Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury

Yan-Fang Guan, Timothy A Pritts, Marshall H Montrose

Yan-Fang Guan, Marshall H Montrose, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
Timothy A Pritts, Department of Surgery, University of Cincinnati Medical Arts Building, 222 Piedmont Avenue, Cincinnati, OH 45219, United States
Author contributions: Guan Y performed the literature search and drafted the paper; and Pritts TA and Montrose MH reviewed and edited the manuscript.
Supported by NIH R21 DK074976 (MHM)
Correspondence to: Yan-Fang Guan, MD, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States. guan@uc.edu
Telephone: +1-513-5583791 Fax: +1-513-5585738
Received: June 21, 2010 Revised: September 29, 2010
Accepted: October 6, 2010 Published online: October 15, 2010

Abstract

Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia, but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance.

© 2010 Baishideng. All rights reserved.

Key words: Acidosis; Intestinal ischemia/reperfusion injury; In vivo models; Ischemic post-conditioning

Peer reviewers: Akhil Maheshwari, MD, Assistant Professor of Pediatrics, University of Illinois at Chicago, 840 South Wood Street, Chicago 60612, United States; Shu-Feng Zhou, MD, PhD, Professor, Chair of Department of Pharmaceutical Sciences, School of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL 33612, United States; Sya N Ukena, PhD, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover 30625, Germany

Guan YF, Pritts TA, Montrose MH. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury. World J Gastrointest Pathophysiol 2010; 1(4): 137-143 Available from: URL: http://www.wjgnet.com/2150-5330/full/v1/i4/137.htm DOI: http://dx.doi.org/10.4291/wjgp.v1.i4.137

INTRODUCTION

Reperfusion following ischemia (IR) causes severe injury (IRI) to the intestine that is life threatening. Here we overview methods to prevent or at least diminish these deleterious effects of IR. Special attention is being paid to ischemic post-conditioning (POC) with manipulation of the intracellular pH (pH). Ischemia occurs when an organ lacks sufficient blood supply as a result of, for example, shock, vascular disease or organ transplantation. Complete cessation of oxygenation for more than 20 min typically
Guan YF et al. Ischemic post-conditioning to counteract intestinal I/R injury

results in irreversible organ damage causing cell death within hours\[9\]. The intestine is particularly susceptible to ischemia because its high rate of oxygen use renders it relatively incapable of increasing oxygen transport in the face of hypoxic stress. Intestinal ischemia can result from intestinal intussusception, acute mesenteric arterial occlusion, hemodynamic shock and bowel disease\[12\]. The compromising effects of ischemia concern various aspects of intestinal physiology including impaired capillary blood flow\[3,4\], acidosis\[8\], changed villus structure\[6\], increased mucosal permeability\[8,9\] and reduced mitochondrial activity leading to decreased NADPH production\[10,11\]. During the ischemia event, aside from inadequate oxygen supply that compromises mitochondrial oxidative phosphorylation, there is an accumulation of metabolites that, directly or through mediators, may lead to cellular injury\[13\]. Prolonged ischemia (10-12 h) causes the affected intestinal area to die which evokes wide-spread systemic adverse effects due to the intestinal release of toxic substances into the circulation that subsequently affects other organs like the heart, lungs, liver and kidney and eventually results in sepsis and multiple organ failure\[13\]. Therefore, acute intestinal ischemia can be a devastating disease with a high mortality rate, depending to some extent on the underlying cause: venous thrombosis 32%; arterial embolism 54%; non-occlusive ischemia 73%; and arterial thrombosis 77%\[14\].

Paradoxically, restoration of blood flow by reperfusion may intensify rather than decrease organ damage ("oxygen paradox")\[15\] depending on the duration and intensity of the ischemia and on the timing of oxygen reintroduction to the tissues\[1,16,17\]. The intestine is, with the heart, lungs, brain and kidney, among the organs most sensitive to IR. In the intestinal mucosa, IR induces damage that is characterized by altered microvascular and epithelial permeability as a result of complex interactions between the endothelium and various cell types and cellular necrosis and/or apoptosis of villous cells\[18\]. In this injury process, activation of neutrophils, mast cells and platelets and increased release of endothelial factors are involved\[19,20\]. Cytokines such as TNF-\(\alpha\), IL-1 and IL-6 and oxygen free radicals are assumed to be important pathogenic mediators in IRI, as is capillary no-reflow\[21\].

