Construction of a container isolation ward: A rapidly scalable modular approach to expand isolation capacity during the coronavirus disease 2019 (COVID-19) pandemic

Liang En Wee MRCP1-2, Esther Monica Peijin Fan BSc3, Raphael Heng B.Eng4, Shin Yuh Ang MBA3, Juat Lan Chiang MHSc(Mgt)1-4, Thuan Tong Tan PhD2, Moi Lin Ling FRCPA3 and Limin Wijaya MRCP2

1SingHealth Infectious Diseases Residency, Singapore, 2Department of Infectious Diseases, Singapore General Hospital, Singapore, 3Division of Nursing, Singapore General Hospital, Singapore, 4Facilities and Infrastructure Development, Singapore General Hospital, Singapore and 5Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore

To the Editor—During the ongoing coronavirus disease 2019 (COVID-19) pandemic, airborne infection isolation rooms (AIIRs) are in high demand. Surge capacity is urgently required during significant ongoing community transmission.1 Converting hospital wards to AIIRs can serve as a temporary solution,1,2 but it comes at the expense of existing capacity. Temporary tent-based structures or conversion of nonmedical facilities has been commonly proposed.3-5 Such solutions, though, may not be durable, and retrofitting nonmedical facilities to meet medical standards is difficult. Building more permanent structures with AIIR capabilities, however, is time-consuming and costly.5 We describe our institution’s experience with constructing an isolation ward from prefabricated containers.

In Singapore, at the end of July 2020, >50,000 cases of COVID-19 had been reported locally.6 Our institution’s purpose-built 51-bed isolation ward housed high-risk COVID-19 suspects and confirmed COVID-19 cases in AIIRs. From February 2020, given ongoing community transmission, lower-risk individuals with respiratory syndromes were housed in converted general wards, with partitions and reduced beds per cubicle to mitigate the risk of healthcare-associated transmission.7 To date, this containment strategy has been successful, with no cases of healthcare-associated transmission between patients and healthcare workers (HCWs).8,9 However, this placed pressure on bed capacity, with almost 20% of bed capacity set aside to house suspected and confirmed cases of COVID-19. Our institution thus sought to relieve the pressure by constructing an isolation ward extension.

From mid-April 2020, our institution started planning the isolation-ward extension, soon after a surge in cases (Fig. 1a). An open-air car park (3,200 m²) was utilized. The novel feature was the utilization of a scalable modular design using prefabricated containers. Each prefabricated container (6 m × 2.4 m) was redesigned as a single-occupancy room with an en suite bathroom (Fig. 1b, c, and d). All patient rooms met design standards for AIIRs, including ≥12 air changes per hour and controlled direction of air flow with a negative differential pressure of −2.5 Pascal. Each container was also equipped with oxygen, air conditioning, exhaust ventilation, and a high-efficiency particulate air (HEPA) filter. Modification of containers was done off site. One container was also customized with lead shielding and a patient booth to allow x-rays to be performed.

At the end of May 2020, construction began (Fig. 1e). Modular construction allowed rapid construction of a 50-bed isolation ward in just 50 days, using only 100 workers, despite significant challenges. Outbreaks in the dormitories of foreign workers significantly limited manpower availability, and construction work was curtailed during a 2-month-long shutdown as part of community-based measures to reduce transmission.6 During construction, the prefabricated containers were placed on a reinforced base. Over the containers, an A-shaped structure with a canvas roof was erected to provide shelter. Nurses’ stations, a rest area, changing rooms, and on-call rooms were also constructed within the structure. The layout incorporated segregated, unidirectional traffic flows for entry and exit of HCWs and patients to reduce the possibility of cross contamination. Water, electricity, sewage, and oxygen were connected to the hospital’s utilities system.

The container isolation ward opened on July 14, 2020. Staff don N95 respirators when working within the ward, and full PPE (N95 respirator, disposable gown, gloves and eye protection) during patient contact. The ward’s capacity is equally divided between confirmed COVID-19 cases and high-risk COVID-19 suspects. Operations have been designed to minimize potential exposure. For monitoring vitals, patients are given wearable biosensors that wirelessly transmit heart rate, respiration rate, and oxygen saturation to a mobile app, allowing continuous remote monitoring. In-room smart phones are also provided; built-in video-conferencing allows for medical, nursing and pharmacy staff to communicate remotely with the patient. Nursing and medical manpower has been drawn from various hospital departments. Training has been provided for all HCWs. For nurses who did not have previous experience in units nursing COVID-19 suspects or COVID-19 cases, they had to undergo a few weeks of attachment in the isolation units to be trained in strict infection prevention and control (IPC) practices. To date, no IPC breaches or exposures have been observed.
over 1 month of operations, despite regular audit. Overall, >1,500 cases of COVID-19 have been managed at our institution.

