EXISTENCE RESULTS OF HILFER INTEGRO-DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

Ramasamy Subashini
Department of Mathematics
GTN Arts College
Dindigul - 624 004, Tamil Nadu, India

Chokkalingam Ravichandran
PG and Research Department of Mathematics
Kongunadu Arts and Science College(Autonomous)
Coimbatore - 641 029, Tamil Nadu, India

Kasthurisamy Jothimani
Department of Mathematics
Sri Eshwar College of Engineering
Coimbatore - 641 202, Tamil Nadu, India

Haci Mehmet Baskonus*
Department of Mathematics
Faculty of Education
Harran University
Sanliurfa, Turkey

Abstract. The paper is relevance with Hilfer derivative with fractional order which is generalized case of R-L and Caputo's sense. We ensured the solution using noncompact measure and Mönch’s fixed point technique. Illustrative examples are included for the applicability of presented technique.

1. Introduction. In the recent years, scientific community renders more attention on fractional calculus for its wider applications in science and engineering. Especially, the applications of interdisciplinary fields can be effectively designed using fractional derivatives. This is a emerging field in this scenario even though fractional derivatives have a long mathematical history. It is developed by Kilbas et al. [12], Miller and Ross [14], Podulbny [16], Zhou [32, 33, 34], Trujillo[10], the papers [1, 2, 4, 5, 6, 7, 8, 9, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34] and the references with in.

A strong provocation to approach fractional calculus comes from physics. In some recent papers, the solutions of two parameter FDE are investigated by Laplace transforms with probability density function which was discussed by Gu and Trujillo [10], Wang and Zhang [30].

2010 Mathematics Subject Classification. 34A12, 46F12, 47H08, 47H10, 47J35.

Key words and phrases. Mild solution, Laplace transform, MNC, Mönch’s fixed point technique, evolution equation.

* Corresponding author: H. M. Baskonus.
The couple of parameter family of fractional derivative with \(\zeta, \eta \) permits one to interpolate between the R-L and the Caputo derivative discussed in Hilfer [8, 10, 11, 22, 31] fractional derivative.

Stimulated by the above discussion, Hilfer fractional derivative with nonlocal condition will be analyzed in this paper using Laplace transforms and probability density function. Initially, we will introduce a mild solution, and derive some results which is used to prove the mild solution by noncompactness measure. In section three, we obtain the solution using Mönch’s fixed point technique [15]. Finally, we discussed some applications based on this study.

The Hilfer integro-differential equation of fractional order is,

\[
D^{\zeta, \eta}_{0+} y(\omega) = Ay(\omega) + R(\omega, y_\omega, \int_0^\omega h_1(\omega, s, y_s) ds), \quad \omega \in D = [0, b_1], \quad (1.1)
\]

\[
I^{(1-\eta)}_{0+} y(0) = \sum_{m=1}^n c_m y(\omega_m), \quad \omega \in [-r, 0], \quad (1.2)
\]

where \(D^{\zeta, \eta}_{0+} \) Hilfer derivative of order \(0 \leq \zeta \leq 1, 0 < \eta < 1 \) and \(y(\cdot) \) takes the value in \(X \) with \(\| \cdot \|_x \).

\(A \) be the infinitesimal generator of bounded linear operator in strongly semigroup theory.

2. Preliminaries. Some basic facts and lemmas, properties are introduced in this section which will be used effectively in upcoming sections. Let \(D = [0, b_1] \) and \(D' = (0, b_1] \), by \(B(D, Y) \) and \(B(D', Y) \) depicts all continuous functions from \(D \) to \(Y \) and \(D' \) to \(Y \), respectively. Now, consider

\[X = \left\{ y \in B(D', Y) : \lim_{\omega \to 0} \omega^{(1-\zeta)}(1-\eta) y(\omega) \right\} \]

exists and infinite with \(\| \cdot \|_x \) identified as

\[\| Y \|_x = \sup_{\omega \in D'} \left\{ \omega^{(1-\zeta)}(1-\eta) \right\}. \]

Also,

(i) If \(\zeta = 1 \), then \(X = B(D, Y) \) and \(\| \cdot \|_x = \| \cdot \|_y \).

(ii) Let \(y(\omega) = \omega^{(1-\eta)} x(\omega) \), for \(\omega \in D' \), \(y \in X \) iff \(x \in B(D, Y) \).

The closed bounded and convex subsets of \(B(D, Y) \) and \(X \) are given by \(E_r(D) = \{ x \in B(D, Y) / \| x \| \leq r \} \), \(E^2_r(D') = \{ y \in X / \| Y \|_x \leq r \} \).

Definition 2.1. [16, 32] Fractional equation of order \(q \) for \(f : [a, \infty) \to R \) is

\[I^q_{a+} f(\omega) = \frac{1}{\Gamma q} \int_a^\omega (\omega - s)^{q-1} f(s) ds, \quad \omega > a, \quad q > 0, \]

equipped with the RHS is point-wise characterized on \([a, \infty) \).

Definition 2.2. [16, 32] The R-L equation of order \(q > 0 \) is characterized as

\[D^q_{a+} f(\omega) = \frac{1}{\Gamma(k-q)} \int_a^\omega (\omega - s)^{k-q-1} f(s) ds, \quad \omega > a, \quad k-1 < q < k. \]
Definition 2.3. [16, 32] For f, the Caputo’s equation of order $q > 0$ is characterized as
\[^cD_{a+}^q f(\omega) = D_{a+}^q \left[f(\omega) - \sum_{k=0}^{n-1} \frac{\omega^k}{k!} f^{(k)}(0) \right], \quad \omega > a, \ n - 1 < q < n. \]

Definition 2.4. (HFD) [10, 11] If $\zeta \in [0, 1]$ and $\eta \in (0, 1)$, then the generalized R-L fractional derivative is given by
\[D^\zeta_\eta f(\omega) = I^{(1-\eta)}_{\alpha+} \frac{d}{d\omega} I^{(1-\zeta)(1-\eta)}_{\alpha+} f(\omega), \]
where a is the lower limit.

