Variable Length Coding over the Two-User Multiple-Access Channel

Stéphane Musy
School of Computer and Communication Sciences, EPFL
CH-1015 Lausanne, Switzerland
Email: stephane.musy@a3.epfl.ch

Abstract—For discrete memoryless multiple-access channels, we propose a general definition of variable length codes with a measure of the transmission rates at the receiver side. This gives a receiver perspective on the multiple-access channel coding problem and allows us to characterize the region of achievable rates when the receiver is able to decode each transmitted message at a different instant of time. We show an outer bound on this region and derive a simple coding scheme that can achieve, in particular settings, all rates within the region delimited by the outer bound. In addition, we propose a random variable length coding scheme that achieve the direct part of the block code capacity region of a multiple-access channel without requiring any agreement between the transmitters.

Index Terms—Achievable region, fountain codes, multiple-access channels, random coding, variable length codes.

I. INTRODUCTION

In this paper, we investigate the rates achievable by using variable length codes over a two-user multiple-access channel. We let the codewords of each transmitter to be infinite sequences of input symbols and let the receiver decode each transmitted message at some desired instant of time. The transmission “rate” of each message is then defined from the perspective of the receiver, as the information symbols transmitted per channel observation at the receiver. Notice that in the usual sense these codes are rateless (or zero-rate), here the transmission “rate” captures the trade-off between the amount of information received with the “timeliness” of the information. This setting can be seen as a “one-shot” view on the multiple-access communication problem as opposed to a “multi-shot” view, where each transmitter has an indefinite amount of information to simultaneously send to the receiver, which is the view traditionally considered in network information theory. This approach may be useful to analyze scenarios where synchronous users have infrequent messages to transmit.

Note that a definition of rates from the perspective of the receivers is made in [14] and [15] to analyze broadcast channels where a common message is transmitted to several receivers. Therein, the rate for each receiver is normalized by the time the receiver needs to be “online” to reliably decode the message. In this context, it is known that if the capacity achieving distribution is the same for each individual link, the maximum achievable transmission rate over each link can be simultaneously achieved. A result that one can not reach with the classical definitions of rates and block codes. An effective way of achieving this when the receivers are served by erasure channels is to use fountain codes, such as LT codes [8] or raptor codes [12]. Notice that, an information theoretic treatment of fountain codes with a careful definition of rate is done in [13].

In our setting, the following argument shows that, if we require that the receiver decode the transmitted messages at the same instant of time, the set of achievable rates is the same for variable and fixed length codes. To the contrary assume that such a code exists, let $E[N]$ be its expected length, then by the law of large numbers the total length of n successive transmissions is very likely to be less than $n(E[N]+\epsilon)$. Thus, a fixed length code of this length will achieve almost the same rate with a small probability of error. Therefore, the interesting problem is to characterize the region of achievable rates when the receiver is allowed to decode the messages at different instants of time.

Here, we introduce a region of achievable rates that captures the variability in the receiver decoding times and show an outer bound on it. This outer bound can be related to the block code capacity region and quantify the possible gain over block codes in terms of achievable rates. Then, we present two examples of variable length codes obtained by combination of block codes that achieve any rate pair within the region delimited by the outer bound, in specific settings which are explicated later. This argues that the gain in the achievable rates using variable length codes comes only from the possibility for the receiver to decode the transmitted messages in non-overlapping periods of time.

To conclude, using random coding, we show the existence of a variable length code that achieves all rate pairs within the direct part (without time-sharing) of the block code capacity region of a multiple-access channel, without requiring a pre-
uous agreement between the transmitters. A result that one cannot obtain using only block codes and which might be interesting in a decentralized setting.

The next section provides the definition of a variable length code for a multiple-access channel, along with an associated region of achievable rates addressing the possibility for the receiver to decode different instants of time. In Section II, we show an outer bound on this region. Then, in Section III, we relate the outer region formed by the outer bound to the block code capacity region of a multiple-access channel, and, in Section IV, we present two examples of coding schemes based on block codes that achieve the outer region in particular settings. Finally, in Section V, we explore the set of rates achievable using variable length codes with a random codebook and derive a decoding rule that achieves all rate pairs within the direct part of the block code capacity region, without requiring any agreement between the transmitter.

II. DEFINITIONS

We consider a discrete memoryless multiple-access channel in which two transmitters send independent information to a common receiver. The channel model is illustrated in Figure 1. There are two sources, one producing a message $W_1 \in \{1, 2, \ldots, M_1\}$ and the other producing a message $W_2 \in \{1, 2, \ldots, M_2\}$. The channel consists of two input alphabets \mathcal{X}_1 and \mathcal{X}_2, one output alphabet \mathcal{Y}, and a probability transition function $p(y|x_1, x_2)$. By the memorylessness of the channel we have, for any n, $p(y^n|x_1^n, x_2^n) = \Pi_{i=1}^n p(y_i|x_{1i}, x_{2i})$, where $x_{1i} \in \mathcal{X}_1^n$, $x_{2i} \in \mathcal{X}_2^n$ and $y^n \in \mathcal{Y}^n$.

![Multiple-Access Channel](image)

Fig. 1. Multiple-Access Channel.

Let N_1 and N_2 be stopping times with respect to $\{Y_i\}_{i \geq 1}$, the sequence of received letters. We define a (M_1, M_2, N_1, N_2) variable length code as two sequences of mappings (encoders) $\{x_{1i}(W_1)\}_{i \geq 1}$ and $\{x_{2i}(W_2)\}_{i \geq 1}$, and two decoding functions (decoders) with respect to the decoding times N_1 and N_2.

$$g_1: \mathcal{Y}^{N_1} \rightarrow \{1, 2, \ldots, M_1\}$$

and

$$g_2: \mathcal{Y}^{N_2} \rightarrow \{1, 2, \ldots, M_2\}.$$

Note that \mathcal{Y}^{N_1} and \mathcal{Y}^{N_2} take values in the set of all finite sequences of channel output. For deterministic stopping rules, we can represent the set of all output sequences for which a decision is made, at each decoder (g_1 and g_2), as the leaves of a complete $|\mathcal{Y}|$-ary tree. The leaves have a label from the set of messages. Each decoder starts climbing the tree from the root. At each time it chooses the branch that corresponds to the received symbol. When a leaf is reached, the decoder makes a decision as indicated by the label of the leaf (see Fig. 2 for an example).

![Example of a tree associated with g_1 for a binary-output multiple-access channel with $M_1 = 4$. The set of all received sequences for which a decision is made is represented by the leaves of a complete binary tree. The decoder climbs the tree by going up or down whether it receives a one or a zero, until it reaches a leaf and makes a decision accordingly.](image)

Fig. 2. Example of a tree associated with g_1 for a binary-output multiple-access channel with $M_1 = 4$. The set of all received sequences for which a decision is made is represented by the leaves of a complete binary tree. The decoder climbs the tree by going up or down whether it receives a one or a zero, until it reaches a leaf and makes a decision accordingly.

Now, assuming that (W_1, W_2) are uniformly distributed over $\{1, 2, \ldots, M_1\} \times \{1, 2, \ldots, M_2\}$, we let the average probability of error to be the probability that the decoded message pair is not equal to the transmitted one, i.e.,

$$P_e = Pr\{g_1(Y^{N_1}) \neq W_1 \text{ or } g_2(Y^{N_2}) \neq W_2\},$$

and we define the transmission rates from the perspective of the receivers as $\frac{\log M_1}{P_e N_1}$ and $\frac{\log M_2}{P_e N_2}$. Notice that this definition of rate is usually made for variable length coding over a single-user channel, see, e.g., [11], [16]. However, this is a particular choice that measures the rate by the amount of information received over the average transmission time, one can imagine other definitions that may lead to different results.

Definition 1: A rate pair (R_1, R_2) is said to be achievable for the multiple-access channel if for all $\epsilon > 0$, there exists a (M_1, M_2, N_1, N_2) variable length code with $\frac{\log M_1}{P_e N_1} \geq R_1$, $\frac{\log M_2}{P_e N_2} \geq R_2$ and $P_e < \epsilon$.

The capacity region of the multiple-access channel is the closure of the set of achievable rates. Observe that with this definition the capacity region is simply given by the rectangle $[0, C_1] \times [0, C_2]$, where $C_1 \triangleq \max_{(x_1, x_2)} I(X_1; Y | X_2)$ and $C_2 \triangleq \max_{x_2} I(X_2; Y | X_1)$ are the supremum of all achievable rates in each individual link. As previously observed in [12], any rate pair in this region can be achieved by sending the messages of each user in a separated period of time, and by making the ratio $E[N_1]/E[N_2]$ approach zero.

