Identification of a 5-Gene Signature Predicting Progression and Prognosis of Clear Cell Renal Cell Carcinoma

Background: Although the mortality rates of clear cell renal cell carcinoma (ccRCC) have decreased in recent years, the clinical outcome remains highly dependent on the individual patient. Therefore, identifying novel biomarkers for ccRCC patients is crucial.

Material/Methods: In this study, we obtained RNA sequencing data and clinical information from the TCGA database. Subsequently, we performed integrated bioinformatic analysis that includes differently expressed genes analysis, gene ontology and KEGG pathway analysis, protein-protein interaction analysis, and survival analysis. Moreover, univariate and multivariate Cox proportional hazards regression models were constructed.

Results: As a result, we identified a total of 263 dysregulated genes that may participate in the metastasis of ccRCC, and established a predictive signature relying on the expression of OTX1, MATN4, PI3, ERVV-2, and NFE4, which could serve as significant progressive and prognostic biomarkers for ccRCC.

Conclusions: We identified differentially expressed genes that may be involved in the metastasis of ccRCC. Moreover, a predictive signature based on the expression of OTX1, MATN4, PI3, ERVV-2, and NFE4 could be an independent prognostic factor for ccRCC.

MeSH Keywords: Biological Markers • Carcinoma, Renal Cell • Gene Expression • Prognosis

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/917399
Background

Clear cell renal cell carcinoma (ccRCC) is the most common malignancy in the kidneys, which has increasing incidence and mortality rates worldwide [1]. Treatments for localized ccRCC can vary from radio-frequency ablation to partial or radical nephrectomy; however, once RCC progresses to distant metastasis, the curative effect of current targeted drug therapies is limited [2]. Additionally, when first diagnosed, approximately 30% patients already have metastasis [1]. Therefore, it is urgent to understand the underlying mechanism of metastasis and to identify novel biomarkers with greater prognostic values.

The TNM staging system has been used for over 80 years and is important for estimating the outcome of various cancers; however, it provides an incomplete prognostic value [3–5]. Clinical outcomes can differ significantly among patients with the same tumor stage [6]. Despite surgical removal of the tumor, a subgroup of patients experience recurrence, indicating that at the time of curative surgery, the metastasis was already present [7]. However, no consensus was reached regarding the surveillance protocols of RCC, and no available tumor-associated biomarkers can predict recurrence in patients who may have benefited from earlier therapy [8]. Previous studies in colorectal cancer proposed several gene signatures and proved to be useful in predicting prognosis [9–11]. In this study, we divided patients from the Cancer Genome Atlas database into a non-metastasis group and a metastasis group in order to screen the differently expressed genes. Furthermore, we constructed a risk scoring system based on upregulated genes involved in metastasis to identify a multi-gene signature for use as an independent predictor for ccRCC.

Material and Methods

Data collection

The TCGA database contains large cohorts of genomic abnormalities and clinical information across the world, and is publicly available. RNA sequencing counts data from the ccRCC cohort, which consists of 539 tumor samples and 72 normal tissues, were obtained from the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). Clinical data pertaining to patients’ age, gender, grade, stage, survival and recurred/progressed outcome were also acquired from the TCGA data portal. We constructed a risk scoring system based on upregulated genes involved in metastasis to identify a multi-gene signature for use as an independent predictor for ccRCC.

Identification of differentially expressed genes (DEGs)

We identified the DEGs using the edgeR package, with a cutoff of adj.p-value <0.05 and a |logFC| >2 [12]. DEGs were visualized with volcano plot through the gplots package in R (version 3.5.2).

Enrichment analysis of DEGs

We performed a functional enrichment analysis of the DEGs using DAVID (Database for Annotation, Visualization, and Integrated Discovery) to determine the gene ontology (GO) categories by using cellular component (CC), molecular function (MF), or biological processes (BP), as well as KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway [13]. P<0.05 was defined as significant enrichment. An online web tool was used to visualize these processes (http://www.ehbio.com/ImageGP/).

Construction of PPI network

We used the STRING database to retrieve the protein-protein interaction (PPI) network of DEGs, and we used Cytoscape software to reconstruct and visualize the network [14,15]. Individual network modules with 10 or more nodes were shown.

