The complete mitochondrial genome of *Evania appendigaster* (Hymenoptera: Evaniidae) has low A+T content and a long intergenic spacer between *atp8* and *atp6*

Shu-jun Wei · Pu Tang · Li-hua Zheng · Min Shi · Xue-xin Chen

Received: 5 March 2009 / Accepted: 21 July 2009 / Published online: 5 August 2009

© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract The apocritan Hymenoptera show extraordinary features in mitochondrial genomes, but no complete sequence has been reported for the basal lineage, Evaniidea. Here, we sequenced the complete mitochondrial genome of *Evania appendigaster*. This genome is 17,817 bp long; with low A+T content, 77.8%, compared with other hymenopteran species. Four tRNA genes were rearranged, among which remote inversion is the dominant gene rearrangement event. Gene shuffling is caused by tandem duplication-random loss while remote inversion is best explained by recombination. The start codon of *nad1* was found as TTG, which might be common across Hymenoptera. *trnS2* and *trnK* use abnormal anticodons TCT and TTT, respectively, and the D-stem pairings in *trnS2* are absent. The secondary structure of two rRNA genes are predicted and compared with those in other insects. Five long intergenic spacers were present, including a long intergenic spacer between *atp8* and *atp6*, where these two genes overlap in the previously reported animal genomes. A conserved motif was found between *trnS1* and *nad1*, which is proposed to be associated with mtTERM. The A+T-rich region is 2,325 bp long, among the longest in insects, and contains a tandem repeat region.

Keywords Intergenic spacer · Gene rearrangement · Recombination · Tandem repeat · Secondary structure

Introduction

Animal mitochondrial genomes are about 16 Kb in size and contain 37 genes: 13 protein-coding genes, 22 transfer RNA genes (tRNA) and two ribosomal RNA genes (rRNA) [1, 2]. The genome is highly economized with few sections of noncoding DNA, intergenic regions, or repetitive sequences [3, 4], except for an A+T rich region, which contains essential regulatory elements for transcription and replication [5].

Gene arrangements are usually conserved within major lineages [2], but may be highly rearranged in certain groups [6–12]. Gene rearrangement events may serve as useful phylogenetic markers and models for evolutionary studies [13–16]. In apocritan Hymenoptera, frequent gene rearrangements have been observed from broad examinations of gene segments [10, 17] and whole genome sequences [18–22]. However, no informative arrangement pattern has been identified to date, for which there are two possible explanations: the one is that diversified gene arrangements have arisen independently among different hymenopteran lineages, and the other is that limited sampling is concealing potentially synapomorphic rearrangements. The apocritan lineage shows other extraordinary features in the mitochondrial genome, such as high A+T content [23, 24], diversified gene rearrangement events, and the involvement of recombination in gene rearrangement [17].

Evaniidae is proposed to be one of the most basal lineages in Hymenoptera [25, 26]. Presently, no complete mitochondrial genome has been sequenced from members of this family or its presumed sister groups, the Aulacidae and Gasteruptiidae. Here, we present the complete mitochondrial genome of *Evania appendigaster* (Hymenoptera: Evaniidae) and give a thorough description of its genome features in comparison to other hymenopteran species.

S. Wei · P. Tang · L. Zheng · M. Shi · X. Chen (✉)

Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, 268 Kaixuan Road, 310029 Hangzhou, China
e-mail: xxchen@zju.edu.cn
Materials and methods

DNA extraction, PCR amplification and sequencing

Total genomic DNA was extracted using the DNeasy tissue kit (Qiagen, Hilden, Germany) from a leg of an *E. appendigaster* adult.

A range of universal insect mitochondrial primers [27, 28] and hymenopteran mitochondrial primers were used to amplify the regions of *cox1*-*cox2*, *cob*-rrnL, *rrnL*-rrnS. Species-specific primers were designed based on sequenced fragments and combined in various ways to bridge the gap of *cox2*-cob and rrnS-cox1. Six fragments of 575–8626 bp were amplified, covering the whole mitochondrial genome (Table 1). The PCR and sequencing procedures followed the methods in Wei et al. [23].

