Myelin-Derived Lipids Modulate Macrophage Activity by Liver X Receptor Activation

Jeroen F. J. Bogie1*, Silke Timmermans1*, Vân Anh Huynh-Thu2, Alexandre Irrthum3, Hubert J. M. Smeets4, Jan-Åke Gustafsson5, Knut R. Steffensen5, Monique Mulder6, Piet Stinissen1, Niels Hellings1, Jerome J. A. Hendriks1*

1 Hasselt University/Transnational University Limburg, Biomedical Research Institute, School of Life Sciences, Diepenbeek, Belgium, 2 University of Liège, GIGA-Research, Bioinformatics and Modeling, Liège, Belgium, 3 University of Liège, Department of Electrical Engineering and Computer Science, Systems and Modeling, Liège, Belgium, 4 Department of Genetics en Cellbiology, Schools for Cardiovascular Research and for Oncology and Developmental Biology, Maastricht UMC+, Maastricht, The Netherlands, 5 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden, 6 Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Rotterdam University, Rotterdam, The Netherlands

Abstract

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis.

Copyright: © 2012 Bogie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

One of the pathological hallmarks of multiple sclerosis (MS) is loss of the nerve-insulating myelin sheath, which contributes to the myriad of symptoms observed in individuals with MS. Infiltrated macrophages and resident microglia are considered to be the primary effector cells in MS and its animal model, experimental autoimmune encephalomyelitis (EAE) [1–3]. Together with activated autoimmune lymphocytes they orchestrate the immunopathological processes causing demyelination and concomitant axonal degeneration [4–7]. In addition to the secretion of cytotoxic cytokines or soluble toxic mediators [8–13], microglia and infiltrated macrophages phagocytose and degrade myelin [14–22]. Although presumably detrimental when considering degeneration of intact myelin, clearance of myelin debris has also been reported to be a prerequisite for axonal remyelination [23–25].

Recently, macrophages, microglia and dendritic cells have been described to adopt an altered phenotype following myelin phagocytosis. Nonetheless, the effect myelin has on the inflammatory state of these cells remains controversial. Several studies have reported, for instance, a neuroinflammatory phenotype of macrophages and microglia after myelin internalization, characterized by an increased production of pro-inflammatory and toxic mediators [14–16,20]. In contrast, other studies describe that monocyte-derived macrophages, peritoneal macrophages, microglia and dendritic cells obtain anti-inflammatory characteristics following internalization of myelin [17–19,22,26].

This study aims to determine the phenotype of myelin-phagocytosing macrophages (mye-macrophages) in a pro-inflammatory environment, similar to which they are exposed to in the parenchyma and perivascular spaces during active demyelination in MS [27–29]. Microarray analysis discovered 676 differentially regulated genes in mye-macrophages compared to control macrophages, both treated with IFNγ and IL-1β. Gene ontology and pathway mapping tools demonstrated an overrepresentation of genes in pathways involved in proliferation, chemotaxis,
phagocytosis, inflammation, lipid metabolism and liver X receptor (LXR) signaling. Quantitative PCR validated that several genes involved in lipid metabolism and LXR signaling were differentially regulated in my-e-macrophages. These alterations in gene expression have functional consequences as my-e-macrophages showed an increased efflux of cholesterol. LXR activation has been described to increase the expression of genes involved in lipid metabolism and to suppress inflammation related genes in macrophages. We show that myelin suppresses the macrophage-mediated production of the pro-inflammatory mediator IL-6 by activating the liver X receptor β-isof orm. These results indicate that myelin possesses functional ligands capable of activating LXRs, hereby affecting the phenotype of macrophages.

Methods

Animals

Wistar rats were purchased from Harlan Netherlands B.V. (Horst, The Netherlands). Wild-type, LXRβ-KO, LXRβ-KO and LXRββ-KO mice have been described previously [30]. Animals were housed in the animal facility of the Biomedical Research Institute of Hasselt University. Experiments were conducted in accordance with institutional guidelines and were approved by the ethical committee for animal experiments of Hasselt University.

Myelin Isolation

Myelin was purified from rat and mouse brain tissue by means of density-gradient centrifugation, as described previously [31]. Myelin protein concentration was determined by using the BCA protein assay kit (Thermo Fisher Scientific, Erembodegem, Belgium). Endotoxin content was determined using the Chromogenic Limulus Amebocyte Lysate assay kit (Genscript Incorporation, Aachen, Germany). Isolated myelin contained a negligible amount of endotoxin (≤1.8×10⁻³ pg/µg myelin).

Cell Culture

Resident peritoneal macrophages were obtained by peritoneal lavage using ice-cold PBS (Lonza, Vervier, Belgium) supplemented with 5 mM EDTA (VWR, Leuven, Belgium). Peritoneal exudate cells were cultured for 2 hours in RPMI 1640 medium (Invitrogen, Merelbeke, Belgium). After a 2 hour incubation at 37°C with 5% CO₂, non-adherent cells were washed away. Remaining cells were >95% macrophages [32].

