Title: Perception of frequency modulation is mediated by cochlear place coding
Authors: Kelly L. Whiteford*, Heather A. Krefta, and Andrew J. Oxenhama
aDepartment of Psychology, University of Minnesota, Minneapolis, MN 55455
*Corresponding author: Department of Psychology, 75 East River Parkway, Minneapolis, MN 55455; Phone: 612-626-3258; Email: whit1945@umn.edu
Abstract

Natural sounds convey information via frequency and amplitude modulations (FM and AM). Humans are acutely sensitive to the slow rates of FM that are crucial for speech and music. This sensitivity has been thought to rely on precise stimulus-driven auditory-nerve spike timing (time code), whereas a coarser code, based on variations in the cochlear place of stimulation (place code), represents faster FM. Here we test this longstanding theory in listeners with normal and impaired hearing, resulting in widely varying place-coding fidelity. Contrary to predictions, FM detection thresholds at slow and fast rates are highly correlated and closely related to the fidelity of cochlear place coding. We support this conclusion with additional data showing that place-based coding degrades at high modulation rates and in high spectral regions in ways that were previously interpreted as reflecting the limits of fine neural timing. The results suggest a unitary place-based neural code for FM.

Keywords: Auditory perception, Hearing, Phase locking, Amplitude modulation, Hearing loss
INTRODUCTION

Modulations in frequency (FM) and amplitude (AM) carry critical information in biologically relevant sounds, such as speech, music, and animal vocalizations (Attias and Schreiner, 1997; Nelken et al., 1999). In humans, AM is crucial for understanding speech in quiet (Shannon et al., 1995; Smith et al., 2002), while FM is particularly important for perceiving melodies, recognizing talkers, determining speech prosody and emotion, and segregating speech from other competing background sounds (Zeng et al., 2005; Strelcyk and Dau, 2009; Sheft et al., 2012; Parthasarathy et al., 2019). The perception of FM is often degraded in older listeners and people with hearing loss (Lacher-Fougère and Demany, 1998; Moore and Skrodzka, 2002; He et al., 2007; Strelcyk and Dau, 2009; Grose and Mamo, 2012; Paraouty et al., 2016; Wallaert et al., 2016; Paraouty and Lorenzi, 2017; Whiteford et al., 2017). This deficit likely contributes to the communication difficulties experienced by such listeners in noisy real-world environments, which may in turn help explain why age-related hearing loss has been associated with decreased social engagement, greater rates of cognitive decline, and increased risk of dementia (Lin et al., 2011, 2013; Lin and Albert, 2014; Deal et al., 2017; Thomson et al., 2017). Current assistive listening devices, such as hearing aids and cochlear implants, have been generally unsuccessful at reintroducing viable FM cues to the auditory system (Chen and Zeng, 2004; Ives et al., 2013). This lack of success is partly related to a gap in our scientific understanding regarding how FM is extracted by the brain from the information available in the auditory periphery.

The coding of AM begins in the auditory nerve with periodic increases and decreases in the instantaneous firing rate of auditory nerve fibers that mirror the fluctuations in the temporal envelope of the stimulus (Schreiner and Langner, 1988; Joris et al., 2004). As early as the inferior colliculus and extending to the auditory cortex, rapid AM rates are transformed to a code.
that is no longer time-locked to the stimulus envelope and instead relies on overall firing rate,
with different neurons displaying lowpass, highpass, or bandpass responses to different AM rates
(Schreiner and Langner, 1988; Nelson and Carney, 2007; Wang et al., 2008). The coding of FM
is less straightforward. For a pure tone with FM, the temporal envelope of the stimulus is flat;
however, the changes in frequency lead to dynamic shifts in the tone’s tonotopic representation
along the basilar membrane, resulting in a transformation of FM into AM at the level of the
auditory nerve (Zwicker, 1956; Khanna and Teich, 1989; Moore and Sek, 1995; Saberi and
Hafer, 1995; Sek and Moore, 1995).

Although this FM-to-AM conversion provides a unified and neurally efficient code for
both AM and FM (Saberi and Hafer, 1995), it falls short of explaining human behavioral trends
in FM sensitivity. Specifically, at low carrier frequencies ($f_c < \sim 4-5$ kHz) and slow modulation
rates ($f_m \sim 10$ Hz) FM sensitivity is considerably greater than at higher carrier frequencies or
fast modulation rates in a way that is not predicted by a simple FM-to-AM conversion scheme
(Demany and Semal, 1989; Moore and Sek, 1995, 1996; Sek and Moore, 1995; He et al., 2007;
Whiteford and Oxenham, 2015; Whiteford et al., 2017). This discrepancy is important, because it
is FM at low frequencies and slow modulation rates that is most critical for human
communication, including speech and music, as well as many animal vocalizations. The
enhanced sensitivity to slow FM at low carrier frequencies has been explained in terms of an
additional neural code based on stimulus-driven spike timing in the auditory nerve that is phase-
locked to the temporal fine structure of the stimulus (Rose et al., 1967; Moore and Sek, 1995;
Parthasarathy et al., 2019). Although a code based on time intervals between phase-locked neural
spikes can potentially provide greater accuracy (Siebert, 1970; Heinz et al., 2001), and is used
for spatial localization (Moiseff and Konishi, 1981; Grothe et al., 2010), it is not known whether
or how this timing information is extracted by higher stages of the auditory system to encode periodicity (pitch) and FM.

If the detection of FM at fast rates depends on an FM-to-AM conversion, whereas the detection of FM at slow rates does not, then fast-rate FM detection thresholds should depend on the sharpness of cochlear tuning (Figure 1), whereas slow-rate FM detection thresholds should not. Previous studies using normal-hearing listeners have not demonstrated such a relationship for either slow or fast FM rates (Whiteford and Oxenham, 2015; Whiteford et al., 2017).

However, this failure to find a correlation may be due to lack of variability in cochlear filtering within the normal-hearing population. People with cochlear hearing loss often have poorer frequency selectivity (Glasberg and Moore, 1986; Moore et al., 1999), due to a broadening of cochlear tuning (Robertson and Manley, 1974; Liberman et al., 1986; Moore, 2007). In contrast, damage to the cochlea is not thought to lead to a degradation of auditory-nerve phase locking to temporal fine structure for sounds presented in quiet (Henry and Heinz, 2012; Henry et al., 2019), so we would not expect to find a strong relationship between slow-rate FM detection thresholds and hearing-loss-induced changes in cochlear tuning.
Figure 1. Schematic of (A) FM and (B) AM time waveforms ($f_c = 1$ kHz; $f_m = 20$ Hz) and the resulting changes in basilar-membrane excitation for steep (C & D) and shallow (E & F) slopes. In A and B, the blue time waveforms represent amplitude over time, while the superimposed red waveforms are the same stimuli plotted in terms of instantaneous frequency over time. Panels C and E demonstrate that a place code for FM would result in a greater change in output level on the low-frequency side of the excitation pattern (purple bars) relative to the high-frequency side (green bars) and that shallower filter slopes result in poorer FM coding (larger colored bars in C than in E) but not poorer AM coding (same size colored bars in D and F). (G) Schematic cochleagram of an FM tone, showing how the output from two separate
cochlear channels (right) with center frequencies on either side of the carrier frequency is AM that is out of phase.

Experiment 1 measured FM and AM detection thresholds at slow \(f_m = 1\) Hz and fast \(f_m = 20\) Hz) modulation rates in a large sample of listeners with hearing thresholds at the carrier frequency \(f_c = 1\) kHz ranging from normal (~0 dB sound pressure level, SPL) to severely impaired (~70 dB SPL), consistent with sensorineural hearing loss (SNHL). The fidelity of cochlear frequency tuning was assessed using a psychophysical method to estimate the slopes of the forward masking pattern around 1 kHz (e.g., Kidd and Feth, 1981). The results revealed a relationship between the estimated sharpness of cochlear tuning and sensitivity to FM at both fast and slow modulation rates, suggesting that place coding fidelity directly affects FM sensitivity. This relationship remained significant even after controlling for degree of hearing loss, sensitivity to AM, and age.

