Anesthetic management
of a patient with MELAS

Madam,
Mitochondrial diseases (MDs) have an incidence of 1:4000 live births. With advancing diagnostic and treatment facilities, increasing number of patients present for anesthesia for diagnostic procedures or palliative surgeries. MELAS is a subgroup of MDs characterized by mitochondrial encephalomyopathy, lactic acidosis, and stroke. These diseases have variable clinical presentation with multisystem involvement [Table 1]. Although clues to the disease may manifest in early years, most cases become clinically symptomatic after late childhood. Pediatric onset disease is more progressive with neurological, cardiac and liver dysfunction. These patients have increased sensitivity to most drugs used in anesthesia [Table 2]. However, to the best of our knowledge, there are no reports of any adverse events with ketamine and fentanyl in MD patients.

We report a 9-year-old girl, weighing 19 kg, with MELAS, and recurrent aspiration pneumonia due to bulbar involvement. She was on nasogastric tube (NGT) feeds and was planned for laparoscopic gastrostomy under general anesthesia. On examination, she was alert, conscious and dysarthric. Her respiratory rate was 30/min, oxygen saturation 93% on room air and 96% with oxygen supplementation. Bilateral coarse crepitations were present. Chest X-ray showed features suggestive of aspiration pneumonia.

In view of her pulmonary condition and increased vulnerability to anesthetic agents, an open procedure was settled on, after discussion with the surgeons, under a combination of sedation with fentanyl-ketamine and local field block. She was adequately fasted, while maintained on dextrose containing intravenous fluid to avoid increasing metabolic burden. The risk of potential aspiration was considered minimal as she was kept NPO adequately, in addition to the presence of NGT allowing for suctioning of gastric contents (if any). After establishing intravenous access and routine monitoring, ketamine 10 mg bolus (0.5 mg/kg) was given with which the child fell asleep. Subsequently, a field block was given with a mixture of 0.2% ropivacaine and 1% lignocaine. Fentanyl 5 mcg (0.25 mcg/kg) was given just before skin incision. With these minimal doses, the respiratory rate fell to 3/min. A pediatric open circuit was used to assess respiration and assist if necessary. The child did not have any response to surgical incision, neither did she require any further doses. The procedure was completed successfully at the end of which she was shifted to a high dependency unit for monitoring.

Though Markham et al. state that ketamine has been shown to inhibit oxidation in mitochondria in animal models, there is paucity in literature on its untoward effects in patients

Table 1: Typical features of MELAS

Areas of Involvement	Features
Clinical	Neurologic: History of developmental delay, learning disabilities, attention deficit disorder, myopathy, exercise intolerance, hearing impairment, ataxia, seizures, stroke-like episodes (hallmark)
	Cardiac: Palpitations, dyspnea, cardiac conduction abnormalities hypertrophic/dilated cardiomyopathy
	Gastrointestinal: Pancreatitis, ischemic colitis, and intestinal obstruction
	Renal: Nephrotic syndrome
	Endocrine: Diabetes, hypo/hyperthyroidism
Biochemistry	Elevated serum alanine and lactate levels in both blood and CSF, elevated serum creatine kinase
Radiology	Cortical infarct lesions, calcifications in the basal ganglia, cerebral atrophy and calcifications in late stages
EEG	Multiple epileptiform activity with secondary generalization and poor sleep pattern, suggestive of epileptic encephalopathy
Histology	Ragged red fibers (hallmark), mitochondrial proliferation and paracrystalline bodies on electron microscopy

CSF = Cerebrospinal fluid, EEG = Electroencephalogram, MELAS = Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes
Letters to Editor

