Okubo M, Komukai S, Callaway CW, Izawa J. Association of Timing of Epinephrine Administration With Outcomes in Adults With Out-of-Hospital Cardiac Arrest. *JAMA Netw Open*. 2021;4(8):e2120176. doi:10.1001/jamanetworkopen.2021.20176

eMethods.
eReferences.
eFigure 1. Patient Flow
eFigure 2. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) by the Timing of the Administration for Patients With Shockable OHCA (Matching Without Replacement)
eFigure 3. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) by the Timing of the Administration for Patients With Nonshockable OHCA (Matching Without Replacement)
eFigure 4. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) by the Timing of the Administration for Patients With Shockable OHCA Excluding Those Who Had ROSC or TOR Within 5 Minutes After ALS EMS Arrival on the Scene
eFigure 5. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) by the Timing of the Administration for Patients With Nonshockable OHCA Excluding Those Who Had ROSC or TOR Within 5 Minutes After ALS EMS Arrival on the Scene
eFigure 6. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) by the Timing of the Administration for Patients With Bystander Witnessed Shockable OHCA
eFigure 7. Association of Epinephrine Administration With Survival to Hospital Discharge (A), Favorable Functional Outcome at Hospital Discharge (B), and Prehospital ROSC (C) for Patients With Bystander Witnessed Nonshockable OHCA
eTable 1. Characteristics of Adult Patients With Out-of-Hospital Cardiac Arrest With Epinephrine and at Risk of Receiving Epinephrine in Time-Dependent Propensity Score Matched Cohort (Matching Without Replacement)
eTable 2. Outcomes in Time-Dependent Propensity Score Matched Cohort (Matching Without Replacement)
eTable 3. Characteristics of Adult Patients With Out-of-Hospital Cardiac Arrest With and Without Epinephrine in Original Cohort, Excluding Those Who Had ROSC or TOR Within 5 Minutes After ALS EMS Arrival
eTable 4. Characteristics of Adult Patients With Out-of-Hospital Cardiac Arrest With Epinephrine and at Risk of Receiving Epinephrine in Time-Dependent Propensity Score Matched Cohort, Excluding Those Who Had ROSC or TOR Within 5 Minutes After ALS EMS Arrival
eTable 5. Outcomes in Time-Dependent Propensity Score Matched Cohort, Excluding Those Who Had ROSC or TOR Within 5 Minutes After ALS EMS Arrival
eTable 6. Characteristics of Adult Patients With Bystander Witnessed Out-of-Hospital Cardiac Arrest With and Without Epinephrine
eTable 7. Characteristics of Adult Patients With Bystander Witnessed Out-of-Hospital Cardiac Arrest With Epinephrine and at Risk of Receiving Epinephrine in Time-Dependent Propensity Score Matched Cohort
eTable 8. Outcomes in Time-Dependent Propensity Score Matched Cohort of Bystander Witnessed Out-of-Hospital Cardiac Arrest

This supplemental material has been provided by the authors to give readers additional information about their work.
eMethods.

Time-dependent propensity score

We calculated propensity score as the time-varying probability of receiving epinephrine which was estimated from the hazard component at any given minutes after ALS arrival from Fine-Gray regression model with time-dependent covariates, time-independent covariates, competing risk events, and a censoring. The time-dependent covariates were shock delivery (if a patient received shock), AAM (if a patient received AAM), and departure from the scene (if a patient was transported) after ALS arrival. The time-independent covariates were patient age, sex, race, location of arrest, etiology of arrest, witness status, layperson CPR, shock delivery before ALS arrival, and EMS response time. The time-dependent and time-independent covariates are presented in Table 1. We used spline functions (B-spline) for continuous variables (age and EMS response time). We chose these covariates a priori based on their association with survival from prior knowledge, biologic plausibility, and adequate ascertainment. We included prehospital ROSC and TOR before epinephrine administration as competing risks in the model because (1) epinephrine administration never occurs after ROSC and TOR except cases with re-arrest after ROSC, (2) our interest was timing of epinephrine for initial arrest, and (3) ROSC and TOR are informative censorings. We modelled hospital arrival as a censoring because our main interest was the timing of the first prehospital epinephrine administration.

Linear assumption in a model treating the timing of epinephrine as a continuous variable

We assumed a linear relation between each outcome and the timing of epinephrine administration. To investigate the robustness of this linear assumption, we demonstrated the overlapping of RRs with 95% CIs in two models. We also explored a spline regression model assuming a nonlinear relationship between each outcome and the timing of epinephrine administration.
administration. The linear model showed smaller quasi-likelihood under the independence model criterion (QIC) for our primary outcome in both shockable and nonshockable cohorts, compared with the spline regression model. Since prior literature recommends using a GEE model with the smallest QIC, we chose the linear model.

References:
1. Izawa J, Komukai S, Gibo K, et al. Pre-hospital advanced airway management for adults with out-of-hospital cardiac arrest: nationwide cohort study. BMJ. 2019;364:l430.
2. Matsuyama T, Komukai S, Izawa J, et al. Pre-Hospital Administration of Epinephrine in Pediatric Patients With Out-of-Hospital Cardiac Arrest. J Am Coll Cardiol. 2020;75(2):194-204.
3. Okubo M, Komukai S, Izawa J, et al. Prehospital advanced airway management for paediatric patients with out-of-hospital cardiac arrest: A nationwide cohort study. Resuscitation. 2019;145:175-184.
4. Beyersmann J, Schumacher M. Time-dependent covariates in the proportional subdistribution hazards model for competing risks. Biostatistics. 2008;9(4):765-776.
5. Kleinman ME, Brennan EE, Goldberger ZD, et al. Part 5: Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S414-435.
6. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: Adult Advanced Cardiovascular Life Support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S444-464.
7. Panchal AR, Bartos JA, Cabanas JG, et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16_suppl_2):S366-S468.
8. Panchal AR, Berg KM, Hirsch KG, et al. 2019 American Heart Association Focused Update on Advanced Cardiovascular Life Support: Use of Advanced Airways, Vasopressors, and Extracorporeal Cardiopulmonary Resuscitation During Cardiac Arrest: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2019;140(24):e881-e894.
9. Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3(1):63-81.
10. Soar J, Maconochie I, Wyckoff MH, et al. 2019 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations: Summary From the Basic Life Support; Advanced Life
Support; Pediatric Life Support; Neonatal Life Support; Education, Implementation, and Teams; and First Aid Task Forces. *Circulation.* 2019;140(24):e826-e880.