For microarray analysis isolated macrophages were seeded in flat-bottom 12-well plates (1×10⁶ cells/ml) in RPMI 1640 medium supplemented with 50 U/ml streptomycin (Invitrogen), 50 U/ml streptomycin (Invitrogen) and 10% FCS (Invitrogen), and 50 U/ml of isolated myelin (n = 5) or left untreated (n = 5). Following a three day culture, myelin was treated with 100 ng/ml IFN-g and IL-1β (Preprotech, London, UK) for 9 hours. For validation experiments isolated macrophages were treated for 24 or 48 hours with 100 µg/ml of isolated myelin or 10 µM T0901317 (T09; Cayman Chemicals, Huis ten Bosch, The Netherlands).

RNA Isolation

Total RNA was prepared using the RNeasy mini kit (Qiagen, Venlo, The Netherlands), according to the manufacturer’s instructions. The RNA concentration and quality was determined with a NanoDrop spectrophotometer (Isogen Life Science, IJsselstein, The Netherlands).

Microarray Analysis

RNA was labeled and hybridized to Affymetrix rat 230-2.0 GeneChips (Affymetrix, UK) containing 3100 probe sets which analyze the expression level of over 30000 transcripts and variants from over 20000 well-substantiated rat genes. Hybridized chips were stained, washed and scanned with GeneChip Scanner 3000. All steps were carried out according to the standard Affymetrix protocols.

Raw Affymetrix CEL files from five replicates for each condition were collected. Bioconductor packages running under the R platform were used to process raw data [33]. By using the affy package [34], raw data were pre-processed to obtain RNA expression values [35]. Variance-based non-specific filtering was performed using the genefilter package to remove 50% of the probe sets, corresponding to those exhibiting the smallest variations in expression across the samples. Filtered genes that are differentially expressed between the two conditions were identified using unpaired two-sample T test. All data are MIAME compliant and the raw data have been deposited in NCBI’s Gene Expression Omnibus [36], accessible through GEO series accession number GSE34811.

The Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/) was used to determine enriched molecular functions/biological processes (easescore <0.01) and KEGG-pathways (easescore <0.1) in both the up- and downregulated gene pool [37]. DAVID utilizes a modified Fisher’s exact test to measure the gene enrichment in annotation terms (EASE score). In parallel, gene-pools were analyzed through the use of Ingenuity Pathway Analysis (IPA, Ingenuity® Systems, www.ingenuity.com). Overrepresented biological functions and canonical pathways with a Fisher exact p-value of <0.02 were considered significant. Overlapping functional categories and related genes in the output of both pathway analysis tools were utilized for further functional characterization.

Quantitative PCR

RNA was converted to cDNA using the reverse transcription system (Promega, Leuven, Belgium). In brief, RNA was supplemented with MgCl₂ (25 mM), RTase buffer (10 ×), DNTP mixture (10 mM); RNasin (20–40 U/µl); AMV RTase (20 U/µl) Oligo(dT) 15 primer and nuclease free water. The reverse transcription reaction was performed on 42°C for 60 minutes, 95°C for 5 minutes, using the iCYCLER (Biorad Benchmark). Quantitative PCR was conducted on a 7500 fast detection system (Applied Biosystems, Gaasbeek, Belgium) using universal cycling conditions (10 min 95°C, 40 cycles of 15 s at 95°C and 60 s at 60°C). The PCR reaction consisted of fast SYBR green master mix (Applied Biosystems), 10 µM of forward and reverse primers, RNase free water and 12.5 ng template cDNA in a total reaction volume of 10 µl. PCR products were loaded on 1.5% agarose gels to confirm specificity of amplification and the absence of primer dimer formation. Relative quantification of gene expression was accomplished by using the comparative Ct method. Data were normalized to the most stable reference genes, as previously described [38,39]. In our experimental setup, geNorm identified PGK1 and 18S as the most stable combination of reference genes with an identical M-value of 0.09 (data not shown). Additionally, by analyzing the pairwise variation value, V_mean, we demonstrated that in our data set two reference genes were sufficient for normalization, since inclusion of an additional reference gene increases the pairwise variation value (data not shown). Primers were chosen according to literature or designed using Primer-Express (http://www.ncbi.nlm.nih.gov/tools/primer-blast). Details of primers used are shown in table S1.
Cholesterol Efflux Assay

Following isolation, macrophages were seeded in 24-well plates and incubated for 48 hours with 0.5 μg/ml 1,2-[3H] cholesterol (GE Healthcare, UK). Next, cells were washed and treated with myelin or left untreated. Following 24 hours incubation, cells were washed with PBS, after which RPMI-1640 supplemented with penicillin/streptomycin and 50 μg/ml HDL (VWR) was added for 6 hours. Cholesterol efflux was analyzed using a β-plate liquid scintillation counter (Wallac, Turku, Finland). In addition, cholesterol efflux was determined using the Amplex Red Cholesterol Assay Kit (Invitrogen), according the manufacturer’s instructions.

Nitrite Formation and IL-6 Production

Culture supernatants of rat or mouse macrophages treated for 24, 48 or 72 hours with 100 μg/ml myelin or 10 μM T09 were collected after 18 hour stimulation with 100 ng/ml IFN-γ/IL-1β (Preprotech). Release of NO and IL-6 was determined using a Griess reagent system (Promega) and an IL-6 ELISA (R&D systems, Aldrich, Bornem, Belgium) or 100 ng/ml IFN-γ/IL-1β (Preprotech). Release of NO and IL-6 was determined using a Griess reagent system (Promega) and an IL-6 ELISA (R&D systems, Abingdon, UK) respectively.

