INTRODUÇÃO

A coluna vertebral humana apresenta alta complexidade biomecânica, permitindo o bipedalismo e resultando no desenvolvimento das curvaturas da coluna vertebral com formato em S (1). A relação entre a pelve e a coluna é efeito direto desse bipedalismo. Assumir a postura vertical reduzida na ampliação e na verticalização da pelve, levou a surgimento das curvaturas sagitais da coluna (lordose cervical, cifose torácica e lordose lombar), bem como modificações nos tecidos que estabilizam a coluna (2).

A deformidade da coluna vertebral no plano sagital tem sido considerada uma das principais causas de incapacidade, com significativo impacto na saúde, e repercutida por alguns autores como equivalente a doenças como câncer, diabetes e doenças cardíacas (3–7). A medida que a população ocidental envelheceu, a deformidade da coluna vertebral adulta tornou-se mais prevalente, com taxas estimadas de até 60% na população idosa dos EUA (8). O entendimento do equilíbrio sagital ganhou maior importância na última década, havendo evidências de que o desequilíbrio se correlaciona diretamente com incapacidade e dor (3).

Introduzido por volta de 1985, o conceito de equilíbrio sagital tem sido amplamente utilizado na avaliação e no manejo de distúrbios da coluna vertebral, com crescente interesse no estudo de parâmetros espinopélvicos nas últimas três décadas (3–9). Continuando o trabalho de During et al. (10) e Duval-Beaupère et al. (11), vários autores destacaram a importância do equilíbrio sagital nas doenças da coluna vertebral (12,13). Entre eles, Roussouly et al. desempenharam papel fundamental na promoção...
do conceito, criando uma classificação da população assintomática baseada em parâmetros espinopélvicos. Outros estudos realizados em pacientes assintomáticos revelaram correlações entre os parâmetros espinopélvicos e as curvaturas sagitais da coluna vertebral. O estudo de Glassman et al. tornou-se a referência clássica que estabeleceu o eixo vertical sagital como a medida primária da deformidade sagital.

O presente artigo tem como objetivo fornecer uma revisão da literatura dos parâmetros espinopélvicos mais relevantes na prática clínica e descrever os mecanismos compensatórios.

TÉCNICA DO EXAME

Para avaliação radiográfica do plano sagital é necessária aquisição de incidência em perfil panorâmica da coluna vertebral que permita avaliação desde a transição cranio-vertebral-região cervical até as cabeças femorais, que devem estar necessariamente incluídas no campo de visão e de contornos visíveis. Há diferentes formas de posicionar o paciente para a radiografia panorâmica da coluna vertebral. Com base no estudo de Marks et al., o paciente deve ser posicionado em pé, com os membros superiores apoiados em um suporte, os ombros apoiados em 30° de flexão e os cotovelos ligeiramente fletidos (Figura 1). Esse posicionamento é o mais comparável a uma posição funcional ortostática com os braços ao lado do corpo, sem alterar significativamente o alinhamento sagital.

PARÂMETROS ESPINOPÉLVICOS

Parâmetros pélvicos

Versão pélvica

A versão pélvica corresponde ao ângulo formado entre uma linha vertical que se origina no centro das cabeças femorais e uma linha que parte do centro das cabeças femorais para o ponto médio do plató vertebral superior de S1 (Figura 2). Em termos simples, esse ângulo descreve a rotação da pelve em torno das cabeças femorais. Varia entre 5° e 30°, tendo como média 12°. É importante ressaltar que na maioria dos casos as duas cabeças femorais não se apresentam sobrepostas perfeitamente nos exames de radiografia simples. Deve-se, portanto, nesses casos, utilizar o centro geométrico das cabeças femorais, que corresponde ao ponto médio da linha que conecta os centros das duas cabeças femorais. Lafage et al. demons-traram que o aumento da versão pélvica se correlacionou com piora da qualidade de vida e da saúde.

Inclinação sacral

A inclinação sacral corresponde ao ângulo formado entre o plató vertebral superior de S1 e a linha horizontal (Figura 3). Varia entre 20° e 65°, tendo como média 40°. Apresenta correlação direta com a lordose lombar.

