Effect of process parameters on material removal rate in magnetic abrasive flow machining of Al/SiC/B₄C metal matrix composites

Anil Jindal¹, Parlad Kumar², Sushil Mittal³

¹,²Department of Mechanical Engineering, Punjabi University, Patiala, Punjab, India
³Department of Mechanical Engineering, Chandigarh University, Gharuan, Punjab, India

*Corresponding author E-mail: aniljindal11@gmail.com

Abstract. In the recent times, the necessity for magnetic abrasive flow machining (MAFM) process in the industry arises as it is superior to conventional machining processes. MAFM is used to obtain high surface finishing and materials removal rate for the cylindrical, complex and intricate profiles. In this paper, the effect of process parameters has been studied on the material removal rate in MAFM process of metal matrix composites of Al/SiC/B₄C prepared by stir casting process. The process parameters are magnetic field, extrusion pressure, no. of cycles, mesh size of abrasives, workpiece material and concentration of abrasives. Taguchi design of experiments has been used for design of experiments and the analysis of variance technique has been used to check the significance level of each input parameter. The results show that the intensity of magnetic field has a dominant effect on the material removal rate.

1. Introduction

Metal Matrix Composites (MMCs) have excellent mechanical properties and are widely used in aerospace, structural and automotive fields [1-2]. To meet the standard industrial requirements, various processes such as Magnetic Abrasive Flow Machining (MAFM), grinding, laser polishing, lapping etc. are used for surface finishing operations [3-4]. In MAFM process, the abrasive particles are used in combination with iron powder and lubricant solution to obtain machining of inner surface and provide lubrication [5]. AFM process can provide the significant improvement in the surface finishing of the aerospace, automobile and rail locomotive components in just few minutes which show that this process is suitable for advance manufacturing [6]. MAFM process uses magnetic field to enhance the cutting force and obtain superior surface finishing as compared with conventional machining processes [7]. Therefore, MAFM process provides accuracy and significant surface finishing of the materials [8]. Shabgard et al. [9] reported the MAFM of H13 tool steel. It was found that the MAFM process provides good surface finishing of hard materials. Mittal et al. [10] found that AFM process increases the surface finishing of Al/SiC MMCs.

Using the magnetic field in the abrasive flow machining process, the surface finishing greatly improved in difficult to machine work pieces [11]. The reinforcement of SiC in the hybrid composites showed significant improvement in the wear resistance [12]. Research study showed that the surface roughness was significantly reduced using MAFM process for Inconel 718 work piece [13]. The magnetic field helped in improving the surface finishing of the Al-6061 hybrid composites using MAFM process [14]. The wear rate and coefficient of friction of Al/SiC/B₄C MMCs are lower as compared to Al/SiC MMCs. SEM images study showed uniform distribution of materials and no defect due to SiC and B₄C reinforcement in the aluminium [15]. MAFM process may not be suitable for drilling holes in the work pieces. However, the in some cases, it also offers little high cost [16]. The
metallurgical and hardness properties of aluminium are greatly improved with reinforcement of SiC and B₄C particles [17]. MAFM process improves the surface finishing unto 95 nm for achieving nano-finishing in case of Ti-6Al-4V flat discs [18]. MAFM process helps in improving the tool life by 50-60% in case of Ti-6Al-4V work piece [19-20]. MAFM process is also suitable for achieving nano-finishing of bio-titanium alloys [21-22]. It was reported that the machining efficiency can be increased by 40% using MAFM process assisted with ultrasonic vibration [23].

In the field of precision engineering, various processes such as magnetic float polishing [24], magnetorheological abrasive flow machining [25], magnetic abrasive finishing [26], magnetorheological finishing [27] are available for achieving better surface finishing with good flexibility and controllability [28-29]. Al/SiC/B₄C MMCs are used in aerospace, industries, rail locomotives, automobile and medical sector. The magnetic field, work piece materials, no. of cycles and extrusion pressure has the significant effect on the MRR in magnetic field abrasive flow machining. The magnetic field beyond certain value showed decrease in the MRR for the work piece as the rough peaks vanishes after certain level of machining [30].

2. Materials and Methods

In the present paper, Al/SiC/B₄C MMCs is prepared using stir casting method. The main advantage of preparing the Al/SiC/B₄C MMCs with stir casting is the lower cost as compared to other available methods and stir casting allows uniform distribution of the materials. The Al/SiC/B₄C MMCs are fabricated using micro-EDM process and then machined using MAFM process.

The various process parameters taken in the present research are magnetic field density, extrusion pressure, no. of cycles, mesh size of abrasives, workpiece material and concentration of abrasives. The response parameter taken is MRR. The effect of process parameters on response parameter was investigated. The magnetic field distribution is investigated using simulation software. The XRD analysis used to check the uniform distribution of materials and SEM used to compare the machined surfaces before and after machining.

