ABSTRACT

Introduction: To assess excess use of coronary angiography prior to coronary artery bypass graft surgery and its association with mortality, health care costs, and hospital quality in Turkey.

Methods: Using Turkish National Health Insurance Data (2009–2011) that included patients who underwent cardiac surgery, coronary angiography utilization was identified. Propensity score matching was used to compare survival rates and annual health care costs of patients in a coronary angiography excess-use group (>1 angiogram) and in a standard-therapy group (1 angiogram). The empirical Bayesian approach was used to combine mortality and hospital volume for quality index. The relationship between hospital quality and excess use of coronary angiography was assessed using Chi-squared tests.

Results: Out of 20,126 patients identified, 7.27% of patients underwent excessive coronary angiography procedures (excess-use group), with an average annual cost at 9.7% higher than those who had a single angiography (standard-therapy group; \(P < 0.01 \)). Operational mortality associated with excessive use was significantly higher as well (7.4% versus 5.4%, \(P < 0.02 \)). There exists variation in the use of coronary angiography across cities and hospitals. Patients who underwent cardiac surgery in high-quality hospitals were less likely to have excessive angiography use than those in low-quality hospitals (7.0% versus 9.5%, \(P < 0.01 \)).

Conclusion: In Turkey, excess use of coronary angiography prior to coronary artery bypass graft surgery is associated with higher mortalities and hospital costs.
operational mortality, higher expenditures, and lower hospital quality.

Keywords: Angiography; Coronary artery bypass graft surgery; Coronary artery disease; Health care costs; Hospital quality; Turkey

INTRODUCTION

Coronary artery bypass graft (CABG) surgery is one of the most common surgical procedures performed to relieve angina symptoms in patients with coronary artery disease [1, 2]. The surgery improves the quality of life and survival rates of patients with coronary artery disease [3–5].

Coronary angiography is considered the standard procedure for CABG assessment [6]. Every year, millions of patients get an angiogram, wherein a long, thin, flexible tube called a catheter is inserted in the arm or groin, and threaded to the heart to check for blocked arteries that may lead to a heart attack. Dye is injected through the tube to make blockages visible on X-rays [7]. Although angiographies are effective in select populations, the overall appropriateness of their use is questioned [8–10]. The test carries a small (<1%), but serious, risk of causing a stroke or heart attack, and also entails radiation exposure [11].

The troubling association between the increased number of CABG surgeries and high frequency of costly angiograms to check for heart disease has caused payers to request studies to outline the benefits, risks, and outcomes of these procedures. The cost of these procedures will be major contributors to increased health care spending [12]. Prior studies have indicated that excess use of and increased costs associated with these procedures are related to variation in the quality of care [13].

This study aimed to demonstrate the variation in the use of coronary angiography for patients who underwent CABG surgery in Turkey using nationwide, real-world data. The difference in mortality rates and annual health care costs associated with coronary angiography overuse was calculated. The correlation between the number of angiographies and hospital quality based on a previously validated claims-based quality index was estimated.

METHODS

MEDULA, a nationwide integrated system shared between general health insurance and health care providers, was used for the analysis. Claims from 17,800 pharmacies, 5,600 general practitioners, 4,500 medical centers, 1,200 government hospitals, and 338 private hospitals are recorded in the data, covering over 80% of the population in Turkey.

All patients aged 18–99 years who underwent CABG surgery between April 1, 2009 and October 1, 2010 were identified using procedure codes from the International Classification of Diseases Tenth Revision Clinical Modification. Patients were assigned to “standard-therapy” or “excess-use” groups if they had only one or more than one coronary angiography, respectively, within 3 months of their first CABG diagnosis date (index date) during the identification period. Patients were required to be continuously enrolled 3 months prior to the index date and 12 months following the index date.

The first aim was to examine the extent to which overuse of coronary angiography varied geographically across cities and hospitals. The second aim was to assess the association of coronary angiography excess use with operational mortality, higher expenditures,
and hospital quality. Descriptive analyses were performed to compare risk factors, including demographic, clinical, and provider characteristics of coronary angiography patients. Demographic information regarding age, gender, and geographic region was available in the dataset.

