Review

Chilblains in immune-mediated inflammatory diseases: a review

Shirish Dubey 1,2,*, Nilay Joshi3,*, Olivia Stevenson3 Caroline Gordon 4 and John A. Reynolds 5,6

Abstract

Chilblains were first described over a hundred years ago as cutaneous inflammatory lesions, typically on the digits, occurring on cold exposure. Chilblains can be primary, or secondary to a number of conditions such as infections, including COVID-19, and immune-mediated inflammatory disorders (IMIDs) with SLE being the commonest. Chilblain lupus erythematosus (CHLE) was first described in 1888 as cold-induced erythematous lesions before the terms ‘chilblains’ or ‘perniosis’ were coined. Diagnostic criteria exist for both chilblains and CHLE. Histopathologically, CHLE lesions show interface dermatitis with perivascular lymphocytic infiltrate. Immunofluorescence demonstrates linear deposits of immunoglobulins and complement in the dermo-epidermal junction. This narrative review focuses on chilblains secondary to immune-mediated inflammatory disorders, primarily the epidemiology, pathogenesis and treatment of CHLE.

Key words: Chilblains, chilblain lupus erythematosus, CHLE, immune-mediated inflammatory diseases, IMID

Introduction

Chilblains are cutaneous inflammatory lesions commonly occurring on exposure to cold and damp conditions. Symptoms develop 12–24 h after a triggering event and characteristically present with burning, painful, pruritic, erythrocyanotic lesions involving extremities. Typically, the lesions are oedematous, tender plaques or papules with purple discoloration or nodules (which may develop central erosions/ulceration) which begin as a pruritic area later becoming tender [1–3]. If located on the soles of the foot, the lesions tend to develop necrosis more rapidly [4]. Involvement of ears and nose is uncommon, as are lesions on the trunk [5].

The term ‘chilblain’ is of Anglo-Saxon origin, referring to ‘chill’ for cold and ‘Blegen’ for sore [6]. Chilblains are also known as perniosis and were first described in 1912. Perniosis is a more general term applied to chilblain lesions, mainly when they occur in the absence of lupus erythematosus (LE) or another immune-mediated inflammatory disorder (IMID) [2, 3, 7]. Perniosis should not be confused with the term ‘lupus pernio’, which is a misleading name used for cutaneous sarcoidosis and was first described in 1959 [8].

Chilblains can be primary or secondary. Secondary chilblains are associated with IMIDs, infections (including hepatitis), haematological disorders, malignancy and drug-related causes. By far, the most common association is with SLE [4, 9–12] although since 2020, chilblains have been reported in association with COVID-19 [13].
SLE [5]. Raynaud’s-associated discolouration can occur be a symptom of cutaneous lupus erythematosus (CLE) chilblain lupus erythematosus of Hutchinson’s; they can search for a secondary cause [9, 10]. A full list of conditions associated with chilblains is shown in Table 1.

### Conditions associated with chilblains

| Primary | Idiopathic |
|---------|------------|
| Secondary | IMIDs |
|          | Systemic lupus erythematosus [4, 11, 12] including sporadic and familial forms |
|          | Antiphospholipid syndrome [14, 15] |
|          | Behcet’s disease [15] |
|          | Cryoglobulinemia [7, 16–19] |
|          | Cold agglutinin [20] |
|          | Infected |
|          | Hepatitis B and C [21, 22] |
|          | Covid-19 [13] |
|          | Haematological and malignancy |
|          | Acute lymphoblastic leukemia [23] |
|          | Chronic myelomonocytic leukemia [24] |
|          | Monoclonal gammopathy of undetermined significance [21] |
|          | Leukemia cutis [25] |
|          | Lymphoma [26] |
|          | Drug induced |
|          | Sulindac [27] |
|          | Infliximab [28] and other anti-TNF agents [29] |
| Others | Post traumatic perniosis [30] |
| Pregnancy [31] |

In primary chilblains, the lesions often resolve within a few days to three to four weeks [5]. Persistence of lesions, appearance in warmer temperatures or unusual features such as ulceration or scarring should lead to a search for a secondary cause [9, 10]. A full list of conditions associated with chilblains is shown in Table 1.

Chilblain lupus erythematosus (CHLE) is an uncommon variant of cutaneous LE first described by Jonathan Hutchinson in 1888 as cold-induced erythematous lesions. He had initially termed it ‘Lupus Pernio’ 24 years before the initial description of primary chilblains [11]. Millard and Rowell classified these lesions as chilblain lupus erythematosus of Hutchinson’s; they can be a symptom of cutaneous lupus erythematosus (CLE) SLE [5]. Raynaud’s-associated discolouration can occur concomitantly with CHLE lesions in some cases. CHLE can occur in the context of SLE and is a specific subtype of chronic cutaneous LE in the SLICC 2012 Classification Criteria for SLE [12]. In a prospective study of 33 patients affected by severe chilblains, Viguier et al. proposed that persistence of lesions during hot seasons was an important feature that could delineate CHLE from idiopathic chilblains [9].

