Supplemental Methods

Cell culture
Human cell lines were purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ) and maintained according to the supplier’s instructions. Adult CD34+ HSPCs were obtained from mobilized peripheral blood from anonymous healthy donors and enriched using anti-CD34 immunomagnetic microbeads. Media promoting the megakaryocytic differentiation of HSPCs has been previously described. Media promoting the erythroid differentiation of HSPCs consisted of Stemspan SFEM II supplemented with 1% penicillin/streptomycin, 1% L-glutamine, 2µM dexamethasone, 1µM β‐estradiol (Sigma Aldrich), 1U/ml EPO, 5ng/mL IL-3 and 12ng/mL SCF. Human PDXs were cultured in Stemspan SFEM II supplemented with 1% penicillin/streptomycin, 100ng/ml SCF, 100ng/ml FLT3-L, 20ng/ml IL-6, 50ng/ml TPO, 0.75µM StemRegenin1 and 35nM UM171. All cytokines were purchased from Peprotech. All cells were maintained at 37°C. Cells were transduced with concentrated viral particles in the presence of 2-5µg/ml polybrene. Primary human and murine HSPCs were transduced in Retronectin-coated plates according to manufacturer’s instructions (Takara Bio). Murine Gata1s-FLCs were prepared and cultured as previously described and maintained for at least 21 days. Day 0 was defined as 96 hours post transduction or upon doxycycline addition (500ng/mL). Colony forming unit (CFU) assays were performed as described previously, either in complete (HSC003 and HSC007, R&D Systems) or low (HSC006, R&D Systems; supplemented with 20ng/mL Thpo) cytokine conditions.

Micrographs
Micrographs were obtained with a Keyence BZ-9000 Microscope using the BZ-II viewer, and images were processed with the BZ-II Analyzer software. Micrographs of sternum, spleen and liver samples from leukemic mice were obtained with an Axioplan microscope (Carl Zeiss) and processed with the Zen Lite 2012 software following hematoxylin&eosin staining.

Lentiviral production
Lentiviral particles were generated by co-transfecting HEK293T cells with the corresponding expression constructs, pMD2.G and psPAX2 (Addgene #12259 and #12260), via the polyethyleneimine transfection method as previously described. shRNAs were designed using the miR-N tool applying the SENSOR design rules and cloned into a SIN40C.SFFV.dTomato.miR30n backbone. DNA sequences corresponding to the different miRNAs were cloned into SIN40C.SFFV.miR30n backbones containing different fluorescent proteins (dTomato, GFP and mTagBFP2, respectively). A non-silencing shRNA against Renilla luciferase in the miR-30n backbone was used as a control (sh-ctrl). Codon-optimized
cDNAs were similarly cloned into the same SIN40C.SFFV backbone encoding GFP or dTomato as a fluorescent reporter. For inducible expression, a doxycycline-inducible SIN40C.TRE vector was used. All plasmids generated in this study have been deposited at Addgene and are listed in Supplemental Table 1.

shRNA positive selection screening

2 million Gata1s-FLCs were transduced with the miR-125b-mimicking shRNA library (MOI=0.3) to achieve sufficient representation (<500-fold of X shRNAs). Samples were harvested after 4 and 30 days in culture, and gDNA was extracted using the QIAamp DNA Blood Mini Kit (Qiagen). The shRNA amplicon was PCR-amplified using primers containing the p5 and p7 adaptor sequences, gel-purified and sequenced (single-end) on an Illumina HiSeq 2500. We used model-based analysis of genome-wide CRISPR/Cas9 knockout (MAGECK)⁸ to identify hits from the shRNA screen. Custom R scripts were used for demultiplexing double barcoded reads; guides with fewer than 20 reads in ≥75% of all samples were excluded. Raw read counts were passed to the mageck test command using default parameters. Day 30 samples were compared to day 4 (n=12) to determine enrichment. Genes with a p-value <0.05 as determined by MAGeCK were deemed significant.

Proteomic analysis

Total cell lysis and Western blotting were performed as previously described ⁴. Blots were developed using Amersham™ ECL Prime Western Blotting Detection Reagent (Thermo Fisher Scientific). CoIP of endogenous ARID3A was performed on CMK cells using Anti-ARID3A antibodies coupled to Novex™ DYNAL™ Dynabeads™ Protein G (Thermo Fisher Scientific). After cell lysis and affinity pulldown, proteins were eluted and subjected to proteolysis with trypsin (Promega) according to the filter-aided sample preparation (FASP) protocol⁹. Samples were analyzed by LC/MS/MS using a U3000 nano-HPLC system coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). Raw data were processed using Proteome Discoverer 2.4 (Thermo Fisher Scientific). MS/MS data were searched against the Uniprot database (version Nov. 2019, tax. Homo sapiens, 73801 entries)¹⁰ using Sequest-HT¹¹. Label-free quantification of proteins was based on extracted peak areas of corresponding peptide precursor ions.

3′UTR binding assay

To evaluate binding of miR-125b to the 3′UTR of the ARID3A/Arid3a mRNA, we cloned the 3′UTRs containing the miR-125b binding sites into a SIN40C.EFS.eGFP.pre lentiviral backbone downstream of the eGFP cassette. A 3′UTR with 3 exchanged nucleotides in the predicted miR-125b binding sites was used as mutated control. After lentiviral transduction, HEL cells were FACS-sorted and transduced with miR-125b or a miR-control. Knockdown efficiency was defined as previously described¹².
Flow cytometry and sorting
Flow cytometry was performed on a CytoFLEX flow cytometer (Beckman Coulter) and the data were analyzed in Kaluza 1.5 (Beckman Coulter). Antibodies are listed in Supplemental Table 1. Cell sorting was performed on a BD FACSARia™ II Flow Cytometer (BD Biosciences). Apoptosis was measured using the Annexin V Apoptosis Detection Kit II with APC-Annexin V (BD Biosciences) or PE-Cy7-Annexin V kit (Thermo Fisher Scientific). Cell cycle analysis was performed using the BrdU Flow Kit (BD Biosciences) and Alexa Fluor 647 Anti-BrdU (BD Biosciences) or PE-Cy7 anti-BrdU (Biolegend). Both assays were performed according to manufacturers’ instructions.

Gene expression profiling
sgLuc- transduced FLCs were FACS-sorted three days after transduction; transduced CMK or Gata1s-FLCs were FACS-sorted 2, 10 and 13 days after doxycycline induction (0.5μg/mL). RNA was prepared using the Quick-RNA™ Miniprep Kit (Zymo Research). RNA-Sequencing was performed by Novogene Company, Ltd. A minimum amount of 150ng RNA was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext® UltraTM RNA Library Prep Kit for Illumina® (New England Biolabs) and sequenced on an Illumina NovaSeq using a paired-end 150bp system. Raw FASTQ data (raw reads) were first pre-processed using fastp13 and then further processed as previously described14. Differential expression analysis was performed using the DESeq2 package in R15. The resulting P values were adjusted using the Benjamini and Hochberg’s approach for controlling the False Discovery Rate (FDR)16. Genes with an adjusted P value <0.05 were considered differentially expressed. Functional enrichments were calculated via gene set enrichment analysis (GSEA; v4.0)17 using previously described gene sets and curated ML-DS signatures7. Human gene symbols were mapped to murine gene symbols using orthologue annotations provided by Ensembl18, considering only one-to-one orthologue relationships.

