Rediscovery of *Serangium montazerii* Fürsch in Georgia and updated list of the Coccinellidae of Georgia

Alain Migeon¹, Tea Arabuli²,³

¹ CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
² Institute of Entomology, Agricultural University of Georgia, University Campus at Dighomi David Aphmashengelil Alley, 13th km, Tbilisi, Georgia
³ Institute of Zoology, Ilia State University, Kakutsa Cholokashvilli Ave 3/5, Tbilisi, Georgia

http://zoobank.org/0E5BCF84-85E6-48D6-88DD-2CD7DE63956F

Corresponding author: Alain Migeon (alain.migeon@inrae.fr)

Abstract

This article provides an updated list of the Coccinellidae of Georgia, recording 84 species. *Serangium montazerii* Fürsch nec *S. parcesetosum* Sicard is also rehabilitated as a species actually present in the country.

Key words

beetles, Caucasus, checklist, faunistic entomology

Introduction

Merkviladze and Kvavadze (2002) provided a list that names 84 species of Coccinellidae found in Georgia. Among the species listed, *Rhyzobius lophanthae* (Blaisdell, 1892), *Novius cardinalis* (Mulsant, 1850), *Harmonia conformis* (Boisduval, 1835), and *Harmonia axyridis* (Pallas, 1773) are exotic species introduced for biological control. In the close vicinity of Georgia, Orlova-Bienkowskaja and Bieńkowski (2017) also recorded *Cryptolaemus montrouzieri* Mulsant, 1853, and *Serangium montazerii* Fürsch, 1995, which are not listed in the Georgian fauna, despite the introduction of *Serangium parcesetosum* Sicard, 1929 in the country as predator of *Dialeurodes citri* (Ashmead, 1885) during the seventies (Timofeyeva and Hoang Duc Nhuan 1978).

Here we propose an updated list of the Coccinellidae found in Georgia, taking into account the actual phylogeny and nomenclature. We also report the rediscovery of *Serangium montazerii* Fürsch, 1995 nec *Serangium parcesetosum* Sicard, 1929 in an orange grove near Batumi, and make address nomenclatural confusion about the species in Georgia.

Material and methods

Site description

The sampled site is located at Chakvis Tskali, Kobuleti District, Adjara (41.71843°N, 41.73841°E) in a familial orange grove and garden. Further orange trees located 6 km eastward along the Chakvisitskali River were also sampled. Observations were conducted on 25-VI-2019.

The climate of the region is characteristic of the Batumi area and the Black Sea Georgian coast, with high precipitations (avg. 2515 mm/year), mild winters (avg. 7 °C in January) and mild summers (avg. 23 °C in July). The region has warm temperate, almost subtropical, climate conditions (Bohn et al. 2000–2003). The vegetation is represented by hygrophilous thermophytic mixed deciduous broadleaved...
forest (Bohn et al. 2000–2003). The presence of many citrus orchards, with their specific pests, have made Batumi a focus of biocontrol attempts, with release of exotic Coccinellidae during the Soviet period (Timofeyeva and Hoang Duc Nhuan 1978).

Sampling method

Beating trays were used to collect ladybird beetles by beating and shaking the branches of orange trees. The ladybird beetles were then collected with an aspirator and subsequently identified to species level in the laboratory using available literature (Gourreau 1974, Iablokoff-Knzorian 1978, Poorani 1998, Bieńkowski 2018, 2020).

Systematics

The list of the species recorded from Georgia is established following Kovář (2007), Seago et al. (2011), Escalona and Slipinski (2012), Che et al. (2017, 2021) and Zhang et al. (2018) for supra-generic levels; Tomaszewska and Szawaryn (2016): genus *Chnootribia*; Pang et al. (2020): genus *Novius*; Szawaryn and Tomaszewska (2020): genus *Rhyzobius*; Nattier et al. (2021) and Tomaszewska et al. (2021): genera *Anisocalvia* and *Hippodamia*.

Results and discussion

Serangium montazerii on *Citrus sp.*

This non-native species intentionally introduced in Georgia (Adjara) was initially identified as *Serangium parcesetosum* Sicard, 1929 (Timofeyeva and Hoang Duc Nhuan, 1978). These authors also reassigned it to its original genus after the transfer to the genus *Catana* by Chapin (1940). They were followed by latter authors and by Escalona and Slipinski (2012).

