Predicting probability of tolerating discrete amounts of peanut protein in allergic children using epitope-specific IgE antibody profiling

Maria Suprun, Paul Kearney, Clive Hayward, Heather Butter, Robert Gee, Scott H. Sicherer, Paul J. Turner, Dianne E. Campbell, Hugh A. Sampson

ARTICLE SUMMARY

- Existing diagnostic testing is not predictive of severity or the threshold dose of clinical reactivity, and many patients still require an Oral Food Challenge (OFC). While OFCs are very useful for making an allergy diagnosis and determining clinical reactivity, they often cause anaphylaxis, which can increase patient anxiety, and are time and resource intensive.¹

- An extensive validation was performed across 5 cohorts (all with confirmed oral food challenge results) across six different countries. Cohorts used: BOP1, OPIA, CAFETERIA, CoFAR6, and PEPITEs with specimens from Australia, UK, US, Ireland, and Germany.

- This paper reports the first validated algorithm using two key peanut specific IgE epitopes to predict probabilities of reaction to different amounts of peanut in allergic subjects and may provide a useful clinical substitute for peanut oral food challenges.

- Using the algorithm, subjects were assigned into “high”, “moderate”, or “low” dose reactivity groups. On average, subjects in the “high” group were 4 times more likely to tolerate a specific dose, compared to the “low” group. For example, 88% of patients in the high dose reactivity group were able to tolerate ≥ 144 mg of peanut protein whereas only 29% were able to tolerate the same amount in the low dose reactivity group.²

CLINICAL CONSIDERATIONS

- The new epitope test offers more granular information to help clinicians stratify treatment and peanut avoidance plans for their patients.

- See below for summary of clinical considerations based on threshold reactivity level.¹

allergenis peanut diagnostic result	clinical considerations¹
likely allergic - low dose reactor	- inform or avoid oral food challenge to reduce risk of anaphylaxis
- confirm strict avoidance of peanut
- consider immunotherapy to reduce risk of reaction |
| likely allergic - moderate dose reactor | - consider a single oral food challenge (30 to 100 mg) to reduce anxiety and improve quality of life
- less stringent avoidance of peanut regime
- consider inclusions of precautionary labeled foods such as ‘May contain peanut’
- consider immunotherapy to reduce risk of reaction |
| likely allergic - high dose reactor | - consider a single oral food challenge (100 to 300 mg) to reduce anxiety and improve quality of life
- less stringent avoidance of peanut regime
- consider inclusions of precautionary labeled foods such as ‘May contain peanut’
- consider starting immunotherapy at higher doses to shorten time to maintenance dose |
| unlikely allergic | - oral food challenge to rule out the diagnosis of peanut allergy |

HOW TO ORDER TESTING

- Visit allergenis.com and complete the account setup form
- Choose your phlebotomy preference (in-office or mobile phlebotomy)
- Place your order through our online platform
- Receive the results

ATTEND A WEBINAR

Upcoming webinars to learn more about the clinical utility of the thresholds.

Clinical Utility of Thresholds in Patient Management

Dr. Hugh Sampson from the Icahn School of Medicine at Mount Sinai

November 21, 2022 @ 2 pm EST

Scan to register.

Visit allergenis.com for more information or to start ordering.

REFERENCES

1. Suprun M, Kearney P, Hayward C, et al. Predicting probability of tolerating discrete amounts of peanut protein in allergic children using epitope-specific IgE antibody profiling. Allergy. 2022;00:1–9. doi: 10.1111/all.15477

2. Sandher SB, Long A, Chin AR, Hy A, Sampath V, Nadeau KC, Chinthrajah RS. Food allergy, mechanisms, diagnosis and treatment: Innovation through a multi-targeted approach. Allergy. 2022 Jun 22; doi:10.1111/all.15418. Epub ahead of print. PMID: 35730331.
Abstract

This rapid review summarizes the most up to date evidence about the risk factors for severe food-induced allergic reactions. We searched three bibliographic databases for studies published between January 2010 and August 2021. We included 88 studies and synthesized the evidence narratively, undertaking meta-analysis where appropriate. Significant uncertainties remain with respect to the prediction of severe reactions, both anaphylaxis and/or severe anaphylaxis refractory to treatment. Prior anaphylaxis, an asthma diagnosis, IgE sensitization or basophil activation tests are not good predictors. Some molecular allergology markers may be helpful. Hospital presentations for anaphylaxis are highest in young children, yet this age group appears at lower risk of severe outcomes. Risk of severe outcomes is greatest in adolescence and young adulthood, but the contribution of risk taking behaviour in contributing to severe outcomes is unclear. Evidence for an impact of cofactors on severity is lacking.
1 | INTRODUCTION

Estimating the risk of severe reactions is one of the most significant knowledge gaps in managing people with food allergy. Near-fatal and fatal anaphylaxis to food are rare: the estimated incidence of fatal food-anaphylaxis is 1.81 (95% CI 0.94–3.45) per million person-years. Near-fatal anaphylaxis to food (requiring intensive care support) is around 10 times more common, but still rare. However, such severe reactions are unpredictable. Most people who die from fatal food-anaphylaxis only have a history of previous mild reactions. Our inability to identify those at greater risk of severe reactions means that people with food allergy are often managed as being at equal risk of fatal reactions. This can cause unnecessary anxiety, excessive dietary restriction and reduced health-related quality of life.

Ideally, clinicians would be able to risk-stratify people with food allergy, to provide cost-effective, targeted support to those at greatest risk. Various models incorporating potential risk factors have been proposed—both for any anaphylaxis, and anaphylaxis refractory to treatment (hereafter described as refractory anaphylaxis); however, the underlying evidence is disparate. Some useful narrative reviews have begun to draw the evidence together, but we identified no systematic reviews exploring this topic. In this rapid review, we summarize what is known about the risk factors for more severe reactions in people with food allergy.

2 | METHODS

We systematically searched three bibliographic databases for studies relating to IgE-mediated food allergy or Food protein induced enterocolitis syndrome (FPIES), published between 1 January, 2010, and 31 August, 2021. We searched from 2010 because other reviews covered earlier literature. We extracted data in duplicate, assessed the risk of bias and undertook meta-analysis where appropriate. The online supplement describes the methods in more detail and eligible studies (Tables S1–S5). We included 88 studies (4 systematic reviews, 9 randomized controlled trials and 75 observational studies) and synthesized the evidence according to the categories in Table 1, with an emphasis on modifiable risk factors which could be used to reduce risk.

