ON THE COINCIDENCE OF PASCAL LINES

JAYDEEP CHIPALKATTI

ABSTRACT: Let \(K \) denote a smooth conic in the complex projective plane. Pascal’s theorem says that, given six points \(A, B, C, D, E, F \) on \(K \), the three intersection points \(AE \cap BF, AD \cap CF, BD \cap CE \) are collinear. This defines the Pascal line of the array \(\begin{bmatrix} A & B & C \\ F & E & D \end{bmatrix} \), and one gets sixty such lines in general by permuting the points. In this paper we consider the variety \(\Psi \) of sextuples \(\{A, \ldots, F\} \), for which some of these Pascal lines coincide. We show that \(\Psi \) has two irreducible components: a five-dimensional component of sextuples in involution, and a four-dimensional component of the so-called ‘ricochet configurations’. This gives a complete synthetic characterisation of points in \(\Psi \). The proof relies upon Gröbner basis techniques to solve multivariate polynomial equations.

Keywords: Pascal lines, invariant theory of binary sextics.

AMS subject classification (2000): 14N05, 51N35.

CONTENTS

1. Introduction
2. The Labelling Schema for Pascals
3. Binary Forms and Involutions
4. The Main Theorem
5. Pascals on the Discriminant Locus
References

1. INTRODUCTION

1.1. Fix a smooth conic \(K \) in the complex projective plane \(\mathbb{P}^2 \), and choose six distinct points \(A, B, C, D, E, F \) on \(K \). If they are displayed as an array \(\begin{bmatrix} A & B & C \\ F & E & D \end{bmatrix} \), then Pascal’s theorem
Diagram 1

says that the three ‘cross-hair’ intersection points

\[AE \cap BF, \quad AD \cap CF, \quad BD \cap CE, \]

are collinear (see Diagram 1).

The line containing them (usually called the Pascal line, or just the Pascal) will be denoted as \(\{ A \ B \ C \ F \ E \ D \ \} \). A different arrangement of the same points, say \(\{ D \ A \ C \ F \ B \ E \ \} \), will \textit{a priori} give a different line. A permutation of rows or columns has no effect on intersection points; for instance,

\[
\begin{align*}
\{ A \hspace{1em} B \hspace{1em} C \hspace{1em} F \hspace{1em} E \hspace{1em} D \} &= \{ F \hspace{1em} E \hspace{1em} D \hspace{1em} A \hspace{1em} B \hspace{1em} C \}, \\
\{ F \hspace{1em} E \hspace{1em} D \hspace{1em} A \hspace{1em} B \hspace{1em} C \} &= \{ D \hspace{1em} E \hspace{1em} F \hspace{1em} C \hspace{1em} B \hspace{1em} A \},
\end{align*}
\]

etc.,

hence one gets at most \(6!/(2 \times 3!) = 60 \) possibilities for the Pascal by permuting the points. For a \textit{general} choice of six points, these sixty lines are in fact distinct (see \[14\]); that is to say, we must be inside a special geometric configuration of some kind if any of the Pascals are to coincide.

1.2. One such configuration is as follows: suppose that the points are in \textit{involution}, i.e., the lines \(AF, BE, CD \) are concurrent in the point \(Q \) (see Diagram 2).

Then it is not difficult to show (see Proposition 3.1 below), that the following four Pascals become equal:

\[\begin{align*}
\{ A \hspace{1em} B \hspace{1em} C \hspace{1em} F \hspace{1em} E \hspace{1em} D \} &\quad \text{and} \quad \{ A \hspace{1em} B \hspace{1em} D \hspace{1em} F \hspace{1em} E \hspace{1em} C \}, \\
\{ F \hspace{1em} B \hspace{1em} C \hspace{1em} A \hspace{1em} E \hspace{1em} D \} &\quad \text{and} \quad \{ A \hspace{1em} E \hspace{1em} C \hspace{1em} F \hspace{1em} B \hspace{1em} D \}. \end{align*} \tag{1.1} \]
(The pattern is simple; pick any one column from the first array and interchange its entries.) There are no further coincidences, so that a generic involutive configuration has 57 distinct Pascals. It is natural enough to ask whether the converse holds, i.e., whether assuming that some two Pascals coincide forces the initial six points to be in involution. The main result of this paper (Theorem 4.1 below) says that the answer is ‘No, but almost yes.’ This requires some explanation.

1.3. Since K is isomorphic to the projective line \mathbb{P}^1, an unordered sextuple of points in K may be identified with an element in the symmetric product

$$\text{Sym}^6(\mathbb{P}^1) = \frac{(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1)}{\text{symmetric group on six objects}} \cong \mathbb{P}^6.$$

Let $\Delta \subseteq \mathbb{P}^6$ denote the discriminant hypersurface parametrising sextuples where the points are not all distinct. Then we have a morphism

$$\mathbb{P}^6 \setminus \Delta \xrightarrow{f} \text{Sym}^{60}(\mathbb{P}^2)^*,$$

which sends a sextuple to all of its Pascals. If $\mathcal{D} \subseteq \text{Sym}^{60}(\mathbb{P}^2)^*$ denotes the ‘big diagonal’ parametrising repeated lines, then $\Psi = f^{-1}(\mathcal{D})$ is the variety of sextuples of distinct points whose Pascals are not all distinct. Our main theorem says that Ψ is a union of two irreducible components \mathcal{Y} and \mathcal{R}, where

- \mathcal{Y} is the degree 15 hypersurface of sextuples in involution, and
- \mathcal{R} is the four-dimensional variety of sextuples in what will be called the ‘ricochet configuration’.

Since it is \mathcal{Y} which has the larger dimension, a general sextuple in Ψ is in involution.
1.4. The ricochet configuration (see Diagram 3) has not appeared in literature to the best of my knowledge. I arrived at it after a measure of guesswork, starting from a certain analytic expression in section 3.9 below. It is synthetically constructed as follows:

- Start with arbitrary points A, B, C, D on the conic.
- Let V denote the intersection point of the tangents at A and C, and let F be on the conic such that V, D, F are collinear.
- Let W denote the intersection point of AF and CD.
- Now mark off Z on the conic such that V, B, Z are collinear, and finally E such that W, Z, E are collinear.

In this situation, the Pascals

\[
\begin{align*}
\{A & \ B & \ C \} \\
F & \ E & \ D
\end{align*}
\text{,} \quad
\begin{align*}
A & \ E & \ C \\
D & \ B & \ F
\end{align*}
\] (1.2)

coincide; this will be proved in section 3.9 below. (The common line is in fact VW, but the diagram would become too baroque for comprehension if any further lines were added to it.) One can imagine B being struck by V in the direction of Z, bouncing off the conic and getting redirected to E, hence the term ‘ricochet’.

