Extensive genomic reshuffling involved in the karyotype evolution of genus *Cerradomys* (Rodentia: Sigmodontinae: Oryzomyini)

Camilla Bruno Di-Nizo¹*, Malcolm Andrew Ferguson-Smith², Maria José de J. Silva¹

¹Instituto Butantan, Laboratório de Ecologia e Evolução, São Paulo, SP, Brazil. E-mail: camilladinizo@gmail.com
²Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.

The aim of this work is to investigate chromosomal homologies among *Cerradomys* species and to infer the rearrangements that have occurred during the karyotype evol-

Introduction

Cerradomys is a rodent genus of the tribe Oryzomyini, distributed in open vegetations of South America from northeastern Brazil to southeastern Bolivia and northwestern Paraguay. It was previously described as a subgenus of *Oryzomys* (*Oryzomys subflavus*) (Weksler et al., 2006; Percequillo, 2015). From 1981 to 2002, different karyotypes were described suggesting that the genus was not monotypic (Maia and Hulak, 1981; Almeida and Yonenaga-Yassuda, 1985; Svartman and Almeida, 1992; Andrades-Miranda et al., 2002), and this was confirmed later using molecular and morphological studies (Bonvicino and Moreira, 2001; Langguth and Bonvicino, 2002; Bonvicino, 2003). Then, *Oryzomys subflavus* became *Oryzomys gr. subflavus* and, in 2006, this group of species was raised to the genus category *Cerradomys* (Weksler et al., 2006).

 Currently, eight species are formally described and cytogenetic information has been an important identifying tool: *Cerradomys akroai* (2n=60, FN=74), *C. goytaca* (2n=54, FN=66), *C. langguthi* (2n=50, 49, 48, and 46, FN=56), *C. maracajensis* (2n=56, FN=58), *C. marinhús* (2n=56, FN=54), *C. scotti* (2n=58, FN=70 and 72), *C. subflavus* (2n=54, 55 and 56, FN=62-64) and *C. vivoi* (2n=50, FN=64) (Svartman and Almeida, 1992; Langguth and Bonvicino, 2002; Bonvicino, 2003; Percequillo et al., 2008; Tavares et al., 2011; Bonvicino et al., 2014).

 Besides the cytotaxonomic importance, cytogenetics reveals substantial chromosomal variation mainly due to Robertsonian rearrangements, pericentric inversion and sex chromosome polymorphisms. This makes the genus an excellent group for studies of karyotype evolution (Maia and Hulak, 1981; Almeida and Yonenaga-Yassuda, 1985).

 It has been shown that classic cytogenetic studies can fail to detect interspecific chromosomal homologies in groups with great chromosomal variability, such as rodents of the tribe Oryzomyini, and that chromosome painting studies provide the required resolution (Ferguson-Smith et al., 1998). Thus, such studies were able to detect syntenic segments and shed light on the rearrangements occurring throughout the chromosomal evolution of this tribe (Nagamachi et al., 2013; Di-Nizo et al., 2015; Suárez et al., 2015; Oliveira Da Silva et al., 2017). These studies become even more informative when linked to a phylogeny, since they allow the recovery of possible trajectories of chromosomal changes (Di-Nizo et al., 2015; Sotero-Caio et al., 2015; Suárez et al., 2015). Until now, molecular cytogenetic studies of the *Cerradomys* genus have been scarce (Nagamachi et al., 2013) and its karyotype evolution remains to be explored.

 The aim of this work is to investigate chromosomal homologies among *Cerradomys* species and to infer the rearrangements that have occurred during the karyotype evol-
tion of the genus. To achieve these goals, we have performed classic cytogenetics, FISH with telomeric probes and chromosome painting using *Oligoryzomys moojeni* (OMO, 2n=70) whole chromosome probes. *Oligoryzomys* is another genus of the tribe Oryzomyini that belongs to a sister clade of *Cerradomys* (Weksler et al., 2006); both lineages diverged approximately 5 Mya (Leite et al., 2014). In addition, we performed molecular phylogenetic analyses to infer the hypothetical polarity of chromosome changes.

Material and Methods

Chromosome preparation and classical cytogenetics

Samples comprise 10 individuals referred to here as *Cerradomys marinus* (CMARI); *C. maracajuensis* (CMARA); *C. akroai* (CAK); *C. scotti* (CSC); *C. langguthi* (CLA); *C. vivoi* (CVI); *C. goytaca* (CGO) and *C. subflavus* (CSU) (Table 1).

The animals surveyed by the authors were live trapped under ICMBio licences (numbers 11603-1 and 24003-4) of Instituto Chico Mendes de Conservação da Biodiversidade. Some specimens were captured by collaborators under their respective licenses (Table S1). Animals were euthanized according to “Guidelines for Animal use” (Sikes et al., 2011) under permission of the Comissão de Ética para Uso de Animais do Instituto Butantan (CEUAIB 1151/13).

