Impacts of dark energy on constraining neutrino mass after Planck 2018

Ming Zhang¹, Jing-Fei Zhang¹ and Xin Zhang¹,²,³,*

¹ Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
² Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China
³ Center for Gravitation and Cosmology, Yangzhou University, Yangzhou 225009, China

E-mail: zhangxin@mail.neu.edu.cn

Received 4 September 2020
Accepted for publication 21 September 2020
Published 1 December 2020

Abstract

Considering the mass splittings of three active neutrinos, we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass $\sum m_\nu$ using the latest cosmological observations. In this paper, several typical dark energy models, including ΛCDM, wCDM, CPL, and HDE models, are discussed. In the analysis, we also consider the effects from the neutrino mass hierarchies, i.e. the degenerate hierarchy (DH), the normal hierarchy (NH), and the inverted hierarchy (IH). We employ the current cosmological observations to do the analysis, including the Planck 2018 temperature and polarization power spectra, the baryon acoustic oscillations (BAO), the type Ia supernovae (SNe), and the Hubble constant H_0 measurement. In the ΛCDM+$\sum m_\nu$ model, we obtain the upper limits of the neutrino mass $\sum m_\nu < 0.123$ eV (DH), $\sum m_\nu < 0.156$ eV (NH), and $\sum m_\nu < 0.185$ eV (IH) at the 95% C.L., using the Planck+BAO+SNe data combination. For the wCDM+$\sum m_\nu$ model and the CPL+$\sum m_\nu$ model, larger upper limits of $\sum m_\nu$ are obtained compared to those of the ΛCDM+$\sum m_\nu$ model. The most stringent constraint on the neutrino mass, $\sum m_\nu < 0.080$ eV (DH), is derived in the HDE+$\sum m_\nu$ model. In addition, we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.

Keywords: neutrino mass, mass hierarchies of neutrinos, dark energy, cosmological constraints, Planck 2018

(Some figures may appear in colour only in the online journal)

1. Introduction

Neutrino oscillation experiments [1, 2] indicate that the three neutrino flavor eigenstates (ν_e, ν_μ, ν_τ) are actually quantum superpositions of the three mass eigenstates (ν_1, ν_2, ν_3) with masses m_1, m_2, and m_3. However, neutrino oscillation experiments cannot measure the absolute neutrino masses, but can only give the squared mass differences between the different mass eigenstates of neutrino. The solar and reactor experiments gave the result of $\Delta m_{21}^2 \simeq 7.54 \times 10^{-5}$ eV2 and the atmospheric and accelerator beam experiments gave the result of $|\Delta m_{31}^2| \simeq 2.46 \times 10^{-3}$ eV2 [3, 4], which indicates that there are two possible neutrino mass hierarchies, i.e. the normal hierarchy (NH) with $m_1 < m_2 < m_3$ and the inverted hierarchy (IH) with $m_3 < m_1 < m_2$. The case of neglecting the neutrino mass splitting, namely $m_1 = m_2 = m_3$, is called the degenerate hierarchy (DH).

Nevertheless, cosmological observations could provide a useful tool to measure the absolute neutrino total mass. With the decrease of the neutrino temperature, neutrino becomes non-relativistic at $T \sim 0.15$ eV in the evolution of the Universe. Then the mass effect of neutrinos begins to appear, which leads to a non-negligible influence on the cosmic microwave background (CMB) and large-scale structure [5–11]. Therefore, we could extract much useful information about neutrino from cosmological observations.

Recently, the observational data of Planck 2018 have been released by the Planck collaboration, and according to the latest
data, the upper limit of the total neutrino mass is $\sum m_\nu < 0.24$ eV (95% C.L., TT,TE,EE+lowE+lensing) [12]. Since the baryonic acoustic oscillations (BAO) data at low redshifts can break the geometric degeneracy inherent in CMB, the combination of the acoustic scales measured by the CMB and BAO data can determine the background geometry sufficiently. Combining BAO data with CMB data, the neutrino mass can be constrained to be $\sum m_\nu < 0.12$ eV (95% C.L., TT,TE,EE+lowE+lensing+BAO). Adding the Pantheon type Ia supernovae (SNe) luminosity distance measurements, the constraint only becomes slightly better, with the result still roughly $\sum m_\nu < 0.11$ eV (95% C.L., TT,TE,EE+lowE+lensing+BAO+SNe). It is noted that these results are based on the ΛCDM model.

