Príspevok je zameraný na využitie metód známych z teórie dynamických systémov pri riešení úloh prognózovania ekonomických procesov. Možnosť využitia niektorých teoretických metód v oblasti prognózy je demonštrovaná na príklade predikcie vývoja kurzu USD/SK.

Úvod

Pri analýze, modelovaní a prognózovaní ekonomických procesov sa v súčasnosti stretávame s rôznymi metódami, ktoré vy- užívajú matematicko-štatistické metódy, ekonometrické postupy a systémový prístup. Na výchšiu sociálno-ekonomických procesov sa môžeme pozerať ako na deje, ktoré sa odohrávajú v systénoch najroznejších vlastností, pričom sa vyznačujú istou zotrvačnosťou. Musíme pripomenúť, že sa nejedná len o zotrvačnosť hmoty, čo je zrejmé pri analýze fyzikálno-technických procesov, ale tiež o zotrvačnosť myslenia ľudí, čo sa prejavuje v správaní sociálno-ekonomických štruktur. Ak sme ochotní akceptovať zotrvačnosť pri analýze ekonomických štruktur, potom sme nútení popisovať ich správanie pomocou zodpovedajúcich modelov. Prostredie, v ktorom sa odohrávajú ekonomické procesy je možné chápať ako dynamický systém, pričom vstupné veličiny majú vo výchšine pripadov náhodný charakter, a často je ich možné na vstupe systému kvantifikovať. Odpoveď systému na známe vstupné veličiny je závislá od statických a dynamických vlastností systému. Ak vlastnosti systému dokážeme s dostatočnou presnosťou popísať, potom pri známych vstupných veličiach dokážeme s danou presnosťou predpovedať behanie systému. Prípadne môžeme použiť inštrukciu štredovej dynamiky v prípade analýzy časových radov, kedy na základe minulých hodnôt sa snažíme predpovedať hodnoty budúce. Odpoveď na otázku ako presné budú predpovedané hodnoty závisí od dynamiky systému vzhľadom na dĺžky predpovedi a charaktere vstupných veličín. Na základe uvedeného sa pokúšame pozerať na ekonomické procesy ako na deje odohrávajúce sa v dynamickom systéme.

This article describes methods used from dynamic systems theory in solving the tasks of forecasting economic processes. The possibility of using theoretical methods in forecasting is demonstrated with the example of the prediction regarding the development of the rate of exchange between the USD and the SK.

Introduction

In analysing and forecasting economic processes, there are various models which use mathematical-statistical methods, econometrical procedures and systematic approaches. The majority of social-economic processes are the actions located in the systems of various qualities with some inertia. We have to mention that it is not only the inertia of mass that is obvious in analysing economic structures, but it is also inertia of people's thinking that can be seen in the behaviour of social-economic structures. If we are able to accept the inertia in analysing the economic structures then we have to describe their behaviour with the help of corresponding models. The setting in which the economic processes are located is possible to understand as a dynamic system where the input quantities have, in the majority of cases, a random character. Usually, it is possible to quantify them in the input. The answer to the system of the input known depends on the static and dynamic qualities of the system. If we are able to describe the qualities of the system with accuracy, we will also be able to predict the future behaviour of the system with the same accuracy or to predict the course of a chosen realisation. In analysing time series, we have to accept the dynamism of social-economic structures when on the base of past values we are trying to predict future values. The answer to the question of how accurate will the predicted values be depends on the dynamism of the system connected with the length of predictions and with the character of input values. On the basis of these facts, we can try to look at economic processes as processes in a dynamic system.
1. Diskrétny dynamický systém

Na základe definície dynamického systému môžeme vztah medzi vstupom, stavom a výstupom spojitého systému vyjadriť v tvare:

\[x(t) = \varphi(t, t_0, x(t_0), u(t_0, t)) \]
\[y(t) = g(x(t), u(t), t). \]

kde \(\varphi \) je prechodová funkcia stavu, ktorá vyjadruje, ako sa stav \(x(t_0) \) pôsobením vstupu \(u \) na intervale \(t_0 < t \leq \tau \) zmení na stav \(x(t) \) v čase \(t \).

\(g \) je zobrazenie okamžitého stavu, vstupu a času na výstup.

