GC-MS, Analysis, Antimicrobial Examination and Antioxidant Properties of the Leaves of Tilkor [Momoradica monadelpha] in Different Solvents

Panshu Pratik and Md. Athar Shadique

1 Dept. of Chemistry, M.L.S.M. College, L.N.M.U., Darbhanga, Bihar, INDIA
2 Univ. Dept. of Chemistry, L.N.M.U. Darbhanga Bihar, INDIA

* Correspondence: E-mail: pratikpratik@gmail.com

DOI: http://dx.doi.org/10.33980/jbcc.2020.v06i02.001

(Received 26 Jun, 2020; Accepted 31 Aug, 2020; Published 08 Sep, 2020)

ABSTRACT: Phytochemical analysis of n-hexane, ethyl acetate and methanol extracts of the leaves of Tilkor was carried out. These extracts exhibited satisfactory inhibitory activities against bacteria and fungi strains, which include; Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumoniae, Candida albicans, Aspergillus niger, Penicillium notatum and Rhizopus stolonifer. Methanol extract of Tilkor possesses antioxidant activity by scavenging DPPH free radical with IC50 of 187.58 μg/mL, using DPPH antioxidant assay. GC-MS analysis of n-hexane, ethyl acetate and methanol extracts of the plant principally revealed the presence of phytol, ethyl hexadecanoate and clionasterol with their corresponding percentage abundance of 57.76%, 18.34% and 9.78%, respectively.

Keywords: Tilkor; Momoradica monadelpha; GC-MS analysis; methanol; n-hexane; ethyl acetate and antimicrobial examination.

INTRODUCTION: Tilkor are perennial and climbing herbs. They possess unequally bifid tendrils which are used for climbing. They also possess simple one-seed leaves, and have a blunt tip. They usually have stalked and rarely sessile leaves. The leaf sides often bear small nectar-producing glands. Tilkor, which is distributed into numerous habitat types, is mainly found in the Mithlanchal, Bihar, India. Tilkor is the only coccinia species that is spread to the highlands of the Arabian Peninsula and tropical Asia, and is now an invasive weed on the Pacific Islands and in the Neotropics (Jeffrey, 1967). Coccinia comprises of 27 species and they are all pollinated by bees, including honeybees (Holstein and Renner, 2011). Coccinia is a suitable plant in which niche evolution among close relatives can be studied because of the numerous habitat types occupied by its 27 species (Holstein and Renner, 2011). Coccinia species generally occur in semi-arid habitats, woodland, and forest, vegetation types with contrasting precipitation regimes (Holstein and Renner, 2011). Coccinia species produce flowers with only male or only female organs, hence, they are dioecious. They have sepals which are connected and have shaped lobes. The corolla is also connected at the base and has five free lobes. Literature shows that some Coccinia species e.g. Coccinia grandis otherwise known as Ivy Gourd have antidiarrhoeal activity and the phytochemical analysis of these species revealed the presence of some metabolites such as alkaloids, glycosides and saponins. Therefore, these species are said to be pharmacologically active. Hossain et al., 2014 showed that the plant species are used traditionally as antirheumatic because the ethanol extracts of some of these species possess analgesic effects which support the traditional uses of the plant.

This paper focuses on the constituents and antimicrobial property of Tilkor extracts, and to account for the free radical scavenging activity of the extracts of leaves of the plant.

MATERIALS AND METHOD:

Extraction: Leaves of Tilkor were collected from Darbhanga. The plant was identified and authenticated by a Prof. S. S. N. Sinha, Eminent Botanist. The leaves were air dried and crushed into smaller sizes to increase its surface area. The plant sample was weighed and extracted using serial soxhlet extraction method by moving from a non-polar (n-hexane) solvent to a medium polar solvent (ethyl acetate) and then to a polar solvent (methanol). The leaves of the plant were extracted using standard procedure. The

- some have shown with only male or only female organs, hence, they are

- species generally occur in

- Tilkor is the only coccinia species that is spread to the highlands of the Arabian Peninsula and tropical Asia, and is now an invasive weed on the Pacific Islands and in the Neotropics (Jeffrey, 1967).

