ASME Accepted Manuscript Repository

Institutional Repository Cover Sheet

First Name	Last Name
Clemens	Naumann

ASME Paper

Title: Effects of high fuel loading and CO$_2$ dilution on oxy-methane ignition behavior inside a shock tube at high pressures

Authors: Andrew R. Laich, Jessica Baker, Erik Ninnemann, Clayton Sigler, Clemens Naumann, Marina Braun-Unkhoff, Subith S. Vasu

ASME Journal

Title: Journal of Energy Resource Technology

Date of Publication (VOR*) Online

Volume/Issue 142 (10) 26.05.2020

ASME Digital Collection

URL: https://asmedigitalcollection.asme.org/energyresources/article/142/10/102103/1082926/Effects-of-High-Fuel-Loading-and-CO2-Dilution-on

DOI: 10.1115/1.4047023

*VOR (version of record)
Andrew R. Laich¹, Jessica Baker¹, Erik Ninnemann¹, Clayton Sigler¹, Clemens Naumann², Marina Braun-Unkhoff², Subith S. Vasu¹
Effects of high fuel loading and CO₂ dilution on oxy-methane ignition inside a shock tube at high pressure
¹Center for Advanced Turbomachinery and Energy Research, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA, subith@ucf.edu
²Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verbrennungstechnik, Stuttgart, Germany

Journal of Energy Resources Technology, October 2020, 142(10): 102103
Paper No: JERT-20-1265 https://doi.org/10.1115/1.4047023
Published Online: May 26, 2020

The original publication is available at
https://asmedigitalcollection.asme.org/energyresources/article/142/10/102103/1082926/
Effects of high fuel loading and CO₂ dilution on oxy-methane ignition inside a shock tube at high pressure

Andrew R. Laich¹, Jessica Baker¹, Erik Ninnemann¹, Clayton Sigler¹, Clemens Naumann², Marina Braun-Unkhoff², Subith S. Vasu¹

¹Center for Advanced Turbomachinery and Energy Research, Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA, subith@ucf.edu
²Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Verbrennungstechnik, Stuttgart, Germany

ABSTRACT
Ignition delay times were measured for methane/O₂ mixtures in a high dilution environment of either CO₂ or N₂ using a shock tube facility. Experiments were performed between 1044 K and 1356 K at pressures near 16 ± 2 atm. Test mixtures had an equivalence ratio of 1.0 with 16.67% CH₄, 33.33% O₂, and 50% diluent. Ignition delay times were measured using OH* emission and pressure time-histories. Data were compared to the predictions of two literature kinetic mechanisms (ARAMCO MECH 2.0 and GRI Mech 3.0). Most experiments showed inhomogeneous (mild) ignition which was deduced from five time-of-arrival pressure
transducers placed along the driven section of the shock tube. Further analysis included
determination of blast wave velocities and locations away from the end wall of initial
detonations. Blast velocities were 60-80% of CJ-Detonation calculations. A narrow high
temperature region within the range was identified as showing homogenous (strong) ignition
which showed generally good agreement with model predictions. Model comparisons with mild
ignition cases should not be used to further refine kinetic mechanisms, though at these
conditions, insight was gained into various ignition behavior. To the best of our knowledge, we
present first shock tube data during ignition of high fuel loading CH4/O2 mixtures diluted with
CO2 and N2.

INTRODUCTION

With the development of gas turbines moving towards a more efficient and cleaner future, use of
methane (CH4) combustion is being closely examined due to the negative impacts of high carbon
monoxide (CO), carbon dioxide (CO2), and nitrous oxide (NOx) emissions and issues regarding
high fuel consumption. In addition, the future of space is rapidly moving towards creating space-
faring colonies and having a fuel (liquid methane) that can be easily manufactured as well as a
fuel that does not require a large amount of consumption for a given power output is essential.
Methane is a prime candidate rocket fuel due to its potential accessibility and manufacturability
on distant worlds, such as leveraging the predominantly CO2 atmosphere of Mars in a Sabatier
reaction to yield methane [1]. Additional specific impulse improvements can be realized over
more traditional methods and fuels such as liquid hydrogen and kerosene (RP-1), particularly in
the so-called full-flow staged combustion cycle. Typically, air and methane have been used in
gas turbine engines to fuel high energy processes; however, in the presence of air, nitrous oxides
and CO2 will inevitably form exhausting into the atmosphere. By combusting methane with pure oxygen (oxy-methane) in a closed-loop CO2 cycle, NOx formation and exhausted CO2 are eliminated. Instead, the CO2 product is isolated and available for sequestration, or bottling for industrial use, with remaining levels recycled back into the closed system as a combustion diluent. Running this described system at supercritical conditions can further cut costs and increase efficiency as the combined oxy-methane, with higher density supercritical CO2 diluent (sCO2), requires less pumping power for the same power output, while running with high power output comparable to conventional cycles (see refs. [2-7] for sCO2 power cycles).

In a full-flow staged combustion cycle used in rocket engines, both oxidizer and fuel preburners burn fuel lean and rich, respectively, in which all oxidizer and fuel flow through. Entering the main chamber are fuel-rich and oxygen-rich exhaust gases with products consisting of CO2 and H2O. As main combustion occurs in the presence of CO2, the chemical kinetic understanding of oxy-methane diluted with CO2 becomes important to accurately account for reactivity, especially at elevated pressures. SpaceX is in the midst of producing and testing such an engine, which is slated to operate at an astonishing chamber pressure of 300 bar – something that has never been achieved. This is the third engine ever to be developed and operational using the full-flow staged combustion cycle [8]; future endeavors and design optimizations will benefit from higher fidelity chemical kinetic mechanisms accounting for this reactivity.

