Growth Behavior of Pineapple cv. Mauritius under Integrated Nutrient Management in Northern part of West Bengal, India

Nilesh Bhowmick1*, Partha Sarathi Munsi2, Swapan Kumar Ghosh1, Prahlad Deb2 and Arunava Ghosh3

1Department of Pomology and Post-Harvest Technology, Uttar Banga Krishi Viswavidyalaya, PO-Pundibari, Dist-Cooch Behar, West Bengal-736165, India
2Department of Horticulture and Post-Harvest Technology, Institute of Agriculture, Visva-Bharati, Sriniketan, West Bengal-731235, India
3Discipline of Agricultural Statistics, Uttar Banga Krishi Viswavidyalaya, PO-Pundibari, Dist-Cooch Behar, West Bengal-736165, India
*Corresponding author

A B S T R A C T

Pineapple is an important fruit crop and West Bengal is the leader in pineapple production in India. In West Bengal the commercial cultivars is Kew under Smooth Cayenne group which suitable for processing purpose. Table purpose cultivars like Queen is being grown as home stead condition in some pockets of West Bengal. Mauritius cultivar (Queen Group) of pineapple was introduced first time in West Bengal from the south India and its growth performance under the integrated nutrient management practices was assessed in this present experiment. The experiment was conducted at farmers field near Bidhannagar area of Siliguri under the Darjeeling district from 2014-16. The experiment was conducted with Factorial Randomized block design having three factors- Chemical fertilizer (Factor A), organic manure (Factor B) and bio-fertilizer (Factor C) and eighteen treatment combination with three replication. It is found from the present experiment that the treatment combinations having chemical fertilizer, organic manure and bio-fertilizers shows better performance than the other treatment combinations. The plant height, canopy spread, number of leaves, D-leaf length, D-leaf breadth, and leaf area was recorded highest in T12 (Chemical 75% RDF + Vermicompost + Bio-fertilizer).

Keywords: Growth, Behavior, Pineapple, Nutrient, West Bengal.

Accepted: 26 August 2017
Available Online: 10 September 2017

Introduction

Pineapple (Ananas comosus L. Merr.) is an important tropical fruit of world under the Bromeliaceae family. Pineapple is one of the most internationalized fruit traded globally; it is third only to bananas and citrus in this respect. The major pineapple products are canned slices, chunks, crush, juice and fresh fruit. Processed pineapple products, such as juices, largely dominate this market, accounting for 80 percent of the trade (Jacob and Soman, 2006). India ranks 6th (7.4%) in terms of world pineapple production (National Horticulture Database-2014) but productivity is quite low (15.8t/ha) compare to leading countries like Indonesia (124.5t/ha), Costa Rica (59.2t/ha), Brazil (40.9t/ha). West Bengal is leader in pineapple production in India (316 thousand metric
tonnes). Pineapple is an important commercial fruit crop of West Bengal and it is intensively cultivated in Siliguri sub-division of Darjeeling district, Sadar sub-division of Jalpaiguri district, Islampur sub-division of Uttar Dinajpur district and parts of Cooch Behar district.

In West Bengal the commercial cultivars is Kew since long back. The Kew comes under Smooth Cayenne group suitable for processing purpose.

Table purpose cultivars like Queen is being grown as home stead condition in some pockets of West Bengal. Whereas, pineapple cv. Mauritius under the Queen group is very popular in southern parts of India (Kerala, Karnataka region) due to its taste, sweetness, flavor (Annon, 2017).

Considering the fact the Mauritius cultivar of pineapple was introduced first time in West Bengal from the south India and its performance under the integrated nutrient management practices was assessed in this present experiment.

Materials and Methods

The experiment was conducted at farmer’s field near Bidhannagar area of Siliguri under the Darjeeling from 2014-16 with Spacing: 90cm×35cm×25cm having individual bed size of: 3×0.7 m=2.1m² with 25 number of plants per plot. The experiment was conducted with Asymmetrical Factorial Randomized Block design having three factors- Chemical fertilizer (Factor A), organic manure (Factor B) and bio-fertilizer (Factor C) and eighteen treatment combination with three replication. Chemical fertilizers were applied in 3 levels (A₀-zero, A₁-75 percent and A₂- 100 percent recommended dose), organic manure were applied also in 3 levels (B₀-zero, B₁-FYM, B₂-Vermicompost), bio-fertilizer were applied in 2 levels (C₀-zero and C₁- Azotobactor + Phosphate Solublising Bacteria). The doses for integrated nutrient management was as follows: Regular Dosages of Fertilizer (RDF)= 12:4:12 g/plant, Farm Yard Manure (FYM) = 500g/ plant, Vermicompost = 300g/Plant, Azotobactor = 10g, Phosphate Solublising Bacteria (PSB) = 10g was applied. It was reported that of 12g/ plants of nitrogen and potash has been found to be optimum and no effect of phosphorus was observed, however, 4g of P₂O₅ increased fruit weight and yield in pineapple (Reddy and Prakash, 1982).

