MOST* discovers a multimode δ Scuti star in a triple system: HD 61199

M. Hareter1**, O. Kochukhov2, H. Lehmann3, V. Tsymbal1,4, D. Huber1, P. Lenz1, W. W. Weiss1, J. M. Matthews5, S. Rucinski6, J. F. Rowe6, R. Kuschnig1, D. B. Guenther7, A. F. J. Moffat8, D. Sassolo9, G. A. H. Walker6, and A. Scholtz10

1 Institut für Astronomie, Türkenschanzstrasse 17, 1180 Vienna, Austria
2 Department of Physics and Astronomy, Uppsala University, Box 515, 751 20 Uppsala, Sweden
3 Thüringer Landessternwarte Tautenburg, 07778 Tautenburg, Germany
4 Tavian National University, Dep. Astronomy, Simferopol, Ukraine
5 Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C., V6T 1Z1, Canada
6 David Dunlap Observatory, Department of Astronomy, University of Toronto, Toronto, Ontario, L4C 4Y6, Canada
7 Department of Astronomy and Physics, St. Mary’s University, Halifax, Nova Scotia, NS B3H 3C3, Canada
8 Département de physique, Université de Montréal, Montréal, Québec, QC H3C 3J7, Canada
9 Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, MA 02138, USA
10 University of Technology, Institute of Communications and Radio-Frequency Engineering, Gusshausstrasse 25/389, 1040 Vienna, Austria

ABSTRACT

Context. A field star, HD 61199 (V = 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the δ Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thüringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system.

Aims. A δ Scuti pulsar with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the δ Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the δ Scuti star.

Methods. Classical Fourier techniques and least-squares multi-sinusoidal fits were applied to the MOST photometry to identify the pulsation frequencies. The groundbased spectroscopy was analysed with least-squares-deconvolution (LSD) techniques, and the orbital elements derived with the KOREL and ORBITX routines. Asteroseismic models were also generated.

Results. The photometric and spectroscopic data are compatible with a triple system consisting of a close binary with an orbital period of 3.57 days and a δ Scuti companion (HD 61199 A) as the most luminous component. The δ Scuti star is a rapid rotator with about v sin i ≈ 130 km s−1 and an upper mass limit of about 2.1 M⊙. For the close binary components, we find they are of nearly equal mass, with lower mass limits of about 0.7 M⊙. Comparisons to synthetic spectra indicate these stars have a late-F spectral type. The observed oscillation frequencies are compared to pulsation models to further constrain the evolutionary state and mass of HD 61199 A. The orbit frequency of the close binary corresponds to the difference of the two δ Scuti frequencies with the highest amplitudes – a coincidence that is remarkable, but not explained.

Key words. Stars: variables: δ Scuti; Techniques: photometric, spectroscopic, radial velocities

1. Introduction

The δ Scuti variables are stars of intermediate mass located in the classical instability strip near the main sequence, which pulsate in radial and nonradial acoustic (p-) modes driven by opacity effects; see review by Bregel (2000). Asteroseismic modelling of δ Scuti stars has been a challenge, even in cases where dozens of pulsation frequencies have been identified – e.g., FG Vir (Bregel et al. 2005) and HD 209775 (Matthews 2007) - because the theoretical eigenspectra are so densely populated with frequencies. Constraining the fundamental parameters of a δ Scuti star in a multiple system through its orbital elements is one possible avenue to a unique asteroseismic model of the star.

HD 61199 (V = 7.97) was observed by MOST, a Canadian space telescope dedicated to high-precision photometry of bright stars, in 2004, because it happened to lie in the field of MOST’s first primary science target, Procyon (Matthews et al. 2004). Little was known about HD 61199 beyond its HD Catalogue classification as an A3 star. Gatewood & Han (2006) give a parallax of 5.2±0.9 mas and likely luminosity class of V (see their Table 2, in which HD 61199 corresponds to AO 1098). The 2004 MOST photometry showed clear oscillations with periods in the δ Scuti range, plus an obvious variation with a periodicity near 4 days. If the latter was due to rotational modulation, it would have
Table 1. \(T_{\text{eff}}\) and \(\log g\) of HD 61199 derived from published Strömgren colours.

	Moon	Ribas et al.	Balona	Napiwotzki et al.
\(T_{\text{eff}}\)	7811	7843	7745	7664
\(\log g\)	3.94	3.94	3.95	3.80
spectral type	A7	A7	A7	A8

given the rotation period of the star and helped for more clearly interpreting and modelling any rotational splitting in the pulsation spectrum. Because of this possibility, ground-based spectroscopy was obtained in 2004 from Thüringer Landessternwarte Tautenburg to investigate the HD 61199 system further. The star was again monitored by MOST in 2005 and 2007 as part of subsequent Procyon photometric runs.

Photometric indices are available for HD 61199, which can be employed to obtain an initial estimation of the stellar parameters. We have used TempLoggTNG (Kapka & Bruntt 2001; Kaisel 2006) and published Strömgren indices \(b-y=0.125, m_1=0.192\), \(c_1=0.931\) and \(H_B=2.816\) (Hauck & Mermilliod 1998) for various calibrations to calculate values of \(T_{\text{eff}}\) ranging from 7664 K to 7811 K and \(\log g\) from 3.94 to 3.80 (see Table 1), based on different calibrations (Moon 1986; Ribas et al. 1997; Balona 1984; Napiwotzki et al. 1993).

