INTRODUCTION

Globally, colorectal cancer accounts for approximately 10% of all new cancers [1]. Colorectal cancer invas ing into the adjacent organs/structures is detected in 5% to 20% of all surgical interventions performed for the management of colorectal cancer [2]. These adhesions may be either due to frank tumor infiltration or due to peritumoral inflammation. However, the nature of these adhesions cannot be ascertained intraoperatively. Therefore, the standard management entails en bloc resection of the diseased organ along with adjacent organ infiltration. Neoadjuvant treatment with chemotherapy, radiation, or a combination of both can significantly lead to downsizing of the disease thereby facilitating resection of the tumor with safe radial and circumferential margins.

We share our experience regarding the feasibility of en bloc multivisceral resection for advanced colorectal cancer, the immediate

Feasibility and Outcomes of Multivisceral Resection in Locally Advanced Colorectal Cancer: Experience of a Tertiary Cancer Center in North-East India

Joydeep Purkayastha, Pritesh Rajeev Singh, Abhijit Talukdar, Gaurav Das, Jitin Yadav, Srinivas Bannoth
Department of Surgical Oncology, Dr. B. Borooah Cancer Institute, Guwahati, India

Purpose: Locally advanced colorectal cancer may require an en bloc resection of surrounding organs or structures to achieve complete tumor removal. This decision must weigh the risk of complications of multivisceral resection against the potential survival benefit. The purpose of this study is to review a single-center experience of feasibility of en bloc multivisceral resections for locally advanced colorectal carcinoma and to examine the effect of surgical experience on immediate outcome and rate of R0 resections.

Methods: This is a study of 27 patients who underwent multivisceral resection for locally advanced colorectal carcinoma which was performed at our institute from January 2016 to December 2019. Among the 27 patients aged between 21 and 76 years (mean age, 48.67 ± 7.3 years), 13 were males and 14 were females. Overall 18 patients had primary colon carcinoma and 9 had primary rectal carcinoma. All rectal cancer patients received neoadjuvant chemoradiation. All patients underwent surgery with curative intent. All patients underwent open surgery of which 66.7% underwent colectomy, 14.8% underwent anterior resection, 11.1% underwent Miles procedure, and 7.4% underwent pelvic exenteration.

Results: The mean operative time was 268.14 ± 72.2 minutes and the median amount of blood units transfused was 2.07 units. The mean hospital stay was 13.67 ± 3.4 days. Histologically, 44.4% of patients had well-differentiated adenocarcinoma and 55.6% had moderately differentiated adenocarcinoma. The final histopathological examination revealed malignant infiltration of the adjacent organs in 19/27 patients (70.4%). Pathological complete response was seen in 2 patients. R0 resection rate achieved was 96.3%. Lymph node metastasis was seen in 66.7% of patients with colon cancer and 11.1% with rectal cancer with overall mean number of harvested lymph nodes being 12.44 ± 3.01. Postoperative complications were identified in 7 patients (25.9%), while mortality was seen in 2 (7.4%).

Conclusion: Multivisceral resection for advanced colorectal cancer invading into the adjacent organ may be performed with acceptable morbidity and mortality.

Keywords: Colorectal neoplasms; Multivisceral resection; Surgical resection
surgical outcomes in regards to morbidity and mortality, and the proportion of R0 resections.

METHODS

This retrospective study was approved by the Institutional Review Board of Dr. B. Borooah Cancer Institute (BBCI-TMC/Misc-119/ MEC/282/2019). Written informed consent was obtained for publication of this study and accompanying images. Twenty-seven patients underwent multivisceral resection for locally advanced colorectal carcinoma at our institute from January 2016 to December 2019. Among the 27 patients aged between 21 and 76 years (mean age, 48.67 ± 7.3 years), 13 were males and 14 were females.

Preoperatively the patients were counseled accordingly and informed whether the adhesion was due to persistent disease or radiation-induced fibrosis. In 6 cases, it was difficult to ascertain on imaging and even intraoperatively whether the adhesion was due to persistent disease or radiation-induced fibrosis. Preoperatively the patients were counseled accordingly and informed consent was obtained to go ahead with multivisceral resection. Since all the patients in our study were in stage III, they

RESULTS

The mean operative time was 268.14 ± 72.2 minutes and the median amount of blood units transfused was 2.07 units. The mean hospital stay was 13.67 ± 3.4 days. Histologically, 44.4% of patients had well-differentiated adenocarcinoma and 55.6% had moderately differentiated adenocarcinoma. The final histopathological examination revealed malignant infiltration of the adjacent organs in 19 of 27 patients (70.4%). R0 resection rate achieved was 96.3%. Lymph node metastasis was seen in 66.7% of patients with colon cancer and 11.1% with rectal cancer with overall mean number of harvested lymph nodes being 12.44 ± 3.01. Postoperative complications were identified in 7 patients (25.9%), while mortality was seen in 2 patients (7.4%). The demographic details, location of tumor, pretreatment CEA levels, American Society of Anesthesiologists physical status classification, complications, postoperative hospital stay, and postoperative histopathology information is shown in Table 1.

