Healthy Eating Index/Alternative Healthy Eating Index and Breast Cancer Mortality and Survival: A Systematic Review and Meta-analysis

Makan Pourmasoumi1,2, Razieh Karimbeiki1,2, Nooshin Vosoughi1,2, Awat Feizi3, Reza Ghiasvand1,2, Farzane Barak1,2, Maryam Miraghajani4

1Food Security Research Center, Isfahan University of Medical Sciences, 2Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, 3Department of Biostatistics and Epidemiology, School of Health and Cardiac Rehabilitation Research Center, Cardiovascular Research Institute Isfahan University of Medical Sciences, Isfahan, 4Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Corresponding author: Maryam Miraghajani, Ph.D.
Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Tel: 0098 31 36688487
E-mail: ms.miraghajani@yahoo.com
Received: April 05, 2016, Accepted: August 02, 2016

ABSTRACT

Objective: Breast cancer is the most common cancer in women worldwide. The effects of overall diet quality instead of single nutrients after breast cancer diagnosis on mortality have been a growing area of research interest. The aim of this systematic review was to investigate the relationship between the Healthy Eating Index (HEI)/the Alternative Healthy Eating Index (AHEI) and risk of breast cancer mortality or survival rates as a primary outcome, and some related inflammatory factors, as secondary outcomes among postdiagnosed women. Methods: This study methodology was performed based on the Preferred Reporting Item for Systematic Review and Meta-analysis statement recommendation and had been registered at PROSPERO (registration number: CRD42015015605). The systematic search was conducted in the electronic databases including PubMed, ISI, Scopus, Cochrane, and Google before July 2016. Researches that had not reported risk of breast cancer mortality or survival rates separately were excluded from the study. Similarly, this review excluded studies which only had examined the HEI or AHEI without reporting their association with the risk of mortality or survival rates. Results: After primary search, of 643 studies identified, 4 studies including eligible criteria were selected for the final assessment. All selected studies had been conducted in the USA and used self-report food-frequency questionnaire for diet quality assessment. In two studies HEI-2005, in one study AHEI, and in another study AHEI-2010 were applied.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Pourmasoumi M, Karimbeiki R, Vosoughi N, Feizi A, Ghiasvand R, Barak F, et al. Healthy eating index/alternative healthy eating index and breast cancer mortality and survival: A systematic review and meta-analysis. Asia Pac J Oncol Nurs 2016;3:297-305.
Introduction

Breast cancer is the most common cancer in women worldwide and the second cause of cancer-related mortality among them.[1,2] Moreover, more than half a million deaths of women occur from this malignancy per year.[3]

Among different factors that could affect on breast cancer survival and mortality, diet may play an important role.[4-7] Most of the previous studies have focused on impact of nutrients,[8-11] or single dietary component on mortality or survival.[12,13] However, nutrients or foods were not consumed individually.[14] Thus, investigators become more interested to assess whole diet quality, and dietary patterns have been applied to summarize the overall dietary exposure and variations.[15]

To assess the diet quality, the Healthy Eating Index (HEI) was developed by the US Department of Agriculture’s Center based on the dietary guidelines for Americans.[16,17] The HEI has ten components scale, including grains, vegetables, fruits, milk, meat, total fat, saturated fat, cholesterol, sodium, and variety with 0-100 overall scoring range.[18] The Alternative Healthy Eating Index (AHEI) is a changed HEI and has nine components scale, including vegetables, fruit, nuts and soy protein, white meat to red meat ratio, cereal fiber, trans fat, polyunsaturated-to-saturated fat ratio, duration of multivitamin use, and alcohol with overall scoring range of 2.5-87.5.[19] Within each of the five major food groups, some foods are more nutrient dense than others. The selection of the most nutrient dense foods within food groups leads to a dietary pattern with a higher HEI or AHEI.[20]

The HEI and AHEI are useful for evaluating the changes in diet quality over the time and relationship between nutrient and dietary pattern with disease or health.[21]

The epidemiologic studies reported positive association between the HEI and breast cancer mortality and survival,[22] but others showed a non-significant relationship.[23-25] Since the conflicting data, this systematic review and meta-analysis conducted to summarize the existing evidences and clarify the relationship between Healthy Eating Index (HEI)/Alternative Healthy Eating Index (AHEI) and risk of breast cancer mortality or survival rates among post diagnosed women.

