Necessary and sufficient conditions on existence of radial solutions for exterior Dirichlet problem of fully nonlinear elliptic equations

Limei Dai Jiguang Bao Bo Wang

Abstract: In this paper, we study the exterior Dirichlet problem for the fully nonlinear elliptic equation \(f(\lambda(D^2u)) = 1 \). We obtain the necessary and sufficient conditions of existence of radial solutions with prescribed asymptotic behavior at infinity.

Keywords: fully nonlinear elliptic equation; radial solutions; necessary and sufficient conditions; exterior Dirichlet problem; asymptotic behavior

2010 MSC. 35J60; 35B40; 35B07

1 Introduction

In this paper, we study the exterior Dirichlet problem of the fully nonlinear elliptic equation

\[
\begin{align*}
 f(\lambda(D^2u)) &= 1 \quad \text{in } \mathbb{R}^n \setminus B_1(0), \\
 u &= b \quad \text{on } \partial B_1(0).
\end{align*}
\]

(1.1) (1.2)

where \(B_1(0) = \{ x \in \mathbb{R}^n : |x| < 1 \} \) is the unit ball in \(\mathbb{R}^n \), \(b \) is a constant, and \(f(\lambda) \) is a given symmetric function of the eigenvalues \(\lambda = (\lambda_1, \ldots, \lambda_n) \) of the Hessian matrix \(D^2u \).

We study \(f \) in an open convex symmetric cone \(\Gamma \subset \mathbb{R}^n \) with vertex at the origin,

\[
\{ \lambda \in \mathbb{R}^n | \lambda_j > 0, 1 \leq j \leq n \} \subset \Gamma \subset \{ \lambda \in \mathbb{R}^n | \sum_{j=1}^n \lambda_j > 0, 1 \leq j \leq n \}.
\]

(1.3)

Suppose that \(f \in C^\infty(\Gamma) \cap C^0(\Gamma) \) is concave and symmetric in \(\lambda_j \),

\[
f > 0 \text{ in } \Gamma, \ f = 0 \text{ on } \partial \Gamma; \ f_{\lambda_j} > 0 \text{ in } \Gamma \ \forall 1 \leq j \leq n.
\]

(1.4)

Let \(\sigma_k(\lambda) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1} \cdots \lambda_{i_k}, k = 1, 2, \ldots, n \), and \(\Gamma_k = \{ \lambda \in \mathbb{R}^n | \sigma_j(\lambda) > 0, j = 1, 2, \ldots, k \} \). Then \((f, \Gamma) = (\sigma_k^\Gamma, \Gamma_k) \) and \((f, \Gamma) = ((\sigma_{l+k}^\Gamma), \Gamma_k) \), \(1 \leq l < k \leq n \) are the special cases of \((f, \Gamma) \). In particular, if \(k = n \), \((f, \Gamma) = (\sigma_n^\Gamma, \Gamma_k) \) corresponds to the Monge-Ampère operator.

A classical theorem for Monge-Ampère equation states that any classical convex solution of

\[
\det D^2u = 1 \text{ in } \mathbb{R}^n
\]

must be a quadratic polynomial. This theorem was established by Jörgens \[10\] \((n = 2) \), Calabi \[5\] \((n \leq 5) \) and Pogorelov \[15\] \((n \geq 2) \). Later Cheng-Yau \[6\] proved the Jörgens-Calabi-Pogorelov theorem by the simpler and more analytical way along the lines of affine
geometry. This result for viscosity solutions was extended by Caffarelli [3]. Jost-Xin [11] also gave another proof of this theorem. However, Trudinger-Wang [16] proved that if D is an open convex subset in \mathbb{R}^n and u is a convex C^2 solution to $\det D^2 u = 1$ in D with $\lim_{x \to \partial D} u(x) = \infty$, then $D = \mathbb{R}^n$.

In 2003, Caffarelli-Li [4] made an extension of the Jörgens-Calabi-Pogorelov theorem to exterior domains. Moreover, Caffarelli-Li [4] also established the existence of solutions with asymptotic behavior at infinity to the exterior Dirichlet problem of Monge-Ampère equations.