To recapitulate the main theorem, every sextuple of distinct points whose Pascals are not all distinct must come from either Diagram 2 or Diagram 3. One can construct Diagram 2 starting from an arbitrary choice of Q together with three lines through it, hence $\dim \mathcal{V} = 5$. Diagram 3 is completely determined by the choice of A, B, C, D, hence $\dim \mathcal{R} = 4$.
The proof of the main theorem uses a case-by-case analysis on pairs of Pascals, and each case is then disposed off using Gröbner basis computations. All such computations were carried out in Maple.

1.5. The next two sections are devoted to preliminaries. In section 2 we recall the classical labelling schema for Pascals. It is a beautiful combinatorial phenomenon which implicitly involves the unique outer automorphism of the symmetric group on six objects.

The group of automorphisms of P² which preserve K (not necessarily pointwise, but as a set) is isomorphic to PSL(2, C). This group acts on all of the varieties mentioned above, and hence it is convenient to use the language of binary forms and SL₂-representations throughout (see section 3). I have included rather more explanation than what would have sufficed for this paper alone, since I should like to refer to it in possible sequels to this paper.

The literature on Pascal’s theorem is very large. One of the best surveys of the field is due to George Salmon (see [17, Notes]). The labelling schema, and a great deal of other classical material is explained by H. F. Baker in his note ‘On the Hexagrammum Mysticum of Pascal’ in [4, Note II]. An engaging graphical presentation of this subject may be found at the URL

http://www.math.uregina.ca/~fisher/Norma/paper.html

maintained by J. Chris Fisher and Norma Fuller. We refer the reader to [12, 15] for foundational notions in projective geometry, and to [9] for those in algebraic geometry.

2. The Labelling Schema for Pascals

Start with the following sets

\[\text{SIX} = \{1, 2, 3, 4, 5, 6\}, \quad \text{and} \quad \text{LTR} = \{A, B, C, D, E, F\}. \]

(The elements of LTR will eventually stand for points on the conic, but at the moment they are pure letters.) A number duad is a 2-element subset of SIX, e.g., \(\{3, 5\}\). A number syntheme is a partition of SIX into three number duads, e.g., \(\{\{1, 3\}, \{2, 6\}, \{4, 5\}\}\). We will flatten out the duads and synthesis for readability, i.e., write them as 35 and 12645 etc. There are similar notions of a letter duad and a letter syntheme answering to the set LTR. For instance, AE is a letter duad, and ACDDEBF is a letter syntheme.

Consider the sets ND, NS, LD, LS of number duads, number synthemes, letter duads, and letter synthemes respectively. Each of these four sets has cardinality 15. Now consider the following artfully constructed diagonally symmetric table:
A direct verification shows that it defines a bijection $LD \rightarrow NS$; where for instance, BC is mapped to 15.26.34.

2.1. This table can be used to create a label for each Pascal. For instance, consider the array $[A\ E\ F\ C\ B\ D]$. Picture it as Diagram 4 so that each cross-hair intersection is between a blue and a green line forming opposite sides of the hexagon. Use the table above to find the number synthemes corresponding to the blue lines:

- $AB \mapsto 14.25.36$, $FC \mapsto 12.36.45$, $ED \mapsto 15.24.36$, all of which have the duad 36 in common.
- Similarly, those corresponding to the green lines $AD \mapsto 13.26.45$, $EC \mapsto 13.25.46$, $FB \mapsto 13.24.56$, have the duad 13 in common. These two duads share the 3, which alternately combines with 1 and 6. Hence the corresponding Pascal $\{A\ E\ F\ C\ B\ D\}$ is given the label $k(3, 16)$ or $k(3, 61)$.

In summary, starting from an array of points, use the table to extract two duads in the pattern ab, ac; and then the corresponding Pascal is labelled $k(a, bc)$ or $k(a, cb)$. Since $a \in \text{six}$, and $\{b, c\} \subseteq \text{six} \setminus \{a\}$, there are altogether $6 \times \binom{5}{2} = 60$ labels, as they should be.
The reader may wish to check that the Pascals in (1.1) are respectively
\[k(1, 23), \ k(4, 23), \ k(5, 23), \ k(6, 23). \]
Those in (1.2) are respectively \(k(1, 23) \) and \(k(1, 45) \).

2.2. In the reverse direction, say we are given the label \(k(2, 35) \). In order to construct the corresponding array, start with the duads 23, 25. Look for 23 in the table; it appears in positions AF, BE, CD. Similarly, 25 appears in AB, CE, DF. This determines the hexagon:

![Diagram 5](image)

and hence the array as \[\begin{array}{ccc}
A & D & E \\
C & B & F
\end{array} \]. In other words, the same table defines a bijection \(ND \rightarrow LS \), which takes 23 to AF, BE, CD etc., and then one can recover the array from the images of the two duads.

2.3. Let \(\mathcal{S}(X) \) denote the symmetric group on the set \(X \). Then the table defines an isomorphism \(\mathcal{S}(\text{LTR}) \rightarrow \mathcal{S}(\text{SIX}) \). For instance, the image of the transposition \((A \ B) \) is the product \((1 \ 4) \ (2 \ 5) \ (3 \ 6) \), and the map extends by writing an arbitrary element as a product of transpositions. If we identify LTR and SIX as \(A \rightsquigarrow 1, B \rightsquigarrow 2, \ldots, F \rightsquigarrow 6 \), then this gives an outer automorphism \(\omega \) of \(\mathcal{S}(\text{SIX}) \), which is completely specified by
\[
(1 \ 2) \overset{\omega}{\rightarrow} (1 \ 4) \ (2 \ 5) \ (3 \ 6), \quad (1 \ 2 \ 3 \ 4 \ 5 \ 6) \overset{\omega}{\rightarrow} (2 \ 3 \ 6) \ (4 \ 5).
\]
(Note that it does not preserve the cycle structure, and hence cannot be inner.) A theorem of Hölder characterises the outer automorphism groups of all finite symmetric groups (see [16 Ch. 7]); it says that
\[
\text{Out}(\mathcal{S}(\{1, 2, \ldots, d\})) \cong \begin{cases}
\mathbb{Z}_2 & \text{if } d = 2, 6, \\
\{e\} & \text{otherwise}.
\end{cases}
\]
Thus, \(\omega \) represents the unique nontrivial element in \(\text{Out}(\mathcal{S}(\text{SIX})) \). A different identification of LTR with SIX would amount to composing \(\omega \) with an inner automorphism.

