Dabigatran approaching the realm of heparin-induced thrombocytopenia

Patricia J Ho, Juan A Siordia
Department of Surgery, Baylor College of Medicine, Houston, Texas, USA

Abstract
Heparin-induced thrombocytopenia (HIT) is a serious, immune mediated complication of exposure to unfractionated or low-molecular-weight heparin. Though rare, it is a condition associated with high morbidity and mortality that requires immediate change to alternative anticoagulants for the prevention of life-threatening thrombosis. The direct thrombin inhibitors lepirudin and argatroban are currently licensed for the treatment of HIT. Dabigatran, a novel oral anticoagulant (NOAC) with a similar mechanism of action and effective use in other indications, has recently been proposed as another therapeutic option in cases of HIT. This review serves as an introduction to using dabigatran for this purpose, detailing the clinical aspects of its administration, evidence of its performance compared to other anticoagulants, and the preliminary reports of HIT successfully treated with dabigatran. As the literature on this develops, it will need to include clinical trials that directly evaluate dabigatran against the other NOACs and current treatment options.

Key Words
Dabigatran, Anticoagulation, Heparin-induced thrombocytopenia

INTRODUCTION

Heparin-induced thrombocytopenia (HIT) is an immune mediated, prothrombotic adverse reaction to unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH). These heparin products form multimolecular complexes with platelet factor 4 (PF4) which are antigenic, resulting in the formation of IgG platelet activating antibodies against the heparin/PF4 complex. The immune complexes comprised of the heparin/PF4 complexes and the antibodies in turn bind to the FcγIIa (IgG) receptors of platelets, inducing a sequence of platelet activation, platelet aggregation, and procoagulant platelet-derived microparticle generation (Fig. 1). This process ultimately leads to platelet consumption and thrombin generation, thus resulting in thrombocytopenia and a paradoxical risk for venous and arterial thrombosis [1, 2].

HIT is divided into two clinical entities, HIT type I and HIT type II. HIT type I is a benign transient mild thrombocytopenia that occurs early on in heparin therapy and usually resolves with continued exposure. It is non-immune and results from the direct effect of heparin on platelets causing aggregation and splenic sequestration. HIT type I is not associated with thromboembolic events. On the other hand, HIT type II is a severe persistent immune mediated reaction that develops after several days of heparin exposure and may lead to thrombosis, amputation, and even death. Heparin treatment must be discontinued immediately in cases of HIT type II [2]. For the purposes of this review, the term HIT will be used to refer to HIT type II.

Treatment for HIT consists of discontinuing heparin and starting alternative anticoagulation. In the United Kingdom, the alternative anticoagulants licensed for use in HIT are argatroban and danaparoid [3]. In the United States, the only drugs currently approved by the Food and Drug Administration (FDA) for treatment of HIT are argatroban and lepirudin [4].

Dabigatran, the first oral direct thrombin inhibitor (DTI) marketed in the United States, has several advantages as an anticoagulant, including its route of administration, rapid onset of action, predictable and consistent anticoagulation profile, reversibility, and safety. Dabigatran therapy does not require routine coagulation monitoring or dose titration, unlike warfarin. By virtue of its composition and mechanism of action, it does not interact with HIT antibodies and poses no risk of cross-reactivity [5]. It has been shown to be superior and non-inferior to enoxaparin and warfarin in various other applications, including venous thromboembolism (VTE) prophylaxis, acute VTE treatment, and stroke prevention in non-valvular atrial fibrillation (AF) patients [6]. These characteristics...
Fig. 1. Pathophysiology of Heparin-Induced Thrombocytopenia (HIT) and new oral anticoagulants. Heparin-induced thrombocytopenia is an immune-mediated complication of exposure to unfractionated or low-molecular-weight heparin. Platelet factor 4 (PF4) released from α-granule of platelet binds to polyanions such as bacteria and heparin, and exposes previously masked epitope, which leads to formation of anti-PF4-IgG antibodies. These antibodies have ability to bind PF4-heparin complexes, and the PF4-heparin-IgG immune complex activates platelets through binding to FcγRIIa of the platelets, which in turn activates and aggregates platelets. The release of additional PF4 from activated platelets and thrombin activation lead to increased consumption of platelets and eventually thrombocytopenia. The immune complexes also activate monocytes through binding to FcγRI, which can stimulate production of tissue factors from endothelial cells. Dabigatran, a univalent direct thrombin inhibitor, and the FXa inhibitors such as rivaroxaban and apixaban, could serve as an alternative anticoagulants for HIT and thrombosis prophylaxis. Abbreviations: PF4, platelet factor 4; TF, tissue factor; IIa, thrombin; Va, activated factor V; Xa, activated factor X; VIIIa, activated factor VIII; IXa, activated factor IX; AT, antithrombin.

have led to investigations into dabigatran’s potential to be a convenient, effective, and well tolerated treatment for HIT.

CURRENT GUIDELINES FOR HIT

Current medications used for heparin-induced thrombocytopenia include lepirudin, danaparoid, and argatroban. Lepirudin is a recombinant hirudin, a direct, specific, and irreversible thrombin inhibitor. Its pharmacokinetics depend strongly on renal function and immunogenicity [7]. Lepirudin requires strict laboratory monitoring, especially in patients undergoing cardiopulmonary bypass surgery and those who have impaired renal function. The lack of an antidote to lepirudin can also be a problem in patients on hemofiltration with high-flux filter systems, hemodialysis and plasmapheresis are the only treatments available for hirudin overdose [8]. Lepirudin is no longer used in the US due to reports of anaphylactic reactions with repeated exposure, leading to its withdrawal by the manufacturer in spring 2012, despite retrospective studies concluded that its overall benefit in treating HIT outweighed this risk [9, 10].