Statistical Analysis

Data were statistically analyzed using GraphPad Prism for windows (version 4.03) and are reported as mean ±SEM. D’Agostino and Pearson omnibus normality test was used to test normal distribution. ANOVA or two-tailed unpaired student T-test (with Welch’s correction if necessary) was used for normally distributed data sets. The Kruskal-Wallis or Mann-Whitney analysis was used for data sets which did not pass normality. *P<0.05, **P<0.01 and ***P<0.001.

Results

Differentially Regulated Genes, Biological Processes and Pathways in Mye-macrophages

The transcriptional events, associated with myelin phagocytosis by macrophages in a pro-inflammatory environment, were investigated using Affymetrix rat 230–2.0 GeneChips. Non-phagocytosing macrophages stimulated with IFN-γ and IL-1β were used as control cells. The expression levels of individual genes were compared between groups using Bioconductor packages running under the R platform (see methods for details). Differentially expressed genes, their p-values and fold changes are listed in table 1 (complete list in table S2). Employing the cutoffs described in the methods section, the expression of 676 genes was altered, from which 280 genes were upregulated and 396 were downregulated.

To investigate the biological interactions of the genes identified in our screen, differentially expressed genes were further analyzed using pathway analysis software. IPA was used to determine overrepresented biological functions and canonical pathways within the up- and downregulated genes. Respectively 7 and 15 overrepresented canonical pathways were identified in the up- and downregulated gene pool (table 2). Canonical pathways in the upregulated gene pool included: aminosugar metabolism (p = 0.0002, genes: GCK, HEXB, PDE7B, PDE7A, PDE8B and TULP2), peroxisome proliferator-activated receptor (PPAR) signaling (p = 0.004, genes: FOS, HSP90AB1, PDGFRB, RARS2 and RXRβ), complement system (p = 0.007, genes: CIQαA, CFI and C8A), LXR/retnoid X receptor (RXR) activation (p = 0.009, genes: ABCG1, APOA1, RXRα and RXRγ) and cyclic adenosine monophosphate (cAMP) mediated signaling (p = 0.01, genes: CHRM1, HTR6, PDE7B, PDE7A, PDE8B, PKLA and TULP2), overrepresented pathways in the downregulated gene pool included: p38 signaling (p = 0.0009, genes: CCND2, CDKN1A, HDAC1, HIPK2, MDM2, MED1 and PIK3C2A), mammalian target of rapamycin (mTOR) signaling (p = 0.005, genes: AKT1S1, EIF4A2, FBP1, PDK1, PIK3C2A, RPS6KA1, RPS6KA5 and STK11), cell cycle checkpoint regulation (p = 0.008, genes: CCNB1, CDKN1A, MDM2 and RPS6KA1), ciliary neurotrophic factor (CNTF) signaling (p = 0.01, genes: IL6ST, PIK3C2A, RPS6KA1 and RPS6KA3), ras homolog gene family member A (RhoA) signaling (p = 0.01, genes: ARHGPAP5, GRLF1, MYLFP, PPI1R12A, RDX and ROCK2) and IL-8 signaling (p = 0.01, genes: ANGPT2, CCND2, FBP1, GNA12, IRAK1, PAK2, PIK3C2A and ROCK2). In concordance, IPA identified significantly overrepresented molecular and cellular functions related to these canonical pathways (table 2).

For comparison, data were additionally analyzed with DAVID (table S3). Like IPA, DAVID identified genes functionally clustered in various categories of KEGG pathways, biological processes and molecular functions. Using the cutoffs described in the methods section, DAVID identified similar enriched pathways and biological processes as IPA.

The 9-fold upregulation of myelin basic protein (MBP) was not due to RNA contamination of myelin, since added myelin contained a negligible amount of RNA (data not shown). Golli-MBP immunoreactivity has been reported in microglia and central nervous system (CNS) infiltrating macrophages in EAE affected animals [40].

Quantitative PCR Validation of Differentially Expressed Genes

The microarray data demonstrate that there is an overrepresentation of genes in processes like lipid-metabolism, LXR/PPAR signaling and cholesterol efflux in mye-macrophages. This suggests that myelin activates LXRs and/or PPARs in macrophages, hereby increasing the expression of response genes which are involved in lipid metabolism and cholesterol efflux. To confirm the capacity of myelin to act as an activator of LXR/PPAR signaling, expression of several LXR/PPAR regulated and related genes, like ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1), RXRα/β and stearyl-CoA desaturase 1/2 (SCD1/SCD2), was validated by means of qPCR (figure 1). All genes were found to be regulated in a similar manner as in the microarray analysis. Findings were confirmed by additional qPCR experiments using independent samples (data not shown). These results demonstrate that myelin-derived lipids induce the expression of LXR/PPAR response genes.

