THE CHROMATIC NUMBER OF ALMOST STABLE KNESER HYPERGRAPHS

FRÉDÉRIC MEUNIER

Abstract. Let \(V(n, k, s) \) be the set of \(k \)-subsets of \([n]\) such that for all \(i, j \in S \), we have \(|i - j| \geq s\).

We define almost \(s \)-stable Kneser hypergraph \(KG^r([n])_{2\text{-stab}} \) to be the \(r \)-uniform hypergraph whose vertex set is \(V(n, k, s) \) and whose edges are the \(r \)-uples of disjoint elements of \(V(n, k, s) \).

With the help of a \(Z_p \)-Tucker lemma, we prove that, for \(p \) prime and for any \(n \geq kp \), the chromatic number of almost 2-stable Kneser hypergraphs \(KG^r([n])_{2\text{-stab}} \) is equal to the chromatic number of the usual Kneser hypergraphs \(KG^r([n]) \), namely that it is equal to \(\left\lfloor \frac{n-(k-1)r}{p-1} \right\rfloor \).

Defining \(\mu(r) \) to be the number of prime divisors of \(r \), counted with multiplicities, this result implies that the chromatic number of almost \(2^{\mu(r)} \)-stable Kneser hypergraphs \(KG^r([n])_{2^{\mu(r)}\text{-stab}} \) is equal to the chromatic number of the usual Kneser hypergraphs \(KG^r([n]) \) for any \(n \geq kr \), namely that it is equal to \(\left\lfloor \frac{n-(k-1)r}{p-1} \right\rfloor \).

1. Introduction and main results

Let \([a]\) denote the set \(\{1, \ldots, a\} \). The Kneser graph \(KG^2([n])_k \) for integers \(n \geq 2k \) is defined as follows: its vertex set is the set of \(k \)-subsets of \([n]\) and two vertices are connected by an edge if they have an empty intersection.

Kneser conjectured [6] in 1955 that its chromatic number \(\chi \left(KG^2([n])_k \right) \) is equal to \(n - 2k + 2 \).

It was proved to be true by Lovász in 1979 in a famous paper [7], which is the first and one of the most spectacular application of algebraic topology in combinatorics.

Soon after this result, Schrijver [11] proved that the chromatic number remains the same when we consider the subgraph \(KG^2([n])_{2\text{-stab}} \) of \(KG^2([n])_k \) obtained by restricting the vertex set to the \(k \)-subsets that are 2-stable, that is, that do not contain two consecutive elements of \([n]\) (where 1 and \(n \) are considered to be also consecutive).

Let us recall that an hypergraph \(H \) is a set family \(H \subseteq 2^V \), with vertex set \(V \). An hypergraph is said to be \(r \)-uniform if all its edges \(S \in H \) have the same cardinality \(r \). A proper coloring with \(t \) colors of \(H \) is a map \(c : V \to [t] \) such that there is no monochromatic edge, that is such that in each edge there are two vertices \(i \) and \(j \) with \(c(i) \neq c(j) \). The smallest number \(t \) such that there exists such a proper coloring is called the chromatic number of \(H \) and denoted by \(\chi(H) \).

In 1986, solving a conjecture of Erdős [4], Alon, Frankl and Lovász [2] found the chromatic number of Kneser hypergraphs. The Kneser hypergraph \(KG^r([n])_k \) is a \(r \)-uniform hypergraph which has the \(k \)-subsets of \([n]\) as vertex set and whose edges are formed by the \(r \)-uple of disjoint \(k \)-subsets of \([n]\). Let \(n, k, r, t \) be positive integers such that \(n \geq (t-1)(r-1)+rk \). Then \(\chi \left(KG^r([n])_k \right) > t \). Combined with a lemma by Erdős giving an explicit proper coloring, it implies that \(\chi \left(KG^r([n])_k \right) = \left\lfloor \frac{n-(k-1)r}{t-1} \right\rfloor \).

The proof found by Alon, Frankl and Lovász used tools from algebraic topology.

