Glutamate-gated Chloride Channels*
Published, JBC Papers in Press, October 4, 2012, DOI 10.1074/jbc.R112.406280
Adrian J. Wolstenholme
From the Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602

Glutamate-gated chloride channels (GluCls) are found only in protostome invertebrate phyla but are closely related to mammalian glycine receptors. They have a number of roles in these animals, controlling locomotion and feeding and mediating sensory inputs into behavior. In nematodes and arthropods, they are targeted by the macrocyclic lactone family of anthelmintics and pesticides, making the GluCls of considerable medical and economic importance. Recently, the three-dimensional structure of a GluCl was solved, the first for any eukaryotic ligand-gated anion channel, revealing a macrocyclic lactone-binding site between the channel domains of adjacent subunits. This minireview will highlight some unique features of the GluCls and illustrate their contribution to our knowledge of the entire Cys loop ligand-gated ion channel superfamily.

Despite their relative anatomical simplicity, some aspects of the neurochemistry of invertebrate nervous systems are more complex than those of vertebrate nervous systems. One example is the expanded range of transmitters that act via members of the Cys loop ligand-gated chloride channel (CysLGCC) family. In addition to the main topic of this minireview (glutamate), invertebrate CysLGCC can be gated by compounds such as histamine (1–3), serotonin (4), dopamine (5), and tyramine (6), and unlike vertebrates, acetylcholine and GABA act at both anion- and cation-gated channels (7, 8). In addition, an insect chloride channel (pHCl) inhibited by protons is a member of the CysLGCC family (9). This increased variety of ligands may be exploitable in our continuing attempts to better understand the structure-function relationships that are conserved throughout the CysLGCC family. It has also allowed them to be explored as targets for the control of agricultural pests as well as medical and veterinary pathogens.

Inhibitory glutamate-gated chloride channels (GluCls) were first described as extrajunctional receptors (the “H-receptors”) on locust muscle (10, 11) and then as postsynaptic receptors within the crustacean stomatogastric ganglion (12–14). Further studies showed that similar receptors and channels are expressed on neurons and muscle across protostome phyla, including mollusks, flatworms, roundworms (nematodes), ticks, and mites, as well as insects and crustaceans, and this has been confirmed by recent genomic and transcriptomic studies. For example, the transcriptome of the cestode *Taenia pisiformis* contains sequences similar to nematode GluCls even though the presence of GluCls has not been reported in tapeworms (15). The properties of many of these receptors were excellently summarized by Cleland (16). However, GluCls have not been found in other invertebrate taxa such as cnidarians and echinoderms.

Exploitation of GluCls

Some invertebrate species are pathogenic to mammals, including humans, and others act as disease vectors or are considered to be agricultural or domestic pests. A major stimulus to studies of invertebrate nervous systems is our desire to kill these pathogens and pests, and ion channels are the targets of many effective parasiticides and pesticides. The macrocyclic lactone (ML) group of anthelmintics, insecticides, and acaricides acts at GluCls, either activating the channels directly or potentiating their responses to glutamate (17, 18). Worldwide sales of these compounds are worth billions of dollars annually, and hundreds of millions of doses of ivermectin are given to people every year as part of the control and elimination programs for onchocerciasis and lymphatic filariasis (19, 20). Insect GluCls are also partly responsible for the insecticidal activity of fipronil, as this compound blocks these channels in addition to its action at GABA receptors (21, 22). Histamine-gated chloride channels (HisCls) are also affected by the application of MLs and may contribute to their insecticidal activity (2, 23, 24).

The finding that the avermectins, one of the major families of ML anthelmintics, insecticides, and acaricides (25), modulate the activity of GluCls from the nematode *Caenorhabditis elegans* (26) led to the isolation of two cDNAs encoding channel subunits from this organism (17). The sequences of the two subunits, then called GluClα and GluClβ, but now referred to as GLC-1 and GLC-2, clearly showed that they belonged to the CysLGCC family, confirming earlier pharmacological and physiological evidence such as their sensitivity to the chloride channel blocker picrotoxin (16). Further genetic and molecular studies have since expanded the *C. elegans* GluCl gene family to six members: *avr-14* (altered avermectin sensitivity), *avr-15*, *glc-1* (glutamate-gated chloride channel), *glc-2*, *glc-3*, and *glc-4* (17, 27–31). These studies have been extended to other nematode species, especially the animal and human parasites, and have revealed that the size and composition of the GluCl family vary between species, with *avr-14* and *glc-2* orthologs present in all genomes studied to date (32–34). A single GluCl gene, GluClα, is present in most insects, although its transcripts are extensively modified by mRNA splicing and editing (35–37), along with two genes encoding HisCl subunits and a single pHCl gene (36–38). In *Drosophila melanogaster*, GluClα mediates sensitivity to ivermectin and nodulisporic acid (18, 39), suggesting that the avermectin drug target is the same throughout the Ecdysozoa. The aphid *Acrithosiphon pisum* has two pHCl genes and only a single HisCl gene (40). Two distinct GluCl currents have been detected in cockroach thoracic gan-
glion pyriform neurons, one desensitizing and the other not. Pharmacologically, they are distinguished by the effects of the chloride channel blockers fipronil and picrotoxinin (21, 41), but the genetic basis of the two channels is unknown. Two GluCl genes have been described in the mollusk *Aplysia californica* (42), six in the mite *Lepeophtheirus salmonis* (44), and one in the sea ouse *Lepeopethirinus salmonis* (44).