Therefore, we wish to investigate the impacts of dark energy on constraining the total neutrino mass. In this work, we consider some typical dark energy models, including the ΛCDM model, the $w_0\omega_b$CDM model (also known as the Chevallier–Polarski–Linder model or the CPL model) [13, 14], and the holographic dark energy (HDE) model [15–22]. In addition, we also consider the effects from the neutrino mass hierarchies (i.e. DH, NH, and IH) in our analysis.

More recently, some related studies of constraints on the total neutrino mass have been made; see, e.g. [23–67]. The cosmological constraints on the total neutrino mass in dynamical dark energy models have been discussed in, e.g. [46, 47], which indicates that the nature of dark energy can have a significant influence on the measurement of the total neutrino mass. As the latest CMB data have been released by the Planck collaboration, the results need to be updated. In this work, we employ the latest cosmological observations, including the CMB, BAO, SNe, and H_0 data to make a new analysis.

In this work, we will use the recent local measurement of the Hubble constant H_0, with the result of $H_0 = 74.03 \pm 1.42$ km s$^{-1}$ Mpc$^{-1}$ (68% C.L.), by Riess et al [68]. Note that this local measurement result is in more than 4σ tension with the result of the Planck 2018 observation assuming a six-parameter base-Λ CDM model. Thus, we also wish to investigate how the inclusion of the H_0 local measurement would affect the measurement of the total neutrino mass in these dark energy models.

This paper is organized as follows. In section 2, we describe the methodology in our analysis. In section 3, we show the results and make some discussions. Finally, the conclusion is given in section 4.

2. Methodology

We take into account the neutrino mass splittings between the three active neutrinos. We employ the measurement results of neutrino oscillation experiments [3]

$$\Delta m_{21}^2 \equiv m_2^2 - m_1^2 = 7.54 \times 10^{-5} \text{eV}^2,$$

$$|\Delta m_{32}^2| \equiv |m_3^2 - m_1^2| = 2.46 \times 10^{-3} \text{eV}^2.$$ (1, 2)

The total neutrino mass $\sum m_\nu$ is the sum of three active neutrino mass. For the NH case, $\sum m_\nu$ is written as

$$\sum m_\nu^{\text{NH}} = m_1 + \sqrt{m_1^2 + \Delta m_{21}^2 + \Delta m_{12}^2},$$

where m_1 is a free parameter. For the IH case, $\sum m_\nu$ is written as

$$\sum m_\nu^{\text{IH}} = \sqrt{m_1^2 + |\Delta m_{21}^2| + |\Delta m_{12}^2| + m_3^2},$$

where m_3 is a free parameter. For the DH case, ignoring the neutrino mass splittings, $\sum m_\nu$ can be written as

$$\sum m_\nu^{\text{DH}} = m_1 + m_2 + m_3 = 3m,$$ (3, 4, 5)

where m is a free parameter. Therefore, the lower bounds of $\sum m_\nu$ are 0 eV, 0.06 eV and 0.1 eV for DH, NH and IH, respectively. In this way, the total neutrino mass $\sum m_\nu$ as an additional parameter will be considered in our analysis.

In this paper, we make a global fit analysis on the different dark energy models, i.e. the ΛCDM+$\sum m_\nu$ model, the wCDM+$\sum m_\nu$ model, the CPL+$\sum m_\nu$ model, and the HDE+$\sum m_\nu$ model. We modify the publicly available Markov chain Monte-Carlo package CosmoMC [69] (that uses the Boltzmann solver CAMB [70]) to do the numerical calculations.

Here, we give a brief introduction to these dark energy models.

- The ΛCDM+$\sum m_\nu$ model: The model containing a cosmological constant Λ and cold dark matter is called the ΛCDM model, which can fit various cosmological observations well. For the ΛCDM+$\sum m_\nu$ model, the parameter space vector is:

$$P_1 \equiv (\omega_b, \omega_c, \Theta_1, \tau, n_s, \ln[10^{10}A_s], \sum m_\nu),$$ (6)

where $\omega_b \equiv \Omega_b h^2$ and $\omega_c \equiv \Omega_c h^2$ represent baryon and cold dark matter densities, respectively, Θ_1 is the ratio between sound horizon r_s and angular diameter distance D_A at the time of photon decoupling, τ is the optical depth to the reionization of the universe, n_s and A_s are the power-law spectral index and amplitude of the power spectrum of primordial curvature perturbations, respectively, and $\sum m_\nu$ is the total neutrino mass.

