POLYNOMIALS ASSOCIATED TO NON-CONVEX BODIES

N. LEVENBERG1,* and F. WIELONSKY2

1Indiana University, Bloomington, IN 47405, USA
e-mail: nlevenbe@indiana.edu

2Laboratoire I2M–UMR CNRS 7373, Université Aix-Marseille, CMI 39 Rue Joliot Curie,
F-13453 Marseille Cedex 20, France
e-mail: franck.wielonsky@univ-amu.fr

(Received May 4, 2021; revised August 27, 2021; accepted August 28, 2021)

Abstract. Polynomial spaces associated to a convex body C in $(\mathbb{R}^+)^d$ have been the object of recent studies. In this work, we consider polynomial spaces associated to non-convex C. We develop some basic pluripotential theory including notions of C–extremal plurisubharmonic functions $V_{C,K}$ for $K \subset \mathbb{C}^d$ compact. Using this, we discuss Bernstein–Walsh type polynomial approximation results and asymptotics of random polynomials in this non-convex setting.

1. Introduction

Pluripotential theory is the study of plurisubharmonic (psh) functions. A fundamental result, known as the Siciak–Zaharjuta theorem (see [10] for references and history), is that the extremal function (or pluricomplex Green function)

$$V_K(z) := \sup \{ u(z) : u \in L(\mathbb{C}^d), u \leq 0 \text{ on } K \}$$

associated to a compact set $K \subset \mathbb{C}^d$, where $L(\mathbb{C}^d)$ is the Lelong class of all plurisubharmonic functions u on \mathbb{C}^d with the property that

$$u(z) \leq \log^+ |z| + c_u := \max[0, \log |z|] + c_u,$$

*Corresponding author.
†The first named author was supported by Simons Foundation Grant 707450.
Key words and phrases: pluripotential theory, plurisubharmonic function, Bernstein–Walsh theorem, non-convex body.
Mathematics Subject Classification: 32U15, 41A10.

0236-5294/$20.00 \copyright 2021$ Akadémiai Kiadó, Budapest, Hungary
where \(c_u \) is a constant depending on \(u \), may be obtained from the subclass of \(L(\mathbb{C}^d) \) arising from polynomials:

\[
V_K(z) = \sup \left\{ \frac{1}{\deg(p)} \log |p(z)| : p \in \mathcal{P}_d, \deg(p) \neq 0, ||p||_K := \max_{\zeta \in K} |p(\zeta)| \leq 1 \right\},
\]

where \(\mathcal{P}_d = \mathbb{C}[z_1, \ldots, z_d] \) denotes the family of all holomorphic polynomials of \(d \) complex variables. This gives a connection with polynomial approximation; see Theorem 1.1 below. It is known that \(V^*_K(z) := \limsup_{\zeta \to z} V_K(\zeta) \) is either a psh function in \(L(\mathbb{C}^d) \) or else \(V^*_K \equiv +\infty \) (this latter case occurs precisely when \(K \) is pluripolar). We say \(K \) is regular if \(V_K = V^*_K \); i.e., \(V_K \) is continuous.

In recent years, pluripotential theory associated to a convex body \(C \) in \((\mathbb{R}^+)^d \) has been developed. Let \(\mathbb{R}^+ = [0, \infty) \) and fix a convex body \(C \subset (\mathbb{R}^+)^d \) (\(C \) is compact, convex and \(C^o \neq \emptyset \)). Associated with \(C \) we consider the finite-dimensional polynomial spaces

\[
\text{Poly}(nC) := \left\{ p(z) = \sum_{J \in nC \cap (\mathbb{Z}^+)^d} c_J z^J : c_J \in \mathbb{C} \right\}
\]

for \(n = 1, 2, \ldots \) where \(z^J = z_1^{j_1} \cdots z_d^{j_d} \) for \(J = (j_1, \ldots, j_d) \). For \(C = \Sigma \) where

\[
\Sigma := \left\{ (x_1, \ldots, x_d) \in \mathbb{R}^d : 0 \leq x_i \leq 1, \sum_{i=1}^d x_i \leq 1 \right\}
\]

is a simplex in \(\mathbb{R}^d \), we have Poly\((n\Sigma)\) is the usual space of holomorphic polynomials of degree at most \(n \) in \(\mathbb{C}^d \). For a nonconstant polynomial \(p \) we define

\[
\deg_C(p) = \min \{ n \in \mathbb{N} : p \in \text{Poly}(nC) \}.
\]

As in [3], [4], [9], except for the case of \(C = C_0 \) defined in (1.12), we make the assumption throughout the entire paper on \(C \) that

\[
\Sigma \subset kC \quad \text{for some } k \in \mathbb{Z}^+.
\]

Note that under hypothesis (1.4), we have \(\bigcup_n \text{Poly}(nC) = \mathcal{P}_d \).

Recall the indicator function of a convex body \(C \) is

\[
\phi_C(x_1, \ldots, x_d) := \sup_{(y_1, \ldots, y_d) \in C} (x_1y_1 + \cdots x_dy_d).
\]

We define the logarithmic indicator function of \(C \) on \(\mathbb{C}^d \)

\[
H_C(z) := \sup_{J \in C} \log |z^J| := \sup_{J \in C} \log(\max |z_1|^{j_1} \cdots |z_d|^{j_d}) = \phi_C(\log |z_1|, \ldots, \log |z_d|)
\]

Acta Mathematica Hungarica 165, 2021
(the exponents j_k need not be integers) and we use H_C to define a generalization of $L(C^d)$:

$$L_C = L_C(C^d) := \{ u \in \text{PSH}(C^d) : u(z) \leq H_C(z) + c_u \}.$$

Since $\phi_\Sigma(x_1, \ldots, x_d) = \max(x_1, \ldots, x_d, 0)$, we have $L(C^d) = L_\Sigma$. Moreover, it was stated in [2] and shown in [5] that the C-extremal function

$$V_{C,K}(z) := \sup\{ u(z) : u \in L_C(C^d), u \leq 0 \text{ on } K \}$$

of a compact set K can be given as

$$V_{C,K} = \lim_{n \to \infty} \frac{1}{n} \log \Phi_n = \lim_{n \to \infty} \frac{1}{n} \log \Phi_{n,C,K}$$

pointwise on C^d where

$$\Phi_n(z) := \Phi_{n,C,K}(z) := \sup\{ |p(z)| : p \in \text{Poly}(nC), \|p\|_K \leq 1 \}.$$

For $p \in \text{Poly}(nC), n \geq 1$ we have $\frac{1}{n} \log |p| \in L_C$; hence we have a Bernstein–Walsh inequality

$$|p(z)| \leq \|p\|_K e^{\deg_C(p)V_{C,K}(z)}.$$

We add that for C satisfying (1.4), K regular is equivalent to $V_{C,K} = V_{C,K}^*$ ($V_{C,K}$ is continuous); cf. [9].

The inequality (1.8) leads to a connection with polynomial approximation. For K a compact subset of C^d, and $F \in C(K)$, a complex-valued, continuous function on K, we define

$$d_{n}^{C}(F, K) = \inf_{p \in \text{Poly}(nC)} \|F - p\|_K.$$

The following Bernstein–Walsh type theorem was proved in [9] to explain the use of various notions of degree for multivariate polynomials introduced by Trefethen in [11].

Theorem 1.1. Let K be a compact subset of C^d with $V_{C,K}$ continuous and $F \in C(K)$. The following assertions are equivalent.

1) $\limsup_{n \to \infty} d_{n}^{C}(F, K)^{1/n} = 1/R < 1$;

2) the function F is the restriction to K of a function \tilde{F} holomorphic on a domain Ω containing K, and R is the largest real number such that

$$\Omega_{C,R} = \{ z \in C^d : V_{C,K}(z) < \log R \} \subset \Omega.$$
This is a quantitative version of the Oka–Weil theorem: any \(F \)-holomorphic in a neighborhood of the polynomial hull

\[
\hat{K} := \{ z \in \mathbb{C}^d : |p(z)| \leq \|p\|_K, \ p \in \mathcal{P}_d \}
\]

of \(K \) can be uniformly approximated on \(\hat{K} \) by polynomials in \(\mathcal{P}_d \). Note that the “smaller” the convex body \(C \), the sparser the collection \(\text{Poly}(nC) \) will be. For purposes of numerical analysis, sparseness is desirable. Indeed, provided \(C \in (\mathbb{R}^+)^d \) is the closure of an open, connected set satisfying

\[
\varepsilon \Sigma \subset C \subset \delta \Sigma \quad \text{for some } \delta > \varepsilon > 0,
\]

regardless of whether \(C \) is convex, the finite-dimensional spaces \(\text{Poly}(nC) \) defined as in (1.1) make sense (as does the notion of \(C \)-degree in (1.3)) and \(\bigcup_n \text{Poly}(nC) = \mathcal{P}_d \). Thus, appealing to Oka–Weil, there is at least a possibility of a version of Theorem 1.1 in this setting. Examples of such \(C \) are the \(l^p \) balls

\[
C = C_p := \{(x_1, \ldots, x_d) \in (\mathbb{R}^+)^d : x_1^p + \cdots + x_d^p \leq 1\}
\]

with \(0 < p < 1 \). Numerical analysts even consider the limiting case of \(p = 0 \),

\[
C_0 := \bigcup_{j=1}^d \{(0, \ldots, x_j, \ldots, 0), \ 0 \leq x_j \leq 1\}
\]

(but see Example 3.11).

In this note, we begin a study of polynomial classes associated to non-convex \(C \) satisfying (1.10). The next section discusses general results on \(C \)-extremal functions \(V_{C,K} \) defined in a fashion similar to (1.7). In Section 3 we show that while one direction of Theorem 1.1 trivially generalizes, the other allows for interesting contrasts.

These \(C \)-extremal functions \(V_{C,K} \) are difficult to compute explicitly. However, in a probabilistic sense, one can “generically” recover them. Let \(\tau \) be a probability measure on \(K \) which is nondegenerate in the sense that \(\|p\|_{\tau} := \|p\|_{L^2(\tau)} = 0 \) for a polynomial \(p \) implies \(p \equiv 0 \). Letting \(\{p_j\} \) be an orthonormal basis in \(L^2(\tau) \) for \(\text{Poly}(nC) \) constructed via Gram–Schmidt applied to a monomial basis \(\{z^n\} \) of \(\text{Poly}(nC) \), we consider random polynomials of \(C \)-degree at most \(n \) of the form

\[
H_n(z) := \sum_{j=1}^{m_n} a_j^{(n)} p_j(z)
\]
where the \(a_j^{(n)} \) are i.i.d. complex random variables and \(m_n := \text{dim}(\text{Poly}(nC)) \). This places a probability measure \(\mathcal{H}_n \) on \(\text{Poly}(nC) \). We form the product probability space of sequences of polynomials:

\[
\mathcal{H} := \bigotimes_{n=1}^{\infty} (\text{Poly}(nC), \mathcal{H}_n).
\]

The following was proved for \(C = \Sigma \) in [6] and for general convex \(C \) in [2].

Theorem 1.2. Let \(\tau \) be a probability measure on \(K \) such that \((K, \tau) \) satisfies a Bernstein–Markov property and let \(a_j^{(n)} \) be i.i.d. complex random variables having distribution \(\phi(z)dm_2(z) \) where \(dm_2 \) denotes Lebesgue measure on \(\mathbb{R}^2 = \mathbb{C} \). Assume for some \(T > 0 \),

\[
|\phi(z)| \leq T \quad \text{for all } z \in \mathbb{C}; \quad \text{and}
\]

\[
\left| \int_{|z| \geq R} \phi(z)dm_2(z) \right| \leq T/R^2 \quad \text{for all } R \text{ sufficiently large}.
\]

Then almost surely in \(\mathcal{H} \) we have

\[
\left(\limsup_{n \to \infty} \frac{1}{n} \log |H_n(z)| \right)^* = V_{C,K}^*(z), \quad z \in \mathbb{C}^d.
\]

The *Bernstein–Markov property* will be defined in the next section.

In Section 4 we give a version of Theorem 1.2 in the nonconvex setting. We conclude in Section 5 with some open questions.

