Supplementary Materials for

Spatial interplay patterns of cancer nuclei and tumor-infiltrating lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors

Xiangxue Wang et al.

Corresponding author: Xiangxue Wang, xxw345@case.edu; Anant Madabhushi, axm788@case.edu

Sci. Adv. 8, eabn3966 (2022)
DOI: 10.1126/sciadv.abn3966

This PDF file includes:

Figs. S1 and S2
Tables S1 to S4
Supplementary Material

Image Analysis

We have applied U-Net style network for nuclei segmentation with public training dataset and adversarial training strategy, and tested on our internal dataset with F-score 0.881 (95% CI, 0.873-0.889) on a dataset with 8,000 pathologist annotated nuclei from 100 digitized H&E images. The details our network architecture was shown in supplementary table S3. Then a nested U-Net (Details in table S4) was employed for epithelium and stroma segmentation F-score of 0.853 (95% CI, 0.843-0.862) on a dataset with 100 FOVs of 1000x1000 pixels from 35 patients. Then, the previous reported lymphocyte detection model was applied on our data to generate a F-Score of 0.856 (95% CI, 0.850-0.862) on a dataset of 3,000 lymphocytes from 30 lung cancer images.

Graph Construction

The centroid of each segmented nuclei is treated as vertex V of a graph \(G = (V, E) \), the edge, E, connects any two of vertices is designed to favor the local cell aggregation. In other word, the spatially close cells are more likely to form a systematical function such as lymphocyte infiltration cluster. To formally establish the connection between each pair of individual cells, the spatial distance between pixels is first transformed to a likelihood of aggregation, which is defined as follows:

\[
L(v_i, v_j) = D(v_i, v_j)^{-\alpha},
\]

where \(V_i \) and \(V_j \) are center of any two cells of the same type (since we construct two separate graphs for immune and cancer cells, respectively) and D is the simple Euclidean distance of the center of two cells. The density controlling parameter was empirically set at 0.5 to favor the pairwise connection. The likelihood of cells to be formed within the same clique was determined via an exponentially decaying function of spatial distance, i.e., the physically neighboring cells are more likely to employ/infiltrate together to fulfill immune function. The edge E is then defined as:

\[
E = \{(v_i, v_j) : r < L(v_i, v_j), \forall v_i, v_j \in V\}
\]

