Coherent-Potential approximation for diffusion and wave propagation in topologically disordered systems

S. Köhler,1,2 G. Ruocco,3 and W. Schirmacher1,3

1 Institut für Physik, Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
2 Graduate School Materials Science in Mainz, Universität Mainz, Staudinger Weg 9, D-55099 Mainz, Germany
3 Dipartimento di Fisica, Università di Roma “La Sapienza”, P’le Aldo Moro 2, I-00185, Roma, Italy

Using Gaussian integral transform techniques borrowed from functional-integral field theory and the replica trick we derive a version of the coherent-potential approximation (CPA) suited for describing (i) the diffusive (hopping) motion of classical particles in a random environment and (ii) the vibrational properties of materials with spatially fluctuating elastic coefficients in topologically disordered materials. The effective medium in the present version of the CPA is not a lattice but a homogeneous and isotropic medium, representing an amorphous material on a mesoscopic scale. The transition from a frequency-independent to a frequency-dependent diffusivity (conductivity) is shown to correspond to the boson peak in the vibrational model. The anomalous regimes above the crossover are governed by a complex, frequency-dependent self energy. The boson peak is shown to be stronger for non-Gaussian disorder than for Gaussian disorder. We demonstrate that the low-frequency non-analyticity of the off-lattice version of the CPA leads to the correct long-time tails of the velocity autocorrelation function in the hopping problem and to low-frequency Rayleigh scattering in the wave problem. Furthermore we show that the present version of the CPA is capable to treat the percolative aspects of hopping transport adequately.

PACS numbers: 05.40.-a, 63.50.-x

I. INTRODUCTION

The coherent-potential approximation (CPA) is a very successful mean-field theory for treating quenched disordered systems. It also proved useful for describing classical diffusion [10,12] and vibrational excitations [13,14] in disordered systems. However, until now, The CPA has never been applied to the study of topologically disordered systems, as all its versions involve a regular crystalline lattice with additional quenched disorder. As it is, indeed, desirable to describe excitations of quenched-disordered systems with no crystalline disorder (amorphous metals, glasses, amorphous semiconductors) we present in this paper a field-theoretic derivation of the CPA for the two formally equivalent problems of diffusion and wave propagation in a topologically disordered environment. Our effective medium is not a lattice, but a homogeneous and isotropic continuum. Section 2 is devoted to the mathematically equivalent problems of diffusion and scalar waves with spatially fluctuating diffusivity/elastic modulus. For this model our version of the CPA is derived and solved. From the numerical solutions it is demonstrated that the existence of a dc - ac crossover in the diffusion problem corresponds to the presence of an excess of vibrational states (boson peak) [15-20] in the wave propagation problem. It is shown that the height of the boson peak is unrestricted for certain non-Gaussian distributions (inverse-power law distribution, log-normal distribution) but restricted for a box-shaped and a Gaussian distribution. For the non-Gaussian distributions a scaling relation between the height of the boson peak and its frequency position is shown to hold within the CPA. For weak disorder the CPA is shown to reduce to the self-consistent Born approximation (SCBA), which proved very successful to describe the anomalous vibrational properties of disordered solids [15-20]. In section 3 the CPA for vector displacements in an elastic continuum with fluctuating shear modulus is presented (heterogeneous-elasticity theory [15-20]). The vector theory is shown to possess the same boson-peak features as the scalar theory.

II. DIFFUSION AND SCALAR VIBRATIONS IN A DISORDERED ENVIRONMENT

A. Models and mathematic correspondence

Let us start our discussion with considering hopping transport of electrons or ions in a disordered semiconductor, or – equivalently – among the impurities of a doped crystalline semiconductor [21,22]. Such a motion of particles between specific sites i, j in a disordered material can be described by a master equation for the probability \(n_i(t) \) for being at site \(i \) at time \(t \)

\[
\frac{d}{dt} n_i(t) = -\sum_{j \neq i} W_{ij} \left(n_i(t) - n_j(t) \right) \quad (1)
\]

where the transition (hopping) probabilities per unit time \(W_{ij} \) can depend on the distance \(r_{ij} = |\mathbf{r}_i - \mathbf{r}_j| \) and/or on an energy barrier \(E_{ij} \) between the sites \(i \) and \(j \) (representing a symmetrized version of diffusion in a landscape of states with disordered local energies with phonon-assisted transitions between them [21,22]). The distance dependence is supposed to fall off exponentially, so that we do not have a long-range model.
It has been shown recently \[22\] that by a coarse-graining procedure such a transport equation can be transformed to a diffusion equation on a mesoscopic scale

\[
\frac{\partial}{\partial t} n(r, t) = \nabla D(r) \nabla n(r, t). \tag{2}
\]

with a spatially fluctuating diffusion coefficient \(D(r)\), which is supposed to be a random variable in the three-dimensional space and can be identified with the three-dimensional space and can be identified with \(D(r)\) in the diffusion problem.

On a macroscopic scale one deals with an equation of motion in frequency space for scalar wave amplitudes \(u(r, z)\) with a frequency-dependent, complex sound velocity \(v(\tilde{s})\)

\[
\tilde{s}u(r, \tilde{s}) = K(\tilde{s}) \nabla^2 u(r, \tilde{s}). \tag{9}
\]

Here \(\tilde{s} = s^2 = -\omega^2 + i\tilde{\omega}\) and \(K(\tilde{s}) = v^2(\tilde{s})\) is a complex, frequency-dependent elastic modulus, which is equal to the square of the complex wave velocity. As in optics the imaginary part of \(v(\tilde{s})\), \(v''(\omega)\) is related to the disorder-induced mean-free path of the waves, \(\ell(\omega)\) and to the sound-attenuation coefficient \(\Gamma(\omega)\) by \[23\]

\[
\frac{1}{\ell(\omega)} = \frac{2\omega v''(\omega)}{|v(\tilde{s})|^2} = \frac{1}{2|v(\tilde{s})|} \Gamma(\omega) \tag{10}
\]

In a quenched-disordered system, i.e., a medium with either spatially fluctuating density or elastic modulus the sound attenuation exhibits Rayleigh scattering \[23, 24\]

\[
\Gamma(\omega) \propto \omega^4 \quad \text{for} \quad \omega \to 0 \tag{11}
\]

