Mirror bootstrap method for testing hypotheses of one mean

Anna Varvak*

May 1, 2014

Abstract

The general philosophy for bootstrap or permutation methods for testing hypotheses is to simulate the variation of the test statistic by generating the sampling distribution which assumes both that the null hypothesis is true, and that the data in the sample is somehow representative of the population. This philosophy is inapplicable for testing hypotheses for a single parameter like the population mean, since the two assumptions are contradictory (e.g., how can we assume both that the mean of the population is μ_0, and that the individuals in the sample with a mean $M \neq \mu_0$ are representative of the population?). The Mirror Bootstrap resolves that conundrum. The philosophy of the Mirror Bootstrap method for testing hypotheses regarding one population parameter is that we assume both that the null hypothesis is true, and that the individuals in our sample are as representative as they could be without assuming more extreme cases than observed. For example, the Mirror Bootstrap method for testing hypotheses of one mean uses a generated symmetric distribution constructed by reflecting the original sample around the hypothesized population mean μ_0. Simulations of the performance of the Mirror Bootstrap for testing hypotheses of one mean show that, while the method is slightly on the conservative side for very small samples, its validity and power quickly approach that of the widely used t-test. The philosophy of the Mirror Bootstrap is sufficiently general to be adapted for testing hypotheses about other parameters; this exploration is left for future research.

1 Mirror Bootstrap method

The general philosophy for bootstrap or permutation methods for testing hypotheses is to simulate the variation of the test statistic by generating the sampling distribution which assumes both that the null hypothesis is true, and that the data in the sample is somehow representative of the population. This philosophy works well for testing hypotheses regarding the correlation coefficient, but

*Soka University of America, Aliso Viejo CA, USA, avarvak@soka.edu
is inapplicable for testing hypotheses for a single parameter like the population mean, since the two assumptions are contradictory. For example, how can we assume both that the mean of the population is μ_0, and that the individuals in the sample with a mean $M \neq \mu_0$ are representative of the population? One naive way that has been used is the Shift method [1], where each individual in the sample is shifted by $\mu_0 - M$, which is essentially equivalent to testing the hypotheses with a confidence interval. The Shift method hypothesizes that the variance between the sampled individuals is representative of the population variance, yet it loses any semblance to the assumption that the sampled individuals themselves are representative of the population.

The Bootstrap Method provides a more elegant resolution. The philosophy of the Mirror Bootstrap method for testing hypotheses regarding one population parameter is to assume both that the null hypothesis is true, and that the individuals in our sample are as representative as they could be without assuming more extreme cases than observed.

For example, the Mirror Bootstrap method for testing hypotheses of one mean uses a generated symmetric distribution constructed by reflecting the original sample around the hypothesized population mean μ_0. The rationale for the Mirror Bootstrap is that, on the one hand, to carry out a test against the null hypothesis one assumes that it’s true and computes the rarity of the evidence, and on the other hand bootstrap methods try to assume that the sample is in some ways representational of the population. Obviously for a test of one mean, one can’t assume both that the true population mean is μ_0 and that the sampled individuals are representational of the population (except in the rare cases where the sample mean equals μ_0, and those cases are not interesting). But we can do the next best thing: assume that the individuals sampled are as representational as they can be with the null hypothesis being true. If we also don’t want to assume individuals more extreme than those observed, the easiest way to do that is to assume that for every observed individual there is a partner somewhere in the population who is on the opposite side of the hypothesized population mean μ_0. Thus, suppose we have a random sample of size n and sample mean M of a random variable X whose population distribution is unknown, and we wish to test against the null hypothesis $H_0 : \mu = \mu_0$ with some alpha level. The Mirror Bootstrap method goes as follows: reflect the sample around $x = \mu_0$, getting a symmetric sample of size $2n$; then repeatedly sample with replacement samples of size n from this symmetric constructed population, counting how many times the means of these bootstrap samples are further from μ_0 than the original sample mean M; if this proportion is less than alpha, reject the null hypothesis.

