Metabolic syndrome and the hepatorenal reflex

Wider MD

Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA

Wider MD. Metabolic syndrome and the hepatorenal reflex. Surg Neurol Int 2016;7:99.

CORRECTED AND REPUBLISHED FROM

Wider MD. Metabolic syndrome and the hepatorenal reflex. Surg Neurol Int 2016;7:83.
PMID: 27656314
[PubMed] Free PMC Article

PUBLICATION TYPES

Corrected and Republished Article
Review
Review Article

Metabolic syndrome and the hepatorenal reflex

Michael D. Wider

Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA

E-mail: *Michael D. Wider - mdwider@yahoo.com
*Corresponding author

Received: 07 June 16 Accepted: 19 July 16 Published: 15 November 16

Abstract

Insufficient hepatic O_2 in animal and human studies has been shown to elicit a hepatorenal reflex in response to increased hepatic adenosine, resulting in the stimulation of renal as well as muscle sympathetic nerve activity and activating the renin angiotensin system. Low hepatic ATP, hyperuricemia, and hepatic lipid accumulation reported in metabolic syndrome (MetS) patients may reflect insufficient hepatic O_2 delivery, potentially accounting for the sympathetic overdrive associated with MetS. This theoretical concept is supported by experimental results in animals fed a high fructose diet to induce MetS. Hepatic fructose metabolism rapidly consumes ATP resulting in increased adenosine production and hyperuricemia as well as elevated renin release and sympathetic activity. This review makes the case for the hepatorenal reflex causing sympathetic overdrive and metabolic syndrome in response to exaggerated splanchnic oxygen consumption from excessive eating. This is strongly reinforced by the fact that MetS is cured in a matter of days in a significant percentage of patients by diet, bariatric surgery, or endoluminal sleeve, all of which would decrease splanchnic oxygen demand by limiting nutrient contact with the mucosa and reducing the nutrient load due to loss of appetite or dietary restriction.

Key Words: Bariatric, cholesterol, diabetes, hepatorenal, metabolic syndrome, obesity, sympathetic

INTRODUCTION

Obesity is increasing rapidly on a global scale and is associated with comorbidities that require expensive medical care and limit the life span, including increased risk of all cause and cardiovascular disease mortality. Body mass index (BMI) has been widely used to indicate the level of obesity, though recent studies have found that abdominal or visceral adiposity (vs subcutaneous), as reflected in the waist-to-hip ratio or waist circumference, is a strong criteria for predicting the risk of developing metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM). The incidence of MetS has been reported to be as low as 22% in overweight patients with a BMI of 25–30 and 60% in patients with a BMI of 30–35, with more than 40% of these obese patients relatively healthy. While obesity is a risk factor for MetS, the fact that not all obese patients develop MetS or T2DM suggests that adiposity may not be etiologic.

While not all obese people develop MetS, the rising incidence of obesity is regarded as an epidemic due to the broad spectrum of associated comorbidities in many patients, including increased mortality, T2DM, glucose intolerance, insulin resistance, hypertension, dyslipidemia, and...
nephropathy with proteinuria, cardiovascular disease, obstructive sleep apnea, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), polycystic ovary syndrome, and an increased risk of a number of cancers.

The term MetS, or originally Syndrome X, was proposed to foster a coherent clinical approach to management and therapeutic intervention. Though the diagnostic criteria for MetS has been variably defined in the literature, most definitions now include the presence of at least three of the following: Abdominal obesity, insulin resistance, hypertension, elevated fasting plasma glucose, high serum triglycerides, and low high-density lipoprotein levels. A requirement of insulin resistance and abdominal adiposity as part of the diagnostic criteria depends on the group or agency proposing the definition. There have been several attempts to develop a unified set of diagnostic criteria, and in 2009 the International Diabetes Federation, the American Heart Association, and the National Heart, Lung and Blood Institute developed a list of criteria that is now broadly accepted.

METABOLIC SYNDROME ETIOLOGY

A large number of clinical studies have demonstrated that a significant percentage of patients with MetS have durable remission of comorbidities within days of bariatric surgery, calorie restriction (diet), or implantation of an endoluminal plastic sleeve that prevents nutrient contact with the proximal gastrointestinal mucosa, as discussed below. It is essential then to ask of any proposed etiologic factor whether, first, it is capable of causing the spectrum of comorbidities, and second, that it is rapidly eliminated by reducing nutrient contact with the proximal gut.

The theories proposed to explain the dramatic impact of surgical intervention include neuroendocrine, immunologic, and hormonal influences from the proximal gut (foregut theory) and distal gut (hindgut theory). The challenge to these theories is in the diverse mix of comorbidities and the dramatic effect of simply removing part of the stomach and/or duodenum. There are no known hormones or even cytokine cascades associated with inflammation that would cause the specific complex of issues observed in MetS, which would be eliminated in a matter of days by something as simple as a sleeve gastrectomy.

It is not the intent of this review to argue the value or relevance of the extensive body of work and related theories for the etiology of MetS but rather to propose an etiologic mechanism based on nutrient contact with the gastrointestinal mucosa in patients with immediate resolution. There are a number of excellent reviews detailing the evidence both for and against the role of gastrointestinal hormones including insulin and GLP-1,[42,110,124,135,194] as well as the potential role of leptin and adipokines.[153,60,155,179,206]

It is possible, if not probable, that there are multiple pathophysiologic mechanisms involved in the individual morbidities grouped into the classification of MetS. Patients whose comorbidities are resolved in a matter of days, however, may have a unique mechanism related to nutrient contact. The diversity of morbidities and the immediate resolution in up to half of the patients indicates a rapidly acting physiologic mechanism with the potential for broad impact that points to neurologic origin.

