Ultrasonograficzny obraz skóry, aparatura i podstawy obrazowania

Ultrasound image of the skin, apparatus and imaging basics

Robert Krzysztof Mlosek¹, Sylwia Malinowska²

¹Zakład Diagnostyki Obrazowej, II Wydział Lekarski, Warszawski Uniwersytet Medyczny, Warszawa, Polska
²Life-Beauty spółka cywilna, Grodzisk Mazowiecki, Polska

Adres do korespondencji: Robert Krzysztof Mlosek, Zakład Diagnostyki Obrazowej, II Wydział Lekarski WUM, ul. Kondratowicza 8, 03-242 Warszawa, e-mail: zd@usgptu.waw.pl, tel.: 22 326 58 10

Streszczenie

Ultrasonograficzne obrazowanie skóry staje się coraz bardziej popularne. Badania ultrasonograficzne skóry znajdują zastosowanie zarówno w ocenie skóry zdrowej, jak i zmienionej chorobowo oraz szeroko rozumianej medycynie estetycznej. Obecnie obrazowanie skóry może być wykorzystane na wykorzystaniu aparatur wysokich częstotliwości oraz wysokiej klasy aparatur klasycznych. W przypadku oceny skóry zdrowej, jak i zmienionej chorobowo, są wykorzystywane przede wszystkim na gruncie dermatologii oraz szeroko rozumianej medycynie estetycznej i kosmetologii. Obecnie obrazowanie skóry możliwe jest przy wykorzystaniu aparatów wysokich częstotliwości oraz wysokiej klasy aparatur klasycznych. Przede wszystkim w aparaturze do ultrasonograficznego badania skóry może być wprowadzone do użycia wysoko- i częstotliwościowych głowic elektronicznych, które współpracują z klasycznymi aparaturami. Na obrazie skóry zdrowej bez względu na typ zastosowanego ultrasonografa wyróżniają trzy warstwy: echo naskórka, skóra właściwa i tkankę podskórną. Aparaty wysokich częstotliwości umożliwiają szczegółowe obrazowanie echa naskórka, skóry właściwej i górnej części tkanki podskórnej. Możliwe jest również obrazowanie przydatków skóry (wlosy wraz z mieszkami włosowymi, paznokcie) oraz drobnych naczyń krwionośnych biegących w skórze właściwej i górnej części tkanki podskórnej. W ultrasonografach klasycznych, porównując z aparaturami wysokich częstotliwości, nie ma możliwości szczegółowej oceny echa naskórka i skóry właściwej. W zamian istnieje możliwość zobrazowania całej tkanki podskórnej. Do oceny ultrasonograficznych obrazów skóry wykorzystuje się następujące parametry: pomiary grubości poszczególnych warstw skóry, paliom średni naczyń krwionośnych, paliom echogeniczności skóry właściwej lub jej poszczególnych warstw, paliom echogeniczności tkanki podskórnej, brak lub obecność przepływu w drobnych naczyńach żylnych. Aktualnie trwają prace nad wykorzystaniem do oceny skóry sonoelastografii. Biorąc pod uwagę dynamiczny rozwój aparatów do obrazowania skóry i ich możliwości diagnostyczne, można przypuszczać, że badania wysokich częstotliwości upowszechnią się i będą podstawą w ocenie skóry zarówno zdrowej, jak i zmienionej chorobowo. Praca stanowi wstęp do cyklu artykułów o klinicznych zastosowaniach ultrasonografii wysokich częstotliwości, które będą omawiane na łamach kolejnych numerów.
The technological advancement, which took place in the last thirty years, has contributed to the development of sonography. With the creation of various new scanners and transducers, the imaging of the largest human organ, i.e. the skin, has become possible(1). The first works on skin imaging began over 40 years ago. The pioneers, who as the first ones published a paper concerning the assessment of the skin by means of 15 MHz transducer, were Alexander and Miller(2). Alexander and Miller performed A-mode examinations thanks to which they managed to measure the thickness of the skin. Although high-frequency A-mode ultrasound is still used in ophthalmology, its application in skin imaging is limited since it allows for obtaining information concerning only one parameter, i.e. for measuring the thickness of a given structure. In the following years, more and more reports concerning skin imaging appeared. Nevertheless, the real breakthrough was brought about by the invention of high-frequency ultrasound transducers (above 20 MHz)(3-5). Since then, a dynamic development of skin examinations has been observed. The examinations connected with skin imaging focus on two aspects. The first of them is related to the diagnosis of healthy skin and to monitoring the changes occurring within it that result from various factors(6-8). In the case of the healthy skin, based on its thickness and echogenicity, the researchers attempt to describe the changes caused by natural ageing processes and photaging connected with excessive exposition to ultraviolet radiation. They also try to determine sex-related differences(6,7). As Waller and Maibach(6) indicate, there is no agreement among researchers concerning the changes of the skin's thickness occurring with age. Several papers demonstrated that the dermis is the thickest in young persons and subsequently, it becomes thinner with age. Other authors claim that it is not the age, but external

