Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

Richárd Kápolnai∗ Gábor Domokos† Tímea Szabó‡

May 1, 2014

Abstract

A spherical quadrangulation is a loopless graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. The family of the isomorphism classes of quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path graph P_2 with three vertices and two edges. P_2 is also referred to as the common ancestor of all quadrangulations. We define the degree $1 \leq D \leq \lfloor d/2 \rfloor$ of a splitting S (where d is the degree of the split vertex) and consider restricted splittings $S_{i,j}$ with $1 \leq i \leq D \leq j \leq \lfloor d/2 \rfloor$.

As Brinkmann and coworkers have recently pointed out, restricted splittings $S_{2,3}$ generate all simple quadrangulations. Here we investigate the cases $S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}$. First we show that the restricted splittings $S_{1,2}$ are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we proceed to show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor.

Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The latter can be defined as the scalar distance $R(\theta, \varphi)$ measured from the center of gravity and the Morse-Smale complex associated with the gradient of R corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u of coloured vertices identify the primary equilibrium class associated with the body by Várkonyi and Domokos. We show that the $S_{1,1}$ and $S_{2,2}$ splittings generate all primary equilibrium classes (in case of $S_{1,1}$ from a single ancestor, in case of $S_{2,2}$ from a finite nontrivial set of ancestors).

This is closely related to the geometric results of Várkonyi and Domokos

∗kapolnai@iit.bme.hu Dept. of Control Engineering and Information Technology, Budapest University of Technology and Economics, H-1117 Magyar tudósok körútja 2., Budapest, Hungary
†domokos@iit.bme.hu Dept. of Mechanics, Materials & Structures, Budapest University of Technology and Economics, H-1521, Műegyetem rakpart 1-3. K.II.42., Budapest, Hungary
‡tszabo@szt.bme.hu Dept. of Mechanics, Materials & Structures, Budapest University of Technology and Economics, H-1521, Műegyetem rakpart 1-3. K.II.42., Budapest, Hungary
where they show that specific geometric transformations can generate all equilibrium classes.

If, beyond the numbers \(s, u \), the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, Lángi and Szabó showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that restricted, monotone splittings \(S_{1,2} \), while adequate to generate all primary classes from one single ancestor, can only generate a limited range of secondary equilibrium classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present some computational results on the cardinality of secondary equilibrium classes and multiquadrangulations.

Keywords: plane multiquadrangulation; unrooted unsensed colored map; vertex splitting; census; convex body; equilibrium class

1 Introduction

Our work is motivated by the classification system of convex, homogeneous 3D bodies introduced by Várkonyi and Domokos [20]. They map each body its primary equilibrium class defined by the numbers of the stable and unstable equilibrium points of the body surface. Moreover, the isomorphism classes of the topologies of the equilibria provides a refined, secondary classification system, where each a topology can be genuinely represented by a 2-coloured quadrangulation [7].

1.1 Generating multiquadrangulations

A quadrangulation of the sphere is a loopless graph embedded in the sphere having every face bounded by a closed walk of length 4. We allow parallel edges, and the boundary walk may repeat edges or vertices. This definition was also used by Mohar et al. [15], however, Archdeacon et al. [1] applied the word “pseudoquadrangulation” instead for multigraphs. If we want to emphasize that the quadrangulation may have parallel edges, it is called a multiquadrangulation, if a quadrangulation has no parallel edges, it is called a simple quadrangulation.

Note that the 2-path \(P_2 \) (the path of length 2 with two edges and three vertices) is the smallest quadrangulation, and the 4-cycle \(C_4 \) (the cycle of length 4) is the smallest simple quadrangulation, illustrated on Figure 5.

Two quadrangulations are considered isomorphic, if there is a homeomorphism from one to another that either preserves or reverses the orientation of the embedding. Equivalently, the cyclic ordering of the incident edges at each vertex is either preserved or reversed, so e.g. a graph is isomorphic to its reflection. Such an isomorphism class is also called an unsensed, unrooted map in the literature [22]. Let \(\mathcal{Q} \) denote the family of all multiquadrangulations, and \(\mathcal{Q}_1 \) the family of all simple quadrangulations.
We say a graph family \mathcal{F} is generated from the starting set $K \subset \mathcal{F}$ by some given graph operations, if each graph in \mathcal{F} can be constructed from some graph of K by applying a finite series of the given graph operations. All our graph operations are based on the vertex splitting, depicted on Figure 1, explained as follows. The embedding (the cyclic ordering) of the graphs showed is also important so the small open triangles denote that other edges may occur only at that position so they clarify the cyclic ordering of the edges in the original (left to the arrow) and in the resulting (right to the arrow) graph. Vertex splitting is also known in the literature as the inverse of face contraction.

Batagelj [3], Negami and Nakamoto [18] showed that the splittings generate Q_1 from C_4. There are a number of related results regarding inductive generation of certain simple quadrangulation families, e.g. Batagelj [3] gave inductive definition of 3-connected quadrangulations, Nakamoto [17] generated quadrangulations with minimum degree 3, Brinkmann et al. [6] improved efficiency for all these families above. While [3, 18, 16] mainly focus on simple quadrangulations, the following observation is a straightforward extension of their results: the splitting generalized for parallel case as well ($m = 1$ on Figure 1(b) generates Q from P_2.

As shown on Figure 1, the splittings replace a vertex v with vertices w and v' dividing the edges of v. The degree of a splitting is $D := \min\{d(v'), d(w)\}$ where $d(v)$ denotes the degree of the vertex v. Note that $1 \leq D \leq \lfloor d(v)/2 \rfloor$ always holds. We consider restricted splittings $S_{i,j}$ with a limited range of D.