Remark 2.1. (i) Hilfer derivative becomes the classical R-L derivative of fractional order when $\zeta = 0$, $0 < \eta < 1$ and $a = 0$,
\[D^0_\eta f(\omega) = \frac{d}{d\omega} I^{(1-\eta)}_{\alpha+} f(\omega) = D^0_{\alpha+} f(\omega). \]
(ii) Hilfer derivative becomes the classical Caputo derivative when $\zeta = 1$, $0 < \eta < 1$ and $a = 0$,
\[D^1_\eta f(\omega) = I^{(1-\eta)}_{\alpha+} \frac{d}{d\omega} f(\omega) = {^cD}_\eta^1 f(\omega). \]

Now we give the Hausdorff noncompact measure $\alpha(\cdot)$ defined on \wedge which is bounded subset of Banach space Y is $\alpha(\Lambda) = \inf \{ \varepsilon > 0, \Lambda \}$ has a finite $\varepsilon - \text{net}$.

Lemma 2.1. [3, 10] The noncompact measure $\alpha(\cdot)$ fulfills
(i) $\alpha(\mathcal{B}_1) \leq \alpha(\mathcal{B}_2)$ for all bounded subsets of \mathcal{B}_1 and \mathcal{B}_2 of Y and $\mathcal{B}_1 \subseteq \mathcal{B}_2$.
(ii) For each $x \in X$ and each nonempty subset $\mathcal{B} \subseteq X$, $\alpha(\{y \in \mathcal{B}\}) = \alpha(\mathcal{B})$.
(iii) If \mathcal{B} is relatively compact iff $\alpha(\mathcal{B}) = 0$.
(iv) If $\mathcal{B}_1 + \mathcal{B}_2 = \{ y + x; y \in \mathcal{B}_1, x \in \mathcal{B}_2 \}$, then $\alpha(\mathcal{B}_1 + \mathcal{B}_2) \leq \alpha(\mathcal{B}_1) + \alpha(\mathcal{B}_2)$.
(v) $\alpha(\mathcal{B}_1 \cup \mathcal{B}_2) \leq \max\{\alpha(\mathcal{B}_1), \alpha(\mathcal{B}_2)\}$.
(vi) $\alpha(\mu \mathcal{B}) \leq |\mu| \alpha(\mathcal{B})$, for any $\mu \in R$.

Let us construct
\[\int_0^\omega w(\tau)d\tau = \left\{ \int_0^\omega u(\tau)d\tau; u \in W \right\}, \text{ for any } w \subset B(D, Y) \text{ and } \omega \in D, \]
where $w(\tau) = \{ u(\tau) \in Y; u \in w \}$.

Lemma 2.2. [10] If $w \subset B(D, Y)$ is equicontinuous, $\omega \rightarrow \alpha(w(\omega))$ is continuous on D, and
\[\alpha(w) = \max_{\omega \in D} \alpha(w(\omega)), \alpha \left(\int_0^\omega W(\tau)d\tau \right) = \int_0^\omega (w(\tau))d\tau, \text{ for } \omega \in D. \]

Lemma 2.3. [15] Let $\{ U_n(\omega) \}_{n=1}^\infty$ be the Bochner functions from $D \rightarrow Y$ provided $|U_n(\omega)| \leq m(\omega)$ for almost all $\omega \in D$ and for every $n \geq 1$, $m \in L(D, R_+)$, then $\Phi(\omega) = \alpha(U_n(\omega))$ belongs to $L(D, R_+)$ and fulfills
\[\alpha \left(\left\{ \int_0^\omega U_n(\tau)d\tau; n \geq 1 \right\} \right) \leq 2 \int_0^\omega \Phi(\tau)d\tau. \]

Lemma 2.4. [10] Suppose $\nu > 0$, a nonnegative function $a(\omega)$ is locally integrable on $0 \leq \omega \leq (T \leq +\infty)$ and $g(\omega)$ is nonnegative, increasing continuous and characterized on $0 \leq \omega < T$, $g(\omega) \leq k$ (constant), and $u(\omega)$ is locally integrable on
\[0 \leq \omega < T \text{ together}
\]
\[u(\omega) \leq a(\omega) + g(\omega) \int_{0}^{\omega} (\omega - \tau)^{\nu-1} u(\tau) d\tau.
\]
Then
\[u(\omega) \leq a(\omega) + \int_{0}^{\omega} \left(\sum_{n=1}^{\infty} \frac{(g(\omega)\Gamma(\beta))^{n}}{\Gamma(n\nu)} (\omega - \tau)^{\nu-1} a(\tau) \right) d\tau, \quad 0 \leq \omega \leq T.
\]
Particularly, when \[a(\omega) = 0\], then \[u(\omega) = 0\], for all \[0 \leq \omega < T\].

The following hypotheses are introduced for further existence results.

