A Review on Phytochemical and Pharmacological activities of *Syringodium isoetifolium*

Kalaivani P, Kavitha D, Vanitha V

Department of Biochemistry, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai-600117, Tamil Nadu, India

Article History:

Received on: 19.05.2019
Revised on: 15.08.2019
Accepted on: 21.08.2019

Keywords:

Seagrass, *Syringodium isoetifolium*, antioxidant, antibacterial, silver nanoparticles, Pheophytin

ABSTRACT

Seagrass are marine plants, grown in saline environments and fully submerged in the sea. They are widely distributed along the tropical and subtropical regions. A seagrass called, *Syringodium isoetifolium* comes under the family Cymodoceaceae, this grass is otherwise called as noodle grass. Phytochemical compounds such as flavonoids, terpenoids, coumarins, xanthoproteins, sugars, carboxylic acids can be extracted by the solvents such as methanol, hexane, and acetone. *Syringodium isoetifolium* has pharmacological activities such as antioxidant, antihemolytic, antibacterial cytotoxicity, and antifungal activity. During photosynthesis, lacunal gas is discharged from lacunae, and it is composed of oxygen and nitrogen. Pheophytin a compound was isolated from the crude extract of *Syringodium isoetifolium* by treating it with human pathogens. Binding sites of the pathogen can be found by the Molecular docking study. In this article, we discuss about the phytochemical constituents, pharmacological activities, and morphological characteristics of *Syringodium isoetifolium*.

© International Journal of Research in Pharmaceutical Sciences
be a change in the sea level, atmospheric carbon dioxide (CO₂) concentration and water temperature and also physical modification. The high pressure results in the degradation of estuaries and coastal seas (Orth et al., 2006). Seagrass are widely distributed along temperate and tropical coastlines of the world. Seagrass mainly found in estuaries, bays and coastal waters from the mid-region down to depths of 50 or 60 meters. There are 12 major divisions found around the world, but today we can see approximately 72 different species. The major group of seagrass is Cymodocea serrulata, Halodule uninervis, Syringodium isoetifolium, and Halodule pinifolia (Short et al., 2007). In India, the rich growth of seagrass and marine algae composition are seen in the Andaman Islands and also in Lakshadweep. A maximum number of species and the extensive seagrass meadows occur in the Tamilnadu coast. An article says that the seagrass were observed from the intertidal to subtidal regions down to 8m depth. Growth of seagrass is attributed mainly due to salinity, clarity of the water and also due to sandy substratum. In India, one hundred species of marine algae were recorded from the seagrass (Jagtap, 1991).

Causes for seagrass declines

The growth of seagrass may be decreased due to the environment changes like extreme climate conditions and also due to biological changes. Hurricanes, Earthquakes, disease are the natural disturbances that cause seagrass declines. An increase in sea level concentration, sea surface temperature, the intensity of storms, and frequency may extremely affect the growth of seagrass. These fluctuations in the regional and global, excess nutrients or sediments also may increase the seagrass decline. The activities of humans which may pollute the seawater may cause losses of seagrass habitat. (Short and Wyllie-Echeverria, 1996).

Effects of temperature, nutrition on seagrass growth

Biotic and abiotic factors that influence plant metabolism may control the productivity of seagrass. The factors such as temperature, light, and inorganic nutrients may control the seagrass growth, but the light requirements may vary among species due to a unique morphological adaptation of each species. The optimal growth temperature of species may vary between 11.5 °C and 26°C and for tropical and subtropical species is between 23 °C and 32 °C (Lee et al., 2007).

Nutritive value of seagrass

Marine species explains about the primary and secondary metabolism lives in freshwater habitats, and inland A leaf of seagrass such as Cymodocea serrulata, Halodule uninervis, and Syringodium isoetifolium has both macronutrients (Phosphorous, Potassium, Calcium, Magnesium, and Sodium) and micro nutrients (Zinc, Iron, Nickel, Cadmium, Copper, and Chromium) Composition of Protein, Carbohydrates, Lipids were high in Cymodocea serrulata, Halodule uninervis whereas in Syringodium isoetifolium it is very low (Jeyasanta et al., 2018).

