Asymmetric Synthesis of α-Allyl-α-Aryl α-Amino Acids by Tandem Alkylation/π-Allylation of α-Iminoesters

John M. Curto, Joshua S. Dickstein, Simon Berritt, and Marisa C. Kozlowski*

Department of Chemistry, Penn Merck High Throughput Experimentation Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

Supporting Information

ABSTRACT: The first asymmetric synthesis of α-allyl-α-aryl α-amino acids by means of a three-component coupling of α-iminoesters, Grignard reagents, and cinnamyl acetate is reported. Notably, the enolate from the tandem process provides a much higher level of reactivity and selectivity than the same enolate generated via direct deprotonation, presumably due to differences in the solvation/aggregation state. A novel method for removal of a homoallylic amine protecting group delivers the free amine congeners. The α-allyl group offers a means to generate further valuable α-amino acid structures as exemplified by ring closing metathesis to generate a higher ring homologue of α-aryl-proline.

Enantiomerically pure α-amino acids and their derivatives are vital synthetic building blocks in organic synthesis and play an integral role in biological research. The α,α-disubstituted α-amino acid structural motif is found in natural products and has been utilized by the pharmaceutical industry in numerous antibiotics. Peptides with one or more α,α-disubstituted α-amino acid counterparts confer increased stability under physiological conditions and stabilize secondary structure motifs. The formation of α,α-disubstituted α-amino acids is difficult and becomes increasingly difficult once structural complexity supersedes analogs of α-Me, α-Et, and α-Bn.

To date, synthetic access to enantioenriched α-allyl-α-aryl α-amino acids has remained elusive. In nucleophilic functionalization, both the Strecker reaction and addition to α-iminoesters fail. The Strecker reaction succeeds with an α-methyl group when α-aryl groups are employed (Scheme 1, eq 1), but combinations such as α-allyl-α-aryl are difficult due to the relatively unreactive nature of ketoimines and difficulty in facial distinction when the two substituents are similar in size.

Electrophilic functionalization has been tremendously successful for generating chiral α-substituted α-amino acids, but the enolates required to generate the α,α-disubstituted α-amino acid counterparts are very hindered (Scheme 1, eq 2). As a result, variable yields are obtained when R₁ ≠ H, and mixed results have been obtained when R₂ = Ar. Use of cyclic surrogates has improved the outcome of electrophilic functionalization via asymmetric allylic alkylation, but phenylglycine analogs proved sterically hindered and unsuccessful to date (Scheme 1, eq 3).

Herein, we report the N-alkylation/asymmetric π-allylation of α-iminoesters (Scheme 2). The tandem process generates an enolate form possessing increased reactivity, which differs from the corresponding enolate generated via direct deprotonation. The in situ generated enolate allows the construction of a diverse
group of enantioenriched α-allyl-α-aryl α-amino acids that have not been accessed to date (Scheme 1, eq 4).

Kagan and Fiaud first reported umpolung N-addition of unstabilized anions to α-iminoesters in 1970.11 Shimizu has expanded upon this work with doubly activated iminomalonates and organoaluminums.12 Recently, we have reported the first tandem reaction to utilize umpolung addition of alkyl Grignard into α-iminoesters to generate racemic α,α-disubstituted α-amino acids.13 In spite of these advances, this umpolung addition has never been combined with an asymmetric process to take advantage of the reactive nucleophile 2 that is produced (Scheme 2).

Parallel microscale experimentation (PME), a valuable tool for rapidly screening conditions and drawing out trends,14 was used to optimize the tandem N-alkylation/π-allylation of 1a.15 Table 1 displays results for 11 of >190 enantiopure mono- and bisphosphine ligands conducted at -50 °C utilizing PME.16 Nearly all ligands gave minimal conversion and selectivity, but axial chiral bisphosphines, such as L1, L2, and L5–L9 (Figure 1), were most effective in generating 3a as confirmed in larger scale reactions at -78 °C (Table 1). Trost ligands possessing central chirality and Pfaltz ligands with planar chirality (Table 1, entries 4 and 5) were unsuccessful, showing both poor reactivity and poor selectivity.

With the optimal conditions, a range of α-iminoesters reacted with satisfactory yields and enantioselectivity (3a–j) (Table 2). Notably, the reaction was equally effective with keto substituents (R1) containing electron-donating and electron-withdrawing aryl groups (Table 2, entries 3–5; see ref 5d), while ortho-substituted aryls (2-Me, 2-OMe) resulted in lower yields of the desired product.16 Thiophene could also be employed to good effect (Table 2, entry 8), but the indole tandem product was not stable.16 Variation from the PMP activating group on nitrogen to phenyl, p-Me$_2$NC$_6$H$_4$ or 3,4-Me$_2$C$_6$H$_3$ (Table 2, entries 9–11), had a small effect on selectivity, whereas moving from the methyl ester to the ethyl or benzyl ester reduced selectivity further.16 In contrast to most other reports of N-alkylation of α-iminoesters,17 a range of Grignard reagents could be employed here to provide unique N-alkyl α-aryl-α-allyl α-amino acid derivatives (Table 3, entries 1–5). Notably, more functional Grignards provided terminal silyl and alkenyl derivatives (Table 3, entries 2–5). For alkenyl substrates, the alkene must be distal to the reacting center as allyl, benzyl, and vinyl Grignard reagents were not successful.
Reasoning that the same products ought to be available from racemic α-phenylglycine derivatives, the reaction in Scheme 3 was undertaken. A wide range of bases provided good conversion (>85%), but poor enantioselectivity (ee = 18−34%), compared to the tandem reaction (Table 2).16 Notably, treatment of 4 with EtMgBr should generate the exact same enolate (2) as in the tandem reaction (Scheme 2). However, this enolate provided low conversion and significantly lower selectivity. We conclude that the exact structural form of the enolate is critical to the outcome. Specifically, the aggregate of 2 obtained from 1 differs from that obtained from 4.18

