Some issues of solving inverse problems in optical systems with lensless cameras

A I Okorochkov¹, V I Marchuk¹,³, I Samara¹ and K A Yeghizaryan²

¹ Don State Technical University, Rostov-on-Don, Russia
² Tampere University of Technology, Tampere, Finland
³ E-mail: marchuk@sssu.ru

Abstract. The inverse problems current state a general characteristic in optics is given, the approaches to their solution, their incorrect and unstable solutions cause are considered, and recommendations for these drawbacks elimination are given. General approaches to solving inverse problems in images reconstruction obtained in lensless cameras based on different masks are also considered, and their advantages and disadvantages in comparison with lensless lenses are pointed out, as well as their further research directions are indicated.

1. Introduction
For several decades, images acquisition, analysis and processing issues have attracted increasing scientists’ attention and engineers in science and practice various branches. At the same time, the real objects obtained images the most exact correspondence question to these objects visual perception by human eyes was and still is important.

When solving theoretical and practical problems a wide range in coherent optics, electron microscopy, X-ray structural analysis, location, optical astronomy, pattern recognition, medical research and science and technology other fields, conditions often arise when only an unknown object optical field spatial distribution module or phase, given in space a finite region, is available or undistorted. The reconstructing problems phase and amplitude missing Fourier components and, hence, the desired distribution as a whole are called phase and amplitude problems.

2. Inverse problem in optics general characteristic
Since the last century 50s end, many scientific teams in different countries have been actively studying these problems. Special laboratories and research centres in many foreign universities were created for these purposes. At present, the most profound analytical results have been obtained for one-dimensional amplitude and phase distributions. This concerns both theoretical results substantiating the solutions type and number [1, 2] and the image reconstruction schemes specific algorithms development [3, 4]. Available works in the two-dimensional distributions’ analytical reconstruction field [5-7] do not yet give the two-dimensional image reconstruction processes a similarly deep understanding. The creating a fast and stable restoration algorithm practical issue also remains open. However, there is progress in this direction as well. In one of the fundamental monographs [8] in the image processing field, a general analytical method for reducing the two-dimensional discrete problem case to one-dimensional [9] is considered an ambiguous problem solution the probability an estimate in the two-dimensional discrete case is given.
The phase and amplitude problems theoretical analysis for convenience is conditionally divided into two directions:

- establishing an analytical relation between the modulus and phase [10, 11];
- the Fourier spectrum problems are based on analytical properties direct analysis and its decomposition into elementary multipliers [12, 13].

In the first direction, in the one-dimensional continuous case, the relation between the modulus and the phase is well known and is described by the generalized Hilbert transformations [14], which include unknown terms - the Blaschke phases. In the monograph [8] these equations generalization to the two-dimensional case is carried out for the first time, the discrete images' specificity is taken into account, and the conditions under which the Blaschke phases are absent are analyzed.

The second direction development is based on the use of the integer analytic functions theory, including the Adamar-Weierstrass expansion, the basic algebra theorem, and their multidimensional analogues [15]. In this case, both problems (amplitude and phase) main issue is the recovery uniqueness. It is reduced to the unknown reconstructed image representation as sub-images a convolution [16]. As shown in [17], the analytical image reconstruction uniqueness issue in the one-dimensional case has a positive solution and in the two-dimensional case has a negative solution. In the two-dimensional case, a rigorous analysis for discrete images is reduced to their z-images decomposability analysis, which is two-dimensional polynomials and, in the general case, not representable as smaller degree two polynomials a product [18].

The image reconstruction problem belongs to the inverse problems class in optics. Inverse problems are the problems related to cause-effect relations inversion, i.e. such problems in which unknown causes are determined by known consequences. These problems usually arise as an object's internal state reconstruction problems by its external manifestations.

An inverse problem important feature is their incorrectness, i.e. their solution instability to errors in the initial data. This leads to the problem' numerical solution to large errors. The incorrectness analogue in the optical systems synthesis problems is its ambiguity, i.e. the synthesized optical system can have realizations a multitude satisfying the given initial data.