Treatment combinations	T₁	T₁₀	T₂	T₁₀	T₃	T₁₀	T₄	T₁₀	T₅	T₁₀	T₆	T₁₀	T₇	T₁₀	T₈	T₁₀	T₉	
A₀B₀C₀			A₀B₀C₀		A₀B₀C₀		A₀B₁C₀		A₀B₁C₀		A₀B₂C₀		A₀B₂C₀		A₀B₂C₀		A₀B₂C₀	
A₁B₁C₁			A₁B₁C₁															
A₁B₂C₀			A₁B₂C₀															
A₁B₂C₁			A₁B₂C₁															
A₁B₂C₀			A₁B₂C₀															
A₁B₂C₁			A₁B₂C₁															

Regarding the growth behaviour the height of the plant (cm), plant spread in North-South and East-West direction (cm), number of leaves, D-leaf length (cm), leaf length (cm), leaf breadth (cm), and leaf area (cm²) were recorded 3 months after planting and continue upto 18 months with 3 months interval for 2015 and 2016. Analysis of variance for each parameter was performed using ProcGlm of Statistical Analysis System (SAS) software (version 9.3). Mean separation for different treatment under different parameter were performed using Least Significant Different (LSD) test (P≤ 0.05). Normality of residuals under the assumption of ANOVA was tested using Kolmogrov-Smirnov procedure using Proc-Univariate procedure of SAS (version 9.3).
Results and Discussion

Plant height (cm)

The plant height of pineapple cv. Mauritius was varied significant among different treatments and it was found highest in T_{10} and T_{12} for 2015 and 2016 at 3 months after planting. From 9 months after planting to 18 months after planting the maximum plant height was recorded in T_{12} for 2015, 2016 and for pooled values. The height of pineapple plant was 83.71cm (pooled) and 90.76cm (pooled) for 15 and 18 months after planting in T_{12} followed by 79.96cm (pooled) and 87.53 cm (pooled) in T_{10}, respectively. The result from table 1 show clearly there is significant role of nutrient management for increasing the height of pineapple plants. Comparing the T_{11} and T_{12} it is clear that there is a great role of bio-fertilizer for the growth of pineapple plants.

Plant canopy spread (cm)

Observation revealed (Tables 2 and 3) that the plant canopy on North-South and East-West direction was increased in all the treatments from 3 months after planting up to the 18 months after planting. Significant variation between the main factor and treatments combination with respect to canopy spread was observed among several nutrient treatments.

Treatments combination T_{10}, T_{11}, T_{12}, T_{18} shows the better performance compare with other treatment combinations. For all observation months the lowest canopy spread was recorded with T_{1} (no nutrient). The performance of canopy spread was better in treatments where chemical, organic and bio-fertilizers were applied combined compared with sole application of bio-fertilizers, or organic or only chemical fertilizers. The rate of increase of canopy was higher from 3 months to 6 months and 12 months to 15 months after planting for both north-south and east-west direction. Maximum canopy spread in north-south and east-west direction was observed with T_{12} for 2015, 2016 and pooled values. The spread was 117.64cm and 124.20cm respectively for north-south and east-west direction at 18 months after planting.

Number of leaves

The number of leaves of pineapple increased from three months to eighteen months and it varied significantly mostly among all the treatments. Flower induction is an important practice in pineapple normally done during 11-12 months after planting and for effectiveness the number of leaves in pineapple has an important factor and 30-40 leaves are required for flowering of pineapple. At 12 months after planting, the number of leaves was 49.47 and 49.27, respectively with T_{12}. Lowest number (pooled mean) of leaves (36.14 and 39.27) was observed with T_{1} (no nutrient) and maximum number (pooled mean) of leaves (55.75 and 58.87) were recorded with T_{12} which was statistically at par with T_{9}, T_{10}, T_{11}, T_{14}, T_{16}, T_{18}, respectively at 15 and 18 months after planting, respectively. The rate of increase of number of leaves was higher from 9 to 12 months after planting. Treatments with having all the chemicals, organic and bio-fertilizers combinations showed better performance compare with individual effect of organic, chemical and bio-fertilizers.

D-leaf length, breadth and area

D-leaf is the most physiological active leaves of pineapple and it is highly co-related to growth behaviour, nutrient content of pineapple leaves. Leaf size is an important parameter for most of the crop regarding the flowering, fruiting and subsequent yield.
Table.1 Effect of Nutrient management on plant height (cm)

Treatments	3 MAP		6 MAP		9 MAP										
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A0	23.95c	23.97c	23.96c	30.1c	32.36c	31.23a	37.96b	38.16b	38.06b			2015	2016	Mean	
A1	32.64a	33.13a	32.89a	40.08a	42.40a	41.24a	53.85a	54.8a	54.33a			2015	2016	Mean	
A2	31.29b	31.88b	31.59b	39.16b	41.28b	40.22b	50.61a	50.73a	50.67b			2015	2016	Mean	
S.Em. (±)	0.28	0.29	0.26	0.24	0.27	0.23	1.67	1.69	1.68			2015	2016	Mean	
L.S.D.(P≤0.05)	0.81	0.85	0.76	0.70	0.76	0.67	4.80	4.85	4.82			2015	2016	Mean	
B0	28.49b	28.72b	28.61b	34.68b	36.81b	35.75b	43.52b	44.30b	43.91b			2015	2016	Mean	
B1	29.64a	29.92a	29.78a	37.07a	39.30a	38.19a	48.84a	49.02ab	48.93a			2015	2016	Mean	
B2	25.75a	30.34a	30.05a	37.59a	39.92a	38.76a	50.06a	50.37a	50.22a			2015	2016	Mean	
S.Em. (±)	0.28	0.29	0.26	0.24	0.27	0.23	1.67	1.69	1.68			2015	2016	Mean	
L.S.D.(P≤0.05)	0.81	0.85	0.76	0.70	0.76	0.67	4.80	4.85	4.82			2015	2016	Mean	
C0	30.50a	31.06a	30.78a	38.24a	40.46a	38.36a	50.36a	50.80a	50.58a			2015	2016	Mean	
S.Em. (±)	0.23	0.24	0.21	0.22	0.19	0.19	1.36	1.38	1.37			2015	2016	Mean	
L.S.D.(P≤0.05)	0.66	0.69	0.62	0.57	0.62	0.54	3.92	3.96	3.93			2015	2016	Mean	

Treatments/ Combination: 2015 2016 Mean 2015 2016 Mean 2015 2016 Mean

MAP-Month after planting. **Means with the same letter are not significantly different
Table 1 Effect of Nutrient management on plant height (cm) (contd….)