This means that both \(v(\tilde{s})\) and \(K(\tilde{s})\) have a contribution, which varies as \(s^{3/2}\) for small frequencies. If we now mathematically identify the diffusion coefficient \(D(s)\) with \(K(\tilde{s})\) we conclude that \(D(s)\) has a low-frequency non-analytic \(s^{3/2}\) contribution

\[
\Delta D(s) = D(s) - D(0) \propto s^{3/2} \tag{12}
\]

which becomes \(\Delta D(s) \propto s^{d/2}\) in \(d\) dimensions. This non-analytic asymptotics has been proven to hold for any quenched-disordered system governed by equations of motion of the form \[11, 2, 10,\] and \[7\]. As \(D(s)\) is the Laplace transform of the velocity autocorrelation function \(Z(t)\) one obtains the non-analytic long-time asymptotics (“long-time tail”) \(Z(t) \propto t^{-(d+2)/2}\). This long-time-tail property, which has been known already for some time \[25, 27\], is obviously equivalent to Rayleigh scattering via the correspondence \(D(s) \leftrightarrow K(\tilde{s})\) \[25, 28\]. The analogy, in fact, goes further: In a quenched-disordered system (which is the subject-matter of the present work) it is known that a cross-over happens between a frequency-independent diffusivity and a strong frequency dependence, which can be parametrized as \(D(s) \propto s^x\) with \(x \approx 0.8\) \[29, 31\]. This disorder-induced diffusivity transforms under the correspondence \(D(s) \leftrightarrow K(\tilde{s})\) to disorder-induced anomalous frequency dependence of the elastic modulus, the onset of which corresponds to the boson peak \[32, 33\]. This correspondence will be discussed in more detail below.

B. Derivation of the CPA

We now consider the mathematically equivalent problems Eqs. \[3\] and \[8\], identifying the quantities \(D(s)\), \(K(\tilde{s})\) and \(s\), \(\tilde{s}\). We define \[67\]

\[
(s - \nabla D(r) \nabla) \delta(r - r') \equiv \langle r' | A[D(r)] | r \rangle > \tag{13}
\]

This corresponds to the boson peak \[32, 33\].
The Green’s function corresponding to Eq. (2) is given by the inverse matrix element of \mathcal{A}:

$$G(r, r') = \langle r' | A^{-1} | r \rangle .$$

(14)

Applying standard methods in replica field theory we represent the Green’s function as a functional integral over mutually complex conjugate fields $u(r)^\alpha$ and $\bar{u}(r)^\alpha$ present in $\alpha = 1, \ldots, n$ replicas of the system as follows:

$$G(r, r') = \frac{n}{\delta \langle J^{(1)}(r, r') \rangle} Z[J(r, r')]$$

(15)

with the generating functional

$$Z[J(r, r')] = \prod_{\alpha=1}^{n} \int D[\bar{u}^\alpha(r)] D[u^\alpha(r)] e^{-\sum \alpha < u^\alpha | A | u^\alpha >}$$

(16)

$$e^{-\sum \alpha < u^\alpha | J^{(\alpha)} | u^\alpha >}$$

and the source-field J^α. By an integration by part the exponential in Eq. (19) can be written as:

$$< u^\alpha | A | D | u^\alpha >= \int d^3 r \left(s | u^\alpha(r) |^2 + D(r) | \nabla u^\alpha(r) |^2 \right)$$

(18)

We now apply the Fadeev-Popov procedure, which consists of the replacement of the fluctuating diffusivity $D(r)$ by a complex auxiliary field $Q^{(\alpha)}(r, s)$ with the help of a delta functional, which, in turn, is represented by another auxiliary field $\Lambda^{(\alpha)}(r, s)$

$$Z[J] = \int D[\bar{u}, \bar{u}] D[Q, \Lambda] e^{-< u^\alpha | A | Q | - J^{(\alpha)} | u^\alpha >} \delta[D - Q]$$

(19)

$$= \int D[\bar{u}, \bar{u}] D[Q, \Lambda] e^{-\phi[\bar{A}|Q| - J^{(\alpha)}]} e^{<\Lambda | D - Q>}$$

$$= \int D[Q, \Lambda] e^{-\text{Tr}[\ln(A|Q|) - J^{(\alpha)}/\lambda]} e^{<\Lambda | D - Q>}$$

where we have suppressed the replica indices for brevity. The third equality in Eq. (19) follows from integrating out the displacement fields \bar{u}^α and u^α. In order to proceed further we devise another coarse-graining procedure. We tile the total space into N_c cells of (approximate) volume $V_c = V/N_c$, where $V = L^3$ is the total volume. This could just be done by means of a cubic grid. However, in order to avoid any relation to a crystalline lattice we think, instead, of a Voronoi tessellation around midpoints of a closed-packed hard-sphere structure. This gives $V_c = L_c^3 = (\pi/6) \eta_c d_c^3$, where $\eta_c \approx 0.56$ is the close-packed packing fraction, resulting in $L_c \approx 0.66 d_c$. Within a cell with label i we replace the diffusivity by their average in each cell and assume that a diffusion equation

$$\frac{\partial}{\partial t} n(r, t) = \nabla D_i \nabla n(r, t).$$

(20)

holds within a cell with label i. We now assume that the random numbers D_i are independent of each other, i.e. the joint distribution density is assumed to factorize as $P(D_1 \ldots D_{N_c}) = \prod_i p(D_i)$.

