Review Article
Selection of Diagnostic Cutoffs for Murine Typhus IgM and IgG Immunofluorescence Assay: A Systematic Review

Sandhya Dhawan,1 Matthew T. Robinson,2,3 John Stenos,4 Stephen R. Graves,4 Tri Wangrangsimakul,1,2 Paul N. Newton,2,3 Nicholas P. J. Day,1,2 and Stuart D. Blacksell1,2,3*

1Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; 3Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic; 4Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Australia

Abstract. Murine typhus is a neglected but widespread infectious disease that results in acute fever. The immunofluorescence assay (IFA) is the “gold standard” to identify IgM or IgG antibodies, although there is a lack of standardization in methodologies. The objective of this review is to summarize 1) the differences in published methodologies, 2) the diagnostic cutoff titers, and 3) the justification of diagnostic cutoffs. Searches were performed by combining the following search terms: “murine typhus,” “rickettsia typhi,” “immunofluorescence,” “IFA,” and “serologic” with restrictions (i.e., “rickettsia typhi” or “murine typhus,” and “IFA” or “immunofluorescence,” or “serologic”). The search identified 78 studies that used IFA or immunoperoxidase assay (IIP) antibody cutoffs to diagnose murine typhus, 39 of which were case series. Overall, 45 studies (57.7%) provided little to no rationale as to how the cutoff was derived. Variation was seen locally in the cutoff titers used, but a 4-fold or greater increase was often applied. The cutoffs varied depending on the antibody target. No consensus was observed in establishing a cutoff, or for a single-value diagnostic cutoff. In conclusion, there is a lack of consensus in the establishment of a single-value cutoff. Further studies will need to be executed at each distinct geographic location to identify region-specific cutoffs, while also considering background antibody levels to distinguish between healthy and infected patients.

INTRODUCTION
Murine typhus is a neglected infectious disease caused by Rickettsia typhi, a Gram-negative, obligate intracellular bacterium. Rickettsia typhi is primarily transmitted by Xenopsylla cheopis, the rat flea.1 Commensal rats (most commonly Rattus rattus and Rattus norvegicus) are the natural animal reservoir of the disease. Infection in humans occurs either through inoculation of infected flea feces into bite wounds or by inhalation of aerosolized flea feces.2-4

Given that other febrile illnesses, such as dengue, leptospirosis, and typhoid, have similar clinical manifestations to murine typhus,3,5 laboratory tests are essential to differentiate murine typhus from other causes of undifferentiated fever. Serological methods are commonly used to diagnose murine typhus because of their simplicity and cost-effectiveness.5,7 The indirect immunofluorescence assay (IFA) is considered the “gold standard” and reference technique for diagnosing murine typhus in most research laboratories.1-3,8 Immunofluorescence assay identification of IgM and IgG antibodies provides definitive and accurate evidence of exposure.2,9,10 The immunoperoxidase assay (IIP) is an alternative to IFA and obtains results that have a similar sensitivity and specificity.11

The diagnostic accuracy of IFA is subjective and reliant on methodological and patient factors. Despite being the current reference and standard technique, there is little consensus on the standardization of the IFA methodology. Variable methodological factors include the antigenic strains used and antibody isotype targeted, as well as the diagnostic cutoffs used. Therefore, to guarantee accuracy of diagnosis, standardized methodologies and locally authenticated positivity cutoffs for diagnostic and epidemiological purposes are required.

This review aims to summarize 1) the differences in published IFA methodologies, 2) the diagnostic cutoff titers used for a positive murine typhus diagnosis, and 3) the justification of these diagnostic cutoffs.

METHODS
Search strategy and eligibility criteria. A systematic review was performed. Searches were performed by one author (S. D.) on the PubMed electronic database by combining the following search terms: “murine typhus,” “rickettsia typhi,” “immunofluorescence,” “IFA,” and “serologic” with restrictions (i.e., “rickettsia typhi” or “murine typhus,” and “IFA” or “immunofluorescence,” or “serologic”). The search was limited to articles that had been published in or could be successfully translated to English, until July 2018. First, the titles and abstracts were screened for applicability. Then, full text of relevant articles were examined to establish eligibility. Diagnostic accuracy studies, case series, and cross-sectional studies using IFA/IIP to diagnose murine typhus were included. We excluded case reports, nonhuman studies, and studies investigating other serological tests (i.e., CF, OX-19, and ELISA). Reference lists of the selected studies were also screened to identify further studies.

