Minimal realization of light thermal Dark Matter

Johannes Herms,1, † Sudip Jana,1, ‡ Vishnu P.K.,2, ‡ and Shaikh Saad3, §

1 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
2 Department of Physics, Oklahoma State University, Stillwater, OK, 74078, USA
3 Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

We propose a minimal UV-complete model for kinematically forbidden Dark Matter (DM) leading to a sub-GeV thermal relic. Our crucial realization is that the two-Higgs-doublet model can provide a light mediator through which the DM can annihilate into SM leptons, avoiding indirect detection constraints. The DM mass is predicted to be very close to the mass of the leptons, which can potentially be identified from DM annihilation into gamma-rays. Due to sizable couplings to muons in reproducing the DM relic abundance, this framework naturally favors a resolution to the $(g-2)_\mu$ anomaly. Furthermore, by embedding this setup to the Zee model, we show that the phenomenon of neutrino oscillations is inherently connected to the observed relic abundance of DM. All new physics involved in our framework lies at or below the electroweak scale, making it testable at upcoming colliders, beam-dump experiments, and future sub-GeV gamma-ray telescopes.

Introduction.— Dark matter (DM) is a central part of our understanding of the cosmos, and identifying its nature is a key goal of contemporary cosmology, astro- and particle physics. A prime candidate for DM is thermal relic particles – a new neutral, long-lived particle species that was in thermal equilibrium with the particles of the Standard Model (SM) in the early Universe before the connecting interactions froze-out when it reached the DM abundance we observe today. This archetypal Weakly Interacting Massive Particle (WIMP) DM scenario motivated great experimental efforts to identify these particles. Traditionally, the focus has been on electroweak-scale WIMPs (see eg. [1, 2]) since these are expected in many theories beyond the Standard Model and can naturally decouple at the correct abundance. With, on the one hand, the experimental program to search for EW-scale DM particles well underway, and on the other hand, the degree of confidence in new physics at the EW-scale waning in the face of the success of the SM at the LHC, thermal relics at smaller masses have become a focus of attention. This trend in DM studies is supported by connections to low-energy anomalies in particle physics, in particular, the $(g-2)_\mu$ tension [3], and can relate to neutrino physics, see, e.g., Ref. [4].

Thermal DM in the mass range $\text{MeV} \lesssim m_{\text{DM}} \lesssim 10\text{GeV}$ requires a few general conditions. It typically requires a stabilizing symmetry to forbid decay, in contrast to lighter, keV-scale DM candidates like sterile neutrinos [5–7]. Equilibration with the SM in the early Universe then proceeds via annihilation, as in the WIMP scenario. The annihilation products cannot be much heavier than the DM candidate, necessitating a coupling to light SM particles. In contrast to heavier WIMPs, successful sub-GeV freeze-out DM generically requires the existence of a new light mediator to enable a sufficiently large annihilation rate [8]. For this reason, many models in the literature propose to extend the gauge symmetry [9] of the theory by a $U(1)_D$, with a dark photon that can mediate between the dark and visible sectors (for instance, see e.g., Refs. [10–13]).

In contrast to these previous DM theories that include new gauge sectors (e.g. [10–13]) or multi-fermionic extensions (e.g. [10, 14, 15]), this letter presents a minimal, ultraviolet complete (UV) model of sub-GeV thermal DM. Our proposal is based on the crucial fact that adding a second Higgs doublet [16] to the SM allows for a light scalar [17] that can couple to the light SM degrees of freedom and DM particles. Specifically, we work in the two-Higgs-doublet model (2HDM) framework, where DM annihilates into SM leptons via a light mediator emerging from the 2HDM. The simplest DM candidate is a real scalar stabilized by a Z_2 symmetry that can easily reproduce the observed relic abundance utilizing the 2HDM-portal.

After taking into account constraints on the DM annihilation today and during the epoch of CMB decoupling, the DM mass is required to be in the ‘forbidden’ regime [11, 15, 18], where it is just slightly lighter than the SM particle it annihilates into. This makes for a predictive and positively identifiable framework, motivating particularly for searches for sub-GeV gamma-ray lines close to SM lepton masses in the simplest scenario. Furthermore, the favored parameter space implies a positive shift for muon $g-2$ with the proper sign and strength to

![Diagram](image)

Figure 1. Schematic diagram for light DM annihilation to SM charged leptons via 2HDM-portal.
account for the measurement at Fermilab [3].

Additionally, we consider the possibility of neutrino mass generation by a simple extension of this setup. Introducing a charged scalar allows for non-zero neutrino mass via one-loop quantum corrections. Within this framework, the same Yukawa couplings reproducing the correct DM relic abundance also participate in neutrino mass generation while remaining consistent with lepton flavor violating constraints.

