ABSTRACT

Background: In 2020, the World Health Organization (WHO) published the 5th version of the soft tissue and bone tumor classification. Based on this novel classification system, we reviewed the current knowledge on all tumor entities with spinal manifestations, their biologic behavior, and most importantly the appropriate treatment options as well as surgical approaches.

Methods: All tumor entities were extracted from the WHO Soft‑Tissue and Bone Tumor Classification (5th Edition). PubMed and Google Scholar were searched for the published cases of spinal tumor manifestations for each entity, and the following characteristics were extracted: Growth pattern, ability to metastasize, peak age, incidence, treatment, type of surgical resection indicated, recurrence rate, risk factors, 5-year survival rate, key molecular or genetic alterations, and possible associated tumor syndromes. Surgical treatment strategies as well as nonsurgical treatment recommendations are presented based on the biologic behavior of each lesion.

Results: Out of 163 primary tumor entities of bone and soft tissue, 92 lesions have been reported along the spinal axis. Of these 92 entities, 54 have the potential to metastasize. The peak age ranges from conatal lesions to 72 years. For each tumor entity, we present recommended surgical treatment strategies based on the ability to locally destruct tissue, to grow, recur after resection, undergo malignant transformation as well as survival rates. In addition, potential systemic treatment recommendations for each tumor entity are outlined.

Conclusion: Based on the 5th Edition of the WHO bone and soft tumor classification, we identified 92 out of 163 tumor entities, which potentially can have spinal manifestations. Exact preoperative tissue diagnosis and interdisciplinary case discussions are crucial. Surgical resection is indicated in a significant subset of patients and has to be tailored to the specific biologic behavior of the targeted tumor entity based on the considerations outlined in detail in this article.

Keywords: Chordoma, primary spinal tumors, sarcoma

INTRODUCTION

The core principles guiding surgical treatment for primary bone and soft-tissue tumors have been introduced by Enneking et al. more than 40 years ago and comprise three different types of surgical tumor resection: Intralesional, marginal en bloc, and wide en bloc resection.[1] It has been suggested that tumor location (intracompartmental versus extracompartmental) and histologic grade should be used
to determine the mode of resection. Since the introduction of Enneking’s system additional research regarding primary bone and soft-tissue tumors, new nonsurgical treatment modalities such as stereotactic radiosurgery or targeted molecular therapies and novel radiographic techniques together have significantly improved demarcating tumor extent and curbing tumor invasion.

This article is based on the 5th Edition of the World Health Organization (WHO) tumor classification of bone and soft-tissue tumors, published in 2020. We compiled the most recent knowledge of all tumor entities, which have been described to occur along the spinal axis and surrounding soft tissues. This comprehensive overview summarizes clinical knowledge as well as imaging findings of all primary, extradural spinal tumors described in the literature.

We describe our treatment algorithms, which is individualized for each tumor entity and loosely based on Enneking’s classification system, and modified by contemporary imaging protocols.

METHODS

The 5th Edition of the WHO soft tissue and bone tumors classification, published in 2020 was reviewed and individual tumor entities extracted into a spreadsheet. Medical databases (PubMed and Google Scholar) were searched for publications reporting occurrences of each entity listed in the WHO classification along the spinal axis (spinal bones or paraspinal soft tissues). If an entity has been reported to occur along the spinal axis, a case report with exemplary imaging findings was obtained. For each tumor entity, the following data were extracted from the WHO classification or other key references: Relevant differential diagnoses, growth pattern (infiltrative/destructive), potential for malignant transformation, potential to metastasize, peak age, incidence, recommended type of surgical resection (A, B, C), recurrence rate, treatment, risk factors, 5-year overall survival rate, key molecular or genetic alterations, and possible associated tumor syndromes. All primary bone and soft tissue tumor entities listed in the 5th Edition of the WHO tumor classification were listed in a spreadsheet and a note was made on entities reported to occur along the spinal axis. In a second spreadsheet, exemplary imaging findings of each entity have been listed or say: “Exemplary imaging findings of each entity are listed in a second spreadsheet.” Moreover, finally, in a third spreadsheet, the above-mentioned key characteristics for each entity have been listed.

RESULTS

A comprehensive list of all primary bone and soft-tissue tumors, as listed in the most recent WHO classification is given in Appendix 1 and comprises a total of 163 entities. Of note, the following tumors can arise in either bone or soft tissue: Hemangioma, epithelioid hemangioma, epithelioid hemangioendothelioma, angiosarcoma, desmoplastic fibroma, fibrosarcoma, chondroma, and osteosarcoma.

Tumor entities are classified by the cell of tumor origin [Appendix 1]. For soft-tissue neoplasms, the following cells of origin are as follows: Adipocytic, fibroblastic and myofibroblastic, fibrohistiocytic, vascular, pericytic (perivascular), smooth muscle, skeletal muscle, gastrointestinal stromal, chondro-osseous, and peripheral nerve sheath. Two further categories exist for all soft-tissue tumors that do not fall into the above mentioned: Tumors of uncertain differentiation and undifferentiated small round cell sarcomas. In the case of bone tumors, the following subclassification based on the cell population of origin exists: Chondrogenic, osteogenic, fibrogenic, vascular, osteoclastic giant cell-rich, or notochordal. Two further subcategories are listed in the WHO classification: Other mesenchymal bone tumors and hematopoietic neoplasms of the bone.

The results of our literature search are outlined in Appendixes 2 and 3 and show that 92 out of 163 entities were reported to occur either in spinal bones or paraspinal soft tissue. We categorized 92 entities with imaging [Appendix 2] and clinical/molecular findings [Appendix 3], as well as recommended surgical and nonsurgical treatment options.

Appendix 3 shows a comprehensive characterization of each tumor by: Growth pattern (infiltrative/locally destructive or not), ability to metastasize, ability to undergo malignant transformation, mean age at diagnosis, incidence, suggested mode of resection (intralesional resection A, marginal en bloc resection B, wide, or compartmental en bloc excision C), recurrence rate, treatment strategy, tumor risk factors, 5-year overall survival (OS) rate, genetic/molecular tumor characteristics, possible associated tumor syndromes, and corresponding cross-sectional imaging findings are presented in Appendix 2.

As shown in Appendix 3, the incidence rates for primary extradural spinal bone or soft-tissue tumors range from 2% (hemangioma) to a low of only two published cases for spinal nodular fasciitis. The survival rates of malignant lesions range from 94% for 5 year OS for ossifying fibromyxoid tumor to 7% for dedifferentiated osteosarcoma. A total of 54 entities...
DISCUSSION

