Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer

Darrell Green¹, ¹⁴, Heather Eyre², ¹⁴, Archana Singh³, Jessica Taylor², Jason Chu², Lee Jeys⁴, Vaiapuri Sumathi⁵, Aman Coonar⁶, Doris Rassl⁷, Muhammad Babur², Duncan Forster⁸, Saba Alzabin⁹, Frida Ponthan⁹, Adam McMahon⁶, Brian Bigger², Tristan Reekie¹⁰, Michael Kassiou¹⁰, Kaye Williams², Tamas Dalmay¹¹, William D Fraser¹, ¹², ¹³*, Katherine G Finegan²*

1. Norwich Medical School, University of East Anglia, Norwich, UK
2. School of Health Sciences, University of Manchester, Manchester, UK
3. Digital Biology, Earlham Institute, Norwich, UK
4. Orthopaedic Oncology, Royal Orthopaedic Hospital, Birmingham, UK
5. Musculoskeletal Pathology, Royal Orthopaedic Hospital, Birmingham, UK
6. Thoracic Surgery, Royal Papworth Hospital, Cambridge, UK
7. Pathology, Royal Papworth Hospital, Cambridge, UK
8. Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
9. Epistem Limited, Manchester, UK
10. School of Chemistry, University of Sydney, Sydney, Australia
11. School of Biological Sciences, University of East Anglia, Norwich, UK
12. Clinical Biochemistry, Norfolk and Norwich University Hospital, Norwich, UK
13. Diabetes and Endocrinology, Norfolk and Norwich University Hospital, Norwich, UK
14. Joint first authors
* Joint corresponding authors’ w.fraser@uea.ac.uk & k.g.finegan@manchester.ac.uk

Running title: metastatic PBC
ABSTRACT

Metastasis is the leading cause of cancer related death. This multistage process involves contribution from both tumour cells and the tumour stroma to release metastatic cells into the circulation. Circulating tumour cells (CTCs) survive circulatory cytotoxicity, extravasate and colonise secondary sites effecting metastatic outcome. Reprogramming the transcriptomic landscape is a metastatic hallmark but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used whole tumour plus single cell RNA sequencing in primary bone cancer and CTCs to perform weighted gene co-expression network analysis to systematically detect coordinated changes in metastatic transcript expression. This approach with comparisons applied to data collected from cell line models, clinical samples and xenograft mouse models revealed MAPK7/MMP9 signalling as a driver for primary bone cancer metastasis. RNAi knockdown of MAPK7 reduces proliferation, colony formation, migration, tumour growth, macrophage residency/polarisation and lung metastasis. Parallel to these observations were reduction of activated interleukins IL1B, IL6, IL8 plus mesenchymal markers VIM and VEGF in response to MAPK7 loss. Our results implicate a newly discovered, multidimensional MAPK7/MMP9 signalling hub in primary bone cancer metastasis that is clinically actionable.
Primary bone cancer (PBC) is the third most common solid childhood cancer with 52,000 new cases per year worldwide16. PBC arises at the ends of long bones, usually on either side of the knee/pelvis. PBC includes several molecular subtypes of which osteosarcoma is the most common. Osteosarcomas can occur in adults but these are usually secondary to radiation exposure or Paget's disease of bone15,35. Major driver mutations for osteosarcoma include tumour protein p53 (\textit{TP53}) and RB transcriptional corepressor 1 (\textit{RB1}) structural variants that trigger chromothripsis1,2,8,33. Around 25\% of patients present with detectable metastasis (85\% with lung metastases, 15\% with skeletal metastases). Five-year survival with metastatic/relapsed osteosarcoma is 15\%12,16. Survival rates have not changed for more than four decades. A better understanding of the molecular and cellular mechanisms that underpin spread is urgent.

Metastasis is the leading cause of cancer related death. This multistage and complex process requires metastatic cells to shed into the local vasculature, survive circulation, extravasate at distant sites and proliferate. Metastasis involves contribution from both tumour cells and tumour stroma. The early stages of metastasis are relatively efficient. Post-extravasation stages, i.e. colonisation, are critical in determining metastatic outcome19. It is largely accepted that cancer arises from linear Darwinian evolution involving competing subclones within a single tumour that eventually culminates in lethal clones with metastatic capability. Evidence suggests that metastatic dissemination may occur early where cells from incipient, low density lesions display more stemness and metastatic tendency than cells from proliferative, high density tumours2,19. Analysis of secondary lesions to elucidate molecular properties of spread is hampered by the extreme difficulty in obtaining samples of metastatic disease because of a lack of surgical intervention at that clinical stage. Circulating tumour cells (CTCs) provide an alternative less invasive approach where samples may be accessed throughout the disease course plus reveal mechanisms of spread with the potential to identify novel therapeutic strategies. CTC based studies in breast, prostate and lung cancer show evidence of high WNT signalling plus high haemoglobin subunit beta (\textit{HBB}) to support circulatory survival50. CTC clustering causes demethylation of POU class 5
homeobox 1 (POU5F1), SRY box 2 (SOX2), nanog homeobox (NANOG) and SIN3 transcription regulator family member A (SIN3A), all genes paralleling stemness14. It still remains unclear how CTCs are released from tumours. Studies suggest that interaction between tumour cells and immune cells in the tumour microenvironment influences metastatic progression5, 51. Immunotherapies that target tumour stroma interactions instead of tumours directly have shown efficacy in several cancers shedding light on the possible treatment of PBC18.

Reprogramming the transcriptomic landscape in tumour cells and in the tumour stroma is a metastatic hallmark but detecting underlying master regulators that drive pathological gene expression is a key challenge, especially in childhood cancer. Here we used an integrated analytical approach that combines whole tumour plus single CTC RNA sequencing of patient samples (Suppl. File 1) to search for PBC metastasis master regulators. A co-expression network was built on all genes using a cut off mean (TPM >5). We searched for gene modules that were enriched for differentially expressed (DE) genes. Modules enriched for DE genes were used to reveal metastasis associated genes. The functions of metastasis associated genes were enriched to determine the importance of these genes in PBC spread. Using these clinical datasets as a guide, we generated a xenograft mouse model to mechanistically reveal a novel tumour cell-immune cell interaction that drives PBC metastasis to the lungs.

RESULTS

Recurrent \textit{HH, FGFR} and \textit{IGF} in whole tumours. An observation of immediate therapeutic significance was the increased expression of hedgehog (\textit{HH}), RUNX family transcription factor 2 (\textit{RUNX2}), fibroblast growth factor receptor (\textit{FGFR}) and insulin like growth factor (\textit{IGF}) in whole tumours when compared to controls (Fig. 1a and 1b). This data is consistent with our own and others’ observations including the recent report of \textit{IGF1} amplification in 14% of osteosarcomas3, 16, 44 though \textit{IGF1} plays less of a role for driving primary tumour to metastatic tumour gene expression (Fig. 1c). Given the poor osteosarcoma prognosis and lack of treatment progress, our findings provide a reason for exploring the efficacy of targeting these pathways as first line
treatment. Sonidegib to target HH, Lenvatinib to target $FGFR$ and Cixutumumab, Dalotuzumab and Robatumumab to target IGF have shown promising antineoplastic activity in other cancers20, 29, 34.

Induction therapy activates folate receptor beta. Induction therapy for osteosarcoma in the United Kingdom comprises high dose methotrexate, doxorubicin and cisplatin (MAP). We show the transcript for the cellular receptor for folic acid uptake, folate receptor beta ($FOLR2$), is upregulated in osteosarcoma exposed to MAP (Fig. 1a and 1b). This data infers a biological mechanism for chemoresistance as methotrexate will be less obstructive to neoplastic folic acid metabolism.