11. Pan W. Akaike’s information criterion in generalized estimating equations. *Biometrics.* 2001;57:120-125.
Statistical codes of time-dependent propensity score and risk-set matching

if(0){
 install.packages("dplyr" , repos = "http://cran.r-project.org/")
 install.packages("plyr" , repos = "http://cran.r-project.org/")
 install.packages("tidyr" , repos = "http://cran.r-project.org/")
 install.packages("Matching" , repos = "http://cran.r-project.org/")
}

library(dplyr)
library(plyr)
library(tidyr)
library(Matching)

#------------#
#--- Data ---#
#------------#

analysisdata: long data with time-dependent covariates
#
analysisdata has the following variables
treatment : treatment indicator
time_to_treatment : duration from time of inclusion to time of treatment
outcome : outcome variable
PS : time-dependent propensity score which is estimated by survival model
start : the starting time for the interval in which the patient has that time-dependent covariates
stop : the stopped time for the interval in which the patient has that time-dependent covariates
#
This data has some time-independent variables and time-dependent variables
#
seed : seed for random numbers
#
We set only analysisdata and seed.
#
#--- Sequential matching algorithm using time-dependent variable ---#
library(Matching)

j.ind <- sort(unique(analysisdata$time_to_treatment))
matchinglist <- list()
exclude.ids <- c()
set.seed(seed)
for(j in j.ind){ # Interval time is one minute
 subdata <- analysisdata

 #--- treatment data ---#
 subind1 <- (subdata$treatment == 1 & subdata$time_to_treatment == j)
treatmentcandidates <- subdata[subind1,]
if(nrow(treatmentcandidates) == 0){
 matchinglist[[j + 1]] <- NULL
 next
}

 treatmentcandidates$treatment1 <- 1

 #--- control ---#
 if(sum(subind1) == 0){
 subdata0 <- subdata
 }else{
 subdata0 <- subdata[!(subdata$id %in% treatmentcandidates$id),]
 }
 subind0 <- (subdata0$start <= j & subdata0$stop > j)
controlcandidates <- subdata0[subind0,]
if(nrow(controlcandidates) == 0){
 matchinglist[[j + 1]] <- NULL
 print(j)
 next
}
 controlcandidates$treatment1 <- 0

 rownames(treatmentcandidates) <- rownames(controlcandidates) <- NULL

 #--- matching ---#
 predata <- NULL
 predata <- rbind(predata, controlcandidates)
 predata <- rbind(predata, treatmentcandidates)
 predata <- predata[!is.na(predata$PS),]
if(nrow(predata) != 1){
 tryCatch({
 mout <- Match(
 Y = predata$outcome,
 Tr = predata$treatment1,
 X = predata$PS,
 caliper = 0.2,
)
 } catch { error })

© 2021 Okubo M et al. JAMA Network Open.
ties = F, replace = F)

if(sum(is.na(mout)) >= 1) {# stopping rule
 matchinglist[[j + 1]] <- NULL
} else {
 matchinglist[[j + 1]] <- try(
 # "matchinglist" is a list which includes observation number sets of matched pairs
 data.frame(
 cbind(
 predata[mout$index.treated,]$obs,
 predata[mout$index.control,]$obs
)
)
)
}

if(repstatus == "N") exclude.ids <- c(exclude.ids,
 predata[mout$index.treated,]$id, predata[mout$index.control,]$id)

} else {
 matchinglist[[j + 1]] <- NULL
}

print(j)

matchinglistpreserve <- matchinglist

names(matchinglist) <- 1:(length(matchinglist))
for(h in (1:length(matchinglist))[!sapply(matchinglist, is.null)]) {
 matchinglist[[h]]$X3 <- h - 1
}

matchedOBSset <- ldply(matchinglist) # list to data.frame
matchedOBSset$pair <- 1:nrow(matchedOBSset) # matching pair indicator
colnames(matchedOBSset) <- c("id", "treatedobs", "controledobs", "timing", "pair")
matchedOBSset.long <- tidyr::gather(matchedOBSset, key = treatment1, value = obs, -timing, -pair, -id) # convert to long format

matcheddata <- merge(
 x = matchedOBSset.long[, -1],
 y = analysisdata[, -which(names(analysisdata) == "treatment1")],
 by = "obs",
 all.x = T
)
matcheddata$w <- rep(rle(matcheddata$obs)$length, rle(matcheddata$obs)$length) # frequency weight

if(0){
 head(matcheddata)
}

For the created matched data, the some statistical analysis methods such as
GEE and conditional logistic methods will be applied by using standard R functions.
#---#
eFigure 1. Patient Flow

ALS indicates advanced life support; DNR do-not resuscitate; EMS emergency medical services; OHCA out-of-hospital cardiac arrest.
eFigure 2. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) by the timing of the administration for patients with shockable OHCA (matching without replacement).

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 2B).

eFigure 2A: Change of RR per minute = -4.6% (95% CI -7.7% to -1.4%, p-value for the interaction=0.005). eFigure 2B: Change of RR per minute = -4.8% (95% CI -8.4% to -1.0%, p-value for the interaction=0.02). eFigure 2C: Change of RR per minute = 0.7% (95% CI -1.0% to 2.5%, p-value for the interaction=0.409).

ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation.

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20
Epinephrine	425/1494 (28.4%)	540/2661 (20.3%)	40/294 (13.6%)	4/33 (12.1%)
At-risk of receiving epinephrine	387/1494 (25.9%)	538/2661 (20.2%)	59/294 (20.1%)	9/33 (27.3%)
Risk ratio (95% CI)	1.10 (0.98-1.24)	1.00 (0.9-1.11)	0.68 (0.47-0.98)	0.45 (0.16-1.28)

© 2021 Okubo M et al. *JAMA Network Open.*
P value for interaction = 0.02

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20
Epinephrine	340/1494 (22.8%)	412/2661 (15.5%)	30/294 (10.2%)	2/33 (6.1%)
At-risk of receiving epinephrine	325/1494 (21.8%)	438/2661 (16.5%)	43/294 (14.6%)	7/33 (21.2%)
Risk ratio (95% CI)	1.05 (0.91-1.2)	0.94 (0.83-1.07)	0.70 (0.45-1.1)	0.29 (0.07-1.28)
C

Risk ratio for prehospital return of spontaneous circulation

P value for interaction = 0.409

Risk ratio = 1.00

Favors epinephrine

Favors at-risk of receiving epinephrine

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20
Epinephrine	899/1494 (60.2%)	1333/2661 (50.1%)	108/294 (36.7%)	12/33 (36.4%)
At-risk of receiving epinephrine	832/1494 (55.7%)	1255/2661 (47.2%)	100/294 (34.0%)	6/33 (18.2%)
Risk ratio (95% CI)	1.08 (1.02-1.15)	1.06 (1.01-1.12)	1.08 (0.87-1.35)	1.98 (0.87-4.53)
eFigure 3. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) by the timing of the administration for patients with nonshockable OHCA (matching without replacement).

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 3B).

eFigure 3A: Change of RR per minute = -2.0% (95% CI -6.9% to 3.0%, p-value for the interaction=0.425). eFigure 3B: Change of RR per minute = -1.8% (95% CI -9.3% to 6.3%, p-value for the interaction=0.300). eFigure 3C: Change of RR per minute = 0.03% (95% CI -1.3% to 1.4%, p-value for the interaction=0.963). ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation.

