Past and future ocean warming

Lijing Cheng1,2✉, Karina von Schuckmann3, John P. Abraham4, Kevin E. Trenberth5,6, Michael E. Mann7, Laure Zanna8, Matthew H. England9,10, Jan D. Zika10,11, John T. Fasullo5, Yongqiang Yu1, Yuying Pan1,2, Jiang Zhu1,2, Emily R. Newsom6,8, Ben Bronsemaer12 and Xiaopei Lin13,14

Abstract | Changes in ocean heat content (OHC) provide a measure of ocean warming, with impacts on the Earth system. This Review synthesizes estimates of past and future OHC changes using observations and models. The top 2,000 m of the global ocean has significantly warmed since the 1950s, gaining 351 ± 59.8 ZJ (1 ZJ = 1027 J) from 1958 to 2019. The rate of warming increased from <5 to ~10 ZJ yr−1 from the 1960s to the 2010s. Observed area-averaged warming is largest in the Atlantic Ocean and southern oceans at 1.42 ± 0.09 and 1.40 ± 0.09 × 1014 J m−2, respectively, for the upper 2,000 m over 1958–2019. These observed patterns of heat gains are dominated by heat redistribution. Observationally constrained projections suggest that historic ocean warming is irreversible this century, with net warming dependent on the emission scenario. By 2100, projected warming in the top 2,000 m is 2–6 times that observed so far, ranging from 1,030 [839–1,228] ZJ for a low-emission scenario to 1,874 [1,637–2,109] ZJ for a high-emission scenario. The Pacific is projected to be the largest heat reservoir owing to its size, but area-averaged warming remains strongest in the Atlantic and southern oceans. Ocean warming has extensive impacts that pose risks to marine ecosystems and society. The projected changes necessitate a continuation and improvement of observations and models, along with better uncertainty estimation.

Increasing anthropogenic greenhouse gas (GHG) concentrations cause a positive Earth energy imbalance (EEI), with resulting surplus heat in the climate system increasing ocean heat content (OHC)1–3 (FIG. 1a, F1). Unprecedented oceanic warming has been observed since at least the 1950s, reaching record values from 2012–2021 (REFS. 5, 6). For instance, the vast majority of radiative energy trapped by GHGs is ultimately absorbed at the ocean surface. Part of the energy is stored in the ocean, but this warming leads to increased longwave radiation and surface evaporation, cooling the ocean12,13 (FIG. 1a, F2). Increased evaporation, in turn, leads to moistening of the atmosphere, released as latent heat during precipitation14, invigorating the hydrological cycle15 (FIG. 1a, F3). In response, the sea surface salinity pattern is amplified, with salty regions getting saltier and fresh regions getting fresher14. These temperature and salinity changes also alter ocean density and circulation, triggering global ocean heat uptake (OHU)16,17. Ocean warming also affects the Earth’s surface albedo18–20, and sea-ice and ice-sheet21,22 melt processes, increasing OHU11,23 (FIG. 1a, F4 and F5).

Earth energy imbalance
EEI. The net downwelling radiation at the top of the atmosphere, represented as the balance of absorbed solar radiation (allowing for reflection and scattering) and outgoing longwave radiation.

Ocean heat content
OHC, or ocean heat storage (OHS). A change or anomaly of the thermal energy of the ocean assumed to have a fixed volume (Vx, y, z, in units of J), and vertical integration (Vx, y, in units of J m−2). Calculated as OHC:
\[\frac{\partial}{\partial t} \int_{x,y,z} \rho(T-\theta) \, dV = C_{\text{ghg}} \int_{x,y,z} \rho(T-\theta) \, dV + \int_{x,y,z} \rho C_{\text{water}} \frac{\partial T}{\partial t} \, dV \]
where ρ is a constant of ~5.991 J kg K−1, ρ is potential density in kg m−3 and T is conservative temperature measured in degrees Celsius.

Increasing anthropogenic greenhouse gas (GHG) concentrations cause a positive Earth energy imbalance (EEI), with resulting surplus heat in the climate system increasing ocean heat content (OHC)1–3 (FIG. 1a, F1). Unprecedented oceanic warming has been observed since at least the 1950s, reaching record values from 2012–2021 (REFS. 5, 6). For instance, the vast majority of radiative energy trapped by GHGs is ultimately absorbed at the ocean surface. Part of the energy is stored in the ocean, but this warming leads to increased longwave radiation and surface evaporation, cooling the ocean12,13 (FIG. 1a, F2). Increased evaporation, in turn, leads to moistening of the atmosphere, released as latent heat during precipitation14, invigorating the hydrological cycle15 (FIG. 1a, F3). In response, the sea surface salinity pattern is amplified, with salty regions getting saltier and fresh regions getting fresher14. These temperature and salinity changes also alter ocean density and circulation, triggering global ocean heat uptake (OHU)16,17. Ocean warming also affects the Earth’s surface albedo18–20, and sea-ice and ice-sheet21,22 melt processes, increasing OHU11,23 (FIG. 1a, F4 and F5).

Ocean heat redistribution processes, including circulation, mixing and convection, eventually spread this additional heat to the ocean interior14–16 (FIG. 1a, F6). With this heat, anthropogenic CO2 is also absorbed and transported, leading to a synchronous increase of OHC and ocean acidification17,24. However, through increased stratification and reduced uptake capacity and efficiency, warming decreases the efficiency of the oceanic carbon sink, further enhancing atmospheric CO2, and ocean warming, a positive feedback25,26 (FIG. 1a, F7).
In addition, ocean ecosystems and biological processes are also affected by ocean warming, and these then alter the carbon uptake and storage. Thus, ocean warming threatens the fundamental conditions that make the Earth conducive to sustaining life (Fig. 1), necessitating better understanding of its changes.

In this Review, we outline past and future ocean warming, its drivers and consequences. We begin by outlining the current ocean observing system for monitoring ocean warming, followed by discussion of contemporary global and regional OHC changes. To support adaptation and mitigation, model projections of ocean warming are then provided. The far-reaching consequences of ocean warming on physical, human and biological systems of the Earth system are subsequently outlined, before ending with a discussion of the remaining challenges and outlook for monitoring and understanding ocean warming.

Observing and estimating OHC

The Global Ocean Observing System (GOOS) is essential for providing reliable estimates of ocean warming. The GOOS instrument types, geographical coverage and post-processing techniques have evolved rapidly. Originally, subsurface OHC observations relied on hydrographic measurements from Nansen bottles (dominating 1900–1940 GOOS), mechanical bathythermographs (MBTs; dominating within 1940–1970) and expendable bathythermographs (XBTs; dominating within 1970–2001).

From 1999, however, the international Argo system of autonomous profiling floats revolutionized oceanographic observations, measuring the upper 2,000 m at unprecedented resolution, and dominating ocean observations since about 2005. Currently, ~3,900 profiling floats constitute the array, providing a system to make near-global measurements of the Earth’s open ocean, with a target resolution of one profile every 3° × 3° every 10 days. However, the Argo data are much more limited in polar areas, shallow and coastal regions, in some major current systems, including the Indonesian throughflow (ITF), and in the water column below 2,000 m. Because the Argo network has incomplete global coverage, the global upper-2,000-m OHC rates based on Argo-only products can underestimate the rate of change by 10–20%.

Deep Argo has been developed to better capture measurements at 4,000–6,000 m with a resolution target of one profile every 5° × 5° every 10 days. So far, ~170 Deep Argo floats have been regionally implemented out of the necessary 1,200. At a minimum, Argo floats measure temperature and salinity, but are increasingly also measuring biological and chemical properties.

These Argo data are complemented by other observation platforms, including XBTs, MBTs, Nansen bottles, ship-based CTDs (conductivity–temperature–depth sensors), gliders and moored arrays, offering opportunities for OHC comparisons and data acquisition in regions where Argo does not operate. For instance, the global XBT network still provides continuous and high-resolution (eddy-resolving) temperature profile data along repeated transects and critical channels.

The Marine Mammals Exploring the Ocean Pole to Pole (MEOP) programme — which equips marine animals, primarily southern elephant seals or other pinnipeds, with measurement devices — has also provided 600,000 vertical profiles in high-latitude coastal regions since about 2004. Ice-tethered profilers offer further data in high latitudes, obtaining temperature and salinity profiles with excellent vertical resolution.

Synthesizing all these in situ measurements into estimates of OHC requires consideration of quality control, bias correction, gap-filling (mapping) and uncertainty. For example, the first estimate of OHC indicated long-term ocean warming in the upper 3,000 m over 1948–1998, and a particularly warm period from the 1970s to the early 1980s. (Supplementary Table 1). However, this pronounced warm period was found to be a spurious consequence of systematic errors in XBT data, as similarly identified in MBT and Argo data. These data quality issues and error corrections must be taken into account (Supplementary Table 1). The mapping method — how a global map is created from incomplete and inhomogeneous observations — also introduces uncertainty. Many mapping strategies based on an objective analysis approach result in a conservative bias toward low-magnitude changes by assuming no change in less-sampled regions (Supplementary Table 1). In doing so, some OHC estimates exhibit unduly weak long-term trends. Several methods have been proposed to resolve these mapping challenges arising from data scarcity, including: the use of model simulations to guide the reconstruction; incorporating SST and/or sea level information; combining five years of data for a pentadal estimate; and using machine learning (Supplementary Table 1).