A neurotransmitter believed to be released from the injured intestine and playing a main role in the aggravation of intestinal IRI is serotonin which controls intestinal movement, platelet activity and vasoconstriction\[22\].

As a result of reperfusion, the injured intestine may increase the release of toxic substances into the circulation that subsequently cause sepsis and multiple organ failure\[23,24\]. Eventually, IR may cause loss of mucosal barrier function, bacterial translocation and strong activation of inflammatory responses leading to endothelial destruction\[23,25\]. This inflammatory aspect of IR includes both cellular and humoral components and increasing evidence highlights the role of leukocytes and leukocyte adhesion molecules in intestinal IRI\[26\].

For some time, necrosis has been considered to be the main effect of ischemia on intestinal epithelial cells but, to date, apoptosis seems to be the principal contributor to IR-induced cell death\[27\]. The main executors of this "programmed cell death" are the endoprotease cysteines called caspases\[28\].

TREATMENTS TO COUNTERACT IRI

For the reasons given above, there is a strong and increasing interest in understanding and counteracting the damaging effects of IR on the intestinal mucosa. Various approaches to diminish the deleterious consequences of IR have been tested in animal models and in vitro. Many of these involve pretreatment (before the start of experimentally induced ischemia) with exogenous substances to interfere with the various processes that underlie the IRI syndrome such as intracellular signaling pathways, free radical dynamics and inflammation. The vast number of drugs tested in such pretreatment studies is steadily increasing and include anti-cytokine-induced neutrophil chemoattractant antibody\[30\], propofol\[32\], curcumin\[33\], NMDA receptor antagonists\[34\], carnitine\[35\], peroxisome proliferator-activated receptor-gamma agonist\[36\] and erythropoietin\[37\]. Although these pre-treatment studies do not have immediate clinical applications, they have increased our understanding of the IRI disease process. This is exemplified by pretreatment studies with nitroglycerin as follows. Due to its strategic location at the luminal surface of vessels, the vascular endothelium is particularly sensitive to IR. Endothelial functioning is impaired by the sudden increase in oxygen free radical species upon reperfusion. Paradoxically, free radicals (including oxygen free radicals and nitric oxide) are also involved in the protective process of ischemic preconditioning whereby a given stimulus increases tissue tolerance to IR damage\[38\]. Interestingly, it has been shown in both human and animal studies\[39,40\] that nitroglycerin can induce a protective phenotype that limits tissue damage by IR. It appears that nitroglycerin protects the endothelium against post-ischemic endothelial dysfunction via a mechanism that is mediated by oxygen free radical release and opening of mitochondrial permeability transition pores\[41\].

However, no pretreatments have found clinical application yet because treatment should be initiated shortly before the onset of ischemia, a moment that, obviously, cannot be precisely anticipated in a clinical setting. For this reason, attention is being increasingly focused at other protective treatments of the intestine, namely directly after ischemia, of which we will summarize the most characteristic ones below.

Melatonin, applied intraperitoneally in rat at the start of reperfusion, appears to exert a strong antioxidant effect that prevents intestinal IRI in a dose-dependent manner\[42\] and the administration before mesenteric reperfusion of allopurinol, a xanthine-oxidase inhibitor\[43\], offered protection against IRI as well. Although use of allopurinol to inhibit xanthine oxidase prior to intestinal reperfusion is utilized by some clinicians, substantial clinical evidence to support this practice has not been generated. Intestinal
Post-conditioning has been shown to protect against various pathological events including necrosis, apoptosis and microvascular injury\(^\text{[19]}\). More specifically, it attenuates IRI in the heart, spinal cord, brain, kidney, liver, muscle and lung in the experimental setting\(^\text{[20,21]}\). Recently, POC was tried as a protection paradigm against IRI in the intestine\(^\text{[22,23]}\). However, semiquantitative histopathological evaluation and measurement of wet-to-dry weight ratios did not reveal a significant difference between the ischemic and post-conditioned rabbit intestine in the degree of necrosis, tissue wet-to-dry weight ratios or blood flow\(^\text{[30]}\), a negative result casting doubt on the potential efficacy and reliability of POC applications in the clinical setting. These ambiguous effects of POC on the animal intestine may be due to the high complexity by which POC changes ischemic tissue including delaying realkalinization of tissue pH, triggering release of autacoids, modulating the activity of ion channels and activating kinases\(^\text{[31]}\). Since these processes together may act on multiple cellular and molecular targets and may severely affect intestinal functioning. However, at the same time, these multiple actions of POC differ from the monotherapy approach by drugs that have failed to consistently reduce IRI and therefore might be promising in human trials provided that current POC protocols are adequately improved\(^\text{[31]}\). Such an improvement might be obtained by strengthening the delaying action of POC on realkalinization by combining POC with prolonged acidosis. This approach appears to substantially limit heart infarct size in animal models\(^\text{[32,33]}\), raising the possibility that this modification of the POC protocol might also be effective in blocking the deleterious effects of IRI in the (human) intestine. Lowering the pH of the reperfusion medium might prevent activation of Na\(^+\)/H\(^+\) exchange processes, as was shown for reperfusion of ischemia-exposed astrocytes\(^\text{[34]}\) and heart\(^\text{[35]}\). This notion opens avenues to protocols preventing or curing IRI. Therefore, here we will pay attention to the way the intracellular pH (pH\(_i\)) is controlled by cellular factors and can be manipulated in vivo.