Univariate and multivariate Cox analysis to screen the candidate genes

CcRCC samples were separated into 2 groups according to the median gene expression. Then, age (<60/≥60), sex (male/female), grade (G1–G2/G3–G4), stage (I–II/III–IV), T stage (T1–T2/T3–T4), N stage (NO/N1), M stage (MO/M1), specific gene, and survival data (time and state) were all included into the Cox regression model to preform univariate and multivariate Cox analysis using SPSS 22.0 (IBM Corporation, Armonk, NY, USA).

Establishment of a prognostic signature based on candidate genes

The stepwise multivariate Cox regression analysis model was constructed based on the candidate genes to extract the mRNA-based model with the best predictive ability. The criteria for inclusion and exclusion was set as P<0.05. Subsequently, the risk score for each patient was computed using the mRNA-based prognostic model as follows: Risk score=expRNA1⁎expRNA2⁎expRNA3⁎expRNA4⁎expRNA5⁎expRNA6⁎expRNA7⁎expRNA8⁎expRNA9⁎...expRNA60⁎ where expRNA was the mRNA expression level and βRNA referred to the regression coefficient derived from the multivariate Cox hazards regression analysis. Based on the risk score for each patient, patients from the TCGA database were separated into 2 groups: a low-risk group and a high-risk group. Kaplan-Meier survival analysis was performed to assess differences in
overall survival and disease-free time of patients using a log-rank test in GraphPad Prism 7.0. In addition, the receiver operating characteristic (ROC) curve was utilized to evaluate the specificity and sensitivity of the survival and disease-free prediction by the area under the curve using the R package “survivalROC” [16]. Heatmaps and clustering were generated based on the ClustVis open web tool [17].

Predictive value assessment

To evaluate the clinical value of our risk scoring system, we analyzed the clinical characteristics and risk scores in univariate Cox regression. We included factors with P<0.05 into the multivariate Cox regression analysis model. Then, a P<0.05 was treated as an independent prognostic factor. Moreover, to assess the relationship between risk level and clinical characteristics, we regrouped the patients based on age, sex, grade, stage, T stage, M stage, N stage, vital status, and risk level. A P<0.05 was considered as statistically significant using the chi-square test.

Results

Differentially expressed genes related to the metastasis of ccRCC

In this study, we defined M0 and N0 patients as the non-metastasis group (198 cases), while M1 and/or N1 patients (89 cases) were defined as the metastasis group. Altogether, 263 genes were found to be dysregulated according to the cutoff criteria, among which, 101 genes were upregulated and 162 gene were downregulated (Figure 1, Supplementary Table 1). Functional enrichment analysis of gene ontology revealed that dysregulated genes were mainly enriched in sequence-specific DNA binding, receptor binding, the extracellular region, the integral component of the plasma membrane, ion transmembrane transport, and insulin receptor signaling pathway. KEGG pathway analysis indicated that genes were primarily enriched in neuroactive ligand-receptor interaction and synaptic vesicle cycle (Figure 2). Moreover, the PPI network consisted of 10 modules, which included 255 nodes and 316 edges. The most significant module is shown in Figure 3.

Survival-related genes by Cox regression analysis

To identify key genes that may affect overall survival of patients, we performed Cox proportional hazard regressions analysis on upregulated genes. Twenty key genes were demonstrated to influence overall survival: OTX1, FOXE1, FAM83A, HMGAA2, KRT6A, DRYSL5L, ANX8A, MATN4, ROS1, CSMD3, Magec3, AMER2, CPLX2, PI3, KRT13, ERVV-2, ANKFN1, VTN, NFE4, and ZNF114 (Figure 4).