Pri analýze ekonomických procesov sa väčšinou stretávame s informáciami o správaní sa systému v tvare časových radov. Z uvedeného dôvodu je vhodné ekonomický systém popísať pomocou modelu v tvare diskrétneho dynamického systému:

\[x(k+1) = f(x(k), u(k), k) \]
\[y(k) = g(x(k), u(k), k), \]

kde \(f \) a \(g \) majú rovnaký význam ako pri popise spojitého dynamického systému. V prípade popisu lineárnych nestacionárných diskrétne dynamických systémov rovnice (3) a (4) prejdú o tvorbu:

\[x(k+1) = G(k)x(k) + H(k)u(k) \]
\[y(k) = C(k)x(k) + D(k)u(k), \]

kde \(x(k) \) je \(n \)-rozmerný stavový vektor,
\(y(k) \) je \(m \)-rozmerný výstupný vektor,
\(u(k) \) je \(r \)-rozmerný vstupný vektor,
\(G(k) \) je matica stavu o rozmere \(n \times n \)
\(H(k) \) je matica vstupu o rozmere \(n \times r \)
\(C(k) \) je matica výstupu o rozmere \(m \times n \)
\(D(k) \) je matica priamej väzby medzi vstupom a výstupom o rozmere \(m \times a \).

Ak zavedieme matematický model ekonomických systémov v tvare lineárného diskrétného dynamického systému, podľa obr.1. je potrebné určiť rád systému (rozmer vektora stavu, \(n \)), relevantné vstupné informácie (vektor \(u(k) \)), analyzované výstupné veličiny (vektor \(y(k) \)) a prvky matíc \(G(k), H(k), C(k) \) a \(D(k) \). Štastnú je vo všetkých časťach od dynamických vlastností modelovaného reálneho systému. Vektor \(u(k) \) obsahuje všetky dostupné veličiny, ktoré majú vplyv na správanie sa systému. V prípade analýzy ekonomických procesov je etapa vyberu relevantných informácií obľúbená a závisí od skúseností o analyzovanom ekonomickom jav. Vektor \(y(k) \) je zložený z takých veličín, ktorých priebeh nás zaujíva. Ak máme k dispozícii dostatočne dlhý časový rad, ktorý charakterizuje priebeh vstupných veličín \(u(k) \) a odpovedajúci časový rad hodnôt výstupných veličín \(y(k) \), získaných z reálneho procesu, je možné nastaviť príslušné

1. Discrete dynamic system

On the basis of the definition of a dynamic system, the connection between input, state and output can be defined as:

\[x(t) = \varphi(t, t_0, x(t_0), u(t_0, t)) \]
\[y(t) = g(x(t), u(t), t). \]

where \(\varphi \) is the step response of state which shows how the state \(x(t_0) \) has changed by the operating of input \(u \) in the interval \(t_0 < t \leq \tau \) to the state \(x(t) \) in time \(t \).

\(g \) is the function which determines the corresponding output to state, input and time.

In analysing economic processes, there is the information about the behaviour of the system in the form of time series. Consequently, it is suitable to describe the economic system with the help of the model in the form of a discrete dynamic system:

\[x(k+1) = f(x(k), u(k), k) \]
\[y(k) = g(x(k), u(k), k). \]

where \(f \) and \(g \) have the same meaning as they have in the description of the continuous dynamic system. In the description of the linear time-variant discrete system’s equations (3) and (4) will be changed to the form:

\[x(k+1) = G(k)x(k) + H(k)u(k) \]
\[y(k) = C(k)x(k) + D(k)u(k), \]

where \(x(k) \) is \(n \)-dimensional state vector,
\(y(k) \) is \(m \)-dimensional output vector,
\(u(k) \) is \(r \)-dimensional input vector,
\(G(k) \) is \(n \times n \)-dimensional matrix of state,
\(H(k) \) is \(n \times r \)-dimensional matrix of input,
\(C(k) \) is \(m \times n \)-dimensional matrix of output,
\(D(k) \) is \(m \times a \)-dimensional direct matrix between input and output.

If we suppose the mathematical model of an economic system in the form of a linear discrete dynamic system (as is shown in Fig.1) it is necessary to determine the order of the system (the dimension of matrix of state, \(n \)), the relevant input information (matrix \(u(k) \)), the analysed output quantities (matrix \(y(k) \)) and the elements of the matrices \(G(k), H(k), C(k) \) and \(D(k) \). In general, the order of the system depends on the dynamic qualities of the modelated real system. The matrix \(u(k) \) contains all accessible quantities which have influence on the behaviour of the system. In the analysing of economic processes there is a stage of choosing relevant information that is very difficult and depends on the experiences of the analysed economic phenomenon. The matrix \(y(k) \) contains the quantities which have no interesting course for us. If we have time-series with sufficient length which characterise the course of input quantities \(u(k) \) and corresponding
time series of quantities $y_r(k)$ acquired from real process, it is possible to tune the relevant values of the matrix to minimise the difference between the output of the real system $y_r(k)$ and the output of model $y(k)$. This process is named “continuous tuning”.

