The unsuspected "bodyguards" of red blood cells

Tracking no: BLD-2020-008702

Gianluigi Zangari Del Balzo (Sapienza University of Rome, Italy)

Abstract:
Transferrin is a glycoprotein universally described as a "carrier" in the "iron cycle" between the organic deposits (ferritin and hemosiderin) and the sites responsible for hematopoiesis (bone marrow). An in-depth analysis of the structure and function of transferrin, accompanied by macromolecular dynamic simulations carried out by means of an advanced calculation system dedicated to the study of complex systems, has allowed us to understand an unsuspected "non-canonical" function of this protein in the metabolism of mature red blood cells. In this work we offer a dynamic scenario showing this new function of the protein according to three steps related to its known conformational transitions.

Conflict of interest: No COI declared

COI notes:

Preprint server: Yes; researchgate 10.13140/RG.2.2.16449.99680

Author contributions and disclosures: GZ designed research, performed research and wrote the paper.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: emails to the corresponding author

Clinical trial registration information (if any):
The unsuspected "bodyguards" of red blood cells

Gianluigi Zangari Zangari del Balzo$^{1* \dagger}$

1Department of Physics, Sapienza University of Rome

Key Point 1: A simulation based on the study of an entropy-oriented REM energy landscape of Transferrin has predicted its "non-canonical" function

Key Point 2: Survival of Transferrin receptors on mature RBCs is also predicted.

Abstract

Transferrin is a glycoprotein universally described as a "carrier" in the "iron cycle" between the organic deposits (ferritin and hemosiderin) and the sites responsible for hematopoiesis (bone marrow). An in-depth analysis of the structure and function of transferrin, accompanied by macromolecular dynamic simulations carried out by means of an advanced calculation system dedicated to the study of complex systems, has allowed us to understand an unsuspected "non-canonical" function of this protein in the metabolism of mature red blood cells. In this work we offer a dynamic scenario showing this new function of the protein according to three steps related to its known conformational transitions.

*Corresponding author.
†E-mail: zangarigianluigi@gmail.com, zangari@roma1.infn.it, tel +39 371-1912194
1 Introduction

Transferrins belong to a family of 80 kDA monomer glycoproteins (Baker and Lindley) composed of single chain of 670-690 residues and structurally organized in two homologous lobes (identified as "N" and "C") fatherly divided in four sub domains identified respectively as "N1" and "N2" in "N" lobe and as "C1" and "C2" in "C" lobe. The bilobate characteristic topology of transferrin is generally referred to the evolution from a common monolobate precursor that could have given origin to a phylogenetic line common to the PBS bacteria that also transfer Fe3+ ions to the gram-negative bacteria and have a semi-transferrin structure, now completely identified. The complex structural-functional relationship of transferrin is clearly outlined in figure 1, Courtesy of Heather M. Baker et Al.

figure 1

Transferrin is the main intrabody carrier of iron (Aisen et al. 1989), whether absorbed by food or released by the monocyte-macrophagic cells due to the degradation process of hemoglobin released by elderly RBCs. The processes of iron absorption are different according to whether the metal is contained in food under haeminic form (hemoglobin or myoglobin) of which meat is rich or under non-haeminic form (ferritin and hemosiderin) present in vegetables. In the first case, the absorption of metal by the intestinal mucous cells occurs directly, whereas in the second case the metal should be linked to a chelate such as ascorbic acid. In all cases, iron meddled through food after having being absorbed by the intestinal epithelial cells and realized in plasma, becomes linked to transferrin and carried out to the various organs and tissues. Among these, the main iron
receiver is the bone marrow inside which the metal is utilized by the erythron for the hemoglobin synthesis.

Then, whilst the transferrin’s role of "carrier" in the initial and final life cycle of the erythrocyte is well-known, its function has not yet been connected with the metabolism of the mature erythrocyte, notwithstanding some evidences of its direct involvement with it.

