Virulence factors and antibiotic resistance properties of the *Staphylococcus epidermidis* strains isolated from hospital infections in Ahvaz, Iran

Roya Chabi and Hassan Momtaz*

Abstract

Background: Resistant *Staphylococcus epidermidis* strains are considered to be one of the major causes of human clinical infections in hospitals. The present investigation was done to study the pattern of antibiotic resistance and the prevalence of virulence and antibiotic resistance genes amongst the *S. epidermidis* strains isolated from human hospital infections.

Methods: One hundred hospital infectious samples were collected and *S. epidermidis* strains were identified using culture and biochemical tests. Isolated strains were subjected to disk diffusion and PCR.

Results: Forty-six out of 100 hospital infectious samples (46%) were positive for *S. epidermidis*. *S. epidermidis* strains harbored the highest prevalence of resistance against penicillin (95.65%), tetracycline (91.30%), erythromycin (82.60%), cefazolin (78.26%), and trimethoprim-sulfamethoxazole (73.91%). All *S. epidermidis* strains had resistance against at least three different types of antibiotics, while the prevalence of resistance against more than seven types of antibiotics was 17.39%. *AacA-D* (69.56%), *tetK* (56.52%), *mecA* (45.65%), *msrA* (39.13%), and *tetM* (39.13%) were most commonly detected antibiotic resistance genes. The prevalence of *vatC* (4.34%), *ermA* (8.69%), *vatA* (8.69%), *vatB* (13.04%), *ermC* (13.04%), and *linA* (10.86%) were lower than other detected antibiotic resistance genes. *ClfA* (32.60%), *agrIII* (17.39%), and *etB* (13.04%) were the most commonly detected virulence factors.

Conclusions: The presence of virulent and multi-drug resistance *S. epidermidis* strains showed an important public health issue in hospitals.

Keywords: *Staphylococcus epidermidis*, Antibiotic resistance, Antibiotic resistance genes, Hospital infections, Iran

Background

Hospital infections are considered as a major issue all around the world. Bacteria have the highest impact on the occurrence of hospital infections [1–7]. *Staphylococcus* spp. are commensal bacteria of human skin and have been isolated from diverse clinical sources such as urinary tract infections (UTIs), respiratory tract infections (RTIs), wound infections (WIs), soft tissue infections, blood infections, and endocarditis [3, 8–10]. It has been suggested that *Staphylococcus epidermidis* (*S. epidermidis*) is one of the most important species of this group. It is a Gram-positive, non-spore forming, nonmotile, facultative anaerobic, and catalase-positive and coagulase-negative bacterium responsible for different types of hospital and nosocomial infections. Indwelling medical devices are considered a major vector of *S. epidermidis* in hospitalized patients [11, 12]. *S. epidermidis* results in approximately 13% of prosthetic valve endocarditis infections, with a high rate of intracardiac abscess formation (38%) and mortality (24%) [13].

S. epidermidis strains usually resist against several types of antibiotic classes such as tetracyclines, aminoglycosides, cephalosporins, fluoroquinolones, penicillins, and macrolides [14–17]. Nowadays, resistant *S. epidermidis* has become a serious problem in hospitals [14–16]. Resistant...
Table 1 Antibiotic resistance pattern of the S. epidermidis strains isolated from different types of hospital infectious samples

Samples (no. positive samples for S. epidermidis)	Antibiotic resistance pattern (%)	P10*	Cef	Cip5	Clin	Az	Eryt	Mup	Rif	Tet30	Tri-Sul	N/F300
UTIs (10)		9 (90)	7 (70)	5 (50)	5 (50)	5 (50)	8 (80)	2 (20)	5 (50)	8 (80)	6 (60)	2 (20)
Ws (20)		19 (95)	16 (80)	15 (75)	13 (65)	12 (60)	16 (80)	11 (55)	12 (60)	19 (95)	15 (75)	8 (40)
RTIs (16)		16 (100)	13 (81.25)	12 (75)	12 (75)	11 (68.75)	14 (87.50)	10 (62.50)	11 (68.75)	15 (93.75)	13 (81.25)	6 (37.50)
Total (46)		44 (95.65)	36 (78.26)	32 (69.56)	30 (65.21)	28 (60.86)	38 (82.60)	23 (50)	28 (60.86)	42 (91.30)	34 (73.91)	16 (34.78)

*P10 penicillin (10 μg/disk), Cef cefazolin (30 μg/disk), Cip5 ciprofloxacin (5 μg/disk), Clin clindamycin (2 μg/disk), Az azithromycin (15 μg/disk), Eryt erythromycin (15 μg/disk), Mup mupirocin (30 μg/disk), Rif rifampin (5 μg/disk), Tet30 tetracycline (30 μg/disk), Tri-Sul trimethoprim-sulfamethoxazole (25 μg/disk), and N/F300 nitrofurantoin (300 μg/disk) antibiotic agents.
etB (13.04%) were the most commonly detected virulence factors amongst the S. epidermidis strains isolated from hospital infectious samples. Virulence factors for coa, X-region, and IgG-binding region were negative.

