INVESTIGATION OF SEAM PUCKERING IN WOMAN’S BLOUSE

Stefan Maksimov¹, Sashka Golomeova Longurova¹, Sonja Jordeva¹*
Darko Andronikov¹

¹ University „Goce Delchev“, Shtip, Faculty of Technology
Miro Baraga bb., Probištip, Republic of North Macedonia
* e-mail:sonja.jordeva@ugd.edu.mk

Abstract: In this study, mechanical properties of the fabrics were investigated in order to find the cause for seam puckering problem in armhole and neckline area of woman's blouse. The same model of woman's blouse was produced from two types of fabrics with different raw material content: 100% silk and 100 % polyester. The obtained results show that both fabrics have a low shear rigidity, indicating that fabrics extension in bias direction is high. The fabrics extension in bias direction has influence on seam puckering in armhole and neckline area of the blouse because there is sewing in bias direction except sewing in warp and weft directions.

Keywords: seam puckering, mechanical properties, FAST system.

1. INTRODUCTION

The development of the apparel industry is conditioned by the successful management in terms of price and delivery on the one hand, and constant monitoring and meeting consumer demands in terms of quality on the other. Consumers evaluate the clothes quality through the comfort, aesthetic and functional properties of the clothes [1]. The seam is one of the basic ways of clothes assembling and as such, the quality of the seam is essential to the quality of clothes. The properties through which the quality of the seam is assessed are seam puckering, seam strength, seam slippage, uneven stitch density and other. In clothing manufacture, the seam puckering is a defect that occurs very often. Seam pucker is defined as [2] “a ridge, wrinkle or corrugation of the material or a number of small wrinkle running across and into one another, which appear in sewing together two pieces of fabric”. Various factors have influence on seam puckering as the structural parameters of the fabrics, type of sewing machine, seam construction, as well as sewing parameters: feed mechanism, presser foot, stitch density, needle size and thread tension. During the clothing manufacture fabrics are exposed to various deformations like extension, compression, shear and bending that affect the aesthet-
ic and functional quality of seams. Many researchers have investigated the influence of structural and mechanical properties of fabrics on seam puckering. Dobilaite and Petrauskas’s [3] research has shown that shear rigidity, extension and flexibility of the fabrics have an impact on the seam puckering. Stylious and Lloyd [4] also have investigated the influence of mechanical properties of fabrics on seam puckering and results show that shear and bending rigidity are the main factors which have influence on this defect. Carvalho, Dembowski and Nofitoska [5] have investigated the relation between seam puckering, formability and tightness of fabric. The obtained results have shown that seam puckering increases when fabrics formability decreases.

In this study, mechanical properties of the fabrics were investigated to find the reason for seam puckering in woman’s blouse during the production process.

2. EXPERIMENTAL

2.1. Materials

The same model of woman’s blouse from two different fabrics was manufactured. In the both cases there were the seam puckering in neckline and armhole area. The model of woman’s blouse is presented in Figure 1. The blouse is sleeveless with six pleats on the front neckline.

Table 1: Structural properties of fabrics

Fabric	F1	F2
Composition	100% Silk	100% PES
Weave	Plain	Satin
Yarn count (tex)	Ttw 6.4	Ttw 5.6
	Ttwf 11.8	Ttwf 7.20
Yarn density (dm⁻¹)	nw 580	nw 1060
	nwf 390	nwf 460
Yarn thickness (cm)	dww 0.0098	dww 0.0089
	dwf 0.0134	dwf 0.0101
Cover factor	0.7939	0.9696
Surface density (g/m²)	83.61	91.36

Table 2: Sewing parameters

Fabric	Thread structure	Thread count (tex)	Needle size, Nm	Stitch density/100 mm
F1 / F2	Core-spun	24	80	40

In Figure 2 and Figure 3 the seam puckering in the woman’s blouse is presented for fabrics F1 and F2 respectively.

