Nested Coordinate Systems in Geometric Algebra

Garret Sobczyk
Universidad de las Américas-Puebla
Departamento de Actuaría Física y Matemáticas
72820 Puebla, Pue., México

January 5, 2021

Abstract
A nested coordinate system is a reassigning of independent variables to take advantage of geometric or symmetry properties of a particular application. Polar, cylindrical and spherical coordinate systems are primary examples of such a regrouping that have proved their importance in the separation of variables method for solving partial differential equations. Geometric algebra offers powerful complimentary algebraic tools that are unavailable in other treatments.

AMS Subject Classification MSC-2020: 15A63, 15A67, 42B37.

Keywords: Clifford algebra, coordinate systems, geometric algebra, separation of variables.

0 Introduction

Geometric algebra \mathbb{G}_3 is the natural generalization of Gibbs-Heaviside vector algebra, but unlike the latter, it can be immediately generalized to higher dimensional geometric algebras $\mathbb{G}_{p,q}$ of a quadratic form. On the other hand, Clifford analysis, the generalization of Hamilton’s quaternions, is also expressed in Clifford’s geometric algebras [1]. The main purpose of this article is to formulate the concept of a nested coordinate system, a generalization of the well-known methods of orthogonal coordinate systems to apply to any coordinate system. We restrict ourselves to the geometric algebra \mathbb{G}_3 because of its close relationship to the Gibbs-Heaviside vector calculus [3]. This restriction also draws attention to the clear advantages of geometric algebra over the later, because of its powerful associative algebraic structure.

The idea of a nested rectangular coordinate system arises naturally when studying properties of polar coordinates in the 2 and 3-dimensional Euclidean vector spaces \mathbb{R}^2 and \mathbb{R}^3. We begin by discussing the relationship between ordinary polar coordinates and the nested rectangular coordinate system $N_{1,2}$, before going on to the higher dimensional nested coordinate system $N_{1,2,3}$ utilized in the reformulation of cylindrical and spherical coordinates. A detailed
discussion of the geometric algebra \mathbb{G}_3 is not given here, but results are often expressed in the closely related well-known Gibbs-Heaviside vector analysis for the benefit of the reader.

1 Polar and nested coordinates systems

Let $\mathbb{G}_2 := \mathbb{G}(\mathbb{R}^2)$ be the geometric algebra of 2-dimensional Euclidean space \mathbb{R}^2. An introductory treatment of the geometric algebras \mathbb{G}_1, \mathbb{G}_2 and \mathbb{G}_3 is given in [4, 5, 6]. Most important in studying the geometry of the Euclidean plane is the position vector $x := x[\hat{x}, \hat{x}] = x\hat{x}$ (1) expressed here as a product of its Euclidean magnitude x and its unit direction, the unit vector \hat{x}. In terms of rectangular coordinates $(x_1, x_2) \in \mathbb{R}^2$,

$$x = x[x_1, x_2] = x_1e_1 + x_2e_2,$$

(2)

for the orthogonal unit vectors e_1, e_2 along the x_1 and x_2 axis, respectively. The advantage of our notation is that it immediately generalizes to 3 and higher dimensional spaces of arbitrary signature (p, q) in any of the definite geometric algebras $\mathbb{G}_{p,q} := \mathbb{G}(\mathbb{R}^{p,q})$ of a quadratic form.

The vector derivative, or gradient in the Euclidean plane is defined by

$$\nabla := e_1\partial_1 + e_2\partial_2,$$

(3)

where $\partial_1 := \frac{\partial}{\partial x_1}$ and $\partial_2 := \frac{\partial}{\partial x_2}$ are partial derivatives [3, p.105]. Clearly,

$$e_1 = \partial_1 x = e_1 \cdot \nabla x, \quad e_2 = \partial_2 x = e_2 \cdot \nabla x.$$

Since ∇ is the usual 2-dimensional gradient, it has the well-known properties

$$\nabla x = 2, \quad \text{and} \quad \nabla x = \hat{x}.$$

With the help of the product rule for differentiation,

$$2 = \nabla x = (\nabla x)\hat{x} + x(\nabla \hat{x}) = \hat{x}^2 + x(\nabla \hat{x}).$$

