Glucose Transport by Acinar Cells in Rat Parotid Glands

Cedric Jurysta¹, Charles Nicaise², Sibel Cetik¹, Karim Louchami¹, Willy J. Malaisse¹ and Abdullah Sener¹

Laboratories of ¹Experimental Hormonology and ²General Histology, Neuroanatomy and Neuropathology, Université Libre de Bruxelles, Brussels

Key Words
Glucose transporters • Salivary glucose • SGLT1 • GLUT1 • GLUT2 • GLUT4 • Acinar cells

Abstract
Background/Aims: Salivary glucose is often considered as being from glandular origin. Little information is available, however, on the possible role of glucose transporters in the secretion of the hexose by salivary glands. The major aim of the present study was to investigate the expression and localization of several distinct glucose transporters in acinar cells of rat parotid glands. Methods: Quantitative real-time PCR analysis, immunohistochemistry and western blotting techniques were used to assess the presence of SGLT1, GLUT1, GLUT2 and GLUT4 in acinar cells of rat parotid glands. Results: Quantitative real-time PCR documented the expression of SGLT1 and GLUT1 in parotid tissues, with a much lower level of GLUT4 mRNA and no expression of GLUT2 mRNA. Western blot analysis revealed the presence of SGLT1 and GLUT4 proteins, but not GLUT2 proteins in the parotid extract. Immunohistochemistry confirmed these findings. SGLT1 was specifically located at the baso-lateral membrane, co-localizing with Na⁺/K⁺ ATPase. GLUT1 was found both at the baso-lateral and apical level. GLUT4 appeared to be also located at the baso-lateral level. However, too little GLUT4 was present to allow co-localization labeling. Conclusion: Based on these findings, a model is proposed for the transport of glucose into the acinar cells and thereafter into the acinar lumen.

Introduction

Saliva is a fluid with a specific composition and specific roles [1]. Like every biological fluid, some salivary components could be used to measure general parameters. In the view of a simple and rapid diagnosis of diabetes mellitus, it could be interesting to establish a correlation between salivary glucose and plasmatic glucose concentrations, and many authors found higher glucose salivary levels in diabetic patients versus control patients [2-4]. Unfortunately, this correlation is not so evident [5-7]. To explain this supposed correlation, a study of the biochemical secretion of glucose by glandular cells is required. The glandular origin of salivary glucose was showed [5, 6, 8]. The variations of glucose concentration between diabetic and control patients supported this
hypothesis [2-4, 7]. In 1983, a paracellular pathway for glucose secretion in rat submandibular and sublingual glands was described [9]. Recently, Sabino-Silva and col. described the presence of SGLT1 transporters in basolateral membranes of acinar parotid cells [10, 11]. This last hypothesis seems to corroborate with the glucose concentration measured during an oral glucose tolerance test: a similar time course pattern was observed for salivary glucose levels and glycemia [7]. A preferential diffusion mediated by specific glucose transporters has to be implicated. The most popular glucose transporters are part of the GLUT family. To date, 14 members of the GLUT family have been identified [12]. The aim of this study is to determine the glucose transporters present in the acinar cells of parotid glands of rats and their localization, in order to understand the mechanism of glucose secretion. By analogy with the kidney or enterocyte models, if SGLT1 is present at the baso-lateral membrane of the acinar cells, another transporter has to be implicated at the apical membrane. GLUT1, GLUT2 GLT4 and SGLT1 are considered in this article as potential transporter. It is well known that GLUT1 is a ubiquitous transporter; GLUT2 is specific for liver tissue; GLUT4 for muscle tissue. SGLT1 is a Na-Glucose co-transporter [13].

Materials and Methods

Animals and experimental design
Six Wistar female rats (weight: 250g) were purchased from Charles River Company, France, and housed in the animal facilities of our laboratory. They had access to food and water ad libitum and were maintained in a 12:12 h day:night cycle. They received care in agreement with the national legal requirements, the local ethic committee rules and the European Communities Council Directive (86/609/EEC). Euthanasia by deep anesthesia using ketamine (60 mg/kg) and xylazine (7.5 mg/kg). Parotid glands, liver, kidney, muscle and pancreas were removed and further processed for quantitative real-time PCR analysis, western blot and immunohistochemistry studies.