Incidência pélvica

A incidência pélvica corresponde ao ângulo formado pela perpendicular ao plató superior de S1 e a linha que conecta o ponto médio deste com o centro das cabeças femorais (Figura 4). Este é um parâmetro morfológico que independe da orientação espacial da pelve, considerado...
específico para cada indivíduo\(^{(5)}\). O valor da incidência pélvica cresce progressivamente durante a adolescência e torna-se constante na fase adulta. Está diretamente relacionado ao valor da lordose lombar e varia entre 34° e 84°, tendo como média 52\(^{(5,16,17)}\). Existe uma relação geométrica entre esses parâmetros: incidência pélvica = versão pélvica + inclinação sacral. É importante compreender que a incidência pélvica é um parâmetro descritor da morfologia pélvica e não da sua orientação, portanto, seu valor angular não é afetado por mudanças posturais. Em contraste, a versão pélvica e a inclinação sacral são variáveis e úteis para caracterizar a orientação espacial da pelve. Uma vez que a incidência pélvica representa a ação conjunta das variáveis da inclinação sacral e da versão pélvica, ela se relaciona à capacidade específica que cada indivíduo terá de compensar desequilíbrios sagitais. Desse modo, uma incidência pélvica alta associada com inclinação sacral alta e versão pélvica baixa indica boa capacidade de compensação espinopélvica. Já uma incidência pélvica baixa indica pouca capacidade de compensação espinopélvica.

A rotação da bacia (mudança na versão pélvica) ocasiona movimentos conjugados de rotação e translação de S1. Esses deslocamentos resultam em mudanças na inclinação sacral, bem como modificam a posição relativa da junção lombossacral em relação aos quadris (Figura 5). Assim, o aumento da versão pélvica (extensão dos quadris)
irá transladar posteriormente e diminuir a inclinação sacral, devido à verticalização de S1. Ao contrário, a diminuição da versão pélvica (flexão dos quadris) irá transladar anteriormente e aumentar a inclinação sacral, devido à horizontalização de S1 (17–20).

Parâmetros vertebrais

Os parâmetros vertebrais mais utilizados são a cifose torácica, a lordose lombar, o eixo vertical sagital, a diferença entre a incidência pélvica e lordose lombar (IP–LL), o ângulo T1 pélvico, a versão global, o ângulo espinopélvico e o ângulo espinossacral.

Cifose torácica

A cifose torácica é a medida do ângulo de Cobb do platô inferior de T12 até o platô superior de T1 (21). Entretanto, o posicionamento do ombro nas radiografias pode sobrepôr a imagem e dificultar a localização de T1. Para evitar este problema, alguns autores sugerem a utilização do platô superior de T4 para mensuração do ângulo (22). A cifose torácica entre T4 e T12, pelo método de Cobb, varia de 20° a 50° em indivíduos normais (23) (Figura 6A).

Lordose lombar

A lordose lombar é a medida do ângulo de Cobb do platô superior de S1 até o platô superior de L1 (6,24,25) (Figura 6B). Apresenta variação normal de 30° a 79° (18,19,26). Dois estudos recentes utilizaram cálculos estatísticos para prever a lordose lombar ideal usando fórmulas baseadas na incidência pélvica. Legaye et al. (27), com análise de regressão multilinear, propuseram uma fórmula para a previsão da lordose lombar ideal: lordose lombar = –[(incidência pélvica × 0,5481 + 12,7) × 1,087 + 21,61]. Já Schwab et al. propuseram uma abordagem mais simples, ao estimar a lordose lombar ideal com base em uma população adulta assintomática (75 indivíduos; idade média, 48 anos ± 18): lordose lombar = incidência pélvica + 9° (± 9) (22).

Eixo vertical sagital

O eixo vertical sagital é a medida da distância horizontal entre a linha de prumo de C7 e a linha vertical que passa pelo ponto posterossuperior de S1 (Figura 7). Serve para documentar a localização da cabeça em relação ao centro de gravidade (desvio de C7 em relação ao promontório sacral). Jackson et al. relataram valores em adultos assintomáticos com um desvio do eixo vertical sagital médio de 0,5 cm (± 2,5 cm) (18). Glassman et al. mostraram que entre 352 pacientes com alinhamento sagital positivo o aumento do eixo vertical sagital correlacionou-se com a dor e piores escores de saúde e qualidade de vida (3).

IP–LL

A IP–LL é comumente usada como parâmetro descriptor do alinhamento da coluna vertebral (6,18). Schwab et al.

Figura 6. Representação esquemática do ângulo da cifose torácica (CT), que corresponde à medida do ângulo de Cobb entre o platô inferior de T12 e o platô superior de T4 (A), e do ângulo da lordose lombar (LL), que corresponde à medida do ângulo de Cobb entre platô superior de S1 e o platô superior de L1 (B).