Abstract

Ultrasound imaging of the skin is becoming more and more popular. Skin ultrasound examinations are used both in order to assess healthy skin and to evaluate pathological lesions. They are mainly performed in dermatology as well as in broadly understood aesthetic medicine and cosmetology. At present, skin imaging is enabled by high-frequency equipment and high-quality conventional devices. The introduction of high-frequency electronic transducers which are supported by conventional scanners may be a turning point in skin ultrasound equipment. Irrespective of the ultrasound scanner, three layers may be distinguished in the image of the healthy skin: epidermal echo, dermis and subcutaneous tissue. High-frequency equipment allows for detailed imaging of the epidermal echo, dermis and upper part of the subcutaneous tissue. It is also possible to visualize the skin appendages (hair with follicles and nails) as well as slight vessels that run in the dermis and upper subcutaneous tissue. Contrary to high-frequency equipment, conventional scanners do not allow for a detailed assessment of the epidermal and dermal echoes. Instead, they enable the visualization of the entire subcutaneous tissue. The following parameters are used for the assessment of skin ultrasound images: thickness of individual skin layers, caliber of blood vessels, echogenicity of the dermis or its individual layers, echogenicity of the subcutaneous tissue as well as the presence or absence of flow in slight venous vessels. Currently, the studies on the usage of sonoelastography for skin assessment are in progress. Considering the dynamic development of skin imaging equipment and its diagnostic possibilities, one might suspect that high-frequency examinations will become more common and will be fundamental for the evaluation of both healthy and pathologically altered skin. This paper is an introduction to a series of articles on the clinical application of high-frequency ultrasound. The next articles will be published in the subsequent issues.
Badania ultrasonograficzne skóry stają się coraz popularniejsze, o czym świadczy zwiększająca się liczba publikacji naukowych, a także liczba dostępnych na rynku ultrasonografów do obrazowania skóry. Ponadto ultrasonografy do badania skóry coraz częściej stanowią integralną część urządzeń wykorzystywanych w medycynie estetycznej do liftingu czy modelowania sylwetki. Jako przykład można wymienić Ulthera™ (Ulthera, Inc., Arizona, USA) i Doublet Hironic (Hironic Co., Ltd., Korea), służące do nieoperacyjnego liftingu twarzy, gdzie uzyskany obraz skóry stanowi podstawę do doborania parametrów zabiegowych oraz monitorowania jego przebiegu. Innym przykładem urządzenia z zakresu medycyny estetycznej wykorzystującym badanie ultrasonograficzne jest urządzenie do modelowania sylwetki firmy Storz Medical, w którym ultrasonografia służy do oceny skóry przed rozpoczęciem terapii i monitorowania jej przebiegu.

Aparatura

Ultrasonograficzne obrazowanie skóry jest możliwe za pomocą ultrasonografów wysokich częstotliwości oraz nowoczesnych, wysokiej klasy ultrasonografów klasycznych, factors, such as UV radiation, that play a crucial role in the change of the thickness of the dermis. The changes in the echogenicity of the skin are also interpreted in various ways. Nonetheless, most of the researchers confirm that in the ageing skin, echogenicity undergoes changes and a subepidermal anechoic band appears, so-called SLEB (subepidermal low-echogenic band). Such divergent results obtained by different researchers may be disturbing, but one should remember that their studies were conducted with the use of different scanners, there were few such trials and what is more, the examinations were performed on the skin in various localizations. In such a situation, large randomized studies would be desirable. What is more, attempts are also made to assess the activity of skin irritating factors by means of high-frequency ultrasound[8]. Seidenari demonstrated that ultrasound allowed for monitoring the inflammation caused by the application of acids on the healthy skin. Apart from the assessment of the healthy skin, ultrasound is also used in dermatology. Above all, it is used for imaging of the pathologically altered skin and for monitoring the course of treatment[9–11]. One of the first diseases assessed by sonography is scleroderma[9] – both ultrasound diagnosis and monitoring the course of treatment are possible. With the appearance of high-frequency equipment, in the field of dermatology, numerous studies were started whose aim is to visualize and differentiate between focal lesions[10]. Currently, sonography allows for imaging of the majority of neoplastic lesions of the skin, both benign and malignant, measuring such changes and evaluating them in relation to adjacent tissues. Unfortunately, it is still not possible to differentiate between such lesions based on ultrasound presentation. The studies concerning the foregoing issues are being conducted continuously, the proof of which is a recently published article[11] whose author indicates characteristic features of basal cell carcinoma based on ultrasound images.

