Examination of Patient Profiles Admitted to the Paediatric Emergency According to Various Variables

Ayfer YUKSEL (drayferercan@yahoo.com)
Ufuk University

Research Article

Keywords: Paediatric Emergency Service, paediatric patients, triage, diagnosis, age groups

DOI: https://doi.org/10.21203/rs.3.rs-618777/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose: The aim is to examine the applications to the paediatric emergency service of Foundation University Hospital in Ankara according to variables: gender, age, season of application, diagnosis, number of consultations and hospitalizations, and triage codes.

Materials and methods: The research is a retrospective descriptive study. The data of patients admitted to the paediatric emergency department of a hospital in Ankara between 01.08.2017-31.07.2018 were obtained (n=16383). Frequency, percentages, cross table, and chi-square test were used for comparison.

Findings: 0% of patients: very urgent application, 19%: urgent and 81%: non-urgent. The most common first three diagnoses: “unknown origin fever”, “cough”, “nausea and vomiting”. The 0-28 days age group had the lowest number of applications with 5% and had the highest emergency triage status with 66.5%; and the 19 months-5 years age group had the highest number of applications with 49% and had the lowest emergency triage rate with 12.8%.

Conclusion: The reasons for applying to PES may differ according to contextual variables and providing parents with information from reliable sources may reduce unnecessary anxiety and emergency service admissions. There should be strengthened primary health care services and referral system to maintain high-quality emergency services.

1. **Introduction**

The emergency department (ED) is an essential component of the medical services offered in any hospital. (1) Paediatric Emergency Services (PES) are important hospital units that provide 24-hour uninterrupted service for all its units and employees. According to the Ministry of Health hospital data, the number of applications for the first nine months in Turkey was approximately 296 million in 2017; it was reported that emergency medicine applications constituted the first place among applications with 26% (77 million), while PES applications ranked fourteenth with 3% (8 million). Since the applications of PES are only notifications of hospitals with PES, it can be considered that a significant number of paediatric patients’ applications are among the first-line emergency medical applications. Similarly, according to the Declaration of the Turkish Paediatric Emergency and Intensive Care Association in 2008, paediatric patients account for 30% of all emergency applications. It has been reported that 4–10% of emergency service admissions are paediatric patients in the United States. (2, 3, 4) Child and parental demographic features associated with increased childhood ED use have been well characterized and include increased parental ED utilization, being a single parent, Medicaid coverage, and not having a primary care provider (PCP). (5, 6, 7) In addition to this, the quality of the PCP relationship has also been shown to be key determinant of paediatric ED utilization, since parents dissatisfied with their usuals source of care are more likely to have a nonurgent ED visit. (8, 9, 10)
Since ESs are the first application placed in many cases, ES data are needed in the analyses to be made on the subject. (11) Although there are studies investigating ES cases in our country, there are a limited number of studies that reveal the characteristics of the paediatric age group. (12)

PES applications, which make up 30% of all ES applications, still maintain their high rate despite the taken necessary measures. It is essential to evaluate ES data for the provided service to be better and more scientific. (2)

It is expected that this study will contribute to the accumulation of knowledge about the patient profile and diagnoses, applied to the PES, providing information to the authorities on this subject, and improving the applications. In the study, applications made to a foundation university hospital PES in Ankara within a year were evaluated according to season, diagnoses, triage codes, and children's age and gender.

2. Materials And Methods

The retrospective descriptive method was used in this study. The data was obtained from the electronic databases system of a foundation university hospital in Ankara from the information of the applicants who applied to PES between 01.08.2017 and 31.07.2018. The permission was obtained from the Ethics Committee of the university (24.12.2020 Date, Approval Number 2020/67).

Without taking the patient names from the information system, age, gender, date of application, the number of patients in the triage areas, the number of patients hospitalized and consulted, and the diagnostic diversity of diseases according to the diagnosis codes of ICD-10 (International Classification of Diseases-10) were evaluated.

The analysis of the data was made for the first 15 diagnoses (n = 6550), which are most common in paediatric patients (18 years of age and below) admitted to the emergency service (N = 16 383).