To quantify miR-125b expression levels, Gata1s-FLCs were FACS-sorted 72 hours after transduction or 48h post doxycycline induction. RNA was prepared using the Quick-RNA™ Miniprep Kit (Zymo Research), and TaqMan Advanced miRNA Assays were performed using the TaqMan™ MicroRNA Reverse Transcription Kit and TaqMan™ Universal PCR-Mastermix (Thermo Fisher Scientific) with primers specific for miR-125b (Assay ID #000449) and U6 (Assay ID #000435).

Chromatin profiling
miR-125b-Gata1s-FLCs expressing doxycycline-inducible Arid3a-FLAG or LUC cDNA were FACS-purified after 48 hours of doxycycline induction. CUT&RUN was performed as previously described19,20. 200,000 cells were sorted and incubated with the following antibodies: rabbit anti-DRIL-1 (Abcam), rabbit anti-GATA1 (Abcam), rabbit anti-SMAD2 and anti-SMAD3 (Cell Signalling) and rabbit anti-IgG (Diagenode).
The pAG/MNase nuclease (Addgene #123461) was produced and purified as previously described after removal of the HA tag. Illumina libraries were constructed from cleaved DNA (CUT&RUN) and sequenced by Novogene Company, Ltd. on an Illumina NovaSeq 6000 (150 bp paired-end reads). For processing the raw data, we used Trimmomatic (v0.39)21 to remove adapter sequences, followed by Kseq22 to trim reads containing ≤6 bp of adapter sequence, which are not effectively handled by Trimmomatic. Trimmed reads were aligned to mm10 using bowtie 2 (v2.3.5.1.)23. The resulting SAM files were converted into BAM format and sorted and indexed using Samtools (v1.3.1.)24. Normalized bigwig tracks (reads per kilobase per million reads [RPKM]) were generated using bamCoverage from deepTools (v3.5.1.)25. The processed data were viewed in the Integrated Genomics Viewer (IGV)26. SEACR (v1.1)27 was used to call significantly enriched peaks. HOMER (v4.11.1.)28 was used to identify overlapping peaks; binding sites were defined as the peak summit ± 500 bp29. Heatmaps were generated using deepTools (v3.5.1.)25.

ATAC-Seq

We performed assay for transposable accessible chromatin sequencing (ATAC-seq) as previously described30,31. 50,000 miR-125b-\texttt{Gata1s}-FLCs expressing doxycycline-inducible \textit{Arid3a-FLAG} or \textit{LUC} cDNA were FACS-purified after 48 hours of doxycycline induction and processed using the Illumina Tagment DNA Enzyme and Buffer Kit (Illumina). The resulting libraries were sequenced by Novogene Company, Ltd. on an Illumina NovaSeq 6000 (150 bp paired end reads). The data processing was also performed by Novogene: in brief, raw reads were trimmed and filtered using Skewer32 and clean reads were aligned to mm10 with BWA33. Mitochondrial reads were removed prior to subsequent analysis. Normalized pileups were generated using deepTools25 and viewed in the Integrated Genomics Viewer (IGV)26.

Patient survival analysis

Event-free survival (EFS) was defined as time from diagnosis to the first event or last follow-up. Events were death from any cause, failure to achieve remission, relapse, and secondary malignancy. Failure to achieve remission was considered as an event on day 0. Overall survival was defined as the time between diagnosis and death from any cause or last follow-up. The Kaplan-Meier method was used to estimate survival rates34. Differences were compared using the 2-sided log-rank test35, and standard errors were obtained using the Greenwood formula. The DESeq2 package was used to normalize and variance-stabilize RNA-sequencing read count data35. The pediatric AML data set further required batch correction, for which we used the sva package36. Normalized (and batch-corrected) expression of \textit{ARID3A} was taken as a continuous variable in the survival model. For patient stratification, the optimal cutoff point was determined using maximally selected log-rank statistics as implemented in
the maxstat R package (http://cran.r-project.org/web/packages/maxstat/index.html). The calculated cutoff for EFS was used for both overall survival and EFS analyses. We relied on R Version 3.6.1 (http://www.r-project.org/) for all of the above computations. Multivariate analysis was performed using the Cox proportional hazards model\(^\text{37}\) and SAS 9.4 was used to compute hazard ratios and 95% CIs of the relative risk for the respective prognostic factors (ARID3A expression, dataset, cytogenetic risk group, gender, age, white blood cell count [WBC]).
Supplemental Tables

Supplemental Table 1: List of reagents and resources

Supplemental Table 2: Patient sample characteristics

Supplemental Table 3: Targets and sequences of the miR-125b-mimic shRNA library

Supplemental Table 4: Enrichment scores from the shRNA-based positive selection screen

Supplemental Table 5: GSEA results of global gene expression profiling after overexpression of miR-125b in *Gata1s*-FLCs

Supplemental Table 6: List of shRNA targeting *ARID3A/Arid3a*

Supplemental Table 7: GSEA results of global gene expression profiling after modulation of *Arid3a* in *Gata1s*-FLCs

Supplemental Table 8: Pairwise analysis of LC-MS/MS

Supplemental Table 9: GSEA results of global gene expression profiling after overexpression of *ARID3A* in CMK

Supplemental Table 10: Multivariate cox regression analysis
Supplemental Table 2: Patient sample characteristics