- The wCDM+$\sum m_\nu$ model: The wCDM model is the simplest dynamical dark energy model, in which the equation-of-state (EoS) parameter $w(z)$ is assumed to be a constant. For the wCDM+$\sum m_\nu$ model, the parameter space vector is:

$$P_2 \equiv (\omega_b, \omega_c, \Theta_1, \tau, n_s, \ln[10^{10}A_s], w, \sum m_\nu).$$ (7)

- The CPL+$\sum m_\nu$ model: For probing the evolution of $w(z)$, the most widely used parameterization model is the CPL model [13, 14]. The form of $w(z)$ in this model is given by

$$w(z) = w_0 + w_a (1 - a) = w_0 + w_a \frac{z}{1 + z},$$ (8)
Table 1. Fitting results of the cosmological parameters in the ΛCDM+$\sum m_\nu$ model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations.

Data	Planck+BAO+SNe	Planck+BAO+SNe+H_0	
	DH	NH	IH
H_0 (km s$^{-1}$ Mpc$^{-1}$)	67.75 + 0.49	67.48 ± 0.47	67.26 ± 0.45
Ω_m	0.3097 ± 0.0063	0.3126 ± 0.0063	0.3150 ± 0.0060
σ_8	0.812$^{+0.013}_{-0.008}$	0.801$^{+0.014}_{-0.008}$	0.793$^{+0.010}_{-0.008}$
$\sum m_\nu$ (eV)	<0.123	<0.156	<0.185
χ^2	3805.133	3807.205	3809.012

where w_0 and w_a are free parameters. So, for the CPL +$\sum m_\nu$ model, the parameter space vector is:

$$P_1 \equiv \left(\omega_0, \omega_a, \Theta, \tau, n_s, \ln[10^{10}A_s], w_0, w_a, \sum m_\nu\right).$$

(9)

- **The HDE+$\sum m_\nu$ model**: The HDE model is built based on the the effective quantum field theory together with the holographic principle of quantum gravity. We can put an energy bound on the vacuum energy density, $\rho_{de}L^3 \leq M_P^2 L$, where M_P is the reduced Planck mass, which means that the total energy in a spatial region with size L should not exceed the mass of a black hole with the same size [71]. The largest length scale that is compatible with this bound is the infrared cutoff size of this effective quantum field theory. An infrared scale can saturate that bound, and thus the dark energy density can be written as [15]

$$\rho_{de} = 3c^2 M_P^2 L^{-2},$$

(10)

where c is a dimensionless phenomenological parameter (note that here c is not the speed of light), which plays an important role in determining the properties of the HDE. The value of c determines the evolution of w. In the HDE model, the EoS can be expressed as

$$w = -\frac{1}{3} - \frac{2 \sqrt{\Omega_{de}}}{3c}.$$

(11)

According to this equation, we can find that in the early times $w \rightarrow -1/3$ (since $\Omega_{de} \rightarrow 0$) and in the far future $w \rightarrow -1/3 - 2/(3c)$ (since $\Omega_{de} \rightarrow 1$). Thus, when $c < 1$, we can find that the EoS parameter w crosses -1 during the cosmological evolution. For the HDE+$\sum m_\nu$ model, the parameter space vector is:

$$P_2 \equiv (\omega_0, \omega_a, \Theta, \tau, n_s, \ln[10^{10}A_s], c, \sum m_\nu).$$

(12)

The observational data sets used in this work include CMB, BAO, SNe, and H_0. Here we also briefly describe these observational data.

- **The CMB data**: We employ the CMB likelihood including the TT, TE, and EE spectra at $\ell \geq 30$, the low-ℓ temperature Commander likelihood, and the low-ℓ SimAll EE likelihood, from the Planck 2018 release [12].

- **The BAO data**: We employ the measurements of the BAO signals from different galaxy surveys, including the DR7 Main Galaxy Sample at the effective redshift of $z_{\text{eff}} = 0.15$ [72], the six-degree-field Galaxy Survey (6dFGS) at $z_{\text{eff}} = 0.106$ [73], and the latest BOSS data release 12 (DR12) in three redshift slices of $z_{\text{eff}} = 0.38, 0.51,$ and 0.61 [74].