The Elixhauser Index score was calculated to measure comorbidity burden [14]. This index is based on a comprehensive set of 30 International Classification of Diseases Ninth Revision Clinical Modification comorbidity flags. The detailed list is provided in the Table 4 of Appendix. To conceptually identify important comorbidities, the Elixhauser Index attempted to exclude information relating to other aspects of a patient’s condition. For example, a secondary diagnosis is considered to be comorbid only when it is not directly related to the principal diagnosis.

Complications were eliminated by excluding codes that reflect acute conditions. Therefore, in the Elixhauser Index, a number of diagnoses that may have been considered comorbidities were not counted, because certain conditions, such as pneumonia, pleural effusion, urinary tract infection, cardiac arrest, cardiogenic shock, and respiratory failure, were not distinguishable from complications that may have resulted from diagnostic or therapeutic interventions during hospitalization. Unimportant comorbidities were also eliminated because those such as benign prostatic hypertrophy, inguinal hernia, and diverticulitis do not significantly impact resource use or mortality, if they were not the principal diagnosis. Current coding for the Elixhauser Index is available from the Agency for Healthcare Research and Quality and is widely used in outcomes research [15].

Acuity admission and the Elixhauser Index score were used as a proxy for severity. The cardiac surgery volume and teaching hospital status were derived as provider characteristics. Health care utilization, mortality and health care costs were available in the dataset. Health care reimbursement amounts were converted to Euros. (1€ = 2.34 TRY, May 15, 2013).

This article does not contain any studies with human or animal subjects performed by any of the authors.

Statistical Analysis

Paired t tests and Chi-square tests were used to compare the demographic, clinical, and provider characteristics between the two groups: standard-therapy group and excess-use group. To estimate risk-adjusted differences in mortality and annual health care costs with the overuse of angiography, the propensity score matching (PSM) method was used. This technique, employed by the predicted probability of group membership, isolates the observed bias from the estimation [16]. Following previously published guidelines for choosing the most appropriate matching technique for the present data, one-to-one matching with caliber was used [17]. Caliber was selected as 25% of the standard errors of the estimated propensity score.

Using regression analysis, mortality rates and total health care costs for patients with standard therapy and excess use were also estimated. In particular, Cox regression was used for operational mortality estimation, and generalized linear models were used for total health care cost estimation for both groups.

Hospital quality was characterized by a previously validated composite score, which combines operational mortality with hospital volume information using Bayesian techniques [18]. Hospital procedure volume was assessed as the total number of procedures performed by
each hospital. Operational mortality was defined as death occurring before discharge or within 30 days of surgery. The authors calculated risk-adjusted hospital mortality using regression analysis. After testing the fit of several transformations, hospital volume was modeled as natural log of the continuous volume variable. Using this regression model, the authors estimated the volume-predicted mortality for each hospital, and ratio of the number of actual to expected deaths was then determined. The number of expected deaths was the sum of the patients of the predicted probability of death, derived from a logistic regression model estimated for all patients undergoing surgery. The dependent variable in the logistic regression was death, and the independent variables were patient demographic and clinical factors. The derived index is presented in quartiles to rank low- to high-quality hospitals. Since this index combines information from multiple quality domains into a single measure, it has been referred to as the “gold standard” for hospital performance comparisons on US national standards of safety, quality, and efficiency that are most relevant to patients and payers [19–21].

All statistical analyses were conducted using SAS® V.9.3 (SAS Institute Inc., North Carolina, USA) and STATA® V11 (StataCorp LP, Texas, USA). In particular, SAS V.9.3 is used for data management, and STATA V11 is used for statistical analysis.

RESULTS

A total of 20,126 patients satisfied all inclusion criteria, of which, 88.12% (n = 17,734) underwent CABG surgery after one coronary angiography (standard-therapy group), and 7.27% (n = 1,464) had more than one coronary angiography (excess-use group) within 3 months prior to CABG surgery. The distribution of excess use is presented in Fig. 1. Few CABG surgery patients (4.61%) did not utilize coronary angiography prior to surgery.

Most subjects were 45–64 years, and 27.01% of the cases were female. Patients most frequently resided in the Marmara Region (36.64%), followed by Central Anatolia (25.36%), the Mediterranean (12.47%), and the Aegean region (10.55%). Nearly one-third of the sample had comorbidity scores ≥2 (32.17%). Less than 1% of these patients were admitted into the emergency care settings. The majority of surgeries were performed in high-volume hospitals (58.75%), and 11.16% of the surgeries occurred in teaching hospitals (Table 1).

