On decomposition numbers with Jantzen filtration of cyclotomic q-Schur algebras

Kentaro Wada

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan

Abstract. Let $\mathcal{S}(\Lambda)$ be the cyclotomic q-Schur algebra associated to the Ariki-Koike algebra $H_{n,r}$, introduced by Dipper-James-Mathas. In this paper, we consider v-decomposition numbers of $\mathcal{S}(\Lambda)$, namely decomposition numbers with respect to the Jantzen filtrations of Weyl modules. We prove, as a v-analogue of the result obtained by Shoji-Wada, a product formula for v-decomposition numbers of $\mathcal{S}(\Lambda)$, which asserts that certain v-decomposition numbers are expressed as a product of v-decomposition numbers for various cyclotomic q-Schur algebras associated to Ariki-Koike algebras H_{n, r_i} of smaller rank. Moreover we prove a similar formula for v-decomposition numbers of $H_{n, r}$ by using a Schur functor.

0. Introduction

Let $\mathcal{H} = H_{n,r}$ be the Ariki-Koike algebra over an integral domain R associated to the complex reflection group $S_n \rtimes (\mathbb{Z}/r\mathbb{Z})^n$. Dipper, James and Mathas [DJM] introduced the cyclotomic q-Schur algebra $\mathcal{S}(\Lambda)$ associated to the Ariki-Koike algebra \mathcal{H}, and they showed that \mathcal{H} and $\mathcal{S}(\Lambda)$ are cellular algebras in the sense of Graham and Lehrer [GL], by constructing the cellular basis respectively. It is a fundamental problem for the representation theory to determine the decomposition numbers of \mathcal{H} and $\mathcal{S}(\Lambda)$. It is well-known that the decomposition matrix of \mathcal{H} coincides with the submatrix of that of $\mathcal{S}(\Lambda)$ by the Schur functor.

In the case where \mathcal{H} is the Iwahori-Hecke algebra H_n of type A, Lascoux, Leclerc and Thibon [LLT] conjectured that the decomposition numbers of H_n can be described by using the canonical basis of a certain irreducible $U_v(\hat{\mathfrak{sl}}_e)$-module, and gave the algorithm to compute this canonical basis. The conjecture has been solved by Ariki [A1], by extending to the case of Ariki-Koike algebras.

In the case of the q-Schur algebra associated to H_n, Leclerc and Thibon [LT] conjectured that the decomposition matrix coincides with the transition matrix between the canonical basis and the standard basis of the Fock space of level 1 equipped with the $U_v(\hat{\mathfrak{sl}}_e)$-module structure, and gave the algorithm to compute the transition matrix. This conjecture has been solved by Varagnolo and Vasserot in [VV].

More generally, in the case of the cyclotomic q-Schur algebra \mathcal{S}, Yvonne [Y] has conjectured that the decomposition matrix coincides with the transition matrix between the canonical basis and the standard basis of the higher-level Fock space. This canonical basis was constructed by Uglov [U] and the algorithm to compute...
the transition matrix was also given there. Yvonne’s conjecture is still open. We
remark that Ariki’s theorem, Varagnolo-Vasserot’s theorem and Yvonne’s conjecture
are concerned with the situation where R is a complex number field and parameters
are roots of unity.

In order to study the decomposition numbers of \mathcal{F}, we constructed in [SW]
some subalgebras \mathcal{F}^p of $\mathcal{F}(\Lambda)$ and their quotients \mathcal{F}^p, and showed that \mathcal{F}^p is a
standardly based algebra in the sense of Du and Rui [DR], and that \mathcal{F}^p is a cellular
algebra. Hence, one can consider the decomposition numbers of \mathcal{F}, \mathcal{F}^p and \mathcal{F}^p also.

We denote the decomposition numbers of \mathcal{F}, \mathcal{F}^p and \mathcal{F}^p by $d_{\lambda \mu}$, $d^{(\lambda,0)}_{\lambda \mu}$ and $\overline{d}_{\lambda \mu}$ respectively, where $d_{\lambda \mu}$ is a decomposition number of the irreducible module L^μ in
the Weyl module W^λ of \mathcal{F} for r-partitions λ, μ, and $d^{(\lambda,0)}_{\lambda \mu}$, $\overline{d}_{\lambda \mu}$ are defined similarly
for \mathcal{F}^p and \mathcal{F}^p (see Section 1 for details). It is proved in [SW, Theorem 3.13] that

\begin{equation}
\overline{d}_{\lambda \mu} = d^{(\lambda,0)}_{\lambda \mu} = d_{\lambda \mu}
\end{equation}

whenever λ, μ satisfy a certain condition $\alpha_p(\lambda) = \alpha_p(\mu)$. Moreover for such λ, μ, the product formula for $\overline{d}_{\lambda \mu},$

\begin{equation}
\overline{d}_{\lambda \mu} = \prod_{k=1}^g d^{(\lambda,0)}_{\lambda \mu[k]},
\end{equation}

was proved in [SW, Theorem 4.17], where $d^{(\lambda[k],\mu[k])}_{\lambda \mu[k]}$ for $k = 1, \ldots, g$ is the decompo-
sition number of the cyclotomic q-Schur algebra associated to a certain Ariki-Koike
algebra \mathcal{H}_{n_k, r_k}.

Related to the above conjectures on Fock spaces, Leclerc-Thibon and Yvonne
give a more precise conjecture concerning the v-decomposition numbers defined by
using Jantzen filtrations of Weyl modules. (For definition of v-decomposition num-
bers, see [P2]) We remark that decomposition numbers coincide with v-decomposition
numbers at $v = 1$. Thus we regard v-decomposition numbers as a v-analogue of de-
composition numbers. The conjecture for v-decomposition numbers has been still
open even in the case of the q-Schur algebra of type A.

In this paper, we show that similar formula as (1) and (2) also hold for v-
decomposition numbers. We denote the v-decomposition numbers of $\mathcal{F}(\Lambda)$, $\mathcal{F}^p(\Lambda)$
and $\mathcal{F}^p(\Lambda)$ by $d_{\lambda \mu}(v)$, $d^{(\lambda,0)}_{\lambda \mu}(v)$ and $\overline{d}_{\lambda \mu}(v)$ respectively. Then for r-partitions λ, μ
such that $\alpha_p(\lambda) = \alpha_p(\mu)$, we have (Theorem 2.8)

\begin{equation}
\overline{d}_{\lambda \mu}(v) = d^{(\lambda,0)}_{\lambda \mu}(v) = d_{\lambda \mu}(v),
\end{equation}

and (Theorem 2.14)

\begin{equation}
d_{\lambda \mu}(v) = \overline{d}_{\lambda \mu}(v) = \prod_{k=1}^g d^{(\lambda[k],\mu[k])}_{\lambda \mu[k]}(v),
\end{equation}

where $d^{(\lambda[k],\mu[k])}_{\lambda \mu[k]}(v)$ is the v-decomposition number of the cyclotomic q-Schur algebra
appeared in (2).
We note that our result is a v-analogue of (1), (2), and it reduces to them by taking $v \mapsto 1$. Moreover, for a certain v-decomposition number $d^v_{\mu}(v)$ of the Ariki-Koike algebra, we also have the following product formula (Theorem 3.5).

$$d^v_{\mu}(v) = \prod_{k=1}^g d^v_{\lambda^k|\mu|k}(v),$$

where $d^v_{\lambda^k|\mu|k}(v)$ is the v-decomposition number of the certain Ariki-Koike algebra $\mathcal{H}_{n,k}$.

We remark that our results hold for any parameters and any modular system, even for the case where the base field has non-zero characteristic, though Yvonne’s conjecture is formulated under certain restrictions for parameters and modular systems.

Acknowledgments I would like to thank Toshiaki Shoji and Hyohe Miyachi for many helpful advices and discussions.

1. A review of known results

1.1. Throughout the paper, we follow the notation in [SW]. Here we review some of them. We fix positive integers r, n and an r-tuple $m = (m_1, \cdots, m_r) \in \mathbb{Z}^r_{>0}$. A composition $\lambda = (\lambda_1, \lambda_2, \cdots)$ is a finite sequence of non-negative integers, and $|\lambda| = \sum_i \lambda_i$ is called the size of λ. If $\lambda_i \neq 0$ and $\lambda_k = 0$ for any $k > l$, then l is called the length of λ. If the composition λ is a weakly decreasing sequence, λ is called a partition. An r-tuple $\mu = (\mu^{(1)}, \cdots, \mu^{(r)})$ of compositions is called the r-composition, and size $|\mu|$ of μ is defined by $\sum_{i=1}^r |\mu^{(i)}|$. In particular, if all $\mu^{(i)}$ are partitions, μ is called an r-partition. We denote by $\Lambda = P_{n,r}(m)$ the set of r-compositions $\mu = (\mu^{(1)}, \cdots, \mu^{(r)})$ such that $|\mu| = n$ and that the length of $\mu^{(k)}$ is smaller than m_k for $k = 1, \cdots, r$. We define $\Lambda^+ = P_{n,r}(m)$ as the subset of Λ consisting of r-partitions.

We define the partial order, the so-called “dominance order”, on Λ by $\mu \succeq \nu$ if and only if

$$\sum_{i=1}^l |\mu^{(i)}| + \sum_{j=1}^k \nu_j^{(l)} \geq \sum_{i=1}^l |\mu^{(i)}| + \sum_{j=1}^k \nu_j^{(l)}$$

for any $1 \leq l \leq r$, $1 \leq k \leq m_i$. If $\mu \succeq \nu$ and $\mu \neq \nu$, we write it as $\mu \triangleright \nu$.

For $\lambda \in \Lambda^+$, we denote by $\text{Std}(\lambda)$ the set of standard tableau of shape λ. For $\lambda \in \Lambda^+$ and $\mu \in \Lambda$, we denote by $T_0(\lambda, \mu)$ the set of semistandard λ-tableau of type μ. Moreover we set $T_0(\lambda) = \cup_{\mu \in \Lambda} T_0(\lambda, \mu)$. For definitions of standard tableau and semistandard tableau, see [SW] or [DJM].