The purpose of this narrative review is to describe the epidemiology, management and complications of chilblains secondary to IMIDs.

### Methods

Search strategy: This review was supported through a MEDLINE and Embase search (29 April 2021) using the terms: ‘chilblains’ OR ‘pernio’ OR ‘chilblain’ OR ‘perniosis’ OR ‘acrosyndrome’). Our initial search identified 334 articles in the English language; the titles and abstracts of these were reviewed for inclusion in the review. Because there are limited clinical trials in this area (and no randomized controlled clinical trials in CHLE), we also included case reports of treatments that had been effective. Publications that did not provide any new information were not referenced. This led to the identification of 49 articles selected on the basis of their relevance and originality. Additional manuscripts, including those describing COVID-19 and immune-mediated inflammatory conditions with skin lesions such as SLE were identified through searches of cited articles or through personal contact.

### Results

With the exception of CHLE, there is paucity of data on the occurrence of chilblains in other IMIDs, therefore the results focus on CHLE.

#### Incidence/prevalence

A small study by Takci et al. including 51 patients reported that the majority (86%) of chilblains seen in a dermatology outpatient department were primary and only 14% secondary to another cause such as a connective tissue disorder or hepatitis [21]. Conversely, Yell et al. report that 15/73 (20.5%) of SLE patients had chronic CHLE [32]. Gold had reported in 1960 that 3% of discoid LE patients had chilblains [33]. There is paucity of good quality epidemiological data on secondary chilblains and CHLE. Hedrich et al. reported that an estimated 20% of patients with CHLE will go on to develop features of SLE, although this was based on only 17 patients [7]. A French study of 50 consecutive patients with SLE and digital cutaneous lesions identified CHLE in 15 (30%) of patients, and also reported progression to SLE in ~18% of patients [34]. In contrast, CHLE has been quoted as being present in about 6% of patients with SLE, predominantly females [5]. Although some reports suggest that CHLE is commoner in females [5], others indicate that there is no sex difference when secondary chilblains are considered together [22]. Familial CHLE is rare, and reports are typically limited to small families, and is discussed in more detail below.

### Pathogenesis

The pathogenesis of CHLE is not well understood. Vasoconstriction provoked by exposure to cold leads to the occlusion of the capillary bed and a circulation slowdown with the presence of aggregates of red blood cells visible on capillaroscopy [5, 35]. Antibodies to Ro/SSA may be demonstrated in a subset of CHLE patients [35]. However, in patients with SLE, Bouaziz et al. did not find association with anti-Ro antibodies [34]. Full-thickness skin grafts from unaffected regions resulted in persistent improvement in two reported cases, implying that local factors might be crucial in the pathophysiology [36].
Familial chilblain lupus (FCL) can arise due to loss-of-function mutations in TREX1, or less commonly SAMHD1, or gain-of-function mutations in TMEM173 (which encodes stimulator of interferon genes, STING). TREX1 is a 3’-to-5’ DNA exonuclease which clears single and double stranded DNA in the cytoplasm. Defects in TREX1 lead to increased activation of the cGAS/STING pathway and subsequently increased expression of type 1 IFNs [37–41]. Enhanced 1 IFN responses may therefore also be important in COVID-19-associated chilblains in which there are also high levels of type 1 interferon (IFN) as part of the antiviral response [42]. FCL has onset in childhood and may improve with age which contrasts with sporadic CHLE which is usually observed in middle-aged women [7]. Mutations in TREX1, SAMHD1 and TMEM173, along with RNASEH2A/B/C, ADAR and IFHI1, are also associated with Aicardi-Goutiéres syndrome (AGS) which can cause retinal vasculopathy with cerebral leukodystrophy; up to 40% of patients with AGS experience CHLE-like lesions [1, 37–40]. Chilblains or chilblain-type lesions have been described quite frequently following development of COVID-19 [13, 43]. COVID-19 toes/pseudo-chilblains seem to occur predominantly in children and young adults and appear to be a relatively late feature of COVID-19 [44, 45]. Livedo or necrosis, with lesions suggesting occlusive vascular disease usually affects people with more severe COVID-19 while chilblains might be associated with less severe manifestations of COVID-19 [14, 46]. Histological studies suggest that chilblain-type lesions are associated with microthrombi [47]. Microhaemorrhages, pericapillary oedema and dilated capillary loops were observed on capillaroscopy [47]. A causative link between chilblains and COVID-19 remains inconclusive, especially since cold exposure does not appear to be a precipitating factor [48].

