Research Article

MicroRNA-4325 Suppresses Cell Progression in Hepatocellular Carcinoma via GATA-Binding Protein 6

Xiaoxia Huo,1 Houmin Zhou,2 and Tiantian Li2

1Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Province, China
2Department of General Surgery, Qingdao Municipal Hospital, Shandong Province, China

Correspondence should be addressed to Houmin Zhou; zhm1595338048@163.com

Received 30 December 2020; Revised 27 January 2021; Accepted 15 March 2021; Published 10 April 2021

Academic Editor: Zhenbo Xu

Copyright © 2021 Xiaoxia Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MicroRNAs (miRs) are regulators of the formation and development of hepatocellular carcinoma (HCC). The biological role of miR-4325 in HCC has yet to be determined. This study is aimed at dissecting the role of miR-4325 in HCC and the underlying mechanism. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-4325 expression in HCC tissue specimens and cells. Cell proliferation, migration, and invasion were assessed by using the MTT assay and Transwell assay, respectively. The miR-4325 target was predicted based on bioinformatics analysis and validated using the dual-luciferase reporter assay. Rescue experiments in the cells were utilized to functionally characterize the downstream molecular targets of miR-4325. We observed that miR-4325 expression levels were significantly reduced in both HCC tissue specimens and cell lines. Meanwhile, a lower miR-4325 level was associated with a poorer prognosis. Gain and loss of function assays revealed that miR-4325 markedly downregulated HCC cell growth, migration, and invasion. Moreover, we identified GATA-binding protein 6 (GATA6) as a miR-4325 target and found that GATA6 was abnormally expressed in HCC. Rescue assays demonstrated that the regulatory function of miR-4325 in HCC was mediated by GATA6. Taken together, miR-4325 suppresses HCC cell growth, migration, and invasion by targeting GATA6, suggesting that miR-4325 may potentially serve as a novel therapeutic target for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) has been the fifth most prevalent malignancy and ranked as the third cause of cancer-associated death worldwide in the past ten years [1, 2]. According to the latest epidemiological statistics, in 2018, more than 841,000 new HCC cases were diagnosed and over 782,000 HCC patients died in the world [3]. Although, great progresses have been made in the comprehensive treatments for HCC, such as surgical resection, the 5-year survival rate of HCC patients is still as low as 10% [4]. In addition, once HCC progresses to the advanced stage, currently available therapies can only marginally improve the overall survival of patients and are not considered cost-effective. This may be due to the unknown and complex etiology as well as the underlying molecular mechanisms of HCC [5]. Thus, it remains crucial to investigate the potential pathogenesis and molecular mechanisms of HCC progression.

As a class of noncoding small RNAs, microRNAs (miRNAs or miRs) negatively regulate the target gene expression through binding to the 3′-untranslated region (3′-UTR) of the target mRNA for mRNA degradation [6, 7]. It has been shown that miRNAs are abnormally expressed in various malignancies including HCC [8–10], while playing a pivotal role in regulating numerous tumor-related processes, such as cell proliferation, apoptosis, invasion, and metastasis [8]. Tian et al. [9] reported that miR-191 promotes cell cycle progression and cell proliferation in HCC by increasing the expression of the Kruppel-like family of transcription factors. Additionally, Wang et al. [10] found that while miR-1204 is ectopically expressed in HCC, it enhances proliferation and colony formation by activating MAPK/c-Jun signaling pathways [10].
We previously observed a downregulation of miR-4325 in HCC tumor tissues as compared to the nontumor counterparts. However, the role of miR-4325 in HCC, or even in cancer, has not been reported in the literature. This study sought to characterize miR-4325 expression both in vivo and in vitro and to investigate clinical relevance, biological role, and underlying mechanisms of miR-4325 in HCC.

2. Materials and Methods

2.1. Tissue Specimens. 30 pairs of HCC tumor and matched adjacent nontumor tissues (≥2 cm away from the tumor edge) were obtained from surgically resected specimens in our hospital between January 2012 and May 2013. After resection, tissues were immediately immersed in liquid nitrogen and kept at -80°C for further analysis. All patients were diagnosed with HCC and underwent an operation at the aforementioned hospital. None of the patients had received preoperative adjuvant therapy. Among the 30 HCC patients, the median age was 67.69 ± 5.48 years (range: 45-82 years). Clinicopathological parameters of patients are presented in Table 1 [11]. Ethics approval was obtained from the Medical Ethics Board of our hospital (approval no. LL201904645), and all patients provided signed informed consent.