1.2. Let $\mathcal{H} = \mathcal{H}_{n,r}$ be the Ariki-Koike algebra over an integral domain R with parameters q, Q_1, \cdots, Q_r with defining relations in [SW] §1.1. It is known by [DJM] that \mathcal{H} has a structure of the cellular algebra with a cellular basis $\{m_{\lambda|\mu|k}^{g}| \lambda, \mu, k \in \text{Std}(\lambda) \text{ for some } \lambda \in \Lambda^+\}$. Then the general theory of a cellular algebra by [GL] implies the following results. There exists an anti-automorphism $h \mapsto h^*$ of \mathcal{H} such
that \(m^*_t = m_{ts} \). For \(\lambda \in \mathbb{A}^+ \), let \(\mathbb{H}^{\lambda} \) be the \(R \)-submodule of \(\mathbb{H} \) spanned by \(m_{st} \), where \(s, t \in \text{Std}(\mu) \) for some \(\mu \in \mathbb{A}^+ \) such that \(\mu \triangleright \lambda \). Then \(\mathbb{H}^{\lambda} \) is an ideal of \(\mathbb{H} \).

One can construct the standard (right) \(\mathbb{H} \)-module \(S^\lambda \), called a Specht module, with the \(R \)-free basis \(\{ m_t \mid t \in \text{Std}(\lambda) \} \). We define the bilinear form \(\langle , \rangle_{\mathbb{H}} \) on \(S^\lambda \) by

\[
\langle m_s, m_t \rangle_{\mathbb{H}} m_{uv} \equiv m_{us} m_{tv} \mod \mathbb{H}^{\lambda} \quad (s, t \in \text{Std}(\lambda)),
\]

where \(u, v \in \text{Std}(\lambda) \), and the scalar \(\langle m_s, m_t \rangle_{\mathbb{H}} \) does not depend on the choice of \(u, v \in \text{Std}(\lambda) \). The bilinear form \(\langle , \rangle_{\mathbb{H}} \) is associative, namely we have

\[
(1.2.1) \quad \langle x h, y \rangle_{\mathbb{H}} = \langle x, y h^* \rangle_{\mathbb{H}} \quad \text{for} \ x, y \in S^\lambda, \ h \in \mathbb{H}.
\]

Let \(\text{rad } S^\lambda = \{ x \in S^\lambda \mid \langle x, y \rangle_{\mathbb{H}} = 0 \text{ for any } y \in S^\lambda \} \). Then \(\text{rad } S^\lambda \) is the \(\mathbb{H} \)-submodule of \(S^\lambda \) by the associativity of the bilinear form. Put \(D^\lambda = S^\lambda / \text{rad } S^\lambda \).

Assume that \(R \) is a field. Then \(D^\lambda \) is an absolutely irreducible module or zero, and the set \(\{ D^\lambda \mid \lambda \in \mathbb{A}^+ \text{ such that } D^\lambda \neq 0 \} \) gives a complete set of non-isomorphic irreducible \(\mathbb{H} \)-modules.

1.3. Let \(\mathcal{I} = \mathcal{I}(A) \) be the cyclotomic \(q \)-Schur algebra introduced by [DJM], associated to the Ariki-Koike algebra \(\mathbb{H} \) with respect to the set \(A \). It is known by [DJM] that \(\mathcal{I} \) is a cellular algebra with a cellular basis \(\{ \phi_{ST} \mid S, T \in \mathcal{T}_0(\lambda) \text{ for some } \lambda \in \mathbb{A}^+ \} \). Again by the general theory of a cellular algebra, the following results hold.

There exists the anti-automorphism \(x \mapsto x^* \) of \(\mathcal{I} \) such that \(\phi_{ST}^* = \phi_{TS} \). For \(\lambda \in \mathbb{A}^+ \), let \(\mathcal{I}^{\lambda} \) be the \(R \)-submodule spanned by \(\phi_{ST} \), where \(S, T \in \mathcal{T}_0(\mu) \) for some \(\mu \in \mathbb{A}^+ \) such that \(\mu \triangleright \lambda \). Then \(\mathcal{I}^{\lambda} \) is an ideal of \(\mathcal{I} \). One can construct the standard (right) \(\mathcal{I} \)-module \(W^\lambda (\lambda \in \mathbb{A}^+) \), called a Weyl module, with the \(R \)-free basis \(\{ \phi_T \mid T \in \mathcal{T}_0(\lambda) \} \). We define a bilinear form \(\langle , \rangle \) on \(W^\lambda \) by

\[
\langle \phi_S, \phi_T \rangle_{\mathcal{I}} \phi_{UV} \equiv \phi_{US} \phi_{TV} \mod \mathcal{I}^{\lambda} \quad (S, T \in \mathcal{T}_0(\lambda)),
\]

where \(U, V \in \mathcal{T}_0(\lambda) \), and the scalar \(\langle \phi_S, \phi_T \rangle \) does not depend on a choice of \(U, V \in \mathcal{T}_0(\lambda) \). The bilinear form \(\langle , \rangle \) is associative, namely we have

\[
(1.3.1) \quad \langle x \varphi, y \rangle = \langle x, y \varphi^* \rangle \quad \text{for} \ x, y \in W^\lambda, \ \varphi \in \mathcal{I}.
\]

Let \(\text{rad } W^\lambda = \{ x \in W^\lambda \mid \langle x, y \rangle = 0 \text{ for any } y \in W^\lambda \} \). Then \(\text{rad } W^\lambda \) is the \(\mathcal{I} \)-submodule of \(W^\lambda \). Put \(L^\lambda = W^\lambda / \text{rad } W^\lambda \). Then it is known by [DJM] that \(L^\lambda \neq 0 \) for any \(\lambda \in \mathbb{A}^+ \). Assume that \(R \) is a field. Then \(L^\lambda \) is an absolutely irreducible module, and the set \(\{ L^\lambda \mid \lambda \in \mathbb{A}^+ \} \) gives a complete set of non-isomorphic irreducible \(\mathcal{I} \)-modules.

1.4. We recall some definitions and results in [SW]. We fix a positive integer \(g \leq r \) and \(p = (r_1, \ldots, r_g) \in \mathbb{Z}_{>0}^g \) such that \(r_1 + \cdots + r_g = r \), and set \(p_i = 0 \), \(p_i = \sum_{j=1}^{i-1} r_j \) for \(i = 2, \ldots, g \). For \(\mu = (\mu(1), \ldots, \mu(r)) \in \Lambda \), we define \(\alpha_p(\mu) = (n_1, \ldots, n_g) \) and \(\alpha_p(\mu) = (a_1, \ldots, a_g) \), where \(n_k = \sum_{i=1}^k |\mu(p_i + 1)| \) and \(a_k = \sum_{i=1}^{k-1} n_i \) for \(k = 1, \ldots, g \) with \(a_1 = 0 \). We define a partial order on \(\mathbb{Z}_{>0}^g \) by \(a = (a_1, \ldots, a_g) \geq b = (b_1, \ldots, b_g) \)
if $a_i \geq b_i$ for any $i = 1, \ldots, g$ and we write $a > b$ if $a \geq b$ and $a \neq b$. Later we consider the partial order on $\{a_\mu(\mu) \mid \mu \in A\}$ by this order.

For $\lambda \in A^+$ and $\mu \in A$, we set $T_0^p(\lambda, \mu) = T_0(\lambda, \mu)$ if $\alpha(\lambda) = \alpha(p, \mu)$, and is empty otherwise. Moreover we set $T_0^p(\lambda) = \bigcup_{\mu \in A} T_0^p(\lambda, \mu)$. We set

$$\Sigma^p = (A^+ \times \{0, 1\}) \setminus \left\{(\lambda, 1) \in A^+ \times \{0, 1\} \mid T_0(\lambda, \mu) = \phi\right\},$$

for any $\mu \in A$ such that $a_\mu(\lambda) > a_\mu(\mu)$,

and define a partial order \geq on Σ^p by $(\lambda_1, \varepsilon_1) > (\lambda_2, \varepsilon_2)$ if $\lambda_1 > \lambda_2$ or if $\lambda_1 = \lambda_2$ and $\varepsilon_1 > \varepsilon_2$. For $\eta = (\lambda, \varepsilon) \in \Sigma^p$, we set

$$I(\eta) = \begin{cases} T_0^p(\lambda) & \text{if } \varepsilon = 0, \\ \bigcup_{\mu \in A, a_\mu(\lambda) > a_\mu(\mu)} T_0(\lambda, \mu) & \text{if } \varepsilon = 1, \end{cases}$$

$$J(\eta) = \begin{cases} T_0^p(\lambda) & \text{if } \varepsilon = 0, \\ T_0(\lambda) & \text{if } \varepsilon = 1, \end{cases}$$

$$C^p(\eta) = \{\varphi_{ST} \mid (S, T) \in I(\eta) \times J(\eta)\}$$

for $\eta \in \Sigma^p$, and

$$C^p = \bigcup_{\eta \in \Sigma^p} C^p(\eta).$$

Let $\mathcal{F}^p = \mathcal{F}^p(A)$ be the R-submodule of $\mathcal{F}(A)$ spanned by C^p. We also define $(\mathcal{F}^p)^{\vee \eta}$ as the R-submodule of \mathcal{F}^p spanned by

$$\{\varphi_{UV} \mid (U, V) \in I(\eta') \times J(\eta') \text{ for some } \eta' \in \Sigma^p \text{ such that } \eta' > \eta\}.$$

It is known by [SW, Theorem 2.6] that \mathcal{F}^p is a standardly based algebra with the standard basis C^p in the sense of [DR].

By the general theory of standardly based algebra due to [DR], we have the following results. For $\eta \in \Sigma^p$, one can consider the standard left \mathcal{F}^p-modules $\mathring{\mathcal{F}}^{n\eta}$ with the basis $\{\varphi^n_T \mid T \in I(\eta)\}$ and the standard right \mathcal{F}^p-module Z^n with the basis $\{\varphi^n_T \mid T \in J(\eta)\}$. We call them Weyl modules of \mathcal{F}^p. We define the bilinear form $\beta_\eta : \mathring{\mathcal{F}}^{n\eta} \times Z^n \to R$ by

$$\beta_\eta(\varphi^n_S, \varphi^n_T) \varphi_{UV} = \varphi_{UT} \varphi_{SV} \mod (\mathcal{F}^p)^{\vee \eta} \quad (S \in I(\eta), T \in J(\eta)),$$

where β_η is determined independent of the choice of $U \in I(\eta)$ and $V \in J(\eta)$. The bilinear form β_η is associative, namely we have

\begin{equation}
\beta_\eta(\varphi x, y) = \beta_\eta(x, y \varphi) \quad \text{for } x \in \mathring{\mathcal{F}}^{n\eta}, y \in Z^n, \varphi \in \mathcal{F}^p. \tag{1.4.1}
\end{equation}
Let \(\text{rad } Z^n = \{ x \in Z^n \mid \beta_n(y, x) = 0 \text{ for any } y \in Z^n \} \). Then \(\text{rad } Z^n \) is a \(\mathcal{P} \)-submodule of \(Z^n \) by associativity of \(\beta_n \). Put \(L^n = Z^n/\text{rad } Z^n \). Assume that \(R \) is a field. Then \(L^n \) is an absolutely irreducible module or zero, and the set \(\{ L^n \mid \eta \in \Sigma^p \text{ such that } \beta_n \neq 0 \} \) is a complete set of non-isomorphic irreducible (right) \(\mathcal{P} \)-modules.