These values were derived from the combined light of the triple system and imply a spectral type of A7 or A8, significantly later than the HD classification. The uncertainties in the individual temperature determinations are at least 200 K, and in the surface gravities, at least 0.3 dex.

HD 61199 is kinematically similar to DG Leo (Frémat et al. 2005), where two Am stars form a binary system and a third more distant component is a \(\delta\) Scuti star. This system is bright enough to decide which star is pulsating by means of radial velocity variations, what would need larger telescopes for HD 61199.

The MOST photometry and data reduction is presented in Section 2 followed by the frequency analysis in Section 3. The spectroscopy and their analyses are described in Section 4, and the resulting fundamental parameters and orbital solution are presented. Asteroseismology is attempted in Section 5 where the observed pulsation frequencies are compared to models.

2. MOST Photometry and Data Reduction

The Canadian MOST (Microvariability & Oscillations of STars) microsatellite houses a 15-cm telescope feeding a CCD photometer through a single broadband optical filter. For descriptions of the MOST mission before and after launch, see Walker et al. (2003) and Matthews (2004). MOST’s Sun–synchronous 820-km polar orbit (period = 101.4 min) allows uninterrupted observations of a target located in the satellite’s continuous viewing zone for up to 8 weeks. MOST now can collect, simultaneously, three types of photometric data: (a) Fabry Imaging – in which the telescope entrance pupil is imaged as an annulus (diameter 40 pixels), for very bright stars (“Fabry Targets”), minimizing the influence of satellite pointing jitter and cosmic ray strikes on the photometry, and enhancing the total signal (Matthews 2004). (b) Direct Imaging – in which a slightly defocused image of a star (“Direct Imaging Target”) is projected directly onto the CCD (Rowe et al. 2006). (c) Guide Star photometry – in which photometry of up to about 30 stars used for MOST’s startracking attitude control system is processed on board and downlinked to Earth. Since MOST’s launch in June 2003 and its commissioning, the MOST team has improved the pointing performance of the satellite, improving the Direct Imaging photometric performance. The Guide Star photometry was implemented during the mission as well, but was not available during the 2004 observations of HD 61199 presented here.

HD 61199 was observed simultaneously with Procyon from Jan. 8 to Feb. 9, 2004 and from Jan. 24 to Feb. 10, 2005 as a Direct Imaging Target, and from Jan. 4 to Feb. 12, 2007 as a Guide Star Target. The integration times were about 1 second in the first two runs, while the effective integration time was 24.8 seconds in the 2007 run (in which short exposures were stacked on board). Table 2 lists details for the photometry. The pointing performance and other aspects of MOST photometry during the 2007 Procyon were the best achieved to that point in the mission, resulting in significantly reduced point-to-point scatter.

For the Direct Imaging photometry of HD 61199 in 2004 and 2005, a reduction routine developed by Huber & Reegen (2008) was used, similar to the decorrelation technique developed by Reegen et al. (2006) for MOST Fabry Imaging, but which also takes into account satellite pointing errors. Both techniques decorrelate the signal present in the target pixels with those in the background pixels. The 2007 Guide Star photometry of HD 61199 is handled in a similar way, but for these data, there is no direct information about the background sky in each Guide Star subraster. The on-board Guide Star data processing is performed as follows: A Guide Star is sampled within a 20 \(\times\) 20 pixel subraster. The subrasters are read out roughly every second and the average of the first and last columns of the subraster are used for an on-board background correction. This procedure is repeated until the final integration time of the Primary Science Target in the field is reached. Then the individual background-corrected pixel intensities are integrated. Only this sum and the Guide Star exposure time are stored in the FITS header of the Primary Science Target data file which is downloaded. Residual stray light due to scattered Earthshine remains in the Guide Star light curves sent to Earth. Fortunately, the modulation of the stray light with the MOST orbital period is well known, and 15 Guide Stars were observed simultaneously with HD 61199 allowing for a modified decorrelation technique using non-variable stars in the field to correct for residual instrumental and background variations.

Figure 1 shows the reduced MOST light curves of HD 61199 for the three observing runs and their respective spectral windows are shown in Fig. 2. The low-amplitude alias side lobes visible in the spectral window of the 2007 data, spaced by the MOST satellite orbital frequency (164 \(\mu\)Hz \(\approx 14.192 d^{-1}\)), are due to our more conservative rejection of outliers in the Guide Star reduction. This procedure is producing more gaps when stray light is highest at certain phases in the MOST orbit than in the 2004 and 2005 Direct Imaging reductions.

The decorrelation method reduced the amplitudes of orbitally-modulated background variations in the Guide Star
data to about 8% of the raw values. For the final light curve of the 2007 run, a second-order trend (possibly due to long-term stellar variability or subtle instrumental effects) was subtracted. The subtraction of this polynomial fit affects neither the identified frequencies nor their amplitudes, which were checked by comparing the discrete Fourier transform spectra before and after subtraction.