Theorem 1.1. ([4]) Let Ω be a smooth, bounded, strictly convex domain in \mathbb{R}^n, $n \geq 3$ and $\phi \in C^2(\partial \Omega)$. Then for any symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, $\hat{b} \in \mathbb{R}^n$, there exists a constant $c_1 = c_1(n, \Omega, \phi, \hat{b}, A)$ such that for any $\hat{c} > c_1$, there exists a unique solution $u \in C^\infty(\mathbb{R}^n \setminus \Omega) \cap C^0(\mathbb{R}^n \setminus \Omega)$ satisfying

$$
\begin{align*}
\det D^2 u &= 1 \text{ in } \mathbb{R}^n \setminus \overline{\Omega}, \\
u &= \phi \text{ on } \partial \Omega, \\
\lim_{|x| \to \infty} |x|^{n-2} \left| u(x) - \left(\frac{1}{2} x^T A x + \hat{b} \cdot x + \hat{c} \right) \right| &= 0.
\end{align*}
$$

For $n = 2$, the existence of solutions to the exterior Dirichlet problem for Monge-Ampère equation $\det D^2 u = 1$ was established by Bao-Li [1] using the Perron method. Ferrer-Martínez-Milán [8, 9] also studied the similar problems by using the complex variable method. We can also refer to Delanoë [7]. Bao-Li-Zhang [2] proved the existence of solutions to the exterior Dirichlet problem for $\det D^2 u = f$ with f being a perturbation of 1 at infinity for $n \geq 2$. Ju-Bao [12] obtained the existence of exterior solutions with f being a perturbation of $f_0(|x|)$ at infinity for $n \geq 3$. For the fully nonlinear elliptic equations (1.1), Li-Bao [13] obtained the existence of solutions of the exterior Dirichlet problem.

The constant c_1 in Theorem 1.1 plays an important role in the existence and nonexistence of solutions to the exterior Dirichlet problem. Wang-Bao [17] first studied the constant among the radially symmetric solutions to Hessian equations $\sigma_k(\lambda(D^2 u)) = 1$.

Theorem 1.2. ([17]) Let $n \geq 3$, $2 \leq k \leq n$ and $a = (\frac{1}{2\pi})^{1/k}$. There exists a unique radially symmetric solution $u \in C^2(\mathbb{R}^n \setminus \overline{B_1(0)}) \cap C^1(\mathbb{R}^n \setminus B_1(0))$ satisfying

$$
\begin{align*}
\sigma_k(\lambda(D^2 u)) = 1 & \text{ in } \mathbb{R}^n \setminus \overline{B_1(0)}, \\
u &= \hat{a} \text{ on } \partial B_1(0), \\
u &= \frac{a}{2} |x|^2 + \hat{c} + O(|x|^{2-n}) \text{ as } |x| \to \infty,
\end{align*}
$$

if and only if $\hat{c} \geq C^* = \hat{a} - \frac{a}{2} + a \int_1^\infty s((1 - s^{-n})^\frac{1}{k} - 1) ds$.

2
Recently, Li-Lu [14] characterized the existence and nonexistence of solutions in terms of the asymptotic behavior to the exterior Dirichlet problem with the right hand side being 1 or the perturbation of 1 at infinity. In this paper, we obtain the necessary and sufficient conditions of existence of radial solutions to (1.1) and (1.2). We suppose that there exists a constant c_* such that $f(c_*, \ldots, c_*) = 1.$ (1.8)

Let Ω be a domain in \mathbb{R}^n. A function $u \in C^2(\Omega)$ is called admissible if at each $x \in \Omega$, $\lambda(D^2u(x)) \in \Gamma$. The condition (1.4) guarantees that (1.1) is elliptic for the admissible functions. Set

$$\Phi = \{u \in C^1(\mathbb{R}^n \setminus B_1) \cap C^2(\mathbb{R}^n \setminus \overline{B_1}) | u \text{ is an admissible radially symmetric function.}\}$$

The main result is the following.

Theorem 1.3. Let $n \geq 3$ and (1.8) hold. There exists a unique function $u \in \Phi$ satisfying (1.1), (1.2) and

$$u(x) = \frac{c_*}{2}|x|^2 + c + O(|x|^{2-n})$$

if and only if $c \in [c_0, +\infty)$ where $c_0 = \mu(W^{-1}_s(\gamma_0)) + b - c_*/2$, $0 \leq \gamma_0 < c_*$,

$$\mu(\alpha) = \int_1^{+\infty} s(W(s, \alpha) - c_*)ds$$

and $W_s(\alpha) = W(s, \alpha)$ satisfies (2.11) and (2.12).

2 Proof of Theorem 1.3

Lemma 2.1. ([17]) Let $\lambda = (\beta, \gamma, \ldots, \gamma) \in \Gamma$. Then $\gamma > 0$.