- Coccinia comprises of 27 species and they are all pollinated by bees, including honeybees.

- Coccinia is a suitable plant in which niche evolution among close relatives can be studied because of the numerous habitat types occupied by its 27 species.

- Coccinia species generally occur in semi-arid habitats, woodland, and forest, vegetation types with contrasting precipitation regimes.

- Coccinia species produce flowers with only male or only female organs, hence, they are dioecious.

- Literature shows that some Coccinia species e.g. Coccinia grandis otherwise known as Ivy Gourd have antidiarrhoeal activity.

- The phytochemical analysis of these species revealed the presence of some metabolites such as alkaloids, glycosides and saponins.

- Therefore, these species are said to be pharmacologically active.

- Hossain et al., 2014 showed that the plant species are used traditionally as antirheumatic.

- This paper focuses on the constituents and antimicrobial property of Tilkor extracts, and to account for the free radical scavenging activity of the extracts of leaves of the plant.

- Extraction: Leaves of Tilkor were collected from Darbhanga. The plant was identified and authenticated by a Prof. S. S. N. Sinha, Eminent Botanist. The leaves were air dried and crushed into smaller sizes to increase its surface area. The plant sample was weighed and extracted using serial soxhlet extraction method by moving from a non-polar (n-hexane) solvent to a medium polar solvent (ethyl acetate) and then to a polar solvent (methanol). The leaves of the plant were extracted using standard procedure.

- The phytochemical analysis of these species revealed the presence of some metabolites such as alkaloids, glycosides and saponins.

- Therefore, these species are said to be pharmacologically active.

- Hossain et al., 2014 showed that the plant species are used traditionally as antirheumatic.

- This paper focuses on the constituents and antimicrobial property of Tilkor extracts, and to account for the free radical scavenging activity of the extracts of leaves of the plant.

- Extraction: Leaves of Tilkor were collected from Darbhanga. The plant was identified and authenticated by a Prof. S. S. N. Sinha, Eminent Botanist. The leaves were air dried and crushed into smaller sizes to increase its surface area. The plant sample was weighed and extracted using serial soxhlet extraction method by moving from a non-polar (n-hexane) solvent to a medium polar solvent (ethyl acetate) and then to a polar solvent (methanol). The leaves of the plant were extracted using standard procedure.
al., 2010). The extracts were dried by using rotary evaporator and kept in the refrigerator for further use.

Phytochemical screening: Preliminary phytochemical screening of the crude extracts was carried out using the modified methods as described by Pranshant et al. (2011). The extracts were dried by using rotary evaporator and kept in the refrigerator for further use.

Antimicrobial assay: Microorganisms: Cultures of six human pathogenic bacteria made up of four gram negatives and two gram positives were used for the antibacterial assays. These cultures include; Salmonella typhii, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae which belongs to the gram-negative, and Bacillus subtilis and Staphylococcus aureus which are gram positive bacteria. Four fungi were also utilized for the Antifungal assays. These are; Candida albicans, Aspergillus niger, Rhizopus stolon and Penicillium notatum.

Table 1: Phytochemical screening of the extracts of leaves of Tilkor.

Chemical constituents	CBAH	CBAE	CBAM
Saponin	-ve	-ve	+ve
Tannins	-ve	-ve	-ve
Steroids	+ve	+ve	-ve
Glycosides	+ve	+ve	-ve
Alkaloids	-ve	+ve	+ve
Carbohydrates	-ve	-ve	-ve
Flavonoids	+ve	+ve	+ve
Anthraquinone	-ve	-ve	+ve
Fat and Oil	+ve	+ve	+ve
Protein	-ve	-ve	-ve
Terpenoid	+ve	+ve	-ve
Phenol	-ve	+ve	-ve

CBAH: Hexane extract. CBAE: Ethyl acetate extract. CBAM: Methanol extract. +ve: Present; -ve: Absent

Table 2: Antimicrobial activity of n-hexane extract of Leaves of Tilkor.