3. Frequency Analysis

SigSpec [Reegen 2007] and Period04 [Lenz & Breger 2005] were adopted for the frequency analysis. SigSpec performs iterative prewhitening of the data with the most significant frequency found in each iteration. The iterations end if a specified threshold is reached; the default value is 5.5 in spectral significance (Reegen 2007), corresponding to a signal-to-noise (S/N) ratio in amplitude of about 4. A peak identified with a significance of 5.5 means that a similar peak has a probability of only $10^{-5.5}$ of being produced by white noise (i.e., once in 3.2×10^5 cases).
Table 3. List of identified frequencies and amplitudes in the three MOST data sets.

label	frequency	amplitude	signif.						
f₁	25.257 ± 0.001	1.72 ± 0.05	872	25.254 ± 0.003	1.53 ± 0.07	534	25.256 ± 0.001	1.46 ± 0.05	930
f₂	24.974 ± 0.002	0.98 ± 0.06	308	24.972 ± 0.003	1.19 ± 0.06	344	24.973 ± 0.001	1.14 ± 0.05	614
f₃	0.254 ± 0.0007	0.84 ± 0.06	231	0.241 ± 0.015	1.06 ± 0.06	287	0.255 ± 0.007	0.98 ± 0.04	512
f₄	22.625 ± 0.002	0.79 ± 0.06	206	22.624 ± 0.005	0.78 ± 0.06	156	22.624 ± 0.001	1.14 ± 0.05	635
f₅	27.628 ± 0.003	0.62 ± 0.05	131	27.627 ± 0.005	0.70 ± 0.06	130	27.625 ± 0.002	0.70 ± 0.04	307
f₆	23.582 ± 0.003	0.53 ± 0.05	99	23.579 ± 0.005	0.67 ± 0.06	119	23.582 ± 0.002	0.73 ± 0.04	327
f₇	0.286 ± 0.0007	0.42 ± 0.05	60	0.275 ± 0.017	0.20 ± 0.06	12	0.279 ± 0.007	0.65 ± 0.04	262
f₈	18.697 ± 0.007	0.23 ± 0.05	19	18.691 ± 0.014	0.16 ± 0.04	17	18.691 ± 0.004	0.25 ± 0.04	44
f₉	23.435 ± 0.005	0.35 ± 0.05	43	23.441 ± 0.015	0.24 ± 0.06	15	23.437 ± 0.006	0.18 ± 0.04	24
f₁₀	29.697 ± 0.006	0.27 ± 0.05	26	29.689 ± 0.016	0.22 ± 0.06	13	29.701 ± 0.005	0.24 ± 0.04	40
f₁₁	22.329 ± 0.010	0.15 ± 0.05	8.6	22.329 ± 0.023	0.16 ± 0.06	6.5	22.326 ± 0.007	0.16 ± 0.04	18
f₁₂	23.372 ± 0.009	0.18 ± 0.05	12	23.359 ± 0.025	0.14 ± 0.06	5.4	23.373 ± 0.012	0.09 ± 0.04	6.4
f₁₃	24.128 ± 0.009	0.17 ± 0.05	11	24.158 ± 0.026	0.13 ± 0.06	5.1	24.130 ± 0.009	0.12 ± 0.04	10

Fig. 4. Frequencies in the δ Scuti range detected in HD 61199. Uncertainties in amplitude (see text) are approximately the sizes of the symbols.

solved. \(f_{12} \) is close to an expected sidelobe with order 5 (i.e. \(2 \times 14.192 - 5 \times 28.384 \text{ d}^{-1} \)) of the first harmonic (28.384 d\(^{-1}\)) of the MOST orbit frequency. Sidelobes tend to decrease in amplitude with growing order. No sidelobe has been detected below the orbit harmonic of 28.384 d\(^{-1}\), except for order 1 at 27.387 d\(^{-1}\). Thus, \(f_{12} \) has been adopted in the frequency list (Table 3).

The original 2005 light curve of HD 61199 shows longer-term variability with a period of about 4 days which can be seen by eye (and is not present in the other stars observed in the same field). This timescale was investigated through Phase Dispersion Minimization (PDM, Stellingwerf 1978). The PDM diagrams of the 2004, 2005 and 2007 photometry are plotted in Fig. 5. For this analysis, all significant power at frequencies above 1 d\(^{-1}\) has been prewhitened and the data have been averaged in 1-min bins. The most prominent feature in all three PDM diagrams occurs near a period of about 4 days, or more precisely, of 3.94 ± 0.12 days in the 2004 and 2007 data and of 4.15 ± 0.24 days in 2005. For those errors, the error estimation of 0.257 d\(^{-1}\) is adopted, which is given by Kallinger et al. (2003) for the case of two closely spaced frequencies. The change in the period is within the errors. Prewhitening of the dominant period in each data set yields the PDM results given in the upper curves in each panel. This reveals clearly in the 2007 data, the stellar system orbital period determined by spectroscopy (3.57 d, shown by the vertical line, see Sec. 4). The period may be present marginally in the PDM analysis of 2004 data, but is absent in the 2005 PDM residuals. The SigSpec and Period04 routines find this latter period (\(f_7 \) in Table 3) in all three data sets, within the expected frequency uncertainty.