Skin ultrasound examinations are becoming more and more popular which is proven by the growing number of academic publications as well as by the number of scanners for skin imaging available on the market. Furthermore, ultrasound scanners for skin examinations more and more frequently constitute an integral element of the equipment used in aesthetic medicine for lifting or silhouette modeling. For instance, Ulthera™ (Ulthera, Inc., Arizona, USA) and Doublet Hironic (Hironic Co., Ltd., Korea) are applied for non-surgical facelift procedures where the obtained skin image constitutes the basis for the selection of surgical parameters and monitoring the course of the procedure. Another example of equipment in the field of aesthetic medicine that uses ultrasound examinations is Storz Medical, a device for silhouette modeling. In this case, sonography is used to assess the skin prior to the commencement of the therapy and to monitor its course.

Apparatus

Skin ultrasound examinations may be performed by means of high-frequency scanners and modern, high-class conventional machines.
Ultrasonografy wysokich częstotliwości są wyposażone w jednoelementowe głowice mechaniczne o częstotliwości 20–100 MHz\(^{10,12}\). Obecnie na rynku dostępnych jest kilka aparatów dedykowanych badaniu skóry. Jednym z najbardziej znanych jest DermaScan firmy Cortex Technology (Dania), w którym dostępne są głowice o częstotliwościach 10–50 MHz. Aparat posiada również możliwość zapisu obrazu w opcji trójwymiarowej (3D). Innym popularnym ultrasonografem do badania skóry jest Episcan (ryc. 1) firmy Longport International (Wielka Brytania, USA), który dostępny jest wraz z głowicami o częstotliwościach 20–50 MHz. Od 1986 roku na rynku dostępne są również ultrasonografy DUB\(^{\text{a}}\) niemieckiej firmy taberna pro medicum GmbH. Początkowo aparaty te wyposażone były w głowice o częstotliwości 20 MHz. Obecnie oferta głowic jest bardzo szeroka – można kupić głowice nawet o częstotliwości 75 MHz. Na rynku polskim w bieżącym roku zadebiutował ultrasonograf wysokich częstotliwości DermaView firmy Dramiński, wyposażony w głowicę 48 MHz (ryc. 2). Nad ultrasonografem wysokich częstotliwości od ponad 20 lat pracuje również Instytut Podstawowych Problemów Fizyki Polskiej Akademii Nauk.

High-frequency apparatuses are equipped with single-element mechanical transducers with the frequency of 20–100 MHz\(^{10,12}\). At present, there are a few machines available on the market that are dedicated to skin examinations. DermaScan by Cortex Technology (Denmark) is one of the best known scanners with the transducers with the frequency ranging from 10 to 50 MHz. This apparatus also supports the option of saving three-dimensional (3D) images. Another popular ultrasound machine for skin examinations is Episcan (fig. 1) by Longport International (Great Britain, USA) which is available with the transducers of 20–50 MHz. Since 1986, DUB\(^{\text{a}}\) scanners by a German company taberna pro medicum GmbH are also on the market. In the beginning, such machines were equipped with the transducers of 20 MHz. Currently, the producers offer a wide range of transducers, reaching even 75 MHz. This year, a high-frequency ultrasound scanner DermaView by Dramiński company with the transducer of 48 MHz (fig. 2) made its debut on the Polish market.