The most recent edition of the WHO classification of bone and soft-tissue tumors lists a total of 163 tumor entities, out of which 92 have been previously reported in the literature to potentially occur in the spine. Surgical resection is the integral part of treatment for most of these lesions and follows the overriding principles outlined by Enneking et al. in 1980,[1] as shown in Figure 1. Type B and C resections are more complex than type A resections with higher rates of complications; however, type B/C resections are associated with superior oncologic outcome as compared to type A resections for malignant lesions.[3] It must be noted that given to the unique anatomy of the spine, when compared to long bones, in many cases, a type B resection might be indicated. While type B resections may not be technically feasible, spine surgeons may opt for type C resections with a wider excision. Figure 2 provides an overview of important growth characteristics of malignant bone and soft-tissue tumors. As indicated, the growth pattern of sarcomas is infiltrative. Even with a rim of reactive tissue, the pseudocapsule may act only as a weak barrier to prevent tumor spread. While the pseudocapsule has been shown to restrict tumor permeation after radio- or chemotherapy it is not a true barrier for tumor spread.[4] Cortical bone as well as major fascial planes, such as pleura or peritoneum are considered bone fide barriers. It is known from radiologic studies that infiltrating tumor nests, known as skip lesions, outside the primary tumor can be depicted on magnetic resonance imaging (MRI) in up to 16.5% of patients.[5] As shown in Figure 2, once the cortical bone of the vertebra is breached, the tumor cells can freely spread until they reach the next level of solid barrier [routes A-D in Figure 2]. As has been shown in previous correlating studies between preoperative imaging and intraoperative histologic analysis, the mean discrepancy between tumor margin on preoperative MRI and intraoperative histology for osteosarcomas is 5 mm.[6,7] Since short-tau inversion recovery and postcontrast T1 imaging overestimates the tumor extend by 1.68 cm, tumor outline is best depicted on noncontrast-enhanced T1 images.[6] Therefore, in our own experience if a malignant tumor is confined to one compartment, we perform either a type B resection with a margin of 5 mm on top of the tumor outline in the preoperative noncontrast T1 images, or we perform a type C resection, which will remove the whole tumor bearing compartment. If a malignant tumor extends into more than one compartment (e.g., cortical bone erosion in the case of vertebral osteosarcomas), we prefer to discuss either neo-adjuvant treatment to "downsize" the tumor (the more compartments the tumor extends into, the less likely a true wide en bloc resection can be achieved) or surgery to encompass an en bloc resection of the primary tumor bearing compartment plus the extension into a neighboring compartment with a safety margin of at least 5 mm.

How to incorporate these principles into surgical practice depends on the index level. In the case of C1 and C2, oncologic resections type B and C in most cases require a transmandibular approach [Figure 3]. When compared to the rest of the cervical spine negative margins are less likely to be obtained due to the anatomical complexity of the region.[9] For the rest of the mobile spine the WBB system has been proposed to choose the appropriate approach or combination of approach to perform a type B or C resection [Figure 4].[10] The choice of approach for oncologic resections of the sacrum is mainly determined by

![Figure 1: Overview of the three different surgical types of resection in the treatment of spinal tumors](image-url)
the anatomic level of the lesion as well as the presence of visceral tumor infiltration. Figure 5 outlines our institutional algorithm to such lesions. Only lesions located below the inferior margin of the sacroiliac joint (SIJ) without visceral invasion are resected using a posterior-only approach. All other lesions are resected using an anterior/posterior approach. Reconstruction of the pelvic ring is necessary if more than 50% of the SIJs are resected. In instances where the tumor extends by more than 3 cm beyond the SIJ, we consider them as primarily inoperable (due to the large tumor volume and complexity of reconstruction).

Reconstruction of large resection cavities in many cases requires the involvement of plastic surgery and is beyond the scope of this article.

En bloc resections are technically demanding and have been shown to have higher complication rates when compared to type A resections, particularly when more than 1 level is being resected (Spiessberger A, PubMed ID pending), even though lesion etiology seems to have less impact on complication rates.

Given the profile of potential complications in the case of type B and C resections, rigorous preoperative planning is of paramount importance. Neurologic deficits are particularly devastating to patients and should be avoided at all costs. Other than direct mechanical injury, ischemic spinal cord injury has been reported to occur on rare occasions.\(^{[11,12]}\) Even though spinal cord blood supply is highly collateralized, postoperative infarcts can be a complication due to segmental vessel ligation.\(^{[11,13]}\) Spinal cord blood supply is established through the anterior spinal artery, a branching vessel of the vertebral arteries, as well as from posterior spinal arteries through branching vessels of either vertebral or posterior inferior cerebellar arteries. Collateral flow is provided through variable radiculomedullary vessels, typically 2-3 cervical (bilaterally equal), 2-3 thoracic (left more than right), and 0-1 lumbar (left more than right).\(^{[12]}\) Three major radiculomedullary vessels are described: The artery of cervical enlargement (usually a branching vessel from the ascending cervical artery at C6), the artery “von Haller” (usually the T5 segmental vessel) as well as the artery of Adamkiewicz (usually the T10 segmental vessel).\(^{[14]}\) Watershed areas, susceptible to ischemic infarction in cases of hypotension or hypoxia have been suggested in the mid thoracic spine as well as the posterior aspect of the conus medullaris.\(^{[15]}\) Type B and C resections require segmental artery ligation; however, recent studies have suggested that up to three adjacent segmental vessel can be sacrificed safely.\(^{[16,17]}\) We believe, that caution should be taken when ligating one of the three major radiculomedullary vessels, as described above. Preoperative high-resolution CT angiography can help localize the level of these three vessels. Intraoperative temporary nerve root/segmental vessel clamping with cautious observation of motor evoked potential/somatosensory evoked potential is important as well. In addition, intraoperative and postoperative hypotension should be avoided at all costs when a major radiculomedullary vessel has been sacrificed. It is also worth noting that the choice of vasopressor might make a difference as well. Animal studies comparing norepinephrine and phenylephrine in their properties to increase spinal cord perfusion in the setting of hypotension have shown, that norepinephrine provides better restoration of blood flow and oxygenation.\(^{[18]}\) One should also recognize that radiculomedullary vessel ligation may not only render the patient more susceptible to ischemic cord injury, but also
surgical trauma to segmental vessels or vertebral arteries can lead to embolic cord infarcts caused by vessel dissections.\cite{19}

In the case of cervical type B and C resections, preoperative endovascular sacrifice of one vertebral artery in case high degree tumor encasement (>180°) can be safely performed following careful study of a CT angiogram of both cervical vessels and posterior circulation. Side dominance, potential stenoses, size or absence of the posterior communicating arteries (in the case of fetal posterior cerebral artery variants) must be determined. Moreover, temporary endovascular balloon occlusion can be considered to determine the safety of vessel occlusion.

CONCLUSION

Based on the 5th Edition of the WHO bone and soft tumor classification, we identified 92 out of 163 tumor entities, which potentially can have spinal manifestations. Exact preoperative tissue diagnosis and interdisciplinary case discussions are crucial. Surgical planning has to be tailored to the specific biologic behavior of the targeted tumor entity based on the considerations outlined in detail in this article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res 1980;153:106-20.
2. WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours: WHO Classification of Tumours (Medicine). 5th ed. Lyon: World Health Organization; 2020.
3. Yamazaki T, McLoughlin GS, Patel S, Rhines LD, Fourney DR. Feasibility and safety of en bloc resection for primary spine tumors: A systematic review by the Spine Oncology Study Group. Spine (Phila Pa 1976) 2009;34:S31-8.
4. Gitelis S, Thomas R, Templeton A, Schajowicz F. Characterization of the pseudocapsule of soft-tissue sarcomas. An experimental study in rats. Clin Orthop Relat Res 1989;246:285-92.
5. Saiwuddin A, Sharif B, Oliveira I, Kalus S, Barnett J, Pressney I. The incidence of skip metastases on whole bone MRI in high-grade bone sarcomas. Skeletal Radiol 2020;49:945-54.
6. Jin T, Deng ZP, Liu WF, Xu HR, Li Y, Niu XH. Magnetic resonance imaging for the assessment of long bone tumors. Chin Med J (Engl) 2017;130:2547-50.