Extract Conc. (mg/mL)	S. A	E. C	B. S	Ps. A	Sal	Kleb	C. A	A. U	Pen	Rhiz
200	18	18	21	17	18	18	17	16	18	14
100	13	16	13	17	15	15	14	15	15	13
50	15	13	14	15	13	13	13	14	13	12
25	12	11	12	13	13	15	--	15	--	--
12.5	15	14	15	15	15	13	13	13	12	12
6.25	--	--	--	--	--	--	--	--	--	--
-ve	-	-	-	-	-	-	-	-	-	-
+ve	39	37	42	39	39	37	28	27	29	28

KEYS: +ve: Gentamycin (10 μg/mL); Tioconazole (0.7 mg/mL), -ve: n-hexane

Table 3: Antimicrobial activity of ethyl acetate extract of Leaves of Tilkor.

Extract Conc. (mg/mL)	S. A	E. C	B. S	Ps. A	Sal	Kleb	C. A	A. U	Pen	Rhiz
200	25	24	25	25	25	26	25	22	25	22
100	22	24	23	18	22	15	19	19	19	18
50	19	18	18	19	19	16	15	15	15	13
25	16	15	15	15	14	13	13	13	12	12
12.5	13	13	12	15	12	11	12	14	--	--
6.25	12	--	--	--	--	--	--	--	--	--
-ve	-	-	-	-	-	-	-	-	-	-
+ve	42	39	42	39	39	39	29	27	26	25

KEYS: +ve: Gentamycin (10 μg/mL); Tioconazole (0.7 mg/mL), -ve: ethyl acetate

J. Biol. Chem. Chron. 2020, 6(2), 01-10
Table 4: Antimicrobial activity of methanol extract of *Leaves of Tilkor*.

Extract Conc. (mg/mL)	S. A	E. C	B. S	Ps. A	Sal	Kleb	C. A	A. U	Pen	Rhiz
200	28	28	22	28	26	22	22	22	22	19
100	26	25	23	25	22	22	19	19	19	17
50	23	18	19	22	19	18	17	17	17	11
25	19	11	17	18	16	17	15	15	13	11
12.5	15	14	13	19	14	12	13	13	11	11
6.25	12	12	15	17	11	11	12	11	11	11
-ve										
+ve	43	42	45	46	39	39	29	27	27	29

KEYS: +ve : Gentamycin (10 μg/mL); Tioconazole (0.7 mg/mL), -ve: methanol

Table 5: Absorbance and percentage inhibition of Ascorbic Acid Standard for DPPH Antioxidant activity of the leaves of *Tilkor*. Absorbance of control is 1.265.

Conc (μg/mL)	A1	A2	A3	AV±SD	% I of A
1000	0.139	0.139	0.15	0.138±0.0013	89.03
500	0.16	0.16	0.16	0.16±0.0000	88.15
250	0.162	0.163	0.17	0.162±0.0002	87.27
125	0.19	0.19	0.19	0.181±0.0000	85.78
62.5	0.194	0.196	0.195	0.195±0.0002	84.27
31.25	0.246	0.246	0.246	0.246±0.0000	80.68
15.62	0.312	0.312	0.312	0.312±0.0000	75.45
7.81	0.454	0.453	0.455	0.454±0.0002	64.19
3.9	0.783	0.782	0.79	0.782±0.0002	38.27
1.95	0.992	0.992	0.992	0.992±0.0000	21.67

A = Absorbance, **MA** = Mean absorbance, %I of A = % Inhibition

Table 6: Antioxidant activity (DPPH) and % inhibition of *n*-hexane extract of the leaves of *Tilkor* with 0.365 as absorbance of control.