2.2. Cell Transfection. Human HCC cell lines Hep3b, HCCC-9810, HuH-6, and PLC/PRF/5 were provided by the National Infrastructure of Cell Line Resource (Beijing, China). Human normal hepatic cell line THLE-2 and HCC cell lines Li-7 and HuH-7 were available from China Center for Type Culture Infrastructure of Cell Line Resource (Beijing, China). Human HCC cell lines Hep3b, HCCC-9810, HuH-6, and PLC/PRF/5 were provided by the National Infrastructure of Cell Line Resource (Beijing, China). Human normal hepatic cell line THLE-2 and HCC cell lines Li-7 and HuH-7 were available from China Center for Type Culture Collection. The following cell lines were grown in the respective culture medium (Gibco, Thermo Fisher Scientific, Inc.) supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml): HCCC-9810, HuH-6, Li-7, and THLE-2 in RPMI-1640; HuH-7 in DMEM; and Hep3b and PLC/PRF/5 in MEM-EBSS. The cells were cultured in a humidified 37°C incubator containing 5% CO₂. The cell lines HuH-7 and Li-7 were transfected with miR-4325 mimics (5'-UUGGACCUUGUUCUGAGUGA-3'), GATA6 overexpression plasmids (full length), or negative control (NC, nontargeting scrambled control) (named “control” and “OECON,” respectively), which were provided by GeneCopoeia Inc. And the transfection was carried out using the Invitrogen Lipofectamine® 3000 kit as recommended by the manufacturer. In the experiments, 1 × 10⁶ cells were transfected with 5 ng mimics or NC plasmids, and approximately 30-50% of the cells were successfully transfected. After single-cell culture, stable cells transfected with miR-4325 mimics, GATA6 overexpression plasmids, and their respective NC mimics were established. Subsequent experiments were performed one week after transfection.

The CRISPR-Cas9 vector px458 (pSpCas9(BB)-2A-GFP; Addgene, Inc.; cat. no. 48138; 5′ clone site, AgeI; 3′ clone site, EcoRI) was used for knockdown of GATA6 in the cell lines. Design and synthesis of gRNA-coding cDNAs for GATA6 were performed by GeneCopoeia Inc., and the cDNAs were used for the cell transfection. The following primers were used in this study: forward, 5′-caccCTCGGGGCGTTTCTGC GCCATA-3′; reverse, 5′-aaacTATGCGGCCAGAAACGC CGAG-3′. The negative control was nontargeting sgRNA from the same sgRNA dataset (https://www.addgene.org/crispr/libraries/). Following transfection with the GATA6-knockdown vector or control vector, GFP-positive cells were isolated by using flow cytometry, and single cells were plated in 96-well culture plates containing the respective growth medium. After 3-4 weeks of cell culture, western blotting was performed to test the effect of GATA6-knockdown. In total, more than 4 stable cell clones with GATA6-knockdown were obtained; among them, one cell clone was chosen for the subsequent experiments.

2.3. RT-qPCR. The Invitrogen TRIzol® reagent was used to isolate total RNA in tissue specimens or cultured cells, and reverse transcription was performed using the Invitrogen high-capacity cDNA reverse transcription kit. RT-qPCR was conducted using SYBR Green (Takara Bio, Inc.). The relative miR-4325 expression was normalized to U6 (for miR-4325) and GAPDH (for GATA6). All reactions were performed in triplicate. The following primers were used to detect the indicated target genes: miR-4325, 5′-ACACTCC AGCTGGGTTGCACTTGTCT-3′ (forward) and 5′-CACTGAGTCGACTGCAACTTCAGTTGAGTCAC TGAG-3′ (reverse); GATA6, 5′-CAGCCTCAGATCATCA GCA-3′ (forward) and 5′-TGGTGTCATGAGTCCTTCCA-3′ (reverse); GAPDH, 5′-GCAATTCAGTTGAGTCAC TGAG-3′ (reverse); and GATA6, 5′-CTCGGGCGTTTCTACAGCAAG-3′ (forward) and 5′-GTTGACACAGAACACTCC GCAG-3′ (reverse).