2.1 | Prior history of anaphylaxis

2.1.1 | Key finding

Thirteen studies evaluated whether a history of prior anaphylaxis predicted future risk of any anaphylaxis. Prior anaphylaxis was not a good predictor, perhaps because severity depends on a range of factors including level of allergen exposure and the presence/absence of co-factors. For fatal food-anaphylaxis, most cases are not associated with a history of prior severe reactions.

2.1.2 | Evidence

There was no evidence that prior anaphylaxis predicted the risk of fatal or near-fatal reaction. In the largest reported series of fatal anaphylaxis, over half of food-related fatalities were in individuals with only prior mild reactions. In a unique but small study where food challenges were not terminated at onset of objective symptoms, 21/27 (78%) peanut-allergic children had anaphylaxis when given a sufficient dose of allergen. Thus, the absence of prior anaphylaxis (at least in peanut-allergic children) may reflect insufficient allergen exposure rather than an inherently lower risk of anaphylaxis. However, many patients with prior anaphylaxis to a food only experience milder symptoms subsequently, whether due to accidental allergen exposure or at formal food challenges.

2.2 | Impact of other allergic diseases

2.2.1 | Key finding

Thirty-four studies (including a systematic review) evaluated the impact of concomitant atopic disease on severity. While diagnosis of asthma was not a risk factor for more severe reactions (Figure 1), it is unclear whether poor asthma control is. In some individuals, active allergic disease of any type may exacerbate severity, but there are no data to suggest an increased risk of fatal or near-fatal outcomes.
TABLE 1	Potential risk factors for more severe reactions in food allergy					
Burden of allergic disease	**Host immune response**	**Allergen presentation**	**Host behaviours**	**Concomitant medications**	**Non-modifiable host factors**	**Management of allergic reaction**
Increased risk	High certainty					
Low certainty	Prior anaphylaxis is not a good predictor of future anaphylaxis	Greater IgE binding (avidity/affinity)	Specific food triggers e.g. persisting cow’s milk allergy, peanut, seafood, wheat	Risk-taking behaviour	ACE inhibitors	Age:
	Absence of prior anaphylaxis does not exclude future risk	Increased effector cell (basophil/mast cell) activation in vivo	Potential impact of food matrix	Situational awareness	Beta-blockers	- Adolescence/ adults < 40 years (food triggers)
		LTP sensitization without pollen co-sensitization		Exercise		- Older age associated with higher risk of more severe anaphylaxis to non-food triggers
Decreased risk	Low certainty	Specific food triggers e.g. egg				
		Bet v 1-mediated pollen food allergy syndrome		Risk-taking behaviour		
High certainty						
Unlikely to be a useful predictor in clinical practice		IgE sensitization (skin prick test or blood test) to whole allergens				Sex
						Age
Risk unknown	Active atopic disease (allergic rhinitis, eczema)	IgE sensitization to specific components/basophil activation test	Dose of allergen	Alcohol	NSAID’s	Cardiovascular disease
	Suboptimal asthma control, asthma severity	Mastocytosis				Ability to compensate
		Immune activation for example, viral infections				Genetics

Note: For the purposes of this table, 'high certainty' means the evidence gives confidence in the conclusion that a variable is or is not a risk factor. Low certainty means that there was some evidence that a variable may be a risk factor, but we were not certain of this conclusion or the size of the impact.
Evidence

Case series of fatal/near-fatal food-anaphylaxis indicate that asthma is a common co-morbidity.21-24 Asthma has therefore been assumed to be a risk factor—something not unreasonable given that the main mechanism of severe outcomes in food allergy involve respiratory compromise.3 However, asthma is common, present in over 50% of food-allergic individuals.13, 25-28 As a result, and because fatal reactions are rare,4 the value of asthma as a predictor for severe reactions is low. The vast majority (>99.9%) of food-allergic individuals with asthma will never experience a truly life-threatening reaction.3

We identified 32 primary research studies and one systematic review evaluating the relationship between asthma and severity (Table S6).30-33, 18, 27-52 Evidence for asthma as a risk factor was contradictory, even within the same dataset when severity is assessed using different criteria.41, 42 To address this heterogeneity, we performed a meta-analysis using a random effects model. We found no consistent evidence that asthma is associated with increased severity of food-induced reactions (i.e. any anaphylaxis) following accidental allergen exposure, or the need for ICU admission and/or intubation and mechanical ventilation (Figure 1 and Table 2). Similarly, there was no association between asthma diagnosis and occurrence of any anaphylaxis at food challenge, although challenges are not usually performed in patients with poorly-controlled asthma. Only in retrospective observational studies, where the risk of bias is greater (Tables S4 and S6), was there a weak association between asthma and severity.

Most studies, however, do not distinguish between a diagnosis of asthma and the degree of asthma control/underlying airway inflammation. Although evidence is lacking, asthma control may be more relevant than an asthma diagnosisper se. In the UK Fatal Anaphylaxis Registry, over 50% of cases had no evidence of asthma exacerbation in the weeks preceding the fatal event.7 A retrospective study reported that peanut/tree nut-allergic patients with prior hospital admission for asthma were more likely to experience bronchospasm at historical reactions (OR 6.8, 95% CI 4.1–11.3), but was not included in this analysis due to publication prior to 2008.53 This study is unfortunately affected by methodological inconsistencies and high risk of bias, but remains the only report identified which has attempted a more discriminatory approach to asthma control. It was included in a 2021 meta-analysis which—in contrast to our meta-analysis—did find a weak association between asthma and severity (OR 1.89,
TABLE 2 Meta-analysis of studies reporting impact of asthma on severity of food-induced allergic reactions (Forest plots shown in Figure 1)

Outcome	Number of studies	Pooled OR (95% CI)	Heterogeneity
More severe anaphylaxis at accidental reaction	11 studies^{10,27,28,31,33,37,41,45,46,48,51}	1.24 (0.87–1.77)	93% (p < .001)
Limited to studies with unadjusted OR only (8 studies)^{10,27,28,31,33,37,41,45,46,48,51}	1.07 (0.79–1.46)	76% (p < .001)	
Limited to trigger = food:			
• Retrospective only (4 studies)^{10,27,28,33}	2.34 (1.02–5.36)	75% (p < .001)	
• Prospective only (5 studies)^{31,45,46,48,51}	1.16 (0.71–1.92)		
• Combined (9 studies)	1.52 (0.99–2.31)		
Intubation following accidental reaction	3 studies^{30,36,37}	1.64 (0.82–3.25)	95% (p < .001)
ICU admission following accidental reaction	3 studies^{30,37,44}	1.08 (0.81–1.45)	87% (p = .003)
More severe anaphylaxis at food challenge	8 studies^{13–15,17,18,35,38,40}	0.93 (0.61–1.43)	70% (p = .006)

95% CI 1.26–2.83. This might be due to the inclusion of studies at medium-high risk of bias in the 2021 meta-analysis, and also that only two of the 13 studies included were specific to food.

