On Some Types of Proximity ψ–set

Y K ALtalkany1 and L A A AL-swidi2

1university of Kufa, college of education, Iraq
2university of Babylon, college of education for pure science, Iraq

yiezik.altalkany@uokufa.edu.iq
pure.leal.abd@uobabylon.edu.iq

Abstract. Various forms of ψ- set corresponding to different cases of spaces were introduced in a previous studies and The relationships among them therefore the focus of the study in this paper is the nature of the effects that can be obtained by using proximity spaces when studying this type of set by investigated a new class of sets called $\psi\delta$-set and $F\psi$–set in i-topological proximity spaces.

Keywords. focal function, focal closure, i-topological proximity space, $\psi\delta$-set, $F\psi$–set

1. Introduction
These guidelines, The ideal topological space (X, τ, I) is a topological space (X,T) with an ideal I over X and was defined by Kuratowski K. in 1933 [1], This topic has become important after the studies presented by the two scholars T.R. Hamlett and Jankovic D.[2] in these spaces, which were followed by applications in various fields such as fuzzy, nano, soft spaces and here some of these researches [3,4,5,6,7,8] and by using the local function which is relates to the end points of the set A in ideal Topological space where it is indicated by A^* is formed the basis for the definition of operator $\psi: P(X) \to T$ by the complement factor for this operator and it was defined by $\psi(A) = X / (X / A)^*$ which introduced by Natkaniec T. in [9]. After that Bandyopadhyay C, Modak S. A [10] introduce The Definition of ψ- set in (X, τ, I) of $A \subseteq X$ as the set satisfy $A \subseteq \text{Int(Cl}(A))$ and the collection of all ψ -set in (X, τ, I) is indicated by τ^v also another definition of ψ- set introduced by M. Monirul Islam and S. Modak [11] which is indicated by $a^{\psi}-$set and this type of sets satisfy that $A \subseteq (\psi(A^*))$.

Therefore, it will be interesting to study previous concepts in i-topological proximity spaces and in this context, we introduce a sets that is called a $\psi\delta$-set and $F\psi$–set which based in its definition on the concept of focal function [12] and the $\psi\delta$-operator [13] in the i- topological proximity spaces.

Throughout this research, (X, τ, I, δ) always means the i- topological proximity spaces which is defined in a previous paper [12], and it is depends on both the i- topological space presented by Z.Irina [14] and the proximity space that defined by the researcher Riesz and developed by the researcher V.A. Efremovich [15] the proximity theory was led to a new type of topological spaces and various types of studies were presented within this field in a different shapes [16,17,18,19,20,21,22,23,24,25].Also in this paper we will discuss a set of properties related to these sets $\psi\delta$-set and $F\psi$–set in the space (X,T,I,δ).

In this paper i-TS means that the space is i-topological space and i-TPS means the space is i-topological proximity space.

2. Basic definition

2.1 Definition [12]
Let \((X, T, I) \) is i-TS, a subset \(A \) of \(X \) is termed focal set of a point \(x \) in \(X \) if there is i-open set \(U \) satisfy \(\text{U} \cap A \), where \(\text{U} \cap A \) means that \(U - A \in I \). we will use \(I_f(x) \) to stand for the set of all focal set of the point \(x \).

2.2 Definition [12]

Let \((X,T,I)\) is i-TS then a point \(x \) in \(X \) is named focal limit point (simply \(\mathcal{F} \)lp) if and only if for all \(U \subseteq I_f(x) \) such that \(x \in U \) then \((U \setminus {A})/\{x\} \neq \emptyset\) and the set of all \(\mathcal{F} \)lp points of \(A \) is named the focal derived set and indicated by \(\mathcal{F} \mathcal{D}(A) \). Also the focal closure (simply \(\mathcal{F} \text{cl}(A) \)) is indicated by \(\mathcal{F} \text{cl}(A) = \mathcal{A} U \mathcal{F} \mathcal{D}(A) \).

2.3 Definition [12]

Let \((X,T,I)\) is i-TS, for a subset \(A \) of \(X \) the \(i - \text{cl}(A) \) is the intersection of all i-closed sets of \(A \).

