A CLASS OF BANACH ALGEBRAS OF GENERALIZED MATRICES

MAYSAM MAYSAMI SADR

Abstract. We introduce a class of Banach algebras of generalized matrices and study the existence of approximate units, ideal structure, and derivations of them.

1. Introduction

Let X be a compact metrizable space and m be a Borel probability measure on X. In this note we study some aspects of the algebraic structure of a Banach algebra M of generalized complex matrices whose their arrays are indexed by elements of X^2 and vary continuously. The multiplication of M is defined similar to the ordinary matrix multiplication and uses m as the weight for arrays. See Section 2 for exact definition. In the case that m has full support, M is isometric isomorphic to a subalgebra of compact operators acting on the Banach space of continuous functions on X. Indeed any element of M defines an integral operator in a canonical way. Thus M can be interpreted as a Banach algebra of integral operators or kernels ([2]). In Section 3 we investigate the existence of approximate units of M. In Section 4 we show that if X is infinite then the center of M is zero. In Section 5 we study ideal structure of M. In Section 6 we consider some classes of representations of M. In Section 7 we show that under some mild conditions bounded derivations on M are approximately inner.

Notations. For a compact space X and a Banach space E we denote by $C(X; E)$ the Banach space of continuous E-valued functions on X with supremum norm. We also let $C(X) := C(X; C)$. There is a canonical isometric isomorphism $C(X; E) \cong C(X) \hat{\otimes} E$ where $\hat{\otimes}$ denotes the completed injective tensor product. The phrase “point-wise convergence topology” is abbreviated to “pct”. By pct on $C(X; E)$ we mean the vector topology under which a net $(f_\lambda)_{\lambda} \in C(X; E)$ converges to f if and only if $f_\lambda(x) \to f(x)$ in the norm of E for every $x \in X$. If f and f' are complex functions on spaces X and X' then $f \otimes f'$ denotes the function on $X \times X'$ defined by $(x, x') \mapsto f(x)f'(x')$. The support of a Borel measure m is denoted by Spm. $B_{x, \delta}$ denotes the open ball with center at x and radius δ.

2. The main definitions

Let X be a compact metrizable space and m be a Borel probability measure on X. By analogy with matrix multiplication we let the convolution of $f, g \in C(X^2)$ be defined by $f \star g(x, y) = \int_X f(x, z)g(z, y)dm(z)$. Also by analogy with matrix adjoint we let $f^* \in C(X^2)$ be defined by $f^*(x, y) = f(y, x)$. It is easily verified that \star is an associative multiplication, \ast is an involution, and also, $\|f \ast g\|_\infty \leq \|f\|_\infty \|g\|_\infty$ and $\|f^*\|_\infty = \|f\|_\infty$; thus $C(X^2)$ becomes

\textit{2010 Mathematics Subject Classification.} 46H05; 46H35; 46H10; 47B48; 46H25.

\textit{Key words and phrases.} Banach algebra; generalized matrix; approximate unit; ideal; derivation.
a Banach $*$-algebra which we denote by \mathcal{M}_X. If X is a finite space with n distinct elements x_1, \cdots, x_n and $\text{Spm} = X$ then the assignment $(a_{ij}) \mapsto ((x_i, x_j) \mapsto \frac{1}{m(x_i)} a_{ij})$ defines a $*$-algebra isomorphism from the algebra of $n \times n$ matrices onto \mathcal{M}_X.

Beside norm and pc topologies on \mathcal{M}_X, we need two other topologies: Consider the canonical isometric isomorphism $f \mapsto (y \mapsto f(\cdot, y))$ from $C(X)$ onto $C(\mathbb{X}; C(X))$. We define the column-wise convergence topology (cct for short) on \mathcal{M}_X to be the pull back of the pct on $C(\mathbb{X}; C(X))$ under this isomorphism. The row-wise convergence topology (rct for short) on \mathcal{M}_X is defined similarly by using the other canonical isomorphism $f \mapsto (x \mapsto f(x, \cdot))$. The pct on $C(X) = \mathcal{M}_X$ is contained in the intersection of cct and rct. Column-wise and row-wise cts are adjoint to each other in the sense that the involution \ast from \mathcal{M}_X with cct to \mathcal{M}_X with rct is a homeomorphism. If $a_\lambda \underset{\text{cct}}{\rightarrow} a$ and $b_\lambda \underset{\text{rct}}{\rightarrow} b$ in \mathcal{M}_X, then $c \ast a_\lambda \underset{\text{cct}}{\rightarrow} c \ast a$ and $b_\lambda \ast c \underset{\text{rct}}{\rightarrow} b \ast c$ for every c.

