An order result for the exponential divisor function

LÁSZLÓ TÓTH
University of Pécs, Institute of Mathematics and Informatics,
Ifjúság u. 6, 7624 Pécs, Hungary,
ltoth@ttk.pte.hu

Publ. Math. Debrecen, 71 (2007), no. 1-2, 165-171

Mathematics Subject Classification : 11A25, 11N37

Key Words and Phrases: exponential divisor function, generalized divisor function

Abstract: The integer \(d = \prod_{i=1}^{s} p_i^{b_i} \) is called an exponential divisor of \(n = \prod_{i=1}^{s} p_i^{a_i} > 1 \) if \(b_i \mid a_i \) for every \(i \in \{1, 2, ..., s\} \). Let \(\tau^{(c)}(n) \) denote the number of exponential divisors of \(n \), where \(\tau^{(c)}(1) = 1 \) by convention. The aim of the present paper is to establish an asymptotic formula with remainder term for the \(r \)-th power of the function \(\tau^{(c)} \), where \(r \geq 1 \) is an integer. This improves an earlier result of M. V. SUBBARAO [5].

1. Introduction

Let \(n > 1 \) be an integer of canonical form \(n = \prod_{i=1}^{s} p_i^{a_i} \). The integer \(d \) is called an exponential divisor of \(n \) if \(d = \prod_{i=1}^{s} p_i^{b_i} \), where \(b_i \mid a_i \) for every \(i \in \{1, 2, ..., s\} \), notation: \(d \mid_{e} n \). By convention \(1 \mid_{e} 1 \).

Let \(\tau^{(c)}(n) \) denote the number of exponential divisors of \(n \). The function \(\tau^{(c)} \) is called the exponential divisor function. J. Wu [7] showed, improving an earlier result of M. V. SUBBARAO [5], that

\[
\sum_{n \leq x} \tau^{(c)}(n) = Ax + Bx^{1/2} + O(x^{2/9} \log x),
\]

where

\[
A := \prod_{p} \left(1 + \sum_{a=2}^{\infty} \frac{\tau(a) - \tau(a-1)}{p^a} \right), \quad B := \prod_{p} \left(1 + \sum_{a=5}^{\infty} \frac{\tau(a) - \tau(a-1) - \tau(a-2) + \tau(a-3)}{p^{a/2}} \right),
\]

\(\tau \) denoting the usual divisor function. The \(O \)-term can further be improved.

Other properties of the function \(\tau^{(c)} \), compared with those of the divisor function \(\tau \) were investigated in papers [1], [2], [4], [5].

M. V. SUBBARAO [5] remarked that for every positive integer \(r \),

\[
\sum_{n \leq x} (\tau^{(c)}(n))^r \sim A_r x,
\]

where

\[
A_r := \prod_{p} \left(1 + \sum_{a=2}^{\infty} \frac{(\tau(a))^r - (\tau(a-1))^r}{p^a} \right).
\]

*Research supported by the fund of Applied Number Theory Research Group of the Hungarian Academy of Sciences.
It is the aim of the present paper to establish the following more precise asymptotic formula for the \(r \)-th power of the function \(\tau^{(e)} \), where \(r \geq 1 \) is an integer:

\[
\sum_{n \leq x} (\tau^{(e)}(n))^r = A_r x + x^{1/2} P_{2r-2}(\log x) + O(x^{u_r+\varepsilon}),
\]

for every \(\varepsilon > 0 \), where \(A_r \) is given by (3), \(P_{2r-2} \) is a polynomial of degree \(2^r - 2 \) and \(u_r := \frac{2^{r+1} - 1}{2^{r+1} + 1} \).

Note that a similar formula is known for the divisor function \(\tau \), namely for any integer \(r \geq 2 \),

\[
\sum_{n \leq x} (\tau(n))^r = x Q_{2r-1}(\log x) + O(x^{v_r+\varepsilon}),
\]

valid for every \(\varepsilon > 0 \), where \(v_r := \frac{2^{r+1} - 1}{2^{r+1} + 1} \) and \(Q_{2r-1} \) is a polynomial of degree \(2^r - 1 \), this goes back to the work of S. Ramanujan, cf. [8].

Formula (4) is a direct consequence of a simple general result, given in Section 2 as Theorem, regarding certain multiplicative functions \(f \) such that \(f(n) \) depends only on the \(\ell \)-full kernel of \(n \), where \(\ell \geq 2 \) is a fixed integer.

We also consider a generalization of the exponential divisor function, see Section 4.

