Double parton scattering in four-jet production in proton-proton collisions at the LHC

Oleh Fedkevycha,1 and Anna Kuleszaa2

a Institute for Theoretical Physics, WWU Münster, D-48149 Münster, Germany

b Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, 16146, Genoa, Italy

Abstract

We study the contribution from double parton scattering (DPS) to four-jet production at the LHC, both at the leading order accuracy and after incorporating the effects of QCD radiation. Apart from DPS, we also include and discuss the contribution from single parton scattering (SPS). We find that the QCD radiation impacts theoretical predictions significantly, with DPS contributions more affected than the SPS. We also examine a number of observables in regard to their effectiveness for discrimination between DPS and SPS events and propose sets of kinematical cuts to improve the prospects of measuring DPS in four-jet production.

1fedkevyc@uni-muenster.de, oleh.fedkevych@ge.infn.it

2anna.kulesza@uni-muenster.de
1 Introduction

A composite nature of hadrons leads to a complicated structure of the underlying event in hadronic collisions. In particular, it gives rise to a possibility of several interactions per one collision, a phenomenon referred to as multiple parton interactions (MPI). Rapidly increasing fluxes of partons in hadrons at small momentum fractions x make their occurrence more frequent at higher collision energies or, alternatively, at lower invariant masses of the measured system. A particular subset of MPI with two hard interactions per single hadron-hadron collision is called double parton scattering (DPS). It is a simplest possible MPI system. Provided the final state carries enough transverse momenta, it also is a relatively clean system experimentally. DPS processes have been first observed by the AFS [1] and the UA2 [2] collaborations. After these pioneering works a series of measurements were performed at the Tevatron collider [3, 4, 5, 6, 7, 8, 9, 10] and at the LHC [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Among different DPS production channels the four-jet DPS production takes a special place due to high abundance of the multi-jet events in hadron-hadron collisions and correspondingly, a large DPS cross section. The four-jet DPS production was measured in multiple experiments at various colliders: ISR [1], SPS [2], Tevatron [3] and the LHC [16, 18, 23]. The theoretical efforts to describe (four-) jet production from multiple scatterings have a long history [24, 25, 26, 27, 28, 29]. In more recent years studies focused on, among other, including modelling of radiation effects [30] and LHC’s potential to gain new information on the properties of two-parton distribution functions in the transverse plane [31]. The importance of four-jet production in the context of DPS studies, especially in the back-to-back regime, was further highlighted in [32, 33, 34]. In this series of papers, concurrently to other efforts at that time, a theoretical DPS framework that accounts for perturbative splittings of a single parton into two was develop-
oped. It was later followed by a proposal to implement the new approach in the PYTHIA \cite{35,36} event generator through modifying its MPI model with the help of a dedicated tune \cite{37}. Furthermore, the DPS observables and kinematics of four-jet production \cite{38,39} as well as calculations in the high-energy factorization approach \cite{40,41} were explored. In parallel, there has been an enormous progress in theoretical understanding and description of DPS on a more fundamental level \cite{33,34,42,43,45,46,47,48,49}, see also recent review in \cite{50}. Concurrently to the aforementioned advances in DPS description, development of Monte Carlo DPS and MPI models progressed significantly \cite{51,52,53,54,55,56,57,58,59}.

The DPS four-jet production unavoidably occurs simultaneously with the four-jet production in single parton scattering (SPS). Theoretical predictions for this process are known at the next-to-leading order (NLO) accuracy \cite{60,61}. The di-jet production, which is a major building block of double scattering resulting in four jets, has been studied up to the next-to-next-to-leading order (NNLO) in perturbation theory \cite{62}. Although a significant progress has been made recently towards DPS calculations at NLO \cite{49,63} no DPS process has been described at this accuracy yet.

In this work, we revisit the theoretical predictions for four-jet DPS production in pp collisions at the LHC. We first review the LO calculations at the partonic level, both for DPS and SPS, and discuss selected differential quantities as well as their uncertainties. We also investigate the impact of longitudinal parton correlations present in double parton distribution functions, as defined below. The LO analysis is then extended by studying the effect of initial and final state radiation on both the SPS and DPS total cross sections and distributions. The radiation is simulated with the parton shower algorithm as implemented in the PYTHIA event generator.

In this sense, the work presented here goes beyond parton level LO calculations in the collinear factorization \cite{38,39}, or adding to it one (undetected) real emission, as done in \cite{30}. Our studies can be also seen as parallel to the effort of including higher-order effects in the DPS cross sections using the framework of high-energy factorization of \cite{40,41}. The developments presented here are also different from the option of second hard scattering built in PYTHIA. While PYTHIA constructs two-parton parton distribution functions from single parton distributions in a very specific way which cannot be changed by a user, and requires additional adjustments to obtain correct normalization of DPS cross sections, our approach allows to specify how double parton distributions are modelled. Besides, in earlier versions of PYTHIA (before 8.240) the DPS events are dependent on the ordering of the hard interactions constituting the DPS event. Furthermore, our approach offers another way to study effects of showering on DPS predictions in nuclear collisions \cite{64}, different from the Angantyr model of PYTHIA \cite{65,66}.

\footnote{As it was recently shown in \cite{66} the Angantyr model can be used to simulate four-jet}
The paper is structured as follows: in Chapter 2 we briefly review the DPS framework used in our studies. This is followed in Chapter 3 by the description of the implementation and details of various technical aspects of the simulation. This chapter also contains our numerical results and their discussion. We conclude and present an outlook for future work in Chapter 5.

2 Phenomenology of double parton scattering

We begin with a description of the framework in which four-jet DPS production is studied. Its origins go back to the work of Paver and Treleani [25] and Mekhfi [67]. The results of [25], [67] were later generalized and extended to the case of n-hard interactions [42, 43].

The total DPS cross section is given by the following expression

$$
\sigma_{DPS}^{AB} = \frac{1}{1 + \delta_{AB}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_3 dx_4 \hat{\sigma}_{ik \rightarrow A} \hat{\sigma}_{jl \rightarrow B} \times \\
\times \Gamma_{ij/h_A}(x_1, x_2, b, Q_1, Q_2) \Gamma_{kl/h_B}(x_3, x_4, b, Q_1, Q_2),
$$

(1)

where A and B denote final states in $ik \rightarrow A$ and $jl \rightarrow B$ processes and objects $\Gamma_{ij/h}$ are called *generalized two parton distribution functions* which can be in a first approximation thought of as a probability to find two partons i and j with longitudinal momentum fractions x_1 and x_2 separated by distance $|b|$ in a transverse plane of a hadron h.

In the following, we assume factorization of $\Gamma_{ij/h}$ into a product of longitudinal and transverse dependent pieces

$$
\Gamma_{ij/h}(x_1, x_2, b, Q_1, Q_2) \approx D_{ij/h}(x_1, x_2, Q_1, Q_2) F(b).
$$

(2)

Using Eq. (2) one can write a total DPS cross section for pp collisions as

$$
\sigma_{DPS}^{AB} = \frac{1}{1 + \delta_{AB}} \frac{1}{\sigma_{eff}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_3 dx_4 \hat{\sigma}_{ik \rightarrow A} \hat{\sigma}_{jl \rightarrow B} \times \\
\times D_{ij}(x_1, x_2, Q_1, Q_2) D_{kl}(x_3, x_4, Q_1, Q_2),
$$

(3)

where we have dropped the subscript h in order to simplify notation. The prefactor $1/(1 + \delta_{AB})$ in Eq. (3) was introduced to reflect the fact that in case of production of two indistinguishable finals states A and B one has to divide a total DPS cross section by 2. In the following we refer to the distributions D_{ij} in Eq. (3) as to *double parton distribution functions* (dPDFs). The quantity σ_{eff} in Eq. (3) is given by

$$
\sigma_{eff} = \frac{1}{\int d^2 b F^2(b)},
$$

(4)

and can be interpreted as an effective interaction area. It should be noted, however, that the factorization of longitudinal and transverse pieces is an assumption driven by a practical need of modelling of two-parton parton distribution functions for DPS production in pA collisions.
phenomenology purposes. The generalized distributions evolve differently in the position and in momentum space \cite{42, 43}, and consequently at $b = 0$ and $b \neq 0$ \cite{44}.

This is inconsistent with the factorization assumption, which should hold for all values of b. As discussed in e.g. \cite{49}, the cornerstone theoretical expression for the DPS cross section is given by Eq. (1), with $\Gamma_{ij/h}$ evolving according to a homogenous double DGLAP equation \cite{42, 43}.