Data extraction and analysis. Data were extracted by one author (S. D.), and where the information was unclear, a second researcher was consulted (S. D. B.). Details of the location, sample size, study design, reference test, positivity cutoff, antibody target, antigenic strain, positivity criteria, and justification for positive cutoff titer were compiled into summary tables. The studies were grouped according to the study design (diagnostic accuracy study, case series, or cross-sectional study) and geographical location. The data were summarized using a narrative synthesis. We did not evaluate...
intricacies of individual IFA protocols but instead focused on the broader issues such as the methodology used to derive diagnostic cutoffs.

RESULTS

Summary of studies. Study types. Of the total of 78 studies included in this review (Table 3), 39 (49.4%) were case series, 34 (43%) were cross-sectional studies, and five (6.3%) were diagnostic accuracy studies (Supplemental Table 3, Tables 1 and 2).

Patient and geographic details. The study year of included articles ranged from 1977 to 2018. The total number of cases analyzed was 392,756. Geographically, the studies were conducted on patients from Spain (12.8%, n = 10), Taiwan (9.0%, n = 7), United States (7.7%, n = 6), Lao PDR (6.4%, n = 5), Tunisia (6.4%, n = 5), Thailand (6.4%, n = 5), and Greece (6.4%, n = 5). The remaining study populations were recruited from American Samoa, Australia, Brazil, China, Colombia, Croatia, Cyprus, Djibouti, France, Germany, Indonesia, Israel, Madagascar, Malaysia, Malta, Morocco, Nepal, New Zealand, Singapore, Sri Lanka, Tanzania, Vietnam, and Zambia (Table 3). One study conducted in Marseilles, France, investigated travelers returning from Africa and Southeast Asia. Two studies examined serum samples from three different countries.8,13

Immunofluorescence assay methodology. Source. More than half of the studies did not specify the source of the IFA kits (57.7%, n = 45). Thirty-two studies (41%) specified the source of the IFA kits, of which BioMérieux (BioMérieux Ltd., Marcy-l’Etoile, Lyon, France) was the most common source used in nine studies (27.3%, 9/33). Five studies (15.2%, 5/33) used IFA methods developed by the Australian Rickettsial Reference Laboratory (ARRL), whereas five used IFA methods developed by the U.S. Army Medical Research Unit, Malaysia.

Antibody isotype. Of the 78 studies evaluated, 61 stated the target antibody isotype, whereas 17 studies (21.8%, 17/78) did not specify the antibody isotype being targeted. The majority of the studies tested for both IgM and IgG (37.7%, 23/61) against R. typhi. Eighteen studies (29.5%, 18/61) tested exclusively for IgG, whereas nine studies (14.3%, 9/61) tested solely for IgM. Ten studies (16.4%, 10/61) performed whole antibody testing (both IgM and IgG). In one case (1.6%, 1/61), IgM, IgG, and IgA were tested for.14

Antigenic composition. A narrow range of antigens were used in the IFAs examined. More than half of the studies did not specify the antigenic strain used (67.9%, n = 53); of the 24 studies that did, the Wilmington strain was the most numerous—in 21 studies (87.5%, 21/24). Of the nine studies using BioMérieux IFAs, eight studies (88.9%, 8/9) did not specify the antigenic strain used, whereas one (11.1%, 1/9) used the Moroccan strain.15 Five studies used ARRL developed IFAs, of which three (60%, 3/5) used the Wilmington strain and two (40%, 2/5) did not specify the antigenic strain used. Five studies used IFAs developed by the U.S. Army Medical Research Unit, Malaysia, of which two (40%, 2/5) used the Wilmington strain and three (60%, 3/5) did not specify the strain used.

Cutoffs used and methodology for selecting cutoffs. Diagnostic cutoffs. All studies show considerable variation between the cutoffs (Figure 1). Diagnostic cutoffs for IgM ranged from ≥ 1:32 to ≥ 1:400, and IgG cutoffs ranged from ≥ 1:16 to ≥ 1:960 (Figure 1B and C). From the 78 studies included, the most common cutoffs noted for IgM were ≥ 1:64 (10.2%, n = 8), followed by a ≥ 4-fold increase (6.4%, n = 5) in paired samples, and ≥ 1:80 (6.4%, n = 5) (Figure 1B). The most common cutoffs noted for IgG were a ≥ 4-fold increase (15.4%, n = 12) in paired samples, followed by ≥ 1:128 (9.0%, n = 7), and ≥ 1:64 (6.1%, n = 4) (Figure 1C). Of these studies, 23 (29.5%, 23/78) stated cutoffs for IgG and IgM. Eighteen of them (78.3%, 18/23) established higher cutoff values for IgG than IgM. In four cases (17.4%, 4/23), the cutoff value for IgM was higher, whereas in one case (4.4%, 1/23), identical cutoff values were applied to both isotypes. Ten (12.8%, 10/78) studies targeted both IgG and IgM isotypes. The majority of these studies (50%, 5/10) used a 4-fold or greater increase in titers in paired samples as a diagnostic cutoff. There was a considerable variation in choice of single-titer cutoffs for whole antibody targeting (Table 4).

