Article

Fekete-Szegö Type Problems and Their Applications for a Subclass of \(q \)-Starlike Functions with Respect to Symmetrical Points

Hari Mohan Srivastava 1,2,3, Nazar Khan 4,*, Maslina Darus 5, Shahid Khan 6, Qazi Zahoor Ahmad 4 and Saqib Hussain 7

1 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada; harimsri@math.uvic.ca
2 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
3 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
4 Department of Mathematics Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan; zahoorqazi5@gmail.com
5 Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; maslina@ukm.edu.my
6 Department of Mathematics, Riphah International University Islamabad, Islamabad 44000, Pakistan; shahidmath761@gmail.com
7 Department of Mathematics, Comsats University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan; saqib_math@yahoo.com
* Correspondence: nazarmaths@gmail.com

Received: 15 April 2020; Accepted: 27 April 2020; Published: 22 May 2020

Abstract: In this article, by using the concept of the quantum (or \(q \)-) calculus and a general conic domain \(\Omega_{k,q} \), we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a \(q \)-Bernardi integral operator.

Keywords: analytic functions; quantum (or \(q \)-) calculus; conic domain; \(q \)-derivative operator; Hankel determinant; Toeplitz matrices; Fekete-Szegö problem; \(q \)-Bernardi integral operator

MSC: Primary 05A30; 30C45; Secondary 11B65; 47B38

1. Introduction and Definitions

Let \(\mathcal{A} \) denote the class of all functions \(f \) which are analytic in the open unit disk

\[
\mathbb{E} = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \]

and has the normalized Taylor-Maclaurin series expansion of the following form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \tag{1}
\]
Let S be the subclass of all functions in A that are univalent in E (see [1]): If f and $g \in A$, the function f is said to be subordinate to the function g, written as $f \prec g$, if there exists an analytic function w in E, with

$$w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \quad (z \in E),$$

such that $f(z) = g(w(z))$. Furthermore, the following equivalence will hold true (see [2]), if g is univalent in E.

$$f(z) \prec g(z) \iff f(0) = g(0) \quad \text{and} \quad f(E) \subset g(E).$$

Let P denote the well-known Carathéodory class of functions p, which are analytic in the open unit disk E with

$$\Re(p(z)) > 0 \quad \text{and} \quad p(0) = 1.$$

If $p \in P$, then it has the form given by

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad (2)$$

where $|c_n| \leq 2 \ (n \in \mathbb{N}).$

If f is univalent in E and $f(E)$ is a star-shaped domain with respect to the origin, then f is called starlike in E with respect to the origin. The analytical condition of a starlike function in E is given as follows:

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0 \quad (z \in E).$$

The class of all such functions is denoted by S^*. A function $f \in A$ is said to be starlike with respect to symmetrical points (see [3]) if it satisfies the inequality:

$$\Re\left(\frac{zf'(z)}{f(z) - f(-z)}\right) > 0 \quad (z \in E).$$

The class of all functions in S which are starlike with respect to symmetrical points is denoted by S^*_s. Furthermore, we denote two interesting subclasses of S by k-UCV and k-ST ($0 \leq k < \infty$) of functions which are, respectively, k-uniformly convex and k-starlike in E defined for $0 \leq k < \infty$ by

$$k-UCV = \left\{ f : f \in S \quad \text{and} \quad \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > k \left|\frac{zf''(z)}{f'(z)}\right| (z \in E) \right\}$$

and

$$k-ST = \left\{ f : f \in S \quad \text{and} \quad \Re\left(\frac{zf'(z)}{f(z)}\right) > k \left|\frac{zf'(z)}{f(z)} - 1\right| (z \in E) \right\}.$$

Kanas et al. (see [4,5]; see also [6]) defined and studied classes of k-starlike functions and k-uniformly convex functions subject to the conic domain $\Omega_k (k \geq 0)$, where

$$\Omega_k = \left\{ u + iv : u^2 > k^2 (u-1)^2 + v^2 \right\}.$$
For this conic domain, the following functions play the role of extremal functions:

\[
p_k(z) = \begin{cases}
A_1(z) & (k = 0) \\
A_1(z) & (k = 1) \\
A_3(z) & (0 < k < 1) \\
A_4(z) & (k > 1),
\end{cases}
\]

where

\[
A_1(z) = \frac{1 + z}{1 - z},
\]
\[
A_2(z) = 1 + \frac{2}{\pi^2} \log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2,
\]
\[
A_3(z) = 1 + \frac{2}{1 - k^2} \sinh^2 \left\{ \left(\frac{\pi}{2\pi} \arccos k \right) \right\},
\]
\[
A_4(z) = 1 + \frac{1}{k^2 - 1} \sin \left(\frac{\pi}{2K(i)} \int_0^{\pi/2} \frac{1}{\sqrt{1 - x^2 - (ix)^2}} dx \right) + \frac{1}{1 - k^2},
\]

\(i \in (0, 1),\) and

\[k = \cosh \left(\frac{\pi K(i)}{K(i)} \right),\]

\(K(i)\) is the first kind of Legendre’s complete elliptic integral (see, for details [4,5]). Indeed, from (4), we have

\[
p_k(z) = 1 + P_1z + P_2z^2 + P_3z^3 + \ldots \quad \text{(5)}
\]
We first give some basic definitions of the quantum (or \(q\)-) calculus that will help us in the upcoming sections. We also provide some notations and concepts used in this investigation.

