Changes in body mass index, waist circumference and percent body fat rather than their baseline values were significantly associated with incident hypertension after being adjusted for baseline blood pressure in men

Eiji Oda

1Medical Check-up Center, Tachikawa Medical Center

ABSTRACT

Objectives To compare the effects of baseline anthropometric parameters and their changes on incident hypertension.

Design A retrospective 5-year follow-up study.

Setting Annual general health screenings at a medical check-up center.

Participants A general health screening population including 1,221 men and 815 women who were not with hypertension at baseline.

Main outcome measures Hazard ratios (HRs) of incident hypertension for baseline body mass index (BMI), waist circumference (WC) and percent body fat (PBF) as well as changes in them after being adjusted for baseline blood pressure.

Results The cumulative incidence of hypertension was 23.7% in men and 13.5% in women. The baseline BMI, WC and PBF were not significantly associated with incident hypertension adjusted for baseline blood pressure and other confounders, while the changes in BMI, WC and PBF during follow-up were significantly associated with incident hypertension in men. All the associations with incident hypertension were not significant except for those of each 1 kg/m² change in BMI during follow-up and for the highest quartile of baseline BMI and PBF compared with the lowest quartile in women. Baseline BMI, WC and PBF were not significantly correlated with changes in blood pressure except for inverse correlations of BMI and PBF with blood pressure changes in men while changes in BMI, WC and PBF were significantly positively correlated with changes in blood pressure.

Conclusions Changes in BMI, WC and PBF during follow-up rather than their baseline values were significantly associated with incident hypertension after being adjusted for baseline blood pressure in men. (HEP. 2017; 44: 567-574.)

Key words obesity, BMI, waist circumference, percent body fat, incident hypertension

Introduction

Hypertension is one of the most prevalent risk factors of cardiovascular diseases. The first line of treatment for hypertension is dietary changes including a reduction of salt and calorie intake, doing more physical exercise, and obtaining weight loss. Cross-sectional and longitudinal epidemiological studies have shown that blood pressure and hypertension are increased significantly with greater body mass index (BMI) and waist circumference (WC) in normal-weight, overweight and obese men and women, and baseline overweight as well as obesity are reported to be an important risk factor for hypertension1-12). Several longitudinal studies relate hypertension to changes in BMI or adiposity over time13-22). Given the association between long-term weight gain and hypertension risk, cohort studies on the association between baseline obesity and incident hypertension1-12) have a statistical problem because fixed baseline BMI cannot account for any change in BMI during the observation period13-22). Obese individuals with metabolic risk factors may make an effort to reduce their body weight because obesity is well known to be unhealthy, as is the concept of metabolic syndrome25, 26). Few studies demonstrated that a higher baseline BMI is still associated with a higher risk of hypertension, even if the baseline BMI remained stable during the follow-up period27, 28). A study reported that the odds for hypertension were significantly related to BMI at follow-up when adjusted for baseline BMI, but generally not to baseline BMI when adjusted for follow-up BMI29). Another very long time follow-up study reported that men of normal weight at age 25 years who became overweight or obese at age 45 years were at increased risk compared with men who were overweight or obese at age 25 years who returned to normal weight at age 45 years30).

The aims of the present 5-year follow-up study are to investigate the associations between baseline BMI, WC and percent body fat (PBI) as well as changes in them during follow-up and incident hypertension in a health screening population.