4. Spectroscopy

Prompted by the longer period seen in the 2004 MOST photometry, a spectroscopic follow-up campaign was carried out. A total of 29 high-resolution spectra (R=63,000, wavelength range from 4760 – 7360 Å) spanning 45 days were obtained with the Coudé-echelle spectrograph attached to the 2-m telescope of the Thüringer Landessternwarte Tautenburg. The Signal to Noise (S/N) of the spectra is between 60 and 180 with a mean value of 130. The S/N was measured in the continuum around 5200 Å.

We analysed the dynamics of the HD 61199 system by applying the least-squares deconvolution technique (LSD, Donati et al. 1997) to the spectra. Starting with preliminary
Table 4. Radial velocities for each component of the HD 61199 system derived from the Tautenburg spectra.

| No. | HJD
| -2453000 | Phase | V_Ba
| | |
(kms^{-1})	(kms^{-1})	(kms^{-1})			
01	69.2601	0.048	109.32±0.3	-33.3±0.4	46.8±1.1
02	69.2818	0.054	108.7±0.4	-33.0±0.4	47.3±1.1
03	69.3038	0.060	107.3±0.4	-31.3±0.4	48.1±1.4
04	70.2833	0.334	1.0±0.3	77.6±0.4	45.7±0.9
05	70.3049	0.340	-1.4±0.3	80.3±0.4	46.6±1.0
06	76.3648	0.036	110.8±0.7	-36.6±1.0	47.2±2.5
07	79.3111	0.860	85.1±0.4	-10.3±0.5	45.9±1.4
08	80.3180	0.142	85.7±0.5	-11.4±0.6	45.4±1.5
09	81.2756	0.142	85.7±0.5	-11.4±0.6	45.4±1.5
10	82.2736	0.409	103.6±0.4	45.4±1.2	
11	86.3425	0.827	73.3±0.4	46.6±1.2	
12	87.3380	1.05	96.9±0.4	-23.3±0.5	46.1±1.3
13	90.2719	0.926	105.1±0.6	-28.8±0.4	45.7±2.3
14	91.3869	0.238	43.3±1.0	33.7±1.3	45.1±1.2
15	91.4086	0.244	42.7±1.3	35.1±1.1	46.7±1.3
16	93.3190	0.779	51.7±0.4	24.5±0.5	45.1±1.0
17	93.3409	0.785	54.4±0.3	22.1±0.4	44.6±0.9
18	93.4236	0.808	64.3±0.3	11.0±0.4	45.0±1.0
19	95.3082	0.335	85.0±0.3	45.0±1.0	
20	96.3153	0.617	17.3±0.3	96.0±0.4	47.0±1.1
21	97.3154	0.897	97.6±0.3	-23.8±0.4	46.6±1.1
22	98.3171	0.177	71.4±0.4	2.6±0.5	44.2±1.0
23	99.3164	0.457	-33.1±0.3	113.0±0.4	46.7±1.1
24	107.3302	0.699	14.6±0.5	63.5±0.6	45.2±1.5
25	110.2993	0.529	-34.5±0.3	114.2±0.4	46.7±1.1
26	111.2962	0.808	64.3±0.3	10.7±0.4	44.0±0.9
27	112.3031	0.090	100.5±0.4	-27.2±0.4	46.3±1.1
28	113.2990	0.369	-16.3±0.3	91.6±0.5	45.7±1.1
29	114.3325	0.658	-3.3±0.3	80.7±0.4	45.4±1.0

estimates for the atmospheric parameters, we extracted from the Vienna Atomic Line Database (VALD, Künker et al. [1999]; Ryabchikova et al. [1997]; Piskunov et al. [1995]) 700 spectral lines with a residual intensity higher than 0.2 and used this list for the LSD line mask. Based on Table 4, following model parameters have been adopted: $T_{\text{eff}} = 7800$ K, log $g = 4.0$, and solar chemical composition. The relative shape of the LSD profile is rather insensitive to line masks with different parameters. Thus, because we are using only relative quantities, no additional error is introduced by the difference of T_{eff} of the components. Fig. 5 shows the LSD profiles of all 29 spectra with a typical S-shaped curve. The correct identification of components Ba and Bb appears to fail only for spectrum #13 where the constant feature at -26 kms$^{-1}$ interferes, and possibly in spectrum #15 where the LSD profiles of the narrow line components are blended.

Second, KOREL was applied with the following setup: three stars forming two hierarchical orbits, with components Ba and Bb close together and A in a wide orbit. Spectra of the rapidly rotating B3V star HD 120315 were used to model the spectrum of telluric lines which were subtracted from the broad-lined component to obtain a pure stellar spectrum. Orbital elements were made free parameters in the fit and line strengths were allowed to vary with time. Since the line positions of component A did not change measurably during the period of observations, we assumed the period of the wide orbit to lie in the range 1000 – 20000 d. For 12 different long trial periods, we detected only marginal changes in the disentangled spectra and in the resulting orbital elements. 20000 d is the upper limit to observe any changes in the KOREL solution.

KOREL determines simultaneously orbital elements, line strengths of each component and disentangled spectra. Radial velocities are not determined from the input spectra but are calculated from the orbital solution. The KOREL code finds several local minima that all give zero RMS of the obtained RVs (shifts applied by KOREL to the individual spectra), i.e. the RVs are the weighted means.