The assignment $(X, m) \mapsto \mathcal{M}_X$ can be considered as a cofunctor from the category of pairs (X, m) to the category of Banach $*$-algebras: Suppose that (X', m') is another pair of a compact metrizable space and a Borel probability measure on it. Let $\alpha : X' \rightarrow X$ be a measure preserving continuous map. Then α induces a bounded $*$-algebra morphism $\mathcal{M}\alpha$ from $\mathcal{M}_{X,m}$ into $\mathcal{M}_{X',m'}$ defined by $[(\mathcal{M}\alpha)f](x', y') = f(\alpha(x'), \alpha(y'))$. By an explicit example we show that \mathcal{M} as a functor is not full: Let $\beta : X \rightarrow C$ be a continuous function with $|\beta| = 1_X$ and $\beta \neq 1_X$. Then $\hat{\beta} : \mathcal{M}_{X,m} \rightarrow \mathcal{M}_{X,m}$ defined by $\beta f(x, y) = \beta(x) f(x, y) \hat{\beta}(y)$ is an isometric $*$-algebra isomorphism. It is clear that $\hat{\beta}$ is not of the form $\mathcal{M}\alpha$ for any $\alpha : X \rightarrow X$.

Let X_0 be a closed subset of X containing Spm and let $i : X_0 \rightarrow X$ denote the embedding. Then $\mathcal{M}i : \mathcal{M}_{X,m} \rightarrow \mathcal{M}_{X_0,m}$ is surjective with kernel $I := \{ f : f|_{X_0} = 0 \}$. Thus $\mathcal{M}_{X,m}$ is an extension of $\mathcal{M}_{X_0,m}$ by the closed self-adjoint ideal I. Moreover, suppose that X_0 is a retract of X, i.e. there is a continuous map $\rho : X \rightarrow X_0$ with $\rho u = \text{id}_{X_0}$. It follows from functoriality of \mathcal{M} that $(\mathcal{M}\rho)(\mathcal{M}\rho)$ is the identity morphism on $\mathcal{M}_{X_0,m}$. This shows that the mentioned extension splits strongly in the sense of [1] Definition 1.2. The discussion we just had, shows that by removing the null part of m from X we do not lose the principal part of the structure of $\mathcal{M}_{X,m}$. We will see that $\text{Spm} = X$ is a crucial condition for the study of $\mathcal{M}_{X,m}$.

For any closed subset C of X we have $m(C) = \inf[(1_X \otimes f) \ast 1_{X'}](x, y)$, the infimum being taken over all continuous functions f on X with $f(X) \subseteq [0, 1]$ and $f(C) = \{ 1 \}$. Using this and inner regularity of m we can find the measure of any Borel subset. Hence we can recover m from $\mathcal{M}_{X,m}$. The author does not know if the homeomorphism type of X can be recovered from $\mathcal{M}_{X,m}$. Suppose that X is finite with $\text{Spm} = X$. It is not so hard to see that if $\phi : \mathcal{M}_{X,m} \rightarrow \mathcal{M}_{X',m'}$ is an isometric $*$-isomorphism then there exist a measure preserving injective and surjective map $\alpha : X' \rightarrow X$ and a function $\beta : X \rightarrow C$, with $|\beta| = 1_X$, such that $\phi = (\mathcal{M}\alpha) \hat{\beta}$, where $\hat{\beta}$ is defined as above. (Note that if ϕ is not supposed to be isometric then this assertion is wrong.) We suggest that this conclusion is true for any arbitrary X with $\text{Spm} = X$.

In Koopman’s theory, as it is well known, the operator algebras have many applications to study of dynamical systems and ergodic theory ([3]). In this direction, the study of algebraic properties of $\mathcal{M}_{X,m}$ may be useful: Let G be a discrete group of measure preserving homeomorphisms of X. Then G acts on $\mathcal{M}_{X,m}$ by isometric automorphisms and thus it is
appropriate to consider the crossed product Banach algebra \(A := G \times \mathcal{M}_X \). It is clear that any algebraic invariant of \(A \) is an invariant of the dynamical system \((\mathcal{X}, G)\). Moreover, if the suggestion stated in the preceding paragraph is true, then \((\mathcal{X}, G)\) is completely characterized by \(A \). We plan to discuss elsewhere such possible connections with ergodic theory.

3. Approximate units of \(\mathcal{M} \)

From now on, \(\mathcal{X} \) is a fixed compact metrizable space, \(\mathfrak{m} \) is a fixed Borel probability measure on \(\mathcal{X} \) with \(\operatorname{Spm} = \mathcal{X} \), and \(\mathcal{M} \) will denote \(\mathcal{M}_{\mathcal{X}, \mathfrak{m}} \). We also let \(\mathcal{d} \) denote a compatible metric on \(\mathcal{X} \). A right norm- (resp. pc-, cc-, rc-) approximate unit for \(\mathcal{M} \) is a net \((u_\lambda)_{\lambda} \) in \(\mathcal{M} \) such that \(au_\lambda \to a \) in the norm topology (resp. pct, cct, rct) for every \(a \in A \). If \(\sup_\lambda \|u_\lambda\|_\infty < \infty \) then \((u_\lambda)_{\lambda} \) is called bounded. (Bounded) left and two-sided norm- (resp. pc-, cc-, rc-) approximate units are defined similarly. It is clear that every norm-approximate unit is a pc-approximate unit. Suppose that \(\mathfrak{m} \) is an invariant of the dynamical system \((\mathcal{X}, G)\). Moreover, if the suggestion stated in the preceding paragraph is true, then \((\mathcal{X}, G)\) is completely characterized by \(A \). We plan to discuss elsewhere such possible connections with ergodic theory.