Medicinal uses

Seagrass used for a remedial purpose, such as skin diseases, muscle pain, wounds, treatment of fever and stomach problems (Kannan et al., 2013). Seagrass also provides dietary fiber, minerals, vitamins, amino acids, and fatty acids to the marine species (Jeevitha et al., 2013). Seagrass were used as a livestock feed, fertilizer, also used as food for marine species, as shown in Table 1. They also rich in protein, fiber, and lipid, and the beneficial effect of this is, it will cure obesity and diabetes. There is good interaction between seagrass and humans. A wide range of ecological services which include instrumental, spiritual, and religious can be provided by seagrass. (Torre-Castro and Rönnbäck, 2004).

The compounds present in seagrass are highly antioxidant in nature, and under stress conditions, they produce secondary metabolites as defense mechanism (Subhashini et al., 2013) Chlorophyll and Carotenoids is highly present in seagrass that acts as vitamins and antioxidants. Recent research increases the search on novel compounds from seagrass, and they have high contents of antioxidants like polyphenols, terpenoids, flavonoid, tannins, and saponins (Ansari and Ghanem, 2019).

Botanical aspects of syringodium isoetifolium

Seagrass are similar to each other because they are a highly diverse species. The botanical aspects of each species can differentiate it from each other.

Habitat

Seagrass meadows survive a range of environmental conditions in coastal bays, reefs, esturaine and deepwater habitat. The photosynthesis process can be seen minimum in Thalassodendron ciliatum and maximum in Syringodium isoetifolium. Change in the light climatic condition and light attenuation may lead to the absence of photosynthetic performance (Campbell et al., 2007)

Taxonomic Classification

Seagrass are marine species, and they are functional group and not a taxonomic group, of angiosperms
Table 1: The Common name and medicinal use of five seagrass seen in the Indian coastal region (Bharathi et al., 2016)

Seagrass	Common name in Tamilnadu	Medicinal use
C.serrulata	Karumbu pasi, Periya korai pasi, Periya thazhai pasi	Paste from leaves used to treat wounds
C.rotundata	Alai varai, Kadai korai, Vellai thazhai pasi	They were eaten as food;
H.pinifolia	Nedung korai, Neetu korai, Aringampul pasi	Like the potato, the root has a calorific value
H.uninervis	Kothu korai, Panjipul pasi	Used as cattle feed and manure
S.isoetifolium	Neer pasi, Oosi pai, Nool pasi	Used as fertilizer
		Fresh leaf juice consume to ease acid reflux

C.roundata: Cymodocea rotundata, C.serrulata:Cymodocea serrulata, H.pinifolia: Halodule pinifolia, H.uninervis: Halodule uninervis, S.isoetifolium: Syringodium isoetifolium

i.e., flowering plants (Hartog et al., 2006).

Kingdom: Plantae
Division: Magnalophyta (Angiosperms)
Class: Liliopsida
Subclass: Alismatidae
Order: Alismatales
Family: Cymodoceaceae
Genus: Syringodium
Species: Syringodium isoetifolium

Among all the seagrass, one of the major trophical seagrass is Syringodium isoetifolium (Figure 1). Syringodium belongs to the family cymodoceaceae. It is described as a genus in 1860. Syringodium isoetifolium is otherwise called as Noodle grass, as shown in Figure 1.

It can be found in tropical and subtropical marine environments. It is rarely found in shallow intertidal areas. It appears to respond rapidly to increased nutrient availability. In Tamilnadu, S.isoetifolium is commonly called as Neer pasi, Oosi korai, Nool pasi. Long spaghetti like leaves can be seen in S.isoetifolium, and they can nutrients and gas through thin cuticle but lacks stomata. S.isoetifolium uses bicarbonate (HCO$_3^-$) as an inorganic carbon (Bharathi et al., 2016).

Reproduction

Syringodium isoetifolium reproduces under temperature ranges from 20-26°C, and flowering was induced under continuous light (Calvin McMillan 1982).

They are rapid asexual colonizer of disturbed plots and have the fastest growth of horizontal rhizome (Rasheed, 2004).

Types of Species

There are two types of species.

- Syringodium filiforme – shores of Gulf of Mexico, Caribbean, Venezuela, Central America (Mcmillan, 1978). During autumn, winter, and spring, the thermal condition may enhance the production of Syringodium filiforme. The optimal temperature exceeds during summer, which reduces the production of Syringodium filiforme (Barber and Behrens, 1985).