The inverse problem mathematical interpretation is reduced to the known form integral equation solution

\[\int A(x, x') z(x') dx' = u(x), \]

where \(z(x) \) - unknown function; \(A(x) \) - the integral equation kernel; \(u(x) \) - the known function. This equation solution incorrectness is because the kernel can smooth out the desired function with numerous fine details. This phenomenon is due to the measurement method limited resolution. In this case, a single-valued solution for the function \(z(x) \) is possible if the function \(u(x) \) is known precisely and the integral equation (1) has an analytical solution. However, the errors present when measuring the function \(u(x) \) values exclude this possibility. The required function \(z(x) \) an explicit choice corresponds to the physical experiment a real situation, is possible only if there is some additional a priori information which was not initially present in the problem a mathematical formulation. Thus, the inverse problem' incorrectness is due to information underdetermination. The solution informativity increase can be reached by the problem additional definition means, i.e., by including in the a priori information maximum mathematical formulation about the required function [19, 20].

The inverse problems' two types usually arise in the optical systems' study.

The problem first type is related to the fact that the linear optical system converts the input signal \(z(x) \) into an output \(u(x) \) by convolving the input signal with a hardware loop \(A(x) \) according to the equation

\[L(z) = \int_{-\infty}^{\infty} A(x - x')z(x')dx' = u(x), \]

where \(z(x) \) - unknown function; \(A(x) \) - the integral equation kernel; \(u(x) \) - the known function. This equation solution incorrectness is because the kernel can smooth out the desired function with numerous fine details. This phenomenon is due to the measurement method limited resolution. In this case, a single-valued solution for the function \(z(x) \) is possible if the function \(u(x) \) is known precisely and the integral equation (1) has an analytical solution. However, the errors present when measuring the function \(u(x) \) values exclude this possibility. The required function \(z(x) \) an explicit choice corresponds to the physical experiment a real situation, is possible only if there is some additional a priori information which was not initially present in the problem a mathematical formulation. Thus, the inverse problem' incorrectness is due to information underdetermination. The solution informativity increase can be reached by the problem additional definition means, i.e., by including in the a priori information maximum mathematical formulation about the required function [19, 20].

The inverse problems' two types usually arise in the optical systems' study.

The problem first type is related to the fact that the linear optical system converts the input signal \(z(x) \) into an output \(u(x) \) by convolving the input signal with a hardware loop \(A(x) \) according to the equation

\[L(z) = \int_{-\infty}^{\infty} A(x - x')z(x')dx' = u(x), \]

where \(z(x) \) - unknown function; \(A(x) \) - the integral equation kernel; \(u(x) \) - the known function. This equation solution incorrectness is because the kernel can smooth out the desired function with numerous fine details. This phenomenon is due to the measurement method limited resolution. In this case, a single-valued solution for the function \(z(x) \) is possible if the function \(u(x) \) is known precisely and the integral equation (1) has an analytical solution. However, the errors present when measuring the function \(u(x) \) values exclude this possibility. The required function \(z(x) \) an explicit choice corresponds to the physical experiment a real situation, is possible only if there is some additional a priori information which was not initially present in the problem a mathematical formulation. Thus, the inverse problem' incorrectness is due to information underdetermination. The solution informativity increase can be reached by the problem additional definition means, i.e., by including in the a priori information maximum mathematical formulation about the required function [19, 20].
The operator L can be either integral or discrete. The latter case arises, for example, when the equation solution (2) is carried out numerically at the desired function $z(x)$. Piecewise polynomial or functional approximation. Such a situation appears when the inverse operator L^{-1} is unknown, i.e., an equation such as (2) does not have an analytical solution. In this case, the integral in (2) turns into linear algebraic equations a system. In this case, the operator L is the system coefficients' matrix, which is expressed through the hardware loop values.

The inverse problem in type (2) solving equations consists in constructing their analytical solution under a known inverse operator L^{-1} or the linear algebraic equations system matrix inversion. Both problems, as noted earlier, are uncorrected.