How well does the Bootstrap Method work in practice? Simulations of the performance of the Mirror Bootstrap for testing hypotheses of one mean show that, while the method is slightly on the conservative side for very small samples, its validity and power quickly approach that of the widely used t-test. The author used Maple 15 to implement the simulations, and would gladly share the scripts upon demand.

2
2 Test of power and validity in three simple cases

For a quick check of the power and validity of the Mirror Bootstrap method, we compare its performance to that of the widely used two-tailed t-test and to the Shift bootstrap test, in the cases where the population is normally distributed, very skewed, and bimodal. The results indicate that the Shift bootstrap test has serious problems with validity for small samples \((n \leq 20)\); the Mirror Bootstrap method is more conservative than the t-test for very small samples \((n \leq 5)\) but matches the validity and power of the t-test for samples size \(n \geq 10\). To represent these three cases, we use the following distributions: standard normal distribution \(N(0,1)\), highly skewed distribution Gamma(2,2), and a bimodal distribution \(N(-3,1)\) XOR \(N(3,1)\), all normalized so that the population means are at 0, and the population standard deviations are 1.

2.1 Tests for validity

We simulated drawing a sample of specified size 10,000 times in each case, bootstrapping 1000 samples, and doing two-tailed hypothesis tests with alpha level 0.05. The results are as follows.

For normal and skewed populations, mirror bootstrap is conservative for very small samples, after which it performs comparably or better than the t-test. It shouldn’t come as a surprise that the performance of the t-test is unbeaten for the normal distribution, since the t-test was specifically designed with the assumption of normality. For a bimodal population, mirror bootstrap isn’t as
conservative, and slightly overshoots the target alpha of 0.05 for small samples of size 5. It performs comparably or better than the t-test.

2.2 Tests for power

We simulated drawing a sample of specified size 1000 times in each case, bootstrapping 1000 samples, and doing two-tailed hypothesis tests with alpha level of 0.05. The results are as follows.

For the distribution skewed to the left, we used a mirror version of the normalized Gamma(2,2) distribution. For all three distributions, the power curve for Mirror Bootstrap is slower for small samples of size five, but are seen to converge to the power curve of the t-test for samples of size 10.

An interesting result happens when looking at the case where the population is heavily skewed to the right, as is the case for the normalized Gamma(2,2):
In some situations, the Mirror Bootstrap outperforms the t-test.

3 Systematic assessment of validity, using g-and-h distributions

For a more systematic assessment of the Mirror Bootstrap method’s validity and power, we turn to the family of g-and-h distributions:

\[X = \frac{\exp(gZ) - 1}{g} \exp \left(\frac{hZ^2}{2} \right), \]

which, in the case of \(g = 0 \), is \(X = Z \exp \left(\frac{hZ^2}{2} \right) \). Depending on the parameters \(g \) and \(h \), the distributions vary in skewness and kurtosis. The family includes the standard normal distribution, the lognormal distribution with its long skinny tail, a symmetric distribution with heavy tails, a skewed symmetric distribution with heavy tails, and everything in-between \[2, 3\]. Skewness is measured by \(\mu_3 / \sqrt{\mu_2^3} \) and kurtosis is measured by \(\mu_4 / \mu_2^2 \), where the \(\mu_i \) are the moments around the mean, defined as usual: \(\mu = E[X] \), and \(\mu_k = E[(X - \mu)^k] \). Following \[2\], the skewness and kurtosis of various g-and-h distributions are as follows, with skewness of 0 whenever \(g = 0 \) and undefined for \(h \geq 1/3 \), and kurtosis undefined for \(h \geq 1/4 \):

| Skewness of a g-and-h distribution | Kurtosis of a g-and-h distribution |
g \ h	0	0.1	0.2	0.3	g \ h	0	0.1	0.2
0	0	0	0	0	0	3	5.5	36.2
0.2	0.6	1.1	2.8	79.6	0.2	3.7	8.5	156.0
0.4	1.3	2.4	7.9	3.0E+03	0.4	6.3	23.3	3.9E+03
0.6	2.3	4.7	23.2	2.3E+06	0.6	13.3	928.	9.8E+05
0.8	3.7	9.3	97.5	5.4E+10	0.8	34.4	606.	5.2E+09
1	6.2	21.0	713.6	3.3E+16	1	113.9	7.9E+03	5.6E+14

