J/ψ production in Indium-Indium collisions at 158 GeV/nucleon

R. Arnaldi9, K. Banic$^{2, 4}$, J. Castor3, B. Chauraud6, C. Cicalò1, A. Colla9, P. Cortese9, S. Danjanovic$^{2, 4}$, A. David$^{2, 5}$, A. de Falco1, A. Devaux3, L. Ducroux10, H. En’yo7, J. Fargeix3, A. Ferretti9, M. Floris1, A. Förster2, P. Force3, N. Guettet$^{2, 3}$, A. Guichard10, H. Gulkanian11, J. M. Heuser$^{1, 8}$, M. Keil$^{2, 5}$, L. Kluberg5, C. Lourenço2, J. Lozano5, F. Manço3, P. Martins$^{2, 5}$, A. Masoni1, A. Neves3, H. Ohnishi7, C. Oppidissano9, P. Parracho2, P. Pilot10, T. Poghosyan11, G. Puddu1, E. Radermacher2, P. Ramalhete2, P. Rosinsky2, E. Scomparin9, J. Seixas5, S. Serci1, R. Shahoyan$^{2, 5}$, P. Sonderegger9, H. J. Specht4, R. Tieulent10, G. Usai1, R. Veenhof$^{2, 5}$, H. K. Wörhr$^{1, 2, 5}$

(NA60 Collaboration)

1Università di Cagliari and INFN, Cagliari, Italy
2CERN, 1211 Geneva 23, Switzerland
3LPC, Université Blaise Pascal and CNRS-IN2P3, Clermont-Ferrand, France
4Physikalisches Institut der Universität Heidelberg, Germany
5Instituto Superior Técnico, Lisbon, Portugal
6LLR, Ecole Polytechnique and CNRS-IN2P3, Palaiseau, France
7RIKEN, Wako, Saitama, Japan
8Università di Torino and INFN, Italy
9IPN-Lyon, Université Claude Bernard Lyon-I and CNRS-IN2P3, Lyon, France
10YerPhI, Yerevan Physics Institute, Yerevan, Armenia

(Dated: February 1, 2008)

The NA60 experiment studies muon pair production at the CERN SPS. In this letter we report on a precision measurement of J/ψ in In-In collisions. We have studied the J/ψ centrality distribution, and we have compared it with the one expected if absorption in cold nuclear matter were the only active suppression mechanism. For collisions involving more than ~80 participant nucleons, we find that an extra suppression is present. This result is in qualitative agreement with previous Pb-Pb measurements by the NA50 experiment, but no theoretical explanation is presently able to coherently describe both results.

The suppression of the charmonium states by color screening has been predicted as a signature of the phase transition from hadronic matter towards a Quark-Gluon Plasma [1]. Recently, it has been pointed out that the relatively loosely bound states ψ and χc should indeed melt for temperatures around the critical temperature Tc, while the tightly bound J/ψ could survive, even if with strong medium-induced modifications, up to ∼ 2Tc. A Riemann surface [2] for the evolution of the ψ state has been investigated in detail, but this physics topic is still largely data driven, and accurate experimental data are clearly needed.

At the CERN SPS, the NA38 and NA50 experiments have already studied J/ψ production in various colliding systems, including p-A [3], S-U [4] and Pb-Pb [5]. Proton-nucleus data provide an important reference, describing the expected absorption of J/ψ in cold nuclear matter. By comparing the centrality dependence of the J/ψ yield observed in nucleus-nucleus collisions to this reference, one can look for suppression mechanisms connected with the formation of a strongly interacting medium. In particular, NA50 has observed, in Pb-Pb collisions, that below a certain centrality threshold the J/ψ production is well described invoking nuclear absorption as the only suppression mechanism; on the contrary, above that threshold, an extra suppression (also known as “anomalous” suppression) sets in. Such an interesting observation needs to be complemented by further sets of accurate measurements obtained with different collision systems. In this way one can study in more detail the onset of the anomalous suppression, and understand which is the physics mechanism at its origin.

