ORBITAL LINEARIZATION OF SMOOTH COMPLETELY INTEGRABLE VECTOR FIELDS

NGUYEN TIEN ZUNG

Abstract. The main purpose of this paper is to prove the smooth local orbital linearization theorem for smooth vector fields which admit a complete set of first integrals near a nondegenerate singular point. The main tools used in the proof of this theorem are the formal orbital linearization theorem for formal integrable vector fields, the blowing-up method, and the Sternberg–Chen isomorphism theorem for formally-equivalent smooth hyperbolic vector fields.

1. Introduction

The main purpose of this paper is to show the following orbital linearization theorem for smooth (C^∞) vector fields which admit a complete set of first integrals near a nondegenerate singular point:

Theorem 1.1. Let X be a smooth vector field in a neighborhood of $O = (0, \ldots, 0)$ in \mathbb{R}^n, which vanishes at O and satisfies the following conditions:

i) (Complete integrability): X admits $n-1$ functionally independent smooth first integrals F_1, \ldots, F_{n-1}, i.e. $X(F_1) = \ldots = X(F_{n-1}) = 0$ and $dF_1 \wedge \ldots \wedge dF_{n-1} \neq 0$ almost everywhere.

ii) (Nondegeneracy 1): The semisimple part of the linear part of X at O is non-zero, and the ∞-jets of F_1, \ldots, F_{n-1} at O are functionally independent.

iii) (Nondegeneracy 2): If moreover 0 is an eigenvalue of X at O with multiplicity $k \geq 1$, then the differentials of the functions F_1, \ldots, F_k are linearly independent at O: $dF_1(O) \wedge \ldots \wedge dF_k(O) \neq 0$.

Then there exists a local smooth coordinate system (x_1, \ldots, x_n) in which X can be written as

$$X = FX^{(1)},$$

where $X^{(1)}$ is a semisimple linear vector field in (x_1, \ldots, x_n), and F is a smooth first integral of $X^{(1)}$, i.e. $X^{(1)}(F) = 0$, with $F(O) = 1$.

The above theorem is in fact more than mere orbital linearization: not only that X is orbitally equivalent to its linear part $X^{(1)}$, but also the factor F in the expression $X = FX^{(1)}$ in a normalized coordinate system is a first
integral of X and $X^{(1)}$. In [9], this kind of linearization is called *geometrical linearization*.

The formal and analytic case of the above theorem also holds and was shown in [9] in a more general context of integrable non-Hamiltonian systems of type (p,q), i.e. with p commuting vector fields and q common first integrals, where $p + q = n$ is the dimension of the manifold. The vector fields that we study in this paper are integrable of type $(1, n-1)$, i.e. just one vector field and $n-1$ first integrals.

The nondegeneracy condition in Theorem 1.1 is a bit stronger than the nondegeneracy condition in [9]: in [9] the (formal or analytic) vector field X is called integrable *nondegenerate* if it satisfies the above conditions i) and ii), without the need of condition iii). In fact, in the formal and analytic case, condition iii) is a simple consequence of the first two conditions and the theorem about the existence of (formal or analytic) Poincaré-Dulac normalization [8, 9]. However, in the smooth case, we don’t have a proof of the fact that condition iii) follows from conditions i) and ii) in general, though we do have a proof of this fact for dimension 2.

The rest of this paper is organized as follows. Section 2 is devoted to some preliminary results, including the classification of the nondegenerate singularities of completely integrable vector fields into (strong/weak) elliptic and hyperbolic cases (Lemma 2.2), and the normalization up to a flat term (Proposition 2.3). These preliminary results are used in the proof of Theorem 1.1 which is presented in Section 3. Finally, in Section 4, we show that, at least in the case $n = 2$, condition iii) Theorem 1.1 is a consequence of the first two conditions, and can be dropped from the formulation of the theorem (Theorem 4.1). We conjecture that condition iii) is redundant in the higher-dimensional case as well.