Quantitative real-time PCR analysis
The quantitative real-time PCR analyses were realized using a previously described method [14]. Prior to extraction, the organs were kept at -80°C. Total RNA was extracted using a Tripure lysis solution and a High Pure RNA Tissue Kit (Roche Diagnostics, Vilvoorde, Belgium) according to the manufacturer’s protocol, which included DNase treatment. cDNA was obtained from total RNA after a reverse-transcription step using SuperScript II RT enzyme (Invitrogen, Belgium). The mRNA quantification was performed next using a real-time quantitative polymerase chain reaction on a LightCycler 480. Primer sequences (Table 1) were designed with Primer3 software (Whitehead Institute for Biomedical Research, Cambridge, MA). Quantitative PCR reaction was achieved using a commercial kit containing SYBR Green (Eurogentec, Seraing, Belgium) and the cycling program was: 5 minutes at 95°C, 15 seconds at 95°C for 40 cycles, and 30 seconds at 60°C. According to the delta Ct method, the gene expression level of each mRNA was calculated, further normalized to GAPDH (glyceraldehyde 3-phosphate dehydrogenase enzyme) mRNA, and related to control samples. Specific amplification was confirmed by melting curve analysis and migration on agarose gel.

Immunohistochemistry
The immunohistochemistry analyses were realized using a previously described method [15]. After fixation of the organs in 10% formalin followed by a paraffin-embedding procedure, 7μm-sections were rehydrated, endogenous peroxidases were blocked (0.3% H2O2 in methanol) and non-specific binding antibodies inhibited for 1 hour with 10% goat serum. Polyconal GLUT1 (Millipore, ref. #07-1401, Overiije, Belgium), GLUT2 (Millipore, ref.#07-1402, Overiije, Belgium), GLUT4 (Millipore, ref.#07-1404, Overiije, Belgium) or SGLT1 (Millipore, ref.#07-1417, Overiije, Belgium) antibodies were incubated overnight at room temperature. Manipulations were conducted at 1/500 dilution. After washing, the bound antibodies were revealed by staining with a secondary biotinylated goat anti-polyvalent IgG (Immunologic, Duiven, The Netherlands) followed by avidin-biotin-peroxidase and diaminobenzidine as a substrate. Used as control, sections were incubated with secondary antibody alone and organs expressing different glucose transporters were also included. To confirm localization of the GLUT transporters on the membrane, co-localizations studies of Na+/K+ ATPase and GLUT were realized. Immunohistochemical labeling was performed using a fluorescein-labeled secondary antibody.

Western blotting
The western blotting analyses were derived from a previously described method [16]. Prior to extraction, the organs were kept at -80°C. Tissue extracts were loaded on 6% polyacrylamide gels. Proteins were then transferred to polyvinylidene-difluoride membranes and immuno-labeled using specific polyconal GLUT1, GLUT2, GLUT4 or SGLT1 antibodies at a dilution of 1/500. Bound antibodies were then detected using an enhanced chemiluminescence method.
Statistical analysis

All results are presented as mean values (±SEM). The statistical significance of differences between mean values was assessed by the use of Student’s t-test.

Results

Quantitative real-time PCR analysis

SGLT1. As shown in Fig. 1, SGLT1 mRNA was well expressed in parotid cells. Relative to GAPDH mRNA, SGLT1 mRNA expression levels was twice higher (p<0.05) in comparison with the kidney tissue used as a positive control. The negative control was a muscle tissue.

GLUT1. As shown in Fig. 2, the parotid cells expressed mainly GLUT1 mRNA. Lung tissue was chosen as a positive control and muscle tissue as a negative control. Relative to GAPDH mRNA, the expression level of GLUT-1 mRNA was about twice higher (p<0.05) in the parotid gland versus the positive control tissue.

GLUT2. As shown in Fig. 3, there was no expression of GLUT2 mRNA in the parotid tissue. Liver tissue was used as positive control. The muscle tissue was chosen as negative control.

GLUT4. As shown in Fig. 4, GLUT4 mRNA was unexpectedly present in parotid cells. The expression level

Fig. 1. Comparison of SGLT1 mRNA expression level between parotid, kidney (positive control) and muscle tissues (negative control). Mean values (± SEM) refers to 4 individual determinations. The asterisks indicate significant differences (p<0.05).

Fig. 2. Comparison of GLUT1 mRNA expression level between parotid, lung (positive control) and muscular tissues (negative control). Mean values (± SEM) refers to 4 individual determinations. The asterisks indicate significant differences (p<0.05).

Fig. 3. Comparison of GLUT2 mRNA expression level between parotid, liver tissues (positive control) and muscular tissues (negative control). Mean values (± SEM) refers to 4 individual determinations. The asterisks indicate significant differences (p<0.05).