2.4 Definition [12]

Let \((X,T,I,\delta)\) is i-TPS, for a subset \(A \) of \(X \) the point \(x \) in \(X \) is termed occlusion point of \(A \) if for all \(M \) belong to \(I_f(x) \), \(x \in M \) satisfy that \(M \cap B \). We will use \(\text{\#}(A) \) to stand for the set of all occlusion points of the set \(A \).

2.5 Proposition

In the \(i \)-TPS \((X,T,I,\delta)\) we have the following for each subset \(A \) of \(X \)

1. \(\text{Fcl}(A) \subseteq \#(A) \)
2. \(\psi_{T(X)}(A) \subseteq \psi_{\delta}(A) \) [26]
3. \(A \subseteq \#(A) \).
4. \(A \subseteq \#e(A) \) for each i-open set \(A \) of \(X \).
5. \(\#(AUB) = \#(A)U\#(B) \). [12]
6. \(\psi_{\delta}(A) \cup \psi_{\delta}(B) \subseteq \psi_{\delta}(A \cup B) \). [26]
7. \(\psi_{\delta}(A) \subseteq \#(A) \) [26]
8. \(\#(\psi_{\delta}(A)) \subseteq I_f(x) \) for some \(x \) in \(X \).

2.6 Definition

Let \((X,T,I,\delta)\) is \(i \)-TPS then:

1. \(\psi_{\delta}(A) = \{x \in X: \exists U \in I_f(x) \text{ and } u \ll A \} \), where the relation \(u \ll A \) means that \(u \delta A \). [28]
2. \(\psi_{T(X)}(U) = \{x \in X: \text{ there exist } U \in T(x), u \ll U \} \).[27]

2.7 Definition [28]

A mapping \(f : (X, \delta_X) \rightarrow (Y, \delta_Y) \) is said to be proximity or \(\delta \) - continuous if \(A \delta_X B \) then \(f(A) \delta_Y f(B) \) for each \(A, B \subseteq X \).

2.8 Proposition

A mapping \(f \) from a proximity space \((X, \delta_X)\) into a proximity space \((Y, \delta_Y)\) is \(\delta \) - continuous iff for each \(P, Q \subseteq Y \) \(P \delta_Y Q \) implies \(f^{-1}(P) \delta_X f^{-1}(Q) \).

2.9 Definition [28]

If \(f : (X, \delta_X) \rightarrow (Y, \delta_Y) \) is bijective \(\delta \) - continuous mapping and \(f^{-1} : (Y, \delta_Y) \rightarrow (X, \delta) \) is \(\delta \) - continuous mapping then \(f \) is said to be proximally equimorph, proximally isomorphic or \(\delta \) - homeomorphism from \(X \) onto \(Y \).

2.10 Proposition

Let \(f : (X, T, I) \rightarrow (Y, T_Y, I_Y) \) is i-closed function then for any i-closed set \(A \) of \(X \)
\[\text{Fcl}(f(A)) = f(\text{Fcl}(A)) \]

2.11 Definition [28]

Let \(f : (X, T, I) \rightarrow (Y, T_Y, I_Y) \) is any function then we say that \(f \) is focal function if and only if \(f(U_x) \in I_Y \delta_x (f(x)) \), for each \(U_x \in I_f(x) \).

2.12 Proposition

Let \(f \) is homeomorphism function from \(i - TS \) \((X, T, I)\) into \(i - TS \) \((Y, T_Y, I_Y)\) then the inverse image of any focal set in \(Y \) is a focal set in \(X \).

Proof:
Let $U_y \in I_Y(y) \therefore$ so since f is onto there exist exist $x \in X$ such that $y = f(x)$, also there exist $H \in T_Y(y) \therefore$ satisfy that $H / U_y \in I_y$ and f is homeomorphism we get that $f^{-1}(H) / f^{-1}(U_y) = f^{-1}(H / U_y) \in f^{-1}(I_y)$ hence $f^{-1}(U_y)$ is a focal set of the point x.