This paper is part of our program of systematic study of the geometry and topology of integrable non-Hamiltonian systems. In particular, Theorem 4.1 which is a refinement of Theorem 1.1 in the case of dimension 2, is the starting point of our joint work with Nguyen Van Minh on the local and global smooth invariants of integrable dynamical systems on 2-dimensional surfaces [10].

2. Preliminary results

2.1. Adapted first integrals.

We have the following simple lemma, which is similar to the well-known Ziglin’s lemma [7].

Lemma 2.1. Let G_1, \ldots, G_m be m formal series in n variables which are functionally independent. Then there exists m polynomial functions of m variables P_1, \ldots, P_m such that the homogeneous (i.e. lowest degree) parts of the formal series of $P_1(G_1, \ldots, G_m), \ldots, P_1(G_1, \ldots, G_m)$ are functionally independent.
The proof of the above lemma follows exactly the same lines as the proof of Ziglin of his lemma in [7], and our situation is simpler than the situation of meromorphic functions considered by Ziglin.

Let \(X \) be a smooth completely integrable vector field with a singularity at \(O \). We will say that the smooth first integrals \(F_1, \ldots, F_{n-1} \) of \(X \) are adapted first integrals if

\[
(2.1) \quad dH_1 \wedge \ldots \wedge dH_{n-1} \neq 0 \quad \text{a.e.,}
\]

where \(H_i = F_i^{(h_i)} \) denotes the homogeneous part (consisting of non-constant terms of lowest degree in the Taylor expansion) of \(F_i \) at \(O \). Using the above lemma to replace the first integrals \(F_1, \ldots, F_{n-1} \) of \(X \) by appropriate polynomial functions of them if necessary, from now on we can assume that \(F_1, \ldots, F_{n-1} \) are adapted.

2.2. The eigenvalues of \(X \). The fact that \(X \) admits \(n-1 \) first integrals implies that the \(X \) is very resonant at \(O \). More precisely, we have:

Lemma 2.2. Let \((X, F_1, \ldots, F_{n-1}) \) be smooth nondegenerate at \(O \), i.e. they satisfy the conditions of Theorem 1.1. Then the linear part of \(X \) at \(O \) is semisimple, and there is a positive number \(\lambda > 0 \) such that either all the eigenvalues of \(X \) at \(O \) belong to \(\lambda \mathbb{Z} \), or all of them belong to \(\sqrt{-1} \lambda \mathbb{Z} \).

Proof. We can assume that \(H_1, \ldots, H_{n-1} \) are functionally independent, where \(H_i \) denotes the homogeneous part of \(F_i \). The equality \(X(F_i) = 0 \) implies that

\[
(2.2) \quad X^{ss}(H_i) = X^{(1)}(H_i) = 0 \quad \forall i = 1, \ldots, n-1,
\]

where \(X^{(1)} \) is the linear part of \(X \), and \(X^{ss} \) is the semisimple part of \(X^{(1)} \) in the Jordan-Dunford decomposition. We can write

\[
(2.3) \quad X^{ss} = \sum_{i=1}^{n} \lambda_j z_j \frac{\partial}{\partial z_i}
\]

in a complex coordinate system. Recall that the ring of polynomial first integrals of \(\sum_{i=1}^{n} \lambda_j z_j \frac{\partial}{\partial z_i} \) is generated by the monomial functions \(\prod_{i=1}^{n} z_i^{a_i} \) which satisfies the resonance relation

\[
(2.4) \quad \sum_{i=1}^{n} a_i \lambda_i = 0.
\]