The effects of the MLs on GluCls have been extensively studied, often following expression of cloned channel cDNAs in the *Xenopus* oocyte. The MLs may directly open the ion channels, or they may potentiate the effects of submaximal concentrations of the normal agonist (17). Direct activation of the channels is much slower than that seen with classical transmitters, but once open, the channels remain in this state for a very long time, essentially irreversibly in the time frame of electrophysiological recordings. The influx of chloride ions normally results in a hyperpolarization of the neuron or muscle, and the long-term change in the membrane potential of the cell means that it is essentially silenced.

Because vertebrates do not possess GluCls, there have been attempts to develop them as tools for the specific silencing of defined neurons by adding low concentrations of ivermectin (21, 41), but the genetic basis of the two channels is unknown. Two GluCl genes have been described in the mollusk *Aplysia californica* (42), six in the mite *Lepeophtheirus salmonis* (44), and one in the sea ouse *Lepeopethirinus salmonis* (44).

The effects of the MLs on GluCls have been extensively studied, often following expression of cloned channel cDNAs in the *Xenopus* oocyte. The MLs may directly open the ion channels, or they may potentiate the effects of submaximal concentrations of the normal agonist (17). Direct activation of the channels is much slower than that seen with classical transmitters, but once open, the channels remain in this state for a very long time, essentially irreversibly in the time frame of electrophysiological recordings. The influx of chloride ions normally results in a hyperpolarization of the neuron or muscle, and the long-term change in the membrane potential of the cell means that it is essentially silenced.

Because vertebrates do not possess GluCls, there have been attempts to develop them as tools for the specific silencing of defined neurons by adding low concentrations of ivermectin (45). Expression of the *C. elegans* GLC-1 and GLC-2 subunits in mammalian neurons using recombinant virus vectors results in the formation of functional GluCls in mammalian neurons, which can then be selectively silenced by injecting ivermectin. The subunits have been modified to encode GFP as a marker which can then be selectively silenced by injecting ivermectin. Such methods have been used in the identification of an aggression locus in the mammalian hypothalamus by injecting two adeno-associated virus vectors encoding the modified GLC-1 and GLC-2 into murine neurons of the ventrolateral subdivision of the ventro-medial hypothalamus (47). A single intraperitoneal injection of 10 mg/kg is sufficient to electrically silence the infected neurons (48) and reduce the level of intermale aggression.

Evolutionary Relationships

The GluCls, along with the HisCl, pHCl, and the vertebrate glycine receptors, belong to the subfamily of CysLGCC that possess two Cys loops in the N-terminal extracellular domain (42, 49) and are thus distinct from the GABA-gated channels present throughout the vertebrates and invertebrates. The close evolutionary relationship between GluCls and glycine receptors may be mirrored in the apparent ability of glutamate to potentiate glycine receptor currents (50). One obvious possibility was that the GluCls are the invertebrate orthologs of the glycine receptors, but a more detailed phylogenetic analysis (42), together with the discovery of genuine glycine transmission and receptors in cnidarians (51, 52), has revealed the situation to be more complex. The GluCls seem to have evolved twice, as the lophotrocozan clade is completely distinct from and independent of the GluCls from Ecdysozoa, so either convergent evolution has resulted in the appearance of a glutamate-binding site in the two families or there is a very deep-rooted ancestral GluCl sequence that may have been lost during the evolution of the cnidarians and deuterostomes (42). An alignment of the amino acid sequences of the loops that make up the ligand-binding site in the nematode, insect, and mollusk GluCls (Fig. 1) shows that although many of the residues are conserved, there are significant differences in loops C and F between the *Aplysia* sequences and those from nematodes and insects, and indeed, it was difficult to get a good alignment of loop F.

The recent rapid expansion of genome sequence information allows the comparison of the GluCl gene families between organisms, especially in insects and nematodes. The insect gene family is relatively simple, but that found in nematodes tends to be larger and more diverse, although there is quite a lot of variation between species, with a greater complexity in *C. elegans* and other species in clade V than in the species in clades I and III (26).

