The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease

Yu Suna Sijia Cuia Yunfeng Houb Fan Yia

aThe Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China; bIntensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China

Keywords
Podocyte · Lipid accumulation · Proteinuric kidney disease · Diabetes · Inflammation

Abstract
Background: Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. Summary: Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. Key Messages: Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.

Introduction

Proteinuria is not only a typical sign of kidney damage but also importantly contributes to the progression of chronic kidney disease (CKD) such as obesity-related glomerulopathy (ORG), diabetic kidney disease (DKD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), and minimal change disease (MCD) [1]. Podocyte injury is considered as the most important early event in the pathogenesis of proteinuria and progressive glomerulosclerosis in patients with proteinuric kidney diseases [2]. Although considerable advances have been made in the understanding of mechanisms that trig-
Podocyte Lipid Metabolism

Emerging evidence has revealed that the disorder of lipid metabolism is linked to renal dysfunction, as well as to several other pathological hallmarks of ORG and DKD [3–7]. In fact, in addition to obesity and diabetes, ectopic lipid accumulation is common in other kinds of proteinuric kidney diseases such as FSGS, MN, and MCD which has been confirmed in numerous experimental animal and clinical studies [8–11]. And different types of renal parenchymal cells have different sensitivities to pathologic lipid accumulation, which make different contributions to disease progression. Podocytes are vulnerable to lipid accumulation, resulting in their dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response. Importantly, pathologic lipid accumulation in podocytes is the consequence of the dysregulation of genes or proteins involved in cellular lipid metabolism, which comprises synthesis, uptake, storage, utilization, and cellular export of lipids rather than the amount of circulating lipids [12], indicating the importance of podocyte lipid metabolism in proteinuric kidney diseases. An increasing number of evidence suggests that not only the quantity of lipids but also the type of accumulated lipids may be responsible for cellular damage [4]. In this review, we summarize recent advances in the understanding of the lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. Targeting podocyte lipid metabolism will pave the way to new therapeutic approaches in podocyte injury and proteinuric kidney disease.

Lipids in Podocyte Biological Function

Lipids are not only the key structural components of biological membranes but also potent signal transduction molecules, orchestrating intra- and extracellular signal transmission as well as acting as a source of energy [13]. The structure and function of podocytes largely depend on the integrity of slit diaphragm (SD), a lipid raft-like structure. In addition to sphingolipids, lipids especially cholesterol is enriched 5–8-fold in lipid rafts compared with the rest of the plasma membrane and play an important role in assuring proper localization and function of SD proteins including transmembrane proteins (nephrin), integral membrane proteins (podocin), structural proteins (alpha-actinin-4), signaling adapters (CD2-associated protein), ion channels (transient receptor potential cation channel 6) and other proteins involved in cell signaling. Fatty acids are also essential to form the phospholipid bilayers of the cell membranes and act as phospholipid messengers, transmitting vital intracellular signals. Moreover, large quantities of cholesterol esters and triacylglycerol (esterified fatty acid [FA]) forming a neutral lipid core, surrounded by a phospholipid monolayer, can accumulate in intracellular lipid droplets for storage [8].

Although FAs including saturated FAs (SFAs) and unsaturated FAs, together with glucose and amino acids, are generally used as energy sources for the formation of ATP, the peculiarities of podocyte energy metabolism keep controversy [14]. Regarding this issue, Abe et al. [15] first reported a primary role of mitochondria and, in particular, a high dependency of podocytes on mitochondrial energy transduction and on FAs as a metabolic fuel source in transformed mouse podocyte cell lines, while glycolysis makes a lesser contribution. On the contrary, Ozawa et al. [16] suggested that both glycolytic and oxidative phosphorylation (OXPHOS) pathways contribute to podocyte energy supply, depending on the intracellular sub-localization of mitochondria and on the cell differentiation status. Imasawa et al. [17] further recorded that high-glucose conditions force differentiating human podocyte cell lines to switch from OXPHOS to glycolysis, with consecutive lactic acidosis. Recently, Brinkkoetter et al. [18] provided comprehensive metabolomics data from freshly isolated glomeruli and primary podocytes, showing that under physiologic conditions, podocytes largely rely on metabolizing glucose as fuel to lactate (anaerobic glycolysis) and only to a minor extent on β-oxidation of FAs for ATP production. This baseline glucose preference can shift toward an enhanced FAs β-oxidation for metabolic reprogramming [19]. Yuan et al. [20] indicated that differentiated (mature) murine podocytes can promote both glycolysis and mitochondrial metabolism to meet their augmented energy demands. During the differentiation process, the predominant energy source from anaerobic glycolysis in immature podocytes is shifted to OXPHOS. Chen et al. [21] also showed that high glucose induces marked upregulation of lipogenic gene expression and the decrease of FA oxidation (FAO), which results in the ectopic lipid deposition in podocytes. Collectively, accumulating evidence suggests that the metabolic switch from mitochondrial respiration to glycolysis or vice versa in podocytes is not uniform but rather depends on the cell type and cell environmental context.
Podocyte Lipid Accumulation in Proteinuric Kidney Disease

Podocytes are vulnerable to lipid accumulation. Excessive lipid accumulation in podocytes can lead to lipotoxicity characterized by mitochondrial oxidative stress [22], inflammatory responses [23, 24], actin cytoskeleton remodeling, insulin resistance, and endoplasmic reticulum (ER) stress, which eventually trigger podocyte hypertrophy, autophagy, dedifferentiation, mesenchymal transition, detachment to apoptosis, and death [25]. Podocyte injury is considered as a hallmark of proteinuric kidney diseases such as DKD, FSGS, MN, and MCD.