Assuming no partonic correlations in x-space one can substitute \(D_{ij}(x_1, x_2, Q_1, Q_2) \approx f_i(x_1, Q_1) f_j(x_2, Q_2) \) in Eq. 3 which gives us the “pocket formula of DPS”

\[
\sigma_{DPS}^{AB} = 1 + \frac{\delta_{AB}}{1 + \delta_{AB}} \sum_{i,j,k,l} \sigma_{ik \rightarrow A} \sigma_{jl \rightarrow B} \sigma_{eff}.
\]

Such factorization violates momentum and number (flavour) dPDF sum rules proposed by Gaunt and Stirling \cite{68}. One can avoid unphysical contributions by multiplying a factorized product of PDFs by an appropriate cutoff function, for example

\[
D_{ij}(x_1, x_2, Q_1, Q_2) \approx f_i(x_1, Q_1) f_j(x_2, Q_2) \theta(1 - x_1 - x_2),
\]

where $\theta(1 - x_1 - x_2)$ excludes unphysical region where $x_1 + x_2 > 1$. However, one has to keep in mind that Eq. 7 still violates momentum and number sum rules for dPDFs.

Notwithstanding all the above concerns, Eqs. 3 and 7 are still commonly used for a phenomenological modelling of DPS. In this paper we refer to the dPDFs approximated according to Eq. 7 as to “naive” dPDFs. We also should notice that “naive” dPDFs, as in Eq. 7, do not allow to reduce Eq. 3 to the “pocket formula” Eq. 6. Instead, by substituting Eq. 7 into Eq. 3 we get

\[
\sigma_{DPS}^{AB} = \frac{1}{1 + \delta_{AB}} \sigma_{eff} \sum_{i,j,k,l} \int dx_1 dx_2 dx_3 dx_4 f_i(x_1, Q_1) f_k(x_3, Q_1) \theta(1 - x_1 - x_2) \theta(1 - x_3 - x_4) \times f_j(x_2, Q_2) f_l(x_4, Q_2) \theta(1 - x_1 - x_2) \theta(1 - x_3 - x_4).
\]

In our analysis we use two different models of dPDFs. Namely, we use “naive” dPDFs, as in Eq. 7 constructed out of MSTW2008 \cite{69} or CT14 \cite{70} leading order (LO) PDFs. In order to estimate the impact of partonic correlations in x-space we compare between results obtained according to Eq. 7 as to “naive” dPDFs. We also should notice that “naive” dPDFs, as in Eq. 7, do not allow to reduce Eq. 3 to the “pocket formula” Eq. 6. Instead, by substituting Eq. 7 into Eq. 3 we get

\[
\sigma_{DPS}^{AB} = \frac{1}{1 + \delta_{AB}} \sigma_{eff} \sum_{i,j,k,l} \int dx_1 dx_2 dx_3 dx_4 f_i(x_1, Q_1) f_k(x_3, Q_1) \theta(1 - x_1 - x_2) \times f_j(x_2, Q_2) f_l(x_4, Q_2) \theta(1 - x_1 - x_2) \theta(1 - x_3 - x_4).
\]

In our analysis we use two different models of dPDFs. Namely, we use “naive” dPDFs, as in Eq. 7 constructed out of MSTW2008 \cite{69} or CT14 \cite{70} leading order (LO) PDFs. In order to estimate the impact of partonic correlations in x-space we compare between results obtained according to Eq. 7 and supplemented with either “naive” dPDFs or with GS09 dPDFs \cite{68}. The latter are LO dPDFs, $D_{ij/h}(x_1, x_2, Q_1, Q_2)$ which evolve according to the double DGLAP equation and obey the momentum and number sum rules. Their initial parametrization is predominantly based on MSTW2008LO as input single PDFs.

At the root of the difference in the evolution of generalized distributions in the position and in momentum space lies perturbative splitting of one parton into two partons \cite{42, 43}, a mechanism which contribution to double parton distributions needs to be accounted for. The corresponding $1 \rightarrow 2$ term in the $\Gamma_{ij/h}$ has a $1/b^2$ behaviour at small b, and renders the cross section in Eq. 1 UV-divergent. The UV divergence is an artefact of using the DPS description outside of its region of validity, where the SPS picture is more suitable. A consistent scheme which treats the problem of UV divergencies, as well as a closely related problem of double counting between DPS and SPS, was proposed in \cite{49}. Earlier approaches and
discussion of the problems can be found in [33, 34, 45, 46, 47, 48]. According to the scheme of [49], both DPS cross section and SPS cross section (at the same order in perturbation theory as DPS) contribute to the total cross section, while the double counting and the UV divergencies are removed by suitably designed subtraction terms. However, in the case of four-jet production it is not possible to apply this prescription since the corresponding SPS calculation at NNLO is technically out of reach. Instead, we rely on the observation made in [49] that the SPS contribution and the associated subtraction terms lose their relevance if the considered system probes sufficiently low values of x in two-parton distribution functions (see also [34]). The four-jet production at relatively low p_T can be then seen as a promising setup to study DPS, in addition to e.g. same-sign W-pair production [49, 71, 72, 73, 74].

Observables used in DPS phenomenology can be often characterized as “transverse” and “longitudinal”, depending on the direction of momenta of the final state particles which are predominantly probed. Both types of observables exploit the fact that the individual partonic collision in a DPS event must obey momentum conservation, i.e. make use of correlations between final state particles either in DPS or SPS topologies. In addition, the rapidity-based observables not only exploit differences between SPS and DPS topologies [75, 76], but also are directly sensitive to the correlations among the incoming momenta fractions for the parton coming from the same hadron. It has been observed in e.g. [75] that the DPS observables of the transverse type are particularly sensitive to real radiation effects. In particular, in many cases the DPS-sensitive variables based upon p_T imbalance and angular correlations between produced jets are trivial at the partonic level. Consequently, adding the real radiation results is needed in order to obtain a realistic description of these observables.

3 Predictions for four-jet production in pp collisions

The numerical calculations of DPS production at the parton-level are performed using an in-house built Monte Carlo programme, which calculates LO matrix elements for $2 \rightarrow 2 \otimes 2 \rightarrow 2$ scattering. In order to add initial and final state radiation (ISR and FSR) effects to our parton-level simulations we use the PYTHIA event generator [36, 35] with modifications necessary to read and “shower” output of our DPS code [77]. In the first step we output the DPS events using modified (“double”) Les Houches Event (LHE) file records [78], see Appendix A for more technical details. The double LHE files are then supplied to PYTHIA for showering using SecondHard:generate = on and PartonLevel:MPI = off settings. While generating partonic events, we use the original Lund Monte Carlo algorithm proposed by Bengtsson [79] which allows to generate colour charges of the initial and final state partons within the leading colour approximation. The generation of the colour charges is required to take into account colour coherence effects [80], [81].

For each individual $2 \rightarrow 2$ scattering, all 8 subprocesses involving combinations of (anti-)quarks and/or gluons are taken into account. The scales of the two partonic collisions are treated as independent and chosen equal to the value of the transverse momentum partons in the two di-jets. In each case, the central value of the factorization scale is set to be equal to renormalization scale, $\mu_R = \mu_F$.

\[\mu_R = \mu_F \]

\[^2 \text{The same algorithm is used in the Pythia event generator.} \]
\[\mu_{\text{DPS},i} = \mu_{F,i} = \mu_{R,i} = H_{T,i}/2 = |p_{T,i}|, \] where \(p_i \) is the momentum of one of the partons in the collision \(i \) and \(i \in \{1,2\} \) with 1.2 indicating the two scatterings. The SPS predictions are obtained using the MadGraph package [82]. In order to account for the NLO effects in the normalization of the SPS total cross section, we apply an effective K-factor [60, 61] to the LO predictions, similarly to approach of Ref. [39, 41]. The scale of the SPS process is chosen as \(\mu_{\text{SPS}} = \mu_F = \mu_R = H_T/2 = \frac{1}{2} \sum_{i=1}^4 p_{T,i} \), in agreement with [60, 61]. In the analysis at the partonic level we produce four partons and apply to them a jet separation criterium of \(R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2} > 0.4 \), unless otherwise stated. In the parton shower analysis final state particles are clustered by means of the FastJet [83] package with the anti-\(k_t \) jet clustering algorithm [84] and jet radius taken to be \(R = 0.4 \). Whenever comparing the SPS predictions to the showered DPS results, the SPS results are also showered using the same version of PYTHIA and the same method of clustering of partons into jets is applied. Unless otherwise stated, we consider a rapidity coverage of \(-4.7 < y_{j} < 4.7\) for all jets \(j \). Since the generation of DPS events with jets carrying high transverse momentum is suppressed due to low fluxes of incoming parton pairs and, correspondingly, high-\(p_T \) jets originate predominantly from SPS, we apply an upper cut on \(p_{T,j} \) for all jets.