Theorem 3.1. There is a net in \(\mathcal{M} \) which is mutually a right cc-approximate unit and a left rc-approximate unit. Thus the same net is also a two-sided pc-approximate unit.

Proof. The set of all pairs \((S, \epsilon)\), in which \(S \) is a finite subset of \(\mathcal{X} \) and \(\epsilon > 0 \), with the ordering \(((S, \epsilon) \leq (S', \epsilon')) \iff (S \subseteq S', \epsilon' \leq \epsilon) \), becomes a directed set. For any pair \((S, \epsilon)\) choose \(\delta > 0 \) such that \(\delta < \epsilon \) and \(B_{y, 2\delta} \cap B_{y', 2\delta} = \emptyset \) for \(y, y' \in S \) with \(y \neq y' \), and let \(u_{S, \epsilon} = \sum_{y \in S} \frac{1}{\mathfrak{m}(B_{y, \delta})} E_{y, \delta} \otimes E_{y, \delta} \). We show that \((u_{S, \epsilon})_{(S, \epsilon)} \) is the desired net. Let \(f \in \mathcal{M} \) and \(r > 0 \) be arbitrary. Choose \(\epsilon > 0 \) with \(\epsilon < r \) such that for every \(z, z' \in \mathcal{X} \) if \(d(z, z') < \epsilon \) then \(|f(x, z) - f(x, z')| < r \). If \(x \) is arbitrary then for any pair \((S, \epsilon)\) with \(y \in S \) we have

\[
|f * u_{S, \epsilon} - f|(x, y) = \frac{1}{\mathfrak{m}(B_{y, \delta})} \left| \int_{B_{y, \delta}} [f(x, z) - f(x, y)] \, d\mathfrak{m}(z) + \int_{O_{x, \delta} \setminus B_{x, \delta}} f(x, z) E_{y, \delta}(z) \, d\mathfrak{m}(z) \right| \\
\leq r + r\|f\|_\infty.
\]

This shows that \(f * u_{S, \epsilon} \to f \) in cct. Similarly it is proved that \(u_{S, \epsilon} * f \to f \) in rct. \(\Box \)

Remark 3.2. The existence of a right (or left) pc-approximate unit for \(\mathcal{M} \) implies that \(\operatorname{Spm} = \mathcal{X} \). An easy proof is as follows. Let \((u_\lambda)_{\lambda} \) be a right pc-approximate unit. Let \(U \) be an arbitrary nonempty open set in \(\mathcal{X} \) and let \(f \in C(\mathcal{X}) \) be such that \(f(\mathcal{X} \setminus U) = \{0\} \) and \(f(x) = 1 \) for some \(x \in U \). Then we have \(1 = (1 \otimes f)(x, x) = \lim_\lambda [(1 \otimes f) * u_\lambda](x, x) = \lim_\lambda \int_U f(z) u_\lambda(z, x) \, d\mathfrak{m}(z) \). This implies that \(\mathfrak{m}(U) \neq 0 \). Hence \(\operatorname{Spm} = \mathcal{X} \).

Proposition 3.3. If \(\mathcal{M} \) has a bounded right (or left) pc-approximate unit then \(\mathcal{X} \) is finite.

Proof. Let \((u_\lambda)_{\lambda} \) be a right pc-approximate unit for \(\mathcal{M} \) bounded by \(M > 0 \). First of all we show that \(\mathfrak{m}(\{x\}) \neq 0 \) for every \(x \). Assume, to get a contradiction, that \(\mathfrak{m}(\{x\}) = 0 \) for some \(x \). Let \(\epsilon > 0 \) be such that \(\epsilon M < 1/2 \). There is an open neighborhood \(U \) of \(x \) with \(\mathfrak{m}(U) < \epsilon \). Let \(f : \mathcal{X} \to [0, 1] \) be a continuous function with \(f(x) = 1 \) and \(f(\mathcal{X} \setminus U) = \{0\} \). For every \(\lambda \) we have \(|(1 \otimes f) * u_\lambda|(x, x) \leq \int_U |f(z)| u_\lambda(z, x) \, d\mathfrak{m}(z) \leq \epsilon M < 1/2 \). But this is impossible because \([(1 \otimes f) * u_\lambda](x, x) \to 1 \).
Now, since $m(\mathcal{X}) = 1$, it is concluded that \mathcal{X} must be a countable space. Suppose that \mathcal{X} is not finite. Then there is an infinite discrete subset $\{x_1, x_2, \cdots\}$ of \mathcal{X}. For every n let $f_n \in \mathcal{M}$ be defined by $f_n(z, z') = 1$ if $z = z' = x_n$ and otherwise $f_n(z, z') = 0$. Then we have $1 = f_n(x_n, x_n) = \lim_{\lambda}(f_n \ast u_{\lambda})(x_n, x_n) = \lim_{\lambda} m\{x_n\} u_{\lambda}(x_n, x_n)$. It follows that $m\{x_n\} \geq 1/M$. But this contradicts $\lim_{n \to \infty} m\{x_n\} = 0$. Hence, \mathcal{X} is finite. □

