Phenotypic plasticity in adults of Anticarsia gemmatalis exposed to sub-doses of Bt-based bioinsecticide

Fabricio Oliveira Fernandes (fabriciof9@gmail.com)
UNESP: Universidade Estadual Paulista Julio de Mesquita Filho
https://orcid.org/0000-0002-8776-8308

Tamires Doroteo de Souza
UNESP: Universidade Estadual Paulista Julio de Mesquita Filho

Ariadne Costas Sanches
USP: Universidade de Sao Paulo

Ivan Ricardo Carvalho
UNIJUI: Universidade Regional do Noroeste do Estado do Rio Grande do Sul

Naymá Pinto Dias
UNESP: Universidade Estadual Paulista Julio de Mesquita Filho

Janete Apparecida Desiderio
UNESP: Universidade Estadual Paulista Julio de Mesquita Filho

Ricardo Antonio Polanczyk
UNESP: Universidade Estadual Paulista Julio de Mesquita Filho

Research Article

Keywords: allometry measure, morphometry, velvet bean caterpillar, Bacillus thuringiensis, phenotype

Posted Date: December 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1104574/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Anticarsia gemmatalis Hünber, 1818 is one of the main defoliating species in the soybean crop. Bacillus thuringiensis Berliner, 1915, is a bacterium used in the biological control of this pest species. Resistant populations and their sublethal effects caused by the use of the bacteria have already been reported; however, there are no studies on phenotypic plasticity in adulthood exposed to Bt-based bioinsecticide sub-doses. This study aimed to evaluate the morphometry of A. gemmatalis adults under laboratory conditions submitted to the Bt-based bioinsecticide Dipel SC over the three generations. The body segments measured were width, length, and area of the anterior and posterior wings, the weight of the integument, chest, abdomen, wings, and the whole adult of males and females. Among the treatments, LC$_9$ in the first generation and CL$_{15}$ in the second generation were those with lower thresholds in relation to the weight of the chest and abdomen, considering the proportions of the body smaller than the females. The female’s weight adulthood was reduced by 10% about males, and, only in the first generation. Males have larger body size and more pronounced phenotypic plasticity than females. Here, we demonstrate the first study assessing the phenotypic plasticity of A. gemmatalis adults.

Introduction

Anticarsia gemmatalis Hünber, 1818 is one of the main defoliating species in the soybean crop in the American continent (Haase et al., 2015). However, as it is considered a polyphagous species, it migrates to other regions to colonize new areas with greater food availability (Ford et al., 1975; Pashley and Johnson, 1986; Fernandes et al., 2018). The permanence of the insect pest in tropical and subtropical environments is attributed to the continuous cultivation throughout the year, which provides the formation of green bridges (Oliveira et al., 2014; Fernandes et al., 2020).

Bacillus thuringiensis Berliner, 1915, is a bacterium used in the biological control of this pest species. In the form of Bt-based bioinsecticides or biotechnology with the insertion of the Cry genes in plants to provide resistance to insects, known as transgenic plants or Bt plants (Konecka et al., 2018). Resistant populations and their sublethal effects caused by the use of the bacteria have already been reported (Sedaratian et al., 2013; Janmaat et al., 2014; Souza et al., 2019; Rabelo et al., 2020); however, there are no studies on the phenotypic plasticity in adulthood, according to the exposure of the sub-dose of Bt-based bioinsecticides.

Phenotypic plasticity is the ability of an organism to respond to environmental stresses with changes in shape, state, movement, or activity (Brisson, 2010; West-Eberhard, 2003). In addition to being considered an important escape tool for survival in unstable environments or disturbed by human action (Gotthard and Nylin, 1995). Studies demonstrate that these behavioral, morphological and physiological adaptations allow organisms to better adapt to disturbed environments on short time scales without changes in the genotype (West-Eberhard, 2003; Hayes et al., 2019).

Evaluations carried out on Nilaparvata lugens Stål, 1854 exposed to sub-doses of insecticides, showed differences in the morphometric parameters of the wings. The imidacloprid and dinotefuran treatment morphometrically provided smaller wings for both sexes, unlike the fenvalerate treatment that contributed to larger wings (Bao et al., 2009).

Sub-doses of insecticides can alter the development of the wings in insects and other body segments and, therefore, developmental, reproductive and dispersal capacities (Hayes et al., 2019). Thus, it is expected that population interactions and biotic relationships established in a community are influenced by changes in the individual's morphometry (Vaz et al., 2004; Golu et al., 2005).

However, due to the lack of studies on the phenotypic plasticity of A. gemmatalis exposed to sub-doses of Bt-based bioinsecticides, this study aimed to evaluate the morphometry of A. gemmatalis adults submitted to the Bt-based bioinsecticide Dipel SC in laboratory over three generations.

