BEFORE INFLATION

Neil Turok

DAMTP, Centre for Mathematical Sciences, University of Cambridge
Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Abstract.
Observations of the cosmic microwave sky are revealing the primordial non-uniformities from which all structure in the Universe grew. The only known physical mechanism for generating the inhomogeneities we see involves the amplification of quantum fluctuations during a period of inflation. Developing the theory further will require progress in quantum cosmology, connecting inflation to a theory of the initial state of the Universe. I discuss recent work within the framework of the Euclidean no boundary proposal, specifically classical instanton solutions and the computation of fluctuations around them. Within this framework, and for a generic inflationary theory, it appears that an additional anthropic constraint is required to explain the observed Universe. I outline an attempt to impose such a constraint in a precise mathematical manner.

I INTRODUCTION

The maps of the cosmic microwave sky provided by recent experiments [1] signal an important breakthrough in cosmology. The structure revealed provides our most powerful probe of the structure in the Universe at early times, and of its current geometry. The data is consistent the Universe being nearly spatially flat, with a scale invariant spectrum of Gaussian-distributed irregularities in which the overall density fluctuates but the equation of state does not. This simplest form was anticipated on phenomenological grounds as far back as the sixties [2], but later emerged as the prediction of simple models of inflation [3–6]. The detailed agreement between theory and observations lends impressive support to the view that the Universe is, in some respects at least, remarkably simple.

In inflationary theories, inhomogeneities of the required form arise a side-effect of the exponential expansion invoked to explain the size and flatness of the Universe. Quantum mechanical vacuum fluctuations in the inflaton field are stretched to large scales during inflation [5,6], later to re-enter the Hubble radius and seed large scale structure. This magnificent mechanism links quantum mechanics and gravity to the observed structure of the Universe. It provides a direct observational probe of quantum gravity, albeit at leading (Gaussian) order.
The underlying theory is however only provisional, because we still have no compelling model of inflation and because a complete theory of quantum gravity is lacking. Nevertheless the success of the inflationary explanation of the structure in the cosmic microwave sky forces us to take very seriously the idea that quantum mechanics governed the formation of the Universe we see. This moves the topic of quantum gravity to centre stage. It is a field that must be developed if we are to attain a deeper level of understanding in cosmology.

The prevalent view is that cosmology will over the next period be observation-driven. It is true that dramatic observational developments are certain, and there will be a lot of phenomenology to do. However if we mean to achieve more than simply measuring the properties of the universe, theoretical developments are also crucial. The great freedom there is in current approaches to phenomenological models of inflation and of the early Universe, combined with the relatively small number of observations (even including the cosmic microwave sky) leads me to conclude that if we are to get anywhere, mathematical requirements of completeness and consistency must play an increasing role. Their power is already convincingly demonstrated by the fact that not one of the existing inflationary models has been made sense of beyond leading (Gaussian) order.

In this talk I will concentrate on one particular incompleteness of inflationary theory. The question is why inflation started in the first place. Vilenkin, Linde and Guth argue that the need for a theory of initial conditions is side-stepped because inflation is self-sustaining to the future (i.e. ‘semi-eternal’) [7]. Whilst accepting that some theory of the initial conditions is needed at some level, the claim is that the details of that theory are actually irrelevant, since there would typically be an infinite amount of inflation between ourselves and the beginning, during which details of the initial conditions would have been erased. In this view discussions of the initial conditions prior to inflation are fairly unimportant, since ‘almost anything’ will do. In this talk I criticise the calculational methods which have been used to reach this conclusion, and explain a different point of view according to which inflation is a priori very unlikely and in any case only a brief episode in our past.

One can easily imagine an infinite number of possible ansätze for the initial conditions of the Universe. At the present stage of development of theory, many of these might be perfectly consistent with observation. But among the existing proposals, I think the Euclidean no boundary proposal [8] is appealing because it is based on simple and general ideas which have a rationale beyond cosmology. In a strong sense I think it is ‘the most conservative thing you can do’. Of course it may well fail precisely because it is too conservative. Space and time may be emergent rather than fundamental properties. Describing the Universe as a manifold may not be appropriate to its early moments. Nevertheless precisely because the no boundary proposal is not just cooked up to make inflation work, its failings and limitations may teach us something deeper about what is in fact required.

In this lecture I focus on one particular approach to the no boundary proposal, using a set of classical instanton solutions of the ‘no boundary’ form [9,10]. Our
work has focussed on using these to compute the the complete Gaussian correlators [12–15], in a generic inflationary model (for related work see [25,26]). These generic instantons are unusual in several respects. In the original ‘Einstein frame’ they exhibit a curvature singularity which in the Lorentzian spacetime is ‘naked’. Nevertheless the Euclidean action for the solutions is finite, suggesting they should contribute to the Euclidean path integral. Second, there is a one parameter family of solutions, with differing action. This is inconsistent with their being true stationary points of the action, but they may nevertheless be legitimate as ‘constrained instantons’ which are an established tool in other contexts [11]. A second feature is that the quantum fluctuations about these solutions are well defined to leading order, since the Euclidean action selects a unique (Dirichlet) boundary condition at the singularity. This allows one to make unambiguous predictions for the microwave anisotropies in any one of these solutions, which Gratton, Hertog and I have recently computed [12,13,15]. (See also [14]).