Diagnosis

Chilblains are generally diagnosed on clinical grounds with supporting histopathology in some cases (see Fig. 1).

Diagnostic criteria have been proposed by the Mayo clinic for both CHLE (based on five patients in 1994) [10] and idiopathic chilblains [49]. To diagnose definite CHLE, patients must fulfil both the major criteria and at least one of the minor criteria (Table 2).

Some immunological anomalies are frequently observed (although not necessary for diagnosis) in CHLE, including hypergammaglobulinemia (>2/3 of patients), positive RF (>50%), ANA, anti-Ro/SSA, and antiphospholipid (APL) antibodies [5, 7, 50]. Skin biopsy can be helpful in diagnosis (see below).

Differential diagnosis

There is a broad range of differential diagnoses that one needs to consider (see Table 3).

Fig. 1 Patient photo of CHLE lesions on the foot and also demonstrating splinter haemorrhage
A skin biopsy may be useful in confirming as CHLE has specific pathological features that can help to differentiate CHLE from idiopathic chilblains and other skin lesions. Biopsies in idiopathic chilblains demonstrate an interface dermatitis, superficial and deep perivascular lymphocytic infiltration with deep perieccrine reinforcement and dermal oedema. The epidermal changes include orthohyperkeratosis, necrotic keratinocytes and variable atrophy [5, 51–53]. In CHLE, as opposed to idiopathic chilblains, epidermal spongiosis and perieccrine inflammatory infiltrate are not commonly seen [51]; however, there is vacuolization of the basal layer of epidermis [9, 10, 53] (Figs 2 and 3). Wang et al. reported a case-control study of 39 patients with idiopathic chilblains and 20 patients with CHLE. This study identified that increased dermal interstitial mucin deposition and fibrin exudate may help in distinguishing CHLE from idiopathic chilblains [54]. Studies with immunofluorescence have demonstrated that CHLE lesions are typified by linear deposits of immunoglobulins and complements in the dermo-epidermal junction, similar to discoid lupus; Table 4 describes the principal differences between idiopathic chilblains and CHLE [10]. There remain concerns about doing biopsies in patients with vasospastic conditions and impaired peripheral circulation, which reduces our understanding of the etiopathogenesis and thereby treatment.

Immunohistochemistry is not helpful in distinguishing idiopathic chilblains from CHLE. In both idiopathic chilblains and CHLE the infiltrate shows CD3⁺ T cells associated with CD68⁺ macrophages and a few CD20⁺ B lymphocytes. A similar percentage and distribution of CD123⁺ cells in idiopathic pernio and CHLE is seen [51, 54].

### Table 2: Diagnostic criteria for CHLE proposed by Mayo clinic

| Two major criteria: |
|---------------------|
| 1. Skin lesions of acral sites induced by exposure to cold or a drop in temperature. |
| 2. Evidence of lupus erythematosus in the skin lesions, as determined by histopathologic examination or direct immunofluorescence. |

| Three minor criteria: |
|-----------------------|
| 1. Coexistence of systemic lupus erythematosus (SLE) or other skin lesion of discoid lupus erythematosus. |
| 2. Response to anti-lupus therapy. |
| 3. Negative cryoglobulin and cold agglutinin studies. |

Patients must fulfill both major criteria and at least one of the minor criteria to be diagnosed as having definite CHLE.

### Table 3: Differential diagnosis of chilblains

| Condition               | Description                                                                 |
|-------------------------|-----------------------------------------------------------------------------|
| Frostbite and cold urticaria | are not confined to the extremities and can be reproduced by the ice cube test. |
| Acrocyanosis            | is permanent and painless. It presents with chronic coolness and violaceous discolouration of extremities. |
| Erythromelalgia         | evolves in paroxysmic crisis and is characterized by the triad of burning pain, recurrent redness and warmth of the extremities. These symptoms occur during exposure to heat, during exercise and in response to gravity and can be relieved by cooling and elevation. |
| Raynaud’s phenomenon    | is ischaemic discolouration of fingers, toes, nose, etc on exposure to cold, stress or emotional upset due to spasm of blood vessels with vasodilatation and hyperaemia on removal of the stimulus. |
| Vasculitis              | Is purpuric and more necrotic and is often associated with systemic symptoms but is easily confused with chilblains. |
| Cold panniculitis       | is common in young children as a form of lobular panniculitis that results from direct cold exposure. It typically occurs on cheek and chin. Erythematous, indurated plaques develop at the sites of cold exposure and resolve within a few weeks. In this condition, biopsy show lobular panniculitis and a superficial and deep perivascular lymphohistiocytic infiltrates. |
| Blue toe syndrome       | Embolism-induced ischaemia including blue toe syndrome can often present with distal blue discolouration of a digit and can involve hands or feet. |
| Cryofibrinogenemia      | Can cause cryopathy that can lead to cold intolerance, Raynaud phenomenon, purpura, or livedo reticularis and in severe cases skin necrosis, acral ulcers and gangrene. |
| Lupus pernio            | Cutaneous sarcoidosis can present various types of lesions some of which are reddish purple nodules that may occur at a peripheral site, but usually in the face or nose. |
| Achenbach syndrome      | Is a benign condition associated with spontaneous bruising over the fingers along with burning pain usually on volar aspect of the hand. |
| Thromboangiitis obliterans or Buerger’s disease | Is a rare inflammatory condition affecting young or middle-aged smoking men causing distal ischaemia and sometimes necrosis. |