Materials And Methods

Insect Rearing

The population of A. gemmatalis used in the bioassays was maintained on an artificial diet (Greene et al., 1976) at the Laboratory of Microbial Control of Arthropod Pests of the State University of São Paulo “Júlio de Mesquita Filho” (UNESP – Jaboatocal). The insects were maintained at 25 ± 1 °C, 70 ± 10% RH, and 12 h photophase.

Sublethal Concentrations

To evaluate the toxicity of this product, spore-crystal suspensions of the Bt-based bioinsecticides (Dipel®) were defined by plating on nutrient agar to determine the CFU evaluated after seven days (Sedaratian et al. 2013).

The curve response was estimated using the Six Error Problems analysis (Sas University 2013). 200 μL on the surface of the artificial diet (4.8 cm2) were previously distributed in polyethylene cups (3.5 cm Ø). To estimate a curve response, 100 insects were used for each treatment, distributed in 10 repetitions. Deionized water was applied in equal volume as a control (Santos et al. 2020). The bioassay evaluations were carried out after seven days.

Based on mortality data from bioassays, artificial diet preparations containing sub-lethal concentrations of Dipel® or controls (untreated diet) were prepared and used to study sublethal effects of Bt on A. gemmatalis. The sub-lethal concentrations LC$_5$, LC$_{10}$, LC$_{15}$ and LC$_{20}$ (0.20509, 0.38126, 0.57929 and 0.80776 μg Bt.mL diet$^{-1}$) were chosen by the estimate response curve (Sedaratian et al. 2013).
In these assays, a 200 μL aliquot of each sub-lethal concentration was applied to the surface of the artificial diet (4.8 cm³), previously distributed in polyethylene cups (3.5 cm Ø) (Sas University 2013).

The surviving caterpillars were fed an artificial diet containing their respective sub-lethal concentrations for three generations (F₁, F₂ and F₃). For each generation, 100 insects were used for each treatment, considering each caterpillar as a sampling unit. Deionized water was applied in an equivalent volume in the control. The evaluations were carried out daily.

Assessment of Sublethal Effects

The surviving caterpillars in each treatment/generation were evaluated daily and were sexed when they reached the pupal stage (Butt and Cantu, 1962). The newly emerged adults were separated into couples and placed in PVC cages (10 x 20 cm), lined with white A4 sulfite paper (used as an oviposition substrate). At the bottom, a Petri dish with filter paper was used and the top was sealed with voile fabric.

The adults were fed with a 10% honey solution moistened with cotton wool placed in a polyethylene petri dish (49 x 12 mm) at the cages (Fernandes et al., 2017). The papers used as a laying substrate were removed, exchanged daily, packed in plastic pots (14.0 cm Ø, 10 cm h), and with the hatching of the larvae, these were used to originate the subsequent generations (Kalvnadi et al., 2018).

Morphometry

The adults of A. gemmatalis exposed to the Bt-based bioinsecticide sub-doses were weighted within 24 hours. The different parts of the individuals were separated with the aid of fine-tipped surgical scissors and then weighed on an analytical balance (Belmark – 210A). The weighing was performed with the tegument, thorax, abdomen, wings and whole adult.

After mounting on the lamina, coverslip and sealed with a thin layer of colorless nail polish dried for two hours. The measurements of the length, width and area of the anterior and posterior wings were obtained with the aid of a stereoscope microscope with an attached camera (Leica S9 i), according to the technique described by Mare and Corseuil (2004).

Experimental Design and Data Analysis

The mortality data from virulence tests were submitted to Probit regression analysis and sublethal concentration values LC₅₀, LC₁₀, LC₁₅ and LC₂₀ were obtained using the SAS software (P > 95%) (Sas University, 2014). We used a completely randomized design (CRD) with ten repetitions per sex and the treatments arranged in a 3 x 5 x 22 factorial arrangement. There were three generations (F₁, F₂, F₃), five treatments (LC₅₀, LC₁₀, LC₁₅, LC₂₀ and control) and 22 variables being the weight of tegument, thorax, abdomen, wings, whole adult, and width, length and area of the anterior and posterior wings of both sexes.

Statistical analysis was performed on the GENES software (Cruz, 2001). The data were subjected to analysis of variance by F test and the stratified linear correlation was performed per generation and treatment. The Tukey test dismembered the variables that showed an interaction between treatment and the generation at 5% probability.

Results

Males Morphometry

In the weight of the tegument of the males, treatments LC₅₀, LC₁₀ and LC₁₅ differed in the first generation; the treatments LC₅₀, LC₁₀ and LC₂₀ in the second generation and only LC₁₅ in the third generation. The chest weight between all treatments obtained significance between the control in the first generation, with no significant differences being observed in the second and third generations. In the abdomen, the weight in the LC₂₀ in the first generation reached the highest average, differing significantly among all treatments. In subsequent generations, differences were observed only in the LC₁₀ treatment.