Discussion

S. epidermidis is a common commensal bacterium of the human skin and mucosa. While *S. epidermidis* has long been considered nonpathogenic, it is now recognized as a relevant opportunistic pathogen [11, 12, 14]. Most *S. epidermidis*-related not only are associated with intravascular devices (prosthetic heart valves, shunts, etc.) but also commonly occur in prosthetic joints, catheters, and large wounds. However, recently published data revealed the high prevalence of *S. epidermidis* in the cases of human clinical infections [11, 12, 14]. Additionally, nosocomial *S. epidermidis* isolates were characterized by their pronounced resistance against many commonly used antibiotics [11, 12, 14].

The present study was done to assess the antibiotic resistance pattern and distribution of antibiotic resistance and virulence genes amongst the *S. epidermidis* strains isolated from different types of human clinical infections. Findings showed that 46% of human clinical infection samples were positive for *S. epidermidis* strains. Relatively high prevalence of *S. epidermidis* in the human clinical infections of the present study is may be due to the ubiquitous presence of the bacterium in the hospital environment, its ability to biofilm formation, and finally failure to observe sanitary and disinfection principles in hospitals in Ahwaz city, Iran. Because of the ubiquitous prevalence of *S. epidermidis* as a commensal bacterium, it is often difficult for a clinician to decide whether an isolate represents the causative agent of an infection or an un especific culture contamination.

S. epidermidis strains harbored the highest prevalence of resistance against penicillin, tetracycline, erythromycin, cefazolin, and trimethoprim-sulfamethoxazole antibiotic agents. All *S. epidermidis* strains had resistance against at least three different types of antibiotics. Unauthorized and illegal prescription of antibiotics is the main reason for the high prevalence of antibiotic resistance. Mohaghegh et al. [18] reported that the prevalence of antibiotic resistance of the *S. aureus* strains against ampicillin, amoxicillin-clavulanic acid, cepfime, ceftazidime, nalidixic acid, and penicillin were

Table 2

Samples (no. positive samples for *S. epidermidis*)	Antibiotic resistance genes (%)	mecA	msrA	msrB	AacA-D	tetK	tetM	vatA	vatB	vatC	emmA	emmC	linA
UTIs (10)	2 (20)	2 (20)	1 (10)	5 (50)	4 (40)	2 (20)	1 (10)	1 (10)	–	1 (10)	1 (10)	1 (10)	
WIs (20)	10 (50)	9 (45)	7 (35)	16 (80)	12 (60)	8 (40)	2 (10)	3 (15)	1 (5)	2 (10)	3 (15)	3 (15)	
RTIs (16)	9 (56.25)	7 (43.75)	4 (25)	11 (68.75)	10 (62.50)	8 (50)	1 (6.25)	2 (12.50)	1 (6.25)	1 (6.25)	2 (12.50)	1 (6.25)	
Total (46)	21 (45.65)	18 (39.13)	12 (26.08)	32 (69.56)	26 (56.52)	18 (39.13)	4 (8.69)	6 (13.04)	2 (4.34)	4 (8.69)	6 (13.04)	5 (10.86)	