2. Non-convex preliminaries

Let \(C \) be the closure of an open, connected set satisfying (1.10). For simplicity, we take \(\delta = 1 \) in (1.10). As noted in the introduction, the definitions of the vector spaces

\[
\text{Poly}(nC) := \left\{ p(z) = \sum_{J \in nC \cap \mathbb{N}^d} c_J z^J = \sum_{J \in nC \cap \mathbb{N}^d} c_J z_1^{j_1} \cdots z_d^{j_d}, \quad c_J \in \mathbb{C} \right\},
\]

\(n = 1, 2, \ldots \) and, for a nonconstant polynomial \(p \), the \(C \)-degree

\[
\text{deg}_C(p) := \min\{ n \in \mathbb{N} : p \in \text{Poly}(nC) \},
\]

can be defined as in the convex case. However, if \(C \) is not convex, two vital ingredients are lacking:

1. \(\text{Poly}(nC) \cdot \text{Poly}(mC) \) may *not* be contained in \(\text{Poly}(n + m)C \); and
2. there is no good analogue/replacement for the logarithmic indicator function \(H_C \) in (1.6) and hence the \(L_C \) Lelong class.
Item 1. is crucial in proving 2) implies 1) in Theorem 1.1. To explain 2., for C the closure of an open, connected set satisfying (1.10), using (1.5) and (1.6) yields $H_C = H_{\text{co}(C)}$ where $\text{co}(C)$ denotes the convex hull of C. If, e.g., $C = C_p$ in (1.11) with $0 < p < 1$, then $H_{C_p} = H_{\Sigma}$.

2.1. C-extremal function for non-convex C. Given a compact set $K \subset \mathbb{C}^d$, we will define a C-extremal function using the $\text{Poly}(nC)$ classes: for $n = 1, 2, \ldots$, let

$$\Phi_n(z) = \Phi_{n,C,K}(z) := \sup \{ |p(z)| : p \in \text{Poly}(nC), \|p\|_K \leq 1 \}$$

(note taking $p \equiv 1$ shows $\Phi_n(z) \geq 1$) and

$$V_{C,K}(z) := \limsup_{n \to \infty} \frac{1}{n} \log \Phi_n(z).$$

For a polynomial $p \in \text{Poly}(nC)$ we have $\deg_C(p) \leq n$. Thus

$$\Phi_n(z)^{1/n} \leq \Phi_n(z)^{1/\deg_C(p)}.$$

This shows that

$$V_{C,K}(z) \leq \sup \left\{ \frac{1}{\deg_C(p)} \log |p(z)| : p \in \mathcal{P}_d, \|p\|_K \leq 1 \right\}.$$

We do not know if equality holds (in general) in (2.3). From (1.10),

$$\varepsilon V_K \leq V_{C,K} \leq V_K$$

so that for K nonpluripolar, $V_{C,K}^*$ is a plurisubharmonic function (indeed, $V_{C,K}^* \in L(\mathbb{C}^d)$). Furthermore,

$$C \subset C' \implies V_{C,K} \leq V_{C',K}$$

which follows from the facts that $\text{Poly}(nC) \subset \text{Poly}(nC')$ and $p \in \text{Poly}(nC)$ implies $\deg_C(p) \geq \deg_{C'}(p)$.

Remark 2.1. From the definition (2.2), for $K \subset \mathbb{C}^d$ compact we have $V_{C,K} = V_{C,\hat{K}}$ where \hat{K} is the polynomial hull of K (recall (1.9)). Let C be the closure of an open, connected set satisfying (1.10). We remark that

$$Z(K) := \{ z \in \mathbb{C}^d : V_{C,K}(z) = 0 \} = \hat{K}.$$

To see this, since $V_{C,K} \geq 0$ we clearly have $\hat{K} \subset Z(K)$. For the reverse inclusion, if $z_0 \notin \hat{K}$ there exists a polynomial p with

$$\frac{|p(z_0)|}{\|p\|_K} =: 1 + \lambda > 1.$$
By (1.10), for each positive integer k, $p^k \in \text{Poly}(n_k C)$ for some positive integer $n_k = \deg_C(p^k)$ with $n_k \uparrow \infty$ and

$$n_k \leq \deg_{\Sigma}(p^k) \leq k \deg_{\Sigma}(p).$$

Thus

$$\limsup_{k \to \infty} \frac{1}{n_k} \log \frac{|p^k(z_0)|}{\|p^k\|^K} \geq \limsup_{k \to \infty} \frac{1}{k \cdot \deg_{\Sigma}(p)} \log(1 + \lambda)^k$$

$$= \frac{1}{\deg_{\Sigma}(p)} \log(1 + \lambda) > 0$$

so that $V_{C,K}(z_0) > 0$.

One class of compact sets K for which C-extremal functions can be computed are products of planar compacta. For $E \subset \mathbb{C}$ a planar compacta, let g_E be the classical Green function of (the unbounded component of the complement of) E.

Proposition 2.2. Let $C \subset \Sigma$ be a connected set containing C_0 in (1.12). For $K = E_1 \times \cdots \times E_d$, a product of regular, planar compacta E_j, we have

$$V_{C,K}(z) = V_{\Sigma,K}(z) = \max_{j=1,\ldots,d} g_{E_j}(z_j).$$

In particular, this holds for C the closure of an open, connected set satisfying (1.10).

Proof. It is classical that $V_{\Sigma,K}(z) = \max_{j=1,\ldots,d} g_{E_j}(z_j)$ (cf. [10, Theorem 5.1.8]). Since $C \subset \Sigma$, clearly $V_{C,K}(z) \leq V_{\Sigma,K}(z)$. For the reverse inequality, for $n = 1,2,\ldots$ define

$$\Psi_n(z) := \sup \{ |p(z)| : p(z) = p_1(z_1) + \cdots + p_d(z_d), \ \deg p_i \leq n, \ \|p\|_K \leq 1 \}$$

(here $\deg = \deg_{\Sigma}$) and

$$V(z) := \limsup_{n \to \infty} \frac{1}{n} \log \Psi_n(z).$$

Since $C_0 \subset C$, $\Psi_n(z) \leq \Phi_n(z)$ in (2.1) and hence $V(z) \leq V_{C,K}(z)$. Fixing $j \in \{1,\ldots,d\}$ and taking $p_k \equiv 0$ for $k \neq j$, we have

$$\Psi_n(z) \geq \sup \{ |p_j(z_j)| : \deg p_j \leq n, \ \|p_j\|_{E_j} \leq 1 \}.$$

Thus

$$V(z) \geq \limsup_{n \to \infty} \left(\frac{1}{n} \log \sup \{ |p_j(z_j)| : \deg p_j \leq n, \ \|p_j\|_{E_j} \leq 1 \} \right) = g_{E_j}(z_j).$$

This holds for $j = 1,\ldots,d$ and the proposition is proved. \square
Remark 2.3. Since, in this setting,
\[\sup \{ |p_j(z_j)| : \deg p_j \leq n, \|p_j\|_{E_j} \} \leq \Psi_n(z) \leq \Phi_n(z), \]
and
\[\lim_{n \to \infty} \frac{1}{n} \log \sup \{ |p_j(z_j)| : \deg p_j \leq n, \|p_j\|_{E_j} \} = g_{E_j}(z_j) \]
we have a true limit in (2.2). Moreover, the proof of Proposition 2.2 shows that for \(K \) compact in \(\mathbb{C}^d \), if we let \(E_j = \pi_j(K) \) where \(\pi_j \) is the projection from \(z = (z_1, \ldots, z_d) \) to the \(j \)-th coordinate \(z_j \), then
\[V_{\Sigma, K}^*(z) \geq V_{C, K}^*(z) \geq \max_{j=1,\ldots,d} g_{E_j}(z_j). \]
We mention that for \(C \) convex and \(K = E_1 \times \cdots \times E_d \), a product of regular, planar compacta \(E_j \), we have (cf., [9, Prop. 2.4])
\[V_{C, K}(z_1, \ldots, z_d) = \phi_C\left(g_{E_1}(z_1), \ldots, g_{E_d}(z_d)\right) \]
where \(\phi_C \) is defined in (1.5).

Examples of nonconvex \(C \) satisfying the hypotheses of Proposition 2.2 are the \(l^p \) balls
\[C_p = \{ (x_1, \ldots, x_d) \in (\mathbb{R}^+)^d : x_1^p + \cdots + x_d^p \leq 1 \} \]
from (1.11) with \(0 < p < 1 \). Note Proposition 2.2 is also valid in the limiting case \(p = 0 \).

2.2. \(L^2 \)-approach to \(V_{C, K} \). We next discuss several ways of recovering \(V_{C, K} \) in this non-convex setting, motivated by the standard (and convex) settings. Often \(L^2 \)-norms are more convenient to work with than \(L^\infty \)-norms. To this end, for \(K \) a compact set in \(\mathbb{C}^d \) and \(\tau \) a positive Borel measure on \(K \), we say that \((K, \tau) \) satisfies a Bernstein–Markov property if for any polynomial \(p_n \) of degree \(n \) and any \(n \)
\[\|p_n\|_K \leq M_n \|p_n\|_\tau \quad \text{where } \limsup_{n \to \infty} M_n^{1/n} = 1. \]
From our hypothesis (1.10), this is equivalent to (2.6) for \(p_n \in \text{Poly}(nC) \). For simplicity, we assume \(\tau(K) = 1 \).

In the standard pluripotential setting of \(C = \Sigma \), let
\[m_n = m_n(\Sigma) = \dim(\text{Poly}(n \Sigma)) = \binom{d + n}{n} = \mathcal{O}(n^d). \]
We take a lexicographical ordering of the monomials \(\{z^\nu\}_{|\nu|\leq n} \) in Poly\((n\Sigma)\) and write these as \(\{e_j(z)\}_{j=1}^{m_n} \). Let \(\{p_j\}_{j=1,...,m_n} \) be a set of orthonormal polynomials of degree at most \(n \) in \(L^2(\tau) \) gotten by applying the Gram–Schmidt process to these monomials in Poly\((n\Sigma)\). For each \(n = 1, 2, \ldots \) consider the corresponding Bergman kernel

\[
S_n(z, \zeta) := \sum_{j=1}^{m_n} p_j(z)p_j(\zeta)
\]

and the restriction to the diagonal

\[
S_n(z, z) = \sum_{j=1}^{m_n} |p_j(z)|^2. \tag{2.7}
\]

By the reasoning in [8], we have the following.

Proposition 2.4. Let \(K \subset \mathbb{C}^d \) be compact and nonpluripolar and let \(\tau \) be a probability measure on \(K \) such that \((K, \tau)\) satisfies (2.6). Then with \(S_n(z, z) \) defined in (2.7),

\[
\lim_{n \to \infty} \frac{1}{2n} \log S_n(z, z) = V_{\Sigma, K}(z), \quad z \in \mathbb{C}^d.
\]

If \(V_{\Sigma, K} \) is continuous, the convergence is uniform on compact subsets of \(\mathbb{C}^d \).

Sketch of proof. We briefly indicate the two main steps in the proof since these will be generalized. First, for each \(n = 1, 2, \ldots \) define

\[
\phi_n(z) := \sup \{|p(z)| : p \in \text{Poly}(n\Sigma), \|p\|_K \leq 1\}.
\]

Then, from [10, Theorem 5.1.7],

\[
\lim_{n \to \infty} \frac{1}{n} \log \phi_n(z) = V_{\Sigma, K}(z) \tag{2.8}
\]

pointwise on \(\mathbb{C}^d \); and the convergence is uniform on compact subsets of \(\mathbb{C}^d \) if \(V_{\Sigma, K} \) is continuous. This is [8, Lemma 3.4]. The next step is a comparison between \(\phi_n(z) \) and \(S_n(z, z) \):

\[
1 \leq \frac{S_n(z, z)}{\phi_n(z)^2} \leq M_n^2 m_n, \quad z \in \mathbb{C}^d, \tag{2.9}
\]

where \(M_n \) is as in (2.6). The left-hand inequality follows from the reproducing property of the Bergman kernel \(S_n(z, \zeta) \) and the Cauchy–Schwarz inequality and is valid for any \(\tau \) for which one has an orthonormal basis.
in $L^2(\tau)$ for $\text{Poly}(n\Sigma)$. Let p be a polynomial of degree at most n with $\|p\|_K \leq 1$. Writing $p(z) = \sum_{j=1}^{m_n} a_j p_j(z)$,

$$\|p(z)\|^2 \leq \sum_{j=1}^{m_n} |a_j|^2 \cdot \sum_{j=1}^{m_n} |p_j(z)|^2 = \|p\|^2_\tau \cdot \sum_{j=1}^{m_n} |p_j(z)|^2 \leq \|p\|^2_K \cdot \sum_{j=1}^{m_n} |p_j(z)|^2 \leq S_n(z, z).$$

