In-process control of ground surface quality related to thermal distribution between diamond grain and workpiece

Hao Yang 1,a, Quanpeng He 1,b*, Hao Wang 2,c, Jin Xie 1,d, Liejun Li 1,e

1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, China
2 Sinomach Intelligence Technology Co., Ltd, Guangzhou, Guangdong, China
aemail: yanghao.lumia@foxmail.com,
*Corresponding authors: bhqp910730@scut.edu.cn
cemail: gdwanghao@sina.cn, demail: jinxie@scut.edu.cn, eemail: liliejun@scut.edu.cn

Abstract. Smooth surface grinding depends on material micro-removal by diamond grain, but thermal damage is unavoidable. Hence, the thermal distribution between diamond grain and workpiece is adjusted to improve the ground surface quality by changing grain top area. Firstly, the grain top area was determined through thermal transmission balance on workpiece surface. Secondly, the mechanical dressing was utilized to remove the diamond grain top. Finally, the dry grinding of D-star die steel was conducted to analyze the correlation between surface quality and grain top area. The results show that the mechanical dressing increases the grain top area by about 2 times to reduce the workpiece grinding temperature. At the thermal transmission balance on workpiece surface, the thermal deformation is suppressed to decrease the ground surface roughness by 72.4% for smooth grinding.

1. Introduction

Metal materials such as die steel[1], titanium alloy[2] and hard alloy are main materials for precision instruments and micro-electronic components. Efficient production of these components with free pollution is the ultimate goal for precision machining. Therefore, how to use pollution-free dry grinding to generate smooth ground surface is a problem that needs to be solved.

The topography of diamond grain is an important factor that affecting the ground surface quality[3]. However, the distribution of diamond grain on the wheel circumferential surface is random[4]. Therefore, the laser dressing[5] and electro-discharge dressing[6] were proposed to control the grain topography and improve the grain uniformity of wheel circumferential surface. In these dressing methods, the diamond grain will be graphitization due to applied thermal, resulting in micro removal of the diamond grain. Meanwhile, burning and thermal deformation will occur on the workpiece surface because of thermal accumulation[7]. Therefore, it is worth investigating the control of thermal transmission and distribution between the diamond grain and workpiece.

In this paper, the thermal distribution between the workpiece and diamond grain during grinding process was studied to improve the grinding quality. Firstly, according to grinding parameters and material characteristics, the desired top area of grain was calculated. Secondly, the grain was dressed by controlling thermal distribution. Finally, this method was applied to dry-grinding D-Star die steel, which
successfully achieved reduction of thermal deformation on the ground surface by thermal distribution control.

2. Methodology

Fig. 1 demonstrates the diamond grain-material contact in the grinding experiment. A wheel rotating at a rotational speed N moves along direction of X-axis and depth of a_p at a feed rate v_f. During the grinding process, the cutting interface area between diamond grain and workpiece is equal to grain top area s_d.

The total thermal generated by the cutting interface which determined by the wheel rotational speed N, cutting depth a_p and feed rate v_f. The thermal is transmission in both directions of diamond grain and workpiece simultaneously (diamond thermal Q_d and workpiece thermal Q_w) and the thermal distribution ratio Q_d / Q_w is positively correlated with area s_d.

Fig. 1. Thermal transmission in grinding

Fig. 2 shows effect of area s_d on thermal distribution and temperature change. Q_w increases and tend to be stable with the area s_d increased, and workpiece surface temperature decreases accordingly. Q_d decreases and tend to be stable with the area s_d increased, and diamond temperature decreases accordingly. Due to the thermal distribution ratio increase, the decreasing trend of diamond grain temperature is slow.

T_{gra} and T_{smo} is minimum and maximum temperature of the grain graphitization removal and workpiece without thermal deformation, respectively. S_{gra} and S_{smo} are corresponding grain top areas, where S_{gra} will move to the right of the coordinate axis as the total thermal increases. Hence, according to the processing requirements of the workpiece, the required grain top area s_{smo} without grinding burn could be calculated. And then the wheel rotational speed N, cutting depth a_p and feed rate v_f can be controlled to make S_{gra} greater than S_{smo}. Finally, grain top area is dressed to S_{gra} by thermal distribution to suppressing thermal deformation of the ground surface.

Fig. 2. Effect of area s_d on thermal distribution and temperature change:
(a) thermal distribution, (b) temperature change
3. Experiment and measurement

Fig. 3a shows grain dressing by iron dresser. In this experiment, dressing duration of 8h was taken dresser to modify the grain top area. Fig. 3b shows dry grinding with dressed grinding wheel. In this experiment, difficult-to-cut material of D-star die steel was used to identify the smooth surface quality. Experimental conditions of dressed and dry grinding are shown in Table 1. Among them, the dressing parameters are obtained by thermal distribution calculation.