A number of checks at various stages of the calculation have been performed. The MadGraph set-up for the computation of SPS cross sections have been cross-checked against the outcome of the ALPGEN code [55] for the process \(pp \rightarrow jjgg \). The cross section for results for the individual \(2 \rightarrow 2 \) cross sections, i.e. the building blocks of the DPS cross sections, have been also checked against MadGraph. The procedure to assign colour to initial and final state partons in LHE files was checked by comparing PYTHIA-showered results against results based on MadGraph LHE events, also showered with PYTHIA. Our results for the ratios of the DPS to SPS+DPS total cross sections agree with results of LO partonic results of Ref. [39] within a few percent, depending on the choice of the value of \(R_{ij} \). We have also checked that with our set-up for SPS calculations we can reasonably well reproduce the LO and LO matrix element matched to parton shower (ME+PS) four-jet cross sections from [60].

3.1 Parton-level analysis

We begin our studies by investigating the DPS and SPS four-jet production at the partonic level. In order to judge the reliability of the predictions, in Fig. 1 we check how well they fare against CMS measurement of four jet production at \(\sqrt{S} = 7 \) TeV [15], which uses relatively low cuts on jets transverse momentum: \(p_T > 50 \) GeV for the two most leading jets and \(p_T > 20 \) GeV for the third and fourth jet. In accordance with experimental analysis, we use here \(R_{jj} = 0.5 \).

The uncertainty bands for DPS and SPS events are estimated independently and combined together afterwards. For the SPS events we start by generating central value predictions at LO using MSTW2008 LO PDFs. Since NLO corrections typically lead to the change in the normalization of the cross section predictions, similarly to the approach of [72], we multiply the LO predictions by a K-factor of 0.5. Such value of the K-factor follows from the fixed-order four-jet NLO in [61] and has been obtained for the MSTW PDFs. After producing central value predictions we obtain the conservative estimate of uncertainties due to the scale variation by performing simultaneous changes of factorization and renormalization scales up and
Figure 1: Comparison of the parton-level SPS+DPS predictions for four-jet production with CMS data \[16\] for 7 TeV collision, see text for more explanation.

down by a factor of 2 in the LO calculations. Then the SPS envelope is constructed by choosing the maximal up and down uncertainty band out of all possible options.

The theoretical predictions are obtained as a sum of the SPS result (including the K-factor of 0.5) and the DPS result, with their corresponding error bands.

While we are not in position to calculate the DPS prediction at NLO, nor have additional information on the NLO effects\[3\] we take the spread provided by the scale uncertainty and variation in the parameter of \(\sigma_{\text{eff}} = 15\pm 5 \text{mb}\) for two different PDF sets, MSTW2008LO and CT14 LO, used in the “naive” dPDFs construction, Eq.\[7\]. These effects are then combined using the envelope method\[86, 87\]. Finally, the central values of the DPS and SPS predictions as well as the uncertainty estimates are combined. We observe an overall agreement within uncertainty with the data for both each jet’s \(p_T\) and \(y\), see Fig.\[1\] with tendency for theoretical results to overestimate the data.

In Table\[1\] we compare central values of the total cross sections for the LHC collision energy of 7 and 13 TeV and two sets of cuts on jets’ \(p_T\): a stricter \(35 \text{ GeV} < p_{T,j} < 100 \text{ GeV}\) and a looser one \(20 \text{ GeV} < p_{T,j} < 100 \text{ GeV}\). The upper cut on jet’s \(p_T\) is inspired by the well-known fact that DPS is enhanced at lower partonic energies, and by the earlier literature\[39\]. In the DPS computations we use “naive” dPDFs constructed out of MSTW2008 LO PDFs. Correspondingly, the SPS results are also obtained with MSTW2008 PDFs. Apart from the least DPS-favourable case of \(\sqrt{S} = 7 \text{ TeV}\) and \(35 \text{ GeV} < p_{T,j} < 100 \text{ GeV}\), in all other cases the upper cut on maximal \(p_{T,j}\) leads to higher total DPS cross sections than SPS cross sections. As expected, the DPS cross sections increase greatly when the minimal \(p_{T,j}\) cut is lowered, and the ratio of DPS to SPS cross sections improves. Due to growing parton fluxes at low fractions of momenta \(x\), an increase in the ratio is also observed at higher LHC energies.

\[3\]Arguments against applying an effective K-factor to double di-jet production constituting DPS can be found in \(e.g.\)\[11\].
Cuts and collision energy

| $\sqrt{S} = 7$ TeV, $|y| < 4.7$, $p_T \in [35, 100]$ GeV | σ_{SPS} for $pp \rightarrow 4j$ process | σ_{DPS} for $pp \rightarrow 4j$ process | $\sigma_{DPS} - \sigma_{SPS}$ |
|---|-----------------|-----------------|-----------------|
| 76.15 | 43.55 | 36 % |
| $\sqrt{S} = 7$ TeV, $|y| < 4.7$, $p_T \in [20, 100]$ GeV | 2062.79 | 3759.59 | 65 % |
| $\sqrt{S} = 13$ TeV, $|y| < 4.7$, $p_T \in [35, 100]$ GeV | 316.78 | 333.83 | 51 % |
| $\sqrt{S} = 13$ TeV, $|y| < 4.7$, $p_T \in [20, 100]$ GeV | 7319.50 | 22062.80 | 75 % |

Table 1: LO DPS and SPS cross sections (in nanobarns) for $pp \rightarrow 4j$ for two sets of cuts on jets’ p_T and two LHC collision energies.

Table 1 provides indication on how the central values of the total cross sections for 7 and 13 TeV collisions behave under the chosen sets of cuts. An estimate of the scale uncertainties on the central values is given in Figs. 2-5. There we show predictions for the leading jet p_T and the rapidity difference $\Delta Y \equiv \max|y_j - y_k|$ distributions [75] for the same values of LHC energy and the same sets of cuts on jets’ $p_{T,j}$ as in Table 1. Note that, unlike distributions in Fig. 1, we do not combine DPS and SPS predictions together. Moreover, we plot DPS distributions generated with MSTW2008 and CT14 PDFs separately, such that the effect due to the choice of the PDF set remains clearly visible. Shaded areas in all plots show the size of scale variation error, obtained by varying the central renormalization and factorization scales by a factor of 2 and $1/2$ simultaneously. Hatched areas correspond to the additional variation of the σ_{eff} parameter in the 15 ± 5 mb range, corresponding to the measurement in four-jet final state by the ATLAS collaboration [18]. Histograms in Figs. 2-5 confirm naive expectations that lowering the cut on minimal p_T of jets leads to an increase in the DPS scattering vs. SPS scattering at low p_T of the leading jet, as well as at high ΔY. The shapes of the distributions, shown in lower panels of Figs. 2-5 also become more steep as the minimal p_T-cut decreases. Similar qualitative changes are observed as the energy of the hadronic collision increases.

In the remaining part of this paper we will present the DPS predictions obtained only with dPDFs built on the basis of the MSTW2008LO PDFs. Firstly, the only publicly existing dPDFs package, GS09 [68], is built on the basis of the MSTW2008 LO parametrization. Secondly, Figs. 2-5 clearly demonstrate that although the DPS predictions come with a large theoretical uncertainty, qualitative behaviour of the results is similar, independently of the LO PDFs used. Furthermore, the SPS predictions we refer to [60, 61] are obtained using the MSTW2008 PDFs. Finally, most of our analysis presented in the following is concerned with shapes of the distributions, where the PDF effects mostly cancel out.

However, the results at high ΔY should be taken with caution. It is known that description of forward-backward jets with large rapidity separation, also known as Mueller-Navelet jets [88], requires accounting for ladder emission of gluons using the BFKL formalism [89, 90, 91, 92]. The DPS production of jets with large rapidity separation was studied in [83].
Figure 2: Comparison of SPS and DPS leading jet p_T distributions (left) and $\Delta Y = \max|y_i - y_j|$ distributions for four-jet events with $p_T \in [35, 100]$ GeV at $\sqrt{s} = 7$ TeV. Upper panels show absolute values, while lower panels show shapes of the distributions.

Figure 3: Same as in Fig. 2 but with $p_T \in [20, 100]$ GeV.
Figure 4: Same as in Fig. 2 but at $\sqrt{S} = 13$ TeV.

