An Improved Whole-Blood Gamma Interferon Assay Based on the CFP21-MPT64 Fusion Protein\(^\dagger\)

Ruiling Fu,\(^1\) Chun Wang,\(^1\) Chunwei Shi,\(^1\) Mengji Lu,\(^1,2\) Zhengming Fang,\(^1\) Jia Lu,\(^1\) Fang Wang,\(^1\) and Xionglin Fan\(^1*\)

Laboratory of Bio-Safety, Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, People’s Republic of China; and Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany\(^2\)

Received 8 December 2008/Returned for modification 22 January 2009/Accepted 2 March 2009

Although progress in the past decades, tuberculosis (TB) remains a major public health problem worldwide. About one-third of the world population is latently infected with *Mycobacterium tuberculosis*, and 10% of those infected persons develop disease during their lifetime. Therefore, sensitive and specific assays for diagnosis of latent TB infection (LTBI) are important for effective control and prevention of TB (7). In contrast to sputum-positive cases of TB, LTBI is more difficult to diagnose. The tuberculin skin test (TST), based on purified protein derivative (PPD), has been used for diagnosis of LTBI for decades (1). However, the test has a poor specificity among persons vaccinated with the *Mycobacterium bovis* bacillus Calmette-Guérin (BCG) strain.

The identification of *M. tuberculosis*-specific antigens by mycobacterial genomic studies allowed the development of a new generation of diagnostic tests. Comparative genomic studies of *M. tuberculosis* and *M. bovis* BCG has led to the identification of several regions of difference (RDs). One region, designated RD1, is present in virulent strains of *M. bovis* and *M. tuberculosis* but not in BCG substrains (3) and most environmental mycobacteria (1). A whole-blood gamma interferon assay (IFN-\(\gamma\) assay) (IGRA or enzyme-linked immunospot [ELISPOT] assay) based on the RD1-encoded antigens early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) has been found to be sensitive and specific for the detection of infection with *M. tuberculosis* (1, 20, 22). Two tests, Quantiferon-TB Gold (Cellestis, Carnegie, Australia) and T-Spot.TB test (Oxford Immunotec, Oxford, United Kingdom), have been evaluated in clinical studies and showed better performances than that of TST. However, exposure to some nontuberculous mycobacteria that are able to produce ESAT-6 and/or CFP-10, such as *M. kansasi*, *M. marinum*, *M. leprae*, and *M. szulcagi* (1), may cause false-positive results in these assays (2, 12, 13). Additionally, both ESAT-6 and CFP-10 are considered components of many promising vaccine candidates, such as recombinant BCG strains expressing these antigens (10, 24, 25), subunit vaccines (5, 17, 31), and combinations with BCG vaccination (9, 18). Thus, the identification of new targets for the detection of LTBI is a high priority.

The RD2 region is restricted to the *M. tuberculosis* complex but is absent in BCG substrains derived after 1931 (3, 4). A number of studies confirmed that MPT64, one of the best-characterized antigens from the RD2 region, is able to elicit a strong delayed-type hypersensitivity reaction and to induce high levels of IFN-\(\gamma\) responses in TB patients and their contacts (8, 21, 26, 28). CFP21 is another immunodominant protein encoded in the RD2 region (14) and induces a high level of IFN-\(\gamma\) release from blood cells of TB patients (30). Thus, these two antigens are suitable candidates for T-cell-based TB diagnostic assays. Moreover, the BCG Danish substrain without an RD2 region (3, 4) has been used for neonatal vaccination in China. Therefore, prior BCG vaccination will not interfere with immunological assays based on CFP21 and MPT64 proteins.