Eleven papers evaluated the impact of a diagnosis of eczema and/or allergic rhinitis on severity of food-induced reactions. Most reported no association with eczema^{10,15–17,29,37,51,54} or allergic rhinitis. In a prospective multicentre study of anaphylaxis presenting to Emergency Departments in Canada, severe reactions to fruit were more likely to occur in the springtime (OR 1.12, 95% CI 1.03–1.34). In contrast, a prospective study of food-allergic adults in The Netherlands found no impact of active rhinitis on reaction severity.¹

2.3.2 | IgE-sensitization

While high-level IgE sensitization (skin prick test (SPT) wheal and/or specific IgE to food allergens) are usually associated with clinical reactivity, they do not, in general, predict reaction severity or the occurrence of anaphylaxis at food challenge. Many studies report a correlation between IgE-sensitization and anaphylaxis (Table 3); however, the overlap in SPT/IgE between those with and without anaphylaxis is so extensive that there is insufficient discrimination to predict risk. This is clearly demonstrated in well-curated datasets such as the LEAP study cohort (Figure 2): even IgE to Ara h 2 was not predictive of anaphylaxis at challenge, a finding confirmed elsewhere.⁷⁷ Some authors have overestimated the predictive utility of these tests by including non-allergic individuals as ‘non-severe’ reactors in their analyses.^{55,69,72–74,78} While this approach is reasonable in the context of predicting any clinical reaction in people without a confirmed diagnosis, for severity, clinicians more commonly want to assess risk in patients with known allergy. The inclusion of non-reactors significantly overestimates the specificity and thus, the likelihood ratio of the test (see example in Table 4).

The best evidence for IgE-sensitization being suggestive of a higher risk of severe reaction is for Pru p 3 (peach).^{66,79} and the 2S albumins in tree nut allergy,^{49,51,57} although this may be region-dependent. Some studies report an association between sensitization to specific IgE components and severity; however, often the term ‘severity’ is used to describe any systemic reaction (as opposed to local oral symptoms)—even if that systemic reaction does not meet established clinical criteria for anaphylaxis. Thus, some studies
TABLE 3
Studies evaluating association of IgE-sensitization/basophil activation test with reaction severity. Red and orange text indicate a strong or moderate reported positive association, respectively; brown text a weak association and black text no association. Green text indicates an association with lower risk of severe reaction.

Study	Allergen	Risk of bias	Predictor of anaphylaxis severity	Skin prick test	IgE to whole allergen	Component testing	Basophil activation
Neuman-Sunshine 2012	Peanut	High					
Cianferoni 2012	CM, egg, PN	High	αOR 1.16	αOR 1.01			
van Erp 2013	Peanut	Low	OR 1.05 (0.95–1.15)	OR 1.00 (1.00–1.02)			
Eller 2013	Peanut	Moderate	ρ = .54, p < .01				
Klemans 2013	Peanut	Moderate	ρs = .09, p = .43				
Masthoff 2014	Hazelnut	High	Not associated with severity				
Song 2015	Nuts/sesame/seafood	Moderate	ρs = .24, p = .05				
Kukkonen 2015	Peanut	Moderate	AUC 0.80 (0.71–0.88)				
Uasuf 2015	Peach	High	Pru p 3: OR 69 (2.3–20.28)				LR 6.3 (4.5–8.8)
Deschildre 2016	Peanut	Moderate	Weak association with severity				
Chan 2017	Peanut	Low	AUC 0.48 (0.34–0.62)	AUC 0.82 (0.68–0.96)			
Pettersson 2018	CM, egg, peanut	Low	Predictive for CM and egg (p < .02), but not peanut	Predictive for CM and peanut (p < .05), but not egg			
Purington 2018	Multiple foods	Moderate	Higher values associated with severity: HR 1.49 (1.19–1.85)				
Chinthrajah 2018	Peanut	Moderate	SPT not predictive (p = .96)	IgE not associated with severity (p = .13)		BAT associated with severity (p = .004)	
Reier-Nilsen 2018	Peanut	Moderate	No association with severity (data not included in report)				
Yanagida 2018	CM	Moderate	CM: aOR 3.19 (1.70–5.98)				
	Egg		Egg: aOR 1.99 (1.13–3.53)				
	Wheat		Wheat: aOR 6.31 (2.37–16.8)				
	Peanut		Peanut: aOR 4.91 (1.34–17.9)				

(Continues)
Study	Allergen	Risk of bias	Predictor of anaphylaxis severity	Component testing	Basophil activation
Datema 2018	Hazelnut	Moderate	Skin prick test	SPT not predictive	Basophil activation
Palosuo 2018	Egg	Low	Not associated with severity	AUC 0.74 (0.66–0.81)	No association for Gal d 1/2/3/4
Datema 2019	Peanut	Moderate	IgE to whole allergen	AUC 0.72 (0.68–0.75)	Ara h 2: AUC 0.80 (0.73–0.87)
Ballmer-Weber 2019	Walnut	Moderate	Basophil activation		
Kiewiet 2020	α-Gal allergy	Moderate	Weak association with severity for IgE to beef: AUC 0.61		Weak association with severity for α-Gal: AUC 0.61
Santos 2020	Peanut	Moderate	For any anaphylaxis:	For any anaphylaxis:	For any anaphylaxis:
Lyons 2021	Walnut	Moderate	OR 1.37 (0.82–2.31)	AUC 0.81 (0.73–0.89)	
Turner 2021	CM	Low	SPT not predictive	IgE not predictive	
Błażowski 2021	All allergens	Moderate			
Datema 2021	Peanut	Moderate	Prediction not improved by including IgE sensitization	Prediction not improved by including component diagnostics	
Kaur 2021	Peanut	Moderate	Moderate correlation with severity (r = 0.56)	Moderate correlation with severity for Ara h 2 (r = 0.61), not Ara h 1/3	
Goldberg 2021	Walnut + Pecan	Moderate	SPT not predictive		Associated with lower respiratory symptoms but not anaphylaxis