Definition 1. Let \(q \in (0, 1)\) and the \(q\)-factorial \([n]_q!\) be defined as follows:

\[
[n]_q! = \begin{cases}
1 & (n = 0) \\
\prod_{k=1}^{n-1} [k]_q & (n \in \mathbb{N}).
\end{cases}
\]
\(6\)

Definition 2. The generalized \(q\)-Pochhammer symbol \([t]_{n,q} (t \in \mathbb{C})\) is defined as follows:

\[
[t]_{n,q} = \frac{(q^n q^n)}{(1 - q^n)} = \begin{cases}
1 & (n = 0) \\
[t]_q[t+1]_q[t+2]_q \ldots [t+n-1]_q & (n \in \mathbb{N}).
\end{cases}
\]

Definition 3. The \(q\)-Gamma function is defined as follows:

\[
\Gamma_q(t+1) = [t]_q \Gamma_q(t) \quad \text{and} \quad \Gamma_q(1) = 1 \quad (t > 0).
\]

Definition 4. (see [26]) For \(f \in A\), the \(q\)-derivative operator or \(q\)-difference operator are defined as follows:

\[
D_q f(z) = \frac{f(z) - f(qz)}{(1 - q)z} \quad (z \in \mathbb{E}).
\]
\(7\)

From (1) and (7), we have

\[
D_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}.
\]
\(8\)

Moreover, for \(n \in \mathbb{N}\) and \(z \in \mathbb{E}\), we get

\[
D_q z^n = [n]_q z^{n-1}, \quad D_q \left(\sum_{n=1}^{\infty} a_n z^n \right) = \sum_{n=1}^{\infty} [n]_q a_n z^{n-1}.
\]

When \(q \to 1\), the \(q\)-difference operator \(D_q\) approaches the ordinary differential operator:

\[
\lim_{q \to 1^-} (D_q f)(z) = f'(z).
\]

Definition 5. (see [8]) We say that a function \(f \in A\) belongs to the class \(S^*_q\) if

\[
f(0) = 1 = f'(0)
\]
\(9\)

and

\[
\left| \frac{z (D_q f)(z)}{f(z)} - \frac{1}{1 - q} \right| \leq \frac{1}{1 - q}.
\]
\(10\)

By applying the principle of subordination, the conditions (9) and (10) can be written as follows (see [27]):

\[
\frac{z (D_q f)(z)}{f(z)} \leq 1 + \frac{z}{1 - qz}.
\]

Now, making use of the quantum (or \(q\)-) calculus and the principle of subordination, we define \(q\)-starlike and \(q\)-convex functions with respect to symmetrical points as follows.
Definition 6. An analytic function f is said to be in the class $S^*_k(q)$ if
\[
\left| \frac{2z \, (D_q f)\,(z)}{f(z) - f(-z)} - \frac{1}{1-q} \right| \leq \frac{1}{1-q}.
\] (11)

By applying the principle of subordination, the condition (11) can be written as follows:
\[
\frac{2z \, (D_q f)\,(z)}{f(z) - f(-z)} < 1 + z \frac{1}{1-q}.
\]

Definition 7. (see [9]) Let $k \in [0, \infty)$ and $q \in (0,1)$. A function p is said to be in the class $k\mathcal{P}_q$ if and only if
\[
p(z) < p_{k,q}(z),
\] (12)

where
\[
p_{k,q}(z) = 2p_k(z) \{(1+q) + (1-q) \, p_k(z)\}^{-1}
\] (13)
and $p_k(z)$ is given by (5).

Geometrically, a function $p \in k\mathcal{P}_q$ takes on all values from the domain $\Omega_{k,q}$, which is defined as follows:
\[
\Omega_{k,q} = \left\{ w : \Re \left(\frac{(1+q) \, w}{(q-1) \, w + 2} \right) > k \left| \frac{(1+q) \, w - 1}{(q-1) \, w + 2} \right| \right\}.
\]

Remark 1. If $q \to 1^-$, then $\Omega_{k,q} = \Omega_k$ is given by (3).

Remark 2. For $q \to 1^-$, then $k\mathcal{P}_q = \mathcal{P}(p_k)$, where $\mathcal{P}(p_k)$ is defined in [4].

In the present investigation, by using the quantum (or q-) calculus and the general conic domain $\Omega_{k,q}$, we focus on the Hankel determinant, the Toeplitz matrices and the Fekete-Szegő problems for the function class $S^*_k(q)$.

Definition 8. An analytic function f is said to be in the class $k\mathcal{S}^*_k(q)$ if
\[
\frac{2z \, (D_q f)\,(z)}{f(z) - f(-z)} \in k\mathcal{P}_q
\]
or, equivalently,
\[
\Re \left(\frac{(1+q) \, \frac{2z(D_q f)(z)}{f(z) - f(-z)}}{(q-1) \, \frac{2z(D_q f)(z)}{f(z) - f(-z)} + 2} \right) > k \left| \frac{(1+q) \, \frac{2z(D_q f)(z)}{f(z) - f(-z)} - 1}{(q-1) \, \frac{2z(D_q f)(z)}{f(z) - f(-z)} + 2} \right|.
\] (14)

Special Case:

For $k = 0$ and $q \to 1^-$, then the class $k\mathcal{S}^*_k(q)$ reduces to \mathcal{S}^*_k (see [3]).

Let $n \in \mathbb{N}_0$ and $j \in \mathbb{N}$. The jth Hankel determinant was introduced and studied in [28]:
\[
H_j(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+j-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+j-2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+j-1} & a_{n+j-2} & \cdots & a_{n+2j-2} \\
\end{vmatrix}
\]
where \(a_1 = 1 \). Several authors have studied \(H_j(n) \). In particular, sharp upper bounds on \(H_j(2) \) were obtained in [29–31] for several classes. The Hankel determinant \(H_2(1) \) represents a Fekete-Szegő functional \(|a_3 - a_2^2| \). This functional has been further generalized as \(|a_3 - \mu a_2^2| \) for some real or complex \(\mu \) and also the functional \(|a_2 a_4 - a_3^2| \) is equivalent to \(H_2(2) \) [30]. Babalola [32] studied the Hankel determinant \(H_3(1) \).