Our assumption of independent fluctuations of the quantities D_i implies that the size of the cells L_c must be larger or at least equal to the correlation length ξ of the diffusivity fluctuations, which is defined by

$$\xi^3 = \frac{1}{\langle D^2 \rangle} \int d^3 r (D(r + r_0) D(r)).$$

(21)

Correspondingly we confine the k summations in the subsequent analysis to remain below a cutoff $|k| < k_F = \nu/\xi$, where ν is an adjustable number of the order of 1. Within our model $D(r)$ is now a piecewise constant function in real space and the same should hold for the auxiliary fields Q and Λ, which are now labeled as $Q_i^{(\alpha)}, \Lambda_i^{(\alpha)}$. Using this the scalar product, which appears in the exponential in Eq. (19) can be written as:

$$< \Lambda | D - Q > = \frac{V_c}{V} \sum_i \sum_{\alpha} \Lambda_i^{(\alpha)}(r) (D_i^{(\alpha)} - Q_i^{(\alpha)})$$

(22)

We now start to evaluate the configurational average. Due to the Fadeev-Popov transformation the only term to be averaged over is the term $e^{<\Lambda | D - Q>}$.

Assuming that all the N_c coarse-graining cubes behave the same on average and using that the individual cubes are not correlated, we can write

$$\left< e^{<\Lambda | D - Q>}\right> = \prod_i \sum_{\alpha} e^{V_c \sum_{\alpha} \Lambda_i^{(\alpha)}(D_i^{(\alpha)} - Q_i^{(\alpha)})}$$

(23)

Note that the two occurring volume ratios do not cancel each other due to the average inside the logarithm. Using the generating functional can be written as

$$Z[\bar{J}] = \int D[Q, \Lambda] e^{-S_{\text{eff}}[Q, \Lambda, \bar{J}]}$$

(24)

where we now have replaced the source field $J^{\alpha}(r, r')$ by translational-invariant source field $\bar{J}(r - r')$ which is not supposed to depend on the replica index α. The effective action takes the form

$$S_{\text{eff}}[Q, \Lambda, \bar{J}] = \text{Tr} \left\{ \ln (A|Q| - \bar{J}) \right\}$$

$$- \sum_{\alpha=1}^{n} \frac{V}{V_c} \ln \left(\left< e^{-\sum_{\alpha} \Lambda_i^{(\alpha)}(D_i^{(\alpha)} - Q_i^{(\alpha)})} \right> \right)$$

(25)
Since the factor $\frac{V}{V_c}$ in the effective action (25) is much larger than unity a saddle point approximation can be employed to evaluate the integral in (24). In general this factor will scale as

$$\frac{V}{V_c} = \left(\frac{L}{\xi}\right)^d \xrightarrow{d \to \infty} \infty$$ \hspace{1cm} (26)

Accordingly the CPA becomes exact for $d \to \infty$.

We now assume that the fields Q and Λ are replica independent.

$$S_{\text{eff}}[Q, \Lambda, 0] = n S'_{\text{eff}}([Q_i], \{A_i\})$$ \hspace{1cm} (27a)

$$S'_{\text{eff}}([Q_i], \{A_i\}) = \text{tr} \left[\ln [\tilde{A}(Q)] \right]$$ \hspace{1cm} (27b)

where “tr” now means a trace without the replica indices.

The saddle point is determined by the equations

$$\left. \frac{\partial S'}{\partial Q_i} \right|_{Q_i=Q_i,s} = 0, \forall i$$ \hspace{1cm} (28a)

$$\left. \frac{\partial S'}{\partial \Lambda_i} \right|_{\Lambda_i=\Lambda_i,s} = 0, \forall i$$ \hspace{1cm} (28b)

The derivative with respect to Λ is easily performed and yields:

$$0 = \frac{\left(- \frac{\partial}{\partial Q_i} \Lambda_i,s(D_i - Q_i,s) e^{-\frac{\partial}{\partial \Lambda_i} \Lambda_i(D_i - Q_i,s)} \right)_{i}}{\left(e^{-\frac{\partial}{\partial \Lambda_i} \Lambda_i(D_i - Q_i,s)} \right)_{i}}$$

$$\Rightarrow 0 = \frac{D_i - Q_i,s}{\exp \left(-\frac{\partial}{\partial \Lambda_i} \Lambda_i(D_i - Q_i,s) \right)} \left(\Lambda_i,s(D_i - Q_i,s) \right)_{i}$$ \hspace{1cm} (29)

Since $\frac{\partial}{\partial Q_i} \ll 1$ the exponential in the denominator can be expanded to first order

$$0 = \frac{D_i - Q_i,s}{1 + \left(\frac{\partial}{\partial \Lambda_i} \Lambda_i(D_i - Q_i,s) \right)} \left(\Lambda_i,s(D_i - Q_i,s) \right)_{i}$$ \hspace{1cm} (30)

The second saddle point equation gives

$$\left. \frac{\partial \text{tr} \left[\ln [\tilde{A}(Q)] \right]}{\partial Q_i} \right|_{Q_i=Q_i,s} = \frac{V}{V_c} \Lambda_i,s \left(e^{-\frac{\partial}{\partial \Lambda_i} \Lambda_i(D_i - Q_i,s)} \right)_{i}$$

$$= \frac{V}{V_c} \Lambda_i$$ \hspace{1cm} (31)

The left-hand side can be evaluated under the assumption that the saddle point field Q_S is constant in space

$$Q_i,s = Q, \forall i$$

This corresponds to the introduction of an effective homogeneous medium. In this medium (31) becomes:

$$\frac{V}{V_c} \Lambda = \frac{V}{V_c} \frac{\partial}{\partial Q} \text{tr} \ln [A_{\text{eff}}] = \frac{V}{V_c} \sum_k \frac{k^2}{s + Qk^2}$$ \hspace{1cm} (32)