Table 1. Lipid and lipid metabolites that contribute to podocyte lipotoxicity

Class	Model	Outcome	Ref.
Saturated FAs			
Palmitic acid (16:0)*	MPC, DKD mice	↓ Podocyte injury and apoptosis, mitochondrial dysfunction, oxidative stress, ER stress, insulin resistance; ↑ albuminuria	[27–32]
Stearic acid (18:0)*	CKD patients	Decreased abundance in plasma associate with declining renal function	[33]
Unsaturated FAs			
Oleic acid (18:1)*	MPC, DKD mice	↓ Podocytes cell death and loss, ER stress, oxidative stress; ↑ proteasome expression; ↑ albuminuria, histologic changes	[28, 34]
Arachidonic acid (20:4)*	HPC	↑ Actin cytoskeleton remodeling, podocyte injury	[35]
Eicosapentaenoic acid (20:5)*	MPC	↑ Podocyte apoptosis, inflammation	[36]
Glycerolipids			
Triglyceride	CKD, metabolic syndrome mice	↑ Podocyte apoptosis; ↑ albuminuria, histologic changes	[37]
Phospholipids			
Phosphatidylcholine	MPC, DKD mice	Associate with podocyte injury and DKD	[38, 39]
Phosphatidylethanolamine Cardiolipin	MPC, DKD mice	↑ Podocyte injury, mitochondrial dysfunction; ↑ albuminuria, histologic changes	[25]
Phosphosphingolipids			
Sphingomyelin	DKD mice	↑ Actin cytoskeleton remodeling, podocyte injury; ↑ albuminuria, histologic changes	[40]
Glycosphingolipids			
Ganglioside	HPC, MPC, DKD mice	↑ Actin cytoskeleton remodeling, podocyte injury; ↑ albuminuria, histologic changes	[41–43]
Other sphingolipids			
Ceramide	DKD mice	↑ Mitochondrial dysfunction, inflammation, insulin resistance, podocyte injury	[42, 44, 45]
Sphingosine	Primary MPC, podocytopathy and associated NS mice (Asah1fl/fl/Podo-Cre mice)	1. Exosome release of podocytes, podocyte injury; 1 urinary exosome excretion	[46, 47]
Sphingosine-1-phosphate	CKD mice	↑ Albuminuria, histological changes; ↑ oxidative stress, mitochondrial dysfunction	[46, 48]
Ceramide-1-phosphate	HPC, DKD mice	↑ Albuminuria, histologic changes; ↑ oxidative stress, mitochondrial dysfunction; ↑ albuminuria, histologic changes	[25, 40]
Sterol lipid			
Cholesterol	HPC, HN mice	↑ Podocyte apoptosis; ↑ albuminuria, histologic changes	[49, 50]
Cholesterol esters	HPC, DKD mice, AS mice	↑ Podocyte injury; ↑ albuminuria, histologic changes	[51]

Ref., reference; MPC, mouse podocytes; DKD, diabetic kidney disease; CKD, chronic kidney disease; ER, endoplasmic reticulum; HPC, human podocytes; NS, nephrotic syndrome; KO, knockout; Podo, podocyte; HN, hypertensive nephropathy; AS, Alport syndrome. * Number of carbon atoms: number of C = C double bonds.

Normally, lipids are classified into 8 different categories including fatty acyls, glycerolipids, glycerophospholipids (GPs), sphingolipids, sterols, prenol lipids, saccharolipids, and polyketides [26]. Some of them that abnormally accumulate in podocytes mainly contribute to proteinuric kidney disease, including (1) fatty acyls: SFAs, monounsaturated FAs (MUFA), polyunsaturated FAs (PUFA), and PUFA-derivatives eicosanoids; (2) glycerolipids: monoacylglycerols, diacylglycerols, and triacylglycerols also termed as triglycerides; (3) GPs: phosphatidylcholine (PC), phosphatidylserine, phosphatidylethanolamine (PE), phosphatidylinositol, cardiolipin (CL), phosphatidylglycerol, and phosphatidic acid; (4) sphingolipids: phosphosphingolipids (sphingomyelin), glyco-
Podocyte Lipid Metabolism

Free Cholesterol and Cholesterol Ester

Cellular cholesterol homeostasis is highly regulated by cholesterol synthesis at the ER membrane, cholesterol uptake, and efflux (Fig. 1), all processes are tightly regulated and adapted to cellular needs. However, excess cholesterol accumulation in podocytes can perturb the SD, adversely affect podocyte function, and induce protein-uric kidney diseases [52–54].

In podocytes, circulating unoxidized or oxidized low-density lipoprotein (LDL) is the major source for cholesterol uptake into cells via the LDL receptor or c-x-c motif ligand 16, a scavenger receptor [55]. LDL and its receptor complexes are internalized by endocytosis and transport to the lysosome for degradation, resulting in the release of free cholesterol. The proteins Niemann-Pick C1 and C2 have major roles in the transport of free cholesterol from lysosomes to the ER and then to the plasma membrane. It is reported that the downregulation of phosphatase and tensin homolog in podocytes causes the inactivation of the actin depolymerizing factor cofilin-1 by increasing its phosphorylation. This response stimulates the formation of filamentous actin and promotes cholesterol endocytosis, resulting in cholesterol accumulation in podocytes [56].

The efflux of free cholesterol to high-density lipoprotein (HDL) acceptors is mediated by ATP-binding cassette (ABC) transporters such as ABC subfamily A member 1 (ABCA1) and subfamily G member 1 or 8 (ABCG1/8) in the presence of extracellular lipid-poor apolipoproteins (APO proteins) [8, 53]. The increase in cellular free cholesterol is converted to cholesterol ester via ER enzyme sterol-O-acetyltransferase-1 (SOAT1) leading to the formation of cholesterol-enriched lipid droplets. Cholesterol ester can be converted back to free cholesterol via neutral cholesterol esterhydrolyase 1 (NCEH).

The accumulation of excess free cholesterol has been demonstrated to be toxic to cells. APOL1, an essential component of HDL3 and highly expressed in podocytes, is the highest risk genetic variant of kidney disease and the main cause of glomerulosclerosis in the African-American population [57]. Human podocytes treated with the sera from the patients with DKD showed increased cholesterol accumulation in association with a reduction of ABCA1 [58]. Pedigo et al. [49] demonstrated that local TNF expression causes free cholesterol-dependent podocyte apoptosis in FSGS and DKD through a dual mechanism that requires a reduction in ABCA1-mediated cholesterol efflux and decreased cholesterol esterification by SOAT1 activity. Consistently, cholesterol accumulation was detected in podocytes from angiotensin II-infused mice, which was associated with ABCG1-mediated cholesterol efflux by epigenetic modification [50] (Table 1). However, some controversial studies suggested that free cholesterol is not cytotoxic to podocytes. They found that in diabetic ob/ob mice, podocyte-specific deletion of Abca1 enhances podocyte injury which is not attributed to an accumulation of free cholesterol but to the mitochondrial membrane phospholipid phospholipid CL accumulation. That is because an additional genetic deletion of Soat1 that prevents cholesterol esterification had no further detrimental effect on glomerular injury [25].