The symmetric Toeplitz determinant \(T_j(n) \) is defined as follows:

\[
T_j(n) = \begin{vmatrix}
 a_n & a_{n+1} & \ldots & a_{n+j-1} \\
 a_{n+1} & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots \\
 a_{n+j-1} & \ldots & \ldots & a_n \\
\end{vmatrix}
\]

so that

\[
T_2(2) = \begin{vmatrix}
 a_2 & a_3 \\
 a_3 & a_2 \\
\end{vmatrix}, \quad T_2(3) = \begin{vmatrix}
 a_3 & a_4 \\
 a_4 & a_3 \\
\end{vmatrix}, \quad T_3(2) = \begin{vmatrix}
 a_2 & a_3 & a_4 \\
 a_3 & a_2 & a_3 \\
 a_4 & a_3 & a_2 \\
\end{vmatrix}
\]

and so on. The problem of finding the best possible bounds for \(||a_{n+1} - a_n|| \) has a long history (see [33]). It is known from [33] that

\[
||a_{n+1} - a_n|| < c,
\]

for a constant \(c \).

Lemma 1. (see [31]) If \(p \) is analytic in \(E \) and of the form (2), then

\[
2c_2 = c_1^2 + x(4 - c_1^2)
\]

and

\[
4c_3 = c_1^3 + 2(4 - c_1^2)c_1 x - (4 - c_1^2)c_1 x^2 + 2(4 - c_1^2)(1 - \left| x^2 \right|)z
\]

and, for some \(x, z \in \mathbb{C} \), with \(|x| \leq 1 \), and \(|z| \leq 1 \).

Lemma 2. (see also [34]) If \(p \) is analytic in \(E \) and of the form (2), and if \(\mu \in \mathbb{C} \) (\(1 \leq k \leq n - 1 \)), then

\[
|c_n - \mu c_{n-k}| \leq 2 \max(1, |2\mu - 1|)
\]

Lemma 3. (see [35]; see also [33]) If the function \(p \) given by (2) is analytic in \(E \), then

\[
|c_n| \leq 2 \quad (n \in \mathbb{N}).
\]

The above inequality is sharp for the function \(f \) given by

\[
f(z) = \frac{1+z}{1-z}.
\]

Lemma 4. (see [35]) If \(p \) is analytic in \(E \) and of the form (2), then

\[
|c_2 - vc_1^2| \leq \begin{cases}
-4v + 2 & (v < 0) \\
2 & (0 \leq v \leq 1) \\
4v - 2 & (v > 1)
\end{cases}
\]

The equality holds true for the function \(p \) given by

\[
p(z) = \frac{1+z}{1-z}
\]
or by one of its rotations, when \(v < 0 \) or \(v > 1 \). In addition, the equality holds true for the function \(p \) given by

\[
p(z) = \frac{1 + z^2}{1 - z^2}
\]

or by one of its rotations, when \(0 < v < 1 \). If \(v = 0 \), the equality holds true if and only if

\[
p(z) = \left(\frac{1}{2} + \frac{1}{2} \lambda \right) \frac{1 + z}{1 - z} + \left(\frac{1}{2} - \frac{1}{2} \lambda \right) \frac{1 - z}{1 + z}, \quad (0 \leq \lambda \leq 1)
\]

or one of its rotations. If \(v = 1 \), the equality holds true if and only if \(p(z) \) is the reciprocal of one of the functions such that the equality holds true in the case when \(v = 0 \). In addition, the above upper bound is sharp and it can be improved as follows when:

\[
|c_2 - vc_1^2| + |c_1|^2 \leq 2 \quad (0 < v \leq \frac{1}{2})
\]

and

\[
|c_2 - vc_1^2| + (1 - v)|c_1|^2 \leq 2 \quad \left(\frac{1}{2} < v \leq 1 \right).
\]

2. Main Results

Theorem 1. Let the function \(f \) given by (1) belong to the class \(k-S^{*}_s(q) \). Then

\[
|a_2| \leq \frac{1}{2} P_1,
\]

\[
|a_3| \leq \frac{1}{2q} \left\{ P_1 + \left| P_2 - P_1 + \left(\frac{q - 1}{4q} P_2^3 \right) \right| \right\}
\]

and

\[
|a_4| \leq \frac{1}{2(1 + q^2)} \left\{ P_1 + \left| 2 (P_2 - P_1) + \left(\frac{2q^2 - 2q + 1}{2q} P_2^3 \right) + \left| P_3 + P_1 - 2P_2 \right| \right| \right\}.
\]

Proof. For \(f \in k-S^{*}_s(q) \), we have

\[
2z \left(D_q f \right)(z) = h(z) \prec H_k(z),
\]

where

\[
H_k(z) = 2p_k(z) [(1 + q) + (1 - q) p_k(z)]^{-1}
\]

and \(p_k(z) \) is given by (5).

The function \(p(z) \) with \(p(0) = 1 \) is given as follows:

\[
p(z) = \frac{1 + \frac{1}{1 - H_k^{-1}(h(z))}}{1 - \frac{1}{1 - H_k^{-1}(h(z))}} = 1 + c_1 z + c_2 z^2 + \ldots.
\]

After some computation involving (16), we have

\[
h(z) = H_k \left(\frac{p(z) + 1}{p(z) - 1} \right).
\]
Therefore, we find that

\[
H_k \left(\frac{p(z) + 1}{p(z) - 1} \right) = 1 + \left(\frac{q + 1}{2} \right) \left[\frac{P_1 c_1}{2} z + \left(\frac{P_1 c_2}{2} + \frac{1}{4} \left(P_2 - P_1 + \frac{(q - 1) P_1^2}{2} \right) \right) c_1 \right] z^2 \\
+ \left(\frac{P_1 c_3}{2} + \left(\frac{P_2}{2} - \frac{P_1}{2} + \frac{(q - 1) P_1^2}{4} \right) c_1 c_2 \right) \left(\frac{P_1}{8} - \frac{P_2}{4} \right) z^3 + \left(\frac{P_3}{8} - \frac{1}{8} (q - 1) P_1 P_2 - \frac{1}{32} (q - 1)^2 P_1^3 \right) c_1^3 \right] .
\]