- **The SNe data**: We use the latest SNe data given the Pantheon Sample [75], which contains 1048 SNe data in the redshift range of $0.01 < z < 2.3$.

- **The Hubble constant**: We use the result of the direct measurement of the Hubble constant, with the result of $H_0 = 74.03 \pm 1.42$ km s$^{-1}$ Mpc$^{-1}$, given by Riess et al [68].

In this study, our basic data combination is Planck+BAO+SNe. In addition, in order to investigate the impacts of the H_0 measurement on constraints on the neutrino mass, we also consider the data combination of Planck+BAO+SNe+H_0.

3. Results and discussion

In this section, we report the results of constraining the total neutrino mass from the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations. In our analysis, several typical dark energy models, i.e. the ΛCDM+$\sum m_\nu$ model, the wCDM+$\sum m_\nu$ model, the CPL+$\sum m_\nu$ model, and the HDE+$\sum m_\nu$ model, are investigated. In the meantime, we compare the results of the three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case. The main results are listed in tables 1–4 and shown in figures 1–4. The best-fit values of χ^2 in the various cases are also listed. The fit values of parameters are given at 68% C.L. (1σ), and the upper limits of the neutrino mass are given at 95% C.L. (2σ).

3.1. Cases in different dark energy models

Firstly, we compare the constraint results in the different dark energy models from the Planck+BAO+SNe data combination. In table 1, we can obtain $\sum m_\nu < 0.123$ eV for the DH case, $\sum m_\nu < 0.156$ eV for the NH case, $\sum m_\nu < 0.185$ eV for the IH case in the ΛCDM+$\sum m_\nu$ model (see figure 1). For the wCDM+$\sum m_\nu$ model, we have $\sum m_\nu < 0.155 \text{ eV (DH), } \sum m_\nu < 0.195 \text{ eV (NH), and } \sum m_\nu < 0.220 \text{ eV (IH)}$ corresponding to $w = -1.029 \pm 0.035 \text{ (DH), } w = -1.042 \pm 0.035 \text{ (NH), and } w = -1.051 \pm 0.035 \text{ (IH)}$, respectively (see table 2 and figure 2), and we find that the upper limits of $\sum m_\nu$ become larger, compared to the ΛCDM+$\sum m_\nu$ model. In the...
Table 2. Fitting results of the cosmological parameters in the ωCDM+Σm_ν model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations.

Data Mass ordering	Planck+BAO+SNe	Planck+BAO+SNe+H_0	
	DH	NH	IH
w	-1.029 ± 0.035	-1.042 ± 0.035	-1.051 ± 0.035
H_0 (km s$^{-1}$ Mpc$^{-1}$)	68.27 ± 0.83	68.23 ± 0.83	68.21 ± 0.81
Ω_m	0.3064 ± 0.0078	0.3076 ± 0.0078	0.3084 ± 0.0076
σ_8	0.819 ± 0.015	$0.811^{+0.015}_{-0.014}$	0.805 ± 0.014
Σm_ν (eV)	<0.155	<0.195	<0.220
χ^2	3805.053	3806.381	3807.724

Data Mass ordering	Planck+BAO+SNe	Planck+BAO+SNe+H_0	
	DH	NH	IH
w_0	-0.945 ± 0.087	-0.933 ± 0.089	-0.923 ± 0.089
w_a	$-0.41^{+0.44}_{-0.30}$	$-0.52^{+0.46}_{-0.32}$	$-0.61^{+0.46}_{-0.33}$
H_0 (km s$^{-1}$ Mpc$^{-1}$)	68.22 ± 0.83	68.19 ± 0.83	68.14 ± 0.84
Ω_m	0.3087 ± 0.0082	0.3102 ± 0.0083	0.3113 ± 0.0083
σ_8	$0.819^{+0.015}_{-0.015}$	$0.813^{+0.015}_{-0.015}$	$0.808^{+0.015}_{-0.015}$
Σm_ν (eV)	<0.247	<0.290	<0.305
χ^2	3804.644	3805.938	3806.531

Table 3. Fitting results of the cosmological parameters in the CPL+Σm_ν model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations.