Let \(\phi^{(e)}(n) \) denote the number of divisors \(d \) of \(n \) such that \(d \) and \(n \) have no common exponential divisors. The function \(\phi^{(e)} \) is multiplicative and for every prime power \(p^a \ (a \geq 1) \), \(\phi^{(e)}(p^a) = \phi(a) \), where \(\phi \) is the Euler function.

As another consequence of our Theorem we obtain for every integer \(r \geq 1 \) that

\[
\sum_{n \leq x} (\phi^{(e)}(n))^r = B_r x + x^{1/3} R_{2r-2}(\log x) + O(x^{t_r+\varepsilon}),
\]

for every \(\varepsilon > 0 \), where \(t_r := \frac{2^{r+1} - 1}{3^{r+1} + 1} \), \(R_{2r-2} \) is a polynomial of degree \(2^r - 2 \) and \(\phi^{(e)}(p^a) = \phi(a) \),

\[
B_r := \prod_{p} \left(1 + \sum_{a=1}^{\infty} \frac{(\phi(a))^r - (\phi(a-1))^r}{p^a} \right).
\]

In the case \(r = 1 \) formula (6) was proved in [6] with a better error term. Our error terms depend on estimates for

\[
D(1, \ell, \ell, \ldots, \ell; x) := \sum_{ab_1 b_2 \cdots b_{k-1} \leq x} 1,
\]

where \(k, \ell \geq 2 \) are fixed and \(a, b_1, b_2, \ldots, b_{k-1} \geq 1 \) are integers.

2. A general result

We prove the following general result.

Theorem. Let \(f \) be a complex valued multiplicative arithmetic function such that

a) \(f(p) = f(p^2) = \cdots = f(p^{\ell-1}) = 1, f(p^\ell) = f(p^{\ell+1}) = k \) for every prime \(p \), where \(\ell, k \geq 2 \) are fixed integers and

b) there exist constants \(C, m > 0 \) such that \(|f(p^n)| \leq C a^m \) for every prime \(p \) and every \(a \geq \ell + 2 \).

Then for \(s \in \mathbb{C} \)

i) \(F(s) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \zeta(s) \zeta^{k-1}(\ell s) V(s), \quad \text{Re } s > 1, \)

where the Dirichlet series \(V(s) := \sum_{n=1}^{\infty} \frac{v(n)}{n^s} \) is absolutely convergent for \(\text{Re } s > \frac{1}{4\ell^2} \),

ii) \[
\sum_{n \leq x} f(n) = C_f x + x^{1/\ell} P_{\ell,k-2}(\log x) + O(x^{u_{k, \ell}+ \varepsilon}),
\]
for every \(\varepsilon > 0 \), where \(P_{\ell, k-2} \) is a polynomial of degree \(k - 2 \), \(u_{k, \ell} := \frac{2k-1}{3^j(2k-1)^j} \) and

\[
C_{\ell} := \prod_p \left(1 + \sum_{a=\ell}^{\infty} \frac{f(p^a) - f(p^{a-1})}{p^a} \right).
\]

iii) The error term can be improved for certain values of \(k \) and \(\ell \). For example in the case \(k = 3 \), \(\ell = 2 \) it is \(O(x^{8/25} \log^3 x) \).

3. Proofs

The proof of the Theorem is based on the following Lemma. For an integer \(\ell \geq 1 \) let \(\mu_\ell(n) = \mu(m) \) or 0, according as \(n = m^\ell \) or not, where \(\mu \) is the Möbius function. Note that function \(\mu_\ell \) is multiplicative and for any prime power \(p^\alpha \) (\(a \geq 1 \)),

\[
\mu_\ell(p^\alpha) = \begin{cases} -1, & \text{if } a = \ell, \\ 0, & \text{otherwise}. \end{cases}
\]

Furthermore, for an integer \(h \geq 1 \) let the function \(\mu_\ell^{(h)} \) be defined in terms of the Dirichlet convolution by

\[
\mu_\ell^{(h)} = \mu_\ell \ast \mu_\ell \ast \cdots \ast \mu_\ell.
\]

The function \(\mu_\ell^{(h)} \) is also multiplicative.

