A two-component Bayesian mixture model to identify implausible gestational age

Maryam Mohammadian-Khoshnoud¹, Abbas Moghimbeigi², Javad Faradmal³, Mahnaz Yavangi⁴

Abstract

Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother’s recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age.

Methods: In this cross-sectional study, medical documents of 502 preterm infants born and hospitalized in Hamadan Fatemieh Hospital from 2009 to 2013 were gathered. Preterm infants were classified to less than 28 weeks and 28 to 31 weeks. A two-component Bayesian mixture model was utilized to identify implausible gestational age; the first component shows the probability of correct and the second one shows the probability of incorrect classification of gestational ages. The data were analyzed through OpenBUGS 3.2.2 and 'coda' package of R 3.1.1.

Results: The mean (SD) of the second component of less than 28 weeks and 28 to 31 weeks were 1179 (0.0123) and 1620 (0.0074), respectively. These values were larger than the mean of the first component for both groups which were 815.9 (0.0123) and 1061 (0.0074), respectively.

Conclusion: Errors occurred in recording the gestational ages of these two groups of preterm infants included recording the gestational age less than the actual value at birth. Therefore, developing scientific methods to correct these errors is essential to providing desirable health services and adjusting accurate health indicators.

Keywords: Gestational age, Birth weight, Bayesian, Mixture model.

Introduction

Birth weight and gestational age are two important features in prenatal research. These factors have an important role in computing health indicators and adopting health policies. We can almost always trust the accuracy of birth weight, but the accuracy of gestational age, especially if reported based on the last menstrual period (LMP) can be doubted (1-7). Premature birth or preterm birth refers to birth before the 37th week of pregnancy (8). The prevalence of this phenomenon is different in various regions and is reported between 5% to 10% (9,10). According to studies performed in Iran, the prevalence of premature is reported to be 5.6% in Qom, 7% in Zanjan and 14.7% in Shiraz’s high risk group and 3.1% in its low risk group (11-13). Infants born based on their gestational age require different treatments. Therefore, determining the gestational age of infants is the best health indicator in this critical period of their life (14). Hertz et al reported that LMP can be trusted only in 18% of women (15). Some reasons for this uncer-
Mixture model to identify implausible gestational age

In earlier reported gestational ages, the distribution of birth weight instead of being curved or symmetrical is often skewed to the right or bimodal. There are techniques such as numerical methods, EM algorithm and Bayesian approach for parameter estimation in the normal mixture model. According to studies, compared to the others, Bayesian technique results are more acceptable (34). Therefore, Bayesian mixture models are plausible candidates for identifying implausible gestational ages. Oja et al., provided a three-component mixture model in order to model the distribution of birth weight (30). Their method was able to diagnose the errors in one menstrual cycle. Platt et al used a two-component mixture model in order to study deliveries with misreported gestational ages (28). Tentoni et al, also used a two-component mixture model for identifying implausible gestational ages (32). While there are many studies considering identification of implausible gestational ages, a search in published literature shows that there are no studies in Iran considering this issue. Consequently, the objective of this study is to identify implausible gestational ages in preterm infants using Bayesian mixture model.

Methods
This study was a cross-sectional research, the study population was all the preterm infants (based on LMP) born in Hamadan Fatemieh Hospital from 2009 to 2013. Hamadan Fatemieh Hospital is the most important center for gynecology and delivery in Hamadan province, west of Iran. Preterm infants refer to those born before the end of 37th week of pregnancy which according to Cunningham et al include infants with the following gestational ages: extremely preterm (less than 28 weeks), very preterm (between 28 to 32 weeks), moderately preterm (between 28 to 34 weeks), late preterm (between 34 to 36 weeks) (8). Data were collected from hospital files of all preterm infants during the above mentioned years.