Historical symptoms:
- Cor a 1: OR 0.4 (0.2–0.64)
- Cor a 9: OR 2.9 (1.3–6.3)
- Cor a 14 OR 4.7 (1.8–12.4)

At food challenge:
- Cor a 1: OR 0.14 (0.03–0.55)
- Cor a 9: OR 10.5 (1.2–91.4)
- Cor a 14 OR 10.1 (1.1–91.5)

Correlations:
- Moderate correlation with severity
- Weak association with severity
- Strong association with severity
which report an association between severity and Ara h 2 for peanut,89 Jug r 1/Jug r 4 for walnut,79 or Cor a 9/Cor a 14 for hazelnut.63,64 are actually describing a higher risk of any systemic reaction, without differentiating between anaphylaxis and systemic (but non-anaphylaxis) reactions such as generalized urticaria. This may explain why the diagnostic cut-offs in some of these studies are similar to those reported to be 95% predictive of any clinical reaction.

Birch-pollen sensitization is associated with less severe reactions in people allergic to peanut58 or hazelnut,57 probably because this is indicative of Bet v 1-mediated PFAS, rather than primary sensitization to a food allergen.81,82 Importantly, patients with only oral symptoms (often referred to as oral allergy syndrome, OAS) to low levels of allergen exposure must not be assumed to have PFAS on that basis alone: indeed, in the first description of OAS in the literature, almost half of patients with OAS to peanut went on to experience systemic symptoms and anaphylaxis with subsequent exposure.83 OAS is therefore not synonymous with PFAS; the latter requires evidence of IgE-sensitization to cross-reactive pollens and/or the presence of OAS alone at higher doses of allergen ingestion.81,82

While LTP-mediated allergy can be associated with very severe reactions, LTP-sensitization without clinical reactivity is common, although there is significant geographical variation.3 Data are emerging that polysensitization to pollen panallergens (particularly to Bet v 1 homologues and profilins) in LTP-sensitized individuals can moderate severity.59,60,79,84 Conversely, mono-sensitization to a single LTP (without other IgE-sensitization) may be associated with a greater risk of severe reactions in some regions.60

2.3.3 | Variations in host cellular responses

Some studies report that the basophil activation test (BAT) predicts severity (Table 4),35,40,70,74 but as with IgE-sensitization, reported analyses sometimes overestimate predictive utility by including non-reactive individuals.70 Nonetheless, in a re-analysis of data from the LEAP study cohort (excluding non-allergic individuals), BAT was still the best predictor of life-threatening reactions (such as persistent hypotension and/or hypoxia with decreased level of consciousness) at peanut challenge, although IgE to peanut was not statistically inferior. However, in predicting any anaphylaxis (rather than life-threatening anaphylaxis), BAT was inferior to IgE to peanut, Ara h 2 and even SPT (Table 4 and Figure S4).70–72

Combining multiple parameters into a predictive model may provide better accuracy. Incorporating component-resolved diagnostics (but not IgE to whole allergen) into a model improved prediction of more severe symptoms and anaphylaxis for peanut,48 hazelnut49 and walnut.41 Including BAT may further increase predictive utility,70 because BAT reflects a more functional readout of the ability of IgE to trigger cellular degranulation—in much the same way that the mast cell activation test has also been shown to correlate with severity.85 However, till date, this has only been evaluated in predicting life-threatening reactions in a cohort where only 12 children had severe reactions.70 The extent and frequency of IgE binding (including for specific epitopes) have been reported to correlate with symptom severity at food challenge in some studies,86–90 but including IgE avidity and diversity in a prediction model for any symptoms in peanut-allergic individuals did not improve diagnostic utility compared to peanut components.87 These data imply that a more complex integration of different allergen-antibody-effector cell interactions might confer better severity prediction, but larger and combined datasets reflecting different allergen-antibody-effector cell interactions might be helpful in risk-stratifying patients.

2.3.4 | Mastocytosis and elevated baseline mast cell tryptase

There is little evidence that the association of clonal mast cell disorders with severe hymenoptera allergy also applies to food allergy.91 Raised mast cell tryptase (MCT) due to hereditary alpha tryptasemia (HαT) affects around 5% of the population, and is associated with severity in hymenoptera allergy.92 However, this has not been demonstrated for food allergy, and raised baseline MCT does not appear to be associated with severity.31,93–96

2.3.5 | Immune activation (e.g. intercurrent viral infection)

Data from immunotherapy studies have highlighted that some patients experience a fall in reaction threshold if unwell with viral infections, and this may increase the severity of any symptoms experienced.47,97–99 However, intercurrent illness was not associated with reaction severity in a prospective study in peanut-allergic adults15 or in the European Anaphylaxis Register.41 Immune activation for example, due to viral infections, can also cause flares in eczema. Some fatalities due to food-anaphylaxis have been noted to have active eczema exacerbations,7 but data are inconsistent.

2.4 | Allergen presentation

2.4.1 | Key findings

Thirty-three studies investigated aspects of allergen presentation. Food processing (and the presence of other food ingredients) impact on allergen bioavailability and resulting symptoms, but data are limited. The relationship between dose/level of allergen exposure and reaction severity is unclear. Individuals who react to smaller amounts of allergen are not necessarily at higher risk of anaphylaxis.

2.4.2 | Evidence

Anaphylaxis to food is, in general, of lower severity than that due to non-food triggers,12,31,37,41,48 and is associated with
predominantly respiratory symptoms. Certain foods may cause more anaphylaxis and life-threatening reactions than others, even when correcting for prevalence (Table 5). In most regions, peanut/tree nuts are the most common triggers although cow’s and other mammalian milk and seafood are increasingly common causes of fatal and non-fatal anaphylaxis, responsible for a higher proportion of anaphylaxis than peanut in some regions. Wheat has been reported to cause more severe reactions (cardiovascular symptoms including loss of consciousness) compared to other foods in adults, possibly due to a greater role of cofactors. Most case series report that egg is less likely to cause anaphylaxis in children compared with other foods, at least at food challenge, although not all studies concur. Egg is not a common cause of near-fatal and fatal anaphylaxis. Foods associated with PFAS often cause anaphylaxis less frequently.

