Ramanujan type congruences for the Klingen-Eisenstein series

Toshiyuki Kikuta and Sho Takemori

February 14, 2014

2010 Mathematics subject classification: Primary 11F33 · Secondary 11F46

Key words: Congruences for modular forms, Klingen-Eisenstein series, Cusp forms, Ramanujan

Abstract

In the case of Siegel modular forms of degree n, we prove that, for almost all prime ideals p in any ring of algebraic integers, mod p^m cusp forms are congruent to true cusp forms of the same weight. As an application of this property, we give congruences for the Klingen-Eisenstein series and cusp forms, which can be regarded as a generalization of Ramanujan’s congruence. We will conclude by giving numerical examples.

1 Introduction

Kurokawa [9] found some examples of congruence relations on eigenvalues between the Klingen-Eisenstein series and Hecke eigen cusp forms, in the case of Siegel modular forms of degree 2. Mizumoto [12] and Katsurada-Mizumoto [6] showed some congruence properties of this kind for more general cases. In this paper, we prove congruences on Fourier coefficients between the Klingen-Eisenstein series and cusp forms, in the case of Siegel modular forms of degree n. We remark that congruences on Fourier coefficients are stronger properties than congruences on eigenvalues of eigen forms.

In order to show these congruences, we determine all mod p^m cusp forms which are congruent to true cusp forms, where “mod p^m cusp forms” are Siegel modular forms of degree n whose Fourier coefficients of rank r with $0 \leq r \leq n - 1$ vanish modulo p^m (see Definition 3.1). Namely, we can explain our main results as follows:

(1) In the case of Siegel modular forms of degree n, for almost all prime ideals p in any ring of algebraic integers, mod p^m cusp forms are congruent to true cusp forms of the same weight (Theorem 3.2).

(2) We take a prime ideal p such that a constant multiple of the Klingen-Eisenstein
series $\alpha[f]_r^n$ attached to a Hecke eigen cusp form f is a mod p^m cusp form. Then there exists a cusp form F such that $\alpha[f]_r^n \equiv F \mod p^m$ (Corollary 3.4).

The congruences we prove can be regarded as a generalization of Ramanujan's congruence which asserts that

$$\sigma_{11}(n) \equiv \tau(n) \mod 691,$$

where $\sigma_m(n)$ is the m-th Fourier coefficient of the Eisenstein series of weight 12 (i.e., the sum of m-th powers of the divisors of n) and $\tau(n)$ is the n-th Fourier coefficient of Ramanujan's Δ function. In the case of degree 2 and of $f = 1$ for the situation (2), we already proved these congruences in [7].

2 Preliminaries

2.1 Notation

First we confirm the notation. For the elementally facts, we refer to Klingen [8]. Let $\Gamma_n = Sp_n(\mathbb{Z})$ be the Siegel modular group of degree n and \mathbb{H}_n the Siegel upper-half space of degree n. We denote by $M_k(\Gamma_n)$ the \mathbb{C}-vector space of all Siegel modular forms of weight k for Γ_n, and $S_k(\Gamma_n)$ is the subspace of cusp forms.

Any $f(Z)$ in $M_k(\Gamma_n)$ has a Fourier expansion of the form

$$f(Z) = \sum_{0 \leq T \in \Lambda_n} a(T; F)q^T, \quad q^T := e^{2\pi i \operatorname{tr}(TZ)}, \quad Z \in \mathbb{H}_n,$$

where T runs over all elements of Λ_n, and

$$\Lambda_n := \{ T = (t_{ij}) \in \text{Sym}_n(\mathbb{Q}) \mid t_{ii}, 2t_{ij} \in \mathbb{Z} \}.$$

For a subring R of \mathbb{C}, let $M_k(\Gamma_n)_R \subset M_k(\Gamma_n)$ denote the R-module of all modular forms whose Fourier coefficients lie in R.

Let r be a non-negative integer with $0 \leq r \leq n - 1$. Let $\Delta_{n,r}$ be the (Klingen) parabolic subgroup of Γ_n defined by

$$\Delta_{n,r} := \left\{ \left(\begin{array}{cc} * & * \\ 0_{n-r,n+r} & * \end{array} \right) \in \Gamma_n \right\}.$$

Let k a positive even integer with $k > n + r + 1$ and $f \in S_k(\Gamma_r)$ a Hecke eigen form. Then the Klingen-Eisenstein series attached to f is defined by

$$[f]_r^n(Z) := \sum_{M = (\begin{array}{cc} A & B \\ C & D \end{array}) \in \Delta_{n,r} \setminus \Gamma_n} \det(CZ + D)^{-k}f((MZ)^*) \quad (Z \in \mathbb{H}_n);$$

here Z^* denotes the $r \times r$-submatrix in the upper left corner of Z. This series $[f]_r^n$ defines a Hecke eigen form which belongs to $M_k(\Gamma_n)$. Let K_f be the number field
generated over \(\mathbb{Q} \) by the eigenvalues of the Hecke operators over \(\mathbb{Q} \) on \(f \). Then it is known that \([f]_n^p \in M_k(\Gamma_n)_{K_f}\) by [10] [11] [15].

