MANIN’S CONJECTURE AND THE FUJITA INVARIANT OF FINITE COVERS

AKASH KUMAR SENGUPTA

ABSTRACT. We prove a conjecture of Lehmann-Tanimoto about the behaviour of the Fujita invariant (or a-constant appearing in Manin’s conjecture) under pull-back to generically finite covers. As a consequence we obtain results about geometric consistency of Manin’s conjecture.

1. INTRODUCTION

Let X be a smooth projective variety over a field of k of characteristic 0 and L a big \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. Let $\Lambda_{\text{eff}}(X) \subset \text{NS}(X)_{\mathbb{R}}$ be the cone of pseudo-effective divisors. The Fujita invariant or the a-constant is defined as

$$a(X,L) = \min \{ t \in \mathbb{R} \mid [K_X] + t[L] \in \Lambda_{\text{eff}}(X) \}$$

The invariant $\kappa_L(X, L) = -a(X, L)$ was introduced and studied by Fujita under the name Kodaira energy in [Fuj87], [Fuj92], [Fuj96] and [Fuj97]. By [BDPP13], we know that $a(X,L) > 0$ if and only if X is uniruled.

The a-constant was introduced in the context of Manin’s conjecture in [FMT89] and [BM90]. Manin’s conjecture predicts that the asymptotic behaviour of the number of rational points on Fano varieties over number fields is governed by certain geometric invariants (the a and b-constants). In [LTT16], motivated by Manin’s conjecture, the authors studied the behaviour of the a-constant under restriction to subvarieties. We know (by [LTT16], [HJ16]) that if X is uniruled and L is a big and nef line bundle then there exists a proper closed subscheme $V \subset X$ such that any subvariety $Z \subset X$ satisfying $a(Z, L|_Z) > a(X,L)$ is contained in V. In [LT17], a similar finiteness statement was conjectured about the behaviour of the a-constant under pull-back to generically finite covers and in this paper we confirm the conjecture. In particular we prove the following:

Theorem 1.1 (see [LT17, Conj. 1.7]) Let X be a smooth projective uniruled variety and L a big and nef \mathbb{Q}-divisor. Then, up to birational equivalence, there are only finitely many generically finite covers $f : Y \longrightarrow X$ such that $a(Y,f^*L) = a(X,L)$ and $\kappa(K_Y + a(Y,f^*L)f^*L) = 0$.

The conjecture was proved in the case of \(\dim(X) = 2 \) in [LT17]. The authors also showed that the conjecture holds for Fano threefolds \(X \) and \(L = -K_X \) if \(\text{index}(X) \geq 2 \) or if \(\rho(X) = 1 \), \(\text{index}(X) = 1 \) and \(X \) is general in its moduli. Their idea was to reduce the statement to the finiteness of the étale fundamental groups of log Fano varieties. In this paper we take a different approach to prove the conjecture in general. It follows from the boundedness results in [Bir16] that the degree of morphisms \(f : Y \to X \) satisfying the hypothesis of Theorem 1.1 is bounded. Therefore it is enough to show that the branch divisors of all such morphisms are contained in a fixed proper closed subscheme \(V \subset X \). We show that if \(B \subset X \) is component of the branch divisor and \(B \not\subset B_+(L) \), then \(a(B, L|_B) > a(X, L) \). Here \(B_+(L) \) is a closed subset of \(X \) such that \(L|_B \) is big for any subvariety \(B \not\subset B_+(L) \) ([Laz04]). Therefore, by [HJ16], there is a fixed (depending only on \(X \) and \(L \)) closed subscheme \(V \subset X \) such that \(B \subset V \cup B_+(L) \).

We note that the converse of the statement above is not true. In particular, if \(B \) is a subvariety of \(X \) with \(a(B, L|_B) > a(X, L) \) then there might not exist a generically finite cover satisfying the hypothesis of Theorem 1.1 such that \(B \) is contained in the branch divisor. For example, let \(X = \text{Bl}_p \mathbb{P}^2 \) be the blow-up of \(\mathbb{P}^2 \) at a point \(p \) and \(B = E \) the exceptional divisor. Let \(L = -K_X \). Then we have \(a(X, L) = 1 \) and \(a(B, L) = 2 \). By [LT17, Theorem 6.2], \(X \) does not admit any generically finite cover \(f : Y \to X \) satisfying \(a(Y, f^*L) = a(X, L) \) and \(\kappa(K_Y + a(Y, f^*L)f^*L) = 0 \).

As a consequence of Theorem 1.1, we can obtain a statement about geometric compatibility of Manin’s conjecture. Let us recall the \(b \)-constant, which is the other geometric invariant involved in Manin’s conjecture. The \(b \)-constant is defined as (cf. [FMT89], [BM90])

\[
b(X, L) = \text{codim of minimal supported face of } \Lambda_{\text{eff}}(X) \\
\text{containing the class of } K_X + a(X, L)L
\]

In [FMT89] and [BM90], it was conjectured that the \(a \) and \(b \)-constants control the count of rational points on Fano varieties over a number field. The following version was suggested by Peyre in [Pey03] and later stated in [Rud14], [BL15].