It is known that cholesterol esterification and storage in lipid droplets are essential to maintain proper levels of free cholesterol. However, whether cholesterol ester accumulation is toxic and contributes to renal disease is still unclear [13]. Recent studies showed that blocking cholesterol esterification via SOAT1 inhibition in podocytes attenuates lipotoxicity-induced podocyte injury in DKD and Alport’s syndrome in association with ABCA1-mediated cholesterol efflux [51].

Cholesterol synthesis is primarily controlled by the rate-limiting enzyme, 3-hydroxy-3-methyl-glutaryl-CoA reductase. The expression of genes encoding enzymes such as 3-hydroxy-3-methyl-glutaryl-CoA reductase and SOAT1 is regulated by members of the sterol-regulatory element-binding protein (SREBP) family of transcription factors. In addition, other nuclear receptors and transcription factors such as liver X receptor (LXR), farsenoid X receptor (FXR), peroxisome proliferators-activated receptors (PPARs), and nuclear factor of activated T cells are also involved in cholesterol synthesis and metabolism. Recently, our studies found that functional adhesion molecule (JAM)-like protein (JAML) (Amicala), a novel member of JAM family, mediates podocyte lipid metabolism by regulating SREBP1 and its target genes involved in FAs and cholesterol synthesis. Mechanistically, histone deacetylase-mediated epigenetic processes in the regulation of lipid metabolism have attracted much attention. SIRT1 is one member of SIRTs (class III histone deacetylase) that are highly conserved NAD+-dependent deacetylases. SIRT1 not only serves as an important energy status sensor but also protects cells against metabolic stresses. In our studies, we further demonstrated SIRT1 links
JAML to SREBP1 signaling, which is consistent with the previous studies, showing that SIRT1 can regulate SREBP-1 expression and activity [38].

Saturated Fatty Acids and Triglycerides

Cellular FA homeostasis is regulated by synthesis, uptake, storage, and β-oxidation. Numerous studies have indicated that excessive free FA (FFA) accumulation plays a key role in podocyte injury and proteinuria [59]. FFA and triglyceride syntheses are controlled by SREBP-1c which targets lipogenic enzymes including acetyl-CoA carboxylase (ACC) and FA synthase (FASN). Furthermore, carbohydrate response element-binding protein (ChREBP) is an important transcription factor for cellular fat synthesis. ChREBP deficiency alleviated diabetes-associated renal lipid accumulation by inhibiting mTORC1 activity, suggesting that the reduction of ChREBP is a potential therapeutic strategy to treat DKD [21]. In addition, other nuclear transcription factor receptors including LXR, FXR, and PPARs are also involved in FA synthesis and metabolism.

Disturbed transport and oxidation of FFAs, paralleled by an impaired antioxidant response, damages podocyte structure and leads to glomerulopathy during the early stage of DKD. FFAs can be transported into cells by CD36 (also known as scavenger receptor B2) [60], FA transport protein (FATP), FA-binding proteins (FABP), or via the assistance of vascular endothelial growth factor B (VEGF-B) [39]. CD36 is the main receptor for FFAs uptake in podocytes. CD36-dependent uptake of palmitic acid led to a dose-dependent increase in the levels of mitochondrial reactive oxygen species (ROS), depolarization of mitochondria, ATP depletion, and apoptosis [27, 60]. Podocyte-specific expression of FABP correlates with proteinuria in diabetic db/db mice and enhances FFAs induced podocyte injury [61, 62]. Falkevall et al. [39] suggested that VEGF-B promotes FA accumulation in the glomeruli of DKD mice via upregulation of FATP4. Inhibiting VEGF-B...
signaling in DKD mouse models reduces renal lipotoxicity and re-sensitizes podocytes to insulin signaling.

The SFAs (also called nonesterified FA, NEFA) including palmitic acid and stearic acid, together with the MU- FAs such as oleic acid account for 70–80% of plasma FFAs [63]. Podocytes are highly susceptible to damage from SFAs [27–33]. By contrast, MUFAs can attenuate palmitic acid-induced lipotoxicity [28, 34]. Stearoyl-CoA desaturase (SCD)-1, which converts SFAs to MUFAs, is up-regulated in podocytes in biopsy samples from patients with DKD and ameliorates ER stress and podocyte injury [64]. PUFA such as arachidonic acid, as a major metabolite of phospholipase A2 group IB, regulates the actin bungling remodeling and contributes to the podocyte injury [35]. However, eicosapentaenoic acid and docosahexaenoic acid help lag the progression of CKD [36].

Cellular FFAs are commonly esterified to form 3 main classes of esters: triglycerides, phospholipids, and chole-
Podocyte Lipid Metabolism

Glycerophospholipids and Sphingolipids

More recently, GPs and sphingolipids have also been implicated in the pathogenesis of glomerular diseases [38, 39, 41, 46, 67] (Table 1). A specific modification of GPs is shown to correlate with kidney deterioration in diabetic subjects and mice [68]. Ducasa et al. [25] found that podocyte-specific Abca1 deficiency leads to the accumulation of mitochondrial CL, which promotes podocyte injury in DKD. Pharmacologic induction of ABCA1 ameliorated podocyte injury and decreased CL oxidation [25].

In addition, intracellular accumulation of SLs or metabolites in the form of ceramide, sphingosine, S1P, sphinganine, sphingomyelin, C1P, and glycosphingolipids (gangliosides GM3 and cerebrosides) in podocytes may contribute to cellular dysfunction and the progression of proteinuric kidney disease [41, 46, 47] (Fig. 2). Ceramide represents the centerpiece of the sphingolipid metabolic pathway. Ceramide accumulation in podocytes induces mitochondrial damage through ROS production in patients with DKD [44]. Podocyte-specific deletion of the main catalytic subunit of acid ceramidase resulted in ceramide accumulation in glomeruli and development of nephrotic syndrome [45]. Acid sphingomyelinase overexpression also leads to ceramide accumulation and glomerular sclerosis in mice [42].