To demonstrate the versatility of the light 2HDM scalar portal, next, we entertain the scenario of fermionic DM (see also [19, 20]). A singlet fermion (either Dirac or Majorana) DM can annihilate into SM leptons via a singlet scalar that mixes with the light scalar arising from the 2HDM. Annihilation of fermion DM through a scalar mediator is velocity-suppressed, evading bounds on energy release during CMB decoupling. This allows for a wide range of DM and mediator masses, illustrating the broad potential of the light 2HDM-portal.

In the following, before presenting minimal models for scalar and fermionic sub-GeV DM, we first recapitulate the thermal freeze-out mechanism for DM production. We present constraints from DM relic density, \(\Omega_{\text{DM}} \), including, we briefly demonstrate how neutrino masses can be naturally incorporated into the light-2HDM scenario.

Forbidden DM

The relic density of thermal DM is calculated by tracing its evolution in the early Universe. If the decay of DM into SM particles is precluded by symmetry, the leading number-changing term in the Boltzmann equation stems from annihilations of pairs of DM particles

\[
\frac{dn_{\text{DM}}}{dt} + 3Hn_{\chi} = \zeta \langle \sigma v \rangle (n_{\text{DM}}^2 - n_{\text{equ}}^2),
\]

where \(n_{\text{DM}} \) is the total DM number density, \(H \) is the Hubble expansion rate, and \(\langle \sigma v \rangle \) is the thermally averaged cross-section of DM annihilation into other bath particles (\(\zeta = (1/2) \) for (non-)self-conjugate DM particles). In the freeze-out scenario, the relic density is determined by the time (marked by the corresponding temperature of the SM bath, \(T_{fo} \)) when the annihilation rate drops below the Hubble rate

\[
\zeta \langle \sigma v \rangle n_{\text{equ}}^2 = H.
\]

It is often sufficient to work in the instantaneous freeze-out approximation, where the comoving DM density (denoted in terms of the abundance \(Y \equiv n/s \), with \(s \) the SM entropy density) stays constant after freeze-out

\[
Y_{\text{DM}}^{\text{today}} = Y_{\text{DM}}^{\text{eq}}(T_{fo}).
\]

This is to be compared to value corresponding to the observed DM density \(\Omega_{\text{DM}} h^2 = 0.12 \) [21],

\[
Y_{\text{DM}}^{\text{obs}} = \frac{n_{\text{DM}}}{s_0} = \Omega_{\text{DM}} \frac{\rho_C}{m_{\text{DM}} s_0} = 4.35 \times 10^{-10} \left(\frac{m_{\text{DM}}}{\text{GeV}} \right)^{-1}.
\]

Requiring freeze-out at the correct temperature to reproduce the observed relic abundance leads to a constraint on \(\langle \sigma v \rangle \).

The generic implication of the WIMP scenario is DM annihilation with \(\langle \sigma v \rangle_{fo} \sim pb/c \) at \(T_{fo} \sim m_{\text{DM}}/20 \). This motivates the WIMP indirect detection program, looking for DM annihilation at overdense regions of the Universe today. For sub-GeV DM however, this can be a problem, since \(\langle \sigma v \rangle_{\text{CMB epoch}} = \langle \sigma v \rangle_{fo} \) results in excessive energy injection into the SM plasma during CMB decoupling for \(m_{\text{DM}} \lesssim 10 \text{ GeV} \) [21, 22].

In the models considered in this work, tree-level annihilation channels are closed at low temperatures. In this “forbidden DM” scenario [11, 15], DM particles \(\chi \) are slightly lighter than the bath particles \(l_1 l_2 \) they annihilate into. The leading annihilation rate \(\chi \chi \to l_1 l_2 \) is then Boltzmann suppressed [23], \(\langle \sigma v \rangle_{\chi \chi \to l_1 l_2} \approx \frac{\zeta}{m_{\text{DM}}} (\sigma v)_{l_1 l_2 \to \chi \chi} e^{-2\Delta m} \) where \(n_i \) denote the number density of \(l_i \) particles plus antiparticles and \(n_{\text{DM}} \) denotes the total DM number density, while \(\Delta \equiv (m_{l_1} + m_{l_2} - 2m_{\text{DM}})/2m_{\text{DM}} \) and \(x = m_{\text{DM}}/T \). Tree-level DM annihilation is strongly suppressed at low temperature for \(\Delta > 0 \), evading CMB and cosmic ray probes. Radiative annihilations, however, are not forbidden, and \(\gamma \)-ray line signals at energies just below SM particle masses can be a powerful and specific probe of the present scenario, as discussed later in the text.