Danaparoid is a heparinoid mixture of heparan sulfate, dermatan sulfate, and chondroitin sulfate with predominantly antifactor Xa and some anti-Factor IIa activity [7]. Unique to drugs used for HIT, danaparoid specifically suppresses HIT antibody-induced platelet activation by replacing heparin/PF4 complexes on the platelet surface [11]. Due to its composition, danaparoid can rarely demonstrate cross-reactivity with HIT antibodies associated with high rates of thrombotic complications and mortality [12]. In one large retrospective study, 49% of patients with confirmed cross-reactivity experienced thromboembolic complications with an attributable death rate of 17%. Routine clinical and platelet monitoring is required, and patients with new/persistent platelet count reduction and/or new/extended thrombo-
Dabigatran and HIT

Dabigatran was the first oral direct thrombin inhibitor (DTI) marketed in the United States as well as the first of the group of drugs known as novel or non-vitamin K antagonist oral anticoagulants (NOACs) [17, 18]. Its prodrug, dabigatran etexilate, was first patented in 1997 [19]. Since 2010, dabigatran has been approved by the U.S. Food and Drug Administration (FDA) for the prevention of stroke and systemic embolism in patients with nonvalvular AF, treatment of deep venous thrombosis (DVT) and pulmonary embolism (PE) in patients who have been administered a parenteral anticoagulant for five to ten days, reduction of the risk of recurrence of DVT and PE in patients previously treated with other anticoagulants, and prophylaxis of DVT and PE following hip replacement surgery [5, 17, 20]. In Europe, dabigatran has been licensed for VTE prevention in adult patients undergoing elective total hip or knee replacement since 2008 [19, 21].

Dabigatran is a reversible, competitive inhibitor of thrombin, to which it binds in both freely circulating and clot-bound forms. Like other NOACs, its mechanism of action does not interfere with the interaction of platelets and PF4 or that of antibodies with the heparin/PF4 complex [21].

Dabigatran etexilate undergoes liver hydrolylation to dabigatran, its active metabolite. While a study showed that bioconversion is slower in patients with hepatic impairment, overall this observation does not significantly affect the safety profile of dabigatran [22]. The manufacturer accordingly recommends no dose adjustment in patients with moderate hepatic impairment [20]. However, the European Medicines Agency (EMA) summary of product characteristics advises against the use of dabigatran in patients with hepatic impairment or liver disease expected to have any impact on survival [23].

Excretion of dabigatran, on the other hand, is predominantly renal (approximately 80%, much higher than that of all other NOACs to date) [24, 25]. Accordingly, there are guidelines for dose adjustment in patients with decreased creatinine clearance (CrCl) [18, 20, 26]. The 2015 United States dosing recommendations (Table 1) state that in patients with creatinine clearance less than 30 mL/min—i.e., those with severe renal impairment or stage IV chronic kidney disease—dabigatran is contraindicated for VTE treatment, reduction of VTE recurrence risk, and VTE prophylaxis following hip replacement. However, in patients with creatinine clearance 15-30 mL/min, it may still be used in non-valvular AF at 75 mg twice daily (BID), half the standard dose of 150 mg BID. This reduced dose is also recommended for patients with CrCl 30-49 mL/min and concomitant use of P-glycoprotein inhibitors, such as verapamil, dronedarone, and systemic ketoconazole [20]. The EMA prescribing guidelines do not recommend dabigatran for any use in patients with CrCl less than 30 mL/min. The European Society of Cardiology guidelines advise that physicians consider a pre-

Table 1. Dabigatran dosing recommendations in USA [20].

Indication	Renal function	Dosage
Reduction in risk of stroke and systemic embolism in nonvalvular AF	CrCl > 30 mL/min	150 mg BID
	CrCl 15-30 mL/min	75 mg BID
	CrCl < 15 mL/min or on dialysis	No recommendations
	With concomitant P-gp inhibitor use:	
	CrCl 30-50 mL/min	75 mg BID
	CrCl 15-30 mL/min	Contraindicated
	CrCl > 30 mL/min	150 mg BID
Treatment of DVT and PE	CrCl ≤ 30 mL/min or on dialysis	No recommendations
	With concomitant P-gp inhibitor use:	
	CrCl < 50 mL/min	Contraindicated
Reduction in the risk of recurrence of DVT and PE	CrCl > 30 mL/min	110 mg on D1 then 220 mg OD
	CrCl ≤ 30 mL/min or on dialysis	No recommendations
	With concomitant P-gp inhibitor use:	
	CrCl < 50 mL/min	Contraindicated
Prophylaxis of DVT and PE following hip replacement surgery		

Abbreviations: CrCl, creatinine clearance; BID, twice daily; OD, once daily; D1, first day; P-gp, P-glycoprotein; AF, atrial fibrillation; DVT, deep vein thrombosis; PE, pulmonary embolism.
cription of 110 mg BID rather than 150 mg BID in patients with the following: age ≥80, concomitant use of interacting drugs, HAS-BLED score ≥3, or CrCl 30–49 mL/min [23, 27].

Advanced hepatic and renal impairment thus have implications for plasma and serum dabigatran concentration. Dabigatran, like other NOACs, does not require routine laboratory monitoring [18]. However, assessment of its anticoagulant effect may be warranted in emergent situations or cases where inordinately high or low drug levels are suspected [28]. Hemoclot thrombin inhibitor, dilute thrombin time (dTT), and ecarin clotting time (ECT) allow for quantification of dabigatran levels, but these assays are not widely available [29, 30]. Studies have found that activated partial thromboplastin time (aPTT) has a curvilinear relationship with dabigatran. A prolonged aPTT suggests therapeutic or supratherapeutic levels and may be reliably used for semi-quantitative monitoring; a normal aPTT does not exclude the presence of dabigatran [26, 31, 32]. However, aPTT reagents from different laboratories vary widely in their sensitivity to dabigatran and should be calibrated for such use. PT/INR is insufficiently sensitive to dabigatran and should not be used in the evaluation of its anticoagulant effect [31, 33]. The standard thrombin time (TT) is oversensitive to dabigatran and is best used to determine only the presence or absence of residual drug [30, 34]. Overall, aPTT, Hemoclot thrombin inhibitor, and ECT are considered the most appropriate tests for assessing the anticoagulant effect of dabigatran [26, 28, 35].