Alternative splicing in several transcripts. Alternative splicing events are categorised as skipped exon, retained intron, alternative 5’ splice site, alternative 3’ splice site and mutually exclusive exon. We report events in several transcripts not previously implicated in osteosarcoma (Suppl. Fig. 1). These transcripts include 2-oxoglutarate and iron dependent oxygenase domain containing 2 ($OGFOD2$), autophagy related 4D cysteine peptidase ($ATG4D$), tropomyosin 1 ($TPM1$), transmembrane protein 218 ($TMEM218$), copine 1 ($CPNE1$) and WW domain binding protein 1 ($WBP1$) (Suppl. Fig. 1). These DE transcripts harbour four of five alternative splicing events.

Single osteosarcoma CTCs. We achieved <500,000 mapped reads in single CTCs (Fig. 2a) and >30 million mapped reads in whole tumours so it was inappropriate to directly compare DE genes. We performed numerical expression plus enrichment analysis to intersect the dataset between primary and secondary tumours (Suppl. File 2). There was abundance of mitochondrial gene expression including mitochondrially encoded cytochrome c oxidase I, II and III ($MT-CO1$, 2, 3), mitochondrially encoded NADH:ubiquinone oxidoreductase core subunits 1-4 ($MT-ND1$, 2, 3, 4) and mitochondrially encoded cytochrome b ($MT-CYB$) (Fig. 2b). These transcripts are central to oxidative phosphorylation. Consistent with other cancer types there was abundance of stress tolerance with expression of HBB and ubiquitin C (UBC) (Fig. 2b). There were markers of stemness...
and embryonic activation with expression of MET proto-oncogene, receptor tyrosine kinase (MET), fibroblast growth factor 10 (FGF10), fibronectin 1 (FN1), transforming growth factor beta 2 (TGFB2) and RUNX2 (Fig. 2b). There was also an abundance of collagen associated transcripts (Fig. 2b). There was a low expression of mitochondrial fission factor (MFF), transcripts for RNA processing including cyclin C (CCNC), sirtuin 7 (SIRT7), enhancer of mRNA decapping 4 (EDC4) and dicer 1, ribonuclease III (DICER1) (Fig. 2c). There was a low transcript number for BRCA1 associated protein 1 (BAP1), which when highly expressed suppresses metastasis (Fig. 2c). STRING analysis showed a functional interaction between all transcripts (Fig. 2d).

CYP4B1, FGFR4 and ETS transcription factors in secondary tumours. Principle component analysis (PCA) showed grouping between controls, primary tumours and metastases (Fig. 3a). PCA demonstrates the transcriptional trajectory of metastatic progression (Fig. 3a). Gene expression differences included upregulated drug metabolism via cytochrome P450 family 4 subfamily B member 1 (CYP4B1) (Fig. 1c). Metastases showed cell adhesive properties via cadherin 1 (CDH1), claudin 18 (CLDN18) and epithelial cell adhesion molecule (EPCAM) (Fig. 1c). There was abundance of fibroblast growth factor receptor 4 (FGFR4), Erb-b2 receptor tyrosine kinase 3 (ERBB3) and E74 like ETS transcription factor 3 (ELF3) expression (Fig. 1c).

WGCNA discriminates metastasis. Patterns of genes in tissue types can be identified by weighted gene co-expression network analysis (WGCNA). WGCNA is an unsupervised and unbiased analysis that identifies genes with similar expression patterns across samples and assigns correlated genes to distinct co-expression modules24. In contrast to standard analysis for network analysis such as cytoscope based approaches, WGCNA seeks to identify higher order relationships among genes by transforming gene expression profiles into functional co-expressed gene modules. Within groups of highly co-expressed genes or ‘modules’ that comprise core functional units of transcriptional networks, WGCNA identifies central genes connecting the modules termed ‘hubs’. This analysis alleviates several testing problems that are inevitable in standard gene centric methods making WGCNA a powerful tool in cancer studies48. Based on a mean gene expression value of transcripts per million (TPM) >5 across patient samples, 19,913
genes were selected for WGCNA. These genes produced 41 co-expression modules comprising 16,369 genes (3,544 genes were filtered because they do not cluster to any module) (Fig. 3b and Suppl. File 3). For each of the 41 modules we identified a hub gene (Suppl. File 3). We examined hubs likely to be involved in metastasis by searching for modules that were enriched for DE genes (control vs. primary tumour, control vs. metastasis, primary tumour vs. metastasis). Twenty six modules were enriched for DE genes (Fisher exact test $p < 0.05$). Heat maps based on normalised TPM values of these 26 modules showed different expression patterns in PBC metastasis to the lung. We selected the Green module (Fig. 3c and Suppl. File 3) where E2F transcription factor 1 ($E2F1$) was the hub gene because $E2F1$ mediates $TP53$ dependent apoptosis. This pathway is critical for the current study because of the $TP53^-$ driver mutation described earlier27. All 1,045 genes in the Green module were subject to clustering (Fig. 3d) and gene ontology (GO) analysis (Fig. 3e) to show spatial representation of enriched GO terms plus molecular functions significantly affected (Fig. 3f). Within these analyses we observed matrix metalloprotease 9 ($MMP9$) as a candidate pro-metastatic gene. We had also noted $MMP9$ as a highly expressed gene in our previous analyses (Fig. 1, Fig. 2 and normalised data on GEO) so we selected $MMP9$ for further investigation. The other 25 modules were not explored further here but are freely available in Suppl. File 3.

MAPK7 is an $MMP9$ master regulator and drives lung metastasis in vivo. $MMP9$ is a prognostic marker for several cancers with several studies showing its role in angiogenesis, extracellular matrix and surface receptor cleavage$^{4, 42, 52}$. $MMP9$ inhibitor drugs have had limited success in patient trials46. One explanation for $MMP9$ drug failure is that targeting the catalytic component of $MMP9$ is insufficient for effect. We asked whether targeting the $MMP9$ transcript preventing protein translation may show improved outcomes so we opted to test the $MMP9$ upstream regulator mitogen activated protein kinase 7 (MAPK7), i.e. our goal was to target a master regulator to 'action' the 'unactionable' $MMP9$. Supporting this experimental strategy was that MAPK7 also has roles in metastatic cancer$^{11, 13, 23, 38, 39, 47}$ so we would likely 'hit' several other
genes/pathways as well as \textit{MMP9}. We cloned highly metastatic human 143B cells with stably expressed short hairpin RNA (shRNA) to suppress \textit{MAPK7} (shMAPK7) (Fig. 4a and 4b), which had no impact on proliferation \textit{in vitro} (Suppl. Fig. 2a). To monitor growth of the primary tumour plus tumour dissemination to the lungs we luciferase tagged cells, which also had no impact on proliferation \textit{in vitro} (Suppl. Fig. 2b). Control and shMAPK7 luciferase tagged cells displayed comparable, constitutive luciferase activity and bioluminescence signal directly correlated to tumour size \textit{in vivo} (Suppl. Fig. 2c). We engrafted transfected cells into the femur of immunocompromised mice and tracked metastatic colonisation in the lungs40. \textit{MAPK7} deficient tumours were grown to the same size as control tumours before being tested for metastatic potential and lung clonogenicity ensuring we compared 'like for like'. Metastatic cells harbouring shMAPK7 showed significantly reduced \textit{MMP9} transcript and MMP9 protein expression (Fig. 4c and 4d). shMAPK7 tumour growth was markedly slower plus cells showed significantly reduced ability to colonise the lungs (Fig. 4e). Lung metastases were undetectable by H&E staining in mice harbouring shMAPK7 tumours (Fig. 4f). Lung clonogenicity, which can be used to detect micro metastases undetectable by H&E staining, showed practically no spread to the lung from shMAPK7 tumours (shMAPK7 = 0.092 colonies/mg, controls = 4.43 colonies/mg of lung, \(p = \) <0.001) (Fig. 4g) or any other organ (data not shown). These data show \textit{MAPK7} is a master regulator of \textit{MMP9} expression and reduction of this signalling axis inhibits spread to the lungs.