Figura 7. Representação esquemática do eixo vertical sagital (EVS), que corresponde à distância horizontal entre a linha de prumo de C7 e a linha vertical que passa pelo ponto posterior do platô vertebral superior de S1.
demonstraram que a IP–LL se correlacionou significativa-mente com a versão pélvica ($r = 0,844; \ p < 0,001$) e o eixo vertical sagital ($r = 0,685; \ p < 0,001$). Foi sugerido que um valor de IP–LL inferior a 10º indicaria um mal alinhamento (28). À medida que a lordose lombar deve se adaptar à morfologia pélvica (avaliada por meio da incidência pélvica), uma falta de correspondência excessiva entre os dois valores representaria uma condição em que o paciente não conseguiu encontrar uma organização espinopélvica de acordo com sua anatomia pélvica. A IP–LL demonstrou correlação com questionários relacionados a saúde e qualidade de vida, ao mesmo tempo que provou ser uma ferramenta valiosa no planejamento intraoperatorário da correção da deformidade com dorso plano (4,6,7,29), sendo utilizada como base para determinar a correção alvo na cirurgia de tratamento do mal alinhamento sagital.

Ângulo T1 pélvico e versão global

Recentemente, o ângulo T1 pélvico e a versão global foram propostos como novos parâmetros espinopélvicos que, simultaneamente, representam a inclinação da coluna e a retroversão pélvica. Esses parâmetros não se alteram por compensação postural (4,10)

O ângulo T1 pélvico é o ângulo obtido pela linha formada entre o centro geométrico das cabeças femorais ao centro do corpo vertebral T1 e a linha do centro geométrico das cabeças femorais ao centro do platô vertebral superior de S1 (Figura 8). Corresponde à soma da inclinação T1 espinopélvica com a versão pélvica. Protopsaltis et al. (4) demonstraram correlação do ângulo T1 pélvico com o eixo vertical sagital ($r = 0,837$), a IP–LL ($r = 0,889$), a versão pélvica (0,933) e questionários sobre saúde e qualidade de vida em pacientes com deformidade espinhal adulta e sugeriram seu uso no planejamento pré-operatório desses pacientes, com ângulo T1 pélvico alvo < 14º.

A versão global é definida como o ângulo entre a linha formada do centro do platô superior de S1 ao centro do corpo vertebral C7 e a linha que conecta o centro geométrico das cabeças femorais ao centro do platô vertebral superior de S1 (Figura 9).

O ângulo T1 pélvico e a versão global combinam a an-terversão do tronco e a retroversão pélvica como um parâmetro para avaliar a deformidade espinhal global. Recentemente, Banno et al. (31) descreveram valores de referência para a versão global em voluntários idosos. Nesse estudo, a versão global parece ser relacionada à idade (encontrado valor médio de 15,4º ± 8,7º para pacientes com idade entre 50 e 59 anos e de 30,8º ± 14,8º após 80 anos) e sexo (valor médio de 26º para mulheres e 18,8º para homens), com alta correlação com a versão pélvica ($r = 0,914$) e o eixo vertical sagital ($r = 0,751$). Um valor de corte de versão global de 33,7º foi proposto pelos autores, para um índice de incapacidade de Oswestry > 40 (31). Esses resultados enfatizam o fato de que a interpretação dos valores de versão

![Figura 8. Representação esquemática do ângulo T1 pélvico (ATP), que corresponde ao ângulo obtido pela linha formada entre o centro geométrico das cabeças femorais ao centro do corpo vertebral T1 e a linha do centro geométrico das cabeças femorais ao centro do platô vertebral superior de S1.](image1)

![Figura 9. Representação esquemática da versão global (VG), que corresponde ao ângulo entre a linha formada do centro do platô superior de S1 ao centro do corpo vertebral C7 e a linha do centro geométrico das cabeças femorais ao centro do platô vertebral superior de S1.](image2)
global, como outros parâmetros sagitais, deve ser feita de acordo com o contexto geral dos pacientes com deformidades da coluna vertebral.

Ângulo espinopélvico

O ângulo espinopélvico é o ângulo formado entre a linha que une o centro de C7 ao centro do platô vertebral superior de S1 e a linha que une o centro do platô vertebral superior de S1 ao centro geométrico das cabeças femorais (Figura 10). Este ângulo avalia o alinhamento espinopélvico global levando em consideração a retroversão da pelve e anteverssão do tronco.

