Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in *Brassica napus*

Weizhuo Zhu, Yiyi Guo, Yeke Chen, Dezhi Wu* and Lixi Jiang

Abstract

Background: Transcription factors (TFs) are involved in plant developmental processes and respond to environmental stresses through binding DNA regulatory regions to regulate their downstream genes. However, little information on the GATA genes in *Brassica napus* is available. The release of the reference genome of *B. napus* provides a good opportunity to perform a genome-wide characterization of GATA family genes in rapeseed.

Results: In this study, 96 GATA genes randomly distributing on 19 chromosomes were identified in *B. napus*, which were classified into four subfamilies based on phylogenetic analysis and their domain structures. The amino acids of *BnGATA* showed obvious divergence among four subfamilies in terms of their GATA domains, structures and motif compositions. Gene duplication and synteny between the genomes of *B. napus* and *A. thaliana* were also analyzed to provide insights into evolutionary characteristics. Moreover, *BnGATAs* showed different expression patterns in various tissues and under diverse abiotic stresses. Single nucleotide polymorphisms (SNPs) distributions of *BnGATAs* in a core collection germplasm are probably associated with functional disparity under environmental stress condition in different genotypes of *B. napus*.

Conclusion: The present study was investigated genomic structures, evolution features, expression patterns and SNP distributions of 96 *BnGATAs*. The results enrich our understanding of the GATA genes in rapeseed.

Keywords: *Brassica napus*, GATA, Genome-wide, Expression patterns, SNP distribution

Background

Transcription factors (TFs) regulate gene expression by recognizing and combining cis-acting elements on the promoter regions of target genes [1]. TFs play key roles in plant developmental processes, hormones signaling pathways and disease resistance responses. There are several well-known transcription factor families including WRKY, MYB (V-myb avian myeloblastosis viral oncogene homolog), DREB (Dehydration-responsive element-binding protein), bZIP (Basic region-leucine zipper), MADS-box and GATA (GATA-binding factor) in plants. Among them, the GATA genes are characterized as important regulators for many biological processes, such as flower development, carbon and nitrogen metabolisms [2]. The GATA genes could recognize and bind to the (T/A)GATA(A/G) sequences to regulate the transcription levels of their downstream genes [3, 4]. The DNA binding domains of the GATA proteins contain a type IV zinc finger structure C-X2-C-X17-20-C-X2-C and a conserved basic follow region, and most of them featured with C-X2-C-X18-C-X2-C or C-X2-C-X20-C-X2-C zinc finger domains [2, 3, 5, 6]. Generally, the GATA family genes could be divided into four subfamilies as subfamily I, II, III and IV in *Arabidopsis thaliana* based on the phylogenetic relationships, DNA binding domains and intron-exon structures [2, 5, 7-9].
Many studies have been proved that the GATA TFs are responsible for plant growth development, flowering, chlorophyll synthesis, greening and senescence. For instance, the loss-of-function and the over-expression of the GATA genes such as GNC (GATA, Nitrate-inducible, Carbon-metabolism) and GNL (GNC-like) can change flowering time and chlorophyll synthesis in A. thaliana [10–13]. GNC regulates downstream genes such as the light-labile factors PIFs (phytochrome interacting factors) to control chloroplast biogenesis and stomatal index [10, 13]. The cross-repressive interactions between GNC/GNL and MADS-box transcription factor SOC1 (Suppressor of Overexpression of Constans1) affect flowering time [12, 13]. Besides, GNC and GNL are considerable repressors of gibberellin signaling through being regulated by DELLA and PIF regulators [10, 14]. Moreover, auxin response factors ARF2 and ARF7 can repress the expression of GNC and GNL genes [10–12, 14]. In Brassica napus, a GATA member BnA5.ZML1 was reported to be a stigma compatibility factor [15]. PiGNC in Populus plays a crucial role in photosynthesis and plant growth [16]. In wheat, over-expression of TaZIM-A1, a member of the GATA family, caused the delay of flowering and the decrease of thousand-kernel weight [17].

The GATA TFs also respond to diverse abiotic stresses in plants. Under cold stress, the expression levels of GNC and GNL were significantly increased, while the seedling survival ratio was elevated in the over-expression lines with GNC or GNL genes in A. thaliana [18]. Moreover, under low temperature, GATA9 gene showed remarkably changed expression to activate its downstream genes in Vigna subterranea [19]. Under salinity stress, OsGATA8 overexpressed lines showed higher biomass accumulation and photosynthetic efficiency than the wild-type and the knockdown seedlings of rice [20]. In soybean seedlings, the expression of GATA44 and GATA58 genes were extremely down-regulated under low nitrogen settlement [21]. In B. juncea, 29 GATA genes responded to high temperature and drought treatments by their transcription levels based on the RNA-seq experiments [22].

