LEPTIN LEVELS IN NORMAL WEIGHT AND OBESE SAUDI ADULTS

Ali I. Al-Sultan, MD, FRCPC, Abdulmohsen H. Al-Elq, MD, FACE
Department of Internal Medicine, College of Medicine, King Faisal University, Dammam, Saudi Arabia

Objective: The purpose of the study was to measure serum leptin in normal weight and obese individuals, and assess its relation to anthropometric measures and metabolic indices.

Methods: The study was conducted at King Fahd Hospital of the University, Saudi Arabia, from January 2003 to June 2004. Subjects included in the study were all non-diabetic normotensive adults. Variables measured were body mass index (BMI), waist to hip ratio (WHR), blood pressure, serum leptin, insulin, glucose, and lipids.

Results: Included were 43 non-obese subjects (20 men and 23 women) with the mean age of 25.8 ± SD 5.3 years for men and 23.9 ± SD 1.9 years for women and their mean BMI was 23.1 ± 1.4 for men and 23.0 ± 1.8 for women. Serum leptin was significantly higher in women 8.8 ± SEM 2.10 ng/ml than men 2.2 ± SEM 0.26 ng/ml. Also included were 46 obese subjects (25 men and 21 women) with a mean age of 29.4 ± SD 7.6 years for men and 28.8 ± SD 6.2 years for women and a mean BMI of 35.5 ± 5.7 for men and 35.6 ± 4.4 for women. Serum leptin was significantly higher in women 23.0 ± SEM 3.98 ng/ml than men 12.5 ± SEM 2.24 ng/ml.

Conclusions: Serum leptin increased with obesity, and was higher in women than men, both lean and obese. Serum leptin correlated positively with BMI and hip circumference. Though, correlation between leptin and insulin resistance was found, they probably reflect two different metabolic compartments.

Key Words: Leptin, insulin, anthropometry, obesity, body fat distribution, body mass index.

Correspondence to:
Dr. Abdulmohsen H. Al-Elq, P.O. Box 40145, Al-Khobar 31952, Saudi Arabia E-mail: aalelq@yahoo.com
INTRODUCTION
Obesity is a major health problem in Saudi Arabia as it is in the developed world. Although the pathogenesis of obesity is not completely understood, excessive accumulation of fat is mostly due to interaction between genetic factors and environmental conditions. Since the discovery of leptin, its role in the pathophysiology of obesity has been intensively studied. Leptin broadened our understanding of the mechanisms underlying the neuroendocrine function, body weight and energy homeostasis. Leptin is a hormone secreted primarily from adipocytes, and acts centrally to decrease appetite and increase energy expenditure. Absence of leptin is associated with massive obesity in ob/ob mice and humans. Serum leptin concentrations are highly correlated with percentage body fat content. Most obese persons are insensitive to endogenous leptin production and have leptin resistance. Serum leptin is higher in women than men for any measure of obesity, and decreases with age. There is conflicting evidence regarding leptin production rates and ethnicity. This study was conducted to measure the level of serum leptin in a sample of our population with normal BMI and obesity and assess its relation to anthropometric measures, blood pressure, insulin and metabolic indices.

METHODS
Subjects
This cross-sectional correlational study, was conducted at King Fahd Hospital of the University in Alkhobar, Kingdom of Saudi Arabia, from January 2003 to June 2004. We recruited subjects with normal body mass index (BMI) between 20 - 25, and obese with BMI above 30. All had 75g oral glucose tolerance test. Out of 100 individuals recruited, 89 non-diabetic healthy Saudi adults, not taking any medication, were studied. They were mainly medical students, interns, residents, and hospital employees. Blood samples were obtained in the morning after an overnight fast. Serum specimens for hormonal assays were stored at – 70°C till analysis.

Anthropometric and blood pressure measurements
Height and weight were measured using Detecto scale to the nearest 0.5 cm and 0.1 kg. Body mass index (BMI) was defined as the weight in kilograms divided by the square of the height in meters. Waist circumference was measured at the high point of the iliac crest and hip circumference at the maximum circumference of the buttocks, the waist to hip ratio was then calculated. Blood pressure (BP) was measured using a mercury sphygmomanometer, Baumanometer, W.A.Baum Co. Inc.,USA. BP measurement was carried out in the lying, sitting, and standing positions. The mean systolic and diastolic BP was calculated.