Lemma 2.2. Let $\lambda = (\beta, \gamma, \ldots, \gamma) \in \mathbb{R}^n$, $n \geq 2$ and $f(\lambda) = 1$. Then $\lambda \in \Gamma$ if and only if there exists a constant $0 \leq \gamma_0 < c_*$ such that

$$\gamma_0 < \gamma < +\infty.$$

Proof. Consider the equation

$$f(\beta, \gamma, \ldots, \gamma) = 1 \text{ for } (\beta, \gamma, \ldots, \gamma) \in \Gamma.$$

Similar to [13], from (1.4) and (1.8), we know that

$$f(c_*, \gamma, \ldots, \gamma) > 1, \text{ if } \gamma > c_*.$$

By (1.3), for $(\beta_0, \gamma, \ldots, \gamma) \in \partial\Gamma$,

$$f(\beta_0, \gamma, \ldots, \gamma) = 0.$$

3
Hence from the intermediate value theorem and (1.4), for each $\gamma > c^*$, there exists a unique $g(\gamma)$ between β_0 and c^* such that $(g(\gamma), \gamma, \ldots, \gamma) \in \Gamma$, and
\[
f(g(\gamma), \gamma, \ldots, \gamma) = 1, \quad \forall \gamma > c^*.
\] (2.3)

Then we can define the continuous and differentiable function g such that
\[
\beta = g(\gamma), \quad \gamma \geq c^*
\]
and
\[
g(c^*) = c^*.
\]
Moreover, differentiating (2.3) with respect to γ, we get
\[
f_{\lambda_1}(g(\gamma), \gamma, \ldots, \gamma)g'(\gamma) + \sum_{j=2}^{n} f_{\lambda_j}(g(\gamma), \gamma, \ldots, \gamma) = 0, \quad \forall \gamma \geq c^*.
\] (2.4)

So by (1.4),
\[
\frac{d\beta}{d\gamma} = g'(\gamma) = -\frac{\sum_{j=2}^{n} f_{\lambda_j}(g(\gamma), \gamma, \ldots, \gamma)}{f_{\lambda_1}(g(\gamma), \gamma, \ldots, \gamma)} < 0.
\] (2.5)

In particular, by the symmetry of f, we can deduce that
\[
g'(c^*) = 1 - n.
\] (2.6)

Let
\[
F(\beta, \gamma, \ldots, \gamma) = -\frac{\sum_{j=2}^{n} f_{\lambda_j}(\beta, \gamma, \ldots, \gamma)}{f_{\lambda_1}(\beta, \gamma, \ldots, \gamma)}.
\]

Then
\[
\frac{d\beta}{d\gamma} = F(\beta, \gamma, \ldots, \gamma).
\]

Since $\partial F/\partial \beta$ is continuous, then by the extension theorem of ODE, $\beta = g(\gamma), \gamma > c^*$ can be extended to the left of c^*. And because $g'(\gamma) < 0$ and due to Lemma 2.1 $\gamma > 0$, then $\beta = g(\gamma)$ can be extended to $\gamma_0, 0 \leq \gamma_0 < c^*$ such that $\lim_{\gamma \to \gamma_0^+} g(\gamma) = +\infty$. Then the maximum existence interval of $\beta = g(\gamma)$ is $(\gamma_0, +\infty), 0 \leq \gamma_0 < c^*$, that is,
\[
\beta = g(\gamma), \quad \gamma \in (\gamma_0, +\infty).
\] (2.7)

On the other hand, differentiating (2.4) with respect to γ, we have that
\[
g''(\gamma) = -\frac{\Lambda^T \left(\frac{\partial^2 f}{\partial \gamma \partial \lambda_1} \right) \Lambda}{f_{\lambda_1}},
\]
where $\Lambda^T = (g'(\gamma), 1, \ldots, 1)$. Since f is concave and $f_{\lambda_1} > 0$, then
\[
g''(\gamma) > 0.
\] (2.8)
Then
\[g'(\gamma) > g'(c_*) = 1 - n \text{ for } \gamma > c_* \] (2.9)
Since \(\lim_{\gamma \to c_*^+} g(\gamma) = +\infty \), then we declare that
\[g(\gamma) > (1 - n)\gamma, \quad \gamma_0 < \gamma < +\infty. \] (2.10)
On the contrary, since \(g'(\gamma) < 0 \) and \(g(c_*) = c_* \), then there exists some \(\tilde{\gamma} \in (c_*, +\infty) \) such that \(g(\tilde{\gamma}) = (1 - n)\tilde{\gamma} \) and \(g(\gamma) < (1 - n)\gamma \) for \(\gamma > \tilde{\gamma} \). So
\[
g'(\tilde{\gamma}) = \lim_{\gamma \to \tilde{\gamma}^+} \frac{g(\gamma) - g(\tilde{\gamma})}{\gamma - \tilde{\gamma}} \leq \lim_{\gamma \to \tilde{\gamma}^+} \frac{(1 - n)\gamma - (1 - n)\tilde{\gamma}}{\gamma - \tilde{\gamma}} = 1 - \gamma
\]
which contradicts with (2.9). Hence (2.10) holds and then \(g(\gamma) + (n-1)\gamma > 0 \). Moreover, if \(\gamma_0 < \gamma < +\infty \), then \(f(g(\gamma), \gamma, \ldots, \gamma) = 1 \) and \(g(\gamma) \) may be positive. So \((g(\gamma), \gamma, \ldots, \gamma) \in \Gamma \).