We also have

\[
2z \left(D_q f \right) (z) = 1 + 2q a_2 z + q \left[2 \right]_q a_3 z^2 + \left\{ [4]_q a_4 - [2]_q a_2 a_3 \right\} z^3 + \cdots.
\]

Comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we obtain the required result. \(\square \)

Theorem 2. Let the analytic function \(f \in A \) be in the class \(k-S^*_k(q) \). Then

\[
T_3(2) \leq \left[\frac{P_1}{8} + \frac{1}{2 (1 + q^2)} \left(\Omega_1 + \Omega_2 \right) \right] \left(\frac{P_1^2}{4} + 16 | \Omega_3 | + \frac{P_1^2}{2q^2} + 2 P_1^2 \Omega_5 \right) 2 - \frac{\Omega_4}{\Omega_5 P_1^2} \right] ,
\]

where

\[
\Omega_1 = P_1 + \left\{ 2 P_2 - 2 P_1 + \Omega_8 P_1^2 \right\} ,
\]

and

\[
\Omega_2 = \left| P_3 + P_1 - 2 P_2 - \Omega_6 P_1^2 + \Omega_7 P_1 P_2 + (q - 1) \Omega_8 P_1^3 \right| .
\]

Furthermore, we have

\[
\Omega_3 = 2 P_1 \Omega_5 \left(\frac{P_1}{8} + \frac{P_1}{8} - \frac{P_1}{4} - \frac{1}{8} \Omega_6 P_1^2 + \frac{1}{8} \Omega_7 P_1 P_2 + \frac{1}{8} (q - 1) \Omega_8 P_1^3 \right) \\
- \frac{1}{2q^2} \left(\frac{P_2}{4} - \frac{P_1}{4} + (q - 1) \frac{P_1^2}{8} \right)^2 ,
\]

\[
\Omega_4 = \frac{P_1}{2q^2} \left(\frac{P_2}{4} - \frac{P_1}{4} + (q - 1) \frac{P_1^2}{8} \right) - 2 P_1 \Omega_5 \left(\frac{P_2}{2} - \frac{P_1}{2} - \frac{1}{4} \Omega_6 P_1^2 \right) ,
\]

\[
\Omega_5 = \frac{1}{16 (1 + q^2)} ,
\]

\[
\Omega_6 = \left(\frac{q^2 - 2q + 1}{2q} \right) ,
\]

\[
\Omega_7 = \left(\frac{1 - 2q^2 + 2q}{2q} \right) .
\]
and
\[\Omega_8 = \left(\frac{q^2 - q + 1}{4q} \right). \]

Here \(P_1 \) and \(P_2 \) are given in (5).

Proof. By comparison of coefficients in (17) and (18), we can obtain

\[a_2 = \frac{1}{4} P_1 c_1 \]
\[a_3 = \frac{1}{2q} \left\{ \frac{1}{2} P_1 c_2 + \left(\frac{P_2}{4} - \frac{P_1}{4} + \left(\frac{q - 1}{8} \right) \right) c_1 \right\} \]
\[a_4 = \frac{1}{2(1 + q^2)} \left[\frac{1}{2} P_1 c_3 + \left(\frac{P_2 - P_1}{2} + \left(\frac{2q^2 - 2q + 1}{8q} \right) \right) c_1 \right] c_2 \]
\[+ \left\{ \frac{1}{8} \left(P_3 + P_1 - 2P_2 - \frac{1}{2q} \left(\frac{2q^2 - 2q + 1}{P_1^2} \right) \right) \right\} \frac{1}{16q} P_1 P_2 \]
\[+ \left\{ \frac{1}{8} \frac{2q^2 - 2q}{(q - 1) \left(\frac{q^2 - q + 1}{32q} \right) \right\} c_1 c_2 \]
\[+ \left\{ \frac{1}{8} \left(\frac{2q^2 - 2q + 1}{P_1^2} \right) \right\} \frac{1}{16q} P_1 P_2 \]
\[+ \left\{ \frac{1}{8} \frac{2q^2 - 2q}{(q - 1) \left(\frac{q^2 - q + 1}{32q} \right) \right\} c_1 c_2 \]
\[+ \left\{ \frac{1}{8} \frac{2q^2 - 2q + 1}{P_1^2} \right\} \frac{1}{16q} P_1 P_2 \]
(21)

A detailed calculation for \(T_3(2) \) yields
\[T_3(2) = (a_2 - a_4) \left(a_2^2 - 2a_3^2 + a_2a_4 \right). \]

Now, if \(f \in k-S_+^+ (q) \), then we have
\[|a_2 - a_4| \leq |a_2| + |a_4|, \]
\[|a_2 - a_4| \leq \frac{1}{2} P_1 + \frac{1}{16 (1 + q^2)} (\Omega_1 + \Omega_2). \]
(22)

We need to maximize \(|a_2^2 - 2a_3^2 + a_2a_4| \) for \(f \in k-S_+^+ (q) \). Thus, by writing \(a_2, a_3, a_4 \) in terms of \(c_1, c_2, c_3 \), with the help of (19) and (21), we get
\[|a_2^2 - 2a_3^2 + a_2a_4| \leq \frac{p_2^2 c_2^2}{4} + \Omega_3 c_4^2 - \Omega_4 c_7 c_2 - \frac{p_2^2 c_2^2}{8q} + \Omega_5 P_1^2 c_1 c_3. \]
(23)

Finally, applying the triangle inequality, Lemma 2 and Lemma 3 along with (22) and (23), we obtained the required result. \(\square \)

Theorem 3. If an analytic function \(f \in A \) is in the class \(k-S_+^+ (q) \), then
\[|a_2 a_4 - a_3^2| \leq \frac{p_1^2}{4q^2}. \]