In the second step the effective-medium operator

$$A_{\text{eff}}(k, \tilde{k}) = (s + Qk^2) \delta_{kk}$$ \hspace{1cm} (33)

was defined. From this representation one can see that in the CPA the following holds:

$$\langle G \rangle(k, \tilde{k}, s) = \frac{1}{s + Qk^2} \delta_{kk} = \frac{1}{s + Dk^2} \delta_{kk}$$ \hspace{1cm} (34)

under the assumption that the averaged system exhibits translational invariance. This equation expresses the averaged Green’s function in terms of the Green’s function of a homogeneous medium, where the spatially fluctuating diffusivity is replaced by the self energy Q, which, however, is now frequency dependent: The space dependence due to the disorder has been transformed to a disorder-induced frequency dependence. From (32) it follows that if Q is homogeneous in space, the same holds for Λ. Defining a new field $\Lambda = 3V_c/\nu V \Lambda / V$ with $\nu = \nu^2 / 2\pi^2$ and performing the summation in (32) with a cutoff $|k| < k_\xi$ the CPA equations become:

$$0 = \frac{D_i - Q(s)}{1 + \frac{V}{V_c} \left[D_i - Q(s) \right] \Lambda(s)}$$ \hspace{1cm} (35a)

$$\tilde{\Lambda}(s) = \frac{3}{k_\xi} \int_0^{k_\xi} dk k^2 \frac{k^2}{s + k^2 Q(s)}$$ \hspace{1cm} (35b)

$$= \frac{1}{Q(s)} [1 - s G(s)]$$

with the local Green’s function

$$G(s) = \frac{3}{k_\xi^3} \int_0^{k_\xi} dk k^2 \frac{1}{s + k^2 Q(s)}$$ \hspace{1cm} (35c)

We call $\tilde{\Lambda}(s)$ the susceptibility function, because it is proportional to the local dynamic susceptibility of the diffusing particle.

The CPA equation (35) can be cast into the following equivalent forms

$$1 = \frac{1}{1 + \frac{V}{V_c} \left[D_i - Q(s) \right] \Lambda(s)}$$ \hspace{1cm} (35d)

$$Q(s) = \frac{D_i}{1 + \frac{V}{V_c} \left[D_i - Q(s) \right] \Lambda(s)}$$ \hspace{1cm} (35e)
It is worthwhile to note that the \(k \) integral in Eq. \(36b \) for the susceptibility function can be carried out analytically. The diffusion pole in the denominator of the integrand produces a \(\Lambda(s) = \hat{\Lambda}(0) + \text{const} \times s^{2/3} \) low-frequency asymptotics, which is inherited by the function \(Q(s) \). So, independent of the type of disorder, we obtain a correct long-time behaviour for \(Z(t) \) and Rayleigh scattering for the wave problem. Because for the vibrational problem in the \(s \to 0 \) limit the disorder scattering is suppressed by the Rayleigh frequency dependence, the CPA expression for the imaginary part of \(Q(z) \) can be shown to reduce to the Born approximation in agreement with the previous derivations \[23, 24\].

In the \(dc \) limit \(s = 0 \) we have \(\hat{\Lambda}(0) = 1/Q(s) \), so we obtain from Eq. \(35e \)

\[
Q(0) = \left\langle \frac{D_i}{1 - \frac{\nu}{3} + \frac{\nu}{3} \frac{D_i}{3Q(0)}} \right\rangle (36a)
\]

(From now on we suppress the index \(i \), which indicates the average over \(p(D_i) \).) In the case \(Q(0) \neq 0 \) (which is not trivial, see the paragraph on percolation) one can divide by \(3Q(0)/\nu \) to obtain

\[
\frac{\nu}{3} = \left\langle \frac{1}{1 + \left(\frac{\nu}{3} - 1 \right) \frac{Q(0)}{D_i}} \right\rangle (36b)
\]

C. Relation with previous effective-medium theories

1. Lattice CPA

The standard 2-site coherent-potential approximation for the hopping problem of Eq. \(11 \) on a lattice is \[10–12\]

\[
\left\langle \frac{W_{ij} - \Gamma(s)}{1 + (W_{ij} - \Gamma(s)) \frac{2}{z_1(s)} (1 - sG_{ii}(s))} \right\rangle = 0 (37)
\]

Here \(\Gamma(s) \) is the effective frequency-dependent hopping rate and \(G_{ii}(s) \) is the local Green’s function of the effective medium, which within this theory is a simple-cubic lattice with coordination number \(Z = 2d = 6 \). The lattice Green’s function has the form

\[
G_{ii}(s) = \sum_{k \in BZ} \frac{1}{{s + \Gamma(s)f(k)}} (38)
\]

where the sum goes over the first Brillouin zone (BZ), and

\[
f(k) = 6 - 2[\cos(k_x a) + \cos(k_y a) + \cos(k_z a)] (39)
\]

with \(a \) being the lattice constant. Defining the local susceptibility function

\[
\Lambda_{ii}(s) = \frac{1}{\Gamma(s)} \left(1 - sG_{ii}(s) \right) = \sum_{k \in BZ} \frac{f(k)}{s + \Gamma(s)f(k)} (40)
\]

the CPA equation \(37 \) takes the form

\[
\left\langle \frac{W_{ij} - \Gamma(s)}{1 + (W_{ij} - \Gamma(s)) \frac{2}{z_1(s)} \Lambda_{ii}(s)} \right\rangle = 0 (41)
\]

Now we take the continuum limit by replacing the BZ \(k \) summation by \(\sum_k \rightarrow \frac{1}{\nu} \int_0^\nu dk \) and \(f(k) \) by its low-wavenumber limit \(k^2 a^2 \). If we now define the local diffusivities by \(D_i = W_{ij} a^2 \), the effective-medium diffusivity by \(Q(s) = \Gamma(s)a^2 \) and the continuum susceptibility function by \(\Lambda(s) = \Lambda_{ii}(s)/a^2 \) we arrive at the continuum-off-lattice CPA result \(35a \), provided we take \(\nu = 1 \). In order to be consistent with the continuum limit of the lattice CPA one may take always this value. On the other hand, one can also use this value such that the CPA percolation threshold \(p_c^{\text{CPA}} = \nu/3 \) (see below) agrees to the continuum percolation threshold \(p_c \) of a certain topology \[39, 40\].