Later we shall only consider the Weyl modules \(Z^n \) and irreducible modules \(L^n \) of \(\mathcal{P} \) for \(\eta \) of the form \((\lambda, 0) \). Note that the composition factors of \(Z^{(\lambda, 0)} \) are isomorphic to \(L^{(\mu, 0)} \) for some \(\mu \in \Lambda^+ \) by [SW, Proposition 3.3 (i)].

1.5. Let \(\widehat{\mathcal{P}} \) be the \(R \)-submodule of \(\mathcal{P} \) spanned by

\[
\mathcal{C} \setminus \{ \varphi_{ST} \mid S, T \in T_0^p(\lambda) \text{ for some } \lambda \in \Lambda^+ \}.
\]

It is known by [SW] that \(\widehat{\mathcal{P}} \) is a two-sided ideal of \(\mathcal{P} \). Thus, we can define the quotient algebra

\[
\mathcal{P} = \mathcal{P} / \widehat{\mathcal{P}}.
\]

We denote by \(\overline{\varphi} \) the image of \(\varphi \in \mathcal{P} \) under the natural surjection \(\pi : \mathcal{P} \to \mathcal{P} \), and set

\[
\overline{\mathcal{C}} = \{ \overline{\varphi}_{ST} \mid S, T \in T_0^p(\lambda) \text{ for some } \lambda \in \Lambda^+ \}.
\]

Then \(\overline{\mathcal{C}} \) is a free \(R \)-basis of \(\overline{\mathcal{P}} \). By [SW] Theorem 2.13, \(\overline{\mathcal{P}} \) turns out to be a cellular algebra with the cellular basis \(\overline{\mathcal{C}} \). Hence by the general theory of cellular algebra, the following results hold. For \(\lambda \in \Lambda^+ \), we can consider the standard (right) \(\mathcal{P} \)-module \(\overline{Z}^\lambda \) with the free \(R \)-basis \(\{ \overline{\varphi}_{ST} \mid T \in T_0^p(\lambda) \} \). We call it a Weyl module of \(\mathcal{P} \). We define the bilinear form \(\langle \cdot, \cdot \rangle_p : \overline{Z}^\lambda \times \overline{Z}^\lambda \to R \) by

\[
\langle \overline{\varphi}_{S}, \overline{\varphi}_{T} \rangle_p \overline{\varphi}_{UV} \equiv \overline{\varphi}_{US} \overline{\varphi}_{TV} \mod (\overline{\mathcal{P}})^{\overline{\lambda}} \quad (S, T \in T_0^p(\lambda)),
\]

where \(\langle \cdot, \cdot \rangle_p \) is determined independent of the choice \(U, V \in T_0^p(\lambda) \), and \((\overline{\mathcal{P}})^{\overline{\lambda}} \) is the \(R \)-submodule of \(\overline{\mathcal{P}} \) spanned by

\[
\{ \overline{\varphi}_{ST} \mid S, T \in T_0^p(\lambda) \text{ for some } \lambda' \in \Lambda^+ \text{ such that } \lambda' \triangleright \lambda \}.
\]

The bilinear form \(\langle \cdot, \cdot \rangle_p \) is associative, namely we have

\[
\langle \overline{x}, \overline{y} \rangle_p = \langle \overline{x}, \overline{y} \overline{\varphi}^* \rangle_p \quad \text{for any } \overline{x}, \overline{y} \in \overline{Z}^\lambda, \overline{\varphi} \in \overline{\mathcal{P}}.
\]

Let \(\text{rad } \overline{Z}^\lambda = \{ \overline{x} \in \overline{Z}^\lambda \mid \langle \overline{x}, \overline{y} \rangle_p = 0 \text{ for any } \overline{y} \in \overline{Z}^\lambda \} \), then \(\text{rad } \overline{Z}^\lambda \) is an \(\overline{\mathcal{P}} \)-submodule of \(\overline{Z}^\lambda \). Put \(\overline{T}^\lambda = \overline{Z}^\lambda / \text{rad } \overline{Z}^\lambda \). Assume that \(R \) is a field. Then \(\overline{T}^\lambda \) is an absolutely irreducible module, and the set \(\{ \overline{T}^\lambda \mid \lambda \in \Lambda^+ \} \) is a complete set of non-isomorphic irreducible (right) \(\overline{\mathcal{P}} \)-modules.
1.6. Assuming that R is a field, we set, for $\lambda, \mu \in \Lambda^+$,
\[
\begin{align*}
d_{\lambda \mu} &= [W^\lambda : L^\mu], \\
d_{\lambda \mu}^{(\lambda,0)} &= [Z^{(\lambda,0)} : L^{(\mu,0)}], \\
\overline{d}_{\lambda \mu} &= [\overline{Z}^{\lambda} : \overline{T}^\mu],
\end{align*}
\]
where $[W^\lambda : L^\mu]$ is the decomposition number of L^μ in W^λ, and similarly for \mathcal{F}^p and $\overline{\mathcal{F}}^p$. The following theorem was proved in [SW].

Theorem 1.7. [SW, Theorem 3.13] Assume that R is a field. For $\lambda, \mu \in \Lambda^+$ such that $\alpha_p(\lambda) = \alpha_p(\mu)$, we have
\[
\overline{d}_{\lambda \mu} = d_{\lambda \mu}^{(\lambda,0)} = d_{\lambda \mu}
\]

1.8. For $\mu = (\mu^{(1)}, \cdots, \mu^{(r)}) \in \Lambda$, we write it in the form $\mu = (\mu^{[1]}, \cdots, \mu^{[g]})$, where $\mu^{[i]} = (\mu^{(p_i+1)}, \cdots, \mu^{(p_i+r_i)})$. According to the expression of μ as above, $T = (T^{(1)}, \cdots, T^{(r)}) \in T_0(\lambda)$ can be expressed as $T = (T^{[1]}, \cdots, T^{[g]})$ with $T^{[i]} = (T^{(p_i+1)}, \cdots, T^{(p_i+r_i)})$. By [SW, Lemma 4.3 (iii)], we have a bijection $T_0^p(\lambda, \mu) \simeq \Delta_0(\lambda^{[1]}, \mu^{[1]}) \times \cdots \times \Delta_0(\lambda^{[g]}, \mu^{[g]})$ given by the map $T \mapsto (T^{[1]}, \cdots, T^{[g]})$. Thus we have a bijection $T_0^p(\lambda) \simeq T_0(\lambda^{[1]}) \times \cdots \times T_0(\lambda^{[g]})$.

We write $m = (m_1, \cdots, m_r)$ in the form $m = (m^{[1]}, \cdots, m^{[g]})$, where $m^{[k]} = (m_{p_k+1}, \cdots, m_{p_k+r_k})$. For each $n_k \in \mathbb{Z}_{\geq 0}$, put $A_{n_k} = \mathcal{P}_{n_k,r_k}(m^{[k]})$, and $A_{n_k}^+ = \mathcal{P}_{n_k,r_k}(m^{[k]})$. $(A_{n_k}$ or $A_{n_k}^+$ is regarded as the empty set if $n_k = 0$.) Let $\mathcal{F}(A_{n_k})$ be the cyclotomic q-Schur algebra associated to the Ariki-Koike algebra \mathcal{H}_{n_k,r_k} with parameters $q, Q_{p_k+1}, \cdots, Q_{p_k+r_k}$. Let $\Delta_{n,g}$ be the set of $(n_1, \cdots, n_g) \in \mathbb{Z}_{\geq 0}$ such that $n_1 + \cdots + n_g = n$. Then we have the following decomposition theorem of $\overline{\mathcal{F}}^p$ by [SW, Theorem 4.15].

\[
(1.8.1) \quad \overline{\mathcal{F}}^p(\Lambda) \cong \bigoplus_{(n_1, \cdots, n_g) \in \Delta_{n,g}} \mathcal{F}(A_{n_1}) \otimes \cdots \otimes \mathcal{F}(A_{n_g}) \quad \text{as } R\text{-algebra},
\]

under the isomorphism given by
\[
(1.8.2) \quad \overline{\varphi}_{ST} \mapsto \varphi_{S^{[1]}T^{[1]}} \otimes \cdots \otimes \varphi_{S^{[g]}T^{[g]}} \quad \text{for } S, T \in T_0^p(\lambda).
\]

Assuming that R is a field, for $\lambda^{[k]} \in A_{n_k}$, let $W^\lambda^{[k]}$ be the Weyl module of $\mathcal{F}(A_{n_k})$, and $L^\lambda^{[k]} = W^\lambda^{[k]} / \text{rad } W^\lambda^{[k]}$ be the irreducible module. By [SW, Corollary 4.16], the following properties hold. Under the isomorphism in (1.8.1), we have, for
\[\lambda, \mu \in \Lambda^+, \]

\[(1.8.3) \quad Z^\lambda \cong W^{\lambda[1]} \otimes \cdots \otimes W^{\lambda[g]}, \]

\[(1.8.4) \quad L^\mu \cong L^{\mu[1]} \otimes \cdots \otimes L^{\mu[g]}, \]

\[(1.8.5) \quad [Z^\lambda : L^\mu] = \begin{cases} \prod_{k=1}^g [W^{\lambda[k]} : L^{\mu[k]}] & \text{if } \alpha_p(\lambda) = \alpha_p(\mu), \\ 0 & \text{otherwise} \end{cases}. \]

Under the isomorphism in (1.8.3), a bilinear form \(\langle \cdot, \cdot \rangle_p \) on \(Z^\lambda \) decomposes to a product of bilinear forms on \(W^{\lambda[k]} \) for \(k = 1, \ldots, g \), namely we have the following lemma.

Lemma 1.9. For \(S, T \in T_0^p(\lambda) \), we have

\[\langle \varphi_S, \varphi_T \rangle_p = \langle \varphi_{S[1]}, \varphi_{T[1]} \rangle \cdots \langle \varphi_{S[g]}, \varphi_{T[g]} \rangle, \]

where \(\langle \varphi_{S[k]}, \varphi_{T[k]} \rangle \) denotes the bilinear form on \(W^{\lambda[k]} \) for \(k = 1, \ldots, g \).