Functions

GluCls have a wide range of functions in invertebrate nervous systems, but these can be broadly divided into three interlinked categories: the control and modulation of locomotion, the regulation of feeding, and the mediation of sensory inputs. Treatment of nematodes with ivermectin also has effects on reproductive and fecundity, implying a role for GluCls or closely related channels in these processes, although this has yet to be directly demonstrated. Probably the best studied GluCl functions are those in nematodes, where the channels are widely expressed in sensory neurons, interneurons, and motor neurons, modulating a considerable number of different behaviors. For example, *avr-14* is expressed in a large number of *C. elegans* motor neurons and interneurons (31, 54), and mutations in this and the other GluCl genes (*avr-15, glc-1*, and *glc-3*) affect the foraging behavior of the worm (30, 54). Mutations in

FIGURE 1. Transmitter-binding site residues of invertebrate 2-Cys loop ligand-gated anion channels. The binding loops are shown, as described (87), for examples of nematode and insect GluCls, insect HisCls and pHCl, and mollusk GluCls. *Cel*, C. elegans; *Hco*, H. contortus; *Dmel*, D. melanogaster; *Aca*, A. californica. Amino acid residues that make contacts with bound glutamate in the GluCl structure (87) are highlighted in red; where these are substituted in other channels, they are colored purple. The alignment was made using ClustalW.

Loop A	Loop B	Loop C	Loop D	Loop E	Loop F	‘Loop G’	
Cys1GLC-1	PDSTFPN	ASYAY	CTST--INTGYYC	LTLRESW	LYSVR	QKLNGLS	LR1T
Cys1GLC-3	PDSFFPN	ASYAY	CTST--INTGYYC	LTFREZW	LYSVR	QKLNGLS	IBS
Hco-AYR-14	PDSTFPN	ASYAY	CTST--INTGYYC	LFTRAZW	LYSVR	QKLNGLS	LRS
Dmel-GlcK	PGLIFSN	ASYW	CNSE--INTGYYC	LFTRQW	LTSRI	QWQDRL	LV5S
Dmel-HCL	PDSFFN	ASYW	CTST--INTGYYC	VFFAQW	LYSVR	QKLNGLS	LWG
Dmel-HCLB	PDGFPN	ASYW	CTST--INTGYYC	IFLAGW	LTSRI	QWQDRL	LV5S
Dmel-pHCL	PDSTFPN	ASYAY	CTSE--INTGYYC	HLSWQQ	TANSR	LRSPLS	LLS
Aca-Glc1	PVDFPN	QAAY	CNWREWTVTPFD	LYLWNT	KYSNR	DAETALT	LS
Aca-Glc2	PDDFWN	QAYG	CTTW-INTGYYC	ILYQW	YTSNR	DYNGBNL	VLS
or RNAi of avr-15, avr-15, or glc-1 increases the frequency with which the worms change direction, whereas knockdown of glc-3 expression produces the opposite effect. The expression of GFP under the control of the avr-14 promoter suggests that this gene is also expressed on a number of sensory neurons (53). AVR-15 is also widely expressed in the nervous system but, in addition, is found in muscle cells of the pharynx (29, 55) along with GLC-2 (56). Mutations in avr-15 affect gustatory plasticity (57) and, along with avr-14, mediate mechanosensory inhibition of pharyngeal pumping (58). GLC-3 is expressed in the AIY interneuron, where it receives inputs from the dorsal clock neurons (DNiS) and hence, the worm will tend to turn away. B, in Drosophila, GluCls is expressed on the LNvS neurons (75), which mediate light avoidance behavior. This is driven by the light-induced release of acetylcholine (ACh) from the visual system. Early in the day, the dorsal clock neurons (DNiS) do not release glutamate, and acetylcholine drives light avoidance behavior. At dusk, increased clock gene activity results in the release of glutamate from DNiS, which activates GluCls on LNvS and inhibits light avoidance.

The role of the GluCls in controlling nematode pharyngeal pumping, which is required both for feeding and for maintaining the hydrostatic pressure of the worms, is relatively well understood. The glutamatergic motor neuron M3 facilitates rapid relaxation of the pharyngeal muscle (61, 62) via a chloride-dependent hyperpolarization (55), and this response is mediated by an AVR-15-containing GluCl (29, 55) expressed on the pharyngeal muscle cells. GLC-2, and possibly an additional subunit, may also be involved (56).

At present, we do not have enough information to know whether or not the multiple GluCl functions described in C. elegans are also present in other nematode species, although the inhibition of both locomotion and pharyngeal pumping seen in these worms after treatment with ML anthelmintics suggests that these two roles are widely conserved (63, 64). GLC-3 is present in at least some parasitic nematode species (32), suggesting that its role in mediating sensory processes may be conserved, and AVR-14 is also expressed in Haemonchus contortus (a gastrointestinal parasite of small ruminants) sensory neurons (65). Recently, an additional role for AVR-14 was described in the human parasitic nematode Brugia malayi; the subunit is expressed around the excretory-secretory pore of the larval microfilariae and may play a role in regulating the secretion of proteins from this structure (66). The presence of GluCls on the pharynx of parasitic nematodes is also well established, especially for Ascaris suum (67–70), and there is some evidence for the expression of GluCl subunits on pharyngeal neurons (65, 71).