1It is of course understood that the hexagon is determined only up to rotation and reflection, and the array up to a permutation of rows and columns.
2We follow the convention that the cycle \((1 \ 2 \ldots 6) \) takes 1 to 2 etc.
The table above (along with its heavily Greek terminology of duads and synthemes) was in essence constructed by Sylvester (see [19]); however, I did not find his papers easy to follow. What is usually called the *Hexagrammum Mysticum* is a much richer configuration than merely the Pascal lines, and includes the Kirkman points and Cayley-Salmon lines etc. They can all be labelled using the same formalism, and their incidence relations can be read off from the labelling – see the note by Baker referred to above. Other geometric perspectives on the outer automorphism may be found in [11].

3. Binary Forms and Involutions

In this section we will recast the necessary geometric notions in the language of binary forms and SL_2-representations. A similar set-up is used in [5], where rather more detailed explanations are given.

3.1. Let V denote a two-dimensional complex vector space with basis $x = \{x_1, x_2\}$, and a natural action of the group $SL(V)$. For $m \geq 0$, let S_m denote the $(m + 1)$-dimensional vector space of homogeneous order m forms in x. It is an irreducible representation of $SL(V)$. Given integers $m, n \geq 0$ and $0 \leq r \leq \min(m, n)$, we have transvectant morphisms

$$S_m \otimes S_n \rightarrow S_{m+n-2r}, \quad U \otimes V \rightarrow (U, V)_r;$$

given by the explicit formula

$$(U, V)_r = \frac{(m-r)! (n-r)!}{m! n!} \sum_{i=0}^{r} (-1)^i \binom{r}{i} \frac{\partial^r U}{\partial x_1^{r-i} \partial x_2^i} \frac{\partial^r V}{\partial x_1^r \partial x_2^{-i}}. \quad (3.1)$$

There is a symbolic calculus for transvectants, which is thoroughly explained in [8, Ch. 1]. The basic theory of SL_2-representations may be found in [7, Ch. 11].

3.2. Throughout, we will work inside the projective plane $\mathbb{P}S_2 \cong \mathbb{P}^2$; thus a nonzero quadratic form $Q \in S_2$ represents a point $[Q] \in \mathbb{P}^2$. Its polar line is defined to be

$$\ell_Q = \{[R] \in \mathbb{P}S_2 : (R, Q)_2 = 0\}.$$

Every line in \mathbb{P}^2 is the polar of a unique point, called its pole. There is a canonical isomorphism of $\mathbb{P}S_2$ with the dual plane $(\mathbb{P}S_2)^*$, which maps $[Q]$ to ℓ_Q.

Given $Q, R \in S_2$, we have $(R, Q)_2 = (Q, R)_2$. Hence $[R] \in \ell_Q$ iff $[Q] \in \ell_R$. The line of intersection of $[Q]$ and $[R]$ is given by the polar of $[(Q, R)_1]$, and the point of intersection of ℓ_Q and ℓ_R is $[(Q, R)_1]$.

3.3. Consider the Veronese imbedding
\[\mathbb{P}S_1 \xrightarrow{\phi} \mathbb{P}S_2, \quad [u] \mapsto [u^2]. \] (3.2)
The image of \(\phi \) is a smooth conic \(\mathcal{K} \). If \(Q = a_0 x_1^2 + a_1 x_1 x_2 + a_2 x_2^2 \), then
\[(Q, Q)_2 = -\frac{1}{2} (a_1^2 - 4 a_0 a_2). \]
Hence,
\[[Q] \in \mathcal{K} \iff Q \text{ is the square of a linear form} \iff (Q, Q)_2 = 0 \iff [Q] \in \ell_Q. \]
If \(Q \in S_2 \) factors as \(u_1 u_2 \), then the points of intersection of \(\ell_Q \) with \(\mathcal{K} \) are \(\phi(u_1) \) and \(\phi(u_2) \). Dually, the tangent to the conic at either \(\phi(u_i) \) passes through \([Q]\).

3.4. A sextuple of unordered points \(\Gamma = \{ \phi(u_1), \ldots, \phi(u_6) \} \) on \(\mathcal{K} \) will correspond to the binary sextic form \(G_\Gamma = \prod_{i=1}^{6} u_i \), distinguished up to a scalar. Alternately, a nonzero form \(G \) in \(S_6 \) will give a sextuple \(\Gamma_G \) on \(\mathcal{K} \). This gives an isomorphism of \(\mathbb{P}S_6 \) with \(\text{Sym}^6(\mathcal{K}) \), where the discriminant hypersurface \(\Delta \subset \mathbb{P}S_6 \) corresponds to sextuples with repeated points. It will be occasionally convenient to use affine co-ordinates on \(\mathcal{K} \), by identifying \(\phi(x_1 - \alpha x_2) \) with \(\alpha \), and \(\phi(x_2) \) with \(\infty \).

Since all incidences and intersections in \(\mathbb{P}^2 \) can be expressed as transvectants, Pascal’s theorem itself can be seen as a transvectant identity (see [13, Theorem 2]). Define a hexad to be an injective map \(LTR \xrightarrow{h} \mathcal{K} \). We will write \(h(A) = A, \ldots, h(F) = F \), for the corresponding points on \(\mathcal{K} \). If \(\text{HEX} \) denotes the set of all hexads and \(\mathcal{L}_k \) the set of all labels, then we have a morphism
\[\text{HEX} \xrightarrow{h} \prod_{\mathcal{L}_k} (\mathbb{P}^2)^*, \]
which maps the hexad to its Pascals. The groups \(\mathcal{S}(\text{LTR}), \mathcal{S}(\text{SIX}) \) respectively act on \(\text{HEX} \) and the direct product compatibly via the isomorphism in section 2.3. Passing to quotients by these actions, we get a morphism
\[\mathbb{P}^6 \setminus \Delta \xrightarrow{\text{HEX}} \text{Sym}^{60}(\mathbb{P}^2)^*, \]
which maps a sextuple to the set of its Pascals. For what it is worth, I have calculated all the Pascals for the sextuple \(\Gamma = \{0, 1, \infty, 3, -5, 7\} \) using MAPLE, and verified that they are in fact distinct. Hence, they must remain so for a general \(\Gamma \).

3.5. The quadratic involution. Fix a point \(Q \in \mathbb{P}S_2 \) away from \(\mathcal{K} \). It defines an order 2 automorphism (i.e., an involution) \(\sigma_Q \) of \(\mathcal{K} \) as follows: if \(z \in \mathcal{K} \), then \(\sigma_Q(z) \) is the other point of intersection of \(\mathcal{K} \) with the line \(Qz \). Now \(\sigma_Q^2(z) = z \), and \(\sigma_Q(z) = z \) exactly when \(Qz \) is tangent to \(\mathcal{K} \). If \(u \in S_1 \) is such that \(\phi(u) = z \), then \(\sigma_Q(z) \) corresponds to the linear form \((Q, u)_1 \). All of this is pursued further in [1].

