Impact of COVID-19 on Neurological Manifestations: An Overview of Stroke Presentation in Pandemic.

Nida Fatima (fnida99@yahoo.com)
Massachusetts General Hospital

Maher Saqqur
University of Alberta

Ashfaq Shauib
University of Alberta

Systematic Review

Keywords: COVID-19, corona virus, pandemic, stroke, neurological disorders.

DOI: https://doi.org/10.21203/rs.3.rs-36387/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Introduction: Corona virus disease 2019 (COVID-19) pandemic has become a globally challenging issue after its emergence in December 2019 from Wuhan, China. Despite its common presentation as respiratory distress, patients with COVID-19 have also shown neurological manifestation especially stroke. Therefore, the authors sought to determine the etiology, underlying risk factors, and outcomes among patients with COVID-19 presenting with stroke.

Methods: We conducted a systematic review of the electronic database (PubMed, Google Scholar, Scopus, Medline, EMBASE, and Cochrane library) using different MeSH terms from January 2000 to June 2020.

Results: A total of 39 patients with stroke from 6 studies were included. The mean age of our included patients was 61.4±14.2 years. Majority of the patients (92.3%) with COVID-19 had ischemic stroke, 5.1% had hemorrhagic stroke, and 2.6% had cerebral venous thrombosis at the time of initial clinical presentation. Almost all of the patients presented had underlying risk factors predisposing to stroke which included, diabetes mellitus, hyperlipidemia, hypertension, and previous history of cerebrovascular disease. 51.2% of the included patients infected with COVID-19 with stroke died, while remaining patients were either discharged home or transferred to a rehabilitation unit.

Conclusion: Exploring the neurological manifestation in terms of stroke among patients with COVID-19 is a step towards better understanding of the virus, preventing further spread, and treating the patients affected by this pandemic.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV–2) pandemic has emerged as an unprecedented global crisis. In the tremendous flow of viral pneumonia and life-threatening respiratory complications, the influence of corona virus disease 2019 (COVID–19) on neurological diseases remains unclear. Brain is the potential target to COVID–19, just as the lungs, due to expression of Angiotensin-Converting Enzyme (ACE 2) receptors on the glial cells and neurons of the central nervous system. There have been reports on stroke surge, especially among young and middle-age group patients, suffering from COVID–19. Among patients with COVID–19 serum D-Dimer level is generally increased, which could be the source of embolic vascular event. Study by Klok FA et al suggested that the excessive inflammation, hypoxia, immobilization and diffuse intravascular coagulation predisposes to an increased risk of thrombovascular event reaching up as high as 31% among ICU patients with COVID–19. Many of the patients presenting with stroke might already have underlying cerebrovascular risk factors, such as hypertension, hyperlipidemia, diabetes mellitus, smoking or previous history of stroke. The
occurrence of cerebrovascular events in critically ill patients with underlying medical co-morbidities is therefore potentially related to the direct effect of the infection itself or inappropriate host response.

Therefore, we carried out a systematic review of all available literature on patients infected with novel COVID–19 presenting with stroke to determine the overall impact of this pandemic and outcomes among patients having neurological manifestations.

Methods

Data search strategy:

We followed the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines for literature search. Two reviewers (NF and AS) conducted a detailed systematic review on electronic databases using PubMed, Google Scholar, EMBASE, Medline, Cochrane library, and Scopus for articles published between January 1st, 2000 and June 1st, 2020. MeSH terms (using the Boolean operators “and” and “or”) which included “stroke”, “pandemic”, “corona virus”, and “COVID–19” were searched. All articles irrespective of the language were included in our study.

Inclusion and Exclusion Criteria:

The inclusion criteria included patients diagnosed with novel corona virus (COVID–19) presenting with stroke. We included all available type of studies on stroke in our review due to scarcity of literature.

Data Extraction and Outcome measures:

The data were extracted by the authors using a structured template form based on the Cochrane Consumers and Communication Group. We further conducted this meta-analysis in accordance with the criteria set by Cochrane Consumers and Communication Group reviews: Meta-analysis. Any disagreement between the two authors was resolved by discussion. The following data were extracted from each article: (i) demographic characteristics, (ii) clinical condition, (iii) stroke risk factors, and (v) outcome measures.

Evidence Quality Assessment:

The Grades of Recommendation, Assessment, Development and Evaluation (GRADE) protocol was used to assess the quality of evidence for each study independently by two reviewers. Each study was rated based on study design, limitations, and results into either high, moderate, low or very low.

Statistical analysis:
Rev Manager (Rev Man 5.3) was used for comparing data from the included studies. Pooled weighted mean difference was used to analyze the continuous data, while the Odds Ratio (OR) was used to analyze the dichotomous data.

Risk of bias across studies:

We used the Cochrane Collaboration’s tool to assess the risk of bias across the included studies. Double blindness was not achieved in any study.