The methods of continuous tuning are described in [1] and [2]. The mathematical model mentioned is used to evaluate the influence of input qualities on the behaviour of the system. It is possible to use it also in the solutions of the tasks of prediction. In this case we have to know or to predict the course of input quantities $u(k)$ in the time extend of prediction. After simplifying, we can consider the values of input quantities $u(k)$ to 0. Then there is a dynamic system with its behaviour defined by the initial conditions - values of matrix $x(k)$. This model corresponds to used autoregress models of time-series. The relationships (5) and (6) will be changed to:

$$x(k+1) = G(k)x(k)$$ (7)
$$y(k) = A(k)x(k)$$ (8)

If $y(k)$ contains only one element and state matrix $x(k)$ previous values of output quantity $y(k)$ according to (9) then next value $y(k+1)$ can be determined from n - previous values on the basis of (10) or (11).

$$x(k) = \begin{bmatrix} y(k) \\ y(k-1) \\ \vdots \\ y(k-n-1) \end{bmatrix}$$ (9)
2. Experimental verification

On the basis of the mentioned theoretical points, a simple mathematical model was created. With the help of this model, the chosen economic indicators were predicted [2]. To show the functioning of this model, we will use the model of prediction of the rate of exchange USD/SK for 1. 4. 96 to 23. 2. 98. In this time period, 473 rate of exchange tickets were published. That is enough for the tuning of the model and also for the prediction. Continuous tuning of the parameters of the model was realised in each step on the basis of recursive relationship:

\[
A(k+1) = A(k) + C(k)(y(k+1) - y(k)x(k+1))
\]

(12)

Predicted value after the first step will be calculated on the basis of:

\[
y(k+1) = A(k)x(k).
\]

(13)

where:

\[
A(k) = [a_1(k), a_2(k), \ldots, a_n(k)]
\]

\[
xT(k) = [y_1(k), y_2(k-1), \ldots, y_n(k-n-1)].
\]

where:

\[
y_1(k) \text{ ak } k \leq m
\]

\[
y_2(k) \text{ ak } k > m
\]

\[
y_3(k) \text{ ak } k \leq m
\]

\[
y_4(k) \text{ ak } k > m
\]

\[M\] is the moment in which the last known value in the output of the analysed real system was acquired. From the moment \(m \), we use the forecast. The speed of convergence of matrix \(A(k) \) and the speed of assimilation of the model to time local variations in the character of observed quality depends on the values of matrix
dovanej veličiny. Vplyv výpočtu matice C(k) na presnosť prognózy nie je triviálny a je diskutovaný v prácii [2]. Proces nastavovania matice A(k) (15 prvkov) je znázornený na obr. 3. Na obr. 2 je uvedený vývoj relativného centrovaneho kurzu USD/SK v období od 1. 4. 1996 do 23. 2. 1998. Relatívny centrovany kurz je určený vzťahom:

\[R(i) = \frac{100(k(i) - k_p)}{k_p}, \% \] (14)

kde \(k_p \) je hodnota priemerného kurzu za celé sledované obdobie.

\(C(k) \). The influence of the calculation of matrix C(k) at the accuracy of forecast is not trivial and is discussed in [2]. The process of the tuning of the matrix A(k) (15 elements) is shown in Fig. 3. Fig. 2 shows the development of the relative centred rate of exchange USD/SK in the period from 1. 4. 96 to 23. 2. 98. The relative centred rate of exchange is defined by the relationship:

\[R(i) = 100(k(i) - k_p)/k_p, \% \] (14)

where \(k_p \) is the value of average rate of exchange during the whole observed period.
Na obr. 4 je znázornený predpovedaný vývoj kurzu USD/SK s predikčným intervalom 10 dní. Na počiatku nastavenie bolo
využitých prvých 50 členov časového radu. Navrhovaný model
predpoveda hodnotu relatívneho centrovaneho kurzu o 10 dni.
Z uvedeného vyplýva, že prvá predpovedaná hodnota kurzu je
v bode 60. Cély súbor obsahuje 473 členov postupnosti, preto
posledná predpovedaná hodnota je v bode 483.