	gender	age at diagnosis (years)	WBC (x10^9/L)	hemoglobin (g/dL)	BM blasts (%)	CNS	SCT	molecular genetics	Cytogenetics (karyotype)	response	relapse																																		
ML-DS PDX#1	m	2 1/6	32500	7.9	70.5	no	yes	GATA1 mutation	47,XY,t(3;13)(q?26;q?13~14) del(13)(q?14q22),+21c[cp14]/47,sl,del?(15)(q?)[cp2]/46,XY[1]	NR, CCR:after SCT	no																																		
ML-DS PDX#2	m	1 1/3	4800	12	10.5	no	no	GATA1 mutation	k.a.	CCR	no																																		
ML-DS PDX#3	f	1 1/12	168000	7.1	16	no	no	NRAS mutation	k.a.	CCR	no																																		
AMKL PDX#1	m	1	40000	9.9	64	no	yes	KMT2A mutation	46,XY[15].nuc ish 3q26(EVI1x2)[100/100], 8q22(RUNX1T1x2),21q22(RUNX1x2)[98/100], 11 q23(MLLx2)[99/100], 16q22(CBFx2)[100/100] 17q21.1(RARAx2)[100/100]	CCR	yes																																		
AMKL PDX#2	m	2/12	33800	9.5	34	yes	no	n.d.	46,XY,t(1;8;22)(p13;q22;q13)[14]/46,XY[1]	NR	no																																		
KMT2A-r PDX #1	F	7	585	8.3	84	no	yes	n.d.	46,XX,t(9;11)(p22;q23)[8]/50,XX,idem,+3,+8,+18,+19[15]	CCR	no																																		
KMT2A-r PDX #2	m	16	69.7	10.7	93	no	no	NRAS mutation	42~44,XY,t(6;11)(q27;q23)[cp2]/51,idem,+X,+der(6)t(6 ;11)(q27;q23),+8,+19,+21[5]	NR	no																																		
Gene ID	log2fold change	p.value	FDR	Gene ID	log2fold change	p.value	FDR																																						
---------	----------------	---------	-----	---------	----------------	---------	-----																																						
Podxl	18,211	0,003266	0,692389	Tdg	-0,61991	0,51773	0,978994																																						
Reep3	13,431	0,0091298	0,74172	Fam129b	-0,48297	0,53076	0,978994																																						
Lpp	13,446	0,010496	0,74172	Scl38a9	-0,28405	0,53416	0,978994																																						
E2f3	19,416	0,017347	0,744949	Acvr2a	-0,02331	0,53563	0,978994																																						
Fzd5	18,417	0,021825	0,744949	Mknk2	-0,41859	0,54057	0,978994																																						
Unc13b	11,016	0,022882	0,744949	Zswim4	-0,28989	0,54357	0,978994																																						
Phc2	19,856	0,028716	0,744949	Otub2	-0,46519	0,55007	0,978994																																						
Rnf144b	12,311	0,030172	0,744949	Arid3b	-0,70642	0,55106	0,978994																																						
Arid3a	10,512	0,03808	0,744949	Ren	-0,23496	0,5538	0,978994																																						
Map3k3	10,512	0,040254	0,744949	Gas2l1	-0,4527	0,55618	0,978994																																						
Mef2c	0,79338	0,043784	0,744949	Fgfr1	0,13884	0,55941	0,978994																																						
Bmf	0,65678	0,046188	0,744949	Plb1	0,21637	0,5625	0,978994																																						
Cdr2l	14,542	0,047075	0,744949	Tmem	0,17315	0,58004	0,978994																																						
Rbm38	0,30738	0,053767	0,744949	Accn2	-0,35256	0,58119	0,978994																																						
Scl8a2	0,98054	0,057307	0,744949	Dapk1	-0,37717	0,58309	0,978994																																						
Ptpro	-0,27504	0,060009	0,744949	Klf13	-0,22224	0,59137	0,978994																																						
Mgt4a	0,79538	0,061575	0,744949	Ganc	-0,64927	0,59447	0,978994																																						
Trim71	14,452	0,06325	0,744949	Pik3ip1	-0,09572	0,59794	0,978994																																						
Acer3	0,32946	0,073492	0,800053	Neu1	-0,15549	0,60369	0,978994																																						
AB124611	10,131	0,075477	0,800053	Cpeb3	0,090764	0,60671	0,978994																																						
Setd7	0,3349	0,084332	0,812389	Tet2	-0,06904	0,60934	0,978994																																						
Atp13a3	0,30916	0,086028	0,812389	Rit1	0,012464	0,6291	0,978994																																						
1700025G04Rik	12,827	0,088281	0,812389	Tnfrsf1b	-0,60858	0,63755	0,978994																																						
Abl2	0,64403	0,093686	0,812389	Tmem26	-0,34392	0,63984	0,978994																																						
Gcnt1	0,82238	0,095801	0,812389	Bach1	-0,21152	0,65013	0,978994																																						
Ili3	0,60133	0,11553	0,902635	Arhgef1	-0,61972	0,65849	0,978994																																						
Rhot2	11,383	0,11607	0,902635	Sh2b3	-0,72887	0,66269	0,978994																																						
Ctdsp2	0,20944	0,11922	0,902635	Trib2	-0,7399	0,66931	0,978994																																						
Abhd3	0,70079	0,13018	0,937048	Sico2b1	-0,53728	0,67162	0,978994																																						
Foxn3	0,38527	0,13524	0,937048	Celsr2	-0,49381	0,67594	0,978994																																						
Zfp697	0,60179	0,13974	0,937048	Bcat1	-0,69375	0,6822	0,978994																																						
Tnfaip8l3	0,32358	0,15138	0,937048	Npl	-0,79773	0,68688	0,978994																																						
Rufy3	0,62091	0,15338	0,937048	Vps4b	-0,13009	0,68758	0,978994																																						
pGL2	0,78876	0,15853	0,937048	Tmod2	-0,92995	0,68873	0,978994																																						
Ankrd29	0,64589	0,15892	0,937048	Coro1c	-0,78896	0,69119	0,978994																																						
Apaf1	0,22716	0,16527	0,937048	Adam9	-0,11693	0,6954	0,978994																																						
Itga7	-0,49822	0,16535	0,937048	Mapk14	-0,6026	0,69766	0,978994																																						
Dusp3	0,80461	0,16796	0,937048	Mknk1	-0,26853	0,69821	0,978994																																						
Mtsu1	0,68293	0,18136	0,978994	Acvr2b	-0,86558	0,70004	0,978994																																						
Dram2	0,49792	0,19822	0,978994	Trps1	-0,74998	0,70081	0,978994																																						
Prdm1	-0,43376	0,20856	0,978994	Wipf2	0,11111	0,70418	0,978994																																						
Gene	Mycl1	Syn2	Tmem87b	Tbc1d14	Lactb	Actr10	Socs4	Rap1gap2	Tlr8	Synj2bp	Myo1e	Zfp191	Rbm20	Ap4e1	Tgfbr1	Srd5a3	Slc25a24	Ube2g1	Map3k1	Nrp2	Pou2f2	Lipa	Dnajb5	Sash1	Lbh	Trp53in1	Asb13	Mllt4	Msr1	Pald1	Frdm4b	Zfp710	Rtdc1	Smad2	Mob3b	Map2k7	Ccr7	Mllt10	Rora	Ncor2	Lrrk2	Zwim6	Zsmb8	Cdk19	Scl16a10
-------	---------	---------	---------	---------	---------	---------	---------	----------	---------	----------	-------	---------	---------	--------	---------	---------	----------	---------	---------	--------	---------	---------	--------	---------	---------	---------	---------	--------	---------	--------	---------	--------	---------												
	0.43842	0.61753	0.55059	0.2559	0.40593	0.6169	0.49086	-0.11252	0.45459	-0.7179	0.33647	-0.04259	0.42573	0.4165	0.34813	0.44888	0.34794	0.368	0.080211	0.36459	0.29057	0.25547	-0.10121	-0.34621	-0.26441	-0.21259	-0.07853	0.24686	-0.46842	0.25211	0.31737	-0.55893	0.20179	-0.26605	0.25667	-0.50981	0.13359	0.014767	-0.27941	0.1767	-0.094665	-0.14512	-0.31479	-0.58488	-0.48462
	0.22258	0.22503	0.23518	0.23784	0.24138	0.24384	0.2459	0.25879	0.26193	0.26485	0.27106	0.27414	0.27709	0.27825	0.28528	0.28654	0.29272	0.29547	0.29665	0.29716	0.29933	0.30457	0.31046	0.31667	0.32523	0.33128	0.33426	0.33428	0.3402	0.34725	0.3548	0.35822	0.35836	0.36126	0.36238	0.36447	0.36734	0.37345	0.37913	0.38154	0.38844	0.3916	0.39451	0.39729	0.4005
			0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994	0.978994						
Gene	Log2FoldChange	p-Value	FC	Log2FC	p-value																																								
------------	----------------	----------	---------	----------	----------																																								
Nt5dc1	0.03504	0.04385	0.978994	-0.95053	0.89565																																								
Bmpr2	0.23971	0.42228	0.978994	-1.07	0.89857																																								
Ank	-0.024537	0.42976	0.978994	-13.508	0.90049																																								
Bcl2l12	0.21234	0.43416	0.978994	-0.49806	0.90619																																								
Abtb1	-0.17867	0.44033	0.978994	-14.237	0.91479																																								
Maf	0.25079	0.44511	0.978994	-1.315	0.92243																																								
Sertad3	-0.32769	0.4597	0.978994	-10.806	0.92456																																								
Atxn1l	-0.36812	0.46569	0.978994	-0.52546	0.93347																																								
pGL3-Luc	-0.059947	0.48111	0.978994	-17.783	0.94205																																								
Dusp7	-0.13643	0.48166	0.978994	-0.80727	0.9421																																								
Mfsd7c	-0.31089	0.48186	0.978994	-13.897	0.94417																																								
Tab2	-0.44637	0.48491	0.978994	-10.914	0.95449																																								
1700017B0	-0.1604	0.48626	0.978994	-1.284	0.95676																																								
Pctp	-0.22003	0.48808	0.978994	-13.874	0.96014																																								
Pik3c2b	-0.16198	0.49288	0.978994	-21.675	0.96739																																								
E2f2	0.28522	0.49397	0.978994	-0.91672	0.97375																																								
Pdpk1	-0.017022	0.49701	0.978994	-22.969	0.97385																																								
St5	0.20124	0.50954	0.978994	-12.655	0.98608																																								
Srgap2	-0.39678	0.5125	0.978994	-16.994	0.99014																																								
Cecr6	0.097405	0.51548	0.978994	-19.762	0.99713																																								
Supplemental Table 5: GSEA results of global gene expression profiling after overexpression of miR-125b in Gata1s-FLCs

