Prevalence and spectrum of $MLH1$, $MSH2$, and $MSH6$ pathogenic germline variants in Pakistani colorectal cancer patients

Muhammad Usman Rashid1*, Humaira Naeemi1, Noor Muhammad1, Asif Loya2, Jan Lubinski3, Anna Jakubowska3,4 and Muhammed Aasim Yusuf5

Abstract

Background: Pathogenic germline variants in $MLH1$, $MSH2$ and $MSH6$ genes account for the majority of Lynch syndrome (LS). In this first report from Pakistan, we investigated the prevalence of pathogenic $MLH1/MSH2/MSH6$ variants in colorectal cancer (CRC) patients.

Methods: Consecutive cases ($n=212$) were recruited at the Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), between November 2007 to March 2011. Patients with a family history of >3 or 2 HNPCC-associated cancers were classified as HNPCC ($n=9$) or suspected-HNPCC ($n=20$), respectively (group 1; $n=29$). Cases with no family history were designated as non-HNPCC (group 2; $n=183$). $MLH1/MSH2/MSH6$ genes were comprehensively screened in group 1. Pathogenic/likely pathogenic variants identified in group 1 were subsequently evaluated in group 2.

Results: Eight distinct pathogenic/likely pathogenic $MLH1/MSH2$ variants were found in group 1 ($10/29; 34.5$%), belonging to HNPCC ($5/9; 55.6$%) and suspected-HNPCC ($5/20; 25$%) families and in group 2 ($2/183; 1.1$%) belonging to non-HNPCC. Overall, three recurrent variants ($MSH2$ c.$943-1G > C$, $MLH1$ c.1358dup and c.$2041G > A$) accounted for 58.3% ($7/12$) of all families harboring pathogenic/likely pathogenic $MLH1/MSH2$ variants. Pathogenic $MSH6$ variants were not detected.

Conclusion: Pathogenic/likely pathogenic $MLH1/MSH2$ variants account for a substantial proportion of CRC patients with HNPCC/suspected-HNPCC in Pakistan. Our findings suggest that HNPCC/suspected-HNPCC families should be tested for these recurrent variants prior to comprehensive gene screening in this population.

Keywords: HNPCC, Suspected-HNPCC, MMR genes, Pathogenic variants, Likely pathogenic variants, Pakistan

Background

Colorectal cancer (CRC) is the fifth most common malignancy in Pakistan and endometrial cancer (EC) is the third most common gynecologic malignancy in Pakistani women [1]. The age-standardized (world) annual rates of CRC and EC are 4.0 and 3.6 per 100,000 in Pakistan, respectively. Affected individuals generally present at a young age. The majority of CRC and EC are not linked with inherited cancer syndromes. Up to 30% of CRC are hereditary and these may be divided into polyposis and non-polyposis syndromes. The term hereditary non-polyposis colorectal cancer (HNPCC) refers to patients and families who fulfill the Amsterdam criteria and differentiates familial aggregation of CRC from the polyposis phenotype. Up to 50% of HNPCC families have the Lynch syndrome (LS), with a DNA mismatch repair (MMR) defect, while the rest comprise those with a Lynch-like syndrome and a familial colorectal cancer type X (FCCTX) with no DNA MMR defects [2]. LS refers to families with a pathogenic germline variant in one of the DNA MMR genes ($MLH1$, $MSH2$, $MSH6$, and $PMS2$) or the $EPCAM$ gene $3\prime$ end deletions [3]. The most common pathogenic MMR gene variants (up to 90%) in LS are reported in $MLH1$ and $MSH2$ [4, 5], less commonly in $MSH6$ (up to 10%) and uncommonly in $PMS2$ [6]. Deletions in $EPCAM$ gene (1–3\prime) in LS are rarely reported [7]. Individuals with LS have a lifetime...
risk of CRC, EC, and ovarian cancer ranging from 50 to 80%, 31.5–62%, and 6.7–13.5%, respectively. These individuals also face increased lifetime risks of developing cancer of the small bowel, stomach, upper urologic tract, biliary tract, pancreas and brain [8–12]. Identification of individuals harboring pathogenic MMR gene variants is clinically important and has a significant impact on surveillance and management [13].

Various clinical criteria such as the Amsterdam II criteria [14, 15] or the Bethesda guidelines exist for identifying patients at high risk of HNPCC. These criteria are based on a strong family history of at least three HNPCC-associated cancers, age at diagnosis and tumor histology. However, these stringent criteria have reported under-diagnosis of LS [16, 17]. Less stringent criteria of suspected-HNPCC, based on a family history of only two HNPCC-linked cancers, have also been found useful in identifying pathogenic variants in MMR genes [18–20].

The prevalence and spectrum of pathogenic MMR gene variants show considerable variation by ethnicity and by geographic origin worldwide [21–23]. However, little is known about the contribution of MMR gene variants to CRC in Pakistan. In the current study, we comprehensively investigated the contribution of pathogenic germline variants in MLH1, MSH2 and MSH6 genes to 212 Pakistani cases with HNPCC/suspected-HNPCC or non-HNPCC.

Methods

Study subjects

Consecutive cases were identified at the Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) in Lahore, Pakistan, from November 2007 to March 2011. These study cases were stratified into two groups: HNPCC/suspected-HNPCC group (n = 29) and non-HNPCC group (n = 183). Stringent criteria were applied for inclusion in the HNPCC subgroup. These included: (i) at least three relatives affected by histologically verified CRC or EC, small bowel or urinary tract; at least one of whom was a first degree relative of the other two, (ii) at least two of the above individuals were first degree relatives from two different generations, (iii) at least one of the above persons had cancer diagnosed at age under 50 years, (iv) familial adenomatous polyposis (FAP) had been excluded [14, 15]. Somewhat less stringent criteria used for the suspected-HNPC subgroup included: (i) diagnosis of at least one CRC, EC, small bowel or urinary tract malignancy amongst first degree relatives of a CRC patient (or in him/herself), (ii) at least one of the above cancers diagnosed under age 50, (iii) FAP had been excluded [18]. The remaining 183 enrolled CRC cases did not fulfill the diagnostic criteria of HNPCC/suspected-HNPCC and were assigned to the non-HNPCC group. Clinical and histopathological data of all index patients were collected from medical records and pathology reports. A detailed description of the 212 index cases is shown in Table 1.

The control population included 100 healthy individuals of Pakistani origin, having no family history of CRC. These were care-givers or family members of hospital registered patients or those visiting the hospital for medical reasons other than cancer. All study participants were furnished with and signed an informed written consent. The study was approved by the Institutional Review Board (IRB) of the SKMCH&RC (IRB approval number SKMCH-CRC-001).

Molecular analysis

Genomic DNA was extracted as previously described [24]. The entire coding region and exon-intron junctions of the MLH1, MSH2 and MSH6 genes (GenBank accession numbers NM_000249.3; NM_000251.2; NM_000179.2, respectively) were screened in 29 index patients of HNPCC/suspected-HNPPC group using de-naturing high-performance liquid chromatography (DHPLC) analysis. The DHPLC analysis was carried out with the WAVE system (Transgenomics, Omaha, NE, US). PCR-primer pairs and DHPLC running conditions for MLH1/MSH2 genes were according to Kurzawski and colleagues [4] and for MSH6 gene was according to Kolodner et al. with some modifications [25] and are available upon request. When available, a positive control for each exon with a known variant was included in the DHPLC analyses.