![Figure 1](attachment:image.png)

Figure 1: Vertex splitting of degree m.
Figure 2: The monotone vertex splittings $S_{1,2}$. The 2-splitting has two variants: simple case and parallel case.

such that $1 \leq i \leq D \leq \lfloor d/2 \rfloor$. Brinkmann et al. [6] showed that the restricted splittings $S_{2,3}$ (with $2 \leq D \leq 3$) are enough to generate \mathcal{Q}_1 from C_4. Their result can be easily extended for parallel graphs using the generalized vertex splitting, so our previous observation can be improved as follows:

Theorem 1. The restricted splittings $S_{1,3}$ generate \mathcal{Q} from P_2.

In this paper we investigate the hierarchy generated by restricting the splittings $S_{1,2}$ (see Figure 2), and we also show some application of restrictions $S_{1,1}$, $S_{2,2}$ and $S_{3,3}$. The main reason we focus on splittings $S_{1,2}$ is that these are not only local modifications but they purely extend the graph without removing any edge. Formally, we say a graph operation is monotone if the original graph is the embedded subgraph of the resulting one. Actually $S_{1,2}$ are the only monotone operations on quadrangulations introducing only one new vertex. The local monotone operations are also called face subdivisions in the literature meaning one face is divided into smaller regions (e.g. [19, 15]). Tutte [19] called the order of a face subdivision the number of the introduced vertices in the operation, although he applied this concept on triangulations. So on quadrangulations the monotone vertex splittings are exactly the face subdivisions of order 1.

For the splitting $S_{D,D}$ with a given D, we use the shorthand D-splitting, and we call its inverse D-contraction. If a D-contraction is applicable to a graph, we say the graph is D-contractible, otherwise we say the graph is D-irreducible. It is known that among the simple quadrangulations, C_4 is the only graph which is D-irreducible for any D [3, 15]. It follows from Theorem 1 that among the multiquadrangulations, only P_2 is D-irreducible for any D, hence P_2 is also referred to as the only ancestor of all quadrangulations. However, restricting the splittings to $S_{1,2}$ also admits other, nontrivial ancestors. Throughout this paper we say a graph is an irreducible ancestor (or shortly irreducible) if it is 1-irreducible and 2-irreducible. We mention that the concept of irreducible graphs with respect to some given graph operations was analogously used in e.g.
We characterise the irreducible graphs as the ones with minimum degree 3, and extend a result of Batagelj [3] that the small graphs with less than 8 vertices are not irreducible, except P_2:

Theorem 2. Every quadrangulation with less than 8 vertices is generated from P_2 by monotone splittings.

We strengthen this theoretical result with observations on a data set generated by our computer program which we developed to explicitly enumerate every possible quadrangulation for a given size, based on the software plantri [5]. Furthermore, our data set also shows that there are only three irreducible graphs up to a size of 10 vertices. Besides P_2, the other ones are the radial graphs (a.k.a. vertex-face incidence graphs [14]) of the skeletons of the two smallest polyhedra. The radial graph $R(G)$ of an embedded graph G is a bipartite embedded graph such that one of the independent vertex sets of $R(G)$ corresponds to the vertex set of G, the other one to the face set of G. Two vertices are connected in $R(G)$ with the same multiplicity as the incidence multiplicity of their preimages in G (i.e. the appearance count of a vertex in the boundary walk of a face), with the obvious cyclic orderings. In addition, we prove

Theorem 3. The radial graph of any polyhedral skeleton is irreducible, and they are generated from the radial graphs of the pyramids with polygonal base by the restricted splitting $S_{3,3}$.

Then we prove that the irreducible ancestor of any graph is unique, i.e. a graph cannot be generated starting from two different irreducible graphs:

Theorem 4. If a quadrangulation can be generated from both irreducible ancestors A_1 and A_2 by monotone splittings, then A_1 is isomorphic to A_2.

1.2 Generating secondary equilibrium classes

The main goal of this paper is twofold: one is to contribute some observations on the reachability of quadrangulations i.e. which quadrangulations can be generated from others, the other is to apply them on the geometric interpretation mentioned earlier. So finally, we translate our observations into the context of topology of the equilibrium points of convex bodies. A generic convex body is given by its scalar height function $R(\theta, \varphi)$ which gives the distance between the surface and the mass center for any direction. A surface point is an equilibrium if the gradient of the height function R is zero at that point (illustrated on the ellipsoid on Figure 3). An equilibrium is stable if R takes a local minimum value, unstable if R takes a local maximum value, otherwise it is a saddle point. According to the Poincaré–Hopf theorem [2], the cardinality of stable, unstable and saddle equilibria of a body, denoted respectively by s, u, h, are deeply related: $s + u - h = 2$, thus the pair \{s, u\} defines unambiguously the primary
Figure 3: Morse–Smale graph of the ellipsoid. The axes of the ellipsoid are rotated for presentation purposes. Colouring notation: red: stable, blue: unstable, white: saddle.
equilibrium class of the body [20]. The primary equilibrium classes can be re-

fined into secondary equilibrium classes which determine also the topology of

the equilibria defined by the Morse–Smale complex of the height function R [7].

This topology is usually given by a 3-coloured spherical quadrangulation, where

the vertices are the equilibria, the colour of a vertex defines its equilibrium type

(stable, unstable or saddle), and an edge is a particular path on the surface con-

necting two equilibria, whose tangent vectors agree with the gradient vectors of

R [Figure 3]. We transform these 3-coloured surface graphs with a bijection to
generic 2-coloured quadrangulations keeping the underlying geometric meaning,

and we use this latter form to define the secondary class as a fully combinatorial

object. We mention that a spherical quadrangulation is always bipartite [1, 12]
hence the 2-colouring is possible.