where \(r \in [0,1] \) is a distance controlling parameter. We experimented with the value of \(r \) from 0.1 to 0.9 with a step size at 0.05, ultimately we identified 0.45 as yielding the best result for balancing cluster density versus overall efficiency of graph construction.
Fig. S1. Feature distributions among different dataset. Violin plots of feature distributions for HistoTIL composed top features (a-g) and TILs density (h) and ratio (i) across each different dataset.
Fig. S2. Survival analysis of gynecological cancer among ICIs agents. Kaplan-Meier overall survival assessment among ICIs agents (Nivolumab and Pembrolizumab) for patients with gynecological cancer with OS (A, B) and PFS (C, D).
Index	Feature Name	Description				
1	epi_nuclei_ZernPol5_Phi	A Zernike polynomial descriptor deformation level 5 (phi) of the shape of the cells within the epithelium tissue				
2	epi_nuclei_ZernPol18_Phi	A Zernike polynomial descriptor deformation level 18 (phi) of the shape of the cells within the epithelium tissue				
3	epi_nuclei_ZernPol19_Phi	A Zernike polynomial descriptor deformation level 19 (phi) of the shape of the cells within the epithelium tissue				
4	contextual_filtareasvarmatK3	Variance of the area size of cells within a radial region of length 30*K (K=150px at 40X mag.)				
5	stroma_spATIL_intersectedArea	Spatial descriptor: Size of the intersected convex hull areas between the lymphocyte and the non-lymphocyte cells.				
6	spATIL_avg of reciprocal of number of least lym cluster to encompass nuclei cluster	Spatial descriptor: Average of the reciprocal number of the least number of lymphocytes clusters that are surrounding the non-lymphocyte clusters				
7	density_MaxLympGroupingFactor	Density descriptor: The maximum quantity of lymphocyte cluster in a single patch (2000x2000 px at 40X mag.)				
Feature Label	Contextual (n=87)	Nuclei (n=100)	Spatial TIL (spaTIL) (n=85)	Density TIL (denTIL) (n=19)	General Description	
---------------	------------------	----------------	---------------------------	-----------------------------	-------------------	
Table S2. Feature Names and Categories					**Nuclei features involve the morphological quantification of the non-TIL nuclei involving shape, color (intensity) and texture.**	
Based on the nuclei features, different quantification metrics are calculated around each nucleus, such as how many, different or similar are compared to the central nuclei. These metrics include, quantity of cells, their shape, area, eccentricity, number of surrounding lymphocytes.					**It involves the density of Tumor-infiltrating Lymphocytes involving different specific metrics such as number of TILs per area, ratio of TILs and tumor cells, ratio of TIL cluster over tumor cell cluster.**	
it involves the density of Tumor-infiltrating Lymphocytes involving different specific metrics such as number of TILs per area, ratio of TILs and tumor cells, ratio of TIL cluster over tumor cell cluster.					**Similar to density, spatial arrangement of TILs is quantified using distinctive graph-based metrics to find niche clusters of TILs surrounding tumor clusters and their number, convex hull shape, proximity is calculated.**	
Index	Name	Type	Description	Activation Sizes		
-------	---	-----------------	---	------------------		
1	ImageInputLayer	Image Input	2000x2000x2 images	2000 2000 2		
2	Encoder-Stage-1-Conv-1	Convolution	64 3x3x2 convolutions with stride [1 1] and padding 'same'	2000 2000 64		
3	Encoder-Stage-1-ReLU-1	ReLU	ReLU	2000 2000 64		
4	Encoder-Stage-1-Conv-2	Convolution	64 3x3x64 convolutions with stride [1 1] and padding 'same'	2000 2000 64		
5	Encoder-Stage-1-ReLU-2	ReLU	ReLU	2000 2000 64		
6	Encoder-Stage-1-MaxPool	Max Pooling	2x2 max pooling with stride [2 2] and padding [0 0 0 0]	1000 1000 64		
7	Encoder-Stage-2-Conv-1	Convolution	128 3x3x64 convolutions with stride [1 1] and padding 'same'	1000 1000 128		