Likewise, under certain emergent circumstances the reversal of dabigatran is desirable. The specific antidote idarucizumab, a monoclonal antibody fragment, has recently been approved by the FDA. Idarucizumab binds dabigatran with an affinity 350 times that of the binding between dabigatran and thrombin; the idarucizumab-dabigatran complexes, which are unable to bind thrombin, are cleared by the kidneys. The agent has been found to normalize dTT, ECT, aPTT, and TT within minutes in a dose-dependent fashion [36, 37]. In phase I trials with healthy volunteers, idarucizumab was found to achieve rapid, complete, and sustained reversal of dabigatran-induced anticoagulation without significant adverse effects [38]. Additionally, in the absence of dabigatran, idarucizumab has no effect on coagulation parameters or endogenous thrombin potential [39]. The initial findings of the phase III Reversal Effects of Idarucizumab on Active Dabigatran (RE-VERSE AD) study show that 5 g of intravenous idarucizumab was sufficient to completely reverse anticoagulation within minutes in 88–98% of patients. There were no safety concerns among this preliminary cohort, which consisted of 90 patients who either had serious bleeding or required an urgent procedure [40]. The European Heart Rhythm Association recommends 5 g of intravenous idarucizumab for cases of life-threatening bleeding or intracranial hemorrhage secondary to dabigatran anticoagulation [26]. There is some data suggesting that dabigatran may be reinitiated 24 hours after reversal with idarucizumab without altering the level of anticoagulation achieved. Re-exposure to idarucizumab appears to be safe and equally effective as first time treatment [41].

In cases where idarucizumab is not available, activated charcoal may help to reduce continued absorption in cases of overdose if administered within two to three hours of ingestion. Dabigatran is dialyzable due to its low protein binding, making hemodialysis another feasible treatment; however, dialysis is challenging in cases with hemodynamic instability [42]. Prothrombin complex concentrate (PCC) and activated PCC, though not licensed for this usage, are capable of reversing dabigatran-induced anticoagulation in a dose-dependent manner. However, they have no significant effect on aPTT or levels of dabigatran and there are at present no established dosing strategies for this purpose [43, 44].

Dabigatran has been studied in four large randomized controlled trials comparing it to warfarin, all of which concluded that dabigatran is noninferior and is associated with a lower risk of bleeding. In the RE-LY trial by Connolly et al. [45], 18,113 patients with AF at risk for stroke were randomly assigned to receive dabigatran 110 mg BID, dabigatran 150 mg BID, or dose-adjusted warfarin (INR goal 2.0–3.0). In comparison with warfarin, dabigatran 110 mg BID was not inferior in terms of stroke and systemic embolism rates, as well as superior in risk for major hemorrhage. Dabigatran 150 mg BID was superior to warfarin with respect to the primary outcomes of stroke and systemic embolism, but had similar rates of major hemorrhage. There was no significant higher risk of acute coronary syndromes with dabigatran. Later reevaluations of the database led to the identification of additional adverse events as well as events previously not reported due to their association with a death. Inclusion of these newly identified events did not alter the conclusions of the study [46, 47]. The RE-LY trial demonstrated that the benefits of dabigatran over warfarin were similar in hypertensive and non-hypertensive patients [48]; another, that these benefits were greater in diabetic patients compared to non-diabetics [49]. A third analysis found that decline in renal function, which occurred in all treatment groups, was greater in patients taking warfarin versus those assigned to dabigatran [50].

In the two-part RE-COVER study conducted by Schulman et al., the efficacy and safety of dabigatran versus warfarin in the treatment of acute VTE—including both DVT and PE—was evaluated in 2,564 patients. In part one of the trial, subjects received either dabigatran 150 mg BID or dose-adjusted warfarin (INR goal 2.0–3.0) for six months after initial therapy with parenteral anticoagulation. The results demonstrated that dabigatran is not inferior to dose-adjusted warfarin in the prevention of recurrent or fatal VTE. Safety outcomes were also similar between the two drugs. Notably, the incidences of major and minor bleedings were reduced with dabigatran [51]. In the RE-COVER II, 2,589 patients initially received parenteral anticoagulation with warfarin or warfarin-placebo. Afterward, patients received either dabigatran 150 mg BID with a warfarin placebo or warfarin (INR goal 2.0–3.0) with a dabigatran placebo. Six months of intervention produced results that confirmed those of...
RE-COVER I; dabigatran was as effective as warfarin for treatment of acute VTE, with a lower risk of bleeding and no requirement for laboratory monitoring [52]. Schulman et al. [53] went on to conduct two more trials, which compared dabigatran 150 mg BID with warfarin (RE-MEDY, active-control study) and placebo (RE-SONATE, placebo-control study) in patients with VTE who had already completed at least three months of initial therapy. In the active-control study, dabigatran was not inferior to warfarin for the prevention of VTE, once again with a lower risk of bleeding. In the placebo-control study, dabigatran significantly reduced the rate of recurrent VTE but also showed a significantly higher risk of bleeding. The benefit of treatment with dabigatran was maintained during extended follow-up after the study drug was discontinued. The authors noted that the efficacy of dabigatran and its risk of clinically relevant bleeding versus placebo is similar to that of rivaroxaban compared to placebo. As in the RE-LY trial, there was a higher rate of acute coronary events with dabigatran than warfarin.

DABIGATRAN FOR HIT

There are several reported cases of dabigatran being used for HIT (Table 2). A 67-year-old female with a femoral fracture who developed DVT despite the use of enoxaparin prophylaxis and a platelet count decrease from $173 \times 10^9/L$ to $32 \times 10^9/L$. Dabigatran 110 mg BID was initiated and improved the platelet count in a few days to $236 \times 10^9/L$. The patient’s thrombus recanalized without complications [54].

Another reported case was a 67-year-old female with a history of AF who received heparin for portal vein thrombosis secondary to essential thrombocytopenia. Seven days after the initiation of heparin, the patient’s platelet count had decreased from $1,000 \times 10^9/L$ to $120 \times 10^9/L$. She was found positive for heparin/PF4 antibodies and also developed a pulmonary embolism. The patient was initially started on

