Enzyme Architecture: Deconstruction of the Enzyme-Activating Phosphodianion Interactions of Orotidine 5′-Monophosphate Decarboxylase

Lawrence M. Goldman,† Tina L. Amyes,† Bogdana Goryanova,† John A. Gerlt,‡ and John P. Richard*†

1Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
2Departments of Biochemistry and Chemistry, University of Illinois, Urbana, Illinois 61801, United States

ABSTRACT: The mechanism for activation of orotidine 5′-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k_{cat} and K_m for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition state for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in $(k_{cat})_{obs}$ for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in $(K_m)_{obs}$.

INTRODUCTION

The underlying cause for enzymatic catalysis is stabilization of the transition state by interactions with the protein catalyst. Interactions between protein catalysts and a nonreacting substrate phosphodianion are utilized to provide ca. 12 kcal/mol stabilization of transition states of a diverse set of enzymatic reactions, including carbon deprotonation (triosephosphate isomerase and orotidine 5′-monophosphate decarboxylase), hydride transfer (1-glycerol phosphate dehydrogenase), phosphoryl transfer (phosphoglucomutase), and a multistep reaction (1-deoxy-D-xylulose-5-phosphate reductoisomerase). This transition state stabilization is due to interactions expressed at the ground-state Michaelis complex, which favor tight substrate binding, and to the utilization of the phosphodianion binding energy to activate the enzyme for catalysis: the latter binding energy is only expressed at the Michaelis complex, resulting in a decrease in $(K_m)_{obs}$. Orotidine 5′-monophosphate decarboxylase (OMPDC) employs no metal ions or other cofactors, but yet effects an enormous stabilization of the transition state for the chemically very difficult decarboxylation of orotidine 5′-monophosphate (OMP) to give uridine 5′-monophosphate (UMP), by a stepwise mechanism through a UMP carbonan reaction intermediate (Scheme 1). OMPCDC provides a large 31 kcal/mol stabilization of the transition state for the decarboxylation of OMP, and binds this transition state with a much higher affinity than substrate OMP, whose ground-state complex with OMPDC is stabilized by only 8 kcal/mol.24

Binding interactions between OMPDC and the phosphodianion of OMP provide 12 of the 31 kcal/mol stabilization of the reaction transition state. These interactions do not simply anchor OMP to OMPDC, because the covalent connection between the phosphodianion and the pyrimidine ring is not needed to observe enzyme activation by dianions. This was shown by the estimated 57 000-fold increase in the rate of OMPDC-catalyzed decarboxylation of the truncated substrate 1-(β-D-erythrofuranosyl)orotic acid (EO, Scheme 2A) for a reaction activated by 1.0 M phosphite dianion (HPi). This corresponds to an 8 kcal/mol stabilization of the transition state for the decarboxylation reaction by the HPi, piece, two-thirds of the 12 kcal/mol intrinsic phosphodianion binding energy. The binding of HPi to OMPDC results in a 60 000-fold increase in the second-order rate constant for OMPDC-catalyzed decarboxylation of EO from $(k_{cat}/K_m)_{HPi} = 0.026$ M$^{-1}$ s$^{-1}$ to $(k_{cat}/K_m)_{HPi} = 1600$ M$^{-1}$ s$^{-1}$. This corresponds to a
60,000-fold higher affinity (eq 1 for Scheme 2B) of HPᵢ for binding to the transition state complex [E-EO]⁺ as compared to the free enzyme (Kᵢ). Binding interactions between OMPDC and HPᵢ also provide a large 6 kcal/mol stabilization of the transition state for deprotonation of the truncated substrate 1-(β-D-erythrofuranosyl)5-fluorouracil (FEU) in D₂O.⁴,²⁵

\[
\frac{(k_{\text{cat}}/K_{m})_{E \cdot HPi}}{(k_{\text{cat}}/K_{m})_{E}} = K_d
\]

The strong binding of 6-hydroxyuridine 5'-monophosphate (BMP) to OMPDC induces a protein conformational change (Figure 1).²⁶ This includes closure of the phosphodianion gripper loop (Pro202–Val220) and pyrimidine umbrella (Glu152–Thr165) over the inhibitor, which locks BMP in a protein cage.²⁷ Figure 2 shows interactions of the ligand phosphodianion with the amide side chain of Gln215, the phenol side chain of Tyr217, the guanidine side chain of Arg235, which sits on the protein surface adjacent to the gripper loop (Figure 1) and functions cooperatively with the loop side chains in activating OMPDC for catalysis,²⁸ and with backbone amides from Gly234 and Arg235. We are interested in understanding the role of flexible loops in enzyme catalysis,²⁹ and consider here the mechanism by which ionic and hydrogen-bonding interactions of side chains from the gripper loop, and Arg235, with the phosphodianion of OMP, or with HPᵢ, are utilized in stabilization of the transition state for OMPDC-catalyzed decarboxylation of OMP, deprotonation of UMP, and the corresponding reactions of the phosphodianion truncated substrates EO and FEU,⁴,²³,²⁵,²⁸–³⁴ respectively, at a site 10 Å distant from the gripper loop. The binding of HPᵢ to OMPDC is scarcely detectable, so that the dianion binding energy is not expressed at the OMPDC·HPᵢ complex, but rather provides strong stabilization of the transition state for OMPDC-catalyzed decarboxylation of truncated substrates (eq 1). We have proposed that most or all of the 8 kcal/mol binding energy of HPᵢ is utilized to drive an uphill change in enzyme conformation, which activates OMPDC for catalysis of decarboxylation.³⁰

We previously reported the effects of all single (Q215A, R235A, and Y217F), double (Q215A/Y217F, Q215A/R235A, R235A/Y217F), and triple (Q215A/R235A/Y217F) mutations of amino acid residues that interact with the phosphodianion of OMP (Figure 2), on the kinetic parameters for OMPDC-catalyzed reactions of the substrate pieces EO and HPᵢ.²⁸ Single mutations result in <3-fold decreases in \((k_{\text{cat}}/K_{m})_{E} \) (Scheme 1).
2B) for the catalyzed reaction of the truncated substrate EO, and large decreases in the third-order rate constant for enzyme activation by HP,28 This shows that interactions between OMPDC and HP, have the sole function of activating OMPDC for catalysis of decarboxylation of EO.