Although CH4 combustion is well understood across a variety of conditions and fuel loadings, the addition of CO2 adds additional complexity that has not been accounted for in chemical kinetic mechanisms, as none of the validation work has been done with CO2 as a primary diluent [9]. Furthermore, the effects of high fuel loading and the associated ignition behavior with immense CO2 dilution have not been investigated in detail. Studies of oxy-
methane combustion with CO2 dilution have been performed in previous literature [10-17], though largely at intermediate to lower pressures [14, 18, 19] in a shock tube. For example, Hargis et al. has investigated oxy-fuel combustion within a high pressure shock tube at pressures from 1 to 10 atm and 1450 to 1900 K; it was observed that increasing the level of CO2 led to increased bifurcation. Despite the presence of significant reflected-shock bifurcation in mixtures containing high levels of CO2, the resulting ignition delay times were commensurate with calculated temperature and pressure behind reflected shock waves [20]. Other studies of oxy-methane mixtures include different levels of CO2 dilution, but with a final conclusion finding that as the amount of CO2 is increased, there is an insignificant, gradual increase in ignition delay time [14, 21, 22], though as Hargis et al. [20] explains, this becomes more apparent at higher pressures. In an effort to extend understanding of highly CO2 dilute mixtures with high fuel loading, steps here are being made firstly at a moderate pressure with future work aimed at elevated pressures near 100 atm.

In the current work, a highly CO2 diluted oxy-methane mixture was explored at pressures near 16 ± 2 atm and temperatures from 1044 – 1356 K. This mixture consisted of 16.67% CH4, 33.33% O2, and 50% CO2. The CO2 dilution was kept at a constant mole fraction of 0.5 in these experiments. The ignition delay times from these experiments were then compared to an oxy-methane mixture utilizing N2 as a diluent consisting of 16.67% CH4, 33.33% O2, and 50% N2. All gathered data was also compared to predictions by kinetic mechanisms, GRI Mech 3.0 [9] and ARAMCO 2.0 [23]. To the best of our knowledge, this study presents new insights into oxy-methane ignition with high levels of CO2 dilution and high fuel loading.

© <2020> by ASME. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/
EXPERIMENTAL METHOD

All experiments were performed in the high purity, double-diaphragm shock tube facility located at the University of Central Florida in Orlando, Florida (see refs. [11, 18, 24-32]). This shock tube has an internal diameter of 14.17 cm. Both sections were separated by a polycarbonate, scored diaphragm. In some cases, a stacked, double-diaphragm arrangement was used to achieve desired experimental conditions.

Before each experiment, both driver and driven sections were vacuumed down with Agilent DS102 rotary vane pumps to a rough level. The driven side was then further vacuumed down with an Agilent V301 turbomolecular pump; experiments were only proceeded with upon reaching a sufficient vacuum level on the order of 10^{-5} Torr or lower. Vacuum pressure was monitored with a convection and ion gauge from Kurt J. Lesker (KJL275804LL and KJLC354401YF, respectively).

The velocity of the incident shock wave was measured using five time-of-arrival pressure transducers (PCB 113B26) spaced at the last 1.4 m of the driven section (Fig. 1), which were attached to four timer-counters (Agilent 53220A, 0.1 ns resolution); this calculated velocity was then extrapolated to the end wall section. With velocity known, the temperature (T5) and pressure (P5) behind the reflected shock wave were then calculated using the 1-D ideal shock relations. For all experiments, attenuation of the incident shock wave was found to be less than 2%/m.

Mixtures were manometrically made using high purity gases from Praxair. Once the mixture was made, it was left to mix in a 33 L stainless steel mixing tank fitted with a magnetically-driven stirrer. One Baratron (MKS 628D) was used to measure partial pressure during mixture preparation, which has an accuracy of ±0.5%.
The pressure behind the reflected shock wave was measured using sidewall mounted Kistler 603B1 and PCB 113B26 pressure transducers located approximately 2 cm from the end wall. At the same location emissions were measured with a New Focus UV photoreceiver (Model 2032) fitted with a 310 ±10 nm filter supplied by Edmund Optics (Stock #67-752) targeting the excited radical OH*. A CO2 gas laser (Access Laser L4GS) was aligned through the shock tube to aid in defining time-zero, via schlieren spikes; this will be discussed further in the next section. Figure 2 shows the locations of these diagnostics.

