Innovative Design of 3D-Printed Nasopharyngeal Pediatric Swab for COVID-19 Detection

Ameerah Alazemi
Kuwait University Faculty of Medicine
https://orcid.org/0000-0002-7419-4923

Ghadeer AbdulHussain
Kuwait University

Abdullah Alawwam
Kuwait University

Ali Al-Shatti
Kuwait Oil Company

Mohammad alghounaim
Kuwait Ministry of Health

Sulaiman Almazeedi
Kuwait Ministry of Health

Sarah Al Youha
Kuwait Ministry of Health

Salman alsabah (✉️ salman.k.alsabah@gmail.com)
Jaber Al-Ahmad Hospital

Technical Note

Keywords: COVID19, three-dimensional printing, nasal swabs, pediatric, coronavirus

Posted Date: May 10th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-474614/v1

License: ☒️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at 3D Printing in Medicine on August 20th, 2021. See the published version at https://doi.org/10.1186/s41205-021-00113-9.
Abstract

3-dimensional (3D) printing technology provides a solution to meet the high demand for producing adult nasal swabs. A smaller, more flexible nasopharyngeal swab needs to be developed for children and infants suspected of having coronavirus. The information shared here presents a novel 3D-printed pediatric swab for the purpose of collecting upper respiratory clinical specimens.

Introduction

On January 30 2020, the World Health Organization declared severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), a novel Betacoronvirus responsible for causing coronavirus disease 2019 (COVID-19) to be a global pandemic [1]. The rapid escalation and spread of the virus with more than 100 million confirmed cases and more than two million confirmed deaths worldwide, has emphasized the importance of employing accurate diagnostic tests and results to hinder the transmission of the virus [2]. Consequently, shortages in crucial medical supplies such as ventilators, masks, face shields, nasopharyngeal (NP) swabs, and others have impacted all countries [3].

Epidemiologic studies have demonstrated that the elderly population is more prone to infection by coronavirus [4]. The prevalence of COVID-19 in the pediatric population is low [5]; infants [6] and children affected with SARS-CoV-2 exhibit milder symptoms, lower hospitalization, and mortality rates [7,8]. However, patients with comorbidities are inclined to develop severe acute disease [9-11].

Detection of SARS-CoV-2 on respiratory specimens collected by nasopharyngeal (NP) swabs is the common modality for sample collection and subsequent SARS-CoV-2 detection by reverse transcription polymerase chain reaction (RT-PCR) [12]. To combat the global deficit of commercial (NP) swabs, 3-dimensionally (3D)-printed NP swabs have been created and clinically validated as an alternative to the standard NP swab [13,14]. However, the majority of 3D-printed NP swabs are designed for adults, which can be too rigid and large for safe pediatric use [15]. The main basis for the diagnosis of COVID-19 in children is the RT-PCR detection of SARS-CoV-2 in nasopharyngeal samples [12]. This issue accentuated the need to design a pediatric NP swab with qualities such as efficient collection of viral particles from the posterior nasopharynx and flexibility to maneuver inside the nasopharynx.

For the target age of 2 years was printed using a fused deposition modeling 3D printer (FDM), a relatively inexpensive equipment (approximately US$ 500) that can be readily purchased [16].

Polylactic acid (PLA) is the chosen material to create swabs because of its safety, biocompatibility, low cost, and resistance to breakage [17-19]. To facilitate production without using adhesive material, the tip of the PLA swab featured small nubs to tightly intertwine the polyester threads and decrease the possibility of it becoming unwound. A swab applicator was used (https://www.thingiverse.com/thing: 4373981) to intertwine the polyester fibers on the tip of the swab. By inserting the PLA swab and some polyester in the applicator, the swab was rotated like a pencil sharpener, ensuring that the polyester was securely wrapped on the tip without the concern of it becoming dislodged, enforced uniformity in the
production, and created a brush-like texture. Polyester was chosen because it is chemically safe, does not interfere with PCR reagents, has a high absorption capacity, and elutes into the viral transport media (VTM) [20,21].

