Purpose of review
To review the most relevant developments in the understanding of headache in idiopathic intracranial hypertension (IIH).

Recent findings
The phenotype of the typical IIH headache is diverging from the historical thinking of a raised intracranial pressure headache, with the majority being classified as having migraine. A larger proportion of those with IIH have a past medical history of migraine, compared with the general population, highlighting the importance of re-examining those who have a change or escalation in their headache. The mechanisms underlying headache in IIH are not understood. Additionally, factors which confer a poor headache prognosis are not established. It is clear, however, that headache has a detrimental effect on all aspects of the patient’s quality of life and is currently ranked highly as a research priority by IIH patients to better understand the pathophysiology of headache in IIH and identification of potential headache specific therapeutic agents.

Summary
Headache remains the predominate morbidity in the majority of those with IIH. Headache management is an unmet need in IIH and future studies are required to investigate the probable complex mechanisms, as well as effective management.

Keywords
headache, idiopathic intracranial hypertension, medication overuse headache, migraine, raised intracranial pressure

INTRODUCTION
Idiopathic intracranial hypertension (IIH) is characterised by an elevation of intracranial pressure (ICP) with no identifiable cause [1]. There is a rising incidence in this disease [2], and it appears that the incidence is related to country specific prevalence of obesity [3]. It typically affects women of working age [4] and headache is the predominant morbidity in over 90% [4–7]. Headache is also the key factor driving reduced quality of life in IIH [8,9].

Previous characterisation of the typical phenotype of a raised ICP headache was of a nonspecific headache that is worse on waking. The features of IIH-related headache vary substantially and in the context of the recent clinical studies that have characterised them (Table 1), migraine is now the predominant phenotype. Our understanding has changed and, indeed, the international criteria have been modified in which ICP reduction is no longer a requirement as a diagnostic criterion of headache attributable to IIH [10]. Caution does need to be applied before rapid conclusions are drawn as to the relationship between ICP and headache in the context of this rare disease where less than 200 patients have been reported on, in randomised controlled trials [11,12].

* Birmingham Neuro-Ophtalmology, University Hospitals Birmingham, NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, **Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Wellcome Foundation Building, Denmark Hill Campus, King's College London, London, **Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, **Department of Neurology, University Hospitals Birmingham, Queen Elizabeth Hospital, Birmingham and **Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Correspondence to Dr Alexandra J. Sinclair, Metabolic Neurology, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK. E-mail: a.b.Sinclair@bham.ac.uk

Curr Opin Neurol 2019, 32:92–98
DOI:10.1097/WCO.0000000000000651

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
HEADACHE AND THE PERSON WITH INTRACRANIAL HYPERTENSION

Headache in IIH is known to have a detrimental effect on quality of life [8,9] and chronic headaches have a profound effect on people’s lives, showing similarities with other pain conditions [13]. The Idiopathic Intracranial Hypertension Treatment Trial (IIHTT), a key trial, was a North American multicentre, double-blind, randomised, placebo-controlled study of 165 participants with investigating utility of acetazolamide in mild visual loss [11]. In this cohort, headache, particular when associated with photophobia, was the major factor in detrimental general and visual quality of life [9,14].

In an observational study, headache frequency and severity of depression symptoms were independent predictors of disability in IIH with mean score of 22.8 (±15.2), compared with an average Italian

Table 1. Summary of current studies that report headache characteristics in idiopathic intracranial hypertension
Reference

Friedman et al. [14]
Hamedani et al. [28]
Raggi et al. [15]
Sina et al. [20]
Yiangou et al. [49]
Yin et al. [6]

ICP, Intracranial pressure; IIH, intracranial hypertension.
PHENOTYPING INTRACRANIAL HYPERTENSION-RELATED HEADACHE

Historically, a raised ICP headache is positional, with nocturnal awakening, worse on waking and aggravated by Valsalva manoeuvre. Studies now have classified those with headache and IIH would meet the International Headache Society criteria [10] as having either episodic migraine, chronic migraine or tension-type headache (Table 1). According to the IIHTT, the quality of the pain was pressure-like in 47% and throbbing in 42% [14**], which is similar to migraine [17]. Photophobia, phonophobia, nausea, vomiting and worsening on physical activity were reported and none of these migraine features separated IIH headache from migraine [14**]. Other symptoms included constant visual loss; transient visual obscurations, diplopia and dizziness; these could help distinguish primary migraine from migraine in IIH; however, the authors cautioned that 14% with headache and papilloedema had none of these associated symptoms [14**] (Table 2).

