Privacy-Enhanced Methods for Comparing Compressed DNA Sequences

David Eppstein
Dept. of Computer Science
University of California, Irvine
Irvine, California 92697-3435 USA
eppstein(at)ics.uci.edu

Michael T. Goodrich
Dept. of Computer Science
University of California, Irvine
Irvine, California 92697-3435 USA
goodrich(at)ics.uci.edu

Pierre Baldi
Dept. of Computer Science
University of California, Irvine
Irvine, California 92697-3435 USA
pfbaldi(at)ics.uci.edu

Abstract

In this paper, we study methods for improving the efficiency and privacy of compressed DNA sequence comparison computations, under various querying scenarios. For instance, one scenario involves a querier, Bob, who wants to test if his DNA string, Q, is close to a DNA string, Y, owned by a data owner, Alice, but Bob does not want to reveal Q to Alice and Alice is willing to reveal Y to Bob only if it is close to Q. We describe a privacy-enhanced method for comparing two compressed DNA sequences, which can be used to achieve the goals of such a scenario. Our method involves a reduction to set differencing, and we describe a privacy-enhanced protocol for set differencing that achieves absolute privacy for Bob (in the information theoretic sense), and a quantifiable degree of privacy protection for Alice. One of the important features of our protocols, which makes them ideally suited to privacy-enhanced DNA sequence comparison problems, is that the communication complexity of our solutions is proportional to a threshold that bounds the cardinality of the set differences that are of interest, rather than the cardinality of the sets involved (which correlates to the length of the DNA sequences). Moreover, in our protocols, the querier, Bob, can easily compute the set difference only if its cardinality is close to or below a specified threshold.

1 Introduction

It is hard to imagine the meaning of privacy in a world where someone can download a digital copy of your DNA. Given this data and your identity, such a person could determine who you are, your ethnic heritage, and what diseases you are likely to inherit. There are already significant concerns that employers or insurers will use genetic information to screen those at high risk for various diseases, and several governments have already created laws dealing with DNA data access. Thus, there is a need for technologies that can safeguard the privacy and security of genomic data.
Unfortunately, existing methods for privacy-preserving data querying, which depend on expensive cryptographic computations, don’t scale to genomic data sizes.

Indeed, the size of genomic data is not just a concern for security primitives—the storage and handling of genomic data is already presenting a challenge even without considering the possible addition of cryptographic layers. Namely, genomes are often stored as simple text files, but this approach is difficult to scale in many ways. The storage of the diploid genomes of all currently living humans using this simple approach would be on the order of 36×10^{18} bytes, or 36 exabytes, not counting likely backups and multiple copies. And even with the progress that can be expected with increased capacities for storage and networking in the coming years, it is likely that security and privacy issues will require additional layers of protection around genomic data. Thus, it is quite likely that genomic data will need to be processed and stored in compressed form.

Many companies, physicians, and law-enforcement agencies have legitimate reasons for querying genomic data. The challenge from an algorithmic standpoint is to be able to support such queries using low storage, bandwidth, and query times. Moreover, as just mentioned, it is our view that it is quite likely that genomic data will have to be compressed, given their uncompressed sizes. Thus, in order to protect the privacy of genomic data, cryptographic techniques will need to be employed on compressed genomic data to support privacy-preserving data querying. That is, cryptographic techniques should allow for queries to be performed on compressed data in a way that answers the specific question—such as quantifying sequence matches or alignments—but does not reveal any other information about the data, such as race or disease risk of the individual whose DNA is being queried. Putting these constraints together, there is a real need for trustworthy computing techniques that can work in conjunction with genomic compression technologies to answer queries and perform analyses in a way that preserves the privacy of the data and the proprietary information contained in the queries themselves.

1.1 Prior Related Work

Privacy issues for data querying have been investigated before. Namely, the data structures presented in [29, 30] provide the option of a privacy-preserving verification of the answer to a query, that is, the proofs of data consistency are carried out in a private way, where no information other than the queried data is inferred by the prover. However, these privacy-preserving techniques involve computationally expensive operations, which would be inappropriate for genomic-scale computations.

Several researchers have also explored privacy-preserving data querying methods that can be applied, in principle, to genomic sequences (e.g., see [2, 14]). That is, cryptographic techniques can be used to allow for queries to be performed in a way that answers the specific question—such as a score rating the quality of a query for DNA matching or sequence alignment—but does not reveal any other information about the data, such as race or disease risk of the individual whose DNA is being queried. Atallah et al. [2] and Atallah and Li [3] studied privacy-preserving protocols for edit-distance sequence comparisons, Troncoso-Pastoriza et al. [36] described a privacy-preserving protocol for regular-expression searching. Jha et al. [26] give privacy-preserving protocols for computing edit distance and Smith-Waterman similarity scores between two sequences, improving the privacy-preserving algorithm of Szajda et al. [34]. These previous schemes are not defined for compressed DNA sequences, however, and they have communication costs that are as high as the strings themselves, whereas we are interested in solutions that have communication costs proportional to
the size of the differences between DNA sequences.

