A Monoclonal Anti–Calcitonin Gene-Related Peptide Antibody Decreases Stress-Induced Colonic Hypersensitivity

Ehsan Noor-Mohammadi, Casey Owen Ligon, Kimberly Mackenzie, Jennifer Stratton, Sara Shnider, and Beverley Greenwood-Van Meerveld

Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma (E.N.-M., C.O.L., B.G.-V.M); and Teva Pharmaceutical Industries, Ltd., Redwood City, California (K.M., J.S., S.S.)

Received May 14, 2021; accepted September 24, 2021

ABSTRACT
Irritable bowel syndrome (IBS) is a brain-gut disorder characterized by abdominal pain and altered bowel habits. Although the etiology of IBS remains unclear, stress in adulthood or in early life has been shown to be a significant factor in the development of IBS symptomatology. Evidence suggests that aberrant calcitonin gene-related peptide (CGRP) signaling may be involved in the development of IBS symptomatology. Clinical studies have demonstrated that patients with IBS frequently report high levels of lifetime stress, which correlates with worsening of IBS symptoms (Prusator et al., 2016). These findings are supported by several preclinical studies in animal models linking both adult stress and early life stress (ELS) to IBS symptomatology (Coutinho et al., 2002; Bradesi et al., 2005; Myers and Greenwood-Van Meerveld, 2012). These findings are supported by several preclinical studies in animal models linking both adult stress and ELS to IBS symptomatology (Coutinho et al., 2002; Bradesi et al., 2005; Myers and Greenwood-Van Meerveld, 2012). Because of the extraordinary complexity of IBS, there is currently a paucity of effective therapies for the treatment of this chronic pain disorder. Given the negative impact of IBS on quality of life and its financial burden on society, there is an obvious need for additional therapeutic options for relief of IBS-associated abdominal pain (Drossman et al., 2002; Pare et al., 2006; Davis et al., 2014).

Calcitonin gene-related peptide (CGRP) is a 37-amino-acid member of the calcitonin family of peptides produced in both...
stress-induced pain behaviors and inhibited evoked spinal exposure to an unpredictable odor-attachment learning para-
same phenotypes were induced in adult female rats after (Bradesi et al., 2005; Tran et al., 2013). In a second model, these adult male rats via exposure to a repeated psychologic stressor two clinically relevant rodent models of stress-induced visceral pelvic pain associated with in...

Peripheral and central neurons, which functions as a potent vasodilator and plays a role in the transmission of nociception (Rosenfeld et al., 1983; Brain et al., 1985; Chen et al., 2010). In the gastrointestinal (GI) tract specifically, CGRP is widely distributed throughout the enteric nervous system from the esophagus to the rectum in both intrinsic and extrinsic primary afferent neurons of various mammalian species, although it should be noted that CGRP expression levels vary significantly depending on the species and the subregion of the GI tract (Sundler et al., 1991; Domoto et al., 1992; Timmermans et al., 1992; Wolf et al., 2007; Makowska and Gonkowski, 2018). Furthermore, CGRP is known as an important factor in the transmission of sensory and pain stimuli and numerous other aspects of GI physiology, including motility, secretion, and neuroprotection (Timmermans et al., 1992; Rytel and Calka, 2016; Makowska et al., 2017). Current evidence suggests that CGRP-mediated visceral organ afferent sensitization may contribute to abdominal and pelvic pain associated with inflammatory conditions, such as colitis and cystitis (Qiao and Grider, 2007; Pan et al., 2010; Ceuleers et al., 2018; Utsumi et al., 2018). For instance, in a rodent model of colitis, CGRP-immunoreactive nerve density is significantly increased in rat primary afferent pathways (Qiao and Grider, 2009). Additionally, in inflammatory models that exhibit visceral hypersensitivity, administration of a CGRP receptor antagonist [human CGRP-(8-37)] has demonstrated reduction in visceral hypersensitivity (Flourde et al., 1997; Delafont et al., 2006). However, it remains unknown whether a peripheral CGRP-mediated mechanism is involved in stress-induced visceral pain in models lacking overt GI inflammation as observed in patients with IBS. Thus, to gain a better understanding of the role of peripheral CGRP in visceral pain associated with stress, we examined the effect of an anti-CGRP divalent antigen-binding fragment [F(ab\(^\prime\)]\(_2\)] antibody on enhanced visceral nociception in two clinically relevant rodent models of stress-induced visceral pain. In one model, colonic hypersensitivity was induced in adult male rats via exposure to a repeated psychologic stressor (Bradesi et al., 2005; Tran et al., 2013). In a second model, these same phenotypes were induced in adult female rats after exposure to an unpredictable odor-attachment learning paradigm during the neonatal period (Chalon and Greenwood-Van Meerveld, 2013; Prusator and Greenwood-Van Meerveld, 2015). In both models, peripheral CGRP blockade attenuated stress-induced pain behaviors and inhibited evoked spinal extracellular signal–related kinase (ERK) 1/2 phosphorylation [phosphorylated ERK (pERK)], which suggests that CGRP plays a significant role in stress-induced visceral nociception and central sensitization.

Methods

Preparation of F(ab\(^\prime\)]\(_2\) Fragment Antibody

F(ab\(^\prime\)]\(_2\) fragment antibody was used as a tool to investigate the selective targeting of peripheral CGRP without the possible immunomodulatory effects of the fragment crystallizable (Fc) region of the full-length antibody in the tested animal models. Briefly, fremanezumab (fully humanized anti-CGRP monoclonal antibody, Teva Pharmaceuticals, Redwood City, CA) and isotype control antibody (Teva Pharmaceuticals) were digested with pepsin, and affinity chromatography purification of F(ab\(^\prime\)]\(_2\) using Kappa-Select columns was performed. Purity and integrity of the F(ab\(^\prime\)]\(_2\) were analyzed by SDS-PAGE under reducing and nonreducing conditions. Similar binding affinity of anti-CGRP F(ab\(^\prime\)]\(_2\) to CGRP compared with full-length anti-CGRP was confirmed by surface plasmon resonance.