In addition to these direct methods to observe and estimate OHC, several alternative approaches are also available, each with their own limitations (Supplementary Table 1). Indirect methods can be used to infer OHC change from physical relationships between OHC and other variables. For instance, altimetry and space gravimetry have been used since the early 2000s to estimate OHC based on a sea level budget constraint, and SST used based on an assumption that temperature...
anomalies behave as a passive tracer\(^{69,70}\). These indirect estimates rely on simplified assumptions, introduce additional uncertainty (Supplementary Table 1) and exhibit larger spread (Fig. 2), but can complement direct estimates.

Reanalyses can further be used to infer OHC change, wherein data assimilation of various observations constrains a model\(^{71,72}\). These ocean reanalyses produce 4D (latitude, longitude, depth and time) gridded estimates of all variables, making them very suitable for mechanistic research. However, most reanalyses do not conserve properties (for example heat and salt budget) during the assimilation step and so are not dynamically consistent\(^{73,74}\). Comparing these reanalysis datasets

Fig. 1 | The role of ocean warming in the climate system.

a | Principal processes and feedback loops (F\(_x\)) between ocean warming and physical and biogeochemical processes of the Earth system. The intersections between Earth system components indicates cycle and/or system coupling.

b | Schematic representation of the linkage between ocean warming and multiple observed changes in the Earth system. Orange upward arrows indicate a global increase in the particular process, and green downward arrows a global decrease. Ocean warming is a key component of the Earth system, bridging key climate cycles and driving changes in Earth system processes and components.
The land, atmosphere and upper ocean (surface and mixed layer) respond relatively quickly (normally in years) to surface radiative forcing, whereas the deep ocean typically adjusts over centuries to millennia. Surface warming is approximately determined by cumulative emissions up to a given point in time, owing to a near-cancellation between the positive climate commitment and negative carbon cycle commitment. This relationship implies that zero CO₂ emissions (assuming constant non-CO₂ emissions) lead to near-constant global surface temperature — a finding that has critical implications for climate-change mitigation. However, the subsurface ocean responds far more slowly to anthropogenic forcing, in part owing to the slow nature of large-scale ocean circulation. Future subsurface ocean warming therefore has a much longer commitment time. Even after net zero emissions are reached, the ocean subsurface will continue to warm as heat is transported downwards into deeper ocean waters, and a positive Earth energy imbalance remains until ocean and land carbon uptake sufficiently reduces atmospheric CO₂ concentrations. Ocean heat content (OHC) and sea level rise both integrate ocean temperature changes below the surface, and they continue to increase long after surface temperature stabilizes. This fundamental distinction between surface warming and OHC increases has important implications for both mitigation and adaptation strategies. Furthermore, as the measurements of sea surface temperatures (SSTs) rely on different instruments, the observations of SSTs are fundamentally different in their temporal and spatial coverage and temporal extent compared to subsurface observations and OHC estimates.

OHC changes since the mid-twentieth century

Various estimates of OHC are available since 1957/1958 when a large amount of hydrographic data was collected for the International Geophysical Year. Using three estimates that have been bias-corrected and have a valid evaluation procedure, global (approximately 80°S to 90°N) OHC changes at 0–700 m and 0–2,000 m over 1958–2020 are now described, as well as those at depths >2,000 m. To reduce the effects of high-frequency climate variability, a locally weighted scatterplot smoothing (LOWESS) approach is used to calculate mean warming rates.

Global upper-ocean change. Robust warming is apparent in the upper layers of the ocean since the late 1950s (Fig. 2a,c and Table 1). For instance, at 0–700 m, globally averaged OHC increased by 229.5 ± 33.8 ZJ (1 ZJ = 10²¹ J; ±1.6σ error range represents the 90% confidence interval) from 1958 to 2019, equating to a mean ocean warming rate of 3.8 ± 0.6 ZJ yr⁻¹ (1 ZJ yr⁻¹ ≈ 0.062 W m⁻²). Over 0–2,000 m, these OHC changes are larger, owing to a greater ocean volume, and reach 351.4 ± 59.8 ZJ over the same time period, equating to a mean ocean warming rate of 5.8 ± 1.0 ZJ yr⁻¹. These estimates are generally consistent with past quantifications (Table 1), albeit with some variability in trends and uncertainty owing to differences in data selection, trend estimates and methodological approaches (Supplementary Information).

These warming rates have increased over time (Fig. 2b,d). For instance, OHC at 0–700 m increased from ~0–3.5 ZJ yr⁻¹ in the 1960s to ~4.8–8.0 ZJ yr⁻¹ by the 2010s. OHC at 0–2,000 m increased from ~0–4.8 ZJ yr⁻¹ to ~8.0–11.5 ZJ yr⁻¹ over the same time periods. This quantification of acceleration is valid for >15-year periods, but its detection can be hampered by short-term fluctuations in OHC. At interannual timescales, global OHC fluctuations are dominated by El Niño–Southern Oscillation (ENSO) events. During and after El Niño events, OHC decreases as some heat makes its way into the atmosphere, contributing to a temporal global surface warming. Major volcanic eruptions have also caused interannual to decadal cooling phases (Agung in 1963, El Chichón in 1982 and Pinatubo in 1991).

Nevertheless, a shorter time series of EEl also reported an increase in rates since the early 2000s, and the interplay between long-term change and interannual natural variations still needs to be elucidated. A robust long-term acceleration is also evident in CMIP5 and CMIP6 simulations, highlighting the anthropogenic connection to this accelerated warming.

Global deep and full-depth changes. Ocean warming is also evident at depth (Fig. 2e and Table 1). For instance, from 1958 to 2019, global OHC gain below 2,000 m is estimated at 26.0 ± 16.6 ZJ, or 0.43 ± 0.27 ZJ yr⁻¹. This estimate assumes that anthropogenic influence is not detectable before 1991 owing to the long response time of the deep ocean, but such deep layers might be affected by past climates that could offset a portion of the anthropogenic signal. This post-1991 uptake assumption has an observational basis. For example, high-quality hydrographic survey data indicate notable ocean warming of 0.06 ± 0.03 W m⁻² (0.96 ± 0.48 ZJ yr⁻¹) since 1992. These warming signals are confirmed by other direct and indirect estimates, albeit with variability in magnitude, including from machine-learning and variational minimization approaches.

OHC estimates at 0–2,000 m and below-2,000 m can be combined to yield total OHC changes at full depth. In doing so, it is estimated that ocean warming was 378.4 ± 64.5 ZJ from 1958 to 2019 (6.20 ± 0.98 ZJ yr⁻¹).
Fig. 2 | Observed and projected ocean heat content changes.

a | Observed change in global annual 0–700-m ocean heat content (OHC) from 1955 to 2021, using various time series (listed by first author)\(^1\)\(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\); Zanna represents the average of three estimates using different sea surface temperature datasets. Solid and dashed lines represent direct and indirect estimates, respectively, and shading indicates the 90% confidence intervals (±1.64\(\sigma\)). OHC anomalies are relative to a 2005–2019 baseline.

b | Select observed (1955–2021) and modelled (1955–2100) rates of 0–700-m OHC change. Model time series are from CMIP6 and CMIP5 (for 0–2,000 m only), with bold lines depicting the ensemble means of historical simulations (1955–2014 for CMIP6 and 1955–2005 for CMIP5) and future projections under different scenarios (2021–2100) (Supplementary Table 3); shading represents the model spread (±1\(\sigma\)). Preindustrial control runs are used to adjust for simulation drift (Supplementary Information).

c | As in **a** but for 0–2,000 m (rEFs.\(^8\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\)\(^14\)\(^15\)\(^16\)\(^17\)).

d | As in **b** but for 0–2,000 m, and also including rates of change from CMIP5 (dashed lines).

e | As in **a** but for below 2,000 m (rEFs.\(^18\)\(^19\)\(^20\)\(^21\)\(^22\)).

f | As in **b** but for below 2,000 m. The ocean has been warming at an increasing rate since the 1950s, with warming irreversible this century.
and $333.8 \pm 53.9\,\text{ZJ}$ from 1971 to 2018 ($7.10 \pm 1.15\,\text{ZJ yr}^{-1}$), reinforcing evidence of OHC acceleration. These quantifications are broadly consistent with other direct and indirect results5,38,59,63,69, but the estimate is \sim17% smaller than IPCC-AR68 for the period of 1971–2018 (\textsuperscript{REF5}) (TABLE 1). Nevertheless, full-depth OHC estimates become more consistent after 1993 owing to increased data availability, totalling $245.7 \pm 55.3\,\text{ZJ}$ in this case and $263.0 \pm 112.3\,\text{ZJ}$ for IPCC-AR68 (\textsuperscript{REF5}) (Supplementary Table 2).

Thus, as a global average, OHC has increased dramatically at the surface, at depth, and over the entire water column. These changes are particularly evident after 1990 and are accelerating over time. However, these global estimates mask regional contrasts between ocean basins.