Na zhodnotenie úspešnosti modelu bola zavedená priemerná
relatívna chyba prognózy:

\[d = \frac{1}{N-M} \sum_{i=M}^{N} \frac{|y(i) - y_{p}(i)|}{k} \] \(\text{15} \)

kde \(M \) je počet členov postupnosti (dní) na nastavenie parametrov
modelu, \(N \) je počet všetkých členov postupnosti, \(k \) je priemerný
kurz \(y_{p}(i) \) pre i-ty deň a \(y(i) \) skutočná hodnota. Na
obr. 5 je uvedená závislosť priemernej relatívnej chyby prognozy
od dĺžky intervalu prognozovania. Krvky 1 až 8 znázorňujú
priebeh chyby pre modely s rôznym počtom prvkov maticy \(A(k) \).
Krvka (1) odpovedá modelu s piatimi prvkami maticy \(A(k) \). Počet
prvkov postupne narastá až krvka (8) odpovedá modelu s 19
prvkami.

3. Záver

V súčasnosti sa stretávame s mimoriadne rýchlym rozvojom
informačných technológií, ktoré nám sprístupňujú aktuálne
informácie z najrôznejších oblastí ľudskej činnosti v dosiaľ nebyvalom

Fig. 4 shows the predicted development of the rate of exchange USD/SK with a predicted interval of ten days. For the
first tuning the first fifty elements of time series were used. The
designed model predicts the value of the relative centred rate of
exchange after ten days. As mentioned before, we see that the first
predicted value of the rate of exchange is in point 60. The whole
file contains 473 elements of sequence. Subsequently of it the last
predicted value is in point 483.

For the evaluation of the success of the model, a relative error
of forecast was created:

\[d = \frac{1}{N-M} \sum_{i=M}^{N} \frac{|y(i) - y_{p}(i)|}{k} \] \(\text{15} \)

where \(M \) is the number of elements of sequence (days) for the
tuning of the parameters of the model, \(N \) is the number of all
elements of the sequence, \(k \) is the average rate of exchange \(y_{p}(i) \)
forecasting for i-day and \(y(i) \) is the real value. In Fig. 5 the
mentioned dependency of the average relative error of forecast on
the length of forecasting interval is shown. Lines 1-8 show the
value of error for the models with various numbers of elements of
matrix \(A(k) \). Line (1) corresponds with the model with 5 elements
of the matrix \(A(k) \). The number of elements of the matrix increases
and line 8 corresponds with the model with 19 elements.

3. Conclusion

Today, information technologies are developing fast which
makes possible the use of information from various areas of
rozsahu. Je preto potrebné zaoberať sa aj novými, netradičnými spôsobmi ich spracovania, s maximálnym využívaním moderných technických prostriedkov. V predkladanom článku je popisaný istý pokus o aplikáciu teoretických metod a postupov, používaných pri analýze dynamických systémov do oblasti modelovania ekonomických systémov a simulácie procesov so zameraním na riešenie úloh prognozy. Pretože rozsah príspevku je príliš obmedzený, sú v ňom uvedené len základné teoretické východiská a stručný popis experimentu - predpoveď vývoja kurzu USD/SK. V príspevku je zámerne poukázané na spojitosť medzi používanými ekonomic kými metodami (regresné modely) a metodami využívanými v oblasti analýzy dynamických systémov.

Literatúra

[1] KOTEK, Z. a kol.: Adaptívni a učíci se systémy, SNTL 1980
[2] MIČEKOVÁ, M.: Využitie teórie adaptívnych systémov v prognozovaní ekonomických procesov, KDP, Žilina, 1998
[3] OGATA, K.: Discrete time control systems, Prentice Hall, New Jersey, 1987

Recenzenti: P. Ďuriník, J. Mikolaj

human activities. So it is necessary to be interested in original methods of processing information with maximal employment of modern technical equipment. This article describes the experiment of applications of theoretical methods used in analysing dynamic systems in the area of modelling of economic systems and simulations of processes. Because the length of the article is limited, it described only the basic theoretical points and brief descriptions of the experiment-forecast of the development of the rate of exchange USD/SK. This article showed the relationship between the use of economic methods (regress models) and analytical methods of a dynamic system.

References

[1] KOTEK, Z. a kol.: Adaptívni a učíci se systémy, SNTL 1980
[2] MIČEKOVÁ, M.: Využitie teórie adaptívnych systémov v prognozovaní ekonomických procesov, KDP, Žilina, 1998
[3] OGATA, K.: Discrete time control systems, Prentice Hall, New Jersey, 1987

Reviewed by: P. Ďuriník, J. Mikolaj