The weight of the wings showed significance only to the LC₁₀ treatment in the first generation. In the total weight of the males, treatments LC₂₀ in the first generation and LC₂₀ in the third generation reached higher averages, not differing significantly from the control. The length of the anterior wings in the LC₅₀ treatment reached lower averages over the three generations, with significance being observed for LC₁₀ in the first generation, LC₁₅ in the second generation and LC₁₀, LC₁₅ and LC₂₀ third generation. The same was not observed in the weight of the anterior wings of the males. Therefore, the length of the posterior wings of the males obtained higher averages for the control, differing significantly between all treatments in the first generation and LC₅₀, LC₁₅ and LC₂₀ in the second generation. In the last generation, only LC₁₀ showed significance among all treatments. The same was not observed in the width of the posterior wings of the males.

The area of the anterior wing of the males obtained averages superior to the control in the three generations, differing significantly from the treatments LC₅₀, LC₁₀ and LC₁₅ in the first generation and LC₅₀, LC₁₀, LC₁₅ and LC₂₀ in the third generation. The same was not observed about the area of the anterior wing of the males (Table 1).
In the exposed sub-dose. The same fact was not observed in the LC5

Variations were observed in the wing area of males in all generations, with an increase in the area of the anterior and posterior wings according to the increase in the posterior wing of the females (Table 1). In the second generation, the treatments did not differ between both.

Regarding the width of the posterior wing, LC15 presented lower averages, differing significantly from the control treatment.

The length of the posterior wing showed higher averages at LC10 and control over the first and second generation, with significance for the LC5 treatment. In the third generation, there was no significant difference between treatments. The length of the anterior wing, LC5 presented lower averages, differing significantly from the control treatment.

The area of the anterior wing in the LC5 treatment in the first and second generation reached lower averages than the control treatment, differing significantly between both. In the third generation, there was no significant difference between treatments. The same was not observed in the area of the posterior wing of the females (Table 2).

Variations were observed in the wing area of males in all generations, with an increase in the area of the anterior and posterior wings according to the increase in the exposed sub-dose. The same fact was not observed in the LC20 treatment in the second and third generations in males (Table 1). In females, the same

Treatments	1° Generation	2° Generation	3° Generation
Control	129.75±0.04A	127.22±0.05A	122.09±0.02A
LC5	69.87±0.05CC12	91.29±0.02CB	119.68±0.01A
LC10	112.71±0.02bA	93.39±0.01cB	106.20±0.02abA
LC15	64.96±0.02cB	113.14±0.02abA	106.02±0.03bcB
LC20	126.22±0.04aA	58.77±0.00bA	50.04±0.02aA

Females Morphometry

In weight of the tegument of the females, the treatment LC5 in the first generation, LC10 in the second generation and LC15 in the third generation reached higher averages. The weight of the chest of treatment LC5 in the first generation, LC10, LC15, LC20 and control in the second generation and LC5, LC15 and LC20 in the third generation had the highest averages, not significantly different between both.

In the abdomen, LC15 and LC20 in the first generation, LC5 and LC20 in the second generation and LC20 in the third generation reached lower averages among all other treatments. However, weight of the wings, did not show significance between treatments and generations. The total weight of the females revealed that the LC5 in the first generation differed among all treatments. The same was not observed in the second and third generations.

In the length of the anterior wing, LC10 and control in the first and second generation reached the highest averages, with significance with the treatments LC5 and LC20, respectively. In the third generation, there was no significance between treatments. In the width of the anterior wing, it was observed that only in the second generation, the treatments did not differ between both.

The length of the posterior wing showed higher averages at LC10 and control over the first and second generation, with significance for the LC5 treatment. In the third generation, there was no significant difference between treatments. Regarding the width of the posterior wing, LC5 presented lower averages, differing significantly from the control treatment.

The area of the anterior wing in the LC5 treatment in the first and second generation reached lower averages than the control treatment, differing significantly between both. In the third generation, there was no significant difference between treatments. The same was not observed in the area of the posterior wing of the females (Table 2).

Variations were observed in the wing area of males in all generations, with an increase in the area of the anterior and posterior wings according to the increase in the exposed sub-dose. The same fact was not observed in the LC20 treatment in the second and third generations in males (Table 1). In females, the same

Treatments	Mean ± standard error. 1	Mean ± standard error. 1	Mean ± standard error. 1
Control	58.30±0.03abB	58.30±0.03abB	58.30±0.03abB
LC5	44.36±0.05aA	44.36±0.05aA	44.36±0.05aA
LC10	20.59±0.02dD	20.59±0.02dD	20.59±0.02dD
LC15	44.37±0.03bcA	44.37±0.03bcA	44.37±0.03bcA
LC20	58.77±0.00bA	58.77±0.00bA	58.77±0.00bA

1Mean ± standard error. 2Means followed by the same lower case letter between treatments and upper case letters between generations do not differ significantly.
observed in the bodyweight of adults may be associated with the differential susceptibility between the sexes exposed to sub-doses of the bioinsecticide Dipel SC sub-doses on A. gemmatalis morphology varied according to the concentration of the bioinsecticide. The sublethal effects observed in the bodyweight of adults may be associated with the differential susceptibility between the sexes exposed to sub-doses of the bioinsecticide Dipel SC.