NONIDEALITIES OF THE SYSTEM

Since all mixtures consisted of a diatomic (N2) or polyatomic (CO2) diluent, bifurcation was observed in all experiments. In these cases, a boundary layer forms lacking the necessary momentum (energy-deficient) to pass through the normal reflected shock wave and greatly interacts when compared to a monatomic bath gas like He or Ar. This interaction is more pronounced likely due to the increased molecular degrees of freedom. From Mark [33], it was shown that the relation between total pressure in the boundary layer and reflected shock wave determines the presence of bifurcation; through theory it was revealed that total pressure in the boundary layer is a function of incident shock Mach number and specific heat ratio of the test gas. This phenomenon results in two oblique shock waves in the boundary layer near the inside wall of the shock tube in the reflected shock front. As the flow passes through the second oblique shock wave, the velocity in this region parallel to the tube axis is nonzero while the velocity through the normal portion is stagnate, which induces a vortex sheet. Bifurcation can have multiple effects on the system, including a highly nonuniform velocity field, induced vorticity, and turbulence aiding in other nonuniformities and inhomogeneities [34-36]. The fluid flow
issues imposed by bifurcation immensely affect pressure measurements as well, resulting in observed fluctuations or oscillations that increase with increasing amounts of CO2, which ultimately add greater uncertainty [20]. Typically, end wall located diagnostics (pressure/emission) are preferred to understand ignition of non-dilute fuel mixtures primarily due to the tendency of sidewall mounted diagnostics to observe earlier ignition delay times [37]. These earlier times are a result of a misinterpretation of time-zero due to bifurcation. Further explanation of our definition for time-zero will be discussed.

To elaborate on consequential nonuniformities that are presented in bifurcating systems, previous numerical work of Lamnaouer et al. [38] revealed temperature and pressure gradients behind reflected shock waves, as well as hotspots in the wall jet after the passage of the bifurcation. In addition, Yamashita et al. [35] provide support for localized hotspots in bifurcated flows, and with recent work of Lipkowicz et al. [36] it was shown that various gas dynamic and fluid dynamic structures occurred at a distance from the end wall supporting these localized nonuniformities due to the bifurcated shock. All of these features foster inhomogeneous (mild) ignition events, which start off as randomized hotspots.

Given that current mixtures explored had a very high fuel loading, which alone can ultimately lead to inhomogeneous (mild) ignition and deviation from ideal shock tube assumptions, as was discussed in previous literature [39-42], among others. This phenomenon typically starts off as early energy/heat release from localized hotspots in a deflagrative manner, followed by a large release of energy leading to detonation, or DDT behavior [43]. In this current work, very strong detonations (blast wave) were formed in every experiment due to the immense energy release showing a distinct jump in pressure followed by oscillatory behavior of the blast
wave. Because of this, a main definition of ignition delay time (IDT) can be defined from this pressure-jump.

RESULTS AND DISCUSSION

Experiments were performed near 16 atm over a temperature range of 1044 – 1356 K with two main mixtures, consisting either of 50% CO2 or N2 as a diluent. Fuel concentration was kept at a high concentration of 16.67%. Table 1 shows a summary of all experiments performed. The table presents reflected temperatures and pressures, mixture composition, and various ignition definitions. The uncertainties in initial temperature and pressure behind reflected shock waves were ±10 K and 0.30 atm, respectively.

The ignition delay time has been defined considering two different overarching modes of auto-ignition that were observed in the current work. The definitions presented are adopted from previous work of Fieweger et al. [43]. Firstly, time-zero was defined by the reflected schlieren spike observed in the transmitted laser signal of the CO2 gas laser aligned through the shock tube. This allowed for a lucid definition of time-zero over the pressure trace, as bifurcation presents difficulties in interpretation of time-zero through the reflected pressure-rise measured with the sidewall-mounted pressure transducer. The first ignition delay time, τdefl, marks the beginning of the inhomogeneous early energy release, which initiates from very small localized hot spots or kernels. Quantifying this time was marked by the substantial rise in OH* signal. This phase of ignition proceeds as the hot spots develop, gradually consuming the mixture, leading to a detonation (blast wave). The immense pressure-rise associated with the secondary event was clearly evident and defined by the time of max dP5/dt, denoted as τDDT. These definitions are shown on Fig. 4.
The ignition definitions as described are compared to predictions from two chemical kinetic mechanisms, which will be presented in proceeding sections. A difficulty in assessing the performance of the mechanisms is the inevitable coupling of reflected shock wave bifurcation effects with early energy release (mild ignition). Were the latter not present, the former could then be accounted for with careful interpretation for valid comparison. Experiments exhibiting inhomogeneous ignition are not to be used in validating mechanisms, as 0-D homogeneous ideal shock tube behavior is not present; however, understanding the ignition behavior experimentally is paramount for future endeavors and can offer insight into the current system under these conditions. In addition, trends can be compared considering identical mixtures with N2 or CO2.

As was mentioned previously, due to the complex flows caused by bifurcation, pressure transducers are affected with the fluctuations of this flow. However, these diagnostics can offer potential resolve to the reflected shock wave–boundary layer interaction. Since a main definition of ignition was based on these pressure measurements, oscillations in the signal added uncertainty in the pressure rise, and thus added uncertainty in determining the time of the blast wave (τ_{DDT}). A region of ignition representative of this uncertainty is shown in Fig. 3. Because of this, the time of DDT was interpreted on a case-by-case basis, as was done previously by Hargis et al. [20]. The associated uncertainty in τ_{DDT} was larger than any uncertainty in T_5 or P_5, with the most impacted experiment revealing a 48% uncertainty in this ignition definition.