Let \(\Phi : M_k(\Gamma_n) \to M_k(\Gamma_{n-1}) \) be the Siegel \(\Phi \)-operator. Then we have

\[
\Phi([f]_n^p) = \begin{cases}
[f]_r^{n-1} & \text{if } n > r + 1, \\
 f & \text{if } n = r + 1.
\end{cases}
\] (2.1)

3 Main results and their proofs

3.1 Main results

Let \(K \) be an algebraic number field and \(\mathcal{O} = \mathcal{O}_K \) the ring of integers in \(K \). For a prime ideal \(\mathfrak{p} \) in \(\mathcal{O} \), we denote by \(\mathcal{O}_\mathfrak{p} \) the localization of \(\mathcal{O} \) at \(\mathfrak{p} \). First our main result concerns “mod \(\mathfrak{p}^m \) cusp forms” defined as

Definition 3.1. Let \(f \in M_k(\Gamma_n)_{\mathcal{O}_\mathfrak{p}} \). We call \(f \) a mod \(\mathfrak{p}^m \) cusp form if \(\Phi(f) \equiv 0 \mod \mathfrak{p}^m \).

Theorem 3.2. For a finite set \(S_n(K) \) of prime ideals in \(K \) depends on \(n \), we have the following: Let \(k > 2n \) and \(\mathfrak{p} \) be a prime ideal of \(\mathcal{O} \) with \(\mathfrak{p} \not\in S_n(K) \). Let \(f \in M_k(\Gamma_n)_{\mathcal{O}_\mathfrak{p}} \) be a mod \(\mathfrak{p}^m \) cusp form. In other words, we assume that \(f \in M_k(\Gamma_n)_{\mathcal{O}_\mathfrak{p}} \) satisfies \(\Phi(f) \equiv 0 \mod \mathfrak{p}^m \). Then there exists \(g \in S_k(\Gamma_n)_{\mathcal{O}_\mathfrak{p}} \) such that \(f \equiv g \mod \mathfrak{p}^m \).

Remark 3.3. Since there does not exist non-cusp form of odd weight, the statement for the case where \(k \) is odd in Theorem [3.2] is trivial.

We will see how to determine the exceptional set \(S_n(K) \) in the later section (Definition [3.9]). As an application of this theorem, we obtain congruences between the Klingen-Eisenstein series and cusp forms:

Let \(v_\mathfrak{p} \) be the normalized additive valuation with respect to \(\mathfrak{p} \). We define two values \(v_\mathfrak{p}(f) \) and \(v_\mathfrak{p}^{(n')}(f) \) for \(f \in M_k(\Gamma_n)_K \) by

\[
v_\mathfrak{p}(f) := \min\{v_\mathfrak{p}(a_f(T)) \mid T \in \Lambda_n\},
\]

\[
v_\mathfrak{p}^{(n')}(f) := \min\{v_\mathfrak{p}(a_f(T)) \mid T \in \Lambda_n, \text{ rank}(T) = n' \} \quad (0 \leq n' \leq n).
\]

Then we have

Corollary 3.4. Let \(k > 2n \) be even and \(f \in S_k(\Gamma_n)_{K_f} \) (\(n > r \)) a Hecke eigen form. For the Klingen-Eisenstein series \([f]_n^p \) attached to \(f \), we choose a prime ideal \(\mathfrak{p} \) in \(\mathcal{O}_{K_f} \) with \(\mathfrak{p} \not\in S_n(K_f) \) such that \(v_\mathfrak{p}^{(n)}([f]_n^p) = v_\mathfrak{p}(\Phi([f]_n^p)) - m \) (\(m \in \mathbb{Z}_{\geq 1} \)). Then there exists \(F \in S_k(\Gamma_n)_{\mathcal{O}_\mathfrak{p}} \) such that \(\alpha[f]_n^p \equiv F \mod \mathfrak{p}^m \) for some \(0 \neq \alpha \in \mathfrak{p}^m \).