Proof. Fix \(U, V \in T_0^p(\lambda) \). Then by (1.8.2) and the definition of the bilinear form on \(W^{\lambda[k]} \), we have

\[\varphi_{US \varphi_{TV}} = (\varphi_{U[1]S[1]} \otimes \cdots \otimes \varphi_{U[g]S[g]})(\varphi_{T[1]V[1]} \otimes \cdots \otimes \varphi_{T[g]V[g]}) \]

\[= \varphi_{U[1]S[1]} \varphi_{T[1]V[1]} \otimes \cdots \otimes \varphi_{U[g]S[g]} \varphi_{T[g]V[g]} \]

\[\equiv \langle \varphi_{S[1]}, \varphi_{T[1]} \rangle \varphi_{U[1]V[1]} \otimes \cdots \otimes \langle \varphi_{S[g]}, \varphi_{T[g]} \rangle \varphi_{U[g]V[g]} \]

\[\mod \mathcal{J}(A_{n_1})^{\lambda[1]} \otimes \cdots \otimes \mathcal{J}(A_{n_k})^{\lambda[g]} \]

\[= \langle \varphi_{S[1]}, \varphi_{T[1]} \rangle \cdots \langle \varphi_{S[g]}, \varphi_{T[g]} \rangle \varphi_{U[1]V[1]} \otimes \cdots \otimes \varphi_{U[g]V[g]} \]

\[= \langle \varphi_{S[1]}, \varphi_{T[1]} \rangle \cdots \langle \varphi_{S[g]}, \varphi_{T[g]} \rangle \varphi_{UV}. \]

Since \(\mathcal{J}(A_{n_1})^{\lambda[1]} \otimes \cdots \otimes \mathcal{J}(A_{n_k})^{\lambda[g]} \subset (\mathcal{J}^p)^{\lambda} \), we see that

\[\langle \varphi_S, \varphi_T \rangle_p \varphi_{UV} \equiv \varphi_{US \varphi_{TV}} \equiv \langle \varphi_{S[1]}, \varphi_{T[1]} \rangle \cdots \langle \varphi_{S[g]}, \varphi_{T[g]} \rangle \varphi_{UV} \mod (\mathcal{J}^p)^{\lambda}. \]

The lemma is proved. \(\square \)

Remark 1.10. For the isomorphism in (1.8.3), we do not need to assume that \(R \) is a field. But for (1.8.4) and (1.8.5), we need that \(R \) is a field.

Theorem 1.11. [SW, Theorem 4.17] Assume that \(R \) is a field. For \(\lambda, \mu \in \Lambda^+ \) such that \(\alpha_p(\lambda) = \alpha_p(\mu) \), we have the following.

\[d_{\lambda \mu} = \overline{d}_{\lambda \mu} = \prod_{k=1}^g d_{\lambda[k] \mu[k]}, \]

where \(d_{\lambda[k] \mu[k]} = [W^{\lambda[k]} : L^{\mu[k]}] \).
2. Decomposition numbers with Jantzen filtration

2.1. In the rest of this paper, we assume that R is a discrete valuation ring. Let \wp be a unique maximal ideal of R and $F = R/\wp$ be the residue filed. Fix $\widehat{q}, \widehat{Q}_1, \cdots, \widehat{Q}_r$ in R and let $q = \widehat{q} + \wp, Q_1 = \widehat{Q}_1 + \wp, \cdots, Q_r = \widehat{Q}_r + \wp$ be their canonical images in F. Moreover let K be the quotient field of R. Then (K, R, F) is a modular system with parameters. Let $\mathcal{I}_R = \mathcal{I}_R(\Lambda)$ be the cyclotomic \widehat{q}-Schur algebra over R with parameters $\widehat{q}, \widehat{Q}_1, \cdots, \widehat{Q}_r$ and $\mathcal{I} = \mathcal{I}(\Lambda)$ be the cyclotomic q-Schur algebra over F with parameters q, Q_1, \cdots, Q_r. Then $\mathcal{I} = (\mathcal{I}_R + q\mathcal{I}_F)/q\mathcal{I}_R$.

We consider the subalgebra \mathcal{I}_R^p (resp. \mathcal{I}_p) of \mathcal{I}_R (resp. \mathcal{I}) and its quotient \mathcal{I}_R^p (resp. \mathcal{I}^p) as in the previous section with the notation there. Note that the subscript R is used to indicate the objects related to R.

For $\lambda \in \Lambda^+$, let W_R^λ be the Weyl module of \mathcal{I}_R. For $i \in \mathbb{Z}_{\geq 0}$, we set

$$W_R^\lambda(i) = \{x \in W_R^\lambda | \langle x, y \rangle \in \wp^i \text{ for any } y \in W_R^\lambda\}$$

and define

$$W^\lambda(i) = (W_R^\lambda(i) + \wp W_R^\lambda)/\wp W_R^\lambda.$$

Then $W^\lambda = W^\lambda(0)$ is the Weyl module of \mathcal{I}, and we have the Jantzen filtration of W^λ,

$$W^\lambda = W^\lambda(0) \supset W^\lambda(1) \supset W^\lambda(2) \supset \cdots.$$

Similarly, by using the bilinear form \langle , \rangle_p on \mathcal{I}_R^p, one can define the Jantzen filtration of \mathcal{I}_R^p-module \mathcal{Z}^λ

$$\mathcal{Z}^\lambda = \mathcal{Z}^\lambda(0) \supset \mathcal{Z}^\lambda(1) \supset \mathcal{Z}^\lambda(2) \supset \cdots.$$

Moreover for the Weyl module $Z_R^{(\lambda, 0)}$ of \mathcal{I}_R^p, we set

$$Z_R^{(\lambda, 0)}(i) = \{x \in Z_R^{(\lambda, 0)} | \beta_\lambda(y, x) \in \wp^i \text{ for any } y \in \mathcal{Z}_R^{(\lambda, 0)}\}$$

and define

$$Z^{(\lambda, 0)}(i) = (Z_R^{(\lambda, 0)}(i) + \wp Z_R^{(\lambda, 0)})/\wp Z_R^{(\lambda, 0)}.$$

Then we have the Jantzen filtration of $Z^{(\lambda, 0)}$

$$Z^{(\lambda, 0)} = Z^{(\lambda, 0)}(0) \supset Z^{(\lambda, 0)}(1) \supset Z^{(\lambda, 0)}(2) \supset \cdots.$$

Since W^λ is a finite dimensional F-vector space, one can find a positive integer k such that $W^\lambda(k') = W^\lambda(k)$ for any $k' > k$. We choose a minimal k in such numbers and set $W^\lambda(k+1) = 0$. Then the Jantzen filtration of W^λ becomes a finite sequence. Similarly, Jantzen filtrations of $Z^{(\lambda, 0)}$ and \mathcal{Z}^λ also become finite sequences.

We can easily see that $W^\lambda(i)$ (resp. $Z^{(\lambda, 0)}(i)$) is a \mathcal{I}-submodule of W^λ (resp. \mathcal{I}_R^p-submodule of $Z^{(\lambda, 0)}$, \mathcal{I}_p-submodule of \mathcal{Z}^λ) by associativity of the bilinear form $(1.3.1)$ (resp. $(1.4.1)$, $(1.5.1)$).

2.2. Take $\lambda, \mu \in \Lambda^+$, and $W^\lambda = W^\lambda(0) \supset W^\lambda(1) \supset \cdots$ be the Jantzen filtration of W^λ. Let $[W^\lambda(i)/W^\lambda(i+1) : L^\mu]$ be the composition multiplicity of L^μ in
\[W^\lambda(i)/W^\lambda(i + 1). \] Let \(v \) be an indeterminate. We define a polynomial \(d_{\lambda\mu}(v) \) by
\[
d_{\lambda\mu}(v) = \sum_{i \geq 0} \left[W^\lambda(i)/W^\lambda(i + 1) : L^\mu \right] \cdot v^i.
\]
Similarly we define, for \(Z^{(\lambda,0)} \) and \(\overline{Z}\lambda \)
\[
d_{\lambda\mu}^{(\lambda,0)}(v) = \sum_{i \geq 0} \left[Z^{(\lambda,0)}(i)/Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)} \right] \cdot v^i,
\]
\[
\overline{d}_{\lambda\mu}(v) = \sum_{i \geq 0} \left[\overline{Z}\lambda(i)/\overline{Z}\lambda(i + 1) : \overline{L}\mu \right] \cdot v^i.
\]
Thus \(d_{\lambda\mu}(v) \), \(d_{\lambda\mu}^{(\lambda,0)}(v) \) and \(\overline{d}_{\lambda\mu}(v) \) are polynomials whose coefficients are non-negative integers. Note that since the Jantzen filtration of \(W^\lambda \), etc. are finite sequences, these summations are finite sums. We call \(d_{\lambda\mu}(v) \) (resp. \(d_{\lambda\mu}^{(\lambda,0)}(v), \overline{d}_{\lambda\mu}(v) \)) decomposition number with Jantzen filtration of \(\mathcal{S} \) (resp. \(\mathcal{S}^p, \overline{\mathcal{S}}^p \)). We also call them \(v \)-decomposition numbers as they coincide at \(v = 1 \) with decomposition numbers given in \([\text{L6}]\).

We have the following relation between \(d_{\lambda\mu}^{(\lambda,0)}(v) \) and \(\overline{d}_{\lambda\mu}(v) \).

Proposition 2.3. For \(\lambda, \mu \in \Lambda \), we have

(i) If \(\alpha_p(\lambda) \neq \alpha_p(\mu) \), then \(\overline{d}_{\lambda\mu}(v) = d_{\lambda\mu}^{(\lambda,0)}(v) = 0 \).

(ii) \(\left[\overline{Z}\lambda(i)/\overline{Z}\lambda(i + 1) : \overline{L}\mu \right] = \left[Z^{(\lambda,0)}(i)/Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)} \right] \) for any \(i \geq 0 \).

Hence we have \(\overline{d}_{\lambda\mu}(v) = d_{\lambda\mu}^{(\lambda,0)}(v) \).

Proof. (i) is clear since \(d_{\lambda\mu}^{(\lambda,0)} = \overline{d}_{\lambda\mu} = 0 \) by \([\text{SW}]\) Proposition 3.3).

Recall that \(\overline{Z}\lambda \cong Z^{(\lambda,0)} \) and \(\overline{L}\mu \cong L^{(\mu,0)} \) as \(\mathcal{S}^p \)-modules by \([\text{SW}]\) Lemma 3.2.

