Development and Validation of UV Spectroscopic Method for Estimation of Ranolazine in Tablet Dosage Form

Patil Shubham P.*, Sonar Pratik A., Sanap Ganesh M., Patil Dnyaneshwar S., Kalpesh V. Sonar, Tushar a. Deshmukh

Department of Pharmaceutical Analysis, Arunamai college of Pharmacy, North Maharashtra University, Mamurabad, Jalgaon (MH), INDIA 425001.

ABSTRACT

To develop and validate simple, rapid, linear, accurate, precise and economical UV Spectroscopic method for estimation of Ranolazine in tablet dosage form. The drug is freely soluble in analytical grade methanol. The drug was identified in terms of solubility studies and on the basis of melting point which was done on melting point apparatus of Equiptronics. Ranolazine showed absorption maxima were determined in analytical grade methanol. The drug obeyed the Beer’s law and showed good correlation of concentration with absorption which reflect in linearity. The UV spectroscopic method was developed for estimation of Ranolazine in tablet dosage form and also validated as per ICH guidelines. The drug is freely soluble in analytical grade methanol, slightly soluble acetonitrile and very slightly soluble in analytical grade water. So, the analytical grade methanol is used as a diluent in method. The melting point of Ranolazine was found to be 120-122˚C (uncorrected). It showed absorption maxima 235 nm in analytical grade methanol. On the basis of absorption spectrum the working concentration was set on 8 µg/ml (PPM). The linearity was observed between 2-12 µg/ml (PPM). The results of analysis were validated by recovery studies. The recovery was found to be 98.75, 101 and 98.33% for three levels respectively. The % RSD for precision was found to be 0.6353% which was within acceptance criteria as per ICH guidelines. A simple, rapid, linear, accurate, precise and economical UV Spectroscopic method has been developed for estimation of Ranolazine in tablet dosage form. The method could be considered for the determination of Ranolazine in tablet dosage form in quality control laboratories.

Keywords: Ranolazine, UV Spectrophotometer, Melting Point, Assay Method, Validation, Accuracy, Linearity, Ruggedness, Precision.

*Corresponding Author Email shubhamgurjar9296@gmail.com
Received 22 October 2018, Accepted 29 October 2018

Please cite this article as: Patil SP et al., Development and Validation of UV Spectroscopic Method for Estimation of Ranolazine in Tablet Dosage Form. American Journal of PharmTech Research 2018.
INTRODUCTION

Ranolazine Hydrochloride (RAN) is a piperazine derivative. Ranolazine is a strong base with pKa values of 13.6 [1]. On January 31, 2006, Ranolazine was approved for use in the United States by the FDA for the treatment of chronic angina [2]. Structurally it is N-(2, 6-dimethylphenyl)-2-[4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl] acetamide. RAN is believed to have its effects via altering the trans-cellular late sodium current [3]. Ranolazine is to inhibit late INa thus preventing sodium overload of the cell. As a consequence, Ranolazine prevents reverse mode sodium–calcium exchange and thus diastolic accumulation of calcium possibly resulting in improved diastolic tone and improved coronary blood flow. As a late INa inhibitor, Ranolazine was also shown to increase action potential duration and thus modestly QT interval by 2 - 5 ms. This effect, however, is not heart rate-dependent and cannot be exaggerated during bradycardia. Furthermore, Ranolazine does not induce early after depolarization and does not increase dispersion of repolarization across the left ventricular wall [4,5].

RAN is indicated for the treatment of chronic angina. RAN may be used with beta blockers, nitrates, calcium channel blockers, antiplatelet therapy, lipid-lowering therapy, ACE inhibitors, and angiotensin receptor blockers. RAN has antianginal and anti-ischemic effects that does not depend on reduction in heart rate or blood pressure [6, 7]. RAN has not appeared in any pharmacopoeia yet. Few spectrophotometric [8], HPLC [8, 9, 10], LC-MS [11, 17, 13] and LCMS- MS [12, 18] methods were reported in literature for determination of RAN. However, most of these reported in combination and most of these methods were related to the quantitative assay of RAN in human or dog plasma [7, 14, 15, 16]. This indicates that so far no UV method exists for the estimation and determination of Ranolazine in tablet dosage forms. The aim of the study was to develop a simple, precise, linear, economic and accurate UV method for determination of Ranolazine in tablet dosage forms.

