K-REGULARITY,
cdh-FIBRANT HOCHSCHILD HOMOLOGY,
AND A CONJECTURE OF VORST

G. CORTIÑAS, C. HAESEMEYER, AND C. WEIBEL

Abstract. In this paper we prove that for an affine scheme essentially of finite type over a field F and of dimension d, K_{d+1}-regularity implies regularity, assuming that the characteristic of F is zero. This verifies a conjecture of Vorst.

Introduction

It is a well-known fact that algebraic K-theory is homotopy invariant as a functor on regular schemes; if X is a regular scheme then the natural map $K_n(X) \to K_n(X \times \mathbb{A}^1)$ is an isomorphism for all $n \in \mathbb{Z}$. This is false in general for nonregular schemes and rings.

To express this failure, Bass introduced the terminology that, for any contravariant functor \mathcal{P} defined on schemes, a scheme X is called \mathcal{P}-regular if the pullback maps $\mathcal{P}(X) \to \mathcal{P}(X \times \mathbb{A}^r)$ are isomorphisms for all $r \geq 0$. If $X = \text{Spec}(R)$, we also say that R is \mathcal{P}-regular. Thus regular schemes are K_n-regular for every n. In contrast, it was observed as long ago as [2] that a nonreduced affine scheme can never be K_1-regular. In particular, if A is an Artinian ring (that is, a 0-dimensional Noetherian ring) then A is regular (that is, reduced) if and only if A is K_1-regular.

In [15], Vorst conjectured that for an affine scheme X, of finite type over a field F and of dimension d, regularity and K_{d+1}-regularity are equivalent; Vorst proved this conjecture for $d = 1$ (by proving that K_2-regularity implies normality).

In this paper, we prove Vorst’s conjecture in all dimensions provided the characteristic of the ground field F is zero. In fact we prove a stronger statement. We say that X is regular in codimension $< n$ if $\text{Sing}(X)$ has codimension $\geq n$ in X.

Let \mathcal{F}_K denote the presheaf of spectra such that $\mathcal{F}_K(X)$ is the homotopy fiber of the natural map $K(X) \to KH(X)$, where $K(X)$ is the algebraic K-theory spectrum of X and $KH(X)$ is the homotopy K-theory of X defined in [10]. We write $\mathcal{F}_K(R)$ for $\mathcal{F}_K(\text{Spec}(R))$.

Theorem 0.1. Let R be a commutative ring which is essentially of finite type over a field F of characteristic 0. Then:

(a) If $\mathcal{F}_K(R)$ is n-connected, then R is regular in codimension $< n$.

(b) If R is K_n-regular, then R is regular in codimension $< n$.

(c) (Vorst’s conjecture) If R is $K_{1+\dim(R)}$-regular, then R is regular.

Date: May 8, 2019.

2000 Mathematics Subject Classification. 19D35 (primary), 14F20, 13D03, 19D55.

Cortiñas’ research was partially supported by grants ANPCyT PICT 03-12330, UBACyT-X294, JCyL VA091A05, and MEC MTM00958.

Weibel’s research was partially supported by NSA grant MSPF-04G-184.
It was observed in [16] that if X is K_n-regular then $K_i(X) \to KH_i(X)$ is an isomorphism for $i \leq n$, and a surjection for $i = n + 1$, so that $F_K(X)$ is n-connected. Thus (a) implies (b) in this theorem, and (c) is a special case of (b).

The bounds in (a) and (b) are the best possible, because it follows from Vorst’s results ([15, Thm. A], [14, Thm. 3.6]) that for an affine singular seminormal curve X, $F_K(X)$ is 1-connected, but not 2-connected. The converse of (c) is trivial, but those of (a) and (b) are false. Indeed, affine normal surfaces are regular in codimension 1 but may not be K_{-1}-regular, much less K_2-regular; see [20, 5.8.1].

Finally the analogue of (c) –and thus also of (a) and (b)– for K-theory of general nonaffine schemes is false. Indeed we give the following example of a nonreduced (and in particular nonregular) projective curve which is K_n-regular for all n.

Theorem 0.2. Let (X, Q) be an elliptic curve over a field of characteristic 0, and P a rational point on X such that the line bundle $L = L(P - Q)$ does not have odd order in the Picard group $Pic(X)$. Write Y for the nonreduced scheme with the same underlying space as X but with structure sheaf $\mathcal{O}_Y = \mathcal{O} \oplus L$, where L is regarded as a square-zero ideal.

Then Y is K_n-regular for all n, and $F_K(Y)$ is contractible.

The proof of Theorem 0.1 employs results from our paper with M. Schlichting [4] that allow us to describe F_K in terms of cyclic homology; the necessary statements will be recalled in Section 1. In Section 2 we study the cdh-fibrant version of Hochschild homology and its Hodge decomposition. Section 3 contains a smoothness criterion (Theorem 3.1) using cdh-fibrant Hochschild homology, which is of independent interest and generalized in Theorem 4.11. The proof of part (a) of Theorem 0.1 is contained in Section 4 (see Theorem 4.12). As explained above, parts (b) and (c) follow from this. Finally Section 5 is devoted to the counterexample stated in Theorem 0.2 (and restated as Theorem 5.2).

Notation

All rings considered in this paper are commutative and noetherian. We shall write Sch/F for the category of schemes essentially of finite type over a field F. Objects of Sch/F shall be called F-schemes.

The category of spectra we use in this paper will not be critical. In order to minimize technical issues, we will use the terminology that a spectrum \mathcal{E} is a sequence of simplicial sets \mathcal{E}_n together with bonding maps $b_n : \mathcal{E}_n \to \Omega \mathcal{E}_{n+1}$. We say that \mathcal{E} is an Ω-spectrum if all bonding maps are weak equivalences. A map of spectra is a strict map. We will use the model structure on the category of spectra defined in [3]. Note that in this model structure, every fibrant spectrum is an Ω-spectrum.

We say that a presheaf E of spectra on Sch/F satisfies the **Mayer-Vietoris-property** (or MV-property, for short) for a cartesian square of schemes

$$
\begin{array}{ccc}
Y' & \longrightarrow & X' \\
\downarrow & & \downarrow \\
Y & \longrightarrow & X
\end{array}
$$

if applying E to this square results in a homotopy cartesian square of spectra. We say that E satisfies the Mayer-Vietoris property for a class of squares provided it satisfies the MV-property for each square in the class.

