DNA, the hereditary material of all living organisms, is sensitive to damages from oxidation, hydrolysis, and methylation. The living cells are equipped with the ability for efficient DNA repair systems, such as repair base damage (base excision repair, or BER), nucleotide damage (nucleotide excision repair, or NER), single-strand breaks (single-strand break repair), and double-strand breaks (double-strand break repair). Double-strand DNA (DSB) breaks are considered the most lethal form of DNA damage. In eukaryotes, there are two major DSB repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the predominant pathway in higher eukaryotes and is active throughout the cell cycle [1-3], whereas HR is generally limited to S and G₂ when a sister chromatid is available as a repair template [4]. The primary role of NHEJ is to resolve DNA double-strand breaks, and data implicate DNA-dependent protein kinase (DNA-PK) as a central regulator of DNA end access [5].

Alzheimer's disease (AD) is a central nervous system neurodegenerative disease. The pathological presentation of AD, the leading cause of senile dementia, involves region-specific neuronal death and an accumulation of neuronal and extracellular lesions termed neurofibrillary tangles and senile plaques, respectively (reviewed in [6]). Several independent hypotheses have been proposed to link the pathological lesions and neuronal cytopathology with, among others, apolipoprotein E genotype [7,8], hyperphosphorylation of cytoskeletal proteins (neurofilaments and Tau) [9], and amyloid-β metabolism [10]. However, not one of these theories alone is sufficient to explain the diversity of biochemical and pathological abnormalities of AD. There is limited evidence for neuronal loss in most amyloid precursor protein (APP) models, and when neuronal loss was noted, it was modest [11-13].

Cellular damage by oxidative stress has been proposed as a causative factor in pathophysiology of AD and normal aging. Elevated levels of oxidative damage in both nuclear DNA and mitochondrial DNA have been reported in brains of patients with AD [14], and BER deficiency has been found in post-mortem brains of sporadic patients with AD [15]. However, impaired BER activity found in neuropathological brain regions and in the cerebellum where there is no neuronal death indicates that BER deficiency is not specific to human AD brains [16]. The lack of a difference in BER activity between wild-type and AD model mice brains in any age group [17] indicates that species-specific mechanisms may be
involved in AD progression. Nonetheless, progressive neuronal loss due to cumulative damage to DNA and lack of DNA repair has been hypothesized to contribute to AD and stroke [18,19]. Moreover, human hereditary syndromes with genetic defects in the DNA repair process manifest in early-onset developmental and progressive neurodegeneration, indicating that defects in DNA damage repair are neuropathological [20,21].

In the four major DNA repair pathways (double-strand DNA (dsDNA) break repair (HR and NHEJ), NER, BER, and mismatch repair), key proteins, including some with dual functions, participate in DNA damage sensing/repair and apoptosis (Table 1) [16]. The focus of this review is on how DNA-PK activity may be linked to AD and whether a ‘cause and effect’ scenario emerges from the reported studies.

DNA-dependent protein kinase, a multi-subunit enzyme

DNA-PK is a PI3 kinase family member, and like targets of other members (ATR and ATM) of this family, its preferential targets of phosphorylation are the serines and threonines followed by a glutamine (S-T/Q sites), although other S-T/hydrophobic residues are also phosphorylated [22]. DNA-PK enzyme activity is essential for NHEJ [5]. Although DNA-PK is implicated in a variety of functions from activation of innate immunity [23] to regulation of gene expression [24], its primary cellular function is to initiate NHEJ. A multi-subunit enzyme, DNA-PK consists of a catalytic subunit (DNA-PKcs), p460, and a regulatory subunit called Ku. The Ku protein is a heterodimer composed of 70-kDa (Ku70) and 80-kDa (Ku80) subunits and has the capability of binding selectively to specific forms of DNA [25,26]. In this capacity, it functions as the regulator of DNA-PK that is active in transcription, DNA recombination, and DNA repair [27-29]. Its role in DNA repair was not formally proven until the emergence of studies implicating Ku as the defective factor in cells hypersensitive to DNA-damaging agents [30].