Each sample showing variants detected by DHPLC analyses was sequenced using BigDye Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, US), as described elsewhere [26]. Bidirectional genomic DNA sequencing was performed on an independent sample to verify the presence of a sequence variant.

Pathogenic/likely pathogenic variants identified in the HNPCC/suspected-HNPPC group were subsequently screened in the non-HNPPC group by DHPLC. Novel pathogenic variants and in silico predicted likely pathogenic variants were further analyzed in 100 healthy individuals.

Classification of MMR gene variants

The MMR gene variants were stratified according to the following 5 tier classification, as described elsewhere: class 5 (pathogenic), class 4 (likely pathogenic), class 3 (uncertain significance), class 2 (likely benign) and class 1 (benign) [27]. The variants were designated as novel or previously reported variants by searching the following six databases: Exome Aggregation Consortium (ExAC), http://exac.broadinstitute.org/; Exome Sequence Project...
Table 1 Clinicopathological characteristics of HNPCC/suspected-HNPCC and non-HNPCC study participants

Characteristics	HNPCC/suspected-HNPCC (n = 27)a	non-HNPCC (n = 183)	\(P^b \)
Age at diagnosis of CRC (yrs)			
Mean	42.7	43.1	0.951c
Range	20–61	14–77	
\(\leq 50 \)	21 (77.8)	115 (62.8)	0.194
\(> 50 \)	6 (22.2)	68 (37.2)	
Gender, No (%			
Male	21 (77.8)	125 (68.3)	0.377
Female	6 (22.2)	58 (31.7)	
Tumor location, No (%			
Proximal	14 (58.3)	24 (13.2)	*** < 0.0001d
Distal	9 (37.5)	144 (79.6)	
Colon (not specified)	1 (4.2)	13 (7.2)	
Unknown	3	2	
Histologic type, No (%)			
Adenocarcinoma	20 (80.0)	142 (79.3)	1.0e
Mucinous adenocarcinoma	5 (20.0)	36 (20.1)	
Squamous cell carcinoma	0	1 (0.6)	
Unknown	2	4	
Mucinous component, No (%)			
Absent	20 (90.9)	132 (79.0)	0.257
Present	2 (9.1)	35 (21.0)	
Unknown	5	16	
Tumor size (cm), No (%)			
\(\leq 5 \)	11 (45.8)	50 (70.4)	**0.047
\(> 5 \)	13 (54.2)	21 (29.6)	
Unknown	3	112	
Macroscopic appearance, No (%)			
Ulcerative	5 (50.0)	17 (34.7)	0.061f
infiltrative	0	16 (32.7)	
Fungating	0	11 (22.4)	
Infiltrative+ulcerative	1 (10.0)	4 (8.2)	
Fungating+ulcerative	4 (40.0)	1 (2.0)	
Unknown	17	134	
Histologic grade, No (%)			
Low	18 (78.3)	99 (77.3)	1.0
High	5 (21.7)	29 (22.7)	
Unknown	4	55	
Lymphovascular invasion, No (%)			
Absent	16 (88.9)	32 (64.0)	0.197g
Present	2 (11.1)	14 (28.0)	
Intermediate	0	4 (8.0)	
Unknown	9	133	
Venous invasion, No (%)			
Absent	8 (100.0)	31 (79.5)	0.566g
In silico analyses

The novel missense variants identified in MLH1/MSH2 and previously reported class 3 variants of uncertain significance (VUS) in MMR genes were analyzed for their potential effect on protein function using the default settings of web tools Align-GVGD (http://agvgd.hci.utah.edu/agvgd_input.php), PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/), SIFT (https://sift.bii.a-star.edu.sg/), Mut Pred (http://mutpred.mutdb.org/), SNPs&GO (http://snps.biofold.org/snpsearch/snpsearch.html), PhD SNP (http://snps.biofold.org/phd-snp/phd-snp.html), and SNAP (https://www.umd.be/SNP/). Furthermore, all novel and previously reported intronic VUS in MMR genes were analyzed for their potential effect on splicing using the splice prediction algorithms SpliceSiteFinder-like (http://www.umd.be/), MaxEntScan (http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html), NNSPLICE (http://www.fruitfly.org/seq_tools/splice.html), GeneSplicer (http://www.ccb.jhu.edu/software/gensplicer/) and HumanSpliceFinder (http://www.umd.be/HSF3/) via the Alamut software interface (Interactive Biosoftware) in default settings.

Statistical analysis

The comparison of the distribution of clinical and histopathological characteristics between HNPCC/suspected-HNPCC group vs. non-HNPCC group and carriers of pathogenic/likely pathogenic MLH1/MSH2 variant vs. non-carriers was performed using Fisher’s exact test for categorical variables and the Wilcoxon rank-sum test for numerical variables.
quantitative variables. All statistical tests were two-sided. Results were deemed statistically significant if the P value was 0.05 or less. All statistical computations were done using StatXact 4 for Windows (Cytel Inc., Cambridge, US), SAS version 9.3 and R, version 2.1.

Results

Characteristics of the study participants

In total, 212 unrelated Pakistani index patients were included in the current study. Of these, 86.3% were diagnosed with CRC with no family history (non-HNPCC group = 183) and 13.7% reported a family history of cancer within the spectrum of HNPCC (HNPCC/suspected-HNPCC group = 29; 9 fulfilled the HNPCC criteria and 20 met the suspected-HNPCC criteria). Characteristics of the index CRC cases are shown in Table 1. Of the index cases, 210 patients including 146 males and 64 females had a diagnosis of CRC. Two patients belonged to the suspected-HNPCC subgroup: one with breast-endometrial cancer and the other with ovarian cancer. A majority of patients were of Punjabi (38.7%) or Pathan (34.4%) ethnic origin. The mean age at onset of disease was 42.7 years (range 20–61) and 43.1 years (range 14–77) for cases belonging to HNPCC/suspected-HNPCC group and non-HNPCC group, respectively (P = 0.95, Wilcoxon rank-sum test). The HNPCC/suspected-HNPCC group in comparison to non-HNPCC group more often presented with proximal tumor site (14/24, 58.3% vs. 24/181, 13.2%; P < 0.0001) and greater tumor size (> 5 cm) (13/24, 54.2% vs. 21/71, 29.6%; P = 0.047). There were no differences in histological type, mucinous component, macroscopic appearance, histologic grade, lymphovascular or venous invasion, tumor stage and lymph node involvement between both groups.

Pathogenic germline variants: HNPCC/suspected-HNPCC group

The index patients of HNPCC/suspected-HNPCC group (n = 29) were entirely screened for germline MLH1, MSH2 and MSH6 variants using DHPLC followed by DNA sequence analyses. Seven distinct pathogenic/likely pathogenic MLH1/MSH2 variants were identified in 10 cases (10/29; 34.5%) (Table 2). No pathogenic MSH6 variant was found. Of the identified carriers of pathogenic/likely pathogenic variants, five carriers (50%) met the HNPCC criteria and five carriers (50%) met the suspected-HNPCC criteria (Table 3).