Conc (μg/mL)	A1	A2	A3	AV±SD	% I of A
1000	0.15	0.138	0.136	0.139±0.0028	63.193
500	0.143	0.147	0.147	0.146±0.0024	60.366
250	0.218	0.224	0.24	0.224±0.0066	38.814
125	0.202	0.22	0.207	0.207±0.0046	43.654
62.5	0.205	0.207	0.205	0.205±0.0016	44.019
31.25	0.217	0.223	0.215	0.218±0.0043	40.458
15.81	0.215	0.214	0.214	0.213±0.0007	41.554
7.93	0.216	0.23	0.217	0.218±0.0027	40.549
3.81	0.268	0.27	0.263	0.265±0.0048	27.763
1.91	0.216	0.215	0.215	0.215±0.0007	41.278

Explanation as given in Table 5

Table 7: Antioxidant activity (DPPH) and % inhibition of ethyl acetate extract of the leaves of *Tilkor* with 0.462 as absorbance of control.

Conc (μg/mL)	A1	A2	A3	AV±SD	% I of A
1000	0.335	0.349	0.347	0.344±0.0077	25.829727
500	0.168	0.168	0.167	0.168±0.0007	63.780665
250	0.088	0.088	0.088	0.088±0.0000	80.735932
125	0.097	0.097	0.098	0.097±0.0007	79.148628
62.5	0.13	0.13	0.13	0.121±0.0000	74.025975
31.25	0.073	0.073	0.073	0.073±0.0000	84.415585
15.62	0.149	0.149	0.147	0.148±0.0013	68.109669
7.81	0.166	0.166	0.167	0.166±0.0007	64.213565
3.90	0.172	0.172	0.18	0.172±0.0007	63.059164

Explanation as given in Table 5
Table 8: Antioxidant activity (DPPH) and % inhibition of methanol extract of the leaves of *Tilkor* with 0.316 as absorbance of control.

Conc (μg/mL)	A1	A2	A3	AV±SD	%I of A
1000	0.313	0.317	0.318	0.315±0.0037	-
500	0.214	0.213	0.213	0.213±0.0007	32.807
250	0.174	0.175	0.175	0.175±0.0007	45.043
125	0.143	0.142	0.145	0.143±0.0016	54.957
62.5	0.148	0.146	0.146	0.147±0.0013	53.904
31.25	0.138	0.15	0.138	0.138±0.0007	55.908
15.62	0.142	0.143	0.145	0.143±0.0016	54.959
7.81	0.145	0.144	0.145	0.145±0.0007	54.337
3.90	0.16	0.152	0.153	0.153±0.0011	52.216
1.99	0.139	0.139	0.138	0.139±0.0007	56.225

Explanation as given in Table 5

All the microorganisms used were clinical strains from the Medical Microbiology (Darbhanga Medical College & Hospital, Darbhanga). Nutrient agar, Sabouraud dextrose agar, nutrient broth and tryptone soya agar were used in this study. Hexane, ethyl acetate and methanol were used in solubilizing the extracts and as negative controls in the assays.

Antimicrobial agents used: Gentamycin (10 μg/mL) and Tioconazole (0.7 mg/mL) as antibacterial and antifungal drugs respectively, were employed as standard reference drugs in this study.

Determination of antimicrobial activity: Agar diffusion (Ditch) method (for bacteria): An overnight culture of each organism was prepared by taking two wire-loop of the organism from the stock, each inoculated into 5ml of sterile nutrient broth and incubated for 28 hr at 38°C. 0.1 mL of each organism was taken from overnight culture and put into the 9.8 mL of sterile distilled water to obtain 10^-2 inoculum concentration of the test organism. 0.3 mL was taken from the diluted test organism (10^-2) into the prepared sterile nutrient agar cooled to about 48°C and then poured into sterile petri dishes which were allowed to solidify for about 60 min. A sterile cork borer of 9mm diameter was used to make 8 wells on the media according to the number of the diluted extracts for the experiment. The graded concentrations (6.25–200 mg/mL) of the extracts were put into each well and separated from the controls. The studies were done in duplicates to ascertain the results obtained. The plates were left on the bench for about 3 hrs to allow the extract diffuse properly into the nutrient agar i.e. pre-diffusion. The plates were incubated for 28 hrs at 38°C (Collins and Lyne, 1970).