Aligned matching results between two compressed genomic strings can also be done in a secure way using privacy-preserving set-intersection protocols, and several groups of researchers have developed such protocols (e.g., see [11 19 37 52 33]) or SMC methods for computing dot products (e.g., see [12 20 38]), which can also be used for determining set intersections. Freedman et al. [19] give a linear-size protocol for performing a privacy-preserving set-intersection computation, and several others have given privacy-preserving solutions with linear or slightly super-linear communication costs, including Dachman-Soled et al. [11] and De Cristofaro and Tsudik [13]. Instead of computing the contents of a set intersection, De Cristofaro et al. [10] give a protocol having communication complexity proportional to the set sizes for simply determining the cardinality of a set intersection, and Vaidya and Clifton [37] similarly give such a privacy-preserving protocol with linear communication complexity as well. Kissner and Song [27] and Hazay and Nissim [23] extend privacy-preserving set-intersection protocols to perform set union as well, also with linear communication complexity. Ateniese et al. [4] describe a scheme that uses communication that is linear in one of the two sets being compared, while keeping the other size secret.

All of these families of privacy-preserving protocols are unfortunately inefficient for privacy-enhanced comparison of even compressed DNA sequences, however, for two reasons:

1. We desire solutions that identify the differences between two sets, not their intersection.

2. We desire solutions whose communication complexity is proportional to the size of the set difference, not the sizes of the sets themselves (which will, in the DNA application, be much larger than the set difference).

1.2 Our Results

In this paper, we describe a new data structure, called the Privacy-Enhanced Invertible Bloom Filter (PIBF), and we show how it is suited to perform efficient privacy-enhanced comparisons of compressed DNA strings. In particular, we consider scenarios in which a data querier, Bob, wishes to learn the difference between a genomic sequence of interest and the DNA strings owned by a data owner, Alice. In each scenario we consider, Bob does not want Alice to learn the contents of his query string and Alice does not want to reveal any of her DNA strings to Bob unless it is close in edit distance to Bob’s string. We also consider a scenario where the result of a query should only be revealed to a trusted third party, Charles. In addition, we can generalize our solutions so that they can apply to queries that are restricted to a range, R, of the genome. We show that the PIBF data structure can be used to answer the queries in each of these scenarios in a way that protects the privacy interests of each of the parties in quantifiable ways. Our solutions provide absolute privacy protection to Bob (in the information theoretic sense, for our most likely of scenarios) and involve a novel quantified analysis of the privacy protection provided by the Invertible Bloom Filter [15 16] data structure for Alice.

Our solutions can, in fact, apply to scenarios that go beyond the application to genomic data, and can be used to provide privacy-enhanced methods for performing general set difference operations, which may be of independent interest. We focus here on the application to compressed DNA sequences, however, since it is arguably the best motivation for a privacy-enhanced set-differencing protocol whose communication complexity is proportional to the cardinality of the set difference rather than the sets being compared. Also, the computational requirements of our solutions are
very low, even with respect to constant factors, which also makes the application to genomic data especially relevant.

2 Genomic Data Compression

Since our methods are to be applied to compressed genomic sequences, we discuss here an effective representation for such compressed sequences [5, 25, 8]. Our methods for privacy-preserving comparisons work with other compression schemes, as well, but to provide a concrete example of genomic data compression, let us review the approach of [5, 25, 8]. The essential property to note during this discussion is that the scheme we describe here allows us to reduce sequence comparison to a symmetric difference operation on sets.

Such data structures allow the compression of genome sequences while facilitating certain classes of sequence queries. More importantly, at least for the scope of this paper, we assume these data structures and compressed representations facilitate efficient protocols for privacy-preserving genomic data querying.

2.1 Compressing with a Reference String

As noted above, in the case of storing multiple genomes from the same species, and in particular for humans, whose genomes contain at least 3 billion base pairs, the flat text file approach is clearly wasteful. A simple, but general, approach is to store a reference sequence, R, and then for each other sequence, encode only its differences with respect to R in a canonical way. To see what we mean by a canonical encoding of a difference with respect to a reference string, consider the sequences

$$\text{AACGACTAGTAATTTG}$$

and

$$\text{CACGTCTAGTAATGTG},$$

which are identical, except for substitutions in positions 1 ($A \rightarrow C$), 5 ($A \rightarrow T$), and 14 ($T \rightarrow G$). Each such single nucleotide polymorphisms (SNP) can be encoded by a pair (i, X), where i is an integer encoding the position and X represents the value of the substitution. Thus, given the first sequence as a reference, the second one can be encoded by the string “1C5T14G”, or the set

$$\{(1, C), (5, T), (14, G)\}.$$.

Note that with this data representation, the questions “Is this sequence different from the reference sequence at position i?” and, if so, “How?” are easy to answer, given the reference string, R.

Other events, such as deletions and insertions can also be accommodated in this scheme. For a deletion, we can use a pair of integers, (i, l), where i denotes the index in R where the deletion occurs and l represents the length of the deletion. Likewise, for an insertion of l characters, we can use the encoding $i, X_1 \ldots X_l$ to denote the insertion of $X_1 \ldots X_l$ at position i with respect to the reference sequence.

Thus, with this approach, we can represent any genomic sequence as a set, of substitution, insertion, and deletion events, and we assume that there is a canonical way of defining such a set.
In addition, this compression scheme is just one data representations we can allow. The essential properties of such a compression scheme is that it provide an effective mechanism for compressing multiple genomic sequences taken from the same species by encoding each genomic sequences as an indexed set of differences with a reference string, R.

2.2 Some Technical Details

While the basic idea of genomic data compression is often easy to understand, precise implementations require that one addresses a number of important technical issues, for the sake of defining a canonical encoding that can allow us to reduce genomic sequence comparison to set differencing. For instance, using the above approach as a running example, we need to use integers that are associated with positions or lengths of events, and letters describing these events. Our set comparison methods depend on indices that are absolute addresses, but a compression scheme might not use such addresses.