The data set yielded by our program enables us to present some statistics on

number of possible secondary classes as well. Because of the 1-1 correspondence

of 2-coloured quadrangulations and connected plane graphs [11, 6], our num-

bers agree with the numbers of the unrooted and un sensed maps calculated by

Wormald [24], and exhaustively enumerated by Walsh [21, 23]. Walsh [22] sur-

veys different types of map census results achieved both exhaustive search and

with formulae. We are also able to give statistics on the number of multiquadran-

gulations using a trivial relation between the number of maps, quadrangulations

and self-dual quadrangulations for a fixed size.

Várkonyi and Domokos [20] constructed the geometry of a representative

body of the primary class $\{1,1\}$ referred as mono-monostatic body, also known

as Gömböc. They also concluded that every primary class for all $s,u \geq 1$ is
generated from the Gömböc via their specific geometric transformations called

Columbus’ algorithm. Columbus’ algorithm is a sequence of sensitive modifica-
tions on a body perturbing the surface only at the vicinity of an equilibrium,
such that the body belonging to the primary class $\{s,u\}$ is transformed to an-
other one belonging to $\{s+1,u\}$ or $\{s,u+1\}$ (illustrated on Figure 4). Because

of the geometric feasibility of Columbus’ algorithm, i.e. the transformations al-
ways can be applied around any equilibrium, they referred to the Gömböc as

the ancestor of every primary class.

The combinatorial equivalent of the original Columbus’ algorithm is the

sequence of monotone coloured splittings. The result of [20] can be reformulated

as follows: for any s,u, some secondary class in the primary class $\{s,u\}$ is
generated from the Gömböc using the monotone coloured splittings. (We detail
the secondary class of Gömböc in section 4.) We extend this statement with the
following corollaries of our theorems:

Corollary 1. Not every secondary class is generated from the Gömböc using
the monotone coloured splittings, but the ones with $s+u < 8$ are all generated
from the Gömböc.

We say a polyhedron is a *minimal polyhedron* if its every face contains one

stable and its every vertex is an unstable equilibrium. With respect to the

monotone coloured splittings (and the original Columbus’ algorithm), they are

also ancestors:
Figure 4: Applying a step of Columbus’ algorithm on an egg-shaped surface. Two equilibria appear on the surface: S_1, H_1.

Corollary 2. The secondary classes of the minimal polyhedra are irreducible so not generated from any other secondary class.

Finally, if we aim to generate a secondary class from every primary class, it is enough to use one of the two monotone coloured splittings:

Corollary 3. It is enough to use either the coloured splitting $S_{1,1}$ or $S_{2,2}$ to generate every primary class from a finite starting set of secondary classes.

We mention that the coloured splittings are also a restricted subset of the operations called “cancellations” in computational geometry by Edelsbrunner et al. [10] and Bremer [4, Fig. 7.3], who used them to simplify a multi-resolution mesh structure. Domokos, Lángi and Szabó [7] showed recently that the geometric counterparts of the unrestricted coloured splittings generate the whole family of secondary classes, however, this is beyond the scope of this paper.

1.3 Organization of this paper

The paper is organized as follows. Section 2 analyzes the vertex splitting and establishes its properties on the reachability of quadrangulations. Section 3 presents the hierarchy of irreducible quadrangulations: the reachability of small graphs, the polyhedral irreducible quadrangulations and the uniqueness of ancestors. Section 4 interprets our results on the equilibrium topologies of convex bodies. Finally we show some statistics on our data set in section 5.
2 The properties of vertex splitting

In order to generalize the splitting for parallel case (with the notations illustrated on Figure 1), let $\sigma(v)$ denote the cyclic ordering of the vertex v in clock-wise order, so $\sigma(v) = (e_1, \ldots, e_{d(v)})$. Let n_i denote the other endpoint of the edge e_i.

Definition 1. A vertex splitting on a quadrangulation G is a graph operation transforming G to G', specified by a walk $n_1 e_1 v e_m n_m$ of G. The vertex v of G is replaced by vertices w and v' in G' dividing the edges of v. The cyclic ordering of w is $\sigma(w) = (e'_1, \ldots, e'_m)$, where e'_1 has the same other endpoint as e_1 had; the cyclic ordering of v' is $\sigma(v') = (e_1, e''_m, e_{m+1}, \ldots, e_{d(v)})$, keeping some edges of the former vertex v, and $e''_m = e_m$ if $m > 1$, otherwise e''_m has the same other endpoint as e'_m and e_m had.

Note that if $m > 1$ and n_1 is identical to n_m then e_1 and e_m are distinct parallel edges. The new face introduced by the splitting is bounded by the walk $v' e_1 n_1 e'_1 w e''_m n_m e''_m v'$. Observe that the degree of the new vertices are $d(w) = m$ and $d(v') = d(v) - m + 2$. In addition, the splitting specified by the walk $n_1 e_1 v e_m n_m$ creates the very same graph that the one specified by the walk $n_m e_m v e_1 n_1$. Hence the degree of a splitting, denoted by D, is invariant to reflection, and $D := \min\{d(v'), d(w)\} = \min\{m, d(v) - m + 2\}$.