H1 Let \(\{R(\omega)\}_{\omega \geq 0}\) is uniformly bounded where \(R(\omega)\) is continuous in the uniform operator topology for \(\omega \geq 0\), (i.e) there is \(K \geq 1\) provided
\[
\sup_{\omega \in [0, +\infty)} |R(\omega)| < K.
\]

H2 For every \(\omega \in D'\), \(f(\omega, \cdot) = Y \rightarrow Y\) is continuous, for all \(y \in Y\), \(f(\cdot, y) = D' \rightarrow Y\) is strongly measurable.

H3 For \(k \in L(D', R^+))\) provided \(I_{\omega+}^{1} k \in B(D', R^+)\), \(\omega \rightarrow 0^+\), \(\omega(\zeta-1)(\eta-1) I_{\omega+}^{1} k(\omega) = 0\), and \(|f(\omega, y)| \leq k(\omega)\), for all \(y \in Y\) and almost \(\omega \in D\); Evidently, if \(H_3\) holds, for some \(p > 0\) provided
\[
k \left(\frac{\left| \sum_{m=1}^{n} c_m y(\omega_m) \right|}{\Gamma(1 - \eta) + \eta} + \sup_{\omega \in D} \left\{ \frac{\omega(\zeta-1)(\eta-1)}{\Gamma(1 - \eta) + \eta} \int_{0}^{\omega} (\omega - s)^{\eta-1} k(s) ds \right\} \right) \leq p.
\]

H4 For any bounded set \(G \subseteq Y\) and a constant \(b\), we have
\[
\alpha(f(\omega, G)) \leq b \omega(\zeta-1)(\eta-1) \alpha(G), \text{ for all } \omega \in [0, b_1].
\]

Lemma 2.5.[10] The integral equation (2.1) is same as the Cauchy problem (1.1)-(1.2)
\[
y(\omega) = \sum_{m=1}^{n} c_m y(\omega_m) \frac{\omega(\zeta-1)(1-\eta)}{\Gamma(1 - \eta) + \eta} + \frac{1}{\Gamma(\eta)} \int_{0}^{\omega} (\omega - s)^{\eta-1} [Ay(s) + R(s, y_s, G(y(s)))] ds,
\]
where \(G(y(s)) = \int_{0}^{s} h_1(s, u, y_u) du\).

The wright function \(M_{\eta}(\varphi)\) is characterized as
\[
M_{\eta}(\varphi) = \sum_{n=1}^{\infty} \frac{(-\varphi)^{n-1}}{(n-1)!\Gamma(1 - n\eta)}, \quad 0 < \eta < 1, \ \varphi \in \Theta
\]
satisfies the inequality
\[
\int_{0}^{\infty} \varphi^n M_{\eta}(\varphi) d\varphi = \frac{\Gamma(1 + \kappa)}{\Gamma(1 + n\kappa)}, \text{ for } \varphi \geq 0.
\]
Lemma 2.6.\cite{10} If (2.1) holds, then
\begin{equation}
y(\omega) = I_{0+}^{(1-\eta)} T_{\eta}(\omega) \sum_{m=1}^{n} c_m S_m(\omega_m) + \int_{0}^{\omega} T_{\eta}(\omega - s) \mathcal{R}\left(s, y_s, G(s)\right) ds,
\end{equation}
\begin{equation}
y(\omega) = N_{\zeta, \eta}(\omega) \sum_{m=1}^{n} c_m S_m(\omega_m) + \int_{0}^{\omega} T_{\eta}(\omega - s) \mathcal{R}\left(s, y_s, \int_{0}^{s} h_1(s, u, y_u) du\right) ds. \quad (2.2)
\end{equation}

Where, $T_{\eta}(\omega) = \omega^{\eta-1} S_\eta(\omega)$, $S_\eta(\omega) = \int_{0}^{\infty} \eta \varphi M_\eta(\varphi) R(\omega^{\eta}\varphi) d\varphi$

and $N_{\zeta, \eta}(\omega) = I_{0+}^{(1-\eta)} T_{\eta}(\omega)$.

Remark 2.2. By (2.7) and remark (2.1),
(i) $D_{0+}^{(1-\eta)} N_{\zeta, \eta}(\omega) = T_{\eta}(\omega)$, $\omega \in D'$,
(ii) $N_{\eta, \eta}(\omega) = T_{\eta}(\omega) = \omega^{\eta-1} S_\eta(\omega)$, $\omega \in D'$,
(iii) $N_{1, \eta}(\omega) = N_\eta(\omega)$, $\omega \in D$.

Proposition 2.1. From (H_1) and for $\omega > 0$, $S_\eta(\omega)$ is continuous.

Proof. Using (H_1), $R(\omega)_{\omega \geq 0}$ is uniformly bounded. $\sup_{\omega \in D'} |R(\omega)| < K$;

Now, $S_\eta(\omega) = \int_{0}^{\infty} \eta g M_\eta(g) R(\omega^{\eta} g) dg$. For $\omega, h > 0$ and $y \in Y$,
$$|S_\eta(\omega + h) y - S_\eta(\omega) y| \leq 2K \int_{0}^{\infty} \eta g M_\eta(g) |y| dg = \frac{2K}{\Gamma \eta} |y|,$$
due to Lebesgue dominated convergence theorem, $|S_\eta(\omega + h) y - S_\eta(\omega) y| \to 0$ as $h \to \infty$. Hence $S_\eta(\omega)$ is continuous in the uniform operator topology.