Ryc. 1. Ultrasonograf wysokich częstotliwości Episcan (Longport Int., USA) z głowicą mechaniczną 50 MHz

Ryc. 2. Ultrasonograf wysokich częstotliwości DermaView (Dramiński, Polska) z głowicą mechaniczną 48 MHz

Ryc. 3. Ultrasonograf wysokich częstotliwości μScan z głowicą mechaniczną 35 MHz opracowany w Instytucie Podstawowych Problemów Fizyki Polskiej Akademii Nauk: A. wersja sprzed kilku lat; B. widok obecny

Ryc. 4. Conventional ultrasound scanner Sonix (Ultrasonix, Kanada) with an electronic, multi-element linear transducer with the frequency of 40 MHz
kierowany przez prof. Andrzeja Nowickiego. Zespół ten skonstruował aparat μScan, który jest stale unowocześniany i rozbudowywany (ryc. 3). Aktualnie μScan współpracuje z głowicą o częstotliwości 35 MHz. Niestety aparat ten nie jest jeszcze dostępny w sprzedaży. Wszystkie wymienione ultrasonografy posiadają oprogramowanie pozwalające na dokonywanie podstawowych pomiarów, zapisywanie i archiwizację zebranych obrazów. W niektórych aparatach wysokich częstotliwości obrazowanie możliwe jest również w skali barwnej (zielona, czerwona, niebieska, w zależności od ustawień aparatu).

Do obrazowania skóry możemy użyć również ultrasonografów klasycznych z głowicami liniowymi szerokopasmowymi. Dzięki ogromnemu postępowi technologicznemu i wprowadzeniu szeregu opcji poprawiających obrazowanie, takich jak obrazowanie harmoniczne, obrazowanie zgodne z czujnikami liniowymi szerokopasmowymi o częstotliwości 12–18 MHz. Ponadto na rynku coraz częściej pojawiają się głowice liniowe o częstotliwości około 20 MHz. Nową opcją, która może okazać się użyteczna w badaniach skóry, jest elastografia.

Nowością ostatniego roku i prawdopodobnie przelomem w ultrasonografii wysokich częstotliwości jest opracowanie i wprowadzenie na rynek przez kanadyjską firmę Ultrasonix elektronicznej, wieloelementowej głowicy liniowej o częstotliwości 40 MHz (ryc. 4), która współpracuje z klasycznym aparatem. Pracując tą głowicą, można również korzystać z opcji do badań naczyniowych, takich jak: power Doppler, pulse Doppler, color Doppler, co jest niezwłocznie przydatne w ocenie naczyń biegących w skórze właściwej i tkance podskórnej.

Ultrasonograficzny obraz skóry

Na ultrasonograficznym obrazie skóry zdrowej możemy wyróżnić trzy podstawowe warstwy: echo naskórkowa, skórę właściwą oraz tkankę podskórną, co odpowiada budowie anatomicznej skóry (14) (ryc. 5). W zależności od typu stosowanego ultrasonografu i częstotliwości głowicy otrzymujemy obrazy o różnej rozdzielczości. Im wyższa rozdzielczość, tym niższa głębokość penetracji wązki ultradźwiękowej w skórę, dzięki czemu na obrazie ultrasonograficznym możemy dostrzec więcej szczegółów. Z tego względu przy szczegółowej ocenie skóry nierzaz istotne są ultrasonografy wysokich częstotliwości (ryc. 5).

Pierwszą widoczną od czoła głowicy warstwą jest hyperechogeniczna linia odpowiadająca naskórkowi. W 1992 roku Altmeyer (13) uznał, że linia ta nie jest naskórką, a jedynie tworzą ją odbicia między żelem ultrasonograficznym a powierzchnią skóry oraz odbicia od naskórka i pęcherzyków powietrza znajdujących się pomiędzy zrogowaciałymi komórkami naskórka – zaproponował nazywanie jej echem naskórka. Obecnie, gdy mamy możliwość obrazowania naskórka za pomocą głowic o częstotliwości 50 MHz i więcej, pogląd ten nie wydaje się słuszny, jednak z braku ostatecznych dowodów, że jest to naskórek, nadal posługuje się określeniem „echo naskórkua”.

has been working on their high-frequency apparatus for over 20 years. This team has created μScan machine which is continuously upgraded and perfected (fig. 3). Currently, μScan is used with the transducer of 35 MHz. Unfortunately, such equipment is not yet available for sale. All the abovementioned scanners are equipped with specialist software enabling the performance of basic measurements as well as saving and archiving obtained images. Some of the high-frequency transducers allow for color imaging (in green, red or blue depending on the settings of an apparatus).