In the present study, we designed a fusion protein of CFP21 and MPT64 from *M. tuberculosis* H37Rv. The fusion protein was expressed in *Escherichia coli* and purified using Ni-nitrilotriacetic acid (Ni-NTA) affinity chromatography. A whole-
TABLE 1. Primers and thermal cycle parameters for cloning of \(M. \) \(\text{tuberculosis} \) antigens

Antigen	Primer orientation or sequence (5'-3')	PCR parameters	Amplicon size (bp)
CFP21F	AAGGATCCGATGTTGTGACAGCTCAGCCTGCGG	94°C for 5 min, then 30 cycles at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min	608
CFP21R	GTCGCCGCAACGCCTTCCGGCAGCCCGGTTCCCACCGCGG	45 s, then 72°C for 5 min	
TCCGGGATCTACGGCCGCTTGGG	94°C for 5 min, then 30 cycles at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min	671	
MPT64F	GGTGGCGTGGGAAAGCAGGCGGAGTCGAGCAG	45 s, then 72°C for 5 min	
GAAAGCTTCTAGGCCGCAATCGCTAGCG	94°C for 5 min, then 30 cycles at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min	1,234	
rCMF	CFP21F	45 s, then 72°C for 5 min	
rCMR	MPT64R	90 s, then 72°C for 10 min	

Statistical analysis. The level of concordance between the TST and rCM-WBIA was assessed and calculated as the agreement between the results of the two assays, using two-by-two contingency tables. The strength of this agreement was examined by using Cohen’s kappa coefficient, with values of >0.75 representing excellent agreement beyond chance, 0.40 to 0.75 representing fair to good agreement beyond chance, and <0.40 representing poor agreement beyond chance.
with IPTG. The size of this protein was consistent with the expected molecular mass of the fusion protein rCM (Fig. 1). The expression of the fusion protein reached a maximum after 4 h. Western blotting with an antibody to the hexahistidine tag confirmed that the 45-kDa protein represented the fusion protein rCM (Fig. 1). The fusion protein rCM was not soluble and formed inclusion bodies. Therefore, the rCM protein was extracted by sonication, dissolved in urea, and purified using a Ni-NTA purification system. The purified protein was examined by SDS-PAGE and verified by Western blotting using an
The yield of the rCM protein was determined to be 200 mg/liter LB broth culture.

IFN-γ assay using whole blood samples stimulated with rCM. The ability of the rCM fusion protein to stimulate IFN-γ production in whole blood samples was tested. Whole blood samples were collected from eight TST-positive household contacts and stimulated with rCM fusion protein at different concentrations. As shown in Fig. 2, the IFN-γ levels in whole blood samples increased with the concentrations of rCM fusion protein of 5 and 20 μg/ml. An increase of the concentration of rCM to 40 μg/ml only marginally enhanced the IFN-γ production in whole blood samples. Thus, 20 μg/ml of rCM fusion protein was used for further experiments in the present study.

Testing of clinical samples with rCM-WBIA. Whole blood samples were collected from healthy controls, household contacts, and TB patients and subjected to rCM-WBIA (Fig. 3). The levels of IFN-γ in all samples without antigen stimuli were below 30 pg/ml (10.6 ± 5.9 pg/ml) and increased to 5,405 ± 2,518.9 pg/ml after PHA stimulation. The mean IFN-γ levels in healthy donors, household contacts, and patients after PHA stimulation were 5,283.9 ± 2,581.1 pg/ml, 5,451.5 ± 2,644.9 pg/ml, and 5,722.2 ± 2,439.6 pg/ml, respectively. The mean IFN-γ level by rCM-WBIA for samples from 40 healthy donors was 220.7 ± 136.9 pg/ml. The mean IFN-γ level (1,400.1 ± 1,146.9 pg/ml) in samples from the household contacts was significantly higher than that for the healthy control group. The highest IFN-γ levels were detected in whole blood samples from the TB patients (2,291.1 ± 1,143.1 pg/ml), and the levels of IFN-γ of all patients were over the cutoff value.

Comparison between TST and rCM-WBIA for detection of LTBI. Twenty-two of 36 (61.1%) household contacts were TST positive, and 14 (38.9%) were TST negative. By rCM-WBIA, 24 (66.7%) of 36 household contacts were positive and 12 (33.3%) were negative. Six subjects had discrepant results for TST and rCM-WBIA. Four household contacts were TST negative but rCM-WBIA positive, and two had the reverse status. Among the concordant results, 20 subjects were positive by both TST and rCM-WBIA, and 10 subjects were negative by both TST and rCM-WBIA. Compared with TST, rCM-WBIA had a sensitivity of 90.9% (95% confidence interval, 89.96 to 91.84%) and a specificity of 71.4% (95% confidence interval, 71.25 to 71.55%). This gave an overall agreement between the two tests for household contacts of 83.3% (95% confidence interval, 83.03 to 83.57%), with a k value of 0.64, indicating a good agreement between the two tests. Analysis of the distribution of IFN-γ levels in TST-positive and TST-negative samples showed a significant correlation between TST positivity and IFN-γ level (Fig. 4). The mean levels of IFN-γ were 2,907.5 ± 453.7 pg/ml and 1,387.6 ± 994 pg/ml for samples from the strongly TST-positive and TST-positive groups, respectively, with rCM-WBIA-positive rates of 100% (8/8 subjects) and 85.7% (12/14 subjects), respectively. The median level for TST-negative groups was 552 ± 516.9 pg/ml, with an rCM-WBIA-positive rate of 28.6% (4/14 subjects).