### Treatment

Although chilblain lesions may respond to conservative measures, in refractory, recurrent or severe lesions, pharmacological interventions may be necessary [7]. The treatment aim in CHLE is to prevent development of new lesions and expedite the healing of current lesions to reduce discomfort and avoid scarring.
Conservative management includes avoidance of cold and damp, and use of insulated clothing, gloves and footwear [7]. There are no studies assessing the impact of these measures.

**Pharmacological**

The majority of studies describing treatment of chilblains are focused on primary chilblains. There are no randomized controlled trials (RCTs) of any agent in secondary chilblains. The majority of trials have included
relatively small numbers of patients with short follow-ups, heterogeneous outcomes and no data on recurrence and longer-term outcomes. As there are no trials in secondary chilblains, extrapolation of limited data in primary chilblains may be helpful. We identified RCT data for nifedipine, pentoxifylline, prednisolone and tadalafil in primary chilblains. The key findings from trials are summarized in Table 5.

**Topical treatments**

Topical corticosteroids do not appear to be particularly effective, although may be of some benefit [7, 49, 55]. Topical glyceryl trinitrate (GTN) 0.4% was found to be similar in efficacy to nifedipine (initially 10–20 mg daily, increased to 20–40 mg daily) in a single-blind randomized trial, although resolution was slower in the GTN arm [57]. Topical tacrolimus and pimecrolimus have been used anecdotally with some benefit [7, 66].

**Systemic treatments**

**Vasodilators**

Nifedipine has inconsistent evidence in the treatment of primary chilblains. Studies suggest superiority to placebo in some studies but not others [56–60], with reports of superiority to diltiazem [61] and topical 5% minoxidil solution [62].

**Pentoxifylline**

Pentoxifylline is a xanthine derivative that non-selectively inhibits phosphodiesterase and has been shown to decrease blood viscosity and improve erythrocyte flexibility, which have been postulated to be an important factor in the pathogenesis of chilblain lesions [67]. It has demonstrated superiority to placebo [63, 65], oral prednisolone and topical clobetasol [64] in studies.

**Tadalafil**

Tadalafil is a selective phosphodiesterase type 5 (PDE5) inhibitor with a long half-life (17.5 hours). An open-label study demonstrated superiority over both pentoxifylline and prednisolone in terms of lesion severity after 2 weeks [65].

**Immunomodulators and immunosuppressive agents**

**Prednisolone**

As described above, in randomized controlled trials, oral prednisolone has been shown to be inferior to both pentoxifylline and tadalafil in primary chilblains [64, 65].

**Chloroquine or HCQ**

There are no randomized controlled trials of HCQ or chloroquine in CHLE. In 1912, Chipman et al. were the first to report use of anti-malarials for perniosis. Quinine
## Table 5: Summary of clinical trial data in chilblains