Figure 5: Same as in Fig. 3 but at $\sqrt{S} = 13$ TeV.
One of the observables which is considered to have a good discriminating power between DPS and SPS is the azimuthal difference between the two most remote rapidity jets, $\Delta \phi_{jj}$ [39]. We show this distribution for $\sqrt{S} = 13$ TeV and $35 \text{ GeV} < p_{T,j} < 100 \text{ GeV}$. Indeed, as Fig. 6 demonstrates, while away from $\Delta \phi_{jj} = \pi$ the DPS events are expected to be almost equally distributed, the SPS events prefer back-to-back configurations for the two most distant jet in rapidity, leading to a strong depletion of the cross section at small $\Delta \phi_{jj}$. The small dents in $\Delta \phi_{jj}$ DPS distribution are due to jet clustering, since the jet separation obviously cuts out a certain number of events where the partons have small angular separation.

![Figure 6: DPS and SPS distributions in azimuthal difference between two most remote in rapidity jets (upper panel) and their normalized shapes (lower panel) at $\sqrt{S} = 13$ TeV.](image)

Our results given in Figs. 2-5 agree with the results of [39] at qualitative level. We shall note, however, that the qualitative comparison between $\Delta \phi_{jj}$ distributions in [39] and our results in Fig. 6 shows some differences at small and large values of $\Delta \phi_{jj}$. More precisely, the $\Delta \phi_{jj}$ distribution given in [39] does not have a peak at $\Delta \phi_{jj} = \pi$ as well as curvatures at small and large values of $\Delta \phi_{jj}$ caused by the $R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2} > 0.4$ separation cut.

In a next step we investigate the impact of longitudinal correlations within the pairs of partons taking part in the double scattering, as implemented in the GS09 package, on the predictions. To this end, in Figs. 7 and 8 we compare the leading jet p_T distributions at $\sqrt{S} = 13$ TeV obtained using the GS09 dPDFs and using “naive” dPDFs for the same two sets of cuts on $p_{T,j}$ as above. For the whole range of the p_T considered, as well as for the practically accessible values of ΔY, the
difference between the two distributions is not more than 10%. At very high values of ΔY, where large x values are probed, this difference grows bigger. However, given that the effect is overall small, we will not consider it in further studies and from now on only use the “naive” dPDF modelling.

3.2 Impact of QCD radiation

We now move on to discussion of the impact of the initial and final state radiation on the DPS and SPS four-jet predictions. We use LHE files with events generated at $\sqrt{s} = 13$ TeV where all final state partons have $p_T \in [35, 150]$ GeV and $R_{ij} > 0.4$. Our DPS predictions rely on the assumption of factorization of generalized double parton distribution functions into longitudinal and transverse dependent parts as in Eq. 2. As a consequence of Eq. 2, the effective interaction area σ_{eff} turns into a constant parameter defined as in Eq. 4. In our simulations we choose the actual value of $\sigma_{eff} = 15$ mb to get an agreement with the four-jet measurements of σ_{eff} performed by ATLAS collaboration [18]. As explained above, the DPS predictions

5 Similar approach is also can be used to describe triple parton interactions, see e.g. [93].
Figure 8: Maximal difference in jets’ rapidity distribution in four-jets DPS production at $\sqrt{s} = 13$ TeV, calculated using “naive” dPDFs based on MSTW2008LO and GS09 dPDFS. Upper two panels show results obtained with the $35 \text{ GeV} < p_T,j < 100 \text{ GeV}$ cut, lower two panels are for the $20 \text{ GeV} < p_T,j < 100 \text{ GeV}$ cut.

are obtained using the “naive” dPDFs based on the MSTW2008LO set. Since the effect of adding radiation is expected to be universal, i.e. independent on the form of the dPDFs, this is sufficient for the discussion to follow. The LHE files with the DPS events are generated by our in-house C++ code, while the SPS events are generated with the MadGraph event generator [82]. In the following, the SPS events are not longer multiplied by a K-factor.

In order to add radiation effects to our simulations we supply SPS and DPS LHE files to the PYTHIA event generator. To shower the SPS events we follow a standard procedure where we first create LHE files using the MadGraph package and supply them to PYTHIA to add ISR and FSR to our simulations. The DPS case, however, is more involved: since the standard LHE event record contains information only about one hard interaction, one has to adapt the LHE files to contain also information about the second hard interaction in a DPS process, see Appendix A. The resulted “double” LHE files are passed to the PYTHIA code which was modified for this purpose [77]. In this way, the information on two individual hard scatterings propagates through the shower.

The DPS events are then showered in the interleaved way in accordance with the MPI model of PYTHIAS [94]. The approach of [94] has several advantages
comparing to the simplified case where two hard processes constituting a DPS event are showered independently from each other. The DPS showering performed in accordance with [94] implies that ISR and FSR cascades satisfy constraints imposed by energy and momentum conservation at each evolution step. In particular, in this way it is ensured that the kinematic constraint on Bjorken x-es given by Eq. 4 is preserved by the ISR cascades at each step of the ISR evolution. Another advantage of the approach of [94] is the fact that the ISR cascade which first reaches the proton reduces amount of energy and momentum available for the second ISR cascade. Finally, we shall note that the interleaved ISR evolution accounts for the changes in the parton content of the beam remnants which introduces non-trivial correlations in flavour of interacting partons [53]. Therefore, our simulations provide a better treatment of the beam remnants comparing to the case where one “showers” two hard processes completely independently.

Next, we discuss our results for the 4-jet production. Apart from showing the absolute value of the differential cross sections, we also study their shapes. In all plots in this section, we show an estimate of the statistical error on the (nominal or normalized) cross section in each bin.

It is well-known that if the same p_T cut is applied on the two observed jets the higher-order calculations for di-jet production become unstable due to restricted phase space available for soft gluon radiation [95]. Although the four-jet production is not affected by this problem, the contributions to the DPS production which originate from double di-jet production might be. For that reason, apart from applying symmetric cuts of $p_{T,j} > 35$ GeV on all four jets, we additionally introduce asymmetric cuts by requesting $p_{T,1} > 55$ GeV for the leading jet and $p_{T,j} > 35$ GeV for the remaining jets.

In Figs. 9 and 10 we present distributions in the leading jet p_T and ΔY studied in the previous section, now including the radiation effects. We find that adding radiation decreases the total cross section for both the SPS production and DPS production, see also the first row of Table 2. The exact value of the reduction factor depends on the set-up of the calculations, in particular the chosen set of kinematical cuts, but in general the DPS predictions are more impacted by the radiation. As can be seen from the leading jet p_T distribution discussed in the previous section, most of the partonic DPS events happen to have jets with very low p_T, just passing the cut. This makes the DPS distribution much more vulnerable to the effects of radiation, meaning the adjustment of jet’s p_T due to radiation can cause a substantial proportion of the events not to pass the cuts. The same is not true for SPS, where the peak of the leading jet’s p_T distribution is at much higher values of p_T. Having studied origin of jets passing the selection cuts, it

6 We shall note that the PYTHIA approach to the ISR evolution of the DPS (MPI) events does not take into account cases when two ISR cascades merge into a single ISR cascade at certain step of backward evolution (so called “1v2” events). Whereas the first results on implementation of such effects in to the parton-shower framework for the same-sign WW production were recently reported [74], the implementation of the aforementioned effects for the four-jet DPS production is highly non-trivial [10] and is beyond the scope of this work.

7 However, one should note that in order to make sure no instability of that sort affects the DPS calculations entirely, fully asymmetric cuts, i.e. with different minimal p_T for each jet, would be required. Given that the cuts need to be sufficiently separated, a measurement of DPS based on events selected in that way might be very difficult due to low statistics.
also appears the SPS events have a higher partonic center of mass energy \(\sqrt{\hat{s}} \), and correspondingly higher values of Bjorken’s \(x \) carried by the partons participating in a collision, in comparison with individual DPS collisions. As a consequence, radiation in the SPS events more often gives rise to an extra jet passing the cut. In this way some SPS events which at partonic level would have not passed the cut are accepted now. The same effect is much suppressed for the DPS due to lower \(x \) values of incoming partons. The normalized distributions, on the contrary, seem to preserve their main features first observed at the partonic level, cf. Fig. 9. For example, the DPS leading jet’s \(p_T \) distribution, though it gets flattened out, remains more peaked at small \(p_T \) than the SPS one, or the \(\Delta Y \) DPS distribution stays flatter at very high \(\Delta Y \). It is also worthy noticing, that showering alters the leading jet \(p_T \) distributions more than the \(\Delta Y \) distribution, in accordance with the observation of higher impact of radiation on the observables of the “transverse” type. Introducing the asymmetric set of cuts does not lead to significant changes in the behaviour of the distributions.