Hallmark gene sets

#	Gene set	NES	NOM p	FDR q
1	HALLMARK_OXIDATIVE_PHOSPHORYLATION	2,292	0,000	0,000
2	HALLMARK_MYC_TARGETS_V1	2,279	0,000	0,000
3	HALLMARK_MYC_TARGETS_V2	1,916	0,000	0,000
4	HALLMARK_DNA_REPAIR	1,679	0,000	0,004
5	HALLMARK_E2F_TARGETS	1,591	0,000	0,009
6	HALLMARK_FATTY_ACID_METABOLISM	1,392	0,009	0,042
7	HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY	1,347	0,040	0,058
8	HALLMARK_UV_RESPONSE_UP	1,324	0,000	0,068
9	HALLMARK_ADIPOGENESIS	1,303	0,006	0,072
10	HALLMARK_MTORC1_SIGNALING	1,251	0,025	0,104
11	HALLMARK_KRAS_SIGNALING_DN	-1,450	0,001	0,148
12	HALLMARK_MITOTIC_SPINDLE	-1,317	0,011	0,394
13	HALLMARK_HEDGEHOG_SIGNALING	-1,285	0,091	0,382
14	HALLMARK_HEME_METABOLISM	-1,231	0,054	0,514
15	HALLMARK_TNFA_SIGNALING_VIA_NFKB	-1,222	0,050	0,451

StemCell and matured lineages genesets

#	Gene set	NES	NOM p	FDR q
1	WONG_EMBRYONIC_STEM_CELL_CORE	2,050	0,000	0,000
2	EZH2-KO IN ETP_UP	1,749	0,000	0,013
3	EZH2-KO IN ETP_IN_VIVO_UP	1,673	0,000	0,021
4	BHATTACHARYA_EMBRYONIC_STEM_CELL	1,633	0,000	0,027
5	ES_MYC_MODULE	1,585	0,000	0,035
6	LU_EZH2_TARGETS_UP	1,522	0,000	0,050
7	GEORGOPOLOUS_MYELOID_DIFFERENTIATION	1,424	0,000	0,101
8	LAURENTI_CMP	1,349	0,000	0,165
9	LAURENTI_GMP	1,320	0,000	0,185
10	KUSTIKOVA_TOP200_DOWN_EV1	1,303	0,010	0,187
11	GEORGOPOLOUS_GMP VS ALL OTHER +CD33	1,300	0,024	0,174
12	ROSS_AML_WITH_MLL_FUSIONS	1,276	0,062	0,191
13	REGEV_G1_S_CORE_SET	1,273	0,090	0,180
14	EBERT_HUMAN_MYELOID	1,263	0,012	0,182
15	KLUSMANN_ARRAYSTAR_MONO	1,259	0,058	0,175
16	HIDALGO_EZH1-KO IN HSC_UP	1,250	0,034	0,176
17	LAURENTI_MEP	1,235	0,000	0,188
18	KLUSMANN_NCODE_CD34	1,222	0,040	0,198
19	KLUSMANN_ARRAYSTAR_ERYTHROID	1,080	0,211	0,405
20	GOODELL_DNMT3_TARGETS	-1,594	0,000	0,062
21	IWAMA_EZH2-KO IN HSC_FL_UP	-1,476	0,000	0,186
ARID3A suppresses leukemogenesis

Alejo-Valle et al. 2021

	Gene set	NES	NOM p	FDR q
22	EPPERT_LSC-R_EXTENDED	-1,445	0,009	0,191
23	EBERT_HUMAN_LYMPHOID	-1,421	0,017	0,194
24	EBERT_HUMAN_TCELLS	-1,418	0,014	0,161
25	KLUSMANN_NCODE_GRANULOCYTES	-1,330	0,015	0,379
26	EPPERT_LSC-R	-1,323	0,083	0,347
27	KUSTIKOVA_TOP250_UP_EVI1	-1,289	0,010	0,438
28	KLUSMANN_NCODE_MEGAKARYOCYTIC	-1,267	0,042	0,492
29	ROSSI_T-CELLS	-1,261	0,047	0,473
30	FISCHER_DOWN IN RC	-1,246	0,080	0,499
31	KONDO_EZH2_TARGETS	-1,240	0,045	0,484
32	LAURENTI_MLP	-1,235	0,046	0,467
33	LU_EZH2_TARGETS_DN	-1,215	0,032	0,523
34	LAURENTI_HSC1 AND HSC2	-1,08	0,273	0,614

ML-DS signature genesets

	Gene set	NES	NOM p	FDR q
1	ML-DS TOP600 UP.GRP	1,899	0,000	0,000
2	ML-DS TOP500 UP.GRP	1,847	0,000	0,000
3	ML-DS TOP400 UP.GRP	1,842	0,000	0,000
4	ML-DS TOP250 UP.GRP	1,772	0,000	0,000
5	ML-DS TOP300_UP GENE.GRP	1,760	0,000	0,000
6	ML-DS TOP100_UP GENE.GRP	1,641	0,000	0,000
7	ML-DS TOP100_DOWN GENE.GRP	1,043	0,347	0,278
8	ML-DS TOP300_DOWN GENE.GRP	-1,246	0,049	0,227
Supplemental Table 6: List of shRNA targeting ARID3A/Arid3a