(4)

Since in geometric algebra $x^2 = x^2$, it follows that $\hat{x}^2 = 1$, so that for $x \in \mathbb{R}^2$,

$$\nabla \hat{x} = \frac{1}{x} \quad \text{and} \quad e_1 \cdot \nabla x = e_1 \cdot \hat{x} = \frac{x_1}{x}, \quad e_2 \cdot \nabla x = e_2 \cdot \hat{x} = \frac{x_2}{x}.$$

(5)

Similarly, $\nabla \hat{x} = \frac{e_1}{x}$ for $x \in \mathbb{R}^n$. This is the first of many demonstrations of the power of geometric algebra over standard vector algebra.

By a nested rectangular coordinate system $N_{1,2}(x_1, x[x_1, x_2])$, we mean

$$x = x\hat{x} = x[x_1, x] = x[x_1, x[x_1, x_2]].$$

Note in geometric algebra, unlike in standard vector analysis, we need not write $\nabla \cdot x = 2$. This has many important consequences in the development of the subject.
The grouping of the variables allows us to consider \(x_1 \) and \(x := \sqrt{x_1^2 + x_2^2} \) to be independent. The partial derivatives with respect to these independent variables is denoted by \(\hat{\partial}_1 := \frac{\partial}{\partial x_1} \) and \(\hat{\partial}_2 := \frac{\partial}{\partial x_2} \), the hat on the partial derivatives indicating the new choice of independent variables.

For polar coordinates \((x, \theta) \in \mathbb{R}^2\), for \(x := \sqrt{x_1^2 + x_2^2} \geq 0, 0 \leq \theta < 2\pi\), and \(\mathbf{x} := x[x, \theta] \),

\[
\mathbf{x} = x \hat{x}[\theta] = x(e_1 \frac{x_1}{x} + e_2 \frac{x_2}{x}) = x(e_1 \cos \theta + e_2 \sin \theta),
\]

where \(\cos \theta := \frac{x_1}{x} \) and \(\sin \theta := \frac{x_2}{x} \). Using (5),

\[
\nabla \hat{x} = \nabla \hat{x}[\theta] = (\nabla \theta) \frac{\partial \hat{x}}{\partial \theta} = \frac{1}{x} \iff \nabla \theta = \frac{1}{x} \frac{\partial \hat{x}}{\partial \theta} \nabla^2 \theta = 0,
\]

since

\[
\nabla \hat{x} = (\nabla \theta) \partial_\theta(e_1 \cos \theta + e_2 \sin \theta) = (\nabla \theta)(-e_1 \sin \theta + e_2 \cos \theta),
\]

and

\[
\nabla^2 \theta = -\hat{x} \frac{\partial}{\partial x} \hat{x} + \frac{1}{x}(\nabla \theta) \partial_\theta \hat{x} = -2 \left(\frac{\hat{x} \cdot (\partial_\theta \hat{x})}{x^2} \right) = 0.
\]

The \(\iff \) follows by multiplying both sides of the first equation by the unit vector \(\partial_\theta \hat{x} \), which is allowable in geometric algebra. Note also the use of the famous geometric algebra identity \(2a \cdot b = (ab + ba) \) for vectors \(a \) and \(b \) [1, p.26].

The 2-dimensional gradient \(\nabla \),

\[
\nabla = e_1 \frac{\partial}{\partial x_1} + e_2 \frac{\partial}{\partial x_2} = e_1 \partial_1 + e_2 \partial_2
\]

already defined in (3), and the Laplacian \(\nabla^2 \) is given by

\[
\nabla^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} = \partial_1^2 + \partial_2^2.
\]

