SIRT7: a sentinel of genome stability

Ming Tang¹,†, Huangqi Tang²,†, Bo Tu³ and Wei-Guo Zhu²

¹Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People’s Republic of China
²Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, People’s Republic of China
³Fred Hutchinson Cancer Research Center, Seattle, WA 98101, USA

SIRT7 is a class III histone deacetylase that belongs to the sirtuin family. The past two decades have seen numerous breakthroughs in terms of understanding SIRT7 biological function. We now know that this enzyme is involved in diverse cellular processes, ranging from gene regulation to genome stability, ageing and tumorigenesis. Genomic instability is one hallmark of cancer and ageing; it occurs as a result of excessive DNA damage. To counteract such instability, cells have evolved a sophisticated regulated DNA damage response mechanism that restores normal gene function. SIRT7 seems to have a critical role in this response, and it is recruited to sites of DNA damage where it recruits downstream repair factors and directs chromatin regulation. In this review, we provide an overview of the role of SIRT7 in DNA repair and maintaining genome stability. We pay particular attention to the implications of SIRT7 function in cancer and ageing.

1. Introduction

The integrity and stability of the genome are constantly challenged by both intrinsic or extrinsic insults such as replication stress, oxidative damage, ultraviolet light, ionizing radiation and various genotoxic reagents, which can ultimately lead to DNA damage [1]. If DNA damage is not properly repaired, it can result in diseases such as cancer, or pathologies associated with ageing [2,3]. To counteract DNA damage, cells have evolved an elaborate mechanism—a tightly regulated DNA damage response (DDR) that detects, signals and repairs DNA lesions. Both normal and malignant cells depend on various DDR pathways to protect their genomes [4]. Depending on the cell cycle stage, genetic background and types of DNA damage, there are five major repair pathways, including non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), base excision repair (BER) and nucleotide excision repair (NER) [5].

Post-translational modifications have a crucial role in mediating the cellular response to DNA damage, providing a means of changing protein activity without the necessity of de novo protein synthesis [6]. The most common post-translational modifications include phosphorylation, ubiquitination, acetylation, methylation and sumoylation [6]. These modifications are reversible due to their regulation by two opposing enzymes. For example, lysine residues are acetylated due to the activity of acetyltransferases and deacetylated due to the activity of histone deacetylases (HDACs) [7].

In higher eukaryotes, HDACs can be divided into four classes. Class I Rpd3-like enzymes are comprised of HDAC1, 2, 3 and 8. Class II Hda1-like enzymes are composed of HDAC4, 5, 6, 7, 9 and 10. Class III Sir2-like enzymes consist of seven sirtuins, SIRT1-7, which depend on NAD⁺ as a coenzyme. Class IV contains only HDAC11 [7–9]. Sirtuins are a class of deacetylases that are homologous to Sir2 (silent information regulator 2), seven members of this family, SIRT1-7, all have a conserved catalytic domain (figure 1). In addition to homology, sirtuins have different types of enzyme catalytic activities, such
as ADP ribosyl transferase, desuccinylase and demalonylase, the diverse enzyme activities endow sirtuins with diverse biological functions [10–12].

Among the sirtuins, SIRT7 is the least studied protein, but recent breakthroughs have shown that it is also involved in multiple cellular processes and its biological function is gradually becoming clear. In this review, we outline the current studies regarding the role of SIRT7 in DDR and its potential therapeutic role in disease.

2. SIRT7 structure and function

SIRT7 encodes a 400 amino acid protein and in humans’ functions as an NAD+-dependent class III histone deacetylase [13]. Compared with other nuclear-localized sirtuins (SIRT1 and SIRT6), SIRT7 exhibits deacetylase, desuccinylase and deglutarylase activities [14–16]. Over the past two decades, several SIRT7 substrates have been identified (table 1). The wide variety of SIRT7 substrates suggests that SIRT7 participates in diverse biological processes.