In line with this reasoning, a strong solvent dependence was observed. A wide range of bases provided good conversion (>85%), but poor enantioselectivity (ee = 18−34%), compared to the tandem reaction (Table 2).16 Notably, treatment of 4 with EtMgBr should generate the exact same enolate (2) as in the tandem reaction (Scheme 2). However, this enolate provided low conversion and significantly lower selectivity. We conclude that the exact structural form of the enolate is critical to the outcome. Specifically, the aggregate of 2 obtained from 1 differs from that obtained from 4.18

In line with this reasoning, a strong solvent dependence was observed. A wide range of bases provided good conversion (>85%), but poor enantioselectivity (ee = 18−34%), compared to the tandem reaction (Table 2).16 Notably, treatment of 4 with EtMgBr should generate the exact same enolate (2) as in the tandem reaction (Scheme 2). However, this enolate provided low conversion and significantly lower selectivity. We conclude that the exact structural form of the enolate is critical to the outcome. Specifically, the aggregate of 2 obtained from 1 differs from that obtained from 4.18

1. ^{16} Isolated yield. ^{2} Determined by CSP HPLC.

The method provides ready access to N-alkyl α-allyl-α-aryl α-amino acids including a number of N-alkyl substitutions that would be difficult to generate via reductive amination. In addition, routes to the free amine analogs were assessed by means of functionalized Grignard reagents (Table 3), which also offer the option for removal. Surprisingly, the β-silyl group in product 3l could not be removed with fluoride or other nucleophiles under a variety of acidic and basic conditions. Recent reports on the isomerization of alkenes along a longer alkyl chain inspired us to examine whether homoallyl analog 3m could be transformed to the primary amine as shown in Scheme 4. An extensive survey of olefin isomerizing catalysts revealed that the Grotjahn catalyst was uniquely effective. Elevated temperatures, combined with the addition of water and trifluoroacetic acid, caused the terminal alkene 3m to isomerize by two carbons to the enamine, which underwent hydrolysis in situ. Notably, the sensitive styril moiety remained intact. Treatment of the product 8 with CAN provided the primary amine 7. Thus, the reaction method described herein can be used to generate both the free amino and the N-alkyl (via PMP deprotection) versions of novel α-allyl-α-aryl α-amino ester derivatives (Scheme 4).

In an effort to access an even greater diversity of the α-allyl-α-aryl α-amino ester derivatives, a preliminary study of metathesis to functionalize the allyl group was undertaken. Microwave
derivatives are of great synthetic and pharmaceutical interest, but asymmetric methods for the synthesis of higher ring homologues of \(\alpha \)-substituted prolines have not received much attention.

In summary, we have disclosed the first asymmetric tandem \(N \)-alkylation/\(\pi \)-allylation of \(\alpha \)-iminoesters, which gives rise to complex enantioenriched \(\alpha \)-allyl-\(\alpha \)-aryl-\(\alpha \)-amino acids in one step from three commercially available components. This report represents the first enantioselective synthesis of this class of compounds beyond \(\alpha \)-allyl-\(\alpha \)-phenylglycine. The dramatic effect of enolate aggregation observed herein provides a cautionary tale for other systems. The nature of these effects are the subject of further exploration.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: marisa@sas.upenn.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the NIH (GM-087605) and the NSF (CHE0911713) for financial support of this research. The NSF provided for funding of the High Throughput Laboratory (GOALI CHE-0848460). Partial instrumentation support was provided by the NIH for MS (1S1ORR025444) and NMR (1S1ORR022442) and by the NSF for an X-ray diffractometer (CHE 0840438). The invaluable assistance of Dr. D. B. Grotjahn (San Diego State) for providing his catalyst and expertise on alkene isomerization. Our collaboration with Dr. P. Carroll (UPenn) in obtaining the crystal structure is gratefully acknowledged. Also, the contributions of J. Hun (UPenn) and the assistance from Dr. C. Stanciu (Merck) and Dr. S. D. Dreher (Merck) with the PME experiments.