Subjects and Methods

This study was approved by the ethics committee of Tachikawa Medical Center and the procedures were in accordance with the Declaration of Helsinki, 1964 and Declaration of Tokyo, 1975, as
following equation according to a recommendation from the mated glomerular filtration rate (eGFR) was calculated using the-
measurement limit was considered to be 0.01 mg/L. Esti-
tment of hs-CRP, which was performed at BML General Labora-
tory (Tokyo, Japan) with nephelometry using N-latex CRP-2
med at BML Nagaoka (Nagaoka, Japan) except for the assess-
chemical assessments were all per-
measured using a direct surfactant method with Choletest-LDL
was qualitatively measured with a dipstick. LDL cholesterol was
ing for 30 minutes or longer two times or more per week. The
- exercise, antidiabetic and antihyperlipidemic drugs. Physical activity
- about their history of coronary heart disease and stroke, smoking,
- required to complete a questionnaire including questions
- of BMI, WC and PBF and changes in them during follow-up as well
- was defined as an SBP ≥140 mmHg and/or a diastolic
- noted between potential candidates and
- subjects who had a history of coronary heart disease or stroke or used
- among them, 1,221 men aged 24–81 years and 815 women aged
- revisited our Medical Check-up Center for annual health screenings
- and March 2014 and were actually enrolled in the follow-up study. Hypertension was defined as
- as a systolic blood pressure (SBP) ≥140 mmHg and/or a diastolic
- blood pressure (DBP) ≥90 mmHg and/or the use of antihypertensive drugs. Prehypertension was defined as
- (Siemens Healthcare Japan, Tokyo, Japan). The measurement
- uric acid, high-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c) and creatinine. Proteinuria was
- uric acid, high-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c) and creatinine. Proteinuria was
- were obtained to measure
- fasting plasma glucose (FPG), triglycerides, HDL cholesterol, LDL cholesterol, uric acid, high-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1c) and creatinine. Proteinuria was qualitatively measured with a dipstick. LDL cholesterol was measured using a direct surfactant method with Cholestest-LDL (Sekisui Medical Inc., Tokyo, Japan). HbA1c was measured with latex aggregation immunoassay using Determiner HbA1c (Kyowa Medex, Tokyo, Japan). The chemical assessments were all performed at BML Nagaoka (Nagaoka, Japan) except for the assessment of hs-CRP, which was performed at BML General Laboratory (Tokyo, Japan) with nephelometry using N-latex CRP-2 (Siemens Healthcare Japan, Tokyo, Japan). The measurement limit of hs-CRP was 0.02 mg/L, and a value of hs-CRP less than
- was calculated after being adjusted for age, current smoking habit, daily alcohol intake, physical activity and baseline mean blood pressure, then further adjusted for FPG, log triglycerides, HDL cholesterol and LDL cholesterol. HRs were calculated using Cox regression models in which years were used as a unit of the survival variable and the first diagnosis with hypertension in the annual health screenings was ascertained as the outcome and subjects who did not reach the outcome were censored at their last visits.

Pearson’s correlation coefficients between baseline BMI, WC and PBF and changes in them during follow-up were calculated. In subjects who did not use antihypertensive drugs at the end point (1,179 men and 788 women), Pearson’s correlation coefficients between baseline BMI, WC and PBF as well as changes in them during follow-up and changes in SBP and DBP were calculated.

All statistical analyses were performed using Dr-SPSS-2 (IBM Japan, Tokyo, Japan). P values of less than 0.05 were considered to be statistically significant.

Results

Baseline data are presented in Table 1. There was no significant difference in the baseline data between potential candidates and actual subjects. The number of subjects in normotensive men, prehypertensive men, normotensive women and prehypertensive women was 785, 436, 678 and 137, respectively. The number and cumulative incidence of hypertension for subjects with BMI ≥23 kg/m², BMI ≥25 kg/m², BMI ≥30 kg/m², WC ≥80 cm, WC ≥85 cm and WC ≥90 cm was calculated and compared with that for all subjects by χ²-squared tests. Cumulative incidence of hypertension was also calculated for quartiles of baseline BMI, WC and PBF as well as changes in BMI, WC and PBF. The BMI ≥23 kg/m² was adopted as one of the obesity categories because a study of Japanese workers reported that this category was a risk factor of hypertension.

Hazard ratios (HRs) of hypertension for prehypertension, BMI ≥23 kg/m², BMI ≥25 kg/m², BMI ≥30 kg/m², WC ≥80 cm, WC ≥85 cm, WC ≥90 cm and for each 1 unit increase in baseline BMI, WC and PBF and changes in them during follow-up as well as for the highest quartile of baseline BMI, WC and PBF and changes in them during follow-up compared with the lowest quartile were calculated after being adjusted for age, current smoking habit, daily alcohol intake, physical activity and baseline mean blood pressure, then further adjusted for FPG, log triglycerides, HDL cholesterol and LDL cholesterol. HRs were calculated using Cox regression models in which years were used as a unit of the survival variable and the first diagnosis with hypertension in the annual health screenings was ascertained as the outcome and subjects who did not reach the outcome were censored at their last visits.

Pearson’s correlation coefficients between baseline BMI, WC and PBF and changes in them during follow-up were calculated. In subjects who did not use antihypertensive drugs at the end point (1,179 men and 788 women), Pearson’s correlation coefficients between baseline BMI, WC and PBF as well as changes in them during follow-up and changes in SBP and DBP were calculated.

All statistical analyses were performed using Dr-SPSS-2 (IBM Japan, Tokyo, Japan). P values of less than 0.05 were considered to be statistically significant.

Results

Baseline data are presented in Table 1. There was no significant difference in the baseline data between potential candidates and actual subjects. The number of subjects in normotensive men, prehypertensive men, normotensive women and prehypertensive women was 785, 436, 678 and 137, respectively. The number and cumulative incidence of hypertension for subjects with BMI ≥23 kg/m², BMI ≥25 kg/m², BMI ≥30 kg/m², WC ≥80 cm, WC ≥85 cm and WC ≥90 cm were presented in Table 2. The incidence of

Subject	Description
hypertension was 4 times higher in prehypertensive men than normotensive men and 5 times higher in prehypertensive women than normotensive women. There was no significant difference in the incidence of hypertension between any obesity category and all subjects in men while the incidence of hypertension was significantly higher in any obesity category than all subjects in women.