Biochemical and hormonal measurements
Serum leptin was measured by enzyme-linked immunosorbant assay (sandwich method), DRG Instruments Gmbh, Germany. The lowest limit of detection is 1 ng /ml. The coefficient of variation for intraassay is 3.3 – 5.4 % and for interassay 6.7 – 8.4%. Serum glucose, total cholesterol, triglycerides, and HDL-cholesterol were measured by Dimension RXL analyzer, Dade Behring. Serum insulin was measured by microenzyme immunoassay using IMX analyzer, Abbott diagnostics. The scores for Homeostasis model assessment of insulin resistance (HOMA IR) were calculated with the formula: fasting serum insulin (μU/ml) X fasting serum glucose (mmol/l) / 22.5 as described by Matthews and colleagues.

Statistical analysis
Statistical analysis was performed using SPSS (Statistical Package for Social Sciences) for windows, version 10.0.1, 1999. Student t-test, and Mann-Whitney test were carried out according to the results of Levene test of homogenety of variances as appropriate. Pearson correlation coefficients were measured.

RESULTS
The findings of the study are summarized in Tables 1 and 2. Table 1 reveals the following:

Subjects with normal BMI: There was no gender difference with regard to mean age or BMI. Women had significantly lower waist circumference and waist to hip ratio (WHR) than men. There was no difference in mean hip circumference. The mean systolic and diastolic BP were normal, but significantly higher in men.

Obese subjects: They were slightly older than the normal weight subjects. As in the normal group, there was no gender difference with regard to the mean age or BMI. Women had significantly lower waist circumference and WHR than men. There
Table 1: Characteristics of the study subjects

Variables	Normal Weight	Obese	p-value	Normal Weight	Obese	p-value
Number	20	23	-	25	21	-
Age	25.8 ± 5.3	23.9 ± 1.9	NS	29.4 ± 7.6	28.8 ± 6.2	NS
Body mass index	23.1 ± 1.4	23.0 ± 1.8	NS	35.5 ± 5.7	35.6 ± 4.4	NS
Waist (cm)	81.2 ± 7.3	72.8 ± 8.9	0.002	109.8 ± 13.1	100.0 ± 13.4	0.016
Hip (cm)	100.9 ± 15.6	95.9 ± 7.2	NS	118.7 ± 13.1	119.6 ± 11.7	NS
WHR	0.818 ± 0.116	0.758 ± 0.066	0.04	0.929 ± 0.063	0.836 ± 0.080	0.0001
Mean systolic BP (mmHg)	124.2 ± 12.1	103.5 ± 9.9	0.0001	125.6 ± 12.8	113.4 ± 14.4	0.004
Mean diastolic BP (mmHg)	76.1 ± 7.5	68.7 ± 7.8	0.003	78.9 ± 10.1	75.5 ± 9.0	NS

Mean ± SD, NS=Not significant

Table 2: Hormonal and metabolic variables of study subjects

Variables	Normal Weight	Obese	p-value	Normal Weight	Obese	p-value
Number	20	23	-	25	21	-
Serum leptin (ng/ml)	2.2 ± 0.3	8.8 ± 2.1	0.049	12.5 ± 2.2	23.0 ± 4.0	0.021
Serum insulin (µU/ml)	8.3 ± 0.7	8.8 ± 0.7	NS	18.7 ± 1.7	13.6 ± 1.1	0.019
HOMA IR	1.9 ± 0.2	2.0 ± 0.2	NS	4.4 ± 0.5	3.1 ± 0.3	0.032
Fasting glucose (mg/dl)	91.6 ± 1.4	87.6 ± 1.3	0.047	93.7 ± 1.7	93.0 ± 2.3	NS
2h glucose post 75g OGTT	92.4 ± 4.4	95.1 ± 4.1	NS	99.7 ± 5.1	108.6 ± 3.8	NS
Total cholesterol (mg/dl)	173.8 ± 5.9	168.1 ± 5.7	NS	180.6 ± 7.5	188.6 ± 6.0	NS
Triglyceride (mg/dl)	98.6 ± 9.6	57.1 ± 3.5	0.0001	120.7 ± 11.7	80.7 ± 8.3	0.020
HDL-cholesterol (mg/dl)	47.4 ± 2.0	65.6 ± 2.9	0.0001	42.4 ± 1.2	59.6 ± 2.6	0.0001
TG/HDL-C ratio	2.2 ± 0.3	0.9 ± 0.1	0.0001	3.0 ± 0.3	1.5 ± 0.2	0.0001
LDL-Cholesterol (mg/dl)	106.7 ± 5.4	91.0 ± 4.2	0.024	114.1 ± 6.6	112.8 ± 6.0	NS