Observed regional patterns of change

At the regional scale, there is distinct variability in surface and deeper OHC changes, with stronger area-averaged warming in the low- and middle-latitude Atlantic Ocean and southern oceans compared with other basins (FIG. 3). Here, OHC changes are assessed in six regions: the Pacific Ocean (35°S to 60°N), Atlantic Ocean (35°S to 64°N), Indian Ocean (35°S to 30°N), southern oceans (78°–35°S; the broad region south of Africa), the Mediterranean Sea and the Arctic Ocean. Given that the Cheng et al.7 data-set minimizes regional errors through both mapping and instrumental bias correction100–102, it is used to calculate these regional OHC changes for the upper 2,000 m (see Supplementary Fig. 1 for other datasets). Quantification of deep OHC below 2,000 m is limited by data availability and is thus not thoroughly discussed.

Pacific Ocean

Changes in area-averaged Pacific Ocean OHC tend to resemble those of the global mean. Total OHC increased by $71.6 \pm 8.2\,\text{ZJ}$ from 1958 to 2019 for the upper 2,000 m (\sim20% of the global upper-2,000-m OHC increase), with an area-averaged change of $0.49 \pm 0.06 \times 10^9\,\text{J m}^{-2}$ (FIG. 5c). This area-averaged change is comparatively smaller than other basins (FIG. 5a) owing to the large Pacific Ocean volume, and the less effective downward transfer of heat arising from an absence of deep water formation north of 35°S and limited mode water and intermediate water formation in the North Pacific103.

In addition to these long-term area-averaged changes, there is pronounced spatial and temporal variability. Prior to 1990, a statistically insignificant trend of $0.05 \pm 0.21\,\text{ZJ yr}^{-1}$ is observed, followed by a substantial OHC increase of $2.42 \pm 0.29\,\text{ZJ yr}^{-1}$ since 1991 (FIG. 5c). Moreover, the Pacific Ocean warming pattern is characterized by weak and statistically insignificant trends in the western basin, and weak but robust warming (\sim0.25–0.5 W m-2) in the east (FIG. 5a). Northeast Pacific regional warming is also significant and characterized by prolonged marine heat waves (MHWs) from 2014 to 2021 (\textsuperscript{REFS104,105}).

This spatial and temporal variability emerges due to the presence of strong modes of climate variability, particularly ENSO79,106–108, the Interdecadal Pacific Oscillation (IPO) or Pacific Decadal Oscillation109–111, and Atlantic Multidecadal Variability (AMV)112,113. For instance, in the tropical Pacific, OHC decreases by \sim0.1–0.3 W m-2 K-1 during the transition from El Niño to La Niña. This change is linked to ocean heat release associated with anomalous warming of surface waters79 and subsequent evaporative cooling, in turn causing warmer global-mean surface temperatures during El Niño years114. Besides, ENSO also causes regional OHC variability from month to month associated with an adiabatic redistribution of heat both laterally and vertically in the tropical ocean, resulting in a local monthly OHC change up to 100 W m-2 K-1 and an opposite OHC variation between 0–100 m and 100–300-m layers79 (FIG. 5c).

Although interannual Pacific OHC fluctuations are primarily influenced by ENSO, decadal-scale changes are dominated by the IPO. During a negative phase, stronger trade winds and an enhanced shallow tropical
overturning increase OHU and subsurface heat storage. This greater OHC increase is associated with a slowdown in global-mean surface air temperature increases. The IPO, along with ENSO, also influences the ITF and thus heat redistribution between the Pacific and Indian Oceans. Again during a negative IPO phase (or a La Niña event), model and observational evidence indicates that a substantial amount of heat can be transported from the Pacific to the Indian Ocean. In the northwest Pacific, however, AMV governs decadal variability in North Pacific subtropical mode water and thereby OHC change. For instance, during a positive AMV, as observed since ~1980, warming anomalies in the North Atlantic Ocean led to a poleward expansion of the westerly wind belt and the subtropical ocean circulation, and a resulting large OHC anomaly in the northwest Pacific Ocean. As a result of this decadal variability, OHC trends calculated over these timescales are influenced by the start and end points of the analysis, and are therefore somewhat uncertain.

Atlantic Ocean. OHC changes in the Atlantic are larger than those observed in the Pacific (Fig. 5a). Indeed, in the upper 2,000 m, OHC increased by 117.2 ± 7.5 ZJ over 1958–2019 (~33% of the global upper-2,000-m OHC increase), with an area-averaged warming of 1.42 ± 0.09 × 10^9 J m⁻², ~3 times that for the Pacific Ocean (Fig. 5c). Spatial and temporal variability is also evident. For example, the Atlantic OHC trend doubled from 1.29 ± 0.19 ZJ yr⁻¹ in 1958–1990 to 2.66 ± 0.27 ZJ yr⁻¹ in 1991–2019, indicating an earlier onset of warming in the Atlantic than the Pacific. The Atlantic is further host to some of the largest rates of regional OHC changes, >1 W m⁻² in most regions between about 35°S and 40°N, but exceeding 2 W m⁻² in the Gulf Stream of the North Atlantic (Fig. 5a).

Yet, whereas warming dominates the Atlantic average and regional signatures, cooling and a resultant reduction in heat content is evident at subpolar latitudes of the North Atlantic (~45–70°N, ~70°W to 0°) down to >800 m depth. The mean rate of OHC change is ~0.6 W m⁻² in this region since 1958. This ‘cold blob’ and the apparent cooling/warming dipole are a predicted consequence of circulation changes and heat redistribution in response to GHG and aerosol forcing. Notably, these circulation responses include a slowdown of Atlantic Meridional Overturning Circulation (AMOC), the fingerprint of which closely matches that of the OHC pattern. However, there is a lack of long-term observational evidence for this AMOC slowdown, with some direct and indirect estimates suggesting a subtle reduction in meridional heat transport at 26°N in the Atlantic, in concert with fluctuations in the North Atlantic Oscillation (NAO). Moreover, modeling results are inconsistent in terms of the spatial pattern and timing of the cold blob in response to AMOC changes, partly because of the incoherence of AMOC at different latitudes. As such, changes in the AMOC and connections to the cold blob are still difficult to reconcile.

Atmospheric and air–sea interactions are vital processes in determining these North Atlantic OHC changes. There have been substantial changes in the atmospheric circulation over the subpolar North Atlantic, including a northward movement of the jet stream and increased storminess. Moreover, in the subarctic region where the cold blob is located, there is substantial heat loss attributable to intensified local winds associated with an NAO-like atmospheric circulation pattern during those winters. A positive NAO favours strong westerly winds across the Atlantic mid-latitudes, bringing cooler drier air from North America and leading to increased winter surface heat and moisture fluxes into the atmosphere. This elevated surface flux cools the ocean, increases deep water formation in the Labrador Sea area, and leads to a stronger AMOC several years later. North Atlantic subpolar cooling has also been traced to the remote impact of Indian Ocean via atmospheric teleconnections.

Indian Ocean. In the Indian Ocean, OHC changes have been more subdued until the late 1990s. Here, total upper-2,000-m warming is 32.1 ± 4.0 ZJ from 1958 to 2019 (accounting for ~9% of the global upper-2,000-m OHC increase), and area-averaged warming 0.70 ± 0.08 × 10^9 J m⁻². Although the total Indian OHC increase is smaller than other basins because of its area, this area-averaged warming is slightly larger than the Pacific Ocean but much smaller than the Atlantic Ocean. Observational estimates suggest a statistically insignificant trend of ~0.05 ± 0.10 ZJ yr⁻¹ from 1958 to 1990, consistent across different datasets (Supplementary Fig. 1). However, from the late 1990s, rapid warming is evident, reaching ~1.21 ± 0.14 ZJ yr⁻¹ from 1991 to 2019, about half of the Pacific warming during the same period. The weak warming trend before 2000 has been attributed to interdecadal changes in the Indo-Pacific Walker circulation and a corresponding upper-layer cooling of the tropical Indian Ocean, moderating GHG-induced warming. By contrast, the unprecedented rapid warming since 2000 has been linked to increased wind-driven heat transport in the ITF during the negative phase of the IPO. Local wind and heat flux forcing also had a substantial contribution.

In addition to these decadal-scale fluctuations, there is also substantial year-to-year variability. For example, 12 ZJ of heat was lost from 2015 to 2018, with a similar magnitude of recovery from 2019 to 2020 (Fig. 5a). These pronounced interannual fluctuations in Indian Ocean heat content are partly controlled by ENSO via its atmospheric teleconnection to the Indian Ocean basin mode and impacts on the ITF. During the 2015/2016 super El Niño event, for example, an unprecedented reduction of ITF volume and heat transport was responsible for the sharp reduction of OHC in the Indian Ocean. The Indian Ocean is also modulated by Southern Ocean variability and climate trends, including the observed poleward migration of westerly winds, a southward shift of the subtropical gyre and resulting midtidede trends in regional OHC over the subtropical southern Indian Ocean.