The cumulative incidence of hypertension in the quartiles of baseline BMI, WC and PBF as well as changes in them during follow-up are shown in Table 4. The associations between these obesity categories and incident hypertension were not significant except for a paradoxically negative association of the BMI ≥25 kg/m² category with incident hypertension in men. No significant association was found between any baseline parameters and incident hypertension while the changes in BMI, WC and PBF were significantly positively associated with incident hypertension in men. Each 1 kg/m² increase in BMI during follow-up and the highest quartile of baseline BMI compared with the lowest quartile were significantly associated with incident hypertension in women. Otherwise, no significant association was observed in women.

The further adjusted HRs of hypertension for BMI ≥23 kg/m², BMI ≥25 kg/m², BMI ≥30 kg/m², WC ≥80 cm, WC ≥85 cm, WC ≥90 cm and each 1 unit increase in baseline BMI, WC and PBF as well as changes in them during follow-up and for the highest quartile of baseline BMI, WC and PBF as well as changes in them during follow-up compared with the lowest quartile are shown in Table 4.

Table 1 Baseline data in potential candidates and actually followed subjects

	men candidates	men followed-ups	p	women candidates	women followed-ups	p
n	1,537	1,221		1,086	815	
age (years)	49.5 (9.0)	49.5 (8.7)	0.940	49.2 (9.0)	49.6 (8.7)	0.393
body mass index (kg/m²)	22.8 (2.7)	22.7 (2.6)	0.699	21.3 (2.8)	21.3 (2.8)	0.799
waist circumference (cm)	83.1 (7.7)	83.0 (7.6)	0.678	77.8 (7.9)	77.8 (8.0)	0.874
percent body fat (%)	21.5 (5.0)	21.5 (4.9)	0.741	26.2 (5.5)	26.2 (5.5)	0.996
systolic blood pressure (mmHg)	115.0 (11.7)	115.0 (11.7)	0.869	107.7 (12.0)	107.9 (12.0)	0.750
diastolic blood pressure (mmHg)	73.4 (7.6)	73.3 (7.6)	0.936	67.4 (7.8)	67.5 (8.0)	0.840
mean blood pressure (mmHg)	87.3 (8.7)	87.2 (8.7)	0.904	80.8 (8.9)	80.9 (9.0)	0.795
fasting plasma glucose (mg/dL)	93.8 (13.2)	93.4 (11.6)	0.406	87.8 (8.0)	87.9 (8.3)	0.646
triglycerides (mg/dL)	59 (72, 144)	99 (71, 141)	0.633	68.5 (53, 93)	70 (53, 93)	0.855
HDL cholesterol (mg/dL)	57.5 (14.1)	58.1 (14.2)	0.282	68.0 (14.6)	68.1 (14.8)	0.947
LDL cholesterol (mg/dL)	122.6 (29.5)	122.0 (28.8)	0.625	120.0 (30.5)	121.0 (30.7)	0.492
hemoglobin A1c (%)	5.01 (0.45)	5.00 (0.39)	0.419	4.97 (0.29)	4.97 (0.30)	0.695
uric acid (mg/dL)	6.07 (1.24)	6.06 (1.20)	0.704	4.38 (0.88)	4.40 (0.87)	0.588
high-sensitivity CRP (mg/L)	0.28 (0.15, 0.58)	0.28 (0.15, 0.56)	0.696	0.21 (0.10, 0.42)	0.21 (0.10, 0.41)	0.934
eGFR (mL/min/1.73m²)	79.4 (12.1)	79.3 (12.0)	0.808	81.0 (13.1)	80.7 (12.9)	0.565
current smoking	38.6	38.4	0.927	6.9	7.0	0.941
daily alcohol drinking	51.3	51.1	0.905	15.7	15.8	0.918
physical activity	34.0	33.3	0.668	35.0	35.7	0.747

mean (SD) or %, eGFR: estimated glomerular filtration rate, physical activity: walking for 1 hour or longer per day or exercising for 30 minutes or longer twice or more per week

Table 2 Cumulative incidence of hypertension in each group

	men	women				
	n	incidence (%)	p*	n	incidence (%)	p*
all subjects	1,221	23.7		815	13.5	
normotensives	785	11.1	<0.001	678	8.0	<0.001
prehypertensives	436	46.3	<0.001	137	40.9	<0.001
BMI ≥ 23 kg/m²	536	27.1	0.130	207	21.3	<0.001
BMI ≥ 25 kg/m²	226	25.7	0.519	86	25.6	0.003
BMI ≥ 30 kg/m²	13	23.1	0.960	8	37.5	0.050
WC ≥ 80 cm	806	27.3	0.065	313	18.1	0.024
WC ≥ 85 cm	483	28.2	0.054	161	21.7	0.007
WC ≥ 90 cm	208	29.8	0.057	56	23.2	0.043