2. Self-consistent Born approximation, SCBA

If one takes Gaussian disorder for the local diffusivity one can perform the disorder average over the generating functional \[17\] exactly, which leads to an interacting effective field theory with the variance of \(D(r) \) as coupling constant. Taking apart this interaction by a Hubbard-Stratonovich approximation and then performing a saddle-point approximation (assuming a small relative variance of \(D(r) \)) one arrives at the \textit{self-consistent Born approximation} for the scalar problem \[41–43\]. We can, however recover the SCBA from the CPA in the following way. Defining \(D_0 \) to be the average of the fluctuating diffusivities and defining the quantities \(Q(s) = D_0 - \Sigma(s) \), \(D_i = D_0 - \Delta_i \), we obtain from \(35a \) the two (equivalent) CPA equations

\[
0 = \left\langle \frac{\Delta_i - \Sigma(s)}{1 - \frac{\nu}{3}(\Delta_i - \Sigma(s))\Lambda(s)} \right\rangle (42a)
\]

\[
\Sigma(s) = \left\langle \frac{\Delta_i}{1 - \frac{\nu}{3}(\Delta_i - \Sigma(s))\Lambda(s)} \right\rangle (42b)
\]

We now expand the interior of the average in \(42b \) with respect to \(\Delta_i - \Sigma(s) \) to lowest nonvanishing order (respecting \(\Delta_i = 0 \)) we obtain

\[
\Sigma(s) = \langle D_i^2 \frac{\nu}{3} \tilde{\Lambda}(s) \rangle (43)
\]

which is the SCBA for the scalar problem. As indicated already above, the SCBA can also be obtained from the saddle-point equation \(29 \) by putting the exponential not into the denominator but into the numerator and then expand with respect to the small number \(V_c/V \) to first order. Because then only the first two cumulants of the distribution of the \(D_i \) enter, this corresponds to assuming Gaussian disorder.

So we recover the SCBA from the CPA in the Gaussian and weak-disorder limit.
3. Network effective-medium approximation, EMA

The CPA-like effective-medium treatment of the impedances of a heterogeneous medium or network date back to Bruggeman [44] and Landauer [45]. For a disordered Z-fold coordinated network of fluctuating conductances g_i, the expression for the effective-medium conductance g_m is [46]

$$0 = \left(\frac{g_m - g_i}{g_i + \left(\frac{Z}{2} - 1 \right) g_m} \right)$$

(44)

It has been generalized for the ac problem [31, 47], setting $Z/2 = d$

$$0 = \left(\frac{g_m(s) - g_i}{g_i + (d - 1)g_m(s) + ds} \right)$$

(45)

which can be re-arranged as

$$0 = \left(\frac{g - g_m(s)}{1 + \frac{g - g_m(s)}{d g_m(s) + s}} \right)$$

(46)

which has - for $d = 3$ - the same form as the CPA equation (35a) with

$$\tilde{\Lambda}(s)_{\text{EMA}} = \frac{1}{s + Q(s)}$$

(47)

This EMA has the same analytical structure as EMA versions derived earlier in the literature [39, 40, 48]. While these ac effective-medium theories describe rather nicely measured hopping conductivity data they violate the non-analyticity requirement [12]. As stated above, in CPA the function $\tilde{\Lambda}(s)$ has a contribution, which varies as $s^{3/2}$, whereas $\tilde{\Lambda}(s)_{\text{EMA}}$ does not, as can be clearly seen from Eq. (47).

D. CPA results for the dc diffusivity

1. Percolation

In order to treat the percolation problem, which can be considered as the continuum version of the Lorentz problem [26, 27, 49, 50], we assume a distribution of local diffusivities of the form

$$P(D_i) = p \delta(D_i - D_0) + (1 - p) \delta(D_i)$$

(48)

where p is the volume fraction in which the diffusivity is non-zero. Inserting this into Eq. (36a) one obtains

$$Q(0) \frac{\tilde{\nu}}{3} = Q(0) \frac{1}{1 + \left(\frac{a}{p} - 1 \right) \frac{Q(0)}{D_0}}$$

(49)

which has, like Eq. (36a), always the trivial solution $Q(0) = 0$. For the case $Q(0) \neq 0$ we obtain from Eq. (49)

$$Q(0) = \frac{2}{3} D_0 (p - p_c)/(1 - p_c)$$

(50)

with $p_c = \frac{\tilde{\nu}}{3}$. For $p < p_c$ the trivial solution of (19), $Q(0) = 0$ takes over.

2. Activated diffusion

In this class of models the diffusion of a particle is considered to take place by jumps over barriers of height E_i with a certain distribution $P(\epsilon)$ (“random barrier model” [31]). So we write

$$D_i = D_0 e^{E_i/k_B T}$$

(51)

and parametrize the dc diffusivity as $(\frac{a}{p} - 1)Q(0) = D_0 e^{E_a/k_B T}$. Then Eq. (36b) takes the form

$$\frac{\tilde{\nu}}{3} = \int dE P(E) \frac{1}{e^{E - E_a/k_B T} + 1}$$

(52)

In the low-temperature limit the Fermi function becomes a step function and we obtain

$$\frac{\tilde{\nu}}{3} = p_c = \int_0^{E_a} dE P(E)$$

(53)

which means that the parameter E_a becomes temperature independent. From this follows that in the random-barrier problem the dc diffusivity is always of Arrhenius form, as observed frequently in fast-ion conducting glasses [51].

It is worthwhile to point out that (53) corresponds to the so-called percolation construction for obtaining the dc conductivity of a disordered hopping-conduction network [22, 51]. It has been nicely demonstrated recently that the low-temperature physics of the random-barrier model is essentially percolation physics [52].

3. Variable-range hopping

A rather widely investigated type of carrier diffusion in disordered materials is that of electrons performing phonon-assisted tunneling transitions between localized states (“hopping transport” [22]). Understanding the mechanisms of electronic hopping transport has been shown recently to be of extreme importance for devising organic light-emitting diodes (OLEDs) [53]. Here we show that by the CPA one recovers the classical results of Mott [54] and Efros, Shklovskii [22] for variable-range hopping.