Lemma. For any integers \(h, \ell \geq 1 \) and any prime power \(p^\alpha \) (\(a \geq 1 \)),

\[
\mu_\ell^{(h)}(p^\alpha) = \begin{cases} (-1)^j \binom{h}{j}, & \text{if } a = j\ell, \quad 1 \leq j \leq h, \\ 0, & \text{otherwise}. \end{cases}
\]

Proof of the Lemma. By induction on \(h \). For \(h = 1 \) this follows from (8). We suppose that formula (9) is valid for \(h \) and prove it for \(h + 1 \). Using the relation \(\mu_\ell^{(h+1)} = \mu_\ell^{(h)} \ast \mu_\ell \) and (8) we obtain for \(a < \ell \),

\[
\mu_\ell^{(h+1)}(p^\alpha) = \mu_\ell^{(h)}(p^\alpha) = 0
\]

and for \(a \geq \ell \),

\[
\mu_\ell^{(h+1)}(p^\alpha) = \mu_\ell^{(h)}(p^\alpha) - \mu_\ell^{(h-\ell)}(p^{\alpha-\ell}) = \begin{cases} \mu_\ell^{(h)}(p^\ell) - 1 = (-1)^1 \binom{h}{1} - 1 = -(-1)^1 \binom{h+1}{1}, & \text{if } a = \ell, \\ (-1)^j \binom{h}{j} - (-1)^{j-1} \binom{h}{j-1} = (-1)^j \binom{h+1}{j}, & \text{if } a = j\ell, \quad 2 \leq j \leq h, \\ -\mu_\ell(p^{h\ell}) = -(-1)^h \binom{h}{h} = (-1)^{h+1} \binom{h+1}{h+1}, & \text{if } a = (h+1)\ell, \\ 0, & \text{otherwise}, \end{cases}
\]

which proves the Lemma.

Proof of the Theorem. i) We can formally obtain the desired expression by taking \(v = f \ast \mu \ast \mu^{(k-1)} \). Here \(v \) is multiplicative and easy computations show that \(v(p^\alpha) = 0 \) for any \(1 \leq a \leq \ell + 1 \) and for \(a \geq \ell + 2 \),

\[
v(p^\alpha) = \sum_{j \geq 0} (-1)^j \binom{k-1}{j} (f(p^{\alpha-j\ell}) - f(p^{\alpha-j\ell-1})),
\]

where, according to the Lemma, the number of nonzero terms is at most \(k \).

Let \(M_k = \max_{0 \leq j \leq k-1} \binom{k-1}{j} \). We obtain that for every prime \(p \) and every \(a \geq \ell + 2 \),

\[
|v(p^\alpha)| \leq 2kM_kCa^m.
\]
For every $\varepsilon > 0$, $a^n \leq 2^{a^2}$ for sufficiently large a, $a \geq a_0$ say, where $a_0 \geq \ell + 2$. For $Re\ s > 1/(\ell + 2)$ choose $\varepsilon > 0$ such that $Re\ s - \varepsilon > 1/(\ell + 2)$. Then

\[
\sum_{p} \sum_{a \geq a_0} \frac{|v(p^a)|}{p^{as}} \leq 2kM_kC \sum_{p} \sum_{a \geq a_0} \frac{2^{a\varepsilon}}{p^{as}} \leq 2kM_kC \sum_{p} \sum_{a \geq a_0} \frac{1}{p^{a(s - \varepsilon)}} = \]

\[
= 2kM_kC \sum_{p} \frac{1}{p^{a(s - \varepsilon)}} \left(1 - \frac{1}{p^{s - \varepsilon}}\right)^{-1} \leq 2kM_kC \left(1 - \frac{1}{2^{1/(\ell + 2)}}\right)^{-1} \sum_{p} \frac{1}{p^{a(s - \varepsilon)}},
\]

and obtain that $V(s)$ is absolutely convergent for $Re\ s > 1/(\ell + 2)$.

Note that $v(p^{\ell + 2}) = f(p^{\ell + 2}) - k$ for every $\ell \geq 3$, $k \geq 2$ and for $\ell = 2, k \geq 2$ it is $v(p^2) = f(p^2) - (k+1)/2$.

ii) Consider the k-dimensional generalized divisor function

\[
d(1, \ell, 1; n) = \sum_{ab(n)} 1.
\]

According to i),

\[
f(n) = \sum_{ab(n)} d(1, \ell, \ell, \ell; a) v(b).
\]

One has, see [3], Ch. 6,

\[
(10) \quad \sum_{n \leq x} d(1, \ell, \ell, \ell; n) = K_1 x + x^{1/\ell} \left(K_2 \log^{k-2} x + K_3 \log^{k-3} x + \ldots + K_{k-1} \log x + K_k\right) + O(x^{u_{k,\ell} + \varepsilon}),
\]

for every $\varepsilon > 0$, where $u_{k,\ell} = \frac{2k - 1}{s\ell(2k - 1)}$ (see [3], Theorem 6.10). $K_1, K_2, \ldots, K_{k-1}, K_k$ are absolute constants depending on k and ℓ and $K_2 = \zeta^{-1}(\ell)$. For example for $k = 2$ one has $K_2 = \zeta(1/2)$, and for $k = 3$: $K_2 = \frac{1}{2} \zeta(1/3), K_3 = (2\gamma - 1) \zeta(1/3) + \frac{1}{2} \zeta'(1/3)$, where γ is Euler’s constant.

