Genome editing of *Ralstonia eutropha* using an electroporation-based CRISPR-Cas9 technique

Bin Xiong1,2, Zhongkang Li2,3,4, Li Liu2,3,4, Dongdong Zhao2,3, Xueli Zhang2,3* and Changhao Bi2,3*

Abstract

Background: *Ralstonia eutropha* is an important bacterium for the study of polyhydroxyalkanoates (PHAs) synthesis and *CO₂* fixation, which makes it a potential strain for industrial PHA production and an attractive host for *CO₂* conversion. Although the bacterium is not recalcitrant to genetic manipulation, current methods for genome editing based on group II introns or single crossover integration of a suicide plasmid are inefficient and time-consuming, which limits the genetic engineering of this organism. Thus, developing an efficient and convenient method for *R. eutropha* genome editing is imperative.

Results: An efficient genome editing method for *R. eutropha* was developed using an electroporation-based CRISPR-Cas9 technique. In our study, the electroporation efficiency of *R. eutropha* was found to be limited by its restriction-modification (RM) systems. By searching the putative RM systems in *R. eutropha* H16 using REBASE database and comparing with that in *E. coli* MG1655, five putative restriction endonuclease genes which are related to the RM systems in *R. eutropha* were predicated and disrupted. It was found that deletion of H16_A0006 and H16_A0008-9 increased the electroporation efficiency 1658 and 4 times, respectively. Fructose was found to reduce the leaky expression of the arabinose-inducible pBAD promoter, which was used to optimize the expression of cas9, enabling genome editing via homologous recombination based on CRISPR-Cas9 in *R. eutropha*. A total of five genes were edited with efficiencies ranging from 78.3 to 100%. The CRISPR-Cpf1 system and the non-homologous end joining mechanism were also investigated, but failed to yield edited strains.

Conclusions: We present the first genome editing method for *R. eutropha* using a CRISPR-Cas9 approach, which significantly increased the efficiency and decreased time to manipulate this facultative chemolithoautotrophic microbe. The novel technique will facilitate more advanced researches and applications of *R. eutropha* for PHA production and *CO₂* conversion.

Keywords: *Ralstonia eutropha*, *Cupriavidus necator*, Electroporation, CRISPR, Cas9, Genome editing

Background

Ralstonia eutropha H16, also known as *Cupriavidus necator* H16, is a Gram-negative β-proteobacterium that is ubiquitously present in soil and freshwater environments [1]. It has attracted considerable research interest due to its significant economic potential [2] and *CO₂* fixation ability [3, 4]. This facultative chemolithoautotrophic bacterium is a metabolically versatile organism that can grow well under both lithoautotrophic and heterotrophic conditions [1]. Under lithoautotrophic conditions, it fixes *CO₂* via the Calvin–Benson–Bassham (CBB) cycle, which comprises enzymes encoded by the two CBB operons [1]. The energy used to implement *CO₂* fixation and maintain cell growth is generated by energy-conserving hydrogenases, which oxidize molecular *H₂* and thereby reduce NAD⁺ to form NADH [1]. The lithoautotrophic *R. eutropha* has great potential as
a chassis for the study of CO₂ fixation and development of microbial cell factories for syngas utilization. Under heterotrophic conditions, several organic substrates, such as fructose, gluconate, N-acetylglucosamine and some organic acids, are utilized as carbon sources [1]. *R. eutropha* grows to very high cell densities (281 g/L) under nutritionally rich conditions, and accumulates large amounts of PHAs (232 g/L) when the nitrogen or phosphate source is limited [2]. This characteristic makes it an attractive host for the synthesis of industrially relevant PHA materials.