Geographic variation in coronary angiography use is presented in Fig. 2. To increase the reliability of the estimate, cities with <20 angiography procedures were not taken into consideration in the rates. The proportion of CABG surgery patients with excess use was the highest in Erzurum (13.36%), followed by Batman (12.28%), and Antalya (11.95%). Thirty-six out of 81 cities did not have centers for coronary angiography, and 1,288 patients underwent CABG surgery without having a coronary angiography. A total of 33.17%
Compared with standard-therapy patients, excess-use patients were less likely to be between the ages of 45 and 64 years (51.50% versus 54.85%, \(P < 0.02 \)), female (25.27% versus 27.30%, \(P < 0.1 \)), to reside in the Southeastern Anatolia region (4.30% versus 6.24%, \(P < 0.003 \)), and have their surgery in high-volume hospitals (Table 2). However, patients in the excess-use group resided in the Mediterranean region more frequently than those in the standard-therapy group (15.57% versus 12.28%, \(P < 0.001 \)). Patients who underwent CABG surgery in teaching hospitals were more likely to have more than one coronary angiography prior to surgery (14.41% versus 10.43%, \(P < 0.0001 \)).

After PSM, 1,464 patients were matched between patients in the excess-use and standard-therapy groups. Matched patients were similar in terms of their demographic, clinical, and provider characteristics (Table 3). Over the matched sample, where differences in demographic, clinical, and provider differences were adjusted, operational mortality (5.7% versus 4.4%, \(P < 0.01 \)) and annual health care costs were significantly higher for the excess-use group relative to the standard-therapy group (€8,634 versus €7,852, \(P < 0.01 \)).

After controlling for baseline demographic and clinical factors in the regression models, the results were consistent with PSM models. Operational mortality (5.7% versus 4.4%, \(P < 0.01 \)) and annual health care costs (€8,634 versus €7,852, \(P < 0.01 \)) were significantly higher for the excess-use group relative to the standard-therapy group.

Hospital quality was strongly associated with excess use. Only 7.0% of patients in hospitals with the highest quality rating were in the excess-use group within 30 days of CABG surgery, whereas the rate was significantly higher for low-quality hospitals (9.5%, \(P < 0.01 \); Fig. 4).

Table 1 Sample characteristics

Demographics	CABG patients \((n = 20,126)\)
Number of patients	20,126
Patient characteristics	
Age mean (SD)	62.13 (9.70)
18–30	16 (0.08)
31–44	689 (3.42)
45–64	10,992 (54.62)
65–74	6,273 (31.17)
≥75	2,156 (10.71)
Gender (% female)	5,436 (27.01)
Admission acuity (% emergency care)	13 (0.06)
Elixhauser Index score (≥2)	6,474 (32.17)
Regions	
Aegean	2,124 (10.55)
Marmara	7,374 (36.64)
Central Anatolia	5,084 (25.26)
Mediterranean	2,509 (12.47)
Black Sea	1,222 (6.07)
Eastern Anatolia	589 (2.93)
Southeastern Anatolia	1,224 (6.08)
Provider characteristics	
Teaching hospital	2,246 (11.16)
Hospital volume quartiles	
Q1 (low)	1,465 (7.28)
Q2	2,234 (11.10)
Q3	4,602 (22.87)
Q4 (high)	11,825 (58.75)

\(CABG\) Coronary artery bypass graft, \(SD\) standard deviation

\((n = 68)\) of hospitals had excess use rates below 5%, while 5.37% \((n = 11)\) of hospitals had excess use rates exceeding 20% (Fig. 3).
For the complete overview of the study population, patients who did not receive the angiography were also compared with the main study groups. After applying risk adjustment, standard-therapy patients used lower mortality rates (3.96% versus 6.01%, \(P < 0.010 \)) and incurred lower annual health care costs (€7,850 versus €8,081, \(P < 0.010 \)) relative to patients who did not have angiography. Patients with excess use of angiography incurred higher annual health care costs (€8,695 versus €8,148, \(P < 0.010 \)) and had no significant operational mortality rate advantage (5.74% versus 6.09%, \(P = 0.675 \)), relative to patients without angiography use.