Some of the earliest descriptions of GluCls were from insect muscle cells (10, 11, 16); these are extrasynaptic and are found on both glutamatergic and cholinergic muscles. GluCls are also expressed in insect neurons, including the dorsal unpaired median neurons of the locust and cockroach (72–74), along with the GABA receptor Rdl. Because these neurons innervate flight and leg muscles, GluCls are likely to influence flight and walking control in these insects. In D. melanogaster, GluCls are expressed are high levels in the central nervous system, including the larval lateral neurons, where they mediate rhythmic light avoidance behaviors (75), and on large ventrolateral neurons (LNvS) in the adult brain that control rest and arousal, where they receive inputs from the dorsal clock neurons (DNiS) (76). The proposed pathway by which GluCls inhibit fly light avoidance behavior is shown in Fig. 2B. Interestingly, ivermectin reduced the feeding of human head lice that hatched from treated eggs; this effect was independent of its lethal effects on the lice and may imply a role for GluCls in regulating feeding (77).

Histamine is the major transmitter released by arthropod photoreceptors, and HisCls containing the HCLA subunit are expressed on large laminar monopolar neurons in the insect eye (78, 79), mediating the hyperpolarization of these cells. In the eye, HCLB expression is confined to laminal glial cells (79). HisCls therefore play an important role in insect vision. Mutations in genes involved in histaminergic signaling, including those encoding HisCls, also affect temperature preference in the fly (80). Mutations in hciB affect not only Drosophila vision (24) but also responses to high temperature and anesthesia, suggesting a central role in the nervous system (81). In crayfish,
Histamine induces a chloride current in the X-organ, the main neurosecretory structure (82), and could modulate multiple physiological functions via the regulation of hormonal secretion.

Structure

Even though the first molecular cloning of *C. elegans* GluCl cDNAs resulted in the expression of a multimeric receptor, GLC-1 + GLC-2 (17), the majority of the GluCls that have been successfully expressed *in vitro* to date have been monomeric (18, 28–31, 83–85). Whether this reflects the subunit composition of native GluCls in those species that possess multiple subunit genes is unknown, although overlapping expression patterns and the phenotype of individual gene mutations have led to suggestions that AVR-15 and GLC-2, plus at least one other subunit, co-assemble in the *C. elegans* pharynx (55) and that GLC-5 and GLC-2 might form a receptor on the commissures of inhibitory motor neurons in the parasite *H. contortus* (65), but there is no formal proof for either of these possibilities. A report that *Drosophila* GluCl and Rdl might co-assemble to form a functional receptor, based on co-immunoprecipitation studies (86), has not been confirmed and may reflect the expression of both GluCl and the GABA receptor on the same neurons (73). Given the uncertainty about the subunit composition of native GluCl, it is no surprise that we have almost no idea of the subunit stoichiometry of heteromeric receptors, whether these are native or reconstituted.

The fact that it is easy to express monomeric GluCl *in vitro* has led to a major breakthrough, the first three-dimensional structure of a eukaryotic ligand-gated ion channel, *C. elegans* GLC-1 complexed with ivermectin (87). This has revealed the detailed structure of both the glutamate- and ivermectin-binding sites. The former is in the extracellular domain of the receptor in a similar position to that of the nicotinic acetylcholine-binding sites and other members of the CysLGCC family (88), lying between adjacent subunits. The six loops that form the agonist-binding site are structurally homologous to those found in the acetylcholine-binding protein and prokaryotic channels. The residues that play a role in glutamate binding are highlighted in red in Fig. 1, which shows that they are conserved in other nematode and insect GluCls, but not always in HisCl or pHCl, in which, not surprisingly, the basic residues that confer a strongly positive electrostatic potential (Arg-37, Arg-56, and Lys-171) are not present (Fig. 1). Interestingly, these residues are also poorly conserved in the *Aplysia* GluCl sequences.

Glutamate binds to the homomeric GLC-1 receptor only after ivermectin has already bound, in contrast to almost all other GluCls, where the ligand can bind and activate the channel in the absence of the drug. The ivermectin-binding site is in the channel domain, lying between M3 and M1 of two adjacent subunits, with the drug making contacts with M2, which lines the ion channel, and the M2-M3 loop (Fig. 3). The structure confirmed the predictions of site-directed mutagenesis experi-
ments that indicated an overlap between the ivermectin-bind-
ing site and that of volatile anesthetics and other drugs that act
at mammalian GABA\textsubscript{A} and glycine receptors (89, 90). This
structure is therefore of great importance to mammalian neu-
roscience and medicine. Ivermectin binding to this site may
alter the conformation of the glutamate-binding site via its
interactions with the M2-M3 loop, which could then transmit
allosteric changes in structure, and the interactions with resi-
dues in M2 may help to keep the channel in the long-lasting
open configuration characteristic of these drugs (Fig. 3). In Fig.
3, all of the potential binding sites are shown as being occupied;
it is not known how many bound ivermectin molecules are
required to directly open the channel or to potentiate the glu-
tamate response, although the highly cooperative nature of the
responses observed in vitro may suggest that multiple mole-
cules are required (83). The mechanistic consequences of iver-
mectin binding to this site, resulting in the slow opening of
the channel, have been recently reviewed (91).