Mye-macrophages have an Increased Capacity to Dispose Intracellular Cholesterol

ATP-binding cassette transporter A1 and G1 (ABCA1/ABCG1) are pivotal in facilitating reverse cholesterol transport. They mediate the transfer of intracellular cholesterol and phospholipids to lipid-poor apolipoproteins and mature high-density lipoprotein (HDL) [41–45]. As mye-macrophages showed an increased expression of both transporters, we determined whether mye-macrophages are more potent in disposing intracellular cholesterol than control macrophages. As expected, mye-macrophages display an increased cholesterol efflux when HDL is used as an acceptor (figure 2). Similar results were obtained when using the Amplex Red Cholesterol Assay Kit, which measures both free cholesterol and cholesteryl esters (data not shown). Collectively, these results show that the increased expression of genes involved in cholesterol
metabolism has functional consequences, as mye-macrophages display an increased capacity to dispose intracellular cholesterol. Myelin Alters the Macrophage Phenotype by Activating the LXRβ Isoform

In addition to modulating cholesterol metabolism, LXRs have been described to negatively regulate macrophage inflammatory gene expression [46–50]. Since myelin is a rich source of cholesterol and cholesterol metabolites are natural ligands for

Table 1. Top 20 up- and downregulated genes in mye-macrophages.

Affy ID	Gene name	Gene symbol	FC	P value
Upregulated genes				
1368810_a_at	Myelin basic protein	MBP	9.12	0.001
1367668_a_at	Stearoyl-CoA desaturase (delta-9-desaturase)	Scd	4.02	0.027
1373098_at	Breast carcinoma amplified sequence 1	BCA51	3.81	0.007
1368103_at	ATP-binding cassette, subfamily G, member 1	ABCG1	2.40	0.045
1375077_at	N/A	N/A	1.77	0.009
1376652_at	Complement component 1, q subcomponent	C1qa	1.75	0.039
1382153_at	C-type lectin, superfamily member 6	Clec6f6	1.64	0.046
1398262_at	Phosphoribosyl pyrophosphate synthetase 2	Prps2	1.63	0.004
1391665_at	Fibroblast growth factor 7	Fgf7	1.53	0.009
1382431_at	ATP-binding cassette, subfamily A, member 1	ABCA1	1.52	0.023
1384534_at	GRAM domain containing 3	GRAMD3	1.48	0.038
1380245_at	N/A	N/A	1.45	0.024
1394673_at	Similar to Myeloid cell surface antigen CD33	LOC687856	1.44	0.002
1370423_at	Guanine nucleotide binding protein, alpha 15	GNA15	1.44	0.029
1373150_at	Catechol-O-methyltransferase domain containing 1	COMTD1	1.44	0.036
1373932_at	Phosphoribosyl pyrophosphate synthetase 2	Prps2	1.43	0.008
1372818_at	Collectin sub-family member 12	Colec12	1.41	0.043
1376155_at	Family with sequence similarity 151, member B	FAM151B	1.41	0.032
1374746_at	Ab1-152	LOC500877	1.41	0.008
1390987_at	N/A	N/A	1.40	0.021
Downregulated genes				
1392838_at	Similar to CG13957-PA	RGD1309995	0.47	0.016
1369067_at	Nuclear receptor subfamily 4, group A, member 3	Nrra3	0.47	0.009
1398846_at	Eukaryotic translation initiation factor 5	Eif5	0.47	0.033
1394935_at	WAS protein family, member 2	Wasp2	0.48	0.019
1369481_at	Tumor necrosis factor superfamily, member 4	TNFSF4	0.49	0.042
1396225_at	Cytoplasmic polyadenylation binding protein 2	CPEB2	0.49	0.011
1376739_at	DEAD (Asp-Glu-Ala-Asp) box polypeptide 24	DDX24	0.51	0.008
1395154_at	Zinc finger CCCH type containing 13	ZC3H13	0.52	0.019
1380144_at	Mps One Binder kinase activator-like 1A/B (yeast)	MOBKL1A/B	0.53	0.015
1395923_at	Nipped-B homolog (Drosophila)	Nipbl	0.53	0.013
1395697_at	Enhancer of zeste homolog 2 (Drosophila)	Ezh2	0.54	0.029
1377151_at	N/A	N/A	0.54	0.011
1381809_at	Ankyrin repeat domain 11	Ankrd11	0.55	0.005
1387391_at	Cyclin-dependent kinase inhibitor 1A (p21, Cip1)	CDKN1A	0.55	0.038
1391701_at	MYST histone acetyltransferase 3	MYST3	0.55	0.013
1375453_at	Hypothetical protein LOC688211	LOC688211	0.56	0.006
1398217_at	Zinc finger and BTB domain containing 41	Zbtb41	0.56	0.033
1380446_at	Myeloid/lymphoid or mixed-lineage leukemia 10	Mllt10	0.56	0.005
1381993_at	Chloride intracellular channel 2	CLIC2	0.57	0.026
1374594_at	Similar to RIKEN cDNA 1600029D21	LOC363060	0.57	0.035

doi:10.1371/journal.pone.0044998.t001
LXRs, we evaluated whether myelin affects LXR response gene expression and the secretion of pro-inflammatory mediators in a similar manner as an LXR ligand. LXR response gene expression was determined after treatment with myelin or a synthetic LXR agonist (T0901317). We observed that myelin induced apolipoprotein E (ApoE), ABCA1 and ABCG1 expression in macrophages in a similar manner as T0901317 (figure 3a–c), suggesting that myelin contains ligands capable of activating the LXR pathway. To ascertain a myelin-mediated activation of LXRs, LXRα-, LXRβ- and LXRαβ-deficient mouse macrophages were treated with myelin after which ABCA1 gene expression was determined. Here we show that ABCA1 gene induction by myelin is reduced in LXRβ-deficient macrophages, while it is completely absent in LXRαβ-KO macrophages. These results indicate that myelin activates LXRs in macrophages.