In recent years, *R. eutropha* was engineered to produce biofuels, such as branched-chain alcohols [3], methyl ketones [5], hydrocarbons [6] and isopropanol [7]. In addition, *R. eutropha* can also be cultured under lithotrophic conditions to produce PHAs [8, 9] and biofuels [3, 5]. Although *R. eutropha* can already be engineered, convenient and efficient synthetic-biology tools are still underdeveloped compared to those available for model organisms such as *Escherichia coli* and *Saccharomyces cerevisiae*, and current manipulation techniques are still inefficient and time-consuming [10]. One of the major reasons for this is the low transformation efficiency of *R. eutropha* [11]. While common heat-shock transformation is not feasible in *R. eutropha*, electroporation has also been used rarely in previous publications, due to its extraordinarily low efficiency, which is several orders of magnitude lower than that of *E. coli* [11]. These properties make cell-to-cell transconjugation almost the only way to transfer plasmids into *R. eutropha*, which is not ideal for genome manipulation.

There are currently two techniques for genome editing of *R. eutropha*, one of which is based on group II introns, which is complicated and is consequently rarely used [10]. Another method was designed to integrate a suicide plasmid, via a single crossover recombination event [12, 13]. The integrating plasmid is transferred to *R. eutropha* via conjugation from a special host—*E. coli* S17-1 [14]. Transconjugants carrying the integrated plasmid are selected using proper antibiotics, and strains that have lost the integration vector via a second single crossover are selected in rich medium containing sucrose using *sacB* as the negative selection marker. This method which would take an average of 2–3 weeks to delete a single gene is not only time-consuming, but is also not very efficient [13].

Microbial genome editing techniques have progressed significantly due to the extensive research conducted on the CRISPR system (clustered regularly interspaced short palindromic repeats), derived from the RNA-guided immune systems found in many bacteria and archaea [15–17]. CRISPR-Cas9 and CRISPR-Cpf1 are Class 2 CRISPR-Cas systems, and are further classified as types II and V, respectively [18]. The systems recognize unique sequences and generate double strand breaks (DSBs) at the target locus, after which the DSBs is repaired either through NHEJ or HR [17]. CRISPR-Cas assisted genome editing tools have already been developed for a number of bacteria, including but not limited to *Streptococcus pneumoniae* [16], *E. coli* [19], *Streptomyces* [20, 21], *Lactobacillus reuteri* [22], *Clostridium* [23], *Bacillus subtilis* [24] and *Corynebacterium glutamicum* [25, 26]. However, this technique has not been developed in *R. eutropha* to date. Thus, we aimed to develop a convenient and efficient CRISPR-Cas assisted genome editing method for *R. eutropha*, preferentially using fast transformation methods, omitting the need for conjugation.

Methods

Strains and culture conditions

Escherichia coli S17-1 [14] was used for plasmid maintenance and conjugation with *R. eutropha*, and was cultured at 37 °C in Luria–Bertani medium (LB, 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) with 100 µg/mL streptomycin or 50 µg/mL kanamycin if necessary. *R. eutropha* H16 [1] was the parent strain for genetic modifications and was cultured aerobically at 30 °C in LB with 10 µg/mL gentamicin or 200 µg/mL kanamycin for plasmid maintenance. All strains used in this study are listed in Table 1.

Plasmid construction

Primers (Additional file 1: Table S4) were designed using the j5 DeviceEditor [27] and synthesized by Genewiz (Beijing, China). DNA polymerase, BsaI restriction endonuclease and T4 ligase were purchased from Takara (Dalian, China), New England Biolabs (USA) and Thermo-Fisher Scientific (USA), respectively. The plasmids used in this study were constructed via Golden Gate [28] or Gibson [29] assembly, and cloned directly into *E. coli* S17-1. Plasmids used in this study are in Additional file 1: Table S3.

Plasmid extraction

Plasmids in *E. coli* or *R. eutropha* were extracted using AxyPrep Plasmid Miniprep Kit (AXYGEN, China) according to the manuscript with some minor modifications. For *R. eutropha*, after extraction reagents were added to the collected sample from 1 mL LB medium and the mixture was centrifuged at 13,000×g for 20 min. While for *E. coli*, centrifugation was performed at 12,000×g for 10 min. To facilitate the following step of electroporation, the eluent solution of the kit was
replaced by sterile deionized water for plasmid elution. The plasmid solution obtained from the adsorbing column was used for eluting another column to improve the plasmid concentration.