The NA60 experiment has studied J/ψ production in In-In collisions at 158 GeV/nucleon at the CERN SPS, through its decay into two muons. The experimental apparatus is based on a muon spectrometer (MS), inherited from NA50 [12], used for triggering on muon pair production and for tracking purposes. A 12λ, thick hadron absorber, mostly made of graphite, separates the MS from the target region, equipped with a beam tracker (BT) and a vertex tracker (VT), placed inside a 2.5 T dipole magnet. Finally, a Zero Degree Calorimeter (ZDC) [13] provides an estimate of the centrality of the collisions. A more detailed description of the apparatus can be found in [14, 15]. The VT is a radiation-tolerant Si pixel detector, which tracks the charged particles produced in the collision (dNch/dη ∼ 200 at midrapidity for central In-In interactions). By matching the tracks measured in the MS with the corresponding tracks in the VT, one
can access the kinematical variables of the muons before their distortion due to multiple scattering and energy loss fluctuations in the hadron absorber [16, 17].

The results presented in this letter refer to the full In-In data sample collected by NA60, corresponding to ~230 million events, taken at a beam intensity of 10^7 s$^{-1}$. Only the events having at least one interaction vertex with ≥4 tracks attached to it are selected for the analysis. The distribution of the longitudinal coordinate of the vertices allows us to identify the target where the interaction took place with ~200 µm accuracy. We require the interaction vertex to lie, within this tolerance, in one of the 7 In sub-targets, 1.5 mm thick each and spaced by 7.5 mm. Matching of tracks in the VT with the MS tracks is then carried out in coordinate and momentum space. The matching efficiency, of the order of ~60% for events where a J/ψ has been detected in the MS, shows no significant centrality dependence. In principle, MS tracks could be wrongly matched to VT tracks. However, in the J/ψ mass region, this effect is negligible (<1%).

Two kinds of event selection have been applied, corresponding to the two different analysis techniques detailed hereafter. In the first, the matching of the muon tracks is not performed, retaining in this way a larger event sample. As a quality check, we perform a cut on the transverse distance between the extrapolated MS track at the target position and the beam axis, weighted by the momentum of the track itself. The level of this cut has been set at 10% of the χ^2 probability for each muon, a value that allows us to efficiently reject muons produced downstream of the target. In the second selection, matching is applied and we require that the tracks matched to those detected in the MS originate from the reconstructed vertex or from the most upstream one, when more than one is found. In this way, we reject the small percentage (~4%) of events where the J/ψ originates from a downstream interaction of a nuclear fragment produced in a primary In-In collision. For both selections, we apply a beam pile-up rejection cut, based on the BT, requiring two subsequent ions to be separated in time by at least 12 ns. In this way we avoid a superposition of signals in the read-out gate of the ZDC, that would bias the determination of the zero-degree energy E_{ZDC}. Finally, in order to reject events at the edges of the MS acceptance we apply the kinematical cuts $0 < y_{\text{ cms}} < 1$ and $-0.5 < \cos \theta_{CS} < 0.5$, where θ_{CS} is the polar angle of the muons in the Collins-Soper reference frame. In the end, we are left with samples of ~45000 J/ψ for the first event selection, and ~29000 for the second.

The first analysis follows the approach used by the NA38/NA50 experiments. Namely, the J/ψ yield is normalized to the corresponding Drell-Yan (DY), a hard process unaffected by final-state interactions in the medium [18]. The ratio $\sigma_{J/\psi}/\sigma_{\text{DY}}$ has the further advantage of being free from systematic errors connected with the experimental inefficiencies and the integrated luminosity. It is extracted from a fit of the $\mu^+\mu^-$ invariant mass spectrum (in the region $m_{\mu\mu} < 2.2$ GeV) to a superposition of the expected contributions, namely the J/ψ and the ψ' resonances, a continuum composed of Drell-Yan events and semi-muonic decays of D and \bar{D} mesons, and a combinatorial background from π and K decays. The expected mass shapes of the signals and their acceptances are evaluated through a Monte-Carlo simulation based on PYTHIA [19] with GRV94LO [20] parton distribution functions. The combinatorial background has been estimated from the measured sample of like-sign pairs and its contribution is negligible. Fig. 1 shows the $\mu^+\mu^-$ invariant mass spectrum, together with the result of the fit.