Fig. 4. Comparison of GLUT4 mRNA expression level between parotid, muscle (positive control) and pancreatic tissues (negative control). Mean values (± SEM) refers to 4 individual determinations. The asterisks indicate significant differences (p<0.05).

Fig. 5. SGLT1 (A), GLUT1 (B) and GLUT4 (C) glucose transporters proteins detected in rat parotid glands by western blotting.
was just a little lower (p<0.05) than the expression level in the skeletal muscle. The pancreatic tissue was chosen as a negative control.

Western blotting

Western blot analysis revealed the presence in parotid tissue of GLUT1, GLUT4 and SGLT1 transporters (Fig. 5). No GLUT2 protein was detected by western blotting.

Immunohistochemical studies

SGLT1. The immunohistochemical method showed the presence of SGLT1 transporter at the level of the acinar cells (Fig. 6). Kidney tissue was used as a positive control. Transporter SGLT1 was specifically located at the baso-lateral membrane of acinar cells, as judged by fluorescein co-localization with a Na+/K⁺ ATPase antibody (Fig. 7).

GLUT1. Immunohistochemistry showed the presence of GLUT1 transporter in the acinar cells (Fig. 8). Exocrine pancreas was used as a positive control. This transporter was present both at the baso-lateral membrane and at the apical membrane. A double fluorescein-labeling with the baso-lateral Na⁺/K⁺ ATPase confirmed this observation (Fig. 9).

GLUT2. As expected, there was no GLUT2 transporter in rat parotid glands. Endocrine pancreatic tissue was used as a positive control (Fig. 10).

GLUT4. Immunohistochemical labeling showed the presence of GLUT4 transporter on acinar cell at baso-

Fig. 6. Immunodetection of SGLT1 in kidney (A, scale bar = 50 µm) and parotid tissues (B, scale bar = 10 µm and C, scale bar = 50 µm). Immunohistochemical labeling was performed using secondary biotinylated goat anti-polyvalent IgG.

Fig. 7. Double immunolabeling on parotid tissue with specific Na⁺/K⁺ ATPase antibody (A) and SGLT1 antibody (B). Double labeling combined (C) specifies the presence of SGLT1 on the baso-lateral membrane of acinar cells (scale bar = 50 µm).

Fig. 8. Immunodetection of GLUT1 in exocrine pancreas (A, scale bar = 50 µm) and parotid tissues (B, scale bar = 10 µm and C, scale bar = 50 µm). Immunohistochemical labeling was performed using secondary biotinylated goat anti-polyvalent IgG.
Fig. 9. Double immunolabeling on parotid tissue with specific Na⁺/K⁺ ATPase antibody (A) and SGLT 1 antibody (B). Double labeling combined (C) specifies the presence of GLUT 1 on the baso-lateral and apical membrane of acinar cells (scale bar = 50 µm).

Fig. 10. Immunodetection of GLUT2 in pancreatic islet (A, scale bar = 50 µm) in comparison with parotid tissue (B, scale bar = 10 µm and C, scale bar = 50 µm). Immunohistochemical labeling was performed using secondary biotinylated goat anti-polyvalent IgG.

Fig. 11. Immunodetection of GLUT4 in muscle (A, scale bar = 50 µm) and parotid tissues (B, scale bar = 10 µm and C, scale bar = 50 µm). Immunohistochemical labeling was performed using secondary biotinylated goat anti-polyvalent IgG.

Discussion

The present results contribute to determine the mechanisms of glucose transport by acinar cells inside rat parotid glands [7, 9]. It could correspond to a transporter-mediated process rather than a paracellular one as suggested by some authors [9].

The main glucose transporters are from the GLUT1 and SGLT1 families. Relative to GAPDH, quantitative Real-time PCR analysis pointed out a double mRNA quantity for SGLT1 and GLUT1 when compared to the respective positive control tissues. In the parotid gland, the expression of GLUT1 exceeded that of SGLT1 (p<0.05).

Unexpectedly, a GLUT4 transporter was found in the acinar cells, the latter transporter being otherwise typically associated to muscular tissue. The analysis of
immunohistochemical figures showed a localization on the baso-lateral membrane. Hence, it does not seem to be attributable to the labeling of myoepithelial cells because it is also present in isolated acinar parotid cells (data not shown). However, the GLUT4 mRNA was found in smaller amounts when compared to the mRNA amounts of the other transporters (p<0.05). This low expression level was responsible for the low fluorescence level measured with a double labeling.