DNA-dependent protein kinase activators

Ku binds DNA ends in a sequence-independent manner, and in the absence of DNA-PKcs, the extreme DNA terminus is bound in an accessible channel [31]. Ku has strong avidity for DNA with a variety of end structures, such as blunt, over-hanged, hair-pinned, and damaged. Ku can also recognize gaps and nicks in dsDNA, indicating possible roles of DNA-PK in the repair of damage other than DSBs [32], and is particularly suited to do this since DNA-PKcs assembles onto Ku-bound DNA regardless of end structure [33]. Although DNA-PKcs has innate affinity (itself) for DNA ends (in low salt conditions), Ku is required for targeting DNA-PKcs to damaged DNA in physiologic conditions and in living cells [34]. Although any DSB discontinuity can activate DNA-PK, its activation varies considerably depending on the end structure, and studies show kinase activation in trans (achieved by kinase autophosphorylation) or cis (achieved by specific DNA strand orientation and sequence bias) [35]. Activation by these dual processes represents a potentially powerful mechanism by which DNA-PK protects DNA ends to maintain genome integrity. After the DSB repair, Ku likely remains trapped on the DNA [36]. How Ku gets removed from the DNA is not clear, although a protease-mediated degradation of Ku80 has been speculated [36].

Cellular and molecular targets of DNA-dependent protein kinase in non-homologous end joining

Many proteins have been listed as excellent in vitro and in vivo DNA-PK targets, but the functional relevance of their phosphorylation by DNA-PK remains mostly unclear. Most of the proteins involved in NHEJ (XRCC4, Ku70, Ku80, Artemis, DNA-PKcs, and XLF) are excellent in vitro and in vivo targets of DNA-PK [2,37-40]. When a DSB occurs, the Ku heterodimer (Ku80/Ku70) first binds to the broken ends by using Ku80 and then recruits the DNA-PKcs, which is activated upon binding to Artemis nuclease, and the repair process is completed by XRCC4-DNA ligase IV [39,41] (Figure 1). Physical association of DNA-PKcs and its enzymatic activity are required for Artemis’s endonucleolytic activity [39]. In the absence of DNA damage, Artemis is complexed with DNA-PKcs. It has been shown that DNA-PKcs is targeted to Ku-bound DNA; Artemis is released from DNA-PKcs and is rebound again only when the kinase is activated [34]. Artemis itself has both endo- and exonuclease activities [39].

Table 1. Key proteins involved in various types of DNA repair

DNA repair type	Key proteins involved
BER	Ref-1/Ape, PARP-1, and p53
NER	XPF, XPD, p53, and p33 (UNG1b)
MMR	MSH2, MSH6, MLH1, and PMS2
HR	BRCA1, ATM, ATR, WRN, BLM, Tip60, and p53
NHEJ	DNA-PK

ATM, Ataxia telangiectasia mutated protein; ATR, Ataxia telangiectasia and Rad3-related protein; BER, base excision repair; BLM, Bloom’s syndrome gene product; BRCA1, breast cancer 1, early onset gene product; DNA-PK, DNA-dependent protein kinase; HR, homologous recombination; ING1b, inhibitor of growth protein 1 gene product; MLH1, MutL homolog 1, colon cancer, non-polyposis type 2 (Escherichia coli); MMR, mismatch repair; MSH2, MutS homolog, colon cancer, non-polyposis type 1 gene product; MSH6, MutS homolog 6 gene product; NER, nucleotide excision repair; NHEJ, non-homologous end joining; NFT, neurofibrillary tangle; PARP-1, poly (ADP-ribose) polymerase 1; PMS2, post-meiotic segregation increased 2 gene product; Ref-1/Ape, DNA-(apurinic or apyrimidinic site) lyase; Tip60, Tat interactive protein; WRN, Werner syndrome gene product; XPF, Xeroderma pigmentosum B gene product; XPD, Xeroderma pigmentosum factor D.
DNA-PKcs strongly suppresses the exonuclease activity of Artemis but allows limited endonucleolytic trimming, likely at regions of transition from single-strand to double-strand [39,42].