Remark 3.5. (1) The assumption \(v_\mathfrak{p}^{(n)}([f]_n^p) = v_\mathfrak{p}(\Phi([f]_n^p)) - m \) is equivalent to the fact that \(\alpha[f]_n^p \) is a non-zero mod \(\mathfrak{p}^m \) cusp form for some \(\alpha \in \mathfrak{p}^m \) satisfying \(v_\mathfrak{p}(\alpha[f]_n^p) = 0 \).
(2) For a prime l and $1 \leq i \leq n$, we define Hecke operators $T(l)$ and $T_i(l^2)$ by $T(l) = \Gamma_n \text{diag}(1_1, l_1) \Gamma_n$ and $T_i(l^2) = \Gamma_n \text{diag}(1_i, l_{1-i}, l_i, l_{1-n-i}) \Gamma_n$. For an eigen form F and a Hecke operator T, we denote by $\lambda(T, F)$ the Hecke eigenvalue of T. By Deligne-Serre lifting lemma ([3] Lemma 6.11), we can take an eigen form $G \in S_k(\Gamma_n)$ such that $\lambda(T, [f]^n_i) \equiv \lambda(T, G)$ mod \mathfrak{p} for $T = T(l)$, $T_i(l^2)$, $l \neq p$ and $1 \leq i \leq n$.

(3) If $r = 0$, $[f]^n_i$ is the ordinary Siegel-Eisenstein series. In particular, if $n = 2$, this was proved by [7].

Using the integrality theorem obtained by Mizumoto [14], we can give conditions on \mathfrak{p} to find congruences for the Klingen-Eisenstein series and cusp forms as in Corollary 3.4. We shall introduce an example:

To apply his theorem, we assume that
(i) $f \in M_k(\Gamma_r) \mathcal{O}_{K_f}$, and one of the Fourier coefficients of f is equal to 1,
(ii) $L(k - r, f, St) \neq 0$, where $L(s, f, St)$ is the standard L-function of f.

Then Mizumoto’s result states that

$$a(T; [f]^n_i) \in c_k(r, n) \mu_k(r) \prod_{i=r+1}^{n} \text{Num} \left(\frac{B_{2k-2i}}{k-i} \right)^{-1} \cdot L^*(k - r, f, St)^{-1} \mathcal{A}(f)^{-1}$$

for some $c_k(r, n) \in \mathbb{Q}^\times$ and $\mu_k(r) \in \mathbb{Z}$ which are computable. Here $\mathcal{A}(f)$ is an integral ideal of \mathcal{O}_{K_f}, $\text{Num}(\ast)$ is the numerator,

$$L^*(k - r, f, St) := \frac{L(k - r, f, St)}{\pi^{(2r+1)k-\frac{3(r+1)}{2}}} \in K_f$$

and (f, f) is the Petersson norm of f. For the precise definitions of these numbers, see [14]. This property tells us all possible primes appearing in denominators of all Fourier coefficients of $[f]^n_i$, since the property (2.1).

For example, we consider a simple case where $r = n - 1$. We choose \mathfrak{p} satisfying

$$v_{\mathfrak{p}} \left(c_k(r, n) \mu_k(r)^{-1} \prod_{i=r+1}^{n} \text{Num} \left(\frac{B_{2k-2i}}{k-i} \right)^{-1} \cdot L^*(k - r, f, St)^{-1} \right) = -m.$$

Then $[f]^n_i$ is a mod \mathfrak{p}^m cusp form for any $\alpha \in \mathfrak{p}^m$. Applying Theorem 3.2, we can find $F \in S_k(\Gamma_n)_{\mathcal{O}_{\mathfrak{p}}}$ such that $[f]^n_i \equiv F$ mod \mathfrak{p}^m. Remark that it may become $[f]^n_i \equiv F \equiv 0$ mod \mathfrak{p}^m for this choice of \mathfrak{p}, compared with Corollary 3.4.

3.2 Proof of the theorem

In order to define $S_n(K)$ and to prove the theorem, we start with introducing some basic properties.

Lemma 3.6. Let $\bigoplus_k M_k(\Gamma_n)_{\mathbb{Z}(p)} = \mathbb{Z}(p)[f_1, \ldots, f_s]/C$ with a relation C among the generators. Then we have $\bigoplus_k M_k(\Gamma_n)_{\mathcal{O}_p} = \mathcal{O}_p[f_1, \ldots, f_s]/C$.