Agar diffusion (surface plate) method (fungi): A sterile sabouraud dextrose agar was prepared accordingly and aseptically poured into the sterile plates in triplicates and solidified. 0.3 mL of the 10^-2 inoculum concentration of the test organism was spread on the surface of the agar using a sterile Petri-dish to cover all the surface of the agar. Eight wells were bored by using a sterile cork borer of 8 mm diameter. The graded concentrations of the extracts were put into each well separately with the controls. All the plates were left on the bench for 3 hr to allow the extract diffuse properly into the agar i.e. prediffusion. The plates were incubated at 27°C for 73 hrs (Collins and Lyne, 1970).

Table 9: GC-MS analysis of n-hexane extract of the leaves of *Tilkor*.

S/N	Compound	Molecular Formula	MW	Peak area%	Retention Time	Mass Spectral fragments	Fragmented structures
1	3-cyclohexyl-6-methyl-3,4-heptadien-2-one	C_{15}H_{24}O	220	1.79	11.257	43, 67, 93, 107, 149, 177, 79	![Fragmented structures](image1)
2	2,3,3-trimethyl Octane	C_{11}H_{24}	156	1.36	14.702	43, 55, 71, 85, 99, 113, 57	![Fragmented structures](image2)
---	---	---	---	---			
3	Hexahydrofarnesyl acetone	C₁₈H₃₆O₂	268	17.07	15.266	43, 85, 124, 225, 140, 58	
4	3,7-dimethyl Undecane	C₁₃H₂₈	184	1.12	17.266	43, 113, 127, 85, 71, 57	
5	Phytol	C₂₀H₄₀O	296	57.76	18.314	43, 57, 95, 141, 126, 71	
6	2-methyl tetracosane	C₂₅H₅₂	352	2.02	19.162	43, 71, 85, 99, 113, 57	
7	Undecanal	C₁₁H₂₂O	170	1.66	19.307	43, 82, 95, 109, 126, 57	
8	Tetradecyl cyclooctane	C₂₂H₄₄	308	1.79	20.388	55, 69, 83, 97, 153, 111	
9	3,7-dimethyl-1-octyl methylphosphono fluoride	C₁₁H₂₄FO₂P	238	2.27	20.488	55, 70, 84, 112, 126, 99	
10	Bis(2-ethylhexyl) phthalate	C₂₄H₃₈O₄	390	3.38	22.058	43, 57, 71, 84, 113, 149	
11	Squalene	C₃₀H₅₀	410	2.89	24.188	69, 81, 95, 137, 273, 69	
12	Sarcosine, N-(2,6-difluorobenzoyl)-pentadecyl ester	C₂₅H₃₉F₂N₂O₃	439	4.61	26.658	43, 57, 81, 113, 184, 141	
13	2,3-Pinanediol	C₁₀H₁₉O₂	170	0.78	10.458	69, 71, 93, 126, 108	
14	2,2-dimethyl Pentane	C₃H₁₀	100	0.55	11.458	43, 71, 85, 57	
Antioxidant activity: The free radical scavenging activity of the extracts was carried out using DPPH as the test radical, and was assessed by the standard method adopted with suitable modifications (Sies, 1997). The stock solutions of extracts were prepared in methanol to achieve the concentration of 2 mg/mL. Dilutions were made to obtain concentrations of 1000, 500, 250, 125, 62.5, 31.25, 15.62, 7.81, 3.90 and 1.99 μg/mL. DPPH (2,2- diphenyl-1-hydrazine) is widely used to test the ability of compounds to act as free radical scavengers or hydrogen donors, and to evaluate antioxidant activity. The absorbance was measured in triplicate at varying concentrations and the mean absorbance was determined. Parallel to examination of the antioxidant activity of plant extracts, the value for the standard compound (Ascorbic acid) was obtained and compared to the values of the antioxidant activity, the percentage inhibitions of the serial concentrations of the n-hexane, ethyl acetate and methanol extracts and that of the standard which was determined at different concentrations using the expression as shown in eq. 1.