We say that E satisfies **Nisnevich descent** for Sch/F if E satisfies the MV-property for all elementary Nisnevich squares in Sch/F; an **elementary Nisnevich
square is a cartesian square of schemes for which \(Y \to X \) is an open embedding, \(X' \to X \) is étale and \((X' - Y') \to (X - Y) \) is an isomorphism. By \([12, 4.4]\), this is equivalent to the assertion that \(E(X) \to \mathbb{H}_{	ext{nis}}(X, E) \) is a weak equivalence for each scheme \(X \), where \(\mathbb{H}_{	ext{nis}}(-, E) \) is a fibrant replacement for \(E \) in a suitable model
structure.

We say that \(E \) satisfies cdh-descent for \(\text{Sch}/F \) if \(E \) satisfies the MV-property for all elementary Nisnevich squares (Nisnevich descent) and for all abstract blow-up squares in \(\text{Sch}/F \); an abstract blow-up square is a square such that \(Y \to X \) is a closed embedding, \(X' \to X \) is proper and the induced morphism \((X' - Y')_{\text{red}} \to (X - Y)_{\text{red}} \) is an isomorphism. With M. Schlichting, we showed in Theorem 3.7 of \([4]\) that cdh-descent is equivalent to the assertion that \(E(X) \to \mathbb{H}_{\text{cdh}}(X, E) \) is a weak equivalence for each scheme \(X \), where \(\mathbb{H}_{\text{cdh}}(-, E) \) is a fibrant replacement for the presheaf \(E \) in a suitable model structure. We abbreviate \(\mathbb{H}_{\text{cdh}}(-, E) \) as \(\mathbb{H}(-, E) \) if no confusion can arise, and write \(\mathbb{H}_n(X, E) = \mathbb{H}^{-n}(X, E) \) for \(\pi_n \mathbb{H}(X, E) \).

We use cohomological indexing for all chain complexes in this paper; for a complex \(A, A[p]^q = A^{p+q} \). It is well-known that there is an Eilenberg-Mac Lane functor \(A \mapsto |A| \) from chain complexes of abelian groups to spectra, and from presheaves of chain complexes of abelian groups to presheaves of spectra. This functor sends quasi-isomorphisms of complexes to weak homotopy equivalences of spectra, and satisfies \(\pi_n(|A|) = H^{-n}(A) \). In this spirit, we will use descent terminology for presheaves of complexes.

For example, the Hochschild, cyclic, periodic and negative cyclic homology of schemes over a field \(k \) (such as \(F \)-schemes over a field \(F \subseteq k \)) can be defined using the Zariski hypercohomology of certain presheaves of complexes; see \([15]\) and \([4, 2.7]\) for precise definitions. We shall write these presheaves as \(HH(/k) \), \(HC(/k) \), \(HP(/k) \) and \(HN(/k) \), respectively and regard them as presheaves of either cochain complexes or spectra. When \(k \) is omitted, it is understood that \(k = \mathbb{Q} \) is intended.

Finally, we write \(\Omega^i_{/k} \) for the presheaf \(X \mapsto \Omega^i_{X/k} \), while \(\Omega^{\leq i}_{/k} \) denotes the presheaf of algebraic de Rham complexes and \(\Omega^i_{/k} \) denotes its brutal truncation in degree \(i \).

1. cdh-descent

In this section we recall the main results from \([4]\), and prove that the failure of \(K \)-theory to be homotopy invariant can be measured using cyclic homology. We work on the category \(\text{Sch}/F \) of \(F \)-schemes essentially of finite type over a field \(F \) of characteristic 0.

Here are two of the main results of \([4]\). Recall that infinitesimal \(K \)-theory \(K^\text{infj}(X) \) is the homotopy fiber of the Jones-Goodwillie Chern character \(K(X) \to HN(X) \). The first one is Theorem 4.6 of \([4]\):

Theorem 1.1. The presheaf of spectra \(K^\text{infj} \) satisfies cdh-descent.

The second one is a slight modification of Corollary 3.13 of \([4]\).

Theorem 1.2. For each subfield \(k \subseteq F \), the presheaf \(HP(/k) \) satisfies cdh-descent on \(\text{Sch}/F \). In particular, \(HP \) satisfies cdh-descent.

Proof. For \(k = F \), this is proven in \([4, \text{Corollary 3.13}]\). As in loc. cit., the result for \(k \subseteq F \) follows from \([4, \text{Theorem 3.12}]\), once we verify that the hypotheses hold. But this follows from three observations: (1) the Cuntz-Quillen excision theorem holds over \(k \) (see \([5, 5.3]\), noting that the condition that the base field be algebraically
the usual hypercohomology $H^\bullet(A/F)$ to the Zariski site on Sch. We record this as the following observation.

Since the fibrant replacement functor \mathbb{P}_{cdh} preserves (objectwise) fibration sequences, it follows that F does too. (See the first paragraph of [4, Section 5].) We record this as the following observation.

Lemma 1.5. Let $E_1 \to E_2 \to E_3$ be a fibration sequence of presheaves of spectra. Then there is a natural induced fibration sequence

$$F_{E_1} \to F_{E_2} \to F_{E_3}. $$

Theorem 1.6. For any scheme X, essentially of finite type over a field of characteristic 0, the Chern character $K \to HN = HN(\mathbb{Q})$ induces natural weak equivalences

$$F_K(X) \xrightarrow{\simeq} F_{HN}(X) \xleftarrow{\simeq} \Omega^{-1}F_{HC}(X).$$

Proof. The first weak equivalence follows from Lemma 1.5 and Theorem 1.1. The second weak equivalence follows from Lemma 1.3, Theorem 1.2 and the SBI fibration sequence $\Omega HP \to \Omega^{-1}HC \to HN \to HP$. \hfill \square

Corollary 1.7. Let $X \in \text{Sch}/F$. Then K satisfies $(n+1)$-cdh-descent on X if and only if HH satisfies n-cdh-descent on X.

Proof. Since $HH(X)$ and $\mathbb{H}(X, HH)$ are n-connected for $n < -\dim(X)$ by [15], this follows from Theorem 1.6 and the SBI sequence $\Omega^{-1}HC \to HH \to HC$. \hfill \square

2. *cdh-fibrant Hochschild and cyclic homology.*

In this section we study the cdh-fibrant version of Hochschild homology and its Hodge decomposition, and establish some of their basic properties.