Skins, skulls and partial skeletons of *C. maracajuensis*, *C. marinus* and *C. langguthi* were deposited at the Museu Nacional da Universidade Federal do Rio de Janeiro (MN); *C. akroai*, *C. scotti*, *C. vivoi* and *C. subflavus* were deposited in the Museu de Zoologia da Universidade de São Paulo (MZUSP) and *C. goytaca* was deposited at the Museu de Zoologia da Universidade de São Paulo (NPM). Cell suspensions or fibroblast cells are deposited in the Laboratório de Ecologia e Evolução do biento de Macaé (NPM). Cell suspensions or fibroblast cell culture (Freshney, 1986), and metaphases of *C. akroai*, *C. scotti*, *C. goytaca*, *C. langguthi*, and *C. subflavus* with 2n=55 and 2n=56 were obtained in vivo from spleen and bone marrow (Ford and Hamerton, 1956). All samples were analyzed (at least 30 metaphases from each individual) using conventional Giemsa staining, CBG-banding (Sumner, 1972) and GTG-banding (Seabright, 1971).

Fluorescence in situ Hybridization (FISH)

Fluorescence in situ hybridization with telomeric probes (TTAGGG), labeled with Fluorescein isothiocyanate (FITC) was carried out on all samples following the recommended protocol (Telomere PNA FISH Kit, Code No. K5325, DAKO). Slides were counterstained with 4',6-Diamino-2'-phenylindole dihydrochloride (DAPI) with antifade mounting medium Vectashield. Metaphases were analyzed with an Axiophot fluorescence microscope (Carl Zeiss) using the software ISIS (Metasystem) that can overlap images of filters for DAPI and FITC. In some cases, metaphases were analyzed in an Axioskop 40 epifluorescence microscope (Carl Zeiss) equipped with the AxionVision software and propidium iodide (PI) was added to the fluorescence antifade solution (0.5 µL/mL) to visualize chromosomes.

Chromosome painting was performed on metaphases of one representative of each species - *C. marinus*, *C. maracajuensis*, *C. scotti*, *C. langguthi*, *C. vivoi*, *C. goytaca* and *C. subflavus* with 2n=54 - (Table 1), except for *C. akroai* and *C. subflavus* (2n=55 and 56), which lacked sufficient metaphases.

Twenty specific single painting probes from *Oligoryzomys moojeni* with 2n=70, FN=72 obtained by fluorescence-activated chromosome sorting (FACS) were used (OMO Xa, OMO 1–8, 11, 16, 17, 25–30, 33, and 34; see Di-Nizio et al., 2015). The probes were made by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and labeled with biotin-16-dUTP (Telenius et al., 1992; Yang et al., 1995). *FISH* was performed according to previous stud-

Table 1 - Specimens analyzed in this work.
Species Voucher

C. marinus (CMARI)
C. maracajuensis (CMARA)
C. akroai (CAK)
C. scotti (CSC)
C. langguthi (CLA)
C. vivoi (CVI)
C. goytaca (CGO)
C. subflavus (CSU)
CIT1396
DQM059

Species identification, specimen number, collection locality in Brazil, diploid number (2n), fundamental number (FN), sex (M = male, F = female), chromosome painting with *Oligoryzomys moojeni* (OMO) probes and samples included in the cytochrome b molecular phylogeny. Brazilian states: BA (Bahia), GO (Goiás), PI (Piaui), RJ (Rio de Janeiro), SP (São Paulo), and MG (Minas Gerais).
ies (Yang et al., 1995; Di-Nizo et al., 2015), with probes detected with avidin-FITC. Metaphases were analyzed with specific filters for DAPI and FITC in a Zeiss Axioscope fluorescence microscope.

Phylogenetic analyses

Molecular phylogenetic analyses based on the partial mitochondrial cytochrome b (cyt b) gene were performed to infer chromosome evolution and rearrangements within *Cerradomys* lineages.

DNA was extracted from liver or muscle with Chelex 50% (Bio-Rad) (Walsh et al., 1991). Polymerase chain reaction (PCR) was performed in a thermal cycler (Eppendorf Mastercycler ep Gradient, Model 5341) using primers MVZ05 and MVZ16 (Irwin et al., 1991; Smith and Patton, 1993) with conditions following Suárez-Villota et al. (2017). Sequencing was conducted using BigDye (DNA “Big Dye Terminator Cycle Sequencing Standart,” Applied Biosystems) and an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) and submitted to a comparative similarity search on BLAST (Basic Local Alignment Search Tool) before the alignment. Alignments were performed using Muscle (Edgar, 2004) implemented in Geneious 7.1.7 (Biomatters) (Kearse et al., 2012). GenBank access numbers are provided in Table S1.

The cytochrome b matrix was composed of 733 bp with 30 terminal taxa (Table S1) using *Hyla**-amys megacephalus* and *Neacomys amoenus* as outgroup (sensu Weksler et al., 2006). At least two reference sequences of each *Cerradomys* species were extracted from GenBank, including holotypes and paratypes (Table S1).