Pharmacokinetics of Anti-CGRP F(ab\(^\prime\)]\(_2\)

Human anti-CGRP F(ab\(^\prime\)]\(_2\) (30mg/kg) was administered once via intraperitoneal route to male Sprague-Dawley rats purchased from Charles River Laboratories (Wilmington, MA). Serial blood samples were collected into serum tubes and stored at room temperature for at least 30 minutes to allow for clotting. Samples were processed to serum by centrifugation (3500 rpm for 10 minutes at 4°C) within 1 hour of collection, and serum was stored at −80°C until analysis. The concentration of anti-CGRP F(ab\(^\prime\)]\(_2\) in the serum was quantified using a Human Kappa ELISA Kit (Abcam, Cambridge, MA).

Chronic Adult Stress Induced by Water Avoidance Stress

Animals. Experiments were performed on male Fischer 344 rats (250–350 g) purchased from Charles River Laboratories (Wilmington, MA). Rats were housed two per cage with free access to food and water at 21–23°C and 12-hour light/dark cycle within the University of Oklahoma Health Sciences Center Department of Comparative Medicine animal facility in Oklahoma City, OK. All animals were acclimated to facility housing for a minimum of 1 week before experimentation. To further minimize experimental stress, the rats were brought to the laboratory for an additional week to acclimate to the laboratory...
environment and animal handlers. All experimental procedures were approved by the University of Oklahoma Health Sciences Center Institutional Animal Care and Use Committee (Protocol 20-001-FH).

Water Avoidance Stress Paradigm. Rats in the water avoidance stress (WAS) group were placed on a square platform (8 × 8 × 8 cm) mounted in the center of a white semitransparent plastic container (50 × 35 × 33 cm) filled with fresh, room-temperature water to 1 cm below the surface of the platform. Animals in the SHAM stress group were placed in containers without water. All animals were left undisturbed for 60 minutes, and the number of fecal pellets produced during the WAS or SHAM stress was recorded to evaluate stress-induced autonomic outflow (unpublished data). The WAS or SHAM procedure was repeated for 10 consecutive days.

Odor-Attachment Learning Model of ELS

Animals. Timed-pregnant Long-Evans rats were purchased from Charles Rivers Laboratories (Wilmington, MA) to arrive on embryonic day 9. The dams were housed on aspen wood shavings at 23°C on a 12-hour light/dark cycle (7:00 AM to 7:00 PM). Food (5053 Irradiated PicoLab Rodent Diet; LabDiet, St. Louis, MO) and water were available ad libitum. One day after parturition, designated postnatal day (PND) 1, litters were sexed, cross-fostered, and culled to a maximum of 12 female pups, with a minimum of 8 pups, per litter. From PND 8–12, female pups were exposed to an odor–shock conditioning paradigm as previously described (Chaloner and Greenwood-Van Meerveld, 2013). In this study, pups were classically conditioned by an unpaired (unpredictable) odor–shock presentation or by an odor-only presentation (control). The exposure to an unpredictable stressor during the neonatal period induces colonic hypersensitivity in adult female rats only, whereas other ELS models, such as maternal separation or limited nesting material, seemingly produce hypersensitivity exclusively in adult male animals.

ELS Paradigm. An ELS daily conditioning paradigm consisted of 11 trials of a 30-second peppermint odor presentation with a 4-minute interval. Peppermint odor was administered using peppermint oil (Thermo Fisher Scientific, Waltham, MA) vaporized at a 1:10 odor concentration in a flow dilution olfactometer (Med Associates, Georgia, VT) set to a delivery rate of 2 l/min. Unpredictable odor–shock pups received a 0.5-mA shock (Coulbourn Instruments, Whitehall, PA) to the base of the tail 2 minutes after odor presentation. Odor-only pups were exposed to a 30-second peppermint odor presentation with no subsequent shock. The behavioral activation of the pups was recorded during each conditioning trial. A scale of 0–5 was used to score behavioral activation, in which 0 represented no movement and 5 represented movement of all four limbs and the head. Preodor activation scores were compared with odor activation scores as an indication of a learned response. Y-maze testing was used on PND 13 to assess the development of a learned odor preference. Pups underwent five trials wherein they were placed in one arm of the maze and given 1 minute to choose between an arm containing fresh aspen shavings and an arm containing peppermint odor. Failure to make a choice would be scored as “no choice,” and pups that accumulated three “no choice” scores would be removed from the study. In the current study, no animals were removed because of the failure to make an odor choice. Animals were weaned on PND 22 and housed two per cage according to ELS treatment. All experimental procedures were approved by the University of Oklahoma Health Sciences Center Institutional Animal Care and Use Committee (Protocol 20-001-FH).

Colonic Sensitivity

Colonic sensitivity in adult animals (−PND 90) was assessed as a measurement of the visceromotor response (VMR) to colorectal distension (CRD) as described previously (Johnson et al., 2015; Prusator and Greenwood-Van Meerveld, 2016a). After overnight fasting, animals were anesthetized with 2%–5% isoflurane, and a 5-cm latex balloon catheter was inserted up to 11 cm beyond the anal verge and secured to the base of the tail with surgical tape. After a 30-minute recovery period, the catheter was connected to a Distender Series IIR barostat (G & J Electronics Inc., North York, Canada) for controlled, isobaric, colonic distensions at randomized pressures of 0, 20, 40, and 60 mmHg. Each colonic distension period lasted 10 minutes each with a 10-minute recovery period between each distension. Colonic compliance was assessed in each rat by using the

![Fig. 2. Effect of repeated WAS on visceral sensitivity. (A) Number of abdominal contractions exhibited by adult male rats receiving CRD after 10 days of WAS was significantly (**P < 0.0001) higher than those in animals exposed to SHAM (n = 10 per group). (B) Rats with colonic hypersensitivity after exposure to WAS showed decreased VMR upon administration of anti-CGRP F(ab')2 at 30 mg/kg, i.p., 24 hours prior to the CRD assessment compared with VEH and isotype F(ab')2 control-dosed rats (**P < 0.0001) (n = 10 per group). (C) Administration of anti-CGRP F(ab')2 does not alter colonic compliance. Pressure-volume curves, as a measure of colonic compliance, were similar in all groups. Data are expressed as the mean (S.E.M.). Statistical significance was determined using two-way ANOVA followed by a Bonferroni post-test. **P < 0.0001 compared with SHAM + VEH, ****P < 0.0001 compared with WAS + VEH, and ****P < 0.0001 compared with WAS + isotype F(ab')2 control.](image-url)
pressure-volume data generated by the Distender Series IIR barostat. All experiments occurred between 10:00 AM and 2:00 PM.