The local diffusivity depends on an activation barrier E and a characteristic hopping distance r with distributions $P(E)$ and $P(r)$

$$D_i = D_0 e^{-\alpha r - \beta E}$$

(54)

where $e^{-\alpha r}$ is the tunneling factor and $\beta = 1/k_B T$. Depending on the density of localized electronic states near
the Fermi energy \(P(E) \) is either considered to be constant (Mott hopping) or proportional to \(E^2 \) (Coulomb-gap, Efros-Shklovski hopping). The distribution of sites is

\[
P(r) = \frac{1}{Z} 4\pi r^2 \theta(R-r) = \frac{3}{R^2} r^2 \theta(R-r) \quad (55)
\]

where \(Z = \frac{4}{3} 4\pi r R^3 \) is the number of adjacent sites within a given radius \(R \). If we parametrize the dc diffusivity as \(\frac{1}{p_c} - 1 \) \(Q(0) = D_0 e^{-\xi} \), we obtain from Eq. (36b)

\[
p_c = \int dE P(E) \int dr P(r) \frac{1}{e^{\alpha r + \beta E - \xi} + 1} \quad (56)
\]

In the low-temperature limit the Fermi function becomes again a step function, and, by means of integrations by part one obtains the famous results \(\ln Q(0) \propto -(T_0/T)^{1/4} \) (Mott hopping) \(\ln Q(0) \propto -(T_0/T)^{1/2} \) (Efros-Sklovski hopping). Again, these results are equivalent to the percolation construction [22].

E. CPA results for the ac diffusivity

We consider activated transport of the form [53] with a constant-barrier distribution

\[
P(E) = \frac{1}{E^*} \quad 0 \leq E \leq E^* \quad (57)
\]

which is equivalent to an inverse-Power distribution for \(D \)

\[
P(D) = \frac{1}{\ln \mu/\sigma D} \quad \mu \leq D \leq \sigma \quad (58)
\]

with \(\sigma = D_0 \) and \(\mu = D_0 e^{-\beta E^*} \).

In Fig. 1 we show ac conductivity data collected from the literature over a very wide range of frequencies by Wong and Angell [53] together with the CPA prediction for the constant-barrier model [57]. The only input is the measured dc activation energy of \(E_a = 75 \text{ KJ/mole} \) [70]. However, it should be made clear that the old EMA theories [39, 40, 48, 57, 58] are also able to produce such a fit. The difference to the CPA can be seen from the “loss function” [22, 59] \(\frac{\sigma(\omega) - \sigma(0)}{\omega} \propto |Q'(\omega)|/\omega \), which is shown in Fig. 2. At low frequencies this function behaves as \(\omega^{-1/2} \) due to the Rayleigh-type non-analyticity. The old EMA theories do not exhibit this non-analyticity. In the figure this behaviour is demonstrated. There is experimental [59] and simulational [60] evidence for this low-frequency non-analyticity of hopping transport.

F. Model calculations for the scalar phonon problem

We shall now exploit the mathematical correspondence \(i\omega \leftrightarrow -\omega^2 \), \(Q(s) \leftrightarrow D(s) \leftrightarrow Q'(s) \leftrightarrow K(s) \) and, correspondingly, discuss the vibrational anomalies induced by the quenched disorder, as given in CPA. Similar discussions have already published in the literature [32], where it was pointed out that the boson peak (BP) in the vibrational problem corresponds to the dc-ac crossover in the diffusion problem.

As shown in the last subsection, the activated-diffusion model with a constant barrier distribution corresponds to an inverse-power law distribution for the local diffusivities. For the corresponding local moduli \(K \) we re-write this distribution

\[
P(K) = \frac{1}{\ln \mu/\sigma K} \quad \mu \leq K \leq \sigma \quad (59)
\]

Other possible distributions, namely a uniform distribution, a Gaussian distribution, truncated at \(K = 0 \) and a log-normal distribution are detailed in table [11] The den-
density of states (DOS) of the scalar phonons can be calculated as

\[g(\omega) = \frac{2\omega}{\pi} \text{Im}\{G(\tilde{\omega})\} \]

(60)

where \(G(\tilde{\omega}) \) is given by Eq. (55), and we identify the correlation cutoff \(k_\xi \) with the Debye cutoff \(k_D \).

Name	\(P(K) \)
Uniform	\((\sigma - \mu)^{-1}, K \in [\mu, \sigma]\)
Truncated Gaussian	\(\sqrt{2 \frac{\exp[-(K - \mu)^2/(2\sigma)]}{\pi \sigma}} \frac{1}{1 + \text{Erf}(\mu/\sqrt{2\sigma})}\)
Power Law	\((K \ln(\frac{\sigma}{\mu}))^{-1}, K \in [\mu, \sigma]\)
Log-Normal	\(\frac{1}{\sqrt{2\pi\sigma}} \frac{1}{K} - \ln[\frac{K}{\pi}]^2/(2\sigma)\)

Table I: Probability distributions used to model the disorder.

As mentioned above, the CPA makes it possible to describe highly disordered systems, i.e. systems in which the variance of the spatial fluctuations of the quantity of interest exceeds the square of its average. In order to quantify the strength of the disorder, we define a disorder parameter as the ratio between the variance and the squared mean of the disorder distribution \(\gamma = \langle K^2 \rangle / \langle K \rangle^2 \).

For the truncated Gaussian and the universal distribution \(\gamma \) has an upper bound. For the uniform distribution a maximum disorder strength of \(\gamma = \frac{1}{2} \) can be reached, for the truncated Gaussian this limit is \(\gamma = \frac{2}{\pi} - 1 \). Thus two of the four distributions can only model medium to weak disorder. On the other hand, the inverse-power and log-normal distributions have no upper bound of the disorder parameter. In particular, for the inverse-power distribution with \(\mu = \sigma e^{-\beta E^*} \) the relation \(\gamma = \beta E^*/2 \) holds.

In Fig. 6 we show the so-called reduced DOS \(g(\tilde{\omega})/g_D(\tilde{\omega}) \), calculated for the inverse-power-law distribution. We use units, in which \(k_\xi = k_D = 1 \) and \(K_0 = 1 \). \(g_D(\omega) = 3\omega^2/\omega_D^3 \) is the Debye DOS, and \(\omega_D = \sqrt{Q(0)} \) is the Debye frequency.

