DEVELOPMENT AND VALIDATION OF HPLC METHOD FOR SIMULTANEOUS DETERMINATION OF LIDOCAINE AND PRILOCAINE IN TOPICAL FORMULATION

NARENDRA M GOWEKAR*, SHAILESH J WADHER

Department of Pharmaceutical Chemistry, School of Pharmacy, Swami Ramanand Teerth Marathwada University, Vishnupuri, Nanded - 431 606, Maharashtra, India. Email: ngowekar@gmail.com

Received: 12 September 2016, Revised and Accepted: 22 June 2017

ABSTRACT

Objective: A simple, specific, accurate, and precise method, namely, reverse phase high-performance liquid chromatography was developed to determine Lidocaine (LDC) and Prilocaine (PLC) in topical local anesthetic cream.

Method: The mixture of PLC and LDC was separated on Hi Q Sil C18 HS column, (250 mm × 4.6 mm, 5 µm), column temperature ambient and flow rate 1.2 mL/minutes. The mobile phase was acetonitrile: 0.01 M diethylamine solution (pH adjusts to 6.8 with orthophosphoric acid) (60:40) with detection at 225 nm.

Results: The retention time was found to be 6.075±0.12 minutes for PLC and 8.642±0.15 minutes for LDC, respectively. Linearity was observed in the concentration range of 1-6 μg/mL for both LDC and PLC, respectively. The method was validated according to International Conference on Harmonization guideline and values of linearity, precision, robustness, limit of detection, limit of quantitation, selectivity, and recovery were found to be in good accordance with the prescribed value.

Conclusion: The proposed method can be useful in the quality control of LDC and PLC in their topical formulation.

Keywords: High-performance liquid chromatography, Prilocaine, Lidocaine, Validation.

INTRODUCTION

Lidocaine (LDC) is a local anesthetic which acts by causing blockade of sodium channel that leads to decrease in sodium conductance and depresses the rate of electrical depolarization; then, threshold potential level and propagation of action potential failure are achieved which ultimately leads to blockade of conduction in case of calanesthetics. LDC chemically is 2-(diethylamino)-N-(2, 6-dimethylphenyl) acetamide [1]. Prilocaine (PLC) is an amide local anesthetic with pharmacological properties similar to lignocaine. To increase the duration of action and delay uptake by the general circulation local anesthetics may be administered with a vasoconstrictor, usually adrenaline. Chemically, PLC is (RS)-N-(2-Methylphenyl)-2-(propylamino) propanamide. PLC, unlike otheramide anesthetics, is a secondary amino derivative of otochudine. It produces less vasodilation and toxicity than LDC and is considered relatively free from an allergic reaction [2,3]. The chemical structures of PLC and LDC are shown in (Fig. 1).

To determine PLC and LDC, many studies have been reported in literature. Several spectrophotometric [4-6], chromatographic [7-18], liquid chromatography-tandem mass spectrometry [19-21], and gas chromatography-mass spectrometry [22-24] and capillary electrophoresis [25] techniques were developed to determine PLC and LDC in both pharmaceutical preparations and human plasma. The aim of the present work is to develop and validate a new high-performance liquid chromatography (HPLC) method for determination of PLC and LDC in topical formulation. The proposed method was validated with validation parameters, which are sensitivity, specificity, linearity, precision, and accuracy in accordance with International Conference on Harmonization (ICH) guidelines [26].

METHODS

Chemicals and reagents

Pure LDC and PLC were kindly gifted by Neon Labs Pvt., Ltd., (Thane), Mumbai, India. Commercial LDC (2.5%) and PLC (2.5%) topical local anesthetic cream were purchased from local market for the study. Acetonitrile (ACN) used of HPLC grade (S.K Enterprises, Pune, India). Double distilled water used in experiment was obtained from Milli-Q system (Millipore).

Instrumentation and chromatographic conditions

The HPLC system consisted of intelligent HPLC pump model (Jasco PU 2080 Plus) with sampler programmed at 20 μL capacity per injection was used. The detector consisted of an ultraviolet (UV)-visible spectrophotometry (Jasco UV 2075 Plus). Data were integrated using Jasco Borwin version 1.5, LC-Net II/ADC system. Chromatographic separation was carried out with HiQSilC18column (250 mm × 4.6 mm, 5 µm). The mobile phase used for isocratic elution was prepared by mixing ACN: 0.01M diethylamine solution (pH adjusts to 6.8 with orthophosphoric acid) (60:40 v/v). Before use, the mobile phase was filter through 0.45 μm membrane filter and degassed by ultrasonication. The flow rate was 1.2 mL/minutes, column temperature 25°C, the injection volume was 20 μL, and detection was performed at 225 nm using a UV detector.

