BARYON CONTENT OF MASSIVE GALAXY CLUSTERS AT $z = 0–0.6$

Yen-Ting Lin1, S. Adam Stanford1, Peter R. M. Eisenhardt5, Alexey Vikhlinin6, Ben J. Maughan7, and Andrey Kravtsov8

1Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan; ytlin@asiaa.sinica.edu.tw
2Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba, Japan
3Physics Department, University of California, Davis, CA 95616, USA
4Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
6Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
7HH Wills Physics Laboratory, University of Bristol, Bristol, UK
8Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA

Received 2011 August 25; accepted 2011 December 6; published 2011 December 29

Abstract

We study the relationship between two major baryonic components in galaxy clusters, namely the stars in galaxies and the ionized gas in the intracluster medium (ICM), using 94 clusters that span the redshift range 0–0.6. Accurately measured total and ICM masses from Chandra observations and stellar masses derived from the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey allow us to trace the evolution of cluster baryon content in a self-consistent fashion. We find that, within r_{500}, the evolution of the ICM mass–total mass relation is consistent with the expectation of the self-similar model, while there is no evidence for redshift evolution in the stellar mass–total mass relation. This suggests that the stellar mass and ICM mass in the inner parts of clusters evolve differently.

Key words: galaxies: clusters: general – galaxies: clusters: intracluster medium – galaxies: elliptical and lenticular, cD – galaxies: luminosity function, mass function

Online-only material: color figures

1. INTRODUCTION

The baryon content in groups and clusters of galaxies is one of the basic quantities that could be used to test models of structure formation. The total baryon mass fraction in massive clusters has been used to estimate cosmological parameters (e.g., White et al. 1993; Allen et al. 2004). The mass of stars in galaxies is a fossil record of the star formation and galaxy merger history (Conroy et al. 2007). The relative proportion in mass of hot (diffuse intracluster medium, ICM) and cold baryons (e.g., stars in galaxies) could be used to gauge the strengths of various feedback mechanisms and star formation efficiency (e.g., Bode et al. 2009).

Although many measurements of the baryon fraction in local clusters exist (e.g., Lin et al. 2003; Gonzalez et al. 2007; Andreon 2010; Balogh et al. 2011), such studies using large cluster samples at higher redshifts are in short supply. The first attempt has been made with the X-ray-selected groups at $z = 0.1–1$ detected in the COSMOS field (Giodini et al. 2009, hereafter G09). However, the total and ICM masses are not well measured for individual systems, so G09 could not constrain $M_{\text{ICM}}/M_{\text{star}}$ well, especially at the massive end (see also Leauthaud et al. 2011).

Here we present a measurement of the baryon mass fraction contained in galactic stars and ICM, as well as the relationship between M_{ICM} and M_{star}, using 94 clusters at $z \leq 0.6$—the largest sample with accurate total and ICM mass measurements to date for this purpose. For the $z > 0.1$ systems, we use data from the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) survey to determine M_{star}, while for the local clusters, we rely on data from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). To ensure uniformity of our measurements and to facilitate comparison across the cosmic epochs, all quantities are measured within r_{500}, the radius within which the mean overdensity is 500 times the critical density of the universe ρ_c at the cluster redshift.

In this paper we have neglected neutral and molecular gas in the baryon budget, as their amount is believed to be small (e.g., Chung et al. 2009). Our analysis does not include the intracluster stars either (as they are well below the surface brightness limit of WISE), although they may contribute a non-negligible fraction to the total cluster stellar mass (e.g., Gonzalez et al. 2007). Throughout this paper we adopt a ΛCDM cosmological model where $\Omega_M = 1 - \Omega_\Lambda = 0.26$, $H_0 = 71h_{71}$ km s$^{-1}$ Mpc$^{-1}$.

2. ANALYSIS OVERVIEW

Our analysis relies on X-ray measurements to provide the cluster center, size, and mass of the ICM. The cluster samples used are described in Section 2.1. We discuss the way artifacts and stars are rejected from the WISE catalogs in Section 2.2. Throughout this study we only make use of WISE 3.4 μm data. For each cluster, we use the background-subtracted total flux to estimate the total cluster luminosity and stellar mass. The method is described fully in Lin et al. (2003, 2004). In Section 2.3, we outline our modified procedures for analyzing the WISE data.

