Knowledge and Practice about Transportation of Infectious Substance among Healthcare Providers, Khartoum State

Muatsim Ahmed Mohammed Adam¹, Salma Faroug¹, Rasha Sayed¹, Adel Elduma², Hamdan Mustafa³, Eltahir Awad Gasim Khalil⁴*

¹National Public Health Laboratory, National Tuberculosis Reference Laboratory, Federal Ministry of Health, Khartoum, Sudan
²National Public Health Laboratory, Department of Molecular Biology, Federal Ministry of Health, Khartoum, Sudan
³CNCDCDs, National Tuberculosis Control Program, Federal Ministry of Health, Sudan
⁴Field and Research Stations, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan

Abstract Proper shipping of infectious materials is an important practice to prevent healthcare workers (HCWs), other people and environment from spread of biological threats. The main purpose of this study was to determine healthcare providers’ knowledge, and practices about transportation of infectious substances. A self-administered designed questionnaire was used to collect relevant data from study respondents. Primary data were double entered and analyzed by using statistical package for social sciences (IBM SPSS statistics 20). Descriptive, in addition to the effects of predictors on dependent variables were applied. Multiple logistic regression model was used to assess the association between dependent variables and predictors. It has been found that; the overall mean percentage of knowledge was 57.1 (95 CI: 54.1, 60.2), while mean percentage of practice was 68.9 (CI: 95% 66.7 – 71.1). Response reliability scale was 89.0% based on Cronbach’s alpha. The highest knowledge regarding transportation of infectious substances was observed among laboratory specialist (33.9%) and doctors (25.4%) respectively. High percentage of practice was observed among laboratory specialist was (34.6%) and low percentage was among public health officers and doctors (15.9%). Majority of study respondents did not receive training in transportation of infectious substances (70.9%). Knowledge and practice on transportation of infectious substances among health care providers are low. More efforts are needed to fill the gap in knowledge and practice by applying effective training programs that can lead to increase skills and awareness of health care providers.

Keywords Infectious Substance, Shipping, Transportation, Biosafety, Biosecurity, Healthcare Workers

1. Introduction

Recently, considerable attention has been paid to biosafety, biosecurity and quality management system (QMS) issues [1-3]. In addition; proper transportation practice play a vital role in surveillance system and emergency public health events assessment based on international health regulations (IHR) [4, 5]. Regulations of transportation process include categorization of infectious substance into: 1) category A, 2) category B and 3) exempt. Transportation of these infectious substance require special type of packaging provide three layers of containment termed “triple packaging” derived from risk assessment and required specific marking and labeling [6]. Material transport policies should include accountability measures for the movement of materials between laboratories within an institution as well as between institutions or locations outside of the facility [4,7] utilizing different transportation modes of air, sea, road and railway [8,9].

In 2015 the United Nation (UN) adopted the seventeen sustainable development goals (SDGs), a set of targets for 2030 to mobilize action on three interwoven dimensions of our existence—people, planet, and prosperity [10]. Matching these goals, in particularly SDG 3 and SDG 11 are devoted to ensure healthy lives and promote well-being for all at all age; and for make cities and human settlements inclusive, safe, resilient and sustainable respectively. SDG 14 dedicated to conserve and sustainable use the oceans, seas and marine resources for sustainable development [11] it can terminate that
Knowledge and Practice about Transportation of Infectious Substance among Healthcare Providers, Khartoum State

Proper transportation can maintain the achievements of above mentioned goals and prevent spreading of biological threats which strengthening the compliance of national and global public health programs to the SDGs agenda. With regard to improper transportation; unmarked, unidentified and improperly packaged infectious substances; was observed several times in daily work practice. WHO recorded no case of illness attributable to the release of infectious substances or diagnostic specimens during transport process; nevertheless, there are low reported incidents (0.002% breakages) of damage to improperly and sometimes even properly packaged materials leads to increases the overall potential for exposure to public as well as clean-up of hazardous spills is expensive and time consuming [6,12].