By definition, we have \(\beta_{\lambda}(\varphi_S^{(\lambda,0)}, \varphi_T^{(\lambda,0)}) = \langle \varphi_S, \varphi_T \rangle_p \) for any \(S, T \in T_0^p(\lambda) \). Then under the isomorphism \(\overline{Z}\lambda \cong Z^{(\lambda,0)} \), the Jantzen filtration of \(\overline{Z}\lambda \) coincides with that of \(Z^{(\lambda,0)} \). So (ii) is proved. \(\square \)

2.4. Next, we consider the relation between \(d_{\lambda\mu}^{(\lambda,0)}(v) \) and \(d_{\lambda\mu}(v) \). In order to see this we prepare two lemmas. Recall that there exists an injective \(\mathcal{S}^p \)-homomorphism \(f_\lambda : Z^{(\lambda,0)} \hookrightarrow W^\lambda \) such that \(f_\lambda(\varphi_T^{(\lambda,0)}) = \varphi_T \) for \(T \in T_0^p(\lambda) \) by \([\text{SW}]\) Lemma 3.5] and that \(Z^{(\lambda,0)} \otimes_{\mathcal{S}^p} \mathcal{S} \cong W^\lambda \) as \(\mathcal{S} \)-module by \([\text{SW}]\) Proposition 3.6. Let \(\iota_i : Z^{(\lambda,0)}(i) \hookrightarrow Z^{(\lambda,0)} \) be an inclusion map. Then \((\iota_i \otimes \text{id}_{\mathcal{S}}) (Z^{(\lambda,0)}(i) \otimes_{\mathcal{S}^p} \mathcal{S}) \) is the \(\mathcal{S} \)-submodule of \(Z^{(\lambda,0)} \otimes_{\mathcal{S}^p} \mathcal{S} \). Similar results hold also for \(R \). We have the following.

Lemma 2.5. Let \(\lambda \in \Lambda^+ \). For any \(i \geq 0 \), we have
\[
f_\lambda^{-1}(W^\lambda(i)) = Z^{(\lambda,0)}(i)
\]

Proof. By definition, we see that \(\beta(\varphi_T^{(\lambda,0)}, \varphi_S^{(\lambda,0)}) = \langle \varphi_S, \varphi_T \rangle \) for any \(S, T \in T_0^p(\lambda) \), and that \(\langle \varphi_S, \varphi_T \rangle = 0 \) if \(S \in T_0^p(\lambda), T \in T_0(\lambda) \setminus T_0^p(\lambda) \). Then for \(x \in Z^{(\lambda,0)}_R \), we
have
\[x \in Z^{(\lambda,0)}_R(i) \iff \beta_\lambda(\varphi^{(\lambda,0)}_T, x) \in \wp^i \text{ for any } T \in T_0^p(\lambda) \]
\[\iff \langle f_\lambda(x), \varphi_T \rangle \in \wp^i \text{ for any } T \in T_0(\lambda) \]
\[\iff f_\lambda(x) \in W_R^\lambda(i) \]

By taking the quotient, we obtain the lemma.

\[\square \]

Lemma 2.6. Let \(\lambda \in \Lambda^+ \). For any \(i \geq 0 \), we have
\[(t_i \otimes \text{id}_\mathcal{P})(Z^{(\lambda,0)}(i) \otimes \mathcal{P}) \subset W^\lambda(i) \]

under the isomorphism \(Z^{(\lambda,0)}(0) \otimes \mathcal{P} \mathcal{P} \cong W^\lambda \).

Proof. Recall that any element of \(Z^{(\lambda,0)}_R \) can be written in the form \(\varphi^{(\lambda,0)}_T \cdot \psi \) with \(\psi \in \mathcal{P} \mathcal{P} \). Moreover it follows from [SW Proposition 3.6] that, under the isomorphism \(g_\lambda : Z^{(\lambda,0)}_R \otimes \mathcal{P} \mathcal{P} \cong W_R^\lambda \), we have \(g_\lambda(\varphi^{(\lambda,0)}_T \cdot \psi) = \varphi_T \cdot \psi \cdot \varphi \) for \(\psi \in \mathcal{P} \mathcal{P}, \varphi \in \mathcal{P} \).

This is true also for \(Z^{(\lambda,0)}_R, W^\lambda \). Thus in order to show the lemma, it is enough to prove the following.

(2.6.1) Suppose that \(\varphi^{(\lambda,0)}_T \psi \in Z^{(\lambda,0)}_R(i) \) for \(\psi \in \mathcal{P} \mathcal{P} \). Then we have \(\varphi^{(\lambda,0)}_T \psi \in W^\lambda(i) \) for any \(\varphi \in \mathcal{P} \).

Now take \(\varphi^{(\lambda,0)}_T \psi \in Z^{(\lambda,0)}_R(i) \). If \(\varphi^{(\lambda,0)}_T \psi \in Z^{(\lambda,0)}_R(i) \), then \(\beta_\lambda(x, \varphi^{(\lambda,0)}_T \psi) \in \wp^i \) for any \(x \in \wp Z^{(\lambda,0)}_R(i) \). This implies that \(\langle \varphi^{(\lambda,0)}_T \psi, y \rangle \in \wp^i \) for any \(y \in W_R^\lambda \) by a similar argument as the proof of Lemma 2.5.

Since \(\langle \varphi^{(\lambda,0)}_T \psi, y \rangle = \langle \varphi^{(\lambda,0)}_T \psi, y \varphi^* \rangle \) for any \(y \in W_R^\lambda \) and any \(\varphi \in \mathcal{P} \mathcal{P} \), we see that \(\varphi^{(\lambda,0)}_T \psi \in Z^{(\lambda,0)}_R(i) \) implies that \(\varphi^{(\lambda,0)}_T \psi \in W_R^\lambda(i) \). By taking the quotient, we obtain (2.6.1). Thus the lemma is proved.

These two lemmas imply the following proposition about the relation between \(d^{(\lambda,0)}_\mu(v) \) and \(d^{(\lambda,0)}_\mu(v) \).

Proposition 2.7. Let \(\lambda, \mu \in \Lambda^+ \) be such that \(\alpha_\mu(\lambda) = \alpha_\mu(\mu) \). Then for any \(i \geq 0 \), we have
\[[Z^{(\lambda,0)}(i) / Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)}] = [W^\lambda(i) / W^\lambda(i + 1) : L^\mu] . \]
Hence we have \(d^{(\lambda,0)}_\mu(v) = d^{(\lambda,0)}_\mu(v) \) if \(\alpha_\mu(\lambda) = \alpha_\mu(\mu) \).

Proof. Fix \(\lambda, \mu \in \Lambda^+ \) such that \(\alpha_\mu(\lambda) = \alpha_\mu(\mu) \), and an integer \(i \geq 0 \). Thanks to Lemma 2.5, we have the following result by similar arguments as in the proof of [SW Proposition 3.12].

(2.7.1) \[[Z^{(\lambda,0)}(i) / Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)}] \geq [W^\lambda(i) / W^\lambda(i + 1) : L^\mu] . \]

Conversely, thanks to Lemma 2.6, we have the following result by similar arguments as in the proof of [SW Proposition 3.11].

(2.7.2) \[[Z^{(\lambda,0)}(i) : L^{(\mu,0)}] \leq [W^\lambda(i) : L^\mu] . \]
We remark that this does not imply nilpotency

\[Z^{(\lambda,0)}(i)/Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)} \leq [W^{\lambda}(i)/W^{\lambda}(i + 1) : L^{\mu}] \]

since we cannot see whether \((\iota_{i+1} \otimes \text{id}_{\mathcal{S}})(Z^{(\lambda,0)}(i + 1) \otimes_{\mathcal{S}} \mathcal{S}) = W^{\lambda}(i + 1)\) or not. Instead, we argue as follows. Let

\[\lambda \]

\[\iota \]

\[\rho \]

\[\mathcal{S} \]

In particular,

\[Z^{(\lambda,0)} = Z^{(\lambda,0)}(0) \supset \cdots \supset Z^{(\lambda,0)}(l) \supset \cdots \supset Z^{(\lambda,0)}(l + 1) = 0 \]

be the Jantzen filtrations of \(W^{\lambda}\) and \(Z^{(\lambda,0)}\) respectively. Then we have

\[(\iota_{k+1} \otimes \text{id}_{\mathcal{S}})(Z^{(\lambda,0)}(k + 1) \otimes_{\mathcal{S}} \mathcal{S}) \subset W^{\lambda}(k + 1) = 0 \]

by Lemma 2.6. This implies that \(Z^{(\lambda,0)}(k + 1) = 0\) since \((\iota \otimes \text{id}_{\mathcal{S}})(M \otimes_{\mathcal{S}} \mathcal{S}) \neq 0\) for any non-zero submodule \(M\) of \(Z^{(\lambda,0)}\) and the inclusion map \(\iota : M \hookrightarrow Z^{(\lambda,0)}\) by [SW, Lemma 3.8 (ii)]. So we have \(l \leq k\).

Now, if \(L^{\mu}\) is a composition factor of \(W^{\lambda}(i)/W^{\lambda}(i + 1)\), then we have

\[1 \leq [W^{\lambda}(i)/W^{\lambda}(i + 1) : L^{\mu}] \leq [Z^{(\lambda,0)}(i)/Z^{(\lambda,0)}(i + 1) : L^{(\mu,0)}] \]

by (2.7.1). Hence, we have \(Z^{(\lambda,0)}(i) \neq 0\). This implies that \(i \leq l\) if \(L^{\mu}\) is a composition factor of \(W^{\lambda}(i)\). In particular, \([W^{\lambda}(l + 1) : L^{\mu}] = 0\). Thus we have

\[Z^{(\lambda,0)}(l)/Z^{(\lambda,0)}(l + 1) : L^{(\mu,0)} = [Z^{(\lambda,0)}(l) : L^{(\mu,0)}] \]

\[W^{\lambda}(l)/W^{\lambda}(l + 1) : L^{\mu} = [W^{\lambda}(l) : L^{\mu}] \]

Combining these equalities with (2.7.1) and (2.7.2), we have

\[Z^{(\lambda,0)}(l)/Z^{(\lambda,0)}(l + 1) : L^{(\mu,0)} = [W^{\lambda}(l)/W^{\lambda}(l + 1) : L^{\mu}] \]

and so

\[Z^{(\lambda,0)}(l) : L^{(\mu,0)} = [W^{\lambda}(l) : L^{\mu}] \]

(2.7.3)

Next we consider the case where \(i = l - 1\). Note that

\[Z^{(\lambda,0)}(l - 1)/Z^{(\lambda,0)}(l) : L^{(\mu,0)} = [Z^{(\lambda,0)}(l - 1) : L^{(\mu,0)}] - [Z^{(\lambda,0)}(l) : L^{(\mu,0)}] \]

\[W^{\lambda}(l - 1)/W^{\lambda}(l) : L^{\mu} = [W^{\lambda}(l - 1) : L^{\mu}] - [W^{\lambda}(l) : L^{\mu}] \]

Combined with (2.7.1), (2.7.2) and (2.7.3), we have

\[Z^{(\lambda,0)}(l - 1)/Z^{(\lambda,0)}(l) : L^{(\mu,0)} = [W^{\lambda}(l - 1)/W^{\lambda}(l) : L^{\mu}] \]
and so $[Z^{(\lambda,0)}(l-1) : L^{(\mu,0)}] = [W^{(\lambda,0)}(l-1) : L^{\mu}]$. Therefore by backward induction on l, we obtain the proposition. ∎

Combining Proposition 2.8 and Proposition 2.7, we have the following theorem.

