NaCl-Assisted Chemical Vapor Deposition of Large-Domain Bilayer MoS$_2$ on Soda-Lime Glass

Qingguo Gao 1,*, Lvcheng Chen 1, Simin Chen 1, Zhi Zhang 1, Jianjun Yang 1, Xinjian Pan 1, Zichuan Yi 1, Liming Liu 1, Feng Chi 1, Ping Liu 1 and Chongfu Zhang 1,2

1 School of Electronic Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
2 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
* Correspondence: gggemw@163.com

Abstract: In recent years, two-dimensional molybdenum disulfide (MoS$_2$) has attracted extensive attention in the application field of next-generation electronics. Compared with single-layer MoS$_2$, bilayer MoS$_2$ has higher carrier mobility and has more promising applications for future novel electronic devices. Nevertheless, the large-scale low-cost synthesis of high-quality bilayer MoS$_2$ still has much room for exploration, requiring further research. In this study, bilayer MoS$_2$ crystals grown on soda-lime glass substrate by sodium chloride (NaCl)-assisted chemical vapor deposition (CVD) were reported, the growth mechanism of NaCl in CVD of bilayer MoS$_2$ was analyzed, and the effects of molybdenum trioxide (Mo) mass and growth pressure on the growth of bilayer MoS$_2$ under the assistance of NaCl were further explored. Through characterization with an optical microscope, atomic force microscopy and Raman analyzer, the domain size of bilayer MoS$_2$ prepared by NaCl-assisted CVD was shown to reach 214 µm, which is a 4.2X improvement of the domain size of bilayer MoS$_2$ prepared without NaCl-assisted CVD. Moreover, the bilayer structure accounted for about 85%, which is a 2.1X improvement of bilayer MoS$_2$ prepared without NaCl-assisted CVD. This study provides a meaningful method for the growth of high-quality bilayer MoS$_2$, and promotes the large-scale and low-cost applications of CVD MoS$_2$.

Keywords: bilayer MoS$_2$; chemical vapor deposition; NaCl; glass

1. Introduction

In recent years, with the rapid development of microelectronic devices, microelectronic technology based on silicon materials has encountered some bottlenecks, such as high power consumption, size reduction and slow performance improvement. New technology and material research is the key factor that is expected to break through the current technological bottlenecks [1–3]. Therefore, two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive research attention due to their unique electronic and optoelectronic properties [4–6]. Among these two-dimensional TMDs, molybdenum disulfide (MoS$_2$) has received the most extensive research attention [7–11]. Compared with graphene, MoS$_2$ has greater advantages in transistor application because of its band gap, high switching ratio and strong inhibition of the short-channel effect [12,13]. Compared with silicon transistors, MoS$_2$ transistors present lower power consumption and better inhibition of the short-channel effect [9,14]. For instance, based on side-wall MoS$_2$ transistors, the physical channel length of transistors can reach 0.34 nm [9].

To realize the industry-compatible integration of these applications, the batch production of high-quality and large-crystal MoS$_2$ films at low cost is of great importance. In the early stages of MoS$_2$ research, diverse preparation methods were reported [15]. Xia et al. synthesized MoS$_2$ crystals through a hydrothermal reaction followed by low-temperature
crystallization annealing [16]. Eda et al. obtained large-scale few-layer MoS$_2$ by ultrasound-assisted lithium intercalation exfoliation [17]. However, the layer number and size of MoS$_2$ prepared by the above methods are difficult to control. Lou et al. used vapor-phase vulcanization to deposit a nano-scale Mo source on SiO$_2$ sheets for sulphuration, and obtained continuous few-layer MoS$_2$ films [18]. However, this method is very likely to cause a decrease in crystallinity, thereby leading to reduced mobility [19]. In the research on MoS$_2$, chemical vapor deposition (CVD) is generally used over other methods. Wang et al. successfully prepared MoS$_2$ crystals by CVD using sulfur (S) powder and molybdenum trioxide (MoO$_3$) as precursors and SiO$_2$/Si as a growth substrate [20], with the size reaching micrometers [21–24]. So far, the domain size of monolayer MoS$_2$ crystal growth based on CVD has reached the millimeter level [25,26].