DISCUSSION

In this study, we established rCM-WBIA as a potential diagnostic assay for LTBI. In testing with defined clinical sam-
FIG. 4. Correlation between TST and IFN-γ levels determined by rCM-WBIA. A total of 36 household contacts were tested by TST and rCM-WBIA. Each square represents the IFN-γ concentration in a sample, and median values for different groups are indicated by horizontal lines. The dotted line depicts the test cutoff value for a positive result of rCM-WBIA (398.5 pg/ml).

In this study, we demonstrated that rCM-WBIA has a high sensitivity, of 90.9%, and a specificity of 71.4%, and a good agreement was observed between rCM-WBIA and TST (κ = 0.64). Whole blood samples from all sputum-positive TB patients also tested positive by rCM-WBIA. This assay is comparable to the IGRA-RD1 or RD1-ELISPOT assay already used in clinical settings and has the same advantages over the TST.

Although the MTP64 antigen was found to induce a strong delayed-type hypersensitivity reaction in guinea pigs (8) and human beings (21, 28), different results were obtained with MTP64 in blood assays. Johnson et al. reported negative blood test results with MPT64 for persons before and after BCG vaccination and for active TB patients (16). In contrast, Roche et al. confirmed that MPB64 was recognized more frequently by TB patients and their contacts than by healthy populations vaccinated with BCG (27). Furthermore, patients with active TB had significant responses to MPT64 in WBLA (26).

The potential usefulness of RD2-based diagnostics in different settings depends mainly on the distribution of different BCG substrains and their use for vaccination (11). The RD2 region has been demonstrated by Behr et al. to be deleted in all BCG substrains derived after 1931 (3, 4). BCG-Danish, BCG-Prague, BCG-Glaxo, BCG-Frappier, BCG-Connaught, BCG-Phipps, BCG-Tice, and BCG-Pasteur substrains do not contain the RD2 region, while this region is present in BCG-Birkhaug, BCG-Japan, BCG-Moreau, BCG-Russia, and BCG-Sweden substrains (3, 4). Thus, the use of rCM-WBIA is limited by the presence of BCG substrains with RD2. However, RD2-based diagnostics may become alternatives to RD1-based WBLAs if the antigens from RD1 are included as vaccine candidates, as done in different studies (17, 25).

In this study, we demonstrated that rCM-WBIA has a slightly higher sensitivity (66.7%) than that of TST (61.1%) for detecting LTBI in household contacts. Several previous studies using IGRA-RD1 or RD1-ELISPOT assay with specific anti-gen stimuli resulted in similar findings (20). In addition, OFT-G, another commercialized ex vivo IFN-γ assay using PPD as a stimulant, showed a higher sensitivity than that of TST (29). Blood testing and TST measure cell-mediated immune responses to TB antigens by different means (1), and different antigens (PPD and rCM) were used in our study. These may lead to discordant results. TST measures an in vivo multimediate inflammatory response to multiple antigens (19), while blood testing measures ex vivo IFN-γ release by circulating lymphocytes in response to specific or complex antigens (23). Two cases of TST-positive but rCM-WBIA-negative household contacts might be explained by BCG vaccination or environmental mycobacterial infection. However, this is not a plausible explanation for the existence of four household contacts with TST-negative but rCM-WBIA-positive results. Due to the lack of a gold standard for diagnosis of M. tuberculosis infection, a comparison of WBLIA and TST is not always possible. Whether the TST-negative, rCM-WBIA-positive contacts have a risk of progression to active TB remains to be investigated by follow-up studies.