The ratios of cross sections, $\sigma_{J/\psi}/\sigma_{\text{DY}}$, uncorrected for the J/$\psi$ decay branching ratio, are given in Table I for three centrality bins corresponding to different values of $\langle N_{\text{part}} \rangle$, the average number of participant nucleons in the bin. $\langle N_{\text{part}} \rangle$ has been obtained from E_{ZDC} using the Glauber model and taking into account the smearing induced by the detector resolution. The Drell-Yan yield refers to the mass interval $2.9 < m_{\mu\mu} < 4.5$ GeV/c^2. Its low statistics (320 events for $m_{\mu\mu} > 4.2$ GeV/c^2) limits the statistical significance of our result and prevents a finer binning in centrality.

The values shown in Table I indicate that for semi-central and central collisions the $\sigma_{J/\psi}/\sigma_{\text{DY}}$ ratio is significantly lower than for peripheral reactions. In order to understand how much of the observed reduction is due

Centrality bin	$\langle N_{\text{part}} \rangle$	$\sigma_{J/\psi}/\sigma_{\text{DY}}$
$E_{ZDC} > 11$ TeV	63	26.8±3.2
$7 < E_{ZDC} < 11$ TeV	123	16.1±1.6
$E_{ZDC} < 7$ TeV	175	17.8±1.6

FIG. 1: The fit to the $\mu^+\mu^-$ invariant mass spectrum, integrated over centrality.
to cold nuclear matter effects, we have calculated, in the frame of the Glauber model, $\sigma_{J/\psi}/\sigma_{DY}$ as a function of centrality in a pure nuclear absorption scenario. This calculation requires as inputs the J/ψ absorption cross section in cold nuclear matter as well as the ratio of the J/ψ and DY elementary production cross sections at 158 GeV. Measurements performed by NA50 [11, 21] in p-A collisions at 450 GeV provide $\sigma_{J/\psi}^{pp}=1.18 \pm 0.35$ mb and $(\sigma_{J/\psi}/\sigma_{DY})^{pp}=57.5 \pm 0.8$. The latter quantity has been rescaled to 158 GeV/nucleon incident energy, using a procedure detailed in Ref. [11], obtaining $(\sigma_{J/\psi}/\sigma_{DY})^{158}=35.7 \pm 3.0$. Fig. 2 shows the measured $\sigma_{J/\psi}/\sigma_{DY}$, divided by the calculated reference and plotted as a function of N_{part}. Even if statistical errors are large, a suppression signal of the J/ψ beyond nuclear absorption can be seen.

![FIG. 2: Centrality dependence of the J/ψ suppression measured in In-In collisions. The stars correspond to the ratio between measured and expected $\sigma_{J/\psi}/\sigma_{DY}$, while the circles refer to the ratio between the measured J/ψ yield and nuclear absorption calculations. The box on the left shows the common systematic error, while the boxes around the points represent the error related to the centrality determination. See text for details.](image)