Characteristic	n	MicroRNA-4325 expression*	P value	
		High, n	Low, n	
Sex				
Male	24	13	11	0.21
Female	6	2	4	
Age (years)				
<65	20	12	8	
≥65	10	3	7	1.35
Tumor size (cm)				
<5	22	13	9	1.53
≥5	8	2	6	
Grade				
II	5	4	1	0.96
III	25	11	14	
Node metastasis				
With	25	11	14	0.96
Without	5	4	1	
α-Fetoprotein (ng/ml)				
<50	16	10	6	1.21
≥50	14	5	9	

aHigh or low expression was defined based on a cut-off value of 50%.
The following cycling conditions were used: one cycle at 94°C for 2 min; 40 cycles at 94°C for 15 sec and 60°C for 1 min. The relative quantification of gene expression was carried out using the 2^{ΔΔCt} method [12].

2.4. Western Blot Analysis. After 48-72 hours of transfection, protein extraction and quantification were performed in HuH-7 and Li-7 cells using the RIPA buffer and BCA protein assay kit (Beyotime Institute of Biotechnology), respectively. Proteins (10 μg/lane) were resolved on 12% Bis-Tris gel and then transferred to a PVDF membrane. After being blocked with 5% skimmed milk for 2 h at room temperature (RT), the membrane was incubated with primary antibodies overnight at 4°C, followed by an incubation with the secondary antibody for 1 h at RT. Antibodies against GAPDH (EPR16891, 1 : 5,000) and GATA6 (AB22600, 1 : 1,000) as well as HRP-conjugated rabbit anti-sheep secondary antibody (ab6747, 1 : 20,000) were purchased from Abcam. Development was performed in a dark room. The Pierce™ ECL Western Blotting Substrate was used as the visualization reagent. GAPDH was loaded as a control. Each experiment was conducted in triplicate.

2.5. MTT Assay. The rate of cell proliferation was measured by the MTT assay. The cells were plated in a 96-well tissue plate at a density of 5 × 10^4 cells per well, and 20 μl of MTT solution (5 mg/ml) (Beyotime Institute of Biotechnology) was dispensed into each well. Following 4 hours of culture, 150 μl DMSO was applied to each well, and then, the mixture was shaken for 10 min at RT. The optical density (OD) value was measured at 490 nm to determine cell proliferation rates days 1-4 after transfection.

2.6. Transwell Assays. Cell migration and invasion were assayed using Transwell chambers (8 μm pore size, Corning, Inc.). In the cell invasion assay, Matrigel-coated Transwell inserts were prepared at 37°C for 30 min. Subsequently, HuH-7 and Li-7 cells suspended in the respective serum-free medium were plated into the upper chamber at a density of 3 × 10^4 cells per well, while a growth culture medium containing 10% FBS was applied to the lower chamber. After 48 hours of incubation, while noninvading cells on the upper surface of the insert were removed with a cotton swab, invaded cells on the lower insert surface were subjected to fixation with 4% paraformaldehyde for 30 min at RT, followed by crystal violet staining 1% for 5 min at RT. Stained cells were counted in five randomly selected fields using an optical microscope (Leica Microsystems GmbH) at 200x magnification. The cell migration assay was carried out as described in the invasion assay, except that the insert was not precoated with Matrigel.

2.7. Bioinformatics Analysis. Prediction of miR-4325 targets was conducted based on miRDB (http://mirdb.org/) and TargetScan Human v7.2 (http://www.targetscan.org/vert_72/).

2.8. Dual-Luciferase Reporter Assay. HuH-7 and Li-7 cells were cotransfected with WT or mutant GATA6 3′-UTR and miR-4325 mimic or miR-NC by using the Invitrogen Lipofectamine 2000 reagent. A dual-luciferase reporter assay system (Promega Corporation) was utilized to analyze luciferase activity 48 hours after transfection. The luciferase activity was normalized to that of Renilla.

2.9. Statistics. All data were expressed as the mean ± SD and subjected to analysis with SPSS 22.0 software (IBM Corp.). Comparisons between tumor and adjacent nontumor tissues were performed using paired Student’s t-test. For in vitro experiments, unpaired Student’s t-tests were conducted to determine the statistical significance of differences among the groups. The χ² test was used to analyze the association of miR-4325 levels with clinicopathological parameters. Multiple comparisons were performed using one-way ANOVA followed by Bonferroni’s test. Spearman correlation (2-tailed) and scatter plot analysis were used to test the correlation between miR-4325 and GATA6 expression levels (cut-
50%), while the association of the overall survival time with miR-4325 expression was assessed by Kaplan-Meier analysis and log-rank tests. Statistically, \(P < 0.05 \) indicated a significant difference.