Construction of a risk scoring system based on candidate genes

For the purpose of extracting a signature that possesses the best predictive efficacy, 20 key genes were subjected to the stepwise multivariate Cox regression model. Results from the model revealed a total of 5 genes that proved to be significant survival predictors. The related information of these 5 genes is shown in Table 1. Subsequently, the risk score for each patient was computed as follows: expOTX1*0.725+expMATN4*0.473+expPI3*0.548+expERVV-2*0.458+expNFE4*0.410. According to the median risk score, we assigned these scores to the low- or high-risk group. Overall survival analysis showed that the low-risk group had better prognoses compared with the high-risk group (Figure 5A). The prognostic ability of the 5-gene signature was assessed by the AUC value of the ROC curve. The AUC was 0.687 for 3-year and 0.695 for 5-year overall survival, indicating a good performance of the 5-gene signature (Figure 5C, 5E). Risk scores in the low-risk group ranged from 0 to 0.194574172497 to 360.615372760823 in the high-risk group (Figure 5G). Disease-free survival analysis revealed a significant difference between the 2 groups, with the low-risk group having a longer disease-free time (Figure 5B). In the ROC curve, the AUC for 3-year disease-free survival was 0.674 and 0.681 for 5-year disease-free survival (Figure 5D, 5F). Risk scores in the low-risk group ranged from 0 to 0.215232506445 and ranged from 0.215490360701 to 360.615372760823 in the high-risk group (Figure 5G). Disease-free survival analysis revealed a significant difference between the 2 groups, with the low-risk group having a longer disease-free time (Figure 5B). In the ROC curve, the AUC for 3-year disease-free survival was 0.674 and 0.681 for 5-year disease-free survival (Figure 5D, 5F). Risk scores in the low-risk group ranged from 0 to 0.187870897657 and from 0.194574172497 to 360.615372760823 in the high-risk group (Figure 5H). Figure 6 shows the expression patterns of all the genes in the 2 groups. The expression of OTX1, MATN4, and PI3 were significantly higher in the high-risk group in the 2 cohorts (Figure 7).
Assessment of gene signature prognostic value

Univariate Cox regression analysis of the prognostic power of our risk scoring system showed that age, grade, stage, T stage, N stage, M stage, and risk level were all indicators of poor outcome. Then, these 7 indexes were entered into the multivariate Cox regression model, showing that risk level could be treated as an independent prognostic factor (Table 2). Furthermore, as is shown in Table 3, based on the chi-square test, risk level was significantly correlated with sex, grade, tumor stage, T stage, N stage, M stage, and vital status. Collectively, our results demonstrate that our 5-gene signature is a robust tool for use in predicting prognosis and recurrence.

Figure 2. Go term and KEGG pathway analysis for DEGs. (A) Top 10 molecular function (MF) processes. (B) Cellular component (CC). (C) Top 10 biological processes (BP). (D) KEGG pathway analysis.

Assessment of gene signature prognostic value

Univariate Cox regression analysis of the prognostic power of our risk scoring system showed that age, grade, stage, T stage, N stage, M stage, and risk level were all indicators of poor outcome. Then, these 7 indexes were entered into the multivariate Cox regression model, showing that risk level could be treated as an independent prognostic factor (Table 2). Furthermore, as is shown in Table 3, based on the chi-square test, risk level was significantly correlated with sex, grade, tumor stage, T stage, N stage, M stage, and vital status. Collectively, our results demonstrate that our 5-gene signature is a robust tool for use in predicting prognosis and recurrence.

Discussion

CcRCC has been shown to display distinct variability in clinical outcome, possibly due to the intrinsic molecular heterogeneity, which remains unclear, especially with regard to the mechanism of distant metastasis [18]. Moreover, the clinically
In the current study, we performed bioinformatic analysis between the non-metastasis and metastasis ccRCC group to identify genes involved in metastasis. As a result, we found that 263 genes were dysregulated; functional enrichment analysis of these genes revealed that dysregulated genes were primarily enriched in sequence-specific DNA binding, receptor binding, extracellular region, integral component of plasma membrane, ion transmembrane transport, insulin receptor signaling pathway, neuroactive ligand-receptor interaction, and synaptic vesicle cycle. Most importantly, we identified a 5-gene panel signature (OTX1, MATN4, PI3, ERVV-2, and NFE4) after the Cox proportional hazards regression analysis. Then, a risk score was acquired by combing the 5 genes. Recently, Wei et al. also identified key genes involved in the metastasis of ccRCC using similar bioinformatics methods [20]. However, in our study, available parameters, such as TNM stage and Fuhrman grade, are indispensable for prognostic prediction [19]. Nevertheless, there remains an urgent need to detect prognostic biomarkers due to the high heterogeneity in ccRCC.

Table 1. Overall information of 5 genes constructing the prognostic signature.