Treatments/ Combination	12 MAP		15 MAP		18 MAP	
	2015	2016 Mean	2015	2016 Mean	2015	2016 Mean
A0	52.45b	54.39b	53.39b	60.64b	63.95b	62.30b
A1	66.37a	66.59a	66.49a	76.10a	74.69a	75.40a
A2	65.81a	63.78a	64.80a	72.89a	72.04a	72.47a
S.Em. (±)	1.78	2.01	1.77	1.68	2.09	1.85
L.S.D.(P≤0.05)	5.12	5.78	5.09	4.84	6.00	5.32
B0	58.93a	57.32b	58.12b	66.19b	66.71b	66.45b
B1	61.85a	62.74b	62.30ab	70.93b	70.83b	70.88ab
B2	63.85a	64.65a	64.25a	72.51a	73.16a	72.84a
S.Em. (±)	1.78	2.01	1.77	1.68	2.09	1.85
L.S.D.(P≤0.05)	5.12	5.78	5.09	4.84	6.00	5.32
C0	59.17b	58.89b	59.03b	67.15b	67.31b	67.23b
C1	63.91a	62.45a	64.08a	72.60a	73.15a	72.88a
S.Em. (±)	1.45	1.64	1.45	1.38	1.71	1.51
L.S.D.(P≤0.05)	4.18	4.72	4.15	3.95	4.90	4.34

Means with the same letter are not significantly different

MAP-Month after planting

Means with the same letter are not significantly different

2475
Table 2 Effect of Nutrient management on Canopy Spread (cm) on North-South Direction

Treatments	3 MAP	6 MAP	9 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A0	21.84b	22.09b	21.97b	30.74c	33.29b	32.02c	44.16b	44.70c	44.43c
A1	25.88a	26.48a	26.18a	40.90a	44.42a	42.66a	55.75a	57.58a	56.67a
A2	25.34a	25.84a	25.93a	40.20a	43.16a	41.59a	55.23a	55.27b	55.25b
S. Em. (±)	0.39	0.52	0.44	0.27	0.45	0.25	0.44	0.44	0.43
L.S.D(P≤0.05)	1.11	1.50	1.27	0.76	1.29	0.73	1.25	1.25	1.22
B0	23.41b	24.03b	23.72b	35.31b	38.31b	36.81b	49.81b	50.26b	50.04b
B1	24.66a	24.84b	24.75ab	37.80a	40.99a	39.40a	52.52a	53.32a	52.92a
B2	25.00a	25.54a	25.27a	38.55a	41.57a	40.06a	52.81a	53.97a	53.99a
S. Em. (±)	0.39	0.52	0.44	0.27	0.45	0.25	0.44	0.44	0.43
L.S.D(P≤0.05)	1.11	1.50	1.27	0.76	1.29	0.73	1.25	1.25	1.22
C0	23.86b	24.19a	24.03b	35.51b	39.03b	37.28b	49.66b	50.56b	50.11b
C1	24.85a	25.41a	25.13a	38.93a	41.55a	40.24a	53.77a	54.47a	54.12a
S. Em. (±)	0.32	0.43	0.36	0.22	0.37	0.21	0.36	0.36	0.35
L.S.D(P≤0.05)	0.91	NS	1.03	0.62	1.05	0.59	1.02	1.02	1.00

Means with the same letter are not significantly different

Table 3 Effect of Nutrient management on Canopy Spread (cm) on East-West Direction

Treatments/Combination	3 MAP	6 MAP	9 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
T1	19.84 g	19.67 e	19.76 g	27.39 g	30.37 h	28.88 i	41.48 g	40.59 j	41.04 i
T2	23.29 cdef	23.07 bcde	23.18 cdef	32.19 e	33.73 g	32.96 f	47.08 f	45.83 gh	46.46 g
T1	21.24 fg	21.63 de	21.44 fg	28.37 fg	32.82 gh	30.60 hi	42.47 g	43.60 hi	43.04 hi
T4	22.09 efg	22.24 cde	22.17 efg	32.87 e	34.24 g	33.56 f	46.70 f	46.34 gh	46.52 g
T5	22.18 ef	22.96 bcd	22.57 defg	29.98 f	33.62 g	31.80 gh	42.99 g	44.75 gh	43.87 gh
T6	22.41 defg	22.96 bcd	22.69 defg	33.66 e	34.96 g	34.31 f	44.25 fg	47.06 fg	45.66 gh
T7	24.72 abcd	25.72 abc	25.22 abcd	37.39 cd	40.13 ef	38.76 ef	51.98 de	53.23 ef	52.66 ef
T8	24.55 bcde	25.33 abc	24.94 abcd	38.73 bc	42.88 bcde	40.81 bc	53.14 cde	54.98 cde	54.06 cde
T9	26.53 ab	25.98 ab	26.26 abc	39.96 b	44.64 abcde	42.30 h	54.77 cd	56.74 cd	55.76 bc
T10	26.45 ab	27.24 a	26.85 ab	43.12 a	46.54 a	44.83 a	59.35 a	61.32 a	60.34 a
T11	25.68 abc	27.02 a	26.35 ab	42.55 a	45.68 abc	44.12 a	55.81 bc	57.78 bc	56.80 bc
T12	27.35 a	27.60 a	27.48 a	43.64 a	46.64 a	45.14 a	59.44 a	61.41 a	60.43 a
T13	23.68 cdef	24.68 abcd	24.18 cdef	36.32 d	39.35 f	37.84 e	50.65 e	51.45 f	51.05 f
T14	24.35 bcde	25.71 abc	25.03 abcde	39.82 b	43.38 bcd	41.60 bcd	54.55 cd	55.48 cde	55.02 cde
T15	25.08 abcd	24.84 abcd	24.94 abcd	39.34 b	42.05 f	40.70 bcd	53.25 cde	54.15 def	53.70 def
T16	26.55 ab	27.15 a	26.85 ab	43.16 a	45.67 abc	44.22 a	58.55 ab	57.75 bc	58.15 ab
T17	25.81 abc	25.31 abc	25.56 abc	38.32 bc	42.64 cde	40.48 cde	53.52 cde	52.74 ef	53.13 def
T18	26.56 abc	27.39 a	26.98 ab	43.15 a	45.88 abc	44.52 a	60.85 a	60.05 ab	60.45 a
S. Em. (±)	0.65	1.28	0.60	0.65	1.10	0.62	1.07	1.07	1.04
L.S.D(P≤0.05)	2.72	3.67	3.10	1.86	3.16	1.78	3.06	3.07	2.99