As we all know, in the CVD synthesis of MoS$_2$, substrates play a critical role [27]. Moreover, in recent years, various substrates have been used in the growth of CVD MoS$_2$ by different research groups [28–31]. Yang et al. synthesized highly oriented centimeter-scale MoS$_2$ single crystals using gold foil as the growth substrate [31]. Li et al. prepared wafer-scale MoS$_2$ single crystals on sapphire substrates through step-induced nucleation [10,32]. However, the triangular domain size of these MoS$_2$ crystals is only tens of microns, and the cost of the sapphire and gold foil substrates is relatively high. In recent years, soda-lime glass has also received extensive attention in the research on growing MoS$_2$ through CVD due to its advantages such as low cost, high growth rate, and large domain size [33–36]. As the growth substrate for MoS$_2$, soda-lime glass has high fluidity under a high-temperature melting state, and can weaken lattice mismatch during the adsorption–diffusion–nucleation of precursor [4,27]. Additionally, Na$^+$ released during melting can reduce the reaction barrier of MoS$_2$ and promote its growth [37]. Chen et al. successfully grew high-quality millimeter-sized single-layer MoS$_2$ on the molten soda-lime glass substrate through atmospheric pressure CVD [38], demonstrating the great advantages of the soda-lime glass substrate.

Compared with single-layer MoS$_2$, bilayer MoS$_2$ has a higher density of states and electron mobility due to its smaller indirect band gap, and retains the characteristics of atomic layer thickness [39], contributing to its higher potential in the field of novel electronic devices [11,13,40]. However, the large-scale growth of high-quality bilayer MoS$_2$ on low-cost glass substrates still needs further research. For example, the domain size of CVD bilayer MoS$_2$ single crystals is still about 200 µm [13,41], which is significantly smaller than the crystal size of monolayer MoS$_2$. Recently, some research teams have tried to use some substances with a catalytic effect to assist the growth of MoS$_2$, and achieved improved results [42–45]. Through the use of NaCl and Mo foil used as Mo source, Yang et al. successfully grew 100 µm high-quality bilayer MoS$_2$ domains on soda-lime glass substrates by face-to-face CVD [46]. Nevertheless, this work focused on the synthesis of large-scale continuous MoS$_2$ films, and the domain size of the bilayer MoS$_2$ could be further improved by the optimization of growth conditions. Moreover, it has been shown that the growth rate of MoS$_2$ from Mo in a 0-valence state is not as efficient as that of Mo in a 6-valence state in MoO$_3$ [47]. However, nowadays, there is a lack of relevant research on directly introducing NaCl into MoO$_3$ to assist high-quality bilayer MoS$_2$ growth on low-cost soda-lime glass substrates.

In this work, we reported the results of CVD-based growth of bilayer MoS$_2$ on melt soda-lime glass by introducing NaCl into the Mo source (MoO$_3$). It was found that the introduction of NaCl could promote the growth of bilayer MoS$_2$. Additionally, under NaCl-assisted growth, the synthesis of bilayer MoS$_2$ crystals with different Mo masses and growth pressures was explored. Finally, by optimizing the process parameters, the size of bilayer MoS$_2$ crystals was increased from the initial 50 µm to 214 µm, and the proportion of bilayer structure increased from the initial 40% to 85%. This study provides a valuable approach for the growth of bilayer MoS$_2$ crystals, and is meaningful for the application of TMDs in future high-performance electronics.
2. Experiments and Methods

In this study, bilayer MoS$_2$ was prepared with the assistance of NaCl, with S powder and MoO$_3$ powder as an S source and Mo source, respectively, and soda-lime glass as the growth substrate. The schematic setup of the experiment is shown in Figure 1. This system adopted a double-temperature-zone tubular furnace for heating. The S source was placed in the corundum boat in the first temperature zone. The Mo source-growth booster and substrate were loaded into the quartz boat in the second temperature zone. In addition, to prevent the soda-lime glass substrate from melting and sticking to the quartz boat at high temperatures, Mo foil was needed under the soda-lime glass. After mixing NaCl solution and MoO$_3$ powder on the silicon wafer and drying, the mixture was placed in the quartz boat, and then the Mo foil gasket and soda-lime glass substrate were placed on the right side. The quartz boat and the corundum boat containing S powder were placed in the two temperature zones of the CVD furnace, respectively. The temperatures of the S and NaCl-MoO$_3$ sources were 200 °C and 890 °C, respectively. High-purity argon was loaded, with a flow rate of 20 sccm. During the growth, the CVD system was kept at atmospheric pressure for 10 min. After growth, the morphology and size of bilayer MoS$_2$ were characterized by optical microscope and Raman spectroscopy. The sample images were collected using optical microscopy combined with CCD (OM, BX51M, OLYMPUS, Tokyo, Japan) and an atomic force microscopy (Dimension Edge, Bruker, Karlsruhe, Germany). Raman spectra were analyzed by an embedded Raman spectrometer (K-Swns-523, ideaoptics, Shanghai, China).