MLH1 variants

Five pathogenic variants (including four distinct variants) were detected in MLH1 (5/29; 17.2%). Among these were two frame shift variants (including a recurrent variant), one nonsense variant and one missense variant (Table 4).

A recurrent frame shift variant in exon 12, c.1358dup (p.T455Dfs*24), was identified in two unrelated patients of Punjabi ethnicity. One patient presented with carcinoma of the sigmoid colon at 44 years of age (III:3, Fig. 1a). The other patient was diagnosed with carcinoma of the transverse colon at age 61 (III:18, Fig. 1b). Both reported a family history of HNPCC.

Another frame shift variant in exon 1, c.67delG (p.E23Kfs*13), was detected in a 48-year-old patient (II:1, Fig. 1c) of Pathan ethnicity, who presented with carcinoma of the cecum and reported a family history of HNPCC.

A nonsense variant in exon 15, c.1672G > T (p.E558*), was identified in a 32-year-old patient (IV:2, Fig. 1d) of Kashmiri background, diagnosed with carcinoma of the transverse colon who also reported a family history of HNPCC.

One missense variant in exon 18, c.2041G > A (p.A681T), was identified in a 41-year-old patient (II:1, Fig. 1e) of Punjabi ethnicity with carcinoma of the transverse colon who reported a family history of suspected-HNPCC. This variant has been previously classified as a pathogenic variant [4, 30].

MSH2 variants

Five pathogenic/likely pathogenic variants (including three distinct variants) were identified in MSH2 (5/29; 17.2%). Among these were one recurrent splice site variant and two nonsense variants (Table 4).

A recurrent likely pathogenic splice site variant, c.943-1G > C, was found in three unrelated patients of Pathan ethnicity: one with rectosigmoid carcinoma at 32 years of age (III:1, Fig. 1f) and a family history of HNPCC. The remaining two patients harboring this variant presented with carcinoma of the ascending colon (III:2, Fig. 1g) and sigmoid colon (II:1, Fig. 1h) at age 43 and 60, respectively and both reported a family history of suspected-HNPCC.

A pathogenic nonsense variant in exon 12, c.1861C > T (p. R621*), was identified in a 45-year-old patient (II:1, Fig. 1i) of Punjabi ethnicity, who was diagnosed with carcinoma of the rectum and also reported a family history of suspected-HNPCC.

Another pathogenic nonsense variant in exon 16, c.2656G > T (p.E886*), was identified in a 67-year-old patient of Pathan ethnicity, who was diagnosed with endometrial and breast cancer at age 48 and 67, respectively. This patient had a family history of suspected-HNPCC and has been reported recently [28].

Pathogenic germline variants: non-HNPCC group

Screening of the index patients in the non-HNPCC group for the presence of the pathogenic/likely pathogenic MLH1/MSH2 variants identified in the HNPCC/suspected-HNPCC group revealed two additional pathogenic MLH1/MSH2 variants. The MLH1 missense variant,
Gene	Location	Nucleotide change	Amino acid change	Variant type	SNP link	Classification	Prevalence N (%)	Previously described			
MLH1						HNPCC/suspected-HNPCC cases (N = 29)	non-HNPCC cases (N = 183)	Healthy controls (N = 100)			
Exon 1	c.67delG	p.E23Kfs*13	Frameshift	–	P	1 (3.4)	0	–	Yes		
Exon 12	c.1358dup	p.T455Dfs*24	Frameshift	–	P	2 (6.9)	0	–	Yes		
Exon 15	c.1672G>T	p.ES58*	Nonsense	–	P	1 (3.4)	0	–	Yes		
Exon 18	c.2041G>A	p.A681T	Missense	rs63750217	P	1 (3.4)	1 (0.6)	–	Yes		
Intron 1	c.116 + 3A>T	–	Intronic	–	LP	0	1 (0.6)	0	No		
Exon 8	c.655A>G	p.I219V	Missense	rs1799977	B	2 (6.9)	–	–	Yes		
Exon 17	c.1913G>T	p.G638L	Missense	–	B	0	2 (1.1)	–	No		
Exon 17	c.1919C>T	p.P640L	Missense	–	LP	6 (20.7)	2 (1.1)	–	Yes		
Exon 17	c.1959G>T	p.L653L	Silent	rs1800146	B	0	1 (0.6)	–	Yes		
Intron 1	c.116 + 3A>A	–	Intronic	–	B	0	1 (0.6)	–	No		
Intron 13	c.1558 + 14G>A	–	Intronic	rs41562513	B	1 (3.4)	–	–	Yes		
Intron 14	c.1668-19A>G	–	Intronic	rs9876116	B	8 (27.6)	55 (30.1)	–	Yes		
Intron 17	c.1990-26T>C	–	Intronic	–	B	0	2 (1.1)	–	No		
MSH2											
Exon 12	c.1861C>T	p.R621*	Nonsense	–	P	1 (3.4)	0	–	Yes		
Exon 16	c.2656G>T	p.E886*	Nonsense	–	P	1 (3.4)	0	0	Yes		
Intron 5	c.943-1G>C	p.G315Ifs*12	Splice site	–	LP	3 (10.4)	0	–	Yes		
Exon 13	c.2120G>A	p.C707Y	Missense	–	LP	1 (3.4)	2 (1.1)	2 (2)	No		
Exon 6	c.984C>T	p.A328A	Silent	–	LB	2 (6.9)	0	–	Yes		
Exon 6	c.944G>T	p.G315V	Missense	rs20026056	B	0	1 (0.6)	–	Yes		
Exon 6	c.955G>A	p.G322D	Missense	rs4987188	B	1 (3.4)	10 (5.5)	–	Yes		
Exon 6	c.1074G>C	p.E358D	Missense	rs587779126	B	0	1 (0.6)	–	No		
Exon 12	c.1785_1788delAAT	p.N596del	In-frame deletion	–	P	0	1 (0.6)	–	Yes		
Exon 13	c.2205C>T	p.I735I	Silent	rs335533381	B	0	5 (2.7)	–	Yes		
Intron 1	c.211_9C>G	–	Intronic	rs20026056	LB	12 (41.4)	–	–	Yes		
Intron 9	c.1511-9A>T	–	Intronic	rs1299837	B	2 (6.9)	–	–	Yes		
Intron 10	c.1661_12G>A	–	Intronic	rs3732183	B	13 (44.8)	–	–	Yes		
Intron 12	c.2006-6T>C	–	Intronic	rs20026056	B	1 (3.4)	37 (20.2)	–	Yes		
Intron 12	c.2006-36_2006-33dup	–	Intronic	rs587779126	B	0	5 (2.7)	–	Yes		
Gene	Location	Nucleotide change	Amino acid change	Variant type	SNP link	Classification	Prevalence N (%)	HNPCC/suspected-HNPCC cases (N = 29)	non-HNPCC cases (N = 183)	Healthy controls (N = 100)	Previously described
------	----------	------------------	-------------------	--------------	----------	----------------	------------------	-----------------------------------	--------------------------	------------------------	---------------------
Exon 3	c.540 T > C	p.D180D	Silent	rs1800935	B	1 (3.4)	–	–	Yes		
Exon 4A	c.642C > T	p.Y214Y	Silent	rs1800937	B	1 (3.4)	–	–	Yes		
Exon 4G	c.3151G > A	p.V1051I	Missense	–	B^c	1 (3.4)	–	–	Yes		
Exon 5	c.3306 T > A	p.T1102T	Silent	rs2020910	B	1 (3.4)	–	–	Yes		
Intron 2	c.457 + 13A > G	–	Intronic	rs1800933	LB	1 (3.4)	–	–	Yes		
Intron 2	c.457 + 50 T > A	–	Intronic	–	B^c	3 (10.3)	–	–	No		
Intron 2	c.457 + 52 T > A	–	Intronic	rs3136282	B	23 (79.3)	–	–	Yes		
Intron 4	c.3172 + 20 T > C	–	Intronic	rs3136335	B	2 (6.9)	–	–	Yes		
Intron 5	c.3438+14A>T	–	Intronic	rs2020911	B	15 (51.7)	–	–	Yes		
Intron 6	c.3556 + 146G > A	–	Intronic	rs7562048	B	1 (3.4)	–	–	Yes		
Intron 6	c.3556 + 160 T > C	–	Intronic	rs63320267	B	1 (3.4)	–	–	Yes		
Intron 6	c.3556 + 170delT	–	Intronic	–	B^c	1 (3.4)	–	–	Yes		
Intron 6	c.3557-4 dupT	–	Intronic	–	B	1 (3.4)	–	–	Yes		
Intron 6	c.3557-40A>T	–	Intronic	rs189436849	LB	1 (3.4)	–	–	Yes		
Intron 9	c.4001 + 26A > G	–	Intronic	–	B^c	1 (3.4)	–	–	No		