Manin’s conjecture: Let \(X \) be a Fano variety defined over a number field \(F \) and \(L = (L, ||, ||) \) a big and nef adelically metrized line bundle on \(X \) with associated height function \(H_L \). Then there exists a thin set \(Z \subset \text{Pic}(X) \) such that

\[
\# \{ x \in \text{Pic}(X, F) - Z | H_L(x) \leq B \} \sim c(F, X(F) \setminus Z, L) B^{a(X, L)} (\log B)^{b(X, L) - 1}
\]
as $B \rightarrow \infty$.

Recall that a thin subset of $X(F)$ is a finite union $\bigcup \pi_i(Y_i(F))$ where $\pi_i : Y_i \rightarrow X$ is a morphism generically finite onto its image and admits no rational section. Initially Manin’s conjecture was stated for closed subsets instead of thin subsets (see [BM90], [Pey95], [BT98]). But it turned out that the closed set version is false (see [BT96],[Rud14]). The counterexamples arise from the existence of generically finite morphisms $f : Y \rightarrow X$ such that

$$(a(Y, f^*L), b(Y, f^*L)) > (a(X, L), b(X, L))$$

in the lexicographic order.

In [LT17], it was conjectured that such geometric incompatibilities cannot obstruct the thin set version of Manin’s conjecture.

Conjecture 1.2 (see [LT17, Conj1.1]) Let X be a smooth projective uniruled variety over a number field F. Consider all F-morphisms $f : Y \rightarrow X$ where Y is a smooth projective variety and f is generically finite. Then, as we vary over all such morphisms f such that f^*L is not big or

$$(a(Y, f^*L), b(Y, f^*L)) > (a(X, L), b(X, L))$$

in the lexicographic order, the points in $\bigcup f f(Y(F))$ are contained in a thin subset $Z \subset X$.

In [LT17], it was shown that the thinness statement of Conjecture 1.2 holds, when f is varied over the inclusion morphism of subvarieties $Y \hookrightarrow X$ and $\rho(X) = \rho(X)$. However the finiteness statement of Theorem 1.1 does not hold over number fields due to the presence of twists. But it was proved in [LT17] that, for a fixed generically finite F-cover $f : Y \rightarrow X$ satisfying $\kappa(K_Y + a(X, L)L) = 0$, if we vary $f^\sigma : Y^\sigma \rightarrow X$ over all the twists of f, then the rational points, contributed by the twists satisfying the hypothesis of Conjecture 1.1, are contained in a thin set. Therefore as a consequence of Theorem 1.1, we obtain the following partial result towards Conjecture 1.2:

Corollary 1.3 Let X be a smooth uniruled variety over a number field F such that $\rho(X) = \rho(X)$. Let L be a big and nef Q-divisor on X with $\kappa(K_X + a(X, L)L) = 0$. If we vary over all generically finite F-covers $f : Y \rightarrow X$ with $\kappa(K_Y + a(Y, f^*L)f^*L) = 0$ such that

$$(a(Y, f^*L), b(Y, f^*L)) > (a(X, L), b(X, L))$$

then the set of rational points $\bigcup f f(Y(F))$ are contained in a thin subset $Z \subset X$.
The outline of the paper is as follows. In Section 2.1, we prove the key statements about the a-constant. In Section 2.2, we prove the boundedness of the degree of the morphisms in Theorem 1.1. In Section 2.3, we recall the facts about twists of morphisms over a number field. Finally, in section 3, we prove Theorem 1.1 and Corollary 1.3.

Acknowledgements. I am very grateful to my advisor Professor János Kollár for his constant support, encouragement and fruitful discussions. I am thankful to Professor Brian Lehmann and Professor Sho Tanimoto for useful comments on a preliminary version of the paper. Partial financial support was provided by the NSF under grant number DMS-1502236.

2. Preliminaries

2.1. Geometric invariants. Let X be a smooth projective variety over a field k. The Néron-Severi group $\text{NS}(X)$ is defined as the quotient of the group of Weil divisors, $\text{Wdiv}(X)$, modulo algebraic equivalence. The pseudo-effective cone $\Lambda_{\text{eff}}(X)$ is the closure of the cone of effective divisor classes in $\text{NS}(X)_{\mathbb{R}}$. The interior of $\Lambda_{\text{eff}}(X)$ is the cone of big divisors $\text{Big}^1(X)_{\mathbb{R}}$.

Definition 2.1 Let L be a big Cartier \mathbb{Q}-divisor on X. The a-constant is defined as

$$a(X, L) = \min \{ t \in \mathbb{R} | [K_X + tL] \in \Lambda_{\text{eff}}(X) \}$$

If L is not big, we formally set $a(X, L) = \infty$. For a singular projective variety we define $a(X, L) := a(\tilde{X}, \pi^*L)$ where $\pi: \tilde{X} \to X$ is a resolution of X. It is invariant under pull-back by a birational morphism of smooth varieties and hence independent of the choice of the resolution. By [BDPP13] we know that $a(X, L) > 0$ if and only if X is uniruled. We note that the a-constant is independent of base change to another field. It was shown in [BCHM10] that, if X is uniruled and has klt singularities, then for an ample \mathbb{Q}-Cartier \mathbb{Q}-divisor L, the Fujita invariant $a(X, L)$ is a rational number. If L is big and not ample, then $a(X, L)$ can be irrational (see [HTT15, Example 6]).

