Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
ABSTRACT

Purpose: The 2019 COVID-19 pandemic poses a challenge to adolescent psychological health. The aim of this study was to survey junior high and high school students in China to better understand the psychological consequences, such as anxiety, depression, and stress, of the COVID-19 pandemic.

Methods: A cross-sectional online survey using structural questionnaires was conducted from April 7, 2020, to April 24, 2020. Demographic information and general information related to the pandemic were collected. Psychological consequences were assessed by the Impact of Event Scale-Revised and the Depression, Anxiety and Stress Scale. Influencing factors were assessed by the Brief Resilience Scale and Coping Style Questionnaire.

Results: Our sample comprised 493 junior high school students (male = 239, mean age = 13.93 years) and 532 high school students (male = 289, mean age = 17.08 years). Resilience and positive coping were protective factors for the occurrence of depressive, anxiety, and stress symptoms in junior high and high school students ($p < .05$). Positive coping was a protective factor for trauma-related distress in junior high school students ($p < .05$). Negative coping is a risk factor for depression, anxiety, stress symptoms, and trauma-related distress in junior high and high school students ($p < .05$).

Conclusions: During the COVID-19 pandemic in China, more than one fifth of junior high and high school students’ mental health was affected. Our findings suggested that resilience and positive coping lead to better psychological and mental health status among students. In contrast, negative coping is a risk factor for mental health.

© 2020 Society for Adolescent Health and Medicine. All rights reserved.
Infectious diseases remain one of the biggest threats to the health and well-being of the human race. Since December 2019, novel COVID-19 infection has spread rapidly all over China and internationally [1]. According to the statistics released by the World Health Organization, there have been 16,523,815 confirmed cases of COVID-19 infection in 216 countries, with at least 655,112 deaths as of July 29, 2020. The pandemic resulted in not only the risk of death from the viral infection but also psychological consequences among people, particularly because of the long-term nature of the pandemic, which is still developing. Previous research has revealed a profound and wide range of psychological impacts of infectious outbreaks on survivors, family members of infected patients, medical staff, and the general public [2,3]. The psychological consequences of infectious diseases have been reported to include depressed mood, anxiety, poor sleep, and increased fear and stress levels [4,5], with posttraumatic stress disorder (PTSD) and depressive disorders being the most prevalent long-term psychological conditions [6].

The psychological impacts of the COVID-19 pandemic on teenagers and adolescents seem to be far greater than the impact on adults because they are more vulnerable to the negative effects of stress [7]. Following the outbreak, national school closures had been implemented, and students were required to stay at home. Reduced social interaction, stay-at-home restrictions, difficulties in schoolwork, substantial changes to daily routine, fear of becoming sick, and boredom can create dramatic psychological effects on teenagers and adolescents. Developmental motivations and hormonal changes make teenagers and adolescents highly attuned to peer groups, making it challenging to isolate at home. For instance, during the Severe Acute Respiratory Syndrome (SARS) epidemic, a cross-sectional study revealed that psychiatric morbidities in a general population were associated with younger age [8]. The psychological impact of COVID-19 on teenagers is a serious concern during the outbreak and thereafter. The present study sought to examine depressive, anxiety, stress, and trauma-related distress symptoms in a sample of junior high and high school students.

The COVID-19 pandemic can be regarded as an acute, large-scale, and uncontrollable stressor that will have a significant effect on individuals’ mental health. However, little is known about how teenagers cope with acute large-scale stressors such as the COVID-19 pandemic. Accumulated evidence has indicated that different coping strategies are associated with different adjustment outcomes after trauma [9,10]. Generally, there are two types of coping strategies: active and passive coping. Active coping involves actively doing something to reduce stress, such as problem-solving, planning, and cognitive restructuring, whereas passive coping involves ignoring and avoiding sources of stress, such as denial and substance use [11]. We expected teenagers with positive coping to be associated with better mental health outcomes during the COVID-19 pandemic.

Another potential factor influencing teenagers’ psychological outcome in the event of the COVID-19 pandemic is resilience. The construct of resilience refers to an ability to maintain positive mental health in the face of adversity or stress [12]. A high level of resilience provides protection from various mental health conditions. For instance, higher resilience in adolescents aged 14–18 years was associated with a lower level of depression, stress, and anxiety [13]. When dealing with stress induced by the COVID-19 pandemic, teenagers with a high level of resilience are expected to have a positive mental health status.

A web-based cross-sectional study was performed to assess the psychological impacts of the COVID-19 pandemic on junior high and high school students. We hypothesize that positive coping and a high level of resilience are protective factors for the mental health consequences of the COVID-19 pandemic.

Methods

Setting and participants

A cross-sectional online survey using structural questionnaires was conducted from April 7, 2020, to April 24, 2020. Participants, stratified by age and gender, were recruited from Guangzhou No. 75 Middle School and Longchuan No. One Middle school in Guangdong, China. The study was approved by the Ethics Committee of Jinan University, and all participants provided written consent before they answered the questionnaires.

