FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses

Ahluwalia, Tarunveer S.; Eliasen, Anders U.; Sevelsted, Astrid; Pedersen, Casper-Emil T.; Stokholm, Jakob; Chawes, Bo; Bork-Jensen, Jette; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Linneberg, Allan; Sharma, Amitabh; Weiss, Scott T.; Evans, Michael D.; Jackson, Daniel J.; Morin, Andraeanne; Krogfelt, Karen A.; Schjørring, Susanne; Mortensen, Preben B.; Hougaard, David M.; Bybjerg-Grauholm, Jonas; Bækvad-Hansen, Marie; Mors, Ole; Nordentoft, Merete; Børgium, Anders D.; Werge, Thomas; Agerbo, Esben; Gern, James E.; Lemanske, Robert F.; Ober, Carole; Pedersen, Anders G.; Bisgaard, Hans; Bønnelykke, Klaus

Published in:
Nature Communications

DOI:
10.1038/s41467-020-19814-6

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Ahluwalia, T. S., Eliasen, A. U., Sevelsted, A., Pedersen, C-E. T., Stokholm, J., Chawes, B., Bork-Jensen, J., Grarup, N., Pedersen, O., Hansen, T., Linneberg, A., Sharma, A., Weiss, S. T., Evans, M. D., Jackson, D. J., Morin, A., Krogfelt, K. A., Schjørring, S., Mortensen, P. B., ... Bønnelykke, K. (2020). FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nature Communications, 11, [6398]. https://doi.org/10.1038/s41467-020-19814-6
FUT2–ABO epistasis increases the risk of early childhood asthma and *Streptococcus pneumoniae* respiratory illnesses

Tarunveer S. Ahluwalia, Anders U. Ericsen, Astrid Sevelsted, Casper-Emil T. Pedersen, Jakob Stokholm, Bo Chawes, Jette Bork-Jensen, Niels Grarup, Oluf Pedersen, Torben Hansen, Allan Linneberg, Amitabh Sharma, Scott T. Weiss, Michael D. Evans, Daniel J. Jackson, Allan Linneberg, Karen A. Krogfelt, Susanne Schjørring, Preben B. Mortensen, David M. Hougaard, Jonas Bybjerg-Grauholm, Marie Bækvad-Hansen, Ole Mors, Merete Nordentoft, Anders D. Børglum, Thomas Werge, Esben Agerbo, James E. Gern, Robert F. Lemanske Jr., Carole Ober, Anders G. Pedersen, Hans Bisgaard & Klaus Bønnelykke

Asthma with severe exacerbation is the most common cause of hospitalization among young children. We aim to increase the understanding of this clinically important disease entity through a genome-wide association study. The discovery analysis comprises 2866 children experiencing severe asthma exacerbation between ages 2 and 6 years, and 65,415 non-asthmatic controls, and we replicate findings in 918 children from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) birth cohorts. We identify rs281379 near *FUT2/MAMSTR* on chromosome 19 as a novel risk locus (OR = 1.18 (95% CI = 1.11–1.25), \(P_{\text{discovery}} = 2.6 \times 10^{-9} \)) as well as a biologically plausible interaction between functional variants in *FUT2* and *ABO*. We further discover and replicate a potential causal mechanism behind this interaction related to *S. pneumoniae* respiratory illnesses. These results suggest a novel mechanism of early childhood asthma and demonstrates the importance of phenotype-specificity for discovery of asthma genes and epistasis.
Asthma with severe exacerbations is the most common cause of hospitalization among young children and has a severe impact on the quality of life and health care costs1,2. Exacerbations are typically triggered by respiratory infections, but the host factors causing recurrent infections and exacerbations in some children remain incompletely understood3.

As a result, current treatment options and preventive measures are inadequate4 and there is a need for improved understanding of the underlying pathobiology.

Asthma heritability is reported to be \(\geq 50\%\)5 with higher estimates reported for boys compared to girls6 and for disease with early onset7. Even though genome-wide association studies (GWAS) have identified several common8–10 and low-frequency susceptibility variants11,12, these only explain a small proportion of the disease variance observed between individuals, a phenomenon referred to as “missing heritability”13. One potential cause for the missing heritability is the heterogeneous nature of asthma, which is a syndrome thought to represent several functional subtypes of disease (endotypes) with different clinical characteristics14, such as age at onset and severity. One specific subtype is likely to be closely linked to a specific disease mechanism and might therefore allow detection of subtype-specific susceptibility loci as previously demonstrated in a GWAS of early childhood asthma with severe exacerbations10. Another potential explanation for the missing heritability is the interaction between genetic variants, so-called epistasis, although only a few examples of this have been demonstrated in human studies15,16.

Here, we aim to improve the understanding of early childhood asthma with severe exacerbations through a large-scale genome-wide association study with a focus on coding gene variants. We utilize genetic data from two Danish case–controls studies (COPSAC\textsubscript{severe} (Copenhagen Prospective Studies on Asthma in Childhood-Severe) and iPSYCH (Integrative Psychiatric Research)), with a total of 68,281 individuals, including 2866 cases, defined as having at least one acute hospitalization due to asthma during the first 6 years of life, and 65,415 non-asthmatic controls. We replicate the findings and further elaborate on the biologically plausible interaction between functional variants of the FUT2 and ABO genes. We also explore potential underlying mechanisms using prospective clinical studies with information on infectious triggers of acute respiratory illnesses.

Results

Identification of the FUT2 region as a susceptibility locus for early childhood asthma.

The COPSAC\textsubscript{severe} study included 1204 children with more than two hospitalizations for asthma and 5328 controls, while the iPSYCH study included 1662 children with at least one hospitalization for asthma and 60,087 controls (Supplementary Table 1). In order to improve genomic resolution in the human leukocyte antigen (HLA) on chromosome 6 and increase the share of functional variants, we imputed HLA types and HLA amino acid polymorphisms, and performed a single-nucleotide polymorphism (SNP) exome-wide analysis comprising common (minor allele frequency (MAF) \(\geq 5\%\)) and low frequency (1% \(\leq \text{MAF} < 5\%\)) SNPs for each of the two discovery studies17. The summary statistics were meta-analyzed using fixed effects with the inverse-variance weighting method. All SNPs reaching genome-wide significance after the discovery meta-analysis and their association summary statistics are listed in Supplementary Data File 1. Nine loci surpassed the genome-wide significance threshold (Fig. 1, Table 1 and Supplementary Fig. 1), of which the FUT2/MAMSTR locus on chromosome 19, with the top SNP rs281379 (odds ratio (OR) = 1.18 (95% confidence interval (CI) = 1.11–1.25), \(P_{\text{discovery}} = 2.6 \times 10^{-8} \)) (Supplementary Fig. 2), emerged as a novel locus associated with asthma. The remaining eight loci were known asthma loci, including rs7219923 in GSDMB (OR = 1.65 (95% CI = 1.56–1.75), \(P = 1.6 \times 10^{-68} \))18, rs6967330 in CDHR3 (OR = 1.41 (95% CI = 1.32–1.51), \(P = 2.1 \times 10^{-23} \))10, rs1071630 in HLA-DQA1 (OR = 1.25 (95% CI = 1.18–1.32), \(P = 8.0 \times 10^{-14} \))19, rs340933 and rs1342326 in IL33 (OR = 1.37 (95% CI = 1.26–1.49), \(P = 1.6 \times 10^{-13} \))10, IL1RL1 (OR = 1.40 (95% CI = 1.27–1.54), \(P = 7.7 \times 10^{-12} \))18, rs1043828 in WDR36 (OR = 1.20 (95% CI = 1.14–1.27), \(P = 1.0 \times 10^{-10} \))20, and rs20541 in IL13 (OR = 1.21 (95% CI = 1.13–1.29), \(P = 1.0 \times 10^{-8} \))9 (Table 1).

Conditional analyses suggested two independent signals near IL33, where both variants remained genome-wide significant (rs340933: OR = 1.31 (95% CI = 1.21–1.43), \(P = 1.6 \times 10^{-10} \))21, and rs20541 in IL13 (OR = 1.21 (95% CI = 1.13–1.29), \(P = 1.0 \times 10^{-8} \))9 (Table 1). There was significant heterogeneity between the discovery studies for four out of nine top loci. As expected, this was consistently due to higher effect sizes in the COPSAC\textsubscript{severe} cohort with a more severe and specific phenotype, in terms of a higher number of hospitalizations (Table 1 and Supplementary Table 1).