Definition 2.2 Let X be a smooth projective variety over k and L a big Cartier \mathbb{Q}-divisor. The b-constant is defined as

$$b(k, X, L) = \text{codim of minimal supported face of } \Lambda_{\text{eff}}(X)$$

containing the class of $K_X + a(X, L)L$.

It is invariant under pullback by a birational morphism of smooth varieties ([HTT15]). For a singular variety X we define $b(k, X, L) := b(k, \tilde{X}, \pi^* L)$, by pulling back to a resolution. In general the b-constant depends on the base field k. It is invariant under base change of algebraically closed fields.

For the rest of this section we work over an algebraically closed field k.

We have the following result about the behaviour of the a-constant under restriction to subvarieties.

Theorem 2.3 (see [HJ16, Theorem 1.1], [LTT16, Theorem 4.8]) Let X be a smooth uniruled projective variety and L a big and nef \mathbb{Q}-divisor. Then there is a proper closed subset $V \subset X$ such that any subvariety Y satisfying $a(Y, L|_Y) > a(X, L)$ is contained in V.

The above result was proved in [HJ16] when L is big and semi-ample. In [LTT16], it was proved assuming the weak BAB-conjecture. By [Bir16], now we know that the BAB-conjecture holds. Therefore the above result works for L big and nef.

The behaviour of the a-constant under pull-back to a generically finite cover is depicted in the following inequality.

Lemma 2.4 Let $f : Y \longrightarrow X$ be a generically finite surjective morphism of varieties and L a big \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. Then

$$a(Y, f^* L) \leq a(X, L).$$

Proof. Since the a-constant is computed on a resolution of singularities. We may assume X and Y are smooth. As $f : Y \longrightarrow X$ is generically finite, we may write

$$K_Y = f^* K_X + R$$

for some effective divisor R. Let $a(X, L) = a$. Then we have

$$K_Y + a f^* L = f^* (K_X + aL) + R.$$

Since $R \geq 0$ and $K_X + aL$ is pseudo-effective, we see that $K_Y + a f^* L$ is also pseudo-effective. Hence $a(Y, f^* L) \leq a(X, L) = a$.

Since the a-constant is not necessarily rational, we need to work with \mathbb{R}-divisors. We recall the definition of Iitaka dimension for \mathbb{R}-divisors.
Definition 2.5 Let X be a smooth projective variety and D be an \mathbb{R}-divisor on X. We define
\[
\kappa(X, D) = \limsup_{m \to \infty} \frac{\log h^0(X, \mathcal{O}_X(\lfloor mD \rfloor))}{\log m}
\]
If X is a normal projective variety and D an \mathbb{R}-Cartier divisor, then we define
\[
\kappa(X, D) = \kappa(\tilde{X}, \pi^*D)
\]
for a resolution of singularities $\pi : \tilde{X} \to X$. It is easy to see that the definition is independent of the choice of the resolution. Note that it is not necessarily true that if $D \sim_\mathbb{R} D'$ then $\kappa(X, D) = \kappa(X, D')$.

We form the following definition for convenience.

Definition 2.6 (cf. [LT17], Section 4.1) Let X be a smooth uniruled variety and L a big and nef \mathbb{Q}-Cartier \mathbb{Q}-divisor. We say that a morphism $f : Y \to X$ is an adjoint-rigid cover preserving the a-constant if,

1. $f : Y \to X$ is a generically finite surjective morphism from a normal variety Y,
2. $a(Y, f^*L) = a(X, L)$,
3. $\kappa(K_Y + a(Y, f^*L)f^*L) = 0$.

Note that the conditions (1)-(3) are preserved under taking a resolution of singularities.

If X is a smooth surface and E is a curve contracted by the K_X-MMP, then K_E is not pseudo-effective. The following proposition is a generalization of this fact and it is a key step for proving Theorem 1.1. For a smooth projective uniruled variety X and a big and nef divisor L, this proposition enables us to compare $a(X, L)$ with the a-constants of L under restriction to the exceptional divisors contracted by a $K_X + a(X, L)L$-MMP.

Proposition 2.7 Let X be a normal variety with canonical singularities and Δ an effective \mathbb{R}-Cartier \mathbb{R}-divisor which is nef. Suppose $\psi : X \to X'$ is a minimal model for (X, Δ) obtained by a running a $K_X + \Delta$-MMP. Let E be an exceptional divisor contracted by ψ. Let $\pi : \tilde{E} \to E$ be a resolution of singularities. Then $K_{\tilde{E}} + \pi^*(\Delta|_E)$ is not pseudo-effective.

