Abstract

In this talk, it is discussed the derivation of low-frequencies part of quark determinant and partition function. As a first application, quark condensate is calculated beyond chiral limit with the account of $O(m)$, $O(\frac{1}{N_c})$, $O(\frac{1}{N_c} m)$ and $O(\frac{1}{N_c} m \ln m)$ corrections. It was demonstrated complete correspondence of the results to chiral perturbation theory.

Introduction

Instanton vacuum model assume that QCD vacuum is filled not only by perturbative but also very strong non-perturbative fluctuations – instantons. This model provides a natural mechanism for the spontaneous breaking of chiral symmetry (SBCS) due to the delocalization of single-instanton quark zero modes in the instanton medium. The model is described by two main parameters – the average instanton size $\rho \sim 0.3 \text{ fm}$ and average inter-instanton distance $R \sim 1 \text{ fm}$. These values was found phenomenologically \cite{1} and theoretically \cite{2} and was confirmed by lattice measurements. \cite{3, 4, 5, 6, 7}. On the base of this model was developed effective action approach \cite{8, 9, 10}, providing reliable method of the calculations of the observables in hadron physics at least in chiral limit.

On the other hand, chiral perturbation theory makes a theoretical framework incorporating the constraints on low-energy behavior of various observables based on the general principles of chiral symmetry and quantum field theory \cite{11}.

It is natural expect, that instanton vacuum model leads to the results compatible with chiral perturbation theory.

One of the most important quantities related with SBCS is the vacuum quark condensate $\langle \bar{q}q \rangle$, playing also important phenomenological role in various applications of QCD sum rule approach. Previous investigations \cite{12} shows that beyond chiral limit and at small current quark mass $m \sim \text{few MeV}$ these quantity receive large so called chiral log contribution $\sim \frac{1}{N_c} m \ln m$ with fixed model independent coefficient. On the typical scale 1GeV it become leading correction since $|\frac{1}{N_c} \ln m| \geq 1$. It was shown, that this correction is due to pion loop contribution \cite{12, 11}.

So, to be consistent we have to calculate simultaneously all of the corrections of order m, $\frac{1}{N_c}$, $\frac{1}{N_c} \ln m$ in order to find quark condensate beyond chiral limit.

\footnote{Talk given at the XVII International Baldin Seminar "Relativistic Nuclear Physics and Quantum Chromodynamics", Sept.27-Oct.2, 2004 (JINR, Dubna, Russia).}
In our previous papers \cite{13, 14} on the base of low–frequencies part of light quark determinant Det_{low}, obtained in \cite{15, 16}, was derived effective action. In this framework was investigated current quark mass m dependence of the quark condensate, but without meson loop contribution \cite{14}.

In the present work we refine the derivation of the low–frequencies part of light quark determinant Det_{low}. The following averaging of Det_{low} over instanton collective coordinates is done independently over each instanton thanks to small packing parameter $\pi(p)^4 \sim 0.1$ and also by introducing constituent quarks degree of freedoms ψ. This procedure leads to the light quarks partition function $Z[m]$. We apply bosonisation procedure to $Z[m]$, which is exact one for our case $N_f = 2$ and calculate partition function $Z[m]$ with account of meson loops. This one provide us the quark condensate with desired $O(m)$, $O(\frac{1}{N_c})$, $O(\frac{1}{N_c} m \ln m)$ corrections.

Low–frequencies part of light quark determinant

The main assumption of previous works \cite{8, 9, 10} (see also review \cite{16}) was that at very small m the quark propagator in the single instanton field A_i can be approximated as:

$$S_I(m \sim 0) \approx \frac{1}{i\partial} + \frac{\langle \Phi_{0I} \rangle}{i m}$$ \hspace{1cm} (1)

It gives proper value for the $\langle \Phi_{0I} | S_I(m \sim 0) | \Phi_{0I} \rangle = \frac{1}{im}$, but in $S_I(m \sim 0) | \Phi_{0I} \rangle = \frac{\langle \Phi_{0I} \rangle}{im} + \frac{1}{i\partial} | \Phi_{0I} \rangle$ second extra term has a wrong chiral properties. We may neglect by this one only for the $m \sim 0$.

At the present case of non-small m we assume:

$$S_I \approx S_0 + S_0 i\partial \frac{\langle \Phi_{0I} \rangle}{i\partial S_0}, \quad S_0 = \frac{1}{i\partial + im}$$ \hspace{1cm} (2)

where

$$c_I = - \langle \Phi_{0I} | i\partial S_0 | \partial S_0 | \Phi_{0I} \rangle = im \langle \Phi_{0I} | S_0 i\partial | \Phi_{0I} \rangle$$ \hspace{1cm} (3)

The matrix element $\langle \Phi_{0I} | S_I | \Phi_{0I} \rangle = \frac{1}{im}$, more over

$$S_I | \Phi_{0I} \rangle = \frac{1}{im} | \Phi_{0I} \rangle, \quad < \Phi_{0I} | S_I = < \Phi_{0I} | \frac{1}{im}$$ \hspace{1cm} (4)

as it must be.