For instance, one can use local coordinates or relative addressing, i.e., intervals, instead of absolute addressing, and get improved data compression. With relative addresses, applied to the above example, the string “1C5T14G” becomes “0C4T9G”, with a similar change to the associated set representation. It is natural to expect such an encoding, since the integers to be encoded may be considerably smaller than when one uses absolute addresses. For our comparison operations to be effective, we need to be using absolute coordinates. Thus, the relatively modest price to pay is that if a genomic sequences is encoded using relative addresses, then these addresses must be changed to recover absolute coordinates prior to applying our privacy-enhanced comparison methods.

A second observation is that if the positions at which variations occur in the population are fixed and form a relatively small subset of all possible positions, then additional savings may result by focusing only on those positions. If in the same schematic example as above, one knew that in the population substitutions can only occur at positions 1, 5, and 14, one could, for instance, encode “1C5T14G” by “1C2T3G”, at the cost of keeping a conversion table that memorizes the coordinate positions where the variants occur. In this case, these integer values form a modified type of absolute address; hence, they do not need to be modified in order for our privacy-preserving comparison methods to be effective. That is, in the genome applications we consider, the absolute addresses should either be explicit positional indices or ordinal indices with respect to known mutations in the population (e.g., see [5, 25, 8]).

While substitutions, deletions, and insertions are sufficient both in theory to describe any sequence with respect to the reference sequence and in practice in the case of the relatively short mitochondrial genome, more complex events that occur frequently in more complex genomes can also be added to the list. For instance,

“50Ins100C2(25)”

could denote the insertion (Ins) at position 50 of a subsequence of length 100 bp coming from chromosome 2, and starting at location 25 on that chromosome. Clearly the binary convention for denoting the different pieces of information, or their groups, must be defined to avoid both any ambiguity as well as the use of additional symbols such as parentheses or other delimiters. While statistics on human SNPs are becoming available [24, 21, 8], statistics on the frequencies and location of these more complex rearrangement events in the human genome are at an earlier stage of development, which can be used for possible improved DNA sequence compression. (For instance,
In any case, the approaches used in this paper can also be applied to such compression schemes, provided they preserve the invariant that DNA comparison amounts to a symmetric difference between compressed DNA sequences (converted to absolute coordinates) defined by sets of differences with a reference string, R.

2.3 Data Distributions

As noted above, genomic strings typically have a degree of similarity that can be exploited for compressing such schemes. Indeed, we have already noted that compression schemes can let us view a genomic string with respect to a scheme that represents a string in terms of its differences with a reference string, R (e.g., see [5, 8]). That is, we can start from a reference string, R, which contains the most common components of a typical genomic string. Then we define each other string, Q, in a canonical way in terms of its differences with R. Each difference is defined by an index location, i, in R and an operation to perform at that location, such as a substitution, insertion, or deletion.

In [8], a comparative analysis on a set of 4,000 mtDNA sequences from different individuals, taken from GenBank, has identified 4,544 positions along the reference mtDNA sequence where at least one of the other sequence deviates from the reference sequence, which has a total length of roughly 16,500. In aggregate, there were 122,266 bp that deviated from the reference sequence. Besides substitutions, the total number of insertion and deletion events across all the sequences was 7,175, the most frequent one being 1 bp insertions (4671 occurrences), followed by 2 bp deletions (901). In addition, by combining the computations that determined these statistics with machine learning algorithms for racial characteristics, researchers have identified ethnic mtDNA deviations. Some well known variants, such as the “Asian-specific 9 bp deletion” [22, 35], also occur frequently (255 occurrences). The take-away message from this experiment was that canonical data compression is viable using the approach outlined above.

An important observation that already can be derived from this study of mtDNA is that DNA strings that have a large edit distance will also have a large number of differences with respect to their compressions relative to the reference string. For instance, the distribution of the raw intervals for the mtDNA study is shown in Figure 1a. Observed intervals vary from 0 to 14,998bp, the most frequent one being an interval of 73 (2,580 occurrences), followed by 688 (2419 occurrences), and followed by 6 (2,202 occurrences). Likewise, the plot of the logarithm of the counts versus the logarithm of the rank (in decreasing order of frequency) is shown in Figure 1b. Overall these distributions are not strongly structured, with the log-log plot demonstrating in this case at best a very weak power-law structure.

Thus, this exercise shows that the reference sequence can be optimized to minimize the total number of variants. Furthermore, the reference sequence does not need to be a sequence from an actual individual, but could be designed using purely statistical and entropy minimization considerations. The design of the reference sequence impacts not only the variants to be recorded, but also the runlengths, and therefore it must also take into consideration any constraints a particular implementation may place on the runlengths and their encodings. In the case of large genomes, for instance, it may be useful to control the range of possible runlengths and keep it under some reasonable value. The only requirement that we make with respect to the comparison algorithms we consider in this paper is that the same reference string should be used to encode all DNA strings that will be subjected to privacy-enhanced comparisons. Moreover, although the number of
completed human genomes is still relatively small, the analysis from [5, 25, 8] suggests that, even though DNA sequences have lengths of over 3 billion base pairs, their compressed versions should be representable using sets whose cardinalities are measured in the millions.