Figure 1: Technical sketch of the model

The properties of used fabrics in Table 1 are given. The surface density was measured according to the standard MKS BS EN 12127:1998, yarn count according to the standard ISO 7211-5:1984 and MKS EN 1049-2:2007 was used to determine yarn density. The blouse was sewn according to the parameters given in Table 2.

Figure 2: Seam puckering in armhole (left) and neckline (central and right), fabric F1

Figure 3: Seam puckering in armhole (left) and neckline (right), fabric F2
2.2. Methods

In order to find the cause for seam puckering in neckline and armhole area, the mechanical properties of fabrics under small loads using FAST (Fabric Assurance by Simple Testing) system were investigated. The samples of fabrics were tested using compression meter (instrument FAST 1), bending meter (instrument FAST 2) and extension meter (instrument FAST 3) [6].

- Using the instrument FAST 1 the fabrics thickness was measured under loads of 2 g/cm² and 100 g/cm². The surface thickness of the fabrics was calculated as:

\[
ST = T_2 - T_{100}
\]

Where:

- \(T_2 \) – average thickness of fabric under load of 2 g/cm²
- \(T_{100} \) – average thickness of fabric under load of 100 g/cm².

- Using the instrument FAST 2 the fabric bending length was measured. Bending rigidity was calculated using the equation:

\[
B = 9.8 \times 10^{-3} \cdot Q \cdot C^3
\]

Where:

- \(B \) – bending rigidity (μNm)
- \(C \) – bending length (mm)
- \(Q \) – fabric surface density (g/m²).

- Using the instrument FAST 3 the fabric extensibility under three different loads (5 g/cm, 20 g/cm and 100 g/cm) in warp and weft direction was measured. Extensibility of fabric under loads of 5 g/cm and 20 g/cm in combination with bending rigidity determines the fabric formability, according to the equation:

\[
F = \frac{[B \cdot (E_{20} - E_5)]}{14.7}
\]

Where:

- \(F \) – formability of fabric (mm²)
- \(B \) – bending rigidity (μNm)
- \(E_{20} \) – extension under load of 20 g/cm
- \(E_5 \) – extension under load of 5 g/cm.

The extensibility is also measured in bias direction under 5 g/cm load to determine fabric shear rigidity, using the equation:

\[
G = \frac{123}{EB_5}
\]

Where:

- \(G \) – fabric shear rigidity (N/m)
- \(EB_5 \) – extension under load of 5 g/cm.

In order to obtain consistent results, fabrics were conditioned overnight in standard atmosphere 20 ± 2°C temperature and 65 ± 2% relative humidity before cutting. The fabrics sample cutting scheme in Figure 5 is presented.

3. RESULTS AND DISCUSSION

Table 2 shows the obtained results for mechanical properties of the used fabrics. The formability values for both fabrics in weft direction are higher than 0.25 mm². In warp direction, the fabric F1 has good formability, higher than 0.25 mm², while the formability of the fabric F2 is 0 mm². Formability values under 0.25 mm² create the possibility of fabrics producing seam puckering after sewing. The fabric F1 in both, warp and weft directions, and the fabric F2 in weft direction have extensibility values higher than upper control limit, which indicate that fabrics can easily stretched during cutting and sewing. In warp direction fabric F2, has extensibility values 0%, and this can lead to problems with overfeed seams. The fabric F1 in weft direction and fabric F2 in both warp and weft directions have bending rigidity below 5 μNm. Low values of bending rigidity mean that those fabrics potentially cause difficulty during cutting and sewing. For shear rigidity, both fabrics have values less than 30 N/m. Low shear rigidity makes the fabric difficult to lay for cutting and these fabrics may require pinning down to avoid displacement of the cutting layer. According to the surface density both fabrics are lightweight fabrics. The control charts for fabric mechanical prop-
erties, in Figure 6 and Figure 7 are shown for fabric F1 and F2, respectively.