I then describe recent work by Kirklin, Wiseman and myself [18] showing how the singularity apparent in the original ‘Einstein frame’ may actually be removed by a change of field variables. Thus the singularity is really only a coordinate singularity on superspace. One still has the problem that the scalar field potential energy diverges at the singularity, and the scalar field equation remains ill defined there. That problem is overcome if one defines the theory as the limit of a family of theories in which \(V(\phi) \) takes a particular form as \(\phi \) tends to infinity, but approximates the actual potential at arbitrarily large values of \(\phi \). The limit is insensitive to the precise form of the regularised potential at large \(\phi \). The regularised construction allows one to give an improved formulation of the constraint at the singularity, which allows for a detailed computation of the spectrum of homogeneous modes [20]. The latter, we argue, are actually crucial to a proper interpretation of the instantons.

In the regularised theory all quantities appearing are finite. The classical field equations are also satisfied everywhere if one views the instantons as topologically \(RP^4 \) rather than \(S^4 \). The same construction is applied to instantons possessing two singularities in the Einstein frame. When the singularities are ‘blown up’ one obtains a regular manifold which is a four dimensional analogue of the Klein bottle.

Finally I discuss the problem of negative modes, complicated by the ‘conformal factor’ problem of Euclidean general relativity, due to the non-positive character of the Euclidean action. In the regular variables (and with the regularised potential), the problem of negative modes about singular instantons is well defined, and I briefly mention some of our latest results [20] indicating that the most interesting singular instantons (describing Universes with a large amount of inflation) do not possess any negative modes, in contrast to the non-singular instantons of Coleman and De Luccia, and Hawking and Moss. I comment on how this observation might help to resolve the ‘empty Universe problem’, if one performs a projection onto Universes containing the observer.
II INFLATION AND INITIAL CONDITIONS

Inflation is at heart a simple idea. A cosmological constant inserted into the Friedmann equation leads to exponential expansion of the scale factor (for a Universe which is sufficiently flat and homogeneous). The inflating region rapidly becomes exponentially large and smooth, and all other forms of matter are redshifted away. This basic point seems to have been understood a long time ago. For example an illustration in Peebles’ book [21] shows Professor De Sitter blowing up a large balloon. The subtitle states ‘What however blows up the ball? What makes the universe expand or swell up? That is done by the Lambda. Another answer cannot be given’.

Guth realised that scalar fields of the type invoked in high energy particle theories could provide a ‘temporary Lambda’ of just the form required, leading to a period of accelerated expansion before the standard hot big bang [3]. He showed how this period of cosmic inflation could solve the riddles of why the observed Universe is so large, so flat and so uniform on large scales. Subsequently Linde, and Albrecht and Steinhardt [4] invented working models involving ‘slow-roll’ inflation. A scalar field \(\phi \) with potential energy \(V(\phi) \) behaves like a ball rolling down a hill. The equations governing the motion of the scalar field \(\phi \) and the scale factor \(a \) of the Universe are:

\[
\ddot{\phi} + 3 \frac{\dot{a}}{a} \dot{\phi} = -V_{,\phi} \tag{1}
\]

\[
\ddot{a} = \frac{\kappa}{3} a \left(-\dot{\phi}^2 + V\right) \tag{2}
\]

\[
\left(\frac{\dot{a}}{a}\right)^2 = \frac{\kappa}{3} \left(\frac{1}{2} \dot{\phi}^2 + V\right) - \frac{k}{a^2} \tag{3}
\]

where \(k = 0, \pm 1 \) for flat, closed or open Universes respectively. The line element takes the form \(ds^2 = -dt^2 + dr^2/(1 - kr^2) + r^2 d\Omega_2^2 \) where \(d\Omega_2^2 \) is the standard line element on \(S^2 \). Here \(\kappa = 8\pi G \) with \(G \) Newtons constant. From the second equation one sees that the condition for accelerated expansion, i.e. inflation, is \(V > \dot{\phi}^2 \).

If the slope \(V_{,\phi} \) is small, the ball takes a long time to roll and the potential \(V \) acts in the second equation just like a cosmological constant. But as the field rolls down, \(V \) slowly decreases and eventually goes to zero, with the energy in the scalar field being dumped into a bath of excitations of all the fields in the theory. This process is traditionally called re-heating although inflation need not have been preceded by a hot Universe epoch. The decay of the scalar field energy into radiation is responsible for the generation of the plasma of the hot big bang.

An amazing by-product of inflation is that it neatly provides a mechanism for generating the primordial inhomogeneities which later seed structure in the Universe [5,6]. The downhill roll of the scalar field is subject to continual quantum
mechanical fluctuations, which cause it to vary spatially. These fluctuations may be described as due to the Gibbons-Hawking ‘temperature’ of de Sitter space [22]. The radius of Euclideanised de Sitter space is H^{-1} and this plays the role of a periodicity scale i.e. an inverse temperature $\beta = T^{-1}$ in the Euclidean path integral. The inflaton field acquires fluctuations $\delta \phi \sim H$ on the Hubble radius scale H^{-1} at all times, and these fluctuations become frozen in as a comoving scale leaves the Hubble radius. If the classical field rolls slowly, H is nearly constant and one obtains a nearly scale invariant spectrum of fluctuations in $\delta \phi$. In some parts of the Universe the field fluctuates downhill and in others uphill. The comoving regions where it fluctuates down undergo re-heating earlier, and end up with lower density than those which remain inflating for longer. The fluctuations in the time to re-heating δt lead to density perturbations: $\delta \rho / \rho \sim \delta t H \sim (\delta \phi / \dot{\phi}) H \sim H^2 / \dot{\phi} \sim H^3 / V, \phi \sim (\kappa V)^{\frac{3}{2}} / V, \phi$. For example, for a quadratic potential $m^2 \phi^2$, $\delta \rho / \rho$ is proportional to m and fits the observations if $m \sim 10^{-5.5} M_{Pl}$ where $M_{Pl} = (8\pi G)^{-\frac{1}{2}}$ is the reduced Planck mass.