For legibility, we will write a for the natural morphism of sites from the cdh-site to the Zariski site on Sch/F. If A is a Zariski sheaf, its associated cdh sheaf will be written as A_{cdh} or a^*A. We will simplify notation and write $H^\bullet_{cdh}(X, A)$ for the cohomology of A_{cdh}. In particular this applies to the sheaf $X \to \Omega^i_{X/k}$ of K"ahler i-differential forms ($i \geq 0$); $H^\bullet_{cdh}(X, \Omega^i_{X/k})$ is the cohomology of $a^*\Omega^i_{X/k}$. If A is a complex of presheaves of abelian groups on Sch/F, then we write $\mathbb{H}_{cdh}(A)$ for a cdh-fibrant replacement of A, and $\mathbb{H}_{cdh}(X, A)$ for its complex of sections over X; the usual hypercohomology $H^\bullet_{cdh}(X, A)$ is just $H^\bullet \mathbb{H}_{cdh}(X, A)$. For example, if A
is a presheaf, considered as a complex concentrated in degree zero, then $\mathbb{H}_{cdh}(A)$ is just an injective resolution of the cdh-sheafification A_{cdh}, and $\mathbb{H}^n_{cdh}(X, A)$ is the usual cohomology $H^i_{cdh}(X, A_{cdh})$ of A_{cdh}.

When A is an unbounded complex, such as a complex representing Hochschild homology, then $\mathbb{H}_{cdh}(A)$ may be constructed using product total complexes of flasque Cartan-Eilenberg resolutions. This works because the columns of the Cartan-Eilenberg double complex are locally cohomologically bounded by $[13]$.

The cdh site is Noetherian (every covering has a finite subcovering), so cdh cohomology commutes with filtered direct limits of sheaves. A typical application of this fact is that if M is a sheaf of F-modules and V is a vector space then $H^n_{cdh}(X, V \otimes_F M) \cong V \otimes_F H^n_{cdh}(X, M)$. (See $[1]$ Exp. VI, 2.11 and 5.2.)

The Hochschild and cyclic homology of schemes over a field k (such as F-schemes over a field $F \supseteq k$) can be defined using the Zariski hypercohomology of certain presheaves of mixed complexes; see $[13]$ and $[4]$ 2.7 for precise definitions. It was observed in $[19]$ 3.0 that, because the mixed complexes already admit a Hodge decomposition, so do the complexes $HH(\mathcal{L}/k)$, $HC(\mathcal{L}/k)$, $HP(\mathcal{L}/k)$ and $HN(\mathcal{L}/k)$. Taking fibrant replacements for any Grothendieck topology respects such product decompositions; the following proposition records this for the cdh-topology.

Proposition 2.1. Let X be a scheme over a field k of characteristic 0 (such as an F-scheme for $F \supseteq k$). Then the cdh-fibrant Hochschild, cyclic, negative cyclic and periodic cyclic homology of X over k admit natural Hodge decompositions.

That is, if H denotes any of $HH(\mathcal{L}/k)$, $HC(\mathcal{L}/k)$, $HP(\mathcal{L}/k)$ or $HN(\mathcal{L}/k)$ then:

$$\mathbb{H}_{cdh}(X, H) \cong \prod \mathbb{H}_{cdh}(X, H^{(i)}).$$

Moreover, using the computations of these decompositions provided in $[19]$ Theorem 3.3 and the fact that all F-schemes are locally smooth in the cdh-topology, it is possible to compute the Hodge decomposition explicitly in terms of the cdh-hypercohomology of the de Rham complex.

Theorem 2.2. Let $k \subseteq F$ be a subfield. There are natural isomorphisms for every F-scheme X:

$$\pi_n \mathbb{H}_{cdh}(X, HH^{(i)}(\mathcal{L}/k)) \cong H^{i-n}_{cdh}(X, \Omega^i_{X/k});$$

$$\pi_n \mathbb{H}_{cdh}(X, HC^{(i)}(\mathcal{L}/k)) \cong \mathbb{H}^{2i-n}_{cdh}(X, \Omega^i_{X/k});$$

$$\pi_n \mathbb{H}_{cdh}(X, HN^{(i)}(\mathcal{L}/k)) \cong \mathbb{H}^{2i}_{cdh}(X, \Omega^i_{X/k});$$

$$\pi_n \mathbb{H}_{cdh}(X, HP^{(i)}(\mathcal{L}/k)) \cong \mathbb{H}^{2i-n}_{cdh}(X, \Omega^{i+1}_{X/k}).$$

Proof. Let $C(X)$ denote the mixed complex computing the Hochschild and cyclic homology of X over k. The functor $C : X \mapsto C(X)$ is a presheaf of mixed complexes. By $[17]$ 9.8.12, there is a Hodge decomposition $C \cong \prod C^{(i)}$ and a natural map of mixed complexes $e : C \to (\Omega^i_{X/k}, 0, d)$ that sends the Hochschild chain complex $HH^{(i)}(X) = (C^{(i)}(X), b)$ to $\Omega^i_{X/k}[i]$. As observed in $[19]$, the induced map on Connes’ double complexes sends $B^{(i)}_{\mathcal{L}}$ to $\Omega^{2i}_{X/k}[2i]$. It suffices to prove that these are locally quasi-isomorphisms for the cdh topology. This boils down to showing that e induces a quasi-isomorphism $HH^{(i)}(R/k) \to \Omega^i_{R/k}[i]$ for every regular local F-algebra R. For $k = F$, this is the Hochschild-Kostant-Rosenberg theorem ($[17]$ 9.4.7]). The general case follows from this and the fact that R is the union of
smooth k-algebras. (It also follows from the Kassel-Sledsjö spectral sequence of [9], 4.3a], which we recall in [11] below.)

Lemma 2.3. Let R be an F-algebra essentially of finite type, $k \subseteq F$ a subfield. Then for each n, $HH(\cdot/k)$ satisfies n-cdh descent on $X = \text{Spec}(R)$ if and only if the following three conditions hold simultaneously:

\begin{align*}
(2.3a) & \quad HH^q_m(R/k) = 0 \quad \text{if } 0 \leq q < m \leq n; \\
(2.3b) & \quad \Omega^q_{R/k} \to H^0_{\text{cdh}}(X, \Omega^q_{k/k}) \quad \text{is bijective if } q \leq n \text{ and onto if } q = n + 1; \\
(2.3c) & \quad H^p_{\text{cdh}}(X, \Omega^q_{k/k}) = 0 \quad \text{if } p > 0 \text{ and } 0 \leq q \leq p + n + 1.
\end{align*}

Note that (2.3a) is vacuous if $n \leq 0$, and (2.3b) is vacuous if $n \leq -2$. In particular, $HH(\cdot/k)$ satisfies (-2)-cdh-descent just in case $H^p_{\text{cdh}}(X, \Omega^q_{k/k}) = 0$ for all $p > q \geq 0$.