Criteria for selecting cutoffs. All 78 studies reported at least one positivity criterion. Differentiating by study design, of the 39 case series, a single-titer cutoff was the most commonly used criterion (53.8%, n = 21), with the cutoff ranging from ≥ 1:25 to ≥ 1:960 with the majority (17.9%, 7/39) using a titer of ≥ 1:64 (Supplemental Table 3). Four case series (10.3%, 4/39) exclusively used a ≥ 4-fold increase in antibodies in paired samples, whereas 13 (33.3%, 13/39) used this criterion in conjunction with a fixed titer cutoff (Supplemental Table 3). Of the 34 cross-sectional studies, the majority (70.6%, n = 24) used a single-titer cutoff to determine positivity, the cutoff ranging from ≥ 1:16 to ≥ 1:4000 with the majority (23.5%, 8/34) using a titer of ≥ 1:64 (Table 1). Only one study (2.9%, 1/34) used exclusively a ≥ 4-fold increase in antibodies as a criterion, whereas eight (23.5%, 8/34) used this criterion together with a fixed titer cutoff (Table 3). Of the five diagnostic accuracy studies, four (80%, 4/5) used a single positivity cutoff titer, ranging from ≥ 1:100 to ≥ 1:400 (Table 2).

Differentiating by country (Table 3), a single-titer cutoff was the preferred method of diagnosis in Cyprus, Greece, Spain, and Tunisia, whereas in Indonesia, Lao PDR, Sri Lanka, Thailand, and United States, a single-titer cutoff in conjunction with a ≥ 4-fold increase in titers was preferred. Only in Taiwan was a solely ≥ 4-fold increase in titers as a diagnostic cutoff preferred.

Justification for selecting cutoffs. Of a total of 78 studies, only 33 (42.3%, 33/78) justified the method to determine their diagnostic cutoff, whereas 45 (57.7%, 45/78) studies provided no clear explanation for the cutoff value used. Of the 33 studies with reasons for their selected cutoff values, 28 (84.8%, 28/33) justified it by citing a supporting previous study. The most frequently cited seropositivity criteria study was that of La Scola et al.6 (14.3%, 4/28). Other commonly cited studies were Blacksell et al.,16 Coleman et al.,17 and Hernandez et al.18 A further 19 references for justification19–36 were cited by 18 studies. Three studies (9.1%, 3/33) used “manufacturers specifications” as a justification for their cutoff values,37–39 whereas one study (3.0%, 1/33) followed the “WHO Collaborating Centre procedure” to determine their cutoff.10

DISCUSSION

To classify confirmed cases and to ensure appropriate patient management, the application of accurate diagnostic cutoffs is necessary for murine typhus. This review has found...
Country	Type of test	Source of assay	Total cases	Antigenic strain	Positivity cutoff titer	Antibody target	Positivity criteria	Cutoff justification	Reference
American Samoa	IFA	NA	197	NA	1:50	IgG	Single titer	NA	44
Brazil	IFA	NA	437	NA	> 1:64	IgM	Both	NA	45
					≥ 4-fold increase	IgM			
					≥ 1:16	IgG			
Croatia	IFA	Virus Reference Laboratory, London, UK	425	NA	≥ 1:80	NA	Both	NA	46
Djibouti	IFA	NA	12,300	NA	≥ 4-fold increase	IgM	Single titer	NA	47
Greece	IFA	Biomerieux, Marcy i’Etoile, Lyon, France	1,584	NA	≥ 1:64	IgG	Single titer	NA	48
Indonesia	IFA	NA	142	NA	≥ 1:80	NA	Single titer	32,35	49
					≥ 4-fold increase	IgM			
Lao PDR	IFA	NA	427	NA	> 1:64	IgM	Both	6,31,50	50
					≥ 4-fold increase	IgM			
Madagascar	IFA	NA	31	NA	> 1:128	IgG	Single titer	NA	51
					≥ 1:400	IgM			
					≥ 1:50	IgG			
					≥ 1:32	NA			
Malaysia	IFA	NA	1596	Wilmington	≥ 1:80	IgG	Single titer	20,21	15
Morocco	IFA	Biomerieux, Marcy i’Etoile, Lyon, France	300	Moroccan strain	≥ 1:400	IgM	Single titer	17	54
					≥ 1:128	IgG			
Nepal	IFA	NA	103	Wilmington	≥ 4-fold increase	IgM	Both	36	47
New Zealand	IFA	Australian Rickettsial Reference Laboratory, Victoria, Australia	989	NA	> 1:160	IgG	Both	Manufacturer’s specifications	39
Singapore	IIP	U.S. Army Medical Research Unit, Malaysia	35	NA	≥ 1:160	IgG	Both	Manufacturer’s specifications	38
					≥ 1:400	IgG			
Spain	IFA	NA	341	NA	≥ 4-fold increase	IgG	Range	NA	55
					1:40 – 1:160	NA			
					≥ 1:80	IgG			
					≥ 1:64	IgM	Both	20	56
Taiwan	IFA	Taiwan CDC, Taipei, Taiwan	226	NA	≥ 1:80	IgM	Single titer	NA	63
Tanzania	IFA	Taiwan CDC, Taipei, Taiwan	1420	NA	4-fold increase	IgG	Only 4-fold	NA	64
					4-fold increase	IgG			
Tunisia	IFA	NA	500	NA	≥ 1:32	Whole	Single titer	20	67
United States	IFA	NA	1024	NA	≥ 1:128	IgM	Single titer	20	68
					≥ 32	IgM			
					≥ 1:32	IgM			
					≥ 1:32	IgM			
					≥ 1:32	IgM			
					≥ 1:32	IgM			
					≥ 1:32	IgM			
Vietnam	IFA	In-house	193	Wilmington	≥ 4-fold increase	IgG	Both	54	72
Zambia	IFA	NA	377	Wilmington	≥ 4-fold increase	IgG	Single titer	NA	73