Models

Here we present a minimal scenario for forbidden DM. Our UV-complete model is a simple extension of the 2HDM [16] by an \(SU(2)_L \) scalar singlet \(S \), which qualifies as a promising forbidden DM candidate. The stability of the DM is ensured by a discrete \(Z_2 \) symmetry, under which only the DM transforms non-trivially. In the Higgs basis, when only one neutral Higgs acquires a nonzero vacuum expectation value, the Higgs doublets can be parameterized as,

\[
H_1 = \left(\frac{1}{\sqrt{2}} (v + \phi_0 + iG^0) \right), \quad H_2 = \left(\frac{H^+}{\sqrt{2}} (\phi_0^0 + iA) \right).
\]

Here \(G^+ \) and \(G^0 \) are the unphysical Goldstone modes, whereas \(H^+ \) and \{\(\phi_0^0, \phi_0^2, A \)\} are the physical Higgs bosons. The VEV of \(H_1 \), in our notation of \(v \approx 246 \text{ GeV} \), governs the EW symmetry breaking.

We choose to work in the alignment limit [16, 24–26], where the SM Higgs \(\phi_0^0 \approx h \) decouples from the new CP-even Higgs (\(\phi_0^2 \approx H \)). The masses of physical scalar states in this limit are expressed as follows:

\[
m_h^2 = \lambda_1 v^2, \quad m_H^2 = \mu_2^2 + \frac{v^2}{2} (\lambda_3 + \lambda_4 + \lambda_5),
\]

\[
m_A^2 = m_H^2 - v^2 \lambda_5, \quad m_{H^\pm}^2 = m_H^2 - \frac{v^2}{2} (\lambda_4 + \lambda_5),
\]

\[
m_S^2 = \mu_2^2 + \frac{\kappa_1}{2} v^2,
\]
\[\lambda = m^2 \mu^2 \tau^2 \mu \tau \]

where \(\lambda, \mu, \tau \) and \(m, \mu, \tau \) are parameters in the scalar potential (see Appendix-I). Here \(m \) denotes the mass of the DM candidate \(S \). From the above mass relations, it is straightforward to see that the BSM CP-even state \(H \) and the charged \(\pm \) state \(S \) can be made light without making the CP-odd state \(A \) forbidden DM. The smallest couplings can be made light without making the CP-odd state \(A \) light without making the CP-odd state \(A \). The forbidden DM regimes are avoided in the forbidden DM scenario. We point out that loop-level annihilation into two photons is a generic probe of forbidden DM coupled to SM fermions. Planck bounds [21, 22] on \(\sigma \) for SM fermions (see eqn. 17 in the Appendix) during CMB decoupling are shown in Fig. 2 as blue and green shaded regions. Galactic gamma ray lines at energies just below the lepton masses are a specific prediction of the present scenario, which could be probed at future Foton Gamma ray missions like the AMEGO and e-ASTROGAM proposals [38–40]. In the fermionic DM scenario, annihilation is velocity suppressed, rendering this detection channel ineffective.

Due to the requirement of a light mediator, there are non-trivial consequences on the scalar mass-spectrum; moreover, to be consistent with all experimental constraints, we consider the possibility of leptophilic 2HDM, for which we assume the second Higgs doublet to have zero/negligible coupling with the quarks. A lower bound on the mass of the CP-odd scalar \(A \) is obtained from \(Z \) decay width measurements, \(m_A \geq m_Z - m_H \approx 90 \text{ GeV} \) [32, 41], where \(m_Z \) is mass of the \(Z \) boson. In addition, the LEP experiment set a lower bound on the charged scalar mass, \(m_{H^\pm} \approx 100 \text{ GeV} \) [42]. Additionally, there will be bounds from slepton searches at the LHC [43–45], which are less stringent for this sort of light leptophilic charged scalars (For details, see discussion in Ref. [42]). These lead to the mass hierarchy \(m_H \ll m_A \ll m_{H^\pm} \). A mass splitting of this type is strongly constrained from the electroweak precision observables. The choice \(m_H \ll m_A \ll m_{H^\pm} \) with \(O(100) \) GeV mass splitting between \(m_H \) and \(m_{H^\pm} \) is however allowed [17] from the \(T \) parameter constraints, presenting no obstacles to the role of \(H \) as a light mediator. Due to the alignment limit (no mixing of the SM Higgs \(h \) and CP-even scalar \(H \)) and the absence of massive cubic scalar couplings involving the SM Higgs, the predictions for Higgs observables do not deviate from the SM predictions and are hence unconstrained by the LHC Higgs searches. For the rest of our analysis, we set \(m_A, m_{H^\pm} \approx 110 \text{ GeV} \) and vary the light CP-even scalar mass from the \(O(\text{MeV}) \) to the \(O(\text{GeV}) \) range. This unrestricted parametric space of the 2HDM has received little attention in the literature.