If the operator L^{-1} exists, the equation (2) solution obtained by the rule $z = L^{-1}u$, is unstable to initial data $u(x)$. Small variations. Therefore, the problem finding algorithms arises for solutions that are robust to small variations $u(x)$. And involve the solution in a reasonable physical interpretation. In a discrete operator L case, the inverse problem incorrectness is the linear algebraic equations system bad conditionality a consequence, i.e., it is connected with the solution instability to the initial data small variations. In this case, the equations system may have no solutions at all or have them infinitely many.

The inverse problem's second type arises in an optimum optical system synthesis. When making measurements, it is often advisable to have a system with a certain hardware contour. The ideal is a hardware contour with delta-shaped spatial characteristics. The main technical reasons for not making such a hardware loop are the noise detection equipment and the present limited sensitivity. At the same time, this hardware limiting resolution is determined both by the noise level and by the selected hardware loop type. This loop type must match the noise nature.

Concluding the analytical methods brief discussion for solving inverse problems, it should be emphasized that to restore the equation (2) signal-solution, stable concerning noise and measurement errors, it is necessary to attract additional quantitative and qualitative information related both to the observation itself object and to the recording equipment noises statistical properties.

3. Inverse problem-solving technology for lensless cameras

Currently, there are scientific publications a large number in the imaging field with lensless cameras [21, 22]. These cameras use diffraction elements lenses instead of volume lenses: amplitude or phase masks, diffraction gratings and diffusers. The light scattered by an object passes from the scene to the photodetector through a thin, flat mask. The latter, depending on its type, affects the transmitted light amplitude or phase, modulating them according to a definite or random law. An image that corresponds not to a photograph but most likely to a hologram recording will be produced on the photo-sensor in this case. In such a way the object and image forming process first part in the lens-less camera on a masked basis are completed. At the second stage the inverse problem which consists of computer processing according to a diffraction picture a certain algorithm obtained on the sensor is solved, as which a result the object a photographic image is formed.

Lensless cameras based on masks sharply win over cameras with lenses in weight and dimensions terms. They can be very thin, lightweight and have small dimensions. This facilitates their use in devices and systems a wide variety from mobile devices to vision systems, pattern recognition and sophisticated medical equipment. In addition, lens-less cameras based on masks are already actively used in devices operating outside the visible spectrum, where conventional lenses cannot operate. Masks' another advantage is that there are less stringent precision requirements compared to lenses.

While they have the upper hand in the operation mechanical performance and broader range terms, lensless masks are still inferior in imaging quality terms. However, ongoing active research into improving image quality with lensless lenses has improving image quality consistently shown examples.

To reconstruct an object image from the photosensor (sensor) output data, it is necessary to solve the inverse problem. Its solution inverse problem and the algorithm formulation have their peculiarities in different authors [23-26]. However, practically in most cases, there are always three obligatory factors:
• the inverse problem solution is carried out by approximate numerical methods since the problem inverse operator either does not exist or has too complex a mathematical form;
• due to the reasons mentioned in the first paragraph, the inverse problem solution is based on a certain kind of functional minimization, as which a result parameters that provide the restored image best quality are selected;
• when solving the inverse problem, additional information about the reconstructed image properties is used to increase the obtaining of a stable unambiguous solution probability.

4. Conclusion
Inverse problems in optics are complex and important tools for objects images optical-physical systems and restoration synthesis. Their theory continues to be developed both in the analytical and numerical solution methods field.

Lensless cameras are predicted to have a great future, they are replacing expensive and cumbersome lenses capable in many applications. But this is in the future, and in the meantime, there is hard work a lot to improve their design and reconstructed images quality.

Acknowledgements
The results were obtained with the financial support of the Russian Federation represented by the Ministry of Science and Higher Education (Agreement № 075-15-2021-997 dated 28.09.202.