7. O’Flanagan SJ, Stack JP, McGee HM, Dervan P, Hurson B. Imaging of intramedullary tumour spread in osteosarcoma. A comparison of techniques. J Bone Joint Surg Br 1991;73:998-1001.

8. Putta T, Gibikote S, Madhuri V, Walter N. Accuracy of various MRI sequences in determining the tumour margin in musculoskeletal tumours. Pol J Radiol 2016;81:540-8.

9. Molina CA, Ames CP, Chou D, Rhines LD, Hsieh PC, Zadnik PL, et al. Outcomes following attempted en bloc resection of cervical chordomas in the C-1 and C-2 region versus the subaxial region: A multiinstitutional experience. J Neurosurg Spine 2014;21:348-56.

10. Boriani S, Weinstein JN, Biagini R. Primary bone tumors of the spine. Terminology and surgical staging. Spine (Phila Pa 1976) 1997;22:1036-44.

11. Ng YH, Kato S, Demura S, Shinmura K, Yokogawa N, Nakade Y, et al. Delayed ischemic spinal cord injury after total en bloc spondylectomy in the thoracic spine. J Orthop Sci 2021 Jan 8;S0949-2658(20)30373-0.

12. Melissano G, Civilini E, Bertoglio L, Calliari F, Campos Moraes Amato A, Chiesa R. Angio-CT imaging of the spinal cord vascularisation: A pictorial essay. Eur J Vasc Endovasc Surg 2010;39:436-40.

13. Du C, Liu S, Jia F, Liu X, Wei F. Delayed incomplete paraplegia after en bloc spondylectomy of thoracic metastasis, a case report. 2020.

14. Gailloud P. The artery of von Haller: A constant anterior radiculomedullary artery at the upper thoracic level. Neurosurgery 2013;73:1034-43.

15. Gailloud P, Gregg L, Galan P, Becker D, Pardo C. Pericentral arterial anastomotic circle and posterior lumbosacral watershed zone of the spinal cord. J Neurointerv Surg 2015;7:848-53.

16. Kato S, Kawahara N, Tomita K, Murakami H, Demura S, Fujimaki Y. Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiewicz: An experimental study using a dog model. Spine (Phila Pa 1976) 2008;33:1533-41.

17. Murakami H, Kawahara N, Tomita K, Demura S, Kato S, Yoshioka K. Does interruption of the artery of Adamkiewicz during total en bloc spondylectomy affect neurologic function? Spine (Phila Pa 1976) 2010;35:E1187-92.

18. Streijger F, So K, Manouchehri N, Gheorghe A, Okon EB, Chan RM, et al. A direct comparison between norepinephrine and phenylephrine for augmenting spinal cord perfusion in a porcine model of spinal cord injury. J Neurotrauma 2018;35:1345-57.

19. Montalvo M, Bayer A, Azher I, Knopf L, Yaghi S. Spinal cord infarction because of spontaneous vertebral artery dissection. Stroke 2018;49:e314-7.
APPENDIXES

Appendix 1: List of bone and soft tissue tumors

Soft tissue tumours	Appendix 1: Contd...
Adipocytic tumours	Superficial CD34-positive fibroblastic tumour
Angiolipoma	So-called fibrohistiocytic tumours
Atypical lipomatous tumour/well-differentiated liposarcoma	Deep fibrous histiocytoma
Atypical spindle cell/pleomorphic lipomatous tumour	Giant cell tumour of soft tissue
Chondroid lipoma	Plexiform fibrohistiocytic tumour
Hibernoma	Tenosynovial giant cell tumour
Lipoblastoma and lipoblastomatosis	Vascular tumours
Lipoma	Angiosarcoma
Lipomatosis	Haemangiendothelioma, composite
Lipomatosis of nerve	Haemangiendothelioma, epithelioid
Liposarcoma, dedifferentiated	Haemangiendothelioma, pseudomyogenic
Liposarcoma, myxoid	Haemangiendothelioma, retiform
Liposarcoma, myxoid pleomorphic	Haemangioma
Liposarcoma, pleomorphic	Haemangioma, anastomosing
Myolipoma of soft tissue	Haemangioma, epithelioid
Spindle cell lipoma and pleomorphic lipoma	Intramuscular angioma
Fibroblastic and myofibroblastic tumours	Kaposi sarcoma
Acral fibromyxoma	Lymphangioma and lymphangiomatosis
Angiobroma of soft tissue	Papillary intralymphatic angioendothelioma
Angiomyofibroblastoma	Synovial haemangioma
Calcifying aponeurotic fibroma	Tufted angioma and kaposiform haemangiendothelioma
Cellular angiofibroma	Venous haemangioma, venous
Dermatofibrosarcoma protuberans	Pericytic (perivascular) tumours
Desmoid fibromatosis	Angioleiomyoma
Desmoplastic fibroblastoma	Glomus tumour
Elastofibroma	Myopericytoma, including myofibroma
EWSR1-SMAD3-positive fibroblastic tumour (emerging)	Smooth muscle tumours
Fibroma of tendon sheath	EBV-associated smooth muscle tumour
Fibromatosis colli	Inflammatory leiomyosarcoma
Fibrosarcoma, adult	Leiomyoma
Fibrosarcoma, infantile	Leiomyosarcoma
Fibrous hamartoma of infancy	Skeletal muscle tumours
Gardner fibroma	Ectomesenchymoma
Giant cell fibroblastoma	Rhabdomyoma
Inclusion body fibromatosis	Rhabdomyosarcoma, alveolar
Inflammatory myofibroblastic tumour	Rhabdomyosarcoma, embryonal
Ischaemic fasciitis	Rhabdomyosarcoma, pleomorphic
Juvenile hyaline fibromatosis	Rhabdomyosarcoma, spindle cell
Lipoblastoma	Gastrointestinal stromal tumour
Low-grade fibromyxoid sarcoma	Gastrointestinal stromal tumour
Low-grade myofibroblastic sarcoma	Chondro-osseous tumours
Myofibroblastoma	Soft tissue chondroma
Myoositis ossificans and fibro-osseous pseudotumour of digits	Extraskeletal osteosarcoma
Myofibrosarcoma	Peripheral nerve sheath tumours
Myxoinflammatory fibroblastic sarcoma	Benign triton tumour/neuromuscular choristoma
Nodular fasciitis	Dermal nerve sheath myxoma
Nuchal-type fibroma	Ectopic meningioma and meningothezial hamartoma
Palmar fibromatosis and plantar fibromatosis	Granular cell tumour
Proliferative fasciitis and proliferative myositis	Hybrid nerve sheath tumour
Sclerosing epitheloid fibrosarcoma	Malignant melanotic nerve sheath tumour
Solitary fibrous tumour	Malignant peripheral nerve sheath tumour
	Neurofibroma
Appendix 1: Contd...