Mouse	Sequence
shArid3a #1	CTAGGAAGAATCTATCTGTATATAGTGAAAGCCACAGATGTATATAGATAGTTCTCCCTAA
shArid3a #2	AAAGAATCTATCTGTATATCTATAGTGAAAGCCACAGATGTATATACAGATAGTTCTTC
shArid3a #3	ACCCAAGATCAAGAAAGGATAGTGAAAGCCACAGATGTATCCTCTTTCTTGGATCTTGGGC

Human	Sequence
shARID3A #1	CAAGGATATCTATATATCTATATAGTGAAAGCCACAGATGTATATAGATAGATATCCTTT
shARID3A #2	AGCCGATCTCTTTACCTCATTAGTGAAAGCCACAGATGTATGAGGAAACAGGATCGGCC
shARID3A #3	ATGGATGACTGTTTCAGCTTCCATAGTGAAAGCCACAGATGTATGAGCTGAACAAGTCATCCAG

Non-	Sequence
targeting	
shLUC	CCAGGATTACAAGATTCAGAGTTAGTGAAAGCCACAGATGAACTTTGAATCTGTGACTTCTGA
Supplemental Table 8: Pairwise analysis of LC-MS/MS

Protein	log2FC (ARID3A/Control)	log2pvalue
SMAD2	7,62	4,159926
P4HA1	6,01	3,867153
ARID3B	3,73	3,555343
TRIM21	5,36	3,488007
RBM15	4,82	3,466823
ARID3A	9,33	3,465567
SERPINH1	5,12	3,011139
SRRM2	5,48	2,736189
DACH1	8,93	2,718777
P4HB	6,49	2,636633
PCM1	5,85	2,634229
DHX15	4,05	2,5961
RNPS1	2,55	2,382591
MIB1	4,96	2,362444
COL1A1	8,94	2,196879
HSPA8	2,33	2,160015
RPL3	3,06	2,074202
NUMA1	2,93	1,990553
SSR4	2,6	1,796137
HADHA	2,75	1,730748
CCT7	4,21	1,723534
XRCC5	4,44	1,579291
PML	7,3	1,567755
LRRCS9	4,21	1,539919
KPNB1	3,11	1,455751
RAN	3,59	1,349624
DLST	4,94	1,340969
PKM	3,7	1,179455
XRCC6	4,12	1,17568
VDAC1	2,56	0,860005
SSBP1	2,67	0,742064
ENO1	3,45	0,592388
A2ML1	2,64	0,489387
EEF2	2,29	0,390247
VCP	2,28	0,309687
GAPDH	2,36	0,217776
GSTP1	2,78	0,124319
Supplemental Table 9: GSEA results of global gene expression profiling after overexpression of ARID3A in CMK

Hallmark gene sets

#	Gene set	NES	NOM p	FDR q
1	HALLMARK_TGF_BETA_SIGNALING	1,478	0,011	0,105
2	HALLMARK_MYOGENESIS	1,416	0,003	0,146
3	HALLMARK_TNFA_SIGNALING_VIA_NFKB	1,357	0,011	0,232
4	HALLMARK_P53_PATHWAY	1,330	0,020	0,249
5	HALLMARK_KRAS_SIGNALING_DN	1,280	0,035	0,376
6	HALLMARK_E2F_TARGETS	-1,636	0,000	0,017
7	HALLMARK_MYC_TARGETS_V1	-1,625	0,000	0,010
8	HALLMARK_UNFOLDED_PROTEIN_RESPONSE	-1,301	0,023	0,181
9	HALLMARK_MYC_TARGETS_V2	-1,140	0,188	0,494
10	HALLMARK_G2M_CHECKPOINT	-1,074	0,207	0,353

StemCell and matured lineages genesets

#	Gene set	NES	NOM p	FDR
1	KLUSMANN_ARRAYSTAR_MEGA	1,584	0,000	0,029
2	EZH2-KO_IN ETP_H3K27ME3_DOWN	1,580	0,000	0,015
3	LAURENTI_MLP	1,496	0,000	0,071
4	KLUSMANN_NCODE_NKC	1,471	0,006	0,089
5	KLUSMANN_NCODE_MEGAKARYOCYTIC	1,356	0,005	0,427
6	IWAMA_EZH2-KO IN HSC_BM_UP	1,324	0,024	0,519
7	KUSTIKOVA TOP400_UP_EVI1	1,317	0,006	0,489
8	KLUSMANN_ARRAYSTAR_HSPC_CB VS ALL_TOP200	1,308	0,037	0,473
9	GOODELL_NK	1,287	0,095	0,528
10	GOODELL_NAIVE	1,283	0,115	0,500
11	KLUSMANN_NCODE_GRANULOCYTES	1,276	0,037	0,489
12	KLUSMANN_ARRAYSTAR_GRANULOCYTES	1,264	0,036	0,509
13	LAURENTI_HSC1 VS HSC2	1,004	0,482	0,719
14	REGEV_G1-S_CORE_SET	-1,748	0,000	0,005
15	LAURENTI_MEP	-1,744	0,000	0,003
16	ROSS_AML_OF_FAB_M7_TYPE	-1,700	0,000	0,004
17	KAMMINGA_EZH2_TARGETS	-1,519	0,000	0,052
18	JAATINEN_HEMATOPOIETIC_STEM_CELL_UP	-1,488	0,000	0,061
19	EBERT_HUMAN_CD34	-1,463	0,000	0,066
20	WONG_EMBRYONIC_STEM_CELL_CORE	-1,427	0,000	0,079
21	EBERT_HUMAN HSC	-1,357	0,012	0,124
22	KLUSMANN_ARRAYSTAR_MONO	-1,343	0,031	0,121
23	KUSTIKOVA TOP200_DOWN_EVI1	-1,326	0,026	0,126
24	NOLAN_IFPC	-1,266	0,097	0,175
25	FISCHER_DOWN IN SAA	-1,240	0,038	0,195
26	FISCHER_SAA_RC_DOWN	-1,232	0,021	0,190
ARID3A suppresses leukemogenesis

Alejo-Valle et al. 2021

	SUZ12_DOWN	-1.213	0.000	0.203
27	LAURENTI_CMP	-1.208	0.029	0.197

ML-DS signature genesets

#	Gene set	NES	NOM p	FDR q
1	ML-DS TOP250 DOWN.GRP	1,374	0.007	0.044
2	ML-DS TOP400 DOWN.GRP	1,369	0.006	0.024
3	ML-DS TOP600 DOWN.GRP	1,352	0.000	0.020
4	ML-DS TOP750 DOWN.GRP	1,341	0.000	0.017
5	ML-DS TOP500 DOWN.GRP	1,337	0.000	0.015
6	ML-DS TOP300 DOWN GENE.GRP	1,319	0.022	0.017
7	ML-DS TOP100 DOWN GENE.GRP	1,270	0.084	0.030
8	ML-DS TOP400 UP.GRP	-1,734	0.000	0.000
9	ML-DS TOP300_UP GENE.GRP	-1,670	0.000	0.000
10	ML-DS TOP250_UP.GRP	-1,658	0.000	0.000
11	ML-DS TOP500_UP.GRP	-1,642	0.000	0.000
12	ML-DS TOP100_UP GENE.GRP	-1,632	0.000	0.000
13	ML-DS TOP600_UP.GRP	-1,591	0.000	0.000