Proof. Note that it enough to prove the statement for one resolution of singularities of E. In particular, let $\pi : \tilde{X} \to X$ be a log resolution of $(X, E + \Delta)$.
such that we have a morphism $\phi = \psi \circ \pi : \widetilde{X} \to X'$. Let $\widetilde{E} = \pi_*^{-1}E$ be the strict transform. We reduce to the case when X and E are smooth and Δ is ample as follows. Let H be a general ample divisor on X. Then $\psi : X \to X'$ is also a $K_X + \Delta + \epsilon H$-MMP for $\epsilon > 0$ sufficiently small. Hence, by replacing Δ with $\Delta + \epsilon H$, we may assume that Δ is ample. Note that, since X has canonical singularities, $\phi : \widetilde{X} \to X'$ is a $K_{\widetilde{X}} + \pi^*\Delta$-minimal model. As $\pi^*\Delta$ is big and nef, we may choose $\Delta \sim_{\mathbb{R}} \pi^*\Delta$ such that (\widetilde{X}, Δ) is klt ([Xu15, Proposition 2.3]). Now $\phi : \widetilde{X} \to X'$ is a minimal model for (\tilde{X}, Δ) and since minimal models of klt pairs are isomorphic in codimension one ([BCHM10, Corollary 1.1.3]), we know that \widetilde{E} will be contracted by any $K_{\widetilde{X}} + \Delta$-MMP. Therefore we may assume that X and E are smooth and Δ is ample. We need to show that $K_E + \Delta|_E$ is not pseudo-effective.

Since Δ is ample, we may choose $\Delta_0 \sim_{\mathbb{R}} \Delta$ such that $(X, E + \Delta_0)$ is simple normal crossing and divisorially log terminal, (X, Δ_0) is Kawamata log terminal and $(E, \Delta_0|_E)$ is canonical, by using the Bertini theorem ([Xu15, Lemma 2.2]).

As $(X, E + \Delta_0)$ is dlt and Δ_0 is ample, by [BCHM10], we may run a $K_X + E + \Delta_0$-MMP. Since we know that the ACC holds for log canonical thresholds ([HMX14]) and special termination holds for dlt flips ([BCHM, Lemma 5.1]), the $K_X + E + \Delta_0$-MMP terminates with a minimal model $\theta : X \to X_m$ by [Bir07, Theorem 1.2]. Since E is contained in the negative part of the Zariski decomposition of $K_X + E + \Delta_0$, the MMP given by θ contracts E. Let $\theta_k : X_k \to X_{k+1}$ be the divisorial contraction step of the $K_X + E + \Delta_0$-MMP that contracts the push-forward of E on X_k. Let $\Theta_k = X \to X_k$ be the composition of the steps of the $K_X + E + \Delta_0$-MMP. We denote $\Delta_k = \Theta_k_\ast \Delta_0$ and $E_k = \Theta_k_\ast E$. Note that E_k is normal ([KM98, Proposition 5.51]). By [AK17, Theorem 7], the restriction map $\Theta_k|_E : (E, \text{Diff}_E \Delta_0) \to (E_k, \text{Diff}_{E_k} \Delta_k)$ is a composition of steps of a $K_E + \text{Diff}_E \Delta_0$-MMP. As $\text{Diff}_E \Delta_0 = \Delta_0|_E$, it is enough to show that $K_{E_k} + \text{Diff}_{E_k} \Delta_k$ is not pseudo-effective. This follows from the fact that E_k is covered by curves C such that $(K_{E_k} + \text{Diff}_{E_k} \Delta_k) \cdot C = (K_{X_k} + E_k + \Delta_k) \cdot C < 0$.

Note that the assumption about Δ being nef is necessary. For example, let Y be a minimal surface and $X = \text{Bl}_4(\text{Bl}_y Y)$ be the blow-up of $\text{Bl}_y Y$ at four distinct points $y_i \in E$, $1 \leq i \leq 4$, where $E \subset \text{Bl}_y Y$ is the exceptional curve corresponding to $y \in Y$. Let $E_i \subset X$ be the exceptional curve corresponding to y_i for $1 \leq i \leq 4$ and E_0 be the strict transform of E on X. Let $\Delta = \frac{1}{2}E_1 + \frac{1}{2}E_2 + \frac{1}{2}E_3 + \frac{1}{2}E_4$. Note
that Δ is not nef as $\Delta \cdot E_4 = -\frac{1}{2}$. Now E_0 is contracted by the $K_X + \Delta$-MMP but $\deg(K_{E_0} + \Delta|_{E_0}) = 0$.

Corollary 2.8 Let X be a smooth projective uniruled variety and L a big and nef \mathbb{Q}-divisor. Let $f : Y \to X$ be a generically finite cover with Y smooth and $a(Y, f^*L) = a(X, L)$. Let $R \subset Y$ be a component of the ramification divisor of f (i.e. the strict transform of a component of the ramification divisor for the Stein factorization of f) and B be the component of the branch divisor on X which is the image of R. If R is contracted by a $K_Y + a(X, L)f^*L$-MMP, then

$$a(B, L|_B) > a(X, L).$$

Proof. We may assume that $L|_B$ is big. We have a generically finite surjective map $f|_R : R \to B$. Therefore, by Lemma 2.4, we have $a(R, f^*L|_R) \leq a(B, L|_B)$. Now Proposition 2.7 implies that $a(R, a(X, L)f^*L) > 1$ and hence $a(R, f^*L|_R) > a(X, L)$.

2.2. **Boundedness statements.** Let X be a normal projective variety of dimension n and D an \mathbb{R}-divisor. The volume of D is defined by

$$\text{vol}(X, D) = \lim_{m \to \infty} \frac{n! h^0(X, O_X(\lceil mD \rceil))}{m^n}$$

If D is nef then $\text{vol}(X, D) = D^n$. Also D is big iff $\text{vol}(X, D) > 0$. The volume depends only on the numerical class $[D] \in N^1(X)$.