Let n denote the number of vertices of the quadrangulation. There are exactly four quadrangulations such that $n \leq 4$, shown on Figure 5 where C_4 is generated from P_2 with a 2-splitting, and Q_3, Q_4 are generated from P_2 with a 1-splitting. For larger graphs, we have

Proposition 1. For a quadrangulation such that $n > 4$,

(i) if it has a vertex of degree 1, then it is 1-contractible even for $n = 4$,

(ii) if it has a vertex of degree 2, then it is 2-contractible,

(iii) if its minimum degree is k, then it is k-contractible, and not l-contractible for any $l < k$.

(iv) it is irreducible if and only if its minimum degree is 3,

Proof. Part (i) is a straightforward consequence of the quadrangulated faces.
Figure 6: 3-splitting. The half edge at \(v \) denotes that there must be an edge otherwise it would be a 2-splitting.

For part (ii), suppose a vertex \(w \) is incident to two edges going to \(n_1 \) and \(n_2 \). If \(n_1 \) and \(n_2 \) are distinct vertices, then the graph is 2-contractible as depicted on Figure 2. If \(n_1 = n_2 \) and \(n_1 \) was not incident to any other parallel edge, the graph would be isomorphic to \(Q_3 \) (see Figure 5). If there are other parallel edges incident to \(n_1 \), then the graph is 2-contractible, the parallel case is applicable (see Figure 2).

Part (iii) follows from the definition of the degree of splitting and from the observation that a \(k \)-splitting introduces a vertex of degree \(k \).

Part (iv) follows from (i)-(iii) as the monotone splittings introduce a vertex of degree 1 or 2.

Proposition 1 provides the necessary observations to prove that the splittings \(S_{1,3} \) generate \(Q_2 \).

Proof of Theorem 1. The statements follows from Proposition 1 and from the fact that the minimum degree of a multiquadrangulation is either 1, 2 or 3 by Euler’s formula.

It is clear that the 1-splitting and the 2-splitting are monotone, and modify only one face of the graph in the vicinity of a point. Hence the perturbation of the graph is minimal. Monotonicity is also sufficient to characterize these splittings:

Proposition 2. Every plane graph operation defined on quadrangulations which adds one vertex and is monotone, is a restricted splitting \(S_{1,2} \).

Proof. Consider any operation satisfying the conditions, putting the new vertex \(w \) into an original quadrilateral face bounded by the walk \(x_1 x_2 x_3 x_4 x_1 \), listing only the vertices of the walk. Note that some of the vertices \(x_i \) may coincide. By Euler’s formula, we need to add two edges in addition to the new vertex, so connect, without loss of generality, \(w \) and \(x_1 \) with an edge. Then, we have an “almost quadrangulation”: except for one face which is bounded by the walk \(x_1 w x_1 x_2 x_3 x_4 x_1 \) of length 6. This face can be divided into two quadrilateral faces by adding one edge in three ways: connecting \(x_1 \) and \(x_2 \) (the fourth and the
seventh elements of the walk sequence), or x_1 and x_4 (third and sixth elements), or w and x_3 (second and fifth) with an edge. The first and the second case is applying a 1-splitting, the third case is applying a 2-splitting.

3 Irreducible quadrangulations

As being irreducible for $n > 3$ is equivalent to having minimum degree of 3, one can easily verify that e.g. the radial graph of the skeleton of the tetrahedron is irreducible (see Figure 7(a)). According to Theorem 2, it is the smallest irreducible quadrangulation after P_2. In preparation of proving it, we need to generalize slightly an earlier result:

Proposition 3 (Batagelj [3]). Every simple 3-connected quadrangulation has at least 8 vertices of degree 3.

The generalization of Batagelj’s proof for our need is straightforward as his statement still holds for multigraphs and instead of 3-connectivity it is enough to assume the minimum degree is 3. The latter observation has already been made in [6]. Hence we use the following statement:

Proposition 4. Every quadrangulation with minimum degree 3 has at least 8 vertices of degree 3.

Proof. The layout of this proof is similar to Batagelj’s proof, but the conditions are relaxed. From Euler’s formula we have that the sum of the degrees of a quadrangulation of size $n := s + u$ is $4n - 8$. If it has k vertices of degree 3 and $n - k$ other vertices of degree at least 4, then the sum of the degrees is also at least $3k + 4(n - k)$, implying $k \geq 8$.

Figure 7: Irreducible quadrangulations.
Proof of Theorem 2. By Proposition 1 and Proposition 4, we have that the only irreducible ancestor such that \(n < 8 \) is \(P_2 \). So the theorem can be proved by induction.

The data set generated by our program has strengthened Theorem 2, as we could count easily the irreducible ones for \(n \leq 10 \) by Proposition 1. The statistics showed that there are exactly three irreducible graphs among them: \(P_2 \) and the radial graphs of the two polyhedral skeletons shown on Figure 7. Theorem 3 states that the radial graphs of polyhedral skeletons are all irreducible. Moreover, it gives an inductive definition for them, as they cannot be generated by monotone splittings.

Proof of Theorem 3. Any polyhedral skeleton is simple and 3-connected by Steinitz’ theorem \([14]\). Let \(\mathcal{Q}_4 \) denote the family of simple and 3-connected quadrangulations having no separating 4-cycles. It is known \([6]\) that a graph is simple and 3-connected if and only if its radial graph belongs to \(\mathcal{Q}_4 \), proving the first part of the theorem.

It was also shown \([6]\) that \(\mathcal{Q}_4 \) is generated by the restricted splitting \(S_3,3 \), starting from the pseudo-double wheels. A pseudo-double wheel is a cycle of even length, with its inner and outer face subdivided by a vertex, such that the inner vertex is adjacent to the odd-numbered vertices of the cycle, the outer vertex is adjacent to the even-numbered vertices of the cycle \([5]\). It is easy to verify that a pseudo-double wheel of size \(n = 2k + 2 \) is the radial graph of the skeleton of a pyramid with a \(k \)-sided base which completes the proof.

