COVID-19 has rapidly developed into a worldwide pandemic with a significant health and economic burden. There are currently no approved treatments or preventative therapeutic strategies. Hundreds of clinical studies have been registered with the intention of discovering effective treatments. Here, we review currently registered interventional clinical trials for the treatment and prevention of COVID-19 to provide an overall summary and insight into the global response.

Race towards a Successful Intervention for Covid-19

Over the past two decades, three novel pathogenic human coronaviruses have emerged from animal reservoirs [1]. These are Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and, most recently, severe acute respiratory syndrome coronavirus 2 (referred to as COVID-19, SARS-CoV-2, or 2019-nCoV). All three have led to global health emergencies, with significant morbidity and mortality [2]. Before 2020, the largest outbreak was of SARS-CoV in 2003, which affected over 8000 individuals globally and was associated with 774 deaths (case fatality rate of 9.6%) [3]. The overall cost to the global economy of SARS-CoV was estimated to be between US$30 billion and US$100 billion [4].

Following the first identification in patients with severe pneumonia in Wuhan province, China in November 2019, COVID-19 has spread rapidly and now affects all permanently inhabited continents. This is the greatest pandemic of modern times and has been declared a Public Health Emergency of International Concern by the WHO Director-General [1]. As of 27 March 2020 (date of submission), COVID-19 was affecting 199 countries and territories, with >510,000 confirmed cases globally [1]. It is associated with an estimated mortality of between 1% and 5% [11]. Furthermore, human-to-human transmission has continued apace, despite escalating public health measures. Current estimates of the impact on the worldwide economy are US$1 trillion and rising [6].

Currently, there are no approved therapies for either the treatment or prevention of COVID-19. With the predicted number of cases set to rise significantly, this represents a prodigious acute unmet medical need. Several national and international research groups are working collaboratively on a variety of preventative and therapeutic interventions. Potential avenues being explored include vaccine development, convalescent plasma, interferon-based therapies, small-molecule drugs, cell-based therapies, and monoclonal antibodies (mAbs) [5]. However, drug therapy development is a costly and timely process with a high attrition rate [6]. The speed of the normal drug development pathway is unacceptable in the context of the current global emergency. Therefore, there has been considerable interest in repurposing existing drugs and expediting development of antiviral treatments, such as those for influenza, hepatitis B (HBV), hepatitis C (HCV), and filoviruses, to allow more rapid development [5]. The swift genomic sequencing of COVID-19 has facilitated this process, allowing comparison with MERS-CoV, SARS-CoV, and other morbilliviruses [7]. This strategy has identified several genomic regions of interest for in silico drug development, such as the spike protein region.
Exploring Current Clinical Trials for Covid-19

Since 2005, it has been recommended by the International Committee of Medical Journal Editors (ICMJE) that all clinical trials should be registered in publicly available domains before they may be considered for publication [8]. The introduction of this requirement and other initiatives to increase clinical trial transparency has contributed to an increasing number of trials being recorded in online registries, such as ClinicalTrials.gov® and the International Clinical Trials Registry Platform (ICTRP)™ of the WHO. The logging of trials on registries has vastly facilitated the dissemination of information across several domains, including intervention, methodology, patient group, and outcome measures. Furthermore, in the event of the nonpublication of results, it means that trial information remains freely available for analysis.

In the context of the current global COVID-19 pandemic, we performed an analysis of online registries (ClinicalTrials.gov®, WHO

Registries and databases searched:
- ClinicalTrials.gov®
- EU Clinical Trials Registry
- WHO International Clinical Trials Registry
- Cochrane Controlled Register of Trials

Total records included after removal of duplicate results (N = 590)

Total records included (N = 526)

Total records included (N = 244)

• Intervention on infected patients (N = 233)
• Intervention to prevent infection (N = 14)

Removed:
• Cancelled studies (N = 19)
• Non-COVID-19 studies (N = 33)
• Repeated registration (N = 12)

• Noninterventional studies (N = 182)
• Traditional Chinese medicine and complementary medicine (N = 100)

Figure 1. Flow Diagram Showing the Study Selection Process of Clinical Trials Discussed in This Article and Listed in Table 1 in the Main Text. Data in the WHO International Clinical Trials Registry were incorporated from various national registries, including those from Australia, New Zealand, China, The Netherlands, Brazil, India, Cuba, Republic of Korea, Germany, Iran, Japan, Sri Lanka, Thailand, and Peru, and also ClinicalTrials.gov®, EU Clinical Trials registry, International Standard Randomised Controlled Trial Number (ISRCTN)®, and the Pan-African registries. Three studies included treatment for patients with COVID-19 and an intervention to prevention infection in uninfected patients.

for therapeutic modulation, specifically the identification of highly conserved regions involving viral enzymes between different pathogenic coronaviruses.
Trends in Pharmacological Sciences

ICTRPiv, EU Clinical Trials Registerix, and Cochrane Central Register of Controlled Trialsvii, Figure 1) to collate all registered therapeutic and preventative interventions under clinical investigation. We hope that this will clarify current investigational advances and guide potential future strategies. We identified 344 interventional studies focusing on both preventative strategies and the treatment of patients with COVID-19 (Figure 1) as of 20 March 2020. This search identified 100 studies that focused on forms of traditional Chinese medicine (TCM), including herbal medicines, acupuncture and other forms of complementary medicine. These have not been further analysed due to a lack of scientific rationale, inadequate provision of information regarding active ingredients, and limited applicability to mainstream medical practice. Table 1 (Key Table) shows interventional treatments (Table 1A) and preventative strategies (Table 1B) under clinical investigation for COVID-19.

Treatment Strategies

Antiviral Treatments

As briefly mentioned earlier, many studies have focused on repurposing established antiviral therapies, especially those that showed prior efficacy against SARS-CoV and MERS-CoV. The combination of lopinavir/ritonavir is the most common exploratory antiviral, appearing in 34 investigational studies (Table 1A: Antivirals). Both drugs function as protease inhibitors and are used extensively in the management of HIV-1 \cite{9}. However, lopinavir has insufficient oral bioavailability for significant therapeutic activity, due to rapid catabolism by the cytochrome P450 enzyme system (specifically 3A4 isoenzyme) \cite{9}. Thus, ritonavir is given concomitantly to inhibit this, significantly boosting the half-life of lopinavir. Lopinavir/ritonavir was investigated for efficacy against SARS-CoV in 2004 and found to be effective compared with a historical control \cite{10}. However, efficacy was not seen in a randomised open-label study (see Glossary) (lopinavir/ritonavir versus standard care) in 199 patients with COVID-19 (Clinical Trial Number: ChiCTR2000029308, recruitment target stated as 160 participants in the registry; Table 1). No significant benefit was seen in either overall mortality or reduction in viral load \cite{11}. The authors highlighted several limitations, including a lack of treatment blinding, with study participants and investigators being aware of treatment assignments, thus reducing study objectivity. While there are multiple other ongoing studies exploring lopinavir/ritonavir in COVID-19, none utilises a double-blind methodology to address this limitation.

Remdesivir is a novel nucleotide analogue antiviral, initially developed for the management of the Ebola and Marburg viruses \cite{12,13}. However, it has efficacy against a range of pathogenic viruses, including both SARS-CoV and MERS-CoV in in vitro and in vivo models \cite{12,14}. There has been much interest in this molecule, following treatment of the first COVID-19 case, and subsequent recovery, in the USA \cite{15}. There are currently ten registered trials taking place globally to investigate efficacy for COVID-19 (Table 1A: Antivirals).

Several other antiviral drugs are being investigated, predominately those with activity against various influenza subtypes and other RNA viruses. These include favipiravir (T-705, Avigan), umifenovir (Arbidol), triazavirin (TZV), and baloxavir marboxil (Xofluza). Many trials are focusing on drugs typically used in the management of RNA viruses, such as HCV and HIV. These include danoprevir/ritonavir, azvudine, sofosbuvir/ledipasvir, sofosbuvir/daclatasvir, darunavir/cobicistat, and emtricitabine/tenofovir (Table 1A: Antivirals). Additionally, there are 26 studies investigating the utility of antiviral interferon-based treatments, interestingly also looking at various different routes of administration (e.g., nasal).