- Syringodium isoetifolium – Western Pacific shores including Red Sea, South China, Persian Gulf, Maldives, Andaman and Nicobar, Lakshadweep. Present in subtidal region (Jagtap, 1991).
Morphological characters

Syringodium leaves have uniformly small epidermal cells and large secretory cells. The leaves of *Syringodium* are 5-10 cm long; they can grow up to 50 cm long. A central longitudinal bundle is present, and several air lacunae are present in mesophyll tissues. They have only vascular bundle but no fibre bundle. The sheath cells surround the vascular bundle, which may reduce the apoplastic exchange of solutes and water. The seagrass has thin cuticle leaves with a layer called electron transparent. *Syringodium isoetifolium* has two types of leaf blades, normal thin wall with large legumes and thick wall with reduced legumes. (Kuo, 1993).

The leaves of *Syringodium isoetifolium* were cylindrical and brittle, so the growth of the leaves increases from the leaf base to the leaf tip. This seagrass has tubular leaves while the other seagrass are flat. The rhizomes are slender, and the shoots emerge from these rhizomes have 2-3 leaves, as shown in Figure 2. (Aioi and Pollard, 1993).

Phytochemical constituents

The phenolic compounds, Alkaloids, carbohydrates, proteins, and amino acids, tannins, phytosteroides, saponins, flavonoids, terpenoids, cardiac glycosides, sugars, coumarins, Carboxylic acids, quinines, xanthoproteins are the Phytochemical compounds present in seagrass. These Phytochemical compounds can be obtained by the following extractions like ethanol, methanol, acetone, hexane, as shown in Table 2.

The study of the phytochemical properties of seagrass is essential because it acts as a food source (Mani et al., 2012). Six seagrass species such as *Syringodium isoetifolium*, *Enhalus acoroides*, *Halodule pinifolia*, *Thalassia hemprichii*, *Cymodocea serrulata*, *Cymodocea roundata* were extracted and tested for its antioxidant property. Results of this test show that high phenolic, tannin, and vitamin E content is seen in *S.isoetifolium* and High Flavonoid levels were seen in *C.serrulata* and vitamin C in *C.rotundata* (Rengasamy et al., 2013).

Phenolic compounds

Phenolic acids such as p-coumaric acid, caffeic acid, ferulic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, gentisic acid, and Gallic acid present in *S.isoetifolium* (Zapata and Mcmillan, 1979). Seagrass has a unique presence of sulfated flavones, which were not present in *S.isoetifolium* (Mcmillan et al., 1980). Phenolic compounds present high level in *S.isoetifolium* which has high antioxidant activity that scavenges the toxic free radicals and reactive oxygen species such as Superoxide radical (O₂⁻), hydroxyl radical (OH), peroxide radical (ROO) and nitric oxide (NO) radicals (Girija et al., 2013).

Pharmacological activities

Phytochemical constituents present in seagrass play an important role in the pharmaceutical industry. They exhibit antibacterial, antioxidant, anti-tumor activity. Humankind can continue its healthiness by the use of the plan and plant-derived medicinal products. Among them, seagrass *Syringodium isoetifolium* shows a wide range of pharmacological activities such as antibiotic, antihemolytic, cytotoxicity, antibacterial, and antifungal activity (Bharathi et al., 2016).

Antioxidant activity

The oxidative damage in the biological system can be protected by the antioxidants. This antioxidant property was exhibited by the phenolic compounds of seagrass, and they have the ability to scavenge the free radicals. They also scavenge the reactive species such as superoxide radical (O₂⁻), hydroxyl radical (OH), peroxide radical (ROO) and nitric oxide radicals (NO) (Santoso et al., 2012). Thin-layer chromatography shows the strong antioxidant potential of seagrass such as *E.acoroides*, *Theemprchii*, *H.pinifolia*, and *S.isoetifolium*. The leaf extract of *E.acoroides* is rich in phenolic compounds compared to the rhizome and root with high antioxidant potential. The highest antioxidant activity is exhibited by methanolic
Table 2: Phytochemical analysis of Seagrass *Syringodium isoetifolium* with the Methanol, Acetone and Hexane Extraction (*Karthik et al., 2013*)

S.No	Phytoconstituents	Met	Ace	Hex
1	Alkaloids	-	-	+
2	Carbohydrate	+	+	+
3	Carboxylic acids	-	-	-
4	Cardiac glycosides	-	+	-
5	Coumarins	+	+	-
6	Flavonoids	+	-	+
7	Phenol	+	-	-
8	Steroids	-	-	-
9	Proteins& amino acids	-	+	+
10	Quinones	-	-	-
11	Saponins	+	-	-
12	Sugar	+	+	+
13	Tannin	+	-	-
14	Terpenoids	-	+	-
15	Xanthoproteins	-	-	-

Met: Methane, Ace: Acetone, Hex: Hexane
+ = Present, - = Absent

extract in some seagrasses such as *Themprichii*, *C.roundata*, and *E.acoroides*. High value of ethyl acetate extract was seen in *S.isoetifolium*, *C.rotundata* and *H.uninervis*, which exhibits a free radical scavenging activity (Jeyapragash *et al.*, 2016). The enzyme such as catalase, glutathione peroxidase, and superoxide dismutase acts an antioxidant defences and an increased level of oxidative stress markers (Sureda *et al.*, 2008).