2.1. Experimental Setup

The experimental setup for MAFM process consists of the electromagnets, media cylinders, pistons, workpiece fixtures and hydraulic unit. The electromagnets provide the magnetic field using the electric current. The cylinders used to guide the reciprocating pistons. Nylon fixtures with a hole used to hold the workpiece in the right position. Hydraulic unit with the capacity of withstanding pressure of 10 MPa was used for the experimentation. Hydraulic unit consists of direction, pressure control valves, hydraulic cylinders, tank, pressure gauges and gear pumps.

2.2. Experimentation
The work pieces of Al/SiC/B₄C MMCs were prepared using the stir casting process. The process parameters used are magnetic field, extrusion pressure, no. of cycles, mesh size of abrasives, workpiece material, concentration of abrasives as given in Table 1. The response parameter is material removal rate (MRR). The hydraulic oil was used in addition to the abrasive mixture and iron powder to provide the lubrication to the inner surface. The abrasive mixture with varying concentration was made up of Al, SiC and B₄C particles for machining the work pieces. The experiments were carried out by varying the process parameters to achieve the optimal material removal rate. The response parameter MRR was calculated using the following expression:

$$\text{MRR} = \frac{\text{Initial weight} - \text{Final weight}}{\text{Time}}$$

Table 1. Level of Input Parameters

Symbol	Factors	Level 1	Level 2	Level 3
A	Magnetic Field (T)	0.2	0.4	0.6
	Workpiece Material	10	20	30
B	(percentage of SiC in Al/SiC/B₄C)	3	5	7
	Workpiece Material			
	(percentage of B₄C in Al/SiC/B₄C)			
	Mesh Number	100	150	200
D	Abrasives concentration	50	55	60
E	Extrusion pressure (MPa)	3	5	7
F	No. of Cycles	100	200	300

The specimens were fabricated using the micro-EDM process. After fabrication, the specimens were machined using MAFM process. Carbonyl iron particles used with the abrasive mixtures and hydraulic oil to finish the inner surface of Al/SiC/B₄C hybrid MMCs. Hydraulic oil acts as lubricant and binder for the abrasive mixture passing through the hollow inner surface of the work piece.

The significance of each process parameter was analyzed using the ANOVA technique. The distribution of the magnetic field in the machining region was analyzed using the simulation software as shown in the Figure 3.
3. Results and Discussion

Experiments were performed using Taguchi’s L27 Orthogonal array. Three repetitions of the experiments were done. The obtained values of MRR are given in Table 2. The experiments were performed using different values of input parameters as given by Taguchi L27 array.

Table 2. Experimental Observations for MRR

Exp. No.	MRR1 (in µg/s)	MRR2 (in µg/s)	MRR3 (in µg/s)	Mean MRR (in µg/s)
1	2.10	1.98	1.66	1.91
2	2.31	3.16	2.84	2.77
3	5.02	4.77	5.14	4.98
4	2.12	1.85	2.64	2.20
5	2.53	4.02	3.09	3.21
6	5.00	4.10	4.05	4.38
7	2.53	2.05	2.76	2.45
8	2.54	3.23	2.81	2.86
9	4.22	5.01	4.38	4.54
10	2.55	2.96	2.58	2.70
11	6.65	5.13	5.00	5.59
12	7.96	4.44	5.35	5.92
13	3.24	3.38	2.83	3.15
14	7.99	6.99	6.35	7.11
15	4.55	4.62	4.81	4.66
16	3.44	4.02	3.37	3.61
17	6.47	6.88	7.09	6.81
18	4.52	5.49	5.00	5.00
19	9.78	9.77	8.46	9.34
20	3.99	4.34	3.36	3.9
21	8.69	8.67	8.89	8.75
22	9.13	9.97	9.66	9.59
23	4.14	4.78	4.38	4.43
24	8.19	8.63	8.27	8.36
25	9.02	9.24	9.32	9.19
26	4.33	3.99	4.37	4.23
27	8.35	8.23	8.20	8.26
The values of MRR obtained in Table 2 have been used for calculation signal to noise ratio. For this purpose, ‘higher the best’ approach has been used. The graphs for signal to noise ratio have been shown in Figure 4 and response values for means are given in Table 3. To get the percentage contribution of each input parameter the analysis of variance has been shown in Table 4.