We report here the effect of these same mutations on the kinetic parameters \(k_{\text{cat}} \) and \(K_m \) for OMPDC-catalyzed decarboxylation of OMP. The activating nature of enzyme—phosphodiamine interactions for catalysis of decarboxylation of the physiological substrate OMP was not detected by standard methods of mechanistic analyses, including X-ray crystallographic analysis, but may be inferred from the results of our experiments using the substrate pieces EO and HP. We focus on a model that connects the easily quantified activation of OMPDC-catalyzed decarboxylation of a truncated substrate EO by phosphodi anion, with the cryptic activation of OMPDC-catalyzed decarboxylation of OMP by the substrate phosphodiamine. We report an unprecedented context dependence of the effect of these single, double, and triple mutations on \(k_{\text{cat}} \) and \(K_m \) for OMPDC-catalyzed decarboxylation of OMP, which provides compelling support for a model where the phosphodi anion binding interactions are utilized to drive an activating change in the conformation of OMPDC.

EXPERIMENTAL SECTION

Sodium phosphite (dibasic, pentahydrate), 3-(N-morpholino)-propanesulfonic acid (MOPS, ≥99.5%), and ammonium acetate (≥99%) were purchased from Fluka. Water was from a Milli-Q Academic purification system. All other chemicals were reagent grade or better, and were used without further purification. The trisodium salt of orotidine 5'-monophosphate (99%) was prepared by adaptation of published enzymatic methods,35 from orotate and phosphoribosylpyrophosphate.35 This synthesis gave OMP that contained small amounts of ammonium bicarbonate, which was removed as described in an earlier publication.35 Solution pH was determined at 25 °C using an Orion model 720A pH meter equipped with a radiometer pH/4006-9 combination electrode that was standardized at pH 7.00 and 1.00 at 25 °C. Stock solutions of OMP were prepared in water, and the concentration of OMP was determined from the absorbance at 267 nm using \(\varepsilon = 9430 \text{ M}^{-1} \text{ cm}^{-1} \) of a small aliquot diluted with 0.1 M HCl.36

Wild-Type and Mutant Forms of OMPDC. The plasmid pScODC-13b containing the gene encoding OMPDC from Saccharomyces cerevisiae with a N-terminal His6-tag was available from previous studies.31,33 In all cases, the protein sequence differs from the published sequence for wild-type yeast OMPDC by the following mutations: S2H,37 C155S,38 A160S, and N267D.37 This sequence is published sequence for wild-type yeast OMPDC by the following

Enzyme Assays. The decarboxylation of OMP was monitored spectrophotometrically by following the decrease in absorbance at 279, 290, 295, or 300 nm \(\Delta \varepsilon/\Delta t = -2400 \text{ M}^{-1} \text{ cm}^{-1} \), 279 nm; -1620 M cm^{-1}, 290 nm; -842 M s^{-1}, 295 nm; -344 M cm^{-1}, 300 nm). Care was taken to work at a wavelength where the initial absorbance for OMP is <2.0. The following wavelengths were monitored for reactions at different concentrations of OMP: [OMP] \(\leq 0.08 \text{ mM}, 279 \text{ nm}; [OMP] = 0.1–0.3 \text{ mM}, 290 \text{ nm}; [OMP] = 0.3–0.8 \text{ mM}, 295 \text{ nm}; [OMP] \geq 1 \text{ mM}, 300 \text{ nm}. Assays for OMPDC-catalyzed decarboxylation of OMP were conducted at 25 °C and pH 7.1 (30 mM MOPS) and at constant ionic strength, which was maintained with NaCl. The initial velocity \(v (\text{M}^{-1} \text{s}^{-1}) \) for OMPDC-catalyzed decarboxylation of OMP (0.05–2.5 mM), was determined by monitoring the decrease in absorbance at the chosen wavelength for the decarboxylation of 5–10% total OMP. Values of \(k_{\text{cat}} \) and \(K_m \) were obtained from the nonlinear least-squares fits of six or more values of \(v/([E]) \) (s^{-1}) to the Michaelis–Menten equation.

RESULTS

Figure 3 shows plots of \(v/([E]) \) against [OMP] for decarboxylation catalyzed by the Q215A/Y217F (Figure 3A) and Q215A/R235A (Figure 3B) mutants of OMPDC at 25 °C, pH 7.1 (30 mM MOPS) and at different ionic strengths (NaCl). (A) Q215A/Y217F OMPDC: (●) \(I = 0.105; (▲) I = 0.050. (B) Q215A/R235A: (●) \(I = 0.105; (▲) I = 0.050.

![Figure 3](image-url)
Table 1. Effect of Mutations of Phosphodianion Gripper Amino Acid Residues on the Kinetic Parameters for OMPDC-Catalyzed Decarboxylation of OMP

OMPDC	I	k_{cat} (s$^{-1}$)	K_m (M)	k_{cat}/K_m (M$^{-1}$ s$^{-1}$)
wild type	0.105	15	1.4×10^{-6}	1.1×10^{7}
Q215A	0.105	24 ± 1	$(0.94 \pm 0.09) \times 10^{-4}$	2.6×10^{5}
Y217F	0.105	20 ± 1	$(1.1 \pm 0.15) \times 10^{-4}$	1.8×10^{5}
R235A	0.105	1.0	$(1.1 \pm 0.15) \times 10^{-3}$	910
Q215A/Y217F	0.105	4.8 ± 0.25	$(1.4 \pm 0.24) \times 10^{-3}$	3.4×10^{4}
Q215A/R235A	0.05	5.0 ± 0.32	$(0.29 \pm 0.04) \times 10^{-3}$	1.7×10^{4}
Y217F/R235A	0.105	0.020 ± 0.02	$(1.4 \pm 0.1) \times 10^{-3}$	14
	0.05	0.019 ± 0.05	$(3.5 \pm 0.3) \times 10^{-4}$	54
triple mutant	0.105	0.11 ± 0.016	$(27.1 \pm 4.4) \times 10^{-3}$	4.1
	0.05	0.11 ± 0.016	$(12.9 \pm 2.1) \times 10^{-3}$	8.5
	0.05	0.11 ± 0.016	$(6.1 \pm 1.1) \times 10^{-3}$	18

aFor reactions at pH 7.1 (30 mM MOPS), 25 °C, and constant ionic strength (NaCl). bThe quoted errors are the standard deviations obtained from the nonlinear least-squares fits of data from Figures 3 and 4 to the Michaelis–Menten equation. cData from ref 33. dData from ref 34. eData from Figure 3A. fData from Figure 3B. gData from Figure 4A. hData from Figure 4B.