In the simplest models of inflation the fluctuations are adiabatic in character, that is, all particle species are perturbed in fixed ratio. This prediction is not really so much a consequence of inflation but rather of the assumption that no information survives from the inflationary epoch to the hot big bang epoch except the overall density perturbation. In models with more than one scalar field one generically induces perturbations of ‘isocurvature’ character as well.

So much for the successes of inflation. But let us try to be a bit more critical. A very basic question is

- Why did the scalar field start out up the hill?

In almost all treatments, the answer is simply that the inflationary theorist concerned put it there. In false vacuum inflation, one assumes the field was stuck in the false vacuum. In slow roll inflation, one assumes the field started out large. In some approaches to eternal inflation [7] one considers a theory which has a potential maximum and allows inflating domain walls. But even there one has to assume at least one such domain wall was initially present. At a fundamental level, the question is unanswered.

How far up the hill did the scalar field have to be? The number of inflationary efoldings is given, in the slow roll approximation, by

$$ N_e \approx \int_{0}^{\phi_0} d\phi \frac{V(\phi)}{M_{Pl}^2 V, \phi(\phi)} $$

where the true vacuum is at $\phi = 0$, and inflation starts at $\phi = \phi_0$. For a monomial potential ϕ^n, one has $\phi_0 \approx M_{Pl} \sqrt{2nN_e}$. If we require $N_e > 60$ or so to explain the homogeneity and isotropy of our present Hubble volume, we see that ϕ_0 must be substantially larger then M_{Pl} to obtain the 60 or so efoldings needed to explain the homogeneity and flatness of today’s Universe.

Why was the initial value of the scalar field so high? It may be convenient for now to simply say ‘why not?’, and leave the matter there. But then I think one has to concede that at some level one has simply assumed the desired result.
One attempt to answer to the question of the required initial conditions for inflation is the theory of ‘eternal inflation’, advocated by Vilenkin, Linde and Guth and others [7]. The idea is that the same quantum fluctuations which produce the density fluctuations have an important backreaction effect upon inflation itself. That is, the scalar field can fluctuate uphill as well as down, and these fluctuations can compete with the classical rolling. Comparing the change in ϕ due to classical rolling in a Hubble time, $\delta \phi \sim H^{-2} V_\phi$, with that due to quantum fluctuations $\delta \phi \sim H$, one sees that for a monomial potential the quantum fluctuations actually dominate at large ϕ. For example, for a quadratic $m^2 \phi^2$ potential normalised to COBE this occurs when $\phi > (M_{Pl}/m)^{1/2} M_{Pl} \sim 10^3 M_{Pl}$.

The scenario is that at all times there are some regions of the Universe in which the scalar field takes large values. Classical rolling down from these regions then produces large inflated and reheated regions. However, in the high field regions the field also fluctuates uphill. This process can continuously regenerate the high field regions. People have tried to describe this process using stochastic equations which couple the quantum-driven diffusion to the classical Friedmann equation, but there are many problems with these calculations. First, the averaging scheme used employs a particular time slicing and the stochastic equations derived are not coordinate invariant. (Note that the scalar field itself cannot be used as a time coordinate, precisely because the condition for eternal inflation to occur is the same as the condition for the scalar field (classical plus quantum) to cease to be monotonic in time.) Second, the equation ignores spatial gradients and does not incorporate causality properly. Third, the treatment is not quantum mechanical. The subtleties of quantum interference are ignored and effectively it is assumed that the scalar field is ‘measured’ in each Hubble volume every Hubble time.

The approximate calculations are instructive. However since they in fact violate every known fundamental principle of physics, one should clearly interpret them with caution. It is interesting however that even after the fairly gross approximations made, a ‘predictability crisis’ emerges which is still unresolved. Simple potentials such as ϕ^2 do not generally lead to a stationary state, since the field is driven to the Planck density where the theory breaks down. A more basic problem is that no way is known to predict the relative probabilities for a discrete set of scalar field vacua. This suggests some profound principle is missing, and I shall suggest below what that principle is.

The spacetime found in the simulations has an infinite number of infinite inflating open ‘bubble Universes’ (much as in the scenario of open inflation [23]). The source of the ‘predictability crisis’ is the problem of trying to decide how probable it is for us to be in a region of one type or of the other, when there are infinite volumes of each. In other words,

- Where are we in the infinite ‘multiverse’?

This is an infrared (large-scale) catastrophe which is unlikely to go away, and which I think makes it very unlikely that a well defined probability measure will emerge from a ‘gods-eye’ view in which one attempts to infer probabilities from an inflating spacetime of infinite extent.
It seems to me that one is asking the wrong question in these calculations. The solution may be instead to concentrate on observable predictions. Theory should provide a procedure for calculating cosmological correlators like:

\[\langle H^m_0 \Omega^n_0 (\frac{\delta \rho}{\rho})^p \rangle, \quad m, n, p \in \mathbb{Z} \]

where we compute the full quantum correlator and then take the classical part to compare with observations. (See e.g. [24] for a discussion of this interpretation of quantum mechanics). We should demand the calculational procedure respects coordinate invariance, causality, and unitarity. Otherwise we shall be inconsistent with general relativity, special relativity or quantum mechanics. As in statistical physics, the role of quantum mechanics is to provide a discrete measure. Causality, I shall argue is equally important since it provides an infrared cutoff.