8	Encoder-Stage-2-ReLU-1	ReLU	ReLU	1000 1000 128		
9	Encoder-Stage-2-Conv-2	Convolution	128 3x3x128 convolutions with stride [1 1] and padding 'same'	1000 1000 128		
10	Encoder-Stage-2-ReLU-2	ReLU	ReLU	1000 1000 128		
11	Encoder-Stage-2-MaxPool	Max Pooling	2x2 max pooling with stride [2 2] and padding [0 0 0 0]	500 500 128		
12	Encoder-Stage-3-Conv-1	Convolution	256 3x3x128 convolutions with stride [1 1] and padding 'same'	500 500 256		
13	Encoder-Stage-3-ReLU-1	ReLU	ReLU	500 500 256		
14	Encoder-Stage-3-Conv-2	Convolution	256 3x3x256 convolutions with stride [1 1] and padding 'same'	500 500 256		
15	Encoder-Stage-3-ReLU-2	ReLU	ReLU	500 500 256		
16	Encoder-Stage-3-MaxPool	Max Pooling	2x2 max pooling with stride [2 2] and padding [0 0 0 0]	250 250 256		
17	Encoder-Stage-4-Conv-1	Convolution	512 3x3x256 convolutions with stride [1 1] and padding 'same'	250 250 512		
18	Encoder-Stage-4-ReLU-1	ReLU	ReLU	250 250 512		
19	Encoder-Stage-4-Conv-2	Convolution	512 3x3x512 convolutions with stride [1 1] and padding 'same'	250 250 512		
20	Encoder-Stage-4-ReLU-2	ReLU	ReLU	250 250 512		
21	Encoder-Stage-4-DropOut	Dropout	50% dropout	250 250 512		
22	Encoder-Stage-4-MaxPool	Max Pooling	2x2 max pooling with stride [2 2] and padding [0 0 0 0]	125 125 512		
23	Bridge-Conv-1	Convolution	1024 3x3x512 convolutions with stride [1 1] and padding 'same'	125 125 1024		
24	Bridge-ReLU-1	ReLU	ReLU	125 125 1024		
25	Bridge-Conv-2	Convolution	1024 3x3x1024 convolutions with stride [1 1] and padding 'same'	125 125 1024		
26	Bridge-ReLU-2	ReLU	ReLU	125 125 1024		
27	Bridge-DropOut	Dropout	50% dropout	125 125 1024		
28	Decoder-Stage-1-UpConv	Transposed Convolution	512 2x2x512 transposed convolutions with stride [2 2] and cropping [0 0 0 0]	250 250 512		
29	Decoder-Stage-1-UpReLU	ReLU	ReLU	250 250 512		
30	Decoder-Stage-1-DepthConcatenation	Depth concatenation	Depth concatenation of 2 inputs	250 250 1024		
31	Decoder-Stage-1-Conv-1	Convolution	512 3x3x1024 convolutions with stride [1 1] and padding 'same'	250 250 512		
32	Decoder-Stage-1-ReLU-1	ReLU	ReLU	250 250 512		
33	Decoder-Stage-1-Conv-2	Convolution	512 3x3x512 convolutions with stride [1 1] and padding 'same'	250 250 512		
34	Decoder-Stage-1-ReLU-2	ReLU	ReLU	250 250 512		
35	Decoder-Stage-2-UpConv	Transposed Convolution	256 2x2x512 transposed convolutions with stride [2 2] and cropping [0 0 0 0]	500 500 256		
36	Decoder-Stage-2-UpReLU	ReLU	ReLU	500 500 256		
37	Decoder-Stage-2-DepthConcatenation	Depth concatenation	Depth concatenation of 2 inputs	500 500 512		
	Layer Type	Filter Size	Stride	Padding	Output Shape	
---	----------------------	-------------	--------	---------	--------------	
	Decoder-Stage-2-Conv-1	Convolution	256 3x3x512	[1 1]	same	500 500 256
	Decoder-Stage-2-ReLU-1	ReLU				500 500 256
	Decoder-Stage-2-Conv-2	Convolution	256 3x3x256	[1 1]	same	500 500 256
	Decoder-Stage-2-ReLU-2	ReLU				500 500 256
	Decoder-Stage-3-UpConv	Transposed Convolution	128 2x2x256	[2 2]	[0 0 0 0]	1000 1000 128
	Decoder-Stage-3-UpReLU	ReLU				1000 1000 128
	Decoder-Stage-3-DepthConcatenation	Depth concatenation			Depth concatenation of 2 inputs	1000 1000 256
	Decoder-Stage-3-Conv-1	Convolution	128 3x3x256	[1 1]	same	1000 1000 128
	Decoder-Stage-3-ReLU-1	ReLU				1000 1000 128
	Decoder-Stage-3-Conv-2	Convolution	128 3x3x128	[1 1]	same	1000 1000 128
	Decoder-Stage-3-ReLU-2	ReLU				1000 1000 128
	Decoder-Stage-4-UpConv	Transposed Convolution	64 2x2x128	[2 2]	[0 0 0 0]	2000 2000 64
	Decoder-Stage-4-UpReLU	ReLU				2000 2000 64
	Decoder-Stage-4-DepthConcatenation	Depth concatenation			Depth concatenation of 2 inputs	2000 2000 128
	Decoder-Stage-4-Conv-1	Convolution	64 3x3x128	[1 1]	same	2000 2000 64
	Decoder-Stage-4-ReLU-1	ReLU				2000 2000 64
	Decoder-Stage-4-Conv-2	Convolution	64 3x3x64	[1 1]	same	2000 2000 64
	Decoder-Stage-4-ReLU-2	ReLU				2000 2000 64
	Final-Conv	Convolution	1 1x1x64	[1 1]	[0 0 0 0]	2000 2000 1
Table S4. Nested unet network for epithelium-stroma segmentation