Gene	Gene name	Gene type	Hazard ratio	Coefficient	P value
OTX1	Orthodenticle Homebox 1	Protein-coding	2.064	0.725	<0.0001
MATN4	Matrilin 4	Protein-coding	1.605	0.473	0.007
PI3	Peptidase Inhibitor 3	Protein-coding	1.73	0.548	0.002
ERVV-2	Endogenous Retrovirus Group V Member 2	Protein-coding	1.581	0.458	0.009
NFE4	Nuclear Factor, Erythroid 4	Protein-coding	1.506	0.41	0.015

Figure 4. (A–T) Survival-related upregulated genes. Kaplan-Meier survival curves were generated for genes with P<0.05 in multivariate Cox regression analysis.
Figure 5. The 5-gene predictive signature in ccRCC. (A) Kaplan-Meier curve of OS in the low- and high-risk groups. (B) Kaplan-Meier curve of DFS in the low- and high-risk groups. (C) ROC curve for the 3-year survival prediction by the 5-gene signature. (D) ROC curve for the 3-year disease-free survival prediction by the 5-gene signature. (E) ROC curve for the 5-year survival prediction. (F) ROC curve for the 5-year disease-free survival prediction. (G) Risk scores distribution among OS cohort. (H) Risk scores distribution among DFS cohort.
we make our inclusion criteria clear with regard to the metastasis and non-metastasis groups. Moreover, we calculated each patient’s risk score based on the 5-gene signature. The 5-gene signature could independently predict overall survival for ccRCC patients, demonstrating that this signature might be useful in clinical practice.

OTX1 encodes a member of the Bicoid sub-family of homeodomain-containing transcription factor, which may play a role in sensory and brain organ development. It has been described as a vital molecule for axon refinement [21]. Terrinoni et al. demonstrated that the p53 protein can directly induce OTX1 expression by acting on its promoter in breast cancer, and Figueira-Muoio et al. revealed that the OTX pathway is important in medulloblastomas development [22,23]. OTX1 was also found

Figure 6. Expression pattern of the 5-gene signature in OS and DFS cohort. (A–C). In the OS cohort, the expression levels of OTX1, MATN4, and PI3 were significantly higher in the high-risk group. (D–F). In the DFS cohort, the expression levels of OTX1, MATN4, and PI3 were significantly higher in the high-risk group.

Figure 7. Heatmap of the 5 genes. (A) Heatmap of the OS cohort. (B) Heatmap of the DFS cohort. Red indicates the high-risk group, while blue indicates the low-risk group.
to promote colorectal cancer progression in vitro through epithelial-mesenchymal transition and hepatocellular carcinoma progression by regulation of the ERK/MAPK pathway [24,25]. In bladder cancer, OTX1 combined with FGFR3 and TERT can function as a surveillance biomarker [26]. However, the role of OTX1 in ccRCC is still unknown. PI3, also called elafin, encodes an elastase-specific inhibitor that functions as an antimicrobial peptide [27,28]. Caruso et al. demonstrated that elafin predicts poor outcome in ovarian and breast cancer patients, and it may play a role in tumor dormancy; moreover, it has been shown that elafin is an important therapeutic target for breast and ovarian carcinoma [29–31]. MATN4, a member of the von Willebrand factor A domain-containing protein family, has not been widely studied in cancer to date [32]. A study showed that under acute stress, CXCR4 and MATN4 are involved in the regulation of hematopoietic stem cells proliferation and expansion [33]. ERVV-2 is functionally important in reproduction, and NFE4 is involved in preferential expression of the gamma-globin genes in fetal erythroid cells [34,35]. These 2 genes have not been well defined in cancer biology, particularly in ccRCC.

In summary, our study used an integrated analysis to identify differentially expressed genes that participate in metastasis of ccRCC. Furthermore, we constructed a 5-gene signature with a quantitative index that exhibited an independent prognostic value. In the future, this 5-gene signature may be used to identify patients who need regional lymph node dissection during radical nephrectomy [36]. Since these 5 genes are correlated with poor outcome, they might be therapeutic targets for ccRCC. However, in vivo and in vitro studies are still needed to reveal the biological functions of these predictive mRNAs in ccRCC.

Conclusions

We identified differentially expressed genes that may participate in the metastasis of ccRCC. More importantly, we established a predictive signature based on the expression of OTX1, MATN4, PI3, ERVV-2, and NFE4, which could serve as significant progressive and prognostic biomarkers for ccRCC.

Table 2. Univariate and multivariate analysis of risk level and patient survival.