Nevertheless, to perform skin ultrasound examinations, conventional scanners with broadband linear-array transducers may also be used. Thanks to outstanding technological progress and the introduction of a range of options that improve imaging, such as harmonic imaging, skin examination is rendered possible even with the use of broadband linear-array transducers with the frequency of 12–18 MHz. Moreover, linear transducers with the frequency of 20 MHz are more and more often available on the market. A new option, which might prove useful in skin imaging, is elastography.

Last year, a Canadian company, Ultrasonix, created and introduced to the market an electronic, multi-element linear transducer with the frequency of 40 MHz (fig. 4) which is supported by conventional ultrasound machines. This is an innovation and, probably, a breakthrough in high-frequency ultrasound. This transducer also allows for the performance of vascular examinations with power Doppler, pulse Doppler or color Doppler options, which is highly useful in the assessment of vessels running in the dermis and subcutaneous tissue.

Ultrasound image of the skin

In the ultrasound image of the healthy skin, three basic layers may be distinguished: epidermal echo, dermis and subcutaneous tissue (12,13), which correspond to the anatomical structure of the skin (14) (fig. 5). Depending on the ultrasound scanner and the frequency of the transducer, images of various resolutions may be obtained. The higher the resolution, the lower the depth of ultrasound beam penetration into the skin. This allows for the visualization of the greater number of details. Therefore, for a thorough assessment of the skin, high-frequency equipment is irreplaceable (fig. 5).

The first layer visible from the head of the transducer is a hyperechoic line that corresponds to the epidermis. In 1992, Altmeyer (13) observed that this line is not the epidermis itself, but it is created by the reflections between the ultrasound gel and the surface of the skin as well as the reflections from the epidermis and air bubbles located between the callused epidermal cells. He proposed to call this line an epidermal echo. Currently, when it is possible to visualize the epidermis by means of transducers with the frequency of 50 MHz and more, this idea appears to be correct and the term ‘epidermal echo’ is still in use.
Beneath the epidermis, lies the dermis. It may be anatomically divided into the papillary dermis (uppermost part of the dermis lying beneath the epidermis) and reticular dermis (a layer located under the papillary dermis)\(^\text{14}\). The papillary dermis constitutes circa 20% of the dermis\(^\text{14}\) and contains blood vessels and irregularly arranged thin collagens and elastin fibers\(^\text{15}\). On the other hand, in the reticular dermis, which constitutes approximately 80% of the dermis\(^\text{14}\), the collagen, elastin and reticular fibers are arranged regularly. In terms of echogenicity, the dermis is a heterogeneous layer with hyperechoic reflections of the collagen fibers and hypoechoic ones originating from the extracellular matrix that lies between the collagen fibers. Furthermore, by means of the ultrasound machines supporting the transducers of 30 MHz and more, two layers may be distinguished in the dermis that differ in terms of their echogenicity (fig. 6). The upper layer is usually thinner and presents decreased echogenicity in comparison to the lower one. This diversification of the dermal image results from the anatomical structure of the skin. As was shown above, the papillary dermis includes a lower number of the collagen fibers and they are much thinner. Therefore, they reflect ultrasounds in a weaker way. This result in lower echogenicity as compared to the echoes of the collagen fibers situated in the lower layer—they are thicker and thus, produce stronger echoes. Unfortunately, the division of the skin into the upper and lower layers as seen in the ultrasound image, may not be strictly understood as the division into the papillary and reticular dermis.

In some ultrasound images, a thin anechoic band may be observed between the epidermal echo and the dermis (fig. 7), so-called SLEB (subepidermal low-echogenic

\(^{14}\) The anatomical structure of the skin was shown above, the papillary dermis includes a lower number of the collagen fibers and they are much thinner. Therefore, they reflect ultrasounds in a weaker way. This result in lower echogenicity as compared to the echoes of the collagen fibers situated in the lower layer—they are thicker and thus, produce stronger echoes. Unfortunately, the division of the skin into the upper and lower layers as seen in the ultrasound image, may not be strictly understood as the division into the papillary and reticular dermis. In some ultrasound images, a thin anechoic band may be observed between the epidermal echo and the dermis (fig. 7), so-called SLEB (subepidermal low-echogenic
cienkie, bezechowe pasmo (ryc. 7), tzw. SLEB (subpidermal lowechogenic band) lub SENEB (subpidermal non-echogenic band). SLEB pojawia się w starej skórze lub skórze poddanej zwiększonej ekspozycji na promieniowanie ultrafioletowe (16–19). Ponadto wzrost grubości SLEB związany jest z zatrzymywaniem wody w warstwie podskórnej (20).