In the field of instanton ensemble, represented by $A = \sum_I A_I$, full quark propagator, expanded with respect to a single instanton, and with account Eq. (2) is:

$$S = S_0 + \sum_I (S_I - S_0) + \sum_{I \neq J} (S_I - S_0) S_0^{-1} (S_J - S_0)$$

$$+ \sum_{I \neq J, J \neq K} (S_I - S_0) S_0^{-1} (S_J - S_0) S_0^{-1} (S_K - S_0) + ...$$

$$= S_0 + \sum_{I, J} S_0 i\partial | \Phi_{0I} \rangle \left(\frac{1}{C} + \frac{1}{C} T \frac{1}{C} + ... \right)_{I,J} | \Phi_{0J} | i\partial S_0$$

$$= S_0 + \sum_{I, J} S_0 i\partial | \Phi_{0I} \rangle \left(\frac{1}{C - T} \right)_{I,J} | \Phi_{0J} | i\partial S_0$$ \hspace{1cm} (5)
where

\[C_{IJ} = \delta_{IJ} c_I = -\delta_{IJ} c_I = -\delta_{IJ} \hat{c}_I = -\delta_{IJ} \hat{c}_I < \Phi_0 | i\hat{\partial} S_0 i\hat{\partial} | \Phi_0 > \]

\[(C - T)_{IJ} = -< \Phi_0 | i\hat{\partial} S_0 i\hat{\partial} | \Phi_0 > \] \hfill (6)

We are calculating \(\text{Det}_{\text{low}} \) using the formula:

\[\ln \text{Det}_{\text{low}} = \text{Tr} \int_{M_1} dm' (\tilde{S}(m') - \tilde{S}_0(m')) \] \hfill (7)

Within zero-mode assumption (Eq. (2)) the trace is restricted to the subspace of instantons:

\[\text{Tr}(S - S_0) = -\sum_{I,J} < \Phi_0 | i\hat{\partial} S_0 i\hat{\partial} | \Phi_0 > < \Phi_0 | (\frac{1}{i\hat{\partial} S_0 i\hat{\partial}}) | \Phi_0 > \] \hfill (8)

Introducing now the matrix

\[B(m)_{IJ} = < \Phi_0 | i\hat{\partial} S_0 i\hat{\partial} | \Phi_0 > \] \hfill (9)

it is easy to show that

\[\ln \text{Det}_{\text{low}} = \text{Tr} \int_{M_1} dm' B(m')_{IJ} = \sum_I \int_{B(M_1)} (dB(m'))_{II} \]

\[= \text{Tr} \ln \frac{B(m)}{B(M_1)} = \ln \det B(m) - \ln \det B(M_1) \] \hfill (10)

which is desired answer. The determinant \(\det B(m) \) from Eq. (10) is the extension of the Lee-Bardeen result \[15\] for the non-small values of current quark mass \(m \).

Light quark effective action beyond chiral limit

Averaged \(\text{Det}_{\text{low}} \) leads to the partition function \(Z[m] \), which for \(N_f = 2 \) has the form:

\[Z[m] = \int d\lambda_+ d\lambda_- D\psi D\psi^\dagger \exp[\int d^4 x \sum_{f=1}^{2} \psi_f^\dagger (i\hat{\partial} + i m_f) \psi_f + \lambda_+ Y_2^+ + \lambda_- Y_2^- + N_+ \ln \frac{K}{\lambda_+} + N_- \ln \frac{K}{\lambda_-}] \] \hfill (11)

here \(\lambda_\pm \) are dynamical couplings (\(K \) is unessential constant, which provide under-logarithm expression dimensionless) \[9\] \[13\] \[14\]. Values of them are defined by saddle-point calculations. \(Y_2^\pm \) are t’Hooft type interaction terms \[10\]:

\[Y_2^\pm = \frac{1}{N_c^2 - 1} \int d^4x [(1 - \frac{1}{2N_c}) \det iJ^\pm (\rho, x) + \frac{1}{8N_c} \det iJ^\pm_{\mu\nu} (x)] \] \hfill (12)

\[J_{f\rho}^\pm (x) = \int \frac{d^4k_f d^4l_g}{(2\pi)^8} \exp i(k_f - l_g)xq_f^\dagger (k_f)\frac{1 \pm \gamma_5}{2} q_g(l_g) \]

\[J_{\mu\nu,f\rho}^\pm (x) = \int \frac{d^4k_f d^4l_g}{(2\pi)^8} \exp i(k_f - l_g)xq_f^\dagger (k_f)\frac{1 \pm \gamma_5}{2} \sigma_{\mu\nu} q_g(l_g) \]
where \(q(k) = 2\pi \rho F(k) \psi(k) \). The form-factor \(F(k) \) is due to zero-modes and has explicit form \(F(k) = -\frac{d}{dt}[I_0(t)K_0(t) - I_1(t)K_1(t)]_{t=|k|/2} \). In the following we will neglect by \(J^\pm_{\mu \nu, f_0}(x) \) interaction term, since it gives a \(O(\frac{1}{N_c^2}) \) contribution to the quark condensate. Since

\[
q(x) = \int \frac{d^4k}{(2\pi)^4} \exp(ikx) \, q(k), \quad J^\pm_{f_0}(x) = q^\pm(x) \frac{1 \pm \gamma_0}{2} \hat{q}_0(x),
\]

(13)

\[
\det \frac{iJ^+(x)}{g} + \det \frac{iJ^-(x)}{g} = \frac{1}{8g^2} (-q^+(x)q(x))^2 - (q^+(x)i\gamma_5\tau q(x))^2 + (q^+(x)\tau q(x))^2 + (q^+(x)i\gamma_5\bar{q}(x))^2).
\]

Here color factor \(g^2 = \frac{(N_c^2-1)2N_c}{(2N_c-1)} \).