Antimalarial Treatments

Thirty-five trials are now investigating the use of the antimalarial drugs chloroquine and hydroxychloroquine against COVID-19 (Table 1A: Antimalarials). Chloroquine was found to have significant inhibitory effects on viral cell entry and replication \textit{in vitro} \cite{12}. An early report of clinical experience in 100 patients with COVID-19 reported both beneficial clinical and virological outcomes with chloroquine treatment \cite{16}. More recently, a nonrandomised open-label study examining the effect of hydroxychloroquine (EU Clinical Trial Numbervi: 2020-000890-25; recruitment target stated as 25 participants in the registry) reported on a cohort of 36 patients \cite{17}. It reported a significant reduction in nasopharyngeal swab viral positivity 6 days after inclusion in the hydroxychloroquine group compared with control. However, in a deviation from their registry-described protocol, 16 patients were designated as controls and six patients received concurrent treatment with azithromycin to prevent bacterial superinfection. Selection of patients receiving azithromycin was based on clinical judgement. The subgroup receiving azithromycin all had negative viral swabs after 6 days compared with 57% (8/14) of hydroxychloroquine alone and 12.5% (2/16) of control \cite{17}. This study is limited by its lack of randomisation and blinding, and small sample size. There is much interest in chloroquine or hydroxychloroquine for the treatment of COVID-19, with a further 34 studies registered (Table 1A: Antimalarials); however, only four report using a robust
Key Table

Table 1. Ongoing Clinical Trials for the (A) Treatment and (B) Prevention of COVID-19 (Current as of 20 March, 2020)

Clinical trial ID (Registry)	Intervention \(^b\)	Size \(^c\)	Randomised	Blinded	Status	Country of origin (pharma sponsor)
(A) Ongoing clinical trials for treatment of COVID-19						
Antiviral						
ChiCTR2000029609 (ICTPR)	Arm A (mild–moderate): chloroquine					
Arm B (mild–moderate): lopinavir/ritonavir						
Arm C (mild–moderate): lopinavir/ritonavir + chloroquine						
Arm D (severe): lopinavir/ritonavir						
Arm E (severe): chloroquine	205	No	No	Recruiting	China	
ChiCTR2000029600 (ICTPR)	Arm A: interferon alpha atomisation					
Arm B: lopinavir/ritonavir and interferon alpha atomisation						
Arm C: favipiravir and interferon alpha atomisation	90	No	No	Recruiting	China	
NCT04261270 (ClinicalTrials.gov)	Arm A: ASC09 and oseltamivir					
Arm B: ronivir and oseltamivir						
Arm C: oseltamivir	60	Yes	Single	Recruiting	China	
NCT04261907 (ClinicalTrials.gov)	Arm A: ASC09/ritonavir					
Arm B: lopinavir/ritonavir	160	Yes	No	Recruiting	China (Ascletis Pharm)	
ChiCTR2000030487 (ICTPR)	Arm A: azvudine	10	No	No	Recruiting	China
ChiCTR2000030424 (ICTPR)	Arm A: azvudine	30	No	No	Not recruiting	China
ChiCTR2000030041 (ICTPR)	Arm A: azvudine					
Arm B: standard treatment	20	Yes	No	Recruiting	China	
ChiCTR2000029853 (ICTPR)	Arm A: baloxavir marboxil					
Arm B: favipiravir						
Arm C: standard treatment	30	Yes	Unspecified	Not recruiting	China	
ChiCTR2000029548 (ICTPR)	Arm A: baloxavir marboxil					
Arm B: favipiravir						
Arm C: lopinavir/ritonavir	30	Yes	No	Not recruiting	China	
ChiCTR2000030001 (ICTPR)	Arm A: basic treatment + trisazavir					
Arm B: basic treatment	240	Yes	Yes	Recruiting	China	
NCT04273763 (ClinicalTrials.gov)	Arm A: bromhexine (mucolytic), umifenovir, interferon a2b, and favipiravir					
Arm B: umifenovir and interferon a2b	60	Yes	No	Recruiting	China (WanBangDe Pharm. Group)	
ChiCTR2000030002 (ICTPR)	Arm A: conventional treatment					
Arm B: conventional treatment + tranilast	60	Yes	No	Recruiting	China	
ChiCTR2000030472 (ICTPR)	Arm A: danoprevir/ritonavir					
Arm B: standard treatment	20	Unspecified	No	Recruiting	China	
ChiCTR2000030259 (ICTPR)	Arm A: danoprevir/ritonavir					
Arm B: standard treatment	60	Yes	Unspecified	Recruiting	China	
ChiCTR2000030000 (ICTPR)	Arm A: danoprevir/ritonavir					
Arm B: Pegasys
Arm C: Novaferon
Arm D: Coriolus | 50 | Unspecified | No | Recruiting | China |
Table 1. (continued)

Clinical trial ID (Registry)	Intervention\(^a\)	Size\(^a\)	Randomised	Blinded	Status	Country of origin (pharma sponsor)
NCT04252274 (ClinicalTrials.gov)	Arm A: darunavir and cobicistat					
Arm B: standard treatment	30	Yes	No	Recruiting	China	
NCT04304053 (ClinicalTrials.gov)	Arm A: darunavir/cobicistat					
Arm B: isolation	3040	Yes	No	Recruiting	Spain	
ChiCTR2000029541 (ICTPR)	Arm A: darunavir/cobicistat and thymosin					
Arm B: lopinavir/ritonavir and thymosin						
Arm C: thymosin	100	Yes	No	Not recruiting	China	
NCT04291729 (ClinicalTrials.gov)	Arm A: darunavir/ritonavir and atomised interferon					
Arm B: peginterferon a2						
Arm C: interferon alpha (Novoferon)						
Arm D: lopinavir/ritonavir						
Arm E: atomised interferon + Chinese medicine (unspecified)	50	No	No	Recruiting	China (Ascletis Pharmaceutical)	
ChiCTR2000030535 (ICTPR)	Arm A: ebastine and interferon alpha inhalation and lopinavir					
Arm B: interferon alpha inhalation and lopinavir	100	Yes		Recruiting	China	
ChiCTR2000030113 (ICTPR)	Arm A: favipiravir					
Arm B: ritonavir	20	Yes	No	Recruiting	China	
ChiCTR2000030254 (ICTPR)	Arm A: favipiravir					
Arm B: umifenovir	240	Yes	No	Recruiting	China	
ChiCTR2000030987 (ICTPR)	Arm A: favipiravir and chloroquine					
Arm B: favipiravir						
Arm C: placebo	150	Yes	Unspecified	Recruiting	China	
NCT04310228 (ClinicalTrials.gov)	Arm A: favipiravir and tocilizumab					
Arm B: favipiravir						
Arm C: tocilizumab	150	Yes	No	Recruiting	China	
ChiCTR2000029895 (ICTPR)	Arm A: GD31	160	No	Unspecified	Recruiting	China
IRCT20100228003449N27 (ICTPR)	Arm A: hydroxychloroquine, lopinavir/ritonavir, and interferon beta 1b	30	Yes	No	Recruiting	Iran
IRCT20100228003449N28 (ICTPR)	Arm A: hydroxychloroquine, lopinavir/ritonavir, and interferon beta 1a	30	Yes	No	Recruiting	Iran
IRCT20100228003449N29 (ICTPR)	Arm A: hydroxychloroquine, lopinavir/ritonavir, and sofosbuvir/ledipasvir					
Arm B: hydroxychloroquine and lopinavir/ritonavir	50	Yes	No	Recruiting	Iran	
JPRIJRCTs041190120 (ICTPR)	Arm A: Immediate favipiravir (Day 1–10)					
Arm B: delayed favipiravir (Day 6–15)	86	Yes	No	Recruiting	Japan	
2020-001023-14 (EU-CTR)	Arm A: inhaled interferon alpha 1b					
Arm B: placebo	400	Yes	Double	Recruiting	UK (Synairgen Ltd)	
ChiCTR2000029989	Arm A: interferon a1b eye drops	300	Yes	Unspecified	Not	China

(continued on next page)
Table 1. (continued)