Proof. This follows easily from the Hodge decomposition and the isomorphisms

$$HH^q_m(R/k) \cong \Omega^q_{R/k}, \quad HH^q_m(R/k) = 0 \text{ for } q > m.$$

In more detail, we see from (2.1) and (2.2) that the maps $HH^q_m(R/k) \to H^q_{cdh}(X, \Omega^q_{k/k})$ must be isomorphisms for $m \leq n$ and onto for $m = n + 1$.

On smooth schemes, all our functors are well-behaved. Recall from [13] that the scdh topology on Sm/F is the restriction of the cdh topology on Sch/F. Since every scheme is locally smooth, it follows that $\mathbb{H}_{\text{scdh}}(X, A)$ is just $\mathbb{H}_{\text{cdh}}(X, A)$ for every presheaf A. (See the argument of the first part of the proof of [11] 3.12.) If A satisfies scdh-descent then $A(X) \cong \mathbb{H}_{\text{cdh}}(X, A)$ for all smooth X.

Recall that k is a subfield of F.

Theorem 2.4. Let H denote any of: $HH(\cdot/k)$, $HC(\cdot/k)$, $HN(\cdot/k)$ or $HP(\cdot/k)$, and let $H^{(i)}$ denote the ith component in the Hodge decomposition of H.

Then H and $H^{(i)}$ satisfy scdh-descent on Sm/F. In particular, if X is smooth over F, then $H^{(i)}(X) \cong \mathbb{H}_{\text{cdh}}(X, H^{(i)}).$

Proof. Since every smooth scheme over F is locally a filtered limit of smooth affine schemes over k, and H commutes with limits of affine schemes, we may assume that $k = F$. By [13] 3.9, 2.9, and 2.10, Hochschild, cyclic, negative and periodic cyclic homology (relative to F) all satisfy scdh-descent on Sm/F.

By Proposition 2.1 the quasi-isomorphisms $H(X) \cong \mathbb{H}_{\text{cdh}}(X, H) = \mathbb{H}_{\text{scdh}}(X, H)$ induce quasi-isomorphisms $H^{(i)}(X) \cong \mathbb{H}_{\text{cdh}}^{(i)}(X, H) = \mathbb{H}_{\text{scdh}}^{(i)}(X, H)$ for all i.

The special case $H^{(i)}_{\text{zar}}(X, \mathcal{O}) \cong H^{p}_{\text{cdh}}(X, \mathcal{O})$ (for smooth X) of the following corollary was proven in [11] 6.3.

Corollary 2.5. If X is smooth over F, then $H^{p}_{\text{zar}}(X, \Omega^i_{X/k}) \cong H^{p}_{\text{cdh}}(X, \Omega^i_{X/k})$ for all p and i. In particular, $\Omega^i_{X/k} \cong H^{p}_{\text{cdh}}(X, \Omega^i_{X/k}).$

Proof. Consider the map $e^{(i)} : HH^{(i)} = (C^{(i)}, b) \to \Omega^i_{F,F}[i]$ of complexes of Zariski sheaves. By [13] 3.3, it is a quasi-isomorphism over every smooth scheme X over F, inducing $HH^{(i)}_{-p,X} \cong H^{p-i}_{\text{zar}}(X, C^{(i)}) \cong H^{p-i}_{\text{zar}}(X, \Omega^i_{X/k}).$ The map $e^{(i)}$ remains a quasi-isomorphism after sheafifying for the cdh topology, so that $H^{p-i}_{\text{cdh}}(X, HH^{(i)}) \cong H^{p-i}_{\text{cdh}}(X, C^{(i)}) \cong H^{p-i}_{\text{cdh}}(X, \Omega^i_{X/k}).$ By Theorem 2.4

$H^{(i)}_{\text{zar}}(X) \cong H^{p-n}_{\text{cdh}}(X, HH^{(i)})$, whence the result.
The next result is proven by copying the proof of [13 6.1], replacing \(\mathcal{O} \) with \(\Omega^j_{/k} \).

Proposition 2.6. If \(X \) is a \(d \)-dimensional scheme, essentially of finite type over \(F \), and \(k \subseteq F \) is a subfield, then

\[
H^d_{\text{Zar}}(X, \Omega^j_{/k}) \to H^d_{\text{cdh}}(X, \Omega^j_{/k})
\]

is surjective. In particular, if \(X \) is affine and \(d > 0 \) then \(H^d_{\text{cdh}}(X, \Omega^j_{/k}) = 0 \).

The following useful theorem is proven in [13, 12.1].

Theorem 2.7. For every abstract blow-up square (\(□ \)), and for every complex of sheaves of abelian groups \(A \), there is a long exact Mayer-Vietoris sequence:

\[
\cdots \to H^i_{\text{cdh}}(X, A) \to H^i_{\text{cdh}}(X', A) \oplus H^i_{\text{cdh}}(Y, A) \to H^i_{\text{cdh}}(Y', A) \to H^{i+1}_{\text{cdh}}(X, A) \cdots
\]

Consider the change-of-topology morphism \(a : (\text{Sch}/F)_{\text{cdh}} \to (\text{Sch}/F)_{\text{Zar}} \).

Lemma 2.8. If a Zariski sheaf \(M \) on \(\text{Sch}/F \) is a quasi-coherent sheaf (resp., coherent) on each \(X_{\text{Zar}} \), and \(M \) satisfies scdh-descent on \(\text{Sm}/F \), then the cohomology sheaves \(R^p a_*(a^*M) \) are also quasi-coherent (resp., coherent) on each \(X_{\text{Zar}} \).

If \(X = \text{Spec}(R) \) is affine, then \(R^p a_*(a^*M) \) is the quasi-coherent sheaf associated to the \(R \)-module \(H^p_{\text{cdh}}(X, M) \), and the natural map \(M(X) \to H^0_{\text{cdh}}(X, M) \) is \(R \)-linear.