The light leptophilic charged scalar \(O(100) \text{ GeV} \) can result in large non-standard neutrino interactions [42] and generate Glashow-like resonance features in the ultrahigh energy neutrino event spectrum of future neutrino telescopes [46–48]. This form of hierarchical scalar mass spectrum predicts the novel same-sign di-lepton signature \(pp \rightarrow H^\pm H^{\pm} jj \rightarrow l^+l^-jj + E_T \) through same-sign pair production of charged scalars at the LHC [17]. This can be a good test of our model, but the detailed explo-
For the scalar (fermion) DM scenario, we set $\kappa_{ij} = 10^{-3}$ ($Y_{\chi \alpha} \cos \alpha = 0.1$).

At collider or beam dump experiments, the light scalar can be produced in association with the leptons it couples to. The null results from the electron beam dump experiment E137 [30] constrain the $H \mu^+ \mu^-$ coupling [14] (brown in Fig. 2). Dark photon searches at BaBar [35] provide a stringent constraint on a light scalar with coupling to the muons through the $e^+ e^- \rightarrow \mu^+ \mu^-$ H process [14, 19], with $H \rightarrow H \mu^+ \mu^-$. We recast this result for the case $\mathrm{BR}(H \rightarrow H \mu^+ \mu^-) < 1$ (light-yellow in Fig. 2). The BaBar collaboration also searches for events with a high energy monophoton and large missing energy [36], which puts limits on the $H \tau^+ \tau^-$ coupling [15, 34, 49] (yellow in Fig. 2). The dashed yellow line below this region indicates the projected sensitivity on the same process from the Belle-II experiment [15, 49, 50].

The $Y_{\tau \tau}$ coupling is also constrained from the Z decay width measurement [15, 34], where the associated production and subsequent dark decay of H can contribute to the measured $Z \rightarrow \tau^+ \tau^-$ width [32] (cyan in Fig. 2). Finally, τ decays are modified in the $\mu\tau$-coupled case. The search for lepton flavour violating two-body τ de-
cay at ARGUS [33] requires $m_H > m_\tau - m_\mu$ to forbid $\tau \rightarrow \mu H$ decay (orange in Fig. 2). Similarly, the decay $\tau \rightarrow \mu SS$ would contribute to the measured width $\Gamma(\tau \rightarrow \mu \nu_\mu \nu_\tau) [32]$, requiring $m_{DM} > (m_\tau - m_\mu)/2$ or equivalently $\Delta < 0.126$ (light pink in Fig. 2).

In Fig. 2, we also show the projected sensitivities from various experiments. Muon beam dump experiments can be used to probe for a light scalar that has couplings to muons and DM by performing a muon missing energy search. The corresponding projected sensitivity from the muon beam experiment NA64-μ [15, 34, 51] is shown in Fig. 2 as a brown-dashed line. Future Z factories based on e^+e^- colliders look for exotic decay modes of Z bosons. The projected sensitivity from these experiments [15, 52–55] is shown in Fig. 2 as a cyan-dashed line.

Overall, the light 2HDM-mediated forbidden DM scenario shares many implications with previous phenomenological models [15], but makes further predictions for the scalar sector around the electroweak scale. From ν-phenomenology [59], we compute following [59].

Neutrino mass. – The simplest radiative neutrino mass model, namely, the Zee model [56, 57], utilizes two-Higgs-doublets. Hence neutrino masses can arise naturally by embedding our setup within the Zee model. A singly charged scalar needs to be added to our setup to complete the loop diagram that provides neutrino mass. We consider such a possibility and show that the same Yukawa couplings responsible for providing the correct DM relic abundance give rise to non-zero neutrino masses.

In addition to the Yukawa couplings given in Eq. (9), the Zee model contains one more term, which is

$$-L_Y \supset f_{ij} L_i \epsilon L_j \eta^+ + h.c., \quad (10)$$

where ϵ is the Levi-Civita tensor and $\eta^+ \sim (1,1,1)$ is a singly charged scalar. The Yukawa coupling f_{ij} is anti-symmetric in flavor indices. Eqs. (9) and (10), together with the following cubic term in the scalar potential,

$$-V \supset \mu H_1 \epsilon H_2 \eta^+ + h.c., \quad (11)$$

lead to non-zero neutrino mass given by,

$$M_\nu = a_0 \left(m_\nu Y_l - Y_l^T m_\nu f \right), \quad (12)$$

$$a_0 = \frac{\sin 2\omega}{16\pi^2} \ln \left(\frac{m_{H^+}^2}{m_{H^+}^2} \right); \quad \sin 2\omega = \frac{\sqrt{2} \nu_\mu}{m_{H^+}^2 - m_{H^+}^2}, \quad (13)$$

where m_ν is the diagonal charged lepton mass matrix, ω is the mixing angle between the singly charged scalars, and H^+ and H^+ represent the mass eigenstates [58].