Clinical trial ID (Registry)	Interventionš	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
(ICTPR)	Arm B: placebo eye drops				recruiting	
NCT04293887 (ClinicalTrials.gov)	Arm A: interferon α1b nebulised	328	Yes	No	Not recruiting China	
NCT04310793 (ClinicalTrials.gov)	Arm A: interferon alpha 2a and ribavirin	30	Yes	Unspecified	Recruiting China	
NCT04310793 (ClinicalTrials.gov)	Arm B: umifenovir and ribavirin					
ChiCTR2000030187 (ICTPR)	Arm A: lopinavir/ritonavir	160	Yes	No	Recruiting China	
Arm B: standard of care	Arm C: no intervention					
2020-001113-21 (EU-CTR)	Arm A: lopinavir/ritonavir	2000	Yes	No	Recruiting UK	
Arm B: interferon beta 1a	Arm C: remdesivir					
ChiCTR2000029468 (ICTPR)	Arm A: lopinavir/ritonavir and emtricitabine/tenofovir	120	Unspecified	Unspecified	Not recruiting China	
Arm B: lopinavir/ritonavir	Arm C: lopinavir/ritonavir and interferon alpha inhalation					
JP8N-JCTRt031190227 (ICTPR)	Arm A: lopinavir/ritonavir and hydroxychloroquine	50	Unspecified	Unspecified	Not recruiting Japan	
Arm B: lopinavir/ritonavir and traditional Chinese medicine	Arm C: lopinavir/ritonavir and interferon alpha 2b and Qing-Wen Bai-Du-Yin granules					
2018-001441-23 (EU-CTR)	Arm A: lopinavir/ritonavir and Xiyanping injection	80	Unspecified	Unspecified	Recruiting China	
Arm B: ritonavir	Arm B: ritonavir					
NCT04252885 (ClinicalTrials.gov)	Arm A: lopinavir/ritonavir + basic treatment (unspecified)	125	Yes	No	Recruiting China	
Arm B: umifenovir + basic treatment (unspecified)	Arm C: basic treatment (unspecified)					
NCT04276688 (ClinicalTrials.gov)	Arm A: lopinavir/ritonavir + ribavirin + interferon beta 1b	70	Yes	No	Recruiting Hong Kong	
Arm B: lopinavir/ritonavir	Arm C: lopinavir/ritonavir					
ChiCTR2000029539 (ICTPR)	Arm A: lopinavir/ritonavir	328	Yes	No	Recruiting China	
Arm B: standard treatment	Arm C: standard treatment					
ChiCTR2000029996 (ICTPR)	Arm A: low-dose favipiravir	60	Yes	No	Recruiting China	
Arm B: medium-dose favipiravir	Arm C: high-dose favipiravir					
ChiCTR2000029638 (ICTPR)	Arm A: nebulised rSiFN-co	100	Yes	Yes	Recruiting China	
Arm B: nebulised interferon alpha	Arm B: nebulised interferon alpha					
Clinical trial ID (Registry)	Intervention*	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
-----------------------------	---------------	------	------------	---------	--------	-----------------------------------
ChiCTR2000029496 (ICTPR)	Arm A: Novaferon atomisation inhalation					
Arm B: lopinavir/ritonavir						
Arm C: Novaferon and lopinavir/ritonavir	90	Yes	No	Recruiting	China	
NCT04303299 (ClinicalTrials.gov)	Arm A: oseltamivir and chloroquine					
Arm B: lopinavir/ritonavir and favipiravir						
Arm C: lopinavir/ritonavir and oseltamivir						
Arm D: lopinavir/ritonavir and oseltamivir						
Arm E: favipiravir and lopinavir/ritonavir						
Arm F: darunavir/ritonavir, oseltamivir, and chloroquine						
Arm G: standard treatment	80	Yes	No	Not recruiting	Thailand	
NCT04302766 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: unspecified						
Arm C: unspecified						
Arm D: available	unspecified	unspecified	unspecified	Available	USA	
NCT04292899 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: standard treatment	400	Yes	No	Recruiting	USA and Asia (Gilead)	
NCT04292730 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: standard treatment	600	Yes	No	Recruiting	USA and Asia (Gilead)	
NCT04280705 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: placebo	394	Yes	Double	Recruiting	USA and South Korea	
2020-000841-15 (EU-CTR)	Arm A: remdesivir					
Arm B: standard treatment	400	Yes	No	Recruiting	Worldwide (Gilead)	
2020-000842-32 (EU-CTR)	Arm A: remdesivir					
Arm B: standard treatment	600	Yes	No	Recruiting	Worldwide (Gilead)	
NCT04252664 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: placebo	308	Yes	Quadruple	Recruiting	China	
NCT04257656 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: placebo	453	Yes	Quadruple	Recruiting	China	
NCT04315948 (ClinicalTrials.gov)	Arm A: remdesivir					
Arm B: lopinavir/ritonavir						
Arm C: lopinavir/ritonavir and interferon beta 1a						
Arm D: hydroxychloroquine						
Arm E: standard treatment	3100	Yes	No	Recruiting	France	
ChiCTR2000029387 (ICTPR)	Arm A: ribavirin and interferon alpha-1b					
Arm B: lopinavir/ritonavir, and interferon alpha-1b						
Arm C: ribavirin, lopinavir/ritonavir, and interferon alpha-1b	108	Unspecified	Unspecified	Recruiting	China	
IRCT20200128046294N2 (ICTPR)	Arm A: sofosbuvir/daclatasvir					
Arm B: standard treatment	70	Yes	Single	Recruiting	Iran	
ChiCTR2000029400 (ICTPR)	Arm A: traditional Chinese medicine					
Arm B: lopinavir/ritonavir						
Arm C: traditional Chinese medicine and lopinavir/ritonavir	60	Unspecified	Unspecified	Recruiting	China	
ChiCTR2000030262 (ICTPR)	Arm A: type 1 interferon and TFF2 dose 1					
Arm B: type 1 interferon and TFF2 dose 2
Arm C: standard treatment | 30 | Yes | Unspecified | Recruiting | China |
Table 1. (continued)

Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
ChiCTR2000029573 (ICTPR)	Arm A: umifenovir					
Arm B: Novaferon and umifenovir						
Arm C: lopinavir/ritonavir						
Arm D: umifenovir						
Arm E: novaferon and lopinavir/ritonavir						
Arm F: novaferon and umifenovir	480	Yes	No	Not recruiting	China	
ChiCTR2000029621 (ICTPR)	Arm A: umifenovir					
Arm B: standard treatment	380	Yes	No	Recruiting	China	
NCT04254874 (ClinicalTrials.gov)	Arm A: umifenovir					
Arm B: umifenovir and pegylated interferon alpha 2b	100	Yes	Single	Recruiting	China	
NCT04255017 (ClinicalTrials.gov)	Arm A: umifenovir					
Arm B: oseltamivir						
Arm C: lopinavir/ritonavir	400	Yes	Single	Recruiting	China	
ChiCTR2000029993 (ICTPR)	Arm A: umifenovir and Liushen capsule					
Arm B: standard treatment	40	Yes	No	Not recruiting	China	
NCT04275388 (ClinicalTrials.gov)	Arm A: Xyamping injection, lopinavir/ritonavir and interferon alpha nebulisation					
Arm B: lopinavir/ritonavir and interferon alpha nebulisation | 348 | Yes | No | Not recruiting | China (Jiangxi Qingfeng Pharmaceutical) |