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	105/3681 (2.9%)	230/9327 (2.5%)	29/1594 (1.8%)	1/131 (0.8%)	0/20 (0%)
At-risk of receiving epinephrine	103/3681 (2.8%)	237/9327 (2.5%)	30/1594 (1.9%)	2/131 (1.5%)	0/20 (0%)
Risk ratio (95% CI)	1.02 (0.78-1.33)	0.97 (0.81-1.16)	0.97 (0.58-1.60)	0.50 (0.05-5.44)	1.00 (0.54-1.86)

© 2021 Okubo M et al. *JAMA Network Open.*
B

![Graph showing risk ratio for favorable functional status at hospital discharge over time after ALS EMS arrival minutes.]

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	51/3681 (1.4%)	109/9327 (1.2%)	13/1594 (0.8%)	0/131 (0%)	0/20 (0%)
At-risk of receiving epinephrine	50/3681 (1.4%)	114/9327 (1.2%)	17/1594 (1.1%)	1/131 (0.8%)	0/20 (0%)
Risk ratio (95% CI)	1.03 (0.68-1.56)	0.96 (0.71-1.30)	0.77 (0.34-1.70)	0 (0-0.01)	1.00 (0.54-1.86)

P value for interaction = 0.30

Favors epinephrine

Risk ratio = 1.00

Favors at-risk of receiving epinephrine

© 2021 Okubo M et al. JAMA Network Open.
The table shows the risk ratio for prehospital return of spontaneous circulation (ROSCI) at different times after Advanced Life Support (ALS) EMS arrival, stratified by epinephrine administration and risk of receiving epinephrine. The risk ratio is calculated using 95% confidence intervals (CI).

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	1244/3681 (33.8%)	2888/9327 (31.0%)	396/1594 (24.8%)	21/131 (16.0%)	1/20 (5.0%)
At-risk of receiving epinephrine	1017/3681 (27.6%)	2360/9327 (25.3%)	298/1594 (18.7%)	14/131 (10.7%)	3/20 (15.0%)
Risk ratio (95% CI)	1.23 (1.08-1.39)	1.22 (1.17-1.28)	1.33 (1.16-1.52)	1.50 (0.80-2.80)	0.33 (0.04-2.94)

The P value for interaction is 0.963, indicating no significant interaction between time after ALS EMS arrival and epinephrine administration on the risk of ROSCI.
eFigure 4. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) by the timing of the administration for patients with shockable OHCA excluding those who had ROSC or TOR within 5 minutes after ALS EMS arrival on the scene.

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 4B).

* eFigure 4A: Change of RR per minute = -6.3% (95% CI -8.5% to -4.1%, p-value for the interaction<0.001).
* eFigure 4B: Change of RR per minute = -7.4% (95% CI -10.1% to -4.7%, p-value for the interaction<0.001).
* eFigure 4C: Change of RR per minute = 0.4% (95% CI -0.9 to 1.7%, p-value for the interaction=0.52).

ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation; TOR termination of resuscitation.

A

![Graph showing association of epinephrine administration with outcomes](image)

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	420/1572 (26.7%)	877/4540 (19.3%)	185/1546 (12.0%)	27/369 (7.3%)	5/118 (4.2%)
At-risk of receiving epinephrine	370/1572 (23.5%)	898/4540 (19.8%)	226/1546 (14.6%)	53/369 (14.4%)	25/118 (21.2%)
Risk ratio (95% CI)	1.27 (1.12-1.46)	1.11 (1.01-1.22)	0.94 (0.76-1.15)	0.66 (0.39-1.11)	0.10 (0.04-0.29)

© 2021 Okubo M et al. *JAMA Network Open.*
Figure B

The graph shows the risk ratio for favorable functional status at hospital discharge based on time after ALS EMS arrival, minutes. The risk ratio is compared between receiving epinephrine and being at risk for receiving epinephrine. The P value for interaction is less than 0.001.

The graph illustrates that receiving epinephrine favors a lower risk ratio compared to being at-risk of receiving epinephrine.

Table

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	337/1572 (21.4%)	687/4540 (15.1%)	132/1546 (8.5%)	18/369 (4.9%)	3/118 (2.5%)
At-risk of receiving epinephrine	307/1572 (19.5%)	708/4540 (15.6%)	163/1546 (10.5%)	40/369 (10.8%)	24/118 (20.3%)
Risk ratio (95% CI)	1.23 (1.06-1.44)	1.13 (1.01-1.26)	0.93 (0.72-1.20)	0.60 (0.31-1.15)	0.06 (0.01-0.26)
Table C

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	922/1572 (58.7%)	2289/4540 (50.4%)	579/1546 (37.5%)	95/369 (25.7%)	19/118 (16.1%)
At-risk of receiving epinephrine	832/1572 (52.9%)	2083/4540 (45.9%)	473/1546 (30.6%)	75/369 (20.3%)	16/118 (13.6%)
Risk ratio (95% CI)	1.18 (1.10-1.26)	1.19 (1.13-1.25)	1.32 (1.18-1.48)	1.21 (0.90-1.64)	0.90 (0.46-1.78)

P value for interaction = 0.52

- Favors epinephrine
- Risk ratio = 1.00
- Favors at-risk of receiving epinephrine

© 2021 Okubo M et al. *JAMA Network Open*.
eFigure 5. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) by the timing of the administration for patients with nonshockable OHCA excluding those who had ROSC or TOR within 5 minutes after ALS EMS arrival on the scene.

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 5B).

- **eFigure 5A:** Change of RR per minute = -3.2% (95% CI -6.3% to -0.03%, p-value for the interaction=0.048).
- **eFigure 5B:** Change of RR per minute = -5.0% (95% CI -9.8% to -0.07%, p-value for the interaction=0.03).
- **eFigure 5C:** Change of RR per minute = 1.3% (95% CI 0.4% to 2.3%, p-value for the interaction=0.007).

ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation; TOR termination of resuscitation.

Table

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	100/3822 (2.6%)	361/14756 (2.4%)	117/6650 (1.8%)	21/1872 (1.1%)	4/727 (0.6%)
At-risk of receiving epinephrine	93/3822 (2.4%)	341/14756 (2.3%)	134/6650 (2%)	29/1872 (1.5%)	7/727 (1.0%)
Risk ratio (95% CI)	1.46 (1.09-1.97)	1.23 (1.04-1.44)	0.94 (0.72-1.23)	0.70 (0.37-1.33)	0.96 (0.23-3.98)

© 2021 Okubo M et al. *JAMA Network Open.*
Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	49/3822 (1.3%)	150/14756 (1.0%)	49/6650 (0.7%)	9/1872 (0.5%)	1/727 (0.1%)
At-risk of receiving epinephrine	52/3822 (1.4%)	164/14756 (1.1%)	75/6650 (1.1%)	16/1872 (0.9%)	3/727 (0.4%)
Risk ratio (95% CI)	1.30 (0.83-2.03)	1.06 (0.80-1.41)	0.73 (0.48-1.11)	0.54 (0.21-1.36)	0.94 (0.09-9.69)
The table below shows the risk ratio for prehospital return of spontaneous circulation (ROSC) over time after ALS EMS arrival, comparing epinephrine to at-risk of receiving epinephrine.