We obtain

\[
\sum_{n \leq x} f(n) = \sum_{ab \leq x} d(1, \ell, \ell, \ell; a) v(b) = \sum_{b \leq x} v(b) \sum_{a \leq x/b} d(1, \ell, \ell, \ell; a) = \sum_{b \leq x} v(b) \left(K_1(x/b) + (x/b)^{1/\ell} \left(K_2 \log^{k-2}(x/b) + K_3 \log^{k-3}(x/b) + \ldots + K_{k-1} \log(x/b) + K_k\right) + O((x/b)^{u + \varepsilon})\right),
\]

and obtain the desired result by partial summation and by noting that $u_{k,\ell} > 1/(\ell + 2)$.

iii) For $k = 3, \ell = 2$ the error term of (10) is $O(x^{8/25} \log^3 x)$, cf. [3], Theorem 6.4.

4. Applications. 1. In case $f(n) = (\tau(r(n))^r$, where $r \geq 1$ is an integer, we obtain formula (4) applying the Theorem for $\ell = 2, k = 2^r$.

2. For $k \geq 2$ consider the multiplicative function $f(n) = \tau_2^{(r)}(n)$, where for every prime power p^a ($a \geq 1$), $\tau_2^{(r)}(p^a) := \tau_2(a)$ representing the number of ordered k-tuples of positive integers (x_1, \ldots, x_k) such that $a = x_1 \cdot \ldots \cdot x_k$. Here $\tau_2(p^b) = \binom{b+k-1}{k-1}$ for every prime power p^b ($b \geq 1$). In case $k = 2$, $\tau_2^{(r)}(n) = \tau^{(r)(n)}$.

Taking $\ell = 2$ and $k := k$ we obtain that $v(p^2) = \tau_2(4) - k(1 + 2)/2 = 0$ and $V(s)$ is absolutely convergent for $Re\ s > 1/5$ (and not only for $Re\ s > 1/4$ given by the Theorem),

\[
(11) \quad \sum_{n \leq x} \tau_2^{(r)}(n) = C_2 x + x^{1/2} S_{k-2}(\log x) + O(x^{u_{k,\ell} + \varepsilon}),
\]

4
for every $\varepsilon > 0$, where S_{k-2} is a polynomial of degree $k - 2$, $w_k := \frac{k-1}{2k+1}$ and

$$C_k = \prod_p \left(1 + \sum_{a=2}^{\infty} \frac{\tau_k(a) - \tau_k(a-1)}{p^a} \right).$$

For $k = 3$ the error term of (11) can be improved into $O(x^{8/25} \log^3 x)$.

A similar formula can be obtained for $\sum_{n \leq x} (\tau_k^{(e)}(n))^{\ell}$.

3. For the function $\phi^{(e)}(n)$ defined in the Introduction we obtain formula (6) by choosing $\ell = 3$, $k = 2^\ell$.

References

[1] I. Kátai and M. V. Subbarao, On the distribution of exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., 22 (2003), 161-180.

[2] J. -M. de Koninck and A. Ivić, An asymptotic formula for reciprocals of logarithms of certain multiplicative functions Canad. Math. Bull., 21 (1978), 409-413.

[3] E. Krätzel, Lattice points, Kluwer, Dordrecht-Boston-London, 1988.

[4] A. Smati and J. Wu, On the exponential divisor function, Publ. Inst. Math. (Beograd) (N. S.), 61 (1997), 21-32.

[5] M. V. Subbarao, On some arithmetic convolutions, in The Theory of Arithmetic Functions, Lecture Notes in Mathematics No. 251, 247-271, Springer, 1972.

[6] L. Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sc. Budapest., Sect. Comp., 24 (2004), 285-294.

[7] J. Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Théor. Nombres Bordeaux, 7 (1995), 133-141.

[8] B. M. Wilson, Proofs of some formulae enunciated by Ramanujan, Proc. London Math. Soc. (2), 21 (1922), 235-255.