![Figure 4. S/N ratio plots for process parameters](image)

Table 3. Response Table for Means

Level	A	B	C	D	E	F
1	3.256	3.856	5.14	5.096	5.273	4.904
2	4.95	4.852	5.244	5.232	5.076	4.546
3	7.339	6.537	5.16	5.217	5.196	6.094
Delta	4.083	2.881	0.104	0.137	0.198	1.549
Rank	1	2	6	5	4	3

Table 4. ANOVA for MRR

Source	D.F.	Seq. SS	Contribution	Adj. SS	Adj. MS	F-Value	P-Value
A	2	75.755	49.97%	75.7546	37.8773	23.86	0.001
B	2	41.455	27.34%	41.4552	20.7276	13.05	0.007
C	2	0.179	0.12%	0.1787	0.0893	0.06	0.945
D	2	0.055	0.04%	0.0533	0.0247	2.76	0.041
E	2	11.832	7.80%	11.8319	5.9159	4.55	0.030
F	2	0.101	0.07%	0.1008	0.0504	7.64	0.013
Error	4	22.228	14.66%	22.2281	1.5877		
Total	16	151.605	100.00%				

R-Sq = 99.59% \quad R-Sq(adj) = 98.66%

Table 4 represents that the mesh size of abrasives has little effect on the MRR. It can be clearly observed that the magnetic field density is the major process parameter having most significant effect on the MRR of the Al/SiC/B4C hybrid MMCs in case of MAFM process. The percentage contribution
shows that the Magnetic field density, work piece materials, extrusion pressure and no. of cycles has a significant effect on MRR. The surface finishing was visibly improved after the machining.

3.1. Optimization for MRR using Taguchi Method

Overall MRR (M) = 5.18 µ g/s

Optimum MRR considering most significant factors as per Taguchi combination

\[= A_3 + B_3 + F_3 - 2M \]
\[= 7.33 + 6.53 + 6.09 - 2 \times 5.18 \]
\[= 9.59\mu g/s \]

Now, Confidence Interval, \(CI = \pm \sqrt{F(1, n_e)Ve/ne} \)

\(F = F \) – ratio, \(\alpha = \) risk
\(n = \) degree of freedom for error
\(V_e = \) Variance
\(n_e = \) no. of replications

At 95%, Confidence Interval

\[F(1, 2, 0.05) = 18.50 \]

\[n_e = \frac{N}{1 + \text{dof of all the factors}} \]
\[n_e = \frac{27}{1+6} = 3.80 \]

\[V_e = 0.051 \]

\[CI = \pm \sqrt{18.50 \times 0.051 / 3.80} = \pm 0.494 \]

Mean experimental value after confirmation experiments = 9.81 µg/s

\% error = \(\frac{9.81 - 9.59}{9.81} \times 100 = 2.24 \% \)

3.2 XRD and SEM analysis

The XRD graph in Figure 5 shows that there are no unwanted compounds present in the Al/SiC/B_{2}C MMCs. Most of the peaks are of Al, SiC and B_{2}C only. So, the uniform distribution of the materials achieved using the stir casting process. The surface defects, cracks and irregularities were significantly improved from the work piece using MAFM. It was observed that the magnetic field around the work piece in the machining region enhanced the MRR of the Al/SiC/B_{2}C MMCs.
SEM images were captured before and after machining of MAFM process. The surface defects, cracks and irregularities were significantly removed from the workpiece using MAFM. Figure 6 shows SEM surface before machining and Figure 7 shows a work piece after machining.

Figure 5. XRD graph for the Al/SiC/B$_4$C hybrid MMCs

Figure 6. SEM before MAFM process

Figure 7. SEM after MAFM process
4. Conclusions

1. In the present study it has been found that the significant factors in MAFM process are: magnetic field, work piece materials, no. of cycles and extrusion pressure.
2. It has been found that MRR increases with the increase in the magnetic field, no. of cycles and extrusion pressure.
3. The intensity of magnetic field has strong correlation with MRR. The MRR increases with increased magnetic field intensity. Also, the MRR decreased with increasing the hardness of the material.
4. The SEM and XRD images confirm the results of increased surface finish and removed material.

References

[1] Mohapatra J, Nayak S, Mohapatra M 2020 Mechanical and Tribology properties of Al 4.5% Cu 5% TiC Metal Matrix Composites for light weight structures International Journal of Lightweight Materials and Manufacture3 120-126.
[2] Rawal S2001Metal Matrix Composites for space applications JOM The Member Journal of the Minerals, Metals and Materials Society53 14-17.
[3] Amnieh SK, P Mosaddegh, Tehrani AF 2017Study on Magnetic Abrasive Finishing of spiral grooves inside of aluminium cylinders International Journal of Advanced Manufacturing Technology91 1-10.
[4] Mingareev I, Bonhoff T, El-Sherif AF, Richardson M 2013 Femtosecond laser post-processing of metal parts produced by laser additive manufacturing Journal of Laser Applications25 1-4.
[5] Sadiq A, Shunnugam MS 2009Investigation into magnetorheological abrasive honing MRAH International Journal of Machine Tools and Manufacture49 554-60.
[6] Groeger, Segel F, Uhlmann E, Robkamp S 2018 Definition of edges in correlation to abrasive flow machining as a finishing process Surface Topography Metrology and Properties6 1 – 11.
[7] Jain VK 2002Advanced Machining Processes Allied Publishers Pvt. Ltd.
[8] Shinmura T, Takazawa K and Hatano E 1985 Study on magnetic abrasive process-application to plane finishing Bulletin of Japan Society of Precision Engineering19 289-91.
[9] Shabgard M, Tabriz F, Gholipoor A 2016 Experimental study of the effects of abrasive particle size and workpiece hardness in magnetic abrasive flow machining Modares Mechanical Engineering 16 131-138.
[10] Mittal S, Kumar V, Kansal H 2016 Multi objective optimization of process parameters involved in micro-finishing of Al/SiC MMCs by abrasive flow machining process Journal of Materials: Design & Applications, 232 1-14.
[11] Zou Y, Xie H, Dong C, Wu J 2018 Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field International Journal of Advanced Manufacturing Technology97 2193–2202.
[12] Prasad BK 2007 Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions Wear262 262–273
[13] Guo J, Tan ZE, Au KH, Liu K 2017 Experimental investigation into the effect of abrasive and force conditions in magnetic field assisted finishing International Journal of Advanced Manufacturing Technology 90 1881–1888.