In the second analysis, we directly compare the measured J/ψ yield to the centrality distribution of J/ψ calculated for the case of pure nuclear absorption, using the input parameters detailed above. In this approach, the measured J/ψ yield has been obtained, in 1 TeV E_{ZDC} bins, by means of a simple fitting procedure that allows us to subtract the small amount of Drell-Yan ($<4\%$) and combinatorial background ($<1\%$) under the resonance peak. In Fig. 3 we compare the J/ψ distribution with the expectation from nuclear absorption. The relative normalization between data and the reference curve is not determined a priori; therefore we fix the ratio between data and the nuclear absorption curve, integrated over centrality, to the same value (0.87 ± 0.05) as obtained within the previous analysis. It must be noted that events where a heavy nuclear fragment reinteracts in a downstream target have a smaller E_{ZDC} value, since the fragment reinteraction removes some nucleons that would have otherwise reached the ZDC. The measured J/ψ centrality distribution has been corrected for the small bias ($<2\%$) induced by this effect. Finally, because of small inefficiencies of the BT, our data sample could be contaminated by high-E_{ZDC} events, where a non-interacting pile-up ion is superimposed to the interacting one. A Monte-Carlo simulation shows that this effect is negligible in our analysis domain, i.e. $E_{\text{ZDC}} < 16$ TeV (corresponding to $N_{\text{part}} > 50$).

![FIG. 3: The $J/\psi E_{\text{ZDC}}$ distribution (circles), compared with expectations from nuclear absorption (line).](image)

Fig. 2 shows the ratio between the measured and expected J/ψ yield, rebinned in order to further reduce statistical fluctuations. Since statistical errors are very small ($<2\%$), this analysis requires a careful estimate of systematic errors. We find that they are connected with the determination of the shape and normalization of the nuclear absorption reference, and with the calculation of N_{part} starting from E_{ZDC}. In particular, the uncertainties on $(\sigma_{J/\psi}/\sigma_{DY})^{pp}$ and $\sigma_{J/\psi}^{\text{abs}}$ give an 8% and 4% systematic error on the normalization of the absorption curve, respectively. We then have a 6% error, originating from the centrality integrated value of $\sigma_{J/\psi}/\sigma_{DY}$ used for the normalization. Concerning centrality determination, by varying within errors the input parameters used in the Glauber model, we get a negligible influence on the nuclear absorption reference, except for very central events ($E_{\text{ZDC}}<3$ TeV), where the size of the effect is $\sim 12\%$. Furthermore, the ZDC does not measure only spectator nucleons, but also a small amount of energy released by forward secondary particles emitted in the acceptance of the calorimeter ($\eta > 6.3$). This contribution, important only for central collisions, is taken into account when calculating N_{part} from E_{ZDC}. By conservatively assuming a 10% uncertainty on this quantity we get, for events with $E_{\text{ZDC}}<3$ TeV, a 9% error on the absorption curve. For more peripheral events the effect is negligible. Combining the various sources in quadrature, we end up with a $\sim 11\%$ systematic error, independent of centrality. On
top of that, the most central bins are affected by a further, sizeable systematic error relatively to the others. It must be noted that the systematic error plotted in Fig. 2, except for the fraction due to the 6% normalization error quoted above, also affects the results on $\sigma_{J/\psi}/\sigma_{DY}$.

The results obtained by NA60 in In-In collisions show that in the region $50 < N_{\text{part}} < 100$ an anomalous suppression of the J/ψ sets in. Taking into account the N_{part} smearing due to the E_{ZDC} resolution, the effect seen is compatible with the occurrence of a $\sim 15\%$ drop of the J/ψ yield at $N_{\text{part}} \sim 80$, followed by a more or less constant behaviour. When expressed in terms of the Bjorken energy density, the onset of the anomalous suppression roughly corresponds to 1.5 GeV/fm3 (using $\tau_0=1$ fm/c and the VENUS estimate for the charged multiplicity as a function of centrality). In Fig. 4 we compare our result with the J/ψ suppression pattern obtained by NA50 in Pb-Pb collisions [11]. The systematic errors on the determination of the nuclear absorption reference from the p-A data sample amount to $\pm 9\%$ and are not shown in this comparison plot since they affect Pb-Pb and In-In results in a similar way. Within errors, the two patterns look compatible in the N_{part} region explored by both systems, indicating that N_{part} might be, at SPS energy, a scaling variable for the anomalous suppression. A detailed investigation of the scaling properties of J/ψ suppression as a function of several centrality variables would give valuable insights into the origin of the observed effect. However, a meaningful comparison would require Pb-Pb results with error bars similar to the ones obtained for the In-In analysis.