Experiment 2 provided a direct test of earlier assumptions that had led to the conclusion that phase-locked timing information is necessary to code slow FM. We simulated important aspects of the cochlear response to FM without the presence of auditory-nerve timing cues by measuring sensitivity to AM that was presented out of phase at two different cochlear locations. The results mirrored those seen in traditional psychophysical studies on FM detection, with highest sensitivity at lower frequencies and slower rates – effects that are classically attributed to time coding. Taken together, our results suggest that a time-interval code is not necessary to represent slow-rate FM and instead imply a unitary neural code for FM across all rates and frequencies.
RESULTS

Experiment 1

Relationship between hearing loss and frequency selectivity

The fidelity of place coding at the test frequency (1 kHz) was measured using pure-tone forward-masking patterns. Participants had to detect a brief tone pip that followed a masker tone presented at 1 kHz. The level of the tone was adapted to track its detection threshold. Without the presence of a masker, the threshold level of the tone pip reflects the absolute threshold (Supplementary Figure 1, unfilled circles). In the presence of a pure-tone forward masker, the level of the tone pip depends on the tone pip’s frequency proximity to the masker and on an individual’s frequency selectivity, as determined by their cochlear tuning (Shera et al., 2002; Sumner et al., 2018). For each participant, the steepness of the low- and high-frequency slopes of the masking function was estimated via a linear regression of the thresholds (in dB SPL) for the four lowest (800, 860, 920, and 980 Hz) and four highest (1020, 1080, 1140, and 1200 Hz) tone-pip frequencies. Within-subject test-retest reliability of the estimated slope functions was high (bootstrapped simulated test-retest correlations of $r = .98$ and $r = .953$ for the low and high slopes, respectively; see Methods). The range of measured masking function slopes in the present study spanned 152 dB/octave for the low slope (-24 to 128 dB/octave; $\bar{x} = 49.4$) and 120 dB/octave for the high slope (-92.7 to 28.3 dB/octave; Figure 2, y-axis; $\bar{x} = -23.3$), which was much greater than has been observed in normal-hearing listeners at 500 Hz (Whiteford and Oxenham, 2015; Whiteford et al., 2017).

Consistent with expectations (Glasberg and Moore, 1986), the amount of hearing loss at the tone-pip frequency correlated with the slopes of the masking functions (Figure 2; low slope: $r = -.685, p < .0001$, CI = [-.804, -.513]; high slope: $r = .717, p < .0001$, CI = [.559, .826]).
confirming that hearing loss is associated with poorer frequency tuning. However, frequency
tuning is believed to be governed solely by basilar membrane mechanics and outer hair cell
function (Ruggero and Rich, 1991; Sumner et al., 2018), whereas overall hearing loss may
include contributions from other factors, such as the function of the inner hair cells and the
auditory nerve. These additional factors may explain why filter slopes account for only
approximately half the variance observed in absolute thresholds.

Figure 2. Correlations between average absolute thresholds at 1 kHz (x-axis) and the steepness of the (A)
low and (B) high side of the cochlear filter slopes (n=55). Participants with greater hearing loss at 1 kHz
tended to have shallower filter slopes. Correlations marked with an * are significant after Holm’s
correction (****p < .0001).

Relationship between FM and AM detection
When compared to earlier results from normal-hearing listeners varying in age (Whiteford et al.,
2017), the range of FM detection thresholds was much wider in the present study, whereas the
range of AM detection thresholds was comparable (Figure 3). This result confirms that hearing
loss affects the detection of FM more than AM (Lacher-Fougère and Demany, 1998). Test-retest
reliability for the estimation of AM and FM detection thresholds was very high (average correlations using a bootstrapping procedure: slow FM, $r = .973, p < .0001$, CI = [.954, .984]; fast FM, $r = .97, p < .0001$, CI = [.949, .983]; slow AM, $r = .925, p < .0001$, CI = [.874, .956]; fast AM, $r = .956, p < .0001$, CI = [.925, .974]). If slow FM utilizes a time-interval code, then across-listener variability in slow FM detection should partly reflect variability in time coding. This means that across-listener correlations in tasks known to use a shared code (fast FM, slow AM, and fast AM) should be greater than in tasks thought to use different codes (slow FM with any other task). Inconsistent with this prediction, slow and fast FM detection thresholds were strongly correlated ($r = .826, p < .0001$, CI = [.718, .895]), as were detection thresholds for slow and fast AM ($r = .638, p < .0001$, CI = [.449, .773]) and fast FM and fast AM ($r = .317, p = .018$, CI = [.057, .537]) (Figure 3). The correlation between slow FM and slow AM was not significant ($r = .199, p = .072$, CI = [-.07, .441]), but this correlation was not significantly different from the correlation between fast FM and fast AM ($Z = -.906, p = .365$, two-tailed). Even though participants in the present study varied widely in peripheral place coding fidelity (Figure 2), correlational trends between FM and AM thresholds generally mirrored those observed in groups of listeners with normal hearing (Whiteford and Oxenham, 2015; Whiteford et al., 2017).
Figure 3. Individual thresholds for slow ($f_m = 1$ Hz; black) and fast ($f_m = 20$ Hz; white) FM and AM detection (n=55). Grey circles represent different rates on the x- and y-axes. FM and AM thresholds are plotted in percent peak-to-peak frequency change ($2\Delta f(\%)$) and $20\log(m)$, where Δf is the frequency excursion from the carrier and m is the modulation depth (ranging from 0-1). For all tasks, lower on the x- or y-axis represents better thresholds. Correlations marked with an * are significant after Holm’s correction (***,*** $p < .0001$, **$p < .01$, and *$p < .05$).

Relationship between frequency selectivity and FM detection thresholds

The unitary neural coding theory of FM and AM predicts that steeper masking functions (implying sharper cochlear tuning) should be related to better FM detection thresholds (Zwicker,
The current consensus is that theory applies to fast but not slow FM detection (Moore and Sek, 1995, 1996; Lacher-Fougère and Demany, 1998; Strelcyk and Dau, 2009). Our results contradict this consensus by showing that both slow and fast FM detection were strongly and similarly related to the masking function slopes (Figure 4). Age and sensitivity to AM could confound effects of cochlear filtering because they are known to influence FM detection in listeners with normal hearing (Whiteford and Oxenham, 2015; Paraouty et al., 2016; Whiteford et al., 2017). Audibility is not thought to affect FM for levels that are 25 dB or more above absolute threshold (Zurek and Formby, 1981), but it was included as a precaution, since a few listeners with the most hearing loss had stimuli presented at or near 20 dB sensation level (SL), and because hearing loss has been postulated to affect time coding, independent of place coding (Ewert et al., 2018). Partial correlations between FM detection and masking function slopes were conducted, controlling for age, absolute thresholds at 1 kHz, and AM detection thresholds at the corresponding rate, thereby isolating the role of place coding in FM detection. The correlations between the residuals (Figure 6) demonstrate a significant relationship between the low slopes of the masking function and FM detection thresholds at both rates (slow FM: $r_p = -.364, p = .016, CI = [-.574, -.109]$; fast FM: $r_p = -.377, p = .015, CI = [-.584, -.124]$) but no relation between the high slope and FM (slow FM: $r_p = -.064, p = .555, CI = [-.323, .205]$; fast FM: $r_p = -.084, p = .555, CI = [-.341, .186]$). Because the low slope of the masking function (reflecting the upper slopes of the cochlear filters) is generally steeper than the high slope, it provides more information about frequency change than the high slope (Figure 1, leftmost column), and is therefore predicted to dominate FM performance (Zwicker, 1956). Sensitivity to AM detection was not related to either the low slopes (slow AM: $r = .058, p > .499, CI = [-.211, .318]$; fast AM: $r = .277, p = .076, CI = [.013, .505]$) or the high slopes (slow AM: $r = .007, p > .499, CI = ...
demonstrating that the relation between masking function slopes and modulation detection is specific to FM, as predicted by the place-coding theory. The results therefore provide strong support for the hypothesis that place coding is utilized for FM detection at both slow and fast rates. These conclusions were confirmed using multiple linear regression analyses (see Supplementary Text).

Figure 4. Correlations between the low slope (A and C) and high slope (B and D) and slow ($f_m = 1$ Hz; black) and fast ($f_m = 20$ Hz; white) FM detection (n=55). Correlations marked with an * are significant after Holm’s correction (****$p < .0001$, ***$p < .001$, **$p < .01$, and *$p < .05$).
Figure 5. Partial correlations between the steepness of the masking function slopes (x-axes) and FM detection (y-axes) after variance due to audibility, sensitivity to AM, and age has been partialled out for n=5 participants. Units of the x- and y-axes are arbitrary because they correspond to the residual variance for slow ($f_m = 1$ Hz; black) and fast FM detection ($f_m = 20$ Hz; white). Correlations marked with an * are significant after Holm’s correction (**p < .001, ***p < .01, **p < .01, and *p < .05).

Experiment 2: Simulating FM through AM incoherence

The strongest arguments in support of a time-interval code for slow-rate FM are 1) that FM detection is better at slow rates than at fast rates (in contrast to AM detection), possibly reflecting “sluggishness” in the ability to evaluate phase-locked timing information, and 2) that slow-rate
FM detection degrades at high carrier frequencies (Sek and Moore, 1995), where phase-locked
timing information in the auditory nerve also degrades (Johnson, 1980; Palmer and Russell,
1986; Verschooten et al., 2019), whereas AM detection does not (Kohlrausch et al., 2000).