SYMPATHETIC OVERDRIVE

Obesity and the related T2DM and MetS have been shown to have a high correlation with elevated sympathetic nerve activity in the kidney (rSNA) and muscles (mSNA)[34,50,53,86,89,91,92,95,134,136,143,139,192,228,235] that is relieved by bariatric surgery.[128,274] Obese individuals were variably observed in early studies to have elevated whole body sympathetic activity as indicated by urinary and plasma norepinephrine levels,[264] while later reports using the more accurate and refined techniques of microneurographic monitoring and norepinephrine spillover confirmed the tissue-specific nature of the sympathetic outflow.[22,47,68,90] The term “sympathetic overdrive” was coined to refer to the sympathetic overactivity[94,130,182] that is widely accepted to play a central role in the etiology of the comorbidities[22,195,136,245-247,257] and though there are a number of theories as to the causes of overactivity, including insulin action in the brain,[70,136] the etiology remains unclear.

Elevated sympathetic discharge following a meal has been reported in normal humans and animals[47,70,257] and may lead to sustained overdrive in response to repetitive and/or excessive eating. Obese, hypertensive patients as well as animal models of MetS caused by high fructose and high fat diets exhibit elevated rSNA and mSNA as well as uric acid and angiotensin II (Ang II) levels compared to lean controls.[94,62,71,109,133,192,204,235,246] High mSNA leads to muscle vasoconstriction, increasing peripheral vascular resistance, and decreasing muscle glucose uptake,[68] suggesting a role in the development of hypertension and insulin resistance. The nature of the sympathetic overdrive has been shown to be due to the recruitment of previously silent fibers rather than an increase in the firing rate.[90,131]

Although results of studies on the role of sympathetic nerve activity in relation to vascular response and insulin action are mixed,[63,67,68,113,116,122,142,153,181,192] renal denervation[17,52,148] and clonidine administration,[84,105,209,210] as well as angiotensin converting enzyme (ACE) inhibitors,[8,14,23,145,271] all of which reduce sympathetic
outflow from the rostroventral lateral medulla (RVLM), have been shown to reduce blood pressure and improve insulin sensitivity and lipid levels in MetS and T2DM. Further, renal denervation and ACE inhibitors reduce kidney and circulating Ang II, decreasing AT1 receptor activation in the RVLM as well as limiting the Ang II enhancement of norepinephrine secretion and reuptake in the kidney. [93,117,269]

HEPATURENALE REFLEX

The close functional relationship between the liver and kidney provides a potential mechanism for the development of sympathetic overdrive in response to a hepatorenal reflex [98,99,236]. Much of the information supporting the existence of the hepatorenal reflex has been developed from studies of hepatorenal syndrome (HRS) in decompensated cirrhosis, initially attributed to a baroreflex response to hypotension associated with infection [9,10,218,241,263]. However, studies in both humans and animals have documented an immediate decrease in renal blood flow, glomerular filtration rate, and urine flow, as well as increased sodium retention in response to increased intrahepatic pressure or reduced liver blood flow due to the reflex activation of rSNA [24,44,98,105,112,127,129,130,160].

The reflex nature of the response to low hepatic blood flow is supported by denervation of the liver and/or kidney that has been shown to decrease rSNA and improve renal blood flow and Na+ excretion [79,127,129,159,160,263]. Further, there is no histologic damage to the kidneys in HRS, and kidneys from HRS donors resume normal function when transplanted [126,265]. Liver transplantation in HRS patients, though sometimes associated with kidney damage from immunosuppressants [258], also results in the resumption of kidney function, indicating that the elevated rSNA is due to a neurologically mediated reflex [79,126,158,258].

Regardless of the cause of the elevated mSNA and rSNA observed in HRS and cirrhosis, it has been shown, as stated above, that acute reduction of blood flow or increased hepatic resistance in animals and humans causes rapid stimulation of rSNA resulting in renal vasoconstriction and reduced kidney function with stimulation of the RAS. Intraportal glutamine and serine have also been shown to increase rSNA by causing hepatocyte swelling that reduces sinusoidal blood flow. Cutting the vagal hepatic nerves or spinal transection prevented the effect on rSNA in these experiments and unilateral renal denervation prevented the effect only in the denervated kidney, firmly demonstrating the reflex nature of the response [117].

Hepatic adenosine has been identified as a potential factor in stimulating the hepatorenal reflex in that infusion into the portal vein in animals results in an immediate increase in rSNA and a reduction in renal blood flow that is prevented by liver denervation and intraportal, but not intravenous, A1 adenosine receptor blockers [101,156-160]. The compounding effect of RAS stimulation caused by renal ischemia in response to rSNA is well established, with elevated Ang II resulting in broad activation of sympathetic outflow capable of generalized overdrive [51,152,161].

HEPATIC OXYGEN DELIVERY

Portal blood flow to the liver increases over 100% following a meal [51,77,85,93,102,167,175,218,252,256] depending on the type of nutrient [102,164,197,212,231] however, the portal hemoglobin saturation can be very low due to increased oxygen demand from gut secretory and contractile activity. Splanchnic oxygen consumption has been observed in normal humans to increase in the first hour following a mixed meal by over 50% [29,47,72] and postprandial O₂ consumption by the gastric mucosa during secretory periods, along with the thick gastric muscle requirement for O₂ during contraction, contribute significantly to lowering portal O₂ following a meal [57,126,165,184]. Hepatic oxygen delivery is further compromised following a meal by increased hepatic artery resistance leading to lower arterial flow. This “hepatic arterial buffer response” [28,67,69,140,141] has been postulated to account for the relatively constant hepatic vein outflow despite the increased portal inflow following meals. Adenosine secretion into the space of Moll is assumed to be constant and to cause arterial vasodilation. The increased portal flow following a meal is thought to wash out the adenosine, resulting in increased arterial resistance and balancing hepatic perfusion [69,111].