In 2001, Ziegler gave a combinatorial proof of this theorem [13], which makes no use of homology, simplicial approximation,... He was inspired by a combinatorial proof of the Lovász theorem found by Matoušek [9]. A subset \(S \subseteq [n] \) is \(s \)-stable if any two of its elements are at least “at distance \(s \)
apart” on the n-cycle, that is, if $s \leq |i - j| \leq n - s$ for distinct $i, j \in S$. Define then $K^r\binom{n}{k}_{s,\text{stab}}$ as the hypergraph obtained by restricting the vertex set of $K^r\binom{n}{k}$ to the s-stable k-subsets. At the end of his paper, Ziegler made the supposition that the chromatic number of $K^r\binom{n}{k}_{r,\text{stab}}$ is equal to the chromatic number of $K^r\binom{n}{k}$ for any $n \geq kr$. This supposition generalizes both Schrijver’s theorem and the Alon-Frankl-Lovász theorem. Alon, Drewnowski and Lucsak make this supposition an explicit conjecture in [1].

Conjecture 1. Let n, k, r be non-negative integers such that $n \geq rk$. Then

$$\chi\left(K^r\binom{n}{k}_{r,\text{stab}}\right) = \left\lceil \frac{n - (k - 1)r}{r - 1} \right\rceil.$$

We prove a weaker form of this statement, but which strengthens the Alon-Frankl-Lovász theorem. Let $V(n, k, s)$ be the set of k-subsets S of $[n]$ such that for all $i, j \in S$, we have $|i - j| \geq s$ We define the almost s-stable Kneser hypergraphs $K^r\binom{n}{k}_{s,\text{stab}}$ to be the r-uniform hypergraph whose vertex set is $V(n, k, s)$ and whose edges are the r-uples of disjoint elements of $V(n, k, s)$.

Theorem 1. Let p be a prime number and n, k be non negative integers such that $n \geq pk$. We have

$$\chi\left(K^p\binom{n}{k}_{2,\text{stab}}\right) \geq \left\lceil \frac{n - (k - 1)p}{p - 1} \right\rceil.$$

Combined with the lemma by Erdős, we get that

$$\chi\left(K^p\binom{n}{k}_{2,\text{stab}}\right) = \left\lceil \frac{n - (k - 1)p}{p - 1} \right\rceil.$$

Moreover, we will see that it is then possible to derive the following corollary. Denote by $\mu(r)$ the number of prime divisors of r counted with multiplicities. For instance, $\mu(6) = 2$ and $\mu(12) = 3$. We have

Corollary 1. Let n, k, r be non-negative integers such that $n \geq rk$. We have

$$K^r\binom{n}{k}_{2p(r),\text{stab}} = \left\lceil \frac{n - (k - 1)r}{r - 1} \right\rceil.$$

2. **Notations and tools**

$Z_p = \{\omega, \omega^2, \ldots, \omega^p\}$ is the cyclic group of order p, with generator ω.

We write σ^{n-1} for the $(n - 1)$-dimensional simplex with vertex set $[n]$ and by σ^{n-1}_{k-1} the $(k - 1)$-skeleton of this simplex, that is the set of faces of σ^{n-1} having k or less vertices.

If A and B are two sets, we write $A \uplus B$ for the set $(A \times \{1\}) \cup (B \times \{2\})$. For two simplicial complexes, K and L, with vertex sets $V(K)$ and $V(L)$, we denote by $K \ast L$ the join of these two complexes, which is the simplicial complex having $V(K) \uplus V(L)$ as vertex set and

$$\{F \uplus G : F \in K, G \in L\}$$

as set of faces. We define also K^n to be the join of n disjoint copies of K.

Let $X = (x_1, \ldots, x_n) \in (Z_p \cup \{0\})^n$. We denote by $\operatorname{alt}(X)$ the size of the longest alternating subsequence of non-zero terms in X. A sequence (j_1, j_2, \ldots, j_m) of elements of Z_p is said to be alternating if any two consecutive terms are different. For instance (assume $p = 5$) $\operatorname{alt}(\omega^2, \omega^3, 0, \omega^4, 0, \omega^2) = 4$ and $\operatorname{alt}(\omega^2, \omega^4, \omega^1, 0, 0, \omega^4) = 2$.