Study	Patients (age/gender)	Indication for anti-coagulation	Type of heparin (exposure duration)	Nadir platelet count, $10^9/\mu L$ (time from heparin initiation)	HIT-related thrombotic events	Tx drug	Tx duration	Tx related Cx
Aboachakra, 2015 [62]	53/M with diabetes	Cardiac catheterization & CABG	LMWH (NR)	25 (NR)	AT	Rivaroxaban	NR	None
Anniccherico, 2012 [55]	67/F with ET	Portal VT	UFH (4d)	123 (12d)	PE	Dabigatran	NR	None
Bircan, 2016 [57]	57/F	Total knee replacement	LMWH (11d)	50 (14d)	DVT, PE	Dabigatran	NR	None
Fieland, 2012 [56]	70/M with history of AF	CABG with postop AF	UFH (6d)	80 (NR)	None	Dabigatran	7d	None
Hantson, 2014 [60]	36/M	Orthopedic surgery	LMWH (NR)	25 (12d)	AT	Rivaroxaban	NR	None
Larsen, 2015 [67]	72/F	PE	LMWH (NR)	84 (20d)	None	Apixaban	3.5 mo	None
Mirdamadi, 2013 [54]	67/NR	Femoral fracture	LMWH (14d)	32 (14d)	DVT	Dabigatran	10d	None
Ng, 2014 [59]	63/F with ESRD 46/M	Hemodialysis	UFH (9d)	61 (10d)	DVT	Rivaroxaban	22d	None
		Embolectomy for critical limb ischemia	UFH (13d)	18 (13d)	DVT, PE	Rivaroxaban	15 mo (LA +)	None
		Left upper limb DVT & PE	LMWH (3d)	28 (4d)	DVT	Rivaroxaban	10w	None
Sartori, 2015 [61]	68/M	Lower limb DVT 56d after surgery	LMWH (6d)	161 (6d)	None	Rivaroxaban	3 mo	None
Sharifi, 2014 [68]	N=22 M/F 15/7 Mean 72 yrs	CABG (2), Surgery (2), AF (3), Confirmed VTE (4), Suspected VTE (5), Prophylaxis (6)	UFH and/or LMWH (NR)	Mean 82.1 (NR)	DVT (5), Superficial VT (2)	Argatroban & Rivaroxaban (11), Dabigatran (6), Apixaban (5)	Mean 32 h then 3-6 mo	None
Tardy-Poncet, 2015 [63]	71/F	Total knee replacement	UFH periop only	56 (18d)	None	Rivaroxaban & Dabigatran	21d then NR	None

*Abbreviations: Tx, Treatment; Cx, complications; NR, not reported; AT, Arterial thrombosis; DVT, deep vein thrombosis; VT, venous thrombosis; PE, pulmonary embolism; UFH, unfractionated heparin; LMWH, low-molecular-weight heparin; VTE, venous thromboembolism; HIT, heparin-induced thrombocytopenia; ET, essential thrombocytopenia; ESRD, end stage renal failure; LA, lupus anticoagulant; AF, atrial fibrillation; CABG, coronary artery bypass graft.

*History of prior exposure. b)Due to persistent thrombocytopenia.
lepirudin but after 36 hours was switched to dabigatran. The platelet count doubled after 48 hours of dabigatran therapy, followed by resolution of the pulmonary emboli [55].

Fieland and Taylor [56], contributed the case of a 70-year-old male with a history of paroxysmal AF who underwent a coronary artery bypass grafting (CABG) procedure. The patient developed AF on post-operative day two and was started on dabigatran 150 mg BID on post-operative day four. Also on post-operative day four, heparin/PF4 antibodies came back positive. The patient was transitioned from dabigatran to warfarin on post-operative day eight. At outpatient follow-up, there were no complaints of bleeding or thrombosis. While dabigatran was given for the FDA-approved use of AF anticoagulation, it also proved useful for HIT therapy in this case.

Finally, Bircan and Alanoglu recently presented the case of a 57-year-old female who received prophylactic enoxaparin for unilateral total knee replacement. She had normal platelet counts of 313×10^9/L before and 181×10^9/L after surgery. On day 11 of prophylaxis (post-operative day five), the patient’s platelet count had decreased by more than 50%. She was placed on warfarin in addition to enoxaparin. The next day, her platelet count was 66×10^9/L, liver function tests were elevated, and pulmonary CT angiography confirmed massive PE with bilateral widespread thrombi. Doppler ultrasound revealed an acute thrombus at the right popliteal vein. Testing for heparin/PF4 antibodies was not available. Enoxaparin and warfarin were discontinued immediately and the patient was started on dabigatran 150 mg BID. Over the next few days, platelet counts increased and liver function tests normalized. When the platelet count reached 150×10^9/L, the patient was switched to warfarin therapy. Once therapeutic INR had been achieved for two months follow up and the patient had no recurrent thrombotic image had disappeared and the carotid bulb thrombus had faded with no reported bleeding complications.

Another successful use of rivaroxaban in HIT with thrombosis was reported by Hantson et al. [60] in the case of a 36-year-old man who underwent orthopaedic surgery four days following a traumatic fall. Platelet count at admission was 166×10^9/L and increased to 280×10^9/L postoperatively. The patient was placed on anticoagulant prophylaxis with nadroparin and on day nine of therapy developed thrombocytopenia, with the platelet count reaching a nadir of 25×10^9/L by day 12. When the patient tested positive for heparin/PF4 antibodies, nadroparin was replaced by fondaparinux. The patient developed an acute radial artery thrombosis three days later; a diagnosis of HIT-induced thrombosis was made and rivaroxaban 15 mg BID was initiated. The platelet count began to increase 4 days after rivaroxaban was started and normalized at day 10. Partial recanalization of the arterial thrombosis was demonstrated at follow up one and two months after discharge.

Sartori et al. [61] described a 68-year-old male who developed HIT while receiving enoxaparin for an isolated distal DVT in the internal gastrocnemius and soleal veins. Six days after initiation of enoxaparin, the patient’s platelet count had decreased from 263×10^9/L to 161×10^9/L. Fondaparinux was substituted for enoxaparin then two days later, with a confirmed diagnosis of HIT, rivaroxaban 20 mg once daily (OD) was started. The patient’s platelet count returned to baseline six days after enoxaparin was discontinued. At follow up three months later, rivaroxaban was discontinued and the DVT had completely recanalized. Testing for heparin/PF4 complexes was negative at six months follow up and the patient had no recurrent thrombotic events or bleeding complications.

Abouchakra et al. [62] submitted the case of a 53-year-old male who developed HIT secondary to cardiac catheterization and CABG. He returned to the hospital with decreased platelets and tested positive for heparin/PF4 antibodies. Repeated cardiac catheterization showed a thrombotic image in the saphenous vein graft-right coronary artery graft and duplex ultrasound demonstrated a fresh mural thrombus of the carotid bulb with 40% stenosis. Due to the lack of lepirudin availability, the patient was started on rivaroxaban and his platelet count gradually recovered. A month later, the thrombotic image had disappeared and the carotid bulb thrombus had faded with no reported bleeding complications.

There was one case, reported by Tardy-Poncet et al. [63],

OTHER NEW ORAL ANTICOAGULANTS FOR HIT

Rivaroxaban

The NOAC rivaroxaban, which is an orally administered direct Factor Xa inhibitor, has also showed promise as a potential treatment for HIT. An in vitro study in 2008 by Walenga et al. [58] first showed that rivaroxaban, unlike UFH and LMWH, does not cause platelet activation or aggregation in the presence of HIT antibodies, induce platelets to release PF4, or interact with PF4 that is present.