pERK Immunohistochemistry. Immediately after the final CRD, the rat was anesthetized with isoflurane (5%) and underwent transcardial perfusion with ice-cold PBS, which was followed by ice-cold 4% paraformaldehyde in PBS. After transcardial perfusion, the thoracolumbar [thoracic (T) 10 to lumbar (L) 1] regions of the spinal cord were removed and postfixed for 18 hours at 4°C in 4% paraformaldehyde in PBS. After fixation, the spinal cord was cryoprotected in 30% sucrose in PBS overnight at 4°C and then block-frozen in optimal cutting temperature compound. Frozen sections (10 μm) were cut using a cryostat and placed on Fisherbrand Superfrost Plus Microscope Slides (Fisher Scientific, Pittsburgh, PA) for future immunohistochemical analysis. Frozen sections were air-dried for 20 minutes, postfixed in 4% paraformaldehyde for 10 minutes, and then washed three times with PBS. The sections were incubated with Biocare’s Rodent Block R (Catalog# RBR962H, Biocare Medical, Pacheco, CA) for 20 minutes at room temperature to block nonspecific binding of antibodies. After blocking, the sections were washed three times with 0.2% Triton-X-PBS and then incubated overnight at 4°C with anti-phospho- p44/42 mitogen-activated protein kinase (ERK1/2) (Thr202/Tyr204) antibody (pERK; 1:400, 4370; Cell Signaling Technology, Danvers, MA) diluted in Biocare Da Vinci Green Diluent (Cat# PD900H, Biocare Medical, Pacheco, CA). Sections were then washed three times with 0.2% Triton-X-PBS prior to incubation for 1 hour at room temperature with secondary donkey anti-rabbit IgG HRP antibody diluted in Biocare Da Vinci Green Diluent (donkey anti-rabbit IgG; 1:500, Cat# 711-035-152, Jackson ImmunoResearch Laboratories Inc. West Grove, PA). Sections were washed three times with PBS, incubated with Betazoid DAB chromogen kit (Cat# BDB2004H, Biocare Medical, Pacheco, CA) at room temperature for 5 minutes, washed with PBS, and rinsed in deionized water. Sections were counterstained with hematoxylin.

Two sections per region of the spinal cord (T10–T12; T13–L1) per animal were randomly selected, and pERK-immunoreactive cells in the dorsal horn of each section were identified and

Fig. 3. Effect of repeated WAS on nociceptive signaling in the dorsal horn of the spinal cord. After repeated exposure to WAS, there was a significant increase (*P* < 0.0001) in neuronal activation in the dorsal horn of the spinal cord in response to noxious CRD when compared with that in SHAM (*n* = 10 per group). (A–D) Administration of anti-CGRP F(ab')2 at 30 mg/kg, i.p., 24 hours prior to CRD assessment significantly reduced the number of pERK-IR–activated neurons (black arrows) in the T10–T12 (A and B) and T13–L1 (C and D) spinal cord compared with that in VEH and isotype F(ab')2 control–dosed rats (*P* < 0.0001) (*n* = 10 per group). Data are expressed as the mean (S.E.M.). Statistical significance was determined using two-way ANOVA followed by a Bonferroni post-test. ***P* < 0.001 and ****P* < 0.0001 compared with WAS + VEH; †††† *P* < 0.0001 compared with WAS + isotype control.
counted using a Zeiss Axiocert epifluorescence microscope (Zeiss, Jena, Germany).

Drug Administration
Anti-CGRP F(ab')2, isotype F(ab')2 control, and vehicle were supplied by Teva Pharmaceuticals and stored at 4°C. To reduce possible immunomodulatory effects of the Fc region of the full-length antibody in the tested animal models, F(ab')2 fragment antibody prepared through pepsin digestion of the full-length antibody was used. F(ab')2 fragment antibodies have two F(ab) portions linked together by disulfide bonds and have a molecular mass of ~110 kDa (Fig. 1A). Rats received a single intraperitoneal administration of anti-CGRP F(ab')2 (30 mg/kg), isotype F(ab')2 control (30 mg/kg), or vehicle (saline) 24 hours prior to measuring colonic sensitivity.

Statistical Analysis and Experimental Rigor
All data are presented as mean ± S.E.M. A power analysis was performed to determine the minimum number of animals required for the study. A single experimenter followed all animals during the study and was anonymized to treatments. All experiments were conducted in a randomized order. Colonic sensitivity was recorded as the average number of abdominal contractions and analyzed with a two-way ANOVA followed by a Bonferroni multicomparison post-test. Spinal cord signaling was quantified as the average number of pERK-immunoreactive (IR) neurons observed in the dorsal horn region of each section of the spinal cord. Statistical significance was determined using two-way ANOVA, which was followed by a Bonferroni post-test. A two-way repeated-measures ANOVA was used to analyze the mean behavioral activation during conditioning with odor presentation and trial number as factors. An unpaired t test was used to analyze odor preference, and a one-way ANOVA was used to analyze weaning weights (n = 10–11 per group).

Results
Pharmacokinetics of Anti-CGRP F(ab')2
To reduce possible immunomodulatory effects of the Fc region of the full-length antibody in the tested animal models, F(ab')2 fragment antibody was used as an experimental tool to determine the specific effect of peripheral CGRP inhibition. Fremanezumab (anti-CGRP antibody) and isotype control were digested with pepsin, and the resulting F(ab')2 fragments containing two antigen-binding–fragment portions normally linked together by disulfide bonds at the hinge were purified (Fig. 1A). Human anti-CGRP F(ab')2 (30 mg/kg, i.p.) was administered to rats, and F(ab')2 concentrations were measured in serial serum samples by ELISA (Fig. 1B).