Ângulo espinossacral

O ângulo espinossacral (Figura 11) é o ângulo formado entre a linha que passa do centro de C7 ao centro do platô vertebral superior de S1 e a superfície da placa terminal sacral e foi concebido para quantificar a cifose global de toda a coluna vertebral. O valor médio do ângulo espinossacral em indivíduos assintomáticos é de 130,4° ± 8,1° (32). Em uma população saudável, este ângulo se correlaciona fortemente com a inclinação sacral (r = 0,914; p < 0,001) e a lordose lombar (r = 0,889; p < 0,001) (19). Estudos têm demonstrado que o ângulo espinossacral é diminuído na presença de doenças como cifose degenerativa (33), artrite reumatoide (34) e lombalgia discogênica (35). Além disso, o ângulo espinossacral se associa à presença de dor e alterações funcionais (34).

Relações entre os parâmetros espinopélvicos e a classificação de Roussouly

O reconhecimento da relação entre a morfologia pélvica, representada pela incidência pélvica e a lordose lombar, melhorou o entendimento do mal alinhamento da coluna vertebral no plano sagital (5). O valor da incidência pélvica é uma característica anatômica individual e corresponde à “espressura” da pelve. Mais de duas décadas atrás, o grupo de Duval-Beaupère postulou que uma incidência pélvica alta está associada a uma inclinação sacral grande e uma lordose lombar pronunciada, e uma incidência pélvica baixa está associada a uma inclinação sacral menor e a uma lordose lombar sutil, levando a um conceito básico de “equilíbrio econômico” em pé (5,11,36).

Alicerçados no conceito de que a forma e a orientação espacial da pelve determinam a organização da coluna vertebral e suas curvaturas, Roussouly et al. criaram uma classificação na população assintomática (14) com base na observação da existência de forte correlação entre lordose lombar e inclinação sacral. Eles descreveram quatro padrões de variação do alinhamento sagital (Figura 12) pela observação de que existem perfis sagitais característicos que ocorrem na dependência da orientação espacial da
pelve. O tipo postural 1 é caracterizado pela presença de inclinação sacral inferior a 35° e incidência pélvica baixa. O arco inferior da lordose é mínimo, com curta lordose lombar e longa cifose toracolombar. O tipo postural 2 é caracterizado pela presença de inclinação sacral inferior a 35°, incidência pélvica baixa, com o arco inferior da lordose relativamente plano. Toda a coluna é relativamente hipolordótica e hipocifótica. O tipo postural 3 é caracterizado por uma inclinação sacral entre 35° e 45°. O arco inferior da lordose se torna mais proeminente. A coluna é bem equilibrada com cifose torácica e lordose lombar harmoniosas. O tipo postural 4 é caracterizado por inclinação sacral superior a 45°, o que está associado a incidência pélvica alta. O arco inferior da lordose é proeminente.

Mecanismos compensatórios

Na população normal não existe um padrão único de equilíbrio sagital\(^{20}\). É essencial ter congruência ótima entre a pelve e a coluna vertebral para alcançar uma postura econômica com o eixo de gravidade numa posição fisiológica\(^{20,37}\). O objetivo final do equilíbrio espinopélvico é manter o centro de gravidade corporal próximo ao centro dos quadris\(^{19}\). A interação existente entre a coluna e a pelve é um importante ponto-chave na análise das deformidades da coluna vertebral. Esta interação é modulada ainda mais por mecanismos compensatórios do paciente, para manter o alinhamento permanente da posição horizontal e o olhar horizontal\(^{36,38,39}\). O “gatilho” por trás do desequilíbrio sagital é basicamente um desajuste entre a incidência pélvica e a lordose lombar, seja por degeneração discal, trauma ou fusão iatrogênica. A redução da lordose lombar resulta na inclinação anterior do tronco, caracterizada por um aumento do eixo vertical sagital, dando origem a uma postura encurvada e uma inclinação para baixo da cabeça, com a consequente incapacidade de ver acima do horizonte. Quando este desequilíbrio ocorre, mecanismos compensatórios estão envolvidos para restaurar um equilíbrio compensado. A compensação começa no nível da coluna vertebral com modificações das curvaturas, com redução da cifose e hiperextensão lombar. Se esta compensação não for suficiente, o paciente inclina a pelve para trás e estende os quadris, aumentando o valor da versão pélvica e reduzindo o eixo vertical sagital. Além disso, alguns segmentos lombares podem apresentar hiperextensão ou retrolistese, aumentando assim o risco de estenose do canal vertebral. Por fim, quando todos os mecanismos

Figura 12. Tipos posturais de acordo com a classificação de Roussouly.
comensalizadores são superados, as extremidades inferiores podem ajudar a restaurar um olhar horizontal pela flexão dos joelhos\(^ {38,40}\). A flexão dos joelhos afeta a magnitude do eixo vertical sagital ao permitir uma maior retroversão pélvica para retraer a cabeça sobre os quadris e o tornozeiros, diminuindo efetivamente o eixo vertical sagital\(^ {36,38,39}\).