![Fig. 1 Manhattanno plot depicting loci associated with childhood asthma with severe exacerbations in the discovery genome-wide meta-analysis.](image)

Association P value (suggestive threshold line in black): \(1 \times 10^{-4} \), (genome-wide threshold line in red): \(5.0 \times 10^{-8} \). Associations are from fixed-effect meta-analyses based on logistic regression models adjusted for sex and the first ten principal components. \(N_{\text{discovery}} = 68,281 \) individuals (\(N_{\text{COPSAC\textsubscript{severe}}} = 6532 \) and \(N_{\text{iPSYCH}} = 61,749 \)).
analyses based on the number of hospitalizations consistently showed highest effect sizes in the group of children with most frequent hospitalizations in both COPSACsevere and iPSYCH, and resulted in comparable effect sizes between studies (Supplementary Data File 2). The association patterns between the two discovery cohorts were similar as illustrated by the individual Manhattan plots (Supplementary Fig. 3).

The large proportion of individuals with psychiatric disease in the iPSYCH cohort did not seem to affect the results since stratified analysis based on psychiatric case/control status showed no significant differences in asthma association for the nine top loci (Supplementary Table 2). Also, despite a higher prevalence of asthma hospitalizations among individuals with psychiatric disease, none of the top asthma SNPs showed association with psychiatric case status (Supplementary Table 3).

The novel FUT2/MAMSTR signal was replicated in the COPSAC birth cohorts (COPSAC2000 and COPSAC2010 combined), where there was evidence of an association between rs281379 and asthma before the age of 6 years (OR = 1.38 (95% CI = 1.09–1.75), Preplication = 0.008). We also found evidence of association between the rs281379 SNP and childhood asthma at the age of 6 years in the COAST (Comparative Outcomes And Service Utilization Trends) cohort (OR = 1.79 (95% CI = 1.00–3.30), Preplication = 0.05) with the combined meta-analysis (discovery and replication stages) remaining genome-wide significant (OR = 1.20 (95% CI = 1.13–1.27), Pcombined = 9.2 × 10^{-10}) (Table 1). In addition, the SNP was associated with asthma onset during the first 6 years of life in the UK Biobank dataset (OR = 1.06 (95% CI = 1.02–1.10), P = 0.002, in 5881 cases and 88,097 controls) (Supplementary Table 4), but not with asthma after 6 years of life (OR = 1.00 (95% CI = 0.98–1.02), P = 0.96) in 38,860 cases and 88,097 controls. The FUT2/ MAMSTR top SNP, rs281379, was not associated with lung function or other asthma-related traits in the COPSAC birth cohorts (Supplementary Table 5).

Based on gene expression data from nasal epithelium cells (NECs) obtained from the COPSAC2010 cohort (357 children), we examined the presence of expression quantitative trait loci (eQTL) signals for the FUT2/MAMSTR top SNP, rs281379. This SNP was a strong eQTL for FUT2 (Beta = 0.71, (95% CI = 0.66–0.77), P = 2.05 × 10^{-78}), a strong eQTL for RASIP (Beta = −0.42, (95% CI = −0.52–−0.32), P = 3.47 × 10^{-14}), and a weak eQTL for FAM83E (Beta = −0.06, (95% CI = −0.12 to −0.01), P = 0.02), and RPL8 (Beta = 0.03, (95% CI = 0.00–0.06), P = 0.02) (Supplementary Table 6).

In an attempt to determine the causal variant for the FUT2/ MAMSTR locus, we applied the Ensemble’s variant effect predictor (VEP) using the SNPs in the 99% credible set (Supplementary Table 7). Among the six SNPs in the credible set, one impacted the MAMSTR gene, while the remaining five SNPs affected FUT2. Overall, VEP estimated a 59% probability that the true causal variant impacts FUT2. The credible set included the functional SNP rs601338 (nonsense mutation, W143*), which was in high linkage disequilibrium (LD, r^2 = 0.81, D’ = 0.97) with the top SNP rs281379 in the FUT2 locus and showed similar evidence of association with asthma (OR = 1.16 (95% CI = 1.09–1.23), P = 1.6 × 10^{-7}). We further used the Combined Annotation-Dependent Depletion (CADD) database (also PolyPhen2 and SIFT) to identify the functionality (deleterious, disease causal, pathogenicity) of variants at this locus, showing the highest CADD score (48) for the functional FUT2 SNP, rs601338, followed by rs22879922 related to RASIP1 with a score of 26 (Supplementary Table 8).

FUT2 enzyme activity is necessary for secretion of ABO antigens (A/B/H) in body fluids and on epithelial mucosal surfaces determining the “secretor”/”non-secretor” status. The

Chrs	SNP	DA	iPSYCH n	DA (OR 95% CI)	P-value (combined replication)
17	rs27919258	T/C	112	1.01 (0.93–1.08)	0.76
4	rs20963380	A/G	126	0.99 (0.91–1.18)	0.90
7	rs10865956	G/A	107	1.01 (0.93–1.09)	0.91
5	rs1342326	A/G	105	0.99 (0.91–1.11)	0.91
21	rs20541	A/G	136	1.01 (0.93–1.09)	0.91

The study-specific logistic regression models were adjusted for six and ten principal components, respectively.
nonsense FUT2 mutation W143* (rs601338) inactivates the FUT2 enzyme and homozygosity (genotype AA) results in the “non-secretor” status, whereas genotypes AG/GG result in “secretor” status.22 The A-allele related to “secretor” status was associated with an increased risk of asthma in the current study.

FUT2–ABO epistatic effects increased the risk of early childhood asthma. Based on the known biological function of FUT2 for the secretion of A and B antigens on epithelial surfaces, including airway epithelium, we looked for evidence of an association between the ABO locus on chromosome 9 and childhood asthma with severe exacerbations. The top signal in the ABO region was the intronic ABO SNP rs505922, showing a moderate association signal in the discovery stage, albeit without reaching genome-wide significance (OR = 1.13 (95% CI = 1.07–1.20), P = 1.11 × 10^-3). This effect was similar in both discovery cohorts (COPSACsevere OR = 1.15 (95% CI = 1.05–1.27), P = 0.0023; iPYSCH: OR = 1.12 (95% CI = 1.04–1.20), P = 0.0012). The ABO top SNP, rs505922, is in almost complete LD with the frameshift/deletion polymorphism rs8176719 (r^2 = 0.96, D^2 = 1.0), with the rs505922 major (T) allele being correlated with the rs8176719 deletion encoding the O antigen.23,24 The rs505922 minor (C) allele was associated with increased risk of childhood asthma, indicating that individuals with A, B, or AB blood groups have a higher risk of childhood asthma.

The presence of association signals in both the FUT2 and ABO genes raised the possibility that these signals were caused by the same mechanism, namely, secretion of A/B antigens. If this was the case, the two loci should show evidence of interaction in the current study. For the secretion of A and B antigens on epithelial surfaces, a less specific secretion mechanism, as we only observed a significant correlation between the FUT2 and ABO SNPs using the most severe cases (beta = 0.17 (95% CI = 0.07; 0.27), P = 9.2 × 10^-4) (Supplementary Table 10). We found a tendency of a similar increase in interaction estimate with increased severity in the iPYSCH data (Supplementary Table 9). To investigate the likelihood of observing the same severity-driven interaction signal for the COPSACsevere cohort, we performed 10,000 phenotype permutations, and observed one interaction that showed an interaction effect with similar statistical significance in both the overall analysis and most severe strata. Importantly, the direction of this interaction was as expected from the known biological interaction between the two genes, since no effect was observed from the ABO variation in non-secretors, while there was an increasing effect with increasing numbers of functional FUT2 alleles (secretors), as illustrated by FUT2–ABO-stratified analyses and risk-determining heat maps (Table 3, Figs. 2 and 3, and Supplementary Data File 3).