2.4.3 Dose

The relationship between dose/level of exposure and severity is complex and unclear. For accidental reactions in the community setting, it can be very difficult to accurately determine the degree of allergen exposure associated with an event, particularly those associated with fatal outcomes. Most individuals experience mild symptoms at food challenge prior to developing more significant (and less mild) symptoms to a dose sufficient to meet challenge stopping criteria. In a small study of 27 children reacting to peanut at food challenge, 21 had anaphylaxis but only three as initial presenting symptoms; 13 children presented with initial non-anaphylaxis symptoms but then developed anaphylaxis with further peanut ingestion. This pattern has been reproduced elsewhere: that individuals often show a dose-response between symptoms and level of allergen exposure, at least for the occurrence of any anaphylaxis, but this may not be apparent in larger datasets. In an analysis of 734 double-blind, placebo-controlled food challenges from The Netherlands, dose predicted only 4.4% of the variance in reaction severity—in other words, dose was not an important factor. Within a population, there will be a mixture of different allergic phenotypes, with some individuals showing a dose-response but others not. Most datasets show that severe reactions can occur at all levels of allergen exposure (which further obscures the dose-severity relationship in larger datasets), although significant symptoms are very uncommon to sub-milligram levels of protein. Finally, in the challenge setting, potential severity may be dose-limited; so, these data may
not be applicable to accidental reactions in the community.9 This is important, as controlling exposure is a key modifiable factor for food businesses aiming to provide safe food for people with food allergy.

For any given individual patient, therefore, the absence of prior anaphylaxis may be due to insufficient allergen exposure causing previous reactions, (rather than the patient being at an inherently lower risk).3,5,6,8,9,12 Therefore, a history (or not) of anaphylaxis is a poor predictor of future anaphylaxis.6,10–20 Reassuringly, there is no robust evidence that food-allergic individuals who react to very low levels of allergen are at greater risk of anaphylaxis.3,115–118 A history of reaction to only relatively large exposures (with no or minimal symptoms to smaller doses) may be useful in informing the approach to allergen avoidance in any given individual, particularly given more recent data suggesting that reaction thresholds for an food-allergic person are fairly reproducible under typical challenge conditions, at least for peanut and cow’s milk.116,118

Relevant to the food matrix

The impact of the food matrix is well-established for egg and cow’s milk: up to two-thirds of children allergic to egg and cow’s milk can tolerate the allergen when in a baked matrix (such as cake), probably because of heat-induced 3D structural changes in the protein affecting the ability of IgE to bind to the allergenic epitopes.3 Those allergic to ‘baked egg’ or ‘baked milk’ often report delayed and more severe reactions.119 perhaps because the matrix slows gastrointestinal absorption, allowing more allergen to be eaten prior to onset of symptoms and thus increasing severity. At least one fatal reaction to baked milk has been reported at in-hospital food challenge.120 It has been suggested that the lack of tolerance to baked milk may be a marker of more severe allergy to cow’s milk,121 although this has not been evaluated prospectively. The fat content of the food matrix can impact on the dose threshold triggering symptoms, and the severity of those symptoms, at least for peanut122,123 and hazelnut,123 although not for egg.124 Food processing has a significant impact on the bioavailability of egg and peanut allergens in vitro,125–127 but the data are currently lacking to evaluate the clinical relevance of these findings.

2.4.4 Relevance of the food matrix

Parameter	Diagnostic cut-off	AUC	Sensitivity (%) [95% CI]	Specificity (%) [95% CI]	LR
Anaphylaxis (any severity) vs. non-anaphylaxis reaction					
BAT (%CD63 basophils)	1.2 Incl. non-reactors	0.97	95 [83, 99]	87 [84, 89]	7.1
	17 Reactors only	0.69	69 [54, 81]	57 [42, 71]	1.6
IgE to Ara h 2	0.35 kU/L Incl. non-reactors	0.98	94 [81, 99]	95 [94, 97]	21
	1.8 kU/L Reactors only	0.76	71 [54, 83]	67 [51, 79]	2.1
IgE to peanut	1 kU/L Incl. non-reactors	0.95	97 [87, 100]	83 [81, 86]	5.9
	4.8 kU/L Reactors only	0.75	79 [64, 89]	67 [52, 79]	2.4
Peanut SPT	8 mm Incl. non-reactors	0.98	85 [70, 93]	97 [95, 98]	26.5
	8 mm Reactors only	0.71	85 [70, 93]	40 [27, 56]	1.4
Severe reactions [NCI-CTCAE Grade 3] vs. non-severe reaction					
BAT (%CD63 basophils)	48 Incl. non-reactors	0.98	100 [100, 100]	97 [95, 98]	33.3
	48 Reactors only	0.88	100 [92, 100]	75 [65, 76]	4.0
IgE to Ara h 2	1.4 kU/L Incl. non-reactors	0.98	100 [100, 100]	93 [91, 98]	14.3
	4.2 kU/L Reactors only	0.83	90 [60, 90]	67 [46, 73]	2.7
IgE to peanut	5 kU/L Incl. non-reactors	0.98	100 [100, 100]	90 [87, 98]	10
	22 kU/L Reactors only	0.86	92 [75, 92]	74 [51, 75]	3.5
Peanut SPT	8 mm Incl. non-reactors	0.96	100 [100, 100]	92 [89, 94]	12.5
	8 mm Reactors only	0.66	100 [42, 100]	34 [24, 37]	1.5

Abbreviations: BAT, basophil activation test; SPT, skin prick test.
fatal outcomes. This does not negate the need to address concerns over risk-taking in specific individuals. Cofactors such as exercise can lower reaction thresholds in 10–20% of individuals, but with the notable exception of food-dependent exercise-induced anaphylaxis (FDEIA), are unlikely to worsen outcomes in most food-allergic individuals.

TABLE 5 Common causes of anaphylaxis by region

Region	Children	Adults
Europe	PEANUT, TREE NUTS, COW’S MILK, Fish	PEANUT, TREE NUTS, CRUSTACEA, Cow’s milk, Wheat
North America, Australia, New Zealand	PEANUT, TREE NUTS, Cow’s milk	PEANUT, TREE NUTS, CRUSTACEA
Asia†	Peanut, Tree Nuts, Cow’s milk, Egg, Wheat	Crustacea/fish, Wheat
Africa†	Peanut, Tree nuts, Cow’s milk, Egg (data from South Africa only)	Peanut, Egg (data from Morocco only)
Latin America†	Seafood, Cow’s milk, Egg	Seafood, Fruit
Near East†	Peanut, Tree nuts, Cow’s milk, Egg, Fish/seafood	Peanut, Egg (data from Morocco only)

Note: Foods highlighted in Capitals are the most common causes of fatal reactions reported in those regions. 102

†No fatality data have been published for Asia.

