Phytochemical screening, mineral analysis and evaluation of the diuretic effect of aqueous extract of *Pericopsis laxiflora* from male Sprague Dawley rats

Dahiro Noel DOUKOUROU*, Richard KAMOU, Bourahima BAMBA, Karamoko OUATTARA

Laboratory of Biochemical Pharmacodynamics -UFR Biosciences, Félix Houphouet-Boigny University of Cocody Abidjan 22 BP S82 Abidjan 22

Abstract

Pericopsis laxiflora is among the medicinal plants used by the traditional practitioner in the treatment of many diseases. However, data on its diuretic power are lacking. Moreover, the effect of the preparation of traditional galenic formulations on the composition of phytocompounds and essential minerals and metals is unknown. The aim of this study was to show the effect of treatment on the phytochemical composition and minerals composition and to evaluate diuretic effect of *Pericopsis laxiflora* aqueous extracts. The tube characterization reactions revealed flavonoids, sterols, terpenes, catechin tannins polyphenols and saponins in aqueous extracts. Gallic tannins and quinones are absent. All compounds were generally present in similar proportions in two aqueous extracts. Chemical analysis of all aqueosal extracts by atomic absorption spectrometry (AAS) showed effect of model extraction on minerals. Copper (0.3116 mg /100 g), magnesium (260.7 mg /100 g), selenium (0.00904 mg /100 g), zinc (4.52 mg /100 g), manganese (75.029 mg /100 g) are more concentrated in maceration than a decoction. For decoction of same plant, the situation is reversed with sodium (58.6mg /100 g), calcium (12670 mg/100 g), iron (185 mg/100 g) and potassium (2781 mg /100 g). For pharmacological investigation, 32 rats Sprague Dawley female weighing 385-533g are isolated each in metabolic cages from 6 pm to 8 am and treated with 100mg/kg of *Pericopsis laxiflora* aqueous extracts. From 8 am to 2 pm the animals received only tap water in metabolic cages. The volumes of water intake and urine were not significantly different in the two groups (treated and untreated). The diuretic effect was not observed with 100mg/kg (b/w). In addition polyphenols, flavonoids, saponins and minerals such as potassium, magnesium and selenium are indicators of the vasodilatory and cardioprotective functions of *Pericopsis laxiflora* aqueous extracts. The prescription of these extracts in traditional medicine must take into account the toxicity of the plant associated with a calcium and manganese content.

Keywords: *Pericopsis laxiflora*, diuresis, decoct extract, macerated extract, minerals, Rats Sprague Dawley

INTRODUCTION

Living close to nature, humans developed knowledge to advantage of the healing properties of medicinal plants. From the ancestral period to the present day, they have enable people to prevent and fight many diseases. Because of their multiple therapeutic effects 80% of the African populations still use these medicinal plants for their health care. Indeed, this strong interest for plants results from their efficiency, availability and their relatively low cost. Those in traditional medicine mostly recommend a decoction and often maceration for the extraction of bioactive compounds which are administered orally. The genus *Pericopsis* is part of the heritage of medicinal plants commonly used in traditional African medicine. With the bark of the species *Pericopsis laxiflora*, several therapeutic values can be detected justifying its empirical use in the treatment of headaches, stomach ulcers, gastritis, enteritis, heart pain, abdominal pain, shigellosis and malaria. Studies confirm that the bark of *Pericopsis laxiflora* possesses antimicrobial and analgesic activities. However, information on the the effects of the extraction on bioactive compounds, mineral composition is not available. In addition, it is not known whether the plant, despite the presence of polyphenols, can be used in the management of hypertension, the main risk factor cardiovascular. Our work will consist of evaluating the effect of the main extraction methods used in traditional medicine on the composition of secondary metabolites, mineral elements and diuretic activity.

MATERIAL AND METHOD

Plant material

Pericopsis laxiflora stem bark were collected north at Lataha village located 8 km from Korhogo (Côte d'Ivoire). Plant specimen were identified and authenticated by Félix Houphouët-Boigny University Abidjan National Floristic Center (NFC). Herbarium specimen was deposited in this center. Dried stem bark of these plants were individually pulverised into a coarse powder using mortar and pestle.
Preparation of the aqueous maceration

100 g of fine powder was thoroughly homogenized in 1L of distilled water using an electric mixer. The homogenate obtained was first spun in a square of fabric, then filtered successively twice on hydrophilic cotton and once on Whatman No. 1 filter paper. The filtrate obtained was then evaporated in a Med Center Ventichel type oven at 50 °C.

Preparation of aqueous decoction

To obtain decoction, 100 g of powder were dissolved in 1 liter of distilled water. The homogenate obtained after mixing was heated in a boiling water bath for 15 minutes. After cooling, the homogenate was first spun in a square of tissue, then successively filtered twice on hydrophilic cotton and once on Whatman No. 1 filter paper. The filtrate obtained was then evaporated in a Med Center Ventichel type oven at 50 °C.