KOREL provides no information about the in-
individual continua of the stars, because the disentangled spectra are normalised to the common continuum of the observed composite spectrum. To renormalise the KOREL output spectra, one must either use information about the luminosity ratios of the stars or, as we did, scale the stellar spectra by comparison to synthetic spectra. KOREL has difficulties disentangling the Hα region, where the RV shifts are much smaller than the intrinsic line width. For this reason the disentangled spectra cannot be used for Teff estimation from Hα.

Table 5 gives the orbital elements for the close system obtained by KOREL and ORBITX, respectively. The epoch T refers to the time of the maximum positive velocity of component Ba. In the ORBITX analysis, the eccentricity was found to be insignificant and was therefore fixed to zero, whereas in the KOREL analysis the eccentricity is small, but significant. Fig. 9 shows the orbit solution obtained by ORBITX for the narrow-line pair (circles) and the velocity of the broad-line component (triangles) phased with the ephemeris (HJD = 2 453 069.089(3) + 3.5744(3)E) of the close orbit.

For HD 61199 Ba and Bb, lower limits on the masses can be derived via the equation given by Aitken (1935)

\[
m_{1,2} \sin^3 i = 10^{-6.98359}(K_1 + K_2)^2 K_{1,2} P (1 - e^2)^{3/2}
\]

where \(m \) denotes the mass in solar units, \(K_1 \) and \(K_2 \) represent the semi-amplitudes of the radial velocities in \(\text{km s}^{-1} \), the period in days is denoted by \(P \) and the eccentricity is expressed by \(e \). The exponent has not been rounded off intentionally, to keep the formula true to original. The lower limits on the masses are: for component Ba, 0.68 \(M_\odot \), and for component Bb, 0.65 \(M_\odot \), which, together with similar luminosities deduced from line strength, suggests similar values of \(T_{\text{eff}} \) and \(\log g \) for both components.

Table 5. Results for the orbit solution of the close binary.

	KOREL	ORBITX
P [d]	3.5720 ± 0.0015	3.57436 ± 0.00034
T (2 453 000+)	69.1629 ± 0.0028	69.0889 ± 0.0025
e	0.01003 ± 0.00036	0 (fixed)
\(\omega \) [°]	7.59 ± 0.12	-
\(K_1 \) [\text{km s}^{-1}]	74.564 ± 0.038	74.55 ± 0.24
\(K_2 \) [\text{km s}^{-1}]	77.00 ± 0.18	77.05 ± 0.27
\(V_0 \) [\text{km s}^{-1}]	-	38.32 ± 0.12

Fig. 6. LSD profiles phased with the final derived orbital period of 3.5744(3) days. The red solid curve shows the fit of the triple-spectral model. The spectrum numbers (in chronological order) are given on the left of each spectrum, while orbital phase is given on the right.
M. Hareter et al.: MOST discovers a multimode δ Scuti star in a triple system: HD 61199

Fig. 7. Top panel: Fourier transform of the time-dependent velocity observable, as explained in the text. The two highest peaks correspond to periods of 4.54 and 3.56 days. Note that the radial velocity observable varies with twice the orbit frequency. The middle and bottom panels show the radial velocity curves of the three components of HD 61199 phased with 4.54 and 3.56 days respectively. The filled circles correspond to component Ba (which has systematically stronger spectral lines, as seen in Figure 6); open circles correspond to component Bb; and the triangles to the fast rotating component A.

Fig. 8. Disentangled spectra of the components Ba (1), Bb (2), A (3, from top to bottom) and the combined spectrum.

Aitken’s formula for the masses of binaries allows us to constrain the inclination angle of the close binary orbit. A conservative mass range for F type stars ranging from 1.1 to 1.6 M_\odot yields a range for the inclination angle of the orbital plane between 47 and 57 degrees.

4.2. Determination of the Fundamental Parameters

4.2.1. Direct Method

Further characteristics extracted from the LSD profiles are the mean radial velocity for component A of 45.8 \pm 1 kms$^{-1}$, while the γ velocity of the close binary Ba and Bb was confirmed to be 38.2 \pm 1 kms$^{-1}$. A mean $v\sin i$ was derived for Ba to be 15.1 \pm 1.1 kms$^{-1}$; for Bb, 15.2 \pm 1.2 kms$^{-1}$; and for A, 131 \pm 1.3 kms$^{-1}$. The relative equivalent width contributions are 10 \pm 1% for Ba, 9 \pm 1% for Bb, and 81 \pm 3% for A. The analysis of the H_α region was our main method of finding fundamental parameters of the components. The observed spectrum was fitted by scaling the individual model spectra using a parameter a, defined as follows:

$$a = R_A^2, R_{Ba}^2 = R_{Bb}^2 = \frac{1-a}{2}, \text{ where } R_{Ba}^2 + R_{Bb}^2 + R_A^2 = 1.$$

The value of a was adjusted simultaneously with effective temperatures. We arrived at a final value of $a = 0.7$. If the system constitutes a physical triple system, the parameter a gives the radii ratio $R_A/R_{Ba,Bb} = \sqrt{0.7/0.35} = 2.2$.

By comparing fits of synthetic triple-star spectra across a wide parameter space, we estimate for component A an effective temperature of $T_{\text{eff}} = (8000 \pm 200)$ K and for each component of the close binary $T_{\text{eff}} = (6400 \pm 400)$ K. The rather large uncertainties of the temperatures for the close binary is caused by the uncertainty in $\log g$ and the fact that its contribution to the total light is small compared to the dominant A component.