Antifungal activity

Seagrass acts as an antifungal agent that inhibits the growth of pathogenic fungi. And the immediate response was released to fungal infection due to the H2O2 was released. This seagrass only has the ability to release these H2O2 (Ross *et al.*, 2008). *S.isoetifolium* shows an inhibitory effect against silkworm pathogens. The extract of Syringodium isoetifolium acts as an agent for saprophytic infection of silkworms based on their inhibitory and fungicidal action (Kumar *et al.*, 2009).

Antibacterial activity

Seagrass has the highest value of soluble phenolic content, which exhibit multiple bioactive roles against pathogenic microorganisms. The extract of Syringodium isoetifolium was assessed for antibacterial assay by using the standard agar diffusion method.

The result shows that the methanol and ethanol extract of *S.isoetifolium* has maximum antimicrobial activity against E.coli. The growth of species such as *Pseudomonos aeruginosina*, *Bacillus cereus*, *Salmonella enteritis*, *Staphylococcus aureus* was inhibited by extracts of *S.isoetifolium* (Mayavu *et al.*, 2009).

Cytotoxicity and Hemolytic activity

The cytotoxic activity of seagrass extract, *Syringodium isoetifolium* exhibit lesser toxicity with an LC50 value of 699.096 μg/ml. *H.pinifolia* shows the minimum cytotoxic activity and hemolytic activity (2.07 ± 0.63% at 1000μg/ml concentration) which was revealed by the nauplii of *Artemia salina*. These values may vary with respect to species to species (Rengasamy *et al.*, 2013).

Antifouling activity

Syringodium isoetifolium inhibits the growth of biofilm bacteria and microalgae by showing the antifouling activity with its methanolic extract. It shows better MIC values than the *Enhalus acoroides*. The methanolic extract of *S.isoetifolium* shows low cytotoxic activity. By the GC-MS analysis, it shows 10 lipidic metabolites (Iyapparaj *et al.*, 2014).

Against Fish Pathogens

Syringodium isoetifolium shows inhibitory activity against fish pathogens. Both gram-positive and gram-negative bacteria show an inhibitory effect on the methanolic extract of *Syringodium isoetifolium*. The Phytochemical constituent present in the extract of *Syringodium isoetifolium* shows more sensitivity against fish pathogens (Ravikumar *et al.*, 2011).
Nanotechnology
Silver nanoparticles (AgNPs)

Stable silver nanoparticles can be synthesized by Syringodium isoetifolium. The analysis such as UV-VIS, XRD, FESEM, HRTEM, EDX, and AFM confirm the presence of AgNPs and the proteins acts as a reducing and capping agent. Bacteria, fungi, yeast, plants, and algae are capable of synthesizing AgNPs.

The report says that nanoparticles exhibits the antibacterial, anticancer, antiviral and show excellent catalytic activity. Diabetes-related complications and wound healing process were also treated by the use of silver nanoparticles (Ahila et al., 2016).

CONCLUSIONS

From this study, we conclude that Syringodium isoetifolium has a compound pheophytin a, which was isolated by *insilico* study. It acts as an antibacterial agent against human pathogens. A Pheo-based natural product used for antibiotic therapies. Syringodium isoetifolium seagrass develops eighteen polymorphic loci, and the sequence is made by using SMRT technology. Pheophytin a, from Syringodium isoetifolium is used as a human translocator protein. A cell line study was also made, * invitro* to examine its effects on cell migration, DNA, cell cycle, and gene expression. The nature of the compound and target binding was found by the *insilico* study. In the future, the other compounds present in Syringodium isoetifolium can be determined and analyzed its pharmacological activities. The appreciable antibacterial activity can be seen against the gram-positive and gram-negative human and fish pathogens, when it is treated with the crude extract of Syringodium isoetifolium.