\[
\text{% inhibition} = \left(\frac{A \text{ of control} - A \text{ of sample}}{A \text{ of control}} \right) \times 100 \quad \text{(1)}
\]

The IC\textsubscript{50} values (Inhibition Concentration at 50%) were estimated from the % inhibition versus concentration plot, using a non-linear regression algorithm.

GC-MS analysis of the extracts: GC-MS was performed with Agilent 19091GC plus automatic sampler system coupled with a quadruple mass spectrometer 433HP-5MS. Compounds were separated in HP5MS column fused with phenyl methyl silox, (length; 35m x 255μm; film thickness 0.28μm). Samples were injected at a temperature of about 255°C with a split ratio of 10:2 with a flow rate of helium 2mL/min.

Table 10: GC-MS analysis of ethyl acetate extract of leaves of Tilkor.

S/N	Compound	Molecular Formula	MW	Peak area %	Retention Time	Mass spectral Fragments	Fragmented structures
1	Tetradecanoic acid	C\textsubscript{14}H\textsubscript{28}O\textsubscript{2}	228	1.13	14.186	43, 60, 85, 98, 115, 129, 185, 73	
2	6,10,14-trimethyl-2-pentadecanone	C\textsubscript{18}H\textsubscript{36}O	268	3.18	15.268	43, 58, 71, 85, 109, 124, 140, 225, 57	
3	Hexadecanoic acid, ethyl ester	C\textsubscript{18}H\textsubscript{36}O\textsubscript{2}	284	18.34	15.524	43, 57, 73, 101, 115, 129, 157, 88	
4	n-hexadecanoic acid	C\textsubscript{16}H\textsubscript{32}O\textsubscript{2}	256	12.84	16.901	43, 60, 85, 98, 115, 129, 143, 157, 73	
5	Phytol	C\textsubscript{20}H\textsubscript{40}O	296	11.31	18.328	43, 57, 95, 111, 123, 140, 210, 71	
6	Linoleic acid, ethyl ester	C\textsubscript{20}H\textsubscript{40}O\textsubscript{2}	308	6.98	18.766	55, 81, 95, 109, 123, 135, 220, 67	
7	Dichlorooctadecanoic acid tridec-2-ynyl ester	C\textsubscript{18}H\textsubscript{26}Cl\textsubscript{2}O\textsubscript{2}	306	11.88	18.838	43, 67, 79, 95, 111, 121, 135, 149	
8	Octadecanoic acid, ethyl ester	C\textsubscript{20}H\textsubscript{40}O\textsubscript{2}	312	3.96	19.083	43, 57, 73, 101, 115, 129, 157, 88	
No.	Compound	Formula	Retention Time	Library Match Factor	Mass Elution (m/z)	Diagram	
-----	---------------------------------------	-----------	---------------	----------------------	-------------------	---------	
9	Phytol acetate	C_{22}H_{42}O_{2}	338	8.31	19.326	![Diagram](image)	
10	(Z)-9- octadecanamide	C_{24}H_{35}NO	282	2.89	20.543	![Diagram](image)	
11	Methyl 19-methyl-eicosanoate	C_{22}H_{44}O_{2}	341	1.38	20.849	![Diagram](image)	
12	Gamma-sitosterol	C_{29}H_{55}O	414	3.13	22.718	![Diagram](image)	
13	Squalene	C_{30}H_{50}	410	2.34	24.184	![Diagram](image)	
14	(1R,4R)-(+)-Camphor	C_{10}H_{16}O	152	0.76	5.317	![Diagram](image)	
15	1-butylhexyl-benzene	C_{16}H_{26}	218	0.51	10.492	![Diagram](image)	
16	1-ethyloctyl-benzene	C_{16}H_{26}	218	0.58	10.877	![Diagram](image)	
17	1,3,3- trimethyl-nonyl-benzene	C_{14}H_{30}	246	0.62	11.453	![Diagram](image)	
18	1-propyloctyl-benzene	C_{17}H_{28}	232	0.59	12.253	![Diagram](image)	
19	1-ethylnonyl-benzene	C_{17}H_{28}	232	0.63	12.617	![Diagram](image)	
20	1-methyldecyl-benzene	C_{17}H_{28}	232	0.53	13.226	![Diagram](image)	
21	Ethyl myristate	C_{16}H_{32}O_{2}	256	0.67	14.575	![Diagram](image)	
22	Eicosanoic acid	C_{20}H_{40}O_{2}	312	0.89	15.172	![Diagram](image)	
23	Bis(2-ethylhexyl) phthalate	C_{23}H_{38}O_{4}	390	0.89	22.062	![Diagram](image)	
Extracts of the leaf parts of Tilkor was dissolved in the respective solvent (n-hexane, ethyl acetate and methanol) to form solution. After this, the extracts were inserted into GC-MS instruments for chromatographic separation of the respective constituents and mass spectra of these constituents were obtained.