Any element element $X = (x_1, \ldots, x_n) \in (Z_p \cup \{0\})^n$ can alternatively and without further mention be denoted by a p-uple (X_1, \ldots, X_p) where $X_j := \{i \in [n] : x_i = \omega^j\}$. Note that the X_j are then necessarily disjoint. For two elements $X, Y \in (Z_p \cup \{0\})^n$, we denote by $X \subseteq Y$ the fact
that for all $j \in [p]$ we have $X_j \subseteq Y_j$. When $X \subseteq Y$, note that the sequence of non-zero terms in (x_1, \ldots, x_n) is a subsequence of (y_1, \ldots, y_n).

The proof of Theorem 1 makes use of a variant of the Z_p-Tucker lemma by Ziegler [13].

Lemma 1 (Z_p-Tucker lemma). Let p be a prime, $n, m \geq 1$, $\alpha \leq m$ and let

$$
\lambda : (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\} \to Z_p \times [m]
$$

be a Z_p-equivariant map satisfying the following properties:

- for all $X^{(1)} \subseteq X^{(2)} \subseteq (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$, if $\lambda_2(X^{(1)}) = \lambda_2(X^{(2)}) \leq \alpha$, then $\lambda_1(X^{(1)}) = \lambda_1(X^{(2)})$;
- for all $X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(p)} \subseteq (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$, if $\lambda_2(X^{(1)}) = \lambda_2(X^{(2)}) = \ldots = \lambda_2(X^{(p)}) \geq \alpha + 1$, then the $\lambda_1(X^{(i)})$ are not pairwise distinct for $i = 1, \ldots, p$.

Then $\alpha + (m - \alpha)(p - 1) \geq n$.

We can alternatively say that $X \mapsto \lambda(X) = (\lambda_1(X), \lambda_2(X))$ is a Z_p-equivariant simplicial map from $\text{sd}(Z_p^n)$ to $\left((Z_p^n)^* \ast (\sigma_{p-2}^{p-1})^{*m-\alpha}\right)$, where $\text{sd}(K)$ denotes the fist barycentric subdivision of a simplicial complex K.

Proof of the Z_p-Tucker lemma. According to Dold’s theorem [3, 8], if such a map λ exists, the dimension of $\left((Z_p^n)^* \ast (\sigma_{p-2}^{p-1})^{*m-\alpha}\right)$ is strictly larger than the connectivity of Z_p^n, that is $\alpha + (m - \alpha)(p - 1) > n - 2$.

It is also possible to give a purely combinatorial proof of this lemma through the generalized Ky Fan theorem from [5].

3. Proof of the main results

Proof of Theorem 1. We follow the scheme used by Ziegler in [13]. We endow $2^{[n]}$ with an arbitrary linear order \preceq.

Assume that $K^{(n)}_{2, \text{stab}}$ is properly colored with C colors $\{1, \ldots, C\}$. For $S \in V(n, k, 2)$, we denote by $c(S)$ its color. Let $\alpha = p(k - 1)$ and $m = p(k - 1) + C$.

Let $X = (x_1, \ldots, x_n) \in (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$. We can write alternatively $X = (X_1, \ldots, X_p)$.

- if $\text{alt}(X) \leq p(k - 1)$, let j be the index of the X_j containing the smallest integer (ω^l is then the first non-zero term in (x_1, \ldots, x_n)), and define
 $$
 \lambda(X) := (j, \text{alt}(X)).
 $$

- if $\text{alt}(X) \geq p(k - 1) + 1$: in the longest alternating subsequence of non-zero terms of X, at least one of the elements of Z_p appears at least k times; hence, in at least one of the X_j there is an element S of $V(n, k, 2)$; choose the smallest such S (according to \preceq). Let j be such that $S \subseteq X_j$ and define
 $$
 \lambda(X) := (j, c(S) + p(k - 1)).
 $$

λ is Z_p-equivariant map from $(Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$ to $Z_p \times [m]$.