DISCUSSION

The value of $k_{cat}/K_m = 1.8 \times 10^5$ M$^{-1}$ s$^{-1}$ for the Y217F mutant is 70-fold larger than $k_{cat}/K_m = 2.5 \times 10^3$ M$^{-1}$ s$^{-1}$ for the Y217A mutant determined under similar reaction conditions.\(^{41,42}\) A phenyl ring at position 217 is therefore required for the robust decarboxylation catalyzed by the Y217F/R235A and Q215A/R235A triple mutant determined under similar reaction conditions.41,42 A related increase in K_m is 70-fold larger than K_m for the triosephosphate isomerase (TIM) catalyzed isomerization of 5(10)-estrene-3,17-dione, while the structurally less conservative Y16S mutation results in a only a 100-fold reduction in k_{cat}/K_m.\(^{43}\) The phenol side chain at position 16 of wild-type KSI is thought to form a stabilizing hydrogen bond to the dienolate intermediate of the KSI-catalyzed reaction. Spectroscopic and structural studies on KSI suggest that the Y16F mutation results in unfavorable interactions beyond the loss of a stabilizing phenol—dienolate hydrogen bond.\(^{43}\)

Figures 3 and 4, and Table 1 show that the increase in ionic strength from 0.050 to 0.10 results in similar increases in the value for K_m, but has little effect on k_{cat} for the decarboxylation of OMP catalyzed by several mutants of OMPDC. This is in agreement with our earlier report that an increase in ionic strength (I) from 0.020–0.10 results in an increase in $K_m = 0.16 \times 10^{-3}$ M to $K_m = 1.1 \times 10^{-3}$ M, but little change in k_{cat} for decarboxylation of OMP catalyzed by R235A mutant OMPDC.\(^{25}\) A related increase in K_m with increasing I observed for the triosephosphate isomerase (TIM) catalyzed isomerization of glyceraldehyde 3-phosphate dianion,\(^{44}\) has been attributed to a decreasing activity coefficient for the substrate dianion at increasing ionic strength.\(^{45}\)

Phosphodianion Binding Energy for Side Chains of OMPDC. The intrinsic phosphodianion binding energy ($\Delta G_{int}^{\text{cat}}$) is defined as the dianion binding energy utilized in stabilization of the transition state for the wild-type OMPDC-catalyzed reaction. It is calculated from the ratio of second-order rate constants for wild-type OMPDC-catalyzed reactions at 25 °C, pH 7.1 (30 mM MOPS) and at different ionic strengths (NaCl). The solid lines in Figure 4 show the nonlinear least-squares fits of the experimental data to the Michaelis–Menten equation. The kinetic parameters obtained from the fits of these plots are listed in Table 1. The deviations from a linear dependence of velocity on [OMP] for Figure 4A and B are consistent with the accumulation of a Michaelis complex, but the curvature is small and the values of K_m obtained from the fits of the data to the Michaelis–Menten equation are significantly larger than the highest concentration of OMP used in the determination of K_m. Consequently, the uncertainty in the values of the kinetic parameters determined for decarboxylation catalyzed by the Y217F/R235A and Q215A/Y217F/R235A mutants is large.
decarboxylation of OMP and the phosphodianion truncated substrate EO. An important goal of this work was to determine the contribution \((\Delta G_{\text{Pi}}^\text{X})_\text{wt}\) of the individual gripper side chains to \((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\). Scheme 3 compares the kinetic parameters for decarboxylation of the whole substrate OMP (Table 1) and the truncated substrate EO28 catalyzed by wild-type OMPDC and a representative mutant. The intrinsic phosphodianion binding energy for wild-type OMPDC is obtained from the ratio of the values of \(k_{\text{cat}}/K_m\) for the respective enzyme-catalyzed decarboxylation of whole and truncated substrates. The difference between \((\Delta G_{\text{Pi}}^\text{X})_{\text{wt}}\) and \((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\) is equal to \((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\) the contribution of the excised side chain to the phosphodianion binding energy for wild-type OMPDC. Table 2 reports values of \((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\) for wild type and different mutants of OMPDC, and \((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\) for the phosphodianion gripper side chains, calculated from the effect of the mutation on \((\Delta G_{\text{Pi}}^\text{X})_{\text{wt}}\).

\[
(\Delta G_{\text{Pi}}^\text{X})_{\text{int}} = [(\Delta G_{\text{Pi}}^\text{X})_{\text{wt}} - (\Delta G_{\text{Pi}}^\text{X})_{\text{wt}}] = (\Delta G_{\text{Pi}}^\text{X})_{\text{wt}} - (\Delta G_{\text{Pi}}^\text{X})_{\text{int}}
\]

The side chains of Q215, Y217, and R235 provide 1.7, 1.9, and 5.5 kcal/mol stabilization, respectively, of the transition state for OMPDC-catalyzed decarboxylation of OMP (Table 2). Each of these apparent interaction energies underestimates the true stabilization of the transition state by ca. 0.3 kcal/mol per side chain. This is because the rate of the wild-type OMPDC-catalyzed reaction is partly limited by substrate binding, so that the side-chain interactions are not fully expressed at the “effective” rate-determining transition state. We estimate a total 10 kcal/mol stabilization of the transition state by interactions of the gripper side chains with the substrate phosphodianion, which is ca. 1 kcal/mol larger that the sum of the three interactions energies (9.1 kcal/mol). A similar 10.2 kcal/mol total interaction energy is estimated (Table 2) from the difference in the intrinsic phosphodianion binding energy for wild-type OMPDC (11.7 kcal/mol) and the Q215A/Y217F/R235A mutant (1.5 kcal/mol). The ca. 2 kcal/mol intrinsic dianion binding energy observed for the triple mutant is consistent with a small stabilization of the decarboxylation transition state by the hydrogen bonds from the backbone amides from G234 and R235 to the substrate phosphodianion (Figure 2).