In this study, the distribution of the patients participating in the study according to different variables is given by the frequency tables. Relationships between categorical variables were examined by using the chi-square test. In cases where a relationship was found according to the chi-square test, the ratios between the categories of the column variable are compared with the z-test. When the number of categories of the column variable is more than two, Bonferroni correction was applied when comparing the ratios. The analysis of the data was made by using IBM SPSS v23 program and the upper limit for significance in statistical tests was taken as 0.05.

3. Findings

Of the 16 383 patients who applied to the PES between 1 August 2017 and 31 July 2018, 6550 child patients aged 18 and under (with the top 15 diagnoses as the most common diagnosis) were included in the study. 46.2% (n = 3027) of the patients were female and 53.8% (n = 3523) were male.
Table 1
Distribution of patients by gender and age group

	f	%
Sex		
Male	3523	53.8
Female	3027	46.2
Age group		
0–28 days	355	5.4
29 days – 18 months	784	12.0
19 months – 5 years	3213	49.1
6–11 years	1458	22.3
12–18 years	736	11.2

It was checked whether there was a significant difference between the age distribution of the patients. The least admitted age group with 5.4% is the babies between 0–28 days, which we call new-borns, and the most applied age group with 49.1% is the pre-school period, which is the age group of 19 months-5 years.

The distribution of the patients according to the season they applied and their triage status were examined and the results are given.

According to this; 81% of the patients are green area (Normal), 19% are yellow area (Emergency) patients. There is no red area (Very Urgent) patient application.

Of the patients, 18.4% (1207) applied in Summer, 21.2% (1386) in Spring, 27.3% (n = 1789) in Autumn, and 33.1% (2168) in Winter. The fewest applicants are in the summer, the most applicants are in the winter.
Diagnosis	Winter	Spring	Summer	Autumn	Total
R50-Fever of unknown cause	f 745_a	316_b	369_a	428_b	1858
%	34.4	22.8	30.6	23.9	28.4
R05-Cough	f 508_a	253_b	112_c	313_b	1186
%	23.4	18.3	9.3	17.5	18.1
R11-Nausea and vomiting	f 94_a	103_b	167_c	229_c	593
%	4.3	7.4	13.8	12.8	9.1
R10-Abdominal and pelvic pain	f 124_a	89_a	80_{a,b}	166_b	459
%	5.7	6.4	6.6	9.3	7.0
J06-Acute upper respiratory tract infections, multiple and unspecified sites	f 176_a	102_{a,b}	59_b	116_{a,b}	453
%	8.1	7.4	4.9	6.5	6.9
W19-Fall, unspecified	f 93_a	117_b	96_a	130_b	436
%	4.3	8.4	8.0	7.3	6.7
H66-Suppurative and unspecified Otitis media	f 145_a	84_a	41_b	54_b	324
%	6.7	6.1	3.4	3.0	4.9
R07-Pain in throat and chest	f 90_{a,b}	72_{b,c}	33_a	116_c	311
%	4.2	5.2	2.7	6.5	4.7
R17-Jaundice, unspecified	f 33_a	31_{a,b}	34_{a,b}	52_b	150
%	1.5	2.2	2.8	2.9	2.3
R21-Redness and other unspecified skin rash	f 35_a	27_a	33_a	45_a	140
%	1.6	1.9	2.7	2.5	2.1
P59-Neonatal jaundice due to other and unspecified causes	f 30_a	23_a	40_b	40_{a,b}	133
%	1.4	1.7	3.3	2.2	2.0
R45-Symptoms and signs of emotional state	f 26_a	32_a	53_b	22_a	133
According to Table 2, it can be said that there is a statistically significant relationship between the season in which the patients admitted to the hospital and their diagnoses ($p < 0.05$). The three most common diagnoses are "fever of unknown cause", "cough" and "nausea and vomiting". While the rate of winter and summer diagnosis of "fever of unknown cause" was higher than that of Spring ($p < 0.05$). It is observed that the winter rate (23.1%) of the diagnosis of “cough” is higher than other seasons ($p < 0.05$) and the rate of Summer (9.3%) is lower than in other seasons. It can be said that “nausea and vomiting” is higher in summer and autumn compared to other seasons ($p < 0.05$).