Proof. We proceed by induction on \(\dim X \), the case \(\dim(X) = 0 \) being clear. Pick a smooth proper birational cdh cover \(X' \) of \(X \), as in [13 5.9] or [11 12.23], and form the abstract blow-up square (\(□ \)). By Theorem 2.7 we get a triangle on \(X_{\text{Zar}}: Ra_*(a^*M)|_X \to Ra_*(a^*M)|_{X'} \oplus Ra_*(a^*M)|_Y \to Ra_*(a^*M)|_Y \). As the latter two terms have quasi-coherent (resp., coherent) cohomology sheaves, by induction and scdh-descent on \(X' \), so does the first.

If \(X \) is affine, then \(H^p_{\text{Zar}}(X, R^j a_* M) = 0 \) for \(p > 0 \). Hence the Leray spectral sequence collapses to yield \(H^0_{\text{cdh}}(X, M) = H^0_{\text{Zar}}(X, R^0 a_*(a^*M)) \). \(□ \)

Corollary 2.9. Suppose that \(X = \text{Spec}(R) \) is affine. Then \(U \mapsto \pi_n F_{\text{HH}(/k)}(U) \) and \(U \mapsto \pi_n F_{\text{cdh}}(U, H^0_{/k}) \) are quasi-coherent Zariski sheaves on \(X \) for all \(n \).

3. A CRITERION FOR SMOOTHNESS.

In this section we present a local criterion for smoothness of schemes over a field \(F \), in terms of the Hochschild homology and cdh-fibrant Hochschild homology of their local rings over \(F \) (see 3.1). As an application we prove Vorst’s conjecture for algebras of finite type over \(\mathbb{Q} \) and their localizations at maximal ideals (see 3.3).

A stronger global version of the following result shall be proved in Section 4 below (see Theorem 4.11).

Recall that \(F \) is a field of characteristic 0.

Theorem 3.1. Let \(R \) be the local ring of a \(d \)-dimensional \(F \)-algebra of finite type at a maximal ideal. If \(H^0_{/F} \) satisfies \(d \)-cdh-descent on \(R \), then \(R \) is smooth over \(F \).

Proof. Recall that \(\Omega^\bullet_{/F} \) denotes the de Rham complex, whose terms are the Zariski sheaves \(\Omega^j_{/F} \), while \(\Omega^{\leq i}_{/F} \) denotes its brutal truncation in degrees at most \(i \). By [2, 2] and [12] we have isomorphisms

\[
HP_n^{(j)}(X/F) \xrightarrow{\cong} \mathbb{H}^{2j-n}_{\text{cdh}}(X, \Omega^\bullet_{/F})
\]
for any $X \in \text{Sch}/F$, and all n and j. Moreover, by the proof of [2.2] this isomorphism factors through a natural map $e : HP^d_n(R/F) \to H^d_{\text{Zar}}(X, \Omega^\bullet_{/F})$. Now specialize to the case $X = \text{Spec } R$, where R is as in the theorem. Since every cdh cover of X has a d-dimensional refinement, we have

$$\mathbb{H}^*_\text{cdh}(X, \Omega^*_F) = \mathbb{H}^*_\text{cdh}(X, \Omega^d_{/F}).$$

Moreover, Lemma 2.3 implies that the hypercohomology spectral sequence for H^*_cdh degenerates to yield an isomorphism

$$H^*(\Omega^d_{R/F}, d) \to \mathbb{H}^*_\text{cdh}(X, \Omega^d_{/F}).$$

The canonical map $S : HP^d_n(R/F) \to HC^{d-1}_n(R/F)$ fits into the commutative diagram

$$
\begin{array}{ccc}
HP^{d+1}_n(R/F) & \xrightarrow{e} & H^d_n(R/F) \\
\downarrow S & & \downarrow \cong \\
HC^d(R/F) & \xrightarrow{\cong} & \Omega^d_{R/F}/d\Omega^{d-1}_{R/F} \\
\end{array}
$$

We have seen that the top composite, the right vertical and both bottom arrows are isomorphisms. It follows that the middle vertical inclusion is the identity map, i.e., that $d\Omega_{R/F}^{d+1} = 0$. On the other hand, $d\Omega_{R/F}^{d+1}$ generates $\Omega_{R/F}^{d+1}$ as an R-module; therefore we can infer that $\Omega_{R/F}^{d+1} = 0$. By Lemma 3.2 below, R is regular, and hence smooth over F.

Lemma 3.2. Let F be any perfect field. Suppose R is the local ring of a d-dimensional F-algebra of finite type at a maximal ideal. If $\Omega_{R/F}^{d+1} = 0$, then R is regular.

Proof. Let m be the maximal ideal of R. Since $L := R/m$ is smooth over F, the Second Fundamental Theorem [17, 9.3.5] shows that there is an isomorphism $m/m^2 \to L \otimes_R \Omega^1_{R/F}$ sending x to dx. Consequently, there is a surjection from $\Omega_{R/F}^{d+1}$ onto $L^{d+1}(m/m^2)$, which is a nonzero vector space unless R is regular. □

As an application, we can now verify Vorst’s Conjecture for algebras of finite type over \mathbb{Q} and their localizations at maximal ideals.

Theorem 3.3. Let R be a d-dimensional \mathbb{Q}-algebra which is either of finite type over \mathbb{Q}, or a localization of a \mathbb{Q}-algebra of finite type at a maximal ideal.

If R is K_{d+1}-regular, then R is regular.

Proof. First assume R is of finite type over \mathbb{Q}, and K_d-regular. To prove R is regular, we may replace R by its localization at a maximal ideal; these local rings are also K_{d+1}-regular, by Vorst’s localization theorem [13, 1.90]. Thus we are reduced to proving the theorem in the local case.

As remarked in the introduction, if R is K_{d+1}-regular, then $\mathcal{F}_K(R)$ is $(d+1)$-connected (see [16]). By Corollary 1.7, $\mathcal{F}_{HH/(F)}(R)$ is d-connected. Now Theorem 3.1 applies to prove that R is smooth over \mathbb{Q} and hence regular. □
4. Vorst’s conjecture.

In this section we will prove Theorem 0.1. Throughout, \(F \) will be a fixed field of characteristic zero, \(k \subseteq F \) a subfield, \(R \) an \(F \)-algebra essentially of finite type, and \(X = \text{Spec}(R) \). Note that we write \(\text{HH}(R) \) for \(\text{HH}(R/\mathbb{Q}) \).