Index	Layer Name	Activation Shape	Param Number	
1	Conv2d-1	[-1, 32, 512, 512]	896	
2	BatchNorm2d-2	[-1, 32, 512, 512]	64	
3	ReLU-3	[-1, 32, 512, 512]	0	
4	Conv2d-4	[-1, 32, 512, 512]	9,248	
5	BatchNorm2d-5	[-1, 32, 512, 512]	64	
6	ReLU-6	[-1, 32, 512, 512]	0	
7	VGGBlock-7	[-1, 32, 512, 512]	0	
8	MaxPool2d-8	[-1, 32, 256, 256]	0	
9	Conv2d-9	[-1, 64, 256, 256]	18,496	
10	BatchNorm2d-10	[-1, 64, 256, 256]	128	
11	ReLU-11	[-1, 64, 256, 256]	0	
12	Conv2d-12	[-1, 64, 256, 256]	36,928	
13	BatchNorm2d-13	[-1, 64, 256, 256]	128	
14	ReLU-14	[-1, 64, 256, 256]	0	
15	VGGBlock-15	[-1, 64, 256, 256]	0	
16	Upsample-16	[-1, 64, 512, 512]	0	
17	Conv2d-17	[-1, 32, 512, 512]	27,680	
18	BatchNorm2d-18	[-1, 32, 512, 512]	64	
19	ReLU-19	[-1, 32, 512, 512]	0	
20	Conv2d-20	[-1, 32, 512, 512]	9,248	
21	BatchNorm2d-21	[-1, 32, 512, 512]	64	
22	ReLU-22	[-1, 32, 512, 512]	0	
23	VGGBlock-23	[-1, 32, 512, 512]	0	
24	MaxPool2d-24	[-1, 64, 128, 128]	0	
25	Conv2d-25	[-1, 128, 128, 128]	73,856	
26	BatchNorm2d-26	[-1, 128, 128, 128]	256	
27	ReLU-27	[-1, 128, 128, 128]	0	
28	Conv2d-28	[-1, 128, 128, 128]	147,584	
29	BatchNorm2d-29	[-1, 128, 128, 128]	256	
30	ReLU-30	[-1, 128, 128, 128]	0	
31	VGGBlock-31	[-1, 128, 128, 128]	0	
32	Upsample-32	[-1, 128, 256, 256]	0	
33	Conv2d-33	[-1, 64, 256, 256]	110,656	
34	BatchNorm2d-34	[-1, 64, 256, 256]	128	
35	ReLU-35	[-1, 64, 256, 256]	0	
---	---	---	---	
36	Conv2d-36	[-1, 64, 256, 256]	36,928	
37	BatchNorm2d-37	[-1, 64, 256, 256]	128	
38	ReLU-38	[-1, 64, 256, 256]	0	
39	VGGBlock-39	[-1, 64, 256, 256]	0	
40	Upsample-40	[-1, 64, 512, 512]	0	
41	Conv2d-41	[-1, 32, 512, 512]	36,896	
42	BatchNorm2d-42	[-1, 32, 512, 512]	64	
43	ReLU-43	[-1, 32, 512, 512]	0	
44	Conv2d-44	[-1, 32, 512, 512]	9,248	
45	BatchNorm2d-45	[-1, 32, 512, 512]	64	
46	ReLU-46	[-1, 32, 512, 512]	0	
47	VGGBlock-47	[-1, 32, 512, 512]	0	
48	MaxPool2d-48	[-1, 128, 64, 64]	0	
49	Conv2d-49	[-1, 256, 64, 64]	295,168	
50	BatchNorm2d-50	[-1, 256, 64, 64]	512	
51	ReLU-51	[-1, 256, 64, 64]	0	
52	Conv2d-52	[-1, 256, 64, 64]	590,080	
53	BatchNorm2d-53	[-1, 256, 64, 64]	512	
54	ReLU-54	[-1, 256, 64, 64]	0	
55	VGGBlock-55	[-1, 256, 64, 64]	0	
56	Upsample-56	[-1, 256, 128, 128]	0	
57	Conv2d-57	[-1, 128, 128, 128]	442,496	
58	BatchNorm2d-58	[-1, 128, 128, 128]	256	
59	ReLU-59	[-1, 128, 128, 128]	0	
60	Conv2d-60	[-1, 128, 128, 128]	147,584	
61	BatchNorm2d-61	[-1, 128, 128, 128]	256	
62	ReLU-62	[-1, 128, 128, 128]	0	
63	VGGBlock-63	[-1, 128, 128, 128]	0	