We replicated this finding in the COPSAC birth cohorts, which showed a similar statistically significant interaction between the functional FUT2 SNP and the ABO SNP (interaction OR = 1.50 (95% CI = 1.05–2.17), P = 0.03) (Table 3). Again, the direction of the interaction was as expected from the known biology and in line with the discovery results as illustrated by FUT2–ABO stratified analyses (Table 3 and Figs. 2b and 3). The effect of the ABO SNP increased from OR = 0.94 (95% CI = 0.49–1.73), P = 0.84, in the FUT2 (AA) stratum to OR = 1.93 (95% CI = 1.26–3.00), P = 0.003, in the FUT2 (GG) stratum. Similarly, the FUT2 SNP effect increased from OR = 0.99 (95% CI = 0.67–1.47), P = 0.96, in the ABO (TT) stratum to OR = 2.44 (95% CI = 1.20–5.30), P = 0.02) in the ABO (CC) stratum (Table 3).

We constructed a combined FUT2–ABO risk score to capture the combined effects of the functional FUT2 and ABO variants, as well as our observed interaction in the discovery analysis (“FUT2–ABO risk score”). This was done based on the COPSACsevere discovery cohort by calculating risk estimates between a reference group (homozygous for FUT2 (A) (non-secretor) and for ABO (T) (O blood group) alleles) and each of the eight other possible genotype combinations. The values for this score in each FUT2–ABO stratum in comparison to a “standard” additive weighted genetic risk score or simple allele count score are shown in Supplementary Table 11 and Supplementary Fig. 4. The FUT2–ABO risk score replicated in relation to asthma before age 6 years in the COPSAC birth

Table 2 Interaction between FUT2 and ABO in COPSACsevere (discovery).

Stratum	Cases/controls	Interaction FUT2 (top SNP) × ABO	Interaction FUT2 (functional SNP) × ABO		
		OR (95% CI)	P value	OR (95% CI)	P value
All	1204/5328	1.27 [1.11–1.45]	6.6 × 10^-4	1.29 [1.12–1.48]	3.2 × 10^-4
2 hospitalizations	276/5328	1.00 [0.78–1.29]	0.94	1.06 [0.83–1.36]	0.62
3 hospitalizations	240/5328	1.28 [0.98–1.67]	0.06	1.24 [0.95–1.62]	0.11
4-5 hospitalizations	293/5328	1.29 [1.01–1.65]	0.04	1.26 [0.99–1.62]	0.06
≥6 hospitalizations	379/5328	1.47 [1.18–1.82]	5.7 × 10^-4	1.51 [1.21–1.88]	2.6 × 10^-4

Both the top (rs281379) and functional (rs601338) FUT2 SNPs were tested in the interaction with the ABO SNP (rs505922). The interaction effect was analyzed in four different severity strata in the COPSACsevere study based on the number of hospitalizations. All logistic regression models were adjusted for sex and ten principal components. The reported P values are not corrected for multiple comparisons. P < 0.05 is in bold.
The model in and bUT2 function or other asthma-related traits (Supplementary Table 12). Antigens in the airway epithelium have been hypothesized to play the main triggers of acute asthma symptoms, and blood group respiratory illnesses each genotype combination in relation to the reference group (Table 3 and Fig. 4) and with current asthma by age 6 years. Viral and bacterial infections are an important role for the susceptibility to various infectious agents. \(^5\), \(^6\). We, therefore, investigated whether the FUT2–ABO gene variation was associated with an increased risk of specific bacterial or viral triggers of acute respiratory illnesses. The analysis was done in the COPSAC birth cohorts where bacterial and viral triggers were analyzed in airway secretions during acute respiratory illnesses in the first 3 years of life. The combined FUT2–ABO risk score was significantly associated with increased risk of acute respiratory illnesses with detection of S. pneumoniae.

Table 3 FUT2 (rs601338) and ABO (rs505922) main and stratified effects in the COPSACsevere study (discovery), and the COPSAC birth cohorts (replication).

Gene	Analysis	OR [95% CI]	P value	Cases/controls
FUT2	Main effect	1.17 [1.07–1.29]	0.001	1204/5328
	ABO = TT	0.94 [0.81–1.01]	0.45	410/2199
	ABO = TC	1.29 [1.13–1.48]	2.0 × 10\(^{-4}\)	623/2435
	ABO = CC	1.54 [1.18–2.02]	0.001	171/694
ABO	Main effect	1.16 [1.05–1.27]	0.002	1204/5328
	FUT2 = AA	0.83 [0.65–1.05]	0.12	194/1095
	FUT2 = AG	1.12 [0.98–1.28]	0.10	612/2624
	FUT2 = GG	1.43 [1.21–1.69]	2.2 × 10\(^{-5}\)	398/1609
FUT2 × ABO	Interaction	1.29 [1.12–1.48]	3.2 × 10\(^{-4}\)	1204/5328

	Main effect	1.31 [1.04–1.67]	0.02	191/727
	ABO = TT	0.99 [0.67–1.47]	0.96	64/317
	ABO = TC	1.38 [0.99–1.94]	0.06	103/327
	ABO = CC	2.44 [1.20–5.30]	0.02	24/83
ABO	Main effect	1.27 [1.00–1.62]	0.05	191/727
	FUT2 = AA	0.94 [0.49–1.73]	0.84	27/142
	FUT2 = AG	1.10 [0.78–1.55]	0.57	93/367
	FUT2 = GG	1.93 [1.26–3.00]	0.003	71/218
FUT2 × ABO	Interaction	1.50 [1.03–2.17]	0.03	191/727
	Risk score	2.82 [1.56–5.10]	5.7 × 10\(^{-4}\)	191/727

The logistic regression models were adjusted for ten principal components and sex for the discovery and for cohort status and sex for the replication. The reported P values are not corrected for multiple comparisons. P = 0.05 is in bold.

Fig. 2 Association “heatmaps” for FUT2 (rs601338)–ABO (rs505922) genotype combinations. The risk of asthma (OR or odds ratio) was calculated for each genotype combination in relation to the reference group (FUT2 [AA] and ABO [TT]). Heatmaps are shown for (a) the COPSACsevere study (discovery) and (b) the COPSAC birth cohorts (replication). N: number of participants in each group. The logistic regression model in (a) is adjusted for sex and ten principal components. The model in (b) is adjusted for sex and cohort status.

Cohorts (OR = 2.82 (95% CI = 1.56–5.10), P = 5.7 × 10\(^{-4}\)) (Table 3 and Fig. 4) and with current asthma by age 6 years (OR = 4.71 (95% CI = 1.73–13.07), P = 0.003), but not with lung function or other asthma-related traits (Supplementary Table 12).

FUT2–ABO epistasis increased the risk of Streptococcus pneumoniae respiratory illnesses. Viral and bacterial infections are the main triggers of acute asthma symptoms, and blood group antigens in the airway epithelium have been hypothesized to play...
of respiratory illnesses with detection of \textit{S. pneumoniae} (Supplementary Fig. 5).

We then sought replication of the association between \textit{FUT2} × \textit{ABO} susceptibility to respiratory illnesses with \textit{S. pneumoniae} in the RhinoGen study, from which it has previously been reported that \textit{S. pneumoniae} detection in the airways was associated with the burden of cold symptoms and risk of asthma exacerbations27. We hypothesized that this association was related to \textit{FUT2}–\textit{ABO} genotype and, as hypothesized, a significant interaction was observed between the \textit{FUT2}–\textit{ABO} risk score and detection of \textit{S. pneumoniae} in relation to duration of upper respiratory tract (cold) symptoms (interaction IRR = 1.66 (95% CI = 1.02–2.70), \(P = 0.04\)). In line with the COPSAC birth cohort results, the \textit{FUT2}–\textit{ABO} risk score was associated with increased symptom burden only during episodes with detection of \textit{S. pneumoniae} and not during episodes without detection of \textit{S. pneumoniae} (Fig. 5).

Discussion

We identified a novel susceptibility locus for early childhood asthma on chromosome 19 near the \textit{FUT2} gene. \textit{FUT2} encodes the enzyme fucosyltransferase 2, which determines the ability to secrete the soluble \textit{ABO} blood group antigens (ABH) in body fluids and express them on mucosal surfaces, including ciliated columnar cells and cuboidal cells of the bronchial epithelium28, oral mucosa29, and the gastrointestinal tract29. Specifically, the functional nonsense mutation (W143*) rs601338 (in LD with the top SNP rs281379) is the main determinant of the functional \textit{secretor/non-secretor} status for the \textit{ABO} antigens (on non-erythrocytes). About 20% of Europeans are homozygous for the rs601338-null alleles (AA), which encodes a stop codon, inactivating the \textit{FUT2} enzyme, classifying them as “non-secretors.” We found evidence that secretor status increases the risk of early childhood asthma.