3 Scenarios for Genomic Data

To address security, integrity, and privacy issues for querying genomic data, the general framework we consider comprises two kinds of basic entities: a data owners, Alice, who controls and stores genomic data, and an agent, Bob, who is interested in querying Alice’s data. The granularity of the data owner can vary. At the smaller end of the spectrum, each individual could be a data owner and could, for instance, carry his/her own genome on a personal storage device. At the larger end of the spectrum, Alice could represent a national or international data center with millions of genomic sequences. Such a data owner, Alice, between these ranges could exist for instance at the state, county, city, hospital, clinic, or laboratory level. Likewise, many different agents, represented as Bob, are conceivable, ranging from personal physicians, to hospital, to insurance companies, to employers, to central agencies such as the Social Security, the FBI, or the CIA.

3.1 Query Scenarios

Let us consider several possible query scenarios, where, in each case Alice holds a list of n entries, each entry containing a genomic sequence from some person (possibly with $n = 1$), and Bob holds a genome of one individual:
1. Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, where a match is defined as a symmetric difference that is below some given threshold, τ. Bob does not want to reveal his genome to Alice and Alice is willing to reveal a genome in her database only if its symmetric difference with Bob’s genome is smaller than τ or close to τ.

2. Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, where a match is defined as a symmetric difference that is below some given threshold, τ, or close to this threshold. Bob does not want to reveal his genome to Alice and Alice does not want to reveal any of her data to Bob. However, Alice is willing to reveal a genome in her database to a trusted third party, Charles, but only if its symmetric difference with Bob’s genome is smaller than τ.

3. Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, restricted to a range, R, where a match is defined as a symmetric difference that is below some given threshold, τ, or close to τ, and is in the range R. Bob does not want to reveal his genome to Alice and Alice is willing to reveal a genome in her database, restricted to R, only if its symmetric difference with Bob’s genome is smaller than τ in R.

We show in this paper how the private invertible Bloom filter, which we discuss next, can be used in each of these scenarios.

4 A Privacy-Enhanced IBF

Our results rely on the construction of a Privacy-enhanced Invertible Bloom Filter (PIBF), which extends the Invertible Bloom Filter (IBF) of Eppstein and Goodrich [15], which is itself a variant of the classic Bloom filter [6] and counting Bloom filter [7, 18] data structures. An IBF is a probabilistic way of maintaining a set that allows both insertions and deletions. Moreover, one of the important features of an IBF is that it allows the number of inserted elements to far exceed the capacity of the data structure so long as most of the inserted elements are deleted or subtracted out later. Second, an IBF allows the elements of the set to be listed back out if the capacity is not too large. In addition, an IBF allows us to represent a large set using a small IBF, and then to quickly determine the elements in the symmetric difference of two sets, given only their IBF representation, as we now review.

4.1 A Review of Invertible Bloom Filters

Let us review the essential components of an Invertible Bloom Filter (IBF) [15], as described in [16]. We assume that the items being considered belong to a countable universe, U, and that given any element, x, we can determine a unique integer identifier for x in $O(1)$ time (e.g., either by x’s binary representation or through a hash function). For instance, in the case of a compressed DNA string, x could be a pair, (i, δ), where i is an index of a reference string and δ is a change with respect to that reference.

An IBF consists of a table, T, of t cells, for a given parameter, t; a set of k random hash functions, h_1, h_2, \ldots, h_k, which map any element x to k distinct cells in T; and a random hash
function, \(g \), which maps any element \(x \) to a random value in the range \([1, 2^\lambda]\), where \(\lambda \) is a specified number of bits.

Each cell of \(T \) contains the following fields:

- **count**: an integer count of the number of items mapped to this cell
- **idSum**: a sum of all the items mapped to this cell
- **gSum**: a sum of \(g(x) \) values for all items mapped to this cell.

The \(\text{gSum} \) field is used for checksum purposes. An IBF supports several simple algorithms for item insertion, deletion, and membership queries, as shown in Figure 2, which is taken from [16].

Note that we can take the difference of one IBF, \(A \), with a table \(T_A \), and another one, \(B \), with table \(T_B \), to produce an IBF, \(C \), with table \(T_C \), that represents their signed symmetric difference, with the items in \(A \setminus B \) having positive signs for their cell fields in \(C \) and items in \(B \setminus A \) having negative signs for their cell fields in \(C \) (we assume that \(C \) is initially empty). Moreover, given an IBF, which may have been produced either through insertions and deletions or through a subtract operation, we can list out its contents by repeatedly looking for cells with counts of +1 or −1 and removing the items for those cells if they pass a test for consistency. This method therefore produces a list of items that had positive signs and a list of items that had negative signs. In particular, with respect to an IBF, \(C \), that is the result of a \(\text{subtract}(A, B, C) \) operation, the positive-signed elements belong to \(A \setminus B \) and the negative-signed elements belong to \(B \setminus A \). Eppstein et al. [16] establish the following with respect to an IBF’s ability to be used for set differencing.

Theorem 1 [16]: Suppose \(X \) and \(Y \) are sets with \(m \) elements in their symmetric difference, i.e., \(m = |X \Delta Y| \), and let \(\epsilon > 0 \) be an arbitrary real number. Let \(A \) and \(B \) be invertible Bloom filters built from \(X \) and \(Y \), respectively, such that each IBF has \(\lambda \geq k + \lceil \log k \rceil \) bits in its \(\text{gSum} \) field, i.e., the range of \(g \) is \([1, 2^\lambda]\), and each IBF has at least \(2km \) cells, where \(k > \lceil \log(m/\epsilon) \rceil + 1 \) is the number of hash functions used. Then the \(\text{listItems} \) method for the IBF \(C \) resulting from the \(\text{subtract}(A, B, C) \) method will list all \(m \) elements of \(X \Delta Y \) and identify which belong to \(X \setminus Y \) and which belong to \(Y \setminus X \) with probability at least 1 − \(\epsilon \).