DM annihilation into SM particles occurs through the Yukawa coupling Y_l; hence its texture is highly restricted from DM phenomenology. Moreover, lepton flavor violating (LFV) processes put stringent limits on its off-diagonal entries required to satisfy neutrino oscillation data. In the $\mu\nu$-coupled forbidden DM scenario, the mediator mass must be close to twice the muon mass. In this case, the ARGUS experiment rules out any sizable non-zero entry with the tau-lepton due to null observation of $\tau \rightarrow \ell H$ processes, where $\ell = e, \mu$. To generate viable neutrino masses and mixings, we hence consider a Yukawa texture with zero 2×2 block in the 1-2 sector.

Now, to be consistent with DM phenomenology, we fix $y_{\mu\tau} = 5 \times 10^{-4}$. As can be seen from Fig. 2 (upper-middle plot), a coupling of this order correctly reproduces the DM relic abundance with the mediator mass close to 2 GeV. Since the upper 2×2-block is set to zero, reproducing the neutrino oscillation data requires the rest of the entries to be non-zero. However, each non-vanishing entry causes LFV and is required to be small. Since the charged scalars are heavier than 110 GeV, LFV is entirely dominated by the light scalar H in this theory. The most dangerous LFV processes are light scalar mediated $\mu \rightarrow e\gamma$, $\tau \rightarrow e\gamma$, and $\tau \rightarrow \mu\gamma$ at one-loop, which we compute following [59].

Following the discussion above, we perform a fit to the neutrino sector, which is simultaneously consistent with the DM relic abundance and provide a benchmark,

$$Y_l = 10^{-4} \begin{pmatrix} 0 & 0 & 3.494 \times 10^{-4} \\ 0 & 0 & 5 \\ -10^{-3} & -0.382 & 0.542 \end{pmatrix},$$

$$a_0 \cdot f = 10^{-7} \begin{pmatrix} 0 & 2.135 & 0 \\ -2.135 & 0 & 2.266 \\ 0 & -2.266 & 0 \end{pmatrix}. \quad (15)$$

Neutrino observables associated with this fit yield,

$$\Delta m^2_{21} = 7.486 \times 10^{-5} eV^2, \quad \Delta m^2_{31} = 2.511 \times 10^{-3} eV^2,$$

$$\theta_{12} = 34.551^\circ, \quad \theta_{23} = 47.830^\circ, \quad \theta_{13} = 8.545^\circ.$$

These predictions are in good agreement with the current neutrino oscillation data [60]. While the rates of $\tau \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$ can be easily suppressed, the branching ratio of $\mu \rightarrow e\gamma$ is typically close to the current limit [61] or within one order of magnitude smaller; therefore, future experiments such as MEG-II collaboration [62] will be able to test this theory.

Conclusions. – This work proposes a minimal realization of light Dark Matter, enabled by a light scalar mediator that can arise in the 2HDM. We focus on forbidden DM annihilating to SM leptons, which predicts the DM mass to be close to the μ or τ masses. Stringent CMB constraints on sub-GeV DM are avoided, while we have identified Galactic gamma ray lines from radiative annihilation as a specific probe. A distinctive trademark is that all new physics states appear at or below the EW scale; in particular, a CP-odd and charged scalars are
predicted to have masses of order 100 GeV. Furthermore, a leptophilic-like 2HDM of this type can shed light on the \(g-2\) anomaly, and—when embedded within the Zee model—the couplings that determine the relic abundance become intimately linked to neutrino oscillations. This minimal kinematically forbidden scenario is very predictive and in particular testable at future beam-dump experiments, colliders and sub-GeV gamma-ray telescopes. However, the light 2HDM portal to Dark Matter is rather general and provides a simple way of linking light dark sectors to the Standard Model that may well have wider application.

Acknowledgments.—The work of VPK is in part supported by US Department of Energy Grant Number DE-SC 0016013. The work of S.S. has been supported by the Swiss National Science Foundation. We acknowledge the use of the FeynCalc package [63].

*E-mail: herms@mpi-hd.mpg.de
† E-mail: susidip.jana@mpi-hd.mpg.de
‡ E-mail: vipadam@okstate.edu
§ E-mail: shaikh.saad@unibas.ch