Since $\phi_n(z) = \sup \{|p(z)| : p \in \text{Poly}(n\Sigma), \|p\|_K \leq 1\}$, taking the supremum over all such p gives the left-hand inequality. The right-hand inequality uses the Bernstein–Markov property of (K, τ). We have $\|p_j\|_K \leq M_n$ so that $|p_j(z)|/M_n \leq \phi_n(z)$ and

$$S_n(z, z) = \sum_{j=1}^{m_n} |p_j(z)|^2 \leq m_n \cdot M_n^2 \cdot [\phi_n(z)]^2. \quad \square$$

The exact same proof is valid for C convex satisfying (1.4) (cf. [2, Proposition 2.11]). We note that the analogue of (2.8) in this setting uses the fact that

$$\text{Poly}(nC) \cdot \text{Poly}(mC) \subset \text{Poly}(n + mC).$$

Given C, the closure of an open, connected set satisfying (1.10) which contains C_0 in (1.12), if we know for a given compact set K that we have the pointwise limit

$$\lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) = V_{C,K}(z), \quad (2.10)$$

i.e., the limit exists and equals $V_{C,K}(z)$, then the analogue of Proposition 2.4 holds in this setting, except perhaps for the local uniform convergence. We state this as Proposition 2.6. Moreover, we get convergence in $L^1_{loc}(\mathbb{C}^d)$ as well. Here we use an ordering \prec_C on \mathbb{N}^d which respects $\text{deg}_C(p)$ in the sense that $\alpha \prec_C \beta$ whenever $\text{deg}_C(z^\alpha) < \text{deg}_C(z^\beta)$, and

$$S^C_n(z, z) = \sum_{j=1}^{m_n} |p_j(z)|^2$$

where $\{p_j\}_{j=1}^{m_n}$ is an orthonormal basis in $L^2(\tau)$ for $\text{Poly}(nC)$ constructed via Gram–Schmidt applied to an ordered monomial basis $\{z^\nu\}$ of $\text{Poly}(nC)$. Here

$$m_n = m_n(C) = \dim(\text{Poly}(nC)).$$
For the $L^1_{\text{loc}}(\mathbb{C}^d)$ convergence, we will use the following standard result; this will also be needed in section 4. The proof is identical to that of [6, Proposition 4.4].

Proposition 2.5. Let $\{\psi_n\}$ be a locally uniformly bounded above family of plurisubharmonic functions on \mathbb{C}^d. Suppose for any subsequence J of positive integers we have

$$\left(\limsup_{n \in J} \psi_n(z)\right)^* = V(z)$$

for all $z \in \mathbb{C}^d$ where $V \in \text{PSH}(\mathbb{C}^d) \cap L^\infty_{\text{loc}}(\mathbb{C}^d)$. Then $\psi_n \to V$ in $L^1_{\text{loc}}(\mathbb{C}^d)$.

Proposition 2.6. Let C be the closure of an open, connected set satisfying (1.10). Let $K \subset \mathbb{C}^d$ be compact, nonpluripolar and satisfying (2.10). Finally, let τ be a positive Borel measure on K such that (K, τ) satisfies the Bernstein–Markov property (2.6). Then the sequences $\{\frac{1}{2n} \log S_n^C\}$ and $\{\frac{1}{n} \log \Phi_n\}$ are locally uniformly bounded above and

$$\lim_{n \to \infty} \frac{1}{2n} \log S_n^C(z, z) = V_{C,K}(z)$$

pointwise on \mathbb{C}^d. Furthermore, both sequences $\{\frac{1}{2n} \log S_n^C\}$ and $\{\frac{1}{n} \log \Phi_n\}$ converge to $V_{C,K}^*$ in $L^1_{\text{loc}}(\mathbb{C}^d)$.

Proof. The analogue of (2.9) holds with $S_n, \phi_n, m_n = m_n(\Sigma)$ replaced by $S_n^C, \Phi_n, m_n = m_n(C)$ with the exact same proof:

$$1 \leq \frac{S_n^C(z, z)}{\Phi_n(z)^2} \leq M_n^2 m_n.$$

Under the hypothesis (2.10), the pointwise convergence of $\frac{1}{2n} \log S_n^C(z, z)$ to $V_{C,K}(z)$ follows. Moreover, from (2.11), $C \subset \Sigma$ (so that $\Phi_n \leq \phi_n$), and $\frac{1}{n} \log \phi_n \leq V_K$,

$$\frac{1}{2n} \log S_n^C(z, z) \leq \frac{1}{n} \log \Phi_n(z) + \frac{1}{2n} \log(M_n^2 m_n)$$

$$\leq V_{K}^*(z) + \limsup_{n \to \infty} \frac{1}{2n} \log(M_n^2 m_n) = V_{K}^*(z)$$

which shows the sequences $\{\frac{1}{2n} \log S_n^C\}$ and $\{\frac{1}{n} \log \Phi_n\}$ are locally uniformly bounded above. Proposition 2.5 immediately shows

$$\frac{1}{2n} \log S_n^C \to V_{C,K}^*$$

in $L^1_{\text{loc}}(\mathbb{C}^d)$.
Finally, for each n, the function $\frac{1}{n} \log \Phi_n^*$ is psh and is equal to $\frac{1}{n} \log \Phi_n$ except perhaps for a pluripolar set. Since a countable union of pluripolar sets is pluripolar,

$$\lim_{n \to \infty} \frac{1}{n} \log \Phi_n^*(z) = \lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) = V_{C,K}(z)$$

outside of a pluripolar set. Hence $[\lim_{n \to \infty} \frac{1}{n} \log \Phi_n^*(z)]^* = V_{C,K}^*(z)$ for all $z \in \mathbb{C}^d$. By Proposition 2.5, $\frac{1}{n} \log \Phi_n^* \to V_{C,K}^*$ in $L_{\text{loc}}^1(\mathbb{C}^d)$ and hence the same is true for $\{ \frac{1}{n} \log \Phi_n \}$. □

From Remark 2.3, the full conclusion of Proposition 2.6 holds if $C \subset \Sigma$ contains C_0 in (1.12) and $K = E_1 \times \cdots \times E_d$, a product of regular, planar compacta E_j. In fact, we get slightly more, namely local uniform convergence, for certain Bernstein–Markov measures on μ. Suppose μ_j is a Bernstein–Markov measure on E_j for $j = 1, \ldots, d$. Then $\mu := \bigotimes_{j=1}^d \mu_j$ is a Bernstein–Markov measure on K. If $\{e_{k}^{(j)}\}$ is an orthonormal basis of polynomials for $L^2(\mu_j)$ with $\deg(e_{k}^{(j)}) = k$, then we know that

$$\lim_{n \to \infty} \frac{1}{2n} \log \sum_{k=0}^n |e_{k}^{(j)}(z_j)|^2 = g_{E_j}(z_j)$$

locally uniformly on $\mathbb{C} = \mathbb{C}_{z_j}$. Then, we have

Proposition 2.7. With $K = E_1 \times \cdots \times E_d$ and $\mu := \bigotimes_{j=1}^d \mu_j$ as in the preceding paragraph, the n-th Bergman function

$$B_{n}^{\mu,C}(z) := S_{n}^{C}(z,z)$$

for μ associated to the vector space Poly(nC) satisfies

(2.13) $$\lim_{n \to \infty} \frac{1}{2n} \log B_{n}^{\mu,C}(z_1, \ldots, z_d) = \max_{j=1, \ldots, d} g_{E_j}(z_j)$$

locally uniformly on \mathbb{C}^d (and hence in $L_{\text{loc}}^1(\mathbb{C}^d)$).

Proof. We first consider the n-th Bergman function $B_{n}^{\mu,C_0}(z) := S_{n}^{C_0}(z,z)$ for

$$\text{Poly}(nC_0) = \text{span}\{1, z_1, \ldots, z_d, z_1^2, \ldots, z_d^2, z_1^n, \ldots, z_d^n\}$$

where C_0 is the $p = 0$ case of the l^p ball C_0 in (1.12). Then, assuming μ is a probability measure, we have

$$d - 1 + B_{n}^{\mu,C_0}(z_1, \ldots, z_d) = d + \sum_{j=1}^d \sum_{k=1}^n |e_{k}^{(j)}(z_j)|^2 = d + \sum_{j=1}^d \sum_{k=0}^n |e_{k}^{(j)}(z_j)|^2.$$
Now recall that for real a_1, \ldots, a_d,
\begin{equation}
\lim_{n \to \infty} \frac{1}{2n} \log (e^{2na_1} + \cdots + e^{2na_d}) = \max_{j=1, \ldots, d} a_j.
\end{equation}

Taking sequences \(\{a_n^{(j)}(z_j) := \sum_{k=0}^{n}|e_k^{(j)}(z_j)|^2\} \) so that
\[\lim_{n \to \infty} \frac{1}{2n} \log a_n^{(j)}(z_j) = a_j(z_j) := g_E(z_j), \quad j = 1, \ldots, d \]
where the convergence is locally uniform in each $C = \mathbb{C}z_j$, using (2.14) we have
\[\lim_{n \to \infty} \frac{1}{2n} \log \left(\sum_{j=1}^{d} a_n^{(j)}(z_j)\right) = \max_{j=1, \ldots, d} a_j(z_j) \]
locally uniformly in \mathbb{C}^d, and thus
\[\lim_{n \to \infty} \frac{1}{2n} \log B_{\mu,C_0}^\mu(z_1, \ldots, z_d) = \lim_{n \to \infty} \frac{1}{2n} \log (d - 1 + B_{\mu,C_0}^\mu(z_1, \ldots, z_d)) = \max_{j=1, \ldots, d} g_E(z_j) \]
locally uniformly in \mathbb{C}^d, which is (2.13) for $C = C_0$. The case $C = C_1 = \Sigma$ follows from the more general Proposition 2.4. For other C as in Proposition 2.2, $C_0 \subset C \subset C_1$ which implies the inequality
\[B_{\mu,C_0}^\mu \leq B_{\mu,C}^\mu \leq B_{\mu,C_1}^\mu \]
and hence the general case of (2.13). \(\square \)

Remark 2.8. Unlike the case where C is convex, in the non-convex setting, it is unclear whether one has
\[\lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) = V_{C,K}(z) \]
pointwise; and, even if this holds and $V_{C,K}$ is continuous, it is unclear whether the limit is locally uniform. From Proposition 2.7 and (2.11), for C the closure of an open, connected set satisfying (1.10) which contains C_0 in (1.12), all of these properties hold for $K = E_1 \times \cdots \times E_d$ a product of regular, planar compacta E_j.

More generally, let μ be any positive measure on K such that one can form orthonormal polynomials $\{p_\alpha\}$ using Gram–Schmidt on the monomials $\{z^\alpha\}$. As before we use an ordering \prec_C on \mathbb{N}^d which respects $\deg_C(p)$. The following argument of Zeriahi [12] is valid in this setting.
Proposition 2.9. Let $K \subset \mathbb{C}^d$ be compact and nonpluripolar and let C be the closure of an open, connected set satisfying (1.10). Then

$$
\limsup_{|\alpha| \to \infty} \frac{1}{\deg_C(p_\alpha)} \log |p_\alpha(z)| \geq V_{C,K}(z), \quad z \not\in \hat{K}.
$$

Proof. Let $Q_n \in \text{Poly}(nC)$ and $\|Q_n\|_K \leq 1$. From the property of the ordering \prec_C, we can write $Q_n = \sum_{\alpha \in nC} c_\alpha p_\alpha$. Then

$$
|c_\alpha| = \left| \int_K Q_n \overline{p_\alpha} \, d\mu \right| \leq \int_K |\overline{p_\alpha}| \, d\mu \leq \sqrt{\mu(K)}
$$

by Cauchy–Schwarz. Hence

$$
|Q_n(z)| \leq m_n \sqrt{\mu(K)} \max_{\alpha \in nC} |p_\alpha(z)|
$$

where $m_n = \dim(\text{Poly}(nC))$.