Preparation of standard stock solutions

The standard stock solutions of LDC and PLC were prepared by accurately weighing 10 mg of each drug into a 10 mL volumetric flask. The drugs were dissolved in methanol and the solution was diluted to volume. Further dilutions were made from this stock solution and the injection volume was kept 20 μL. A calibration curve was plotted between concentration against their respective area for LDC and PLC separately. From the calibration curve, it was found that linearity ranges for both drugs 1-6 μg/mL for LDC and PLC, respectively.

Analysis of marketed formulation

To determine the content of LDC and PLC in marketed topical formulation (LDC 2.5% and PLC 2.5% cream). A portion of the cream preparation (1 gm equivalent to 25 mg LDC and 25 mg PLC) was weighed
and extracted into 15 mL methanol with the aid of ultrasonication for 15 minutes then filtered into a 25 mL volumetric flask. The volume was made with methanol. From the above solution, further dilution was made with mobile phase to obtain a solution of LDC (1 µg/mL) and PLC (1 µg/mL), respectively.

RESULT AND DISCUSSION
Optimization of procedures
The HPLC procedure was optimized for simultaneous determination of PLC and LDC. Good resolution of both components was obtained with ACN: 0.01 M diethylamine solution (pH adjusts to 6.8 with orthophosphoric acid) at ratio 60:40 v/v. The flow rate of 1.2 mL/minutes was optimum. UV detection was made at 225 nm. At this wavelength, PLC and LDC can be quantified. Hence, 225 nm determined empirically has been found to be optimum. The average retention times for PLC and LDC was found to be 6.075 and 8.642 minutes, respectively (Fig 2). The system suitability parameters for HPLC chromatogram are as follows (Table 1).

Linearity and range
Linearity is generally evaluated by visual inspection of a plot of signals as a function of analyte concentration or content. For determining linearity, calibration curves were plotted over a concentration range of 1-6 µg/mL for PLC and 1-6 µg/mL for LDC, respectively. A 20 μL of sample solution was injected into the chromatographic system using fixed volume loop injector. Chromatograms were recorded. All measurements were repeated three times for each concentration and calibration curve was constructed by plotting the peak areas of analyte versus the corresponding drug concentration.

Linear regression data for the calibration plots revealed good linear relationships between response and concentration. The linear regression equations were Y=24047X+24844 ($r^2=0.9994$) for PLC and Y=31596X+13687 ($r^2=0.9991$) for LDC. The plots obtained from linear regression are given in (Fig. 3) for PLC and (Fig. 4) for LDC, respectively.

Limits of detection and quantitation
The limit of detection (LOD) and limit of quantification (LOQ) were calculated according to the 3.3 σ/s and 10 σ/s criteria, respectively, where σ is the standard deviation of the peak area and s is the slope of the corresponding calibration curve. The LOD and the LOQ for HPLC were found to be 0.2 µg/mL and 0.6 µg/mL for PLC and 0.3 µg/mL and 0.8 µg/mL for LDC, respectively.

Precision
The precision of the proposed method was assessed as intraday and interday precision by preparing three different sample solutions at low, medium, and high concentrations, which were freshly prepared and analyzed. The intraday precision % relative standard deviation (% RSD) was assessed by analyzing standard drug solutions within the calibration range, three times on the same day. Interday precision RSD% was assessed by analyzing drug solutions within the calibration range on three different days over a period of a week. The precision of the method was expressed as RSD%. The results showed in (Table 2) shows the high precision of the method.

Accuracy
The difference between theoretical added amount and practically achieved amount is called accuracy of analytical method. To check the

Table 1: System suitability parameters

Parameter	PLC	LDC
Retention time (minutes)	6.075	8.642
Resolution (Rs)		
Theoretical plates number (N)	6246	5689
Tailing factor	1.21	1.19

PLC: Prilocaine, LDC: Lidocaine

Fig. 1: Chemical structures of (a) Prilocaine, and (b) Lidocaine

Fig. 2: Chromatogram of Prilocaine and Lidocaine

Fig. 3: Calibration curve for Prilocaine

Fig. 4: Calibration curve for Lidocaine
degree of accuracy of the method, recovery studies were performed in triplicate by standard addition method at 80%, 100%, and 120%. Known amount of standard PLC and LDC were added to pre-analyzed samples and were subjected to the proposed method. Result of recovery study of HPLC method is shown in (Table 3).