Lemma 4.1. (Kassel-Sledsjö, [9, 4.3a]) Let \(k \subseteq F \) and \(p \geq 1 \) be fixed. Then there is a bounded second quadrant homological spectral sequence \((0 \leq i, j \geq 0)\):

\[
p_{E_{i,j}^{1}} = \Omega_{F/k}^{i} \otimes_{F} H_{\text{cdh}}^{j}(R/F) \Rightarrow H_{\text{cdh}}^{i+j}(R/k)
\]

Lemma 4.2. Let \(k \subseteq F \) and \(p \geq 1 \) be fixed. Then there is a spectral sequence:

\[
p_{E_{i,j}^{1}} = \Omega_{F/k}^{i} \otimes_{F} H_{\text{cdh}}^{j}(X, \Omega_{F}^{p-1}) \Rightarrow H_{\text{cdh}}^{i+j}(X, \Omega_{F/k}^{p}).
\]

Proof. Consider the sheaf of ideals \(I := \ker(\Omega_{F/k}^{*} \rightarrow \Omega_{F}^{*}) \). The \(I \)-adic filtration of \(\Omega_{F/k}^{*} \) induces a filtration \(\mathcal{G} = \mathcal{G}(p) \) on \(\Omega_{F/k}^{p} \). If \(R \) is any \(F \)-algebra essentially of finite type, we have a natural surjection

\[
\Omega_{F/k}^{i} \otimes_{F} \Omega_{R/F}^{p-i} \twoheadrightarrow \mathcal{G}(R)/\mathcal{G}(R)^{p+1}(R),
\]

which is an isomorphism if \(R \) is smooth. Thus the cdh-sheafification of \((138)\) is an isomorphism. Since \(\Omega_{F/k}^{p} \) is a vector space, the spectral sequence of the lemma is the one associated to the corresponding filtration of the cdh sheaf \(a^{*}\Omega_{F/k}^{p} \). \(\square \)

Lemma 4.3. Let \(X = \text{Spec}(R) \) be affine, and fix \(n \geq 0 \). Assume that

\[
\Omega_{R/k}^{q} \rightarrow H_{\text{cdh}}^{0}(X, \Omega_{R/k}^{q}) \quad \text{is bijective if } q \leq n \text{ and onto if } q = n + 1,
\]

\[
H_{\text{cdh}}^{1}(X, \Omega_{R/F}^{q}) = 0 \quad \text{if } q \leq n + 1.
\]

Then \(\Omega_{R/F}^{q} \rightarrow H_{\text{cdh}}^{0}(X, \Omega_{R/F}^{q}) \) is bijective if \(q \leq n \), and onto if \(q = n + 1 \).

Proof. By induction on \(q \). If \(q = 0 \), there is nothing to prove. Fix \(q > 0 \), and consider the filtration \(\mathcal{G}^{i} = \mathcal{G}(q), 0 \leq i \leq q \), considered in the proof of Lemma 1.2. We have a commutative diagram

\[
\begin{array}{ccc}
\Omega_{F/k}^{i} \otimes_{F} \Omega_{R/F}^{p-i} & \twoheadrightarrow & \mathcal{G}(R)/\mathcal{G}(R)^{p+1}(R) \\
\downarrow & & \downarrow \\
\Omega_{F/k}^{i} \otimes_{F} H_{\text{cdh}}^{0}(X, \Omega_{R/F}^{q-i}) & \twoheadrightarrow & H_{\text{cdh}}^{0}(X, \mathcal{G}(q)/\mathcal{G}(q)^{p+1}).
\end{array}
\]

The top arrow is surjective for all \(i \), and an isomorphism for \(i = 0 \). The bottom arrow is an isomorphism by the proof of (124). By the inductive hypothesis, the left vertical arrow is an isomorphism for \(0 < i \). It follows that the top arrow is an isomorphism for all \(0 \leq i \leq q \), and that the arrow on the right is an isomorphism for \(i > 0 \). By (140) we have an exact sequence:

\[
0 \rightarrow H_{\text{cdh}}^{0}(X, \mathcal{G}^{p+1}) \rightarrow H_{\text{cdh}}^{0}(X, \mathcal{G}^{q}) \rightarrow \Omega_{F/k}^{i} \otimes_{F} H_{\text{cdh}}^{0}(X, \Omega_{R/F}^{p-i}) \rightarrow 0
\]

\[
0 \rightarrow H_{\text{cdh}}^{1}(X, \mathcal{G}^{i}) \rightarrow H_{\text{cdh}}^{1}(X, \mathcal{G}^{i+1})
\]

Since \(\mathcal{G}^{p+1} = 0 \), we deduce, by descending induction on \(i \), that for all \(i > 0 \),

\[
H_{\text{cdh}}^{1}(X, \mathcal{G}^{i}) = 0
\]
Consider the diagram

\[
\begin{array}{ccc}
0 & \rightarrow & \mathcal{G}^{i+1}(R) \\
& & \downarrow \\
& & \mathcal{G}^i(R) \\
& & \downarrow \\
& & \Omega_{F/k}^i \otimes \Omega_{R/F}^{q-i} \\
& & \downarrow \\
0 & \rightarrow & \mathcal{H}_{cdh}^0(X, \mathcal{G}^{i+1}) \\
& & \downarrow \\
& & \mathcal{H}_{cdh}^0(X, \mathcal{G}^i) \\
& & \downarrow \\
& & \mathcal{H}_{cdh}^0(X, \Omega_{F/k}^i) \otimes \mathcal{H}_{cdh}^0(X, \Omega_{R/F}^{q-i}) \\
& & \downarrow \\
0 & \rightarrow & 0
\end{array}
\]

Using descending induction on \(i\) again, we obtain from this diagram that

\(\mathcal{G}^i(R) \cong \mathcal{H}_{cdh}^0(X, \mathcal{G}^i)\) \((i > 0)\).

We have a map of exact sequences

\[
\begin{array}{ccc}
0 & \rightarrow & \mathcal{G}^i(R) \\
& & \downarrow \\
& & \Omega_{R/k}^i \\
& & \downarrow \\
& & \Omega_{R/F}^i \\
& & \downarrow \\
0 & \rightarrow & \mathcal{H}_{cdh}^0(X, \mathcal{G}^i) \\
& & \downarrow \\
& & \mathcal{H}_{cdh}^0(X, \Omega_{R/k}^i) \\
& & \downarrow \\
& & \mathcal{H}_{cdh}^0(X, \Omega_{R/F}^i) \\
& & \downarrow \\
0 & \rightarrow & 0
\end{array}
\]

The third map in the bottom row is onto by \((4.7)\). The first vertical map is an isomorphism by \((4.7)\). By \((4.4a)\), the second is an isomorphism if \(q \leq n\) and onto if \(q = n + 1\). It follows that the same is true of the third vertical map. \(\square\)

Proposition 4.8. Assume \(n \geq 0\). If \(HH(\cdot/k)\) satisfies \(n\)-cdh-descent on \(R\), then so does \(HH(\cdot/F)\).