The Lemma is proved. \(\square\)

Lemma 2.3. Let \(\alpha > 0 \) and \(g \) be the same function as (2.7). Then the problem
\[
d\frac{W}{dr} = g(W) - \frac{W}{r}, \quad r > 1, \quad W(1) = \alpha \] (2.11)
has a unique solution \(W = W(r, \alpha) \) and
\[
\lim_{r \to \infty} W(r, \alpha) = c_* . \] (2.13)

Proof. If \(W > c_* \), then by (2.5), we have \(g(W) < g(c_*) = c_* \). Thus \(g(W) - W < 0 \), that is, \(dW/dr < 0 \).

If \(W < c_* \), then by (2.5), we have \(g(W) > g(c_*) = c_* \). Thus \(g(W) - W > 0 \), that is, \(dW/dr > 0 \).

Let \(G(W, r) = \frac{g(W) - W}{r} \), then \(\partial G/\partial W \) is continuous. In addition, we know that \(W = c_* \) is a special solution of (2.11). Hence by the existence and uniqueness theorem of solutions to the ODE equation, we know that (2.11) and (2.12) has a unique solution \(W = W(r, \alpha) \). Then by the extension theorem of solutions, we know that (2.13) holds.

The Lemma is proved. \(\square\)

Remark 2.1. For the proof of (2.13), we can also refer to Lemma 2.2 in [13].
Lemma 2.4. Let $u \in C^1(\mathbb{R}^n \setminus B_1) \cap C^2(\mathbb{R}^n \setminus \overline{B}_1)$ be a radial solution of (1.1) and (1.2) and

$$\alpha = u'(1).$$

Then $\lambda(D^2u) \in \Gamma$ if and only if

$$\sup_{r \geq 1} W_r^{-1}(\gamma_0) \leq \alpha < +\infty,$$

where $W_r(\alpha) = W(r, \alpha)$ satisfies (2.11) and (2.12).

Proof. Let $u(x) = u(|x|) = u(r) \in C^1(\mathbb{R}^n \setminus B_1) \cap C^2(\mathbb{R}^n \setminus \overline{B}_1)$ be a radial solution of (1.1) and (1.2), then the eigenvalues of the Hessian matrix D^2u are

$$\lambda_1 = u'', \lambda_2 = \cdots = \lambda_n = \frac{u'}{r}.$$

So

$$f\left(\frac{u''}{r}, \frac{u'}{r}, \ldots, \frac{u'}{r}\right) = 1.$$

By Lemma 2.2 we have that

$$\gamma_0 < \frac{u'}{r} < +\infty.$$

Let $W(r) = u'(r)/r$, then

$$\gamma_0 < W(r) < +\infty,$$

and

$$u''(r) = rW'(r) + W(r).$$

On the other hand, by (2.16) and (2.7), we know that

$$u''(r) = g\left(\frac{u'}{r}\right) = g(W(r)), \quad \gamma_0 < W(r) < +\infty.$$

So $W(r) = u'(r)/r$ satisfies (2.11) and (2.12). In the following, we denote $W(r) = W(r, \alpha) = W_r(\alpha)$.

Differentiating (2.11) and (2.12) with respect to α, we know that $V = \partial W(r, \alpha)/\partial \alpha$ satisfies

$$\begin{cases}
\frac{\partial V}{\partial r} = \left(\frac{g'(W(r, \alpha)) - 1}{r}\right)V, & r > 1, \\
V(1) = 1.
\end{cases}$$

Then

$$\frac{\partial W(r, \alpha)}{\partial \alpha} = \exp \int_1^r \frac{g'(W(t, \alpha)) - 1}{t} dt.$$

And then $W(r, \alpha)$ is strictly increasing in α. Next we prove that

$$W(r, \alpha) \to +\infty, \quad \text{as} \quad \alpha \to +\infty.$$
Indeed, if $\alpha \to +\infty$, that is, $W(1) \to +\infty$, as the proof of Lemma 2.3, we can know that $W(r, \alpha) > c_*$. Hence by (2.8) and (2.6), we obtain that

$$g'(W(r, \alpha)) = g'(c_*) = 1 - n.$$

Then by (2.19), we get that

$$\frac{\partial W(r, \alpha)}{\partial \alpha} > r^{-n}.$$

And thus $W(r, \alpha) > c_*r^{-n} + W(r, 0)$. So (2.20) holds.