2.1. Cluster Samples

We assemble our intermediate redshift ($z = 0.1–0.6$) cluster sample from Maughan et al. (2008, hereafter M08) and Vikhlinin et al. (2009, hereafter V09), both of which are based on Chandra observations. Although the 115 clusters from M08 are a heterogeneous sample (selected to be targeted ACIS-I observations, at $z > 0.1$, publicly available in the Chandra archive...
Figure 1. Blue and red contours and points show the stellar and galaxy loci, combining data from SDSS and UKIDSS DXS. The black points are the WISE objects without a match in the 2MASS point source catalog. Only 7% of such WISE sources lie along the stellar locus, which suggests that stellar contamination in our WISE galaxy catalogs is $\leq 7\%$. (A color version of this figure is available in the online journal.)

as of 2006), the large sample, analyzed in a uniform fashion, is advantageous and allows us to probe the baryon content in clusters of various dynamical states. The Chandra subsample of the ROSAT PSPC 400 deg2 survey presented in V09, on the other hand, has a well-defined selection function, but is smaller in size (41 objects). We have taken from these studies the X-ray center, ICM and total mass. The total mass M_{500} is derived from the Y_X–M_{500} relation (Kravtsov et al. 2006), where Y_X is the product of core-excised X-ray temperature T_X and M_{ICM}. Using clusters common in the two samples we have verified that the two analyses yield measurements consistent to $\leq 5\%$. Requiring that the clusters are fully covered in the WISE Preliminary Data Release (PDR) footprint (see below), and are not affected by nearby bright stars, our final sample consists of 45 clusters, with 29 and 16 clusters from M08 and V09, respectively.

As our local ($z<0.1$) benchmark, we combine the cluster sample presented in Lin et al. (2004, hereafter L04) with the low-z systems from V09. The resulting 49 clusters have accurate total and ICM mass measurements from Chandra or ROSAT, as well as total stellar mass estimates based on the near-IR K_s-band luminosity from 2MASS.

2.2. WISE Data

WISE is a satellite mission to survey the whole sky in four infrared bands (3.4, 4.6, 12, and 22 μm; hereafter W1–4), with a limiting magnitude of 17 (Vega) in W1. The recent PDR has made public reduced images and source catalogs for 57\% of the sky. For each cluster we query the NASA/IPAC Infrared Science Archive (IRSA) to download WISE PDR source catalog out to 5-10r_{200}, where r_{200} is a proxy of the cluster virial radius, within which the mean overdensity is 200ρ_c, and is extrapolated from r_{500} by assuming a Navarro et al. (1997, hereafter NFW) density profile with concentration $c = 5$. The large area surrounding the clusters is used for estimating the local background galaxy count and flux. In practice, the background is estimated with an annulus with the inner and outer radii set to be four and five times r_{200}, respectively, although the exact choices vary from cluster to cluster, primarily depending on the distribution of bright star masks. Our results are not sensitive to the exact choice of the annulus radii. We only use objects without any known artifacts in W1 and W2.

Because of its 6$''$ FWHM point-spread function (PSF), WISE does not provide useful morphological information to allow distinction between point and extended sources. Instead, we use 2MASS data to help select galaxies. Specifically, for each cluster we download the 2MASS point source catalog\footnote{In addition to the standard flags used for clean photometry and to select point-like sources, we require the sources to have $J \leq 15.8.$} from IRSA, covering the same area as the WISE data. We then regard every WISE object with a 2MASS match within 2$''$ as point-like and remove them from our catalog.