Genome annotation and secondary structure prediction

tRNA genes were initially identified using the tRNAscan-SE search server [29] with default parameters. Sequences longer than 100 bp between the identified tRNA genes were used as queries in BLAST searches in GenBank for identification of protein-coding and rRNA genes. The exact initiation and termination codons were identified in ClustalX version 2.0 [30] using reference sequences from other insects, following the criteria in Wei et al. [23]. Finally, the tRNA search was carried out again for the large intergenic regions using a reduced cutoff score. Twenty-one of the 22 typical animal mitochondrial tRNA genes were found using the previous steps, except for *trnS*2, which was identified by alignment. A+T content and codon usage were calculated using MEGA version 4.0 [31].

All tRNA secondary structures were predicted using the tRNAscan-SE search server [29] except for *trnS*2, which was predicted manually. rRNA structures were predicted by comparison and algorithm-based methods as in Wei et al. [23].

Table 1	Primers used in this study		
Region	Primer position	Product length (bp)	Primer sequence
cox1-*cox2*	2127–3634	1508	TATTTTGATTYTTTGGHCAYCCWGAAGT
cox2-cob	3339–11964	8626	CCACAAATTTCTGAACATTG
cob-rrnL	11480–13593	2114	TCAGGTCACCAATGATATTGA
rrnL-rrnS	13034–15118	2085	TATGTACTACCATGAGGACAAATATC
rrnS	14700–15275	576	TATAGGGTATCTAATCCAACTTT
rrnS-cox1	15096–2334	5057	GCTCGTGTATCCACATCTATT

Results and discussion

Genome structure and base composition

The complete mitochondrial genome of *E. appendigaster* is 17,817 bp (GenBank accession No. FJ593187), which is among the largest animal mitochondrial genomes yet
sequenced [1]. All of the 37 typical animal mitochondrial genes were identified (Fig. 1; Table 2).

There are in total 31 overlapping nucleotides between neighboring genes in nine locations and the length of overlapping sequence is 1–7 bp, while there are in total 943 bp intergenic nucleotides in 13 locations and the length of intergenic spacers is 1–534 bp, excluding the A+T-rich region (Table 2).

The A+T content of *E. appendigaster* mitochondrial genome are lower than all other sequenced hymenopteran species, and there are more A and C than T and G in the majority strand (Table 3). A higher A+T content was found in parasitic wasps (Apocrita) compared with nonparasitic wasps (Symphyta) in partial mitochondrial genes [24] and whole genome sequences [18–20, 22, 32, 33].

Table 2 Annotation of *Evania appendigaster* mitochondrial genome

Gene	Strand	Gene position	Gene length (bp)	Anti/Start codon	Stop codon	Intergenic nucleotides
trnC	+	1–63	63	GCA	–	–2
trnM	+	64–129	66	CAT	–	0
trnI	+	128–194	67	GAT	–	–1
trnS1	–	194–262	69	TGA	–	–2
trnQ	–	261–330	70	TTG	–	22
nad2	+	353–1365	1013	ATG	TA	–2
trnY	–	1364–1432	69	GTA	–	3
cox1	+	1436–2980	1545	ATG	TAA	–5
trnL2	+	2976–3041	66	TAA	–	0
cox2	+	3042–3719	678	ATT	TAA	8
trnK	+	3728–3797	70	TTT	–	534
trnD	+	4332–4393	62	GTC	–	0
atp8	+	4394–4555	162	ATG	TAA	244
atp6	+	4800–5474	675	ATT	TAA	1
cox3	+	5476–6265	790	ATA	T	0
trnG	+	6266–6332	67	TCC	–	0
nad3	+	6333–6683	351	ATT	TAA	11
trnA	+	6695–6762	68	TGC	–	20
trnR	+	6783–6848	66	TCG	–	–6
trnN	+	6843–6908	66	GGT	–	–3
trnS2	+	6906–6966	61	TCT	–	0
trnE	+	6967–7032	66	TTC	–	2
trnF	–	7035–7099	65	GAA	–	0
nad5	–	7100–8747	1648	ATA	TAA	–3
trnH	–	8745–8812	68	GTG	–	0
nad4	–	8813–10148	1336	ATG	T	–7
nad4l	–	10142–10414	273	ATT	TAA	1
trnT	+	10416–10480	65	TGT	–	0
trnP	–	10841–10546	66	TGG	–	2
nad6	+	10549–11088	540	ATC	TAA	1
cob	+	11090–12253	1164	ATG	TAA	94
nad1	–	12348–13273	926	TTG	TA	0
trnLI	–	13274–13342	69	TAG	–	0
rrnL	–	13343–14616	1274	–	–	0
trnV	–	14617–14680	64	TAC	–	0
rrnS	–	14681–15427	747	–	–	0
trnW	–	15428–15492	65	TCA	–	0