The inclusion criteria were identifying the infant as preterm (37 weeks or less gesta-
tional age) and not being a twin. All twin infants (192 infants) and multiple births (48 infants) and infants who did not have a recorded gestational age (17 infants) were excluded from the study. As a result, from 759 preterm infants, only 502 were included in the study.

In order to extract the necessary information from infant records, a checklist was designed with the following variables: duration of infant hospitalization, reason of hospitalization, mother’s age, gestational age, weight, height, head circumference, the first and the fifth minutes Apgar score, gender, number of infants, type of delivery, fatality reasons (if the infant dies), blood type, mother’s number of deliveries, number of stillborn and previous abortions.

Data analysis

In this study, two-component Bayesian mixture model was used to identify implausible gestational age. According to previous research, a combination of gestational age and birth weight information was used to identify implausible gestational age (29). Therefore, infants were classified into 4 groups of less than 28 weeks, 28 to 32 weeks, 32 to 34 weeks and 34 to 36 weeks based on their gestational ages. Then in each group, a Bayesian mixture model was fitted on birth weight. In a homogenous population, it is assumed that the distribution of birth weight is normal, but because of recording/recalling error, a two components mixture of normal distribution was assumed for birth weight. So, the probability density function (PDF) of birth weight can be written as

\[f(y) = \prod_{j=1}^{2} \left(\pi_j f(y|\mu_j, \sigma_j^2) \right)^{Z_j} \]

where \(f(y|\mu_j, \sigma_j^2) \) shows the normal PDF of each birth weight component, \(Z=1 \) or 2, a latent variable following binary distribution with \(\Pr(Z=j) = \pi_j \) end \(\pi_j j=1, 2 \) is the component weight or mixing proportion so that \(\sum_{j=1}^{2} \pi_j = 1 \). It is assumed that one component indicate infants with correctly recorded gestational age and the other one, infants with erroneously reported gestational age.

Parameters estimation of birth weight distribution were carried out using Bayesian method. Normal and inverse gamma were used as prior distributions for the mean and variance of each component of birth weight distribution, respectively. Also, Beta distribution, the conjugate of binary distribution, was used as the prior of \(Z \). The posterior distribution of the unknown parameters were sampled using Markov chain Monte Carlo (MCMC) algorithm. The convergence of MCMC algorithm was evaluated by Geweke, Gelman-rubin and Raftery and Lewis convergence diagnostics (33). In order to produce almost independent samples from prior distribution of parameters, one of the methods is to execute the Markov chain Monte Carlo algorithm for a long time and then we can reduce the effect of the convergence between samples. The Bayesian mixture model with introduced priors is converged to posterior distribution with 20000 repetitions (10000 burn-ins and with lag of 20). The data were analyzed through OpenBUGS software 3.2.2 and 'coda' package of R software 3.1.1.

Results

From among the five years considered in this study, the largest number of births belonged to 2012 with 131 infants (26.1%) and the smallest number of births belonged to 2010 with 62 infants (12.4%). According to Table 1, the number of preterm boys is more than the preterm girls. The largest number of preterm girls belonged to 2012 and the smallest number of preterm girls belonged to 2010. The preterm infants born during the studied period included 243 girls (48.4%) and 259 boys (51.6%). Forty two percent of the infants were the first born to their mothers. From all the preterm infants, 47.2% died in the hospital, 49.6% were discharged from the hospital after successful treatment and the rest were transferred to other hospitals or discharged with personal content. The age of mothers
at delivery was 14 to 50 years with mean (SD) of 27.09 (7.68) and 13% of mothers were under 20 years. According to Table 2, the largest number of preterm infants belonged to 28 to 31 weeks gestational age and the smallest number belonged to 21 to 27 weeks gestational age. The smallest birth weight was 450 gr and with increasing in gestational age, there was an increase in the average birth weight (Table 2).

In this study, the identifiability of all gestational age was considered for the estimation of parameters and since this capability was not present in the third and fourth groups, 32 weeks gestational age and higher were removed from the study. Therefore, the probability of implausible gestational age was considered for two groups of 21 to 27 weeks and 28 to 31 weeks. For both groups, the Bayesian mixture model gestational age converged to a posterior distribution.