To evaluate the efficiency of this approach in star–galaxy separation, we use a 1.5 deg2 region located in the XMM-LSS field that has deep optical and near-IR data from CFHTLS Wide (Gwyn 2011) and UKIDSS DXS (Lawrence et al. 2007) surveys. In Figure 1, we show the distribution of the stellar and galaxy loci on the $g-i$ versus $J-K$ diagram obtained by cross matching

\footnote{For M08 clusters, the measurements are revised with Chandra CALDB version 4.3.1. For V09 clusters, all the measurements presented here use cir. 2005 calibration; with the most recent calibration, they change only by $\sim3\%.$}

\footnote{http://wise2.ipac.caltech.edu/docs/release/prelim/expsup/sec6_4a.html}
the Sloan Digital Sky Survey (SDSS) star and galaxy catalogs (Aihe et al. 2011) with DXS data. We overlay the 7163 WISE sources without a match in the 2MASS point source catalog, and find that only 7% of them lie on the stellar locus. This shows that by using 2MASS we can remove the great majority of the stars. For the remaining stars in our catalogs, we remove their contribution via statistical background subtraction.

2.3. Estimating Total Luminosity and Stellar Mass

To describe the evolution of the cluster galaxy populations, as well as for the k-correction, we use a simple stellar population evolution model based on an updated version of the Bruzual & Charlot (2003) population synthesis software package (hereafter the BC model). The model is a single stellar population of solar metallicity formed at \(z = 3 \) with an exponentially decaying star formation history (with an e-folding timescale \(\tau = 0.1 \) Gyr), with the Kroupa initial mass function (IMF), normalized to fit the apparent characteristic magnitude \(m^* \) in the \(K_s \)-band for massive X-ray clusters at \(z = 0.1-0.8 \), which are taken from Lin et al. (2006, hereafter L06). Using the BC model, we follow L06 to construct the composite W1 luminosity functions (LFs) in the observer’s frame in five redshift bins. For each bin, we calculate the mean redshift of the clusters \(z_m \) and adjust the k-correction and distance modulus of individual clusters to best represent how the clusters would appear if they were all at \(z_m \). We then fit the composite LFs with the Schechter (1976) function, and show the best-fit \(m^* \) in Figure 2 (top panel).

For the lower three redshift bins, the W1 \(m^* \) evolution agrees well with the BC model. For the two higher redshift bins, the observed \(m^* \) is about 0.3 mag brighter than the model. To check if this has resulted from the blending of galaxies due to the large PSF of WISE, we also construct composite LFs in the SDSS \(z \)-band and W1 for a sample of \(\sim 900 \) optically selected clusters and groups located in SDSS stripe 82 using the catalog of Geach et al. (2011, hereafter G11). The \(m^* \) measured for these clusters is shown in the middle panel of Figure 2, along with the BC model predictions. Although the measured \(m^* \) of the SDSS clusters are slightly fainter than the predictions, the general agreement of \(m^* \) in both W1 and \(z \)-band with the models indicates that blending is not the cause of \(m^* \) being brighter than the models for our X-ray cluster sample at \(z > 0.4 \). The galaxies in our X-ray clusters are indeed more luminous on average than those in the SDSS optically clusters; for example, the mean difference of the magnitudes of the brightest cluster galaxies between the two samples is about 1 mag. This is not surprising given that our clusters are more massive than the G11 sample on average (see, e.g., L04; Hansen et al. 2009). With the chosen BC model, our evolving \(m^*(z) + 2 \) flux threshold (see below) corresponds to a constant galaxy stellar mass limit of \(2 \times 10^{10} M_\odot \). For this reason, and for sake of consistency, we will use the BC model for the k-correction and \(m^* \) evolution, but will comment below on the impact of the “brightening” of galaxies in \(z > 0.4 \) clusters on our results.

For each cluster, we sum the fluxes from objects brighter than the smaller of \(m^*(z) + 1.5 \) and W1 = 17.0, and subtract fluxes from similar objects located within the background annulus (scaled by the relative area of the annulus and cluster region). Assuming all clusters have the same shape of LF (with a faint-end power-law slope \(\alpha = -0.9 \)), which is consistent with our data (see also L06), we convert the background-subtracted flux to \(L_{\text{tot}} \) using an NFW profile with \(c = 5 \), defined as the total luminosity from all galaxies located within \(r_{500} \) that are more luminous than \(M^*(z) + 2 \). On average the conversion from observed to total luminosity requires only 15% of extrapolation.\(^{12}\) For reference, at \(z = 0 \) we have \(\Upsilon_{0, W1} = 1.01 \ M_\odot / L_\odot, W1 \).