W obrębie skóry właściwej można również obrazować przydatki skóry, takie jak paznokcie oraz mieszkia wlosowe i ujścia gruczołów potowych (ryc. 8). W zależności od częstotliwości głowicy i umiejętności osoby wykonującej badanie możliwe jest nawet uwidocznienie włókna włosowego znajdującego się w mieszkach oraz mięśnia przywłosowego, a także obrazowanie drobnych naczyń krwionośnych, w tym teleangiektazji, których średnica jest mniejsza niż 1 mm (ryc. 9).

Trzecią warstwą, którą wyróżniamy na obrazie ultrasonograficznym, jest tkanka podskórna. Całą tkankę podskórną możemy ocenić na obrazach z ultrasonografów band) lub SENEB (subpidermal non-echogenic band).

SLEB appears in the aged skin or skin subjected to excessive exposition to ultraviolet radiation (16–19). Moreover, the increase in the thickness of SLEB is related to water retention in the papillary dermis (20).

In the region of the dermis, one may also visualize skin appendages such as nails or hair follicles and openings of the sweat glands (fig. 8). Depending on the frequency of the transducer and abilities of the examiner, it is also possible to visualize the hair fiber located in the follicle and the arrector pili muscle. Moreover, it is possible to visualize slight blood vessels, including telangiectasias, whose diameters are lower than 1 mm (fig. 9).

The third layer seen in ultrasound images is the subcutaneous tissue. The entire subcutaneous tissue may be assessed in conventional ultrasound scans but high-frequency machines enable the assessment of merely its upper part which is seen as a hypoechoic layer with linear hyper-echoic reflections. Due to the fact that the measurement...
Ultrasonographic imaging of the skin appendages: A. hair follicles with the arrector pili muscle; A1. numerous hair follicles on the chin of a male patient; B. nail; C. openings of the sweat glands.

Examination technique and assessed parameters

Most of the skin ultrasound examinations do not require any particular preparations. Prior to the examination, the condition of the skin to be examined should be assessed visually or by palpation. The patient may assume any position depending on the examined region. The technique of the examination depends on the used ultrasound equipment. Usually, ultrasound gel is placed on the examined region and subsequently, the examination is performed by moving the transducer slowly along the tested region. The high-frequency DUB® apparatus is an exception. In this case, ultrasound gel is not used and the ultrasound transducer is tightly applied to the tested region and subsequently, filled with water. On the one hand, thanks to this solution, the reflections from the foil used in the transducers of other ultrasound machines may be avoided. On the other hand, it is inconvenient and renders the movement of the transducer impossible. If sonoelastography option is used during the examination, it is possible to evaluate the stiffness of the subcutaneous tissue.

Technica badania oraz parametry poddawane ocenie

Większość badań ultrasonograficznych skóry nie wymaga przygotowania. Przed przystąpieniem do badania należy ocenić wizualnie i ewentualnie w badaniu palpacyjnym stan skóry poddawanej badaniu. Pacjenta układa się w dowolnej pozycji, zależnie od badanej okolicy. Technika badania zależy od typu stosowanego ultrasonografu. Zazwyczaj na badaną okolicę nakładą się żel ultrasonograficzny i następnie wykonuje badanie, przesuwając powoli głowicę w badanym miejscu. Wyjątkiem jest aparat wysoko-częstotliwości DUB®, w którym nie używa się żelu ultrasonograficznego, a do badanego miejsca przykłada się, szczególnie, głowicę ultrasonograficzną, którą kolejno wypełnia się wodą. Z jednej strony takie rozwiązanie pozwala ocenić grubość warstwy podskórnej, a z drugiej na zwiększenie głębokości promieniowania, co może zwiększyć dokładność badania.

Ryc. 8. Ultrasonograficzne obrazowanie przydatków skóry: A. mieszki włosów z widocznym mięśniem przywłosowym; A1. liczne mieszki włosowe w skórze brody u mężczyzny; B. paznokcie; C. ujścia gruczołów potowych

Fig. 8. Ultrasound imaging of the skin appendages: A. hair follicles with the arrector pili muscle; A1. numerous hair follicles on the chin of a male patient; B. nail; C. openings of the sweat glands
uniknąć powstawania na obrazie odbić od folii, stosowa
nej w głowicach w innych aparatach, z drugiej jest niezbyt
wygodne, poza tym nie pozwala poruszać głowicą. Jeżeli
w badaniach skóry wykorzystujemy opcje pomiarów sono-
elastograficznych, technika badania zależy od typu elasto-
grafii, w której wyposażony jest aparat(21).