Southern oceans. Significant warming trends have also been identified over the Southern Oceans, defined here as the entire region south of 35°S. Total warming in the upper 2,000 m is estimated at 126.6 ± 8.1 ZJ from...
1958 to 2019 (accounting for ~36% of the global upper-2,000-m OHC increase), equating to $1.40 \pm 0.09 \times 10^9$ J m$^{-2}$ (Fig. 3f). The rate of southern oceans warming has almost doubled from 1.49 ± 0.23 ZJ yr$^{-1}$ over 1958–1990 to 2.72 ± 0.29 ZJ yr$^{-1}$ over 1991–2019, and is consistent across datasets (Supplementary Fig. 1). Hence the
Although present in all basins, ocean warming is unevenly distributed, with future warming dependent on socioeconomic scenarios.

The southern oceans act as the largest heat reservoir since the 1950s, holding twice the excess anthropogenic heat as the Pacific. This OHC trend is broadly consistent with that of the Atlantic, which collectively reveal more intensive local warming than other basins.

In the southern oceans, these strongest regions of warming are concentrated on the northern flank of the main fronts of the Antarctic Circumpolar Current (ACC) (Fig. 3h) (note also distinct surface cooling north of the Ross Sea168,169). These long-term OHC changes are primarily attributable to greenhouse gas forcing, with a secondary role of stratospheric ozone depletion170–172, via several processes. For example, wind-driven upwelling of unmodified deep water keeps surface ocean cold, and the cold water absorbs anthropogenic heat which is then exported to the northern flank of the ACC by the background overturning circulation. There, it is subducted in the deep mixed layers formed north of the ACC172,173. These deep mixed layers are associated with the formation of subantarctic mode water174,175, and, in turn, Antarctic Intermediate Water — it is these waters that are absorbing significant quantities of anthropogenic heat176. However, model limitations along with sparse measurements have hampered understanding of the southern oceans’ changing hydrography176,177. For example, theoretical predictions and high-resolution ocean modelling suggest that the observed strengthening of the westerly winds would drive an increase in eddy activity without changing the mean ACC transport, because the energy cascades rapidly into small-scale eddy fields178–180. This effect should, in turn, impact ocean interior mixing179 and ocean heat content trends, but modern-day climate models do not generally resolve mesoscale eddies over the southern oceans.

Other processes are also thought to be important in driving OHC changes to the north of the ACC. For instance, lateral currents driven by buoyancy and steered by topography are associated with an observed acceleration of the zonal geostrophic currents within 45°S to 60°S. The change of currents leads to anomalous heat transport that relates to the pattern of OHC174. Moreover, freshening, linked to an amplification of the global hydrological cycle and sea-ice and ice-shelf changes, has weakened entrainment of subsurface warm water and could regulate warming patterns in the southern oceans175,176. Furthermore, the change in Antarctic sea-ice extent (a decrease since late 2016 after decades of increase) is probably associated with atmospheric circulation variations (the southern annular mode), and then could regulate the surface heat flux and OHC177,178.

In addition, the Tasman Sea has also witnessed substantial OHC increases184,185, particularly near southeastern Australia (Fig. 3a). Changes here are potentially linked to a southward migration of the East Australia Current extension186 and a reduction in the ITF, linked to heat redistribution by variability in ocean circulation187.

Abyssal ocean warming is consistent with a reduced volume of Antarctic Bottom Water entering the deepest ocean layers. This abyssal warming has been linked to a meltwater-induced slowdown of the lower cell of the global meridional overturning circulation188, which would be consistent with abyssal OHC changes being largely due to heat redistribution, and not via anthropogenic heat uptake within the lower overturning cell.

The Mediterranean Sea. In the Mediterranean Sea, upper-2,000-m OHC increased by 3.3 ± 0.4 ZJ from 1958 to 2019, with area-averaged warming of 1.11 ± 0.12 × 10¹⁴ m⁻². This OHC increase exceeds the global, Pacific, Indian and Arctic Ocean changes (Fig. 3g). As these other basins, warming trend is superimposed by multidecadal variability189,190, with OHC rate increasing from −0.01 ± 0.01 ZJ yr⁻¹ for the period of 1958–1990 to 0.12 ± 0.01 ZJ yr⁻¹ after 1991. The Mediterranean Sea is linked with the adjacent North Atlantic Ocean via their overturning circulation systems184,186, which exert control over the basin’s ocean heat budget in addition to the local surface heat flux186,187. In the upper ocean, the Atlantic water (0–150 m) flows into the Mediterranean Sea and moves eastward, so the climatic conditions along this path are crucial in determining the heat content. A stronger OHC increase in the eastern basin (where warmer intermediate waters formed) than the western basin is linked to the anomalous atmospheric conditions and reduced river freshwater input186,188. These warmer (and also saltier) intermediate waters then spread towards the western basin at sea subsurface (150–450 m) on their way back to the North Atlantic186,190. The increasing transport of heat from the eastern to the western Mediterranean affects the deep water formation process in the Gulf of Lion, enhancing the tendency of this site to produce warmer and saltier deep waters186,191. When the heat of the intermediate and deep waters flows out of the Strait of Gibraltar (Mediterranean Outflow Water), it, in turn, influences the meridional overturning circulation in the Atlantic Ocean186,192,193.
0.01 ± 0.03 ZJ yr⁻¹ from 1958 to 1990. While statistically significant, uncertainty of the Arctic OHC time series is much larger than for the other five basins (Fig. 5b) owing to reduced subsurface data availability in sea-ice conditions. Nevertheless, observational datasets and a reanalysis product exhibit consistent long-term changes for Arctic OHC (Supplementary Fig. 1).

OHC changes in the Arctic Ocean are strongly affected by rapid environmental changes, ocean heat transport and local air–sea/ice–sea heat exchanges. For instance, ocean warming can be directly affected by heat transport into the region associated with the rapid decline of sea ice and the concurrent expansion of Atlantic waters into the Arctic Ocean (‘Atlantification’) [196–198]. However, direct observations reveal no significant trend in heat transport from the subtropical North Atlantic to the Arctic from 2014 to 2018 [199,200], although others suggest an increase from 1993 to 2016 [201], highlighting disparities related to both data uncertainty and substantial interannual variability [202]. Other environmental changes also affect Arctic Ocean OHC, including amplified surface warming since the 1960s at a rate twice the global value, driven by positive surface heat flux into the ocean associated with reduced outgoing longwave radiation and a reduction in albedo from the sea–ice–albedo feedback [203,204]. However, the air–sea/ice–sea heat exchanges are currently poorly quantified because of the data insufficiency [202].

Thus, over 1958–2019, the southern oceans and Atlantic Ocean are the main heat reservoir, accounting for 36% and 33% of the global OHS, respectively; the Pacific and Indian oceans account for the other 20% and 9%. However, the percentages change with time and ocean area, given strong decadal variability of OHC change in each basin. Area-averaged warming is larger in the southern oceans, Atlantic Ocean and Mediterranean Sea (~1.11–1.42 × 10⁹ J m⁻²) compared with the other basins (~0.49–0.70 × 10⁹ J m⁻²), indicating very intensive warming mainly associated with the ocean circulations..

Ocean warming projections

In addition to the observed OHC changes, past GHG emissions have also committed the global ocean to future warming, the magnitude of which is dependent on the future socioeconomic pathway [203,204] (Fig. 3). Using drift-corrected models from the CMIP6 archive (Supplementary Table 3; Supplementary Fig. 2), these projected OHC changes are now discussed for the globally averaged ocean and for individual basins.

Global change projections. The CMIP6 models project continued ocean warming as a result of past and future GHG emissions. Under shared socioeconomic pathway SSP5-8.5, a high-emission scenario, total upper-2,000-m warming is estimated at 1,769 ZJ [1,523–2,206 ZJ; the 17–83% error range around a central estimate] by the end of the century (2081–2100 average relative to 2001–2019). For SSP1-2.6, a low-emission scenario, this OHC change becomes 930 [798–1,227] ZJ (Fig. 3b). However, these projections are strongly influenced by individual models’ equilibrium climate sensitivity (ECS). Specifically, some CMIP6 models exhibit ECS > 5 K (REF. [205]) (Supplementary Figs. 3–7), and those models with higher ECS tend to project stronger ocean warming by the end of the century owing to strong correlations between those metrics [206,207]. As such, there is strong motivation to use observational trends from 2005–2019 to better constrain future projections [208] and produce more realistic OHC estimates (Supplementary Information).

In doing so, global OHC trends are slightly enhanced and uncertainties reduced, with the weight of both very low and very high ECS models being reduced. Total observationally constrained upper-2,000-m warming by the end of the century is estimated at 1,030 [839–1,228] ZJ and 1,874 [1,637–2,109] ZJ for SSP1-2.6 and SSP5-8.5, respectively (Fig. 3b). These projections are broadly consistent with CMIP5 results [209] (Fig. 2d), and represent OHC changes ~2–4 and ~4–6 times the observed 1958–2019 value (TABLE 1 and Supplementary Table 4). Projections for 0–700 m and full depth are 1,221 [1,021–1,422] ZJ and 1,967 [1,721–2,205] ZJ for SSP5-8.5, 561 [408–723] ZJ and 1,103 [907–1,297] ZJ for SSP1-2.6 (Supplementary Table 4 and 5). Importantly, these observationally constrained projections result in a substantial reduction in the uncertainty range, especially the upper bound (Supplementary Table 4 and 5). Thus, the largest CMIP6 projections from both very low and very high ECS models are very unlikely as they overestimate ocean warming over 2005–2019.