While hepatic perfusion is relatively constant over the day, the distribution of blood supply and hence oxygen delivery to the hepatic parenchyma in normal humans and animals results in what is termed “metabolic zonation” involving a perportal Zone 1 (portal inflow) to perivenous Zone 3 (outflow to the hepatic vein). Hepatic oxygen levels vary across the lobule with mixed portal and arterial blood in the Zone 1 periportal region reported to be 60–65 mmHg in animals whereas perivenous Zone 3 O₂ is 30–35 mmHg [115,202]. The peribital to perivenous gradient of O₂ and nutrient delivery results in both cell structure and metabolic differentiation from inflow to outflow areas of the lobule [106,201]. While the reduced postprandial O₂ delivery is thought to be compensated for by increased O₂ uptake by hepatocytes [63,139,146], it would present a significant challenge to hepatic metabolism, especially in Zone 3.

Oxygen delivery to the liver is compromised in obesity by hepatocyte swelling from lipid accumulation. Intracellular lipid follows the same perivenous distribution as the
intrahepatic zonal O_2 gradient, suggesting that fatty acid metabolism is initially compromised by the diminished oxygen in zone 3. Because fatty acid transport out of cells is an energy dependent process, the low hepatic ATP in MetS would be expected to diminish transport as well as lowering beta oxidation, resulting in lipid accumulation. NAFLD can eventually lead to NASH that has been shown to reduce sinusoidal blood flow up to 50% by impeding parenchymal microcirculation.

RELATIVE HEPATIC HYPOXIA IN METABOLIC SYNDROME

Low hepatic ATP and inorganic phosphate (P_i) have been reported in MetS and T2DM patients but not in BMI matched, healthy controls and is associated with NAFLD, hepatic insulin resistance, and hyperuricemia. The low hepatic ATP may be caused by the chronically decreased portal O_2 delivery from exaggerated mesenteric oxygen demand associated with excessive eating. The limited ATP production could result in increased hepatic adenosine, potentially stimulating the hepatorenal reflex and increasing the sympathetic outflow that results in MetS [Figure 1]. However, how hepatic adenosine which should be washed out following a meal would cause a hepatorenal reflex following food ingestion is not clear. The “hepatic arterial buffer response” described above assumes constant adenosine secretion into the space of Moll, however, fails to take into account changes in hepatic energetics in response to decreasing O_2 delivery, especially in the face of increased alimentary O_2 demand.

Reduced hepatic oxygen in rat and mouse hepatocytes has been shown to increase the dephosphorylation of AMP to adenosine, though adenosine is not always an intermediate in adenine nucleotide metabolism. AMP is catabolized by AMP deaminase to inosine monophosphate in the inosine pathway, which would circumvent the production of adenosine. AMP deaminase in rat brain extracts, however, is inhibited at ischemic ATP concentrations resulting in AMP breakdown to adenosine almost exclusively through the adenosine pathway. Further, extracellular ATP is exclusively metabolized to adenosine by ecto-$5'$ nucleotidase. Regardless of the dominant pathway, adenosine A1 receptors have been shown to be responsible for the activation of the hepatorenal reflex and AMP, inosine, and adenosine all activate A1 receptors.

This proposed theory of decreased hepatic ATP leading to increased adenosine formation and ultimately MetS is further supported by experimental models where MetS is induced by a high fructose diet. Though the results of both animal and human studies are variable, high fructose diet is widely used to produce MetS in animals that is not observed in fructokinase A and C knockout mice. Extrahepatic cells do not express fructokinase and extrahepatic hexokinase has a high Km for fructose, restricting almost all fructose metabolism to the liver. Fructose is transported into hepatocytes by Glut2, bypassing the need for insulin and is cleared by the liver close to 100% in the first pass. Once in the hepatocytes, it is rapidly phosphorylated to fructose-1-P, consuming P_i from ATP and causing increased adenine nucleotide production, leading to hyperuricemia [Figure 1].

Interestingly, BMI has been reported to be inversely correlated with hepatic ATP in normal humans and multiple regression analysis has identified waist circumference as an independent predictor of hepatic ATP flux and P_i concentrations. Further, the hyperuricemia observed in both humans and animal models of MetS has been shown to be a very sensitive index of hepatic ATP depletion, and T2DM patients do not tolerate large doses of fructose due to impaired ATP recovery following an intravenous fructose challenge.

![Figure 1: The postulated etiologic mechanisms is supported by the fact that excessive eating and fructose ingestion, both of which can result in MetS, have the potential to reduce hepatic ATP production, increasing levels of adenine nucleotides that are known to stimulate the hepatorenal reflex and theoretically lead to MetS](http://www.surgicalneurologyint.com/content/7/1/99)
If a hepatorenal reflex in response to relative hepatic hypoxia is the primary stimulus to sympathetic overdrive and subsequent MetS, then the question of why bariatric surgery, diet, or endoluminal sleeve should correct the hypoxia is central to understanding the role they play in remission. The excessive eating that leads to obesity produces a constant state of increased splanchnic oxygen demand and decreased hepatic artery blood flow that may be significantly corrected by limiting nutrient exposure to the stomach and intestines.

Surgical restructuring of the gut referred to as “bariatric” or “metabolic” surgery includes a number of approaches that were originally focused on weight loss and were designed to either reduce the nutrient load or limit absorption by the small intestine. While these procedures restructure the gut in various ways, all of them result in comorbid disease remission including T2DM and MetS, even if at a variable rate and durability, though remission has been reported in a number of publications to be durable and immediate prior to significant weight loss.

The one common facet to all the procedures is that they reduce nutrient load and contact with the proximal gastrointestinal mucosa by diversion of nutrient flow and loss of appetite. Further, the surgical placement of a plastic, endoluminal sleeve in the gastroduodenal lumen, preventing proximal mucosal contact with nutrient, has been shown to result in rapid remission, suggesting that mucosal contact is etiologic.

Bariatric procedures include gastroplasty, biliopancreatic diversion, duodenal switch, biliopancreatic diversion with duodenal switch, Roux-en-y gastric bypass (RYGB), sleeve gastrectomy, vertical gastric banding and adjustable gastric band, as well as variants of these techniques including laparoscopic approach.