Theorem 3.4. The following statements are equivalent.

(a) \mathcal{X} is finite.
(b) \mathcal{M} has a bounded right (or left) pc-approximate unit.
(c) \mathcal{M} has a unit.

Proof. (b)\Rightarrow(a) is the statement of Proposition [3.3] (c)\Rightarrow(b) is trivial. (a)\Rightarrow(c) is easily verified by analogy with ordinary matrix algebras. □

Lemma 3.5. Let $x \in X$. The function $r \mapsto m(B_{x,r})$ is continuous at $r_0 \in [0, \infty)$ if and only if $m\{y : \varnothing(x, y) = r_0\} = 0$. (Note that $B_{x,0} = \emptyset$.)

Proof. Straightforward. □

Lemma 3.6. The function $x \mapsto m(B_{x,r})$ is continuous at x_0 if $m\{y : \varnothing(x_0, y) = r\} = 0$.

Proof. For $\epsilon > 0$ by Lemma [3.5] there is $\delta > 0$ such that $m(B_{x_0,r+\delta} \setminus B_{x_0,r-\delta}) < \epsilon$. Suppose that $y \in B_{x_0,\delta}$. Then $m(B_{x_0,r-\delta}) = m(B_{y,r}) \leq m(B_{x_0,r+\delta})$. So $m(B_{x_0,r}) - m(B_{y,r}) < \epsilon$. □

Lemma 3.7. Let $\delta > 0$ be such that $m\{y : \varnothing(x, y) = \delta\} = 0$ for every $x \in \mathcal{X}$. Then there exists $\delta' < 2\delta$ such that $m(B_{x,\delta'} \setminus B_{x,\delta}) < \delta m(B_{x,\delta})$ for every $x \in \mathcal{X}$.

Proof. Assume, to reach a contradiction, that there is no δ' with the desired properties. For sufficiently large n we have $\delta + n^{-1} < 2\delta$ and hence there is a x_n such that $m(B_{x_n,\delta+n^{-1}}) - m(B_{x_n,\delta}) \geq \delta m(B_{x_n,\delta})$. Without lost of generality we can suppose that the sequence $(x_n)_n$ converges to an element x. Let $r > 0$ be arbitrary. For sufficiently large n we have $m(B_{x_n,\delta+n^{-1}}) \leq m(B_{x_n,\delta+r})$ and hence $\delta m(B_{x_n,\delta}) \leq m(B_{x_n,\delta+r}) - m(B_{x_n,\delta})$. It follows from Lemma [3.6] that $\delta m(B_{x,\delta}) \leq m(B_{x,\delta+r} \setminus B_{x,\delta})$. Letting $r \to 0$ and using Lemma [3.5] we conclude that $m(B_{x,\delta}) = 0$, a contradiction. □

Theorem 3.8. Suppose that the following condition is satisfied. (C1) \mathcal{X} has a compatible metric \varnothing under which there is a decreasing sequence $(\delta_n)_n$ of strictly positive numbers such that $\inf_n \delta_n = 0$ and $m\{y : \varnothing(x, y) = \delta_n\} = 0$ for every n and every $x \in \mathcal{X}$. Then \mathcal{M} has a right (resp. left) norm-approximate unit. Moreover, that approximate unit can be chosen so as to be a sequence.

Proof. For every n let δ'_n be such that the statement of Lemma [3.7] is satisfied with δ, δ' replaced by δ_n, δ'_n. Let $K_n = \{(x, y) : \varnothing(x, y) \leq \delta_n\}$ and $U_n = \{(x, y) : \varnothing(x, y) < \delta'_n\}$. Choose a continuous function $E_n : \mathcal{X}^2 \to [0, 1]$ such that $E_n(K_n) = \{1\}$ and $E_n(\mathcal{X}^2 \setminus U_n) = \{0\}$ and let E_n (resp. E'_n) be defined by $(x, y) \mapsto E_n(x, y)/m(B_{y,\delta_n})$ (resp. $(x, y) \mapsto E_n(x, y)/m(B_{x,\delta_n})$). (Note that by Lemma [3.6] $E_n, E'_n \in \mathcal{M}$.) Using Lemma [3.7] it is easily verified that $(E_n)_n$ (resp. $(E'_n)_n$) is a right (resp. left) norm-approximate unite for \mathcal{M}. □
Theorem 3.9. Suppose that the following condition is satisfied. (C2) \(X \) has a compatible metric \(d \) under which there exists a sequence \((\delta_n)_n \) satisfying all properties stated in (C1) and, in addition, \(m(B_{x,\delta_n}) = m(B_{y,\delta_n}) \) for every \(n \) and every \(x, y \in X \). Then \(M \) has a two-sided norm-approximate unit.