Preparation of competent cells
For *E. coli*, the procedure was performed using a previously described protocol [19]. To prepare *R. eutropha* competent cells, the method described by Hae-Chul Park [11] was employed with some modifications. The procedure used in this study was performed as follows. An aliquot of a glycerol cryopreservation stock was streaked onto an LB plate with 10 µg/mL gentamicin and incubated for 48 h at 30 °C. After which a single colony was picked up and incubated aerobically in LB medium at 30 °C for 24 h, after which a porportion of the mixed bacterial lawn was resuspended in LB, plated on LB agar plates with 200 µg/mL kanamycin and 10 µg/mL gentamicin, and incubated at 30 °C for 48 h.

For the electroporation of *R. eutropha*, 8 µL of high-quality plasmid DNA (~400 ng) was added to 100 µL of competent cells, and transferred into a pre-chilled 2-mm electroporation cuvette (Bio-Rad, USA), and incubated on ice for 5 min, after which electroporation was performed at a voltage of 2.3 kV. Immediately afterward, 1 mL LB with 10 mg/mL fructose was added to the cells, and the resulting suspension was transferred to a sterile 1.5 mL centrifuge tube. After incubation at 30 °C for 2 h, the cells were spread on LB agar plates with 200 µg/mL kanamycin and 10 mg/mL fructose, and incubated at 30 °C for 48 h.

Gene knockout (or integration) via pK18mobsacB
Two homologous templates which were ~500 bp, respectively, were cloned into the pK18mobsacB plasmid backbone via Golden Gate [28] or Gibson [29]. For integration, the target gene was cloned between the two homologous templates. The knockout plasmid was transformed into *E. coli* S17-1, then identified and transferred to *R. eutropha* via conjugation. Single colonies were cultured in LB with 10 µg/mL gentamicin and 200 µg/mL kanamycin at 30 °C. A pair of primers with one bound to the genome and another to the plasmid was used for colony PCR to identify strains with the knockout plasmid integrated. Then corrected strains were inoculated in LB without NaCl and kanamycin, but with 100 mg/mL sucrose at 30 °C for 72 h. Strains were streaked on LB plate (without NaCl and kanamycin, but with 50 mg/mL sucrose), then resistance against kanamycin was investigated, and single colonies with no resistance against kanamycin were identified by PCR.

Plasmid for gene editing via CRISPR-Cas system
All plasmids used for *R. eutropha* gene editing via CRISPR-Cas system were derived from the broad-range-host plasmid pBBR1MCS2 [30] and constructed via Golden Gate. The csa9 gene was amplified from the plasmid pCas9 (Addgene number 42876) [16, 19] and driven by the arabinose-inducible pBAD promoter, while the corresponding sgRNA was transcribed from a constitutive promoter
different RM systems in had the same DNA sequence, but were likely modified by Ji’nan). Provided by Prof. Qingsheng Qi (Shandong University, Jinan).