The pH\(_i\) is essential for maintaining cellular homeostasis in the intestinal mucosa. Even small changes in pH\(_i\) (less than 0.1 units) may alter ion channel properties and depress the activity of key enzymes involved in glycolysis and ATP synthesis. Consequently, mucosal cells possess homeostatic mechanisms to stabilize their pH\(_i\). If such mechanisms become impaired by prolonged ischemia, cell death will be the result. As we have shown for the mouse jejunal\(^\text{[36]}\), cellular inactivation and subsequent cell death are concomitant with intracellular acidosis. Consequently, restoration of the pH\(_i\) by reperfusion will help intestinal epithelial cells to recover. However, this recovery will only take place when ischemia-induced acidosis is not too severe; otherwise acidosis will remain and reperfusion will cause cells to die\(^\text{[37]}\). This condition of recovery might be improved by experimentally intervening with the pH\(_i\).

A particular role in the maintenance of the pH\(_i\) is played by short-chain fatty acids (SCFAs) produced by the bacterial flora in the intestinal lumen and by the various types of Na\(^+\)/H\(^+\) exchanger protein (NHEs) res-
ponsible for controlling pH homeostasis during the contin-
uously changing luminal environment. SCFAs include
N-butyrate, acetate, propionate and isobutyrate and
induce acidification of the rat colon, probably by non-
ionic diffusion and other means of cellular absorption of
the acid moiety. After exposure to acetate, propionate
or n-butyrates, all colonocytes acidify rapidly and over
90% reveal pH alkalization. NHE proteins exchange
extracellular sodium ions for intracellular protons with a
1:1 stoichiometry. Identified functions of NHE include
regulation of the pH, in particular during recovery from
an acid load, maintenance of cell volume in response to
an osmotic load and transepithelial Na+ absorption. Out
of the 10 known NHE isoforms, NHE2 and NHE3
are present in the brush border of the duodenum, in
the apical membrane of villus cells of the small intestine
in surface cells of the colon. NHE1 is found in the
basolateral membrane of epithelial cells in all intestinal
segments. A primary role of mammalian NHE is to
regulate the cytosolic pH. NHEs are activated by de-
creased pH and upon activation raise the pH to normal
value. The ubiquitous NHE1 is a major regulator of
pH. Through its coordinate functions in H+ -efflux, actin
anchoring and scaffolding, NHE1 is assumed to promote
protein activities and interactions, assembling signaling
complexes in specialized plasma membrane domains and
coordinating divergent signaling pathways. NHE3 is
an important contributor to the regulation of pH, Na+
and water homeostasis of the organism as it catalyzes Na+
and fluid (re)absorption across epithelia. NHE3-null mice
show a disturbed acid-base balance.

MECHANISM OF POC WITH PROLONGED
ACIDOSIS

The mechanism by which POC with prolonged acidosis
would protect organs against IRI is largely unknown. In
the rat heart, the beneficial effect of delaying the recovery
of pH during reperfusion is possibly due to inhibition by
low pH of the activity of calpain, the calcium-binding
protein that leads to cardiac contractile dysfunction fol-
lowing ischemic insult. Whereas IR causes endothelial
dysfunction, reoxygenation at low pH (6.4) enhances
the recovery of acetylcholine-induced vasorelaxation, an
improvement of endothelial functioning that likely acts
through preservation of cGMP signaling. Recently, a
comparative proteomics approach revealed that the IR-
protective action of POC on the rat intestinal mucosa
volves the expression of proteins functionally concerned
with cellular energy metabolism, anti-oxidation and anti-
apoptosis.

