Relativistic Kramers–Pasternack recurrence relations

Sergei K Suslov

School of Mathematical and Statistical Sciences and Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287-1804, USA
E-mail: sks@asu.edu

Received 1 September 2009, in final form 30 September 2009
Published 19 March 2010
Online at stacks.iop.org/JPhysB/43/074006

Abstract
Recently we have evaluated the matrix elements \(\langle O_{r} \rangle \), where \(O = \{1, \beta, i\alpha \} \) are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem in terms of generalized hypergeometric functions \(3F_2(1) \) for all suitable powers and established two sets of Pasternack-type matrix identities for these integrals. The corresponding Kramers–Pasternack-type three-term vector recurrence relations are derived.

1. Introduction

Recent experimental and theoretical progress has renewed interest in quantum electrodynamics of atomic hydrogenlike systems (see, for example, [22, 23, 27, 28, 36, 53, 55] and references therein). In the last decade, the two-time Green’s function method of deriving formal expressions for the energy shift of a bound-state level of high-Z few-electron systems was developed [53] and numerical calculations of QED effects in heavy ions were performed with excellent agreement to current experimental data [22, 23, 55]. These advances motivate, among other technical things, investigation of the expectation values of the Dirac matrix operators between the bound-state relativistic Coulomb wavefunctions. Special cases appear in calculations of the magnetic dipole hyperfine splitting, the electric quadrupole hyperfine splitting, the anomalous Zeeman effect and the relativistic recoil corrections in hydrogenlike ions (see, for example, [1, 52, 54, 57] and references therein).

In the previous paper [57], the matrix elements \(\langle O_{r} \rangle \), where \(O = \{1, \beta, i\alpha \} \) are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, have been evaluated as sums of three special generalized hypergeometric functions \(3F_2(1) \) (or Chebyshev polynomials of a discrete variable) for all suitable powers. As a result, two sets of Pasternack-type matrix symmetry relations for these integrals, when \(p \rightarrow -p - 1 \) and \(p \rightarrow -p - 3 \), have been derived. We concentrate on what are essentially radial integrals since, for problems involving spherical symmetry, one can reduce all expectation values to radial integrals by use of the properties of angular momentum.

Our next goal is to establish relativistic analogues of the Kramers–Pasternack recurrence relation [31, 44, 45] (some progress in this direction had been made in [2]). Here several three-term vector recurrence relations are obtained, which follow in a natural way from the well-known theory of classical orthogonal polynomials of a discrete variable [39] and basic matrix algebra. This paper is organized as follows. We review the nonrelativistic case in the next section and then present relativistic extensions, that seem to be new, in sections 3 and 4. The last section contains a new interpretation of the known two-term recurrence relations for these relativistic expectation values [50, 51]. The new recurrence relations are summarized in an appendix in matrix form for the benefit of the reader.

The author believes that these mathematical results are not only natural and elegant but also will be useful in the current theory of hydrogenlike heavy ions and other exotic relativistic Coulomb systems. At the same time, the mathematical structure behind these expectation values remains not fully understood [2]. For example, to the best of my knowledge, numerous recurrence relations for the radial integrals, obtained with the help of a hypervirial theorem (see [1, 50, 51, 54] and references therein), do not follow in an obvious way from the advanced theory of generalized hypergeometric functions [6]. After more than 80 years of thorough investigation, the relativistic Coulomb problem keeps generating some mathematical challenges.
2. Expectation values $\langle r^p \rangle$ for the nonrelativistic Coulomb problem

Evaluation of the matrix elements $\langle r^p \rangle$ between nonrelativistic bound-state hydrogenlike wavefunctions has a long history in quantum mechanics. An incomplete list of references includes [2, 3, 7–13, 15, 18, 19, 25, 31–35, 37, 42, 44, 45, 47, 48, 51, 56, 58, 59, 63, 65]. Different methods were used in order to derive these matrix elements. For example, in [58] (see also [44, 45]) the mean values for states of definite energy have been derived in terms of the Chebyshev polynomials of a discrete variable $t_n(x, N) = h_{0, 0}^{N+1}(x, N)$ originally introduced in [60, 61]. The so-called Hahn polynomials, introduced also by P L Chebyshev [62] and given by

\[h_{m}^{(\alpha, \beta)}(x, N) = \frac{(1 - N)_{m}(\beta + 1)n}{m!} \times F_2 \left(\begin{array}{c} -m, \alpha + \beta + m + 1, -x \\ \beta + 1, 1 - N \end{array} ; 1 \right), \tag{2.1} \]

were rediscovered and generalized in the late 1940s by W Hahn (we use the standard definition of the generalized hypergeometric series throughout the paper [6, 21]).