However, Fürsch (1995) described a new species, *Serangium montazerii* Fürsch, 1995 from Iranian specimens (Mazandran Province). Subsequently Duverger (1998) assigned all the introduced populations of *Serangium* in Western Europe, which were resulting from the first one introduced by Timofeyeva and Hoang Duc Nhuan (1978), to this latter species. However, after examination of specimens from Corsica, Coutanceau (2006), and Coutanceau and Malausa (2014) assigned the French introduced populations to *S. parcesetosum*. Their works, published in French in an amateurs’ journal, remained largely unknown. Escalona and Slipinski (2012) in their revision of the Microweiseinae subfamily did not examine any members of the two taxa. The specimens introduced in France (continental and Corsica, Malausa et al. (1988)), and in Turkey (Yigit and Canhilal 2005)) came from this Georgian source (Timofeyeva and Hoang Duc Nhuan 1978). Likewise, neither Fürsch (1995), nor Duverger (1998), nor Coutanceau (2006) examined or compared the two taxa. However, Poorani (1998) noted that the two species can be distinguished by the shape of the right paramere and by the inter-ocular distance. Bieńkowski (2020) also underlined the same diagnostic characters and revised illustrations of the genitalia of both taxa. Moreover, the population introduced in Georgia in the 1970’s (Timofeyeva and Hoang Duc Nhuan 1978) came from North India (Raniket, Uttarakhand) where *S. montazerii* occurs, while *S. parcesetosum* is distributed into Central and Southern India (Poorani 1998). We found one specimen of *S. montazerii* on orange trees (Figure 1). It was female and we could not perform a determination using genitalia. However, the shape of the head with an inter-ocular distance equal to twice the size of the eyes (Figure 1B) allows us to assign this specimen to *S. montazerii*. The location is close to Batumi, and corresponds to the area of first historical introduction of the species in Georgia, the country of first use of the species for biological control of *D. citri* (Timofeyeva and Hoang Duc Nhuan 1978). According to Yigit and Canhilal (2005), the species was still present in Georgia in 1990. It has probably been present in the country since 1975, but was not listed by Merkviladze and Kvavadze (2002). The species is also present northward in the vicinity of Sochi (Orlova-Bienkowskaja and Bieńkowski 2017; Bieńkowski 2020).