[1] G. Bertone and D. Hooper, “History of dark matter,” Rev. Mod. Phys. **90** no. 4, (2018) 045002, arXiv:1605.04909 [astro-ph.CO].
[2] B. W. Lee and S. Weinberg, “Cosmological Lower Bound on Heavy Neutrino Masses,” Phys. Rev. Lett. **39** (1977) 165–168.
[3] Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. **126** no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].
[4] S. Jana, P. K. Vishnu, W. Rodejohann, and S. Saad, “Dark matter assisted lepton anomalous magnetic moments and neutrino masses,” Phys. Rev. D **102** no. 7, (2020) 075003, arXiv:2008.02377 [hep-ph].
[5] S. Dodelson and L. M. Widrow, “Sterile-neutrinos as dark matter,” Phys. Rev. Lett. **72** (1994) 17–20, arXiv:hep-ph/9303287.
[6] B. M. Reach, K. C. Y. Ng, K. Perez, J. F. Beaacom, S. Hornich, R. Krivosos, and D. R. Wik, “NuSTAR Tests of Sterile-Neutrino Dark Matter: New Galactic Bulge Observations and Combined Impact,” Phys. Rev. D **101** no. 10, (2020) 103011, arXiv:1908.09037 [astro-ph.HE].
[7] S. Heeb, F. Kahlhoefer, and P. Stöcker, “Freeze-in production of decaying dark matter in five steps,” JCAP **11** (2018) 045, arXiv:1809.04849 [hep-ph].
[8] This is true also in scenarios where DM does not annihilate directly to SM particles, such as secluded DM [13] or to a lesser extent SIMP DM [64], where the heat produced in DM annihilation is ultimately transferred to the SM bath.
[9] For non-Abelian gauge extension that offers vector dark matter candidate, see, e.g., Ref. [65].
[10] C. Boehm and P. Fuyet, “Scalar dark matter candidates,” Nucl. Phys. B **683** (2004) 219–263, arXiv:hep-ph/0305261.
[hep-ph].

[28] Kamiokande-II Collaboration, K. Hirata et al., “Observation of a Neutrino Burst from the Supernova SN 1987a,” Phys. Rev. Lett. 58 (1987) 1400–1403.

[29] D. Croon, G. Elor, R. K. Leane, and S. D. McDermott, “Supernova Muons: New Constraints on Z′ Bosons, Axions and ALPs,” JHEP 01 (2021) 107, arXiv:2006.13942 [hep-ph].

[30] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, “Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump,” Phys. Rev. D 38 (1988) 3375.

[31] L. Beresford and J. Liu, “New physics and tau g −2 using LHC heavy ion collisions,” Phys. Rev. D 102 no. 11, (2020) 113008, arXiv:1908.05180 [hep-ph].

[32] Particle Data Group Collaboration, M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D 98 no. 3, (2018) 030001.

[33] ARGUS Collaboration, H. Albrecht et al., “A Search for lepton flavor violating decays tau → e + mu alpha,” Z. Phys. C 68 (1995) 25–28.

[34] C.-Y. Chen, J. Kozaczuk, and Y.-M. Zhong, “Exploring leptonphobic dark matter with NA64-μ,” JHEP 10 (2018) 154, arXiv:1807.03790 [hep-ph].

[35] BaBar Collaboration, J. P. Lees et al., “Search for a muonic dark force at BaBar,” Phys. Rev. D 94 no. 1, (2016) 011102, arXiv:1606.03501 [hep-ex].

[36] BaBar Collaboration, J. P. Lees et al., “Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar,” Phys. Rev. Lett. 119 no. 13, (2017) 131804, arXiv:1702.03327 [hep-ex].

[37] The secluded parameter space is ruled out by indirect detection constraints on SS → H H → 4γ in the case of scalar DM annihilating to ττ (drawn with solid gray vertical lines in the plot). In the other cases shown, the correct relic abundance is reached in the forbidden secluded regime.

[38] AMEGO Collaboration, R. Caputo et al., “All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe,” arXiv:1907.07558 [astro-ph.IM].

[39] e-ASTROGAM Collaboration, M. Tavani et al., “Science with e-ASTROGAM: A space mission for MeV–GeV gamma-ray astrophysics,” JHEP 19 (2018) 1–106, arXiv:1711.01265 [astro-ph.HE].

[40] R. Bartels, D. Gaggero, and C. Weniger, “Prospects for indirect dark matter searches with MeV photons,” JCAP 05 (2017) 001, arXiv:1703.02546 [astro-ph.HE].

[41] LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group Collaboration, t. S. Electroweak, “A Combination of preliminary electroweak measurements and constraints on the standard model,” arXiv:hep-ex/0312023.

[42] K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, “Non-Standard Interactions in Radiative Neutrino Mass Models,” JHEP 03 (2020) 006, arXiv:1907.09498 [hep-ph].

[43] CMS Collaboration, A. M. Sirunyan et al., “Search for supersymmetry in events with a τ lepton pair and missing transverse momentum in proton-proton collisions at √s = 13 TeV,” JHEP 11 (2018) 151, arXiv:1807.02048 [hep-ex].

[44] ATLAS Collaboration, G. Aad et al., “Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector,” JHEP 10 (2014) 096, arXiv:1407.0350 [hep-ex].

[45] CMS Collaboration, A. M. Sirunyan et al., “Search for supersymmetric partners of electrons and muons in proton-proton collisions at √s = 13 TeV,” Phys. Lett. B 790 (2019) 140–166, arXiv:1806.05264 [hep-ex].