Ceramide can be further catabolized to sphingosine by ceramidases. Then, sphingosine is phosphorylated to S1P by sphingosine kinase. In addition, ceramide kinase catalyzes the formation of another bioactive lipid, C1P. Studies have shown that increased expression of S1P is associated with increased ROS production and renal injury in DKD [48]. S1P lyase is reported to play a role in the development of proteinuria in mice [69]. Genetic mutations in the gene coding for S1P lyase are associated with severe podocyte injury and nephrotic syndrome in humans [70, 71]. Moreover, diabetic db/db mice have less total level of C1P in kidney cortices. Consistently, exogenous administration of C1P protects from DKD progression [40, 72]. Falkevall et al. [39] demonstrated that reducing VEGF-B signaling in db/db mice prevents renal lipotoxicity by reducing the accumulation of neutral lipid, GPs, and sphingolipids. Our recent studies have also indicated that JAML not only enhances high glucose-induced the accumulation of FFAs and cholesterol ester but also GPs (such as PC and phosphatidylethanolamine), sphingolipids (such as ceramides), which contributes to podocyte injury by lipidomics analysis. However, the mechanisms by which JAML regulates GPs and sphingolipids need to be further investigated [38].
Table 2. Therapeutic strategies

Agent	Category	Pathway	Disease model	Outcome	Ref.
Statin	Lipid-lowering drug	HMG-CoA reductase	CKD	↓ Proteinuria, histologic changes, oxidative stress/apoptosis, and podocyte injury	[82, 84]
Fenofibrate	Fibrate	PPARα agonist	HFD	↓ Albuninur, histologic changes, oxidative stress/fibrosis, and lipid accumulation	[85]
Fenofibrate	Fibrate	PPARα agonist/AMPK-PGC-1-α	db/db mice	↓ Albuminuria, histologic changes, inflammation/oxidative stress, apoptosis/fibrosis, and lipid accumulation	[86]
AdipoRon	Adiponectin receptor agonist	AMPK/PPARα pathway	db/db mice	↓ UACR, oxidative stress/apoptosis, and lipid accumulation	[7, 87]
JNJ 39933673	SGLT2 inhibitor	ChREBP-β, SREBP-1	db/db mice	↓ UACR, histological changes, inflammation/fibrosis, lipid accumulation, and podocyte injury	[88]
Dapagliflozin	SGLT2 inhibitor	SREBP-1c	WD-induced obesity mice	↓ UACR, histologic changes, fibrosis, lipid accumulation, and podocyte injury	[88–90]
Obeticholic acid (INT-747)	FXR agonist	Glutathione metabolism pathway	HFD + uninephrectomy	↓ UACR, histologic changes, oxidative stress/apoptosis, and lipid accumulation	[91]
INT-777	Selective TGR5 agonist	TGR5	db/db mice, DIO mice	↓ Proteinuria, histologic changes, inflammation/fibrosis, FA accumulation, podocyte injury	[92]
INT-767	FXR/TGR5 dual agonist	SREBP-1 pathway; TGF-β pathway	db/db mice, STZ-treated mice and DIO mice	↓ Proteinuria, histologic changes, fibrosis, lipid accumulation, and podocyte injury	[93]
Neutralizing monoclonal VEGF-B antibody	VEGF-B antagonism	VEGF-B signaling	Podo-VegB KO; db/db mice; double KO; HFD or STZ-treated mice	↓ UACR, histologic changes, inflammation, lipid accumulation, and podocyte injury	[39]
Cyclosporin A2/2-hydroxypropyl-β-cyclodextrin	Calcinurin inhibitor/cholesterol chelator	TGF/NFAT/ABCA1/SOAT1 signaling	Podo-Aka1 KO, double, triple, and inducible KO mice	↓ UACR, histologic changes, inflammation/oxidative stress/apoptosis, cholesterol accumulation, and podocyte injury	[49, 58]
A30/elamipretide	ABCA1 inductor/cardiolipin peroxidase inhibitor	Mitochondrial dysfunction pathway	Podo-Aka1 KO; Soat KO, db/db and BTBR ob/ob mice	↓ UACR, histologic changes, oxidative stress/mitochondrial dysfunction, lipid accumulation, and podocyte injury	[25]
Sandor 58-035	SOAT1 inhibitor	ABCA1/SOAT1 signaling	db/db Soat KO mice; Col4a3 KO (AS) mice	↓ UACR, histologic changes, cholesterol accumulation, and podocyte injury	[51]
Ceramide-1-phosphate	Lipid supplementation	SMPDL3b/C1P/IR/Cav-1/Ark signaling	Podo-Smpdl3 KO, double KO, and db/db mice	↓ UACR, histologic changes, lipid accumulation, podocyte injury	[40]
Rituximab	CD20 monoclonal antibody	SMPDL3b, ASMase	Patients with recurrent FSGS, human podocytes treated with serum from patients	↓ UACR, histologic changes, lipid accumulation, and podocyte injury	[74]
Berberine	Flavonoid	Drp1	db/db mice	↓ UACR, histologic changes, oxidative stress, mitochondrial dysfunction, lipid accumulation, and podocyte injury	[32]