NS = Not significant

Table 3: Correlation of serum leptin and HOMA IR with blood pressure anthropometric variables

Variables	Leptin	HOMA IR
Age	0.061	NS
Body mass index	0.440	0.0001
Waist	0.284	0.007
Hip	0.425	0.0001
WHR	-0.042	NS
Mean systolic BP	-0.100	NS
Mean diastolic BP	-0.124	0.187

r = Pearson correlation coefficient, NS = Not significant

Table 4: Correlation of serum leptin and HOMA IR with metabolic variables

Variables	Leptin	HOMA IR
Leptin (ng/ml)	-	0.344
Insulin (µU/ml)	0.334	0.001
HOMA IR	0.344	0.001
Fasting glucose (mg/dl)	0.208	NS
75g OGTT 2h glucose (mg/dl)	0.027	NS
Total cholesterol (mg/dl)	0.002	NS
Triglyceride (mg/dl)	-0.006	NS
HDL-Cholesterol (mg/dl)	-0.032	NS
TG/HDL-C ratio	0.036	NS
LDL-Cholesterol (mg/dl)	0.019	NS

r = Pearson correlation coefficient, NS = Not significant
no difference in mean hip circumference. The mean systolic and diastolic BP were normal, but systolic BP was significantly higher in men.

Table 2 reveals the followings:

Subjects with normal BMI: Serum leptin was significantly higher in women than men. Women had significantly lower mean fasting glucose, triglyceride (TG), triglyceride to HDL-cholesterol ratio (TG to HDL-C ratio) and LDL-Cholesterol (LDL-C). Men had significantly lower HDL-Cholesterol (HDL-C). There was no gender difference with regard to mean fasting serum insulin, HOMA IR, 2h glucose post 75g OGTT or total cholesterol.

Obese subjects: Serum leptin was significantly higher in women than men. There was no gender difference in mean fasting glucose, 2h glucose post 75g OGTT, total cholesterol, and LDL-C. Women had significantly lower fasting insulin, HOMA IR, TG, and TG to HDL-C ratio but higher HDL-C.

Gender and obesity had an effect on serum leptin values. Overall serum leptin for women was 15.6 ± SEM 2.42 ng /ml higher than men 7.9 ± SEM 1.46 ng /ml, with p value 0.006. Serum leptin was significantly higher in the obese than normal weight women, with p value 0.002. Serum leptin was also significantly higher in obese than normal weight men, with p value 0.0001. There were variations in serum leptin within the same sex group with comparable BMI. Six men and 6 women with normal weight, and two obese men had serum leptin ≤ 1 ng /ml.

Pearson correlation coefficients for serum leptin (Table 3)

There was a significant positive correlation with BMI (r 0.440, p value 0.0001), hip circumference (r 0.425, p value 0.0001), and a weak positive correlation with waist (r 0.284, p value 0.007). There was no correlation with mean age, mean systolic BP, mean diastolic BP, or WHR. Significant positive correlations were present with fasting insulin (r 0.334, p value 0.001) and HOMA IR (r 0.344, p value 0.001), but not with the other metabolic variables.

Pearson correlation coefficients for HOMA IR (Table 4)

There were significant positive correlation with many measures of obesity including BMI (r 0.589, p value 0.0001), waist circumference (r 0.594, p value 0.0001), hip circumference (r 0.496, p value 0.0001), and WHR (r 0.367, p value 0.0001). There was a weak positive correlation with mean systolic BP (r 0.230, p value 0.030). There was no significant correlation with mean age or mean diastolic BP.