\textbf{\textit{MAPK7/MMP9} signalling localises to the invasive margin.} Metastasis is independent of tumourigenesis, which is mostly driven by tumour growth. Metastasis can be defined by other features including invasiveness and colonisation, so we next addressed the \textit{MAPK7/MMP9} signalling origin. We used \textit{in vivo} fluorescence imaging using an MMP9 substrate that fluoresces upon proteolytic cleavage43. Fluorescence signal indicative of active MMP9 laterally increased with tumour growth in controls (Fig. 5a and 5b). Tumour cells harbouring shMAPK7 showed significantly reduced fluorescence signal in both primary tumour and metastases (Fig. 5a and 5b). We verified fluorescence imaging by analysing MMP9 expression in tumour lysates plus gross histology. MMP9 signal was mostly localised to the tumour edge, i.e. the invasive margin (Fig. 5c, arrow lower panel). shMAPK7 tumours displayed MAPK7 in stromal regions only (Fig. 5c, arrow upper panel).
Tumours lacking functional MAPK7 showed MMP9 protein loss (Fig. 5c and 5d). These data show that MAPK7/MMP9 signalling plays a role at the tumour-stroma border.

Blockade of MAPK7/MMP signalling axis suppresses monocyte infiltration, TAM accumulation, tumourigenesis and lung metastasis. Previous work in skin and lung cancer shows that MAPK7 promotes pro-tumour inflammation plus ‘M2 like’ polarisation of tumour associated macrophages (TAMs) \(^{10,13}\). Since (i) recent evidence has shown there is significant crosstalk between osteosarcoma and the immune system \(^{18}\) (ii) TP53\(^{-/-}\) triggers WNT dependent systemic inflammation that stimulates TAMs to perform breast cancer metastasis \(^{45}\) and (iii) our data here in a TP53\(^{-/-}\) driven cancer that shows MAPK7 regulates MMP9 and is involved in lung metastasis, we strongly suspected that MAPK7/MMP9 driven TAMs were mediators of osteosarcoma metastasis \(^{18,45}\). We performed immunohistochemistry (IHC) plus cell sorting of immune cell composition in control and shMAPK7 tumours. FACS analysis showed a significant reduction in CD45+ tumour infiltrates, i.e. there were fewer immune cells present in shMAPK7 tumours (data not shown). To directly compare immune cell constitution or ‘immune contexture’ between control and shMAPK7 tumours we normalised immune cell numbers to the total number of CD45+ cells in each sample (Fig. 6a). The immune contexture in shMAPK7 tumours was composed of fewer macrophages, greater numbers of neutrophils plus a greater number of monocytes (Fig. 6a). We isolated macrophages from shMAPK7 tumours. These macrophages displayed an impaired ability to produce MMP9 despite having intact MAPK7 themselves (Fig. 6b). Non-invasive imaging using \(^{18}\)F DPA-714 to detect translocator protein (TSPO) expressing cells in vivo\(^{49}\) that are predominantly macrophages showed a significant decrease \((p < 0.01)\) in macrophage infiltration in shMAPK7 tumours (Fig. 6c). We next used a pan macrophage F4/80 marker to show that control primary tumours contained higher levels of macrophage infiltration when compared to shMAPK7 tumours (Fig. 6d). Macrophage rich regions in control primary tumours co-localised with MAPK7 expression (Fig. 6e). ‘M2 like’ and MAPK7 expressing TAMs were almost completely absent in the lungs of mice with shMAPK7 tumours (Fig. 6f). These observations were despite the fact that macrophages and lung tissue have intact MAPK7. Together, these experiments show that a MAPK7 signal derived from primary tumour cells...
regulates TAM polarisation, TAM expression of \textit{MMP9}, TAM infiltration and TAM mediated metastasis to the lungs.

\section*{DISCUSSION}

Complex human diseases such as cancer accompany widespread reprogramming of gene expression. A comprehensive understanding of the disease state requires not only the identification of DE genes, but also understanding the cellular and physiological responses to dysregulated expression patterns. Here our analyses allowed us to view the transcriptomic alterations that underpin PBC metastasis at whole tumour and single cell resolution. We have uncovered several transcripts involved in PBC malignant progression that were undetected in previous genomic studies. Some of these genes and regulatory network hubs are clinically actionable with available drugs. Out of the significant amount of data generated here, we interrogated \textit{MMP9} owing to its extremely high expression plus recurrent observation in our models. Experimental data on \textit{MMP9} was independently achieved across two separate laboratories supporting our inference that \textit{MMP9} is involved in PBC spread to the lungs. Our experiments showed that MAPK7 is an upstream master regulator of \textit{MMP9} and is responsible for driving metastasis. This observation is consistent with \textit{in vitro} models and tail vein injection metastasis models23, 39, 47. Here we modelled lung metastasis with markedly more biological and clinical significance because we tracked metastatic spread of human cancer that produced orthotopic tumours.

Tumour cells harbouring shMAPK7 showed impaired tumour growth compared to controls. No difference in proliferation was observed between control and shMAPK7 143B cells \textit{in vitro} (Suppl. Fig. 2d). We hypothesised the delayed growth of shMAPK7 tumours \textit{in vivo} was due to shMAPK7 tumours lacking the ability to effectively crosstalk with the stromal and immune compartments, which can accelerate tumour growth. We have shown in other studies that MAPK7 is a fundamental requirement for a pro-tumour immune contexture11, 13.

We showed a MAPK7 signal and/or MAPK7 sensitivity is required for PBC metastatic spread to the lungs. Metastatic spread to other parts of the body including other skeletal sites were not observed in the timeframe of this study. To control for the slower growth rate of shMAPK7 tumours versus controls we tested metastatic spread to the lung at equivalent tumour sizes in each cohort. The longer time taken for shMAPK7 tumours to reach equivalent size to their control counterparts increased the overall tumour residency time, which we know from several studies positively correlates with increased metastatic risk. This illustrates that the lack of development of lung metastases from shMAPK7 tumours is even more significant.

Previous work on MAPK7 has shown it to be a driver for epithelial-mesenchymal transition (EMT)\(^{21}\). PBC arises from and is itself mesenchymal tissue. EMT is all but redundant in this context. We focussed our evaluation of driver mechanisms underpinning our observations on the immunological effects of MAPK7 loss as seen in other cancer models and the interaction with MMP9 signalling therein.

Fundamental to several cancers is a specific macrophage population arising from blood monocytes. TAMs are perpetually recruited to tumours. In early tumours, TAMs present an inflammatory and tumoricidal ‘M1 like’ phenotype. As tumours progress TAMs are functionally reprogrammed by tumour derived signals to exhibit a trophic, angiogenic and immune inhibitory ‘M2 like’ phenotype that contributes to advancing cancer\(^{13}\). Here MAPK7 silencing strongly minimises TAM infiltration at the tumour site whilst increasing monocyte content. This finding supports the conclusion that MAPK7 controls TAM maturation and phenotype, which is also observed in other cancer types\(^{13}\). MAPK7 loss affects macrophage residency and the lung phenotype of tumour bearing animals despite MAPK7 loss only occurring in tumour cells. MAPK7 expression co-localises with TAMs at both the primary and secondary site. The lungs of mice bearing tumours lacking MAPK7 have fewer ‘M2 like’ macrophages. These observations suggest a tumour derived MAPK7 signal supports the lung microenvironment to be conducive to metastases by supporting macrophage influx and by directing their polarisation to a pro-metastatic ‘M2 like’ phenotype. MAPK7 loss in primary tumours decreases MAPK7 expression in the lungs.
suggesting MAPK7 regulates a positive feedback loop for its own expression between the primary
and metastatic site. MAPK7 loss in xenograft tumours reduces MMP9 expression in TAMs that
have intact MAPK7 further supporting our assertion that MAPK7 signals dictate TAM behaviour
and phenotype. Taken together, this work shows a tumour derived MAPK7 signal dictates
macrophage behaviour at the primary site plus secondary lesion to provide molecular cues for
immune contexture and metastatic spread in PBC.