Methods

This study methodology was performed based on the Preferred Reporting Item for Systematic Review and Meta-analysis statement recommendation[26] and had been registered at PROSPERO (registration number: CRD42015015605).

Data sources and search strategy

To identify relevant studies, systematic search was conducted in electronic database including PubMed, Scopus, Cochrane, ISI, and Google Scholar before July 2016. Three concepts for search strategy were used. The first concept included “HEI” or “AHEI,” the second concept comprised “breast cancer,” and “the risk of mortality or survival rates” was the third concept. There was no search limitation in this study. The details of search term are shown in Table 1.

Eligibility criteria

Studies were selected based on using HEI or AHEI to assess the relationship between quality of dietary pattern and risk of breast cancer mortality or survival rates. Researches that had not reported risk of breast cancer mortality or survival rates separately were excluded from the study. Similarly, this review excluded studies which only had examined the HEI or AHEI without reporting their association with the risk of mortality or survival rates or related risk factors.

Concept 1	Concept 2	Concept 3
“Healthy eating index”	“Breast Neoplasms”(Mesh)	“Risk of mortality”
OR	“Breast Neoplasms”(tiab)	OR
“Healthy eating index”[tiab]	“Breast cancer”	“Mortality”(Mesh)
OR	“Breast adenoma”	OR
OR	“Breast neoplasm”	“Death”
OR	“Breast neoplasm”	OR

Key words: Breast cancer, mortality, survival
Selection strategy
After primary search (643 articles: PubMed 389, Scopus 168, Cochrane 3, Google Scholar 53, and ISI [Web of Science] 30) and elimination of duplicated articles (423 articles), titles and abstracts of all studies were independently reviewed by Makan Pourmasoumi and Nooshin Vosoughi. Ten articles including eligible criteria in title/abstract screening were selected to be checked by full-text. Most of the excluded articles had assessed either non-cancer outcomes or cancers other than breast cancer or outcomes without assessing the mortality and survival measures. Excluded studies and any disagreement in the selection of studies were reviewed and resolved by the third researcher. In addition, all reference lists of selected studies were assessed manually to identify related articles. Finally, of the total 10 full-text articles reviewed, 4 articles were eligible for data abstraction which met inclusion criteria. Publication search and selection results are shown in Figure 1.

Data extraction
The data extracted from selected studies included first author, published year, study design, sample size, sample tested, age, follow-up, country, dietary pattern identified, mortality report information, hazard ratio/relative risk (HR/RR), main result, and adjustment. Furthermore, 95% confidence interval (CI) and P values were extracted where available. The characteristics of each study are illustrated in Table 2.

Quality assessment
The risk of bias assessment of selected articles was investigated by the Newcastle–Ottawa Quality Assessment Scale Cohort Studies.[27] The full score of cohort checklist was 9. The mean of star of selected studies was 6.5. The score of each study is shown in Table 2.

Statistical analysis
The main outcome variables were measures of adjusted RR or HR and 95% CI for the estimate of association between breast cancer mortality/survival and HEI/AHEI. Empirical byes method was applied for estimating the overall effect.[28] Meta-regression (duration and age of patients were considered as covariate) and subgroup analyses (based on type of diet; HEI-2005 or AHEI) were performed to find potential source of heterogeneity. Heterogeneity was evaluated with Cochran’s Q-test and I^2 (p < 0.05 and I^2 > 0.75 was considered as meaningful heterogeneity).[29] Sensitivity analysis was performed to explore the robustness of the combined risk estimates. To examine for possible publication bias, visual inspection of funnel plot and Egger test were used.[28,30] All data analyses were performed with STATA, version 10.0. (STATA, College Station, TX), and P < 0.05 was considered statistically significant.