Proposition 2.2. Some $\omega > 0$, $y \in Y$ and by (H_1), the operators $\{T_{\eta}(\omega)\}$ and $\{N_{\zeta, \eta}(\omega)\}$ are linear.

$$|T_{\eta}(\omega) y| \leq \frac{K \omega^{\eta-1}}{\Gamma \eta} |y| \quad \text{and} \quad |N_{\zeta, \eta}(\omega) y| \leq \frac{K \omega^{(\zeta-1)(\eta-1)}}{\Gamma_\zeta(1-\eta) + \eta} |y|.$$

Proof. Since $\{S_\eta(\omega)\}_{\omega > 0}$ is continuous, the first result is obvious. For $\omega \in D'$ and $y \in Y$
$$|N_{\zeta, \eta}(\omega) y| = \left| \frac{1}{\Gamma_\zeta(1-\eta)} \int_{0}^{\omega} (\omega - s)^{1-\zeta(\eta-1)} T_{\eta}(s) y ds \right|$$
$$\leq \frac{\omega^{(\zeta-1)(1-\eta)}}{\Gamma_\zeta(1-\eta) \Gamma \eta} \int_{0}^{\omega} (\omega - s)^{1-\zeta(\eta-1)} s^\eta |y| ds$$
$$= \frac{\omega^{(\zeta-1)(1-\eta)} K}{\Gamma_\zeta(1-\eta) \Gamma \eta} |y|.$$

$|S_\eta(\omega + h) y - S_\eta(\omega) y| \to 0.$ \quad (2.3)
Proposition 2.3. By hypotheses (H_1), $\{T_\eta(\omega)\}_{\omega > 0}$ and $\{N_\zeta, \eta(\omega)\}_{\omega > 0}$ are strongly continuous, for any $y \in Y$ and $0 < \omega < \bar{\omega} < b_1$, $|T_\eta(\omega)y - T_\eta(\bar{\omega})y| \to 0$ and $|N_\zeta, \eta(\bar{\omega})y - N_\zeta, \eta(\omega)y| \to 0$ as $\omega \to \bar{\omega}$.

Proof. Since $\{S_\eta(\omega)\}_{\omega > 0}$ is strongly continuous by proposition (2.1), $|T_\eta(\omega)y| \leq \frac{2K\omega^{\eta-1}}{\Gamma \eta} |y|$.

By Lebesgue dominated convergence theorem, $\{T_\eta(\omega)\}_{\omega > 0}$ is strongly continuous. For any $y \in Y$ and $0 < \omega < \bar{\omega} < b_1$,

$$\left|N_\zeta, \eta(\bar{\omega})y - N_\zeta, \eta(\omega)y\right|$$

$$= \frac{1}{\Gamma \zeta(1 - \eta)} \left|\int_0^\omega (\bar{\omega} - s)^{1-\zeta(\eta-1)}S_\eta(s)ysds - \int_0^\omega (\bar{\omega} - s)^{1-\zeta(\eta-1)}S_\eta(s)ysds\right|$$

$$\leq \frac{1}{\Gamma \zeta(1 - \eta)} \left|\int_0^\omega (\bar{\omega} - s)^{1-\zeta(\eta-1)}s^{\eta-1}S_\eta(s)ysds\right|$$

$$+ \frac{1}{\Gamma \zeta(1 - \eta)} \left|\int_0^\omega [(\bar{\omega} - s)^{1-\zeta(\eta-1)} - (\bar{\omega} - s)^{1-\zeta(\eta-1)}] s^{\eta-1}S_\eta(s)ysds\right|$$

$$\leq \frac{K(\bar{\omega})^{\eta-1}}{\Gamma \zeta(1 - \eta)\Gamma \eta} \frac{1}{\zeta(1 - \eta)(\omega - \bar{\omega})} |y|$$

$$+ \frac{K}{\Gamma \zeta(1 - \eta)\Gamma \eta} \left|\int_0^\omega [(\bar{\omega} - s)^{1-\zeta(\eta-1)} - (\bar{\omega} - s)^{1-\zeta(\eta-1)}] s^{\eta-1}ds\right| |y|.$$ (2.4)

Since

$$\left|\int_0^\omega [(\bar{\omega} - s)^{1-\zeta(\eta-1)} - (\bar{\omega} - s)^{1-\zeta(\eta-1)}] s^{\eta-1}ds\right| \leq 2 \int_0^\omega (\omega - s)^{1-\zeta(\eta-1)} s^{\eta-1}ds$$

exists.

Then, by Lebesgue dominated convergence theorem,

$$\left|\int_0^\omega [(\bar{\omega} - s)^{1-\zeta(\eta-1)} - (\bar{\omega} - s)^{1-\zeta(\eta-1)}] s^{\eta-1}ds\right| \to 0 \text{ as } \omega \to \bar{\omega}.$$

Consequently $\left|N_\zeta, \eta(\bar{\omega})y - N_\zeta, \eta(\omega)y\right| \to 0$ as $\omega \to \bar{\omega}$, i.e. $\{N_\zeta, \eta(\omega)\}_{\omega > 0}$ is strongly continuous.

The operator Q is structured as, for $y \in X$, $(Qy)\omega = (Q_1y)(\omega) + (Q_2y)(\omega)$, where

$$(Q_1y)(\omega) = N_\zeta, \eta(\omega) \sum_{m=1}^\infty c_m S_\eta(t_m), \quad (Q_2y)(\omega) = \int_{0}^{\omega} T_\eta(\omega - s) \Re \left(s, y_s, G(s)\right) ds,$$

for every $\omega \in D'$.