IFA = immunofluorescence assay; IIP = immunoperoxidase assay.
that there was a major lack of consensus regarding methodologies, application, and IFA/IIP positivity cutoffs used for the diagnosis of murine typhus infections; the reasons for which are manifold and need further investigation and standardization.

In many cases (57.7%, 45/78), a clear justification for the cutoff used was not provided, and it is likely that differences in approach evolved naturally based on local antigenic strains and the pretest odds of disease depending on the local level of murine typhus endemicity. This variation raises questions about which, if any, IFA positivity cutoff is most appropriate for the diagnosis of acute murine typhus infection.

Of the five diagnostic accuracy studies, the majority (60%, 3/5) provided sufficient justification for the positivity cutoff titer used. Although there was a lack of consensus in terms of the source used for the reference test, a single positivity cutoff

Table 2
Summary of diagnostic accuracy studies
Country

Israel
Lao PDR
Peru, United States, Somalia, and Indonesia
Russia, Peru, and Burundi

IFA = immunofluorescence assay.

Table 3
Summary of cutoff titer positivity criteria and antibody isotype described in selected studies
Country

Antigenic strain
American Samoa
Australia
Brazil
China
Colombia
Croatia
Cyprus
Djibouti
France
Germany
Greece
Indonesia
Israel
Lao PDR
Madagascar
Malaysia
Malta
Morocco
Nepal
New Zealand
Singapore
Spain
Sri Lanka
Taiwan
Tanzania
Thailand
Tunisia
United States
Vietnam
Zambia
Total

Study design
Positivity cutoff titer criteria

Case series
Single titer
Case series
Cross-sectional studies
Diagnostic accuracy studies

*Some studies provided different positivity criteria for IgM and IgG.
† Three studies were not included as they examined murine typhus in travelers from various countries.
titer of $\geq 1:400$ in Lao PDR and $\geq 1:128$ in South America was common (Table 2). This is probably an appropriate estimation for certain parts of Lao PDR and South America, with limited application in other geographic locations. As has been previously established, it is also likely that these cutoffs are not befitting for the locations in which they were being used.41

La Scola et al.6 were most commonly cited as a justification for IFA and IIP diagnostic cutoffs for the diagnosis of R. typhi. The study also suggests that although the IFA is an appropriate diagnostic method in the case of acute infections, it should be “considered a technique for seroepidemiology only in areas where the seroprevalence of the rickettsial disease has already been established.” The article emphasizes that the cutoff should be specific for “each rickettsial disease and each area.”

Many studies used identical cutoffs for IgG and IgM (26.9%, 21/78), despite the fact that dynamics of the antibody isotypes differ. This should be considered when interpreting test results, as generally on infection, an increase in IgM is seen, followed by increased levels of IgG.41,42

A variety of factors may affect the diagnostic accuracy of IFAs, including the antibody isotype targeted. Differences in IFA single-titer cutoffs were observed in studies where either IgM or IgG were targeted or both IgM and IgG were targeted to apparently increase the accuracy of the test. In general, higher single-titer cutoffs were used for IgG over IgM, whereas no consensus was seen for studies targeting IgM and IgG together (Table 4).