The final results have the following closed forms:

\[\langle k^k \rangle = \frac{1}{2n} \left(\frac{n a_0}{Z} \right)^{k-1} t_k(n-l-1, -2l-1), \tag{2.2} \]

when $k = 0, 1, 2, \ldots$ and

\[\left(\frac{1}{r^{k+1}} \right) = \frac{1}{2n} \left(\frac{2Z}{n a_0} \right)^{k+1} t_k(n-l-1, -2l-1), \tag{2.3} \]

when $k = 0, 1, 2, \ldots, 2l$. Here $a_0 = \hbar^2/mc^2$ is the Bohr radius (more details can be found in [14, 58]).

The ease of handling of these matrix elements for the discrete levels is greatly increased if use is made of the known properties of these classical polynomials of Chebyshev [21, 26, 29, 39, 40, 60–62]. The direct consequences of (2.2) and (2.3) are an inversion relation

\[\left(\frac{1}{r^{k+1}} \right) = \frac{2Z}{n a_0} \left(\frac{2Z}{n a_0} \right)^{k+1} \left(\frac{2l-k}{2l+k+1} \right) \langle r^{k-1} \rangle \tag{2.4} \]

with $0 \leq k \leq 2l$ and the three-term recurrence relation

\[\langle r^k \rangle = \frac{2n(2k+1)}{k+1} \left(\frac{n a_0}{2Z} \right)^{k-1} \langle r^{k-1} \rangle - k \left(\frac{2l+1}{2l+1} + k^2 \right) \frac{n a_0}{2Z} \left(\frac{n a_0}{2Z} \right)^{k-1} \langle r^{k-2} \rangle \tag{2.5} \]

with the initial conditions

\[\left(\frac{1}{r} \right) = \frac{Z}{a_0 \hbar^2}, \quad \langle 1 \rangle = 1, \tag{2.6} \]

which is convenient for evaluation of the mean values $\langle r^k \rangle$ for $k \geq 1$.

In our approach, the recurrence relation (2.5) is a special case of the three-term recurrence relation for the Hahn polynomials (3.8). It was originally found by Kramers and Pasternack in the late 1930s [31, 44, 45]. The inversion symmetry (2.4), which is also due to Pasternack, was rediscovered many years later [12, 37] (see also [24, 25] for historical comments). Generalizations of (2.4) and (2.5) for off-diagonal matrix elements are discussed in [11, 17, 20, 25, 38, 41, 42, 46, 49–51, 56, 59]. The properties of the hydrogenlike radial matrix elements are considered from a group-theoretical viewpoint in [3, 13, 42]. Extensions to the relativistic case are given in [1, 2, 16, 19, 43, 57, 58] (see also references therein and the following sections of this paper).

In a retrospect, Pasternack’s papers [44, 45] had paved the way to the discovery of the continuous Hahn polynomials in the mid-1980s (see [4, 5, 30, 58] and references therein).

3. Three-term recurrence relations for relativistic matrix elements

In this paper we establish relativistic analogues of the Kramers–Pasternack recurrence relations (2.5) for the following set of integrals of the relativistic radial functions:

\[A_p = \int_0^{\infty} r^{p+2} (F^2(r) + G^2(r)) \, dr, \tag{3.1} \]

\[B_p = \int_0^{\infty} r^{p+2} (F^2(r) - G^2(r)) \, dr, \tag{3.2} \]

\[C_p = \int_0^{\infty} r^{p+2} F(r) G(r) \, dr. \tag{3.3} \]