Let L be a pseudoeffective \mathbb{Q}-Cartier divisor on X. The stable base locus of L ([Laz04]) is defined as

$$B(L) := \cap_{m \in \mathbb{N}} \text{Bs}(mL)$$

where the intersection is taken over m such that mL is Cartier. The augmented base locus of L is defined as

$$B_+(L) := \cap_A B(L - A)$$

where the intersection is over all ample \mathbb{Q}-Cartier divisors A. It is known that $B_+(L)$ is a closed subset of X. If L is big, then $L|_Z$ is big for any subvariety $Z \not\subset B_+(L)$. We recall the following well-known result.

Lemma 2.9 Let $f : Y \to X$ and $g : X \to W$ be a birational morphism of normal projective varieties and D an \mathbb{R}-divisor on X.

1. $\text{vol}(W, g_*D) \geq \text{vol}(X, D)$,
(2) If D is \mathbb{R}-Cartier and E_i are f-exceptional, then
\[\text{vol}(f^*D + \sum a_i E_i) = \text{vol}(X, D) \]
for $a_i > 0$.

Definition 2.10 Let $\psi : X \dashrightarrow X'$ be a proper birational contraction (i.e. ψ^{-1} does not contract any divisors) of normal quasi-projective varieties. Let D be a \mathbb{R}-Cartier divisor such that $D' = \psi_* D$ is also \mathbb{R}-Cartier. We say that ψ is D-negative if for some common resolution $p : W \to X$ and $q : W \to Y$, we may write
\[p^* D = q^* D' + E \]
where $E \geq 0$ is q-exceptional and the support of E contains the strict transform of the ψ-exceptional divisors.

Recall that if $\psi : X \dashrightarrow X'$ is a $K_X + \Delta$-minimal model, then it is $K_X + \Delta$-negative by definition. Further, if (X, Δ) is terminal and $p : W \to X$, $q : W \to X'$ is a common resolution, then $q : W \to X'$ is $K_W + p^* \Delta$-negative.

In general, if we have a $K_X + \Delta$-negative contraction $\psi : X \dashrightarrow X'$ of a terminal pair (X, Δ), then the pushforward $(X', \psi_* \Delta)$ might not be terminal since Δ might contain the ψ-exceptional divisors as components. If Δ is big and nef, then the following lemma shows that we can achieve the desired conclusion by passing to a resolution. This result will be used in Proposition 2.15 for proving the boundedness of degrees of adjoint-rigid covers preserving the a-constant.

Lemma 2.11 Let X be a normal variety with terminal singularities and D a big and nef \mathbb{R}-Cartier divisor. Let $\psi : X \dashrightarrow X'$ be a $K_X + \Delta$-negative contraction. Then we may choose a common resolution $p : W \to X$ and $q : W \to X'$ with $\hat{\Delta} \sim_{\mathbb{R}} p^* D$ such that $(W, \hat{\Delta})$ and $(X', \Delta' = \mu_* \hat{\Delta})$ are both terminal.

Proof. Since D is big and nef, we can find $\Delta \sim_{\mathbb{R}} D$ such that (X, Δ) is terminal (see the proof of [LTT16, Theorem 2.3]). Let $p : W \to X$ and $q : W \to X'$ be a common log resolution

\[
\begin{array}{c}
W \\
p \quad q \\
X \\
\quad \psi \quad X'
\end{array}
\]

Let E_j be the ψ-exceptional divisors and F_i the p-exceptional divisors. Note that the q-exceptional divisors are F_i and the strict transforms \tilde{E}_j of the ψ-exceptional
divisors. We have
\[K_W + p_*^{-1} \Delta = p^*(K_X + \Delta) + \sum_i a_i F_i \]
where \(a_i > 0 \). We may add \(p \)-exceptional divisors to obtain
\[K_W + p^* \Delta = p^*(K_X + \Delta) + \sum_i b_i F_i \]
with \(b_i > 0 \). Since \(\psi \) is \(K_X + \Delta \)-negative, we may write
\[p^*(K_X + \Delta) = q^*(K_{X'} + \Delta') + \sum_j c_j \tilde{E}_j + \sum_i d_i F_i \]
where \(\Delta' = \psi^* \Delta \) and \(c_j > 0, d_i \geq 0 \). Therefore we have
\[K_W + q_*^{-1} q_* \tilde{\Delta} = q^*(K_{X'} + q_* \tilde{\Delta}) + \sum_j \alpha_j \tilde{E}_j + \sum_i \beta_i F_i \]
with \(\alpha_j, \beta_i > 0 \). As \(p^* \Delta \) is big and nef, we may choose \(\tilde{\Delta} \sim_{\mathbb{R}} p^* \Delta \) with the coefficients of \(q \)-exceptional divisors in \(\tilde{\Delta} \) sufficiently small such that \((W, \tilde{\Delta})\) is a simple normal crossing terminal pair and
\[K_W + q_*^{-1} q_* \tilde{\Delta} = q^*(K_{X'} + q_* \tilde{\Delta}) + \sum_j \alpha'_j \tilde{E}_j + \sum_i \beta'_i F_i \]
with \(\alpha'_j, \beta'_i > 0 \). Therefore \((X', q_* \tilde{\Delta})\) is also terminal.