Sequence variations in glc-1 underlie natural variations in
sensitivity to the anthelmintic drug ivermectin (92) of various
strains of \textit{C. elegans}, even though the normal role of the channel
has not been described. Surprisingly, perhaps, the variation
most strongly associated with reduced sensitivity does not lie in
the binding site for either ivermectin or glutamate but is a four-
amino acid deletion toward the extreme N terminus of the sub-
unit. Unfortunately, this deletion is within a part of the subunit,
the N-terminal 40 amino acids, that had to be removed to pro-
duce the recombinant protein used for the structural studies
(87), so how this deletion might reduce the effects of ivermectin
on the channel is obscure. Mutations in the extracellular β10
strand, including the L256F mutation found in a drug–resistant
isolate of the parasite \textit{Cooperia oncophora} (85), and the M2-M3
linker region of AVR-14B affect the binding of ivermectin to the
channel (83, 93), consistent with the contacts observed between
bound ivermectin and the M2-M3 linker in GLC-1 (87).

Concluding Remarks

The GluCls are a wonderful example of the importance of
invertebrate neuroscience. Although they are probably much
less familiar than the other channels reviewed in this minire-
view series, and there are certainly far fewer papers and grants
devoted to them, studies on the GluCls and related receptors
have illustrated the many practical and academic benefits
across multiple disciplines in the basic and applied medical,
Veterinary, and agricultural sciences that result from studying
and exploiting these “simple” nervous systems.

Acknowledgment—I thank Dr. Barbara Reaves for critically reading
the manuscript.