Understanding the implications of fluid fluctuations from bifurcation are clearly deduced from the pressure trace; another result of reflected shock–boundary layer in highly CO2 diluted systems is an associated pressure rise (dP_5/dt). From this pressure rise, a temperature rise can be modeled assuming an isentropic process [44]. The pressure rise as discussed previously [45], can be an order of magnitude higher in mixtures with CO2 when compared to mixtures of Ar.
Though in this current study, this is not easily distinguishable, as the pressure rise is also a result of ignition due to the large energy release of non-dilute mixtures (high fuel loading). Estimations were carried out carefully assessing the pressure traces on a case-by-case basis, keeping in mind the uncertainty due to pressure fluctuations and utilizing the definition of τ\textsubscript{defl} to narrow the region of interest. It should be noted that these estimations are not recommended, as there is an inherent coupled effect as discussed above. For the 50% CO\textsubscript{2} diluted mixtures, dP\textsubscript{5}/dt was found to be between 2.4 – 32.5%/ms, and for the 50% N\textsubscript{2} mixtures 11.2 – 49.2%/ms, resulting in over 16 K and 34 K temperature increases, respectively. Again, the interpretation of this is clouded with the coupled effects; nevertheless, we could determine dP\textsubscript{5}/dt was not directly correlated with temperature and mixtures with N\textsubscript{2} had larger dP\textsubscript{5}/dt, similarly discussed in Hargis and Petersen [45]. Further investigation for 50% dilution at these conditions should be properly carried out with use of nonreactive mixtures, whereby the associated effects of bifurcation on pressure and temperature rise can be characterized. This will be the focus of ongoing work. To better understand the ignition data gathered, the pressure traces of the four PCBs spaced away from the test section (2 cm from end wall) were examined. This revealed interestingly that the arrival of the blast wave, in more cases than not, was captured at the PCB\textsubscript{4} location first, followed by PCB\textsubscript{5}, PCB\textsubscript{3}, and so on. An example of this behavior for a given test can be seen in Fig. 5. Experiments where this was observed are considered as inhomogeneous. All of the N\textsubscript{2} diluted oxy-methane experiments exhibited this behavior, while the CO\textsubscript{2} diluted mixtures showed a correlation between temperature and ignition type (homogeneous/inhomogeneous).

With all recorded PCB traces showing the arrival of the detonation, and known locations of each port, detonation traces were mapped, which enabled the calculation of blast wave velocities for each experiment. Homogeneous (strong) ignition cases exhibited the onset of detonation in the
test section as expected, which propagated back down the driver section away from the end wall. Such events with the associated detonation traces are shown in Fig. 6a. The strong ignition cases show a clear linear first-order relationship that indicates a nearly constant blast wave velocity propagating away from the end wall.

Inhomogeneous events (as in Fig. 6b) did not show such a trend, but were rather divergent. From this, we inferred that the initiation of the detonation occurred somewhere between PCB4 and PCB5; if the centroid of a particular event were to propagate with a constant axial velocity away and towards the end wall, then we could further infer that the blast wave began closer to PCB4. With these reasonable assumptions, deduced from observation of the various pressure traces, a precise location can be calculated upon where the preignition event began. The validity of this assumption was not to be used if large acceleration towards the end wall was observed, deviating from a more or less similar constant velocity propagation in either direction. This was the case for one experiment at 1045 K and 17.46 atm. Table 2 lists the calculated blast wave velocities and locations of both homogeneous and inhomogeneous events for each experiment at reflected shock conditions. It should be noted that these reflected shock conditions are not representative of the detonation itself. Most calculated velocities are in good agreement of about 60 – 80% of the simulated CJ-Detonation velocities using a chemical equilibrium solver. It is evident that at temperatures below about 1197 K the CO2 diluted mixtures enter a regime of inhomogeneous ignition behavior. Considering the N2 diluted mixtures, higher temperature experiments would have been beneficial for a comprehensive comparison with CO2 diluted mixtures; however, at temperatures higher than 1126 K the large energy release was so intense that detonation occurred upon the reflected shock wave, yielding no test time.

© <2020> by ASME. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/
From Lipkowisz et al. [36], it was discussed through numerical methods employing large eddy simulation (LES) that bifurcation in a system can lead to the formation of a fluid-formed converging-diverging nozzle adjacent to the boundary layer inside the shock tube. As explained, subsonic fluid passes through the small initial bifurcated structure, which accelerates through the convergent part and subsequently becomes supersonic while compressed through the divergent part. At this point the bifurcated structure grows further, promoting supersonic fluid to accelerate more so. The authors go on saying that because the bifurcated structure continues to grow past the choke point, the reflected shock conditions will be changed. Axial temperature and pressure profiles output from their simulations revealed peaks behind reflected shock waves that were significantly higher than T5 and P5. Most interestingly this showed that temperature increases with end wall distance, reaching a maximum around 60 mm (dependent upon the shock tube design), while pressure decreased monotonically. Their observations are in agreement with a previous numerical study of Weber et al. [46]. The distance at which max temperature occurred was consistent across all simulations, which correlated well with initiation of ignition. This supports the mild ignition observations of the current study, and the rather consistent location of initiation. The effects of shock wave attenuation should also be noted, as this will impact the strength of oblique shock waves and subsequent growth of the bifurcated structure in the divergent section. Typically, the arrival of a detonation is a good indication for the chemical ignition delay time, with the onset of secondary explosions representing a more or less homogeneous event [43]. While this may be true for mixed ignition regimes (transition from mild to strong ignition), this is not the case in the current work. An explanation for this may stem from the inherently high fuel loading, coupled with higher temperatures farther away from the
end wall due to exacerbated bifurcation from CO2/N2 ultimately giving rise to an immense energy release tripping the formation of a detonation.