Measures

Demographic and general information. Demographic information was collected, including age, gender, grade, and education levels of parents. In addition, information related to the COVID-19 pandemic was collected, such as residence location during the pandemic, whether their parents were frontline personnel during the pandemic, whether they were confirmed cases, whether their family or friends were confirmed cases, and whether they had peers around during the pandemic.

Brief Resilience Scale. The Brief Resilience Scale (BRS) was developed as a reliable measure of a unitary construct to measure the most basic and original meaning of resilience, that is, “an individual’s ability to bounce back or recover from stress” [14]. It represents a factor related to resilience resources and health outcomes. The participants were asked to indicate the extent to which they agreed with a statement according to a 5-point scale, ranging from 1 (strongly disagree) to 5 (strongly agree). The BRS has been validated in a variety of populations under different levels of stress and has demonstrated good psychometric properties. The Chinese version of the BRS has demonstrated acceptable internal consistency with Cronbach’s alpha values of .76 and .72 in Hong Kong and mainland samples, respectively [15]. To the best of our knowledge, the BRS has not been validated in a sample of teenagers. We conducted psychometric analyses on the data set. Results of exploratory factor analysis suggested extraction of two factors (positive and negative items) that account for 72.94% of total variance. The Cronbach’s alpha coefficient was .80, suggesting good reliability of the Chinese version of the BRS.

Coping Style Questionnaire. The Coping Style Questionnaire (CSQ) was developed by Xie [16] on the basis of both Chinese and foreign scales [17]. It consists of 20 items measuring the use of coping strategies with two dimensions, active coping (12 items) and passive coping (eight items). A higher score represents a greater active/passive coping tendency. Participants rate the frequency with which they adopt the strategy in the face of stress on a 4-point scale, ranging from 0 (never) to 3 (very often). Xie validated the CSQ in a Chinese sample aged 20–65 years. Its internal consistency was .90, with two subscales and whole
scale’s Cronbach’s alpha were .79, .78, and .82, respectively. A previous study investigating a sample aged 12–18 years indicated that the internal consistency measured by Cronbach’s alpha were .90, .89, and .78 for the subscales and the whole scale, respectively [18]. Nevertheless, the CSQ has been used in several studies with teenagers as the subjects [19,20]. The instrument also demonstrated good reliability and validity in Chinese samples [21]. We conducted psychometric analyses on the data set. Results of exploratory factor analysis suggested extraction of two factors (positive coping and negative coping) that account for 52.05% of total variance. The Cronbach’s alpha coefficients for the two subscales were .91 (active coping) and .76 (passive coping), suggesting good reliability of the Chinese version of the scale.

Impact of Event Scale-Revised. The original Impact of Event Scale (IES) is a 22-item measure of psychological responses to trauma. There are three subscales, namely, the intrusive subscale, avoidance subscale, and hyperarousal subscale. Participants rate each item on a 5-point scale, ranging from 0 (no problems) to 4 (frequent problems). The mean score for PTSD is 20, and a cutoff score of 20 has been used to estimate the prevalence of PTSD symptoms [22,23]. The IES-Revised (IES-R) can be anchored to any specific event, such as SARS or COVID-19 infection. The IES has been validated in a sample of adolescents in Taiwan who had experienced floods and mudslides caused by Typhoon Morakot [24]. The results suggested that the IES was a reliable and valid instrument with Cronbach’s alpha of .94 and three factors of intrusion, hyperarousal, and avoidance accounted for 58.1% of the variance. Another study validated the IES in a sample of urban high school students who experienced the September 11, 2001, terrorist attack [25]. The results yielded three factors (intrusion, hyperarousal, and avoidance) and found a moderate correlation between the IES and My Worst Experience Scale as a measure of postrumatic stress reactions in individuals exposed to a specific traumatic stressor [25]. The Chinese version of the IES-R has demonstrated good reliability and validity with Cronbach’s alpha of .90 in a student sample [26], and Cronbach’s alpha for the three subscales were .89 (intrusion), .85 (avoidance), and .83 (hyperarousal) in a patient sample from the Accident and Emergency Department [23]. In our sample, Cronbach’s alpha coefficients for the three subscales were .85 (intrusion), .83 (avoidance), and .81 (hyperarousal), suggesting good reliability of the Chinese version of the scale.