2 Materials and Methods

No organic materials or clinical trials on humans or animals were used for the present research. This paper is a free-scale macromolecular dynamic simulation that we developed as part of the research in the fight against the COVID-19 Pandemic by the Coronavirus Disease Research Community - COVID-19 at the European Organization for Nuclear Research -CERN (Genève, CH) \(^4,^5\).

The simulations were generated on an autocad (static) and dynamic platforms by means of the category calculus "SHT", patented by the present author in 1997-2011 for the study of complex systems \(^6\).

From the practical point of view, SHT analysis did not take place either with changes to the sample, or with reductions or subtractions of any kind: the SHT algorithms analyzed the system \textit{sic rebus stantibus}, also considering the “junk”. SHT looks for a partition of each data ensemble, considered as a sort of “dynamic system”. In the affirmative case, the dynamic evolution of the
data around the attractors is studied. In this way, it is also easier to identify any systematic errors. If SHT succeed in identifying an attractor, it will become a “category” of the experiment. But only of that particular experiment. Once the possible categories have been identified, SHT looks for, if it exists, a subset of “morphisms” that possess the qualities of probability functions in order to complete the category. In this case, SHT defines these morphisms as “maximum congruence profiles”. From an implementation point of view, SHT analysis was performed through algorithms designed and adapted ad hoc in the mainframe data center machine codes and, from time to time, they are translated into programming and compilation through human interfaces of commercial software such as Matlab®, Origin®, Mathematica®, Kaleidagraph®, etc. The analysis is generally conducted on nine levels. The last levels are made of time series, and maximum congruence regressions. The first and intermediate levels are dedicated to the declaration of variables, labeling (“tagging”), and to the reconstruction of time intervals and delays (“lagging”), and to the calibration in time. The optimization procedures of the first levels make it possible to collect and generate groups of experimental data by selecting the relative configurations of the databases.

In the present case, the analysis was performed by arranging the structural and protein folding conformational data from literature into an entropic oriented REM energy landscape (the "rugged funnel" by Hans Frauenfelder 7–11), which we used to call “Data-Funnel”. It is a section of a real plane or real space of a hyper-spatial map that represents the configuration entropies as a function of the probabilities of the configurations, the relative energies and the set of control parameters. This procedure thus avoid the subjective introduction of selection criteria or parametric subjective tuning. The ultimate goal of the SHT first level processes is to create a data “cladistics”.
We chose Transferrin because the configurations of this protein lend themselves well to simulations.

The environmental boundary conditions are based on the main actions and functional activities of the protein. The result is a probabilistic frame that reveals a possible "non-canonical" function of Transferrin, which has a not negligible conformational probability index, much higher than the other simulations conducted with the proteins studied in the COVID-19 pandemic. If this new function is confirmed, we may have a valid model suitable to build-up an algorithm to be used in the fight against the COVID-19 Pandemic. Further technical clarifications are available, if of interest.

3 Results

Hence, the first point which is directly brought about to our attention is the common query of all researchers about the so-called "synergistic" anion (bi)carbonate which starts and drives the suitable conformational transformation of folding (i.e. the stiff rotation of the two lobes around the hinge) of the apo-protein Transferrin from the "closed" (C) form to the "open"(O) form and coordinates the union of 4 residuals in order to build-up the linkage site of trivalent iron. Numerous spectroscopic and kinetic studies\(^2, 11–18\) have clearly demonstrated that carbonate anion links firstly with the apo-protein, starting the folding transformation. The first step in the complex process of iron capture is hence given by the interaction with carbonate anion, without which the protein does not have affinity for iron in the range \(10^{20}\text{M}^{-1}\) (Aisen 1989\(^3\), Bellounis et al.)
1996¹⁹). Generally, the process en folds with a chain of fast reactions starting with the linkage with carbonate. After this starting process and in fast succession 13 four of the six iron linking items, two oxygen carbonates and two tyrosine united in one item in order to create the linking site (fig.1).
We note that this starting process is almost general and useful, depending on the chemical peculiarity of the native anion and the topology of the linkage site (i.e. "mono" or "bi-dentate")20,21: indeed for transferrin the native anion is a carbonate, while for the nFBP (the periplasmic proteins carriers of iron in some pathogenic bacteria like Neisseria meningitidis, N. Gonorrhoeae, etc) the native anion is a phosphate21). Consequently, for transferrin family we find a relevant dependence of the concentration of the synergistic native anion carbonate, as displayed in fig. 212.