Since then, rivaroxaban has become the best studied of the NOACs for HIT treatment, with several documented experiences of successful use (Table 2). One case series by Ng et al. [59] detailed three incidences of HIT managed with rivaroxaban in Singapore, where argatroban, danaparoid, and fondaparinux are not registered for use. In case one, the patient developed HIT with thrombosis following heparin exposure during hemodialysis. In case two, the patient developed HIT with postoperative prophylaxis following stenting and arterial bypass. The third patient developed HIT after receiving enoxaparin for the treatment of a pulmonary embolus. In each case, the diagnosis of HIT was confirmed by the presence of heparin/PF4 antibodies. Rivaroxaban was initiated with platelet counts of 69×10^9/L, 20×10^9/L, and 28×10^9/L, respectively. Patients 2 and 3 received extended treatment with rivaroxaban and patient 1 was eventually transitioned to warfarin due to hemodialysis. All three patients experienced no thrombotic or bleeding complications during or following rivaroxaban therapy at follow up of one to two weeks.

Another successful use of rivaroxaban in HIT with thrombosis was reported by Hantson et al. [60] in the case of a 36-year-old man who underwent orthopaedic surgery four days following a traumatic fall. Platelet count at admission was 166×10^9/L and increased to 280×10^9/L postoperatively. The patient was placed on anticoagulant prophylaxis with nadroparin and on day nine of therapy developed thrombocytopenia, with the platelet count reaching a nadir of 25×10^9/L by day 12. When the patient tested positive for heparin/PF4 antibodies, nadroparin was replaced by fondaparinux. The patient developed an acute radial artery thrombosis three days later; a diagnosis of HIT-induced thrombosis was made and rivaroxaban 15 mg BID was initiated. The platelet count began to increase 4 days after rivaroxaban was started and normalized at day 10. Partial recanalization of the arterial thrombosis was demonstrated at follow up one and two months after discharge.

Sartori et al. [61] described a 68-year-old male who developed HIT while receiving enoxaparin for an isolated distal DVT in the internal gastrocnemius and soleal veins. Six days after initiation of enoxaparin, the patient’s platelet count had decreased from 263×10^9/L to 161×10^9/L. Fondaparinux was substituted for enoxaparin then two days later, with a confirmed diagnosis of HIT, rivaroxaban 20 mg once daily (OD) was started. The patient’s platelet count returned to baseline six days after enoxaparin was discontinued. At follow up three months later, rivaroxaban was discontinued and the DVT had completely recanalized. Testing for heparin/PF4 complexes was negative at six months follow up and the patient had no recurrent thrombotic events or bleeding complications.

Abouchakra et al. [62] submitted the case of a 53-year-old male who developed HIT secondary to cardiac catheterization and CABG. He returned to the hospital with decreased platelets and tested positive for heparin/PF4 antibodies. Repeated cardiac catheterization showed a thrombotic image in the saphenous vein graft-right coronary artery graft and duplex ultrasound demonstrated a fresh mural thrombus of the carotid bulb with 40% stenosis. Due to the lack of lepirudin availability, the patient was started on rivaroxaban and his platelet count gradually recovered. A month later, the thrombotic image had disappeared and the carotid bulb thrombus had faded with no reported bleeding complications.

There was one case, reported by Tardy-Poncet et al. [63],
of low-dose rivaroxaban failing to improve thrombocytope-
nia in a 71-year-old woman with a baseline platelet count of
239×10^9/L who received unfractionated heparin during
perioperative Cell Saver blood collection for autotransfusi-
on. She was not given heparin preoperatively or postoperative-
ly for total knee replacement, though she had previously re-
ceived low-molecular-weight heparin years earlier for two
other surgical procedures. Rivaroxaban 10 mg OD was ad-
ministered postoperatively but the patient’s platelet count
continued to decrease to 58×10^9/L on day 20. On day 21,
the patient was switched to dabigatran 220 mg OD. Her
platelet count had improved to 150×10^9/L by day 35 of
admission. The rest of her course remained uneventful and
the patient was discharged. In vitro studies performed later
showed progressively less thrombin generation with increasing
rivaroxaban concentrations, suggesting that higher, therapeutic
doses are required for adequate anticoagulation in HIT.

A prospective, multicenter, single-arm cohort study on
rivaroxaban for HIT has recently concluded and been ac-
cepted for publication. This study by Linkins et al. [64]
evaluated the incidence of new symptomatic venous and
arterial thromboembolism in patients with suspected or con-
firmed HIT treated with rivaroxaban. The original study
design planned for 200 participants to be given different
regimens based on whether they had confirmed HIT with
or without thrombosis. The final cohort—consisting of 22
patients without thrombosis who presented with an inter-
mediate or high 4Ts pretest probability—received rivarox-
aban 15 mg BID until a local HIT assay result was available.

Patients with HIT confirmed via serotonin-release assay then
continued the course of rivaroxaban until platelet count re-
covered to either 150×10^9/L or a lower individual baseline.

Once thrombocytopenia was resolved, the participants step-
ded down to rivaroxaban 20 mg OD until day 30 of the
study. At the end of the study, one HIT-positive patient had
confirmed new thromboembolism (4.5%; 95% CI, 0–
23.5%) and another HIT-positive participant required limb
amputation despite limb recovery. Nine out of the ten
HIT-positive patients achieved platelet recovery with a mean
time to recovery of 11 days, with one patient taken off
rivaroxaban after two doses due to a rise in liver enzymes.

No thrombotic or major bleeding events occurred amongst
either the HIT-positive or HIT-negative groups [65].

Apixaban

Apixaban, another direct Factor Xa inhibitor, has had more
limited evaluation as an anticoagulant for the management of
HIT. There has been an in vitro study by Walenga et al. [66]
which tested the effect of apixaban on platelets using the
serotonin release assay and a platelet aggregation assay. The
results of both assays showed a consistent absence of platelet
activation and HIT antibody-mediated platelet aggregation
by apixaban.