We obtained pathologic complete response in 2 patients of rectal cancer after chemoradiation. The first was a case of mid-rectal tumor with urinary bladder infiltration. The patient received capecitabine based long-course chemoradiation. MRI after chemoradiation and before surgery showed dense adhesion of the disease site with urinary bladder and the uterus. The patients underwent pelvic exenteration, i.e., removal of urinary bladder and uterus with bilateral adnexa in addition to proctectomy. The second was also a mid-rectal tumor in a postmenopausal lady with infiltration into the uterus. The patient received capecitabine based long-course chemoradiation. MRI after chemoradiation and before surgery showed persistent adhesion between the disease site and the uterus. The patient underwent hysterectomy and bilateral salpingo-oophorectomy in addition to proctectomy. In both the cases, it was difficult to ascertain on imaging and even intraoperatively whether the adhesion was due to persistent disease or radiation-induced fibrosis.

Preoperatively the patients were counseled accordingly and informed consent was obtained to go ahead with multivisceral resection. Since all the patients in our study were in stage III, they

Feasibility and Outcomes of Multivisceral Resection in Locally Advanced Colorectal Cancer: Experience of a Tertiary Cancer Center in North-East India

Joydeep Purkayastha, et al.

Coloproctology
Table 1. Demographic and clinical details of the participants

Patient No.	Age (yr)	Sex	Location of tumor	CEA level (ng/mL)	ASA PS classification	Complication	Postoperative stay	CD grade	P stage	Node	Tumor grade
1	60	M	Ascending colon	39	II	None	9 Days	I	T4bN0	0 of 28	Moderately differentiated
2	21	F	Rectosigmoid junction	4.8	I	None	9 Days	I	T4bN0	0 of 6	Well differentiated
3	60	M	Transverse colon	2.4	II	None	14 Days	I	T4bN0	0 of 12	Moderately differentiated
4	47	M	Ascending colon	1.4	I	None	7 Days	I	T4bN1b	2 of 23	Well differentiated
5	53	M	Transverse colon	5.4	I	None	8 Days	I	T4bN2a	5 of 11	Well differentiated
6	42	M	Entire colon with colonic polyps	> 400	I	Burst abdomen	19 Days	IIib	T4bN1c	3 of 21	Well differentiated
7	53	M	Sigmoid colon	14.1	II	None	9 Days	I	T4bN1b	2 of 16	Well differentiated
8	55	F	Descending colon	0.8	I	None	13 Days	I	T4bN1a	1 of 13	Well differentiated
9	31	F	Anorectum	3.1	I	Bowel obstruction	2 Months	IIIb	T4bN1b	2 of 15	Moderately differentiated
10	54	F	Sigmoid colon	4.8	I	None	12 Days	I	T4bN0	0 of 11	Well differentiated
11	27	F	Mid rectum	4.6	I	Wound dehiscence	20 Days	Illa	T0N0	0 of 4	Well differentiated (pCR)
12	38	M	Splenic flexure	3.1	I	None	10 Days	I	T4bN1b	2 of 14	Well differentiated
13	63	M	Transverse colon	30.3	II	Expired		V	T4bN2b	13 of 24	Moderately differentiated
14	49	F	Mid rectum	2.4	I	None	9 Days	I	T2N0	0 of 4	Well differentiated
15	47	F	Mid rectum	218	I	Hematuria, urinary retention, and prolonged FC	16 Days (discharged on catheter)	II	T3N0	0 of 3	Moderately differentiated
16	35	F	Mid rectum	18.1	I	None	10 Days	I	T4aN0	0 of 7	Well differentiated
17	76	F	Mid rectum	12.7	II	Ileus	12 Days	II	T0N0	0 of 3	Moderately differentiated
18	48	M	Descending colon	48.4	I	Ileus	11 Days	II	T4bN1a	1 of 11	Moderately differentiated
19	51	M	Sigmoid colon	59.8	I	Expired		V	T4aN0	0 of 14	Moderately differentiated
20	56	F	Sigmoid colon	7.7	II	Superficial wound infection	13 Days	I	T4aN2a	4 of 17	Moderately differentiated
21	55	M	Caecum	10	II	None	8 Days	I	T4bN1b	2 of 16	Moderately differentiated
22	66	M	Transverse colon	34.2	II	None	10 Days	I	T4bN0	0 of 15	Well differentiated
23	64	F	Mid rectum	2.6	II	None	11 Days	I	T3N0	0 of 11	Moderately differentiated
24	35	F	Hepatic flexure	105	I	None	10 Days	I	T4bN1b	2 of 15	Moderately differentiated
25	50	M	Sigmoid colon	147	I	None	9 Days	I	T4bN1a	1 of 14	Moderately differentiated
26	36	F	Lower rectum	0.3	I	None	10 Days	I	T4bN0	0 of 2	Moderately differentiated
27	42	M	Sigmoid colon	> 400	I	None	10 Days	I	T4bN0	0 of 6	Well differentiated