Table 2
Bodyweight, wing size and a wing area of Anticarsia gemmatalis submitted to sublethal doses of the bioinsecticide Dipel SC over three generation

Treatments	Tegument	Thorax	Abdomen	Wing	Whole Adult	Anterior Length	Width	Poster Length
LC5	131.81±0.03aA	68.98±0.03aA	62.82±0.02aA	18.62±0.03aA	150.42±0.03aA	16.89±0.22bA	9.37±0.29bA	11.97±
LC10	108.05±0.03bA	49.56±0.02bcA	58.49±0.02abA	16.38±0.03aA	124.43±0.03bA	18.37±0.27aA	10.34±0.16aA	14.32±
LC15	78.50±0.4cB	35.87±0.03dB	42.63±0.03cB	5.31±0.01aA	83.81±0.04cC	17.16±0.35bA	9.09±0.32bB	12.70±
LC20	86.96±0.03cA	42.93±0.02cdA	44.02±0.02cA	5.97±0.01aA	92.93±0.03cA	16.51±0.27bB	9.46±0.30bA	11.57±
Control	108.11±0.02ba	56.05±0.04ba	52.06±0.03bcB	14.87±0.02aA	122.98±0.02ba	19.03±0.33aA	10.77±0.38aA	14.22±
LC5	87.79±0.00cA	44.28±0.01bB	43.51±0.03bB	7.81±0.01aA	95.60±0.03bc	17.50±0.16bA	9.83±0.23aA	12.57±
LC10	115.63±0.03abB	54.62±0.01aA	61.01±0.03aA	3.44±0.01aA	119.07±0.03aA	18.39±0.13aA	10.04±0.22aAB	13.47±
LC15	101.35±0.03bcA	49.89±0.02abA	51.46±0.02abA	3.06±0.01aA	104.41±0.03abB	17.73±0.23abA	10.46±0.17aA	12.72±
LC20	86.06±0.02cA	45.49±0.01abA	40.57±0.02bA	7.25±0.01aA	93.32±0.02bA	17.48±0.17bA	9.81±0.23aA	12.91±
Control	117.32±0.00aA	52.90±0.00abAB	64.42±0.02aA	3.58±0.01aA	120.90±0.02aA	18.44±0.16aA	10.54±0.23aA	13.92±
LC5	98.18±0.03bA	47.14±0.03abB	51.04±0.02abB	16.20±0.03aA	114.38±0.04abB	17.48±0.28aA	9.54±0.25bA	13.10±
LC10	86.14±0.03bB	39.39±0.02bB	46.75±0.02bB	24.84±0.01aA	110.99±0.03abA	17.39±0.22abB	9.86±0.16abB	13.11±
LC15	114.24±0.03aA	53.80±0.02aA	60.44±0.02aA	13.91±0.01aA	128.15±0.03aA	16.85±0.16aA	9.49±0.16bA	12.62±
LC20	87.80±0.03bA	45.04±0.02abA	42.76±0.02bA	9.03±0.01aA	96.83±0.03bA	17.51±0.25abA	10.40±0.24aA	13.01±
Control	92.25±0.02bB	46.11±0.01abC	46.14±0.02bB	38.32±0.03aA	130.57±0.03aA	17.19±0.18bA	9.95±0.17abB	12.57±

1 Mean ± standard error. 2 Means followed by the same lower case letter between treatments and upper case letters between generations do not differ significantly.

Linear Correlation Straties
In the first generation males, the parameters tegument + abdomen, thorax + healthy adult, and wing + healthy adult achieved moderate positive linear correlations to the LC5 and control treatments. However, females in the parameters tegument + thorax, tegument + abdomen, intact adult + abdomen, inferior length + superior width, thorax + intact adult and intact adult + integument, reached, predominantly, moderate to strong positive linear correlations to the LC15 and LC20 treatments, respectively. The same was not observed in the second generation of males, with moderate linear correlations for LC5 and LC10 in the parameters tegument + abdomen, chest + abdomen and healthy adults + abdomen. In females, the treatments that presented strong linear correlations were LC15 to the parameters integument + abdomen, integument + healthy adults and healthy adults + abdomen.

In the third generation, the males in the control treatment showed moderate positive linear correlations to the parameters wing + intact adult, integument + upper wing, wing + upper width and upper width + whole adult. Unlike females who obtained moderate negative linear correlations to the control treatment in the parameters thorax + upper size width, lower size length + thorax, integument + wing, integument + healthy adult, wing + abdomen, healthy adult + abdomen and thorax + abdomen. Therefore, a greater number of moderate positive correlations to treatment LC5 with the parameters integument + abdomen, integument + intact adult, intact adult + abdomen, thorax + abdomen and integument + thorax, respectively (Figure 1).