The fact that \(H_1, \ldots, H_{n-1} \) are independent implies that Equation (2.4) has \(n-1 \) linearly independent solutions which belong to \(\mathbb{Z}_+^n \), which in turn implies that there is a complex number \(\lambda \) such that \(\lambda_1, \ldots, \lambda_n \in \lambda \mathbb{Z} \). Remark that if the spectrum of \(X^{ss} \) contains a complex eigenvalue \(\lambda_1 \in \mathbb{C} \setminus (\mathbb{R} \cup \sqrt{-1} \mathbb{R}) \), then its complex conjugate \(\lambda_1 \) is also in the spectrum because \(X \) is real, and \(\lambda_1 \) and \(\lambda_1 \) cannot belong to \(\lambda \mathbb{Z} \) at the same time for any \(\lambda \). Thus any eigenvalue of \(X^{ss} \) is either real or pure imaginary. If there is one real non-zero eigenvalue, then we can choose \(\lambda \in \mathbb{R}_+ \), otherwise we can choose
\(\lambda \in \sqrt{-1} \mathbb{R}_+ \). Notice that \(\lambda \neq 0 \) because at least one eigenvalue of \(X^{ss} \) is non-zero by our assumptions.

The common level sets of \(H_1, \ldots, H_{n-1} \) are 1-dimensional almost everywhere, and since both \(X^{(1)} \) and \(X^{ss} \) are tangent to these common level sets, we have that \(X^{(1)} \land X^{ss} = 0 \), which implies that \(X^{(1)} \) is semisimple, i.e. \(X^{(1)} = X^{ss} \). \(\square \)

With the above lemma, we can divide the problem into 4 cases (here \(\mathbb{R}^* = \mathbb{R} \setminus \{0\} \)):

I. Strongly hyperbolic (or hyperbolic without eigenvalue 0): \(\lambda_i \in \lambda \mathbb{R}^* \forall i \).

II. Weakly hyperbolic (or hyperbolic with eigenvalue 0): \(\lambda_i \in \lambda \mathbb{R}^* \forall i > k \geq 1, \lambda_1 = \ldots = \lambda_k = 0 \).

III. Strongly elliptic (or elliptic without eigenvalue 0): \(\lambda_i \in \sqrt{-1} \lambda \mathbb{R}^* \forall i \).

IV. Weakly elliptic (or elliptic with eigenvalue 0): \(\lambda_i \in \sqrt{-1} \lambda \mathbb{R}^* \forall i > k \geq 1, \lambda_1 = \ldots = \lambda_k = 0 \).

2.3. Linearization up to a flat term. Using the geometric linearization theorem of [9] in the formal case, we get the following proposition:

Proposition 2.3 (Linearization up to a flat term). Assume that \(X \) satisfies the hypotheses of Theorem 1.1. Then there is a local smooth coordinate system \((x_1, \ldots, x_n)\) in which \(X \) can be written as

\[
X = FX^{(1)} + \text{flat}
\]

where \(X^{(1)} \) is the linear part of \(X \) in the coordinate system \((x_1, \ldots, x_n)\), \(F \) is a smooth first integral of \(X^{(1)} \), and flat means a smooth term which is flat at \(O \).

Proof. Denote by \(\hat{X} \) (resp. \(\hat{F}_i \)) the \(\infty \)-jet of \(X \) (resp. \(F_i \)) at \(O \): \(\hat{X} \) is a formal vector field (resp. function) at \(O \). If \((X,F_1,\ldots,F_{n-1}) \) is smooth nondegenerate at \(O \), then \((\hat{X},\hat{F}_1,\ldots,\hat{F}_{n-1}) \) is a nondegenerate formal integrable system of type \((1, n-1)\) at \(p \). According to the geometric linearization theorem of [9], this formal integrable system can be linearized geometrically, i.e. there is a formal coordinate system \((\hat{x}_1,\ldots,\hat{x}_n)\) in which we have

\[
\hat{X} = \hat{F} \hat{X}^{(1)}
\]

where \(\hat{X}^{(1)} \) is the linear part of \(\hat{X} \) in the formal coordinate system \((\hat{x}_1,\ldots,\hat{x}_n)\), and \(\hat{F} \) is a formal first integral of \(\hat{X}^{(1)} \). By the classical Hilbert–Weyl theorem (see, e.g., [3]), we can write

\[
\hat{F} = \hat{f}(Q_1(\hat{x}_1,\ldots,\hat{x}_n),\ldots,Q_m(\hat{x}_1,\ldots,\hat{x}_n))
\]