Figure 1. *Serangium montazerii* Fürsch, 1995, collected at Chakvis Tskali, 25-VI-2019 on an orange tree. A: dorsal view; B: front view of the head, showing the inter-ocular distance close to 2× eye diameter. Pictures from CBGP – Continental Arthropod Collection (2021).
Adalia decempunctata (Linnaeus, 1758)
Anatis ocellata (Linnaeus, 1758)
• This species is not recorded in Georgia by Kovář (2007).
Anisalciavia quatuordecimguttata (Linnaeus, 1758)
Calvia quatuordecimguttata Linnaeus, 1758
Calvia rosti Weise, 1871
• Following Kovář (2007) C. quatuordecimguttata and C. rosti are synonyms.
Anisalciavia quindecimguttata (Fabricius, 1777)
• This species is not recorded in Georgia by Kovář (2007).
Anisticta novendecimguttata (Linnaeus, 1758)
• This species is not recorded in Georgia by Kovář (2007).
Aphidecta obliterata (Linnaeus, 1758)
Bulaea lichatschovii (Hummel, 1827)
Calvia decempunctata (Linnaeus, 1767)
• This species is not recorded in Georgia by Kovář (2007).
Coccinella magnifica Redtenbacher, 1847
Coccinella divaricata Olivier, 1808
• Following Kovář (2007) C. magnifica and C. divaricata are synonyms.
Coccinella quinquepunctata Linnaeus, 1758
Coccinella septempunctata Linnaeus, 1758
Coccinula quatuordecimguttata Linnaeus, 1758
Coccinula sinuatomarginata (Fabr., 1871)
Halyzia sedecimguttata Linnaeus, 1758
Harmonia axyridis (Pallas, 1773)
• This species is not recorded in Georgia by Kovář (2007). Harmonia axyridis has been introduced in 1927 (tablokk-Khznorian 1982), but wasn’t observed until 2002 (Merkwiladze and Kvavadze 2002) in Eastern Georgia (Lagodekhy Reserve). Genetic studies would be necessary to assess the origin of the actual population(s), perhaps resulting of spreading from the admixed Western-Europe population (Lombaert et al. 2011).
Harmonia conformis (Boisduval, 1835)
• This species is not recorded in Georgia by Kovář (2007). Harmonia conformis is an introduced species (tablokk-Khznorian 1982, 1983) also established in France (Coutanceau 2009) and Egypt (tablokk-Khznorian 1982) against the psyllid Acizia uncateoides. Its establishment has been confirmed in 2002 (Merkwiladze and Kvavadze 2002).
Harmonia quadripunctata (Pontippidan, 1763)
Hippodamia apicalis (Weise, 1879)
Semiadalia apicalis (Weise, 1879)
Hippodamia notata (Laicharting, 1781)
Semiadalia notata Laicharting, 1781
• This species is not recorded in Georgia by Kovář (2007).
Hippodamia schneideri (Weise, 1878)
Semiadalia schneideri (Weise, 1878)
Hippodamia tredecimpunctata (Linnaeus, 1758)
• This species is not recorded in Georgia by Kovář (2007).
Hippodamia undecimnotata (Schneider, 1792)
Semiadalia undecimnotata Schneider, 1792
Hippodamia variegata (Goze, 1777)
Myrrha octodecimguttata (Linnaeus, 1758)
Oenopia conglobata (Linnaeus, 1758)
S. montazerii, 2022, 1–6
Thirty-six species are recorder from Georgia.
Adalia bipunctata (Linnaeus, 1758)
Oenopia lyncea (Olivier, 1808)
Synharmonia lyncea Olivier, 1808
• This species is not recorded in Georgia by Kovář (2007).

Oenopia onticca (Olivier, 1808)
Propylea quatuordecimpunctata (Linnaeus, 1758)
Pylllobora vigintiduopunctata (Linnaeus, 1758)
Thea vigintiduopunctata Linnaeus, 1758
Sospita oblongoguttata (Linnaeus, 1758)
Neomyzia oblongoguttata Linnaeus, 1758
• This species is not recorded in Georgia by Kovář (2007).
Sospita vigintiguttata (Linnaeus, 1758)
• This species is not recorded in Georgia by Kovář (2007).
Tythaspi sedecimpunctata (Linnaeus, 1758)
• This species is not recorded in Georgia by Kovář (2007).
Vibidia duodecinoguttata (Poda, 1761)

Tribe Noviini Mulsant, 1846
• One species is recorded from Georgia.

Novius cardinalis (Mulsant, 1850)
Rodolia cardinalis (Mulsant, 1850)
• This species is not recorded in Georgia by Kovář (2007). Novius cardinalis is an introduced species now present in many countries and considered as the most effective among the ladybird beetles released (Rondoni et al. 2020), consuming the scale insect Icerya purchasi.

Tribe Platynaspini Mulsant, 1846
• One species is recorded from Georgia.

Platynaspis luteorubra (Goeze, 1777)

Tribe Scymnini Mulsant, 1846
• Twenty species can be considered as present in Georgia.

Clitostethus arcanus (Rossi, 1794)
Nephus (Bipunctatus) bipunctatus (Kugelann, 1794)
• This species is not recorded in Georgia by Kovář (2007).
Nephus (Nephus) quadrinaratus (Herbst, 1783)
Scommius (Nephus) quadrinaratus Herbst, 1783
• This species is not recorded in Georgia by Kovář (2007).
Nephus (Nephus) redtenbacheri Mulsant, 1846
Scommius (Nephus) redtenbacheri Mulsant, 1846
• This species is not recorded in Georgia by Kovář (2007).
Scymniscus biflammulatus (Motschulsky, 1837)
• This species is not recorded by Merkivadle and Ksavade (2002). However, it has been described from Georgia, with no more indication of location. Its status needs to be investigated.