[46] K. S. Babu, P. S. Dev, S. Jana, and Y. Sui, “Zee-Burst: A New Probe of Neutrino Nonstandard Interactions at IceCube,” Phys. Rev. Lett. 124 no. 4, (2020) 041805, arXiv:1908.02779 [hep-ph].

[47] G.-y. Huang, S. Jana, M. Lindner, and W. Rodejohann, “Probing new physics at future tau neutrino telescopes,” JCAP 02 no. 02, (2022) 038, arXiv:2112.09476 [hep-ph].

[48] K. S. Babu, P. S. B. Dev, and S. Jana, “Probing Neutrino Mass Models through Resonances at Neutrino Telescopes,” arXiv:2202.06975 [hep-ph].

[49] M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, and K. Schmidt-Hoberg, “Revised constraints and Belle II sensitivity for visible and invisible axion-like particles,” JHEP 12 (2017) 004, arXiv:1709.00009 [hep-ph].

[50] Belle-II Collaboration, T. Abe et al., “Belle II Technical Design Report,” arXiv:1011.0352 [physics.ins-det].

[51] S. N. Gninenko, N. V. Krasnikov, and V. A. Matveev, “Muon g-2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN,” Phys. Rev. D 91 (2015) 095015, arXiv:1412.1400 [hep-ph].

[52] J. Liu, L.-T. Wang, X.-P. Wang, and W. Xue, “Exposing the dark sector with future Z factories,” Phys. Rev. D 97 no. 9, (2018) 095044, arXiv:1712.07237 [hep-ph].

[53] TLEP Design Study Working Group Collaboration, M. Bicer et al., “First Look at the Physics Case of TLEP,” JHEP 01 (2014) 164, arXiv:1308.6176 [hep-ex].

[54] D. d’Enterria, “Physics case of FCC-ee,” Frascati Phys. Ser. 61 (2016) 17, arXiv:1601.06640 [hep-ex].

[55] D. d’Enterria, “Physics at the FCC-ee,” in 17th Lomonosov Conference on Elementary Particle Physics, pp. 182–191. 2017. arXiv:1602.05043 [hep-ex].

[56] A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Nucl. Phys. B 264 (1986) 99–110.

[57] For small mixing angle, which is typically required to provide tiny masses to neutrinos, to a good approximation, the H°-state can be identified with the charged guy coming from 2HDM.

[58] B. Dutta, S. Ghosh, and T. Li, “Explaining (g − 2)µ,e, the KOTO anomaly and the MiniBooNE excess in an extended Higgs model with sterile neutrinos,” Phys. Rev. D 102 no. 5, (2020) 052017, arXiv:2006.03139 [hep-ph].

[59] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated
global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, arXiv:2007.14792 [hep-ph].

[61] Current experimental limits on these LFV processes are [66]:

\[
\begin{align*}
BR(\mu \to e\gamma) &< 4.2 \times 10^{-13}, \\
BR(\tau \to e\gamma) &< 3.3 \times 10^{-8}, \\
BR(\tau \to \mu\gamma) &< 4.4 \times 10^{-8}.
\end{align*}
\]

[62] MEG Collaboration, A. M. Baldini et al., “Search for the lepton flavour violating decay \(\mu^+ \to e^+\gamma \) with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].

[63] V. Shtabovenko, R. Mertig, and F. Orellana, “New Developments in FeynCalc 9.0,” Comput. Phys. Commun. 207 (2016) 432–444, arXiv:1601.01167 [hep-ph].

[64] Y. Hochberg, E. Kuflik, and H. Murayama, “SIMP Spectroscopy,” JHEP 05 (2016) 090, arXiv:1512.07917 [hep-ph].

[65] T. A. Chowdhury and S. Saad, “Non-Abelian vector dark matter and lepton g-2,” JCAP 10 (2021) 014, arXiv:2107.11863 [hep-ph].

[66] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.

[67] L. Resnick, M. K. Sundaresan, and P. J. S. Watson, “Is there a light scalar boson?,” Phys. Rev. D 8 (1973) 172–178.