Supplemental Table 10: Multivariate Cox regression analysis

Variable	EFS		OS	
	HR (95% CI)	P-value	HR (95% CI)	P-value
ARID3A	0.68 (0.50 - 0.94)	0.018	0.66 (0.45 - 0.97)	0.033
Dataset	1.09 (0.79 - 1.51)	0.605	1.51 (1.05 - 2.16)	0.025
Risk group favourable	0.43 (0.32 - 0.58)	<0.001	0.41 (0.29 - 0.60)	<0.001
Risk group adverse	1.24 (0.92 - 1.67)	0.16	1.56 (1.13 - 2.14)	0.007
Gender	1.18 (0.93 - 1.49)	0.165	1.29 (0.99 - 1.67)	0.058
Age ≥ 60 y	2.19 (1.55 - 3.11)	<0.001	2.76 (1.91 - 3.97)	<0.001
WBC ≥ 20 x 10⁹/L	1.61 (1.23 - 2.11)	<0.001	1.36 (1.01 - 1.83)	0.041
Supplemental Figures

Supplemental Figure 1. Validation of miR-125b as the dominant oncogenic member of the miR-99a~125b tricistrons synergizing with Gata1s.

(A-C, top) Schematic of Red-Green-Blue-based lentiviral co-transduction. Co-transduction with different fluorescent protein (FP) reporters allows for multicolor tracking and competition analysis between independent populations.

(A, bottom) Percentage of Gata1s-FLCs transduced with different miR-control (marked by dTomato, mTagBFP2 or GFP) permutations (n=6, one-way ANOVA on day 0-normalized fold changes).

(B, bottom) Percentage of Gata1s-FLCs transduced with different miRNA permutations (marked by dTomato [miR-125b], mTagBFP2 [let-7c] and GFP [miR-99a]) (n=4, one-way ANOVA on day 0-normalized fold changes).
ARID3A suppresses leukemogenesis

Alejo-Valle et al. 2021

(C, bottom) Percentage of *Gata1s-FLCs* transduced with different miRNA permutations (marked by dTomato [let-7c], mTagBFP2 [miR-125b] and GFP [miR-99a]) (n=6, one-way ANOVA on day 0-normalized fold changes). Note alternating miRNA-fluorescent color combinations compared to B.

(D-E) Schematic of classical growth competition assays, where *Gata1s-FLCs* were transduced with single lentiviral vectors encoding different permutations of miRNAs of the miR-99~125b cluster (D). Data are depicted as percentage of miRNA-transduced *Gata1s-FLCs* on day 12 of differentiation, normalized to day 0 (n=3, one-way ANOVA) (E).

(F) Percentage of miR-ctrl- or miR-125b-transduced *Gata1s-FLCs* (n=6, unpaired t-test on day 29).

(G) Bar graph showing the percentage of megakaryocytic progenitors (CD117^+^CD41^+^) after 6 days of differentiation. The depicted cells are *Gata1s-FLCs* transduced with miR-125b or miR-ctrl (n=3, paired t-test).

(H) Bar graph showing colony counts from miR-125b- or miR-Control-transduced *Gata1s-FLCs* in methylcellulose-based CFU-assays with complete cytokine conditions (n=4, unpaired t-test).

(I) Representative blast-like colony from one of n=4 independent methylcellulose-based CFU-assays using miR-125b-transduced *Gata1s-FLCs* and minimal (Thpo 20ng/ml) cytokine conditions. Scale is indicated.

(J) Representative micrographs of bone marrow (sternum), spleen and liver samples from mice transplanted with miR-ctrl (top) or miR-125b (bottom) transduced *Gata1s-FLCs*. The *Gata1s-miR-125b* condition shows bone marrow with a monotonous blastoid infiltrate with an absence of megakaryocytes, and spleen and liver blastoid infiltrates. Magnifications: 200x (liver), 400x (bone marrow and spleen).

(K-L) Kaplan-Meier survival curve (K) and spleen weights (L) of secondary recipients transplanted with miR-125b-transduced *Gata1s-FLCs* (25% of bone marrow of primary leukemic recipients) (n=6). Data are presented as mean ± SD. n.s., not significant, FP^+^= fluorescent protein-positive.
Supplemental Figure 2. Sustained miR-125b expression induces an ML-DS-like gene expression signature in Gata1s-FLCs.

(A) Percentage of Gata1s-FLCs containing the miR-125b-mimic shRNA pool over time (n=6). Data are presented as mean ± SD.

(B) Expression of miR-125b relative to U6, as measured by RT-qPCR (TaqMan) in CMK cells (n=3), ML-DS and AMKL PDXs (n=3), and Gata1s-FLCs transduced with miR-ctrl, constitutive miR-125b (Co.miR-125b) and inducible miR-125b (Tet.miR-125b) 72 hours after transduction or 2 days after doxycycline induction (n=2). Data are presented as mean ± SD (unpaired t-test).

(C) Bar graphs showing normalized enrichment scores from GSEA on hematopoietic differentiation- and cell proliferation-related gene sets. Gata1s-FLCs overexpressing miR-125 were compared to Gata1s-FLCs overexpressing miR-ctrl. In both cases, cells were taken after 10 days of doxycycline induction. * p<0.05; ** p<0.01; *** p<0.001.

n.s., not significant, FP+= fluorescent protein-positive.
ARID3A suppresses leukemogenesis

Alejo-Valle et al. 2021

Supplemental Figure 3. Verification of Arid3a as the main target of miR-125b synergizing with Gata1s.

(A) Western Blot showing ARID3A protein levels in Gata1s-FLCs 4 days after transduction with miR-125b or shRNAs targeting Arid3a, as well as their respective controls. Position of ARID3A (63kDa) and β-Actin (43kDa) is indicated.

(B) Experimental design of ARID3A 3'UTR assays. miR-125b can bind to the 3’UTR and impair GFP expression only when the miR-125b-binding sites are intact.

(C and D) GFP Mean fluorescence intensity of HEL cells expressing wildtype or a mutated 3'UTR of Arid3a (B) or ARID3A (C) after transduction with miR-125b or miR-Control. MFI is normalized to untransduced cells. (n=12 and n=3, respectively; unpaired t-test).

(E) Representative megakaryocytic-like colony from one of n=3 independent methylcellulose-based CFU-assays after plating Gata1s-FLCs transduced with shArid3a #3 in minimal (Thpo 20ng/ml) cytokine conditions.

(F-H) (F) Representative image, (G) classification of colonies and (H) number of formed colonies after plating transduced (sh-ctrl [black] or shArid3a #3 [green]) Gata1s-FLCs in methylcellulose-based CFU assays under complete cytokine conditions (n=3, two-way ANOVA (G) and unpaired t-test (H)). CFU-G/M: granulocytic (CFU-G), monocytic (CFU-M) and granulocytic/monocytic (CFU-GM); CFU-E: erythroid.

(I) Representative micrographs of bone marrow (sternum), spleen and liver from mice transplanted with sh-ctrl (top) or shArid3a #3 (bottom) transduced Gata1s-FLCs. The Gata1s-shArid3a condition shows bone marrow with a monotonous blastoid infiltrate, and spleen and liver samples enriched for megakaryoblastic-like infiltrates. Magnifications: 200x (liver), 400x (bone marrow and spleen).