In addition to differences in total OHC between scenarios, rates of warming also vary. For instance, the projections (here unconstrained) indicate that, in the upper 2,000 m, the ocean warming rate will probably peak between about 2030–2040 at ~0.8 W m⁻² and then decrease to ~0.5 W m⁻² at the end of this century for low-emission scenarios (SSP1-2.6 and RCP2.6; Fig. 2d). In contrast, for a high-emission future (SSP5-8.5 and RCP8.5), ocean warming continues to increase throughout the twenty-first century to ~2.0–2.2 W m⁻² by the 2090s, ~4 times the current level of OHU (Fig. 2d). Such scenario differences are also evident in the upper 700 m; OHC rates peak at ~0.5–0.6 W m⁻² around 2030 and decrease to ~0.2–0.3 W m⁻² during the 2090s for SSP1-2.6, and continue increase to ~1.5 W m⁻² during the 2090s for SSP5-8.5 (Fig. 2b). At depth (~2,000 m), these scenario differences are much smaller (Fig. 2d).

The vertical structure of global ocean warming is further distinct under different scenarios. For SSP1-2.6, global sea surface warming is stabilized at ~0.6 °C (relative to a 2005–2019 baseline) after ~2050 (Fig. 3b), consistent with the Paris Agreement of limiting global surface temperature to 2 °C above the preindustrial level. However, subsurface (below ~100 m) warming continues, and anthropogenic heat penetrates the deep layers in all ocean basins (Fig. 3b). For SSP5-8.5, both global surface and subsurface warming continues to the end of this century and beyond, with a surface warming of >2.8 °C and upper-600-m warming of >1°C above the 2005–2019 average (Supplementary Fig. 8).

Transient climate response and the vertical structure of OHC. The considerable heat penetration into the ocean interior critically affects surface temperature and therefore the global climate. The rate of OHC increase and
the efficiency with which heat is transported from the upper ocean into the deeper ocean are critical in setting the strength and timescale of the climate adjustment in response to anthropogenic influences. One important climate-change metric is the transient climate response (TCR), the surface warming under a 1% per year CO₂ increase from preindustrial values at the time of CO₂ doubling (70 years). The rate and patterns of ocean heat content are linked to TCR via the coupling at the sea surface.

Both low- and high-TCR models reveal strong warming from the Equator to 30° N, and warming to greater depths in higher-latitude ocean areas. However, in low-TCR models, there is a greater warming at depth compared with models with high TCR. These differences exist at all latitudes down to 1,000 m depths, although differences are weakest in regions of strong warming from the Equator to 30° N.

When integrated across the volumes of water for OHC, the Southern Hemisphere indicates stronger intermodel contrasts than the Northern Hemisphere. The strongest contrasts are found near the equatorial undercurrent, the origin of which remains an open question. The differences in the North Atlantic intermodel contrasts are likely to be due to the overturning circulation response to a warming climate. A key role for changes in upper-ocean salinity driven by both the surface freshwater flux and winds has been identified, with consequences for both the patterns and magnitudes of warming in coming decades. Given the role of salinity and the fact that key cryosphere processes are absent from the current generation of climate models, understanding the sensitivity of these processes to changes in salinity becomes crucial for accurate climate projections.

Fig. 4 Relationship between transient climate response and the vertical structure of temperature and OHC.

a) Zonal mean ocean warming with depth normalized by global-mean near-surface air temperature warming from years 1 to 70 of 1% CO₂ simulations from CMIP6 for five models with the lowest TCR. b) As in a, but the five CMIP6 models with the highest TCR. c) The difference between a and b. d) Associated differences in heat content change between the lowest- and highest-TCR models. Higher efficiency of ocean heat transport from the upper into the deeper ocean has a negative effect on the surface temperature increase for transient climate response.
models used for future projections210, important caveats exist regarding the ability to accurately estimate TCR and the latitudinal structure of future ocean warming. Nevertheless, the OHC differences between low- and high-TCR models reflect the higher OHU of low-TCR models (Fig. 4d).

Regional trend projections. As discussed, the pattern of ocean warming has been non-uniform4 (Fig. 3). Accordingly, although all six regional basins are expected to warm throughout the twenty-first century — exceeding 0.2°C relative to a 2005–2019 baseline in the upper 1,200 m and at least 0.05°C at 2,000 m — regional contrasts in rates of warming can be anticipated. These regional trends are now discussed, basing analyses on drift-corrected CMIP6 model projections without observational constraints, as the emergent constraint method only applies for global model projections without observational constraints, as of warming can be anticipated. These regional trends are now discussed, basing analyses on drift-corrected CMIP6 model projections without observational constraints, as the emergent constraint method only applies for global OHC change (Fig. 3c–f). Thus, regional biases in models have not been fully accounted for11,212.

In the Pacific, total upper-2,000-m OHC change by the end of this century is projected to be 344 ± 74 ZJ for SSP1-2.6 and 575 ± 95 ZJ for SSP5-8.5 (Fig. 3d), ~3–6 times and ~6–10 times the observed changes over 1958–2019. Accordingly, the Pacific is expected to become the biggest heat reservoir owing to its large volume. However, the historical condition of low area-averaged warming continues. By the end of the century, area-averaged 0–2,000-m OHC reaches 2.37 ± 0.51 × 10^9 J m\(^{-2}\) and 3.97 ± 0.66 × 10^9 J m\(^{-2}\) for SSP1-2.6 and SSP5-8.5, respectively (Fig. 3c). By 2100, the 0.2°C warming isotherm, a rough indicator of the vertical extension of warming, is projected to reach depths of ~1,200 m under SSP1-2.6. This depth is shallower than all other basins, likely because the Pacific Ocean is dominated by shallow tropical and subtropical overturning cells, and ventilation of thermocline water (~150–200 m) via subduction in the subtropical gyres213. However, as current climate models are not skillful at capturing ENSO11,212 and IPO213 variability, future projections remain uncertain11,214.

Similar to its past changes, the Atlantic Ocean is projected to undergo substantial warming. Total upper-2,000-m OHC increases are estimated to be 299 ± 84 ZJ for SSP1-2.6 and 546 ± 122 ZJ for SSP5-8.5, ~1–4 and ~3–6 times the observed 1958–2019 change, respectively (Fig. 3d). This heat gain is broadly consistent with that of the Pacific, despite representing only 57% of its area. Accordingly, the Atlantic witnesses some of the largest area-averaged rates of warming at 0–2,000 m: 3.62 ± 1.02 × 10^9 J m\(^{-2}\) for SSP1-2.6 and 6.61 ± 1.48 × 10^9 J m\(^{-2}\) for SSP5-8.5 (Fig. 3d). Moreover, the 0.2°C anomaly isotherm reaches ~2,000 m and maximum basin-mean subsurface warming exceeds ~1°C at 200–600 m by the end of the century under SSP1-2.6 (~1.6–2.8°C under SSP5-8.5). These large changes have been attributed to a decline of aerosol impacts in future Atlantic changes, reinforcing the greenhouse effect216,217.

In the Indian Ocean, total 0–2,000-m warming is projected to be 108 ± 34 ZJ and 183 ± 43 ZJ by 2100 for SSP1-2.6 and SSP5-8.5, respectively (Fig. 3e), ~2–5 times and ~4–7 times that observed over 1958–2019. The area-averaged changes resemble those of the Pacific, and are projected to be 2.35 ± 0.73 × 10^9 J m\(^{-2}\) for the low-emission scenario, and 3.99 ± 0.95 × 10^9 J m\(^{-2}\) for the high-emission scenario (Fig. 3f). However, the uncertainty range is larger than projected for the Pacific, partly associated with substantial natural variability, and consistent with a large mismatch between observed and simulated Indian Ocean warming from 1958 to 2019. By 2100, the 0.2°C warming isotherm reaches depths of ~1,500 m, deeper than the Pacific Ocean but shallower than the Atlantic Ocean (Fig. 3g).

As in the Atlantic, projected changes in the southern oceans are also large. Net upper-2,000-m warming is projected to reach 220 ± 60 ZJ for SSP1-2.6 and 505 ± 95 ZJ for SSP5-8.5 (Fig. 3i), ~1–3 times and ~3–5 times the 1958–2019 change, respectively. These net increases equate to area-averaged changes of 2.44 ± 0.67 × 10^9 J m\(^{-2}\) and 5.60 ± 1.05 × 10^9 J m\(^{-2}\), stronger than the Pacific and Indian Oceans, but increasingly smaller than the Atlantic Ocean, contrasting with observed changes. This large ocean warming is linked to accelerating subpolar westerlies and significant overturning of surface heat due to the formation of subantarctic mode water14,156, Antarctic intermediate water219 in the subpolar ocean, and Antarctic Bottom Water around the Antarctic continental margin49, enhancing OHU and accumulation of heat just north of the ACC14,216,220. These water mass formations and vertical heat transports are reflected in deep-reaching warming by 2100, with the 0.2°C anomaly isotherm expected to extend below 1,400 m (Fig. 3i). The uptake and drawdown of heat to depth is expected to slow around the Antarctic margin as meltwater and warming stratifies the surface mixed layer in those regions11 and slows the formation of dense shelf water, but warming is expected to continue to over much of the southern oceans.