In Sudan; Ministry of Health in collaboration with the WHO organized -up to now- four workshops in shipping of infectious substances during the past seven years. One workshop was organized by the epidemiology directorate and the other three workshops were arranged by the National Public Health Laboratory. The purpose of these workshops is to trained lab and healthcare staff in how to transport infectious substances according to the international health regulations (IHR). Participants were come from national public health laboratory as well as from states laboratories. Participants who had passed the final exam after the training obtained shipping certification for consecutive two years. But, the number of trainees was small; and the successes rate was low plus the loss of participants’ follow-up [13]. Several studies had been conducted in biosafety and biosecurity field. However, none of them was elaborated specifically for shipping of infectious substances [14-16].

2. Materials and Methods

2.1. Study design and Study settings

A cross sectional study was conducted to determine the knowledge and practice of health care workers in the transportation of infectious substances in Khartoum State. Following informed written consent, respondent who met the inclusion criteria and agreed to participate were interviewed. The Healthcare providers participating in this study included doctors, nurses, laboratory specialists, public health officers, and other health care providers. Questionnaire was distributed in governmental and private healthcare service (ministry of health, primary health care administration) and in management facilities (hospitals and laboratories) during a period between November 2017 and March 2018.

2.2. Data collection and procedures

A self-administration designed questionnaire was divided into three section; the first one include the demographic data of respondent, gender, Age, occupation, education level, type of institution, and training; section two include information about knowledge and section three was devoted for practice. Questionnaire was distributed into English and Arabic languages. Respondent’s knowledge was assessed by 8 structured questions and a practice was assessed by 9 questions. The response to knowledge questions were recorded as No, Low, Moderate and High, whereas practice questions were recorded as Yes, No and I do not know. The total knowledge score was calculated using sum method.

2.3. Data analysis

Primary data were cleaned; double entered and analyzed using statistical package for social sciences (IBM SPSS statistics 20). Descriptive frequencies and regression model was used to find association between dependent and independent variables. Cronbach's Alpha was scaled to measure questionnaire reliability and Kolmogorov-Smirnov (K-S) was applied to test normality of study population distribution. Sum of the knowledge score was calculated and summarized as mean of different responses. Then, mean knowledge score recode to dichotomous Variable with two categories, low is the percentage less than 70% and high for more than this percentage. Also, this process was applied to practice score. Multiple logistic regression model was used taking the knowledge and practice as dependent variables and gender, age, years of experience, training, occupation and place of work as independent variables.

2.4. Ethical clearance

Study protocol was ethically and scientifically approved by the scientific and ethics Committees of ministry of health, Khartoum state. Respondents were signed written informed consent on voluntary basis. According to ministry of health, Khartoum state regulations, respondents’ confidentiality was maintained. Study respondents had the right to withdraw from the study during data collection period.

3. Results

A total number of 206 healthcare workers with a mean 35.2 ±8.3 and response rate (87%) were responding to this study. Demographic data included gender, Age, occupation, education level, type of institution, and training and it was normally distributed based on one-sample Kolmogorov-Smirnov statistical test. Cronbach's Alpha test was 89.0% for the entire questionnaire, 89.8% and 78.3% for knowledge and practice respectively.

A total number of 139 (67.5%) of study respondents were working at governmental institutions and 67 (32.5%)
of them were belonged to private institutions. 112 study respondents (54.4.2%) were postgraduates, 73 (53.4%) were graduates, 16 (7.8%) of respondent with diploma (2-3 years) and 5 (2.4%) of respondents have general education. The majority of study respondents were not receiving training in transportation of infectious substances (70.9%). The mean years of experience were 8.2 ±6.6 SD ranged between 1 and 35 years (table 1). The highest knowledge regarding transportation of infectious substances was observed among laboratory specialist (33.9%) and doctors (25.4%) respectively. High percentage of practice was observed among laboratory specialist was (34.6 %) and low percentage was among public health officers and doctors (15.9%).