Discussion
The sublethal effect of Dipel SC sub-doses on A. gemmatalis morphometry varied according to the concentration of the bioinsecticide. The sublethal effects observed in the bodyweight of adults may be associated with the differential susceptibility between the sexes exposed to sub-doses of the bioinsecticide Dipel SC.
based on *B. thuringiensis*, in addition to the physiological changes that are reflected in the adult phase (Retnakaran et al., 1983; Alix et al., 2001; Desneux et al., 2007; Sedaratian et al., 2013).

The chest weight was higher than that of females in both generations. In field conditions, one should consider the higher energy expenditure of males to locate and court females and, therefore, the greater need for chest muscles to be developed (Srygley and Chai, 1990). The relative speed of flight in insects is correlated with the chest mass, and the sublethal effects caused by the bioinsecticide can interfere with the formation of muscles essential to flight. This region concentrates phasic muscles, which commonly work to move appendages in the exoskeleton (Howland, 1974). This arrangement of muscles within the insects’ rib cage is directly related to weight, because the larger it is inferred that the male will have better physical conditioning (Srygley and Chai, 1990). Individuals who have these morphometric characteristics exhibit, for example, a higher frequency of copulations, better biological and even physical conditioning (Mare and Corseuil, 2004).

The abdomen is another fundamental structure for the proper functioning of all insect functions. This structure is responsible for energy reserves and the weight parameter is linked to the amount of this reserve. However, the balance between chest and abdomen must exist for the insect to perform the basic functions for survival (Srygley and Thomas, 2002). The hovering flight that insects present is a major component of the energy cost, requiring a greater energy reserve in the abdomen (Srygley and Chai, 1990). This type of flight has advantages because it allows the insect to escape from predators through high-speed flights (Marden and Chain, 1991).

Among the treatments, LC5 in the first generation and CL10 in the second generation were those with lower thresholds in relation to the weight of the chest and abdomen, considering the proportions of the body smaller than the females. Body size significantly affects most of the physiological characters linked to survival and reproduction, one of the most important quantitative characteristics subject to evolution (Darwin, 1859; Schmidti-Nielsen, 1984; Roff, 1992; Stearns, 1992).

Smaller individuals are potentially less likely to perpetuate their offspring, due to competitive disadvantages compared to other males and the lower acceptability of females (Stearns, 1976). The choice for the female, in this case, can occur, in such a way, that each female has its optimum male size to copulate. This fact, is closely linked to the hypothesis of the physiological capacity of insects to define patterns of allometric measurements (Borgia, 1979).

This optimal size would be the result of a trade-off between the negative influences that the female has with large males on fertility and the advantages of large males for the biological conditioning of the offspring (Clutton-Brock and Parker, 1992; Andersson, 1994). However, even individuals who presented smaller sizes such as LC5 and LC15 in the first generation, LC5 and LC10 in the second generation and LC15 and LC20 in the third generation may not perpetuate their offspring, considering that the larger body size generally increases the pairing success due to intraspecific competition or female choice (Clutton-Brock and Parker, 1992; Andersson, 1994).

Wing proportions are influenced, according to the size of the rib cage, as individuals with larger wings have more developed muscles (Marden and Chain, 1991). Morphometry studies confirm that the insects’ anterior wings have an important allometric measurement in determining size and shape (Mare and Corseuil, 2004; Sane, 2003). This fact is called phenotypic plasticity (Gotthard and Nylin, 1995; Loh et al., 2008), and does not justify the great variation only in the wings, but in all the dimensioned segments of this study.

Anterior wings perform the aerodynamic capacity and are closely related to the flight speed. However, the posterior wings function as an airfoil that regulates the direction and maneuverability of the insects (Mare and Corseuil, 2004; Dudley, 2000). *A. gemmatalis* lives in open agroecosystems and travels over long distances, thus requiring a relatively larger wing area (Mare and Corseuil, 2004). Studies monitoring populations of *A. gemmatalis* have shown that these adults can migrate great distances, even crossing entire states in the USA (Buschman et al., 1977). The species is known to be unable to survive the winter in the continental USA. On many occasions, insect pest populations fly dozens of kilometers in search of favorable conditions for development (Buschman et al., 1977; Sosa-Gómez, 2004).

Studies evaluating the morphometry of adults in Pieridae, Nymphalidae, and Papilionidae families have shown positive correlations between the flight speed and chest weight, but negatively for the abdomen weight that has the function of storing energy and the reproductive organs (Srygley and Chai, 1990). Thus, the influence of weight distribution between the chest and abdomen may interfere with the allometric measurements of *A. gemmatalis* due to exposure to the bioinsecticide sub-dose based on *B. thuringiensis* (Sih, 1987; Srygley and Chai, 1990).