Antimalarial

Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
ChiCTR2000030031 (ICTPR)	Arm A: chloroquine					
Arm B: placebo	120	Yes	Double	Recruiting	China	
ChiCTR2000029888 (ICTPR)	Arm A: chloroquine					
Arm B: standard treatment	80	Unspecified	Unspecified	Recruiting	China	
ChiCTR2000029975 (ICTPR)	Arm A: chloroquine	10	No	Unspecified	Not recruiting	China
ChiCTR2000029909 (ICTPR)	Arm A: chloroquine					
Arm B: standard treatment	100	Yes	Single	Recruiting	China	
ChiCTR2000029905 (ICTPR)	Arm A: chloroquine	100	No	Unspecified	Recruiting	China
ChiCTR2000029837 (ICTPR)	Arm A: chloroquine					
Arm B: placebo	120	Yes	Double	Not recruiting	China	
ChiCTR2000029826 (ICTPR)	Arm A: chloroquine					
Arm B: placebo	45	Yes	Double	Not recruiting	China	
ChiCTR2000029542 (ICTPR)	Arm A: chloroquine					
Arm B: standard treatment	20	Unspecified	Unspecified	Recruiting	China	
ChiCTR2000029741 (ICTPR)	Arm A: chloroquine					
Arm B: lopinavir/ritonavir	112	Yes	No	Recruiting	China	
ChiCTR2000030718 (ICTPR)	Arm A: chloroquine					
Arm B: standard treatment	80	Yes	No	Recruiting	China	
ChiCTR2000029992 (ICTPR)	Arm A: chloroquine and hydroxychloroquine					
Arm B: standard treatment	100	Yes	No	Not recruiting	China	
ChiCTR2000030417 (ICTPR)	Arm A: chloroquine aerosol inhalation					
Arm B: water aerosol inhalation	30	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000030082 (ICTPR)	Arm A: dihydroartemisinin/piperaquine tablets combined with antiviral	40	Yes	No	Suspended	China
Clinical trial ID (Registry)	Intervention(s)	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
-----------------------------	-----------------	------	-------------	---------	--------	-----------------------------------
	treatment (presumed alpha-interferon + umifenovir)					
Arm B: alpha-interferon + umifenovir						
ChiCTR2000029898 (ICTPR)	Arm A: hydroxychloroquine Arm B: chloroquine	100	Yes	No	Recruiting	China
NCT04261517 (ClinicalTrials.gov)	Arm A: hydroxychloroquine Arm B: standard of care	30	Yes	No	Recruiting	China
ChiCTR2000030054 (ICTPR)	Arm A: hydroxychloroquine Arm B: standard treatment	100	Yes	No	Not recruiting	China
ChiCTR2000029868 (ICTPR)	Arm A: hydroxychloroquine Arm B: standard treatment	200	Yes	Unspecified	Recruiting	China
ChiCTR2000029740 (ICTPR)	Arm A: hydroxychloroquine Arm B: standard treatment	78	Yes	No	Recruiting	China
ChiCTR2000029559 (ICTPR)	Arm A: hydroxychloroquine Arm B: hydroxychloroquine Arm C: placebo	300	Unspecified	Unspecified	Recruiting	China
2020-000890-25 (EU-CTR) [17]	Arm A: hydroxychloroquine	25	No	No	Recruiting	France
ChiCTR2000029899 (ICTPR)	Arm A: hydroxychloroquine Arm B: chloroquine	100	Yes	No	Recruiting	China
NCT04315896 (ClinicalTrials.gov)	Arm A: hydroxychloroquine Arm B: placebo	500	Yes	Quadruple	Not recruiting	Mexico
NCT04316377 (ClinicalTrials.gov)	Arm A: hydroxychloroquine Arm B: standard treatment	202	Yes	No	Not recruiting	Norway

Immunosuppressants

Clinical trial ID (Registry)	Intervention(s)	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
NCT04263402 (ClinicalTrials.gov)	Arm A: methylprednisolone (<40 mg/day) Arm B: methylprednisolone (40–80 mg/day)	100	Yes	Single	Recruiting	China
ChiCTR2000030089 (ICTPR)	Arm A: conventional treatment + adalimumab Arm B: conventional treatment	60	Yes	No	Not recruiting	China
ChiCTR2000030481 (ICTPR)	Arm A: early corticosteroid intervention Arm B: middle–late corticosteroid intervention Arm C: standard care	200	Yes	No	Recruiting	China
NCT04288713 (ClinicalTrials.gov)	Arm A: eculizumab	Unspecified	Unspecified	Unspecified	Available	USA
NCT042680588 (ClinicalTrials.gov)	Arm A: fingolimod Arm B: standard treatment	30	No	No	Recruiting	China
ChiCTR2000030703 (ICTPR)	Arm A: beclomethasone and antiviral therapy Arm B: antiviral therapy	40	Yes	Single	Recruiting	China
NCT04275245 (ClinicalTrials.gov)	Arm A: meplazumab	20	No	No	Recruiting	China
NCT04273321 (ClinicalTrials.gov)	Arm A: methylprednisolone Arm B: standard treatment	400	Yes	No	Recruiting	China
NCT04244591 (ClinicalTrials.gov)	Arm A: methylprednisolone Arm B: standard treatment	80	Yes	No	Recruiting	China
ChiCTR2000029656 (ICTPR)	Arm A: methylprednisolone Arm B: standard treatment	100	Yes	No	Not recruiting	China

(continued on next page)
Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
ChiCTR2000029386 (ICTRP)	Arm A: methylprednisolone					
Arm B: standard treatment	48	Yes	Unspecified	Recruiting	China	
NCT04315298 (ClinicalTrials.gov)	Arm A: sarilumab high dose					
Arm B: sarilumab low dose						
Arm C: placebo	400	Yes	Quadruple	Recruiting	USA (Regeneron Pharmaceuticals)	
ChiCTR2000030058 (ICTRP)	Arm A: standard treatment + leflunomide					
Arm B: standard treatment + placebo	200	Yes	Yes	Not yet recruiting	China	
ChiCTR2000030196 (ICTRP)	Arm A: tocilizumab	60	No	No	Not recruiting	China
NCT04315480 (ClinicalTrials.gov)	Arm A: tocilizumab					
Arm B: standard treatment						
Arm C: placebo	400	Yes	Quadruple	Recruiting	USA (Regeneron Pharmaceuticals)	
NCT04317092 (ClinicalTrials.gov)	Arm A: tocilizumab	330	No	No	Recruiting	Italy
ChiCTR2000030442 (ICTRP)	Arm A: tocilizumab, IVIG, and CCRT	100	No	Unspecified	Not recruiting	China
ChiCTR2000030580 (ICTRP)	Arm A: tozumab and adalimumab					
Arm B: standard treatment	60	Yes	Unspecified	Recruiting	China	
NCT04317040 (ClinicalTrials.gov)	Arm A: CD24Fc					
Arm B: placebo	230	Yes	Quadruple	Not recruiting	USA (OncoImmune)	
ChiCTR2000029776 (ICTRP)	Arm A: conventional treatment + polynosin-polycytidylic acid					
Arm B: conventional treatment	40	Yes	No	Recruiting	China	
NCT04299724 (ICTRP)	Arm A: Covid-19/aAPC vaccine	100	No	No	Recruiting	China
ChiCTR2000030939 (ICTRP)	Arm A: CSA0001	10	Yes	Unspecified	Recruiting	China
ChiCTR2000030016 (ICTRP)	Arm A: inhaled inactive Mycobacterium vaccine					
Arm B: inhaled physiological saline	60	Yes	Yes	Recruiting	China	
ChiCTR2000030167 (ICTRP)	Arm A: interleukin-2					
Arm B: standard treatment	80	Yes	Unspecified	Not recruiting	China	
NCT04261426 (ClinicalTrials.gov)	Arm A: IVIG					
Arm B: standard treatment	80	Yes	No	Not recruiting	China	
NCT04268969 (ClinicalTrials.gov)	Arm A: LV-SMENP-DC vaccine and antigen specific cytotoxic T cells	100	No	No	Recruiting	China
NCT04268537 (ClinicalTrials.gov)	Arm A: PD-1-blocking Ab					
Arm B: thymosin						
Arm C: standard treatment	120	Yes	Single	Not recruiting	China	
ChiCTR2000030028 (ICTRP)	Arm A: PD-1 mAb + standard treatment					
Arm B: standard treatment	40	Yes	No	Not yet recruiting	China	
NCT04312997 (ClinicalTrials.gov)	Arm A: PUL-042 nebuliser					
Arm B: sterile saline inhaler	100	Yes	Quadruple	Not recruiting	USA (Pulmotect)	
ChiCTR2000030750 (ICTRP)	Arm A: recombinant chimeric DC vaccine					
Arm B: normal saline	120	Yes	Unspecified	Not recruiting	China	
ChiCTR2000030007 (ICTRP)	Arm A: standard treatment + rhG-CSF					
Arm B: standard treatment	200	Yes	No	Not yet recruiting	China	
Clinical trial ID (Registry)	Interventionb	Sizec	Randomised	Blinded	Status	Country of origin (pharma sponsor)
-----------------------------	------------------	----------	------------	---------	--------	-----------------------------------
ChiCTR2000029636 (ICTPR)	Arm A: standard treatment and vMIP atomised inhalation	40	No	No	Recruiting	China
ChiCTR2000029806 (ICTPR)	Arm A: subcutaneous thymosin Arm B: camrelizumab infusion Arm C: conventional treatment	120	Yes	No	Recruiting	China
ChiCTR2000030779 (ICTPR)	Arm A: ulinastatin (trypsin inhibitor) Arm B: standard treatment	100	Yes	No	Recruiting	China
Cytokine removal						
ChiCTR2000030475 (ICTPR)	Arm A: CytoSorb cytokine removal	19	No	No	Not recruiting	China
ChiCTR2000030477 (ICTPR)	Arm A: oXiris membrane	19	No	No	Not recruiting	China
ChiCTR2000030265 (ICTPR)	Arm A: oXiris membrane Arm B: standard treatment	30	Unspecified	Unspecified	Not recruiting	China
ChiCTR2000030835 (ICTPR)	Arm A: high-dose MSCs Arm B: low-dose MSCs	20	No	Unspecified	Recruiting	China
ChiCTR2000029817 (ICTPR)	Arm A: high-dose NK cells and MSCs Arm B: conventional-dose NK cells and MSCs Arm C: preventive-dose NK cells and MSCs	60	Unspecified	Unspecified	Not recruiting	China (Guangzhou Reborn Health Management Co)
ChiCTR2000029606 (ICTPR)	Arm A: menstrual blood-derived stem cells Arm B: artificial liver therapy Arm C: artificial liver therapy and menstrual blood-derived stem cells Arm D: standard treatment	73	Unspecified	Unspecified	Recruiting	China
NCT04315987 (ClinicalTrials.gov)	Arm A: MSCs	24	No	No	Not recruiting	Brazil (Cellavita Pesquisa Cientifica Ltd)
NCT04276987 (ClinicalTrials.gov)	Arm A: MSC-derived exosomes	30	No	No	Not recruiting	China (Cellular Biomedicine Group)
NCT04288102 (ClinicalTrials.gov)	Arm A: MSCs Arm B: placebo	60	Yes	Quadruple	Recruiting	China
NCT04252118 (ClinicalTrials.gov)	Arm A: MSCs Arm B: standard treatment	20	No	No	Recruiting	China (IPM, Vcanbio Cell and Gene Engineering)
ChiCTR2000030300 (ICTPR)	Arm A: MSCs	9	No	Unspecified	Recruiting	China
ChiCTR2000030224 (ICTPR)	Arm A: MSCs Arm B: normal saline	32	Unspecified	Unspecified	Not recruiting	China
ChiCTR2000030173 (ICTPR)	Arm A: MSCs Arm B: standard treatment	60	Unspecified	Unspecified	Not recruiting	China (Hunan yuanpin Cell Biotech)
ChiCTR2000030020 (ICTPR)	Arm A: MSCs	20	No	No	Recruiting	China
ChiCTR2000029900 (ICTPR)	Arm A: MSCs Arm B: saline	120	Yes	Unspecified	Recruiting	China
ChiCTR2000030261 (ICTPR)	Arm A: MSC-derived exosomes Arm B: standard treatment	26	Unspecified	Unspecified	Not recruiting	China