Owing to the prevalence of TAMs in solid cancer plus their unique influence on disease
progression, macrophage targeted interventions have attracted prominent attention in cancer
immunotherapy. Amenable targets to reduce TAM polarisation and infiltration are few because the
signalling mechanisms underpinning malignant macrophage phenotypes are largely unknown.
Here we have investigated the role of the MAP protein kinase MAPK7 as a determinant of
macrophage polarity. Our data strongly implicate that TAMs drive metastasis to the lung using
MAPK7/MMP9 in an autocrine and paracrine fashion\(^9, 41\). Targeting MAPK7 affects the
downstream expression of several other genes as well as MMP9 (Suppl. Fig. 2d). Simultaneously
targeting a broad range of genes will likely be required for clinically effective outcomes, i.e.
targeting MMP9 plus other metastatic contributors, which could be made possible by targeting
MAPK7.

There are currently no effective MAPK7 inhibitors. Older generation inhibitors had significant off
target effects that accounted for their observed phenotypes, but were originally attributed to
MAPK7\(^{25}\). The newest generation of MAPK7 kinase inhibitors have little if any effect on
transcription of cancer promoting genes\(^{25}\). Recent work shows MAPK7 kinase inhibitors can
paradoxically activate MAPK7\(^{26}\). This recent discovery plus our own previous work with genetic
models of MAPK7 loss show that loss of all MAPK7 functions, i.e. its catalytic function plus non-
catalytic transcriptional function, is required to successfully target MAPK7 for therapeutic gain\(^{11, 13, 31}\). None of the available inhibitors are able to inhibit all aspects of MAPK7 function but future drug
development should focus on achieving this objective.
Analytical tools that mine quantitative measurements of mRNA to identify key regulatory interactions and/or signalling can provide an effective avenue for identifying previously unknown molecular mechanisms with critical functions in health and disease. These computational strategies must be paired with rigorous experimentation to functionally validate and characterise the putative physiological outcome. Using this approach, we have established the role of a MAPK7/MMP9 signalling axis in recruiting TAMs to PBC tumours to induce lung metastasis. Removing the MAPK7/MMP9 signalling axis by RNAi suppressed tumour burden, metastatic spread and increased overall survival in animals by inhibition of TAM infiltration. Our findings provide new insights into the mechanisms of PBC metastatic progression mediated by TAMs that may advance the development of immune based strategies. Our results also demonstrate the value of unbiased sequencing strategies such as whole tumour plus single cell RNA sequencing that do not rely on prior knowledge of annotated regulatory programs. The approach here finds blockade of MAPK7/MMP9 signalling may overcome current hurdles for targeting pathways that ultimately lead to metastatic lung nodule formation in a childhood cancer.

MATERIALS AND METHODS

Patient samples. The University of East Anglia Faculty of Medicine and Health Sciences Research Ethics Committee approved the collection and study of human samples (Reference: 2015/16 100 HT). We obtained patient material from the Royal Orthopaedic Hospital, Royal Papworth Hospital and the UCL Biobank (n = 21). We confirmed high grade osteoblastic osteosarcoma at biopsy and at resection. All individuals provided written informed consent to donate blood/tissue to this study. We used publicly available datasets from the European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena) and combined with our patient series before processing through our bioinformatics pipeline (n = 9).

CTC capture and imaging. We isolated CTCs from 7.5 ml whole blood in EDTA using the ClearCell FX (Biolidics). Cells were deposited in 10 ml resuspension buffer, centrifuged at 500 x g for 10 m, supernatant was removed and 100 ul was transferred to a Nunclon plate (Thermo Fisher
For imaging live cells, CTCs were cultured in DMEM high glucose (Thermo Fisher Scientific) containing 10% (v/v) FBS (Sigma Aldrich) and 1% (v/v) penicillin streptomycin. We cultured for 5 d and maintained at 37 °C in 5% CO₂. For single cell RNA sequencing, we manually picked CTCs under a microscope using a P10 pipette set to 1 ul and placed individual cells into 10 ul of lysis buffer. We stained live CTCs with Hoechst 33342 (Thermo Fisher Scientific), a cell surface vimentin monoclonal antibody (Abnova) and a CD45 monoclonal antibody (BD Biosciences). Blue fluorescence was excited at 365 nm and emission collected between 420 and 470 nm. Red fluorescence was excited at 558 nm and emission collected through a 615 nm LP filter. Green fluorescence was excited at 400 nm and emission collected through a 525 nm LP filter. We imaged CTCs using an Axiovert 200M microscope (Zeiss) with an Axiocam MRm CCD camera (Zeiss) under the control of AxioVision.

Library preparation and next generation sequencing. We extracted total RNA using the miRNeasy mini kit (Qiagen) according to manufacturer’s instructions. We measured concentration and integrity on the NanoDrop 8000 Spectrophotometer (Thermo Fisher Scientific). RNA was stored at -80 °C. We used the NEBNext ultra II RNA library prep kit (New England Biolabs) and SMART-seq v4 ultra low input RNA kit (Takara) to generate libraries. We performed 150 bp PE sequencing on a HiSeq 2500 (Illumina).

Bioinformatics. We converted fastq files to fasta. We used Trim Galore to remove adapter sequences and reads <20 nt. Trimmed reads were aligned to the human genome (v38) using HISAT2. Transcripts were downloaded from GENCODE (v28) and Ensembl (v92). Count matrices for transcripts were created using Kallisto. We determined DE transcripts using the DESeq2 package in R (v1.2.10). We selected DE mRNA according to log₂ fold change ≥2, p = <0.05 and false discovery rate (FDR) <5%.

Alternative splicing analysis. We examined alternative splicing events from aligned BAM files using rMATS. rMATS quantified exon/intron by inclusion junction counts (IJC) and skipped exon/intron by skipping junction counts (SJC). The difference in inclusion level for each candidate
splicing event was calculated using reads that map to the body of exons as well as splice junctions from control and tumour samples. Differentially spliced events were required to have an absolute difference in inclusion level >10% plus a FDR <10%. We used rMATS2Sashimiplot and Sashimi plot for quantitative visualisation.

Gene expression analysis. To validate sequencing datasets, we performed gene expression analysis using a modified PanCancer Pathways Panel (NanoString Technologies) comprising 800 genes including 12 housekeeping genes (Suppl. File 4). We used an nCounter Digital Analyser (NanoString Technologies) to count the digital barcodes representing the number of transcripts. Raw counts were automatically normalised by the total counts of all the tested samples and housekeeping genes in order to compensate for variations introduced by experimental procedures. We averaged counts between replicates using nSolver analysis software and log2 transformation. We used the most stringent method (mean + 2 SD) to accept detected transcripts.

Gene set enrichment in CTCs. We ranked sequencing reads confirmed by nanostring into a numerical expression list. We built a network of functional interactions between the genes using STRING (v11). The line colour connecting genes indicates the known and predicted interactions. Blue lines represent data from curated databases. Pink lines represent data from experiments. Green lines represent gene neighbourhoods. Black lines represent co-expressed genes.

Weighted gene co-expression network analysis (WGCNA). WGCNA was used to generate unsigned co-expression networks in controls, primary tumours and metastatic tumours. Transcripts with normalised counts (TPM) >5 were used for the co-expression analysis. WGCNA clusters genes into network modules using topological overlap measure (TOM). TOM is a robust measure of network interconnectedness and measures the connection strength between two adjacent transcripts and all other transcripts in a network. Hierarchical clustering was used to group transcripts based on dissimilarity of transcript connectivity, which is defined as 1-TOM. We used the cutreeDynamic function to produce co-expression clusters. The minimum size of modules was 20 transcripts and were randomly colour labelled. An adjacency matrix was built by applying a
power function (β) on the Pearson correlation matrix. The β was optimised to be 18 for balancing
the scale free property of the co-expression network and the sparsity of connections between
transcripts. Intramodular connectivity of transcripts was used to identify hubs in the modules.