To further elucidate the role of LXRs we determined the influence of myelin and T0901317 on the secretion of inflammatory mediators by macrophages. Both T0901317 and myelin lowered the LPS or IFNγ/IL-1β induced production of NO and IL-6 to a similar extent (figure 4a–d). The reduction in NO and IL-6 production was not due to a reduced viability of myelin- or T0901317-treated macrophages (data not shown). To determine the role of both the LXRα and LXRβ isoform in the observed effects, LXRα-, LXRβ- and LXRαβ-deficient mouse macrophages were used. We observed that lack of LXRβ partially abolishes the myelin induced suppression of IL-6 secretion, which was not influenced by LXRα depletion (figure 4f). However, the reduction of NO production by myelin was not significantly affected in both LXRα-, LXRβ- and LXRαβ macrophages (figure 4c), indicating that besides LXRs other pathways are involved in the regulation of the macrophage phenotype after myelin phagocytosis. Collectively...

Downregulated gene pool	Upregulated gene pool
Canonical pathways	
p53 Signaling	Aminosugars Metabolism
mTOR Signaling	Thyroid Cancer Signaling
Growth Hormone Signaling	PPAR Signaling
Cell Cycle: G2/M DNA Damage Regulation	Relaxin Signaling
CNTF Signaling	Complement System
Nur77 Signaling in T Lymphocytes	LXR/RXR Activation
FLT3 Signaling in Hematopoietic Progenitor Cells	cAMP-mediated Signaling
RhoA Signaling	
Interleukin-β Signaling	
Regulation of eIF4 and p70S6K Signaling	
ATM Signaling	
Molecular and cellular functions	
Cellular Development	Carbohydrate Metabolism
Gene Expression	Amino Acid Metabolism
Cell-To-Cell Signaling and Interaction	Cellular Compromise
Cellular Growth and Proliferation	Gene Expression
Cellular Function and Maintenance	Nucleic Acid Metabolism
Protein Synthesis	Small Molecule Biochemistry
Cell Morphology	Cell Cycle
Cell Cycle	Cell Signaling
Cellular Assembly and Organization	Lipid Metabolism
DNA Replication, Recombination, and Repair	Molecular Transport
Cellular Compromise	Antigen Presentation
Amino Acid Metabolism	Cell-To-Cell Signaling and Interaction
Post-Translational Modification	Cellular Assembly and Organization
Small Molecule Biochemistry	Cellular Growth and Proliferation
Cell Death	DNA Replication, Recombination, and Repair
Antigen Presentation	Cellular Development
Carbohydrate Metabolism	Cellular Function and Maintenance
Lipid Metabolism	Cell Morphology
Cell Signaling	Cell Death
Nucleic Acid Metabolism	
Cellular Movement	

Table 2. Overrepresented canonical pathways and biological functions (IPA).
ly, these results indicate that myelin possesses functional ligands capable of activating LXRβ, hereby affecting the inflammatory state of macrophages.

Discussion

To obtain insight into the influence of myelin internalization on the functional phenotype of macrophages and the mechanisms involved, the gene expression profile of mye-macrophages was assessed. Microarray analysis revealed that the expression of 676 genes differed significantly. Gene ontology mapping and pathway analysis identified several common enriched pathways related to lipid metabolism, LXR/PPAR signaling and cholesterol efflux.

In addition to the upregulation of pathways related to lipid metabolism, mye-macrophages showed an overrepresentation of downregulated genes in pathways involved in proliferation, like p53 signaling and cell cycle checkpoint regulation. The reduced expression of p53 target genes, such as MDM2 and CDKN1A (p21) [51–53], and HIPK2, a kinase important for p53-dependent gene transcription [54,55], suggests that mye-macrophages have a reduced transcriptional activity of p53. Moreover, as p21 regulates cell cycle arrest, these results suggest that myelin has pro-proliferative effects on macrophages.

Chemotaxis plays a pivotal role in the recruitment of monocytes towards the CNS in MS and EAE. Moreover, the presence of myelin-antigen containing phagocytes in CNS draining lymph nodes in MS and EAE suggests that macrophages migrate to lymph nodes after myelin internalization [56,57]. Microarray analysis showed that mye-macrophages exhibit an overrepresentation of downregulated genes in pathways like mTOR, IL-8 and RhoA signaling, suggesting an altered motility of macrophages after myelin ingestion [58–64]. These results are in line with a recent report showing an aberrant motility of myelin-containing macrophages [65].

In addition to controlling chemotaxis, mTOR and RhoA signaling are reported to influence demyelination, by affecting complement receptor-mediated phagocytosis [39,66]. Similarly, the upregulated expression of C1q in mye-macrophages may augment their phagocytic capacity [67,68]. These results indicate that myelin uptake induces a positive feedback loop in macrophages, promoting myelin phagocytosis. Furthermore, alterations in mTOR, complement and cAMP-mediated signaling have been described to modulate the inflammatory properties of macrophages [69–73]. The latter indicates a complex regulatory network directing the specific phenotype of mye-macrophages.

Besides affecting cholesterol metabolism, the upregulated expression of GCK and HEXB, genes involved in the aminosugar metabolism pathway, indicates that sphingolipids and hexose structures are also actively metabolized after myelin internalization by macrophages [74,75]. This is in correspondence with related differentially regulated (non-significant) pathways in the IPA analysis, like sphingolipid (p = 0.52), galactose (p = 0.11), sucrose.