In the following we will take equal number of instantons and antiinstantons \(N_+ = N_- = N/2 \) and corresponding couplings \(\lambda_\pm = \lambda \).

Now it is natural to bosonize quark-quark interaction terms (13) by introducing meson fields. For \(N_f = 2 \) case it is exact procedure. We have to take into account the changes of \(q \) and \(q^\dagger \) under the \(SU(2) \) chiral transformations:

\[
\delta q = i\gamma_5\bar{\tau}\bar{\alpha}q, \quad \delta q^+ = q^+ i\gamma_5\bar{\tau}\bar{\alpha}
\]

to introduce appropriate meson fields, changing under \(SU(2) \) chiral transformations as:

\[
\delta \sigma = 2\bar{\alpha}\bar{\bar{\sigma}}, \quad \delta \bar{\sigma} = -2\bar{\alpha}\sigma, \quad \delta \eta = -2\bar{\alpha}\bar{\sigma}, \quad \delta \bar{\eta} = 2\eta\bar{\bar{\eta}}.
\]

Then \(\delta q^+(\sigma + i\gamma_5\bar{\tau}\phi)q = 0, \quad \delta q^+(\bar{\tau}\bar{\sigma} + i\gamma_5\eta)q = 0 \) means that these combinations of fields are chiral invariant. So, the interaction term has an exact bosonized representation:

\[
\int d^4x \exp[\lambda(\det \frac{iJ^+(x)}{g} + \det \frac{iJ^-(x)}{g})]
\]

(14)

\[
= \int D\sigma D\bar{\sigma} D\eta D\bar{\eta} \exp \int d^4x \frac{\lambda^0.5}{2g} q^+(\sigma + i\gamma_5\bar{\tau}\phi + i\bar{\tau}\bar{\sigma} + \gamma_5\eta q - \frac{1}{2}(\sigma^2 + \phi^2 + \bar{\sigma}^2 + \eta^2))
\]

Then the partition function is

\[
Z[m] = \int d\lambda D\sigma D\bar{\sigma} D\eta D\bar{\eta} \exp[\lambda \ln \frac{K}{\lambda} - N - \frac{1}{2} \int d^4x (\sigma^2 + \phi^2 + \bar{\sigma}^2 + \eta^2) + \text{Tr} \ln \frac{\hat{p} + im + i\frac{\lambda^{0.5}}{2g}(2\pi\rho)^2 F(\sigma + i\gamma_5\bar{\tau}\phi + i\bar{\tau}\bar{\sigma} + \gamma_5\eta)F}{\hat{p} + im}]
\]

(15)

\[
(\text{Tr}(\cdots) \text{ means here } \text{tr}_{\gamma,c,f} \int d^4x <x|(\cdots)|x> \text{, where } \text{tr}_{\gamma,c,f} \text{ is the trace over Dirac, color, and flavor indexes.}) \text{ In the following we assume } m_u = m_d = m. \text{ Then common saddle point on } \lambda, \sigma (= \text{ const}) \text{ (others = 0)} \text{ is defined by Eqs. } \frac{\partial V[m,\lambda,\sigma]}{\partial \lambda} = \frac{\partial V[m,\lambda,\sigma]}{\partial \sigma} = 0, \text{ where the potential}
\]

\[
V[m,\lambda,\sigma] = -N \ln \frac{K}{\lambda} + N + \frac{1}{2} V\sigma^2 - \text{Tr} \ln \frac{\hat{p} + im + M(\lambda,\sigma)F^2(p)}{\hat{p} + im}
\]

(16)

\[
\text{Certainly, quark-quark interaction term Eq. (13) is non-invariant over } U(1) \text{ axial transformations, as it must be.}
and we defined \(M(\lambda, \sigma) = \frac{\lambda^5}{2g} (2\pi \rho)^2 \sigma \). Then the common saddle-point on \(\lambda \) and \(\sigma \) is given by Eqs.:

\[
N = \frac{1}{2} \text{Tr} \frac{iM(\lambda, \sigma)F^2(p)}{\hat{p} + i(m + M(\lambda, \sigma)F^2(p))} = \frac{1}{2} V\sigma^2. \tag{17}
\]

The solutions of this Eqs. are \(\lambda_0 \) and \(\sigma_0 = (2^{N/2})^{1/2} = 2^{1/2} R^{-2} \). It is clear that \(M_0 = M(\lambda_0, \sigma_0) \) has a meaning of dynamical quark mass, which is defined by this Eqs.. At typical values \(R^{-1} = 200 \text{ MeV}, \rho^{-1} = 600 \text{ MeV} \) we have \(\sigma_0^2 = 2(200 \text{ MeV})^4 \), and in chiral limit \(m = 0 \) \(M_0 \rightarrow M_{00} = 358 \text{ MeV} \), \(\lambda_{00} \approx M_{00}^2 \).

Vacuum with account of quantum corrections

The account of the quantum fluctuations around saddle-points \(\sigma_0, \lambda_0 \) will change the potential \(V[m, \lambda, \sigma] \) to \(V_{\text{eff}}[m, \lambda, \sigma] \) (it is clear that the difference between these two potentials is order of \(1/N_c \)). Then, the partition function is given by Eq.

\[
Z[m] = \int d\lambda \exp(-V_{\text{eff}}[m, \lambda, \sigma]) \tag{18}
\]

There is important difference between this instanton generated partition function \(Z[m] \) and traditional \(NJL \)-type models – we have to integrate over the coupling \(\lambda \) here. As was mentioned before, this integration on \(\lambda \) by saddle-point method leads to exact answer. This saddle-point is defined by Eq.:

\[
\frac{dV_{\text{eff}}[m, \lambda, \sigma]}{d\lambda} = 0 \tag{19}
\]

which leads to the \(\lambda \) as a function of \(\sigma \), i.e. \(\lambda = \lambda(\sigma) \).