Twenty-one-item Depression Anxiety Stress Scale. The 21-item Depression Anxiety Stress Scale (DASS-21) is a well-developed instrument evaluating levels of depression, anxiety, and stress, with seven items in each subscale. It asks whether the described situation is applicable and requires participants to rate the applicability on a 4-point scale, ranging from 0 (never) to 3 (almost always). The total scores of the full scale and subscales were obtained, and a higher score indicates a more severe level of depression, anxiety, or stress. The depression subscale score was divided into normal (0–9), mild depression (10–12), moderate depression (13–20), severe depression (21–27), and extremely severe depression (28–42). The anxiety subscale score was divided into normal (0–6), mild anxiety (7–9), moderate anxiety (10–14), severe anxiety (15–19), and extremely severe anxiety (20–42). The stress subscale score was divided into normal (0–10), mild stress (11–18), moderate stress (19–26), severe stress (27–34), and extremely severe stress (35–42). The DASS-21 has been demonstrated to be a reliable and valid measure in assessing mental health in the Chinese population [27]. The DASS was previously used in research related to SARS [3]. The DASS has been widely used in children and adolescents between the ages of 7 and 15 years [28–30]. We conducted psychometric analyses on the data set. The results of exploratory factor analysis suggested extraction of three factors (depression, anxiety, and stress) that account for 58.86% of total variance.

Table 1 Characteristics of the participants

Items	All, n (%)/mean (SD)	Junior high school students, n (%)/mean (SD)	High school students, n (%)/mean (SD)
Gender			
Male	528 (51.5) 239 (48.5) 289 (54.3)		
Female	497 (48.5) 254 (51.5) 243 (45.7)		
Age	15.56 (1.89) 13.93 (1.12) 17.08 (0.99)		
Grade			
First grade	371 (36.2) 166 (33.7) 205 (38.5)		
Second grade	319 (31.1) 155 (31.4) 164 (30.8)		
Third grade	335 (32.7) 172 (34.9) 163 (30.6)		
Father’s education level			
Primary	97 (9.5) 16 (3.2) 81 (15.2)		
High school	717 (70.0) 312 (63.3) 405 (76.1)		
College/university	168 (16.4) 122 (24.7) 46 (8.6)		
Graduate school	43 (4.2) 43 (8.7) 0 (0)		
Mother’s education level			
Primary	159 (15.5) 23 (4.7) 136 (25.6)		
High school	699 (68.2) 336 (68.2) 363 (68.2)		
College/university	155 (15.1) 122 (24.7) 33 (6.2)		
Graduate school	12 (1.2) 12 (2.4) 0 (0)		
Annual household income			
<50,000	374 (36.5) 99 (20.1) 275 (51.7)		
50,000–200,000	495 (48.3) 257 (52.1) 238 (44.7)		
200,000–500,000	127 (12.4) 116 (23.5) 11 (2.1)		
>500,000	29 (2.8) 21 (4.3) 8 (1.5)		
Do you have siblings?			
Yes	830 (81.0) 342 (69.4) 488 (91.7)		
No	195 (19.0) 151 (30.6) 44 (8.3)		
Is there a peer partner around you?			
Yes	826 (80.6) 420 (85.2) 406 (76.3)		
No	199 (19.4) 73 (14.8) 126 (23.7)		
Area during the COVID-19 pandemic			
Hubei Province	6 (.6) 5 (1.0) 1 (.2)		
Mainland China (except Hubei)	1,014 (98.9) 485 (98.4) 529 (99.4)		
Hong Kong/Macao SAR, China	2 (.2) 1 (.2) 1 (.2)		
Foreign countries	2 (.4) 1 (.2) 3 (.3)		
Any confirmed/suspected cases with COVID-19 around you?			
Yes	12 (1.2) 10 (2.0) 2 (.4)		
No	1,013 (98.8) 483 (98.0) 530 (99.6)		
Are your parents a frontline antipandemic person?			
Yes	14 (1.4) 8 (1.6) 6 (1.1)		
No	1,011 (98.6) 485 (98.4) 526 (98.9)		
variance. The Cronbach’s alpha coefficients for the three sub-scales were .86 (depression), .82 (anxiety), and .87 (stress), suggesting good reliability of the Chinese version of the scale.

Statistical analysis

Statistical analysis was performed using SPSS version 16.0 (IBM, Chicago, IL). First, descriptive analyses were conducted to describe the demographic characteristics of Chinese junior high and high school students. All results of quantitative variables are reported either as the mean ± standard deviation (SD) or frequency (percentage). Second, to investigate the variables contributing to coping and resilience, multivariate regression analysis was used to assess the association between demographic variables and three dependent variables, including positive coping, negative coping, and resilience. Third, the prevalence of depressive, anxiety, stress, and trauma-related distress symptoms were calculated for the junior high and high school students. Finally, multivariate logistic regression models were performed to explore potential influencing factors of depressive, anxiety, stress, and trauma-related distress symptoms during the COVID-19 pandemic. The variables of age, gender, grade, and other general information related to the pandemic were included as covariates. Adjusted odds ratios, and 95% confidence intervals (95% CIs) were obtained from logistic regression models. Each hypothesis was tested using a two-tailed analysis at the α = .05 level of significance.