Phytochemicals analysis

The phytochemical screening revealed presence (or not) of different families of secondary metabolites: alkaloids, polyphenols, tannins, flavonoids, saponins, quinones, polyterpenes or sterols. This screening was carried out on aqueous macerate our plant according to methodology described by Bidié et al, 2011.14

Analysis of essential metals and minerals

100 g of aqueous extract of Pericopsis laxiflora was diluted in water. These dilutions were used for the analysis of manganese, magnesium, copper, sodium, selenium, calcium, zinc, iron and potassium by inductively coupled plasma mass spectrometry (ICMS) using ThermoScientific X Series II).

Pharmacological Investigations

Evaluation of the effect of decocted and macerated preparations on water consumption and diuresis

Animals

Thirty-two (32) rats Sprague Dawley male weighing 385-433g were used for the experiments. Rats were first housed (two rats per cage) at a temperature between 20-25 °C with a hygrometry oscillating between 30-50%. Animals were divided into 4 homogeneous groups: pericopsis decoction (PD), pericopsis maceration (PM), furosemide (Furo) and tap water (TW). They were in a clean and controlled environment with an alternation day and night 12h. They had free access to water and food. The litter was changed twice a week. From their acclimatization period to end of their treatment rats were monitored daily and weighed once a week. No signs of suffering were observed in animals during our experiment. They were sacrificed at the end of experiment.

Products

Oral tablets of Furosemide 40 mg (MYLAN, Saint-Priest, France) were purchased in pharmacy.

Experimental protocol

Each rat was isolated in a metabolic cage from 6pm to 8am. To monitor water consumption and diuresis, volumes of drinking water and collected urine were measured at 8 am and 2 pm. In the PD and PM groups, animals received 100 mg/kg (w/w) of pericopsis decoction or pericopsis maceration extracts dissolved in 100 ml of tap water. In furo and TW groups, animals received furosemide (10 mg/kg) in 100 ml of tap water or water respectively. At 8 am, drink solutions were replaced by tap water in each group.

Statistical Analysis

Data expressed as mean±SD and mean±SEM. Test of significance between control and treatment means were carried out by analysis of variance (ANOVA) using Graph Pad Software (2000).

RESULTS

Phytochemical screening of Pericopsis laxiflora traditional galenic formulations

The results of the tube characterization show that both preparations contain mostly phytocompounds such as polyphenols, alkaloids, catechin tannins and flavonoids in equal proportions. Saponins are more concentrated in the decoction while quinones and gall tannins are absent in both aqueous extracts (Table 1).
Table 2: Composition in minerals elements of *Vitex doniana* traditional aqueous preparations

	Maceration Preparation: mg/100g of extract	Decoction Preparation: mg/100g of extract
Cu	0.3116	0.2008
Na	51.3	58.6
Mg	260.7	152.9
Ca	861	1267
Se	0.00904	0.00872
Zn	4.52	3.04
Mn	75.029	41.837
Fe	17.597	18.51
K	2510.4	2781

Effect of decocted and macerated *Pericopsis laxiflora* solutions on water intake in healthy rats

Animals exposed to decocted solutions of *Pericopsis laxiflora* showed a non-significant increase in water consumption during the treatment period compared to the pericopsis maceration, furosemide tap water groups (ANOVA + t-test) (Figure 1a). After treatment, animals exposed to PD showed a decrease in water consumption after the treatment period. Nevertheless, its consumption was higher than that of the other groups (ANOVA + t-test) (figure 1b).

![Figure 1a: Effect of different extracts on water intake during treatment](image1)

![Figure 1b: Effect of different extracts on water intake after treatment](image2)