REFERENCES

Ahila, N. K., Ramkumar, V. S., Prakash, S., Manikandan, B., Ravindran, J., Dhanalakshmi, P. K., Kannapiran, E. 2016. Synthesis of stable Nanosilver particles (AgNPs) by the proteins of sea-grass Syringodium isoetifolium and its biomedical properties. Journal of Pharmacy Research Biomedicine and Pharmcotherapy, 4(6):60–70.

Aioi, K., Pollard, P. C. 1993. Biomass, leaf growth and loss rate of the seagrass Syringodium isoetifolium on Dravuni Island, Fiji. Aquatic Botany, 46(3-4):283–292.

Amudha, P., Vanitha, V., Bharathi, N. P., Jayalakshmi, M., Mohanasundaram, S. 2017. Phytochemical analysis and invitro antioxidant screening of sea-grass-Enhalus acoroides. International Journal of Research in Pharmaceutical Sciences, 8(2):251–258.

Ansari, A. A., Ghanem, S. M. 2019. Growth attributes and biochemical composition of Padina pavonica (L.) from the Red Sea, in response to seasonal alterations of Tabuk, Saudi Arabia. The Egyptian Journal of Aquatic Research, 45(2):139–144.

Barber, B. J., Behrens, P. J. 1985. Effects of elevated temperature on seasonal in situ leaf produc-
tivity of Thalassia testudinum Banks ex König and Syringodium filiforme Kützing. Aquatic Botany, 22(1):61–69.

Bharathi, N., Amudha, P., Vanitha, V. 2016. Sea grasses - novel marine nutraceuticals. International Journal of Pharma and Bio Sciences, 7(4):567–573.

Borum, J., Pederson, O., Kotula, L., Matthew, Fraser, W., Statton, J., Colmer, T. D., Kendrick, G. A. 2016. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant and Cell Development, 39:1240–1250.

Campbell, S. J., McKenzie, L. J., Kerville, S. P., Bité, J. S. 2007. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuarine, Coastal and Shelf Science, 73(3–4):551–562.

Girija, K., Parthiban, C., Hemalatha, A., Saranya, C., Anantharaman, P. 2013. Evaluation of antioxidant activities and preliminary phytochemical analysis of seagrasses Halodule pinifolia, Halophila ovalis and Syringodium isoetifolium. The J. Phytochem, 114:181–187.

Hartog, C., Den, Kuo, J. 2006. Taxonomy and Biogeography of Seagrasses. Seagrasses: Biology, Ecology and Conservation, pages 1–23.

Iyapparaj, P., Revathi, P., Ramasubburayan, R., Prakash, S., Palavesam, A., Immanuel, G., Helnio, C. 2014. Antifouling and toxic properties of the bioactive metabolites from the seagrasses Syringodium isoetifolium and Cymodocea serrulata. Ecotoxicology and Environmental Safety, 103:54–60.

Jagtap, T. G. 1991. Distribution of seagrasses along the Indian coast. Aquatic Botany, 40(4):379–386.

Jeevitha, M., Athiperumalsami, T., Kumar, V. 2013. Dietary fibre, mineral, vitamin, amino acid and fatty acid content of seagrasses from Tuticorin Bay, Southeast coast of India. Phytochemistry, 90:135–146.

Jeyaprakash, D., Subhashini, P., Raja, S., Abirami, K., Thangaradjou, T. 2016. Evaluation of In vitro Antioxidant Activity of Seagrasses: Signals for Potential Alternate Source. Free Radicals and Antioxidants. 6:77–89.

Jeyasanta, K. I., Lilly, T. T., Patterson, J., Jeyasanta, I., K., Devadasan, S. 2018. Macro and micro nutrients of seagrass species from Gulf of Mannar: MOJ Food Process Technol, 6(4):391–398.

Kannan, R. R. R., Arumugam, R., Thangaradjou, T., Anantharaman, P. 2013. Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Research International, 54(1):1229–1236.

Karthik, G., Chermapandi, P., Hemalatha, A., Saranya, C. 2013. Evaluation of antioxidant activities and preliminary phytochemical analysis of seagrasses Halodule pinifolia, Halophila ovalis and Syringodium isoetifolium. Research Journal of Phytochemistry, 114:181–187.

Kumar, S. R., Ramanathan, G., Subhakaran, M., Inbanesan, S. J. 2009. Antimicrobial compounds from marine halophytes for silkworm disease treatment. International Journal of Medicine and Medical Sciences, 1(5):184–191.