REFERENCES

1. Xia, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775.
2. (a) Savage, S. A.; Waltermire, R. E.; Campagna, S.; Bordawekar, S.; Toma, J. D. R. Org. Process Res. Dev. 2009, 13, 510. (b) Washburn, W. N.; et al. Biorg. Med. Chem. Lett. 2004, 14, 3525. (c) Ma, D. W.; Tian, H. Q.; Zou, G. X. J. Org. Chem. 1999, 64, 120. (d) Stilz, H. U.; Jablonka, B.; Knolle, J.; Paulus, E. F.; Zoller, G. J. Med. Chem. 1996, 39, 2118.
3. (a) Graver, A.; Konig, B. Eur. J. Org. Chem. 2009, 30, 5099. (b) Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. Rev. 2001, 101, 3131.
4. (a) Liu, Z.; Mehta, S. J.; Hruby, V. J. Organic Preparations and Processes International: The New Journal for Organic Synthesis 2012, 44, 222. (b) Cativiela, C.; Diaz-De-Villegas, M. D. Tetrahedron: Asymmetry 2007, 18, 569. (c) Vogt, H.; Hesse, K. Angew. Chem., Int. Ed. 2006, 45, 408.
5. (a) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 2000, 122, 5228. (b) Ooi, T.; Takeuchi, M.; Ohara, D.; Maruoka, K. Synlett 2001, 7, 1185. (c) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686. (d) Application of ref 5b utilizing an analog of phenylglycine gave a 35% yield and 45% ee; see: Metro, T.-X.; Cooi, A.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2011, 76, 2594.
6. (a) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
7. (a) Wieland, L. C.; Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 570. (b) Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 5530. (c) Basra, S.; Fennie, M. W.; Kozlowski, M. C. J. Org. Lett. 2006, 8, 2659. (d) Zhuang, W.; Saaby, S.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476.
8. (a) Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007, 5, 873–888.
9. Maruoka, K. Org. Process Res. Dev. 2008, 12, 679.
10. (a) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. Engl. 1997, 36, 2635. (b) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 2068.
11. (a) Fiaud, J. C.; Kagan, H. Tetrahedron Lett. 1970, 11, 1813.
12. (a) Mizota, I.; Matsuda, Y.; Kamimura, S.; Tanaka, H.; Shimizu, M. Org. Lett. 2013, 15, 4206. (b) Shimizu, M.; Kurita, D.; Mizota, I. Asian J. Org. Chem. 2013, 2, 208. (c) Shimizu, M.; Takao, Y.; Katsurayama, H.; Mizota, I. Asian J. Org. Chem. 2013, 2, 135. (d) Mizota, I.; Tanaka, K.; Shimizu, M. Tetrahedron Lett. 2012, 53, 1847. (e) Niwa, Y.; Shimizu, M. J. Am. Chem. Soc. 2003, 125, 3720. (f) Niwa, Y.; Takayama, K.; Shimizu, M. Bull. Chem. Soc. Jpn. 2002, 75, 1819. (g) Shimizu, M.; Niwa, Y. Tetrahedron Lett. 2001, 42, 2829.
13. (a) Dickstein, J. S.; Fennie, M. W.; Norman, A. L.; Paulose, B. J.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 15794.
14. (a) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. J. Am. Chem. Soc. 2008, 130, 9257. (b) Metz, A. E.; Berritt, S.; Dreher, S. D.; Kozlowski, M. C. Org. Lett. 2012, 3, 760.
15. (a) For racemic entries to \(\alpha \)-aryl compounds from \(\alpha \)-iminoesters, see ref 12d, e.
16. (a) See Supporting Information for further details.
17. (a) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166.
18. (a) Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am. Chem. Soc. 1976, 98, 567.
19. (a) Magnesium enolates exist as monomers or as dimers bridged through either the halide or the enolate oxygen. The coordination sphere of the magnesium ranges from tetrahedral to octahedral with solvent molecules occupying remaining coordination sites. For the X-ray crystal structure of a dimeric bidentate enolate with Mg, see: (a) Di Noto, V.; Bandoli, G.; Domellia, A.; Zarli, B.; Vivani, M.; Vidali, M. J. Chem. Cryst. 1995, 25, 375. For the X-ray crystal structure of dimeric monodentate enolates with Mg, see: (b) Allan, J. F.; Clegg, W.; Henderson, K. W.; Horsburgh, L.; Kennedy, A. R. J. Organomet. Chem. 1989, 559, 173. (c) Willard, P. G.; Salvino, J. M. J. Chem. Soc., Chem. Commun. 1986, 153.
20. (a) Artsawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255. (b) Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am. Chem. Soc. 2003, 125, 13000.
21. (a) Erdogan, G.; Grotjahn, D. B. J. Am. Chem. Soc. 2009, 131, 10354. (b) Larsen, C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357.
22. (a) Park, K. H.; Kurth, M. J. Tetrahedron 2002, 58, 8629.
23. (a) Seebach, D.; Boes, M.; Nafl, R.; Schweizer, W. B. J. Am. Chem. Soc. 1983, 105, 5390.
24. (a) For reviews on the asymmetric synthesis of cyclic \(\alpha \)-\(\alpha \)-disubstituted \(\alpha \)-amino acids, see: (a) Cativiela, C.; Ordonez, M. Tetrahedron: Asymmetry 2009, 20, 1. (b) Cativiela, C.; Diaz-De-Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645.