Scymniscus biguttatus (Mulsant, 1850)
Scymnus (Scymnus) biguttatus Mulsant, 1850
• This species is not recorded in Georgia by Kovář (2007). It was first reported in the original description of Scymnus bipustulatus Motschulsky, 1837 from Chirvan, now in Azerbaijan. Schneider and Leder (1878) report it under the name of S. bipustulatus Motschulsky, from Borjomi (Samtskhe-Javakheti) and Savenko (1953) under the name of S. (Sidius) biguttatus Mulsant from Tbilisi.

Scymnus (Neopullus) haemorrhoidalis Herbst, 1797
Scymnus (Neopullus) limbatus Stephens, 1832
Scymnus (Pullus) testaceus (Motschulsky, 1837)
• This species is not recorded in Georgia by Kovář (2007). Scymnus testaceus has been described from the Caucasian Baths, with no more indication.

Scymnus (Pullus) argutus Mulsant, 1850
Scymnus (Pullus) auritus Westman in Thunberg, 1795
Scymnus (Pullus) ferrugatus (Moll, 1785)
• This species is not recorded in Georgia by Kovář (2007).

Scymnus (Pullus) fraxini Mulsant, 1850
Scymnus (Pullus) subvillosus (Goeze, 1777)
Scymnus (Scymnus) apetz Mulsant, 1846
Scymnus (Scymnus) frontalis (Fabricius, 1787)
Scymnus (Scymnus) interruptus (Goeze, 1777)
Scymnus (Scymnus) magnomaculatus Fürsch, 1958
Scymnus (Scymnus) quadriguttatus Capra, 1921
• This species is not recorded in Georgia by Kovář (2007).
The Georgian fauna of Coccinellidae is containing 84 species. Two species (S. biflammulatus and S. montazerii) have been added to the Merkviladze and Kvavadze (2002) list, but one species is dubious for the country (T. conatus); a further two species are now considered as synonyms. Thirty species were not listed in the Catalogue of Palearctic Coleoptera (Kovář 2007).

Conclusion

The Georgian fauna of Coccinellidae is containing 84 species. Two species (S. biflammulatus and S. montazerii) have been added to the Merkviladze and Kvavadze (2002) list, but one species is dubious for the country (T. conatus); a further two species are now considered as synonyms. Thirty species were not listed in the Catalogue of Palearctic Coleoptera (Kovář 2007).

Potential species to be sought

Among the biocontrol agents introduced into Georgia, Cryptolaemus montrouzieri Mulsant, 1853 is an important predator of mealybugs. The species is reported from Sochi (Orlova-Bienkowskaja and Bieńkowski 2017) in high numbers (Orlova-Bienkowskaja et al. 2018) and could be still present in Georgia. Eight other species, released between 1935 and 1990, have not been reported since their introduction in Georgia, nor along the Russian Black Sea Caucasus coast (Bieńkowski and Orlova-Bienkowskaja 2020).

Acknowledgements

We thank the family Kontselidze for their welcome and for allowing us to take samples in their garden. We also thank Oldřich Nedvěd and an anonymous reviewer for their important and valuable comments which contributed to the improvement of the manuscript. This work was partially supported (AM) by the European Union’s Horizon 2020 research and innovation program [grant 773 902-SuperPests].

References

Bieńkowski AO (2018) Key for identification of the ladybirds (Coleoptera: Coccinellidae) of the European part of Russia and Northern Caucasus [In Russian]. A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, 140 pp. 824.
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Bieńkowski AO, Orlova-Bienkowskaja MJ (2020) History of the Biodiversity of Ladybirds (Coccinellidae) at the Black Sea Coast of the Russian Caucasus in the Last 120 Years – Does the Landscape Transformation and Establishment of Harmonia axyridis Have an Impact? Insects 11: 824. https://doi.org/10.3390/insects11110824
Chapin EA (1940) New genera and species of lady-beetles related to Serangium Blackburn (Coleoptera: Coccinellidae). Journal of the Washington Academy of Sciences 30(6): 263–272.