Results

Study Selection:

A total of 98 articles were retrieved from electronic databases (PubMed, Google Scholar, Scopus, Medline, EMBASE, and Cochrane library) and reviewed according to PRISMA guidelines \(^1\)\(^0\) (Figure 1). After screening of the abstracts, 72 articles were excluded as the data was not related to stroke. A total of 11 full text articles were assessed for eligibility of which, 5 articles were excluded based upon the inclusion and exclusion criterion. Hence, 6 articles were included in our review \(^3\),\(^1\)\(^1\)\(^–\)\(^1\)\(^4\),\(^1\)\(^5\). All included studies were categorized under moderate GRADE.

Study Results:

Our review included 39 patients presenting with cerebrovascular disease. Out of which, 36 patients (92.3%) had ischemic stroke, 2 patients (5.1%) had hemorrhagic stroke, and 1 patient (2.6%) had cerebral venous sinus thrombosis. The mean age of our included patients was 61.4±14.2 years. Almost all of the patients had underlying risk factors predisposing to stroke which included, diabetes mellitus, hyperlipidemia, hypertension, and previous history of cerebrovascular disease. Outcomes included mortality among 51.2% of the included patients, while remaining patients survived and were transferred either to rehabilitation unit or home. Baseline and outcome characteristics are shown in Table 1.

Table 1: Baseline Demographic and Outcome Characteristics of the included studies
Name of the Author	Year of study	Disease	Mean age (Standard Deviation), years	Number of Patients	Cerebrovascular Disorder	Stroke Risk Factors	Outcome
Mao Ling et al 2020 3	2020	COVID-19	52.7 (15.5)	214	Ischemic Stroke: 5	Severe Infection, Old Age, Co-morbidities especially hypertension, lower lymphocyte levels, low platelet counts, higher blood urea nitrogen levels	Patients died from respiratory failure
Oxley T et al 2020 11	2020	COVID-19	40.4 (5.6)	5	Large-Vessel Ischemic Stroke	Patient 1: None Patient 2: None Patient 3: Hyperlipidemia, hypertension Patient 4: Undiagnosed Diabetes Patient 5: Mild stroke, diabetes	Patient 1: Dx to rehab Patient 2: Dx Home Patient 3: ICU Patient 4: Stroke Unit Patient 5: Dx to Rehab
Li Y et al 2020 12	2020	COVID-19	71.6 (15.7)	221	Ischemic Stroke: 11 Cerebral Hemorrhage: 1	Hypertension, Diabetes, and previous medical history of cerebrovascular disease	Death: 5 Survived: 8
Study	Year	Disease	Age (Mean)	gender	Type	Risk Factors	
------------------	------	-----------	------------	--------	------	---	
Avula A et al 2020	2020	COVID-19	81 (5.43)	4	Ischemic Stroke	Hypertension, Dyslipidemia and carotid stenosis, Death: 3, Survived: 1	
Zhao J et al 2020	2020	COVID-19	60	1	Ischemic Stroke	Hypertension, Smoking, Atrial fibrillation, Prestroke anticoagulation, Survived	
Escalard S et al 2020	2020	COVID-19	59.5	10	Ischemic Stroke	Hypertension, Diabetes Mellitus, Hypercholesterolemia, Smoking, Atrial fibrillation, Death: 6, Survived: 4	
Discussion

Our systematic review determined the underlying risk factors leading to stroke among COVID–19 patients, and outcomes among these patients. Our results suggested that the patients with COVID–19 has an apparent association with stroke due to similar risk factors. There is ample evidence that the severity of COVID–19 infection in humans is directly related to the presence of cardiovascular co-morbidities, which include diabetes mellitus, hypertension, and elderly status predisposing to large vessel disease16,17. A recently conducted meta-analysis of 8-studies from China, including 46,248 infected patients showed that the most prevalent co-morbidities were hypertension (17\%), diabetes mellitus (8\%), followed by cardiovascular diseases (5\%)18,19. In those reported cases without any vascular factors, the SARS-CoV–2 induced hypercoagulability may be the most important mechanism of the cerebrovascular disease13,20.

Previously large-vessel stroke was reported to be associated with SARS CoV–1 outbreak in Singapore21. Various hypothesis had been suggested to explain the apparent link between viruses and cerebrovascular diseases, which include, but are not limited to virus-induced inflammation of the vessel wall22 and induction of prothrombinase gene23. Furthermore, middle east respiratory syndrome corona virus (MERS-CoV)24 also led to severe neurological manifestation among patients. In the setting of a COVID–19 infection, patients with previous history of vascular risk factors might have an increased risk of stroke due to complications such as shock, hypotension, heart failure, and disseminated intravascular coagulation that can potentially contribute to hypoperfusion, embolic mechanism of stroke, and large vessel occlusion11,16,17. In some recent observational studies of hospitalized patients of COVID–19, shock was observed in 8.7–20\% of the patients, acute cardiac injury in 7.2–17\% of the patients, and coagulopathy in 19\% of the patients25,26.