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	1261/3822 (33.0%)	4531/14756 (30.7%)	1647/6650 (24.8%)	348/1872 (18.6%)	93/727 (12.8%)
At-risk of receiving epinephrine	1038/3822 (27.2%)	3520/14756 (23.9%)	1216/6650 (18.3%)	218/1872 (11.6%)	42/727 (5.8%)
Risk ratio (95% CI)	1.33 (1.23-1.43)	1.36 (1.31-1.42)	1.36 (1.26-1.46)	1.56 (1.31-1.85)	2.11 (1.44-3.1)

P value for interaction = 0.007

- Favors epinephrine
- Risk ratio = 1.00
- Favors at-risk of receiving epinephrine
eFigure 6. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) by the timing of the administration for patients with bystander witnessed shockable OHCA.

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 6B).

eFigure 6A: Change of RR per minute = \(-5.4\%\) (95% CI -7.8% to -3.0%, p-value for the interaction<0.001). *eFigure 6B:* Change of RR per minute = \(-6.5\%\) (95% CI -9.3% to -3.5%, p-value for the interaction<0.001). *eFigure 6C:* Change of RR per minute = 0.4% (95% CI -1.1% to 2.0%, p-value for the interaction=0.56).

ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation.

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	364/1113 (32.7%)	656/2967 (22.1%)	133945 (14.1%)	21/233 (9.0%)	4/68 (5.9%)
At-risk of receiving epinephrine	349/1113 (31.4%)	718/2967 (24.2%)	157945 (16.6%)	47/233 (20.2%)	16/68 (23.5%)
Risk ratio (95% CI)	1.19 (1.04-1.37)	1.03 (0.92-1.14)	0.90 (0.70-1.14)	0.52 (0.30-0.91)	0.27 (0.08-0.95)

© 2021 Okubo M et al. *JAMA Network Open.*
Table 1: Risk Ratio for Favorable Functional Status at Hospital Discharge

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	296/1113 (26.6%)	521/2967 (17.6%)	101,945 (10.7%)	14/233 (6.0%)	2/68 (3.0%)
At-risk of receiving epinephrine	309/1113 (27.8%)	578/2967 (19.5%)	121,945 (12.8%)	37/233 (15.9%)	15/68 (22.1%)
Risk ratio (95% CI)	1.10 (0.95-1.29)	1.06 (0.93-1.19)	0.86 (0.64-1.15)	0.46 (0.23-0.91)	0.14 (0.03-0.80)

P value for interaction <0.001

Favors epinephrine

Risk ratio=1.00

Favors at-risk of receiving epinephrine

© 2021 Okubo M et al. JAMA Network Open.
Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	719/1113 (64.6%)	1578/2967 (53.2%)	385/945 (40.7%)	63/233 (27.0%)	16/68 (23.5%)
At-risk of receiving epinephrine	677/1113 (60.8%)	1455/2967 (49.0%)	330/945 (34.9%)	62/233 (26.6%)	7/68 (10.3%)
Risk ratio (95% CI)	1.13 (1.05-1.22)	1.20 (1.14-1.28)	1.20 (1.05-1.37)	1.00 (0.70-1.42)	2.29 (0.87-6.05)
eFigure 7. Association of epinephrine administration with survival to hospital discharge (A), favorable functional outcome at hospital discharge (B), and prehospital ROSC (C) for patients with bystander witnessed nonshockable OHCA.

Point estimates of the association of epinephrine with outcomes (solid lines) were reported with 95% CIs (dot lines), treating timing of epinephrine administration after ALS EMS as a continuous variable. Plots indicate point estimates of the association of epinephrine with outcomes with 95% CIs, treating timing as a categorical variable. The plots were placed at median time for each categorized time. We rounded decimal points of the numbers of imputed patients with favorable functional status (eFigure 7B).

- **eFigure 7A:** Change of RR per minute = -2.8% (95% CI -7.2% to 1.8%, p-value for the interaction=0.23).
- **eFigure 7B:** Change of RR per minute = -5.8% (95% CI -11.7% to 0.4%, p-value for the interaction=0.09).
- **eFigure 7C:** Change of RR per minute = 1.6% (95% CI 0.4% to 2.9%, p-value for the interaction=0.01)

ALS indicates advanced life support; CI confidence interval; EMS emergency medical services; OHCA out-of-hospital cardiac arrest; ROSC return of spontaneous circulation.

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	63/1366 (4.6%)	183/4955 (3.7%)	65/2250 (2.9%)	10/607 (1.6%)	2/240 (0.8%)
At-risk of receiving epinephrine	75/1366 (5.5%)	209/4955 (4.2%)	70/2250 (3.1%)	19/607 (3.1%)	7/240 (2.9%)
Risk ratio (95% CI)	1.00 (0.71-1.42)	1.06 (0.85-1.31)	1.05 (0.72-1.51)	0.40 (0.17-0.95)	0.44 (0.08-2.51)

© 2021 Okubo M et al. *JAMA Network Open.*
B

![Graph showing risk ratio for favorable functional status at hospital discharge over time after ALS EMS arrival, minutes. P value for interaction = 0.09.]

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	34/1366 (2.5%)	76/4955 (1.5%)	33/2250 (1.5%)	5/607 (0.8%)	0/240 (0%)
At-risk of receiving epinephrine	42/1366 (3.1%)	122/4955 (2.5%)	43/2250 (1.9%)	14/607 (2.3%)	3/240 (1.3%)
Risk ratio (95% CI)	1.00 (0.60-1.65)	0.75 (0.52-1.07)	0.79 (0.46-1.36)	0.37 (0.12-1.19)	0 (0-34816756)

© 2021 Okubo M et al. *JAMA Network Open.*
C

P value for interaction=0.01

Favors epinephrine

Risk ratio=1.00

Favors at-risk of receiving epinephrine

Time after ALS EMS arrival, minutes	0-5	5-10	10-15	15-20	> 20
Epinephrine	636/1366 (46.6%)	2137/4955 (43.1%)	751/2250 (33.4%)	151/607 (24.9%)	33/240 (13.8%)
At-risk of receiving epinephrine	546/1366 (40%)	1706/4955 (34.4%)	562/2250 (25.0%)	86/607 (14.2%)	16/240 (6.7%)
Risk ratio (95% CI)	1.26 (1.15-1.39)	1.32 (1.25-1.40)	1.39 (1.26-1.55)	1.78 (1.36-2.32)	1.91 (1.02-3.60)
Table 1. Characteristics of adult patients with out-of-hospital cardiac arrest with epinephrine and at risk of receiving epinephrine in time-dependent propensity score matched cohort (matching without replacement)