Experiment 2 was designed to test whether these two properties of FM could also be explained
via a place-coding mechanism. If FM is coded via an FM-to-AM place-based mechanism, then
sensitivity to out-of-phase fluctuations in amplitude at nearby cochlear locations (as also
produced by FM; see Figure 6) should be greater at slow fluctuation rates than at fast rates. We
applied AM to two separate carriers, with the modulation either in phase (coherent) or out of
phase (incoherent) between the two carriers, at fast and slow modulation rates, and with the
carriers presented at frequencies that ranged from within to outside the putative range of human
auditory-nerve phase locking (Verschooten et al., 2018). We tested whether listeners’ ability to
discriminate incoherent from coherent AM, as well as their ability to detect incoherent AM,
varied in the same way that FM detection thresholds varied with modulation rate and carrier
frequency, as would be predicted by the place-code theory of FM perception.
Figure 6. (A) Schematic cochleagram of an FM tone. The magnitude responses for two off-frequency filters (bottom) are 180-degrees out of phase for any given snapshot in time. (B-C) The schematic
cochleagrams of two-component AM dyads with envelopes that are out-of-phase (incoherent) vs. in phase (coherent). Incoherent envelopes lead to rate-place fluctuations similar to that observed in FM. (D-E) Average sensitivity for discriminating incoherent AM at slow (filled circles) and fast (open circles) rates in the narrow (black) and wide (red) frequency separation conditions. Sensitivity for simulated FM is best at lower center frequencies and slow rates, similar to traditional FM sensitivity. (F-G) Sensitivity for detecting in-phase (open bars) and opposite-phase (filled bars) AM for two-component dyads. Sensitivity for opposite-phase AM (i.e., simulated FM) is only boosted for low center frequencies at slow rates, meaning a unified neural place code can account for limits in human FM sensitivity.

AM incoherence discrimination

Participants heard a sequence of three AM dyads. The task was to pick the dyad with components that had temporal envelopes 180° out of phase (Figure 6D-E). Carrier frequencies were presented either 2/3 (narrow frequency separation) or 4/3 (wide frequency separation) octaves apart, thereby simulating the effects of FM on the cochlear place representation, but without the presence of any informative fine timing cues produced by peripheral interactions between the two carriers. As predicted, sensitivity to incoherent AM mirrors trends seen in traditional FM sensitivity (center frequency x rate interaction: $F_{1.51,28.7} = 16.6, p < .0001$; Figure 8; Supplementary Table 2), with better performance at the slow rate for low (500 Hz: $p = .012$; 1500 Hz: $p = .0002$) but not high center frequencies (7000 Hz: $p = .648$). The effect of rate on center frequency was not influenced by frequency separation ($F_{2.38} = .841, p = .439$), although there was an interaction between frequency separation and center frequency ($F_{2.38} = 11.6, p = .0001$). Performance was generally elevated in the wide condition, but more so at the 500 Hz and 7000 Hz center frequencies than at 1500 Hz ($p \leq .012$ for all three narrow vs. wide comparisons at each center frequency). The pattern of sensitivity to AM incoherence suggests that effects of
carrier frequency and rate on FM sensitivity are not unique to the phase-locked neural response
to temporal fine structure.

Complex AM detection

Detecting the presence of incoherent AM (simulated FM) is closer to the demands of FM
detection than a discrimination task. A unitary place code for FM predicts that sensitivity for
detecting simulated FM via incoherent AM should be better than detecting traditional AM but
only in low-frequency regions (~< 4-5 kHz) and only at slow modulation rates. To test this
hypothesis, we assessed listeners’ sensitivity for AM dyads that were either in phase (traditional
AM) or in opposite phase (incoherent AM, simulating FM), with the modulation depth of each
component set to 4 dB below each individual’s AM detection threshold. Sensitivity was assessed
for the same center frequencies, rates, and frequency separations as in the discrimination
experiment. As predicted, the results reveal a significant three-way interaction between phase,
center frequency, and rate (Figure 6F-G; Supplementary Table 3; phase x center frequency x
rate: $F(2,38) = 7.58, p = .002$). Sensitivity was better for the opposite-phase conditions than for the
in-phase conditions, but only when the center frequencies were low and the rate was slow (slow
500 Hz: $p = .0003$; fast 500 Hz: $p = .132$; slow 1500 Hz: $p = .01$; fast 1500 Hz: $p = .501$). At the
highest center frequency, the slow-rate benefit for the opposite-phase condition was eliminated
(slow 7000 Hz: $p = .132$; fast 7000 Hz: $p = .132$), as observed in traditional FM experiments
(e.g., Sek and Moore, 1995). This finding was not dependent on the amount of separation
between the two carrier frequencies, as there was no significant main effect of, or interactions
with, frequency separation. In summary, our AM-detection tasks revealed the same pattern of
results that are found in FM detection: performance was best at low carrier frequencies and slow
rates and was degraded at high modulation rates and/or high carrier frequencies.

DISCUSSION

A unitary code for FM

Our finding that cochlear place coding is equally important for both slow- and fast-rate FM
detection was unexpected. Humans’ acute sensitivity to slow changes in frequency at carriers
important for speech and music has been thought to result from precise neural synchronization to
the temporal fine structure of the waveform (Demany and Semal, 1989; Moore and Sek, 1995,
1996; Sek and Moore, 1995; Lacher-Fougère and Demany, 1998; Buss et al., 2004; Strelcyk and
Dau, 2009). Multiple linear regression analyses showed that the combined effect of audibility,
age, sensitivity to AM, and masking function slopes accounted for about 60% and 52% of the
total variance in slow and fast FM detection thresholds, respectively. This is a high proportion of
the variance, particularly considering the approximate and indirect nature of the behavioral
measure used to estimate cochlear tuning.

The clear role for place coding in slow FM is contrary to the widely accepted view that
time coding is used to detect FM at the slow rates found in speech and music. Instead, our results
provide evidence for a unitary code for two crucial features of natural sounds, AM and FM, that
extends across the entire range of naturally encountered fluctuations rates. Experiment 2 directly
addresses the arguments that have been used in the past to support the use of a time-interval code
for slow-rate FM and demonstrates that enhanced slow-rate FM sensitivity can instead be
accounted for by limitations in humans’ sensitivity to across-frequency variations in AM
coherence. This finding likely extends to simple frequency discrimination, which is believed to
rely on the same mechanism as slow FM (Sek and Moore, 1995). A unitary code for FM and AM at all rates also helps explain the high-multicollinearity between FM and AM sensitivity observed here (Figure 3) and in several previous studies with normal-hearing listeners (Whiteford and Oxenham, 2015; Otsuka et al., 2016; Paraouty and Lorenzi, 2017; Whiteford et al., 2017).

Implications for the perception and neural coding of complex tones

This study used pure tones, which are not frequently encountered in the natural environment. However, combinations of pure tones form harmonic complex tones, such as musical instrument sounds, voiced speech, and many animal vocalizations. It is known that humans perceive the pitch of harmonic complex tones in ways that are fundamentally different from other commonly studied species, such as the chinchilla (Shofner and Chaney, 2013), ferret (Walker et al., 2018), or songbird (Bregman et al., 2016). Recent work (Shofner and Chaney, 2013; Walker et al., 2018) has suggested that part of this difference can be explained by the substantially sharper cochlear tuning found in humans than in smaller mammals (Shera et al., 2002, 2010; Sumner et al., 2018; Verschooten et al., 2018). Specifically, sharper human cochlear tuning is believed to explain why humans (Houtsma and Smurzynski, 1990; Bernstein and Oxenham, 2003) and some other primates (Song et al., 2016) rely primarily on low-numbered spectrally resolved harmonics to extract pitch, whereas smaller mammals, such as ferrets and chinchillas, seem to rely primarily on the cues in the temporal envelope, which are provided by spectrally unresolved harmonics (Shofner and Chaney, 2013; Walker et al., 2018).

Results from the present study suggest that resolved harmonics, which are most important for human pitch perception, may be represented by their place of stimulation in a way that
depends on the lower (and steeper) slope of the excitation pattern, rather than by the temporal fine structure information encoded via the stimulus-driven spike timing (phase locking). This conclusion is consistent with other studies showing that pitch perception is possible even with spectrally resolved harmonics that are too high in frequency to elicit phase locking (Oxenham et al., 2011; Lau et al., 2017; Carcagno et al., 2019). It is also supported by recent data from the inferior colliculus of the rabbit, showing that place coding of harmonics is robust over a relatively wide range of sound levels (Su and Delgutte, 2020).