In children with pseudotumour cerebri (PSTC), Lee et al. [18*] studied the difference in children’s drawings of their headaches. A total of 21 children with PSTC and 518 children with migraine showed that drawings had similar features except one-third (28.6%) with PSTC depicted diplopia which was highly significant ($P=0.00001$). Diplopic images

Clinical features	Headache in IIH	Migraine		
	IIHTT [9,14**]	Yri et al. [6]	Kelman [17]	
	IIH Controls	n = 1283 (84.3% female; mean age 37.7 (SD 12 years)		
Body mass index	40.0 (8.5) AZA arm	34.6	30.8	–
	39.9 (8.1) placebo	–	–	–
ICP—lumbar puncture opening pressure (cm CSF)	34.0 (SD 9.1) AZA arm	39.6	18.2	–
	34.2 (SD 7.1) placebo	–	–	–
Photophobia	70%	66%	–	84–95%
Phonophobia	52%	73%	–	77–93%
Nausea	47%	75%	–	90%
Vomiting	15%	–	–	19.8%
Dizzy symptoms	53%	–	–	36.1%
Neck pain	42%	34%	–	–
Shoulder pain	–	–	–	–
Back pain	53%	–	–	–
Radicular pain	19%	–	–	–
Worsening on valsalva	–	70%	35%	–
Worsening on bending	–	52%	44%	–
Aggravated by physical activity	50%	64%	74%	90% (13.5% occasionally; 32.2% frequently, 44.3% very frequently)
Pulsatile tinnitus	52% (bilateral in two-thirds of these)	64%	26%	–
Daily nonpulsatile tinnitus	23%	–	–	–
Transient visual obscurations	68%	64%	35%	–
Patient reported diplopia	18%	45%	24%	–
Esotropia or 6th cranial nerve palsy	3%	–	–	–
Papilloedema	Yes	Yes	No	No

AZA, Acetazolamide group; CSF, cerebrospinal fluid; ICP, intracranial pressure; IIH, intracranial hypertension.
may serve as a useful ‘red flag’ for those who investigate children for raised ICP.

PRIOR HISTORY AND FAMILY HISTORY OF HEADACHE

Prior history of headache in the IIHTT was found in 41% [14**], which is similar to Yri et al. [6] who found in 45% of their IIH cohort with 25% having prior migraine and 34% having prior tension-type headaches. This is nearly double that of the US female population with 18% having history of migraine [19]. Positive family history was high, with one study reporting up to 68% of those with IIH [20]. These factors may be implicated in the pathophysiology of headache in IIH. What is of importance is the re-examination for papilloedema in those who have a change or escalation in their headache [21].

HEADACHE OUTCOMES IN INTRACRANIAL HYPERTENSION STUDIES

Overall, there are few studies investigating headache; they report different headache outcomes and have a small number of patients (Table 1), and the results of which are not surprisingly conflicting in this rare disease.

HEADACHE SEVERITY AND FREQUENCY

Headache severity in IIH appears to be moderate to severe. In the Birmingham prospective study investigating women with IIH who followed a low-calorie diet for 3 months, severity, as recorded using the visual analogue pain score, was 4.2 (±2.8) and reduced to 1.9 (±2.8), \(P = 0.015 \), at study end with significantly reduced ICP compared with pressure measured in the 3 months before the diet [22]. Others have reported higher severity of 5.6 (±2.5) [15], and the IIHTT baseline headache severity was 6.3 (±1.9) on a 0–10 scale, with 5.4% reporting 10/10 [9]. Differences could exist because of duration of IIH and medication overuse headache.