Let $X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(p)} \subseteq (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$. If $\lambda_2(X^{(1)}) = \lambda_2(X^{(2)}) \leq \alpha$, then the longest alternating subsequences of non-zero terms of $X^{(1)}$ and $X^{(2)}$ have same size. Clearly, the first non-zero terms of $X^{(1)}$ and $X^{(2)}$ are equal.

Let $X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(p)} \subseteq (Z_p \cup \{0\})^n \setminus \{(0, \ldots, 0)\}$. If $\lambda_2(X^{(1)}) = \lambda_2(X^{(2)}) = \ldots = \lambda_2(X^{(p)}) \geq \alpha + 1$, then for each $i \in [p]$ there is $S_i \in V(n, k, 2)$ and $j_i \in [p]$ such that we have $S_i \subseteq X^{(i)}_{j_i}$ and $\lambda_2(X^{(i)}) = c(S_i)$. If all $\lambda_1(X^{(i)})$ would be distinct, then it would mean that all j_i
would be distinct, which implies that the S_i would be disjoint but colored with the same color, which is impossible since c is a proper coloring.

We can thus apply the Z_p-Tucker lemma (Lemma 1) and conclude that $n \leq p(k-1) + C(p-1)$, that is

$$C \geq \left\lceil \frac{n - (k-1)p}{p-1} \right\rceil.$$

\[
\square
\]

To prove Corollary 1 we prove the following lemma, both statement and proof of which are inspired by Lemma 3.3 of [1].

Lemma 2. Let r_1, r_2, s_1, s_2 be non-negative integers ≥ 1, and define $r = r_1 r_2$ and $s = s_1 s_2$.

Assume that for $i = 1, 2$ we have $\chi \left(KG^{r_i}([n])_{k, s_{stab}}\right) = \left\lceil \frac{n - (k-1)r_i}{r_i - 1} \right\rceil$ for all integers n and k such that $n \geq r_i k$.

Then we have $\chi \left(KG^{r}([n])_{k, s_{stab}}\right) = \left\lceil \frac{n - (k-1)r}{r - 1} \right\rceil$ for all integers n and k such that $n \geq rk$.

Proof. Let $n \geq (t-1)(r-1)+rk$. We have to prove that $\chi \left(KG^{r}([n])_{k, s_{stab}}\right) > t$. For a contradiction, assume that $KG^{r}([n])_{k, s_{stab}}$ is properly colored with $C \leq t$ colors. For $S \in V(n, k, p)$, we denote by $c(S)$ its color. We wish to prove that there are S_1, \ldots, S_t disjoint elements of $V(n, k, s)$ with $c(S_1) = \ldots = c(S_t)$.

Take $A \in V(n, n_1, s_1)$, where $n_1 := r_1 k + (t-1)(r_1 - 1)$. Denote $a_1 < \ldots < a_{n_1}$ the elements of A and define $h : V(n_1, k, s_2) \to [t]$ as follows: let $B \in V(n_1, k, s_2)$; the k-subset $S = \{a_i : i \in B\} \subseteq [n]$ is an element of $V(n, k, s)$, and gets as such a color $c(S)$; define $h(B)$ to be this color. Since $n_1 = r_1 k + (t-1)(r_1 - 1)$, there are B_1, \ldots, B_{r_1} disjoint elements of $V(n_1, k, s_2)$ having the same color by h. Define $\hat{h}(A)$ to be this common color.

Make the same definition for all $A \in V(n, n_1, s_1)$. The map \hat{h} is a coloring of $KG^{r}([n])_{k, s_{stab}}$ with t colors. Now, note that

$$(t-1)(r-1)+rk = (t-1)(r_1 r_2 - r_2 + r_2 - 1) + r_1 r_2 k = (t-1)(r_2 - 1) + r_2(t-1)(r_1 - 1) + r_1 k$$

and thus that $n \geq (t-1)(r_2 - 1) + r_2 n_1$. Hence, there are A_1, \ldots, A_{r_2} disjoint elements of $V(n, n_1, s_1)$ with the same color. Each of the A_i gets its color from r_1 disjoint elements of $V(n, k, s)$, whence there are $r_1 r_2$ disjoint elements of $V(n, k, s)$ having the same color by the map c. \[
\square
\]