Variables	Univariate analysis	Multivariate analysis				
	HR*	95% CI	P value	HR	95% CI	P value
Overall survival						
Age (years)						
£ 60 (257)	1.683	1.228–2.306	0.001	1.540	1.122–2.114	0.007
> 60 (246)						
Sex						
Male (325)	0.791					
Female (178)						
Stage						
I+II (303)	4.313	3.092–6.015	<0.0001	2.511	1.256–5.019	0.009
III+IV (200)						
T stage						
T1–T2 (321)	3.482	2.534–4.785	<0.0001			
T3–T4 (182)						
N stage						
N0 (487)	3.925	2.124–7.255	<0.0001			
N1 (16)						
M stage						
M0 (425)	4.572	3.21–6.294	<0.0001	2.202	1.500–3.232	0.0001
M1 (78)						
Grade						
G1–G2 (232)	2.644	1.860–3.759	<0.0001			
G3–G4 (271)						
Risk level						
Low risk (251)	2.592	1.859–3.612	<0.0001	1.779	1.251–2.530	0.001
High risk (252)						

* HR estimated from Cox proportional hazard regression model; multivariate models were adjusted for age, grade, T, N, M, and stage. HR – hazard ratio; CI – confidence interval.
Table 3. Relationship between clinical parameters and risk level.

Subgroup	High risk	Low risk	Total	P value*
Age				0.503
≤60	125 (24.85%)	132 (26.24%)	257	
>60	127 (25.25%)	119 (23.66%)	246	
Sex				0.008
Male	180 (35.79%)	151 (30.01%)	331	
Female	72 (14.31%)	100 (19.88%)	172	
Grade				<0.0001
G1–G2	86 (17.10%)	146 (29.03%)	232	
G3–G4	166 (33.00%)	105 (20.87%)	271	
Stage				<0.0001
I+II	119 (23.66%)	184 (36.58%)	303	
III+IV	133 (26.44%)	67 (13.32%)	200	
T stage				<0.0001
T1–T2	132 (26.24%)	189 (37.57%)	321	
T3–T4	120 (23.86%)	62 (12.33%)	182	
N stage				<0.0001
N0	111 (45.87%)	114 (47.11%)	225	
N1	16 (6.61%)	1 (0.41%)	17	
M stage				<0.0001
M0	178 (37.47%)	219 (46.11%)	397	
M1	57 (12.00%)	21 (4.42%)	78	
Vital status				<0.0001
Alive	141 (28.03%)	200 (39.76%)	341	
Dead	111 (22.07%)	51 (10.14%)	162	

* Chi-square test was used.

Conflicts of interest

None.

Supplementary Table 1

Supplementary Table 1. Differentially expressed genes involved in metastasis in ccRCC.

Genes	Log FC	Genes	Log FC	Genes	Log FC
PRSS38	7.293012973	PASD1	5.849055467	BAAT	4.972016934
KCNE5	4.734843904	NFE4	4.60709054	ALPG	4.569998517
FDCSP	4.526032273	CABP2	4.453865694	OLFM4	4.268762733
GAGE1	4.26812475	LHX3	4.065474738	KRT13	4.019547465
CRABP1	3.807319872	SOHLH1	3.801178392	CACNG6	3.763439672
VSTM2B	3.632937049	ANXA8	3.591407826	H2BFM	3.555425223
Genes	Log FC	Genes	Log FC	Genes	Log FC
---------	---------	---------	---------	---------	---------
AMER3	3.5244	MAGEC2	3.5024	ERVV–2	3.4642
CPLX2	3.4010	GABRA3	3.3882	ROB	3.3616
MUC16	3.2986	MARCOL	3.2503	ZDHHC22	3.2398
IGF13	3.1966	MTRRN2L6	3.1796	C1orf94	3.1367
PI3	3.1269	CSMD3	3.0473	CHAT	2.6997
SP8	2.9667	PNLIP	2.9240	AMER2	2.9047
TLX3	2.9039	PDX1	2.8821	DPP5L5	2.8695
LCN15	2.8439	VTN	2.8192	ZPLD1	2.7955
ISX	2.7954	EPPIN	2.7345	ALPP	2.6997
PTPRZ1	2.6954	INSL4	2.6913	CHAT	2.6997
MAVC3	2.6266	DAB1	2.5810	RHOH	2.5592
XKR7	2.5563	CIDEK	2.5352	ROS1	2.5205
CSN3	2.5196	VSTM2L	2.4903	HTR1D	2.4894
FAM83A	2.4551	S100A7	2.4375	HMGA2	2.4269
ANKFN1	2.4084	UIB2U	2.4011	TRPV5	2.3783
LECEC	2.3774	DRCX	2.3752	SLC7A5	2.3668
KLF17	2.3624	ZIC2	2.3542	SPAC3	2.3488
FCR4L	2.3466	CRP	2.3323	SPANX1B	2.3268
UTS2R	2.3146	MATN4	2.3119	ZNF114	2.3097
ADIPOQ	2.2968	KISS1	2.2954	LIN2B	2.2910
NUS1	2.2485	MAGB1	2.2262	SMN2	2.2241
IL2RAR2	2.2401	C1QL2	2.2099	AGB1	2.2068
TLX2	2.2028	RLBP1	2.1590	NPPB	2.1549
HTRSA	2.1491	SERPINB3	2.1478	SBSN	2.1417
SPINK6	2.1146	FOXE1	2.0966	GNG13	2.0820
ALOX5L1	2.0549	RTP3	2.0514	OTX1	2.0407
HMX2	2.0301	KIRREL3	2.0257	DMRTA2	2.0184
KRT6A	2.0061	IRS4	−7.0692	AQP6	−6.9526
LYL6	−6.4662	HHATL	−6.1768	CRISP3	−5.9424
PAGE5	−5.5669	HBG1	−5.5654	SFTPB	−5.4616
MDRC2	−4.7346	MAGEA11	−4.7022	CCKAR	−4.6202
NTSR2	−4.4120	LRRTM1	−4.2959	CLDN8	−4.2911
PAGE2B	−4.2901	DFA4L2	−4.2852	CHRM1	−4.2033
FEZF2	−4.1816	SERTM2	−4.0848	PSG4	−4.0691
DEFBI25	−4.0346	ATP6V0A4	−4.0338	ATP6V1G3	−3.9183
FXD4	−3.8820	C1orf71	−3.8456	ST8AI3	−3.8170