We could now guess why the native synergistic anion for transferrins is just a carbonate and not phosphate and try to look for a local answer through topological, physical, and chemical features of the linkage itself. However, if we try to consider the problem through the "global" point of view of metabolism we may be immediately driven to the carbon cycle in the aerobic metabolism. As known indeed, the main final product of aerobic metabolism is carbon dioxide. In organisms with complex structures, carbon dioxide is released in the blood and carried to the lungs by the erythrocytes to be afterwards exhaled. Notwithstanding the CO\textsubscript{2} hydration and the HCO\textsubscript{3} dehydration occur at a "reasonable" speed even in the absence of a catalyst22,23,24,25, mostly all the organisms contain enzymes (i.e. "carbonic anhydrase") which catalyze these processes. These enzymes are clearly necessary because the CO\textsubscript{2} hydration and the HCO\textsubscript{3} dehydration in the blood are blended with fast transportation processes22,23,24,25.

Therefore, here we may find the key to understand the role of transferrins in the metabolism of mature erythrocytes: indeed the protein is "forced" (by the strong affinity we have just described) to follow the flux of the synergistic carbonate anions issued by the erythrocytes in order to establish
almost a linkage with the RBC cell mediated by the folding "starting" transformations. At this purpose, I suggest the following model of "follow-up", as displayed in fig.2.

figure 2

During this "follow-up" along the anionic wake of the erythrocyte, the apo-protein is almost linked with the erythrocyte and "forced" to activate itself displaying an extremely precise conformational dynamic. Many researches have indeed suggested several models of this structural dynamic as described by the Frauenfelder’s rugged funnel energy landscape model which is why we decided to use the SHT entropy oriented landscape frame for the simulation (see materials and methods). Some of them suggest a sequence of four main sub-conformational states, respectively:

1- Apo C (closed);

2- Apo O (open);

3- Holo O (open);

4- Holo C (closed)

Direct measurements and theoretical previsions about the radius of gyration show that both the two closed conformations ("apo" and "holo") offer a considerable fluid dynamical
advantage in the motion of the protein (whether charged or discharged) within the plasma and even through the haematic barriers of the organisms 32,33. The other two open conformations ("apo" and "holo") that can be activated by the linkage with the synergistic anion are often called "open-jaws" 18 because they offer a major active surface and therefore a major radius of gyration that is suitable to capture the metal and other important functions that we will try to explain later.

Finally, we are supposed to ask ourselves why does the protein be "forced" (by anionic affinity) to "follow-up" the erythrocyte’s anionic wake within the plasma and then to start the folding transformation very closely (and almost linked) to the erythrocyte itself. At this purpose, we start trying to find a possible answer from two simple considerations.

1. The first consideration come from some recent results 34,35 that have just demonstrated that adding (either in vivo or in vitro) doses of transferrin or transferrin-complexes in several haematic pathologies has sensibly reduced -and even inhibited in some cases- the erythrocitary lysis and prevented the macro-aggregates formation.