\(^3\)Henceforth we write \(Q \) for \([Q]\) etc. when no confusion is likely.
Now σ_Q extends to an involution of \mathbb{P}^2 by the following recipe: given $R \in \mathbb{P}^2$, let z_1, z_2 be the (possibly coincident) points where the polar of R intersects K. Then define $\sigma_Q(R)$ to be the pole of the line joining $\sigma_Q(z_1)$ and $\sigma_Q(z_2)$. In terms of transvectants,

$$\sigma_Q(R) = (Q, Q)_2 R - 2 (Q, R)_2 Q.$$

Since $\sigma_Q(R)$ is a linear combination of Q and R, the points $Q, R, \sigma_Q(R)$ are collinear. The set of fixed points of σ_Q is Q itself, together with the polar line of Q. (Thus, σ_Q is a homology in the sense of [12, Ch. 11]).

3.6. Now assume that we have a hexad $\{A, \ldots, F\}$ such that

$$\sigma_Q(A) = F, \quad \sigma_Q(B) = E, \quad \sigma_Q(C) = D,$$

as in Diagram 2. Consider the Pascal $\begin{bmatrix} A & B & C \\ F & E & D \end{bmatrix}$. Since σ_Q interchanges the lines AE and BF, it must leave their intersection point invariant. Similarly, σ_Q leaves each of the cross-hair intersections invariant, and hence they must all lie on the polar of Q. It makes no difference to the argument if we select any one column in the array and interchange its entries. We have proved the following proposition.

Proposition 3.1. With notation as above, each of the Pascals

$$\begin{bmatrix} A & B & C \\ F & E & D \end{bmatrix}, \quad \begin{bmatrix} A & B & D \\ F & E & C \end{bmatrix}, \quad \begin{bmatrix} F & B & C \\ A & E & D \end{bmatrix}, \quad \begin{bmatrix} A & E & C \\ F & B & D \end{bmatrix}$$

is equal to the polar line of Q.

As mentioned earlier, these Pascals carry labels $k(r, 23)$ for $r \in \{1, 4, 5, 6\}$. By renaming the points, one would in general obtain four lines in the pattern

$$k(r, ab), \quad r \in \text{SIX} \setminus \{a, b\}.$$

3.7. **The involutive hypersurface.** A sextuple of points $\Gamma = \{z_1, \ldots, z_6\}$ is said to be in involution if it is left invariant by σ_Q for some $Q \in \mathbb{P}^2$, and then Q is said to be its centre of involution. (In other words, the sextuple should fit into Diagram 2 for some Q.) Consider the variety

$$\mathcal{Y} = \{[G] \in \mathbb{P}^6 \setminus \Delta : \Gamma_G \text{ is in involution}\}.$$

Change variables so that $Q = x_1 x_2$. If $z \in K$ corresponds to $u = x_1 + \alpha x_2$, then $\sigma_Q(z)$ corresponds to $(Q, u)_1 = \Box (x_1 - \alpha x_2)$, and then $u (Q, u)_1$ is a quadratic with no $x_1 x_2$ term. Thus Γ_G is in

\[4\text{Henceforth we will write } \Box \text{ for a multiplicative scalar whose precise value is unimportant. For instance, } \Box \text{ stands for } -\frac{1}{2} \text{ here.}\]
involution with respect to Q, if and only if G can be written as a form in x_1^2, x_2^2. In other words, \mathcal{V} is the variety of sextic forms which can be written as

$$c_1 u_1^6 + c_2 u_1^4 u_2^2 + c_3 u_1^2 u_2^4 + c_4 u_2^6, \quad (c_i \in \mathbb{C}),$$

for some linear forms u_1, u_2 (cf. [18, §260]).

3.8. The covariants of a binary sextic.

The complete minimal system of covariants of a generic binary sextic is given in [8, p. 156]. We will not reproduce it here; but only note down a few of its members which are relevant to the subject at hand.

Let G denote a generic sextic, and write $\vartheta_{m,q}$ for a covariant of degree-order (m, q). This means that, when written out in full,

$$\vartheta_{m,q} = \sum_{i=0}^{q} \theta_i x_1^{q-i} x_2^i,$$

where θ_i are homogeneous forms of degree m in the coefficients of G. If $q = 0$, then $\vartheta_{m,0}$ is called an invariant of degree m. Now define

$$\vartheta_{2,4} = (G, G)_4, \quad \vartheta_{3,2} = (G, \vartheta_{2,4})_4, \quad \vartheta_{8,2} = (\vartheta_{2,4}, \vartheta_{3,2}^2)_3, \quad \vartheta_{15,0} = ((G, \vartheta_{2,4}), \vartheta_{3,2}^4)_8.$$ \hspace{1em} (3.4)

It is known that \mathcal{V} is a hypersurface defined by the vanishing of $\vartheta_{15,0}$ (see [11, §4.10]). Moreover, $\vartheta_{8,2}$ evaluated on the form (3.3) gives $\square u_1 u_2$, which is Q. Thus, if G is in involution, then $\vartheta_{8,2}$ can be used to ‘detect’ its centre if it is unique. (However, if G is arbitrary, then $\vartheta_{8,2}$ has no geometric meaning that I know of.) As we will see in section 4.5, it may happen that a sextuple in a highly special position has more than one centre of involution, and then $\vartheta_{8,2}$ vanishes identically.

I have programmed the transvectant formula (3.1) in MAPLE, so that these covariants can be calculated on a specific G wherever necessary.

3.9. The ricochet configuration.

Assume that the hexad $\{A, \ldots, F\} \subseteq \mathcal{K}$ is in ricochet configuration as shown in Diagram 3.

Proposition 3.2. Both the Pascals $\left\{ \begin{array}{ccc} A & B & C \\ \hline F & E & D \end{array} \right\}$ coincide with the line VW.

Proof. This is a straightforward computation with transvectants. Choose co-ordinates such that

$$A = \phi(x_1), \quad C = \phi(x_2), \quad B = \phi(x_1 - x_2), \quad D = \phi(x_1 - dx_2).$$

Then $V = \square x_1 x_2$, and F corresponds to $(V, x_1 - dx_2)_1 = \square (x_1 + dx_2)$. Hence

$$W = (x_1 (x_1 + dx_2), x_2 (x_1 - dx_2))_1 = \square (x_1^2 - 2dx_1 x_2 - d^2 x_2^2).$$

Now Z is given by $(x_1 x_2, x_1 - x_2)_1 = \square (x_1 + x_2)$, and finally E by

$$(W, x_1 + x_2)_1 = \square (x_1 + \frac{d^2 - d}{d+1} x_2).$$
One can similarly calculate all the cross-hair intersections and the lines joining them. It turns out that either Pascal is given by the quadratic form $P = x_1^2 + d^2 x_2^2$; or in other words, it is the polar of $[P]$. Since $(P, V)_2 = (P, W)_2 = 0$, it must pass through V and W. □

Notice that P factors as $(x_1 + d x_2 \sqrt{-1})(x_1 - d x_2 \sqrt{-1})$, i.e., if $VW \cap K = \{I, J\}$, then I, J have affine co-ordinates $\pm d \sqrt{-1}$. This implies that we have cross-ratios

$$\langle A, C, I, J \rangle = \langle D, F, I, J \rangle = -1,$$

i.e., I, J is a harmonically conjugate pair with respect to A, C as well as D, F. Since V, W are determined by A, C, D, the common Pascal is independent of the position of B. These observations suggest that a more conceptual and less computational proof of this proposition should be possible, but I do not see one.