Rapeseed is an important oil crop. To date, the genomes of Darmor-bzh (winter ecotype), Tapitor (winter ecotype), Zhongshuang 11 were successfully sequenced and assembled [23–25]. Recently, we re-sequenced 991 accessions from the global rapeseed germplasm and established a worldwide core collection [26, 27]. In this study, 96 GATA genes were identified and characterized in the genome of B. napus. Moreover, the expression pattern and SNPs distribution of these genes were analyzed. The main objectives of the present study are to (i) investigate the difference of gene/protein sequences and genetic structures of BnGATAs; (ii) determine the gene expression patterns in tissues and under abiotic stresses; and (iii) identify SNPs of BnGATAs in a worldwide core collection. These results enrich our knowledge about BnGATA genes, providing a basis of molecular characteristics and facilitating breeding marker-assisted breeding in rapeseed.

Methods

Identification of GATAs in B. napus

The amino acid sequences of the GATA family members in A. thaliana were obtained according to a previous study (Table S1, [2]), and the homologs of GATAs in B. napus were blasted against the reference genome of the rapeseed cultivar “Darmor-bzh” (v4.1 genome, http://www.genoscope.cns.fr/brassicanapus/data/). Hidden Markov Model (HMM) and BLASTP programs were applied for the identification of BnGATA proteins. The HMMER profile of GATA zinc finger domain (PF00320) from the Pfam database (http://pfam.janelia.org/) was used to perform the local BLASTP (E-value-20) search. The candidate sequences of GATAs were confirmed in the SMART database (http://smart.embl-heidelberg.de/) [28], the NCBI Conserved Domain database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) [29] and the Pfam database [30]. Subfamily members were named based on their arrangement order on chromosomes of the B. napus genome (Table S2). Moreover, the length of amino acids, molecular weights (MW) and isoelectric point (pI) of GATA proteins were calculated using tools from ExPASy (http://www.expasy.ch/tools/pi_tool.html).

Phylogenetic analysis and classification of GATAs

The multiple alignments of GATA amino acids were done using the ClustalW with default parameters [31]. A phylogenetic tree was constructed using the MEGA 7.0 by the Neighbor-Joining (NJ) method [31, 32], with the following parameters: poisson model, pairwise deletion and 1000 bootstrap replications. Unrooted NJ tree of GATA proteins from A. thaliana and B. napus was also constructed using the MEGA 7.0. The GATA family members from A. thaliana were referred to classify the GATA family members in B. napus. In addition, the conserved GATA zinc finger domains in proteins were identified using the MEGA 7.0 and the GeneDoc software.

Motifs and gene structures

The Gene Structure Display Server online program (GSDS: http://gsds.cbi.pku.edu.cn) was used to analyzed exon-intron structures of all GATA genes [33]. To identify conserved motifs in GATA proteins, the Multiple Expectation Maximization for Motif Elicitation (MEME) online program (http://meme.sdsc.edu/meme/itro.html) was performed with the following parameters: number
of repetition = any, maximum number of motifs = 10; and optimum motif length = 6 to 100 residues [34].

Chromosomal localization and gene duplication analyses

The distribution of 96 GATA genes identified in B. napus was mapped to 19 chromosomes according to their physical location information from the reference genome database (http://www.genoscope.cns.fr/brassicanapus/data/), and was visualized using the Circos software [35]. To identify gene duplication, the GATA genes were aligned using BLASTP with the e-value of 1e-10 and MCScanX to classify the duplication patterns including segmental and tandem duplication [36]. The tandem duplication was defined as a chromosomal region within 300 kb contains two or more genes [37]. Furthermore, the synergy relationships of GATA genes between the genomes of B. napus and A. thaliana were constructed according to Zhu et al. [38].

Expression patterns of BnGATA genes in B. napus

To understand expression patterns of the BnGATA genes in B. napus, transcriptome data from 12 tissues of the B. napus cultivar “Zhongshuang 11” which was released in 2017 [25] were obtained from the NCBI (ID: PRNA394926). We calculated and used the average expression level of three biological replicates of each tissue to show their expression patterns. Moreover, transcriptome data with three biological replicates of B. napus under dehydration, salt, ABA and cold stress conditions were obtained by referring to Zhang et al. [7, 9]. The fold changes (ratios to the control) of gene expression lower than 0.5 or higher than 2.0 were considered as differentially expressed genes (DEGs). These transcriptome data were available under the project ID: CRA001775 (https://bigd.big.ac.cn/). Expression standardization of GATAs was performed using the DSEeq2 R package and the heatmaps and the cluster analysis of GATAs were constructed using the TBtools software [39].