For our \(z < 0.1 \) clusters, we measure the total luminosity in the \(K_s \)-band using 2MASS data (following L04); again \(M_{\text{star}} = L_{\text{tot}} \Upsilon_{K_s}(z) \), using the \(K_s \)-band \(\Upsilon_{K_s}(z) \) from the same BC model. Our stellar mass estimates are consistent with that listed in Lin et al. (2003), and are similar to that of Andreon (2010) and Gonzalez et al. (2007), when the intracluster light (ICL) contribution is excluded from the latter study. For a few clusters at \(z < 0.1 \) we have also used WISE data to estimate \(M_{\text{star}} \) and found agreement with 2MASS-based values to within 10%.

3. CORRELATIONS BETWEEN STELLAR MASS, ICM MASS, AND TOTAL MASS

In Figure 3 we show the \(M_{\text{star}}-M_{\text{ICM}} \) correlation, measured within \(r_{500} \), for the M08 clusters (filled circles), V09 clusters

\(^{12}\) Galaxies fainter than \(M^*(z) + 2 \) would contribute an additional 12% in luminosity assuming \(\alpha = -0.9 \).
The Astrophysical Journal Letters, 745:L3 (5pp), 2012 January 20

Figure 3. Correlation between the total stellar mass and ICM mass, both measured within \(r_{500} \), for the M08 clusters (filled circles), V09 clusters (open points), and \(z < 0.1 \) clusters (green squares). To avoid overcrowding the plot, error bars for a typical cluster are shown in the lower right corner. We include a 10% uncertainty in stellar mass for the assumption that a single value of mass-to-light ratio can describe the bulk of galaxies in a cluster. The choice of the IMF is the largest systematic uncertainty at the 30% level. The line is the best fit to clusters at \(z \approx 0 \) (Equation (2)).

(A color version of this figure is available in the online journal.)

(open points), and \(z < 0.1 \) clusters (green squares). The M08 and V09 samples, although constructed using different selection criteria, appear to follow the same trend. Together, the sample spans a factor of 30 in \(M_{\text{ICM}} \), allowing us to determine the slope of the scaling relations well.

The correlations between the baryon components and the cluster mass are shown in Figure 4. The lower sets of points are the stellar mass fraction \((f_{\text{star}} = M_{\text{star}}/M_{500}) \), and the upper sets are the baryon fraction, \(f_B = (M_{\text{ICM}} + M_{\text{star}})/M_{500} \), which is dominated by the ICM.

To investigate any redshift evolution among these correlations, we fit the data with the following form by \(\chi^2 \) minimization:

\[
M_{\text{star}} \propto M_{\text{ICM}}^{\gamma_1} (1+z)^{\gamma_2}
\]

\[
M_{\text{star}} \propto M_{500}^{\gamma_1} (1+z)^{\gamma_2}
\]

\[
M_{\text{ICM}} \propto M_{500}^{\gamma_3} (1+z)^{\gamma_4}.
\]