Perineurioma	Osteosarcoma, high-grade surface
Schwannoma	Osteosarcoma, low-grade central
Solitary circumscribed neurona	Osteosarcoma, parosteal
Tumours of uncertain differentiation	Osteosarcoma, periosteal
Alveolar soft part sarcoma	Osteosarcoma, secondary
Angiomatoid fibrous histiocytoma	Fibrogenic tumours (see soft tissue tumors)
Atypical fibroxanthoma	Vascular tumours of bone (seesoft tissue tumors)
Clear cell sarcoma of soft tissue	Osteoclastic giant cell-rich tumours
Deep (aggressive) angiomyxoma	Aneurysmal bone cyst
Desmoplastic small round cell tumour	Giant cell tumour of bone
Epithelioid sarcoma	Nonossifying fibroma
Extrarenal rhabdoid tumour	Notochordal tumours
Extraskeletal myxoid chondrosarcoma	Benign notochordal cell tumour
Haemosiderotic fibrolipomatous tumour	Conventional chordoma
Intimal sarcoma	Dedifferentiated chordoma
Intramuscular myxoma	Poorly differentiated chordoma
Juxta-articular myxoma	Other mesenchymal tumors of bone (see soft-tissue tumors)
Myoepithelioma, myoepithelial carcinoma, and mixed tumour	Haematopoietic neoplasms of bone
NTRK-rearranged spindle cell neoplasm (emerging)	Erdheim-chester disease
Ossifying fibromyxoid tumour	Langerhans cell histiocytosis
PEComa	Plasmyctoma of bone
Phosphaturic mesenchymal tumour	Primary non-Hodgkin lymphoma of bone
Pleomorphic hyalinizing angiectatic tumour of soft parts	Rosai-Dorfman disease
Synovial sarcoma	**EBV** - Ebstein Barr virus
Undifferentiated sarcoma	
Undifferentiated small round cell sarcomas of bone and soft tissue	
CIC-rearranged sarcoma	Osteosarcoma, high-grade surface
Ewing sarcoma	Osteosarcoma, low-grade central
Round cell sarcoma with EWSR1-non-ETS fusions	Osteosarcoma, parosteal
Sarcoma with BCOR genetic alterations	Osteosarcoma, periosteal

Bone tumours

Chondrogenic tumours

- **Bizarre parosteal osteochondromatous proliferation**
- Central atypical cartilaginous tumour/chondrosarcoma, Grade 1
- Chondroblastoma
- Chondromyxoid fibroma
- Chondrosarcoma, central Grades 2 and 3
- Chondrosarcoma, clear cell
- Chondrosarcoma, dedifferentiated
- Chondrosarcoma, mesenchymal
- Chondrosarcoma, periosteal
- Chondrosarcoma, secondary peripheral Grades 2 and 3
- Enchondroma
- Osteochondroma
- Osteochondromyxoma
- Periosteal chondroma
- Secondary peripheral atypical cartilaginous tumour/chondrosarcoma, Grade 1
- Subungual exostosis
- Synovial chondromatosis

Osteogenic tumours

- Osteoblastoma
- Osteoid osteoma
- Osteoma
- Osteosarcoma

Contd...
Appendix 2: Radiographic overview of primary spinal neoplasms

Adipocytic Tumors

Tumor Entity	Patient Age/Sex	Imaging Details
Angioproliferative tumor	69m, axial T1W+ L2	Kang H et al.
Angioprolificative tumor	67m, axial T1W+ L3	Maniago P et al.
Lipoma	54m, axial CT L3	Hooshnavine K et al.
Liposarcoma	79m, axial T2W T5-7	Rovlias A et al.
Liposarcoma, myxoid	75m, axial T2W T5	

Fibroblastic / Myofibroblastic Tumors

Tumor Entity	Patient Age/Sex	Imaging Details
Desmoid-type fibromatosis	31m, axial CT L5/4	Kwon Y et al.
Desmoplastic fibroblastic sarcoma	85m, axial T1W+ L3	Zhang Y et al.
Eosinophilic fibroma	1m, axial T1W+ L2	Wang S et al.
Fibrosarcoma, adult	33m, axial T2W C3	Simone C et al.
Fibrosarcoma, infantile	0.25m, axial T2W T12	Weng S et al.
Inflammatory myofibroblastic tumor	5m, axial T2W L4/S	Weng S et al.
Lipofibromatosis	1.5m, axial T2W T7	Sibiya V et al.

Fibrohistiocytic Tumors

Tumor Entity	Patient Age/Sex	Imaging Details
Benign fibrous histiocytoma	23m, axial CT T7	Liu S et al.
smooth muscle tumors

Tumor Entity	Patient Age/sex; Imaging	Source
EBV associated smooth muscle tumor	24m; axial T1W T2	Ehresman JS et al.
Leiomyoma	44f; axial T2W C5/6	lwakura K et al.
Leiomyosarcoma	47f; axial T2W T11	Lo TH et al.

pericytic tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Myopericytoma	50f; axial T2W T8	Agiwal N et al.

skeletal muscle tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Ectomesenchymoma	61m; axial T2W L5	Kimura S et al.
Rhabdomyosarcoma, alveolar	20f; axial T2W T3/4	Sotene B et al.
Rhabdomyosarcoma, embryonal	5m; sag T1W+ C5-T3	Kumboldt Z et al.
Rhabdomyosarcoma, pleomorphic	59m; sag T2W T9/10	Spaleholz M et al.
Rhabdomyosarcoma, spindle cell	70f; axial CT L5	Tagami M et al.

Contd...
Appendix 2: Contd...

Vascular Tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Angiosarcoma	38m; axial T2W T11	Gao X et al.
Hemangiendothelioma, composite	41m; sag T2W T4	Thomas AC et al.
Hemangiendothelioma, epithelial	78m; axial CT L4	Lee C et al.
Hemangiendothelioma, kaposiform	50m; axial CT C3	Makis W et al.
Hemangiendothelioma, reiform	45m; axial T1W T5	Vadillo LM et al.
Hemangioendothelioma	0.5 m; axial T1W T5	Ghermandi R et al.

Peripheral Nerve Sheath Tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Ectopic meningioma	46m; sag T1W+ sacral	Lo I et al.
Hybrid nerve sheath tumor	47m; sag T2W lumbar	Masselli M et al.
Malignant peripheral nerve sheath tumor	30y; sag T2W L5	Keitel SA et al.
Neurofibromatosis	54f; axial T1W T3	De Wandeler T et al.

Uncertain Differentiation

Tumor Entity	Patient Age/sex; Imaging	Source
Clear cell sarcoma	48f; sag T1W+ sacral	Tse K et al.
Desmoplastic small round cell tumor	51m; sag T2W T11	Loo G et al.
Neurofibrosarcoma	54m; sag T2W T5	Mak W et al.
Extramedullary histiocytosis tumor	87m; sag T1W+ sacral	Cheung WY et al.
Myoepithelioma	54m; axial T2W 111	Tse K et al.

Undifferentiated Small Round Cell Tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Neuroblastoma	32m; axial T1W+ L1	Elshafi M et al.
Ewing sarcoma	58m; axial T2W 111	Iacoangeli M et al.
Synovial sarcoma	39m; sag T2W T11	Kim W et al.
Liposarcoma	54m; sag T2W T5	Yang et al.