Results

Participant characteristics

The questionnaires were administered to 564 junior high school students, and 493 completed the questionnaires with a response rate of 87.41%. Of the 493 junior high school students (male = 239, mean age = 13.93 years), 342 (69.4%) had siblings, 420 (85.2%) had peer partners, and 485 (98.4%) stayed in Mainland China (places other than Hubei) during the COVID-19 pandemic. The questionnaires were administered to 780 high school students, and 532 completed the questionnaires with a response rate of 68.21%. Of the 532 high school students (male = 289, mean age = 17.08 years), 488 (91.7%) had siblings, 406 (76.3%) had peer partners, and 529 (99.4%) stayed in Mainland China (places other than Hubei) during the COVID-19 pandemic. The demographics and general information are summarized in Table 1.

Association between demographics and coping/resilience

The results are summarized in Tables 2 and 3. Only a few demographic variables had a significant association with the

Table 2

Items	Resilience	Positive coping	Negative coping							
	R²	B (95% CI)	p	R²	B (95% CI)	p	R²	B (95% CI)	p	
Gender	Male	.041	−1.810 (−2.582, −1.037)	<.001**	.001	−.460 (−2.019, 1.098)	.562	.001	.221 (−1.631, 1.073)	.610
	Female	<.001	−.551 (−.423, 0.320)	.787	.001	.202 (−.532, 0.936)	.588	<.001	.308 (−.320, 0.482)	.691
Age	<.001	−.064 (−.594, 0.466)	.564	.001	.540 (−.105, 3.186)	.067	.005	.751 (−1.651, 1.149)	.102	
Father’s education level	<College level	.009	.894 (0.062, 1.726)	<.005	.007	1.540 (−.105, 3.186)	.067	.005	.751 (−1.651, 1.149)	.102
	≤College level	.004	.664 (−.220, 1.549)	.140	.001	.750 (−1.000, 2.500)	.400	.005	.756 (−1.711, 0.119)	.120
Mother’s education level	<College level	.003	.567 (−.312, 1.446)	.205	.003	1.002 (−.736, 2.739)	.258	.001	.403 (−1.353, 0.547)	.405
	≤College level	.004	.607 (−.246, 1.461)	.163	<.001	.345 (−1.346, 2.035)	.689	.001	.360 (−1.283, 0.564)	.445
Annual household income	<200,000	.001	.369 (−.741, 1.478)	.514	.001	−.805 (−2.998, 1.388)	.471	<.001	−.130 (−1.329, 1.069)	.831
	≥200,000	.005	2.294 (−.496, 5.084)	.107	.006	4.651 (−.861, 10.163)	.098	.010	−3.471 (−6.476, 0.465)	.024***
Do you have siblings?	No	.004	2.285 (−.829, 5.599)	.150	.005	5.064 (−1.087, 11.215)	.106	.001	.965 (−2.404, 4.335)	.574
	Yes	.005	2.929 (−.496, 5.399)	.107	.006	4.651 (−.861, 10.163)	.098	.010	−3.471 (−6.476, 0.465)	.024***

AR² = adjusted R squared; B (95% CI) = beta (95% confidence interval); R² = R squared.

p < .05∗; p < .001***.
dependent variables. For junior high school students, higher resilience was significantly associated with male gender \((p < .001) \) and father’s college education \((p = .035) \), whereas negative coping was significantly associated with COVID-19 patients \((p = .024) \). For high school students, higher resilience was significantly associated with male gender \((p < .001) \), mother’s college education \((p = .007) \), and siblings \((p = .013) \).

Psychological outcomes

The mean scores for the DASS-21 were 16.28 \((SD = 22.00) \) in the junior high school students and 19.77 \((SD = 20.40) \) in the high school students, with a significant between-group difference \((p = .009) \). The prevalence of psychological symptoms is summarized in Table 4. Moderate depressive symptoms were found in 9.1% of junior high school students and 6.8% of high school students, and severe-to-extremely severe depressive symptoms were found in 5.3% of junior high school students and 2.6% of high school students, with no significant between-group difference \((\chi^2 = 4.33; p = .363) \). Moderate anxiety symptoms were found in 10.0% of junior high school students and 8.9% of high school students, and severe-to-extremely severe anxiety symptoms were found in 20.5% of junior high school students and 20.6% of high school students, with no significant between-group difference \((\chi^2 = 12.33; p = .015) \). Moderate stress symptoms were found in 5.9% of junior high school students and 6.8% of high school students, and severe-to-extremely severe stress symptoms were found in 3.0% of junior high school students and 2.6% of high school students, with significant between-group difference \((\chi^2 = 10.84; p = .028) \). Trauma-related distress was found in 20.5% of junior high school students and 22.7% of high school students, with no significant between-group difference \((\chi^2 = .77; p = .404) \).

