Research Article

Frequency of Thyroid Nodules among Patients with Colonic Polyps

Cevdet Duran, 1 Huseyin Savas Gokturk, 2 Mustafa Kulaksizoglu, 3 Suleyman Bakdik, 4 Gulhan Kanat Unler, 2 Mustafa Erbayrak, 5 Guven Ozkaya, 6 Baris Onder Pamuk, 7 and Mustafa Sait Gonen 3

1 Division of Endocrinology and Metabolism, Konya Training and Research Hospital, 42100 Konya, Turkey
2 Division of Gastroenterology, Konya Research Hospital, Baskent University, 42080 Konya, Turkey
3 Division of Endocrinology and Metabolism, Meram Medical School, Selcuk University, 42080 Konya, Turkey
4 Department of Radiology, Konya Training and Research Hospital, 42100 Konya, Turkey
5 Division of Gastroenterology, Yasam Hospital, 07960 Antalya, Turkey
6 Department of Biostatistic, Medical School, Uludag University, 16059 Bursa, Turkey
7 Division of Endocrinology and Metabolism, Bozyaka Training and Research Hospital, 35110 Izmir, Turkey

Correspondence should be addressed to Cevdet Duran, drcduran@gmail.com

Received 30 September 2011; Accepted 30 October 2011

Academic Editor: A. Castells

Copyright © 2012 Cevdet Duran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Aim. Colonic polyps and thyroid nodules are common diseases and their frequency increases with age. In the literature, there is no study investigating the coexistence of colonic polyps and thyroid nodules. Therefore, this study was designed to investigate thyroid nodule prevalence in patients with colonic polyps. Material and Methods. Sixty-six patients with polyps and 146 patients without polyps were enrolled into the study. Age and sex matched control group was composed from patients without polyps. Colonoscopic examinations, thyroid ultrasonographies were performed in all patients, and TSH were measured. Results. Male/female ratio in polyp and control groups were 40/26 versus 68/78, respectively (P = 0.058). Mean ages were similar in both groups (53.3 ± 11.4 versus, 51.8 ± 11.4, P = 0.373). Thyroid nodule was detected in 44 (66.7%) patients with polyps and in 61 (41.8%) controls (P = 0.001). Patients with adenomatous polyps had 5 or more thyroid nodules compared to patients with hyperplastic polyps (P = 0.03). Thyroid nodules were more prevalent among patients aged 50 or older compared to 50 years or less (P = 0.023). Conclusion. Thyroid nodules were detected more common in patients with colonic polyps. Further studies are needed to clarify this coexistence.

1. Introduction

Colonic polyps and thyroid nodules are very common diseases in the general population and their prevalence increases with age [1, 2]. Epidemiological, clinicopathological, and molecular genetic studies suggest that colorectal adenomas (about two-thirds of all colonic polyps) are now considered precursors of colonic adenocarcinomas. It has been shown that the screening and resection of the adenomas in asymptomatic population provides a powerful tool to reduce colorectal cancer incidence. Although the etiology of colorectal adenomas is not well understood, there are large numbers of clinical environmental and lifestyle factors that are associated with increased risk of colorectal adenomas [3].

Like colorectal adenomas, thyroid nodule prevalence increases with age in certain populations like females or in iodine deficient regions. Ultrasound (US) and autopsy studies report that thyroid nodule prevalence ranges from 19% to 50% [4, 5]. Based on our clinical observations, thyroid nodules are more commonly seen in patients with colonic polyps. In the literature, there is no study investigating the coexistence between colonic polyps and thyroid nodules. Therefore, this study was designed to investigate thyroid nodule prevalence in patients with colonic polyps.
2. Material and Methods

This study is conducted in Divisions of Endocrinology and Gastroenterology of Konya Training and Research Hospital and Baskent University Medical Faculty Konya Training Hospital, between 2008-2009. All colonic investigations were evaluated, and patients with neoplastic colonic polyps were enrolled in the study. Patients with all types of malignancies, ulcerative colitis, submucosal, mucosal, inflammatory pseudopolyp, known familial polyposis coli syndrome, usage of L-thyroxine or antithyroid drug were excluded. After enrollment, thyroid US was performed and all nodules detected by US were recorded on patients form. Thyroid stimulating hormone (TSH) and free thyroxine levels were measured. Sixty-six patients with colonic polyps and age and sex-matched 146 patients without colonic polyps, as a control group, included in the study. Procedures were applied in agreement with ethical committee.

Colonoscopic examinations were performed by Olympus CF-Q180 AL video colonoscope, and the number and localization of the polyps were recorded. When polyp was detected, and biopsy and resection was performed, pathological characteristics were recorded. Thyroid US scanning was performed using the 5–13 MHz linear probe, by Siemens Acuson Antares. We considered as thyroid nodules all the US nodular lesions ≥3 mm. The number of thyroid nodules were divided according to the largest diameter as <10 mm and ≥10 mm and recorded.