(continued on next page)
Table 1. (continued)

Clinical trial ID (Registry)	Interventiona	Sizel	Randomised	Blinded	Status	Country of origin (pharma sponsor)
NCT04280224 (ClinicalTrials.gov)	Arm A: NK cells					
Arm B: standard treatment	30	Yes	No	Recruiting	China	
(pharma sponsor)						
ChiCTR2000030509 (ICTRP)	Arm A: NK cells					
Arm B: electrolyte injection	40	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000030944 (ICTPR)	Arm A: NK cells and MSC					
Arm B: standard treatment	20	Yes	No	Not recruiting	China	
NCT04302519 (ClinicalTrials.gov)	Arm A: pulp MSCs	24	No	No	Not recruiting	China (CAR-T Biotechnology Co, Ltd)
ChiCTR2000029580 (ICTPR)	Arm A: ruxolitinib and MSCs					
Arm B: standard treatment	70	Yes	Single	Recruiting	China	
NCT04299152 (ClinicalTrials.gov)	Arm A: stem cell educator therapy					
Arm B: standard treatment	20	Yes	Single	Not recruiting	USA (Tianhe Stem Cell Biotechnologies Inc)	
ChiCTR2000030329 (ICTPR)	Arm A: umbilical cord blood CIK cells					
Arm B: umbilical cord NK cells						
Arm C: standard treatment	90	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000029812 (ICTPR)	Arm A: umbilical cord blood mononuclear cell preparations					
Arm B: standard treatment	60	Unspecified	Unspecified	Not recruiting	China (Guangzhou Reborn Health Management Consultation Co)	
ChiCTR2000029572 (ICTPR)	Arm A: umbilical cord blood mononuclear cells					
Arm B: standard treatment	30	Yes	Unspecified	Recruiting	China	
ChiCTR2000029818 (ICTPR)	Arm A: umbilical cord blood plasma preparations					
Arm B: standard treatment	60	Unspecified	Unspecified	Not recruiting	China (Guangzhou Reborn Health Management Consultation Co)	
NCT04293692 (ClinicalTrials.gov)	Arm A: umbilical cord MSCs					
Arm B: placebo	48	Yes	Triple	Withdrawn	China (Wuhan Hamilton Biotechnology)	
NCT04273646 (ClinicalTrials.gov)	Arm A: umbilical cord MSCs					
Arm B: placebo	48	Yes	No	Not recruiting	China (Wuhan Biotechnology)	
NCT04269525 (ClinicalTrials.gov)	Arm A: umbilical cord MSCs	10	No	No	Recruiting	China (Tuohua Biological Technology Co)
ChiCTR2000030138 (ICTPR)	Arm A: umbilical cord MSCs					
Arm B: placebo	60	Yes	Double	Not recruiting	China	
ChiCTR2000030484 (ICTPR)	Arm A: umbilical cord MSCs					
Arm B: umbilical cord MSCs and derived exosomes						
Arm C: placebo	120	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000030116 (ICTPR)	Arm A: umbilical cord MSCs dose A					
Arm B: umbilical cord MSCs dose B	16	Yes	Unspecified	Recruiting	China	
ChiCTR2000029816 (ICTPR)	Arm A: umbilical cord MSCs					
Arm B: standard treatment	60	Yes	No	Not recruiting	China (Guangzhou Reborn Health Management)	
NCT04313322 (ClinicalTrials.gov)	Arm A: Wharton jelly MSCs	5	No	No	Recruiting	Jordan (Stem Cells Arabia)
ChiCTR2000030088 (ICTPR)	Arm A: Wharton jelly MSCs					
Arm B: saline | 20 | Yes | Unspecified | Not recruiting | China |
Table 1. (continued)

Clinical trial ID (Registry)	Intervention^a	Size^b	Randomised	Blinded	Status	Country of origin (pharma sponsor)
Plasma-based therapy						
ChiCTR2000030702 (ICTPR)	Arm A: convalescent plasma therapy					
Arm B: standard treatment	50	Yes	No	Recruiting	China	
ChiCTR2000030046 (ICTPR)	Arm A: anti-2019-nCoV virus inactivated plasma					
Arm B: standard treatment	10	No	No	Recruiting	China	
ChiCTR2000030381 (ICTPR)	Arm A: anti-SARS-CoV-2 inactivated convalescent plasma					
Arm B: ordinary plasma	40	Yes	No	Not recruiting	China	
ChiCTR2000030010 (ICTPR)	Arm A: anti-SARS-CoV-2 virus inactivated plasma					
Arm B: ordinary plasma	100	Yes	Double	Not recruiting	China	
ChiCTR2000030841 (ICTPR)	Arm A: convalescent immunoglobulin					
Arm B: gamma-globulin	10	No	No	Recruiting	China	
NCT04264858 (ClinicalTrials.gov)	Arm A: convalescent immunoglobulin					
Arm B: gamma globulin	10	No	No	Not recruiting	China	
ChiCTR2000030039 (ICTPR)	Arm A: convalescent plasma					
Arm B: standard treatment	90	No	No	Recruiting	China	
ChiCTR2000029850 (ICTPR)	Arm A: convalescent plasma					
Arm B: standard treatment	20	No	Unspecified	Recruiting	China	
ChiCTR2000030627 (ICTPR)	Arm A: convalescent plasma therapy					
Arm B: standard treatment	30	Yes	Unspecified	Recruiting	China	
ChiCTR2000029757 (ICTPR)	Arm A: convalescent plasma therapy					
Arm B: standard treatment	200	Yes	No	Recruiting	China	
ChiCTR2000030929 (ICTPR)	Arm A: convalescent plasma therapy					
Arm B: control plasma	60	Yes	Double	Not recruiting	China	
ChiCTR2000030179 (ICTPR)	Arm A: plasma treatment					
Arm B: standard treatment	100	Yes	Unspecified	Recruiting	China	
Inhaled gas						
ChiCTR2000030258 (ICTPR)	Arm A: hydrogen inhalation^a					
Arm B: standard treatment	60	Yes	No	Not recruiting	China	
ChiCTR2000029739 (ICTPR)	Arm A: hydrogen–oxygen nebuliser					
Arm B: oxygen	440	Yes	Unspecified	Recruiting	China	
NCT04290871 (ClinicalTrials.gov)	Arm A: inhaled nitric oxide					
Arm B: no intervention	104	Yes	Yes	Not yet recruiting	China	
NCT04306933 (ClinicalTrials.gov)	Arm A: inhaled nitric oxide					
Arm B: no intervention	200	Yes	Yes	Not yet recruiting	USA	
NCT04305457 (ClinicalTrials.gov)	Arm A: inhaled nitric oxide					
Arm B: no intervention	240	Yes	No	Not yet recruiting	USA	
NCT04290858 (ClinicalTrials.gov)	Arm A: inhaled nitric oxide					
Arm B: no intervention	240	Yes	No	Not yet recruiting	China	
Antifibrotic						
NCT04282902 (ClinicalTrials.gov)	Arm A: pirfenidone					
Arm B: standard treatment	294	Yes	No	Recruiting	China	
ChiCTR2000030892 (ICTPR)	Arm A: pirfenidone					
Arm B: standard treatment	20	Yes	No	Recruiting	China	
ChiCTR2000030333 (ICTPR)	Arm A: pirfenidone					
Arm B: standard treatment	292	Yes	No	Recruiting	China	
Antiangiogenic						
NCT04275414	Arm A: bevacizumab	20	No	No	Recruiting	China