Both gastrectomy and diversion of the stomach and/or proximal intestine from nutrient contact would significantly lower splanchnic O$_2$ demand resulting in increased portal O$_2$ that may result in increased ATP production, as suggested by the fact that hyperuricemia is reduced following bariatric surgery. The decreased uric acid indicates reduced adenine nucleotide metabolism and nucleotide production and theoretically limits the hepatorenal reflex [Figure 2].

While the stomach and duodenum are not removed in a gastric bypass or RYGB, reduced acid secretion and gastrin release that would lead to O$_2$ consumption by the excluded stomach in humans has been reported. Further, removal of a significant portion of the stomach in a sleeve gastrectomy may increase hepatic artery flow by reducing gastric steal from the celiac artery. The reduced contribution of low O$_2$ gastric vein blood to portal flow and the increased hepatic arterial flow following gastrectomy would be expected to significantly improve hepatic O$_2$ delivery [Figure 3].

The immediate resolution of MetS following surgery or endoluminal sleeve was also significantly impacted by the decreased appetite following bariatric surgery, which is a common problem requiring lifelong counseling and follow-up to insure adequate nutrition and vitamin intake. The reduced eating would further limit splanchnic O$_2$ consumption, improving hepatic O$_2$ delivery and increasing ATP production.

CONCLUSIONS

This review postulates that excessive and/or repetitive eating that produces obesity causes a state of chronic, relative hypoxia in the liver due to lowered O$_2$ in portal blood, reduced hepatic artery flow, and increased hepatic resistance from lipid accumulation and hepatocyte swelling. The resulting low hepatic ATP production leads to the accumulation of adenine nucleotides in the liver that stimulates the hepatorenal reflex [Figure 2].
producing sympathetic overdrive. Elevated sympathetic outflow has been shown to cause insulin resistance, hypertension, and dyslipidemia and is implicated in other related morbidities such as ventricular hypertrophy, Na+ retention, glucose intolerance, nephropathy with proteinuria, cardiovascular disease, NAFLD, and an increased risk of cancer. Bariatric surgery, diet, and endoluminal sleeve limit the contact of nutrients with the gastrointestinal mucosa as well as decreasing appetite, resulting in increased splanchnic O₂ delivery to the liver and preventing the hepatorenal reflex. The fact that some obese patients develop MetS while others do not indicates that MetS is not caused by excess adiposity, but begs the question of what is different between these cohorts, both of which eat excessively and hence should have relative hepatic hypoxia. Vascular anatomy, metabolic response, 2,3-DPG levels, or sensitivity to the hepatorenal reflex are some of the potential areas for further investigation.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES

1. Abbattini F, Rizzello M, Casella G, Alessandri G, Capoccia D, Leonetti F, et al. Long-term effects of laparoscopic sleeve gastrectomy, gastric bypass, and adjustable gastric banding on type 2 diabetes. Surg Endosc 2010;24:1005–10.
2. Abdelmalek MF, Lazo M, Horska A, Bonekamp S, Lipkin EW, Balasubramanyam A, et al. Fatty Liver Subgroup of Look AHEAD Research Group. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 2012;56:952-60.
3. Abdulla MH, Sattar MA, Johns EJ. The relation between fructose induced metabolic syndrome and altered renal hemodynamics and excretory function in the rat. Int J Nephrol 2011;2011:934659.
4. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States 2003-2012. JAMA 2013;313:1973-4.
5. Aguirre V, Stylopoulos N, Grinbaum R, Kaplan LM. An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity. Obesity 2008;16:2585-92.
6. Alexandrides TK, Skroubis G, Kalfarentzos F. Resolution of diabetes mellitus and metabolic syndrome following Roux-en-Y gastric bypass and a variant of biliopancreatic diversion in patients with morbid obesity. Obes Surg 2007;17:176-84.
7. Ali MR, Fuller WD, Rasmussen J. Detailed description of early response of metabolic syndrome after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis 2009;5:346-51.
8. Alkhawajah J, Nalilukumari K, Corry D, Tuck M. Long-term effects of the angiotensin converting enzyme inhibitor captopril on metabolic control in non-insulin-dependent diabetes mellitus. Am J Hypertens 1993;6:337-43.
9. Arroyo V, Fernandez J, Ginés P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis 2008;28:81-95.
10. Arroyo V, Fernandez J. Management of hepatorenal syndrome in patients with cirrhosis. J Nat Rev Nephrol 2011;7:517-26.
11. Assaf-Leopes N, Wengert M, de Sá Pinheiro AA, Leão-Ferreira LR, Carusso-Neves C. Inhibition of renal Na⁺-ATPase activity by inosine is mediated by A₁ receptor-induced inhibition of the cAMP signaling pathway. Arch Biochem Biophys 2009;489:76-81.
12. Astiarraga B, Gastaldelli A, Muscelli E, Baldi S, Camastra S, Mari A, et al. Biliopancreatic diversion in nonobese patients with type 2 diabetes: Impact and mechanisms. J Clin Endocrinol Metab. 2013;98:2765-73.
13. Axelsson LN, Lademann JB, Petersen JS, Holstein-Rathlou NH, Ploug T, Prats C, et al. Cardiac and metabolic changes in long-term high fructose-fed rats with severe obesity and extensive intramyocardial lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2010;298:R1560-70.
14. Baba T, Kodama T, Ishizaki T. Effect of chronic treatment with enalapril on glucose tolerance and serum insulin in non-insulin-resistant Japanese patients with essential hypertension. Eur J Clin Pharmacol 1993;45:23-7.
15. Balci A, Karazincir S, Sumbas H, Oter Y, Eglmez E, Inandi T. Effects of diffuse fatty infiltration of the liver on portal vein flow hemodynamics. J Clin Ultrasound 2008;36:134-40.
16. Ballantyne GH, Farkas D, Laker S, Wasielewski A. Short term changes in hepatic arterial flow following gastrectomy has the potential to improve O₂ delivery to the liver by decreasing low O₂ gastric vein contribution and increasing hepatic arterial flow by limiting gastric arterial steal from the celiac artery, theoretically allowing increased hepatic ATP production and reducing adenine nucleotide accumulation and the hepatorenal reflex.
in insulin resistance following weight loss surgery for morbid obesity: Laparoscopic adjustable gastric banding versus laparoscopic Roux-en-Y gastric bypass. Obes Surg 2006;16:1189-97.