Fig. 10 illustrates the quality of the best fit and the accuracy to
and second, the methods differ in weighting the data. The standard deviation of the residuals weights each data point equally, while

\[\chi^2 \] test weights the data according to the relative line strength.

which fundamental parameters of the three components can be determined from existing data. The black wiggly lines represent four out of 29 observed spectra in the range around Hα and the smooth blue line corresponds to a synthetic spectrum with \(T_{\text{eff}} = 8000 \text{ K} \) and \(\log g = 4.2 \), plus two stars with \(6800 \text{ K} \) (4.4) and \(6600 \text{ K} \) (4.4). Another model (dashed line) with \(8000 \text{ K} \) (4.0), plus two stars with each \(6000 \text{ K} \) (4.2), also matches the observed spectrum. Varying narrow lines are telluric in origin.

Hence the \(\chi^2 \) test prefers better fits of line cores. Solar chemical composition was assumed, based on the good fit obtained by the direct method (see Fig. 11).

The standard deviation of the residuals and \(\chi^2 \) was calculated the following way:

\[
\sigma = \sqrt{\frac{1}{N-3} \sum (R_i - \overline{R})^2}
\]

\[
\chi^2 = \sum \frac{(S_{\text{scal}} - D)^2}{S_{\text{scal}}}
\]

where \(S_{\text{scal}} \) means scaled synthetic spectrum and \(D \) the disentangled spectrum and \(R = S_{\text{scal}} - D \). The model spectra were scaled according to

\[
S_{\text{scal}} = \frac{S}{f + 1}
\]

where \(S \) denotes the model spectrum and \(f \) corresponds to the luminosity factor. This factor is the ratio of the luminosity of a given component to the sum of the luminosities of both other components. For each model spectrum the best fitting luminosity factor \(f \) and the optimal \(\rho \) has been determined. There are spectral regions where the agreement of synthetic and disentangled spectra is rather poor, which may be due to an incomplete input line list. Those regions have been omitted for finding the final solution. Table 6 gives the best fitting model spectra for each component, which are illustrated in Fig. 13. As a conclusion, fitting model spectra to the disentangled spectra gives about the same result as the direct method discussed above. Both fainter components are cooler stars, while the brighter star is definitely hotter. The model spectra for the cooler stars are only weakly sensitive to changes in \(\log g \). While the for the hotter component model spectra with lower \(\log g \) values give better \(\sigma \) or \(\chi^2 \) values.

Table 8 shows the results of both analyses, disentangled spectra and Hα fitting of the combined spectrum. The most likely parameters are printed bold face. For the fainter components large uncertainties in the parameters are evident.
5. Asteroseismic modelling of HD 61199 A

Theoretical pulsation frequencies of HD 61199 were computed with updated codes for stellar evolution (Paczyński 1969) and oscillation (Dziembowski 1977), where rotation is taken into account to second order (Dziembowski & Goode 1992). Standard Mixing Length Theory (MLT) for convection (Bohm-Vitense 1958) was used and the simplest convection - pulsation treatment (the assumption of frozen convective flux). Since envelope convection becomes less efficient for stars closer to the hot border of the classical instability strip, α_{MLT} can be expected to be smaller for HD 61199 than for the δ Scuti star FG Vir. For that star, the MLT parameter α_{MLT} was found to be 0.5 (Daszyńska-Daszkiewicz et al. 2005).

Direct mode identification based on our photometric and spectroscopic data is not possible, so we instead investigate period ratios. The values of radial-pulsation period ratios depend mainly on metallicity and rotation (Suarez et al. 2006) and also slightly on the evolutionary stage of the star. Table 7 shows the predicted values for radial period ratios of a δ Scuti star model with $Z = 0.018$ and 0.02 and $V_{\text{rot}}(\text{ZAMS}) = 150 \text{ km s}^{-1}$ and 180 km s$^{-1}$.

For convenience, the radial fundamental mode is hereafter referred to as F, the first overtone as 1H, and so on. The observed pulsation frequencies in Table 3 were examined to identify possible period ratios for radial modes in HD 61199. (The two long periods given in Table 3 have been excluded because they are...
not due to δ Scuti pulsation.) Our temperature estimate indicates that the star is located close to the hot border of the instability strip of radially pulsating δ Scuti stars ⁹⁷⁵. Under the assumption that radial modes are observed, we find five possibilities:

(a) \(f_4 / f_5 \) (1H/2H) = 0.819
(b) \(f_8 / f_{11} \) (2H/3H) = 0.837
(c) \(f_{12} / f_5 \) (2H/3H) = 0.846
(d) \(f_2 / f_{10} \) (2H/3H) = 0.841
(e) \(f_{11} / f_1 \) (4H/5H) = 0.884

In fast rotating stars, nonradial modes usually dominate ⁹⁷⁶, and this may also be the case for HD 61199. Unfortunately, fitting the observed frequencies to model frequencies with a least-squares technique does not result in a unique solution, because models predict a very dense spectrum of frequencies of which only a few (in this case, 11) are detected. Hence we concentrated our modelling efforts on explaining the observed frequency range of 18.69 – 29.70 \(d^{-1} \). Figure 14 shows the region in the \(\log g - \log T_{\text{eff}} \) diagram where pulsation models are consistent with the frequency range observed in HD 61199. The inner polygons are calculated with \(Z = 0.018 \) and \(Z = 0.02 \) and represent the area in which all observed frequencies lie in the theoretically predicted range of excited modes. Due to uncertainties in stellar modelling and potentially incomplete opacity data the frequency range of unstable modes may be larger than predicted by our codes. The outer polygons show the range of models where the observed frequency range is 3 \(d^{-1} \) larger than the theoretically predicted range of unstable modes.