Results
Four cohort articles with total 9819 women and mean age of 56 ± 9.35 years were included in systematic review and meta-analysis. The mean follow-up of studies was 7.7 ± 1.9. All included studies used Cox proportional hazards’ models for statistical analysis. Of the four articles that fulfilled our selection criteria, two had examined breast cancer survival rates and two assessed the risk of mortality.

All selected studies had been conducted in the USA and used self-report food-frequency questionnaire (FFQ) for diet quality assessment. One study[22] was multiethnic research performing on the Health, Eating, Activity, and Lifestyle (HEAL Study is a multiethnic prospective cohort study that includes 1183 breast cancer survivors’ women with Stage 0–IIIA breast cancer) cohort studies. Two studies[23,24] had been conducted on the Nurses’ Health Study (NHS: Cohort study established in 1976, including 121,700 female nurses with 30–55-year-old from 11 US
Author/ year/ Country	Study design (study name)	Sample size	Sample tested	Age range (years)	Follow up	Questionnaire, how many items and how many use	Dietary pattern identified	Assessment of mortality	Cause of death	HR/RR (CI)	Main result	adjustment	Quality assessment
Stephanie M. George 2014 USA	Cohort (WHI)	2317 postmenopausal women	50-79	Median length of follow up was 9.6 years.	FFQ (included 122 composite and single food line items)	HEI-2005 (11 component including: total fruit; whole fruit; total vegetables; dark-green vegetables, orange vegetables, and legumes; total grains; whole grains; milk; meats and beans; oils; saturated fat; sodium; calories from solid fat, alcohol, and added sugar)	Through clinical center follow-up of participants, surrogates and periodic searches of the National Death Index.	Determined by medical record and death certificate review.	HR: 0.91 (0.6‑1.40)	Better post diagnosis diet quality was not associated with breast cancer death.	age at screening visit (continuous), WHI component (WHI-DM-intervention, WHI-DM-control, or OS), ethnicity (White non-Hispanic, Black/African American, Hispanic/Latino, other, missing), income, education, stage, estrogen receptor status, progesterone receptor status, time since diagnosis, energy intake in kcals, physical activity in MET‑h/wk, servings of alcohol per week (continuous), and use of postmenopausal hormone therapy.	7	
Izano.MA and et al 2013 USA	Cohort (NHS)	4103 Women diagnosed with stages I-III breast cancer	30-55	Median length of follow up was 9.3 years.	FFQ (include 61 item in 1980 and 116 item in 1984 and thereafter until 2002) 7 times used	AHEI-2010 (11 component including: vegetables, fruits, nuts and legumes, whole grains, trans fats, long-chain (n-3) fats (EPA + DHA), polyunsaturated fats, sugar-sweetened beverages and fruit juice, red or processed meat, sodium, and alcohol)	By family members, the postal service, or searches in the National Death Index.	Ascertained by physicians’ review of death certificates and medical records.	RR: 1.07 (0.77-1.49)	Adherence to AHEI-2010 diet was not significantly associated with breast cancer mortality.	Stratified by time since diagnosis (months), adjusted for age at diagnosis (years), quintiles of energy intake, body mass index, body mass index change, age at first birth and parity, oral contraceptive use, menopausal status and HRT use, smoking, stage of disease, radiation treatment, chemotherapy and hormonal treatment, and physical activity.	7	
Author/ year/ Country	Study design (study name)	Sample size	Sample tested	Age range (years)	follow up	Questionnaire, how many items and how many use	Dietary pattern identified	Assessment of mortality	Cause of death	HR/RR (CI)	Main result	adjustment	Quality assessment
-----------------------	---------------------------	-------------	---------------	------------------	----------	---	--------------------------	----------------------	----------------	------------	-------------	------------	------------------
EHJ Kim and et al 2011 USA	Cohort (NHS)	2729	Women diagnosed with stages I-III breast cancer	30-55	6 years	FFQ (include 61 item in 1984 and 130 item in 1984 and thereafter until 2004) 5 times used	AHEI (9 components including: vegetables (potatoes were removed), fruits, nuts and soy, cereal fiber, ratio of white to red meat, trans fat, polyunsaturated, saturated fat ratio, and alcohol)	By family members or the postal service, or were identified from a search of the National Death Index.	Determined by physicians' reviewers.	RR; 1.53 (0.98, 2.39)	No association was found between AHEI and either total or non-breast cancer related death and a higher AHEI did not considerably change the risk of death from breast cancer.	time since diagnosis, age (continuous), energy, body mass index in kg/m², body mass index (BMI), weight change (BMI at time of diet minus BMI just prior to diagnosis), oral contraceptive use, age, smoking status, physical activity in METs, stage I, II, III, categories of treatment, age at first birth and parity, menopausal status and postmenopausal hormone use.	6
George et al. 2011 USA	Cohort (HEAL)	670	Woman with first primary breast cancer	18-64	6 years	FFQ (122-item) 1 time used	HEI-2005 (12 component including: total fruit (includes 100% juice), whole fruit (not juice), total vegetable, total vegetable, dark green and orange vegetables and legumes, total grains, whole grain, milk, meat and beans, oil, saturated fat, sodium, calories from solid fats, alcoholic beverage and added sugar)	From state mortality files and the National Death Index.	Not mentioned	HR;0.12 (0.2-0.99)	The higher scores of HEI results in reduce breast cancer mortality	energy intake, physical activity, race, stage, tamoxifen use and body mass index	6
states. In this study, the case completed question about medical and lifestyle factors), and on the Women’s Health Initiative (WHI).