Season	%	1.2	2.3	4.4	1.2	2.0
J03-Acute tonsillitis	f	31_a	51_b	35_b	12_a	129
	%	1.4	3.7	2.9	0.7	2.0
M79-Other soft tissue disorders, not classified elsewhere	f	16_a	60_b	29_c	19_a	124
	%	0.7	4.3	2.4	1.1	1.9
K52-Other non-infective gastroenteritis and colitis	f	22_a	$26_a.b$	26_b	47_b	121
	%	1.0	1.9	2.2	2.6	1.8
Total	f	2168	1386	1207	1789	6550
	%	100.0	100.0	100.0	100.0	100.0
Table 3
Relationship between the gender of the patients and the diagnosis

Diagnosis	Sex	Male	Female	Total
R50-Fever of unknown cause	Male	999_a	859_a	1858
	Female			
	%	28.4	28.4	28.4
R05-Cough	Male	639_a	547_a	1186
	Female			
	%	18.1	18.1	18.1
R11-Nausea and vomiting	Male	299_a	294_a	593
	Female			
	%	8.5	9.7	9.1
R10-Abdominal and pelvic pain	Male	219_a	240_b	459
	Female			
	%	6.2	7.9	7.0
J06-Acute upper respiratory tract infections, of multiple and undefined locations	Male	247_a	206_a	453
	Female			
	%	7.0	6.8	6.9
W19-Fall, unspecified	Male	272_a	164_b	436
	Female			
	%	7.7	5.4	6.7
H66-Suppurative and unspecified Otitis media	Male	181_a	143_a	324
	Female			
	%	5.1	4.7	4.9
R07-Pain in throat and chest	Male	151_a	160_a	311
	Female			
	%	4.3	5.3	4.7
R17-Jaundice, unspecified	Male	88_a	62_a	150
	Female			
	%	2.5	2.0	2.3
R21-Redness and other unspecified skin rash	Male	82_a	58_a	140
	Female			
	%	2.3	1.9	2.1
P59-Neonatal jaundice due to other and unspecified causes	Male	74_a	59_a	133
	Female			
	%	2.1	1.9	2.0

Chi-Square = 41.94; df = 14; p < 0.001; each subscript letter denotes a subset of gender categories whose column proportions do not differ significantly from each other at the 0.05 level.
According to Table 3, it can be said that there is a statistically significant relationship between the gender of the patients and the diagnosis (p < 0.05). When the differences according to gender are examined, there is no difference in the first three diagnoses of “fever of unknown cause”, “cough” and “nausea and vomiting” (p > 0.05), women’s “Abdominal and pelvic pain” and “Acute tonsillitis” diagnoses are higher than men (p < 0.05). On the other hand, the rate of males is higher than females in the diagnoses of “Fall, unspecified” and “Other non-infective gastroenteritis and colitis” (p < 0.05).

Diagnosis	Sex	f	a	b
R45-Symptoms and signs of emotional state	f	63	70	133
J03-Acute tonsillitis	f	58	71	129
M79-Other soft tissue disorders, not elsewhere classified	f	75	49	124
K52-Other non-infective gastroenteritis and colitis	f	76	45	121
Total	f	3523	3027	6550

Chi-Square = 41.94; df = 14; p < 0.001; each subscript letter denotes a subset of gender categories whose column proportions do not differ significantly from each other at the 05 level.
Table 4
Relationship between patients' age group and triage status

Age	0–28 days	29 days - 18 months	19 months - 5 years	6–11 years	12–18 years	Total
Normal	119_a	644_b	2801_c	1198_b	544_d	5306
%	33.5	82.1	87.2	82.2	73.9	81.1
Urgent	236_a	140_b	412_c	260_b	192_d	1240
%	66.5	17.9	12.8	17.8	26.1	18.9
Total	355	784	3213	1458	736	6546
%	100.0	100.0	100.0	100.0	100.0	100.0

Chi-Square = 627.05; df = 4; p < 0.001; Each subscript letter denotes a subset of age categories whose column proportions do not differ significantly from each other at the 05 level (Bonferroni correction).

