Functional Analysis of a Putative Type III Secretion System in Stress Adaption by *Mesorhizobium alhagi* CCNWXJ12-2^T

Xiaodong Liu*, Yantao Luo*, Zhefei Li* and Gehong Wei*

State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, China

Mesorhizobium alhagi CCNWXJ12-2^T, isolated from root nodules of the desert plant *Alhagi sparsifolia*, contains two type III secretion systems (T3SSs). T3SSs are specialized machinery with wide distribution in bacteria that inject effector proteins into target cells. Our previous study showed that the expression of *M. alhagi* T3SS1 is upregulated in high-salt conditions. Here, phylogenetic analysis of T3SS1 using the core protein RhcU suggested that T3SS1 belongs to the α-Rhc II subgroup of the Rhc T3SS family. To elaborate the function of *M. alhagi* CCNWXJ12-2^T T3SS1 in stress adaption, two T3SS1 mutants (∆rhcQ and ∆MA29250) were constructed and analyzed. β-galactosidase transcriptional fusion assays showed that activity of the promoter of T3SS1 was induced by salts. Mutant ∆rhcQ was more sensitive to NaCl and LiCl than the wild-type, but ∆MA29250 was not. Both mutants were more sensitive to KCl than the wild-type. The intracellular Na^+^ concentration in ∆rhcQ in high-NaCl conditions (0.4 M) increased by 37% compared to that of the wild-type strain, while the Na^+^ concentration in ∆MA29250 increased by 13%. The K^+^ concentration in both mutants increased by 16% compared to the wild-type in high-KCl conditions (0.3 M). Strain ∆rhcQ showed decreased survival compared to the wild-type after treatment with H_2O_2, while the survival rate of ∆MA29250 was almost the same as that of the wild-type. Antioxidant enzyme activities in ∆rhcQ were lower than those in the wild-type strain, but this was not the case for ∆MA29250. Our data elucidate the beneficial effects of T3SS1 in the adaption of *M. alhagi* CCNWXJ12-2^T to stress.

Keywords: *Mesorhizobium alhagi*, type III secretion system, stress adaption, β-galactosidase assay, Na^+^ content measurement

INTRODUCTION

The type III secretion systems (T3SSs) are widespread in Gram-negative bacteria; their main function is to translocate effector proteins from bacteria into host cells. Many reports have shown that T3SSs play an important role in bacterial virulence (Galán and Collmer, 1999; Rolhion et al., 2016; Wang et al., 2016) and in symbiotic interactions between microorganisms and their hosts (Silver et al., 2007; Buttner and He, 2009; Correa et al., 2012). Because of the important roles that
T3SSs play in bacteria–host cell interactions, the T3SSs are arguably one of the best characterized protein injection systems (Galán et al., 2014). There are also some reports on T3SS expression in high-salt conditions. In Yersinia enterocolitica, the expression of a chromosomally encoded T3SS was found to be triggered in high-salt conditions and at low temperature (Haller et al., 2000). Microarray analysis of Pseudomonas aeruginosa showed that expression of T3SS and associated cytotoxins was upregulated in hyperosmotic stress conditions (Aspedon et al., 2006). Similar results were also found for Salmonella enterica serovar Typhimurium (Mizusaki et al., 2008). Most research has focused on changes in pathogenicity and protein secretion between T3SS-related mutants and wild-type strains (Haller et al., 2000; Galán et al., 2014). However, little is known about the functions of T3SSs in stress resistance.

In rhizobial T3SSs, the core genes are called the rhc genes (Rhizobium conserved) to distinguish them from phytopathogenic bacterial T3SSs (Viprey et al., 1998). Phylogenetic analysis of T3SS core genes suggested that the rhizobial T3SSs could constitute an individual family (the Rhc family); further analysis showed that the Rhc family could be divided into four subgroups: α-Rhc I, α-Rhc II, α-Rhc III, and β-Rhc (Tampakaki, 2014). Most T3SSs in the α-Rhc I group play an important role in symbiosis formation, for example, in Bradyrhizobium japonicum (Krause et al., 2002), Sinorhizobium fredii (Lorio et al., 2004), and Mesorhizobium loti (Sanchez et al., 2012). However, there is little knowledge regarding the functions of T3SSs in group α-Rhc II (Tampakaki, 2014).