Now we show that the irreducible ancestor of a quadrangulation is unambiguously defined, so a quadrangulation cannot be generated from different irreducible ancestors at the same time. Consequently, for any two different irreducible quadrangulations \(A_1 \neq A_2 \) the families generated starting from \(\{A_1\} \) and from \(\{A_2\} \) are disjoint, thus the set of irreducible quadrangulations leads to a natural partition of \(\mathcal{Q} \).

Proof of Theorem 4. Without loss of generality, suppose \(A_1 \) is not isomorphic to \(P_2 \) thus the minimum degree of \(A_1 \) is 3. Let \(G_0, G_1, \ldots, G_p \) be the series of graphs yielded by the generation process of \(G \) from \(A_1 \) where \(G_0 = A_1 \) and \(G_p = G \), and, indexed in reverse order, \(G_{p+q}, \ldots, G_{p+1}, G_p \) the graphs yielded by the generation process from \(A_2 \) where \(G_{p+q} = A_2 \), for some \(p, q > 0 \). We will prove that the edges of \(G_0 \) remain intact despite applying any monotone vertex splitting or monotone face contraction, i.e. \(G_0 \) is the embedded subgraph of every \(G_k \) for all \(0 \leq k \leq p + q \), so \(A_1 \) is the subgraph of \(A_2 \), and vice versa.

We say an edge of a graph \(G_1 \) is ancient if it is also in \(G_0 \). By induction, assume that \(G_0 \) is the embedded subgraph of the graphs \(G_0, \ldots, G_{k-1} \) for some \(k \), which trivially holds for \(k = 1 \). If \(G_k \) is created from \(G_{k-1} \) by a monotone splitting, clearly no edge is removed due to the definition of monotonicity. If \(G_k \) is created from \(G_{k-1} \) by a 2-contraction, then we use a basic property of the 2-contraction that if it removes an edge, then one endpoint of the edge is also removed and the degree of the removed endpoint is 2. However, according to
the induction hypothesis, each ancient edge of G_{k-1} has endpoints with degree at least 3 thus no 2-contraction is applicable to G_{k-1} to remove an ancient edge.

The last case is where G_k is created from G_{k-1} by a 1-contraction, removing two edges: e'_1 and e''_1 (see the definition of vertex splitting and Figure 1(b)). Edge e'_1 cannot be ancient because of having and endpoint of degree 1 as explained in the previous case. If edge e''_1 is ancient and e_1 is not, then again no ancient edge is removed as it is only a technicality if we actually remove the edge e''_1 or e_1 because of the symmetry of the 1-contraction. If both edges e''_1 and e_1 would be ancient and e'_1 would not be, then, because of the induction hypothesis, there would be a face in G_0 bounded by the walk $v'e_1n_1e''_1v'$ contradicting the assumption that G_0 is a quadrangulation. Thus a 1-contraction cannot remove an ancient edge either.

Consequently, as neither the splittings nor the contractions alter the embedding of the rest of the graph, G_0 remains the embedded subgraph of G_k for all k.

4 Generating secondary equilibrium classes

In this section we interpret our results on generating secondary equilibrium classes as coloured surface graphs of convex bodies. Some of these observations were already outlined in the conference version of this paper [13].

The idea of representing a 3D body with some surface graph appears in multiple disciplines. Most famous are the polyhedral graphs that are the skeletons of the convex polyhedra, characterized by Steinitz’s theorem [14]. Another related appearance is the mesh generation of physical shapes in computational geometry, when some Morse–Smale complex of a body is drawn as a surface graph, see e.g. [8]. However, the underlying function used for meshing is not necessarily the height function R, thus the nodes of the mesh and the equilibrium points do not necessarily coincide.

4.1 Geometric interpretation of quadrangulations and vertex splittings

To determine the secondary class of a body, we need to introduce some concepts from Morse theory [2, 10], illustrated on Figure 3. In generic case, we say a path on the surface is a heteroclinic orbit, if its tangent vectors agree with the gradient vectors of the height function R, and its endpoints are two equilibria of different type (see Figure 3(c) and 3(f)). It is known the heteroclinic orbits incident to a saddle point are isolated on the surface, and there are only a finite number of them.

These isolated orbits divide the body surface into quadrilateral cells (see Figure 8(a)), and in each cell an infinite number of non-isolated, heteroclinic orbits are going from the unstable to the stable point which we disregard for now. In this way, the body surface defines a vertex-coloured multigraph embedded on the sphere, where the vertices are the equilibria, the edges are the isolated
heteroclinic orbits connecting saddle and non-saddle vertices, the faces are the quadrilateral cells, and the colour of a vertex gives its type of equilibrium.

This graph is referred as the Morse–Smale graph, which means possessing three properties \([2, 10]\). (1) The graph is a quadrangulation of the plane unless the body is in the primary class of the Gömböc. (2) Every quadrilateral boundary walk is a sequence of a saddle, a stable, a saddle and an unstable vertex. (3) The degree of every saddle vertex is 4.