2. The second consideration is in direct connection with the erythrocitary metabolism.

We know in fact that the metabolism of the RBC develops at least according to three fixed points:

2.1 To safeguard the integrity of the membrane and the osmotic gradient Na+/K+ respect to the plasma environment: for this purpose it needs energy (ATP) which is obtained by glucose
through anaerobic glycolysis;

2.2 Keeping the heme iron in its ferrous state (Fe$^{2+}$) preventing O$_2$ to oxidize it to the ferric state (Fe$^{3+}$). Indeed, a specific enzyme ("methemoglobin reductase" that needs NADH which is furnished by anaerobic glycolysis) provides at this purpose reducing the "ferrie" hemoglobin ("methemoglobin") into "ferrous" hemoglobin;

2.3 To protect hemoglobin from oxidative denaturation and maintaining it into solution. Those that are provided by catalases and peroxidases that neutralize H$_2$O$_2$ produced by oxidation and glutathione (GSH) which is the "master antioxidant" and safeguard the groups SH of hemoglobin from oxidation. Indeed, as the lysis of human erythrocytes is stimulated by carbonate anions, we know also clearly that methemoglobin formation, glutathione depletion and conversion of oxyhemoglobin to methemoglobin are associated with super oxide anion production and lead to the formation of ferryl hemoglobin, hydrogen peroxide or hydroxyl radicals36,37.

Finally, we are therefore led to answer our question by noting that transferrin must follow the anion trail of the erythrocyte to participate directly in mature erythrocyte metabolism.

We may try to think to transferrin as a sort of erythrocyte’s "bodyguard", following the erythrocyte with an ever-increasing closeness clearly regulated by the magnitude of the anionic flux and so denaturation and/or oxidation damages when the other defenses (ie. peroxidases, catalases and methemoglobin reductase) fail and the anionic flux increases in magnitude. As the anionic flux overcomes a critical value, the protein must link with the erythrocyte itself in order to intervene directly into the critical erythrocytary metabolism.
We can call it a "non-canonical action" of transferrin38.

Clearly, the natural site for transferrin to bind is the transferrin receptor (TfR) on the cell membrane, and we expect the protein to form a complex with TfR.

Even if is generally accepted that after maturation the reticulocyte expels the obsolete membrane proteins through the formation of exosomes (Johnstone 1991 and Harding 198339), the linkage of transferrin with the mature RBC must occur through the formation of a complex transferrin-receptor (TfR) on the RBC membrane in order to enter the cell by the "Receptor Mediated Endocytosis" process. Therefore, TfRs might not be considered "obsolete membrane proteins" to be expelled by the mature reticulocyte. The conformational (theoretical) probability of the existence of the receptor for Tf, inferred in the low entropy states of the funnel, is relevant for the “native” states at the entropy minima (as can be seen from the diagram in the following figure, i.e. two states are the most probable, meaning a variable conformation between two sub conformations).

\textbf{figure 3}

Henceforth, we must necessary suggest that a specialized and active receptor for transferrin (that we may call TfRx) will survive on the membrane of the mature erythrocyte, as can happen, under certain conditions, in the case of chickens40. Today we have several generations of well-known Tf receptors (TfR2 is the most known) with some specifications still unclear in relation to the different transformations they can undergo, see i.e. Hiroshi Kawabata’s comprehensive studies which we recall among the others39,41–52.
The TfRx family might be a progeny of the TfR “ancestors” coordinated for the hemoglobin synthesis upon the surface of the stem cells (i.e. CFU-GEMM, BFU-E, and CFU-E) and upon the erythroid precursors (erythroblasts). Therefore, as for erythroblasts we just need to look for a linkage process able to let the TfRx complex coordinate for the hemoglobin synthesis upon the membrane of the mature erythrocyte and thus intervene directly in its critical metabolism at the beginning of the erythrocytary membrane structural rearrangement that triggers the collapse of the entire cell. This rearrangement is clearly one of the causes of the arise of antigenic activities identified by immune globulinic fractions normally present in plasma. The complex antigen-antibody, similar to the one that arise in the haemolytic self-immune anemia, could therefore expose the erythrocyte to the capture by macrophages ("catching"). Now we know that the membrane rearrangement is due to the globin deposition on the erythrocytary membrane. Indeed some evidences show an increase in membrane bound globin, starting from monomers up to dimers, as displayed in the following figure 4.

figure 4

Therefore, we suggest that TfRx might complex with monomers or even dimers of globin (see figure 5) and then start to coordinate the synthesis of Hemoglobin that could permit the erythrocyte to reach its half-life of 120 days.

figure 5
4 Conclusions and Discussion.