where \(\hat{f} \) is a formal series and \(Q_1(\hat{x}_1,\ldots,\hat{x}_n),\ldots,Q_m(\hat{x}_1,\ldots,\hat{x}_n) \) are homogeneous polynomials generate the ring of polynomial first integrals of \(\hat{X}^{(1)} \). Using Borel theorem, we get a smooth coordinate system \((x_1,\ldots,x_n)\) whose \(\infty \)-jet is \((\hat{x}_1,\ldots,\hat{x}_n)\), and a smooth function \(f \) of \(m \) variables whose \(\infty \)-jet is \(\hat{f} \). Put

\[
F(x_1,\ldots,x_n) = f(Q_1(x_1,\ldots,x_n),\ldots,Q_m(x_1,\ldots,x_n)).
\]
Then Equations (2.6), (2.7) and (2.8) imply that $X = FX^{(1)} + \text{flat}$ in the smooth coordinate system (x_1, \ldots, x_n). □

2.4. Reduction to the case without eigenvalue 0. Assume that X has zero eigenvalue at O with multiplicity k, and $dF_1 \wedge \ldots \wedge dF_k = 0$, i.e. we can use F_1, \ldots, F_k as the first k coordinates in our local coordinate systems. Since the vector field X preserves x_1, \ldots, x_k, we can view it as a k-dimensional family of vector fields on $(n-k)$-dimensional spaces

$$U_{c_1, \ldots, c_k} = \{ F_1 = c_1, \ldots, F_k = c_k \}$$

(for c_1, \ldots, c_k small enough). It follows from the usual implicit function theorem that on each U_{c_1, \ldots, c_k} there is a unique point O_{c_1, \ldots, c_k} such that $X(O_{c_1, \ldots, c_k}) = 0$, and moreover the point O_{c_1, \ldots, c_k} depends smoothly on c_1, \ldots, c_k, the eigenvalues of X at c_1, \ldots, c_k, are non-zero. It also follows from the formal independence of F_1, \ldots, F_n at O, that the functions F_{k+1}, \ldots, F_n are formally independent at every point O_{c_1, \ldots, c_k} provided that c_1, \ldots, c_k are sufficiently small. In other words, we have a k-dimensional family of nondegenerate singularities of smooth completely integrable $(n-k)$-dimensional vector fields X_{c_1, \ldots, c_k}. In order to normalize X, it suffices to normalize X_{c_1, \ldots, c_k} in a way which depends smoothly on the parameter.

3. Proof of Theorem 1.1

We will always assume that the vector field X satisfies the hypotheses of Theorem 1.1. The fact that the linear part of X is semisimple is established by Lemma 2.2. In view of Subsection 2.4, it suffices to prove Theorem 1.1 for the cases without zero eigenvalue, by a proof whose parametrized version also works the same.

3.1. The hyperbolic case. Assume that X is hyperbolic without eigenvalue 0. According to Proposition 2.3 we can write $X = Y + \text{flat}$, where $Y = FX^{(1)}$ is a smooth hyperbolic integrable vector field in normal form. Since X and Y are hyperbolic and coincide up to a flat term, Sternberg–Chern theorem [6, 2] says that X is locally smoothly isomorphic to Y, i.e. there is a smooth coordinate system in which X can be written as $X = FX^{(1)}$, where F is a smooth first integral of $X^{(1)}$. Theorem 1.1 is proved in the hyperbolic case without eigenvalue 0.