Regression results

The regression results are presented in Table 5–7. For the junior high school students, depressive symptoms were significantly predicted by resilience \((\text{OR} = .747, 95\%\ CI: .688–.811; p < .001) \), positive coping \((\text{OR} = .928, 95\%\ CI: .894–.965; p < .001) \), and negative coping \((\text{OR} = 1.086, 95\%\ CI: 1.020–1.156; p = .010) \). Anxiety symptoms were significantly predicted by resilience \((\text{OR} = .753, 95\%\ CI: .699–.812; p < .001) \), positive coping \((\text{OR} = .946, 95\%\ CI: .915–.979; p = .001) \), and negative coping \((\text{OR} = 1.136, 95\%\ CI: 1.072–1.205; p < .001) \). Stress symptoms were significantly predicted by resilience \((\text{OR} = .736, 95\%\ CI: .680–.795; p < .001) \), positive coping \((\text{OR} = .962, 95\%\ CI: .929–.996; p = .028) \), and negative coping \((\text{OR} = 1.104, 95\%\ CI: 1.041–1.172; p = .001) \). Trauma-related distress was significantly predicted by resilience \((\text{OR} = .876, 95\%\ CI: .817–.938; p < .001) \), positive coping \((\text{OR} = .938, 95\%\ CI: .894–.982; p < .001) \), and negative coping \((\text{OR} = 1.104, 95\%\ CI: 1.041–1.172; p = .001) \).

Table 3

Items	Resilience			Positive coping			Negative coping		
	\(R^2 \)	B (95% CI)	\(p \)	\(R^2 \)	B (95% CI)	\(p \)	\(R^2 \)	B (95% CI)	\(p \)
Gender									
Female	.047	-1.527 (-2.116, -0.939)	<.001**	.001	.512 (-0.647, 1.670)	.288	<.001	.512 (-0.647, 1.670)	.288
Male	.000	.165 (.139, 0.468)	.288	<.001	.044 (-0.541, 0.628)	.288	<.001	.044 (-0.541, 0.628)	.288
Age									
Father’s education level									
< College level	.001	.067 (-1.135, 1.001)	.902	<.001	-.168 (-2.222, 1.887)	.873	.003	-.168 (-2.222, 1.887)	.873
≥ College level									
Mother’s education level									
< College level	.014	1.702 (.466, 2.939)	.007*	.002	-1.190 (-3.582,1.202)	.329	.001	-1.190 (-3.582,1.202)	.329
≥ College level									
Annual household income									
< 200,000	.006	-1.460 (-3.073, 0.153)	.076	.006	-2.784 (-5.886, 0.319)	.079	<.001	-2.784 (-5.886, 0.319)	.079
≥ 200,000									
Do you have siblings?									
No	.011	1.369 (.285, 2.453)	.013*	.001	.773 (-1.322, 2.869)	.469	.001	.773 (-1.322, 2.869)	.469
Yes									
Is there a peer partner around you?									
No	.002	-.343 (-1.049, 0.363)	.340	.005	-1.088 (-2.443, 0.268)	.471	.001	-1.088 (-2.443, 0.268)	.471
Yes									
Any confirmed/ suspected cases with COVID-19 around you?									
No									
Yes									
Are your parents a frontline antiepidemic person?									
No									
Yes									

\(AR^2 = \text{adjusted } R \text{ squared}; B \text{ (95\% CI)} = \beta \text{ (95\% confidence interval)}; R^2 = R \text{ squared}. \)

\(p < .05*, p < .001**. \)
positive coping (OR = 1.130, 95% CI: 1.041, 1.205; p = .010) and negative coping (OR = 1.104, 95% CI: 1.041, 1.172; p = .001).

For the high school students, depressive symptoms were significantly predicted by resilience (OR = 1.260, 95% CI: 1.197, 1.325; p < .001), positive coping (OR = 1.136, 95% CI: 1.072, 1.205; p = .001), positive coping (OR = 1.189, 95% CI: 1.121, 1.260; p < .001). Anxiety symptoms were significantly predicted by resilience (OR = 1.234, 95% CI: 1.165, 1.304; p < .001), stress symptoms were significantly predicted by resilience (OR = 1.130, 95% CI: 1.086, 1.179; p = .001). Trauma-related distress was significantly predicted by resilience (OR = 1.189, 95% CI: 1.121, 1.260; p < .001).

Discussion

To the best of our knowledge, this study is the first to investigate the psychological consequences of the COVID-19 pandemic and its influencing factors on junior high and high school students. This study highlights several important findings. First, the results revealed significant rates of psychological consequences of the COVID-19 pandemic. Second, similar and different patterns were found between junior and high school students. The junior high and high school students had a similar prevalence of depression and trauma-related distress symptoms, and high school students had a higher prevalence of anxiety and stress symptoms than junior high school students. Third, positive coping and resilience were protective factors for depression, anxiety, and stress symptoms in both junior high and high school students, whereas negative coping was a risk factor for depression, anxiety, and stress symptoms in both samples. For trauma-related distress, resilience was a protective factor, negative coping was a risk factor in both samples, and positive coping was a protective factor for junior high school students but not for high school students.