The models (a) to (e) mentioned above are also included in the figure. Models (b), (c), and (d) lie outside the error box, model (a) is close to the edge of the error box, while (e) is inside. In model (e) the period ratio of the fourth overtone and the fifth overtone of the radial fundamental would match the theoretical ratio given in Table 7. However, the unstable modes range from 19.6 \(d^{-1} \) to 27.3 \(d^{-1} \), which is too small by 1 \(d^{-1} \) on the lower frequency border and 2.3 \(d^{-1} \) on the higher frequency border, respectively. The model parameters are \(T_{\text{eff}} = 8050 \, \text{K}, \log g = 3.86, M = 2.1 \, M_\odot \). This model is compatible to the derived parameters for HD 61199 in Sect. 4.1. The amplitude of the presumably radial mode in model (e), \(f_{11} \), is 0.16 mmag and did not change significantly, while the amplitude of the presumably consecutive radial mode, \(f_1 \), is about 1.5 mmag and was clearly variable. Considering that \(f_{11} \) is close to the detection limit while \(f_1 \) has the highest amplitude, it is questionable, if the identification with radial modes is correct in this case.

The error box in Fig. 12 is based on the assumption, that HD 61199 forms a physical triple system, where for component A \(\log g = 4.0 \) was adopted. Models hotter than \(\log T_{\text{eff}} = 3.92 \) cannot explain the observed frequency range, nor can models with masses larger than 2.1 \(M_\odot \). Note, however, that models generated for FG Vir tend to be too cool by 200 to 300 K, when comparing the best-fitting models to the spectroscopically determined temperatures.

6. Discussion and Conclusions

HD 61199 was discovered to be a multiperiodic δ Scuti pulsator from MOST photometry in 2004. Analysis of these data, and MOST data collected in 2005 and 2007, reveal 11 pulsation frequencies, with amplitudes as low as 90 ppm in the total flux of the system. Subsequent Tautenburg spectroscopy demonstrates that HD 61199 is a triple system, where the two form a close binary with a period of 3.57 days, and the δ Scuti star (which we dub the A component and which contributes 80% of the total flux) is either in a much wider orbit or is incidentally in the line of sight. The system does not exhibit eclipses, but variations with the period of the close binary orbit are evident in the 2007 MOST photometry. Another period of about 4 days is present in all three epochs of photometry. The origin of this period remains unknown. The high \(v \sin i \) of the δ Scuti star, and its likely radius, mean that its rotation period must be about 1 day. The only way we know to associate a 4-day period with the δ Scuti star is through an isolated high-overtone g-mode. It could be a hybrid pulsator, with both γ Doradus g-modes and δ Scuti p-modes. However, the expected range of high order g-mode periods is about 0.3 - 3 d, and most γ Dor periods are closer to 0.8 d. Thus the hybrid explanation is unlikely, and we conclude the 4-day period originates in one or both components of the close binary. However, the stars in the close binary are almost certainly tidally locked, so it is unlikely that the 4-day period represents evidence for rotation in that system. If the rotation axes of the two components were significantly misaligned, we would be able to measure the difference in \(v \sin i \) between the two stars in the spectra, and we do not see such a difference.

An additional puzzle in the system is the fact that the orbital frequency of the close binary is equal to the difference between the two δ Scuti frequencies with the highest amplitudes. The separation of the δ Scuti star from the close binary is large enough that there should be no significant tidal influence. The observed frequency coincidence is remarkable, but we have no explanation for it.
Table 8. Summary of fundamental parameters derived with different techniques and proposed solution.

Component Method	A	Bb	Ba						
	T_{eff}	$\log g$	$v \sin i$	T_{eff}	$\log g$	$v \sin i$	T_{eff}	$\log g$	$v \sin i$
KOREL (σ)	8200	3.6	125	6400	4.4	13	6400	4.4	13
KOREL (χ^2)	8000	3.6	131	6000	4.4	18	6000	4.4	15
χ_{γ}	8000	4.0	131	6600	4.4	15	6800	4.4	15
8000	4.2	131	6000	4.2	15	6000	4.2	15	
Seismology 1 max	8100	4.2							
min	7500	3.85							
Triple system 2 max	8100	4.3							
min	3.9	4.3							

Proposed solution 8000 4.0 130 6400 4.4 15 6400 4.4 15

estimated uncertainty 200 0.5 3 400 0.5 2 400 0.5 2

1 from frequency ranges predicted by theory, see Fig. 14
2 for chosen temperatures, see Fig. 12

Considering the various estimates for the fundamental astrophysical parameters of the three components we conclude that ($T_{\text{eff}}/\log g$) A: 8000/4.0, Ba and Bb: 6400/4.4, are the best compromise within the uncertainties given in Table 8. This conclusion is also supported by the fact that synthetic spectra of a triple system computed for various combinations in the mentioned parameter space overlap within the observational uncertainties of our spectroscopy. The H$_\alpha$ line profiles are rather insensitive to $\log g$ for stars with $T_{\text{eff}} < 8500$ K, hence the large uncertainty for $\log g$ given in the table are estimated from the metal lines of the disentangled spectra.