DISCUSSION

Several studies reported on variations in the utilization of cardiac procedures [20–25]. These studies showed that variation is related to age, gender, racial, and geographic factors.

In this study, angiography utilization in a disease-specific (CABG surgery) cohort of patients with uniform insurance coverage in Turkey was examined. Results determined that after adjusting for demographic and clinical factors, there was significant variation in coronary angiography use. Regional practice patterns emerged, showing that more procedures were performed in cities such as Erzurum, Batman, and Antalya, relative to the rest of Turkey.

Current guidelines for patients undergoing assessment for obstructive coronary artery disease are designed to limit the number of invasive angiographies and thereby enhance the diagnostic yield of cardiac catheterization [26]. However, a substantial increase in these procedures has contributed to a rise in medical costs. Several factors are responsible for this increase, including wider availability of technology, increased demand by patients and physicians, and favorable reimbursements [27].
In Turkey, due to the implementation of the Health Transformation Program by the Ministry of Health in the last decade, the health status of the Turkish population has improved significantly [28]. Therefore, the rise in procedure utilization is expected. However, the association with excess use and hospital quality is of particular interest. Often, coronary

Demographics	Standard-therapy group	Excess-use group	\(P \) value
Number of patients	17,374	1,464	
Patient characteristics			
Age mean (SD)	62.16 (9.63)	62.36 (9.99)	0.4614
18–30	12	2	0.3624
31–44	572	58	0.1712
45–64	9,530	754	0.0134
65–74	5,419	481	0.1871
\(\geq 75 \)	1,841	169	0.2595
Gender (% female)	4,743	370	0.0941
Admission acuity (% emergency care)	10	1	0.8701
Elixhauser index	5,513	527	0.0008
Regions			
Aegean	1,818	152	0.9221
Marmara	6,347	545	0.5959
Central Anatolia	4,398	346	0.1550
Mediterranean	2,134	228	0.0003
Black Sea	1,078	85	0.5428
Eastern Anatolia	515	45	0.8126
Southeastern Anatolia Region	1,084	63	0.0029
Provider characteristics			
Teaching (%)	1,812	211	<0.0001
Hospital volume quartiles			
Q1 (low)	1,241	110	0.5974
Q2	1,882	198	0.0016
Q3	3,955	393	0.0004
Q4 (high)	10,296	763	<0.0001

\(CABG \) Coronary artery bypass graft, SD standard deviation
angiography is done in the urban centers. When patients move to higher volume hospitals for CABG surgery, the procedure is repeated, yielding excess use of this invasive and risky procedure. Problems may arise when physicians fear missing something or doing too little. This attitude has developed a culture where individuals feel that doing more tests and knowing more are always the proper course. Therefore, communication between angiography centers and health care professionals must become more efficient, in order to determine which patients should be subjected to the cost and risk of an angiogram. Patients may question their doctors about the need for the second test, as well as any risks or
alternative options. The annual health care costs for the excess-use group were 9.7% higher than for standard-therapy group. Mortality rates were 1.37 times higher.

Hospital quality was assessed using a previously validated composite score, which has been applied by a large group of coalitions in the United States [19, 21]. Traditional quality indicators, whether they are based on structure, process, or direct outcomes measures, have significant limitations. For example, hospital volume is important for high-risk procedures but does not reliably predict performance for individual hospitals. Process measures often fail to explain observed variations in hospital mortality rates. Direct outcomes measures, because of sample size limitations, are often imprecisely estimated and do not produce a reliable estimate of hospital performance. The composite measure used in this study has the potential to obviate these limitations, because it combines information from surgical volume and operational mortality into a single summary measure. This study presents a negative relationship between high-quality hospitals and excess use of coronary angiography.