4. The Main Theorem

In this section we will establish the following theorem.

Theorem 4.1. Let Γ be a hexad, and assume that s, t are two labels such that $k(s) = k(t)$ for Γ. Then Γ is either in involution or in ricochet configuration.

Proof. After applying an automorphism of K, we may assume that the points of Γ are given in affine co-ordinates as

$$A = 0, \quad B = 1, \quad C = \infty, \quad D = p, \quad E = q, \quad F = r,$$

and hence

$$G_{\Gamma} = x_1 (x_1 - x_2) x_2 (x_1 - p x_2) (x_1 - q x_2) (x_1 - r x_2).$$

Now the proof simply goes through all possible s and t, but one can introduce a small technical device to reduce the number of cases.

4.1. Given a label $s = (a, bc)$, write $s' = \{a\}$, and $s'' = \{b, c\}$. For two labels s, t, define their interference matrix

$$I_{st} = \begin{bmatrix} s' \cdot t' & s' \cdot t'' \\ s'' \cdot t' & s'' \cdot t'' \end{bmatrix},$$

where $s' \cdot t''$ means the cardinality of the set $s' \cap t''$ and so on. For instance, if $s = (1, 23), t = (2, 36)$, then

$$s' = \{1\}, \quad s'' = \{2, 3\}, \quad t' = \{2\}, \quad t'' = \{3, 6\}, \quad \text{and} \quad I_{st} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$
After applying a permutation of SIX, we may assume once and for all that \(s = (1, 23) \). It corresponds to the array \[
\begin{bmatrix}
A & B & C \\
F & E & D
\end{bmatrix}
\]
, and then a direct calculation as in section 3.9 shows that \(k(1, 23) \) is given by the quadratic form

\[
(q - r) x_1^2 + (p r - p q + p - q) x_1 x_2 + r (q - p) x_2^2.
\] (4.2)

If \(t, u \) are two labels such that \(I_{st} = I_{su} \), then one can find a permutation carrying \(t \) into \(u \) which preserves \(s \), hence it suffices to consider any one example of \(t \) for any given interference matrix. The following are all the possibilities for \(I_{st} \).

\[
\begin{align*}
I^{(1)} &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, & I^{(2)} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, & I^{(3)} &= \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, & I^{(4)} &= \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, & I^{(5)} &= \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \\
I^{(6)} &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, & I^{(7)} &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, & I^{(8)} &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, & I^{(9)} &= \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}.
\end{align*}
\]

Since the whole question is symmetric in \(s \) and \(t \), it is unnecessary to consider the transpose of \(I^{(3)} \) or \(I^{(4)} \).

4.2. Let \(I_{st} = I^{(2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). We may assume \(t = (1, 24) \), corresponding to the array \[
\begin{bmatrix}
A & D & F \\
C & E & B
\end{bmatrix}
\]. A very similar calculation shows that \(k(t) \) is given by

\[
(p - r) x_1^2 + (r - p q) x_1 x_2 + p r (q - 1) x_2^2.
\] (4.3)

If \(k(s) = k(t) \), then (4.2) and (4.3) must be scalar multiples of each other, and hence the 2 × 3 matrix of their coefficients must have all of its minors zero. This gives a system of polynomial equations in \(p, q, r \). One solves it by finding a Gröbner basis of the resulting ideal, after imposing an elimination order on the variables (see [2, Ch. 2] or [6, Ch. 3] for the technique). However, in this case, the only solutions are

\[
p = r = 0, \quad q = 1, r = 0, \quad q = p, r = 0, \quad p = q = 1, \quad q = 1, r = p, \quad p = q = r.
\]

None of these is legal, since each would force \(\Gamma \) to have a repeated point. We conclude that the two Pascals cannot coincide. Similarly, we get no legal solutions for \(I^{(j)}, j = 3, 6, 7, 8 \).

4.3. The remaining four cases are geometrically more interesting. They have the common feature that apart from illegal solutions as above (which will not be explicitly mentioned), there is a unique nontrivial solution in every case.
Say I_{st} = $I^{(4)}$ = \[
\begin{bmatrix}
0 & 0 \\
1 & 1
\end{bmatrix},
\] then we may take $t = (2, 34)$ corresponding to the array \[
\begin{bmatrix}
A & B & D \\
E & C & F
\end{bmatrix}.
\]
A similar calculation gives the solution
\[
q = \frac{p}{p + 1}, \quad r = \frac{p}{1 - p^2},
\]
with p arbitrary. (It is, of course, subject to the constraint that no two points of Γ should coincide, which excludes only finitely many values of p. Henceforth this proviso is tacitly understood whenever we have free parameters.) Substitute the solution into $G = G_{\Gamma}$ to get a binary sextic whose coefficients are functions of p. Now a rather long calculation using the formulae in (3.4) shows that $\vartheta_{15,0}(G) = 0$, hence Γ must be in involution. The centre of the involution is found to be
\[
\vartheta_{8,2}(G) = Q = \square (x_1^2 - 2px_1x_2 + \frac{p^2}{1 + p} x_2^2).
\]
The lines AE, CD, BF pass through Q. Hence, by Proposition [3.1] the Pascals
\[
\begin{align*}
\left\{ \begin{array}{ccc}
A & B & C \\
E & F & D
\end{array} \right\}, & \quad \left\{ \begin{array}{ccc}
A & B & D \\
E & F & C
\end{array} \right\}, & \quad \left\{ \begin{array}{ccc}
A & F & C \\
E & B & D
\end{array} \right\}, & \quad \left\{ \begin{array}{ccc}
E & B & C \\
A & F & D
\end{array} \right\}
\end{align*}
\]
(4.4)
all coincide with each other; or what is the same, $k(4, 56) = k(1, 56) = k(2, 56) = k(3, 56)$. Thus we have the curious situation that if $k(1, 23), k(2, 34)$ coincide, then four other Pascals are also forced to coincide.