(continued on next page)
Clinical trial ID (Registry)	Interventiona	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
NCT04305106 (ClinicalTrials.gov)	Arm A: bevacizumab Arm B: standard treatment	118	Yes	Triple	Recruiting	China
NCT04273581 (ClinicalTrials.gov)	Arm A: thalidomide Arm B: placebo	40	Yes	Quadruple	Not recruiting	China
NCT04273529 (ClinicalTrials.gov)	Arm A: thalidomide Arm B: placebo	100	Yes	Quadruple	Not recruiting	China
Antimicrobial						
ChiCTR2000030539 (ICTPR)	Arm A: 3% hydrogen peroxide gargle Arm B: standard treatment	40	Unspecified	Unspecified	Not recruiting	China
ChiCTR2000029867 (ICTPR)	Arm A: carriymycin Arm B: lopinavir/ritonavir	520	Yes	No	Recruiting	China
NCT04286503 (ClinicalTrials.gov)	Arm A: carriymycin + basic treatment (unspecified) Arm B: lopinavir/ritonavir or umifenovir or chloroquine phosphate + basic treatment (unspecified)	520	Yes	No	Recruiting	China (Shenyang Tonglian Group)
ChiCTR2000030029 (ICTPR)	Arm A: suramin	20	No	No	Not yet recruiting	China
Antioxidants						
ChiCTR2000029851 (ICTPR)	Arm A: alpha lipoic acid Arm B: placebo	68	Yes	Unspecified	Recruiting	China
ChiCTR2000030471 (ICTPR)	Arm A: lipoic acid injection Arm B: standard treatment	384	Yes	Single	Recruiting	China
Microbiome						
ChiCTR2000030897 (ICTPR)	Arm A: Newgen beta-gluten probiotic Arm B: standard treatment	20	Yes	Unspecified	Recruiting	China
ChiCTR2000029999 (ICTPR)	Arm A: probiotics Arm B: probiotics	60	No	No	Not recruiting	China
ChiCTR2000029974 (ICTPR)	Arm A: probiotics Arm B: standard treatment	300	Yes	No	Recruiting	China (Qingdao East Sea Pham.)
ChiCTR2000029849 (ICTPR)	Arm A: Unspecified intestinal flora intervention Arm B: standard treatment	60	Yes	Unspecified	Recruiting	China
NCT04251767 (ClinicalTrials.gov)	Arm A: washed microbiota transplant Arm B: placebo	40	Yes	Quadruple	Enrolling by invitation	China
Organ support						
ChiCTR2000030503 (ICTPR)	Arm A: artificial liver system Arm B: standard treatment	60	No	No	Recruiting	China
ChiCTR2000030540 (ICTPR)	Arm A: CRRT Arm B: CRRT only for emergency indication	152	Unspecified	Unspecified	Not recruiting	China
ChiCTR2000030761 (ICTPR)	Arm A: CRRT	20	No	No	Not recruiting	China
ChiCTR2000030744 (ICTPR)	Arm A: ECMO Arm B: standard treatment	30	No	No	Recruiting	China
ChiCTR2000030855 (ICTPR)	Arm A: external diaphragmatic pacing	200	No	No	Not recruiting	China
ChiCTR2000030773 (ICTPR)	Arm A: Unspecified blood purification	20	No	No	Recruiting	China
Table 1. (continued)

Clinical trial ID (Registry)	Interventionb	Sizec	Randomised	Blinded	Status	Country of origin (pharma sponsor)
Therapy interventions						
ChiCTR2000030260 (ICTPR)	Arm A: enteral nutrition emulsion					
Arm B: standard treatment	20	Yes	No	Not recruiting	China	
ChiCTR2000030198 (ICTPR)	Arm A: health education and pulmonary rehabilitation					
Arm B: health education	60	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000030418 (ICTPR)	Arm A: lung rehabilitation					
Arm B: usual activity	80	Unspecified	Unspecified	Recruiting	China	
ChiCTR2000030578 (ICTPR)	Arm A: lung rehabilitation training					
Arm B: standard treatment	40	Unspecified	Unspecified	Not recruiting	China	
NCT04283825 (ClinicalTrials.gov)	Arm A: psychological and physical rehabilitation					
Arm B: standard treatment	100	No	No	Not recruiting	China	
ChiCTR2000030084 (ICTPR)	Arm A: psychological intervention					
Arm B: standard treatment	180	Unspecified	Unspecified	Recruiting	China	
ChiCTR2000030467 (ICTPR)	Arm A: psychological intervention and traditional Chinese medicine					
Arm B: psychological intervention, traditional Chinese medicine, and psychological intervention	60	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000029459 (ICTPR)	Arm A: pulmonary rehabilitation					
Arm B: standard treatment	50	Unspecified	Unspecified	Not recruiting	China	
ChiCTR2000030433 (ICTPR)	Arm A: rehabilitation and lung eight-segment exercise					
Arm B: standard treatment	80	No	No	Not recruiting	China	
ChiCTR2000029460 (ICTPR)	Arm A: shadowboxing rehabilitation					
Arm B: standard treatment	100	Yes	No	Not recruiting	China	
Ozonated autohemotherapy						
ChiCTR2000030165 (ICTPR)	Arm A: conventional treatment					
Arm B (mild): conventional treatment + ozonated autohemotherapy						
Arm C (severe): conventional treatment + ozonated autohemotherapy	60	No	No	Recruiting	China	
ChiCTR2000030102 (ICTPR)	Arm A: conventional treatment					
Arm B: conventional treatment + ozone therapy						
Arm C (severe): conventional treatment + ozone therapy						
Arm D (severe): conventional treatment						
Arm E (critical): conventional treatment + ozone therapy						
Arm F (critical): conventional treatment	180	Yes	No	Recruiting	China	
ChiCTR2000030006 (ICTPR)	Arm A: ozonated autohemotherapy					
Arm B: standard medical treatment	60	Yes	No	Recruiting	China	
Other						
ChiCTR2000029742 (ICTPR)	Arm A: (general): normal treatment					
Arm B (general): normal treatment + sodium aescinate
Arm C (severe): normal treatment + hormonotherapy (presumed glucocorticoids) | 90 | Yes | No | Recruiting | China |

(continued on next page)
Table 1. (continued)

Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
Arm D (severe): lopinavir/ritonavir	Arm A: acetylcysteine inhalation (mucolytic effect) via tracheal tube	60	Yes	Unspecified	Not recruiting	China
Arm E (severe) normal treatment + sodium aescinate	Arm B: saline inhalation via tracheal tube	340	Yes	Double	Not recruiting	China
Arm A: acetylcysteine inhalation	Arm A: conventional treatment	460	Yes	No	Recruiting	China
Arm B: conventional treatment + dipyridamole	Arm B: placebo	200	No	No	Not recruiting	China
Arm A: conventional treatment	Arm A: bismuth	60	Yes	No	Not recruiting	China
Arm B: placebo	Arm B: saline inhalation via tracheal tube	39	Yes	Unspecified	Not recruiting	China
Arm A: intravenous aviptadil followed by nebulised in 48 h if required	Arm A: intravenous aviptadil followed by nebulised in 48 h if required	20	Yes	Single	Not recruiting	USA and Israel (NeuroRx)
Arm B: aviptadil nebuliser followed by intravenous in 48 h if required	Arm B: high-dose vitamin C	39	Yes	Unspecified	Not recruiting	China
Arm A: low-molecular-weight heparin	Arm A: low-dose Ad5-nCoV	108	No	No	Not recruiting	China
Arm B: mechanical prevention	Arm B: middle-dose Ad5-nCoV	108	No	No	Not recruiting	China
Arm C: high-dose Ad5-nCoV	Arm C: high-dose vitamin C	108	No	No	Not recruiting	China
Arm A: sildenafil	Arm A: mRNA-1273 (100 μg)	45	No	No	Recruiting	USA (ModernaTX)
Arm B: placebo	Arm B: mRNA-1273 (250 μg)	45	No	No	Recruiting	USA (ModernaTX)
Arm C: mRNA-1273 (25 μg)	Arm A: verapamil	3040	Yes	No	Recruiting	Spain
Arm B: no intervention	Arm B: verapamil	450	Unspecified	Unspecified	Not recruiting	China
Arm C: umifenovir	Arm C: verapamil	1000	Unspecified	No	Not recruiting	China

(B) Ongoing clinical trials for prevention of COVID-19

Vaccine

Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
NCT0312009 (ClinicalTrials.gov)	Arm A: mRNA-1273 (25 μg)	45	No	No	Recruiting	China
Arm B: mRNA-1273 (100 μg)	Arm C: mRNA-1273 (250 μg)	45	No	No	Recruiting	China

Antiviral

Clinical trial ID (Registry)	Intervention	Size	Randomised	Blinded	Status	Country of origin (pharma sponsor)
double-blind randomised controlled protocol to investigate efficacy.

Immunosuppressants/Immunomodulators

There is evidence that a hyperinflammatory response significantly contributes to mortality in COVID-19 infections [18]. Corticosteroids were previously trialled in SARS-CoV; however, the results were inconclusive and adverse effects were associated [19]. Seven registered studies are evaluating the effect of corticosteroids in COVID-19 (Table 1A: Immunosuppressants). There is also interest in the anti-IL-6 drug, tocilizumab (used in the treatment of rheumatoid arthritis), with seven registered trials. Other immunosuppressants being investigated include adalimumab (anti-TNF), eculizumab (anti-C5), sarilumab (anti-IL-6), ixekizumab (anti-17A), and fingolimod (sphingosine-1-phosphate receptor modulator, used against multiple sclerosis). Meplazumab (anti-CD147) inhibits not only T cell chemotaxis, but also virus cell entry [20]. A preprint of a study of 17 patients compared with 11 controls (NCT04275245, original recruitment target 20) reported improved clinical and virological outcomes [20].

Conversely, several studies are investigating immune stimulation. These include the anti-PD-1 antibody camrelizumab, recombinant IL-2, CSA0001 (LL-37 antiviral peptide with immunomodulatory functions), CD24FC [fusion protein that prevents Toll-like receptor (TLR) activation and activates immunosuppressive Siglec signalling] and recombinant human granulocyte colony-stimulating factor (rhG-CSF) (Table 1A: Immune Modulators). Three studies (NCT04299724, NCT04276896, and ChiCTR2000030750) examine the efficacy of experimental vaccines in infected patients. Three further studies are...
investigating nonpharmaceutical interventions to modulate the immune system using cytokine filtration devices, such as oXiris and CytoSorb, to reduce circulating cytokines and inflammatory mediators (Table 1A: Cytokine Removal).

Cell and Plasma-Based Therapy

Twenty-four registered studies plan to investigate the role of mesenchymal stem cells (MSCs) (Table 1A: Cell-Based Therapies). MSCs have immunomodulatory and tissue repair effects through the secretion of cytokines and growth factors. They have previously been examined in a Phase I trial in Adult Respiratory Distress Syndrome (ARDS) [21]. Given that most of the deaths in COVID-19 are from respiratory failure, MSCs are postulated to have a beneficial effect. So far, one study of MSCs (ChiCTR2000029990, recruitment target stated as 120 participants in the registry) has reported results in seven patients with COVID-19, showing improvement in both clinical and inflammatory outcome compared with three control patients treated with saline [22]. This study plans to recruit 120 participants with 60 patients in each of the treatment (MSC) and control (saline) arms.

Use of plasma from patients who have recovered from COVID-19 has the potential benefit of providing disease-specific neutralising antibodies, before targeted therapies can be developed. During the Ebola outbreak in 2014, the WHO advised the use of convalescent plasma or whole-blood therapies. However, a nonrandomised comparative study in 84 patients with Ebola found no associated improvement in survival [23]. There are currently 12 registered trials to investigate convalescent plasma or immunoglobulins in COVID-19 (Table 1A: Plasma-Based Therapies).

Alternative Treatment Strategies

Various other treatment strategies are currently under investigation, including the antifibrotic/inflammatory agent pirfenidone (used in treatment of idiopathic pulmonary fibrosis), and the antiangiogenic agents: bevacizumab (anti-VEGF) and thalidomide (Table 1A: Antifibrotics and Antiangiogenics). A further five studies aim to assess the therapeutic utility of modifying the gut microbiome (Table 1A: Microbiome), although the mechanisms by which this is performed are not explicit in the trial registers. Ten other studies are investigating holistic approaches, including physiotherapy, psychology, and nutritional intervention, on disease outcome (Table 1A: Therapy Interventions).

Preventative Strategies

No effective vaccine or antiviral therapeutic agent for postexposure prophylaxis has been approved for preventing COVID-19 infection or any other human coronavirus. The development of vaccines is a complex, time-consuming process with a high attrition rate. Success in generating a vaccine in the recent 2009 pandemic (H1N1/09) has fuelled optimism towards one for COVID-19 [24]. Furthermore, both the rapid genomic sequencing of COVID-19 and insights gleaned during vaccine exploration for both MERS-CoV and SARS-CoV (both terminated due to successful disease containment) has allowed preclinical and animal work to advance rapidly [7].

Over 50 novel vaccines are estimated to be in development; however, only three vaccine studies are registered for Phase I evaluation (Table 1B: Vaccines). Two studies are actively recruiting in the USA and China, and a further study is newly registered (initial set-up). A modified mRNA vaccine (mRNA-1273) that encodes the COVID-19 viral spike protein has progressed rapidly through preclinical development to human testing (42 days from sequence identification), developed by Moderna, Inc and the National Institute of Allergy and Infectious Diseases (NIAID). However, such rapid development has prompted safety concerns from some experienced virologists [25]. Other current investigational vaccines being tested in humans include a replicative-defective adenovirus type 5 (Ad5)-nCoV that expresses COVID-19 viral proteins and a...
lentiviral vector system to express viral proteins and immunomodulatory genes to modify antigen-presenting cells (aAPC) (Table 1B: Vaccines).

Furthermore, postexposure prophylaxis is an attractive strategy for both healthcare workers and household contacts exposed to COVID-19. Currently, six studies are looking at the use of antivirals, such as umifenovir, antimalarials, such as hydroxychloroquine and chloroquine, and the use of recombinant human interferon alpha (a)1b spray for the prevention of infection (Table 1B: Antiviral and Antimalarial).

Global Response

Over 85% of the clinical trials (excluding TCM) for either the prevention and/or treatment of COVID-19 have been registered in China, which is not surprising given that the country saw the outbreak of the disease first. The first clinical trials were registered within 1 month of COVID-19 identification and rapidly expanded after that (Figure 2). Public health initiatives have thus far successfully curtailed the previously exponential growth of COVID-19 cases in China. This has reduced the number of potential participants for clinical trials in China and the registration of new clinical trials has since declined. Furthermore, several studies have also been withdrawn or suspended (e.g., NCT04293692 and ChiCTR2000030082).