^BBenign, ^{LB}Likely benign, ^{LP}Likely pathogenic, ^PPathogenic.
^aNomenclature follows Human Genome Variation Society (HGVS) (http://www.hgvs.org). Numbering start at the first A of the first coding ATG of NCBI reference sequences NM_000249.3 (MLH1), NM_000251.2 (MSH2) and NM_000179.2 (MSH6).
^bLink to NCBI SNP database (http://ncbi.nlm.nih.gov/projects/SNP/)
^cClassification of the alterations is based on in silico analyses.
^dPreviously reported in Pakistani population [28].
c.2041G > A (p.A681T) was detected in a 41-year-old patient (II:1, Fig. 1j) of Urdu speaking background, who was diagnosed with carcinoma of the rectum. His sister (II:2, Fig. 1j) was diagnosed with a brain tumor (Table 4). The MSH2 nonsense deletion (c.1786_1788delAAAT) was identified in a 39-year-old CRC patient (II:1, Fig. 1k) of Punjabi ethnicity with a family history of breast cancer.

Other MMR gene variants: novel or previously reported
In addition to the pathogenic/likely pathogenic variants, 35 distinct MMR variants including nine novel and 26 previously reported variants were detected. Among these were eight missense variants, six silent variants, and 21 intronic variants (Table 2).

The novel variants were analyzed for their potential functional effect by in silico analyses (Table 5). A novel MLH1 splice-site variant, (c.116 + 3A > T), is predicted to be the likely pathogenic as suggested by four of the five splice-site prediction algorithms integrated into the Alamut software implying that this is disease-causative. This variant was identified in a 30-year-old patient of Punjabi origin, diagnosed with carcinoma of the sigmoid colon with no family history (Table 4). This variant was not found in 100 healthy controls, further supporting its pathogenicity.

A novel MSH2 missense variant, c.2120G > A (p.C707Y), is also predicted to be a likely pathogenic as suggested by five of the seven in silico prediction tools (Table 5). This variant was identified in three unrelated patients with CRC diagnosed at or below age 54: one patient of Pathan ethnicity reported a family history of HNPCC and two Punjabi patients of the non-HNPCC group (Table 4). Moreover, this variant was found in two out of 100 healthy controls including one with a family history of carcinoma of the pharynx and Ewing’s sarcoma. Characteristics of families harboring pathogenic/likely pathogenic MLH1/MSH2 variants are shown in Table 4. The remaining seven novel MMR gene variants were also analyzed for their potential functional effect by in silico analyses and classified as benign.

Among the 26 previously reported MMR gene variants, 25 were benign or likely benign (Table 2). One MLH1 missense variant, c.1919C > T (p.P640L), is predicted to be likely pathogenic as suggested by all seven in silico prediction tools used (Table 5). We identified this variant in eight unrelated CRC patients of Pathan ethnicity: six from the HNPCC/suspected-HNPCC group and two from the non-HNPCC group.

Patient and tumor characteristics by variant status
The index CRC patients with pathogenic/likely pathogenic MLH1/MSH2 variants (n = 11) and without pathogenic variants (n = 199) had a same median age of diagnosis, 43 years (range 32–61) and 43 years (range 14–77) of age, respectively (P = 0.74, Wilcoxon rank-sum test). The patients with pathogenic/likely pathogenic variants were more likely to present with proximal tumors (6/11, 54.5% vs. 26/194, 13.4%; P = 0.004) and greater tumor size (> 5 cm) (6/8, 75% vs. 28/194, 13.4%; P = 0.02) than non-carriers. No differences were detected between the carriers and non-carriers with regard to histologic type, mucinous component, macroscopic appearance, grade of malignancy, lymphovascular invasion, venous invasion, tumor stage, regional lymph node involvement and ethnic groups (data not shown).

Discussion
In this first comprehensive study from Pakistan, we investigated the contribution of MLH1, MSH2, and MSH6 pathogenic germline variants to 212 patients belonging to HNPCC/suspected-HNPCC group or non-HNPCC group. Initially, index patients from the HNPCC/suspected-HNPCC group (including HNPCC = 9 and suspected-HNPCC = 20; group 1) were screened for the entire coding sequence of these genes. The pathogenic/likely pathogenic variants identified in this group were then analyzed in the non-HNPCC group (n = 183; group 2). Eight different pathogenic/likely pathogenic variants in MLH1/MSH2 were identified, with an overall frequency of 34.5% (10/29) in group 1 and 1.1% (2/183) in group 2. No pathogenic variants were detected in the MSH6 gene. Among the group 1, five pathogenic MLH1/MSH2 variants were detected in each subgroup of HNPCC and suspected-HNPCC, with frequencies of

Table 3	Clinical criteria and frequencies of pathogenic MLH1/MSH2 variants in Pakistani study participants			
Clinical diagnostic criteria	N with pathogenic variants N (%)	without pathogenic variants N (%)	P*	
HNPCC	9	5 (55.6)	4 (44.4)	***<0.0001f, 0.2047
suspected-HNPCC	20	5 (25.0)	15 (75.0)	
non-HNPCC	183	2 (1.1)	181 (98.9)	
Total cases	212	12 (5.7)	200 (94.3)	