Table 1. Demographic characteristics of the study respondents
Gender
Female
Male
Occupation
Doctor
Nurse
Lab specialist
Public health officer
Other
Education level
Postgraduate
Graduate
2-3 years diploma
General education
Type of institution
Government
Private
Age group
20 – 30
31 – 40
41 – 50
51 – 60
More than 60
Year of experiences
1 – 5
6 -10
11 -15
16 -20
More than 20

Table 2. Respondents’ knowledge related to transportation of infectious substance
Frequency (%)
1. Do you have any information about triple packging of infectious substances?
2. Have you any idea about classification of infectious materials into carogory A, category B and exempt?
3. Do you know that classification of infectious substance affect the choice of packaging?
4. Have you any knowledge about labeling and marking of packaging of infectious substance?
5. Do you know that the name and address of the shipper and receiver should provide in each package?
6. Do you know that these shipping boxes have special specifications and pass specific tests (pressure, drop, puncture, stacking)?
7. Do you know that, regulations of transportation of infectious substance by any mode (air, railway, sea and road) are advised by WHO?
8. Do you know about IATA or any other national or international agency regulations for transportation of infectious substance?
Table 3. Respondents’ practice related to transportation of infectious substance

Frequency (%)	Yes	No	I don’t know	P value
1. In your daily work, do you follow your SOPs for samples transportation?	84 (40)	69 (33.5)	53 (25.7)	0.03
2. In your institution; is there a nominated person for transportation of infectious substances?	96 (46.6)	70 (34)	40 (19.4)	0.00
3. In your institution; is the 24 hours emergency contact number for sending and receiving infectious substance is available?	53 (25.7)	90 (43.7)	63 (30.6)	0.005
4. Is the transport box available in your institution?	90 (43.7)	62 (30.1)	54 (26.2)	0.005
5. In your daily practice; are you consider and stick to proper outer packaging markings (writing or print of shipper, receiver, and type of packaging instructions)?	65 (31.6)	81 (39.3)	60 (29.1)	0.173
6. In your daily practice; did you concern and adhere to proper outer packaging labels (infectious substances)?	75 (36.4)	74 (35.9)	57 (27.7)	0.225
7. Is the document identifies the content of the primary container or request form clearly written and positioned?	76 (36.9)	67 (32.5)	63 (30.6)	0.524
8. Is an incident report is available in your institution?	77 (37.4)	82 (39.8)	47 (22.8)	0.005
9. In your institution or in your daily practice; is the procedure for transportation of specimens met IATA or any other national or international regulatory requirements?	45 (21.8)	61 (29.6)	100 (48.5)	0.000

3.1. Knowledge

The mean percentage of knowledge of the study respondents was 57.1 with STD±22.1 (95 CI: 54.1 - 60.2). Different variables assess the knowledge of respondents regarding transportation of infectious substance were explained in (table 2). The multiple logistic regressions revealed an association between low knowledge and working in private institution, having 2-3 years diploma and lack of training in sample transportation (table 4).

Table 4. Multivariate logistic regression for the predictors of percentage of knowledge

Gender	Adjusted OR	p. value	CI 95%	Lower	Upper
Male	Ref				
Female	0.201	0.000	0.087	0.464	
Occupation					
Doctors	Ref				
Nurse	2.343	0.195	0.647	8.480	
Lab specialist	1.822	0.244	0.664	5.000	
Other	1.377	0.649	0.347	5.472	
Public health specialist	1.325	0.679	0.350	5.023	
Education					
Postgraduate	Ref				
Graduate	0.790	0.587	0.338	1.850	
Diploma (2-3 years)	0.124	0.043	0.017	0.934	
General education	0.501	0.607	0.036	7.006	
Experience					
Age	0.901	0.148	0.783	1.083	
Institution					
Government	Ref				
Private	0.272	0.010	0.101	0.731	
Training					
Yes	Ref				
No	0.154	0.000	0.071	0.334	
Table 5. Multivariate logistic regression for the predictors of percentage of the mean practice

	Adjusted OR		Lower limit	Upper limit
Gender				
Male	Ref			
Female	0.455	0.048	0.208	0.992
Occupation				
Doctors	Ref			
Nurse	6.062	0.002	1.936	20.038
Lab specialist	5.001	0.001	1.927	12.982
Other	2.789	0.094	0.841	9.251
Public health specialist	7.278	0.005	1.835	28.862
Education				
Postgraduate	Ref			
Graduate	1.184	0.675	0.538	2.602
Diploma (2-3 years)	0.205	0.036	0.046	.905
General education	0.544	0.607	0.062	4.781
Experience				
Age	0.960	0.535	0.842	1.093
Institution				
Government	Ref			
Private	0.266	0.002	0.106	0.607
Training				
Yes	Ref			
No	0.244	0.000	0.106	0.472

3.2. Practice

The mean percentage practice of study respondents was 68.9% with STD± 15.9 (CI: 95% 66.7 – 71.1). Variables that assess the practice of study respondent in the transportation of infectious substances were explained in (table 3). The outcome of the multiple logistic regression reveals a significant association between practice and occupation, government institution, low training and working in private institutions and having diploma (2 – 3 years) (table 5).