Scheme 4 and Table 2 show that the 12 kcal/mol transition state stabilization by interactions between the phosphodianion and OMPDC represents the sum of a 6 kcal/mol electrostatic interaction from the cationic side chain of R235 and \((2 + 2 + 2) = 6\) kcal/mol interactions from hydrogen bonds to side chains from Q215 and Y217 and backbone amide –NH– from G234 and R235. Similar analyses of the effect of site-directed mutations on catalysis by 3-ketosteroid isomerase, and tryosyl-RNA synthetase, have shown that substantial stabilization of the transition states for these enzymatic reactions is obtained from the total, additive, effect of networks of individual stabilizing hydrogen-bonding/electrostatic interactions.

We conclude that the large intrinsic phosphodianion binding energy for OMPDC is obtained from the additive contribution of the network of hydrogen-bonding and electrostatic interactions shown in Scheme 4. We likewise propose that the entire 31 kcal/mol transition state stabilization for OMPDC represents the sum of the binding interactions between the phosphodianion, ribosyl, and pyrimidine fragments of the decarboxylation transition state, which is mimicked by the complex between OMPDC and the transition state analogue BMP (Scheme 4). In other words, the structure of the OMPDC-transition state complex is sufficient to provide a full rationalization of the enzymatic rate acceleration. The conformational change triggered by substrate binding (Figure 1) defines the pathway followed on proceeding from unliganded OMPDC to the active closed enzyme. This is a critical step in the catalytic cycle that deserves close study, to determine the mechanism by which the change in enzyme structure activates OMPDC for catalysis. However, the characterization of the pathway for this conformational change is incidental to the development of an understanding of the magnitude of the stabilization of the decarboxylation transition state, which is determined by the barrier to transition state formation after completion of the enzyme conformational change.

Table 2. Intrinsic Phosphodianion Binding Energies for Wild Type and Mutant Forms of OMPDC and the Effects of Mutations on the Dianion Binding Energy

OMPDC	\((k_{\text{cat}}/K_m)_{\text{OMP}}\)	\((\Delta G_{\text{Pi}}^\text{X})_{\text{int}}\) (kcal/mol)	\((\Delta G_{\text{Pi}}^\text{X})_{\text{wt}}\) (kcal/mol)
wild type	4.2 \times 10^7	11.7	
Q215A	2.3 \times 10^7	10.0	1.7
Y217F	1.5 \times 10^7	9.8	1.9
R235A	3.5 \times 10^7	6.2	5.5
Q215A/Y217F	7.4 \times 10^7	8.0	3.7
Q215A/R235A	3300	4.8	6.9
Y217F/R235A	410	3.6	8.1
Q215A/Y217F/R235A	12	1.5	10.2

Footnote: For OMPDC-catalyzed decarboxylation at 25 °C, pH 7.1 (30 mM MOPS), and ionic strength of 0.105 (NaCl). 2Ratio of second-order rate constants for OMPDC-catalyzed decarboxylation of OMP (Table 1) and EO (ref 28). 3RT \(\ln \left(\frac{k_{\text{cat}}}{K_m}\right)_{\text{OMP}}/\left(\frac{k_{\text{cat}}}{K_m}\right)_{\text{EO}}\).
There is strong evidence, for triosephosphate isomerase (TIM)-catalyzed isomerization of d-glyceraldehyde 3-phosphate to dihydroxyacetone phosphate, that enzyme activation results from the utilization of the diatomic energy to lock TIM into an active conformation, which is present at a low fractional concentration.\cite{1,11,31,32} This mechanism is illustrated by Scheme 5 for activation of OMPDC by phosphate dianion, with our proposal that dianion binding energy is utilized for the sole purpose of locking OMPDC into an active conformation. The unit slope of this correlation (1.05 ± 0.08, between the second-order rate constant \[\log(k_{cat}/K_m)_{OMP}\] for wild type and mutant OMPDC-catalyzed decarboxylation of OMP and the corresponding third-order rate constant \[\log(k_{cat}/K_{HPi}K_{EO})\] for the enzyme-catalyzed reactions of the substrate pieces EO and HPi. The residues that interact with the phosphodianion and pyrimidine ring are shown using green and red print, respectively. Literature data are used for the reactions catalyzed by S154A and the S154A/Q215A mutants of OMPDC.\cite{33}

Reactions of the Whole Substrate and the Substrate in Pieces. A key element of the proposal illustrated by Scheme 5 is that the phosphodianion binding energy is utilized exclusively to drive an unfavorable protein conformational change, but that the diatomic does not interact directly with the transition state for the decarboxylation reaction, or affect the transition state structure.\cite{53,54} The barrier for conversion of OMPDC and OMP to the transition state for enzyme-catalyzed decarboxylation \[\Delta G^\ddagger_{OMP}\] is defined by the second-order rate constant \[k_{cat}/K_m\] for wild-type OMPDC-catalyzed decarboxylation of OMP and 5-fluoro-OMP (Table 1).\cite{24,29,31,35,56}

Scheme 6

![Scheme 6](image)

the linear logarithmic free energy relationship between these barriers for wild-type and mutant OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces EO + HPi. The unit slope of this correlation (1.05 ± 0.08) requires that these mutations result in the same destabilization of the two transition states for the catalyzed reactions of the whole substrate and substrate pieces, because they exhibit strikingly similar interactions with phosphodianion gripper side chains, and by this criterion are remarkably similar. This is consistent with our proposal that dianion binding energy is utilized for the sole purpose of locking OMPDC into an active conformation.