In chromatin, SIRT7 selectively deacetylates histone H3 lysine 18 (H3K18Ac), which serves to maintain the cellular transformation ability of human cancer cells and tumour formation in vitro [14]. SIRT7 also functions as a desuccinylase of histone H3 lysine 122 and a deglutarylase of histone H4 lysine 91 to promote chromatin compaction [15,16]. Despite its prominent roles regulating chromatin, SIRT7 also deacetylates several non-histone proteins, including U3-specific protein U3-55 k and nucleolar organizer polymerase-associated factor 53 (PAF53) that is involved in the precursor ribosome RNA (pre-rRNA) processing [19,24]. SIRT7 also deacetylates GA-binding protein 1 (GABP1) to regulate mitochondrial function and phosphoglycerate kinase 1 (PGK1) in regulating glycolysis [21,22]. In addition, SIRT7 participates in ageing processes and breast cancer lung metastasis by deacetylating nucleophosmin (NPM1) and SMAD4 [20,30]. SIRT7 also serves as a key activator of the telogen-to-anagen transition in cycling hair follicles; here, it acts as the deacetylase of NFATc1, which helps activate dynamic hair follicle stem cells [39]. To further widen the range of SIRT7 deacetylation targets, our laboratory conducted stable isotope labelling in SIRT7 knockout cell line coupled with quantitative mass spectrometry. We found a comprehensive list of candidates involved in a variety of functions, ranging from gene regulation to chromatin architecture homeostasis and metabolism [41].

Moreover, multiple studies reveal that SIRT7 regulates proteostasis/endoplasmatic reticulum (ER) stress, mitochondrial protein folding stress and mitochondrial metabolism [17,22,23,42]. SIRT7 is recruited to the promoters of ribosomal protein genes via transcription factor Myc to repress gene expression and to alleviate ER stress [42]. In addition, SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress, and expression of SIRT7 is reduced in aged hematopoietic stem cells (HSCs) [23]. The same phenomenon was observed in human hematopoietic cells [43]; conversely, SIRT7 upregulation significantly improved the regenerative capacity of aged HSCs [23]. This is the first report linking stem cell ageing and SIRT7, giving the hope for targeting the dysregulated cellular programme to reverse HSC ageing. SIRT7 deacetylates GABPβ1, an important role of regulator of nuclear-encoded mitochondrial genes, which impacts mitochondrial function [22]. SIRT7 arginine methylation, which inhibits its H3K18 deacetylase activity, mediated glucose sensing and signalling with mitochondria biogenesis to maintain energy balance [17].

Most notably, SIRT7 is a crucial player in the DDR: it has histone deacetylase activity at DNA damage sites and exhibits other catalytic activities towards proteins involved in DNA damage and repair [15,35,44]. We discuss these processes in more detail below.

3. SIRT7 in maintaining genome stability

3.1. SIRT7: guardians of genome integrity and stability

Numerous studies support a role for SIRT7 in genome stability and organisinal viability. Much support has come from the use of Sirt7 knockout mice (figure 2). Vakhrusheva et al. [17] found that Sirt7-deficient mice suffer from degenerative heart hypertrophy, accompanied by inflammatory cardiomyopathy and decreased resistance to cytotoxic and oxidative stress. In female Sirt7 knockout mice, Vazquez et al. [45] found that Sirt7−/− females exhibit reduced fertility without an effect on oocyte meiotic maturation. Multisystemic mitochondrial dysfunction is also observed in Sirt7-deficient mice.
SIRT7 functions at chromatin to suppress ER stress and prevents fatty liver disease, and SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease, and liver-specific reconstitution of SIRT7-deficient mice reversed the fatty liver phenotype. Strikingly, SIRT7 overexpression in the livers of high-fat, diet-fed mice suppressed ER stress and rescued the fatty liver phenotype [42]. SirT7−/− pups are born at sub-Mendelian ratios, indicating a defect in embryogenesis. Mutant mice that survive to adulthood exhibit a shortened lifespan with signs of

Figure 2. SIRT7 knockout mice phenotypes.