Do ultrasonograficznej oceny skóry stosujemy liczne
parametry, tj. pomiary grubości echa naskórka, skóry wła-
ściwej oraz tkanki podskórnej, pomiary pola powierzchni
poszczególnych warstw, pomiar grubości SLEB, pomiary
średnicy naczyń krwionośnych, brak lub obecność prze-
pływu w naczyniach. Parametrem szczególnie użytecz-
nym jest ocena echogeniczności poszczególnych warstw
skóry lub ich fragmentów. Echogeniczność może być
określana za pomocą liczby pikseli znajdujących się
w danym obszarze zainteresowania. W zależności od celu
badania echogeniczność może być również analizowana
na podstawie wartości współczynnika, którym określa
się stosunek pikseli z danego zakresu jasności do całko-
witej liczby pikseli w danym obszarze zainteresowania.
Taki współczynnik wprowadzili Gniadecka i Quistorff(22),
któры w badaniach dotyczących określania poziomu
nawiżenia skóry za pomocą badań ultrasonograficznych
obliczali stosunek liczby pikseli najciemniejszych (piksele
w zakresie 0–30 w 256-stopniowej skali szarości) do całko-
witej liczby pikseli znajdujących się w danym obszarze
zainteresowania. Współczynnik opisany przez Gniadeckę
został wykorzystany w badaniach własnych jednego
z autorów niniejszej pracy(23).

skin ultrasound examination, the technique depends on
the type of elastography provided by the apparatus(21).

In ultrasound assessment of the skin, various parameters
are taken into consideration such as: thickness of the epider-
mal echo, dermis and subcutaneous tissue, the surface area
of particular layers, thickness of SLEB, calibers of the
blood vessels as well as presence or absence of flow in the ves-
sels. A particularly useful parameter is the assessment of
the echogenicity of individual layers of the skin or their
fragments. Echogenicity may be determined with the use
of a number of pixels counted in a given area of interest.
Depending on the purpose of the examination, echogenicity
may also be analyzed based on the indicator which deter-
mines the ratio of pixels from a given range of brightness to
the total number of pixels in a given area of interest. Such an
indicator was introduced by Gniadecka and Quistorff(22) who
in their study on determining the level of skin hydration by
sonography calculated the ratio of the darkest pixels (rang-
ing from 0–30 in the grey-scale of 256 shades) to the total
number of pixels in a given area of interest. The indicator
described by Gniadecka was used in the research conducted
by one of the authors of this paper(23).

Conclusion

Skin ultrasound examinations are becoming more and
more popular. They are performed in order to evaluate
healthy and pathologically altered skin as well as to monitor
Podsumowanie

Obecnie ultrasonografia skóry upowszechnia się – jest wykorzystywana do oceny skóry zdrowej oraz zmienionej chorobowej, jak również do monitorowania zmian w niej zachodzących. Upowszechnianiu ultrasonografii skóry sprzyja rozwój technologiczny, który pozwala na produkcję coraz to doskonalących, łatwych w obsłudze i tańszych aparatów. Bardzo istotne są również zalety samej ultrasonografii, tj. bezinwazyjność, możliwość powtarzania badań, mobilność. Niestety, obecnie obserwujemy brak jednolitych standardów badań i parametrów oceny skóry, co bardzo często uniemożliwia porównywanie wyników uzyskiwanych przez różnych badaczy. Dla dalszego rozwoju badań skóry istotne jest kontynuowanie badań w tym zakresie, prowadzenie badań randomizowanych na dużych próbach oraz ujednolicenie metodologii i opracowanie standardów badań.