Intriguingly, it was found that producing a red fluorescent protein (rfp or S17-1 mid pBBR1-rfp was transferred into either E. coli R. eutropha endonuclease genes by identification and deletion of key restriction REBASE database and identified four bona fide RM systems. Within these five putative restriction endonuclease genes, H16_A0006, H16_A0008, H16_A0009, H16_A0014 and PHG170 (H16_A0008 and H16_A0009 may encode two subunits of a single endonuclease) were predicted by comparing with the RM systems of E. coli MG1655 (Additional file 1: Table S1). To determine their effects on the transformation efficiency, the putative restriction endonuclease genes were knocked out individually, yielding four R. eutropha RM knockout strains C1, C2, C3 and C4. The electroporation efficiencies of the wild-type strain H16 and the four knockout strains were tested using the plasmid pBBR1-rfp extracted from E. coli S17-1. The results showed that while C3 and C4 did not show an obvious enhancement of electroporation efficiency, the efficiencies of the strains C2 and C1 were, respectively, improved 4 and an astonishing 1658 times over H16 (Fig. 1b). This result indicated that endonucleases encoded by the genes H16_A0006 and H16_A0008-9 were indeed the major reason for the low transformation efficiency of R. eutropha. Subsequently, strain C5 was constructed by disrupting the H16_A0008-9 gene in strain C1, which led to an electroporation efficiency that was 1697 times higher than that of H16 strain, even if no significant improvement was evident compared to C1 (Fig. 1b). mcrBC in E. coli, which is homologous to the H16_A0008-9 in R. eutropha H16, was disrupted to enhance transformation efficiency in some laboratory strains [34], such as DH10B, DH12S, DM1, and HB101. Therefore, the C5 strain with a similar double knockout was selected for future research.

To investigate the electroporation efficiency of an in vitro constructed plasmid with no methylation, linear pBBR1-rfp was generated by PCR and ligated using the Golden Gate assembly method to obtain non-methylated plasmid DNA of pBBR1-rfp(NM). The resulting non-methylated material was individually electroporated into C5 and H16, which revealed that the electroporation efficiency of C5 with in vitro constructed DNA was 343 times higher than that of H16 (Fig. 1c). Thus, the deletion of H16_A0006 or H16_A0006 along with H16_A0008-9 enabled the efficient electrot transformation of R. eutropha, regardless of the methylation status of the plasmid DNA.

On the other hand, the genes H16_A0004-5, which are adjacent to H16_A0006, were predicted to encode the putative methyltransferase and specificity subunits of the RM system. Hence, the MG18 strain was constructed by integrating H16_A0004-5 with the constitutive promoter BBa_J23100 and an RBS into the poxB loci of the E. coli MG1655 genome, which should have enabled it to methylate plasmids according to the methylation-protection pattern of R. eutropha. However, when pBBR1-rfp extracted from MG1655 and MG18 were electroporated into R. eutropha H16, there was no significant difference in electroporation efficiency (Fig. 1d). These results indicated that H16_A0004-5 expressed in E. coli MG1655.

Genome editing via CRISPR-Cas9
Plasmid for gene editing was amplified in E. coli S17-1 and electroporated into R. eutropha. A single colony from the transformation plate was cultured in LB with 2 mg/mL arabinose and 200 µg/mL kanamycin for 120–168 h to induce the editing process, after which the cells were spread on LB plates with the same concentrations of arabinose and kanamycin to identify edited strains by colony PCR. Afterward, plasmid curing was performed by growing the cells in LB without kanamycin at 30 °C for 24 h and confirmed by testing for loss of resistance against kanamycin.

Results and discussions
Enhancing electroporation efficiency of R. eutropha by identification and deletion of key restriction endonuclease genes
One of the major problems hindering the genome editing of R. eutropha is its low electroporation efficiency. To identify the main reasons for this problem, the plasmid pBBR1-rfp was transferred into either E. coli S17-1 or R. eutropha H16, extracted and electroporated into R. eutropha H16 again. This plasmid was derived from the broad-host-range plasmid pBBR1MCS2, by introducing a red fluorescent protein (rfp) gene driven by the constitutive promoter BBa_J23100, which made its carriers exhibit visible red color. Intriguingly, it was found that the electroporation efficiency of pBBR1-rfp extracted from R. eutropha was 1677 times higher than that of its counterpart from E. coli S17-1 (Fig. 1a). The two plasmids had the same DNA sequence, but were likely modified by different RM systems in E. coli and R. eutropha, which indicated that the R. eutropha RM systems may be the major cause of the low electroporation efficiency.