3- On ψ_δ-set and $\mathcal{F} \psi$ – set

3.1 Definition

Let (X, T, I, δ) is i – TPS then a subset A of X is said to be ψ_δ – set iff $A \in \hat{\delta} (\psi_\delta(A))$ and it is called $\mathcal{F} \psi_\delta$ – set $\delta \mathcal{F} cl \left(\psi_{T,X}(A) \right)$, the collection of all ψ_δ – set of X indicated by $\psi_\delta (X, T, I, \delta)$ and $\mathcal{F} \psi(X, T, I, \delta)$ stand for the set of all $\mathcal{F} \psi$ – set.

The relation between ψ_δ – set and $\mathcal{F} \psi$ – set showed below

3.2 Proposition

Let (X, T, I, δ) is i – TPS then every $\mathcal{F} \psi$ – set is ψ_δ – set but not conversely.

Proof:

By proposition (2-5) (1, 2) we get that $\mathcal{F} cl \left(\psi_{T,X}(A) \right) \subseteq \hat{\delta} (\psi_\delta(A))$ and then since $A \delta \mathcal{F} cl \left(\psi_{T,X}(A) \right)$ then $A \in \hat{\delta} (\psi_\delta(A))$ therefor A is ψ_δ – set.

3.3 Example

Let $X = \{a, b, c\}$, $T = \{X, \emptyset, \{a, b\}, \{a, c\}\}$, $I = \{\emptyset, \{c\}\}$, $A \delta \mathcal{B}$ iff $A \cap \mathcal{B} \neq \emptyset$. If $A = \{a\}$ then

$\hat{\delta} (\psi_\delta(A)) = X \subseteq \mathcal{F} cl \left(\psi_{T,X}(A) \right)$ hence A is ψ_δ – set but not $\mathcal{F} \psi$ – set.

3.4 Proposition

Let (X, T, I, δ) is i – TPS then each of the following statement are exist:

1. A is ψ_δ – set for each i – open set A
2. A is not ψ_δ – set neither $\mathcal{F} \psi$ – set for each $A \in I$
3. If $A, B \in \psi_\delta(X, T, I, \delta)$ then $A \cup B \in \psi_\delta(X, T, I, \delta)$
4. $X \in \psi_\delta(X, T, I, \delta)$ and $X \in \mathcal{F} \psi(X, T, I, \delta)$

Proof:

1. Let A is i-open set so by proposition (2-5) (3,4) and by we get that A is ψ_δ – set
2. Let $A \in I$, so $\psi_\delta(A) = \emptyset$ [30] and then $A \delta \hat{\delta} (\psi_\delta(A))$ also by proposition (2-5)(2) A is not $\mathcal{F} \psi$ – set.
3. since $A \delta \hat{\delta} (\psi_\delta(A))$ and $B \delta \hat{\delta} (\psi_\delta(B))$ also we have $A \subseteq A \cup B$ and $B \subseteq A \cup B$, so by property of proximity space we get that $A \cup B \delta \hat{\delta} (\psi_\delta(A))$ and $A \cup B \delta \hat{\delta} (\psi_\delta(B))$ and $\mathcal{F} \psi(A \cup B)$.
4. Since $X \delta \hat{\delta} (\psi_\delta(A))$ for each $A \subseteq X$, so $X \in \psi_\delta(X, T, I, \delta)$.

Now the following proposition discuss the inclusion condition

3.5 Proposition

Let (X, T, I, δ) is i – TPS and A, B are subset of X such that $A \subseteq B$ and A is ψ_δ – set (resp., $\mathcal{F} \psi$ – set), then B is ψ_δ – set (resp., $\mathcal{F} \psi$ – set).

Proof:

Because A is ψ_δ – set, then $A \delta \hat{\delta} (\psi_\delta(A))$ and by the axiom of proximity we get that $B \delta \hat{\delta} (\psi_\delta(B))$, hence B is ψ_δ – set. In a same way we get that B is $\mathcal{F} \psi$ – set.

3.6 Proposition

Let (X, T, I, δ) is i – TPS and A, B are subset of X such that $A \cap B$ is ψ_δ – set (resp., $\mathcal{F} \psi$ – set) then A and B are ψ_δ – set (resp., $\mathcal{F} \psi$ – set).

Proof:

By proposition (3-5) we get that A, B are ψ_δ – set.

3.7 Proposition

Let (X, T, I, δ) is i – TPS then every $\psi_\delta(A)$ is ψ_δ – set for every subset A of X such that $\psi_\delta(A) \neq \emptyset$.