Cell culture. We obtained 143B (osteosarcoma) cells from ATCC. We authenticated cells by STR
profiling. We cultured cells in DMEM (Thermo Fisher Scientific) containing 10% (v/v) FBS (Sigma
Aldrich) and 1% (v/v) penicillin streptomycin. We refreshed culture media every other day and
maintained at 37 °C in a hypoxic atmosphere of 5% CO₂. Cells were regularly monitored for
Mycoplasma infection by PCR. Similar passage number were used in biological replicates *in vitro*
and for implants *in vivo*.

Immunoblotting. We extracted proteins in RIPA assay buffer containing protease and
phosphatase inhibitors. We resolved extracts (30 μg) by SDS/PAGE and electrophoretically
transferred to an Immun-Blot® PVDF membrane (Bio-Rad). Membranes were saturated in 3%
non-fat dry milk or 3% BSA and probed overnight at 4 °C with antibodies (1:1,000 dilution unless
otherwise indicated) to MAPK7 (Cell Signaling, #3372), MMP9 (Abcam, #Ab38898) and ACTB
(Sigma, #A5316). We detected immunocomplexes by enhanced chemiluminescence with IgG
coupled to horseradish peroxidase as the secondary anti-rabbit and anti-mouse antibodies
(Abcam).

qPCR. Total RNA was isolated from cells using TRIZOL and the miRNeasy mini kit (Qiagen). We
carried out cDNA synthesis as previously described¹¹. We performed qPCR using the SYBR green
I core kit (Eurogentec). Human *MMP9*, 5'-GTACTCGACCTGTACCAGCG-3', 5'-
AGAAGCCCCACTTCTTGCG-3'; mouse *Mmp9*, 5'-GCCGACTTTTGTGCTCTCC-3', 5'-
CTTCTCTCCCATCATCTGGGC-3'; human *PGK1*, 5'-GAAGATTACCTTGCCTGTTGAC-3, 5'-
GCTCTCAGTACCACAGTCCA-3'. PCR products were detected in the ABI PRISM® 7700
sequence detection system (Thermo Fisher Scientific). We analysed results using the 2−ΔΔG
method. Gene expression was normalised to *PGK1* or *ACTB*.
ELISA. We performed MMP9 ELISAs using several kits (R&D Systems) according to manufacturer’s instructions. Plates were pre-coated with MMP9 antibody. Briefly, fresh media was collected from equal numbers of cells and centrifuged to remove debris. We centrifuged supernatants in Amicon tubes (Millipore). We incubated plates with samples plus serial dilutions of provided ELISA standards. Plates were washed and incubated with an HRP conjugated secondary antibody followed by a further wash plus incubation with a colorimetric HRP sensitive substrate. We measured absorbance of the samples at 450 nM and 540 nM using a UQuant plate reader (BioTek). Absorbance at 540 nM was deducted from that at 450 nM to correct for background signal. We generated standard curves from the serial diluted standards and concentrations of MMP9 in the samples extrapolated from the standard curve.

Mice. The University of Manchester Animal Welfare and Ethics Committee approved animal experiments. Experiments were performed under licence in accordance with UK Home Office guidelines and under the Animals (Scientific Procedures) Act 1986. Eight-twelve week old CD1-Foxn1nu female mice were implanted with 0.02 ml of a 6x10^7/ml suspension containing either control or shMAPK7 143B cells into the left femur. Mice were housed in a pathogen free facility. Mice were killed using Schedule 1 procedures. A small region of fresh lung was tied off and excised for clonogenic analysis. We inflated remaining lungs with formalin. We removed tumours, bisected and half fixed in 10% formalin, quarter digested for FACS analysis and a quarter frozen in liquid nitrogen for immunoblot or RNA analysis. For in vivo analysis using similar animal models it has been shown that to detect >30% reduction in primary tumour growth, experiments require 5 animals per group. To detect >30% change in metastases with 0.8 power and at p = <0.05 statistical significance, experiments require 8 animals per group. For imaging to detect >30% changes with 0.8 power and at p = <0.05 statistical significance, experiments require 10 animals. For ex vivo analyses, animal numbers required to assess the functional role of MAPK7 in tumour inflammation and metastases was previously predicted by power analysis with a minimum of three tumours taken from three biological replicates for all analytical techniques^{11}. Animal experiments were powered based on the experimental analysis that required the largest mouse number (imaging). To accommodate a potential implant failure rate ~10%, 15 mice per
group were used \((n = 15\) control, \(n = 15\) shMAPK7). These animals were divided into three independent experiments \((n = 5\) control, \(n = 5\) shMAPK7). These numbers provided the three biological replicates needed to power ex vivo analysis. Exclusion criteria were those animals that did not develop tumours. No randomisation or blinding was used when allocating animals to experimental groups.

Plasmids. We used pLenti CMV Puro LUC (w168-1) (Addgene)\(^7\). We used a SMARTvector (Dharmacon) plasmid for shMAPK7. We used third generation pMD2_VSVg plus packaging plasmids pRSV-Rev (Addgene) and pMDLg/pRRE (Addgene) for luciferase lentiviral transduction. We used second generation pMD2G (VSV-G envelope) and p8.91 (HIV gag/pol) for shRNA plasmids.

Bacterial transformation. Transformation was carried out according to manufacturer’s instructions using MAX Efficiency Stbl2\(^{TM}\) competent cells (Invitrogen). Briefly, 100 ul of Stbl2 cells were thawed on wet ice and then aliquoted into cold polypropylene tubes. One ul of solubilised plasmid DNA was added to competent cells and incubated on ice for 30 m. Cells were heat shocked in a water bath at 42 °C for 25 s. Cells were placed on ice for 2 m then 0.9 ml of ambient temperature SOC medium (2% tryptone, 0.5% yeast extract, 8.6 mM NaCl, 20 mM KCl and 20 mM glucose) was added. Ligation reactions were shaken (60 m, 225 rpm, 30 °C) then diluted 1:10 with SOC medium. One hundred ul was spread onto pre-warmed LB agar plates with pre-added ampicillin (100 ug/ml). Agar plates were incubated overnight at 30 °C then colonies were picked and used to produce starter cultures.

Plasmid starter cultures. Plasmid starter cultures were taken from plasmid glycerol stocks stored at -80 °C. Using a sterile pipette tip, a small amount of glycerol stock was scraped into 50 ml centrifuge tubes containing 5 ml LB broth plus ampicillin (100 ug/ml). The CMV Puro LUC plasmid was picked from single colonies grown up from bacterial transformations. Starter cultures were grown at 30 °C for 8 h at 225 rpm. Five ml starter cultures were transferred to 500 ml LB broth in
conical flasks containing 100 ug/ml ampicillin and incubated overnight at 30 °C at 225 rpm to obtain large amounts of plasmid DNA.

DNA purification. Concentrated plasmid DNA was prepared using the Endofree plasmid mega kit (Qiagen) according to the manufacturer’s protocol. Briefly, bacterial cells were lysed and then cleared via a filter. Endotoxins were removed from the cleared lysate that was then loaded onto a binding column. RNA, protein and other impurities were removed by washing. Plasmid DNA was eluted in a high salt buffer. Plasmid DNA was concentrated and desalted by isopropanol precipitation and collected by centrifugation then resuspended in TE Buffer.