| Study type, location, type of CB, year of publication | Intervention | Comparator | Numbers recruited (completed) | Outcome | Limitations |
|-----------------------------------------------------|--------------|------------|-------------------------------|---------|-------------|
| Topical corticosteroids                              | Betamethasone valerate (BMV) 0.1% cream twice daily for 6 weeks | Placebo | 34–19 in intervention, 15 in placebo, no dropouts | No difference in outcomes VAS over 13 weeks | Study size |
| Randomized placebo-controlled crossover trial, Netherlands, Primary, 2017 [55] | | | | | |
| Vasodilators: calcium channel blockers               | Nifedipine retard 20 mg PO TID for 6 weeks | Placebo | 10 in both arms | Positive nifedipine: 7/10 patients (70%) in the nifedipine group had resolution of lesions within 10 days (vs 20-28 days with placebo), and no new lesions developed while on treatment. Five patients initially treated with placebo relapsed within one week of starting placebo. For 3/5 patients (60%) in the placebo group, code was broken due to relapse severity and nifedipine was restarted with good response. | Study size |
| Randomized placebo-controlled crossover trial, England, primary, 1986 [56, 57] | | | | | |
| RCT, India, unspecified, 2003 [58]                  | Nifedipine (plain) 10 mg PO TID until complete relief and then nifedipine extended release 20 mg PO daily (total duration 21 days) | Diltiazem 60 mg PO TID for 21 days | 21 patients in nifedipine arm, 12 in diltiazem arm | Positive nifedipine: 21/24 patients (88%) in the nifedipine group showed 80% to 90% improvement by the 14th day, vs only 5/12 patients (42%) in the diltiazem group. 7/12 (58%) who had no response to diltiazem were switched to the nifedipine group between days 7 to 10. | Study size, blinding and type of chilblains not specified |
| RCT single blind, Pakistan, primary, 2014 [59]     | Nifedipine retard 10-20 mg PO daily for 1 week, then 20–40 mg PO daily for 5 weeks if tolerated | Topical GTN (0.4%) cream applied twice daily for 6 weeks | 34 (27) in nifedipine arm, 31 (26) in GTN arm | Positive nifedipine: Nifedipine group achieved earlier clearance compared with GTN cream (10.9 +/- 6 days vs 16.6 +/- 11.5 days, P = 0.05). | Study size, blinding, ~18% dropout |
| RCT single blind, Iraq, primary, 2010 [60]         | Nifedipine sustained release 20 mg PO daily for 1 week, followed by 20 mg PO BID for 1 week | Topical 5% minoxidil solution applied twice daily for 2 weeks | 42 (35) patients in nifedipine arm, 20 (17) patients in minoxidil arm | Positive nifedipine: 20 patients (57%) in the nifedipine arm showed good improvement, 9 (25%) very good improvement, compared with six patients (35%) with good improvement and one patient (6%) with very good in the minoxidil group (P < 0.05). | (continued) |
| Study type, location, type of CB, year of publication | Intervention | Comparator | Numbers recruited (completed) | Outcome | Limitations |
|------------------------------------------------------|--------------|------------|------------------------------|---------|-------------|
| Randomized placebo-controlled crossover trial, Netherlands, primary, 2016 [61] | Nifedipine controlled release (CR) 30 mg PO daily for 2 weeks, followed by nifedipine CR 30 mg PO BID for 4 weeks | Placebo | 32(32) | No difference: After 6 weeks of treatment, mean scores on the VAS on symptoms showed no significant difference between nifedipine and placebo \( (P = 0.44) \). VAS on disability also no significant difference \( (P = 0.75) \). | |
| RCT, open label, India, primary, 2018 [62] | Nifedipine 10 mg PO daily and oral antihistamines for 2 weeks | Topical 5% minoxidil gel twice daily and oral antihistamines for 2 weeks | 42 in each, all completed | Positive nifedipine: 10/42 patients (23.8%) in the nifedipine group vs 3/42 patients (7%) in the minoxidil group showed very good improvement \( (P = 0.001) \). | |
| Vasodilators: other | | | | | |
| RCT, Iraq, primary, 2008 [63] | PTX 400 mg PO TID for 2 weeks | Prednisolone 2.5 mg/kg PO BID and clobetasol ointment for 2 weeks | 20 (9) in pentoxifylline group, 20 (11) in corticosteroid group | Positive PTX: Prednisolone and clobetasol group 3/11 (27%) who completed treatment had ‘good improvement’, compared with 5/9 (56%) in the PTX group \( (P < 0.05) \). | Study size, very high dropout rate |
| RCT, open label, Iraq, primary, 2015 [64] | Group A: tadalafil 5 mg PO daily for 2 weeks. Group B: PTX 400 PO TID for 2 weeks Group C: prednisolone 15 mg PO BID for 2 weeks | Group A: 19 \( (15) \) Group B: 18 \( (13) \) Group C: 21 \( (19) \) Overall, 58 \( (47) \) patients recruited | Tadalafil > PTX > prednisolone: Percentage improvement in severity score was 50.65, 44.16 and 31.51%, for tadalafil, PTX and prednisolone groups, respectively (ANOVA \( P \)-value = 0.004). | |
| RCT, double blind placebo controlled, Iraq, primary, 2016 [65] | PTX 400 mg PO TID for 3 weeks | Placebo | 59 (55) PTX 59 (55) Placebo | Positive PTX: 40/55 (72.7%) PTX patients achieved very good response at 3 weeks vs 11/55 (20%) placebo patients \( (P < 0.0001) \). | |

BID: twice daily; GTN: glyceryl trinitrate; PO: per oral; PTX: pentoxifylline; RCT: randomized controlled trial; TID: thrice daily; VAS: visual analogue scale.
was suggested as being effective for both SLE and chilblains, although no data are provided in this article [68]. A French meta-analysis of cutaneous manifestations of SLE (Chasset et al.) suggested that anti-malarials were less effective in CHLE (response rate 31%) compared to acute cutaneous LE (response rate 91%) [69]. In a retrospective study of five patients by Yang et al., three with primary chilblains and two with SLE, HCQ improved chilblains in four patients which included both patients with SLE [70]. Patel and Hardo and Horino et al. reported successful use of HCQ in a patient with CHLE [71, 72]. In a case series, Millard and Rowell reported HCQ and chloroquine were of benefit to three patients with CHLE. Discontinuation resulted in relapse of symptoms [5]. In case series of 15 patients, Doutre et al. reported that HCQ at 600 mg dosage was effective after 3 months [4]. HCQ was found to be effective in four out of 15 patients with CHLE in a study by Bouaziz et al. [35]. Su et al. reported that only one in five patients treated with chloroquine saw a complete resolution of lesions within two months [10].