Theorem 2.8. For any $\lambda, \mu \in \Lambda^+$ such that $\alpha_{\varphi}(\lambda) = \alpha_{\varphi}(\mu)$, we have

$$d_{\lambda\mu}(v) = d_{\lambda\mu}^{(\lambda,0)}(v) = d_{\lambda\mu}(v).$$

If we specialize $v = 1$, the theorem reduces to Theorem 1.7

2.9. For later use, we shall consider the basis of $W_{\mathcal{P}_G}$ (2.9.1)

$$P = \text{diag}(d_{S_1}, d_{S_2}, \ldots, d_{S_N})$$

where $d \in \mathcal{P}_G$. Since R is a PID, there exist $P, Q \in \text{GL}_N(R)$ (where $N = |\mathcal{P}_G|$) such that $P\mathcal{G}^\lambda Q = \text{diag}(d_{S_1}, d_{S_2}, \ldots, d_{S_N})$, where $d_{S_k} \in R$ and $\{S_1, \ldots, S_N\} = \mathcal{P}_G$. Let $P = (p_{ST})_{S,T \in \mathcal{P}_G}$, $Q = (q_{ST})_{S,T \in \mathcal{P}_G}$ and we define, for $S, T \in \mathcal{P}_G$,

$$f_S = \sum_{S' \in \mathcal{P}_G} p_{SS'} \varphi_{S'} , \quad g_T = \sum_{T' \in \mathcal{P}_G} q_{T'T} \varphi_{T'}.$$

Since both P and Q are regular matrices, $\{f_S | S \in \mathcal{P}_G\}$ and $\{g_T | T \in \mathcal{P}_G\}$ are basis of $W_{\mathcal{P}_G}$ respectively. Moreover we have $\text{diag}(d_{S_1}, \ldots, d_{S_N}) = P\mathcal{G}^\lambda Q = (\langle f_S, g_T \rangle)_{S,T \in \mathcal{P}_G}$ by definition. Thus we have

$$(2.9.1) \quad \langle f_S, g_T \rangle = \delta_{ST} d_S \quad (S, T \in \mathcal{P}_G)$$

where $\delta_{ST} = 1$ if $S = T$ and $\delta_{ST} = 0$ otherwise. For $x = \sum_{S \in \mathcal{P}_G} r_S f_S \in W_{\mathcal{P}_G}$ ($r_S \in R$), we have

$$x \in W_{\mathcal{P}_G}^\lambda(i) \iff \langle x, g_T \rangle \in \varphi^i \quad \text{for any } T \in \mathcal{P}_G$$

$$\iff r_T d_T \in \varphi^i \quad \text{for any } T \in \mathcal{P}_G \quad \text{(by (2.9.1))}$$

$$\iff \nu_{\varphi}(r_T d_T) = \nu_{\varphi}(r_T) + \nu_{\varphi}(d_T) \geq i \quad \text{for any } T \in \mathcal{P}_G.$$

It follows from this that $W_{\mathcal{P}_G}^\lambda(i)$ is a free R-module with basis

$$(2.9.2) \quad \{f_T \mid T \in \mathcal{P}_G, \nu_{\varphi}(d_T) \geq i\} \cup \{\pi^{i-\nu_{\varphi}(d_T)} f_T \mid T \in \mathcal{P}_G, \nu_{\varphi}(d_T) < i\}.$$

2.10. We consider the Jantzen filtration of $W_{\mathcal{P}_G}^\lambda[k]$ ($1 \leq k \leq g$) as in the case of $W_{\mathcal{P}_G}^\lambda$ and use the notation similar to the case of $W_{\mathcal{P}_G}^\lambda$. Since we see that $W_{\mathcal{P}_G}^{\lambda[k]}(i_k)$ ($i_k \geq 0$)

is a free R-module (see 2.9), $W_{\mathcal{P}_G}^{\lambda[i_1]}(i_1) \otimes \cdots \otimes W_{\mathcal{P}_G}^{\lambda[i_g]}(i_g)$ ($(i_1, \ldots, i_g) \in Z^g_\geq 0$) becomes the submodule of $W_{\mathcal{P}_G}^{\lambda[i_1]} \otimes \cdots \otimes W_{\mathcal{P}_G}^{\lambda[i_g]}$.

For $1 \leq k \leq g$, let $\{f_{S[i]} \mid S[i] \in \mathcal{P}_G(\lambda[i])\}$ and $\{g_{T[i]} \mid T[i] \in \mathcal{P}_G(\lambda[i])\}$ be the bases of $W_{\mathcal{P}_G}^{\lambda[i]}$ as of $W_{\mathcal{P}_G}^\lambda$ in 2.9. For $S, T \in \mathcal{P}_G^p(\lambda)$, we define $\bar{f}_S := f_{S[i]} \otimes \cdots \otimes f_{S[i]}$ and $\bar{g}_T := g_{T[i]} \otimes \cdots \otimes g_{T[i]}$. Then $\{\bar{f}_S \mid S \in \mathcal{P}_G(\lambda)\}$ and $\{\bar{g}_T \mid T \in \mathcal{P}_G^p(\lambda)\}$ turn
out to be the bases of \mathbb{Z}^λ_R. By Lemma 1.9 and (2.9.1), we have

\begin{equation}
\langle T_S, g_T \rangle_p = \delta_{ST} d_{T[i]} \cdots d_{T[g]} \quad \text{for} \ S, T \in T_0^p(\lambda).
\end{equation}

We set $d_T = d_{T[i]} \cdots d_{T[g]}$. Then we have the following result by a similar argument as in 2.9. $\mathbb{Z}^\lambda_R(i)$ is a free R-module with basis

\begin{equation}
\begin{aligned}
\{ f_T \mid T \in T_0^p(\lambda), \nu_p(d_T) \geq i \} & \cup \{ \pi^{-\nu_p(d_T)} f_T \mid T \in T_0^p(\lambda), \nu_p(d_T) < i \}. \\
\end{aligned}
\end{equation}

Recall that $\Delta_{i,g}$ is the set of $(i_1, \ldots, i_g) \in \mathbb{Z}_{\geq 0}^g$ such that $i_1 + \cdots + i_g = i$. Then we have the following proposition.

Proposition 2.11. Let $\lambda \in \Lambda^+$ and $i \geq 0$. Under the isomorphism $\mathbb{Z}^\lambda_R \cong W^\lambda R[i] \otimes \cdots \otimes W^\lambda R[g]$, we have

\begin{equation}
\mathbb{Z}^\lambda_R(i) = \sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} W^\lambda R[i_1] \otimes \cdots \otimes W^\lambda R[i_g].
\end{equation}

Proof. First we show that the right hand side is contained in the left hand side. Take $x = x[i_1] \otimes \cdots \otimes x[i_g] \in W^\lambda R[i_1] \otimes \cdots \otimes W^\lambda R[i_g]$ such that $i_1 + \cdots + i_g = i$. By Lemma 1.9 we have

\begin{align*}
\langle x, f_T \rangle_p &= \langle x[i_1], \varphi_T[i_1] \rangle \cdots \langle x[i_g], \varphi_T[i_g] \rangle \\
&\in \varphi^{i_1} \cdots \varphi^{i_g} = \varphi^i \quad \text{for any} \ T \in T_0^p(\lambda).
\end{align*}

Thus we have $x \in \mathbb{Z}^\lambda_R(i)$.

Then in order to show the equality, we have only to show that the basis element of $\mathbb{Z}^\lambda_R(i)$ is contained in the right hand side of (2.11.1). First, we consider f_T such that $\nu_p(d_T) \geq i$. Since $\nu_p(d_T) = \nu_p(d_{T[i]} + \cdots + d_{T[g]})$, one can find $(i_1, \ldots, i_g) \in \mathbb{Z}_{\geq 0}^g$ such that $i_1 + \cdots + i_g = i$ and that $\nu_p(d_{T[k]}) \geq i_k$ for $k = 1, \ldots, g$. Then

\begin{align*}
\bar{f}_T &= f_{T[i_1]} \otimes \cdots \otimes f_{T[i_g]} \in W^\lambda R[i_1] \otimes \cdots \otimes W^\lambda R[i_g],
\end{align*}

and so \bar{f}_T is contained in the right hand side of (2.11.1).

Next we consider f_T such that $\nu_p(d_T) < i$. Then one can find (i_1, \ldots, i_g) such that $i_1 + \cdots + i_g = i$ and that $\nu_p(d_{T[k]}) \leq i_k$ for $k = 1, \ldots, g$. Therefore

\begin{align*}
\pi^{-\nu_p(d_T)} f_T &= \pi^{-\nu_p(d_{T[i_1]})} f_{T[i_1]} \otimes \cdots \otimes \pi^{-\nu_p(d_{T[i_g]})} f_{T[i_g]},
\end{align*}

which is also contained in the right hand side of (2.11.1). The proposition is proved. \hfill \Box

We have the following corollary.