To investigate this hypothesis, we searched the genome of R. eutropha using the prediction tool based on the REBASE database and identified four bona fide RM systems. Within these five putative restriction endonuclease genes, H16_A0006, H16_A0008, H16_A0009, H16_A0014 and PHG170 (H16_A0008 and H16_A0009
alone is not sufficient to properly methylate the plasmid DNA in this study.

Optimal expression strategy with fructose as the suppression factor

Due to the relatively low transformation efficiency of *R. eutropha*, even in case of the C5 strain, linear DNA could not be used as the donor template for genome editing. To simplify the transformation process, a single plasmid was employed to carry all the functional parts of the CRISPR-Cas-based editing tool. The precise expression control of cas9 and sgRNA obtained with this strategy was the key for successful genome editing [19]. In this study, the arabinose-inducible pBAD promoter was selected to express the cas genes (*cas9* and *cpf1* [31]). pBBR1-pBAD-rfp [6] carrying pBAD-controlled *rfp* was used to transform the C5 strain to investigate the optimal expression level, which increased with the increase of L-arabinose concentration in LB, and the maximal expression was achieved at 2 mg/mL L-arabinose (Fig. 2a). Under these conditions, the *rfp* expression level was three orders of magnitude higher than in the control (Fig. 2b). Hence, an expression strategy was developed that used pBAD as the inducible promoter for the expression of the *cas* genes, and fructose was added to decrease its basal expression.

Fig. 1 Electroporation efficiencies of different plasmid DNA in various *R. eutropha* strains.

- **a** Electroporation efficiencies of pBBR1-rfp extracted from *E. coli* S17-1 or *R. eutropha* H16 in *R. eutropha* H16. pBBR1-rfp(S17), pBBR1-rfp extracted from *E. coli* S17-1. pBBR1-rfp(H16), pBBR1-rfp extracted from *R. eutropha* H16.
- **b** Electroporation efficiencies of pBBR1-rfp in H16 and engineered *R. eutropha* strains. pBBR1-rfp was extracted from *E. coli* S17-1.
- **c** Electroporation efficiencies of pBBR1-rfp(NM) in *R. eutropha* H16 and C5. pBBR1-rfp(NM), non-methylated pBBR1-rfp.
- **d** Electroporation efficiencies of pBBR1-rfp from *E. coli* MG1655 and MG18 in *R. eutropha* H16. pBBR1-rfp(MG1655), pBBR1-rfp extracted from *E. coli* MG1655. pBBR1-rfp(MG18), pBBR1-rfp extracted from *E. coli* MG18. All experiments were repeated four times and the error bars represent standard deviations. The significance of differences was calculated by one-way ANOVA using SPSS18.0 software. Asterisks indicate a significant difference compared with the control (**p < 0.01, highly significant difference, *p < 0.05, significant difference**).
Development of the CRISPR-Cas9 genome editing method for \textit{R. eutropha}