Headache frequency in IIH is typically episodic in new onset disease and chronic in more longstanding disease (Table 1). Both severity and frequency have not appeared to correlate with lumbar puncture opening pressure in the IIHTT [14**], and the portions between episodic and chronic could reflect time to enrolment from diagnosis, or onset of raised ICP, or existence of other coexisting headache phenotypes.

HEADACHE DISABILITY SCORE

The Headache Impact Test (HIT)-6 [23], which is a validated for use across headache disorders, is commonly used [24]. Most agree at baseline the HIT-6 measures substantial to severe impact on IIH patients. Headache disability is multifactorial, and comorbid conditions can influence disability for example those with a high risk of sleep apnoea, as determined by the Berlin questionnaire, had a higher HIT-6 score in the IIHTT (\(P = 0.04 \)) [14**].

In the Birmingham weight loss study [22], baseline HIT-6 was 57.5 (±9.0) which significantly improved after weight loss to 46.9 (±10.1) (\(P = 0.004 \)). The IIHTT HIT-6 mean baseline was similar to 59.7 (±9.0) reducing both arms by over 9 points, which did not reach significance [14**]. In an open-label extension of the IIHTT [25], 96 participants were sorted into remaining on acetazolamide (\(n = 34 \)), switch placebo to acetazolamide (\(n = 35 \)), switch acetazolamide to no treatment (\(n = 16 \)) and switch placebo to no treatment (\(n = 11 \)). At month 12, those switched placebo to acetazolamide had significant improvement HIT-6 with −3.70 point reduction (\(P = 0.01 \)). This is an interesting fact; however, caution must be used in interpreting this as headache outcomes are prone to placebo effects and total blinding to treatment allocation is hampered by knowledge of trial arm allocation and through the experience of drug-related side-effects (such as use of acetazolamide and experiencing paraesthesia) [26].

HEADACHE RELATIONSHIP TO INTRACRANIAL PRESSURE

The relationship between headache and degree of ICP elevation is not fully delineated and is likely to be complicated. Younger age \((P = 0.03) \) of onset and high lumbar puncture opening pressure \((P = 0.03) \) have both been associated with better odds of being without headache or with only infrequent headache (<1 day/month) headache after 12 months [6].

Amogst IIHTT cohort, there was no relationship found between the mean lumbar puncture opening pressure, 343.5 (±86.9) and the presence or absence of headache at baseline [14**]. This potentially suggests an individual threshold of tolerance of differing degrees of ICP and that once elevated other factors may contribute to chronicity. Analogies maybe drawn to posttraumatic headache in which susceptibility is influenced by previous migraine history, childhood migraine and family history of migraine, potentially suggesting an underlying genetic predisposition to headache and not necessarily a clear correlation between degree of trauma. Other investigators have supported theories that headache in IIH is attributed to more complex mechanisms than ICP elevation alone [27].

The IIHTT highlighted that there was no statistical relationship found between headache severity
placebo group (in the acetazolamide group and 52.4 mm CSF in the sure changed by 112.3 mm cerebrospinal fluid (CSF) 68% placebo and weight loss arm) [14

headaches (69% acetazolamide and weight loss arm; the number of headache days weakly correlated 96

www.co-neurology.com

trials [30,31]. None of these have focused on

lack of evidence to guide pharmacological treatment IIH [29]. There are few published randomised

randomised controlled trials [11,12] and a small number of ongoing trials [30,31]. None of these have focused on

management of headache. Managing headache in IIH is an essential aspect of patient care and recent consensus guidelines have provided a practical approach to managing them [1**].

MANAGEMENT OF MIGRAINE IN INTRACRANIAL HYPERTENSION

As migraine is the predominant phenotype (Table 1), the use of migraine therapies has been recommended [1**]. Migraine attacks may benefit from triptan acute therapy used in combination with either a nonsteroidal anti-inflammatory or paracetamol and an antiemetic with pro-kinetic properties [32*]. Their use should be limited to in the region of 2 days/week or a maximum of 10 days/month [32*]. Where medication overuse coexists, this should be addressed, and if chronic migraine is present, preventive strategies have been recommended [1*,33]. Caution should be observed before selecting drugs that could increase weight such as β-blockers, tricyclic antidepressants, sodium valproate, pizotifen and flunarizine. Care should be taken in those medications that exacerbate depression which is a frequent co-morbidity in IIH, such as β-blockers, topiramate and flunarizine [1**].