Properties	F1	F2
Extension E100-1 (%)	10.9	0
E100-2 (%)	11.9	13.2
Formability F-1 mm²	1.003	0
F-2 mm²	0.51	1.11
Shear rigidity Gf (N/m)	10.3	13.4
Bending rigidity B-1 (μNm)	3.88	16.47
B-2 (μNm)	1.88	3.21
Compression T2 (mm)	0.205	0.126
T100 (mm)	0.107	0.085
ST (mm)	0.098	0.041
Weight Q (g/m²)	83.61	91.36

Figure 6: Control chart for fabric F1

Table 2: Mechanical properties of fabrics

Figure 7: Control chart for fabric F2

During the sewing process, fabric is stretched along the stitch line as a result of transporting between feed dog and presser foot. If the fabric has high extensibility then stretching during sewing will be high, which can be reason for seam puckering along the seam line after sewing. In the apparel industry, fabrics are usually sewn in the warp and weft direction. In the woman's blouse, except seams sewn parallel to the warp and weft yarns, there are seams which deviates from warp and weft direction (Figure 8). In the area of neckline, sewing start in warp direction, goes to bias direction, then in weft direction, again in bias and ends in warp direction. Similarly, the armhole seam, sewing start in weft direction, goes to a bias, continue in warp direction, again in bias direction and ends to a weft.

Figure 8: Sewing directions
In the analyzed models of woman’s blouse, seam puckering in side seams (seam in warp direction) and shoulder seams (seam in weft direction) didn’t occur. There wasn’t seam puckering in weft direction because both fabrics have formability in control zone, 0.51 mm² and 1.11 mm² for fabric F1 and F2 respectively. In warp direction, fabric F1 has formability in the control zone 1.003 mm² and there wasn’t seam puckering. Although, fabric F2 has formability in non-control zone in warp direction 0 mm², there is no seam puckering because of the high bending rigidity in this direction (16.47 μNm). From Figure 2 and 3 it can be seen that puckering occurs in those seams which have deviation from the warp and weft direction of sewing, i.e. seam sewn in bias direction. The low shear rigidity values, 10.3 N/m for fabric F1 and 13.4 N/m for fabric F2, indicate that fabric extension in bias direction is high. For fabric F1 extension in bias direction under 5 g/cm load is 11.9% and for fabric F2 is 9.2%. Although the FAST system doesn’t set control limits for fabric extension in bias direction, low shear rigidity shows that the fabric extension is high. Based on the literature, the important property that affect the seam puckering is extensibility. Fabric with high extensibility is proneness to seam puckering.

4. CONCLUSION

During the manufacturing of woman’s blouse, seam puckering was occurred in neckline and armhole area. In order to find the reason for this problem, the mechanical properties of fabrics on FAST system were investigated. The obtained results have shown that the value for shear rigidity in both fabrics is lower than 30 N/m. The low value of shear rigidity means that the fabric extension in bias direction (11.9% for fabric F1 and 9.2% for fabric F2) is high and that cause seam puckering.

REFERENCES

[1] Fan, J., Ju, W., Hunter, L. (2004). *Clothing appearance and fit: Science and technology*, Woodhead Publishing, Elsevier, Cambridge.

[2] The shorter Oxford Dictionary. (1967), Oxford University, Press, U. K. Vol.II,3rd edition, pp.1614.

[3] Dobilaite, V., Petrauskas, A. (2002). The effect of fabric structure and mechanical properties on seam puckerm, *Material Science*, Vol. 8(4), pp.495-499.

[4] Stylious, G., Lloyd, D. W. (1990). Prediction of seam puckerm in garments by measuring fabric mechanical properties and geometric relationships, *International Journal of Clothing Science and Technology*, Vol. 2(1), pp.6-15.

[5] Carvalho, M. A., Demboski, G., Nofitoska, M. (2012). Investigation of seam puckerm on seams for tailored garments, *4th International Scientific-Professional Conference*, Zrenjanin 06-07th November 2012, pp.116-1211.

[6] A. De Boos, D.A., Tester, D. (1994). SiroFAST Fabric Assurance by Simple Testing, Report No. WT92.02