To develop an efficient genome editing method for \textit{R. eutropha}, both CRISPR-Cas9 and CRISPR-Cpf1 systems were evaluated. The systems were individually cloned into the pBBR1MCS2 vector backbone using Golden Gate or Gibson assembly. The expression of \textit{cas9} or \textit{cpf1} on the plasmids was driven by the pBAD promoter, while the corresponding sgRNA was transcribed from a constitutive promoter. By searching the genome sequence, H16_B2352 and H16_B2355 were found to encode gene products with 40 and 28% similarity to LigD and Ku70 from \textit{Mycobacterium tuberculosis} H37Rv (Additional file 1: Table S2), which may encode a putative ATP-dependent DNA ligase and non-homologous end-binding protein, respectively [36]. This indicated that \textit{R. eutropha} may possess a native NHEJ mechanism. To investigate whether NHEJ-based editing mediated by the CRISPR-Cas system is functional in the strain, \textit{rfp} was integrated into the downstream of \textit{phaP1} to obtain the strain C5rfp, which exhibits red fluorescence and can be conveniently detected using a microplate reader, whereby the red fluorescence would disappear if the \textit{rfp} gene was disrupted. The two plasmids pBBR1-Cas9 and pBBR1-Cpf1, respectively, harboring the CRISPR-Cas9 and CRISPR-Cpf1 systems, were constructed, confirmed and transferred into \textit{R. eutropha} via electroporation or conjugation. It should be noted that the electroporation and conjugation efficiencies of pBBR1-Cas9 and pBBR1-Cpf1 were significantly lower than those of pBBR1-rfp, which were about two to three orders of magnitude lower than the latter. Moreover, few transformants were acquired by electroporation when fructose was not added, which may be due to the large size of the plasmids (> 9 kb) and leaky expression of the \textit{cas} genes. However, when 10 mg/mL fructose was added to the regeneration medium in the process of electroporation, sufficient numbers of transformants were obtained, although the efficiency which was less than 10^2 CFU/µg of plasmid DNA was still lower than that of pBBR1-rfp. Transformants identified by PCR and sequencing were cultured in LB with 2 mg/mL arabinose and 200 µg/mL kanamycin for 120–168 h, after which they were streaked onto LB plates with arabinose and kanamycin at the same concentrations. 48 single colonies were picked randomly and red fluorescence was detected with a microplate reader, while C5rfp and C5 were selected as positive and negative controls, respectively. The result indicated that none of the \textit{rfp} genes was disrupted (Table 2), which therefore showed that CRISPR-Cas systems and the native NHEJ mechanism alone were not able to edit the target gene in \textit{R. eutropha}.

To introduce a heterologous NHEJ mechanism into \textit{R. eutropha}, the ligD and ku70 genes from \textit{M. tuberculosis} H37Rv were cloned together with the constitutive promoter BBa_J23119 into both pBBR1-Cas9 and pBBR1-Cpf1, to construct the plasmids pBBR1-Cas9-ligD-ku and pBBR1-Cpf1-ligD-ku [32]. The two plasmids were individually transferred into C5rfp and the resulting strain was induced under the conditions described above. However, while 48 single colonies were obtained, none of them had disruptions of the \textit{rfp} genes (Table 2), which indicated that no editing events occurred with the CRISPR-Cas and heterologous NHEJ systems.

Because NHEJ was not able to repair the DSB induced by CRISPR-Cas9, HR system for \textit{R. eutropha} was investigated. Homologous arms of ~500 bp were cloned into both pBBR1-Cas9 and pBBR1-Cpf1 to construct the plasmids pBBR1-Cas9-rfpF-rfpR (Additional file 2) and pBBR1-Cpf1-rfpF-rfpR, respectively, which were individually transferred into C5rfp. After induction with 2 mg/mL arabinose for 168 h, the \textit{rfp} genes in all the 23 randomly selected colonies were successfully edited using
pBBR1-Cas9-rfpF-rfpR (Table 2, Additional file 1: Figure S1), while no editing occurred in the strain containing pBBR1-Cpf1-rfpF-rfpR (Table 2). Phage-derived recombinases λ-Red [19] and recET [25] were used to enhance the editing efficiency in E. coli and Corynebacterium glutamicum. In this study, the editing efficiency was 100%, even though none of the heterologous recombinases was expressed, which indicated that R. eutropha possesses an efficient endogenous homologous recombination system that supports successful genome editing. Although the CRISPR-Cpf1 system did not work, this is the first report of CRISPR-Cas9-based genome editing in R. eutropha. A similar situation was observed in C. glutamicum [25, 26], whereby the cas9 gene from Streptococcus pyogenes did not function, while a cas9 codon-optimized for actinomycetes and cpf1 from Francisella tularensis worked well.

To cure the editing plasmid pBBR1-Cas9-rfpF-rfpR after the editing process, the edited strain was cultured in LB medium without antibiotics for 24 h, after which randomly picked colonies were investigated for resistance against kanamycin. It was found that 98 of 100 colonies lost resistance against kanamycin, which indicated that almost all the cells were cleared of the plasmids (Additional file 1: Figure S2). The high curing efficiency may be due to the instability of the large pBBR1-Cas9-rfpF-rfpR plasmid, which has a low copy number.