3. Results

3.1. miR-4325 Is Downregulated in HCC Tissue and Cells. We firstly analyzed miR-4325 expression levels in 30 pairs of HCC tumor and matched nontumor tissue specimens. The RT-qPCR assay revealed a significant downregulation of miR-4325 in HCC tissues as compared to the corresponding nontumor tissues \((P < 0.05) \) (Figure 1(a)). Moreover, the miR-4325 level was negatively associated with a favorable outcome of HCC patients, as indicated by Kaplan-Meier plots (Figure 1(b)). Likewise, the HCC cell lines expressed a significantly lower level of miR-4325 than their normal counterpart THLE-2 (Figure 1(c)). We, therefore, chose HuH-7 and Li-7 cell lines for further studies based on their marked downregulation of miR-4325.

3.2. miR-4325 Overexpression Inhibits HCC Cell Proliferation, Migration, and Invasion. Next, we sought to investigate a potential role of miR-4325 in regulating proliferation, migration, and invasion of HCC cells. For this purpose, HuH-7 and Li-7 cells were transfected with miR-4325 mimics or NC. As shown in Figure 2(a), miR-4325 mimics led to a significant increase in the miR-4325 level in both cell lines. MTT assays revealed that increased expression of miR-4325 inhibited HCC cell proliferation (Figures 2(b) and 2(c)). Meanwhile, Transwell assays showed that miR-4325 overexpression markedly repressed the migration and invasion of Li-7 and HuH-7 cells (Figures 2(d)–2(g)). Collectively, these data suggested that miR-4325 negatively regulated HCC cell proliferation, migration, and invasion.
3.3. miR-4325 Directly Targets GATA6 In Vitro. To understand the molecular mechanism underlying the regulatory role of miR-4325 in HCC, we searched and cross-compared potential targets of miR-4325 by using two databases miRDB and TargetScan. As depicted in Figure 3(a), a putative binding site for miR-4325 in the GATA6 3′-UTR was identified, suggestive of GATA6 as a miR-4325 target. To test this scenario, we performed luciferase reporter assays. The assays revealed that miR-4325 overexpression remarkably inhibited the luciferase activity of the GATA6 WT group in HuH-7 and Li-7 cells, while the inhibitory effect was not observed in the GATA6 mutant group (Figures 3(b) and 3(c)).

We further examined GATA6 expression in HCC tumor and matched nontumor tissues. As shown in Figure 3(d), a markedly higher level of GATA6 mRNAs was detected in HCC tumor tissues as compared to the nontumor counterparts (P < 0.05). Moreover, we observed a negative correlation between GATA6 and miR-4325 expression levels in HCC (r² = 0.2568; P = 0.0043) (Figure 3(e)).

3.4. miR-4325 Inhibits HCC Cell Migration and Invasion by Targeting GATA6. To validate the identification of GATA6 as a miR-4325 target in HCC based on the in vitro studies, we carried out a number of experiments using Li-7 and HuH-7 cells. In the experiments, GATA6 could be overexpressed or knocked down in Li-7 and HuH-7 cells (Figures 4(a) and 4(b)). As shown in Figures 4(c) and 4(d), HCC cell lines expressed significantly higher levels of GATA6 than the normal counterpart. Notably, miR-4325 overexpression led to a decreased expression of GATA6, while this decrease was reversed by GATA6 overexpression (Figure 4(e)). In addition, GATA6-knockdown did not influence miR-4325 expression in miR-4325 mimic-expressing cells, indicating that miR-4325 targets GATA6 (Figures 4(f) and 4(g)).

Finally, we investigated whether GATA6 plays a role in miR-4325-mediated regulation of cell migration and invasion. As depicted in Figures 4(h) and 4(l), GATA6-knockout significantly inhibited HCC cell migration, showing a similar effect with miR-4325 overexpression. Conversely, GATA6 overexpression promoted the cell migration; this effect could be reversed by miR-4325 overexpression (Figure 4(i)). Similarly, GATA6 regulated HCC cell invasion (Figures 4(j) and 4(k)).