	Shockable rhythms		Nonshockable rhythms			
	At-risk of	Epinephrine		At-risk of	Epinephrine	
	receiving	(n=4482)		receiving	(n=14753)	
	epinephrine	(n=4482)	standardized			
	standardized	difference		difference		
Age, median (IQR), y	65 (55-76)	64 (54-75)	0.053	68 (55-80)	68 (55-81)	0.01
Sex			0.068			0.021
Male	3413 (76.1)	3530 (78.8)	0.032	9021 (61.1)	8981 (60.9)	0.004
Unknown	4 (0.1)	1 (0.0)		3 (0.0)	9 (0.1)	
Race						
White	1105 (24.7)	1167 (26.0)		3541 (24.0)	3567 (24.2)	
Non-white	3377 (75.3)	3315 (74.0)		11212 (76.0)	11186 (75.8)	
Etiology			0.025		0.025	
Cardiac	4392 (98.0)	4407 (98.3)		13671 (92.7)	13573 (92.0)	
Non-cardiac	89 (2.0)	74 (1.7)		1082 (7.3)	1180 (8.0)	
Unknown	1 (0.0)	1 (0.0)				
Initial rhythm			0.055			
PEA	N/A	N/A		4216 (28.6)	4585 (31.1)	
Asystole	N/A	N/A		10537 (71.4)	10168 (68.9)	
Location			0.117		0.055	
Street/highway	405 (9.0)	426 (9.5)		420 (2.8)	433 (2.9)	
Public building	91 (2.0)	97 (2.2)		97 (0.7)	93 (0.6)	
Place of recreation	171 (3.8)	205 (4.6)		193 (1.3)	161 (1.1)	
Industrial place	97 (2.2)	100 (2.2)		69 (0.5)	65 (0.4)	
Home	2910 (64.9)	2824 (63.0)		11129 (75.4)	11186 (75.8)	
Farm/ranch	7 (0.2)	0 (0.0)		16 (0.1)	12 (0.1)	
Healthcare facility	73 (1.6)	74 (1.7)		276 (1.9)	329 (2.2)	

© 2021 Okubo M et al. *JAMA Network Open.*
Category	Yes	No	Unknown
Residential institution	1891 (12.8)	1730 (11.7)	28 (0.2)
Other public property	587 (4.0)	676 (4.6)	28 (0.2)
Other non-public property	47 (0.3)	40 (0.3)	28 (0.2)
Unknown	11 (0.2)	28 (0.2)	28 (0.2)
Witnessed collapse	0.058	0.021	
Bystander	4916 (33.3)	5060 (34.3)	
None	9429 (63.9)	9288 (63.0)	
Unknown	408 (2.8)	405 (2.7)	
Layperson CPR	0.033		
Yes	2460 (54.9)	2705 (60.4)	
No	1932 (43.1)	1707 (38.1)	
Unknown	90 (2.0)	70 (1.6)	
Shock delivery before ALS arrival	0.119	0.023	
Yes	1178 (26.3)	1419 (31.7)	
No	3304 (73.7)	3063 (68.3)	
EMS response time (interval between 9-1-1 call and first EMS arrival), median (IQR), minutes	5.5 (4.3-7.0)	5.5 (4.2-7.0)	5.4 (4.2-7.0)
Shock delivery after ALS arrival	0.155	0.017	
Yes	3263 (72.8)	2944 (65.7)	
Interval between ALS arrival and shock delivery, median (IQR), minutes	14.6 (8.7-21.0)	12.5 (8.2-18.5)	
Yes	3445 (76.9)	3580 (79.9)	
Advanced airway management	10933 (74.1)	11473 (77.8)	
Yes	11.0 (7.1-16.0)	10.0 (6.7-14.0)	
Interval between ALS arrival and AAM, median (IQR), minutes	11.2 (8.0-13.0)	10.0 (7.0-13.6)	
Yes	3606 (80.5)	3546 (79.1)	
Departure from the scene	7457 (50.5)	7081 (48.0)	

© 2021 Okubo M et al. *JAMA Network Open.*
| Interval between ALS arrival and departure from the scene, median (IQR), minutes | 24.8 (19.0-32.0) | 24.0 (18.9-30.4) | 0.097 | 25.5 (19.2-33.1) | 24.9 (19.1-31.5) | 0.09 |

IQR indicates interquartile range; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; ALS, advanced life support; EMS, emergency medical services; and AAM, advanced airway management
eTable 2. Outcomes in time-dependent propensity score matched cohort (matching without replacement)

Outcomes	No (%) patients with outcome/total patients	Risk ratio (95% CI)	
	At-risk of receiving epinephrine	Epinephrine	
Shockable rhythms			
Survival to hospital discharge	993/4482 (22.2%)	1009/4482 (22.5%)	1.02 (0.94-1.10)
Favorable functional outcome at hospital discharge	813/4482 (18.1%)	784/4482 (17.5%)	0.96 (0.88-1.06)
Prehospital ROSC	2193/4482 (48.9%)	2352/4482 (52.5%)	1.07 (1.03-1.12)
Nonshockable rhythms			
Survival to hospital discharge	372/14753 (2.5%)	365/14753 (2.5%)	0.98 (0.85-1.13)
Favorable functional outcome at hospital discharge	182/14753 (1.2%)	173/14753 (1.2%)	0.95 (0.76-1.20)
Prehospital ROSC	3692/14753 (25.0%)	4550/14753 (30.8%)	1.23 (1.19-1.28)

ROSC indicates return of spontaneous circulation.
eTable 3. Characteristics of adult patients with out-of-hospital cardiac arrest with and without epinephrine in original cohort, excluding those who had ROSC or TOR within 5 minutes after ALS EMS arrival