Proof. Making use of (19), (20) and (21), we have
\[a_2 a_4 - a_3^2 = \lambda_1 c_1 c_3 + \lambda_2 c_1^2 c_2 - \lambda_3 c_2^2 + \lambda_4 c_3, \]
(24)

where
\[\lambda_1 = \frac{p_1^2}{16 (1 + q^2)}. \]
\[
\lambda_2 = \left(\frac{1}{16q^2 (1 + q^2)} \right) p_1^2 - \left(\frac{1}{16q^2 (1 + q^2)} \right) p_1 p_2 + \left(\frac{2 - q}{64q^2 (1 + q^2)} \right) p_3^2.
\]

\[
\lambda_3 = \frac{p_1^2}{16q^2}
\]

and
\[
\lambda_4 = \left(\frac{1}{16 (1 + q^2)} \right) p_1 p_3 - \left(\frac{1}{64q^2 (1 + q^2)} \right) p_1^2 + \left(\frac{1}{32q^2 (1 + q^2)} \right) p_1 p_2 + \left(\frac{q - 2}{128q^2 (1 + q^2)} \right) p_3^2
\]
\[
+ \left(\frac{4q^2 - 4q^3 - q + 2}{128q^2 (1 + q^2)} \right) p_1 p_2 + \left(\frac{q - 1}{256q^2 (1 + q^2)} \right) p_1 - \left(\frac{1}{64q^2} \right) p_2^2.
\]

By using Lemma 1, we take
\[
Y = 4 - c_1^2 \quad \text{and} \quad Z = \left(1 - |x|^2 \right) z.
\]

Without loss of generality, we assume that \(c = c_1 \) \((0 \leq c \leq 2)\), so that
\[
a_2 a_4 - a_3^2 = \frac{1}{4} \left(\lambda_1 + 2 \lambda_2 - \lambda_3 + 4 \lambda_4 \right) c^4 + \frac{1}{2} \left(\lambda_1 + \lambda_2 - \lambda_3 \right) Y c^2 x
\]
\[
- \frac{1}{4} \lambda_1 Y c^2 x^2 - \frac{1}{4} \lambda_3 Y^2 x^2 + \frac{1}{2} \lambda_1 c Y Z.
\]

Taking the moduli on both sides of (25) and using the triangle inequality, we find that
\[
|a_2 a_4 - a_3^2| \leq \left| \frac{1}{4} \left(\lambda_1 + 2 \lambda_2 - \lambda_3 + 4 \lambda_4 \right) \right| c^4 + \left| \frac{1}{2} \left(\lambda_1 + \lambda_2 - \lambda_3 \right) \right| Y c^2 |x|
\]
\[
+ \left| \frac{1}{4} \lambda_1 \right| Y c^2 |x|^2 + \left| \frac{1}{4} \lambda_3 \right| Y^2 |x|^2 + \left| \frac{1}{2} \lambda_1 \right| \left(1 - |x|^2 \right) c Y.
\]

This can be written as follows:
\[
|a_2 a_4 - a_3^2| \leq |A_\lambda| c^4 + |B_\lambda| |x| Y c^2 + \left| \frac{1}{4} \lambda_1 \right| |x|^2 Y c^2 + \left| \frac{1}{4} \lambda_3 \right| |x|^2 Y^2 + \left| \frac{1}{2} \lambda_1 \right| \left(1 - |x|^2 \right) Y c
\]
\[
= G(|x|),
\]
where
\[
A_\lambda = \frac{1}{4} \left(\lambda_1 + 2\lambda_2 - \lambda_3 + 4\lambda_4 \right)
\]
\[
B_\lambda = \frac{1}{2} \left(\lambda_1 + \lambda_2 - \lambda_3 \right).
\]

Now, trivially, we have
\[
G'(c, |x|) > 0
\]
on the closed interval \([0, 1]\), which shows that \(G(c, |x|)\) is an increasing function in the interval \([0, 1]\). Therefore, the maximum value occurs at \(x = 1\) and we have
\[
\max \{ G(c, |1|) \} = G(c),
\]
\[
G(c, |1|) = |A_\lambda| c + |B_\lambda| Y c^2 + \left| \frac{\lambda_1}{4} \right| Y c^2 + \left| \frac{\lambda_3}{4} \right| Y^2
\]
and
\[
G(c) = |A_\lambda| c^4 + |B_\lambda| Y c^2 + \left| \frac{\lambda_1}{4} \right| Y c^2 + \left| \frac{\lambda_3}{4} \right| Y^2.
\]
Hence, by putting \(Y = 4 - c^2\) and after some simplification, we have
\[
G(c) = \left(|A_\lambda| - |B_\lambda| - \left| \frac{\lambda_1}{4} \right| + \left| \frac{\lambda_3}{4} \right| \right) c^4 + 4 \left(|B_\lambda| + \left| \frac{\lambda_1}{4} \right| - \left| \frac{\lambda_3}{2} \right| \right) c^2 + 4 |\lambda_3|.
\]
We consider \(G'(c) = 0\), for the optimum value of \(G(c)\), which implies that \(c = 0\). Thus, \(G(c)\) has a maximum value at \(c = 0\). Hence, the maximum value of \(G(c)\) is given by
\[
\max \{ G(c) \} = 4 |\lambda_3|,
\]
which occurs at \(c = 0\) or
\[
c^2 = \frac{4 \left(|B_\lambda| + \left| \frac{\lambda_1}{4} \right| - \left| \frac{\lambda_3}{2} \right| \right)}{|A_\lambda| - |B_\lambda| - \left| \frac{\lambda_1}{4} \right| + \left| \frac{\lambda_3}{4} \right|}.
\]
Hence, by putting
\[
\lambda_3 = \frac{p_1^2}{16q^2}
\]
in (27) and after some simplification, we obtain the desired result. \(\square\)

For \(q \to 1\), \(k = 0\), and \(p_1 = 2\) in Theorem 3, we have the following known result for the class \(S^*_s\).

