Let M be a three-manifold and $K_t(M)$ be its Kauffman bracket skein module, that is, the $\mathbb{C}[t, t^{-1}]$-module generated by the isotopy classes of framed links in M modulo the relations of the Kauffman bracket.

If K is a knot in the three-sphere and M is its complement, then $K_t(T^2 \times I)$ acts from the left on $K_t(M)$ with T^2 a torus. The peripheral ideal $I_t(K)$ is defined to be the left ideal of $K_t(T^2 \times I)$ annihilating the empty link \emptyset in M. The A-ideal, which is shown to be a generalization of the A-polynomial, can be defined by $I_t(K)$ [C. Frohman, R. Gelca, and W. LoFaro, Trans. Am. Math. Soc. 354, No. 2, 735-747 (2002; Zbl 0980.57002)]. Here the A-polynomial is a two-variable polynomial invariant of a knot defined by using the character variety of $SL(2; \mathbb{C})$-representations of $\pi_1(M)$ [D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Invent. Math. 118, No. 1, 47-84 (1994; Zbl 0842.57013)].

A pairing $K_t(D^2 \times S^1) \times K_t(M) \rightarrow \mathbb{C}[t, t^{-1}]$ is defined by gluing the solid torus $D^2 \times S^1$ to the knot complement M. Let $S_n(\alpha)$ be the skein obtained as a Chebyshev polynomial of $\alpha = \{0\} \times S^1 \subset D^2 \times S^1$. Then $(S_n(\alpha), \emptyset)$ defines the nth colored Kauffman bracket, a version of the colored Jones polynomial.

Using these facts the author proves that for a knot K and a nonzero element $\psi \in I_t(K)$ there exists a number ν such that the first ν colored Kauffman brackets of K and ψ determine all the other colored Kauffman brackets. He also gives a technical condition that the A-ideal of a knot determines all the Kauffman brackets. As an example a recursive formula for the colored Kauffman brackets of the trefoil knot is given.

Reviewer: Hitoshi Murakami (Tokyo)

MSC:

57M27 Invariants of knots and 3-manifolds (MSC2010)
46L85 Noncommutative topology
57M25 Knots and links in the 3-sphere (MSC2010)

Keywords:

Kauffman bracket; noncommutative geometry; Kauffman skein module

Full Text: DOI arXiv

References:

[1] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883 – 927. - Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[2] Doug Bullock, Rings of \(\mathbb{C}[t, t^{-1}]\)?-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), no. 4, 521 – 542. - Zbl 0907.57010 · doi:10.1007/s000140050032
[3] D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994), no. 1, 47 – 84. - Zbl 0842.57013 · doi:10.1007/BF01231526
[4] Charles Frohman and Razvan Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), no. 10, 4877 – 4888. - Zbl 0951.57007
[5] C. Frohman, R. Gelca, W. LoFaro, The A-polynomial from the noncommutative viewpoint, preprint. - Zbl 0980.57002
[6] R. Gelca, Noncommutative trigonometry and the A-polynomial of the trefoil knot, preprint. - Zbl 1017.57002
[7] Jim Hoste and Józef H. Przytycki, The \(2/\text{finity}\)-skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theory Ramifications 2 (1993), no. 3, 321 – 333. - Zbl 0796.57005 · doi:10.1142/S0218216593000180
[8] Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103 – 111. - Zbl 0564.57006
[9] Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395 – 407. - Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[10] W. B. R. Lickorish, The skein method for three-manifold invariants, J. Knot Theory Ramifications 2 (1993), no. 2, 171 – 194. · Zbl 0793.57003 · doi:10.1142/S0218216593000118

[11] Józef H. Przytycki and Adam S. Sikora, Skein algebra of a group, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 297 – 306. · Zbl 0902.57005

[12] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547 – 597. · Zbl 0725.57007 · doi:10.1007/BF01239527

[13] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. · Zbl 0812.57003

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.