SNP distribution of GATAs in a core collection of B. napus

To reveal natural variation of genomic sequences of GATA genes in B. napus, SNPs in the coding regions of GATA genes were determined in a worldwide collection of B. napus germplasm of 300 accessions in light of the genome re-sequencing data of our previous studies [26, 27]. High-quality SNPs with MAF larger than 5% and missing rate less than 50% were used for the further analysis.

Results

Identification and phylogenetic analysis of GATA proteins in B. napus

A total of 96 proteins with GATA zinc finger domain were identified to be the GATA family members in B. napus (Table S2). The longest sequence of each protein was remained, and the information of these proteins was listed in Table S2 and Table S3. The length of 96 GATA proteins was ranged from 101 to 576 amino acids (aa), and the molecular weight was ranged from 11.17 to 64.59 kDa.

To analyze the relationships of GATA proteins between B. napus and A. thaliana, an unrooted tree was constructed using the full-length amino acids of these GATAs. Totally, 30 proteins from A. thaliana and 96 proteins from B. napus were identified (Fig. 1). In A. thaliana, the GATAs were clustered into four subfamilies [2]. Here, 96 GATAs in B. napus were correspondingly classified into four subfamilies (Fig. 1). Among these GATA proteins, 36 members belong to the subfamily I, 43 to the subfamily II, 10 to subfamily III and 7 to the subfamily IV. Each BnGATA protein features with only one GATA domain. Notably, the GATA domain locates mainly in the position 160–230 aa for the subfamily I; 30–150 or 200–260 aa for the subfamily II; 190–330 aa for the subfamily III, and 7–40 aa for the subfamily IV, respectively (Table S2).

Gene structures and protein motifs of BnGATAs

As shown in Fig. 2b, one to nine exons were determined in BnGATA genes. Similar to GATA genes in A. thaliana, BnGATA genes in the subfamilies I and II have 2 to 3 exons except for BnGATA1.6 (4 exons), 3 to 9 exons for the subfamily III, and 6 to 8 exons for the subfamily IV (Fig. 2b).

The motif analysis was conducted to display schematic structures of GATA proteins (Fig. 2c). The details of 10 kinds of conserved motifs were listed in Supplementary Table S4. The motif 1 and motif 2 were detected in all GATA proteins, the motif 3, 4 and 9 were mainly identified in the members of subfamily I, the motif 6, 8 and 10 were identified in the members of subfamily II, while the motif 5 and 7 were identified in the members of subfamily III. Except for the motif 1 and 2, no other motifs were found in the subfamily IV (Fig. 2c).

In short, similar gene structures and conserved motifs within a subfamily strongly support the results of subfamily classifications by the phylogenetic analysis.

Moreover, with similar result of GATA domain analysis found in A. thaliana [2], BnGATAs in the subfamilies I, II and IV contained 18 residues in the zinc finger loop (C-X2-C-X18-C-X2-C), with the exception of BnGATA2.8 and BnGATA2.26, where N-X2-C-X18-C-X2-C appears instead of C-X2-C-X18-C-X2-C (Fig. 3).

All 10 BnGATAs in the subfamily III contained 20 residues between the second and the third Cys residues in the zinc finger (C-X2-C-X20-C-X2-C). In addition, several amino acid sites showed high conservation in the GATA domains such as LCNACG residues (Fig. 3).
The distribution, genomic synteny and gene duplication of BnGATA genes

Totally, 84 out of 96 BnGATA genes were distributed over 19 chromosomes, while other 12 genes were assigned into random fragments (6 on the AAnn subgenome and 6 on the CCnn subgenome) (Fig. 4 and Table S2). Among 84 BnGATAs, 46 genes located on the AA subgenome, including 16 subfamily I genes, 22 subfamily II genes, 5 subfamily III genes and 3 subfamily IV genes; while 50 genes located on the CC subgenome, including 20 subfamily I genes, 21 subfamily II genes, 5 subfamily III genes and 4 subfamily IV genes (Fig. 4). Some BnGATA genes were formed as clusters in the same chromosomes, such as BnGATA1.32 and BnGATA2.36 (Fig. 4). However, most BnGATA genes were randomly distributed on the AA or CC subgenome. In addition, Chr A1 showed the highest density of BnGATAs with 7 genes from the subfamilies II and III (Fig. 4).