In conclusion, our study clearly suggests that the strong correlation between the IFN-γ responses to the rCM fusion protein in a PPD-positive population and the rCM-WBIA results has great potential for use in diagnosis of LTBI in humans, as well as in epidemiologic studies.

ACKNOWLEDGMENTS

This work was partly supported by grants from National High Technology Research and Development of China (863 program; grant 2006AA02Z445) and the National Natural Science Foundation of China (grant 30671861).

REFERENCES

1. Andersen, P., M. E. Munk, J. M. Pollock, and T. M. Doherty. 2000. Specific immune-based diagnosis of tuberculosis. Lancet 356:1099–1104.
2. Arend, S. M., K. E. van Meijgaard, K. deBoer, E. C. de Palou, D. van Soolingen, T. H. M. Ottenhoff, and J. T. van Dissel. 2002. Tuberculin skin testing and in vitro T cell responses to ESAT-6 and culture filtrate protein 10 after infection with Mycobacterium marinum or M. kansasi. J. Infect. Dis. 186:1797–1807.
3. Behr, M. A., M. A. Wilson, W. P. Gill, H. Salamon, G. K. Schoonhuijk, S. Rane, and P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1528–1533.
4. Behr, M. A., and P. M. Small. 1999. A historical and molecular phylogeny of BCG strains. Vaccine 17:915–922.
5. Brandt, L., M. Elhay, I. Rosenkrands, E. B. Lindblad, and P. Andersen. 2000. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun. 68:791–795.
6. Brock, L., K. Weldingh, T. Lillovebuck, F. Follmann, and P. Andersen. 2004. Comparison of tuberculin skin test and new specific blood test in tuberculosis contacts. Am. J. Respir. Crit. Care Med. 170:65–69.
7. CDC. 1995. Essential components of a tuberculosis prevention and control program. MMWR Morb. Mortal. Wklk. Rep. 44:1–17.
8. Elhay, M. J., T. Oettinger, and P. Andersen. 1998. Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig. Infect. Immun. 66:3454–3456.
9. Fan, X., Q. Gao, and R. Fu. 2007. DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculosis infection in mice. Scand. J. Immunol. 66:523–528.
10. Fan, X., Y. Yu, Q. Gao, and W. Yao. 2006. Immunological properties of recombinant Mycobacterium bovis bacillus Calmette-Guerin strain expressing fusion protein IL-2-ESAT-6. Acta Biochim. Biophys. Sin. 38:683–690.
11. Fine, P. E. M., I. A. M. Carneiro, J. B. Milstien, and C. J. Clements. 1999. Issues relating to the use of BCG in immunization programmes. p. 18–20. WHO, Geneva, Switzerland.
12. Geluk, A., K. E. van Meijgaard, K. L. M. C. Franken, B. Wieles, S. M. Arendz, W. R. Faber, B. Naald, and T. H. M. Ottenhoff. 2004. Immunological crossreactivity of the Mycobacterium leprae CFP-10 with its homologue in Mycobacterium tuberculosis. Scand. J. Immunol. 59:66–70.
13. Geluk, A., K. E. van Meijgaard, K. L. M. C. Franken, W. Y. Subronto, B.
Wiesle, S. M. Arend, E. P. Sampaio, T. de Boer, W. R. Faber, B. Naafs, and T. H. M. Ottenhoff. 2002. Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect. Immun. 70:2544–2548.

14. Grover, A., M. F. Ahmed, I. Verma, P. Sharma, and G. K. Khuller. 2006. Expression and purification of the Mycobacterium tuberculosis complex-restricted antigen CFP21 to study its immunoprophylactic potential in mouse model. Protein Expr. Purif. 48:274–280.

15. Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. 1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68.

16. Johnson, P. D. R., R. L. Stuart, M. L. Grayson, D. Olden, A. Clancy, P. Ravn, P. Andersen, W. J. Britton, and J. S. Rothe. 1999. Tuberculin-purified protein derivative-, MPT-64-, and ESAT-6-stimulated gamma interferon responses in medical students before and after Mycobacterium bovis BCG vaccination and in patients with tuberculosis. Clin. Diagn. Lab. Immunol. 6:934–937.