substrate	activity	functions
p53	deacetylation	apoptosis, heart hypertrophy and inflammatory cardiomyopathy [17]
H3K18	deacetylation	oncogenic transformation [14]
DAF-16	deacetylation	stress response [18]
PAF53	deacetylation	pre-rRNA processing [19]
NPM1	deacetylation	ageing [20]
PGK1	deacetylation	glycolysis [21]
GABPβ1	deacetylation	mitochondrial homeostasis [17,22,23]
U3-55k	deacetylation	pre-rRNA processing [24]
H3K122	desuccinylation	chromatin compaction [15]
FOXO3	deacetylation	monocyte apoptosis [25]
FKBP51	deacetylation	Akt activity [26]
CDK9	deacetylation	RNA polymerase II transcription [27]
DDB1	deacetylation	activity of the CUL4B/DDB1/DCAF1 E3 ubiquitin ligase complex [28]
DDX21	deacetylation	transcription elongation and genome stability [29]
SMAD4	deacetylation	breast cancer metastasis [30]
OSX	deacetylation	bone formation [31]
WDR77	deacetylation	transmethylase activity of the WDR77/PRMT5 complex [32]
Fibrillarin	deacetylation	rRNA synthesis [33]
H3K36/K37	deacetylation	heterochromatin silencing [34]
ATM	deacetylation	DNA repair [35]
Ran	deacetylation	nuclear export of NF-κB p65 [36]
H4K91	deglutanylation	chromatin structure [16]
GATA4	deacetylation	stress-induced cardiac hypertrophy
STRAP	deacetylation	p53 activity and stability [37]
CRY1	deacetylation	circadian phase coherence and glucose homeostasis [38]
Nfatc1	deacetylation	hair growth [39]
USP39	deacetylation	hepatocellular carcinoma development [40]

Table 1. SIRT7 targets.
accelerated ageing such as premature (6 months), kyphosis and decreased gonadal fat pad content [44]. Sirt7−/− mice exhibit elevated blood lactate levels, exercise intolerance, cardiac dysfunction, microvesicular steatosis and age-related hearing loss. In addition, in the liver-specific Sirt7 KO (Sirt7^{liver−/−}) mice display the same hepatic mitochondrial dysfunction and represents SIRT7 activity in a cell-autonomous effect on mitochondria function [22]. SIRT7 expression is reduced in aged HSCs, which are characterized by increased apoptosis, loss of quiescence and decreased reconstitution capacity, features resembling those observed in Sirt7−/− mice, and in mice reconstituted with Sirt7−/− HSCs improved their regenerative capacity [23].

Using hair follicle stem cell-specific Sirt7 knockout mice, Li et al. [39] found that loss of Sirt7 impedes the follicle life cycle transition from telogen to anagen phase and delays hair growth. In addition, in response to pressure overload, the cardiomyocyte-specific Sirt7 knockout mice show severe cardiomyocyte hypertrophy [46]. Osteopenia-specific Sirt7 knockout mice showed decreased bone formation that occurred via acyla-SIRT7 deficiency could be explained by the functional link of white fat accumulation. The phenotypic consequences of thus restrained adipocyte differentiation and diminished regenerative capacity [23].

Interestingly, Vazquez et al. [44] showed that SIRT7-mediated H3K18 deacetylation affects 53BP1 recruitment to DNA damage sites. H3K18Ac is directly involved in DNA repair, and H3K18Ac levels are fine-tuned by SIRT7 in response to DNA damage. Meanwhile, Li et al. [15] showed that SIRT7 is recruited to DSBs and catalyses the desuccinylation of histone H3 lysine 122, thereby promoting chromatin condensation and efficient DSB repair. Bao et al. [16] demonstrated that endogenous Sirt7 functions as a histone deglutarylase to regulate histone H4lysine 91 glutaryl dynamics. In response to DNA damage, Sirt7 depletion hindered the removal of H4K91glu. Similar to SIRT7-mediated H3K122 desuccinylation, the removal of H4K91 glutarylation also aims at promoting chromatin condensation for the DNA repair process [16] (figure 3a). It is of great interest that all three sites—H3K18Ac, H3K122succ and H4K91glu—are mediated by SIRT7 during DNA damage repair. Whether these sites function independently or in a synergistic manner is largely unknown. Further studies are warranted to shed light on how SIRT7-mediated epi-genetic regulation collaborates with the functions of other repair proteins recruited to DSBs and the underlying regulatory network. However, based on the above findings, it is clear that SIRT7 is required during the early phase of DNA repair and that a signalling mechanism is deployed that links histone modification to DSB repair.

These findings establish the role of SIRT7 in the early phase of DNA repair and elucidate novel signalling that links histone modification and DSB-related repair. During the process of DNA damage and repair, the proteins recruited to DNA damage sites are gradually displaced and inactivated, which make the cells return to the normal state and ensure faithful DNA repair. Among the numerous key DNA damage response factors, ATM has been reported to be an apical kinase in response to DSBs. Through exposure to DNA damage, ATM is activated through a series of highly organized machineries [61–65]. Acetylation and phosphorylation are two key post-translational modifications involved in activation of ATM in response to DSBs, both are dynamically regulated. Our research fills the gap of the dynamic regulation of ATM acetylation, and we find that SIRT7 is gradually recruited to chromatin in the late phase of repair and deacetylase ATM, which is required for the dephosphorylation of ATM by the phosphatase WIP1, and thus ensure the faithful DNA repair [35] (figure 3b). How SIRT7 regulates the downstream of ATM signalling needs more exploration.