**MMF**

MMF has been successfully used in recalcitrant CHLE lesions in two cases [73, 74]. Gammon et al. reported two cases of CHLE with partial response to MMF as part of an open-label series of 24 patients with different manifestations of CLE [75].

**Anecdotal use of other therapies**

Due to lack of good quality evidence, a number of different drugs have also been tried in single or more cases and found to be of benefit (more often in primary chilblains). These include:

- Vasodilators: etretinate, diltiazem, amlodipine, phenox-ybenzamine, thymoxamine, prazosin (the last three are alpha blockers), nicotinamide and niacin derivative pyridyl carbinol.
- Others: phototherapy, full thickness skin graft [36], chemical lumbar sympathectomy [76], dapsone, vitamin D3 and vitamin K.

The authors are aware of the use of aspirin, together with vasodilators and HCQ in some patients, but we could not find any evidence for this. In CHLE, Raynaud’s phenomenon often co-exists with chilblains, so a number of patients with CHLE may be prescribed vasodilators for this indication.

There are no studies looking at long-term outcomes. In CHLE, experience suggests that it tends to fluctuate, and often the lesions recur in the same location. In some patients, there appears to be a correlation between lupus activity and CHLE flares while not in others. However, there are no studies describing this.

**Limitations**

There are a number of limitations of this review particularly around the paucity and poor-quality data available on all aspects of secondary chilblains.

**Conclusions**

Chilblains can be secondary to a number of different IMIDs, with SLE being the commonest. Histologically, the skin in CHLE demonstrates lymphocytic vasculitis as well as other features of CLE such as deposition of immunoglobulins and complement in the dermo-epidermal junction. Studies in primary chilblains suggest better response to pentoxifylline and tadalafil compared with topical corticosteroids and nifedipine. Limited data are available on the epidemiology, treatment and long-term outcomes of secondary chilblains. More research is needed to understand the impact of chilblains in IMID patients and also to assess efficacy of pentoxifylline and tadalafil. Combination therapy with aspirin, vasodilators and hydroxychloroquine is also worthy of further study. The role of immunosuppression in CHLE remains unclear and well-designed clinical trials are needed.

**Acknowledgements**

We wish to thank the library team at Kettering General Hospital for their wonderful help and support with the literature review.

All listed authors provided substantial contributions to this work. S.D. and N.J. were involved with the conception and design. The literature review was led by N.J. with help from S.D. and all the other listed authors. O.S. provided the figures for the article. All authors have contributed to the critical revision of the manuscript and agreed on the final version.

**Funding:** No specific funding was received from any funding body in the public, commercial and not-for profit sectors to carry out the work described in this study.

**Disclosure statement:** The authors have declared no conflicts of interest.

**Data availability statement**

All data relevant to the study are included in the article.

**References**

1. Külcü Çakmak S, Gönül M, Oğuz ID et al. Demographical, laboratory and associated findings in patients with perniosis. J Eur Acad Dermatol Venereol 2014;28:891–4.
2. Dowd PM. Perniosis. In: Champion RH, Burton JL, Burns DA, Breathnach SM, eds. Textbook of dermatology, 6th edn. Oxford: Blackwell Science, 1998: 960.
3. Ryan TJ. Chilblains. In: Freed-berg IM, Eisen AZ, Wolff K et al., eds. Fitzpatrick’s dermatology in general medicine, 5th edn. New York: McGraw-Hill, 1999: 1499.
4. Doutre MS, Beylot C, Beylot J, Pompougnac E, Royer P. Chilblain lupus erythematous: report of 15 cases. Dermatology 1992;184:26–8.
5 Millard LG, Rowell NR. Chilblain lupus erythematosus (Hutchinson). A clinical and laboratory study of 17 patients. Br J Dermatol 1978;98:497–506.

6 Encyclopaedia Britannica, or a dictionary of arts, sciences, and miscellaneous literature, 6th edn. Edinburgh: Archibald Constable and Company, 1823.

7 Hedrich CM, Fleibig B, Hauck FH et al. Chilblain lupus erythematosus – a review of literature. Clin Rheumatol 2008;27:949–54. Erratum in: Clin Rheumatol 2008;2:1341.