Using BLAST and MCScanX methods, 82 segmental duplication events of the GATAs were identified (Fig. 4 and Table S5). Among these events, 80 duplication events occurred across chromosomes, while 2 events were detected within a chromosome (BnGATA1.28/BnGATA1.31, BnGATA1.19/BnGATA1.21). Furthermore, 14 duplication events took place on the AA subgenome, 14 events on the CC subgenome, and 50 events across AA/CC subgenomes. The results suggest that some BnGATA genes possibly came into being during gene duplication, and the segmental duplication events could play key roles in the expansion of BnGATA genes in B. napus.

To better understand the evolution of BnGATA genes, the synteny of the GATA gene pairs between the genomes of B. napus and A. thaliana was constructed (Fig. 5 and Table S6). Here, 55 BnGATAs exhibited syntenic relationship with AtGATAs. Some AtGATAs were associated with more than one orthologous copies in B.
For example, AT2G45050 showed syntenic relationship with BnGATA1.7, BnGATA1.8, BnGATA1.19 and BnGATA1.21 (Table S6). Moreover, collinear gene pairs of GATA genes fixed on highly conserved syntenic blocks were also detected (Fig. 5 and Table S6).

Expression profiles of BnGATAs in different tissues

The expression profiles of 96 BnGATA genes in 12 tissues of the rapeseed cultivar ZS11 were compared (Fig. 6 and Table S7). According to the difference of their expression pattern, these genes were clustered into three groups. In details, a total of 39 genes were classified into the group 1 showing low expression levels or not detected in the tissues examined. 12 BnGATAs were belonging to the group 2 with high expression levels in these tissues. Meanwhile, 43 BnGATAs were included in the group 3 showing preferential expression profiles across tissues. For instance, BnGATA1.11 was not expressed in wilting pistil, expressed with low levels in blossomy pistil and root, but expressed highly in other tissues (Fig. 6 and Table S7).

On the other hand, the group 1 contained 9, 28, 1 and 1 genes from the four subfamilies; the group 2 had 6 and 6 genes from the subfamilies I and III, while the group 3 contained 21, 13, 3 and 6 genes from the four subfamilies, respectively (Table S7). Interestingly, it was found that BnGATAs from the subfamily II showed low expression levels in all tissues, but the subfamily III members had high expression levels in all tissues (Fig. 6 and Table S7). The expression patterns of GATA genes in different tissues suggested functional diversions between different subfamilies.

Expression profiles of BnGATAs in response to abiotic stresses

Further, we studied the expression pattern of BnGATA genes under various abiotic stresses including drought, salinity, ABA induction and cold stresses (Fig. 7 and
Table S8). In detail, most genes of the subfamily III members were remarkably up-regulated, while most of the subfamily IV genes were down-regulated in response to dehydration and salt treatments. BnGATA1.27, BnGATA2.23 and BnGATA3.1 were up-regulated, but BnGATA1.8 was not expressed after salt treatment. Under dehydration stress, BnGATA1.9, BnGATA1.27 and BnGATA2.23 showed the largest increase in expression levels, while BnGATA1.11 and BnGATA2.5 were significantly decreased. BnGATA1.27 and BnGATA2.33 showed higher expression level under ABA induction, while BnGATA2.5 was down-expressed. Under cold stress, BnGATA1.9, BnGATA1.27 and BnGATA2.23 showed the largest increase in expression levels, while BnGATA1.11 and BnGATA2.5 were significantly decreased. BnGATA1.27 and BnGATA2.33 showed higher expression level under ABA induction, while BnGATA2.5 was down-expressed. Under cold stress, BnGATA1.9, BnGATA1.27 and BnGATA2.23 were significantly up-regulated, while BnGATA1.11 and BnGATA1.24 were remarkably down-regulated. Notably, BnGATA1.27 was significantly induced by all abiotic stresses (Fig. 7). Besides, BnGATA1.9, BnGATA1.29 and BnGATA2.5 could respond to diverse abiotic treatments (Fig. 7, Table S8). The results of the expression profiles of BnGATA genes under diverse abiotic treatments may suggest their functional differences among four subfamilies.

Sequence variation of BnGATAs in a core collection of B. napus
Based on our previous re-sequencing data of 991 worldwide accessions of rapeseed [26, 27], the SNPs from 300 core accessions with MAF more than 5% were used for the analysis. In average, 6 SNPs were detected for a GATA gene (Table S9). It was found that the SNP density of BnGATAs on the AA subgenome was higher than that on the CC subgenome (Table S9). Meanwhile, the SNP density of each subfamily was different, with averagely 6.7, 3.58, 14.2 and 7.14 SNPs for the four subfamilies, respectively.