Several theoretical predictions, tuned on already available Pb-Pb results from NA50, were formulated for J/ψ suppression in In-In collisions [3, 4, 22]. We find that none of them is able to quantitatively reproduce the suppression pattern measured by NA60 [24]. Recent results from the PHENIX Collaboration [25] have shown that also in Au-Au collisions at $\sqrt{s}=200$ GeV/nucleon the J/ψ is suppressed beyond nuclear absorption, and that the suppression is larger at forward rapidities. A coherent interpretation of the results at SPS and RHIC energies is now mandatory in order to understand the physics mechanisms affecting charmonia in a dense partonic/hadronic environment. The results obtained by NA60 represent the most accurate measurement of J/ψ suppression in nuclear collisions available today and are a key element to strictly constrain theoretical models. Further studies on the y and p_T dependence of the J/ψ suppression are underway and will be the subject of future publications.

In summary, we have measured J/ψ suppression in In-In collisions at 158 GeV/nucleon. Comparing the J/ψ centrality distribution with the expectation from a pure nuclear absorption scenario, we find an anomalous suppression that sets in for $N_{\text{part}} \sim 80$, and saturates for more central events. The statistical errors are negligible (of the order of 2%). Most of the systematic errors are centrality independent and therefore do not affect the measured shape of the J/ψ suppression pattern. None of the existing theoretical models, tuned on the measured J/ψ suppression in Pb-Pb collisions, is able to quantitatively reproduce the results shown in this letter.

The YerPhI group was supported by the C. Gulbenkian Foundation, Lisbon and the Swiss Fund Kidagan.

[1] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).
[2] S. Datta et al., Phys. Rev. D69, 094507 (2004).
[3] M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004).
[4] H. Satz, J. Phys. G32, R25 (2006).
[5] S. Digal et al., Eur. Phys. J. C32, 547 (2004).
[6] L. Grandchamp et al., Phys. Rev. Lett. 92, 212301 (2004).
[7] A. Capella and E.G. Ferreiro, Eur. Phys. J. C42, 419 (2005).
[8] L. Maiani et al., Nucl. Phys. A748, 209 (2005).
[9] B. Alessandro et al., (NA50), Eur. Phys. J. C33, 31 (2004).
[10] M.C. Abreu et al., (NA38), Phys. Lett. B449, 128 (1999).
[11] B. Alessandro et al., (NA50), Eur. Phys. J. C39, 335 (2005).
[12] M.C. Abreu et al., (NA50), Phys. Lett. B410, 327 (1997).
[13] A. Colla, Ph.D. Thesis, Universit` a di Torino, 2004.
[14] K. Banicz et al., Nucl. Instr. Meth. A546, 51 (2005).
[15] G. Usai et al., (NA60), Eur. Phys. J. C43, 415 (2005).
[16] R. Shahoyan et al., (NA60), Nucl. Phys. A774, 677 (2006).
[17] A. David, Ph.D. Thesis, Instituto Superior Técnico, Lisboa, 2006, CERN-THESIS-2006-007.
[18] L. Ramello et al., (NA50), Nucl. Phys. A715, 243 (2003).
[19] T. Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001).
[20] M. Glück et al., Z. Phys. C67, 433 (1995).
[21] G. Borges et al., (NA50), Eur. Phys. J. C43, 161 (2005).
[22] K. Werner, Phys. Rep. 232, 87 (1993).
[23] R. Rapp, Eur. Phys. J. C43, 91 (2005).
[24] E. Scomparin et al., (NA60), nucl-ex/0703030, proc. of QM2006 Int. Conf., to appear in J. Phys. G.

[25] A. Adare et al., (PHENIX), nucl-ex/0611020