Fix $z_0 \in \mathbb{C}^d \setminus \hat{K}$ and let $\alpha_n \in nC$ be a multiindex with $\deg_C(p_{\alpha_n})$ largest such that

$$
|p_{\alpha_n}(z_0)| = \max_{\alpha \in nC} |p_\alpha(z_0)|.
$$

We claim that taking any such sequence $\{\alpha_n = \alpha_n(z_0)\}_{n=1,2,\ldots}$,

$$
\lim_{n \to \infty} \deg_C(p_{\alpha_n}) = +\infty.
$$

For if not, then by the above argument, there exists $A < \infty$ such that for any n and any $Q_n \in \text{Poly}(nC)$ with $\|Q_n\|_K \leq 1$,

$$
|Q_n(z_0)| \leq m_n \sqrt{\mu(K)} \max_{\deg_C(p_\alpha) \leq A} |p_\alpha(z_0)| = m_n M(z_0)
$$

where $M(z_0)$ is independent of n. But then $\Phi_n(z_0) \leq m_n M(z_0)$ so that, from definition (2.2),

$$
V_{C,K}(z_0) \leq \limsup_{n \to \infty} \left[\frac{1}{n} \log m_n + \frac{1}{n} \log M(z_0) \right] = 0
$$

which contradicts $z_0 \in \mathbb{C}^d \setminus \hat{K}$ from (2.4). We conclude that for any $z \in \mathbb{C}^d \setminus \hat{K}$, for any n and any $Q_n \in \text{Poly}(nC)$ with $\|Q_n\|_K \leq 1$,

$$
\frac{1}{n} \log |Q_n(z)| \leq \frac{1}{n} \log m_n + \frac{1}{n} \log |p_{\alpha_n}(z)| + \frac{1}{n} \log \sqrt{\mu(K)}
$$
where we can assume \(\deg_C(p_{\alpha_n}) \uparrow \infty \). Thus, for such \(z \), again from definition (2.2),
\[
V_{C,K}(z) \leq \limsup_{n \to \infty} \frac{1}{n} \log |p_{\alpha_n}(z)| \leq \limsup_{n \to \infty} \frac{1}{\deg_C(p_{\alpha_n})} \log |p_{\alpha_n}(z)|
\]
\[
\leq \limsup_{|\alpha| \to \infty} \frac{1}{\deg_C(p_{\alpha})} \log |p_{\alpha}(z)|
\]
where we have used \(\deg_C(p_{\alpha_n}) \leq n \). □

Corollary 2.10. Let \(K \subset \mathbb{C}^d \) be compact and nonpluripolar and let \(C \) be the closure of an open, connected set satisfying (1.10). Then for any Bernstein–Markov measure \(\mu \) for \(K \),
\[
V_{C,K}(z) = \limsup_{|\alpha| \to \infty} \frac{1}{\deg_C(p_{\alpha})} \log |p_{\alpha}(z)|, \quad z \notin \hat{K}.
\]

Proof. In view of Proposition 2.9, it is sufficient to prove that \(V_{C,K}(z), \ z \notin \hat{K} \), is larger than the left-hand side of (2.15). Assuming \(\mu \) to be a probability measure, for the orthonormal polynomials \(\{p_{\alpha}\} \), we have
\[
1 \leq \|p_{\alpha}\|_K \leq M_{\deg_C(p_{\alpha})} \quad \text{and} \quad M_{\deg_C(p_{\alpha})}^{1/\deg_C(p_{\alpha})} \to 1
\]
using (1.10) and the Bernstein–Markov property (2.6). Thus
\[
\lim_{|\alpha| \to \infty} \|p_{\alpha}\|_K^{1/\deg_C(p_{\alpha})} = 1.
\]

Consequently, from definition (2.2),
\[
V_{C,K}(z) \geq \limsup_{|\alpha| \to \infty} \frac{1}{\deg_C(p_{\alpha})} \log \|p_{\alpha}(z)\|_K = \limsup_{|\alpha| \to \infty} \frac{1}{\deg_C(p_{\alpha})} \log |p_{\alpha}(z)|. \quad \Box
\]

By [7, Proposition 3.1], for any compact set \(K \subset \mathbb{C}^d \) there exists a Bernstein–Markov measure \(\mu \) for \(K \). We will use Corollary 2.10 in the next subsection.

2.3. \(K = B \), the complex Euclidean ball. We first remark that some version of assumption (1.10) seems natural in order that we have \(\bigcup_n \text{Poly}(nC) = \mathcal{P}_d \). Moreover, if \(\bigcup_n \text{Poly}(nC) \subsetneq \mathcal{P}_d \), equality in (2.4) may fail. Indeed, let \(C = C_0 \) and consider \(K = B := \{z \in \mathbb{C}^d : |z_1|^2 + \cdots + |z_d|^2 \leq 1\} \), the complex Euclidean ball in \(\mathbb{C}^d \). Let \(\mu \) be normalized surface area measure on \(\partial B \) and let \(\nu \) be normalized Haar measure on the torus.

Acta Mathematica Hungarica 165, 2021
16

N. LEVENBERG and F. WIELONSKY

\(T := \{ z \in \mathbb{C}^d : |z_1| = \cdots = |z_d| = 1 \} \). The monomials \(z^\alpha = z_1^{\alpha_1} \cdots z_d^{\alpha_d} \) are orthonormal with respect to \(\nu \) while the monomials \(z_j^{\alpha_j} \) are orthogonal with respect to \(\mu \) with

\[
 a_k := \| z_j^k \|_\mu^2 = \frac{(d-1)! k!}{(d-1+k)!}, \quad j = 1, \ldots, d.
\]

We consider the \(n \)-th Bergman functions \(B_{n,C_0}^\mu(z) \) and \(B_{n,C_0}^\nu(z) \) for

\[
 \text{Poly}(nC_0) = \text{span}\{ 1, z_1, \ldots, z_d, z_1^2, \ldots, z_d^2, \ldots, z_1^n, \ldots, z_d^n \}.
\]

We have

\[
 B_{n,C_0}^\nu(z) = 1 + (|z_1|^2 + \cdots + |z_d|^2) + (|z_1|^4 + \cdots + |z_d|^4)
 + \cdots + (|z_1|^{2n} + \cdots + |z_d|^{2n}).
\]

and

\[
 B_{n,C_0}^\mu(z) = 1 + a_1^{-1}(|z_1|^2 + \cdots + |z_d|^2) + a_2^{-1}(|z_1|^4 + \cdots + |z_d|^4)
 + \cdots + a_n^{-1}(|z_1|^{2n} + \cdots + |z_d|^{2n})
\]

Thus

\[
 (2.16) \quad B_{n,C_0}^\nu(z) \leq B_{n,C_0}^\mu(z) \leq 1 + a_n^{-1}[B_{n,C_0}^\nu(z) - 1].
\]

Similar to the proof of Proposition 2.7, we have

\[
 \lim_{n \to \infty} \frac{1}{2n} \log B_{n,C_0}^\nu(z) = \max[0, \log |z_1|, \ldots, \log |z_d|]
\]

locally uniformly for all \(z \in \mathbb{C}^d \). From (2.16) we also have

\[
 \lim_{n \to \infty} \frac{1}{2n} \log B_{n,C_0}^\mu(z) = \max[0, \log |z_1|, \ldots, \log |z_d|]
\]

locally uniformly for all \(z \in \mathbb{C}^d \). However, the inequality (2.11) is valid for \(C_0, B \) and \(\mu \); in the above notation, since \(\dim(\text{Poly}(nC_0)) = dn + 1 \),

\[
 1 \leq \frac{B_{n,C_0}^\mu(z)}{\Phi_n(z)^2} \leq M_n^2(dn + 1)
\]

where

\[
 \Phi_n(z) = \Phi_{n,C_0,B}(z) := \sup\{ |p(z)| : p \in \text{Poly}(nC_0), \|p\|_B \leq 1 \}.
\]
Hence \(\lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) \) exists and equals \(\max[0, \log |z_1|, \ldots, \log |z_d|] \) as well.

This shows

\[
V_{C_0,B}(z) = \max (0, \log |z_1|, \ldots, \log |z_d|).
\]

In particular,

\[
Z(B) = \{ z : V_{C_0,B}(z) = 0 \} = \{ z : \max_{j=1,\ldots,d} |z_j| \leq 1 \}
\]

so that \(B = \hat{B} \subset Z(B) \) when \(d > 1 \).

Moreover, given \(z_0 = (z_{0,1}, \ldots, z_{0,d}) \not\in B \), writing \(z_{0,j} = |z_{0,j}| e^{i\phi_j} \) and defining \(p(z) := \sum_{j=1}^d e^{-2i\phi_j} z_j^2 \), we have

\[
\|p\|_B \leq \max_{z \in B} \left(|z_1|^2 + \cdots + |z_d|^2 \right) = 1
\]

while

\[
|p(z_0)| = |z_{0,1}|^2 + \cdots + |z_{0,d}|^2 > 1.
\]

Since \(p \in \text{Poly}(2C_0) \), this shows that if one defines

\[
\tilde{V}_{C_0,B}(z) := \sup \left\{ \frac{1}{\deg_{C_0}(p)} \log |p(z)| : p \in \bigcup_n \text{Poly}(nC_0), \|p\|_B \leq 1 \right\},
\]

then \(\tilde{V}_{C_0,B}(z) > 0 \) for all \(z \not\in B \) so that \(\tilde{V}_{C_0,B} \neq V_{C_0,B} \). Thus equality fails to hold in (2.3) for \(C = C_0 \) and \(K = B \).

Next we show that, unlike the case of product sets \(K = E_1 \times \cdots \times E_d \) in Proposition 2.2, for \(K = B \), the \(C_p \)-extremal functions for \(0 < p < 1 \) do not coincide with the \(C_0 \)- and \(C_1 = \Sigma \)-extremal functions.

Proposition 2.11. For \(0 < p < 1 \), we have

\[
V_{C_0,B}(z) < V_{C_p,B}(z) < V_{C_1,B}(z)
\]

at certain points \(z \in \mathbb{C}^d \).

Proof. For simplicity, we let \(d = 2 \) and use variables \((z, w)\). As shown above, together with (2.4)

\[
V_{C_0,B}(z, w) = \max[0, \log |z|, \log |w|] = 0 < V_{C_p,B}(z, w)
\]

for \((z, w) \in Z(B) \setminus B \neq \emptyset\) and \(0 < p < 1 \). We next verify for \(0 < p < 1 \) that

\[
V_{C_p,B}(z, w) \neq V_{C_1,B}(z, w)
\]
for certain points. We utilize Corollary 2.10: taking $K = B \subset \mathbb{C}^2$, μ normalized surface area measure on ∂B, and $C = C_p$ for $0 < p \leq 1$,

$$ V_{C_p, B}(z, w) = \limsup_{|\alpha| \to \infty} \frac{1}{\deg_{C_p}(p_\alpha)} \log |p_\alpha(z, w)|, \quad (z, w) \notin B. $$

We look at points on the diagonal $w = z$ for $|z|$ large; indeed, we may consider any points (z, w) with $|z| = |w|$ large. For $C_1 = \Sigma$ we have $V_{C_1, B}(z, w) = \frac{1}{2} \log^+(|z|^2 + |w|^2)$ so for $|z| \geq 1/\sqrt{2}$,

$$ V_{C_1, B}(z, z) = \frac{1}{2} \log(|z|^2 + |z|^2) = \frac{1}{2} \log 2 + \log |z|. $$

Since $\|z^a w^b\|_{L^2(\mu)}^2 = ab!/(a + b + 1)!$, at points (z, z) with $|z| > 1$ for C_1 we need the orthonormal monomials $\{z^a w^b/\|z^a w^b\|_{L^2(\mu)}\}$ with a, b near equal to achieve this value $\frac{1}{2} \log 2 + \log |z|$ using (2.18). Precisely, for n large we need

$$ \frac{1}{n} \log \|z^a w^b\|_{L^2(\mu)}^{-1} \to \frac{1}{2} \log 2. $$

For $a = b = n/2$ (we assume n even for simplicity), using Stirling’s formula,

$$ \|z^{n/2} w^{n/2}\|_{L^2(\mu)}^{-1} = \frac{\sqrt{(n+1)!}}{(n/2)!} \approx \frac{\sqrt{(n/e)^n}}{(n/2e)^{n/2}} = 2^{n/2} $$

so that

$$ \frac{1}{n} \log \|z^{n/2} w^{n/2}\|_{L^2(\mu)}^{-1} \approx \frac{1}{n} \log 2^{n/2} = \frac{1}{2} \log 2, $$

as desired.