Figure 5. Linear free energy relationship, with slope 1.05 ± 0.08, between the second-order rate constant \[\log(k_{cat}/K_m)_{OMP}\] for wild type and mutant OMPDC-catalyzed decarboxylation of OMP and the corresponding third-order rate constant \[\log(k_{cat}/K_{HPi}K_{EO})\] for the enzyme-catalyzed reactions of the substrate pieces EO and HPi. The residues that interact with the phosphodianion and pyrimidine ring are shown using green and red print, respectively. Literature data are used for the reactions catalyzed by S154A and the S154A/Q215A mutants of OMPDC.\cite{33}

Interactions Between Protein Side Chains. Point mutations of wild-type OMPDC result in only small changes in \[k_{cat}/K_m\] for decarboxylation of the phosphodianion truncated substrate EO \[\Delta G_{EO}^\ddagger\] which are reflected (eq 3) here as small (≤0.5 kcal/mol) differences between the effect of the mutations on the activation barrier for OMPDC-catalyzed decarboxylation of OMP, \[\Delta \Delta G_{EO}^\ddagger\] (Table 3), and the
intrinsic side-chain phosphodianion binding energy, \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) (Table 2).

\[
(\Delta G_{\text{int}}^X)^{\text{OMP}} = \left[(\Delta G_{\text{int}}^X)^{\text{EO}} + (\Delta G_{\text{int}}^X)^{\text{HPi}}\right]
\]

A closer examination of the effect of these mutations on \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) (Table 3) provides insight into the nature of the interactions between the gripper side chains (Figure 2).

Figure 6 was constructed for mutations of the three amino acid side chains of OMPDC that interact with the phosphodianion, using data from Table 2. Table 3. Figure 6 and Table 3 show that the effect of a point mutation of residue X on \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) is approximately the same when the mutation is carried out at wild-type OMPDC, singly mutated, or doubly mutated forms of OMPDC. We conclude that the interactions between the phosphodianion gripper side chains are small, but not negligible.

Most of the pairwise interaction energies, which can be calculated following procedures described by Horovitz and Fersht, are \(\leq 0.3\) kcal/mol.\(^6^1\) However, the effect of the Y217F or R235A mutations on decarboxylation catalyzed by wild-type OMPDC \((\Delta G_{\text{int}}^X)^{\text{OMP}} = 2.4\) and 5.6 kcal/mol, respectively) is ca. 0.8 kcal/mol smaller than the effect of the corresponding mutations on decarboxylation catalyzed by singly mutated OMPDC \((\Delta G_{\text{int}}^X)^{\text{OMP}} = 3.2\) and 6.3 kcal/mol). About 0.3 kcal/mol of this difference results because chemistry is partly rate determining for wild-type OMPDC, but fully rate determining for the relevant mutant enzymes (see above).

Even after a 0.3 kcal/mol correction, the effect of the second mutation remains larger than for the initial mutation of wild-type OMPDC. We attribute this difference to a destabilizing interaction between the side chains of Y217 and R235 at wild-type OMPDC, which is relieved at either single mutant.

We note the compact arrangement of gripper side chains around the phosphodianion at wild-type OMPDC (Figure 2) and propose that the loss of the stabilizing interaction between the phosphodianion and the side chains of R235 or Y217 at the single mutants is partly offset by the relief of a small destabilizing steric interaction between the two side chains. By comparison, the effect of any single mutation at wild-type OMPDC is 0.6–1.2 kcal/mol smaller than the effect of the same mutation of the previously doubly mutated enzyme (Table 3). For example, \((\Delta G_{\text{int}}^X)^{\text{OMP}} = 5.6\) and 6.8 kcal/mol, respectively, for an R235A mutation at wild-type OMPDC and at the Q215A/Y217F double mutant. This difference is also consistent with steric crowding of the amino acid side chains around the phosphodianion of wild-type OMPDC (Figure 2), which is relieved by truncation of two amino acid side chains.

Mechanism for Dianion Activation of OMPDC for Decarboxylation of OMP. Interactions between OMPDC and HP, or the dianion of OMP, are utilized to drive a conformational change that activates OMPDC for catalysis of decarboxylation of EO and OMP, respectively.\(^10\) The weak \((K_d \geq 0.1 \text{ M})^3\) binding of HP, to OMPDC (Scheme 5) requires that essentially the entire 8 kcal/mol phosphate dianion binding energy be utilized to drive the activating enzyme conformational change from \(E_O\) to \(E_C\) (Scheme 7). Tethering the two pieces in the whole substrate OMP results in an increase in the dianion binding energy to 12 kcal/mol, because of the anchoring effect of the attachment.\(^5^8\) This additional ca. 4 kcal/mol of dianion binding energy is available to stabilize the Michaelis complex to OMP, while the same 8 kcal/mol dianion

Table 3. Effect of Mutations on the Activation Barrier \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) for Decarboxylation of OMP Catalyzed by Wild-Type OMPDC, and by Previously Mutated OMPDC\(^a\)

mutated OMPDC	(\((\Delta G_{\text{int}}^X)^{\text{OMP}}\) (kcal/mol))	\(\sum(\Delta G_{\text{int}}^X)^{\text{OMP}}\)	
wild type	2.2	10.2	
single mutant\(^d\)	2.5 (R235A)	5.8 (Q215A)	10.8
	2.3 (Y217F)	6.3 (Y217F)	11.8
double mutant	2.5 (Q215A,Y217F)	5.8 (Q215A)	10.8

\(^a\)For OMPDC-catalyzed decarboxylation at 25 °C, pH 7.1 (30 mM MOPS), and ionic strength of 0.105 (NaCl). \(^b\)The effect of the point mutation on \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) for decarboxylation of OMP catalyzed by the precursor enzyme, calculated from the ratio of values of \(k_{\text{cat}}/K_m\) for the precursor and mutant enzymes. \(^c\)The sum of the effects of the Q215A, Y217F, and R235A mutations on \((\Delta G_{\text{int}}^X)^{\text{OMP}}\). \(^d\)The enzyme that was mutated is given in parentheses.

