‘WA 2’ Apple

Kate M. Evans, Bruce H. Barritt, Bonnie S. Konishi, Marc A. Dilley, and Lisa J. Brutcher

Tree Fruit Research and Extension Center, Washington State University, 1100 N. Western Avenue, Wenatchee, WA 98801

Cameron P. Peace

Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164

Additional index words. Malus ×domestica Borkh., fruit breeding, long shelf life, genotype, fruit quality

‘WA 2’ is an attractive bicolored apple with an outstanding texture, being very firm, crisp, and juicy. It loses very little firmness in storage compared with other cultivars. Fruit of ‘WA 2’ ripens in late September or early October in central Washington State. It is suited to the fresh market with the potential to be a commercial cultivar both directly off the tree and out of medium- and long-term storage.

Origin

‘WA 2’ originated from a seed collected in 1994 from open-pollinated fruit on a ‘Splendour’ tree. ‘Gala’ trees surrounded the ‘Splendour’ tree and subsequent DNA testing has confirmed it was the pollen source (Table 1). The seed germinated in 1995 and the seedling was raised in a greenhouse at the Washington State University (WSU) Tree Fruit Research and Extension Center (TFREC), Wenatchee. The seedling was transferred to the nursery in May 1995 where it was budded onto the M.9 rootstock. The bud grew into a tree in 1996 and was planted in the Phase 1 seedling evaluation orchard T19 at TFREC (row 17, position 3) in Apr. 1997. The seedling tree produced fruit in 2000 and 2001 and was selected for Phase 2 evaluation in Oct. 2001 based on its fruit quality. Buds were taken from the seedling tree and propagated on M.9 rootstock in Sept. 2002. Fifteen trees were produced for Phase 2 trials and planted at three central Washington locations (five trees per site) in Apr. 2004. Phase 3 orchard trials with larger tree numbers on M.9 rootstock were planted in Spring 2007 at four commercial orchard sites in central Washington. Virus-indexed material was budded on MM.106 (virus-indexed) for the production of certified propagation material.

Description and Performance

Full-bloom flowering occurred at the same time as ‘Cripps Pink’ at Wenatchee, WA (lat. 47.26° N; long. 120.21° W). The number of blossoms per bud averaged 4.6 with individual flowers medium in size (50.2 mm in diameter). Sepal color is Royal Horticultural Society (RHS, 1966, 1986, 1995) 138B green with highlighted grayed red tips (RHS 178B) and colorless pubescence on both the upper and lower surfaces. Petals are white (RHS N155B) with grayed purple highlights (RHS 186B).

Fruit of ‘WA 2’ ripens in late September or early October in Wenatchee, several weeks after ‘Gala’ and usually earlier than ‘Braeburn’ and ‘Fuji’. Fruit shape is round conic and size is medium, averaging 7.7 cm in equatorial diameter. Skin color ranges from orange–red to pinkish red (RHS 47A) blush (not stripe) over a yellow background, RHS 4C. It is a bicolored apple with 70% to 90% of the skin surface red. Lenticels are usually large (0.3 to 0.7 mm in diameter) and very conspicuous, RHS 157D, a distinguishing characteristic, and stem basin russet and scar skin can occur. These skin conditions do not detract from its overall pleasing appearance (Fig. 1) or eating quality. Stem length is medium, reaching above the stem cavity, which is acuminate. The calyx is generally erect with some light ribbing around the basin cavity. Seeds average three per cell, are acute in shape, averaging 4.5 mm diameter by 8.1 mm in length, and are small, round, and very conspicuous, RHS 200D brown.

Fruit of the original tree from 2001 to 2008 and from Phase 2 trees in 2005, 2006, 2007, and 2008 were evaluated each year at several harvest dates. Fruit maturity, eating quality, and appearance were evaluated subjectively at harvest and also after 60 d in regular atmosphere storage (1 to 2 °C). Fresh and stored fruit were also evaluated objectively for firmness, soluble solids, acidity, and mean weight (see Table 2 for stored values from 2009). Aroma is mild, apple-like, and fruit flesh is firm, crisp and melting, mildly acid with excellent sugar balance and yellow–white (RHS 158D) in color. An untrained panel of 80 consumers evaluated fruit of ‘WA 2’ and ‘Fuji Autumn Rose’ with several other WSU selections after 2 months in regular (not controlled atmosphere) cold storage using a 7-point hedonic scale (1 = dislike extremely and 7 = like extremely) conducted by Dr. Carolyn Ross, WSU Pullman. No significant difference (P < 0.05) was found between ‘WA 2’ and ‘Fuji’ for juiciness, sweetness, astringency, or overall acceptance; however, ‘WA 2’ was rated statistically higher than ‘Fuji’ for firmness, crispness, and lack of mealliness (data not shown).