If $0 < p < 1$, the only monomials $z^a w^b \in \text{Poly}(nC_p)$ with $a + b$ “near” n are “near” z^n and w^n (i.e., corresponding to integer lattice points near the coordinate axes); while those with a, b near equal have $a + b$ “well away” from n by concavity of the curve $x^p + y^p = n$. Fix $0 < p < 1$ and fix any $0 < \lambda < 1$. For any monomial $z^a w^b$ with $(a, b) \in n(1 - \lambda)C_1$ we have $a + b \leq n(1 - \lambda)$ so that at a point (z, z) the function $\frac{1}{n} \log |z^a w^b|$ takes the value

$$ \frac{1}{n} \log |z|^{a + b} \leq \frac{1}{n} \log |z|^{n(1 - \lambda)} = (1 - \lambda) \log |z|. $$

Since $(1 - \lambda) < 1$, for points (z, z) with $|z|$ sufficiently large, these monomials cannot approach $\log |z| + C$ regardless of n.

For λ sufficiently close to 1, any remaining monomials $z^a w^b \in \text{Poly}(nC_p)$ with $(a, b) \in nC_p \setminus n(1 - \lambda)C_1$ must have exponents close to $(n, 0)$ or $(0, n)$.
In the sequel we only consider the first case, the second case being identical. Then, there exists some $0 < \lambda_0 < 1/4$, say, such that

$$a > n(1-\lambda_0) \quad \text{and} \quad b < n\lambda_0 \quad \text{with} \quad a + b \leq n.$$

(2.19)

At a point (z, z) with $|z| \geq 1$ the function $\frac{1}{n} \log |z^a w^b|$ has an upper bound of

$$\frac{1}{n} \log |z^n| = \log |z|,$$

so to complete our argument it suffices to show that

$$\limsup_{n \to \infty} \frac{1}{n} \log \|z^a w^b\|_{L^2(\mu)}^{-1} < \frac{1}{2} \log 2$$

where the lim sup is taken over monomials $z^a w^b$ satisfying (2.19). Estimating

$$\|z^a w^b\|_{L^2(\mu)}^{-2} \simeq \frac{(a + b)!}{a! b!} \leq \frac{(n\lambda_0 + 1) \cdots n}{a!} \leq \frac{n!}{(n(1 - \lambda_0))! (n\lambda_0)!},$$

and using Stirling’s formula,

$$\frac{n!}{(n(1 - \lambda_0))! (n\lambda_0)!} \simeq \frac{(n/e)^n}{(n(1 - \lambda_0)/e)^{n(1-\lambda_0)} (n\lambda_0/e)^{n\lambda_0}} = (1 - \lambda_0)^{-n(1-\lambda_0)} \lambda_0^{-n\lambda_0}.$$

Setting L_n for this last expression, we have

$$\frac{1}{n} \log L_n = - \left((1 - \lambda_0) \log(1 - \lambda_0) + \lambda_0 \log \lambda_0 \right).$$

We want to show that, for $\lambda_0 < 1/4$, this last quantity is smaller than $\log 2$. The function $f(x) := -[(1-x) \log(1-x) + x \log x]$ is increasing on $(0, 1/2)$, decreasing on $(1/2, 1)$, and has a maximum at $x = 1/2$ with $f(1/2) = \log 2$; this gives the result. □

3. Non-convex Bernstein–Walsh

We continue to let C be the closure of an open, connected set satisfying (1.10). Given $K \subset \mathbb{C}^d$ compact, as in the convex setting for $f \in C(K)$ we define

$$d_n^C(f, K) := \inf_{p \in \text{Poly}(nC)} \|f - p\|_K$$
where as before

\[\text{Poly}(nC) := \{ p(z) = \sum_{J \in nC \cap \mathbb{N}^d} c_J z^J = \sum_{J \in nC \cap \mathbb{N}^d} c_J z_1^{j_1} \cdots z_d^{j_d}, \; c_J \in \mathbb{C} \}, \]

\(n = 1, 2, \ldots \). Note that the dimension of Poly\((nC)\) is proportional to \(\text{vol}(C) \cdot n^d \) where \(\text{vol}(C) \) is the \(d \)-dimensional volume of \(C \). In this section, we consider generalizations of Theorem 1.1.

Proposition 3.1. Let \(K \subset C^d \) be compact with \(V_{C,K} \) continuous and satisfying (2.10) locally uniformly in \(C^d \). Suppose for some \(R > 1 \) we have \(f \in C(K) \) which satisfies

\[\limsup_{n \to \infty} \left[d_n^C(f, K) \right]^{1/n} \leq 1/R. \]

Then \(f \) extends holomorphically to the open set

\[\Omega_{R,C} := \{ z \in C^d : V_{C,K}(z) < \log R \}. \]

Proof. Under the assumption that

\[\lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) = V_{C,K}(z) \quad \text{locally uniformly in } C^d, \]

we have an asymptotic Bernstein–Walsh inequality: for any \(E \subset C^d \) compact and \(\varepsilon > 0 \), we have \(n_0 = n_0(\varepsilon, K) \) so that

\[|p_n(z)| \leq \| p_n \|_K e^{n(V_{C,K}(z)+\varepsilon)}, \; z \in E \]

for any \(p \in \text{Poly}(nC) \) and \(n > n_0 \). This follows since

\[\frac{1}{n} \log \frac{|p_n(z)|}{\| p_n \|_K} \leq \frac{1}{n} \log \Phi_n(z) \leq V_{C,K}(z) + \varepsilon \]

for \(z \in E \) and \(n > n_0 \) by (3.1). We use this to show that if \(p_n \in \text{Poly}(nC) \) satisfies \(d_n^C(f, K) = \| f - p_n \|_K \), then the series \(p_0 + \sum_1^\infty (p_n - p_{n-1}) \) converges uniformly on compact subsets of \(\Omega_{R,C} \) to a holomorphic function \(F \) which agrees with \(f \) on \(K \). To this end, choose \(R' \) with \(1 < R' < R \); by hypothesis the polynomials \(p_n \) satisfy

\[\| f - p_n \|_K \leq \frac{M}{R^n}, \quad n = 0, 1, 2, \ldots, \]

for some \(M > 0 \). Let \(\rho \) satisfy \(1 < \rho < R' < R \). Fix \(\varepsilon > 0 \) sufficiently small so that \(1 < \rho < \rho e^\varepsilon < R' \), and apply the definition of \(V_{C,K} \) and \(\Omega_{\rho,C} \) with
the asymptotic Bernstein–Walsh estimate on $E = \overline{\Omega}_{\rho,C}$ and the polynomial $p_n - p_{n-1} \in \text{Poly}(nC)$ to obtain

$$\sup_{\Omega_{\rho,C}} |p_n(z) - p_{n-1}(z)| \leq \rho^n e^{n\varepsilon} \|p_n - p_{n-1}\|_K$$

$$\leq \rho^n e^{n\varepsilon} (\|p_n - f\|_K + \|f - p_{n-1}\|_K) \leq \rho^n e^{n\varepsilon} \frac{M(1 + R')}{R'^n}.$$

Since ρ and R' were arbitrary numbers satisfying $1 < \rho < R' < R$, we conclude that $p_0 + \sum_{n=1}^{\infty} (p_n - p_{n-1})$ converges locally uniformly on $\Omega_{\rho,C}$ to a holomorphic function F. From (3.2), $F = f$ on K. □

The direct converse of Proposition 3.1 is false, in general; simple examples can be constructed using product sets (use Propositions 2.2 and 3.8 (below)). Our goal is to determine what one can say in the opposite direction. If F is holomorphic in a neighborhood of $K \subset \mathbb{C}^d$ compact, then $\limsup_{n \to \infty} d_n^C(F, K)^{1/n} < 1$ and from (1.10) we then have $\limsup_{n \to \infty} d_n^C(F, K)^{1/n} < 1$. We will use the following lemma, which says that the asymptotic behavior of the rates of polynomial approximation of $F \in C(K)$ by $\text{Poly}(nC)$ in the sup norm on K and in the L^2 norm with respect to a Bernstein–Markov measure (2.6) on K are the same, in this n-th root sense.

Lemma 3.2. Let $K \subset \mathbb{C}^d$ be compact and nonpluripolar. Let μ be a probability measure on K which satisfies the Bernstein–Markov property (2.6). Let $F \in C(K)$. Let C be a compact, connected subset of \mathbb{R}^d_+ with nonempty interior, such that $a\Sigma \subset C$ for some $a > 0$. Assume that

$$\limsup_{n \to \infty} (d_n^C(F, K))^{1/n} =: \rho_\infty < 1.$$

If $\{p_n\}$ is a sequence of best L^2_μ approximants to F with $p_n \in \text{Poly}(nC)$ then

$$(3.3) \quad \limsup_{n \to \infty} \|F - p_n\|_{\mu}^{1/n} = \limsup_{n \to \infty} \|F - p_n\|_K^{1/n} = \rho_\infty.$$

Proof. Let r such that $\rho_\infty < r < 1$. For n large enough, there exists $q_n \in \text{Poly}(nC)$ such that

$$\|F - q_n\|_K \leq r^n.$$

Hence, for the sequence p_n, we have

$$\|F - p_n\|_\mu \leq \|F - q_n\|_\mu \leq \|F - q_n\|_K \leq r^n,$$

and, in particular, p_n converges to F in L^2_μ. Moreover, for k large,

$$\|p_{k+1} - p_k\|_\mu \leq \|F - p_{k+1}\|_\mu + \|F - p_k\|_\mu \leq 2r^k.$$
By the Bernstein–Markov property (2.6), for a given $\varepsilon > 0$ such that $\tilde{r} = r(1 + \varepsilon) < 1$, we have, for k large,

$$\|p_{k+1} - p_k\|_K \leq (1 + \varepsilon)^k\|p_{k+1} - p_k\|_\mu \leq 2\tilde{r}^k,$$

and thus $p_n = p_1 + \sum_{k=1}^{n-1} (p_{k+1} - p_k)$ converges uniformly to F on K. Moreover,

$$\|F - p_n\|_K = \left\| \sum_{k=n}^{\infty} (p_{k+1} - p_k) \right\|_K \leq 2\frac{\tilde{r}^n}{1 - \tilde{r}}.$$

Letting r tend to ρ_∞, ε tend to 0, and taking n-th roots, proves the second equality in (3.3). For the first equality, set

$$\rho_\mu := \limsup_{n \to \infty} \|F - p_n\|_\mu^{1/n} \leq \rho_\infty.$$

We have, for $\rho_\mu < r < 1$, $\tilde{r} = r(1 + \varepsilon)$, and n large,

$$\|F - p_n\|_K \leq \sum_{k=n}^{\infty} \|p_{k+1} - p_k\|_K \leq \sum_{k=n}^{\infty} (1 + \varepsilon)^k\|p_{k+1} - p_k\|_\mu \leq 2\sum_{k=n}^{\infty} \tilde{r}^k = 2\frac{\tilde{r}^n}{1 - \tilde{r}}.$$

Letting r tend to ρ_μ, ε tend to 0, and taking n-th roots finishes the proof. □

For simplicity, in the rest of this section we work in \mathbb{C}^2. The "standard" version of Theorem 1.1 is the case where C is the simplex Σ defined in (1.2) with $d = 2$. As a first attempt at a converse to Proposition 3.1, we let C_p be the set in \mathbb{R}^2_+ defined by

$$C_p = \{ (x, y) \in \mathbb{R}^2, x, y \geq 0, x^p + y^p \leq 1 \}, \quad 0 < p \leq 1,$$

i.e., the $d = 2$ case of (1.11). For $0 < p < 1$, C_p is a non-convex body satisfying (1.10), and for $p = 1$, $C_1 = \Sigma$. For $0 < \alpha < 1$, let T_α be the triangle with vertices $(0, 0), (0, \alpha), (\beta, 0)$ where $\beta > 0$ is such that the side from $(0, \alpha)$ to $(\beta, 0)$ is tangent to the curve $x^p + y^p = 1$. Note β is a function of α. Let A_p and A_α denote the square roots of the areas of C_p and T_α, i.e.,

$$(3.4)\quad A_p^2 := \frac{\Gamma(1/p)\Gamma(1 + 1/p)}{p\Gamma(1 + 2/p)}, \quad A_\alpha^2 := \frac{\alpha \beta}{2},$$

where $\Gamma(x)$ denotes the Gamma function.