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]

Pan Q. et al.: Identification of a 5-gene signature predicting progression and prognosis… © Med Sci Monit, 2019; 25: 4401-4413

CLINICAL RESEARCH

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
Genes	Log FC	Genes	Log FC	Genes	Log FC
TTR	–3.8141048	PAGE4	–3.813169574	FGF9	–3.781764959
POU3F4	–3.771004791	ATP6V0D2	–3.753224136	PSG9	–3.751868431
SPOCK3	–3.749385525	TMEM213	–3.705206888	KBTBD12	–3.684155012
KRTAP5–8	–3.63211999	PIP	–3.541015006	TMEM215	–3.537175656
RHBG	–3.513276723	CTNNA2	–3.497574449	GJD2	–3.465274322
GLB1L3	–3.462356811	SLC4A1	–3.459997603	NUPR2	–3.451627461
HBG2	–3.360260797	NRS5A1	–3.354792948	VWA5B1	–3.340626256
MLANA	–3.311141372	OMG	–3.302149224	BSND	–3.275017729
AQP10	–3.234439151	TNN3	–3.210680107	SLC39A1	–3.198019624
KLK1	–3.168161356	ATP6V1B1	–3.166112958	RHCG	–3.157008772
FGL1	–3.146894077	TNN3	–3.130999704	SLC39A1	–3.119462824
PLK5	–3.073715835	PSG9	–3.063389834	TYR	–3.036763515
CD177	–2.967879545	CDH7	–2.947214145	XAGES5	–2.941224266
AQP5	–2.928574991	LG11	–2.920563422	SCRT1	–2.915273241
LCN1	–2.897125323	CRISP2	–2.891236689	CGA	–2.880719932
FOXI1	–2.858703074	SLC4A9	–2.85058536	GIMD2	–2.846973204
ADAM7	–2.823853478	MYMX	–2.780243665	FOXI2	–2.747040565
BPIFA2	–2.744920257	NPH2	–2.732624296	FAM24B	–2.005611455
CLCNKB	–2.711841094	DNTT	–2.703518233	FRG2C	–2.696015544
TMEM61	–2.688842068	CASP14	–2.687885646	GIMD1	–2.686569536
LhfpL4	–2.682599956	A20YB1	–2.68252060	BSTAT1	–2.65571051
DMRT2	–2.645831657	MCCD1	–2.625093054	PAGE2	–2.615268476
GPRC6A	–2.613101443	WFIKKN2	–2.598374715	UGT2B4	–2.586510771
IGF2	–2.56153826	KERA	–2.560942199	FRG2B	–2.549870167
SLC7A13	–2.544714494	MOG	–2.537312543	ASCL4	–2.534282307
C11orf52	–2.519948822	PSCA	–2.50736106	GGR	–2.506057959
PLA2G4F	–2.494234552	DAZ1	–2.461947613	NKhK6–1	–2.457759032
RHAG	–2.444447278	LUZP2	–2.426420149	HBM	–2.424034763
NMRK2	–2.412559163	TRIM50	–2.4050669	LRRC52	–2.39657205
GRIK1	–2.380726671	CRYAA	–2.361368316	ADRB1	–2.352091261
AHSF5	–2.350914787	ASB5	–2.345814708	CNMD	–2.339953179
GGTLC3	–2.332560999	GCG	–2.325940672	PSG8	–2.303814006
STAP1	–2.295027287	RGS8	–2.290434876	STAC2	–2.269340054
CYP1A1	–2.246907308	KRTAP5–3	–2.240169508	HBD	–2.234219697
RBBP8NL	–2.232288152	UGT2B28	–2.229968426	ATP13A5	–2.22816884
SMOC1	–2.226575753	DEFA4	–2.194637278	FRMD7	–2.190289838
Genes	Log FC	Genes	Log FC	Genes	Log FC
---------	----------	---------	----------	---------	----------
CA1	-2.182904697	CLNK	-2.179307919	SRARP	-2.162262658
ERP27	-2.157025947	KLK4	-2.152704502	FAM133A	-2.145658322
PNMT	-2.136928193	CEACAM7	-2.131707182	NRK	-2.11265576
SMIM5	-2.105569769	DEFA3	-2.104237638	TDGF1	-2.101766107
ADGRF1	-2.098885814	GRM1	-2.096205239	HEMGN	-2.091490619
UGT1A4	-2.087390147	AL445989.1	-2.918112259	PRG4	-2.083544157
ABCB5	-2.082109144	PGPEP1L	-2.077264255	PCP4	-2.063618468
HAO1	-2.062354203	HSPB3	-2.051568162	MYH8	-2.04723169
THBS2	-2.08559685	AL035425.2	-2.136928193	HEV1	-2.010402307
TMPRSS11E	-4.867341747	HEPACAM2	-2.73191743		