Considering study populations, the use of samples from infected or normal patients and the geographic origin of the patients can influence the consequent diagnostic cutoff. Murine typhus is an important travel-related illness,7 and in a few studies, serum samples were collected from various geographic locations, such as Peru, Russia, United States, and Somalia, although there was ambiguity with regard to whether the cutoff was applied to a single population or whether the cutoff was calculated through results from all the populations despite dissimilarities in endemicity. This emphasizes the complexity surrounding murine typhus serology and the lack of consensus. From the data shown here, no single antibody titer can accurately be advised as diagnostic unless preexistent studies have been performed to establish seroprevalence levels in the normal population within a location.

Moreover, in addition to the lack of IFA methodology standardization, there was also a lack of consensus in the reference comparator or “gold standard reference assay” to determine murine typhus diagnostic cutoffs. The absence of standardized methods and validated cutoffs has serious implications for seroepidemiological and clinical research, as well as implications for patients and healthcare workers. Although a lower cutoff would result in increased false-positive
results, a higher cutoff would result in increased false-negative
results, causing cases to go undiagnosed and increasing the
possibility of those patients developing severe complications.

This review has numerous limitations. First, it only in-
vestigated studies published in or translated to English. Sec-
ond, a single author performed the article selection and data
extraction, although any ambiguous data were reviewed
among the authors to limit bias. Third, the number of di-
agnostic accuracy studies included was limited, and, perhaps,
the study design affects the positivity cutoff titer used for IFA
testing. Therefore, it is difficult to conclude whether there
exists a correlation or causation between study designs and
cutoff titer. Fourth, this review did not consider the timing of
serum collection and the collection of paired sera in relation to
the disease. The timing of sample collection in relation to ill-
ness onset is an important factor to consider when analyzing
a positive serological result. Last, the IFA protocol was not
assessed as a factor. This is essential to consider when ana-
lyzing results, as variances in protocol (i.e., the quantity of
antigen used and inactivation techniques) can affect the
sensitivity and specificity of IFA tests, which in turn can affect
the selection of optimal cutoffs. Moreover, this review exam-
in both IFA and IIP tests, and the two protocols were not
differentiated in this study.

From this review, we cannot conclude a single standardized
cutoff titer for murine typhus; however, there are some clinical
aspects that are important to note. In terms of treatment,
murine typhus is treatable with doxycycline, which is an af-
fordable and safe drug. It is possible to prescribe doxycycline
in patients who present with non-malarial febrile illness
symptoms; however, it could result in no effect as the patient
may be infected with a disease not sensitive to doxycycline.
Thus, it is essential to accurately diagnose the disease in pa-
tients, for which a validated threshold is needed. In highly

Country	IgG positivity cutoff titer	Studies (n)	References
Brazil	≥ 1:40	1	45
China	≥ 1:40	1	77
Cyprus	≥ 1:64	1	78
France	≥ 1:64	1	40
Germany	≥ 1:80	1	79
Greece	≥ 1:80	1	48,80,81
Nepal	≥ 1:128	1	82
New Zealand	≥ 1:128	1	39
Spain	> 1:128	2	14,37,58,61
Sri Lanka	> 1:960	1	83
Tunisia	> 1:960	1	19,69
United States	> 1:960	1	84,70,71,85
Total (n)	> 1:960	2	21

Country	IgM positivity cutoff titer	Studies (n)	References
Brazil	≥ 1:32	1	45
China	≥ 1:40	1	79
Colombia	≥ 1:64	1	88
Cyprus	≥ 1:64	1	40
France	≥ 1:80	1	48,80,81,87
Greece	≥ 1:80	1	88
Israel	≥ 1:100	1	28
Lao PDR	≥ 1:100	1	50,75
Nepal	> 1:100	1	16
Spain	> 1:100	1	56
Sri Lanka	> 1:100	1	83
Taiwan	> 1:100	1	63,89,90,91,92,93
Tanzania	> 1:100	1	65
Tunisia	> 1:100	1	19,68,67,69
United States	> 1:100	1	94
Zambia	> 1:100	1	73
Total (n)	> 1:100	4	21

Country	Whole antibody positivity cutoff titer	Studies (n)	References
Israel	≥ 1:32	1	74
Lao PDR	≥ 1:100	1	74
Malaysia	≥ 1:100	1	76
Tanzania	≥ 1:100	1	53
Thailand	≥ 1:100	1	66
Tunisia	≥ 1:100	1	67
Zambia	≥ 1:100	1	73
Total (n)	≥ 1:100	1	8

* If the positivity cutoff titer was only seen once, then it was not included on the table.
† Studies performed on travelers were excluded.

