periodontitis.

Fig. 5 clinical data validation and pathway and process enrichment analysis. a VEGF expression in periodontitis and healthy control groups; b VEGF involved in the pathway and process enrichment analysis.
Interestingly, subgroup analysis of the testing method showed that RT-PCR, ELISA, and IHC methods were sensitive to the detection of VEGF expression.

We also evaluated whether VEGF expression was correlated with the clinical and pathological characteristics of periodontitis and found no correlation between VEGF expression and age, gender, and pathological type. These findings were consistent with the previous studies on age [29, 32] and gender [29, 32]. However, the results should be carefully considered with caution, only two studies with small sample sizes were induced in this meta-analysis. In the future, more studies with a large study population are needed to confirm the findings between VEGF expression and age, gender, and pathological type of periodontitis.

This meta-analysis had several limitations that should be included. First, this meta-analysis consisted of Asians and Europeans, other ethnic groups, such as Africans were insufficient. Second, although subgroup and sensitivity analyses were conducted, ethnicity, testing method, sample size, and individual study could not explain the potential sources of heterogeneity. The potential reasons for heterogeneity were not very clear. Perhaps the different range of mean and SD values of VEGF levels from the original articles, which may result in the potential heterogeneity. Third, analyses between VEGF expression and age, gender, and pathological type were based on only two studies.

Conclusion
In conclusion, our results suggest that VEGF expression had a significantly higher level in periodontitis than in healthy controls. VEGF was involved in some functions such as blood vessel development, response to growth factor, cell proliferation, and cell adhesion, etc. Targeting VEGF has the potential to serve as an efficient therapeutic approach for periodontitis in clinical management. In the future, more studies with larger sample sizes and multi-center design are required to gain definitive conclusions.

Abbreviations
VEGF: Anti-vascular endothelial growth factor; SMD: Standardized mean difference; OR: Odds ratio; CI: Confidence interval; SD: Standard deviation; RT-PCR: Reverse transcription-polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; IHC: Immunohistochemistry

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12950-021-00281-9.

Acknowledgements
None.

Authors’ contributions
YL, GC, and LL contributed to the conception and design of this research. All authors contributed to the completion of articles and data extraction. BR, SH, and QF contributed to data calculated and the design of figures and tables. All authors approved the final manuscript.

Funding
The study supported by the Clinical Research Support Fund of PLA General Hospital (2018FC-304 M-TSYS-06), the Capital Characteristic Clinical Application Research and Achievement Promotion Project of China (Z171100001017154); Key Project for Transformation Medicine of General Hospital of PLA (2017TM-001); Key Funds for Health Improvement and Research (No.CFH2013-2-3-22). The funder didn’t make any substantial contributions to the research of the article.

Availability of data and materials
The datasets, analyses and materials during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were in accordance with the ethical standards of the Gene Expression Omnibus Human Subjects Protection and Data Access Policies. Informed consent is not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Received: 6 September 2020 Accepted: 22 March 2021
Published online: 22 May 2021

References
1. Nachev A, Qabajia R, Salaymeh Y, Botzman M, Munz M, Domnisch H, et al. Integration of murine and human studies for mapping periodontitis susceptibility. J Dent Res. 2018;97(5):537–46. https://doi.org/10.1177/0022034417744189.
2. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15(1):30–44. https://doi.org/10.1038/nri3785.
3. Righolt AJ, Jevdjevic M, Marcenes W, Listl S. Global-, regional-, and country-level economic impacts of dental diseases in 2015. J Dent Res. 2018;97(5):501–7. https://doi.org/10.1177/0022034517750572.
4. Gross AJ, Paskett KT, Cheever VJ, Lipsky MS. Periodontitis: a global disease and the primary care provider’s role. Postgrad Med J. 2017;93(1103):560–5. https://doi.org/10.1136/postgradmedj-2017-134801.
5. Slots J. Periodontitis: facts, fallacies and the future. Periodontol 2000. 2017;7(5):1–23.
6. Fouda AF, Khan AA, Silva RM, Kang MK. Genetic and epigenetic characterization of pulmonary and Periangular inflammation. Front Physiol. 2020;11:21. https://doi.org/10.3389/fphys.2020.00021.
7. Li S, Liu X, Zhou Y, Acharya A, Savkovic V, Xu C, et al. Shared genetic and epigenetic mechanisms between chronic periodontitis and oral squamous cell carcinoma. Oral Oncol. 2018;86:216–24. https://doi.org/10.1016/j.oraloncology.2018.09.029.
8. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis. 2015;18(4):433–48. https://doi.org/10.1007/s10456-015-9477-2.
9. Polverini PJ. The pathophysiology of angiogenesis. Curr Rev Oral Biol Med. 1995;5(3):230–47. https://doi.org/10.1007/104541195060030501.