Alternative Interpretations

One alternative interpretation of our results from experiment 1 is that hearing loss leads to a degradation in both spectral resolution and neural phase locking to temporal fine structure, and that it is the degradation in the phase locking, not cochlear filtering, that drives the relationship between spectral resolution and FM coding observed here. There are several reasons why this interpretation is unlikely. First, physiological studies with non-human animals have generally found little or no effect of SNHL on phase locking in the auditory nerve (Harrison and Evans, 1979; Miller et al., 1997; Henry and Heinz, 2012; Henry et al., 2019), with the exception of one study (Woolf et al., 1981). Support from human studies are based on indirect evidence from behavioral results showing poorer performance in hearing-impaired listeners in tasks thought to use time coding (Lorenzi et al., 2006; Moore et al., 2006, 2012; Hopkins and Moore, 2007, 2011; Moore, 2014; Füllgrabe and Moore, 2017). However, all of these, with the exception of binaural tasks, could be affected by poorer cochlear tuning (Oxenham et al., 2009). Binaural tasks, involving the discrimination of interaural time differences (ITDs) in the temporal fine structure of stimuli, are likely to rely on phase-locked coding. These studies have not always found a clear
relationship between ITD sensitivity and hearing loss, once effects of age and audibility are accounted for (Smoski and Trahiotis, 1986; Hopkins and Moore, 2011).

A second reason why it is unlikely for the role of place coding in FM to be a byproduct of time coding degrading with SNHL is that not all the listeners in experiment 1 had SNHL in the test frequency range. However, there was no discontinuity between normal-hearing listeners and hearing-impaired listeners in their perception of FM; the relationship between FM thresholds and estimated cochlear filter slopes was maintained across the entire sample of listeners.

Explaining superior FM perception at low rates and low carrier frequencies within a unitary framework

A pure cochlear place-based model for FM proposes that FM is transduced to AM via cochlear filtering (Zwicker, 1956). As the frequency sweeps across the tonotopic axis, this is reflected via periodic amplitude fluctuations in the responses of cochlear filters. Experiment 2 demonstrated that a place-only model can account for the different rate- and frequency-dependent trends in FM and AM sensitivity observed in many previous studies (Viemeister, 1979; Sheft and Yost, 1990; Moore and Sek, 1995, 1996; Sek and Moore, 1995; Lacher-Fougère and Demany, 1998; Moore and Skrodzka, 2002; Whiteford and Oxenham, 2015, 2017; Whiteford et al., 2017), based on limitations in sensitivity to AM incoherence at high carrier frequencies and/or high modulation rates. Previous studies examining sensitivity to AM incoherence had either only tested fast rates (Green et al., 1990) or lower center frequencies (Moore and Sęk, 2019). Moore & Sęk (2019) noted that the very large AM depths needed to discriminate AM incoherence, also observed here, are larger than one might expect if such a task were reflective of the same mechanism used in FM coding. However, the carriers used in AM-incoherence experiments must be spaced far
enough apart to avoid peripheral interactions (in our case 2/3 or 4/3 octaves), meaning that the separation is much greater than for the two sides of excitation produced by a single carrier in an FM experiment. This in itself could explain why overall sensitivity is poorer in the AM simulations than in true FM detection and discrimination experiments.

Our combined findings suggest the auditory system’s ability to compare changes in the output between nearby cochlear filters is more efficient at slow than at fast rates, but only at low center frequencies. This interpretation is partly supported by a computational modeling study showing that frequency and intensity can be represented by a single code, if inter-neuronal noise correlations (Cohen and Kohn, 2011) are taken into account (Micheyl et al., 2013). Such correlations would require relatively long time windows to play a functional role, and so would only provide a benefit at low modulation rates, where the duration of the necessary time window does not exceed one period of the modulation. It is not currently known why such effects are dependent on the carrier frequency, but it may be that auditory cortical representations of the highest frequencies (> 6 kHz) may be less extensive, due to their relative unimportance for everyday auditory stimuli, such as speech and music, which in turn could produce poorer sensitivity in fine discrimination tasks, analogous to the effects of visual crowding observed in the visual periphery (e.g., Whitney and Levi, 2011).

MATERIALS AND METHODS

Experiment 1

Participants

All tasks in experiment 1 were completed by 56 participants (19 male, 37 female; average age of 66.5 years, range: 19.4-78.5 years) with no reported history of cognitive impairment. All
participants underwent audiometric screening, involving air- and bone-conduction audiometric threshold measurements at octave frequencies between 250 and 8000 Hz. Nine participants had clinically normal hearing at the test frequency of 1 kHz (audiometric thresholds ≤ 20 dB hearing level, HL) in both ears. The other 47 participants had varying degrees of SNHL, with audiometric thresholds at 1 kHz poorer than 20 dB HL in at least one ear and air-bone gaps < 10 dB to preclude a conductive hearing loss. Psychoacoustic measurements of absolute threshold for a 500-ms 1-kHz tone resulted in thresholds ranging from -0.7 to 68.5 dB SPL. Ears with thresholds of 70 dB SPL or more at 1 kHz were not included in the study. Participants with symmetric hearing (n = 37; difference in absolute thresholds at 1 kHz ≤ 10 dB) completed all experimental tasks using the ear with the higher threshold at 1 kHz. Six participants had SNHL at 1 kHz in both ears, but loss in the poorer ear exceeded the study criterion; for these subjects, tasks were completed in the better ear only. One additional participant was only assessed in their better ear because loss in the poorer ear was near the study criterion (68.6 dB SPL at 1 kHz), and the subject indicated the sound level was uncomfortable. An additional three participants had one normal ear and one with SNHL at 1 kHz, and only measurements from the impaired ear were used in analyses. The final nine participants had asymmetric SNHL in both ears, defined as a difference in absolute thresholds > 10 dB at 1 kHz. For eight of these subjects, the experimental tasks were completed for both ears separately. One participant with asymmetric hearing only completed tasks in their poorer ear due to time constraints (Table 1). However, only performance in the poorer ear was used in the analyses for all nine of these listeners (see Supplementary Figs. 4-5 for both ears included from all asymmetric listeners). Participants provided informed consent and were compensated with hourly payment or course credit for their time. The Institutional Review Board of the University of Minnesota approved all experimental protocols.
Table 1. Summary of participants.

Measured Ear	# of Participants	Notes
Worse ear	38	Subjects with symmetric 1-kHz thresholds (asymmetry ≤= 10 dB) (n=37) or who could only be assessed in their worse ear due to time constraints (n=1).
Better ear	7	Subjects with 1-kHz thresholds in the worse ear that exceeded the study criterion (n=6) or indicated the SL in their worse ear was uncomfortable (n=1).
Both ears (worse ear used in analyses)	11	1-kHz asymmetry > 10 dB; n=3 had normal hearing in their better ear, and n=8 had SNHL in both ears.

Stimuli

Stimuli were generated within Matlab (MathWorks) at a sampling rate of 48 kHz using a 24-bit Lynx Studio L22 sound card and were presented via Sennheiser HD650 headphones to participants individually seated in a sound-attenuating booth. The test stimuli were presented monaurally with threshold equalizing noise (TEN) (Moore et al., 2000) presented in the contralateral ear to prevent audible cross-talk between the two ears. The TEN was presented continuously in each trial, with the bandwidth spanning 1 octave, geometrically centered around the test frequency. Except for tasks that involved detection of a short (20 ms) tone pip, the TEN level (defined as the level with the auditory filter’s equivalent rectangular bandwidth at 1 kHz) was always 25 dB below the target level, beginning 300 ms before the onset of the first interval and ending 200 ms after the offset of the second interval. Because less noise is needed to mask very short targets, the TEN was presented 35 dB below the target level for tasks that involved detection of a short, 20-ms tone pip (with and without the presence of a forward masker). This noise began 200 ms before the onset of the first interval and ended 100 ms after the offset of the second interval.
To obtain a more precise estimate of sensitivity for the test frequency, pure-tone absolute thresholds were measured for each ear at 1 kHz. The target interval contained a 1-kHz, 500-ms tone with 10-ms raised-cosine onset and offset ramps. The reference interval was 500 ms of silence, and the target and reference intervals were separated by a 400-ms interstimulus interval (ISI). Tasks involving modulation detection were assessed for the same frequency (\(f_c \) = 1 kHz) at slow (\(f_m = 1 \) Hz) and fast (\(f_m = 20 \) Hz) modulation rates. The target was a pure tone with FM or AM while the reference was an unmodulated pure tone at 1 kHz. Both the target and the reference tones were 2 s in duration with 50-ms raised-cosine onset and offset ramps. In the FM tasks, the starting phase of the modulator frequency was set so that the target always began with either an increase or decrease in frequency excursion from the carrier frequency, with 50% a priori probability. A similar manipulation was used for the AM tasks, so that the target always began at either the beginning or middle of a sinusoidal modulator cycle and so was either increasing or decreasing in amplitude at the onset. Stimuli for the modulation tasks were presented at 65 dB SPL or 20 dB sensation level (SL), whichever was greater, based on the individual participant’s absolute thresholds at 1 kHz.