Proof:
Since by proposition (3-5) and proposition (2-5)(7) we have that $\psi_\delta(A) \subseteq \mathcal{F}(\psi_\delta(A))$ hence $\psi_\delta(A) \delta \neq \psi_\delta(A)$ therefor $\psi_\delta(A)$ is ψ_δ – set.

3.8 Proposition

Let (X, T, I, δ) is i – TPS then $A \in \psi_\delta(X, T, I, \delta)$ for each $A \in I_{\delta(x)}$.

Proof:

By proposition (2-5)(8) $\mathcal{F}(\psi_\delta(A)) \in I_{\delta(x)}$ for some $x \in A$, and since A is focal set we get that $A \delta \neq \mathcal{F}(\psi_\delta(A))$ hence $A \in \psi_\delta$ – set.

The following example showed that proposition (3-8) is not exist with respect to $F\psi$ – set.

3.9 Example

Let $X = \{a, b, c\}$, $T = \{X, \emptyset, \{a, b\}, \{a, c\}\}$, $I = \{\emptyset, \{c\}\}$, $A \delta B$ iff $A \cap B \neq \emptyset$. If $A = \{a\}$ is $I_{\delta(x)}$ but A is not $F\psi$ – set.

3.10 Remark

- Since $\emptyset \neq \mathcal{F}(\psi_\delta(A))$ for each $A \subseteq X$, then $\emptyset \notin \psi_\delta(X, T, I, \delta)$ also $\emptyset \notin F\psi(X, T, I, \delta)$
- $\psi_\delta(X, T, I, \delta)$, $(\psi_\delta(X, T, I, \delta))$, is not an ideal and not a filter
- If $A, B \in \psi_\delta$ – set then $A \cap B$ is not ψ_δ – set. Also if $A, B \in F\psi$ – set then $A \cap B$ is not $F\psi$ – set.

3.11 Example

Let $f: (X, T, I, \delta) \rightarrow (Y, T_Y, I_Y, \delta_Y)$ is homeomorphism, focal function and δ – homeomorphism function then $A \in \psi_\delta$ – set iff $f(A)$ is ψ_δ – set.

Proof:

we will prove the first condition that $\psi_\delta(f(A)) = f(\psi_\delta(A))$ and for that let $y \in \psi_\delta(f(A))$ so there exist $x \in X$, such that $y = f(x)$ and there exist $U_y \in I_{\delta(x)}(y)$, satisfy $U_y \delta_Y(f(A)) = f(A)$, since f is δ – homeomorphism and f is homeomorphism then $f^{-1}(U_y) \delta_X f^{-1}(f(A)) = A \delta_X$, now since f is homeomorphisms and by proposition (2-12) $f^{-1}(U_y) \in I_{\delta_X}(x)$ and then $x \in \psi_\delta(A)$, so $f(x) \in f(\psi_\delta(A))$.

Let $y \in f(\psi_\delta(A))$, so $f^{-1}(y) \in \psi_\delta(A)$ and then there exist $U_{\delta^{-1}(y)} \in I_{\delta(x)}(f^{-1}(y))$, $U_{\delta^{-1}(y)} \delta_X A \delta_X$ and then by onto condition of f, $U_{\delta^{-1}(y)} \delta_X A \delta_X$, and because f is δ homeomorphism we get $f(U_{\delta^{-1}(y)}) \delta_Y f(A \delta_X)$, since f is focal function then $f(U_X) \in I_{\delta_Y}(f(x))$, so we get $f(U) \delta_Y (f(A))$. Then $y \in \psi_\delta(f(A))$.

Now to prove the second relation that $\mathcal{F}(\psi_\delta(f(A)) = f(\mathcal{F}(\psi_\delta(A)))$.