The whole analysis shows clearly that accounting for radiation can dramatically change the size of the four-jet cross sections calculated under assumptions of certain sets of cuts, and conclusions derived from analysis of the partonic level do not hold after a more realistic simulation of the production process is employed. It is interesting to note that a similar dampening effect of radiation on DPS predictions have been observed in the \(k_T \) factorization framework [40, 41]. However, a comparison between Fig. 4 and Figs. 9, 10 indicates that the radiation effects can also influence the differences between shapes of DPS and SPS distributions. Hence, even if only the information on normalized distributions is used for distinguishing between SPS and DPS, the impact of radiation should be taken into account.

Next we study the impact of radiation on the differential cross section in \(\Delta \phi_{jj} \),

Figure 9: DPS and SPS leading jet distributions for four-jet production at \(\sqrt{S} = 13 \) TeV with symmetric cuts \(p_T,j \in [35, 100] \) GeV (left) and asymmetric cuts \(p_T,1 \in [55, 100] \) GeV, \(p_T,2,3,4 \in [35, 100] \) GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.
discussed at the partonic level in the previous section, see Fig. 11. While in that case DPS distribution was higher than the SPS for smaller angular differences $\Delta \phi_{jj}$, adding radiation turns the SPS production mechanism into a dominant one everywhere. As expected, the typical peak in the DPS distributions calculated at LO due to back-to-back configurations, observed here at maximal value of $\Delta \phi_{jj}$, vanishes once additional radiation is introduced. Furthermore, the radiation also changes the shape of the DPS distribution from flat to rising at higher $\Delta \phi_{jj}$, making it almost indistinguishable from the shape of the SPS distribution. This indicates that the $\Delta \phi_{jj}$ observable does not deliver an efficient discrimination between DPS and SPS mechanisms, in this setup of cuts. However, as we show later, the discrimination power of various observables can be improved on if additional cuts are introduced.

In the following we are going to use different combinations of commonly used DPS-sensitive observables constructed to increase the fraction of DPS events. The general idea behind construction of such observables relies on different kinematics of jets produced via DPS and SPS mechanisms. Since the DPS events are essentially constructed out of two di-jet events, we expect them to give rise to two di-jet topologies well separated in rapidity and azimuthal angle ϕ and also well balanced in p_T.

Using the aforementioned consideration as a guiding line we can study discriminating power of different DPS sensitive observables. In Figs. 12, 13, 14 and 15 we show the absolute and normalized DPS and SPS differential cross sections in other
Figure 11: DPS and SPS distributions in azimuthal difference between two most remote jets in rapidity $\Delta \phi_{ij}$ for four-jet production at $\sqrt{s} = 13$ TeV with symmetric cuts $p_{T,i} \in [55, 100]$ GeV (left) and asymmetric cuts $p_{T,1} \in [55, 100]$ GeV, $p_{T,2,3,4} \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.

commonly studied observables in this context, such as the momentum imbalances

$$\Delta_{12}^{p_T} \equiv \frac{|\vec{p}_{T1} + \vec{p}_{T2}|}{|\vec{p}_{T1}| + |\vec{p}_{T2}|},$$

$$\Delta_{34}^{p_T} \equiv \frac{|\vec{p}_{T3} + \vec{p}_{T4}|}{|\vec{p}_{T3}| + |\vec{p}_{T4}|},$$

(9)

(10)

as in four-jet DPS ATLAS [13] measurements, and the closely related observables

$$\Delta S \equiv \arccos \left(\frac{(\vec{p}_{T1} + \vec{p}_{T2}) \cdot (\vec{p}_{T3} + \vec{p}_{T4})}{|\vec{p}_{T1} + \vec{p}_{T2}||\vec{p}_{T3} + \vec{p}_{T4}|} \right),$$

$$S'_{\perp} \equiv \frac{1}{\sqrt{2}} \sqrt{\left(\Delta_{ij}^{p_T}\right)^2 + \left(\Delta_{kl}^{p_T}\right)^2},$$

(11)

(12)

defined in [37] and [30] respectively.

We also study the azimuthal differences

$$\Delta \phi_{12} \equiv |\phi_1 - \phi_2|,$$

$$\Delta \phi_{34} \equiv |\phi_3 - \phi_4|,$$

(13)

(14)

as in [18], and the invariant mass m_{ij} of the two jets, i and j, with lowest $\Delta_{ij}^{p_T}$, see Figs. [16], [17] and [18] respectively. We also shall note that in Eqs. [9]-[11] and Eqs. [13]-[14] we assume that $|\vec{p}_{T1}| > |\vec{p}_{T2}| > |\vec{p}_{T3}| > |\vec{p}_{T4}|$ whereas in Eq. [12] we consider all non-equivalent combinations of jets i, j, k, l. For all observables, there is no value at which the DPS production would prevail over the SPS. We also find that some shapes of the DPS distributions at the parton level do not survive after
showering. The case in point is the S'_T DPS distribution, showing distinct peaks at the minimal and maximal value of S'_T at the parton level [30] which get washed out by the radiation effects, cf. Fig. 15. On the positive side, for some observables the shape of the DPS and SPS distributions can differ substantially, as shown in the lower parts of Figs. 9–18. In particular, compared to SPS, we observe narrower distributions for DPS at small values of Δp_T^1 and Δp_T^{34}. These regions correspond to back-to-back configurations of the two di-jets. The observed enhancements are then expected from theoretical considerations [32, 33], if we identify the two leading jet pair and the subleading jet pair as coming from two separate hard collisions, which can happen rather often. We also note that in the back-to-back region the contributions to the cross section from the perturbative splitting mechanism are less relevant [34], meaning our predictions should not be much affected if these contributions are taken into account in the simulation. Similarly to the leading jet p_T and ΔY distributions, also for the other observables shown here we do not see a significant differences between results obtained with our symmetric and asymmetric cuts.

The information on shapes of the distributions can be harvested to improve discrimination power between DPS and SPS by imposing additional cuts. The choice of the cut parameters is driven by the shape of the distributions. In Table 2 we list values of the DPS and SPS total cross sections for various sets of cuts before and after radiation is included. Additionally, we provide percentage of DPS contributions to the total cross sections. We observe that, for our choice of the cut parameters, cuts on Δp_T^{12} and Δp_T^{34} increase the DPS signal in the most efficient way, even yielding some regions of phase-space where the DPS signal dominates, see Table 2 and Figs. 19–20. A further significant improvement can be achieved by

Figure 12: DPS and SPS distributions in transverse momentum imbalance between two hardest jets, Δp_T^{12}, for four-jet production at $\sqrt{s} = 13$ TeV with symmetric cuts $p_T,j \in [35, 100]$ GeV (left) and asymmetric cuts $p_T,1 \in [55, 100]$ GeV, $p_T,2,3,4 \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.
Figure 13: DPS and SPS distributions in transverse momentum imbalance between two softest jets, Δp_T, for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_{T,j} \in [35, 100]$ GeV (left) and asymmetric cuts $p_{T,1} \in [55, 100]$ GeV, $p_{T,2,3,4} \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.

Figure 14: DPS and SPS distributions in ΔS for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_{T,j} \in [35, 100]$ GeV (left) and asymmetric cuts $p_{T,1} \in [55, 100]$ GeV, $p_{T,2,3,4} \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.
Figure 15: DPS and SPS distributions in S'_\perp for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_T,j \in [35, 100]$ GeV (left) and asymmetric cuts $p_T,1 \in [55, 100]$ GeV, $p_T,2,3,4 \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.

Figure 16: DPS and SPS distributions in azimuthal difference between the two hardest jets, $\Delta \phi_{12}$ for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_T,j \in [35, 100]$ GeV (left) and asymmetric cuts $p_T,1 \in [55, 100]$ GeV, $p_T,2,3,4 \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.
Figure 17: DPS and SPS distributions in azimuthal difference between the two softest jets, Δ_{ϕ}^{ij}, for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_{T,j} \in [35, 100]$ GeV (left) and asymmetric cuts $p_{T,1} \in [55, 100]$ GeV, $p_{T,2,3,4} \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.

Figure 18: DPS and SPS distributions in the invariant mass of the two jets i, j with smallest Δ_{ij}^{pt} imbalance, m_{ij}, for four-jet production at $\sqrt{S} = 13$ TeV with symmetric cuts $p_{T,j} \in [35, 100]$ GeV (left) and asymmetric cuts $p_{T,1} \in [55, 100]$ GeV, $p_{T,2,3,4} \in [35, 100]$ GeV (right) after accounting for effects of radiation. Lower panels show normalized distributions.
Figure 19: Same as in Fig. 9 but after imposing additional cuts $\Delta_{12}^{P_T} < 0.2$ and $\Delta_{34}^{P_T} < 0.2$.

combining these cuts with cuts on the invariant mass m_{ij} of a di-jet pair with the smallest value of transverse momentum imbalance $\Delta_{ij}^{P_T}$, see Figs. 21, 22, 23. At this level, the difference in the number of events, i.e. lower statistics due to more stringent asymmetric set of cuts compared to symmetric set becomes visible. In this case, it might be advisable to decrease the cuts on the value of p_T for all jets in the asymmetric set.