CEA, carcinoembryonic antigen; ASA, American Society of Anesthesiologists; PS, physical status; CD, Clavien-Dindo classification; P stage, postoperative histopathology stage; M, male; F, female; pCR, pathologic complete response; FC, Foley catheterization.

received capecitabine and oxaliplatin adjuvant chemotherapy (except the 2 mortalities). Adjuvant therapy was decided based on clinical staging before chemoradiation.

The median follow-up period is 17 months (range, 2 to 61 months). There were 3 recurrences in the follow-up period; 2 local and 1 systemic. Local recurrences were seen in the pelvic side-
wall in a rectal cancer patient who underwent R1 resection; anastomotic site recurrence with kidney infiltration and encasement of upper ureter. Systemic recurrence was in the form of peritoneal disease.

Summary of short-term outcomes
Perioperative mortality was seen in 2 patients (7.4%). R0 resection was performed in 26/27 patients (96.3%). Final histopathology revealed adjacent organ infiltration in 19 cases (pT4b, 70.4%). All surviving patients received adjuvant chemotherapy.

DISCUSSION
It may be difficult to differentiate intraoperatively malignant infiltration of colorectal tumor from inflammatory adhesion. Therefore, the standard management protocol mandates en bloc resection of the tumor along with the adjacent organ. In our study, malignant infiltration was histopathologically confirmed in 70.4% of patients. Nishikawa et al. [3] reported adjacent organ infiltration in 60.9% of patients, Eveno et al. [4] reported adjacent organ infiltration in 64.5%, and Gebhardt et al. [5] reported adjacent organ infiltration in 55%. Few previous studies demonstrated adhesions between tumor and other organs harbor malignant cells in 25% to 40% of cases, which are lower rates compared with our study [2, 6, 7].

Local recurrence rates are also reported to be higher when the adjacent organs were dissected from the tumor than when en bloc resection is performed [8]. R0 resection is known to be one of the most important prognostic factors in the management of locally advanced colorectal cancer [9]. The rate of R0 resection, as reported in literature varies between 40% and 90% [10].

In our study, R0 resection was performed in 96.3% of patients; 18/18 patients with colonic primary and 8/9 patients with rectal primary. Eveno et al. [4] reported there were 89.5% of R0 resections in patients with clinical T4 colorectal cancer, but also reported R1 resections were due to invasion of the resection margin of an adjacent organ in 5.2% of patients and due to invasion of the circumferential resection margin in 9.9% of patients and one R2 resection due to a large rectal cancer. In a retrospective study, Dericci et al. [11] reported there were 75.4% of R0 resections in rectal cancer patients with macroscopically direct invasion to adjacent organs or structures and 82.8% R0 resection in patients who received neoadjuvant chemoradiotherapy.

Three patients in our series developed recurrence. Circumferential resection margin was positive in 1 lower rectal cancer patient who developed recurrence in 11 months with pelvic sidewall infiltration, colovaginal fistula and died 17 months after completing treatment. One patient with splenic flexure growth who underwent curative treatment developed anastomotic site recurrence after 18 months with frank infiltration into the left kidney and encasement of the left upper ureter. The patient underwent curative surgery for recurrent disease with left nephroureterectomy. One patient developed peritoneal recurrence after 14 months with a peritoneal carcinomatosis index of 6 for which secondary cytoreduction was performed. One patient was lost to follow up.

The oncologic outcomes of the multivisceral resections are reported as overall survival rates of 30% to 53% [2, 4, 11]. We could not demonstrate a distinct survival advantage due to the limited number of patients and the relatively short follow-up period. Kaplan-Meier curve of overall survival is shown in Fig. 1.