Our aim is to compare the rates of approximation with respect to a non-convex C_p ($0 < p < 1$), and with respect to the family of inscribed convex

Acta Mathematica Hungarica 165, 2021
triangles T_α, $0 < \alpha < 1$. Of course, since $T_\alpha \subset C_p$, for a compact set $K \subset \mathbb{C}^2$ and a function F on K, we have

\[(3.5)\quad d_{n^p}(F, K) \leq \inf_{0 < \alpha < 1} d_{n^\alpha}(F, K).\]

The comparison is less clear, and more interesting, if we take into account that the number of monomials in nC_p is larger than the number of monomials in nT_α, and thus normalize accordingly, by comparing $d_{n^p}(F, K)^1/A_p$ and $d_{n^\alpha}(F, K)^1/A_\alpha$; i.e.,

\[(3.6)\quad d_{n^p/A_p}(F, K) \quad \text{and} \quad d_{n^\alpha/A_\alpha}(F, K)\]

where by abuse of notation, we write $d_{n^p/A_p}(F, K)$ to denote $d_{n^p/A_p}(F, K)$. In the sequel, we estimate these two quantities explicitly in two extreme cases, namely when the function F is of the form

\[F(z, w) = f(z) + g(w)\]

and when \[F(z, w) = f(zw)\].

Let us start with the first case, and consider a subset $K = A \times B \subset \mathbb{C}^2$ where A and B are regular compact subsets of \mathbb{C}. We will denote by $\mu := \mu_A \otimes \mu_B$ the measure on K arising from Bernstein–Markov measures μ_A, μ_B on A, B. Let f and g be holomorphic functions in neighborhoods of A and B. We denote by $\rho_A := \rho_A(f)$ and $\rho_B := \rho_B(g)$ the asymptotic rate (in the n-th root sense) of best uniform univariate polynomial approximation to f on A and to g on B; i.e., letting $P_n(\mathbb{C})$ denote the univariate (holomorphic) polynomials of degree at most n,

\[\rho_A(f) := \limsup_{n \to \infty} \sqrt[n]{\inf_{p_n \in P_n(\mathbb{C})} \|f - p_n\|_A} \quad \text{and} \quad \rho_B(g) \leq \rho_B(g) \leq 1.\]

Define the function of two variables

\[F(z, w) = f(z) + g(w)\]

We begin with a lemma which is applicable to the sets C_p when $0 \leq p \leq 1$.

Lemma 3.3. Let C be a subset of \mathbb{R}^2_+ and assume that

\[C \subset [0, 1]^2, \quad C \cap (\mathbb{R}_+ \times \{0\}) = [0, 1] \times \{0\}, \quad C \cap (\{0\} \times \mathbb{R}_+) = \{0\} \times [0, 1].\]

Let $P_n(z, w)$ be the best L_2^p approximant to $F(z, w)$ in $\text{Poly}(nC)$. Then

\[P_n(z, w) = t_n^f(z) + t_n^g(w),\]

Acta Mathematica Hungarica 165, 2021
where t^f_n and t^g_n are the best $L^2_{\mu_A}$ and best $L^2_{\mu_B}$ approximants to f and g in $P_n(\mathbb{C})$, the space of polynomials in one variable of degree less than or equal to n.

Proof. Assume that

$$p_0(z), p_1(z), \ldots, p_n(z), \quad \deg p_k = k, \quad k = 0, \ldots, n,$$

$$q_0(z), q_1(z), \ldots, q_n(z), \quad \deg q_k = k, \quad q = 0, \ldots, n,$$

are orthonormal bases in $L^2_{\mu_A}$ and $L^2_{\mu_B}$. Then, the family of polynomials $p_k(z)q_l(w), \ (k, l) \in n\mathbb{C}$, is an orthonormal basis of $\text{Poly}(n\mathbb{C})$. Moreover,

$$\int f(z)p_k(z)q_l(w) \, d\mu_A(z) \, d\mu_B(w) = \delta_{l,0} \int f(z)p_k(z) \, d\mu_A(z), \quad l \geq 0,$$

and similarly,

$$\int g(w)p_l(z)q_k(w) \, d\mu_A(z) \, d\mu_B(w) = \delta_{l,0} \int g(w)q_k(w) \, d\mu_B(w), \quad l \geq 0.$$

The statement of the lemma follows. □

Remark 3.4. If for some $\alpha, \beta \leq 1$, $C \subset [0, 1]^2$ satisfies

$$C \cap (\mathbb{R}_+ \times \{0\}) = [0, \alpha] \times \{0\}, \quad C \cap (\{0\} \times \mathbb{R}_+) = \{0\} \times [0, \beta],$$

a similar proof shows that $P_n(z, w) = t^f_{\lfloor \alpha n \rfloor}(z) + t^g_{\lfloor \beta n \rfloor}(w)$.

We now compute the asymptotic rates of approximation with respect to the sets C_p and the family $T_\alpha, 0 < \alpha < 1$.

Proposition 3.5. We have, for $0 < p \leq 1$,

$$(3.7) \quad \limsup_n d_n^{C_p}(F, K)^{1/n} = \max(\rho_A, \rho_B).$$

Proof. In view of Lemma 3.2, it is equivalent to estimate the rate of best L^2 approximation to F. Let $P_n \in \text{Poly}(nC_p)$ be the best L^2 approximants to F with respect to the measure μ. From Lemma 3.3, we get

$$\|F - P_n\|_\mu^2 = \|f(z) - t^f_n(z) + g(w) - t^g_n(w)\|_\mu^2 = \|f - t^f_n\|_{\mu_A}^2 + \|g - t^g_n\|_{\mu_B}^2,$$

where we use the fact that

$$\int (f - t^f_n)(z) \, d\mu_A(z) = 0, \quad \int (g - t^g_n)(w) \, d\mu_B(w) = 0.$$
Next, making use of the one-variable version of Lemma 3.2, we have

$$\limsup_{n \to \infty} \| f - t_n^f \|_{\mu_A}^{1/n} = \rho_A, \quad \limsup_{n \to \infty} \| g - t_n^g \|_{\mu_B}^{1/n} = \rho_B.$$

The proposition follows. □

Proposition 3.6. We have, for $0 < p \leq 1$,

$$\limsup_n d_{n}^{T_\alpha}(F, K)^{1/n} \leq \max(\rho_A^\alpha, \rho_B^\beta).$$

Proof. From Remark 3.4, we now get

$$\| F - P_n \|_{\mu}^2 = \| f(z) - t_{[\alpha n]}^f(z) + g(w) - t_{[\beta n]}^g(w) \|_{\mu}^2 = \| f - t_{[\alpha n]}^f \|_{\mu_A}^2 + \| g - t_{[\beta n]}^g \|_{\mu_B}^2.$$

Since

$$\limsup_{n \to \infty} \| f - t_{[\alpha n]}^f \|_{\mu_A}^{1/n} = \rho_A^\alpha, \quad \limsup_{n \to \infty} \| g - t_{[\beta n]}^g \|_{\mu_B}^{1/n} = \rho_B^\beta,$$

the proposition follows. □

Now recall that comparing the limits of the n-th roots of the two rates in (3.6) is equivalent to comparing

$$\limsup_n d_{n}^{C_p}(F, K)^{1/(A_p n)} = \max(\rho_A, \rho_B)^{1/A_p}$$

and

$$\limsup_n d_{n}^{T_\alpha}(F, K)^{1/(A_\alpha n)} = (\max(\rho_A^\alpha, \rho_B^\beta))^{1/A_\alpha}.$$

Theorem 3.7. When α and β are close to each other, that is close to $(1/2)^{1/p-1}$, and the triangle T_α is close to an isosceles triangle, one has

$$\limsup_n (d_{n/A_\alpha}^{T_\alpha}(F, K))^{1/n} \leq \limsup_n (d_{n/A_p}^{C_p}(F, K))^{1/n},$$

while, when α is close to 0 and β close to 1 (or the reverse), and the triangle T_α becomes very small, one has the opposite inequality

$$\limsup_n (d_{n/A_p}^{C_p}(F, K))^{1/n} \leq \limsup_n (d_{n/A_\alpha}^{T_\alpha}(F, K))^{1/n}.$$

Proof. By symmetry, we may assume without loss of generality that $\rho_B \leq \rho_A$.

Acta Mathematica Hungarica 165, 2021
Assume first that $\alpha = \beta$. Then, we have to show that $\rho_A^{\sqrt{2}} \leq \rho_A^{1/A_p}$, that is $1/A_p \leq \sqrt{2}$. In view of (3.4), this is equivalent to

$$p\Gamma(1 + 2/p) \leq 2\Gamma(1/p)\Gamma(1 + 1/p) \iff \Gamma(1 + 2/p) \leq 2\Gamma(1 + 1/p)^2,$$

which is easily seen to be true by computing derivatives. Moreover, equality holds only if $p = 1$. Thus, by continuity, if $p \neq 1$, inequality (3.8) still holds when α and β are close to each other.

Now, consider the case when α is close to 0 and β is close to 1. Then ρ_A^α is close to 1 while ρ_B^β is close to ρ_B, so $\max(\rho_A^\alpha, \rho_B^\beta) = \rho_A^\alpha$. Moreover $1/A_\alpha \simeq \sqrt{2/\alpha}$, so the limit of the rates corresponding to T_α is close to 1, while the limit of the rates corresponding to C_p remains a number less than 1. □

We now consider the case of a function $F(z, w)$ of the form

$$F(z, w) = f(zw),$$

where we assume that the largest disk centered at the origin in \mathbb{C} contained in the domain of analyticity of f is the disk D_R of radius $R > 1$. Also let $K = \mathbb{D} \times \mathbb{D} = \{(z, w), |z| \leq 1, |w| \leq 1\}$ be the unit polydisk in \mathbb{C}^2.

Proposition 3.8. We have, for $0 < p \leq 1$, and with $r = 1/R$,

$$(3.9) \quad \limsup_n d_n^{C_p}(F, K)^{1/n} = r^{(1/2)^{1/p}}.$$

Proof. Let $\mu_K = \mu \otimes \mu$, $\mu = d\theta/2\pi$, be the normalized measure supported on $\mathbb{T} \times \mathbb{T} = \{(z, w), |z| = 1, |w| = 1\}$. In view of Lemma 3.2, it is sufficient to consider a sequence of best $L^2(\mu_K)$ approximants to F. Since the family $\{z^j w^k\}$, $(j, k) \in \mathbb{N}^2$, is orthogonal with respect to μ_K, we have

$$\limsup_n d_n^{C_p}(F, K)^{1/n} = \limsup_n \|f - p_{na_p}\|_{\mu}^{1/n},$$

where $a_p = (1/2)^{1/p}$ is such that point (a_p, a_p) is the intersection of the curve $x^p + y^p = 1$ and the line $x = y$, and p_{na_p} denotes the best $L^2(\mu)$ polynomial approximant to f of degree at most na_p. Moreover, by using the one variable versions of Lemma 3.2 and Theorem 1.1, we get

$$\limsup_n \|f - p_{na_p}\|_{\mu}^{1/n} = \limsup_n d_{na_p}(f, \mathbb{D})^{1/n} = r^a_p,$$

which proves (3.9). □

Proposition 3.9. We have, for $0 < p \leq 1$,

$$(3.10) \quad \limsup_n d_n^{T_\alpha}(F, K)^{1/n} = r^{\alpha\beta/\alpha + \beta}.$$
Proof. The proof is identical to the proof of Proposition 3.8. The only change is that we now need to consider the point which is at the intersection of the line $\beta y = \alpha (\beta - x)$, the side of the triangle tangent to C_p, and the line $x = y$. This point has both coordinates equal to $\alpha \beta / (\alpha + \beta)$, which implies the result. □

From the two previous propositions, we may make more precise inequality (3.5), and also compare the normalized rates of approximation.