Country	Studies (n)	References
Total (n)	1	8
endemic areas, there are high backgrounds of murine typhus, which poses a potential for false positivity if the cutoff is set too low.

Further research is required to examine the local levels of background immunity, identify circulating antigenic strains, and assess different IFA testing protocols, to make well-versed decisions regarding a region-specific, standardized IFA methodology and cutoff. The prospective cause of fever studies could be carried out in different geographical localities in urban versus rural areas to validate an optimal region-specific cutoff. Moreover, the timing of serum collection and pairing of sera could be assessed to formulate a criterion to classify confirmed versus probable cases, rather than focus on a single-titer cutoff.

Received November 1, 2019. Accepted for publication February 18, 2020.

Published online April 6, 2020.

Note: Supplemental tables appear at www.ajtmh.org.

Acknowledgments: We thank M. R., J. S., S. G., T. W., P. N., and N. D. for useful discussions and their contributions to this manuscript. We thank the Wellcome Trust of the United Kingdom for providing funding for this study.

Financial support: S. D. B., M. T. R., T. W., P. N. N. and N. P. J. D. are supported by the Wellcome Trust of the United Kingdom.

Authors’ addresses: Sandhya Dhawan, Matthew T. Robinson, and Tri Wangrangsimakul, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mails: matthew.r@tropmedres.ac, tri@tropmedres.ac, and stuart@tropmedres.ac. John Stenos, Stephen R. Graves, and Stephen R. Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mails: matthew.r@tropmedres.ac, tri@tropmedres.ac, and stuart@tropmedres.ac. John Stenos, Stephen R. Graves, and Stephen R.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits un-