Ref., reference; HMG-CoA, β-hydroxy-β-methylglutaryl-coenzyme A; CKD, chronic kidney disease; PPAR, peroxisome proliferator-activated receptor; HFD, high-fat diet; AMPK, AMP-activated protein kinase; PGC-1, peroxisome proliferator activated receptor-gamma coactivator-1; db/db, leptin-deficient; UACR, urinary albumin creatinine ratio; SGLT2, sodium-glucose cotransporter 2; ChREBP, carbohydrate-responsive element-binding protein; SREBP, sterol regulatory element-binding protein; WD, western diet; FXR, farnesoid X receptor; TGR5, G protein-coupled bile acid receptor; DOI mice, diet-induced obesity mice; TGF-β, transforming growth factor beta; STZ, streptozotocin; Podo, podocyte; VEGF-B, vascular endothelial growth factor B; SOAT1, sterol O-acyltransferase 1; KO, knockout; TNF, tumor necrosis factor; NFAT, nuclear factor of activated T-cells SOAT1, sterol O-acyltransferase 1; ABCA1, ATP, binding cassette A1; AS, Alport syndrome; BTBR, black tan and brachyury; ob/ob, leptin-deficient; SMPDL3b, sphingomyelin phosphodiesterase acid-like 3b; C1P, ceramide-1-phosphate; IR, insulin receptor; Cav-1, caveolin-1; Akt, protein kinase B; ASMase, acid-sphingomyelinase; FSGS, focal segmental glomerulosclerosis; Drp1, dynamin-related protein 1.
sion was upregulated in glomeruli from patients with DKD and in human podocytes treated with DKD sera. Notably, overexpression of SMPDL3b resulted in decreased C1P levels in human podocytes in vitro and in the kidney cortex of mice with DKD in vivo [40]. Podocyte-specific Smpdl3b deficiency had restored levels of C1P in the kidney cortex and protected from DKD. These results indicate that SMPDL3b may play different roles in the different pathogenesis of kidney disease.

LDs That Store Intracellular Cholesterol Esters and Triglycerides

Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core (cholesterol ester and triglyceride) surrounded by a phospholipid monolayer and a set of LD-specific proteins. Whether LDs exert cytoprotective or cytotoxic effects in podocytes remains unknown. They are commonly considered a cytoprotective mechanism [13]. Some studies showed that they directly contact other organelles such as mitochondria, endosomes, Golgi complex, and peroxisomes, which are critical to buffer the levels of toxic lipid species [75]. In addition, LDs can act as a protective reservoir for unfolded proteins and toxins by preventing interactions with other cellular compartments [76]. Also, they have the potential to reduce podocyte toxicity, autophagic flux, and cell death by scavenging and storing the disease-associated APOL1 risk variants G1 and G2 [82]. Furthermore, LDs protect mitochondria by sequestering FAs and thus prevent an abnormal flux of FAs into acylcarnitine, which at high levels is toxic to mitochondria [78]. Recently, they have been shown to be innate immune hubs that integrate cell metabolism and host defense, highlighting a positive role of intracellular lipids as key regulators of cell function and survival [79]. However, some studies observed that LDs accumulate in glomeruli of renal biopsy samples from diabetic patients, which coincides with the presence of oxidative stress markers [80]. Therefore, LDs are very active scavenging organelles that can coordinate the function of other organelles in response to stress by modulating storage and lipolysis across different subcellular compartments [81].

Therapeutic Strategies

Statins

Statins are a group of drugs (such as lovastatin and simvastatin) that inhibit the synthesis of cholesterol and promote the production of LDL-binding receptors in the liver resulting in a usually marked decrease in the level of LDL and a modest increase in the level of HDL circulating in blood plasma. A recent meta-analysis demonstrated that although statins reduces proteinuria and mortality, this effect was not sufficient to slow the clinical progression of non-end-stage CKD [82]. However, all available clinical guides suggest that controlling LDL cholesterol is a part of the multi-target approach in the treatment of DKD [83, 84]. Therefore, other therapies are needed to lower cellular toxic lipid levels (Table 2).

PPAR Agonists

PPAR α/γ agonists are recognized as a potential therapy to treat renal lipotoxicity and DKD [94]. For example, fenofibrate, a potent PPARα agonist, improves albuminuria, inhibits intrarenal lipid accumulation, and prevents apoptosis and oxidative stress [86]. In mice fed with high-fat diet, fenofibrate can reduce oxidative stress and lipid accumulation in glomeruli and prevent the development of albuminuria and glomerular injury [85].

Adiponectin Receptor Agonists

Adiponectin exerts favorable effects in diabetes mellitus and metabolic syndrome through its anti-inflammatory, antifibrotic, and antioxidant effects. It mediates FA metabolism by inducing AMPK phosphorylation and increasing PPARα expression through binding to its receptors, adipoR1, and adipoR2, respectively, which in turn activates PPARγ coactivator 1a. Moreover, adiponectin potently stimulates ceramidase activity associated with its 2 receptors and enhances ceramide catabolism and the formation of its antiapoptotic metabolite, S1P [95]. Recent studies have shown adiporOn, an orally active synthetic adiponectin receptor agonist, is able to reduce lipotoxicity and podocyte injury by activating the Ca2+/liver kinase B1-AMPK/PPARα pathway in type 2 diabetes-associated DKD [7]. In addition, adiporOn can lower cellular ceramide levels by activation of acid ceramidase, which hydrolyzes ceramide to form sphingosine leading to an increase in S1P, and finally decrease renal potoxicity, inflammation, and insulin resistance in diabetic mice [87].

Sodium-Glucose Cotransporter-2 Inhibitors

The sodium-glucose cotransporters (SGLTs) are a family of glucose transporters that contribute to renal glucose reabsorption. Studies from SGLT1 and SGLT2 knockout mice have indicated that 97% of proximal tubular glucose transport is mediated via SGLT2 and only
3% by SGLT1 [96]. SGLT2 inhibitors are a new class of antidiabetic drugs with promising effects on the treatment of patients with DKD [97] or nondiabetic CKD [89]. Through glucosuria, SGLT2 inhibitors reduce body weight and body fat and shift substrate utilization from carbohydrates to lipids and, possibly, ketone bodies. It has been reported that in db/db mice, JNJ 39933673, a selective SGLT2 inhibitor prevented the development of DKD and modulated renal lipid metabolism, at least in part through inhibition of the transcriptional factor ChREBP-β and SREBP1. Subsequently, their target genes pyruvate kinase, SCD-1, and DGAT1 expression were decreased [88]. Moreover, dapagliflozin, a highly selective inhibitor of renal SGLT2, prevented podocyte injury, glomerular pathology, and renal fibrosis in the kidney from Western diet-fed mice by reducing renal lipid accumulation [90].

