Meningeal Supratentorial Hemangioblastoma in a Patient with Von Hippel-Lindau Disease Mimicking Angioblastic Menigioma

Hoon Kim, M.D., Ik-Seong Park, M.D., Ph.D., Kwang-Wook Jo, M.D.
Department of Neurosurgery, The Catholic University of Korea College of Medicine, Bucheon St. Mary’s Hospital, Bucheon, Korea

Hemangioblastomas are sporadic tumors found in the cerebellum or spinal cord. Supratentorial hemangioblastomas are rare, and those with meningeal involvement are extremely rare and have been reported in only approximately 130 patients. Here, we report the case of a 51-year-old female patient with supratentorial meningeal hemangioblastoma detected 5 years after surgical resection of an infratentorial hemangioblastoma associated with von Hippel-Lindau disease. Patients with von Hippel-Lindau syndrome are at risk for developing multiple hemangioblastomas, with new tumor formation and growth and possible meningeal infiltration. Regular lifelong follow-up in at-risk patients is recommended and should include the differential diagnosis of dural-based tumors such as angioblastic menigioma and metastatic renal cell carcinoma.

Key Words: Angioblastic menigioma · Hemangioblastoma · Supratentorial · Von Hippel-Lindau disease.

INTRODUCTION

Hemangioblastomas (HBs) are highly vascular benign tumors composed of neoplastic stromal cells with rich capillary networks. They develop sporadically in 67% of all cases and in 33% of cases as a feature of von Hippel-Lindau (VHL) disease. HBs may arise in any part of the central nervous system, but are found most frequently in the posterior fossa or spinal cord. HBs in a supratentorial location are rare and have been found in approximately 130 patients, but very limited information on their natural history, incidence, clinical effects, and optimal management is available. Among these patients, 60% received a diagnosis of VHL disease, whereas infratentorial HB occurs in only 33% of patients with VHL. Furthermore, supratentorial HB with meningeal involvement is extremely rare.

This case report describes the case of a supratentorial meningeal HB mimicking angioblastic menigioma detected 5 years after surgical resection of an infratentorial HB in a patient with VHL disease.

CASE REPORT

A 51-year-old female patient presented to our hospital with severe dizziness and right facial paresthesia. Five years previously, magnetic resonance imaging (MRI) had shown 2 small masses on the right cerebellum and 1 large mass on the left cerebellum. At that time, lateral vertebral artery digital subtraction angiography (DSA) had shown a highly vascular tumor nodule supplied by the posterior inferior cerebellar artery. Lateral internal carotid artery (ICA) and external carotid artery (ECA) DSA had shown no vascular abnormalities. T1-weighted gadolinium enhancement MRI had shown no abnormal findings in the supratentorial region (Fig. 1A-D). The patient had undergone craniotomy, and the left cerebellar tumor was removed. Further pathological diagnosis was HB. Abdominal computed tomography, an evaluation of the patient’s family history, and genetic screening had been employed to evaluate the presence of VHL disease. Computed tomography had revealed cysts in the pancreas, liver, and both kidneys. Three of the patient’s 6 siblings and 1 of her 2 children were diagnosed with VHL disease.
primarily arise in the cerebellum and are rarely found in the supratentorial region. Supratentorial HB was first described by Bielschowsky in 1902. Approximately 130 cases of supratentorial HB have been reported. HB tumors are frequently found in the cerebrum and sellar/suprasellar and intraventricular regions. In order of frequency, they are found in the frontal, parietal, and temporal lobes of the cerebrum, and there are a few reports of congenital HB. Among patients with supratentorial HB, 60% were diagnosed with VHL disease, and this condition is more common in VHL disease than infratentorial HB. A significant association was found between HB tumors located in the sellar/suprasellar region and a diagnosis of VHL disease.