4.2 Making an IBF Privacy-Enhanced

Our strategies for creating a Privacy-enhanced Invertible Bloom Filter (PIBF) depend on which scenario we are working in. So let us consider various scenarios for genomic data comparison. We describe each of the scenarios below assuming that Alice has a single compressed DNA sequence. In this case when Alice holds several such sequences, we would repeat the steps for Alice described below for each of her sequences.

4.2.1 Alice and Bob

In the first scenario we consider, Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, where a match is defined as a symmetric difference that is below some given threshold, \(\tau \). Bob does not want to reveal his genome to Alice and Alice is willing to reveal a genome in her database only if its symmetric difference with Bob’s genome is smaller than \(\tau \) or close to \(\tau \).
initialize():
 for $i = 0, \ldots, t - 1$ do
 $T[i].count \leftarrow 0$
 $T[i].idSum \leftarrow 0$
 $T[i].gSum \leftarrow 0$
 end for

insert(x):
 for each $h_i(x)$ value, for $i = 1, \ldots, k$ do
 add 1 to $T[h_i(x)].count$
 add x to $T[h_i(x)].idSum$
 add $g(x)$ to $T[h_i(x)].gSum$
 end for

delete(x):
 for each $h_i(x)$ value, for $i = 1, \ldots, k$ do
 subtract 1 from $T[h_i(x)].count$
 subtract x from $T[h_i(x)].idSum$
 subtract $g(x)$ from $T[h_i(x)].gSum$
 end for

isMember(x):
 for each $h_i(x)$ value, for $i = 1, \ldots, k$ do
 if $T[h_i(x)].count = 0$ and $T[h_i(x)].idSum = 0$ and $T[h_i(x)].gSum = 0$ then
 return false
 else if $T[h_i(x)].count = 1$ and $T[h_i(x)].idSum = x$ and $T[h_i(x)].gSum = g(x)$ then
 return true
 end if
 end for
 return “not determined”

subtract(A, B, C):
 for $i = 0$ to $t - 1$ do
 $T_C[i].count \leftarrow T_A[i].count - T_B[i].count$
 $T_C[i].idSum \leftarrow T_A[i].idSum - T_B[i].idSum$
 $T_C[i].gSum \leftarrow T_A[i].gSum - T_B[i].gSum$
 end for

listItems():
 while there is an $i \in [1, t]$ such that $T[i].count = 1$ or $T[i].count = -1$ do
 if $T[h_i(x)].count = 1$ and $T[h_i(x)].gSum = g(T[h_i(x)].idSum)$ then
 add the item, $(T[i].idSum)$, to the “positive” output list
 call delete($T[i].idSum$)
 else if $T[h_i(x)].count = -1$ and $-T[h_i(x)].gSum = g(-T[h_i(x)].idSum)$ then
 add the item, $(-T[i].idSum)$, to the “negative” output list
 call insert($-T[i].idSum$)
 end if
 end while

Figure 2: Operations supported by an invertible Bloom filter. All arithmetic is assumed to be in \mathbb{Z}_p, where p is a prime number chosen to be larger than any id, x, or $g(x)$ value.
In order to create a Privacy-enhanced IBF (PIBF), for this scenario, Bob modifies the initialize method of the IBF data structure, as shown in Figure 2. In particular, rather than initialize each field \(f \) in each cell of the IBF, \(T \), with 0, Bob now initializes each field \(f \) in each cell of \(T \) with a random number, \(r_f \) (independently for each field of each cell). He then creates a copy of this IBF, \(T_0 \), and stores it away for later. Next, starting from \(T_0 \), Bob constructs an IBF, \(B \), for the compressed version of his DNA sequence, by calling the insert method for each of the items in the compressed representation of his string. He then sends the resulting IBF, \(B \), to Alice. Once Alice has received \(B \), she removes each item in the compressed version of her string by calling the delete operation, shown in Figure 2, on \(B \) for each such element. She then sends the result, \(C \), to Bob. Once Bob has received \(C \) from Alice, he subtracts \(T_0 \) from \(C \) using the subtract method shown in Figure 2 to get an unmasked IBF, \(D \). Then he calls the listItems method on \(D \), to decode the elements of the symmetric difference between Alice and Bob’s sequences, if this symmetric difference is small enough for the IBF, \(D \), to be decoded using the listItems method.

In this scenario, Alice can learn nothing from the IBF, \(B \), since every possible value of every field of every cell is equally likely in \(B \), given its initialization. That is, much in the same way that a one-time pad encryption is perfectly secure, in the information theoretic sense, so too is the IBF \(B \) that is sent to Alice also perfectly secure. Alice then performs a series of operations on \(B \) and sends it back to Bob. The degree to which this result, \(C \), carries information that Bob can decode using the listItems method depends on how many elements remain in \(D \) (after Alice has removed the elements of her set from \(B \)). We quantify this privacy protection provided to Alice below, in Theorem 2 from our section, 4.3, on the analysis of the PIBF.