In a 72-year-old woman with lung cancer who developed
pulmonary embolism after cerebral metastasectomy, lobec-
tomy, and chemotherapy, dalteparin was initiated; twenty
days later, the patient’s platelet count had reduced to
84×10^9/L. Dalteparin was then discontinued while HIT test-
ing was in progress, due to the limited availability of alter-
native drugs and the patient’s stable condition. The screening
test for heparin/PF4 antibodies was highly positive and hep-
arin-induced platelet activation confirmed the diagnosis of
HIT. The correct dose of fondaparinux was not available.

Furthermore, administration and monitoring of traditional
drugs used to manage HIT would have been challenging
due to the patient’s remote residence. Thus, the patient was
placed on apixaban 5 mg BID. Platelet counts and parameters
quickly improved and D-dimer decreased. Four weeks later,
HIT antibodies remained positive. The six month follow
up was pending at the time of publication with no adverse
reactions reported thus far [67].

Finally, Sharifi et al. [68] conducted a combined, open
label, single arm study of 22 patients with HIT who were
treated with different NOACs after a short course of
argatroban. Of the cohort, six received dabigatran 150 mg
BID; eleven, rivaroxaban 20 mg OD; and five, apixaban 5
mg BID. Patients with a glomerular filtration rate of less
than 30 mL/min, bleeding tendencies, and recent surgeries
were later switched to apixaban. No patients received vitamin
K antagonists for anticoagulation and none had thrombosis
at presentation. Although none of the cohort developed major
or minor bleeding, recurrent VTE, or arterial thrombosis,
six patients died within 19 months after discharge. This
was in keeping with other reports on the mortality rate of
HIT, independent of thrombosis.

SUPERIORITY OF DABIGATRAN VERSUS OTHER
NEW ORAL ANTICOAGULANTS

Thus far, comparisons between these three NOACs that
may guide a conclusion as to which is the best choice in
cases of HIT have taken two forms—in vitro testing and
metanlyses with indirect comparisons in their use for other
indications. One such in vitro study evaluated dabigatran,
rivaroxaban, and 2-O, 3-O sulfated heparin (ODSH) in terms
of their effects on heparin/PF4 complexes, the interaction
of heparin/PF4 antibodies with platelets, and the prevention
of antibody formation. The results showed that neither dabi-
gatran and rivaroxaban—similar to the currently approved
drugs for HIT argatroban and lepirudin—had any effect on
the interaction of PF4 or heparin/PF4 antibodies with plate-
lets, making them suitable candidates for alternative anti-
coagulation in patients with a history of HIT. The study
also demonstrated that ODSH, when given with UFH or
LMWH, prevents formation of immunogenic heparin/PF4
complexes, displaced them and PF4 from the platelet surface,
and disrupted these complexes, inhibiting their binding to
anti-heparin/PF4 Ab. The low-sulfated heparin performed
better with UFH than with LMWH, and a blended UFH-ODSH
anticoagulant could potentially prevent the oc-
currence of HIT [69].

Three phase III randomized clinical trials—dubbed RE-LY
[45-47], ROCKET AF [70], and ARTISTOTLE [71]—assessed
Table 3. Key results from phase III trials comparing NOACs to warfarin for stroke prevention in AF.

Study	Stroke or SE (%/yr)	Major bleeding (%/yr)	P	
RE-LY [45,46,47]a				
Dabigatran 110 mg BID	1.54	<0.001	2.92	0.41
Dabigatran 150 mg BID	1.12	3.4		
Warfarin (INR 2.0–3.0)	1.72	3.61		
ROCKET AF [70]b				
Rivaroxaban 20 mg OD	1.7	<0.001	14.9	0.44
Warfarin (INR 2.0–3.0)	2.2	14.5		
ARISTOTLE [71]				
Apixaban 5 mg BID	1.27	0.01	2.13	<0.001
Warfarin (INR 2.0–3.0)	1.6	3.09		

*a)Includes additional events identified post-publication, which did not alter conclusions. b)Per-protocol, as-treated population. Abbreviations: BID, twice daily; OD, once daily; AF, atrial fibrillation; SE, systemic embolism.

CONCLUSION

Dabigatran thus presents a convenient, effective, and safe option for alternative anticoagulation in HIT. It is both non-inferior to warfarin in efficacy and has a lower bleeding risk. In trials assessing its role in stroke prophylaxis for AF patients, dabigatran performs better than other non-vitamin K antagonist oral anticoagulants, particularly with regards to the risk of stroke, systemic embolism, and intracranial bleeding. However, it is associated with a relatively higher risk of gastrointestinal bleeding. It should be noted that dabigatran is already established as an advantageous option in this and other settings, including treatment of VTE, not just prophylaxis. In patients with HIT who require anti-coagulation for other indications, dabigatran could serve as both a HIT therapeutic and thrombosis prophylactic.