‘WA 2’ trees are of moderate vigor and spur type with spur length ranging from 1 to 8 cm. Overall tree shape is upright and spreading. ‘WA 2’ is very productive and can exhibit alternate bearing tendencies if overpruned the previous season. Annual yield from 2005 to 2009, cumulative yield, and yield efficiency of ‘WA 2’, ‘Gala’, and ‘Fuji’ are shown in Table 3 from trees planted in 2004 near Richland, central Washington. Trunk bark is smooth and colored grayed orange (RHS 177A) with numerous lenticels of RHS 200C brown. Branches are spreading with a crotch angle of 0° to 35°, colored grayed purple RHS 187A with lenticels and moderate white pubescence. Internode spacing averages 4.2 cm. Branch color is gray–brown (RHS N199D) with numerous white lenticels (RHS N155C), rough, and averaging 10.2 mm × 2.1 mm. Leaves are oval, leathery with a glossy upper surface and a lower surface covered with fine pubescence. Leaf length ranges from 7.2 to 10.5 cm and width ranges from 4.6 to 7.3 cm. The margin is considered double serrate with the tip cuspidate and the base obtuse. Stipules are present on most leaves.

Field observations of trees of ‘WA 2’ have shown only moderate susceptibility to powdery mildew (Podosphaera leucotricha) and fire blight (Erwinia amylovora). Fruit rarely exhibits russet, bitter pit, or sunburn in the apple growing regions of central Washington.

Genotype Data

Nine genetic loci were screened on ‘WA 2’, ‘Splendour’, ‘Gala’, and 60 other genotypes representing the pool of parents used in the Washington apple breeding program during the 1990s. The loci screened consisted of five gene-based markers ("Md-"
acrylamide gels and silver-stained as described by Bassil et al. (2005). Amplified fragments for PCR conditions were as described by Bassil et al. (2005). Amplified fragments were separated on large polyacrylamide gels and silver-stained as described by Peace et al. (2005). Alleles were scored for ‘WA 2’, ‘Splendour’, and each of the other 60 potential parents of ‘WA 2’. Observed allele frequencies within the parent pool were calculated for each locus.

‘Splendour’ was verified as the (maternal) parent of ‘WA 2’ because it possessed at least one of the alleles of ‘WA 2’ for every locus examined (Table 1). ‘Gala’ was deduced as the pollen parent of ‘WA 2’ because it was the only individual in the parent pool to possess all of the remaining alleles of ‘WA 2’ not already accounted for by ‘Splendour’ (Table 1). The probability of another cultivar beyond the parent pool being a potential pollen parent of ‘WA 2’ was determined to be between one in 2,579 and one in 12,740. The most conservative probability (one in 2,579) was based on the assumption that, for loci in which ‘WA 2’ and ‘Splendour’ shared the same genotype and therefore the allele inherited by ‘WA 2’ was ambiguous, the remaining allele was the most common one.

For the 1-aminocyclopropane-1-carboxylic acid synthase 1 (Md-ACS1) ethylene production gene, ‘WA 2’, similar to both its parents, is homozygous for the ‘2’ allele of Md-ACS1 (i.e., Md-ACS1-2:2), which confers low ethylene production and therefore excellent fruit firmness and storability (Zhu and Barratt, 2008). For a second ethylene gene, 1-aminocyclopropane-1-carboxylic acid oxidase 1 (Md-ACO1), which has a less significant role in ethylene production, ‘WA 2’ is homozygous Md-ACO1-2:2. Md-ACO1 genotypic data were determined in cooperation with Dr. Yanmin Zhu, USDA Wenatchee.

Availability

Washington State growers can apply to participate in Phase 4 evaluation of ‘WA 2’ until 31 January 2015. Participating growers can apply for commercialization licenses for ‘WA 2’ from 31 January 2011. Further information and application forms are available at the Washington Tree Fruit Research Commission web site (http://www.treefruiteresearch.com) or from Kate Evans.

Literature Cited

Bassil, N.V., J.D. Postman, and C. Neou. 2005. *Pyrus* microsatellite markers from GenBank sequences. Acta Hort. 671:289–292.

Costa, F., W.E. van de Weg, S. Stella, L. Dondini, D. Pratesi, S. Musacchi, and S. Sansavini. 2008. Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus domestica Borkh.) and pear (Pyrus communis). Tree Genet. Genomes 4:575–586.

Mann, H.S., J.J. Alton, S. Kim, and C.B.S. Tong. 2008. Differential expression of cell-wall-modifying genes and novel cDNAs in apple fruit during storage. J. Amer. Hort. Sci. 133: 152–157.

Patocchi, A., F. Fernández-Fernández, K. Evans, D. Gobbin, F. Rezzonico, A. Boudichevskaia, F. Dunemann, M. Stankiewicz-Kosyl, F. Mathis-Jeanneau, C.E. Durel, L. Gianfranceschi, F. Costa, C. Toller, V. Cova, D. Mott, M. Komjanc, E. Barbaro, L. Kodde, E. Rikkerink, C. Giesler, and W.E. van de Weg. 2009. Development and test of 21 multiplex PCRs composed of SSRs spanning most of the apple genome. Tree Genet. Genomes 5:211–223.

Peace, C.P., C.H. Crisosto, and T.M. Gradziel. 2005. Endopolygalacturonase: A candidate gene for freestone and melting flesh in peach. Mol. Breed. 16:21–31.

Royal Horticultural Society (RHS). 1966, 1986, 1995. The Royal Horticultural Society Colour Chart. 1st–3rd Eds. RHS, London, UK.

Wakasa, Y., H. Kudo, R. Ishikawa, S. Akada, M. Senda, M. Niizeki, and T. Harada. 2006. Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biol. Technol. 39:193–198.

Zhu, Y. and B.H. Barratt. 2008. Md-ACS1 and Md-ACO1 genotyping of apple (Malus domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet. Genomes 4:555–562.