Means with the same letter are not significantly different

Int.J.Curr.Microbiol.App.Sci (2017) 6(9): 2471-2488
Table 2 Effect of Nutrient management on Canopy Spread (cm) on North-South Direction (contd….)

Treatments	12 MAP Mean	15 MAP Mean	18 MAP Mean						
	2015	2016	2015	2016	2015	2016			
A₀	58.64c	59.11c	58.88c	73.10b	76.06b	74.58b	81.86b	84.13b	83.00b
A₁	75.52a	74.91a	73.22a	89.32a	92.02a	90.67a	107.54a	109.18a	108.36a
A₂	72.71b	73.08b	72.90b	85.59a	88.26a	86.93a	104.96a	106.78a	105.87a
S.Em. (±)	0.49	0.43	0.45	2.36	2.43	2.39	1.25	2.20	1.62
L.S.D(P≤0.05)	1.42	1.22	1.29	6.78	6.97	6.87	3.59	6.31	4.65
B₀	66.05b	66.07b	66.06b	78.09b	81.18b	79.64b	93.57b	94.79b	94.18b
B₁	70.05a	70.23a	70.14a	83.89b	86.51ab	85.20ab	99.57a	101.49a	100.53a
B₂	70.77a	70.08b	72.90b	85.03a	88.65a	87.34a	101.24a	103.81a	102.52a
S.Em. (±)	0.49	0.43	0.45	2.36	2.43	2.39	1.25	2.20	1.62
L.S.D(P≤0.05)	1.42	1.22	1.29	6.78	6.97	6.87	3.59	6.31	4.65
C₀	65.82b	65.57b	65.70b	78.88b	81.69b	80.29b	92.99b	94.35b	93.67b
C₁	72.10a	72.50a	72.30a	86.46a	89.20a	87.83a	103.26a	105.71a	104.49a
S.Em. (±)	0.40	0.34	0.37	1.92	1.98	1.95	1.02	1.79	1.32
L.S.D(P≤0.05)	1.16	1.00	1.05	5.53	5.69	5.61	2.93	5.15	3.80

Means with the same letter are not significantly different

MAP-Month after planting
Table 3: Effect of Nutrient management on Canopy Spread (cm) on East-West Direction

Treatments	3 MAP	6 MAP	9 MAP	3 MAP	6 MAP	9 MAP	3 MAP	6 MAP	9 MAP	3 MAP	6 MAP	9 MAP
	2015	2016	Mean									
A₀												
A₁	26.80b	27.29b	27.05b	38.91b	39.66b	39.28b	49.12c	49.54c	49.33c			
A₂	30.34a	31.66a	31.28a	52.18a	52.39a	52.29a	61.93a	63.28a	62.60a			
A₃	30.90a	30.97a	30.66a	50.72a	51.00a	50.86a	59.90b	61.34b	60.62b			
S.Em. (±)	0.44	0.53	0.48	0.62	0.61	0.61	0.36	0.38	0.31			
L.S.D(P<0.05)	1.27	1.51	1.38	1.80	1.75	1.76	1.03	1.08	0.88			
B₀	28.67a	29.22a	28.95a	45.99b	46.20b	46.10b	55.38b	56.02c	55.70b			
B₁	29.44a	29.99a	29.72a	47.54ab	48.11a	47.83ab	57.77a	58.45b	58.11a			
B₂	29.92a	30.70a	30.31a	48.27a	48.74a	48.51a	57.77a	59.68a	58.74a			
S.Em. (±)	0.44	0.53	0.48	0.62	0.61	0.61	0.36	0.38	0.31			
L.S.D(P<0.05)	1.27	1.51	1.38	1.80	1.75	1.76	1.03	1.08	0.88			
C₀	28.89a	29.39a	29.14a	45.39b	45.69b	45.54b	54.79b	55.43b	55.11b			
C₁	29.80a	30.55a	30.18a	49.15a	49.68a	49.41a	59.17a	60.67a	59.92a			
S.Em. (±)	0.36	0.43	0.39	0.51	0.50	0.50	0.29	0.31	0.25			
L.S.D(P<0.05)	3.42	3.65	3.49	3.62	3.61	3.61	3.61	3.61	3.61			

Means with the same letter are not significantly different

MAP-Month after planting
Table 3 Effect of Nutrient management on Canopy Spread (cm) on East- West Direction (contd….)