Proof. It is concluded from \(E_n = E'_n \) where \(E_n, E'_n \) are as in the proof of Theorem 3.8.

Example 3.10. If \(X \) is the closure of a nonempty bounded open subset of \(\mathbb{R}^n \) with the normalized \(n \)-dimensional Lebesgue measure and with the Euclidean metric, then \(X \) satisfies conditions of Theorem 3.8. More generally, if an open subset of a Riemannian manifold has compact closure \(X \) then \(X \), with the geodesic distance \(d \) and normalized Riemannian volume \(m \), satisfies conditions of Theorem 3.8. Indeed, \(m\{y : d(x, y) = r\} = 0 \) for every \(r \) and \(x \).

Example 3.11. Any closed Riemannian manifold \(X \) which has constant (positive) sectional curvature (e.g. standard spheres and tori, compact Lie groups with invariant Riemannian metrics), with geodesic distance \(d \) and normalized Riemannian volume \(m \), satisfies conditions of Theorem 3.8. Indeed, in addition to the property mentioned in Example 3.10 we have \(m(B_{x,r}) = m(B_{y,r}) \) for every \(r, x, y \).

Example 3.12. Let \(X \) be a second countable compact Hausdorff group. It is well-known that \(X \) has a compatible bi-invariant metric \(d \) i.e. \(d(xx', zyz') = d(x, y) \) for every \(x, y, z, z' \in X \) (see [8] or [6] Corollary A4.19). We show that \(d \) with the normalized Haar measure \(m \) satisfies (C1) and hence (because of invariant property of \(m \)) satisfies (C2): Suppose, on the contrary, that there is no sequence \((\delta_n)_n \) satisfying (C1) for \(d \). So there must be \(\epsilon > 0 \) such that \(m\{y : d(e, y) = r\} \neq 0 \) for every nonzero \(r < \epsilon \); thus \(m(B_{e,\epsilon}) = \infty \), a contradiction.

4. The center of \(M \)

It is clear that if \(X \) is finite then the center of \(M \) is the one-dimensional subalgebra of scalar multiples of the unit of \(M \). But in the infinite case the situation is different:

Theorem 4.1. If \(X \) is infinite then the center of \(M \) is zero.

Proof. Suppose that \(f \) is in the center of \(M \). Let \(x, y \) be arbitrary in \(X \) with \(x \neq y \), and \(\delta > 0 \) be such that \(d(x, y) > 4\delta \). Let \(g := \frac{1}{m(B_{x,\delta})} E_{x,\delta} \otimes E_{x,\delta} \) and \(h_{\delta} := \frac{1}{m(B_{x,\delta})} E_{x,\delta} \otimes E_{y,\delta} \). Then we have \(f \ast g(x, y) = 0 \) and hence \(g \ast f(x, y) = 0 \). We have,

\[
|f|(x, y) = |g \ast f - f|(x, y) \leq \frac{1}{m(B_{x,\delta})} \int_{B_{x,\delta}} |f(z, y) - f(x, y)|dm(z) + \delta \|f\|_{\infty}.
\]

By this inequality and continuity of \(f \) we conclude that \(f(x, y) = 0 \). Also, a simple computation shows that \(\lim_{\delta \to 0} f \ast h_{\delta}(x, y) = f(x, x) \) and \(\lim_{\delta \to 0} h_{\delta} \ast f(x, y) = f(y, y) \). Thus we have \(f(x, x) = f(y, y) \). Now, suppose that \(X \) is infinite. Then there is a sequence \((x_n)_{n \geq 0} \) such that \(x_n \to x_0 \) and \(x_0 \neq x_n \) for every \(n \geq 1 \) Thus \(f(x_0, x_0) = \lim_{n \to \infty} f(x_0, x_n) = 0 \) and hence \(f(x, x) = f(x_0, x_0) = 0 \). This completes the proof. □
5. The Ideal Structure of \mathcal{M}

It is clear that the involution $*$ induces a one-to-one correspondence between norm- (resp. rc-, cc-, pc-) closed right ideals and norm- (resp. cc-, rc-, pc-) closed left ideals of \mathcal{M}. Also any self-adjoint right or left ideal is a two-sided ideal. The rc-closure of any right ideal is a right ideal and the cc-closure of any left ideal is a left ideal. For any norm-closed linear subspace V of $\mathbb{C}(\mathfrak{X})$ we let $\mathcal{R}_V := \{ f \in \mathcal{M} : f(\cdot, y) \in V \}$ and $\mathcal{L}_V := \{ f \in \mathcal{M} : f(x, \cdot) \in V \}$.