Mesorhizobium alhagi CCNWXJ12-2T (=ACCC 14561T = HAMBI 3019T) is a soil-dwelling α-proteobacterium isolated from root nodules of the desert plant Alhagi sparsifolia and possessing high salt resistance (up to 0.8 M NaCl) (Chen et al., 2010). Two T3SSs, designated as T3SS1 and T3SS2, were found in the draft genome sequence of M. alhagi CCNWXJ12-2T (GenBank accession number AHAM00000000) (Zhou et al., 2012). To investigate the transcriptional changes in M. alhagi CCNWXJ12-2T in high salt conditions, a transcriptome analysis was conducted previously and the results revealed that the expression of T3SS1 was upregulated significantly in high-salt conditions, while the expression of T3SS2 was downregulated (GEO accession number GSE57306) (Liu et al., 2014). Phylogenetic analysis of RhcU (or ScuT), a core protein of T3SS, suggested that M. alhagi T3SS1 belongs to the α-Rhc II group and T3SS2 belongs to the α-Rhc I group.

The upregulation of M. alhagi T3SS1 in high-salt conditions and little knowledge of T3SS functions in α-Rhc II group prompted us to explore here the role of T3SS1 in salt resistance and stress adaption by M. alhagi CCNWXJ12-2T. The promoter activity of T3SS1 was studied under salt stresses and the phenotypes of two T3SS1 gene knockout strains were compared to the wild-type strain. Our results showed that T3SS1 plays an important role in stress adaption in M. alhagi CCNWXJ12-2T. We propose a new function of the α-Rhc II group T3SSs in rhizobia.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

Table 1 lists the bacterial strains and plasmids used in this work. The wild-type strain of M. alhagi CCNWXJ12-2T, ArhcQ and AMA29250 mutants, and their complemented strains were typically grown in tryptone–yeast extract (TY) broth (5 g tryptone, 3 g yeast extract, and 0.7 g CaCl2·2H2O per liter) at 28°C. Salt mannitol (SM) medium (0.2 g MgSO4·7H2O, 0.1 g CaCl2, 0.5g KNO3, 0.5 g K2HPO4, 0.1 g NaCl, 10 g mannitol, 75 mg panthothenic acid, 75 mg biotin, and 75 mg thiamine per liter) was used to isolate gene knockout mutants and complementation strains. Escherichia coli was grown in Luria-Bertani (LB) broth (10 g tryptone, 5 g yeast extract, and 10 g NaCl per liter) at 37°C. All bacteria were incubated in aerobic conditions at 180 rpm. Where necessary, antibiotics were added at the following concentrations: kanamycin 100 µg/ml; gentamicin 50 µg/ml.

Phylogenetic Analysis of T3SSs

Phylogenetic analysis was performed using the protein sequences of RhcU, one of the core T3SS proteins, including RhcU1 (locus_tag = “MAXJ12_29220,” from T3SS1) and RhcU2 (locus_tag = “MAXJ12_24267,” from T3SS2). Other closely related RhcU sequences of rhizobia were retrieved from the NCBI database. MEGA 5.1 software was used to align the protein sequences with the multiple alignment method ClustalW and then to analyze the phylogenetic relationships between different species using the neighbor-joining method with 1000 bootstrap replicates (Tamura et al., 2011). Evolutionary distances were computed using Poisson correction and are expressed in terms of the number of amino acid substitutions per site (Zuckercandl and Pauling, 1965).

Construction of Promoter Reporter Strain

The promoter reporter plasmid pBML was derived from pBRR1MCS-5. The lacZα promoter in pBRR1MCS-5 was deleted and a fragment of lacZY cloned from E. coli K-12 was used to replace lacZα in pBRR1MCS-5; the new plasmid was called pBML. A DNA fragment (named TP13) containing rhcC and the putative promoter of T3SS1 (the upstream 200 bp of rhcC) was amplified from M. alhagi CCNWXJ12-2T genomic DNA using primers TP1 and TP3 (Supplementary Table S1). The DNA fragment was digested with HindIII and XbaI and then cloned into pBML digested with the same restriction enzymes. Finally, the promoter reporter plasmid, designated pBMLTP13, was transformed into E. coli DH5α and the strain was named DH-TP13.