Che L, Zhang P, Deng S, Escalona H.E, Wang X, Li Y, Pang H, Vandenberg N, Ślipiński A, Tomaszewska W, Liang D (2021) New insights into the phylogeny and evolution of lady beetles (Coleoptera: Coccinellidae) by extensive sampling of genes and species. Molecular Phylogenetics and Evolution, 156: e107045. https://doi.org/10.1016/j.ympev.2020.107045

Che LH, Zhang SQ, Li Y, Liang D, Pang H, Ślipiński A, Zhang P (2017) Genome-wide survey of nuclear protein-coding markers for beetle phylogenetics and their application in resolving both deep and shallow-level divergences. Molecular Ecology Resources 17(6): 1342–1358. https://doi.org/10.1111/1755-0998.12664

Coutanceau J-P (2006) Serangium parcesetosum Sicard 1929 en Corse: réhabilitation et nouvelles localités (Col. Coccinellidae). Le Coléoptériste 9(3): 180.

Coutanceau J-P (2009) *Harmonia conformis* (Boisduval, 1835) : une Coccinelle àustralienne introduite et acclimatée en France (Col. Coccinellidae). Bulletin de la Société entomologique de France 114: 110.

Coutanceau J-P, Malausa J-C (2014) Coléoptères Coccinellidae introduits en France métropolitaine comme agents de lutte biologique. Harmonia 13: 9–21.

Duverger C (1998) *Serangium montazerii* Fürsch 1995, (Coleoptere Coccinellidae) introduit en France et Corse sous le nom de *Serangium parcesetosum* Sicard 1929. Bulletin de la Société linnéenne de Bordeaux 26(2): 97–98.

Escalona HE, Ślipiński A (2012) Generic revision and phylogeny of Microweiseinae (Coleoptera: Coccinellidae). Systematic Entomology 37(1): 125–171. https://doi.org/10.1111/j.1365-3113.2011.00601.x

Fürsch H (1995) A new *Serangium* species from Iran. Nachrichtenblatt der Bayerischen Entomologen 44(12): 20–21.

Gourreau J-M (1974) Systématique de la tribu des Scymini (Coccinellidae). Annales de Zoologie, Ecologie animale Hors-série, 1–221.

Iablokoff-Khonzarian SM (1982) Les coccinelles Coleoptères-Coccinellidae: Tribu Coccinellini des régions Paléarctique et Orientale. Société Nouvelle des Éditions Boubée, Paris.

Iablokoff-Khonzarian SM (1983) A review of the lady-beetles in the fauna of the USSR (Coleoptera, Coccinellidae) [in Russian]. Sbornik, Institut Zoologii, Akademiya Nauk Armianskoi SSR 19: 94–161.

Kovář I (2007) Family Coccinellidae Latreille, 1807. In: Löbl I, Smetana A (Eds) Catalogue of Palaearctic Coleoptera. Apollo Books, Stenstrup Vol. IV, 568–631.

Lomhaerta E, Guillmaud T, Thomas CE, Lawson Handley LJ, Li J, Wang S, Pang H, Goryacheva I, Zakharov IA, Jouselin E, Poland RL, Migone A, Van Lenteren J, De Clercq P, Berkvens N, Jones W, Ensoup A (2011) In-ferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird *Harmonia axyridis*. Molecular Ecology 20: 4654–4670. https://doi.org/10.1111/j.1365-294X.2011.05322.x

Malausa JC, Franco E, Brun P (1988) Acclimatation sur la côte d’azur et l’aleurode des citrus, *Dialeurodes citri* [Hom.: Aleyrodidae]. Entomophaga 33(4): 517–519. https://doi.org/10.1007/bf02373187

Merkvildadze MS, Kvasadze ES (2002) List of ladybirds (Coleoptera, Coccinellidae) of Georgia. Proceedings of the Institute of Zoology 21: 149–155.