6 A tree is said to be a complete $|\mathcal{Y}|$-ary tree if any vertex is either a leaf or has $|\mathcal{Y}|$ immediate descendants.

7 Note that the channel rate $E[N_1]$ and $E[N_2]$ are taken over the channel realizations and over the pair of messages (W_1, W_2).

8 Here we consider the average probability of error. To use $P_e = \max_{W_1, W_2} \Pr\{g_1(Y_1^{N_1}) = W_1 \text{ or } g_2(Y^{N_2}) = W_2\}$ would in general lead to a different capacity region, as noticed in [6].
(or infinity). Thereby requiring that one user have infinitely more information to transmit than the other.

As mentioned in the introduction, here we want to consider scenarios where each user has infrequent messages to transmit. Thus, we are more interested to characterize the region of achievable rates for bounded values of the ratio $E[N_1]/E[N_2]$ and capture the variability on the receiver decoding times, this leads us to consider the following region:

Definition 2: Let $N \triangleq \min(N_1, N_2)$, we denote by C_{r_1, r_2} the set of rates achievable by using variable length codes for which $rac{E[N]}{E[N_1]} \geq r_1$, $rac{E[N]}{E[N_2]} \geq r_2 \triangleq sr_1$, with $0 \leq r_1, r_2 \leq 1$.

This definition precludes the possibility that the receiver decodes one transmitted message in a short period of time while the other one takes a large period of time, the ratio between the two average decoding times being governed by the values of r_1 and r_2. The justification for the particular formulation of the restrictions imposed on $E[N_1]$ and $E[N_2]$ comes from the outer bound that we found on this region, this bound is presented in the next section. Section V will then describe coding schemes based on block codes that achieve the outer region when additional constraints are imposed on r_1 and r_2.

III. Outer Region

In order to prove our outer bound on C_{r_1, r_2} we need two lemmas, which gives lower bounds on the mutual information λ comes from the outer bound that we found on this region, this section will then describe coding schemes based on block codes that achieve the outer region when additional constraints are imposed on r_1 and r_2.

Lemma 1: The following inequalities hold:

$$I(W_1; Y^N | W_2) \leq E[N] I(X_1; Y | X_2, Q) + \log(eE[N])$$

$$I(W_2; Y^N | W_1) \leq E[N] I(X_2; Y | X_1, Q) + \log(eE[N])$$

$$I(W_1, W_2; Y^N) \leq E[N] I(X_1, X_2; Y | Q) + \log(eE[N]),$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$.

Proof: Let $\lambda_i = 1 \{ N_i \geq i \}$ then, from the chain rule for mutual information, we have

$$I(W_1; Y^N | W_2) = I(W_1; Y_1\lambda_1, \lambda_1, \cdots, Y_n\lambda_n, \lambda_n, \cdots | W_2)$$

$$= I(W_1; Y_1\lambda_1 | W_2) + I(W_1; Y_1\lambda_1 | \lambda_1, W_2) + \cdots + I(W_1; Y_n\lambda_n | W_2)$$

$$+ I(W_1; Y_n\lambda_n | \lambda_n, W_2) + \cdots$$

$$= \sum_{i=1}^\infty I(W_1; \lambda_i | (Y \lambda)^{i-1}, \lambda_i, W_2)$$

$$+ \sum_{i=1}^\infty I(W_1; Y_i \lambda_i | (Y \lambda)^{i-1}, \lambda_i, W_2).$$

The first summation can be upper bounded as

$$\sum_{i=1}^\infty I(W_1; \lambda_i | (Y \lambda)^{i-1}, \lambda_i, W_2) \leq \sum_{i=1}^\infty H(\lambda_i | \lambda^{i-1})$$

$$= H(\lambda_1, \lambda_2, \cdots)$$

$$= H(N)$$

$$\leq \log(eE[N]),$$

where we use the fact that conditioning reduces entropy, and the last inequality is proved in [4] and [5, §1.3], for any non-negative discrete random variable, using the log sum inequality.

For the second summation, we can write

$$I(W_1; Y_1\lambda_1 | (Y \lambda)^{i-1}, \lambda_i, W_2)$$

$$= H(Y_1 | (Y \lambda)^{i-1}, \lambda_i, W_2) - H(Y_1 | (Y \lambda)^{i-1}, \lambda_i, W_2, W_1)$$

$$\leq H(Y_1 | (Y \lambda)^{i-1}, \lambda_i) - H(Y_1 | (Y \lambda)^{i-1}, \lambda_i, W_2, W_1)$$

$$= \Pr(\lambda_i = 1) \{ H(Y_i | X_2, \lambda_i = 1) - H(Y_i | X_1, X_2, \lambda_i = 1) \}$$

$$= \Pr(N \geq i) I(X_1; Y_i | X_2, \lambda_i = 1),$$

where (a) follows, since conditioning reduces entropy and X_{2i} is a function of W_2. In (b) we remark that knowing λ_i, $Y_i\lambda_i$ is independent of the past values $\{ \lambda_j \}_{j<i}$, and that (X_{1i}, X_{2i}) is a function of (W_1, W_2) and then given (X_{1i}, X_{2i}), Y_i is independent of (W_1, W_2) and of the past received values. The other equalities follow by definition of the corresponding quantities.

Next, observe that $p(y_{1i}|x_{1i}, x_{2i}, \lambda_i = 1) = p(y_{1i}|x_{1i}, x_{2i})$, thus $I(X_1; Y_i | X_2, \lambda_i = 1) = I(X_1; Y_i | X_{2i})$, with $p(x_{1i}) \triangleq p(x_{1i} | \lambda_i = 1)$ and $p(x_{2i}) \triangleq p(x_{2i} | \lambda_i = 1)$. Hence, we get

$$\sum_{i=1}^\infty I(W_1; Y_i \lambda_i | (Y \lambda)^{i-1}, \lambda_i, W_2)$$

$$\leq \sum_{i=1}^\infty \Pr(N \geq i) I(X_1; Y_i | X_{2i})$$

$$= E[N] \sum_{i=1}^\infty \Pr(N \geq i) I(X_1; Y_i | X_{2i}).$$

Now let $a_i = \frac{\Pr(N \geq i)}{E[N]}$, note that $a_i \geq 0$ for all i, and $\sum_i a_i = 1$. Thus, we can define an integer random variable Q by setting $\Pr(Q = i) = a_i$, for all $i \in \{ 1, 2, \ldots \}$. Using this, the preceding equation becomes

$$\sum_{i=1}^\infty I(W_1; Y_i \lambda_i | (Y \lambda)^{i-1}, \lambda_i, W_2)$$

$$= E[N] \sum_{i=1}^\infty \Pr(Q = i) I(X_1Q; Y_Q | X_{2Q}, Q = i)$$

$$= E[N] \sum_{i=1}^\infty \Pr(Q = i) I(X_1; Y | X_{2}, Q),$$

where $X_1 \triangleq X_{1Q}$, $X_2 \triangleq X_{2Q}$ and $Y \triangleq Y_Q$ are new random variables whose distributions depend on Q in the same way as the distributions of X_{1i}, X_{2i} and Y_i depend on i. Notice that $Q \rightarrow (X_1, X_2) \rightarrow Y$ forms a Markov chain. Therefore, we obtain

$$I(W_1; Y^N | W_2) \leq E[N] I(X_1; Y | X_2, Q) + \log(eE[N]),$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$.
The second inequality follows in a symmetric way. For the last one, we proceed in the same manner, consider

\[I(W_1, W_2; Y^N) = I(W_1, W_2; Y_1 \lambda_1, \lambda_1, \cdots, Y_n \lambda_n, \lambda_n, \cdots) \]

\[= \sum_{i=1}^{\infty} I(W_1, W_2; \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) \]

\[+ \sum_{i=1}^{\infty} I(W_1, W_2; Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}). \]

As before, the first summation can be upper bounded as

\[\sum_{i=1}^{\infty} I(W_1, W_2; \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) \leq \log(eE[N]). \]

For the second summation, we have

\[I(W_1, W_2; Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) \]

\[= H(Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) - H(Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}, W_1, W_2) \]

\[\leq H(Y_i \lambda_i|X_1, \cdots, X_n, Y, \lambda_1, \cdots, \lambda_n) \]

\[= \Pr(\lambda_i = 1) - \sum_{i=1}^{\infty} \Pr(N \geq i) \]

\[\times I(X_{1i}, X_{2i}; Y_i|\lambda_i = 1). \]