4. Discussion

As reported by WHO 2008, Knowledge, attitudes and practices (KAP) studies are a useful method in the communication processes and important sources for defining effective activities and messages. Furthermore, it may be used to identify needs, problems and barriers in program delivery, as well as solutions for improving quality and accessibility of services [17]. This study revealed that healthcare providers are lack of training where 71% they did more attend any training session before. This finding is supported by study conducted in Sudan to assess biosafety precautions in diagnostics laboratories where training was low [14]. Multivariate logistic regression shows that public health professionals are significantly practice better than other groups. This may be because they are working at the highest level and actually receive more and quality training. On the other hand males are significantly has a more knowledge and better practice than females in transport of infectious substance; this may indicate poor quality or not specified trainings programs [18].

Technically, for many different reasons infectious samples are shipped between hospitals and laboratories in a daily base. In addition, shipping of samples is a pre analytical step may result or negatively affect the quality of diagnosis, turnaround time (TAT), and/or pathogens recovery [19]. Moreover improper shipping may also deleteriously affect the biosafety measures. According to this study, dissimilar response from same institution is observed and this may reflect poor accessibility of important materials and documents. Challenges found by this study included that standard laboratory procedures (SOP) are either not available in 25.7% or not accessible in
33.5% of institutions. Moreover, the number of nominated person for transportation of infectious substances was very low (19.4%). Also, standard shipping boxes were not available for the majority of state laboratories [20-21].

Knowledge and practice of healthcare providers toward the transportation of infectious substances was low. Majority of respondents 37.9% don’t have any knowledge about sample transportation regulations. In addition about 50% of the health care providers practice their work without IATA or any other national or international regulations. In Sudan, some efforts were made to develop national guidelines and regulations for shipping of infectious substance, still the guidelines are not in place [12]. Furthermore, some companies are working in the transportation of infectious samples from states to the National reference laboratories, but we do not know if they have guidelines or not.

According to the findings of this study, healthcare providers working in government institution are more aware of how to transport infectious substances and practice betters when compared with those working in private sector. This was also supported by studies conducted in Africa, China, but in some countries in Asia particularly the private institutions they practice better than governmental institutions [22-25].

5. Conclusions

Remarkable gaps in knowledge and practice about transportation of infectious substances among health care providers was observed. Training activities have to be implemented to raise awareness of health care providers to comply with the international health regulations in dealing with infectious substances.

6. Recommendations

1. Effective training. (courses, workshops)
2. Improve laboratory supply chain management system.
3. Development of national guideline for infectious substances transportation
4. Provision of Important documents and materials of transportation of infectious substance.
5. Establishment of Effective partnerships and collaboration.