Contd...
Appendix 2: Contd...

chondrogenic tumors

Tumor Entity	Patient Age/Sex	Imaging	Source
Chondroblastoma	21f, axial CT L3		Shakir TM et al.
Chondroblastoma	21m, axial CT L5		Gutierrez-Gonzalez R et al.
Chondroblastoma, clear cell	61m, axial T1W T4		Padole A et al.
Chondroblastoma, mesenchymal	31m, axial CT L4		Fukuda A et al.
Chondrosarcoma	61m, axial CT L1		Strike SA et al.
Chondrosarcoma, dedifferentiated	81m, axial CT C2		Kataki Y et al.
Chondrosarcoma	41f, axial CT T3		Guo J et al.

Chondroblastoma	21f, axial CT C3		Veilandi R et al.
Chondroblastoma	21f, axial T1W T9		Yu W et al.
Chondroblastoma	29m, axial CT L2		Abreuza A et al.
Chondrosarcoma	46m, axial CT C2		Strike SA et al.
Chondrosarcoma	31m, sag T2W T10		Greyede RS et al.

osteogenic tumors

Tumor Entity	Patient Age/Sex	Imaging	Source
Osteoblastoma	20f, axial CT T12		Bhargava P et al.
Osteosarcoma, chondroblastic	21m, axial T2W L5		Sapkas G et al.
Osteosarcoma, fibroblastic	81m, sag T2W T12		Forlizzi J et al.
Osteosarcoma, osteoblastic	32f, axial CT T3		Scudday TS et al.
Osteosarcoma, teleangiectatic	18f, axial T2W T11		Katoni P et al.

| Osteosarcoma, low grade central | 42f, sag T1W L5 | | Asdi ARB et al. |
| Osteosarcoma, secondary | 72m, axial CT T12 | | Softa CM et al. |

osteoclastic giant cell-rich tumors

Tumor Entity	Patient Age/Sex	Imaging	Source
Aneurysmal bone cyst	15m, axial T2W T1		Kish J et al.
Giant cell tumor	21f, axial CT T6		Wang K et al.
Malignant giant cell tumor	22m, axial T2W T16		Yuge Y et al.

Aneurysmal bone cyst	15m, axial T2W T1		Kish J et al.
Giant cell tumor	21f, axial CT T6		Wang K et al.
Malignant giant cell tumor	22m, axial T2W T16		Yuge Y et al.

Contd...
Appendix 2: Contd...

notochordal tumors

Tumor Entity	Patient Age/sex; Imaging	Source
Benign notochordal tumor	22m; sag T2W S1	Tateda S et al. 85
Chordoma, conventional	64m; axial T2W T6	Liu S et al. 86
Chordoma, dedifferentiated	41f; axial T2W S2	Kim SC et al. 87
Chordoma, poorly differentiated	58m; cor T2W S1	Rekhi B et al. 88

haematopoietic neoplasms of bone

Tumor Entity	Patient Age/sex; Imaging	Source
Non-Hodgkin lymphoma of the bone	23m; sag T2W C7	Smith ZA et al. 89
Plasmacytoma	64f; sag CT T5	Röpke EF et al. 90
nerve sheath tumor in spine: two case reports. South Asian J Cancer 2013;2:141.
48. Kumar SA, Kumar M, Malgonde M. Dumbbell-shaped neurofibroma of the upper thoracic spine: A case report. South Asian J Cancer 2013;2:26.
49. Gao X, Zhao C, Wang J, et al. Surgical management and outcomes of spinal clear cell sarcoma: A retrospective study of five cases and literature review. J Bone Oncol 2017;6:27-31.
50. Thomas AC, Rajashekkaran R. A rare case of dumbbell-shaped primary intraspinal peripheral primitive neuroectodermal tumor involving thoracic spinal epidural space. Asian Journal of Neurosurgery. 2018;13:1216.
51. Lee C, Choe WJ, Kim N. Epithelioid sarcoma in the cervical spine: A case report. Korean J Spine 2015;12:165.
52. Makis W, Ciariello A, Hixkens M. Malignant extrarenal rhabdoid tumor of the spine: staging and evaluation of response to therapy with F-18 FDG PET/CT. Clinical Nuclear Med 2011;36:599-602.
53. Rao P, Colen RR, Bruner JM, Meis JM. Extraskeletal myxoid chondrosarcoma as an intradural spinal mass: Report of a rare clinical presentation with an emphasis on differential diagnostic considerations. Rare Tumors 2014;6:150-3.
54. Choi DY, Kim JT, Kim J, Lee HJ. Atypical intramuscular myxoma of the lumbosacral paraspinous muscle: The first case report in Asian. Journal of Korean Neurosurgical Society 2015;58:566.
55. Ghermandi R, Pala E, Gambarotti M, Colangeli S, Boriani S. Myoepithelioma of the spine: first case in literature. Eur Rev Med Pharmacol Sci 2014;18(suppl 1):66-71.
56. Dupuis M, Shen Y, Curcio C, et al. Successful treatment of lipofibromatosis-like neural tumor of the lumbar spine with an NTRK-fusion inhibitor. Clin Sarcoma Res 2020;10:1-7.
57. De Wandelé T, Van Gestel D, Tchofo PJ. Ossifying Fibromyxoid Tumor of Spinal Cord Compression and Epiduritis. J Belgian Society Radiol 2019;103(1).
58. Komune N, Masuda S, Yasumatsu R, et al. Malignant perivascular epithelioid cell tumor mimicking jugular foramem schwannoma: A case report and literature review. Heliyon. 2020;6:e03200.
59. Machtara J, Yamashita K, Hiwatashi A, et al. Primary phosphaturic mesenchymal tumour of the lumbar spine: utility of 68Ga-DOTATOC PET/CT findings. BJR Case Rep 2016:20150497.
60. Yang M, Zhong N, Zhao C, et al. Surgical management and outcome of synovial sarcoma in the spine. World J Surg Oncol 2018;16:1-11.
61. Iacangieli M, Dobran M, Di Rienzo A, et al. Nonmetastatic Ewing’s sarcoma of the lumbar spine in an adult patient. Case Rep Oncol Med 2012;2012.
62. Shaktir TM, Li W, Niu C, Zhang M. Chondroblastoma of the lumbar vertebra. Journal of Ayub Medical College Abbottabad. 2018;30(4):604-606.
63. Gutiérrez-González R, De Reina L, Saab A, Jiménez-Heffernan J, García-Uría J. Chondromyxoid fibroma of the lumbar spine: Case report and literature review. European Spine J 2012;21:458-462.
64. Paidakakos NA, Rovlias E, Rokas A, Theodoropoulos S, Katafygiotis A. Diagnosis of benign notochordal cell tumor of thoracic vertebrae: A case report. AME Case Reports 2019;3.
65. Kokubo Y, Uchida K, Kobayashi S, et al. Primary osteosarcoma of the thoracic spine: report of an unusual elderly patient with autopsy findings. Spinal cord. 2005;43(8):508-511.
66. Katonis P, Datsis G, Karantanas A, et al. Spinal osteosarcoma. Clinical Medicine Insights: Oncology. 2013;7:CMO. S10099.
67. Asdi ARB, Kamal AF. Low-grade intramedullary osteosarcoma presenting with multiple sclerotic bone lesions. Radiol Case Rep 2018;13:1042-7.
68. Sořka CM, Ciavarra G, Saboeiro G, Gielman B. Paget's disease of the spine and secondary osteosarcoma. HSS Journal®. 2005;2:188-90.
69. Eun J, Oh Y. A case report of aneurysmal bone cyst of the thoracic spine treated by serial anterior and posterior fusion. Med 2019;98:1-7.
70. Zheng K, Xu M, Wang B, Yu X, Hu Y. Giant cell tumor of the mobile spine occurring in pregnancy: A case report and literature review. Orthopaedic Surg 2017;9:252-6.
71. Yu H, Shi R, Peng Z-G, Yu B-H, Cui J-L. Primary malignancy in giant cell tumor of thoracic vertebrae: A case report. Med 2018;97:1-7.
72. Yang J, Zhong N, Hu J, Yang X, Xiao J. Total vertebral involvement by benign fibrous histiocytoma: A case report and literature review. J Bone Oncology 2020;20:100274.
73. Tateda S, Hashimoto K, Aizawa T, et al. Diagnosis of benign notochordal cell tumor of the spine: Is a biopsy necessary? Clin Case Rep 2018;6:63.
74. Liu S, Zhou X, Song A, et al. Surgical treatment of giant chordoma in the thoracic spine combining thoracoscopic and posterior spinal surgery: A case report. Med 2019;98.
75. Kim SC, Cho W, Chang U-K, Youn SM. Two cases of dedifferentiated chordoma in the sacrum. Korean J Spine 2015;12:230.
76. Rekhi B, Banerjee D, Ramadwar M, Bajpai J, Jambhekar NA. Clinicopathologic features of four rare types of chordomas, confirmed by brachyury immunostaining. Indian J Pathol and Microbiology 2017;60:350.
77. Smith ZA, Sedrak MF, Khoo LT. Primary bony non-Hodgkin lymphoma of the cervical spine: A case report. J Medical Case Rep 2010;4:1-4.
78. Röpke E, Theissig F, Ullrich G, et al. Solitary plasmacytoma of thoracic vertebra in a woman with Lynch syndrome: A case report. Int J Surg Case Rep 2019;65:44-47.
Appendix 3: Characteristics of primary spinal neoplasms