DISCUSSION

According to phytochemical screening results, secondary metabolites such as sterols or polyterpenes, polyphenols, alkaloids, catechin tannins, flavonoids are present in *Pericopsis laxiflora* aqueous extracts. It could be said that these metabolites are thermostable and are not influenced by heat for 15 minutes of boiling. Heat does not alter chemical structure of these secondary metabolites. For example, tannins, polyphenols and flavonoids are thermostable after 60 minutes of boiling at 100°C. Saponins which are weakly present in *Pericopsis laxiflora* maceration but concentrate in its decoction. Certainly, these compounds are further extracted by heat. In other words, their respective increase in decoction is due to degradation of certain compounds or matrices by heat. The presence of catechic tannins in *Pericopsis laxiflora* aqueous extracts is...
new discovery according to previous work. A part from difference, results obtained with aqueous extracts phytochemical screening are in line with results of previous work. Presence of this metabolite in this plant could relate to climatic and environmental condition, harvest period, genetic heritage and extraction procedure of these phytoconstituents. Aqueous extracts contain as many secondary metabolites as the alcoholic extracts commonly used in laboratories for the confirmation of empirical uses. It’s about polyphenols, flavonoids, tannins quinones, saponins, alkaloids, sterols and polyterpenes which are very abundant in aqueous extracts that organic extracts. Experimentally, the pharmacological effects of these metabolites have been scientifically proven. For example, we can cite the polyphenols which play an important role in the treatment of arterial hypertension through their antioxidant effect, by improving the bioavailability of nitric oxide and endothelial function. Alkaloids, on the other hand, exhibit a vasodilating and antihypertensive effect in animal experiments. Saponins isolated from hernaria grabba have produced a hypertensive effect in rats. The synergistic and individual effect of the these metabolites present in Pericopsis laxiflora explains the intensive use of aqueous extracts in traditional medicine. They justify their use in the treatment of bacterial diseases, heart pains and malaria. These extracts have the same pharmacological effects as organic extracts used in laboratory. They reveal better and pharmacological spectrum. This is the case with polyphenols which are revealed by herbal teas (decoction). Usually administrated orally, these aqueous extracts allow good distribution of metabolites throughout the body. Their presence in water makes the latter an effective and available solvent which enhances the synergistic effect of the phytocompounds in the rigid and fibrous parts of plants. The heat treatment used in the preparation of decoction does not influence the ingredients contained in plants. Aqueous extracts contain all the phytocompounds that the other organics commonly used in the laboratory. However, the use of aqueous decoction is more widespread in traditional medicine. Certainly boiling is the only alternative to extract the phytocompounds in the rigid and fibrous parts of plants. For minerals, the treatment effect is present. Some minerals are concentrated in maceration while they are reduced in decoction. Apart from calcium and manganese, potassium could justify the use of aqueous extracts in the management of anemia. In addition to its phytocompound content, the analysis of minerals by mass spectrometry (ICP-MS) reveals the presence of minerals with their respective content and allows to evaluate the toxicity of the plant. Sodium, iron, selenium and potassium are more concentrated in the decoction than in the macerated. This difference in content could be associated with the effect of the treatment. Certainly during boiling, the structure of the epidermis or phytocompound is degraded to release a significant amount of these electrolytes. Minerals such as copper, magnesium, manganese and zinc their presence largely important in the macerated than in the decoction could be due to their sensitivity to heat which degrades them or undoubtedly, they bind to other chemical bodies present in the extract reducing their content in the decoction. From calcium and magnesium whose content present toxicity risks, the rest of minerals respect the limits of the daily intake recommended by the European Society for Clinical Nutrition and Metabolism (ESCaNM). The presence of minerals such as selenium, magnesium and potassium could confer vasodilatative, cardioprotective and antihypertensive properties to the aqueous extracts. As evidence, selenium decreases the size of myocardial infarction in rats. Potassium supplementation induces a considerable reduction in systolic and diastolic blood pressure. Iron is responsible for 80% of the production of red blood cells and could justify the use of aqueous extracts in the management of anemia.

CONCLUSION

The heat treatment used in the preparation of decoction does not influence the ingredients contained in plants. Aqueous extracts contain all the phytocompounds that the other organics commonly used in the laboratory. However, the use of aqueous decoction is more widespread in traditional medicine. Certainly boiling is the only alternative to extract the phytocompounds in the rigid and fibrous parts of plants. For minerals, the treatment effect is present. Some minerals are concentrated in maceration while they are reduced in decoction and vice versa. The analysis of the minerals allows to conclude that the plant presents risks of toxicity with a high rate of calcium and manganese. Any use of these extracts on a traditional scale in patients must take into account the level of these two minerals in the sick subjects. With the results of the pharmacological investigation, it was realized that the plant could not cause the diuretic effect. This finding does not call into question the diuretic power of this plant or its antihypertensive effect. For the simple reason that in these aqueous extracts, polyphenols, flavonoids, saponins and minerals such as potassium and selenium known for their relaxing vasodilating and cardioprotective effect were highlighted. The administration of a dose higher than 100 mg/kg (w/w) to hypertensive rats will allow the detection of the diuretic effect.

REFERENCES

1. Pierre P. Le magasin de bon Dieu. Jean-Claude Balles (France); 2001, 285p.
2. WHO, The World Health Report : Primary Health Care. 2008 http://www.who.int/whr/2008/whr08_en.pdf [on line] consulted in 27/05/2020.
3. Christian D. & Lapraz J. C. «Treaté de la phytothérapie clinique : Médecine et Endobiogénie», Masson, Paris (France); 2002, 827p.
4. Dharmannanda S. The Methods of preparation of herb Formulas: Decoctions, dried decoctions, powders, pills, tablets, and tinctures. Institute for traditional medicine, Portland, Oregon; 1997, [on line] » http://www.itmonline.org/art/medtheprep.htm « consulted in 27/05/2020.
5. Ake-Assi L, Quelques plantes utilisées dans le traitement des maladies cardiaques en Côte d'Ivoire. Bull. Méd. Trad. Pharm, 1988; 2(1):96-100.