All data are presented as mean ± SD. n.s., not significant.
Supplemental Figure 4. Number of CFUs formed in methylcellulose-based assays and knockdown efficiency of shRNAs against *ARID3A*.

(A) Number of colonies formed after plating transduced (*Arid3a* or *LUC* cDNA) murine FLCs in methylcellulose-based CFU assays under complete cytokine conditions (n=3, unpaired t-test).

(B) Bar graph showing the percentage of myeloid (CD11b⁺), T-cells (CD3e⁺) and B-cells (B220⁺) in the BM of mice transplanted with Ter-119 FLCs transduced with sh-ctrl (black) or shArid3a (green). shRNA⁺ cells shown (n=5, unpaired t-test).

(C) Number of colonies formed after plating *ARID3A*- or *LUC*-expressing human adult PB CD34⁺ HSPCs in methylcellulose-based CFU assays under complete cytokine conditions (n=3, unpaired t-test).

(D) Western Blot showing *ARID3A* protein levels in K562 4 days after transduction with shRNAs targeting *ARID3A*, as well as a non-targeting control (sh-ctrl). Position of *ARID3A* (63kDa) and GAPDH (37kDa) is indicated.

All data are presented as mean ± SD. n.s., not significant.
Supplemental Figure 5. ARID3A activates expression of genes involved in megakaryocytic differentiation.

(A-B) Schematic of setup to determine the role of ARID3A in gene transcription by fusing the VP64-activator or KRAB-inhibitor domains to its N-terminal domain (A) and normalized percentage (to LUC cDNA) of transduced (Arid3a (green), VP64-Arid3a (red) or KRAB-Arid3a (blue)) Gata1s-FLCs after 10 days in culture. n=3; * = pANOVA<0.05; ** = pANOVA<0.01; *** = pANOVA<0.001 (one-way ANOVA).

(C) Percentage of Gata1s-FLCs expressing doxycycline-regulated shArid3a #3 upon addition or removal of doxycycline (500ng/mL) (n=3, paired t-test). Data are presented as mean ± SD.

(D and E) Western Blot showing ARID3A protein levels of Gata1s-FLCs 4 days after doxycycline-mediated induction of Arid3a (D) or shArid3a (E) expression (or its respective controls). Samples after doxycycline withdrawal (wd) were taken 2 days after removal of doxycycline. Position of ARID3A (63kDa) and β-ACTIN (43kDa) is indicated.

(F) Expression profile of differentially expressed genes (DEG) bound by ARID3A in Gata1s-FLCs after induction of Arid3a or shArid3a #3 (n=212 and n=329, respectively).

(G) Gene expression profile of genes involved in megakaryocytic differentiation upon modulation of Arid3a expression in Gata1s-FLCs. Data shown as log2fold change to each respective control, binding by ARID3A or GATA1s and ARID3A is indicated (right).

(H) IGV snapshot showing occupancy (top) of megakaryocytic genes by ARID3A and associated open chromatin state (bottom). The tracks display coverage (RPKM) (left). Scale and chromosome location are shown (top).

FP+= fluorescent protein-positive.
Supplemental Figure 6. ARID3A binds to SMAD2/3 activating TGFβ-mediated apoptosis and cell cycle arrest.

(A-B) GSEA enrichment plots showing the modulation of the TGFβ signaling pathway (A) and induction of SMAD3 targeted genes (B) upon Arid3a induction or repression in Gata1s-FLCs.

(C) Volcano plot showing differential expression of genes bound by ARID3A and SMAD2 and/or SMAD327 after doxycycline-induced Arid3a expression in Gata1s-FLCs. Genes involved in apoptosis and cell cycle arrest are highlighted in green; significantly downregulated and upregulated genes in blue and red, respectively.

(D) Percentage of viable, early and late apoptotic Gata1s-FLCs overexpressing miR-125b after 3 days of doxycycline induction of Arid3a expression as determined by Annexin-V assay. Viable cells: Annexin-V-/DAPI-; early apoptotic: Annexin-V-/DAPI+; late apoptotic: Annexin-V+/DAPI+ (n=3, unpaired t-test).

(E) Percentage of Gata1s-FLCs overexpressing miR-125b in apoptosis, S-phase, G0-1 and G2-M after 3 days of doxycycline induction of Arid3a expression as determined in BrDU-based cell cycle assay. Apoptosis: BrdU-/DAPI−; G0-1: BrdU-/DAPI low; S-Phase: BrdU+/DAPI+; G2-M: BrdU-/DAPI high (n=3 unpaired t-test).

Data are presented as mean ± SD. n.s., not significant.
Supplemental Figure 7. Overexpression of ARID3A in the ML-DS cell line CMK restores differentiation potential and mediates cell cycle arrest and apoptosis.

(A) Western Blot showing ARID3A protein levels in CMK cells 4 days after doxycycline-mediated induction of ARID3A or LUC cDNA expression. Position of ARID3A (63kDa) and GAPDH (37kDa) is indicated.

(B-D) Percentage of fluorescent reporter positive (B) and percentage of mature megakaryocytic cells (CD41+CD61+CD42b+) after doxycycline induction of CMK cells transduced with dox-inducible ARID3A or LUC cDNAs (C) (n=3, unpaired t-test, no differences between induced and non-induced control). Representative micrograph of n=3 experiments (D).
ARID3A suppresses leukemogenesis

Alejo-Valle et al. 2021

(E) Bar graphs showing normalized enrichment scores from GSEA of up- or downregulated gene sets involved in hematopoietic differentiation, cell proliferation and ML-DS progression. CMK overexpressing ARID3A were compared to CMK overexpressing LUC cDNA two days after doxycycline induction. * = p<0.05; ** = p<0.01; *** = p<0.001.

(F) Percentage of viable, early and late apoptotic CMK cells after 7 days of doxycycline induction of ARID3A expression as determined by Annexin-V assay. Viable cells: Annexin-V+/DAPI−; early apoptotic: Annexin-V+/DAPI+; late apoptotic: Annexin-V−/DAPI+ (n=3, unpaired t-test).

(G) Percentage of CMK cells in apoptosis, S-phase, G0-1 and G2-M after 7 days of doxycycline induction of ARID3A expression as determined in BrDU-based cell cycle assay. Apoptosis: BrdU+/7-AAD−; G0-1: BrdU+/7-AAD low; S-Phase: BrdU+/7-AAD high; G2-M: BrdU+/7-AAD high (n=3, unpaired t-test).

(H) Normalized (to LUC) percentage of M-07E or MEG-01 cells expressing constitutively expressed ARID3A after 10 days in culture (n=3, unpaired t-test).

(I) Percentage of viable, early and late apoptotic ML-DS and AMKL PDXs after 2 days of doxycycline induction of ARID3A expression as determined by Annexin-V assay. Viable cells: Annexin-V+/DAPI−; early apoptotic: Annexin-V+/DAPI+; late apoptotic: Annexin-V−/DAPI+ (n=2-4, unpaired t-test).