Corollary 2.12. For $\lambda \in \Lambda^+$ and $i \geq 0$, under the isomorphism $\mathbb{Z}^\lambda_R \cong W^\lambda R[i] \otimes \cdots \otimes W^\lambda R[g]$, we have

\begin{equation}
\mathbb{Z}^\lambda_R(i) = \sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} W^\lambda R[i_1] \otimes \cdots \otimes W^\lambda R[i_g].
\end{equation}
Proof. By definition, we have
\[
Z^\lambda(i) = (Z^\lambda_R(i) + \varphi Z^\lambda_R)/\varphi Z^\lambda_R \simeq Z^\lambda_R(i)/(Z^\lambda_R(i) \cap \varphi Z^\lambda_R)
\]
and
\[
W^\lambda[1](i_1) \otimes \cdots \otimes W^\lambda[g](i_g) = \left((W^\lambda_R[1](i_1) + \varphi W^\lambda_R[1])/\varphi W^\lambda_R \otimes \cdots \otimes (W^\lambda_R[g](i_g) + \varphi W^\lambda_R[g])/\varphi W^\lambda_R \right)
\]
\[
\cong W^\lambda_R[1](i_1) \otimes (W^\lambda_R[1](i_1) \cap \varphi W^\lambda_R[1]) \otimes \cdots \otimes W^\lambda_R[g](i_g) \otimes (W^\lambda_R[g](i_g) \cap \varphi W^\lambda_R[g]).
\]
By Proposition 2.11, we have a surjective map
\[
\Phi : Z^\lambda_R(i) \rightarrow \sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} W^\lambda[1](i_1) \otimes \cdots \otimes W^\lambda[g](i_g).
\]
We claim that $\ker \Phi = Z^\lambda_R(i) \cap \varphi Z^\lambda_R$. Then the claim implies the corollary. So we shall show the claim. By definition, it is clear that $\ker \Phi$ is contained in $Z^\lambda_R(i) \cap \varphi Z^\lambda_R$. Take $x = \sum_{T \in T^0_p(\lambda)} r_T f_T \in Z^\lambda_R(i) \cap \varphi Z^\lambda_R$. Then $r_T \in \varphi$ for any $T \in T^0_0(\lambda)$. If $\nu_\varphi(d_T) \geq 1$, then $f_T = f_T^{[1]} \otimes \cdots \otimes f_T^{[g]}$ is contained in $W^\lambda_R[1](i_1) \otimes \cdots \otimes W^\lambda_R[g](i_g)$ for some $(i_1, \ldots, i_g) \in \Delta_{i,g}$ by the proof of Proposition 2.11. So we have $r_T f_T \in \ker \Phi$ for $T \in T^0_0(\lambda)$ such that $\nu_\varphi(d_T) \geq 1$. If $\nu_\varphi(d_T) < 1$, then $r_T f_T = r_T^{\pi_1-\nu_\varphi(d_T)} f_T$ for some $r_T \in R$ since $x \in Z^\lambda_R(i)$. By the proof of Proposition 2.11, for some $(i_1, \ldots, i_g) \in \Delta_{i,g}$, $\pi_1-\nu_\varphi(d_T) f_T = (\pi_1^{i_1-\nu_\varphi(d_T)} f_T^{[1]}) \otimes \cdots \otimes (\pi_1^{i_g-\nu_\varphi(d_T)} f_T^{[g]})$ is contained in $W^\lambda_R[1](i_1) \otimes \cdots \otimes W^\lambda_R[g](i_g)$. Moreover one can find at least one k such that $\nu_\varphi(d_T^{[k]}) < i_k$. Then the image of $\pi_1^{i_k-\nu_\varphi(d_T^{[k]})} f_T^{[k]}$ in $W^\lambda_R[1](i_1)/(W^\lambda_R[1](i_1) \cap \varphi W^\lambda_R[1])$ is zero. Hence for $T \in T^0_0$ such that $\nu_\varphi(d_T) < 1$, $r_T f_T$ is also contained in $\ker \Phi$. Now the claim is proved, and the corollary follows.

By using the corollary, we show the following lemma.

Lemma 2.13. Let $\lambda, \mu \in \Lambda^+$ be such that $\alpha_\mu(\lambda) = \alpha_\mu(\mu)$. For any $i \geq 0$, we have
\[
\left[Z^\lambda(i)/Z^\lambda(i+1) : L^\mu \right] = \sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} \prod_{k=1}^g \left[W^\lambda[k](i_k)/W^\lambda[k](i_{k+1}) : L^\mu[k] \right]
\]
Proof. By Corollary 2.12, we have
\[
Z^\lambda(i) / Z^\lambda(i+1) = \left(\sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} W^\lambda[1](i_1) \otimes \cdots \otimes W^\lambda[g](i_g) \right) / Z^\lambda(i+1)
\]
\[
= \sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} \left(W^\lambda[1](i_1) \otimes \cdots \otimes W^\lambda[g](i_g) \right) / \left(Z^\lambda(i+1) \cap (W^\lambda[1](i_1) \otimes \cdots \otimes W^\lambda[g](i_g)) \right).
\]
If \((i_1, \cdots, i_g) \neq (j_1, \cdots, j_g)\) such that \(i_1 + \cdots + i_g = j_1 + \cdots + j_g = i\), then
\[
(W^{\lambda^1}(i_1) \otimes \cdots \otimes W^{\lambda^g}(i_g)) \cap (W^{\lambda^1}(j_1) \otimes \cdots \otimes W^{\lambda^g}(j_g)) \subset W^{\lambda^1}(k_1) \otimes \cdots \otimes W^{\lambda^g}(k_g),
\]
where \(k_i = \max\{i_l, j_l\}\). Since \((i_1, \cdots, i_g) \neq (j_1, \cdots, j_g)\), \(k_1 + \cdots + k_g \geq i + 1\). Hence we have
\[
(W^{\lambda^1}(i_1) \otimes \cdots \otimes W^{\lambda^g}(i_g)) \cap (W^{\lambda^1}(j_1) \otimes \cdots \otimes W^{\lambda^g}(j_g)) \subset \mathcal{Z}^\lambda(i + 1).
\]

It follows from this, we see that the sum in (2.13.1) is a direct sum.

For \((i_1, \cdots, i_g) \in \Delta_{i,g}\), we consider a surjective \(\mathcal{F}\)-homomorphism
\[
\Psi : W^{\lambda^1}(i_1) \otimes \cdots \otimes W^{\lambda^g}(i_g) \to W^{\lambda^1}(i_1)/W^{\lambda^1}(i_1 + 1) \otimes \cdots \otimes W^{\lambda^g}(i_g)/W^{\lambda^g}(i_g + 1)
\]
Then we have \(\text{Ker} \, \Psi = \mathcal{Z}^\lambda(i + 1) \cap (W^{\lambda^1}(i_1) \otimes \cdots \otimes W^{\lambda^g}(i_g))\) under the setting in Corollary 2.12. By noting that (2.13.1) is a direct sum, we have
\[
\mathcal{Z}^\lambda(i)/\mathcal{Z}^\lambda(i + 1) \cong \bigoplus_{(i_1, \cdots, i_g) \in \Delta_{i,g}} \left(W^{\lambda^1}(i_1)/W^{\lambda^1}(i_1 + 1) \otimes \cdots \otimes W^{\lambda^g}(i_g)/W^{\lambda^g}(i_g + 1) \right)
\]
Since \(T^\mu \cong L^{\mu^1} \otimes \cdots \otimes L^{\mu^g}\), we have
\[
\left[\mathcal{Z}^\lambda(i)/\mathcal{Z}^\lambda(i + 1) : T^\nu \right] = \sum_{(i_1, \cdots, i_g) \in \Delta_{i,g}} \left[W^{\lambda^1}(i_1)/W^{\lambda^1}(i_1 + 1) \otimes \cdots \otimes W^{\lambda^g}(i_g)/W^{\lambda^g}(i_g + 1) : T^\nu \right]
\]
\[
= \sum_{(i_1, \cdots, i_g) \in \Delta_{i,g}} \prod_{k=1}^{g} \left[W^{\lambda^k}(i_k)/W^{\lambda^k}(i_k + 1) : L^{\mu^k} \right]
\]
The lemma is proved.

We define \(v\)-decomposition numbers of \(\mathcal{S}(A_{n_k})\) for \(k = 1, \cdots, g\) by
\[
d_{\lambda[k],\mu[k]}(v) := \sum_{i_k \geq 0} \left[W^{\lambda^k}(i_k)/W^{\lambda^k}(i_k + 1) : L^{\mu^k} \right] \cdot v^i
\]
as in the case of \(\mathcal{S}(A)\). Then we have the following theorem.

Theorem 2.14. For \(\lambda, \mu \in A^+\) such that \(\alpha_p(\lambda) = \alpha_p(\mu)\), we have
\[
d_{\lambda\mu}(v) = d_{\lambda\mu}(v) = \prod_{k=1}^{g} d_{\lambda[k],\mu[k]}(v).
\]
Proof. The first equality follows from Theorem 2.8. So we prove the second equality. By Lemma 2.13 we have

\[
\bar{d}_{\lambda\mu}(v) = \sum_{i \geq 0} \left[\sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} \prod_{k=1}^{g} \left[W^{\lambda[k]}(i_k)/W^{\lambda[k]}(i_k + 1) : L^{\mu[k]} \right] \right] \cdot v^i
\]

\[
= \sum_{i \geq 0} \left(\sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} \prod_{k=1}^{g} \left[W^{\lambda[k]}(i_k)/W^{\lambda[k]}(i_k + 1) : L^{\mu[k]} \right] \right) \cdot v^i
\]

\[
= \sum_{i \geq 0} \left(\sum_{(i_1, \ldots, i_g) \in \Delta_{i,g}} \prod_{k=1}^{g} \left[W^{\lambda[k]}(i_k)/W^{\lambda[k]}(i_k + 1) : L^{\mu[k]} \right] \right) \cdot v^i
\]

This proves the theorem. \hfill \square

3. \(v\)-DECOMPOSITION NUMBERS FOR ARIKI-KOIKE ALGEBRAS

We keep the notation in the previous section. We consider the \(v\)-decomposition numbers of the Ariki-Koike algebra \(\mathcal{H}\), and show that similar results hold as in the previous section.