* compared with all subjects, BMI: body mass index, WC: waist circumference
Table 3 Cumulative incidence of hypertension in quartiles of each anthropometric parameter

	Q1	Q2	Q3	Q4	p for trend	
men						
baseline BMI	range (kg/m²)	15.4–20.9	21.0–22.6	22.7–24.2	24.3–33.6	0.001
	incidence (%)	14.9	26.0	27.5	26.3	
baseline WC	range (cm)	61.6–77.7	77.8–83.0	83.1–87.9	88.0–110.0	<0.001
	incidence (%)	15.4	25.9	21.5	31.4	
baseline PBF	range (%)	5.3–18.1	18.2–21.4	21.5–24.5	24.6–41.8	0.002
	incidence (%)	17.3	23.7	25.6	28.1	
change in BMI	range (kg/m²)	−12.5–−0.5	−0.4–0.1	0.2–0.7	0.8–6.4	0.232
	incidence (%)	20.2	24.8	25.2	24.4	
change in WC	range (cm)	−25.7–−1.5	−1.4–0.4	0.5–2.2	2.3–17.7	0.489
	incidence (%)	18.1	29.0	26.3	21.4	
change in PBF	range (%)	−18.1–−1.7	−1.6–0.1	0.0–1.5	1.6–16.6	0.833
	incidence (%)	23.7	21.4	27.0	22.5	
women						
baseline BMI	range (kg/m²)	15.0–19.4	19.5–20.8	20.9–22.9	23.0–35.1	<0.001
	incidence (%)	5.3	14.6	12.8	21.3	
baseline WC	range (cm)	59.7–71.9	72.0–77.0	77.1–83.0	83.1–112.2	<0.001
	incidence (%)	6.9	11.5	13.8	21.8	
baseline PBF	range (%)	13.3–22.2	22.3–25.4	25.5–29.6	29.7–47.0	<0.001
	incidence (%)	6.8	12.1	14.5	20.7	
change in BMI	range (kg/m²)	−7.4–−0.5	−0.4–0.1	0.2–0.7	0.8–10.8	0.397
	incidence (%)	11.2	14.2	14.4	14.2	
change in WC	range (cm)	−20.2–−1.4	−1.3–0.4	0.5–2.3	2.4–27.2	0.274
	incidence (%)	10.7	12.7	17.5	13.0	
change in PBF	range (%)	−12.2–−1.0	−0.9–0.5	0.6–2.0	2.1–24.3	0.784
	incidence (%)	13.6	13.6	14.5	12.3	

BMI: body mass index, WC: waist circumference, PBF: percent body fat

Table 4 Hazard ratio of incident hypertension for each anthropometric parameter

	men hazard ratio * (95% CI b)	p	women hazard ratio * (95% CI b)	p
prehypertension and each obesity category at baseline				
prehypertension	1.22 (0.81–1.82)	0.342	1.16 (0.63–2.16)	0.632
BMI ≥ 23 kg/m²	0.84 (0.66–1.06)	0.143	1.18 (0.79–1.75)	0.420
BMI ≥ 25 kg/m²	0.70 (0.52–0.94)	0.018	1.24 (0.76–2.03)	0.383
BMI ≥ 30 kg/m²	0.57 (0.18–1.81)	0.341	0.89 (0.27–2.93)	0.853
WC ≥ 80 cm	0.97 (0.73–1.29)	0.826	1.21 (0.82–1.78)	0.327
WC ≥ 85 cm	0.91 (0.71–1.15)	0.411	1.22 (0.80–1.85)	0.348
WC ≥ 90 cm	0.86 (0.65–1.15)	0.318	0.82 (0.44–1.52)	0.532
each 1 unit increase in parameters				
baseline BMI (kg/m²)	0.96 (0.93–1.01)	0.118	1.03 (0.97–1.09)	0.371
baseline WC (cm)	0.99 (0.98–1.01)	0.440	1.01 (0.99–1.03)	0.416
baseline PBF (%)	0.99 (0.96–1.01)	0.351	1.02 (0.99–1.05)	0.279
change in BMI (kg/m²)	1.26 (1.13–1.41)	<0.001	1.18 (1.04–1.34)	0.011
change in WC (cm)	1.08 (1.04–1.12)	<0.001	1.03 (0.98–1.09)	0.180
change in PBF (%)	1.09 (1.05–1.14)	<0.001	1.02 (0.96–1.09)	0.527
the highest quartile compared with the lowest quartile				
baseline BMI	1.10 (0.75–1.62)	0.615	1.21 (1.06–1.38)	0.005
baseline WC	0.97 (0.66–1.41)	0.867	1.62 (0.86–3.05)	0.133
baseline PBF	0.74 (0.51–1.07)	0.109	1.60 (0.84–3.04)	0.156
change in BMI	2.02 (1.41–2.90)	<0.001	1.32 (0.75–2.30)	0.337
change in WC	1.95 (1.34–2.85)	<0.001	1.24 (0.69–2.22)	0.478
change in PBF	1.97 (1.37–2.83)	<0.001	1.05 (0.60–1.81)	0.874