To generate promoter reporter strain M. alhagi XJTP13, a triparental mating procedure was conducted as described previously to transform the plasmids from E. coli into CCNWXJ12-2T (Liu et al., 2014). Briefly, strain DH-TP13, 1

1https://www.ncbi.nlm.nih.gov/
strain *E. coli* MM249 containing helper plasmid pRK2013, and *M. alhagi* CCNWJX12-2T were mixed together and incubated on a TY plate for 4 days. Then, SM agar plates containing gentamicin were used initially to isolate the double exchange mutants (in-frame gene deletion mutants). SM agar plates containing gentamicin were used to isolate the complementation plasmids. Then, SM agar plates containing kanamycin were used to isolate single exchange mutants. For in-frame deletion mutant isolation, SM agar plates containing rhcQ, respectively. The upstream and downstream DNA fragments were digested with EcoRI/XbaI and XbaI/HindIII, respectively, then the digested DNA fragments were cloned into linearized plasmid pK18mobsacB digested with EcoRI and HindIII, to generate pK18rhcQ.

To complement the rhcQ and AMA29250 mutants, primer pairs CRhcQA/CRhcQB and CMA29250A/CMA29250B were used to amplify rhcQ and AMA29250 gene fragments from genomic DNA of *M. alhagi* CCNWJX12-2T. The gene fragments were then cloned into plasmid pBML containing *E. coli* XbaI using the ClonExpress MultiOne Step Cloning Kit (Vazyme Biotech, China), to generate complementation plasmids pBMLrhcQ and pBMMLMA29250.

For construction of in-frame deletion mutants and complementation strains, a triparental mating procedure was conducted as described previously (Liu et al., 2014). Briefly, the recipient strains (the wild-type strain or the mutants), the donor strains (*E. coli* DH5α containing the constructed plasmids), and the helper strain (*E. coli* MM249 containing helper plasmid pRK2013) were grown to log phase and mixed together in the ratio 4:1:1. The mixtures were cultured on TY plates for 4 days. For in-frame deletion mutant isolation, SM plates containing kanamycin were used to isolate single exchange mutants (gene knockout plasmids integrated into the genome of *M. alhagi* CCNWJX12-2T), then TY plates containing sucrose (5 g/100 ml) were used to isolate the double exchange mutants (in-frame gene deletion mutants). SM agar plates containing gentamicin were used initially to isolate the complementation strains; the single exchange gene knockout mutants isolated from SM plates were then smeared onto TY plates containing sucrose (5 g/100 ml) to isolate the double exchange mutants. The

β-Galactosidase Transcriptional Fusion Assay

Strain XJTP13 was first grown to OD_{600} ≈ 0.8 in 20 ml TY broth containing gentamicin. Then, 20 μl suspensions were added to 20 ml TY broth containing gentamicin and different concentrations of additional salts (0.1 M NaCl, 0.2 M NaCl, 0.3 M NaCl, 0.4 M NaCl, 0.1 M LiCl, 0.2 M LiCl, 0.1 M KCl, 0.2 M KCl, or 0.3 M KCl) and grown to OD_{600} ≈ 0.8. Then, 100 μl of each culture was subjected to β-galactosidase activity assay using o-nitrophenyl-β-D-galactopyranoside as the substrate (Zhang and Bremer, 1995). Three independent biological repetitions were conducted.

Construction of Gene Knockout Mutants and Complementation Strains

Supplementary Table S1 lists primers used in construction of gene knockout mutants and complemented strains. A rhcQ (locus_tag = “MAXJ12_29275”) in-frame deletion mutant of *M. alhagi* CCNWJX12-2T was constructed using plasmid pK18rhcQ. Primer pairs RhcQ-US/RhcQ-UA and RhcQ-DS/RhcQ-DA were used to amplify the 522-bp upstream DNA fragment and 568-bp downstream DNA fragment of rhcQ, respectively. The upstream and downstream DNA fragments were digested with EcoRI/XbaI and XbaI/HindIII, respectively, then the digested DNA fragments were cloned into linearized plasmid pK18mobsacB digested with EcoRI and HindIII, to generate pK18rhcQ.