Detection thresholds for a 20-ms tone pip were measured with and without the presence of a 1-kHz, 500-ms pure-tone forward masker. Tone-pip frequencies were 800, 860, 920, 980, 1020, 1080, 1140, and 1200 Hz, and both the tone pip and the masker had 10-ms raised cosine onset and offset ramps. The tone pip was presented to one ear, directly following the offset of the masker (0-ms gap), and the masker was presented to both ears to avoid potential confusion effects between the offset of the masker and the onset of the tone pip (Neff, 1986). The masker was fixed in level at either 65 dB SPL or 20 dB SL, whichever was greater, based on absolute
thresholds for the 500-ms 1-kHz tone in the target ear. For the unmasked conditions, the tone pip was preceded by 500 ms of silence.

General procedures

All experiments were created within the AFC software package (Ewert, 2013) in Matlab. Procedures were adapted from Whiteford et al. (2017). The experiment took place across 3-6 separate sessions, with each session lasting no longer than 2 hours. All tasks were carried out using a two-interval, two-alternative forced-choice procedure with a 3-down 1-up adaptive method that tracks the 79.4% correct point of the psychometric function (Levitt, 1971). The target was presented in either the first or second interval with 50% a priori probability, and the participant’s task was to click the virtual button on the computer screen (labeled “1” or “2”) corresponding to the interval that contained the target. Each corresponding response button illuminated red during the presentation of the stimulus (either reference or target). Visual feedback (“Correct” or “Incorrect”) was presented on the screen after each trial. All participants completed the tasks in the same order, and the tasks are described below in the order in which they were completed by the participants.

Absolute thresholds at 1 kHz

Participants were instructed to select the button on the computer screen that was illuminated while they heard the 500-ms 1-kHz tone. Three runs were measured for each ear, and the order of the presentation ear (left vs. right) was randomized across runs. Three participants were only assessed in their better ear, due to the extensive hearing loss in the poorer ear according to their 1
kHz audiometric thresholds (all ≥ 80 dB HL). The remaining participants completed monaural absolute thresholds for both ears.

On the first trial, the target was presented at 40 dB SPL. The step size for the adaptive procedure was 8 dB up to the first reversal, 4 dB for the next 2 reversals, and 2 dB for all 6 following reversal points. Absolute thresholds were determined by calculating the mean level at the final 6 reversal points. If the standard deviation (SD) across the three runs was ≥ 4 dB, then three additional runs were conducted for the corresponding ear, and the first three runs were regarded as practice.

FM detection

Participants were instructed to select the interval that contained the tone that was “modulated” or “changing”. At the beginning of each run, the target had a peak-to-peak frequency excursion \((2\Delta f) \) of 5.02%. The excursion varied by a factor of 2 for the first two reversal points, a factor of 1.4 for the third and fourth reversal points, and a factor of 1.19 for the final 6 reversal points. The FM difference limen (FMDL) was defined as the geometric mean of \(2\Delta f \) at the final 6 reversal points.

Three runs were conducted for each modulation rate, and all three runs for slow-rate FM \((f_m = 1 \text{ Hz}) \) were completed before fast-rate FM \((f_m = 20 \text{ Hz}) \). Participants with asymmetric hearing loss at 1 kHz who had two qualifying ears completed six runs (three runs per ear) for each modulation rate, and the order of the presentation ear was randomized across runs. If the SD across the three runs for a given ear was ≥ 4 in units of \(10\log(\Delta f(\%)) \), the participant completed an additional three runs, and only the last three runs were used in analyses.
Detection of 20-ms tones in quiet

Participants were instructed to select the button (labeled “1” or “2”) on the computer screen that was illuminated while they heard a short, 20-ms target tone pip. The target was presented at 40 dB SPL or 20 dB SL, whichever was greater, for the first trial of each run. The initial step size for the target level was 8 dB for the first two reversals, 4 dB for the following two reversals, and 2 dB for the final six reversals. The absolute threshold was defined as the mean target level at the final six reversal points.

Participants completed one run for each of the eight tone-pip frequencies: 800, 860, 920, 980, 1020, 1080, 1140, and 1200 Hz. The order of the tone-pip frequency conditions was randomized between runs and between participants. Participants with asymmetric hearing loss and two qualifying ears had the order of the runs further blocked by presentation ear, so that 8 runs for the same ear had to be completed before any conditions in the opposite ear were measured. Whether the right or left ear was assessed first was randomized between participants. One additional run was conducted for any run that resulted in a SD \geq 4 dB for the tone-pip levels at the final six reversal points, and only the final run for each condition was used in analyses.

AM detection

The instructions for AM detection were the same as the instructions for FM detection. The first trial of each run had a target with an AM depth of -8 dB, in units of 20log(m), where m is the modulation index (from 0 to 1). The target modulation depth changed by 6 dB for the first two reversals, 2 dB for the next two reversals, and 1 dB for the final six reversals. The AM difference limen (AMDL) was defined as the mean modulation depth at the last 6 reversal points.
In the same manner as for the FM tasks, all three runs for slow-rate AM (\(f_m = 1\) Hz) were completed before the fast-rate AM (\(f_m = 20\) Hz) runs. Participants with asymmetric hearing loss at 1 kHz and two qualifying ears completed six runs (three runs per ear) for each modulation rate, and the order of the presentation ear was randomized across runs. If the SD of the threshold estimates from the first three runs for a given condition were \(\geq 4\) dB, then three additional runs were conducted, and only the final three runs were analyzed.

Forward masking patterns

The task was to determine which of two tones was followed by a short, 20-ms tone pip. Two runs were measured for each of the eight tone-pip frequencies (800, 860, 920, 980, 1020, 1080, 1140, and 1200 Hz), for a total of 16 runs, and the order of the tone-pip conditions was randomized across runs. Participants with asymmetric hearing loss at 1 kHz and two qualifying ears had the order of the runs further blocked by presentation ear, so that 8 runs for the same ear had to be completed before any conditions in the opposite ear were presented. Within a trial, each masker was either directly followed by a 20-ms tone pip, presented monaurally to the target ear, or 20-ms of silence. The starting level of the tone pip was 10 dB below the masker level in the corresponding ear. The level of the tone pip changed by 8 dB for the first two reversals, 4 dB for the third and fourth reversals, and 2 dB for the following 6 reversals. The masked threshold for each tone-pip frequency condition was calculated as the mean tone-pip level at the final 6 reversal points. For a given subject, if the SD of the masked threshold across the two runs was \(\geq 4\) dB, then the subject completed two additional runs for the corresponding tone-pip frequency. For these conditions, only the final two runs were used in analyses, and the first two runs were
regarded as practice. The average across the final two runs for each tone-pip frequency was used in analyses.

Sample size

Because the strength of the relationship between FM sensitivity and forward masking slopes was unknown in listeners varying in degree of SNHL, and the number of people with SNHL at 1 kHz was expected to be limited, we set a minimum sample size requirement for SNHL subjects based on the smallest effect we would like to be able to detect. To detect a moderate correlation between masking function slopes and FM sensitivity ($r = .4$, $\alpha = .05$, one-tailed test) with a power of .9, we needed a sample of $n=47$. We also aimed to recruit an additional 10 participants with normal hearing thresholds at 1 kHz of similar age to the SNHL subjects. The normal-hearing sample was limited to 10 participants to ensure a relatively even distribution of absolute thresholds at 1 kHz between 0 and 70 dB SPL. One of these anticipated normal-hearing subjects had mild SNHL at 1 kHz in their worse ear, leading to a sample size of $n=57$, with 9 listeners with normal hearing at 1 kHz and 48 listeners with SNHL. One SNHL subject reported a history of neurological issues and was excluded from the study. Another SNHL subject had unusually poor FM sensitivity at both rates, with thresholds greater than 3 SD from the group mean. This outlier was excluded from all analyses, leading to a final sample size of $n=55$. Including the outlier in all analyses generally did not affect the results (see Supplementary Text, Supplementary Table 1, and Supplementary Figs. 2-3).
Experiment 2

Participants

Twenty participants (3 male, 17 female; mean age = 21.8 years; range: 19-28 years) completed the full experiment 2. An additional 18 participants began the study but failed one or more of the screening criteria: One participant failed the audiometric screening, two participants failed the absolute threshold screening at one or both frequencies, and 15 participants were unable to pass the AM discrimination screening. Most participants were experienced with psychophysical tasks and were recruited from the laboratory’s participant pool. To pass the audiometric screening, participants were required to have pure-tone thresholds ≤ 20 dB HL at octave frequencies between 250 and 8000 Hz. All participants gave informed consent and were provided monetary compensation or course credit for their time. All protocols were approved by the Institutional Review Board of the University of Minnesota.