Proof. By Lemma 2.8, the hypothesis is equivalent to saying that the following conditions hold simultaneously.

\[
\begin{align}
(4.8a) & \quad HH_{m}^{q}(R/k) = 0 \quad \text{if } 0 \leq q < m \leq n \\
(4.8b) & \quad \Omega_{R/k}^{q} \rightarrow H_{cdh}^{0}(X, \Omega_{R/k}^{q}) \quad \text{is bijective if } q \leq n \text{ and onto if } q = n + 1 \\
(4.8c) & \quad H_{cdh}^{p}(X, \Omega_{R/k}^{q}) = 0 \quad \text{if } p > 0 \text{ and } q \leq p + n + 1.
\end{align}
\]

We have to prove that the following conditions hold

\[
\begin{align}
(4.9a) & \quad HH_{m}^{q}(R/F) = 0 \quad \text{if } 0 \leq q < m \leq n \\
(4.9b) & \quad \Omega_{R/F}^{q} \rightarrow H_{cdh}^{0}(X, \Omega_{R/F}^{q}) \quad \text{is bijective if } q \leq n \text{ and onto if } q = n + 1 \\
(4.9c) & \quad H_{cdh}^{p}(X, \Omega_{R/F}^{q}) = 0 \quad \text{if } p > 0 \text{ and } q \leq p + n + 1.
\end{align}
\]

Using \((4.8c)\), the spectral sequence of \((4.2)\) and induction, we obtain \((4.9c)\). Hence \((4.8b)\) implies \((4.9b)\), by Lemma 4.3. To prove \((4.9a)\) we proceed by induction on \(q\). The case \(q = 0\) is just the fact that \(HH_{m}^{0}(A/k) = 0\) for any \(m > 0\), any field \(k\) and any \(k\)-algebra \(A\). Assume \(n \geq q \geq 1\), and that we have \(HH_{m}^{q}(R/F) = 0\) for all \(m \leq n\) and all \(q' < \min\{m, q\}\). By \((4.9b)\) and \((4.5)\), the spectral sequence of Lemma 4.1 collapses for \(j = 0\) to yield

\[qE_{i-1}^{\infty} = qE_{i-1}^{1}.
\]

Given this, \((4.9a)\) follows from \((4.8a)\) by induction. \(\square\)

Lemma 4.10. Let \(F\) be a field, and \(R\) a local \(F\)-algebra essentially of finite type. Then there exists a field \(F' \subset E \subset R\) such that \(R\) is isomorphic to the localization of a finite type algebra over \(E\) at a maximal ideal.
Proof. The hypothesis on R means that there exist an F-algebra A of finite type and a prime ideal $P \subset A$ such that $R = A_P$. Suppose that $\dim(A) = k + h$ and $ht(P) = h$. By Noether normalization, there is a polynomial subring $S = F[t_1, \ldots, t_k]$ of A meeting P in 0, and the field $R/P = A_P/PA_P$ is a finite extension of $E = F(t_1, \ldots, t_k)$. There is an evident inclusion of E in R, and R is the localization of the finite type E-algebra $A \otimes_S E$ at a maximal ideal. \hfill \Box

The results of this section, together with Theorem 5.1 allow us to prove the following global regularity criterion.

Theorem 4.11. Let $k \subseteq F$ be fields of characteristic 0, and let R be an F-algebra essentially of finite type. If $HH(/k)$ satisfies h-cdh-descent on R, then R is smooth in codimension h. That is, for every prime ideal P of height h, the local ring R_P is regular.

Proof. Let P be a prime ideal of R of height h. Since $HH(/F)$ satisfies h-cdh descent on R by Proposition 4.8, it also satisfies h-cdh descent on the localization R_P, by Corollary 2.9. By Lemma 4.10, there is a field $F \subseteq E \subseteq R_P$ such that R_P is the localization at a maximal ideal of an algebra of finite type over E. By 4.8 $HH(/E)$ satisfies h-cdh descent on R_P. Because $\dim(R_P) = h$, Theorem 3.1 implies that R_P is smooth over E, and hence is regular. \hfill \Box

Once again, let F be a field of characteristic 0.

Theorem 4.12. Suppose R is an F-algebra essentially of finite type. If R is K_{h+1}-regular for some $h \geq 0$, then R is regular in codimension h. In particular, if R is $K_{\dim(\mathcal{O})+1}$-regular, then R is regular, and hence smooth over F.

Proof. If R is K_{h+1}-regular, then $HH(/Q)$ satisfies h-descent on R, by Corollary 4.7. The assertion now follows from Theorem 4.11. \hfill \Box

5. A NONREDUCED SCHEME WHICH IS K-REGULAR

This section is devoted to the counterexample stated in Theorem 0.2, which reappears here as Theorem 5.2.

Lemma 5.1. Let X be a smooth projective elliptic curve over a field F with basepoint Q, and let L be a degree zero line bundle L on X. Assume that L is not an element of odd order in the Picard group. Then $H^*(X, L^{\otimes 2n+1}) = 0$ for all $n \in \mathbb{Z}$.

Proof. Because \mathcal{O}_X is a dualizing sheaf, we are reduced by Serre duality to proving that $H^0(X, L^{\otimes 2n+1}) = 0$. Because X is elliptic, there exists a rational point $P \in X$ such that $L := L(P - Q)$. Now if $H^0(X, L^{\otimes 2n+1})$ were nonzero, there would exist an element f in the function field of X with $\text{div}(f) = (2n+1)(P - Q)$. But because L is not an odd torsion element, there is no such f. \hfill \Box

Theorem 5.2. Let X be a smooth projective elliptic curve over a field F of characteristic 0, and let L be as in Lemma 5.1. Write Y for the nonreduced scheme with the same underlying space as X but with structure sheaf $\mathcal{O}_Y = \mathcal{O}_X \oplus L$, where L is regarded as a square-zero ideal.