3.2. The elliptic case. In this subsection, we will assume that all the eigenvalues of X at O are non-zero pure imaginary. Using Proposition 2.3 we can assume that $X = FX^{(1)} + \text{flat}$ in a local smooth coordinate system (x_1, \ldots, x_n), where F is a smooth function such that $F(O) = 1$. Put $Y = X/F$. Then Y has the same first integrals as X, and

$$Y = X^{(1)} + \text{flat}.$$

The fact that X is of strong elliptic type implies immediately that the dimension n is even, the eigenvalues of X at O are $\pm \sqrt{-1}a_1, \ldots, \pm \sqrt{-1}a_{n/2}$
where $a_1, \ldots, a_{n/2}$ are positive real numbers, and we can choose the coordinates (x_1, \ldots, x_n) such that

\begin{equation}
X^{(1)} = \sum_{i=1}^{n/2} a_i (x_{2i-1} \frac{\partial}{\partial x_{2i}} - x_{2i} \frac{\partial}{\partial x_{2i-1}}).
\end{equation}

According to Lemma 2.2, we can choose $\lambda > 0$ such that $a_1/\lambda, \ldots, a_{n/2}/\lambda$ are natural numbers whose greatest common divisor is 1.

Lemma 3.1. Locally near O all the orbits of $Y = X/F$ (except the fixed point O) are periodic, with periods which are uniformly bounded above and below.

Proof. The vector field $(dF_1 \wedge \ldots \wedge dF_{n-1}) = (\frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n})$ is tangent to Y, and therefore it is divisible by Y, i.e. we can write

\begin{equation}
(dF_1 \wedge \ldots \wedge dF_{n-1}) \cdot (\frac{\partial}{\partial x_1} \wedge \ldots \wedge \frac{\partial}{\partial x_n}) = GY,
\end{equation}

where G is a smooth non-flat function at O. Notice that the singular locus of the map $(F_1, \ldots, F_{n-1}) : U \to \mathbb{R}^{n-1}$, where $U \ni O$ is a small neighborhood of O in \mathbb{R}^n, coincides with the zero locus of G.

It is clear that, by continuity, the set of all points $x \in U$ such that the orbit of Y through x is periodic of period $\leq 3\pi/\lambda$ is a closed subset of U. We want to show that this set is actually equal to U (provided that U is small enough). Consider the singular locus

\begin{equation}
S = \{ x \in U \mid G(x) = 0 \} = \{ x \in U \mid dF_1 \wedge \ldots \wedge dF_{n-1}(x) = 0 \}
\end{equation}

Since G is non-flat at O, we can choose a coordinate system (z_1, \ldots, z_n) which is a linear transformation of the coordinate system (x_1, \ldots, x_n), such that the homogeneous part $G^{(h)}$ of G has the form

\begin{equation}
G^{(h)} = z^h + \ldots
\end{equation}

which means that $\frac{\partial G^{(h)}}{\partial z_1} \neq 0$ in U. Because $\frac{\partial G^{(h)}}{\partial z_1}$ does not vanish in U, by the classical Rolle’s theorem on each line $\{ z_2 = const, \ldots, z_n = const \}$ in U there are at most k zeros of the function G, the singular locus S is of dimension at most $n - 1$, and the function G is not flat at any point of S.

Take a point $q_\epsilon = (z_1 = \epsilon, z_2 = 0, \ldots, z_n = 0) \in U$ with $\epsilon > 0$ small enough. Take the $(n - 1)$-dimensional ball $B^{n-1}(q_\epsilon, \epsilon K)$ of radius ϵK which is orthogonal to the vector $Y(q_\epsilon)$ at the point q_ϵ in the coordinate system (z_1, \ldots, z_n), for a certain positive number K to be chosen below. Denote by ϕ the Poincaré map of the flow of Y on D. A-priori this map does not necessarily fixes the point q_ϵ. But due to the fact that $Y = X^{(1)} + flat$ and the flow of $X^{(1)}$ is periodic, the distance from q_ϵ to $\phi(q_\epsilon)$ is smaller than $\epsilon K + 1$ (provided that ϵ is small enough). We can choose K large enough so that the restriction of the map (F_1, \ldots, F_{n-1}) to $B^{n-1}(q_\epsilon, \epsilon K)$ is injective. Due to the invariance of the functions F_1 with respect to the vector field Y, the Poincaré map ϕ, we also have the points q_ϵ and $\phi(q_\epsilon)$ have the same
image under the map \((F_1, \ldots, F_{n-1})\). But this map is injective on the ball \(B^{n-1}(q, \epsilon^K)\) which contains these two points, so in fact these two points must coincide, i.e. we have \(q_\epsilon = \phi(q_\epsilon)\), and the orbit of the flow of \(Y\) through the point \(q_\epsilon\) is a periodic orbit, and the period of this orbit is equal to \(2\pi/\lambda\) plus a small error term which tends to 0 faster than any power of \(\epsilon\) when \(\epsilon\) tends to 0.