REFERENCES

1. Gisselmann, G., Pusch, H., Hovemann, B. T., and Hatt, H. (2002) Two
cDNAs coding for histamine-gated ion channels in \textit{D. melanogaster}. Nat.
Neurosci. 5, 11–12
2. Zheng, Y., Hirschberg, B., Yuan, J., Wang, A. P., Hunt, D. C., Ludmerer,
S. W., Schatz, D. M., and Cully, D. F. (2002) Identification of two novel
\textit{Drosophila melanogaster} histamine-gated chloride channel subunits
expressed in the eye. J. Biol. Chem. 277, 2000–2005
3. McCoole, M. D., Baer, K. N., and Christie, A. E. (2011) Histaminergic
signaling in the central nervous system of \textit{Daphnia} and a role for it in the
control of phototactic behavior. J. Exp. Biol. 214, 1773–1782
4. Ranganathan, R., Cannon, S. C., and Horvitz, H. (2000) MOD-1 is a
serotonin-gated chloride channel that modulates locomotory behavior in
\textit{C. elegans}. Nature 408, 470–475
5. Ringstad, N., Abe, N., and Horvitz, H. R. (2009) Ligand-gated chloride
channels are receptors for biogenic amines in \textit{C. elegans}. Science 325,
96–100
6. Pirrì, J. K., McPherson, A. D., Donnelly, J. L., Francis, M. M., and Alkema,
M. J. (2009) A tyramine-gated chloride channel coordinates distinct mo-
tor programs of a \textit{Caenorhabditis elegans} escape response. Neuron 62,
526–538
7. Putrenko, I., Zakikhani, M., and Dent, J. A. (2005) A family of acetylcho-
line-gated chloride channel subunits in \textit{Caenorhabditis elegans}. J. Biol.
Chem. 280, 6392–6398
8. Beg, A. A., and Jorgensen, E. M. (2003) EXP-1 is an excitatory GABA-gated
cation channel. Nat. Neurosci. 6, 1150–1152
9. Schnizler, K., Saege, B., Pfeffer, C., Gerbaulet, A., Ebbinghaus-Kintscher,
U., Methfessel, C., Franken, E. M., Raming, K., Wetzl, C. H., Saras, A.,
Pusch, H., Hatt, H., and Gisselmann, G. (2005) A novel chloride channel in
\textit{Drosophila melanogaster} is inhibited by protons. J. Biol. Chem. 280,
16254–16262
10. Cull-Candy, S. G. (1976) Two types of extrajunctional l-glutamate recep-
tors in locust muscle fibers. J. Physiol. 255, 449–464
11. Gratton, K. A., Clark, R. B., and Usherwood, P. N. (1979) Three types of
l-glutamate receptor on junctional membrane of locust muscle fibers.
Brain Res. 171, 360–364
12. Bidault, M. (1980) Pharmacological dissection of pyloric network of the
lobster stomatogastric ganglion using picrotoxin. J. Neurophysiol. 44,
1089–1101
13. Marder, E., and Eisen, J. S. (1984) Electrically coupled pacemaker neurons
respond differently to same physiological inputs and neurotransmitters.
J. Neurophysiol. 51, 1362–1374
14. Marder, E., and Paupardin-Tritsch, D. (1978) The pharmacological prop-
erties of some crustacean neuronal acetylcholine, y-aminobutyric acid,
and l-glutamate responses. J. Physiol. 280, 213–236
15. Yang, D. Y., Fu, Y., Wu, X. H., Xin, Y., Nie, H. M., Chen, L., Nong, X., Gu,
X. B., Wang, S. X., Peng, X. R., Yan, N., Zhang, R. H., Zheng, W. P., and
Yang, G. Y. (2012) Annnotation of the transcriptome from \textit{Taenia pisiformis} and
its comparative analysis with three Taeniidae species. PLoS ONE 7,
e32283
16. Cleland, T. A. (1996) Inhibitory glutamate receptor channels. Mol.
Neurol. 13, 97–136
17. Cully, D. F., Vassilatis, D. K., Liu, K. K., Paress, P. S., Van der Ploeg, L. H.,
Schaeffer, J. M., and Arena, J. P. (1994) Cloning of an avermectin–sensitive
glutamate-gated chloride channel from \textit{Caenorhabditis elegans}. Nature
371, 707–711
18. Cully, D. F., Paress, P. S., Liu, K. K., Schaeffer, J. M., and Arena, J. P. (1996)
Identification of a \textit{Drosophila melanogaster} glutamate-gated chloride
channel sensitive to the antiparasitic agent avermectin. J. Biol. Chem. 271,
20187–20191
19. Ottesen, E. A., Hooper, P. J., Bradley, M., and Biswas, G. (2008) The global
program to eliminate lymphatic filariasis: health impact after 8 years. PLoS
Negl. Trop. Dis. 2, e317
20. Cupp, E. W., Sauerbrei, M., and Richards, F. (2011) Elimination of human
onchocerciasis: history of progress and current feasibility using ivermectin
(Meitzzan®) monotherapy. Acta Trop. 120, S100–S108
21. Narahashi, T., Zhao, X., Ikeda, T., Salgado, V. L., and Yeh, J. Z. (2010)
Glutamate-activated chloride channels: unique fipronil targets present in
insects but not in mammals. Pestic. Biochem. Physiol. 97, 149–152
22. Zhao, X., Yeh, J. Z., Salgado, V. L., and Narahashi, T. (2004) Fipronil is a
potent open channel blocker of glutamate-activated chloride channels in
cockroach neurons. J. Pharmacol. Exp. Ther. 310, 192–201
23. Iovchev, M., Kodrov, P., Wolstenholme, A. J., Pak, W. L., and Semenov,
E. P. (2002) Altered drug resistance and recovery from paralysis in \textit{Dros-
ophila melanogaster} with a deficient histamine-gated chloride channel.
J. Neurogenet. 16, 249–261
24. Yusien, S., Velikova, N., Kupenova, P., Hardie, R., Wolstenholme, A., and Semenov, E. (2008) Altered ivermectin pharmacology and defective visual system in *Drosophila* mutants for histamine receptor HCLB. *Invert. Neurosci.* 8, 211–222

25. Campbell, W. C. (2012) History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. *Curr. Pharm. Biotechnol.* 13, 853–865

26. Arena, J. P., Liu, K. K., Paress, P. S., Schaeffer, J. M., and Cully, D. F. (1992) Expression of a glutamate-activated chloride current in Xenopus oocytes injected with *Caenorhabditis elegans* RNA: evidence for modulation by avermectin. *Mol. Brain Res.* 15, 339–348

27. Cully, D. F., Wilkinson, H., and Vassilatis, D. K. (1996) Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates. *Parasitology* 113, S191–S200

28. Vassilatis, D. K., Arena, J. P., Plasterk, R. H., Wilkinson, H. A., Schaeffer, J. M., Cully, D. F., and Van der Ploeg, L. H. (1997) Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in *Caenorhabditis elegans*. Isolation and characterization. *J. Biol. Chem.* 272, 33167–33174

29. Dent, J. A., Davis, M. W., and Avery, L. (1997) The ge- nesis of the subunit GluCl gene by multiple post-transcriptional mRNA modifications. *Br. J. Pharmacol.* 132, 1247–1254

30. Beech, R. N., Proctor, R. R., Neveu, C., and Dent, J. A. (2010) Nem- atode parasite genes: what's in a name? *Trends Parasitol.* 26, 334–340

31. Horoszok, L., Raymond, V., Sattelle, D. B., and Wolstenholme, A. J. (2001) GLC-3: a novel frpomin- and BDIN-sensitive, but picrotoxinin-insensitive, t.-glutamate-gated chloride channel subunit from *Caenorhabditis elegans*. *J. Exp. Biol.* 204, 219–226