From PDF plot and histogram of birth weight in the pre-specified gestational ages, it is clearly observable that in each group of gestational age, two components are detectable (Figs. 1 and 2). The mean of the first component has very small difference from the mean of the second one for infants with 21-27 gestational age (Fig. 2a) but this difference is relatively of bigger size for infants with 28-31 gestational age (Fig. 2b). Table 3 reports the parameter estimates of Bayesian mixture model and confirm these findings.

Table 3 reveals that about three fourth of the recorded gestational ages between 21 to 27 weeks are plausible and in the second group, 28-31 weeks gestational age, only about 56% of the gestational ages are plausible. These results indicate that accuracy decrease with increasing of gestational ages.

Table 1. Frequency of infants’ gender by the year

Gender	Male	Female	Total
Year	N (%)	N (%)	N (%)
2009	66 (51.6)	62 (48.4)	128 (100)
2010	30 (48.4)	32 (51.6)	62 (100)
2011	34 (49.2)	35 (50.8)	69 (100)
2012	71 (54.4)	60 (45.6)	131 (100)
2013	58 (51.8)	54 (48.2)	112 (100)
total	259 (51.6)	243 (48.4)	502 (100)

Table 2. Infants’ birth weight (gr) in different gestational age groups

Gestational age group	N (%)	Minimum	Maximum	Mean	SD
21 to 27 weeks	74 (15)	500	1600	894.19	232.25
28 to 31 weeks	218 (43)	450	2950	1275.5	399.24
32 to 33 weeks	118 (24)	600	2500	1700.3	442.32
34 to 36 weeks	92 (18)	1000	3800	2256.1	506.39

Fig. 1. The histogram of birth weight (gr) for (a) 21-27 and (b) 28-31 weeks gestational age of infants born in Fatemieh Hospital of Hamedan during 2008 to 2013.
Discussion

Erroneous recording of gestational age may be the result of unknowing the correct date or wrong recall of LMP. Several studies consider the identification of implausible gestational ages using mixture models. In this study, which is inspired by the work of Zhang et al, the Bayesian mixture model was used to identify the proportion of implausible gestational ages. This method was used for two groups introduced in the materials and methods section.

Joseph et al considered four different cut-off point methods to remove the implausible gestational ages (35). These methods cause to different proportion of implausible gestational ages detection from about 0.09% using ±4 standard deviation method to about 40% using Tukey’s rule. Also, according to the experts’ opinion method, no gestational age was implausible regarding to related weight. These four method detect a smaller proportion of gestational age as implausible compared to the Bayesian mixture model that was used in the current study.

This finding is consistent with other studies that were used mixture models (29). According to the Joseph’s study, in all four different cut-off point methods, the number of implausible gestational age increases with increase in recorded gestational age. This finding is in concordance with the current study’s result. Also, in the study by Zhang et al, the percentage of correctly recorded age for infants with 23 to 27 weeks of gestational age is more than 80% and this percentage reduced for infants with 28-31 weeks gestational age (29). These findings are close to that achieved in this study where the percentage of correctly recorded age in the first group is about 74% and this percentage is more than the second group. Overall, the model shows that the misspecification of the gestational age less than the true value occurred for relatively vast majority of infants.

Although a two-component Bayesian mixture model was fit in the current study, a method with more components (if necessary) can be used to identify implausible gestational ages. On the other hand, each component of the model has a normal distribution, this restriction may be questionable, especially in lower gestational ages. As a solution, one may use distribution-free models. These models present a flexible distribution for erroneously reported gestational ages. Wilcox and Russell suggest a two-component mixture distribution (36). One component includes “predominant distribution” which has normal distribution. The second component includes a “residual distribution” which has no specified form. Ultimately, the objective of this study was

Gestational age group	Component	Mean	Standard deviation	Mixing Proportion	Credible interval
21 to 27 weeks	First	815.9	0.0123	0.74	766 - 846
	Second	1179	0.0123	0.26	1039 - 1171
28 to 31 weeks	First	1061	0.0074	0.56	1030 - 1091
	Second	1620	0.0074	0.44	1583 - 1656
only to identify implausible gestational ages and correcting the probably misreported gestational ages can be the subject of the future studies.