The Mediterranean OHC increase at 0–2,000 m is expected to reach 6 ± 2 ZJ and 12 ± 2 ZJ for SSP1-2.6 and SSP5-8.5, respectively210. These changes are ~1–3 times and ~2–5 times observed values over 1958–2019, and reflect area-averaged changes of 2.06 ± 0.60 × 10^9 J m\(^{-2}\) and 4.09 ± 0.72 × 10^9 J m\(^{-2}\) (Fig. 3g). The 0.2°C warming anomaly is projected to extend to ~1,200 m, which is deeper than for the global ocean142 (Fig. 3g), owing to the thermohaline circulation in the Mediterranean Sea and efficient heat propagation to deeper layers212,223. Finally, in the Arctic Ocean, upper-2,000-m warming by 2100 is projected to reach 36 ± 22 ZJ for SSP1-2.6 and 76 ± 35 ZJ for SSP5-8.5 (Fig. 3i). These changes correspond to surface warming ~1–7 times and ~4–13 times that observed, totalling 2.50 ± 1.54 × 10^9 J m\(^{-2}\) and 5.25 ± 2.45 × 10^9 J m\(^{-2}\) for the low and high scenarios, respectively. Moreover, the 0.2°C additional heat isotherm extends to ~1,800 m by the end of the century, and the >1°C additional warming to within 100–800 m, spanning a larger depth than the Atlantic (Fig. 3i). The subsurface warming in the Arctic Ocean is much stronger than the global mean224 (Fig. 3b,h). However, both the observational record and future warming in the Arctic are less reliable, given poor data coverage at the subsurface and the biases in Arctic Ocean hydrography and ice simulation in CMIP6 models224.

Drivers of future OHC patterns. The patterns of ocean warming are driven by the heat uptake at the ocean surface and the transport by currents, mixing and stirring in
the ocean interior. The patterns of ocean warming can be thought of as the sum of the added heat from the warming pattern set by surface heat fluxes and by the unperturbed ocean circulation (analogous to the uptake and transport of passive tracers), and the redistributed heat as the transport of the OHU by the perturbed circulation27. These added and redistributed contributions to the total regional heat content changes can be quantified using a subset of models with carbon cycle27 (Fig. 5).

Over the historical period (here, 1958–2015), the total heat patterns are dominated by the redistribution, with a pattern correlation between total and redistributed heat of $R = 0.84$ on average (Fig. 5d) and Supplementary Fig. 9). Indeed, warming along the Kuroshio extension, the southern oceans and to some extent the high-latitude North Atlantic are associated with redistribution of the pre-1958 temperatures from the changing ocean circulation in these regions, in broad agreement with observational inferences during 2000–2015 (REFS. 125,225). Note, however, that the redistribution pattern varies widely across CMIP models. In contrast, warming in the subtropical Atlantic basin, which has emerged over the

Fig. 5 | Simulated past and projected future ocean heat content change.

- **a** Total OHC changes over 1858–2015 from an ensemble of 11 CMIP6 models.
- **b** Total OHC changes centred on 2050 (the 5-year mean from 2048–2052), relative to the 2015–2020 mean, from an ensemble of 7 CMIP6 models.
- **c** As in **b**, but centred on 2100, representing the 5-year mean from 2095 to 2100.
- **d** As in **a**, but normalized by global ocean heat uptake.
- **e** As in **b**, but normalized by global ocean heat uptake.
- **f** As in **c**, but normalized by global ocean heat uptake.
- **g** As in **a**, but for added OHC normalized by global ocean heat uptake.
- **h** As in **b**, but for added OHC normalized by global ocean heat uptake.
- **i** As in **c**, but for added OHC normalized by global ocean heat uptake.
- **j** As in **a**, but for redistributed OHC normalized by global ocean heat uptake.
- **k** As in **b**, but for redistributed OHC normalized by global ocean heat uptake.
- **l** As in **c**, but for redistributed OHC normalized by global ocean heat uptake. Stippling indicates where the multimodel mean anomaly is less than the intermodel standard deviation. See Supplementary Information for list of models used. The patterns of ocean warming are mainly driven by the redistributed heat as the transport of the OHU by the perturbed circulation in the historical era, but are projected to be dominated by added heat in the twenty-first century, set by surface heat fluxes and the unperturbed ocean circulation.
cooling effect of redistribution, is primarily associated with added heat in the CMIP6 ensemble (Fig. 5g).

Between 2015 and 2050, under SSP5–8.5 forcing, a warming signal is expected to emerge in most regions of the ocean (Fig. 5b,e and Supplementary Figs. 10 and 11). This overall warming pattern is primarily set by the passive uptake of added heat, with pattern correlations between total and added heat being 0.67 (Fig. 5e,h). The added heat pattern is likely to be dominated by warming within the subtropical gyres in all basins, on the equatorward flank of the ACC due to Ekman transport, and in the North Atlantic between ~30° N and 55° N due to heat uptake at high latitudes and southward transport at depth by the overturning circulation. Exceptions to this overall warming pattern are evident in the North Atlantic warming hole and parts of the southern oceans, where cooling prevails (Fig. 5e). Trends in both these regions continue to exhibit a large spread across CMIP6 models and are dominated by redistribution patterns (Fig. 5k). Moreover, some of the added warming is partially offset by redistribution within the subtropics (~10°–30° N/S), consistent with CMIP5 results.

By 2100, all regions of the ocean are projected to exhibit warming under SSP5–8.5 (Fig. 5c,f and Supplementary Figs. 10, 11). At this time, the southern oceans and the Atlantic basin, along with most other regions, are heavily influenced by added heat (Fig. 5i). However, the redistribution of heat and circulation changes reduce net warming in the lower-latitude sub-tropics between ~10° and 30° N/S, and enhance warming in sectors of the mid-latitudes (between ~40° and 50° N/S) and along the equator (between ~10° S and 10°N) (Fig. 5j). This redistribution at 2100 is broadly consistent with the regional effects projected to emerge by 2050, with correlation patterns of 2050 and 2100 redistribution being 0.82. Idealized forcing experiments (flux perturbations under the flux-anomaly-forced model intercomparison project protocol228–230; 1% yr−1 in CMIP5231), also reinforce this finding. Pattern correlations between 2050 and 2100 OIH (Fig. 5e,f) and redistribution (Fig. 5k,l), are also high, at >0.8, >0.85 and >0.75, respectively, indicating that future OHC patterns have already emerged by 2050.

Thus, ocean heat redistribution, although dominant in the past, becomes less important in the future (at least by 2050). Future patterns become more dominated by added heat associated surface heat flux and mean ocean circulation. As such, future ocean warming patterns might become more predictable in the coming decades. However, further work is necessary to assess these results in high-resolution eddy-rich models.

Impacts and consequences of ocean warming

Observed and projected ocean warming has substantial impacts across major Earth system components and scales (Fig. 1). For example, ocean warming accounts for more than 1/3 of global-mean sea level rise through thermal expansion, and thus dominates regional sea level patterns. Sea level rise, in turn, increases the risks for coastal infrastructures and coastal habitats from salt water intrusion, coastal erosion and flooding in low-lying regions (Fig. 1b). Ocean warming also decreases ocean density and increases upper-ocean stratification by 5.3% since 1960, affecting the vertical and lateral exchanges of heat, carbon, oxygen, nutrients and other substances. The stratification increase, solubility reduction and circulation changes drive deoxygenation in the ocean interior by ~0.5–3.3% since the 1960s (REFS. 232,233). By changing sea water buoyancy, ocean warming impacts ocean currents, for example, accelerating the zonally averaged Southern Ocean zonal flow in the upper layer. Warmer water also reduces the efficiency of oceanic carbon uptake and storage (Fig. 1b). The compounded effect of each of these impacts, especially following extreme events, poses more substantial stress on the environment than their individual effects (Fig. 1b), driving, for example, changes in net primary and export production with socioeconomic impacts on marine fisheries and aquaculture systems. Indeed, it is projected that, driven by multiple stressors, the maximum catch potential of tropical fish stocks in some tropical exclusive economic zones will decline by up to 40% by the 2050s under RCP8.5.

MHWs offer a strong example, whereby the relentless increase in OHC has direct implications for the frequency, intensity and extent of MHWs and other ‘hot spots’ within the ocean. With human-induced global warming and higher ocean heat content, it is inevitable that MHWs become more abundant, extensive and longer-lasting. The highly anomalous ocean waters, including SSTs and upper OHC, often persist for more than a month, resulting in large impacts on ocean ecosystems and marine life. Effects from thermal stress cause mass mortality of benthic communities, including coral bleaching, changes in phytoplankton blooms, adverse effects on kelp forests and sea grasses, toxic algal blooms, shifts in species composition and geographical distribution, and decline in fish and fisheries and seabirds. As such, MHWs modify ecosystem assemblages, biodiversity, population extinctions and redistribution of habitat.