Numerous studies have been done to evaluate factors that may influence the results of a variety of surgical procedures. Almost invariably, when assessed, surgeon experience is an important factor in determining the likelihood of successful outcomes from surgery. For example, in shoulder replacement procedures, a surgeon who performs 30 replacements over 6 years is considered “high volume” [29]. These doctors had lower complication rates and their patients had shorter hospital stays than “low volume” surgeons. In hip replacement surgery, surgeons who performed fewer than 30 hip replacements each year had more patients requiring revision surgery [30]. In another study, 5 years of scoliosis surgery experience did not improve outcomes [31]. Therefore, it is difficult to define a specific number of procedures that deem a surgeon proficient. In the present study, the authors empirically determined the effect of the volume of procedures by including them in the hospital quality index.

The present study has several strengths. To the authors’ knowledge, this is the first study in Turkey that includes a large, diverse, and geographically varied sample of patients who received coronary angiography before CABG surgery. It is also the first study that shows the relationship between hospital quality and the excess use of coronary angiography. Excess costs associated with angiography overuse and operational mortality are also presented for the first time in Turkey.

Data were limited in their clinical information related to disease severity in coronary angiography patients. The Elixhauser Index and admission acuity were used in the attempt to control for differences. These measures are not representative of disease severity; therefore, the impact of severity on coronary angiography excess use may be underestimated. Although claims data are extremely valuable in revealing the real-world practice of procedures and determining

![Fig. 4](image_url)

Fig. 4 Excess use of coronary angiogram (>1 angiography) and hospital quality. Q quarter
associated costs, these data are collected for payment purposes rather than research. Presence of a diagnosis code on a medical claim is not necessarily proof of disease presence, as diagnoses may be miscoded. Random miscoding would not affect the present results; however, if it is systematically related to hospitals or geographic regions, then the study results would be biased. The magnitude of miscoding and its effect on the extent of variation remains unclear.

Risk adjustment was performed using PSM, and although the method is widely used in outcomes research, it controls only observed bias. Regression analysis is another technique to control for observable bias. There has been some discussion about which method should be chosen to remove observable bias [32]. Proponents of the PSM method outline several advantages of the technique over regression analysis. First, without involving the outcome variable in the selection process, PSM can design observational studies in an analogous way, compared with the way randomized clinical trials are designed [33]. Regression analysis uses the outcome as a left-hand-side variable, which is not supposed to be available during randomization. Second, confounding by treatment variables is often the main challenge to validity, and the propensity score focuses directly on treatment variables [34]. Third, a matched analysis can eliminate non-comparable exposed subjects [35]. Finally, PSM provides robust estimates when there are relatively few outcomes to compare with the number of potentially few outcomes [36–38]. Proponents of regression analysis, however, focus on statistical advances in regression literature [39, 40]. Deciding on a matching algorithm and obtaining standard errors for inference through matching are more complicated than conducting regression analysis. Little of the existing literature examines this process. Thus, careful regression analysis with good controls and flexible functional forms is often the most accurate.

In this paper, the authors applied both PSM and regression analysis, and the results were similar. Shah et al. compared the PSM method and traditional regression modeling in observational studies. Among 78 exposure-outcome associations in 43 studies evaluated, statistical significance differed in only 10% of cases [41]. Stürmer et al. [42] compared 69 studies and found that in only 13% of the studies, PSM estimates differed by more than 20% from the regression model. In the present example, due to excess use, 1.37 times the associated risk increase in operational mortality in PSM results decreased to 1.29 times in traditional regression analysis. Associated cost differences in PSM analysis increased from €774 to €782, compared with traditional regression analysis. PSM and traditional regression analyses yielded significant differences in outcomes between the standard-therapy and excess-use groups. Consistent with the Shah et al. and Stürmer et al. studies, comparison estimates between the two techniques were not significantly different.

Unobserved bias can occur due to missing disease severity information and the use of advanced techniques, such as the instrumental variable approach [43]. However, these techniques are bounded by their own limitations [44, 45].

CONCLUSION

Efforts to curb the growth of health care spending in Turkey inevitably require a decrease in the variation of quality health care. A systematic examination of excess use of invasive procedures is an essential step in targeting cost-reduction
efforts along with improving health care quality. By analyzing real-world data, this study showed that there exists a variation in coronary angiography use in Turkey. Excess use of coronary angiography prior to CABG surgery is associated with higher operational mortality expenditures and lower hospital quality.

ACKNOWLEDGMENTS

No funding or sponsorship was received for this study or publication of this article. Editorial support was provided by Elizabeth Moran of STATinMED Research. Dr. Baser is the guarantor for this article, and takes responsibility for the integrity of the work as a whole.