We recall the definitions and results related to the BAB-conjecture.

Definition 2.12 Let \(X \) be a normal projective variety and \(\Delta \) an effective boundary \(\mathbb{R} \)-divisor such that \(K_X + \Delta \) is \(\mathbb{Q} \)-Cartier. We say the \((X, \Delta)\) is \(\epsilon \)-log canonical (resp. \(\epsilon \)-klt) if for a resolution of singularities \(\pi : X \to X \) with exceptional divisors \(E_i \), we have \(a(E_i, X, \Delta) \geq -1 + \epsilon \) (resp. \(a(E_i, X, \Delta) > -1 + \epsilon \)) where the discrepancies \(a(E_i, X, \Delta) \) are defined by the equation
\[K_X + \pi_*^{-1} \Delta = \pi^*(K_X + \Delta) + a(E_i, X, \Delta) E_i. \]

The following is the BAB-conjecture proved by Birkar.

Theorem 2.13 (see [Bir16, Theorem 1.1]) Let \(n \) be a natural number and \(\epsilon > 0 \) a real number. Then the set of projective varieties \(X \) such that

1. \(X \) is of dimension \(n \) with a boundary divisor \(\Delta \) such that \((X, \Delta)\) is \(\epsilon \)-log canonical
2. \(- (K_X + \Delta) \) is big and nef,

form a bounded family.

A consequence of the above theorem is the boundedness of anticanonical volumes.
Corollary 2.14 (Weak BAB-conjecture) Let n be a natural number and $\epsilon > 0$ a real number. There exists a constant $M(n, \epsilon)$ such that, for any normal projective variety X satisfying

1. X is of dimension n such that there is a boundary divisor Δ with (X, Δ) is ϵ-klt and K_X is \mathbb{Q}-Cartier.
2. $-(K_X + \Delta)$ is ample,

we have

$$\text{vol}(-K_X) < M(n, \epsilon).$$

As a consequence of the Weak BAB-conjecture we obtain the following result. It shows that the degrees of all adjoint-rigid covers preserving the a-constant are bounded by a constant.

Proposition 2.15 Let X be a smooth uniruled variety and L a big and nef \mathbb{Q}-divisor. Then there exists a constant $M > 0$ such that, if $f : Y \to X$ is an adjoint-rigid cover preserving the a-constant, then $\deg(f) < M$.

Proof. By Lemma 2.11, we may replace Y by a resolution to assume that there exists $\Delta \sim af^*L$ with (Y, Δ) terminal and we have a morphism $\psi : Y \to Y'$ to a minimal model (Y', Δ') with \mathbb{Q}-factorial terminal singularities. Now $\kappa(K_Y + \Delta) = 0$ implies that $\kappa(K_{Y'} + \Delta') = 0$. As $K_{Y'} + \Delta'$ is semi-ample ([BCHM, Corollary 3.9.2]), we have $K_{Y'} + \Delta' \equiv 0$. Since Δ' is big, we can write $\Delta' \equiv A + E$ where A is ample and E is effective. Now for $0 < t \ll 1$, $(Y', (1-t)\Delta' + tE)$ is terminal and

$$K_{Y'} + (1-t)\Delta' + tE \equiv -tA$$

is anti-ample. Therefore $(Y', (1-t)\Delta' + tE)$ is terminal log Fano. In particular, it is ϵ-klt for $\epsilon = \frac{1}{2}$. Therefore by the Weak BAB conjecture (Corollary 2.14), there exists $M > 0$ such that

$$\text{vol}(\Delta') = \text{vol}(-K_{Y'}) < M.$$

Since $f : Y \to X$ is generically finite, we have $\text{vol}(af^*L) = a^n\deg(f)\text{vol}(L)$. Now we have the following inequality

$$a^n\deg(f)\text{vol}(L) = \text{vol}(\Delta) \leq \text{vol}(\Delta') < M.$$

Therefore the degree of f is bounded. \hfill \Box

2.3. Twists. Let us assume that the ground field is a number field F. Let X be a smooth projective variety over F and L a big and nef \mathbb{Q}-divisor on X.

Let $f : Y \to X$ be a generically finite cover defined over F. A twist of $f : Y \to X$ is a generically finite cover $f' : Y' \to X$ such that, after base
change to the algebraic closure \overline{F}, we have an isomorphism $g : Y \sim \rightarrow Y'$ with $\overline{Y} = \overline{Y'} \circ g$.

All the twists of $f : Y \rightarrow X$ is parametrized by the Galois cohomology of $\text{Aut}(Y/X)$. Precisely, there is a bijection between the set of isomorphism classes of twists of f and the Galois cohomology group $H^1(\text{Gal}(\overline{F}), \text{Aut}(Y/X))$. In view of Conjecture 1.2, even if we know the finiteness of adjoint-rigid a-covers over \overline{F}, the corresponding finiteness statement might not hold over F itself due to the presence of twists. However the following result shows that, the rational points contributed by all twists of f, satisfying the hypothesis of Conjecture 1.2, are contained in a thin subset.