17. Langermans, J. A., T. M. Doherty, R. A. Vervenne, T. van der Laan, K. Lyashchenko, R. Greenwald, E. M. Agger, C. Aagaard, H. Weiler, D. van Sooelingen, W. Dalemans, A. W. Thomas, and P. Andersen. 2005. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23: 2740–2750.

18. Mauea, A. C., W. R. Water, M. V. Palmer, B. J. Nonnecke, F. C. Minio, W. C. Brown, J. Norimine, M. R. Foote, C. F. Scherer, and D. M. Estes. 2007. An ESAT-6:CFP10 DNA vaccine administered in conjunction with Mycobacterium bovis BCG confers protection to cattle challenged with virulent M. bovis. Vaccine 25:4735–4746.

19. Menzies, D., and T. M. Doherty. 2006. Diagnosis of latent tuberculosis infection. p. 215–263. In M. C. Raviglione (ed.), Reichman and Hershfield’s Tuberculosis. 14th ed. Lippincott Williams & Wilkins, Philadelphia.

20. Menzies, D., M. Pai, and G. Comstock. 2007. Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann. Intern. Med. 146:340–354.

21. Nakamura, R. M., M. A. Velmonte, K. Kawajiri, C. F. Ang, R. A. Frias, M. T. Mendoza, J. C. Montoya, I. Honda, S. Haga, and I. Toida. 1998. MPB64 mycobacterial antigen: a new skin-test reagent through Mycobacterium tuberculosis infection. Vaccine 23:1680–1685.

22. Pai, M., K. Dheda, J. Cunningham, F. Scano, and R. O’Brien. 2007. T-cell assays for the diagnosis of latent tuberculosis infection: moving the research agenda forward. Lancet Infect. Dis. 7:428–438.

23. Pai, M., L. W. Riley, and J. M. Colford. 2004. Interferon-gamma assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect. Dis. 4:761–776.

24. Palendira, U., J. M. Spratt, W. J. Britton, and J. A. Triccas. 2005. Expanding the antigenic repertoire of BCG improves protective efficacy against aerosol patch method for rapid diagnosis of active tuberculosis. Int. J. Tuberc. Lung Dis. 9:541–546.

25. Pym, A. S., P. Brodin, L. Majlessi, R. Brosch, C. Demangel, A. Williams, K. E. Grifiths, G. Marchal, C. Leclerc, and S. T. Cole. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9:533–539.

26. Roche, P. W., C. G. Feng, and W. J. Britton. 1996. Human T-cell epitopes on the Mycobacterium tuberculosis secreted protein MPT64. Scand. J. Immunol. 43:662–670.

27. Roche, P. W., J. A. Triccas, D. T. Avery, T. Fifis, H. Billman-Jacobe, and W. J. Britton. 1994. Differential T cell responses to mycobacteria-secreted proteins distinguish vaccination with bacille Calmette-Guérin from infection with Mycobacterium tuberculosis. J. Infect. Dis. 170:1326–1330.

28. Roche, P. W., N. Winter, J. A. Triccas, C. G. Feng, and W. J. Britton. 1996. Expression of Mycobacterium tuberculosis MPT64 in recombinant Mycobacterium smegmatis: purification, immunogenicity and application to skin tests for tuberculosis. Clin. Exp. Immunol. 103:226–232.

29. Soysal, A., T. Torun, S. Efe, H. Gencer, K. Tahaoglu, and M. Bakir. 2008. Evaluation of cut-off values of interferon-gamma-based assays in the diagnosis of M. tuberculosis infection. Int. J. Tuberc. Lung Dis. 12:50–56.

30. Weldingh, K., I. Rosenkranz, S. Jacobsen, P. B. Rasmussen, M. J. Ellay, and P. Andersen. 1998. Two-dimensional electrophoresis for analysis of Mycobacterium tuberculosis culture filtrate and purification and characterization of six novel proteins. Infect. Immun. 66:3492–3500.

31. Xu, Y., B. Wang, J. Chen, Q. Wang, B. Zhu, H. Shen, Y. Qie, J. Wang, and H. Wang. 2005. Chimeric protein improved immunogenicity compared with fusion protein of Ag85B and ESAT-6 antigens of Mycobacterium tuberculosis. Scand. J. Immunol. 64:476–481.