Fig. 3 Stratified \textit{FUT2} (rs601338) and \textit{ABO} (rs505922) effects in the discovery and replication stages. For the discovery stage, the effects are shown in strata with increasing phenotype severity, namely the overall stratified results (\textit{iPSYCH + COPSAC\textsubscript{severe}}, \textit{COPSAC\textsubscript{severe}}, and the cases with six or more hospitalizations from \textit{COPSAC\textsubscript{severe}}). \textbf{a} illustrates the \textit{ABO} effect stratified on the \textit{FUT2} genotypes (AA, AG, and GG). \textbf{b} illustrates the \textit{FUT2} effect stratified on the \textit{ABO} genotypes (TT, CT, and CC). For the discovery analyses, the stratified logistic regression model is adjusted for ten principal components and sex. Replication analyses are adjusted for sex and cohort status. Coloring of the error bars represents the different genotype groups. Error bars represent the 95% confidence interval for each stratified estimate. The estimate is represented by the circles. \(N_{	ext{combined}} = 68,281\) (\(N_{\text{cases}} = 28,666, N_{\text{controls}} = 65415\)), \(N_{\text{COPSAC\textsubscript{severe}}} = 6532\) (\(N_{\text{cases}} = 1204, N_{\text{controls}} = 5328\)), \(N \geq 6\text{hospitalizations} = 5707\) (\(N_{\text{cases}} = 379, N_{\text{controls}} = 5328\)), \(N_{\text{replication}} = 918\) (\(N_{\text{cases}} = 191, N_{\text{controls}} = 727\)).

Fig. 4 Kaplan–Meier curve illustrating the effect of the \textit{FUT2}–\textit{ABO} risk score on estimated risk of childhood asthma in the COPSAC birth cohorts (replication). A high \textit{FUT2}–\textit{ABO} score corresponds to individuals with a score > 0, and a low score corresponds to the remaining individuals with a score < 0. Hazard ratio and \(P\) value are estimated using a Cox proportional-hazard model. The model was adjusted for sex and cohort status. \(N = 918\) (\(N_{\text{cases}} = 191, N_{\text{controls}} = 727\)). The \textit{FUT2}–\textit{ABO} score was based on rs601338 (\textit{FUT2}) and rs505922 (\textit{ABO}). (incidence rate ratio (IRR) = 2.31 (95% CI = 1.45–3.68), \(P = 0.0004\)) (Fig. 5), but not with detection of any other bacteria and viruses tested (Fig. 5 and Supplementary Table 13). The \textit{FUT2}–\textit{ABO} interaction pattern looked similar to the one seen for asthma as illustrated by \textit{FUT2} × \textit{ABO} stratified analysis of the risk of respiratory illnesses with detection of \textit{S. pneumoniae} (Supplementary Fig. 5).
Furthermore, there was evidence of childhood asthma association with the ABO SNP rs505922 in our study, in LD with the functional insertion/deletion variant rs8176719, which is the main determinant of the ABO blood group. We observed an increased risk in the non-O group of children, indicating that the presence of A or B antigens increases the risk of developing early childhood asthma.

Importantly, we found evidence of interaction between the functional FUT2 and ABO variants. This interaction is important for several reasons. First, it is a biologically plausible interaction, understood in detail at the biological/biochemical level. The proteins encoded by these two genes are responsible for consecutive steps in a biochemical pathway, each adding a monosaccharide unit to a growing oligosaccharide chain. Specifically, the FUT2 enzyme adds a fucose unit to a precursor thus creating H-antigen, which is then further modified by the ABO enzyme to either A-antigen (by the addition of UDP-GalNAc) or B-antigen (by the addition of UDP-Gal). This increases the likelihood that it is not a spurious finding. Second, since FUT2 enzyme activity is necessary for secretion of ABO antigens (A/B/H) in body fluids and on epithelial mucosal surfaces, it raises the possibility that the underlying mechanisms of asthma association at these loci could be related to the secretion of ABO antigens on epithelial surfaces. While the ABO finding alone could be related to non-epithelial mechanisms, for example, via expression on blood cells, and the FUT2 signal alone could be caused by other nearby genes, a mechanism related to ABO antigen secretion seems the most plausible to explain the observed interaction showing no effect in FUT2 and ABO individually. The fact that the interaction replicated in the COPSAC birth cohorts, where the asthma phenotype is carefully defined by diary-verifed recurrent asthmatic episodes, but mainly include children with milder disease, indicates that the important characteristic allowing detection of interaction in this case was phenotype specificity rather than severity. If the finding that epistasis is only detected using a specific or homogeneous phenotype is a more general phenomenon, it might partly explain the lack of identified epistasis in previous GWAS and suggests that future studies of epistasis should focus on more specific phenotypes.

Several previous studies have investigated the association between ABO blood group secretor status and asthma with inconsistent results. In some of these studies, asthma was associated with secretor status (136 Taiwanese childhood asthma cases up to 13 years of age and 161 non-asthmatic age-matched controls), while other studies found an association with non-secretor status (136 Italian childhood asthma cases up to 13 years of age and 362 non-asthmatic age-matched controls; 228 French adult coal miners with asthma), or no association (33 Australian adult asthma cases and 127 age-matched non-asthmatic controls; 200 asthma cases (100 children and 100 adults) and 200 non-asthmatic controls from India). The reason for these conflicting results is probably due to both a low number of individuals reducing the statistical power and lack of phenotype specificity. The ABO SNP rs505922 showed some evidence of association with asthma in a previous GWAS but without reaching genome-wide significance (OR = 1.04, P = 3.2 × 10⁻⁵). ABO antigens are glycans, and presentation of specific glycans in mucus and on the epithelial surface of the respiratory system

Fig. 5 The effect of the FUT2-ABO risk score in relation to risk S. pneumoniae and non-S. pneumoniae respiratory illnesses. a illustrates the results in the COPSAC birth cohorts, and b results for the Rhigen study. Incidence rate ratios in a are estimated using a quasi-Poisson model, which is adjusted for sex and cohort status. Symptom ratios in b are estimated using a mixed-effect quasi-Poisson model adjusted for detection of respiratory virus, season, age, sex, race, atopy, and asthma, and a random-effect term for child to account for repeated sampling for each child. a N = 918 and b N = 310. The FUT2-ABO score was based on rs601338 (FUT2) and rs505922 (ABO).
has been suggested to play an important role for the susceptibility to specific viral and bacterial infections. Such respiratory infections are the main trigger of asthmatic symptoms, particularly in childhood, and FUT2–ABO-related expression of AB antigens in the respiratory epithelium is, therefore, a biologically plausible mechanism conferring increased susceptibility to the development of early childhood asthma. In addition, previous studies found evidence of selection acting on both FUT2 and ABO, where the coding sequences displayed a higher than expected nucleotide diversity, and demonstrated a positive correlation between allele frequencies and pathogen richness. This evidence supports a continuous and critical role of the genes in mediating infection by pathogens. A potential role of FUT2 for respiratory infections is supported by a recent candidate–gene study reporting association between the FUT2 rs601338 G allele and a diagnosis of lower respiratory tract illnesses at 12–24 months of age. A GWAS on common infections by Tian et al. also showed that FUT2 secretor status was associated with a higher risk of childhood ear infections, and in line with our findings, the ABO (rs505922) signal was also present in that study, although no testing for FUT2–ABO interaction was reported. Furthermore, FUT2 gene variation has previously been associated with risk of early childhood diarrheal infections, where secretor status was a risk factor, and the viral infection mumps, where non-secretor status was associated with increased risk, highlighting the diverse role of the FUT2-defined secretor status in relation to specific infections.