(J) Percentage of ML-DS and AMKL PDXs in apoptosis, S-phase, G0-1 and G2-M after 2 days of doxycycline induction of ARID3A expression as determined in BrDU-based cell cycle assay. Apoptosis: BrdU+/DAPI−; G0-1: BrdU+/DAPI low; S-Phase: BrdU+/DAPI+; G2-M: BrdU+/DAPI high (n=2-4, unpaired t-test).

All data are presented as mean ± SD. FP+ = fluorescent protein-positive.
Supplemental Figure 8. ARID3A is a global tumor suppressor in AML

(A-B) Event-free survival (EFS) statistic (Chi-squared) as function of the cutoff point in the NCI-TARGET (A) and the TCGA (B) patient populations. The calculated optimum cutoff for EFS (green line, as determined by maximally selected rank statistics) – 12.0 and 12.3 normalized ARID3A reads, respectively – was used for both OS and EFS computations.

(C) Probability of overall survival (OS) in 258 pediatric AML patients with high (green; >12.0 normalized reads) or low ARID3A expression (black; ≤12.0 normalized reads).

(D) Probability of overall survival (OS) in 171 adult AML patients with high (green; >12.3 normalized reads) or low ARID3A expression (black; ≤12.3 normalized reads).

(E) ARID3A expression (RPKM) in sorted pediatric AML blasts of fetal CD34+ HSPCs (n=3) and different non-AMLK subtypes: CBFB-MYH11 (n=12), RUNX1-RUNX1T1 (n=8), KMT2A-MLL10 (n=10) and KMT2A-MLLT3 (n=8) (one-way ANOVA).

(F) Bar graph showing the percentage of ARID3A+ cells after 7 days of induction with doxycycline, normalized to the LUC control (n=3, unpaired t-test compared to LUC control).

(G) Percentage of viable, early and late apoptotic K562 cells after 7 days of doxycycline induction of ARID3A expression as determined by Annexin-V assay. Viable cells: Annexin-V-/DAPI; early apoptotic: Annexin-V+/DAPI; late apoptotic: Annexin-V+/DAPI (n=3, unpaired t-test).

(H) Percentage of K562 cells in apoptosis, S-phase, G0-1 and G2-M after 7 days of doxycycline induction of ARID3A expression as determined in BrdU-based cell cycle assay. Apoptosis: BrdU/7-AAD; G0-1: BrdU/7-AADlow; S-Phase: BrdU/7-AAD; G2-M: BrdU/7-AADhigh (n=3, unpaired t-test).

(I-J) KMT2A-rearranged (KMT2A-r) PDXs #1 and #2 were transduced with doxycycline-inducible ARID3A or LUC cDNA vectors. Percentage of fluorescent reporter positive cells after doxycycline induction of KMT2A-r PDX #1 (I) or KMT2A-r PDX #2 (J) (n=3, unpaired t-test).

(K) Ratio of GFP+ to dTomato+ cells in input cells (IP), and in the bone marrow (BM) of mice sacrificed 4-5 weeks after transplantation of KMT2A-r PDX #1 transduced with ARID3A (GFP+) or a LUC control (GFP+) and mixed 1:1 with LUC control-transduced blasts (dTomato+) before transplantation (n=5, unpaired t-test).

All data are presented as mean ± SD. FP+ = fluorescent protein-positive.
Supplemental Information References

1. Gialesaki S, Mahnken AK, Schmid L, et al. GATA1s exerts developmental stage-specific effects in human hematopoiesis. *Haematologica*. 2018;103(8):e336-e340.

2. Labuhn M, Perkins K, Matz S, et al. Mechanisms of Progression of Myeloid Preleukemia to Transformed Myeloid Leukemia in Children with Down Syndrome. *Cancer Cell*. 2019;36(2):123-138.e110.

3. Emmrich S, Rasche M, Schöning J, et al. miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. *Genes & development*. 2014;28(8):858-874.

4. Klusmann JH, Li Z, Böhmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. *Genes Dev*. 2010;24(5):478-490.

5. Adams FF, Heckl D, Hoffmann T, et al. An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries. *Biomaterials*. 2017;139:102-115.

6. Fellmann C, Zuber J, McLJunkin K, et al. Functional identification of optimized RNAi triggers using a massively parallel sensor assay. *Mol Cell*. 2011;41(6):733-746.

7. Schwarzer A, Emmrich S, Schmidt F, et al. The non-coding RNA landscape of human hematopoiesis and leukemia. *Nat Commun*. 2017;8(1):218.

8. Li W, Xu H, Xiao T, et al. MAGECK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. *Genome Biology*. 2014;15(12):554.

9. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. *Nature Methods*. 2009;6(5):359-362.

10. Consortium TU. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Research*. 2020;49(D1):D480-D489.

11. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *Journal of the American Society for Mass Spectrometry*. 1994;5(11):976-989.

12. Labuhn M, Adams FF, Ng M, et al. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. *Nucleic Acids Res*. 2018;46(3):1375-1385.

13. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics*. 2018;34(17):i884-i890.

14. Spinozzi G, Tini V, Mincarelli L, Falini B, Martelli M. A comprehensive RNA-Seq pipeline includes meta-analysis, interactivity and automatic reporting; 2018.

15. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*. 2014;15(12):550.

16. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1995;57(1):289-300.

17. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*. 2005;102(43):15545-15550.

18. Aken BL, Achuthan P, Akanni W, et al. Ensembl 2017. *Nucleic Acids Res*. 2017;45(D1):D635-d642.

19. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. *Elife*. 2017;6.

20. Meers MP, Bryson TD, Henikoff JG, Henikoff S. Improved CUT&RUN chromatin profiling tools. *Elife*. 2019;8.

21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*. 2014;30(15):2114-2120.
22. Zhu Q, Liu N, Orkin SH, Yuan G-C. CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis. *Genome Biology*. 2019;20(1):192.

23. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*. 2012;9(4):357-359.

24. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-2079.

25. Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res*. 2016;44(W1):W160-165.

26. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. *Nat Biotechnol*. 2011;29(1):24-26.

27. Meers MP, Tenenbaum D, Henikoff S. Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. *Epigenetics & Chromatin*. 2019;12(1):42.

28. Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell*. 2010;38(4):576-589.

29. Kai Y, Andricovich J, Zeng Z, Zhu J, Tzatsos A, Peng W. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. *Nature Communications*. 2018;9(1):4221.

30. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol*. 2015;109:21.29.21-21.29.29.

31. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nature Methods*. 2013;10(12):1213-1218.

32. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. *BMC Bioinformatics*. 2014;15(1):182.

33. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2009;25(14):1754-1760.

34. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. *Journal of the American Statistical Association*. 1958;53(282):457-481.

35. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. *Cancer Chemother Rep*. 1966;50(3):163-170.

36. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*. 2012;28(6):882-883.

37. Cox DR. Regression Models and Life-Tables. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1972;34(2):187-202.

38. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell systems*. 2015;1(6):417-425.

39. Weber K, Thomasewski M, Warlich M, et al. RGB marking facilitates multicolor clonal cell tracking. *Nat Med*. 2011;17(4):504-509.

40. Bolouri H, Farrar JE, Triche T, Jr., et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. *Nat Med*. 2018;24(1):103-112.

41. Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. *N Engl J Med*. 2013;368(22):2059-2074.