Then, observe that \(p(y|x_{1i}, x_{2i}, \lambda_i = 1) = p(y|x_{1i}, x_{2i}) \), thus \(I(X_{1i}, X_{2i}; Y_i|\lambda_i = 1) = I(X_{1i}; Y_i|X_{2i}), \) with \(p(x_{1i}) \doteq p(x_1|\lambda_i = 1) \) and \(p(x_{2i}) \doteq p(x_2|\lambda_i = 1). \) Hence, we get

\[\sum_{i=1}^{\infty} I(W_1, W_2; Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) \]

\[\leq \sum_{i=1}^{\infty} \Pr(N \geq i) I(X_{1i}, X_{2i}; Y_i) \]

\[= \frac{E[N]}{E[N]} \sum_{i=1}^{\infty} \Pr(N \geq i) I(X_{1i}, X_{2i}; Y_i). \]

Now, as done before, let \(a_i = \frac{\Pr(N \geq i)}{E[N]}, \) and define an integer random variable \(Q \) by setting \(\Pr(Q = i) = a_i, \) for all \(i \in \{1, 2, \ldots, M \}. \) Using this, the preceding equation becomes

\[\sum_{i=1}^{\infty} I(W_1, W_2; Y_i \lambda_i|(Y \lambda)^{i-1}, \lambda^{i-1}) \]

\[= \frac{E[N]}{E[N]} \sum_{i=1}^{\infty} \Pr(Q = i) I(X_{1Q}, X_{2Q}; Y_Q|Q = i) \]

\[= \frac{E[N]}{E[N]} I(X_1, X_2; Y|Q), \]

where \(X_1 \doteq X_{1Q}, X_2 \doteq X_{2Q} \) and \(Y \doteq Y_Q \) are random variables whose distributions depend on \(Q \) in the same way as the distributions of \(X_{1i}, X_{2i} \) and \(Y_i \) depend on \(i. \) Notice that \(Q \rightarrow (X_1, X_2) \rightarrow Y \) forms a Markov chain.

Therefore, we obtain

\[I(W_1, W_2; Y^N) \leq E[N]I(X_1, X_2; Y|Q) + \log(eE[N]), \]

for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2). \]

We show the proof of the next lemma in appendix, the main ideas being presented in the previous lemma.

Lemma 2: We have the following inequalities:

\[I(W_1; Y_{N+1}^N|Y^N, W_2) \leq E[N] - N|C_1 + \log(eE[N] - N) \]

\[I(W_2; Y_{N+1}^N|Y^N, W_1) \leq E[N] - N|C_2 + \log(eE[N] - N). \]

Proof: See Appendix \[\Box \]

Notice that in these lower bounds the additional terms corresponding to the information provided by the length of the codewords are superlin in the average decoding times. This is an interesting fact that we use to show our outer bound on the region of achievable rates \(C_{r_1, r_2}, \) given by the following theorem.

Theorem 3: (Outer bound) Any rate pair \((R_1, R_2) \in C_{r_1, r_2} \) must satisfy

\[R_1 \leq r_1 I(X_1; Y|X_2, Q) + (1 - r_1)C_1 \]

\[R_2 \leq r_2 I(X_2; Y|X_1, Q) + (1 - r_2)C_2 \]

\[sR_1 + R_2 \leq r_2 I(X_1, X_2; Y|Q) + s(1 - r_1)C_1 + (1 - r_2)C_2, \]

for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2), \) with \(|Q| \leq 2. \)

Proof: Let \(W_i \) be uniformly distributed over \(\{1, 2, \ldots, M \}, i = 1, 2. \) Then,

\[I(W_1, W_2; Y^\max(N_1, N_2)) \]

\[= H(W_1, W_2) - H(W_1, W_2|Y^\max(N_1, N_2)) \]

\[= E[N_1]R_1 + E[N_2]R_2 - H(W_1, W_2|Y^\max(N_1, N_2)), \]

and

\[I(W_1; Y_{N_1}^N|W_2) = H(W_1|W_2) - H(W_1|Y_{N_1}^N, W_2) \]

\[\geq E[N_1]R_1 - H(W_1|Y_{N_1}^N), \]

and

\[I(W_2; Y_{N_2}^N|W_1) = H(W_2|W_1) - H(W_2|Y_{N_2}^N, W_1) \]

\[\geq E[N_2]R_2 - H(W_2|Y_{N_2}^N). \]

From Fano’s inequality, we have

\[E[N_1](R_1 - \epsilon) \leq I(W_1; Y_{N_1}^N|W_2) \]

\[E[N_2](R_2 - \epsilon) \leq I(W_2; Y_{N_1}^N|W_1) \]

\[E[N_1](R_1 - \epsilon) + E[N_2](R_2 - \epsilon) \leq I(W_1, W_2; Y^\max(N_1, N_2)), \]

where \(\epsilon \rightarrow 0 \) as \(P_e \rightarrow 0. \)

Applying the chain rule for mutual information and remembering that \(N = \min(N_1, N_2), \) we can write

\[I(W_1; Y_{N_1}^N|W_2) = I(W_1; Y^N|W_2) + I(W_1; Y_{N_1}^N|Y^N, W_2), \]

with the convention that \(Y_{N+1}^N = 0. \)

Then, using Lemma \[I(W_1; Y_{N_1}^N|W_2) \leq E[N]I(X_1; Y|X_2, Q) + E[N_1 - N]C_1 + \log(eE[N] - N), \]

\[+ \log(eE[N] - N) + \log(eE[N] - N)). \]
for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2) \).

In a symmetric way, we obtain

\[
I(W_2; Y_{N_2}^N|W_1) \leq E[N] I(X_2; Y|X_1, Q) + E[N_2 - N] C_2 + \log(eE[N]) + \log(eE[N_2 - N]),
\]

for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2) \).

Now, using the chain rule for mutual information, we have

\[
I(W_1, W_2; Y_{max(N_1, N_2)}) = I(W_1, W_2; Y^N) + I(W_1, W_2; Y_{N+1}^{max(N_1, N_2)}|Y^N) = I(W_1, W_2; Y^N) + I(W_1, W_2; Y_{N+1}^{max(N_1, N_2)}|N, Y^N).
\]

Lemma 1 implies

\[
I(W_1, W_2; Y^N) \leq E[N] I(X_1, X_2; Y|Q) + \log(eE[N]),
\]

for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2) \). For the second term, the following holds

\[
I(W_1, W_2; Y_{max(N_1, N_2)}^{N})|N, Y^N
= \Pr(N = N_1) I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}) + \Pr(N = N_2) I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_2, Y^{N_2})

= \Pr(N_1 \leq N_2) I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}) + \Pr(N_2 < N_1) I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_2, Y^{N_2}),
\]

with

\[
I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}) = I(W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}, W_1) + I(W_1; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1})
= I(W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}, W_1) + H(W_1|N = N_1, Y^{N_1}) - H(W_1|N = N_1, Y^{N_2}).
\]

Since at time \(N_1 \) the receiver decodes \(W_1 \), we can apply Fano’s inequality, yielding

\[
I(W_1, W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}) \leq I(W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}, W_1) + E[N_1] \epsilon,
\]

where \(\epsilon \to 0 \) as \(P_e \to 0 \). By symmetry, we have

\[
I(W_1, W_2; Y_{N_2+1}^{N_1}|N = N_2, Y^{N_2}) \leq I(W_1; Y_{N_2+1}^{N_1}|N = N_2, Y^{N_2}, W_2) + E[N_2] \epsilon.
\]

Hence,

\[
I(W_1, W_2; Y_{max(N_1, N_2)}^{N})|N, Y^N
\leq \Pr(N_1 \leq N_2) I(W_2; Y_{N_1+1}^{N_2}|N = N_1, Y^{N_1}, W_1) + \Pr(N_2 < N_1) I(W_1; Y_{N_1+1}^{N_2}|N = N_2, Y^{N_2}, W_2) + E[N_1] \epsilon + E[N_2] \epsilon
= I(W_2; Y_{N_1+1}^{N_2}|N, Y^{N}, W_1) + I(W_1; Y_{N_1+1}^{N_2}|N, Y^{N}, W_2) + E[N_1] \epsilon + E[N_2] \epsilon
\leq E[N_2 - N] C_2 + E[N_1 - N] C_1 + \log(eE[N_2 - N]) + \log(eE[N_1 - N]) + E[N_1] \epsilon + E[N_2] \epsilon,
\]

where we use Lemma 2 to obtain the last inequality.

Putting things together, we get

\[
E[N_1](R_1 - \epsilon) \leq E[N] I(X_1; Y|X_2, Q) + E[N_1 - N] C_1 + \log(eE[N]) + \log(eE[N_1 - N])
\]

\[
E[N_2](R_2 - \epsilon) \leq E[N] I(X_2; Y|X_1, Q) + E[N_2 - N] C_2 + \log(eE[N]) + \log(eE[N_2 - N])
\]

\[
E[N_1](R_1 - \epsilon) + E[N_2](R_2 - \epsilon) \leq E[N] I(X_1, X_2; Y|Q) + E[N_1 - N] C_1 + E[N_2 - N] C_2 + \log(eE[N]) + \log(eE[N_2 - N]) + E[N_1] \epsilon + E[N_2] \epsilon,
\]

for some joint distribution \(p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2) \).