High titre lentiviral vectors. To generate high titre lentivirus, we plated 1.5x10^6 HEK 293T cells on 150 mm dishes (Corning) containing 16.5 ml antibiotic free complete media and incubated overnight to adhere. For luciferase expression, cells were transfected the following day with the expression plasmids CMV Puro LUC, pMD2_VSVg, pRSV-Rev and pMDLg/pRRE in a 2:1:2:1 ratio. For MAPK7 knockdown, cells were transfected the following day with expression plasmids pMD2G and p8.91 in a 3:1 ratio. Plasmids were diluted in 150 mM NaCl (3 ml per plasmid) in a 50 ml falcon (Corning). Three ml of polyethylenimine (PEI)/NaCl solution (1:12 ratio of 15 mM PEI:150 mM NaCl) was added dropwise to each plasmid dilution and incubated for 10 m at room temperature then the plasmid/PEI solution was evenly distributed dropwise at 2 ml per plate. Twelve hours post transfection, media was aspirated and replaced. Forty eight hours post-transfection, viral supernatant was aspirated and collected in 50 ml falcon tubes whilst fresh complete media was added to plates. Falcons were centrifuged (5 m, 112 x g, 4 °C) to remove cell debris and filtered through a pre-wet 0.45 um cellulose acetate filter (Corning) using a vacuum pump. Supernatant was then transferred into 50 ml falcon tubes able to withstand high speed centrifugation (Alpha Laboratories). Falcons were then centrifuged (2.5 h, 13,500 x g, 4 °C) to obtain viral pellets. Supernatant was aspirated and pellets re-suspended in 100 ul formulation buffer (PBS, 1 mg/ml human serum albumin, 5 ug/ml protamine sulphate), aliquoted and stored at -80°C. A second harvest was conducted using the same protocol 72 h post transfection.
Viral titre determination. We seeded 143B cells at 1×10^5 cells/well in 12 well plates and left to adhere overnight. The following day, cells in one well were counted and then remaining wells were infected with serial dilutions of lentiviral vector (10^{-3} to 10^{-5} per 1 ml medium). Media was changed after approximately 12 h then after 48 h incubation (37 °C, 5% CO₂) cells were detached and transferred to microcentrifuge tubes. For luciferase titre determination, cell pellets were resuspended in 100 µl 4% PFA and incubated at room temperature for 20 m. Fixed cells were resuspended in permeabilisation buffer (PBS, 0.5% BSA, 0.1% Triton-X) for 10 m then stained 1:200 for luciferase expression with anti-firefly luciferase antibody (Abcam) in FACS buffer (PBS, 0.5% BSA) for 30 m at room temperature. After primary staining, cells were stained 1:1,000 with Alexa Fluor® 488 conjugated goat anti-mouse IgG secondary antibody in FACS buffer. TOPRO-3 was diluted 1:1,000 in FACs buffer and 3 uL added to each sample to determine cell viability. shRNA infected cells were sorted live by GFP expression. All samples were sorted on the FACS Canto II flow cytometer and analysed using FACSDiva software (BD Biosciences).

Lung clonogenic assay. Fresh lung pieces were digested using Liberase reagent 1 U/ml (Promega) supplemented with DNase 100 U/ml (Sigma) for 30 m at 37 °C with mild agitation. We passed cell digests through a cell strainer and the resultant single cell suspension was centrifuged for 2 m at 1,400 rpm. We plated cells at serial dilutions in six well plates and grew in conditions favouring tumour cell growth, i.e. two weeks in RPMI media containing 10% FBS and 1% glutamine. Colonies formed from tumour cells resident in the lung were fixed with 70% ethanol and stained with 1% methylene blue (Sigma). We blind counted positive colonies and expressed as number of colonies per mg of lung tissue from which they originated.

Bioluminescence and fluorescence imaging. For bioluminescence, mice received an intraperitoneal injection (150 mg/kg) of VivoGlo™ Luciferin (Promega) 5 m before imaging. For fluorescence, mice received an intravenous injection (2 nmol per mouse) of MMPSense™ 750 FAST (PerkinElmer) 18 h before imaging. Signals plus grey scale photographic images were acquired using a Photon Imager™ (Biospace) and M3 Vision (Biospace). We maintained animals
under general anaesthesia with 1-2% isoflurane plus warming during image acquisition. We carried
out signal quantification (photons/s/cm²/sr) using M3 Vision (Biospace).

Immunohistochemistry (IHC) (fluorescent and chromogenic). We immunostained 5 um thick
tissue sections with antibodies to MAPK7 (Cell Signaling, #3372, 1:200 dilution), F4/80 (Abcam,
#Ab6640, 1:100 dilution), MMP9 (Abcam, #Ab38898, 1:200 dilution) and mannose receptor (MR)
(1:1,000 custom made). The reaction was revealed using either Vectastain ABC system (Vector
Labs) followed by DAB (Vector Labs) and counterstained with haematoxylin (chromogenic IHC) or
by fluorescence conjugated Alexa Fluor-488 and Alexa Fluor-594 secondary antibodies (Abcam,
#Ab150157, #Ab150080 1:1,000) counterstained via DAPI mounting medium (Abcam) (fluorescent
IHC).

Fluorescence activated cell sorting (FACS). We generated cell suspensions from fresh tumour
biopsies using Liberase reagent 1 U/ml (Promega) supplemented with DNase 100 U/ml (Sigma).
Mononuclear single cell suspensions were analysed by FACS. Briefly, cells were pelleted, washed
twice and suspended in FACS solution (PBS containing 10% FBS). Cells were incubated for 30 m
at 4 °C before being stained with the following antibody fluorophore conjugates: F4/80-P610
(Miltenyi, #130-107-709), CD11b-BUV661 (BD, #565080), CD45-A700 (BD, #565478), CD3-
PeCy7 (BD, #560591), CD4-PCP Cy5.5 (BD, #561115), CD25-421 (BD, #564571), CD127-PE
(BD, #562419), Ly6C-APC cy7 (BD, #128026) and Ly6G-AF-488 cy5.5 (BioLegend, #127625).
Compensation bead analysis was used to define fluorescence channel parameters. We assessed
cell viability by DAPI (Molecular Probes) to discriminate dead from live cells. We performed flow
cytometry with a FACScan (BD) and analysed using FlowJo software. Data were generated as %
of parent: myeloid cells. FACS gating strategy is shown in Suppl. Fig. 3.

Positron emission tomography (PET). Mice underwent dynamic baseline scanning when tumour
size had reached ~200 mm³. We anaesthetised mice with 1-2% isoflurane. We catheterised the
tail vein and placed mice in animal beds, i.e. Minerve small animal environment system (Bioscan).
We transferred beds to a preclinical PET/CT scanner (Siemens). At the start of the acquisition,
mice were injected with ~10 MBq of 18F DPA-714. We collected list mode data for 1 h. We maintained anaesthesia during image acquisition via a nose cone with respiration and temperature monitored throughout. Mice recovered in a warmed chamber after imaging. We re-scanned mice at 14 d and 28 d after treatment start.

Image reconstruction and data analysis. Before image reconstruction, the list mode data were histogrammed with a span of three and maximum ring differences of 79 into 3D sinograms with 19 time frames (5 × 60 s, 5 × 120 s, 5 × 300 s, 3 × 600 s). We reconstructed images using the 3DOSEM and MAP algorithm (4 OSEM3D iterations plus no MAP iterations with a requested resolution of 1.5 mm). We manually drew regions of interest (ROIs) over tumour, bone and contralateral bone as a reference using Inveon Research Workplace (Siemens). We performed further normalisation using the injected dose from the dose calibrator and mice weight to give a standardised uptake value (SUV). We calculated SUV mean as the average over all voxels within the ROI. We calculated normalised uptake value (NUV) by dividing the SUV mean from the tumour and the tumour bearing bone from the contralateral bone. We performed normalisations in case the treatment caused systemic effects that would modify tracer uptake in healthy tissue.

Statistical analysis. We evaluated variability between sequencing libraries using scatter plots, size-split box plots of the replicate-to-replicate differential expression, intersection and Jaccard similarity analysis. Empirical differential expression was confirmed by parametric (t) and non-parametric (Mann-Whiney-U, Wilcoxon signed-rank) tests. Differences in PET signal over time and sample tested were confirmed with two-way ANOVA. For all statistical tests we considered $p < 0.05$ as statistically significant. All data presented in Figs. 1-3 passed log$_2$ fold change ≥2, $p < 0.05$ and FDR ≤5% parameters.

DATA AVAILABILITY

All data supporting the findings of this study are available within the article and supplementary files or from the corresponding authors on request. Raw sequencing files are available at Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo) under the accessions GSE55282, GSE87624 and GSE140131.