With the notations from [57, 58], one can evaluate these integrals in terms of the Chebyshev and Hahn polynomials of a discrete variable and present the answer, say, when $p \geq 0$, in the following closed form:

\[4\mu \nu^2 (2a \beta)^p A_p = a \kappa (\kappa \nu + \nu) h_{p+1}^{(0, 0)}(n-1, -1-2v) \]

\[-2 \left(\frac{p+2}{p+1} \right) \mu (\nu^2 - v^2) h_{p+1}^{(0, 1)}(n-1, -1-2v) \]

\[+ a \kappa (\kappa - \nu) h_{p+1}^{(0, 0)}(n, 1-2v), \tag{3.4} \]

\[4\mu \nu^2 (2a \beta)^p B_p = a (\kappa + \nu) h_{p+1}^{(0, 0)}(n-1, -1-2v) \]

\[- a (\kappa - \nu) h_{p+1}^{(0, 0)}(n, 1-2v), \tag{3.5} \]

\[8\mu \nu^2 (2a \beta)^p C_p = a \mu (\kappa + \nu) h_{p+1}^{(0, 0)}(n-1, -1-2v) \]

\[- 2 \left(\frac{p+2}{p+1} \right) \kappa (\nu^2 - v^2) h_{p+1}^{(0, 1)}(n-1, -1-2v) \]

\[+ a \mu (\kappa - \nu) h_{p+1}^{(0, 0)}(n, 1-2v). \tag{3.6} \]

Here,

\[\kappa = \pm (j + 1/2), \quad \nu = \sqrt{\kappa^2 - \mu^2}, \quad \mu = a Z = Z e^2 / \hbar c, \quad a = \sqrt{1 - \alpha^2}, \quad \alpha = E / mc^2, \quad \beta = mc / \hbar \]

with the total angular momentum $j = 1/2, 3/2, 5/2, \ldots$ (see [57, 58] for more details).

Although a set of useful recurrence relations between the relativistic matrix elements was derived by Shahbaev [50, 51] (see also [1, 19, 54, 57, 64], and the last section of this paper) on the basis of a hypervirial theorem, the corresponding relativistic Kramers–Pasternack-type relations
seem to be missing in the available literature. Our equations (3.4)–(3.6) reveal that they should have a vector form.

Here, one can apply a familiar three-term recurrence relation for the Hahn polynomials [39, 40]:

\[x_h^{(\alpha, \beta)}(x, N) = \alpha_h h_{m+1}^{(\alpha, \beta)}(x, N) + \beta_h h_m^{(\alpha, \beta)}(x, N) + \gamma_m h_{m-1}^{(\alpha, \beta)}(x, N) \]

(3.8)

with

\[\alpha_m = \frac{(m+1)(\alpha + \beta + m + 1)}{(\alpha + \beta + 2m + 1)(\alpha + \beta + 2m + 2)}, \]

\[\beta_m = \frac{(\alpha - \beta + 2N - 2)(\beta^2 - \alpha^2)(\alpha + \beta + 2N)}{4(4\alpha + \beta + 2m)(\alpha + \beta + 2m + 2)}, \]

\[\gamma_m = \frac{(\alpha + m)(\beta + m)(\alpha + \beta + N + m)(N - m)}{(\alpha + \beta + 2m)(\alpha + \beta + 2m + 1)} \]

(3.9)

(3.10)

(3.11)

three for the corresponding special cases in (3.4)–(3.6). Introducing two sets of vectors

\[\mathbf{A}_p = (2a\beta)^p \begin{pmatrix} a_p \\ b_p \\ c_p \end{pmatrix}, \quad \mathbf{X}_p = \begin{pmatrix} h_{p+1}^{(0,0)}(n - 1, -1 - 2v) \\ \frac{p+1}{2} h_{p+1}^{(1,1)}(n - 1, -1 - 2v) \\ h_{p+1}^{(0,0)}(n, 1 + 2v) \end{pmatrix}, \]

(3.12)

we conclude that the recurrence relations in question should have the following matrix structure:

\[\mathbf{A}_p = T \mathbf{X}_p, \quad \mathbf{X}_p = T^{-1} \mathbf{A}_p \]

(3.13)

with

\[\mathbf{X}_{p+1} = U_p \mathbf{X}_p + V_p \mathbf{X}_{p-1}, \]

(3.14)

where \(U_p \) and \(W_p \) are known diagonal matrices. Then

\[\mathbf{A}_{p+1} = D_p \mathbf{A}_p + E_p \mathbf{A}_{p-1}, \]

(3.15)

where

\[D_p = T U_p T^{-1}, \quad E_p = T V_p T^{-1} \]

(3.16)

are similar matrices.