Treatments/Combination	12 MAP 2015	12 MAP 2016	Mean 2015	15 MAP 2015	15 MAP 2016	Mean 2015	18 MAP 2015	18 MAP 2016	Mean 2015
A₀	59.71b	61.35c	60.53c	68.76b	74.62b	71.69b	86.14b	85.87b	86.01b
A₁	78.56a	77.78a	78.17a	91.23a	92.69a	91.96a	112.82a	112.68a	112.75a
A₂	77.12a	75.95b	76.54b	86.85a	87.87a	87.36a	107.53a	107.82a	107.67a
S.Em. (±)	0.53	0.43	0.43	2.97	3.02	2.96	2.57	2.39	2.33
L.S.D(P<0.05)	1.52	1.22	1.23	8.53	8.68	8.52	6.53	6.87	6.69
B₀	68.91b	68.73b	68.82b	76.99b	79.87a	78.43b	98.27b	98.06a	98.17b
B₁	72.76a	72.89a	72.82a	83.70b	87.10a	85.40b	102.67b	103.57a	103.12a
B₂	73.72a	73.47a	73.60a	86.14a	88.22a	87.18a	105.55a	104.73a	105.14a
S.Em. (±)	0.53	0.43	0.43	2.97	3.02	2.96	2.27	2.39	2.33
L.S.D(P<0.05)	1.52	1.22	1.23	8.53	NS	8.52	6.53	NS	6.69
C₀	68.45b	67.81b	68.13b	79.13a	80.56b	79.85b	97.48b	97.85b	97.67b
C₁	75.14a	75.58a	75.36a	85.42a	89.56a	87.49a	106.85a	106.39a	106.12a
S.Em. (±)	0.43	0.35	0.35	2.42	2.47	2.42	1.86	1.95	1.90
L.S.D(P<0.05)	1.24	1.00	1.00	NS	7.09	6.95	5.34	5.61	5.46

MAP-Month after planting

Means with the same letter are not significantly different
Table 4 Effect of Nutrient management on Number of leaves

Treatments	3 MAP (Mean)	6 MAP (Mean)	9 MAP (Mean)	L.S.D.(P<0.05)					
	2015	2016	2015	2016	2015	2016			
A₀	12.06b	11.17b	11.61b	20.00b	20.23b	20.11b	27.87b	28.36b	28.12b
A₁	15.77a	16.46a	16.11a	25.84a	26.84a	26.34a	34.69a	35.46a	35.08a
A₂	15.55a	15.58a	15.56a	25.52a	26.22a	25.87a	33.83a	34.90a	34.37a
S.Em. (±)	0.28	0.35	0.29	0.48	0.57	0.51	0.43	0.53	0.44
L.S.D.(P<0.05)	0.80	0.99	0.85	1.39	1.63	1.47	1.23	1.52	1.27
B₀	13.73b	13.92a	13.83b	22.71b	23.75a	23.23a	31.09b	32.26a	31.67b
B₁	14.93a	14.52a	14.73a	24.13a	24.72a	24.42a	32.44a	33.11a	32.78a
B₂	14.71a	14.77a	14.74a	24.52a	24.82a	24.67a	32.86a	33.36a	33.11a
S.Em. (±)	0.28	0.35	0.29	0.48	0.57	0.57	0.43	0.53	0.44
L.S.D.(P<0.05)	0.80	NS	0.85	1.39	NS	1.39	1.23	NS	1.27
C₀	13.66b	13.82b	13.74b	23.10b	23.84a	23.51b	31.36	32.27b	31.81b
C₁	15.26a	14.98a	15.12a	24.47a	25.02a	24.74a	32.90a	33.55a	33.22a
S.Em. (±)	0.23	0.28	0.24	0.40	0.46	0.42	0.35	0.43	0.36
L.S.D.(P<0.05)	0.65	0.82	0.69	1.14	NS	1.20	1.00	1.24	1.04

Means with the same letter are not significantly different

MAP-Month after planting

2480
Table 4 Effect of Nutrient management on Number of leaves (contd….)

Treatments/ Combination	Mean	Mean	Mean	Mean	Mean	
	2015	2016	2015	2016	2015	2016
L.S.D (P≤0.05)	2.45	3.61	2.90	4.29	5.04	4.59
B₃	36.13b	36.72b	36.43b	40.76a	42.39a	41.58a
	45.26a	45.72a	45.49a			
S.Em. (±)	0.85	1.26	1.01	1.49	1.75	1.60
L.S.D (P≤0.05)	2.45	3.61	2.90	4.29	5.04	4.59
S.Em. (±)	0.85	1.26	1.01	1.49	1.75	1.60
L.S.D (P≤0.05)	2.45	3.61	2.90	4.29	5.04	4.59
C₉	36.63b	36.68b	36.65b	41.26b	42.67b	41.97b
	45.18b	45.78b	45.48b			
S.Em. (±)	0.70	1.03	0.82	1.22	1.43	1.30
L.S.D (P≤0.05)	2.00	2.95	2.36	3.50	4.11	3.75

Means with the same letter are not significantly different

Int. J. Curr. Microbiol. App. Sci. (2017) 6(9): 2471-2488

Table 4 Effect of Nutrient management on Number of leaves (contd….)