Together with the role of iron carrier, we suggest that transferrin plays a very important role in the metabolism of mature erythrocytes, coming into action when the main defenses (peroxidase, catalase, GSH and so on) fail to fight the denaturation and oxidative damage of the main erythrocyte and hemoglobin pathologies. To this end, we carried out macromolecular simulations using the advanced calculation system SHT, representing an entropic oriented REM energy landscape (Fraunfelder’s rugged funnel). We studied the conformational probability that Transferrin undergoes conformational transformations from a compact structure to an open and activated one ("open jaws") during the follow-up of the anion wake and binds to a surviving TfR receptor in mature red blood cells. We can discuss the goodness of the entropy-oriented REM representation and the parameters that were used to compose this representation. As we know, the choice of control parameters is a very delicate operation. In this case we have decided to comply with the choice of a control parameter for each set of open configurations and another for each set of closed configurations. In the case of the linked configuration we have studied a subset of the compact configurations that form complexes. For each of these, the configuration space was left free to vary, minimizing entropy. The result, as represented in the example of Figure 3 (real plane section), is a finite set of states of minimum entropy, which could correspond to the structures of the TfRx (indicated in blue in the figures), which allows us more ease in choosing the phylogenetic line of TfRx. Of course, the results of the calculations are not exact, but expressed by probabilities.
In this way, we can say that for N states beyond the Glass Transition in a real plane scenario, we have a subset of states (N-p) with a finite probability of being good candidates for the existence of a TfRx receptor.

If this role is confirmed by specific experiments, important progress can be made in blood diseases.

In addition, if the qualitative result of the simulation were confirmed by experiments, we could say that we have achieved an algorithmic functional model also for research in the fight against the COVID-19 Pandemic.

1. Baker, EN, Lindley, PF. New perspectives on the structure and function of transferrins. Journal of Inorganic Biochemistry.1992:47;147–160.doi:10.1016/0162-0134(92)84061-q; https://dx.doi.org/10.1016/0162-0134(92)84061-q.

2. Baker, HM, Anderson, BF, Baker, EN et al. Dealing with iron: Common structural principles in proteins that transport iron and heme.PNAS.2003:100;3579–3583. https://dx.doi.org/10.1073/pnas.0637295100.

3. Aisen, P, Harris, DC. Physical biochemistry of the transferrins. Iron Carriers and Iron Proteins. VCH Publishers, New York.1989:5;241–251.

4. Zangari, G. Energy Landscape Theory of SARS-CoV-2 Complexes with Particulate Matter. SSRN Electronic Journal.2020. doi:10.2139/ssrn.3609572.

5. Zangari, G. Energy Landscape Theory of SARS-CoV-2 Complexes with Particulate Matter - COVID-19. ZENODO-Open AIRE(CERN).2020.doi:10.13140/RG.2.2.25718.01606.
6. Zangari, G. Category Calculus and Applications-Sistema di calcolo avanzato per
categorie. Patent U.S. Copyright Office TXU001773372. 2011.

7. Frauenfelder, H, Sligar, S, Wolynes, P. The energy landscapes and motions of proteins.
Science. 1991:254;1598–1603. doi:10.1126/science.1749933.

8. Frauenfelder, H. The Complexity of Proteins. Physics of Biological Systems, Springer. 1997;
29–60.

9. Frauenfelder, H. Energy Landscape and Dynamics of Biomolecules. Journal of Biological
Physics. 2005:31;413–416. doi:10.1007/s10867-005-0696-4.