We perform two invertible transformations on the Morse–Smale graph, to yield a more compact graph which is still a genuine representation of the geometry. First, we connect the stable and unstable points in each quadrangulated face, creating a triangulation (see Figure 8(b)). The geometric interpretation of this operation could be that from each cell, we pick one orbit arbitrarily from the infinite set of unstable-stable orbits. Then we remove the saddle points and the edges incident to them, creating another quadrangulation leaving only the edges created in the previous step (see Figure 8(c)). This idea also appears in \([8]\) as the quasi-dual of the Morse–Smale complex, however, as their goal is to simplify of the mesh structure, they do not mention that it can be shown that these transformations are invertible, so we lost no information by removing the saddles. We use the resulting quasi-dual graph to define the secondary class of the body, summarized in the following

Definition 2. A quasi-dual is a 2-coloured multiquadrangulation, where the independent sets are called the stable and the unstable equilibria, of size \(s\) and \(u\), respectively, if \(s + u > 2\). A quasi-dual of a body is the quasi-dual obtained with the process described above. For technicality, in case \(s + u = 2\), we define the quasi-dual of the Gömböc as the path \(P_1\) of length 1 (with one edge) connecting a stable and an unstable equilibrium (see Figure 9). Obviously \(n = s + u\). A secondary equilibrium class is an isomorphism class of quasi-duals, where the isomorphism is expected to preserve the colouring as well.

While the derivation process above requires the existence of the gradient field of the height function, we would also like to consider some reasonable body surfaces with no gradient, e.g. a polyhedra. As the construction of the Morse–Smale complex is already extended for some non-smooth functions as well \([10]\), we believe the definition of the quasi-dual and the secondary class of a
polyhedron could be understood by intuition and needs no rigorous theoretical background.

If a quadrangulation admits multiple non-isomorphic colourings, then its possible secondary classes form a partition of its map. It is easy to verify that a quadrangulation admits either two non-isomorphic colourings, i.e. switching the colours results in another secondary class, or only one colouring. In the latter case we call the secondary class a self-dual.

Assigning a quasi-dual to a convex body is a generalization of assigning a radial graph to a polyhedral skeleton. Radial graphs are all quadrangulations, and every quadrangulation is the radial graph of some spherical surface graph \[14, 6\]. Moreover, assigning to a generic connected plane graph \(G\) its 2-coloured radial graph \(R(G)\) and colouring the images of the vertices of \(G\) “unstable” in \(R(G)\), and the images of the faces of \(G\) “stable” defines a bijection \([11]\). For a fixed \(s, u\), the bijection is between the set of secondary classes in the primary class \(\{s, u\}\) and the set of maps of generic connected plane graphs with \(u\) vertices, \(s\) faces and \(h = s + u - 2\) edges. E.g. in the case of the minimal polyhedra, the quasi-dual is actually the coloured radial graph of the skeleton, thus the Poincaré–Hopf theorem can be replaced by Euler’s formula.

The steps of Columbus’ algorithm are defined and their geometric feasibility were proved in \([20]\), where feasibility means they transform any convex body to another convex one. Observing the change of the quasi-dual of the underlying body, the steps of Columbus’ algorithm are combinatorial operators on quasi-duals we call the coloured splittings. A coloured splitting of a quasi-dual consists of a vertex splitting of the underlying quadrangulation followed by the proper colouring of the introduced vertex. We add that the coloured splittings corresponding to the original steps of Columbus’ algorithm are all monotone. So each coloured splitting corresponds to two dual versions of a splitting of the quadrangulation: to one adding a new stable vertex, and to one adding a new unstable vertex.

For technicality, we add an auxiliary coloured splitting \(C_0\) applicable only on the quasi-dual \(P_1\) of the Gömböc, which is not literally a vertex splitting of a quadrangulation. Applying \(C_0\) either results in the quasi-dual in the class \(\{1, 2\}\), or in the quasi-dual in the class \(\{2, 1\}\), see Figure 9. So the definition of coloured splitting is relaxed to allow \(C_0\) as well, considered a 1-splitting (i.e. \(S_{1,1}\)).
4.2 Generating secondary classes by monotone coloured splittings

While the monotone coloured splittings generate every primary class from P_1, they do not generate every secondary class, so they admit a nontrivial family of irreducible ancestors. We say a secondary class is irreducible if it cannot be created with a monotone coloured splitting. In other words its underlying quadrangulation with $n > 3$ is irreducible, or $n = 2$. So the secondary classes in $\{1,2\}, \{2,1\}$ are not considered irreducible (see Figure 9), but P_1 in $\{1,1\}$ is. By Proposition 1, we can characterise the irreducible secondary classes for $n > 3$ as bodies with a quasi-dual of minimum degree 3.

The results of this subsection are outlined in Figure 10, which we reveal gradually. Let G denote the starting set consisting of the secondary class of the Gömböc, i.e. $G = \{P_1\}$, and G^+ the family generated from P_1 by monotone coloured splittings. Throughout this section, for any starting set of secondary classes X, let X^+ denote the family of secondary classes generated from X by the monotone coloured splittings. So let I denote the family of irreducible secondary classes, then I^+ denotes the family of all possible secondary classes.

The first part of Corollary 1 states that I contains secondary classes besides P_1, which clearly follows from the fact that there is an infinite set of non-isomorphic irreducible quadrangulations. For the second part, let F denote the family of secondary classes in the primary classes $\{s,u\}$ such that $s + u < 8$. The second part states that $F \subset G^+$, which follows from Theorem 2 with the help of the auxiliary splitting C_0.

Note that $G^+ \cap I$ contains only P_1 by definition. Corollary 2 gives a geometric characterisation of a special family within I, called the minimal polyhedra. Recall that a polyhedron is a minimal polyhedron if its every face contains one stable and its every vertex is an unstable equilibrium, and let M denote the family of their secondary classes. E.g. the Platonic solids or a right prism are all minimal polyhedra, however, an oblique prism may not be a minimal polyhedron; there may be a face which does not contain a stable point. Corollary 2 states that $M \subset I$ (see Figure 10). As there are only three irreducible secondary classes until $s + u \leq 10$ according to our data set, we can safely say that every secondary class such that $s + u \leq 10$ are generated either from the Gömböc or from a minimal polyhedron, i.e. $\{S \in I^+ : s + u \leq 10\} \subset G^+ \cup M^+$.