References
[1] Huiser A M J and Toorn P van 1980 The solution of the phase problem for the circular function Optics Letters 5(4) 377-80
[2] Brack Y M and Sodin L G 1979 Analysis of the ambiguous of the phase problem in two-dimensional cases Optics Communications 70(6) 304-10
[3] Crimmins T R, Fienup J R and Holsztysi W 1982 Input-output algorithm for phase problems Journal of the Optical Society of America 72(1) 610-20
[4] Walker J R 1981 Iterative algorithm for phase problem decision in the presence of exponential filtering Optica Acta 28(3) 735-9
[5] Sault R J 1984 Fourier spectrum and phase problem Optics Letters 9(11) 328-30
[6] Crimmins T R and Fienup J R 1983 Investigations iterative theoretical algorithm Journal of the Optical Society of America 73(2) 218-26
[7] Aiken G R and Ross G 1984 Investigations iterative theoretical algorithm Optika Acta 31(11) 7-23
[8] Potapov A A, Gulyaev Yu V, Nikitov S A, Pahkomov A A and Herman V A 2008 Novel Methods of Image Processing ed A A Potapov (Moscow: Fizmatlit Publisher) 496
[9] Hayes M H and McClellan J H 1982 Reducible polynomials in more than one variable Proc. IEEE 70(3) 197-200
[10] Hayes M H 1982 Reconstructing multidimensional sequence only from amplitude or phase Fourier-spectrum IEEE Trans. Speech Signal Proc 30(3) 140-52
[11] 1982 Image Construction in Astronomy by Coherence Functions ed K Van Schoold (JA: Mir).
[12] Demin Α and Noskov S O 1986 Construction of solutions for the discrete phase case problems Radiotekhnika i elektronika 31(10) 2099-110
[13] Ablekov B K, Avduevo B C et al. 1983 On the Analytical Solution of the Phase Problem DAN 271(6) 1371-6
[14] 1984 Inverse Problems in Optics ed G P Bolts (Moscow: Mechanical Engineering) 200
[15] Vasilenko G I and Taratorin A M 1986 Image Reconstruction (Moscow: Radio and communication) 302
[16] Bakalov V P, Kireenko O V and Martyushev Yu 1987 Of multidimensional signals by amplitude spectrum Foreign Radio Electronics 2 31-7
[17] Kuznetsova T N 1988 On the phase problem in optics UFN 154(4) 677-90
[18] Fieldkamp G B and Fienup J R 1980 Iterative gradient method for the amplitude reconstruction from its Fourier amplitude SPIE 231(2) 95-110
[19] Asif M S 2018 Lensless 3D imaging using mask-based cameras In IEEE Int. Conf. Acoust. Speech and Signal Process (ICASSP) (IEEE) 6498-502
[20] Cannon T M and Fenimore E E 1980 Coded Aperture Imaging: Many holes make light work Opt. Eng. 19 283-9
[21] Boominathan V et al. 2016 Lensless imaging: A computational renaissance IEEE Signal Process Mag. 33(5) 23-35
[22] Antipa N et al. 2018 Diffusercam: lensless single-exposure 3D imaging Optica 5(1) 1-9 http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1
[23] Zheng Y and Asif M S 2019 Image and depth estimation with mask-based lensless cameras In Proc. IEEE Int. Workshop Comput. Adv. Multi-Sensor Adapt. Process (CAMSAP) 91-5
[24] Dave A, Vadathyaa A K, Subramanyam R, Baburajan R and Mitra K 2019 Solving inverse computational imaging problems using deep pixel-level prior IEEE Trans. Comput. Imag. 5(1) 37-51 https://doi.org/10.1109/TCI.2018.2882698
[25] Hua Y, Nakamura S, Asif M S and Sankaranarayanan A C 2020 Sweepcam depth-aware lensless imaging using programmable masks IEEE Trans. Pattern Anal. Mach. Intell. 42(7) 1606-17
[26] Boyd N, Schiebinger G and Recht B 2015 The alternating descent conditional gradient method for sparse inverse problems In Proc. IEEE 6th Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process 57-60