Let $y \in f(\psi_\delta(f(A)))$ then foreach $U_y \in I_Y(y)$, $U_y \delta_Y \psi_\delta(f(A))$ and by the first condition $U_y \delta_Y \psi_\delta(f(A))$, since f is δ – homeomorphism that is $f^{-1}(U_y) \delta_X f^{-1}(f(\psi_\delta(A)) = \psi_\delta(A)$, but by proposition (2-12) $f^{-1}(U_y) \in I_{\delta(x)}(y)$, hence $x \in f(\psi_\delta(A))$ and $f(x) \in f(\mathcal{F}(\psi_\delta(A)))$. Conversely, let $y \in f(\mathcal{F}(\psi_\delta(A)))$, then $f^{-1}(y) = x \in f(\psi_\delta(A))$. and for each $U_x \in I_{\delta(x)}$, $U_x \delta_X \psi_\delta(A)$ but f is δ – homeomorphism, $f(U_x) \delta_Y \psi_\delta(f(A))$ and by first condition $f(U_x) \delta_Y \psi_\delta(f(A))$, we get that $y \in f(\psi_\delta(f(A)))$. Now we go back to the assumption $A \delta \neq \mathcal{F}(\psi_\delta(A))$ and by the second relation, $A \delta \neq \mathcal{F}(\psi_\delta(f(A)))$, hence $f(A)$ is ψ_δ set.

Conversely, let $f(A)$ is ψ_δ – set then $f(A) \delta_Y \neq \mathcal{F}(\psi_\delta(f(A)))$ and by the first condition $f(A) \delta_Y f(\mathcal{F}(\psi_\delta(A)))$ and since f is δ – continuous then $f^{-1}(f(A)) \delta_X f^{-1}(f(\mathcal{F}(\psi_\delta(A))))$, hence $A \delta_X \neq \mathcal{F}(\psi_\delta(A))$ and we have A is ψ_δ – set.

3.13 Proposition

For the homeomorphism, δ – homeomorphism and focal function $f: (X, T, I, \delta) \rightarrow (Y, T_Y, I_Y, \delta_Y)$ and for any i – closed set A of X, $A \in F\psi$ – set iff $f(A)$ is $F\psi$ – set.

Proof:
Let A ∈ Ψψ – set, so AδFcl(ψ_T(ψ) (A)) since f is δ-homeomorphism then f(A)δf(Fcl(ψ_T(ψ) (A)) .

Now we will prove that ψ_T(ψ) (f(A)) = f(ψ_T(ψ) (A)) and for that let y ∈ ψ_T(ψ) (f(A)) , hence there exist \(U_y \in T(y) \), \(U_y \overline{\delta}(f(A))^c \) but f is homeomorphism and f is δ – continuous, then f\(^{-1}\)\((U_y)\overline{\delta}A^c \). f is continuous function, then f\(^{-1}\)\((U_y)\in T(x)\) imply that \(x \in ψ_T(ψ) (A) \) and then f(\(x \)) ∈ f(ψ_T(ψ) (A)) so by the onto condition of f y ∈ f(ψ_T(ψ) (A)) .

Now , let y ∈ f(ψ_T(ψ) (A)) then f\(^{-1}\) (y) ∈ ψ_T(ψ) (A) , so there exist w ∈ T(x) , w\overline{\delta}A^c but f is δ – continuous f(w)\overline{\delta}(A)^c and since f is homeomorphism f(w)\overline{\delta}(f(A))^c , but f(w) ∈ T(y) , so y ∈ ψ_T(ψ) (f(A)) .

By above conversation we have that (A)\overline{\delta}f(Fcl(ψ_T(ψ) (A)) = Fcl(f(ψ_T(ψ) (A)) = Fcl(ψ_T(ψ) (f(A))) . hence f(A) is Fψ – set .

Conversely , let f(A) = Fψ – set , so f(A)\overline{\delta}Fcl(ψ_T(ψ) (f(A))) but Fcl(f(A)) = Fcl(f(A)) and ψ_T(ψ) (f(A)) = f(ψ_T(ψ) (A)) , also since f is δ – continuous we get that (f(A))\overline{\delta}f\(^{-1}\)(Fcl(ψ_T(ψ) (f(A)))) therefor A\overline{\delta}Fcl(ψ_T(ψ) (A)) imply that A is Fψ – set .