We found that the FUT2–ABO genotype was specifically associated with acute respiratory illnesses triggered by the bacterium . Streptococcus pneumoniae is known to cause a range of airway infections, including otitis media and pneumonia, and is a common trigger of acute asthmatic episodes in young children providing a possible mechanism for the association. Furthermore, this is in line with experimental studies showing that pathogenic microbes often target host glycans for the purpose of nutrition, cell attachment, invasion, and/or immunomodulation, and specifically that fucosylations play an important role for . A potential role of in understanding the genetic mechanisms of childhood asthma, as also indicated by findings related to CDHR3 gene variants, another susceptibility locus for early childhood asthma specifically conferring susceptibility to rhinovirus-C infections.

Conclusion. We identified FUT2 and ABO variation, and epitope can be important for understanding the genetic mechanisms of childhood asthma, as also indicated by findings related to CDHR3 gene variants, another susceptibility locus for early childhood asthma specifically conferring susceptibility to rhinovirus-C infections.

Methods

Ethics statement. All human research was approved by the relevant institutional review boards and ethical committees and conducted according to the Declaration of Helsinki. All participants and/or their parents in the clinical studies provided written and oral informed consent. COPSAC2000, COPSAC2010, and Inter99 were approved by the Danish Scientific Ethics Committee, Region H. The registry-based studies (COPSAC2000, and iPSYCH) were approved by the Danish Scientific Ethics Committees (Region H and Region Midt, respectively), the Danish Health Data Authority, the Danish data protection agency, and the Danish Neonatal Screening Biobank Steering Committee.

Governance. The Danish Code of Conduct for Research Integrity and other recognized codes of good research practice have been followed and complied with. The national and international rules on the safety and rights of patients and healthy subjects, including Good Clinical Practice (GCP) as per the EU’s Directive on GCP, the International Conference on Harmonization’s (ICH) GCP guidelines, and the Declaration of Helsinki, have been complied with. All national and international legislation involving General Data Protection Regulation (GDPR), the Danish Act on Processing of Personal Data, and the practice of the Danish Data Inspectorate have been followed.

Study population. The current study comprised a two-stage design: discovery and replication. The discovery set included two case–control studies from Denmark. The first study included childhood asthma exacerbation cases from the COPSAC2000 cohort and non-asthmatic adult controls from the Inter99 study cohort, while the second set included cases and controls defined within the iPSYCH study cohort. A total of 68, 281 individuals (2866 cases and 65,415 controls) were part of the discovery set. The replication set comprised 918 children from the COPSAC2000 and COPSAC2010 cohorts (191 children with asthma and 727 controls without asthma) and the UK Biobank (5881 children with asthma and 88,097 non-asthmatic controls).

Discovery phase studies. COPSAC2000: This is a registry-based cohort constituting children with asthma who have been hospitalized and registered in the national health registries. This study was approved by the Ethics Committee for
Copenhagen (H-B-2998-103) and the Danish data protection agency (2008-41-2622). In accordance with the Danish law, the research ethics committee can grant exemptions, which have been informed consent in accordance with circumstances. For this study cohort, such an exemption was granted (H-B-2998-103).

Identification of children with acute repeated hospitalizations was made from the Danish National Patient Register including all diagnoses and discharge information from specific Danish hospitals46. The national birth register was used to obtain information on birth-related events. Inclusion criteria included presence of at least two acute hospitalizations relating to asthma (ICD8 codes 493, ICD-10 codes J45-46) for age ranging from 2 to 6 years (both years inclusive). Hospitalization duration had to be ≥1 day, and two hospitalizations separated by a minimum 6-month period. Exclusion criteria included the presence of comorbidities during hospitalization, registered chronic diagnosis considered to affect the risk of hospitalization for asthma, low birth weight (<2.5 kg) or gestational age of child <36 weeks at birth. Further characterization of cases with respect to the number of hospitalizations from asthma and acute bronchitis and concurrent atopy was made. After meeting all inclusion and exclusion criteria, and checking that there was no overlap between COPASCANCereus and IPSYCH cases from Denmark, 1204 cases of severe childhood asthma exacerbations were available for the current study (Supplementary Fig. 6).

The control individuals were drawn from a population-based Danish cohort called Inter9949. Inter99 is a randomized, non-pharmacological intervention study for the prevention of ischemic heart disease, conducted on 6784 randomly ascertained participants aged 30–60 years at the Research Centre for Prevention and Health in Glostrup, Denmark (ClinicalTrials.gov: NCT00289237). All participants provided informed consent and the study was approved by the Danish Scientific Ethics Committees, region H. Individuals who indicated in a questionnaire that they had a physician-diagnosed asthma were excluded. In addition, the inclusion of 5328 non-asthmatic controls from the Inter99 cohort in the current study. In the combined case–control (COPASCANCereus and Inter99) dataset, a total of 525,976 overlapping SNPs remained after quality control (QC) (Supplementary Fig. 7).

IPSYCH study. The IPSYCH consortium has established a large Danish population-based case–cohort sample (IPSYCH2012) aimed at unraveling the genetic and environmental architecture of severe mental disorders. The IPSYCH2012 sample is nested within the entire Danish population born between 1981 and 2005, including 1,472,762 persons. The study was approved by the Danish Scientific Ethics Committees (Region Midt), the Danish Health Authority, the Danish data protection agency, and the Danish Neonatal Screening Biobank Steering Committee. Dried blood spots for virtually all individuals were retrieved from the Danish neonatal screening biobank and processed for genotyping and GWAS using the DNA amplification method50. More information on this initiative can be obtained from http://ipsych.au.dk/about-ippsych/.

Asthma cases within the IPSYCH study were defined using registry data from the National Patient Registries. Individuals with at least one hospitalization due to a primary diagnosis of asthma exacerbations (ICD8-codes 493, ICD-10 codes J45-46) in the first 6 years of life were classified as asthma cases. The remaining individuals without hospitalizations due to severe asthma exacerbations were used as controls.

After QC and admixture analysis, a total of 61,749 (72%) individuals of European ancestry remained of the original 86,189 individuals included in the IPSYCH study51. One thousand and sixty-two asthma cases and 60,087 non-asthma controls with exome-rich genomic arrays and phenotype data participated in the current study (Supplementary Fig. 8).

Replication phase studies. The COPASCANCereus and the COPASCANCereus2010 cohorts were combined and used as one replication cohort comprising 918 children (including 191 childhood asthma cases and 727 non-asthma controls) with complete genotype and phenotype information. COPASCANCereus is a mother-child cohort where all the mothers had a history of a doctor’s diagnosis of asthma after 7 years of age and thus this is a high-risk asthma cohort comprising 411 children. Newborns were enrolled in the first month of life, and details on the cohort have been described previously52. COPASCANCereus2010 is a mother-child cohort comprising 700 children born to unselected mothers from Denmark as described previously in detail53. In both studies, asthma was diagnosed by doctors in the research clinic based on a previously detailed quantitative symptom algorithm43 requiring all of the following criteria: (1) verified diary recordings of five episodes of troublesome lung symptoms (cough, breathlessness, or wheeze) within the preceding 6 months, each lasting at least 3 consecutive days; (2) symptomatology typical of asthma including exercise-induced symptoms, prolonged nocturnal cough, and persistent cough outside common cold; (3) the rescue use of inhaled β2-agonist; and (4) response to a 3-month course of inhaled corticosteroids, followed by relapse after the end of treatment. Remission was defined as a period of 12 months without relapse. The studies were conducted in accordance with the guidelines of the Declaration of Helsinki and were approved by the Local Ethics Committee (COPASCANCereus: KO-1 089/96; COPASCANCereus2010: H-B-2008-093), and the Danish Data Protection Agency (COPASCANCereus and COPASCANCereus2010: 2015-31-3696). Both parents provided written informed consent before enrollment. As part of the Inter9949 study, 289 newborns from the COAST study, from Madison, Wisconsin, were enrolled between November 1998 and May 2000, as described previously54. At least one parent of the COAST cohort children had respiratory allergies, a history of physician-diagnosed asthma, or both. The parents of the participating newborns (n = 214) of European ancestry gave consent for their child to participate in the current study analysis includes these data. 200 children were evaluated for asthma beginning at 6 years of age. Diagnosis for current asthma was made at the end of the sixth year of life, basis the documented presence of one or more of the following characteristics during the previous year: (1) physician diagnosis of asthma, (2) use of albuterol for coughing or wheezing episodes (prescribed by a physician), (3) use of a daily controller medication, (4) step-up plan including the use of albuterol or short-term use of inhaled corticosteroids during illness, and (5) use of prednisone for asthma exacerbation. Four separate investigators, independently evaluated each subject for the presence or absence of asthma while being blinded to any antecedent histories concerning viral illnesses or patterns of aerallergen sensitization, based on the above criteria.