Table 2: Effects of anesthetics in MD

Anesthetic agent	Effects	Comments
Scoline	Possibility of myotonic crisis	Contraindicated
Nondepolarizing muscle relaxants	Unpredictable effects with possibility of increased intensity and duration of paralysis	Should be used with caution
Anticholinesterases	Possibility of myotonic crisis	Contraindicated
Volatile anesthetics	Potent inhibitors of complex I even on normal mitochondria in the levels used. Highly variable sensitivity implying lower MAC requirement, amplified vasodilatory effects and myocardial depression	Sevoflurane may be used especially when intravenous access not established preoperatively. Successful outcomes reported
Propofol	Inhibits complex I function, uncouples oxidative phosphorylation, and affects complex II, IV, and V to varying degrees as well as transport of long-chain fatty acids and β-oxidation	Contraindicated. However, single induction dose of propofol reported without any adverse outcome
Ketamine	Considered safe	No reported complication
Opioids	Mitochondrial depressant effects with remifentanil <fentanyl <morphine	Neuraxial administration not totally contraindicated due to the miniscule doses employed
Local anesthetics	All inhibit acylcarnitine transferase and complex I. Bupivacaine reported to affect bio-energetics due to sarcomer disruption and alteration of mitochondrial structure in in vitro studies in a concentration dependent manner	Used cautiously in the least amount and concentration required. Agents preferred lidocaine >ropivacaine >bupivacaine and etidocaine. In muscle biopsy patients, LA preferably be given after the biopsy specimen isolation, due to possibility of interference with diagnostic value of tissue specimen

MAC = Mitochondrial apoptosis-induced channel, MD = Mitochondrial disease

with MD. In our patient, we chose ketamine for its analgesic effects, bronchodilatory properties and ability to maintain airway reflexes as well as spontaneous respiration. There are no adverse reports with the use of fentanyl either, except at higher doses. However, we found an increased sensitivity to even a very minimal dose of both drugs, as manifested by a significant drop in respiratory rate. Close monitoring of the patient helped avert an untoward event. However, we wish to highlight that even these seemingly safe agents should be titrated to patient needs very cautiously, rather than a standard weight-based dosing.

Two large cases series reported suggest the possibility of safe anesthesia with appropriate preoperative assessment and monitoring. Nonetheless, it is also important to be aware of reports of delayed worsening of respiratory function with or without neurologic degeneration in mildly affected patients whose anesthetic course had been notably uneventful. Choosing between local, regional, or general anesthesia, depends on the patient (tolerability of an awake procedure, degree of neuropathy/myopathy, spinal cord involvement) as well as nature of surgery (degree of muscle relaxation required, postoperative analgesia). Even in the absence of negative literature, it should be considered that the requirement of any agent may be lower than in normal individuals, and titration of drugs to effect is more appropriate than a weight-based nomogram. It will be prudent to remember that a successful use of one agent in a patient does not mean that the agent is safe to use in all, but may simply be due to a biased reporting.

Suma Mary Thampi, Chitra Srinivasan, Gladdy George, Kirubakaran Davis
Department of Anaesthesia, Christian Medical College and Hospital, Vellore, Tamil Nadu, India

Address for correspondence: Dr. Suma Mary Thampi, Department of Anaesthesia, Christian Medical College and Hospital, Vellore - 632 004, Tamil Nadu, India. E-mail: sumadavid@gmail.com

References

1. Driessen JJ. Neuromuscular and mitochondrial disorders: What is relevant to the anaesthesiologist? Curr Opin Anaesthesiol 2008;21:350-5.
2. Markham A, Cameron I, White SJ. The effect of ketamine hydrochloride, a non-barbiturate parenteral anaesthetic on oxidative phosphorylation in rat liver mitochondria. Biochem Pharmacol 1981;30:2165-8.
3. Shipton EA, Prosser DO. Mitochondrial myopathies and anaesthesia. Eur J Anaesthesiol 2004;21:173-8.
4. Driessen J, Willems S, Dercksen S, Giele J, van der Staak F, Smeitink J. Anaesthesia-related morbidity and mortality after surgery for muscle biopsy in children with mitochondrial defects. Paediatr Anaesth 2007;17:16-21.
5. Footitt EJ, Sinha MD, Raiman JA, Dhawan A, Moganasundram S, Champion MB. Mitochondrial disorders and general anaesthesia: A case series and review. Br J Anaesth 2008;100:436-41.
6. Casta A, Quackenbush EJ, Houck CS, Korson MS. Perioperative
white matter degeneration and death in a patient with a defect in mitochondrial oxidative phosphorylation. Anesthesiology 1997;87:420-5.

7. Cooper MA, Fox R. Anesthesia for corrective spinal surgery in a patient with Leigh's disease. Anesth Analg 2003;97:1539-41.

8. Grattan-Smith PJ, Shield LK, Hopkins IJ, Collins KJ. Acute respiratory failure precipitated by general anesthesia in Leigh’s syndrome. J Child Neurol 1990;5:137-41.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.