DISCUSSÃO

Estudos confirmaram que os pacientes com doença degenerativa lombar são caracterizados por desequilíbrio sagital anterior, perda da lordose lombar e aumento da versão pélvica\(^ {41,42}\). O eixo vertical sagital e a versão pélvica são parâmetros espinopélvicos que refletem a gravidade da deformidade da coluna vertebral adulta, no entanto, existem alguns pontos a serem considerados. Primeiramente, a medida do eixo vertical sagital pode ser diminuída por mecanismos de compensação postural, como a retroversão pélvica. Portanto, uma versão pélvica alta pode “esconder” uma deformidade espinhal maior quando apenas o eixo vertical sagital é considerado. O eixo vertical sagital e a versão pélvica estão inter-relacionados no sentido de que a magnitude de um afeta o outro. Lafage et al. sugeriram que a versão pélvica deve ser considerada em conjunto com o eixo vertical sagital para identificar pacientes com deformidade da coluna vertebral no plano sagital sem um alto eixo vertical sagital devido à compensação pélvica\(^ {6}\). Vale ressaltar que um plano de realinhamento bem sucedido não deve apenas restaurar o relacionamento espinopélvico, mas também “zerar” os mecanismos compensatórios, que são drenadores de energia e afetam a qualidade de vida do paciente. O eixo vertical sagital do paciente, portanto, não deve ser analisado isoladamente na avaliação do plano sagital. Em contraste, o ângulo T1 pélvico e a versão global têm muitas vantagens para avaliar o alinhamento global, uma vez que consideram a retroversão pélvica e a anteverseção do tronco e não são afetados por calibrações posturais ou radiográficas\(^ {4,38}\). Além disso, correlacionam-se fortemente com o eixo vertical sagital, a versão pélvica e a IP–LL\(^ {31}\). Com base nesses conceitos, sugerimos a utilização dos parâmetros versão global, ângulo espinopélvico e ângulo T1 pélvico na prática clínica, por serem parâmetros menos propensos a variações posturais e qualidade de vida relacionada à saúde por Lafage et al.\(^ {6}\). Teoricamente, indivíduos com incidência pélvica baixa teriam uma maior abertura acetabular anterior com os quadris em maior extensão e, como resultado, uma capacidade menor para se adaptar ao mal alinhamento sagital\(^ {43}\). Lafage et al.\(^ {6}\) demonstraram que, ao categorizar os pacientes com deformidade em quatro grupos por versão pélvica alta e baixa e eixo vertical sagital alto e baixo, o grupo com o pior índice de incapacidade de Oswestry apresentou eixo vertical sagital alto e incidência pélvica baixa, sugerindo que pacientes com deformidades maiores sem a capacidade de compensar com retroversão pélvica teriam níveis mais elevados de incapacidade.

A análise biomecânica da organização espinopélvica categorizada por tipos de Roussouly tem sido colocada como hipoteticamente capaz de influenciar a evolução degenerativa da coluna vertebral\(^ {21}\). Roussouly et al. sugeriram que os pacientes com doença discal sintomática são mais comumente classificados como tipo 1 ou tipo 2, enquanto a estenose do canal vertebral é geralmente associada ao tipo 4, sendo o tipo 3 raramente visto em pacientes com transtornos da coluna vertebral\(^ {14}\).

Chaléat-Valayer et al. encontraram uma maior proporção de pacientes com dor lombar crônica com inclinação sacral, incidência pélvica e lordose lombar baixas, comparados aos indivíduos controles, sugerindo a relação entre esse padrão específico (tipo 2 de Roussouly) e a presença de dor lombar\(^ {44}\). Menezes-Reis et al.\(^ {45}\) identificaram que o tipo 2 de Roussouly se associou com a presença de degeneração discoal no segmento L4-L5 em indivíduos assintomáticos.

Mais recentemente, foi realizada a primeira descrição do alinhamento sagital da coluna vertebral com doença degenerativa\(^ {46}\), identificando 11 tipos. A nova classificação proposta inclui os quatro tipos clássicos de Roussouly e outros sete tipos encontrados em colunas degeneradas a saber: tipos 3 e 4 antevertebrados, falso tipo 2, falso tipo 2 com cifose torácica, falso tipo 3 e o grupo cifótico (lombar e global). Tal estudo propôs uma explicação possível para a evolução dos subtipos clássicos vistos em indivíduos saudáveis para as formas patológicas.