Non-homologous end joining and DNA-dependent protein kinase in neurons

Mature neurons are essentially post-mitotic and do not proliferate, whereas some glial cells can undergo replication especially as a response to stress or damage [43,44]. Neurons are also among the most metabolically and transcriptionally active cells (reviewed in [45]), thus making these cells vulnerable to risks that involve DNA damage.

DNA repair pathways in brain have been studied extensively over the last two decades (reviewed in [45,46]). In mammals, DSB repair uses two mechanisms: HR and NHEJ. NHEJ is the predominant dsDNA repair pathway in mammalian cells [47]. Compared with the HR, NHEJ is considered error-prone and imprecise as it acts at the DNA break sites to restore the chromosomal structural integrity which could come at the expense of one or a few nucleotides. Since most of the higher eukaryote genome is non-coding, error-prone rejoining of DSBs by NHEJ generally has minimal deleterious consequences. However, DSB repair in coding regions can potentially introduce functionally important coding changes. Over time, as in aging, these small errors can accumulate, resulting in genome instability that leads to cellular dysfunction or death. Accordingly, it has been reported that 10% of p53 mutations in human cancers could be attributed to deletions arising from NHEJ sites [48]. NHEJ is also the predominant form of dsDNA repair pathway in post-mitotic neurons [49] and is critical in the nervous system development since mice deficient in DNA ligase IV, XRCC4, Ku70, and Ku 80, which are participants in the NHEJ event, show massive apoptosis of post-mitotic neurons [46,50]. Loss of NHEJ activity in the developing brain can be prenatally lethal and, in adults, can lead to neurodegenerative diseases [46,51,52]. Mice with defective NHEJ show accelerated aging [53,54].

DNA-dependent protein kinase and cell-cycle re-entry in neurodegeneration

One of the factors contributing to neurodegeneration is the re-entry of terminally differentiated post-mitotic neurons into the cell cycle because of chronic or acute insults associated with DNA damage and oxidative stress that result in apoptosis [55,56]. DSB repair capability is critical for neurogenesis during development, and damaged neurons demonstrate this by escaping apoptosis, re-entering the cell cycle, and incorporating into the developing brain, leading to neurodegeneration in mice with low or no ATM activity [57]. While ATM deficiency suppresses the re-entry of post-mitotic neurons into S-phase and protects against apoptosis [56], it also increases the yield of unrepaired DNA that eventually may be lethal. Neuronal DNA damage is linked to the re-entry of neurons into the cell cycle [56,58]. When post-mitotic neurons try to re-enter the cell cycle, the very attempt to transcribe a subset of cell cycle-related genes that have not been transcribed for years in the lifetime of a mature neuron may accumulate damaged DNA, which could trigger neuronal apoptosis [59].

Furthermore, it has been suggested that DNA replication resulted when cell-cycle re-entry preceded neurodegeneration in AD brains [60]. Reactive oxygen/nitrogen species are reported to cause unscheduled and incomplete DNA replication known as ‘replication stress’ [61]. Thus, inefficient DNA replication posing ‘replication stress’ in AD pathogenesis leading to genomic instability potentially links Aβ accumulation and erroneous cell-cycle pathways [62]. Obviously, incomplete DNA replication due to DSBs or defective DNA repair systems (or...
both) would be highly probable in post-mitotic neurons, causing replication stress and subsequently leading to accelerated accumulation of further DNA damages and genomic instabilities [63,64]. Stalled replication forks collapse to yield one-ended DSBs, or ‘double-strand ends’, and abnormal DNA replication in post-mitotic neurons may be the source of intracellular increase in DNA content observed in AD brains [60,65]. It has been shown that DNA-PKcs mutant cells fail to arrest replication following stress [66]. Additionally, studies show that, in response to replication stress-induced DNA damage, DNA-PK phosphorylates replication protein A (RPA) and dissociates RPA:DNA-PK complex [67,68], thereby inhibiting HR [69]. Thus, reduced DNA-PK activity in a cell could potentially induce replication stress and genome instability.