* adjusted for age, smoking, alcohol drinking, physical activity and mean blood pressure, b confidence interval, BMI: body mass index; WC: waist circumference; PBF: percent body fat
WC ≥90 cm and each 1 unit increase in baseline BMI, WC and PBF as well as changes in them during follow-up and for the highest quartile of baseline BMI, WC and PBF as well as changes in them during follow-up compared with the lowest quartile are shown in Table 5. The associations between these obesity categories and incident hypertension were not significant. No significant association was found between any baseline parameters and incident hypertension while the changes in BMI, WC and PBF were significantly positively associated with incident hypertension in men. Each 1 kg/m² increase in BMI during follow-up and the

Table 5	Further adjusted hazard ratio of incident hypertension for each anthropometric parameter			
men	women			
hazard ratio *(95% CI)	p	hazard ratio *(95% CI)	p	
prehypertension and each obesity category at baseline				
prehypertension	1.17 (0.78–1.76)	0.441	1.16 (0.62–2.15)	0.640
BMI ≥ 23 kg/m²	0.87 (0.67–1.12)	0.281	1.19 (0.79–1.79)	0.394
BMI ≥ 25 kg/m²	0.74 (0.55–1.02)	0.062	1.29 (0.78–2.13)	0.328
BMI ≥ 30 kg/m²	0.66 (0.21–2.14)	0.493	not counted	
WC ≥ 80 cm	1.07 (0.80–1.45)	0.638	1.20 (0.81–1.79)	0.367
WC ≥ 85 cm	0.99 (0.76–1.28)	0.914	1.20 (0.77–1.86)	0.417
WC ≥ 90 cm	0.94 (0.69–1.27)	0.681	0.80 (0.43–1.50)	0.489
each 1 unit increase in parameters				
baseline BMI (kg/m²)	0.98 (0.93–1.03)	0.376	1.04 (0.97–1.11)	0.250
baseline WC (cm)	1.00 (0.98–1.02)	0.919	1.01 (0.99–1.03)	0.394
baseline PBF (%)	1.00 (0.97–1.03)	0.861	1.02 (0.99–1.06)	0.214
change in BMI (kg/m²)	1.24 (1.11–1.39)	<0.001	1.18 (1.04–1.34)	0.013
change in WC (cm)	1.07 (1.04–1.11)	<0.001	1.03 (0.98–1.08)	0.211
change in PBF (%)	1.08 (1.04–1.14)	<0.001	1.02 (0.95–1.08)	0.655
the highest quartile compared with the lowest quartile				
baseline BMI	1.06 (0.65–1.71)	0.817	2.27 (1.10–4.71)	0.028
baseline WC	1.27 (0.81–1.99)	0.302	1.69 (0.87–3.29)	0.122
baseline PBF	1.05 (0.65–1.69)	0.852	2.04 (1.02–4.08)	0.044
change in BMI	1.97 (1.36–2.85)	<0.001	1.31 (0.74–2.32)	0.349
change in WC	1.84 (1.25–2.72)	0.002	1.20 (0.67–2.16)	0.546
change in PBF	1.85 (1.27–2.68)	0.001	1.02 (0.58–1.78)	0.949

* adjusted for age, smoking, alcohol drinking, physical activity, mean blood pressure, fasting plasma glucose, log triglycerides, HDL cholesterol and LDL cholesterol; *b confidence interval; *c the number of the subjects was too small to calculate the hazard ratio; BMI, body mass index; WC, waist circumference; PBF, percent body fat

Table 6	Correlation coefficients			
men	women			
r	p	r	p	
between change in each parameter during follow-up				
baseline body mass index	−0.153	<0.001	−0.099	0.005
baseline waist circumference	−0.215	<0.001	−0.204	<0.001
baseline percent body fat	−0.285	<0.001	−0.148	<0.001
between change in systolic blood pressure during follow-up				
baseline body mass index	−0.100	<0.001	−0.011	0.765
baseline waist circumference	−0.042	0.154	0.016	0.652
baseline percent body fat	−0.074	0.011	−0.019	0.599
change in body mass index	0.256	<0.001	0.257	<0.001
change in waist circumference	0.245	<0.001	0.172	<0.001
change in percent body fat	0.180	<0.001	0.198	<0.001
between change in diastolic blood pressure during follow-up				
baseline body mass index	−0.060	0.038	−0.020	0.581
baseline waist circumference	0.004	0.895	−0.019	0.595
baseline percent body fat	−0.032	0.268	−0.049	0.174
change in body mass index	0.264	<0.001	0.221	<0.001
change in waist circumference	0.246	<0.001	0.165	<0.001
change in percent body fat	0.189	<0.001	0.171	<0.001

* excluding subjects who used antihypertensive drugs at the end point
highest quartile of baseline BMI and PBF compared with the lowest quartile were significantly associated with incident hypertension in women. Otherwise, no significant association was observed in women.