Conclusion
This study demonstrate that the errors occurred in specification/recording the gestational ages of preterm infants less than the true values include a vast majority of gestational ages. Therefore, correcting the system of recording and developing scientific methods to correct these gestational ages is essential to providing suitable health services and adjusting accurate health indicators.

Acknowledgments
This article was extracted from the MSc dissertation of the second author and supported by Hamadan University of Medical Sciences. We are grateful to personnel of Fatemieh Hospital of Hamadan for their corporation.

Conflict of interest
All authors declare that they have no significant competing interests.

Funding
This study was funded by the Vice-chancellor of Research and Technology of Hamadan University of Medical Sciences (grant number 9304242121).

References
1. Alexander G, Wingate M, Bader D, Kogan M. The increasing racial disparity in infant mortality rates: composition and contributors to recent US trends. Am J Obstet Gynecol 2008;198(1):51-e1.
2. Ananth C, Joseph K, Oyelere Y, Demissie K, Vintzileos A. Trends in Preterm Birth and Perinatal Mortality Among Singles: United States, 1989 Through 2000. Obstet Gynecol 2005;105(5, Part 1):1084-91.
3. Butler AS, Behrman RE. Preterm Birth: Causes, Consequences, and Prevention: National Academies Press; 2007.33.
4. Scheppe AH, Braunam AM, Lukacs SL, Schoendorf KC. The Contribution of Preterm Birth to the Black–White Infant Mortality Gap, 1990 and 2000. Am J Public Health 2007;97(7):1255-60.
5. Swamy GK, Styhue T, Skjærvén R. Association of Preterm Birth With Long-term Survival, Reproduction, and Next-Generation Preterm Birth. JAMA 2008;299(12):1429-36.
6. Tolson GC, Barnes JM, Gay GA, Kowalewski JL. The 1989 revision of the U.S. standard certificates and reports. National Center for Health Statistics. Vital Health Stat 1991;4(28):1-34.
7. Zwicker JG, Harris SR. Quality of Life of Formerly Preterm and Very Low Birth Weight Infants From Preschool Age to Adulthood: A Systematic Review. Pediatrics 2008;121(2):e366-e76.
8. Cunningham F, Gant N, Leveno K, Gilstrap L, Seino K, Martin J. Williams obstetrics. 21st ed: New York: McGraw-Hill Companies; 2001.13.
9. Eliyahu S, Weiner E, Nachum Z, Shalev E. Epidemiologic risk factors for preterm delivery. Isr Med Assoc J 2002;4(12):1115-7.
10. Kaufman JS, Alonso FT, Pino P. Multi-level modeling of social factors and preterm delivery in Santiago de Chile. BMC Pregnancy Childbirth 2008;8(1):46.
11. Khalaqi Nia Z. Prevalence and Maternal Risk Factors of Preterm Laboring in Qom, 2007. Qom Univ Med Sci J 2011;5(1):30-6.
12. Rajaeefard A, Mohammad Beigi A, Mohammadi M, Jolaei H, Alihour E. Evaluation of risk factors in preterm delivery and impact of education in its prevention. Daneshvar med 2010;17(86):11-8.
13. Sohrabi D, Ghanbari Gorkani M. A survey on Risk factors and outcomes of women with preterm labor admitted to Valiasr hospital in Zanjan. J Urmia Nurs Midwifery Fac 2011;9(2).
14. Pishva N, Madani A, Movahedi P. Determination of gestational age with Ballard and Dubowitz clinical methods incomparison with last menstrual period and sono graphic findings in 1000 newborns. JMR 2003;1(4):54-9.
15. Hertz RH, Sokol RJ, Knoke JD, Rosen MG, Chik L, Hirsch VJ. Clinical estimation of gestational age: rules for avoiding preterm delivery. Am J Obstet Gynecol 1978;131(4):395-402.
16. MacGregor S, Sabbaghra A. Assessment of Gestational Age by Ultrasound. Women’s med [Internet] 2008.
17. Raymond EG, Tafari N, Troendle JF, Clemens JD. Development of a practical screening tool to identify preterm, low-birthweight neonates in Ethiopia. The Lancet 1994;344(8921):524-7.
18. Alexander GR, Allen MC. Conceptualization, measurement, and use of gestational age. I. Clinical and public health practice. J Perinatol 1995; 16(1):53-9.
19. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol 1996;87(2):163-8.
20. Kramer MS, McLean FH, Boyd ME, Usher RH. The validity of gestational age estimation by menstrual dating in term, preterm, and postterm gestations. JAMA 1988;260(22):3306-8.