Bile Acid Receptors Agonists

Bile acids, as signaling molecules, can also regulate glucose and lipid homeostasis as well as energy expenditure by activating bile acids receptors. Two major receptors for bile acids have been identified as follows: the nuclear receptor FXR and the membrane-bound, bile acid-activated G protein-coupled receptor TGR5 (GPBAR1 or GPR131). Previous studies indicated that FXR agonist obeticholic acid (INT-747) attenuated renal injury, renal lipid accumulation, and lipid peroxidation in uninephrectomized obese mice [91]. Moreover, TGR5 was downregulated by high glucose and/or FAs in ORG and DKD. A selective TGR5 agonist INT-777 reduced proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced mitochondrial biogenesis and prevented oxidative stress and lipid accumulation, thus establishing a protective role of TGR5 in the inhibition of ORG and DKD [92]. Recent results showed that the dual FXR/ TGR5 agonist INT-767 combined effects of both singular activation of FXR and TGR5, improved proteinuria and prevented podocyte injury, inhibited the progression of DKD and ORG [93].

VEGF-B Signaling Inhibition

VEGF-B, through binding with receptors such as VEGFR1 and neuropilin-1, induces the expression of the FA transport proteins FATP3 and FATP4, increasing lipid accumulation. Reducing of VEGF-B signaling or administration of neutralizing VEGF-B antibodies decreases lipid accumulation in podocytes and has renoprotective effects in type 1 and type 2 diabetes mice [39, 98].

Others

2-Hydroxypropyl-β-cyclodextrin has shown the protective effects on podocytes by preventing cholesterol accumulation mediated by ABCA1 upregulation [49, 58]. ABCA1 deficiency was associated with the selective accumulation of CL and subsequent podocyte injury in DKD. Cardiolipin peroxidase inhibitor, elamipretide, reversed DKD progression, with improvements in podocyte number, mesangial expansion, and mitochondrial morphology [25]. Sandoz 58-035, an SOAT1 inhibitor, prevented cholesterol ester accumulation in podocytes by increasing ABCA1 expression and may treat renal disease associated with DKD and Alport syndrome [51]. Exogenous C1P replacement was sufficient to restore the insulin-mediated prosurvival signaling pathway in human podocytes and to normalize urinary albumin levels in mice with DKD [40]. Rituximab, a monoclonal antibody directed against CD20 on B lymphocytes, also prevented recurrent FSGS by modulating podocyte function in an SMP-DL-3b-dependent manner [74]. Moreover, berberine, a kind of isoquinoline alkaloid present in Chinese herbal medicines, protected glomerular podocytes via inhibiting dynamin-related protein-1-mediated mitochondrial fission and dysfunction [32]. Besides aforementioned promising treatments, there are many other therapeutic targets have been evaluated in different preclinical models, such as LXRα agonists, pan-TGFβ neutralizing antibodies, NF-κB inhibitors, and fibroblast growth factor-21 therapy [94].

Conclusion

In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. We also provide evidence showing the therapeutic effects of rebalancing the podocyte lipid metabolism on podocyte injury and proteinuric kidney disease. Collectively, pharmacologic targeting of podocyte lipid metabolism will pave the way to new therapeutic approaches in podocyte injury and for the treatment of DKD and other proteinuric kidney diseases.

Conflict of Interest Statement

Dr. Fan Yi is an associate editor of Kidney Diseases.
Podocyte Lipid Metabolism

Funding Sources

This study was supported by the National Science Fund for Distinguished Young Scholars to F.Y. (81525005); the National Natural Science Foundation of China (91949202, 82090020, 82090024, 81770676, 82070753); and Shandong Provincial Natural Science Foundation, China (ZR2019ZD40).

Author Contributions

Y.S. wrote the manuscript; S.C. and Y.H. prepared the tables and F.Y. decided on the topics and wrote the manuscript.