An in-frame deletion mutant of gene MA29250 (locus_tag = “MAXJ12_29250”) was constructed using plasmid pK18MA29250. The procedure used to produce pK18MA29250 was similar to the procedure for pK18rhcQ construction. Briefly, the upstream and downstream DNA fragments of MA29250 were amplified using primer pairs MA29250-US/MA29250-UA and MA29250-DS/MA29250-DA and then digested using the same restriction enzymes as used for pK18rhcQ construction. The digested DNA fragments were then cloned into plasmid pK18mobsacB digested with EcoRI and HindIII to generate pK18MA29250.

To complement the *ArhcQ* and *AMA29250* mutants, primer pairs CRhcQA/CRhcQB and CMA29250A/CMA29250B were used to amplify rhcQ and AMA29250 gene fragments from genomic DNA of *M. alhagi* CCNWJX12-2T. The gene fragments were then cloned into plasmid pBML digested with *E. coli* XbaI using the ClonExpress MultiOne Step Cloning Kit (Vazyme Biotech, China), to generate complementation plasmids pBMLrhcQ and pBMMLMA29250.
gene knockout mutants and complemented strains were verified by PCR.

Salt Resistance Assay
Salt resistance assays were conducted as described previously (Liu et al., 2016). Wild-type M. alhagi CCNWJ12-2T, ArhcQ and ΔMA29250, and the complemented strains were grown to log phase in 20 ml TY broth with shaking at 28°C. Next, 20 µl of the cultures were inoculated into 20 ml fresh TY broth and grown to OD\textsubscript{600} ≈0.8. The cultures were diluted fourfold with sterile H\textsubscript{2}O, then 5 µl of each were spotted onto TY agar plates with or without salts (NaCl 0.4 M, LiCl 0.3 M, or KCl 0.3 M). Plates were incubated at 28°C for 4 days.

Measurement of Total Cellular Na+ and K+ Concentrations
Inocula were prepared as described in the section on salt resistance assays. Each inoculum (500 µl, OD\textsubscript{600} ≈0.2) was smeared onto TY agar plates containing different salts (no added salt, 0.4 M NaCl or 0.3 M KCl) and incubated at 28°C for 4 days (plates containing 0 and 0.4 M NaCl) or 7 days (plates containing 0.3 M KCl). The bacteria were then collected in 1.5-ml sterile tubes using sterile stainless steel spoons and dried at 60°C for 10 h using an air dryer. The total cellular Na+ and K+ concentrations were measured using an atomic absorption spectrophotometer (Hitachi, Tokyo, Japan).

Hydrogen Peroxide Sensitivity Assay
H\textsubscript{2}O\textsubscript{2} resistance assays were conducted as described previously (Liu et al., 2016). Wild-type M. alhagi CCNWJ12-2T, ArhcQ, ΔMA29250, and the complementation strains (CΔrhcQ and CΔMA29250) were cultured to OD\textsubscript{600} ≈0.6 at 28°C in TY broth containing antibiotics and then diluted with sterile H\textsubscript{2}O to OD\textsubscript{600} ≈0.1. After treatment with 10 mM H\textsubscript{2}O\textsubscript{2} for 30 min, the survival rates of all the strains were measured by colony counts compared to cells without peroxide treatment, calculated as follows: \[(CFU per ml after treatment with H\textsubscript{2}O\textsubscript{2})/(CFU per ml before treatment with H\textsubscript{2}O\textsubscript{2})\] \times 100.
Antioxidant Enzyme Activity Assay
A previous report showed that peroxidase activity was not detectable in *M. alhagi* CCNWJX12-2T (Liu et al., 2016), so here, we measured catalase (CAT) and superoxide dismutase (SOD) activities in normal and stressed conditions. Wild-type *M. alhagi* CCNWJXJ12-2T, Δ*rhcQ*, ΔMA29250, CΔ*rhcQ*, and CΔMA29250 were grown in TY broth containing antibiotics to OD$_{600}$ ≈0.8. Each strain (20 μl suspension) was inoculated into two bottles containing 20 ml TY broth and one bottle containing 20 ml TY broth plus 0.4 M NaCl, and grown to OD$_{600}$ ≈0.8. For the two bottles without additional NaCl, one was treated with 0.1 mM H$_2$O$_2$ for 30 min and the other without. All cells were collected in 50-ml tubes by centrifugation, resuspended in phosphate-buffered saline, and lysed by ultrasonication. The antioxidant enzyme activities were measured using a CAT Assay Kit and a SOD Assay Kit (Suzhou Comin Biotechnology, China). Total soluble protein concentrations were determined using a BCA Protein Assay Kit (CoWin Biosciences, China).

