Supplementary Information for

Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS$_2$ Nanocrystals Hybrid Solar Cells

Aurélie Lefrançois,¹ Beata Luszczynska,¹,² Brigitte Pepin-Donat,¹ Christian Lombard,¹ Benjamin Bouthinon,² Jean-Marie Verilhac,² Marina Gromova,³ Jérôme Faure-Vincent,¹ Stéphanie Pouget,² Frédéric Chandezon,¹ Saïd Sadki,¹ Peter Reiss¹*

CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France. ¹INAC-UMR5819 SPrAM (CEA-CNRS-UJF), LEMOH; ²Liten/DTNM; ³INAC/SCIB/RICC; ⁴INAC/SP2M/SGX * email: peter.reiss@cea.fr

Figure S1: Powder X-ray difractogram of 7.4 nm CuInS$_2$ nanocrystals (Cu Kα radiation, $\lambda = 1.5418$ Å). For comparison the diffraction pattern of bulk CuInS$_2$ in the cubic phase is given (red bars).
Figure S2: TEM image of EHT-capped CuInS$_2$ nanocrystals. The mean size is 7.4 +/- 1.0 nm.

Figure S3: 1H-NMR spectra (500 MHz, toluene-d$_8$) of CuInS$_2$ NCs with initial dodecanethiol (DDT) surface ligands (a) and after ligand exchange with 1,2-ethylhexanethiol (EHT) (b). For comparison the spectra of the free ligands are also shown. Solvent and impurity peaks are assigned with an asterisk (*) and an octothorpe (#), respectively.
Figure S4: DPV measurements of CuInS$_2$ NCs after ligand exchange with EHT and of pure EHT (a: oxidation; b: reduction), carried out in ionic liquid 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) vs. Ag wire pseudoreference electrode.

Figure S5: UV-vis absorption spectra of a) thin films of P3HT:PCBM and P3HT:PCBM:NCs-EHT (film thicknesses: 200-250 nm) and of CuInS$_2$ NCs in chloroform solution; b) P3HT:PCBM:NCs solar cells using the indicated mass ratios, compared to the P3HT:PCBM film on a glass substrate.
Figure S6: Relaxation spectra for the three blends taken 2 or 6 min after switching off the light source, compared to the spectra under 473 nm irradiation (T = 20 K).
Figure S7: Energy levels of poly(triarylamine) (PTAA) and of the used CuInS$_2$ nanocrystals. For comparison the levels of P3HT and PCBM are also indicated.

Figure S8: $J(V)$ curves obtained under simulated solar light (AM1.5 one sun conditions) of solar cells containing blends of PTAA, PCBM and DDT-capped CuInS$_2$ NCs using the indicated mass ratios. The film thickness was in all cases 200 ± 20 nm.

Table S1: Solar cell characteristics obtained with PTAA:PCBM and with PTAA:PCBM:CuInS$_2$ NCs blends, measured under AM1.5 one sun conditions (device active area 3.14 mm2). Best values and average values out of four cells (in brackets).

Blend	FF	V_{oc} (V)	J_{sc} (mA/cm2)	Efficiency (%)
PTAA:PCBM 1:1	0.36	0.23	-0.046	0.0037
	(0.36)	(0.23)	(-0.045)	(0.0036)
PTAA:PCBM:NCs 1:1:1	0.27	0.46	-0.11	0.013
	(0.27)	(0.45)	(0.09)	(0.011)
PTAA:PCBM:NCs 1:1:0.5	0.29	0.53	-0.31	0.048
	(0.26)	(0.53)	(-0.29)	(0.040)
PTAA:PCBM:NCs 1:1:0.25	0.41	0.30	-0.38	0.047
	(0.40)	(0.30)	(-0.35)	(0.042)
Figure S9: UV-vis absorption spectra of the solar cells used in Fig. S8 / Table S1.