HOMA IR strongly and positively correlated with fasting insulin (r 0.982, p value 0.0001). There was significant positive correlation with fasting glucose (r 0.520, p value 0.0001), TG (r 0.555 p value 0.0001), and TG / HDL-C ratio (r 0.606, p value 0.0001). There was a significant negative correlation with HDL-C (r - 0.365 with p value 0.0001). These variables are indirect metabolic markers of insulin resistance. There was a weak positive correlation with LDL-C (r 0.217, p value 0.041). There was no significant correlation with 2h glucose post 75g OGTT or total cholesterol.

DISCUSSION

In this study, we report the serum leptin concentration in a sample of healthy Saudi adult subjects. The sample is not representative of the general population. Serum leptin is higher in women than men, both obese and lean. There is about 2-4-fold elevation in women as reported in other studies. The gender difference in leptin level was present though men had higher values of atherogenic variables, and obese men were even more insulin resistant than women. Serum leptin increased with obesity regardless of sex with a positive correlation between serum leptin and BMI as has been consistently found in previous studies. Variations of serum leptin in individuals of comparable BMI and of the same gender were noted. The variation in the leptin level and its correlation with BMI may be explained by the fact that BMI may be a poor surrogate for total fat mass and distribution. Accurate measurements of percentage body fat will therefore, yield a better correlation. The gender difference in leptin level was present though men had higher values of atherogenic variables, and obese men were even more insulin resistant than women. Serum leptin increased with obesity regardless of sex with a positive correlation between serum leptin and BMI as has been consistently found in previous studies. Variations of serum leptin in individuals of comparable BMI and of the same gender were noted. The variation in the leptin level and its correlation with BMI may be explained by the fact that BMI may be a poor surrogate for total fat mass and distribution. Accurate measurements of percentage body fat will therefore, yield a better correlation. The subjects of the study were young, so the effect of aging on leptin concentrations was not addressed.

Obese individuals are usually insulin resistant, hence the positive correlations between serum leptin, fasting serum insulin, and HOMA IR as shown in our study. HOMA IR correlates with all variables associated with insulin resistance. These include BMI, waist circumference, WHR, BP, serum TG, and TG to HDL-C ratio. Leptin correlates only with measures of obesity including BMI and hip circumference. Increased cardiovascular risk and hyperinsulinemia are
known to be associated with excess central visceral fat, which is clinically assessed by increased waist circumference and high WHR. Serum leptin correlates with hip circumference which reflects peripheral subcutaneous fat.20-22

The relationship between leptin and insulin resistance is not completely clear.23-26 It seems that both the extent of fat mass and its distribution are important determinants of leptin levels. Two metabolically distinct fat compartments might be a major explanation for the association between insulin, insulin resistance and leptin in lean and obese individuals. Central (visceral) fat is associated with hyperinsulinemia and insulin resistance, while peripheral (subcutaneous) fat is associated with hyperleptinemia.27,28 These observations and other potential genetic and ethnic factors contribute to the understanding of determinants of gender difference and variation of leptin levels.29,30

In conclusion, serum leptin concentrations increase with obesity, and are higher in women whether lean or obese. Serum leptin correlates positively with BMI and hip circumference. Though, correlations between leptin and insulin resistance are commonly reported, they probably reflect two different metabolic compartments. This may suggest that in a primary health care set-up, measurement of both serum leptin and serum insulin may differentiate between an atherogenic and somewhat less harmful obesity.

ACKNOWLEDGMENT
We thank Dr. Ahmad A. Bahnnassy, biostatistician and associate professor of the Department of Family and Community Medicine for his advice on the statistics. We also thank Carmen Lizardo, Jacqueline Manaos, Purita Cabinian, and Issa Jebreel for their laboratory and technical help. This project was supported by a grant from King Faisal University.