A comparison of experimental definitions of ignition to predictions of two chemical kinetic mechanisms in the literature is presented in Figs. 7-9. Simulation were preformed using Chemkin-Pro [47] with a 0-D homogeneous bath reactor assuming the constant-U, V model, which is typically done for shock tube chemical kinetic simulations. As was alluded to previously, since inhomogeneous or preignition was observed in nearly all experiments, comparing such model predictions to data cannot be used in the validation of any chemical kinetic mechanism; though these comparisons can reveal many other interesting perspectives on inhomogeneous systems. In Fig. 7, data from the CO2 diluted mixture is plotted with model predictions from ARAMCO and GRI mechanisms. The filled in plot markers indicate experiments where homogeneous (strong) ignition was observed, having occurred as expected in the test section approximately 2 cm from the end wall. All of these strong ignition cases are present in the highest temperatures within the spread, which shows generally good agreement with model predictions: however, as temperature decreases all experiments deviate from predictions, revealing quicker IDTs. Good agreement has been shown previously at higher temperatures from low to elevated pressures. Interestingly, data from Shao et al. [10] show that at lower temperatures at a pressure near 250 atm, comparison with predictions from ARAMCO are in very good agreement, even with fairly high fuel loading of 3.91% and 7.5% CH4. These data are indicative of strong ignition cases where preignition did not seem to be an overarching issue.

Comparing the various definitions of ignition, it is clearly shown that \(\tau_{DDT} \) shows a definite trend (Fig. 9), while \(\tau_{defl} \) has no concrete relationship. The deflagrative ignition time is a measure of the initial stages of early energy release that has an incredible variance with each
experiment. The randomized nature underscores nonuniformities that are present and the sensitivity of the system to them. Some of these nonuniformities include boundary layer, turbulence, bifurcation, surface effects, among others which cause unwanted perturbations [48, 49].

Figure 8 shows experimental data and model predictions from the N2-diluted mixture revealing all inhomogeneous cases. Mixtures containing N2 as a bath gas do not absorb as much released energy from ignition events when compared to CO2; therefore, promote faster ignition. In addition, these mixtures were inherently more prone to ignite, and detonate within the incident conditions, or upon the reflected incident normal shock wave. These experiments gave no test time and were not used in this study.

Considering current conditions studied, the majority of the data acquired are not recommended in efforts to further refine chemical kinetic mechanisms. That being said, the insights into various ignition behavior has been analyzed, defined, and quantified, which revealed additional perspective on this combustion system. This included the necessary care that must be taken when assessing and defining various ignition behavior for non-dilute mixtures, and ways to better analyze this through detonation maps. The onset of blasts waves were also located, and most were found to be at great distances from the end wall commensurate with findings from previous literature discussed. In addition, the nonuniform effects of bifurcation due to CO2 were investigated, which included pressure fluctuation and rise behind the reflected shock, and the consequences on experimental determination of IDT. The current level of high fuel loading presents additional data that can be useful; however, this should be limited to only higher temperatures.
CONCLUSION

Ignition delay time experiments have been recorded within the pressure range of 16 ± 2 atm for oxy-methane combustion diluted with carbon dioxide and nitrogen in a shock tube. The experiments were performed between 1044 K and 1356 K with a constant 50% CO2 or N2 dilution. Both OH* and pressure time traces were utilized to determine ignition delay times with two main modes of ignition defined: deflagration and detonation ignition delay time, τ_{defl} and τ_{DDT} respectively. Ignition behavior inside the shock tube was examined via the time of arrival PCB pressure transducers. These pressure traces enabled creation of detonation maps from which blast wave velocities were calculated. In addition to this, with reasonable assumptions, the precise onset of the detonations were inferred and quantified. From this each experiment was able to identify with a particular ignition regime, indicative of either strong or mild ignition. Most experiments showed mild (inhomogeneous) ignition. Comparisons with ARAMCO and GRI mechanisms revealed validity (and good agreement) for higher temperatures, but significant deviation as temperature decreased. The nature of inhomogeneous ignition is such that comparisons with predictions from chemical kinetic mechanisms are not valid, though various trends were qualitatively deduced.

There is still much to kinetically investigate and validate regarding oxy-methane combustion systems in the presence of high CO2 dilution. Future efforts will investigate the kinetics at higher temperatures, with an extension to elevated pressures, including higher fuel loadings as well. The latter of which may be confined to lower temperatures that are conducive to inhomogeneous ignition behavior, in addition to complexities from a bifurcating system. Including more investigations on non-dilute systems is more representative of real fuel/air mixtures, though

© <2020> by ASME. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/
increased energy release is likely to impact conditions behind reflected shock waves. This makes it difficult to distinguish nonideal effects due to added CO2, as energy release and nonideal effects are blended. As mentioned earlier, nonreacting mixtures at the desired conditions will be necessary to properly characterize boundary layer effects. Additionally, radical formation throughout the test time and ignition process will be investigated to aid in the further refinement of kinetic mechanisms with high levels of CO2 dilution.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation (Grant No. OISE 1460045) and the U.S. Department of Energy under Award Numbers DE-FE0025260 and DE-EE0007982.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REFERENCES
[1] Brooks, K. P., Hu, J., Zhu, H., and Kee, R. J., 2007, "Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors," Chemical Engineering Science, 62(4), pp. 1161-1170.
[2] Vesely, L., Manikantachari, K. R. V., Vasu, S., Kapat, J., Dostal, V., and Martin, S., 2018, "Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles," Journal of Energy Resources Technology, 141(1), pp. 012003-012008.