Here is a more geometric way to see this configuration: fix Q, A, B, E, F, and allow the line CD to pivot around Q.

The Pascals in (4.4) coincide for any position of CD. Furthermore,
\[
k(1, 23) \rightsquigarrow \left\{ \begin{array}{ccc}
A & B & C \\
F & E & D
\end{array} \right\}, \quad k(1, 24) \rightsquigarrow \left\{ \begin{array}{ccc}
A & B & D \\
E & C & F
\end{array} \right\}
\]
both pass through $Q = AE \cap BF = BF \cap CD$. Let Π_Q denote the pencil of lines through Q; then we have a two-to-one morphism
\[
K \xrightarrow{g_1} \Pi_Q, \quad C \longrightarrow \lambda_1
\]
which maps C to the line joining $BD \cap CE$ with Q. The similar morphism
\[\mathcal{K} \xrightarrow{g_2} \Pi_Q, \quad C \rightarrow \lambda_2 \]
maps C to the line joining $AC \cap BE$ with Q. Since $\Pi_Q \simeq \mathbb{P}^1$ has a unique rational double cover up to isomorphism\(^5\), there must be an automorphism τ of Π_Q such that $\tau \circ g_1 = g_2$. But then τ must have at least one fixed point (in fact generically two such points), that is to say, a line $\lambda \in \Pi_Q$ such that $\tau(\lambda) = \lambda$. Hence, fixed points of τ correspond to positions of C such that $\lambda_1 = \lambda_2$.

4.4. Assume that $I_{st} = I^{(9)} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$, then we may take $t = (4, 23)$. Using the procedure above, one gets the two parameter solution
\[q = \frac{p(r - 1)}{p - 1}, \]
with p, r arbitrary. Then one finds that $\vartheta_{15,0}(G) = 0$, and $\vartheta_{8,2}(G) = Q = x_1^2 - 2px_1x_2 + prx_2^2$. A calculation shows that AF, BE, CD intersect in Q, and we are simply in the generic involutive configuration of section 3.6.

4.5. Assume that $I_{st} = I^{(5)} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, then we may take $t = (2, 13)$. The same procedure gives the one-parameter solution
\[q = \frac{p - 1}{p}, \quad r = \frac{1}{1 - p}. \]
Now $\vartheta_{15,0}(G) = 0$, hence Γ must be in involution. However, $\vartheta_{8,2}(G)$ also vanishes identically, hence one should look for multiple centres. On the other hand, substituting the solution into \((4.2) \) shows that $k(1, 23)$ is given by
\[T = x_1^2 - x_1x_2 + x_2^2 = (x_1 + \theta x_2)(x_1 + \theta^2 x_2), \quad \theta = e^{2\pi \sqrt{-3}} \]
which is independent of p. The factors of T are suggestive of a connection with ‘equi-anharmonicity’, i.e., the phenomenon where the cross-ratio of four points on a line admits a threefold symmetry (see [20, Ch. II.8]). Indeed, it turns out that the cyclic group \mathbb{Z}_3 acts on the entire structure in such a way that, four distinct groups of Pascals coincide amongst themselves.

Consider the linear transformation σ of S_1 which acts by
\[x_1 \rightarrow x_1 - x_2, \quad x_2 \rightarrow x_1. \]
It induces an action on $\mathbb{P}S_2$ and \mathcal{K}, either of which will also be denoted by σ. Notice that σ^3 is the scalar multiplication by -1, and hence acts as the identity on $\mathbb{P}S_2$. It is easy to check that the

\(^5\)This may be seen as follows: such a cover is completely determined by its two simple branch points, and any two points on \mathbb{P}^1 can be taken to any other by the Fundamental Theorem of Projective Geometry.
action of \(\sigma \) on \(K \) stabilizes the set \(\Gamma = \{ A, \ldots, F \} \), and acts as the permutation \((A B C) (D F E)\). (That is to say, \(\sigma \) takes \(A \) to \(B \), and \(D \) to \(F \) etc.)

Define points

\[
M = \phi(x_1 + \theta x_2), \quad N = \phi(x_1 + \theta^2 x_2),
\]

on \(K \), then \(\sigma(M) = M, \sigma(N) = N \), and hence the line \(MN \) (which is the polar of \(T \)) is fixed (as a set) by \(\sigma \). Note the cross-ratios

\[
\langle C, A, B, M \rangle = \langle \infty, 0, 1, -\theta \rangle = -\theta, \quad \langle C, A, B, N \rangle = \langle \infty, 0, 1, -\theta^2 \rangle = -\theta^2;
\]

which agrees with the fact that

\[
\langle C, A, B, M \rangle = \langle \sigma(C), \sigma(A), \sigma(B), \sigma(M) \rangle = \langle A, B, C, M \rangle,
\]

and similarly for \(N \). In classical terminology, \(\{ C, A, B, M \} \) and \(\{ C, A, B, N \} \) are equi-anharmonic tetrads.

Now let \(\alpha = p - 1, \beta = 1, \gamma = -p \), and consider the three quadratic forms:

\[
Q_6 = \alpha x_1^2 + 2 \beta x_1 x_2 + \gamma x_2^2, \quad Q_4 = \beta x_1^2 + 2 \gamma x_1 x_2 + \alpha x_2^2, \quad Q_5 = \gamma x_1^2 + 2 \alpha x_1 x_2 + \beta x_2^2.
\]

(Notice the cyclic movement of \(\alpha, \beta, \gamma \).) Then \((Q_6, T)_2 = (Q_4, T)_2 = (Q_5, T)_2 = 0\), and hence all \([Q_i]\) are on the line \(MN \). The action of \(\sigma \) on \(\mathbb{P}^2 \) is such that \([Q_6] \rightarrow [Q_4] \rightarrow [Q_5] \rightarrow [Q_6]\). A simple check shows that the lines \(AD, BE, CF \) intersect in \(Q_6 \); furthermore \(AE, CD, BF \) intersect in \(Q_4 \), and \(AF, CE, BD \) in \(Q_5 \). Thus \(\Gamma \) is a highly special configuration which is in involution with respect to three different centres.
The point A (not shown) is to the far right at infinity. The points M, N, not being real, cannot be shown.

By Proposition 3.1 we have the following sets of coincidences:

\[
\begin{align*}
 k(1,45) &= k(2,45) = k(3,45) = k(6,45), \\
 k(1,56) &= k(2,56) = k(3,56) = k(4,56), \\
 k(1,46) &= k(2,46) = k(3,46) = k(5,46).
\end{align*}
\]

(4.5)

Or, what comes to the same thing, the map $\mathcal{S}(\text{LTR}) \longrightarrow \mathcal{S}(\text{SIX})$ sends $(A,B,C) \mapsto (D,F,E)$ to (4 5 6); the latter induces a cyclic action on the three groups of Pascals in (4.5), and also explains the subscripts in Q_i.