Therefore, lowering the pH during POC might protect
against the deleterious effects of intestinal IR. In view
of this latter data, it might be investigated if SCFAs, as
natural regulators of the pH and inhibitors of NHEs,
could be used to fine-tune the pH of intestinal epithelial
cells as a component of POC.

In the heart, recovery from ischemia is enhanced by
reintroducing blood flow through repeated intermittent
occlusions and reperusions. The mechanism by which
this “IR cycling” protects against IRI is not known but it
has been supposed that the intermittent ischemia prevents
formation of mitochondrial permeability transition pores
by maintaining an acidic myocardial pH for several mi-
utes until survival kinases can be activated. This is
another argument for assuming that regulating the pH
may be of importance in preventing IRI.

CONCLUSIONS AND PERSPECTIVES

IRI is a major clinical problem because of the sequelae of
a number of clinical conditions. To protect against IRI,
some compounds successfully tested in animals and in vitro
systems might give rise to the development of novel IRI
therapeutics but most of them may not have substantial
clinical relevance as they have to be administered well
before ischemia has started. Therefore, post-ischemic
treatments seem to be more promising. Among these, of
the various approaches under study, the most promising
one may be POC, especially when combined with
manipulation of the pH. Since POC with prolonged
acidosis was recently shown to protect the heart against
IRI, it would be interesting to use an intestinal in vivo
model and real-time imaging techniques to study the
action of POC on intestinal structure and functioning.

In general, the development of successful POC pro-
tocols would strongly benefit from better knowledge
about the molecular mechanisms of action and optimal
ways of the application of POC. For some organs, such
information is now becoming available. Ischemic POC
probably reduces myocardial apoptosis by increasing
BCL-2 protein expression via activation of opioid recep-
tors and the JAK-STAT signaling pathway and neuro-
protective POC action on the spinal cord seems to involve
phosphatidylinositol 3-kinase and ERK pathways.
Furthermore, cardioprotective effects of POC depend
critically on the duration of reperfusion and reocclusion
episodes. More information of this kind may support
the development of sophisticated POC protocols in
which fine-tuned periods of intermittent ischemia and
reperfusion are combined with drugs that have proven
their potential use in pretreatment studies and act speci-
fically on molecular POC targets at the proper cell physi-
ological conditions (pH, temperature etc).

Another interesting perspective offered is the intriguing
fact that transient non-lethal IRI of one organ
confers resistance to a subsequent episode of lethal IRI
in a remote organ (“remote preconditioning”); a POC
protocol successfully applied to the intestine might exert
remote, protective effects on other organs such as the
heart, lungs, kidney and brain, finding widespread clinical
application in protecting the whole body against the devas-
tating effects of ischemia and IR.

Finally, while emphasis in this review has been placed
on the potential protective effects against IRI of POC,
especially in combination with pH manipulation, a quite
different, but nevertheless promising, approach to solve at least partly the IRI problem is worth mentioning. As inflammation is a main aspect of IRI, controlling the attraction of leukocytes would be a clinically highly relevant tool in counteracting the damaging effects of IRI. Such control could be effectuated by pharmacological manipulation of Toll-like receptors (TLRs) which regulate the organism’s defense against infections and sense host tissue injury by recognizing products of dying cells. Better understanding of TLR involvement in IRI may enable the invention of novel TLR-based therapies for IRI in the intestine77,80.