The rates of depression symptoms (20.9% for junior high school students and 29.7% for high school students) and anxiety symptoms (25.4% for junior high school students and 28.4% for high school students) were higher than the rates reported by recent studies that did not involve any epidemic or pandemic. For instance, a recent study was conducted with a sample of 2,679 children aged 10–15 years old from 25 provinces in China, and the results revealed that the rates of depressive symptoms are significantly lower in urban areas (14%) than in rural areas (23%) [31]. Another study surveyed 1,597 junior high school students aged 10–17 years in Shanghai City (an urban area in China), and the results showed that the rates of anxious symptoms and

Table 4
The psychological outcomes of the participants

Items	All, n (%)/mean (SD)	Junior school students, n (%)/mean (SD)	Senior high school students, n (%)/mean (SD)	t/χ² value	p
DASS depression					
Normal	799 (78.00)	390 (79.10)	374 (70.30)	4.33	.363
Mild	71 (6.90)	32 (6.50)	108 (20.30)		
Moderate	100 (9.80)	45 (9.10)	36 (6.80)		
Severe	22 (2.10)	7 (1.40)	7 (1.30)		
Extremely severe	33 (3.20)	19 (3.90)	7 (1.30)		
DASS anxiety					
Normal	749 (73.10)	368 (74.60)	381 (71.60)	12.33	.015*
Mild	80 (7.80)	25 (5.10)	55 (10.30)		
Moderate	109 (10.60)	51 (10.30)	58 (10.90)		
Severe	31 (3.00)	19 (3.90)	12 (2.30)		
Extremely severe	56 (5.50)	30 (6.10)	26 (4.90)		
DASS stress					
Normal	754 (73.60)	380 (77.10)	374 (70.30)	10.84	.028*
Mild	177 (17.30)	69 (14.00)	108 (20.30)		
Moderate	65 (6.30)	29 (5.90)	36 (6.80)		
Severe	19 (1.90)	12 (2.40)	7 (1.30)		
Extremely severe	10 (1.00)	3 (0.60)	7 (1.30)		
PTSD total scores					
Yes	222 (21.70)	101 (20.50)	121 (22.70)	.77	.404
No	803 (78.30)	392 (79.50)	411 (77.30)		

*p < .05, **p < .01.

Table 5
Regression model on DASS for junior school students

Factors	Stress	Anxiety	Depression			
	AOR (95% CI)	p	AOR (95% CI)	p	AOR (95% CI)	p
Resilience	.736 (.680, .795)	<.001**	.753 (.699, .812)	<.001**	.747 (.688, .811)	<.001**
Positive coping	.962 (.929, .996)	.028*	.946 (.915, .979)	.001**	.928 (.894, .965)	<.001**
Negative coping	1.104 (1.041, 1.172)	.001**	1.136 (1.072, 1.205)	<.001**	1.086 (1.020, 1.156)	.010*

Adjusted the basic variables of personal information.
AOR = adjusted odds ratio; CI = confidence interval.
*p < .05, **p < .01.
depressive symptoms were 16.4% and 17.2%, respectively [32]. In contrast, the rates reported in this study were comparable with those found in previous studies in similar epidemic or pandemic contexts [4,5,22,33]. A study suggested that nearly one in five participants had depressive symptoms in the COVID-19 epidemic, indicating that the uncertainty of epidemic progression would cause greater psychological pressure on the public [5]. A recent cross-sectional study examined the impact of the COVID-19 pandemic on mental health in local Chinese residents, and the results indicated a mild stressful impact [34]. Previous studies have shown that children and adolescents who are exposed to traumatic experiences during disasters may suffer from high levels of posttraumatic stress [35]. Regarding anxious symptoms, a study evaluated the psychological condition of college students during the COVID-19 epidemic, and the results indicated that 24.9% of college students were afflicted with anxiety [1]. Common sources of anxiety during the epidemic include the increasing number of confirmed cases and suspected cases, the increasing number of provinces and countries affected by the outbreak, the shortage of masks and disinfectants, and the overwhelming and sensational news headlines [36]. Furthermore, we found that high school students (28.4%) had a higher prevalence of anxiety symptoms than junior high school students (25.4%). During the data collection period, the schools were still shut down, and the students were staying at home. All junior high and high schools in China were postponing classes and using distant remote learning methods. Troublesome anxiety can be exacerbated during the senior high school years as students face extreme transitions and social and academic pressures [37,38]. This added stress has been shown to increase with age and be related to increased levels of anxiety [38]. According to Muris and Mayer [39], as children age, their brain development continues and allows them to link their physical symptoms to an anxiety-provoking situation. Broeren and Muris [40] maintained that as adolescents gain cognitive abilities, they would have more negative thoughts and interpretations of events, leading to increased anxiety. As part of the increased responsibility and independence students receive as they get older, emotional support often decreases in secondary school. It has been found that anxiety symptoms can escalate when emotional support decreases [41].