![Fig. 1 Prevalence of multidrug-resistant *S. epidermidis* strains in hospital infectious samples](image-url)
UTIs (10) – referred from hospital infectious samples. Eksi [28] revealed resistance genes amongst the S. epidermidis respectively. Ma et al. [20] reported that the prevalence of antibiotic resistance of the S. epidermidis strains against amoxicillin-clavulanic acid, ciprofloxacin, clindamycin, erythromycin, gentamicin, levofloxacin, mupirocin, oxacillin, rifampin, tetracycline, and trimethoprim-sulfamethoxazole antibiotics was 100%, 37%, 0%, 80%, 0%, 80%, and 0%, respectively. Eladli et al. [19] reported that the frequency of antibiotic resistance of the S. epidermidis strains against amoxicillin-clavulanic acid, ciprofloxacin, clindamycin, erythromycin, gentamicin, levofloxacin, mupirocin, oxacillin, rifampin, tetracycline, and trimethoprim-sulfamethoxazole antibiotics was 100%, 100%, 98.30%, 90.90%, 85%, 80%, 79.10%, 89.50%, 59.50%, 53.70%, 52.80%, respectively. High prevalence of multidrug-resistant strains of our research [18]. Eladli et al. [19] reported that the distribution of mecA, ermA, ermB, ermC, tetK, tetM, msrA, and blaZ antibiotic resistance genes amongst the coagulase negative staphylococci strains isolated from human clinical infections were 29.60%, 7.50%, 33.10%, 5.80%, 21.60%, 13.70%, 28.80%, 9.40%, and 93.50%, respectively. Adwan et al. [29] reported that the prevalence of antibiotic resistance of the coagulase-negative staphylococci strains against penicillin, oxacillin, erythromycin, tetracycline, clindamycin, ciprofloxacin, trimethoprim-sulfamethoxazole, chloramphenicol, ceftriaxone, gentamicin, rifampin, teicoplanin, and vancomycin antibiotics were 94.20%, 79.10%, 89.50%, 59.50%, 53.70%, 52.80%, 58.50%, 39.10%, 26.70%, 29.50%, 18.40%, 2.30, and 0%, respectively. High prevalence of multidrug-resistant S. epidermidis was also reported in their investigation. Similar patterns of antibiotic resistance of the S. epidermidis strains were reported from Mexico [21], Spain [22], Iran [23], USA [24], Belgium [25], and Ireland [26].

S. epidermidis strains isolated from the clinical infection samples harbored the high distribution of antibiotic resistance genes, especially aacA-D, tetK, mecA, and tetM. S. epidermidis strains had a considerable prevalence of resistance against clindamycin (65.21%). One of the most imperative mechanisms involving resistance against clindamycin is modulated by methylase enzyme which is often encoded by ermA and ermC genes [27]. The prevalence of ermA and ermC antibiotic resistance genes amongst the S. epidermidis strains of our research were 8.69% and 10.86%, respectively. The majority of isolates carried two tetracyclines, two erythromycins, one macrolide, and several streptomycin resistance determinants revealed a great diffusion of these types of resistance. The literature-based studies did not indicate any report on the prevalence of vatA, vatB, vatC, msrA, ermA, ermC, linA, aacA-D, tetK, and tetM antibiotic resistance genes amongst the S. epidermidis strains isolated from hospital infectious samples. Eksi [28] revealed the higher prevalence of ermA than ermC antibiotic resistance genes amongst the clindamycin, erythromycin, and telithromycin-resistant and also higher prevalence of tetM than tetK antibiotic resistance genes amongst the tetracycline-resistant MRSA strains. Duran et al. [17] reported that the distribution of mecA, femA, ermA, ermB, ermC, tetK, tetM, msrA, and blaZ antibiotic resistance genes amongst the coagulase negative staphylococci strains isolated from human clinical infections were 29.60%, 7.50%, 33.10%, 5.80%, 21.60%, 13.70%, 28.80%, 9.40%, and 93.50%, respectively. Adwan et al. [29] reported that the prevalence of ermA, ermC, tetK, tetM, aacA-aphD, vatA, vatB, and vatC genes amongst the staphylococci strains isolated from human infections were 30.90%, 74.50%, 76.40%, 16.40%, 74.50%, 1.80%, 0%, and 5.50%, respectively. High prevalence of tetK and tetM antibiotic resistance genes in the S. epidermidis isolates can be clarified by their usual genetic locations. The presence of tetK gene on small multicopy plasmids and tetM on conjugative transposons contribute to the spread of these determinants [30]. Some of the S. epidermidis strains harbored ermC gene. This gene is often located on small multicopy plasmids which are present in many different staphylococcal species [30]. The ermA gene is usually carried by transposons which could explain its high prevalence amongst the S. epidermidis strains. Resistance to aminoglycosides which are encoded by the aacA-D gene (69.59%) is more prevalent. It is because this gene is usually more diffused in staphylococci of human origin [30].