http://mjiri.iums.ac.ir
21. Savitz DA, Terry JW, Dole N, Thorp JM, Siega-Riz AM, Herring AH. Comparison of pregnancy dating by last menstrual period, ultrasound scanning, and their combination. Am J Obstet Gynecol 2002;187(6):1660-6.

22. Kalish RB, Chervenak FA. Sonographic determination of gestational age. Ultrasound Rev Obstet Gynecol 2005;5(4):254-8.

23. Robinson HP, Chervenak FA, Isaacson GC SC. Gestational age determination: first trimester. Ultrasound in Obstetrics and Gynecology Boston: Little, Brown and Company 1993:295-304.

24. Beazley JM, Underhill RA. Fallacy of the fundal height. BMJ 1970;4(5732):404-6.

25. Doubilet PM, Benson CB. Improved prediction of gestational age in the late third trimester. J Ultrasound Med 1993;12(11):647-53.

26. Cowchock FS. Use of alpha-fetoprotein in prenatal diagnosis. Clin Obstet Gynecol 1976; 19(4):871-92.

27. David RJ. The quality and completeness of birthweight and gestational age data in computerized birth files. Am J Public Health 1980;70(9):964-73.

28. Platt RW, Abrahamowicz M, Kramer MS, Joseph KS, Mery L, Blondel B, et al. Detecting and eliminating erroneous gestational ages: a normal mixture model. Stat Med 2001;20(23):3491-503.

29. Zhang G, Schenker N, Parker J, Liao D. Identifying implausible gestational ages in preterm babies with Bayesian mixture models. Stat Med 2013;32(12):2097-113.

30. Oja H, Koiranen M, Rantakallio P. Fitting mixture models to birth weight data: a case study. Biometrics 1991;47(3):883-97.

31. Parker JD, Schenker N. Multiple imputation for national public-use datasets and its possible application for gestational age in United States Natality files. Paediatr Perinat Epidemiol 2007;21(s2):97-105.

32. Tentoni S, Astolfi P, Pasquale A, Zonta LA. Birthweight by gestational age in preterm babies according to a Gaussian mixture model. BJOG 2004;111(1):31-7.

33. Ntzoufras I. Bayesian Modeling Using WinBUGS. New Jersey: John Wiley & Sons; 2009.448-449.

34. McLachlan G, Peel D. Finite Mixture Models. New York: John Wiley & Sons; 2000.175-220.

35. Joseph KS, Kramer MS, Allen AC, Mery LS, Platt RW, Wen SW. Implausible birth weight for gestational age. Am J Epidemiol 2001;153(2):110-3.

36. Wilcox AJ, Russell TL. Birthweight and perinatal mortality: I. On the frequency distribution of birthweight. Int J Epidemiol 1983;12(3):314-8.