A+T-rich region – 15493–17817 2325 – – 0

+ Indicates the gene coded on the majority strand
– Indicates the gene coded on the minority strand
– Indicates the strand or codon not applicable; the abbreviations are as in Fig. 1.
Gene rearrangement

Gene arrangement of the *E. appendigaster* mitochondrial genome is similar to other apocritan species. Gene rearrangement events have been classified as translocation, local inversion (inverted in the local position), gene shuffling (local translocation) and remote inversion (translocated and inverted) [17]. Four tRNA genes are rearranged, which are remote inversions of *trnW*, *trnC* and *trnS1* and gene shuffling of *trnM* (Fig. 1). Rearrangement of tRNA genes is common in the hymenopteran mitochondrial genome, especially those in tRNA clusters, such as in the junctions of A+T-rich region-*nad2*, *nad2-cox1*, *cox2-apt8* and *nad3-nad5* [10, 17, 23]. However, the rearrangements in the *E. appendigaster* mitochondrial genome are novel. In vertebrates, gene shuffling is the dominant gene rearrangement event [34], while in Hymenoptera, equal numbers of gene shuffling, inversion and translocation events have been observed at the *cox2-apt8* junction [10]. In the *E. appendigaster* mitochondrial genome, remote inversion was found to be the dominant gene rearrangement event.

Gene shuffling is usually explained by the tandem duplication-random loss (TDRL) model [17, 35]. Evidence of the TDRL model includes a derived pattern of gene order, pseudogene and the position of intergenic spacer, the last two of which are the expected intermediate steps in changing mitochondrial gene order under this model. In the derived tRNA cluster between the A+T-rich region and *nad2*, all neighboring genes are overlapped or directly adjacent except for *trnQ* and *nad2*, where there is a 22 bp intergenic spacer (Table 2). Under the TDRL model, it is unlikely to randomly delete the duplicated or original genes to produce a pattern in which remnant adjacent genes overlap. Thus, it is unlikely that *trnC* and *trnS1* were rearranged by TDRL, while it is possible that *trnM* was rearranged by tandem duplication of the *trnL-trnQ-trnM* cluster followed by deletion of *trnL-trnQ* and *trnM* in the two boundaries in an intermediate state before the insertion of *trnC* and *trnS1*. This region is located to one side of the A+T-rich region that is thought to contain two replication origins [36], so an illicit-primer may be responsible for the duplication of the original tRNA cluster. The 22 bp
intergenic spacer between trnQ and nad2 may be a remnant region after deletion of the second copy of trnM. Recombination may be involved in remote inversions and is the most plausible explanation for local inversions in apocritan mitochondrial genomes.

Protein-coding genes

The size of the protein-coding genes in the *E. appendigaster* mitochondrial genome is similar to their corresponding orthologs in other insects. The genes with the highest A+T content in the hymenopteran mitochondrial genome are usually nad6 or atp8. In *E. appendigaster*, the A+T content of atp8 is 69.1%, amongst the lowest ones, and this is the result of lower A+T content in the 3' sequence of atp8.

All protein-coding genes start with ATN codons (two with ATA, four with ATT, one with ATC, and five with ATG) except for nad1, which uses TTG as start codon (Table 1). *coxl* is usually found to use nonstandard start codons in insects, such as TCG, ACC, CGA, CTA, CCG and AAA [37, 38]. In *E. appendigaster*, *coxl* uses the usual start codon ATG, 3 bp after the end of trnY, and the translated amino acid sequence aligned well with orthologs in other Hymenoptera. All examined species in Lepidoptera have been found to use R as the initial amino acid for *coxl* [39], whereas in Hymenoptera all species uses the ATN start codon [18, 19, 21–23, 32] except for *Vanhornia eucnemidarum* [20]. In *E. appendigaster*, three ATA lying in or 6 bp downstream from trnLI are possible start codons for nad1. However, we proposed TTG directly after trnL1 as the start codon for nad1. This would minimize intergenic spacer and avoid overlapping between trnLI and nad1 [37, 40].