Additional file 3: Table S2. Sensitivity analysis.
25. Kasprzak A, Surdacka A, Tomczak M, Przybyszewska W, Seraszek-Jaros A, Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–1092. https://doi.org/10.1111/j.0006-341x.1994.tb08883.x.

26. Taskan MM, Karatas O, Balci Yuce H, Isiker Kara G, Grevrek F, Ucan YF. Hypoxia and collagen crosslinking in the healthy and affected sites of periodontitis patients. Acta Odontol Scand. 2019;77(10):1016–1020. https://doi.org/10.1080/00016357.2019.1624819.

27. Tian Y, Li J, Hao L, Yue Y, Wang M, Loo H, et al. Association of cytokines, high sensitive C-reactive protein, VEGF and beta-defensin gene polymorphisms and their protein expressions with chronic periodontitis in the Chinese population. Int J Biol Markers. 2018;33(2):100–107. https://doi.org/10.3501/ibm.00001010.

28. Ulu F, Guneri PG, Hepkimliy M, Yesilloklu, Acagiloglu H. Expression of vascular endothelial growth factor in human periodontal tissues: comparison of health and disease patients. J Periodontol. 2003;74(2):181–187. https://doi.org/10.1902/jop.2003.74.2.181.

29. Yuan K, Jin YT, Jeon MT. The detection and comparison of angiogenesis-associated factors in reverse granuloma by immunohistochernistry. J Periodontol. 2000;71(7):979–982. https://doi.org/10.1902/jop.2000.71.7.979.

30. Hu Y, Sun J, Huang H. Expression and significance of vascular endothelial growth factor (VEGF) in gingival tissue of patients with chronic periodontitis. Mod Diagn Treat. 2019;30(03):16–18. https://doi.org/10.2307/2533446.

31. Li J, Chu YJ, Jia X, Wang M, Chen F, Wang X, et al. Angiogenesis in Chronic Periodontitis. Chin J Conserv Dent. 2014;24:1.

32. Simi N, McRoy S, Zhao H, Wu M, Acharya A. Development of a periodontitis risk assessment model for primary care providers in an interdisciplinary setting. Technol Health Care. 2020;28(2):143–154. https://doi.org/10.3233/thc-191642.

33. Kiarane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3(1):1703. https://doi.org/10.1038/nrdp.2017.38.

34. Jin SH, Zhou RY, Guan XY, Zhou JG, Liu JG. Identification of novel key lncRNAs involved in periodontitis by weighted gene co-expression network analysis. J Periodontol. 2020;91(5):969–976. https://doi.org/10.1902/jop.2019.191367.

35. Shunig D, Haworth S, Divari K, Agler CS, Karnatani Y, Keun Lee M, et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat Commun. 2019;10(1):12773. https://doi.org/10.1038/s41467-019-10630-1.

36. Guelzender-Makkasanat E, Alkan B, Sunnetci-Akkoyunlu D, Gurel B, Balta VM, Kan B, et al. Molecular signatures of chronic periodontitis in gingiva: a genomic and proteomic analysis. J Periodontol. 2019;90(6):663–671. https://doi.org/10.1902/jop.2019.18-0477.

37. Ramya KS. Expression of VEGF in periodontal tissues of type II diabetes mellitus patients with chronic periodontitis - an immunohistochemical study. J Clin Diagn Res. 2014;8(8):ZC01–ZC3. https://doi.org/10.3774/jcdr.2014.7724.6446.

38. Jin SH, Zhou RY, Guan XY, Zhou JG, Liu JG. Identification of novel key lncRNAs involved in periodontitis by weighted gene co-expression network analysis. J Periodontol. 2020;91(5):969–976. https://doi.org/10.1902/jop.2019.191367.

39. Hu Y, Sun J, Huang H. Expression and significance of vascular endothelial growth factor (VEGF) in gingival tissue of patients with chronic periodontitis. Mod Diagn Treat. 2019;30(03):16–18. https://doi.org/10.2307/2533446.

40. Guzeldemir-Akcakanat E, Alkan B, Sunnetci-Akkoyunlu D, Gurel B, Balta VM, Kan B, et al. Molecular signatures of chronic periodontitis in gingiva: a genomic and proteomic analysis. J Periodontol. 2019;90(6):663–671. https://doi.org/10.1902/jop.2019.18-0477.