It is clear that $\mathcal{R}_V^* = \mathcal{L}_V$ and $\mathcal{L}_V^* = \mathcal{R}_V$ where $V := \{ \bar{f} : f \in V \}$.

Theorem 5.1. \mathcal{R}_V (resp. \mathcal{L}_V) is a cc-closed right (resp. rc-closed left) ideal in \mathcal{M}. Moreover, if V is pc-closed then \mathcal{R}_V (resp. \mathcal{L}_V) is pc-closed.

Proof. It is clear that \mathcal{R}_V is a cc-closed linear subspace of \mathcal{M}. Let $f \in \mathcal{R}_V$ and $g \in \mathcal{M}$. For every y let $h_y : \mathfrak{X} \to V$ be defined by $h_y(z) = f(\cdot, z)g(z, y)$. Then the Bochner integral $\int_{\mathfrak{X}} h_y \text{d}m$ exists and belongs to V ([7 Proposition 1.31]). Since $f \ast g(\cdot, y) = \int_{\mathfrak{X}} h_y \text{d}m$, we have $f \ast g \in \mathcal{R}_V$. Thus \mathcal{R}_V is a right ideal. Also, $\mathcal{L}_V = \mathcal{R}_V^*$ is a rc-closed left ideal. The second part of the theorem is trivial. □

Theorem 5.2. Let R be a norm-closed right ideal of \mathcal{M} and let $V = \{ f(\cdot, y) : f \in R, y \in \mathfrak{X} \}$. Then V is a norm-closed linear subspace of $\mathcal{C}(\mathfrak{X})$ and the cc-closure of R is equal to \mathcal{R}_V.

Moreover, if R is pc-closed then V is pc-closed.

Proof. Suppose that $f \in R$ and $y \in \mathfrak{X}$. Let $\epsilon > 0$ be arbitrary and $\delta > 0$ with $\delta < \epsilon$ be such that if $d(z, z') < \delta$ then $|f(x, z) - f(x, z')| < \epsilon$ for every x. Then for every x, y' we have $|\frac{1}{m(B_y, \delta)} \mathbb{E}_{g, \delta}(x, \cdot) - f(x, y')| < \epsilon$ and $|f(x, y') - f(x, y)| \leq \epsilon + \epsilon \|f\|_{\infty}$. This implies that there exists $F_{f, y} \in R$ with $F_{f, y}(x, y) = f(x, y)$ for every x, z. Let $h, h' \in V$. Let $f, f' \in R$ and $y, y' \in \mathfrak{X}$ be such that $h = f(\cdot, y)$ and $h' = f'(\cdot, y')$. We have $h + h' = [F_{f, y} + F_{f, y}'](\cdot, z)$ for any arbitrary z and thus $h + h' \in V$. This shows that V is a linear subspace. Suppose that $g \in \mathcal{C}(\mathfrak{X})$ is a limit point of V. There are sequences $(f_n)_n \in R$ and $(y_n)_n \in \mathfrak{X}$ such that $f_n(\cdot, y_n) \to g$. It is clear that the sequence $(F_{f_n, y_n})_n \in R$ converges to an element G of R with $G(\cdot, z) = g$ for every z. This shows that V is norm-closed. (A similar argument shows that if R is pc-closed then V is pc-closed.) To complete the proof, it is enough to show that if $K \in \mathcal{R}_V$ then there exists a net in R converging to K in cc. Let $K \in \mathcal{R}_V$ be fixed. For every y there are $k_y \in R$ and $\alpha(y) \in \mathfrak{X}$ such that $K(\cdot, y) = k_y(\cdot, \alpha(y))$. For every $\epsilon > 0$ and every finite subset S of \mathfrak{X} there exists $\delta > 0$ with the following three properties.

- $\delta \|k_y\|_{\infty} < \epsilon/2$ for every $y \in S$.
- $B_{y, 2\delta} \cap B_{y', 2\delta} = \emptyset$ for $y, y' \in S$ with $y \neq y'$.
- If $d(z, z') < 2\delta$ then $|k_y(x, z) - k_y(x, z')| < \epsilon/2$ for every $y \in S$.