*P values marked in bold are statistically significant

fFisher’s exact test

Table 4: Comparison of patient and tumor characteristics by variant status

Variant status	Median age	Tumor size	Proximal tumors	Non-carriers
Carriers	43 years (range 32–61)	> 5 cm (6/8, 75%)	6/8, 75%	26/194, 13.4%
Non-carriers	43 years (range 14–77)	< 5 cm (28/194, 13.4%)	28/194, 13.4%	194/194, 100%

P = 0.004, Wilcoxon rank-sum test.
Table 4 Characteristics of the families with pathogenic/likely pathogenic MLH1/MSH2 variants

Study Id	Nucleotide change	Gender	Age at onset	Tumor location	Family history (age at onset in years)	Criteria	LOVD	Ethnicity
Families with MLH1 variants								
C162	c.1672G > T	F	32	Transverse colon	CRC (32, 45, 45, ?,), BC (42, > 45), unknown (?)	HNPCC	P	Kashmiri
C92	c.2041G > A	M	41	Transverse colon	CRC (42)	suspected-HNPCC	P	Punjabi
C122	c.2041G > A	M	41	Rectum	Brain tumor (16)	non-HNPCC	Urdu speaking	
C203	c.1358delG	F	44	Sigmoid colon	CRC (< 30, 35, 54, 62), abdomen (7), stomach (36)	HNPCC	P	Punjabi
C202	c.67delG	F	48	Cecum	CRC (38, 42, 45)	HNPCC	P	Pathan
H707	c.1358delG	M	61	Transverse colon	CRC (31, 35, 45, 45, < 50), 50, 61, ?)	HNPCC	P	Punjabi
Families with MSH2 variants								
C143	c.943-1G > C	M	32	Rectosigmoid	CRC (40, 59, 60)	HNPCC	LP	Pathan
C164	c.1786_1788delAAT	M	39	Ascending colon	BC (50)	non-HNPCC	P	Punjabi
H1075	c.943-1G > C	M	43	Ascending colon	CRC (55), unknown (< 21, ?)	suspected-HNPCC	Pathan	
C85	c.1861C > T	M	45	Rectum	CRC (65)	suspected-HNPCC	P	Punjabi
H421	c.2656G > T	F	48, 67	Endometrium, breast	CRC (43, 55, 59), BC (58, 60, 66/76, 67), OC (43, 51, 57), A.L. (5), endometrium (46, 52, 53), intestine (42, 45), stomach (59), liver (60), prostate (38), renal (58), brain (13), osteosarcoma (13)	suspected-HNPCC	P	Pathan
C49	c.943-1G > C	M	60	Sigmoid colon	CRC (50)	suspected-HNPCC	Pathan	
Families with novel MLH1/MSH2 variants								
C141	c.116 + 3A > T	M	30	Sigmoid colon	–	non-HNPCC	N/R/LP	Punjabi
C199	c.2120G > A	M	38	Rectum	CRC (40, 45, 50, 52, 65, ?)	HNPCC	N/R/LP	Pathan
C75	c.2120G > A	F	38	Recto sigmoid	Brain tumor (?)	non-HNPCC	Punjabi	
P53	c.2120G > A	F	54	Rectum	–	non-HNPCC	Punjabi	
Families with a previously reported MLH1 variant								
C198	c.1919C > T	M	35	Transverse colon	CRC (25, 30, 43, 66, ?)	HNPCC	VUS/LP	Pathan
C199	c.1919C > T	M	38	Rectum	CRC (40, 45, 50, 52, 65, ?)	HNPCC	Pathan	
C72	c.1919C > T	F	38	Transverse colon	Bladder (50), Bone (50)	suspected-HNPCC	Pathan	
C55	c.1919C > T	M	38	Cecum	CRC (60)	suspected-HNPCC	Pathan	
Study Id	Nucleotide change	Gender	Age at onset	Tumor location	Family history (age at onset in years)	Criteria	LOVDa	Ethnicity
P02	c.1919C > T	M	45	Transverse colon	CRC (?,?,?)	HNPCC	Pathan	
H708	c.1919C > T	M	51	Ascending colon	CRC (50, 65)	suspected-HNPCC	Pathan	
P01	c.1919C > T	M	52	Transverse colon	CRC (?,?,), Endometrium (?), Spleen (?)	non-HNPCC	Pathan	
C185	c.1919C > T	F	60	Colon	Stomach (15), Epithelial (18)	non-HNPCC	Pathan	

? age at diagnosis is not known

ALL Acute lymphoid leukemia, BC Breast cancer, CRC Colorectal cancer, LP Likely pathogenic, NR No record in LOVD database, OC ovarian cancer, P pathogenic, VUS variant of uncertain significance

aClassification is based on Leiden Open Variation Database (LOVD) maintained by International Society for Gastrointestinal Hereditary Tumours (InSiGHT)

bThis variant is considered as likely pathogenic by four of the five splice-site prediction algorithms

dThis variant is reported as VUS in LOVD database and considered in the current study as likely pathogenic by seven of the seven protein function prediction algorithms combined with functional assay [29]
55.6% (5/9) and 25% (5/20), respectively. The stringent criteria of HNPCC are two times more sensitive for detection of a pathogenic variant than the less stringent criteria of suspected-HNPCC. Our findings are in agreement with an international collaborative study reporting pathogenic variant detection rates of 50% (109/217) and

![Pedigree Diagram](image_url)
Gene	Coding variants	AlignGVGD	PolyPhen2	SIFT	MutPred	SNPs&GO	PhD-SNP	SNAP	Consensus a	
MLH1	c.1913G > T (G638 L)	C15	Probably damaging	Deleterious	Benign	Neutral	Neutral	Neutral	Neutral	B (3/7)
	c.1919C > T (P640L)	C65	Probably damaging	Deleterious	Deleterious	Disease	Disease	Disease	LP (7/7)	
MSH2	c.944G > T (G315 V)	C0	Benign	Deleterious	Benign	Neutral	Neutral	Neutral	Disease	B (1/7)
	c.1074G > C (E358D)	C35	Possibly damaging	Tolerated	Benign	Neutral	Disease	Neutral	Neutral	B (3/7)
	c.2100G > A (C700Y)	C0	Benign	Damaging	Benign	Disease	Disease	Disease	LP (5/7)	
MSH6	c.3151G > A (V1051I)	C0	Benign	Tolerated	Benign	Neutral	Neutral	Neutral	B (0/7)	

Gene	Noncoding variants	Splice-site predictions	Consensus b, c
MLH1	c.116 + 3A > T	D (75.7 → 0)	D (8.6 → 2.4)
	c.116 + 4C > A	NE	D (09 → 0)
	c.1990-26 T > C	NE	D (5.5 → 0)
MSH2	c.2006-36_2006-33dup	NE	NE
MSH6	c.457 + 50 T > A	NE	NE
	c.3556 + 170del	NE	NE
	c.4001 + 26A > G	NE	D (0 → 2.9)

aThe variant is considered as likely pathogenic by five of the seven protein function prediction algorithms.

bThe variant is considered as likely pathogenic by four of the five splice-site prediction algorithms.

c> 20% change in score (i.e., a wild-type splice-site score decreases and/or a cryptic splice-site score increases) is considered as significant.