Pearson’s correlation coefficients between baseline BMI, WC and PBF and changes in themselves during follow-up and between baseline BMI, WC and PBF as well as changes in them during follow-up and changes in SBP and DBP are presented in Table 6. There were significant negative correlations between the baseline data and the changes in themselves during follow-up in both men and women. Baseline BMI and changes in SBP and DBP and baseline PBF and change in SBP were significantly inversely correlated in men. Otherwise, no significant correlation was observed between baseline parameters and changes in blood pressure. Changes in BMI, WC and PBF were significantly positively correlated with changes in blood pressure in both men and women.

Discussion

The present 5-year follow-up study demonstrated that the incidence of hypertension was 4–5 times higher in prehypertensive groups than normotensive groups. The baseline BMI, WC and PBF were not significantly associated with incident hypertension except for an inverse association between BMI ≥25 kg/m² and incident hypertension in men while changes in BMI, WC and PBF during the follow-up period were significantly positively associated with incident hypertension after being adjusted for baseline blood pressure, and the association of WC or PBF change with incident hypertension was not stronger than that of BMI change in men. In women, all the associations with incident hypertension were not significant except for positive associations between each 1 kg/m² increase in BMI during follow-up and the highest quartile of baseline BMI and PBF compared with the lowest quartile. It may, in part, be due to the insufficient sample size of women. Significant differences in the incidence of hypertension in any obesity category of women and in baseline quartiles of BMI, WC or PBF of both sexes were expired after being adjusted for baseline blood pressure. Changes in BMI, WC and PBF, but not their baseline values, were significantly positively correlated with changes in SBP and DBP during follow-up in both men and women.

These findings suggest that obese or overweight (BMI ≥25 kg/m²) individuals might make an effort to reduce their body weight to prevent hypertension. Indeed, the study population is considered to be more health conscious than the general population and obese or overweight individuals with one or more metabolic risk factors such as SBP ≥130 mmHg or DBP ≥85 mmHg were recommended to reduce their body weight after their health examinations. This intervention may explain the inverse association between the baseline BMI ≥25 kg/m² group and incident hypertension in men. However, this inverse association was not observed in women. Therefore, the above negative association between baseline obesity and incident hypertension in men may be a type 1 error due to multiple comparisons. No significant associations between baseline BMI, WC and PBF and incident hypertension was observed in women except for that of the highest quartile of baseline BMI compared with the lowest quartile.

Excess body weight and even modest adult weight gain substantially increase the risk of hypertension while weight loss reduces the risk of hypertension in female nurses in the US. Weight gain was associated with increased blood pressure and increased incidence of hypertension in white and African-American men and women adjusted for baseline BMI, height, SBP, DBP, age, waist-to-hip ratio, smoking, physical activity, education, caloric intake, fat intake and study center while weight loss was associated with a decrease in blood pressure and with a remission of hypertension in white and African-American men and women in the Atherosclerosis Risk in Communities (ARIC) studies. A study over a 5-year period in Pomerania on the southern shore of the Baltic Sea reported that a 5% weight loss reduced the risk of incident hypertension (HR, 0.84; 95% CI, 0.79–0.89) and increased the chance of incident blood pressure normalization in patients who were hypertensive at baseline by 15% (95% CI, 7%–23%)22. Another study among prehypertensive individuals reported that body weight and fat mass were markedly increased in those who developed hypertension (+5.71%; 95% CI, +4.60%–+6.83% and +17.8%; 95% CI, +14.5%–+21.0%, respectively), mildly increased in those who remained prehypertensive (+1.95%; 95% CI, +0.68%–+3.22% and +8.09%; 95% CI, +4.42%–+11.7%, respectively) and did not significantly change in those who became normotensive (−1.55%; 95% CI, −3.70%–+0.61% and +0.20%; 95% CI, −6.13%–+6.52%, respectively) after 10 years of follow-up22.