Statistical Analysis
Statistical differences between the wild-type strain and the mutants in different conditions were assessed by *t*-test using SPSS version 15.0 (SPSS Inc., Chicago, IL, United States). Differences were considered significant at *P* < 0.05.

RESULTS

Phylogenetic Analysis of T3SSs in *M. alhagi* CCNWJXJ12-2T
Protein sequences of RhcU, one of the core T3SS proteins, were used to build an evolutionary tree of different rhizobia. Three subgroups of Rhc family T3SSs were apparent in the phylogenetic analysis. *M. alhagi* CCNWJXJ12-2T T3SS1 was in subgroup α-Rhc II and T3SS2 was in subgroup α-Rhc I (Figure 1).

T3SS1 Promoter Activity Is Induced by Salts
The T3SS1 genes are in an operon in the genome of *M. alhagi* CCNWJXJ12-2T (Figure 2). The putative promoter (200 bp upstream of rhcC) (Figure 2) was used with the whole gene of rhcC to construct a promoter reporter plasmid. The promoter activities were measured in different conditions using β-galactosidase tests. The β-galactosidase activities increased with increasing salt concentration (Figure 3). At the same concentration of different salts (i.e., NaCl, LiCl, and KCl), the β-galactosidase activities were almost the same. The β-galactosidase activities at the lowest salt concentration tested (0.1 M) were almost three times higher than that in the control group (no added salt), while at salt concentrations of 0.3 M they were about six times higher than that in the control group.

Decrease in Salt Resistance of T3SS1-Related Mutants
Two gene knockout mutants, Δ*rhcQ* and ΔMA29250, were constructed to study the role T3SS1 plays in salt resistance. One of the genes knocked-out (Figure 2) is *rhcQ* (locus_tag = “MAXJ12_29275”), encoding a component of the C-ring of T3SS1 which plays an important role in T3SS assembly, and the other is MA29250, encoding a hypothetical protein. MA29250 (locus_tag = “MAXJ12_29250”) was randomly chosen to study its function. The salt resistance of strain Δ*rhcQ* was decreased compared to the wild-type strain (Figure 4). However, the salt resistance of ΔMA29250 was different from that of Δ*rhcQ*. The NaCl and LiCl tolerances of ΔMA29250 were similar to those of the wild-type, while the KCl tolerance of ΔMA29250 was decreased dramatically (Figure 4). Both mutants showed more sensitivity to KCl than to NaCl and LiCl, indicating that T3SS1 plays a more important role in resistance to KCl than to the other salts. All the complemented strains had similar salt resistance to the wild-type (Figure 4).

Total Cellular Na$^+$ and K$^+$ Concentration Measurement
To explore the reasons for the decrease in salt resistance of the mutants Δ*rhcQ* and ΔMA29250, total cellular Na$^+$ and K$^+$ were measured after growth in 0.4 M NaCl and 0.3 M KCl, respectively. The Na$^+$ and K$^+$ concentrations in both mutants increased compared to the wild-type strain (Figure 5). In 0.4 M NaCl, the Na$^+$ concentration in Δ*rhcQ* increased significantly (by about 37%) compared to the wild-type strain, while the Na$^+$ concentration of ΔMA29250 increased non-significantly (about 13%) (Figure 5A). In 0.3 M KCl, the increases in K$^+$ concentration in strains Δ*rhcQ* and ΔMA29250 were significant, both around 16% compared to the wild-type (Figure 5B). Although the increments of K$^+$ concentrations in the mutants were lower than that of the Na$^+$ concentration in strain Δ*rhcQ*, the overall K$^+$ concentrations in all strains grown in 0.3 M KCl
Liu et al. Function of T3SS in Stress Adaption