[3] Khadse, A., Blanchette, L., Kapat, J., Vasu, S., Hossain, J., and Donazzolo, A., 2018, "Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm," Journal of Energy Resources Technology, in press(doi:10.1115/1.4039446).

[4] Black, J., Straub, D., Robey, E., Yip, J., Ramesh, S., Roy, A., and Searle, M., 2020, "Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique," Journal of Energy Resources Technology, 142(7).

[5] Deshmukh, A., and Kapat, J., 2020, "Pinch Point Analysis of Air Cooler in Supercritical Carbon Dioxide Brayton Cycle Operating Over Ambient Temperature Range," Journal of Energy Resources Technology, 142(5).

[6] Fang, L., Li, Y., Yang, X., and Yang, Z., 2019, "Analyses of Thermal Performance of Solar Power Tower Station Based on a Supercritical CO2 Brayton Cycle," Journal of Energy Resources Technology, 142(3).

[7] Bai, Z., Zhang, G., Yang, Y., and Wang, Z., 2019, "Design Performance Simulation of a Supercritical CO2 Cycle Coupling With a Steam Cycle for Gas Turbine Waste Heat Recovery," Journal of Energy Resources Technology, 141(10).

[8] HVM, 2019, "Raptor Engine Unofficial Combustion Scheme," R. E. U. C. Scheme.svg, ed., Creative Commons Attribution-ShareAlike 4.0 International.

[9] Smith; G. P., Golden; D. M., Frenklach; M., Moriarty; N. W., Eiteneer; B., Goldenberg; M., Bowman; C. T., Hanson; R. K., Song; S., and Gardiner; W. C., 1999, "GRI-Mech 3.0," Gas Research Institute, Chicago, IL.

[10] Shao, J., Choudhary, R., Davidson, D. F., Hanson, R. K., Barak, S., and Vasu, S., 2019, "Ignition delay times of methane and hydrogen highly diluted in carbon dioxide at high pressures up to 300 atm," Proceedings of the Combustion Institute, 37(4), pp. 4555-4562.

[11] Barak, S., Pryor, O., Ninnemann, E., Neupane, S., Vasu, S., Lu, X., and Forrest, B., 2020, "Ignition Delay Times of Oxy-Syngas and Oxy-Methane in Supercritical CO2 Mixtures for Direct-Fired Cycles," Journal of Engineering for Gas Turbines and Power, 142(2).

[12] Barak, S., Pryor, O., Ninnemann, E., Neupane, S., Lu, X., Forrest, B., and Vasu, S., "Ignition Delay Times of Syngas and Methane in sCO2 Diluted Mixtures for Direct-Fired Cycles," Proc. ASME Turbo Expo 2019: Turbomachinery Technical Conference and ExpositionV009T38A001.
[13] Manikantachari, K. R. V., Vesely, L., Martin, S., Bobren-Diaz, J. O., and Vasu, S., 2018, "Reduced Chemical Kinetic Mechanisms for Oxy/Methane Supercritical CO2 Combustor Simulations," Journal of Energy Resources Technology, 140(9), pp. 092202-092202-092210.

[14] Pryor, O., Barak, S., Lopez, J., Ninnemann, E., Koroglu, B., Nash, L., and Vasu, S., 2017, "High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution," Journal of Energy Resources Technology, 139(4), pp. 042208-042208-042206.

[15] Almansour, B., Thompson, L., Lopez, J., Barari, G., and Vasu, S. S., 2016, "Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2," Journal of Energy Resources Technology-Transactions of the ASME, 138(3), pp. 032201-032201.

[16] Wang, Z., Yelishala, S. C., Yu, G., Metghalchi, H., and Levendis, Y. A., 2019, "Effects of Carbon Dioxide on Laminar Burning Speed and Flame Instability of Methane/Air and Propane/Air Mixtures: A Literature Review," Energy & Fuels, 33(10), pp. 9403-9418.

[17] Yelishala, S. C., Wang, Z., Metghalchi, H., Levendis, Y. A., Kannaiyan, K., and Sadr, R., 2019, "Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures," Journal of Energy Resources Technology, 141(8).

[18] Koroglu, B., Pryor, O. M., Lopez, J., Nash, L., and Vasu, S. S., 2016, "Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion," Combustion and Flame, 164, pp. 152-163.

[19] Pryor, O., Barak, S., Koroglu, B., Ninnemann, E., and Vasu, S. S., 2017, "Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics," Combustion and Flame, 180, pp. 63-76.

[20] Hargis, J. W., and Petersen, E. L., 2015, "Methane Ignition in a Shock Tube with High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation," Energy & Fuels, 29(11), pp. 7712-7726.

[21] Shareh, F. B., Silcox, G., and Eddings, E. G., 2018, "Calculated Impacts of Diluents on Flame Temperature, Ignition Delay, and Flame Speed of Methane–Oxygen Mixtures at High Pressure and Low to Moderate Temperatures," Energy & Fuels, 32(3), pp. 3891-3899.

[22] Sabia, P., Lubrano Lavadera, M., Sorrentino, G., Giudicianni, P., Ragucci, R., and de Joannon, M., 2016, "H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons," Flow, Turbulence and Combustion, 96(2), pp. 433-448.