In this work, NaCl solution was directly mixed with MoO$_3$ and dried as a Mo source for CVD-based growth of bilayer MoS$_2$. The placement methods of the Mo source and substrate are presented in Figure 2. The Mo source was loaded into the quartz boat with SiO$_2$/Si, which was covered with SiO$_2$/Si cover plate to form a microcavity to prevent direct contact with S and poisoning during CVD. The soda-lime glass substrate was placed 3 mm to the right of the Mo source (at the downstream of the atmosphere flow), and the...
Mo foil was placed below to prevent it from sticking to the quartz boat after melting at high temperature.

![Diagram of Mo source and substrate placement](image)

Figure 2. Schematic of Mo source and substrate placement: (a) Schematic map of Mo source and substrate placement; (b,c) schematic of Mo source with or without NaCl addition.

3. Results and Discussion

3.1. NaCl-Assisted Growth of Bilayer MoS$_2$

To explore the effect of NaCl on the growth of bilayer MoS$_2$, a series of comparative experiments were carried out. First, with other growth conditions unchanged, the effects of NaCl assistance and non-NaCl assistance on the growth of bilayer MoS$_2$ on the glass substrate were investigated. During the experiment, the temperature and mass of the S source were 200 °C and 1.4 g, the temperature and mass of the Mo source were 890 °C and 4 mg, and the growth pressure was 1000 mbar. In the NaCl group, the proportion of NaCl solution/MoO$_3$ was 1 mL/300 mg, and the concentration of NaCl was 5 mol/L. After adding NaCl, drying was performed at 50 °C for 5 min for subsequent growth operations. The growth results were obtained through the use of an optical microscope and are shown in Figure 3. Through comparison, it was found that among the bilayer MoS$_2$ obtained in the NaCl group, the crystal size and the proportion of the bilayer structure to monolayer structure increased significantly. Without NaCl addition, the proportion of the bilayer structure in the grown MoS$_2$ crystals was about 40%, and the bilayer size was about 50 µm. With NaCl added, the proportion of bilayer structure in the MoS$_2$ crystals was about 85%, and the bilayer size was about 100 µm. The comparison of these experimental
results showed that alkaline metal halides could significantly promote bilayer crystal growth during the preparation of transition metal halides. The increased bilayer MoS$_2$ domain size and proportion of bilayer structure could contribute to the following two aspects: Firstly, MoO$_3$ reacts with NaCl at a high temperature to produce an intermediate product (molybdenum dichloride dioxide, Cl$_2$MoO$_2$; melting point—184 °C), which can be evaporated rapidly compared with the high melting point of MoO$_3$, reducing the temperature of the gas-phase reaction, and providing more Mo sources during the same period [44,48]. Additionally, Na in NaCl and melted soda-lime glass can be used as the nucleation initiation factor of MoS$_2$, which can reduce the reaction barrier [37].

![Figure 3](image_url)

Figure 3. Comparison of growth results of NaCl-assisted bilayer MoS$_2$. (a,b) Growth results without NaCl. (c,d) Growth results with NaCl. (a–d) The scale bars are 40 µm.

3.2. Effect of Mo Mass under NaCl Assistance

A large number of studies have shown that the mass of precursors has an important effect on the growth of MoS$_2$ [4,6,13,37]. Under NaCl-assisted growth, we studied the effect of changing Mo mass on the growth of bilayer MoS$_2$. With NaCl/MoO$_3$ = 1 mL/300 mg (NaCl concentration was 5 mol/L) and other process parameters unchanged (i.e., the temperature and mass of S source were 200 °C and 1.4 g; the temperature of Mo source was 890 °C; the growth pressure was 1000 mbar; and the growth time was 8 min), the effects of Mo sources with different masses (3 mg, 3.5 mg, 4 mg, and 4.5 mg) on the growth of bilayer MoS$_2$ on the glass substrate were explored. The growth results were obtained through the use of an optical microscope and are shown in Figure 4. The morphologies of bilayer MoS$_2$ in Figure 4a–d are consistent, presenting an equilateral triangle, with a
A high proportion of bilayer structure. Meanwhile, with the increase in Mo mass, the size of bilayer MoS$_2$ domains also increased obviously, with the maximum size reaching 120 μm. This phenomenon is consistent with our previous work without NaCl assistance [13]. With the CVD process located in the mass transport limited region, higher precursor mass flux can contribute to a higher diffusion rate through boundary layer, resulting in overcoming the mass transport limit and promoting single domain growth [49,50].