In polar coordinates,

\[
\hat{\nabla} = (\nabla x) \hat{\partial}_x + (\nabla \theta) \hat{\partial}_\theta = \hat{x} \hat{\partial}_x + \frac{1}{x} (\hat{\partial}_\theta x) \hat{\partial}_\theta
\]

for the gradient where \(\hat{\partial}_\theta := \frac{\hat{\partial}}{\partial \theta} \), and since \(\hat{\nabla}^2 \theta = 0 \),

\[
\nabla^2 = \hat{\nabla} (\hat{x} \hat{\partial}_x + (\nabla \theta) \hat{\partial}_\theta) = \left(\hat{\nabla} \hat{x} + \hat{x} \cdot \hat{\nabla} \right) \hat{\partial}_x + \left(\nabla^2 \theta + (\nabla \theta) \cdot \nabla \right) \hat{\partial}_\theta
\]

\[
= \partial_1^2 + \frac{1}{x} \partial_2 + \frac{1}{x^2} \partial_\theta^2.
\]

for the Laplacian. The decomposition of the Laplacian (11), directly implies that Laplace’s differential equation is separable in polar coordinates.
When expressed in nested rectangular coordinates $N_{1,2}(x_1, x)$, the gradient $\nabla \equiv \hat{\nabla}$ takes the form

$$\hat{\nabla} := (\nabla x_1) \frac{\hat{\partial}}{\partial x_1} + (\nabla x) \frac{\hat{\partial}}{\partial x} = e_1 \hat{\partial}_1 + \hat{x} \hat{\partial}_x.$$ \hspace{1cm} (12)

Dotting equations (8) and (12) on the left by e_1 and \hat{x} gives the transformation rules

$$\partial_1 = \hat{\partial}_1 + \frac{x_1}{x} \hat{\partial}_x, \quad \hat{x} \cdot \hat{\nabla} = \frac{x_1}{x} \hat{\partial}_1 + \hat{\partial}_x = \cos \theta \hat{\partial}_1 + \sin \theta \hat{\partial}_2.$$

Using these formulas the nested Laplacian takes the form

$$\hat{\nabla}^2 = \hat{\partial}_1^2 + 2 \frac{x_1}{x} \hat{\partial}_x \hat{\partial}_1 + \frac{1}{x} \hat{\partial}_x^2 + \frac{1}{x} \frac{\partial}{\partial x} = -\hat{\partial}_1^2 + 2 \hat{\partial}_1 \hat{\partial}_1 + \frac{1}{x} \frac{\partial}{\partial x}.$$ \hspace{1cm} (13)

The unusual feature of the nested Laplacian is that it is defined in terms of both the ordinary partial derivative ∂_1 and the nested partial derivative $\hat{\partial}_1$. Whereas partial derivatives generally commute, partial derivatives of different types do not. For example, it is easily verified that

$$\partial_1 \hat{\partial}_1 x^2 = 2x_1, \quad \text{whereas} \quad \hat{\partial}_1 \hat{\partial}_1 x^2 = 4x_1.$$

Because the mixed partial derivatives $\hat{\partial}_x \hat{\partial}_1$ occurs in (13), Laplace’s differential equation in the real rectangular coordinate system $N_{1,2}(x_1, x)$ is not, in general, separable. Indeed, suppose that a harmonic function F is separable, so that $F = X_1 X$ for $X_1 = X_1[x_1], X = X[x]$. Using (13),

$$\frac{\hat{\nabla}^2 F}{X_1 X} = \frac{\hat{\partial}_1^2 X_1}{X_1} + \left(\frac{\hat{\partial}_x^2 X + \frac{1}{x} \hat{\partial}_x}{X} \right) \frac{X}{X} + 2 \left(\frac{x_1 \hat{\partial}_1 X_1}{X_1} \right) \frac{\hat{\partial}_x X}{x X} = 0.$$ \hspace{1cm} (14)

The last term on the prevents F in general from being separable. However, it is easily checked that $F = k \frac{X}{x}$ is harmonic and a solution of (13). When $X_1[x_1] = kx_1$, it is easily checked that $\frac{x_1 \hat{\partial}_1 X_1}{X_1} = 1$. Letting $F = kx_1 X[x]$, and requiring $\hat{\nabla}^2 F = 0$, leads to the differential equation for $X[x]$.

$$3 \hat{\partial}_x X + x \hat{\partial}_x^2 X = 0,$$

with the solution $X[x] = c_1 \frac{1}{x} + c_2$. The simplest example of a harmonic function $F = X_1 X$ is when $X_1 = x_1$ and $X = \frac{1}{x^2}$. A graph of this function is shown in Figure 1.