Stimuli

Stimuli were generated digitally in Matlab (MathWorks) at a sampling rate of 48 kHz with a 24-bit Lynx E22 soundcard and were presented diotically over Sennheiser HD 650 headphones in a double-walled sound-attenuating booth. Absolute thresholds in quiet were assessed for the two highest frequency components present during the experiment (8819 and 11112 Hz). The target interval contained a 500-ms pure tone with 10-ms raised cosine onset and offset ramps, while the reference interval contained 500 ms of silence. The target and reference intervals were separated by a 100-ms ISI.

For all other tasks, the stimuli were 1 s in duration with 50-ms raised cosine onset and offset ramps, presented at 45 dB SPL per component. AM discrimination was assessed for two carrier frequencies separated by either 2/3 (narrow-frequency separation) or 4/3 (wide-frequency
separation) octaves and centered around one of three possible frequencies: 500 Hz, 1500 Hz, and 7000 Hz. Both carriers were amplitude-modulated at either a slow (2 Hz) or fast (20 Hz) rate. The starting phase of the modulator was randomized for each stimulus presentation and were either in phase (same starting phase) or out of phase (180-degree phase shift) for the two carriers. Randomizing the envelope starting phase in this manner ensured that participants could only use the relationship between the two modulators, rather than the starting phase of either of the modulators alone, to perform the task. The target stimulus was always incoherent AM (i.e., 180-degree phase difference), while the two reference stimuli were coherent AM (i.e., in phase). To prevent participants from possibly using envelope cues in off-frequency filters (i.e., by monitoring fluctuations in output at filters centered between the two carriers, which could be systematically different for the coherent vs. incoherent conditions), narrow-band TEN was geometrically centered between the two carrier frequencies with a bandwidth of either 1/6 octave (for the narrow frequency-separation condition) or 1/3 octave (for the wide frequency-separation condition) and was presented at 39 dB SPL per ERB. The TEN was presented continuously and gated between trials, beginning 300 ms before the onset of the first stimulus within a trial and ending 200 ms after the offset of the last stimulus. Example trials were presented at large depths \(m = 1 \) and \(m = .75 \) for the 1500-Hz center frequency in the narrow-frequency separation condition at both rates, as these were the conditions where envelope incoherence was most salient. The AM-phase discrimination screening tested all combinations of conditions for the wide-frequency separation, as this was predicted to be more challenging than the narrow-frequency separation, effectively eliminating participants who would require more training to perform the task.
Pure-tone AM detection thresholds were measured for each individual component in the presence of the corresponding TEN for all carrier/TEN combinations used in the complex AM detection task for both the 2 Hz and 20 Hz rates.

Complex AM detection sensitivity for both coherent and incoherent AM was assessed using the same center frequencies, frequency separations, and modulation rates as used in the AM discrimination task. The target was a two-component complex tone with AM imposed on both components while the reference was a steady (unmodulated) two-component complex tone. For each block, the frequency components of the reference were identical to the carrier frequencies in the target. The modulation depth of the target components was individualized to be 4 dB below the participant’s average pure-tone AM detection threshold (in $20\log(m)$) for each individual component at the same carrier and rate in the presence of TEN. This depth was small enough to make the task challenging but avoided performance that was at chance level. TEN was presented in the same manner as in the AM discrimination task.

General procedures

Both the high-frequency absolute threshold and the AM discrimination screenings took place on the first session. Only participants who passed both screenings were invited to complete the rest of the experimental tasks, which took place across an additional 5-6 sessions, with each session lasting no longer than 2 hours. All tasks were either two- or three-interval alternative forced choice, with the target appearing in each interval with equal a priori probability. The task was to click the numbered virtual response button on the computer screen that corresponded to the interval that contained the target. Visual feedback (“Correct” or “Incorrect”) was presented on
the screen after each trial. All participants completed the tasks in the same order, described below in the order they were presented.

Absolute threshold screening

To ensure performance in the highest center-frequency condition was not limited by audibility, participants were required to have absolute thresholds ≤ 30 dB SPL for the two highest frequency components present during the experiment. Participants were instructed that each of the three response buttons on the screen would illuminate red, one at a time, and their task was to select the button that was illuminated while they heard a tone. The target level varied adaptively using a 2-down, 1-up adaptive method that tracked the 70.7% correct point of the psychometric function. Two runs were measured for each frequency condition. The order of the frequency condition was randomized across runs with the constraint that both frequencies were tested once before repeating a frequency condition.

On the first trial, the target was presented at 40 dB SPL. The target changed by 8 dB for the first reversal, 4 dB for the next 2 reversals, and 2 dB for all following reversals. Absolute thresholds for each run were determined by calculating the mean level at the final 6 reversal points. Participants with average thresholds across the two runs > 30 dB for either frequency condition were excluded from participating in the rest of the study.

AM-Phase discrimination screening

An additional qualification criterion was that participants had to be able to perform the discrimination task by the end of the first 2-hour session. First, to aid in target identification, participants were presented with two blocks of 8 example trials each (4 trials per depth). A trial
consisted of three tones, presented sequentially over time, and participants had to pick the one that was incoherently modulated. The target and references always had a large modulation depth of either \(m = 1 \) or \(m = 0.75 \) so that the target envelope incoherence was salient. The examples were blocked by modulation rate, and the depth condition was randomized within a block. The order of the blocks was randomized. Participants were allowed to repeat up to three blocks of examples per condition.

The examples were followed by the AM-phase discrimination screening. The instructions were the same as the example trials, but the AM depth of all stimuli varied adaptively with performance using a 2-down, 1-up method to track the 70.7% correct point of the psychometric function (Levitt, 1971). Two runs were measured for each condition, for a total of 12 runs. The order of the runs was randomized by center frequency and then modulation rate, so that both modulation rates were tested before continuing to the next center frequency condition. Randomization was constrained so that all conditions were tested once before any conditions were repeated.

The initial trial in each run had a modulation depth (in 20log(\(m \))) of -8 dB. The depth changed by 6 dB for the first two reversals, 2 dB for the next two reversals, and 1 dB for all following reversals. Threshold was defined as the average log-transformed modulation depth at the final 6 reversal points. To account for inability to perform the task, the tracking procedure terminated early if the maximum possible modulation depth (0, 100% modulation) was reached 15 times within a run. Any conditions with at least 1 failed threshold estimate were repeated until the participant successfully achieved two consecutive threshold estimates for the corresponding condition(s). If the end of the 2-hour session was reached and a participant was still unable to
achieve a threshold for one or more conditions, they were excluded from participating in the full study.

AM phase discrimination

Instructions and methods were the same as the AM discrimination screening, except that both the wide- and narrow-frequency separation conditions were tested. The order of the conditions was randomized by center frequency, then modulation rate, and then frequency separation, so that both frequency-separation conditions were tested for a given center frequency and rate before the next rate was tested for the same center frequency. There were 4 runs per condition, for a total of 48 runs. All conditions were tested once before any conditions were repeated.

Eight subjects were unable to converge on a threshold for at least 1 run. In all instances, this corresponded to the 7000 Hz center frequency, usually in the wide frequency-separation condition and the fast rate. One additional run was collected to replace each failed run so that all participants had 4 thresholds estimates per condition.

AM detection

Two tones were presented sequentially in time, and participants were instructed to pick the one that was modulated. There were two runs per condition, for a total of 48 runs. The order of the runs was randomized by carrier frequency and then modulation rate, so that both rates were tested before the next carrier frequency was presented. All carrier frequency and rate combinations were tested before any conditions were repeated.

The modulation depth varied based on performance using a 3-down, 1-up adaptive method to estimate the 79.4% correct point on the psychometric function (Levitt, 1971). At the
beginning of each run, the target had a modulation depth of -8. The depth varied by 6 dB for the
five first two reversals, 2 dB for the next two reversals, and 1 dB for all following reversals. AMDLs
were calculated as the average modulation depth at the final six reversal points.

Complex AM detection

Participants were presented with two complex tones, one at a time, and instructed to pick the
tone that was modulated. To cue participants to listen for the correct modulation rate, each block
began with 5 practice trials with larger modulation depths. The target in the first practice trial
was presented 3 dB above threshold and then decreased in depth by 1 dB for each additional
practice trial. Practice trials were immediately followed by 50 experimental trials, with the target
component depths set to 4 dB below the individualized AM detection thresholds. At the start of
this task, participants were informed that the modulation depths were individualized to be
difficult but not impossible, so they should use the practice trials to help them identify what rate
to listen for in the corresponding block. Blocks were randomized by center-frequency condition
and then modulation rate, so that one block of each rate and frequency separation were
completed before the participant was presented with the next center-frequency condition. After
completing one block of each condition, the randomization procedure was repeated again, so that
participants completed 100 trials per condition.