REFERENCES

[1] World Health Organization. 2006. Biorisk management Laboratory biosecurity guidance
[2] Bakanidze L, Imnadze P, Perkins D. 2010. Biosafety and biosecurity as essential pillars of international health security and cross-cutting elements of biological nonproliferation. BMC Public Health, 10 (Suppl 1): S12. doi: 10.1186/1471-2458-10-S1-S12.
[3] World Health Organization. 2011. Laboratory quality management system hand-book. Geneva.
[4] World Health Organization. 2017. Guidance on regulations for the Transport of Infectious Substances 2017. http://www.who.int/ihr/publications/WHO-WHE-CPI-2017/en/
[5] World Health Organization. 2007. International Health Regulations (2005) Areas of work for implementation. World Health Organization; June 2007.
[6] World Health Organization. 2007. Guidance on regulations for The Transport of Infectious Substances 2007–2008 WHO/CDS/EP/2007.2
[7] Center for Disease Control and Prevention. 2009. Biosafety in Microbiological and Biomedical Laboratories 5th Edition HHS Publication No. (CDC) 21-1112;
[8] World Health Organization. 2004. Laboratory biosafety manual. 3rd ed. ISBN 92 4 154650 6 (LC/NLM classification: QY 25) WHO/CDS/CSR/LYO/2004.11
[9] World Health Organization. 2015. Infectious Substances Shipping Training - a course for shippers. http://www.who.int/ihr/i_s_shipping_training/en/. Updated 2015.
[10] Kickbusch I and Hanefeld J. 2017. Role for academic institutions and think tanks in speeding progress on sustainable development goals. BMJ 2017;358:j3519 doi: 10.1136/bmj.j3519
[11] Hall, N, Richards, R, Barrington, D, Ross, H, Reid, S, Head, B, Jagals, P, Dean, A, Hussey, K, Abal, E, Ali, S, Bouly, L & Willis, J. 2016. Achieving the UN Sustainable Development Goals for water and beyond, Global Change Institute, The University of Queensland, Brisbane, gci.uq.edu.au/achieving-un-sustainable-development-goals-water-and-beyond
[12] Federal Highway Administration U.S. Department of Transportation. Traffic incident management in hazardous materials spills in incident clearance. 2008.
[13] Federal Ministry of Health Khartoum. 2017. Sudan National Policy on Biosafety and Biosecurity October 2017
[14] Adel Hussein Elduma. 2012. Assessment of biosafety precautions in Khartoum state diagnostic laboratories, Sudan. Pan African Medical Journal. 2012; 11:19.
[15] Idris AF, Bayoumi M (2016) Evaluation of Laboratory Biosafety in Khartoum State Primary Health Care Centers, Sudan. Med Safe Glo Heal 5:126. doi: 10.4172/mshg.1000126.
[16] Ali E. 2013. Biosafety and Biosecurity in Countries with Low Resources – Sudan as an Example. Biosafety 2:105. doi: 10.4172/2167-0331.1000105
[17] World Health Organization. 2008 Advocacy, communication and social mobilization for TB control: a guide to developing knowledge, attitude and practice surveys. Geneva, (WHO/HTM(STB/2008.46)).
[18] Jonsson CB, Cole KS, Roy CJ, Perlin DS, Byrne G, et al. 2013. Challenges and Practices in Building and Implementing Biosafety and Biosecurity Programs to Enable Basic and Translational Research with Select Agents. *J Bioterr Biode.* S3: 015. doi: 10.4172/2157-2526.S3-015.

[19] Fitzgibbon E J and Wallis C L. 2014. Laboratory Challenges Conducting International Clinical Research in Resource-Limited Settings *J Acquir Immune Defic Syndr.* 2014 January 1; 65(0 1): S36–S39. doi: 10.1097/QAI.0000000000000038.

[20] Kebede Y, Fonjungo PN, Tibesso G, et al. 2016. Improved Specimen-Referral System and Increased Access to Quality Laboratory Services in Ethiopia: The Role of the Public-Private Partnership. *The Journal of Infectious Diseases.* 2016; 213 (Suppl2): S59-S64. doi: 10.1093/infdis/jiv576.

[21] Mbah HA. 2014. Phlebotomy and quality in the African laboratory. *African Journal of Laboratory Medicine.* 2014; 3(1): 132. doi: 10.4102/ajlm.v3i1.132.

[22] Dikmen ZG, Pinar A, Akbiyik F. 2015. Specimen rejection in laboratory medicine: Necessary for patient safety? *Biochemia Medica.* 2015; 25(3):377-385.

[23] Elbireer AM, Jackson JB, Sendagire H, Opio A, Bagenda D, et al. 2013. The Good, the Bad, and the Unknown: Quality of Clinical Laboratories in Kampala, Uganda. *PLoS ONE* 8(5): e64661. doi: 10.1371/journal.pone.0064661.

[24] Safadel N, Dahim P, Anjarani S, et al. Challenges of Implementing Iranian National Laboratory Standards. *Iranian Journal of Public Health.* 2013; 42 (Supple 1): 125-128.

[25] Lei X, Liu Q, Escobar E, Philogene J, Zhu H, Wang Y, et al. 2015. Public-private mix for tuberculosis care and control: A systematic review. *Int J Infect Dis.* 2015;34:20–32.