2 Special harmonic functions in nested coordinates

Consider the real nested rectangular coordinate system (x_1, x_p, x), defined by

$$N_{1,2,3} := \{(x_1, x_p, x) | x = x \hat{x} = x_1 e_1 + x_p \hat{x}_p + x \hat{x}\},$$
Figure 1: The harmonic 2-dimensional function $F = \frac{x_1}{x_1^2 + x_2^2}$ is shown.

where $x_p = \sqrt{x_1^2 + x_2^2} \geq 0$, $x = \sqrt{x_1^2 + x_2^2 + x_3^2} \geq 0$. In nested coordinates, the gradient $\nabla = e_1 \partial_1 + e_2 \partial_2 + e_3 \partial_3$ takes the form

$$
\hat{\nabla} = (\hat{\nabla} x_1) \hat{\partial}_1 + (\hat{\nabla} x_p) \hat{\partial}_p + (\hat{\nabla} x) \hat{\partial}_x = e_1 \hat{\partial}_1 + \hat{x}_p \hat{\partial}_p + \hat{x} \hat{\partial}_x,
$$

(15)

where $\hat{\partial}_p := \frac{\partial}{\partial x_p}$. Formulas relating the gradients ∇ and $\hat{\nabla}$ easily follow:

$$
\partial_1 = \hat{\partial}_1 + e_1 \cdot \hat{x}_p \hat{\partial}_p + e_1 \cdot \hat{x} \hat{\partial}_x = \hat{\partial}_1 + \frac{x_1}{x_p} \hat{\partial}_p + \frac{x_1}{x} \hat{\partial}_x
$$

(16)

$$
\partial_2 = e_2 \cdot \hat{x}_p \hat{\partial}_p + e_2 \cdot \hat{x} \hat{\partial}_x = \frac{x_2}{x_p} \hat{\partial}_p + \frac{x_2}{x} \hat{\partial}_x
$$

(17)

and

$$
\partial_3 = e_3 \cdot \hat{x} \hat{\partial}_x = \frac{x_3}{x} \hat{\partial}_x.
$$

(18)

For the Laplacian ∇^2 in nested coordinates, with the help of (15),

$$
\hat{\nabla}^2 = \hat{\nabla}(e_1 \hat{\partial}_1 + \hat{x}_p \hat{\partial}_p + \hat{x} \hat{\partial}_x) = e_1 \cdot \hat{\nabla} \hat{\partial}_1 + \hat{\nabla} \cdot \hat{x}_p \hat{\partial}_p + \hat{\nabla} \cdot \hat{x} \hat{\partial}_x
$$
We now calculate the interesting expression

\[e_1 \cdot \nabla \hat{\partial}_1 + \hat{\nabla} \cdot \hat{x}_p \hat{\partial}_p + \hat{\nabla} \cdot \hat{x} \hat{\partial}_x \]

\[= (\hat{\partial}_1 + \frac{x_1}{x_p} \hat{\partial}_p + \frac{x_1}{x} \hat{\partial}_x)\hat{\partial}_1 + \left(\frac{1}{x_p} + \frac{x_1}{x_p} \hat{\partial}_1 + \hat{\partial}_p + \frac{x_1}{x} \hat{\partial}_p \right)\hat{\partial}_p \]

\[+ \left(\frac{2}{x} + \frac{x_1}{x} \hat{\partial}_1 + \frac{x_1}{x} \hat{\partial}_p + \hat{\partial}_x \right)\hat{\partial}_x \]

\[= \hat{\partial}_1^2 + \hat{\partial}_p^2 + \hat{\partial}_x^2 + 2 \left(\frac{x_1}{x_p} \hat{\partial}_1 \hat{\partial}_p + \frac{x_1}{x} \hat{\partial}_1 \hat{\partial}_x + \frac{x_1}{x} \hat{\partial}_p \hat{\partial}_x \right) \]

\[+ \frac{1}{x_p} \hat{\partial}_p + \frac{2}{x} \hat{\partial}_x. \quad (19) \]