Proof of Corollary 1. Direct consequence of Theorem 1 and Lemma 2.

\[
\square
\]

4. SHORT COMBINATORIAL PROOF OF SCHRIJVER’S THEOREM

Recall that Schrijver’s theorem is

Theorem 2. Let $n \geq 2k$. $\chi \left(KG([n])_{k, 2_{stab}}\right) = n - 2k + 2$.

When specialized for $p = 2$, Theorem 1 does not imply Schrijver’s theorem since the vertex set is allowed to contain subsets with 1 and n together. Anyway, by a slight modification of the proof, we can get a short combinatorial proof of Schrijver’s theorem. Alternative proofs of this kind – but not that short – have been proposed in [10, 13]

For a positive integer n, we write $\{+, -, 0\}^n$ for the set of all signed subsets of $[n]$, that is, the family of all pairs (X^+, X^-) of disjoint subsets of $[n]$. Indeed, for $X \in \{+, -, 0\}^n$, we can define $X^+ := \{i \in [n] : X_i = +\}$ and analogously X^-. We define $X \subseteq Y$ if and only if $X^+ \subseteq Y^+$ and $X^- \subseteq Y^-$. By alt(X) we denote the length of the longest alternating subsequence of non-zero signs in X. For instance: alt$(+0-+0-) = 4$, while alt$((-++-+0+-) = 5$.

4
The proof makes use of the following well-known lemma see \cite{2, 12, 13} (which is a special case of Lemma 1 for \(p = 2 \)).

Lemma 3 (Tucker’s lemma). Let \(\lambda : \{-,0,+,+\}^n \setminus \{(0,0,\ldots,0)\} \to \{-1,+1,\ldots,-n,+n\} \) be a map such that \(\lambda(-X) = -\lambda(X) \). Then there exist \(A, B \in \{-,0,+,+\}^n \) such that \(A \subseteq B \) and \(\lambda(A) = -\lambda(B) \).

Proof of Schrijver’s theorem. The inequality \(\chi(KG^2(\frac{n}{k})_{2-\text{stab}}) \leq n - 2k + 2 \) is easy to prove (with an explicit coloring) and well-known. So, to obtain a combinatorial proof, it is sufficient to prove the reverse inequality.

Let us assume that there is a proper coloring \(c \) of \(KG^2(\frac{n}{k})_{2-\text{stab}} \) with \(n - 2k + 1 \) colors. We define the following map \(\lambda \) on \(\{-,0,+,+\}^n \setminus \{(0,0,\ldots,0)\} \).

- if \(\text{alt}(X) \leq 2k - 1 \), we define \(\lambda(X) = \pm \text{alt}(X) \), where the sign is determined by the first sign of the longest alternating subsequence of \(X \) (which is actually the first non zero term of \(X \)).
- if \(\text{alt}(X) \geq 2k \), then \(X^+ \) and \(X^- \) both contain a stable subset of \([n] \) of size \(k \). Among all stable subsets of size \(k \) included in \(X^- \) and \(X^+ \), select the one having the smallest color. Call it \(S \). Then define \(\lambda(X) = \pm (c(S) + 2k - 1) \) where the sign indicates which of \(X^- \) or \(X^+ \) the subset \(S \) has been taken from. Note that \(c(S) \leq n - 2k \).