Figure 10: Hierarchy of secondary classes. Notation: I^+: all secondary classes, G^+: generated from P_1, F: small secondary classes s.t. $s + u < 8$, I: irreducible ancestors, M: minimal polyhedra, M^+: generated from minimal polyhedra.
Nevertheless, there are other irreducible secondary classes as well, e.g. Figure 11 shows a method to enumerate some of them with parallel edges. Clearly a minimal polyhedron cannot have parallel edges.

Finally, Theorem 4 states that the irreducible ancestor of a secondary class is unique, because the quadrangulations of the irreducible secondary classes and the irreducible quadrangulations coincide for \(n > 3 \). Consequently, e.g. \(\mathcal{G}^+ \) and \(\mathcal{M}^+ \) are disjoint. Theorem 4 also results in an algorithm to determine the irreducible ancestor of a body: we simply need to apply monotone contractions iteratively to its quasi-dual, until we get the irreducible ancestor. This algorithm is trivial because we can choose the contractions arbitrarily: the resulting irreducible ancestor is unique hence is independent of the actual choices, as any contraction sequence would result in the same ancestor.

4.3 Generating primary classes by restricted splittings

The restricted coloured splittings \(S_{1,2} \) (i.e. the monotone ones) can generate every primary class from the Gömböc [20], but not every secondary class by Corollary 1. We consider further restrictions in this subsection summarized by Corollary 3. In detail, the coloured splitting \(S_{1,1} \) generates every primary class from \(P_1 \), and the coloured splitting \(S_{2,2} \) generates every primary class from the starting set of the secondary classes of the singleton primary classes \{\{1,1\}, \{1,2\}, \{2,1\}\}. Note that according to Table 1 in section 5 these are the only singleton primary classes.

Proof of Corollary 3. First we consider restricting the monotone coloured splittings to \(S_{1,1} \). As 1-splitting is always applicable at any part of the graph if \(n > 2 \), any primary class can be reached with coloured 1-splittings from \{1,2\} or from \{2,1\}. So the primary classes are generated from the starting set \{\{1,1\}, \{1,2\}, \{2,1\}\}, and this set can be generated from \(P_1 \) by \(C_0 \).

Now we consider restricting the monotone coloured splittings to \(S_{2,2} \). The quadrangulations of the classes \{2,1\}, \{3,1\}, \{1,2\}, \{1,3\} are 2-irreducible (see Figure 5), so they has to be in the starting set. The 2-splitting is always applicable around a vertex \(v \) with \(d(v) \geq 2 \) introducing a vertex \(w \) of the same colour as \(v \). It is clear that if \(n > 3 \), both independent sets of a bipartite quadrangulation contains vertices of degree at least 2. As \(C_4 \) in \{2,2\} is 2-contractible, the 2-splittings can be arbitrarily combined to generate some secondary class in any primary class \{\(s, u \)\} such that \(s + u > 4 \).
In the next section we show statistics on the number of 1-irreducible and 2-irreducible secondary classes for a limited size in Table 3.

5 Computational results

This section presents some statistics on the data set attained by the computer program. As plantri supports dividing the computation into independent parts, we could perform this computation in parallel in a grid infrastructure using the Saleve framework [9]. Some of the numbers have been already presented in [13].

Table 1 shows the cardinalities of the classes \(\{s, u\} \) with \(s + u \leq 10 \). The table is symmetric because a subclass such that \(s \neq u \) is clearly not self-dual. These numbers were already published as the cardinalities of the unrooted and unsensed maps by Wormald [24], Walsh [21, 23].

Table 2 shows the number of multiquadrangulations \(q(n) \), which is the first publication of these numbers, up to our best knowledge. To compute \(q(n) \) from the same program-generated data set, observe a relation between the number of secondary classes in the class \(\{s, u\} \), the number of self-dual secondary classes and the number of quadrangulations of size \(n = s + u \) and, denoted respectively by \(e(s, u), e_{\text{SD}}(s, u), q(n) \):

\[
2q(n) - e_{\text{SD}}(n/2, n/2) = \sum_{s=1}^{n-1} e(s, n-s).
\] (1)

Table 3 shows the number of ancestor secondary classes with respect to splittings with different restriction criteria: \(S_{2,2}, S_{1,1} \) and \(S_{1,2} \).

6 Acknowledgements

Research is supported by the Hungarian NTP program TECH_08-A2/2-2008-0097 (WEB2GRID), and by OTKA grant 104601.
Table 1: Cardinalities $e(s, u)$ of the equilibrium classes.

u	$s = 1$	$s = 2$	$s = 3$	$s = 4$	$s = 5$	$s = 6$	$s = 7$	$s = 8$	$s = 9$
1	1	1	1	2	3	6	12	27	65
2	1	2	5	13	35	104	315	1021	
3	1	5	20	83	340	1401	5809		
4	2	13	83	504	2843	15578			
5	3	35	340	2843	21420				
6	6	104	1401	15578					
7	12	315	5809						
8	27	1021							
9	65								

Table 2: The number of multiquadrangulations ($q(n)$), self-dual secondary classes ($e_{SD}(n)$) and secondary classes ($\sum e(s, n-s)$).

n	$q(n)$	$e_{SD}(n)$	$\sum e(s, n-s)$
3	1	-	2
4	1	2	4
5	7	-	14
6	30	8	52
7	124	-	248
8	733	50	1416
9	4586	-	9172
10	33373	380	66366

Table 3: Ancestor secondary classes with respect to $S_{1,1}$ (third column), $S_{2,2}$ (second column), $S_{1,2}$ (fourth column) and non-ancestors (first column).

n	1-2-contractible	2-irreducible	1-irreducible	irreducible
4	0	3	1	0
5	6	2	6	0
6	32	4	16	0
7	172	10	66	0
8	1071	33	311	1
9	7370	114	1688	0
10	55766	474	10125	1
References

[1] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negam, and K. Ota. Chromatic numbers of quadrangulations on closed surfaces. *Journal of Graph Theory*, 37(2):100–114, 2001. doi: 10.1002/jgt.1005.