With the discussed in vitro studies on dabigatran’s effect on the pathogenesis of HIT and the clinical trials on dabigatran’s uses in other settings done, what remains is the task of performing randomized clinical trials to evaluate the use of dabigatran specifically for the management of HIT. As with the series of trials conducted with the various NOACs, these studies should serve to compare dabigatran head to head with other direct or parenteral thrombin and factor Xa inhibitors, notably argatroban, rivaroxaban, and apixaban. The key concerns with dabigatran that have been raised are its associated risks of gastrointestinal bleeding and acute
coronary syndromes, which in turn require more investigation in order to determine their significance.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Miyares MA, Davis KA. Direct-acting oral anticoagulants as emerging treatment options for heparin-induced thrombocytopenia. Ann Pharmacother 2015;49:735-9.
2. Grouzi E. Update on argatroban for the prophylaxis and treatment of heparin-induced thrombocytopenia type II. J Blood Med 2014;5:131-41.
3. Watson H, Davidson S, Keeling D; Haemostasis and Thrombosis Task Force of the British Committee for Standards in Haematology. Guidelines on the diagnosis and management of heparin-induced thrombocytopenia: second edition. Br J Haematol 2012;159:528-40.
4. Linkins LA, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141(Suppl 2):e495S-530S.
5. Blommel ML, Blommel AL. Dabigatran etexilate: A novel oral direct thrombin inhibitor. Am J Health Syst Pharm 2011;68:1506-19.
6. Pudusseri A, Shameem R, Spyropoulos AC. A new paradigm shift in antithrombotic therapy. Front Pharmacol 2013;4:133.
7. Bakchoul T, Greinacher A. Recent advances in the diagnosis and treatment of heparin-induced thrombocytopenia. Ther Adv Hematol 2012;3:237-51.
8. Petros S. Lepirudin in the management of patients with heparin-induced thrombocytopenia. Ther Adv Hematol 2010;1:108-20.
9. Cardenas GA, Deitcher SR. Risk of anaphylaxis after reexposure to intravenous lepirudin in patients with current or past heparin-induced thrombocytopenia. Mayo Clin Proc 2005;80:491-9.
10. Chong BH, Ismail F, Cade J, Gallus AS, Gordon S, Chesterman CN. Heparin-induced thrombocytopenia: studies with a new low molecular weight heparinoid, Org 10172. Blood 1989;73:1592-6.
11. Tardy-Poncet B, Wolf M, Lasne D, et al. Danaparoid cross-reactivity with heparin-induced thrombocytopenia antibodies: report of 12 cases. Intensive Care Med 2009;35:1449-53.
12. Magnani HN, Gallus A. Heparin-induced thrombocytopenia (HIT). A report of 1,478 clinical outcomes of patients treated with danaparoid (Orgaran) from 1982 to mid-2004. Thromb Haemost 2006;95:967-81.
13. Al-Eidan FA. Pharmacotherapy of heparin-induced thrombocytopenia: therapeutic options and challenges in the clinical practices. J Vasc Nurs 2015;33:10-20.
14. Alatri A, Armstrong AE, Greinacher A, et al. Results of a consensus meeting on the use of argatroban in patients with heparin-induced thrombocytopenia requiring antithrombotic therapy - a European Perspective. Thromb Res 2012;129:426-33.
15. Tardy-Poncet B, Nguyen P, Thiranos JC, et al. Argatroban in the management of heparin-induced thrombocytopenia: a multicenter clinical trial. Crit Care 2015;19:396.
16. Roca B, Roca M. The new oral anticoagulants: Reasonable alternatives to warfarin. Cleve Clin J Med 2015;82:847-54.
17. Bakchoul T, Greinacher A. Recent advances in the diagnosis and treatment of heparin-induced thrombocytopenia type II. J Blood Med 2012;5:131-41.
18. Grouzi E. Update on argatroban for the prophylaxis and treatment of heparin-induced thrombocytopenia type II. J Blood Med 2014;5:131-41.
19. Linkins LA, Dans AL, Moores LK, et al. Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141(Suppl 2):e495S-530S.
20. Blommel ML, Blommel AL. Dabigatran etexilate: A novel oral direct thrombin inhibitor. Am J Health Syst Pharm 2011;68:1506-19.
21. Pudusseri A, Shameem R, Spyropoulos AC. A new paradigm shift in antithrombotic therapy. Front Pharmacol 2013;4:133.
22. Bakchoul T, Greinacher A. Recent advances in the diagnosis and treatment of heparin-induced thrombocytopenia. Ther Adv Hematol 2012;3:237-51.
23. Petrov S. Lepirudin in the management of patients with heparin-induced thrombocytopenia. Biologics 2008;2:481-90.
24. Greinacher A, Lubenow N, Eichler P. Anaphylactic and anaphylactoid reactions associated with lepirudin in patients with heparin-induced thrombocytopenia. Circulation 2003;108:2062-5.
25. Cardenas GA, Deitcher SR. Risk of anaphylaxis after reexposure to intravenous lepirudin in patients with current or past heparin-induced thrombocytopenia. Mayo Clin Proc 2005;80:491-3.
26. Chong BH, Ismail F, Cade J, Gallus AS, Gordon S, Chesterman CN. Heparin-induced thrombocytopenia: studies with a new low molecular weight heparinoid, Org 10172. Blood 1989;73:1592-6.
27. Tardy-Poncet B, Wolf M, Lasne D, et al. Danaparoid cross-reactivity with heparin-induced thrombocytopenia antibodies: report of 12 cases. Intensive Care Med 2009;35:1449-53.
28. Magnani HN, Gallus A. Heparin-induced thrombocytopenia (HIT). A report of 1,478 clinical outcomes of patients treated with danaparoid (Orgaran) from 1982 to mid-2004. Thromb Haemost 2006;95:967-81.
29. Al-Eidan FA. Pharmacotherapy of heparin-induced thrombocytopenia: therapeutic options and challenges in the clinical practices. J Vasc Nurs 2015;33:10-20.
31. Cuker A. Laboratory measurement of the non-vitamin K antagonist oral anticoagulants: selecting the optimal assay based on drug, assay availability, and clinical indication. J Thromb Thrombolysis 2016;41:241-7.

32. Lippi G, Ardissino D, Quintavalla R, Cervellin G. Urgent monitoring of direct oral anticoagulants in patients with atrial fibrillation: a tentative approach based on routine laboratory tests. J Thromb Thrombolysis 2014;38:269-74.

33. Baglin T, Keeling D, Kitchen S; British Committee for Standards in Haematology. Effects on routine coagulation screens and assessment of anticoagulant intensity in patients taking oral dabigatran or rivaroxaban: guidance from the British Committee for Standards in Haematology. Br J Haematol 2012;159:427-9.

34. Chin PK, Patterson DM, Zhang M, et al. Coagulation assays and plasma fibrinogen concentrations in real-world patients with atrial fibrillation treated with dabigatran. Br J Clin Pharmacol 2014;78:630-8.

35. Douxfils J, Lessire S, Dinçq AS, et al. Estimation of dabigatran plasma concentrations in the perioperative setting. An ex vivo study using dedicated coagulation assays. Thromb Haemost 2015;113:862-9.

36. Greinacher A, Thiele T, Selleng K. Reversal of anticoagulants: an overview of current developments. Thromb Haemost 2015;113:317-24.

37. Eikelboom JW, Quinlan DJ, van Ryn J, Weitz JI. Idarucizumab: The antidote for reversal of dabigatran. Circulation 2015;132:2412-22.

38. Glund S, Stangier J, Schmohl M, et al. Safety, tolerability, and efficacy of idarucizumab for the reversal of the anticoagulant effect of dabigatran in healthy male volunteers: a randomised, placebo-controlled, double-blind phase 1 trial. Lancet 2015;386:680-90.

39. Glund S, Moschetti V, Norris S, et al. A randomised study in healthy volunteers to investigate the safety, tolerability and pharmacokinetics of idarucizumab, a specific antidote to dabigatran. Thromb Haemost 2015;113:943-51.