The parameters abdomen + intact adults and abdomen + integument in females had a predominance of positive correlations. Biologically, males aim to develop and fertilize females; in turn, females have the function of producing eggs, storing male sperm until the eggs are ready to be fertilized, generating offspring and perpetuating the species (Milano et al., 2008). The region where the female reproductive system is located is in the abdomen and requires that all basic functions communicate and have a good functioning to generate viable offspring, also, the minimum size is of great relevance for the perpetuation of the species (Milano et al., 2010).

In the integument + healthy adult parameters in both sexes, they reinforce the strong correlation between the balance of the segments, between weight and adequate wing size. The morphology of insect wings has a direct effect on a flight and, therefore, on the ability of flying species to explore their environment efficiently. The need to maneuver, hover, accelerate and fly at a low energy cost should affect the shape of the wing and lead to the diversification of wing morphology, according to the stress exposed to the host (Meresman et al., 2020).

In insects, the variation in wing morphometry suggests that different selective pressures, such as bioinsecticides, act non-uniformly in different regions of the wings, probably due to differences associated with body size (Bai et al., 2012; Tocco et al., 2019; Le-Roy et al., 2019). Therefore, this can influence the ecology and physiology of the population and even the organization of the community. Additional effects can also occur in the type of defense used to prevent predators, parasitoids, entomopathogens and in the development and fertility rates of the insect pest (Srygley and Chai, 1990).
Conclusion

Here, we demonstrate the phenotypic plasticity of A. gemmatalis adults submitted to sub-doses of the bioinsecticide based on B. thuringiensis in tree generations. Due to the possible difference in susceptibility between the sexes, males have larger body size and more pronounced phenotypic plasticity than females. Phenotypic plasticity is very relevant in issues involving the interface between ecology and evolution, as it is the ability of a single genotype to express alternative forms of morphology, physiological state and/or behavior in response to environmental conditions. Thus, the study of this topic becomes increasingly important as it can predict population resistance, outbreaks and pest resurgence.

Declarations

Ethics approval and consent to participate

This article does not contain any studies with animal. Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study for the publication this work.

Availability of data and material

All data generated and analyzed for the current study are presented in this manuscript, and the corresponding author has no objection to the availability of data and materials.

Competing interests

The authors declare no competing interests.

Funding

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Paulista State University "Júlio de Mesquita Filho" for the scholarship and infrastructure grants. This study was financed in part by the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Financial Code 001.

Authors' contributions

FOF, JAD and RAP conceived and designed the research. FOF, TDS and ACS conducted experiments. FOF, IRC and TDS analyzed the data. FOF wrote the first draft. NPD and RAP revised and edited the manuscript. All authors read and approved the manuscript.

Acknowledgements

Not applicable

References

Alix A, Corteeseo AM, Nénon JP, Anger JP (2001) Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environ Toxicol Chem 20:2530-2536. https://www.doi.org/10.1897/1551-5028(2001)020<2530:saocrb>2.0.co;2

Andersson M (1994) Sexual selection. Princeton: Princeton University Press.

Bai M, Beutel RG, Song K-Q, Liu W-G, Malqin H, Li S, Hu X-Y, Yang X-K (2012) Evolutionary patterns of hind wing morphology in dung beetles (Coleoptera: Scarabaeinae). Arthropod Struct Dev 41:505-513. https://www.doi.org/10.1016/j.asd.2012.05.004

Bao H, Liu S, Gu J, Wang X, Liang X, Liu Z (2009) Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Manag Sci 65:170-174. https://www.doi.org/10.1002/ps.1664

Bomfim GV, Azevedo BM, Viana TVA, Manzano J, Vasconcelos DV (2015) Formas de aplicação e doses de inseticidas sobre Aphis gossypii (Glover) (Hemiptera: Aphididae) em melão amarelo. Rev Ciênc Agron 46:488-496. https://www.doi.org/10.5935/1806-6690.20150030

Borgia G (1979) Sexual selection and the evolution of mating systems. In.: Blum AM, Blum NA (Eds.) Sexual selection and reproductive competition in insects. New York: Academic Press 45p.

Brand RJ, Pinnock DE, Jackson KJ, Milstead JE (1976) Viable Spore Count as an Index of Effective Dose of Bacillus thuringiensis. J Invertebr Pathol 27:141-148. https://www.doi.org/10.1016/0022-2011(76)90139-7

Brisson JA (2010) Aphid wing dimorphisms: linking environmental and genetic control of trait variation. Philos. Trans. Proceedings of the Royal Society B: Biological Sciences 365:605-616. https://www.doi.org/10.1098/rstb.2009.0255
Buschman LL, Whitcomb WH, Neal TM, Mays DL (1977) Winter survival and hosts of the velvetbean caterpillar in Florida. Fla Entomol 60:267-273. https://www.doi.org/10.2307/3493921

Butt BA, Cantu E (1962) Sex determination of lepidopterous pupae. Washington: USDA, 7p.