Causality is built into special and general relativity, and is equally present in quantum field theory. In a fixed background the latter is perfectly causal in the sense that correlators in a given spatial patch are completely determined by the set of correlators on a spatial region crossing the the past light cone of the original patch. This may be seen from the Heisenberg equations of motion. If we only ask questions about what is actually observable on or within our past light cone, we avoid the problem of dealing with the infinite number of infinite open Universes encountered in eternal inflation, just because the bubbles grow at the speed of light, so if you can see a bubble, you must be inside it, and you cannot see other bubbles. Causality indicates it should be possible to define all correlators of interest in a way that never mentions the other bubbles. The question becomes not ‘Where are we?’ in some infinite spacetime which is pre-computed for an infinite amount of time, but rather ‘What is the probability for the observed Universe to be in a given state?’ To calculate that, in a sum over histories approach we need to sum over the different possible four-Universes which could constitute our past. In the no boundary proposal, crucially, this sum is over compact Universes bounded by our past light cone. I believe this framework resolves the infrared problem in approaches to eternal inflation which I mentioned above.

III THE NO BOUNDARY PROPOSAL

The no boundary proposal links geometry to complex analysis and to statistical physics. The idea is to contemplate four-geometries in which the real Lorentzian Universe (i.e. with signature $-+++)$ is rounded off on a compact Euclidean four-manifold (i.e. with signature $++++)$ with no boundary. This construction can in principle remove the initial singularity in the hot big bang. It can be made quantum mechanical by summing over all geometries and matter histories in a path integral formulation. The ‘rounding off’ is done in analogy with statistical physics, where one analytically continues to imaginary time. Here too one imagines computing correlators of interest in the Euclidean region, as a function of imaginary time, and
then analytically continuing to the Lorentzian time where correlators of observables are needed.

There are many technical obstacles to be overcome in the implementation of this approach. These are not minor problems, and each is potentially fatal. Until they are resolved doubts must remain. Nevertheless I believe progress can be made. What I find most attractive is that the mathematical analogy at the heart of the Euclidean proposal is perhaps the deepest fact we know about quantum field theory, where Euclideanisation is the principal route to describing non-perturbative phenomena and underlies most rigorous results. There is also an analogy with string theory, the theory of two dimensional quantum geometry, where at least at a formal level the the perturbation expansion is defined as a sum over Riemann surfaces, embedded in a Riemannian target space. Scattering amplitudes are given as functions of Euclidean target space momenta, then analytically continued to real Lorentzian values. Euclidean quantum cosmology follows the same philosophy.

Before proceeding let me list a few of the ‘technical’ difficulties to be faced:

• Einstein gravity is non-renormalisable. This objection relates to the bad ‘ultra-violet’ properties of the theory, which are certainly important but are not central to the discussion here. Theories such as supergravity with improved ultra-violet properties are not conceptually different as far as the problems we are discussing.

• The Euclidean Einstein action is not positive definite, and therefore the Euclidean path integral is ill defined. This is the ‘conformal factor’ problem in Euclidean quantum gravity and I shall return to it below. Recent work has shown that at least for some choices of physical variables, and to quadratic order, this problem is overcome [27,28,20]. I shall mention this briefly below.

• The sum over topologies in four dimensions is likely to diverge, as happens in string theory. Most likely one will need some formulation in which manifolds of differing topologies are treated together.

These problems are formidable. The main hope, it seems to me, is that our Universe appears to be astonishingly simple, well described by a classical solution of great symmetry with small fluctuations present at a level of a part in a hundred thousand. This suggests that we may be able to accurately describe it using perturbation theory about classical solutions.

IV GENERIC INSTANTONS

We seek solutions to the Einstein-scalar field equations which describe a background spacetime taking the required Lorentzian-Euclidean form. The main requirement is that there exist a special three-manifold where the normal derivatives of the scalar field and the spatial metric (more precisely the trace of the second fundamental form) vanish. If t is the normal coordinate, then if this condition is fulfilled, the classical solution will be real in both the Euclidean and the Lorentzian regions. Consider the simple case where V is constant and positive so that $V\phi = 0$. Then there is a one parameter family of classical solutions labelled by the value
of the scalar field, and in which scalar field is constant. The metric is that for de Sitter space, which may be described globally in closed coordinates: in which form

\[ds^2 = -dt^2 + H^{-2}\cosh^2(Ht)d\Omega_3^2. \]

with \(H^2 = \frac{\kappa}{3}V \). This metric possesses an analytic continuation to a Euclidean four sphere, if we set \(Ht = -i(\frac{\pi}{2} - \sigma) \). The solution possesses \(O(5) \) symmetry in the Euclidean region, \(O(4,1) \) in the Lorentzian region. This is too much symmetry to describe our Universe, which only possesses the symmetries of homogeneity and isotropy, a six parameter group.

However, if the potential is sloping, the maximal symmetry of the solution is lower, only \(O(4) \) in the Euclidean region. The Euclidean metric is given by

\[ds^2 = d\sigma^2 + b^2(\sigma)d\Omega_3^2 \]

where \(d\Omega_3^2 \) is the round metric on \(S^3 \). The Euclidean Einstein equations are

\[\phi'' + 3\frac{b'}{b}\phi' = -V, \phi \]

\[b'' = \frac{\kappa}{3}b(\phi'^2 + V) \]

where primes denote derivatives with respect to \(\sigma \). If \(\phi \) is constant, the second equation has solution \(b = H^{-1}\sin(H\sigma) \), describing a round \(S^4 \). In general, \(b \) is a deformed version of the sine function. If the potential is gently sloping, we might expect a remnant of the one parameter family of solutions to survive, and that is indeed the case. Consider configurations with \(O(4) \) as above, and with a regular pole which we shall take to be \(\sigma = 0 \), where \(b \sim \sigma \). If the scalar field is regular there it must obey \(\phi = \phi_0 + \frac{1}{2}\ddot{\phi}_0\sigma^2 + ... \), with \(\phi_0 \) an arbitrary constant. If the potential is gently sloping, then \(\ddot{\phi}_0 \) is small and the scalar field rolls very slowly uphill, so \(b \) is nearly sinusoidal. However, once \(\sigma \) is past the maximum of \(b \) the \(\phi \) equation exhibits anti-damping, and \(\phi \) rolls off to infinity at some finite value \(\sigma_s \).