Dividing by \(E[N_1] \) in the first inequality and by \(E[N_2] \) in the second and in the last inequality, then letting \(E[N_1] \to \infty \) and \(E[N_2] \to \infty \) with \(\frac{E[N_1]}{E[N_2]} = s \) gives the statement of the theorem. The upper bound on the cardinality of \(Q \) follows from convex analysis.

\[\square\]

In the previous proof we let the expected decoding times be arbitrary large, but in regards of our definition of achievability (Definition 1) it is not sure that this is needed in order to achieve an arbitrary low probability of error.\(^{10}\) For channels with a zero-error capacity equal to zero, Appendix B gives an heuristic argument showing that this is indeed required. However, observe that variable length codes can increase the zero-error capacity of a channel (for example, one can consider the binary erasure channel), thus this is not just a technicality.

\(^{10}\)Here the concatenation argument traditionally made with block codes does not work.
IV. COMMENTS ON THE OUTER REGION

Let \mathcal{R}_{MAC} denote the block code capacity region of a multiple-access channel, which can be stated as the union of all pairs (R_1, R_2) satisfying\(^{[3]}\)

$$
R_1 \leq I(X_1; Y|X_2, Q) \\
R_2 \leq I(X_2; Y|X_1, Q) \\
R_1 + R_2 \leq I(X_1, X_2; Y|Q),
$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$, with $|Q| \leq 2$.

For a given r_1 and r_2, let us rewrite the region defined by the outer bound of the previous theorem as the union of all (R'_1, R'_2) pairs satisfying

$$
R'_1 \leq r_2(I(X_1; Y|X_2, Q) + s(1-r_1)C_1) \\
R'_2 \leq r_2(I(X_2; Y|X_1, Q) + (1-r_2)C_2) \\
R'_1 + R'_2 \leq r_2(I(X_1, X_2; Y|Q) + s(1-r_1)C_1 + (1-r_2)C_2),
$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$, with $|Q| \leq 2$. We have just set $R'_1 = sR_1$ and $R'_2 = R_2$ in the region of the theorem. Denote it by \mathcal{R}. From these expressions, we have immediately that $(R'_1, R'_2) \in \mathcal{R}$ is equivalent to

$$
\frac{1}{r_2}(R'_1 - s(1-r_1)C_1, R'_2 - (1-r_2)C_2) \in \mathcal{R}_{MAC}.
$$

Therefore, the region given by Theorem\(^{[3]}\), \(^{[4]}\) can be seen as a contraction by (r_1, r_2) of the block code capacity region of a multiple-access channel followed by an extension of $((1-r_1)C_1, (1-r_2)C_2)$. This is illustrated in Fig. 3. One can also remark that, when $(r_1, r_2) = (1, 1)$ the outer region is equal to the block code capacity region \mathcal{R}_{MAC}, and for $(r_1, r_2) = (0, 0)$ we recover the full rectangle $[0, C_1] \times [0, C_2]$.

![Fig. 3. Example of an outer region with an arbitrary (r_1, r_2). The dashed line with $r_1 = 1$ and $r_2 = 1$ represents the block code capacity region of a multiple-access channel. The dotted lines show the construction of the outer region.](image)

Finally, let us emphasize that C_{r_1, r_2} is defined for variable length codes with a certain r_1 and r_2, and that no bounds on the possible values of these ratios are given here. However the existence of a coding scheme with any desired r_1 and r_2 is not guaranteed. In the next section we specify the outer region when some restriction on $E[N_1], E[N_2]$ and $E[N]$ are imposed and show explicit coding schemes that achieve the outer region in these particular cases.

\(^{11}\)For a careful definition and analysis of block codes and multiple-access channels, the reader is referred to\(^{[3]}\) and the references therein.

V. ACHIEVABILITY AND CODING SCHEMES

Let us first restrict the analysis to coding schemes for which the receiver never (or with a negligible probability) decodes the message from the first transmitter after the message coming from the second transmitter, that is $E[N] = E[N_1]$ or equivalently $r_1 = 1$. In this case, the outer bound of Theorem\(^{[3]}\), \(^{[4]}\) can be written as, for any rate pair $(R_1, R_2) \in C_{r_1, r_2}$ must satisfy

$$
R_1 \leq I(X_1; Y|X_2, Q) \\
R_2 \leq sI(X_2; Y|X_1, Q) + (1-r_2)C_2 \\
r_2 R_1 + R_2 \leq r_2 I(X_1, X_2; Y|Q) + (1-r_2)C_2,
$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$ with $|Q| \leq 2$\(^{[5]}\) and where $0 \leq r_2 \leq 1$.

As the following construction will show, any rate pair in the region delimited by this outer bound can be achieved by using a (sequence of) concatenation of two (multiple-access) block codes. For some $\epsilon > 0$, generate one block code of length $E[N_1]$ and rates $(R'_1, R'_2) \in \mathcal{R}_{MAC}$, and one of length $E[N_2] - E[N_1]$ and rates $(0, C_2 - \epsilon)$, that is the first transmitter send the input symbol that allows the second transmitter to send at its maximum rate (see Fig. 4).

![Fig. 4. Example of codewords formed by the concatenation of two block codes. The top (resp. bottom) line illustrates the codeword of the first (resp. second) transmitter. The filled intensity of a block representing a codeword is proportional to the information rate of the corresponding code.](image)

Denote by \mathcal{V}\(^{11}\) the (M_1, M_2, N_1^1, N_2^1) variable length code obtained by the concatenation of these two block codes, this means that we let the codewords be formed by the Cartesian product of the respective codebooks\(^{[5]}\) and that the decoding functions are equal to the corresponding block code decoding functions with respect to the fixed stopping times N_1^1 and N_2^1, which are given by

$$
N_1^1 = E[N_1] = \frac{\log M_1}{R_1^1} \text{ a.s.} \\
N_2^1 = E[N_2] = \frac{\log M_1 + \log M_2}{C_2 - \epsilon} - \frac{R_2^1}{(C_2 - \epsilon)} \frac{\log M_1}{R_1^1} \text{ a.s.}
$$

this implies that

$$
\frac{\log M_1}{E[N_1]} = R_1^1 \\
\frac{\log M_2}{E[N_2]} = \frac{N_1^1}{N_2^1} R_2^1 + (1 - \frac{N_1^1}{N_2^1})(C_2 - \epsilon).
$$

Thus, by letting N_1^1 and N_2^1 be arbitrary large with $\frac{N_1^1}{N_2^1} = r_2$, this coding scheme achieves any rate pair within the outer region. In the case where $E[N] = E[N_2]$, a symmetric

\(^{12}\)Henceforth we will omit to mention the cardinality bound on Q.

\(^{13}\)To be rigorous we should add to each codeword an infinite sequence of arbitrary input symbols.
conclusion shows that the outer region of Theorem 3 is achieved. Let us denote by V^2 the (M_1, M_2, N_1^2, N_2^2) variable length code corresponding to this construction.

This shows that, in the particular cases where $E[N] = E[N_1]$ or $E[N] = E[N_2]$, the best coding scheme is composed of two successive block codes. Hence, in this example, we see that the gain in terms of achievable rates essentially comes from the possibility for the receiver to decode each message at a different instant of time.

Concerning the general case with no specific restriction on $E[N]$, for a fixed value of $E[N_1]$ and $E[N_2]$, the best outer bound is obtained by minimizing $E[N]$. Since $N_1 \geq \log \frac{M_1}{C_1}$ and $N_2 \geq \log \frac{M_2}{C_2}$ with high probability, we have $E[N] \geq \min(\log \frac{M_1}{C_1}, \log \frac{M_2}{C_2})$. In the remaining of this section, we restrict our analysis to coding schemes with $\frac{\log M_1}{C_1} = \frac{\log M_2}{C_2}$, this impose a restriction on the ratio of the expected decoding times.