40. Pollack CV Jr, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. N Engl J Med 2015;373:511-20.

41. Glund S, Stangier J, van Ryn J, et al. Restarting dabigatran exetilate 24 h after reversal with idarucizumab and redosing idarucizumab in healthy volunteers. J Am Coll Cardiol 2016;67:1654-6.

42. Hu TY, Vaidya VR, Asirvatham SJ. Reversing anticoagulant effects of novel oral anticoagulants: role of ciraparantag, andexanet alfa, and idarucizumab. Vasc Health Risk Manag 2016;12:35-44.

43. Grottko O, van Ryn J, Spronek HM, Rossaint R. Prothrombin complex concentrates and a specific antidote to dabigatran are effective ex-vivo in reversing the effects of dabigatran in an anticoagulation/liver trauma experimental model. Crit Care 2014;18:R27.

44. Grottko O, Aisenberg J, Bernstein R, et al. Efficacy of prothrombin complex concentrates for the emergency reversal of dabigatran-induced anticoagulation. Crit Care 2016;20:115.

45. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51.

46. Connolly SJ, Ezekowitz MD, Yusuf S, Reilly PA, Wallentin L; Randomized Evaluation of Long-Term Anticoagulation Therapy Investigators. Newly identified events in the RE-LY trial. N Engl J Med 2010;363:1875-6.

47. Connolly SJ, Wallentin L, Yusuf S. Additional events in the RE-LY trial. N Engl J Med 2014;371:1464-5.

48. Nagarakanti R, Wallentin L, Noack H, et al. Comparison of characteristics and outcomes of dabigatran versus warfarin in hypertensive patients with atrial fibrillation (from the RE-LY Trial). Am J Cardiol 2015;116:1204-9.

49. Brambati M, Darius H, Oldgren J, et al. Comparison of dabigatran versus warfarin in diabetic patients with atrial fibrillation: Results from the RE-LY trial. Int J Cardiol 2015;196:127-31.

50. Böhm M, Ezekowitz MD, Connolly SJ, et al. Changes in renal function in patients with atrial fibrillation: An analysis from the RE-LY trial. J Am Coll Cardiol 2015;65:2481-93.

51. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 2009;361:2342-52.

52. Schulman S, Kakkar AK, Goldhaber SZ, et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation 2014;129:764-72.

53. Schulman S, Kearon C, Kakkar AK, et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N Engl J Med 2013;368:709-18.

54. Mirandami A. Dabigatran, a direct thrombin inhibitor, can be a life-saving treatment in heparin-induced thrombocytopenia. ARYA Atheroscler 2013;9:112-4.

55. Annic彻cherio FJ, Alonsop JL, Urbia M, Perez Ricarte S. Dabigatran as a therapeutic possibility in heparin-induced thrombocytopenia type II. An Sist Sanit Navar 2012;35:521-4.

56. Fieland D, Taylor M. Dabigatran use in a postoperative coronary artery bypass surgery patient with nonvalvular atrial fibrillation and heparin-PF4 antibodies. Ann Pharmacother 2012;46:e3.

57. Bircan HA, Alanoglu EG. Massive pulmonary embolism in a patient with heparin induced thrombocytopenia: successful treatment with dabigatran. Eurasian J Med 2016;48:65-8.

58. Walenga JM, Prechel M, Jeske WP, et al. Rivaroxaban—an oral, direct Factor Xa inhibitor—has potential for the management of patients with heparin-induced thrombocytopenia. Br J Haematol 2008;143:92-9.

59. Ng HJ, Than H, Teo EC. First experiences with the use of rivaroxaban in the treatment of heparin-induced thrombocyto- penia. Thromb Res 2015;135:205-7.

60. Hantson P, Lambert C, Hermans C. Rivaroxaban for arterial thrombosis related to heparin-induced thrombocytopenia. Blood Coagul Fibrinolysis 2015;26:205-6.

61. Sartori M, Favaretto E, Cini M, Legnani C, Cosmi B. Rivaroxaban in the treatment of heparin-induced thrombocytopenia. J Thromb Thrombolysis 2015;40:392-4.

62. Abouchakra L, Khabbaz Z, Abouassi S, Badaoui G. Rivaroxaban for treatment of heparin-induced thrombocytopenia after cardiac surgery: A case report. J Thorac Cardiovasc Surg 2015;150:e19-20.

63. Tardy-Poncet B, Piot M, Montmartin A, Burdier A, Chalayer E, Tardy B. Delayed-onset heparin-induced thrombocytopenia...
without thrombosis in a patient receiving postoperative thromboprophylaxis with rivaroxaban. Thromb Haemost 2015;114:652-4.
64. Linkins LA, Warkentin TE, Pai M, et al. Design of the rivaroxaban for heparin-induced thrombocytopenia study. J Thromb Thrombolysis 2014;38:485-92.
65. Linkins LA, Warkentin TE, Pai M, et al. Rivaroxaban for treatment of suspected or confirmed heparin-induced thrombocytopenia study. J Thromb Haemost 2016;14:1206-10.
66. Walenga JM, Prechel M, Hoppensteadt D, et al. Apixaban as an alternate oral anticoagulant for the management of patients with heparin-induced thrombocytopenia. Clin Appl Thromb Hemost 2013;19:482-7.
67. Larsen PB, Jørgensen M, Friis-Hansen L, Ingeberg S. Apixaban used for the management of heparin-induced thrombocytopenia in a 72-year-old woman with lung cancer. Clin Case Rep 2015;3:987-9.
68. Sharifi M, Bay C, Vajo Z, Freeman W, Sharifi M, Schwartz F. New oral anticoagulants in the treatment of heparin-induced thrombocytopenia. Thromb Res 2015;135:607-9.
69. Krauel K, Hackbarth C, Fürll B, Greinacher A. Heparin-induced thrombocytopenia: in vitro studies on the interaction of dabigatran, rivaroxaban, and low-sulfated heparin, with platelet factor 4 and anti-PF4/heparin antibodies. Blood 2012;119:1248-55.
70. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883-91.
71. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-92.
72. Baker WL, Phung OJ. Systematic review and adjusted indirect comparison meta-analysis of oral anticoagulants in atrial fibrillation. Circ Cardiovasc Qual Outcomes 2012;5:711-9.
73. Lip GY, Larsen TB, Sikjæth F, Rasmussen LH. Indirect comparisons of new oral anticoagulant drugs for efficacy and safety when used for stroke prevention in atrial fibrillation. J Am Coll Cardiol 2012;60:738-46.