We are yet to explain the identity $k(1,23) = k(2,13)$. Notice that $k(1,23) \mapsto \begin{Bmatrix} A & B & C \\ F & E & D \end{Bmatrix}$ must pass through $AD \cap CF = Q_6$. Applying σ to the points,

\[
\begin{Bmatrix} A & B & C \\ F & E & D \end{Bmatrix} \xrightarrow{\sigma} \begin{Bmatrix} B & C & A \\ E & D & F \end{Bmatrix} = \begin{Bmatrix} A & B & C \\ F & E & D \end{Bmatrix},
\]

that is to say, $k(1,23)$ is left invariant by σ. However, it must pass through $\sigma(Q_6) = Q_4$, and hence must be the line $Q_6Q_4 = MN$. By the same argument, either of the Pascals

\[
k(2,13) \mapsto \begin{Bmatrix} A & B & C \\ D & F & E \end{Bmatrix}, \quad k(3,12) \mapsto \begin{Bmatrix} A & B & C \\ E & D & F \end{Bmatrix}
\]

17
is also equal to MN, and thus $k(1, 23) = k(2, 13) = k(3, 12)$.

4.6. There remains the case $I_{st} = I^{(1)} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Assuming $t = (1, 45)$, we get the solution

$$q = p \frac{(1 - p)}{(1 + p)}, \quad r = -p,$$

with p arbitrary.

It turns out that $\vartheta_{15,0}(G)$ does not vanish as a function of p, hence Γ is not in involution for generic p. (However, see section 4.8 below.) But notice that if we substitute this analytic solution into (4.1), everything agrees exactly with the proof of Proposition 3.2, with p in place of d. This shows that Γ is in ricochet configuration, hence the proof of Theorem 4.1 is complete. \square

As mentioned earlier, I used (4.6) as a starting point, and only afterwards reached the construction in section 1.4. Several false steps were necessary before it was found.

It would be interesting to have an essentially synthetic proof of the main theorem, i.e., one which uses as much classical projective geometry and as little explicit calculation as possible.

4.7. Given an interference pattern I, one may consider the variety

$$\Omega_I = \{ [G] \in \mathbb{P} S_6 \setminus \Delta : \text{The sextuple } \Gamma_G \text{ has coincident Pascals in pattern } I \}.$$

These are SL_2-equivariant subvarieties of $\mathbb{P}^6 \setminus \Delta$, and it would be of interest to find their degrees, desingularisations, and defining equations. As we have seen, $\Omega_{I(j)}$ is empty for $j = 2, 3, 6, 7, 8$, and $\Omega_{I(9)} = \mathcal{Y}$. In any of the remaining cases we get a one-parameter solution in p, and since the SL_2-orbit of Γ for a specific p is three-dimensional (see [3]), the variety Ω_I itself must be four-dimensional. It is contained in \mathcal{Y} for $j = 4, 5$, but not for $j = 1$.

I tried to calculate the ideal of the ‘ricochet locus’ $\mathcal{R} = \Omega_{I(1)}$ inside the co-ordinate ring of \mathbb{P}^6 using elimination of variables (rather as in [1, §4.8]), but could not get the computation to terminate. This is unfortunately a chronic difficulty with practical elimination theory. Even so, a direct calculation with the fundamental system of sextics shows that there is one invariant in degree 6, and two independent invariants in degree 10 vanishing on this locus. One can at least conclude that the ideal is not a complete intersection.

4.8. The value of the invariant $\vartheta_{15,0}$ on the ‘ricochet’ form is:

$$p^{18} (p^2 + 3) (3 p^2 + 1) (p^2 + 1) (p^2 + p + 1) (p^2 - p + 1) (p^2 + 2 p - 1)^2 (p^2 - 2 p - 1)^2 (p - 1)^3 (p + 1)^3.$$

It vanishes for finitely many p, hence the intersection $\mathcal{R} \cap \mathcal{Y}$ is a finite union of SL_2-orbits.
5. PASCALS ON THE DISCRIMINANT LOCUS

Hitherto we have assumed that \(\Gamma \) consists of six distinct points, but all the Pascals are well-defined if any one pair of points is allowed to come together.

5.1. In order to see this, assume that \(A = B \), and \(C, D, E, F \) are distinct from each other and from \(A \). We will interpret \(AB \) as the tangent to \(K \) at \(A \). Given an array of points, one may assume that \(A \) occupies the top left corner, and then it is only necessary to consider the following three positions of \(B \).

\[
\begin{array}{ccc}
A & B & D \\
F & E & C \\
\end{array}
\]

I

\[
\begin{array}{ccc}
A & C & D \\
B & F & E \\
\end{array}
\]

II

\[
\begin{array}{ccc}
A & C & D \\
F & B & E \\
\end{array}
\]

III

(5.1)

In case I, \(AE \cap BF = A \) and the other two cross-hair intersections are on the line \(AC \), hence the Pascal is \(AC \).

In case II, \(AF \cap BC, AE \cap BD \) both equal \(A \), hence the Pascal is the line joining \(A \) to \(CE \cap DF \).

In order to see that the Pascal is well-defined in case III, it is enough to show that the points \(P = AB \cap CF, P' = AE \cap DF \) cannot coincide. If they did, \(AP \) would be tangent to the conic at \(A \) and would contain \(E \), which is impossible.

5.2. However, if \(\Gamma \) has either a threefold point or two double points, then some of the Pascals become undefined. If \(A = B = C \), then \(\begin{array}{ccc} A & B & C \\
F & E & D \end{array} \) is no longer defined, since all cross-hair intersections are at \(A \). If \(A = B \) and \(C = D \), then \(\begin{array}{ccc} A & B & E \\
C & D & F \end{array} \) becomes undefined, since the line \(AC = AD \cap BC \) may not contain the point \(AF \cap CE \).

5.3. If \(\Gamma \in \Delta \), then it is already clear that many of the Pascals must coincide; for instance, in case I above, the Pascal remains the same for all permutations of \(D, E, F \). In this section we will describe all such coincidences.

The general picture is that the set of labels splits into three types I, II, III as in (5.1). Type I splits further into 4 classes with 6 elements each, type II into 3 classes with 4 elements each, and type III into 12 classes with 2 elements each. Altogether there are 19 equivalence classes, such that all Pascals in each class are equal. For a general \(\Gamma \) in \(\Delta \), these 19 lines are distinct.