Robustness

Robustness was assessed by deliberately changing the chromatographic conditions and studying the effects on the results obtained. The factor chosen for study were the flow rate, mobile phase composition, and pH. In the above-changed conditions, results of robustness studies were expressed in term of % RSD of peak areas in each changed condition and were compared with similar results obtained in unchanged experimental conditions. The method was found to be unaffected by small changes with % RSD for all the parameters <2% indicating that method is robust. Result of robustness study is shown in Table 4.

Analysis of marketed formulation

When the LDC (2.5%) and PLC (2.5%) cream was analyzed by HPLC, sharp and well-defined peaks for PLC and LDC were obtained at Rt 6.075 and 8.642 minutes, respectively, when scanned at 225 nm. The amount of the label claim measured was 99.89% for PLC and 99.78% for LDC, respectively.

Conclusion

The proposed reverse phase (RP)-HPLC method has been developed for the simultaneous analysis of PLC and LDC in their topical formulation. The method was validated as per ICH guidelines. The validation results reveal that the methods are precise, linear, robust, and accurate, which proves the reliability of the proposed method. The HPLC method can be used for routine quality control analysis of PLC and LDC in their topical cream formulation.

Acknowledgment

The authors are grateful to Neon Labs Pvt., Ltd., (Thane), Mumbai, India, for providing a gift sample of PLC and LDC. The authors are also thankful to Dr. S. G. Gattani, Professor and HOD, School of Pharmacy SRTM University Vishnupuri, Nanded, India, for encouraging and motivating for this research work.

References

1. Powell MF, Hydrochloride LL. Analytical Profiles of Drug Substances. Vol. 15. New York: Academic Press; 1986. p. 761-79.
2. Rishiraj B, Epstein JB, Fine D, Nabi S, Wade NK. Permanent vision loss in one eye following administration of local anesthesia for a dental extraction. Int J Oral Maxillofac Surg 2005;34(2):220-3.
3. Warren RE, Van de Mark TB, Weinberg S. Methemoglobinemia induced by high doses of prilocaine. Oral Surg Oral Med Oral Pathol 1974;37(6):866-71.
4. Karthikkumar B, Thiruvengadarajan VS, Begum NT. Analytical method development and validation of lidocaine in ointment formulation by UV spectrophotometric method. Int J Pharm Sci 2012;4(2):610-4.
5. Attila A, Kadioglu Y. Determination of prilocaine HCl in pharmaceutical preparations and human plasma with spectrophotometry. Int J Pharm Sci Res 2012;3(4):1018-21.
6. Liawruangrath S, Liawruangrath B, Pibool P. Simultaneous determination of tolperisone and lidocaine by high performance liquid chromatography. J Pharm Biomed Anal 2001;26(5-6):865-72.
7. Liawruangrath S, Liawruangrath B, Pibool P. Simultaneous determination of tolperisone and lidocaine by high performance liquid chromatography. Farmacologiche 2009;70(3):563-8.

Table 1: Precision study for proposed HPLC method (n=3)

Drugs	Concentrations (µg/mL)	Intraday precision	Interday precision				
		Amount found (%)	% RSD	Amount found (%)	% RSD		
PLC		2	99.57	1.20	0.75	99.23	1.12
		4	99.10	1.11	99.00	1.16	
		6	99.29	1.03	99.18	1.07	
PLC		80	99.39	1.19	99.08	1.10	
		120	99.60	1.21	99.27	1.13	
LDC		2	99.53	1.17	99.21	1.22	

RSD: Relative standard deviation

Table 2: Accuracy study for proposed HPLC method (n=3)

Label claim (per gm cream)	Amount added (%)	Total amount (mg)	Amount recovered (mg)	(%) Recovery	Mean % recovery±SD
PLC 25 mg	80	45	44.89	99.76	99.77±0.105
	100	50	49.94	99.88	
	120	55	54.82	99.67	
LDC 25 mg	80	45	44.92	99.82	99.71±0.147
	100	50	49.88	99.76	
	120	55	54.75	99.54	

% RSD: Relative standard deviation

Table 3: Robustness study for proposed HPLC method (n=3)

Chromatographic factors for HPLC	Rt (minutes)	% RSD
Flow rate		
1.1 mL	6.105	1.20
1.3 mL	5.998	1.17
Mobile Phase composition (% v/v)		
ACN: 0.01 M diethylamine solution (62:38)	6.100	1.10
ACN: 0.01 M diethylamine solution (58:42)	6.017	1.05
pH		
6.7	6.089	1.21
6.9	6.101	1.19