Figure 6. A triple mutant box showing the effects, in kcal/mol, of single amino acid mutations on \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) for reactions catalyzed by wild-type OMPDC (black values), by single mutants of OMPDC (red values), and by double mutants of OMPDC (green values). These effects are reported as \((\Delta G_{\text{int}}^X)^{\text{OMP}}\) for reactions catalyzed by wild-type OMPDC, singly mutated, or doubly mutated forms of OMPDC.
binding energy as for phosphite dianion is needed to drive the activating enzyme conformational change. This predicts that ca. 4 kcal/mol of the dianion binding energy for OMP will be expressed in the value of the observed Michaelis constant and that the 8 kcal/mol of binding energy utilized to drive the enzyme conformational change will be expressed as an increase in \((k_{\text{cat}})_{\text{obs}}\).

Equations 4–6, derived for Scheme 7, show the relationship between the microscopic rate and equilibrium constants \(K_d\), \(k_{\text{cat}}\), \(K_m\), and the observed kinetic parameters \((k_{\text{cat}})_{\text{obs}}\) and \((K_m)_{\text{obs}}\) for OMPDC-catalyzed decarboxylation of OMP, where \(K_c\) is for the enzyme conformational change, \(K_d\) is for release of OMP from \(E_0\), and \(K_m\) is for turnover of \(E_C\)-OMP.25 If the 12 kcal/mol intrinsic dianion binding energy of OMP is divided between the 8 kcal/mol of binding energy utilized to drive the enzyme conformational change and the 4 kcal/mol expressed as stabilization of the Michaelis complex to OMP, then the closure of OMPDC will be thermodynamically favorable for wild-type OMPDC by 4 kcal/mol (Scheme 7A), so that \((K_c \gg 1)\), \((k_{\text{cat}})_{\text{obs}} \approx k_{\text{cat}}\), and \((K_m)_{\text{obs}} = K_d/K_c\) (eqs 4–6). The initial mutation of a gripper residue will cause a decrease in \(K_c\) that will be expressed as an increase in \((K_m)_{\text{obs}}\) but not \((k_{\text{cat}})_{\text{obs}}\) and \((K_m)_{\text{obs}}\) will increase until the Michaelis complex is destabilized by ca. 4 kcal/mol and \(K_c = 1\). Once \(K_c < 1\), the enzyme conformational change becomes a step on the pathway from the dominant complex \(E_0\)-OMP to decarboxylation transition state (Scheme 7B), so that \((k_{\text{cat}})_{\text{obs}} \approx k_{\text{cat}}K_c\) and \((K_m)_{\text{obs}} \approx K_d\) (eqs 4–6). Further mutations of gripper residues will now result in a decrease in \((k_{\text{cat}})_{\text{obs}}\) but not \((K_m)_{\text{obs}}\).

\[
\begin{align*}
\nu &= \frac{\frac{k_{\text{cat}}K_c}{1 + K_c} [\text{OMP}]}{\frac{K_d}{1 + K_c} + [\text{OMP}]} \\
(k_{\text{cat}})_{\text{obs}} &= \frac{k_{\text{cat}}K_c}{1 + K_c} \\
(K_m)_{\text{obs}} &= \frac{K_d}{1 + K_c}
\end{align*}
\]

This analysis predicts that effect of mutations on \((K_m)_{\text{obs}}\) and \((k_{\text{cat}})_{\text{obs}}\) will depend upon the context of the mutation. The mutation of any gripper residue at wild-type OMPDC will be expressed on \((k_{\text{cat}})_{\text{obs}}\) \((K_c > 1)\), but mutations of the same residue will be expressed on \((k_{\text{cat}})_{\text{obs}}\) if previous mutations have resulted in \(K_c < 1\). The predicted context dependence of the effects of these mutations on \((k_{\text{cat}})_{\text{obs}}\) and \((K_m)_{\text{obs}}\) is in good agreement with the observed effects.

(1) The Q215A and Y217F mutations result in (60–70-fold) increases in \(K_m\) for decarboxylation of OMP, and surprisingly small decreases in \(k_{\text{cat}}\) (Table 1). These changes are consistent with \(K_c \gg 1\) (eqs 4–6) for wild-type OMPDC, and a small increase in the rate of product release, which limits the value for \(k_{\text{cat}}\).

(2) The overall effect of the R235A mutation is to destabilize the rate-determining transition state for OMPDC-catalyzed decarboxylation by 5.6 kcal/mol (Table 3). About 4 kcal/mol of this effect is expressed as a 700-fold increase in \(K_m\) to a limiting value of \(K_c \approx K_d = 1\) mM, which corresponds to a 4 kcal/mol destabilization of the Michaelis complex, when \(K_c < 1\). The remaining effect of this mutation (1.6 kcal/mol) is expressed as a 15-fold decrease in \(k_{\text{cat}}\) (Table 1).

(3) The Q215A mutation of wild-type OMPDC results mainly in an increase in \(K_m\). However, the same mutation at the R235A mutant has almost no effect on \(k_{\text{cat}}\) which is at the limiting value of 1 mM \((K_c < 1\), Scheme 7B). Now, almost the entire effect of the Q215A mutation is expressed as a decrease in \(k_{\text{cat}}\) (Table 1).

(4) The effects of the Q215A and Y217F single mutations are expressed as changes in \(K_m\) while the Q215A/Y217F double mutation results in a limiting \(K_m = 1\) mM, and a decrease in the value of \(k_{\text{cat}}\) to 4.8 s\(^{-1}\) (Table 1).