The disorder parameters \(\gamma = \beta E^*/2 \) have been chosen to agree to those in the conductivity calculations of Fig. 1. The boson peaks shown in Fig. 6 increase with increasing disorder, while its position decreases. The positions \(\omega_{BP} \) of the boson peaks are indicated in Figs. 1 and 2 via the correspondence \(\omega_{BP} \leftrightarrow \tilde{\omega}_{BP}^2 \). It is clearly seen that the boson peak marks the onset of the disorder-induced frequency dependence of the diffusivity (≡ conductivity). Via the correspondence \(D(\omega) \leftrightarrow K(\tilde{\omega}) = v(\tilde{\omega})^2 \) this means that the boson peak marks the frequency dependence of the sound velocity in the disordered vibration model. This is in agreement with earlier conclusions from effective-medium calculations using the EMA [32, 33] and the SCBA [15, 20].

In Fig. 1 the boson-peak height is plotted against its frequency position for all four distributions considered. We include also the prediction of the self-consistent Born approximation (SCBA). Fig. 5 shows a close up of the small-disorder region.

The down-shift and reinforcement of the boson peak with increasing disorder has been shown in the SCBA-based earlier treatments of vibrational anomalies [20] to result from the disorder-induced level repulsion, which is present in the anomalous frequency regime above the boson peak. This level repulsion, which is typical for random-matrix spectra, results from the absence of symmetries on the microscopic scale.

From our CPA calculations, displayed in Fig. 4 it follows that the height of the BP scales with its frequency position \(\omega_{BP} \) as \(g(\omega_{BP})g_D(\omega_{BP}) \propto (\omega_{BP})^c \) with \(c = 1.25 \). It is suggestive that this scaling should be related to the power-law frequency dependence of the diffusivity in the mathematically equivalent diffusion problem, but we did not find a way to prove this.

III. CPA FOR HETEROGENEOUS-ELASTICITY THEORY

A. Model

We start with the equations of motion of elasticity theory in frequency space, formulated in terms of the stress tensor \(\sigma_{ij} = \rho \dot{\varepsilon}_{ij} \) (\(\rho \) is the mass density) [61]:

\begin{align*}
\gamma = 7.91 \\
\gamma = 10.41 \\
\gamma = 29.06 \quad \gamma = 29.06
\end{align*}

FIG. 3: Reduced density of states \(g(\tilde{\omega})/g_D(\tilde{\omega}) \) for inverse-power law disorder with the same disorder parameters as in Figs. 1 and 2. As the disorder increases so does the height of the boson peak, it is also shifted to lower frequencies.
where u can be represented in two ways

\begin{align*}
\text{system is assumed to be still isotropic, the stress tensor } \epsilon \text{ modulus.}
\end{align*}

and $\tilde{\epsilon}_{ij}$ the traceless strain tensor

\begin{align*}
\tilde{\epsilon}_{ij} = \epsilon_{ij} - \frac{1}{3} \delta_{ij} \text{tr}\{\epsilon\}
\end{align*}

\begin{align*}
(\partial_j \equiv \partial/\partial x_j). \text{ The spatial fluctuations of the shear modulus can be modeled in two ways: In what we call Model I. the longitudinal Lamé modulus } \lambda \text{ is assumed to be constant (referring to the representation (62a)), in Model II. the } K \text{ modulus (referring to the representation (62b)) is assumed to be constant. As can be shown easily, in model I. the macroscopic longitudinal Lamé modulus is frequency independent, in model II. the macroscopic bulk modulus is frequency independent.}
\end{align*}
Applying again the Fadeev-Popov procedure and performing all the steps we have done before, we arrive at an effective action, which looks similar to that of the diffusion problem \[S_{\text{eff}}[Q, \Lambda, J] = \text{Tr} \left\{ \ln \left(A[Q] - J \right) \right\} \]
\[- \sum_{\alpha=1}^{N} \frac{V}{V_c} \ln \left(\left\langle e^{-\Lambda^{(\alpha)}(Q^{(\alpha)})} \right\rangle_1 \right) \]
\eqn{71}
But now the trace operation goes also over the Cartesian indices.

The homogeneous Matrix $A_{\alpha\beta}[Q]$ is both diagonal in the Cartesian indices and with respect to the k vectors. The diagonal elements are $1/G_L(k, \tilde{s})$ and twice $1/G_T(k, \tilde{s})$, which are given by

$$1/G_L(k, \tilde{s}) = \tilde{s} + k^2 [\tilde{\lambda} + 2Q(\tilde{s})] \quad \text{Model I} \quad (72a)$$

$$1/G_L(k, \tilde{s}) = \tilde{s} + k^2 [\tilde{K} + \frac{4}{3} Q(\tilde{s})] \quad \text{Model II} \quad (72b)$$

$$1/G_T(k, \tilde{s}) = \tilde{s} + k^2 Q(\tilde{s}) \quad (72c)$$

The saddle-point equations, followed by the expansion of the exponential in the denominator leads to the CPA equations

$$0 = \left(\frac{G_I - Q(\tilde{s})}{1 + \frac{2}{3} (G_I - Q(\tilde{s})) \Lambda(\tilde{s})} \right)_{\text{i}} \quad (73a)$$

The susceptibility functions for the models $\alpha = I, II$ take the form

$$\Lambda_\alpha(\tilde{s}) = \frac{3}{k_F^4} \int_0^{k_F} dk \int_0^{k_D} dk G_L(k, \tilde{s}) + 2G_T(k, \tilde{s}) \quad (73b)$$

with $q_I = 2$ and $q_{II} = 4/3$. The density of states is calculated from the well-known formula

$$g(\omega) = \text{Im} \left\{ \frac{2\omega}{3\pi} \left(G_L(\tilde{s}) + 2G_T(\tilde{s}) \right) \right\} \quad (74)$$

where we have introduced the local longitudinal and transverse functions (identifying again ξ with k_D)

$$G_{L,T}(\tilde{s}) = \frac{3}{k_D^4} \int_0^{k_D} dk G_{L,T}(k, \tilde{s}) \quad (75)$$

We can write the susceptibility function $\Lambda_\alpha(\tilde{s})$ as follows

$$\Lambda_\alpha(\tilde{s}) = \frac{1 - \tilde{s}G_T(\tilde{s})}{Q(\tilde{s})} + \frac{1}{p_{II}} \frac{1 - \tilde{s}G_L(\tilde{s})}{p_{II} + q_\alpha Q(\tilde{s})} \quad (76)$$

$$= \tilde{\Lambda}(\tilde{s}) \left(1 + \frac{q_\alpha Q(\tilde{s})}{p_{II} + q_\alpha Q(\tilde{s})} \right) \frac{1 - \tilde{s}G_L(\tilde{s})}{1 - sG_T(\tilde{s})}$$

with $p_I = \tilde{\lambda}$ and $p_{II} = \tilde{K}$. $\tilde{\Lambda}(\tilde{s})$, which is the transverse local susceptibility, is the same mathematical function of Q as the susceptibility function of Eq. \[\text{(35b)} \] for the scalar phonon problem. Because the function inside the big brackets is only weakly frequency dependent and the density of states is dominated by the transverse Green’s function all the results derived and presented for the scalar phonon problem hold also for the vector phonon problem.