Neurosurgeons and neurologists should keep in mind the potential risks of stroke among these presenting patients. There are recommendations27,28,29 set up by the treating physicians for the optimal stroke care during this pandemic crisis. We therefore appreciate the efforts by the neurologists and the vascular neurosurgeons to better understand the underlying risk factors and complications in order to improve the overall outcome of the stroke patients in this pandemic crisis. We carried out a short-systematic review integrating all COVID–19 patients presenting with stroke. This would definitely help in understanding the difference in the age groups and outcomes among these patients presenting at various institutes. However, further studies are needed to understand the presence of specific viral factors causing hypercoagulability, arteritis, endothelial dysfunction, which can lead to ischemic or hemorrhagic stroke among patients with COVID–19.
Declarations

Competing interests: The authors declare no competing interests.

References

1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. J Virol. 2008. doi:10.1128/jvi.00737–08

2. Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV–2 patients: a cross-sectional study. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa330

3. Mao L, Wang M, Chen S, et al. Neurological Manifestations of Hospitalized Patients with COVID–19 in Wuhan, China: A Retrospective Case Series Study. SSRN Electron J. 2020. doi:10.2139/ssrn.3544840

4. Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible Central Nervous System Infection by SARS Coronavirus. Emerg Infect Dis. 2004. doi:10.3201/eid1002.030638

5. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID–19. Thromb Res. 2020. doi:10.1016/j.thromres.2020.04.013

6. Guan W, Ni Z, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. doi:10.1056/nejmoa2002032

7. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009. doi:10.1016/j.jclinepi.2009.06.005

8. Ryan R. Cochrane Consumers and Communication Review Group: data synthesis and analysis. Cochrane Consum Commun Rev Gr. 2013.

9. Oxman AD. Grading quality of evidence and strength of recommendations. Br Med J. 2004. doi:10.1371/journal.pmed.1000151

10. Moher D, Liberati A, Tetzlaff J AD. PRISMA 2009 Flow Diagram. Prism statement. 2009. doi:10.1371/journal.pmed1000097

11. Oxley Thomas J, Mocco J, Majidi S KC. Large-Vessel Stroke as aPresenting Feature of Covid–19 in the Young. 2009;(Panel D):2008–2009. doi:10.1056/NEJMc2001272

12. Li Y, Wang M, Zhou Y, et al. Acute Cerebrovascular Disease Following COVID–19: A Single Center, Retrospective, Observational Study. SSRN Electron J. 2020. doi:10.2139/ssrn.3550025

13. Avula, A., Nalleballe, K., Narula, N., Sapozhnikov, S., Dandu, V., Toom, S., Glaser, A., Elsayegh D. COVID–19 presenting as stroke. 2020;(January):19–21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127800/pdf/main.pdf.

14. Zhao J, Rudd A, Liu R. Challenges and Potential Solutions of Stroke Care During the Coronavirus Disease 2019 (COVID–19) Outbreak. Stroke. 2020. doi:10.1161/STROKEAHA.120.029701
15. Escalard S, Maïer B, Redjem H, et al. Treatment of Acute Ischemic Stroke due to Large Vessel Occlusion With COVID–19: Experience From Paris. Stroke. 2020;(August):STROKEAHA120030574. doi:10.1161/STROKEAHA.120.030574

16. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID–19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg. 2020. doi:10.1016/j.clineuro.2020.105921

17. Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID–19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infec. J Am Heart Assoc. 2020. doi:10.1161/JAHA.120.016219

18. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis. Int J Infect Dis. 2020. doi:10.1016/j.ijid.2020.03.017

19. Hu Y, Sun J, Dai Z, et al. Prevalence and severity of corona virus disease 2019 (COVID–19): A systematic review and meta-analysis. J Clin Virol. 2020. doi:10.1016/j.jcv.2020.104371

20. Panigada M, Bottino N, Tagliahuge P, et al. Hypercoagulability of COVID–19 patients in Intensive Care Unit. A Report of Thromboelastography Findings and other Parameters of Hemostasis. J Thromb Haemost. 2020. doi:10.1111/jth.14850

21. Umapathi T, Kor AC, Venketasubramanian N, et al. Large artery ischaemic stroke in severe acute respiratory syndrome (SARS). J Neurol. 2004. doi:10.1007/s00415–004–0519–8

22. Doyle PW, Gibson G, Dolman CL. Herpes zoster ophthalmicus with contralateral hemiplegia: Identification of cause. Ann Neurol. 1983. doi:10.1002/ana.410140115

23. Key NS, Vercellotti GM, Winkelmann JC, et al. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc Natl Acad Sci U S A. 1990. doi:10.1073/pnas.87.18.7095

24. Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015. doi:10.1007/s15010–015–0720-y

25. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc. 2020. doi:10.1001/jama.2020.1585

26. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID–19 in Wuhan, China: a retrospective cohort study. Lancet. 2020. doi:10.1016/S0140–6736(20)30566–3

27. Temporary Emergency Guidance to US Stroke Centers During the COVID–19 Pandemic. Stroke. 2020. doi:10.1161/STROKEAHA.120.030023

28. Qureshi AI, Abd-allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID–19 infection: Report of an international panel. 2020;0(0):1–15. doi:10.1177/1747493020923234
Figures

Figure 1

A database search strategy according to Preferred Reporting Items for Systematic Review and Meta-analysis.