3.1. Let \(\omega = (\cdot, \cdots, \cdot, (1^n))\) be the \(r\)-partition and \(T^\omega\) be the \(\omega\)-tableau of type \(\omega\). Since \(\varphi_{T^\omega_{\sim T^\omega}}\) is an identity map on \(M^\omega\) and a zero map \(M^\mu\) for \(\mu \in \Lambda\) such that \(\mu \neq \omega\), \(\varphi_{T^\omega_{\sim T^\omega}}\) is an idempotent in \(\mathfrak{S}\). Moreover we see that \(\varphi_{T^\omega_{\sim T^\omega}}: \mathfrak{S}_{\varphi_{T^\omega_{\sim T^\omega}}} = \text{Hom}_{\mathfrak{S}}(M^\omega, M^\omega) = \text{Hom}_{\mathfrak{S}}(\mathcal{H}, \mathcal{H}) \cong \mathcal{H}\). It is well known that, for an \(\mathfrak{S}\)-module \(M\), \(M\varphi_{T^\omega_{\sim T^\omega}}\) becomes a \(\mathcal{H}\)-module through the isomorphism \(\varphi_{T^\omega_{\sim T^\omega}}: \mathfrak{S}_{\varphi_{T^\omega_{\sim T^\omega}}(\mathcal{H})} \cong \mathcal{H}\). Then we can define a functor, the so-called “Schur functor”, from the category of right \(\mathfrak{S}\)-modules to the category of right \(\mathcal{H}\)-modules by \(M \mapsto M\varphi_{T^\omega_{\sim T^\omega}}\). The following facts are known by [JM] Proposition 2.17.

\[
\begin{align*}
(3.1.1) & \quad W^\lambda \varphi_{T^\omega_{\sim T^\omega}} \cong S^\lambda \quad \text{as \(\mathcal{H}\)-modules} \quad (\lambda \in \Lambda^+) \\
(3.1.2) & \quad L^\mu \varphi_{T^\omega_{\sim T^\omega}} \cong D^\mu \quad \text{as \(\mathcal{H}\)-modules} \quad (\mu \in \Lambda^+) \\
(3.1.3) & \quad [W^\lambda : L^\mu] = [S^\lambda : D^\mu] \quad (\lambda, \mu \in \Lambda^+ \text{ such that } D^\mu \neq 0)
\end{align*}
\]

where \([S^\lambda : D^\mu]\) is the decomposition number of \(D^\mu\) in \(S^\lambda\).

3.2. One can define the Jantzen filtration of the Specht module \(S^\lambda\) in a similar way as in the case of \(W^\lambda\), and we use a similar notation for this case. Then one can
define the \(v \)-decomposition number of \(H \), for \(\lambda, \mu \in \Lambda^+ \) such that \(D^\mu \neq 0 \), by

\[
d_{\lambda \mu}^H(v) := \sum_{i \geq 0} \left[S^\lambda(i)/S^\lambda(i+1) : D^\mu \right] \cdot v^i.
\]

We have the following lemma.

Lemma 3.3. Let \(\lambda \in \Lambda^+ \) and \(i \geq 0 \). Under the isomorphism in (3.1.1), we have

\[
W^\lambda(i) \varphi_{T \omega \tau} = S^\lambda(i).
\]

Proof. It is clear that \(W^\lambda(\varphi_{T \omega \tau}) \) has a basis \(\{ \varphi_T | T \in T_0(\lambda, \omega) \} \). We have a bijective correspondence between \(T_0(\lambda, \omega) \) and \(\text{Std}(\lambda) \) by \(T \leftrightarrow t \) such that \(\omega(t) = T \). Moreover, under the isomorphism in (3.1.1), we have

\[
\langle \varphi_T, \varphi_S \rangle = \langle m_t, m_s \rangle_H \quad \text{for } S = \omega(s), T = \omega(t) \in T_0(\lambda, \omega)
\]

by a similar argument as in the proof of \([M2, \text{Theorem 4.18}]\).

First, we show the inclusion \(W^\lambda(i) \varphi_{T \omega \tau} \subseteq S^\lambda(i) \). Take \(x \in W^\lambda_R(i) \). Then \(\langle x, \varphi_T \rangle \in \wp^i \) for any \(T \in T_0(\lambda) \). It follows that

\[
\langle x \cdot \varphi_{T \omega \tau}, \varphi_T \rangle = \langle x, \varphi_T \varphi_{T \omega \tau} \rangle \in \wp^i \quad \text{for any } T \in T_0(\lambda).
\]

This shows that

\[
\langle x \cdot \varphi_{T \omega \tau}, m_t \rangle_H \in \wp^i \quad \text{for any } t \in \text{Std}(\lambda)
\]

by (3.3.1) and (3.3.2). Hence \(x \cdot \varphi_{T \omega \tau} \in S^\lambda(i) \), and the claim follows by taking the quotient.

Next, we show the converse inclusion \(W^\lambda(i) \varphi_{T \omega \tau} \supseteq S^\lambda(i) \). Take \(y \in S^\lambda(i) \). Then we have

\[
\langle y, m_s \rangle_H \in \wp^i \quad \text{for any } s \in \text{Std}(\lambda).
\]

Write \(y = \sum_{t \in \text{Std}(\lambda)} r_t m_t \), and put \(x = \sum_{T \in T_0(\lambda, \omega)} r_T \varphi_T \in W^\lambda \), where \(T \) is the \(\lambda \)-tableau of type \(\omega \) corresponding to \(t \). Then we have \(y = x \cdot \varphi_{T \omega \tau} \), and

\[
\langle x, \varphi_S \rangle \in \wp^i \quad \text{for any } S \in T_0(\lambda, \omega)
\]

by (3.3.1), (3.3.2) and (3.3.3). Since \(\langle \varphi_T, \varphi_S \rangle = 0 \) if the type of \(T \) is not the same as the type of \(S \), we have

\[
\langle x, \varphi_S \rangle \in \wp^i \quad \text{for any } S \in T_0(\lambda).
\]

This shows that \(x \in W^\lambda_R(i) \), and the claim follows. The lemma is proved. \(\square \)
This lemma implies the following proposition.

Proposition 3.4. Take $\lambda, \mu \in \Lambda^+$ such that $D^\mu \neq 0$. Then for any $i \geq 0$, we have

$$[W^\lambda(i)/W^\lambda(i + 1) : L^\mu] = [S^\lambda(i)/S^\lambda(i + 1) : D^\mu].$$

In particular, we have $d_{\lambda\mu}(v) = d_{\lambda\mu}^v(v)$.

Proof. We consider the \mathscr{S}-module filtration

$$W^\lambda(i) = W_0 \supseteq W_1 \supseteq \cdots \supseteq W_k = W^\lambda(i + 1)$$

such that $W_j/W_{j+1} \cong L^\mu$. By applying the Schur functor, together with Lemma 3.3, we have

$$S^\lambda(i) = W^\lambda(i)\varphi_{T^wT^w} \supset W_1\varphi_{T^wT^w} \supset \cdots \supset W_k\varphi_{T^wT^w} = W^\lambda(i + 1)\varphi_{T^wT^w} = S^\lambda(i + 1),$$

where $W_j\varphi_{T^wT^w}/W_{j+1}\varphi_{T^wT^w} \cong (W_j/W_{j+1})\varphi_{T^wT^w} \cong L^\mu i \varphi_{T^wT^w} \cong D^\mu i$ by 3.1.2. The proposition follows from this.

For $\lambda \in \Lambda^+$ such that $\alpha_p(\lambda) = (n_1, \ldots, n_g)$, $\lambda^{[k]}$ is an r_k-partition of n_k. Then we have the Specht module S^λ and its unique quotient D^λ for the Ariki-Koike algebra \mathcal{H}_{n_k,r_k}. Moreover for $\lambda, \mu \in \Lambda^+$ such that $\alpha_p(\lambda) = \alpha_p(\mu) = (n_1, \ldots, n_g)$, we have the v-decomposition number $d_{\lambda\mu}^v(v)$ for \mathcal{H}_{n_k,r_k}. Combining Theorem 2.14 with Proposition 3.4, we have the following result.

Theorem 3.5. Let $\lambda, \mu \in \Lambda^+$ such that $\alpha_p(\lambda) = \alpha_p(\mu)$. Assume that $D^\mu \neq 0$ and $D^\mu^{[k]} \neq 0$ for any $k = 1, \ldots, g$. Then we have

$$d_{\lambda\mu}^v(v) = \prod_{k=1}^g d_{\lambda^{[k]}\mu^{[k]}}^v(v).$$

References

[A1] S. Ariki. On the decomposition numbers of the Hecke algebra of $G(m,1,n)$. *J. Math. Kyoto Univ.* **36** (1996), 789-808.

[A2] S. Ariki. On the classification of simple modules for cyclotomic Hecke algebras of type $G(m,1,n)$ and Kleshchev multipartitions. *Osaka J. Math.* **38** (2001), 827-837.

[AM] S. Ariki and A. Mathas. The number of simple modules of the Hecke algebras of type $G(r,1,n)$. *Math. Z.* **233** (2000), 601-623.

[DJM] R. Dipper, G. James, and A. Mathas. Cyclotomic q-Schur algebras. *Math. Z.* **229** (1998), 385-416.

[DR] J. Du and H. Rui. Based algebras and standard bases for quasi-hereditary algebras. *Trans. Amer. Math. Soc.* **350** (1998), 3207-3235.

[GL] J. J. Graham and G. I. Lehrer. Cellular algebras. *Invent. Math.* **123** (1996), 1-34.

[Jac] N. Jacon. An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras. *J. Algebra* **292** (2005), 100-109.

[JM] G. James and A. Mathas. The Jantzen sum formula for cyclotomic q-Schur algebras. *Trans. Amer. Math. Soc.* **352** (2000), 5381-5404.

[LLT] A. Lascoux, B. Leclerc, and J.-Y. Thibon. Hecke algebras at roots of unity and crystal bases of quantum affine algebras. *Comm. Math. Phys.* **181** (1996), 205-263.
B. Leclerc and J.-Y. Thibon. Canonical bases of q-deformed Fock spaces. *Internat. Math. Res. Notices*, (1996) 447-456.

A. Mathas. Simple modules of Ariki-Koike algebras. In “*Group representations: cohomology, group actions and topology*”, *Proc. Sympos. Pure Math.* vol.63, Amer. Math. Soc., 1998, pp.383-396.

A. Mathas. *Iwahori-Hecke algebras and Schur algebras of the symmetric group*, *University Lecture Series* Vol.15, Amer. Math. Soc. 1999.

A. Mathas. The representation theory of the Ariki-Koike and cyclotomic q-Schur algebras. In “*Representation theory of algebraic groups and quantum groups*”, *Adv. Stud. Pure Math.* Vol. 40, Math. Soc. Japan, Tokyo 2004, pp. 261-320.

T. Shoji and K. Wada. Cyclotomic q-Schur algebras associated to the Ariki-Koike algebra, preprint.

D. Uglov. Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials. In “*Physical combinatorics (Kyoto, 1999)*”, *Progr. Math.* vol. 191, Birkhäuser Boston, Boston, 2000, pp. 249-299

M. Varagnolo and E. Vasserot. On the decomposition matrices of the quantized Schur algebra. *Duke Math. J.*, 100, (1999), 267–297.

X. Yvonne. A conjecture for q-decomposition matrices of cyclotomic v-Schur algebras. *J. Algebra*, 304, (2006) 419–456.