Certain limitations were anticipated. Observation was limited because each container only had a single window. As such, the usage of wearable biosensors required incorporation of network equipment and wireless access points during the design phase. Given the limited space, it was anticipated that the psychological effects of isolation might pose difficulties. Provision of an
in-room smart phone served as a communication conduit, improv-
ing the experience of isolation. Limited space meant that resusci-
tation would be challenging. As such, admission to the container
isolation ward was restricted to patients <75 years of age who were
functionally independent and had little risk of immediate clinical
deterioration. A fully equipped resuscitation room was built within
the structure to accommodate resuscitation in full PPE in the event
of collapse. However, to minimize the likelihood of activation,
deteriorating patients would be pre-emptively transferred to the
main hospital block.

In conclusion, prefabricated containers allowed rapid expan-
sion of AIIR capacity using an easily scalable modular design,
though space constraints meant that patient selection had to be
optimized and patient monitoring facilitated. This flexible modular
approach provides surge capacity for isolation facilities, preventing
hospitals from being overwhelmed during a pandemic caused by a
novel respiratory pathogen. Other cases requiring airborne precau-
tions, such as pulmonary tuberculosis and varicella, have also been
managed in the container isolation ward; the container isolation
ward is thus anticipated to provide AIIR capacity even after the
height of the COVID-19 pandemic is over.

Acknowledgments. We thank the Ministry of Health for providing funding
for the container isolation ward and supporting the proposal.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. All authors report no conflicts of interest relevant to this
article.

References

1. Lee JK, Jeong HW. Rapid expansion of temporary, reliable airborne-infe-
tion isolation rooms with negative air machines for critical COVID-19
patients. Am J Infect Control 2020;48:822–824.

2. Miller SL, Clements N, Elliott SA, Subhash SS, Eagan A, Radonovich LJ.
Implementing a negative-pressure isolation ward for a surge in airborne
infectious patients. Am J Infect Control 2017;45:652–659.

3. Bagdasarian N, Mathews I, Alexander NJY, et al. A safe and efficient, nat-
urally ventilated structure for COVID-19 surge capacity in Singapore. Infect
Control Hosp Epidemiol 2020 Jun 24 [Epub ahead of print]. doi: 10.1017/ice.
2020.309.

4. Thangayah JR, Tan KBK, Lim CS, Fua TP. Disease outbreak surge response:
how a Singapore tertiary hospital converted a multi story car park into a
flu screening area to respond to the COVID-19 pandemic. Disaster Med
Public Health Prep 2020 Jul 14 [Epub ahead of print]. doi: 10.1017/dmp.
2020.249.

5. Fang D, Pan S, Li Z, et al. Large-scale public venues as medical emergency
sites in disasters: lessons from COVID-19 and the use of Fangcang shelter
hospitals in Wuhan, China. BMJ Glob Health 2020;5(6):e002815. doi: 10.
1136/bmjgh-2020-002815.

6. Updates on COVID-19 (coronavirus disease 2019) local situation.
Singapore Ministry of Health website. https://www.moh.gov.sg/covid-19.
Accessed July 31, 2020.

7. Wee LE, Hsieh JYC, Phua GC, et al. Respiratory surveillance wards as a
strategy to reduce nosocomial transmission of COVID-19 through early
detection: the experience of a tertiary-care hospital in Singapore. Infect
Control Hosp Epidemiol 2020 May 8 [Epub ahead of print]. doi: 10.1017/
ice.2020.207.

8. Wee LE, Sim XYJ, Conceicao EP, et al. Containing COVID-19 outside the
isolation ward: the impact of an infection control bundle on environmental
contamination and transmission in a cohorted general ward [published
online ahead of print, 2020 Jun 26]. Am J Infect Control 2020 Jun 26
[Epub ahead of print]. doi: 10.1016/j.ajic.2020.06.188.

9. Wee LE, Sim XYJ, Conceicao EP, et al. Containment of COVID-19 cases
amongst healthcare workers: the role of surveillance, early detection and
outbreak management. Infect Control Hosp Epidemiol 2020 May 11
[Epub ahead of print]. doi: 10.1017/ice.2020.219.

10. Morgan DJ, Pinales L, Shardell M, et al. The effect of contact precautions
on healthcare worker activity in acute-care hospitals. Infect Control Hosp
Epidemiol 2013;34:69–73.