Treatments	12 MAP	18 MAP										
	2015	2016	2015	2016	2015	2016	2015	2016	2015	2016	2015	2016
L.S.D (P≤0.05)	5.99	8.55	7.10	10.51	12.34	11.24	10.13	11.54	3.78	3.78	3.78	

Mean

MAP-Month after planting

2481
Table 5: Effect of Nutrient management on D-leaf length (cm)

Treatments	3 MAP	6 MAP	9 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A₀	20.02b	19.71b	19.86b	24.62b	25.24b	24.93b	29.79c	32.85b	31.32c
A₁	22.54a	22.47a	22.64a	27.80a	28.04a	27.92a	34.68a	36.01a	35.35a
A₂	22.51a	22.40a	22.47a	27.31a	27.69a	27.50a	34.03b	35.045a	34.74b
S.Em. (±)	0.33	0.27	0.29	0.31	0.27	0.28	0.21	0.26	0.20
L.S.D.(P≤0.05)	0.94	0.78	0.84	0.90	0.78	0.81	0.60	0.75	0.58
B₀	21.42ab	21.15a	21.29a	26.45a	26.46b	26.45a	32.22b	34.07b	33.14b
B₁	21.29ab	21.82a	21.56a	26.52a	27.20ab	26.86a	33.01a	35.00a	34.01a
B₂	22.36a	21.87a	22.12a	26.78a	27.31a	27.05a	33.27a	35.24a	34.26a
S.Em. (±)	0.33	0.27	0.29	0.31	0.27	0.28	0.21	0.26	0.20
L.S.D.(P≤0.05)	0.94	0.78	0.84	0.90	0.78	0.81	0.60	0.75	0.58
C₀	21.21b	21.22b	21.22b	26.21b	26.63b	26.42b	32.18b	34.11b	33.15b
C₁	22.16a	22.01a	22.09a	26.95a	27.35a	27.15a	32.49a	35.43a	34.46a
S.Em. (±)	0.27	0.22	0.24	0.26	0.22	0.23	0.17	0.21	0.17
L.S.D.(P≤0.05)	0.77	0.64	0.69	0.73	0.63	0.66	0.49	0.62	0.48

Means with the same letter are not significantly different

MAP-Month after planting
Table 5: Effect of Nutrient management on D-leaf length (cm) (contd….)

Treatments	12 MAP	15 MAP	18 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A0	37.64b	41.48b	39.56b	46.11b	48.31b	47.21b	54.44b	55.25b	54.85b
A1	44.90a	45.39a	45.15a	51.56a	51.86a	51.71a	59.18a	60.35a	59.77a
A2	43.77a	44.40a	44.09a	50.77a	51.42a	51.10a	58.22a	59.34a	58.78a
S.Em. (±)	0.77	0.79	0.65	0.71	0.61	0.62	0.42	0.45	0.39
L.S.D.(P≤0.05)	2.20	2.28	1.87	2.04	1.76	1.79	1.22	1.28	1.11
B	40.80b	42.63a	41.71b	48.58a	49.40b	48.99b	55.91b	56.73b	56.32b
S.Em. (±)	0.77	0.79	0.65	0.71	0.61	0.62	0.42	0.45	0.39
L.S.D.(P≤0.05)	2.20	NS	1.87	1.76	1.79	1.22	1.28	1.11	
C	40.98b	42.76b	41.87b	48.73a	49.55b	49.15b	55.88b	56.99b	56.44b
S.Em. (±)	0.63	0.64	0.53	0.58	0.50	0.51	0.35	0.36	0.31
L.S.D.(P≤0.05)	1.80	1.86	1.53	NS	1.43	1.46	1.00	1.05	0.90

Means with the same letter are not significantly different

Int. J. Curr. Microbiol. App. Sci. (2017) 6(9): 2471-2488
Table 6 Effect of Nutrient management on D-leaf breadth (cm)

Treatments	3 MAP	6 MAP	9 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A₀	3.08c	3.18b	3.13c	3.18c	3.24b	3.21c	3.33b	3.41b	3.37b
A₁	3.76a	4.02a	3.89a	3.92a	4.21a	4.06a	4.12a	4.29a	4.21a
A₂	3.35a	3.89a	3.62b	3.49b	4.06a	3.78b	3.73ab	4.16a	3.95a
S.Em. (±)	0.07	0.10	0.07	0.07	0.13	0.08	0.14	0.15	0.15
L.S.D.(P≤0.05)	0.19	0.28	0.21	0.19	0.36	0.24	0.41	0.44	0.42
B₀	3.38a	3.58a	3.48a	3.42b	3.74a	3.58a	3.62a	3.75a	3.69a
B₁	3.38a	3.72a	3.55a	3.52ab	3.88a	3.70a	3.73a	4.03a	3.88a
B₂	3.43a	3.78a	3.61a	3.90a	3.78a	3.84a	3.84a	4.08a	3.96a
S.Em. (±)	0.07	0.10	0.07	0.07	0.13	0.08	0.14	0.15	0.15
L.S.D.(P≤0.05)	0.19	0.28	0.21	0.19	0.36	0.24	0.41	0.44	0.42
C₀	3.28b	3.58a	3.43b	3.43b	3.75b	3.59a	3.60a	3.81a	3.71a
C₁	3.51a	3.81a	3.66a	3.63a	3.93a	3.78a	3.85a	4.09a	3.98a
S.Em. (±)	0.05	0.08	0.06	0.05	0.10	0.07	0.12	0.12	0.12
L.S.D.(P≤0.05)	0.15	NS	0.17	0.15	0.29	NS	NS	NS	NS

Means with the same letter are not significantly different.

MAP-Month after planting
Table 6 Effect of Nutrient management on D-leaf breadth (cm) (contd….)