Then, the vacuum is the minimum of the effective potential \(V_{\text{eff}}[m, \sigma] \), which is given by a solution of the equation

\[
\frac{dV_{\text{eff}}[m, \sigma, \lambda(\sigma)]}{d\sigma} = \frac{\partial V_{\text{eff}}[m, \sigma, \lambda(\sigma)]}{\partial \sigma} = 0. \tag{20}
\]

where it was used Eq. \([17]\).

We denote a fluctuations as a primed fields \(\Phi' \). The action and corresponding \(V_{\text{eff}} \) now has a form:

\[
S[m, \lambda, \sigma, \Phi'] = S_0[m, \lambda, \sigma] + S_V[m, \lambda, \sigma, \Phi'], \tag{21}
\]

\[
S_0[m, \lambda, \sigma] = V[m, \lambda, \sigma] = \frac{1}{2} V\sigma^2 - \text{Tr} \ln \frac{\hat{p} + i(m + M(\lambda, \sigma)F^2)}{\hat{p} + im} - N \ln \frac{K}{\lambda} + N \]

\[
S_V[m, \lambda, \sigma, \Phi'] = \int d^4x \frac{1}{2} (\sigma'^2 + \bar{\phi}^2 + \bar{\sigma}^2 + \eta'^2)
- \frac{1}{2\sigma^2} \text{Tr} \left[\frac{iM(\lambda, \sigma)F^2}{\hat{p} + i(m + M(\lambda, \sigma)F^2)} (\sigma' + i\gamma_5 \bar{\phi} + i\bar{\sigma}' + \gamma_5 \eta') \right]^2,
\]

and

\[
V_{\text{eff}}[m, \lambda, \sigma] = S_0[m, \lambda, \sigma] + V_{\text{eff}}^{\text{mes}}[m, \lambda, \sigma] \tag{22}
\]
Here second term in Eq. (22) is explicitly represented by

\[
V_{\text{eff}}^{\text{mes}}[m, \lambda, \sigma] = \frac{1}{2} \text{Tr} \ln \frac{\delta^2 S_V[m, \lambda, \sigma, \Phi']}{\delta \Phi_i(x) \delta \Phi'_j(y)} = \frac{V}{2} \sum_i \int \frac{d^4q}{(2\pi)^4} \ln[1 - \frac{1}{\sigma^2}] \int \frac{d^4p}{(2\pi)^4}
\]

\[
\times \frac{M(\lambda, \sigma) F^2(p)}{\hat{p} + i(m + M(\lambda, \sigma) F^2(p))} \Gamma_i \frac{M(\lambda, \sigma) F^2(p + q)}{\hat{p} + \hat{q} + i(m + M(\lambda, \sigma) F^2(p + q))} \Gamma], \tag{23}
\]

where the factors \(\Gamma_i = (1, i\gamma_5\vec{\tau}, i\vec{\tau}, \gamma_5) \) and the sum on \(i \) is counted all corresponding meson fluctuations contribution \(\sigma', \vec{d}', \vec{d}', \eta' \) tr here means the trace over flavor, color and Dirac indexes. Integrals in Eq. (23) are completely convergent one due to the presence of the form-factors \(F \).

Certainly the quantum fluctuations contribution will move the the coupling \(\lambda \) from \(\lambda_0 \) to \(\lambda_0 + \lambda_1 \) and \(\sigma \) as \(\sigma_0 \to \sigma_0 + \sigma_1 \), where \(\frac{\lambda_1}{\lambda_0} \) and \(\frac{\sigma_1}{\sigma_0} \) are of order \(1/N_c \).

First, consider Eq. (19):

\[
\frac{dV_{\text{eff}}[m, \lambda, \sigma]}{d\lambda} = N - \frac{1}{2} \text{Tr} \frac{iM(\lambda, \sigma) F^2}{\hat{p} + i(m + M(\lambda, \sigma) F^2)} + \frac{V}{2} \sum_i \int \frac{d^4q}{(2\pi)^4} \tag{24}
\]

\[
\times [\sigma^2 - \text{tr} \int \frac{d^4p}{(2\pi)^4} \frac{M(\lambda, \sigma) F^2(p)}{\hat{p} + i(m + M(\lambda, \sigma) F^2(p))} \Gamma_i \frac{M(\lambda, \sigma) F^2(p + q)}{\hat{p} + \hat{q} + i(m + M(\lambda, \sigma) F^2(p + q))} \Gamma_i^{-1}]
\]

\[
+ \text{itr} \int \frac{d^4p}{(2\pi)^4} \left(\frac{M(\lambda, \sigma) F^2(p)}{\hat{p} + i(m + M(\lambda, \sigma) F^2(p))} \right)^2 \Gamma_i \frac{M(\lambda, \sigma) F^2(p + q)}{\hat{p} + \hat{q} + i(m + M(\lambda, \sigma) F^2(p + q))} \Gamma_i = 0
\]

From this saddle-point Eq. we get \(\lambda = \lambda(\sigma) \).