Amongst all virulence markers found in the S. epidermidis strains, genes encoding clumping factor (clf), IgG-binding region, toxic shock syndrome toxin (tst), exfoliative toxins (eta and etb), accessory gene regulator (agr), and X-region were recognized as the most important markers in occurrence of infectious diseases caused by S. epidermidis [10]. Eftekhar et al. [31] reported that the frequency of the spa, fnbB, fnbA, clfB, clfA, can, ebp, ebp, etb, eta, pvi, and tst virulence genes amongst the S. aureus strains isolated from hospitalized patients was 100%, 75.70%, 74.30%, 78.60%, 71.40%, 24.30%, 0%, 58.60%, 2.90%, 7.10%, 21.40%, and 51.40%, respectively. Additionally, amongst all the examined

Samples (no. positive samples for S. epidermidis)	Virulence factors (%)									
	coa	clfA	X-region	IgG-binding region	tsst-1	etA	etB	agrI	agrII	agrIII
UTIs (10)	–	2 (20)	–	–	–	1 (10)	1 (10)	1 (10)	2 (20)	
Wls (20)	–	8 (40)	–	–	1 (5)	2 (10)	3 (15)	2 (10)	2 (10)	4 (20)
RTIs (16)	–	5 (31.25)	–	–	1 (6.25)	1 (6.25)	2 (12.50)	1 (6.25)	2 (12.50)	2 (12.50)
Total (46)	–	15 (32.60)	–	–	2 (4.34)	3 (6.52)	6 (13.04)	4 (8.69)	5 (10.86)	8 (17.39)
Target gene	Primer sequence (5'-3')	PCR product (bp)	PCR programs	PCR volume (50 μL)						
-------------	-------------------------	------------------	--------------	-------------------						
vatA	F: TGTCGCCAGCAACACATTTAT									
R: TCCACGGACAATAGAAGGG	268	1 cycle: 94 °C, 5 min								
30 cycles: 94 °C, 60 s										
60 °C, 60 s										
72 °C, 90 s										
1 cycle: 72 °C, 7 min	5 μL PCR buffer 10X									
vatB	F: GCTGCCAAATCAGTTGTTACA									
R: CTGACCAATTCACCACTTTTA	136	30 cycles: 94 °C, 60 s								
60 °C, 60 s										
72 °C, 90 s	200 μM dNTP (Fermentas)									
vatC	F: AAGGCCCCATTCAGAAGAA									
R: TCAGCTTCCCTGACCAACC	467	1 cycle: 72 °C, 7 min	2.5 μL DNA template							
mecA	F: AAAATCGATGTAAGGTTTGC									
R: AGTTCGGATGACCGGATTGCC	532	1 cycle: 94 °C, 5 min								
30 cycles: 94 °C, 60 s										
60 °C, 60 s										
72 °C, 90 s	5 μL DNA template									
tetK	F: GTAGCGACAATAGGTTATCA									
R: GTAGTGACAATAAACCTCAA	158	1 cycle: 72 °C, 7 min	2 mM Mgcl₂							
tetM	F: AGTGGGAGCGCTTACAGAGAA									
R: CATATGCCTGCGTCT	190	30 cycles: 94 °C, 60 s								
60 °C, 60 s										
72 °C, 90 s	1.5 U Taq DNA polymerase (Fermentas)									
msrA	F: GGCACAATAAGAGTGTTTAAAGG									
R: CAGTTATATCATGTAATAGATTGTCCTGTT	940	1 cycle: 72 °C, 7 min	5 μL DNA template							
msrB	F: TATGATATCCATAATAATTATCCAATC									
R: AAGTTATATCATGTAATAGATTGTCCTGTT	595	1 cycle: 72 °C, 7 min	200 μM dNTP (Fermentas)							
aacA-D	F: TAATCCAAGAGGAAAACCTCCTG									
R: GCCACACTATCAACCACACTA	227	1 cycle: 72 °C, 7 min	0.5 μM of each primers F & R							
ermA	F: AAGGCGTAACCACCTCCTCAG									
R: TTGCAAATCCCCTCTCIAAC	190	30 cycles: 94 °C, 60 s								
60 °C, 60 s										
72 °C, 90 s	1.5 U Taq DNA polymerase (Fermentas)									
ermC	F: AATCAGTCAATTCTGTACG	229	1 cycle: 72 °C, 7 min	5 μL DNA template						
linA	F: GGTGGCTGGGGGGTAGATGTATTAACTGG									
R: GCCTCTTGGGAATACATAGTGATTTTTCGA	323	1 cycle: 72 °C, 7 min	5 μL DNA template							
tss-I	F: ATGCGACATGACAGCTTGATA									
R: TTTCAATAACACCGGTTT	350	1 cycle: 94 °C, 6 min								
30 cycles: 94 °C, 60 s										
55 °C, 2 min	2 mM Mgcl₂									
etA	F: CTAGTGCAATTGTATATCCA									
R: TGCATTGCACCATAGTACT	119	1 cycle: 72 °C, 7 min	0.5 μM of each primers F & R							
etB	F: ACGGCTATATACTACATT									
R: TCCATCGAATAATACCT	200	1 cycle: 72 °C, 7 min	5 μL DNA template							
agrI	F: ATGCACATGTGTCACATGC									
R: GTCAAAGACATGAAACCTGCGAT	441	1 cycle: 72 °C, 7 min	2 mM Mgcl₂							
agrII	F: ATGCACATGTGTCACATGC									
R: TATTACTAATTGAAAAGTGGCCATAGC	575	26 cycle: 94 °C, 30 s								
55 °C, 30 s										
72 °C, 4 min										
1 cycle: 72 °C, 8 min	1.5 U Taq DNA polymerase (Fermentas)									
agrIII	F: ATGCACATGTGTCACATGC									
R: GTAATGTAATAGCTTGTATAATAATACCCAG	323	1 cycle: 72 °C, 7 min	5 μL DNA template							
coa	F: CGAGACCAGATTCAACAAAG									
R: AAAAAGAACACCTACCACTCACTA	970	1 cycle: 94 °C, 6 min								
30 cycles: 94 °C, 60 s										
58 °C, 2 min										
72 °C, 4 min										
1 cycle: 72 °C, 7 min	2 mM Mgcl₂									
c18A	F: GCCTCAGTGCTTGGTAG									
R: TTTTCAGGGTCATATAACGC	980	1 cycle: 94 °C, 4 min								
35 cycles: 94 °C, 1 min										
57 °C, 1 min										
72 °C, 1 min	5 μL PCR buffer 10X									
X-region	F: CAAGCAGCAGGAAGGAGAAGG									
R: CACGAGTTTTAAGACCATCA | 320 | 1 cycle: 94 °C, 4 min
30 cycles: 94 °C, 60 s
58 °C, 2 min
72 °C, 4 min
1 cycle: 72 °C, 7 min | 2 mM Mgcl₂ |
Table 4 Target genes, oligonucleotide primers, and PCR conditions used for the detection of virulence factors and antibiotic resistance genes in the *S. epidermidis* strains isolated from various types of hospital infectious samples (Continued)