MATERIALS AND METHOD

Instruments:

Shimadzu double beam UV-visible spectrophotometer 1700 Ultra with matched pair
Quartz cells corresponding to 1 cm path length and spectral bandwidth of 1 nm, Bath sonicator and citizen weighing balance. Melting point apparatus of Equiptronics were used.

Materials:
Ranolazine was obtained as a gift sample. Ranolazine tablets were procured from local pharmacy. Methanol used was of analytical grade. Freshly prepared solutions were employed.

Method development:

Determination of \(\lambda \max \)

Solution was prepared by dissolving 10 mg of Ranolazine USP standard in 100 ml of methanol to get concentration of 100 μg/ml further Pipette out 4 ml from above stock and make upto the mark 100 ml with diluent. This solution was subjected to scanning between 200-400 nm and absorption maximum was determined [19, 20].

Preparation of Working concentration

Preparation of Standard stock solution:

Standard solution was prepared by dissolving 20 mg of Ranolazine USP standard in 100 ml of diluent to get concentration of 200 μg/ml.

Preparation of Standard solution:

Pipette out 4 ml from standard stock solution and diluted up to 100 ml with analytical grade methanol to get concentration of 8 μg/ml (PPM).

Procedure for UV reading

Blank Solution: (For Auto zero)

Fill the cuvette with analytical grade methanol. Wipe it with tissue paper properly then placed inside the chamber. Note down the reading.
Standard Solution:
Fill the cuvette with standard solution. Wipe it with tissue paper properly then placed inside the chamber. Note down the reading.

Sample Solution:
Rinse the cuvette using sample solution. Fill the cuvette with sample solution. Wipe it with tissue paper properly then placed inside the chamber. Note down the reading.

Procedure for sample preparations
For analysis of commercial formulations; twenty tablets are taken weighed it and powdered. The powder equivalent to 20 mg of Ranolazine was accurately weighed and transferred into the 100 ml of volumetric flask, added 60 ml analytical grade methanol, the solution was sonicated for 20 min. After sonication cool the flask and diluted up to 100 ml with analytical grade methanol. Filtered the solution through whatmann filter paper. Pipette out 4 ml of the above filtrate and diluted up to 100 ml with analytical grade methanol. The absorbance was measured at 235 nm [21, 22, 23, 24]. The absorbance was recorded.

Sr. no.	Sample	Absorbance
1	Blank	0.0001
2	Standard	0.6532
3	Sample	0.6494

Table 1: Absorbance of Dosage Form

Type	Company	M.D.	E.D.	Batch No.	Average weight (g)	Assay (%)
1	Torrent Pharma LTD (500mg)	06/2017	07/2020	RN 50722	0.6027	98.5

Method of validation
The proposed method was developed by using linearity, accuracy, precision and ruggedness as per ICH guidelines, 1996 [21, 22, 23, 24].

Linearity:
The linearity of the proposed assay was studied in the concentration range 2 - 12 PPM at 235nm. The calibration data showed a linear relationship between concentrations.

Sr. no.	Sample Concentration	Absorbance
1	2 PPM	0.1900
2	4 PPM	0.3378
Accuray:

To ensure the accuracy of the method, recovery study was performed by preparing 3 sample solutions of 80, 100 and 120% of working concentration and adding a known amount of active drug to each sample solution and dissolved in 100ml of volumetric flask with analytical grade methanol and measuring the absorbance at 235nm.

Accuracy (%)	Qty weighed (mg)	Qty found (mg)	Recovery (98-102%)
80	0.8	0.79	98.75
100	1	1.01	101.00
120	1.2	1.18	98.33

Precision:

The precision of the method was demonstrated by inter-day and intra-day variation studies. Five sample solutions were made and the %RSD was calculated.