Since $W(r, \alpha)$ is strictly increasing in α, then $W^{-1}(\alpha)$ exists, and from (2.17), we know that (2.13) holds.

On the other hand, if (2.14) holds, then (2.17) holds, by Lemma 2.2, we know that $\lambda(D^2u) \in \Gamma$. \hfill \Box

Proof of Theorem 1.3 Due to the Proposition 2.1 in [13],

$$u(x) = \frac{c_*}2 |x|^2 + \mu(\alpha) + b - \frac{c_*}2 + O(|x|^{2-n}),$$

where $\mu(\alpha)$ is the same as (1.10). Moreover, by the Proposition 2.1 in [13], $\mu(\alpha)$ is strictly increasing in α and

$$\lim_{\alpha \to +\infty} \mu(\alpha) = +\infty.$$

Then by Lemmas 2.2 and 2.4 we know that Theorem 1.3 is true. \hfill \Box

Acknowledgements

Dai is supported by Shandong Provincial Natural Science Foundation (ZR2021MA054). Bao is supported by NSF of China (11871102). Wang is supported by NSF of China (11701027) and Beijing Institute of Technology Research Fund Program for Young Scholars.

References

[1] J. Bao, H. Li, On the exterior Dirichlet problem for the Monge-Ampère equation in dimension two, Nonlinear Anal. 75 (2012) 6448-6455. doi: 10.1016/j.na.2012.07.017.

[2] J. Bao, H. Li, L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations 52 (1-2) (2015) 39-63. doi:10. 1016 /j.jde.2014.01.011.

[3] L. Caffarelli, Topics in PDEs: The Monge-Ampère equation. Graduate course, Courant Institute, New York University, 1995.

[4] L. Caffarelli, Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003) 549-583. doi:10.1002 /cpa.10067.
[5] E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958) 105-126. doi: 10.1307/mmj/1028998055.

[6] S. Cheng, S. Yau, Complete affine hypersurfaces, I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839-866. doi:http://respository.ust.hk/ir/Record/1783.1-49197.

[7] P. Delano Partial decay on simple manifolds, Ann. Global Anal. Geom. 10 (1) (1992) 3-61. doi:10.1007/BF00128337.

[8] L. Ferrer, A. Martínez, F. Milán, An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z. 230 (3) (1999) 471-486. doi:10.1007/PL00004700.

[9] L. Ferrer, A. Martínez, F. Milán, The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math. 130 (1) (2000) 19-27. doi: 10.1007/s006050050084.

[10] K. Jörgens, Über die Lösungen der Differentialgleichung \(rt - s^2 = 1\), (German) Math. Ann. 127 (1954) 130-134. doi:10.1007/BF01361114.

[11] J. Jost, Y. Xin, Some aspects of the global geometry of entire space-like submanifolds. Dedicated to Shing-Shen Chern on his 90th birthday, Results Math. 40 (1-4) (2001) 233-245. doi:10.1007/BF03322708.

[12] H. Ju, J. Bao, On the exterior Dirichlet problem for Monge-Ampère equations, J. Math. Anal. Appl. 405 (2) (2013) 475-483. doi:10.1016/j.jmaa.2013.04.022.

[13] H. Li, J. Bao, The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian, J. Differential Equations 256 (2014) 2480-2501. doi:10.1016/j.jde.2012.07.017.

[14] Y. Li, S. Lu, Existence and nonexistence to exterior Dirichlet problem for Monge-Ampère equation, Calc. Var. Partial Differential Equations 57 (6) (2018) 1-17. doi:10.1007/s00526-018-1428-5.

[15] A. Pogorelov, On the improper convex affine hyperspheres, Geometriae Dedicata 1 (1972) 33-46. doi:10.1007/BF00147379.

[16] N. Trudinger, X. Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2) (2000) 399-422. doi:10.1007/s002220000059.

[17] C. Wang, J. Bao, Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains, Proc. Amer. Math. Soc. 141 (4) (2013) 1289-1296. doi: 10.1090/S0002-9939-2012-11738-1.
(L.M. Dai) School of Mathematics and Information Science, Weifang University, Weifang, 261061, P. R. China

Email address: lmdai@wfu.edu.cn

(J.G. Bao) School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, P. R. China

Email address: jgbao@bnu.edu.cn

(B. Wang) School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, 100081, P. R. China

Email address: wangbo89630@bit.edu.cn