4. Discussion

HCC is the most prevalent primary liver cancer, accounting for 70-85% of all cases with primary liver cancer, while metastasis is the main death cause of HCC [13]. miRNAs are critically involved in gene expression regulation at both transcriptional and posttranscriptional levels during the initiation and progression of various types of cancer, including HCC [14]. Increasing studies have shown that miRNAs can influence HCC occurrence by regulating oncogenes and tumor suppressor genes [15–18]. Multiple miRNAs, such as miR-335 and miR-122, have demonstrated their potentials in therapeutic strategies for HCC.
Figure 4: Continued.
Here, we provided evidence that miR-4325 functions as an inhibitor in HCC development. In this study, we first showed that the miR-4325 was downregulated in the HCC tissue and cells and associated with a poor prognosis of HCC patients. Meanwhile, MTT and Transwell assays revealed that miR-4325 inhibited HCC cell proliferation, migration, and invasion, suggesting that miR-4325 may act as a tumor suppressor gene in HCC. Furthermore, GATA6 was identified and validated as a target gene of miR-4325 through bioinformatics analysis and luciferase reporter assays. GATA6 belongs to a zinc finger transcription factor family and plays an important role in the regulation of cellular differentiation and organogenesis [21]. It has been shown that GATA6 is implicated in the occurrence and development of various malignancies, including lung cancer [22], gastric cancer [23], colorectal cancer [24], pancreatic cancer [25], hepatocellular carcinoma [26, 27], and ovarian cancer [28]. In particular, Xue et al. [27] found that GATA6 overexpression could promote the migration and invasion of HCC cells. This observation was in accordance with the findings in the present study. In the present study, analysis of clinical tissue specimens and cultured cells revealed that GATA6 expression was upregulated in HCC patients and HCC cells. In addition, we found that interference with GATA6 expression could inhibit the migration and invasion of LI-7 and HuH-7 cells, while overexpression of GATA6 promoted the function of HCC cells. However, overexpression of miR-4325 could inhibit the ability of overexpression of GATA6 to promote the migration and invasion of HCC cells by targeting the expression of GATA6.

In conclusion, the current study revealed a downregulation of miR-4325 expression in HCC. Moreover, miR-4325 inhibited the proliferation, migration, and invasion of HCC cells through targeting GATA6.
cells through targeting GATA6. These findings are potentially of significance in developing a novel therapeutic strategy for HCC.

Data Availability

All data generated or analyzed during this study are available upon request from the authors.

Ethical Approval

Ethics approval was obtained from the Medical Ethics Board of our hospital (approval no. LL201904654).

Consent

All patients provided signed informed consent.

Conflicts of Interest

There are no competing interests to declare.

Authors’ Contributions

ML and XC conceived and designed the project. ML, PW, HW, and JL carried out the experiments. CW and JC performed data analyses. ML, PW, and HW drafted the manuscript. XC reviewed and edited the paper for intellectually important content. All the authors listed have approved the content of the submitted manuscript. Xiaoxia Huo and Tian-tian Li contributed equally to this work.

References

[1] N. Fujiwara, S. L. Friedman, N. Goossens, and Y. Hoshida, "Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine," Journal of Hepatology, vol. 68, no. 3, pp. 526–549, 2018.

[2] E. Sagnelli, M. Macera, A. Russo, N. Coppola, and C. Sagnelli, "Epidemiological and etiological variations in hepatocellular carcinoma," Infection, vol. 48, no. 1, pp. 7–17, 2020.

[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA: a Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, 2018.

[4] A. Forner, M. Reig, and J. Bruix, "Hepatocellular carcinoma," Lancet, vol. 391, no. 10127, pp. 1301–1314, 2018.

[5] A. M. Crissien and C. Frenette, "Current management of hepatocellular carcinoma," Gastroenterology & Hepatology, vol. 10, no. 3, pp. 153–161, 2014.

[6] W. Xiong, J. Ran, R. Jiang et al., "miRNA-320a inhibits glioma cell invasion and migration by directly targeting aquaporin 4," Oncology Reports, vol. 39, no. 4, pp. 1939–1947, 2018.

[7] Z. Zhang, Y. Dong, J. Hua et al., "A five-miRNA signature predicts survival in gastric cancer using bioinformatics analysis," Gene, vol. 699, pp. 125–134, 2019.

[8] L. A. Boos, A. Schmitt, H. Moch et al., "miRNAs are involved in tall cell morphology in papillary thyroid carcinoma," Cancers, vol. 11, no. 6, p. 885, 2019.