By (2.3) and (H_3), we have

$$\lim_{\omega \to 0^+} \omega^{\zeta(\eta-1)} N_\zeta, \eta(\omega) \sum_{m=1}^\infty c_m S_\eta(t_m)$$

$$= \frac{1}{\Gamma \zeta(1 - \eta)\Gamma \eta} \int_{0}^{\omega} (\omega - s)^{1-\zeta(\eta-1)} s^{\eta-1} \sum_{m=1}^n c_m S_\eta(t_m) ds.$$
The conditions (Theorem 3.1. On the side of outcomes, we need the following theorems.

Existence results. For any \(\omega \in (0, b_1] \), let \(y(\omega) = \omega^{(\zeta-1)(1-\eta)} x(\omega) \) such that

\[
(\Upsilon x)(\omega) = (\Upsilon_1 x)(\omega) + (\Upsilon_2 x)(\omega).
\]

Clearly, \(y \) is a mild solution of (1.1)-(1.2) in \(X \) iff \(x = \Upsilon x \) has a solution \(x \in B(D, Y) \).

3. Existence results. Here, we formulate and prove the existence results of our system (1.1)–(1.2) by measure of noncompactness and Mönch fixed point technique. On the side of outcomes, we need the following theorems.

Theorem 3.1. The conditions \((H_1)-(H_3)\) holds, then \(\{ \Upsilon x : x \in E_r(D) \} \) is equicontinuous.

Proof.

Step 1. \(\{ \Upsilon x : x \in E_r(D) \} \). Let \(\omega x = \omega^{(\zeta-1)(1-\eta)} x(\omega) \), for any \(x \in E_r(D) \) and \(\omega \in (0, b_1] \). For \(0 \leq \bar{\omega}_1 \leq \bar{\omega}_2 \leq b_1 \),

\[
| (\Upsilon_1 x)(\bar{\omega}_2) - (\Upsilon_1 x)(\bar{\omega}_1) |
\leq \left| \omega^{(\zeta-1)(1-\eta)} N_{\zeta, \eta}(\bar{\omega}_2) S_\eta(\bar{\omega}_2) - \omega^{(\zeta-1)(1-\eta)} N_{\zeta, \eta}(\bar{\omega}_1) S_\eta(\bar{\omega}_1) \right| \sum_{m=1}^{n} c_m.
\]

By (2.5) and proposition(2.3), \(\omega^{(1-\zeta)(1-\eta)} \) is uniformly continuous on \(D \).

Consequently \(\{ \Upsilon_1 x : x \in E_r(D) \} \) is equicontinuous.

Step 2. For any \(x \in E_r(D) \)

\[
| (\Upsilon_2 x)(\bar{\omega}_2) - (\Upsilon_2 x)(\bar{\omega}_1) |
\leq \left| \omega^{(\zeta-1)(1-\eta)} \int_{\bar{\omega}_1}^{\bar{\omega}_2} T_\eta(\bar{\omega}_2 - s) \Re \left(s, y_s, G(s) \right) ds \right|
\leq \frac{K \omega^{(\zeta-1)(1-\eta)}}{\Gamma \eta} \int_{0}^{\bar{\omega}_2} (\bar{\omega}_2 - s) k(s) ds \to 0 \text{ as } \bar{\omega}_2 \to 0.
\]

Now, for \(0 \leq \bar{\omega}_1 \leq \bar{\omega}_2 \leq b_1 \),

\[
| (\Upsilon_2 x)(\bar{\omega}_2) - (\Upsilon_2 x)(\bar{\omega}_1) |
\leq \left| \omega^{(\zeta-1)(1-\eta)} (\bar{\omega}_2 - s)^{\eta-1} S_\eta(\bar{\omega}_2 - s) \Re \left(s, y_s, \int_{\bar{\omega}_1}^{\bar{\omega}_2} h_1(s, u, y_u) du \right) ds \right|
\]

\[
= \sum_{m=1}^{n} c_m S_\eta(t_m)
= \frac{\sum_{m=1}^{n} c_m S_\eta(t_m)}{\Gamma(1-\eta) \Gamma \eta}.
\]
where

\[I^* = \frac{K}{\Gamma} \left| \int_{\bar{\omega}_2}^{\bar{\omega}_1} \omega_2^{(\zeta-1)(\eta-1)}(\bar{\omega}_2 - s)^{\eta-1} k(s)ds - \int_{\bar{\omega}_1}^{\bar{\omega}_1} \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} k(s)ds \right| \]

\[I^{**} = \frac{2K}{\Gamma} \left| \int_{\bar{\omega}_1}^{\bar{\omega}_1} \left[\omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} - \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_2 - s)^{\eta-1} \right] k(s)ds \right| \]

\[I^{***} = \left| \int_{\bar{\omega}_2}^{\bar{\omega}_1} \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} \left[S_\eta(\bar{\omega}_2 - s) - S_\eta(\bar{\omega}_1 - s) \right] \text{Re} \left(s, y_s, \int_{0}^{\bar{\omega}_1} h_1(s, u, y_u)du \right) ds \right| . \]

By \((H_3)\), \(I^* \) can reduce that \(\lim_{\bar{\omega}_2 \to \bar{\omega}_1} I^* = 0 \), since

\[\left[\omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} - \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_2 - s)^{\eta-1} \right] k(s) \]

\[\leq 2\omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} k(s), \]

and \(\int_{\bar{\omega}_1}^{\bar{\omega}_1} \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} k(s)ds \) exists, by Lebesgue dominated convergence theorem \(\int_{\bar{\omega}_2}^{\bar{\omega}_1} \left[\omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} - \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_2 - s)^{\eta-1} \right] k(s)ds \to 0 \) as \(\bar{\omega}_2 \to \bar{\omega}_1 \). Therefore, \(\lim_{\bar{\omega}_2 \to \bar{\omega}_1} I^{**} = 0 \). For \(\delta > 0 \)

\[I^{***} \leq \int_{0}^{\bar{\omega}_1^{\delta}} \omega_1^{(\zeta-1)(\eta-1)}(\bar{\omega}_1 - s)^{\eta-1} \left[S_\eta(\bar{\omega}_2 - s) - S_\eta(\bar{\omega}_1 - s) \right] \]

\[\times \text{Re} \left(s, y_s, \int_{0}^{\bar{\omega}_1^{\delta}} h_1(s, u, y_u)du \right) ds \]
Step 1. Proof.