Proof. By the same argument of Mizumoto [13] Lemma A.4, we have $M_k(\Gamma_n)_\mathbb{Z(p)} \otimes \mathbb{Z(p)} = \mathcal{O}_p = M_k(\Gamma_n)_\mathcal{O}_p$. Thus we have

$$\bigoplus_k M_k(\Gamma_n)_\mathcal{O}_p = \left(\bigoplus_k M_k(\Gamma_n)_\mathbb{Z(p)} \right) \otimes \mathbb{Z(p)} \mathcal{O}_p = (\mathbb{Z(p)}[f_1, \ldots, f_s]/C) \otimes \mathbb{Z(p)} \mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C.$$

The finite generation of \(\bigoplus_k M_k(\Gamma_n)_\mathbb{Z} \) is known by Faltings-Chai [4]. Namely, we always assume that \(\bigoplus_k M_k(\Gamma_n)_\mathbb{Z(p)} = \mathbb{Z(p)}[f_1, \ldots, f_s]/C \) for any prime \(p \) and hence also that \(\bigoplus_k M_k(\Gamma_n)_\mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C \) for any prime ideal \(p \).

Lemma 3.7. Assume that \(\bigoplus_k M_k(\Gamma_n)_\mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C \) with \(f_i \in M_k(\Gamma_n)_\mathcal{O}_p \). Let \(M \) be a natural number. We take the minimum of integers \(\alpha_i \in \mathbb{Z}_{\geq 0} \) such that, the weight of \(f_i^{\alpha_i} \) is strictly greater than \(M \). Then the graded algebra \(\bigoplus_{M < k} M_k(\Gamma_n)_\mathcal{O}_p \) is generated over \(\mathcal{O}_p \) by the following finitely many monomials:

\[
\begin{align*}
 f_1^{\alpha_1}, \ldots, f_s^{\alpha_s}, \\
 f_1^{i_1} \cdots f_s^{i_s} \quad (i_1k_1 + \cdots + i_sk_s > M, \ 0 \leq i_j < 2\alpha_j).
\end{align*}
\]

Proof. First, we remark that any \(g \in M_k(\Gamma_n)_\mathcal{O}_p \) can be written by a linear combination of monomials of the form \(f_1^{\alpha_1} \cdots f_s^{\alpha_s} \). Hence we may consider only the case \(g = f_1^{\alpha_1} \cdots f_s^{\alpha_s} \).

Let \(k_0 := \alpha_1k_1 + \cdots + \alpha_sk_s \). If \(2k_0 \geq k > M \), then the assertion is trivial. Hence, we assume that \(k > 2k_0 \). Now we consider \(\alpha_i = \alpha_iq_i + r_i \ (0 \leq r_i < \alpha_i) \). Then there exists \(j_0 \) such that \(q_{j_0} \geq 1 \) because of \(k > 2k_0 \). In this case, we may consider the following decomposition:

\[
\begin{align*}
 g &= h_1 \cdot h_2, \\
 h_1 &:= f_1^{r_1} \cdots f_{j_0-1}^{r_{j_0-1}} f_{j_0}^{r_{j_0} + \alpha_j_{j_0}} f_{j_0+1}^{r_{j_0+1}} \cdots f_s^{r_s}, \\
 h_2 &:= f_1^{\alpha_1q_1} \cdots f_{j_0-1}^{\alpha_{j_0-1}q_{j_0-1}} f_{j_0}^{\alpha_{j_0}(q_{j_0}-1)} f_{j_0+1}^{\alpha_{j_0+1}q_{j_0+1}} \cdots f_s^{\alpha_sq_s}.
\end{align*}
\]

Then, both \(h_1 \) and \(h_2 \) are written by the monomials of (3.1) and (3.2). This completes the proof.

Lemma 3.8. For \(k > 2n \), the restricted Siegel \(\Phi \)-operator \(\Phi_K : M_k(\Gamma_n)_K \to M_k(\Gamma_{n-1})_K \) is surjective.

Proof. By Shimura [17], we have \(M_k(\Gamma_n)_K = M_k(\Gamma_n)_\mathbb{Q} \otimes \mathbb{Q} K \). Since \(\mathbb{C} \) is faithfully flat over \(K \), the surjectivity of \(\Phi_K \) is equivalent to that of \(\Phi : M_k(\Gamma_n)_\mathbb{C} \to M_k(\Gamma_{n-1})_\mathbb{C} \). The surjectivity of \(\Phi \) was proved by Klingenberg [8]. Therefore, we obtain the assertion of the lemma.

\[\square\]
In order to prove the theorem, it suffices to consider the case where the weight is even (see Remark 3.3). From Lemma 3.7, we may assume that $\bigoplus_{2n<k\in\mathbb{Z}} M_k(\Gamma_{n-1})\mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C$. Applying Lemma 3.8, we have $\Phi^{-1}_K(f_i) \neq \phi$ for any i with $1 \leq i \leq s$.