Treatments	12 MAP	15 MAP	18 MAP						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A₀	3.54b	3.81b	3.68b	3.76b	3.84b	3.80b	3.97b	4.06b	4.02b
A₁	4.50a	4.54a	4.52a	4.54a	4.63a	4.58a	4.73a	4.85a	4.79a
A₂	4.32a	4.34a	4.32a	4.38a	4.52a	4.45a	4.58a	4.72a	4.65a
S.E.m. (±)	0.09	0.11	0.09	0.09	0.09	0.09	0.09	0.10	0.10
L.S.D.(P≤0.05)	0.25	0.32	0.27	0.27	0.27	0.27	0.27	0.29	0.28
B₀	3.98b	4.07b	4.02b	4.12a	4.32a	4.18a	4.28b	4.41a	4.35a
B₁	4.13ab	4.19b	4.16ab	4.19a	4.32a	4.26a	4.43ab	4.55a	4.49a
B₂	4.26a	4.42a	4.33a	4.35a	4.45a	4.40a	4.56a	4.67a	4.12a
S.E.m. (±)	0.09	0.11	0.09	0.09	0.09	0.09	0.09	0.10	0.10
L.S.D.(P≤0.05)	0.25	0.32	0.27	NS	NS	0.27	NS	NS	0.27
C₀	3.98b	4.02b	4.00b	4.09b	4.22a	4.16b	4.28b	4.40b	4.34b
C₁	4.27a	4.44a	4.35a	4.39a	4.44a	4.40a	4.57a	4.69a	4.63a
S.E.m. (±)	0.07	0.09	0.08	0.08	0.08	0.08	0.08	0.08	0.08
L.S.D.(P≤0.05)	0.20	0.26	0.22	NS	0.22	0.22	0.24	0.23	0.23

Treatments/Combination	12 MAP	15 MAP	18 MAP
	2015	2016	Mean
T₁	3.40f	3.44f	3.42g
T₂	3.58ef	3.88cdef	3.73efg
T₃	3.51ef	3.53f	3.52fg
T₄	3.52ef	3.85de	3.91def
T₅	3.56ef	3.71ef	3.64fg
T₆	3.70ef	4.44abde	4.07def
T₇	4.11bde	4.14abcde	4.13bced
T₈	4.40abcd	4.42abcde	4.45ab
T₉	4.50abcde	4.48abcde	4.41abcde
T₁₀	4.68ab	4.78ab	4.73ab
T₁₁	4.44abcd	4.51abcd	4.48ab
T₁2	4.85a	4.88a	4.87a
T₁₃	3.97def	4.06bde	4.02defg
T₁₄	4.41abcd	4.48abcde	4.45abcde
T₁₅	3.97def	3.96cdef	3.97def
T₁₆	4.58abcde	4.55abcde	4.57abcde
T₁₇	4.34abcd	4.32abcd	4.33abcd
T₁₈	4.66abc	4.64abc	4.65abc
S.E.m. (±)	0.21	0.27	0.23
L.S.D.(P≤0.05)	0.61	0.78	0.65

MAP-Month after planting **Means with the same letter are not significantly different
Table 7 Effect of Nutrient management on D-leaf area (cm²)

Treatments	3 MAP (cm²)	6 MAP (cm²)	9 MAP (cm²)						
	2015	2016	Mean	2015	2016	Mean	2015	2016	Mean
A₀	61.70c	62.72b	62.21c	78.31c	81.84c	99.19c	111.79b	105.49b	
A₁	84.73a	91.62a	88.17a	109.15a	118.24a	113.69a	143.12a	154.65a	148.90a
A₂	75.25b	87.30a	81.27b	95.43b	112.71a	104.07b	127.19b	147.52a	137.36a
S.Em. (±)	1.76	2.63	1.99	2.21	3.79	2.66	4.74	5.35	4.97
L.S.D.(P≤0.05)	5.07	7.55	5.72	6.35	10.89	7.66	13.62	15.37	14.28
T₀	72.61a	76.28a	74.44a	90.77b	99.48a	95.13a	116.99a	128.16b	122.57a
T₁	72.25a	82.05a	77.15a	93.87b	106.05a	99.96a	124.12a	141.60b	132.86a
T₂	76.82a	83.31a	80.06a	98.24a	107.25a	92.74a	128.42a	144.20a	136.31a
S.Em. (±)	1.76	2.63	1.99	2.21	3.79	2.66	4.74	5.35	4.97
L.S.D.(P≤0.05)	NS	NS	NS	6.35	NS	NS	NS	15.37	NS
C₀	69.81b	76.67b	73.24b	90.03b	100.54a	95.29b	116.45b	130.59b	123.52b
C₁	77.97a	84.42a	81.20a	98.55a	107.98a	103.27a	129.90a	145.38a	137.64a
S.Em. (±)	1.44	2.14	1.63	1.80	3.09	2.17	3.87	4.37	4.06
L.S.D.(P≤0.05)	4.14	6.16	4.67	5.18	NS	6.25	11.12	12.55	11.06

Means with the same letter are not significantly different

MAP-Month after planting
Table 7 Effect of Nutrient management on D-leaf area (cm²) (contd….)

Treatments	12 MAP	15 MAP	18 MAP
A₀	133.29c	158.56b	145.93b
A₁	202.30a	206.51a	204.4a
A₂	189.23b	192.45a	190.84a
S.E.m. (+)	4.36	6.23	4.80
L.S.D(P≤0.05)	12.53	17.92	13.79
B₀	163.02b	173.65b	168.33b
B₁	176.14a	186.26b	181.2ab
B₂	185.67a	197.61a	191.64a
S.E.m. (+)	4.36	6.23	4.80
L.S.D(P≤0.05)	12.53	17.92	13.79
C₀	163.70b	172.36b	168.03b
C₁	186.18a	199.32a	192.75a
S.E.m. (+)	3.56	5.09	3.91
L.S.D(P≤0.05)	10.23	14.63	11.26

Means with the same letter are not significantly different

Table 7 Effect of Nutrient management on D-leaf area (cm²) (contd….)