Another expression for the Laplacian in mixed coordinates is obtained with the help of \([16]\),

\[\hat{\nabla}^2 = -\hat{\partial}_1^2 + \hat{\partial}_p^2 + \hat{\partial}_x^2 + 2 \left(\hat{\partial}_1 \hat{\partial}_1 + \frac{1}{x_p} \hat{\partial}_p \hat{\partial}_p \right) \]

\[+ \frac{2}{x} \hat{\partial}_1 + \frac{2}{x} \hat{\partial}_x. \quad (20) \]

Suppose \(F = F[x_1, x_p, x]. \) In order for \(F \) to be harmonic, \(\hat{\nabla}^2 F = 0. \) Assuming that \(F \) is separable, \(F = X_1[x_1]X_p[x_p]X_x[x], \) and applying the Laplacian \([20]\) to \(F \) gives

\[\hat{\nabla}^2 F = (\hat{\partial}_1^2 X_1)X_p X_x + X_1 \left((\hat{\partial}_p^2 + \frac{1}{x_p} \hat{\partial}_p) X_p \right) X_x + X_1 X_p \left(\frac{2}{x} \hat{\partial}_x X_x \right) \]

\[+ 2 \left(\frac{x_p \partial_p X_p}{x} \right) \frac{1}{x} \hat{\partial}_1 X_1 + \left(\frac{1}{x_p} \hat{\partial}_p X_x + X_p \hat{\partial}_1 X_x \right). \quad (21) \]

We now calculate the interesting expression

\[\frac{\left(x_p \partial_p X_p \right) \left(\frac{1}{x} \hat{\partial}_1 X_1 + \left(\frac{1}{x_p} \hat{\partial}_p X_x + X_p \hat{\partial}_1 X_x \right) \right)}{X_1 X_p X_x} \]

\[= \left(x_p \left(\partial_p \log X_p \right) \right) \left(\frac{1}{x} \hat{\partial}_1 \log X_x \right) + \frac{\hat{\partial}_1 \log (X_p X_x)}{X_1}. \]

In general, because of the last term in \([21]\), a function \(F = X_1 X_p X_x \) will not be separable. However, just as in the two dimensional case, there are 3-dimensional harmonic solutions of the form \(F = x_1^k x_p^m x^n. \) Taking the Laplacian \([19]\) of \(F, \) with the help of \([7]\), gives

\[\hat{\nabla}^2 F = (2km + m^2) x^n x_1^k x_p^{m-2} + (-k + k^2) x^n x_1^{k-2} x_p^m \]

\[+ (2km + mn + n(1 + n)) x_1^{n-2} x_p^m = 0. \]

This last expression vanishes when the system of three equations,

\[\{2km + m^2 = 0, \quad -k + k^2 = 0, \quad \text{and} \quad 2kn + mn + n(1 + n) = 0\}. \]

All of the distinct non-trivial harmonic solutions \(F = x_1^k x_p^m x^n \) are listed in the following Table.
Cylindrical and spherical coordinates

Cylindrical and spherical coordinates are examples of nested coordinates $N_{1,2}(\mathbb{R})$, and $N_{2,3}(\mathbb{R})$, respectively. For the first,

$$x = x[x_p, \theta, x_3] = x_p[x_p, \theta] + x_3[x_3],$$

where $x_p = x_p \hat{x}_p[\theta]$, $x_p = \sqrt{x_1^2 + x_2^2}$, and $x_3 = x_3 e_3$. Cylindrical coordinates $(x_p, \theta, x_3) \in \mathbb{R}^3 = \mathbb{R}^2 \cup \mathbb{R}^1$ are a decomposition of \mathbb{R}^3 into the polar coordinates $(x_p, \theta) \in \mathbb{R}^2$, already studied in Section 1, and $x_3 \in \mathbb{R}^1$. For spherical coordinates, $x_p = x_p \hat{x}_p[\theta]$ the same as in cylindrical and polar coordinates, and

$$x = x[x, \theta, \varphi] = x \hat{x}[\theta, \varphi]) = x(e_3 \cos \varphi + \hat{x}_p[\theta] \sin \varphi),$$

where

$$x = \sqrt{x_1^2 + x_2^2 + x_3^2}, \hat{x}[\theta, \varphi] = e_3 \cos \varphi + \hat{x}_p[\theta] \sin \varphi, \hat{x}_p[\theta] = e_1 \cos \theta + e_2 \sin \theta.$$

The basic quantities that define both cylindrical and spherical coordinates are shown in Figure 2.