10. Wolynes, PG, Luthey-Schulten, Z. The Energy Landscape Theory of Protein Folding. Physics
of Biological Systems, Springer. 1997; 61–79.

11. Mizutani, K. J. Biol. Chem. 1999:274;10190–10194.

12. Abdallah, FB et al. Transferrins, the mechanism of iron release by ovotransferrin.
Eur.J.Biochem. 1999:263; 912–920. doi:10.1046/j.1432-1327.1999.00596.x.

13. Aramini, JM et al. Spectroscopic studies of the interaction of aluminum(III) with
transferrins. Coordination Chemistry Reviews. 1996:149;193–229. doi:10.1016/S0010-8545(96)90026-0.
14. Lee, DA et al. The pH-Induced Release of Iron from Transferrin Investigated with a Continuum Electrostatic Model. Biophysical Journal. 1998:74;2747–2759. doi:10.1016/S0006-3495(98)77983-4.

15. Kurokawa, H et al. Crystal Structure of Hen Apo-ovotransferrin. The Journal of Biological Chemistry. 1999: 274;28445–28452. doi:10.1074/jbc.274.40.28445.

16. He, QY et al. Methionine NMR and metal-binding studies of recombinant human transferrin N-lobe and five methionine mutants: conformational changes and increased sensitivity to chloride. Biochem. J. 1999:344;881–887.

17. Mizutani, K et al. Alternative Structural State of Transferrin. The Journal of Biological Chemistry. 1999:274;10190–10194. doi:10.1074/jbc.274.15.10190.

18. Navati, MS, Samuni, U, Aisen, P, Friedman, JM et al. Binding and release of iron by gel-encapsulated human transferrin: Evidence for a conformational search. PNAS. 2002:100; 3832–3837. doi:10.1073/pnas.262526399.

19. Bellounis, L, Pakdaman, R, Chahine, JM. Apotransferrin proton dissociation and interactions with hydrogencarbonate in neutral media. Journal of Physical Organic Chemistry. 1996:9;111–118. doi:10.1002/(sici)1099-1395(199602)9:2<111::aid-poc761>3.0.co;2-4.
20. Pakdaman, R et al. Transferrins—a mechanism for iron uptake by lactoferrin. Eur. J. Biochem. 1998: 254; 144–153. doi: 10.1046/j.1432-1327.1998.2540144.x.

21. Guo, M et al. Synergistic Anion and Metal Binding to the Ferric Ion-binding Protein from Neisseria gonorrhoeae. The Journal of Biological Chemistry. 2003: 278; 2490-2502. doi:10.1074/jbc.M208776200.

22. Tura, S. Ematologia: corso di malattie del sangue e degli organi emolinfopoietici. Esculapio. 2015.

23. Darnell, J, Lodish, H, Baltimore, D et al. Molecular Cell Biology. Scientific Amer Inc. 1998.

24. Hoffman, R et al. Hematology-7th edition. Elsevier. 2017.

25. Mandelli, F et al. Ematologia di Mandelli, a cura di Giuseppe Avvisati. Piccin. 2019.

26. Grossman, JG et al. The nature of ligand-induced conformational change in transferrin in solution: an investigation using X-ray scattering, XAFS and site-directed mutants. J. Mol. Biol. 1998: 279; 461–472. doi:10.1006/jmbi.1998.1787.

27. Kostinski, AB, Jameson, AR. Fluctuation Properties of Precipitation. Part I: On Deviations of Single-Size Drop Counts from the Poisson Distribution. Journal of the Atmospheric Sciences. 1997: 54; 2174–2186. doi:10.1175/1520-0469(1997)054<2174:fpoppi>2.0.co; 2.
28. Mecklenburg, SL, Donohoe, RJ, Olah, GA. Tertiary structural changes and iron release from human serum transferrin. Journal of Molecular Biology.1997:270;739–750 (1997). doi:10.1006/jmbi.1997.1126.