Interestingly, re-localization of SIRT7 from the nucleolus to DNA damage sites affects ribosomal transcriptional repression [44,66,67]. This finding suggests that SIRT7-mediated DNA damage double-strand break repair

DNA double-strand breaks (DSBs) constitute the most toxic type of DNA lesion. As such, they must be efficiently repaired to maintain genome stability. DSBs are mainly repaired by NHEJ, which is predominant in non-cycling cells exposed to genotoxic stress, and HR, which functions in proliferating cells as it requires the pairing of sister chromatids [48]. Regard-
DNA repair might have consequences on genome-wide transcriptional regulation under conditions of chronic DNA damage, plausibly the restoration of transcriptional profiles. On the other hand, R-loop is a three-stranded nucleic acid structure; its aberrant formation and persistence cause DNA damage. Song et al. [29] showed that SIRT7-mediated deacetylation of DDX21 deacetylation cooperates which helps to prevent R-loop accumulation and DSBs, thus safeguarding genome integrity.

3.3. Role of SIRT7 in cancer and ageing

Increased genome instability is a common hallmark of both ageing and cancer. Consequently, any defect in DNA repair can contribute to genomic instability and subsequently lead to accelerated ageing or tumorigenesis [68,69]. DNA damage accumulates with age, and defects in DNA repair can cause phenotypes of premature ageing. Below, we describe the emerging data that suggest defects in SIRT7-mediated genome stability can affect ageing.

A longevity function has been proved for mammalian sirtuins. Indeed, Sirt7-deficient mice exhibit a reduction in mean and maximum lifespans, which indicates the role of SIRT7 in the ageing process [17]. By performing a comparative interactomics study associated with DNA repair, chromatin assembly and ageing, Lee et al. [20] found that SIRT6 and SIRT7 regulate NPM1 during the ageing process.

Figure 3. The role of SIRT7 in DNA repair. (a) In response to DNA damage, SIRT7 is recruited to DSBs that depend on PARP1, where it deacetylates H3K18ac and allows 53bp1 recruitment for the repair via the NHEJ pathway. After its recruitment to chromatin, SIRT7 mediates H3K122 desuccinylation and H4K91 deglutarylation for chromatin compaction necessary for DNA repair. (b) In response to DNA damage, ATM is sequentially modified by acetylation and phosphorylation before ATM dissociates into an active monomer. At the late stage of DNA damage and repair, SIRT7 is gradually recruited to DNA damage sites and deacetylates ATM; this process facilitates ATM dephosphorylation by WIP1. After complete repair, ATM dimerizes into an inactive form.
As mentioned earlier, researchers offered insights into the role of SIRT7 in the ageing process, showing that SIRT7 protects adult hair follicle stem cells from ageing by ensuring their progression through the hair growth cycle [39,70]. Bi et al. [71] also delineated the mechanisms of human stem cell ageing, showing that SIRT7 can form a complex with the nuclear lamina and heterochromatin proteins to maintain a repressive heterochromatin state and regulate the innate immune response during stem cell ageing. Moreover, Liu et al. [72] showed that SIRT7 deficiency leads to lowered histone acetyltransferase 1 (HAT1) activity and decreased H4K5 and H4K12 acetylation, which affects chromatin assembly. They also obtained evidence that SIRT7 ablation results in aneuploidy and ageing phenotypes, including senescence and nuclear expansion [72].

Genomic instability in rDNA repeat sequences is an underlying cause of cell ageing [68]. Paredes et al. [73] uncovered an important role for SIRT7 in guarding against rDNA instability and protecting against senescence through association with SNF2H. Taken together, it seems that SIRT7 serves as an important regulator of mammalian longevity and might act as a molecular bridge between ageing and genome stability, paving the road for use. These preliminary findings offer support to investigate the value of targeting SIRT7 in the treatment of age-related diseases.