	No epinephrine (n=1051)	Epinephrine (n=8158)	standardized difference	No epinephrine (n=2223)	Epinephrine (n=27841)	standardized difference
Age, median (IQR), y	63 (53-72)	65 (55-76)	0.164	70 (56-82)	68 (55-80)	0.08
Sex			0.167			0.149
Male	744 (70.8)	6368 (78.1)		1200 (54.0)	17071 (61.3)	
Unknown	1 (0.1)	4 (0.0)		2 (0.1)	12 (0.0)	
Race			0.006			0.174
White	264 (25.1)	2071 (25.4)		388 (17.5)	6830 (24.5)	
Non-white	787 (74.9)	6087 (74.6)		1835 (82.5)	21011 (75.5)	
Etiology			0.051			0.151
Cardiac	1026 (97.6)	8013 (98.2)		1960 (88.2)	25766 (92.5)	
Non-cardiac	24 (2.3)	144 (1.8)		262 (11.8)	2075 (7.5)	
Unknown	1 (0.1)	1 (0.0)		1 (0.0)	0 (0.0)	
Initial rhythm						0.155
PEA	N/A	N/A		819 (36.8)	8226 (29.5)	
Asystole	N/A	N/A		1404 (63.2)	19615 (70.5)	
Location			0.25			0.119
Street/highway	120 (11.4)	738 (9.0)		86 (3.9)	790 (2.8)	
Public building	39 (3.7)	168 (2.1)		18 (0.8)	177 (0.6)	
Place of recreation	63 (6.0)	339 (4.2)		37 (1.7)	324 (1.2)	
Industrial place	20 (1.9)	179 (2.2)		2 (0.1)	131 (0.5)	
Home	564 (53.7)	5282 (64.7)		1644 (74.0)	21074 (75.7)	
Farm/ranch	0 (0.0)	7 (0.1)		2 (0.1)	26 (0.1)	
Healthcare facility	24 (2.3)	131 (1.6)		57 (2.6)	564 (2.0)	
Residential institution	46 (4.4)	300 (3.7)		276 (12.4)	3429 (12.3)	
Other public property	159 (15.1)	946 (11.6)		89 (4.0)	1191 (4.3)	
Feature	Yes	No	Unknown	Yes	No	Unknown
--	--------------	--------------	-------------	--------------	--------------	-------------
Other non-public property	11 (1.0)	49 (0.6)	4 (0.2)	84 (0.3)	5 (0.5)	19 (0.2)
Witnessed collapse				0.259		
Bystander	801 (76.2)	5297 (64.9)	784 (35.3)	9413 (33.8)		
None	225 (21.4)	2677 (32.8)	1383 (62.2)	17656 (63.4)		
Unknown	25 (2.4)	184 (2.3)	56 (2.5)	772 (2.8)		
Layperson CPR				0.208		
Yes	700 (66.6)	4641 (56.9)	906 (40.8)	13155 (47.3)		
No	330 (31.4)	3373 (41.3)	1270 (57.1)	14086 (50.6)		
Unknown	21 (2.0)	144 (1.8)	47 (2.1)	600 (2.2)		
Shock delivery before ALS arrival				0.217		
Yes	255 (24.3)	2342 (28.7)	22 (1.0)	306 (1.1)		
No	796 (75.7)	5816 (71.3)	2201 (99.0)	27535 (98.9)		
EMS response time (interval between 9-1-1 call and first EMS arrival), median (IQR), minutes	5.2 (4.0-6.6)	5.5 (4.3-7.0)	5.6 (4.4-7.0)	5.4 (4.2-7.0)	0.148	0.109
Shock delivery after ALS arrival					0.138	0.109
Yes	793 (75.5)	5654 (69.3)	128 (5.8)	4483 (16.1)		
Interval between ALS arrival and shock delivery, median (IQR), minutes	3.9 (2.6-5.1)	4.0 (2.5-5.9)	10.0 (4.4-17.1)	13.5 (8.5-19.9)	0.109	0.109
Advanced airway management					0.853	0.109
Yes	455 (43.3)	6635 (81.3)	663 (29.8)	21857 (78.5)		

© 2021 Okubo M et al. *JAMA Network Open.*
	ALS	AAM	PEA	CPR	EMS	AAM
Interval between ALS arrival and AAM,	11.0 (7.0-16.9)	10.5 (7.0-15.0)	10.0 (6.5-15.3)	10.5 (7.1-14.7)	0.116	0.04
median (IQR), minutes						
Departure from the scene						
Yes	1001 (95.2)	6394 (78.4)	1016 (45.7)	13753 (49.4)	0.515	0.074
Interval between ALS arrival and	19.7 (15.1-25.7)	24.9 (19.5-31.8)	19.9 (14.3-26.2)	25.5 (19.6-32.7)	0.586	0.563
departure from the scene, median						
(IQR), minutes						

ROSC indicates return of spontaneous circulation; TOR, termination of resuscitation; IQR, interquartile range; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; ALS, advanced life support; EMS, emergency medical services; and AAM, advanced airway management.
eTable 4. Characteristics of adult patients with out-of-hospital cardiac arrest with epinephrine and at risk of receiving epinephrine in time-dependent propensity score matched cohort, excluding those who had ROSC or TOR within 5 minutes after ALS EMS arrival

	Shockable rhythm		Nonshockable rhythm	
	At-risk of	Epinephrine (n=8145)	At-risk of	Epinephrine (n=27827)
	receiving	standardized difference	receiving	standardized difference
	epinephrine		epinephrine	
	(n=8145)		(n=27827)	
Age, median (IQR), y	65 (55-76)	65 (55-76)	67 (55-80)	68 (55-80)
	0.014	0.014	0.021	0.021
Sex	0.032		0.006	
Male	6251 (76.7)	6360 (78.1)	17132 (61.6)	17060 (61.3)
Unknown	4 (0.0)	4 (0.0)	11 (0.0)	12 (0.0)
Race	0.053		0.002	
White	1883 (23.1)	2069 (25.4)	6852 (24.6)	6828 (24.5)
Non-white	6262 (76.9)	6076 (74.6)	20975 (75.4)	20999 (75.5)
Etiology	0.008		0.009	
Cardiac	7992 (98.1)	8001 (98.2)	25823 (92.8)	25759 (92.6)
Non-cardiac	152 (1.9)	143 (1.8)	2004 (7.2)	2068 (7.4)
Unknown	1 (0.0)	1 (0.0)		
Initial rhythm			0.025	
PEA	N/A	N/A	7905 (28.4)	8223 (29.6)
Asystole	N/A	N/A	19922 (71.6)	19604 (70.4)
Location			0.061	0.029
Street/highway	748 (9.2)	738 (9.1)	806 (2.9)	790 (2.8)
Public building	141 (1.7)	167 (2.1)	162 (0.6)	177 (0.6)
Place of recreation	301 (3.7)	339 (4.2)	386 (1.4)	320 (1.1)
Industrial place	182 (2.2)	178 (2.2)	121 (0.4)	131 (0.5)
Home	5403 (66.3)	5275 (64.8)	21036 (75.6)	21067 (75.7)
Farm/ranch	8 (0.1)	6 (0.1)	23 (0.1)	26 (0.1)
Healthcare facility	135 (1.7)	129 (1.6)	550 (2.0)	564 (2.0)
Category	305 (3.7)	299 (3.7)	3383 (12.2)	3429 (12.3)
--------------------------------	-----------	-----------	-------------	-------------
Residential institution	873 (10.7)	946 (11.6)	1197 (4.3)	1188 (4.3)
Other public property	28 (0.3)	49 (0.6)	94 (0.3)	84 (0.3)
Other non-public property	21 (0.3)	19 (0.2)	69 (0.2)	51 (0.2)
Witnessed collapse	0.036		0.017	
Bystander	5192 (63.7)	5289 (64.9)	9206 (33.1)	9410 (33.8)
None	2793 (34.3)	2672 (32.8)	17807 (64.0)	17645 (63.4)
Unknown	160 (2.0)	184 (2.3)	814 (2.9)	772 (2.8)
Layperson CPR	0.047		0.008	
Yes	4450 (54.6)	4635 (56.9)	13048 (46.9)	13145 (47.2)
No	3555 (43.6)	3367 (41.3)	14191 (51.0)	14082 (50.6)
Shock delivery before ALS arrival	140 (1.7)	143 (1.8)	588 (2.1)	600 (2.2)
Yes	2452 (30.1)	2336 (28.7)	336 (1.2)	304 (1.1)
No	5693 (69.9)	5809 (71.3)	27491 (98.8)	27523 (98.9)
EMS response time	5.6 (4.3-7.1)	5.5 (4.3-7.0)	5.4 (4.2-7.0)	5.4 (4.2-7.0)
Shock delivery after ALS arrival	0.041		0.014	
Yes	5714 (70.2)	5646 (69.3)	4066 (14.6)	4481 (16.1)
Interval between ALS arrival and shock delivery	4.1 (2.7-5.9)	4.0 (2.5-5.9)	15.3 (8.6-22.9)	13.5 (8.5-19.9)
Advanced airway management	6258 (76.8)	6625 (81.3)	20775 (74.7)	21845 (78.5)