We are now in a position to define the set $S_n(K)$ and to prove Theorem 3.2.

Definition 3.9. Let $S_n(K)$ be the set of all prime ideals p in \mathcal{O} such that, there exists i which satisfies that for all $F_i \in \Phi^{-1}_K(f_i)$ we have $v_p(F_i) < 0$. Note that $S_n(K)$ is a finite set depends on n not depends on generators of $\bigoplus_{2n<k\in\mathbb{Z}} M_k(\Gamma_{n-1})\mathcal{O}_p$ (Remark 3.10 in Subsection 3.3).

Proof of Theorem 3.2. We choose a polynomial $P \in \mathcal{O}_p[x_1, \ldots, x_s]$ such that $\Phi(F) = P(f_1, \ldots, f_s)$. Since $\Phi(F) = P(f_1, \ldots, f_s) \equiv 0$ mod p^n, there exists $\gamma \in p^n$ such that $\gamma^{-1}\Phi(F) \in M_k(\Gamma_{n-1})\mathcal{O}_p$. In fact, we may choose γ as $\gamma := a(T_0; \Phi(f))$ for some T_0 which satisfies $v_p(a(T_0; \Phi(f))) = v_p(\Phi(f))$. Hence we can find $Q \in \mathcal{O}_p[x_1, \ldots, x_s]$ such that $\gamma^{-1}\Phi(F) = Q(f_1, \ldots, f_s)$. Since $p \notin S_n(K)$, there exists $F_i \in \Phi^{-1}_K(f_i)$ such that $v_p(F_i) \geq 0$ for each i with $1 \leq i \leq s$. Then $F_i \in \gamma Q(F_1, \ldots, F_s) + \text{Ker}\Phi$. Hence there exists $G \in \text{Ker}\Phi$ such that $F = \gamma Q(F_1, \ldots, F_s) + G$. Note that $Q(F_1, \ldots, F_s) \in M_k(\Gamma_n)\mathcal{O}_p$ because of $v_p(F_i) \geq 0$ and hence $G \in S_k(\Gamma_n)\mathcal{O}_p$. This implies $F \equiv G$ mod p^n because of $\gamma \in p^n$. This completes the proof of Theorem 3.2. \hfill \Box

3.3 Remark on $S_n(K)$

Remark 3.10. For each prime ideal p, it does not depend on the choice of generators of $\bigoplus_{2n<k\in\mathbb{Z}} M_k(\Gamma_{n-1})\mathcal{O}_p$ whether p belongs to the exceptional set $S_n(K)$ or not. Namely, we get the following property: Assume that $\bigoplus_{2n<k\in\mathbb{Z}} M_k(\Gamma_{n-1})\mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C = \mathcal{O}_p[f'_1, \ldots, f'_s]/C'$. If we can take $F_i \in M_k(\Gamma_n)\mathcal{O}_p$ such that $\Phi(F_i) = f_i$ for each i with $1 \leq i \leq s$, then we can take $F'_i \in M_k(\Gamma_n)\mathcal{O}_p$ such that $\Phi(F'_i) = f'_i$ for each j with $1 \leq j \leq t$.

Proof. For each $1 \leq j \leq t$, we can write as $f'_i = P(f_1, \ldots, f_s)$ for some polynomial $P \in \mathcal{O}_p[x_1, \ldots, x_s]$. If we put $F'_i := P(F_1, \ldots, F_s)$, then $F'_i \in M_k(\Gamma_n)\mathcal{O}_p$ and $\Phi(F'_i) = f'_i$. \hfill \Box

Remark 3.11. (1) We have $S_n(K) \subset \{p \mid p \cap \mathbb{Z} \in S_n(\mathbb{Q})\}$. Hence, to obtain the congruences as in Corollary 3.7, it suffices to except the prime ideals above p with $(p) \in S_n(\mathbb{Q})$.

(2) Let $g := [K: \mathbb{Q}] < \infty$. Then $S_n(K) \supset \{p \mid p \cap \mathbb{Z} = (p) \in S_n(\mathbb{Q}), {p} \nmid g\}$.