Let $K_{S, \epsilon} := \sum_{y \in S} \frac{1}{m(B_{\alpha(y), \delta})} h_y \ast (\mathbb{E}_{\alpha(y), \delta} \otimes \mathbb{E}_{\alpha(y), \delta}) \in R$. Then $\|K_{S, \epsilon}(\cdot, y) - G(\cdot, y)\|_{\infty} < \epsilon$ for every $y \in S$. Considering the set of all pairs (S, ϵ) as a directed set in the obvious way, shows that $K_{S, \epsilon} \cto K$. □

Passing through the involution and using Theorem 5.2 we conclude that for any norm-closed left ideal L of \mathcal{M}, $V := \{ f(x, \cdot) : f \in L, x \in \mathfrak{X} \}$ is a norm-closed linear subspace and rc-closure of L is equal to \mathcal{L}_V. Moreover, if L is pc-closed then V is pc-closed.
Corollary 5.3. The mapping \(V \mapsto \mathcal{R}_V \) (resp. \(V \mapsto \mathcal{L}_V \)) establishes a 1-1 correspondence between norm-closed linear subspaces of \(C(\mathcal{X}) \) and cc-closed right (resp. rc-closed left) ideals of \(\mathcal{M} \), and also between pc-closed linear subspaces of \(C(\mathcal{X}) \) and pc-closed right (resp. left) ideals of \(\mathcal{M} \). In particular, 1-dimensional and norm-closed 1-codimensional subspaces of \(C(\mathcal{X}) \) correspond respectively to minimal and maximal cc-closed right (resp. rc-closed left) ideals of \(\mathcal{M} \).

Corollary 5.4. There is no nontrivial ideal in \(\mathcal{M} \) mutually closed under both cct and rct. In particular, there is no nontrivial pc-closed ideal in \(\mathcal{M} \).

Proof. Let \(I \) be a nonzero cc-closed and rc-closed ideal. There are closed linear subspaces \(V, W \subseteq C(\mathcal{X}) \) such that \(I = \mathcal{R}_V = \mathcal{L}_W \). Since \(V \neq 0 \) there are \(f_0 \in V \) and \(x_0 \in \mathcal{X} \) with \(f_0(x_0) = 1 \). For every \(g \in C(\mathcal{X}) \) we have \(f_0 \otimes g \in \mathcal{R}_V \). Thus \(g = (f_0 \otimes g)(x_0, -) \in W \) and \(W = C(\mathcal{X}) \). So, \(I = \mathcal{M} \). \(\square \)

6. Canonical representations of \(\mathcal{M} \)

For a Banach algebra \(\mathcal{A} \) a Banach space \(E \) is called Banach left \(\mathcal{A} \)-module if \(E \) is a left \(\mathcal{A} \)-module in the algebraic sense and such that the action of \(\mathcal{A} \) on \(E \) is a bounded bilinear operator. Banach right \(\mathcal{A} \)-modules and Banach \(\mathcal{A} \)-bimodules are defined similarly. Let \(B(E) \) denote the Banach algebra of bounded linear operators on \(E \) and \(K(E) \subseteq B(E) \) be the closed ideal of compact operators. Any Banach left \(\mathcal{A} \)-module structure on \(E \) gives rise to a bounded representation \(\mathcal{A} \to B(E) \), \(a \mapsto (\omega \mapsto a\omega) \), and vice versa. The statements of the following theorem are standard results and can be found for instance in [5].

Theorem 6.1. Let \(E \) denote any of the Banach spaces \(L^p(m) \) \((1 \leq p \leq \infty)\) or \(C(\mathcal{X}) \). Then \(\rho : \mathcal{M} \to K(E) \), defined by \([\rho(f)g](x) = \int_X f(x,y)g(y)dm(y) \) \((g \in E)\), is a well-defined faithful bounded representation. Moreover, the following statements hold.

(i) In the case that \(E = L^2(m) \), \(\rho \) is a *-representation.
(ii) In the case that \(E = L^\infty(m) \) or \(E = C(\mathcal{X}) \), \(\rho \) is isometric.

It is clear that for any Banach space \(E \), \(C(\mathcal{X}; E) \) is a Banach right (resp. left) \(\mathcal{M} \)-module in the canonical way. Its module action is denoted by the same symbol \(* \) and is given by \((g * f)(y) = \int_X g(z)f(z,y)dm(z) \) (resp. \((f * g)(x) = \int_X f(x,z)g(z)dm(z)) \) for \(f \in \mathcal{M} \) and \(g \in C(\mathcal{X}; E) \). Similarly, \(C(\mathcal{X}^2; E) \) becomes a Banach \(\mathcal{M} \)-bimodule.

7. Derivations on \(\mathcal{M} \)

Let \(\mathcal{A} \) be a Banach algebra and \(E \) be a Banach \(\mathcal{A} \)-bimodule. A (bounded) derivation from \(\mathcal{A} \) to \(E \) is a (bounded) linear map \(D : \mathcal{A} \to E \) satisfying \(D(ab) = aD(b) + D(a)b \) \((a, b \in \mathcal{A})\). \(D \) is called inner if there exists \(\omega \in E \) such that \(D(a) = a\omega - \omega a \) for every \(a \). \(D \) is called approximately inner [4] if there is a net \((\omega_\lambda)_\lambda \) in \(E \) such that \(D(a) = \lim_\lambda a\omega_\lambda - \omega_\lambda a \). If \((\omega_\lambda)_\lambda \) can be chosen so as to be a sequence then \(D \) is called sequentially approximate inner.