Data Mass ordering	Planck+BAO+SNe	Planck+BAO+SNe+H_0	
	DH	NH	IH
c	$0.645^{+0.027}_{-0.031}$	$0.633^{+0.026}_{-0.030}$	$0.623^{+0.025}_{-0.029}$
H_0 (km s$^{-1}$ Mpc$^{-1}$)	67.85 ± 0.81	67.79 ± 0.79	67.74 ± 0.80
Ω_m	0.3061 ± 0.0077	0.3077 ± 0.0076	0.3087 ± 0.0076
σ_8	0.797 ± 0.013	0.789 ± 0.013	0.783 ± 0.013
Σm_ν (eV)	<0.080	<0.129	<0.163
χ^2	3822.977	3828.219	3830.980

Table 4. Fitting results of the cosmological parameters in the HDE+Σm_ν model for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, using the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations.

Data Mass ordering	Planck+BAO+SNe	Planck+BAO+SNe+H_0	
	DH	NH	IH
c	$0.608^{+0.023}_{-0.025}$	0.595 ± 0.024	$0.58^{+0.022}_{-0.024}$
H_0 (km s$^{-1}$ Mpc$^{-1}$)	69.37 ± 0.72	69.33 ± 0.71	69.27 ± 0.71
Ω_m	0.2927 ± 0.0065	0.2939 ± 0.0065	0.2951 ± 0.0065
σ_8	0.811 ± 0.013	0.803 ± 0.012	0.796 ± 0.12
Σm_ν (eV)	<0.075	<0.123	<0.159
χ^2	3838.467	3845.127	3845.289

CPL+Σm_ν model, the neutrino mass bounds are greatly relaxed (see table 3 and figure 3), and they are $\Sigma m_\nu < 0.247$ eV (DH), $\Sigma m_\nu < 0.290$ eV (NH), and $\Sigma m_\nu < 0.305$ eV (IH). As is shown in figure 3, we find that a phantom dark energy (i.e. $w < -1$) or an early phantom dark energy (i.e. the quintom evolving from $w < -1$ to $w > -1$) is slightly more favored by current cosmological observations, which leads to the fact that a larger upper limit of Σm_ν is obtained in the ωCDM+Σm_ν and CPL+Σm_ν models. For the HDE+Σm_ν model, an early quintessence dark energy with $c < 1$ (i.e. the quintom eVolving from $w < -1$ to $w > -1$) is favored, and we could obtain the most stringent upper limits of the neutrino mass with $\Sigma m_\nu < 0.080$ eV (DH), $\Sigma m_\nu < 0.129$ eV (NH), $\Sigma m_\nu < 0.163$ eV (IH), as also shown in table 4 and figure 4.

In addition, we can compare the best-fit χ^2 values of these models, which are listed in tables 1–4. For the ωCDM+Σm_ν model, the χ^2 values in the same neutrino mass hierarchy are slightly smaller than those of the ΛCDM+Σm_ν model, at the price of adding one more parameter. We obtain the smallest χ^2 values in the CPL+Σm_ν model, since this model has the most free parameters. For the HDE+Σm_ν model, the most stringent upper limits of Σm_ν can be obtained, but the χ^2 values are much larger than those of the ΛCDM+Σm_ν model.
For all these models, we discuss the fitting results in the different neutrino mass hierarchies. The prior of the lower bounds of $\sum m_\nu$ are 0 eV, 0.06 eV and 0.1 eV for DH, NH and IH, respectively, which can affect the constraint results of $\sum m_\nu$ significantly. In tables 1–4, the upper limits of $\sum m_\nu$ for the NH case are smaller than those for the IH case in these dark energy models. What’s more, we find that the χ^2 values in the NH case is slightly smaller than those in the IH case for all these models, which indicates that the NH case fits the current observations better than the IH case. This conclusion is still consistent with the previous studies [23, 44, 46, 49, 53, 54, 60, 61].

3.2. Adding the H_0 measurement in data combination

In this subsection, we report the constraint results from the Planck+BAO+SNe data combination and investigate the impact of the H_0 measurement on the fit results of $\sum m_\nu$.