The fact that for any \(X \in \{-,0,+,+\}^n \setminus \{(0,0,\ldots,0)\} \) we have \(\lambda(-X) = -\lambda(X) \) is obvious. \(\lambda \) takes its values in \(\{-1,+1,\ldots,-n,+n\} \). Now let us take \(A \) and \(B \) as in Tucker’s lemma, with \(A \subseteq B \) and \(\lambda(A) = -\lambda(B) \). We cannot have \(\text{alt}(A) \leq 2k - 1 \) since otherwise we will have a longest alternating in \(B \) containing the one of \(A \), of same length but with a different sign. Hence \(\text{alt}(A) \geq 2k \). Assume w.l.o.g. that \(\lambda(A) \) is defined by a stable subset \(S_A \subseteq A^- \). Then the stable subset \(S_B \) defining \(\lambda(B) \) is such that \(S_B \subseteq B^+ \), which implies that \(S_A \cap S_B = \emptyset \). We have moreover \(c(S_A) = |\lambda(A)| = |\lambda(B)| = c(S_B) \), but this contradicts the fact that \(c \) is proper coloring of \(KG^2(\frac{n}{k})_{2-\text{stab}} \).

5. **Concluding remarks**

We have seen that one of the main ingredients is the notion of alternating sequence of elements in \(\mathbb{Z}_p \). Here, our notion only requires that such an alternating sequence must have \(x_i \neq x_{i+1} \). To prove Conjecture 1 we need probably something stronger. For example, a sequence is said to be alternating if any \(p \) consecutive terms are all distinct. Anyway, all our attempts to get something through this approach have failed.

Recall that Alon, Drewnowski and Luczak \cite{1} proved Conjecture 1 when \(r \) is a power of 2. With the help of a computer and \texttt{ipsolve}, we check that Conjecture 1 is moreover true for

- \(n \leq 9, \ k = 2, \ r = 3 \).
- \(n \leq 12, \ k = 3, \ r = 3 \).
- \(n \leq 14, \ k = 4, \ r = 3 \).
- \(n \leq 13, \ k = 2, \ r = 5 \).
- \(n \leq 16, \ k = 3, \ r = 5 \).
- \(n \leq 21, \ k = 4, \ r = 5 \).

References

1. N. Alon, L. Drewnowski, and T Luczak, *Stable Kneser hypergraphs and ideals in \(\mathbb{N} \) with the Nikodým property*, Proceedings of the American mathematical society 137 (2009), 467–471.
2. N. Alon, P. Frankl, and L. Lovász, *The chromatic number of Kneser hypergraphs*, Transactions Amer. Math. Soc. 298 (1986), 359–370.
3. A. Dold, *Simple proofs of some Borsuk-Ulam results*, Contemp. Math. 19 (1983), 65–69.
4. P. Erdős, *Problems and results in combinatorial analysis*, Colloquio Internazionale sulle Teorie Combinatorie (Rome 1973), Vol. II, No. 17 in Atti dei Convegni Lincei, 1976, pp. 3–17.

5. B. Hanke, R. Sanyal, C. Schultz, and G. Ziegler, *Combinatorial stokes formulas via minimal resolutions*, Journal of Combinatorial Theory, series A (to appear).

6. M. Kneser, *Aufgabe 360*, Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abteilung, vol. 50, 1955, p. 27.

7. L. Lovász, *Kneser's conjecture, chromatic number and homotopy*, Journal of Combinatorial Theory, Series A 25 (1978), 319–324.

8. J. Matoušek, *Using the Borsuk-Ulam theorem*, Springer Verlag, Berlin–Heidelberg–New York, 2003.

9. ———, *A combinatorial proof of Kneser's conjecture*, Combinatorica 24 (2004), 163–170.

10. F. Meunier, *Combinatorial Stokes formulae*, European Journal of Combinatorics 29 (2008), 286–297.

11. A. Schrijver, *Vertex-critical subgraphs of Kneser graphs*, Nieuw Arch. Wiskd., III. Ser. 26 (1978), 454–461.

12. A. W. Tucker, *Some topological properties of disk and sphere*, Proceedings of the First Canadian Mathematical Congress, Montreal 1945, 1946, pp. 285–309.

13. G. Ziegler, *Generalized Kneser coloring theorems with combinatorial proofs*, Invent. Math. 147 (2002), 671–691.

Université Paris Est, LVMT, ENPC, 6-8 avenue Blaise Pascal, Cité Descartes Champs-sur-Marne, 77455 Marne-la-Vallée cedex 2, France.

E-mail address: frederic.meunier@enpc.fr