Denote by \(V\) the path-connected component of \(U \setminus S\) which contains the points \(q_\epsilon\). Then the orbit of \(Y\) through any point \(q \in V\) is also periodic and its period is close to \(2\pi/\lambda\) (the difference between the period and \(2\pi/\lambda\) tends to 0 uniformly when the radius of \(U\) tends to 0). This fact can be proved easily by showing that the set of points of \(V\) which satisfies the mentioned property is closed and open in \(V\) at the same time: closed due to the continuity, and open because \((F_1, \ldots, F_{n-1})\) is regular in \(V\) and is preserved by the flow of \(Y\).

Let \(q \in S\) be a point in the locus \(S\) which also lies on the boundary of \(V\). Then by continuity, there is also a number \(T\) near \(2\pi/\lambda\) such that the time-\(T\) flow of \(Y\) fixes the point \(q\). In other words, the orbit of \(Y\) through \(q\) is also periodic, and its period is close to \(2\pi/\lambda\) (the difference between the period and \(2\pi/\lambda\) tends to 0 uniformly when the radius of \(U\) tends to 0). This fact can be deduced from the previous considerations.

We will linearize \(Y = X/F\) orbitally, and then deduce the normalization of \(X\) from this linearization. In order to do that, let us consider the blow-up of \(\mathbb{R}^n\) at \(O\), which will be denoted by

\[p : E \to U,\]

where \(U \ni O\) is a neighborhood of \(O\) in \(\mathbb{R}^n\) and \(p^{-1}(O) \cong \mathbb{R}P^{n-1}\) is the exceptional divisor of the blow-up in \(E\). We will need the following simple lemma, whose proof is straightforward:

Lemma 3.2. With the above notations, a function \(G\) or a vector field \(Z\) is flat at \(O\) in \(U\) if and only if its pull-back to \(E\) via the projection map \(p\) is flat along \(p^{-1}(O)\) in \(E\).
Denote by \(\tilde{G} \) (resp. \(\tilde{Z} \)) the pull-back of a function \(G \) (resp. vector field \(Z \)) via the projection map \(\pi : E \to U \) of the blow-up. Then we have

\[
(3.7) \quad \dot{Y} = \dot{X}^{(1)} + \dot{Z}
\]

in \(E \), where \(\dot{Z} \) is vector field which is flat along \(p^{-1}(O) \), and \(\dot{X}^{(1)} \) is a smooth periodic vector field in \(E \) of period \(2\pi / \lambda \). By Lemma 3.1 the orbits of \(\dot{Y} \) are closed, with periods close to the period of \(\dot{X}^{(1)} \). Due to the flatness of \(Z \) along \(p^{-1}(O) \), the period of \(\dot{Y} \) at the points in \(E \) is equal to \(2\pi / \lambda \) plus a smooth function on \(E \) which is flat along \(p^{-1}(O) \). Projecting \(\dot{Y} \) back to \(U \) and using Lemma 3.2 we get a smooth period function \(P = 2\pi / \lambda + \text{flat} \) (which is invariant on the orbits) such that \(PY \) is periodic of period 1. In other words, \(PY \) generates a smooth \(T^1 \)-action. Using the classical Cartan-Bochner smooth linearization theorem for compact group actions, we find a smooth coordinate system, which we will denote again by \((x_1, \ldots, x_n)\), in which \(PX/F = PY \) is a linear vector field, i.e. in which we have

\[
(3.8) \quad X = GX^{(1)}
\]

where \(G \) is a smooth function and \(X^{(1)} \) is a linear vector field which satisfies Formula (3.2).