Based on the studies of SIRT7 in cancer, Kiran et al. [74] demonstrate that SIRT7 plays an important role in cell survival of osteosarcoma (U2OS) under DNA damage-induced stress. Specifically, the researchers showed that SIRT7 attenuated the effects of genomic stress, as SIRT7 knockdown cells showed increased susceptibility to the DNA damaging agent doxorubicin. Mechanistically, the cell cycle of SIRT7-overexpressing cells is temporarily halted at the G1/S phase when DNA damage is detected, probably to ensure DNA repair. SIRT7 resulted in reduced accumulation of γ-H2AX, p53 and the attenuation of stress-activated protein kinases (p38 and JNK) to maintain the genome integrity [74]. Beside the role of SIRT7-mediated H3K18 deacetylation in maintaining a malignant phenotype, Pandey & Kumar [75] provided evidence that H3K27-dependent acetylation of SIRT7 favours H3K18 deacetylation and downregulation of RPS7, which is involved in the DDR and cancer cell transformation. Finally, data from our laboratory support that SIRT7 has degraded in response to 5-fluorouracil treatment and renders colorectal cancer cells sensitive to radiation [76]. The identification of SIRT7 inhibitors could thus be of great importance with respect to cancer treatment.

4. Conclusion

SIRT7 is involved in diverse cellular processes, including energy homeostasis, chromatin regulation, gene regulation and ribosome biogenesis. Here, we have highlighted the roles of SIRT7 in maintaining genome stability through its involvement in the DDR and the repair of DSBs. While it is clear that SIRT7 serves to promote DNA repair and ensure genome stability, how SIRT7 might interact with HR, MMR, NER and BER are still unclear.

While we know that SIRT7 regulates chromatin condensation in response to DNA damage via the desuccinylation of H3K122 and deglutarylation of H4K91 [15,16]. As a master epigenetic regulator, there are no doubt more epigenetic marks regulated by SIRT7 need to be studied for a comprehensive understanding of epigenetic regulation.

The importance of SIRT7 in DNA damage repair suggests that this enzyme might function as a tumour suppressor. However, SIRT7 is overexpressed in various cancers. Thus, SIRT7 might have opposing effects on cancer initiation and progression [14,32,76–78]. More systematic research is necessary to delineate how SIRT7 function might change across cancer evolution and development. A deeper understanding of SIRT7 function in genome stability at the molecular and physiologic levels may enable us to develop novel cancer- and ageing-related therapeutic targets. Such targets will be essential for conceptualizing the translation of SIRT7 biology into clinical applications.

Data accessibility. This article does not contain any additional data.

Authors’ contributions. M.T. and H.T. wrote the primary manuscript and revised the manuscript. B.T. and W.-G.Z. conceived and designed the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by grants from the National Key R&D Program of China (2017YFA0503000), National Natural Science Foundation of China (81802814, 817201808027 and 81530074), Science and Technology Program of Guangdong Province in China (2017B030301016), Shenzhen Municipal Commission of Science and Technology Innovation (JC2017081802450901), Discipline Construction Funding of Shenzhen [20161452] and Shenzhen Bay Laboratory (SZBL.2019062801011).

References

1. Giglia-Mari G, Zotter A, Vermeulen W. 2011 DNA damage response. Cold Spring Harb. Perspect. Biol. 3, a000745. (doi:10.1101/cshperspect.a000745)
2. Jackson SP, Bartek J. 2009 The DNA-damage response in human biology and disease. Nature 461, 1071–1078. (doi:10.1038/nature08467)
3. Ciccia A, Elledge SJ. 2010 The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204. (doi:10.1016/j.molcel.2010.09.019)
4. Sancar A, Lindsey-Boltz LA, Ursul-Kaczam K, Lim S. 2004 Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85. (doi:10.1146/annurev.biochem.73.011303.071723)
5. Stover EH, Konstantinopulos PA, Matulonis UA, Swisher EM. 2016 Biomarkers of response and resistance to DNA repair targeted therapies. Clin. Cancer Res. 22, 5651–5660. (doi:10.1158/1078-0432.CCR-16-2047)
6. Oberle C, Blatter C. 2010 Regulation of the DNA damage response to DSBs by post-translational modifications. Curr. Genomics 11, 184–198. (doi:10.2174/138920210791109979)
7. de Ruiter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. 2003 Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749. (doi:10.1042/bj20021321)
8. Dokmanovic M, Clarke C, Marks PA. 2007 Histone deacetylase inhibitors: overview and perspectives. Mol. Cancer Res. 5, 981–989. (doi:10.1158/1541-7786.MCR-07-0324)
9. Finkel T, Deng CX, Mostoslavsky R. 2009 Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591. (doi:10.1038/nature08197)
10. North BJ, Verdin E. 2004 Sirtuins: Sirt2-related NAD-dependent protein deacetylases. Genome Biol. 5, 224. (doi:10.1186/gb-2004-5-5-224)
25. Li Z, Bridges B, Olson J, Weinman SA. 2017 Regulation of serine-threonine kinase Akt activation by NAD+−dependent deacetylase SIRT7. Cell Rep. 18, 1229−1240. (doi: 10.1016/j.celrep.2017.01.009)