Figure 1. Left: the one-dimensional marginalized posterior distributions for $\sum m_\nu$ using the Planck+BAO+SNe and Planck+BAO+SNe+H_0 data combinations in the ΛCDM+$\sum m_\nu$ model. Right: the two-dimensional marginalized contours (1σ and 2σ) in the $\sum m_\nu$-H_0 plane for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe data combination in the ΛCDM+$\sum m_\nu$ model.

Figure 2. The two-dimensional marginalized contours (1σ and 2σ) in the $\sum m_\nu$–w and H_0–w planes for three neutrino mass hierarchy cases, i.e. the DH case, the NH case, and the IH case, by using Planck+BAO+SNe data combination in the wCDM+$\sum m_\nu$ model.
As is shown in table 1, we have $\sum m_\nu < 0.082 \text{ eV}$ for the DH case, $\sum m_\nu < 0.125 \text{ eV}$ for the NH case, and $\sum m_\nu < 0.160 \text{ eV}$ for the IH case in the ΛCDM+$\sum m_\nu$ model. Adding the H_0 data leads to a higher H_0 value in the cosmological fit. From the right panel of figure 1, we can see that $\sum m_\nu$ is anti-correlated with H_0 in the ΛCDM+$\sum m_\nu$ model. Therefore, we obtain a smaller upper limit of $\sum m_\nu$ with the Planck+BAO+SNe data combination than that with the Planck+BAO+SNe data combination, which can be clearly seen in the left panel of figure 1.

With the Planck+BAO+SNe+H_0 data combination, we have $\sum m_\nu < 0.145 \text{ eV}$ (DH), $\sum m_\nu < 0.183 \text{ eV}$ (NH), $\sum m_\nu < 0.210 \text{ eV}$ (IH) in the ΛCDM+$\sum m_\nu$ model (see table 2); we have $\sum m_\nu < 0.216 \text{ eV}$ (DH), $\sum m_\nu < 0.255 \text{ eV}$ (NH), $\sum m_\nu < 0.281 \text{ eV}$ (IH) in the CPL+$\sum m_\nu$ model (see table 3); we have $\sum m_\nu < 0.075 \text{ eV}$ (DH), $\sum m_\nu < 0.123 \text{ eV}$ (NH), $\sum m_\nu < 0.159 \text{ eV}$ (IH) in the HDE+$\sum m_\nu$ model (see table 4). In all these models, we find that the inclusion of the H_0 data gives a tighter constraint on $\sum m_\nu$.

4. Conclusion

In this paper, using the latest cosmological observations (including the Planck 2018 CMB data), we have obtained $\sum m_\nu < 0.123 \text{ eV}$ (DH), $\sum m_\nu < 0.156 \text{ eV}$ (NH), and $\sum m_\nu < 0.185 \text{ eV}$ (IH) in the ΛCDM+$\sum m_\nu$ model with the Planck+BAO+SNe data combination. In addition, we also consider the influence of dynamical dark energy on the constraint results of $\sum m_\nu$. We investigate the cases of the ΛCDM+$\sum m_\nu$ model, the CPL+$\sum m_\nu$ model, and the HDE+$\sum m_\nu$ model, and we find that the nature of dark energy could significantly affect the constraints on the total neutrino mass. Compared to the ΛCDM+$\sum m_\nu$ model, the upper limits of the
total neutrino mass become larger in the wCDM+$\sum m_\nu$ and CPL+$\sum m_\nu$ models. Using the Planck+BAO+SNe data combination, the most stringent upper limits of the neutrino mass, i.e. $\sum m_\nu < 0.080$ eV (DH), $\sum m_\nu < 0.129$ eV (NH), and $\sum m_\nu < 0.163$ eV (IH), are obtained in the HDE+$\sum m_\nu$ model.

Comparing the values of χ^2 between the NH and IH cases, it is found that the NH case fits the current cosmological observations better than the IH case, indicating that the neutrino mass hierarchy is more likely to be the NH case according to the current cosmological data. In addition, it is also found that the inclusion of the local measurement of the Hubble constant in the data combination will lead to a tighter constraint on the total neutrino mass for all the dark energy models considered in this work.

Acknowledgments

We thank Hai-Li Li, Jing-Zhao Qi, and Yun-He Li for helpful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, 11835009, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), and the Top-Notch Young Talents Program of China (Grant No. W02070050).