A study to test whether long-term weight change affects hypertension risk in 24,550 men and 10,111 women who were followed prospectively as part of the National Runners’ Health Study reported that the odds for hypertension were significantly related to BMI at follow-up when adjusted for baseline BMI, but generally not to baseline BMI when adjusted for follow-up BMI29. Another study investigated the obesity-hypertension link in white men over a median follow-up period of 46 years and reported that men of normal weight at age 25 years who became overweight or obese at age 45 years were at increased risk compared with men of normal weight at both times (HR, 1.57; 95% CI, 1.20–2.07), but not men who were overweight or obese at age 25 years who became normal weight at age 45 years (HR, 0.91; 95% CI, 0.43–1.92)30. These studies demonstrated a stronger association of weight change than baseline obesity or overweight with incident hypertension. In Japan, Ishikawa-Takata et al. reported that both baseline BMI and weight gain during follow-up were associated with incident hypertension in Japanese men7. Matsuo et al.27 and Tsujimoto et al.28 reported that baseline obesity is associated with incident hypertension independently of weight change during follow-up. In their secondary analysis, Tsujimoto et al. found that the HR of incident hypertension for individuals who were not obese (BMI <25 kg/m²) at baseline but obese (BMI ≥25 kg/m²) after 5 years was significantly higher compared with that for those who were not obese both at baseline and after 5-years. Conversely, the HR of incident hypertension for those who were obese at baseline but not obese after 5 years was not...
significantly higher than that for those who were not obese both at baseline and after 5-years19. This finding suggests a stronger association of weight change than of baseline obesity with incident hypertension in Japanese.

A study investigated the effect of weight history on blood pressure in the ARIC study population and reported that the effects of a 3-year weight change history explain some of the variation in blood pressure among individuals in the same BMI category and the effects appear to be stronger and more consistent in men than in women, but generally similar regardless of current weight status19. Another study reported that the risk of incident hypertension increased as the quartile of 2-year changes in BMI increased in men, while the BMI-gain effect on incident hypertension was not significant in women unless menopausal status was included in the adjustment19. These gender differences are in accord with the present study results.

Limitations

This present study is a retrospective study and the subjects were not from the general population, but from a health screening population, which suggests that the study population might be more health conscious than the general population. Approximately 20% of the candidates for the follow-up survey did not participate in the follow-up survey. It is possible these people became sick or died before attending the follow-up survey. However, there was no significant difference between the baseline data in the candidates and the actual followed subjects. In this study, hypertension was diagnosed at only one time point and may have included white coat hypertension. No dietary information was available, except for alcohol intake and smoking habits. Residual confounders might have influenced the results. The number of women studied may not have been sufficient to reach a conclusive result for females. Comparisons of associations between each anthropometric parameter and incident hypertension by each 1 unit increase in BMI, WC and PBF may not be appropriate because each unit may not be equivalent. However, the association of WC or PBF with incident hypertension was not stronger than that of BMI comparing by their quartiles.

Conclusions

The present 5-year follow-up study demonstrated that the changes in BMI, WC and PBF values during follow-up rather than their baseline values were significantly associated with incident hypertension after adjusting for baseline blood pressure and that the association of WC or PBF change with incident hypertension was not stronger than that of BMI change in the health-screened men. The changes in BMI, WC and PBF, but not their baseline levels, were positively correlated with the changes in blood pressure during follow-up. These results suggest that baseline levels of BMI, WC and PBF are less important than their changes during follow-up for the prevention of hypertension. All prehypertensive individuals should restrain themselves from an excess-calorie diet regardless of their BMI and a low salt diet and increased exercise should be recommended to them.

Acknowledgements

The author thanks all subjects who participated in the study, the paramedical staff at our Medical Check-up Center who assisted with the study and Honorary Prof. Yoshifusa Aizawa.

The sole author, Eiji Oda, received no financial support for this paper and has no conflict of interest to disclose.

The authors state that they have no Conflict of Interest (COI).

REFERENCES

1) Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure: Findings in hypertension screening of 1 million Americans. JAMA 1978; 240: 1607-10.
2) World Health Organization. 1999 World Health Organization—International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J Hypertens 1999; 17: 151-83.
3) Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. Am J Clin Nutr 2001; 74: 315-21.
4) Folsom AR, Prineas RJ, Kaye SA, Munger RG. Incidence of hypertension and stroke in relation to body fat distribution and other risk factors in older women. Stroke 1990; 21: 701-6.
5) He J, Klag MJ, Whelton PK, Chen JY, Qian MC, He GQ. Body mass and blood pressure in a lean population in southwestern China. Am J Epidemiol 1994; 139: 380-9.
6) Canoy D, Ruben R, Welch A, Bingham S, Wareham N, Day N, et al. Fat distribution, body mass index and blood pressure in 22,090 men and women in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) study. J Hypertens 2004; 22: 2067-74.
7) Shuger SL, Sui X, Church TS, Meriwether RA, Blair SN. Body mass index as a predictor of hypertension incidence among initially healthy normotensive women. Am J Hypertens 2008; 21: 613-9.
8) Nguyen TT, Adair LS, He K, Popkin BM. Optimal cutoff values for overweight: using body mass index to predict incidence of hypertension in 18- to 65-year-old Chinese adults. J Nutr 2008; 138: 1377-82.
9) Nemesure B, Wu SY, Hennis A, Popkin BM. The relationship of body mass index and waist-hip ratio on the 9-year incidence of diabetes and hypertension in a predominantly African-origin population. Ann Epidemiol 2008; 18: 657-63.
10) Kawada T, Morihashi M, Ueda H, Sirato T. Body mass index of 23 or more is a risk factor for hypertension and hyperlipidemia in Japanese workers. Percept Mot Skills 2007; 104(3 Part 1): 733-8.
11) Gelber RP, Gaziano JM, Manson JE, Buring JE, Sesso HD. A prospective study of body mass index and the risk of developing hypertension in men. Am J Hypertens 2007; 20: 370-7.
12) Kawada T. Body mass index is a good predictor of hypertension and hyperlipidemia in a rural Japanese population. Int J Obes Relat Metab Disord 2002; 26: 725-9.
13) Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE, et al. Body weight, weight change, and risk of hypertension in women. Ann Intern Med 1998; 128: 81-8.
14) Field A, Byers T, Hunter D, Laird NM, Manson JE, Williamson DF, et al. Weight cycling, weight gain, and risk of hypertension in women. Am J Epidemiol 1999; 150: 573-9.
15) Juhari, Stevens J, Chambless LE, Tyroler HA, Rosamond W, Nieto FJ, et al. Associations between weight gain and incident
hypertension in a bi-ethnic cohort: the Atherosclerosis Risk in Communities Study. Int J Obes Relat Metab Disord 2002; 26: 58-64.