According to Table 4, it can be said that there is a statistically significant relationship between the age group of the patients and the diagnosis (p < 0.05). While the rate (66.5%) of patients between 0–28 days to have emergency triage status is the highest compared to other age groups; the lowest rate (12.8%) is between 19 months and 5 years.
Table 5
Relationship between the age group and diagnostic of the patients

Age	Diagnosis	0–28 days	29 days–18 months	19 months – 5 years	6–11 years	12–18 years	Total	
	R50-Fever of unknown cause	f	24_a	279_b	1141_b	326_c	88_a	1858
		%	6.8	35.6	35.5	22.4	12.0	28.4
	R05-Cough	f	12_a	243_b	683_c	203_d	45_a	1186
		%	3.4	31.0	21.3	13.9	6.1	18.1
	R11-Nausea and vomiting	f	7_a	43_a	276_b	153_b	114_c	593
		%	2.0	5.5	8.6	10.5	15.5	9.1
	R10-Abdominal and pelvic pain	f	3_a	7_a	137_b	188_c	124_c	459
		%	0.8	0.9	4.3	12.9	16.8	7.0
	J06-Acute upper respiratory tract infections, of multiple and undefined locations	f	7_a	52_b	248_b	91_b	55_b	453
		%	2.0	6.6	7.7	6.2	7.5	6.9
	W19-Fall. unspecified	f	0_a	28_b	114_b	172_c	122_d	436
		%	0.0	3.6	3.5	11.8	16.6	6.7
	H66-Suppurative and unspecified Otitis media	f	0_a	7_a	236_b	69_c	12_a	324
		%	0.0	0.9	7.3	4.7	1.6	4.9
	R07-Pain in throat and chest	f	0_a	0_a	126_b	118_c	67_c	311
		%	0.0	0.0	3.9	8.1	9.1	4.8
	R17-Jaundice. unspecified	f	144_a	3_b	2_b	0_b	0_b	149
		%	40.6	0.4	0.1	0.0	0.0	2.3
	R21-Redness and other unspecified skin rash	f	3_a	23_a	72_a	31_a	11_a	140
		%	0.8	2.9	2.2	2.1	1.5	2.1

Chi-Square = 6354.3; df = 56; p < 0.001; Each subscript letter denotes a subset of age categories whose column proportions do not differ significantly from each other at the 05 level (Bonferroni correction).
According to Table 5, it can be said that there is a statistically significant relationship between the age group of the patients and the diagnosis ($p < 0.05$). In the first three most common diagnoses; it can be said that the diagnosis of "fever of unknown cause" is higher in patients aged from 29 days to 5 years compared to patients in the other age group ($p < 0.05$). In the age group of 29 days – 18 months, the diagnosis of "cough" (31%) was higher than the other age groups ($p < 0.05$), and the diagnosis of "nausea and vomiting" was higher in patients aged 19 months or older compared to other patients ($p < 0.05$).
A recipe was not prescribed for 94.8% of the patients (n = 6211), and a recipe was prescribed for 5.2% (n = 339). While a consultation was requested in 197 patients once, 12 patients twice, one patient thrice, and totally for 3.2% of the total patients, consultation was not requested for 96.8%. One diagnosis was made for 85% of the patients (n = 5584), two for 13.8% (n = 901), three for 0.9% (n = 58) and four for 0.1% (n = 7). 3.6% (n = 238) of the patients were hospitalized. There is no patient who underwent surgery.

4. Discussion

In this study, in which all patients under the age of 18, who applied to the hospital PES, were examined by using data obtained from the data processing center of a foundation university hospital in Ankara 6550 paediatric patients (with the first 15 diagnoses seen the most) out of a total of 16.383 patients were included in the study.
Although it is stated that there are deficiencies in the hospital registry system from which patient data is obtained, it is still the most reliable system. (13.14.15)

A significant portion of the applications in the study were non-emergency patients (81%), and there were no patients in the “very urgent” category (0%). Although the results coincide with the findings of the studies in the literature, the rate of “non-emergency patients” is higher, and there is no application in the “very urgent patient” group.