A-priori, the function \(F \) given by Proposition 2.3 is not a first integral of \(X \) (though it is a first integral of the linear part of \(X \) in some coordinate system), and so the function \(G = 2\pi F / P \lambda \) in Formula (3.8) is not a first integral of \(X \) in either. But we can normalize further in order to change \(G \) into a first integral. Indeed, by the arguments presented above, we can assume that \(G \) is a smooth first integral of \(X \) plus a flat term, or we can write \(G = G_1(1 + \text{flat}) \), where \(G_1 \) is a first integral of \(X \). Normalizing the new vector field \(Y = X/G_1 \) instead of the old \(Y = X/F \), we get a new smooth coordinate system in which \(PY = (2\pi / \lambda)X^{(1)} \), where \(P \) is the period function of the new vector field \(Y \), and it is a smooth first integral of the type \(\text{constant} + \text{flat} \). In this new coordinate system we have that \(X \) is equal to its linear part times a first integral, and Theorem 1.1 is proved in the elliptic case i.e. without eigenvalue 0.

Since our proof for the strong hyperbolic case and the strong elliptic case also works for smooth families of integrable vector fields, Theorem 1.1 is proved.

Remark 3.3. According to a theorem of Schwarz [5], the smooth first integral \(F \) in the normal form in the elliptic case can also be written as

\[
(3.9) \quad F = f(Q_1(x_1, \ldots, x_n), \ldots, Q_m(x_1, \ldots, x_n)),
\]

where \(Q_1(x_1, \ldots, x_n), \ldots, Q_m(x_1, \ldots, x_n) \) are homogeneous polynomials which generated the ring of polynomial first integrals of the linear vector field \(X^{(1)} \).
4. The case of dimension 2

The aim of this section is to show that condition iii) in Theorem 1.1 is redundant at least in the case of dimension 2. More precisely, we have:

Theorem 4.1. Let X be a smooth vector field in a neighborhood of $O = (0, 0)$ in \mathbb{R}^2, which vanishes at O and satisfies the following conditions:

i) (Complete integrability): X admits a smooth first integral F_1.

ii) (Nondegeneracy): The semisimple part of the linear part of X at O is non-zero, and the ∞-jet of F_1 at O is non-constant.

Then there exists a local smooth coordinate system (x, y) in which X can be written as

$$X = FX^{(1)},$$

where $X^{(1)}$ is a semisimple linear vector field in (x, y), and F is a smooth first integral of $X^{(1)}$.

Proof. Remark that, in the case of dimension 2, there are only 3 possibilities: elliptic without zero eigenvalue, hyperbolic without zero eigenvalue, and hyperbolic with zero eigenvalue. The first two possibilities are covered by Theorem 1.1. It remains to prove Theorem 4.1 for the case when X has one eigenvalue equal to 0. By Proposition 2.3, we can assume that

$$X = F(y)x \frac{\partial}{\partial x} + flat_1 \frac{\partial}{\partial x} + flat_2 \frac{\partial}{\partial y}$$

in a smooth coordinate system (x, y), where $flat_1$ and $flat_2$ are two flat functions, and $F(0) \neq 0$.

Denote by

$$S = \{ q \in U \mid X(q) = 0 \}$$

the singular locus of X near O, where U denotes a small neighborhood of O in \mathbb{R}^2. The main point is to prove that S is a smooth curve. If S is a smooth curve, then we can write $S = \{ y = 0 \}$, the vector field X is divisible by x, i.e. $Y = X/x$ is still a smooth vector field, which is non-zero at O, and therefore locally rectifiable and admits a first integral G such that $dG(0) \neq 0$. But G is also a first integral of X, so condition iii) of Theorem 1.1 is also satisfied, and Theorem 4.1 is reduced to a particular case of Theorem 1.1.