HBs may present as either isolated or multiple lesions. Most reported HBs were solid tumors, whereas one-third were found to be cystic. However, meningeal HBs in a supratentorial location are extremely rare. Only 16 patients with meningeal involvement of HB have been described in the literature (Table 1). The sex ratio is equal, and the patient age range is 10-72 years. Tumors are mostly located in the frontal lobe, but they are also found in the parietal lobe. All these HBs had a solid consistency, and only 2 were associated with VHL disease, including the case reported here (12.5%). Four patients had multiple lesions and 3 had infratentorial HB, 2 of whom had VHL disease.

Ammerman et al. reported that “Long-term natural history of hemangioblastomas in patients with von Hippel-Lindau disease”, excluding those in a supratentorial location, had a stuttering or stepwise growth pattern. In addition, approximately 45% of symptomatic HBs were not visible on the initial MRI. Wanebo et al. reported that 44% of infratentorial and spinal cord HBs

Genetic analysis had shown the presence of a VHL gene mutation; thus, the patient’s condition had been diagnosed as HB associated with VHL disease.

Follow-up MRI performed 1 and 12 months after the first operation had shown no evidence of recurrence or abnormal findings in the supratentorial region. However, MRI performed 5 years after the first operation showed a 4.0×3.6×4.0-cm cystic mass with strong enhancement, dural base thickening, and peritumoral edema on the left frontal surface. However, no tumor recurrence was observed in the cerebellum. Left ICA DSA showed pial blood supply to the rim of the tumor. Left ECA DSA showed tumor staining from the middle meningeal artery (Fig. 1E-H).

The tumor was completely removed after preoperative embolization. It was a vascular tumor with extensive dural attachment. Histopathological examination with hematoxylin and eosin staining showed lipid-containing vacuoles and abundant vascular cells (Fig. 2A). The tumor cells were negative for epithelial membrane antigen (EMA), glial fibrillary acidic protein (GFAP), CD34, and S100, but positive for neuron-specific enolase (NSE) and vimentin (Fig. 2B-E). The patient was definitively diagnosed with HB with meningeal involvement. The patient’s dizziness resolved postoperatively. There was no recurrence of the supratentorial tumor or change in the size of the multiple small right cerebellar tumors during the 12-month follow-up period.

DISCUSSION

HBs are benign tumors of vascular origin that develop in the central nervous system. They account for 2% of all intracranial tumors and 5-15% of posterior fossa tumors in adults. HBs primarily arise in the cerebellum and are rarely found in the supratentorial region.

Supratentorial HB was first described by Bielschowsky in 1902. Approximately 130 cases of supratentorial HB have been reported. HB tumors are frequently found in the cerebrum and sellar/suprasellar and intraventricular regions. In order of frequency, they are found in the frontal, parietal, and temporal lobes of the cerebrum, and there are a few reports of congenital HB. Among patients with supratentorial HB, 60% were diagnosed with VHL disease, and this condition is more common in VHL disease than infratentorial HB. A significant association was found between HB tumors located in the sellar/suprasellar region and a diagnosis of VHL disease. HBs may present as either isolated or multiple lesions. Most reported HBs were solid tumors, whereas one-third were found to be cystic.

However, meningeal HBs in a supratentorial location are extremely rare. Only 16 patients with meningeal involvement of HB have been described in the literature (Table 1). The sex ratio is equal, and the patient age range is 10-72 years. Tumors are mostly located in the frontal lobe, but they are also found in the parietal lobe. All these HBs had a solid consistency, and only 2 were associated with VHL disease, including the case reported here (12.5%). Four patients had multiple lesions and 3 had infratentorial HB, 2 of whom had VHL disease.

Ammerman et al. reported that “Long-term natural history of hemangioblastomas in patients with von Hippel-Lindau disease”, excluding those in a supratentorial location, had a stuttering or stepwise growth pattern. In addition, approximately 45% of symptomatic HBs were not visible on the initial MRI. Wanebo et al. reported that 44% of infratentorial and spinal cord HBs
seemed to grow during the follow-up period. In addition, Peyre et al.21 reported that "Natural history of supratentorial hemangioblastomas in von Hippel-Lindau disease", of 11 supratentorial HBs followed-up with serial MRI for at least 6 months, 10 enlarged and 1 remained stable. Enlarged tumors showed either continuous (n=7) or intermittent (n=3) growth patterns. Furthermore, 7 tumors were followed-up for more than 24 months. Five of these tumors showed a rapid increase in size after 24 months. Thus, supratentorial HBs (92.9%) show a higher incidence of tumor growth during follow-up than infratentorial and spinal cord HBs (44%). Nevertheless, the natural history of supratentorial meningeal HBs is unclear because it is extremely rare.