Maximum Likelihood (ML) analysis was performed using Treefinder (Jobb, 2011) and nodal support was calculated using nonparametric bootstrapping (Felsenstein, 1985), with 1000 pseudoreplicates. Bayesian Inference (BI) analysis was performed with MrBayes 3.04b (Ronquist and Huelsenbeck, 2003). Markov chains were started from a random tree and run for 1.0 x 10^7 generations with sampling every 1000th generation. The stationary phase was checked using Tracer 1.6 (Rambaut et al., 2014). Sample points prior to the plateau phase were discarded as burn in, and the remaining trees were combined to find the maximum a posteriori estimated probability of the phylogeny. Branch supports were estimated with Bayesian posterior probabilities.

Results

Classical cytogenetic data

Classical cytogenetics showed *Cerradomys marinus* (CMARI) with 2n=56, FN=54 (Figure 1a); *Cerradomys maracajuensis* (CMARA) (Figure 1b) with 2n=56, FN=58; *Cerradomys akroai* (CAK) (Figure 1c) with 2n=60, FN=76; *Cerradomys scotti* (CSC) (Figure 1d) with 2n=58, FN=72; *Cerradomys langguthi* (CLA) (Figure 1e) with 2n=46, FN=56; *Cerradomys vivoi* (CVI) (Figure 1f) with 2n=50, FN=64; *Cerradomys goytaca* (CGO) (Figure 1g) with 2n=54, FN=66 and three different diploid numbers for *Cerradomys subflavus* (CSU) (Figure 1h): (i) 2n=56, FN=64; (ii) 2n=55, FN=63 and (iii) 2n=54, FN=62.

Differences in the three *C. subflavus* karyotypes concern pairs 5 and 6: karyotype (i) showed pair 5 subtelocentric and pair 6 acrocentric; karyotype (ii) showed a large submetacentric (5/6), one subtelocentric (5) and one acrocentric (6); and karyotype (iii) showed one large metacentric pair that corresponds to pairs 5 and 6 (Figure 1h).

Patterns of CBG-banding are described here for the first time for *C. marinus*, *C. maracajuensis*, *C. akroai* and *C. goytaca*. In *C. marinus*, CBG-banding showed signals of heterochromatin in the centromeric region of all autosomes, in the proximal region of X and in the distal region of Y (not shown). *Cerradomys maracajuensis* showed constitutive heterochromatin in the centromeric region of autosomes, in the short arm of X and in the whole Y (not shown). Regarding *C. akroai*, CBG-banding showed a subtle signal at the pericentromeric region of autosomes. In addition, two autosomal pairs (possibly pairs 13 and 14), presented C-positive signals in the distal regions while the sex chromosomes did not have heterochromatic blocks (Figure 1c). CBG-banding in *C. goytaca* showed a weak signal, and the presence of constitutive heterochromatin was evident in the smaller pairs. The X chromosome was heterochromatic in the proximal region and the Y in the distal region (not shown).

In all species studied, GTG-banding allowed the recognition of homologues (Figure 1).

FISH with telomeric probes

FISH with telomeric probes showed signals exclusively on telomeric regions of *C. marinus*, *C. maracajuensis*, *C. akroai* and *C. scotti* (Figure 2a-d).

In addition to telomeric regions, positive signals at interstitial sites (ITS) were observed in the remaining species: *C. langguthi* showed multiple ITSs in the largest submetacentric pair (1) and pairs 3 and 4 showed signals in the pericentromeric position (Figure 2e); *C. vivoi* showed interstitial telomeric sites (ITS) in the centromeres of pairs 1 and 4 (Figure 2f); *C. goytaca* in the pericentromeric region of pair 1 (Figure 2g); and *C. subflavus* with 2n=54 and 2n=55 showed ITS in the pericentromeric regions of pairs 1 and 5/6 (Figure 2h) while the sample with 2n=56 showed ITS only in pair 1.

Chromosome painting with *Oligoryzomys moojeni* (OMO) probes

Chromosome painting using OMO probes revealed 23 homologous segments in metaphases of *C. marinus* and *C. maracajuensis*, 26 in *C. scotti*, 31 in *C. langguthi*, 32 in *C. vivoi*, and 27 in *C. goytaca* and *C. subflavus* with 2n=54 (Table 2). Hybridization of different OMO probes and equivalent G-bands are shown in Figure 1. Some chromosomes were not hybridized by any probe (assigned with asterisks in Figure 1), probably because the probes used did not include all chromosome pairs of *O. moojeni*.
Considering the 20 OMO probes, 11 hybridized to whole chromosomes of *C. marinhus* and *C. maracajuensis*; eight hybridized to whole chromosomes of *C. scotti*; five painted whole chromosomes of *C. langguthi*; six painted whole chromosomes of *C. vivoi*; and seven hybridized to whole chromosomes of *C. goytaca* and *C. subflavus* (Table 2).

Besides, four paints produced a single signal in one region or chromosome arm of *C. marinhus*, *C. maracajuensis*, *C. scotti*, *C. goytaca* and *C. subflavus* and five probes hy-
bridized to one chromosomal region or arm of \textit{C. langguthi} and \textit{C. vivoi} (Table 2).

Four OMO probes hybridized to more than one chromosome or chromosome region of \textit{C. marinhus} and \textit{C. maracajuensis}; seven probes hybridized to more than one pair of \textit{C. scotti}; eight probes painted more than one pair or region of \textit{C. vivoi}, \textit{C. goytaca} and \textit{C. subflavus} and nine probes painted more than one pair or region of \textit{C. langguthi} (Table 2).