The gradient $\hat{\nabla}$ and Laplacian $\hat{\nabla}^2$ for cylindrical coordinates are easily calculated. With the help of (7), (10), and (11),

$$\hat{\nabla} = (\hat{\nabla} x_p) \hat{\partial}_p + (\hat{\nabla} \theta) \hat{\partial}_\theta + (\hat{\nabla} x_3) \hat{\partial}_3$$

for the cylindrical gradient, and

$$\hat{\nabla}^2 = \hat{\nabla} \left(\hat{x}_p \hat{\partial}_p + (\hat{\nabla} \theta) \hat{\partial}_\theta + e_3 \hat{\partial}_3 \right) = \hat{\partial}_p^2 + \frac{1}{x_p} \hat{\partial}_p + \frac{1}{x_p^2} \hat{\partial}_\theta^2 + \hat{\partial}_3^2$$

for the cylindrical Laplacian. Letting $F[x] = X_p[x]X_\theta[\theta]X_3[x_3]$, the resulting equation is easily separated and solved by standard methods, resulting in three second order differential equations with solutions,

$$X_p[x_p] = k_1 J_n[\beta x_p] + k_2 Y_n[\beta x_p]$$

$$X_\theta[\theta] = k_3 \cos \theta + k_4 \sin \theta$$

$$X_3[x_3] = k_5 \cosh(\alpha(m - x_3)) + k_6 \sinh(\alpha(m - x_3)).$$
Figure 2: For cylindrical coordinates, \(\mathbf{x} = x_p \hat{x}_p[\theta] + x_3 \mathbf{e}_3 \). For spherical coordinates, \(\mathbf{x} = x(e_3 \cos \varphi + \hat{x}_p[\theta] \sin \varphi) \).

where \(J_n \) and \(Y_n \) are Bessel functions of the first and second kind. The constants are determined by the various boundary conditions that must be satisfied in different applications [8, p.254].

Turning to spherical coordinates \((x, \theta, \phi) \in \mathbb{R}^3 \), the spherical gradient

\[
\hat{\nabla} = (\hat{\nabla}_x) \hat{x}_p + (\hat{\nabla}_\theta) \hat{\theta}_p + (\hat{\nabla}_\phi) \hat{\phi}_p = \hat{x} \hat{x}_p + \frac{1}{x} (\hat{\theta}_p \hat{x}_p) \hat{\theta}_p + \frac{1}{x} (\hat{\phi}_p \hat{x}_p) \hat{\phi}_p,
\] (26)

where from previous calculations for polar and cylindrical coordinates,

\[
(\hat{\nabla}_\theta) = \frac{1}{x_p} (\hat{\theta}_p \hat{x}_p), \quad (\hat{\nabla} \theta)^2 = \frac{1}{x^2}, \quad \hat{\nabla}^2 \theta = 0, \quad \hat{\nabla}_\phi = \frac{1}{x} \hat{\phi}_x, \quad (\hat{\nabla} \phi)^2 = \frac{1}{x^2},
\] (27)

Furthermore, since \(\hat{x} = \hat{x}[\theta, \phi] = e_3 \cos \varphi + \hat{x}_p[\theta] \sin \varphi \)

\[
\frac{2}{x} \hat{\nabla} \hat{x} = (\hat{\nabla} \theta)(\hat{\theta}_p \hat{x}_p) + (\hat{\nabla} \phi)(\hat{\phi}_p \hat{x}_p) = \frac{x_p}{x} (\hat{\theta}_p \hat{x}_p)(\hat{\theta}_p \hat{x}_p) + \frac{1}{x},
\]

it follows that

\[
(\hat{\theta}_p \hat{x}_p)(\hat{\phi}_p \hat{x}_p) = \frac{x_p}{x} \sin \varphi, \quad \text{and} \quad \hat{\nabla}^2 \varphi = \frac{x_3}{x^2 x_p}.
\]