Fig. 2. A : Photomicrograph shows large vessels, lipid-containing vacuoles, and abundant vascular cells adhered to the dura basement (hematoxylin and eosin staining, ×100). B and C : Immunohistochemical staining for epithelial membrane antigen and glial fibrillary acidic protein is negative. D and E : Staining for neuron-specific enolase and vimentin is positive.

Table 1. Reported cases of supratentorial meningeal hemangioblastoma

Author	Sex	Age	Location	Gross appearance	VHL	Multiple	Infratentorial hemangioblastoma
Zeitlin33	M	54	Parasagittal	Solid	-	-	-
Rivera and Chason20	M	16	Parietal	Solid	-	-	-
Ishwar et al.22	F	62	Occipital	Solid	-	+	-
Lee et al.26	M	46	Frontal	Solid	+	+	+
Sharma et al.24	M	72	Parietal	Solid	-	-	-
Choi et al.10	F	26	Parietal	Solid	-	-	-
Kim et al.28	M	45	Convexity	Solid	-	+	+
Agostinelli et al.1	F	10	Convexity	Solid	-	-	-
Iyigun et al.19	M	61	Convexity	Solid	-	-	-
Cosar et al.7	M	50	Convexity	Solid	-	-	-
Murali et al.20	M	57	Parasagittal	Solid	-	-	-
Takeuchi et al.29	M	58	Parasagittal	Solid	-	-	-
Sherman et al.27	F	52	Convexity	Solid	-	-	-
Jang et al.14	F	68	Convexity	Solid	-	-	-
Elguetbal et al.5	F	67	Falx	Solid	-	-	-
Kalooostian and Taylor10	F	49	Falx	Solid	-	-	-
Present study	F	51	Convexity	Solid	+	+	+

VHL : von Hippel-Lindau
ments (vascular channels and stromal cells) that stain negative for epithelial markers such as EMA and vascular markers such as CD34. Therefore, EMA immunostaining can especially help distinguish supratentorial meningeal HB from meningioma with the former being negative for EMA staining\(^\text{[20]}\). In addition, CD34 immunohistochemical activity is positive in some cases of HB but shows more focal, heterogeneous, weak staining of tumor cells in meningioma and hemangioendothelioma\(^\text{[10,29]}\). Furthermore, HB tumors are generally negative for GFAP and positive for NSE. Additionally, S-100 protein showed a variable immunoreactivity among neuroectodermal markers\(^\text{[10,30]}\). Finally, vimentin, the most widely distributed intermediate filament expressed in virtually all mesenchyma and corresponding tumors, is positive in HB tumors, supporting the hypothesis that HBs originate from the mesenchyme. In our case, the tumor was negative for EMA, but positive for NSE and vimentin. Recently, inhibin-\(\alpha\) has been described as a useful marker for distinguishing HB from angiomatous meningioma\(^\text{[29]}\). In addition, histologically, HB may be difficult to distinguish from renal cell carcinoma because both tumors are highly vascular and contain cells with pale cytoplasm. Immunohistochemically, renal cell carcinomas stain positive for EMA whereas HB are EMA negative\(^\text{[26]}\).

The treatment of choice for supratentorial meningeal HB is surgical resection. Mills et al.\(^\text{[29]}\) reported that patients with supratentorial HB undergoing gross total tumor resection (GTR) experienced a significant improvement in progression-free survival (PFS) compared with those receiving subtotal resection (STR) (5-year PFS: GTR, 100% vs. STR, 53%). However, treatment modality and the literature are not definitive because of the rarity of supratentorial meningeal HBs. In our opinion, total resection of the tumor prevents recurrence and postoperative hemorrhage and radiotherapy may be an alternative or adjuvant therapy for multiple, subtotally resected, and recurrent tumors.