Associations of OMO probes were observed: in \textit{C. langguthi}, six OMO probes hybridized in chromosome CLA 1 and five in CLA 3 (Figure 3). Twelve probes hybridized to the four largest pairs of \textit{C. vivoi} (Figure 4). In addition, four probes painted CGO 1 and CSU 1, and three probes painted CGO 2 and CSU 2 (Figure 5).

Association of probes OMO 4 and OMO 5 was observed in all species, and in \textit{C. vivoi}, \textit{C. goytaca} and \textit{C. subflavus} two regions of the same chromosome were painted with OMO 5 probe (Figure 6a).

Sex chromosome OMO Xa probe painted the whole X and the euchromatic region of the Y chromosome in all males studied (Figure 6b).

Phylogenetic relationships

Both Bayesian Inference (BI) and Maximum Likelihood (ML) analyses recovered the same topology and \textit{Cerradomys} as monophyletic (BPP = 1.0, bootstrap = 99.7) (Figure 7; Figure S1). \textit{C. marinhus} (2n=56, FN=54) and \textit{C. maracajuensis} (2n=56, FN=58) were recovered as the sister group of all the other species with high support (BPP = 1.0, bootstrap = 97.8), followed by a clade with weak support (BPP = 0.82, bootstrap = 60.9) composed of the sister species \textit{C. akroai} (2n=60, FN=76) and \textit{C. scotti} (2n=58, FN=72) (BPP = 1.0, bootstrap = 68.4). Next clade includes the remaining species (BPP = 1.0; bootstrap = 100): \textit{Cerradomys langguthi} (2n=46, FN=56) and its sister clade that includes \textit{C. vivoi} (2n=50, FN=64) and the closely related species (BPP = 1.0, bootstrap = 66.8) \textit{C. goytaca} (2n=54, FN=66) and \textit{C. subflavus} (2n=54-56, FN=62-64) (Figure 7).

Discussion

This is the most extensive study carried out in \textit{Cerradomys} that integrates classical cytogenetics and chromosome painting within a phylogenetic framework.

Classic cytogenetic information obtained in this study agrees with previous chromosome data described for the eight \textit{Cerradomys} species (Maia and Hulak, 1981; Almeida and Yonenaga-Yassuda, 1985; Langguth and Bonvicino, 2002; Tavares et al., 2011; Bonvicino et al., 2014), except for \textit{C. akroai} in which a new fundamental number (FN=76) is described here, probably due to a pericentric inversion in one medium size acrocentric. In addition, pair 5 of \textit{C. subflavus} was described as a homomorphic acrocentric (5a) or as a heteromorphic acrocentric/subtelocentric (5a5b) (Almeida and Yonenaga-Yassuda 1985), nevertheless the sample with 2n=56 herein reported showed pair 5 as a homomorphic subtelocentric (5b5b), a variation that has not been described previously.

It is worth mentioning that GTG-banding patterns are presented here for the first time in \textit{Cerradomys} that integrates classical cytogenetics and chromosome painting within a phylogenetic framework.

Distribution of telomeric repeats

The patterns of distribution of telomeric repeats are presented here for the first time for \textit{C. marinhus}, \textit{C. maracajuensis}, \textit{C. akroai} and \textit{C. goytaca}.
The species that diverged early in the phylogeny (C. marinhus and C. maracajuensis), together with C. akroai and C. scotti, presented telomeric signals restricted to the terminal regions of the chromosomes. Nevertheless, non-telomeric repeats (the so-called interstitial telomeric sites – ITS) were observed in C. langguthi and those species that belong to the most derived clade (C. vivoi, C. goytaca, and C. subflavus). Thus, the emergence of telomeric repeats occurred recently, since species that do not have ITS split from species that have ITS about 2.38 Mya (Tavares et al., 2016).

Comparative analyses of the telomeric distribution and chromosome painting in Cerradomys langguthi revealed that from the five ITSs observed in pair 1, four coincide with sites of association between two OMO probes and one oc-
curred in the middle of OMO 1. The pericentromeric ITS observed in the other pairs also occurred between two OMO probes. These results are in accordance with those reported by Nagamachi et al. (2013). ITS observed in Cerradomys vivoi corroborates the pattern described by Andrades-Miranda et al. (2002) and those observed in Cerradomys goytaca and C. subflavus occur at points of association between two OMO probes.

Our results, together with the molecular phylogeny and chromosome painting, suggests that the ITS observed in Cerradomys species are relics of telomeres resulting from past fusions. In the case of CLA 1, multiple interstitial telomeric sequences resulted from in tandem fusions and in the case of CLA 3, CLA 4, CVI 1, CVI 4, CGO 1, CSU 1 and CSU 5/6, ITSs resulted from centric fusions.