References:

1. Siegel RL, Miller KD, Jemal A: Cancer Statistics, 2017. Cancer J Clin, 2017; 67(1): 7–30
2. Ljungberg B, Albignese L, Abu-Ghanem Y et al: European Association of Urology guidelines on renal cell carcinoma: The 2019 update. Eur Urol, 2019; 75(5): 799–810
3. O’Sullivan B, Brierley J, Byrd D et al: The TNM classification of malignant tumours—towards common understanding and reasonable expectations. Lancet Oncol, 2017; 18(7): 849–51
4. Wu AJ, Gillis A, Foster A et al: Patterns of failure in limited-stage small cell lung cancer: Implications of TNM stage for prophylactic cranial irradiation. Radiother Oncol, 2017; 125(1): 130–35
5. Bertero L, Massa F, Metovic J et al: Eighth Edition of the UICC Classification of Malignant Tumours: An overview of the changes in the pathological TNM classification criteria — what has changed and why? Virchows Archiv, 2018; 472(4): 519–11
6. Park JS, Lee HI, Cho NH et al: Risk prediction tool for aggressive tumors in clinical T1 stage clear cell renal cell carcinoma using molecular biomarkers. Comput Struct Biotechnol J, 2019; 17: 371–77
7. Uchida K, Miya N, Masumori N et al: Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Int J Urol, 2002; 9(1): 19–23
8. Williamson TJ, Pearson JR, Ischia J et al: Guideline of guidelines: Follow-up after nephrectomy for renal cell carcinoma. BJU Int, 2016; 117(4): 555–62
9. Zhou Y, Zang Y, Yang Y et al: Candidate genes involved in metastasis of colon cancer identified by integrated analysis. Cancer Med, 2019; 8(5): 2338–47
10. Zuo S, Dai G, Ren X: Identification of a 6-gene signature predicting prognosis for colorectal cancer. Cancer Cell Int, 2019; 19: 6
11. Sun G, Li Y, Peng Y et al: Identification of a five-gene signature with prognostic value in colorectal cancer. J Cell Physiol, 2017; 234(4): 3829–36
12. Robinson MD, McCarthy DJ, Smyth GK: edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010; 26(1): 315–21
13. Hua J, Ding Z, Chen R et al: Microarray expression profile reveals gene signature for survival in colorectal cancer. Nucleic Acids Res, 2011; 39(13): 4582–94
14. Szklarczyk D, Morris JH, Cook H et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017; 45:D1: D362–68
15. Shannon P, Markiel A, Ozier O et al: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res, 2003; 13(11): 2498–504
16. Heagerty PJ, Lumley T, Pepe MS: Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 2000; 56(2): 337–44
17. Metsalu T, Jolicoeur P: ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res, 2015; 43(W1): W566–70
18. Hakimi AA, Ostrovnaya I, Reva B et al: Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res, 2013; 19(12): 3259–67
19. Patard JJ, Leray E, Rioux-Leclercq N et al: Prognostic value of histologic subtypes in renal cell carcinoma: A multicenter experience. J Clin Oncol, 2005; 23(12): 2763–71
20. Wei W, Lu Y, Gan Z et al: Identification of key genes involved in the metastasis of clear cell renal cell carcinoma. Oncol Lett, 2019; 17(5): 4321–28