Proof. (1) Let $p \in S_n(K)$. If we assume that $\bigoplus_k M_k(\Gamma_n)\mathcal{Z}(p) = \mathcal{Z}(p)[f_1, \ldots, f_s]/C$, then $\bigoplus_k M_k(\Gamma_n)\mathcal{O}_p = \mathcal{O}_p[f_1, \ldots, f_s]/C$ by Lemma 3.6. Since $p \in S_n(K)$, there exists i with $1 \leq i \leq s$ such that for all $F_i \in \Phi^{-1}_K(f_i)$, we have $v_p(F_i) < 0$. In particular, for all $F_i \in \Phi^{-1}_K(f_i)$, we have $v_p(F_i) < 0$.

(2) Let $p \cap \mathbb{Z} = (p) \in S_n(\mathbb{Q}), {p} \nmid g$ and $\bigoplus_k M_k(\Gamma_n)\mathcal{Z}(p) = \mathcal{Z}(p)[f_1, \ldots, f_s]/C$. Seeking
a contradiction, we suppose that, for each i with $1 \leq i \leq s$, there exists $F_i \in \Phi^{-1}_k(f_i)$ such that $v_p(F_i) \geq 0$. We consider $G_i := \sum_{\sigma \in \text{Emb}(K, \mathbb{C})} F_i^\sigma \in M_k(\Gamma_n)_{\mathbb{Q}}$. Note that $G_i \in M_k(\Gamma_n)_{\mathbb{Z}(p)}$ because of $v_p(F_i) \geq 0$ and that $\Phi(G_i) = g f_i$ since $\Phi(F_i^\sigma) = f_i \in M_k(\Gamma_n)_{\mathbb{Q}}$ for any $\sigma \in \text{Emb}(K, \mathbb{C})$. By the assumption $p \nmid g$, we have $v_p(g^{-1} G_i) \geq 0$ and $g^{-1} G_i \in \Phi^{-1}_k(f_i)$. This contradicts for $p \cap \mathbb{Z} = \langle p \rangle \in S_n(\mathbb{Q})$.

We have $S_2(\mathbb{Q}) \subset \{2, 3\}$ by [7]. We shall consider $S_3(\mathbb{Q})$. Let $E_k^{(n)} \in M_k(\Gamma_n)_{\mathbb{Q}}$ be the normalized Siegel-Eisenstein series of weight k and degree n. Let $X_k \in S_k(\Gamma_2)_{\mathbb{Z}}$ ($k = 10, 12$) be Igusa’s cusp forms normalized as $a \left(\left(\begin{smallmatrix} 1 & 1/2 \\ 0 & 1 \end{smallmatrix} \right) ; X_k \right) = 1$ in [5]. Then $\bigoplus_{k \in \mathbb{Z}} M_k(\Gamma_2)_{\mathbb{Z}(p)} = \mathbb{Z}(p) [E_4^{(2)}, E_6^{(2)}, X_{10}, X_{12}]$ holds for any prime $p \geq 5$ (cf. Nagaoka [10]). Note that $E_k^{(3)} \in \Phi^{-1}_k(E^{(2)}_k)$ for any even k. We can construct $F_k \in \Phi^{-1}_k(X_k)$ ($k = 10, 12$) by

$$F_{10} : = -\frac{43867}{2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 53} (E_{10}^{(3)} - E_4^{(3)} E_6^{(3)}),$$

$$F_{12} : = \frac{131 \cdot 593}{2^{11} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 337} (3^2 \cdot 7^2 E_4^{(3)} E_6^{(3)} + 2 \cdot 5^3 E_6^{(3)} E_4^{(3)} - 691 E_{12}^{(3)}).$$

Moreover, we know all possible primes which appear in the denominators of $E_k^{(3)}$ by Böcherer’s results [1]. Hence, it suffices to except all primes in the denominators of the constant factors in (3.3) and all possible primes appearing the denominators of $E_k^{(3)}$ for $k = 4, 6, 10, 12$. In this way, we get

$$S_3(\mathbb{Q}) \subset \{2, 3, 5, 7, 53, 131, 337, 593, 43867\}$$

Problem 3.12. For the general degree cases, give an explicit bound C_n such that

$$\max S_n(\mathbb{Q}) < C_n.$$

4 Numerical examples

We give some numerical examples of Corollary 3.4 for the case of degree 2. For simplicity, we put $E_k := E_k^{(2)}$. Let $\Delta \in S_{12}(\Gamma_1)$ be Ramanujan’s delta function. We write simply (m, r, n) for $\left(\begin{smallmatrix} n & r \\ \frac{1}{2} & m \end{smallmatrix} \right) \in \Lambda_2$. In the following construction of examples, we apply Sturm type theorem obtained by [2]. In order to prove a congruence between two modular forms of even weight k of degree 2 by using the theorem in [2], it suffices to check the congruences for Fourier coefficients for

$$T = (1, 0, 1), (1, 1, 1) \quad \text{if} \quad 10 \leq k \leq 18,$$

$$T = (1, 0, 1), (1, 0, 2), (1, 1, 1), (1, 1, 2), (2, 0, 2), (2, 1, 2), (2, 2, 2) \quad \text{if} \quad 20 \leq k \leq 28.$$