[23] Li, Y., Zhou, C.-W., Somers, K. P., Zhang, K., and Curran, H. J., 2017, "The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene," Proceedings of the Combustion Institute, 36(1), pp. 403-411.
[24] Loparo, Z. E., Ninnemann, E., Ru, Q., Vodopyanov, K. L., and Vasu, S. S., 2020, "Broadband mid-infrared optical parametric oscillator for dynamic high-temperature multi-species measurements in reacting systems," Optics Letters, 45(2), pp. 491-494.

[25] Barak, S., Rahman, R. K., Neupane, S., Ninnemann, E., Arafin, F., Laich, A., Terracciano, A. C., and Vasu, S. S., 2020, "Measuring the effectiveness of high-performance Co-Optima biofuels on suppressing soot formation at high temperature," Proceedings of the National Academy of Sciences, 117(7), pp. 3451-3460.

[26] Ninnemann, E., Kim, G., Laich, A., Almansour, B., Terracciano, A. C., Park, S., Thurmond, K., Neupane, S., Wagnon, S., Pitz, W. J., and Vasu, S. S., 2019, "Co-optima fuels combustion: A comprehensive experimental investigation of prenol isomers," Fuel, 254, p. 115630.

[27] Loparo, Z. E., Muraviev, A. V., Figueiredo, P., Lyakh, A., Peale, R. E., Ahmed, K., and Vasu, S. S., 2018, "Shock Tube Demonstration of Acousto-Optically Modulated Quantum Cascade Laser as a Broadband, Time-Resolved Combustion Diagnostic," Journal of Energy Resources Technology, 140(11), pp. 112202-112207-112207.

[28] Barak, S., Ninnemann, E., Neupane, S., Barnes, F., Kapat, J., and Vasu, S., 2018, "High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms," Journal of Engineering for Gas Turbines and Power, 141(2), pp. 021011-021011-021017.

[29] Loparo, Z. E., Lopez, J. G., Neupane, S., Partridge, W. P., Vodopyanov, K., and Vasu, S. S., 2017, "Fuel-rich n-heptane oxidation: A shock tube and laser absorption study," Combustion and Flame, 185(Supplement C), pp. 220-233.

[30] Barari, G., Pryor, O., Koroglu, B., Lopez, J., Nash, L., Sarathy, S. M., and Vasu, S. S., 2017, "High Temperature Shock Tube Experiments and Kinetic Modeling Study of Diisopropyl Ketone Ignition and Pyrolysis," Combustion and Flame, 177, pp. 207-218.

[31] Koroglu, B., and Vasu, S. S., 2016, "Measurements of Propanal Ignition Delay Times and Species Time Histories Using Shock Tube and Laser Absorption," Int. J. Chem. Kinet., 48, pp. 679-690.

[32] Koroglu, B., Pryor, O., Lopez, J., Nash, L., and Vasu, S. S., 2016, "Shock tube ignition delay times and methane time-histories measurements during excess CO2 diluted oxy-methane combustion," Combustion and flame, 164, pp. 152-163.

[33] Herman, M., 1958, "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," Technical Report, National Advisory Committee for Aeronautics, Ithaca, NY.

[34] Kleine, H., Lyakhov, V. N., Gvozdeva, L. G., and Grönig, H., "Bifurcation of a reflected shock wave in a shock tube," Proc. Shock Waves, K. Takayama, ed., Springer Berlin Heidelberg, pp. 261-266.

© <2020> by ASME. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/
[35] Yamashita, H., Kasahara, J., Sugiyama, Y., and Matsuo, A., 2012, "Visualization study of ignition modes behind bifurcated-reflected shock waves," Combustion and Flame, 159(9), pp. 2954-2966.

[36] Lipkowicz, J. T., Wlokas, I., and Kempf, A. M., 2018, "Analysis of mild ignition in a shock tube using a highly resolved 3D-LES and high-order shock-capturing schemes," Shock Waves.

[37] Petersen, E. L., 2009, "Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies," Combustion Science and Technology, 181(9), pp. 1123-1144.

[38] Lamnaouer, M., 2014, "A conjugate axisymmetric model of a high-pressure shock-tube facility," International Journal of Numerical Methods for Heat & Fluid Flow, 24(4), pp. 873-890.

[39] Figueroa-Labastida, M., Badra, J., Elbaz, A. M., and Farooq, A., 2018, "Shock tube studies of ethanol preignition," Combustion and Flame, 198, pp. 176-185.

[40] Chaos, M., and Dryer, F. L., 2010, "Chemical-kinetic modeling of ignition delay: Considerations in interpreting shock tube data," International Journal of Chemical Kinetics, 42(3), pp. 143-150.

[41] Laich, A. R., Ninnemann, E., Neupane, S., Rahman, R., Barak, S., Pitz, W. J., Goldsborough, S. S., and Vasu, S. S., 2020, "High-pressure shock tube study of ethanol oxidation: Ignition delay time and CO time-history measurements," Combustion and Flame, 212, pp. 486-499.

[42] Mathieu, O., Pinzón, L. T., Atherley, T. M., Mulvihill, C. R., Schoel, I., and Petersen, E. L., 2019, "Experimental study of ethanol oxidation behind reflected shock waves: Ignition delay time and H2O laser-absorption measurements," Combustion and Flame, 208, pp. 313-326.

[43] Fieweger, K., Blumenthal, R., and Adomeit, G., 1997, Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure.