From vacuum Eq. (20) we in similar manner arrive to:

\[
\frac{\partial V_{\text{eff}}[m, \sigma, \lambda(\sigma)]}{\partial \sigma} = V \sigma^2 - \text{Tr} \frac{iM(\lambda(\sigma), \sigma) F^2}{\hat{p} + i(m + M(\lambda(\sigma), \sigma) F^2)} + \frac{V}{2} \sum_i \int \frac{d^4q}{(2\pi)^4} \tag{25}
\]

\[
\times [\sigma^2 - \text{tr} \int \frac{d^4p}{(2\pi)^4} \frac{M(\lambda(\sigma), \sigma) F^2(p)}{\hat{p} + i(m + M(\lambda(\sigma), \sigma) F^2(p))} \Gamma_i \frac{M(\lambda(\sigma), \sigma) F^2(p + q)}{\hat{p} + \hat{q} + i(m + M(\lambda(\sigma), \sigma) F^2(p + q))} \Gamma_i^{-1}]
\]

\[
+ 2\text{itr} \int \frac{d^4p}{(2\pi)^4} \left(\frac{M(\lambda(\sigma), \sigma) F^2(p)}{\hat{p} + i(m + M(\lambda(\sigma), \sigma) F^2(p))} \right)^2 \Gamma_i \frac{M(\lambda(\sigma), \sigma) F^2(p + q)}{\hat{p} + \hat{q} + i(m + M(\lambda(\sigma), \sigma) F^2(p + q))} \Gamma_i = 0
\]

Since we are believing to \(\frac{1}{N_c} \) expansion, it is natural inside quantum fluctuations contribution (under the integrals over \(q \)) to take \(\sigma = \sigma_0 \), \(M(\lambda(\sigma), \sigma) = M_0 \).

To simplify the expressions introduce vertices \(V_{2i}(q), V_{3i}(q) \) and meson propagators \(\Pi_i(q) \), which are defined as:

\[
V_{2i}(q) = \text{tr} \int \frac{d^4p}{(2\pi)^4} \frac{M_0(p)}{\hat{p} + i\mu_0(p)} \Gamma_i \frac{M_0(p + q)}{\hat{p} + \hat{q} + i\mu_0(p + q)} \tag{26}
\]

\[
V_{3i}(q) = \text{tr} \int \frac{d^4p}{(2\pi)^4} \left(\frac{M_0(p)}{\hat{p} + i\mu_0(p)} \right)^2 \Gamma_i \frac{M_0(p + q)}{\hat{p} + \hat{q} + i\mu_0(p + q)} \tag{27}
\]

\[
\Pi_i^{-1}(q) = \frac{2}{R^4} - V_{2i}(q). \tag{28}
\]
Here $M_0(p) = M_0 F^2(p)$, $\mu_0(p) = m + M_0(p)$ and was taken into account that $\sigma_0^2 = 2 R^{-1}$.

From Eqs. (24) and (25) we have

$$\frac{M_1}{M_0} \left[\frac{2}{R^4} + \frac{1}{V} \text{Tr} \left(\frac{M_0(p)}{p + i\mu_0(p)} \right)^2 \right] = \sum_i \int \frac{d^4 q}{(2\pi)^4} (i V^3_i(q) - V_{2i}(q)) \Pi_i(q) \tag{29}$$

$$\frac{\sigma_1}{\sigma_0} = - \frac{R^4}{4} \sum_i \int \frac{d^4 q}{(2\pi)^4} V_{2i}(q) \Pi_i(q) \tag{30}$$

The vertices $V_{2i}(q)$, $V_{3i}(q)$ and the meson propagators $\Pi_i(q)$ are well defined functions, providing well convergence of the integrals in Eqs. (29), (30).

It is of special attention to the contribution of pion fluctuations $\bar{\phi}'$ at small pion momentum q. We shall demonstrate that this contribution leads to the famous chiral log term with model independent coefficient in the correspondence with previous calculations in NJL-model [18].

Pion inverse propagator of $\Pi^{-1}_\phi(q)$ at small $q \sim m_\pi$ is: $\Pi^{-1}_\phi(q) = f_{\text{kin}}^2 (m_\pi^2 + q^2)$. At lowest order on m, $f_{\text{kin},m=0} \approx f_{\pi} = 93 \text{ MeV}$, $m_\pi^2 \sim m$.

The vertices in the right side of Eq. (29) at $q = 0$ and in chiral limit are:

$$V_{2\bar{\phi}',m=0}(0) = \frac{2}{R^4}, \quad i V_{3\bar{\phi}',m=0}(0) - V_{2\bar{\phi}',m=0}(0) = 8 N_c \int \frac{d^4 p}{(2\pi)^4} \frac{p^2 M_0^2(p)}{(p^2 + M_0^2(p))^2} \tag{31}$$

We see that the factor in the left side of Eq. (29) in the chiral limit is equal to:

$$\text{tr} \int \frac{d^4 p}{(2\pi)^4} \frac{i \hat{p} M_0(p)}{(\hat{p} + i M_0(p))^2} = -2 (i V_{3\bar{\phi}',m=0}(0) - V_{2\bar{\phi}',m=0}(0)) \tag{32}$$

Collecting all the factors we get small $q \leq \kappa$ contribution of pion fluctuations $\bar{\phi}'$:

$$\frac{\sigma_1}{\sigma_0} |_{\bar{\phi}', \text{small } q} = \frac{M_1}{M_0} |_{\bar{\phi}', \text{small } q} = - \frac{3}{2 f_\pi^2} \int_0^\kappa \frac{d^4 q}{(2\pi)^4} \frac{1}{m_\pi^2 + q^2}$$

$$= - \frac{3}{32 \pi^2 f_\pi^2} \int_0^\kappa q^2 dq^2 \frac{1}{f_\pi^2(m_\pi^2 + q^2)} = - \frac{3}{32 \pi^2 f_\pi^2} \left(\kappa^2 + m_\pi^2 \ln \frac{m_\pi^2}{\kappa^2 + m_\pi^2} \right)$$

Here we put $m = 0$ everywhere except m_π. We see that the coefficient in the front of of $m_\pi^2 \ln m_\pi^2$ is a model independent as it must be.