Theorem 3.10. The following holds true,

$$\limsup_n \left(d_{C_p}^n(F, K) \right)^{1/n} = \inf_{\alpha} \limsup_n \left(d_{T_\alpha}^n(F, K) \right)^{1/n}. $$

The inf on the right-hand side is attained when $\alpha = \alpha_p = (1/2)^{1/p-1}$, which corresponds to the isosceles triangle T_α such that $\alpha = \beta$. For the rates normalized by the areas of C_p and T_α, we have the following. If α and β are close to each other,

$$\limsup_n \left(d_{C_p/n/A_\alpha}^n(F, K) \right)^{1/n} \leq \limsup_n \left(d_{C_p/n/A_\beta}^n(F, K) \right)^{1/n},$$

while if one of α or β is close to 0, we have the opposite inequality

$$\limsup_n \left(d_{C_p/n/A_\alpha}^n(F, K) \right)^{1/n} \leq \limsup_n \left(d_{C_p/n/A_\beta}^n(F, K) \right)^{1/n}.$$

Proof. In view of (3.10), the inf on the right of (3.11) is attained when $\alpha = \beta$. We obtain the value r^{ap} which equals the lim sup on the left. For the normalized rate, and α and β close to each other, the asserted inequality is just a consequence of the fact that $1/A_p < 1/A_\alpha$. When α or β is close to 0, one may argue as in the proof of Theorem 3.7. □

Example 3.11. Related to the previous class of functions $F(z, w) = f(zw)$, simple examples show that in the limiting case $p = 0$, the corresponding polynomial classes are too sparse to uniformly approximate even simple bivariate polynomials. We offer a simple geometric argument to show $f(x, y) = xy$ is not uniformly approximable on $[0, 1] \times [0, 1]$ by a sum of univariate polynomials in x and in y. Indeed, suppose, given $\epsilon > 0$, one could find $p(x)$ of degree n, say, and $q(y)$ of degree n, say, with

$$|p(x) + q(y) - xy| < \epsilon \quad \text{for} \quad 0 \leq x, y \leq 1.$$

Then for each fixed $y_0 \in [0, 1],$

$$|p(x) - [y_0 x - q(y_0)]| < \epsilon \quad \text{for} \quad 0 \leq x \leq 1.$$
This says that the function \(p(x) \) simultaneously uniformly approximates the whole family of linear functions \(l_{y_0}(x) := y_0x - q(y_0) \) for \(0 \leq y_0 \leq 1 \) on the interval \([0, 1]\) (in the \(x \)-variable) which is impossible (note the slopes of the \(l_{y_0} \) vary from 0 to 1).

4. Non-convex random polynomials

Let \(C \) be the closure of an open, connected set satisfying (1.10) and which contains \(C_0 \) in (1.12). We let \(K \) be a nonpluripolar compact set in \(\mathbb{C}^d \) satisfying (2.10). We assume, moreover, that

\[
V_{C,K} \text{ is continuous; i.e., } V_{C,K} = V_{C,K}^*.
\]

Let \(\tau \) be a probability measure on \(K \) such that \((K, \tau)\) satisfies (2.6). Letting \(\{p_j\} \) be an orthonormal basis in \(L^2(\tau) \) for \(\text{Poly}(nC) \) constructed via Gram–Schmidt applied to an ordered monomial basis \(\{z^n\} \) of \(\text{Poly}(nC) \), as described in the introduction we consider random polynomials of \(C \)-degree at most \(n \) of the form

\[
H_n(z) := \sum_{j=1}^{m_n} a_j^{(n)} p_j(z)
\]

where the \(a_j^{(n)} \) are i.i.d. complex random variables with a distribution \(\phi \) satisfying (1.13) and (1.14). Here \(m_n = \dim(\text{Poly}(nC)) \). This gives a probability measure \(\mathcal{H}_n \) on \(\text{Poly}(nC) \) and we form the product probability space

\[
\mathcal{H} := \bigotimes_{n=1}^{\infty} (\text{Poly}(nC), \mathcal{H}_n)
\]

of sequences of random polynomials. We identify \(\mathcal{H} \) with

\[
\mathcal{C} := \bigotimes_{n=1}^{\infty} (\mathbb{C}^{m_n}, \text{Prob}_{m_n})
\]

where, for \(G \subset \mathbb{C}^{m_n} \),

\[
\text{Prob}_{m_n}(G) := \int_G \phi(z_1) \cdots \phi(z_{m_n}) \, dm_2(z_1) \cdots dm_2(z_{m_n}).
\]

In this setting, we recall a result from [6]. Here, we write

\[
a^{(m_n)} = (a_1^{(n)}, \ldots, a_{m_n}^{(n)}) \in \mathbb{C}^{m_n}
\]

and \(\langle \cdot, \cdot \rangle, \| \cdot \| \) denote the standard Hermitian inner product and associated norm on \(\mathbb{C}^{m_n} \).
Corollary 4.1. Let \(\{ w^{(m_n)} = (w_1^{(n)}, \ldots, w_{m_n}^{(n)}) \} \) be a sequence of vectors \(w^{(m_n)} \in \mathbb{C}^{m_n} \). For \(\phi \) satisfying (1.13) and (1.14), with probability one in \(\mathcal{C} \), if \(\{ m_n \} \) is a sequence of positive integers with \(m_n = O(n^M) \) for some \(M \), then

\[
\forall \{ w^{(m_n)} \}, \quad \limsup_{n \to \infty} \frac{1}{n} \log |\langle a^{(m_n)}, w^{(m_n)} \rangle| \leq \limsup_{n \to \infty} \frac{1}{n} \log \| w^{(m_n)} \|.
\]

Moreover, for each \(\{ w^{(m_n)} \} \),

\[
\liminf_{n \to \infty} \frac{1}{n} \log |\langle a^{(m_n)}, w^{(m_n)} \rangle| \geq \liminf_{n \to \infty} \frac{1}{n} \log \| w^{(m_n)} \|
\]

with probability one in \(\mathcal{C} \); i.e., for each \(\{ w^{(m_n)} \} \), the set

\[
\{ \{ a^{(m_n)} := (a_1^{(n)}, \ldots, a_{m_n}^{(n)}) \}_{n=1,2,\ldots} \in \mathcal{C} : (4.3) \text{ holds} \}
\]

depends on \(\{ w^{(m_n)} \} \) but is always of probability one.

Using Proposition 2.6 and Corollary 4.1, we can follow the proof of [6, Theorem 4.1].

Theorem 4.2. Let \(K \) satisfy (2.10) and (4.1) and let \(a_j^{(n)} \) be i.i.d. complex random variables with a distribution \(\phi \) satisfying (1.13) and (1.14). Then almost surely in \(\mathcal{H} \) we have

\[
\left(\limsup_{n \to \infty} \frac{1}{n} \log |H_n(z)| \right)^* = V_{C,K}(z), \quad z \in \mathbb{C}^d.
\]

Proof. Using the first part of Corollary 4.1, (4.2), with

\[
w^{(n)} = p^{(n)}(z) := (p_1(z), \ldots, p_{m_n}(z)) \in \mathbb{C}^{m_n},
\]

almost surely in \(\mathcal{H} \)

\[
\limsup_{n \to \infty} \frac{1}{n} \log |H_n(z)| \leq V_{C,K}(z), \quad z \in \mathbb{C}^d
\]

from Proposition 2.6. Fix a countable dense subset \(\{ z_t \}_{t \in S} \) of \(\mathbb{C}^d \). Using the second part of Corollary 4.1, (4.3), for each \(z_t \), almost surely in \(\mathcal{H} \) we have

\[
\liminf_{n \to \infty} \frac{1}{n} \log |H_n(z_t)| \geq V_{C,K}(z_t).
\]

A countable intersection of sets of probability one is a set of probability one; thus (4.5) holds almost surely in \(\mathcal{H} \) for each \(z_t, t \in S \).

Acta Mathematica Hungarica 165, 2021
Define
\[H(z) := \left(\limsup_{n \to \infty} \frac{1}{n} \log |H_n(z)| \right)^*. \]
From (4.4), since \(V_{C,K} = V_{C,K}^* \), almost surely in \(H \), \(H(z) \leq V_{C,K}(z) \) for all \(z \in \mathbb{C}^d \). Moreover, from (2.12), almost surely in \(H \) we have \(\{ \frac{1}{n} \log |H_n(z)| \} \) is locally bounded above and hence \(H \) is plurisubharmonic; indeed, \(H \in L^1(\mathbb{C}^d) \). By (4.5), \(H(z_t) \geq V_{C,K}(z_t) \) for all \(t \in S \). Now given \(z \in \mathbb{C}^d \), let \(S' \subset S \) with \(\{ z_t \}_{t \in S'} \) converging to \(z \). Then, since \(V_{C,K} \) is continuous at \(z \),
\[V_{C,K}(z) = \lim_{t \in S' \atop z_t \to z} V_{C,K}(z_t) \leq \limsup_{t \in S' \atop z_t \to z} H(z_t) \leq H(z). \]

Thus \(H(z) = V_{C,K}(z) \) for all \(z \in \mathbb{C}^d \). \(\square \)

To obtain convergence of linear differential operators applied to
\[\frac{1}{n} \log |H_n(z)|, \]
we verify convergence to \(V_{C,K}(z) \) in \(L^1_{loc}(\mathbb{C}^d) \).

Theorem 4.3. Let \(K \) satisfy (2.10) and (4.1) and let \(a_j^{(n)} \) be i.i.d. complex random variables with a distribution \(\phi \) satisfying (1.13) and (1.14). Then almost surely in \(H \) we have
\[\lim_{n \to \infty} \frac{1}{n} \log |H_n(z)| = V_{C,K}(z) \]
in \(L^1_{loc}(\mathbb{C}^d) \) and hence
\[\lim_{n \to \infty} dd^c \left(\frac{1}{n} \log |H_n(z)| \right) = dd^c V_{C,K}(z) \]
as positive currents, where \(dd^c = \frac{i}{\pi} \partial \overline{\partial} \).

As in [6], the proof of Theorem 4.3 will follow from Proposition 2.5 and a modification of the proof of Theorem 4.2.

Proof of Theorem 4.3. From Proposition 2.5, we need to show almost surely in \(H \) that for any subsequence \(J \) of positive integers, we have
\[\left(\limsup_{n \in J} \frac{1}{n} \log |H_n(z)| \right)^*= V_{C,K}(z) \]
for all \(z \in \mathbb{C}^d \). Fix any subsequence \(J \). Following the proof of Theorem 4.2, almost surely in \(\mathcal{H} \)

\[
\limsup_{n \in J} \frac{1}{n} \log |H_n(z)| \leq \limsup_{n \to \infty} \frac{1}{n} \log |H_n(z)| \leq V_{C,K}(z)
\]

for all \(z \in \mathbb{C}^d \) from (4.4) and the fact that \(J \) is a subsequence of positive integers. Fix a countable dense subset \(\{z_t\}_{t \in S} \) of \(\mathbb{C}^d \). Then for each \(z_t \), almost surely in \(\mathcal{H} \) we have

\[
\liminf_{n \in J} \frac{1}{n} \log |H_n(z_t)| \geq \liminf_{n \to \infty} \frac{1}{n} \log |H_n(z_t)| \geq V_{C,K}(z_t)
\]

from (4.5) and the fact that \(J \) is a subsequence of positive integers. This relation holds almost surely in \(\mathcal{H} \) for each \(z_t, t \in S \).

Now define

\[
H_J(z) := \left(\limsup_{n \in J} \frac{1}{n} \log |H_n(z)| \right)^*.
\]

Then almost surely in \(\mathcal{H} \), \(H_J \) is plurisubharmonic and \(H_J(z) \leq V_{C,K}(z) \) for all \(z \in \mathbb{C}^d \); and \(H_J(z_t) \geq V_{C,K}(z_t) \) for all \(t \in S \). Given \(z \in \mathbb{C}^d \), let \(S' \subset S \) with \(\{z_t\}_{t \in S'} \) converging to \(z \). Then

\[
V_{C,K}(z) = \lim_{t \in S'} V_{C,K}(z_t) \leq \limsup_{t \in S'} H_J(z_t) \leq H_J(z).
\]

Thus \(H_J(z) = V_{C,K}(z) \) for all \(z \in \mathbb{C}^d \). \(\square \)

We write \(Z_{H_n} := dd^c \log |H_n| \) and \(\tilde{Z}_{H_n} := \frac{1}{n} dd^c \log |H_n| \), the normalized zero current of \(H_n \). The expectation \(\mathbb{E}(\tilde{Z}_{H_n}) \) of \(\tilde{Z}_{H_n} \) is a positive current of bidegree \((1,1)\) defined as follows: the action of \(\mathbb{E}(\tilde{Z}_{H_n}) \) on a \((d-1,d-1)\) form \(\alpha \) with \(C_0^\infty(\mathbb{C}^d) \) coefficients is given as the average of the action \((\tilde{Z}_{H_n}, \alpha)\) of the normalized zero current \(\tilde{Z}_{H_n} \) on \(\alpha \):

\[
(\mathbb{E}(\tilde{Z}_{H_n}), \alpha) := \int_{\mathbb{C}^{m_n}} (\tilde{Z}_{H_n}, \alpha) \, d\text{Prob}_{m_n}(\alpha^{(n)})
\]

\[
= \int_{\mathbb{C}^{m_n}} (\frac{1}{n} dd^c \log |H_n|, \alpha) \, d\text{Prob}_{m_n}(\alpha^{(n)}).
\]

Using Theorem 4.3, we verify the analogue of [6, Theorem 7.1].