Theorem 2.16 (see [LT17, Theorem 1.10]) Let X be a smooth projective variety over a number field F satisfying $\rho(X) = \rho(\overline{X})$ and let L be a nef and big \mathbb{Q}-divisor on X. Suppose $f : Y \rightarrow X$ is a generically finite F-cover from a smooth projective variety Y, satisfying $\kappa(K_Y + a(X,L)f^*L) = 0$. If we vary $\sigma \in H^1(\text{Gal}(\overline{F}), \text{Aut}(Y/X))$ such that the corresponding twist $f^{\sigma} : Y^\sigma \rightarrow X$ satisfies

$$(a(Y, f^*L), b(F, Y^\sigma, (f^{\sigma})^*L)) > (a(X, L), b(F, X, L))$$

in the lexicographic order, then the set

$$\cup_{\sigma} f^{\sigma}(Y^\sigma(F)) \subset X(F)$$

is contained in a thin subset of $X(F)$.

3. Finiteness and Thinness

In this section we prove the main results.

Proof of Theorem 1.1. Let X be a smooth uniruled variety of dimension n and L a big and nef \mathbb{Q}-divisor on X. Suppose $a(X, L) = a$. We need to show that, upto birational equivalence, there exist finitely many varieties Y that admit a morphism $f : Y \rightarrow X$ which is an adjoint-rigid cover preserving the a-constant. The statement is obvious if X is a curve. We assume that $n \geq 2$. By passing to a resolution it is enough to show that, upto birational equivalence, there exist finitely many smooth varieties Y with a morphism $f : Y \rightarrow X$ which is an adjoint-rigid cover preserving the a-constant. By Proposition 2.15, we know that
there exists a constant $M > 0$ such that $\deg(f) < M$ for any adjoint-rigid cover preserving the a-constant $f : Y \to X$. Now, for an open $U \subset X$, there are finitely many étale covers (upto isomorphism) of U of a given degree d. Hence it is enough to show that there is a proper closed subset $V \subsetneq X$, such that if $f : Y \to X$ is an adjoint-rigid cover preserving the a-constant and Y is smooth, the branch locus of f is contained in V.

Suppose $f : Y \to X$ is an adjoint-rigid cover preserving the a-constant and Y is smooth. Let $Y \xrightarrow{\pi} \overline{Y} \xrightarrow{\pi} X$ be the Stein factorization of f. Let $B \subset X$ be a component of the branch divisor of \overline{f}. Note that, by the Zariski-Nagata purity theorem, the branch locus is a divisor. Let $\sum_j r_j R_j \subset \overline{Y}$ be the ramification divisor, i.e. $K_{\overline{Y}} = f^* K_X + \sum_j r_j R_j$. Let $R \subset \overline{Y}$ be a component of the ramification divisor mapping to B and $R \subset Y$ be the strict transform $\pi^{-1}_*(R)$.

We have the following equation

$$K_Y + af^* L \equiv f^*(K_X + aL) + \pi_*^{-1}(\sum_i r_i R_i) + \sum_i a_i E_i$$

where $a_i > 0$. Note that, as $K_X + aL$ is pseudo-effective and L is big and nef, by non-vanishing ([BCHM10, Theorem D]) we have

$$K_X + aL \sim D \geq 0.$$

Therefore we have

$$K_Y + af^* L \equiv \sum_j c_j F_j \geq 0$$

Now, we may find a $\Delta \equiv af^* L$ such that, (Y, Δ) is terminal. As $K_Y + \Delta$ is pseudo-effective, we can run a $K_Y + \Delta$-MMP

$$\psi : (Y, \Delta) \dasharrow (Y_1, \Delta_1) \dasharrow \cdots \dasharrow (Y_m, \Delta_m) = (Y', \Delta')$$

to obtain a $K_Y + \Delta$-minimal model (Y', Δ'). Since $\kappa(K_Y + \Delta) = 0$, we have $K_{Y'} + \Delta' \equiv 0$. Hence the $K_Y + \Delta$-MMP contracts all components of the divisor $\sum_j c_j F_j$. As $R = F_j$ for some j, Corollary 2.8 implies that $a(R, af^* L|_R) > 1$ and hence

$$a(R, L|_R) > a = a(X, L).$$

Therefore, by Theorem 2.3, there exists a proper closed subset $V \subsetneq X$ such that $B \subset V' = V \cup B_+(L)$. Then, for any adjoint-rigid cover preserving the a-constant $f : Y \to X$ with Y smooth, the branch locus of f is contained in V'. Therefore we have the desired conclusion.

\square
Proof of Corollary 1.3. We have a smooth uniruled variety X over a number field F such that $\rho(X) = \rho(\overline{X})$ and $\kappa(K_X + a(X,L)L) = 0$ and L is a big and nef \mathbb{Q}-divisor on X. Let $f : Y \to X$ be a generically finite F-cover such that $\kappa(K_Y + a(Y,f^*L)f^*L) = 0$ and