FIGURE 3 Evolution of symptoms and clinical reactivity at food challenge.

Many individuals will experience initially subjective symptoms, with objective symptoms appearing with further doses (A). Anaphylaxis will only develop if the food challenge continues. Others will experience anaphylaxis as their first objective symptom: either at a dose of allergen exposure with no preceding subjective symptoms (B), or with prior subjective symptoms (C), without evidence of a clear dose-response for symptoms. Note that anaphylaxis can occur at all levels of exposure (both at low levels of allergen exposure, represented by the solid bars, and higher doses indicated by dotted lines). Reproduced under the terms of the Creative Commons Attribution License from reference 9.
2.5.2 | Impact of age

Epidemiological data suggests an age-related increase in severe food-anaphylaxis in adolescents and young adults.\(^{1,32-37,43,106-108}\) Often, this is assumed to be due to risk-taking behaviours such as deliberately eating risky food or refusing to carry rescue medication.\(^{128,129}\) However, an analysis of national fatal anaphylaxis data from the UK reported that this age-related increase in near-fatal and fatal food-anaphylaxis persists well into the fourth decade of life.\(^{2,34}\) The authors suggested that there may be an 'age-specific vulnerability to severe outcomes from food-induced allergic reactions in the second and third decades'.\(^{34}\) Adolescents use a variety of different strategies to manage risk, and most teenagers manage their food allergies well.\(^{129,130}\) Risk-taking can be a deliberate act by adolescents to increase their independence,\(^{9}\) but can be mitigated by 'transitioning' children to self-care (from around age 11 years). Specific educational interventions targeting teenagers and young adults are unlikely to be harmful, but there is an absence of evidence as to whether such strategies reduce the risk of severe outcomes.\(^{130}\)

2.5.3 | Exercise

Exercise is the most well-described cofactor in food-anaphylaxis, reported in 10–20% of cases.\(^{47,131,132}\) It is also a common cofactor in adverse events due to oral immunotherapy.\(^{47,97-99,133}\) Conventional thinking has distinguished between 'typical' food allergy where exercise may exacerbate symptoms, and food-dependent EAI, where allergic symptoms only occur in the context of exercise, typically 2–4 h after consumption of the relevant food. The most commonly described trigger is wheat, associated with IgE-sensitization to omega-5-gliadin (wheat-dependent EIA, WDEAI).\(^{134,135}\) However, a recent study has challenged this distinction. Christensen et al. reported 71 adults with a history of WDEIA who underwent controlled challenges: 26 reacted to very high doses of wheat in the absence of exercise, while 21 only reacted in the presence of exercise. The authors, thus implying that the primary impact of exercise in WDEIA is to reduce the reaction threshold resulting in affected individuals developing allergic symptoms to more typical levels of wheat exposure in the context of exercise.\(^{135}\) The authors suggest that many individuals with WDEIA are wheat-allergic even at rest, but tolerate normal levels of wheat ingestion in the absence of exercise due to a very high reaction threshold. However, in the presence of exercise, there is a significant drop in reaction threshold resulting in symptoms to more typical levels of wheat exposure, resulting in reactions. The authors also observed a greater tendency towards any anaphylaxis with exercise, which might imply a relationship between dose and resulting reaction severity.\(^{135}\)

A randomized controlled study in 73 peanut-allergic adults reported that exercise can reduce an individual’s reaction threshold.\(^{13}\) However, this was based on dose-distribution modelling which may have over-estimated the effect. Analysis of the raw data shows that the average change was more modest.\(^{136}\) Overall, 47% of participants had no change in threshold, while in 36% this was limited to a single dosing increment (e.g. 100–30 mg)—well within the inherent variability in reaction thresholds reported for peanut allergy.\(^{116}\) Only 12% had a more significant fall in threshold (>0.3 log, equivalent to 1 dosing increment at food challenge). Thus, the impact of exercise does not seem to be important in the majority of peanut-allergic individuals. Unfortunately, no data relating to symptom severity in this cohort have yet been published.\(^{13}\)

2.5.4 | Alcohol consumption

Alcohol consumption: evidence is mixed. A large registry study reported it to be a possible cofactor in a minority (3%) of anaphylaxis events\(^{131}\) whereas a prospective series of accidental reactions in food-allergic adults reported alcohol consumption in 16% of reactions.\(^{45}\) In a sub-cohort of adults with WDEIA reported by Christensen et al.,\(^{135}\) alcohol did not result in a significant change in either reaction threshold or severity compared with baseline challenge at rest.\(^{137}\) While intoxication can cause risk-taking and impair self-management, alcohol can also activate effector cells (mast cells, basophils) in vitro, potentially exacerbating severity via a biological mechanism.\(^{3}\)

2.5.5 | Environment

A disproportionately higher number of fatal anaphylaxis events occur when food-allergic individuals are away from home for example, on vacation.\(^{7}\) This risk may be mitigated through focused patient information, such as translation cards.

2.6 | Concomitant medications

2.6.1 | Key finding

Based on 6 studies, it is likely that β-blockers and/or angiotensin-converting enzyme (ACE) inhibitors can increase reaction severity, although any impact seems to be less than other factors such as age, exposure to a non-food trigger or mast cell disease.

2.6.2 | Evidence

The impact of medication on severity is difficult to disentangle, because the underlying reason for prescription (e.g. cardiovascular disease, age) is likely to be a confounder.\(^{3,37}\) Few studies have attempted to adjust for this. In a large retrospective study of emergency presentations for anaphylaxis, ACE inhibitor prescription was associated with increased odds of severe reaction after adjusting...
for cardiovascular disease and age. There was no increased risk for antidepressants, β-blockers, alpha-adrrenergic blockers or angiotensin II receptor antagonists. An association between β-blockers or ACE inhibitors and severity has also been reported in prospective and retrospective case series. Acetylsalicylic acid (aspirin) and other non-steroidal, anti-inflammatory drugs (NSAIDs) have also been reported to increase severity in some analyses, but not in others.