The wider global community has been slower to react. The first case of COVID-19 outside of Asia was reported in late January 202013. Subsequently, the incidence of COVID-19 has increased dramatically. The WHO has now declared that Europe has become the new disease epicentre, with 40% of COVID-19 cases reported in North America, there has also been an increase in clinical trial registrations in the USA. The NIAID registered the first USA-led global trial in mid-February 2020, utilising 50 sites across Asiad, with the total number of participants since then exceeding 12000. Consequently, the median number of participants in European registered studies is 12000, compared with 60 and 394 in China and USA, respectively. An example is NCT04303507 (chloroquine postexposure prophylaxis), which plans to recruit 10 000 participants (Table 1B). However, this may in part reflect a higher proportion of preventative studies currently being carried out that include large numbers of participants. Hopefully, larger studies will provide higher quality evidence, although may take longer to generate results in the context of this escalating public health crisis.

With an increasing number of COVID-19 cases reported in North America, there has also been an increase in clinical trial registrations in the USA. The NIAID registered the first USA-led global trial in mid-February 2020, utilising 50 sites across Asia and USA (Figure 2). Studies registered in the USA have generally placed an emphasis on larger participant numbers than China (Table 1) and on an adaptive trial design for both the treatment and prevention of COVID-19.

Concluding Remarks

The COVID-19 pandemic represents the gravest global public health threat seen since the 1918 influenza outbreak and has rapidly become a global healthcare emergency. Clinical trials need to produce high-quality data that can be used to objectively assess potentials therapies for both the treatment and prevention of this global emergency. It is imperative to plough international resources into high-quality design clinical trials with robust scientific rationale and vigorous statistical rigor. Increasing international collaboration and the globalisation of clinical trials with large patient numbers should be the way forward to provide significant and definitive results.

Disclaimer Statement

M.P.L. received an educational travel grant from Bayer.

Resources

https://clinicaltrials.gov
https://www.who.int/ictrp/en/
https://www.clinicaltrialsregister.eu/
https://www.gov.uk/government/news/eu-boosts-funding-for-covid-19-epidemic-encourages-clinical-trial-cooperation
https://www.cochranelibrary.com/central/about-central
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/situation-reports
https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/global-solidarity-across-countries-and-continents-needed-to-fight-covid-19
https://www.bioworld.com/articles/433824-eu-boosts-funding-for-covid-19-epidemic-encourages-clinical-trial-cooperation
https://www.isrctn.com/?gclid=Cj0KCQjwjoH0BRD6ArIsAEW0ISd1pp6xJmUyqab:04Qb1nnPvzStao:l39DIwI5aAa222gsxqAy21Nt8d3MxAjEIEALx_w_wcB
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143607/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110248/1Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 OHS, UK
2Department of Metabolism, Digestion and Reproduction, Imperial College London, St Marys Hospital, Praed Street, London, W2 1, NY, UK
3These authors contributed equally
*Correspondence: M.Lythgoe@imperial.ac.uk (M.P. Lythgoe).
https://doi.org/10.1016/j.tips.2020.03.006
© 2020 Elsevier Ltd. All rights reserved.

References

1. Paules, C.I. et al. (2020) Coronavirus infections: more than just the common cold. JAMA 323, 707–708
2. Song, Z. et al. (2019) From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 11, 59
3. de Wit, E. et al. (2019) SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–535
4. Keogh-Brown, M.R. and Smith, R.D. (2008) The economic impact of SARS: how does the reality match the predictions? Health Policy 89, 110–120
Trends in Pharmacological Sciences

5. Li, G. and de Clercq, E. (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 19, 149–150

6. Lythgoe, M.P. et al. (2016) Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. Pharmacol. Ther. 164, 195–203

7. Lu, R. et al. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574

8. De Angelis, C. et al. (2004) Clinical trial registration: a statement from the International Committee of Medical Journal Editors. Lancet 364, 911–912

9. Sham, H.L. et al. (2015) Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Lancet 365, 256–260

10. Cao, B. et al. (2020) A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. Published online March 18, 2020. https://doi.org/10.1056/NEJMoa2001282

11. Cihlar, T. et al. (2016) Why drugs fail in clinical trials with large-scale libraries of synthetic compounds. Nature 541, 381–385

12. Gautret, P. et al. (2020) A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. Published online March 18, 2020. https://doi.org/10.1056/NEJMoa2000199

13. Lythgoe, M.P. et al. (2016) Why drugs fail in clinical trials in pulmonary arterial hypertension, and strategies to succeed in the future. Pharmacol. Ther. 164, 195–203

14. Sheahan, T.P. et al. (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 9, eaal3653

15. Holshue, M.L. et al. (2020) First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 382, 692–696

16. Gaur, A. et al. (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19-associated pneumonia in clinical studies. Biosci. Trends 14, 72–73

17. Gauthret, P. et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents Published online March 20, 2020. https://doi.org/10.1016/j.ijantimicag.2020.105949

18. Ruan, Q. et al. (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. Published online March 3, 2020. https://doi.org/10.1007/s00134-020-06599-x

19. Stockman, L.J. et al. (2006) SARS: systematic review of treatment effects. PLoS Med. 3, 1525–1531

20. Blan, H. et al. (2020) Mepclazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. medRxiv Published online March 24, 2020. https://doi.org/10.1101/2020.03.21.20046691

21. Wilson, J.G. et al. (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir. Med. 3, 24–34

22. Lang, Z. et al. (2020) Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 11, 216

23. van Gemen, M. et al. (2016) Evaluation of convalescent plasma for Ebola virus disease in Guinea. N. Engl. J. Med. 374, 30–42

24. Chen, Z. et al. (2010) Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. J. Virol. 84, 44–51

25. Jiang, S. (2020) Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature 579, 321

Spotlight

Structure-Based Virtual Screening Accelerates GPCR Drug Discovery

Lei Liu1,2 and Ralf Jockers2,*

Virtual ligand screening (VLS) against high-resolution structures of G-protein-coupled receptors (GPCRs) is likely to become the next-generation drug design approach of choice. Stein and colleagues recently demonstrated the feasibility of such an approach by discovering novel chemical scaffolds for the melatonin MT1 receptor and compounds with unique in vivo activities.

One of the main motivations to solve the structures of GPCRs is the promise to accelerate the drug development process to eventually design more potent and selective medications targeting such receptors. GPCRs are proven drug targets with ~30% of currently marketed drugs targeting these transmembrane proteins [1]. However, many of the 400 potentially druggable GPCRs remain therapeutically unexplored and, for those already explored, the selectivity profile and potency of drugs can be further improved [2]. Most of the currently marketed drugs have been identified in ligand-screening campaigns with large-scale libraries of synthetic compounds, but this approach is expensive, time-consuming, and highly assay dependent. Computational docking of large virtual ligand libraries into orthosteric ligand-binding sites has emerged as an attractive alternative [3]. The recent explosion of GPCR structures now provides reliable templates for such studies, as already explored for several receptors [4].

In this context, we highlight here the article by Stein and colleagues based on the melatonin MT1 receptor template [5]. The authors aimed to identify new chemotypes for the MT1 receptor, a G_{q/11} protein-coupled GPCR regulating several important physiological functions, including circadian and seasonal rhythms, sleep, retinal physiology, and glucose homeostasis [6]. Drugs acting on melatonin receptors are currently prescribed for circadian disorders (jet lag, shift work, etc.), insomnia, and major depression [7]. This receptor appeared to represent a textbook case for VLS: (i) its crystal structure [8] and that of the highly homologous melatonin MT2 receptor [9] were recently solved [10,11]; (ii) its pharmacology is poorly developed with few chemical scaffolds, few type-selective compounds, and few ligands with neutral antagonistic, inverse agonistic or pathway-biased activities [12]; and (iii) its orthosteric ligand-binding pocket is small with three well-defined ligand–receptor contacts: N162 in the transmembrane (TM)4 and Q181 ECL2 of the melatonin derivative 2-phénylmeratonin (2-PMT) in the binding pocket of MT1 crystal structure (Figure 1A).

In their work, Stein and colleagues set out to identify MT₁-selective ligands by computational docking of a virtual library of more than 150 million molecules, and went all the way down to chemical lead optimization and in vitro and in vivo validation to come up with two new MT₁-selective inverse agonists [5]. Several aspects of this study merit to be mentioned: (i) the high success rate of 39% of biologically active compounds out of all experimentally tested candidate compounds with some primary hits showing low nanomolar affinities; and (ii) a remarkable number of