The rate of emergency triage status (20.1%) of male patients, who applied to PES, is higher than that of women. The top three most common diagnoses are: "Fever of unknown cause", "Cough" and "Nausea and vomiting".

When the differences according to gender are examined, while there is no difference in the first three diagnoses "Fever of unknown cause", "Cough" and "Nausea and vomiting", women and girls have higher diagnoses of "Abdominal and pelvic pain" and "Acute tonsillitis" than men; the diagnoses of 'Falls, unspecified' and 'Other non-infective gastroenteritis and colitis' are also higher in men.

When we look at the distribution of diagnoses; while "Soft tissue injury" constituted the majority of the reasons for applying to PES in Erzurum in the study of Polat et al., there were Fever (22%), Cough (16%) and Nausea-vomiting (10%) in the first three places in the study of Karakaş et al. that they did in Ankara. It was observed in this study made in Ankara that the first three most common diagnoses were "Fever of unknown cause" (28%), "Cough" (18%) and "Nausea and vomiting" (9%) respectively. Accordingly, while the diagnoses of admission to the PES in the same region are similar, they differ in different regions. (2,16)

When we look at the distribution of application rates by age group; in the study of Karakaş et al.; the least application was with 2% in the neonatal period (0–28 days) and with 66% between the ages of 1 month and 6 years. In this study, the age group of 0–28 days applied the least with 5.4%, the pre-school period, which is 19 months-5 age group, applied the most with 49.1%. These results in the two studies are similar. (2)

Another finding obtained in the study is that there is a relationship between the age group of the patients and their triage codes. It was observed in the study that the patients between 0–28 days was the least applied group with 5%, besides they had the highest emergency triage status with 66.5% and that the age group of 19 months-5 with the highest number of applications with 49% had the lowest emergency triage rate with 12.8%. We can associate this situation with the fact that families do not apply during the newborn period unless there are situations that we can describe as real emergencies and/or they do not experience a process that requires them to apply to the emergency in this age group. Similarly, we can say that families of the preschool period, which is 19 months-5 years, apply to emergency services in almost every complaint of their children, although it is not considered urgent and/or they go through the process that makes them think about applying to the emergency department in this age group.
When the differences according to gender in application to PES are examined in the study of Polat et al.; soft tissue injury with 62%, intoxication with 75%, and burns with 63% are more frequent in males; foreign body aspiration with 66.7% is more frequent in females. While there was no difference in terms of gender in the first three most common diagnoses in this study, whereas women were higher in "Abdominal and pelvic pain" and "Acute tonsillitis" diagnoses; the proportion of males were higher in the diagnoses of "falls, unspecified" and "other non-infective gastroenteritis and colitis".

Looking at the consultation rates, consultation was requested for 0.27% of the patients in the study of Çevik et al., which included all emergency department (adult and children) patients, and 12.5% of the patients in Yüksel’s study, which included only adults (over 18 years old) emergency applications, (14) consultation was requested for 3.2% in this study.

In the study of Polat et al., 97% of the patients were discharged and 3% were hospitalized. In the study of Karakaş et al.; while 49% of the patients were prescribed and underwent outpatient treatment, 48% were sent with recommendations without prescription, and approximately 2% of the patients were hospitalized in service and intensive care. (2,16)

According to the findings obtained in this study, 95% (n = 6211) of the patients were not prescribed a recipe, and 5% (n = 339) were prescribed. One diagnosis was made for 85% of the patients (n = 5584), two for 13.8% (n = 901), three for 0.9% (n = 58) and four for 0.1% (n = 7). 4% (n = 238) of the patients were hospitalized. There is no patient who underwent surgery. Hospitalization rates are similar to the literature.

Limitations

This research data is limited to the 2018 data of a Foundation University hospital in Ankara. These results may differ in smaller residential units or in public health units PES. Moreover, it should be noted that there might be differences in results due to the Covid-19 pandemic process in 2020.