B Benign, D Donor, LP Likely pathogenic, NE No effect.
26% (32/123) for HNPCC and suspected-HNPCC criteria, respectively [20]. In our study, one in two patients identified with pathogenic variant did not meet the criteria of HNPCC, suggesting the need to use the criteria of suspected-HNPCC in Pakistani population.

Of the identified distinct pathogenic/likely pathogenic MLH1/MSH2 variants (n = 8) in both groups, the MSH2 variant, c.2656G > T, is likely to be specific to the Pakistani population as it has not been reported in other populations. The other seven variants have been reported in Asia, Europe, and North America [3, 30–37]. These findings suggest that the spectrum of MLH1/MSH2 variants in Pakistan does not differ from other populations.

In the current study three distinct recurrent pathogenic/likely pathogenic MLH1 variants (n = 2) and MSH2 (n = 1) were identified. The likely pathogenic MSH2 variant, c.943-1G > C, was identified in three unrelated HNPCC/suspected-HNPCC families of Punjabi ethnicity. It was also frequently reported in HNPCC families from Germany [33]. The pathogenic MLH1 variant, c.1358dup, was found in two unrelated HNPCC families of Punjabi origin. This variant was recently found in HNPCC families from Australia [36]. The pathogenic MLH1 variant, c.2041G > A, was detected in two unrelated suspected-HNPCC or non-HNPCC families of Punjabi and Urdu-speaking background, respectively. This variant was first reported in Poland as a potential founder variant [4, 31], has been reported as a recurrent variant in Scotland [30] and has also been described once each in Germany [33], and Colombia [3]. These recurrent variants accounted for 58.3% (7/12) of all MLH1/MSH2 carriers from Pakistan. This further suggests a step-wise and cost-effective strategy of screening these recurrent variants, prior to the exhaustive analyses of MMR genes in our population. However, haplotype analysis of these recurrent variants is required to classify these as true Pakistani founder variants.

In addition to eight pathogenic/likely pathogenic variants found in twelve families, 35 MMR gene variants were detected: nine novel and 26 previously reported sequence variants. Of the novel sequence variants, two were suggested as in silico predicted likely pathogenic variants. The novel MLH1 splice-site variant, c.116 + 3A > T, is predicted to be likely pathogenic as suggested by four of the five splice-site prediction algorithms. This variant was identified in a CRC patient of the non-HNPPC group and was not detected in 100 healthy controls. Further evidence of the impact of c.116 + 3A > T variant on aberrant mRNA splicing could not be provided because of the unavailability of an RNA sample from this patient. The novel MSH2 missense variant, p.C707Y, is predicted to be likely pathogenic on the basis of the effect on protein function predicted by five of the seven in silico prediction tools. This variant was identified in three unrelated patients, one belonged to HNPCC group and other two were from the non-HNPCC group. It is located in the highly conserved ATPase domain (amino acid residues 620 to 855), may disrupt interaction of MSH2 with other proteins in repair pathway and result in MMR defect [38]. This variant was detected in two out of 100 healthy controls with a family history of carcinoma of the pharynx or Ewing’s sarcoma. Functional analyses of both in silico predicted likely pathogenic novel variants (MLH1 c.116 + 3A > T and MSH2 p.C707Y) are warranted to further establish the association of these variants with the disease. One previously reported MLH1 missense variant, p.P640L, is a likely pathogenic variant as predicted by seven in silico prediction tools used. This variant was identified in eight unrelated CRC patients of Pathan origin: six belonged to the HNPCC/suspected-HNPCC group while the other two were from the non-HNPCC group. This variant is located in a highly conserved C-terminal interaction domain (amino acid residues 492 to 756) and may ablate interaction of MLH1 with PMS2 and result in the MMR defect. Previously, Hardt and colleagues performed two functional assays and characterized p.P640L as a pathogenic variant [29]. Overall, these findings suggest that MLH1 p.P640L is deemed to be a pathogenic variant.

In the current study, pathogenic/likely pathogenic MLH1/MSH2 variants were identified in 34.5% (10/29) of Pakistani HNPCC/suspected-HNPCC patients, which is in agreement with other Asian studies from Korea (54/188; 28.7%), China (7/23; 30.4%), and Singapore (17/59; 28.8%) [39–41], Poland (78/226; 34.5%) [32], US (26/71; 36.6%) [42], and Brazil (44/116; 38%) [5]. A higher frequency of pathogenic variants was observed in HNPCC families from Taiwan (82/135; 60.7%) [43]. This could be due to screening of families who only met Amsterdam II or HNPCC criteria, whereas in this study we have also screened families who met the less stringent criteria of suspected-HNPCC. No pathogenic variant in MSH6 was detected in the present study, in agreement with studies from China [44], and Singapore [40], suggesting a minimal contribution of MSH6 variants in Asia. The predominance of pathogenic MLH1/MSH2 variants and absence of MSH6 variant in Pakistani population are in line with other ethnic mutation database [45]. These findings suggest that the contribution of pathogenic MMR gene variants to HNPCC/suspected-HNPCC families varies in Asians as well as in other populations.

Several criteria have been reported for the identification of potential candidates for the detection of pathogenic MMR gene variant. The most stringent and commonly applied Amsterdam II criteria [14, 15] is based on a family history of at least three relatives with
histologically verified CRC or cancers linked with HNPPC. In our study, five out of nine patients belonging to families fulfilling this criterion were found to harbor a pathogenic MLH1/MSH2 variant (5/9; 55.6%). The revised Bethesda guidelines recognize high-risk patients by the assessment of microsatellite instability and/or immunohistochemical testing of their tumors. However, this approach was not utilized due to limitations of normal/tumor tissue of study subjects. Nevertheless, the Amsterdam II criteria and Bethesda guidelines are shown to miss up to 72 and 27% of cases with HNPPC, respectively [17]. A recently suggested less stringent criteria of suspected-HNPPC are based on a family history of only two HNPPC-associated cancers [18–20]. In our study, five out of 20 patients belonging to families fulfilling this criterion were found to harbor a pathogenic MLH1/MSH2 variant (5/20; 25%). Of the identified twelve carriers of pathogenic/likely pathogenic variant, five carriers met the HNPPC criteria and five met the suspected-HNPPC criteria and only two carriers were found in the non-HNPPC group. Our data support the notion that the suspected-HNPPC criteria may be useful for the identification of Pakistani families. The suspected-HNPPC criteria have also been utilized in other studies from Turkey, Poland, Italy and Latvia [31, 32, 37, 46].

In the current study, the frequency of pathogenic MMR gene variants observed in HNPPC/suspected-HNPPC group may be an underestimate as the sensitivity of DHPLC can be below 100% and screening for large genomic rearrangements or EPCAM gene 3’ end deletions was not performed. Furthermore, PMS2 mutation screening was not performed. It is possible that we could have missed PMS2 variants. However, pathogenic PMS2 variants have only rarely been reported and accounted for less than 5% of all identified pathogenic MMR gene variants [7]. Finally, the contribution of additional undiscovered gene(s) in early onset CRC patients with a family history of LS-associated cancer who tested negative for any pathogenic MMR gene variants cannot be excluded. Thus, further studies in these patients are warranted.