FIGURE 4 | Sensitivity of *M. alhagi CCNWXJ12-2T* to different salts. Wild-type (WT), mutants (*ΔrhcQ* and *ΔMA29250*), and the complementation strains (*CΔrhcQ* and *CΔMA29250*) were grown to OD_{600} = 0.8 in TY broth containing appropriate antibiotics, and then adjusted to OD_{600} = 0.2. The inocula were serially diluted and spotted onto TY agar plates containing no additional salt or containing 0.4 M NaCl, 0.3 M LiCl, or 0.3 M KCl. The 10-fold serial dilutions are shown. All plates were incubated at 28°C for 4 days.

were about twice the Na\(^+\) concentrations in cells grown in 0.4 M NaCl (**Figure 5**). The higher K\(^+\) concentrations may explain the more serious growth repression caused by KCl than by NaCl shown in **Figure 2**. The Na\(^+\) and K\(^+\) concentrations in the complemented strains were similar to those in the wild-type.

Effect of T3SS1 on Antioxidant Capacity in *M. alhagi CCNWXJ12-2T*

To test whether T3SS1 has a role in oxidative stress resistance, we tested the antioxidant capacity of the mutants. The survival rate of *ArhcQ* after treatment with 10 mM H\(_2\)O\(_2\) for 30 min was significantly decreased (by 50%) compared to the wild-type strain, while the survival rate of *AMA29250* was almost the same as that of the wild-type (**Figure 6**). The survival rates of the complemented strains after H\(_2\)O\(_2\) treatment were also almost the same as that of the wild-type strain (**Figure 6**). The antioxidant enzyme activities of all the strains were measured in different conditions. In normal conditions (with no stresses), the SOD activity of *ArhcQ* showed a significant decrease, while the CAT activities of both mutants and the SOD activity of *AMA29250* showed no significant difference compared to the wild-type. The CAT and SOD activities of all strains were increased to varying degrees under oxidative stress (25–89%) and salt stress (110–160%) compared to normal conditions. The CAT and SOD activities of *ArhcQ* under salt and oxidative stresses were significantly decreased compared to the wild-type (68–78% of the level for the wild-type strain), while in *AMA29250*, the CAT and SOD activities showed no significant differences compared to the wild-type (**Figure 7**).

DISCUSSION

Our previous transcriptome analysis of *M. alhagi CCNWXJ12-2T* in salt-free and high-salt conditions revealed different expression...
patterns of the T3SSs: T3SS1 was upregulated in high-salt conditions, while the expression of T3SS2 was downregulated (Liu et al., 2014). In the present study, phylogenetic analysis of the two T3SS core proteins, showed that T3SS1 and T3SS2 were members of subgroups α-Rhc II and α-Rhc I, respectively (Figure 1). Most T3SSs in subgroup α-Rhc I play important roles in symbiosis between the rhizobia and leguminous plants, while studies of the functions of T3SSs in subgroup α-Rhc II remain limited (Tampakaki, 2014). A former study showed that the expression of T3SS-II (belonging to α-Rhc II subgroup) in Sinorhizobium sp. NGR234 was upregulated in nodules formed with Vigna unguiculata and Leucaena leucocephala while the T3SS-II deletion mutant did not show any effect on nodule formation (Li et al., 2013). And another study of P. aeruginosa found that the osmotic stress could induce the expression of T3SS with associated cytotoxins (Aspedon et al., 2006). In a study of S. enterica Serovar Typhimurium found that some simple salts, such as NaCl, KCl, NH4Cl, etc., could induce the assembly of SPI1-encoded T3SS and proteins secreted by T3SS (Mizusaki et al., 2008). Although the upregulation of the T3SS expression by simple salts was confirmed in these strains, the effects of T3SS on the salt tolerance were not studied. Here, we focused on the function of T3SS1, which is in subgroup α-Rhc II.

To explore the functions of T3SS1 in stress adaption by M. alhagi CCNWXJ12-2T, we first studied the promoter activities of T3SS1 on exposure to different salts and salt concentrations. β-galactosidase activities were used to reflect the promoter activities and increased with increasing concentrations of salts (Figure 3). This result encouraged us to study further the function of T3SS1 in M. alhagi CCNWXJ12-2T. Two genes were chosen to construct T3SS1-related mutants: rhcQ and MA29250. The loss of rhcQ could completely inhibit the assembly of T3SS in other bacteria (Biemans-Oldenhinkel et al., 2011; Bzymek et al., 2012). Here, we hypothesized that the function of T3SS1 was completely inhibited in the ΔrhcQ mutant. The hypothetical protein encoding gene MA29250 was randomly chosen from among the hypothetical proteins in the T3SS1 gene cluster for primary tests of its function. Our results showed a difference in stress resistance of the two mutants. Strain ΔrhcQ showed more...
sensitivity to NaCl, LiCl, KCl, and H₂O₂; MA29250 showed similar stress resistance to the wild-type strain, except toward KC1 (Figures 4, 6). The results confirmed our hypothesis that the deletion of ArhcQ could completely disrupt the function of T3SS1; however, the deletion of MA29250 only partially influenced the function of T3SS1. This phenomenon promoted us to study the role of T3SS1 in resistance to KC1.