![Figure 4. Growth results under different Mo sources masses assisted by NaCl: (a) 3 mg, (b) 3.5 mg, (c) 4 mg, and (d) 4.5 mg. (a-d) The scale bars are 60 μm.](image)

3.3. Effect of Growth Pressure under NaCl Assistance

In addition, with the assistance of NaCl, we further explored the effect of reaction pressure on the growth of bilayer MoS$_2$ on the glass substrate. Similarly, with the mass ratio of NaCl/MoO$_3$ and other growth conditions unchanged, different growth pressures (1100 mbar, 1000 mbar, 900 mbar, and 700 mbar) were used, and the growth results were obtained through the use of an optical microscope and are shown in Figure 5a–d. The size of bilayer MoS$_2$ domains increased gradually with the gradual decrease in pressure, and the size of bilayer MoS$_2$ single crystal growth at 700 mbar reached 214 μm, which is comparable to the largest bilayer MoS$_2$ domain reported in literature [13,41]. The large bilayer MoS$_2$ domain could be attributable to the assistance of NaCl and the low growth pressure. With the assistance of NaCl, the molybdenum oxychloride precursor with a low melting point produced volatilizes rapidly at high temperature, breaking the self-limiting growth of monolayer MoS$_2$ [44], and then causing secondary nucleation and the synchronous growth...
of the bilayer structure. Moreover, under low pressure, the precursor diffused faster on the melted substrate, which contributed to the growth rate of bilayer structures closer to that of single-layer structures [37]. Therefore, the size of bilayer MoS$_2$ could be greatly increased while maintaining a high proportion of the bilayer structure.

Figure 5. Growth results under different growth pressures assisted by NaCl. (a) The growth pressure is 1100 mbar. (b) The growth pressure is 1100 mbar. (c) The growth pressure is 900 mbar. (d) The growth pressure is 700 mbar. All scale bars are 100 µm.

Raman characterization is an important means to characterize the growth results of MoS$_2$, which can reflect the layer number and quality of MoS$_2$. In this study, the bilayer MoS$_2$ crystals prepared under different pressures were characterized and analyzed by Raman spectroscopy. The Raman spectral characterization results are shown in Figure 6a. The characteristic peak E_{2g}^1 and A_{1g} of bilayer MoS$_2$ crystals in the Raman spectral were located at 389.54 cm$^{-1}$ and 411.23 cm$^{-1}$, respectively, and the difference between the characteristic peaks was 21.69 cm$^{-1}$. This result is consistent with the Raman characteristic peak position and difference of bilayer MoS$_2$ in other studies, indicating that high-quality bilayer MoS$_2$ crystals are obtained [51,52]. Furthermore, to demonstrate the bilayer nature of the MoS$_2$ domains, Figure 6b displays the atomic force microscopy (AFM) images obtained from an edge of bilayer MoS$_2$ domain. A thickness of 1.5 nm was demonstrated through the AFM characterization, which is consistent with the thickness of bilayer MoS$_2$ in other works [13,53].
4. Conclusions

In summary, this study systematically investigates the NaCl-assisted growth of bilayer MoS\(_2\) on the soda-lime glass substrate. The results show that the introduction of NaCl plays a very important role in the growth of bilayer MoS\(_2\), and improves the proportion of bilayer structure and the size of bilayer MoS\(_2\) crystals. In addition, the effects of two important growth parameters, Mo mass and growth pressure, on the growth of bilayer MoS\(_2\) on the glass substrate under the assistance of NaCl are explored. The results reveal that, under certain conditions, the size of bilayer MoS\(_2\) crystals increases with the increase in Mo mass. Moreover, by changing growth pressure, the size of bilayer MoS\(_2\) crystals is significantly increased, and the domain size of bilayer MoS\(_2\) crystals is larger than 200 \(\mu\)m, with the bilayer structure accounting for about 85%. This study provides an interesting method worthy of further research for the growth of high-quality bilayer MoS\(_2\) and has significance for promoting the further large-scale low-cost synthesis and industrial application of two-dimensional MoS\(_2\).