Genotyping, SNP calling, and quality control. Each study had genotyping performed using genome-wide arrays followed by study-specific quality filters prior to imputation. The current study focuses on exome-rich genomic arrays and is limited to non-imputed genotype data-based associations.

COPASCANCereus cohorts: DNA sampling for COPASCANCereus cases has been described in detail15. All COPASCANCereus cohorts (COPASCANCereus, COPASCANCereus2010, COPASCANCereus2013) were genotyped on the Illumina HumanOMNIExpressExome 8 v1-2 BeadChip (951,117 SNPs) at the AROS Applied Biotechnology AS Center, Aarhus, Denmark. SNP genotype calling for COPASCANCereus and COPASCANCereus2010 births was performed using the GenCall followed by snail2 SNPs with (a) MAF > 0.01, (b) call rate ≥0.90, (c) individual call rate ≥0.99% and (d) Hardy–Weinberg equilibrium (HWE) P value > 10−6 were included. Individuals with a sex mismatch were excluded. Individuals not clustering with the European ancestry (Utah residents with ancestry from Northern or Western Europe (CEU)) were excluded using the multidimensional scaling analyses seeded with genotypes from the International HapMap 3 project. Following this, pairwise identity-by-descent estimates were calculated in the genetically homogenous (European) individuals where monozygotic twins or genetic duplicates were excluded for the COPASCANCereus cohort.

Inter99: Genotyping of the Inter99 cohort was performed on the Illumina HumanOMNIExome BeadChip v1.0 (n = 280,234 SNPs)49 and the Illumina Infinium OMNI-Express-24 BeadChips; (710,000 SNPs) and merged. Detailed information on genotyping and QC for the Inter99 study49 has been provided in the Supplementary Fig. 7. COPASCANCereus cases and Inter99 non-asthmatic controls were finally merged for 525,976 overlapping SNPs forming a case-control dataset (n cases = 1204, n controls = 5328). All genotype QC was performed using PLINK v1.9057 ([www.cog-genomics.org/ plink/1.9/]). IPSYCH: IPSYCH samples were processed at the Broad Institute (Boston, MA, USA) using the Illumina Infinium PsychChip v1.0 array (Illumina, San Diego, CA, USA) in accordance with the manufacturer’s instructions. Individuals with a homogenous genetic background (after global and local ethnicity filtering using PCA and Mahalanobis distance criteria) were checked for various degrees of kinship using the KING (v1.9, October 2010) software package (http://people.virginia.edu/~wenk/king/). All “second-degree” relatives in which both subjects were closer than third-degree relatives. Study-specific genotyping and QC details have been elaborated previously51 and also under Supplementary Fig. 8. After QC, the IPSYCH study contributed with 1662 childhood asthma cases and 60,087 non-asthmatic controls (Supplementary Fig. 8).

Illumina and Rhinosec: Peripheral blood samples were collected and aliquots of frozen blood were shipped on dry ice to the University of Chicago, where DNA was extracted using the Puregene extraction kit, following the manufacturer’s instructions (Gentra Systems, Inc., Minneapolis, MN). Genotyping was done using the Illumina GoldenGate custom genotyping assay at the National Heart, Lung, and Blood Institute’s (NHLBI) Resequencing and Genotyping Service at Johns Hopkins University. QC parameters were SNP call rate ≥95% call rates, Hardy–Weinberg P values >0.001, and MAFs ≥5% and European ancestry (using the multidimensional scaling analyses seeded with individuals from the International HapMap 3 project). clinic. Statistical analysis was focused on the age of asthma (field 3786) and age of doctors diagnosed asthma (field 22147). We only used genotype data from the European unrelated population. Analysis was adjusted for ten PCs and gender. Details on the UK Biobank genotyping and QC have been described previously58.

SNP annotation. The Genome Variation Server (https://veu.gs.washington.edu/ GVJS138/HelpAbout.jsp), which is also a part of the Seattle Sequence annotation database (https://snp.gs.washington.edu/SeattleSeqAnnotation154/HelpAbout.jsp), was used for annotating the SNPs on the Exome chip in the current study. This has also been incorporated by the NHLBI Exome sequencing project-based Exome Variant Server (http://evs.gs.washington.edu/ EVS/) for annotating exome-based gene variants.

Statistical analyses. GWAS meta-analysis: We ran a GWAS among childhood asthma exacerbation cases vs. non-asthmatic controls for the two (case–control) discovery cohorts, followed by a discovery stage meta-analysis. Followed by this, we
identified childhood asthma loci reaching genome-wide significance and replicated them in COPSAC birth cohorts, followed by a combined meta-analysis of the top loci.

The discovery meta-analysis was performed using the METAL software (https://genome.sph.umich.edu/wiki/METAL) whereas the replication-based combined meta-analysis for the top SNPs was performed using R meta package (Metafor v1.4–46).

Discovery phase: This was based on two GWAs: (1) 1204 cases (COPSACsevere) and 5328 controls (Inter99 study) and (2) 1662 cases and 65,415 controls (iPSYCH study), a combined discovery meta-analysis comprising 2866 childhood asthma cases and 65,415 control individuals.

Here, the single nucleotide polymorphism testing included an additive genetic model based on the logistic regression analyses with a binary outcome (presence or absence of asthma) using Plink 1.97. This model was adjusted for sex and population substructure defined by the first ten PCs (childhood asthma–SNP + sex + first 10 PCs). Prior studies have shown evidence of shared mechanisms between asthma and psychiatric disorders[9], therefore, the presence/absence of reported psychiatric disorders in the iPSYCH study was included as a binary covariate for the iPSYCH analysis.

Following this, we ran an inverse-variance-based fixed-effects meta-analyses between the two participating discovery cohorts using METAL (version March 2011)75. Since the discovery stage study recruitment cases differ in asthma severity (Supplementary Table 1) and in order to have a comparative overview of how the variants perform assuming random effects, we also ran the random-effects meta-analysis model. Testing for heterogeneity was also performed as part of the meta-analysis package using METAL where I² statistic denoting the percentage of variation across studies was estimated (I² = 100% × (Q − Q̄)/Q̄), where Q is the χ² statistic. Significance for heterogeneity was denoted by the heterogeneity (or Heto) P values.

Replication phase: All independent SNPs reaching a P value < 5.0 × 10⁻⁸ in the discovery phase was subsequently used in the replication phase using genotype data from the two COPSAC birth cohorts. The design of the cohorts is inherently different, as the children in COPSAC 2000 all have asthmatic mothers (Supplementary Note 1). To alleviate this problem, we generated a binary variable, indicating what cohort the individual child belonged to. The SNP effects on asthma during the first 6 years of life was estimated using logistic regression, with gender and the binary cohort variable as additional covariates. Children without any asthma diagnosis and incomplete follow-up at 6 years of age were removed from the analysis. The results of the logistic regression were summarized using ORs, 95% CIs, and P values.

We also performed replication analysis for the novel top SNP/SNPs in the COAST birth cohort and the UK Biobank Study set using a logistic regression model (childhood asthma–SNP + sex + first 10 PCs).

LD-based SNP clumping and conditional analysis: LD-based SNP clumping technique was utilized to identify index SNPs for each associated locus accounting for the LD structure (at r² = 0.10) and a genomic window size of 1 Mb, using Plink76. We performed conditional analysis for index SNPs within loci showing multiple signals exceeding genomic-wide significance and sharing a low LD between each other (r² < 0.02) after clumping. This helped us identify if two or more signals within a defined region were independent or not. Ancestry-specific LD information was also verified using National Institutes of Health LDlink database.[99] (https://ldlink.ncbi.nlm.nih.gov/).