64	Upsample-64	[-1, 128, 256, 256]	0	
65	Conv2d-65	[-1, 64, 256, 256]	147,520	
66	BatchNorm2d-66	[-1, 64, 256, 256]	128	
67	ReLU-67	[-1, 64, 256, 256]	0	
68	Conv2d-68	[-1, 64, 256, 256]	36,928	
69	BatchNorm2d-69	[-1, 64, 256, 256]	128	
70	ReLU-70	[-1, 64, 256, 256]	0	
71	VGGBlock-71	[-1, 64, 256, 256]	0	
72	Upsample-72	[-1, 64, 512, 512]	0	
	Operation	Input Shape	Output Shape	
---	-----------------	--------------------	--------------	
73	Conv2d-73	[-1, 32, 512, 512]	46,112	
74	BatchNorm2d-74	[-1, 32, 512, 512]	64	
75	ReLU-75	[-1, 32, 512, 512]	0	
76	Conv2d-76	[-1, 32, 512, 512]	9,248	
77	BatchNorm2d-77	[-1, 32, 512, 512]	64	
78	ReLU-78	[-1, 32, 512, 512]	0	
79	VGGBlock-79	[-1, 32, 512, 512]	0	
80	MaxPool2d-80	[-1, 256, 32, 32]	0	
81	Conv2d-81	[-1, 512, 32, 32]	1,180,160	
82	BatchNorm2d-82	[-1, 512, 32, 32]	1,024	
83	ReLU-83	[-1, 512, 32, 32]	0	
84	Conv2d-84	[-1, 512, 32, 32]	2,359,808	
85	BatchNorm2d-85	[-1, 512, 32, 32]	1,024	
86	ReLU-86	[-1, 512, 32, 32]	0	
87	VGGBlock-87	[-1, 512, 32, 32]	0	
88	Upsample-88	[-1, 512, 64, 64]	0	
89	Conv2d-89	[-1, 256, 64, 64]	1,769,728	
90	BatchNorm2d-90	[-1, 256, 64, 64]	512	
91	ReLU-91	[-1, 256, 64, 64]	0	
92	Conv2d-92	[-1, 256, 64, 64]	590,800	
93	BatchNorm2d-93	[-1, 256, 64, 64]	512	
94	ReLU-94	[-1, 256, 64, 64]	0	
95	VGGBlock-95	[-1, 256, 64, 64]	0	
96	Upsample-96	[-1, 256, 128, 128]	0	
97	Conv2d-97	[-1, 128, 128, 128]	589,952	
98	BatchNorm2d-98	[-1, 128, 128, 128]	256	
99	ReLU-99	[-1, 128, 128, 128]	0	
100	Conv2d-100	[-1, 128, 128, 128]	147,584	
101	BatchNorm2d-101	[-1, 128, 128, 128]	256	
102	ReLU-102	[-1, 128, 128, 128]	0	
103	VGGBlock-103	[-1, 128, 128, 128]	0	
104	Upsample-104	[-1, 128, 256, 256]	0	
105	Conv2d-105	[-1, 64, 256, 256]	184,384	
106	BatchNorm2d-106	[-1, 64, 256, 256]	128	
107	ReLU-107	[-1, 64, 256, 256]	0	
108	Conv2d-108	[-1, 64, 256, 256]	36,928	
109	BatchNorm2d-109	[-1, 64, 256, 256]	128	
	Layer	Input Shape	Output Shape	Params
---	-------------	-----------------	--------------	--------
110	ReLU-110	[-1, 64, 256, 256]		0
111	VGGBlock-111	[-1, 64, 256, 256]		0
112	Upsample-112	[-1, 64, 512, 512]		0
113	Conv2d-113	[-1, 32, 512, 512]		55328
114	BatchNorm2d-114	[-1, 32, 512, 512]		64
115	ReLU-115	[-1, 32, 512, 512]		0
116	Conv2d-116	[-1, 32, 512, 512]		9248
117	BatchNorm2d-117	[-1, 32, 512, 512]		64
118	ReLU-118	[-1, 32, 512, 512]		0
119	VGGBlock-119	[-1, 32, 512, 512]		0
120	Conv2d-120	[-1, 1, 512, 512]		33
Code and Data