Sr. No.	Sample Solution	Absorbance
1	Sample Solution 1	0.6548
2	Sample Solution 2	0.6478
3	Sample Solution 3	0.6512
4	Sample Solution 4	0.6541
5	Sample Solution 5	0.6512
MEAN		0.6506
SD		0.0041
% RSD		0.6353

Ruggedness:

Ruggedness is a measure of the reproducibility of a test result under normal, expected operating condition from instrument to instrument and from analyst to analyst.

Sr. No.	Analyst	Results	Mean	% Assay	% RSD
1	Analyst 1	0.6488	0.6513	98.7	0.2859
		0.6478			
2	Analyst 2	0.6574	0.6557	99.1	
		0.6541			
RESULTS AND DISCUSSION

Solubility of Ranolazine

Solubility test was passed as per criteria.

Sr. no.	Title	Result
1	Analytical grade methanol	Soluble
2	Analytical grade Acetonitrile	Slightly soluble
3	Analytical grade Water	Very Slightly Soluble

Melting point of Ranolazine

The melting point of Ranolazine was found to be 120-122°C (uncorrected).

Results for linearity for assay method of Ranolazine

The linearity of method was determined at concentration level ranging from 2 to 12 μg/ml (PPM). The correlation coefficient value was found to be $R^2 0.999$.

![Ranolazine Linearity](image)

Figure 3: Ranolazine Standard Curve

Results for accuracy for assay method of Ranolazine

The accuracy of the method was determined by recovery experiments. The recovery studies were carried out and the percentage recovery were calculated and represented in Table - 4. The high percentage of recovery indicates that the proposed method is highly accurate. Accuracy results were found within acceptance criteria that are within 98-102%.

Results for precision for assay method of Ranolazine
The % RSD for different sample of precision was found to be 0.6353 and it is within acceptance criteria represented in Table - 5.

Results for ruggedness for assay method of Ranolazine

The %RSD for different sample of ruggedness was found to be 0.2859 and it is within acceptance criteria represented in Table - 6.

CONCLUSION

A method for the estimation of Ranolazine in tablet form has been developed. From the spectrum of Ranolazine, it was found that the maximum absorbance was 235 nm in analytical grade methanol. A good linear relationship was observed in the concentration range of 2-12 µg/ml (PPM). The high percentage recovery indicates high accuracy of the method. This demonstrates that the developed spectroscopic method is simple, linear, accurate, rugged and precise for the estimation of Ranolazine in solid dosage forms. Hence, the method could be considered for the determination of Ranolazine in quality control laboratories.

ABBREVIATIONS

1. PPM - Parts per Million
2. RAN - Ranolazine
3. nm - Nanometer
4. HPLC - High Performance Liquid Chromatography
5. UV - Ultra violet
6. HBV - Hepatitis B virus
7. DNA - Deoxyribonucleic acid
8. HIV - Human Immunodeficiency Virus
9. ICH - International Council for Harmonization
10. RSD - Relative Standard Deviation
11. SD - Standard Deviation
12. Qty - Quantity
13. C - Celsius
14. M.D. - Manufacturing Date
15. E.D. - Expiry Date