REFERENCES
1. Al-Nozha MM, Mazrou YY, Al-Maatouz MA, Arafah MR, Khalil MZ, Khan NB, Al-Marzouki K, et al. Obesity in Saudi Arabia. Saudi Med J 2005;26(5):824-9.
2. Ravussin E, Gautier JF. Metabolic predictors of weight gain. Int J Obes Relat Metab Disord. 1999; 23 (1):37-41.
3. Farouqi IS, O Rahilly S. New advances in the genetics of early onset obesity (Editorial). Int J Obes (Lond) 2005;29:1149-52.
4. Zhang, Y, Proenca, R, Maffei, M, Barone, M, Leopold, L, Friedman JM. Positional cloning of the mouse ob gene and its human homologue. Nature 1994; 372 (655)452-5.
5. Ronzi T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clinical Endocrinology 2006;64:355-65.
6. Mantzoros CS. The role of leptin in human obesity and disease: A review of current evidence. Ann Intern Med 1999; 130: 671-80.
7. Lonnqvist F, Nordfors L, Schalling M. Leptin and its potential role in human obesity. J Intern Med 1999:245: 643-52.
8. Ahima RS. Flier JS. Leptin. Annu Rev Physiol 2000; 62: 413-37.
9. Montague CT, Farooqi, IS, Whitehead, JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387 (6636): 903-8.
10. Considine, RV, Sinha, MK, Heiman, ML, Kriaucianas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334:292-5.
11. Dyck DJ, Heigenhaver GJF, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol 2006;186:5-16.
12. Kennedy A, Gettys TW, Watson P, Wallace P, Ganaway E, Pan Q, et al. The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab 1997; 82: 1293- 1300.
13. Ruhl CE, Everhart JE. Leptin concentrations in the United States: relations with demographic and anthropometric measures. Am J Clin Nutr 2001; 74: 295-301.
14. Isidori, AM, Strollo, F, Morè, M, Caprio M, Aversa A, Moretti C, et al. Leptin and aging: Correlation with endocrine changes in male and female healthy adult populations of different body weights. J Clin Endocrinol Metab 2000; 85:1954-62.
15. Santos JL, Pérez-Bravo F, Albala C, Calvillan M, Carrasco E. Plasma leptin and Insulin levels in Aymara natives from Chile. Annals of Human Biology 2000; 27 (3):271-9.
16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28 (7): 412-9.
17. Al-Harithy RN. Relationship of leptin concentration to gender, body mass index and age in Saudi adults. Saudi Med J 2004; 25(8): 1086-90.
18. Carraro R, Ruiz-Torres A. Relationship of serum leptin concentration with age, gender, and biomedical parameters in healthy, non-obese subject. Arch Gerontol Geriatr 2006; Jan 28 (Epub ahead of print).
19. McLaughlin T, Abbasi F, Cheal K, Chu J, Lamendola C, Reaven G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann of Intern Med 2003;139 (10): 802-9.
20. Bennett FI, McFarlane-Anderson N, Wilks R, Luke A, Cooper RS, Forrester TE. Leptin concentration in women is influenced by regional distribution of adipose tissue. Am J Clin Nutr 1997; 66(6): 1340-4.
21. HO SC, Tai ES, Eng PHK, Ramli A, Tan CE, Fok ACK. A study in the relationships between leptin, insulin, and body fat in Asian subjects. Int J Obes 1999:23: 246-52.
22. Magni P, Liuzzit A, Ruscica M, Dozio E, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. J Clin Nutr 1997; 66:1340-4.
23. Andersen NC. Adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. J Clin Nutr 1997; 66(6): 1340-4.
24. Thamer S, Armstrong B, Flicker L, Guralnik JM, Cutler JA, Curb JD. Serum leptin concentration is associated with skinfold thickness in healthy older adults. J Am Geriatr Soc 2003;51: 124-9.
25. Lichnovska R, Gwozdziewicza S, Chlup R, Hrebicek Jiri. Serum leptin in the development of insulin resistance and other disorders in the metabolic syndrome. Biomed Pappers 2005;149(1):119-26.
26. Daghri N, Al-Rubeant K, Bartlett WA, Al-Attas O, Jones AF, Kumar S. Serum leptin is elevated in Saudi Arabian patients with metabolic syndrome and coronary artery disease. Diabet Med 2003;20:832-7.

27. Banerji MA, Faridi N, Atluri R, Chaiken RL, Lebovitz HE. Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men. J Clin Endocrinol Metab 1999; 84:137-44.

28. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR, et al. The concurrent accumulation of intra-abdominal and Subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations, distinct metabolic effects of two fat compartments. Diabetes. 2002; 51:1005-15.

29. Babay ZA, Warsy AS, El-Hazmi MA, Addar MH. Leptin level in pregnant mothers at term and cord blood and the effect of newborn gender. Saudi Med J 2004; 25(2): 212-4.

30. Abate N, Chandalia M, Snell PG, Grundy SM. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J Clin Endocrinol Metab 2004; 89: 2750-5.