Figure 1. Quantitative PCR validation. Comparison of fold changes between IFNγ/IL-1β-stimulated untreated (n = 5) and myelin treated macrophages (n = 5). Relative quantification of gene expression (SCD1/2, ABCA1/G1 and RXRα/β/γ) was accomplished by using the comparative Ct method. Data were normalized to the most stable reference genes, determined by Genorm (18S and PGK1).

doi:10.1371/journal.pone.0044998.g001

Figure 2. Mye-macrophages have an increased capacity to transfer intracellular cholesterol towards HDL. Macrophages were loaded for 48 hours with 1,2-[3H] cholesterol after which cells were treated with myelin for 24 hours or left untreated. HDL was used as cholesterol acceptor. The relative cholesterol efflux is defined as the amount of transported cholesterol in culture medium of mye-macrophages divided by values in control macrophage cultures. Data represent the mean of four independent experiments.

doi:10.1371/journal.pone.0044998.g002
fructose and mannose (p = 0.15) metabolism. Interest-
ingly, sphingolipids are described to modulate inflammation and
the functional phenotype of macrophages [76,77], suggesting that
the phenotype of mye-macrophages may also be affected via this
pathway.

Intracellular lipid sensors like LXRs, which are activated by
cholesterol derivates, have recently been described as key
regulators of lipid metabolism and inflammation [78–80]. There
are two LXR isoforms termed α and β with considerable sequence
homology. Furthermore, they respond to the same endogenous
ligands and activate almost identical target genes. However, an
important distinction is their tissue distribution. LXR
β is
ubiquitously expressed whereas LXR
α is highly expressed in the
liver and at somewhat lower levels in the adrenal glands, intestine,
adipose tissue, macrophages, lung and kidney. Upon activation,
LXRs form heterodimers with RXRs and promote transcriptional
activation of response genes, like ABCA1, ABCG1 and SCD [81–
83]. Both microarray analysis and qPCR demonstrated an
increased expression of potential transcriptional partners of LXRs,
e.g. RXRα and RXRγ. Additionally, ABCA1, ABCG1 and SCD2
were found to be upregulated in mye-macrophages. These results
suggest that myelin acts as an LXR-RXR heterodimer-selective
agonist.

ABCA1 and ABCG1 promote the efflux of cholesterol to
respectively APO-AI and HDL. By disposing cellular lipids they
prevent lipid accumulation and the concomitant induction of
apoptosis and inflammatory responses [84]. In this report we show
that mye-macrophages have an increased efflux of cholesterol to
HDL. These results demonstrate that the upregulation of genes
involved in cholesterol efflux is functional and suggest that mye-
macrophages protect themselves from the pro-apoptotic and pro-
inflammatory effects of intracellular lipid accumulation by
promoting cholesterol efflux.

As mentioned earlier, LXRs are cholesterol sensors controlling
intracellular and systemic cholesterol homeostasis [85,86]. How-
ever, apart from regulating cholesterol metabolism, they inhibit
inflammatory gene expression in macrophages [46–50]. As 25% of
the lipid content in myelin consists of cholesterol, it is likely that
myelin-rich macrophages and microglia in neurodegenerative,
demyelinating disorders like MS, display a phenotype which is in
part dictated by a myelin-mediated activation of LXRs [87]. In
this study we demonstrate that myelin contains ligands capable of
activating LXRβ, hereby affecting the expression of LXR response
genes like ABCA1 and the secretion of inflammatory mediators
like IL-6. Interestingly, LXR activation has been demonstrated to
ameliorate EAE by modulating T cell polarization [88–90].
Moreover, an increased expression of LXRβ in peripheral blood
mononuclear cells in MS patients was described to counteract T
cell proliferation [91]. Our finding that myelin activates LXRs
suggests an additional role of these receptors in naturally occurring

Figure 3. Myelin and T0901317 affect the expression of LXR response genes in a similar manner. (a–c) Comparison of fold changes of
LXR response genes between untreated (dotted line) and myelin- or T0901317-treated macrophages. Macrophages were treated for 24 and 48 hours
with 100 μg/ml myelin or 10 μM T0901317 after which expression of ApoE and ABCA1/G1 was determined. Relative quantification of gene expression
was accomplished by using the comparative Ct method. Data were normalized to the most stable reference genes, determined by Genorm (18S and
PGK-1). Data represent the mean of four independent experiments. (d) Comparison of fold changes of ABCA1 between untreated (dotted line) and
myelin treated wild-type, LXRα-, LXRβ- and LXRαβ-deficient mouse macrophages. Macrophages were treated 48 hours with 100 μg/ml myelin. Data
were normalized to the most stable reference genes, determined by Genorm (CycA and HMBS). Data represent the mean of four independent
experiments. Mye; Myelin: T09; T0901317.
doi:10.1371/journal.pone.0044998.g003
regulatory mechanisms in macrophages during demyelination. Future studies should determine whether, besides LXR activation, other pathways that modulate the phenotype of macrophages are activated by lipids or proteins present in myelin.