We note that the values \(K_m\) for the Y217F/R235A double mutant and the Q215A/Y217F/R235A triple mutants (Table 1) are larger than the value of \(K_d\) \(\approx 1\) mM, which we propose represents the limiting affinity of wild-type \(E_0\) for OMP. These increases in \(K_m\) may reflect small second-order effects of extensive mutations on the stability of the unreactive \(E_0\)-OMP complex (Scheme 7). Finally, the proposed limiting \(K_d\) of \(\sim 1\) mM for binding of OMP to \(E_0\) (Scheme 7) is smaller than the \(K_d\) \(\approx 100\) mM estimated for the truncated substrate EO (Scheme 2A). This is consistent with stabilization of the \(E_0\)-OMP complex by nonproductive binding interactions between mutated phosphodianion gripper loops and the phosphodianion of OMP. Such nonproductive binding interactions will result in equal increases in \(k_{\text{cat}}\) and \(K_m\) but will not affect \(k_{\text{cat}}/K_m\) for OMPDC-catalyzed decarboxylation.25

This interpretation of the results from Table 1 unifies the easily quantified utilization of the 8 kcal/mol intrinsic phosphite dianion binding energy in activation of OMPDC for decarboxylation of a truncated substrate EO, and the cryptic utilization of 8 kcal/mol of phosphodianion binding energy in activation of OMPDC for decarboxylation of OMP (Scheme 7). In each case, 8 kcal/mol of dianion binding energy is used to drive an activating change in the conformational state from \(E_0\) to \(E_C\). This corresponds to the entire phosphite dianion binding energy for activation of OMPDC-catalyzed decarboxylation of EO. The larger 12 kcal/mol intrinsic dianion binding energy for OMP is divided between the 4 kcal/mol expressed in the observed binding constant \((K_m)_{\text{obs}}\) and the 8 kcal/mol that is utilized to drive the unfavorable conversion of inactive \(E_0\)-OMP to active \(E_C\)-OMP, and which is expressed as an increase in \((k_{\text{cat}})_{\text{obs}}\).

SUMMARY

We conclude by reviewing what is known about the origin of the extraordinary catalytic elution obtained from OMPDC–dianion interactions.5

(1) There is a fair agreement between the total intrinsic dianion binding energy and the sum of the contributing interactions of the amino acid side chains determined in mutagenesis studies (Scheme 4). This shows that there are only small interactions energies for the dianion gripper side chains (Figure 6).

(2) There is little or no apparent requirement that the binding energy of gripper side chains be “wasted” in immobilizing the rigid loop over the substrate phosphodianion.32 Such an entropic penalty would be a minimum for point mutations at double mutants to give the Q215A/Y217F/R235A triple mutant. By contrast, point mutations of wild-type OMPDC result in a 0.6–1.2 kcal/mol (Table 3) smaller transition state destabilization than the same
point mutation at a double mutant, a difference opposite of that expected if entropic effects were important. The very small effect of mutations at the dianion gripper loop on k_{cat}/K_m for decarboxylation of the truncated substrate EO shows that there is little or no interaction between the amino acid side chains at the dianion binding domain and the pyrimidine ring bound at the catalytic domain.28

(4) The large effect of mutations at the dianion gripper loop on k_{cat}/K_m for phosphite dianion activation of decarboxylation of EO (Scheme 6) shows that loop dianion interactions act to stabilize the decarboxylation transition state, in the absence of a direct interaction between the loop and the reacting orotate ring.28

(5) Closure of the dianion gripper loop and the smaller movement of the side chain of R235 is just one component of a global conformational change of OMPDC, whose precise role in the catalysis of decarboxylation of OMP remains to be fully determined. A critical element of this enzyme conformational change is formation of a hydrogen bond between the side chains of Ser154 and Gln215 (Scheme 4), which ensures cooperativity in the closure of the phosphodianion gripper loop and the pyrimidine umbrella.33

(6) The enzyme conformational change is expected to result in a tightening of the interactions between OMPDC and the ribosyl and pyrimidine substrate fragments (Scheme 4). It is therefore important to characterize the interactions of these fragments with OMPDC by an experimental protocol similar to that used to examine the role of phosphodianion interactions in the OMPDC-catalyzed decarboxylation reaction. (7) The separate catalytic and phosphodianion binding domains at OMPDC might be mimicked in the design of an active artificial protein decarboxylase, by first designing a protein that catalyzes decarboxylation at a solvent exposed cleft, and then adding to this protein flexible loop(s), which fold over a nonreacting substrate fragment, such as a phosphodianion, to tightly lock the substrate within a protein cage.12,27 This strategy should result in a catalyst where the tight loop–substrate interactions are expressed as a large turnover number k_{cat} for the decarboxylation reaction.10,13

AUTHOR INFORMATION

Corresponding Author
jrichard@buffalo.edu

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge the National Institutes of Health Grant GM39754 (to J.P.R.) and Grant GM65155 (to J.A.G.) for generous support of this work.