In particular, for non-Gaussian distributions of the shear modulus the quantity $g(\omega)/g_D(\omega)$ can have boson peaks with arbitrary heights, and a scaling as depicted in Fig. 4 holds \[\text{(62)}. \] As an example we show in Fig. 6 the reduced density of states, extracted from inelastic X-ray measurements by Baldi et al. \[\text{(63)} \] together with the corresponding quantity calculated for the inverse-power distribution $P(G)$ given by Eq. \[\text{(59)}. \]

The important difference between the scalar model and the vector theory (heterogeneous elasticity theory) is that it describes the physically relevant vector displacements, in which dilatational and shear degrees of freedom can be distinguished. Model II. represents a theory, in which the disorder-induced anomalous frequency dependence is dominated by the dilatation-free shear degrees of freedom in agreement with recent computer simulations \[\text{[17, 18, 64, 65]}. \]

IV. CONCLUSIONS

We have derived a version of the coherent-potential approximation for both diffusional and vibrational motion in a quenched-disordered environment, which is suitable for topologically disordered materials. The effective medium is not a crystalline lattice but a homogeneous and isotropic system with frequency-dependent diffusivity or elastic constants, resp. The results can be directly applied to experimentally measured spectra. In the
weak-disorder limit the CPA has been shown to reduce to the self-consistent Born approximation, which is based on Gaussian disorder. In the strong-disorder limit, in which the local diffusivities or elastic quantities vary exponentially, the CPA has been show to correctly describe the percolative aspects of such systems. The disorder-induced vibrational anomalies have been shown to become stronger as the disorder is increased. In particular the height of the boson peak has been shown to increase indefinitely with the disorder.

In contrast to earlier effective medium theories for the phonon problem can, with slight modifications, be applied to the problem of an electron gas in a random potential. The method developed above for the diffusion and scalar problem and to Rayleigh scattering in the vibrational problem.

Acknowledgement

S. K. and W. S. are grateful to Prof. Friederike Schmid for helpful discussions.

Appendix:Electrons in a random potential

The method developed above for the diffusion and scalar phonon problem can, with slight modifications, be applied to the problem of an electron gas in a random potential. This model is governed by the Schrödinger equation

\[b^2 \frac{\Delta}{2m} - V(x) - \bar{E} \psi(x) = \psi(x) [\psi] = A[\psi] = 0 \]

The corresponding Green’s function can then be expressed with a coherent-state path integral over the Grassmann fields \(\theta \) and \(\bar{\theta} \):

\[G(x, x', \bar{E}) = \left. \frac{1}{\zeta[0]} \frac{\delta \zeta[J]}{\delta J(x', x)} \right|_{J=0} \]

\[\zeta[J] = \int D[\theta, \bar{\theta}] e^{\theta(a + J)\bar{\theta}} \]

From here on all steps are analogous to the previous section. First the replica trick is performed and a coarse-grained potential

\[V(x) = \sum_i v_i \chi_i(x) \]

with no correlation between the coarse-graining boxes is introduced. \(V(x) \) is subsequently replaced in \(A \) via the Fadeev-Popov procedure by an auxiliary field \(Q \) yielding

\[\langle \zeta^n[J] \rangle = \int D[Q, \Lambda] e^{-nS_{eff}[Q, \Lambda, J]} \]

with the effective action

\[S_{eff}[Q, \Lambda] = -\text{tr} \ln(A + J) - \sum_i \ln \langle e^{V_c/(V\Lambda_i(v_i - Q_i))} \rangle_i \]

As described in the body of the paper, the CPA equations determine the saddle point of \([81]\). The saddle point equations read:

\[\Lambda' = -\frac{V_c}{V} \sum_k E - \frac{1}{2m} k^2 - Q \]

\[Q = \left\langle \frac{v}{1 + \bar{v}(v - Q)\Lambda} \right\rangle \]

The \(k \)-space summation can now be evaluated and the CPA equations solved. From these results the calculation of the density of states can be done. The effective medium operator that is defined by equation \([83a]\) is

\[A_{eff}(k, k', z) = \left(z - \frac{\hbar^2 k^2}{2m} - Q \right) \delta_{kk'} \]

This result has already been obtained in an independent discussion of the CPA for electrons in a random potential \([66]\) and can be interpreted as the continuum version of the classical lattice theories, e.g. \([2]\).
If the exponential in the denominator of Eq. (29) would remain in the numerator and then expanded, we would obtain the self-consistent Born approximation (see below).

Note3, we work in $d = 3$ dimensions throughout this paper, although the analysis is not limited to this dimension.

We work in $d = 3$ dimensions throughout this paper, although the analysis is not limited to this dimension.

If the exponential in the denominator of Eq. (29) would remain in the numerator and then expanded, we would obtain the self-consistent Born approximation (see below).

Note4, note that E_a is not equal to the maximum barrier height E^* but much smaller and is determined by the self-consistent Eq. (52).

Note5, we use the conventional bra-ket formalism of quantum mechanics, i.e. $< r | u^\alpha > = u^\alpha (r)$, etc.

We work in $d = 3$ dimensions throughout this paper, although the analysis is not limited to this dimension.

If the exponential in the denominator of Eq. (29) would remain in the numerator and then expanded, we would obtain the self-consistent Born approximation (see below).

Note6, note that E_a is not equal to the maximum barrier height E^* but much smaller and is determined by the self-consistent Eq. (52).