8 James DG. Dermatological aspects of sarcoidosis. Q J Med 1959;28:108–24.

9 Viguier M, Pinquier L, Cavelier-Balloy B et al. Clinical and histopathologic features and immunologic variables in patients with severe chilblains. A study of the relationship to lupus erythematosus. Medicine 2001;80:180–8.

10 Su WPD, Perniciaro C, Rogers RS, White JW. Chilblains and antiphospholipid antibodies: report of four cases and validation of the Mayo Clinic experience and proposal of diagnostic criteria. Cutis 1994;54:395–9.

11 Hutchinson J. Harveian lectures on lupus: the varieties of common lupus. Br Med J 1888;1:58–63.

12 Petri M, Orbai AM, Alarco´n GS et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012;64:2677–86.

13 Galván Casas C, Català A, Carretero Hernández G et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020;183:71–7.

14 Lutz V, Cribier B, Lipsker D. Chilblains and antiphospholipid antibodies: report of four cases and review of the literature. Br J Dermatol 2010;163:645–6.

15 Akkurt ZM, Ucmak D, Yildiz K, Yürük SK, Celik HO, Chilblains in Turkey: a case-control study. An Bras Dermatol 2014;89:44–50.

16 Guadagni M, Nazzari G. Acute perniosis in elderly people: a predictive sign of systemic disease? Acta Derm Venereol 2010;90:544–5.

17 Weston WL, Morelli JG. Childhood pernio and cryoproteins. Pediatric Derm 2000;17:97–9.

18 Yang X, Perez OA, English JC 3rd. Adult perniosis and cryoglobulinemia: a retrospective study and review of the literature. J Am Acad Dermatol 2010;62:e21–e22.

19 Gordon R, Arkian AM, Pakula AS. Chilblains in Southern California: two case reports and a review of the literature. J Med Case Rep 2014;23:381.

20 Gönül M, Keseroglu HO, Kurmus GI, Han U, Ergin C. A case of pernio associated with cold agglutinin positivity in an unusual location. J Dermatol Res Ther 2016;1:01–4.

21 Takci Z, Vahaboglu G, Eksioglu H. Epidemiological patterns of perniosis, and its association with systemic disorder. Clin Exp Dermatol 2012;37:844–9.

22 Souwer IH, Lagro-Janssen AL. Chronic chilblains. BMJ 2011;7:342:d2708.

23 Park KK, Tayebi B, Ulhein L, Speiser J, Mir A, Gerami P, Mancini A, Kim W. Pernio as the presenting sign of blast crisis in acute lymphoblastic leukemia. Pediatr Dermatol 2018;35:e74–5.

24 Kelly JW, Dowling JP. Pernio. A possible association with chronic myelomonocytic leukemia. Arch Dermatol 1985;121:1048–52.

25 Al-Naaimi F, Chadha M, Cox N. Leukaemia cutis presenting as digital and chilblain-like perniosis. Eur J Dermatol 2010;20:836–7.

26 Marks R, Baker H, Marten RH, Gold SC. Chilblain lupus erythematosus as a manifestation of lymphoma. Proc R Soc Med 1967;60:494–6.

27 Reinertsen JL. Unusual pernio-like reaction to sulindac. Arthritis Rheum 1981;24:1215.

28 Richez C, Dumoulin C, Schaeverbeke T. Infliximab induced chilblain lupus in a patient with rheumatoid arthritis. J Rheumatol 2005;32:760–1.

29 Situentes Giraldo WA, Ahijon Lana M, Garcia Villanueva MJ, González García C, Vázquez Diaz M. Chilblain lupus induced by TNF-α antagonists: a case report and literature review. Clin Rheumatol 2012;31:563–8.

30 Boesjes CM, van Rhijn BD, van Dijk MR, Sigurdsson V. Posttraumatic unilateral perniosis: a case report. JAAD Case Rep 2019;5:909–11.

31 Stainforth J, Goodfield M, Taylor P. Pregnancy-induced chilblain lupus erythematosus. Clin Exp Dermatol 1993;18:449–51.

32 Yell JA, Mbuagbaw J, Burge SM. Cutaneous manifestations of systemic lupus erythematosus. Br J Dermatol 1996;135:355–62.

33 Gold S. Progress in the understanding of lupus erythematosus. Br J Dermatol 1960;72:231–9.

34 Bouaziz JD, Barete S, Le Pelletier F, Amoura Z, Piette MJ, Gonza´le`z Garca´rs C. Cutaneous lesions of the digits in systemic lupus erythematosus: 50 cases. Lupus 2007;16:163–7.

35 Franceschini F, Calzavara-Pinton P, Quinzanini M et al. Chilblain lupus erythematosus is associated with antibodies to SSA/Ro. Lupus 1999;8:215–9.