5
3.1 A useful case: \(g = h = 0.5 \)

The g-and-h distribution with \(g = h = 0.5 \) is an example of a very skewed distribution with heavy tail. The skewness and kurtosis are undefined for the population with such distribution; the mean is approximately 0.8. Wilcox [3] notes that a sample drawn from such population has statistics that do not correspond to the population parameters, showing in particular that a sample of 100,000 observations had skewness of 120 and kurtosis of about 18,400. For this distribution, power isn’t the issue for the Mirror Bootstrap or the t-test. Power curves are comparable, even for small samples.

Validity is a real problem for both methods: Mirror bootstrap performs a little better than the t-test for small samples, though still performing much higher than the assumed alpha level of 0.05. For large samples, both methods plateau with approximately 20% of Type I errors for samples of size less than 100, and very slowly descend as the sample size grows.

In practice, one may ask if the mean is even an appropriate measure of central tendency for such a distribution.
3.2 Skewness without heavy tails ($h = 0$)

To test the validity of the Mirror Bootstrap method in testing hypotheses of one mean, we simulated drawing a sample of specified size from a specified g-and-h distribution with $h = 0$, doing so 10,000 times in each case to get an accurate estimate of proportion of Type I errors in a two-tailed hypothesis test with alpha level 0.05. In each test, we bootstrapped 1000 samples. The results are as follows:

As the skewness increases, the Mirror Bootstrap loses validity for small samples, though the performance increases with sample size. The validity is good for $g \leq 0.4$, and still decent for $g = 0.6$, but after that it becomes unacceptably high. Compared to the validity of the t-test, Mirror Bootstrap performs as well as or better, especially for small samples.
3.3 Heavy tails without skewness ($g = 0$)

To test the validity of the Mirror Bootstrap method in testing hypotheses of one mean, we simulated drawing a sample of specified size from a specified g-and-h distribution with $g = 0$, doing so 10,000 times in each case to get an accurate estimate of proportion of Type I errors in a two-tailed hypothesis test with alpha level 0.05. In each test, we bootstrapped 1000 samples. The results are as follows:

Mirror Bootstrap method is conservative for very small samples ($n = 5$), and stays somewhat conservative for distributions with heavy tails ($h \geq 4$), but for lighter tails the validity holds just below the ideal level of 0.05, so the method is slightly conservative. Comparing the Bootstrap Method’s performance to that of the t-distribution, the Mirror Bootstrap is consistently more conservative than the t-test, though only slightly so for $n \geq 10$:

Overall, the proportion of Type I errors appears reasonable for $g < 0.6$ as long as the tails are not too heavy, and this result seems fairly consistent for various sample sizes:
4 Acknowledgments

The author would like to thank Dr. Wilcox for his helpful feedback, and to the Lock5 team (Drs. Robin Lock, Patti Lock, Kari Lock, and Masters Eric Lock and Dennis Lock, of www.lock5stat.com) for their work in making bootstrapping methods readily accessible to teachers of introductory statistics.

References

[1] Efron, Bradley and Tibshirany, Robert (1994). An introduction to the Bootstrap, Chapman & Hall/CRC.

[2] Hoaglin, D.C. (1985). Summarizing shape numerically: The g-and-h distribution. In D. Hoaglin, F. Mosteller, & J. Tukey (Eds.), Exploring data tables trends and shapes (pp. 461-515). New York, NY: Wiley.

[3] Wilcox, Rand (2012). Introduction to robust estimation and hypothesis testing, 3rd edition, Elsevier.