29. Castellano-Congiu A et al. Structure-Function Relationship in the Serotransferrin: The Role of the pH on the Conformational Change and the Metal Ions Release. Biochemical and Biophysical Research. 1994:198;646–652.doi:10.1006/bbrc.1994.1094.

30. Baker, HM et al. Metal substitution in transferrins: specific binding of cerium(IV) revealed by the crystal structure of cerium-substituted human lactoferrin. J. Biol. Inorg. Chem.2000:5;692–700.doi:10.1007/s007750000157.

31. Baker, HM, Baker, EN. Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals.2004:17;209–225.doi:10.1023/b:biom.0000027694.40260.70.

32. Pan, W. Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. Journal of Cell Science.2004:117;5071–5078.doi:10.1242/jcs.01381.

33. Demeule, M et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier. Journal of Neurochemistry.2002:83;924–933.doi:10.1046/j.1471-4159.2002.01201.x.

34. Giunta, S et al. Transferrin neutralization of amyloid β 25–35 cytotoxicity. Clin. Chim. Acta.2004:350;129–136. doi:10.1016/j.cccn.2004.07.025.
35. Wingert, RA et al. The chianti zebrafish mutant provides a model for erythroid-specific disruption of transferrin receptor. Development. 2004;131;6225–6235. doi:10.1242/dev.01540.

36. MICHELSON, A, MARAL, J et al. Carbonate anions, effects on the oxidation of luminol, oxidative hemolysis, γ-irradiation and the reaction of activated oxygen species with enzymes containing various active centres. Biochimie. 1983;65;95–104 (1983). doi:10.1016/s0300-9084(83)80179-5.

37. Bukowska, B, Kowalska, S. Phenol and catechol induce pre-hemolytic and hemolytic changes in human erythrocytes. Toxicol. Lett. 2004;30;73–84. doi:10.1016/j.toxlet.2004.03.025.

38. Moura, IC, Hermine, O, Lacombe, C, Mayeux, P. Erythropoiesis and transferrin receptors. Current Opinion in Hematology. 2015;22;193–198. doi:10.1097/moh.0000000000000133.

39. Savina, A. The exosome pathway in K562 cells is regulated by Rab11. Journal of Cell Science. 2002;115;2505–2515.

40. Kline, K, Plante, LA, Morgan, TJ, Sanders, BG. Chicken transferrin receptor expression during erythroid differentiation and by retrovirus transformed cells. Developmental and Comparative Immunology. 1989;13;231–252 (1989). doi:10.1016/0145-305x(89)90004-9.
41. Kawabata, H. Regulation of expression of murine transferrin receptor 2.
 Blood.2001:98;1949–1954. Doi:10.1182/blood.V98.6.1949.

42. Kawabata, H. Transferrin and transferrin receptors update. Free Radic Biol Med.2019:133;46–54.doi:10.1016/j.freeradbiomed.2018.06.037.

43. Canonne-Hergaux, F, Zhang, AS, Ponka, P, Gros, P. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mkmice.
 Blood.2001:98;3823–3830.doi:10.1182/blood.v98.13.3823.

44. West, AP et al. Comparison of the Interactions of Transferrin Receptor and Transferrin Receptor 2 with Transferrin and the Hereditary Hemochromatosis Protein HFE. The Journal of Biological Chemistry.2000:275;38135–38138.doi:10.1074/jbc.C000664200.

45. Ganz, T. Is TfR2 the iron sensor? Blood.2004.doi:10.1182/blood-2004- 09-3664.

46. Waheed, A et al. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis. PNAS.2002:99;3117–3122.

47. Shmitz, MC, Schaefer, B, Bruns, J. A ganglion of the anterior horn of the medial meniscus invading the infrapatellar fat pad. Knee Surgery, Sports Traumatology, Arthroscopy.1996:4;97–99.doi:10.1007/bf01477261.
48. Salter-Cid, L et al. Transferrin receptor is negatively modulated by the hemochromatosis protein HFE: Implications for cellular iron homeostasis. PNAS. 1999. doi:10.1073/pnas.96.10.5434.