Treatments/ Combination	12 MAP	15 MAP	18 MAP
A₀⁺B₀⁺C₀	124.68b	136.19g	130.44b
A₀⁺B₁⁺C₀	135.23g	163.23defg	149.23gh
A₀⁺B₂⁺C₀	130.35g	145.81f	138.08gh
A₀⁺B₃⁺C₀	134.87gh	163.37defg	149.12fgh
A₀⁺B₄⁺C₀	133.96gh	154.37efg	144.17fgh
A₀⁺B₅⁺C₀	140.67gh	188.37bedefg	164.52fgh
A₀⁺B₆⁺C₀	175.66def	176.96defefg	192.75a
A₁⁺B₀⁺C₀	191.82bcde	196.03abcde	193.93bede
A₁⁺B₁⁺C₀	192.53bcde	201.31abcde	196.92bcde
A₁⁺B₂⁺C₀	221.83ab	227.08abcde	250.82abcde
A₁⁺B₃⁺C₀	197.95bcde	202.34abcd	200.15bced
A₁⁺B₄⁺C₀	233.99a	235.34a	234.67a
A₁⁺B₅⁺C₀	157.68f	171.3defg	164.49efgh
A₁⁺B₆⁺C₀	193.02bcde	198.19abcde	195.61bcde
A₅⁺B₀⁺C₀	171.47ef	173.99abedf	172.73def
A₅⁺B₁⁺C₀	205.77abcd	205.98abcd	205.88abcd
A₅⁺B₂⁺C₀	188.98cde	188.94cdfed	188.96cde
S.E.m. (+)	10.68	15.27	11.75
L.S.D.(P≤0.05)	30.68	43.89	33.77

MAP-Month after planting

Means with the same letter are not significantly different

2487
It is clear from the tables 5, 6 and 7 that the D-leaf length, breadth and area has increased continuously from 3 months after planting to eighteen months after planting in both 2015, 2016 and significantly varied among the most of the treatments for both the years and for pooled mean values which suggest there is a role of integrated nutrient management for growth behaviour of pineapple. It is also noticed that organic manure as main factor has non-significant role for D-leaf length, breadth and area for some observation time. The rate of increase of length was higher from 9 to 12 and 12 to 15 months after planting. At 18 months after planting the D-leaf length (pooled) was highest (63.35 cm) with T_{12} which was statistically at par with T_{10} and T_{18}. Almost similar observation was recorded (pooled) for D-leaf breadth which was recorded maximum (5.17cm) with T_{12}. It is also observed from the pooled means of table 7 that the highest D-leaf area (327.54 cm\(^2\)) was recorded with T_{12} which was statistically at par with T_{10} (305.82cm\(^2\)), T_{18} (299.71cm\(^2\)), and T_{16} (287.85cm\(^2\)). Several scientist had reported regarding the nutritive management which confirms the result of present experiment. Omotoso and Akinrinde (2013) and (Bhugaloo, 1998). Reported the effect of N fertilizer application on growth and behavior in pineapple. Singh et al., (2010), to study the response of integrated nutrient management on growth, yield and quality of papaya cv. Surya. Organic manure, urea and their combination have also important role in growth behavior like D-leaf length, number of leaves, root length and leaf area (Omotoso and Akinrinde, 2012).

The different parameters for growth behaviour study of pineapple cv. Mauritius under the integrated nutrient management showed significant variation for 2015, 2016 and pooled means among most of the treatments. It is also found from the present experiment that the treatment combinations having chemical fertilizer, organic manure and bio-fertilizers shows better performance than the other treatment combinations. The plant height, canopy spread, number of leaves, D-leaf length, D-leaf breadth, and leaf area was recorded highest in T_{12} (A_1B_3C_1).

References

Anonymous, 2017. Accessed from on http://prsvkm.kau.in/sites/default/files/documents/pineapple_sector_in_kerala_statust opportunities_challenges_and_stakeholders.pdf on 12.6.2016

Bhugaloo, R. A., 1998. Effect of different levels of nitrogen on yield and quality of pineapple variety Queen Victoris. Food and Agricultural Research Council, Reduit, Mauritius.

Jacob, C., and Soman M. 2006. In: Pineapples. Working Paper Series. Institute for Financial Management and Research Centre for Development Finance.

Omotoso, S.O., and Akinrinde E. A. 2013. Effect of nitrogen fertilizer on some growth, yield and fruit quality parameters in pineapple (Ananas comosus L. Merr.) plant at Ado-Ekiti Southwestern, Nigeria. International Research Journal of Agricultural Science and Soil Science, 3(1): 11-16

Omotoso, S.O., and Akinrinde, E. A. 2012. Effects of nutrient sources on the early growth of pineapple plantlets (Ananas comosus (L) Merr) in the nursery. Journal of Fruit and Ornamental Plant Research, 20(2): 35-40

Reddy, B.M.C., and Prakash, G. S. 1982. Standardization of optimum depth of trench of planting Kew Pineapple. In: Annual Report. Indian Institute of Horticultural Research, p. 19.

Singh, K., Barche, K. S., and Singh, D. B. 2010. Integrated nutrient management in papaya (Carica papaya) cv. Surya. Acta Horticulturae, 851:377-380

How to cite this article:

Nilesh Bhowmick, Partha Sarathi Munsi, Swapan Kumar Ghosh, Prahlad Deb and Arunava Ghosh. 2017. Growth Behavior of Pineapple cv. Mauritius under Integrated Nutrient Management in Northern part of West Bengal, India. Int.J.Curr.Microbiol.App.Sci. 6(9): 2471-2488. doi: https://doi.org/10.20546/ijcmas.2017.609.305