If (Theorem 3.2) \(\omega \rightarrow \),

\[
\| \omega \| \leq 2K \Gamma \eta \frac{\Gamma}{\Gamma(1-\eta)} N_{\zeta,\eta}(\omega) \sum_{m=1}^{n} c_m
\]

\[
+ \omega^{1-\zeta(1-\eta)} T_{\eta}(\omega) \mathcal{R} \left(s, y_s, \int_0^\omega h_1(s, u, y_u)du \right) ds
\]

\[
\leq K \left(\frac{\sum_{m=1}^{n} c_m}{\Gamma(1-\eta) + \eta} + \sup_{\omega \in D} \frac{\omega^{\zeta(1-\eta)}}{\Gamma \eta} \int_0^\omega (\omega - s) k(s) ds \right) \leq p.
\]

Hence \(\| \varUpsilon x \| \leq p \), for any \(x \in E_r(D) \).

Theorem 3.2. If \((H_1)-(H_3)\) holds, then \(\varUpsilon : E_r(D) \rightarrow E_r(D) \) and is continuous on \(E_r(D) \).

Proof. Step 1. By our assumption \(\varUpsilon \) maps \(E_r(D) \) into \(E_r(D) \). For any \(\delta, x \in E_r(D) \), let \(y(\omega) = \omega^{\eta-1} x(\omega) \). Then \(y \in E_r^+(D') \). Proposition(2.2) yields

\[
|\langle \varUpsilon x \rangle(\omega)| \leq \omega^{\zeta(1-\eta)} N_{\zeta,\eta}(\omega) \sum_{m=1}^{n} c_m
\]

\[
+ \omega^{1-\zeta(1-\eta)} T_{\eta}(\omega) \mathcal{R} \left(s, y_s, \int_0^\omega h_1(s, u, y_u)du \right) ds
\]

\[
\leq K \left(\frac{\sum_{m=1}^{n} c_m}{\Gamma(1-\eta) + \eta} + \sup_{\omega \in D} \frac{\omega^{\zeta(1-\eta)}}{\Gamma \eta} \int_0^\omega (\omega - s) k(s) ds \right) \leq p.
\]
Step 2. To prove Υ is continuous. For any x_m, for $m = 1, 2, 3, \ldots$, $x \in E_r(D)$,

$$\lim_{m \to \infty} x_m = x, \lim_{m \to \infty} x_m(\omega) = x(\omega) \quad \text{and} \quad \lim_{m \to \infty} \omega^{(\zeta-1)(\eta-1)} x_m(\omega) = \omega^{(\zeta-1)(\eta-1)} x(\omega),$$

$\omega \in D'$. Then by hypotheses (H_2),

$$f(\omega, y_m(\omega)) = f(\omega, \omega^{(\zeta-1)(\eta-1)} x_m(\omega)) \to f(\omega, \omega^{(\zeta-1)(\eta-1)} x(\omega)) = f(\omega, y(\omega)) \quad \text{as} \quad m \to \infty$$

where $y_m(\omega) = \omega^{(\zeta-1)(\eta-1)} x_m(\omega)$ and $y(\omega) = \omega^{(\zeta-1)(\eta-1)} x(\omega)$.

Also, using hypotheses (H_3), for each $\omega \in D'$

$$(\omega - s)^{\eta-1} \left| \mathfrak{R} \left(s, (y)_m, \int_0^\omega h_1(s, u, (y)_m) du \right) \right| \leq (\omega - s)^{\eta-1} 2k(s) \quad \text{a.e in} \quad [0, \omega).$$

Consequently, $s \to (\omega - s)^{\eta-1} 2k(s)$ is integrable for $s \in [0, \omega)$ and $\omega \in D'$.

With reference to Lebesgue theorem,

$$\int_0^\omega (\omega - s)^{\eta-1} \left| \mathfrak{R} \left(s, (y)_m, \int_0^\omega h_1(s, u, (y)_m) du \right) \right| ds \to 0 \quad \text{as} \quad m \to \infty.$$

For $\omega \in D$,

$$|\Upsilon x_m(\omega) - \Upsilon x(\omega)| \leq \frac{K\omega^{(\zeta-1)(\eta-1)}}{\Gamma\eta} \times \int_0^\omega (\omega - s)^{\eta-1} \left| \mathfrak{R} \left(s, (y)_m, \int_0^\omega h_1(s, u, (y)_m) du \right) \right| ds \to 0 \quad \text{as} \quad m \to \infty.$$

Hence, $\Upsilon x_m \to \Upsilon x$ point wise on D as $m \to \infty$ and by Theorem (3.1), $\Upsilon x_m \to \Upsilon x$ uniformly on D as $m \to \infty$. So Υ is continuous.

Theorem 3.3. Let the hypothesis (H_1)-(H_4) true then (1.1)-(1.2) has at least one solution in $E_r(D')$.