32. Yates, D. M., Portillo, V., and Wolstenholme, A. J. (2003) The avermectin receptors of *Haemonchus contortus* and *Caenorhabditis elegans*. *Int. J. Parasitol.* 33, 1183–1193

33. Semenov, E. P., and Pak, W. L. (1999) Diversification of *Drosophila* chlo- ride channel gene by multiple post-transcriptional mRNA modifications. *J. Neurochem.* 72, 66–72

34. Jones, A. K., Bera, A. N., Lees, K., and Sattelle, D. B. (2010) The Cys loop ligand-gated ion channel gene superfamily of the parasitoid wasp, *Nasonia vitripennis*. *Heredity* 104, 247–259

35. Jones, A. K., and Sattelle, D. B. (2007) The Cys loop ligand-gated ion channel gene superfamily of the red flour beetle, *Tribolium castaneum*. *BM Genomics* 8, 327

36. Knipple, D. C., and Soderlund, D. M. (2010) The Cys loop ligand-gated ion channel gene family of *Tetramychus urticae*: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. *Insect Biochem. Mol. Biol.* 42, 455–465

37. Tribble, N. D., Burke, J. F., and Kibenge, F. S. (2007) Identification of the genes encoding for putative ɣ-amino butyric acid (GABA) and glutamate-gated chloride channel (*GlucI*) or receptor subunits in sea lice (*Lepeophtheirus salmonis*). *J. Vet. Pharmacol. Ther.* 30, 163–167

38. Slimko, E. M., McKinney, S., Anderson, D. J., Davidson, N., and Lester, H. A. (2002) Selective electrical silencing of mammalian neurons in *C. elegans* by the use of invertebrate ligand-gated chloride channels. *J. Neurosci.* 22, 7373–7379

39. Zhao, X., and Salgado, V. L. (2010) The role of GABA and glutamate neurotransmission and a novel mutation associated with abamectin resistance. *Insect Biochem. Mol. Biol.* 42, 455–465

40. Dale, R. P., Jones, A. K., Tamborindeguy, C., Davies, T. G., Amey, J. S., Knipple, D. C., and Soderlund, D. M. (2010) The ligand-gated chloride channel gene superfamily of the red flour beetle, *Tribolium castaneum*. *Invert. Biol.* 139, 164–167

41. Ahlenius, B., Kehoe, J., Buldakova, S., Acher, F., Dent, J., Bregestovski, P., and Bradley, J. (2009) *Aplysia* Cys loop glutamate-gated chloride channels reveal convergent evolution of ligand specificity. *J. Mol. Evol.* 69, 125–141

42. Dermau, W., Ilías, A., Riga, M., Tsgakarou, A., Grbić, M., Tiry, L., Van Leeuwen, T., and Vontas, J. (2012) The Cys loop ligand-gated ion channel gene family of *Tetramychus urticae*: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. *Insect Biochem. Mol. Biol.* 42, 455–465
MINIREVIEW: Glutamate-gated Chloride Channels

mirtics. Parasitol. 131, 585–595

64. Kotze, A. C., Hines, B. M., and Ruffell, A. P. (2012) A reappraisal of the relative sensitivity of nematode pharyngeal and somatic musculature to macrocyclic lactone drugs. Int. J. Parasitol. Drugs Drug Resist. 2, 29–35

65. Portillo, V., Jagannathan, S., and Wolstenholme, A. I. (2003) Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. J. Comp. Neurol. 462, 213–222

66. Moreno, Y., Nahban, J. F., Solomon, J., Mackenzie, C. D., and Geary, T. G. (2010) Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc. Natl. Acad. Sci. U.S.A. 107, 20120–20125

67. Adelsberger, H., Scheuer, T., and Dudel, J. (1997) A patch clamp study of a glutamatergic chloride channel on pharyngeal muscle of the nematode Ascaris suum. Neurosci. Lett. 230, 183–186

68. Martin, R. J. (1996) An electrophysiological preparation of Ascariis suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue milbemycin D. Parasitology 112, 247–252

69. Brownlee, D. J., Holden-Dye, L., and Walker, R. J. (1997) Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode Ascaris suum. Parasitology 115, 553–561

70. Holden-Dye, L., and Walker, R. J. (2006) Actions of glutamate and ivermectin on the pharyngeal muscle of Ascaridia galli: a comparative study with Caenorhabditis elegans. Int. J. Parasitol. 36, 395–402

71. Liu, J., Dent, J. A., Beech, R. N., and Prichard, R. K. (2004) Genomic organization of an ivermectin receptor subunit from Haemonchus contortus and expression of its putative promoter region in Caenorhabditis elegans. Mol. Biochem. Parasitol. 134, 267–274

72. Janssen, D., Derst, C., Buckinx, R., Van den Eynden, J., Rigo, J. M., and Van Kerkhove, E. (2010) Cys loop ligand-gated chloride channels in dorsal unpaired median neurons of the parasitic nematode Ascaris suum. Parasitology 137, 853–861