36 Aoki T, Ishizawa T, Hozumi Y, Aso K, Kondo S. Chilblain lupus erythematosus of Hutchinson responding to surgical treatment: a report of two patients with anti-Ro/SS-A antibodies. Br J Dermatol 1996;134:533–7.

37 Gutman C, Hillebrand M, Brunk J, Lee-Kirsch MA. Systemic involvement in TREX1-associated familial chilblain lupus. J Am Acad Dermatol 2013;69:e179–e181.

38 Prendiville JS, Crow YJ. Blue (or purple) toes: chilblains or chilblain lupus-like lesions are a manifestation of Aicardi-Goutières syndrome and familial chilblain lupus. J Am Acad Dermatol 2009;61:727–8.

39 Crow Y, Manel N. Aicardi–Goutié`res syndrome and the type I interferonopathies. Nat Rev Immunol 2015;15:429–40.

40 König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017;76:468–72.
Chilblains in immune-mediated inflammatory diseases: a review

41 Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 2021;21:548–69.

42 Schreiber G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front. Immunol 2020;11:595739.

43 de Masson A, Bouaziz JD, Sulimovic L et al. Chilblains is a common cutaneous finding during the COVID-19 pandemic: a retrospective nationwide study from France. J Am Acad Dermatol 2020;83:667–70.

44 Colmenero I, Santonja C, Alonso-Riaño M et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol 2020;183:729–37.

45 Kanitakis J, Lesort C, Danset M, Jullien D. Chilblain-like acral lesions during the COVID-19 pandemic ("COVID toes"): histologic, immunofluorescence, and immunohistochemical study of 17 cases. J Am Acad Dermatol 2020;83:870–5.

46 Lee DS, Mirmirani P, Mehrpouya M, Gorouhi F. Cutaneous manifestations of COVID-19: a review and analysis of individual patient-level data. Dermatol Online J 2020;26:13030/qt7s34p8rw.

47 El Hachem M, Diociatiu A, Concato C et al. A clinical, histopathological and laboratory study of 19 consecutive Italian paediatric patients with chilblain-like lesions: lights and shadows on the relationship with COVID-19 infection. J Eur Acad Dermatol Venereol 2020;34:2620–9.

48 Vázquez-Osorio I, Rocamonde L, Treviño-Castellano M, Vázquez-Veiga H, Ginarte M. Pseudo-chilblain lesions and COVID-19: a controversial relationship. Int J Dermatol 2021;60:754–6.

49 Cappel JA, Wetter DA. Clinical characteristics, etiologic associations, laboratory findings, treatment, and proposal of diagnostic criteria of pernio (chilblains) in a series of 104 patients at Mayo Clinic, 2000 to 2011. Mayo Clin Proc 2014;89:207–15.

50 Allegue F, Alonso ML, Rocamora A, Ledo A. Chilblain lupus erythematosus and antiphospholipid antibody syndrome. J Am Acad Dermatol 1988;19:908–10.

51 Cribier B, Djeridi N, Peltre B, Grosshans E. A histologic and immunohistochemical study of chilblains. J Am Acad Dermatol 2001;45:924–9.

52 Rémy-Leroux V, Léonard F, Lambert D et al. Comparison of histopathologic-clinical characteristics of Jessner’s lym-phocytic infiltration of the skin and lupus erythematosus tumidus: multicenter study of 46 cases. J Am Acad Dermatol 2008;58:217–23.

53 Boada A, Bielsa I, Fernández-Figueras MT, Ferrándiz C. Perniosis: clinical and histopathological analysis. Am J Dermatopathol 2010;32:19–23.

54 Wang ML, Chan MP. Comparative analysis of chilblain lupus erythematosus and idiopathic perniosis: histopathologic features and immunohistochemistry for CD123 and CD30. Am J Dermatopathol 2018;40:265–71.

55 Souwer IH, Bor JH, Smits P, Lagro-Janssen AL. Assessing the effectiveness of topical betamethasone to treat chronic chilblains: a randomised clinical trial in primary care. Br J Gen Pract 2017;67:e187–e193.
73 Gouillon L, Debarbieux S, Berruyer M et al. Chilblain lupus erythematosus treated successfully with mycophenolate mofetil. Int J Dermatol 2017;56: e158–e159.

74 Boehm I, Bieber T. Chilblain lupus erythematosus Hutchinson: successful treatment with mycophenolate mofetil. Arch Dermatol 2001;137:235–6.

75 Gammon B, Hansen C, Costner M. Efficacy of mycophenolate mofetil in antimalarial resistant cutaneous lupus erythematosus. J Am Acad Dermatol 2011;65:717–21.

76 Breathnach SM, Wells GC. Chilblain lupus erythematosus with response to chemical sympathectomy. Br J Dermatol 1979;101:49–51.