The reason is that all Fourier coefficients corresponding to $(n, r, m), (m, r, n), (n, -r, m), (m, -r, n)$ are the same in the case of even weight.
Weight 12

We consider a Hecke eigen form \(f_{12} := 7\Delta \in S_{12}(\Gamma_1) \). Then the Klingen-Eisenstein series \([f_{12}]_2^1 \) is a mod 7 cusps form. Hence, there exists a cusps form \(F_{12} \in S_{12}(\Gamma_2) \) such that \([f_{12}]_1^2 \equiv F_{12} \mod 7 \) by Corollary 3.4. In fact, we can confirm this congruence as follows: We set \(F_{12} := X_{12} \in S_{12}(\Gamma_2) \). The following table is of the Fourier coefficients modulo 7 of \([f_{12}]_2^1\) and \(F_{12}\):

\(T = (m, r, n) \)	\(a(T; [f_{12}]_2^1) \)	\(a(T; F_{12}) \)	modulo 7
(1, 0, 1)	1242	10	3
(1, 1, 1)	92	1	1

Applying Sturm type theorem mentioned above, we have \([f_{12}]_1^2 \equiv F_{12} \mod 7\).

Weight 16

Let \(a \) be a root of the polynomial \(x^2 - x - 12837 \) and put \(K = \mathbb{Q}(a) \). Since \(\dim S_{16}(\Gamma_1) = 1 \), we can find a unique cusps form \(f_{16} \in S_{16}(\Gamma_1) \) such that \(a(1; f_{16}) = 7^2 \cdot 11 \). If we put \(p = (7, a+4) \), then \([f_{16}]_2^1\) is a mod \(p^2 \) cusps form. There exists a unique normalized Hecke eigen form \(g_{30} \in S_{30}(\Gamma_1) \) such that the eigenvalue is \(-192a + 4416\) for the Hecke operator \(T(2) \). Let \(F_{16} \in S_{16}(\Gamma_2) \) be the Saito-Kurokawa lift of \(g_{30} \) normalized as the table below. Then we have \([f_{16}]_1^2 \equiv F_{16} \mod p^2\). In fact, their Fourier coefficients are given in the following table:

\(T = (m, r, n) \)	\(a(T; [f_{16}]_2^1) \)	\(a(T; F_{16}) \)	modulo \(p^2 \)
(1, 0, 1)	5394	\(80a + 3600 \)	4
(1, 1, 1)	124	\(8a + 1248 \)	26

Applying Sturm type theorem repeatedly, we have \([f_{16}]_1^2 \equiv F_{16} \mod p^2\).

Weight 20

In this case also \(\dim S_{20}(\Gamma_1) = 1 \). Thus there exists a unique cusps form \(f_{20} \in S_{20}(\Gamma_1) \) such that \(a(1; f_{20}) = 11 \cdot 71^2 \). Then \([f_{20}]_1^2\) is a mod \(71^2 \) cusps form. Let \(F_{20} \in S_{20}(\Gamma_2) \) be the unique Hecke eigen form such that \(F_{20} \) is not Saito-Kurokawa lift. Explicitly, we can write as

\[
F_{20} = 38(E_4 E_6 X_{10} + E_4^2 X_{12} - 1785600 X_{10}^2).
\]

Then we have \([f_{20}]_1^2 \equiv F_{20} \mod 71^2\). In fact, we can confirm this by the following table and an application of Sturm type theorem:
\[T = (m, r, n) \quad a(T; [f_{20}]^2) \quad a(T; F_{20}) \quad \text{modulo } 71^2 \]

	\(a(T; [f_{20}]^2) \)	\(a(T; F_{20}) \)
\(1, 0, 1 \)	10386	304
\(1, 0, 2 \)	1925356716	198816
\(1, 1, 1 \)	76	76
\(1, 1, 2 \)	162929376	4256
\(2, 0, 2 \)	1238800286736	-335343616
\(2, 1, 2 \)	385264596000	278989920
\(2, 2, 2 \)	9084897120	-63912960