4.2.2 Alice, Bob, and Charles

In the next scenario we consider, Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, where a match is defined as a symmetric difference that is below some given threshold, \(\tau \), or close to this threshold. Bob does not want to reveal his genome to Alice and Alice does not want to reveal any of her data to Bob. However, Alice is willing to reveal a genome in her database to a trusted third party, Charles, but only if its symmetric difference with Bob’s genome is smaller than \(\tau \).

Unlike the previous scenario, in this scenario, we utilize the functionality of homomorphic encryption. Fortunately, we don’t need a complex general-purpose form of homomorphic encryption. Instead, we simply need a cryptosystem having encryption and decryption functions, \(E \) and \(D \), that satisfy the following conditions:

\[
D(E(x) \ast E(y)) = x + y \quad (1)
\]

\[
D(-1 \cdot E(x)) = -x \quad (2)
\]

for some effectively computable operations, “\(\ast \)” and “\(. \)”. We refer to these operations as homomorphic addition and homomorphic inversion. For example, the homomorphic cryptosystem of Paillier [31] supports such conditions. In addition, we assume that the cryptosystem can be made semantically secure, so that it is computationally difficult to distinguish \(E(0) \), \(E(1) \), and \(E(x) \), for \(x > 1 \).

Unlike the previous scenario, in this scenario we do not modify the initialize method; that is, Bob initializes this IBF by setting each field of each cell to 0. He then constructs an IBF, \(B \), for the compressed version of his DNA sequence, by calling the insert method for each of the items in the set
representing the compressed version of his string. He then encrypts each cell of \(B \) using a public-key homomorphic function, \(E \), using the public key of Charles, and he sends the result, \(E(B) \), to Alice. Alice then encrypts each element of the compressed version of a string in her database (using the public-key of Charles), and performs the delete operation, but with each arithmetic operation now performed using homomorphic addition and inversion for each such element. She then sends the result, \(E(C) \), to Charles. Charles can decrypt \(E(C) \), but he will only be able to successfully perform the listItems method, to decode the elements of the symmetric difference between Alice and Bob’s sequences, if this symmetric difference is small enough for the IBF, \(C \), so that the listItems method succeeds. The crucial observation with respect to the essential delete method for an IBF, used in this scenario, is that we can perform all the arithmetic operations of these operations just using addition and inversion. The methods, isMember and listItems, also require comparisons, however. So we cannot perform these operations using homomorphic encryption. That is why they must be performed by the trusted third party, Charles.

4.2.3 Query Ranges

In our final scenario, we make a simple observation, which can be applied to either of the two scenarios just described. In this scenario, Bob wants to determine if there is an entry in Alice’s database that matches the genome he holds, restricted to a range, \(R \), where a match is defined as a symmetric difference that is below some given threshold, \(\tau \), or close to \(\tau \), and is in the range \(R \). Bob does not want to reveal his genome to Alice and Alice is willing to reveal a genome in her database, restricted to \(R \), to either Bob or Charles (depending on her privacy preference) only if its symmetric difference with Bob’s genome is smaller than \(\tau \) in \(R \).

In this scenario, Bob and Alice perform their operations as in the appropriate version of one of the above scenarios, but they only consider their compressed DNA sequences as restricted to \(R \). Thus, in each scenario, we achieve the privacy restrictions with respect to Bob and Alice, but now restricted to their symmetric difference in \(R \). The important observation of why this is possible is that restriction to the range \(R \) is just a subset operation, and all the correctness and privacy quantification, which we discuss next, applies equally well to subsets as to sets.

4.3 Analysis

We have already discussed how Bob can achieve perfect privacy, in the information theoretic sense, by initializing each field of each cell in his IBF to a random number. Likewise, in the scenario involving a trusted third party, Charles, Bob’s privacy is protected to the degree that the homomorphic encryption scheme he uses is vulnerable to a known ciphertext attack. Note that in all our scenarios that the communication complexity between the parties is always \(O(\tau) \), where \(\tau \) is the threshold of interest for the cardinality of the symmetric difference between Bob’s compressed DNA sequence and each compressed DNA sequence that Alice compares it to, assuming that we use a constant number of hash functions in the IBFs.

To see that we also achieve useful privacy restrictions with respect to Bob and Charles, and how much of Alice’s string they learn in our various scenarios, we provide the following theorem, which quantifies the privacy our schemes achieve in terms of how much information Alice leaks when she sends a differenced IBF to Bob or Charles. We note that such a theorem is not included in previous work in invertible Bloom filters, since these previous works were focused on quantifying when IBFs can be successfully decoded, not when they achieve this degree of privacy protection.
Theorem 2: Suppose that \(n \) elements are stored in an IBF with \(m \) cells and \(k \geq 2 \) hash functions, and let \(\epsilon > 0 \) be an arbitrary parameter. Suppose in addition that

\[
n \geq 1 + \left(\frac{m}{k}\right)(\ln m + \ln \ln m + \ln k + \ln \frac{1}{\epsilon}).
\]

Then with probability at least \(1 - \epsilon \), the decoding algorithm is unable to decode any of the cells of the IBF.