To date, despite the abundance of lipids in myelin, most studies have mainly focused on the role of myelin proteins in demyelinating diseases. Our data indicate a role for myelin-derived lipids in modulating the metabolic and inflammatory response in macrophages during demyelination. Although mye-macrophages have a decreased secretion of NO and IL-6, the microarray did not point towards a typical M2 phenotype. These results are in line with a recent report showing that macrophages treated with oxidized phospholipids, so called mox-macrophages, adopt a novel phenotype that differs from conventional M1 and M2 phenotypes [92]. Although both mye- and mox-macrophages induce pathways involved in chemotaxis and phagocytosis, other characteristic genes in mox-macrophages were not differentially expressed in mye-macrophages. The latter indicates that mye-macrophages obtain a specific phenotype, divergent from M1, M2 and mox-macrophages. Future studies are required to elucidate the importance of lipid metabolism in directing the macrophage phenotype and function, and thereby the influence of lipids in MS lesion pathology.

References
1. Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126: 614–620.
2. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172: 1025–1033.

Supporting Information
Table S1 Quantitative PCR primer sequences.
(DOCX)
Table S2 Up- and downregulated genes in mye-macrophages.
(DOCX)
Table S3 Overrepresented KEGG pathways and biological functions (DAVID).
(DOCX)
Acknowledgments
We thank W. Leysens, S.J. Vanherle, and P.J. Lindsey for technical and statistical assistance.

Author Contributions
Conceived and designed the experiments: JB ST MM PS NH JH. Performed the experiments: JB ST. Analyzed the data: JB ST VAHT AI. Contributed reagents/materials/analysis tools: HS JG KS. Wrote the paper: JB ST.
Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, et al. (2011) Neuronal representation of t-cell infiltration in the central nervous system of patients with multiple sclerosis. Crit Rev Immunol 27: 1–13.

McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8: 913–925.

Governor J (2009) Autonomic t cell responses in the central nervous system. Nat Rev Immunol 9: 393–407.

Barnett NH, Henderson AP, Primeau JW (2006) The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12: 121–132.

Paine I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured human spinal cord: multiphasic expression pattern and identification of the cell types producing them. J Neuroinflammation 4: 23–34.

Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of macrophages and microglia: effect of flow cytometry. J Neurosci 24: 4733–4740.

Mosley K, Cuzner ML (1996) Receptor-mediated phagocytosis of myelin by macrophages. J Neurochem 67: 1706–1714.

Flavin MP, Coughlin K, Ho LT (1997) Soluble macrophage factors trigger apoptosis in cultured and parenchymal neurons. Neuroscience 76: 437–440.

Hendriks JJ, Teunissen CE, van Vliet HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Brain Res Rev 48: 105–195.

Miller E, Mrowicka M, Zolosky K, Kedziora J (2009) (Oxidative stress in multiple sclerosis). Pol Merkur Lekarski 26: 499–502.

Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38: 433–443.

Mobley K, Guerrier NL (1996) Receptor-mediated phagocytosis of myelin by macrophages and microglia: effect of opsonization and receptor blocking agents. Neurochem Res 21: 481–487.

van der Laan LJ, Ruuls SR, Weber KS, Lader J, Dopp EA, et al. (1996) Myelination during brain maturation: J Neurosci 16: 195–204.

van der Laan LJ, Ruuls SR, Weber KS, Lader J, Dopp EA, et al. (1996) Myelination during brain maturation: J Neurosci 16: 195–204.

Bova LA, Van Meurs M, Van Zwan M, Wieren-Wolf A, Haintzen RQ, et al. (2006) Myelination during brain maturation: J Neurosci 26: 12904–12913.

Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor-alpha (TNFalpha) and myelin phagocytosis by macrophages. J Neuroimmunol 204: 52–57.

Lee YM, Shen Y, Liu XH, Zhang Y, Zeng Y, et al. (2011) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.

Lai Y, Hsu M, Suh J, Yun S, Kim J, et al. (2007) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.

Lai Y, Hsu M, Suh J, Yun S, Kim J, et al. (2007) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.

Lai Y, Hsu M, Suh J, Yun S, Kim J, et al. (2007) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.

Lai Y, Hsu M, Suh J, Yun S, Kim J, et al. (2007) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.

Lai Y, Hsu M, Suh J, Yun S, Kim J, et al. (2007) Interleukin-8 induces the secretion of glutamate. Neurosci Lett 500: 267–272.

Guan S, Huang W, Lin ME, et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRalpha and PPARgamma. Mol Cell 25: 681–693.
60. Alfaro C, Suarez N, Martinez-Foreiro I, Palazon A, Rouzaud A, et al. (2011) Carcinoma-derived interleukin-8 disorders dendritic cell migration without impairing T-cell stimulation. PLoS One 6: e17922. 10.1371/journal.pone.0017922 [doi].

61. Matsunoto T, Yokoi K, Mukaide N, Harada A, Yamashita J, et al. (1997) Proviral role of interleukin-8 in the acute respiratory distress syndrome and cerebral reperfusion injury. J Leukoc Biol 62: 581–587.

62. Smythies LE, Maharshi A, Clements R, Eckhoff D, Novak L, et al. (2006) Murcosal IL-8 and TGF-beta recruit blood monocytes: evidence for cross-talk between the lamina propria stroma and myeloid cells. J Leukoc Biol 80: 492–499. jlb.1003566 [pii];10.1189/jlb.1003566 [doi].