Anti-CGRP F(ab')2 Inhibits Colonic Hypersensitivity Induced by WAS without an Effect on Colonic Compliance
For our first series of experiments, we employed a rodent model of repeated WAS to investigate whether peripheral CGRP blockade with anti-CGRP F(ab')2 could inhibit stress-induced visceral nociceptive behaviors. We demonstrated that 24 hours after the final stress procedure induced by water avoidance, there was a significant increase in a VMR to CRD quantified as the number of abdominal contractions during the distention period when compared with SHAM-treated animals (F[3, 64] = 108.3, P < 0.0001) (Fig. 2A). In a second cohort of rats pretreated with anti-CGRP F(ab')2 (30 mg/kg, i.p.), there were a significantly reduced number of abdominal contractions induced by WAS when compared with vehicle or isotype F(ab')2 control groups (F[9, 140] = 18.88, P < 0.0001) (Fig. 2B). Compliance of the colonic musculature was assessed in each rat via the pressure-volume relationship; in rats previously exposed to WAS, colonic compliance was similar to that in rats exposed to SHAM treatment, with a nonsignificant effect of drug/vehicle (VEH) treatment on colonic compliance (F[2,65] = 0.09; P = 0.41) (Fig. 2C). Furthermore, no significant change in CRD-evoked VMR responses and colonic compliance was observed in SHAM animals treated with anti-CGRP F(ab')2, isotype F(ab')2 control, and vehicle (unpublished data).

Anti-CGRP F(ab')2 Inhibits Thoracolumbar Spinal Cord Signaling Induced by CRD in Rats Previously Exposed to WAS
To investigate the effect of anti-CGRP F(ab')2 on spinal cord dorsal horn neuronal signaling in response to CRD, we analyzed neuronal responses via pERK immunohistochemistry in the adult male rats previously exposed to WAS or SHAM stress controls. Our findings revealed that there was a significant increase in pERK-IR neurons in the thoracolumbar segment of the spinal cord, which innervates the colon via the lumbar splanchnic nerve (Brierley et al., 2018), immediately after noxious CRD in rats exposed to WAS compared with SHAM (F[2, 90] = 18.91, P < 0.0001) and anti-CGRP F(ab')2 pretreatment significantly reduced the number of pERK-IR neurons compared with vehicle and isotype F(ab')2 control–treated rats, as illustrated in Fig. 3, A–D (F[2,90] = 11.75, P < 0.0001).

Rodent Model of ELS: Behavioral Activation, Odor Preference, and Weaning Weights
Female pups underwent neonatal conditioning from PND 8–12. The conditioning paradigm involved an assessment of behavioral activation scores prior to and during presentation of the conditioned peppermint odor (Davis et al., 2014). The pups in the odor-only control and unpredictable odor-shock conditioning groups showed no differences in behavioral activation upon exposure to the odor, which indicates that no association was made between the odor and the aversive stimuli (Fig. 4, A and B). Y-maze testing revealed no significant effect of ELS treatment on odor preference in both odor-only animals and unpredictable ELS animals, which confirms a lack of a learned odor preference in both groups (Fig. 4C). Upon weaning, pups were weighed to ensure that the neonatal conditioning had no effect on body weight. No significant differences between weaning weights were observed between odor-only controls and pups subjected to unpredictable ELS, which indicates the animals exposed to unpredictable ELS showed no association between odor-shock and did not develop an odor preference (Fig. 4D).

Anti-CGRP F(ab')2 Inhibits Colonic Hypersensitivity in Adult Animals after Neonatal Unpredictable ELS without an Effect on Colonic Compliance
We next investigated whether anti-CGRP F(ab')2 treatment would affect the increased VMR to CRD in adult female rats previously exposed to unpredictable ELS. Colonic sensitivity was assessed in freely moving adult female rats after a single
administration of anti-CGRP F(ab')2 (30 mg/kg, i.p.), isotype F(ab')2 control (intraperitoneal), or vehicle. Analysis of the behavioral response to distension of the colon of vehicle-treated animals revealed a significant main effect of distension pressure (F[3, 57] = 5341.3, P < 0.0001) and ELS (F[1, 19] = 108.3, P < 0.0001) with a significant interaction between the two factors (F[3, 57] = 60.71, P < 0.0001). As shown in Fig. 5A, vehicle-treated animals previously exposed to unpredictable ELS exhibited a significantly higher number of abdominal contractions at distension pressures of 40 (P < 0.0001) and 60 mmHg (P < 0.0001) when compared with odor-only controls, which confirms that unpredictable ELS induces colonic hypersensitivity. In animals previously exposed to unpredictable ELS, a main effect of distension pressure (F[2.1, 94.8] = 437.6, P < 0.0001) and drug treatment (F[4, 46] = 26.87, P < 0.0001) was observed. Post hoc analysis revealed that animals treated with anti-CGRP F(ab')2, isotype F(ab')2 control, and vehicle (unpublished data).

Anti-CGRP F(ab')2 Inhibits Thoracolumbar Spinal Cord Signaling Induced by CRD in Rats Previously Exposed to Neonatal Unpredictable ELS

Our next series of experiments were designed to probe the effect the anti-CGRP F(ab')2 on CRD-induced spinal cord pERK expression in adult female rats previously exposed to an unpredictable ELS. Our findings revealed that there was a significant increase in pERK-IR neurons in the thoracolumbar segment of the spinal cord immediately after noxious CRD in rats exposed to an unpredictable ELS compared with those in the odor-only control (F[2, 90] = 18.91, P < 0.0001). In rats treated with the anti-CGRP F(ab')2, there was a significant reduction (F[2, 90] = 11.75, P < 0.0001) in the number of pERK-IR neurons compared with those in vehicle and isotype F(ab')2 control–treated rats as illustrated in Fig. 6, A–D.
with anti-CGRP activity (Fig. 5). Noor-Mohammadi et al., 2012; Tran et al., 2013). It should be noted that WAS is a paradigm that has been shown to alter stimulus-evoked neuronal activation and nociceptive signaling pathways and induces long-lasting visceral hypersensitivity in adult rats (Eutamene et al., 2010; Myers and Greenwood-Van Meerveld, 2012; Nash et al., 2012; Tran et al., 2013). It should be noted that WAS is a homotypic stressor, and therefore, rats exposed to repeated WAS may potentially habituate to the stressor. However, measurements of fecal pellet output during stress exposure suggest that the WAS paradigm induces sustained stress axis activation.