Conflict of interest. Onur Baser declares no conflict of interests. Abdulkadir Burkan declares no conflict of interests. Erdem Baser declares no conflict of interests. Rasim Koselerli declares no conflict of interests. Emre Ertugay declares no conflict of interests. Akif Altinbas declares no conflict of interests.

Compliance with Ethics Guidelines. This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

APPENDIX

See Table 4.

Table 4 List of comorbid conditions in the Elixhauser index

Condition
Congestive heart failure
Cardiac arrhythmias
Valvular disease
Pulmonary circulation disorders
Peripheral vascular disorders
Hypertension (complicated and uncomplicated)
Paralysis
Other neurological disorders
Chronic pulmonary disease
Diabetes without chronic complications
Diabetes with chronic complications
Hypothyroidism
Renal failure
Liver disease
Chronic peptic ulcer disease (includes bleeding only if obstruction is also present)
HIV and AIDS
Lymphoma
Metastatic cancer
Solid tumor without metastasis
Rheumatoid arthritis/collagen vascular diseases
Coagulation deficiency
Obesity
Weight loss
Fluid and electrolyte disorders
Blood loss anemia
Deficiency anemia
Alcohol abuse
Drug abuse
Psychoses
Depression

The original Definitions of comorbidities were given in a 1998 article by Elixhauser et al. [14]; however, these definitions have been updated. See (http://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp) (accessed May 28, 2013) to reflect the changes in the codes to define the comorbidities. We used the updated version in this study.
REFERENCES

1. CABRI Trial Participants. First-year results of CABRI (coronary angioplasty versus bypass revascularisation investigation). Lancet. 1995;346:1179–84.

2. The Bypass Angioplasty Revascularization (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med. 1996;335:217–25.

3. Braxton JH, Marrin CA, McGrath PD, Northern New England Cardiovascular Disease Study Group, et al. Mediastinitis and long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg. 2000;70:2004–7.

4. Varnauskas E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med. 1988;319:332–7.

5. Rogers WJ, Coggin CJ, Gersh BJ, et al. Ten-year follow-up of quality of life in patients randomized to receive medical therapy or coronary artery bypass graft surgery. The Coronary Artery Surgery Study (CASS). Circulation. 1990;82:1647–58.

6. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679–86.

7. Bernstein SJ, Laouri M, Hilborne LH, et al. Coronary angiography. USA: RAND Corporation, 1992. p. s118–s128.

8. McGlynn EA, Naylor CD, Anderson GM, et al. Comparison of the appropriateness of coronary angiography and coronary artery bypass graft surgery between Canada and New York State. JAMA. 1994;272:934–40.

9. Bernstein SJ, Hilborne LH, Leape LL, et al. The appropriateness of use of coronary angiography in New York State. JAMA. 1993;269:766–9.

10. Leape LL, Hilborne LH, Park RE, et al. The appropriateness of use of coronary artery bypass graft surgery in New York State. JAMA. 1993;269:753–60.

11. Kennedy JW. Complications associated with cardiac catheterization and angiography. Cathet Cardiovasc Diagn. 1982;8:5–11.

12. Levit K, Smith C, Cowan C, Lazenby H, Sensenig A, Catlin A. Trends in U.S. health care spending, 2001. Health Aff (Millwood). 2003;22:154–64.

13. Lucas FL, DeLorenzo MA, Siewers AE, Wennberg DE. Temporal trends in the utilization of diagnostic testing and treatments for cardiovascular disease in the United States, 1993–2001. Circulation. 2006;113:374–9.

14. Elixhauser A, Steiner C, Harris D, Coffey R. Comorbidity measures for use with administrative data. Med Care. 1998;36:8–27.

15. Baser O, Palmer L, Stephenson J. The estimation power of alternative comorbidity indices. Value Health. 2008;11:946–55.

16. Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757–63.

17. Baser O. Too much ado about propensity score models? Comparing methods of propensity score matching. Value Health. 2006;9:377–85.

18. Staiger DO, Dimick JB, Baser O, Fan Z, Birkmeyer JD. Empirically derived composite measures of surgical performance. Med Care. 2009;47:226–33.