A meta-analysis demonstrated that topiramate was effective in reducing headache frequency and was reasonably well tolerated in adult patients with episodic migraine [34*]. It may have additional benefits of suppressing appetite and have an effect on reducing ICP through carbonic anhydrase inhibition. In-vivo studies demonstrated that both subcutaneous and oral administration of topiramate significantly lowered ICP in rodents, whereas other drugs tested, including acetazolamide, furosemide, amiloride and octreotide, did not significantly reduce ICP [35]. Topiramate utility in IIH reported in an open-label study which randomly assigned 40 patients with IIH to acetazolamide or topiramate and demonstrated treatment equivalence with all experiencing improvement in visual fields [36].

Other preventive therapies, some of which are not licenced for migraine, could include candesartan because of its lack of weight gain and depressive side-effects [37] or potentially non-invasive neuromodulation [38]. Botulinum toxin A, which is a licenced therapy for migraine, could also be useful in those with coexisting chronic migraine [39*]. Other strategies, such as mindfulness, may suit some patients [40*].

MANAGEMENT OF MEDICATION OVERUSE HEADACHE

One-third of IIHTT participants overused medication at baseline, on the basis of the last 30-day

(0–10 scale) and ICP, at both baseline and trial end. Only half agreed to have a lumbar puncture at 6 months (65 had headache and 20 without) and there was no correlation between HIT-6 and lumbar puncture opening pressure (r = 0.12, P = 0.29), but the number of headache days weakly correlated (r = 0.12, P = 0.04). Lumbar puncture opening pressure changed by 112.3 mm in the acetazolamide group and 52.4 mm CSF in the placebo group (P = 0.002) and both arms reported headaches (69% acetazolamide and weight loss arm; 68% placebo and weight loss arm) [14**].

In the Birmingham weight loss study, lumbar puncture opening pressure was 38.0 (±5.0) at the start of the diet and 30.0 (±4.9) (P < 0.001). HIT-6 significantly improved with this reduction in ICP (P = 0.004) and there were significant improvements, by greater than 50%, in headache severity (visual analogue pain score (0–10) from 4.2 (±2.8) to 1.9 (±2.8), (P = 0.015), headache frequency from 4.4 (±2.9) to 2.1 (±2.8) days a week (P = 0.011), and weekly use of analgesics from 2.2 (±2.5) to 0.2 (±0.4) days a week (P = 0.007). Patients’ symptoms (headache, tinnitus, obscurations and diplopia) showed significant improvement after the low energy diet (P < 0.001, P = 0.004, P = 0.025 and P = 0.008, respectively) One explanation of the difference between this study [22] and IIHTT [14**], in which the magnitude CSF pressure reduction was similar, may be that the Birmingham study assessed the intervention at 3 months, compared with 6 months in the IIHTT.

In children with IIH, Hamedani et al. [28*] retrospectively reported headache characteristics. They detailed headache pattern from clinical records, severity (subjectively determined) and location along with associated symptoms of visual change and nausea. There was no difference between the groups in terms of pain severity, and presence of nausea, despite there being distinct differences in median lumbar puncture opening pressure between definite PTCS (39 cm CSF), probable PTCS (24 cm CSF), elevated opening pressure (35 cm CSF) and normal opening pressure group (23 cm CSF) (P < 0.001). It may be that once ICP is over a ‘patient specific threshold’ headache will occur, but the absolute degree of ICP elevation may not be the primary underlying mechanism.