ACKNOWLEDGEMENTS

This work was supported by The Humane Research Trust, Friends of Rosie, Big C, and Paget’s Association. We thank Teresa Brodie, Dionne Wortley, Emma Bruce, Jenny Ledwidge, Jennifer Gill, Joanne Taylor, Sukhpal Singh and staff at the FBMH Research Facilities for technical support. We thank Dr Luisa Martinez-Pomares for the MR antibody. We are indebted to the patients for their contribution to this study.

AUTHOR CONTRIBUTIONS

Study and experiment design: DG, WDF, KGF. Experiments: DG, HE, JT, JC, MB, DF, SA, FP, TR, MK. Bioinformatics: AS. Data analysis: DG, AS, AM, BB, KW, TD, WDF, KGF. Sample collection and clinical classification: DG, LJ, VS, AC, DR. Manuscript draft: DG, KGF. Revisions and manuscript approval: all authors.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1 Pan-cancer analysis of whole genomes. Nature 2020; 578: 82-93.

2 Anderson ND, de Borja R, Young MD, Fuligni F, Rosic A, Roberts ND et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science (New York, NY) 2018; 361.
Behjati S, Tarpey PS, Haase K, Ye H, Young MD, Alexandrov LB et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nature communications 2017; 8: 15936.

Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature cell biology 2000; 2: 737-744.

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature medicine 2018; 24: 541-550.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nature biotechnology 2016; 34: 525-527.

Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PloS one 2009; 4: e6529.

Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell reports 2014; 7: 104-112.

Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers 2014; 6: 240-296.

Finegan KG, Tournier C. The mitogen-activated protein kinase kinase 4 has a pro-oncogenic role in skin cancer. Cancer research 2010; 70: 5797-5806.
Finegan KG, Perez-Madrigal D, Hitchin JR, Davies CC, Jordan AM, Tournier C. ERK5 is a critical mediator of inflammation-driven cancer. Cancer research 2015; 75: 742-753.

Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B et al. UK guidelines for the management of bone sarcomas. Clinical sarcoma research 2016; 6: 7.

Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A et al. Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci U S A 2018; 115: E2801-e2810.

Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 2019; 176: 98-112.e114.

Green D, Mohorianu I, McNamara I, Dalmay T, Fraser WD. miR-16 is highly expressed in Paget's associated osteosarcoma. Endocrine-related cancer 2017; 24: L27-l31.

Green D, Singh A, Sanghera J, Jeys L, Sumathi V, Dalmay T et al. Maternally expressed, paternally imprinted, embryonic non-coding RNA are expressed in osteosarcoma, Ewing sarcoma and spindle cell sarcoma. Pathology 2018.

Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science (New York, NY) 2010; 330: 1410-1413.

Heymann MF, Lezot F, Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2017.
Hosseini H, Obradovic MM, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M et al. Early dissemination seeds metastasis in breast cancer. Nature 2016.

Jalili A, Mertz KD, Romanov J, Wagner C, Kalthoff F, Stuetz A et al. NVP-LDE225, a potent and selective SMOOTHERNED antagonist reduces melanoma growth in vitro and in vivo. PloS one 2013; 8: e69064.

Javaid S, Zhang J, Smolen GA, Yu M, Wittner BS, Singh A et al. MAPK7 Regulates EMT Features and Modulates the Generation of CTCs. Molecular cancer research : MCR 2015; 13: 934-943.

Katz Y, Wang ET, Silterra J, Schwartz S, Wong B, Thorvaldsdottir H et al. Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics (Oxford, England) 2015; 31: 2400-2402.

Kim SM, Lee H, Park YS, Lee Y, Seo SW. ERK5 regulates invasiveness of osteosarcoma by inducing MMP-9. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2012; 30: 1040-1044.

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics 2008; 9: 559.

Lin EC, Amantea CM, Nomanbhoy TK, Weissig H, Ishiyama J, Hu Y et al. ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proceedings of the National Academy of Sciences of the United States of America 2016; 113: 11865-11870.

Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM et al. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nature communications 2020; 11: 1383.
Lopez-Nieva P, Fernandez-Navarro P, Vaquero-Lorenzo C, Villa-Morales M, Grana-Castro O, Cobos-Fernandez MA et al. RNA-Seq reveals the existence of a CDKN1C-E2F1-TP53 axis that is altered in human T-cell lymphoblastic lymphomas. BMC cancer 2018; 18: 430.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014; 15: 550.

Matsui J, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clinical cancer research : an official journal of the American Association for Cancer Research 2008; 14: 5459-5465.

Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G et al. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. The Plant journal : for cell and molecular biology 2011; 67: 232-246.

Pearson AJ, Fullwood P, Toro Tapia G, Prise I, Smith MP, Xu Q et al. Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5). International journal of molecular sciences 2020; 21.

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature protocols 2016; 11: 1650-1667.

Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 2012; 148: 59-71.
Sachdev D, Yee D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Molecular cancer therapeutics 2007; 6: 1-12.

Shaw B, Burrell CL, Green D, Navarro-Martinez A, Scott D, Daroszewska A et al. Molecular insights into an ancient form of Paget's disease of bone. Proceedings of the National Academy of Sciences of the United States of America 2019; 116: 10463-10472.

Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America 2014; 111: E5593-5601.

Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 2011; 6: e21800.

Tesser-Gamba F, Petrilli AS, de Seixas Alves MT, Filho RJ, Juliano Y, Toledo SR. MAPK7 and MAP2K4 as prognostic markers in osteosarcoma. Human pathology 2012; 43: 994-1002.

Tesser-Gamba F, Lopes LJ, Petrilli AS, Toledo SR. MAPK7 gene controls proliferation, migration and cell invasion in osteosarcoma. Molecular carcinogenesis 2016; 55: 1700-1713.

Tome Y, Kimura H, Maehara H, Sugimoto N, Bouvet M, Tsuchiya H et al. High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of alpha(v)beta(3) integrin. Anticancer research 2013; 33: 3623-3627.
Vasiliadou I, Holen I. The role of macrophages in bone metastasis. Journal of bone oncology 2013; 2: 158-166.

Wang J, Shi Q, Yuan TX, Song QL, Zhang Y, Wei Q et al. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis. Clinica chimica acta; international journal of clinical chemistry 2014; 433: 225-231.

Waschkau B, Faust A, Schafers M, Bremer C. Performance of a new fluorescence-labeled MMP inhibitor to image tumor MMP activity in vivo in comparison to an MMP-activatable probe. Contrast media & molecular imaging 2013; 8: 1-11.

Weekes D, Kashima TG, Zandueta C, Perurena N, Thomas DP, Sunters A et al. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1. Oncogene 2016; 35: 2852-2861.

Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 2019.

Winer A, Adams S, Mignatti P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures Into Future Successes. Molecular cancer therapeutics 2018; 17: 1147-1155.

Yue B, Ren QX, Su T, Wang LN, Zhang L. ERK5 silencing inhibits invasion of human osteosarcoma cell via modulating the Slug/MMP-9 pathway. European review for medical and pharmacological sciences 2014; 18: 2640-2647.
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. Journal of biopharmaceutical statistics 2010; 20: 281-300.

Zheng J, Winkeler A, Peyronneau MA, Dolle F, Boisgard R. Evaluation of PET Imaging Performance of the TSPO Radioligand [18F]DPA-714 in Mouse and Rat Models of Cancer and Inflammation. Molecular imaging and biology 2016; 18: 127-134.

Zheng Y, Miyamoto DT, Wittner BS, Sullivan JP, Aceto N, Jordan NV et al. Expression of beta-globin by cancer cells promotes cell survival during blood-borne dissemination. Nature communications 2017; 8: 14344.

Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell 2016; 166: 288-298.

Zhou J, Liu T, Wang W. Prognostic significance of matrix metalloproteinase 9 expression in osteosarcoma: A meta-analysis of 16 studies. Medicine 2018; 97: e13051.