Two different types of ITS have been described, according to their sequence organization and distribution: heterochromatic ITS (het-ITS) and short ITS (s-ITS) (Ruiz-Herrera et al., 2008). Heterochromatic ITS are large stretches of telomeric sequences, localized mainly at pericentromeric regions and probably represent remnants of chromosomal rearrangements, while short ITS are few telomeric TTAGGG repeats localized at interstitial sites inserted during the repair of DNA double-strand breaks (Ruiz-Herrera et al., 2008). The pericentromeric ITS observed in Cerradomys species, as well as the internal ITS associated between two OMO probes in C. langguthi probably belong to the het-ITS type while the ITS that co-localize to OMO 1 possibly belongs to s-ITS, showing that different mechanisms were responsible for the origin of TTAGGG repeats in this genus.

The non-telomeric sequences observed in the junction of pairs 1 and 3 of C. langguthi (CLA 2/7 and CLA 5/3, respectively) and pair 5/6 of C. subflavus are consistent with the hypothesis that het-ITS are unstable and prone to breakage since it is observed in nature samples with acrocentrics/subtelocentrics pairs CLA 2, CLA 7, CLA 3, CLA 5, CSU 5 and CSU 6 (Maia and Hulak, 1981; Almeida and Yonenaga-Yassuda, 1985; present study). In these cases, ITS can be acting as hotspots for chromosome rearrangements, conferring chromosomal plasticity to their holders (Ruiz-Herrera et al., 2008; Bolzán, 2017).

Despite many vertebrate species showing ITS related to chromosome rearrangements (Meyne et al., 1990; Lee et al., 1993; Pellegrino et al., 2004), non-telomeric repeat sequences have been observed also in species that present conserved karyotypes (Wiley et al., 1992; Pagnozzi et al., 2000; Metcalfe et al., 2004). Alternative mechanisms by which non-telomeric repeats are generated include amplification of TTAGGGn sequences, components of satellite-DNA, exchange, transposition or unequal sister chromatid exchanges introduced by telomerase or by transposons (Wiley et al., 1992; Ruiz-Herrera et al., 2008).

On the other hand, several species with highly rearranged karyotypes (detected by GTG-banding and chromosome painting), do not have ITS, suggesting that these sequences can also be lost by chromosome breakage (Silva and Yonenaga-Yassuda, 1997; Di-Nizo et al., 2015). Although ITS were observed in Cerradomys, several rearrangements...
were detected without the presence of ITS (Figures 3-6), showing that this genus underwent both retention and loss of ITS throughout its evolution, probably by chromosomal breakage, deletion or translocation of these sequences (Bolzán, 2017).

Chromosome evolution within Cerradomys in the light of phylogenetic relationships

The cytogenetic results allied to the phylogeny provide a clear establishment of karyotype evolution in Cerradomys, showing that extensive chromosomal rearrangements are responsible for the karyotypic differentiation within the genus.

Only three out of the 20 OMO probes (OMO 25, 26 and 30) are conserved since they painted whole chromosomes in all Cerradomys species. The remaining probes show more than one signal in at least one species, revealing intense genome reshuffling in closely related species. Hypothetical rearrangements revealed by classical and molecular cytogenetics were plotted in the nodes of each clade and beside the lineages (Figure 7).

At least two fission events have occurred in the ancestor of the genus in addition to the association between probes OMO 4 and OMO 5 that can be considered as plesiomorphic, given that it was also observed in five Oligoryzomys species (Di-Nizo et al., 2015).

Different rates of chromosomal changes were observed within Cerradomys. The clade composed of C. marinhus and C. maracajuensis is represented by more conservative karyotypes than its sister clade, in which extensive chromosome rearrangements are observed. Both species present the same diploid number (2n=56), but different fundamental numbers (FN=54 and FN=58, respectively). Comparative chromosome painting reveals similar hybridization patterns, corroborating the close relationship between them. In addition, the difference between the two fundamental numbers can be explained by pericentric inversions in two pairs: CMARI 1/ CMARA 1 and probably CMARI 25/ CMARA 2.

The remaining species (C. scotti, C. akroai, C. langguthi, C. vivoi, C. subflavus and C. goytaca) cluster in the sister clade and comparisons of chromosome painting and molecular phylogeny reveal that many rearrangements occurred during the evolution of these lineages.

Internal relationships show that C. akroai and C. scotti are closely related and that these species had experienced an increase in the diploid number, achieving the highest diploid numbers described for the genus. Although it was not possible to perform chromosome painting in C. akroai metaphases (2n=60, FN=76), comparative GTG-banding on the largest pairs suggest that the karyotype of C. akroai and C. scotti (2n=58, FN=72) differ by pericentric inversions in two medium pairs (CAK 1 / CSC 1 and CAK 2 / CSC 14) (not

![Figure 7](image-url) - Phylogenetic relationships of Cerradomys based on cyt-b matrix and Maximum Likelihood (ML) analyses. Values in the nodes represent Bayesian posterior probability and ML bootstrap, respectively. Rearrangements detected by chromosome painting, GTG and CBG-banding are plotted. Arrows indicate increase or decrease in diploid number. Abbreviations: pericentric inversion (peric inv), paracentric inversion (parac inv), centromere repositioning (CR), constitutive heterochromatin (CH), in tandem fusion (tFusion) and interstitial telomeric signal (ITS).
shown). In addition, a fusion/fission event plus at least two pericentric inversions or centromere repositioning, which could not be detected by GTG-banding comparison, are necessary to explain karyotypic differences between these species, showing that many chromosome changes occurred within this clade.