REFERENCES

1 Cerqueira NF, Hussni CA, Yoshida WB. Pathophysiology of mesenteric ischemia/reperfusion: a review. Acta Cir Bras 2005; 20: 336-343
2 Stefanutti G, Vejchapipat P, Williams SR, Pierro A, Eaton S. Heart energy metabolism after intestinal ischaemia and reperfusion. J Pediatr Surg 2004; 39: 179-183; discussion 179-183
3 Leisser I, Sydow J, Stojaonic T, Fritzli L, Sattler B, Heuser M, Becker H, Markus PM. Impact of vasoactive intestinal polypeptide and gastrin-releasing peptide on small bowel microcirculation and mucosal injury after hepatic ischemia/reperfusion in rats. Int J Colorectal Dis 2005; 20: 42-48
4 San Cristóbal J, Cearra I, Otero B, Martínez-Astorquiza T, Marín H, García-Alonso I. [Capillary blood flow as an index of the therapeutic effect of folic acid in ischemia-reperfusion syndrome]. Rev Esp Enferm Dig 2007; 99: 25-32
5 Björck M, Bergqvist D, Haglund U. The effect of dobutamine on distal colon ischaemia in the pig. Intensive Care Med 1998; 24: 178-184
6 Yassin MM, Barros D’Sa AA, Parks TG, Mc Caigue MD, Leggett P, Halliday MJ, Rowlands BJ. Lower limb ischemia-reperfusion injury alters gastrointestinal structure and function. Br J Surg 1997; 84: 1425-1429
7 Chang JX, Chen S, Ma LP, Jiang LY, Chen JW, Chang RM, Wen LQ, Wu W, Jiang ZP, Huang ZT. Functional and morphological changes of the gut barrier during the restit–tution process after hemorrhagic shock. World J Gastroenterol 2003; 11: 5485-5491
8 Solligard E, Juel IS, Spigset O, Romundstad P, Gneibech JE, Aadahl P. Gut luminal lactate measured by microdialysis mirrors permeability of the intestinal mucosa after ischemia. Shock 2008; 29: 245-251
9 Szabó A, Vollmar B, Boros M, Menger MD. In vivo fluoros­cence microscopic imaging for dynamic quantitative assessment of intestinal mucosal permeability in mice. J Surg Res 2008; 145: 179-185
10 Madesh M, Bhaskar L, Balasubramanian KA. Enterocyte viability and mitochondrial function after graded intestinal ischemia and reperfusion in rats. Mol Cell Biochem 1997; 167: 81-87
11 Gao C, Xu L, Chai W, Sun X, Zhang H, Zhang G. Amelio­ration of intestinal ischemia-reperfusion injury with intraluminal hyperoxygenated solution: studies on structural and functional changes of enterocyte mitochondria. J Surg Res 2005; 129: 298-305
12 Granger DN, Hollworth ME, Parks DA. Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand Suppl 1986; 548: 47-63
13 Berlanga J, Prats P, Remirez D, Gonzalez R, Lopez-Saura P, Aguiar J, Ojeda M, Boyle J, Fitzgerald AJ, Playford RJ. Prophylactic use of epidermal growth factor reduces ische­mia/reperfusion intestinal damage. Am J Pathol 2002; 161: 373-379
14 Brandt LJ, Boley SJ. AGA technical review on intestinal ische­mia. American Gastrointestinal Association. Gastroenterology 2000; 118: 954-968
15 McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159-163
16 Parks DA, Granger DN. Contributions of ischemia and reper­fusion to mucosal lesion formation. Am J Physiol 1986; 250: G749-G753
17 Schwarz B, Salak N, Hofstötter H, Pajik W, Knotzer H, Mayr A, Hasibeder W. [Intestinal ischemic reperfusion syndrome: pathophysiology, clinical significance, therapy]. Wien Klin Wochenschr 1999; 111: 539-549
18 Massberg S, Messmer K. The nature of ischemia/reperfusion injury. Transplant Proc 1998; 30: 4217-4223
19 Aydemir-Koksöy A, Koksöy C, Kuzu MA, Demirpence E, Cinel I, Kesenci M, Yavuzer S. Intestinal ischemia-reperfusion leads to platelet dysfunction. Thromb Res 1999; 94: 395-400
20 Zhang M, Austen WG Jr, Chiu I, Alicot EM, Hung R, Ma M, Verna N, Xu M, Hechtman HB, Moore FD Jr, Carroll MC. Identifi­cation of a specific self-reactive IgM antibody that initia­tes intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 3886-3891
21 Montalto MC, Hart ML, Jordan JE, Wada K, Stahl GL. Role for complement in mediating intestinal nitric oxide syn­thase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol 2003; 285: G197-G206
22 Teramoto Y, Urano T, Nagai N, Takada Y, Ikeda K, Takada A. Plasma levels of 5-HT and 5-HIAA increased after intestinal ischemia/reperfusion in rats. Jpn J Physiol 1998; 48: 333-339
23 Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, De Sarro A, Van de Loo FA, Caputi AP, Thiemermann C. Role induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock 2002; 18: 169-176
24 Pierro A, Eaton S. Intestinal ischemia reperfusion injury and multisystem organ failure. Semin Pediatr Surg 2004; 13: 11-17
25 Hoffmann JN, Vollmar B, Laschke MW, Fertmann JM, Jauch KW, Menger MD. Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition. Crit Care 2005; 9 Suppl 4: S33-S37
26 João SA, Alencar SS, Medeiros AC, Diniz SOF, Cardoso VN, Brandt CT. Translocation of 99mTc labelled bacteria after intestinal ischemia and reperfusion. Acta Cir Bras 2004; 19: 4
27 Osman M, Russell J, Granger DN. Lymphocyte-derived interferon-gamma mediates ischemia-reperfusion-induced leukocyte and platelet adhesion in intestinal microcirculation. Am J Physiol Gastrointest Liver Physiol 2009; 296: G599-G663
28 Santén S, Mihaescu A, Laschke MW, Mengh MD, Wang Y, Jeppsson B, Thorlacius H. p38 MAPK regulates ischemia-reperfusion-induced recruitment of leukocytes in the colon. Surgery 2009; 145: 303-312
29 Kuenzler KA, Pearson PY, Schwartz MZ. IL-11 pretreatment reduces cell death after intestinal ischemia-reperfusion. J Surg Res 2002; 108: 268-272
30 Jacob T, Ascher E, Hingorani A, Kallakuri S. Glycin­prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery 2003; 134: 457-466
31 Kaneko H, Tamura A, Ishii T, Maeda T, Katagiri T, Ishii J, Kubota Y, Suzuki T, Tsujiya M, Otsuka Y, Yamazaki K, Watanabe M, Tatsuo T. Bacterial translocation in small intestine and mesenteric ischemia-reperfusion injury and efficacy of Anti-CINC antibody treatment. Eur J Surg Res 2007; 39: 153-159
32 Liu KX, Chen SQ, Huang WQ, Li YS, Irwin MG, Xia Z. Propofol pretreatment reduces ceramide production and attenuates intestinal mucosal apoptosis induced by intestinal ischemia/reperfusion in rats. Anesth Analg 2008; 107: 1884-1891
33 Karatepe O, Gulseck OB, Ugurlucan M, Adas G, Battal M, Kemik A, Kamali G, Altrug T, Karahan S. Curcumin nutrition for the prevention of mesenteric ischemia-reperfusion injury:...
Guan YF et al. Ischemic post-conditioning to counteract intestinal I/R injury