Corollary 1. (see [36]) If an analytic function \(f \in A\) that belongs to the class \(S^*_s\), then
\[
\left| a_2 a_4 - a_3^2 \right| \leq 1.
\]

2.1. The Fekete-Szegö Problem

Theorem 4. Let the function \(f \in A\) given by (1) belong to the class \(k-S^*_s(q)\). Then...
\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1}{4q} (2P_2 + (q(1 - \mu) - 1)P_1^2) & (\mu \leq \delta_1) \\ \frac{P_1}{4q} & (\delta_1 \leq \mu \leq \delta_2) \\ -\frac{1}{4q} (2P_2 + (q(1 - \mu) - 1)P_1^2) & (\mu \leq \delta_1), \end{cases} \]

where

\[\delta_1 = \frac{2P_2 + P_1 [(q - 1)P_1 - 2]}{qP_1^2}, \]
\[\delta_2 = \frac{2P_2 + P_1 [(q - 1)P_1 + 2]}{qP_1^2}. \]

Proof. From (19) and (20), we have

\[a_3 - \mu a_2^2 = \frac{P_1}{4q} \left(c_2 - v c_1^2 \right), \]

where

\[v = \frac{1}{2} \left(1 - \frac{P_2}{P_1} - \frac{(q - 1)P_1 - 2}{2} + \frac{\mu P_1}{2} \right). \]

(28)

By applying the triangle inequality and Lemma 4, we obtain Theorem 4. \(\square \)

If we set \(k = 0 \) and \(q \to 1^- \) in Theorem 4, we thus obtain the following known result.

Corollary 2. (see [37]) If an analytic function \(f \in S^*_s(\phi) \), then

\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1}{2} (P_2 - \frac{\mu}{2} P_1^2) & (\mu \leq \delta_1) \\ \frac{P}{2} & (\delta_1 \leq \mu \leq \delta_2) \\ -\frac{1}{2} (P_2 - \frac{\mu}{2} P_1^2) & (\mu \leq \delta_1), \end{cases} \]

where

\[\delta_1 = \frac{2(P_2 - P_1)}{P_1^2}, \]
\[\delta_2 = \frac{2(P_2 + P_1)}{P_1^2}. \]

Let \(\delta_1 \leq \mu \leq \delta_2 \). Then, in view of Lemma 4, Theorem 4 can be improved as follows.

Theorem 5. If the function \(f \) given by (1) belongs to the class \(S^*_s(q) \) and if

\[\delta_1 \leq \mu \leq \delta_3 = \frac{2P_2}{qP_1^2}, \]

then

\[|a_3 - \mu a_2^2| + \frac{1}{qP_1^2} \left(2(P_2 - P_1) - (q - 1)P_1^2 + \mu q P_1^2 \right) |a_2|^2 \leq \frac{P_1}{2q}. \]
Furthermore, if $\delta_3 \leq \mu \leq \delta_2$, then
\[
|a_3 - \mu a_2^2| + \frac{1}{qP_1^2} (2(P_2 + P_1) - (q - 1)P_2^2 - \mu qP_1^2) |a_2|^2 \leq \frac{P_1}{2q}.
\]

If we set $k = 0$ and $q \to 1^-$, we obtain the following known result.

Corollary 3. (see [37]) If an analytic function $f \in S^*_s(\phi)$ and if

\[
\delta_1 \leq \mu \leq \delta_3 \leq \frac{2P_2}{P_1^2},
\]

then
\[
|a_3 - \mu a_2^2| + \frac{1}{qP_1^2} (2(P_2 + P_1) + \mu P_1^2) |a_2|^2 \leq \frac{P_1}{2}.
\]

Moreover, if

\[
\delta_3 \leq \mu \leq \delta_2,
\]

then
\[
|a_3 - \mu a_2^2| + \frac{1}{P_1^2} (2(P_2 + P_1) - \mu P_1^2) |a_2|^2 \leq \frac{P_1}{2}.
\]

2.2. Applications of the Main Results

In this section, firstly we recall that the Bernardi integral operator F_β given in [38] as follows:

\[
F_\beta(f(z)) = \frac{1 + \beta}{z^\beta} \int_0^z t^{\beta-1} f(t)dt \quad (f \in A, \beta > -1).
\]

The q-integral of the function f on $[0, z]$ is defined as follows (see, for example [39]):

\[
\int_0^z f(t) dq_t = (1 - q) z \sum_{k=0}^\infty q^k f(q^k z),
\]

and q-integral of the function z^n is given by

\[
\int_0^z z^n dq_t = \frac{z^{n+1}}{[n + 1]_q}, \quad (29)
\]

where $n \neq -1$ and for $q \to 1^-$, Equation (29) becomes

\[
\int_0^z h_1(t) dt = \frac{z^{n+1}}{n + 1}.
\]

Noor [39] introduced the q-Bernardi integral operator $B_q(z)$ as follows:

\[
B_q(z) = F_\beta(f(z)) = \frac{[1 + \beta]_q}{z^\beta} \int_0^z t^{\beta-1} f(t) dq_t \quad (\beta > -1).
\]

Let $f \in A$. Then, by using Equations (29) and (8), we obtain the following power series for the function $B_q(z)$ in the open unit disk E as follows:

\[
B_q(z) = z + \sum_{n=2}^\infty \frac{[1 + \beta]_q}{[n + \beta]_q} a_n z^n.
\]

Clearly, $B_q(z)$ is analytic in the open unit disk E.

Let

$$B_n = \frac{[1 + \beta]_q}{[n + \beta]_q} \quad (n \geq 1).$$ \hspace{1cm} (32)

Applying Theorem 1 on Equation (31), we obtain the following result.

Theorem 6. If the function $B_q(z)$ given by (31) belongs to the class k-$S^*_q (q)$, where $k \in [0, 1]$, then

$$|a_2| \leq \frac{1}{2B_2} P_1,$$

$$|a_3| \leq \frac{(1 + q)}{2 ([3]_q B_3 - 1)} \left[P_1 + \left| P_2 - P_1 + \left(\frac{(q - 1)P_1^2}{2} \right) \right| \right]$$

and

$$|a_4| \leq \frac{(1 + q)}{2 ([4]_q B_4)} \left[P_1 + \left| P_2 - P_1 + \frac{2 ([3]_q B_3 - 1) (q - 1) + (1 + q)}{2 ([3]_q B_3 - 1)} P_1^2 \right| \right] + \left| P_3 + P_1 - 2P_2 - \frac{2 ([3]_q B_3 - 1) (q - 1) + (1 + q)}{2 ([3]_q B_3 - 1)} \left(P_1^2 + P_1 P_2 \right) \right| + \frac{(q - 1)}{4} \left(\frac{(q - 1) ([3]_q B_3 - 1) + (1 + q)}{([3]_q B_3 - 1)} P_1^3 \right),$$

where B_2, B_3 and B_4 are given in (32).