The SNP density of each BnGATA gene within a subfamily was also different. For instance, no SNP was identified for BnGATA1.27, while 8 and 10 SNPs were identified for BnGATA1.29 and BnGATA2.5. Moreover, a detailed SNP distribution of BnGATA1.29 and BnGATA2.5 were shown in Fig. 8. For BnGATA1.29, it was found that there were 6 SNP loci in the promoter region, 2 SNPs in the exon/intron region and no SNP in the 3'UTR region (Fig. 8a). For BnGATA2.5, there were no SNP in the promoter region, 10 SNPs in the exon/intron region and no SNP in the 3'UTR region (Fig. 8b). We speculate that sequence variation of these GATA genes may be related to their expression difference under abiotic stresses.

Discussion
In this study, we identified 96 genes of GATA family transcription factors in B. napus, designating as BnGATA1.1 to BnGATA4.7 based on their subfamily classification. Bioinformatic analyses such as
Fig. 4 The chromosomal distribution and synteny analysis of BnGATA genes in B. napus. The locations of all the BnGATA genes are depicted in the chromosomes. Blue-colored genes belong to subfamily I, green-colored genes belong to subfamily II, orange-colored genes belong to subfamily III, red-colored genes belong to subfamily IV. Background gray lines indicate all B. napus genome synteny blocks, and the red lines highlight the duplicated BnGATA gene pairs. ID of the chromosomes is indicated at the bottom of each chromosome.

Fig. 5 Synteny analysis of GATA genes between B. napus and A. thaliana. Gray lines indicate all collinear blocks within B. napus and A. thaliana, while the red lines depict the orthologous relationships of GATA genes between B. napus and A. thaliana.
phylogenetic relationships, domains, gene structures, protein motifs, chromosomal locations, homologous and orthologous genes of GATA were performed. The results indicate that BnGATAs clustered into four subfamilies are significantly different with genetic structures and expression patterns, and which are more complex than the GATA TFs in A. thaliana. Furthermore, the information on gene transcription level and SNP distribution provides a resource for functional identification of BnGATA TFs and molecular breeding in B. napus.

In previous studies, the GATA family genes were systematically investigated in A. thaliana and O. sativa [2, 40], Solanum lycopersicum [5], Vitis vinifera [8], Phyllostachys edulis [6] and Gossypium genues [7, 9]. According to these studies, the GATA genes from dicotyledons, but not from monocots, could be strictly divided into four subfamilies. In our study, we also find that the subfamilies I, II and III of the GATA genes simultaneously occur in both dicotyledons and monocots, but the subfamily IV genes did not exist in monocots [2, 6]. It demonstrated that the subfamily IV of GATA genes appeared after the divergence between dicotyledon and monocot. Therefore, we speculate that the GATA subfamily IV genes may play unique functions in dicotyledonous plants, but further evidence is needed.

Significant differences in gene and protein structures among BnGATA subfamilies may lead to functional divergences. For example, in subfamily III, the GATA domain featured with 20 residues in the zinc finger (C-X₂,C-X₂₀-C-X₂-C), while there were 18 residues in the other three subfamilies. The CCT and TIFY domains were specifically found in the subfamily III, which were reported to be involved in flowering, hypocotyl and root development in A. thaliana [41–43]. The subfamily I genes may be involved in plant growth and respond to abiotic stresses. In A. thaliana, BME3 (ortholog of BnGATA1.29) was reported as a positive regulator for seed germination [44]. The BME3 knockout plants showed deeper dormancy and more sensitive to cold stress than the wild-type plants. Moreover, the decreased expression of GA20-oxidase and GA3-oxidase in the knockout plants suggested that BME3 was involved in GA biosynthesis [44]. In this study, BnGATA1.29
(BnaC08g25560D) exhibited high expression levels in various tissues and significantly responded to ABA and cold stresses (Table S7 and Table S8). A recent study reported that RGL2-DOF6 complex regulates GATA12 (from the subfamily I) gene to enforce primary dormancy in A. thaliana [45]. The subfamily II of BnGATAs is involved in plant flowering and abiotic stress responding. In A. thaliana, GNC and GNL (ortholog of BnGATA2.5) were involved in germination, greening, flowering, floral development, senescence and floral organ abscission [10–12, 46–49]. Recently, the association between BnGATA2.5 gene expression and plant height, branch initiation height and flowering time was detected in B. napus [50]. In this study, BnGATA2.5 (BnaA02g08490D) was expressed across many tissues and organs in B. napus (Fig. 6, Table S7). Moreover, the expression of BnGATA2.5 was down-regulated under ABA inducement, drought and cold treatments,
indicating its strong response to abiotic stresses (Fig. 7, Table S8). The subfamily III of GATA TFs is a novel plant-specific subfamily, which plays important roles in flowering, hypocotyl and root development [41–43]. For instance, overexpression of ZIM (GATA25) could up-regulate the expression of XTH33 (xyloglucosyl transferase 33), resulting in elongate hypocotyls and petals in A. thaliana [42, 43]. Besides, ZML1 (GATA24) and ZML2 (GATA28) were identified as the two essential components of the cry1 (Cryptochrome1)-mediated photoprotective response in A. thaliana [51]. In this study, BnGATA3.1 (BnaA01g25320D) as the ortholog of AtZML1, was highly expressed in most tissues in B. napus (Fig. 6, Table S7). The expression of BnGATA3.1 was slightly changed in response to a variety of abiotic stresses (Fig. 7, Table S8). However, so far, little was known about the subfamily IV of the GATA TFs in plants.