Multivisceral resection has been shown to be an independent factor for postoperative complications and perioperative mortality [12]. Studies report postoperative morbidity and mortality rates after multivisceral resection in the range from 28.0% to 43.7% [2, 3, 7, 11, 13-15] and ≥ 13% [4, 6, 11, 16], respectively. In our study postoperative complications were identified in 25.9% patients. There were 2 mortalities (7.4%) in our study. The adjacent organs resected are shown in Table 2 and Fig. 2.

There are some limitations of our study. First, it is a single-center study.
study with a limited number of patients. Second, the follow-up period is relatively short with proportionately more cases being done over the past 12 months.

In conclusion, complete removal of all gross and microscopic disease remains the key to achieve long term outcomes in locally advanced colorectal cancer. Multivisceral resection can be performed at high volume centers with acceptable morbidity and mortality rates. Most of the recurrences occur within 2 years of completing treatment. Hence, meticulous follow-up is of paramount importance during this period. Longer follow-up is needed for survival data to mature.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010;19:1893-907.
2. Sökmen S, Terzi C, Unek T, Alanyali H, Füzün M. Multivisceral resections for primary advanced rectal cancer. Int J Colorectal Dis 1999;14:282-5.
3. Nishikawa T, Ishihara S, Emoto S, Kaneko M, Murono K, Sasaki K, et al. Multivisceral resections for locally advanced colorectal cancer after preoperative treatment. Mol Clin Oncol 2018;8:493-8.
4. Eveno C, Lefevre JH, Svrcek M, Bennis M, Chafaï N, Tiret E, et al. Oncologic results after multivisceral resection of clinical T4 tumors. Surgery 2014;156:669-75.
5. Gebhardt C, Meyer W, Ruckriegel S, Meier U. Multivisceral resection of advanced colorectal carcinoma. Langenbecks Arch Surg 1999;384:194-9.
6. Gezen C, Kement M, Altuntas YE, Okkabaz N, Seker M, Vural S, et al. Results after multivisceral resections of locally advanced colorectal cancers: an analysis on clinical and pathological T4 tumors. World J Surg Oncol 2012;10:39.
7. Lehnter T, Methner M, Pollok A, Schaible A, Hinz U, Herfarth C. Multivisceral resection for locally advanced primary colon and rectal cancer: an analysis of prognostic factors in 201 patients. Ann Surg 2002;235:217-25.
8. Hunter JA, Ryan JA Jr, Schultz P. En bloc resection of colon cancer adherent to other organs. Am J Surg 1987;154:67-71.
9. Smith JD, Nash GM, Weiser MR, Temple LK, Guillem JG, Paty PB. Multivisceral resections for rectal cancer. Br J Surg 2012;99:1137-43.
10. Hallet J, Zih FS, Lemke M, Milot L, Smith AJ, Wong CS. Neo-adjuvant chemoradiotherapy and multivisceral resection to optimize R0 resection of locally recurrent adherent colon cancer. Eur J Surg Oncol 2014;40:706-12.
11. Derici H, Unalp HR, Kamer E, Bozdağ AD, Tansug T, Nazlı O, et al. Multivisceral resections for locally advanced rectal cancer. Colorectal Dis 2008;10:453-9.
12. Nakaçusa Y, Tanaka T, Tanaka M, Kitajima Y, Sato S, Miyazaki K. Comparison of multivisceral resection and standard operation for locally advanced colorectal cancer: analysis of prognostic factors for short-term and long-term outcome. Dis Colon Rectum 2004;47:2055-63.
13. Nagasue Y, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y, et al. Laparoscopic versus open multivisceral resection for primary colorectal cancer: comparison of perioperative outcomes. J Gastrointest Surg 2013;17:1299-305.
14. Kim KY, Hwang DW, Park YK, Lee HS. A single surgeon’s experience with 54 consecutive cases of multivisceral resection for locally advanced primary colorectal cancer: can the laparoscopic approach be performed safely? Surg Endosc 2012;26:493-500.
15. Shukla PJ, Trenceva K, Merchant C, Maggiori L, Michelassi F, Sonoda T, et al. Laparoscopic resection of T4 colon cancers: is it feasible? Dis Colon Rectum 2015;58:25-31.
16. Eisenberg SB, Kraybill WG, Lopez MJ. Long-term results of surgical resection of locally advanced colorectal carcinoma. Surgery 1990;108:779-85.