That \(\hat{\nabla}^2 \varphi = \frac{x_p}{x^2 x_p} \) follows using (26) and (27),

\[
\hat{\nabla}^2 \varphi = \hat{\nabla} \left(\frac{1}{x} \hat{\phi}_p \hat{x}_p \right) = \left(\frac{x_p}{x} \hat{\nabla} + \frac{1}{x} \hat{\nabla} \right) \hat{\phi}_p \hat{x}_p
\]

8
\[
\begin{align*}
\mathbf{\nabla}^2 &= \mathbf{\nabla} \left(\mathbf{\hat{x}} \mathbf{\hat{x}} + (\mathbf{\hat{\theta}} \mathbf{\hat{\theta}} + (\mathbf{\hat{\varphi}} \mathbf{\hat{\varphi}}) \right) \\
&= \left(\mathbf{\hat{x}} + \mathbf{\hat{r}} \right) \mathbf{\hat{r}} + (\mathbf{\hat{\theta}} \cdot \mathbf{\nabla}) \mathbf{\hat{\varphi}} + (\mathbf{\nabla}^2 \mathbf{\hat{\varphi}} + (\mathbf{\nabla} \mathbf{\hat{\varphi}}) \cdot \mathbf{\nabla}) \mathbf{\hat{\varphi}} \\
&= \left(\mathbf{\hat{x}} + \frac{2}{x} \right) \mathbf{\hat{r}} x + \frac{1}{x^2} \mathbf{\hat{\theta}} x^2 + \frac{1}{x^2} \mathbf{\hat{\varphi}} x^2 \mathbf{\hat{\varphi}},
\end{align*}
\]
equivalent to the usual expression for the Laplacian in spherical coordinates [8, p.256].

Just as in cylindrical coordinates, the solution of Laplace’s equation in spherical coordinates is separable, \(F = X_x[x]X_\theta[\theta]X_\varphi[\varphi] \), resulting in three second order differential equations with solutions

\[
\begin{align*}
X_x[x] &= k_1 x^\beta + k_2 x^{-(\beta+1)}, \\
X_\theta[\theta] &= k_3 \cos n\theta + k_4 \sin n\theta, \\
X_\varphi[\varphi] &= k_5 P_n^m(\cos \varphi) + k_6 Q_n^m(\cos \varphi),
\end{align*}
\]
where \(P_n^m \) and \(Q_n^m \) are the Legendre functions of the first and second kind, respectively [8, p.258].

Acknowledgment

This work was largely inspired by a current project that author has with Professor Joao Morais of Instituto Tecnol\'ogico Aut\’onomo de M\’exico, utilizing spheroidal coordinate systems. The struggle with this orthogonal coordinate system [2], led the author to re-examine the foundations of general coordinate systems in geometric algebra [5, p.63].

References

[1] R. Ablamowicz, G. Sobczyk, Editors: \textit{Lectures on Clifford (Geometric) Algebras and Applications}, Birkhäuser, Boston 2003.

[2] E. Hobson, 1931, \textit{The theory of spherical and ellipsoidal harmonics}, Cambridge.

[3] J.E. Marsden, A.J. Tromba, \textit{Vector Calculus} 2nd Ed., Freeman and Company, San Francisco 1980.
[4] G. Sobczyk, Matrix Gateway to Geometric Algebra, Spacetime and Spinors, Independent Publisher November 2019. https://www.garretstar.com

[5] G. Sobczyk, *New Foundations in Mathematics: The Geometric Concept of Number*, Birkhäuser, New York 2013.

[6] G. Sobczyk. Many early versions of my work can be found on arXiv, or on my website: https://www.garretstar.com

[7] S. Wolfram, *Mathematica*.

[8] Tyn Myint-U, *Partial Differential Equations of Mathematical Physics* 2nd Ed., North Holland, NY 1980.