Quick estimate, assuming $\kappa = \rho^{-1}$, gives

$$\frac{\sigma_1}{\sigma_0} |_{\bar{\phi}} \approx \frac{M_1}{M_0} |_{\bar{\phi}} \approx - \frac{3}{32 \pi^2 f_\pi^2 \rho^2} (1 + m_\pi^2 \rho^2 \ln m_\pi^2 \rho^2) \approx -0.4 (1 + 0.054 \ln 0.054) \tag{34}$$

So, we expect that pion loops is provided not only non-analytical $\frac{1}{N_c} m \ln m$ term but also very large contribution to $\frac{1}{N_c} m$ term.

This one dictate the strategy of the following calculations of σ_1 and M_1:
1. we have to extract analytically $\frac{1}{N_c} m \ln m$ term from pion loops;
2. rest part of σ_1 and M_1 can be calculated numerically and expanded over m, paying special attention to the pion loops and keeping $\frac{1}{N_c}$ and $\frac{1}{N_c} m$ terms.
For actual numerical calculations we are using simplified version of the form-factor \(F(p) \) from [17] (with corrected high momentum dependence):

\[
F(p < 2\text{GeV}) = \frac{L^2}{L^2 + p^2}, \quad F(p > 2\text{GeV}) = \frac{1.414}{p^3} \tag{35}
\]

where \(L \approx \sqrt{\frac{2}{p}} = 848\text{MeV} \).

At \(N_c = 3 \) semi-numerical calculations of \(M_1 \) and \(\sigma_1 \) lead to:

\[
\frac{M_1}{M_0} = -0.662 - 4.64m - 4.01m \ln m \tag{36}
\]

\[
\frac{\sigma_1}{\sigma_0} = -0.523 - 4.26m - 4.00m \ln m \tag{37}
\]

Here \(m \) is given in \(\text{GeV} \). Certainly, in (38) the \(m \ln m \) term is completely correspond to Eq. (33). \(\frac{M_1}{M_0} \) is \(-66\%\) in chiral limit and reach its maximum \(\sim -20\% \) at \(m \sim 0.115 \text{GeV} \).

The relative shift of the vacuum \(\frac{\sigma_1}{\sigma_0} \) is \(-52\%\) at the chiral limit and reach its maximum \(\sim -2\% \) at \(m \sim 0.125 \text{GeV} \).

The main contribution to both quantities \(\frac{M_1}{M_0} \) and \(\frac{\sigma_1}{\sigma_0} \) come from pion loops. Other mesons give the contribution \(\sim 10\% \) to \(O\left(\frac{1}{N_c}\right) \) and \(O\left(\frac{1}{N_c^2m}\right) \) terms.

Quark condensate

We have to calculate quark condensate beyond chiral limit taking into account \(O(m), O\left(\frac{1}{N_c}\right), O\left(\frac{1}{N_c^2m}\right) \) and \(O\left(\frac{1}{N_c^3m \ln m}\right) \) terms. Quark condensate is extracted from the partition function:

\[
<\bar{q}q> = \frac{1}{2V} \frac{dV_{\text{eff}}[m, \lambda, \sigma]}{dm} = \frac{1}{2V} \partial_m \left[V[m, \lambda, \sigma] + V_{\text{eff}}^\text{mes}[m, \lambda_0, \sigma_0] \right]
\]

\[
= -\frac{1}{2V} \text{Tr} \left(\frac{i}{\hat{p} + i\mu(p)} - \frac{i}{\hat{p} + im} \right) + \frac{1}{2V} \frac{\partial V_{\text{eff}}^\text{mes}[m, \lambda_0, \sigma_0]}{\partial m} \tag{38}
\]

here \(\lambda = \lambda_0 + \lambda_1, \quad \sigma = \sigma_0 + \sigma_1, \quad M = M_0 + M_1, \quad \mu(p) = m + MF^2(p) \). First term of Eq. (38) is

\[
-\frac{1}{2V} \text{Tr} \left(\frac{i}{\hat{p} + i\mu(p)} - \frac{i}{\hat{p} + im} \right) \tag{39}
\]

\[
= -4N_c \int \frac{d^4p}{(2\pi)^4} \left(\frac{\mu_0(p)}{p^2 + \mu_0^2(p)} - \frac{m}{p^2 + m^2} + \frac{M_1}{M_0} \frac{M_0(p)(p^2 - \mu_0^2(p))}{(p^2 + \mu_0^2(p))^2} \right)
\]