Although in two studies HEI-2005 had been used, in the study conducted by Kim et al., AHEI, that adapted from the original HEI based on the 1992 Food Guide Pyramid and the 1995 Dietary Guidelines for Americans, was used, and another study applied AHEI-2010. The details of each index component are shown in Table 2.

One study reported highest adherence to HEI compared to lowest, caused reduced risk of mortality, but in other three cohorts, no significant effects were found. The result of meta-analysis on total studies failed to show a significant relation between adherence to HEI/AHEI diet and risk of breast cancer mortality/survival in women with this malignancy (relative risk: (RR) 1.04; 95% confidence interval (CI): 0.69–1.56; $P = 0.87$) Figure 2. Also, subgroup analyses based on type of diets did not show significant association for none of AHEI and HEI (Figures 3 and 4, respectively). We did not find any significant impact of age and duration on dependent measures (mortality/survival) in meta-regression analysis (regression coefficient (standard error): -0.032 (0.026); $P = 0.43$ for age and 0.086 (0.13); $P = 0.64$ for duration). The observed significant heterogeneity between the studies ($P = 0.002$) was remained significant even after subgroup analysis based on diets’ types (AHEI) assessment and meta-regression based on age and duration.

Sensitivity analysis

Sensitivity analysis showed that removing none of each included studies in meta-analysis did not significant impact on estimated overall effect size [Figure 5]. No evidence of publication bias was seen using funnel plot [Figure 6] and Egger test ($P = 0.3$).

Discussion

To the best of our knowledge, the present study is the first systematic review and meta-analysis investigated the association between the HEI/AHEI and breast cancer...
mortality/survival. Our result failed to show a significant effect of HEI/AHEI on risk of breast cancer mortality in women with breast cancer prognosis.

Among the 5 included studies, 1 study reported the positive effects \cite{22} and 3 ones could not find any significant relationship \cite{25,26,27}. Some possible reasons have been suggested for these conflicting findings. The reason is the use of the HEI and AHEI together that may cause this heterogeneity. Among studies using the HEI, the consumption of red and processed meat did not assess \cite{22,24,25}, in contrast to other researches evaluating by AHEI \cite{23,24}. Thus, the additional factors in AHEI may cause different results compared to HEI.