We find that \(\gamma_1 = -0.31 \pm 0.22 \), \(\gamma_2 = -0.06 \pm 0.22 \), and \(\gamma_3 = 0.41 \pm 0.14; s_1 = 0.62 \pm 0.04, s_2 = 0.71 \pm 0.04, \) and \(s_3 = 1.13 \pm 0.03 \). That is, there is no evolution for the \(M_{\text{star}}-M_{500} \) relation, weak suggestion of evolution in \(M_{\text{star}}-M_{\text{ICM}} \), and strong evidence of evolution in \(M_{\text{ICM}}-M_{500} \), which is manifested as an offset between the loci of \(f_B \) for \(z < 0.1 \) (solid squares) and \(z > 0.1 \) (circles) clusters in Figure 4. This is mainly due to the self-similar evolution (SSE) of the ICM, as noted first by V09 (see the discussion associated with Figure 10 therein). Let us denote \(M_{\text{ICM}} \propto M_{1+z}^{\kappa} \), where \(\kappa = s_3 - 1 = 0.13 \) based on our data. Introducing the nonlinear mass scale, \(M_{\text{NL}} \), satisfying \(\sigma(M)D(z) = \delta_c \approx 1.69 \), where \(\sigma(M) \) is the rms fluctuation of linear power spectrum and \(D \) is the growth factor (Peebles 1980), we can expect the ICM mass fraction to be the same for systems of the same \(M_{500}/M_{\text{NL}} \) at different redshifts under the SSE. It then follows that \(M_{\text{ICM}} \propto M_{500}^{\kappa} / M_{\text{NL}} \). We note that \(M_{\text{NL}}(z)^{1-\kappa} \) is consistent with \((1+z)^{\gamma_2} \) up to \(z \sim 0.4 \) or so. Indeed, with total mass scaled by \(M_{\text{NL}} \), the scatter reduces from 12% to 8%. We have confirmed the consistency between the observed \(M_{\text{ICM}}-M_{500} \) evolution and the SSE expectation by repeating the above analysis using \(M_{500} \) based on the \(T_X-M_{500} \) relation of V09.

Using all of the clusters we find that

\[
\frac{M_{\text{star}}}{10^{12} h^{-2}_{71} M_\odot} = \frac{1.9 \pm 0.1}{1.01^{0.62 \pm 0.04}} \left(\frac{M_{\text{ICM}}}{10^{13} h^{-2.5}_{71} M_\odot} \right)^{0.62 \pm 0.04} (1 + z)^{-0.31 \pm 0.22}
\]

with a scatter of 31%; Without strong evidence of evolution, for simplicity we take \(\gamma_2 = 0 \) in Equation (1) and find that

\[
\frac{M_{\text{star}}}{10^{12} h^{-2}_{71} M_\odot} = (1.8 \pm 0.1) \frac{M_{500}}{10^{14} h^{-1}_{71} M_\odot}
\]

\[
(3)
\]

with a scatter of 31%.
The stellar mass-to-light ratio Υ is the most important systematic uncertainty in our results. We adopt the Kroupa IMF, as it gives Υ at $z \sim 0$ that is consistent with the SAURON measurements of nearby elliptical galaxies (Cappellari et al. 2006). Using the Salpeter (Chabrier) IMF, our M_{star} would be 34% higher (24% lower). Using a single value of Υ for all galaxies in a cluster is admittedly too simplistic (Leauthaud et al. 2011), although we note that the spread of Υ in W1 for galaxies of all types is 20% smaller than in optical bands. Furthermore, as galaxies in the $M^* \pm 1$ magnitude range contribute 65% of the total light, our approach is reasonable, as long as Υ is only a weak function of galaxy mass (and/or morphology).

Another systematic uncertainty stems from the relative mass calibration of the Y_X-M_{500} relation at different redshifts, which is about 5% between $z = 0$ and $z = 0.5$ (V09). By boosting the total and ICM mass by 5% for all clusters at $z > 0.5$, we find that the exponents γ_1 and γ_2 become more negative (both change by ~ -0.08), giving a weak hint of changing in the stellar mass content.

If only using clusters at $z < 0.4$, we would have found that $\gamma_2 = -0.81 \pm 0.47$ (cf. -0.06 ± 0.22 when using the whole sample). That is, the 17 highest-z clusters have a substantial leverage on the determination of γ_2. It is also these clusters that exhibit “brightening” of galaxies with respect to the BC model. Had we adopted the measured m^* based on these clusters (instead of using the BC model), which is equivalent to reducing L_{tot} and adopting a higher galactic stellar mass limit, we would have obtained $\gamma_2 = -0.36 \pm 0.24$. We therefore acknowledge the possibility that our results may be driven by the behavior of these most massive clusters at $z \sim 0.5$. Ideally we would use a large, volume-limited sample that may represent the average cluster properties better, which will be carried out in a future publication with the all-sky WISE data.

