Empowering Investigative Journalism with Graph-based Heterogeneous Data Management

Angelos-Christos Anadiotis
Ecole Polytechnique and Institut Polytechnique de Paris
Conflicts of Interest database

“A conflict of interest is any situation where a public interest may interfere with a public or private interest, in such a way that the public interest may be, or appear to be, unduly influenced.”

French transparency law, 2011
Biomedical domain

• **Experts in the biomedical area** advise national and international officials on decisions with impact on public health

• **Companies with interests in this area** may recruit experts likely to be auditioned by regulatory boards

• **Goal**: *establish a database of CoIs* where it would be easy to "find the declared links of Dr. Alice with HealthStar"
Biomedical domain

• **Experts in the biomedical area** advise national and international officials on decisions with impact on public health

• **Companies with interests in this area** may recruit experts likely to be auditioned by regulatory boards

• **Goal**: *establish a database of Cols* where it would be easy to "find the declared links of Dr. Alice with HealthStar"

Usually available, but *technically buried information*
Landscape of heterogeneous data

- PubMedArticle
 - Title: "Lung..."
 - ColStatement: "Dr. Alice consults for ABCPharma"
 - URI: "pubmed.com/a1"

- ABCPharma
 - Name: "Univ. Belleville, France"
 - Affiliation: "Univ. Belleville, France"

- Alice
 - Name: "Alice"
 - Affiliation: "Univ. Belleville France"

- HealthStar
 - Ackownl.: "Dr. Alice thanks HealthStar for preparing and analyzing data for this article."

- wikidata.org
 - "Université Belleville"
 - rdf:type: wiki:Univ
 - rdf:subclass: wiki:Company

- pharmaleaks.html
 - "HealthStar is an NGO founded in 2000. Its goal..."
ConnectionLens graph processing pipeline

ConnectionLens graph construction
Extraction policies

P-GAM Parallel Query Engine

Optimized Graph Layout

Nodes+edges

Relational DB

GAM KS algorithm

ConnectionLens
ConnectionLens graph processing pipeline

ConnectionLens graph construction
Extraction policies

Nodes+edges

Relational DB

P-GAM Parallel Query Engine

Optimized Graph Layout

Querying the graph
Problem statement

• Given the graph \(G = (N, E) \) built out of the datasets \(D \) and a query keywords \(Q = \{w_1, ..., w_m\} \), return the \(k \) highest-score minimal answer trees

• An answer tree is a set of edges which (i) form a tree, and (ii) for each \(w_i \), contain at least one node whose label matches \(w_i \)

• We are interested in minimal answer trees, that is:
 • Removing an edge from the tree should make it lack some query keywords \(w_i \)
 • If a query keyword \(w_i \) matches the label of more than one nodes in the answer tree, then all these matching nodes must be equivalent
Problem statement

• Given the graph $G = (N, E)$ built out of the datasets D and a query keywords $Q = \{w_1, ..., w_m\}$, return the k highest-score minimal answer trees

• An answer tree is a set of edges which (i) form a tree, and (ii) for each w_i, contain at least one node whose label matches w_i

• We are interested in minimal answer trees, that is:
 • Removing an edge from the tree should make it lack some query keywords w_i
 • If a query keyword w_i matches the label of more than one nodes in the answer tree, then all these matching nodes must be equivalent

 Related to GSTP + bidirectional edges

Return k highest-score trees among those found
Grow and Aggressive Merge

\[\begin{array}{c}
W_1 \\
N_{1,1} \\
N_{1,2} \\
\vdots \\
N_{1,k_1}
\end{array} \quad \begin{array}{c}
W_2 \\
N_{2,1} \\
N_{2,2} \\
\vdots \\
N_{2,k_2}
\end{array} \quad \begin{array}{c}
\cdots \\
\cdots \\
\cdots \\
\cdots \\
\cdots
\end{array} \quad \begin{array}{c}
W_m \\
N_{m,1} \\
N_{m,2} \\
\vdots \\
N_{m,k_m}
\end{array} \]
Grow and Aggressive Merge

\[\begin{array}{ccc}
 N_{1,1} & N_{2,1} & N_{m,1} \\
 N_{1,2} & N_{2,2} & N_{m,2} \\
 \vdots & \vdots & \vdots \\
 N_{1,k_1} & N_{2,k_2} & N_{m,k_m} \\
\end{array} \]

Grow
Grow and Aggressive Merge

\[\begin{align*}
\text{Grow} & \quad \text{N}_{1,2} \\
\text{W}_1 & \quad \text{N}_{1,1} \\
\text{W}_2 & \quad \text{N}_{1,2} \\
\ldots & \quad \ldots \\
\text{W}_m & \quad \text{N}_{1,k_1} \\
\end{align*} \]
Grow and Aggressive Merge

w_1	w_2	...	w_m
$N_{1,1}$	$N_{2,1}$...	$N_{m,1}$
$N_{1,2}$	$N_{2,2}$...	$N_{m,2}$
...
N_{1,k_1}	N_{2,k_2}	...	N_{m,k_m}

Grow

$N_{1,2}$

Merge

$N_{2,1}$

$N_{2,1}$

$N_{3,1}$

$N_{3,2}$
Grow and Aggressive Merge

Grow

\[N_{1,1} \quad N_{2,1} \quad N_{3,1} \quad N_{2,1} \quad N_{3,2} \]

Merge

\[W_1 \quad W_2 \quad \ldots \quad W_m \]

\[N_{1,1} \quad N_{1,2} \quad \ldots \quad N_{1,k_1} \]

\[N_{2,1} \quad N_{2,2} \quad \ldots \quad N_{2,k_2} \]

\[N_{m,1} \quad N_{m,2} \quad \ldots \quad N_{m,k_m} \]
Grow and Aggressive Merge

\[N_{1,1}, N_{2,1}, \ldots, N_{1,k_1}, N_{1,2}, N_{2,2}, \ldots, N_{1,k_1}, N_{1,2}, N_{2,2}, \ldots, N_{m,1}, N_{m,2}, \ldots, N_{m,k_m} \]
Which tree to Grow or to Merge?

• Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size
Which tree to Grow or to Merge?

• Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size
Which tree to Grow or to Merge?

- Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size
Which tree to Grow or to Merge?

• Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size
Which tree to Grow or to Merge?

• Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size

1. Grow answer tree
2. Merge with same-rooted answer trees
Which tree to Grow or to Merge?

• Assign priorities to answer trees resulting from Grow/Merge
 1. Prefer trees matching many query keywords
 2. Prefer trees of smaller size

1. Grow answer tree
2. Merge with same-rooted answer trees

Priority Queue

Mixed BFS/DFS approach of graph search
In-memory graph layout

Keyword Index

w_1	Node 367
w_2	Node 212
w_3	Node 452
...	...
w_N	Node 231

Edge

- source node
- target node
- specificity
- metadata

Edge metadata

- edge type
- edge label

Node

- data source
- representative
- connection 1
- ... connection K
- metadata
- connections heap

Node metadata

- node type
- node label

Node connections

- connection K+1
- ...
In-memory graph layout

Keyword Index	Node 367	Node 212	Node 367	Node 452	...	Node 231	Node 121
\(w_1 \)							
\(w_2 \)							
\(w_3 \)							
\(\ldots \)							
\(w_N \)							

Edge
- source node
- target node
- specificity
- metadata

Edge metadata
- edge type
- edge label

Node
- data source
- representative
- connection 1
- ... connection \(K \)
- connection \(K+1 \)
- metadata
- connections heap

Node metadata
- node type
- node label

Node connections
- connection \(K+1 \)
- ...
Duplicate work elimination

• The same answer tree may be created following different combinations of Grow and Merge
 ➢ Duplicate work
• Maintain a history of explored trees
• Every answer tree is inserted only once:
 • in the history of explored trees
 • in the priority queue
Parallel search

• Cannot partition the graph:
 • expensive, and we do not know which parts we will need
 • no assumption on the shape of the graph
• DFS/BFS alternation incurs mixed scalability requirements
• P-GAM bottlenecks
 • size of intermediate results
Parallel search

• Cannot partition the graph:
 • expensive, and we do not know which parts we will need
 • no assumption on the shape of the graph
• DFS/BFS alternation incurs mixed scalability requirements
• P-GAM bottlenecks
 • size of intermediate results

Shared-everything
Concurrent data structures
Experimental evaluation – CoI application

• 450,000 PubMed bibliographic notices (2019, 2020)
• 42,000 PDF articles transformed to JSON
• 781 HTML pages describing relationships between people and organizations
• Load the graph in the main memory
• Query thresholds:
 • 1000 solutions
 • 1 minute of execution time
CoI application results (anonymized)

#	Keywords	T^1	T^{last}	T	S	#DS
1	A1, A2	200	4840	4840	1000	1-6, 5
2	A3, I1	1263	20547	60000	13	2-4, 2, 3
3	A5, A6, I3	2602	4203	60000	15	6, 8, 8
4	A8, I2, I4	667	51186	60000	63	4-7, 6
5	A9, H3, I2	264	59831	60000	516	3-8, 5
6	H2, I1, P1	1267	60212	60000	148	6-8, 6
7	A5, A10, I2	19077	23160	60000	9	8, 8
8	A9, I1, I4, I5	6327	55762	60000	38	8-9, 11, 8
9	A7, I1, I6, P1	1857	3057	60000	8	7, 8, 7, 8
10	A7, A8, I1, I2, I4	3389	28237	60000	4	7-8, 11, 11
Conclusion

• ConnectionLens introduces an end-to-end pipeline for constructing and querying graphs from heterogeneous data
• In-memory storage engine stores the graph data required for querying
• P-GAM queries the graph in parallel
Find out more about our work

• A. -C. Anadiotis, O. Balalau, C. Conceição, H. Galhardas, M. Y. Haddad, I. Manolescu, T. Merabti, J. You. Graph integration of structured, semistructured and unstructured data for data journalism. Information Systems (accepted for publication).

• A. -C. Anadiotis, O. Balalau, T. Bouganim, F. Chimienti, H. Galhardas, M. Y. Haddad, S. Horel, I. Manolescu, Y. Youssef. Empowering Investigative Journalism with Graph-based Heterogeneous Data Management. IEEE Data Engineering Bulletin (accepted for publication).

• A. -C. Anadiotis, O. Balalau, T. Bouganim, F. Chimienti, H. Galhardas, M. Y. Haddad, S. Horel, I. Manolescu, Y. Youssef. Discovering Conflicts of Interest across Heterogeneous Data Sources with ConnectionLens. Demonstration in CIKM 2021.

SourcesSay project
https://sourcessay.inria.fr