26. Yu J et al. 2017 Regulation of serine-threonine kinase Akt activation by a NAD +−dependent deacetylase SIRT7. Cell Rep. 18, 1129−1139. (doi: 10.1016/j.celrep.2017.01.009)

27. Blank MF, Chen S, Poettz F, Schnolzer M, Voit R, Grammt I. 2017 SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Res. 45, 2675−2686. (doi: 10.1093/nar/gko053)

28. Karim MF, Yoshizawa T, Sobuz SU, Yato Y, Yamagata K. 2017 Sirtuin 7-dependent deacetylation of DD1 regulates the expression of nuclear receptor TR4. Biochem. Biophys. Res. Commun. 490, 423−428. (doi:10.1016/j.bbrc.2017.06.057)

29. Song C, Hotz-Wagenblatt A, Voit R, Grammt I. 2017 SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 31, 1370−1381. (doi:10.1101/2017.06.057.031)

30. Tang X et al. 2017 SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat. Commun. 8, 318. (doi:10.1038/ncomms13096)

31. Fukuda M et al. 2018 SIRT7 has a critical role in bone formation by regulating lysine acylation of SPT/Steat5. Nat. Commun. 9, 2833. (doi:10.1038/s41467-018-05187-4)

32. Qi H et al. 2017 Sirtuin 7-mediated deacetylation of WD repeat domain 77 (WDR77) suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity. J. Biol. Chem. 293, 1367−1378. (doi:10.1074/jbc.M115.691429)

33. Iyer-Bierhoff A, Krogh N, Tessarz P, Ruppert T, Boettger T, Kubin T, Braun T, Bober E. 2008 Sirt7 lysine demalonylase and desuccinylase. Nature 450, 59−64. (doi:10.1038/nature06159)

34. Wang WW et al. 2017 Sirt7 promotes adipogenesis in 3T3-L1 adipocytes. Diabetes 66, 232−241. (doi:10.2337/db16-0727)

35. Yu M et al. 2017 Sirt7 regulates the nuclear export of NF-kappaB p65 by deacetylating Ran. Cell Rep. 25, 2946−2954.e5. (doi:10.1016/j.celrep.2018.11.051)

36. Wang WW et al. 2019 A click chemistry approach reveals the chromatin-dependent histone H3K36 deaclyase nature of Sirt7. J. Am. Chem. Soc. 141, 2462−2471. (doi:10.1021/jacs.9b02083)

37. Menezes-Filho MC, Ferrer-Suarez F, Rodriguez-Paredes JP, Lattanzio S, Regan C. 2019 Sirt7 suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity. J. Biol. Chem. 293, 1367−1378. (doi:10.1074/jbc.M115.691429)

38. Liu Z et al. 2017 SIRT7 links H3K18 acetylation to chromatin compaction and modulates non-homologous end joining DNA repair. EMBO Rep. 18, 946−957. (doi:10.15252/embr.201743377)

39. Xu X et al. 2017 SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO Rep. 18, 946−957. (doi:10.15252/embr.201743377)

40. Vazquez BN et al. 2016 SIRT7 promotes adipogenesis in 3T3-L1 adipocytes. Diabetes 66, 232−241. (doi:10.2337/db16-0727)

41. Miao Z, Hinc C, Tian X, Van Meter M, Au M, Vaidya A, Sehanbaw A, Garbonova V. 2011 SIRT6 controls nuclear receptor TR4 activation by inhibiting autophagic activation of Sirt1. Proc. Natl. Acad. Sci. USA 108, 1381−1386. (doi:10.1073/pnas.1013011108)