Possible systematic effects aside, the apparent lack of redshift evolution in the $M_{\text{star}}-M_{500}$ relation is consistent with the findings of G09 and L06. In analyses that utilize f_b to infer cosmological parameters (e.g., Allen et al. 2004), the locally derived $M_{\text{star}}-M_{500}$ relation is usually assumed to hold at higher redshifts. Our result directly validates such an assumption.

Our results suggest that, within r_{500}, the gas and galaxy contents evolve in different ways; while gas mass grows according to the SSE fashion, the much larger scatter in $M_{\text{star}}-M_{500}$ and $M_{\text{star}}-M_{\text{ICM}}$, as well as the much-less-than-unity slopes in these scaling relations, suggests a more stochastic growth history, which likely involves tidal interactions to strip off material from galaxies (e.g., L04; Conroy et al. 2007). In light of this, it would be critical to constrain the evolution of the stellar mass contained in the ICL. The upcoming Subaru HyperSuprime Cam survey (Takada 2010) will likely provide necessary data in this regard. It is equally important to examine the baryon content evolution beyond r_{500}, both observationally and theoretically.

We are very grateful to G. Bruzual and S. Charlot for providing an updated version of their model, to M. Tanaka and C. Mancone for help with the BC model predictions, and to an anonymous referee for very helpful comments. Y.T.L. thanks E. Komatsu, J. Gunn, C. Conroy, M. Fukugita, M. Takada, and D. Spergel for helpful discussions, and I.H. for constant encouragement. Y.T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. This research was supported in part by the NSF under grant no. NSF PHY05-51164. This publication makes use of data products from WISE, a joint project of UCLA and JPL/Caltech, funded by NASA, and 2MASS, a joint project of UMass and IPAC/Caltech, funded by NASA and NSF. Funding for SDSS-III has been provided by the Sloan Foundation, the Participating Institutions, NSF, and DOE. This work makes use of data from CFHTLS and UKIDSS.

REFERENCES

Aihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Allen, S. W., Schmidt, R. W., Ebeling, H., Fabian, A. C., & van Speybroeck, L. 2004, MNRAS, 353, 457
Andreon, S. 2010, MNRAS, 407, 263
Balogh, M. L., Mazotta, P., Bower, R. G., et al. 2011, MNRAS, 412, 947
Bode, P., Ostriker, J. P., & Vikhlinin, A. 2009, ApJ, 700, 989
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126
Chung, A., van Gorkom, J. H., Kenney, J. D. P., Crowl, H., & Vollmer, B. 2009, AJ, 138, 1741
Conroy, C., Wechsler, R. H., & Kravtsov, A. V. 2007, ApJ, 668, 826
Geach, J. E., Murphy, D. N. A., & Bower, R. G. 2011, MNRAS, 413, 3059
Giordani, S., Pierini, D., Finoguenov, A., et al. 2009, ApJ, 703, 982
Gonzalez, A. H., Zaritsky, D., & Zabludoff, A. I. 2007, ApJ, 666, 147
Gwyn, S. D. J. 2011, AJ, submitted (arXiv:1101.1084)
Hansen, S. M., Sheldon, E. S., Wechsler, R. H., & Koester, B. P. 2009, ApJ, 699, 1333
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJS, 180, 330
Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128
Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MNRAS, 379, 1599
Leauthaud, A., George, M. R., Behroozi, P. S., et al. 2011, ApJ, submitted (arXiv:1109.0010)
Lin, Y.-T., Mohr, J. J., Gonzalez, A. H., & Stanford, S. A. 2006, ApJ, 650, L99
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2003, ApJ, 591, 749
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745
Maughan, B. J., Jones, C., Forman, W., & Van Speybroeck, L. 2008, ApJS, 174, 117
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Peekers, P. J. E. 1980, The Large Scale Structure of the Universe (Princeton, NJ: Princeton Univ. Press)
Schecter, P. 1976, ApJ, 203, 297
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Takada, M. 2010, in AIP Conf. Ser. 1279, Deciphering the Ancient Universe with Gamma-ray Bursts, ed. N. Kawai & S. Nagataki (Melville, NY: AIP), 120
Vikhlinin, A., Burenin, R. A., Ebeling, H., et al. 2009, ApJ, 692, 1033
White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868