The K⁺ concentration in both mutants was increased compared to the wild-type (Figure 5B), indicating that T3SS1 plays a role in adjusting the intracellular K⁺ concentration. Meanwhile, the Na⁺ concentration in both mutants was also higher than that in the wild-type strain, but there was a smaller increase in mutant MA29250 compared to ArhcQ (Figure 5A). These findings suggested that rhcQ plays a more important role in T3SS1 than MA29250, and that T3SS1 plays an important role in salt stress-resistance.

Environmental stresses such as hyperosmolality, acid, and high-salt concentrations can trigger secondary oxidative stress in bacteria (Mols and Abeel, 2011). Levels of reactive oxygen species can be increased significantly when cells are grown in high-salt conditions (Koh et al., 2010; Calderon-Torres et al., 2011). Therefore, the oxidative stress resistance of the two mutants was measured. ArhcQ showed lower oxidative stress resistance than MA29250 and the wild-type (Figure 6). This result again suggested that rhcQ plays a more important role in T3SS1 than MA29250. CAT and SOD activities in ArhcQ were lower than those in the wild-type and MA29250 (Figure 7). Our results also showed that T3SS1 plays an important role in resistance to both salt and oxidative stress.

AUTHOR CONTRIBUTIONS

XL, ZL, and GW made conceived and designed of the study. XL and ZL conducted the laboratory work. XL and ZL carried out the data analysis and manuscript writing. All the authors read and approved the final manuscript.

FUNDING

This research was financially supported by the National Natural Science Foundation of China (313701427 and 31270012).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00263/full#supplementary-material

REFERENCES

Aspden, A., Palmer, K., and Whiteley, M. (2006). Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J. Bacteriol. 188, 2721–2725. doi: 10.1128/JB.188.7.2721–2725.2006

Biemans-Oldehinkel, E., Sal-Man, N., Deng, W., Foster, L. J., and Finlay, B. B. (2011). Quantitative proteomic analysis reveals formation of an Escl-EscQ-EscN Type III complex in enteropathogenic Escherichia coli. J. Bacteriol. 193, 5514–5519. doi: 10.1128/JB.02535–11

Buttner, D., and He, S. Y. (2009). Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150, 1656–1664. doi: 10.1104/pp.109.139089

Correa, V. R., Majerczak, D. R., Ammar, E. D., Merighi, M., Pratt, R. C., Hogenhout, S. A., et al. (2012). The bacterium USDA257, is a Type III secreted protein. Mol. Plant Microbe Interact. 15, 1228–1235. doi: 10.1094/MPMI.2012.12.1228

Liu, X., Luo, Y., Li, Z., and Wei, G. (2016). Functional analysis of PrkA - a putative serine protein kinase from Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 15, 1228–1235. doi: 10.1094/MPMI.2018.00263/full#supplementary-material

Haller, J. C., Carlson, S., Pederson, K. J., and Pierson, D. E. (2000). A chromosomally encoded Type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol. Microbiol. 36, 1436–1446. doi: 10.1046/j.1365-2958.2000.01964.x

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580. doi: 10.1016/0022-2836(83)90284-8

Koh, M. J., Lee, H. S., Rhee, J. E., and Choi, S. H. (2010). Evidence that Vibrio vulnificus AhpC2 is essential for survival under high salinity by modulating intracellular level of ROS. J. Microbiol. 48, 129–133. doi: 10.1007/s12275-009-0227-2

Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., et al. (1995). 4 new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176. doi: 10.1016/0378-1119(95)00584-1

Krause, A., Doerfel, A., and Gottfert, M. (2002). Mutational and transcriptional analysis of the Type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 15, 1228–1235. doi: 10.1094/MPMI.2002.15.12.1228