Target gene	Primer sequence (5'-3')	PCR product (bp)	PCR programs	PCR volume (50 μL)
IgG-binding region	F: CACCTGCTGCAAATGCTGCG	920	25 cycles:	200 μM dNTP (Fermentas)
	R: GGCTTGTGTTGTCCCTTC		95 °C, 1 min	0.5 μM of each primers F & R
			94 °C, 1 min	1.5 U Taq DNA polymerase (Fermentas)
			72 °C, 1 min	5 μL DNA template
			1 cycle:	1 cycle:
			72 °C, 3 min	5 μL PCR buffer 10X

Genes, *clfB* (78.60%) and *etb* (2.90%) had the highest and lowest prevalence, respectively. The prevalence of *tsst-1* gene amongst the *S. epidermidis* strains of our research was low (4.34%). Similar findings have also been reported from Iran (11.60%) [32], Sweden (22.00%) [33], Malaysia (0.50%) [34], and Colombia (10.00%) [35]. *Tsst-1* gene is a pyrogenic toxin that encodes a 21.9 KDa extracellular toxin causing toxic shock syndrome (TSS). It is known as a severe acute disease distinguished by symptoms such as fever, rash, hypotension, and dysfunction of multiorgan systems. In addition, TSS secretion into the human blood may raise the rate of neonatal TSS-like exanthematous disease, Kawasaki syndrome, and sudden infant death syndrome [32]. Regarding the other detected genes, the *eta* gene was presented in 6.52% of strains. The prevalence of *etb* gene was 13.04%. The incidence rate of the *eta* and *etb* in the present study was higher than that reported in other investigations conducted on Iran (0.68%) [32], Colombia (3.00%) [35], and Malaysia (0%) [34]. A higher prevalence of *eta* gene was reported in studies conducted in Czech (10.00%) [36] and Turkey (19.20%) [37]. It was detected that the prevalence of the *etb* gene differs amongst numerous investigations, ranging from 0% in Colombia [35] and Malaysia [34] to 9.20% in Turkey [37]. Ghasemian et al. [38] reported the high prevalence of the *clfA* and *clfB* genes (100%). The incidence of the *clfA* gene in the bacterial strains of our research was relatively high (32.60%). A higher prevalence of this gene was reported from Brazil [39] and China [40]. Another important detected gene amongst the *S. epidermidis* strains was *agr*. The prevalence of *agrI*, *agrII*, and *agrIII* virulence genes amongst the *S. epidermidis* strains were 8.69%, 10.86%, and 17.39%, respectively. *Agr* virulence gene was also predominant amongst the *S. epidermidis* strains isolated from clinical samples recovered from China [40], USA [41], and Iran [42]. The accessory gene regulator (*agr*) locus influences the expression of many virulence genes in the *S. epidermidis*. Four allelic groups of *agr*, which generally inhibit the regulatory activity of each other, have been identified within the species. Interference in virulence gene expression caused by different *agr* groups has been suggested to be a mechanism for isolating bacterial populations and a fundamental basis for subdividing the species [43]. It encodes a two-component signal transduction system that leads to downregulation of surface proteins and upregulation of secreted proteins during in vitro growth. A role for *agr* in virulence has been demonstrated by the attenuated virulence of *agr* mutants in different animal infection models [43].