Applying Theorem 2 to Equation (31), we obtain the following result.

Theorem 7. If the function $B_q(z)$ given by (31) belongs to the class k-$S^*_q (q)$, then

$$T_3(2) \leq \left\{ \frac{P_1}{2B_2} + \frac{1 + q}{2 ([4]_q B_4)} (\Omega_{10} + \Omega_{11}) \right\} \left\{ \frac{P_1^2}{4B_2^2} + 16 |\Omega_{12}| + \frac{(1 + q)^2 P_1^2}{2 ([3]_q B_3 - 1)^2} \right\} + 2P_1^2 \Omega_{14} \left| 2 - \frac{\Omega_{13}}{P_1^2 \Omega_{14}} \right|,
where
\[
\begin{align*}
\Omega_{10} &= P_1 + \left| 2P_2 - 2P_1 + \Omega_{15}P_1^2 \right|, \\
\Omega_{11} &= \left| P_3 + P_1 - 2P_2 + \Omega_{15}P_1^2 + \Omega_{16}P_1P_2 + (q - 1) \Omega_{17}P_1^3 \right|, \\
\Omega_{12} &= 2P_1\Omega_{14} \left(\frac{P_3}{8} + \frac{P_1}{8} - \frac{P_2}{4} - \frac{1}{8} \Omega_{15}P_1^2 + \frac{1}{8} \Omega_{16}P_1P_2 + \frac{1}{8} (q - 1) \Omega_{17}P_1^3 \right) \\
&\quad - \frac{(1 + q)^2}{2 \left([3]_q B_3 - 1 \right)^2} \left(\frac{P_2}{4} - \frac{P_1}{4} + (q - 1) \frac{P_1^2}{8} \right)^2, \\
\Omega_{13} &= \frac{(1 + q)^2 P_1}{2 \left([3]_q B_3 - 1 \right)^2} \left(\frac{P_2}{4} - \frac{P_1}{4} + (q - 1) \frac{P_1^2}{8} \right) + 2P_1\Omega_{14} \left(\frac{P_2}{2} - \frac{P_1}{2} + \frac{1}{4} \Omega_{15}P_1^2 \right), \\
\Omega_{14} &= \frac{(1 + q)}{16B_2B_4 [4]_q}, \\
\Omega_{15} &= \frac{2 \left([3]_q B_3 - 1 \right) (q - 1) + (1 + q)}{2 \left([3]_q B_3 - 1 \right)}, \\
\Omega_{16} &= \left(\frac{(1 + q) - 2 \left([3]_q B_3 - 1 \right) (q - 1)}{2 \left([3]_q B_3 - 1 \right)} \right), \\
\Omega_{17} &= \left(\frac{\left([3]_q B_3 - 1 \right) (q - 1) + (1 + q)}{4 \left([3]_q B_3 - 1 \right)} \right).
\end{align*}
\]

where \(P_1 \) and \(P_2 \) are given in (5).

Applying Theorem 3 to Equation (31), we obtain the following result.

Theorem 8. If the function \(B_q(z) \) given by (31) belongs to the class \(k-S^*_s(q) \), then

\[
\left| a_2a_4 - a_3^2 \right| \leq \frac{(1 + q)^2 P_1^2}{4 \left([3]_q B_3 - 1 \right)^2}.
\]

For \(q \to 1^- \), \(k = 0 \), \(\beta = 0 \) and \(p_1 = 2 \) in Theorem (8), we have the following known result for the class \(S^*_s \).

Corollary 4. (see [36]) Let \(f \in S^*_s \) be of the form (1). Then

\[
\left| a_2a_4 - a_3^2 \right| \leq 1.
\]
Theorem 9. If the function $B_q(z)$ given by (31) belongs to the class $k-S^*_q(q)$, then

$$\left| a_3 - \mu a_2^2 \right| \leq \begin{cases} \frac{(1+q)B_2^2}{4[3]_q B_3 - 1} \left(2P_2 + \left((q - 1) - \mu \frac{[3]_q B_2^2 - 1}{(1+q)B_2^2} \right) P_1^2 \right) & (\mu \leq \delta_1) \\
\frac{(1+q)P_1}{4[3]_q B_3 - 1}, & (\delta_1 \leq \mu \leq \delta_2) \\
- \frac{(1+q)P_1}{4[3]_q B_3 - 1} \left(2P_2 + \left((q - 1) - \mu \frac{[3]_q B_2^2 - 1}{(1+q)B_2^2} \right) P_1^2 \right) & (\mu \leq \delta_1), \end{cases}$$

where

$$\delta_1 = \frac{(1+q)B_2^2}{[3]_q B_3 - 1} \left(2P_2 + P_1 ((q - 1) P_1 - 2) \right) \left(\frac{\mu}{P_1^2} \right)$$

and

$$\delta_2 = \frac{(1+q)B_2^2}{[3]_q B_3 - 1} \left(2P_2 + P_1 ((q - 1) P_1 + 2) \right) \left(\frac{\mu}{P_1^2} \right).$$

If we set $k = 0$, $\beta = 0$ and $q \to 1-$ in Theorem 9, we obtain the following known result.