Proof. Consider a set $\mathbb{R} = \{x_m : m = 0, 1, 2, 3, \ldots\}$. For all $\omega \in D$, let $x_0(\omega) = \omega^{(\zeta-1)(\eta-1)} \times N_{\zeta, \eta}(\omega) \sum_{m=1}^n c_m$ and $x_{m+1} = \Upsilon x_m$. To examine that \mathbb{R} is relatively compact.

Hence \mathbb{R} is bounded uniformly and equicontinuous from theorem (3.1) and (3.2) on D. By (H_4) and lemmas (2.1), (2.3), for any $\omega \in D$ we can write $\alpha (\mathbb{R}) = \alpha (\{x_m(\omega)\}_{m=0}^\infty) = \alpha (\{x_0(\omega)\} \cup \{x_m(\omega)\}_{m=1}^\infty) = \alpha (\{x_m(\omega)\}_{m=1}^\infty)$ and

$$\alpha (\{x_m(\omega)\}_{m=0}^\infty) = \alpha (\{\Upsilon x_m(\omega)\}_{m=0}^\infty) \leq \frac{2K}{\Gamma\eta} \omega^{(\zeta-1)(\eta-1)} \int_0^\omega (\omega - s)^{1-n\eta} \alpha (\{N_{\zeta, \eta}(x_m(s))\}_{m=0}^\infty) ds$$

$$\leq \frac{2K}{\Gamma\eta} \omega^{(\zeta-1)(\eta-1)} \int_0^\omega (\omega - s)^{1-n\eta} \alpha (x_m(s)) ds,$$
then \(\alpha(\Re(\omega)) \leq \frac{2Kb}{\Gamma\eta}\omega^{(\zeta-1)(\eta-1)} \int_{0}^{\omega} (\omega - s)^{1-\eta}\alpha(\Re(s))ds \).

Therefore, by lemma (2.2) and (2.4), we get \(\alpha(\Re(\omega)) = 0 \). Then, by Arzela-Ascoli theorem \(\alpha(\Re(\omega)) \), there exists a convergent sub sequence of \(\{x_m(\omega)\}_{m=0}^{\infty} \).

Let, \(\lim_{m \to \infty} x_m = x^* \) on \(E(\Gamma(D)) \). Then by continuous operator \(T \), we have

\[
x^* = \lim_{m \to \infty} x_m = \lim_{m \to \infty} \Upsilon x_{m-1} = \Upsilon \left(\lim_{m \to \infty} x_{m-1} \right) = \Upsilon x^*
\]

Hence (1.1)-(1.2) has atleast a solution.

4. **Application.** The Hilfer fractional derivative with the initial conditions \(D_{\omega,-}^{\zeta,\eta} \)

\[
z(\omega, \theta) = \frac{\partial}{\partial y} z(\omega, \theta) + F(\omega, y(\omega, \theta), \int H(\omega, w(x, \theta - r)))ds,
\]

\[
z(\omega, 0) = z(\omega, \pi) = 0, \ (\omega, \theta) \in [0, b_1] \times (0, \pi),
\]

\[
I_0^{(\zeta-1)(\eta-1)} z(0, \theta) = \sum_{m=1}^{\infty} \arctan \left(\frac{1}{\sqrt{2m^2}} y(\pi, x), \ x \in (0, 1),
\right.
\]

where \(w > 0, \ 0 \leq \xi \leq 1 \) and \(0 < \eta < 1 \). Here, \(Y = L^p(0, \pi) \) as the state space and \(z(\omega, \cdot) = \{z(\omega, \theta)/0 < \theta < \pi\} \) as the state. Let

\[
z(y) = \sqrt{\frac{\pi}{2}} \sin n y, \ n \in N
\]

and \(A \) is a infinitesimal generator and for all \(x \in Y, \ \{R(\omega)\}_{\omega \geq 0} \) in \(X \) is

\[
R(\omega) = \sum_{n=1}^{\infty} e^{\alpha^2 \omega} (x, x_n) x_n.
\]

Hence \(\{R(\omega)\}_{\omega \geq 0} \) is bounded. Therefore, \((H_1) \) holds. Now \(A \subseteq D'(A) : Y \to Y \) as

\[
D'(A) : \left\{ x \in Y : \frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x^2} \in Y \right\}
\]

are absolutely continuous also strongly measurable. Therefore, \((H_2) \) holds. Also \(F \) satisfies \(F_1(\cdot, v) : D' \to Y \) is measurable for all \(v \in Y \) and \(F(\omega, \cdot) : Y \to Y \) is continuous almost everywhere \(\omega \in D' \) there is a function \(k \in L(D', \Re^+) \) provided

\[
||F(\omega, v)|| \leq k(\omega)||v|| \text{ for all } \omega \in D.
\]

\[
k \left(\frac{\sum_{m=1}^{n} |\arctan |}{\Gamma(1-\eta) + \eta} + \sup_{\omega \in D} \left\{ \frac{\omega^{(\zeta-1)(\eta-1)}}{\Gamma(\eta)} \int_{0}^{\omega} (\omega - s)^{\eta-1}k(s)ds \right\} \right) \leq p,
\]

and also \(\sum_{m=1}^{n} c_m = \frac{\pi}{4} < 1 \).

For any bounded set \(G \subseteq Y \), and \(b > 0, \ |G(y)| < b, \) for all \(y \in (D', \Re^+) \) (i.e) relatively compact. Hence, there exists a solution for (4.1)-(4.3).