Conclusions

The present investigation is the first report of the phenotypic and genotypic analysis of antibiotic resistance in the *S. epidermidis* strains isolated from human hospital infectious samples in Iran. The total prevalence of *S. epidermidis* strains in hospital infectious samples was 46%. Considerable prevalence of resistance against penicillin, tetracycline, erythromycin, cefazolin, and trimethoprim-sulfamethoxazole and high distribution of *aacA-D*, *tetK*, *mecA*, and *tetM* antibiotic resistance genes may pose a potential public health threat. Additionally, *clfA*, *agrIII*, and *etB* were the most commonly detected virulence factors. A high prevalence of multidrug resistant *S. epidermidis* in the human clinical infectious samples is another important finding of the present study. Moreover, the presence of antibiotic resistance genes and also virulence factors in some *S. epidermidis* strains should be considered as a serious health hazard. Further researches are required to understand additional epidemiological aspects such as the exact relations between antibiotic resistance genes and virulence factors of the *S. epidermidis* strains in hospital infectious samples.
Methods

Samples
From February to July 2018, a total of 100 various types of hospital infectious samples were randomly collected from several private hospitals of the Ahvaz city, Iran. Hospital infectious samples were defined as those which were collected from hospitalized patients with severe infections such as UTIs, WIs, and RIs. Furthermore, samples were taken from the site of infection. Samples were immediately transferred to the Clinical Microbiology Research Center of the Islamic Azad University of Shahrrekord in a cooler with ice packs.

Bacterial isolation

S. epidermidis was identified by conventional bacteriological tests. The sample was enriched in a tryptic soy broth, and grown on mannitol salt agar, and then catalase, tube coagulase and urease tests, and carbohydrate fermentation were performed. *S. epidermidis* is catalase-positive, coagulase-negative, urease-positive, unable to ferment D-mannitol and D-trehalose, and able to ferment D-mannose and D-maltose [44, 45].

Antibiotic resistance pattern

Patterns of antimicrobial resistance of the *S. epidermidis* strains were studied using the Kirby-Bauer method. A simple disk diffusion technique on the Mueller-Hinton agar (Merck, Germany) medium was used for this purpose. Susceptibility of *S. epidermidis* isolates was tested against several types of antibiotic agents including penicillin (10 μg/disk), cefazolin (30 μg/disk), clindamycin (2 μg/disk), mupirocin (30 μg/disk), azithromycin (15 μg/disk), erythromycin (15 μg/disk), tetracycline (30 μg/disk), ciprofloxacin (5 μg/disk), trimethoprim-sulfamethoxazole (25 μg/disk), nitrofurantoin (300 μg/disk), and rifampin (5 μg/disk) (Oxoid, UK). The instructions of the Clinical and Laboratory Standards Institute were used for this purpose [46]. The plates containing the disks were allowed to stand for at least 30 min before incubated at 37 °C for 24 h. The diameter of the zone of inhibition produced by each antibiotic disc was measured and interpreted using the CLSI zone diameter interpretative standards [46]. *S. epidermidis* ATCC 12228 was used as a quality control organism in antimicrobial susceptibility determination.