CGRP has been implicated in the pathogenesis of several chronic pain conditions, including arthritis, IBS with diarrhea, and fibromyalgia (Walsh et al., 2015; Liang et al., 2016; Iyengar et al., 2017; Schou et al., 2017). Recent approval of anti-CGRP ligand antibodies and anti-CGRP receptor monoclonal antibodies for migraine prevention has increased interest in CGRP-targeted—pathway treatment strategies for chronic pain. Taking advantage of the use of an anti-CGRP ligand binding fragment antibody, we report that peripheral CGRP plays a key role in stress-induced visceral hypersensitivity.

Previous studies have reported that prolonged psychologic stress is associated with a myriad of chronic pain conditions, including disorders that feature visceral pain, such as IBS (Lampe et al., 2003; Blanchard et al., 2008; Johnson and Greenwood-Van Meerveld, 2014). Stress exposure is believed to induce a “top-down” sensitization of the central nervous system resulting from maladaptive changes in signaling pathways that modulate nociception. These signaling pathways interact in a multitude of neurotransmitters, including glucocorticoids, corticotropin-releasing factor, serotonin, glutamate, GABA, and endocannabinoids, to promote enhanced pain perception (Mora et al., 2012; Timmermans et al., 2013; Grace et al., 2014; Johnson and Greenwood-Van Meerveld, 2014). However, the role CGRP plays in stress-induced chronic pain is less clear, particularly in visceral pain. In this study, we sought to determine the involvement of CGRP signaling in the development of stress-induced colonic hypersensitivity, a key feature observed in patients with abdominal pain. To accomplish this, we used repeated, daily exposure to WAS, a well validated chronic-stress paradigm that has been shown to alter stimulus-evoked neuronal activation and nociceptive signaling pathways and induces long-lasting visceral hypersensitivity in adult rats (Eutamene et al., 2010; Myers and Greenwood-Van Meerveld, 2012; Nash et al., 2012; Tran et al., 2013). It should be noted that WAS is a homotypic stressor, and therefore, rats exposed to repeated WAS may potentially habituate to the stressor. However, measurements of fecal pellet output during stress exposure suggest that the WAS paradigm induces sustained stress axis activation.

CGRP has been implicated in the pathogenesis of several chronic pain conditions, including arthritis, IBS with diarrhea, and fibromyalgia (Walsh et al., 2015; Liang et al., 2016; Iyengar et al., 2017; Schou et al., 2017). Recent approval of anti-CGRP ligand antibodies and anti-CGRP receptor monoclonal antibodies for migraine prevention has increased interest in CGRP-targeted—pathway treatment strategies for chronic pain. Taking advantage of the use of an anti-CGRP ligand binding F(ab')2 fragment antibody, we report that peripheral CGRP plays a key role in stress-induced visceral pain. In agreement with previous studies, we found that repeated WAS exposure induced colonic hypersensitivity in adult male rats. Anti-CGRP F(ab')2 treatment 24 hours prior to CRD assessment completely inhibited colonic sensitivity compared with vehicle treatment. Moreover, building on earlier work performed in rodent models of visceral hypersensitivity demonstrating increased spinal ERK phosphorylation in response to noxious CRD (Castro et al., 2013; Mohammadi et al., 2018), we observed a significant increase in pERK immunoreactivity in the thoracolumbar dorsal horn of the spinal cord in rats exposed to a repeated WAS compared with those in SHAM controls. Next, we investigated whether blockade of peripheral CGRP signaling resulted in inhibition of peripheral sensory signaling to the spinal cord to reduce central sensitization and thus visceral hypersensitivity. In rats exposed to WAS, administration of anti-CGRP F(ab')2 decreased CRD-induced pERK expression in the thoracolumbar spinal cord, specifically in the superficial lamina of the dorsal horn, which is the major site of afferent terminations responding to nociceptive input from the colon. These findings suggest that repeated stress may modulate neuronal activation in response to stimuli via a CGRP-related mechanism to increase transmission of nociceptive signals to the spinal cord, resulting in visceral hypersensitivity.

Fig. 5. Effect of unpredictable ELS on visceral sensitivity. After unpredictable ELS, there was a significant increase (P < 0.001) in visceral sensitivity (n = 10). (A) VEH-treated rats previously exposed to unpredictable ELS exhibited an increased number of abdominal contractions compared with those in VEH-treated odor-only controls (P < 0.0001) in response to CRD. (B) In animals exposed to neonatal unpredictable ELS, treatment with anti-CGRP F(ab')2 (30 mg/kg, i.p.) in adulthood significantly reduced the number of abdominal contractions in response to CRD when compared with that in isotype F(ab')2 and vehicle control–treated animals (n = 10–11 per group). (C) Administration of anti-CGRP F(ab')2 does not alter colonic compliance. Pressure-volume curves, as a measure of colonic compliance, were similar in all groups. Data are expressed as the mean (S.E.M.). Statistical significance was determined using two-way ANOVA followed by a Bonferroni post-test. ***P < 0.0001 compared with SHAM + VEH; †P < 0.05, ††P < 0.01, and †††P < 0.001 compared with ELS + VEH, and ††††P < 0.0001 compared with ELS + isotype F(ab')2 control.

Discussion

The aim of this study was to evaluate whether antibody-mediated peripheral blockade of CGRP prevented stress-induced visceral pain in adulthood. Using clinically relevant rodent models of repeated WAS and unpredictable ELS previously reported to induce visceral hypersensitivity (Camp and Rudy, 1988; Cámara-Lemarroy et al., 2016), we provide evidence that peripheral CGRP blockade attenuates colonic hypersensitivity and inhibits neuronal activation in the dorsal horn of the thoracolumbar spinal cord in response to noxious colonic distension as assessed via quantification of pERK-IR neurons. These findings suggest that peripheral CGRP plays a key role in the development of stress-induced colonic hypersensitivity.