63. Sorli V, Bianchi G, Burachki C, Mercalli A, Marchesi F, et al. (2006) Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 82: 826–834. 10.1097/01.TP.0000233433.03554.4f [doi].

64. Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193: 655–665. jcb.201011038 [pii];10.1083/jcb.201011038 [doi].

65. van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, et al. (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264.

66. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, et al. (2005) CD1d/Fas-L and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–785.

67. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264.

68. Gitik M, Reichert F, Rotshenker S (2010) Cytoskeleton plays a dual role of migration and regulation of cell shape of cultured mammalian macrophages. J Physiol Renal Physiol 290: F1065–F1073. 00131.2005 [pii];10.1152/ajpregu.00131.2005 [doi].

69. Smythies LE, Maheshwari A, Clements R, Eckhoff D, Novak L, et al. (2006) Identification of a novel macrophage phenotype that develops in response to atherogenic lipids-activated nuclear receptors. J Leukoc Biol 80: 112–117. jlb.1003159 [pii];10.1189/jlb.1003159 [doi].

70. Essayan DM (1999) Cyclic nucleotide phosphodiesterase (PDE) inhibitors and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–785.

71. Paterniti I, Mazzon E, Gil C, Impellizzeri D, Palomo V, et al. (2011) PDE 7 derivatives as phosphodiesterase 7 inhibitors. ChemMedChem 4: 866–876. e15937. 10.1371/journal.pone.0015937 [doi].

72. van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, et al. (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38: 259–264.

73. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, et al. (2005) CD1d/Fas-L and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194: 781–785.

74. Weinstein SL, Finn AJ, Schrier B, Laman JD, et al. (2010) Myelination ingression by macrophages promotes their mobility and capacity to recruit myeloid cells. J Neuroimmunomed 225: 112–117.

75. Jeyakumar M, Butters TD, Dwek RA, Platt FM (2002) Glycoconjugate lipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28: 343–357. 422 [pii].

76. Alfaro C, Suarez N, Martinez-Foreiro I, Palazon A, Rouzaud A, et al. (2011) Carcinoma-derived interleukin-8 disorders dendritic cell migration without impairing T-cell stimulation. PLoS One 6: e17922. 10.1371/journal.pone.0017922 [doi].

77. Paterniti I, Mazzon E, Gil C, Impellizzeri D, Palomo V, et al. (2011) PDE 7 derivatives as phosphodiesterase 7 inhibitors. ChemMedChem 4: 866–876. e15937. 10.1371/journal.pone.0015937 [doi].

78. Park EJ, Suh M, Thomas B, Ma DW, Ramanujam K, et al. (2007) Dietary ganglioside inhibits acute inflammatory signals in intestinal mucosa and blood induced by systemic inflammation of Escherichia coli lipopolysaccharide. Shock 28: 112–117. 10.1097/SHK.0b013e3180310c6c [doi].

79. Valledof AF (2005) The innate immune response under the control of the LXR pathway. Immunobiology 210: 127–132.

80. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18: 461–467. S0959–1072(08)00096–8 [pii];10.1016/j.gde.2008.07.016 [doi].

81. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: physiology and pathology. Annu Rev Physiol 61: 85–114. S1076–7549(99)00104–6 [pii];10.1146/annurev.physiol.61.1.85 [doi].

82. Zhang Y, Zhang X, Chen L, Wu J, Su D, et al. (2006) Liver X receptor agonist TO-901317 upregulates SCID expression in renal proximal straight tubule. Am J Physiol Renal Physiol 290: F1065–F1073. 00131.2005 [pii];10.1152/ajprenal.00131.2005 [doi].

83. Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263: 256–273. BM11896 [pii];10.1111/j.1365–2978.2007.01898.x [doi].

84. Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new treatments for metabolic and inflammatory diseases. Am J Physiol Endocrinol Metab 283: E123–E131. E123 [pii];10.1152/ajpendo.00143.2001 [doi].

85. Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110: 905–911. 10.1172/JCI14652 [doi].

86. Repa JJ, Mangelsdorf DJ (2002) The liver X receptor gene team: potential new treatments for metabolic and inflammatory diseases. Am J Physiol Endocrinol Metab 283: E123–E131. E123 [pii];10.1152/ajpendo.00143.2001 [doi].

87. Cui G, Qin X, Wu L, Zhang Y, Sheng X, et al. (2011) Liver X receptor (LXR) activation in myelin-phagocytosing macrophages. JCI16452 [doi].

88. Cui G, Qin X, Wu L, Zhang Y, Sheng X, et al. (2011) Liver X receptor (LXR) activation in myelin-phagocytosing macrophages. JCI16452 [doi].

89. Xu J, Wagoner G, Douglas JC, Drew PD (2009) Liver X receptor agonist against regulation of T17 lymphocyte function in autoimmune. J Leukoc Biol 86: 401–409. jlb.1009000 [pii];10.1189/jlb.1009000 [doi].

90. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454: 470–477. nature07202 [doi].

91. Giorelli M, Livrea P, Minervini MG, Trojano M (2007) Immunomodulatory effects of atherogenic lipoprotein receptor LXR alpha. Cell 93: 693–704. S0022–5193(07)00735–0 [pii];10.1016/j.cell.2007.04.036 [doi].

92. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, et al. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nr2f2. Circ Res 107: 737–746. CIRCRESAHA.108.153715 [pii];10.1161/CIRCRESAHA.108.153715 [doi].