REFERENCES

1. Maurin MRD, 2010. Rickettsia typhi (Murine Typhus). Available at: http://www.antimicrobe.org/r06.asp#8. Accessed May 15, 2019.
2. Peniche Lara G, Dzul-Rosado KR, Zavala Velazquez JE, Zavala-Castro J, 2012. Murine typhus: clinical and epidemiological aspects. Colomb Med (Cal) 43: 175–180.
3. Civen R, Ngo V, 2008. Murine typhus: an unrecognized suburban vectorborne disease. Clin Infect Dis 46: 913–918.
4. Azad AF, 1990. Epidemiology of murine typhus. Annu Rev Entomol 35: 553–569.
5. Carter CN, Ronald NC, Steele-JH, Young E, Taylor JP, Russell LH Jr., Eugster AW, KE, 1997. Knowledge-based patient screening for rare and emerging infectious/parasitic diseases: a case study of brucellosis and murine typhus. Emerg Infect Dis 3: 73–76.
6. La Scola B, Raoult D, 1997. Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35: 2715–2727.
7. Boyd AS, 1997. Rickettsialpox. Dermatol Clin 15: 313–318.
8. Kelly DJ, Chan CT, Paxton H, Thompson K, Howard R, Dasch GA, 1995. Comparative evaluation of a commercial enzyme immunoassay for the detection of human antibody to Rickettsia typhi. Clin Diagn Lab Immunol 2: 356–360.
9. Philip RN, Casper EA, Ormsbee RA, Peacock MG, Burgdorfer W, 1976. Microimmunofluorescence test for the serological study of rocky mountain spotted fever and typhus. J Clin Microbiol 3: 51–61.
10. Paris DH, Dumler JS, 2016. State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsioses, and murine typhus.Curr Opin Infect Dis 29: 433–439.
11. Suto T, 1991. A ten years experience on diagnosis of rickettsial diseases using the indirect immunoperoxidase methods. Acta Virol 35: 580–586.
12. Walter G, Botelho-Nevers E, Socolovschi C, Raoult D, Parola P, 2012. Murine typhus in returned travelers: a report of thirty-two cases. Am J Trop Med Hyg 86: 1049–1053.
13. La Scola B, Rydkina L, Nithokubwayo JB, Vene S, Raoult D, 2000. Serological differentiation of murine typhus and epidemic typhus using cross-adsorption and Western blotting. Clin Diagn Lab Immunol 7: 612–616.
14. Liedo L, Gegúndez MI, Saz JV, Beltran M, 2001. Prevalence of antibodies to Rickettsia typhi in an area of the center of Spain. Eur J Epidemiol 17: 927–928.
15. Meskini M, Beati L, Benslimane A, Raoult D, 1995. Serodiagnosis of rickettsial infections in Morocco. Eur J Epidemiol 11: 655–660.
16. Blacksell SD, Bryant NJ, Paris DH, Doust JA, Sakoda Y, Day NP, 2007. Scrub typhus serologic testing with the indirect immunofluorescence method as a diagnostic gold standard: a lack of consensus leads to a lot of confusion. Clin Infect Dis 44: 391–401.
17. Coleman RE et al., 2002. Comparative evaluation of selected diagnostic assays for the detection of IgG and IgM antibody to Orientia tsutsugamushi in Thailand. Am J Trop Med Hyg 67: 497–503.
18. Hernandez Cabrera M, Angel-Moreno A, Santana E, Bolaños M, Francés A, Martín-Sánchez MS, Pérez-Arellano JL, 2004. Murine typhus with renal involvement in Canary Islands, Spain. Emerg Infect Dis 10: 740–743.
19. Angelakis E, Botelho E, Socolovschi C, Sobas CR, Piketty C, Parola P, Raoult DS, 2010. Murine typhus as a cause of FeverFin travelers from Tunisia and Mediterranean areas. J Travel Med 17: 310–315.
20. Babalis T, Dupont HT, Tslelentis Y, Chatzichristodoulou C, Raoult D, 1993. Rickettsia conorii in Greece: comparison of a microimmunofluorescence assay and western blotting for serodiagnosis. Am J Trop Med Hyg 47: 784–792.
21. Tissot Dupont H, Raoult D, Brouqui P, Janbon F, Peyramond D, Weiller PJ, Chicheportiche C, Nezri M, Poirier R, 1992. Epide- miologic features and clinical presentation of acute Q fever in hospitalized patients: 323 French cases. Am J Med 93: 427–434.
22. Brown AE, Meek SR, Maneechai N, Lewis GE, 1988. Murine typhus among Khmers living at an excavation site on the Thai-Kampuchean border. Am J Trop Med Hyg 38: 168–171.
23. Chaniotis B, Paraulaki A, Chaliotis G, Gozalo Garcia G, Gozadinos T, Tslelentis Y, 1994. Transmission cycle of murine typhus in Greece. Ann Trop Parasitol 88: 645–647.
24. Tslelentis Y, Babalis TL, Chrysanthis D, Gikas A, Chaliotis G, Raoult D, 1992. Clinicoepidemiological study of murine typhus on the Greek island of Evia. Eur J Epidemiol 8: 268–272.
25. Eremeeva ME, Balayeva NM, Raoult D, 1994. Serological re- sponse of patients suffering from primary and recrudescent typhus: comparison of complement fixation reaction, Weil-Felix test, microimmunofluorescence, and immunoblotting. Clin Diagn Lab Immunol 1: 318–324.
26. Ormsbee R, Peacock M, Philip R, Casper E, Plorde J, Gabre-Kidan T, Wright L, 1977. Serologic diagnosis of epidemic typhus fever. Am J Epidemiol 105: 261–271.
27. Fournier PE, Jansenius M, Laferl H, Vene S, Raoult D, 2002. Kinetics of antibody responses in Rickettsia africae and Rickettsia conorii infections. Clin Diagn Lab Immunol 9: 324–329.
28. Griman EM, Arbeli Y, Bearman JE, Yagupskey P, Cohar K, Torok V, Goldwasser RA, 1984. Spotted fever and murine typhus in the Negev desert region of Israel, 1981. Bull World Health Organ 62: 301–306.
29. Fournier PE, Mairie TJ, Raoult D, 1998. Diagnosis of Q fever. J Clin Microbiol 36: 1823–1834.
67. Letaief AO, Yacoub S, Dupont HT, Le Cam C, Ghachem L, Jenni L, Raoult D, 1995. Seroepidemiological survey of rickettsial infections among blood donors in central Tunisia. Trans R Soc Trop Med Hyg 89: 266–268.

68. Kaabia N, Rolain JM, Khalfa M, Ben Jazia E, Bahri F, Raoult D, Letaief A, 2006. Serologic study of rickettsioses among acute febrile patients in central Tunisia. Ann N Y Acad Sci 1078: 176–179.

69. Nazanen A, Hammami B, Mustapha AB, Chaari S, Lahiani D, Maaloul I, Jemaa MB, Hammami A, 2013. Murine typhus in Tunisia: a neglected cause of fever as a single symptom. Med Mal Infect 43: 226–229.

70. Comer JA, Diaz T, Vlahov D, Monterroso E, Childs JE, 2001. Evidence of rodent-associated Bartonella and Rickettsia infections among intravenous drug users from central and East Harlem, New York city. Am J Trop Med Hyg 65: 855–860.