an experimental rodent model. Transplant Proc 2009; 41: 3611-3616

34 Câmara-Lemarroy CR, Guzmán-de la Garza FJ, Alarcón-Galván C, Cordero-Pérez F, Fernández-Garza NE. The effects of NMDA receptor antagonists over intestinal ischemia/reperfusion injury in rats. Eur J Pharmacol 2009; 621: 78-85

35 Hosgorler FU, Atila K, Terzi C, Akhisaroglu ST, Oktay G, Kupelioglu A, Ergor G, Saydam S. Carnitine protects the intestine against reperfusion injury in rats. J Surg Res 2010; 159: 603-610

36 Barelginam N, Mourtou JM, Ballard AR, Evers BM, Chung DH. PPAR-gamma agonist protects against intestinal injury during necrotizing enterocolitis. Biochem Biophys Res Commun 2009; 379: 423-427

37 Sayan H, Ozmaciz VH, Sen F, Cabuk M, Atik DY, Igdem AA, Ozmaciz ID. Pharmacological preconditioning with erythropoietin reduces ischemia-reperfusion injury in the small intestine of rats. Life Sci 2009; 84: 364-371

38 Gori T, Di Stolo G, Dragoni S, Lisi M, Leone MC, Forconi S, Parker JD. The mechanism of nitrate-induced preconditioning. Clin Hemorheol Microcirc 2008; 39: 191-196

39 Gori T, Lisi M, Forconi S. Ischemia and reperfusion: the endothelial perspective. A radical view. Clin Hemorheol Microcirc 2006; 35: 31-34