Ethnic variations in frequencies of pathogenic MLH1/MSH2 variant carriers have been reported in selected HNPPC families from Europe and US [21–23]. Similar ethnic variations in carrier frequencies of pathogenic/likely pathogenic MLH1/MSH2 variants have been noted in our study. Of the identified variants, the majority of the families carrying MLH1 variants (3/6; 50%) belonged to the Punjabi ethnicity. Majority of the families harboring pathogenic/likely pathogenic MSH2 variants (4/5; 80%) had a Pathan background. These findings suggest that families with Punjabi or Pathan background should be first screened for the MLH1 or MSH2 gene, respectively. However, no firm conclusion could be made due to a small number of pathogenic MLH1/MSH2 variant carriers. Furthermore, this study is not population-based and therefore might have some ascertainment bias.

Previous studies in Caucasians have predominantly reported the proximal tumor location in CRC patients harboring pathogenic MMR gene variants [47]. Similarly, in our study, CRC patients with pathogenic/likely pathogenic MLH1/MSH2 variants more commonly presented with proximal tumor location compared to non-carriers. Similar observations have been noted in other Asian studies from Singapore [40], and Japan [48]. However, no such association was reported in studies from Korea [39] and China [49]. The differences in phenotypic manifestation may be due to ethnic variations or involvement of other genetic and/or non-genetic risk factors.

Conclusion

In summary, this is the first comprehensive study conducted in Pakistani CRC patients to assess the prevalence and spectrum of MLH1, MSH2, and MSH6 pathogenic germ-line variants. Pathogenic/likely pathogenic MLH1/MSH2 variants account for a substantial proportion (10/29; 34.5%) of CRC patients with HNPPC/suspected-HNPPC in Pakistan, whereas no pathogenic MSH6 variants were seen. Three recurrent MLH1/MSH2 variants accounted for 58.3% (7/12) of all families carrying pathogenic/likely pathogenic variants. We recommend that HNPPC families, even those fulfilling the less stringent criteria of suspected-HNPPC, should first be tested for the recurrent pathogenic/likely pathogenic MLH1/MSH2 variants prior to whole gene screening in Pakistani patients.

Abbreviations

Abbreviation	Definition
CRC	Colorectal cancer
DHPLC	Denaturing high-performance liquid chromatography
EC	Endometrial cancer
EPCAM	Epithelial cell adhesion molecule
FAP	Familial adenomatous polyposis
FCCTX	Familial colorectal cancer type X
HNPPC	Hereditary non-polyposis colorectal cancer
IRB	Institutional Review Board
LS	Lynch syndrome
MMR	MutL Homolog 1; MutS Homolog 1; MutH Homolog 1; MMR Match repair
MSH	MutS Homolog 2; MutS Homolog 6
SMCH&RC	Shaukat Khanum Memorial Cancer Hospital and Research Centre

Acknowledgements

We are thankful to the index patients and healthy individuals for their participation in this study and to Saima Faisal for the recruitment of study subjects. We are also grateful to Grzegorz Kurzawski and Janina Suchy from the Department of Genetics and Pathology, Pomeranian Medical University, Poland for providing the sequences of MSH6 primers.

Authors’ contributions

MR contributed to conception and design of the study, patient recruitment for colorectal cancer study and data acquisition. In addition, he was involved in data analysis, interpretation and in drafting and revising the manuscript. HN and NM performed the molecular analyses, contributed to data analysis, interpretation and manuscript writing. AL and MAY were involved in patient recruitment, clinical and pathological data acquisition and in critically
reviewing the manuscript. JL and AJ contributed to design of the study, data analysis, and interpretation and in revising the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Ethics approval and consent to participate
The study was approved by the Institutional Review Board (IRB) of the SKMCH&RC (IRB approval number SKMCH-CRC-001). All study participants were furnished with and signed an informed written consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan. 2Department of Pathology, SKMCH&RC, Lahore, Pakistan. 3Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. 4Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland. 5Department of Internal Medicine, SKMCH&RC, Lahore, Pakistan.

Received: 14 September 2018 Accepted: 25 September 2019
Published online: 23 October 2019