17. Babash IM, Waksman R. Sympathetic renal denervation: hypertension beyond SYMPLECTY. Cardiovasc Revasc Med 2013;14:229-35.

18. Barsotti C, Iapa PL. Metabolic regulation of ATP breakdown and of adenosine production in rat brain cells. Int J Biochem Cell Biol 2004;36:2214-25.

19. Batchelder AJ, Williams R, Sutton C, Kanna A. The evolution of minimally invasive bariatric surgery. J Surg Res 2013;183:359-66.

20. Bayham BE, Greenway FL, Bellanger DE, O’Neil CE. Early resolution of type 2 diabetes seen after Roux-en-Y and vertical sleeve gastroplasty. Diabetes Technol Ther 2012;14:30-4.

21. Belloni FL, Ekin PL, Giannotti B. The mechanism of adenosine release from hypoxic rat liver cells. Br J Pharmacol 1985;85:441-6.

22. Berne C, Fagius J, Niklasson F. Sympathetic response to oral carbohydrate administration. J Clin Invest 1989;84:1403-9.

23. Bitkin EC, Boyraz M, Taşkıın N, Akçaıy A, Ulucan K, Akyol MB, et al. Effects of ACE inhibitors on insulin resistance and lipid profile in children with metabolic syndrome. J Clin Res Pediatr Endocrinol 2013;5:164-9.

24. Blanchart A, Rodriguez-Puyol D, Santos JC, Hernando L, Lopez-Novo JM. Effect of chronic and progressive hepatic outflow blockade on renal function in rats. Lab Clin Med 1987;109:78-3.

25. Boodhaya-anant P, Apovian CM. Metabolically healthy obesity—does it exist? Curr Atheroscler Rep 2014;16:441-6.

26. Borrell LN, Samuel L. Body mass index categories and mortality risk in US adults. Am J Public Health 2014;104:512-9.

27. Bremer AA, Stanhope KL, Graham JL, Cummings BP, Wang W, Saville BR, et al. Fructose-fed rhesus monkeys: A nonhuman primate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin Transl Sci 2011;4:243-52.

28. Browse DJ, Mathie RT, Benjamin IS, Alexander B. The role of ATP and adenosine in the control of hepatic blood flow in the rabbit in vivo. Comp Hepatol 2003;2:9.

29. Brundin T, Wahlren J. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow and blood temperature. Metabolism 1994;43:626-32.

30. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric Surgery: a systematic review and meta-analysis. JAMA 2004;292:1724-37.

31. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: Systematic review and meta-analysis. Am J Med 2009;122:248-56.

32. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg 2013;23:427-36.

33. Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin: Role of adrenergic activity. Hypertension 2002;39:496-501.

34. Carnethon MR, Jacobs DR Jr, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: The CARDIA study. Diabetes Care 2003;26:3035-41.

35. Catena C, Giachetti G, Novello M, Colussi G, Cavarra A, Sechi LA. Cellular mechanisms of insulin resistance in rats with fructose induced hypertension. Am J Hypertens 2003;6:973-8.

36. Chang SH, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The role of leptin on the development of insulin resistance in humans. Curr Atheroscler Rep 2013;9:42-7.

37. Cheung LY, Moody FG, Larson K, Lowry SF. Oxygen consumption during exercise in non-elderly and elderly men and women. Clin Sci 1995;89:145-54.

38. Cohen R, le Roux CW, Papamargaritis D, Salles JE, Petry T, Correa JL, et al. Role of proximal gut exclusion from food on glucose homeostasis in patients with Type 2 diabetes. Diabet Med 2013;30:1482-6.

39. Conti S, Pezzarossa A, Corradi A, Scarpignato C, Renal removal of glucagon and insulin after acute hepatic ischemia in dogs. Diabetes Metab 1983;9:3-8.

40. Corcelles R, Daigle CR, Schauer PR. Metabolic effects of bariatric surgery. Eur J Endocrinol 2016;174:19-28.

41. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: A pilot study. JAMA 1999;282:1659-64.

42. Cunneen SA. Review of metabolic disparities in inflammatory bowel disease. Clin Sci 1995;89:145-54.

43. Dai S, McNeill JH. Fructose induced hypertension in rats is concentration and duration dependent. J Pharmacol Toxicol Methods 1995;33:101-7.

44. Daly PA. Landsberg L. Hypertension in obesity and NIDDM. Role of insulin and sympathetic nervous system. Diabetes Care 1991;14:240-8.

45. Daoutz M, Lafortune M, Patrinquin H, Pomier-Layrargues G. Meal induced changes in hepatic and splanchnic circulation: A noninvasive Doppler study in normal humans. Eur J Appl Physiol 1994;68:373-80.

46. Davis ML, Filion KB, Zhang D, Eisenberg MJ, Affifol J, Shiffrin EL, et al. Effectiveness of renal denervation therapy for resistant hypertension: A systematic review and meta-analysis. J Am Coll Cardiol 2013;62:231-41.

47. Davy KP, Orr JS. Sympathetic nervous system behavior in human obesity. Neurosci Biobehav Rev 2009;33:116-24.

48. De Angelis K, Senador DD, Mostarda C, Irgoyen MC, Morris M. Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol 2012;302:R950-7.

49. de Jager RL, Blankespoor MT, Pathophysiology: I. The kidney and the sympathetic nervous system. Eurointervention 2013;9:42-7.

50. de Jonge C, Rensen SS, Verdijk FM, Vincent RP, Bloom SR, Buurman WA, et al. Endoscopic duodenal jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg 2013;23:1354-60.

51. de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist to hip ratio as predictors of cardiovascular events: Meta-regression analysis of prospective studies. Eur Heart J 2007;28:850-6.