MANAGEMENT OF HEADACHE IN INTRACRANIAL HYPERTENSION

The 2015 Cochrane review concluded that there is a lack of evidence to guide pharmacological treatment in IIH [29]. There are few published randomised clinical trials [11,12] and a small number of ongoing trials [30,31]. None of these have focused on

www.co-neurology.com Volume 32 • Number 1 • February 2019

96
history, and had a significantly higher mean HIT-6 score (63.1 ± 6.9) than in those without (58.1 ± 9.4; \(P = 0.0007 \)) [14**]. Other studies found management of medication overuse headache (MOH) a more common issue for IIH patients long term, reflecting the study type [6]. Successfully removing excessive analgesic use significantly improves headaches in other headache disorders. What is yet what is yet to be determined is the effects it has on the course of IIH-related headache [41]. It seems prudent that all IIH patients with headaches are warned about avoiding excessive analgesic use and where MOH exists standard advice of removal given [41,42].

THERAPEUTIC LUMBAR PUNCTURE

Professional bodies in the United Kingdom [1**] and Europe [43] do not advocate therapeutic lumbar puncture as a treatment strategy for IIH. Although lumbar puncture induces a transient reduction of ICP, the effect is typically short lived with pressure rising rapidly after the procedure [44]. There is growing awareness regarding the morbidity of the procedure [45,46]. IIH patients frequently report a negative and emotional experience when they undergo a lumbar puncture [47,48] and the majority of active IIH patients (papilloedema and lumbar puncture opening pressure >25 cm CSF) will face an exacerbation of headache in the week following lumbar puncture [49]. The long-term therapeutic effects of lumbar puncture are not well known.

NEUROSURGICAL TREATMENT OF HEADACHE

CSF shunting to exclusively treat headache in IIH has limited evidence. About 68% will continue to have headaches at 6 months and 79% by 2 years following CSF diversion. A third have been reported to develop iatrogenic low pressure headaches, although this figure may be lower depending on shunt and valve types [50]. There is uncertainty that failure to optimise ICP may render the migraine headaches difficult to treat, and if headache was indicated for CSF shunting, then a period of ICP monitoring preoperatively may be useful to determine the success of the proposed procedure [1**].

INTERVENTIONAL VASCULAR STENTING FOR HEADACHE

The literature detailing dural venous stenting typically does not clearly separate the cohorts of IIH into those with acute visual loss and those with headaches. Many case series are small, nonrandomised, do not detail morphological stenosis type and some do not record the pressure gradient. There are selection bias, differing treatment protocols, poor characterisation of headache phenotype and a lack of long-term follow-up [51]. Additionally, objective validated headache outcome measures are infrequently utilised. Well characterised studies would be welcomed in this area.

MANAGEMENT OF HEADACHES IN THE SHUNTED PATIENT

Shunted patients may have significant headache morbidity and understanding the underlying causes may guide management. It has been recommended that shunt revision should not routinely be undertaken unless there is an assessment of vision for papilloedema and there is a risk of visual deterioration [52]. There is little indication to perform shunt series, as they do not determine shunt failure or overdrainage or change management decisions [53]. As with chronic headaches, removal of MOH [53,54] and migraine treatments should be considered; additionally, ICP monitoring may be informative to direct treatment choices [1**].

CONCLUSION

Migraine phenotype and prior history of headache before a diagnosis of IIH needs to be recognised by clinicians to avoid misdiagnosis. There is an unmet need to treat headaches in IIH. Future studies should consider core outcome measures for headache, as used in migraine trials, which would optimise meta-analysis. Migraine abortive and preventive therapies can be used, but currently there is no high-class evidence to help guide treatment decisions.

Acknowledgements

None.

Financial support and sponsorship

A.J.S. is funded by an NIHR Clinician Scientist Fellowship (NIHR-CS-011-028) and by the Medical Research Council, United Kingdom (MR/K015184/1).

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Mollan SP, Davies B, Silver NC, et al. Idiopathic intracranial hypertension: consensus guidelines on management. J Neurol Neurosurg Psychiatry 2018; 18:486–488. Pragmatic consensus guidance on all aspects of IIH and IH WOP, reviewed by four professional bodies in the United Kingdom, an international panel and with IH UK patient charity involvement.
Raggi A, Marzoli SB, Chiapparini L. Headache frequency and symptoms of headache located focally and reported in neck and shoulders. 21.