It is not hard to show that \(\phi \) diverges logarithmically in \(\sigma_s - \sigma \) and \(b \) vanishes as \((\sigma_s - \sigma)^\frac{1}{3} \). This behaviour is generic for scalar fields with gentle potentials. It is valid for example for several fields, for a nontrivial Kahler potential (i.e. a kinetic term \(K_{ab}(\phi)\partial\phi^a\phi^b \)) or for fields with a nontrivial coupling to the Ricci scalar.

As was noted in [9,10], since all of these solutions have vanishing normal derivatives on ‘longitude’ three surfaces extending from the regular to the singular pole, they may be may analytically continued to a Lorentzian spacetime, which takes the form shown in Figure 1. Region I is an infinite inflating open Universe, which has a coordinate singularity on the lightcone through which it is connected to Region II, which is an approximately de Sitter region (\(\phi \) is nearly constant) bounded by a timelike singularity. The most surprising result of the construction is that an
infinite homogeneous open Universe emerges from a compact Euclidean region, a finite object.

So there is a one parameter family of finite action singular solutions, in which we have a one-to-one relation

$$\phi_0 \leftrightarrow \Omega_0$$ \hspace{1cm} (10)

where Ω_0 is the current density parameter. For the solutions described above, $\Omega_0 < 1$, but if one allows instantons which are singular at both poles, and symmetric about the maximum of b, these analytically continue to closed inflating Universes, and one can obtain any value of $\Omega_0 > 1$.

The idea of the construction is that, in principle at least, *everything* we could possibly wish to calculate could be computed by computing Euclidean correlators in the instanton and analytically continuing them to the Lorentzian Universe. This is an appealing picture.

The key characteristic of the singular instantons which suggests they might contribute to the path integral is that the Euclidean action is finite. The scalar field diverges and its kinetic term yields a the positive logarithmic divergence to the action. But this is cancelled by a similar negative contribution from the Einstein term. This mechanism is inherently linked to the ‘conformal factor problem’ discussed above, and it is natural to seek to regularise the singularity via a conformal transformation, as I discuss below.

If one takes singular instantons seriously, they allow one to estimate the prior probability for the inflating Universe to begin at a given value of the scalar field.
The disappointing result of [9] was that for generic potentials at least the most favoured values of ϕ_0 are rather small and do not lead to much inflation. The most probable Universe is then essentially empty of matter. An attempt was made to rescue the situation with an anthropic argument, but even this led to an unacceptable value for $\Omega \sim 0.01$ [9]. A different argument will be made below, according to which a value of Ω very close to unity is predicted.

Significant criticisms have been made of the use of singular instantons, and of the conclusions drawn from them [17,16].

First, since the classical field equations break down at the singularity, it is not clear whether they hold there. In fact, the action varies over the one parameter family of solutions, so they cannot all be stationary points of the action. This does not mean they do not contribute to the path integral, nor that they cannot be used to approximate it. But they must be regarded instead as ‘constrained instantons’, and a suitable constraint must be introduced. This is a relatively well developed procedure both in quantum mechanics and in field theory [11]. One way of imposing a constraint will be described in the next section.

Second, the presence of a singular boundary in the Lorentzian region might lead one to worry that matter or radiation could leak into the spacetime from the singularity. Equivalently, what are the correct boundary conditions at the singularity? Here, at least to quadratic order in the (spatially inhomogeneous) fluctuations I think this worry has been convincingly resolved. As shown in [12,13], for scalar and tensor perturbations, finiteness of the Euclidean action selects a unique (Dirichlet) boundary condition. For the spatially homogeneous modes, the situation is more involved. The required boundary condition is only provided by a definite regularisation of the singularity. That proposed in [18] and implemented in [20] is described below.

Third, Vilenkin showed in an interesting paper [17] that analogous asymptotically flat instantons exist, and he argued these would lead to an instability of flat space towards nucleation of singularities. This objection was addressed in [19] where it was shown that if the instantons are constructed as constrained instantons with an appropriate constraint applied on the singular boundary, then they possess no negative mode and therefore do not mediate an instability. The subsequent work of [20] with a better defined constraint confirms this.

Vilenkin then pointed out that constrained instantons might be placed in a ‘necklace’ of arbitrary length, yielding configurations of arbitrarily negative Euclidean action which would render the Euclidean path integral meaningless.

The last two objections are addressed by the regularisation explained below, in which the classical field equations are satisfied everywhere, and in which a certain constraint is applied yielding a completely non-singular description. In this description, ‘necklaces’ of the form envisaged by Vilenkin are absent.
V RESOLVING THE SINGULARITY

We have recently shown that it is possible to regularise the instanton solutions in the following two steps. We first show that the geometry of the instantons may be regularised by ‘blowing up’ the singularity with a ϕ-dependent conformal transformation i.e. a change of coordinates on field space. Next, we replace the scalar potential $V(\phi)$ by a ‘regularised’ version, in which we deform $V(\phi)$ at very large ϕ so that it goes to zero at $\phi = \infty$. Then we show that the scalar field may be rewritten in terms of a new ‘twisted’ field, which is forced to be zero on a special 3-manifold. After all this we show that the ‘twisted’ scalar field, and the Riemannian metric, satisfy the field equations everywhere. This construction renders the ‘singular’ instantons ‘regular’ and makes further analysis of them well defined.