Table 4 Codon usage in *Evania appendigaster* mitochondrial genome

Amino Acid	Codon	Number	RSCU
Phe	UUU	296	1.67
	UUC	59	0.33
Leu	UUA	304	3.41
	UUG	46	0.52
	CUU	105	1.18
	CUC	10	0.11
	CUA	61	0.68
	CUG	9	0.10
Ile	AUU	372	1.77
	AUC	49	0.23
Met	AUA	282	1.75
	AUG	40	0.25
Val	GUU	87	1.73
	GUC	15	0.30
	GUA	78	1.55
	GUG	21	0.42
Ser	UCU	98	2.03
	UCC	44	0.91
	UCA	110	2.28
	UCG	7	0.15
Pro	CCU	42	1.37
	CCC	24	0.78
	CCA	50	1.63
	CGG	7	0.23
Thr	ACU	65	1.69
	ACC	22	0.57
	ACA	63	1.64
	ACG	4	0.10
Ala	GCU	47	2.24
	GCC	17	0.81
	GCA	17	0.81
	GCG	3	0.14
Tyr	UAU	132	1.64
	UAC	29	0.36
His	CAU	52	1.55
	CAC	15	0.45
	CCA	50	1.67
	CAG	10	0.33
Asn	AAU	162	1.62
	AAC	38	0.38
Lys	AAA	110	1.79
	AAG	13	0.21
Asp	GAU	50	1.64
	GAC	11	0.36
Glu	GAA	52	1.42
	GAG	21	0.58
Cys	UGU	36	1.60
	UGC	9	0.40

Table 4 continued

Amino Acid	Codon	Number	RSCU
Trp	UGA	69	1.60
	UGG	17	0.40
Arg	CGU	12	1.14
	CGC	6	0.57
	CGA	16	1.52
	CGG	8	0.76
Ser	AGU	37	0.77
	AGC	7	0.15
	AGA	71	1.47
	AGG	12	0.25
Gly	GGU	51	1.06
	GCC	10	0.21
	GGA	86	1.78
	GGG	46	0.95

RSCU refers to relative synonymous codon usage.
examined nad1 start codons in the 11 previously reported hymenopteran species, and the results revealed that either the intergenic spacers or the overlapping regions would be reduced in Perga condei [32], Vanhornia eucnemidarum [20] and three Nasonia species [21] if TTG is assigned as the start codon (Fig. 2). In Diadegma semiclausum [23],
Fig. 4 Predicted rrnL secondary structure in Evania appendigaster mitochondrial genome. Tertiary interactions and base triples are shown connected by continuous lines.
A 5' half of rrnL; B 3' half of rrnL. Symbols for base-pairings are as in Fig. 2.
Polistes humilis [22] and three bee species [18, 33], no TTG codon is found near the initial region of nad1. In two vespid species, Abispa ephippium and Polistes humilis, trrL is rearranged and rrnL is left upstream nad1. In A. ephippium, a TTG codon is present 3 bp downstream the identified start codon ATA. Since there is no standard way to define the exact boundaries of rRNAs, the criteria of reducing intergenic spacer and overlapping region could not be applied to assign the start codon. In conclusion, our results suggest that TTG is a possible start codon for nad1 in Hymenoptera [37, 40, 41].

Nine protein-coding genes use the termination codon TAA. Four protein-coding genes use incomplete stop codons: nad1 and nad2 use the truncated termination codon TA, and cox3 and nad4 use T, which is commonly reported in other invertebrates [18, 42]. The relative synonymous codon usage values show a biased use of A and T nucleotides in E. appendigaster (Table 4).

Fig. 5 Predicted rrnS secondary structure in Evania appendigaster mitochondrial genome. Symbols are as in Fig. 3.
tRNA genes

The length of tRNAs ranges from 61 to 70 bp. All tRNA genes have a typical cloverleaf structure except for trnS2 (Fig. 3). trnS2 could not be identified and folded using conventional tRNA search methods such as tRNAscan-SE. We manually found the location of trnS2 by comparisons with those identified in other insects and then determined the exact boundaries according to the secondary structure folded by eye. The D-stem pairings in the DHU arm are absent in *E. appendigaster* trnS2, which has also been reported in other insects [6, 18, 37, 43] and the rest of Metazoa [44, 45]. Since this atypical trnS2 is common in Coleoptera, Sheffield et al. [37] built an updated covariance model for automated annotation, which also performs well in other insects.