References

[1] Fukuda Y et al (Super-Kamiokande Collaboration) 1998 Phys. Rev. Lett. 81 1562
[2] Ahmad Q et al (SNO Collaboration) 2002 Phys. Rev. Lett. 89 011301
[3] Olive K et al (Particle Data Group) 2014 Chin. Phys. C 38 090001
[4] Xing Z 2020 Phys. Rep. 854 1–147
[5] Abazajian K et al (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Collaboration) 2015 Astropart. Phys. 63 66
[6] Lesgourgues J and Pastor S 2006 Phys. Rep. 429 307
[7] Wang Y Y Y 2011 Ann. Rev. Nucl. Part. Sci. 61 69
[8] Lesgourgues J and Pastor S 2012 Adv. High Energy Phys. 2012 608515
[9] Lesgourgues J and Pastor S 2014 New J. Phys. 16 065002
[10] Archidiacono M, Brinckmann T, Lesgourgues J and Poulin V 2017 J. Cosmol. Astropart. Phys. JCAP02(2017)052
[11] Lattanzi M and Gerbino M 2018 Front. Phys. 5 70
[12] Aghanim N (Planck) et al 2020 Astron. Astrophys. 641 A6
[13] Chevallier M and Polarski D 2001 Int. J. Mod. Phys. D 10 213
[14] Linder E V 2003 Phys. Rev. Lett. 90 091301
[15] Li M 2004 Phys. Lett. B 603 1
[16] Huang Q G and Li M 2004 J. Cosmol. Astropart. Phys. JCAP08(2004)013
[17] Zhang J F, Zhao M M, Cui J L and Zhang X 2014 Eur. Phys. J. C 74 3178
[18] Wang S, Wang Y and Li M 2017 Phys. Rep. 696 1
[19] Wang S, Geng J J, Hu Y L and Zhang X 2015 Sci. China Phys. Mech. Astron. 58 019801
[20] Cui J, Xu Y, Zhang J and Zhang X 2015 Sci. China Phys. Mech. Astron. 58 110402
[21] He D Z, Zhang J F and Zhang X 2017 Sci. China Phys. Mech. Astron. 60 039511
[22] Xu Y Y and Zhang X 2016 Eur. Phys. J. C 76 588
[23] Roy Choudhury S and Hannestad S 2019 JCAP JCAP07 (2020)03
[24] Reid B A, Verde L, Jimenez R and Mena O 2010 J. Cosmol. Astropart. Phys. JCAP01(2010)003
[25] Thomas S A, Abdalla F B and Lahav O 2010 Phys. Rev. Lett. 105 031301
[26] Carbone C, Verde L, Wang Y and Cimatti A 2011 J. Cosmol. Astropart. Phys. JCAP03(2011)030
[27] Li H and Zhang X 2012 Phys. Lett. B 713 160
[28] Li Y H, Wang S, Li X D and Zhang X 2013 J. Cosmol. Astropart. Phys. JCAP02(2013)033
[29] Audren B, Lesgourgues J, Bird S, Hahnelt M G and Viel M 2013 J. Cosmol. Astropart. Phys. JCAP01(2013)026
[30] Riemer-Sörensen S, Parkinson D and Davis T M 2014 Phys. Rev. D 89 103505
[31] Zhang J F, Li Y H and Zhang X 2015 Phys. Lett. B 740 359
[32] Zhang J F, Li Y H and Zhang X 2014 Eur. Phys. J. C 74 2954
[33] Zhang J F, Geng J J and Zhang X 2014 J. Cosmol. Astropart. Phys. JCAP10(2014)044
[34] Palanque-Delabrouille N et al 2015 J. Cosmol. Astropart. Phys. JCAP02(2015)045
[35] Li Y H, Zhang J F and Zhang X 2015 Phys. Rev. B 744 213
[36] Zhang J F, Zhao M M, Li Y H and Zhang X 2015 J. Cosmol. Astropart. Phys. JCAP04(2015)038
[37] Geng C Q, Lee C C, Myrzakulov R, Sami M and Saridakis E N 2016 J. Cosmol. Astropart. Phys. JCAP01(2016)049
[38] Chen Y and Xu L 2016 Phys. Lett. B 752 66
[39] Allison R, Cauca P, Calabrese E, Dunkley J and Louis T 2015 Phys. Rev. D 92 123535