DNA-dependent protein kinase in Alzheimer’s disease and aging

It has also been shown that cells from old mice contain more DSBs than cells from young mice and that the fidelity and efficiency decline significantly during cellular senescence [70]. This event may contribute to age-related genomic instability and aging. DNA-PK plays critical roles in, first, detecting DNA damage and, then, triggering signaling pathways, including programmed cell death [53]. Ku80−/− mice are defective in the NHEJ and telomere maintenance and show premature aging, but surprisingly no human disorder caused by Ku80 deficiency or mutation has been reported [54,71]. Interestingly, Ku80 and DNA-PKcs protein levels as well as the DNA-binding ability of Ku80 are reduced following severe ischemic injury, which causes extensive neuronal death in rabbits [72]. Furthermore, though not significantly different from that of the age-matched controls, Ku-DNA binding is reduced in extracts of post-mortem AD mid-frontal cortex, and this could be attributed to reduced levels of Ku subunits and DNA-PKcs [73]. However, a report from the same laboratory demonstrated that NHEJ is reduced in cortical extracts from brains of AD versus normal subjects and that DNA-PKcs level was significantly lower in the AD brain extracts [74]. Whether other DNA repair systems, especially HR, are altered in the AD brains is not known (Figure 2).

To explain the complexity of AD, a ‘two-hit hypothesis’ for AD development has been reported; the first hit makes neurons vulnerable and the second hit triggers the neurodegenerative process [75]. The first hit may constitute abnormalities when neurons try to re-enter the cell cycle or oxidative stress, which, if persistent, can create a
pro-oxidant environment as encountered in pre-AD and AD cases. In this environment, proteins highly sensitive to redox modulation, including p53, can be compromised [76]. A number of post-mortem studies suggest an involvement of p53 in AD, and high levels of p53 in certain neurons in post-mortem samples from patients with AD have been reported (reviewed in [77]). DNA-PK activates p53 by phosphorylating the amino-terminal site [78], and p53 can induce Bax, a pro-apoptotic protein that translocates to the mitochondria and initiates the intrinsic death pathway [79]. Regulation of Bax-mediated neuronal death also reportedly involves Ku70 phosphorylation by DNA-PK [80]. In this regard, reduction in DNA-PKcs levels in AD brains does not seem to be consistent with the role of DNA-PKcs as the trigger for p53-mediated neurodegeneration (Figure 3).

DNA-PK is believed to have little or no effect on p53-dependent cell-cycle arrest. In contrast, there are reports linking p53 phosphorylation by DNA-PK to cellular death machinery (reviewed in [81]). DNA-PK is also involved in regulating the activities of RNA polymerase I and II via phosphorylation (reviewed in [81]). Given these important substrates of DNA-PK that are critical players in cell death and gene transcription, it is difficult to pinpoint the exact role(s) of DNA-PKcs and its cofactor (Ku80/Ku70) in AD. Likewise, it would be simplistic to directly link reduced levels of DNA-PK subunits and consequently less proficient NHEJ in AD brains to neurodegeneration. On the other hand, it is attractive to speculate that DNA damage (for example, induced by reactive oxygen species (ROS) downstream of Aβ) in neurons with reduced NHEJ activity, triggering them to re-enter the cell cycle unsuccessfully, could lead to the accumulation of excessive genomic damage and eventually cause neuron death (Figure 3). In either pathway, given that NHEJ is the process involved, the importance of the DNA-PKcs/Ku complex in the development of neurodegenerative pathology may be considerable. The reduced levels of DNA-PKcs, and Ku80/Ku70 subunits in post-mortem AD brains may be perceived as upstream events of neuron loss in AD, although further studies to differentiate between cause and consequence are warranted.