[2] V. I. Arnold. *Ordinary Differential Equations*. The MIT Press, 1978.

[3] V. Batagelj. An inductive definition of the class of 3-connected quadrangulations of the plane. *Discrete Mathematics*, 78(1-2):45–53, 1989. doi: 10.1016/0012-365X(89)90159-3.

[4] P.-T. Bremer. *Topology-based Multi-resolution Hierarchies*. PhD thesis, University of California, 2004.

[5] G. Brinkmann and B. D. McKay. Fast generation of planar graphs. *MATCH Communications in Mathematical and in Computer Chemistry*, 58(2):323–357, 2007. URL http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf.

[6] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, and P. Wollan. Generation of simple quadrangulations of the sphere. *Discrete Mathematics*, 305(1-3):33–54, 2005. doi: 10.1016/j.disc.2005.10.005.

[7] G. Domokos, Zs. Lángi, and T. Szabó. The genealogy of convex solids. In preparation, http://arxiv.org/abs/1204.5494v1 last access: 2012.06.06., 2012. URL http://arxiv.org/abs/1204.5494v1.

[8] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral surface quadrangulation. *ACM Transactions on Graphics*, 25:1057–1066, July 2006. ISSN 0730-0301. doi: 10.1145/1141911.1141993.

[9] P. Dóbé, R. Kápolnai, A. Sipos, and I. Szeberényi. Applying the improved Saleve framework for modeling abrasion of pebbles. In *Large-Scale Scientific Computing*, volume 5910 of *Lecture Notes in Computer Science*, pages 467–474, 2010. doi: 10.1007/978-3-642-12535-5_55. URL http://saleve.iit.bme.hu/ Available at http://saleve.iit.bme.hu/.

[10] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical morse complexes for piecewise linear 2-manifolds. In *Proceedings of the seventeenth annual symposium on Computational geometry*, SCG ’01, pages 70–79, New York, 2001. ACM. ISBN 1-58113-357-X. doi: 10.1145/378583.378626.

[11] É. Fusy. Counting unrooted maps using tree-decomposition. *Seminaire Lotharingien de Combinatoire*, B54A1:44, 2007.

[12] J. L. Gross and J. Yellen. *Handbook of graph theory*. Discrete mathematics and its applications. CRC Press, 2004. ISBN 9781584880905. URL http://books.google.com/books?id=mKkIGFea_BkC
[13] R. Kápolnai and G. Domokos. Inductive generation of convex bodies. In The 7th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pages 170–178, 2011. URL http://www.kurims.kyoto-u.ac.jp/~takazawa/hj2011/.

[14] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, Baltimore, 2001.

[15] B. Mohar, G. Simonyi, and G. Tardos. Local chromatic number of quadrangulations of surfaces. In preparation, http://arxiv.org/abs/1010.0133v1 last access: 2011.01.20., 2010. URL http://arxiv.org/abs/1010.0133v1.

[16] A. Nakamoto. Diagonal transformations in quadrangulations of surfaces. Journal of Graph Theory, 21(3):289–299, 1996. doi: 10.1002/(SICI)1097-0118(199603)21:3(289::AID-JGT3)3.0.CO;2-M.

[17] A. Nakamoto. Generating quadrangulations of surfaces with minimum degree at least 3. Journal of Graph Theory, 30(3):223–234, 1999. doi: 10.1002/(SICI)1097-0118(199903)30:3(223::AID-JGT7)3.0.CO;2-M.

[18] S. Negami and A. Nakamoto. Diagonal transformations of graphs on closed surfaces. Science Reports of the Yokohama National University. Section I. Mathematics, Physics, Chemistry, 40:71–97, 1993. URL http://kamome.lib.ynu.ac.jp/dspace/bitstream/10131/3593/1/KJ00004759821.pdf.

[19] W. T. Tutte. The non-biplanar character of the complete 9-graph. Canadian Mathematical Bulletin, 6:319–330, 1963. doi: 10.4153/CMB-1963-026-x.

[20] P. Várkonyi and G. Domokos. Static equilibria of rigid bodies: dice, pebbles and the Poincaré–Hopf theorem. Journal of Nonlinear Science, 16:255–281, 2006. doi: 10.1007/s00332-005-0691-8.

[21] T. R. Walsh. Generating nonisomorphic maps without storing them. SIAM Journal on Algebraic and Discrete Methods, 4(2):161–178, 1983. doi: 10.1137/0604018.

[22] T. R. Walsh. A biased survey of map enumeration results. WSEAS Transactions on Mathematics, 6(1):131–137, 2007. ISSN 11092769.

[23] T. R. Walsh. Generating nonisomorphic maps without storing them II: Three decades later. submitted for publication, 2012.

[24] N. C. Wormald. Counting unrooted planar maps. Discrete Mathematics, 36(2):205–225, 1981.