Cuts and collisions energy	σ_{DPS}	σ_{SPS}	$\sigma_{DPS}/\sigma_{SPS}$	
$p_T \in [35, 100]$ GeV	316.78	333.83	51 %	
	262.87	47.67	15 %	
$p_T \in [55, 100]$ GeV, $p_T2,3,4 \in [55, 100]$ GeV	No PS	263.59	95.69	27 %
	PS	240.75	44.43	13 %
$p_T \in [55, 100]$ GeV, $\Delta_{ij}^{P_T} < 0.2, \Delta_{ij}^{M_T} < 0.2$	No PS	80.38	333.83	81 %
	PS	18.05	9.10	34 %
$p_T \in [55, 100]$ GeV, $\Delta_{ij}^{P_T} < 0.2, \Delta_{ij}^{M_T} < 0.2, m_{ij} < 100$ GeV	No PS	57.36	95.69	63 %
	PS	15.87	6.21	28 %
$p_T \in [55, 100]$ GeV, $\Delta_{ij}^{P_T} < 0.2, \Delta_{ij}^{M_T} < 0.2, m_{ij} < 100$ GeV	No PS	4.90	170.75	98 %
	PS	2.27	2.22	99 %
$p_T \in [55, 100]$ GeV, $\Delta_{ij}^{P_T} < 0.2, \Delta_{ij}^{M_T} < 0.2, m_{ij} < 100$ GeV	No PS	0.021	31.27	100 %
	PS	1.68	1.18	47 %

Table 2: Impact of parton shower (PS) effects on the DPS and SPS cross sections, $\sqrt{S} = 13$ TeV, $|y| < 4.7$. The parton-level SPS cross sections are multiplied by K-factor equal to 0.5. All cross sections are given in nb. The DPS fraction is given at the 1% precision level.

Before finishing this section we would like to note that the different DPS-sensitive observables considered in this paper were already used in earlier publi-
Figure 20: Same as in Fig. 10 but after imposing additional cuts $\Delta_{12}^{PT} < 0.2$ and $\Delta_{34}^{PT} < 0.2$.

Figure 21: Same as in Fig. 11 but after imposing additional cuts $\Delta_{12}^{PT} < 0.2$, $\Delta_{34}^{PT} < 0.2$ and $m_{ij} < 100$ GeV.
Figure 22: Same as in Fig. 10 but after imposing additional cuts $\Delta_{12}^{Pt} < 0.2$, $\Delta_{34}^{Pt} < 0.2$ and $m_{ij} < 100$ GeV.

Figure 23: Same as in Fig. 14 but after imposing additional cuts $\Delta_{12}^{Pt} < 0.2$, $\Delta_{34}^{Pt} < 0.2$, and $m_{ij} < 100$ GeV.
However, to the best of our knowledge, a combination of cuts on the aforementioned observables listed in Table 2 and the corresponding distributions in Figs. 19-23 are new. We hope that the new combinations of cuts proposed in this work would allow to achieve better separation between DPS signal and SPS background in the four-jet production processes and, as a consequence, to improve the estimate of value of σ_{eff}.

4 Summary and discussion

In this work, we have studied double parton scattering in four-jet events at the LHC, both at the partonic level and incorporating the effects of QCD radiation. To this end, we have developed a parton-level Monte Carlo simulation outputting modified LHE files event records, which then can be showered by the PYTHIA event generator to which additional modifications are applied. Apart from studying the impact of various cuts and collider energies on the DPS and SPS contributions to the cross sections and estimating their uncertainties at the partonic level, we have also investigated the effect of longitudinal correlations as implemented in the GS09 package. After adding QCD radiation, we find that it can affect DPS and SPS predictions significantly, with DPS contributions being modified more. We have also examined a number of observables in regard to their discriminating power between DPS and SPS. Applying just a basic set of cuts, we observe that many of these observables substantially differ in shape in a specific range of values. This information can be then used to propose more elaborated sets of cuts which increase the efficiency of the discrimination. In particular, we find that a combination of cuts on jets’ p_T and transverse momentum imbalance Δp_T^{ij}, as well as invariant mass m_{ij} of a di-jet pair with the smallest value of transverse momentum imbalance Δp_T^{ij} provides a very promising way for selecting DPS contributions in four-jet events.

In this foray towards including higher order effects in DPS predictions, we have implemented a simple model of dPDFs which only partially accounts for correlations between partons in the same proton. In particular, this model neglects contributions from a perturbative splitting of one parton into two. We have, however, checked that at the parton level the predictions obtained with a publicly available dPDF package GS09, which under assumption of transverse-longitudinal factorization of double distributions accounts for longitudinal correlations resulting from $1 \rightarrow 2$ splittings, differ only minimally from predictions obtained with our naive dPDF model. As discussed above, a consistent theoretical framework according to [39] would require generalized parton distributions dependent on the impact parameter. Their modelling involves an “intrinsic” and a “splitting” part, which both evolve according to the homogenous double DGLAP equation. Provided such set of double parton distributions, our parton shower calculations can easily accommodate them. We note that a complementary approach, relying on altering the parton shower to include $1 \rightarrow 2$ splittings was reported recently in [74] [96].

Naturally, in this exploratory study, we could only explore a few particular set-ups for the calculations. It is conceivable that e.g. other kinematical cuts could lead to a better discrimination between DPS and SPS. Additionally, lowering a minimal cut on jets’ p_T would select proportionally more DPS events. On the other hand however, it would inevitably lead to bigger contamination from background. Studies of various set-ups are beyond the scope of this work, but we hope that our work and simulation tool, which is available on request, can be used for optimizing the
measurement of DPS in four-jet events at the LHC in the future.

Acknowledgments

We are grateful to Torbjörn Sjöstrand for introducing modifications to the PYTHIA8 code necessary to add ISR and FSR effects to our parton-level DPS simulations and J. Gaunt for providing grids and interpolation routines for the GS09 dPDFs. We also thank Ch. Klein-Bösing, O. Mattelaer and S. Prestel for useful and fruitful discussions. The work of OF has been supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group “GRK 2149: Strong and Weak Interactions - from Hadrons to Dark Matter”. OF also acknowledges funding from the Europoun Union’s Horizon 2020 research and innovation programme as part of the Marie Skłodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104) and the financial support through the curiosity-driven grant “Using jets to challenge the Standard Model of particle physics” from Università di Genova.

All simulations for this paper were performed by means of the PALMAII cluster provided by the University of Münster, Germany.

A Double LHE files

Here we describe modifications to the PYTHIA code and the LHEF standard necessary to read and “shower” DPS events from LHE files. In Fig. 24 we show an example of a modified LHEF standard for the \((gg \rightarrow c\bar{c}) \otimes (cu \rightarrow cu)\) DPS process. The two di-jet events which constitute a DPS event are stacked in the same event record. The extension of the LHEF standard to the DPS events also requires the correct mother-daughter information, c.f. Fig. 24. The parent indices 1 and 2 of the \(c\bar{c}\) pair indicate that it originates from two initial-state gluons (first and second lines in the event record) and the parent indices 5 and 6 of the \(cu\) pair tell us that it originates from the initial-state \(cu\) pair (fifth and sixth lines in the event record). In addition to the aforementioned changes a new line starting with the key-word `#scaleShowers` was added. It contains factorization scales for the first and second hard interactions correspondingly.

The PYTHIA event generator, starting from version “8.240” can generate and output DPS events into LHE files, as shown in Fig. 24. However, it cannot “shower” them correctly. Several important modifications have to be added to the files `Pythia.cc`, `ProcessContainer.cc` and `PartonLevel.cc`. These modifications are available starting from version “8.243”. The checks and description of these modifications are given in [97]. It also needs to be stressed that for the aforementioned modifications to PYTHIA version = “8.240” to work correctly, the LHE events have to be written as in Fig. 24 with a necessary tag `<LesHouchesEvents version="1.0">`. If instead one uses `<LesHouchesEvents version="3.0">` then PYTHIA will still read in and shower DPS events, but in a wrong way. The reason is that PYTHIA reads in the LHE version = “1” and the LHE version = “3” files calling different routines from the `LesHouches.cc` and `LHEF3.cc` files, correspondingly. While reading in the LHE

\footnote{Note that the numbering of lines between `<event>` and `</event>` tags starts from zero.}
version = “1” files has been adopted for the DPS events, that’s not yet the case for the LHE version = “3” files. Therefore, the usage of the tag

```xml
<LesHouchesEvents version="3.0">
</LesHouchesEvents>
```

leading then to a wrong assignment of the mother-daughter labels and MPI, ISR and FSR scales.