Author Contributions: Conceptualization, Q.G. and L.C.; methodology, Q.G., L.C., S.C., C.Z. and X.P.; validation, Q.G. and Z.Z.; formal analysis, Q.G., F.L., Z.Y., L.C. and F.C.; investigation, Q.G., L.C.; resources, Q.G., C.Z., L.L., J.Y. and L.L.; data curation, Q.G.; writing—original draft preparation, Q.G. and L.C.; writing—review and editing, Q.G. and L.C.; visualization, L.C.; supervision, Q.G. and S.C.; project administration, Q.G. and C.Z.; funding acquisition, Q.G. and C.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the Natural Science Foundation of China (Grant Nos. 62104033, 62071088 and 11775047), in part by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110752), in part by the Youth Innovative Talent Project of Guangdong Education Department (Grant No. 2019KQNCX187), in part by the Outstanding Chinese and Foreign Youth Exchange Program of China Association for Science and Technology (CAST) 2019, in part by the Project for Innovation Team of Guangdong University (Grant Nos. 2018KCXTD033, 2020KCXTD030 and 2021KCXTD040), in part by the Construction Project of Professional Quality Engineering in 2022 (Grant No. YLZY202201), in part by the key scientific research project of the Department of Education of Guangdong Province (Grant No. 2021ZDZX1052), and in part by National Key R&D Program of China (Grant No. 2018YFB1801302).

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.
28. Wang, Q.; Li, N.; Tang, J.; Zhu, J.; Zhang, Q.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y.; et al. Wafer-scale highly oriented monolayer MoS\(_2\) with large domain sizes. *Nano Lett.* 2020, 20, 7193–7199. [CrossRef]

29. Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. *Nat. Nanotechnol.* 2016, 11, 1201–1207. [CrossRef]

30. Zhang, Z.; Xu, X.; Song, J.; Gao, Q.; Li, S.; Hu, Q.; Li, X.; Wu, Y. High-performance transistors based on monolayer CVD MoS\(_2\) grown on molten glass. *Appl. Phys. Lett.* 2018, 113, 202103. [CrossRef]

31. Yang, P.; Zhang, S.; Pan, S.; Tang, B.; Liang, Y.; Zhao, X.; Zhang, Z.; Shi, J.; Huan, Y.; Shi, Y.; et al. Epitaxial growth of centimeter-scale single-crystal MoS\(_2\) monolayer on Au(111). *ACS Nano* 2020, 14, 5036–5045. [CrossRef] [PubMed]

32. Wu, D.; Shi, J.; Zheng, X.; Liu, J.; Dou, W.; Gao, Y.; Yuan, X.; Ouyang, F.; Huang, H. CVD grown MoS\(_2\) nanoribbons on MoS\(_2\) covered sapphire(0001) without catalysts. *Phys. Status Solidi-Rapid Res. Lett.* 2019, 13, 190063. [CrossRef]

33. Chen, Y.; Sun, J.; Gao, D.; Fu, H.; Qiu, N.; Nie, Y.; Chen, Z.; Bachmatiuk, A.; Priydarshi, M.K.; Ma, D.; et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. *Adv. Mater.* 2015, 27, 7839–7846. [CrossRef] [PubMed]

34. Liu, J.; Fu, L. Controllable growth of graphene on liquid surfaces. *Adv. Mater.* 2019, 31, 1800690. [CrossRef]

35. Zeng, M.; Liu, J.; Mendes, R.G.; Dong, Y.; Zhang, M.-Y.; Cui, Z.-H.; Cai, Z.; Zhang, Z.; Zhu, D.; et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. *Nat. Nanotechnol.* 2020, 19, 526–533. [CrossRef]

36. Cai, Q.; Ju, Q.; Hong, W.; Jian, C.; Wang, T.; Liu, W. Water assisted growth of two-dimensional MoS\(_2\)/MoSe\(_2\) vertical heterostructures on molten glass. *Nanoscale* 2022, 14, 1990–1996. [CrossRef]

37. Yang, P.; Gao, Q.; Zhang, Z.; Hong, M.; Shi, J.; Chen, S.; Shu, J.; Zhao, L.; Jiang, S.; Zhou, X.; et al. Batch production of 6-inch uniform monolayer MoS\(_2\)/Bi\(_2\)Te\(_3\) crystals by sulfidation in calcium by sodium in glass. *Nat. Commun.* 2018, 9, 979. [CrossRef]