![Fig. 3. Experiments on diamond grinding wheel: (a) grain dressing by iron dresser, (b) dry grinding](image)

Table 1. Experimental conditions of dressing and dry grinding

Experiment	Dressing	Dry grinding
Grinder	Smart-B818	Smart-B818
Grinding wheel	#46 (Bronze bond), Diameter D=150 mm, Concentration 100%	#46 (Bronze bond), Diameter D=150 mm, Concentration 100%
Dresser/workpiece	Iron	D-star
Grinding manner	Z axial-feed	Z axial-feed
Dressing/Grinding	$N=2400$ rpm, $a_p=8 \mu$m, $v_f=500$ mm/min, $\Delta z=1$ mm	$N=2400$ rpm, $a_p=6 \mu$m, $v_f=50$ mm/min, $\Delta z=15$ mm
Coolant	Air medium	Air medium

In addition, grain topography was investigated through scanning electron microscope (SEM, FEI Quanta 200). Surface roughness of D-star were measured by contour meter (TALYSURF CLI 1000) and electron microscope (SEM, Zeiss Merlin).

4. Results and discussion

Fig. 4 shows grain topography before dressing and after dressing, respectively. The results show that the dressing parameters calculated by thermal distribution and the iron dresser can effectively dressed the grain top area to the target value, and the grain top area increases by 8600 μm² to 23400 μm². In addition, the dressed faces became smooth along the cutting direction.

![Fig. 4. Grain topography: (a) before dressing, (b) after dressing](image)

Fig. 5 shows surface roughness Ra of difficult-to-cut material D-star die steel. Surface roughness Ra is mean of measured vertical profiles perpendicular cutting direction. Compared with ordinary grinding, the surface roughness Ra of D-star die steel from 1235 nm decreases 72.4%, which reached 340 nm.
Fig. 5. The surface profile of D-star die steel:
(a) thermal transmission balance control grinding, (b) ordinary grinding

Fig. 6 shows the grinding surface morphology of the workpiece. It is clear that control thermal distribution grinding can effectively avoid thermal deformation caused by heat accumulation and obtain better surface grinding quality.

![Surface profile of D-star die steel](image1)

![Grinding surface photograph](image2)

Fig. 6. Grinding surface photograph: (a) Thermal distribution control grinding, (b) ordinary grinding

5. Conclusions

The thermal distribution between diamond and workpiece depends on grain top area in grinding process. For material cutting, the thermal transmission balance on workpiece surface suppresses the thermal deformation to improve ground surface quality. For diamond grain dressing, the thermal transmission balance on diamond cutting interface dominates the diamond thermochemical removal to control the grain top area.

In D-star die steel grinding, the dressed grain top area increases by about 2 times to reduce the workpiece grinding temperature due to outstanding diamond thermal conductivity. It may decrease the ground surface roughness from 1235 nm to 340 nm, up to 72.4%. As a result, smooth grinding of difficult-to-cut metallic materials can be achieved by adjusting the thermal distribution in relation to grain top area.
Acknowledgements
This study was supported by the National Natural Science Foundation of China (51975219), the Guangdong Science and Technology Project (2020A0505100003 and 2017B090907015), and the Natural Science Foundation of Guangdong Province (2020A1515010807).

References
[1] Chinchanikar S, Choudhury S K. (2015) Machining of hardened steel-Experimental investigations, performance modeling and cooling techniques: A review. International Journal of Machine Tools & Manufacture, 89: 95-109.
[2] Ulutan D, Ozel T. (2011) Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools & Manufacture, 51: 250-280.
[3] Xie J, Xie H F, Liu X R. (2012) Dry micro-grooving on Si wafer using a coarse diamond grinding. International Journal of Machine Tools & Manufacture, 61: 1-8.
[4] Xie J, Xu J, Tang Y, Tamaki J. (2008) 3D graphical evaluation of micron-scale protrusion topography of diamond grinding wheel. International Journal of Machine Tools & Manufacture, 48(11): 1254-1260.
[5] Chen G, Mei L, Zhang B. (2010) Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Optics and Lasers in Engineering, 48(3): 295-304.
[6] Sanchez J A, Ortega N, Lacalle L N L D. (2006) Analysis of the electro discharge dressing (EDD) process of large-grit size CBN grinding wheels. International Journal of Advanced Manufacturing Technology, 29(7-8): 688-694.
[7] Kuffa M, Kuster F, Wegener K. (2016) Comparison of lubrication conditions for grinding of mild steel with electroplated cBN wheel. CIRP Journal of Manufacturing Science and Technology, 18: 53-59.