Clutton-Brock TH, Parker GA (1992) Potential reproductive rates and the operation of sexual selection. Q Rev Biol 67:437-456. https://www.doi.org/10.1086/417793

Cruz CD (2001) Programa GENES - Versão Windows. Aplicativo computacional em Genética e Estatística. Viçosa: Editora UFV 1:648.

Darwin C (1859) The origin of species by means of natural selection. London: John Murray 76p.

Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81-106. https://www.doi.org/10.1146/annurev.ento.52.110405.091440

Dudley R (2000) The biomechanics of insect flight. Princeton: Princeton University Press 476p.

Fernandes FO, Abreu JA, Christ L, Rodrigues-Filho JA, Martins A, Afonso da Rosa APS (2017) Development of Spodoptera frugiperda (Smith, 1791) in laboratory maize cultivars. Pelotas: Embrapa Temperate Weather 264:1-35.

Fernandes FO, Abreu JÁ, Christ LM, Rosa APS A, Mendes SM (2020). Development of Helicoverpa armigera (Hübner, 1805) and Spodoptera frugiperda (SMITH, 1797) in winter forages. J Biosci 36:844-856. https://www.doi.org/10.14393/BJ-v36n3a2020-47782

Fernandes FO, Abreu JÁ, Christ LM, Rosa APSA (2018) Insecticides management used in soybean for the control of Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Eribidae). J Agric Sci 10:223-230. https://www.doi.org/10.5539/jas.v10n11p223

Ford BJ, Strayer JR, Reid J, Godfrey GL (1975) The literature of arthropods associated with soybeans. Illinois: Natural History Survival 92:1-21.

Goer G, Lomônaco C, Mackenzie A (2005) Phenotypic plasticity in host plant specialization in Aphis fabae. Ecol Entomol 30:657-664. https://www.doi.org/10.1111/j.0307-6946.2005.00742.x

Gotthard K, Nylin S (1995) Adaptative plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history. Oikos 74:3-17. https://www.doi.org/10.2307/3545669

Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487-497. https://www.doi.org/10.1093/jeea/j69.4.487

Haase S, McCarthy CB, Ferrelli ML, Pidre ML, Sciocco-Cap A, Romanowski V (2015) Development of a recombination system for the generation of occlusion positive genetically modified Anticarsia gemmatalis multiple Nucleopolyhedrovirus. Viruses 7:1599-1612. https://www.doi.org/10.3390/v7041599

Hayes AM, Lavine MD, Gotoh H, Lin X, Lavine LC (2019) Mechanisms regulating phenotypic plasticity in wing polyphenic insects. Adv Insect Phys 56:43-72. https://www.doi.org/10.1016/bs.aiip.2019.01.005

Howland HC (1974) Optimal strategies for predator avoidance: The relative importance of speed and maneuverability. J Theor Biol 47:333-350. https://www.doi.org/10.1016/0022-5193(74)90202-1

Janmaat AF, Bergmann L, Ericsson J (2014) Effect of low levels of Bacillus thuringiensis exposure on the growth, food consumption and digestion efficiencies of Trichoplusia ni resistant and susceptible to Bt. J Invertebr Pathol 119:32-39. https://www.doi.org/10.1016/j.jip.2014.04.001

Konecka E, Czarniewska E, Adam-Kaznowski A, Grochowska J (2018) Insecticidal activity of Bacillus thuringiensis crystals and thymol mixtures. Ind Crop Prod 117:272-277. https://www.doi.org/10.1016/j.indcrop.2018.03.010

Le-Roy C, Debat V, Llaurens V (2019) Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biol Rev 94:1261-1281. https://www.doi.org/10.1111/brv.12500

Loh R, David JR, Debat V, Bitner-Matha BC (2008) Adaptation to different climates results in divergent phenotypic plasticity of wing size and shape in an invasive drosophilid. J Genetics 87:209-217. https://www.doi.org/10.1007/s12041-008-0034-2

Marden JH, Chai P (1991) Aerial predation and butterfly design: How palatability, mimicry, and the need for evasive flight constrain mass allocation. Am Nat 137:15-36. https://www.doi.org/10.1086/285202

Mare RAD, Corseuil E (2004) Morfometria de Papilioninae (Lepidoptera, Papilionidae) ocorrentes em quatro localidades do Rio Grande do Sul, Brasil. II. Relação entre partes do corpo, aerodinâmica de vôo e tipos de asas. R Brasil de Zool 21:833-846. https://www.doi.org/10.1590/S0101-81752004000400018

Meresman Y, Husak JF, Ben-Shlomo R, Ribak G (2020) Morphological diversification has led to inter-specific variation in elastic wing deformation during flight in scarab beetles. R Soc Open Sci 7:200277. https://www.doi.org/10.1098/rsos.200277
Milano P, Berti Filho E, Parra JRP, Oda ML, Cônsoli FL (2008) Temperature effects on the mating frequency of Anticarsia gemmatalis Hübner and Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 37:528-535. https://www.doi.org/10.1590/S1519-566X2008000500005