© 2021 Okubo M et al. JAMA Network Open.
| | median (IQR), minutes | | median (IQR), minutes | | |
|--------------------------|-----------------------|--|--|-----------------------|--|--|
| **Interval between ALS** | **arrival and AAM,** | | **departure from the scene** | | |
| arrival and AAM, median | 11.0 (7.0-16.0) | | 6392 (78.5) | | 6 |
| (IQR), minutes | 10.5 (7.0-15.0) | | 6385 (78.4) | | 392 |
| | 0.068 | | 0.002 | | 0.002 |
| | 11.0 (7.0-16.0) | | 14421 (51.8) | | 6385 |
| | 10.5 (7.0-14.7) | | 13740 (49.4) | | 6385 |
| | 0.105 | | 0.049 | | 0.049 |
| | 24.9 (19.1-32.3) | | 24.9 (19.5-31.8) | | 14421 |
| | 0.002 | | 0.002 | | 13740 |
| | 25.3 (19.0-33.3) | | 25.5 (19.6-32.6) | | 14421 |
| | 0.021 | | 0.021 | | 13740 |

ROSC indicates return of spontaneous circulation; TOR, termination of resuscitation; IQR, interquartile range; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; ALS, advanced life support; EMS, emergency medical services; and AAM, advanced airway management.

© 2021 Okubo M et al. *JAMA Network Open.*
eTable 5. Outcomes in time-dependent propensity score matched cohort, excluding those who had ROSC or TOR within 5 minutes after ALS EMS arrival

Outcomes	No (%) patients with outcome/total patients	Risk ratio (95% CI)
	At-risk of receiving epinephrine Epinephrine	
Shockable rhythms		
Survival to hospital discharge	1572/8145 (19.3%) 1514/8145 (18.6%)	1.03 (0.95-1.11)
Favorable functional outcome at hospital discharge	1242/8145 (15.2%) 1176/8145 (14.4%)	1.02 (0.94-1.11)
Prehospital ROSC	3479/8145 (42.7%) 3904/8145 (47.9%)	1.17 (1.12-1.22)
Nonshockable rhythms		
Survival to hospital discharge	604/27827 (2.2%) 603/27827 (2.2%)	1.09 (0.96-1.23)
Favorable functional outcome at hospital discharge	310/27827 (1.1%) 258/27827 (0.9%)	0.91 (0.74-1.12)
Prehospital ROSC	6034/27827 (21.7%) 7880/27827 (28.3%)	1.33 (1.29-1.38)

ROSC indicates return of spontaneous circulation; TOR, termination of resuscitation; ALS, advanced life support; and EMS, emergency medical services.
eTable 6. Characteristics of adult patients with bystander witnessed out-of-hospital cardiac arrest with and without epinephrine

	Shockable rhythm	Nonshockable rhythm	Sex	Etiology	Location
	No epinephrine	Epinephrine		Cardiac	Street/highway
Age, median (IQR), y	62 (53-72)	65 (55-76)	0.188	1443 (97.9)	738 (50.1)
	70 (58-82)	71 (58-82)	0.007	1002 (87.1)	789 (68.5)
Male	1082 (73.4)	4259 (79.7)	0.149	5269 (98.6)	483 (9.0)
Unknown	1 (0.1)	2 (0.0)	0.034	1323 (24.8)	122 (2.3)
Race			0.05		
White	387 (26.3)	1323 (24.8)	0.058		
Non-white	1087 (73.7)	4021 (75.2)	0.226		
Etiology					
Cardiac	1443 (97.9)	5269 (98.6)	0.331		
Non-cardiac	31 (2.1)	74 (1.4)			
Unknown	0 (0.0)	1 (0.0)			
Initial rhythm					0.331
PEA	N/A	N/A	0.331		
Asystole	N/A	N/A			
Location			0.275		0.153
Street/highway	159 (10.8)	483 (9.0)			
Public building	54 (3.7)	122 (2.3)			
Place of recreation	117 (7.9)	269 (5.0)			
Industrial place	45 (3.1)	121 (2.3)			
Home	738 (50.1)	3345 (62.6)			
Farm/ranch	0 (0.0)	7 (0.1)			
Healthcare facility	30 (2.0)	99 (1.9)			
Residential institution	45 (3.1)	127 (2.4)			
Other public property	261 (17.7)	721 (13.5)			

© 2021 Okubo M et al. *JAMA Network Open.*
Other non-public property	20 (1.4)	33 (0.6)	2 (0.2)	31 (0.3)		
Unknown	5 (0.3)	17 (0.3)	4 (0.3)	16 (0.2)		
Layperson CPR			0.224			
Yes	1060 (71.9)	3284 (61.5)	567 (49.3)	4880 (51.7)		
No	394 (26.7)	1972 (36.9)	570 (49.5)	4376 (46.4)		
Shock delivery before ALS arrival			0.215			
Yes	584 (39.6)	1614 (30.2)	15 (1.3)	129 (1.4)		
No	890 (60.4)	3730 (69.8)	1136 (98.7)	9306 (98.6)		
EMS response time (interval between 9-1-1 call and first EMS arrival), median (IQR), minutes	5.1 (4.0-6.6)	5.6 (4.4-7.1)	0.192	5.5 (4.2-7.0)	5.5 (4.4-7.2)	0.056
Shock delivery after ALS arrival						
Yes	889 (60.3)	3686 (69.0)	0.182	80 (7.0)	1898 (20.1)	
Interval between ALS arrival and shock delivery, median (IQR), minutes	3.1 (1.9-4.5)	3.9 (2.5-5.7)	0.306	9.4 (4.4-18.1)	13.3 (8.3-19.7)	
Advanced airway management						
Yes	662 (44.9)	4315 (80.7)	0.798	491 (42.7)	7655 (81.1)	
Interval between ALS arrival and AAM, median (IQR), minutes	10.9 (6.6-16.0)	10.3 (6.9-15.0)	0.088	10.0 (6.3-15.5)	10.4 (7.0-14.8)	
Departure from the scene						
Yes	1434 (97.3)	4354 (81.5)	0.531	808 (70.2)	5857 (62.1)	