6. Alex A, Alfred A, Oteng Y...& Monique S, Ethnobotanical study of some Ghanaian anti-malarial plants. J Ethnopharmacol, 2005; 99:273-279. https://doi.org/10.1016/j.jep.2005.02.020

7. Ekpendu TOE, Anti-ulcer Plants of the Benue Area of Nigeria.West Afr J Pharm, 2003; 19:1-4. https://doi.org/10.4341/wajdr.v191i1.14724

8. Ouattara A, Ouattara K, Coulibaly A...& Djaman A J, Activités antioxydantes et diurétiques de plantes médicinales de la pharmacopée ivoirienne. Sciences & Nature, 2001; 8(1):1-11.

9. Bidié A P, N’Guessan B B...& Djaman A J,Activités antioxydantes, hypotensives et diurétiques de cinq plantes médicinales des régions de Porto-Novo et Dori. Bull. Méd. Trad. Pharm, 1999; 58:291-305. https://doi.org/10.1016/S2095-796.2017.09.009

10. Touze J E, Les maladies cardiovasculaires et la transition épidémiologique du monde tropical. Médecine fondamentales, U.F.R Sciences Fondamentales, Université Clermont Auvergne (France), 2017, 257p.

11. Bidié A P, N’Guessan B B...& Djaman A J, Activités antioxydantes de dix plantes médicinales de la Pharmacopée ivoirienne. Sciences & Nature, 2001; 8(1):11.

12. Im M H, Park Y S, Leontowicz H...& Gorinstein S, 2011, The maceration time on micronutrient concentrations of Canarium schweinfurthii p. m. (Rutaceae) in Wistar rats. J Integr Med 2015; 13(5):326-35. https://doi.org/10.1016/S2095-4964(15)60188-1

13. Tringali C, Identification of bioactive metabolites from the bark of Pericopsis (Afrotrichia) laxiflora. Phytochemical Analysis, 1995; 6(6):289-291. https://doi.org/10.1002/pca.2800060603

14. Koffi A J, Bla K B, Yapi H, Bidie A P & Djaman A J, Phytochemical screening of some medicinal plants in Côte d’Ivoire and evaluation of their extraction efficiency. International Journal of Pharmacognosy and Phytochemical Research, 2015; 7(3):563-569.

15. Leontine N E. & Visse R, Plantes médicinales de la Côte d'Ivoire: Une étude ethnomédicale et de plantes médicinales de la Côte d'Ivoire. Journ. d'agriculture traditionnelle et de botanique appliquée, 1975; 37:1-32.

16. Coulibaly S O, Ouattara A, Ouattara K, Coulibaly A, Effets Anthihypertensifs Des Extraits Aquieux Et Ethanolique Des Graines Fermentées De Parkia Biglobosa (Mimosaceae) Cher. Les Rats. European Scientific Journal, 2017; 13(36):1857-7881. https://doi.org/10.19044/esj.2017.v13n36p162

17. Hamid EL-H., Monce B...& Rachid B, Phytochemical screening of a medicinal plant: Mentha Spicata L. American Journal of Innovative Research and Applied Sciences, 2018; 1:11.

18. Kim HJ, Xu L, Chang KC...& Choi J, Anti-inflammatory and diuretic effects of anthocyanins from black soybean seed coat on the keratinocytes and ischemia-reperfusion injury in rat skin flaps. Microsurgery, 2012; 32(7):563-70. https://doi.org/10.1002/micr.22019

19. Galleano M, Pechanova O. & Fraga G, Hypertension, nitric oxide, antioxidants, and dietary plant polyphenols. Curr Pharm Biotechnol, 2010; 11(9):837-848. https://doi.org/10.2174/187921010793262114

20. El-Guendouz S, Al-Waili N, Auzza S...& Badiaa L, Antioxidant and diuretic activity of co-administration of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac J Trop Med, 2017; 10(10):974-980. https://doi.org/10.1016/j.ajptm.2017.09.009

21. Shi C C, Liao J F, & Chen C F, Comparative study on the vasorelaxant and diuretic activity of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac J Trop Med, 2017; 10(10):974-980. https://doi.org/10.1016/j.ajptm.2017.09.009

22. Coulibaly A, Coulibaly A, Effets Leontie N E. & Visse R, P...& Djaman A J, Activités antioxydantes, hypotension et diurétiques de plantes médicinales de la pharmacopée ivoirienne. Sciences & Nature, 2001; 8(1):1-11.