71. Purcell K, Fergie J, Richman K, Rocha L, 2007. Murine typhus in children, south Texas. Emerg Infect Dis 13: 926–927.

72. Hamaguchi S et al., 2015. Clinical and epidemiological characteristics of scrub typhus and murine typhus among hospitalized patients with acute undifferentiated fever in northern Vietnam. Am J Trop Med Hyg 92: 972–978.

73. Okabayashi T, Hasabe F, Samui KL, Mweeke AS, Pandey SG, Yanase T, Muramatsu Y, Ueno H, Morita C, 1999. Short report: prevalence of antibodies against spotted fever, murine typhus, and Q fever rickettsiae in humans living in Zambi. Am J Trop Med Hyg 61: 70–72.

74. Keysary A, Stenger C, 1997. Use of enzyme-linked immunosorbent assay techniques with cross-reacting human sera in diagnosis of murine typhus and spotted fever. J Clin Microbiol 35: 1034–1035.

75. Blacksell SD, Jenjaroen K, Phetsouvanh R, Tanganuchitchamchai A, Phoumin P, Phommasone K, Chansamouth V, Lee SJ, Newton PN, 2010. Accuracy of rapid IgM-based immunochromatographic and immunoblot assays for diagnosis of acute scrub typhus and murine typhus infections in Laos. Am J Trop Med Hyg 83: 365–369.

76. Phetsouvanh R, Thojaikong T, Phourin P, Sibounheuang B, Phommasone K, Chansamouth V, Lee SJ, Newton PN, Blacksell SD, 2013. Inter- and intra-operator variability in the reading of indirect immunofluorescence assays for the serological diagnosis of scrub typhus and murine typhus. Am J Trop Med Hyg 89: 932–936.

77. Yang WH et al., 2012. Murine typhus in drug detoxification facility, Yunnan province, China, 2010. Emerg Infect Dis 18: 1388–1390.

78. Koliou M, Psaroulaki A, Georgiou C, Ioannou I, Tselentis Y, Giakas A, 2007. Murine typhus in Cyprus: 21 paediatric cases. Clin Microbiol Infect Dis 26: 1388–1390.

79. Angelakis E et al., 2012. Detection of rickettsioses and Q fever in Sri Lanka. Am J Trop Med Hyg 86: 711–712.

80. Bianton LS, Vohra RF, Bouyer DH, Walker DH, 2015. Re-emergence of murine typhus in Galveston, Texas, USA, 2013. Emerg Infect Dis 21: 484–486.

81. Tsioitsis C, Chaliotis G, Kokkinis S, Doukakis S, Tseleonis Y, Psaroulaki A, Giakas A, 2014. Murine typhus in elderly patients: a prospective study of 49 patients. Scand J Infect Dis 46: 779–782.

82. Thompson CN et al., 2015. Undifferentiated febrile illness in Kathmandu, Nepal. Am J Trop Med Hyg 92: 875–878.

83. Gasem MH, Wagenaar JF, Goris MG, Adi MS, Isbandrio BB, Hartskees RA, Rolain J-M, Raoult D, van Gorp EC, 2009. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia. Emerg Infect Dis 15: 975–977.

84. Chang K et al., 2012. Murine typhus in southern Taiwan during 1992–2009. Am J Trop Med Hyg 87: 141–147.

85. Chang K, Lee NY, Ko WC, Lin WR, Chen TC, Lin CW, Chang YT, Lu PL, Chen YH, 2017. Identification of factors for physicians to facilitate early differential diagnosis of scrub typhus, murine typhus, and Q fever from dengue fever in Taiwan. J Microbiol Immunol Infect 50: 104–111.

86. Lai CH, Chung HC, Chung HC, Liang SH, Lin HH, Lin JN, Lin CW, Hsu CY, Lin HH, 2008. Clinical characteristics of acute Q fever, scrub typhus, and murine typhus with delayed defervescence despite doxycycline treatment. Am J Trop Med Hyg 79: 441–446.

87. Lai CH, Chang LL, Lin JN, Tsai KH, Hung YC, Kuo LL, Lin HH, Chen YH, 2014. Human spotted fever group rickettsioses are underappreciated in southern Taiwan, particularly for the species closely-related to Rickettsia felis. PLoS One 9: e95810.

88. Rawlings JA, Elliott LB, Little LM, 1985. Comparison of a latex agglutination procedure with the microimmunofluorescence test for Rickettsia typhi. J Clin Microbiol 21: 470–471.

89. Duffy PE, Le Guillouzic H, Gass RF, Innis BL, 1990. Murine typhus identified as a major cause of febrile illness in a camp for displaced Khmers in Thailand. Am J Trop Med Hyg 43: 520–526.