© 2021 Okubo M et al. JAMA Network Open.
	19.2 (14.5-25.2)	24.9 (19.5-31.6)	0.636	20.8 (15.5)	25.5 (19.7-32.8)	0.520

IQR indicates interquartile range; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; ALS, advanced life support; EMS, emergency medical services; and AAM, advanced airway management
eTable 7. Characteristics of adult patients with bystander witnessed out-of-hospital cardiac arrest out-of-hospital cardiac arrest with epinephrine and at risk of receiving epinephrine in time-dependent propensity score matched cohort

	Shockable rhythm	Nonshockable rhythm				
	At-risk of	Epinephrine	At-risk of	Epinephrine	standardised	standardised
	receiving	(n=5326)	receiving	(n=9418)	difference	difference
Age, median (IQR), y	65 (55-76)	65 (55-76)	0.027	70 (58-82)	71 (58-82)	0.024
Sex			0.032			0.025
Male	4177 (78.4)	4246 (79.7)	5673 (60.2)	5766 (61.2)		
Unknown	2 (0.0)	2 (0.0)	1 (0.0)	3 (0.0)		
Race			0.038			0.008
White	1232 (23.1)	1318 (24.7)	2232 (23.7)	2263 (24.0)		
Non-white	4094 (76.9)	4008 (75.3)	7186 (76.3)	7155 (76.0)		
Etiology			0.019			0.019
Cardiac	5240 (98.4)	5251 (98.6)	8864 (94.1)	8821 (93.7)		
Non-cardiac	84 (1.6)	74 (1.4)	554 (5.9)	597 (6.3)		
Unknown	2 (0.0)	1 (0.0)	0 (0)	0 (0)		
Initial rhythm			0.047			
PEA	N/A	N/A	4134 (43.9)	4355 (46.2)		
Asystole	N/A	N/A	5284 (56.1)	5063 (53.8)		
Location			0.078			0.027
Street/highway	477 (9.0)	483 (9.1)	412 (4.4)	415 (4.4)		
Public building	102 (1.9)	120 (2.3)	98 (1.0)	89 (0.9)		
Place of recreation	238 (4.5)	269 (5.1)	155 (1.6)	141 (1.5)		
Industrial place	101 (1.9)	120 (2.3)	54 (0.6)	56 (0.6)		
Home	3427 (64.3)	3334 (62.6)	6826 (72.5)	6821 (72.4)		
Farm/ranch	13 (0.2)	6 (0.1)	12 (0.1)	12 (0.1)		
Healthcare facility	109 (2.0)	97 (1.8)	264 (2.8)	281 (3.0)		

© 2021 Okubo M et al. JAMA Network Open.
Category	Yes	No	Unknown	Yes	No
Residential institution	151 (2.8)	127 (2.4)	1009 (10.7)	983 (10.4)	
Other public property	657 (12.3)	720 (13.5)	546 (5.8)	575 (6.1)	
Other non-public property	27 (0.5)	33 (0.6)	31 (0.3)	30 (0.3)	
Unknown	24 (0.5)	17 (0.3)	11 (0.1)	15 (0.2)	
Layperson CPR				0.071	0.027
Yes	3093 (58.1)	3277 (61.5)	4744 (50.4)	4870 (51.7)	
No	2139 (40.2)	1962 (36.8)	4484 (47.6)	4370 (46.4)	
Unknown	94 (1.8)	87 (1.6)	190 (2.0)	178 (1.9)	
Shock delivery before ALS arrival				0.078	0.024
Yes	1420 (26.7)	1606 (30.2)	106 (1.1)	129 (1.4)	
No	3906 (73.3)	3720 (69.8)	9312 (98.9)	9289 (98.6)	
EMS response time				0.010	0.007
(interval between 9-1-1 call and first	5.7 (4.4-7.0)	5.6 (4.4-7.1)	5.8 (4.4-7.2)	5.7 (4.4-7.2)	
EMS arrival), median (IQR), minutes					
Shock delivery after ALS arrival				0.104	0.155
Yes	3925 (73.7)	3674 (69.0)	1694 (18.0)	1889 (20.1)	
No	3906 (73.3)	3720 (69.8)	9312 (98.9)	9289 (98.6)	
Interval between ALS arrival and shock					
delivery, median (IQR), minutes	4.0 (2.6-5.9)	3.9 (2.4-5.7)	15.0 (8.4-22.4)	13.3 (8.3-19.7)	
Advanced airway management				0.111	0.111
Yes	4059 (76.2)	4302 (80.8)	7214 (76.6)	7640 (81.1)	
Interval between ALS arrival and AAM,					
median (IQR), minutes	11.0 (6.7-16.0)	10.3 (6.9-15.0)	10.9 (7.0-15.8)	10.4 (7.0-14.8)	
Departure from the scene				0.020	0.006
Yes	4381 (82.3)	4339 (81.5)	5870 (62.3)	5841 (62.0)	

© 2021 Okubo M et al. JAMA Network Open.
| Interval between ALS arrival and departure from the scene, median (IQR), minutes | 25.0 (19.1-32.4) | 24.8 (19.5-31.6) | 0.012 | 25.7 (19.0-33.0) | 25.5 (19.7-32.8) | 0.014 |

IQR indicates interquartile range; PEA, pulseless electrical activity; CPR, cardiopulmonary resuscitation; ALS, advanced life support; EMS, emergency medical services; and AAM, advanced airway management
eTable 8. Outcomes in time-dependent propensity score matched cohort of bystander witnessed out-of-hospital cardiac arrest

Outcomes	No (%) patients with outcome/total patients	Risk ratio (95% CI)
	At-risk of receiving epinephrine Epinephrine	
Shockable rhythm		
Survival to hospital discharge	1287/5326 (24.2%) 1178/5326 (22.1%)	0.97 (0.89-1.05)
Favorable functional outcome at hospital discharge	1059/5326 (19.9%) 935/5326 (17.6%)	0.95 (0.87-1.05)
Prehospital ROSC	2531/5326 (47.5%) 2761/5326 (51.8%)	1.15 (1.10-1.21)
Nonshockable rhythm		
Survival to hospital discharge	380/9418 (4.0%) 323/9418 (3.4%)	0.94 (0.8.0-1.11)
Favorable functional outcome at hospital discharge	224/9418 (2.4%) 148/9418 (1.6%)	0.72 (0.56-0.94)
Prehospital ROSC	2916/9418 (31.0%) 3708/9418 (39.4%)	1.31 (1.25-1.37)