A total of 28 unmatched base pairs exist in the *E. appendigaster* mitochondrial tRNA secondary structures, 19 of which are G–U pairs, eight U–U and one A–A. The number of mismatches is relatively high in the *E. appendigaster* mitochondrial tRNAs compared with other insects, and even within Metazoa [46]. Mismatches in regions where the tRNA genes overlap with adjacent downstream genes could be corrected by 3′-RNA editing [47–50]. The 5′-parts of tRNA accepter stems are also found in *Acanthamoeba* [51] and some fungi [52]. Of the 28 mismatches, only four in trnQ, trnR and trnS1 are located in the overlapping regions in the accepter stem, indicating that other mechanisms might be involved to escape the effects of Muller’s ratchet in the *E. appendigaster* mitochondrial genome [53].

trnS2 and trnK use abnormal anticodons TCT and TTT, respectively, which have been found to be correlated with gene rearrangement [23].

rRNA genes

rrnL has a length of 1274 bp, with an A+T content of 79.7%. *rrnS* has a length of 747 bp, with an A+T content of 76.0%. The gene sizes are normal, but the A+T contents are lower than their counterparts in other hymenopteran species.

Both *rrnL* and *rrnS* conform to the secondary structure models proposed for these genes from other insects [23, 39, 54–56]. Forty-nine helices are present in *E. appendigaster* *rrnL* as in *D. melanogaster* [55] and *A. mellifera* [54], belonging to six domains (Fig. 4). H837 usually forms a long stem structure with a small loop in the terminal [23, 37, 54], but it forms a shorter stem and a larger loop in *E. appendigaster* as that in *D. melanogaster* [55]. The deduced structures of H2347 and H2520 are variable [54, 57, 58], but in *E. appendigaster* they are more similar to those from *A. mellifera* by Gillespie et al. (2006) than those from other insects [57, 58].

The secondary structure of *rrnS* contains 29 helices present in *D. virilis* [56] and *A. mellifera* [54], belonging to three domains (Fig. 5). Helix H39 could not be predicted, where a circle was formed by H27, H47, H367 and H500, and the sequences in between. Helix 47 is variable among different lepidopteran species, but the terminal portion of this stem is conserved [37], and in *E. appendigaster*, two loops were formed similar to *D. virilis* but different from two other hymenopteran species, *D. semiclausum* and *A. mellifera*, where a larger loop is present. H673 is well conserved in moths, where one stem with a bulge in the terminal is present [39, 59], and in *E. appendigaster*, two stem-loop structures are present as in *D. virilis* [56] and *D. semiclausum* [23], but different from that in *A. mellifera* [54], in which this structure is similar to moths. The structure of H1074 has been discussed in honey bee [54, 60, 61], and our predicted structure in *E. appendigaster* is consistent with that of Page (2000) and Gillespie et al. (2006).

Non-coding regions

One of the most interesting features in the *E. appendigaster* mitochondrial genome is the presence of five major non-coding regions of more than 20 bp: spacer 1 is 22 bp between trnQ and nad2, spacer 2 is 534 bp between trnK and trnD, spacer 3 is 244 bp between atp8 and atp6, spacer 4 is 94 bp between cob and nad1, and spacer 5 is 2325 bp between *rrnS-trnW* and *trnC-trnM-trnL*. Long intergenic spacers have been identified in several insect mitochondrial genomes [18, 20, 23, 40, 62, 63]. Although intergenic spacers appeared to be unique to individual species [37], conserved motifs have been found across all insects, and are proposed to be associated with mtTERM [37, 39, 64].