All data for training and validation the detection and segmentation models are available from https://doi.org/10.5281/zenodo.6415129. Access to original whole slide images from the University of Pennsylvania, Cleveland Clinic Foundation, Yale University, and University Hospital Cleveland Medical Center (used with permission for this study) could be requested directly from these institutions via their data access request forms. Subject to the institutional review boards' ethical approval, deidentified data can be made available as a validation subset.
Section & Topic	No	Item	Reported on page
TITLE OR ABSTRACT			
1	Identification as a study of diagnostic accuracy using at least one measure of accuracy (such as sensitivity, specificity, predictive values, or AUC)	2	
ABSTRACT			
2	Structured summary of study design, methods, results, and conclusions (for specific guidance, see STARD for Abstracts)	2	
INTRODUCTION			
3	Scientific and clinical background, including the intended use and clinical role of the index test	3	
METHODS			
Study design			
5	Whether data collection was planned before the index test and reference standard were performed (prospective study) or after (retrospective study)	10	
Participants			
6	Eligibility criteria	10	
7	On what basis potentially eligible participants were identified (such as symptoms, results from previous tests, inclusion in registry)	10	
8	Where and when potentially eligible participants were identified (setting, location and dates)	10-11	
9	Whether participants formed a consecutive, random or convenience series	10	
Test methods			
10a	Index test, in sufficient detail to allow replication	11-14	
10b	Reference standard, in sufficient detail to allow replication	11	
11	Rationale for choosing the reference standard (if alternatives exist)	11-12	
12a	Definition of and rationale for test positivity cut-offs or result categories of the index test, distinguishing pre-specified from exploratory	11-12	
12b	Definition of and rationale for test positivity cut-offs or result categories of the reference standard, distinguishing pre-specified from exploratory	12	
13a	Whether clinical information and reference standard results were available to the performers/readers of the index test	12	
13b	Whether clinical information and index test results were available to the assessors of the reference standard	12-13	
Analysis			
14	Methods for estimating or comparing measures of diagnostic accuracy	12-13	
15	How indeterminate index test or reference standard results were handled	13-14	
16	How missing data on the index test and reference standard were handled	11-13	
17	Any analyses of variability in diagnostic accuracy, distinguishing pre-specified from exploratory	14	
18	Intended sample size and how it was determined	11	
RESULTS			
Participants			
19	Flow of participants, using a diagram	23-24	
20	Baseline demographic and clinical characteristics of participants	5, 32	
21a	Distribution of severity of disease in those with the target condition	32-34	
21b	Distribution of alternative diagnoses in those without the target condition	5-6	
22	Time interval and any clinical interventions between index test and reference standard	5-6, 35-36	
Test results			
23	Cross tabulation of the index test results (or their distribution) by the results of the reference standard	32-34	
24	Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals)	5, 29	
DISCUSSION			
25	Any adverse events from performing the index test or the reference standard	6	
OTHER INFORMATION			
28	Registration number and name of registry	NA	
29	Where the full study protocol can be accessed	10	
30	Sources of funding and other support; role of funders	21	