The results showed that positive coping is a protective factor for anxiety, depression, and stress symptoms in junior high and high school students, whereas a negative coping style is a risk factor for anxiety, depression, and stress symptoms in both groups. In our study, active coping style involved positive appraisal and thinking, distancing, problem-solving and help-seeking. These active coping strategies can enhance mental health by promoting an individual’s sense of control over a chaotic environment and creating opportunities for satisfying relationships with a support network [42,43]. Accumulating evidence has suggested that positive coping is a protective factor for mental health. For example, it has been found that the use of a positive coping style could promote university students’ academic adjustment and reduce displays of maladaptive behaviors [44]. Negative coping includes behaviors of avoidance, such as keeping feelings to one’s self, avoiding the situation, and staying away from people. It is suggested that prominent use of negative coping strategies tends to impede adaptation and psychological health [45,46] and to exacerbate the negative effects of stress, perhaps leading to feelings of loss of control and helplessness [47]. A negative coping strategy is employed when an individual’s perceived resilience and social support is inadequate and when stressors are perceived as uncontrollable [48,49]. As the COVID-19 pandemic is threatening and unpredictable, it is likely to be perceived as a stressor out of control.

The current results showed that resilience is a protective factor for anxiety, depression, and stress symptoms in junior high and high school students. This could be indicative of the role that resilience plays in safeguarding the mental health of teenagers during the COVID-19 pandemic. Similar findings were reported in previous studies [13,14]. Resilience refers to the ability to bounce back from stress, and the BRS was developed to measure this ability [14,50]. Although the BRS measures a person’s actual ability to bounce back [50]. The current result suggesting that male students have higher resilience is consistent with the literature. On the one hand, previous studies reported higher resilience level in male than female in a university sample [51] and in a community sample [52]. On the other hand, the moderation effect of resilience on health outcomes was more prominent in males than females who exposed to earthquake [53]. Similarly, the moderation effect of resilience on psychological distress was more prominent in males than females in a university sample [54]. The results extended previous findings by demonstrating that higher parental education level was associated with children’s higher

Table 6
Regression model on DASS for senior high school students

Factors	Stress	Anxiety	Depression			
	AOR (95% CI)	p	AOR (95% CI)	p	AOR (95% CI)	p
Resilience	.822 (.764, .883)	< .001**	.859 (.802, .920)	< .001**	.857 (.793, .926)	< .001**
Positive coping	.952 (.915, .989)	.013	.927 (.892, .962)	< .001**	.898 (.860, .939)	< .001**
Negative coping	1.197 (1.130, 1.267)	< .001**	1.233 (1.165, 1.304)	< .001**	1.234 (1.158, 1.316)	< .001**

Adjusted the basic variables of personal information.
AOR = adjusted odds ratio; CI = confidence interval.
*p < .05, **p < .01.

Table 7
Binary logistic regression on PTSD symptoms for junior and senior high school students

Factors	Junior high school students	p	Senior high school students	p
Resilience	.876 (.817, .938)	< .001**	.911 (.850, .976)	.008
Positive coping	.960 (.926, .995)	.025	.967 (.929, 1.007)	.108
Negative coping	1.163 (1.097, 1.233)	< .001**	1.189 (1.121, 1.260)	< .001**

Adjusted the basic variables of personal information.
CI = confidence interval; OR = odds ratio.
*p < .05, **p < .00.

C. Zhang et al. / Journal of Adolescent Health 67 (2020) 747–755
resilience. This is reasonable because parents with high educational levels are more likely to provide fulfilling educational, employment, and interpersonal futures for their children compared with parents with low educational levels, thus foster more positive self-image, greater life satisfaction, and more available support.

Nevertheless, there are several limitations to the present study. First, the cross-sectional study design precluded the ability to establish a causal relationship between psychological symptoms and coping/resilience, and causal inferences must be drawn with caution. Future work may wish to follow up with young adults and to establish a predictive role of coping style and resilience for the occurrence of psychological symptoms. Second, the online survey method relied on the self-selection of respondents and may lead to biased estimates, particularly when the response rate is low. Finally, all the constructs were assessed by self-report, and the estimated relations among psychological outcomes, coping, and resilience might be biased by the reporter effect. Future work may wish to use a multimethod approach for assessment.