Type I: All Pascals of the form \(\begin{array}{ccc} A & B & \ast \\
\ast & \ast & C \end{array} \) are equal, which gives a 6-element equivalence class. To determine their labels, note that we know two of the sides of the corresponding hexagon,
namely AC, BC. From the table,

$$AC \sim 16.24.35, \quad BC \sim 15.26.34.$$

The label must come from two duads (i.e., one from each number syntheme) which have an element in common. The pair $16, 15$ leads to $k(1, 56)$, and similarly the other possibilities are

$$k(6, 12), \quad k(2, 46), \quad k(4, 23), \quad k(5, 13), \quad k(3, 45).$$

We get three similar equivalence classes by replacing C with D, E, F.

Type II: Consider all arrays of the form

$$\begin{bmatrix} A & * & * \\ B & * & * \end{bmatrix},$$

where the rightmost 2×2 block is one of

$$\begin{bmatrix} C & D \\ F & E \end{bmatrix}, \quad \begin{bmatrix} C & F \\ D & E \end{bmatrix}, \quad \begin{bmatrix} D & E \\ C & F \end{bmatrix}, \quad \begin{bmatrix} F & E \\ C & D \end{bmatrix}. $$

The Pascal is the line joining A to $CE \cap DF$ in all cases, hence we have a 4-element equivalence class. The labels are easily determined to be $k(4, 36), k(1, 36), k(3, 14), k(6, 14)$. They are constructed on the following model: start with two number duads ab, cd having no element in common (here $14, 36$), and then combine them as

$$k(a, cd), \quad k(b, cd), \quad k(e, ab), \quad k(d, ab).$$

We get two more such classes from $CD \cap EF$ and $CF \cap DE$. Since $AB \sim 14.25.36$, picking any two duads out of the three will give one of the three equivalence classes.

Type III: We have

$$\begin{bmatrix} A & C & D \\ F & B & E \end{bmatrix} = \begin{bmatrix} B & C & D \\ F & A & E \end{bmatrix},$$

or what is the same, $k(2, 15) = k(5, 24)$. The latter Pascal may be written as

$$\begin{bmatrix} A & F & E \\ C & B & D \end{bmatrix},$$

hence in general we have a 2-element equivalence class consisting of

$$\begin{bmatrix} A & P_1 & Q_1 \\ P_2 & B & Q_2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} A & P_2 & Q_2 \\ P_1 & B & Q_1 \end{bmatrix},$$

where $\{P_1, P_2, Q_1, Q_2\} = \{C, D, E, F\}$. There are $\frac{4!}{2} = 12$ such classes. Their labels are formed on the following pattern: from the image of $AB \sim 14.25.36$, pick any of the three duads (say ab), pick another (say cd) and now form the 2-element class of $k(a, bc), k(b, ad)$. (Note that the construction is not symmetric in ab, cd, nor in c, d.)
5.4. In order to assert that there are no further coincidences for a general Γ in Δ, it is sufficient to check this on one example. After choosing,

$$A = B = 0, \quad C = \infty, \quad D = 1, \quad E = -2, \quad F = 3,$$

I have calculated all the Pascals, and verified that there are precisely 19 of them.

In conclusion, if T denotes the locus of sextic forms which have at least a triple root or two double roots, then we have a morphism $\mathbb{P}^6 \setminus T \to \text{Sym}^6(\mathbb{P}^2)^*$ just as in section 1.3. By the main theorem, the preimage of the big diagonal is $\Delta \cup \mathcal{Y} \cup \mathcal{R}$. According to standard procedure, one can blow up \mathbb{P}^6 along T to extend the morphism (see [10, Ch. II.7]); but I will leave this analysis for a sequel.

REFERENCES

[1] A. Abdesselam and J. Chipalkatti. Quadratic involutions on binary forms. *Mich. Math. J.*, vol. 61, no. 2, pp. 279–296, 2012.
[2] W. Adams and P. Loustaunau. *An Introduction to Gröbner Bases*. Graduate Studies in Mathematics, Vol. 3. American Mathematical Society, 1994.
[3] P. Aluffi and C. Faber. Linear orbits of d-tuples of points in \mathbb{P}^1. *J. Reine Angew. Math.*, vol. 445, pp. 205–220, 1993.
[4] H. F. Baker. *Principles of Geometry*, vol. II. Cambridge University Press, 1923.
[5] J. Chipalkatti. On Hermite’s invariant for binary quintics. *J. Algebra*, vol. 317, no. 1, pp. 324–353, 2007.
[6] D. Cox, J. Little and D. O’Shea. *Ideals, Varieties and Algorithms*. Undergraduate Texts in Mathematics, 3rd edition. Springer, New York, 2007.
[7] W. Fulton and J. Harris. *Representation Theory, A First Course*. Graduate Texts in Mathematics. Springer, New York, 1991.
[8] J. H. Grace and A. Young. *The Algebra of Invariants*. Reprinted by Chelsea Publishing Co., New York, 1962.
[9] J. Harris. *Algebraic Geometry, a First Course*. Graduate Texts in Mathematics. Springer, New York, 1992.
[10] R. Hartshorne. *Algebraic Geometry*. Graduate Texts in Mathematics. Springer, New York, 1992.
[11] B. Howard, J. Millson, A. Snowden, and R. Vakil. A description of the outer automorphism of S_6, and the invariants of six points in projective space. *J. Combin. Theory Ser. A*, vol. 115, no. 7, pp. 1296-1303, 2008.
[12] L. Kadison and M. T. Kromann. *Projective Geometry and Modern Algebra*. Birkhäuser, Boston, 1996.
[13] F. Leitenberger. Pascal’s theorem and quantum deformation. *Letters in Math. Physics*, vol. 51, no. 1, pp. 47–53, 2000.
[14] D. Pedoe. How many Pascal lines has a sixpoint? *The Mathematical Gazette*, vol. 25, no. 264, 1941.
[15] D. Pedoe. *An Introduction to Projective Geometry*. Pergamon Press, 1963.
[16] J. Rotman. *The Theory of Groups: An Introduction*. Allyn and Bacon, Boston, 1965.
[17] G. Salmon. *A Treatise on Conic Sections*. Reprint of the 6th ed. by Chelsea Publishing Co., New York, 2005.
[18] G. Salmon. *Lessons Introductory to Higher Algebra*. Reprint of the 5th ed. by Chelsea Publishing Co., New York, 1965.
[19] J. J. Sylvester. ‘Note on the …six-valued function of six letters’, in his Collected Mathematical Papers, Volume II, p. 264, (also see Volume I, p. 92), Cambridge University Press, 1904–1912.
[20] I. M. Yaglom. *Complex Numbers in Geometry* (Transl. from the Russian by E. J. F. Primrose). Academic Press, New York, 1968.
Jaydeep Chipalkatti
Department of Mathematics
University of Manitoba
Winnipeg, MB R3T 2N2
Canada.

chipalka@cc.umanitoba.ca