Niniejsza praca stanowi wstęp do cyklu artykułów poświęconych klinicznym zastosowaniom ultrasonograficznych badań skóry. Na łamach kolejnych numerów zostanie omówione ich zastosowanie w medycynie estetycznej i flegiologii.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Szymska E, Maj M, Majsterek M, Litniewski J, Nowicki A, Rudnicka L: Zastosowanie ultrasonografii wysokiej częstotliwości w diagnostyce dermatologicznej – obraz ultrasonograficzny wybranych zmian skórnych. Pol Merkuriusz Lek 2011; 31: 37–40.
2. Alexander H, Miller DL: Determining skin thickness with pulsed ultrasound. J Invest Dermatol 1979; 72: 17–19.
3. Tikjøb G, Kassis V, Søndergaard J: Ultrasonic B-scanning of the human skin. An introduction of a new ultrasonic skin-scanner. Acta Derm Venereol 1984; 64: 67–70.
4. Dines KA, Sheets PW, Brink JA, Hanke CW, Condra KA, Clendenon JL et al.: High frequency ultrasonic imaging of skin: experimental results. Ultrasound Imaging 1984; 6: 408–434.
5. Yano T, Fukukita H, Ueno S, Fukimoto A: 40 MHz ultrasound diagnostic system for dermatologic examination. IEEE Ultrasonics Symposium Proceeding 1987: 875–878.
6. Waller JM, Maibach HI: Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 2005; 11: 221–235.
7. Seidenari S, Pagnoni A, Di Nardo A, Giannetti A: Echographic evaluation with image analysis of normal skin: variations according to age and sex. Skin Pharmacol 1994; 7: 201–209.
8. Seidenari S: Echographic evaluation with image analysis of irritant reactions induced by nonanoic acid and hydrochloric acid. Contact Dermatitis 1994; 31: 146–150.
9. Szymska E, Nowicki A, Młosek K, Litniewski J, Lewandowski M, Secomska W et al.: Skin imaging with high frequency ultrasound – preliminary results. Eur J Ultrasound 2008; 12: 9–16.
10. Schmidt-Wendliner MH, Dill-Müller D: Ultrasound technology in dermatology. Semin Cutan Med Surg 2008; 27: 44–51.
11. Wortsman X: Sonography of facial cutaneous basal cell carcinoma: a first-line imaging technique. J Ultrasound Med 2013; 32: 567–572.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

12. Nowicki A: Wstęp do ultrasonografii. Podstawy fizyczne i instrumentacja. MediPage, Warszawa 2004.
13. Altmeyer P, El-Gammal S, Hoffmann K (red.): Ultrasound in Dermatology. Springer-Verlag, Heidelberg 1992.
14. Martini MC: Anatomia i fizjologia skóry. W: Martini MC: Kosmetologia i farmakologia skóry. Wydawnictwo Lekarskie PZWL, Warszawa 2007: 37–59.
15. Nowicka D: Funkcje i budowa skóry oraz jej przydatków. W: Nowicka D: Dermatologia. Podręcznik dla studentów kosmetologii. Górnicki Wydawnictwo Medyczne, Wrocław 2010: 1–8.
16. de Rigal J, Escoffier C, Querleux B, Faivre B, Agache P, Lévéque JL: Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol 1989; 93: 621–625.
17. Serup J: High-frequency ultrasound examination of aged skin: intrinsic, actinic, and gravitational aging, including new concepts of stasis dermatitis and leg ulcer. W: Lévêque JL, Agache P (red.): Aging Skin: Properties and Functional Changes. Marcel Dekker, New York 1993: 69–85.
18. Lévêque JL: Non invasive measurements on photodamaged skin. W: Gilchrest BA (red.): Photodamage. Blackwell Science, Inc., New York 1995: 185–200.
19. Gniadecka M, Jemec GBE: Quantitative evaluation of chronological aging and photoaging in vivo: studies on skin echogenicity and thickness. Br J Dermatol 1998; 139: 815–821.
20. Richard S, Querleux B, Bittoun J, Jolivet O, Idy-Peretti I, de Lacharriere O et al.: Characterization of the skin in vivo by high resolution magnetic resonance imaging: water behavior and age-related effects. J Invest Dermatol 1993; 100: 705–709.
21. Młosek RK: Badanie usg skóry. W: Jakubowski W (red.): Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficzno-dermatologicznego. Wyd. 4, Praktyczna Ultrasonografia, Roztoczańska Szkoła Ultrasonografii, Warszawa – Zamość 2011.
22. Gniadecka M, Quistorff B: Assessment of dermal water by high-frequency ultrasound: comparative studies with nuclear magnetic resonance. Br J Dermatol 1996; 135: 218–224.
23. Młosek RK: Obrazowanie skóry i tkanki podskórnej za pomocą ultrasonografii klasycznej oraz ultrasonografii wysokich częstotliwości; jego przydatność w kosmetologii i medycynie estetycznej. Warszawski Uniwersytet Medyczny, Warszawa 2012.