DNA-dependent protein kinase and amyloid beta

In a recent study, sublethal levels of aggregated Aβ(25-35) have been shown to inhibit DNA-PK activity in nerve growth factor (NGF)-differentiated PC12 cells [82]. In this study, one of the potential mechanisms appears to be Aβ-induced ROS-mediated degradation of DNA-PKcs. Aβ also induces DNA-PKcs carbonylation, an irreversible oxidative protein modification that may trigger its degradation by proteasomes [83,84]. DNA-PK activity is also inhibited by H2O2 in cell-free assays, indicating that ROS may directly inhibit DNA-PK activity [82]. On the other hand, Aβ(1-42), which can enter the nucleus of PC12 cells, also downregulates DNA-PK activity, possibly by a mechanism other than the involvement of oxidative stress. In AD cases, a decrease in DNA-PKcs expression in neurons and astrocytes, though not significant, has been reported [85]. Although it is tempting to link AD development to Aβ-induced attenuation of DNA-PK activity and hence to reduced NHEJ activity, it may be argued that this event is a consequence rather than the prime cause, a simultaneous event that could occur independently of Aβ-triggered neurotoxic pathways.

Conclusions

In contrast to other NHEJ and HR factors, all three components of the DNA-PK complex (DNA-PKcs, Ku80, and Ku70) are exceptionally abundant proteins, especially in human cells [86]. Given the complexity of AD, a clear distinction is lacking as to whether the expression of DNA-PK subunits may have been transcriptionally impaired in AD brains because of a hitherto unknown upstream event that is too generic to have a specifically targeted effect on DNA-PK. As for the reduced level of DNA-PKcs, Aβ-induced proteasome-mediated degradation of DNA-PKcs has been proposed [83,84]. With regard to other NHEJ components as essential as DNA-PK (for example, Artemis), their status in AD remains unexplored. In AD, it is possible that with already-declining NHEJ activity due to the defects in some other components associated with the process, a reduced DNA-PK activity may be consequential or a secondary
effect. Therefore, a decline in DNA-PK subunit levels and its kinase activity may, for the time being, serve as biomarkers until future studies, especially in vivo studies, add to substantiate a direct link of DNA-PK to AD. Furthermore, increased HR of substrates in cells that lack DNA-PK [87,88], co-localization of NHEJ and HR factors at the same DNA lesion [89], partial rescue of the severe phenotypes associated with deficiency of XRCC4 or ligase IV, by deletion of DNA-PK [90,91], indicate that, in the absence of DNA-PK and NHEJ, the cells may tend to acquire an alternate path (for example, HR) to repairing DSBs. Interestingly, in cell culture studies, crosstalk between HR repair and NHEJ has been shown to involve ATM, DNA-PK, and ATR, indicating that DNA-PK may participate in HR by co-regulating p53 and RPA [92]. Should such alternate pathway(s) be adversely affected by factors causing AD onset, the neurons devoid of any ability to repair DSBs may be vulnerable to degeneration. Since DNA-PK, and Ku mutations in humans are not present [54,71] and aging brains also exhibit reduced levels of Ku80 and NHEJ activity [73,74], it remains to be seen whether reduced levels of DNA-PK complex and the enzyme activity do bear any direct relationship to AD (Figure 2). Discerning between normal aging-related attenuation of DNA-PK activity/expression and that in AD cases warrants further assessment.

Lately, genomic lesions during neurodegeneration to transcriptional insufficiency is fast emerging [93]. Nucleolar insensitivity to DSBs has been implicated in neurodegeneration [93]. Nucleolus is the site of ribosomal RNA (rRNA) biogenesis [94]. The RNA polymerase I (Pol I) drives the transcription of rRNA, and continuous Pol I activity is required for nucleolar maintenance. The DNA-PK component Ku has been shown to suppress RNA Pol I transcription in vitro and in P19 stem cells [95-97]. In this context, a reduction in DNA-PK activity and level of expression of its components in AD brains [73,74] should act as a relief factor for Pol I transcription. Interestingly, while hippocampal neurons have been shown to have AD-associated reduction in nucleolar volume [98], in subjects with moderate AD pathology without cognitive impairment, nucleolar hypertrophy has been reported in both cortical and hippocampal neurons [98]. Although the latter scenario appears consistent with reduced DNA-PK and Ku levels in AD brains [73,74], the link remains unclear and needs further research.