References
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012. http://globocan.iarc.fr/. Accessed 20 Jan 2018.
2. Domínguez-Valentin M, Therkildsen C, Da Silva S, Nilbert M. Familial colorectal cancer type X: genetic profiles and phenotypic features. Mod Pathol. 2015;28:30–6.
3. Espeschied CR, LaDucia H, Li S, McFarland R, Gau C-L, Hampel H. Multigene panel testing provides a new perspective on Lynch syndrome. J Clin Oncol. 2017;35:2568–75.
4. Kurzawski G, Sfaranow K, Suchy J, Chlubek D, Scott RJ, Lubinski J. Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. J Biochem Biophys Methods. 2002;51:89–100.
5. da Silva PC, de Oliveira Ferreira JR, Torrezan GT, Figueiredo MCP, Santos EMW, Nakagawa WT, et al. Clinical and molecular characterization of Brazilian patients suspected to have Lynch syndrome. PLoS One. 2015;10:e0139753.
6. Silva FCC, Valentin MD, Ferreira FO, Camaro DM, Rossi BM. Mismatch repair genes in Lynch syndrome: a review. Sao Paulo Med J. 2009;127:46–51.
7. Tutlewiska K, Lubinski J, Kurzawski G. Germ-line deletions in the EPCAM gene as a cause of Lynch syndrome—literature review. Hered Cancer Clin Pract. 2013;11:9.
8. Aarnio M, Mecklin JP, Aaltonen LA, Nyström-Lahti M, Järvinen HJ. Life-time risk of different cancers in hereditary nonpolyposis colorectal cancer (HNPCC) syndrome. Int J Cancer. 1995;64:430–3.
9. Brosens LA, Offerhaus GAJ, Giardiello FM. Hereditary colorectal cancer: genetics and screening. Surg Clin. 2015;95:1067–80.
10. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005;352:1851–60.
11. Quehenberger F, Vasen HF, Van Houwelingen H. Risk of colorectal and endometrial cancer for carriers of mutations of the MSH1 and MSH2 genes: correction for ascertainment. J Med Genet. 2005;42:491–6.
12. Watson P, Vasen HF, Mecklin JP, Bernstein I, Aarnio M, Järvinen HJ, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer. 2008;123:444–9.
13. Pearlman R, Frankel WL, Swanson B, Zhao W, Yilmaz A, Miller K, et al. Prevalence and spectrum of germine cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 2017;3:464–71.
14. Vasen H, Mecklin J, Khan P, Lynch H. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (IC-GHNPCC). Dis Colon Rectum. 1991;34:424.
15. Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology. 1999;116:1453–6.
16. Shia J. Evolving approach and clinical significance of detecting DNA mismatch repair deficiency in colorectal carcinoma. Semin Diagn Pathol. 2015;32:352–61.
17. Palomaki GE, McClain MR, Mellillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med. 2009;11:142.
18. Kladyń J, Lubinski J. Lynch syndrome (HNPCC). Hered Cancer Clin Pract. 2006;5:99–102.
19. Park J-G, Vasen HF, Park KJ, Peltoniemi P, De Leon MP, Rodriguez-Bigas MA, et al. Suspected hereditary nonpolyposis colorectal cancer. Dis Colon Rectum. 1999;42:710–5.
20. Park J-G, Vasen HF, Park Y, Park K, Peltoniemi P, De Leon MP, et al. Suspected HNPCC and Amsterdam criteria II: evaluation of mutation detection rate, an international collaborative study. Int J Cancer. 2002;10:1–9.
21. Góles T, Godino J, De La Hoy A, Garcia Carbonero J, Perez Segura P, Eng C, et al. Prevalence of germline mutations of MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer families from Spain. Int J Cancer. 2002;98:774–9.
22. Nyström-Lahti M, Wu Y, Moisio A-L, Hofstra RM, Oshima J, Mecklin J-P, et al. DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary non-polyposis colorectal cancer. Hum Mol Genet. 1996;5:753–9.
23. Tannergård P, Lipford JR, Kolodner R, Frödin JE, Nordenskjöld M, Lindblom A. Mutation screening in the hMLH1 gene in Swedish hereditary nonpolyposis colon cancer families. Cancer Res. 1995;55:6092–6.
24. Rashid MU, Muzaffar M, Khan FA, Kabisch M, Muhammad N, Fazl S, et al. Association between the Bimm polymorphism in the vitamin D receptor gene and breast cancer risk results from a Pakistani case-control study. PLoS One. 2015;10:e0141562.
25. Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59:5068–74.
26. Rashid MU, Muhammad N, Faisal S, Amin A, Hamann U. Deleterious RAD51C germline mutations rarely predispose to breast and ovarian cancer in Pakistan. Breast Cancer Res Treat. 2014;145:775–84.
27. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
28. Rashid MU, Naemi H, Muhammad N, Loya A, Yusuf MA, Lubinski J, et al. A novel deleterious c. 2656G>T MSH2 germline mutation in a Pakistani family with a phenotypic overlap of hereditary breast and ovarian cancer and Lynch syndrome. Hered Cancer Clin Pract. 2016;14:14.
29. Hardt K, Heick SB, Betz B, Goecke T, Yazdanparast H, Kuppers R, et al. Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Familial Cancer. 2011;10:273–84.
30. Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarsky J, Porteous ME, et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354:2751–63.
31. Dymerska D, Kurzawski G, Suchy J, Rooneer H, Toome K, Metspalu A, et al. Lynch syndrome mutations shared by the Baltic States and Poland. Clin Genet. 2014;86:190–3.
32. Kurzawski G, Suchy J, Lerner M, Klujo-Grabowska E, Kladyń J, Safarow K, et al. Germline MSH2 and MLH1 mutational spectrum including large rearrangements in HNPCC families from Poland (update study). Clin Genet. 2006;69:940–7.
33. Mangold E, Pagentecher C, Friedl W, Mathiak M, Buettner R, Eng C, et al. Spectrum and frequencies of mutations in MSH2 and MLH1 identified in...
1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer. 2005;116:692–702.

34. Nilbert M, Wibman FP, Hansen TV, Karup HB, Öntoft TF, Nielsen FC, et al. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Familiar Cancer. 2009;8:75–83.

35. Sheng J-Q, Zhang H, Ji M, Fu L, Mu H, Zhang M-Z, et al. Genetic diagnosis strategy of hereditary non-polyposis colorectal cancer. World J Gastroenterol: WJG. 2009;15:983.

36. Sjursen W, McPhillips M, Scott RJ, Talseth-Palmer BA. Lynch syndrome mutation spectrum in New South Wales, Australia, including 55 novel mutations. Mol Genet Genomic Med. 2016;4:223–31.

37. Pedroni M, Roncari B, Maffei S, Losi L, Scarselli A, Di Gregorio C, et al. A mononucleotide markers panel to identify hMLH1/hMSH2 germline mutations. Dis Markers. 2007;23:179–87.

38. Ollila S, Derradi Bebek D, Jiricny J, Nyström M. Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat. 2008;29:1355–63.

39. Lee SY, Kim DW, Shin YK, Ihn MH, Lee SM, Oh HK, et al. Validation of prediction models for mismatch repair gene mutations in Koreans. Cancer Res Treat. 2016;48:668–75.

40. Liu Y, Chew MH, Goh KW, Tan SY, Loi CTT, Tan YM, et al. Systematic study on genetic and epimutational profile of a cohort of Amsterdam criteria-defined Lynch syndrome in Singapore. PLoS One. 2014;9:e94170.

41. Zhang J-X, Fu L, de Voer RM, Hahn M-M, Jin P, Lv C-X, et al. Candidate colorectal cancer predisposing gene variants in Chinese early-onset and familial cases. World J Gastroenterol: WJG. 2015;21:4136.

42. Mueller J, Gazzoli I, Bandipalliam P, Garber JE, Syngal S, Kolodner RD. Comprehensive molecular analysis of mismatch repair gene defects in suspected Lynch syndrome (hereditary nonpolyposis colorectal cancer) cases. Cancer Res. 2009;69:7053–61.

43. Kamiza AB, Hsieh L-L, Tang R, Chien H-T, Lai C-H, Chiu L-L, et al. Risk factors associated with colorectal cancer in a subset of patients with mutations in MLH1 and MSH2 in Taiwan fulfilling the Amsterdam II criteria for Lynch syndrome. PLoS One. 2015;10:e0130018.

44. Yan S-Y, Zhou X-Y, Du X, Zhang T-M, Lu Y-M, Cai S-J, et al. Three novel missense germline mutations in different exons of MSH6 gene in Chinese hereditary non-polyposis colorectal cancer families. World J Gastroenterol: WJG. 2007;13:5021.

45. Peltomäki P, Vanse H. Mutations associated with HNPCC predisposition—update of ICG-HNPCC/INSiGHT mutation database. Dis Markers. 2004;20:269–76.

46. Tunca B, Pedroni M, Cecener G, Egeli U, Borsi E, Zorluoglu A, et al. Analysis of mismatch repair gene mutations in Turkish HNPCC patients. Familiar Cancer. 2010;9:365–76.

47. Cruz-Correa M, Diaz-Algorni Y, Perez-Mayoral J, Suleiman-Suleiman W, del Mar GPM, Bertrán C, et al. Clinical characterization and mutation spectrum in Caribbean Hispanic families with Lynch syndrome. Familiar Cancer. 2015;14:415–25.

48. Suzuki O, Eguchi H, Chika N, Sakimoto T, Ishibashi K, Kumamoto K, et al. Prevalence and clinicopathologic/molecular characteristics of mismatch repair-deficient colorectal cancer in the under-50-year-old Japanese population. Surg Today. 2017;47:1135–46.

49. Hu F, Li D, Wang Y, Yao X, Zhang W, Liang J, et al. Novel DNA variants and mutation frequencies of hMLH1 and hMSH2 genes in colorectal cancer in the Northeast China population. PLoS One. 2013;8:e60233.