Previous studies have reported that prolonged psychologic stress is associated with a myriad of chronic pain conditions, including disorders that feature visceral pain, such as IBS (Lampe et al., 2003; Blanchard et al., 2008; Johnson and Greenwood-Van Meerveld, 2014). Stress exposure is believed to induce a “top-down” sensitization of the central nervous system resulting from maladaptive changes in signaling pathways that modulate nociception. These signaling pathways interact in a multitude of neurotransmitters, including glucocorticoids, corticotropin-releasing factor, serotonin, glutamate, GABA, and endocannabinoids, to promote enhanced pain perception (Mora et al., 2012; Timmermans et al., 2013; Grace et al., 2014; Johnson and Greenwood-Van Meerveld, 2014). However, the role CGRP plays in stress-induced chronic pain is less clear, particularly in visceral pain. In this study, we sought to determine the involvement of CGRP signaling in the development of stress-induced colonic hypersensitivity, a key feature observed in patients with abdominal pain. To accomplish this, we used repeated, daily exposure to WAS, a well validated chronic-stress paradigm that has been shown to alter stimulus-evoked neuronal activation and nociceptive signaling pathways and induces long-lasting visceral hypersensitivity in adult rats (Eutamene et al., 2010; Myers and Greenwood-Van Meerveld, 2012; Nash et al., 2012; Tran et al., 2013). It should be noted that WAS is a homotypic stressor, and therefore, rats exposed to repeated...
ELS is also an important risk factor for chronic pain later in life, especially in females (Talley, 1991; Bradford et al., 2012). Specifically, childhood adversity increases the likelihood of developing adult GI disorders, such as IBS (Whitehead et al., 1990; Talley et al., 1991). However, although the link between ELS and functional pain disorders, such as IBS, is apparent, the mechanisms by which ELS promotes chronic visceral pain remain unclear. Thus, a second goal of this study was to investigate the role that CGRP signaling plays in ELS-induced visceral hypersensitivity. Exposure to an unpredictable stressor during the neonatal period induced colonic hypersensitivity in adult female rats only (Prusator and Greenwood-Van Meerveld, 2016b). The ELS model used in this study utilizes Pavlovian conditioning and relies upon conditioned responses to an unpaired odor-shock stimulus to mimic what is considered an attachment to an abusive caregiver (Camp and Rudy, 1988; Sullivan et al., 2000). Using this paradigm, we have previously shown that when compared with a paired odor-shock or odor-only stimulus, unpaired (i.e., unpredictable) neonatal conditioning induces visceral hypersensitivity in adult female rats (Tyler et al., 2007; Chaloner and Greenwood-Van Meerveld, 2013).

In the next experiments, we used the same anti-CGRP F(ab′)2 to evaluate the effect of peripheral CGRP inhibition on ELS-induced visceral hypersensitivity and stimulus-evoked neuronal activation in the spinal cord. After unpredictable ELS, there was a significant increase \(P < 0.0001 \) in nociceptive signaling in the dorsal horn in response to noxious CRD when compared with that in SHAM \(n = 10 \) per group. (A–D) Administration of anti-CGRP F(ab′)2 at 30 mg/kg, i.p., significantly reduced the number of pERK-IR neurons (black arrows) in the T10–T12 (A and B) and T12–L1 (C and D) spinal cord compared with VEH and isotype F(ab′)2 control-dosed rats \(P < 0.0001 \) \(n = 10 \) per group. Data are expressed as the mean (S.E.M.). Statistical significance was determined using two-way ANOVA followed by a Bonferroni post-test. *** \(P < 0.001 \) and **** \(P < 0.0001 \) compared with ELS VEH; †††† \(P < 0.0001 \) compared ELS isotype F(ab′)2 control.

Fig. 6. Effect of unpredictable ELS on nociceptive signaling in the dorsal horn of the spinal cord. After unpredictable ELS, there was a significant increase \(P < 0.0001 \) in nociceptive signaling in the dorsal horn in response to noxious CRD when compared with that in SHAM \(n = 10 \) per group. (A–D) Administration of anti-CGRP F(ab′)2 at 30 mg/kg, i.p., significantly reduced the number of pERK-IR neurons (black arrows) in the T10–T12 (A and B) and T12–L1 (C and D) spinal cord compared with VEH and isotype F(ab′)2 control-dosed rats \(P < 0.0001 \) \(n = 10 \) per group. Data are expressed as the mean (S.E.M.). Statistical significance was determined using two-way ANOVA followed by a Bonferroni post-test. *** \(P < 0.001 \) and **** \(P < 0.0001 \) compared with ELS VEH; †††† \(P < 0.0001 \) compared ELS isotype F(ab′)2 control.
with the role of CGRP as a primary afferent neurotransmitter communicating with second-order neurons in the dorsal horn (Iyengar et al., 2017). CGRP-mediated neurotransmission occurs through the CaMP-dependent phospho-ERK signaling cascade that modulates neuronal excitability and neurotransmitter release. This potentially explains the decrease in CRD-evoked spinal phospho-ERK immunoreactivity in response to anti-CGRP Fab’ fragment treatment observed in the current study. Thus, it is possible that peripheral CGRP inhibition directly attenuates the transmission of nociceptive signals from the gut to the central nervous system.

Alternatively, CGRP’s role in immune function and inflammation may underlie the analgesic effects of CGRP blockade. Two studies using partial wrap restraint stress and maternal-separation models of visceral hypersensitivity demonstrated an increased number of mast cells in close proximity to CGRP-IR fibers in the gut (Barreau et al., 2008; Traini et al., 2016). Furthermore, CGRP is thought to have an antimicrobial impact on several bacteria strains that are part of a healthy gut microbiome, which suggests stress-altered CGRP signaling may have effects on the microbiota-gut-brain axis (Holzer and Farzi, 2014). Thus, it is conceivable that both adult stress and ELS increase CGRP expression resulting in abnormal immune cell activation and dysbiosis that drives sensitization of colonic afferents. CGRP inhibition may therefore prevent activation of immune mediators to attenuate sensitization of these afferents and chronic colonic hypersensitivity.

Given the clinical efficacy of CGRP pathway therapeutics for migraine, there are some possible similarities between migraine and IBS. For example, both conditions are chronic prevalent disorders predominantly affecting women with visceral and thermal cutaneous hypersensitization (Chang and Lu, 2013). Additionally, stress is linked to IBS symptomatology and is a predisposing factor and trigger in patients with migraines (Sauro and Becker, 2009). Also, studies have revealed comorbidities between migraine/IBS and IBS, however, the mechanisms that underlie this association are unclear (Arzani et al., 2020). Our finding that peripheral CGRP blockade reduces stress-induced visceral hypersensitivity suggests that anti-CGRP ligand antibodies may not only offer treatment for migraine but also concurrent treatment of comorbid IBS or other visceral pain conditions.