Theorem 4.4. Let \(K \) satisfy (2.10) and (4.1) and let \(\alpha_j^{(n)} \) be i.i.d. complex random variables with a distribution \(\phi \) satisfying (1.13) and (1.14). Then

\[
\lim_{n \to \infty} \mathbb{E}(\tilde{Z}_{H_n}) = dd^c V_{C,K} \text{ as positive (1,1) currents.}
\]

Acta Mathematica Hungarica 165, 2021
Proof. Theorem 4.3 gives
\[
\lim_{n \to \infty} dd^c \left(\frac{1}{n} \log |H_n| \right) = dd^c V_{C,K}
\]
as positive currents a.s. in \mathcal{H}. We want to show
\[
\lim_{n \to \infty} \left(\mathbb{E}(\tilde{Z}_{H_n}), \alpha \right) = (dd^c V_{C,K}, \alpha)
\]
for each $(d - 1, d - 1)$ form α with $C^\infty_0(\mathbb{C}^d)$ coefficients. As before, we write $a^{(n)}$ for the m_n-tuple $\{a_j^{(n)}\}$ of coefficients of H_n. Given α, define
\[
f_n = f^{(\alpha)}_n : \mathbb{C}^{m_n} \to \mathbb{C}
\]
as $f_n^{(a^{(n)})} := (\tilde{Z}_{H_n}, \alpha)$.
Then $\{f_n\}$ are uniformly bounded by the norm of α on its support and extending f_n to F_n on \mathcal{H} via
\[
F_n(\ldots, a^{(n)}, \ldots) := f_n(a^{(n)}),
\]
the $\{F_n\}$ are uniformly bounded on \mathcal{H}. Define
\[
\int_{\mathcal{H}} F_n(\ldots, a^{(n)}, \ldots) \otimes_{n=1}^\infty d \text{Prob}_{m_n}(a^{(n)}) := \int_{\mathbb{C}^{m_n}} f_n(a^{(n)}) d \text{Prob}_{m_n}(a^{(n)}).
\]
We apply dominated convergence to $\{F_n\}$ on \mathcal{H} to conclude. □

Remark 4.5. Following [6], using different arguments one can eliminate the need for (1.13) in Theorem 4.4. Moreover, one can slightly weaken the hypothesis (1.14) as in [2].

For $2 \leq k \leq d$, we consider the common zeros of k polynomials $H_n^{(1)}, \ldots, H_n^{(k)}$ where
\[
H_n^{(l)}(z) := \sum_{j=1}^{m_n} a_j^{(n,l)} p_j(z), \ l = 1, \ldots, k
\]
with the $a_j^{(n,l)}$ i.i.d. complex random variables with a distribution ϕ satisfying (1.13) and (1.14). For $k = 2, 3, \ldots, d$, we observe that the wedge product
\[
Z_k^{H_n} := dd^c \log |H_n^{(1)}| \wedge \cdots \wedge dd^c \log |H_n^{(k)}|
\]
is a.s. well-defined as a positive (k, k) current; cf., [2] or [6]. We write $\tilde{Z}_n^{k} := (1/n^k)Z_k^{H_n}$ for the normalized zero current. The expectation $\mathbb{E}(\tilde{Z}_n^{k})$ of \tilde{Z}_n^{k} is a positive (k, k) current: for $k = 2, 3, \ldots, d$, the action of $\mathbb{E}(\tilde{Z}_n^{k})$ on a
(d – k, d – k) form α with $C_0^\infty(\mathbb{C}^d)$ coefficients is given as the average of the action $(\tilde{Z}_{H_n}, \alpha)$ of the normalized zero current \tilde{Z}_{H_n} on α: writing $a^{(n,l)} = (a_1^{(n,l)}, \ldots, a_m^{(n,l)})$, $l = 1, \ldots, k$,

$$
(\mathbb{E}(\tilde{Z}_{H_n}), \alpha) := \int_{(\mathbb{C}^m)^k} (\tilde{Z}_{H_n}, \alpha) d\text{Prob}_{m_n}(a^{(n,1)}) \cdots d\text{Prob}_{m_n}(a^{(n,k)})
$$

$$
= \int_{(\mathbb{C}^m)^k} (dd^c \log |H_n^{(1)}| \land \cdots \land dd^c \log |H_n^{(k)}|, \alpha)
$$

$$
\times d\text{Prob}_{m_n}(a^{(n,1)}) \cdots d\text{Prob}_{m_n}(a^{(n,k)}).
$$

If, in addition, the distribution ϕ is smooth (e.g., $\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\pi|z|^2}$, a standard complex Gaussian), by the independence of $H_n^{(1)}, \ldots, H_n^{(k)}$ we have

$$
\mathbb{E}(\tilde{Z}_{H_n}^k) = \mathbb{E}\left(\frac{1}{n^k} dd^c \log |H_n^{(1)}| \land \cdots \land dd^c \log |H_n^{(k)}|\right)
$$

$$
= \mathbb{E}(\tilde{Z}_{H_n^{(1)}}) \land \cdots \land \mathbb{E}(\tilde{Z}_{H_n^{(k)}}) = [\mathbb{E}(\tilde{Z}_{H_n^{(1)}})]^k
$$

(cf., the argument in Corollary 3.3 of [1]). Thus from Theorem 4.4 we obtain the asymptotics of these (k, k) currents.

Corollary 4.6. Let K satisfy (2.10) and (4.1) and let $a_j^{(n,l)}$ be i.i.d. complex random variables with a smooth distribution ϕ satisfying (1.13) and (1.14). Then for $k = 2, \ldots, d$,

$$
\lim_{n \to \infty} \mathbb{E}(\tilde{Z}_{H_n}^k) = \mathbb{E}\left(\frac{1}{n^k} dd^c \log |H_n^{(1)}| \land \cdots \land dd^c \log |H_n^{(k)}|\right) = (dd^c V_{C,K})^k.
$$

Taking $K = E_1 \times \cdots \times E_d$, a product of regular planar compacta E_j, we have

$$
V_{C,K}(z_1, \ldots, z_d) = \max_{j=1, \ldots, d} g_{E_j}(z_j).
$$

Letting $k = d$ in Corollary 4.6, we have the following result.

Corollary 4.7. For $K = E_1 \times \cdots \times E_d$, a product of regular planar compacta E_j, we have

$$
\lim_{n \to \infty} \mathbb{E}(\tilde{Z}_{H_n}^d) = (dd^c V_{C,K})^d = \bigotimes_{j=1}^d \mu_{E_j}
$$

where $\mu_{E_j} = \Delta g_{E_j}$.
Remark 4.8. This holds, e.g., for C_p in (1.11) for all $0 \leq p \leq 1$ (for $p = 0$, see Remark 4.9 below). For $p = 0$ the classes $\text{Poly}(nC_0)$ are very sparse – they consist of sums $\sum_{j=1}^d p_j(z_j)$ of univariate polynomials p_j of degree at most n while for $p = 1$ the classes $\text{Poly}(nC_1) = \text{Poly}(n\Sigma)$ are the “standard” polynomials of degree at most n. On the other hand, for $p > 1$ the set C_p is convex, and from (2.5) and (1.5), if we let $1/p + 1/q = 1$, the classes $\text{Poly}(nC_p)$ are the “standard” polynomials of degree at most n.

The results in [2] show that the expected normalized zero measures $E(\tilde{Z}_{H_n}^d)$ for the random polynomial mappings in this setting converge to

$$(dd^cV_{C_p,K})^d = dd^c([g_{E_1}(z_1)^q + \cdots + g_{E_d}(z_d)^q]^{1/q})^d$$

which clearly changes with p.

Remark 4.9. As in Subsection 2.3, if μ is a Bernstein–Markov measure on a nonpluripolar compact set $K \subset \mathbb{C}^d$ satisfying (2.10) and (4.1), the inequality (2.9) is valid for C_0, K and μ and all the results of this section are valid. In particular, we can take $K = B := \{z \in \mathbb{C}^d : |z_1|^2 + \cdots + |z_d|^2 \leq 1\}$, the complex Euclidean ball in \mathbb{C}^d and μ_B normalized surface area measure on ∂B, or $K = T := \{z \in \mathbb{C}^d : |z_1| = \cdots = |z_d| = 1\}$ the unit torus and μ_T normalized Haar measure on T. From Proposition 2.2 and (2.17), the C_0-extremal functions are the same: $V_{C_0,K}(z) = \max[0, \log |z_1|, \ldots, \log |z_d|]$. Thus in both cases the corresponding expected normalized zero measures $E(\tilde{Z}_{H_n}^d)$ converge to $(dd^cV_{C_0,K})^d = \mu_T$.

5. Questions and further directions

The reader will note that many basic issues in the non-convex theory are unresolved. We include a partial list. In 1. and 2. C is the closure of an open, connected set satisfying (1.10) and K is a compact set in \mathbb{C}^d.

1. Do we have equality in (2.3), i.e., does

$$V_{C,K}(z) = \sup \left\{ \frac{1}{\deg_C(p)} \log |p(z)| : p \in \mathcal{P}_d, \|p\|_K \leq 1 \right\}$$

exist for $z \in \mathbb{C}^d$?

2. Does the limit in (2.10)

$$\lim_{n \to \infty} \frac{1}{n} \log \Phi_n(z) = V_{C,K}(z)$$

exist for $z \in \mathbb{C}^d$?
3. For the complex Euclidean ball $B \subset \mathbb{C}^d$, are the C_p-extremal functions $V_{C_p,B}$ different for different $p \in (0,1)$? Proposition 2.11 simply asserts that $V_{C_p,B}(z) \neq V_{C_0,B}(z)$, $V_{C_1,B}(z)$ at certain points $z \in \mathbb{C}^d$.

4. For $A, B \subset \mathbb{C}$ and $0 < p \leq 1$ we saw that

$$V_{C_p,A \times B}(z,w) = \max[g_A(z),g_B(w)].$$

On the other hand, for the triangles T_α defined before (3.4), we have

$$V_{T_\alpha,A \times B}(z,w) = \max(\beta g_A(z),\alpha g_B(w))$$

(cf. [9, Proposition 2.4]) so that

$$V_{C_p,A \times B}(z,w) = \sup_{0<\alpha<1} V_{T_\alpha,A \times B}(z,w).$$

Is the equality

$$V_{C_p,K}(z,w) = \sup_{0<\alpha<1} V_{T_\alpha,K}(z,w)$$

true for more general $K \subset \mathbb{C}^2$, e.g., is this true for the complex Euclidean ball $B \subset \mathbb{C}^2$?

References

[1] T. Bayraktar, Equidistribution of zeros of random holomorphic sections, *Indiana Univ. Math. J.*, 65 (2016), 1759–1793.

[2] T. Bayraktar, Zero distribution of random sparse polynomials, *Michigan Math. J.*, 66 (2017), 389–419.

[3] T. Bayraktar, T. Bloom and N. Levenberg, Pluripotential theory and convex bodies, *Sb. Math.*, 209 (2018), 352–384.

[4] T. Bayraktar, T. Bloom, N. Levenberg and C. H. Lu, Pluripotential theory and convex bodies: large deviation principle, *Ark. Mat.*, 57 (2019), 247–283.

[5] T. Bayraktar, S. Hussung, N. Levenberg and M. Perera, Pluripotential theory and convex bodies: a Siciak–Zaharjuta theorem, *Comput. Methods Funct. Theory*, 20 (2020), 571–590.

[6] T. Bloom and N. Levenberg, Random polynomials and pluripotential-theoretic extremal functions, *Potential Anal.*, 42 (2015), 311–334.

[7] T. Bloom, N. Levenberg, F. Piazzon and F. Wielonsky, Bernstein–Markov: a survey, *Dolomites Res. Notes Approx.*, 8 (special issue) (2015), 75–91.

[8] T. Bloom and B. Shiffman, Zeros of random polynomials on \mathbb{C}^m, *Math. Res. Lett.*, 14 (2007), 469–479.

[9] L. Bos and N. Levenberg, Bernstein–Walsh theory associated to convex bodies and applications to multivariate approximation theory, *Comput. Methods Funct. Theory*, 18 (2018), 361–388.

[10] M. Klimek, *Pluripotential Theory*, Oxford University Press (New York, 1991).

[11] L. Trefethen, Multivariate polynomial approximation in the hypercube, *Proc. Amer. Math. Soc.*, 145 (2017), 4837–4844.

[12] A. Zeriahi, Capacité, constante de Tchebysheff, et polynômes orthogonaux associés à un compact de \mathbb{C}^N, *Bull. Soc. Math. Fr.*, 2e série, 109 (1985), 325–335.