Fig. 6 mRNA loops for genes atp8-atp6 in *Evania appendigaster* mitochondrial genome. The box indicates start codon of atp6.
Spacer 1 shows limited conservation among hymenopteran species which possess it. In Hymenoptera, the tRNAs directly upstream nad2 are variable because of frequent gene rearrangements of the tRNAs between A+T-rich region and nad2 [23], therefore this spacer is unlikely to have any function in translation or transcription. However, we suggested that it is the product of gene rearrangement as in that in D. semiclausum [23]. Spacer 2 has an A+T content of 96.8%, composed of seven tandem repeat units “GTAATTTTAT”, twelve “AATAATAATTTT”, eight “AATAATAATTTT”, an initial sequence “TTATTAATAAAATTTTATTTTATTAATTTAATAAATTTTATTTTAT”, and a terminal sequence “AATAATAAT(TAA)8(TA)33AT’’. Spacer 3 has an A+T content of 76.2% and contains no repeat sequence although it is 224 bp long. As far as we know, no intergenic nucleotides between atp6 and atp8 have been found in the previously reported insect mitochondrial genomes, and furthermore, it is a common feature of metazoan mitochondrial genomes that atp8 and atp6 overlap [65]. It has been proposed that the secondary structure of the transcribed mRNA may facilitate cleavage between the abutting proteins [38, 66, 67]. We could map secondary structure as those in other insects [38, 46] (Fig. 6), which indicated that the presence of spacer 3 in E. appendigaster would not affect the cleavage of atp6 and atp8. Spacer 4 was found in another six hymenopteran species (Fig. 7). This intergenic spacer region may correspond to the binding site of mtTERM, a transcription attenuation factor [64], as evidenced by a 7 bp motif (ATACCTA) conserved across Lepidoptera [39] and a 5 bp (TACTA) motif conserved across Coleoptera [37]. In Hymenoptera, we found a 6 conserved motif (THACWW), which shows high similarity to those in Lepidoptera and Coleoptera. In P. condei and D. semiclausum, although there is only a 2 bp intergenic spacer and a 7 bp overlapping region between trnS1 and nad1, respectively, we could still find conserved motifs in both species nearby regions between trnS1 and nad1. This may indicate wrong annotations of this region in both genomes, or the existence of the motif within genes. Spacer 5 is proposed as the A+T-rich region because of its location between trnS-trnW and trnC-trnM-trnL and high A+T content (85.6%). It is one of the longest A+T-rich regions in the sequenced insect mitochondrial genomes [23, 68]. Twenty-three tandemly arranged units of “GTCATTATTAAATTTTTAATA” are present in the middle of the A+T-rich region. This region, characterized by five elements [2, 5], is believed to function in the initiation of replication and control of transcription. However, these elements in the E. appendigaster mitochondrial genome are not arranged in the conserved pattern.