In conclusion, although IBS is a multifaceted disorder, evidence suggests that stress, both in early life and in adulthood, is a significant contributing factor for the development and exacerbation of the disorder. Here we used two clinically relevant rodent models in which a repeated stressor in adulthood or early life induces hallmark features of IBS, including colonic hypersensitivity and abnormal neuronal activation. We report that administration of a Fab’ fragment antibody targeting CGRP inhibits stress-induced colonic hypersensitivity and stimulus-evoked spinal ERK1/2 phosphorylation, which emphasizes the role of CGRP in the regulation of persistent visceral pain seen in adult rats exposed to repeated stress in adulthood or ELS.

Authorship Contributions

Participated in research design: Mohammadi, Mackenzie, Stratton, Shneider, Greenwood-Van Meerveld.

Conducted experiments: Mohammadi, Ligon, Mackenzie, Stratton, Shneider, Greenwood-Van Meerveld.

Contributed new reagents or analytic tools: Mohammadi, Ligon, Mackenzie, Stratton, Shneider, Greenwood-Van Meerveld.

Performed data analysis: Mohammadi, Ligon, Mackenzie, Greenwood-Van Meerveld.

Wrote or contributed to the writing of the manuscript: Mohammadi, Ligon, Mackenzie, Stratton, Shneider, Greenwood-Van Meerveld.

References

Ackerman AL, Jellison FC, Lee UJ, Bradeni S, and Rodriguez LV (2015) Gl1 glutamate receptor mediates the establishment and perpetuation of chronic visceral pain in an animal model of stress-induced bladder hyperalgesia. Am J Physiol Renal Physiol 310:F628–F636.

Arzani M, Jahromi SR, Ghorbani Z, Vahahizad F, Martellelli P, Ghasemi A, Sacco S, and Avanzo B (2018) School of Advanced Studies of the European Headache Federation (EHF-SAS) (2020) Gut-brain axis and migraine headache: a comprehensive review. J Headache Pain 21:15.

Barreau F, Salvador-Cartier C, Houdesse E, Bueno L, and Fioramonti J (2008) Long-term consequences of colonic neurexin cell interactions induced by neonatal maternal deprivation in rats. Gut 57:582–590.

Blanchard EB, Lackner JM, Jaccard J, Rowell D, Carasella AM, Powell C, Sanders K, Krasner S, and Kuhn E (2008) The role of stress in symptom exacerbation among IBS patients. J Psychosom Res 64:119–128.

Bradeni S, Kokkotou E, Simonidis S, Patiermo S, Ennes HS, Mittal Y, McRoberts JA, Ongin G, McLean P, Marvizon JC, et al. (2006) The role of neurokinin 1 receptors in the maintenance of visceral hyperalgesia induced by repeated stress in rats. Gastroenterology 130:1729–1742.

Bradeni S, Schwartz J, Ennes HS, Lamy CM, Ongin G, Fanselov M, Pothoulakis C, McRoberts JA, and Mayer EA (2005) Recent exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 389:G42–G53.

Bradford K, Shih W, Videilok EJ, Presson AP, Naliboff BD, Mayer EA, and Chang L (2012) Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol 10:385–390e1-3.

Brain SD, Williams TJ, Tippins JR, Morris HH, and MacIntyre I (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 312:54–56.

Brierley SM, Hibberd TJ, and Spence NJ (2018) Spinal afferent innervation of the colon and rectum. Front Cell Neurosci 12:467.

Cámara-Lemarroy CR, Rodríguez-Gutiérrez R, Monreal-Rohles R, and Marfil-Rivera A (2016) Gastrointestinal disorders associated with migraine: a comprehensive review. World J Gastroenterol 22:8149–8160.

Camp LL and Rudy JW (1988) Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Dev Psychobiol 21:25–42.

Castaño D, Harrington AM, Hughes PA, Martin CM, Ge P, Shea CM, Jin H, Jacobson S, Hannig G, Mann E, Cohen MB, MacDougall JR, Lavins BJ, Kurtz CB, Silos- Santiaţo I, Johnston JM, Currie MG, Blackshaw LA, and Brierley SM (2013) Linaclotide inhibits colonic neural sensitivity and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3′,5′-monophosphate. Gastroenterology 145:1334–1461.

Ceuleers H, Hanning N, Heurlet J, Van Remoortel S, Joossens J, Van Der Veken P, Francqse SM, De Bruyn M, Lamibe AM, De Man JG, et al. (2018) Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammary rat model for irritable bowel syndrome. Br J Pharmacol 175:3516–3533.

Chaloner A and Greenwood-Van Meerveld B (2013) Sexually dimorphic effects of unpredictable early life adversity on visceral pain behavior in a rodent model. J Pain 14:270–280.

Chang VY and Lu CL (2013) Irritable bowel syndrome and migraine: bystanders or partners? Neurogastroenterol Motil 19:301–314.

Chen LJ, Zhang FG, Li J, Song HX, Zhou LB, Yao BC, Li F, and Li WC (2010) Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury. J Clin Neurosci 17:87–91.

Coutinho SV, Plotsky PM, Sablad M, Miller JC, Zhou H, Bayati AI, McRoberts JA, Dankert N, and Brierley SM (2015) Glt1 glutamate transporter mediates the establishment and perpetuation of chronic visceral pain in a novel serine protease inhibitor model for irritable bowel syndrome. Eur J Gastroenterol Hepatol 27:312–318.

Davids LM, Brierley SM, and Spence NJ (2011) Spinal afferent innervation of the colon and rectum. Front Cell Neurosci 5:1–11.

Davis NP, Brady CM, and Creagh T (2014) Interstitial cystitis/painful bladder syndrome: epidemiology, pathophysiology and evidence-based treatment options. Eur J Obstet Gynecol Reprod Biol 175:20–27.

Der(sym) L, Gelo L, Ardil D, Eschaller A, Bertrand C, Doherty AM, and Diop L (2006) Interactive involvement of brain derived neurotrophic factor, nerve growth factor, and calcitonin gene related peptide in colonic hypersensitivity in the rat. Gut 55:940–945.

Domino EF, Chang H, Bishop AE, Polak JM, and Oktay M (1992) Distribution and origin of extrinsic nerve fibers containing calcitonin gene-related peptide, substance P and galanin in the rat upper rectum. Neurosci Res 15:64–75.