52. de Moura EG, Martins BC, Lopes GS, Orso IR, de Oliveira SL, Galvão Neto MP, et al. Metabolic improvements in obese type 2 diabetes subjects implanted for 1 year with an endoscopically deployed duodenal-jejunal bypass liner. Diab Tech Ther 2012;14:183-9.

53. DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension 2000;36:1083-8.

54. Dong M, Ren J. What fans the fire: Insights into mechanisms of leptin in metabolic syndrome associated heart diseases. Curr Pharm Des 2014;20:652-8.

55. Edfeldt H, Lundvall J. Sympathetic baroreflex control of vascular resistance in comfortably warm man. Analyses of neurogenic constrictor responses in the resting forearm and in its separate skeletal muscle and skin tissue compartments. Acta Physiol Scand 1993;147:437-47.

56. Edgren BM. Insulin resistance and the sympathetic nervous system. Curr Hypertens Rep 2003;5:247-54.

57. Eyglo C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: The hepatic arterial buffer response revisited. World J Gastroenterol 2010;16:6046-57.

58. Erdogmus B, Tamer A, Buyukkaya R, Yazici B, Buyukkaya A, Korkut E, et al. Portal vein hemodynamics in patients with non-alcoholic fatty liver disease. Tohoku J Exp Med 2008;215:89-93.

59. Escalona A, Pimentel F, Sharp A, Becerra P, Slako M, Turiel D, et al. Weight loss and metabolic improvement in morbidly obese subjects implanted for 12 year with an endoscopic duodenal-jejunal bypass liner. Ann Surg 2012;255:1080-5.

60. Escalona A, Yáñez R, Pimentel F, Galvao M, Ramos AC, Turiel D, et al. Initial human experience with restrictive duodenal-jejunal bypass liner for treatment of morbid obesity. Surg Obes Relat Dis 2010;6:126-31.
Surgical Neurology International 2016, 7:99

67. Esami P, Tuck M. The role of the sympathetic nervous system in linking obesity with hypertension in white vs black Americans. Curr Hypertens Rep 2003;5:269-72.

68. Esler M, Rumantir M, Wieser G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: From obesity to diabetes. Am J Hypertens 2001;14:3045-9.

69. Ezzat W, Lautt WW. Hepatic arterial pressure flow autoregulation is adenosine mediated. Am J Physiol 1987;252:H836-45.

70. Fagius J, Berne C. Increase in muscle nerve sympathetic activity in humans after food intake. Clin Sci 1994;86:159-67.

71. Farah V, Blased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC, et al. Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 2006;130:41-50.

72. Farrell GC, Tuch NC, McCuskey RS. Hepatic microcirculation in fatty liver disease. Antach Record 2008;291:684.

73. Floras JS, Legault L, Morali GA, Harra K, Blends LM. Increased sympathetic outflow in cirrhosis and ascites: Direct evidence from intraneural recordings. Ann Intern Med 1991;114:373-80.

74. Foo J, Krebs JS, Hayes MT, Bell D, Macartney-Coxson D, Croft T, et al. Studies in insulin resistance following very low calorie diet and/or gastric bypass surgery. Obes Surg 2011;21:1914-20.

75. Ford ES, Li C, Cook S, Choi HK. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation 2007;115:2526-27.

76. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation 2007;116:369-48.

77. Gallvan RH Jr, Chou CC, Kvetsys PR, Sot SP. Regional blood flow during digestion in the conscious dog. Am J Physiol 1980;238:H220-5.

78. Garrido-Sanchez L, Murri M, Rivas-Becerra J, Ocaña-Wilhelmi L, Cohen RV, Garcia-Fuentes E, et al. Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. Surg Obes Rel Dis 2012;8:145-50.

79. Garzia P, Ferri GM, Ilardi M, Messina FR, Amoroso A. Pathophysiology, clinical features and management of hepatorenal syndrome. Eur Rev Med Pharmacol Sci 1998;2:181-4.

80. Gebhardt R, Matz-Soja M. Liver zonation: Novel aspects of its regulation and pathophysiology. Comp Physiol 2015;5:1541-83.

81. Gelber RP, Gaziano JM, Orav EJ, Manson JE, Buring JE, Kurth T. Measures of cardiovascular risk, blood pressure variability and adrenergic overdrive in hypertension: Evidence, mechanisms and clinical implications. Curr Hypertens Rep 2012;14:333-8.

82. Grassi G, Dell’Oro R, Facchini A, Quarti-Trevano F, Bolla GB, Manca G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens 2004;22:2363-9.

83. Grassi G, Dell’Oro R, Quartii-Trevano F, Scopelliti F, Saravalle G, Paleari F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005;48:1359-65.

84. Grassi G, Quartii-Trevano F, Saravalle G, Dell’Oro R, Dubini A, Manca G. Differential sympathetic activation in muscle and skin neural districts in the metabolic syndrome. Metabolism 2009;58:1446-51.

85. Grassi G, Saravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colonno M, et al. Sympathetic activation in obese normotensive subjects. Hypertension 1995;25:360-3.

86. Grassi G, Saravalle G, Quartii-Trevano F, Mineo C, Lonati L, Facchetti R, et al. Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea. J Hypertens 2010;28:1313-20.

87. Gravh B, Grassi G, Seravalle G, Lombardi C, Tavoluso C, Melchiorre C, et al. Duodenal nutrient exclusion improves metabolic syndrome and stimulates vili hyperplasia. Gut 2014;63:1238-46.

88. Haddock RE, Hill CE. Sympathetic overdrive in obesity involves purinergic hyperactivity in the resistance vasculature. J Physiol 2011;589:3289-307.

89. He F, Rodriguez-Colon S, Fernandez-Pendez J, Vongsaz AN, Boier EO, Berg A, lnamura Kawassawa Y, et al. Abdominal obesity and metabolic syndrome burden in adolescents - Penn State Children Cohort Study. J Clin Densitom 2015;18:50-6.