40 Gori T, Dragoni S, Di Stolo G, Sicuro S, Liuni A, Luca MC, Thomas G, Oleze M, Daiber A, Parker JD. Tolerance to nitroglycerin-induced preconditioning of the endothelium: a human in vivo study. Am J Physiol Heart Circ Physiol 2010; 298: H340-H345

41 Cohen MV, Yang XM, Downey JM. Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 2008; 103: 464-471

42 Kazee A, Demirbağ M, Ustündağ B, Ozercan IH, Sağlam M. The role of melatonin in prevention of intestinal ischemia-reperfusion injury in rats. J Pediatr Surg 2000; 35: 1444-1448

43 Ciz M, Cizova H, Lojek A, Kubala L, Papezovikova I. Ischemia/reperfusion injury of rat small intestine: the effect of allopurinol dosage. Transplant Proc 2001; 33: 2871-2873

44 Hassoun HT, Fischer UM, Attuwuyi BO, Moore FA, Safi HJ, Allen SJ, Cox CS Jr. Regional hypothermia reduces mucosal NF-kappaB and PMN priming via gut lymph during canine mesenteric ischemia/reperfusion. J Surg Res 2003; 115: 121-126

45 Attuwuyi BO, Hassoun HT, Zou L, Kozar RA, Kone BC, Weisbrodt NW, Moore FA. Hypothermia protects against gut ischemia/reperfusion-induced impaired intestinal transit by inducing heme oxygenase-1. J Surg Res 2003; 115: 48-55

46 Vieira AT, Pinho V, Lepsch LB, Scavone C, Ribeiro IM, Tomassini T, Ribeiro-dos-Santos R, Soares MB, Teixeira MM, Souza DG. Mechanisms of the anti-inflammatory effects of the natural secosteroids physalins in a model of intestinal ischaemia and reperfusion injury. Br J Pharmacol 2005; 146: 244-251

47 Salehi P, Madsen K, Zhu J, Castillo E, Avila J, Lakey JR, Churchill TA. Alleviating ischemia-reperfusion injury in small bowel. Am J Transplant 2004; 4: 728-737

48 Slijper N, Sukhotkin I, Chemodanov E, Bashenko Y, Shaoul R, Coran AG, Mogilner J. Effect of simvastatin on intestinal recovery following gut ischemia-reperfusion injury in a rat. Pediatr Surg Int 2010; 26: 105-110

49 Vinten-Johansen J, Granfeldt A, Mykteno J, Undyala VV, Dong W, Przybyluk K. The Multi-Dimensional Physiological Responses to Postconditioning. Antioxid Redox Signal 2010; Epub ahead of print

50 Andreoudi I, Ilidromitou EK, Kofauki M, Kremastinos DT. Pharmacological pre- and post-conditioning agents: reperfusion-injury of the heart revisited. Mini Rev Med Chem 2006; 8: 952-959

51 Zhao ZQ. Postconditioning in reperfusion injury: a status report. Cardiovasc Drugs Ther 2010; 24: 265-279

52 Santos CH, Gomes OM, Pontes JC, Miijf LN, Bispo MA. The ischemic preconditioning and postconditioning effect on the intestinal mucosa of rats undergoing mesenteric ischemia/reperfusion procedure. Acta Cir Bras 2008; 23: 22-28

53 Dos Santos CH, Pontes JC, Gomes OM, Miijf LN, Bispo MA. Evaluation of ischemic postconditioning effect on mesenteric ischemia treatment: experimental study in rats. Rev Bras Cir Cardiovasc 2009; 24: 150-156

54 Bretz B, Blaze C, Parry N, Kudej RK. Ischemic postconditioning does not attenuate ischemia-reperfusion injury of rabbit small intestine. Vet Surg 2010; 39: 216-223

55 Inserte J, Barba I, Hernando V, Garcia-Dorado D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in post-conditioned myocardium. Cardiovasc Res 2009; 81: 116-122

56 Chesler M. Failure and function of intracellular pH regulation in acute hypoxic-ischemic injury of astrocytes. Glia 2005; 50: 398-406

57 Aldaakkak M, Souwe DF, Heisner JS, Spence M, Camara AK. Enhanced Na+/H+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function. J Cardiovasc Pharmacol 2008; 52: 236-244

58 Guan Y, Worrall RT, Pritts TA, Montrose MH. Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo. Am J Physiol Gastrointest Liver Physiol 2009; 297: G187-G196