DNA extraction and amplification of virulence factors and antibiotic resistance genes

S. epidermidis isolates were sub-cultured on TSB media (Merck, Germany) and further incubated for 48 h at 37 °C. Genomic DNA was extracted from bacterial colonies using the DNA extraction kit (Fermentas, Germany) according to the manufacturer’s instruction. Table 1 represents the list of primers and PCR conditions used for the amplification of virulence factors and antibiotic resistance genes [47]. A programmable DNA thermo-cycler (Eppendorf Master-cycler 5330, Eppendorf-Nethel-Hinz GmbH, Hamburg, Germany) was used in all PCR reactions.

Statistical analysis

Statistical analysis was done using the SPSS 21.0 statistical software (SPSS Inc., Chicago, IL, USA). Chi-square test and Fisher’s exact two-tailed test were used to assess any significant relationship between the prevalence of *S. epidermidis* strains, virulence factors, and their antibiotic resistance properties. *P* value < 0.05 was considered as statistical significant level.

Acknowledgements
The authors would like to thank Dr. Zahra Bamzadeh and Dr. Elaheh Tajbakhsh for their technical assistance.

Authors’ contributions
HM and RC carried out the molecular genetic studies, participated in the primers sequence alignment, and drafted the manuscript. HM and RC carried out the sampling and culture method, participated in the design of the study, and performed the statistical analysis and writing the manuscript. All authors read and approved the final manuscript.

Funding
The current research was financially supported by the Islamic Azad University, Shahrrekord Branch, Shahrrekord (grant number 97/169).

Availability of data and materials
All data analyzed during this study are included in this published article.

Ethics approval and consent to participate
The present study was approved by the Ethical Council of Research of the Faculty of Basic Sciences, Shahrrekord Branch, Islamic Azad University, Shahrrekord, Iran. Verification of this research project and the licenses related to the sampling process were approved by Prof. Hassan Momtaz (approval ref. number MM 2017/10). Samples were collected from volunteer patients hospitalized in the hospitals. Written informed consents were taken from the participants and their personal information was kept confidential.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 May 2019 Accepted: 26 September 2019
Published online: 05 December 2019

References
1. Ranjbar R, Dehkordi FS, Shaheza M, Rahimi E. Prevalence, identification of virulence factors, O-serogroups and antibiotic resistance properties of Shiga-toxin producing Escherichia coli strains isolated from raw milk and traditional dairy products. Antimicrob Resist Infect Control. 2018;7(1):53.
2. Ranjbar R, Farsani FY, Dehkordi FS. Phenotypic analysis of antibiotic resistance and genotypic study of the vacA, cagA, iceA, oipA and babA genotypes of the Helicobacter pylori strains isolated from raw milk. Antimicrob Resist Infect Control. 2018;7(1):115.
3. Dehkordi FS, Gandomi H, Barzi AA, Misaghi A, Rahimi E. Phenotypic and genotypic characterization of antibiotic resistance of methicillin-resistant Staphylococcus aureus isolated from hospital food. Antimicrobial Resistance & Infection Control. 2017;6(1):104.
4. Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods;
virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob Resist Infect Control. 2017;6(1):4.

5. Hemmatinezhad B, Khamesipour F, Mohammadi M, Safapoor Dehkordi F, Mashak Z. Microbiological investigation of O-serogroups, virulence factors and antimicrobial resistance properties of Shiga toxin-producing Escherichia coli isolated from ostrich, turkey and quail meats. J Food Saf. 2015;35(4):491–500.

6. Momtaz H, Safapoor Dehkordi F, Taktaz T, Rezvani A, Yari A. Shiga toxin-producing Escherichia coli isolated from bovine mastitic milk: serogroups, virulence factors, and antibiotic resistance properties. Sci World J. 2012;2012:618709.

7. Atapoor S, Dehkordi FS, Rahimi E. Detection of Helicobacter pylori in various types of vegetables and salads. Jundishapur J Microbiol. 2014;7(8):e10237.

8. Momtaz H, Dehkordi AH, Khaji L, Shafee EA, Safaee Y, Hosseinzaadeh A, Alavi I, Ghasemi E, Rabiei-Farzandeh M. One-year prevalence of antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus recovered from raw meat. Trop Biomed. 2017;34(2):396–404.

9. Madahi H, Rostami F, Dehkordi FS. Prevalence of enterotoxigenic Staphylococcus aureus isolated from chicken nugget in Iran. Jundishapur J Microbiol. 2014;7(8):e10237.

10. Momtaz H, Dehkordi FS, Rahimi E, Asgarifar A, Momeni M. Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province. Iran J Appl Poult Res. 2013;22(4):913–21.