Conclusions

During the COVID-19 pandemic in China, more than one fifth of junior high and high school students’ mental health was affected. Our findings suggested that resilience and positive coping lead to better psychological and mental health status in students. In contrast, negative coping is a risk factor for psychological and mental health. This study can be used to formulate psychological interventions to improve the mental health of junior high and high school students during the COVID-19 pandemic.

Acknowledgments

The authors thank the local school in Guangdong Province and students for participating in this study.

Funding Sources

This study was supported by research grants from the Science and Technology Program of Guangdong, China (2018B03033 4001).

References

[1] Cao W, Fang Z, Hou G, et al. The psychological impact of the COVID-19 epidemic on college students in China. Psychiat Res 2020;287:112934.
[2] Lee AM, Wong JC, McLallon GM, et al. Stress and psychological distress among SARS survivors 1 year after the outbreak. Can J Psychiatry 2007;52: 233–40.
[3] McLallon GM, Lee AM, Cheung V, et al. Immediate and sustained psychological impact of an emerging infectious disease outbreak on health care workers. Can J Psychiatry 2007;52:241–7.
[4] Su TP, Lien TC, Yang CY, et al. Prevalence of psychiatric morbidity and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: A prospective and periodic assessment study in Taiwan. J Psychiatr Res 2007;41:119–30.
[5] Huang Y, Zhao N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiat Res 2020;288:112954.
[6] Mak IWC, Chu CM, Pan PC, et al. Long-term psychiatric morbidities among SARS survivors. Gen Hosp Psychiat 2009;31:318–26.
[7] Chassin L, Ritter J, Trim RS, King KM. Adolescent substance use disorders. Child Psychopathol 2002;2:199–230.
[38] Moksnes UK, Espnes GA. Evaluation of the Norwegian version of the adolescent stress questionnaire (ASQ-N): Factorial validity across samples. Scand J Psychol 2011;52:601–8.

[39] Muris P, Mayer B, Freher NK, et al. Children’s internal attributions of anxiety-related physical symptoms: Age-related patterns and the role of cognitive development and anxiety sensitivity. Child Psychiatry Hum Dev 2010;41:535–48.

[40] Broeren S, Muris P. The relation between cognitive development and anxiety phenomena in children. J Child Fam Stud 2009;18:702.

[41] Wit DJD, Karioja K, Rye B, Shain M. Perceptions of declining classmate and teacher support following the transition to high school: Potential correlates of increasing student mental health difficulties. Psychol Schools 2011;48:556–72.

[42] Compas BE, Malcarne VL, Fondacaro KM. Coping with stressful events in older children and young adolescents. J Consult Clin Psychol 1988;56:405.

[43] Forsythe C, Compas B. Interactions of coping and perceptions of control: Testing the goodness of fit hypothesis. Cogni Ther Res 1987;11:473–85.

[44] Russell J, Rosenthal D, Thomson G. The international student experience: Three styles of adaptation. Higher Educ 2010;60:235–49.

[45] Krause ED, Kalfman S, Goodman LA, Dutton MA. Avoidant coping and PTSD symptoms related to domestic violence exposure: A longitudinal study. J Trauma Stress 2008;21:83–90.

[46] Cherry KE, Lyon BA, Sampson L, et al. Prior Hurricane and other lifetime trauma predict coping style in older commercial Fishers after the BP Deepwater Horizon oil spill. J App Biobehav Res 2017;22:e12058.

[47] Sandler IN, Miller P, Short J, Wolchik SA. Social support as a protective factor for children in stress. In: Belle D, ed. Children’s social networks and social supports. Wiley series on personality processes. New York: John Wiley & Sons; 1989:277–307.

[48] Thompson NJ, Florilo D, Rothbaum BO, et al. Coping strategies as mediators in relation to resilience and posttraumatic stress disorder. J Affect Disord 2018;225:153–9.

[49] Pinoles SL, Mostoufi SM, Ready CB, et al. Trauma reactivity, avoidant coping, and PTSD symptoms: A moderating relationship? J Abnorm Psychol 2011;120:240.

[50] Smith BW, Tooley EM, Christopher P, Kay V. Resilience as the ability to bounce back from stress: A neglected personal resource? J Posit Psychol 2010;5:166–76.

[51] Erdogan E, Ozdogan O, MJP Erdogan. University students’ resilience level: The effect of gender and faculty. Proced Soc Behav Sci 2015;186:1262–7.

[52] Campbell-Sills L, Forde DR, Stein MB. Demographic and childhood environmental predictors of resilience in a community sample. J Psychiatr Res 2009;43:1007–12.

[53] Stratta P, Capanna C, Patriarca S, et al. Resilience in adolescence: Gender differences two years after the earthquake of L’Aquila. Pers Individ Differ 2013;54:327–31.

[54] Zhang M, Zhang J, Zhang F, et al. Prevalence of psychological distress and the effects of resilience and perceived social support among Chinese college students: Does gender make a difference? Psychiatry Res 2018;267:409–13.