21. Larsen KB, Lutterodt MC, Mollgard K, Moller M: Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain. J Histochim Cytochem, 2010; 58(7): 669–78
22. Terronni A, Pagani IS, Zucchi I et al: OTX1 expression in breast cancer is regulated by p53. Oncogene, 2011; 30(27): 3096–103
23. Figueira Muolo VM, Uno M, Obah-Shino S et al: OTX1 and OTX2 genes in medulloblastomas. World Neurosurg, 2019 [Epub ahead of print]
24. Li H, Miao Q, Xu CW et al: OTX1 contributes to hepaticcell carcinoma progression by regulation of ERK/MAPK pathway. J Korean Med Sci, 2016; 31(8): 1215–23
25. Yu K, Cai XY, Li Q et al: OTX1 promotes colorectal cancer progression through epithelial-mesenchymal transition. Biochem Biophys Res Commun, 2014; 444(1): 1–5
26. Beukers W, van der Keur KA, Kandimalla R et al: FGFR3, TERT and OTX1 as an early biomarker combination for surveillance of patients with bladder cancer in a large prospective multicenter study. J Urol, 2017; 197(6): 1410–18
27. Zhang W, Teng G, Wu T et al: Expression and clinical significance of elafin in inflammatory bowel disease. Inflamm Bowel Dis, 2017; 23(12): 2134–41
28. Caruso JA, Akli S, Pagono L et al: The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase. Oncogene, 2015; 34(27): 3556–67
29. Caruso JA, Karakas C, Zhang J et al: Elafin is downregulated during breast and ovarian tumorigenesis but its residual expression predicts recurrence. Breast Cancer Res, 2014; 16(6): 3417
30. Hunt KK, Wingate H, Yokota T et al: Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Cancer Res, 2013; 73(1): R3
31. Claus A, Ng Y, Liu J et al: Overexpression of elafin in ovarian carcinoma is driven by genomic gains and activation of the nuclear factor kappaB pathway and is associated with poor overall survival. Neoplasia, 2010; 12(1): 161–72
32. Klett AR, Nitsche DP, Kobbe B et al: Molecular structure, processing, and biological activity of the human elastin gene product. Int J Biochem Cell Biol, 2010; 42(7): 1137–50
33. Uchida K, Miyao N, Masumori N et al: Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Int J Urol, 2002; 9(1): 19–23
34. Uchida K, Miyao N, Masumori N et al: Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Int J Urol, 2002; 9(1): 19–23
35. Uchida K, Miyao N, Masumori N et al: Recurrence of renal cell carcinoma more than 5 years after nephrectomy. Int J Urol, 2002; 9(1): 19–23
34. Vargas A, Thiery M, Lafond J, Barbeau B: Transcriptional and functional studies of Human Endogenous Retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts. Virology, 2012; 425(1): 1–10

35. Zhao Q, Zhou W, Rank G et al: Repression of human gamma-globin gene expression by a short isoform of the NF-E4 protein is associated with loss of NF-E2 and RNA polymerase II recruitment to the promoter. Blood, 2006; 107(5): 2138–45

36. Gershman B, Thompson RH, Boorjian SA et al: Radical nephrectomy with or without lymph node dissection for high risk nonmetastatic renal cell carcinoma: A multi-institutional analysis. J Urol, 2018; 199(5): 1143–48