In this study, we found that BnGATA genes had a plentiful genetic variation of SNPs in a core collection of B. napus. SNPs in the coding regions are crucial for the generation of new alleles, and allele divergence may lead to gene function alterations, which is vital facilitation for crop species adaptation to environmental stresses [52]. For example, 7 functional alleles of powdery mildew resistance gene Pm3 were isolated from a set of 1320 bread wheat landraces through allele mining, while the other 9 alleles of Pm3 showed non-function to powdery mildew resistance [53]. In our core collections of rapeseed, the SNP density of the subfamily III genes (5.7 SNPs per 1 kb) was averagely higher than that in the other subfamily genes (3.5) (Table S9), while the subfamily III genes were highly expressed in various tissues and under dehydration condition (Table S7 and Table S8). Therefore, haplotypes and allele-specific markers of BnGATA genes could be identified for rapeseed molecular-breeding programs in future works. Rapeseed originated from the natural crossing between B. rapa (AA) and B. oleracea (CC) [24]. In this study, we identified 46 and 50 BnGATA genes located on the AA or CC subgenomes. However, the SNP density of BnGATAs on the AA subgenome (4.7 per 1 kb) was much higher than that on the CC subgenome (3.2) (Table S9), which could be explained by more frequent outcrossing between B. napus and B. rapa than between B. napus and B. oleracea [26].

Taken together, we performed a comprehensive characterization of GATA family genes in B. napus. The results enrich our knowledge about BnGATA genes, providing a basis for manipulation of the genes and facilitating breeding marker-assisted breeding in rapeseed. However, functional validation is needed to reveal the exact functional roles of BnGATA genes.

Conclusion

In the present study, genome-wide identification and characterization of GATA genes were conducted in B. napus. A total of 96 GATA genes are identified in the rapeseed genome, which were divided into four subfamilies. Phylogenetic and synteny analysis of GATA genes between A. thaliana and B. napus provide valuable clues for the evolutionary characteristics of the BnGATA genes. Moreover, gene expression and SNP distribution analysis of BnGATA genes were also determined. These results provide insights into the functional differences, evolutionary relationships and expression profiles of GATA transcription factors in B. napus.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-020-02752-2.

Additional file 1: Table S1. The information of the GATA genes in A. thaliana. **Table S2.** Characteristics of the GATA genes in B. napus. **Table S3.** The list of 96 GATA genes identified in B. napus. **Table S4.** Conserved amino acid motifs and annotation of the GATA genes in B. napus. **Table S5.** Syntenic blocks of the GATA genes in B. napus. **Table S6.** One-to-one orthologous relationships of the GATA genes between B. napus and A. thaliana. **Table S7.** The expression profiles (log2-based values) of the GATA genes in different tissues of B. napus. **Table S8.** The expression profiles (ratio to control values) of the GATA genes in B. napus under abiotic stresses. **Table S9.** SNPs of the GATA genes identified in 300 core genes.
collections of rapeseed germplasm. Table S10. Genetic diversity of 300 core collections of rapeseed germplasm.

Abbreviations

ARDP: Auxin response factors; AtGATA: Arabidopsis thaliana GATA; BLASTP: Basic local alignment search tool protein; BrGATA: Brassica napus GATA; B2GAP: Basic helix loop helix; cry1: Cryptochrome1; DREB: Dehydration-responsive element-binding protein; GA: Gibberellin; GNC: GATA, nitrate-inducible, carbon-metabolism involved; GNL: GNC-like; GSDS: Gene structure display server; HMM: Hidden markov model; MEME: Motif elicitation; MW: Molecular weights; MYB: V-myb avian myeloblastosis viral oncogene homolog; pi: Isoelectric point; PIFs: Phytochrome interacting factors; SNPs: Single nucleotide polymorphisms; SOC1: Suppressor of constans 1; TFs: Transcription factors; XTH33: Xyloglucosyl transferase 33

Acknowledgements

We thank Dr. Guoping Zhang for his insightful advising and contribution in manuscript revision.