Proof: Suppose that \(n \) is equal to the given bound rather than greater than it. Consider a single cell \(c \) in the IBF. The probability that a particular element occupies \(c \) is \(\frac{k}{m} \), so the probability that exactly one element occupies it is

\[
n \frac{k}{m} \left(1 - \frac{k}{m}\right)^{n-1} < \frac{nk}{m} \exp\left(-\frac{(n-1)k}{m}\right).
\]

The probability that there exists a cell that is occupied only once is at most \(m \) times this quantity,

\[
nk \exp\left(-\left(\ln m + \ln \ln m + \ln k + \ln \frac{1}{\epsilon}\right) = \frac{n\epsilon}{m \log m}.
\]

For the given value of \(n \), and with the assumption that \(k \geq 2 \), \(n \leq m \ln m \), so this probability is at most \(\epsilon \), as desired. If \(n \) is greater than the given bound rather than being equal to it, the probability of a single-occupancy cell only decreases, so this assumption is without loss of generality. \(\blacksquare \)

A very similar bound was given by Erdős and Rényi [17] for the coupon collector’s problem in which one must bound the number of independent random draws from \(m \) elements in order to cover each element twice (or more generally some fixed number of times). Their analysis suggests that the number of elements needed to achieve a given failure probability should depend only doubly logarithmically on \(\epsilon \), rather than singly logarithmically as in our analysis. However their bound does not directly apply to our problem, because the \(kn \) cells chosen by the IBF are not independent of each other, due to the requirement that an element be stored in \(k \) distinct cells.

Together, Theorems 1 and 2 provide high-assurance quantifications of the privacy enhancement that can be achieved using our schemes with respect to Alice’s data. In particular, consider the common feature of each scenario, where Bob has a query sequence, \(Q \), which is either an entire compressed DNA sequence or a subsequence specified by a range, \(R \), and he wished to find if it is a good match with a sequence, \(Y \), owned by Alice. Suppose further that he specifies a cardinality, \(\tau \), for the symmetric difference, so that if \(|Q \Delta Y| \leq \tau\), then he (or Charles) should learn \(Y \). Finally, suppose he would like a confidence of 99% for his findings, so we set \(\epsilon = 1/100 \). By Theorem 1, Bob should in this case define his IBF so that it has \(2k\tau \) cells, where

\[
k = \lceil \log(\tau/\epsilon) \rceil + 1 = \lceil \log(100\tau) \rceil + 1
\]

is the number of hash functions used. For example, if \(\tau = 100 \), then he should use 15 hash functions and create an IBF with 3000 cells, which is clearly much less than an array of 3 billion cells he would need if he were using a scheme whose size depended on the size of the entire set instead of the cardinality of interest for his set difference.

In addition, by Theorem 2, Alice can take comfort that if the number of differences between \(Q \) and her set, \(Y \), representing her compressed DNA sequence, is high enough, then with 99% assurance, Bob will not be able to decode any elements from the IBF he receives from her. In this
case, since his IBF has $2k\tau$ cells, then Alice has a 99% assurance of privacy so long as her set Y has at least

$$n \geq 1 + 2\tau(\ln(2k\tau) + \ln \ln(2k\tau) + \ln k + \ln 100)$$

differences with Q. For example, if $\tau = 100$, and Bob uses 15 hash functions and creates an IBF with 3000 cells, then Alice will have a 99% level of confidence Bob is unable to use the `listItems` method to learn any element of her set so long as the number of differences is at least 3461. This degree of confidence and privacy enhancement is therefore quite reasonable in our application domain, given that DNA sequences have lengths measured in billions and are likely to have compressed cardinalities, with respect to a reference string, measured in the millions.

5 Conclusion

There is a real and growing need for techniques that can work in conjunction with genomic compression and storage technologies to answer queries in a way that simultaneously preserves the integrity and privacy of the data being queried and the proprietary information contained in the queries themselves. This paper showed how to perform a critical comparison operation on DNA sequences in this framework using techniques from algorithm design, cryptography, and bioinformatics, in a scalable way.

A central theme throughout this paper is that effective solutions that address trust and privacy for genomic data will need to fully integrate these three areas, so as to provide protocols that operate on genomic data in its existing state while also being efficient enough to work in real-world applications.

There are several areas for future research on this topic. In particular, once genomic data is stored (in compressed form) in efficient data structures and one has a means for genomic data to be queried with high integrity in a privacy-preserving fashion, it is natural to then study methods for performing various useful computations on this data. For instance, computations which would be of interest include understanding and predicting protein structures from DNA, modeling and understanding metabolic, signaling, and regulatory networks, and understanding genome evolution. Such computations clearly go beyond simple genomic comparisons, and often involve sophisticated machine learning and data mining algorithms being applied to collections of genomic data. Thus, if we are to perform these computations in a privacy-preserving high-assurance framework, we need new algorithms that support these computations without sacrificing privacy and integrity.

Acknowledgments

This research was supported in part by the National Science Foundation under grants 0953071 and 1011840.

References

[1] A. Amirbekyan and V. Estivill-Castro. A new efficient privacy-preserving scalar product protocol. In AusDM ’07: 6th Australasian Conf. on Data Mining and Analytics, pages 209–214, 2007.
[2] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence comparisons. In *WPES ’03: ACM Workshop on Privacy in the Electronic Society*, pages 39–44, 2003.

[3] M. J. Atallah and J. Li. Secure outsourcing of sequence comparisons. *Int. J. Inf. Secur.*, 4(4):277–287, 2005.

[4] G. Ateniese, E. De Cristofaro, and G. Tsudik. (if) size matters: Size-hiding private set intersection. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, editors, *Public Key Cryptography (PKC)*, volume 6571 of *LNCS*, pages 156–173. Springer, 2011.