The final 3D printed pediatric swab (Fig. 1) was approximately 120 mm in length with a 58 mm break point (Fig. 2) from the tip. The tip of the swab was 9 mm long and had a diameter of 2 mm. The tip of the shaft has three pins per side to adhere the polyester fibers (less than 0.01 g) to the swab, eliminating the need for adhesive substrates. The neck was 12 mm in length and 2 mm in diameter. The shaft is 1 mm in diameter and the base is 74 mm long with a 2.5 mm diameter. Plastinated nasopharyngeal models at the dissection room in the Anatomy Department, Faculty of Medicine, Kuwait University, were used as a simulation to demonstrate the flexibility of both adult and pediatric swabs in reaching the posterior nasopharynx (Fig. 3). The same swab design with variant measurements was validated for the adults [14].

The swabs were sterilized at the Central Sterilization Service Department (CSSD) in Kuwait's Ministry of Health via low-temperature (45°C) hydrogen peroxide plasma. To confirm adequate sterilization, ten swabs were randomly selected and cultured on blood agar (BAP) plus chocolate agar and incubated at 35°C± 2°C for 48 hours. The sterility of the prepared VTM was validated by randomly selecting three tubes from the beginning, middle, and end of each batch, and 100 µL was inoculated on BAP and incubated at 35 ±2°C for 48 hours. The VTM was concocted at Jaber Al Ahmad Al Sabah Hospital laboratory, Kuwait, according to the protocol published by the Centers for Diseases Control and Prevention (CDC) [22]. Along with the prepared VTM, the 3D printed swab was packed and labeled as a pediatric COVID-19 testing kit.

In comparison to the adult version (Fig. 4), the 3D printed pediatric swabs are shorter in length and more flexible, ultimately providing comfort to the patients. The altered dimensions of the pediatric swab and its flexibility will reduce the number of attempts required to reach the posterior nasopharynx and decrease the duration needed to obtain a sample from pediatric patients.

The production of pediatric prototype NP swabs using 3D-FDM printers has several advantages. Inexpensive readily available materials were used to create pediatric NP swabs (costs less than US$0.05), making it a reasonable option for countries suffering from a shortage of commercial pediatric swabs. The universal availability of 3D printers and the simplicity of iterating and testing various designs of swabs are attractive factors for producing novel 3D-printed swabs. Nonetheless, for large-scale production, 3D printers are quite slow, requiring approximately one hour to produce only 20 swabs.

Abbreviations

3D; 3-dimension, SARS-CoV-2; severe acute respiratory syndrome-related coronavirus 2, NP; nasopharyngeal, COVID-19; coronavirus disease 2019, RT-PCR; reverse transcription polymerase chain reaction, FDM; fused deposition modeling 3D printer, US$; United States dollar (currency), PLA; Polylactic acid, VTM; viral transport media, mm; millimeter (unit of length in the metric system), °C; temperatures in
Celsius degree, CSSD; Central Sterilization Service Department, BAP; blood agar, CDC; Centers for Diseases Control and Prevention.

Declarations

Ethical approve and consent of participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

A swab applicator 3D design is available on (https://www.thingiverse.com/thing:4373981)

The swab design blueprint and production standard operating procedures (SOPs) are available online (https://projectjaber.com/).

Competing interests

The authors declare that they have no competing interests

Funding

This work was supported by the Kuwait Foundation for the Advancement of Sciences (KFAS), grant number CORONA PROP 84-PN20-15EI-01.

Authors’ contributions

All authors contributed equally to this paper. The author(s) read and approved the final manuscript.

Acknowledgements

We are grateful to the volunteers in both teams, the 3D printing nasopharyngeal swab team and the viral transport media preparation team: Dr. Nada Al-Youha, Farah Al-Mutairi, Osama Alowaishe, Shahad Al-Roumi, Thunian AlFaresi, Rehab Alajmi, Fatima Alsulaili, Dr Yousif Alqabandi, Yousef Alkandry, Ahmad Alsharhan, Hala Hamdan, Noor Alquraini, Fatma Hijazi, Nada Elsaid, Kawthar Murad, Mohamed Fadel, Rawan Al-Shemalig, Ahmad Albuloushih, Saud Alzabini, Khaled Al Wogayan and Yousef Al-Mutawa. Special thanks for Dr. Suzane Al Bustan and Dr. Heba Alhussaini for their support.

References
1. MacKenzie JS, Smith DW. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t. *Microbiol Aust* 2020;41:45–50.

2. Timeline: WHO’s COVID-19 response [Internet]. World Health Organization. World Health Organization; 2020 [cited 2021 Jan 1]. Available from: https://covid19.who.int/

3. Ranney ML, Griffeth V, Jha AK. Critical Supply Shortages- The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. *N Engl J Med* 2020;382:e41(1)-e41(3).

4. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. *Clin Immunol* 2020;215.

5. Lee P-I, Hu Y-L, Chen P-Y, Huang Y-C, Hsueh P-R. Are children less susceptible to COVID-19? *J Microbiol Immunol Infect* 2020;53:371–372.

6. Mark EG, Golden WC, Gilmore MM, Sick-Samuels A, Curless MS et al. Community-Onset Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Young Infants: A Systematic Review. *J Pediatr* 2021;228:94-100.e3.

7. Zimmemmann P, Curtis N. Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. *Pediatr Infect Dis J* 2020;39:355–368.

8. Alsharrah D, Alhaddad F, Alyaseen M, Aljamaan S, Almutairi N et al. Clinical characteristics of pediatric SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19) in Kuwait. *J Med Virol* 2020;2:1–5.

9. Derespina KR, Kaushik S, Plichta A, Conway EE, Bercow A et al. Clinical Manifestations and Outcomes of Critically Ill Children and Adolescents with Coronavirus Disease 2019 in New York City. *J Pediatr* 2020;226:55-63.e2.

10. Shekerdemian LS, Mahmoud NR, Wolfe KK, Riggs BJ, Ross CE et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. *JAMA Pediatr* 2020;174:868–873.

11. Alfraij A, Bin Alamir AA, Al-Otaibi AM, Alsharrah D, Aldaithan A et al. Characteristics and outcomes of coronavirus disease 2019 (COVID-19) in critically ill pediatric patients admitted to the intensive care unit: A multicenter retrospective cohort study. *J Infect Public Health* 2021;14:193–200.

12. Callahan CJ, Lee R, Zulauf KE, Tamburello L, Smith KP et al. Open development and clinical validation of multiple 3D-printed nasopharyngeal collection swabs: rapid resolution of a critical covid-19 testing bottleneck. *J Clin Microbiol* 2020;58.

13. Ford J, Goldstein T, Trahan S, Neuwirth A, Tatoris K et al. A 3D-printed nasopharyngeal swab for COVID-19 diagnostic testing. *3D Print Med* 2020;6:1–7.

14. Alghounaim M, Almazeedi S, Youha S Al, Papenburg J, Alowaish O et al. Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the diagnosis of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). *J Clin Microbiol* 2020;58:1–24.

15. Starosolski Z, Admane P, Dunn J, Kaziny B, Huisman TAGM, et al. Design of 3D-printed nasopharyngeal swabs for children is enabled by radiologic imaging. *Am J Neuroradiol* 2020;41:2345–2347.
16. Alyouha S, Almazedi S, Alghounaim M, Al-Mutawa Y, Alsabah S. Polyester tipped 3-dimensionally printed swab that costs less than US$0.05 and can easily and rapidly be mass produced. BMJ Innov 2020;6:262–264.

17. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: An overview. Prog Polym Sci 2007;32:455–482.

18. Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 2019;127:1612–1626.

19. Zuniga JM, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices 2020;17:477–481.

20. Bruijns BB, Tiggelaar RM, Gardeniers H. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs. J Forensic Sci 2018;63:1492–1499.

21. Khare R, Grys T. Specimen Requirements Selection, Collection, Transport, and Processing. Clinical Virology Manual, Fifth Edition. ASM press. 2016

22. Centers for Disease Control and Prevention. Preparation of Viral Transport Medium (SOP#: DSR-052-03). https://www.cdc.gov/coronavirus/2019-ncov/downloads/Viral-Transport-Medium.pdf. Accessed February 1, 2020.

Figures
Figure 1

(A) The complete three dimensionally printed pediatric swab. (B) Design of the 3D printed pediatric swab.
Figure 2

(A) Pediatric swab inserted in VTM tube. (B) Holding the breakpoint near the rim of the tube, break the applicator from the break point indicator line. (C) The swab tip submerged in the VTM tube

Figure 3

(A) Plastinated nasopharyngeal model with the pediatric swab inside the nasopharynx. (B) Plastinated nasopharyngeal model with the adult swab inside the nasopharynx. Pediatric (C) and adult swab (D) 180° bending test for the swab
Figure 4

(A) The complete three dimensionally printed adult swab. (B) Design of the 3D adult swab.