In addition, four other R. eutropha genes (H16_A1814, H16_A1334, H16_A1437 and H16_B0204) were selected for editing using the method described above. A schematic illustration is shown in Fig. 3. Induction time was investigated; although the editing efficiency of H16_A1814 was less than 50% when induction time was 96 h,

Table 2 Editing efficiencies of rfp via different CRISPR-Cas systems and repair mechanisms

CRISPR-Cas system	DSB repair	Red colonies	Colorless colonies	Total b	Efficiency (%)
CRISPR-Cas9	Native NHEJ	48	0	48	0
	Heterologous NHEJ	48	0	48	0
	HR a	0	23	23	100
CRISPR-Cpf1	Native NHEJ	48	0	48	0
	Heterologous NHEJ	48	0	48	0
	HR	23	0	23	0

a Colonies were picked randomly and red fluorescence was measured on a microplate reader

b Colonies were picked randomly and identified by PCR. One of the PCR products was verified by sequencing

![Fig. 3](https://example.com/fig3.png)

Fig. 3 Schematic illustration of the genome editing method for R. eutropha using electroporation-based CRISPR-Cas9 technique. The editing plasmid for genome was transferred into R. eutropha via electroporation, while 10 mg/mL fructose was added to the regeneration medium in the process of electroporation. Transformants were induced by 2 mg/mL λ-arabinose for 96–168 h, then streaked on LB plate with 2 mg/mL λ-arabinose and 200 µg/mL kanamycin. Before curing the plasmid, edited strains were identified by PCR and sequencing.
it increased with the extension of induction time, which reached 78.3% when induction time was extended to 168 h (Table 3). Longer induction time was not investigated, because the activity of the strains decreased sharply. As a result, about 2 weeks were required to edit a single gene, which was faster than the conventional method with an average of 2–3 weeks. All genes in our study were precisely edited as designed, with editing efficiencies ranging from 78.3 to 100% (Table 4, Additional file 1: Figure S3), which was also higher than that of the conventional method with an efficiency lower than 50%.

It was found that genes difficult to be disrupted via the conventional methods may be deleted by the CRISPR-Cas9 method. Gene H16_B0204 failed to be knocked out in our previous work by the conventional pK18mobsacB method, even after several attempts. However, it was successfully knocked out with an efficiency of 95.6% using the CRISPR-Cas9 technique (Table 4, Additional file 1: Figure S3).

Fragment insertion and multigene editing were not performed in this study due to the large size of the editing plasmid, but this shortcoming will be solved by using two compatible broad-host-range plasmids in our future study. Since the plasmid system we used in this research is derived from the broad-host-range plasmid pBBR1MCS2, this method may be applied to other strains or species with minor modifications.

Conclusions

In summary, an efficient and convenient genome editing method that utilizes the CRISPR-Cas9 system was developed in R. eutropha for the first time. Compared to conventional methods, this novel technique significantly increases the efficiency and decreases the time required to manipulate the genome of this important facultative chemolithoautotrophic microbe. The novel technique will facilitate more advanced researches and applications of R. eutropha for PHA production and CO2 conversion.

Additional files

Additional file 1: Figure S1. rfp editing identified by agarose gel electrophoresis and sequencing. Figure S2. pBBR1-Cas9-rfp/rfpR clearance. Figure S3. Four genes edited by CRISPR-Cas9 Table S1. Putative restriction endonuclease genes in R. eutropha H16. Table S2. Genes related to putative NHEJ in R. eutropha Table S3. List of plasmids used in this study. Table S4. List of main primers used in this study.

Abbreviations

PHAs: polyhydroxyalkanoates; RM: restriction modification; HR: homologous recombination; NHEJ: non-homologous end joining; CBB: Calvin-Benson-Bassham; CRISPR: clustered regularly interspaced short palindromic repeats; rfp: red fluorescent protein.