Mulla Y, Markey KA, Wooley RL, et al. Headache determines quality of life in idiopathic intracranial hypertension. J Headache Pain 2015; 16:521.

Digre KB, Bruce BB, McDermott MP, et al. Evidence in adult idiopathic intracranial hypertension: pathophysiology and management. J Neurol Neurosurg Psychiatry 2016; 87:982–992.

Mulla Y, Markey KA, Wooley RL, et al. Headache determines quality of life in idiopathic intracranial hypertension. J Headache Pain 2015; 16:521.

19. Mulla Y, Markey KA, Wooley RL, et al. Headache determines quality of life in idiopathic intracranial hypertension. J Headache Pain 2015; 16:521.

20. Sina F, Razmeh S, Habibzadeh N, et al. Significantly more common in those with idiopathic intracranial hypertension than in the control group of migraine. 20.

21. Sina F, Razmeh S, Habibzadeh N, et al. Significantly more common in those with idiopathic intracranial hypertension than in the control group of migraine. 21.

22. Kelman L. Pain characteristics of the acute migraine attack. Headache 2006; 46:942–953.

23. Lee EB, Edelman FS, Stafstrom CE. Evidence of diplopia in children’s headache drawings helps to differentiate pseudotumor cerebri from migraine. 23.

24. Friedman DI, Quirós PA, Subramanian PS, et al. Headache in idiopathic intracranial hypertension: findings from the Practice of Intracranial Hypertension Treatment Trial. Headache: J Head Pain 2017; 57:1195–1205. Largest data set from randomised control trial detailing headache outcomes in idiopathic intracranial hypertension.

25. Raggi A, Marzoli SB, Chiapparini L. Headache frequency and symptoms of depression as predictors of disability in patients with idiopathic intracranial hypertension. Neurol Sci 2018; 39:139–140.

26. Ball AR, Whybrow P, Wheatley K, et al. Randomised controlled trial of treatment for idiopathic intracranial hypertension. J Neurol 2011; 258:874–881. 26.

27. Nicholls VP, Elard DR, Griffiths FE, et al. The lived experience of chronic headache: a systematic review and synthesis of the qualitative literature. BMJ Open 2017; 7:e019199. 27.

28. Kelman L. Pain characteristics of the acute migraine attack. Headache 2006; 46:942–953.

29. Lee EB, Edelman FS, Stafstrom CE. Evidence of diplopia in children’s headache drawings helps to differentiate pseudotumor cerebri from migraine. 29.

30. Yiangou A, Mitchell J, Markey KA, et al. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia 2018; 33:302148776455.

31. Celiebrosy N, Gökçay F, Sınır H, Akyürekü O. Treatment of idiopathic intracranial hypertension: topiramate versus acetazolamide, an open-label study. Acta Neurol Scand 2007; 116:322–327.

32. Tromvik E, Stovner LJ, Helde G, et al. Prophylactic treatment of migraine with an angiotensin II receptor blocker: a randomized controlled trial. JAMA 2003; 289:65–69. 32.

33. Miller S, Sinclair AJ, Davies B, Matharu M. Neurostimulation in the treatment of headache in idiopathic intracranial hypertension. J Neurol Neurosurg Psychiatry 2016; 87:982–992.

34. Meray KA, Mitchell J, Scotton W, et al. Assessing the efficacy and safety of an 11b-hydroxysteroid dehydrogenase type 1 inhibitor (AZD4017) in the idiopathic Intracranial Hypertension Drug Trial, IHHDT: clinical methods and design of a phase II randomized, proof-of-concept study. JMRP Res Protoc 2017; 1:e181. 34.

35. Ottridge R, Mollan SP, Mitchell J, et al. Randomised controlled trial of bariatric surgery versus a community weight loss programme for the sustained treatment of idiopathic intracranial hypertension: the Idiopathic Intracranial Hypertension Weight Trial (IHHWT) protocol. BMJ Open 2017; 7:e017426.