5. Conclusions

Inappropriate use of ESs has always been a major problem. Many patients prefer ESs in order not to wait in line and easy access to it. It was found that 25% of the patients who applied for minor reasons preferred ES because other clinics were closed. (14)

In this study, 81% of the patients were green areas, 19% were yellow areas, and there were no patients with red areas. The observed high rate of “non-emergency” patients can be explained by the fact that it was thought that there was no remuneration in ES, not wanting to wait in line in polyclinics for reasons such as time constraints due to parents working etc. or that the aforementioned foundation hospital’s are in a central location in the capital city and that additional examination fees to be requested etc. are more affordable than other private institutions.
There are many studies about the reasons affecting the applications of PES. Generally, it is seen that these studies are based on the diagnosis distribution.\(^2\)

In this study, the distribution of diagnoses of the patients admitted to the emergency department was examined according to various factors such as age group, gender, and season, and regional differences were observed in common diagnoses in the studies in the literature.

The characteristics of our patients in Emergency Departments are fundamentally no different from those in the world. Inappropriate use of ESs has always been a major problem. Most patients prefer ESs because they do not want to wait in a line and that they can go at any time of the day that is convenient for them. The use of emergency services by unsuitable patients is a universal problem. emergency services are preferred by patients and their relatives who do not require urgent intervention in our country as in all countries. While the admissions of unsuitable patients to the emergency department prevent the provision of services to real patients and the preparedness of the emergency service on the one hand, on the other hand, it decreases the quality of service provision and increases costs.\(^2, 10, 17\)

In the study, it was found that a significant part of the applications to the PESs were non-emergency patients (81%) and there were no patients in the "very urgent" category. Although the results coincide with the findings of the studies in the literature; the high rate of non-emergency patients is higher than other studies, and there are no patients with very urgent cases.

In the light of these results, it is thought that the reasons for the application of PES may differ according to contextual variables, so that giving information to parents from reliable sources of information can reduce unnecessary anxiety of parents and in this way reduce emergency service admissions. We think that by increasing the functionality of primary health care services, the implementation of the referral system will contribute to preventing the intensities arising from the misuse of paediatric emergency services and ensuring that they are used for their intended purpose. Thus, the loss of time and labour in health expenditures and economic loss will be eliminated. As a result, we anticipate that with the increase of time and financial means to be allocated for emergency patients, quality services will be provided, and the quality of healthcare services will increase.

Declarations

Acknowledgements

ED: Emergency Department

PES: Paediatric Emergency Services

Authors’ Contribution

The entire article has been prepared by its author.
Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Approval number 2020/67 was obtained from Ufuk University Faculty of Medicine Non-Invasive Clinical Research Evaluation Commission for this study. The author declares that the rules of research and publication ethics are followed (24.12.2020 Date, Approval Number 2020/67).

Consent to participate

Not applicable

Consent to publication

Not Applicable

Since descriptive images or other personal details of the patients were not presented in the study, consent was not obtained from the patients. Therefore, the permission to publish cannot be applied for this article.

Competing interests

The Author declared that there is no conflict of interest.

References

1. Rothman RE, Ivрин CB, Moran GJ, et al. Respiratory hygiene in the emergency department. *Ann Emerg Med.* 2006;48:570-582. DOI: [10.1016/j.annemereng.2006.05.018](https://doi.org/10.1016/j.annemereng.2006.05.018)

2. Karakaş N, Özdemir B, Kılıç S, Akbulut Ö. Ebeveynleri Çocuk Acile Getiren Nedenler: 4 yıllık İzlem. *Osmangazi Tip Dergisi.* 2020; 42(1): 67-74. https://doi.org/10.20515/otd.472672

3. “Her bransta ilk 100 hastane” 2017 yılı Ocak Ekim Dönemi Poliklinik, Yatış, Yoğun Bakım ve Acil Servis İstatistikleri, T.C. Sağlık Bakanlığı Kamu Hastaneleri Genel Müdürlüğü, Ankara. Aralık, 2017. Accessed at: https://docplayer.biz.tr/105118039-Her-bransta-ilk-100-hastane.html 23.12.2020