59 Diener M, Helmele-Kolb C, Murer H, Scharrer E. Effect of short-chain fatty acids on cell volume and intracellular pH in rat distal colon. Pflugers Arch 1993; 424: 216-223

60 Chu S, Montrose MH. Extracellular pH regulation in microdomains of colonic crypts: effects of short-chain fatty acids. Proc Natl Acad Sci USA 1995, 92: 3303-3307

61 Tse CM, Brant SR, Walker MS, Pouyssegur J, Donowitz M. Cloning and sequencing of a rabbit cDNA encoding an intestinal and kidney-specific Na+/H+ exchanger isoform (NHE-3). J Biol Chem 1992; 267: 9340-9346

62 Tse CM, MA AI, Yang VW, Watson AJ, Levine S, Montrose MH, Potter J, Sarkar G, Pouyssegur J, Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J 1991; 10: 1957-1967

63 Kulaksiz H, Bektas H, Cetin Y. Expression and cell-specific and membrane-specific localization of NHE-3 in the human and guinea pig upper gastrointestinal tract. Cell Tissue Res 2001; 303: 337-343

64 Schultheiss PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, Dufty JJ, Doetschman T, Miller ML, Shull GE. Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 1998; 101: 1243-1253

65 Schultheiss PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gavensic LR, Riddle TM, Dufty JJ, Doetschman T, Wang T, Gibeisch G, Aronson PS, Lorenz JN, Shull GE. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998; 19: 282-285

66 Zachos NC, Tse M, Donowitz M. Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 2005; 67: 411-443

67 Baumgartner M, Patel H, Barber DL. Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes. Am J Physiol Cell Physiol 2004; 287: C844-C850

68 López D, Rodríguez-Sinovas A, Agulló L, Inserte J, Cabezas G, García-Dorado D. Acidic reoxygenation protects against endothelial dysfunction in rat aortic rings submitted to simulated ischemia. Am J Physiol Heart Circ Physiol 2008; 295: H2409-H2416

69 Li YS, Wang ZX, Li C, Xu M, Li Y, Huang WQ, Xia Z, Liu KX. Proteomics of Ischemia/Reperfusion Injury in Rat Intestine With and Without Ischemic Postconditioning. J Surg Res 2009; Epub ahead of print
Immediate postconditioning during reperfusion attenuates intestinal injury. *Intensive Care Med* 2009; 35: 933-942

Gonda T, Maouyo D, Rees SE, Montrose MH. Regulation of intracellular pH gradients by identified Na/H exchanger isoforms and a short-chain fatty acid. *Am J Physiol* 1999; 276: G259-G270

Guan Y, Dong J, Tackett L, Meyer JW, Shull GE, Montrose MH. NHE2 is the main apical NHE in mouse colonic crypts but an alternative Na+-dependent acid extrusion mechanism is upregulated in NHE2-null mice. *Am J Physiol Gastrointest Liver Physiol* 2006; 291: G689-G699

You L, Li L, Xu Q, Ren J, Zhang F. Postconditioning reduces infarct size and cardiac myocyte apoptosis via the opioid receptor and JAK-STAT signaling pathway. *Mol Biol Rep* 2010; Epub ahead of print

Jiang X, Ai C, Shi E, Nakajima Y, Ma H. Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postconditioning methods: roles of phosphatidylinositol 3-kinase-Akt and extracellular signal-regulated kinase. *Anesthesiology* 2009; 111: 1197-1205

Pinheiro BB, Fiorelli AI, Gomes OM, Gersak B. Cardiac effects of postconditioning depend critically on the duration of reperfusion and reocclusion episodes. *Heart Surg Forum* 2010; 13: E52-E56

Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. *Cardiovasc Res* 2008; 79: 377-386

Gomariz RP, Gutiérrez-Cañas I, Arranz A, Carrión M, Juarraz Y, Leceta J, Martínez C. Peptides targeting Toll-like receptor signalling pathways for novel immune therapeutics. *Curr Pharm Des* 2010; 16: 1063-1080

Vasileiou I, Kostopanagiotou G, Katsargyris A, Klonaris C, Perrea D, Theocharis S. Toll-like receptors: a novel target for therapeutic intervention in intestinal and hepatic ischemia-reperfusion injury? *Expert Opin Ther Targets* 2010; 14: 839-853

S- Editor Zhang HN L- Editor Roemmele A E- Editor Liu N