RESULTS AND DISCUSSION

Phytochemical screening: The preliminary phytochemical analysis of the crude extracts of Tilkor leaves revealed the presence of phenolic compounds, alkaloids, steroids, glycosides, fats and oils, flavonoids and terpenoids and saponins as shown in Table 1.

Table 11: GC-MS analysis of methanol extract of the leaves of Tilkor.

S/N	Compound	Molecular formula	MW	Peak area %	Retention Time (min)	Mass spectral fragments	Fragmented structures
1	6,10,14-trimethyl-2-pentadecanoate	C_{18}H_{36}O_{2}	268	1.98	15.255	43, 71, 85, 109, 58	
2	Ethyl 13-methyl-tetradecanoate	C_{17}H_{34}O_{2}	270	0.72	15.513	55, 70, 101, 115, 88	
3	Methyl ester Palmitic acid	C_{17}H_{34}O_{2}	270	2.18	16.253	43, 57, 87, 101, 74	
4	Palmitic acid	C_{16}H_{32}O_{2}	256	9.56	16.784	43, 60, 85, 98, 73	
5	Hexadecanoic, ethyl ester	C_{16}H_{30}O_{2}	284	10.94	17.047	57,73,101, 115, 88	
6	Methyl ester Linoleic acid	C_{19}H_{36}O_{2}	294	1.01	18.0809	55, 81, 95, 109, 67	
7	Methyl ester 8,11,14-eicosatrienoic acid	C_{21}H_{36}O_{2}	320	1.19	18.144	55, 67, 87, 107, 74	
8	Phytol	C_{20}H_{40}O	296	7.67	18.305	57, 95, 111, 71	
The presence of these bioactive compounds especially, flavonoids, is an indication that this plant possesses pharmacological activity.

Antimicrobial activity: The three crude extracts leaves of *Tilkor* gave a clear zone of inhibition against the growth of the test bacteria (*Staphylococcus aureus*, *Escherichia coli*, *Bacillus subtilis*, *Pseudomonas aeruginosa*, *Salmonella typhi*, *Klebsiella pneumoniae*) at moderate concentrations of the hexane (12.5 mg/mL), ethyl acetate (25 mg/mL) and methanol extracts (12.5 mg/mL) of the leaves of *Tilkor*, as well as test fungi (*Candida albicans*, *Aspergillus niger*, *Penicillium notatum* and *Rhizopus stolonifer*) at corresponding concentrations (Table 2-4). The activities of the hexane, ethyl acetate and methanol extracts
of leaves of Tilkor against microorganisms may be ascribed to the existence of bioactive compounds such as alkaloids, terpenoids and flavonoids in the extracts (Table 1) which have been reported to exhibit antimicrobial activity.