19. Dimick JB, Staiger DO, Baser O, Birkmeyer JD. Composite measures for predicting surgical mortality in the hospital. Health Aff. 2009;28:1189–98.

20. Ayanian JZ, Epstein AM. Differences in the use of procedures between women and men hospitalized for coronary heart disease. N Engl J Med. 1991;325:221–5.

21. Ayanian JZ, Udvarhelyi IS, Gatsonis CA, Pashos CL, Epstein AM. Racial differences in the use of revascularization procedures after coronary angiography. JAMA. 1993;269:2642–6.

22. Goldberg KC, Hartz AJ, Jacobsen SJ, Krakauer H, Rimm AA. Racial and community factors influencing coronary artery bypass graft surgery rates for all 1986 Medicare patients. JAMA. 1992;267:1473–7.

23. Steingart RM, Packer M, Hamm P, The Survival and Ventricular Enlargement Investigators, et al. Sex differences in the management of coronary artery disease. N Engl J Med. 1991;325:226–30.

24. Wenneker MB, Epstein AM. Racial inequalities in the use of procedures for patients with ischemic heart disease in Massachusetts. JAMA. 1989;261:253–7.

25. Whittle J, Conigliaro J, Good CB, Loefgren RP. Racial differences in the use of invasive cardiovascular procedures in the Department of Veterans Affairs medical system. N Engl J Med. 1993;329:621–7.

26. Fraker TD Jr, Fihn SD, Gibbons RJ, et al. 2007 chronic angina focused update of the ACC/AHA
2002 Guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 Guidelines for the management of patients with chronic stable angina. Circulation. 2007;116:2762–72.

27. Medicare Payment Advisory Commission. A Data Book: Health care spending and the Medicare program, June 2012. Washington, DC: MedPAC; 2007. http://www.medpac.gov/documents/Jun12DataBookEntireReport.pdf. Accessed August 18, 2012.

28. The Ministry of Health of Turkey. Health Transformation Programme in Turkey, Progress Report, September 2010. http://www.sb.gov.tr/EN/dosya/2-1253/h/healthtransformationprogrammeinturkey.pdf. Accessed May 25, 2012.

29. Paxton EW, Namba RS, Maletis GB, et al. A prospective study of 80,000 total joint and 5000 anterior cruciate ligament reconstruction procedures in a community-based registry in the United States. J Bone Joint Surg. 2010;92:117–32.

30. Jain N, Pietrobon R, Hocker S, Guller U, Shankar A, Higgins LD. The relationship between surgeon and hospital volume and outcomes for shoulder arthroplasty. J Bone Joint Surg. 2004;86:496–505.

31. Stanton T. Experience is a factor in scoliosis surgery outcomes. AAOSNow. 2011;5.

32. Baser O. Choosing propensity score matching over regression adjustment for causal inference: when, why and how it makes sense. J Med Econ. 2007;10:379–91.

33. Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv Outcomes Res Methodol. 2001;2:169–88.

34. Glynn RJ, Schneeweiss S, Wang PS, Levin R, Avorn J. Selective prescribing led to overestimation of the benefits of lipid-lowering drugs. J Clin Epidemiol. 2006;59:819–28.

35. Gu XS, Rosenbaum PR. Comparison of multivariate matching methods: structures, distances, and algorithms. J Comput Graph Stat. 1993;2:405–20.

36. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

37. Cepeda MS. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158:280–7.

38. King G, Zeng L. Estimating risk and rate levels, ratios and differences in case–control studies. Stat Med. 2002;21:1409–27.

39. Wooldridge J. Inverse probability weighted estimation for general missing data problems. J Econometrics. 2007;141:1281–301.

40. Wooldridge JM. Introductory econometrics: a modern approach. 3rd ed. Mason: Thomson/ South-Western; 2006. p. s220–s241.

41. Shah BR, Laupacis A, Hux JE, Austin PC. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58:550–9.

42. Stürmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59:437–47.

43. Wooldridge JM. Econometric analysis of cross section and panel data. Cambridge: MIT Press; 2002. p. 752.

44. Baser O. Too much ado about instrumental variable approach: is the cure worse than the disease? Value Health. 2009;12:1201–9.

45. Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica (Evanston, Ill). 1997;65:557–86.