Investigação em indivíduos assintomáticos mostrou correlação entre parâmetros espinopélvicos e o volume da musculatura paravertebral, mas não mostrou correlação com a infiltração adiposa da musculatura\(^ {47}\). O volume do músculo posas apresentou correlação positiva com a magnitude da cifose torácica, da lordose lombar e com o eixo vertical sagital\(^ {47}\).

Estudos anteriores mostraram que pacientes com dor lombar apresentavam diminuição da inclinação sacral, ângulo espinopélvico = 180 – versão global. Versão global e ângulo espinopélvico são de fato ângulos suplementares.

Os mecanismos compensatórios da pelve podem ser quantificados pela versão pélvica, um ângulo proposto por Duval-Beaupère et al.\(^ {11}\) e posteriormente correlacionado com escores de qualidade de vida relacionados à saúde por Lafage et al.\(^ {6}\). Teoricamente, indivíduos com incidência pélvica baixa teriam uma maior abertura acetabular anterior com os quadris em maior extensão e, como resultado, uma capacidade menor para se adaptar ao mal alinhamento sagital\(^ {43}\). Lafage et al.\(^ {6}\) demonstraram que, ao categorizar os pacientes com deformidade em quatro grupos por versão pélvica alta e baixa e eixo vertical sagital alto e baixo, o grupo com o pior índice de incapacidade de Oswestry apresentou eixo vertical sagital alto e incidência pélvica baixa, sugerindo que pacientes com deformidades maiores sem a capacidade de compensar com retroversão pélvica teriam níveis mais elevados de incapacidade.

A análise biomecânica da organização espinopélvica categorizada por tipos de Roussouly tem sido colocada como hipoteticamente capaz de influenciar a evolução degenerativa da coluna vertebral\(^ {21}\). Roussouly et al. sugeriram que os pacientes com doença discal sintomática são mais comumente classificados como tipo 1 ou tipo 2, enquanto a estenose do canal vertebral é geralmente associada ao tipo 4, sendo o tipo 3 raramente visto em pacientes com transtornos da coluna vertebral\(^ {14}\).

Chaléat-Valayer et al. encontraram uma maior proporção de pacientes com dor lombar crônica com inclinação sacral, incidência pélvica e lordose lombar baixas, comparados aos indivíduos controles, sugerindo a relação entre esse padrão específico (tipo 2 de Roussouly) e a presença de dor lombar\(^ {44}\). Menezes-Reis et al.\(^ {45}\) identificaram que o tipo 2 de Roussouly se associou com a presença de degeneração discoal no segmento L4-L5 em indivíduos assintomáticos.

Mais recentemente, foi realizada a primeira descrição do alinhamento sagital da coluna vertebral com doença degenerativa\(^ {46}\), identificando 11 tipos. A nova classificação proposta inclui os quatro tipos clássicos de Roussouly e outros sete tipos encontrados em colunas degeneradas a saber: tipos 3 e 4 antevertebrados, falso tipo 2, falso tipo 2 com cifose torácica, falso tipo 3 e o grupo cifótico (lombar e global). Tal estudo propôs uma explicação possível para a evolução dos subtipos clássicos vistos em indivíduos saudáveis para as formas patológicas.

Investigação em indivíduos assintomáticos mostrou correlação entre parâmetros espinopélvicos e o volume da musculatura paravertebral, mas não mostrou correlação com a infiltração adiposa da musculatura\(^ {47}\). O volume do músculo posas apresentou correlação positiva com a magnitude da cifose torácica, da lordose lombar e com o eixo vertical sagital\(^ {47}\).

Estudos anteriores mostraram que pacientes com dor lombar apresentavam diminuição da inclinação sacral,
aumento da versão pélvica e redução da lordose lombar. Barrey et al. avaliaram 57 pacientes com degeneração discal e/ou hérnia discal antes da realização de arthrodese e observaram incidências pélvicas semelhantes, porém, redução da inclinação sacral, lordose lombar e cifose torácica e aumento da versão pélvica, em comparação com 154 controles. Rajnics et al. também observaram diferenças significativas entre os parâmetros inclinação sacral, versão pélvica e lordose lombar em 50 pacientes com dor lombar e hérnia de disco, em comparação com 30 indivíduos saudáveis, e sugeriram que a inclinação sacral reduzida, a versão pélvica aumentada e a lordose lombar reduzida levaram a um aumento das forças de compressão aplicadas nos elementos anteriores (corpos vertebrais e discos intervertebrais), contribuindo para a degeneração discal.