4. Shah MN, Cushman JT, Davis CO, et al. The epidemiology of emergency medical services use by children: an analysis of the National Hospital Ambulatory Medical Care Survey. *Prehosp Emerg Care.* 2008;12:269-276. DOI: [10.1080/10903120802100167](https://doi.org/10.1080/10903120802100167)
5. Phelps K, Taylor C, Kimmel S, et al. Factors associated with emergency department utilization for nonurgent pediatric problems. *Arch Fam Med*. 2000;9:1086–1092. DOI: 10.1001/archfami.9.10.1086

6. Feigelman S, Duggan AK, Bazell CM, et al. Correlates of emergency room utilization in the first year of life. *Clin Pediatr*. 1990;29: 698–705. DOI: 10.1177/000992289002901204

7. Fosarelli PD, DeAngelis C, Mellits ED. Health services use by children enrolled in a hospital-based primary care clinic: a longitudinal perspective. *Pediatrics*. 1987;79:196–202.

8. Christakis DA, Wright JA, Koepsell TD, et al. Is greater continuity of care associated with less emergency department utilization? *Pediatrics*. 1999;103:738–742. DOI: 10.1542/peds.103.4.738

9. Sarver JH, Cydulka RK, Baker DW. Usual source of care and nonurgent emergency department use. *Acad Emerg Med*. 2002;9:916–923. DOI: 10.1111/j.1553-2712.2002.tb02193.x

10. Berry A, Brousseau D, Brotanek JM, Tomany-Korman S, Flores G. Why do parents bring children to the emergency department for nonurgent conditions? A qualitative study. *Ambul Pediatr*. 2008;8(6):360-367. DOI: 10.1016/j.ambp.2008.07.001

11. Burt CW, Middleton KR. Factors associated with ability to treat pediatric emergencies in US hospitals. *Pediatr Emerg Care*. 2007;23:681Y689. DOI: 10.1097/PEC.0b013e3181558d43

12. Çınar O, Acar YA, Çevik E, Bilgiç S, Ak M, Cömert B. Acil Servise başvuran 0-18 yaş grubu adli olguların özellikleri. *Anatol J Clin Invest*. 2010; 4:148-51. https://www.researchgate.net/publication/277996073_ACIL_SERVISE_BASVURAN_0-18_YAS_GRUBU_ADLI_OLGULARIN_OZELLIKLERİ

13. Polat O, Kabaçam G, Güler İ ark. İbn-i Sina Hastanesi Acil Servis’ine başvuran hastaların sürveyans analizi. *Türkiye Acil Tip Dergisi* 2005; 5(2):78-81. https://turkjemergmed.com/abstract/499/tur

14. Çevik C, Tekir Ö. Acil servis başvurularının tanı kodları, triyaj ve sosyodemografik açıdan değerlendirilmesi. *Balıkesir Sağlık Bilimleri Dergisi* 2014; (2):102-107 doi: 10.5505/bsb0.2014.26349

15. Aydın T, Akköse Ş, Köksal Ö ark. Uludağ Üniversitesi Tıp Fakültesi hastanesi acil servisine başvuran hastaların özelliklerinin ve acil servis çalışmalarının değerlendirilmesi. *Akademik Acil Tip Dergisi* 2010; 163-168 https://jag.journalagent.com/atuder/pdfs/ATUDER_9_4_163_168.pdf

16. Polat, S., Özyazicioğlu, N., Güdükçü Tüfekci, F., & Feyza, Y., "Çocuk acile başvuran 0 18 yaş grubu olguların incelenmesi," *Atatürk Üniversitesi Hemşirelik Yüksekokulu Dergisi*, cilt.8, (2) ss.55-62, 2005 https://dergipark.org.tr/tr/pub/ataunihem/issue/2630/33832

17. Edime T, Edime Y, Atmaca B, Keskin S. Yüzüncü Yıl üniversitesi Tıp Fakültesi Acil Servis Hastalarının Özellikleri. *Van Tip Dergisi* 2008; 15: 107-111 https://doi.org/10.21673/anadoluklin.463388