Milano P, Berti Filho E, Parra JRP, Oda ML, Cônsoli FL (2010) Effects of adult feeding on the reproduction and longevity of Noctuidae, Crambidae, Tortricidae and Elachistidae species. Neotrop Entomol 39:172-180. https://www.doi.org/10.1590/S1519-566X2010000200005

Oliveira CM, Auad AM, Mendes SM, Frizza SMR (2014). Crop losses and the economic impact of insect pests on Brazilian agriculture. J Crop Prot 56:50-54. https://www.doi.org/10.1016/0167-8809(83)90038-5

Pashley DP, Johnson SJ (1986) Genetic population structure of migratory moths: the velvetbean caterpillar (Lepidoptera: Noctuidae). Ann Entomol Soc Am 79:26-29. https://www.doi.org/10.1093/aes/79.1.26

Rabelo MM, Matos JML, Santos-Amaya OF, França JC, Gonçalves J, Paula-Moraes SV, Guedes RN, Pereira EJG (2020) Bt-toxin susceptibility and hormesis-like response in the invasive southern armyworm (Spodoptera eridania). J Crop Prot 132:105129. https://www.doi.org/10.1016/j.cropro.2020.105129

Retnakaran A, Lauzon H, Fast PG (1983) Bacillus thuringiensis induced anorexia in the spruce budworm, Choristoneura fumiferana. Entomol Exp 34:233-239. https://www.doi.org/10.1111/j.1570-7458.1983.tb03327.x

Roff DA (1992) The evolution of life histories. New York: Chapman & Hall.

Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191-4208. https://www.doi.org/10.1242/jeb.00663

Sas University (2014) SAS® 9.4 Statements. Third Edition SAS Instit. Inc., USA.

Schmidt-Nielsen K (1984) Scaling: Why is animal size so important? Cambridge: Cambridge University Press 256p.

Sedaranat A, Fathipour Y, Talaei-Hassanloui R, Jurat-Fuentes JL (2013) Fitness costs of sublethal exposure to Bacillus thuringiensis in Helicoverpa armigera: a carryover study on offspring. Appl Entomol 137:540-549. https://www.doi.org/10.1111/jen.12030

Sih A (1987) Predators and prey lifestyles: An evolutionary and ecological overview. In.: Kerfoot WC, Sih A (Eds.) Predation: direct and indirect impacts on aquatic communities. Hanover: University Press of New England p. 203-224.

Sosa-Gómez DR (2004) Intraspecific variation and population structure of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, 1818 (Insecta: Lepidoptera: Noctuidae). J Genet Mol Biol 27:378-384. https://www.doi.org/10.1590/S1415-47572004000300012

Souza CSF, Silveira LCP, Pitta RM, Waquil JM, Pereira EJG, Mendes SM (2019) Response of field populations and Cry-resistant strains of fall armyworm to Bt maize hybrids and Bt-based bioinsecticides. J Crop Prot 120:1-6. https://www.doi.org/10.1016/j.cropro.2019.01.001

Srygley RB, Chai P (1990) Flight morphology of Neotropical butterflies: palatability and distribution of mass to the thorax and abdomen. Oecologia 84:491-499. https://www.doi.org/10.1007/BF00328165

Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420:660–6604. https://www.doi.org/10.1038/nature01223

Steams SC (1976) Life-history tactics: A review of the ideas. Q Rev Biol 51:3-47. https://www.doi.org/10.1086/409052

Steams SC (1992) The evolution of life histories. Oxford: University Press. https://www.doi.org/10.1046/j.1420-9101.1993.6020304.x

Tocco C, Dacke M, Byrne M (2019) Eye and wing structure closely reflects the visual ecology of dung beetles. J Comp Physiol 205:211-221. https://www.doi.org/10.1007/s00359-019-01324-6

Vaz LAL, Tavares MT, Lomônaco C (2004) Diversidade e tamanho de Himenopteros parasitoides de Brevicoryne brassicae L. e Aphis nerii Boyer de Foscolombe (Hemiptera: Aphididae). Neotrop Entomol 33:225-230. https://www.doi.org/10.1590/S1519-566X2004000200013

West-Eberhard MJ (2003) Developmental Plasticity and Evolution. Oxford University, Oxford. https://www.doi.org/10.1111/j.1525-142X.2004.04006.x

Figures
Figure 1

Linear stratified morphometric correlation of Anticarsia gemmatalis submitted to sublethal doses of the bioinsecticide Dipel SC over three generations at 25 ± 1°C, 70 ± 10% RH and photoperiod L12: D12 h. Tegument (TEG), thorax (TX), abdomen (A), wing (AS), upper wing (A-S), whole adult (T), upper wing length (TSC), lower wing length (TIC), upper wing width (TSL), bottom wing width (TIL), lower wing area (AI).