Kuo, J. 1993. Functional leaf anatomy and ultrastructure in a marine angiosperm, Syringodium isoetifolium (Aschers.) Dandy (Cymodoceaceae). Marine and Freshwater Research, 44.

Lee, K. S., Park, S. R., Kim, Y. K. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. Journal of Experimental Marine Biology and Ecology, 350(1–2):144–175.

Mani, A. E., Bharathi, V., Patterson, J. 2012. Antibacterial Activity and Preliminary Phytochemical Analysis of Sea Grass Cymodocea rotundata. International Journal of Microbiological Research, 3(2):93–103.

Mayavu, P., Sugesh, S., Ravindran, V. J. 2009. Antibacterial Activity of Seagrass Species Against Biofilm Forming Bacteria. Research Journal of Microbiology, 4(8):314–319.

Mcmillan, C. 1978. Morphogeographic variation under controlled conditions in five seagrasses, Thalassia testudinum, Halodule wrightii, Syringodium filiforme, Halophila engelmannii, and Zostera marina. Aquatic Botany, 4:90017–90024.

Mcmillan, C., Zapata, O., Escobar, L. 1980. Sulphated phenolic compounds in seagrasses. Thalassia testudinum, Halodule wrightii, Syringodium filiforme, Halophila engelmannii, and Zostera marina. Aquatic Botany, 8:90055–90063.

Orth, R. J., Tim, J. B., Carruthers, W. C., Dennison, C. M., Duarte, J. W., Fourqurean, K. L., Heck, A., Hughes, 2006. A global crisis for seagrass ecosystems. Bioscience, 56(12):987–996.

Rasheed, M. A. 2004. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. Journal of Experimental Marine Biology and Ecology, 310(1):13–45.

Ravikumar, S., Vinoth, R., Selvan, G. P. 2011. Bioactive potential of a Seagrass Syringodium isoetifolium against bacterial fish pathogens. Journal of Pharmacy Research, 4(6):1854–185644.

Rengasamy, K. R., Arumugam, R., Palanisamy, I., Thangaradjou, T. 2013. In vitro antibacterial, cyto-
toxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chemistry, 136(3-4):1484–1489.

Roberts, D. G., Moriarty, D. J. W. 1987. Lacunal gas discharge as a measure of productivity in the seagrasses Zostera capricorni, Cymodocea serrulata and Syringodium isoetifolium. Aquatic Botany, 28(2):143–160.

Ross, C., Puglisi, M. P., Paul, V. J. 2008. Antifungal defenses of seagrasses from the Indian River Lagoon. Florida. Aquatic Botany, 88(2):134–141.

Sakayaroj, J., Preedanon, S., Supaphon, O., Jones, E. B. G. S. 2010. Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal diversity, 42(1):27–45.

Santoso, J., Anwariyah, S., Rumiantin, R. O., Putri, A. P., Ukhty, N., Yoshie-Stark, Y. 2012. Phenol content antioxidant activity and fibers profile of four tropical seagrasses from Indonesia. Journal of Coastal development, 15(2):189–196.

Sathyanathan, C. V., Jyothishmayi, B., Sundaram, L. R., Abhinand, P. A., Eswaramoorthy, R., Gnanambal, K. M. E. 2016. Pheophytin a isolated from the seagrass Syringodium isoetifolium plausibly blocks umuC proteins of select bacterial pathogens, in silico. Journal of Applied Microbiology, 121(6):1592–1602.

Short, F., Carruthers, T., Dennison, W., Waycott, M. 2007. Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350(1-2):3–20.

Short, F. T., Wyllie-Echeverria, S. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation, 23(1):17–27.

Subhashini, P., Dilipan, E., Thangaradjou, T., Papenbrock, J. 2013. Bioactive natural products from marine angiosperms: abundance and functions. Natural Products and Bioprospecting, 3(4):129–136.

Sureda, A., Box, A., Terrados, J., Deudero, S., Pons, A. 2008. Antioxidant response of the seagrass Posidonia oceanica when epiphytized by the invasive macroalgae Lophocladia lallemandii. Marine Environmental Research, 66(3):359–363.

Torre-Castro, M. D. L., Rönnbäck, P. 2004. Links between humans and seagrasses-an example from tropical East Africa. Ocean & Coastal Management, 47(7-8):361–387.

Wild Fact Sheets 2005. Wild shores of Singapore blog.