42. Jang J et al. 2017 Sirt7 promotes adipogenesis in 3T3-L1 adipocytes. Diabetes 66, 232−241. (doi:10.2337/db16-0727)

43. Yan WW, Liang YL, Zhang QX, Wang D, Lei MZ, Qu J, He XH, Lei QY, Wang YP. 2018 Arginase methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep. 19, e46377. (doi:10.15252/embr.201846377)

44. Yamamura S et al. 2020 Cardiomyocyte Sirt (Siirtuin 7) ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4. Hypertension 75, 98−108. (doi:10.1161/HYPERTENSIONAHA.119.13357)

45. Schindler K. 2019 SIRT7 promotes chromosome synapsis during prophase I of female meiosis. Chromosoma 128, 369−383. (doi:10.1007/s00442-019-00713-9)

46. Chakkaadiak A, Guarente L. 2015 The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 606−624. (doi:10.1038/nrc3985)

47. Rappold I, Iwabuchi K, Date T, Chen J. 2001 Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell Biol. 153, 613−620. (doi:10.1083/jcb.153.3.613)

48. Schultz LB, Chehab NH, Maklay J, Halazonetis TD. 2019 Sirt7 promotes chromosome synapsis during prophase I of female meiosis. Chromosoma 128, 369−383. (doi:10.1007/s00442-019-00713-9)

49. Sekiguchi M et al. 2015 The multifaceted functions of sirtuins in cancer. Nat. Rev. Cancer 15, 606−624. (doi:10.1038/nrc3985)
63. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. 2005 A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. USA 102, 13 182–13 187. (doi:10.1073/pnas. 05042110102)

64. Kuzov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. 2006 Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 25, 3504–3514. (doi:10.1038/sj.emboj.7601231)

65. Li Z et al. 2018 Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Res. 28, 756–770. (doi:10.1038/s41422-018-0048-0)

66. Ford E, Voit R, Litz G, Magin C, Grummt I, Guarente L. 2006 Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075–1080. (doi:10.1101/gad.1399706)

67. Vazquez RN, Thackray JK, Serrano L. 2017 Sirtuins and DNA damage repair: SIRT7 comes to play. Natl. Rev. Mol. Cell Biol. 18, 3629–3642. (doi:10.1038/nar/gkv1504)

68. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW. 2005 DNA repair, genome stability, and aging. Cell 120, 497–512. (doi:10.1016/j.cell.2005.01.028)

69. Hanahan D, Weinberg RA. 2011 Hallmarks of cancer: the next generation. Cell 144, 646–674. (doi:10.1016/j.cell.2011.02.013)

70. Simon M, Emmrich S, Selsanov A, Gorbonova V. 2020 A hairy tale: SIRT7 safeguards skin stem cells during aging. EMBO J. 39, e106294. (doi:10.15252/ embj.2020106294)

71. Bi S et al. 2020 SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11, 483–504. (doi:10.1007/s13238-020-00728-4)

72. Liu X, Li C, Li Q, Chang HC, Tang YC. 2020 SIRT7 facilitates CENP-A nucleosome assembly and suppresses intestinal tumorigenesis. iScience 23, 101461. (doi:10.1016/j.isci.2020.101461)

73. Paredes S, Angulo-Ibanez M, Tasselli L, Carlson SM, Zheng W, Li TM, Chua KF. 2018 The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J. Biol. Chem. 293, 11 242–11 250. (doi:10.1174/ jbc.AC118.003325)

74. Nir K, Oddi V, Ramakrishna G. 2015 Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp. Cell Res. 331, 123–141. (doi:10.1016/j.yexcr.2014.11.001)

75. Pandey A, Kumar V. 2015 Stabilization of SIRT7 deacetylase by viral oncoprotein HBx leads to repression of growth restrictive RP57 gene and facilitates cellular transformation. Sci. Rep. 5, 14806. (doi:10.1038/srep14806)

76. Tang M et al. 2017 Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics 7, 1346–1359. (doi:10.7150/thno.18804)

77. Chen RL, Li L, Yang FX, Li CM, Wang YR, Wang GL. 2018 SIRT7 depletion inhibits cell proliferation, migration, and increases drug sensitivity by activating p38MAPK in breast cancer cells. J. Cell Physiol. 233, 6767–6778. (doi:10.1002/jcp.26398)

78. Yu H et al. 2014 Overexpression of sir7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin. Cancer Res. 20, 3434–3445. (doi:10.1158/1078-0432.CCR-13-2952)