O'Sullivan, Cormac
Stirling's approximation and a hidden link between two of Ramanujan’s approximations. (English) Zbl 07680223
J. Comb. Theory, Ser. A 197, Article ID 105740, 33 p. (2023)

Summary: A conjectured relation between Ramanujan’s asymptotic approximations to the exponential function and the exponential integral is established. The proof involves Stirling numbers, second-order Eulerian numbers, modifications of both of these, and Stirling’s approximation to the gamma function. Our work provides new information about the coefficients in Stirling’s approximation and their connection to Ramanujan’s approximation coefficients. A more analytic second proof of the main result is also included in an appendix.

MSC:
11Bxx Sequences and sets
05Axx Enumerative combinatorics
41Axx Approximations and expansions

Keywords:
asymptotic approximation; gamma function; exponential function; exponential integral

Software:
OEIS

Full Text: DOI arXiv

References:
[1] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0920.33001
[2] Berndt, Bruce C., Ramanujan’s Notebooks. Part II (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0716.11001
[3] Brassesco, Stella; Méndez, Miguel A., The asymptotic expansion for n! and the Lagrange inversion formula, Ramanujan J., 24, 2, 219-234 (2011) · Zbl 1209.33002
[4] Comtet, Louis, Advanced Combinatorics (1974), D. Reidel Publishing Co.: D. Reidel Publishing Co. Dordrecht, The art of finite and infinite expansions · Zbl 0283.05001
[5] Release 1.1.8 of 2022-12-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain (Eds.)
[6] Fu, Amy M., Some identities related to the second-order Eulerian numbers
[7] Gessel, Ira M., Lagrange inversion, J. Comb. Theory, Ser. A, 144, 212-249 (2016) · Zbl 1343.05021
[8] Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren, Concrete Mathematics (1994), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA, A foundation for computer science · Zbl 0836.00001
[9] Kaneho, Masanobu, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Seq., 3, 2, Article 6 pp. (2000) · Zbl 0982.11009
[10] Karatsuba, Ekatherina A., On the asymptotic representation of the Euler gamma function by Ramanujan, J. Comput. Appl. Math., 135, 2, 225-240 (2001) · Zbl 0988.33001
[11] Marsaglia, John C. W., The incomplete gamma function and Ramanujan’s rational approximation to \(\Gamma(n+1) \), J. Stat. Comput. Simul., 24, 163-168 (1986)
[12] Mathoverflow
[13] Marsaglia, George; Marsaglia, John C. W., A new derivation of Stirling’s approximation to n!, Am. Math. Mon., 97, 9, 826-829 (1990) · Zbl 0786.05007
[14] Nemes, Gergő, On the coefficients of the asymptotic expansion of n!, J. Integer Seq., 13, 6, Article 5 pp. (2010) · Zbl 1216.11009
[15] Olver, Frank W. J., Asymptotics and Special Functions. AKP Classics (1997), A K Peters, Ltd.: A K Peters, Ltd. Wellesley, MA, Reprint of the 1974 original · Zbl 0984.41018
[16] O’Sullivan, Cormac, Ramanujan’s approximation to the exponential function and generalizations · Zbl 1479.11146

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2023 FIZ Karlsruhe GmbH
[17] O’Sullivan, Cormac, De Moivre and Bell polynomials, Expo. Math., 40, 4, 870-893 (2022) · Zbl 1506.13034
[18] Perron, Oskar, Über die näherungsweise Berechnung von Funktionen großer Zahlen, Sitzungsber. Bayr. Akad. Wissensch. (Münch. Ber.), 191-219 (1917) · Zbl 46.0538.03
[19] Rządkowski, Grzegorz; Urlińska, Małgorzata, Some applications of the generalized Eulerian numbers, J. Comb. Theory, Ser. A, 163, 85-97 (2019) · Zbl 1405.11025
[20] Sloane, N. J.A., The on-line encyclopedia of integer sequences (2022), Published electronically at · Zbl 1044.11108
[21] Volkmer, Hans, Factorial series connected with the Lambert function, and a problem posed by Ramanujan, Ramanujan J., 16, 3, 235-245 (2008) · Zbl 1148.33020
[22] Watson, G. N., Theorems stated by Ramanujan (V): approximations connected with \(\Gamma(e^{-x}) \), Proc. Lond. Math. Soc. (2), 29, 4, 303-308 (1929) · Zbl 55.0216.04
[23] Wrench, John W., Concerning two series for the gamma function, Math. Comput., 22, 617-626 (1968) · Zbl 0165.51703

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.