The next clade presents a decrease in diploid numbers, fission events as well as the presence of interstitial telomeric probes. Additionally, *C. langguthi* underwent one of the highest number of rearrangements leading to the lowest diploid number of the genus. Many rearrangements are also observed in *C. vivoi* (fissions, centric and in tandem fusions).

An increase in the diploid number is observed again in the next clade and the comparison between *C. goytaca* (2n=54) and *C. subflavus* (2n=56) shows that they are closely related, although complex rearrangements may be involved in their karyotype differentiation. It seems that a centric fission of pair CGO 3 or a centric fusion of pairs CSU 13 and CSU 6 (as described before, this pair is already involved in Robertsonian rearrangements within *C. subflavus*) leading to CGO 3, plus a paracentric inversion in one pair (probably CGO 14, CSU 12) and pericentric inversions in two small pairs (not detected by GTG-banding or chromosome painting) is required to differentiate both karyotypes. It is also worth mentioning that in *C. goytaca* and *C. subflavus* (2n=54), despite the same diploid number (2n=54), a much more complex scenario is required to explain the karyotypic differences between these two taxa.

Regarding OMO Xa, this probe paints the whole X in all species, as expected since this chromosome is highly conserved among placental mammals (Graves, 2006). The same probe also hybridizes to the euchromatic region of the Y that probably corresponds to the pseudoautosomal pairing region observed in other species of the tribe Oryzomyini (Moreira et al., 2013; Di-Nizzo et al., 2015).

This work sheds light on the karyotype evolution of *Cerradomys*, and chromosome painting not only corroborates the GTG-banding pattern but also detects many more rearrangements. The rearrangements detected include in tandem and centric fusion, fission, centromere repositioning, and pericentric and paracentric inversions. Given the limitations of chromosome painting in detecting peri/paracentric inversions and reciprocal translocations and also that hybridizations were not possible with the entire chromosome set of *O. moojeni*, the chromosome evolution in *Cerradomys* is probably even more complex than observed.

According to Garagna et al. (2014), species with different chromosomal variants may be predisposed to form new species. This may be the case in *C. langguthi* and *C. subflavus*, since Robertsonian rearrangements and pericentric inversions were observed in both species (Maia and Hulak, 1981; Almeida and Yonenaga-Yassuda, 1985). Rieseberg (2001) proposed that this type of chromosomal rearrangement may not have a strong influence on fitness; instead, the suppression of recombination that leads to reduction in gene flow and to the accumulation of incompatibilities may fuel the process of speciation.

The occurrence and fixation of rearrangements can be surprisingly fast (Britton-Davidian et al., 2000) and this would be the case in *Cerradomys* since very closely related species seem to have experienced huge and recent genomic reorganization, considering that the first speciation events in this genus was dated in the Pliocene and early Pleistocene (Tavares et al., 2016). Thus, it is likely that the climatic oscillations of the Pleistocene played a role in the diversification of the genus, creating an ecological barrier to gene flow (Carnaval and Moritz, 2008; Tavares et al., 2016).

Comments on phylogenetic relationships and species status

As we obtained the phylogenetic reconstruction for *Cerradomys* in order to infer the trajectory of chromosome evolution, we can also observe that the topology obtained here corroborates almost all relationships among the species previously described in the literature (Weksler et al., 2006; Percequillo et al., 2008; Tavares et al., 2011; Bonvicino et al., 2014). Although some clades show relatively low supports, only *C. subflavus* has been recovered as paraphyletic in relation to *C. goytaca* so that they were considered as conspecifics by Bonvicino et al. (2014). However, recently, morphological analyses show that they are distinct species (Tavares et al., 2016). The cytogenetic data obtained in his work corroborate that *C. goytaca* is a valid species, since the complex chromosomal differences between this species and *C. subflavus* are compatible with reproductive isolation and hybrids may present meiotic problems due to mal-segregation and may not be viable. Furthermore, *Cerradomys goytaca* has a small effective population size and is geographically isolated from *C. subflavus*, occupying restricted areas of Restinga, a harsh and adverse environment (Tavares et al., 2011, 2016). This may have facilitated the fixation of chromosome rearrangements.

Acknowledgments

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Finance Code 001, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2014/02885-2) and the Wellcome Trust. We are thankful to Fundação Butantan for support with the publication charge. We are grateful to Dr. Karen Ventura and to Patricia M. O’Brien for help in obtaining OMO probes, Dr. Yatiyo Yonenaga-Yassuda for access to the cell culture bank and Camila Nascimento Moreira for lab facilities. We also would like to thank Drs. Miguel Trefaut Rodrigues, Ana Paula Carmignotto, Cibele Rodrigues Bonvicino, Julio Fernandes Vilela, Pablo Rodrigues Gonçalves and Diego Queirolo for providing *Cerradomys* samples.