73. Janssen, D., Derst, C., Rigo, J. M., and Van Kerkhove, E. (2010) Cys loop ligand-gated chloride channels in dorsal unpaired median neurons of Locusta migratoria. J. Neurophysiol. 103, 2587–2598

74. Washio, H. (2002) Glutamate receptors on the somata of dorsal unpaired median neurons in cockroach, Periplaneta americana, thoracic ganglia. Zool. Sci. 19, 153–162

75. Collins, B., Kane, E. A., Reeves, D. C., Akabas, M. H., and Blau, I. (2012) Balance of activity between LNvs and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74, 706–718

76. McCarthy, E. V., Wu, Y., Decarvalho, T., Brandt, C., Cao, G., and Nitabach, M. N. (2011) Synchronized bilateral synaptic inputs to Drosophila melanogaster neuromodulatory rest/ arousal neurons. J. Neurosci. 31, 8181–8193

77. Strycharz, J. P., Berge, N. M., Alves, A. M., and Clark, J. M. (2011) Ivermectin acts as a posteclosion nymphicide by reducing blood feeding of human head lice (Anoplura: Pediculidae) that hatched from treated eggs. J. Med. Entomol. 48, 1174–1182

78. Gengs, C., Leung, H. T., Skingsley, D. R., Ilovchev, M. I., Yin, Z., Semenov, E. P., Burg, M. G., Hardie, R. C., and Pak, W. L. (2002) The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by orbit (hclA). J. Biol. Chem. 277, 42113–42120

79. Pantazis, A., Segaran, A., Liu, C. H., Nikolaev, A., Rister, J., Thum, A. S., Roeder, T., Semenov, E., Jussola, M., and Hardie, R. C. (2008) Distinct roles for two histamine receptors (hclA and hclB) at the Drosophila photoreceptor synapse. J. Neurosci. 28, 7250–7259

80. Hong, S. T., Bang, S., Paik, D., Kang, J., Hwang, S., Jeon, K., Chun, B., Hyun, S., Lee, Y., and Kim, J. (2006) Histamine and its receptors modulate temperature-preference behaviors in Drosophila. J. Neurosci. 26, 7245–7256

81. Yusein, S., Wolstenholme, A., and Semenov, E. (2010) Functional consequences of mutations in the Drosophila histamine receptor HCLB. J. Insect Physiol. 56, 21–27

82. Cebada, J., and García, U. (2007) Histamine operates Cl-gated channels in crayfish neurosecretory cells. J. Exp. Biol. 210, 3962–3969

83. McCavera, S., Rogers, A. T., Yates, D. M., Woods, D. J., and Wolstenholme, A. J. (2009) An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol. Pharmacol. 75, 1347–1355

84. Forrester, S. G., Prichard, R. K., and Beech, R. N. (2002) A glutamate-gated chloride channel subunit from Haemonchus contortus: expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. Biochem. Pharmacol. 63, 1061–1068

85. Njue, A. L., Hayashi, J., Kinne, L., Feng, X. P., and Prichard, R. K. (2004) Mutations in the extracellular domains of glutamate-gated chloride channel α3 and β subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. J. Neurochem. 89, 1137–1147

86. Ludmerer, S. W., Warren, V. A., Williams, B. S., Zheng, Y., Hunt, D. C., Ayer, M. B., Wallace, M. A., Chaudhary, A. G., Egan, M. A., Meinke, P. T., Dean, D. C., García, M. L., Culy, D. F., and Smith, M. M. (2002) Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both γ-aminobutyric acid-gated Rdl and glutamate-gated GluCl chloride channel subunits. Biochemistry 41, 6548–6560

87. Ribbs, R. E., and Gouaux, E. (2011) Principles of activation and permeation in an anion-selective Cys loop receptor. Nature 474, 54–60

88. Unwin, N. (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989

89. Lynagh, T., and Lynch, J. W. (2010) A glycine residue essential for high ivermectin sensitivity in Cys loop ion channel receptors. Int. J. Parasitol. 40, 1477–1481

90. Lynagh, T., Webb, T. I., Dixon, C. L., Cromer, B. A., and Lynch, J. W. (2011) Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel. J. Biol. Chem. 286, 43913–43924

91. Lynagh, T., and Lynch, J. W. (2012) Molecular mechanisms of Cys loop ion channel receptor modulation by ivermectin. Front. Mol. Neurosci. 5, 60

92. Ghosh, R., Andersen, E. C., Shapiro, J. A., Gerke, J. P., and Kruglyak, L. (2012) Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science 335, 574–578

93. Yamaguchi, M., Sawa, Y., Matsuda, K., Ozoe, F., and Ozoe, Y. (2012) Amino acid residues of both the extracellular and transmembrane domains influence binding of the parasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. Biochem. Biophys. Res. Commun. 419, 562–566

94. Tsali, E. L., and Hober, O. (2003) Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol. 56, 178–197