Adipocytic Tumors

Tumor Type	Important differential diagnosis	Infiltrating/malignant transformation/local destruction/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Recurrence treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndromes
Angiolipoma	-	possible/no/no	2nd-3rd decade	~1% of spinal tumors	A	<5%	resection	-	NA	PRKD2	
Atypical lipomatous tumour/ well-differentiated liposarcoma	-	possible/no/no advanced/yes in 2nd-3rd decade	4th-5th decade	50% of liposarcomas	B	11%	resection; RT or Sx + RT**	-	92%	MDM2 and/or CDK4 amplification	Li Fraumeni Syndrome
Hibernoma	atypical lipomas, well-differentiated liposarcoma	no/no/no	38	1% of adipocytic tumors	A	<5%	resection if symptomatic	-	NA	Chromosome 11q13 deletion	MEN 1
Lipoblastoma, lipoma, hibernoma, liposarcoma	no/no/no		4	?	B	13-46%*	resection	-	NA	PLAG1	
Lipoma	no/no/no		36	14 cases	A	<5%	resection if symptomatic	obesity	NA	HMGA2	PTEN hamartoma syndrome
Lipomatosis	no/no/no		68	6% of patients with spinal stenosis	A	5%*	resection if symptomatic	steroid, alcohol	NA	-	
Liposarcoma, myxoid	yes/no	childhood, 4th-5th decade	20%	20% of liposarcomas	C	12-25%	resection; RT*, CH*	-	89%	FUS-DDIT3 or rarely EWSR1-DDIT3	-
Liposarcoma, pleomorphic	yes/no	7th decade	<5% of liposarcomas	5% of liposarcomas	C	45%	resection; CH	-	57%	-	
Myolipoma	no/no/no	adulthood	?	?	A	resection if symptomatic	resection	-	NA	HMGA2	
Spindle cell lipoma	Liposarcoma	possible/no/no	45-60	?	A	<5%	resection	-	NA	Chromosome 13 and/or 16 deletion	-

Fibroblastic and Myofibroblastic Tumours

Tumor Type	Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Recurrence treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndromes
Desmoid-type fibromatosis	-	yes/no/no	37-39	0.4/100000	B or C***	33%	resection vs close observation; CH alone in FAP associated cases	trauma, pregnancy	52%***	CTNMB1 or APC mutations	FAP
Desmoplastic fibroblastoma	-	yes/no/no	6th decade	?	A	<5%	resection	-	NA	t (2;11)(q31;q12)	
Elastofibroma	-	no/no/no	7th-8th decade	2%	A	<5%	resection if symptomatic	-	NA	gains of 6q25-q25 and Xq12-q22	-
Fibrosarcoma, adult	yes/yes/yes	50	<1% of STS	C	20%	resection + CH vs neoadjuvant CH + resection*	foreign body, previous irradiation	55%	STRN3-NTRK3 fusion	-	

Contd...
Appendix 3: Contd...

Diagnosis	Incidence%	Type of surgery	Treatment	Risk Factors	Protein/Gene	Possible Associated Tumor Syndromes
Fibrosarcoma, infantile	-				ETV6-NTRK3 fusion	
Inflammatory myofibroblast tumor	-				ALK fusions (EGF, HBEGF, TGF-α) to EGFR (HER1) or EGR	
Lipofibromatosis	-					
Low grade fibromyxoid sarcoma	-					
Solitary fibrous tumor	-					

Fibrohistiocytic Tumors

Diagnosis	Incidence%	Type of surgery	Treatment	Risk Factors	Protein/Gene	Possible Associated Tumor Syndromes
Deep benign fibrous histiocytoma	-				PRKCB or PRKCD rearrangements	

Smooth Muscle Tumors

Diagnosis	Incidence%	Type of surgery	Treatment	Risk Factors	Protein/Gene	Possible Associated Tumor Syndromes
EBV associated smooth muscle tumor	-					
Leiomyoma	-					
Leiomyosarcoma	-					

Pericytic Tumors

Diagnosis	Incidence%	Type of surgery	Treatment	Risk Factors	Protein/Gene	Possible Associated Tumor Syndromes
Myopericytoma	-					
Skeletal Muscle Tumors

Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndromes
Ectomesenchymoma^{1,32}	- yes/NA/yes	0.6	50 cases	C	50%	resection, CH/RT	-	83	Hras mutations complex	-
Rhabdomyosarcoma, pleomorphic^{1,33,34}	- yes/NA/yes	72	3.5% of STS (all rhabdoses)	C	54%	resection, CH/RT	-	26	-	-
Rhabdomyosarcoma, alveolar^{1,35}	- yes/NA/yes	10-24	25% of rhabdoses	C	63%	resection, CH/RT	-	27	PAX3-FOXO1 or a PAX7-FOXO1 fusion gene complex	-
Rhabdomyosarcoma, embryonal^{1,36}	- yes/NA/yes	2-20	0.45/100000	C	28%	resection, CH/RT	-	58	Castello syndrome, NF 1, Noonan syndrome, Li–Fraumeni syndrome	-
Rhabdomyosarcoma, spindle cell^{1,37}	- yes/NA/yes	34	3-10% of rhabdoses	C	33%	resection, CH/RT	-	18	VGLL2/NCOA2 or TFCP2/NCOA2 rearrangements	-