One example is the prolonged MHW known as ‘the blob’ in the northeast Pacific and Gulf of Alaska from 2014–2016. This event greatly affected the ocean food web, shrinking phytoplankton blooms, which, in turn, diminished copepods, zooplankton and krill, and small fish, leading to the demise of ~1 million birds (notably murres), ~100 million cod and hundreds of humpback whales. A similar unprecedented MHW in the south Tasman Sea in 2015–2016, where SSTs were up to 2.9 °C above normal owing to an ENSO-related alteration of the ITF and East Australian Current, also had sub-tropical effects, including coral bleaching, changes in phytoplankton blooms, adverse effects on kelp forests and sea grasses, toxic algal blooms, shifts in species composition and geographical distribution, and decline in fish and fisheries and seabirds. Ecosystem impacts ranged from new and associated changing ocean surface currents can indirectly affect pathways of storms in August 2017, the Gulf of Mexico became the warmest on record.
to that point in the summertime. There was a strong link between upper OHC and record high rainfalls of over 60 inches (1,520 mm) over five days and extensive flooding in hurricane Harvey over parts of Texas248. Other processes at the air–sea interface affected by ocean warming include an increase of surface evaporation and rainfall213, and an increase in precipitation anomalies tied to ENSO, and associated extreme weather events256,257 (Fig. 1b).

Implications of ocean warming are also widespread across the Earth’s cryosphere254, and have in turn affected the ocean itself255 (Fig. 1b). Examples include the thinning of floating ice shelves and marine terminating glaciers from basal ice melt212,255, and the retreat and speedup of ice-sheet outlet glaciers in Greenland and Antarctica254 and of tidewater glaciers in South America and in the Arctic255.

Other particular concerns are the potential abrupt changes associated with warming, such as ocean circulation (for example, AMOC)256 and ocean ecosystems248. Ocean warming is a key driving element for AMOC changes. The potential for abrupt AMOC collapse as a ‘low-probability, high-impact’ event cannot be ruled out in the future247. Each species of marine organisms has an optimal temperature window for functioning; most organisms are therefore vulnerable to warming257. It is projected that most tropical coral reefs will be threatened258.

Summary and future perspectives

In summary, OHC has changed substantially since the 1950s and is projected to continue to do so in the future. In the upper 2,000 m, net global increases of 351.4 ± 59.8 ZJ (0.36 ± 0.06 W m-2) have been observed from 1958 to 2019, with the rate of warming accelerating from ~ 0.0–0.3 W m-2 in the 1960s to ~ 0.5–0.7 W m-2 in the 2010s. The pattern of ocean warming has been non-uniform in this historical era, including strong warming in the Atlantic and southern oceans, and overall is dominated by the redistribution of ocean heat by currents. Relative to 2005–2019, future warming is projected to reach 1.030 [839–1,228] ZJ for SSP1-2.6 and 1,874 [1,637–2,109] ZJ for SSP5-8.5 at the end of this century, ~ 2–4 (SSP1-2.6) to ~ 4–6 times (SSP5-8.5) the observed 1958–2019 change. On these timescales, added heat has an important role for OHC projections. Moreover, low GHG emissions would be likely to lead to a detectable and lasting reduction in ocean warming rate, with noticeable reductions in climate-change impacts. Indeed, given that ocean warming has already led to pervasive impacts and consequences, monitoring, understanding, adapting to and mitigating ocean warming must continue to be a high priority. Nonetheless, several gaps remain in measuring, estimating and understanding ocean warming.

First, the current ocean observing system needs to be sustained and extended to monitor OHC change at various spatiotemporal scales. The critical question of ‘how adequate is the ocean observing system for monitoring the OHC changes at various timescales?’ is still not fully answered. The international community have cast their eyes toward the future to improve not only the Argo fleet but also other measurement methodologies259–261. The ongoing and planned efforts include the maintenance of the current GOOS, and shipboard in situ measurements for calibration, validation and quality control of the Argo data; a drive toward spatial completion, including polar sea–ice zones, marginal seas and complicated channels; increased resolution in critical areas such as boundary currents and coastal areas; incorporation of deeper measurements (for example below 2,000 m); and inclusion of biological and chemical signals, along with temperature and salinity (Deep Argo and BioGeoChemical Argo programmes). The scientific community and funding agencies will need to be mindful of ensuring a continuous and comprehensive measurement network for the world’s ocean — a network that incorporates new technologies as they are developed and retires old technologies that have outlived their usefulness, but with a good understanding of the handoff between technologies.

Second, uncertainty for OHC estimate needs to be better understood and quantified. In addition to data coverage, uncertainty also stems from mapping methods associated with data sampling, instrumental bias correction, choice of climatology, quality-control and other data processing procedures. These error sources are not independent of each other and are likely to lead to biases in current analyses. Thus, uncertainty in OHC estimate is method-dependent and producer-dependent. The contribution of each error source to the total OHC uncertainty is not fully understood, and the error range given by different datasets results in roughly 10-fold differences31. New approaches can be used to better quantify the uncertainty: for example, synthetic data for understanding and evaluating the mapping method, and exploiting ensembles (applying different techniques and forming an ensemble of OHC estimates)30,262–264.

Third, syntheses of multisource (direct and indirect) observations and models are recommended to improve OHC estimates and mechanistic understanding. Synthesis of in situ observations with satellite-based observations (sea level altimetry, ocean colour, surface wind stress) and full atmospheric analyses shows the most promise. The indirect datasets can either serve as a cross-evaluation tool or constrain direct estimates, such as closing energy, water and sea level budgets. Attempts show promising results. As a coupled system, the separate impacts of atmospheric, ocean and ice (and other components) dynamics cannot be easily isolated258, and identifying the coupling mechanism driving OHC patterns remains a high research priority. Capabilities for integrating different sources of Earth system observations and information (for example, model-based data assimilation and simulations) for a comprehensive quantification of the energy budgets should be built. For example, the integration of atmospheric and oceanic data leads to a quantification of MHT time series at all latitudes, capable of resolving interannual variability133.

Fourth, the current generation of climate and Earth system models still contain non-negligible uncertainties in representing past and future ocean warming trends200,205,212. For example, there is substantial uncertainty in CMIP6 future projections in the Antarctic margin region, due to biases in simulated stratification134, and the indirect datasets can either serve as a cross-evaluation tool or constrain direct estimates, such as closing energy, water and sea level budgets. Attempts show promising results. As a coupled system, the separate impacts of atmospheric, ocean and ice (and other components) dynamics cannot be easily isolated258, and identifying the coupling mechanism driving OHC patterns remains a high research priority. Capabilities for integrating different sources of Earth system observations and information (for example, model-based data assimilation and simulations) for a comprehensive quantification of the energy budgets should be built.
that tropical cyclones mix the ocean through substantial depths. Moreover, they form in hot spots and cool the ocean, yet they are largely absent from global models. In addition, interannual to decadal variability such as ENSO and the IPO remains poorly represented in modern-day climate models, yet they strongly control the pattern and timing of OHC anomalies. As ocean and atmospheric circulation have a key role in shaping the climate response (including ocean warming pattern and OIH efficiency), evaluating the accuracy of the wind, atmosphere and ocean circulation projections should continue to be a research priority. A continuous process-based understanding of model performance is recommended including the understanding and identification of persistent biases in simulations, especially with respect to the diagnostics for Earth's major system cycles.

Fifth, understanding of extreme OHC events, their compound effects and past changes in OHC should be strengthened. For example, MHWs have been identified from surface conditions, but subsurface components are also important, and OHC as an indicator offers a way to integrate these aspects. The simultaneous occurrence of ocean warming extremes with other extremes (deoxygenation, acidification) requires special attention. A more complete understanding of OHC changes in the deep past before the widespread availability of instrumental records is also critical to put the current changes in the context of a longer timescale. Research on past climate change also helps us to understand how natural drivers and human influence have changed the Earth's climate system. The difficulty is a lack of full-depth temperature proxy data. Several methods have been developed to derive OHC change back to the past 20,000 years (Last Glacial Maximum), but the uncertainty is large.

Data availability

The observation and model data used in this review are available at http://www.ocean.iap.ac.cn/. CMIP6 model data is available at https://esgf-node.llnl.gov/search/cmp6/.

Published online 18 October 2022
Reviews

55. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).

56. Honda, S., Ohba, T. & Fukumura, T. Monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 14, 726–7285 (2014).

57. Cheng, L. & Zhu, J. Artifacts in variations of ocean heat content induced by the observation system change. Geophys. Res. Lett. 41, 726–7285 (2014).

58. Rhein, M. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) pp. 25–36 (Cambridge Univ. Press, 2013).

59. Cheng, L. Estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

60. Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA 13, 163–167 (2017).

61. Willis, J. K. Combining altimetric height with broadband profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001755 (2003).

62. Levitus, S. et al. World ocean heat content and thermosteric sea level change 1955–2010. Nature Climate Change 1, 329–335 (2011).

63. Balmaseda, M. A. et al. The Ocean Reanalyses Project. Nat. Clim. Change 8, 470–476 (2018).

64. Domingues, C. M. et al. Improved estimates of upper-ocean heat content from remote sensing data. Remote Sens. https://doi.org/10.3390/rs12142294 (2020).