REFERENCES

(1) Pauling, L. Nature 1948, 161, 707–709.
(2) Go, M. K.; Ames, T. L.; Richard, J. P. Biochemistry 2009, 48, 5769–5778.
(3) Ames, T. L.; Richard, J. P. Biochemistry 2007, 46, 5841–5854.
(4) Goryanova, B.; Ames, T. L.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2011, 133, 6545–6548.
(5) Ames, T. L.; Richard, J. P.; Tait, J. J. J. Am. Chem. Soc. 2005, 127, 15708–15709.
(6) Tsang, W.-Y.; Ames, T. L.; Richard, J. P. Biochemistry 2008, 47, 4575–4582.
(7) Ray, W. J., Jr.; Long, J. W.; Owens, J. D. Biochemistry 1976, 15, 4006–4017.
(8) Kholodar, S. A.; Murkin, A. S. Biochemistry 2013, 52, 2302–2308.
(9) Xiz, X.; Malaban, M. M.; Ames, T. L.; Richard, J. P. J. Phys. Org. Chem. 2013, 269–276.
(10) Ames, T. L.; Richard, J. P. Biochemistry 2013, 52, 2021–2035.
(11) Richard, J. P. Biochemistry 2012, 51, 2652–2661.
(12) Malaban, M. M.; Ames, T. L.; Richard, J. P. Curr. Opin. Struct. Biol. 2010, 20, 702–710.
(13) Jencks, W. P. Adv. Enzymol. Relat. Areas Mol. Biol. 1975, 43, 219–410.
(14) Miller, B. G.; Wolfenden, R. Annu. Rev. Biochem. 2002, 71, 847–885.
(15) Radzicka, A.; Wolfenden, R. Science 1995, 267, 90–93.
(16) Callahan, B. P.; Miller, B. G. Bioorg. Chem. 2007, 35, 465–469.
(17) Fujihashi, M.; Mito, K.; Pai, E. F.; Miki, K. J. Biol. Chem. 2013, 288, 9011–9016.
(18) Yuan, J.; Cardenas, A. M.; Gilbert, H. F.; Palzkill, T. Protein Sci. 2011, 20, 1891–1906.
(19) Toth, K.; Ames, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 12946–12947.
(20) Ames, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2008, 130, 1574–1575.
(21) Toth, K.; Ames, T. L.; Wood, B. M.; Chan, K.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2010, 132, 7018–7024.
(22) Vardi-Kilshtain, A.; Doron, D.; Major, D. T. Biochemistry 2013, 52, 4382–4390.
(23) Tsang, W.-Y.; Wood, B. M.; Wong, F. M.; Wu, W.; Gerlt, J. A.; Ames, T. L.; Richard, J. P. J. Am. Chem. Soc. 2012, 134, 14580–14594.
(24) Porter, D. J. T.; Short, S. A. Biochemistry 2000, 39, 11788–11800.
(25) Goryanova, B.; Goldman, L. M.; Ames, T. L.; Gerlt, J. A.; Richard, J. P. J. Am. Chem. Soc. 2013, 52, 7500–7511.
(26) Miller, B. G.; Hassell, A. M.; Wolfenden, R.; Milburn, M. V.; Short, S. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 2011–2016.
(27) Richard, J. P.; Ames, T. L.; Goryanova, B.; Zhai, X. Curr. Opin. Chem. Biol. 2014, 21, 1–10.
(28) Ames, T. L.; Ming, S. A.; Goldman, L. M.; Wood, B. M.; Desai, B. J.; Gerlt, J. A.; Richard, J. P. Biochemistry 2012, 51, 4630–4632.
(29) Goryanova, B.; Spong, K.; Ames, T. L.; Richard, J. P. Biochemistry 2013, 52, 537–546.
(30) Wood, B. M.; Ames, T. L.; Fedorov, A. A.; Fedorov, E. V.; Shabila, A.; Almo, S. C.; Richard, J. P.; Gerlt, J. A. Biochemistry 2010, 49, 3514–3516.
(31) Wood, B. M.; Chan, K. K.; Ames, T. L.; Richard, J. P.; Gerlt, J. A. Biochemistry 2009, 48, 5510–5517.
(32) Toth, K.; Ames, T. L.; Wood, B. M.; Chan, K. K.; Gerlt, J. A.; Richard, J. P. Biochemistry 2009, 48, 8006–8013.
(33) Barnett, S. A.; Ames, T. L.; Wood, B. M.; Gerlt, J. A.; Richard, J. P. Biochemistry 2008, 47, 7785–7787.
(34) Barnett, S. A.; Ames, T. L.; McKay Wood, B.; Gerlt, J. A.; Richard, J. P. Biochemistry 2010, 49, 824–826.
(35) Van Vleet, J. L.; Reinhardt, L. A.; Miller, B. G.; Sievers, A.; Cleland, W. W. Biochemistry 2008, 47, 798–803.
(36) Moffatt, J. G. J. Am. Chem. Soc. 1963, 85, 1118–1123.
(37) Miller, B. G.; Smiley, J. A.; Short, S. A.; Wolfenden, R. J. Biol. Chem. 1999, 274, 23841–23843.
(38) Sievers, A.; Wolfenden, R. Bioorg. Chem. 2005, 33, 45–52.
(39) Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R. D.; Bairoch, A. Nucleic Acids Res. 2003, 31, 3784–3788.
(40) Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M. R., Appel, R. D., Bairoch, A. Eds. Protein Identification and Analysis Tools on the ExPaSy Server; Humana Press Inc.: Totowa, NJ, 2005.
(41) Miller, B. G.; Snider, M. J.; Short, S. A.; Wolfenden, R. Biochemistry 2000, 39, 8113–8118.
(42) Barnett, S. A. Ph.D. Thesis, University at Buffalo, Buffalo, NY, 2009.
(43) Kraut, D. A.; Sigala, P. A.; Fenn, T. D.; Herschlag, D. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1960–1965.
(44) Hartman, F.; Lamuraglia, G.; Tomozawa, Y.; Wolfenden, R. Biochemistry 1975, 14, 5274–5279.
(45) Nolte, H.-J.; Rosenberry, T. L.; Neumann, E. Biochemistry 1980, 19, 3705–3711.
(46) Amyes, T. L.; O’Donoghue, A. C.; Richard, J. P. J. Am. Chem. Soc. 2001, 123, 11325–11326.
(47) Morrow, J. R.; Amyes, T. L.; Richard, J. P. Acc. Chem. Res. 2008, 41, 539–548.
(48) Schwans, J. P.; Sunden, F.; Gonzalez, A.; Tsai, Y.; Herschlag, D. J. Am. Chem. Soc. 2011, 133, 20052–20055.
(49) Fersht, A. R. Biochemistry 1987, 26, 8031–8037.
(50) Leatherbarrow, R. J.; Fersht, A. R.; Winter, G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7840–7844.
(51) Malabanan, M. M.; Koudelka, A. P.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2012, 134, 10286–10298.
(52) Malabanan, M. M.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2011, 133, 16428–16431.
(53) Warshel, A.; Florian, J.; Strajbl, M.; Villa, J. ChemBioChem 2001, 2, 109–111.
(54) Warshel, A. J. Biol. Chem. 1998, 273, 27035–27038.
(55) Schulenburg, C.; Hilvert, D. Top. Curr. Chem. 2013, 337, 41–67.
(56) Rishavy, M. A.; Cleland, W. W. Biochemistry 2000, 39, 4569–4574.
(57) Zhai, X.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2014, 136, 4145–4148.
(58) Jencks, W. P. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4046–4050.
(59) Spong, K.; Amyes, T. L.; Richard, J. P. J. Am. Chem. Soc. 2013, 135, 18343–18346.
(60) Ackers, G. K.; Smith, F. R. Annu. Rev. Biochem. 1985, 54, 597–629.
(61) Horovitz, A.; Fersht, A. R. J. Mol. Biol. 1990, 214, 613–617.
(62) Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw Hill: New York, 1969.