References

[1] T. Åkesson et al. Double Parton Scattering in pp Collisions at √s = 63-GeV. Z. Phys., C34:163, 1987.

[2] J. Alitti et al. A Study of multi - jet events at the CERN anti-p p collider and a search for double parton scattering. Phys. Lett., B268:145–154, 1991.

[3] F. Abe et al. Study of four jet events and evidence for double parton interactions in pp collisions at √s = 1.8 TeV. Phys. Rev., D47:4857–4871, 1993.

[4] F. Abe et al. Double parton scattering in pp collisions at √s = 1.8TeV. Phys. Rev., D56:3811–3832, 1997.

[5] F. Abe et al. Measurement of double parton scattering in pp collisions at √s = 1.8 TeV. Phys. Rev. Lett., 79:584–589, 1997.

[6] V. M. Abazov et al. Double parton interactions in γ+3 jet events in pp− bar collisions √s = 1.96 TeV. Phys. Rev., D81:052012, 2010.

[7] Victor Mukhamedovich Abazov et al. Double Parton Interactions in γ + 3 Jet and γ + b/cjet + 2 Jet Events in pp Collisions at √s = 1.96 TeV. Phys. Rev., D89(7):072006, 2014.
[8] Victor Mukhamedovich Abazov et al. Study of double parton interactions in diphoton + dijet events in pp collisions at √s = 1.96 TeV. Phys. Rev., D93(5):052008, 2016.

[9] Victor Mukhamedovich Abazov et al. Observation and Studies of Double J/ψ Production at the Tevatron. Phys. Rev., D90(11):111101, 2014.

[10] Victor Mukhamedovich Abazov et al. Evidence for simultaneous production of J/ψ and Υ mesons. Phys. Rev. Lett., 116(8):082002, 2016.

[11] Morad Aaboud et al. Measurement of the prompt J/ψ pair production cross-section in pp collisions at √s = 8 TeV with the ATLAS detector. Eur. Phys. J., C77(2):76, 2017.

[12] R Aaij et al. Observation of double charm production involving open charm in pp collisions at √s = 7 TeV. JHEP, 06:141, 2012. [Addendum: JHEP03,108(2014)].

[13] Georges Aad et al. Measurement of hard double-parton interactions in W(→ lν)+ 2 jet events at √s=7 TeV with the ATLAS detector. New J. Phys., 15:033038, 2013.

[14] Serguei Chatrchyan et al. Study of Double Parton Scattering Using W + 2-Jet Events in Proton-Proton Collisions at √s = 7 TeV. JHEP, 03:032, 2014.

[15] Georges Aad et al. Observation and measurements of the production of prompt and non-prompt J/ψ mesons in association with a Z boson in pp collisions at √s = 8 TeV with the ATLAS detector. Eur. Phys. J., C75(5):229, 2015.

[16] Serguei Chatrchyan et al. Measurement of Four-Jet Production in Proton-Proton Collisions at √s = 7 TeV. Phys. Rev., D89(9):092010, 2014.

[17] Roel Aaij et al. Production of associated Y and open charm hadrons in pp collisions at √s = 7 and 8 TeV via double parton scattering. JHEP, 07:052, 2016.

[18] Morad Aaboud et al. Study of hard double-parton scattering in four-jet events in pp collisions at √s = 7 TeV with the ATLAS experiment. JHEP, 11:110, 2016.

[19] Roel Aaij et al. Measurement of the J/ψ pair production cross-section in pp collisions at √s = 13 TeV. JHEP, 06:047, 2017. [Erratum: JHEP10,068(2017)].

[20] Vardan Khachatryan et al. Observation of Υ (1S) pair production in proton-proton collisions at √s = 8 TeV. JHEP, 05:013, 2017.

[21] Albert M Sirunyan et al. Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at √s = 8 TeV. JHEP, 02:032, 2018.

[22] Morad Aaboud et al. Study of the hard double-parton scattering contribution to inclusive four-lepton production in pp collisions at √s = 8 TeV with the ATLAS detector. Phys. Lett., B790:595–614, 2019. [Phys. Lett.790,595(2019)].

[23] CMS Collaboration. Study of double-parton scattering in the inclusive production of four jets with low transverse momentum in proton-proton collisions at √s = 13 TeV. 2021.
[24] P. V. Landshoff and J. C. Polkinghorne. Calorimeter Triggers for Hard Collisions. *Phys. Rev.*, D18:3344, 1978.

[25] N. Paver and D. Treleani. Multi - Quark Scattering and Large p_T Jet Production in Hadronic Collisions. *Nuovo Cim.*, A70:215, 1982.

[26] B. Humpert. ARE THERE MULTI - QUARK INTERACTIONS? *Phys. Lett.*, 131B:461–467, 1983.

[27] B. Humpert and R. Odorico. Multiparton Scattering and QCD Radiation as Sources of Four Jet Events. *Phys. Lett.*, 154B:211, 1985.

[28] L. Ametller, N. Paver, and D. Treleani. Possible Signature of Multiple Parton Interactions in Collider Four Jet Events. *Phys. Lett.*, 169B:289–292, 1986.

[29] Michelangelo L. Mangano. Four Jet Production at the Tevatron Collider. *Z. Phys.*, C42:331, 1989.

[30] Edmond L. Berger, C. B. Jackson, and Gabe Shaughnessy. Characteristics and Estimates of Double Parton Scattering at the Large Hadron Collider. *Phys. Rev.*, D81:014014, 2010.

[31] Svend Domdey, Hans-Jurgen Pirner, and Urs Achim Wiedemann. Testing the Scale Dependence of the Scale Factor sigma(eff) in Double Dijet Production at the LHC. *Eur. Phys. J.*, C65:153–162, 2010.

[32] B. Blok, Yu. Dokshitzer, L. Frankfurt, and M. Strikman. The Four jet production at LHC and Tevatron in QCD. *Phys. Rev.*, D83:071501, 2011.

[33] B. Blok, Yu. Dokhstzer, L. Frankfurt, and M. Strikman. pQCD physics of multiparton interactions. *Eur. Phys. J.*, C72:1963, 2012.

[34] B. Blok, Yu. Dokshitzer, L. Frankfurt, and M. Strikman. Perturbative QCD correlations in multi-parton collisions. *Eur. Phys. J.*, C74:2926, 2014.

[35] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O. Rasmussen, and Peter Z. Skands. An introduction to PYTHIA 8.2. *Comput. Phys. Commun.*, 191:159–177, 2015.

[36] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. *JHEP*, 05:026, 2006.

[37] B. Blok and P. Gunnellini. Dynamical approach to MPI four-jet production in Pythia. *Eur. Phys. J.*, C75(6):282, 2015.

[38] Rafal Maciula and Antoni Szcurek. Double-parton scattering contribution to production of jet pairs with large rapidity separation at the LHC. *Phys. Rev.*, D90(1):014022, 2014.

[39] Rafal Maciula and Antoni Szcurek. Searching for and exploring double-parton scattering effects in four-jet production at the LHC. *Phys. Lett.*, B749:57–62, 2015.

[40] Krzysztof Kutak, Rafal Maciula, Mirko Serino, Antoni Szcurek, and Andreas van Hameren. Four-jet production in single- and double-parton scattering within high-energy factorization. *JHEP*, 04:175, 2016.
[41] Krzysztof Kutak, Rafał Maciula, Mirko Serino, Antoni Szczurek, and Andreas van Hameren. Search for optimal conditions for exploring double-parton scattering in four-jet production: k_t-factorization approach. *Phys. Rev.*, D94(1):014019, 2016.

[42] Markus Diehl and Andreas Schafer. Theoretical considerations on multiparton interactions in QCD. *Phys. Lett.*, B698:389–402, 2011.

[43] Markus Diehl, Daniel Ostermeier, and Andreas Schafer. Elements of a theory for multiparton interactions in QCD. *JHEP*, 03:089, 2012. [Erratum: *JHEP*03,001(2016)].

[44] Jonathan R. Gaunt and W. James Stirling. Double Parton Scattering Singularity in One-Loop Integrals. *JHEP*, 06:048, 2011.

[45] Jonathan R. Gaunt. Single Perturbative Splitting Diagrams in Double Parton Scattering. *JHEP*, 01:042, 2013.

[46] M. G. Ryskin and A. M. Snigirev. A Fresh look at double parton scattering. *Phys. Rev.*, D83:114047, 2011.

[47] M. G. Ryskin and A. M. Snigirev. Double parton scattering in double logarithm approximation of perturbative QCD. *Phys. Rev.*, D86:014018, 2012.