First, we note that if we change from σ to a coordinate $X = \int_\sigma^\sigma \frac{d\sigma}{b(\sigma)}$, the metric becomes $b^2(X)(dX^2 + d\Omega^2_3)$. Near the singularity, one finds $b^2(X) \sim X$, so the conformal factor has a linear zero, in these coordinates. This suggests a simple interpretation, which we have explored, which is that the conformal factor $b^2(X)$ is actually a twisted field. We shall implement this below.

We write the Einstein frame metric as

$$g_{\mu\nu}(x) = \Omega^2(x)g^R_{\mu\nu}(x)$$

where $g^R_{\mu\nu}$ is a Riemannian (i.e. positive definite) metric, and we are going to allow $\Omega^2(x)$ to possess zeros on the manifold.

The Einstein-scalar action becomes:

$$\int d^4x \sqrt{g^R} \left(-\frac{1}{2\kappa} \Omega^2 R(g^R) - \frac{3}{\kappa} \left((\nabla \Omega)^2 - \frac{\kappa}{6} \Omega^2 (\nabla \phi)^2 \right) + \Omega^4 V(\phi) \right)$$

(12)

We should also add a surface term $-\frac{1}{\kappa} \int_B \sqrt{K^R} \Omega^2 K^R$ if we wish the action to involve only first derivatives of the metric.

Now the point is that $\Omega(x)$ is to be regarded as a scalar field living on the Riemannian manifold with metric $g^R_{\mu\nu}$. The kinetic terms for the two scalars, $\Omega(x)$ and $\phi(x)$, define the metric on the space of scalar fields, i.e. the superspace metric. The metric clearly has a coordinate singularity at $\Omega = 0$, which we can remove by making the change of coordinates

$$\Omega_1 = \Omega \cosh(\sqrt{\frac{\kappa}{6}} \phi) \quad \Omega_2 = \Omega \sinh(\sqrt{\frac{\kappa}{6}} \phi).$$

(13)

The global structure of superspace is seen to be $1 + 1$ Minkowski space, and we may change to light cone coordinates

$$\Omega_\pm \equiv \Omega_1 \pm \Omega_2.$$

(14)

This change of variables has the effect that the action density is now finite term by term for the ‘singular’ instantons. To make the whole construction analytic, we
need to re-express the scalar field in terms of the light cone variables, which we do via

\[\phi = \sqrt{\frac{3\kappa}{2}} \ln \left(\frac{\Omega_+}{\Omega_-} \right). \]

(15)

But now when re-expressed in terms of \(\Omega_\pm \) the potential \(V \) has a branch cut at \(\Omega_- = 0 \). We therefore need to modify the potential \(V(\phi) \) so that it is analytic as \(\Omega_- \) tends to zero. Since the term entering the action is \(\Omega_+^2 \Omega_-^2 V \), the action will be analytic in the vicinity of the conformal zero as long as \(V \sim (e^{\sqrt{\frac{2}{3}}\kappa \phi})^n \) at large \(\phi \), with \(n \) an integer \(\leq 1 \).

However there is still a problem. If we continue the solutions through the zero of \(\Omega_- \), then we enter a region where the Einstein metric changes from Euclidean to anti-Euclidean. We can avoid this by instead identifying antipodal points on the three-sphere upon which \(\Omega_- = 0 \). This produces a manifold which is compact, and is topologically \(RP^4 \). Since \(\Omega_- \) vanishes linearly (and is analytic in \(X \)) it will solve the field equations across the noncontractible \(RP^3 \) if we interpret \(\Omega_- \) as being ‘twisted’ on \(RP^4 \), an interpretation which is possible since the latter is non-simply connected. This interpretation requires that the integer \(n \) of the previous paragraph be odd, so that the field equations are covariant under the symmetry \(\Omega_- \rightarrow -\Omega_- \).

As discussed in [18], in this construction the ‘singular’ instantons are regularised and solve the appropriate classical field equations everywhere. This is surprising at first sight, since the solutions all have differing action. But this is allowed just because the manifold cannot be covered by a single coordinate system (due to its non-orientability) and the action must be defined by effectively introducing an ‘internal boundary’, upon which additional data enters. This is quite analogous to the magnetic monopole solution on a two sphere. In that case, the constraint that is used is the magnetic flux over the entire \(S^2 \). Here instead it is the volume of the ‘internal boundary’ upon which the orientation flip occurs, evaluated in the Riemannian frame.

We have had to go to substantial lengths to regularise the singular instantons. But since they are now well defined as constrained objects, one can hope to test whether they provide good approximations to the Euclidean path integral.

VI FLUCTUATIONS AND NEGATIVE MODES

One way to test whether instantons provide sensible approximations to the Euclidean path integral is to examine the fluctuations about them. In fact the two point correlator for scalar and tensor perturbations which have nontrivial dependence on the \(S^3 \) coordinates on the instanton and which therefore yield the inhomogeneous density perturbations in the open (or closed) universe, were computed in [12,13,15] and translated into predictions for the cosmic microwave anisotropies. (For related work in nonsingular instantons see [25,26]). As mentioned above, no ambiguities emerged in these calculations, in spite of the presence of the singularity.
The fluctuation modes which are homogeneous on the S^3 slices are much more subtle. A naive treatment instantly encounters the conformal factor problem. Certain gauge invariant fluctuation variables have negative kinetic terms, which means there are an infinite number of negative modes. In recent work [20] (see also [27,28]), we have shed light on this problem, by showing that with certain choices of physical variables, the kinetic term in the Euclidean action is actually positive definite for the homogenous modes too. For regular instantons we find a finite number of negative modes, always at least one. For singular instantons we find the Euclidean action does not uniquely select a boundary condition, and the details of the regularisation therefore matter. Interestingly, we do find that for instantons with large ϕ_0 (therefore giving a nearly flat Universe today), the constraint employed in the RP^4 regularisation explained above actually removes all negative modes. Therefore the constrained Euclidean path integral is actually well defined (only to Gaussian order) for these instantons.