Second term of Eq. (38) — meson loops contribution to the condensate is

\[
\frac{1}{2V} \frac{\partial V_{\text{eff}}^\text{mes}[m, \lambda_0, \sigma_0]}{\partial m} = \frac{i}{2} \sum_i \int \frac{d^4q}{(2\pi)^4} \left[\text{Tr} \int \frac{d^4p}{(2\pi)^4} \frac{M_0(p)}{\hat{p} + q + i\mu_0(p + q)} \Gamma_i \right] \frac{M_0(p + q)}{\hat{p} + q + i\mu_0(p + q)} \Gamma_i \tag{40}
\]

\[
\times \left(\frac{2N}{V} - \text{Tr} \int \frac{d^4p}{(2\pi)^4} \frac{M_0(p)}{\hat{p} + q + i\mu_0(p + q)} \Gamma_i \right)^{-1}
\]
At $m = 0$ and without meson loops the condensate is

$$<\bar{q}q>_{00} = -4N_c \int \frac{d^4p}{(2\pi)^4} \frac{M_{00}(p)}{p^2 + M_{00}^2(p)}$$

(41)

Here $M_{00} \equiv M_{0,m=0}$.

Let us consider now the contribution of pion fluctuations $\bar{\phi}$ to the quark condensate at small q. First we consider:

$$\frac{1}{2V} \frac{\partial V_{eff, small \ q}[m, \lambda_0, \sigma_0]}{\partial m} = 12N_c \int \frac{d^4p}{(2\pi)^4} \frac{M_{00}^3(p)\mu_0(p)}{(p^2 + M_{00}^2(p))^2} \int_0^\infty \frac{d^4q}{(2\pi)^4} \frac{d^4q}{f_{kin}^2(m_q^2 + q^2)}$$

(42)

We keep m only in m_q^2. Then at $m = 0\mu_0(p) \Rightarrow M_0(p) \Rightarrow M_{00}(p)$, $f_{kin} \Rightarrow f_\pi$ and we have

$$<\bar{q}q> = <\bar{q}q>_{00} - \frac{M_1}{M_0} 4N_c \int \frac{d^4p}{(2\pi)^4} \frac{M_{00}(p)(p^2 - M_{00}^2(p))}{(p^2 + M_{00}^2(p))^2} \int_0^\infty \frac{d^4q}{(2\pi)^4} \frac{1}{f_\pi^2(m_q^2 + q^2)}$$

(43)

$$= <\bar{q}q>_{00} \left(1 - \frac{3}{2} \int_0^\infty \frac{d^4q}{(2\pi)^4} \frac{1}{f_\pi^2(m_q^2 + q^2)}\right)$$

(44)

Eq. (44) for $\frac{M}{M_0}$ was applied here. We see that Eq. (41) is in the full correspondence with [11, 12].

Detailed numerical calculations lead to the semi-analytical formula for the quark condensate including all $O(m)$, $O(\frac{1}{N_c})$ and $O(\frac{1}{N_c}m \ln m)$-corrections:

$$<\bar{q}q> = <\bar{q}q>_{m=0} (1 - 18.53 m - 7.72 m \ln m)$$

(45)

Here $<\bar{q}q>_{m=0} = 0.52 <\bar{q}q>_{00}$. Certainly, the $m \ln m$ term in Eq. (45) is in full correspondence with Eq. (44), as it must be. $<\bar{q}q> / <\bar{q}q>_{m=0}$ is a rising function of m until $m \sim 0.04 GeV$ and it falls again in the region $m > 0.04 GeV$.

The main contribution to $O(\frac{1}{N_c})$, $O(\frac{1}{N_c}m)$ and $O(\frac{1}{N_c}m \ln m)$ terms in $<\bar{q}q>_{m=0}$ is due to pion loops. Other mesons give the contribution \sim few % to $O(\frac{1}{N_c})$ and $O(\frac{1}{N_c} m)$ terms.

$m_d - m_u$ effects in quark condensate

Current quark mass become diagonal 2×2 matrix with $m_1 = m_u$, $m_2 = m_d$, $m = m_1 + m_2 = m + \delta m$. Here $m = \frac{1}{2} [m_1 + m_2]$, $\delta m = m_1 - m_2$. Let us introduce external field s_i. In our particular case it is $s_3 = \frac{1}{2} m_i$, $s_1 = s_2 = 0$. Our aim is to find the asymmetry of the quark condensate $<\bar{q}u> - <\bar{q}d>$, taking into account only $O(\delta m)$ terms and neglecting $O(\frac{1}{N_c}\delta m)$, $O(\frac{1}{N_c}\delta m \ln m)$. It means that we neglect at all by meson loops contribution.

In the presence of the external field \vec{s} we expect also vacuum field $\vec{\sigma}$. Effective potential within requested accuracy is

$$V_{eff}[\sigma, \vec{\sigma}, m] \approx S_0[m, \lambda, \sigma, \vec{\sigma}]$$

$$= \frac{V}{2} (\sigma^2 + \vec{\sigma}^2) - \text{Tr} \ln \frac{\hat{p} + i\vec{s} + i(m + M(\lambda, \sigma, \vec{\sigma})F^2)}{\hat{p} + im + i\vec{s}} - N \ln \frac{K}{\lambda} + N.$$

(46)
\(\lambda, \sigma, \vec{\sigma}\) are defined by the vacuum equations:

\[
\frac{\partial V_{\text{eff}}}{\partial \lambda} = 0, \quad \frac{\partial V_{\text{eff}}}{\partial \sigma} = 0, \quad \frac{\partial V_{\text{eff}}}{\partial \sigma_i} = 0.
\]

(47)