Authors’ contributions

WZ and DW conceived and designed the research. WZ and YG performed the experiments and data analyses. WZ, YG, YC, LJ and DW wrote the article; all authors read and approved the final manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (31961143008, 31701411), the Science and Technology Program of Zhejiang Province of China (LGN20C30007), Jiangsu Collaborative Innovation Center for Modern Crop Production, and the 111 project for introduction of foreign experts (B17039). The funding agencies had no role in research design, data collection and analysis, or manuscript writing.

Availability of data and materials

RNA-seq of B. napus variety Zhongshuang 11 (ZS11) in distinct tissues are available in the NCBI Sequence Read Archive (SRA) database under the accession number PRJNA394926. RNA-seq data of B. napus under dehydration, salt, ABA and cold stress conditions were available under the project ID: CRA001775 (https://bigd.big.ac.cn/). All other datasets supporting the results of this article are included within the article and its supplementary tables.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 19 May 2020 Accepted: 24 November 2020

Published online: 04 December 2020

References

1. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A. 2014;111(8):2367–72.
2. Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 2004;134(4):1718–32.
3. Lowry JA, Atchley WR. Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol. 1999;50(2):103–15.
4. Scascitello C. The fungal GATA factors. Curr Opin Microbiol. 2000;3(2):126–31.
5. Yuan Q, Zhang C, Zhao T, Yuan M, Xu X. A genome-wide analysis of GATA transcription factor family in tomato and analysis of expression patterns. Int J Agric Biol. 2018;20(6):1274–82.
6. Wang TT, Yang Y, Lou ST, Wei W, Zhao ZX, Ren YJ, Lin CT, Ma LY. Genome-wide characterization and gene expression analyses of GATA transcription factors in Moso bamboo (Phyllostachys edulis). Int J Mol Sci. 2019;21(1):14.
7. Zhang YT, Ali U, Zhang GF, Yu LQ, Fang S, Libal S, Li HH, Liu SP, Guo L. Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Mol Breed. 2019a;39(1):158.
8. Zhang Z, Ren C, Zou LM, Wang Y, Li SH, Liang ZC. Characterization of the GATA gene family in Hvs. wrinkles genome-wide analysis, expression profiles, and involvement in light and phytochrome response. Genome. 2018b(10):713–23.
9. Zhang Z, Zou XY, Huang Z, Fan SM, Qun G, Liu A, Gong JW, Li JW, Gong WK, Shi YZ, Fan LQ, Zang ZB, Liu RK, Jiang X, Lei K, Shang HH, Xu AX, Yuan YL. Genome-wide identification and analysis of the evolution and expression patterns of the GATA transcription factor families in three species of Gossypium Genus. 2019b;88:72–83.
10. Richter R, Behringer C, Müller IK, Schwechheimer M. The GATA-type transcription factors GNC and GNL/GCA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Dev. 2010;24(18):2093–104.
11. Richter R, Behringer C, Zourelioudou M, Schwechheimer C. Convergene of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2013a;110(32):13912–7.
12. Richter R, Bastakis E, Schwechheimer C. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/GCA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis thaliana. Biochim Biophys Acta. 2004;162(4):1992–2004.
13. Zubo YO, Blakley KC, Franco-Zorrilla JM, Yamburenko MV, Solano R, Kieber JJ, Loraine AE, Schaller GE. Coordination of chloroplast development through the action of the GNC and GLK transcription factor families. Plant Physiol. 2018;178(1):30–47.
14. Naito T, Kiba T, Koizumi N, Yamashino T, Mizuno T. Characterization of a unique GATA family gene that responds to both light and cytokinin in Arabidopsis thaliana. Biosci Biotechnol Biochem. 2007;71(6):1557–60.
15. Duan ZQ, Zhang YT, Xu JX, Shen JX, Yi B, Fu TD, Dai C, Ma CZ. The Brassica napus GATA transcription factor BrAN2ML1 is a stigma compatibility factor. J Integr Plant Biol. 2020;62(8):1112–31.
16. An Y, Zhou YY, Han X, Chen S, Wang C, Liu C, Yin W, Xia XL. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. J Exp Bot. 2020;71(16):1969–84.
17. Liu H, Li T, Wang YM, Zheng J, Li HF, Hao CY, Zhang XY. TaZIM-A1 negatively regulates flowering time in common wheat (Triticum aestivum L.). J Integr Plant Biol. 2019;61(3):359–76.
18. Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61(19):2247–54.
19. Bontchova VS, Mayes K, Moreton J, Blythe M, Wright V, May ST, Massawe F, Mayes S, Twycross J. Identification of gene modules associated with low temperatures response in barnbara groundnut by network-based analysis. PLoS One. 2016;11(2):e0148871.