16) Juhaeri, Stevens J, Chambless LE, Nieto FJ, Jones D, Schreiner P, et al. Associations of weight loss and changes in fat distribution with the remission of hypertension in a bi-ethnic cohort: the Atherosclerosis Risk in Communities Study. Prev Med 2003; 36: 330-9.

17) Ishikawa-Takata K, Ohta T, Moritaki K, Moritaki K, Gotou T, Inoue S. Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. Eur J Clin Nutr 2002; 56: 601-7.

18) Yang G, Xiang YB, Zheng W, Xu WH, Zhang X, Li HL, et al. Body weight and weight change in relation to blood pressure in normotensive men. J Hum Hypertens 2007; 21: 45-52.

19) Truesdale KP, Stevens J, Cai J. Effect of 3-year weight history on blood pressure: the atherosclerosis risk in communities study. Obesity (Silver Spring) 2008; 16: 1112-9.

20) Chen PC, Sung FC, Su TC, Chien KL, Hsu HC, Lee YT. Two-year change in body mass index and subsequent risk of hypertension among men and women in a Taiwan community. J Hypertens 2009; 27: 1370-6.

21) Luo W, Gao Z, Hu X, Zhou Z, Mingwu, Zhang L, et al. A prospective study on association between 2 years change of waist circumference and incident hypertension in Han Chinese. Int J Cardiol 2013; 167: 2781-5.

22) Markus MR, Ittermann T, Baumeister SE, Troitzsch P, Schipf S, Lorbeer R, et al. Long-term changes in body weight are associated with changes in blood pressure levels. Nutr Metab Cardiovasc Dis 2015; 25: 305-11.

23) D’Agostino RB, Lee ML, Belanger AJ, Cupples LA, Anderson K, Kannel WB. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Stat Med 1990; 9: 1501-15.

24) Fisher LD, Lin DY. Time-dependent covariates in the Cox proportional-hazards regression model. Annu Rev Public Health 1999; 20: 145-57.

25) Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120: 1640-5.

26) Oda E. Metabolic syndrome: its history, mechanisms, and limitations. Acta Diabetol 2012; 49: 89-95.

27) Matsu T, Sairenchi T, Suzuki K, Tanaka K, Muto T. Long-term stable obesity increases risk of hypertension. Int J Obes (Lond) 2011; 35: 1056-62.

28) Tsujimoto T, Sairenchi T, Iso H, Irie F, Yamagishi K, Tanaka K, et al. Impact of obesity on incident hypertension independent of weight gain among nonhypertensive Japanese: the Ibaraki Prefectural Health Study (IPHS). J Hypertens 2012; 30: 1122-8.

29) Williams PT. Increases in weight and body size increase the odds for hypertension during 7 years of follow-up. Obesity (Silver Spring) 2008; 16: 2541-8.

30) Shihab HM, Meoni LA, Chu AY, Wang NY, Ford DE, Liang KY, et al. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation 2012; 126: 2983-9.

31) Matsu S, Imai E, Horio M, Yasuda Y, Tomita Y, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 2009; 53: 982-92.

32) Markus MR, Stritzke J, Stewert U, Lieb W, Luchner A, Döring A, et al. Variation in body composition determines long-term blood pressure changes in pre-hypertension: the MONICA/KORA (Monitoring Trends and Determinants on Cardiovascular Diseases/Cooperative Research in the Region of Augsburg) cohort study. J Am Coll Cardiol 2010; 56: 65-76.