O sistema de imagem EOS (Biospace Med; Paris, França) foi recentemente introduzido e permite a aquisição simultânea de projeções planares de corpo inteiro (antero-posterior e perfil) com uma dose de radiação significativamente inferior ao de uma única incidência ra-diográfica, proporcionando uma avaliação completa da deformidade de coluna vertebral do paciente e revelando quaisquer mecanismos compensatórios recrutados pelo paciente, entretanto, até o momento, este recurso é pouco disponível.

A mensuração de múltiplos parâmetros espinopélvicos oferece uma visão mais completa da relação entre a deformidade e sua compensação. No entanto, a avaliação com múltiplos parâmetros pode ser complicada e exigir tempo e experiência. A utilização de um parâmetro que combine a anteverão do tronco e a versão pélvica tende a ser uma boa opção para o screening de possíveis deformidades do alinhamento sagital. Estudos futuros comparando os parâmetros versão global, ângulo espinopélvico e ângulo T1 pélvico devem ser encorajados.

CONCLUSÃO

Apresentamos uma revisão dos parâmetros espinopélvicos mais relevantes na prática clínica. Uma melhor compreensão da inter-relação entre a coluna vertebral e a pelve e os mecanismos compensatórios que estão envolvidos na presença de deformidades permitem um diagnóstico adequado e uma abordagem mais sofisticada no manejo desses pacientes.

REFERÊNCIAS

1. Skoyles JR. Human balance, the evolution of bipedalism and dys-equilibrium syndrome. Med Hypotheses. 2006;66:1060–8.
2. Le Huer JC, Saddiki R, Franke J, et al. Equilibrium of the human body and the gravity line: the basics. Eur Spine J. 2011;20 Suppl 5: 558–63.
3. Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine (Phil Pa 1976). 2005;30:2024–9.
4. Protopsaltis T, Schwab F, Bronsard N, et al. The T1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am. 2014;96:1631–40.
5. Legaye J, Duval-Beaupère G, Hequet J, et al. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103.
6. Lafage V, Schwab F, Patel A, et al. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phil Pa 1976). 2009;34:E599–606.
7. Terran J, Schwab F, Shaffrey CI, et al. The SRS-Schwab adult spinal deformity classification: assessment and clinical correlations based on a prospective operative and nonoperative cohort. Neurosurgery. 2013;73:539–68.
8. Schwab F, Dubey A, Gamez L, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phil Pa 1976). 2005;30:1082–5.
9. Barrey C, Roussouly P, Le Huer JC, et al. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J. 2013;22 Suppl 6:S834–41.
10. During J, Goudsouz H, Keessen W, et al. Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine (Phil Pa 1976). 1985;10:837–7.
11. Duval-Beaupère G, Schmidt C, Cosson P. A Barycentric study of the sagittal shape of spine and pelvic: the conditions required for an economic standing position. Ann Biomed Eng. 1992;20:451–62.
12. Le Huer JC, Faundez A, Dominguez D, et al. Evidence showing the relationship between sagittal balance and clinical outcomes in surgical treatment of degenerative spinal diseases: a literature review. Int Orthop. 2015;39:87–95.
13. Mehta VA, Amin A, Omeis I, et al. Implications of spinopelvic alignment for the spine surgeon. Neurosurgery. 2015;76 Suppl 1:S42–56.
14. Roussouly P, Glogolgy S, Berthonnaud E, et al. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phil Pa 1976). 2005;30:346–53.
15. Marks M, Stanford C, Newton P. Which lateral radiographic positioning technique provides the most reliable and functional representation of a patient’s sagittal balance? Spine (Phil Pa 1976). 2009;34:949–54.
16. Van Roeyen BJ, Toussaint HM, Kingma I, et al. Accuracy of the sagittal vertical axis in a standing lateral radiograph as a measurement of balance in spinal deformities. Eur Spine J. 1998;7:408–12.
17. Schwab F, Patel A, Ungar B, et al. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phil Pa 1976). 2010;35:2224–31.
18. Jackson RP, Kanemura T, Kawakami N, et al. Lumbo-pelvic lordosis and pelvic balance on repeated standing lateral radiographs of adult volunteers and untreated patients with constant low back pain. Spine (Phil Pa 1976). 2000;25:575–86.
19. Roussouly P, Glogolgy S, Nosedo O, et al. The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phil Pa 1976). 2006;31:E320–5.
20. Kohayashi T, Atsuya Y, Matsuno T, et al. A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine (Phil Pa 1976). 2004;29:671–6.
21. Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of the spinopelvic organization and adaptation in pathology. Eur Spine J. 2011;20 Suppl 5:609–18.
22. Schwab F, Lafage V, Patel A, et al. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phil Pa 1976). 2009;34:1828–33.
23. Bernhardt M, Bridwell KH. Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoraco-lumbar junction. Spine (Phil Pa 1976). 1989;14:717–21.
24. Iyer S, Sheha E, Fu MC, et al. Sagittal spinal alignment in adult spinal deformity: an overview of current concepts and a critical analysis review. JBJS Rev. 2018;6:e2.