All statistical analyses were performed with SPSS ver.17.0. Shapiro Wilk test was used as normality test. Continuous variables were compared with Student t-test for normally distributed data and Mann-Whitney U test for nonnormal distributed data. Categorical variables were compared using Pearson’s chi-squared test and Fisher’s exact test. A P value < 0.05 was considered as significant.

3. Results

In this period, 965 colonoscopies were performed and 191 patients with colonic polyps were detected. After the exclusion, patients were asked to participate, among them 66 with colonic polyp, and a total of 212 patients were included into the study. Male/female ratio in polyp and control groups were 40/26 versus 68/78, respectively ($P = 0.058$). Mean ages were similar in both groups (53.3 ± 11.4 versus, 51.8 ± 11.4, $P = 0.373$). Thyroid nodule prevalence was higher in patients with colonic polyps (44/66, 66.7%) than controls (61/146, 41.8%) ($P = 0.001$), (Figure 1). Forty-six patients had single polyp, 9 had 2 polyps, 7 had 3 and 4 had 4 or more polyps. Most of them were localized in rectosigmoidal region.

Histopathological examination revealed adenomatous polyp in 36 (55%) patients, hyperplastic polyp in 20 (30%) patients, and mixed type in 10 (10%). None of the polyps were malignant. In the polyp group, 46 patients had single polyp and 31 of them had thyroid nodules, 20 patients had 2 or more polyps and among these, 13 patients had thyroid nodules ($P = 0.85$).

4. Discussion

In patients with colonic polyp, 36 patients had 4 or less thyroid nodules and 8 patients had 5 or more thyroid nodules. Patients with adenomatous polyps had 5 or more thyroid nodules compared to patients with hyperplastic polyps (in the hyperplastic polyp group, there was not any patients with 5 or more thyroid nodules) ($P = 0.033$).

When patients with thyroid nodules were classified, 95 patients had 4 and less than 4 thyroid nodules and 10 patients had 5 or more thyroid nodules.

Mean TSH levels were lower in the polyp group than controls (1.17 ± 0.95 versus 1.54 ± 1.3, $P = 0.002$, resp.). Thyroid nodules were greater than 10 mm in 34 (32%) patients. Age has no implication on colonic polyp frequency; thyroid nodules were more prevalent among patients aged 50 or older compared to 50 years or less (under age 50; 34/85, 50 or older; 71/127) ($P = 0.023$).

Colon polyp, or thyroid nodule existence were similar between sexes ($P = 0.63$ and $P = 0.182$, resp.).

In patients with colonic polyp and thyroid nodules, and we found a higher thyroid nodule prevalence in patients with colonic polyps. Also we found lower TSH levels in patients with colonic polyps; patients with adenomatous polyps had 5 or more thyroid nodules compared to patients with hyperplastic polyps and thyroid nodules were more prevalent among patients aged 50 years or older.

Colon polyp and thyroid nodules are common disorders and their prevalence increases with age. Ultrasound studies and autopsy studies report a prevalence of thyroid nodules up to 50% in elderly patients and in women [4, 5]. Thyroid nodule prevalence is higher in iodine-deficient area. In our country, iodine propyhylaxis was started in 1999 and our region is the mildly iodine-deficient area at the moment (average urinary iodine concentration 92 µg/L) [6].

![Figure 1: Percentage of patients with or without thyroid nodules.](image-url)
Similarly, colonic polyp prevalence increases up to 50% with age 70 [2]. Although both disorders have different etiopatho-
genic mechanism, coexistence of colonic polyp and thyroid nodules mechanism is unknown, yet.

Recently, there are some studies pointing out that insulin resistance may be the common mechanisms. Kurimoto et al.
reported that colonic polyp prevalence is higher in patient with acromegaly or insulin resistance [7]. In both situations
high insulin or insulin-like growth hormone-1 levels may cause increased polyp formation. In patients with metabolic
syndrome, colonic polyp prevalence is increased and insulin resistance is responsible for this situation [8, 9].

Similarly, some studies reported a coexistence between insulin resistance and thyroid nodules. In 2008, Rezzonico
et al. reported that thyroid volumes, measured by ultrasono-
graphy, were higher in patient with insulin resistance than
patients without insulin resistance [10]. The same group
reported that insulin resistance would be an important risk
factor for developing differentiated thyroid carcinoma [11].
Rezzonico et al. reported that metformin treatment decreases
thyroid nodule volume in patients with small thyroid nodule
and insulin resistance [12].

Ayturk et al. reported that patients with metabolic syn-
drome have higher thyroid nodule prevalence and nodule
volume and demonstrated that insulin resistance may be a
major independent risk factor for development of nodule
formation in iodine-deficient area [13]. To the best of our
knowledge, there is no published study investigating coexis-
tence of colonic polyp and thyroid nodule, so this study was
not designed to evaluate common mechanism. Therefore, we
did not evaluate insulin resistance and this is a major limi-
tation of this study.