APPENDIX-I

Scalar potential: The most general scalar potential (2HDM + real scalar singlet) in the Higgs basis is given by

\[
V(H_1, H_2, S) = \mu_1^2 H_1^\dagger H_1 + \mu_2^2 H_2^\dagger H_2 - \{\mu_{12}^2 H_1^\dagger H_2 + \text{h.c.}\} + \frac{\lambda_1}{2}(H_1^\dagger H_1)^2 \quad + \quad \frac{\lambda_2}{2}(H_2^\dagger H_2)^2 \quad + \quad \lambda_3(H_1^\dagger H_1)(H_2^\dagger H_2) + \lambda_4(H_2^\dagger H_2)(H_1^\dagger H_1) + \left\{\frac{\lambda_5}{2}(H_1^\dagger H_1)^2 + \text{h.c.}\right\}
\]

\[
+ \frac{\mu_S^2}{2} S^2 + \frac{\lambda_S}{4!} S^4 + \frac{\kappa_1}{2} S^2(H_1^\dagger H_1) + \frac{\kappa_2}{2} S^2(H_2^\dagger H_2) + \left\{\frac{\kappa_{12}}{2} S^2(H_1^\dagger H_2) + \text{h.c.}\right\}.
\]

Cross section \(SS \to \gamma\gamma \): The velocity averaged s-wave annihilation cross section of scalar DM into two photons is given by (using [67]):

\[
\langle \sigma v \rangle_{SS \to \gamma\gamma} = \frac{e^4\kappa_{12}^2 v^2 m_S^2 Y_{ll}^2}{64\pi^5 m_l^2((4m_S^2 - m_H^2)^2 - \Gamma_H^2 M_H^2)} |I[(2m_S)/m_l]|^2,
\]

where

\[
I[\tau] = \int_0^1 dx \int_0^{1-x} dy \frac{1-4xy}{1-xyr^2}.
\]

APPENDIX-II

Fermionic DM scenario: Fermionic DM candidates can be either Dirac or Majorana in nature. In this work, we consider both these possibilities. As usual, the stability of the DM is ensured by a \(Z_2 \) symmetry. Similar to the scalar DM setup discussed in the main text, the 2HDM-portal is needed to implement the forbidden fermionic DM scenario. Since a singlet fermion \(\chi \) cannot directly couple to the 2HDM sector, the presence of a scalar singlet \(S = v_S + \omega \) is required. Then the relevant Yukawa couplings are given by,

\[
-L_Y \supset \bar{\psi}_L H_1^\dagger \psi_R + Y_{1} \bar{\psi}_L H_2^\dagger \psi_R + b Y_{2} S \bar{\chi} + b m_{\chi} \bar{\chi} + h.c.,
\]

with \(b = 1(1/2) \) for Dirac (Majorana) fermion. The mass of the DM candidate \(\chi \) can be written as,

\[
m_{DM} = m_{\chi} + Y_{2} v_{S}.
\]

Like in the previous case, it is convenient to rotate the doublet scalars to the Higgs basis Eq. 5, then the full scalar
potential can be written as,

\[
V(H_1, H_2, S) = \mu_1^2 H_1^\dagger H_1 + \mu_2^2 H_2^\dagger H_2 - \{\mu_{12} H_1^\dagger H_2 + \text{h.c.}\} + \frac{\lambda_1}{2} (H_1^\dagger H_1)^2 + \frac{\lambda_2}{2} (H_2^\dagger H_2)^2 + \lambda_3 (H_1^\dagger H_1)(H_2^\dagger H_2)
+ \lambda_4 (H_1^\dagger H_2)(H_2^\dagger H_1) + \left\{ \frac{\lambda_5}{2} (H_1^\dagger H_2)^2 + \text{h.c.} \right\} + \left\{ [\lambda_6 (H_1^\dagger H_1) + \lambda_7 (H_2^\dagger H_2)] H_1^\dagger H_2 + \text{h.c.} \right\}
+ \frac{\mu_2^2}{2} S^2 + \frac{\mu_{SS}}{3!} S^3 + \frac{\lambda_{S}}{4!} S^4 + \mu_1 S(S(H_1^\dagger H_1) + \mu_2 S(S(H_2^\dagger H_2) + \left\{\mu_{12S} S(H_1^\dagger H_2) + \text{h.c.}\right\}
+ \frac{\kappa_1}{2} S^2(H_1^\dagger H_1) + \frac{\kappa_2}{2} S^2(H_2^\dagger H_2) + \left\{ \frac{\kappa_{12}}{2} S^2(H_1^\dagger H_2) + \text{h.c.} \right\}. \tag{21}
\]

In the alignment limit, \(\phi_0 \approx h\) is the SM Higgs, which decouples from the other two CP-even scalars \(\phi_2^0\) and \(\omega\). The latter two mix with each other, and the corresponding mass eigenstates are denoted as \(H\) (with mass \(m_H^2\)) and \(H'\) (with mass \(m_{H'}^2\)) and are given by,

\[
H = \cos \alpha \omega + \sin \alpha \phi_2^0,
H' = -\sin \alpha \omega + \cos \alpha \phi_2^0, \tag{22}
\]

where the mixing angle \(\alpha\) is defined as

\[
\sin 2\alpha = \frac{2v(\mu_{12S} + k_{12}v_S)}{m_H^2 - m_{H'}^2}. \tag{23}
\]

This mixing is essential for DM phenomenology since it allows the DM to annihilate into SM leptons.