Rt: Retention time

ACN: Acetonitrile

Table 4: Robustness study for proposed HPLC method (n=3)

Chromatographic factors for HPLC	Rt (minutes)	% RSD
Flow rate		
1.1 mL	6.105	1.20
1.3 mL	5.998	1.17
Mobile Phase composition (% v/v)		
ACN: 0.01 M diethylamine solution (62:38)	6.100	1.10
ACN: 0.01 M diethylamine solution (58:42)	6.017	1.05
pH		
6.7	6.089	1.21
6.9	6.101	1.19

Rt: Retention time

ACN: Acetonitrile

PLC: Prilocaine, LDC: Lidocaine, HPLC: High-performance liquid chromatography, SD: Standard deviation
10. Pendela M, Kahsay G, Baekelandt I, Van Schepdael A, Adams E. Simultaneous determination of lidocaine hydrochloride, hydrocortisone and nystatin in a pharmaceutical preparation by RP-LC. J Pharm Biomed Anal 2011;56(3):641-4.
11. Junior ER, Bentley MV, Lopes LB, Marchetti JM. HPLC assay of lidocaine in vitro dissolution test of the poloxamer 407 gels. Braz J Pharm Sci 2002;38(1):107-11.
12. Plenis A, Koneczenia L, Miekus N, Baczek T. Development of the HPLC method for simultaneous determination of lidocaine hydrochloride and tribenidine along with their impurities supported by the QSRR approach. Chromatographia 2013;76(5-6):255-65.
13. Klein J, Fernandes D, Gazarain M, Kent G, Koen G. Simultaneous determination of lidocaine, prilocaine and the prilocaine metabolite o-toluidine in plasma by high performance liquid chromatography. J Chromatogr B Biomed Appl 1994;655(1):83-8.
14. Wiberg K, Jacobsson SP. Parallel factor analysis of HPLC DAD data for binary mixtures of lidocaine and prilocaine with different levels of chromatographic separation. Anal Chim Acta 2004;514(2):203-9.
15. Storms ML, Stewart JT. Stability-indicating HPLC assays for the determination of prilocaine and procaine drug combinations. J Pharm Biomed Anal 2002;30(1):49-58.
16. Fijalek Z, Baczynski E, Pwonska A, Warowna-Grzeskiewicz M. Determination of local anaesthetics and their impurities in pharmaceutical preparations using HPLC method with amperometric detection. J Pharm Biomed Anal 2005;37(5):913-8.
17. Zylber-Katz E, Granit L, Levy M. Gas-liquid chromatographic determination of bupivacaine and lidocaine in plasma. Clin Chem 1978;24(9):1573-5.
18. Kadioglu Y, Attila A. GC determination of prilocaine HCl in human plasma: Analytical application to real samples. Chromatographia 2008;67:754-9.
19. Weijden E, van den Broek MP, Ververs FF. Easy and fast LC-MS/MS determination of lidocaine and MEGX in plasma for therapeutic drug monitoring in neonates with seizures. J Chromatogr B 2012;882;111-4.
20. Bo LD, Mazzucchelli P, Marzo A. Highly sensitive bioassay of lidocaine in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1999;854(1-2):3-11.
21. Koehehr A, Oertel R, Kirch W. Simultaneous determination of bupivacaine, mepivacain, prilocaine and ropivacain in human serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2005;1088(1-2):126-30.
22. Watanabe T, Namera A, Yashiki M, Iwasaki Y, Kojima T. Simple analysis of local anesthetics in human blood using headspace solid-phase micro extraction and gas chromatography-mass spectrometry-electron impact ionization selected ion monitoring. J Chromatogr B 1998;709(2):225-32.
23. Yang Y, Zhang W, Ye L. Simultaneous determination of prilocaine and lidocaine in transdermal receiving fluid using gas chromatography-mass spectrometry. Chin J Chromatogr 2009;27(1):74-7.
24. Kadioglu Y, Atilla A. Development and validation of gas chromatography-mass spectroscopy method for determination of prilocaine HCl in human plasma using internal standard methodology. J Chromatogr B 2007;21(10):1077-82.
25. Siluveru M, Stewart JT. Stereo selective determination of R (−) and S (+) prilocaine in human serum by capillary electrophoresis using a derivatizedcycloheximations and ultraviolet detection. J Chromatogr B 2007;837(1-2):205-10.
26. International Conference on Harmonization (ICH) Q2 (R1): Validation of Analytical Procedures-Test and Methodology. Geneva, Switzerland; 2005.