Liu, X., Tian, C. F., Chen, W. F., Wang, L., Sui, X. H., and Chen, W. X. (2013). High-resolution transcriptomic analyses of Sinorhizobium sp. NGR224 bacteria in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One 8:e70531. doi: 10.1371/journal.pone.0070531

Liu, X., Luo, Y., Li, Z., and Wei, G. (2016). Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiol. 16:227. doi: 10.1186/s12866-016-0849-6

Liu, X. D., Luo, Y. T., Mohamed, O. A., Liu, D. Y., and Wei, G. H. (2014). Global transcriptome analysis of Mesorhizobium alhagi CCNWXJ12-2 under salt stress. BMC Microbiol. 14:319. doi: 10.1186/s12866-014-0319-y

Mizusaki, H., Takaya, A., Yamamoto, T., and Aizawa, S. (2008). Signal pathway for protein delivery into host cells. Proc. Natl. Acad. Sci. U.S.A. 105, 16566–16571. doi: 10.1073/pnas.0804774105

Liu, J. E., and Colmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328. doi: 10.1126/science.284.5418.1322

Liu, J. E., Lara-Tejero, M., Marlovits, T. C., and Wagner, S. (2014). Bacterial Type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438. doi: 10.1146/annurev-micro-092412-155725
Mols, M., and Abee, T. (2011). Primary and secondary oxidative stress in Bacillus. Environ. Microbiol. 13, 1387–1394. doi: 10.1111/j.1462-2920.2011.02433.x

Rolhion, N., Furniss, R. C. D., Grabe, G., Ryan, A., Liu, M., Matthews, S. A., et al. (2016). Inhibition of nuclear transport of NF-kappa B p65 by the Salmonella Type III secretion system effector SpvD. PLoS Pathog. 12:e1005653. doi: 10.1371/journal.ppat.1005653

Sanchez, C., Mercante, V., Babuin, M. F., and Lepek, V. C. (2012). Dual effect of Mesorhizobium loti T3SS functionality on the symbiotic process. FEMS Microbiol. Lett. 330, 148–156. doi: 10.1111/j.1574-6968.2012.02545.x

Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994). Small mobilizable multipurpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19 - selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73. doi: 10.1016/0378-1119(94)90324-7

Silver, A. C., Kikuchi, Y., Fadl, A. A., Sha, J., Chopra, A. K., and Graf, J. (2007). Interaction between innate immune cells and a bacterial Type III secretion system in mutualistic and pathogenic associations. Proc. Natl. Acad. Sci. U.S.A. 104, 9481–9486. doi: 10.1073/pnas.0700286104

Tampakaki, A. P. (2014). Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front. Plant Sci. 5:114. doi: 10.3389/fpls.2014.00114

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. doi: 10.1093/molbev/msr121

Viprey, V., Del Greco, A., Golowinski, W., Broughton, W. J., and Perret, X. (1998). Symbiotic implications of Type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28, 1381–1389. doi: 10.1046/j.1365-2958.1998.00920.x

Wang, S. H., Liu, X., Xu, X., Yang, D. H., Wang, D., Han, X. G., et al. (2016). Escherichia coli Type III secretion system 2 ATPase EivC is involved in the motility and virulence of avian pathogenic Escherichia coli. Front. Microbiol. 7:1387. doi: 10.3389/fmicb.2016.01387

Watanabe, T., Seno, M., Sasada, R., and Igarashi, K. (1990). Molecular characterization of recombinant human acidic fibroblast growth factor produced in E. coli comparative studies with human basic fibroblast growth factor. Mol. Endocrinol. 4, 869–879. doi: 10.1210/mend-4-6-869

Zhang, X., and Bremer, H. (1995). Control of the Escherichia coli rnrB PI promoter strength by ppGpp. J. Biol. Chem. 270, 11181–11189. doi: 10.1074/jbc.270.19.11181

Zhou, M. L., Chen, W. M., Chen, H. Y., and Wei, G. H. (2012). Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2(Tau), a novel salt-resistant species isolated from the Desert of Northwestern China. J. Bacteriol. 194, 1261–1262. doi: 10.1128/Jb.06635-11

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Liu, Luo, Li and Wei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.