The World Health Organization (WHO) International Standard for HIV-1 RNA nucleic acid assays was characterized by complete genome deep sequencing analysis. The entire coding sequence and flanking long terminal repeats (LTRs), including minority species, were assigned subtype B. This information will aid the design, development, and evaluation of HIV-1 RNA amplification assays.

Ensuring the safety of blood and blood products from the introduction of human immunodeficiency virus 1 (HIV-1) and the monitoring of HIV-1 RNA concentrations in blood and tissue components of HIV-1-infected patients has been strengthened by the ongoing development of genome amplification techniques in conjunction with the availability of an internationally recognized standard for HIV-1 RNA (1). However, the genetic composition of the biological materials used to derive the World Health Organization (WHO) International Standard for HIV-1 RNA has not hitherto been fully elucidated.

Here, we report the complete genome sequence of the WHO International Standard for HIV-1 RNA. The virus was originally recovered in the United Kingdom in 1994 during postmortem analysis of an HIV-1-infected patient by coculture on human peripheral blood mononuclear cells (2). Viral RNA was extracted using a QIAamp Viral RNA Minikit (Qiagen). The HIV-1 genome was reverse transcribed and amplified in four overlapping amplicons using a "pan"-HIV-1 primer set (3). Amplicons were pooled in equimolar amounts for Illumina library preparation, including a unique bar code for the sample, and sequenced using MiSeq 250-bp paired-end technology in a pool of 25 libraries (4). De novo assembly was performed using SPAdes version 2.4.0 (5). Resulting contiguous sequences were aligned with the sequence of the HIV-1 reference strain HxB2 (NC_001802), and a consensus sequence was generated using abacas version 1.3.1 and MUMmer version 3.2 (6). Subsequently, reads were mapped against the consensus sequence using SMALT version 0.5.0 (http://www.sanger.ac.uk/resources/software/smalt/) to analyze read depth and minority species.

The sequence of the WHO International Standard for HIV-1 RNA described here is 8,926 nucleotides (nt) long and has a G+C content of 41.1%. It contains the complete coding sequence (8,606 nt) with nine open reading frames (gag, pol, vif, vpr, tat, rev, vpu, env, and nef), as well as the complete U5 and partial R region of the 3′-LTR of the HIV-1 RNA genome. BLAST analysis (7) revealed the highest similarity with the subtype B HIV-1 isolate 5084-83 clone pbf1 from United States (AY835754) (total score 14,652, 95% identity, and 99% coverage). The subtype B of the WHO International Standard for HIV-1 RNA was confirmed by neighbor-joining phylogenetic analysis using PAUP* version 4.0b10b (8) and analysis with the Recombinant Identification Program (9). The mean read depth was 9,167-fold (±6,197 standard deviation [SD]) with a minimum of 25-fold. There are 224 positions with a minority nucleotide that differs from the consensus sequence and has a frequency of >1% and a Phred quality score of >30%, i.e., a base call accuracy of 99.9%.

This is the first report for the complete genome sequence of the WHO International Standard for HIV-1 RNA. The standard is widely used in the development and evaluation of genome amplification assays for HIV-1 RNA quantification, which provide important clinical data for the management of HIV-1-infected patients, primarily in viral load determination. The complete genome sequence reported here will minimize ambiguity or bias in oligonucleotide fidelity and selection to further aid assay development and ensure secure clinical management of HIV-1-infected individuals.

Nucleotide sequence accession number. The complete genome sequence of the WHO International Standard for HIV-1 RNA reported here has been deposited in GenBank under the accession number KJ019215.

ACKNOWLEDGMENT

This work was supported by the Wellcome Trust.

REFERENCES

1. Davis C, Berry N, Heath A, Holmes H. 2008. An international collaborative study to establish a replacement World Health Organization International Standard for human immunodeficiency virus 1 RNA nucleic acid assays. Vox Sang. 95:218–225. http://dx.doi.org/10.1111/j.1423-0410.2008.01086.x.
2. Donaldson YK, Bell JE, Holmes EC, Hughes ES, Brown HK, Simmonds P. 1994. In vivo distribution and cytopathology of variants of human immunodeficiency virus type 1 showing restricted sequence variability in the V3 loop. J. Virol. 68:5991–6005.

3. Gall A, Ferns B, Morris C, Watson S, Cotten M, Robinson M, Berry N, Pillay D, Kellam P. 2012. Universal amplification, next-generation sequencing, and assembly of HIV-1 Genomes. J. Clin. Microbiol. 50:3838–3844. http://dx.doi.org/10.1128/JCM.01516-12.

4. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell GR, Boutell JM, Bryant J, Carter RJ, Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu XH, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatoavo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzenev SS, Vermaas EH, Walter K, Wu XL, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey IR, Bancarz S, Banerjee SG, Barbour BA, Baybayan VA, Benoit K, Benson C, Bevis PJ, Black A, Boodhun JS, Brennan JA, Bridgham RC, Brown AA, Brown DH, Buermann AA, Bundu JC, Burrows NP, Carter N, Castillo MCE, Catzenazzi S, Cooley RN, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR, Fedurco M, Fraser LJ, Furey WS, George D, Getzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Haudenschild CD, Heyer NJ, Hims MM, Ho JT, Horgan AM, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X, Liao AK, Lom JA, Lok M, Luo S, Mammen RM, Martin JW, McCaughey PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newton T, Ning Z, Ling N, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadin O, Parashos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ, Ruediger ST, Rusman E, Sanchez-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski I, Tregidgo CL, Turcatti G, Vandevoorde S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin JC, Hurles ME, Mc-Cooke NJ, West JS, Oaks FL, Lundberg PL, Kleeman D, Durbin R, Smith AJ. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. http://dx.doi.org/10.1038/nature07517.

5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

6. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway A, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12. http://dx.doi.org/10.1186/gb-2004-5-2-r12.

7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410. http://dx.doi.org/10.1016/S0022-2836(05)80350-2.

8. Swofford DL. 2003. AUP* Phylogenetic analysis using parsimony (*and other Methods), version 4. Sinauer Associates, Sunderland, MA.

9. Siepel AC, Halpern AL, Macken G, Korber BT. 1995. A computer program designed to screen rapidly for HIV type 1 intersubtype recombinant sequences. AIDS Res. Hum. Retroviruses 11:1413–1416. http://dx.doi.org/10.1089/aid.1995.11.1413.