They can be reduced to the following form:

\[
\frac{1}{2} \Tr \frac{F^2(p) M_i(m_i + M_i F^2(p))}{p^2 + (m_i + M_i F^2(p))^2} = N
\]

(48)

where \(M_i = \frac{x_0}{2g} (2\pi \rho)^2 (\sigma \pm \sigma_3)\). Solution of these equations leads to \(\lambda = \lambda[m, \vec{s}], \sigma = \sigma[m, \vec{s}] \sigma_i = \sigma_i[m, \vec{s}]\). We have to put them into \(V_{\text{eff}}\) and find \(V_{\text{eff}} = V_{\text{eff}}[m, \vec{s}]\). Desired correlator is

\[
\left. \frac{\partial V_{\text{eff}}[m, \vec{s}]}{\partial s_3} \right|_{s_3=\frac{4m}{2}, s_{1,2}=0}
\]

(49)

We calculate this correlator within requested accuracy, taking into account only \(O(\delta m)\) terms. So, the difference of the vacuum quark condensates of \(u\) and \(d\) quarks is

\[
< \bar{u}u > - < \bar{d}d > = \frac{1}{V} \left[\Tr \left(\frac{-i}{\hat{p} + i(m_u + M_u F^2)} - \frac{-i}{\hat{p} + i m_u} \right) - \Tr \left(\frac{-i}{\hat{p} + i(m_d + M_d F^2)} - \frac{-i}{\hat{p} + i m_d} \right) \right]
\]

We expect that \(< \bar{d}d > < < \bar{u}u > \) if \(m_d > m_u\).

Typical values of light current quark masses \([19]\) are \(m_u = 5.1MeV, m_d = 9.3MeV\) on the scale \(1GeV\) (which is in fact close to our scale \(\rho^{-1} = 0.6 GeV\)) leads to the asymmetry

\[
\frac{< \bar{u}u > - < \bar{d}d >}{< \bar{u}u >} = 0.026
\]

(51)

From this asymmetry and using sum-rules \([20]\) we estimate strange quark condensate at \(m_s = 120 MeV\) as:

\[
\frac{< \bar{s}s >}{< \bar{u}u >} = 0.43
\]

(52)

which is rather small. The reason that the asymmetry \([51]\) is rather large.

Conclusion

In the framework of instanton vacuum model it was calculated simplest possible correlator – quark condensate with complete account of \(O(m), O(\frac{1}{N_c}), O(\frac{1}{N_c} m)\) and \(O(\frac{1}{N_c} m \ln m)\) terms, demanding the calculation of meson loops contribution. Since initial instanton generated quark-quark interactions are nonlocal and contain corresponding form-factor induced by quark zero-mode, these loops correspond completely convergent integrals. The main loop corrections come from the pions, as it was expected. We found that \(O(\frac{1}{N_c})\) corrections are very large \(\sim 50\%\), which request the \(\sim 10\%\) changing of the basic parameters – average inter-instanton distance \(R\) and average instanton size \(\rho\) to restore chiral limit value of the quark condensate \(< \bar{q}q >_{m=0}\) and other important quantities as \(f_\pi\) and \(m_\pi\) to their phenomenological values. This work in the progress.

In general, it was demonstrated, that instanton vacuum model is well working tool also beyond chiral limit and satisfy chiral perturbation theory.
Acknowledgement

I am very grateful to D. Diakonov for a useful discussions. This work was done in the collaboration with Hyun-Chul Kim and M. Siddikov and was partly supported by Republic of Korea ”Brain Pool” Program.

References

[1] E. V. Shuryak, Nucl. Phys. B 203 (1982) 93.
[2] D. Diakonov and V. Y. Petrov, Nucl. Phys. B 245 (1984) 259.
[3] M. C. Chu, J. M. Grandy, S. Huang and J. W. Negele, Phys. Rev. D 49 (1994) 6039.
[4] J. W. Negele, Nucl. Phys. Proc. Suppl. 73 (1999) 92.
[5] T. DeGrand, Phys. Rev. D 64 (2001) 094508.
[6] P. Faccioli and T. A. DeGrand, Phys. Rev. Lett. 91 (2003) 182001.
[7] P. O. Bowman, U. M. Heller, D. B. Leinweber, A. G. Williams and J. b. Zhang, Nucl. Phys. Proc. Suppl. 128 (2004) 23.
[8] D. Diakonov and V. Y. Petrov, Nucl. Phys. B 272 (1986) 457.
[9] D. Diakonov, V. Polyakov and C. Weiss, Nucl. Phys. B 461 (1996) 539.
[10] D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003), arXiv:hep-ph/9802298.
[11] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.
[12] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 191, 301 (1981).
[13] M. Musakhanov, Eur. Phys. J. C 9 (1999) 235.
[14] M. Musakhanov, Nucl. Phys. A 699 (2002) 340.
[15] C. k. Lee and W. A. Bardeen, Nucl. Phys. B 153 (1979) 210.
[16] T. Schafer and E. V. Shuryak, Rev. Mod. Phys. 70 (1998) 323.
[17] V. Y. Petrov, V. Polyakov, R. Ruskov, C. Weiss and K. Goeke, Phys. Rev. D 59(1999) 114018 (1999).
[18] E. N. Nikolov, W. Broniowski, C. V. Christov, G. Ripka and K. Goeke, Nucl. Phys. A 608 (1996) 411.
[19] H. Leutwyler, arXiv:hep-ph/9609467.
[20] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).