Nattier R, Michel-Salzat A, Almeida LM, Chifflet-Belle P, Magro A, Salazar K, Kergoat GJ (2021) Phylogeny and divergence dating of the ladybird beetle tribe Coccinellini Latreille (Coleoptera: Coccinellidae). Systematic Entomology 46: 632–648. https://doi.org/10.1111/syen.12480

Orlova-Bienkowskaja MJ, Bieńkowski AO (2017) Alien Coccinellidae (Ladybirds) in Sochi National Park and its vicinity, Russia. Nature Conservation Research 2(4): 96–101. https://doi.org/10.24189/nccr.2017.044

Orlova-Bienkowskaja M, Spiridonov SE, Butorina NN, Bieńkowski AO (2018) Coinvasion by the ladybird *Harmonia axyridis* (Coleoptera: Coccinellidae) and its parasites, *Hesperomyces virvens* (Ascomycota: Laboulbeniales) and *Paatipsulenchus bifurfatus* (Nematoda: Tylenchida, Allantonomatidae), in the Caucasus. PLOS ONE 13(11): e0202841. https://doi.org/10.1371/journal.pone.0202841

Pang H, Tang X-F, Booth RG, Vandenberg N, Forrester J, Mechugh J, Ślipiński A (2020) Revision of the Australian Coccinellidae (Coleoptera). Genus *Novius* Multan of tribe Novini. Annales Zoologici 70: 1–24. https://doi.org/10.1361/003034518ANZ2020.70.1.001

Pooarni J (1998) A new species of *Serangium* Blackburn (Coleoptera: Coccinellidae), with a key to species, from India. Journal of Biological Control 12: 55–61.

Rondoni G, Borges I, Collart J, Conti E, Costamagna AC, Dumont F, Evans EW, Grez AA, Howe AG, Lucas E, Maisonhaute J-E, Onofre Soares A, Zaviezo T, Cock MJF (2021) Exotic ladybirds for biological control of herbivorous insects – a review. Entomologia Experimentalis et Applicata 169: 6–27. https://doi.org/10.1111/eea.12963

Roy H, Migone A (2010) Ladybeets (Coccinellidae). Chapter 8. Bio- Risk 4: 293–313. https://doi.org/10.3897/biorisk.4.49

Savenko R (1953) Fauna of the coccinelids (Coleoptera Coccinellidae) of Georgia [in Russian]. Trudy Instituta Zoologii Akademii Nauk Gruzinskoy SSR 11: 127-140

Seago AE, Giorgi JA, Li J, Ślipiński A (2011) Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data. Molecular Phylogenetics and Evolution 60: 137–151. https://doi.org/10.1016/j.ympev.2010.03.015

Schneider O, Leder H (1878) Beiträge zur Kenntnish des kaukasischen Küferfauna. 346–535.

Szwaryn K, Tomaszewska W (2020) New and known extinct species of *Rhyzobius* Stephens, 1829 shed light on the phylogeny and biogeography of the genus and the tribe Cociddulini (Coleoptera: Coccinellidae). Journal of Systematic Palaeontology 18: 1445–1461. https://doi.org/10.1007/147732019.2020.1769751

Timofeeva TV, Nhuann HD (1978) Morphological and biological characteristics of Indian lady-bird *Serangium parcesetosum* Sicard (Coleoptera, Coccinellidae), predator of the citrus whitefly in Adzharia. Entomologicheskoe Obozrenie 57(2): 302–308.

Tomaszewska W, Escalona HE, Hartley D, Li J, Wang X, Li H-S, Pang H, Ślipiński A, Zwick A (2021) Phylogeny of true ladybird beetles (Coleoptera: Coccinellidae) reveals pervasive convergent evolution and a rapid Cenozoic radiation. Systematic Entomology 46: 611–631. https://doi.org/10.1111/syen.12479

Timoszewa W, Szwaryn K (2016) Epipalchnini (Coleoptera: Coccinellidae) A Revision of the world genera. Journal of Insect Science 16: 1–91. https://doi.org/10.1053/jisesa/iew082

Yigit A, Canhilal R (2005) Establishment and dispersal of *Serangium parcesetosum* Sicard (Coleoptera, Coccinellidae), a predatory beetle of citrus whitefly, *Dialeurodes citri* Ashm. (Homoptera, Aleyrodidae) in the East Mediterranean region of Turkey. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 112(3): 268–275.

Zhang SQ, Che LH, Li Y, Liang D, Pang H, Ślipiński A, Zhang P (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications 9(1): 205. https://doi.org/10.1038/s41467-017-02644-4