[5] P. Baldi, R. W. Benz, D. Hirschberg, and S. Swamidass. Lossless compression of chemical fingerprints using integer entropy codes improves storage and retrieval. *Journal of Chemical Information and Modeling*, 47(6):2098–2109, 2007.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. *Commun. ACM*, 13(7):422–426, 1970.

[7] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An improved construction for counting Bloom filters. In *Proc. 14th Eur. Symp. on Algorithms*, volume 4168 of *LNCS*, pages 684–695. Springer-Verlag, 2006.

[8] M. Brandon, D. Wallace, and P. Baldi. Data structures and compression algorithms for genomic sequence data. *Bioinformatics*, 25(14):1731, 2009.

[9] T. I. H. Consortium. A second generation human haplotype map of over 3.1 million snps. *Nature*, 449:851–861, 2007.

[10] E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of set intersection cardinality. Cryptology ePrint Archive, Report 2011/141, 2011. http://eprint.iacr.org/.

[11] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set intersection. In M. Abdalla, D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, *Applied Cryptography and Network Security (ACNS)*, volume 5536 of *LNCS*, pages 125–142. Springer, 2009.

[12] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In S. Halevi and T. Rabin, editors, *Theory of Cryptography*, volume 3876 of *LNCS*, pages 285–304. Springer, 2006.

[13] E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In R. Sion, editor, *Financial Cryptography and Data Security*, volume 6052 of *LNCS*, pages 143–159. Springer, 2010.

[14] W. Du and M. J. Atallah. Secure multi-party computation problems and their applications: a review and open problems. In *Workshop on New Security Paradigms (NSPW)*, pages 13–22, 2001.

[15] D. Eppstein and M. T. Goodrich. Straggler Identification in Round-Trip Data Streams via Newton’s Identities and Invertible Bloom Filters. *IEEE Trans. on Knowledge and Data Engineering*, 23:297–306, 2011.
[16] D. Eppstein, M. T. Goodrich, and J. A. Simons. Stepping out of the stream: Algorithmic applications of set-differencing data structures. Submitted, 2011.

[17] P. Erdős and A. Rényi. On a classical problem of probability theory. Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:215–220, 1961.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Networking, 8(3):281–293, 2000.

[19] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In Advances in Cryptology — EUROCRYPT 2004., 2004.

[20] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87: Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 218–229, New York, NY, USA, 1987. ACM.

[21] D. Goldstein and G. Cavalleri. Genomics: Understanding human diversity. Nature, 437:1241–1242, 2005.

[22] S. Harihara, M. Hirai, Y. Suutou, K. Shimizu, and K. Omoto. Frequency of a 9-bp deletion in the mitochondrial DNA among Asian populations. Human Biology, 64(2):161–166, 1992.

[23] C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In P. Nguyen and D. Pointcheval, editors, Public Key Cryptography (PKC), volume 6056 of LNCS, pages 312–331. Springer, 2010.

[24] D. A. Hinds, L. L. Stuve, G. Nilsen, E. Eskin, D. Ballinger, K. Frazer, and D. Cox. Whole genome patterns of common dna variation in three human populations. Science, 307:1072–1079, 2005.

[25] D. S. Hirschberg and P. Baldi. Effective compression of monotone and quasi-monotone sequences of integers. In Proceedings of the 2008 Data Compression Conference (DCC 08). IEEE Computer Society Press, Los Alamitos, CA, 2008. In press.

[26] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic computation. In IEEE Symp. on Security and Privacy, pages 216–230, 2008.

[27] L. Kissner and D. Song. Privacy-preserving set operations. In V. Shoup, editor, Advances in Cryptology (CRYPTO), volume 3621 of LNCS, pages 241–257. Springer, 2005.

[28] S. Levy, G. Sutton, P. C. Ng, and et al. The diploid genome sequence of an individual human. PLOS Biology, 5(10):2113–2144, 2007.

[29] S. Micali, M. Rabin, and J. Kilian. Zero-Knowledge sets. In Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91, 2003.

[30] R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for generalized queries on a committed database. In Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP), pages 1041–1053, 2004.
[31] P. Paillier. Public-key cryptosystems based on composite residuosity classes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 223–239. Springer Verlag, 1999.

[32] Y. Sang and H. Shen. Privacy preserving set intersection protocol secure against malicious behaviors. In 8th Int. Conf. on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pages 461–468, 2007.

[33] Y. Sang and H. Shen. Privacy preserving set intersection based on bilinear groups. In 31st Australasian Conf. on Computer science (ACSC), pages 47–54, 2008.

[34] D. Szajda, M. Pohl, J. Owen, and B. G. Lawson. Toward a practical data privacy scheme for a distributed implementation of the Smith-Waterman genome sequence comparison algorithm. In Network and Distributed System Security (NDSS), 2006.

[35] M. Thomas, C. Cook, K. Miller, M. Waring, and E. Hagelberg. Molecular instability in the COII-tRNA(lys) intergenic region of the human mitochondrial genome: multiple origins of the 9-bp deletion and heteroplasmy for expanded repeats. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 353(1371):955–965, 1998.

[36] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error resilient DNA searching through oblivious automata. In 14th ACM Conf. on Computer and Communications Security (CCS), pages 519–528, 2007.

[37] J. Vaidya and C. Clifton. Secure set intersection cardinality with application to association rule mining. J. Comput. Secur., 13(4):593–622, 2005.

[38] A. C. Yao. Protocols for secure computations. In 23rd Symp. on Foundations of Computer Science (FOCS), pages 160–164, 1982.