The elementary linear algebra argument outlined above allows us to obtain a relativistic generalization of the Kramers–Pasternack recurrence relation (2.5) as follows:

\[(2a\beta)^2 A_{p+1} = 4\beta^2 \mu \frac{2p + 3}{p + 2} A_p \]

\[- \frac{p(p+2)(4v^2 - (p+1)^2)}{(p+1)(p+2)} A_{p-1} \]

\[- 4\kappa \frac{p+1}{p+2} B_{p-1} + 8 \mu \frac{p+1}{p+2} C_{p-1}. \]

(3.17)

\[(2a\beta)^2 B_{p+1} = 4\beta^2 \mu \frac{2p + 3}{p + 2} B_p \]

\[- (4v^2 - p(p+2)) \frac{p+1}{p+2} B_{p-1} \]

\[- 4\kappa \frac{p+1}{p+2} A_{p-1} + 8 \mu \frac{p+1}{p+2} C_{p-1}. \]

(3.18)

These recurrence relations are summarized for the benefit of the reader in matrix form in the appendix. One should
take special values (A.4)–(A.5) as the initial data. A direct derivation of the relativistic three-term vector recurrence relations (3.17)–(3.19) and (3.23)–(3.25) on the basis of a hypervirial theorem needs to be found.

4. Independent integrals

The integrals (3.1)–(3.3) are linearly dependent:

\[(2\kappa + \varepsilon(p + 1))A_p - (2\kappa\kappa + p + 1)B_p = 4\mu C_p \tag{4.1}\]

(see, for example, [1, 50, 51, 57] for more details). Thus, eliminating \(C_p\), say from (3.23)–(3.24), we obtain the following three-term vector recurrence relation between the integrals \(A_p\) and \(B_p\) only:

\[(2\alpha \beta)^2 A_{p+1} = (2p + 1) \beta
\times \frac{4\varepsilon \mu_2 (a^2(p + 1)^2 - 1) - \alpha^2 p(p + 2)(2\kappa \varepsilon(p + 1))}{a^2 \mu_2 p(p + 1)(p + 2)} A_p
\]

\[+ (2p + 1) \beta \frac{4\varepsilon \mu_2 + a^2 p(p + 2)(2\kappa \kappa + p + 1)}{a^2 \mu_2 p(p + 1)(p + 2)} B_p
\]

\[= \frac{(a^2(p + 1)^2 - 1)(4\varepsilon^2 - p^2)}{a^2(p + 1)(p + 2)} B_{p-1} \tag{4.2} \]

and

\[(2\alpha \beta)^2 B_{p+1} = -(2p + 1)
\times \frac{4\varepsilon \mu_2 + a^2 p(p + 2)(2\kappa \varepsilon(p + 1))}{a^2 \mu_2 p(p + 1)(p + 2)} A_p
\]

\[+ (2p + 1) \beta \frac{4\varepsilon \mu_2 (a^2(p + 1)^2 + \varepsilon^2) + a^2 p(p + 2)(2\kappa \kappa + p + 1)}{a^2 \mu_2 p(p + 1)(p + 2)} B_p
\]

\[= \frac{\varepsilon(4\varepsilon^2 - p^2)}{a^2(p + 1)(p + 2)} A_{p-1}
\]

\[= \frac{(4\varepsilon^2 - p^2)(a^2(p + 1)^2 + \varepsilon^2)}{a^2(p + 1)(p + 2)} B_{p-1}. \tag{4.3} \]

In a similar fashion, from (3.17)–(3.18):

\[(2a \beta)^2 A_{p+1} = 4\beta \varepsilon \mu \frac{2p^2 + 3}{p + 2} \frac{A_p}{A_{p-1}}
\]

\[+ \frac{2\kappa \kappa - (p + 2)(4\varepsilon^2 - (p + 1)^2)}{(p + 1)(p + 2)} A_{p-1}
\]

\[= 2\kappa \varepsilon \mu_2 - 1 (p + 1)(2p + 3) \frac{B_{p-1}}{(p + 1)(p + 2)} \tag{4.4} \]

and

\[(2a \beta)^2 B_{p+1} = 4\beta \varepsilon \mu \frac{2p^2 + 3}{p + 2} \frac{B_p}{B_{p-1}}
\]

\[+ \frac{2\kappa \epsilon + (p + 1)(2p + 3)}{p + 1}(p + 2) \frac{A_{p-1}}{(p + 1)(p + 2)} \tag{4.5} \]

and

\[= (4\kappa \kappa + \varepsilon^2) \frac{p^2 + 1}{p + 2} B_{p-1}. \]

Matrix forms of these identities and the corresponding initial values are given in the appendix.