5. **Conclusion.** In this paper, the mild solution of Hilfer fractional derivative is discussed using noncompact measure and Mönch’s fixed point technique. Also an example is provided to show the applicability of presented technique. Further, one can extend the study with the controllability factors.
Acknowledgment. The authors are highly grateful to Editor and referees of the journal for their comments. The second author wishes to thank the Secretary and Director Dr. C. A. Vasuki, Kongunadu Arts and Science College(Autonomous), Coimbatore-641 029, Tamil Nadu, India, for the constant encouragement and support for this research work.

REFERENCES

[1] R. P. Agarwal, B. Ahmad, A. Alsaedi and N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, *Advances in Difference Equations*, 74 (2012), 1–10.

[2] R. Almeida, What is the best fractional derivative to fit data?, *Applicable Analysis and Discrete Mathematics*, 11 (2017), 358–368.

[3] J. Banas and K. Goebel, *Measure of Noncompactness in Banach Space*, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980.

[4] H. M. Baskonus, T. Mekkaoui, Z. Hammouch and H. Bulut, Active Control of a Chaotic Fractional Order Economic System, *Entropy*, 17 (2015), 5771–5783.

[5] A. H. Bhrawy and M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations, *Applied Mathematical Modelling*, 40 (2016), 832–845.

[6] C. Cattani and A. Ciancio, On the fractal distribution of primes and prime-indexed primes by the binary image analysis, *Physica A*, 460 (2016), 222–229.

[7] M. Dokuyucu, E. Celik, H. Bulut and H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, *The European Physical Journal Plus*, 133 (2018), 92.

[8] K. M. Furati, M. D. Kassim and N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, *Computers & Mathematics with Applications*, 64 (2012), 1612–1626.

[9] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivatives and some applications, *Applied Mathematics and Computation*, 242 (2014), 576–589.

[10] H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, *Applied Mathematics and Computation*, 257 (2015), 344–354.

[11] R. Hilfer, *Applications of Fractional Calculus in Physics*, World Scientific, Singapore, 2000.

[12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Application of Fractional Differential Equations*, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

[13] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, *Nonlinear Analysis: Theory, Methods & Applications*, 69 (2008), 2677–2682.

[14] K. S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Differential Equations*, Wiley, New York, 1993.

[15] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, *Nonlinear Analysis: Theory, Methods & Applications*, 4 (1980), 985–999.

[16] I. Podlubny, *Fractional Differential Equations*, vol.,198, Academic Press, San Diego, 1999.

[17] C. Ravichandran and J. J. Trujillo, Controllability of impulsive fractional functional integro-differential equations in Banach spaces, *Journal of Function Spaces and Applications*, 2013 (2013), Art. ID 812501, 8 pp.

[18] C. Ravichandran and D. Baleanu, Existence results for fractional integro-differential evolution equations with infinite delay in Banach spaces, *Advances in Difference Equations*, 2013 (2013), 1–12.

[19] C. Ravichandran and D. Baleanu, On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, *Advances in Difference Equations*, 291 (2013), 1–13.

[20] C. Ravichandran, K. Jothimani, H. M. Baskonus and N. Valliammal, New results on non-densely characterized integro-differential equations with fractional order, *The European Physical Journal Plus*, 133 (2018), 1–10.

[21] A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications, *Applied Mathematical Modelling*, 38 (2014), 1365–1372.
[22] T. Sandev, R. Metzler and Z. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, *Journal of Physics A: Mathematical and Theoretical*, 44 (2011), 255203, 21 pp.

[23] A. R. Seadawy, Fractional solitary wave solutions of the nonlinear higher-order extended KdV equation in a stratified shear flow: Part I, *Computers & Mathematics with Applications*, 70 (2015), 345–352.

[24] X. B Shu and Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order $1 < \alpha < 2$, *Computers & Mathematics with Applications*, 64 (2012), 2100–2110.

[25] R. Subashini, K. Jothimani, S. Saranya and C. Ravichandran, On the results of Hilfer fractional derivative with nonlocal conditions, *International Journal of Pure and Applied Mathematics*, 118 (2018), 277–289.

[26] J. A. Tenreiro Machado and M. Mata, Pseudo Phase Plane and Fractional Calculus modeling of western global economic downturn, *Communications in Nonlinear Science and Numerical Simulation*, 22 (2015), 396–406.

[27] J. A. Tenreiro Machado, Fractional dynamics in the Rayleigh’s piston, *Communications in Nonlinear Science and Numerical Simulation*, 31 (2016), 76–82.

[28] N. Valliammal, C. Ravichandran and J. H. Park, On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions, *Mathematical Methods in the Applied Sciences*, 40 (2017), 5044–5055.

[29] V. Vijayakumar, C. Ravichandran, R. Murugesu and J. J. Trujillo, Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators, *Applied Mathematics and Computation*, 247 (2014), 152–161.

[30] J. R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, *Applied Mathematics and Computation*, 266 (2015), 850–859.

[31] M. Yang and Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations With nonlocal conditions, *Fractional Calculus and Applied Analysis*, 20 (2017), 679–705.

[32] Y. Zhou, *Basic Theory of Fractional Differential Equations*, World Scientific, Singapore, 2014.

[33] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, *Nonlinear Analysis: Real World Applications*, 11 (2010), 4465–4475.

[34] Y. Zhou, L. Zhang and X. H. Shen, Existence of mild solutions for fractional evolution equations, *Journal of Integral Equations and Applications*, 25 (2013), 557–585.

Received July 2018; revised September 2018.

E-mail address: subavenkat.ks@gmail.com
E-mail address: ravibirthday@gmail.com
E-mail address: jothiphd2020@gmail.com
E-mail address: hmbaskonus@gmail.com