Drossman DA (1997) Irritable bowel syndrome and sexual/physical abuse partners? At ASPET Journals on February 15, 2022jpet.aspetjournals.org. Downloaded from

Downloaded from jpet.aspetjournals.org at ASPET Journals on February 15, 2022

Eutamene H, Bradesi S, Larauche M, Theodorou V, Beaufrand C, Ohning G, Fioramonti J, Cohen M, Bryant AP, Kurtz C, et al. (2010) Guanylate cyclase C-mediated antinociceptive effects of icatibant in peripheral and central pain mechanisms including migraine. Neurogastroenterol Motil 22:527–531.

Grace PM, Hutchinson MR, Maier SF, and Watkins LR (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14:217–231.

Holzer P and Farzi A (2014) Neuroepithelides and the microbiota-gut-brain axis. Adv Exp Med Biol 817:185–215.

Iyengar S, Ossipor MH, and Johnson KW (2017) The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 158:543–559.

Johnson JC and Greenwood-Van Meerveld B (2014) Stress-induced pain: a target for the development of novel therapeutics. J Pharmacol Exp Ther 351:327–335.
Johnson AC, Tran L, and Greenwood-Van Meerveld B (2015) Knockdown of cortico-
 tropin-releasing factor in the central amygdala reverses persistent visceral nociceptive sensitization. *Transl Psychiatry* 5:4317.

Lampe A, Doering S, Rumpold G, Söller E, Krismer M, Kanzler-Rumpmlar W, Schubert C, and Sölner W (2003) Chronic pain syndromes and their relation to chronic back pain. *Neurogastroenterol Motil* 15:361–367.

Liang WJ, Zhang G, Luo HS, Liang LX, Huang D, and Zhang FC (2016) Tryptase and protease-activated receptor 2 expression levels in irritable bowel syndrome. *Gut Liver* 10:382–390.

Longstreth GF (2005) Definition and classification of irritable bowel syndrome: cur-
 rent consensus and controversies. *Gastroenterol Clin North Am* 34:173–187.

Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, and Spiller RC (2006) Functional bowel disorders. *Gastroenterology* 130:1480–1491.

Makowska K and Gonkowski S (2018) The influence of inflammation and nerve damage on the neurochemical characterization of calcitonin gene-related peptide-like immunoreactive (CGRP-LI) neurons in the enteric nervous system of the porcine descending colon. *Int J Mol Sci* 19:548.

Makowska K, Oberski R, Zielonka L, and Gonkowski S (2017) The influence of low doses of zearalenone and T-2 toxin on calcitonin gene-related peptide and pain: a systematic review. *J Headache Pain* 18:34.

Mishra N, and Nordling J (2011) Childhood sexual trauma in women with interstitial cystitis triggers the release of substance P and calcitonin gene-related peptide: an exploratory tissue biobank study. *Neurogastroenterol Motil* 23:342.

Mischkowski T, Kettler H, Koike S, Pizzinelli P, Bruns A, Fromm K, and Lang F (2006) Prostaglandin E2-induced hyperalgesia in chronic pelvic pain syndrome (MAPP) research network study. *Can J Urol Ass* 13:640–645.

Pan XQ, Gonzales JA, Chang S, Chacko S, Wein AJ, and Malykhina AP (2010) Experi-
 nicate activation in rat primary afferent pathways. *Exp Neurol* 219:93–103.

Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Schnakenbo P, Rivier J, Vale WW, and Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene-related promoter. *Proc Natl Acad Sci USA* 80:7677–7681.

Rytel L and Calka J (2016) Acetylsalicylic acid-induced changes in the chemical cod-
ing of extrinsic sensory neurons supplying the prepyloric area of the porcine stom-
ach. *Anat Rec (Hoboken)* 299:1273–1279.

Saito YA, Schoenfeld P, and Locke GR III (2002) The epidemiology of irritable bowel syndrome in North America: a systematic review. *Am J Gastroenterol* 97:1910–1915.

Sauro KM and Becker WJ (2009) The stress and migraine interaction. *Headache* 49:1378–1386.

Schou WS, Ashina S, Amin FM, Goadsby PJ, and Ashina M (2017) Calcitonin gene-
related peptide and pain: a systematic review. *J Headache Pain* 18:34.

Sullivan RM, Stankewicz G, Naar P, Lemon C, and Wilson DA (2000) Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coe-
ruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. *Behav Neurosci* 114:957–962.

Sundler F, Ekblied and Håkanson R (1991) Occurrence and distribution of sub-
stance P and CGRP-containing nerve fibers in gastric mucosa: species differences. *Adv Exp Med Biol* 298:29–37.

Talley NJ (1994) Diagnosing an irritable bowel: does sex matter? *Gastroenterology* 100:834–837.

Talley NJ, Zinsmeister AR, Van Dyke C, and Melton 3rd LJ (1991) Epidemiology of colonic symptoms and the irritable bowel syndrome. *Gastroenterology* 101:927–934.

Timmermans JP, Scheuermann DW, Baribiers M, Adriansen D, Stach W, Van Hee R, and De Godoi-Lassle MM (1992) Calcitonin gene-related peptide-like immuno-
reactivity in the human small intestine. *Acta Aniat (Basel)* 143:48–53.

Timmermans W, Xiong H, Hoogenraad CC, and Krugers HJ (2013) Stress and excit-
tory syndromes: from health to disease. *Neuroscience* 248:626–636.

Traini C, Evangelista S, Girod V, Faustsson-Pellegrini MS, and Vanzuccchi MG (2016) Cholecystokinin receptors and 5-HT(3) receptors in irritable bowel syndrome. *Transl Psychiatry* 6:27.

Traini C, Evangelista S, Girod V, Faustsson-Pellegrini MS, and Vanzuccchi MG (2016) Cholecystokinin receptors and 5-HT(3) receptors in irritable bowel syndrome. *Transl Psychiatry* 6:27.

Traini C, Evangelista S, Girod V, Faustsson-Pellegrini MS, and Vanzuccchi MG (2016) Cholecystokinin receptors and 5-HT(3) receptors in irritable bowel syndrome. *Transl Psychiatry* 6:27.

Traini C, Evangelista S, Girod V, Faustsson-Pellegrini MS, and Vanzuccchi MG (2016) Cholecystokinin receptors and 5-HT(3) receptors in irritable bowel syndrome. *Transl Psychiatry* 6:27.