Abbreviations

AB, amyloid beta; AD, Alzheimer’s disease; ATM, Ataxia telangiectasia mutated protein; ATR, Ataxia telangiectasia and Rad3-related protein; BER, base excision repair; DNA-PK, DNA-dependent protein kinase; DNA-PKcs, DNA-dependent protein kinase catalytic subunit; DSB, double-strand break; dsDNA, double-strand DNA; HR, homologous recombination; NER, nucleotide excision repair; NHEJ, non-homologous end joining; Pol I, RNA polymerase I; ROS, reactive oxygen species; rRNA, ribosomal RNA; RPA, replication protein A; XLF, x-ray repair cross-complementing protein 4-like factor; XRCC4, x-ray repair cross-complementing protein 4.

Competing interests

The author declares that she has no competing interests.

Acknowledgments

The author’s research is supported by funds from the National Center for Toxicological Research of the US Food and Drug Administration (FDA). This document has been reviewed in accordance with FDA policy and has been approved for publication. Approval does not signify that the contents necessarily reflect the position or opinions of the FDA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The findings and conclusions in this report are those of the author and do not necessarily represent the views of the FDA.

Published: 8 April 2013

References

1. Critchlow SE, Jackson SP: DNA end-joining: from yeast to man. Trends Biochem Sci 1998, 23:394-398.
2. Lieber MR: The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 1999, 4:77-85.
3. Pastink A, Eeckman FC, Lohman PJ: Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 2001, 480:481-570.
4. Rothkamm K, Kruger I, Thompson LH, Lohbrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003, 23:5706-5715.
5. Kienker LJ, Shin EK, Meek K: Both VDJ recombinase and radioresistance require DNA-PK kinase activity, though minimal levels suffice for VDJ recombination. Nucleic Acids Res 2000, 28:2752-2761.
6. Smith MA, Perry G: The pathogenesis of Alzheimer’s disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 1997, 56:217.
7. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921-923.
8. Roses AD, Saunders AM, Corder EH, Pericak-Vance MA, Han SH, Einstein G, Hulette C, Schmechel DE, Holst M, Huang D, Risch NJ, Haines JL, Goedert M, Jakes R, Dong LM, Weissner H, Strittmatter WJ: Influence of the susceptibility genes apolipoprotein E epsilon 4 and apolipoprotein E epsilon 2 on the rate of disease expressivity of late-onset Alzheimer disease. Arzneimittelforschung 1995, 45:413-417.
9. Trojanowski JQ, Smith RL, Shin WB, Bramlett GT, Rao D, Lee VM: Altered tau and neurofilament proteins in neuro-degenerative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol 1995, 5:45-54.
10. Selkoe DJ: Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 1997, 275:630-631.
11. Duyckaerts C, Poter MC, Delattre O: Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 2008, 115:5-38.
12. Hisao K, Chapman R, Nilsen S, Eckman C, Harigaya Y, Youngin S, Yang F, Cole G: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996, 274:99-102.
13. Liu L, Oonozo IO, Planel E, Wen Y, Breteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu WH, Arancio O, Duff K: A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis 2008, 31:46-57.
14. Wang L, Xiong S, Xie C, Markesbery WR, Lovell MA: Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neuropathol Exp Neurol 2005, 64:935-962.
15. Weismann L, Jo DG, Sorenson MM, de Souza-Pinto NC, Markesbery WR, Mattson MP, Bohr VA: Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res 2007, 35:5545-5555.
16. Jeppesen DK, Bohr VA, Stevenson T: DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011, 94:166-200.
17. Greddilla R, Weismann L, Yang JG, Bohr VA, Stevenson T: Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer’s disease. Neurobiol Aging 2012, 33:694-707.
18. Adamec E, Vonsattel JP, Nixon RA: DNA strand breaks in Alzheimer’s disease. Brain Res 1999, 849:67-77.
31. Walker JR, Corpina RA, Goldberg J.
32. Rathmell WK, Chu G.
29. Satoh MS, Lindahl T.
21. Lee Y, McKinnon PJ.
22. Lees-Miller SP, Meek K.
Mo X, Dyran WS. Subnuclear localization of Ku protein: functional association with RNA polymerase II elongation sites. Mol Cell Biol 2002, 22:8068-8099.

del Vries E, van Dreil W, Bergsma WG, Amberg AC, van der Vliet PC. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol 1989, 208:65-78.