A meta-analysis of 15 observational studies reported that β-blockers (OR 2.2, 95% CI 1.3–3.8) or ACE inhibitors (OR 1.6, 95% CI 1.1–2.2) increased (all-cause) anaphylaxis severity; however, the authors were unable to adjust for underlying cardiovascular disease or any differences between food and non-food triggers. Age is strongly associated with cardiovascular disease and use of β-blockers, ACE inhibitors, angiotensin receptor blockers or other vasodilators in patients presenting with anaphylaxis; so, it is unclear whether these medicines have a direct impact on severity or if the association is due to cofounding (e.g. by underlying cardiovascular disease). In a prospective series of accidental allergic reactions to food, prescription of β-blockers, ACE inhibitors, angiotensin receptor blockers were not more common in those experiencing more severe reactions. Cofactors such as NSAIDs and exercise may influence severity through an impact on allergen absorption. The gastrointestinal epithelial barrier can be impaired in food allergy, although consistent evidence is lacking. Intestinal permeability is not predictive of disease or any differences between food and non-food triggers. Age is strongly associated with cardiovascular disease and use of β-blockers, ACE inhibitors, angiotensin receptor blockers or other vasodilators in patients presenting with anaphylaxis; so, it is unclear whether these medicines have a direct impact on severity or if the association is due to cofounding (e.g. by underlying cardiovascular disease). In a prospective series of accidental allergic reactions to food, prescription of β-blockers, ACE inhibitors, angiotensin receptor blockers were not more common in those experiencing more severe reactions. Cofactors such as NSAIDs and exercise may influence severity through an impact on allergen absorption. 3 The gastrointestinal epithelial barrier can be impaired in food allergy, although consistent evidence is lacking. Intestinal permeability is not predictive of food allergy, but may have a key role in WDEIA. Measuring food proteins in serum following ingestion is difficult. Nonetheless, greater absorption kinetics for peanut has been reported peanut-allergic subjects compared with non-allergic controls: significantly lower amounts of peanut (30mg protein) were required to detect Ara h 6 in serum samples in peanut-allergic individuals, and for any given peanut dose ingested, higher Ara h 6 was found in sera from peanut-allergic participants versus controls. Whether this phenomenon reflects antibody-mediated facilitated absorption is unclear. Allergen absorption kinetics may be a key determinant of severity in a murine model of peanut anaphylaxis; thus, further in-human studies are warranted.

2.7 | Non-modifiable host factors

Many studies report an association between age and risk of food-anaphylaxis of any severity, but not all. Anaphylaxis is most commonly reported in preschool children age 0–4 years, although severe or fatal outcomes in this age group are rare. The age group at greatest (although still very low) risk of near-fatal and fatal anaphylaxis is adolescents and adults up to age 40 years. Males may be at slightly higher risk of severe anaphylaxis, both pre- and post-puberty. At least one fatal series has reported male sex to be a risk factor. Till date, no clear genetic associations have been identified conferring a greater risk of severe allergic reactions to food. Specific HLA haplotypes have been reported for WDEIA, but for other food allergy phenotypes, data are very inconsistent.

2.8 | Management of allergic reaction

Delays in symptom recognition and treatment of anaphylaxis have been associated with more severe outcomes in anaphylaxis, including need for intensive care and length of hospital stay. Whether delays in adrenaline treatment also increase the risk of biphasic anaphylaxis is less clear. There is no evidence that treating non-anaphylaxis reactions with adrenaline helps prevent progression to anaphylaxis. Observational data from food challenges in peanut-allergic adults have shed new light on homeostatic mechanisms which can compensate for anaphylaxis and prevent severe outcomes. One hypothesis is that individuals at greater risk of severe reactions may be less able to compensate for an allergic insult (e.g. through endogenous catecholamine production) (Figure 4).

3 | SEVERITY CONSIDERATIONS: FOOD PROTEIN INDUCED ENTEROCOLITIS SYNDROME

We identified only 2 papers eligible for inclusion about FPIES. One noted that poor weight gain was more common where the trigger was cow’s milk or banana. Why banana might be a risk factor is unclear. Another study of 222 FPIES food challenges had only four severe reactions, which precludes any meaningful analysis.

4 | LIMITATIONS OF THIS REVIEW

We chose to focus on IgE-mediated food allergy and FPIES, as these are arguably the only food allergy phenotypes with clear diagnostic criteria associated with acute, life-threatening reactions. However, since only two papers relating to FPIES were identified for inclusion, the majority of this review relates to IgE-mediated food allergy and anaphylaxis. The majority of included studies were from Europe and North America, thus, our conclusions require confirmation in food-allergic people from other regions. The extensive heterogeneity in severity definitions applied to food allergy, and their highly variable usage by individual studies, precluded a more quantitative analysis of the evidence.

5 | CONCLUSIONS

It is vital that food-allergic individuals receive reliable and accurate information to help them self-manage their condition. Our comprehensive review suggests that there is much left to learn about risk factors for anaphylaxis and life-threatening reactions (Table 1).
Absence of prior anaphylaxis does not exclude future risk of anaphylaxis, and history alone is not a good predictor because severity depends on multiple factors including dose of exposure and the presence or absence of cofactors (e.g., exercise, concurrent viral infections and some medications).

Importantly, our review challenges widely-held (but evidence-poor) conventions that asthma or degree of IgE sensitization are useful predictors. Our meta-analysis shows that a diagnosis of asthma in itself is unlikely to be a significant risk factor if asthma control is satisfactory.

Higher levels of IgE sensitization are associated with a history of anaphylaxis, but in practice, biomarkers of IgE sensitization are not helpful in predicting severity. Clinicians may incorrectly interpret low levels of IgE sensitization as implying a lower risk of anaphylaxis and provide incorrect information to their patients as a result, while those with high IgE sensitization are wrongly counselled that they are at high risk of severe reactions. Similarly, most individuals with food allergy experience oral symptoms to low doses: thus, the occurrence of oral symptoms alone to low allergen exposure must not be assumed to imply PFAS, and therefore, a lower risk of anaphylaxis.

Individuals with food allergy must understand that they can experience anaphylaxis in the future, even if they appear to be at low risk. All patients with food allergy need to be able to recognize and appropriately self-manage anaphylaxis. It is necessary to weigh up the whole clinical scenario carefully when evaluating risk. A history of previous anaphylaxis would place an individual in a risk group where access to self-injectable adrenaline is indicated. Healthcare professionals might consider that other factors, such as being an adolescent or young adult, also move an individual into a higher risk category. Those with food allergy need to be informed that future reactions may be of differing severities. They need to be counselled as to the potential for some cofactors to increase reaction severity, and if they have coexisting asthma, it is prudent to optimize asthma control.