[48] Aneesh V. Manohar and Wouter J. Waalewij. What is Double Parton Scattering? *Phys. Lett.*, B713:196–201, 2012.

[49] Markus Diehl, Jonathan R. Gaunt, and Kay Schönwald. Double hard scattering without double counting. *JHEP*, 06:083, 2017.

[50] Markus Diehl and Jonathan R. Gaunt. Double parton scattering theory overview. *Adv. Ser. Direct. High Energy Phys.*, 29:7–28, 2018.

[51] Torbjörn Sjöstrand. Multiple Parton-Parton Interactions in Hadronic Events. In *Proceedings, 23RD International Conference on High Energy Physics, JULY 16-23, 1986, Berkeley, CA*, 1985.

[52] Torbjörn Sjöstrand and Maria van Zijl. A Multiple Interaction Model for the Event Structure in Hadron Collisions. *Phys. Rev.*, D36:2019, 1987.

[53] T. Sjöstrand and Peter Z. Skands. Multiple interactions and the structure of beam remnants. *JHEP*, 03:053, 2004.

[54] Richard Corke and Torbjörn Sjöstrand. Multiparton Interactions and Rescattering. *JHEP*, 01:035, 2010.

[55] Richard Corke and Torbjörn Sjöstrand. Multiparton Interactions with an x-dependent Proton Size. *JHEP*, 05:009, 2011.

[56] Torbjörn Sjöstrand. The Development of MPI Modeling in Pythia. *Adv. Ser. Direct. High Energy Phys.*, 29:191–225, 2018.

[57] Manuel Bühr, Stefan Gieseke, and Michael H. Seymour. Simulation of multiple partonic interactions in Herwig++. *JHEP*, 07:076, 2008.

[58] Stefan Gieseke, Frashër Loshaj, and Patrick Kirchgäßer. Soft and diffractive scattering with the cluster model in Herwig. *Eur. Phys. J.*, C77(3):156, 2017.
[59] A. D. Martin, H. Hoeth, V. A. Khoze, F. Krauss, M. G. Ryskin, and K. Zapp. Diffractive Physics. PoS, QNP2012:017, 2012.

[60] Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Höche, D. A. Kosower, H. Ita, D. Maitre, and K. Ozeren. Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD. Phys. Rev. Lett., 109:042001, 2012.

[61] Simon Badger, Benedikt Biedermann, Peter Uwer, and Valery Yundin. NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of $\sqrt{s} = 8$ TeV. Phys. Lett., B718:965–978, 2013.

[62] James Currie, Aude Gehrmann-De Ridder, Thomas Gehrmann, E. W. N. Glover, Alexander Huss, and Joao Pires. Precise predictions for dijet production at the LHC. Phys. Rev. Lett., 119(15):152001, 2017.

[63] Markus Diehl, Jonathan R. Gaunt, Peter Plössl, and Andreas Schäfer. Two-loop splitting in double parton distributions. SciPost Phys., 7(2):017, 2019.

[64] Oleh Fedkevych and Anna Kulesza. In preparation.

[65] Christian Bierlich, Gösta Gustafson, Leif Lönblad, and Harsh Shah. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. JHEP, 10:134, 2018.

[66] Oleh Fedkevych and Leif Lönblad. Four-jet double parton scattering production in proton-nucleus collisions within the PYTHIA8 framework. Phys. Rev., D102(1):014029, 2020.

[67] M. Mekhfi. MULTIPARTON PROCESSES: AN APPLICATION TO DOUBLE DRELL-YAN. Phys. Rev., D32:2371, 1985.

[68] Jonathan R. Gaunt and W. James Stirling. Double Parton Distributions Incorporating Perturbative QCD Evolution and Momentum and Quark Number Sum Rules. JHEP, 03:005, 2010.

[69] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt. Parton distributions for the LHC. Eur. Phys. J., C63:189–285, 2009.

[70] Sayipjamal Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel Nadolsky, Jon Pumpin, Carl Schmidt, Daniel Stump, and C. P. Yuan. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev., D93(3):033006, 2016.

[71] Anna Kulesza and W. James Stirling. Like sign W boson production at the LHC as a probe of double parton scattering. Phys. Lett., B475:168–175, 2000.

[72] Jonathan R. Gaunt, Chun-Hay Kom, Anna Kulesza, and W. James Stirling. Same-sign W pair production as a probe of double parton scattering at the LHC. Eur. Phys. J., C69:53–65, 2010.

[73] Qing-Hong Cao, Yandong Liu, Ke-Pan Xie, and Bin Yan. Double parton scattering of weak gauge boson productions at the 13 TeV and 100 TeV proton-proton colliders. Phys. Rev., D97(3):035013, 2018.

[74] Baptiste Cabouat, Jonathan R. Gaunt, and Kiran Ostrolenk. A Monte-Carlo Simulation of Double Parton Scattering. JHEP, 11:061, 2019.
[75] C. H. Kom, A. Kulesza, and W. J. Stirling. Pair Production of J/psi as a Probe of Double Parton Scattering at LHCb. *Phys. Rev. Lett.*, 107:082002, 2011.

[76] C. H. Kom, A. Kulesza, and W. J. Stirling. Prospects for observation of double parton scattering with four-muon final states at LHCb. *Eur. Phys. J.*, C71:1802, 2011.

[77] Torbjörn Sjöstrand. Private communication.

[78] Johan Alwall et al. A Standard format for Les Houches event files. *Comput. Phys. Commun.*, 176:300–304, 2007.

[79] H. U. Bengtsson. The Lund Monte Carlo for High pT Physics. *Comput. Phys. Commun.*, 31:323, 1984.

[80] R. Keith Ellis, G. Marchesini, and B. R. Webber. Soft Radiation in Parton Parton Scattering. *Nucl. Phys.*, B286:643, 1987. [Erratum: Nucl. Phys.B294,1180(1987)].

[81] G. Marchesini and B. R. Webber. Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation. *Nucl. Phys.*, B310:461–526, 1988.

[82] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. *JHEP*, 07:079, 2014.

[83] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. *Eur. Phys. J.*, C72:1896, 2012.

[84] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. *JHEP*, 04:063, 2008.

[85] Michelangelo L. Mangano, Mauro Moretti, Fulvio Piccinini, Roberto Pittau, and Antonio D. Polosa. ALPGEN, a generator for hard multiparton processes in hadronic collisions. *JHEP*, 07:001, 2003.

[86] S. Dittmaier et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables. 2011.

[87] Michael Kramer, Anna Kulesza, Robin van der Leeuw, Michelangelo Mangano, Sanjay Padhi, Tilman Plehn, and Xavier Portell. Supersymmetry production cross sections in pp collisions at $\sqrt{s} = 7$ TeV. 2012.

[88] Alfred H. Mueller and H. Navelet. An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD. *Nucl. Phys.*, B282:727–744, 1987.

[89] Victor S. Fadin, E. A. Kuraev, and L. N. Lipatov. On the Pomeranchuk Singularity in Asymptotically Free Theories. *Phys. Lett.*, 60B:50–52, 1975.

[90] E. A. Kuraev, L. N. Lipatov, and Victor S. Fadin. Multi - Reggeon Processes in the Yang-Mills Theory. *Sov. Phys. JETP*, 44:443–450, 1976. [Zh. Eksp. Teor. Fiz.71,840(1976)].

[91] E. A. Kuraev, L. N. Lipatov, and Victor S. Fadin. The Pomeranchuk Singularity in Nonabelian Gauge Theories. *Sov. Phys. JETP*, 45:199–204, 1977. [Zh. Eksp. Teor. Fiz.72,377(1977)].
[92] I. I. Balitsky and L. N. Lipatov. The Pomeranchuk Singularity in Quantum Chromodynamics. *Sov. J. Nucl. Phys.*, 28:822–829, 1978. [Yad. Fiz.28,1597(1978)].

[93] David d’Enterria and Alexander M. Snigirev. Triple parton scatterings in high-energy proton-proton collisions. *Phys. Rev. Lett.*, 118(12):122001, 2017.

[94] Richard Corke and Torbjörn Sjöstrand. Interleaved Parton Showers and Tuning Prospects. *JHEP*, 03:032, 2011.

[95] Stefano Frixione and Giovanni Ridolfi. Jet photoproduction at HERA. *Nucl. Phys.*, B507:315–333, 1997.

[96] Baptiste Cabouat and Jonathan R. Gaunt. Combining single and double parton scatterings in a parton shower. *JHEP*, 10:012, 2020.

[97] Oleh Fedkevych. *Double parton scattering in jet production processes at the LHC*. PhD thesis, University of Münster, Germany, 2019.