Finally, we also performed extended genome-wide association analysis with the Lasergen replication study, with samples of nasal mucus were collected weekly and 3028 specimens were processed for RNA analysis in lab at Michigan. We obtained RNA sequence data from NECs of 357 children from the COPSACsevere birth cohort at 6 years of age. Raw fastQ files were merged and were aligned to the human reference genome using the STAR software version 2.5.1a.14. For each gene available in our data, a gene count number was available from STAR, projecting the level of expression, that is, the higher the number of RNA transcripts, the higher the expression level. Normalization of the gene count data was done using the TMM (trimmed mean of M values) method, which is used to account for library size variation between samples. Following this step, samples were converted to log counts per million, and multi-gene correlation relationships were found to identify proper weights using the software voom.[102]

Phenotype permutations and severity stratification: In order to investigate the likelihood of observing a similar overall interaction effect, which was primarily driven by the most severe group of cases, we performed 10,000 permutation permutions. For each permutation run, we shuffled the IDs in the COPSACsevere cohort and calculated the overall interaction effect between the FUT2 and ABO variants, and, subsequently, the severity-stratified interaction effect, using the original case information on the number of hospitalizations. We extracted the interaction estimates for each permutation run and compared these to the observed value. The permutation was done using R version 3.3.2.

FUT2–ABO asthma risk score: Given two SNPs with an additive genotype coding, nine possible genotype combinations exist. Of these nine groups, the only group without any risk alleles consists of individuals who are homozygous for both non-risk alleles, whereas the remaining eight genotype groups all have at least one risk allele. In order to estimate the functional and the binary cohort variable as additional covariates. Children without any asthma diagnosis and incomplete follow-up at 6 years of age were removed from the analysis. The results of the logistic regression were summarized using ORs, 95% CIs, and P values.

The discovery meta-analysis was performed using the METAL software (https://genome.sph.umich.edu/wiki/METAL) whereas the replication-based combined meta-analysis for the top SNPs was performed using R meta package (Metafor v1.4–46).

Discovery phase: This was based on two GWAs: (1) 1204 cases (COPSACsevere) and 5328 controls (Inter99 study) and (2) 1662 cases and 65,415 controls (iPSYCH study), a combined discovery meta-analysis comprising 2866 childhood asthma cases and 65,415 control individuals.

Here, the single nucleotide polymorphism testing included an additive genetic model based on the logistic regression analyses with a binary outcome (presence or absence of asthma) using Plink 1.97. This model was adjusted for sex and population substructure defined by the first ten PCs (childhood asthma–SNP + sex + first 10 PCs). Prior studies have shown evidence of shared mechanisms between asthma and psychiatric disorders[9], therefore, the presence/absence of reported psychiatric disorders in the iPSYCH study was included as a binary covariate for the iPSYCH analysis.

Following this, we ran an inverse-variance-based fixed-effects meta-analyses between the two participating discovery cohorts using METAL (version March 2011)75. Since the discovery stage study recruitment cases differ in asthma severity (Supplementary Table 1) and in order to have a comparative overview of how the variants perform assuming random effects, we also ran the random-effects meta-analysis model. Testing for heterogeneity was also performed as part of the meta-analysis package using METAL where I² statistic denoting the percentage of variation across studies was estimated (I² = 100% × (Q − Q̄)/Q̄), where Q is the χ² statistic. Significance for heterogeneity was denoted by the heterogeneity (or Heto) P values.

Replication phase: All independent SNPs reaching a P value < 5.0 × 10⁻⁸ in the discovery phase was subsequently used in the replication phase using genotype data from the two COPSAC birth cohorts. The design of the cohorts is inherently different, as the children in COPSAC 2000 all have asthmatic mothers (Supplementary Note 1). To alleviate this problem, we generated a binary variable, indicating what cohort the individual child belonged to. The SNP effects on asthma during the first 6 years of life was estimated using logistic regression, with gender and the binary cohort variable as additional covariates. Children without any asthma diagnosis and incomplete follow-up at 6 years of age were removed from the analysis. The results of the logistic regression were summarized using ORs, 95% CIs, and P values.

We also performed replication analysis for the novel top SNP/SNPs in the COAST birth cohort and the UK Biobank Study set using a logistic regression model (childhood asthma–SNP + sex + first 10 PCs).

LD-based SNP clumping and conditional analysis: LD-based SNP clumping technique was utilized to identify index SNPs for each associated locus accounting for the LD structure (at r² = 0.10) and a genomic window size of 1 Mb, using Plink76. We performed conditional analysis for index SNPs within loci showing multiple signals exceeding genomic-wide significance and sharing a low LD between each other (r² < 0.02) after clumping. This helped us identify if two or more signals within a defined region were independent or not. Ancestry-specific LD information was also verified using National Institutes of Health LDlink database.[99] (https://ldlink.ncbi.nlm.nih.gov/).

Finally, we also performed extended genome-wide association analysis with the Lasergen replication study, with samples of nasal mucus were collected weekly and 3028 specimens were processed for RNA analysis in lab at Michigan. We obtained RNA sequence data from NECs of 357 children from the COPSACsevere birth cohort at 6 years of age. Raw fastQ files were merged and were aligned to the human reference genome using the STAR software version 2.5.1a.14. For each gene available in our data, a gene count number was available from STAR, projecting the level of expression, that is, the higher the number of RNA transcripts, the higher the expression level. Normalization of the gene count data was done using the TMM (trimmed mean of M values) method, which is used to account for library size variation between samples. Following this step, samples were converted to log counts per million, and multi-gene correlation relationships were found to identify proper weights using the software voom.[102]

Phenotype permutations and severity stratification: In order to investigate the likelihood of observing a similar overall interaction effect, which was primarily driven by the most severe group of cases, we performed 10,000 permutation permutions. For each permutation run, we shuffled the IDs in the COPSACsevere cohort and calculated the overall interaction effect between the FUT2 and ABO variants, and, subsequently, the severity-stratified interaction effect, using the
Data availability

GWAS summary statistics are available at Figs hare (https://doi.org/10.6084/m9.figsh.re.13146598.s2). All other data that support the findings of this study are available from the corresponding author K.B. upon reasonable request. Participant-level personally identifiable data are protected under the Danish Data Protection Act and European Regulation 2016/679 of the European Parliament and of the Council (GDPR) that prohibit distribution even in pseudo-anonymized form, but can be made available under a data transfer agreement as a collaboration effort.

Received: 18 July 2019; Accepted: 29 October 2020; Published online: 16 December 2020

References

1. Pertea, M. et al. Cufflinks: an extensible RNA-seq variance expression of a candidate for the human Secretor blood group alpha(1,2) fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).
2. Yamamoto, F. & Hakomori, S. Sugar-nucleotide donor specificity of histio-