For such schemes, using the lower bound on $E[N]$, we have $1 \geq r_1 \geq \frac{R_1}{\lambda}$ and $1 \geq r_2 \geq \frac{R_2}{\lambda}$, thus we may rewrite the outer bound on C_{r_1, r_2} for these values of r_1 and r_2, as

$$R_1 \leq \frac{C_1}{2 - I(X_1; Y | X_2; Q)}$$

$$R_2 \leq \frac{C_2}{2 - I(X_2; Y | X_1; Q)}$$

$$sR_1 + R_2 \leq \frac{R_2}{C_2} I(X_1, X_2; Y | Q) + (1 - \frac{R_1}{C_1}) C_1 + (1 - \frac{R_2}{C_2}) C_2,$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$, and for $s = \frac{R_1}{C_1}$. The last inequality can be worked out to bound R_2 by a function of R_1, as

$$R_2 \leq \frac{C_2}{2 + 2\frac{C_1}{C_2} - \frac{C_2}{C_1} r_1} - \frac{I(X_1, X_2; Y | Q)}{C_2}.$$

Thus, when R_1 satisfies its upper bound with equality, R_2 must satisfy

$$R_2 \leq \frac{C_2}{2 - I(X_2; Y | Q)},$$

for some joint distribution $p(q)p(x_1|q)p(x_2|q)p(y|x_1, x_2)$.

We specify now this outer region when the block code capacity region of the multiple-access channel forms a pentagon. Let us denote by (C_1, d_2) and (d_1, C_2) the corner points of the dominant face of R_{MAC} (see Fig. 5). Then, let the joint distribution be such that the pair $(I(X_1; Y | X_2, Q), I(X_2; Y | X_1; Q))$ is on the dominant face of R_{MAC}, we can describe any such pair by $I(X_1; Y | X_2, Q) = d_1 + p(C_1 - d_1)$ and $I(X_2; Y | X_1; Q) = d_2 + p(C_2 - d_2)$, for some $p \in [0, 1]$. Therefore, in this setting, the achievable rates satisfy

$$R_1 \leq \frac{C_1}{1 + p(1 - d_2/C_2)}$$

$$R_2 \leq \frac{C_2}{1 + p(1 - d_1/C_1)}$$

for $p \in [0, 1]$. Observe that the region of all rate pair satisfying (1) is not convex.

In order to achieve this bound, we consider variable length codes with non-deterministic encoders. The idea is to use the codes V^1 and V^2 in alternation. To communicate a message pair $(w_1, w_2) \in (W_1, W_2)$, with probability λ, the transmitters use the codeword pair in V^1 corresponding to (w_1, w_2), and with probability $1 - \lambda = \lambda$ they use the corresponding codeword pair in V^2. The codewords obtained by this procedure form the codebook which is revealed to the receiver (and the transmitters). This is a kind of “time-sharing” between the codes V^1 and V^2, except that here the two codebooks have a different timeliness, and thus we cannot construct a new codebook with the desired rates by simply using one codebook a fraction of time and the other the remaining fraction of time.

The decoding times N_1 and N_2 of this coding scheme satisfy

$$E[N_1] = \lambda N_1^1 + \lambda N_1^2$$

$$E[N_2] = \lambda N_2^1 + \lambda N_2^2.$$

Now, for some $\epsilon > 0$, set $(R_1^*, R_2^*) = (C_1 - \epsilon, d_2)$ in the first block code of V^1, and $(R_1^*, R_2^*) = (d_1, C_2 - \epsilon)$ in the first block code of V^2. For $E[N_1]$ and $E[N_2]$ arbitrary large, this random coding scheme achieve the following rates

$$R_1 = \frac{(C_1 - \epsilon)}{1 + \lambda \log \frac{M_1}{C_1} (C_2 - \epsilon) (1 - \frac{d_1}{(C_1 - \epsilon)})}$$

$$R_2 = \frac{(C_2 - \epsilon)}{1 + \lambda \log \frac{M_2}{C_2} (C_1 - \epsilon) (1 - \frac{d_2}{(C_2 - \epsilon)})},$$

for all $\lambda \in [0, 1]$. This can be related to the outer bound given by (1), in particular for $\frac{\log M_1}{C_1} = \frac{\log M_2}{C_2}$, we have that any rate pair (R_1, R_2) such that

$$R_1 \leq \frac{(C_1 - \epsilon)}{1 + \lambda (1 - \frac{d_1}{(C_1 - \epsilon)})}$$

$$R_2 \leq \frac{(C_2 - \epsilon)}{1 + \lambda (1 - \frac{d_2}{(C_2 - \epsilon)})},$$

for some $\lambda \in [0, 1]$, is achievable. Thus, any rate pair within the outer region is achieved in this special case, showing that “time-sharing” coding strategies are sufficient for this setting.

The shape of such a region is represented in Fig. 5. Note

\[14\] Note that, our setting can be extended to incorporate non-deterministic encoders and the outer bound on C_{r_1, r_2} still holds.
that one can achieve higher rates with variable length coding than the rates achievable with fixed length coding even when \(E[N_1] = E[N_2]\). This holds only because of the possibility for the transmitters to send a part of their message in non-overlapping periods of time.

Finally we remark that these coding strategies need to fix the transmission rates (through the decoding times) before generating the codebook, thus each transmitter is aware of the rate used by the other transmitters. In the next section we show the existence of variable length codes achieving the direct part of the block code capacity region of a multiple-access channel without requiring a common agreement between the transmitters (decentralized setting).

VI. RANDOM VARIABLE LENGTH CODES

In this section we analyze the rates achievable when the transmitters employ a random codebook, that is the sequence of mappings \(\{x_1(W_1)\}_{1 \geq 1}\) (resp. \(\{x_2(W_2)\}_{1 \geq 1}\) are \(M_1\) (resp. \(M_2\)) random sequences of i.i.d. samples distributed according to a probability distribution \(p(x_1)\) (resp. \(p(x_2)\)) defined over \(X_1\) (resp. \(X_2\)).

A. A joint decoding rule

Let each transmitter start the transmission of a uniformly chosen codeword in the random codebook. At time \(n\), the decoder bases its decision on the sequence of received values \(y^n\). If we constrain the decoding times \(N_1\) and \(N_2\) to be equal, the joint decoder that minimizes the probability of error will use a MAP (maximum a posteriori) rule and choose the messages index \((w_1, w_2)\) maximizing the probability that \((w_1, w_2)\) is transmitted knowing the received sequence. Let

\[
\tau(n) = \max_{w_1, w_2} P_r((w_1, w_2) \text{ is transmitted}|y^n),
\]

then the optimal joint decoder (the one that minimizes the expected decoding time subject to a probability of error constraint) will make a decision at the time instant \(n\) for which \(\tau(n)\) exceeds a pre-determined threshold, and decode the messages \((w_1, w_2)\) achieving the maximum in the MAP rule.

Since the optimal rule is difficult to analyze, here we will make the hypothesis that \(p(y^n) = \Pi_{i=1}^{n} p(y_i)\), and look at the following modified version of the optimal decoding rule:

\[
\tau(n) = \max_{w_1, w_2} \frac{p(y^n|x_1^n(w_1), x_2^n(w_2))}{p(y^n)} = \max_{w_1, w_2} \Pi_{i=1}^{n} \frac{p(y_i|x_1(w_1), x_2(w_2))}{p(y_i)},
\]

taking the logarithm, we obtain

\[
S_{\text{joint}}(n) = \max_{w_1, w_2} \sum_{i=1}^{n} \log \frac{p(y_i|x_1(w_1), x_2(w_2))}{p(y_i)}.
\]

\[\text{Let us denote the expression under the summation by} \quad Z_i(w_1, w_2) = \log \frac{p(y_i|x_1(w_1), x_2(w_2))}{p(y_i)}\]

and the summation by \(S(n, w_1, w_2) = \sum_{i=1}^{n} Z_i(w_1, w_2)\). Note that for a fixed pair \((w_1, w_2)\), \(\{Z_i(w_1, w_2)\}_{i \geq 1}\) is a sequence of i.i.d. random variables, and \(\{S(n, w_1, w_2)\}_{n \geq 1}\) is a random walk. Therefore, the joint decoder will declare the message pair \((w_1, w_2)\) corresponding to the first (among \(M_1 M_2\)) random walk that crosses a given threshold (see Fig. 6). Let us consider the following threshold \((1 + \epsilon) \log(M_1 M_2)\) with \(\epsilon > 0\), then \(N\) is the stopping time defined by

\[
N = \min\{n \geq 1 : S_{\text{joint}}(n) \geq (1 + \epsilon) \log(M_1 M_2)\}.
\]

Assume, without lost of generality, that the message pair \((1, 1)\) is transmitted, and let us denote by \(N_{1,1}\) the crossing time of the random walk corresponding to the message pair \((1, 1)\), note that \(N \leq N_{1,1}\). Then, we have

\[
E[Z_1(1, 1)] = I(X_1, X_2; Y),
\]

using Wald’s equality (see, e.g., [21]), we get

\[
E[S(N_{1,1}, 1, 1)] = I(X_1, X_2; Y) E[N_{1,1}].
\]