Authors’ contributions

CB, XZ and BX conceived the experiments. BX, ZL, LL and DZ performed the experiments. CB, XZ and BX analyzed the results and wrote the paper. All authors read and approved the final manuscript.

Author details

1 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. 2 Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China. 3 Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China. 4 University of Sciences and Technology of China, Hefei 230026, People’s Republic of China.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was financially supported by the Key Deployment Project of the Chinese Academy of Sciences (ZDRW-ZS-2016-3), the National High Technology Research and Development Program of China (2015AA020202) and Tianjin Key Technology R&D program of Tianjin Municipal Science and Technology Commission (14JCZDSY00067).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 January 2018 Accepted: 12 June 2018
References

1. Anne P, Florian FW, Frank R, Bernhard K, Heiko L, Rainer C, Thomas E, Christian E, Markus P, Edward S, et al. Genome sequence of the bioplastic-producing "Knallgas" bacterium Ralstonia eutropha H16. Nat Biotechnol. 2006;24(10):1257–62.
2. Ryu HW, Hahn SK, Chang YK, Chang HN. Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophicus with phosphate limitation. Biotechnol Bioeng. 1997;55(1):29–33.
3. Li H, Oppegenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Hoo YC, Kao LM. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335:1596.
4. Liu C, Colón BC, Ziesack M, Silver PA, Nocea DG. Water splitting biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science. 2016;352(6290):1210–3.
5. Müller J, MacEachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, Lee TS, Hillson NJ, Chhabra SR, Singwer SR, Bellor HR. Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol. 2014;79:4433–9.
6. Bi C, Su P, Müller J, Yeh YC, Chhabra SR, Bellor HR, Singwer SR, Hillson NJ. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production. Microb Cell Fact. 2013;12:107.
7. Grousseau E, Lu J, Gourlet S, Sinsky AJ. Isopropanol production with engineered Cupravidus necator as bioproduction platform. Appl Microbiol Biotechnol. 2014;98:4277–90.
8. Tanaka K, Ishizaki A. Production of poly-3-hydroxybutyrate from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophicus. Biotechnol Bioeng. 1995;45:268–75.
9. Tanaka K, Ishizaki A. Production of poly-3-hydroxybutyric acid from carbon dioxide by a two-stage culture method employing Alcaligenes eutrophus ATCC 17697. J Ferment Bioeng. 1994;77(4):425–7.
10. Park JM, Jang Y-S, Kim TY, Lee SY. Development of a gene knockout system for Ralstonia eutropha H16 based on the broad-host-range vector expressing a mobile group II intron. FEMS Microbiol Lett. 2010;309:193–200.
11. Park HC, Lim KJ, Park JS, Lee YH, Huh TL. High frequency transformation of Alcaligenes eutrophicus producing poly-3-hydroxybutyric acid by electroporation. Biotechnol Tech. 1995;9:31–4.
12. Shimizu R, Chou K, Orita I, Suzuki Y, Nakamura S, Fukui T. Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. BMC Microbiol. 2013;13:169.
13. Schlegel A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pihler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmid pRK414 and pRK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69–73.
14. Simon R, Priefe U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol. 1993;11:784–91.
15. Doudna JA, Charpentier E. The new frontier of genome editing with CRISPR-Cas9. Science. 2014;346(6213):1073–84.
16. Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas9 system. ACS Synth Biol. 2015;4(6):723–8.
17. Tong Y, Charantisee P, Zhang L, Vebber T, Lee SY, CRISPR-Cas9 and CRISPR-Cas10 based engineering of actinomycetal genomes. Nucleic Acids Res. 2015;43(9):1020–9.
18. Oh JH, van Pijkeren JP, CRISPR-Cas9 assisted recombination in Lactobacillus reuteri. Nucleic Acids Res. 2014;42(17):e131.
19. Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng. 2016;113(5):930–43.
20. Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X, Bi C. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. Microb Cell Fact. 2016;15:205.