Corollary 5. (see [37]) If an analytic function $f \in A$ belongs to the class $S^*_q(\phi)$, then

$$\left| a_3 - \mu a_2^2 \right| \leq \begin{cases} \frac{1}{2} (P_2 - \mu P_1^2) & (\mu \leq \delta_1) \\
\frac{P_1}{2}, & (\delta_1 \leq \mu \leq \delta_2) \\
- \frac{1}{2} (P_2 - \mu P_1^2) & (\mu \geq \delta_2), \end{cases}$$

where

$$\delta_1 = \frac{2}{P_1^2} (P_2 - P_1)$$

and

$$\delta_2 = \frac{2}{P_1^2} (P_2 + P_1).$$

3. Conclusions

We have made use of the general conic domain $\Omega_{k,q}$ and the quantum (or q-) calculus to introduce and investigate several new subclasses of q-starlike functions with respect to symmetrical points in open unit disk \mathbb{E}. We have studied some interesting results such as the Hankel determinant, the Toeplitz matrices, and the Fekete-Szegö inequalities. We have also discussed some applications of our main results by using a q-Bernardi integral operator.

For further investigation, we can easily follow a known relationship between the q-analysis and (p,q)-analysis (see [25] (p. 340, Equations (9.1), (9.2) and (9.3))) and the results for the q-analogues, which we have included in this paper for $0 < q < 1$, can then be easily transformed into the related results for the (p,q)-analogues with $0 < q < p \leq 1$ by adding a rather redundant (or superfluous) parameter p (see, for details [25] (p. 340)).
Author Contributions: Conceptualization, H.M.S.; Formal analysis, M.D.; Investigation, S.K.; Methodology, N.K.; Validation, Q.Z.A. and H.M.S.; Visualization, S.H.; Writing—Review and Editing, H.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by Universiti Kebangsaan Malaysia, grant number FRGS/1/2019/STG06/UKM/01/1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goodman, A.W. Univalent Functions, Vols. I and II; Polygonal Publishing House: Washington, NJ, USA, 1983.
2. Miller, S.S.; Mocanu, P.T. Differential Subordination. Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000.
3. Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [CrossRef]
4. Kanas, S.; Wiśniowska, A. Conic regions and \(k \)-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [CrossRef]
5. Kanas, S.; Wiśniowska, A. Conic domains and \(k \)-starlike functions. Rev. Roum. Math. Pure Appl. 2000, 45, 647–657.
6. Kanas, S.; Srivastava, H.M. Linear operators associated with \(k \)-uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9, 121–132. [CrossRef]
7. Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989; pp. 329–354.
8. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [CrossRef]
9. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of \(q \)-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [CrossRef]
10. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for \(q \)-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [CrossRef]
11. Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M. Some coefficient inequalities of \(q \)-starlike functions associated with conic domain defined by \(q \)-derivative. J. Funct. Spaces 2018, 2018, 8492072. [CrossRef]
12. Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of \(q \)-starlike functions. Symmetry 2019, 11, 347. [CrossRef]
13. Gasper, G.; Rahman, M. Basic Hypergeometric Series; Encyclopedia of Mathematics and Its Applications, Vol. 35; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1990.
14. Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically \(q \)-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [CrossRef]
15. Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a \(q \)-integral operator. Symmetry 2019, 11, 719. [CrossRef]
16. Srivastava, H.M.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Abujarad, M.H. Fekete-Szegő inequality for classes of \((p, q)\)-starlike and \((p, q)\)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2019, 113, 3563–3584. [CrossRef]
17. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of \(q \)-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [CrossRef]
18. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of \(q \)-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [CrossRef]
19. Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and corresponding subclass of starlike function with fixed coefficient associated with \(q \)-analogue of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [CrossRef]
20. Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh \(q \)-differential operator. Results Math. 2017, 71, 1–13. [CrossRef]
21. Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. *Abst. Appl. Anal.* 2014, 1, 1–9. [CrossRef]

22. Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Salagean type operator on multivalent function. *J. Inequal. Appl.* 2018, 1, 301–312. [CrossRef]

23. Mahammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. *Mat. Vesnik* 2013, 65, 454–465.

24. Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. *Stud. Univ. Babeş-Bolyai Math.* 2018, 63, 419–436. [CrossRef]

25. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. *Iran. J. Sci. Technol. Trans. A Sci.* 2020, 44, 327–344. [CrossRef]

26. Jackson, F.H. On q-functions and a certain difference operator. *Trans. Ror. Soc. Edinb.* 1908, 46, 253–281. [CrossRef]

27. Uçar, H.E.Ö. Coefficient inequality for q-starlike Functions. *Appl. Math. Comput.* 2016, 76, 122–126.

28. Noonan, J.W.; Thomas, D.K. On the second Hankel derminant of a really mean p-valent functions. *Trans. Am. Math. Soc.* 1976, 223, 337–346.

29. Hussain, S.; Khan, S.; Roqia, G.; Darus, M. Hankel Determinant for certain classes of analytic functions. *J. Comput. Theoret. Nanosci.* 2007, 1, 619–625.

30. Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. *J. Math. Sci. Appl.* 2014, 2, 1–3.

31. Babalola, K.O. On H_{3}(1) Hankel determinant for some classes of univalent functions. *Inequal. Theory Appl.* 2007, 6, 1–7.

32. Duren, P.L. *Univalent Functions. Grundlehren der Mathematischen Wissenschaften (Band 259)*; Springer: New York, NY, USA, 1983.

33. Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. *J. Math. Anal. Appl.* 2016, 435, 369–379. [CrossRef]

34. Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In *Proceedings of the Conference on Complex Analysis*; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press Incorporated: Cambridge, MA, USA, 1992; pp. 157–169.

35. Mishra, A.K.; Prajapat, J.K.; Maharana, S. Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points. *Cogent Math.* 2016, 3. [CrossRef]

36. Shanmugam, T.N.; Ramachandran, C.; Ravichandran, V. Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points. *Bull. Korean Math. Soc.* 2006, 43, 589–598. [CrossRef]

37. Bernardi, S.D. Convex and starlike univalent functions. *Trans. Am. Math. Soc.* 2016, 135, 429–446. [CrossRef]

38. Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. *TWMS J. Pure Appl. Math.* 2017, 8, 3–11.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).