Mimori T, Hardin JA. Mechanism of interaction between Ku protein and DNA. J Biol Chem 1996, 271:10375-10379.

Carter T, Vancurova I, Sun I, Lou W, DeLeen S. A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol 1990, 10:6460-6471.

Jackson SP, MacDonald J, Lees-Miller S, Tian R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 1990, 63:153-165.

Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992, 356:356-358.

Liang P, Romanienko PJ, Weaver DT, Jeggo PA, Jasins M. Chromosomal double-strand break repair in Ku80-deficient cells. Proc Natl Acad Sci U S A 1996, 93:8293-8297.

Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001, 412:607-614.

Rathmell WK, Chu G. Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc Natl Acad Sci U S A 1994, 91:7623-7627.

Smider V, Rathmell WK, Brown G, Lewis S, Chu G. Failure of hairpin-ended and nicked DNA to activate DNA-dependent protein kinase: implications for V(D)J recombination. Mol Cell Biol 1998, 18:653-658.

Drouet J, Delteil C, Lefrancois J, Concanon P, Salleys B, Callou P. DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double-strand breaks. J Biol Chem 2005, 280:7060-7069.

Reddy YV, Ding Q, Lees-Miller SP, Meek K, Ramsden DA. Non-homologous end joining requires that the DNA-PK complex undergo an autophosphorylation-dependent rearrangement at DNA ends. J Biol Chem 2004, 279:39408-39413.

Gullo CA, Fe C, Cow G, Tech G. Ku86 exists as both a full-length and a protease-sensitive natural variant in multiple myeloma cells. Cancer Cell Int 2008, 8:4.

Chan DW, Ye R, Veillette CJ, Lees-Miller SP. DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 1999, 38:1819-1828.

Goodarzi AA, Yu Y, Riballo E, Douglas P, Walker SA, Ye R, Haer C, Marchetti M, Morrice N, Jeggo PA, Lees-Miller SP. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 2006, 25:3880-3889.

Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002, 108:781-794.

Ma Y, Schwarz K, Lieber MR. The Artemis-DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst) 2005, 4:845-851.

DeFeo-Jones DT, Stanelle RH, Griffith JD, Chu G. Synthesis of DNA ends by DNA-dependent protein kinase. EMBO J 2002, 21:3192-3200.

Yannone SM, Khan IS, Zhou RZ, Zhou T, Valerie K, Povirk LF. Coordinate 5' and 3' endonucleolytic trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA-dependent protein kinase. Nucleic Acids Res 2008, 36:3334-3345.