Conflict of Interest

The authors declare that there is no conflict of interest that could be perceived as prejudicial to the impartiality of the reported research.
Author Contributions

CBDN and MJJS conceived and designed the experiments. CBDN conducted the experiments, analyzed the data and wrote the manuscript. CBDN and MAFS developed the chromosome probes. MJJS and MAFS contributed with reagents/materials/analysis tools. All authors have read and approved the final version.

References

Almeida EJC and Yonenaga-Yassuda Y (1985) Robertsonian fusion, pericentric inversion and sex chromosome heteromorphisms in *Oryzomys subflavus* (Cricetidae, Rodentia). Caryologia 38:129-137.

Andrades-Miranda J, Zanchin NIT, Oliveira LFB, Langguth AR and Mattevi MS (2002) (T2AG3)n Telomeric sequence hybridization indicating centric fusions rearrangements in the karyotype of the rodent *Oryzomys subflavus*. Genetica 114:11-16.

Bolzán AD (2017) Interstitial telomeric sequences in vertebrate chromosomes: origin, function, instability and evolution. Mutat Res 773:51-65.

Bonvicino CR (2003) A new species of *Oryzomys* (Rodentia, Sigmodontinae) of the subflavus group from the Cerrado of Central Brazil. Mamm Biol 68:78-90.

Bonvicino CR and Moreira MA (2001) Molecular phylogeny of the genus *Oryzomys* (Rodentia: Sigmodontinae) based on cytochrome b DNA sequences. Mol Phylogenet Evol 18:282-292.

Bonvicino CR, Casado F and Weksler M (2014) A new species of *Cerradomys* (Mammalia: Rodentia: Cricetidae) from Central Brazil, with remarks on the taxonomy of the genus. Zoologia (Curitiba) 31:525-540.

Britton-Davidian J, Catalan J, Da Graca Ramalhinho M, Ganem G, Auffray JC, Capela R, Bischoit M, Searle JB and Da Luz Mathias M (2000) Rapid chromosomal evolution in island mice. Nature 403:158.

Carnaval AC and Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187-1201.

Di-Nizo CB, Ventura K, Ferguson-Smith MA, O’Brien PCM, Yonenaga-Yassuda Y and Silva MJJ (2015) Comparative chromosome painting in six species of *Oligoryzomys* (Rodentia, Sigmodontinae) and the karyotype evolution of the genus. PLoS One 10:e0117579.

Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113.

Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1-15.

Ferguson-Smith MA, Yang F and O’Brien PC (1998) Comparative mapping using chromosome sorting and painting. ILAR J 39:68-76.

Ford CE and Hamerton JL (1956) A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol 31:247-251.

Freshney RI (1986) Animal cell culture: A practical approach. Oxford University Press, Oxford, 397 p.

Garagna S, Page J, Fernandez-Donoso R, Zucconi M and Searle JB (2014) The Robertsonian phenomenon in the house mouse: Mutation, meiosis and speciation. Chromosoma 123:529-544.

Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901-914.

Irwin DM, Kocher TD and Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128-144.

Jobb G (2011) TREEFINDER Version March 2011, www.treefinder.de

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.

Langguth A and Bonvicino CR (2002) The *Oryzomys subflavus* species group, with description of two new species (Rodentia, Muridae, Sigmodontinae). Arq Mus Nac 60:285-294.

Lee C, Sasi R and Lin CC (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem chromosome fusions in the karyotypic evolution of the Asian muntjacs. Cytogeten Cell Genet 63:156-159.

Leite RN, Kolokotronis SO, Almeida FC, Werneck FP, Rogers DS and Weksler M (2014) In the wake of invasion: Tracing the historical biogeography of the South American cricetid radiation (Rodentia, Sigmodontinae). PLoS ONE 9:e100687.

Maia V and Hulak A (1981) Robertsonian polymorphism in chromosomes of *Oryzomys subflavus* (Rodentia, Cricetidae). Cytogeten Cell Genet 31:33-39.

Metcalf CJ, Eldridge MD and Johnston PG (2004) Mapping the distribution of the telomeric sequence (T2AG3)n in the 2n = 14 ancestral marsupial complement and in the macropodines (Marsupialia: Macropodidae) by fluorescence in situ hybridization. Chromosome Res 12:405-414.

Meyne J, Baker RJ, Hobart HH, Hsu TC, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL and Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3-10.

Moreira CN, Di-Nizo CB, Silva MJJ, Yonenaga-Yassuda Y and Ventura K (2013) A remarkable autosomal heteromorphism in *Pseudoryzomys simplex* 2n = 56; FN = 54-55 (Rodentia, Sigmodontinae). Genet Mol Biol 36:201-206.

Nagamachi CY, Pieczarka JC, O’Brien PC, Pinto JA, Malcher SM, Pereira AL, Rissino J, Mendes-Oliveira AC, Rossi RV, Ferguson-Smith MA (2013) FISH with whole chromosome and telomeric probes demonstrates huge karyotypic reorganization with ITS between two species of *Oryzomymyi* (Sigmodontinae, Rodentia): *Hylaemys megacephalus* probes on *Cerradomys langguthi* karyotype. Chromosome Res 21:107-119.