[44] Petersen, E. L., and Hanson, R. K., 2001, "Nonideal effects behind reflected shock waves in a high-pressure shock tube," Shock Waves, 10(6), pp. 405-420.

[45] Hargis, J. W., and Petersen, E. L., 2017, "Shock-Tube Boundary-Layer Effects on Reflected-Shock Conditions with and Without CO2," AIAA Journal, 55(3), pp. 902-912.

[46] Weber, Y. S., Oran, E. S., Boris, J. P., and Anderson, J. D., 1995, "The numerical simulation of shock bifurcation near the end wall of a shock tube," Physics of Fluids, 7(10), pp. 2475-2488.

[47] ANSYS, 2019, "Chemkin-Pro,"San Diego, CA.
[48] Meyer, J. W., and Oppenheim, A. K., 1971, "On the shock-induced ignition of explosive gases," Symposium (International) on Combustion, 13(1), pp. 1153-1164.

[49] Chaos, M., and Dryer, F. L., 2008, "Syngas Combustion Kinetics and Applications," Combustion Science and Technology, 180(6), pp. 1053-1096.
List of Figure Captions

Figure 1. SCHEMATIC OF THE SHOCK TUBE FACILITY INDICATING POSITIONS OF PRESSURE TRANSDUCERS AND TEST SECTION LOCATION

Figure 2. SCHEMATIC SHOWING CIRCUMFERENTIAL POSITIONS OF VARIOUS DIAGNOSTICS USED (NOTE THIS IS IN PLANE AT THE 2 CM LOCATION)

Figure 3. PRESSURE AND EMISSION TRACES FOR THE 50% CO2 DILUTED MIXTURE SHOWN WITH A CIRCLED REGION OF IGNITION

Figure 4. TYPICAL EXPERIMENTAL PRESSURE AND EMISSION TRACES WITH LABELED DEFINITIONS OF IGNITION FOR THE 50% CO2 DILUTED MIXTURE

Figure 5. PRESSURE TRACES MEASURED VIA PCBS SHOWING ARRIVAL OF DETONATION WITH NOTED LOCATION FROM THE END WALL

Figure 6. EXPERIMENTAL DETONATION MAPS FOR A.) A HOMOGENEOUS IGNITION EVENT FROM THE CO2 DILUTED MIXTURE AND B.) AN INHOMOGENEOUS IGNITION EVENT FROM THE N2 DILUTED MIXTURE; BLAST LOCATION IS MARKED BY AN OPEN RED CIRCLE. BLAST VELOCITIES AND LOCATION ARE SHOWN
Figure 7. EXPERIMENTAL DEFINITIONS OF IGITION DELAY TIMES COMPARED TO MODEL PREDICTIONS USING CHEMKIN-PRO OF THE CO2 DILUTED MIXTURE. HOMOGENEOUS EVENTS ARE INDICATED WITH FILLED IN MARKERS.

Figure 8. EXPERIMENTAL DEFINITIONS OF IGITION DELAY TIMES COMPARED TO MODEL PREDICTIONS USING CHEMKIN-PRO OF THE N2 DILUTED MIXTURE. HOMOGENEOUS EVENTS ARE INDICATED WITH OPEN CIRCLES AND SQUARES.

Figure 9. EXPERIMENTAL IGITION DELAY TIMES BASED ON IMMENSE PRESSURE RISE ASSOCIATED WITH DETONATION ARRIVAL COMPARED TO MODEL PREDICTIONS USING CHEMKIN-PRO. BOTH CH4/O2/CO2 AND CH4/O2/N2 MIXTURE DATA ARE PRESENTED.
Table 1: SUMMARY OF CURRENT EXPERIMENTS

X_{CH4}	X_{O2}	X_{CO2}	X_{N2}	T_5 [K]	P_5 [atm]	\tau_{defl} [ms]	\tau_{DDT} [ms]
0.1667	0.3333	0.5	0.0	1097	15.76	1.080	1.358
1162	15.38	0.747	1.090				
1314	14.64	0.310	0.589				
1197	15.35	0.435	0.904				
1289	14.05	0.294	0.614				
1356	14.55	0.267	0.367				
1091	16.87	0.946	1.024				
1073	16.61	0.594	1.083				
1045	17.46	1.018	1.776				
0.1667	0.3333	0.0	0.5	1126	14.03	0.220	0.889
1107	14.89	0.489	1.153				
1044	15.40	0.338	1.087				

© <2020> by ASME. This manuscript version is made available under the CC-BY 4.0 license
http://creativecommons.org/licenses/by/4.0/
Table 2: CALCULATED BLAST WAVE VELOCITIES AND INITIATION LOCATIONS
WITH CORRESPONDING DEFINED IGNITION TYPES

T_s [K]	P_s [atm]	Blast Vel [m/s]	Blast Location from EW (cm)	Preignition?
1097	15.76	872.2	31.98	YES
1162	15.38	1213	23.93	YES
1314	14.64	1753	Test Section	NO
1197	15.35	2341	Test Section	NO
1289	14.05	1641	Test Section	NO
1356	14.55	1293	Test Section	NO
1091	16.87	1180	22.10	YES
1073	16.61	1378	26.04	YES
1045	17.46	1192	NA	YES
1126	14.03	1628	24.56	YES
1107	14.89	1793	27.74	YES
1044	15.40	1625	31.43	YES