49. Orberger, G et al. Structural and Functional Stability of the Mature Transferrin Receptor from Human Placenta. Archives of Biochemistry and Biophysics. 2001:386;79–88. doi:10.1006/abbi.2000.2177.

50. Yajima, H et al. Molecular Modeling of Human Serum Transferrin for Rationalizing the Changes in Its Physicochemical Properties Induced by Iron Binding. Implication of the Mechanism of Binding to Its Receptor. Journal of Protein Chemistry. 2000:19;543–543. doi:10.1023/a:1026632802946.

51. Pantopoulos, K et al. TfR2 links iron metabolism and erythropoiesis. Blood. 2015:125;1055–1056 (2015). doi:10.1182/blood-2014-12-617571.

52. Nai, A et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015:125;1170–1179. doi:10.1182/blood-2014-08-596254.

Authors’ contributions

GZ coordinated the research, simulations and wrote the manuscript.
Funding and competing interests

Declaration of interests. The author declares that he has no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding. The author received no specific funding for this work, as it is a voluntary work for the fight against the COVID-19 Pandemic.
Figure 1: Courtesy of Heather M. Baker et Al.² (A) Ribbon diagram showing the characteristic bilobal structure of transferrins. Shown here is the iron-bound form of human Lf, with the N lobe on the left and the C lobe on the right. In each lobe, domain 1 is gold and domain 2 is green, with a single Fe³⁺ ion (red sphere) and CO (orange) bound in the interdomain cleft. An α-helix (magenta, top) joins the two lobes; in Tf this is non helical. The C-terminal α-helix (pink) may play a role in communication between the lobes (37). (B) The conformational change that accompanies iron binding, shown here for the N lobe of human Tf (21). A hinge in the two β-strands that run behind the iron site allows one domain to move relative to the other. Two helices (blue) act as a fulcrum; one pivots on the other. (C) The canonical iron binding site of transferrins, shown here for the N lobe of human Lf, involves two tyrosine ligands, one aspartate, one histidine, and a bidentate CO ion in a pocket formed by an arginine side chain and the N terminus of an α-helix. In the N lobe of sTfs, a pair of lysine residues forms a pH-sensitive interaction that assists iron release; these replace Arg-210 and Lys-301 shown here for Lf. (D) Comparison of the iron binding site found in transferrins (Left) with that in the bacterial periplasmic ferric binding protein (Right). In both cases a coordinating anion (carbonate and phosphate, respectively) is at the N terminus of a structurally homologous α-helix and a carboxylate ligand is contributed from a homologous loop. The histidine and two tyrosine ligands come from quite different parts of the structure, yet generate a binding site that is spatially and chemically almost identical.
Figure 2: Follow up along the anion wake of mature erythrocytes. Free scale dynamic simulation with category calculus (Zangari 1997-2011) and Autocad - Autodesk (R).
Figure 3: Real plane section of an entropy-oriented REM landscape ("rugged funnel") The N low-entropy funnel states that survive beyond the glass transition are significant for the survival of a transferrin receptor on mature RBCs. Of these only N-p states are good candidates. In the example in the figure we have two probability configurations <50% for the receptor-ligand system (Q ~1.0), which allow us to estimate the minimum energy of the configuration.
Figure 4: Transferrin follow-up along the anion wake leads to mature erythrocytes (catching). Note that in preparation for the link with the TfRx receptor, transferrin undergoes a conformational transformation to an open configuration ("open jaws"). Free scale dynamic simulation with category calculus (Zangari 1997-2011°) and Autocad -Autodesk (R)
Figure 5: Open jaws transferrin link with the Tfrx receptor. Free scale dynamic simulation with category calculus (Zangari 1997-2011) and Autocad -Autodesk (R)