90. Hedberg J, Sundstrom J, Sundbom M. Duodenal switch versus Roux-en-Y gastric bypass for morbid obesity: Systematic review and meta-analysis of weight results, diabetes resolution and early complications in single-centre comparisons. Obesity Rev 2014;15:555-63.

91. Henriksen JH, Ring-Larsen H, Christensen NJ. Aspects of sympathetic nervous system regulation in patients with cirrhosis: A 10-year experience. Clin Physiol 1991;11:293-306.

92. Henriksen JH, Möller S, Ring-Larsen H, Christensen NJ. The sympathetic nervous system in liver disease. J Hepatol 1998:29:328-41.

93. Hijmans BS, Greffhorst A, Oosterveer MH, Groen AK. Zonation of glucose and fatty acid metabolism in the liver: Mechanism and metabolic consequences. Biochimie 2014;96:121-9.

94. Hocher B, Heiden I, van Websky K, Arafa A, Rahnemahor J, Alter M, et al. Renal effects of the novel selective adenosine A1 receptor blocker SV329 in experimental liver cirrhosis in rats. PLoS One 2011;6:e17891.

95. Hoest U, Kelbaek H, Rasmussen H, Court-Payen M, Christensen NJ, Pedersen-Bjergaard U, et al. Haemodynamic effects of eating: The role of meal composition. Clin Sci 1996;90:269-76.

96. Hori M, Neto AC, Austen WG, McDermott WV Jr. Isolated in vivo hepatoportal perfusion in the dog. Circulatory and functional response of the kidney to hepatic anoxia. J Surg Res 1967;7:413-7.

97. Hussain RJ, Scott EM, Gilley SC, Stoker JB, MacIntosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003;108:3097-101.

98. Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose induced insulin resistance and hypertension in rats. Hypertension 1987;10:512-6.

99. Hwang LC, Bai CH, Sun CA, Chen CJ. Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. Asia Pac J Clin Nutr 2012;21:227-33.

100. Iiaz S, Yang W, Winslet MC, Seifalian AM. Impairment of hepatic microcirculation in fatty liver. Microcirculation 2003;10:447-56.

101. Inabnet WB, Winegar DA, Sherif B, Sarr MG. Early outcomes of bariatric surgery in patients with metabolic syndrome: An analysis of the bariatric outcomes longitudinal database. J Am Coll Surg 2012;214:550-7.

102. Ishimoto T, Lanaqa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci 2012;109:4230-5.

103. Jacobsen SH, Olesen SC, Dirksen C, Jorgensen NB, Boisen-Moller KN, Kielgast U, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg 2012;22:1084-96.

104. Jakab F, Ráth Z, Schmal F, Nagy P, Faller J. The interaction between hepatic arterial and portal venous blood flows: Simultaneous measurement by transit-time ultrasonic volume flowmetry. Hepatogastroenterol 1995;42:18-21.

105. Jalan R, Forrest EH, Redhead DN, Dillon JF, Hayes PC. Reduction in renal blood flow following acute increase in the portal pressure: Evidence for the existence of a hepatorenal reflex in man? Gut 1997;40:664-70.

106. Jamerson KA, Julius S, Guiraudsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 1993;21:618-23.

107. Jiménez A, Casamitjana R, Flores L, Viaplana J, Corcelles R, Lacy A, et al. Long-term effects of sleeve gastrectomy and Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. Ann Surg 2012;256:1023-9.

108. Jungemann K, Kietzmann T. Oxygen: Modulator of metabolic zonation and disease of the liver. Hepatology 2000;31:255-60.
216. Ruster C, Wolf G. The role of the renin angiotensin aldosterone system in obesity related renal diseases. Semin Nephrol 2003;23:44-53.

217. Rydka JM, Wueste S, Schoenle Ej, Konrad D. The portal theory of venous drainage-Selective fat transplantation. Diabetes 2011;60:56-63.

218. Rzouf F, Alahdab F, Olyaea M. New insight into volume overload and hepatoportal syndrome, “the hepatoportal reflex hypothesis”. Am J Med 2014;348:244-8.

219. Sánchez-Lozada LG, Tapia E, Bautista-Garcia P, Soto V, Avila-Casado C, Vega-Campos IP, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2008;294:F710-8.

220. Sandler BJ, Rumbaut R, Swain CP, Torres G, Morales L, Gonzales L, et al. Human experience with an endoluminal endoscopic gastrojejunal bypass surgery. Endosc Surg 2011;15:3028-33.

221. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en-Y on type 2 diabetes mellitus. Ann Surg 2003;238:467-84.

222. Schmid AI, Szendroedi J, Chmelik M, Krssak M, Moser E, Roden M. Liver transplantation 1999;68:780-4.

223. Schmorl BJ, Fettweis S, Schoenle Ej, Konrad D. The portal theory of venous drainage-Selective fat transplantation. Diabetes 2011;60:56-63.

224. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) study. Obes Surg 2005;15:474-81.

225. Sheu JL, Randell EW, Sun G. The prevalence of metabolically healthy obese adults. Obes Rev 2005;6:373-8.

226. Sidery MB, Macdonald IA, Blackshaw PE. Superior mesenteric artery blood flow and catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J 1982;202:117-23.

227. Sklar P, Hamvas A, Garvey WT, et al. Effects of bariatric surgery on type 2 diabetes mellitus. Am J Med 2013;126:13S-22S.

228. Slavik TT, Taha O, Aasheim ET, Engstrom M, Kristinsson J, Bjorkman S, et al. Randomized clinical trial of laparoscopic gastric bypass versus laparoscopic duodenal switch for superobesity. Br Med J 2009;370:610-6.

229. Stadlbauer V, Wright GA, Banaji M, Mukhopadhyaya A, Mookerjee RP, Moore K, et al. Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology 2008;134:111-9.

230. Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit Rev Clin Lab Sci 2016;53:52-67.

