Asterias rubens: Evidence of NF-kappa B genes

Michel Leclerc a, Nicolas Kresdorn b, Ralf Horres b

a 556 rue Isabelle Romée, 45640 Sandillon, France
b GenXPro, Frankfurf, Germany

Abstract

In the present paper we show a survey of the Asterias rubens sea star genome for genes associated with NF-kappa-B proteins implied in the immune response. The NF-kappa B gene, into 2 subunits, was found in this invertebrate.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

In recent papers, we have found that the A. rubens sea star genome has shown Ig kappa genes (Leclerc et al., 2011; Vincent et al., 2014) We discovered also the interleukin 17 receptor B (Leclerc et al., 2013) which mediated the activation of NF-kappa B in mammals (Hayden et al., 2006). So It seemed really interesting to study the NF-kappa B genes in such an invertebrate.

1. Material and methods

Immunized and non-immunized sea stars to HRP (Horse-radish peroxidase) were used (Leclerc et al., 2011). The sea star axial organs were removed. RNA was extracted using Trizol (Invitrogen) according to manufacturer’s instructions. CDNA was normalized using double strand specific nuclease essentially as described by Zhulidov et al. (2004). CDNA was fragmented using DNA fragmentase (New England Biolabs), according to the manufacturer’s instructions. After ligation of adapters for Illumina’s GSII sequencing system, the cDNA was sequenced on the Illumina GSII platform sequencing 1.100 bp from one side of the approximately 200 bp fragments. Sequences were assembled using Velvet: Zerbino et al. (2007). Assembled nodes were used for further assembled including Beta vulgaris EST-Data from NCBI in MIRA.

2. Results

Results are summarized as following:

A) Controls

The first contig shows the presence, in non-immunized A. rubens of the gene: NF-kappa-B one contig (Contig12117|m.10680) could be annotated via BLASTX to mouse “Nuclear factor NF-kappa-B p100 subunit” from the SWISSPROT database, with an e-value of 7.00E-071. On an aligned region of 242 amino acids, 170 positive and 138 identical amino acids were found.

5’: AGAAGATTGAAAACCGGAAGAATTGTGACACTGCAACTTGTCACACTT GAAGAACAAATT TAAAAAGATGTCAGACGAGGAGAGGTCTGATTCCCTGCAGTCAGTTGAGAT CCAAATAAG CAGTTACAGCGACATTTCTTAAACAAATAACCGAGGACATCAAACCAATCTCC TGGAATTGAT TTATCTGTTCTGCCAATCTGACCTCTCATCACTGAGGTCATGACAGGAATGA GTCAACAG CACGCTAAATGACCTCTCTGCTCCCAAACTCCGCATCATAGAGCAACCCAAAC AGCGTGGC TTTCGGTTCCGTATCGACTGCAGGAGGGAACCTACATGCTGGTCTCCCGGG TCAAACTAG CAGAGAGAAAGAGAGCCCTCATCTGAGATTTAATACCTATATATCTCTGG AGCGTTGCA AGCTTTCAAAACCTGGCATTCTCATATTCGCGCAAGAATGTTGAGAG GGTCTTGAAA

3’.

E-mail address: mleclerc45@gmail.com (M. Leclerc).

http://dx.doi.org/10.1016/j.mgene.2015.12.006
2214-5400/© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The second contig with its sequence reveals the presence of another subunit of NF Kappa-B (p105):

The contig (Contig675|m.5295) could be annotated via BLASTX to mouse "Nuclear factor NF-kappa-B p105 subunit" from the SWISSPROT database, with an e-value of 4.00E-071. On an aligned region of 518 amino acids, 263 positive and 192 identical amino acids were found.

5′: CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGCAGCAGAC
CACCAGGCTGGCGGCTCCAGAGAGCTGTATAAGCTTTGAAAAGTGAAC
ACTATTAGAG
GCAAAAGAGGCCGCTACTGGAATGGTGAAGCTGAGTTGAGTCTGACGAGTGGAGT
TGAGTACG
ACTTTTTTGACACTTACTACACTTCAACTACCATGTTACTGAGTGGAGTCTGACGAGTGGAGT
TGAGTACG

M. Leclerc et al. / Meta Gene 8 (2016) 30–32
ATGGCGACTCATCTGTTGAGGTCACATGGAAAAAGGAAAATACAATGCTAACATCTCCTG
AGCTGCCTAACATTGAAGTAAAGGGGAAGCTCTCTGCTTATAAAGAAGGCTCGACTGCCA
ATGGTGGTAAATACACCTGCAGTGGATTGTACAACAAAACAATTCCAGTTGAACAAACTA
TTTATGTAGGAGGGAATGCGAATCAAGTCCCCCAATTCAGTGAAGTTTACAGAAGGAG
AGCGTGCTCGCTTTGAGTGTGTCATTCTCCAGCCAGAAGGCGACCCCAAACCTACTTTCC
AATGGATAGTGAGCACTGCAAACTACACCTTTGAGCTGACTGAGACGATTGAGGGAAGTC
GCTACTCCATTGAGCCGTCCAAGCACAAGACTGGATCCATCTTGCACATGCTGGATGTAG
TCAAGGAAGACAGAGAACTATACTTGCATTGCAACCAGTAACGT3′

B) HRP.

2 contigs (a and b) show the presence also of two subunits of nuclear factor in immunized A. rubens.

a) One contig (Contig11285|m.9708) could be annotated via BLASTX to mouse “Nuclear factor NF-kappa-B p100 subunit” from the SWISSPROT database, with an e-value of 1.00E-031. On an aligned region of 203 amino acids, 107 positive and 78 identical amino acids were found.

b) Another contig (Contig2602|m.5791) could be annotated via BLASTX to mouse “Nuclear factor NF-kappa-B p105 subunit” from the SWISSPROT database, with an e-value of 2.00E-058. On an aligned region of 398 amino acids, 209 positive and 153 identical amino acids were found.

3. Discussion and conclusion

Echinoderms occupy a critical and largely unexplored phylogenetic situation from the point of view of the evolution. According to the present study, it appears that NF kappa-B factor is present in sea star immune genome, under 2 subunits p100(daltons) and p105(daltons). It seems fundamental when compared to another invertebrate the arthropod in its specificity. Undoubtedly the NF-kappa B plays an important role in the immune function of A. rubens. Nevertheless this role remains enigmatic, when compared to mammal’s one (Scheinman et al., 1993). In conclusion, the sea star immune system, in its discovery appears more and more sophisticated.

References

Hayden, M.S., et al., 2006. Oncogene 25, 6758–6780.
Leclerc, M., et al., 2011. Immunol. Lett. 138 (19), 7–198.
Leclerc, M., et al., 2013. Am. J. Immunol. 9, 65.
Scheinman, R.I., et al., 1993. Mol. Cell. Biol. 10, 6089–6101.
Vincent, N., et al., 2014. Metagene 2, 320–322.
Zerbino, D.R., et al., 2007. Genome Res. 18, 821–829.
Zhulidov, P.A., et al., 2004. Nucleic Acids Res. 3, 32–37.