For \(M_1 M_2\) large we can ignore the overshoots and \(E[S(N_{1,1}, 1, 1)] = (1 + \epsilon) \log(M_1 M_2)\). Thus, we can conclude that

\[
E[N] \leq E[N_{1,1}] \approx \frac{(1 + \epsilon) \log(M_1 M_2)}{I(X_1, X_2; Y)},
\]

which implies that

\[
R_1 + R_2 \geq \frac{I(X_1, X_2; Y)}{1 + \epsilon}.
\]

The joint decoder makes an error when a random walk corresponding to a different message pair crosses the threshold before \(\{S(n, 1, 1)\}\). The wrong messages come in three kinds:

1. \((w_1, w_2)\) such that \(w_1 \neq 1\) and \(w_2 \neq 1\),
2. \((w_1, w_2)\) such that \(w_1 = 1\) and \(w_2 \neq 1\),
3. \((w_1, w_2)\) such that \(w_1 \neq 1\) and \(w_2 = 1\).

\[\text{Here we have} \quad N_1 = N_2 = N.\]
In each case we have
\[E[Z_1(w_1 \neq 1, w_2 \neq 1)] = \sum_{x_1,x_2 \neq 1} p(x_1)p(x_2)p(y) \frac{p(y|x_1,x_2)}{p(y)} \]
\[= \sum_{x_1,x_2,y} p(x_1)p(x_2)p(y|x_1,x_2) \frac{p(y|x_1,x_2)}{p(y)} \]
\[= -D(p(y)||p(y|x_1,x_2)) \leq 0, \]
\[E[Z_1(w_1 = 1, w_2 \neq 1)] = \sum_{x_1,x_2,y} p(x_1)p(x_2)p(y|x_1,x_2) \frac{p(y|x_1,x_2)}{p(y)} \]
\[\leq \sum_{x_1,x_2,y} p(x_1)p(x_2) \frac{p(y|x_1,x_2)}{p(y)} \]
\[\leq \sum_{x_1,x_2,y} p(x_1)p(x_2) \left(\frac{p(y|x_1,x_2)}{p(y)} - 1 \right) \]
\[= 0, \]
\[E[Z_1(w_1 \neq 1, w_2 = 1)] \leq 0, \]
where we use the fact that \(\log x \leq (x-1) \)\(^{18}\) and the last inequality follows by symmetry.\(^{19}\) Note that the expectations are taken with respect to the joint probability \((X_1, X_2, Y)\) corresponding to the message pair \((w_1, w_2)\) considered. Thus \(\{(S(n, w_1, w_2))_{n \geq 1} : (w_1, w_2) \neq (1, 1)\}\) are random walks with negative drift. For those random walks one can show (see, e.g., \(^7\)) that the probability of ever crossing a threshold \(T\) is upper bounded as follows
\[
\Pr(\text{crossing } T) \leq e^{-\lambda^*(w_1, w_2)T},
\]
where \(\lambda^*(w_1, w_2)\) correspond to the unique positive root of the log moment generating function of \(Z_1(w_1, w_2)\), i.e.,
\[
\log E[e^{\lambda^*(w_1, w_2)Z_1(w_1, w_2)}] = 0.
\]
Therefore, we can upper bound the probability of error by the probability that any random walk in \(\{(S(n, w_1, w_2))_{n \geq 1} : (w_1, w_2) \neq (1, 1)\}\) crosses the threshold \(T = (1 + \epsilon) \log(M_1 M_2)\):
\[
P_e \leq M_1 e^{-\lambda^*(w_1 \neq 1, w_2 = 1)T} + M_2 e^{-\lambda^*(w_1 = 1, w_2 \neq 1)T} + M_1 M_2 e^{-\lambda^*(w_1 \neq 1, w_2 \neq 1)T}.
\]
Here we have
\[
E[e^{\lambda^*(w_1 \neq 1, w_2 \neq 2)}] = \sum_{x_1,x_2 \neq 1} p(x_1)p(x_2)p(y) \frac{p(y|x_1,x_2)}{p(y)} = 1,
\]
which implies that \(\lambda^*(w_1 \neq 1, w_2 \neq 1) = 1\). If, in addition
\[
\lambda^*(w_1 = 1, w_2 \neq 1) \geq \frac{I(X_2; Y|X_1)}{I(X_1; X_2; Y)},
\]
\[
\lambda^*(w_1 \neq 1, w_2 = 1) \geq \frac{I(X_1; Y|X_2)}{I(X_1; X_2; Y)},
\]
we would have had
\[
P_e \leq e^{E[N|(R_1 - I(X_1; Y|X_2))]} + e^{E[N|(R_2 - I(X_2; Y|X_1))} + (M_1 M_2)^{-\epsilon},
\]
and thus, by letting \(\epsilon \to 0\) and \(E[N] \to \infty\), any rate pair in \(R_{MAC}\) with a fixed input distribution \(p(x_1)p(x_2)\) would have been achievable using this joint decoding rule. Unfortunately, in general, \(\lambda^*(w_1 = 1, w_2 \neq 1)\) and \(\lambda^*(w_1 \neq 1, w_2 = 1)\) do not satisfy the preceding inequalities. However, we can improve this joint decoding scheme by combining it with other schemes as explained in the following subsection.

B. A combined decoding rule

We will combine the joint decoding rule with the following decoding rules. Suppose that the receiver knows which message the second transmitter is sending, then the equivalent of the previous rule to decode the message coming from the first transmitter is
\[S_{w_2}(n) = \max_{w_1} \sum_{i=1}^n \log \frac{p(y_i|x_{1i}(w_1), x_{2i}(w_2))}{p(y_i|x_{2i}(w_2))}, \]
where \(p(y_i|x_{2i}(w_2)) = \sum_{x_{1i}} p(x_{1i}^*) p(y_i|x_{1i}, x_{2i}(w_2))\). Denote the expression under the summation by
\[Z_1(w_1|w_2) = \log \frac{p(y_i|x_{1i}(w_1), x_{2i}(w_2))}{p(y_i|x_{2i}(w_2))}, \]
and the summation by \(S(n, w_1|w_2) = \sum_{i=1}^n Z_1(w_1|w_2)\), thus \(\{(S(n, w_1|w_2))_{n \geq 1} : (w_1, w_2) \neq (1, 1)\}\) are \(M_1\) random walks and the receiver will declare the message corresponding to the first random walk crossing the pre-determined threshold. Here, we let \(N_{1, w_2}\) be the stopping time defined by
\[N_{1, w_2} = \min\{n \geq 1 : S_{w_2}(n) \geq (1 + \epsilon) \log M_1\}. \]
Assuming that the message pair \((1, 1)\) is transmitted, we have
\[E[Z_1(1|1)] = I(X_1; Y|X_2), \]
and
\[E[Z_1(w_1 \neq 1|w_2 = 1)] = \sum_{x_1, x_2, y} p(x_1)p(x_2) \log \frac{p(y|x_1,x_2)}{p(y|x_2)} \]
\[= -D(p(y|x_2)||p(y|x_1,x_2)) \leq 0. \]
As before we can upper bound the probability of error knowing that the message \(w_2 = 1\) is transmitted by the probability that a random walk corresponding to a different message \(w_1\) crosses the threshold \(T_{w_2} = (1 + \epsilon) \log M_1\), which gives
\[P_{e, w_2} \leq M_1 e^{-\lambda^*(w_1 \neq 1|w_2 = 1)T_{w_2}}, \]
where \(\lambda^*(w_1 \neq 1|w_2 = 1)\) is the unique positive root of the log moment generating function of \(Z_1(w_1 \neq 1|w_2 = 1)\), which turns out to be equal to 1. This allows us to conclude that
\[E[N_{1, w_2}] \leq (1 + \epsilon) \log \frac{M_1}{I(X_1; Y|X_2)}. \]
The same results hold if the receiver knows \(w_1 \) and wants to decode \(w_2 \) (with an interchange of the indexes 1 and 2 on the above equations).