$$(a(Y,f^*L), b(F, Y, f^*L)) > (a(X, L), b(F, X, L)).$$

It is enough to show that the rational points contributed by the Stein factorization of $f : Y \to X$ are contained in a fixed thin set. Note that, by Lemma 2.4, $a(Y, f^*L) = a(X, L)$. Therefore, the morphism $\overline{f} : \overline{Y} \to \overline{X}$, obtained by base change to the algebraic closure of F, is an adjoint-rigid cover preserving the a-constant. Hence, by Theorem 1.1, the Stein factorizations of all such morphisms $\overline{f} : \overline{Y} \to \overline{X}$ vary in a finite set S. Hence we need to consider rational points contributed by twists of finitely many such Stein factorizations. So we may replace Y by its Stein factorization. Further, by passing to a resolution of singularities, we may assume that $\text{Bir}(\overline{Y}/\overline{X}) = \text{Aut}(\overline{Y}/\overline{X})$ (see the proof of [LT17, Theorem 1.10]). By applying Theorem 2.16 to each $f \in S$, there is a thin subset $Z_f \subset X$ such that $\bigcup \sigma f^\sigma(Y^\sigma(F)) \subset Z_f$, where σ varies over all the twists of f. Therefore we have

$$\bigcup f(Y(F)) = \bigcup_{f \in S} f(Y(F)) \subset \bigcup_{f \in S} Z_f = Z$$

where $Z \subset X$ is a thin subset and the union is taken over all the morphisms $f : Y \to X$ satisfying the hypothesis of Corollary 1.3.

\[\square\]

References

[AK17] Florin Ambro and János Kollár, *Minimal models of semi-log-canonical pairs*, 2017. Preprint, arXiv:1709.03540

[Bir07] Caucher Birkar, *Ascending chain condition for log canonical thresholds and termination of log flips*, Duke Math. J. 136 (2007), no. 1, 173–180

[Bir16] C. Birkar. *Singularities of linear systems and boundedness of Fano varieties*. 2016. Preprint. arXiv:1609.05543 [math.AG]

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan. *Existence of minimal models for varieties of log general type*. J. Amer. Math. Soc., 23(2):405–468, 2010.

[BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Paun, and Thomas Peternell. *The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension*. J. Algebraic Geom., 22(2):201–248, 2013.

[BL15] T. Browning, D. Loughran, *Varieties with too many rational points* Math. Z. (2017) Online publication.

[BM90] V. V. Batyrev and Yu. I. Manin. *Sur le nombre des points rationnels de hauteur bornée des variétés algébriques*. Math. Ann., 286(1-3):27–43, 1990.

[BT96] V. V. Batyrev and Y. Tschinkel. *Rational points on some Fano cubic bundles*. C. R. Acad. Sci. Paris Sér. I Math., 323(1):41–46, 1996.
[BT98] V. V. Batyrev and Y. Tschinkel. Tamagawa numbers of polarized algebraic varieties. Astérisque, (251):299–340, 1998. Nombre et répartition de points de hauteur bornée (Paris, 1996).

[FMT89] J. Franke, Y. I. Manin, and Y. Tschinkel. Rational points of bounded height on Fano varieties. Invent. Math., 95(2):421–435, 1989.

[Fuj87] T. Fujita. On polarized manifolds whose adjoint bundles are not semipositive. In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 167–178. North-Holland, Amsterdam, 1987.

[Fuj92] T. Fujita. On Kodaira energy and adjoint reduction of polarized manifolds. Manuscripta Math., 76(1):59–84, 1992.

[Fuj96] T. Fujita. On Kodaira energy of polarized log varieties. J. Math. Soc. Japan, 48(1):1–12, 1996.

[Fuj97] T. Fujita. On Kodaira energy and adjoint reduction of polarized threefolds. Manuscripta Math., 94(2):211–229, 1997.

[HMX14] Christopher D. Hacon, James McKernan, Chenyang Xu, ACC for log canonical thresholds. Annals of Mathematics, Volume 180, 2014.

[HJ16] Christopher Hacon and Chen Jiang. On Fujita invariants of subvarieties of a uniruled variety, 2016. arXiv:1604.01867

[HTT15] Brendan Hassett, Sho Tanimoto, and Yuri Tschinkel. Balanced line bundles and equivariant compactifications of homogeneous spaces. Int. Math. Res. Not. IMRN, (15):6375–6410, 2015.

[KM98] J. Kollár and S. Mori. Birational geometry of algebraic varieties, Cambridge tracts in mathematics, vol. 134, Cambridge University Press, 1998.

[Laz04] R. Lazarsfeld, Positivity in algebraic geometry I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 49. Springer-Verlag, Berlin, 2004.

[LTT16] B. Lehmann, S. Tanimoto, and Y. Tschinkel. Balanced line bundles on Fano varieties. J. Reine Angew. Math., 2016. Online publication.

[LT17] B. Lehmann, S. Tanimoto, On the geometry of thin exceptional sets in Manin’s Conjecture, Duke Math. J, 2017, To appear.

[Pey03] Emmanuel Peyre. Points de hauteur bornée, topologie adélique et mesures de Tamagawa. J. Théor. Nombres Bordeaux, 15(1):319–349, 2003.

[Rud14] Cécile Le Rudulier. Points algébriques de hauteur bornée sur une surface, 2014. [http://cecile.lerudulier.fr/Articles/surfaces.pdf]

[Xu15] Chenyang Xu. On base point free theorem of threefolds in positive characteristic, Journal of the Institute of Mathematics of Jussieu, 14(3), 577-588, 2015.

Princeton University, Princeton NJ 08544-1000
akashs@math.princeton.edu