Kor H. Proliferation of different cell types in the brain. Adv Anat Embryol Cell Biol 1990, 61:1-72.
71. Pandita TK. The role of ATM in telomere structure and function. Radiat Res 2001, 156:642-647.
72. Shackelford DA, Tabanu T, Zhang S, Zvin JA: Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 1999, 19:4727-4738.
73. Shackelford DA: DNA end joining activity is reduced in Alzheimer's disease. Neurobiol Aging 2006, 27:596-605.
74. Davydov V, Hansen LA, Shackelford DA: Is DNA repair compromised in Alzheimer's disease? Neurobiol Aging 2003, 24:953-968.
75. Zhu X, Raina AK, Perry G, Smith MA: Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 2004, 3:219-226.
76. Liu DD: [Review of neuropathology in the past 10 years in China]. Zhonghua Bing Li Xue Za Zhi 2005, 34:550-552. Article in Chinese.
77. Lanni C, Racchi M, Memo M, Govoni S, Uberti D: p53 at the crossroads between cancer and neurodegeneration. Free R décou Biol Med 2012, 52:1727-1733.
78. Soubeyrand S, Schild-Poulter C, Hache RJ: Structured DNA promotes phosphorylation of p53 by DNA-dependent protein kinase at serine 9 and threonine 18. Carcinogenesis 2005, 26:1317-1322.
79. Yee KS, Voutsid KH: Complicating the complexity of p53. Carcinogenesis 2005, 26:1317-1322.
80. Liu J, Naegeli JR, Lin SL: The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009, 1296:164-175.
81. Hill R, Lee PW: The DNA-dependent protein kinase (DNA-PK): More than just a case of making ends meet? Cell Cycle 2010, 9:3465-3469.
82. Cardinale A, Racanelli M, Saladini S, De Chiara G, Mollari C, de Stefano MC, Pocchiari M, Garaci E, Merlo D: Sublethal doses of beta-amyloid peptide modulate homologous repair: relevance to Alzheimer's disease. Radiat Res 2012, 187:2618-2631.
83. Gruene T, Reinheckel T, Davies KI: Degradation of oxidized proteins in mammalian cells. FEBS J 1997, 115:5-5.
84. Nystrom T: Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005, 24:1311-1317.
85. Simpson JE, Ince PG, Haynes LJ, Theaker R, Gelsthorpe C, Baxter L, Forster G, Lace GL, Shaw PJ, Matthews FE, Savva GM, Brayne C, Wharton SB: MRC Cognitive Function and Ageing Neuropathology Study Group: Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 2010, 36:35-40.
86. Mimo T, Hardin JA, Steitz JA: Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem 1986, 261:2274-2278.
87. Allen C, Halbrook J, Nickoloff JA: Interactive competition between homologous recombination and non-homologous end joining. Mol Cancer Res 2003, 1:913-920.
88. Pierce AJ, Hu P, Han M, Ellis N, Jasim M: Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 2001, 15:3237-3242.
89. Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, Le Sage C, Chen BP, Chen DJ, Agami R, Kerem B: Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 2005, 19:2715-2726.
90. Adachi N, Ishino T, Ishii Y, Takeda S, Koyama H: DNA ligase IV-deficient cells are more resistant to ionizing radiation in the absence of Ku70: Implications for DNA double-strand break repair. Proc Natl Acad Sci USA 2001, 98:12109-12113.
91. Kanajawala ZE, Adachi N, Irvine RA, Oh EK, Shibata D, Schwarz K, Hsieh CL, Lieber MR: The embryonic lethality in DNA ligase IV-deficient mice is rescued by deletion of Ku: Implications for unifying the heterogeneous phenotypes of NHEJ mutants. DNA Repair (Amst) 2002, 1:1017-1026.
92. Serrano MA, Li Z, Dangeti M, Musich PR, Patrick S, Roginskaya M, Cartwright B, Zou Y: DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene 2012 Jul 16 [Epub ahead of print].
93. Pietrzak M, Remapa G, Nelson PT, Zheng JJ, Hetman M: Epigenetic silencing of nuclear lamina genes in Alzheimer’s disease. PLoS One 2011, 6:e22585.
94. Drygin D, Rice WG, Grummt I: The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 2010, 50:131-156.
95. Kanungo J, Wang HY, Niall CC: Ku80 is required but not sufficient for Galpah3-mediated endodermal differentiation in P19 embryonic carcinoma cells. Biochem Biophys Res Commun 2004, 323:293-298.
96. Kuhn A, Stafanovsky V, Grummt I: The nuclear transcription activator UBF relieves Ku antigen-mediated repression of mouse ribosomal gene transcription. Nucleic Acids Res 1993, 21:2057-2063.
97. Labhart P: DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA 1995, 92:2934-2938.
98. Iacono D, O'Brien R, Resnick SM, Zonderman AB, Pletnikova O, Rudow G, An Y, West MJ, Crain B, Troncoso JC: Neuronal hypertrophy in asymptomatic Alzheimer disease. J Neuropath Exp Neurol 2008, 67:578-589.