blood group A and B transferases is based on amino acid substitutions. J. Biol. Chem. 265, 19257–19262 (1990).
3. McLachlan, S. et al. Replication and characterization of association between ABO SNPs and red blood cell traits by meta-analysis in Europeans. PLoS ONE 9(12), e105694 (2014).
4. Cooling, L. Blood Groups in Infection and Host Susceptibility. Clin. Microbiol. Rev. 28, 801–870 (2015).
5. Heggelund, J. E., Varrot, A., Imberty, A. & Krangel, U. Histo-blood group antigens as mediators of infections. Curr. Opin. Struct. Biol. 44, 190–200 (2017).
6. Klopfer, K. M. et al. Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. J. Allergy Clin. Immunol. 138, 1301–1307 (2014). 1307 e1-3.
7. Fujitani, N., Liu, Y., Okamura, T. & Kimura, H. Distribution of H type 1-4 chains of the ABO(H) system in different cell types of human respiratory epithelium. J. Histochem. Cytochem. 48, 1649–1656 (2000).
8. Ravn, V. & Dabelsteen, E. Tissue distribution of histo-blood group antigens. APMIS 108, 1–28 (2000).
9. Chen, Y. L. et al. ABO/secretor genetic complex is associated with the susceptibility of childhood asthma in Taiwan. Clin. Exp. Allergy 35, 926–932 (2005).
10. Ronchetti, F. et al. ABO/secretor genetic complex and susceptibility to asthma in childhood. Eur. Respir. J. 17, 1236–1238 (2001).
11. Kauffmann, F. et al. Associations of blood group-related antigens to FEV1, wheezing, and asthma. Am. J. Respir. Crit. Care Med. 153, 76–82 (1996).
12. Mackay, I. R. et al. An immunologic and genetic study of asthma in workers in an aluminum smelter. J. Occup. Med. 32, 1022–1026 (1990).
13. Bijurandeh, M. et al. Lack of association between asthma and ABO blood group. Lung 187, 389–392 (2009).
14. Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 8, 599 (2017).
15. Housell, E. F., Lawson, A. M. & Feizi, T. Structural and antigenic diversity in mucin carbohydrate chains. Adv. Exp. Med Biol. 144, 39–41 (1982).
16. Bisgaard, H. et al. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ 341, c4978 (2010).
17. Calafell, F. et al. Evolutionary dynamics of the human ABO gene. Hum. Genet. 124, 123–135 (2008).
18. Fumagalli, M. et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Nat. Genet. 46, 1347–1352 (2014).
19. Barton, S. J. et al. FUT2 genetic variants and reported respiratory and gastrointestinal illnesses during infancy. J. Infect. Dis. 219, 836–843 (2019).
20. Bustamante, M. et al. A genome-wide association meta-analysis of diarrhoeal disease in young children identifies FUT2 locus and provides plausible mechanistic pathways. Hum. Genet. 135, 4127–4142 (2016).
21. Tomasz, A. New faces of an old pathogen: emergence and spread of multidrug-resistant Streptococcus pneumoniae. Am. J. Med. 107, 555–625 (1999).
22. Unione, L. et al. Glycans in infectious diseases, a molecular functional perspective. Curr. Med. Chem. 24, 4057–4080 (2017).
23. Hobbs, J. K., Plowman, B. & Boraston, A. B. Glycan metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett. 592, 3865–3897 (2018).
24. Higgins, M. A. et al. Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases. J. Biol. Chem. 284, 26161–26173 (2009).
25. Shuburme, S. A., Davenport, M. T., Keith, D. B. & Musser, J. M. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol. 16, 318–325 (2008).
26. Ronen, J. E. et al. Cadherin-related family member 3 genetics and population analysis. J. Occup. Med. 25, 4127–4142 (2012).
27. Mann, E. et al. Cadherin-related family member 3 and the ABO(H) blood group system. Blood 124, 2920–2926 (2014).
28. Lyne, E., Sandegaard, J. L. & Rebol, M. The Danish National Patient Register. Scand. J. Public Health 39, 30–33 (2011).
29. Coldstein, J. L. et al. zCall: a rare variant caller for array-based genotyping: genetics and population analysis. Bioinformatics 28, 2543–2545 (2012).
30. Hollegaard, M. V. et al. Robustness of genome-wide scanning using archived dried blood spot samples as a DNA source. BMC Genet. 12, 58 (2011).
31. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).
32. Bisgaard, H. The Copenhagen Prospective Study on Asthma in childhood (COPSAC): design, rationale, and baseline data from a longitudinal birth cohort study. Ann. Am. Thorac. Soc. 13(5), 677–679 (2016).
33. Bisgaard, H. et al. Dephosphorylation of the unsected COPSAC2010 birth cohort study. Clin. Exp. Allergy 43, 1384–1394 (2013).
54. Bisgaard, H. et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357, 1487–1495 (2007).
55. Bisgaard, H. et al. Fish oil-derived fatty acids in pregnancy and wheeze and asthma in offspring. N. Engl. J. Med. 375, 2530–2539 (2016).
56. Caliskan, M. et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N. Engl. J. Med. 368, 1398–1407 (2013).
57. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
58. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
59. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
60. Baldazzi, S., Rücker, G. & Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid. Based Ment. Health 22, 153–160 (2019).
61. Kuehn, B. M. Asthma linked to psychiatric disorders. JAMA 299, 158–160 (2008).
62. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).
63. Dicks, E. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
64. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
65. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
66. Bashir, H. et al. Association of rhinovirus species with common cold and asthma symptoms and bacterial pathogens. J. Allergy Clin. Immunol. 141, 822–824 e9 (2018).

Acknowledgements
We express our deepest gratitude to the children and families of the COPSAC2000, COPSAC2000, and COPSAC2017 cohort studies for all their support and commitment. We acknowledge and appreciate the unique efforts of the COPSAC research team. All co-authors have provided important intellectual input and contributed in the final version of the manuscript. The corresponding author had full access to the data and had final responsibility for the decision to submit for publication.

Author contributions
The guarantors of the study are T.S.A., A.U.E., and K.B., from conception and design to conduct of the study and acquisition of data, data analysis, and interpretation of data. T.S.A. and A.U.E. have written the first draft of the manuscript. The co-authors P.B.M., D. M.H., J.B.-G., M.B.-H., O.M., M.N., A.D.B., T.W., and E.A. contributed in the iPSYCH study design and conduct. All co-authors have provided important intellectual input and contributed considerably to the analyses and interpretation of the data. All authors guarantee that the accuracy and integrity of any part of the work have been appropriately investigated and resolved and all have approved the final version of the manuscript. The remaining authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19814-6.

Competing interests
H.B. has consultant arrangements with Chiesi Pharmaceuticals and Boehringer Ingelheim. T.S.A. is a shareholder in Zealand Pharma A/S and Novo Nordisk A/S. The remaining authors declare no competing interests.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ACKNOWLEDGEMENTS
We express our deepest gratitude to the children and families of the COPSAC2000, COPSAC2000, and COPSAC2017 cohort studies for all their support and commitment. We acknowledge and appreciate the unique efforts of the COPSAC research team. All co-authors have provided important intellectual input and contributed in the iPSYCH study design and conduct. All co-authors have provided important intellectual input and contributed considerably to the analyses and interpretation of the data. All authors guarantee that the accuracy and integrity of any part of the work have been appropriately investigated and resolved and all have approved the final version of the manuscript. The corresponding author had full access to the data and had final responsibility for the decision to submit for publication.

Author contributions
The guarantors of the study are T.S.A., A.U.E., and K.B., from conception and design to conduct of the study and acquisition of data, data analysis, and interpretation of data. T.S.A. and A.U.E. have written the first draft of the manuscript. The co-authors P.B.M., D. M.H., J.B.-G., M.B.-H., O.M., M.N., A.D.B., T.W., and E.A. contributed in the iPSYCH study design and conduct. All co-authors have provided important intellectual input and contributed considerably to the analyses and interpretation of the data. All authors guarantee that the accuracy and integrity of any part of the work have been appropriately investigated and resolved and all have approved the final version of the manuscript. The corresponding author had full access to the data and had final responsibility for the decision to submit for publication.

Competing interests
H.B. has consultant arrangements with Chiesi Pharmaceuticals and Boehringer Ingelheim. T.S.A. is a shareholder in Zealand Pharma A/S and Novo Nordisk A/S. The remaining authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19814-6.

Correspondence and requests for materials should be addressed to K.Ben.

Peek review information Nature Communications thanks Samira Asgari and William Cookson for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark. 2Steno Diabetes Center Copenhagen, Gentofte, Denmark. 3Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen, Denmark. 4Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. 5Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark. 6Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. 7Department of Human Genetics, University of Copenhagen, Copenhagen, Denmark. 8Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 9Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA. 10Department of Pediatrics, University of Wisconsin, Madison, WI, USA. 11Department of Human Genetics, University of Chicago, Chicago, IL, USA. 12Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark. 13Department of Science and Environment, Roskilde University, Roskilde, Denmark. 14IPSych, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark. 15NCRR, The National Center for Register-based research, Business and Social Sciences, Aarhus University, Aarhus C, Denmark. 16CIRRAU—Center for Integrated Register-Based Research at Aarhus University, Aarhus C, Denmark. 17Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark. 18Den Neonatal Screenings Biobank, SSI, Copenhagen, Denmark. 19Psychosis Research Unit, Aarhus University Hospital—Psychiatry, Risskov, Denmark. 20Mental Health Center Copenhagen, Capital Region of Denmark, Copenhagen University Hospital, Copenhagen, Denmark. 21Department of Biomedicine and iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus C, Denmark. 22Center for Genomics and Personalized Medicine, Central Region Denmark, Aarhus C, Denmark. 23Institute of Biological Psychiatry, Copenhagen Mental Health Services, Copenhagen, Denmark. 24Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. 25These authors contributed equally: Tarunveer S. Ahlulwalia, Anders U. Eliaisen. 26Deceased: Amitabh Sharma. 27Email: kb@copsac.com