36. National Institute for Health and Care Excellence. Clinical guideline (150): headaches: diagnosis and management of headaches in young people and adults. Surveillance report. October 2014. https://www.nice.org.uk/guidance/cg150/resources/headaches-surveillance-review-document2. [Accessed 10 October 2018] 36.

37. Guidelines on diagnosing primary headaches.

38. Sinclair AJ, Sturrock A, Davies B, Matharu M. Headache management: pharmacological approaches. Pract Neurol 2015; 15:411–423.

39. Linde M, Mulleners WM, Chronicle EP, McCreary DC. Topiramate for the prophylaxis of episodic migraine in adults. Cochrane Database of Systematic Reviews 2013; (6);CD001610. 39.

40. Meta-analysis demonstrates that topiramate in a 100 mg/day dosage is effective in reducing headache frequency and reasonably well tolerated in adult patients with episodic migraine.

41. Scotton WJ, Botfield HF, Westgate CS, et al. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia 2018; 33:302148776455.

42. Duits FH, Martinez-Lage P, Paquet C, et al. Performance and complications of lumbar puncture in memory clinic patients: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement 2016; 12:154–163. 42.

43. Engelborghs S, Niemanstendert E, Shyuhs H, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheim Dement: Diagnosis,Assess,&Dis Monit 2017; 8:111–126. 43.

44. Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 1978; 83:3–34.

45. Duits FH, Martinez-Lage P, Paquet C, et al. Performance and complications of lumbar puncture in memory clinic patients: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement 2016; 12:154–163. 45.

46. Fargen KM, Liu K, Garner RM, et al. Characterising the patient experience of diagnostic lumbar puncture in idiopathic intracranial hypertension: a cross-sectional online survey. BMJ Open 2018; 8:e020445. 46.

47. Ball AR, Whybrow P, Wheatley K, et al. Randomised controlled trial of treatment for idiopathic intracranial hypertension. J Neurol 2011; 258:874–881. 47.

48. Wallace HC, Sirin H, Akyürekü O. Treatment of idiopathic intracranial hypertension: pathophysiology and management. J Neurol Neurosurg Psychiatry 2016; 87:982–992.

49. Mulla Y, Markey KA, Wooley RL, et al. Headache determines quality of life in idiopathic intracranial hypertension. J Headache Pain 2015; 16:521.

50. Lee EB, Edelman FS, Stafstrom CE. Evidence of diplopia in children’s headache drawings helps to differentiate pseudotumor cerebri from migraine. 50.

51. Yiangou A, Mitchell J, Markey KA, et al. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia 2018; 33:302148776455.

52. Fargen KM, Liu K, Garner RM, et al. Assessing the efficacy and safety of an 11b-hydroxysteroid dehydrogenase type 1 inhibitor (AZD4017) in the idiopathic Intracranial Hypertension Drug Trial, IHHDT: clinical methods and design of a phase II randomized, proof-of-concept study. JMRP Res Protoc 2017; 1:e181. 52.

53. Ottridge R, Mollan SP, Mitchell J, et al. Randomised controlled trial of bariatric surgery versus a community weight loss programme for the sustained treatment of idiopathic intracranial hypertension: the Idiopathic Intracranial Hypertension Weight Trial (IHHWT) protocol. BMJ Open 2017; 7:e017426.

54. National Institute for Health and Care Excellence. Clinical guideline (150): headaches: diagnosis and management of headaches in young people and adults. Surveillance report. October 2014. https://www.nice.org.uk/guidance/cg150/resources/headaches-surveillance-review-document2. [Accessed 10 October 2018] 54.

55. Guidelines on diagnosing primary headaches.

56. Sinclair AJ, Sturrock A, Davies B, Matharu M. Headache management: pharmacological approaches. Pract Neurol 2015; 15:411–423.

57. Linde M, Mulleners WM, Chronicle EP, McCreary DC. Topiramate for the prophylaxis of episodic migraine in adults. Cochrane Database of Systematic Reviews 2013; (6);CD001610. 57.

58. Meta-analysis demonstrates that topiramate in a 100 mg/day dosage is effective in reducing headache frequency and reasonably well tolerated in adult patients with episodic migraine.