Denote by

$$S_1 = \{(x, y) \in U \mid F(y)x + flat_1(x, y) = 0 \}$$

the set of points where the $\frac{\partial}{\partial x}$-component of X vanishes. It is clear that $S \subset S_1$, and S_1 is a smooth curve tangent to the line $\{ x = 0 \}$ at O by the inverse function theorem. We will show that $S = S_1$.

Consider the cone

$$C = \{(x, y) \in U \mid |x| \leq |y| \}.$$
Clearly, $S_1 \subset C$ (provided that U is small enough). The non-flat first integral F_1 of X in the coordinate system (x, y) has the type
\begin{equation}
F_1 = f(y) + \text{flat}
\end{equation}
where $f(y) = ah_y^b + h.o.t.$ is a non-flat smooth function. It implis that the level sets of F_1 in the cone C are smooth curves which are nearly tangent to the lines $\{y = \text{const}\}$. In particular, each level set of F_1 in C intersects with S_1 at exactly 1 point. Since X is tangent to these level sets, and the $\frac{\partial}{\partial x}$ component of X vanishes at the intersection points of these level sets with S_1, it follows that X itself vanishes at these intersection points. But every point of S_1 is an intersection point of S_1 with a level set of F_1. Thus X vanishes on S_1, and we have $S = S_1$. □

Remark 4.2. Two-dimensional elliptic-like vector fields, i.e. those vector fields whose orbits near a singular point are closed, are also called centers in the literature. There is a recent interesting theorem of Maksymenko [4] about the orbital linearization of the center, without the assumption on the existence of a first integral, but with an assumption on the periods of the periodic orbits. Maksymenko’s theorem is similar to and a bit stronger than the elliptic case of Theorem 4.1 because his assumptions are weaker, and the conclusions are the same. His proof is also based on the formal normalization and the blowing-up method.

Remark 4.3. Some of the arguments of the proof of Theorem 4.1 are still valid in the n-dimensional case where 0 is an eigenvalue with multiplicity $k \geq 1$. In particular, one can still show that, even without condition iii) of Theorem 4.1 the local singular locus of X is still a smooth k-dimensional manifold. However, it is more difficult to show that there is still a local regular invariant $(n-k)$-dimensional foliation. If one can show the existence of this regular regular invariant foliation, then one can drop condition iii) from the statement of Theorem 4.1 because it is a consequence of the first two conditions. Maybe it is possible to use the techniques of Belitskii-Kopanskii [1] together with a kind of desingularization of the first integrals in order to show the existence of an invariant regular foliation, but we don’t have a proof so far.

References
[1] G.R. Belitskii, A.Y. Kopanskii, Equivariant Sternberg-Chen theorem, Journal of Dynamics and Differential Equations, Volume 14 (2002), Number 2, pp. 349-367.
[2] K.T. Chen, Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., 85 (1963), 693–722.
[3] M. Golubitsky, I. Stewart, D. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume II (1988), Springer-Verlag, New York.
[4] S. I. Maksymenko, Symmetries of center singularities of plane vector fields, Nonlinear Oscil. (N. Y.) 13 (2010), no. 2, 196–227.
[5] G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology, Vol. 14 (1975), 63–68.
[6] S. Sternberg, *On the structure of local homeomorphisms of Euclidean n-space, II*, Amer. J. of Math., 80 (1958), 623-631.

[7] S.L. Ziglin, *Branching of solutions and non-existence of first integrals in Hamiltonian mechanics*, Funkcional Anal. Appl. 16 (1982), 181–189.

[8] N.T. Zung, *Convergence versus integrability in Poincaré-Dulac normal forms*, Math. Res. Lett. 9 (2002), no. 2-3, 217-228.

[9] N.T. Zung, *Nondegenerate singularities of integrable dynamical systems*, preprint arXiv:1108.3551v2 (2012).

[10] N.T. Zung, N.V. Minh, *Geometry of integrable dynamical systems on 2-dimensional surfaces*, preprint arXiv:1204.1639 (2012).

Institut de Mathématiques de Toulouse, UMR5219, Université Toulouse 3

E-mail address: tienzung.nguyen@math.univ-toulouse.fr