Theorem 7.1. Suppose that the condition (C2) of Theorem 7.9 is satisfied, and let \(E \) be a Banach \(\mathcal{M} \)-bimodule such that its module operation \(\circ : \mathcal{M} \otimes E \otimes \mathcal{M} \to E \) is continuous w.r.t. injective tensor norm, and such that for every norm approximate unit \((E_n)_n \) of \(\mathcal{M} \) we
have $E_n \odot \omega \to \omega$ for every $\omega \in E$. Then any bounded derivation from \mathcal{M} to E is sequentially approximate inner.

Proof. Let $D : \mathcal{M} \to E$ be a bounded derivation. Let $\Gamma : \mathcal{M} \bar{\otimes} \mathcal{M} \to E$ be the bounded linear map defined by $f \otimes g \mapsto f \circ D(g)$. Also let $\Lambda : \mathcal{M} \bar{\otimes} \mathcal{M} \to \mathcal{M}$ denote the convolution product. It is not hard to verify the following two identities for $h \in \mathcal{M}$ and $F \in \mathcal{M} \bar{\otimes} \mathcal{M}$.

$$\Gamma(h \star F) = h \circ \Gamma(F), \quad \Gamma(F \star h) = \Lambda(F) \circ D(h) + \Gamma(F) \circ h.$$

Let the sequence $(\delta_n)_n$ be as in the statement of Theorem 3.3 and let $\alpha_n = m(B_{x, \delta_n})$ for every $x \in \mathcal{X}$. By Lemma 3.7 there is r_n such that $\delta_n < r_n < 2\delta_n$ and $m(B_{x, r_n} - B_{x, \delta_n}) < \delta_n\alpha_n$. Choose a continuous function $G_n : \mathcal{X}^2 \to [0, 1]$ such that G_n has constant values 1 and 0 respectively on $\{(x, y) : \vartheta(x, y) \leq \delta_n\}$ and $\{(x, y) : \vartheta(x, y) \geq r_n\}$, and let $G_n \in C(\mathcal{X}^4)$ be defined by $G_n(x, z, z', y) = \frac{1}{\alpha_n} G_\delta(x, y)$. Note that we have $\Lambda(G_n) = \frac{1}{\alpha_n} G_n$. It is not hard to verify that $(\Lambda(G_n))_n$ is a two-sided norm-approximate unit for \mathcal{M} and $\lim_{n \to \infty} f \star G_n - G_n \star f = 0$ for every $f \in \mathcal{M}$. Let $K_n = \Gamma(G_n) \in E$. For the sequence $(K_n)_n$ and $h \in \mathcal{M}$ we have,

$$\lim_{n \to \infty} h \circ K_n - K_n \circ h = \lim_{n \to \infty} h \circ \Gamma(G_n) - \Gamma(G_n) \circ h = \lim_{n \to \infty} \Gamma(h \star G_n) - \Gamma(G_n \star h) + \Lambda(G_n) \circ D(h) = \Gamma(\lim_{n \to \infty} h \star G_n - G_n \star h) + D(h) = D(h).$$

This completes the proof. \qed

For any Banach space E, the Banach \mathcal{M}-bimodule $C(\mathcal{X}^2; E)$, mentioned in the preceding section, satisfies the conditions of Theorem 7.1.

References

1. W.G. Bade, H.G. Dales, Z.A. Lykova, *Algebraic and strong splittings of extensions of Banach algebras*, No. 656. American Mathematical Soc., 1999.
2. S. Beaver, *Banach algebras of integral operators, off-diagonal decay, and applications in wireless communications*, Ph.D. thesis, University of California, arXiv:math/0406198 [math.OA] (2004).
3. T. Eisner, B. Farkas, M. Haase, R. Nagel, *Operator theoretic aspects of ergodic theory*, Springer International Publishing AG, 2015.
4. F. Ghahramani, R.J. Loy, *Generalized notions of amenability*, Journal of Functional Analysis 208, no. 1 (2004): 229–260.
5. P.R. Halmos, V.S. Sunder, *Bounded integral operators on L^2 spaces*, Vol. 96. Springer Science & Business Media, 2012.
6. K.H. Hofmann, S.A. Morris, *The structure of compact groups: a primer for students-a handbook for the expert*, Vol. 25. Walter de Gruyter, 2006.
7. T. Hytonen, J. van Neerven, M. Veraar, L. Weis, *Analysis in Banach spaces*, in preparation (2015).
8. V.L. Klee, *Invariant metrics in groups (solution of a problem of Banach)*, Proceedings of the American Mathematical Society 3, no. 3 (1952): 484–487.

Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan 45137-66731, Iran

E-mail address: sadr@iasbs.ac.ir