Weight 22

Since \(\dim S_{22}(\Gamma_1) = 1 \), there exists a unique cusp form \(f_{22} \in S_{22}(\Gamma_1) \) such that \(a(1; f_{22}) = 7 \cdot 13 \cdot 17 \cdot 61 \cdot 103 \). Then \([f_{22}]^2\) is a mod 61 cusp form. Let \(F_{22} \in S_{22}(\Gamma_2) \) be the unique Hecke eigen form such that \(F_{22} \) is not Saito-Kurokawa lift. Explicitly, we can write as

\[
F_{22} = 2 \cdot 3^{-2}(-61E_4^3X_{10} - 5E_6^2X_{10} + 30E_4E_6X_{12} + 80870400X_{10}X_{12}).
\]

Then we have \([f_{22}]^2 \equiv F_{22} \text{ mod } 61\). In fact, we can confirm this by the following table and Sturm type theorem:

	\(a(T; [f_{22}]^2) \)	\(a(T; F_{22}) \)
\(1, 0, 1 \)	-179610	96
\(1, 0, 2 \)	-133169475780	-1728
\(1, 1, 1 \)	-740	-8
\(1, 1, 2 \)	-8620265280	-10752
\(2, 0, 2 \)	54428790246720	-313368576
\(2, 1, 2 \)	15093047985984	142287360
\(2, 2, 2 \)	223472730240	17725440

Acknowledgment

The authors would like to thank Professor S. Nagaoka and Professor S. Böcherer for the valuable discussions about the proofs. The authors would also like to thank Professor H. Katsurada for his informing them about the value of congruences on Fourier coefficients between Klingen-Eisenstein series and cusp forms.

References

[1] S. Böcherer, Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, manuscripta math. 45 (1985), 273-288.

[2] D. Choi, Y. Choie, T. Kikuta, Sturm type theorem for Siegel modular forms of genus 2 modulo \(p \), Acta Arith. 158 2, 129-139 (2013).
[3] P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. scient. Ec. Norm. Sup. 7 507-530 (1974).

[4] G. Faltings, C-L. Chai, Degeneration of abelian varieties, Ergebnisse der Math. 22, Springer-Verlag, (1990).

[5] J. Igusa, On the ring of modular forms of degree two over \mathbb{Z}, Amer. J. Math. 101 1, 149-183 (1979).

[6] H. Katsurada, S. Mizumoto, Congruences for Hecke eigenvalues of Siegel modular Forms. Abh. Math. Sem. Univ. Hambg. 82 129-152 (2012).

[7] T. Kikuta, S. Nagaoka, Ramanujan type congruences for modular forms of several variables, Ramanujan J. 32 143-157 (2012)

[8] H. Klingen, Introductory lectures on Siegel modular forms. Cambridge Univ. Press 1990.

[9] N. Kurokawa, Congruences between Siegel modular forms of degree two. Proc. Japan Acad., Ser. A, 55 (1979), 417-422.

[10] N. Kurokawa, On Eisenstein series for Siegel modular groups. Proc. Jpn. Acad. A 57, 51-55 (1981)

[11] N. Kurokawa, On Eisenstein series for Siegel modular groups II. Proc. Jpn. Acad. A 57, 315-320 (1981)

[12] S. Mizumoto, Congruences for Eigenvalues of Hecke Operators on Siegel Modular Forms of Degree Two, Math. Ann. 275 149-161 (1986).

[13] S. Mizumoto, Congruences for Fourier coefficients of lifted Siegel modular forms I: Eisenstein lifts. Abh. Math. Semin. Univ. Hambg. 75, 97-120(2005).

[14] S. Mizumoto, On Integrality of Eisenstein liftings. Manuscripta math. 89 (1996), 203-235.

[15] S. Mizumoto, Poles and residues of standard L-functions attached to Siegel modular forms. Math. Ann. 289, 589-612 (1991)

[16] S. Nagaoka, Note on mod p Siegel modular forms, Math. Z. 235, 227-250(2000), ibid. 251,821-826(2005).

[17] G. Shimura, On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Göttingen Math.-Phys.Kl.II 17 (1975), 261-268.
Toshiyuki Kikuta
College of Science and Engineering
Ritsumeikan University
1-1-1 Noji-higashi, Kusatsu
Shiga 525-8577, Japan
E-mail: kikuta84@gmail.com

Sho Takemori
Department of Mathematics,
Kyoto University
Kitashirakawa-Oiwa-Cho, Sakyo-Ku,
Kyoto, 606-8502, Japan
E-mail: takemori@math.kyoto-u.ac.jp