In my view, the presence of physical negative modes is a serious problem for the ‘no-boundary’ interpretation of cosmological instantons such as Coleman-de Luccia instantons or Hawking-Moss instantons. It means that these instantons can only be regarded as yielding approximate descriptions, appropriate to the decay of an unstable state. They cannot be straightforwardly used as a basis for defining the initial state of the Universe. The situation with ‘regularised’ singular constrained instantons looks more promising, and deserves greater investigation.

VII A TWISTED UNIVERSE?

The connection between topology and singular instantons is intriguing. From one point of view, we simply wanted to regularise the instantons, and the topology allowed us to do that. But there may be a more fundamental reason why non-trivial topology is important. Consider a scalar field theory on a circle, with a \mathbb{Z}_2 symmetry $\phi \to -\phi$, and with a ‘double well’ potential. One can now choose the field to be either ‘twisted’ or ‘untwisted’. In the former case the field must acquire a -1 factor as one traverses the circle, and the topology of the configuration space (the set of $\phi(x)$) is that of the Mobius strip. The point is that the lowest energy state in the twisted sector is not one of the two minima of the potential, but instead a solitonic state where the field has a single zero. There must therefore be a region of large scalar potential energy present.

It is tempting to speculate that this might provide an answer to the question of why the inflaton field started ‘up the hill’. That is, in the Euclidean path integral there are naturally distinct topological sectors. If the topology is S^4, the Euclidean ground state is the true vacuum of the theory, the stable minimum describing an empty Universe. However, if the topology is RP^4, there are instead two distinct sectors, in which the conformal factor is respectively twisted and untwisted. In the former, as we have seen, we get a family of singular instantons all yielding inflation and therefore non-empty Universes.
I find it an intriguing idea that the twisted sector of quantum gravity might contain a Universe filled with matter arising naturally, in the appropriate Euclidean ‘ground state’.

VIII VOLUME FACTORS AND A-PROJECTIONS

Finally, I want to deal with the question of the value of Ω_0 predicted by the instanton approach [29]. It is clear that for a generic potential, the a priori most probable Universe does not have much inflation. It could be that the inflaton model is wrong, the Euclidean path integral is wrong, the instanton solutions are wrong, or that all three are wrong! But there is also another possibility, that we are just asking the wrong question. We should not after all be computing correlators of cosmological observables alone, as in Eqn. (5) above. Instead we should insert an operator \mathcal{P} corresponding to projecting onto the subset of states containing the particular observer who makes the observation. Of course it would be nice if this insertion had no effect, so that the answer for the most likely Universe did not depend on whether the observer was in it. But we should be open to the possibility that theory will never predict this, and all it will tell us is about the most probable Universe we should see.

This is of course a formulation of the anthropic principle, which seems a step backward to many physicists, from the goal of explaining the Universe from fundamental mathematical principles. Indeed it is, and of course it would be nice to have a theory which explained exactly what we see in the Universe and nothing else. But that seems unlikely since quantum mechanics at best makes statistical predictions. It would still be nice if the correct theory predicted only Universes very like ours. Again that may be too much to ask, and we may be forced to pursue the more limited goal of a theory which allows of all types, but within which those containing ourselves are in agreement with all the observations we can make. Providing the theory satisfies other criteria - simplicity, consistency, I think we would be happy with it. It seems to me that at least within the framework I have discussed i.e. inflation in the context of a generic scalar potential and the Euclidean no boundary approach, this reduced goal is indeed the best we can hope for. There is still a major challenge to be confronted, which is to properly formulate exactly what the projection \mathcal{P} is. Due to space constraints I can only sketch an approach here. More details will appear in [29].

If we agree to discuss only the observable Universe, then it is clear that the projection \mathcal{P} should be carried out on our past light cone. We shall regard this as the ‘observable Universe’. Then we want to impose a condition, that there exists a certain very unlikely field configuration, upon this past light cone. I am really only assuming here that the particular observer concerned is a very rare event - the argument would apply equally for a beetle or even a paper clip! We do not need to know the details of this configuration. but we shall need to assume is that it resulted in a definite way from a particular configuration of growing mode linear
density perturbations. Now these linear density perturbations can be traced back comoving in a simple way, right back to the primordial instanton. We therefore want to ask: How many ways are there of obtaining a Universe containing ‘me’ from one of the singular instantons. The point now is that there is a ‘zero mode’ present in the location of the past light cone relative to the perturbations on the instanton. When we perform the path integral we should get a volume factor from integrating this zero mode, and it should be the roughly the volume of the constant Euclidean time slices of the instanton divided by the volume of the comoving ‘special region’. If we fix the size of the latter today, to be the spatial resolution with which we want to identify the configuration, then the comoving volume on the instanton is smaller by a factor e^{3N_e} where N_e is the number of efoldings of inflation. Thus one expects the zero mode integration to give a ‘volume factor’ dependence.