Although, there was no patient with thyrotoxicosis, an-
other unexpected result of the study is lower TSH levels in
patients with colonic polyp. This situation can be speculated
as patients with colonic polyp have higher thyroid nodules
prevalence and iodine prophylaxis may results autonomy in
some nodules. No measurement of urinary iodine levels is
another limitation of this study.

Another result of this study is that, patients with ade-
nomatous polyps had 5 or more thyroid nodules compared
to patients with hyperplastic polyps. This coexistence could
not be explained easily. It can be speculated that APC
gene mutation or others play a role in the development of
adenomatous polyp and thyroid nodules [14].

As expected, thyroid nodules were more prevalent among
patients aged 50 years or older, but, the prevalence of colonic
polyp was not different between age groups. This could be
explained by relatively narrow range of the age distribution
(53.3 ± 11.4 years).

5. Conclusion
Thyroid nodules were detected more common in patients
with colonic polyps. Further studies are needed to clarify this
coexistence.

Conflict of Interests
There is no conflict of interests.

References

[1] C. Reiners, K. Wegscheider, H. Schicha et al., “Prevalence of thyroid disorders in the working population of Germany: ultraso-
nography screening in 96,278 unselected employees,” Thyroid, vol. 14, no. 11, pp. 926–932, 2004.
[2] A. R. Williams, B. A. Balasooriya, and D. W. Day, “Polyps and cancer of the large bowel: a necropsy study in Liverpool,” Gut,
vol. 23, no. 10, pp. 835–842, 1982.
[3] J. H. Bond, “Polyp guideline: diagnosis, treatment, and surveil-
ance for patients with colorectal polyps. Practice param-
eters committee of the American college of gastroenterology,” The American Journal of Gastroenterology, vol. 95, no. 11, pp.
3053–3063, 2000.
[4] B. Burguera and H. Gharib, “Thyroid incidentalomas: prev-
ance, diagnosis, significance, and management,” Endocri-
ology and Metabolism Clinics of North America, vol. 29, no. 1,
pp. 187–203, 2000.
[5] J. D. Mortensen, L. B. Woolner, and W. A. Bennet, “Gross and
microscopic findings in clinically normal thyroid glands,” The
Journal of Clinical Endocrinology and Metabolism, vol. 15, no.
10, pp. 1270–1280, 1955.
[6] M. E. Erdogan, O. Demir, R. Emral, A. N. Kamel, and G.
Erdogan, “More than a decade of iodine prophylaxis is needed
to eradicate goiter among school age children in a moderately
iodine-deficient region,” Thyroid, vol. 19, no. 3, pp. 265–268,
2009.
[7] M. Kurimoto, I. Fukuda, N. Hizuka, and K. Takano, “The pre-
valence of benign and malignant tumors in patients with acro-
megaly at a single institute,” Endocrine Journal, vol. 55, no. 1,
pp. 67–71, 2008.
[8] C. S. Liu, H. S. Hsu, C. I. Li et al., “Central obesity and
atherogenic dyslipidemia in metabolic syndrome are associ-
ated with increased risk for colorectal adenoma in a Chinese
population,” BMC Gastroenterology, vol. 10, article 51, 2010.
[9] G. E. Lee, H. S. Park, K. E. Yun et al., “Association between BMI and metabolic syndrome and adenomatous colonic
polyps in Korean men,” Obesity, vol. 16, no. 6, pp. 1434–1439,
2008.
[10] J. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, and H. Nie-
pomniszcze, “Introducing the thyroid gland as another victim
of the insulin resistance syndrome,” Thyroid, vol. 18, no. 4, pp.
461–464, 2008.
[11] J. N. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, and H. Nie-
pomniszcze, “Increased prevalence of insulin resistance in pa-
ients with differentiated thyroid carcinoma,” Metabolic Syn-
drome and Related Disorders, vol. 7, no. 4, pp. 375–380, 2009.
[12] J. Rezzonico, M. Rezzonico, E. Pusiol, F. Pitoia, and H. Nie-
pomniszcze, “Metformin treatment for small benign thy-
roid nodules in patients with insulin resistance,” Metabolic
Syndrome and Related Disorders, vol. 9, no. 1, pp. 69–75, 2011.
[13] S. Ayturk, A. Gursoy, A. Kut, C. Anil, A. Nar, and N. B. Tutun-
cu, “Metabolic syndrome and its components are associated with
increased thyroid volume and nodule prevalence in a mild-to-moderate iodine-deficient area,” European Journal of
Endocrinology, vol. 161, no. 4, pp. 599–605, 2009.
[14] Y. Ito, A. Miyauchi, H. Ishikawa et al., “Our experience of
treatment of cribriform morular variant of papillary thyroid
carcinoma; difference in clinicopathological features of FAB-
associated and sporadic patients,” Endocrine Journal, vol. 58,
pp. 685–689, 2011.