20. Nutan KK, Singla-Pareek SL, Pareek A. The Saltol QTL-localized transcription factor OsGATA1 plays an important role in stress tolerance and seed development in Arabidopsis and rice. J Exp Bot. 2020;71(2):684–98.
21. Zhang C, Hou Y, Hao Q, Chen H, Chen L, Yuan S, Shan Z, Zhang X, Yang Z, Qiu D, et al. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One. 2015;10(4):e0125174.
22. Bhadravai AR, Josh G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katyar-Agarwal S, Goel S, Jagannath A, Kumar A, Agarwal M. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 2015;15:9.
23. Bayer PE, Hugtobin B, Gokcii AA, Chan CK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Barciszow A, Chalhoub B, King GL, Bailey J, Edwards D. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J. 2017;15(12):1602–10.
24. Chalhoub B, Denoerud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcrum H, Tong C, Samans B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus olised genome. Science. 2013;345(6199):950–3.
25. Sun FM, Fan GF, Hu Q, Zhou YM, Guan M, Tong CB, Li JN, et al. The high-quality genome of Gossypium raimondii reveals the intergression history in semi-winter morphotype. Plant J. 2017;92(3):452–68.
26. Wu DZ, Liang Z, Yan T, Xu Y, Xuang L, Zhang J, Chou G, Lowahser U, Hua SJ, Wang HY, Chen XY, Wang Q, Zhu L, Macedza A, Hussain N, Li ZL, Li XM, Shamsi IH, Jilani G, Wu LD, Zheng HK, Zhang GP, Chalhoub B, Shen LS, Yu H, Jiang XL. Whole-genome Resequencing of a worldwide collection of
rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant. 2019;12(1):30-43.
27. Xuan Li, Yan T, Lu LZ, Zhao XZ, Wu DZ, Hua SJ, Jiang LX. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant Cell Environ. 2020;43(3):675–91.
28. Letunov I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucl Acids Res. 2012;40(1):302–5.
29. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Feng JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hunvitzi DJ, Jackson JD, Ke Z, Lanzczyck CJ, Lu F, Marchler GH, Mullokanov D, Omelchenko MV, Robertson CL, Song JS, Thanji K, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH, CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:225–9.
30. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Quekishi M, Sangrador-vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucl Acids Res. 2016;44(1):279–85.
31. Kumar S, Stecher G, Tamura K. MEGAT: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
33. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. GSSD 2.0: An upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
34. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37:202–8.
35. Kozvinski M, Schein J, Bird I, Connors J, Gascoyne R, Horsman D, Jones SJ, Maira MA. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
36. Wang Y, Tang H, DeBary JD, Tan H, Li X, Lee T, Jin H, Marler B, Guo H. MCscanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49.
37. Holub EB. The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2001;2(7):151–67.
38. Zhu WZ, Wu DZ, Jiang LX, Ye LZ. Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biol. 2020;20(1):1.
39. Chen CJ, Chen H, Zhang H, Thomas HR, Frank MH, He YH, Xia R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13(9):1194–202.
40. Manfield IW, Devlin PF, Jen CH, Westhead DR, Gilmartin PM. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol. 2007;143(2):941–4.
41. Richter DJ, Thomas EV. Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant. 2020;13(9):1194–202.
42. Behringer C, Bastakis E, Ranftl QL, Mayer KFX, Schwechheimer C. Functional diversification within the family of B-GATA transcription factors through the Leucine-Leucine-methionine domain. Plant Physiol. 2014;166(1):309–305.
43. Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals aniracetate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J. 2005;44(4):680–92.
44. Chang YH, Zhuo YD, Tapken W, Kim HU, Lavanway AM, Howard L, Pilon M, Kieber JJ, Schaller GE. Functional characterization of the GATA transcription factors GVC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol. 2012;160(1):332–48.
45. Hudson D, Guireva D, Yaish MW, Hannam C, Long N, Clarke JD, Bi YM, Rothstein SJ. GVC and CGA1 regulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS One. 2011;6(11):e2675.
46. Shen YS, Xiang Y, Xu ES, Ge XH, Li ZY. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci. 2018;9:390.
47. Shikata M, Matsuda Y, Ando K, Nishii A, Takemura M, Yokota A, Kohchi T. Characterization of a novel gene encoding a putative single zinc-finger GATA transcription factor previously known as ZIM factor gene family. J Exp Bot. 2004;55(397):631–41.
48. Letunov I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucl Acids Res. 2012;40(1):302–5.