11. Namvar AE, Bastarahang S, Abbasi N, Ghehi GS, Farhadbakhtiarian S, Arezi P, Hosseini M, Baravat S, Jokar, Cheremina SG. Clinical characteristics of Staphylococcus epidermidis: a systematic review. WMJ Hyg Infect Control. 2014;9(3):DOC23.

12. Oliveira WF, Silva PM, Silva RC, Silva GM, Machado G, Coelho LC, Correia MT. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2017;98(2):111–7.

13. Chu VH, Miro JM, Hoen B, Cabell CH, Pappas PA, Jones P, Stryjewski ME, Anguera I, Braun S, Munro D, Zobair M, Ford B, Gould G. Infections with Staphylococcus aureus and Staphylococcus epidermidis among patients suspicious of bacteremia during 2006-2011. Int J Enteric Pathog. 2015;3(2):1.

14. Schaefler S. Staphylococcus epidermidis BV: antibiotic resistance patterns, physiological characteristics, and bacteriophage susceptibility. Appl Microbiol. 1971;22(4):693–9.

15. Cabrera-Contreras R, Morelos-Ramirez R, Galicia-Camacho AN, Melendez-Herrada E. Antibiotic resistance and biofilm production in Staphylococcus epidermidis strains isolated from a tertiary care hospital in Mexico City. JSM. 2013;1:391821.

16. Revers RM, Monson MA, Nadle J, Pett G, Genneman K, Ray S, Hoskin LH, Lynfield R, Dunnagl G, Tennes JM, Craig AS. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2002;288(15):1763–71.

17. Duran N, Ozer B, Duran GG, Onlen Y, Demir C. Antibiotic resistance genes & susceptibility patterns in staphylococcal Indian J Med Res. 2012;135(3):389–96.

18. Mohaghegh MA, Ghazvini K, Jafari R, Alkhani MY, Safari M, Garamian A, Ali G, Falahi J, Bordbar D. Retrospective study on the prevalence and antibiotic resistance pattern of staphylococcus aureus and staphylococcus epidermidis among patients suspicious of bacteremia during 2006-2011. J Int Enteric Pathog. 2013;2(1):1–5.

19. Eladali MG, Alharbi NS, Khaled JM, Kadakunnun S, Alabardi AS, Alishaya SA. Antibiotic-resistant Staphylococcus epidermidis isolated from patients and healthy students comparing with antibiotic-resistant bacteria isolated from pasteurized milk. Saudi J Biol Sci. 2019;26(6):1285-90.

20. Ma XX, Wang EH, Liu Y, Luo EJ. Antibiotic susceptibility of coagulase-negative staphylococci (CoNS): emergence of teicoplanin-non-susceptible CoNS strains with indible resistance to vancomycin. J Med Microbiol. 2011;60(11):1661–8.

21. Cabrera-Contreras R, Morelos-Ramirez R, Galicia-Camacho AN, Melendez-Herrada E. Antibiotic susceptibility and biofilm production and correlation to methicillin resistant genotype of Staphylococcus epidermidis strains from Mexican hospital. J Microbiol. 2015;60(11):1661–8.

22. Delgado S, Arroyo R, Jimenez E, Marin ML, de Campo R, Fernandez L, Rodriguez JM. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitic: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9(1):82.
42. Nasirian S, Saadatmand S, Goudarzi H, Goudarzi M, Azimi H. Molecular investigation of methicillin-resistant Staphylococcus aureus strains recovered from the intensive care unit (ICU) based on toxin, adhesion genes and agr locus type analysis. Arch Clin Infect Dis. 2018;13(2):e14495.

43. Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Hernandez RV, Domínguez-Villanueva D, Jenkins AT, Lacoma A, Pat C. Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One. 2017;12(4):e0175552.

44. Tille PM. Bailey & Scott's Diagnostic Microbiology. 14th edition. London: Mosby; 2018. pp. 254-3.

45. Topley WWC, Wilson GS. Topley & Wilson Microbiology and Microbial Infection. 10th ed. London: Hodder Arnold; 2005. p. 771–816.

46. CLSI. Performance standards for antimicrobial susceptibility testing; twenty-seven informational supplement. CLSI document M100-S26. Wayne: Clinical and Laboratory Standards Institute; 2017.

47. Momtaz H, Hafezi L. Meticillin-resistant Staphylococcus aureus isolated from Iranian hospitals: virulence factors and antibiotic resistance properties. Bosnian J Basic Med Sci. 2014;14(4):219–26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.