REFERENCES

1. http://pubchem.ncbi.nlm.nih.gov/compound/ranolazine
2. FDA Approves New Treatment for Chest Pain. FDA News. 2006-01-31; Retrieved 2011-03-02.
3. Khedkar A. N., Veer S. U., Rakh M. S., Rao J. R., ”Stability Indicating Method Development and Validation of Ranolazine Hydrochloride in Bulk and Tablet Dosage Form by HPTLC”, International Journal of Pharmaceutical and Clinical Research, 2015, 7(1), 77-83.
4. Hasenfuss G, Maier L.S, “Mechanism of action of the new anti-ischemia drug ranolazine, Clinical Research Cardiology, 2008, 97(4), 222-226.
5. Luiz B, John C, Shryock and Heather F, “The mechanism of ranolazine action to reduce ischemia-induced diastolic dysfunction.”, European Heart Journal Supplements, 2006, 8(supplement A), A10-A13.
6. Fraser H., Belardinelli L., Wang L., Light P.E., McVeigh J.J., Clanachan AS Ranolazine decreases diastolic calcium accumulation caused by ATXII or ischemia in rat hearts, J Mol Cell Cardiol, 2006; 41: 1031–1038.
7. Nalawade V., Gide P., Nunnavare G., Development and validation of a LLE-HPLC method for the determination of ranolazine in human plasma, Int J Pharm Sci, 2010; 2: 369-374.
8. R.C., Rathod D.K., Patel P.R., Patel V.S., Estimation of ranolazine hydrochloride by spectrophotometric and RP-HPLC in tablet dosage forms, Int J Pharm Appl Sci, 2010; 1: 79-83.
9. Luo X., Zhai Z., Wu X., Shi Y., Chen L., Li Y., Analytical and semi preparative resolution of ranolazine enantiomers by liquid chromatography using polysaccharide chiral stationary phases, J Sep Sci, 2006; 29: 164-171.
10. Sharma T., Moitra S.K., Si S.C., Sankar D.G., Stability indicating LC method for the determination of ranolazine hydrochloride in the bulk drug and in pharmaceutical dosage form, Int J Pharm Pharm Sci, 2011; 3: 327-332.
11. Herron W.J., Eadie J., Penman A.D., Estimation of ranolazine and eleven Phase I metabolites in human plasma by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry with selected-ion monitoring, J Chromatogr A, 1995; 712: 55-60.
12. Penman A.D., Eadie J., Herron W.J., Reilly M.A., Rush W.R., Liu Y., The characterization of the metabolites of ranolazine in man by liquid chromatography mass spectrometry, Rapid Commun Mass Spectrom 1995; 9: 1418-1430.
13. Xie L., Liang Y., Liu X.D., Wang G.J., Determination of ranolazine and its pharmacokinetics in dog by LC-MS, J China Pharm Univ, 2004; 35: 156-159.
14. Zhong J., Liu X.Q., Chen Y., Zhao X.P., Wang Y.S., Wang G.J., Determination of ranolazine in rat plasma by liquid chromatography electrospray ionization mass spectrometry, Chromatographia, 2006; 63: 123-127.

15. Bhaumik U., Ghosh A., Sarkar A.K., Bose A., Selvan P.S., Sengupta P. et al, Determination of ranolazine in human plasma by LCMS/ MS and its application in bioequivalence study, J Pharm Biomed Anal, 2008; 48: 1404-1410.

16. Tian L., Jiang J., Huang Y., Hua L., Liu H., Li Y., Sensitive quantification of ranolazine in human plasma by liquid chromatography tandem mass spectrometry with positive electrospray ionization, J Chromatogr B, 2007; 846: 346-350.

17. Zhao L., Li H., Jiang Y., Piao R., Li P., Gu J., Determination of ranolazine in human plasma by liquid chromatographic tandem mass spectrometric assay, J Chromatogr Sci, 2008; 46: 697-700.

18. ICH draft Guidelines on Validation of Analytical Procedures: Definitions and Terminology, Federal Register, 60, IFPMA, Switzerland, 1995, pp. 1260

19. Becket. A.H, Stenlak. J.B, “Practical pharmaceutical chemistry edn 4th CBS Publisher & Distribution, New Delhi, 2004, 275-337.

20. British Pharmacopoeia. Volume I: published by the stationary office on behalf of the Medicine and Healthcare Products Regulatory Agencies, London, 2008, pp. 76-77.

21. United States Pharmacopoeia. In Validation of Compendia Methods. 26th edn: Pharmacopoeial Convention Inc., Rockville, 2003, pp. 2439–2442.

22. Indian Pharmacopoeia .Volume II. Ministry of Health and Family Welfare Government of India: Published by Indian Pharmacopoeia Commission, Ghaziabad, 2007, pp. 692-693.