25. Lafage V, Schwab F, Skalli W, et al. Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976). 2008;33:1572–8.

26. Schwab F, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976). 2006;31:E959–67.

27. Legaye J, Duval-Beaupère G. Sagittal plane alignment of the spine and gravity: a radiological and clinical evaluation. Acta Orthop Belg. 2005;71:213–20.

28. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976). 2013;38:E803–12.

29. Lazennec JY, Ramaré S, Arafati N, et al. Sagittal alignment in lumbar sacral fusion: relations between radiological parameters and pain. Eur Spine J. 2000;9:47–55.

30. Obeid I, Boissière L, Yilgor C, et al. Global tilt: a single parameter incorporating spinal and pelvic sagittal parameters and least affected by patient positioning. Eur Spine J. 2016;25:3644–9.

31. Banno T, Togawa D, Arima H, et al. The cohort study for the determination of reference values for spinopelvic parameters (T1 pelvic angle and global tilt) in elderly volunteers. Eur Spine J. 2016;25:3687–93.

32. Mac-Thiong JM, Roussouly P, Berthonnaud E, et al. Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine (Phila Pa 1976). 2010;35:E1193–8.

33. Son SM, Shin JK, Goh TS, et al. Predictive findings of the presence of stooping in patients with lumbar degenerative kyphosis by upright whole spine lateral radiography. Spine (Phila Pa 1976). 2018;43:571–7.

34. Lee HS, Lee JS, Shin JK, et al. Correlations between sagittal spinal balance and quality of life in rheumatoid arthritis. Clin Spine Surg. 2017;30:E412–E417.

35. Pellet N, Aunoble S, Meyrat R, et al. Sagittal balance parameters influence indications for lumbar disc arthroplasty or ALIF. Eur Spine J. 2011;20 Suppl 5:647–62.

36. Morvan G, Mathieu P, Vuillemin V, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J. 2011;20 Suppl 5:602–8.

37. Barrey C, Jund J, Noseda O, et al. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J. 2007;16:1459–67.

38. Obeid I, Hauger O, Aunoble S, et al. Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J. 2011;20 Suppl 5:681–5.

39. Barrey C, Roussouly P, Perrin G, et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J. 2011;20 Suppl 5:626–33.

40. Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010;19:1824–36.

41. Potter BK, Lenke LG, Kuklo TR. Prevention and management of iatrogenic flatback deformity. J Bone Joint Surg Am. 2004;86:1793–808.

42. Mardare M, Oprea M, Popa I, et al. Sagittal balance parameters correlate with spinal conformational type and MRI changes in lumbar degenerative disc disease: results of a retrospective study. Eur J Orthop Surg Traumatol. 2016;26:735–43.

43. Lazennec JY, Riwan A, Gravez F, et al. Hip spine relationships: application to total hip arthroplasty. Hip Int. 2007;17 Suppl 5:S91–104.

44. Chaléat-Valayer E, Mac-Thiong JM, Paquet J, et al. Sagittal spinopelvic alignment in chronic low back pain. Eur Spine J. 2011;20 Suppl 5:634–40.

45. Menezes-Reis R, Bonugli GP, Dalto VF, et al. Association between lumbar spine sagittal alignment and L4-L5 disc degeneration among asymptomatic young adults. Spine (Phila Pa 1976). 2016;41:E1081–7.

46. Sebaaly A, Grobost P, Mallam L, et al. Description of the sagittal alignment of the degenerative human spine. Eur Spine J. 2018;27:489–96.

47. Menezes-Reis R, Bonugli GP, Salmon CEG, et al. Relationship of spinal alignment with muscular volume and fat infiltration of lumbar trunk muscles. PLoS One. 2018;13:e0200198.

48. Jackson BP, McManus AC. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine (Phila Pa 1976). 1994;19:1611–8.

49. Rajnics P, Templier A, Skalli W, et al. The importance of spinopelvic parameters and foot position. Spine (Phila Pa 1976). 2006;31:E959–67.

50. Dubousset J, Charpak G, Dorion I, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–300.