[40] Cuesta A J, Niro V and Verde L 2016 Phys. Dark Univ. 13 77
[41] Chen Y, Ratra B, Biesiada M, Li S and Zhu Z H 2016 Astrophys. J. 829 61
[42] Lu J, Liu M, Wu Y, Wang Y and Yang W 2016 Eur. Phys. J. C 76 679
[43] Kumar S and Nunes R C 2016 Phys. Rev. D 94 123511
[44] Xu L and Huang Q G 2018 Sci. China Phys. Mech. Astron. 61 093521
[45] Vagnozzi S, Giusarma E, Mena O, Freese K, Gerbino M, Ho S and Lattanzi M 2017 Phys. Rev. D 96 123503
[46] Zhang X 2017 Sci. China Phys. Mech. Astron. 60 060431
[47] Zhang X 2016 Phys. Rev. D 93 083011
[48] Lorenz C S, Calabrese E and Alonso D 2017 Phys. Rev. D 96 043510
[49] Zhao M M, Zhang J F and Zhang X 2018 Phys. Lett. B 779 473
[50] Vagnozzi S, Dhawan S, Gerbino M, Freese K, Goobar A and Mena O 2018 Phys. Rev. D 98 083501
[51] Wang L F, Zhang X N, Zhang J F and Zhang X 2018 Phys. Lett. B 782 87
[52] Zhang J F, Wang B and Zhang X 2020 Sci. China Phys. Mech. Astron. 63 230411
[53] Guo R Y, Zhang J F and Zhang X 2018 Chin. Phys. C 42 095103
[54] Zhao M, Guo R, He D, Zhang J and Zhang X 2020 Sci. China Phys. Mech. Astron. 63 230412
[55] Loureiro A et al 2019 Phys. Rev. Lett. 123 081301
[56] Huang Q G, Wang K and Wang S 2016 Eur. Phys. J. C 76 489
[57] Bellomo N, Bellini E, Hu B, Jimenez R, Pena-Garay C and Verde L 2017 J. Cosmol. Astropart. Phys. JCAP02 (2017)043
[58] Hu B and Torrado J 2015 Phys. Rev. D 91 064039
[59] Xu L 2016 J. Cosmol. Astropart. Phys. JCAP08(2016)059
[60] Wang S, Wang Y F, Xia D M and Zhang X 2016 Phys. Rev. D 94 083519
[61] Feng L, Li H L, Zhang J F and Zhang X 2020 Sci. China Phys. Mech. Astron. 63 230401
[62] Diaz Rivero A, Miranda V and Dvorkin C 2019 *Phys. Rev. D* **100** 063504
[63] Miranda V and Dvorkin C 2018 *Phys. Rev. D* **98** 043537
[64] Ballardini M, Braglia M, Finelli F, Paoletti D, Starobinsky A A and Umiltaš C 2020 arXiv:2004.14349 [astro-ph.CO]
[65] Hagstotz S, de Salas P F, Gariazzo S, Gerbino M, Lattanzi M, Vagnozzi S, Freese K and Pastor S 2020 arXiv:2003.02289 [astro-ph.CO]
[66] Vagnozzi S 2019 arXiv:1907.08010 [astro-ph.CO]
[67] Giusarma E, Vagnozzi S, Ho S, Ferraro S, Freese K, Kamen-Rubio R and Luk K B 2018 *Phys. Rev. D* **98** 123526
[68] Riess A G, Casertano S, Yuan W, Macri L M and Scolnic D 2019 *Astrophys. J.* **876** 85
[69] Lewis A and Bridle S 2002 *Phys. Rev. D* **66** 103511
[70] Lewis A, Challinor A and Lasenby A 2000 *Astrophys. J.* **538** 473
[71] Cohen A G, Kaplan D B and Nelson A E 1999 *Phys. Rev. Lett.* **82** 4971
[72] Ross A J, Samushia L, Howlett C, Percival W J, Burden A and Manera M 2015 *Mon. Not. R. Astron. Soc.* **449** 835
[73] Beutler F et al 2011 *Mon. Not. R. Astron. Soc.* **416** 3017
[74] Alam S et al (BOSS Collaboration) 2017 *Mon. Not. R. Astron. Soc.* **470** 2617
[75] Scolnic D M et al 2018 *Astrophys. J.* **859** 101

Commun. Theor. Phys. 72 (2020) 125402

M Zhang et al