Now, let us remove the assumption that one of the transmitted message is known by the receiver and combine these decoding schemes as follows. Consider a receiver which runs the three preceding decoding rules in parallel and declares the first message pair \((w_1, w_2) \) for which the corresponding random walks have cross the threshold in each decoding scheme. Such a decoder will run all the random walks \(\{S(n, w_1, w_2)\}_{n \geq 1} \) and \(\{S(n, w_2|w_1)\}_{n \geq 1} \), and stop when the random walks corresponding to one message pair have hit the pre-determined threshold in each scheme, that is the decoding time of this combined scheme is given by

\[
N_{comb} = \min\{n \geq 1 : \exists (w_1, w_2) \text{ and } n_1, n_2, n_3 \leq n \text{ such that } S(n_1, w_1, w_2) \geq (1 + \epsilon) \log (M_1 M_2) \\
S(n_2, w_1|w_2) \geq (1 + \epsilon) \log M_1 \\
S(n_3, w_2|w_1) \geq (1 + \epsilon) \log M_2\}.
\]

This combined decoder will make an error when the random walks corresponding to a wrong message pair will cross the given threshold before the correct one in each scheme. In regards of what has been said before, the probability of error of this combined decoder can be bounded as follows

\[
P_e \leq M_1 M_2 e^{-\lambda^*} - (w_1 \neq w_2 \neq 1) T + M_1 e^{-\lambda^*} (w_1 \neq 1|w_2 = 1) T w_2 \\
+ M_2 e^{-\lambda^*} (w_2 \neq 1|w_1 = 1) T w_1,
\]

assuming that the message pair \((1, 1) \) is transmitted. Thus, we obtain that

\[
P_e \leq (M_1 M_2)^{-\epsilon} + M_1^{-\epsilon} + M_2^{-\epsilon},
\]

and the probability of error goes to zero, as \(M_1 \) and \(M_2 \) get large. If we denote by \(N_{1,1}, N_{1,w_1} \) and \(N_{2,w_1} \) the crossing times of the random walks corresponding to the message \((1, 1) \) in each of the three preceding schemes, we can see from the expression of \(N_{comb} \) that

\[
E[N_{comb}] \leq E[\max(N_{1,1}, N_{1,w_1}=1, N_{2,w_1}=1)].
\]

At this point, let us remark that since the random walks \(S(n_1, 1, 1), S(n_2, 1|1) \) and \(S(n_3, 1|1) \) concentrate around their mean as \(n \) becomes large, the respective decoding times also concentrate around their mean as the thresholds get large, this is show in Appendix [C].

Using this we see that as the crossing thresholds get large, each of the three preceding decoding times concentrates around their mean and thus the expectation in (2) becomes approximately equal to the maximum of the three expected decoding times, hence for \(M_1 \) and \(M_2 \) sufficiently large, we have

\[
E[N_{comb}] \leq \max(E[N_{1,1}], E[N_{1,w_2}=1], E[N_{2,w_1}=1]).
\]

Therefore, for \(M_1 \) and \(M_2 \) large and for \(\epsilon \rightarrow 0 \), this random code approaches one of the following rate pair (in the same order that for the max in (3)), depending on which expected decoding times is greater:

\[
\begin{align*}
\log M_1 & \log M_1 + \log M_2 & I(X_1, X_2; Y), \\
\log M_2 & \log M_1 + \log M_2 & I(X_1, X_2; Y), \\
\log M_1 & \log M_2 & I(X_1; Y|X_2), \\
\log M_1 & \log M_2 & I(X_1; Y|X_2).
\end{align*}
\]

Note that, according to the values of the ratio \(\frac{\log M_1}{\log M_2} \), any rate pair in \(R_{MAC} \) with a fixed input distribution \(p(x_1) p(x_2) \) is achieved. For example, if \(M_1 = M_2 \) this coding scheme achieves the rate pair \((\frac{I(X_1; X_2) - \delta, I(X_1; Y|X_2) - \delta}) \), and if \(\log M_1 \log M_2 \), the rate pair achieved is \((I(X_1; Y|X_2) - \delta, I(X_2; Y) - \delta) \), for some \(\delta > 0 \). Hence we have shown the existence of a variable length code achieving a certain rate pair in \(R_{MAC} \), without a previous agreement between the transmitters.

C. A suboptimal decoding scheme

We conclude this section by presenting a suboptimal scheme that uses only single-user decoders, which is nothing but the successive decoding scheme adapted to variable length codes. Consider a receiver that decodes each message separately, treating the signal of the other transmitter as noise. In view of the preceding decoding rules, to decode the message of the first transmitter, we consider the following rule

\[
S(n) = \max_{w_1} \sum_{i=1}^{n} \log \frac{p(y_i|x_{1i}(w_1))}{p(y_i)},
\]

where \(p(y_i|x_{1i}(w_1)) = \sum_{x_i,Z_i} p(x_i)p(y_i|x_{1i}(w_1), x_i,z_i) \). Denote the expression under the summation by

\[
Z_i(w_1) = \log \frac{p(y_i|x_{1i}(w_1))}{p(y_i)}
\]

and the summation by \(S(n, w_1) = \sum_{i=1}^{n} Z_i(w_1) \), then \(\{S(n, w_1)\}_{n \geq 1} \) are \(M_1 \) random walks and the receiver will declare the message corresponding to the first random walk crossing the pre-determined threshold. Hence, we let \(N_1 \) be the stopping time defined by

\[
N_1 = \min\{n \geq 1 : S(n) \geq (1 + \epsilon) \log M_1\}.
\]

Assuming that the message pair \((1, 1) \) is transmitted, we have

\[
E[Z_1(1)] = I(X_1; Y),
\]

and

\[
E[Z_1(w_1 \neq 1)] = \sum_{x_1,y} p(x_1) p(y) \log \frac{p(y|x_1)}{p(y)} = -D(p(y)||p(y|x_1)) \leq 0.
\]

As before we can upper bound the probability of error by the probability that a random walk corresponding to a different
message crosses the threshold \(T_1 = (1 + \varepsilon) \log M_1 \), which gives

\[
P_e \leq M_1 e^{-\lambda^*(w_1 \neq 1)T_1},
\]

where \(\lambda^*(w_1 \neq 1) = 1 \) is the unique positive root of the log moment generating function of \(Z_1(w_1 \neq 1) \). This allows us to conclude that

\[
P_e \leq M_1^{-\varepsilon},
\]

and for \(M_1 \) large

\[
E[N_1] \leq \frac{(1 + \varepsilon) \log M_1}{I(X_1;Y)}.
\]

The same analysis apply to the decoding of the message sent by the second transmitter. Thus, any rate pair \((R_1, R_2)\) such that \(R_1 < I(X_1;Y) \) and \(R_2 < I(X_2;Y) \) is achievable using this strategy.

Now let us improve this decoding scheme by noting that as soon as one of the two messages are decoded, the receiver can remove (the effect of) the signal of the corresponding transmitter from the received signal.\(^{21}\) Assume, without loss of generality, that the message from the second transmitter is decoded earlier, then for decoding the message of the first transmitter, the receiver can use the rule \(S_{w_1} \) previously analyzed. A receiver using this improved decoding rule is able to decode the message coming from the first transmitter at time \(N_{1,w_2} \) and achieve any \(R_1 < I(X_1;Y|X_2) \). However, this decoding time might “virtually” happen before \(N_2 \), the decoding time of the message coming from the second transmitter. Thus, the actual decoding time of the message sent by the first transmitter is given by \(\max(N_{1,w_2}, N_2) \), which implies that in order to approach the rate pair \((R_1, R_2) = (I(X_1;Y|X_2), I(X_2;Y))\), the ratio \(\frac{\log M_1}{\log M_2} \) must be sufficiently large.

VII. CONCLUDING REMARKS

An explicit code approaching the transmission rates of the random coding schemes presented here remains to be found. Nevertheless, for the suboptimal scheme presented in Section VI-C and for certain multiple-access channels, it might be interesting to consider coding schemes based on fountain codes. Notice that for the Gaussian multiple-access channel a practical decoding scheme using rateless codes and successive decoding has been introduced in \([10]\), in the particular case where the cardinality of the set of messages is the same for each transmitter and when the decoding times are equal and deterministic.

Observe that our coding schemes can easily be adapted to work when more than two users are simultaneously transmitting and when the channel statistics are unknown to the transmitters, as long as it is known to the receiver. Furthermore, note that, in \([13], [16] \) and \([17]\), variable length codes are successfully used in combination with different extension of the maximum mutual information (MMI) decoder, to universally communicate over a class of unknown channels. In the context of universal coding over a multiple-access channel, the perfect mutual information decoder used in the random coding schemes proposed here may be replaced with the MMI decoder, as done for the decoding strategies described in the above references.

Finally, we remark that the setup of this paper can be extended to allow a noiseless and instantaneous feedback from the receiver to the transmitters. This requires to make each \(x_{1i} \) and \(x_{2i} \) dependent of the past received values \(Y^{i-1} \). In this setting, we can prove the following outer bound on \(C_{r_1,r_2} \), if a rate pair \((R_1, R_2)\) is in \(C_{r_1,r_2} \), then

\[
R_1 \leq r_1 I(X_1;Y|X_2) + (1 - r_1)C_1
\]

\[
R_2 \leq r_2 I(X_2;Y|X_1) + (1 - r_2)C_2
\]

\[
sR_1 + R_2 \leq r_2 I(X_1;X_2;Y) + s(1 - r_1)C_1 + (1 - r_2)C_2,
\]

for some joint distribution \(p(x_1, x_2)p(y|x_1, x_2) \). This outer bound can easily be derived using the ideas developed in the proof of Theorem \([8]\) (without the introduction of the time-sharing random variable \(Q \)). This provides an extension of the outer bound on the capacity region of a multiple-access with feedback described in \([11]\), to the case where the receiver can decode the messages at different instants of time.