5. Two-term recurrence relations

The three-term recurrence relations for the relativistic radial integrals, examples of which have been found in the previous sections, are obviously not unique. Moreover, if

\[A_{p+1} = D_p^{(1)} A_p + E^{(p)} A_{p-1}, \tag{5.1} \]

then

\[(\alpha_p + \beta_p)A_{p+1} = (\alpha_p D^{(1)} + \beta_p B^{(2)}) A_p
\]

\[+ (\alpha_p E^{(1)} + \beta_p E^{(2)}) A_{p-1} \tag{5.2} \]

for two arbitrary sequences of scalars \(\alpha_p\) and \(\beta_p\). One special case is of a particular interest.

Subtracting (4.2) and (4.3) from (4.4) and (4.5) one gets the following matrix equation:

\[P_p \begin{pmatrix} A_p \\ B_p \end{pmatrix} = Q_p \begin{pmatrix} A_{p-1} \\ B_{p-1} \end{pmatrix} \tag{5.3} \]

with

\[\det P_p = -8\beta^2 \varepsilon \kappa a^2(p + 2)(p + 1) + 2\varepsilon \mu^2 \tag{5.4} \]

\[\det Q_p = -2\varepsilon(4\varepsilon^2 - p^2) \kappa a^2(p + 2)(p + 1) + 2\varepsilon \mu^2 \tag{5.5} \]

by a computer algebra system. We have omitted the explicit forms of the \(P\) and \(Q\) matrices and their inverses. This should be easily done by the reader.

The two-term recurrence solutions of the form

\[\begin{pmatrix} A_p \\ B_p \end{pmatrix} = S_p \begin{pmatrix} A_{p-1} \\ B_{p-1} \end{pmatrix} \]

were found by Shabaev [50, 51] by a different method. In our notations

\[A_{p+1} = -(p + 1) \frac{4\varepsilon^2 \kappa + 2\kappa (p + 2) + \varepsilon(p + 1)(2\kappa \kappa + p + 2)}{4(1 - \varepsilon^2)(p + 2) \beta \mu} A_p + \frac{4\mu^2(p + 2) + (p + 1)(2\kappa \kappa + p + 1)(2\kappa \kappa + p + 2)}{4(1 - \varepsilon^2)(p + 2) \beta \mu} \tag{5.6} \]

and

\[B_{p+1} = -(p + 1) \frac{4\varepsilon^2 \kappa + 2\kappa (p + 3) + \varepsilon^2(p + 1)(p + 2)}{4(1 - \varepsilon^2)(p + 2) \beta \mu} A_p + \frac{4\mu^2(p + 2) + (p + 1)(2\kappa \kappa + p + 1)(2\kappa \kappa + p + 2)}{4(1 - \varepsilon^2)(p + 2) \beta \mu} \tag{5.7} \]

and

\[A_{p+1} = \beta \frac{4\varepsilon^2 \kappa(p + 1) + p(2\kappa \kappa + p)(2\kappa \kappa + \varepsilon(p + 1))}{\mu(4\varepsilon - p^2)p} A_p
\]

\[+ \frac{4\mu^2(p + 1) + p(2\kappa \kappa + p)(2\kappa \kappa + p + 1)}{\mu(4\varepsilon - p^2)p} B_p. \tag{5.8} \]
\[B_{p-1} = \beta \frac{4v^2 + 2\varepsilon(2p + 1) + s^2 p(p + 1)}{\mu(4v^2 - p^2)} A_p \]
\[- \beta \frac{4v^2\varepsilon + 2\varepsilon(p + 1) + \varepsilon p(2\varepsilon + p + 1)}{\mu(4v^2 - p^2)} B_p, \]
\[\text{(5.10)} \]

respectively.