65. Hakuba, M. Z., Freidiken, T. & Landier, F. W. Earth’s energy imbalance from the ocean perspective (2005). Geophys. Res. Lett. 48, e2021GL095624 (2021).

66. Murtz, F. et al. Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and atmospheric greenhouse. Earth Syst. Sci. Data https://doi.org/10.5194/essd-2021-220 (2021).

67. Llovel, W., Willis, J. K., Landier, F. & Fukumura, I. Deep-ocean contribution to sea level and energy budget not accounted for over the past decade. Nat. Clim. Change 10, 1031–1035 (2014).

68. Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heinbach, P. Global reconstruction of historical ocean heat content and transport. Proc. Natl Acad. Sci. USA 116, 1126–1131 (2019).

69. Geibig, G. & Huybers, P. The Little Ice Age and the 20th-century deep Pacific cooling. Science 363, 70–74 (2019).

70. Storto, A. et al. Ocean reanalyses: recent advances and unsolved challenges. J. Oper. Oceanogr. 5, 93–106 (2012).

71. Lebouteille, J.-M. et al. The Copernicus global hybrid 1/12° oceanic and sea ice GLORYS12 reanalysis. Geosci. Model Dev. 13, 169–191 (2020).

72. Balmaseda, M. A. et al. The Ocean Reanalyses Intercomparison Project (ORIP). J. Oper. Oceanogr. 8, 88–97 (2015).
135. Gomaritisou, A., van Oldenborgh, G. J. & Drijfhout, S. A decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 25, 8373–8379 (2012).

136. Grotti, M., Shriver, J. & Rühm, Y. Mechanisms governing the development of the North Atlantic warming hole in the CESM LE future climate simulation. Reg. Environ. Change. 19, 2057–2068 (2019).

137. Gu, S., Liu, Z. & Wu, L. Time scale dependence of the meridional coherence of the Atlantic Meridional Overturning Circulation. J. Geophys. Res. Oceans. 125, e2019JC015838 (2020).

138. Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 530–534 (2016).

139. Woolings, T., Gregory, J. M., Pinto, J. G., Rayers, M. & Brayshaw, D. J. Response of the North Atlantic storm track to near century change shaped by ocean–atmosphere coupling. Nat. Geosci. 5, 313–317 (2012).

140. Feser, F. et al. Storminess over the North Atlantic and northern Europe—an alternative explanation. Clim. Dyn. 58, 2249–2267 (2021).

141. Li, L., Lozier, M. S. & Li, F. Century-long cooling trend in Indian Ocean heat content during the warming hiatus. Nat. Commun. 11, 4693 (2020).

142. Luyten, N. & Hebert, D. J. Impacts of broader scale oceanic and atmospheric changes associated with the North Atlantic warming hole. Geophys. Res. Lett. 47, e2020GL087577 (2020).

143. Duan, J. et al. The Northern Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).

144. Simoncelli, S., Frattini, C. & Mattia, G. Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. In INGV Workshop on Marine Data Assimilation Volume (eds. Sagnotti, L. et al.) Misc. INGV. 51, 1126–1132 (2019).

145. Zurreau, P. et al. Effects of the Western Mediterranean transition on the resident water masses: pure warming, pure freshening and pure heating. J. Mar. Syst. 124, 15–25 (2015).

146. Purich, A., Fratini, C., Dubois, D. & Notarstefano, G. Water mass formation processes in the Mediterranean Sea over the past 50 years. In Copernicus Mediterranean Sea Service State Report. Issue 2. J. Oper. Oceanogr. 11, s1–s42 (2018).

147. Ummenhofer, C. C., Murty, S. A., Sprintall, J., Lee, T. & Duan, J. et al. Rapid sea-level rise in the Southern- Indian Ocean. Science 365, 7233–7253 (2020).

148. Simoncelli, S., Fratini, C., Mattia, G. & Notarstefano, G. Water mass formation processes in the Mediterranean Sea over the past 30 years. In AGU Advances in Space Research Volume (eds. Cramer, W., Guiot, J. & Marini, K.) 55, 1275–1277 (2002).

149. Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 271–275 (2017).

150. Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 271–275 (2017).
Liu, W., Lu, J., Xie, S.-P. & Fedorov, A. Southern ocean. Roberts, C. D. et al. Surface flux and ocean heat. Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Couldrey, M. et al. What causes the spread of model. T odd, A. et al. Ocean. Li, G. et al. Increasing ocean stratification over the. Wahl, T. & Plant, N. G. Changes in erosion. Irving, D. B., Wijffels, S. & Church, J. A. Anthropogenic. Luyten, J., Pedlosky, J. & Stommel, H. The ventilated. Irving, D., Hobbs, W., Church, J. & Zika, J. A mass. Wengel, C. et al. Future high-resolution El Nino/Southern. Smale, D. A. et al. Marine heatwaves threaten global. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Mignot, A. et al. Decrease in air-sea CO2 fluxes caused by persistent marine heatwaves. Liu, W., Lu, J., Xie, S.-P. & Fedorov, A. Southern ocean heat uptake, redistribution, and storage in a warming climate: the role of meridional overturning circulation. Collins, M. Extreme heat waves, abrupt changes and managing risk. In Special Report on the Ocean and Cryosphere in a Changing Climate (eds Porter, H.-O. et al.) 1587–1671 (Springer, 2018). Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 265–310 (IPCC, 2018). Trembath, K. et al. Victoria’s Great Ocean Road heatwaves under global warming. Nature 584, 201–206 (2020). Jacob, S. S., Giulivi, C. F. & Felis, P. A. Freshening of the Ross Sea during the late 20th century. Science 329, 386–389 (2010). Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012). Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018). Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013). Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008). Heinze, C. et al. Review: climate feedbacks in the Earth system and prospects for their evaluation. Earth Syst. Dynam. 10, 379–452 (2019). Hoegh-Guldberg, O., Kennett, Y. E., Beyer, H. L., McClenenn, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018). Zilverman, N. V., Roemmich, D. H. & Gilson, J. Deep-ocean circulation in the southwest Pacific Ocean interior: estimates of the mean flow and variability using deep Argo and hydroprofiler. Geophys. Res. Lett. 47, e2020GL088542 (2020). Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 459 (2019). Le Traon, P.-Y. et al. Preparing the new phase of Argo: scientific achievements and NAOs project. Front. Mar. Sci. 7, 577408 (2020). Gasparin, F., Hamon, M., Rémy, E. & Le Traon, P.-Y. How Deep Argo will improve the deep ocean in an era of ocean drift. Biogeosciences 17, 77–94 (2020). Allison, L. C. et al. Towards quantifying uncertainty in ocean heat content changes using synthetic profiles. Environ. Res. Lett. 14, 044030 (2019). Llovet, W. et al. Imprint of intrinsic ocean variability on decadal trends of regional sea level and ocean heat content using synthetic profiles. Environ. Res. Lett. 14, 044063 (2019). Danabasoglu, G. et al. Variability of the Atlantic Meridional Overturning Circulation in CM4. J. Clim. 25, 5153–5172 (2012). Purin, A. & England, M. H. Historical and future projected warming of Arctic shelf water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021). Baggi, E. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886 (2019). Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 357, 704–709 (2019). Allen, M. R. et al. Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 49–92 (IPCC, 2018). Kennedy, J. A review of uncertainty in situ measurements and data sets of sea surface temperature. Rev. Geophys. 52, 1–52 (2014). O’Carroll, A. G. et al. Observational needs of sea surface temperature. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00420 (2019). Acknowledgements L.C. acknowledges financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB46010400) and the National Natural Science Foundation of China (42121001, 42076202, Youth Innovation Promotion Association, CAS (2020-077). The National Center for Atmospheric Research is sponsored by the US National Science Foundation (NSF). L.Z. is supported by NSF OCE award 2048576. J.F. is supported by NASA awards B ONS/C17N056 and B0NS/C22K0046, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research. L.Z. is supported by the National Natural Science Foundation of China (91958201, 42130608). We thank S. Innocenzi for discussions on the Mediterranean Sea, V. Gouretski and F. Reseghetti for discussion on observations. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output through Earth System Grid Federation. We also acknowledge the International Argo Program and the national programmes that contributed to the Argo Program. The Argo Program is part of the Global Ocean Observing System. Author contributions L.C. was responsible for writing and editing the article. L.C., K.v.S., J.K.T. and M.M.L. led the overall conceptual design and the activity. L.C. led and coordinated the writing. K.v.S. and M.M.L. prepared the Introduction and J.P.A. prepared the observations and OHC estimates section. L.C., K.T.Z. and M.E. led the past OHC changes section. L.Z., J.F., M.E., L.C. and Y.-Q. led the future projections section. K.v.S., L.C. and K.T.Z. led the impacts and consequences section. L.M.M. and K.T. led the final section. Y.-P.C., J.E.N., E.B.B., L.P. and L.C. contributed to data processing. Competing interests The authors declare no competing interests. Peer review information Nature Reviews Earth & Environment thanks Sarah Purkey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43017-022-00354-1. © Springer Nature Limited 2022.