References

1. Zhou L, Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015 Sep;11(9):535–45.
2. Nagata M. Podocyte injury and its consequences. Kidney Int. 2016 Jun;89(6):1211–30.
3. de Vries AP, Ruggenenti P, Ruan ZX, Praga M, Cruzado JM, Bajema IM, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014 May;2(5):417–26.
4. Herman-Edelstein M, Scherzer P, Tobar A, Rasheed A, Santamaria H, et al. Liver X receptor-1a in podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015 Sep;11(9):535–45.
5. Patel M, Wang X, Magomedova L, John R, Rasheed A, Santamaria H, et al. Liver X receptors preserve glomerular integrity under normoglycemia and in diabetes in mice. Diabetologia. 2014 Feb;57(2):435–46.
6. D’Agati VD, Chagac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016 Aug;12(8):453–71.
7. Kim Y, Lim JH, Kim MY, Yoon HE, Shin SJ, et al. The adiponectin receptor agonist adiponort ameliorates diabetic nephropathy in a model of type 2 diabetes. J Am Soc Nephrol. 2018 Apr;29(4):1108–27.
8. Fornoni A, Merscher S, Kopp JB. Lipid biology of the podocyte: new perspectives offer new opportunities. Nat Rev Nephrol. 2014 Jul;10(7):379–88.
9. Hara S, Kobayashi N, Sakamoto K, Ueno T, Manabe S, Takashima Y, et al. Podocyte injury-driven lipid peroxidation accelerates the infiltration of glomerular foam cells in focal segmental glomerulosclerosis. J Am Pathol. 2015 Aug;183(8):2118–31.
10. Mitrofanova A, Molina J, Varona Santos J, Guzman J, Morales XA, Ducasa GM, et al. Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 2018 Dec;94(6):1151–9.
11. Wu D, Yu Z, Zhao S, Qu Z, Sun W, Jiang Y. Lipid metabolism participates in human membranous nephropathy identified by whole-genome gene expression profiling. Clin Sci. 2019 Jun;133(11):1255–69.
12. Wahl P, Ducasa GM, Fornoni A. Systemic and renal lipids in kidney disease development and progression. Am J Physiol Renal Physiol. 2016 Mar 15;310(6):F433–45.
13. Meyer-Schweisger C. The ins-and-outs of podocyte lipid metabolism. Kidney Int. 2020 Nov;98(5):1087–90.
14. Imasawa T, Rossignol R. Podocyte energy metabolism and glomerulonephritis. Int J Biochem Cell Biol. 2013 Sep;45(9):2109–18.
15. Abe Y, Sakairi T, Kajiyama H, Shrivastav S, Beeson C, Kopp JB. Bioenergetic characterization of mouse podocytes. Am J Physiol Cell Physiol. 2010 Aug;299(2):C464–76.
16. Ozawa S, Ueda S, Imamura H, Mori K, Asanuma K, Yanagita M, et al. Glycolysis, but not mitochondrial, responsibly for intracellular ATP distribution in cortical area of podocytes. Sci Rep. 2015 Dec 18;5:18575.
17. Imasawa T, Obre E, Bellance N, Lavié J, Imasawa T, Rigothier C, et al. High glucose re-patterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 2017 Jan;31(1):294–307.
18. Brinkkoteter PT, Bork T, Salou S, Liang W, Mizi A, Özel C, et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 2019 Apr 30;27(5):1551–665.
19. Li SY, Park J, Qiu C, Han SH, Palmer MB, Arany Z, et al. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1a in podocytes results in collapsing glomerulomegaly. JCI Insight. 2017 Jul 20;2(14).
20. Yuan Q, Miao J, Yang Q, Fang L, Fang Y, Ding H, et al. Role of pyruvate kinase M2-mediated metabolic reprogramming during podocyte differentiation. Cell Death Dis. 2020 May 11;11(5):355.
21. Chen N, Mu L, Yang Z, Du C, Wu M, Song S, et al. Carbohydrate response element-binding protein regulates lipid metabolism via mTOR complex 1 in diabetic nephropathy. J Cell Physiol. 2021 Jan;236(1):625–40.
22. Ge M, Fontanesi F, Merscher S, Fornoni A. The vicious cycle of renal lipotoxicity and mitochondrial dysfunction. Front Physiol. 2020;11:732.
23. Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L, et al. Inflammatory stress exacerbates lipid accumulation and podocyte injuries in diabetic nephropathy. Acta Diabetol. 2015 Dec;52(6):1045–56.
24. Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol. 2017 Jun 7;12(6):983–97.
25. Ducasa GM, Mitrofanova A, Mallela SK, Liu X, Molina J, Sloan A, et al. ATP-binding cassette A1 deficiency causes cardioliop-driven mitochondrial dysfunction in podocytes. J Clin Invest. 2019 Jul 22;129(8):3387–400.
26. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009 Apr; 50(Suppl):S9–14.
27. Zhao J, Rui HL, Yang M, Sun LJ, Dong HR, Cheng H. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediators Inflamm. 2019;2019:3172647.
28. Sieber J, Lindenmeyer MT, Kampe K, Campbell KN, Cohen CD, Hopfer H, et al. Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol. 2010 Oct;299(4):F821–9.
29. Kampe K, Sieber J, Orellana JM, Mundel P, Jehle AW. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2. Am J Physiol Renal Physiol. 2014 Feb 15;306(4):F401–9.
30. Sun YB, Qu X, Howard V, Dai L, Jiang X, Ren Y, et al. Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney Int. 2015 Aug;88(2):286–98.
31. Lee E, Choi J, Lee HS. Palmitate induces mitochondrial superoxide generation and activates AMPK in podocytes. J Cell Physiol. 2017 Dec;232(12):3209–17.
32. Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics. 2019;9(9):1698–713.
33. Zhang ZH, Chen H, Vaziri ND, Mao JR, Lee HS, Suh JY, Kang BC, Lee E. Lipotoxicity of chronic kidney disease of diverse etiologies in the rats and humans. J Proteome Res. 2016 Oct;7:15(10):3802–12.
34. Lee HS, Suh JY, Kang BC, Lee E. Lipotoxicity regulates the immunoproteasome in podocytes and kidneys in type 2 diabetes. Am J Physiol Renal Physiol. 2021 Apr;1:320(4):F548–58.