Antioxidant activity: Antioxidant activities of n-hexane, ethyl acetate and methanol extracts of the leaves of Tilkor and that of standard control, Ascorbic acid were shown in Table 5–11. Hexane extract of the plant revealed low free-radical scavenging activity with IC50 of 379.80 μg/mL, ethyl acetate extract of the plant revealed very low free radical scavenging activity with IC50 of 681.59 μg/mL, while methanol extract of the aerial parts of the plant showed moderate antioxidant activity at IC50 of 187.56 μg/mL (Figure 1).

GC-MS analyses: GC-MS analysis of n-hexane extract leaves of Tilkor showed a total number of fifteen (15) chemical constituents with phytol and hexahydrofarnesylacetone being highly abundant compounds constituting 57.76 and 17.07% respectively. Ethyl acetate extract of the plant revealed twenty six (26) compounds with two abundant compounds: ethyl hexadecanoate (18.34%) and hexadecanoic acid (12.84%), while methanol extract afforded nineteen (19) compounds with ethyl hexadecanoate (10.94%) and clionasterol (9.78%) being the abundant compounds.

CONCLUSION: The leaves of Tilkor have been investigated in this research and the preliminary phytochemistry of the crude extracts of the plant revealed the presence of bioactive compounds such as phenolic compounds, alkaloids, steroids, glycosides, fats and oils, flavonoids and terpenoids. Antimicrobial activity of crude extracts from the plant against all the test bacteria and fungi was found to be very interesting and encouraging at moderate to high concentrations of the extracts, which accounts for the uses of the plant in traditional treatment as antirheumatic. The GC-MS revealed various peaks of bioactive compounds of which the activity of the plant as antioxidant, and against bacteria and fungi may be attributed to the prominent compounds in synergistic effect with all the other compounds present in smaller quantities in the extracts.

REFERENCES:
1. Collins, C. H.; Lyne, P. M., 1970. Microbiological Methods. 3rd Edition. Butterworth and Co. Ltd. pp 414-427
2. Das, K., Tiwari; R.K.S.; Shrivastava, D.K., 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. *Journal of Medicinal Plants Research* 4(2), 104-111.
3. Holstein and Renner. 2011. A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). *BMC Evolutionary Biology* 11, 28.
4. Hossain, A.; Uddin, N.; Salim, A.; Haque, R., 2014. Phytochemical and Pharmacological screening of coccinia grandis Linn. *Journal of Scientific and Innovative Research* 3(1), 65-71.
5. Ingrid, V.M.; Paulo, R.V.; Flávio, L.S.; Kirley, M.C.; Guilherme, J.Z.; Edy, S.; Rensheng L.; Kristy, M.R.; Kevin, T.; Robert, E.S., 2016. UPLC–QTOF–MS and NMR analyses of graviola (Annona muricata) leaves. *Brazilian Journal of Pharmacognosy* 26, 174-179.
6. Jeffrey, C. 1967. Cucurbitaceae. In Flora of Tropical East Africa. Edited by: MilneRedhead E, Polhill RM. London: Crown Agents for Oversea Governments and Administrations, 157.
7. Prashant, T.; Bimlesh, K.; Mandeeep, K.; Gurpreet, K.; Harleen, K., 2011. Phytochemical screening and Extraction: A Review. *Internationale Pharmaceutica Scienza* 1(1), 98-106.
8. Sies, H., 1997. Oxidative stress: oxidants and antioxidants. *Experimental Physiology* 82(2), 291-295.