The heterogeneity of results has also attributed to the varied number of confounders that were controlled in these studies \cite{22,25}. Furthermore, in the HEAL study, \cite{22} women who may have been receiving treatment for subsequent recurrences or new primaries that occurred before their 30-month assessment were excluded. While in the NHS, assessment during active treatment were avoided and only measurements taken at least 2 years after diagnosis, were considered \cite{23,24}. In the WHI, they did not have data of cancer treatment \cite{5}.

One possible reason for different results is physical activity that plays a role to categorize the participants, and it has done in Kim et al.’s study. \cite{23} As the impact of measurement error of FFQ, physical and psychological characteristics of participants play an important role in the observed reporting bias in the dietary intake assessment. \cite{32} Moreover, sample size \cite{23,24} follow-up duration in cohort studies \cite{24,25} and stage of breast cancer \cite{23} are the important factors that may change the results.

High amounts of healthy foods such as fruits and vegetables and low amounts of unhealthy foods such as alcohol, total and saturated fats may reduce breast cancer recurrence and mortality \cite{13,14,33-36}. The potential protection against breast cancer mortality by a healthy diet may be considered as anti-inflammatory \cite{27} and anti-oxidative effects, principally due to increased intake of protective nutrients, and lower intake of pro-inflammatory nutrients \cite{38,39}. However, results among studies assessing overall dietary pattern were not as much positive as researches evaluating individual dietary components. Proverbially, in the life after cancer epidemiology, healthy diet not associate with breast cancer mortality in women had been previously treated for early-stage breast cancer. However, it reported that healthy eating reduces risk of overall mortality \cite{14}. In addition, it might be due to protective effect of adherence to the healthy diet on cardiovascular disease among these women and via this way linked to reduced mortality \cite{40,41}. Furthermore, consumption of healthy foods is associated with improved quality of life, physical and cognitive function in breast cancer survivors \cite{43}.

The positive effect of the healthy eating pattern may also associate with lower C-reactive protein (CRP) \cite{44}. Inflammation can increase the breast tumors through the chronic activation of humoral immunity, infiltration of Th2 cells, and polarized inherent inflammatory cells. \cite{45} Thus, higher concentration of CRP may associate with lower rates of survival. \cite{46} In addition, high-quality diets with high content of fruits and vegetables may affect cancer mortality through many biological mechanisms. Magnesium, fiber, potassium, and flavonoids may have a beneficial effect on inflammation \cite{26}. It was also found that unhealthy foods consumption is associated with breast cancer mortality \cite{47}.

In all reviewed studies, there were not control groups. However, in the HEAL \cite{22} and WHI \cite{25} studies, diet quality was measured with the HEI, and for each participant, they scored each component, calculated total score, and classified HEI scores into quartiles to best separate those with better quality diets (Q4), mixed quality diets (Q2-Q3), and poor quality diets (Q1), and this is the comparison of their analysis. While in the NHS \cite{24,25} AHEI was used, women were categorized into quintiles of dietary scores and compared.

In this study, potential limitations should be considered. Our review was based on the available data; relatively few studies, that have examined HEI and AHEI among breast cancer patients, were available. The heterogeneity of these studies was a significant consideration in the results interpretation. Furthermore, since only English-language
studies were included, some studies may have been excluded.

Conclusion

The meta-analysis findings show no association between HEI/AHEI and risk of breast cancer mortality/survival among women with breast cancer medical history. Further prospective cohort studies and clinical trials with long follow-up time and reliable method for collecting data are required to reach a definite conclusion among different populations.