The parallax given by Gatewood & Han (2006) is consistent with the A component being a δ Scuti star with an absolute magnitude of $M_V \approx 1.8$. For both fainter components, Ba and Bb, we derive $M_V \approx 4.1$ and 4.2, respectively, based on our model of the triple system. δ Scuti models enable us to estimate upper limits on the effective temperature (about 8000 K) and mass (2.1 M_\odot) of HD 61199 A. Based on the orbit solution, we set lower mass limits of about 0.7 M_\odot for the close binary components, Ba and Bb. However, given the expected masses for F-type stars (between 1.1 and 1.6 M_\odot), we can exploit the upper limit to constrain the inclination of the orbital plane to $47^\circ - 57^\circ$.

Acknowledgements. This project was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF, project P17580-N02), and the Bundesministerium für Verkehr, Innovation und Technologie (BM.VIT) via the Austrian Agentur für Luft- und Raumfahrt (FFG-Aitken, R. G. 1935, The binary stars (New York and London, McGraw-Hill book company, inc., 1935. 2d ed.).

References

Aitken, R. G. 1935, The binary stars (New York and London, McGraw-Hill book company, inc., 1935. 2d ed.)

Balona, L. A. 1984, MNRAS, 211, 973

Böhm-Vitense, E. 1938, Zeitschrift für Astrophysik, 46, 108

Breger, M. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 210, Delta Scuti and Related Stars, ed. M. Breger & M. Montgomery, 3

Breger, M. & Lenz, P. 2008, ArXiv e-prints, 807

Breger, M., Lenz, P., Antoci, V., et al. 2005, A&A, 435, 955

Daszyńska-Daszkiewicz, J., Dziembowski, W. A., Pamyatnykh, A. A., et al. 2005, A&A, 438, 653

Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS, 291, 658

Dziembowski, W. A. 1977, Acta Astronomica, 27, 95

Dziembowski, W. A. & Goode, P. R. 1992, ApJ, 394, 670

Frémat, Y., Lampens, P., & Hensberge, H. 2005, MNRAS, 356, 545

Gatewood, G. & Han, I. 2006, AJ, 131, 1015

Hadrava, P. 1995, A&AS, 114, 393

Hauck, B. & Mermilliod, M. 1998, A&AS, 129, 431

Heiter, U., Kupka, F., van’t Veer-Mennenet, C., et al. 2002, A&A, 392, 619

Huber, D. & Reegen, P. 2008, Communications in Asteroseismology, 152, 77

Kaiser, A. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 349, Astrophysics of Variable Stars, ed. C. Sterken & C. Aerts, 257

Kallinger, T., Reegen, P., & Weiss, W. W. 2008, ArXiv e-prints, 801

Kupka, F. & Bruntt, H. 2001, Journal of Astronomical Data, 7, 8

Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., & Weiss, W. W. 1999, A&AS, 138, 119

Lenz, P. & Breger, M. 2005, Communications in Asteroseismology, 146, 53

Matthews, J. M. 2004, in Bulletin of the American Astronomical Society, Vol. 36, Bulletin of the American Astronomical Society, 1563

Matthews, J. M. 2007, Communications in Asteroseismology, 150, 333

Matthews, J. M., Kusching, R., Guenther, D. B., et al. 2004, Nature, 430, 51

Moon, T. 1986, Ap&SS, 122, 173

Napiwotzki, R., Schoenanner, D., & Wenske, V. 1993, A&A, 268, 653

Paczynski, B. 1969, in Bulletin of the American Astronomical Society, Vol. 1, Bulletin of the American Astronomical Society, 256

Pamyatnykh, A. A. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 210, Delta Scuti and Related Stars, ed. M. Breger & M. Montgomery, 215

Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W., & Jeffery, C. S. 1995, A&AS, 112, 525

Breger, M. & Montgomery, 215

Reegen, P. 2007, A&A, 467, 1353

Reegen, P., Kallinger, T., Frast, D., et al. 2006, MNRAS, 367, 1417

Ribas, I., Jordi, C., Torra, J., & Gimenez, A. 1997, A&A, 327, 207

Rowe, J. F., Matthews, J. M., Kuschnig, R., et al. 2006, Memorie della Societa Astronomica Italiana, 77, 282

Ryabchikova, T. A., Piskunov, N. E., Kupka, F., & Weiss, W. W. 1997, Baltic Astronomy, 6, 244

Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269

Stellingwerf, R. F. 1978, ApJ, 224, 953

Tokovinin, A. 1992, in Astronomical Society of the Pacific Conference Series, Vol. 32, IAU Colloq. 135: Complementary Approaches to Double and Multiple Star Research, ed. H. A. McAlister & W. I. Hartkopf, 573

Tsymbal, V. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 108, M.A.S.S., Model Atmospheres and Spectrum Synthesis, ed. S. J. Adelman, F. Kupka, & W. W. Weiss, 198

Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023