CONCLUSION

We reported a rare case of supratentorial meningeal HB that was detected 5 years after surgery for cerebellar HB in a patient with VHL disease. Although supratentorial meningeal HBs are extremely rare tumors, differential diagnosis of meningioma and other meningeal-based tumors should be investigated. Pathological and immunohistochemical techniques are helpful for such diagnoses. Definitive treatment for these lesions is surgical resection. Accordingly, physician should be aware that supratentorial meningeal HBs can be developed in patient with VHL disease and regular follow-up are mandatory.

References

1. Agostinelli C, Roncaroli F, Galassi E, Bernardi B, Acciarri N, Tani G: Leptomeningeal hemangioblastoma. Case illustration. J Neurosurg 101 (1 Suppl) : 122, 2004
2. Ammerman JM, Lonser RR, Dambrosia J, Butman JA, Oldfield EH: Long-term natural history of hemangioblastomas in patients with von Hippel-Lindau disease: implications for treatment. J Neurosurg 105 : 248-255, 2006
3. Becker I, Paulus W, Roggendorf W: Histogenesis of stromal cells in cerebellar hemangioblastomas. An immunohistochemical study. Am J Pathol 134 : 271-275, 1989
4. Böhl Ing T, Plate KH, Haltia MJ, Altalbo K, Neumann HP: Von Hippel-Lindau disease and capillary haemangioblastoma in Kleihues P, Cavenee WK (eds): World Health Organization classification of tumours Pathology and genetics, tumours of the nervous system. Lyon: IARC Press, 2000
5. Choi DH, Kim HS, Mok JH, Kim DH, Lee KC, Lee YB: Supratentorial meningeal hemangioblastoma: case report. J Korean Neurosurg Soc 27 : 1299-1303, 1998
6. Commins DL, Hinton DR: Cytologic features of hemangioblastoma: comparison with meningioma, anaplastic astrocytoma and renal cell carcinoma. Acta Cytol 42 : 1104-1110, 1998
7. Cosar M, Hatiboglu MA, Iplikcioglu AC, Orcan D: Parasagittal leptomeningeal hemangioblastoma—case report. Neurol Med Chir (Tokyo) 46 : 294-297, 2006
8. Elguerezabal A, Diaz ML, Landeiro J, Genê M, Boutayeb L, Escosa M, et al.: [Solid-cystic supratentorial hemangioblastoma affecting the falx cerebri. Report of a case]. Neurocirugia (Astur) 21 : 401-404, 2010
9. Grant JW, Gallagher PJ, Hedinger C: Haemangioblastoma. An immunohistochemical study of ten cases. Acta Neuropathol 76 : 82-86, 1988
10. Hussein MR: Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol 88 : 311-324, 2007
11. Iplikcioglu AC, Yardanakul V, Trakya U: Supratentorial haemangioblastoma: appearances on MR imaging. Br J Neurosurg 11 : 576-578, 1997
12. Ishwar S, Taniguchi RM, Vogel FS: Multiple supratentorial hemangioblastomas. Case study and ultrastructural characteristics. J Neurosurg 35 : 396-405, 1971
13. Iyigun OL, Coglugk C, Aydin K, Yildiz L, Rakunt C, Celik F: Supratentorial leptomeningeal hemangioblastoma mimicking a meningioma without von Hippel-Lindau complex. Turk Neurosurg 14 : 25-27, 2004
14. Jang H: Supratentorial leptomeningeal hemangioblastoma: case report. Yeungnam University Journal of Medicine 24 : S770-S774, 2007
15. Kalostian P, Taylor C: Supratentorial dural-based haemangioblastoma in a Native American patient without Von Hippel Lindau Syndrome. J Surg Case Rep : 11, 2012