A western blot analysis was performed in order to confirm the presence of these glucose transporting proteins. Immunohistochemical techniques allowed localizing all of these transporters on cellular membranes of acinar cells.

GLUT1 transporter was located as well on the apical as on the baso-lateral level of acinar cells, whereas SGLT1 transporter was only located on the baso-lateral level of acinar cells. Last, the insulin-dependent GLUT4 transporter was located on the baso-lateral level of acinar cells.

Based on these results and on the presence of various transporters in other cellular types such as enterocytes [17] and kidney [18, 19], it is actually possible to suggest a cellular model for glucose secretion by acinar cells. Thus, glucose is supposed to enter in acinar cells by ways of SGLT1 transporter and GLUT1 transporter. Glucose is supposed to use the GLUT1 transporter to reach the luminar domain of acini. The role of the insulin-dependent GLUT4 transporter requires further investigation.

Acknowledgements

This work was supported by grants from Belgian Foundation for Scientific Medical Research (F.R.S.M. grant 3.4520.07 to A.S.)

References

1. Shannon IL, Suddick RP, Dowd FJ Jr: Saliva: composition and secretion. Monogr Oral Sci 1974;2:1-103.
2. Marchetti P, Tognarelli M, Giannarelli R, Grossi C, Picaro L, di Carlo A, Benzi L, Ciccarone A, Navalesi R: Decreased salivary glucose secretory rate: usefulness for detection of diabetic patients with autonomic neuropathy. Diabetes Res Clin Pract 1989;7:181-186.
3. Amer S, Yousuf M, Siddqui PQ, Alam J: Salivary glucose concentrations in patients with diabetes mellitus a minimally invasive technique for monitoring blood glucose levels. Pak J Pharm Sci 2001;14:33-37.
4. Chávez EM, Borrell LN, Taylor GW, Ship JA: A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:166-173.
5. Ben-Aryeh H, Cohen M, Kanter Y, Szargel R, Laufer D: Salivary composition in diabetic patients. J Diabet Complications 1988;2:96-99.
6. Forbat LN, Collins RE, Maskell GK, Sönksen PH: Glucose concentrations in parotid fluid and venous blood of patients attending a diabetic clinic. J R Soc Med 1981;74:725-728.
7. Jurysta C, Bulur N, Oguzhan B, Satman I, Yilmaz TM, Malaisse WJ, Sener A: Salivary glucose concentration and excretion in normal and diabetic subjects. J Biomed Biotechnol 2009;2009:430426.
8. Mangos JA, Maragos N, McSherry NR: Micropuncture and microperfusion study of glucose excretion in rat parotid saliva. Am J Physiol 1973;224:1260-1264.
9. Takai N, Yoshida Y, Kakudo Y: Secretion and re-absorption of glucose in rat submandibular and sublingual saliva. J Dent Res 1983;62:1022-1025.
10. Sabino-Silva R, Alves-Wagner AB, Burgi K, Okamoto MM, Alves AS, Lima GA, Freitas HS, Antunes VR, Machado UF: SGLT1 protein expression in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetic and hypertensive rats. Am J Physiol Endocrinol Metab 2010;299:E1028-E1037.
11. Sabino-Silva R, Freitas HS, Lamers ML, Okamoto MM, Santos MF, Machado UF: Na+-glucose cotransporter SGLT1 protein in salivary glands: potential involvement in the diabetes-induced decrease in salivary flow. J Membr Biol 2009;228:63-69.
12. Thorens B, Mueckler M: Glucose transporters in the 21st Century. Am J Physiol 2009;298:E141-E145.
13. Bell G, Kayano T, Buse J, Durant C, Takeda J, Lin D, Fukimoto H, Sener A: Molecular biology of mammalian glucose transporters. Diabetes Care 1990;13:198-208.
14. Nicaise C, Mitrecic D, Pochet R: Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 2011;37:179-188.
15. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, Pochet R: Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 2009;1301:152-162.
16. MacPhee DJ: Methodological considerations for improving Western blot analysis. J Pharmacol Toxicol Methods 2010;61:171-177.
17. Drozdzowski LA, Thomson AB: Intestinal sugar transport. World J Gastroenterol 2006;12:1657-1670.
18. Thorens B: Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes. Am J Physiol 1996;270:G541-G543.
19. Wallner EI, Wada J, Tramonti G, Lin S, Kanwar YS: Status of glucose transporters in the mammalian kidney and renal development. Ren Fail 2001;23:301-310.