Statistical Analyses

Either d' or mean log-transformed thresholds [$10\log_{10}(2\Delta f(\%))$ and $20\log_{10}(m)$] were used in all
analyses, where $2\Delta f(\%)$ is the peak-to-peak frequency excursion (for FM) as a percentage of the
carrier frequency, and m is the modulation index (for AM). All reported means (\bar{x}) and standard
deviations (s) for thresholds correspond to the log-transformed data. Confidence intervals (CIs) are 95% CIs. Analyses were conducted using Matlab 2016b and IBM SPSS Statistics 25.

Experiment 1

Pearson correlations were used to assess continuous trends; the corresponding \(p \) values were adjusted using Holm’s method to correct for family-wise error rate (Holm, 1979). The \(p \) values corresponding to the correlations were corrected for 2 comparisons for Figure 1, 4 comparisons for Figure 3 (all FM and AM correlations), and 8 comparisons for Figures 4 and 5 (all FM correlations with masking function slopes). The masking function slopes and AM correlations were corrected for 4 comparisons. The cocor package was used to calculate significant differences between correlations using Steiger’s modification (Steiger, 1980; Diedenhofen and Musch, 2015).

Bootstrap analyses were conducted to estimate the highest possible correlation detectable for each modulation task and the forward masking task, in order to ensure that correlations with these measures were not limited by test-retest reliability. For each subject and for each modulation condition, performance was simulated by randomly sampling 6 runs (3 test and 3 retest) from a normal distribution based on the individual means and standard deviations from the corresponding task. An analogous procedure was conducted for each individual’s masked thresholds for every tone-pip condition, with 4 runs (2 test and 2 retest) sampled from each individualized normal distribution. The average simulated runs were used to estimate the low and high frequency slopes of the masking function by calculating a linear regression between the 4 lowest and 4 highest tone-pip frequency conditions for the average test and the average retest runs (4 regressions per iteration). Simulated test-retest correlations were calculated using the
simulated slopes for n=55 subjects (for forward masking) or the simulated average test and retest thresholds for each subject (for the modulated tasks). This process was repeated for 100,000 iterations. The correlations were transformed using Fisher’s r to z transformation, averaged, and then transformed back to r, yielding an average test-retest correlation whose maximum is limited by within-subject error.

Experiment 2

Proportion correct, $p(c)$, in the complex AM detection results was transformed to d' using the following equation from Macmillan and Creelman (2005, pg. 172):

$$d' = \sqrt{2}z[p(c)]$$

Analyses were conducted using repeated-measures ANOVAs with type III sums of squares. Greenhouse-Geisser correction was used when Mauchly’s test of sphericity was violated. Significant interactions were interpreted using post-hoc simple effects tests, with p values corrected using Holm’s method (Holm, 1979).

ACKNOWLEDGEMENTS

We thank Kara Stevens and Angela Sim for assistance with collecting data for Experiment 2. This work was supported by Grant R01 DC005216 from the National Institutes of Health (to A.J.O.) and an Eva O. Miller Fellowship (to K.L.W.).

COMPETING INTERESTS

The authors declare that no competing interests exist.
REFERENCES

Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds. Adv Neural Inf Process Syst 9:27–33.

Bernstein JG, Oxenham AJ (2003) Pitch discrimination of diotic and dichotic tone complexes: Harmonic resolvability or harmonic number? J Acoust Soc Am 113:3323–3334.

Bregman MR, Patel AD, Gentner TQ (2016) Songbirds use spectral shape, not pitch, for sound pattern recognition. Proc Natl Acad Sci 113:1666–1671.

Buss E, Hall JW, Grose JH (2004) Temporal fine-structure cues to speech and pure tone modulation in observers with sensorineural hearing loss. Ear Hear 25:242–250.

Carcagno S, Lakhani S, Plack CJ (2019) Consonance perception beyond the traditional existence region of pitch. J Acoust Soc Am 146:2279–2290.

Chen H, Zeng F-G (2004) Frequency modulation detection in cochlear implant subjects. J Acoust Soc Am 116:2269–2277.

Cohen MR, Kohn A (2011) Measuring and interpreting neuronal correlations. Nat Neurosci 14:811–819.

Deal JA, Betz J, Yaffe K, Harris T, Purchase-Helzner E, Satterfield S, Pratt S, Govil N, Simonsick EM, Lin FR (2017) Hearing impairment and incident dementia and cognitive decline in older adults: The Health ABC Study. Journals Gerontol Ser A Biol Sci Med Sci 72:703–709 Available at: https://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glw069.

Demany L, Semal C (1989) Detection thresholds for sinusoidal frequency modulation. J Acoust
826 Soc Am 85:1295–1301.

827 Diedenhofen B, Musch J (2015) cocor: A comprehensive solution for the statistical comparison of correlations Olivier J, ed. PLoS One 10:e0121945.

829 Ewert SD (2013) AFC - A modular framework for running psychoacoustic experiments and computational perception models. Proceeding Conf Acoust AIA-DAGA 2013:1326–1329.

831 Ewert SD, Paraouty N, Lorenzi C (2018) A two-path model of auditory modulation detection using temporal fine structure and envelope cues. Eur J Neurosci:1–14.

833 Füllgrabe C, Moore BCJ (2017) Evaluation of a method for determining binaural sensitivity to temporal fine structure (TFS-AF test) for older listeners with normal and impaired low-frequency hearing. Trends Hear 21:1–14.

836 Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

838 Green DM, Richards VM, Onsan ZA (1990) Sensitivity to envelope coherence. J Acoust Soc Am 87:323–329.

840 Grose JH, Mamo SK (2012) Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects. Hear Res 294:49–54.

842 Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012.

844 Harrison R V, Evans EF (1979) Some aspects of temporal coding by single cochlear fibres from regions of cochlear hair cell degeneration in the guinea pig. Arch Otorhinolaryngol 224:71–78.
He N, Mills JH, Dubno JR (2007) Frequency modulation detection: Effects of age, psychophysical method, and modulation waveform. J Acoust Soc Am 122:467–477.

Heinz MG, Colburn HS, Carney LH (2001) Evaluating auditory performance limits: i. one-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13:2273–2316.

Henry KS, Heinz MG (2012) Diminished temporal coding with sensorineural hearing loss emerges in background noise. Nat Neurosci 15:1362–1364.

Henry KS, Sayles M, Hickox AE, Heinz MG (2019) Divergent auditory nerve encoding deficits between two common etiologies of sensorineural hearing loss. J Neurosci 39:6879–6887.

Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70.

Hopkins K, Moore BCJ (2007) Moderate cochlear hearing loss leads to a reduced ability to use temporal fine structure information. J Acoust Soc Am 122:1055–1068.

Hopkins K, Moore BCJ (2011) The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. J Acoust Soc Am 130:334–349.

Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304.

Ives DT, Calcus A, Kalluri S, Streleyk O, Sheft S, Lorenzi C (2013) Effects of noise reduction on AM and FM perception. J Assoc Res Otolaryngol 14:149–157.

Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. 68:1115–1122.
Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577.

Khanna SM, Teich MC (1989) Spectral characteristics of the responses of primary auditory-nerve fibers to frequency-modulated signals. Hear Res 39:159–175 Available at: https://linkinghub.elsevier.com/retrieve/pii/037855589900889.

Kidd G, Feth LL (1981) Patterns of residual masking. Hear Res 5:49–67.

Kohlrausch A, Fassel R, Dau T (2000) The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. J Acoust Soc Am 108:723.

Lacher-Fougère S, Demany L (1998) Modulation detection by normal and hearing-impaired listeners. Audiology 37:109–121.

Lau BK, Mehta AH, Oxenham AJ (2017) Superoptimal perceptual integration suggests a place-based representation of pitch at high frequencies. J Neurosci 37:9013–9021.

Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477.

Liberman CM, Dodds LW, Learson DA (1986) Structure-Function Correlation in Noise-Damaged Ears: A Light and Electron-Microscopic Study. In: Basic and Applied Aspects of Noise-Induced Hearing Loss (Salvi RJ, Henderson D, Hamernik RP, Colletti V, eds), pp 163–177. Boston, MA: Springer US.

Lin FR, Albert M (2014) Hearing loss and dementia – who is listening? Aging Ment Health 18:671–673 Available at: http://www.tandfonline.com/doi/abs/10.1080/13607863.2014.915924.
Lin FR, Metter EJ, O'Brien RJ, Resnick SM, Zonderman AB, Ferrucci L (2011) Hearing loss and incident dementia. Arch Neurol 68:214–220.