16. Kim HS, Park SH, Cho BM, Kim DH, Oh SM: Supratentorial hemangioblastoma, occurred after total removal of recurrent cerebellar hemangioblastoma - Case Report -. J Korean Neurosurg Soc 30 : 348-351, 2001
17. Lee JY, Dong SM, Park WS, Yoo NJ, Kim CS, Jang JJ, et al.: Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas. Case study and ultrastructural characteristics. J Neurosurg 98 : 460-463, 474, 2007
18. Lee KR, Kishore PR, Wulfsberg E, Kepes JJ: Supratentorial leptomeningeal hemangioblastoma. Neurology 28 : 727-730, 1978
19. Mills SA, Oh MC, Rutkowski MJ, Sughrue ME, Barani IJ, Parsa AT: Supratentorial hemangioblastoma: clinical features, prognosis, and predictive value of location for von Hippel-Lindau disease. Neuro Oncol 14 : 1097-1104, 2012
20. Murali R, Jones WI, Ma Wyatt J: A 57-year-old man with a dural-based parietal lobe tumor. Brain Pathol 17 : 460-463, 474, 2007
21. Peyre M, David P, Van Efferentre R, François P, Thys M, Emery E, et al.: Natural history of supratentorial hemangioblastomas in von Hippel-Lindau disease. Neurosurgery 67 : 577-587; discussion 587, 2010
22. Richard S, David P, Marsot-Dupuch K, Giraud S, Béroud C, Resche F: Central nervous system hemangioblastomas, endolymphatic sac tumors, and von Hippel-Lindau disease. Neurosurg Rev 23 : 1-22; discussion 23-24, 2000
23. Richard S, Graff J, Lindau J, Resche F: Von Hippel-Lindau disease. Lan-
cet 363: 1231-1234, 2004
24. Richmond BK, Schmidt JH 3rd: Congenital cystic supratentorial he-
mangioblastoma. Case report. J Neurosurg 82: 113-115, 1995
25. Rivera E, Chason JL: Cerebral hemangioblastoma. Case report. J Neu-
rosurg 25: 452-454, 1966
26. Sharma RR, Cast IP, O’Brien C: Supratentorial haemangioblastoma not
associated with Von Hippel Lindau complex or polycythaemia: case re-
port and literature review. Br J Neurosurg 9: 81-84, 1995
27. Sherman JH, Le BH, Okonkwo DO, Jane JA: Supratentorial dural-
based hemangioblastoma not associated with von Hippel Lindau com-
p lex. Acta Neurochir (Wien) 149: 969-972; discussion 972, 2007
28. Takei H, Bhattacharjee MB, Rivera A, Dancer Y, Powell SZ: New im-
munohistochemical markers in the evaluation of central nervous sys-
tem tumors: a review of 7 selected adult and pediatric brain tumors.
Arch Pathol Lab Med 131: 234-241, 2007
29. Takeuchi H, Hashimoto N, Kitai R, Kubota T: A report of supratentori-
al leptomeningeal hemangioblastoma and a literature review. Neuropa-
thology 28: 98-102, 2008
30. Theunissen PH, Debets-Te Baerts M, Blaauw G: Histogenesis of intra-
cranial haemangiopericytoma and haemangioblastoma. An immuno-
histochemical study. Acta Neuropathol 80: 68-71, 1990
31. Vortmeyer AO, Gnarra JR, Emmert-Buck MR, Katz D, Linehan WM,
Oldfield EH, et al.: von Hippel-Lindau gene deletion detected in the
stromal cell component of a cerebellar hemangioblastoma associated
with von Hippel-Lindau disease. Hum Pathol 28: 540-543, 1997
32. Wanebo JE, Lonser RR, Glenn GM, Oldfield EH: The natural history of
hemangioblastomas of the central nervous system in patients with von
Hippel-Lindau disease. J Neurosurg 98: 82-94, 2003
33. Zeitlin H: Hemangioblastomas of meninges and their relation to Lin-
dau’s disease. J Neuropathol Exp Neurol 1: 14-23, 1942