We have shown that these solutions can be derived from the three-term vector recurrence relations found in this paper. As a by-product, the factorization of Shabaev’s matrices, namely
\[S_p = P_p^{-1} Q_p, \quad S_p^{-1} = Q_p^{-1} P_p, \]
\[\text{(5.11)} \]
is given. This can be directly verified with the help of a computer algebra system. Then
\[\det S_p = \frac{\det Q_p}{\det P_p} = \frac{(4\nu^2 - p^2)p}{4(a\beta^2)(p + 1)}. \]
\[\text{(5.12)} \]

Further details are left to the reader.

Acknowledgments

I thank Carlos Castillo-Chávez for support and encouragement and David Murillo for help. I am grateful to Vladimir M Shabaev for a copy of [50]. The referees’ suggestions are also very much appreciated.

Appendix. Matrix form of the three-term recurrence relations

The matrix structures of our recurrence relations (3.17)–(3.19) and (3.23)–(3.25) are given by

\[\begin{pmatrix} A_{p+1} \\ B_{p+1} \\ C_{p+1} \end{pmatrix} = (2a\beta^2) \begin{pmatrix} A_p \\ B_p \\ C_p \end{pmatrix} - \frac{4\varepsilon\mu}{\mu(a^2(p + 1)^2 - 1)} \begin{pmatrix} 4\varepsilon\mu(a^2(p + 1)^2 - 1) \\ 4\varepsilon\mu \end{pmatrix} \]
\[- \frac{4\varepsilon\mu}{a^2(p + 2)} \begin{pmatrix} 4\varepsilon\mu(a^2(p + 1)^2 - 1) \\ 4\varepsilon\mu \end{pmatrix} \begin{pmatrix} 4\varepsilon\mu(a^2(p + 1)^2 - 1) \\ 4\varepsilon\mu \end{pmatrix} \]
\[\text{(A.1)} \]

and

\[\begin{pmatrix} A_{p+1} \\ B_{p+1} \\ C_{p+1} \end{pmatrix} = \beta \begin{pmatrix} 2p + 1 \\ p + 1 \end{pmatrix} \begin{pmatrix} a^2 p(p + 2) \\ a^2(p + 2)^2 \end{pmatrix} \begin{pmatrix} -4 \varepsilon \mu \\ -4 \varepsilon \mu \end{pmatrix} \begin{pmatrix} A_p \\ B_p \\ C_p \end{pmatrix} \]
\[\text{(A.2)} \]

respectively. The initial vectors are

\[\begin{pmatrix} A_{-1} \\ B_{-1} \\ C_{-1} \end{pmatrix} = \frac{\beta}{\mu \nu} (1 - \varepsilon^2)(\varepsilon \nu + \sqrt{1 - \varepsilon^2}) \begin{pmatrix} \beta a^2 \\ \mu \end{pmatrix} \]
\[\frac{\kappa}{2\mu \nu} a^2 \beta \]
\[\text{(A.3)} \]

\[\begin{pmatrix} A_0 \\ B_0 \\ C_0 \end{pmatrix} = \begin{pmatrix} 1 \\ \varepsilon \mu \end{pmatrix} \]
\[\frac{\kappa}{2\mu} (1 - \varepsilon^2) \]
\[\text{(A.4)} \]
(2aβ)^2 \begin{pmatrix} A_{p+1} \\ B_{p+1} \end{pmatrix} = \begin{pmatrix} \beta^2p + 1 \\ p + 1 \end{pmatrix} \begin{pmatrix} 2aμ^2(p + 2)(2κ + ε(p + 1)) \\ a^2μp(p + 2) \end{pmatrix} \begin{pmatrix} 4εμ^2 + a^2p(p + 2)(2κ + ε(p + 1)) \\ -εa^2μ^2 + a^2p(p + 2)(2κ + ε(p + 1)) \end{pmatrix} \begin{pmatrix} A_p \\ B_p \end{pmatrix} - \frac{ε(4ε^2 - p^2)}{a^2(p + 1)(p + 2)} \begin{pmatrix} a^2(p + 1)^2 - 1 \\ -εa^2(p + 1)^2 + ε^2 \end{pmatrix} \begin{pmatrix} A_{p-1} \\ B_{p-1} \end{pmatrix}.