[14] Sharma VK, Kumar V, Joshi RS 2018 Investigation on Surface Roughness During Finishing of Al6061 Hybrid Composites Tube with Traces of Rare Earth Metals Using Magnetic Abrasive Flow Machining Advances in Unconventional Machining and Composites Proceedings of AMITDR 493-501.

[15] Sekar K, Ananda Rao DV 2020 Investigation of Hybrid Composite A7075/SiC/B4C by Stir and Squeeze Casting method Materials Today: Proceedings 22 1398–1408.

[16] Singh S, Shan HS 2002 Development of magneto abrasive flow machining process International Journal of Machine Tools and Manufacturing 953–959.

[17] Pandiyarajan R, Prabakaran MP, Rajkumar T, Vetrivel Kumar K, Manikandan R 2020 Metallurgical and mechanical properties of SiC/ B4C reinforced with aluminum composites synthesized by mechanical alloying Materials Today: Proceedings, 1-5.

[18] Parameswari G, Jain VK, Ramkumar J, Nagdev L 2019 Experimental investigations into nanofinishing of Ti6Al4V flat disc using magnetorheological finishing process International Journal of Advances in Manufacturing Technology 100 1055–1065.

[19] Yamaguchi H, Hendershot P, Pavel R, Iverson JC 2016 Polishing of uncoated cutting tool surfaces for extended tool life in turning of Ti–6Al–4V Journal of Manufacturing Process 24 355–360.

[20] H Yamaguchi, Srivastava AK 2012 Magnetic abrasive finishing of cutting tools for machining of titanium alloys CIRP Annals Manufacturing Technology 61 311–314.

[21] Barman A, Das M 2017 Design and fabrication of a novel polishing tool for finishing freeform surfaces in magnetic field assisted finishing (MFAF) process Precision Engineering 49 61–68.

[22] Barman A, Das M 2019 Tool path generation and finishing of bio-titaniunm alloy using novel polishing tool in MFAF process International Journal of Advanced Manufacturing Technology 100 1123–1135.

[23] Zhou K, Chen Y, Du ZW, Niu FL 2015 Surface integrity of titanium part by ultrasonic magnetic abrasive finishing International Journal of Advances in Manufacturing Technology 80 997–1005.

[24] Umehara N, Kirtane T, Gerlick R, Jain VK, Komanduri R 2006 A new apparatus for finishing large size/large batch silicon nitride Si3N4 balls for hybrid bearing applications by magnetic float polishing (MFP) International Journal of Machine Tools Manufacturing 46 151–169.

[25] Das M, Jain VK, Ghoshdastidar PS 2012 Nanofinishing of flat workpieces using rotational–magnetorheological abrasive flow finishing (R-MRAFF) process International Journal of Advances in Manufacturing Technology 62 405–420.

[26] Kheelraj P, Pulak MP 2018 Use of chemical oxidizers with alumina slurry in double disk magnetic abrasive finishing for improving surface finish of Si Journal of Manufacturing Process 32 138–150.

[27] Singh AK, Jha S, Pandey PM 2012 Nano-finishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process International Journal of Machine Tools Manufacturing 63 21–31.
[28] Guo J, Tan ZE, Au KH, Liu K 2017 Experimental investigation into the effect of abrasive and force conditions in magnetic field assisted finishing International Journal of Advances in Manufacturing Technology 90 1881–1888.

[29] Zou Y, Xie H, Dong C, Wu J 2018 Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field International Journal of Advances in Manufacturing Technology 97 2193–2202.

[30] Singh R, Walia RS 2012 Hybrid magnetic force assistant abrasive flow machining process study for optimum material removal International Journal of Applied Engineering Research 7 2121-2124.