FIGURE LEGENDS

Fig. 1. Heat map based hierarchical cluster analysis of DE genes (x-axis) across tissue type (y-axis). Z score refers to high (red) and low (blue) gene expression using normalised values when compared to the mean of total sequencing reads. Pie charts below each heat map visually represent altered genes/pathways. **a.** Control bone versus primary tumour. **b.** Control bone versus metastatic lesion. **c.** Primary tumour versus metastatic lesion. There were few differences in gene expression between MAP treated and non-MAP treated patients. Patients are presented as one cohort, which will also include endogenous genetic heterogeneity. Each transcript presented has passed log2 fold change ≥2, p = <0.05 and FDR ≤5% parameters.
Fig 2. a. CTCs are positive for cell surface vimentin and negative for CD45. Scale bar is 50 uM. b. Pie chart visually represents the most enriched transcripts. c. Pie chart visually represents the least enriched transcripts. d. Gene-gene connections at high confidence (scores between 0.7 and 0.9). Line colour connecting genes indicates the known and predicted interactions. Blue lines represent data from curated databases. Pink lines represent data from experiments. Green lines represent gene neighbourhoods. Black lines represent co-expressed genes.

Fig. 3. a. Biplot principle component analysis (PCA) shows groups along the PC1 axis that correspond to primary (blue triangles) and metastatic (green circles) PBC plus controls (red crosses). b. WGCNA cluster dendrogram on all samples groups genes into distinct driver modules. Co-expression distance (TO, topology overlap) between genes (y-axis) and to genes (x-axis). Gene modules are colour coded. We selected the Green module where E2F1 is a hub gene for further analysis because of its relationship to TP53 and that MMP9 was a component of the module. c. Heat map based hierarchical cluster analysis of the Green module show clear and distinct expression patterns between tissue types. Z score refers to high (red) and low (blue) gene expression using normalised values when compared to the mean of total sequencing reads. d. Gene-gene connections for the Green module. e. GO analysis using REVIGO scatterplot visualisation shows the cluster representatives in a two dimensional space derived by applying multidimensional scaling to a matrix of the GO terms’ semantic similarities. Bubble colour indicates p value. Bubble size indicates the frequency of the GO term in the underlying gene ontology annotation GO term database. f. Molecular functions significantly affected.

Fig. 4. a. Immunoblot analysis of MAPK7 expression in 143B cells demonstrating knockdown efficiency of shMAPK7 lentiviral preparations E1, E2 and E3. E2 induced the greatest decrease in MAPK7. E2 mediated MAPK7 cells were used for the rest of the study and are referred to as shMAPK7 cells hereafter. b. Immunoblot analysis of MMP9 demonstrating loss of MMP9 expression following MAPK7 knockdown in 143B cells. c. qPCR analysis showing MAPK7 knockdown induces a significant decrease in MMP9 mRNA. MMP9 mRNA levels were normalised to PGK1 mRNA. d. ELISA analysis of culture media demonstrates that loss of MAPK7 significantly
reduces MMP9 secretion by 143B cells. e. Bioluminescence imaging (BLI) to measure tumour burden in mice implanted intrafemorally with control and shMAPK7 143B cells. Tumours derived from shMAPK7 cells have delayed growth compared to control and display no detectable metastatic spread to the lung (absence of BLI signal in lungs of animals harbouring shMAPK7 143B tumours). f. Tumour H&E stain from control and shMAPK7 tumours and lungs. g. Lung clonogenic assay to detect micro metastatic spread to the lung. Lungs from mice harbouring shMAPK7 tumours had virtually no lung clonogenicity (p = <0.001). Representative images are used to describe data collected from 12 mice per group. Data are mean ±SD of three biological replicates.

Fig. 5. a. Fluorescence imaging to detect active MMP9 in tumours in vivo. Tumours lacking MAPK7 had no detectable MMP9 activity. Images are from size matched control and shMAPK7 tumours. b. Quantified FLI signal in tumours over time. FLI signal indicative of MMP9 activity increases over time in control but not shMAPK7 tumours. c. IHC analysis of tumour biopsies. shMAPK7 tumours display marked reduction in MAPK7 expression but still display MAPK7 positive cells in the stroma (arrow). MMP9 expression was observed at the leading edge of control tumours (arrow) but was undetectable in shMAPK7 tumour biopsies. Scale bar is 100 um. d. qPCR analysis of ex vivo tumour lysates. shMAPK7 tumours have significantly less MMP9 mRNA expression. MMP9 mRNA levels were normalised to PGK1 (p = <0.001). Representative images are used to describe data collected from 12 mice per group. Data are mean ±SD of three biological replicates.

Fig. 6. a. FACS analysis of the immune profiles of control and shMAPK7 tumours. Immune profiles are normalised to the total CD45+ cells (% of parent myeloid cells) in each sample to enable direct comparison between groups. We show immune profiles from three representative control and shMAPK7 tumours. Data is presented as percentage of parent: myeloid cells. b. qPCR analysis of macrophages isolated from tumours. MMP9 mRNA was normalised to ACTB. Macrophages from shMAPK7 tumours have significantly less MMP9 expression suggesting tumour MAPK7 signalling regulates macrophage MMP9 expression. c. Positron emission tomography (PET) imaging using
18F DPA-714 tracer to detect intratumoural macrophage expression. Representative end point PET images are shown (heat map images). Tumours lacking MAPK7 have fewer macrophages than size matched control tumours and unlike control tumours do not display an increase in macrophage influx over the course of tumour growth (graph) ($p < 0.001$). **d.** Chromogenic IHC analysis of tumour biopsies. shMAPK7 tumours display marked reduction in intratumoural macrophages (F4/80). **e.** Fluorescent IHC analysis of tumour biopsies. shMAPK7 tumours have significantly fewer macrophages (F4/80). MAPK7 expression co-localises with macrophages in control tumours and is absent in shMAPK7 tumours. **f.** Fluorescent IHC analysis of lung biopsies from tumour bearing animals. Few ‘M2 like’ TAMs are detected in the lungs of mice bearing shMAPK7 tumours compared to a strong infiltration of ‘M2 like’ TAMs in the lungs of animals bearing control tumours (MR). Lungs from control animals have greater MAPK7 expression when compared to the lungs of animals bearing shMAPK7 tumours. Together this shows a tumour MAPK7 signal controls both TAM infiltration and MAPK7 activity at the metastatic site (lung). Scale bars are 100 uM. Representative images are used to describe data collected from 12 mice per group. Data are mean ±SD of three biological replicates.

Suppl. Fig. 1. Sashimi plots show alternatively spliced exons and flanking exons in representative samples. Per base expression is plotted (y-axis) with genomic coordinates (x-axis). Arcs represent splice junctions connecting exons and display the number of reads split across the junction (junction depth). mRNA isoforms are shown underneath each sashimi plot (exons in black squares with grey lines, introns as black lines). **a.** OGFOD2 is an example to show skipped exon events but the transcript also displays three other events. **b.** ATGD4 shows retained intron events but the transcript also displays three other events. **c.** TPM1 shows 5’ alternative splice site events but the transcript also displays three other events. **d.** TMEM218 shows 3’ alternative splice site events but the transcript also displays three other events. **e.** CPNE1 shows mutually exclusive events but the transcript also displays three other events. **f.** WBP1 is an example sashimi plot to show massive disruption by at least four of five alternative splicing events in one transcript that also occurs in OGFOD2, ATGD4, TPM1, TMEM218 and CPNE1.
Suppl. Fig. 2. a. MTT assay measuring cell proliferation *in vitro*. b. Exogenous expression of luciferase had no impact on cell proliferation rates. c. Luciferase activity assay *in vitro*. Luciferase activity in control versus shMAPK7 luciferase cells is equivalent. Bioluminescence signals (Fig. 4 and Fig. 5) are directly indicative of tumour growth rates *in vivo*. d. mRNA expression of oncogenic/metastatic genes in control cells or cells expressing constructs E1, E2 or E3 from Fig. 4. mRNA levels were normalised to control genes (*GAPDH* and *HPRT1*). *JNK1* is used as a negative control, i.e. is known to be unaffected by MAPK7 knockdown. Data are mean ±SD from three biological replicates (a-c). Data are from one biological replicate performed in triplicate (d).

Suppl. Fig. 3. FACS gating strategy.