\text{and}

(2aβ)^2 \begin{pmatrix} A_{p+1} \\ B_{p+1} \end{pmatrix} = 4βεμ \begin{pmatrix} 2p + 3 \\ p + 2 \end{pmatrix} \begin{pmatrix} A_p \\ B_p \end{pmatrix} - \begin{pmatrix} 2κ(p + 2)(4ε^2 - p^2) \\ (p + 1)(p + 2) \end{pmatrix} \begin{pmatrix} 2κε - 1 + (p + 1)(2p + 3) \\ -2κε + (p + 1)(p + 2) \end{pmatrix} \begin{pmatrix} A_{p-1} \\ B_{p-1} \end{pmatrix}.

One should use the initial data (A.3) and (A.4) in the case of the recurrence relation (A.1) and (A.4)–(A.5) for (A.2).

Our relations (4.2)–(4.3) and (4.4)–(4.5) take the following matrix forms:

\begin{align*}
\begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix} &= \left(\begin{array}{c}
\frac{3εμ^2 - κ(1 - ε^2)(1 + εκ)}{2βμ(1 - ε^2)} \\
\frac{3ε^2μ^2 - (1 - ε^2)(εκ + ν^2)}{2βμ(1 - ε^2)} \\
\frac{2βμ(1 - ε^2)}{2εκ - 1} \\
\end{array} \right). \\
\text{(A.5)}
\end{align*}

References

[1] Adkins G S 2008 Dirac–Coulomb energy levels and expectation values Am. J. Phys. 76 579–84
[2] Andrae D 1997 Recursive evaluation of expectation values \(\langle r^p \rangle\) for arbitrary states of the relativistic one-electron atom J. Phys. B: At. Mol. Phys. 30 4435–51
[3] Armstrong L Jr 1971 Mean values of powers of the radius for hydrogenic electron orbits Phys. Rev. A 3 1546–40
[4] Askey R A 1985 Continuous Hahn polynomials J. Phys. A: Math. Gen. 18 L107–19
[5] Atakishyev N M and Suslov S K 1985 The Hahn and Meixner polynomials of imaginary argument and some of their applications J. Phys. A: Math. Gen. 18 1583–96
[6] Bailey W N 1935 Generalized Hypergeometric Series (Cambridge: Cambridge University Press)
[7] Balasubramanian S 2000 A simple derivation of the recurrence relation for \(\langle r^n \rangle\) Am. J. Phys. 68 959–60
[8] Baz A I, Zeit'ovich Ya B and Perelomov A M 1971 Scattering, Reactions and Decays in Nonrelativistic Quantum Mechanics (Moscow: Nauka) (in Russian)
[9] Beker H 1997 A simple calculation of \(\langle 1/r^2 \rangle\) for the hydrogen atom and the three-dimensional harmonic oscillator Am. J. Phys. 65 1118–9
[10] Bethe H A and Salpeter E E 1957 Quantum Mechanics of One-and Two-Electron Atoms (Berlin: Springer)
[11] Blanchard P 1974 A new recurrence relation for hydrogenic radial matrix elements J. Phys. B: At. Mol. Phys. 7 993–1005
[12] Bockasten K 1974 Mean values of powers of the radius for hydrogenic electron orbits Phys. Rev. A 9 1087–9
[13] Chacón E, Levi D and Moshyński M 1976 Lie algebras in the Schrödinger picture and radial matrix elements J. Math. Phys. 17 1919–29
[14] Cordero-Soto R and Suslov S K 2009 Expectation values \(\langle r^p \rangle\) for harmonic oscillator in \(R^2\), arXiv:0908.0032v3 (math-ph)
[15] Curtis L J 1991 Classical mnemonic approach for obtaining hydrogenic expectation values \(\rho^p\) Phys. Rev. A 43 568–9
[16] Davis L 1939 A note on the wave functions of the relativistic hydrogen atom Am. J. Phys. 26 28–35
[17] Ding Yi-B 1987 On the Schrödinger radial ladder operator J. Phys. A: Math. Gen. 20 6293–301
[18] Drake G W F and Swainson R A 1990 Expectation values of \(\rho^p\) for arbitrary hydrogenic states Phys. Rev. A 42 1123–6
[19] Epstein J H and Epstein S T 1962 Some applications of hypervirial theorems to the calculation of average values Am. J. Phys. 30 266–8
[20] Epstein S T, Epstein J H and Kennedy B 1967 Recursion relations for Coulomb matrix elements J. Math. Phys. 8 1747
[21] Erdélyi A 1953 Higher Transcendental Functions vols I–III ed A Erdélyi (New York: McGraw-Hill)
[22] Gumberidze A et al 2005 Quantum electrodynamics in strong electric fields: The ground state Lamb shift in hydrogenlike uranium Phys. Rev. Lett. 94 1–4
[23] Gumberidze A et al 2007 Precision tests of QED in strong fields: experiments on hydrogen- and helium-like uranium J. Phys.: Conf. Ser. 58 87–92
[24] Hey J D 1993 On the momentum representation of hydrogenic wave functions: some properties and an application Am. J. Phys. 61 28–35
[25] Hey J D 1993 Further properties of hydrogenic wave functions Am. J. Phys. 61 741–9
[26] Karlin S and McGregor J L 1961 The Hahn polynomials, formulas and an application Scr. Math. 26 33–46
[27] Karshenboim S G et al (eds) 2001 The Hydrogen Atom: Precision Physics of Simple Atomic Systems (Lecture Notes in Physics vol 570) (Berlin: Springer)