The posterior probability of obtaining a Universe containing the observer, from an instanton solution with scalar field value ϕ_0 at the regular pole is therefore given by

$$\text{Exp} \left(-\frac{S_E(\phi_0)}{\hbar} + 3N_e\right) \approx \text{Exp} \left(\frac{24\pi^2 M^4_{Pl}}{\hbar V(\phi_0)} + 3 \int_0^{\phi_0} d\phi \frac{V(\phi)}{M^2_{Pl} V,\phi(\phi)}\right)$$ (16)

where I have restored Planck’s constant \hbar and used the slow-roll formulae for the number of efoldings of inflation given above. For gentle monotonic potentials, the exponent is greatest at very small field values, and at very large field values, where the scalar potential $V(\phi_0)$ becomes of order the Planck density. Interestingly, there is a minimum where the two terms compete, and this is precisely where quantum fluctuations $\delta \phi \sim H\sqrt{\hbar}$ compete with the classical rolling $H^{-2}V,\phi$.

According to this posterior probability, there is a high probability for us to be in a Universe which started at the Planck density, had the maximum amount of slow-roll classical inflation, and which is extremely flat today. I think this argument holds the prospect of solving the ‘predictability crisis’ mentioned in Section 2: the ‘volume factor’ I have alluded to is covariant and slicing-independent. Surprisingly, it is equal in order of magnitude for both closed and open Universes.

The final conclusion is in some respects disappointing. After all there is no hope that a semi-classical calculation will be accurate near the Planck density. And if there has been a very large amount of inflation, then the Universe is extremely flat and there is not much hope of detecting effects coming from the structure of the instanton, since perturbations of those wavelengths are way beyond our Hubble volume today [15]. Nevertheless the overall framework holds some prospect of completeness, and seems to avoid the pitfalls of the ‘global view’ adopted in eternal inflation. The amount of time that inflation lasted can be estimated, and for example in an $m^2\phi^2$ potential, the rolling time from the Planck density to the bottom is only of order $M_{Pl}m^{-2}$, or about 10^{12} Planck times. Hardly eternal.

I wish to thank many physicists for discussions of these issues, and in particular A. Guth, A. Linde, V. Rubakov and A. Vilenkin. It is a special pleasure to acknowledge my collaborators S. Gratton, S. Hawking, T. Hertog, K. Kirklin and T. Wiseman.
REFERENCES

1. A. D. Miller et al., Astrophys.J. 524 (1999) L1; P. de Bernardis et al., Nature, 404, 955, (2000); Hanany, S. et al., astro-ph/0005123 (2000).
2. Harrison, E. R., 1970, Phys. Rev., D1, 2726; Zeldovich, Ya. B., 1972, M.N.R.A.S., 160, 1.
3. A. Guth, Phys. Rev D23, 347 (1981).
4. A.D. Linde, Phys. Lett. 108B, 389 (1982); A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
5. S.W. Hawking, Phys. Lett. 115B, 295 (1982); A.H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); A.A. Starobinsky, Phys. Lett. 117B, 175 (1982); J. Bardeen, P. Steinhardt, and M. Turner, Phys. Rev. D28, 679 (1983).
6. V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Phys. Rep. 215, 203 (1992).
7. A. Vilenkin, Phys. Rev. D27, 2848 (1983); A.D. Linde, Phys. Lett. B175, 395 (1986); Phys. Lett. B327, 208 (1994); A.D. Linde, D.A. Linde and A. Mezhlumian, Phys. Rev. D49, 1783 (1994); V. Vanchurin, A. Vilenkin and S. Winitzki, gr-qc/9905097, Phys. Rev. D61 083507 (2000).
8. J.B. Hartle and S.W. Hawking, Phys. Rev. D28 2960 (1983).
9. S.W. Hawking and N. Turok, Phys. Lett. B425 25 (1998).
10. S.W. Hawking and N. Turok, Phys. Lett. B432 271 (1998).
11. I. Affleck, Nucl. Phys. B191 429 (1981).
12. S. Gratton and N. Turok, Phys. Rev. D 60, 123507 (1999).
13. T. Hertog and N. Turok, Phys. Rev. D 62 083514 (2000), astro-ph/9903075.
14. S.W. Hawking, T. Hertog and N. Turok, Phys. Rev. D62 063502 (2000).
15. S. Gratton, T. Hertog and N. Turok, Phys. Rev.D62 063501 (2000).
16. A. Linde, gr-qc/9802038, Phys. Rev. D58 (1998) 083514.
17. A. Vilenkin, hep-th/9803084, Phys. Rev. D57 (1998) 7069; gr-qc/9804051, Phys. Rev. D58 (1998) 067301; gr-qc/9812027.
18. K. Kirklin, N. Turok and T. Wiseman, hep-th/0005062, submitted to PRD.
19. N. Turok, Phys. Lett. B458 202 (1999).
20. S. Gratton and N. Turok, hep-th/0008235 (2000).
21. P.J.E. Peebles, Principles of Physical Cosmology, Princeton 1993.
22. G.W. Gibbons and S.W. Hawking, Phys. Rev. D15 2738 (1977).
23. M. Bucher, A. Goldhaber and N. Turok, Phys. Rev. D52, 3314 (1995).
24. N.D. Mermin, quant-ph/9801057.
25. J. Garriga, X. Montes, M. Sasaki and T. Tanaka, astro-ph/9811257, Nucl. Phys. B551 (1999) 317; astro-ph/9706229, Nucl. Phys. B513 (1998) 343.
26. A. Linde, M. Sasaki and T. Tanaka, Phys. Rev. D59 (1999) 123522.
27. A. Khvedelidze, G. Lavrelashvili, T. Tanaka, gr-qc/0001041.
28. G. Lavrelashvili, Nucl. Phys. Proc. Suppl. 88 (2000) 75.
29. N. Turok, in preparation (2000).