[9] F. Tian, C. Yu, M. Wu, X. Wu, L. Wan, and X. Zhu, "MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_000204/miR-191/KLF6 axis," Cell Proliferation, vol. 52, no. 5, p. e12635, 2019.

[10] L. Wang, L. Sun, Y. Wang et al., "miR-1204 promotes hepatocellular carcinoma progression through activating MAPK and c-Jun/AP1 signaling by targeting ZNF418," International Journal of Biological Sciences, vol. 15, no. 7, pp. 1514–1522, 2019.

[11] W. M. Cong, H. Bu, J. Chen et al., "Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update," World Journal of Gastroenterology, vol. 22, no. 42, pp. 9279–9287, 2016.

[12] K. J. Livak and T. D. Schmittgen, "Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method," Methods, vol. 25, no. 4, pp. 402–408, 2001.

[13] D. Schizas, A. Mastoraki, E. Routsi et al., "Combined hepatocellular-cholangiocarcinoma: an update on epidemiology, classification, diagnosis and management," Hepatobiliary & Pancreatic Diseases International, vol. 19, no. 6, pp. 515–523, 2020.

[14] Y. Liang, Q. Liang, L. Qiao, and F. Xiao, "MicroRNAs modulate drug resistance-related mechanisms in hepatocellular carcinoma," Frontiers in Oncology, vol. 10, p. 920, 2020.

[15] D. Li, J. Zhang, and J. Li, "Role of miRNA sponges in hepatocellular carcinoma," Clinica Chimica Acta, vol. 500, pp. 10–19, 2020.

[16] A. Morishita and T. Masaki, "miRNA in hepatocellular carcinoma," Hepatology Research, vol. 45, no. 2, pp. 128–141, 2015.

[17] K. Sartorius, J. Makarova, B. Sartorius et al., "The regulatory role of microRNA in hepatitis-B virus-associated hepatocellular carcinoma (HBV-HCC) pathogenesis," Cell, vol. 8, no. 12, 2019.

[18] X. Xu, Y. Tao, L. Shan et al., "The role of microRNAs in hepatocellular carcinoma," Journal of Cancer, vol. 9, no. 19, pp. 3557–3569, 2018.

[19] C. Turato, F. Fornari, D. Politur et al., "miR-122 targets SerpinB3 and is involved in sorafenib resistance in hepatocellular carcinoma," Journal of Clinical Medicine, vol. 8, no. 2, p. 171, 2019.

[20] F. Wang, L. Li, K. Piontek, M. Sakaguchi, and F. M. Selaru, "Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma," Hepatology, vol. 67, no. 3, pp. 940–954, 2018.

[21] J. F. Deniset, D. Belke, W. Y. Lee et al., "Gata6 pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis," Immunity, vol. 51, no. 1, pp. 131–140.e5, 2019.

[22] H. Li, C. Feng, and S. Shi, "miR-196b promotes lung cancer cell migration and invasion through the targeting of GATA6," Oncology Letters, vol. 16, no. 1, pp. 247–252, 2018.

[23] H. Liu, F. Du, L. Sun et al., "GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer," Cell Death & Disease, vol. 10, no. 2, p. 35, 2019.

[24] H. Yunqi, Y. Fangrui, Y. Yongyan et al., "miR-455 functions as a tumor suppressor through targeting GATA6 in colorectal cancer," Oncology Research, vol. 27, no. 3, pp. 311–316, 2019.

[25] P. Martinelli, E. Carrillo-de Santa Pau, T. Cox et al., "GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer," Gut, vol. 66, no. 9, pp. 1665–1676, 2017.

[26] H. W. Tan, C. O. Leung, K. K. Chan et al., "Deregulated GATA6 modulates stem cell-like properties and metabolic..."
phenotype in hepatocellular carcinoma,” *International Journal of Cancer*, vol. 145, no. 7, pp. 1860–1873, 2019.

[27] F. Xue, J. Yin, L. Xu, and B. Wang, ”MicroRNA-143 inhibits tumorigenesis in hepatocellular carcinoma by downregulating GATA6,” *Experimental and Therapeutic Medicine*, vol. 13, no. 6, pp. 2667–2674, 2017.

[28] W. Shen, N. Niu, B. Lawson et al., ”GATA6: a new predictor for prognosis in ovarian cancer,” *Human Pathology*, vol. 86, pp. 163–169, 2019.