APPENDIX A

PROOF OF LEMMA \([2]\)

Let \(\xi_i = I\{N < i \leq N_1\} \)\(^{22}\) and consider

\[
I(W_1;Y_{N_1+1}^{N_{1+1}}|Y^N, W_2)
\]

\[
= I(W_1;Y_1, \xi_1, \xi_1, \cdots, Y_N, \xi_N, \cdots |Y^N, W_2)
\]

\[
= I(W_1;\xi_1|Y^N, W_2)
\]

\[
+ I(W_1;Y_1, \xi_1, \xi_1, Y^{N_2}, W_2) + \cdots
\]

\[
+ I(W_1;\xi_n|(|Y^N), \xi^n, Y^{N_2}, W_2)
\]

\[
+ I(W_1;Y_N, \xi_n, |Y^N, W_2) + \cdots
\]

\[
= \sum_{i=1}^{\infty} I(W_1;\xi_i|(|Y^N), \xi^{i-1}, Y^N, W_2)
\]

\[
+ \sum_{i=1}^{\infty} I(W_1;Y_i, \xi_i|(|Y^N), \xi^{i-1}, Y^N, W_2),
\]

where we use the chain rule for mutual information to obtain the second inequality.

The first summation can be bounded as

\[
\sum_{i=1}^{\infty} I(W_1;\xi_i|(|Y^N), \xi^{i-1}, Y^N, W_2) \leq \sum_{i=1}^{\infty} H(\xi_i|\xi^{i-1})
\]

\[
= H(\xi_1, \xi_2, \cdots)
\]

\[
= H(N_1 - N) - H(N_1 - N)
\]

\[
\leq \log(eE[N_1 - N]).
\]

where the last inequality is proved in \([4] \) and \([5] \) §1.3, as mentioned in the proof of Lemma 1.

\(^{21}\)As before, we define \(Y_i, \xi \) as being equal to \(Y_i, \xi \) if \(N < i \leq N_1 \) and equal to \(\xi \) otherwise, where \(\xi \) denotes a symbol distinct from any of the letters in \((X_1, X_2, Y) \).
For the second summation, we can write
\[
I(W_1; Y_i|\xi_i)(Y|\xi)\equiv_{(a)} H(Y_i|\xi_i)(Y|\xi) - H(Y_i|\xi_i)(Y|\xi) = 0
\]
where \((a)\) we use the fact that given \((X_i, X_{i+1})\), \(Y_i\) is independent of the past received values and of \((W_1, W_2)\). The last inequality follows since \(p(y_i|x_{i+1}, x_{i+2}) = 1\) and by the definition of \(C_1\). Thus, we get
\[
I(W_1; Y_{N+1}|Y^N, W_2) \leq \log(cE[N_1 - N]) + \sum_{i=1}^{n} \Pr(N < i \leq N_1)C_1 = \log(cE[N_1 - N]) + E[N_1 - N]C_1.
\]
The second inequality follows in a symmetric way.

\[\text{APPENDIX B}\]

Here, for channels with a zero-error capacity equal to zero, we argue that the definition of achievability given by Definition 3 is equivalent to the following alternate definition of achievability.

Definition 3: A rate pair \((R_1, R_2)\) is said to be achievable if there exists a sequence of \((M_1, M_2, N_1, N_2)\) variable length codes with \(E[N_1]\) and \(E[N_2]\) increasing such that
\[
\lim\inf_{E[N_1] \to 0, E[N_2] \to \infty} P_e = 0.
\]
To see this, take the best variable length code (one that achieves the minimum \(P_e\)) with a finite \(E[N_1]\) and/or \(E[N_2]\) such that \(\epsilon > P_e \geq \epsilon_1\), for some \(\epsilon > \epsilon_1 > 0\). Note that \(\epsilon_1\) could not be equal to zero otherwise this would imply that the zero-error capacity of the channel is different than zero. Hence, we can find an \(\epsilon_2 > 0\) such that \(\epsilon_1 > \epsilon_2\). Therefore, in order to achieve \(P_e < \epsilon_2\), we need to increase \(E[N_1]\) or \(E[N_2]\). Repeating this argument, we see that \(E[N_1]\) and \(E[N_2]\) need to be arbitrarily large in order to achieve an arbitrary low probability of error.

\[\text{APPENDIX C}\]

In this appendix, we show that for a random walk with a positive drift, the time spend to hit a positive threshold concentrates around its mean. Consider a random walk
\[
S(n) = \sum_{i=1}^{n} Z_i,
\]
where \(\{Z_i\}\) are i.i.d. random variables with \(E[Z_1] > 0\), and let \(N\) be the first time at which \(S(n)\) crosses a given threshold \(T^* > 0\). By Wald’s equality we know that for large \(T^*\), \(E[N] \approx \frac{1}{E[Z_1]}\), and here we want to show that with high probability \(E[N](1 - \epsilon^*) < N < E[N](1 + \epsilon^*)\), for some \(\epsilon^* > 0\). But, the following clearly holds
\[
\Pr(N \geq E[N](1 + \epsilon^*)) \leq \Pr(S(E[N](1 + \epsilon^*)) \leq T^*),
\]
where the RHS corresponds to the probability that the random walk is under the threshold at time \(E[N](1 + \epsilon^*)\), which is a large deviation event, since we have
\[
\Pr(S(E[N](1 + \epsilon^*)) \leq T^*) = \Pr\left(\frac{1}{E[Z_1]}S(E[N](1 + \epsilon^*)) \leq \frac{E[Z_1]}{1 + \epsilon^*}\right) \leq e^{-c(\epsilon^*)T^*},
\]
where \(c(\epsilon^*)\) is some constant depending on \(\epsilon^*\). The same conclusion can be obtained for the lower bound, thus as \(T^*\) gets large, \(N\) concentrates around its mean.

\[\text{ACKNOWLEDGMENT}\]

The author wishes to thank Emre Telatar for insightful discussions and helpful comments.

\[\text{REFERENCES}\]

[1] M. V.Burnashev, “Data transmission over a discrete channel with feedback: Random transmission time,” Probab. Inf. Transm., vol. 12(4), pp. 250-265, 1976.
[2] T. Cover, “Comments on broadcast channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2524-2530, Oct. 1998.
[3] T. Cover and J. Thomas, Elements of Information Theory, Wiley, New York, 2006.
[4] I. Csiszar, “On the capacity of noisy channels with arbitrary signal costs,” Problems of Control and Information Theory, Vol. 2 (2-4), pp. 283-304, 1973.
[5] I. Csiszar and J. Körner, Information Theory:Coding Theorems for Discrete Memoryless Systems, Academic Press, New York, 1981.
[6] G. Dueck, “Maximal error capacity regions are smaller than average error capacity regions for multi-user channels,” Prob. Contr. Inform. Theory, vol 7, pp. 11-19, 1978.
[7] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, Boston, 1996.
[8] M. Luby, “LT codes,” in Proc. 43rd IEEE Symp. Foundations of Computer Science, Vancouver, BC, Canada, Nov. 2002, pp. 271-280.
[9] S. Shulman, “Variable length codes for degraded broadcast channels,” in Proc. 2007 IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007, pp. 2576-2580.
[10] U. Niesen, U. Erez, D. Shah and G. W. Wornell, “Rateless codes for the Gaussian Multiple Access Channel,” in Proc. 2006 IEEE GLOBECOM, San Francisco, CA, Nov. 2006.
[11] L. H. Ozarow, “The capacity of the white Gaussian multiple access channel with feedback,” IEEE Trans. Inf. Theory, vol. 30, no. 4, pp. 623-629, Jul. 1984.
[12] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2551-2567, Jun. 2006.
[13] S. Shamai, E. Telatar and S. Verdú, “Fountain capacity,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4372-4376, Nov. 2007.
[14] N. Shulman, “Communication over an Unknown Channel via Common Broadcasting,” PhD thesis, Tel Aviv University, Jul. 2003.
[15] N. Shulman and M. Feder, “Static broadcasting,” in Proc. 2000 IEEE Int. Symp. Inf. Theory, Sorrento, Italy, Jun. 2000, p. 23.
[16] A. Tchamkerten and E. Telatar, “Variable length coding over an unknown channel,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2126-2145, May 2006.