38. Chen, J.; Zhao, X.; Tan, S.J.; Xu, H.; Wu, B.; Li, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; et al. Chemical vapor deposition of large-size monolayer MoS\(_2\) crystals on sapphire(0001). *Am. Chem. Soc.* 2017, 139, 1073–1076. [CrossRef]

39. Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS\(_2\) transistors. *Nanotek. Lett.* 2012, 12, 4674–4680. [CrossRef]

40. Gao, Q.; Zhang, C.; Yang, K.; Pan, X.; Zhang, Z.; Yang, J.; Yu, Z.; Chi, F.; Liu, L. High-performance CVD bilayer MoS\(_2\) radio frequency transistors for flexible nanoelectronics. *Micromachines* 2021, 12, 451. [CrossRef]

41. Wang, S.; Zhang, Y.; Zhao, D.; Li, J.; Kang, H.; Zhao, S.; Jin, T.; Zhang, J.; Xue, Z.; Wang, Y.; et al. Fast and controllable synthesis of AB-stacked bilayer MoS\(_2\) for photodetection. *2D Mater.* 2021, 9, 15016. [CrossRef]

42. Li, S.; Wang, S.; Tang, D.-M.; Zhao, W.; Xu, H.; Chu, L.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe\(_2\) and WS\(_2\) monolayer crystals. *Appl. Mater. Today* 2015, 1, 60–66. [CrossRef]

43. Li, S.; Lin, Y.-C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z.; Shen, Y.; Tang, D.-M.; Wang, J.; Zhang, Q.; et al. Vapour–liquid–solid growth of monolayer MoS\(_2\) nanoribbons. *Nat. Mater.* 2018, 17, 535–542. [CrossRef] [PubMed]

44. Zhou, J.; Lin, J.; Huang, X.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H.; Lei, J.; et al. A library of atomically thin metal chalcogenides. *Nature* 2018, 556, 355–359. [CrossRef]

45. Chen, L.; Zhang, L.; Chen, L.; Wu, J.; Jiang, C.; Song, J. Study on the catalyst effect of NaCl on MoS\(_2\) growth in a chemical vapor deposition process. *CrystEngComm* 2021, 23, 5337–5344. [CrossRef]

46. Yang, P.; Zhang, Z.; Sun, M.; Lin, F.; Cheng, T.; Shi, J.; Xie, C.; Shi, Y.; Jiang, S.; Huan, Y.; et al. Thickness tunable wedding-cake-like MoS\(_2\) flakes for high-performance optoelectronics. *ACS Nano* 2019, 13, 3649–3658. [CrossRef]

47. Salazar, N.; Beinik, I.; Lauritsen, J.V. Single-layer MoS\(_2\) formation by sulfidation of molybdenum oxides in different oxidation states on Au(111). *Phys. Chem. Chem. Phys.* 2017, 19, 14020–14029. [CrossRef]

48. Kojima, K.; Lim, H.E.; Liu, Z.; Zhang, W.; Saito, T.; Nakanishi, Y.; Endo, T.; Kobayashi, Y.; Watanabe, K.; Taniguchi, T.; et al. Restoring the intrinsic optical properties of CVD-grown MoS\(_2\) crystals on Au(111). *Phys. Chem. Chem. Phys.* 2018, 20, 2909–2931. [CrossRef]

49. Bhaviripudi, S.; Jia, X.; Dresselhaus, M.S.; Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. *Nano Lett.* 2010, 10, 4128–4133. [CrossRef]

50. Zhou, S.; Gan, L.; Wang, D.; Li, H.; Zhai, T. Space-confined vapor deposition synthesis of two dimensional materials. *Nano Res.* 2018, 11, 2909–2931. [CrossRef]

51. Verble, J.L.; Wieting, T.J. Lattice Mode Degeneracy in MoS\(_2\) and Other Layer Compounds. *Phys. Rev. Lett.* 1970, 25, 362–365. [CrossRef]

52. Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS\(_2\). *ACS Nano* 2010, 4, 2695–2700. [CrossRef] [PubMed]

53. Zheng, J.; Yan, X.; Lu, Z.; Qi, H.; Xu, G.; Zhou, X.; Wang, P.; Pan, X.; Liu, K.; Jiao, L. High-mobility multilayered MoS\(_2\) flakes with low contact resistance grown by chemical vapor deposition. *Adv. Mater.* 2017, 29, 1604540. [CrossRef] [PubMed]