Lin FR, Yaffe K, Xia J, Xue Q-L, Harris TB, Purchase-Helzner E, Satterfield S, Ayonayon HN, Ferrucci L, Simonsick EM (2013) Hearing loss and cognitive decline in older adults. JAMA Intern Med 173:293.

Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ (2006) Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc Natl Acad Sci 103:18866–18869.

Macmillan NA, Creelman CD (2005) Detection Theory: A User’s Guide, 2nd ed. Lawrence Erlbaum Associates, Inc.

Micheyl C, Schrater PR, Oxenham AJ (2013) Auditory frequency and intensity discrimination explained using a cortical population rate code. PLoS Comput Biol 9:e1003336.

Miller RL, Schilling JR, Franck KR, Young ED (1997) Effects of acoustic trauma on the representation of the vowel /ε/ in cat auditory nerve fibers. J Acoust Soc Am 101:3602–3616.

Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

Moore BCJ (2007) Cochlear Hearing Loss: Physiological, Psychological and Technical Issues, Second Edi. John Wiley & Sons.

Moore BCJ (2014) Auditory Processing of Temporal Fine Structure: Effects of Age and Hearing Loss.
Moore BCJ, Glasberg BR, Hopkins K (2006) Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure. Hear Res 222:16–27.

Moore BCJ, Glasberg BR, Stoev M, Füllgrabe C, Hopkins K (2012) The influence of age and high-frequency hearing loss on sensitivity to temporal fine structure at low frequencies (L). J Acoust Soc Am 131:1003.

Moore BCJ, Huss M, Vickers DA, Glasberg BR, Alcántara JI (2000) A test for the diagnosis of dead regions in the cochlea. Br J Audiol 34:205–224.

Moore BCJ, Sek A (1995) Effects of carrier frequency, modulation rate, and modulation waveform on the detection of modulation and the discrimination of modulation type (amplitude modulation versus frequency modulation). J Acoust Soc Am 97:2468–2478.

Moore BCJ, Sek A (1996) Detection of frequency modulation at low modulation rates: Evidence for a mechanism based on phase locking. J Acoust Soc Am 100:2320–2331.

Moore BCJ, Sęk AP (2019) Discrimination of the phase of amplitude modulation applied to different carriers: Effects of modulation rate and modulation depth for young and older subjects. J Acoust Soc Am 146:1696–1704.

Moore BCJ, Skrodzka E (2002) Detection of frequency modulation by hearing-impaired listeners: Effects of carrier frequency, modulation rate, and added amplitude modulation. J Acoust Soc Am 111:327–335.

Moore BCJ, Vickers DA, Plack CJ, Oxenham AJ (1999) Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. J Acoust Soc Am 105:S103–S104.
Neff DL (1986) Confusion effects with sinusoidal and narrow-band noise forward maskers. J Acoust Soc Am 79:1519–1529.

Nelken I, Rotman Y, Yosef OB (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157.

Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522–539.

Otsuka S, Furukawa S, Yamagishi S, Hirota K, Kashino M (2016) Relation between cochlear mechanics and performance of temporal fine structure-based tasks. J Assoc Res Otolaryngol 17:541–557.

Oxenham AJ, Micheyl C, Keebler M V (2009) Can temporal fine structure represent the fundamental frequency of unresolved harmonics? J Acoust Soc Am 125:2189–2199.

Oxenham AJ, Micheyl C, Keebler M V, Loper A, Santurette S (2011) Pitch perception beyond the traditional existence region of pitch. Proc Natl Acad Sci U S A 108:7629–7634.

Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15.

Paraouty N, Ewert SD, Wallaert N, Lorenzi C (2016) Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. J Acoust Soc Am 140:121–131.

Paraouty N, Lorenzi C (2017) Using individual differences to assess modulation-processing
mechanisms and age effects. Hear Res 344:38–49.

Parthasarathy A, Hancock KE, Bennett K, DeGruttola V, Polley DB (2019) Neural signatures of disordered multi-talker speech perception in adults with normal hearing. bioRxiv:744813.

Robertson D, Manley GA (1974) Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. J Comp Physiol 91:363–375.

Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

Ruggero M, Rich N (1991) Furosemide alters organ of corti mechanics: Evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067 Available at: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.11-04-01057.1991.

Saberi K, Hafter ER (1995) A common neural code for frequency- and amplitude-modulated sounds. Nature 374:537–539.

Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Auditory Function: Neurobiological Basis of Hearing (Edelman GM, Gall WE, Cowan WM, eds), pp 337–361. New York: John Wiley & Sons.

Sek A, Moore BCJ (1995) Frequency discrimination as a function of frequency, measured in several ways. J Acoust Soc Am 97:2479–2486.

Shannon R V, Zeng F-G, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science (80-) 270:303–304.

Sheft S, Shafiro V, Lorenzi C, McMullen R, Farrell C (2012) Effects of age and hearing loss on the relationship between discrimination of stochastic frequency modulation and speech
perception. Ear Hear 33:709–720.

Sheft S, Yost WA (1990) Temporal integration in amplitude modulation detection. J Acoust Soc Am 88:796–805.

Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci U S A 99:3318–3323.

Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365 Available at: http://link.springer.com/10.1007/s10162-010-0217-4.

Shofner WP, Chaney M (2013) Processing pitch in a nonhuman mammal (Chinchilla laniger). J Comp Psychol 127:142–153.

Siebert WM (1970) Frequency discrimination in the auditory system: Place or periodicity mechanisms? Proc IEEE 58:723–730.

Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90.

Smoski WJ, Trahiotis C (1986) Discrimination of interaural temporal disparities by normal-hearing listeners and listeners with high-frequency sensorineural hearing loss. J Acoust Soc Am 79:1541–1547.

Song X, Osmanski MS, Guo Y, Wang X (2016) Complex pitch perception mechanisms are shared by humans and a New World monkey. Proc Natl Acad Sci 113:781–786.

Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87:245–251.
Strelcyk O, Dau T (2009) Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. J Acoust Soc Am 125:3328–3345.

Su Y, Delgutte B (2020) Robust rate-place coding of resolved components in harmonic and inharmonic complex tones in auditory midbrain. J Neurosci 40:2080–2093.

Sumner CJ, Wells TT, Bergevin C, Sollini J, Kref HA, Palmer AR, Oxenham AJ, Shera CA (2018) Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Proc Natl Acad Sci:1–5.

Thomson RS, Auduong P, Miller AT, Gurgel RK (2017) Hearing loss as a risk factor for dementia: A systematic review. Laryngoscope Investig Otolaryngol 2:69–79.

Verschooten E, Desloovere C, Joris PX (2018) High-resolution frequency tuning but not temporal coding in the human cochlea. PLOS Biol 16:e2005164.

Verschooten E, Shamma S, Oxenham AJ, Moore BCJ, Joris PX, Heinz MG, Plack CJ (2019) The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hear Res 377:109–121 Available at: https://linkinghub.elsevier.com/retrieve/pii/S0378595518305604.

Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380.

Walker KMM, Gonzalez R, Kang J, McDermott JH, King AJ (2018) Pitch perception is adapted to species-specific cochlear filtering. bioRxiv.

Wallaert N, Moore BCJ, Lorenzi C (2016) Comparing the effects of age on amplitude modulation and frequency modulation detection. J Acoust Soc Am 139:3088–3096.
Wang X, Lu T, Bendor D, Bartlett E (2008) Neural coding of temporal information in auditory thalamus and cortex. Neuroscience 157:484–493.

Whiteford KL, Kreft HA, Oxenham AJ (2017) Assessing the role of place and timing cues in coding frequency and amplitude modulation as a function of age. J Assoc Res Otolaryngol 18:619–633.

Whiteford KL, Oxenham AJ (2015) Using individual differences to test the role of temporal and place cues in coding frequency modulation. J Acoust Soc Am 138:3093–3104.

Whiteford KL, Oxenham AJ (2017) Auditory deficits in amusia extend beyond poor pitch perception. Neuropsychologia 99:213–224.

Whitney D, Levi DM (2011) Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn Sci 15:160–168.

Woolf NK, Ryan AF, Bone RC (1981) Neural phase-locking properties in the absence of cochlear outer hair cells. Hear Res 4:335–346.

Zeng F-G, Nie K, Stickney GS, Kong Y-Y, Vongphoe M, Bhargave A, Wei C, Cao K (2005) Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci 102:2293–2298.

Zurek PM, Formby C (1981) Frequency-discrimination ability of hearing-impaired listeners. J Speech Lang Hear Res 24:108.

Zwicker E (1956) Die elementaren Grundlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6:365–381.