Acknowledgment

This study was supported by the Isfahan University of Medical Sciences, Isfahan, Iran.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. DeSantis C, Siegel R, Bandi P, Jemal A. Breast cancer statistics, 2011. CA Cancer J Clin 2011;61:409-18.
2. Hortobagyi GN, de la Garza Salazar J, Pritchard K, Amadori D, Haidinger R, Hudis CA, et al. The global breast cancer burden: Variations in epidemiology and survival. Clin Breast Cancer 2005;6:391-401.
3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‑Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.
4. Golpour S, Rafie N, Safavi SM, Miraghaian M. Dietary isoflavones and gastric cancer: A brief review of current studies. J Res Med Sci 2015;20:893-900.
5. Jolfaie NR, Mirzaie S, Ghiasvand R, Askari G, Miraghaian M. The effect of glutamine intake on complications of colorectal and colon cancer treatment: A systematic review. J Res Med Sci 2015;20:910-8.
6. Farsinejad-Marj M, Talebi S, Ghiasvand R, Miraghaian M. Adherence to Mediterranean diet and risk of breast cancer in premenopausal and postmenopausal women. Arch Iran Med 2015;18:786-92.
7. Rafie N, Golpour Hamedani S, Ghiasvand R, Miraghaian M. Kofir and cancer: A systematic review of literatures. Arch Iran Med 2015;18:852-7.
8. Goodwin PJ, Ennis M, Pritchard KI, Koo J, Trudeau ME, Hood N. Diet and breast cancer: Evidence that extremes in diet are associated with poor survival. J Clin Oncol 2003;21:2500-7.
9. Sellers TA, Alberts SR, Vierkant RA, Grabrick DM, Cerhan JR, Vachon CM, et al. High-folate diets and breast cancer survival in a prospective cohort study. Nutr Cancer 2002;44:139-44.
10. Holmes MD, Stampfer MJ, Colditz GA, Rosner B, Hunter DJ, Willett WC. Dietary factors and the survival of women with breast carcinoma. Cancer 1999;86:826-35.
11. Holmes MD, Hunter DJ, Colditz GA, Stampfer MJ, Hankinson SE, Speizer FE, et al. Association of dietary intake of fat and fatty acids with risk of breast cancer. JAMA 1999;281:914-20.
12. Hebert JT, Hurley TG, Ma Y. The effect of dietary exposures on recurrence and mortality in early stage breast cancer. Breast Cancer Res Treat 1998;51:17-28.
13. Ingram D. Diet and subsequent survival in women with breast cancer. Br J Cancer 1994;69:592-5.
14. Kwan ML, Weltzien E, Kushi LH, Castillo A, Slattery ML, Caan BJ. Dietary patterns and breast cancer recurrence and survival among women with early-stage breast cancer. J Clin Oncol 2009;27:919-26.
15. Jacobs DR Jr., Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: A framework for food synergy. Am J Clin Nutr 2003;78 3 Suppl:508S-13S.
16. Wajers PM, Feskens EF, Ocké MC. A critical review of predefined diet quality scores. Br J Nutr 2007;97:219-31.
17. Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr 2012;142:1009-18.
18. Kennedy ET, Ohls J, Carlson S, Fleming K. The Healthy Eating Index: Design and applications. J Am Diet Assoc 1995;95:1103-8.
19. McCullough ML, Feskanich D, Stampfer MJ, Giovannucci EL, Rimm EB, Hu FB, et al. Diet quality and major chronic disease risk in men and women: Moving toward improved dietary guidance. Am J Clin Nutr 2002;76:1261-71.
20. Schwingehackl L, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: A systematic review and meta-analysis of cohort studies. J Acad Nutr Diet 2015;115:780-800.e5.
21. Ervin RB. Healthy Eating Index scores among adults, 60 years of age and over, by sociodemographic and health characteristics: United States, 1999-2002. Adv Data 2008;395:1-16.
22. George SM, Irwin ML, Smith AW, Neuhausser ML, Reedy J, McTiernan A, et al. Postdiagnosis diet quality, the combination of diet quality and recreational physical activity, and prognosis after early-stage breast cancer. Cancer Causes Control 2011;22:589-98.
23. Kim EH, Willett WC, Fung T, Rosner B, Holmes MD. Diet quality indices and postmenopausal breast cancer survival. Nutr Cancer 2011;63:381-8.
24. Izano MA, Fung TT, Chiuve SS, Hu FB, Holmes MD. Are diet quality scores after breast cancer diagnosis associated with improved breast cancer survival? Nutr Cancer 2013;65:820-6.
25. George SM, Ballard-Barbash R, Shikany JM, Caan BJ, Freudenberg JL, Kroenke CH, et al. Better postdiagnosis diet quality is associated with reduced risk of death among postmenopausal women with invasive breast cancer in the women’s health initiative. Cancer Epidemiol Biomarkers Prev 2014;23:575-83.
26. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1.
27. Wells G, Shea B, O’connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa
28. Sterne JA, Bradburn MJ, Egger M. Meta-Analysis in Stata™. Systematic Reviews in Health Care: Meta-Analysis in Context. 2nd ed.. 2008:347-69.

29. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.

30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34.

31. Committee DGA. US Department of Agriculture and US Department of Health and Human Services. Nutrition and Your Health: Dietary Guidelines for Americans; 1995.

32. Thompson F, Subar A. Dietary assessment methodology In: Coulston AM, Boushey CJ, editors. Nutrition in the Prevention and Treatment of Disease. San Diego, CA: Academic Press; 2008.

33. Rohan TE, Hiller JE, McMichael AJ. Dietary factors and survival from breast cancer. Nutr Cancer 1993;20:167-77.

34. Jain MG, Ferrecc RG, Rehm JT, Bondy SJ, Rohan TE, Ashley MJ, et al. Alcohol and breast cancer mortality in a cohort study. Breast Cancer Res Treat 2000;64:201-9.

35. Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, et al. Dietary fat reduction and breast cancer outcome: Interim efficacy results from the Women's Intervention Nutrition Study. J Natl Cancer Inst 2006;98:1767-76.

36. Saxe GA, Rock CL, Wicha MS, Schottenfeld D. Diet and risk for breast cancer recurrence and survival. Breast Cancer Res Treat 1999;53:241-53.

37. Puglisi MJ, Fernandez ML. Modulation of C-reactive protein, tumor necrosis factor-alpha, and adiponectin by diet, exercise, and weight loss. J Nutr 2008;138:2293-6.

38. Levy J, Bosin E, Feldman B, Giat Y, Miinster A, Danilenko M, et al. Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 1995;24:257-66.

39. Sharoni Y, Giron E, Rise M, Levy J. Effects of lycopene-enriched tomato oleoresin on 7,12-dimethyl-benz[a]anthracene-induced rat mammary tumors. Cancer Detect Prev 1997;21:110-23.

40. Harris EE, Correa C, Hwang WT, Liao J, Litt H, Ferrari VA, et al. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 2006;24:4100-6.

41. Brunner EJ, Mosdol A, Witte DR, Martikainen P, Stafford M, Shipley MJ, et al. Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. Am J Clin Nutr 2008;87:1414-21.

42. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB. Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 2008;118:230-7.

43. Mosher CE, Sloane R, Morey MC, Snyder DC, Cohen HJ, Miller PE, et al. Associations between lifestyle factors and quality of life among older long-term breast, prostate, and colorectal cancer survivors. Cancer 2009;115:4001-9.

44. George SM, Neuhouser ML, Mayne ST, Irwin ML, Albanes D, Gail MH, et al. Postdiagnosis diet quality is inversely related to a biomarker of inflammation among breast cancer survivors. Cancer Epidemiol Biomarkers Prev 2010;19:2220-8.

45. DeNardo DG, Cousseins LM. Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 2007;9:212.

46. Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437-44.

47. Gou YJ, Xie DX, Yang KH, Liu YL, Zhang JH, Li B, et al. Alcohol consumption and breast cancer survival: A meta-analysis of cohort studies. Asian Pac J Cancer Prev 2013;14:4785-90.