DOI: 10.1159/000518132

Kidney Dis 2021;7:438–451
49 Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, et al. Local TNF causes NFATC1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016 Sep 1;126(9):3336–49.
50 Yang Q, Hu J, Yang Y, Chen Z, Feng J, Zhu Z, et al. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics. 2020;10(16):7465–79.
51 Liu X, Ducasa GM, Mallela SK, Kim JJ, Mollina J, Mitrofanova A, et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 2020 Nov;98(5):1275–85.
52 Tufro A. Cholesterol accumulation in podocytes: a potential novel targetable pathway in diabetic nephropathy. Diabetes. 2013 Nov;62(11):3661–2.
53 Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte – cellular cholesterol-mediated glomerular injury. Front Endocrinol. 2014;5:169.
54 Lu CC, Wang GM, Lu J, Chen PP, Zhang Y, Hu ZR, et al. Role of podocyte injury in glomerulosclerosis. Adv Exp Med Biol. 2019;1165:195–232.
55 Gutwein P, Abdel-Bakky MS, Schramme A, Doberstein K, Kämper-Kolb N, Amann K, et al. CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. Am J Pathol. 2009 Jun;174(6):2061–72.
56 Shi Y, Wang C, Zhou X, Li Y, Ma Z, Zhang R, et al. Downregulation of PTEN promotes podocyte endocytosis of lipids aggravating obesity-related glomerulopathy. Am J Physiol Renal Physiol. 2020 Mar 1;318(3):F589–99.
57 Freedman BL, Limou S, Ma L, Kopp JB. APOL1-associated nephropathy: a key contributor to racial disparities in CKD. Am J Kidney Dis. 2018 Nov;72(5 Suppl 1):S8–16.
58 Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A, et al. Cyclohextrin protects podocytes in diabetic kidney disease. Diabetes. 2013 Nov;62(11):3817–27.
59 Chung JJ, Huber TB, Gödel M, Jarad G, Harthleben B, Kwoh C, et al. Albumin-associated free fatty acids induce macropinocytosis in podocytes. J Clin Invest. 2015 Jun;125(6):2307–16.
60 Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, et al. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol. 2017 Dec;13(12):769–81.
61 Chen HM, Zheng CX, Gao Q, Ge YC, Liu ZH. Heart-type fatty acid binding protein is associated with microalbuminuria in obesity. PLoS One. 2012;7(9):e45691.
62 Gao Q, Sarkar A, Chen Y, Xu B, Zhu X, Yuan Y, et al. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury. Exp Ther Med. 2018 Feb;15(2):2054–61.
63 Sieber J, Jehle AW. Free fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol. 2014;5:186.
64 Sieber J, Weins A, Kampe K, Gruber S, Lin-денмeyer MT, Cohen CD, et al. Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2. Am J Pathol. 2013 Sep;183(3):735–47.
65 Vaziri ND, Kim CH, Phan D, Kim S, Liang K. Up-regulation of hepatic acyl CoA: diacylglycerol acyltransferase-1 (DGAT-1) expression in nephrotic syndrome. Kidney Int. 2004 Jul;66(1):262–7.
66 Li M, Li CM, Ye ZC, Huang J, Li Y, Lai W, et al. Sirt3 modulates fatty acid oxidation and attenuates cisplatin-induced AKI in mice. J Cell Mol Med. 2020 May;24(5):5109–21.
67 Zhao YY, Vaziri ND, Lin RC. Lipidomics: new insight into kidney disease. Adv Clin Chem. 2015;68:153–75.
68 Grove KJ, Vozian PA, Spragins JM, Wang S, Paueksakon P, Harris RC, et al. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res. 2014 Jul;55(7):1375–85.
69 Paueksakon P, Gruvot A, Ledieu D, Wolf A, Schubart A, Paia A, et al. Reduced activity of sphingosine-1-phosphate lyase induces podocyte-related glomerular proteinuria, skin irritation, and platelet activation. Toxicol Pathol. 2015 Jul;43(5):694–703.
70 Lovric S, Goncalves S, Gee HY, Oskouian B, Srivinas H, Choi WI, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017 Mar 1;127(3):912–28.
71 Prasad R, Hadjidemetriou I, Maharaj A, Mei-mariou E, Buonocore F, Saleem M, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest. 2017 Mar 1;127(3):942–53.
72 Mallela SK, Mitrofanova A, Merscher S, Forloni A. Regulation of the amount of ceramide-1-phosphate synthesized in differentiated human podocytes. Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Dec;1864(12):158517.
73 Yoo TH, Pedigo CE, Guzman J, Correa-Medina M, Wei C, Villarreal R, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol. 2015 Jan;26(1):133–47.
74 Forloni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011 Jun 1;3(85):85ra46.
75 Olszmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019 Mar;20(3):137–55.
76 Ohsaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell. 2006 Jun;17(6):2674–83.
77 Chun J, Zhang JY, Wilkins MS, Subramanian B, Riella C, Magrayer JM, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3712–21.
78 Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell. 2017 Jul 10;42(1):9–21.e5.

79 Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science. 2020 Oct 16;370(6514):370.

80 Kiss E, Kränzlin B, Wagenblaβ K, Bonrouhi M, Thiery J, Gröne E, et al. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. Am J Pathol. 2013 Mar;182(3):727–41.

81 Fornoni A, Merscher S. Lipid metabolism gets in a JAML during kidney disease. Cell Metab. 2020 Dec 1;32(6):903–5.

82 Zhang Z, Wu P, Zhang J, Wang S, Zhang G. The effect of statins on microalbuminuria, proteinuria, progression of kidney function, and all-cause mortality in patients with non-end stage chronic kidney disease: a meta-analysis. Pharmacol Res. 2016 Mar;105:74–83.

83 Summary of revisions: standards of medical care in diabetes-2020. Diabetes Care. 2020 Jan;43(Suppl 1):54–6.

84 Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, et al. Podocytopathies. Nat Rev Dis Primers. 2020 Aug 13;6(1):68.

85 Tanaka Y, Kume S, Araki S, Ishikawa T, Chin-Kanasaki M, Sakaguchi M, et al. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. Science. 2016 Jan 29;291(5):2397–411.

86 Wang XX, Edelstein MH, Gafter U, Liu L, Luo Y, Dobrinskikh E, et al. Protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol. 2016 May;27(5):1362–78.

87 Hong YA, Lim JH, Kim MY, Kim TW, Kim Y, Yang KS, et al. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism. 2018 Aug;85:348–60.

88 Wang XX, Levi J, Luo Y, Myakala K, Herman-Edelstein M, Qiu L, et al. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J Biol Chem. 2017 Mar 31;292(13):5335–48.

89 Cassis P, Locatelli M, Cerullo D, Corna D, Buelli S, Zanchi C, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018 Aug 9;3(15):e98720.

90 Wang D, Luo Y, Wang X, Orlicky DJ, Myakala K, Yang P, et al. The sodium-glucose co-transporter 2 inhibitor dapagliflozin prevents renal and liver disease in Western diet induced obesity mice. Int J Mol Sci. 2018 Jan 3;19(1):137.

91 Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X receptor protects against kidney injury in uninephrectomized obese mice. J Biol Chem. 2016 Jan 29;291(5):2397–411.

92 Wang XX, Edelstein MH, Gafter U, Qi L, Luo Y, Dobrinskikh E, et al. Protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol. 2016 May;27(5):1362–78.

93 Wang XX, Wang D, Luo Y, Myakala K, Dobrinskikh E, Rosenberg AZ, et al. FXR/TGR5 dual agonist prevents progression of nephropathy in diabetes and obesity. J Am Soc Nephrol. 2018 Jan 29(1):118–37.

94 Opazo-Rios L, Mas S, Marin-Royo G, Mezzano S, Gomez-Guerrero C, Moreno JA, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. Int J Mol Sci. 2020 Apr 10;21(7):2632.

95 Kim Y, Park CW. Mechanisms of adiponectin action: implications of adiponectin receptor gestation in diabetic kidney disease. Int J Mol Sci. 2019 Apr 10;20(7):1782.

96 Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017 Feb;60(2):215–25.

97 Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019 Jun 13;380(24):2295–306.

98 Hagberg CE, Mehlem A, Falkevall A, Muhl L, Fam BC, Ortsäter H, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012 Oct;490(7420):426–30.