[28] Karshenboim S G and Smirnov V B (eds) 2003 Precision Physics of Simple Atomic Systems (Lecture Notes in Physics vol 627) (Berlin: Springer)

[29] Kockoek R and Swarttouw R F 1994 The Askey scheme of hypergeometric orthogonal polynomials and its q-analogues Report 94–05, Delft University of Technology

[30] Koelink H T 1996 On Jacobi and continuous Hahn polynomials Proc. Am. Math. Soc. 124 887–98

[31] Koekoek R and Swarttouw R F 1994 The Askey scheme of hypergeometric orthogonal polynomials and its q-analogues Lecture Notes in Physics vol 570 (Berlin: Springer) pp 714–26

[32] Shabaev V M 2001 Relativistic recoil corrections to the atomic energy levels The Hydrogen Atom: Precision Physics of Simple Atomic Systems (Lecture Notes in Physics vol 570) (Berlin: Springer) pp 97–113

[33] Shabaev V M 2002 Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms Phys. Rep. 356 119–228

[34] Shabaev V M 2003 Virial relations for the Dirac equation and their applications to calculations of hydrogen-like atoms Precision Physics of Simple Atomic Systems (Lecture Notes in Physics vol 627) (Berlin: Springer) pp 97–113

[35] Shabaev V M 2008 Quantum electrodynamics of heavy ions and atoms: current status and prospects Phys.-Uspeki 51 1175–80

[36] Shertzer J 1991 Evaluation of matrix elements $\langle n, l | r^p | n, l' \rangle$ for arbitrary β J. Phys. A 44 2832–5

[37] Suslov S K 2009 Expectation values in relativistic Coulomb problems J. Phys. B: At. Mol. Opt. Phys. 42 185003 (8pp); published on line 9 September 2009, URL: http://www.iop.org/EJ/abstract/0953-4075/42/18/185003/

[38] Suslov S K and Trey B 2008 The Hahn polynomials in the nonrelativistic and relativistic Coulomb problems J. Math. Phys. 49 012104 (51pp); published on line 22 January 2008, URL: http://link.springer.com/article/10.1007/s11005-007-0394-9

[39] Swainson R A and Drake G W F 1990 An alternative proof of the virial relations for radial integrals with Dirac and Schrödinger wave functions, Vestnik Leningradskogo Universiteta, Seria 4: Fizika, Khimiya, number 1, 15–19 (in Russian)

[40] Van Vleck J H 1934 A new method of calculating the mean values Phys. Rev. 44 393–406

[41] Tchebychef P L 1859 Sur l’interpolation par la méthode des moindres carrés Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg, Vf serie 1, 1–24

[42] Tchebychef P L 1953 The Hydrogen Atom: Precision Physics of Simple Atomic Systems (Lecture Notes in Physics vol 570) (Berlin: Springer) pp 714–26

[43] Tchebychef P L 1962 Conditions for the convergence of series Proc. Am. Math. Soc. 13 364–70

[44] Tchebychef P L 1962 Functions of a Discrete Variable (Berlin: Springer)

[45] Tchebychef P L 1978 Quantum Mechanics: Selected Topics (River Edge, NJ: World Scientific)

[46] Viola I 1926 Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion der Spektra von He und Li$^+$ Z. Phys. 38 635–46