Then for all n, $K_n(Y) = K_n(X)$ and Y is K_n-regular.
Proof. As X is regular, and hence K_n-regular, it suffices to show that $K(Y \times \mathbb{A}^m) \to K(X \times \mathbb{A}^m) \cong K(X)$ is an equivalence for all $m \geq 0$. We shall prove the equivalent assertion that the relative homotopy groups $K(Y \times \mathbb{A}^m, X \times \mathbb{A}^m)$ are zero. By Goodwillie’s theorem \cite{Goodwillie} and Zariski descent, these relative K-groups are isomorphic to the corresponding relative cyclic homology groups over \mathbb{Q}. By base-change (see \cite{Goodwillie}) it suffices to show that the relative groups $\text{HH}_n^{rel} = \text{HH}_n(Y, X)$ vanish for all n. By Zariski descent, it suffices to show that $H^0(X, \text{HH}_n^{rel})$ and $H^1(X, \text{HH}_n^{rel})$ vanish for all n. From Lemma \ref{lemma:vanishing} below and the fact that $\Omega^1_{X/F} \cong \mathcal{O}_X$, we see that the Zariski sheaves HH_n^{rel} are sums of odd tensor powers of L when F is a number field, and odd tensor powers of L tensored over F with vector spaces $\Omega^i_{F/\mathbb{Q}}$ in general. But the cohomology of such powers vanishes by Lemma \ref{lemma:vanishing}.

The following lemma is well-known, at least in the case when L is free. We include a proof for the sake of completeness. For simplicity, we write $\text{HH}_*(R)$ for $\text{HH}_*(R/k)$.

Lemma 5.3. Let k be a field with $\text{char}(k) \neq 2$, R a commutative k-algebra, and L a projective R-module of rank 1. Let M_* denote the graded R-module

$$M_p = \begin{cases} L^{\otimes p + 1} & p \geq 0 \text{ even}, \\ L^{\otimes p} & p > 0 \text{ odd}. \end{cases}$$

Then for relative Hochschild homology over k,

$$\text{HH}_n(A, L) = \bigoplus_{p+q=n} M_p \otimes_R \text{HH}_q(R).$$

Proof. Let $C_*(A, L)$ be the relative Hochschild complex; the subspace $L^{\otimes 2m+1}$ of $C_{2m}(A, L)$ consists of cycles, and induces a map $M_{2m} = L^{\otimes 2m+1} \to \text{HH}_{2m}(A, L)$, because for $x_i \in L$ and $r \in R$ we have

$$(-1)^b(x_0 \otimes \cdots \otimes x_i \otimes r \otimes x_{i+1} \cdots) = (x_0 \otimes \cdots \otimes x_i \otimes x_{i+1} \cdots) - (x_0 \otimes \cdots \otimes x_i \otimes r \otimes x_{i+1} \cdots).$$

Because $Bb + bB = 0$, where $B : C_*(A, L) \to C_{*+1}(A, L)$ is the Connes operator, the subspace $B(L^{\otimes 2m+1})$ of $C_{2m+1}(A, L)$ also consists of cycles and induces a map $M_{2m+1} = L^{\otimes 2m+1} \to \text{HH}_{2m}(A, L)$. Thus we have a graded map $M_* \to \text{HH}_{2m}(A, L)$. Because $\text{HH}_*(A, L)$ is a graded module over $\text{HH}_*(R)$, we get a canonical R-module map from $M_* \otimes_R \text{HH}_*(R)$ to $\text{HH}_*(A, L)$. To see that it is an isomorphism, we may assume R is local, whence $A = R[x]/x^2$. By the Künneth formula, we are reduced to the case $R = k$, which is straightforward. \hfill \Box

Acknowledgements. The authors would like to thank M. Schlichting, whose contributions go beyond the collaboration \cite{schlichting}. C. Weibel would like to thank his children for riding the roller coaster “Dueling Dragons” enough times for him to work out the example in Theorem \ref{thm:example}. \hfill \Box

References

[1] M. Artin, A. Grothendieck, and J. L. Verdier. *Théorie des topos et cohomologie étale des schémas. Tome 2*. Springer-Verlag, Berlin, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 270.

[2] H. Bass and M. P. Murthy. Grothendieck groups and Picard groups of abelian group rings. *Annals of Math.*, 86:16–73, 1967.
A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes in Math., pages 80–130. Springer, Berlin, 1978.

G. Cortiñas, C. Haesemeyer, M. Schlichting and C. A. Weibel. Cyclic homology, cdh-cohomology and negative K-theory. Preprint. Available at http://www.math.uiuc.edu/K-theory/0722/, 2005.

J. Cuntz, D. Quillen. Excision in bivariant periodic cyclic homology. Invent. Math. 127:67-98, 1997.

Thomas G. Goodwillie. Relative algebraic K-theory and cyclic homology. Ann. of Math. (2), 124(2):347–402, 1986.

Christian Haesemeyer. Descent properties of homotopy K-theory. Duke Math. J., 125:589–620, 2004.

Christian Kassel. Cyclic homology, comodules and mixed complexes. J. of Algebra, 107:195–216, 1987.

C. Kassel, A. B. Sletsjøe. Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology. Math. Scand., 70:186–192, 1992.

Jean-Louis Loday. Cyclic homology, volume 301 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco.

Carlo Mazza, Vladimir Voevodsky and Charles Weibel Lecture notes on motivic cohomology. AMS, to appear in 2006.

Y. Nisnevich. The completely decomposed topology, pp. 241–341 in NATO ASI 279, Kluwer, 1989.

Andrei Suslin and Vladimir Voevodsky. Bloch-Kato conjecture and motivic cohomology with finite coefficients. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 548 of NATO Sci. Ser. C Math. Phys. Sci., pages 117–189. Kluwer Acad. Publ., Dordrecht, 2000.

Ton Vorst. Localization of the K-theory of polynomial extensions. Math. Ann., 244:33–54, 1979.

Ton Vorst. Polynomial extensions and excision for K_1 Math. Ann., 244:193–204, 1979.

Charles Weibel. Homotopy algebraic K-theory AMS Contemp Math., 83:461–488, 1989.

Charles Weibel. An introduction to homological algebra. Cambridge Univ. Press, 1994.

Charles Weibel. Cyclic homology for schemes. Proc. AMS, 124:1655–1662, 1996

Charles Weibel. The Hodge filtration and cyclic homology. K-theory 12:145–164, 1997.

Charles Weibel. The negative K-theory of normal surfaces. Duke Math. J., 108:1–35, 2001.