Oliveira Da Silva W, Pieczarka JC, Ferguson-Smith MA, O’Brien PCM, Mendes-Oliveira AC, Sampaio I, Carneiro J and Nagamachi CY (2017) Chromosomal diversity and molecular divergence among three undescribed species of *Neacomys* (Rodentia, Sigmodontinae) separated by Amazonian rivers. PLoS One 12:e0182218.

Pagnozzi JN, Silva MJJ and Yonenaga-Yassuda Y (2000) Intraspecific variation in the distribution of the interstitial telomeric (TTAGGG)n sequences in *Micoureus deremaeae* (Marsupialia: Didelphidae). Chromosome Res 8:585-591.

Pellegrino KCM, Rodrigues MT and Yonenaga-Yassuda Y (2004) Chromosomal evolution in the brazilian lizards of Genus *Leposomos* (Squamata, Gymnophthalmidae) from Amazon and Atlantic Rain Forests: banding patterns and FISH of telomeric sequences. Hereditas 131:15-21.

Percequillo AR (2015) Genus *Cerradomys* In: Patton JL, Pardiñas UFJ, D’Elia G (eds) Mammals of South America. University of Chicago Press, Chicago, vol. 2, pp 300-307.
Percequillo AR, Hingst-Zaher E and Bonvicino CR (2008) Systematic review of genus *Cerradomys* Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with Description of Two New Species from Eastern Brazil. Am Mus Novit 3622:1-46.

Rambaut A, Suchard M, Xie D and Drummond A (2014) Tracer v1.6, http://beast.bio.ed.ac.uk.Tracer.

Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351-358.

Ronquist F and Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.

Ruiz-Herrera A, Nergadze SG, Santagostino M and Giulotto E (2008) Telomeric repeats far from the ends: Mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219-228.

Seabright M (1971) A rapid banding technique for human chromosomes. The Lancet 298:971-972.

Sikes RS, Gannon WL and The Animal Care and use Committee of the American Society of Mammalogists (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235-253.

Silva MJJ and Yonenaga-Yassuda Y (1997) New karyotypes of two related species of *Oligoryzomys genus* (Cricetidae, Rodentia) involving centric fusion with loss of NORs and distribution of telomeric (TTAGGG)n sequences. Hereditas 127:217-229.

Smith MF and Patton JL (1993) The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc Lond 50:149-177.

Sotero-Caio CG, Volleth M, Hoffmann FG, Scott L, Wichman HA, Yang F and Baker RJ (2015) Integration of molecular cytogenetics, dated molecular phylogeny, and model-based predictions to understand the extreme chromosome reorganization in the Neotropical genus *Tonatia* (Chiroptera: Phyllostomidae). BMC Evol Biol 15:220.

Suárez P, Nagamachi CY, Lanzone C, Malleret MM, O’Brien PCM, Ferguson-Smith MA and Pieczarka JC (2015) Clues on syntenic relationship among some species of Oryzomyini and Akodontini tribes (Rodentia: Sigmodontinae). PloS One 10:e0143482

Suárez-Villota EY, Carmignotto AP, Brandão MV, Percequillo AR and Silva MJJ (2017) Systematics of the genus *Oecomys* (Sigmodontinae: Oryzomyini): Molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species. Zool J Linn Soc 184:182-210.

Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304-306.

Svartman M and Almeida EJC (1992) Sex chromosomes polymorphisms in *Oryzomys aff. subflavus* (Cricetidae, Rodentia) from central Brazil. Caryologia 45:313-324.

Tavares WC, Pessôa LM and Gonçalves PR (2011) New species of *Cerradomys* from coastal sandy plains of southeastern Brazil (Cricetidae: Sigmodontinae). J Mammal 92:645-658.

Tavares WC, Pessôa LM and Seuánez HN (2016) Systematics and acceleration of cranial evolution in *Cerradomys* (Rodentia, Cricetidae, Sigmodontinae) of quaternary sandy plains in Southeastern Brazil. J Mammal Evol 23:281-296.

Telenius H, Ponder BAJ, Tunacliffe A, Pelmear AH, Carter NP, Ferguson-Smith MA, Behmel A, Nordenskjöld M and Pfarrger R (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257-263.

Walsh PS, Metzger DA and Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506-513.

Weksler M, Percequillo AR and Voss RS (2006) Ten new genera of oryzomyine rodents (Cricetidae: Sigmodontinae). Am Mus Novit 3537:1-29.

Wiley JE, Meyne J, Little ML and Stout JC (1992) Interstitial hybridization sites of the (TTAGGG)n telomeric sequence on the chromosomes of some North American hylid frogs. Cytogetnet Cell Genet 61:55-57.

Yang F, Carter NP, Shi L and Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642-652.

Supplementary material

The following online material is available for this article:

Table S1 - Specimens included in the molecular phylogeny with partial mitochondrial cytochrome b gene and sequences extracted from GenBank.

Figure S1 - Maximum likelihood (ML) phylogenetic relationships based on partial mitochondrial cytochrome b gene.

Associate Editor: Marcelo Guerra

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.