231. Stefater M, Kohli R, Inge TH. Advances in the surgical treatment of morbid obesity. Mol Aspects Med 2013;34:84-94.

232. Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgical devices are not created equal: Insights from mechanistic comparisons. Endocr Rev 2012;33:595-622.

233. Strazzincky NE, Eikelis N, Lambert EA, Olster MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep 2008;10:440-7.

234. Strazzincky NE, Grima MT, Lambert EA, Sari CI, Eikelis N, Nestel PJ, et al. Arterial norepinephrine concentration is inversely and independently associated with insulin clearance in obese individuals with metabolic syndrome. J Clin Endocrinol Metab 2015;100:1544-50.

235. Stylopoulos N, Aguirre V. Mechanisms of bariatric surgery and implications for the development of endoluminal therapies for obesity. Gastrointest Endosc 2009;70:1167-75.

236. Sultan S, Gupta D, Parikh M, Youn H, Kurian M, Fielding G, et al. Five year outcomes between laparoscopic greater curvature plication and laparoscopic sleeve. Surg Endosc 2011;25:3028-33.

237. Sultan S, Gupta D, Parikh M, Youn H, Kurian M, Fielding G, et al. Arterial norepinephrine concentration is inversely and independently associated with insulin clearance in obese individuals with metabolic syndrome. J Clin Endocrinol Metab 2015;100:1544-50.

238. Svane MS, Madsbad S. Bariatric surgery - effects on obesity and related co-morbidities. Curr Diabetes Rev 2014;10:208-14.

239. Szendroedi J, Chmelik M, Schmid AI, Nowotny P, Brehm A, Krssak M, et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 2009;50:1079-86.

240. Szendroodi J, Chmelik M, Schmid AT, Nowotny P, Brehm A, Krssak M, et al. Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 2009;50:1079-86.

241. Taksela J. Determinants of splanchic blood flow. Br J Anaesth 1996;77:50-8.

242. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010;90:23-46.

243. Van den Berghe G, Bontemps F, Vincent MF. Cytosolic purine 5'-nucleotidases of rat liver and human red blood cells: Regulatory properties and role in AMP dephosphorylation. Adv Enzyme Regul 1988;27:297-311.

244. Van den Berghe G, Bronfman M, Vanneste R, Hers HG. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylyl deaminase. Biochem J 1977;162:601-9.

245. Vatner SF, Franklin D, Van Citters RL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol 1970;219:170-4.

246. Vaz M, Cox HS, Kaye DM, Turner AG, Jennings GL, Olster MD. Fluidity of plasma noradrenaline measurements in studying postprandial sympathetic nervous responses. J Auton Nerv Syst 1995;56:97-104.

247. Verner EC, Wagener G. Renal interactions in liver dysfunction and failure. Curr Opin Crit Care 2013;19:133-41.

248. Vetter ML, Cardillo S, Rickels MR, Iqbal N. Narrative review: Effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med 2009;150:94-103.

249. Vetter ML, Cardillo S, Rickels MR, Iqbal N. Narrative review: Effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med 2009;150:94-103.

250. Von den Berghe G, Bontemps F, Vincent MF. Cytosolic purine 5'-nucleotidases of rat liver and human red blood cells: Regulatory properties and role in AMP dephosphorylation. Adv Enzyme Regul 1988;27:297-311.

251. Viller M, Benger MD. The hepatic microcirculation: Mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009;89:269-339.

252. Wadii HM, Mai ML, Ahsan N, Gonwa TA. Hepatorenal syndrome: Pathophysiology and management. Clin J Am Soc Nephrol 2006;1:1066-79.

253. Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: A time course study. Obes Surg 2005;15:474-81.
et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med 2008;168:1617-24.

267. Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery on hypertension: A meta-analysis. Ann Pharmacother 2014;48:674-82.

268. Williams S, Cunningham E, Pories WJ. Surgical treatment of metabolic syndrome. Med Princ Pract 2012;21:301-9.

269. Yamaguchi N, Suzuki-Kusaba M, Hisa H, Hayashi Y, Yoshida M, Satoh S. Interaction between norepinephrine release and intrarenal angiotensin II formation during renal nerve stimulation in dogs. J Cardiovasc Pharmacol 2000;35:831-7.

270. Yu H, Zhang L, Bao Y, Zhang P, Tu Y, Di J, et al. Metabolic Syndrome After Roux-en-Y Gastric Bypass Surgery in Chinese Obese Patients with Type 2 Diabetes. Obes Surg 2016 [Epub ahead of print].

271. Yusuf S, Gerstein H, Hoogwerf B, Pogue J, Bosch J, Wolfenbuttel BH, et al. HOPE Study Investigators. Ramipril and the development of diabetes. JAMA 2001;286:1882-5.

272. Zacho HD, Henriksen JH, Abrahamsen J. Chronic intestinal and splanchnic blood flow: Reference values and correlation with body-composition. World J Gastroenterol 2013;19:882-8.

273. Zhang C, Yuan Y, Qiu C, Zhang W. A meta-analysis of 2-year effect after surgery: Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for morbid obesity and diabetes mellitus. Obes Surg 2014;24:1528-35.

274. Zhang H, Pu Y, Chen J, Tong W, Cui Y, Sun F, et al. Gastrointestinal intervention ameliorates high blood pressure through antagonizing overdrive of the sympathetic nerve in hypertensive patients and rats. J Am Heart Assoc 2014;3:e000929.

275. Zhang N, Maffei A, Cerabona T, Pahuja A, Omana J, Kaul A. Reduction in obesity related comorbidities: Is gastric bypass better than sleeve gastrectomy. Surg Endosc 2013;27:1273-80.

276. Zhu S, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB. Waist circumference and obesity associated risk factors among whites. Am J Clin Nutr 2002;76:743-9.

277. Zimmerman MA, Kam I, Eltzschig H, Grenz A. Biological implications of extracellular adenosine in hepatic ischemia and reperfusion injury. Am J Transplant 2013;13:2524-9.