Acknowledgments We thank Jing-xian Liu for his collecting the specimens, Dr. Andrew R. Deans (North Carolina State University, USA) for his identification of the species, and Prof. Michael J. Sharkey (University of Kentucky, USA) for his improving the manuscript. Funding for this study was provided jointly by the National Science Fund for Distinguished Young Scholars (No. 30625006), 973 Program (No. 2006CB102005), the National Science Foundation of China (30499341, 30570193, 30700063, 30871675), the National S&T Infrastructure Project (2005DKA21402, 2005DKA21105), and the National Special Basic Research Funds (2006FY110500-3, 2006FY120100).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216
2. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780
3. Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol 4:6–11
4. Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455
5. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochim Syst Ecol 25:99–120
6. Shao RF, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370
7. Shao R, Campbell NJH, Barker SC (2001) Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, *Heterodoxus macropus* (Phthiraptera). Mol Biol Evol 18:858–865
8. Shao RF, Campbell NJH, Schmidt ER, Barker SC (2001) Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol 18:1828–1832
9. Negrisolo E, Minelli A, Valle G (2004) Extensive gene order rearrangement in the mitochondrial genome of the centipede *Scutigera coleoptrata*. J Mol Evol 58:413–423
10. Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16:298–309
11. Covacu C, Shao R, Cameron SL, Barker SC (2006) Extraordinary amounts of gene rearrangement in the mitochondrial genomes of lice (Insecta: Phthiraptera). Insect Mol Biol 15:63–68
12. Cameron SL, Johnson KP, Whiting MF (2007) The mitochondrial genome of the screamer louse *Bothriometopus* (Phthiraptera: Ischnocera): effects of extensive gene rearrangements on the evolution of the genome. J Mol Evol 65:589–604
13. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial genes is correlated with the evolution of parasitism (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome 51:800–808
14. Wei SJ, Shi M, He JH, Sharkey MJ, Chen XX (2009) The complete mitochondrial genome of *Diaedema semilunatum* (Hymenoptera: Ichneumonidae) indicates extensive independent evolutionary events. Genome 52:308–319
15. Dowton M, Austin AD (1995) Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. J Mol Evol 41:958–965
16. Kurabayashi A, Sumida M, Yonekawa H, Glaw F, Vences M, Austin AD, Diement K, Stevens J (2008) Mitochondrial genome of the scorpion spider *Anabrus simplex* (Arthropoda: Insecta) and genome descriptions of six new bee species. Zootaxa 1668:521–548
17. Sheffield NC, Song H, Cameron SL, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25:2490–2509
18. Fenn JD, Cameron SL, Whiting MF (2007) The complete mitochondrial genome of the Mormon cricket (*Anabrus simplex*): Tetrigiidae: Orthoptera) and an analysis of control region variability. Insect Mol Biol 16:239–252
19. Goddard JM, Wolstenholme DR (1980) Origin and direction of replication in mitochondrial DNA molecules from the genus *Drosophila*. Nucleic Acids Res 8:741–757
20. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annu Entomol Soc Am 87:651–701
21. Liu H, Flook P, Li Y, Li Z, Cronin A, Liu P, Liu H (2003) PrimerScan: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
24. Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of *Perga conderi* (Hymenoptera: Syrphidae). Mol Phylogenet Evol 34:469–479
25. Dowton M, Austin A, Dillon N, Bartowsky E (1997) Molecular phylogeny of the apocritan wasps: the Proctotrupoidea and Eumenioidea. Syst Entomol 22:245–255
26. Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668:521–548
27. Simon C, Fuller P, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annu Entomol Soc Am 87:651–701
28. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Syst 37:545–579
29. Lowe TM, Eddy SR (1997) IRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
30. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
32. Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of *Perga conderi* (Hymenoptera: Syrphidae). Mol Phylogenet Evol 34:469–479
33. Silvestre D, Arias MC (2006) Mitochondrial tRNA gene translocations in highly eusocial bees. Genet Mol Biol 29:572–575
34. Macey JR, Larson A, Ananjeva NB, Fang ZL, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104
35. San Mauro D, Gower DJ, Zardoya R, Wilkinson M (2006) A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol 23:227–234
36. Goddard JM, Wolstenholme DR (1980) Origin and direction of replication in mitochondrial DNA molecules from the genus *Drosophila*. Nucleic Acids Res 8:741–757
37. Sheffield NC, Song H, Cameron SL, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25:2490–2509
38. Fenn JD, Cameron SL, Whiting MF (2007) The complete mitochondrial genome of the Mormon cricket (*Anabrus simplex*): Tetrigiidae: Orthoptera) and an analysis of control region variability. Insect Mol Biol 16:239–252
39. Cameron SL, Whiting MF (2008) The complete mitochondrial genome of the tobacco hornworm, *Manduca sexta*. (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408:112–123
40. Bae JS, Kim I, Sohn HD, Jin BR (2004) The mitochondrial genome of the firefly, *Pyrocoelia rufa*: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol 32:978–985
41. Mitchell SE, Cockburn AF, Seawright JA (1993) The complete mitochondrial genome of the tobacco hornworm, *Manduca sexta*. (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408:112–123
43. Beard CB, Hamm DM, Collins FH (1993) The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2:103–124

44. Chimnaronk S, Jeppesen MG, Suzuki T, Nyborg J, Watanabe K (2005) Dual-mode recognition of noncanonical tRNAs Ser by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 24:3369–3379

45. Steinberg S, Cedergren R (1994) Structural compensation in atypical mitochondrial tRNAs. Nat Struct Biol 1:507–510

46. Kim I, Cha SY, Yoon MH, Hwang JS, Lee SM, Sohn HD, Jin BR (2005) The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Gene 353:155–168

47. Yokobori S, Paczeko S (1999) tRNA editing in metazoans. Nature 377:490

48. Yokobori S, Paabo S (1995) Transfer RNA editing in land snail mitochondrial rRNA. J Mol Biol 265:95–99

49. Tomita K, Ueda T, Watanabe K (1996) RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr). Nucleic Acids Res 24:4987–4991

50. Laforest MJ, Roewer I, Lang BF (1997) Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG ‘stop’ codons recognized as leucine. Nucleic Acids Res 25:626–632

51. Page RDM (2000) Comparative analysis of secondary structure of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching. Nucleic Acids Res 28:3839–3845

52. Dotson EM, Beard CB (2001) Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10:205–215

53. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

54. Cannone JJ, Garnery L, Solignac M (1991) Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics 128:393–403

55. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

56. Campbell NJH, Barker SC (1999) The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Mol Biol Evol 16:732–740

57. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

58. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

59. Lewis DL, Farr CL, Kaguni LS (1995) Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol 4:263–278