Conclusion

Through this research we note that the two sets ψ_δ-set and Fψ – set which defined in i- topological proximity spaces is independent in its definition and the nature of its properties than ψ-set that knowledge in the ideal topological spaces as this is evident through the set of characteristics that have been proven in this research

References

[1] Kuratowski K 1933 .Topologie I, Warszawa.
[2] Janković D and Hamlett T R 1990 The American Mathematical Monthly 97, no. 4 pp: 295-310.
[3] Al-swidi L.A and Al-Rubaye M S 2014 international Journal of mathematical analysis Vol. 1 No. 23 pp: 1119 – 1131.
[4] Al-swidi L A and Al-Ethary M A2014 international journal of mathematical analysis 8(23).
[5] Al-swidi L A and Auday F S 2018 IMSE .
[6] Al-swidi L A and Auday F S S 2018 Baghdad science journal 15(3).
[7] Al-swidi L A and Auday F S S 2018 Baghdad Science Journal 15, no.3 pp: 352-360.
[8] Almohammed R and Al swidi LA 2020 Baghdad science Journal , 17(2), 2020, 515 -522.
[9] Natkaniec T 1986 Mathematica Slovaca 36.3 pp: 297-312.
[10] Modak S and Chhanda B 2007 Bulletin of the Malaysian Mathematical Sciences Society. Second Series 30.1 pp: 43-48.
[11] Modak S and Md Monirul Islam M M 2018 Transactions of A Razmadze Mathematical Institute 172.3 pp: 491-497.
[12] Altalkany Y K and Al-Swidi L A 2020 , Focal function in i-topological Spaces via proximity spaces , Journal of Physics: IOP Conf. Ser. 1591 0120832020.
[13] Altalkany Y K Alswidi L A 2021 Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12.1S PP. 679-684
[14] Zvina I Applied General Topology Vol.7, No.1.
[15] Efremovich V A 1952 Mat. Sb., 31.
[16] Lodato M W 1966 Pacific J. Mat., 17 pp: 131-135.
[17] Naimpally S A and Warrack B D 1970 Cambridge Tract.
[18] Artico G and Moresco R 1984 J. Math. Anal. Appl., vol.99.
[19] Artico G and Moresco R 1987 Fuzzy Sets and Systems vol.21.
[20] Abdul sada D A and Al swidi L A A 2020, some properties of \(C \)-topological space, 1st int. conf. of computer and applied science., pp:52-56.
[21] Abdlsada D A and Alswidi L A A 2020 journal of advance research in Dynamical and control system, 8 (5) pp:1389-1393.
[22] Abdlsada D A and Alswidi L A A 2020, Compatibility of center ideals with center topology, IOP Conf. series: materials Science and Engineering 028.
[23] Abdlsada D A and Alswidi L A A 2020 ICMAJCT.
[24] Altalkany Y K and Al-swidi L A 2021, On focal function with respect to the i-open set in i-topological proximity space, sixth national scientific /third international conf. Kerbala university.
[25] Altalkany Y K and Al-swidi L A 2021, The types of \(P_n \)-crowded set and \(P_{na} \)-crowded set, sixth national scientific /third international conf, Kerbala university.
[26] Altalkany Y. K. and Alswidi L A 2021, Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(1S), 679-684.
[27] ALTalkany Y K Al swidi L A 2021 Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12.1S PP: 685-690.
[28] Yiezi K. Altalkany and Luay A.A.Al-swidi 2021, on the \(\psi_T(x) \) -operator proximity in i-topological proximity space, 1st international conference on advance research in pure and applied science
[29] Smirnov yu M 1952 Sb 31 pp: 543-574.
[30] Alswidi L A and Mustafa H H 2011 European journal of scientific research, Vol.57, No.4.
[31] Alrazzaq A S and Al-swidi L A 2019 journal of public health research and development.
[32] Hadi M H and Al-yaseen M A and ALswidi L A 2020 journal of interdisciplinary mathematics, pp:1-4.
[33] Auday S A and Al-swidi L A 2020 ICMAJCT.
[34] Al-Abbasi H K and Alswidi L A 2020 ICMAJCT.
[35] Mustafa H H and Al khaleq M A 2020, study of hyper –open set in topological spaces, AIP Conference Proceedings.
[36] Nakamura S, Senoh M, Nagahama S, Iwase N, Yamada T, Matsushita T, Kiyoku H and Sugimoto Y 1996 Japan. J. Appl. Phys. 35 L74