Vascular Tumors

Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndromes	
Angiosarcoma^{1,38}	- yes/no/rarely	7th decade	2% of STS	C	20%	resection + RT/CH/TT	radiation, lymph-edema, forie bodies, AV fistulas, hemangiom as radiation, lymph-edema,	30-40%	MYC gene amplifications	NF, Maffucci syndrome	
Hemangioblastoma^{1,39}	- yes/no/rarely	43	26 cases	B	50%	resection		62-83%	PTBP1-MAML2 and EPC1-PCH2 gene fusion	-	
Hemangioblastoma^{1,40}	- yes/no/rarely	adulthood	0.1/100000	C	?	resection + CH/RT		59%	WWTR1-CAMTA1 gene fusion	-	
Hemangioblastoma^{1,41}	- yes/no/rarely	1	0.9/100000	B	<5%	vincristine, steroid, sirolimus vs resection		-	GNA14 mutations	-	
Hemangioblastoma^{1,42}	- yes/no/rarely	30	?	A	60%	resection		-	SERPINE1 to FOSB or ACTB-FOSB fusion	-	
Hemangioblastoma, retiform¹	- no/no/rarely	childhood	40 cases	B or C	60%	resection	radiation, lymph-edema, lymph-angioma trauma	-	-	-	
Hemangioma, epitheloid^{1,43}	- rarely/no/rarely	4th decade	?	A or B	33%	resection	-	-	FOS or FOSB gene	-	
Hemangioma^{1,44}	- no/no/no	51	2%	A or B	3-50%	if symptomatic: Embo + resection { +/- kypho, +/- adjuvant RT} vs Rt alone, vs	-	-	-		
Kaposi sarcoma^{1,45,46}	- yes/no/yes	?	400-600/100000	-	-	immunoreconstitution, CH resection	immunosuppression	74%	-	-	
Lymphangioma¹	- no/no/no	congenital	?	A or B	20%	resection	-	PIK3CA mutations	Tumor syndrome	-	-
Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndromes	
----------------------------------	---	----------	-----------	---------------------------	----------------	-----------	-------------	-------	-------------	-----------------------------------	
Ectopic meningioma\(^{147,48}\) -	occasionally/no/occasionally/6%	2\(^{nd}\) + 5\(^{th}\) decade	1% of meningiomas	A	26%	resection if high grade, symptomatic or progressive transformation/metastasis	-	92% (3y)	-	Cowden, Li-Fraumeni, Von Hippel-Lindau syndrome, NF1, NF2, schwannomatosis	
Hybrid nerve sheath tumor\(^{1,49}\) -	no/no/no	38	?	A	< 5%	resection if high grade, symptomatic or progressive transformation/metastasis	-	-	-		
Malignant peripheral nerve sheath tumor\(^{1,50,51}\) -	yes/NA/yes	20-50 years	2-5% of STS	C	56%	Resection + CH/TT	benign nerve sheath tumor, radiation	53% complex	NF1		
Neurofibroma\(^{52,53}\) rarely/in NF1/rarely/no	45	0.3/1000000	A or B	17%	resection if symptomatic	-	-	-	inactivation NF1 gene		
\(\) Uncertain Differentiation											
Clear cell sarcoma\(^{1,55,56}\) -	yes/no/yes	3-4\(^{th}\) decade	?	C	40%	resection + RT/CH	-	60%	reciprocal translocation t(12;22)(q13;q12)		
Desmoplastic small round cell tumor\(^{1,51,57}\) -	yes/no/yes	19	0.1/1000000	C	89%	neo CH + resection + CH/RT vs TT	-	15%	EWSR1-WTI gene fusion		
Epithelioid sarcoma\(^{1,62}\) -	yes/no/yes	39	<1% STS	C	25%	resection + RT/CH	trauma	54%	loss of SMARCB1 expression		
Extrareal rhabdoid tumor\(^{1,64,65}\) -	yes/no/yes	13	<1% of childhood STS	C	22%	resection + RT/CH	-	15%	SMARCB1 gene alterations		
Extraskeletal myxoid chondrosarcoma\(^{1,66}\) -	yes/no/yes	50	<1% STS	C	37%	resection + RT/TT	-	82-90%	NRR4AS gene rearrangement		
Intramuscular myxoma\(^{1}\) -	yes/no/no	40-70 years	?	A	<5%	resection	fibrous dysplasia	-	GNAS mutation		
Myoepithelioma\(^{1,67}\) -	possible/no/possible	40 years	?	B	20-50%	resection	-	90%	EWSR1 gene rearrangements		
NTRK-rearranged spindle cell neoplasm\(^{1,68,69}\) -	yes/no/yes	1-2\(^{nd}\) decade	1% of STS	C	11-44%	resection + CH/TT	-	?	NTRK-rearrangements		
Ossifying fibromyxoid tumor\(^{1,70}\) -	yes/no/possible	58 years	?	B	0-60%	resection	-	94%	PHF1 gene fusion		
Pecoma\(^{1,71}\) -	yes/no/yes	45	234 cases	C	0-70%	neo CH + resection + CH/RT vs TT	-	45%	LOH TSC2 locus		
Phosphaturic mesenchymal tumour\(^{1,72}\) -	no/yes/possible	53 years	< 0.01% of all STS	B	0-13%	resection	-	100%	\(\alpha\)-Klotho upregulation		
Synovial sarcoma\(^{1,73}\) -	yes/no/yes	3-4\(^{th}\) decade	0.08/1000000	C	42%	Resection + RT	radiotherapy	75-83%	SS18-SSX1/2/4 fusion gene		

Contd...
Undifferentiated Small Round Cell Tumors

Chondrogenic Tumors	Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndroms
Ewing Sarcoma^{16,17}	yes/no/yes	16	0.3/100000	-	50% chemotherapy	-	-	-	39-69%	FET-ETS fusion genes	-
Chondroblastoma¹	chondroblastoma-like osteosarcoma	no/no/benign lung mets	2-3rd decade	<1% of bone tumors	A	10-18%	resection vs RFA	-	NA	H3.3 alterations	-
Chondromyxoid fibroma^{2,3}	-	no/very rare/no	2-3rd decade	?	A or B	15%	resection	-	NA	GRM1 gene recombination	-
Chondrosarcoma, clear cell³	renal cell carcinoma, chondroblastoma, osteosarcoma	yes/rare/rare	3-4th decade	2% of chondrosarcomas	C	86%	resection	-	85%	-	-
Chondrosarcoma, mesenchymal^{4,5}	-	yes/no/yes	26	2-9% of chondrosarcomas	C	55%	resection + CH	-	60%	HEY1-NCOA2 rearrangement	-
Chondrosarcoma, central grade II, III⁶	chondroblastic osteosarcoma	possible/yes/no	3-6th decade	0.18/100000	C	19-26%	resection	-	31-74%	WNT/β-catenin signalling loss	-
Chondrosarcoma, dedifferentiated^{7,8}	-	yes/no/yes	59	11% of chondrosarcomas	C	50%	resection + CH	-	7-24%	IDH1 or IDH2 mutation	-
Enchondroma⁹	secondary peripheral atypical cartilaginous tumour/chondrosarcoma	no/very rare/no/	36	2%	A	<5%	resection if symptomatic	-	NA	IDH1 or IDH2 mutations	Chondromatosis Enchondromatosis
Osteochondroma¹⁰	secondary peripheral atypical cartilaginous tumour/chondrosarcoma	no/possible/no	18	0.9/100000	A	<5%	resection radiation	NA	inactivation EXT1 or EXT2 gene	multiple osteochondromas syndrome Carney complex	
Osteochondromyxoma^{11,12}	-	possible/no/possible/no	1	?	A or B	?	resection	-	NA	PRKAR1A gene mutation	-
Secondary peripheral atypical cartilaginous tumour/chondrosarcoma grade II¹³	-	yes/yes/yes/	49	0.66/100000	A or B	11%	resection vs RFA	-	87-99%	IDH1 or IDH2 mutation	Enchondromatosis
Secondary peripheral atypical cartilaginous tumour/chondrosarcoma grade II, III¹⁴	periosteal osteosarcoma	yes/no/rarely	3-4th decade	5% of osteochondromas	B or C	16%	resection	-	98%	-	-
Synovial chondromatosis¹⁵	yes/possible/possible	3-5th decade	0.18/100000	B	20%	resection	-	NA	FN1-ACVR2A and ACVR2A-FN1 fusions	-	
Osteogenic Tumors

	Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndroms
Osteoblastoma\(^1\)	-	yes/rare/no	2-3\(^{rd}\) decade	1% of bone tumors	B	23%	resection	-	NA	FOS rearrangements	
Osteoid osteoma\(^1\)	-	no/no/no	24	10% of all bone tumors	A	<5%	resection if symptomatic vs RFA (lesion might disappear)	-	NA	FOS rearrangements	
Osteoma\(^1\)	-	no/no/no	37	6.4%	A	<5%	resection if symptomatic	-	NA	LEMD3 gene	Gardner Syndrome, Osteopoikilosis
Osteosarcoma, (chondroblastic, fibroblastic, osteoblastic, telangiectactic)\(^1\)	-	yes/no/yes	10-14 years and 65 years	0.46/100000	C	30-50%	neoadjuvant CH + resection + RT/CH	-	68%	Gans 6p, 8q	liFraumeni, Werner, Rothmund-Thomson, Bloom syndrome
Osteosarcoma, low grade central\(^1\)	fibrosarcoma	yes/rare/rare	3\(^{rd}\) decade	1.2% of osteosarcomas	B	7%	resection	-	90%	Amplification of 12q13-q15	
Osteosarcoma, secondary	-	yes/no/yes	6-7\(^{th}\) decade	1-7% in Paget disease	C	?	neoadjuvant CH + resection + RT/CH	Paget disease, radiation, Caisson disease, Sickle cell disease, implants, chronic osteomyelitis	10-32%	?	Rothmund-Thomson syndrome

Osteoclastic giant cell-rich Tumors

	Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndroms
Aneurysmal bone cyst\(^1\)	-	no/no/no	1-2\(^{nd}\) decade	0.015/100000	A or B	20-70%	resection vs denosumab vs embo vs RT	-	NA	USP6 rearrangements	
Giant cell tumor\(^1\)	yes/rare/rare	yes/rare/rare	31	0.15/100000	B	15-50%	resection vs denosumab vs embo vs RT	Paget disease, radiation	87%***	H3.3 mutation	Gorlin-Goltz syndrome, Jaffe-Campanacci syndrome
Non-ossifying fibroma\(^2\)	no/no/no	2\(^{nd}\) decade	?	A	<5%	resection if symptomatic	Paget disease, radiation	-	NA	KRAS and FGFR1 mutations	Jaffe-Campanacci syndrome, NF1, KRAS

Contd...
Notochordal Tumors

Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndroms
Benign notochordal tumor^{1,2}	no/rarely/no	58	1.7%	A	<5%	resection if symptomatic	-	NA	expression of brachyury	-
Chordoma, conventional, dedifferentiated, poorly differentiated³	yes/yes/yes	6-8th decade	0.08/100000	C	35%	resection + RT/TT	-	68%	expression of brachyury	-

Haematopoietic Neoplasms of Bone

Important differential diagnosis	Infiltrating/malignant transformation/metastasis	Peak age	Incidence	Type of surgical resection	Recurrence rate	Treatment	Risk factors	5y OS	Protein/gene	Possible associated Tumor syndroms
Plasmacytoma WHO⁴	yes/yes/yes	55-60	6.8/100000	-	22%	RT	-	57%	-	-
Non-Hodgkin lymphoma of the bone⁵	yes/yes/yes	50-60	7% of bone tumors	-	10%	CH, RT	HIV	75%	Immunglobulin rearrangements	-

¹ In high risk/systemic/recurrence patients,
² Depending on mutation status: CTNNB1 p.Ser45Phe,
³ 20 year survival rate in patients with FAP associated lesions,
⁴ Patients with malignant variant,
⁵ Mean survival time in aggressive variant (EIMS),
⁶ At 46 month,
⁷ Very rare malignant variant, among immunosupressed, can arise secondarily in previous enchondroma, on the surface of osteochondromas. CH: Chemotherapy; TT: Targeted therapy
78. Van Mater D, Wagner L. Management of recurrent Ewing sarcoma: Challenges and approaches. Onco Targets Ther 2019;12:2279-88.

79. Bhamra JS, Al-Khateeb H, Dhipsas BS, Gikas PD, Tirabosco R, Pollock R, et al. Chondromyxoid fibroma management: A single institution experience of 22 cases. World J Surg Oncol 2014;12:283.

80. Xu J, Li D, Xie L, Tang S, Guo W. Mesenchymal chondrosarcoma of bone and soft tissue: A systematic review of 107 patients in the past 20 years. PLoS One 2015;10:e0122216.

81. Gomez CD, Anderson MS, Epperly SC, Zuckerman LM. Successful treatment of a dedifferentiated chondrosarcoma of the proximal humerus with a hemiarticular articular surface sparing allograft: A case report. Int J Surg Case Rep 2020;72:590-5.

82. Carney JA, Boccon-Gibod L, Jarka DE, Tanaka Y, Swee RG, Unni KK, et al. Osteochondromyxoma of bone: A congenital tumor associated with lentigines and other unusual disorders. Am J Surg Pathol 2001;25:164-76.

83. Deckers C, Schreuder BH, Hannink G, de Rooy JW, van der Geest IC. Radiologic follow-up of untreated enchondroma and atypical cartilaginous tumors in the long bones. J Surg Oncol 2016;114:987-91.

84. Sun HH, Chen XY, Cui JQ, Zhou ZM, Guo KJ. Prognostic factors of survival of patients with chondroblastic osteosarcoma. Medicine (Baltimore) 2018;97:e12636.

85. Martin C, McCarthy EF. Giant cell tumor of the sacrum and spine: Series of 23 cases and a review of the literature. Iowa Orthop J 2010;30:69-75.

86. Palmerini E, Picci P, Reichardt P, Downey G. Malignancy in giant cell tumor of bone: A review of the literature. Technol Cancer Res Treat 2019;18:1533033819840000.

87. Deshpande V, Nielsen GP, Rosenthal DI, Rosenberg AE. Intraosseous benign notochord cell tumors (BNCT): Further evidence supporting a relationship to chordoma. Am J Surg Pathol 2007;31:1573-7.

88. Heyning FH, Hogendoorn PC, Kramer MH, Holland CT, Dreef E, Jansen PM. Primary lymphoma of bone: Extranodal lymphoma with favourable survival independent of germinal centre, post-germinal centre or indeterminate phenotype. J Clin Pathol 2009;62:820-4.