Our inability to accurately risk-stratify food-allergic individuals is an important knowledge gap. As a consequence, many patients are prescribed self-injectable adrenaline yet most do not use it, even when indicated. Being able to predict those most at risk would help to target interventions towards those at greatest risk. Large longitudinal population-based studies are needed to identify specific factors which predict future risk. This will help achieve a better understanding of the underlying mechanisms of severe allergic reactions, from initiation to end-organ involvement.

CONFLICT OF INTEREST

Dr Turner reports personal fees from Aimmune Therapeutics, DBV Technologies, Allergenis, UK Food Standards Agency and ILSI Europe; grants from National Institute for Health Research (NIHR)/Imperial Biomedical Research Centre, UK Medical Research Council, UK Food Standards Agency, End Allergies Together, Jon Moulton Charity Trust, outside the submitted work. Prof Halken reports speaker/chair fees from Nestlé Purina and ABIGO Pharma A/S. Dr Muraro reports speaker fees from Aimmune Therapeutics, DBV, and Nestlé Purina; and is an advisory board member/fees from Regeneron IDMC. Dr Deschildre reports personal fees from ALK, Stallergènes-Greer, GSK, Novartis, Sanofi, Regeneron, Bohringer Ingelheim, Aimmune therapeutics, DBV technologies, Nestlé Health Science, Nutricia, outside the submitted work. Dr Ballmer-Weber reports personal fees from ALK, Allergopharma, ThermoFisher, Menarini, Sanofi, Novartis. Prof. van Ree reports personal fees from HAL Allergy, ALK, Citeq, Angany, ThermoFisher, Reacta Healthcare, and Mission MightyMe; grants from European Commission, Dutch Science Foundation, and Health Holland, outside the submitted work. Prof. Worm declares...
the receipt of honoraria or consultation fees by the following companies: ALK-Abelló Arzneimittel GmbH, Mylan Germany GmbH, Leo Pharma GmbH, Sanofi-Aventis Deutschland GmbH, Regeneron Pharmaceuticals, DBV Technologies S.A, Stallergenes GmbH, HAL Allergie GmbH, Allergopharma GmbH & Co.KG, Bencard Allergie GmbH, Aimmune Therapeutics UK Limited, Actelion Pharmaceuticals Deutschland GmbH, Novartis AG, Biotec AG, AbbVie Deutschland GmbH & Co. KG and Lilly Deutschland GmbH, outside the submitted work. Prof Zuberbier reports personal fees from Bayer, FAES, Novartis, Henkel, AstraZeneca, AbbVie, ALK, Almirall, Astellas, Bencard, Berlin Chemie, HAL, Leti, Meda, Menarini, Merck, MSD, Pfizer, Sanofi, Stallergenes, Takeda, Teva, UCB, Henkel, Kryolan, L’Oréal, outside the submitted work. Prof Roberts reports grants from UK Food Standards Agency, DBV and the European Union. The other authors have no relevant conflicts of interest to declare.

AUTHOR CONTRIBUTIONS
All authors conceptualized the review. PJT, SA, BBW, ABC, AD, JG, AM and RvR extracted the data. PJT and NP undertook meta-analysis. All authors contributed to the analysis and data interpretation. PJT drafted the manuscript, which was revised, reviewed and approved by all authors. PJT and GR oversaw the process and acted as arbitrators.

ORCID
Paul J. Turner https://orcid.org/0000-0001-9862-5161
Stefania Arasi https://orcid.org/0000-0002-8135-0568
Alessia Baseggio Conrado https://orcid.org/0000-0001-5775-424X
Nandinee Patel https://orcid.org/0000-0002-4997-9411
Debra de Silva https://orcid.org/0000-0001-8413-5487
Margitta Worn https://orcid.org/0000-0002-3449-1245
Torsten Zuberbier https://orcid.org/0000-0002-1466-8875
Graham Roberts https://orcid.org/0000-0003-2252-1248

REFERENCES
1. Umasanther T, Leonardi-Bee J, Hodes M, et al. Incidence of fatal food anaphylaxis in people with food allergy: a systematic review and meta-analysis. Clin Exp Allergy. 2013;43(12):1333-1341.
2. Vyas D, Ierodiakonou D, Harrison DA, Russell T, Turner PJ, Boyle RJ. Increase in intensive care unit admissions for anaphylaxis in the United Kingdom 2008–2012. J Allergy Clin Immunol. 2016;137(2):AB57.
3. Turner PJ, Baumert JL, Beyer K, et al. Can we identify patients at risk of life-threatening allergic reactions to food? Allergy. 2016;71(9):1241-1255.
4. Smith PK, Hourihrane JO, Lieberman P. Risk multipliers for severe food anaphylaxis. World Allergy Organ J. 2015;8(1):30.
5. Dubois AEJ, Turner PJ, Hourihrane J, et al. How does dose impact on the severity of food-induced allergic reactions, and can this improve risk assessment for allergenic foods? Report from an ILSI Europe Food Allergy Task Force Expert Group and Workshop. Allergy. 2018;73(7):1383-1392.
6. Nguyen-Luu NU, Ben-Shoshan M, Alizadehfar R, et al. Inadvertent exposures in children with peanut allergy. Pediatr Allergy Immunol. 2012;23:133-139.
7. Pumphrey RS, Gowlan MH. Further fatal allergic reactions to food in the United Kingdom, 1999–2006. J Allergy Clin Immunol. 2007;119:1018-1019.
8. Wainstein BK, Studdert J, Ziegler M, Ziegler JB. Prediction of anaphylaxis during peanut food challenge: usefulness of the peanut skin prick test (SPT) and specific IgE level. Pediatr Allergy Immunol. 2010;21:603-611.
9. Turner PJ, Wainstein BK. Crossing the threshold: can outcome data from food challenges be used to predict risk of anaphylaxis in the community? Allergy. 2017;72(1):9-12.
10. Calvani M, Cardinale F, Martelli A, et al. Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr Allergy Immunol. 2011;22(8):813-819.
11. Vetander M, Ly DH, Häkansson N, et al. Recurrent reactions to food among children at paediatric emergency departments: epidemiology of allergic disease. Clin Exp Allergy. 2014;44(1):113-120.
12. Poussel G, Cerbelle V, Lejeune S, et al. Anaphylaxis admissions in pediatric intensive care units: Follow-up and risk of recurrence. Pediatr Allergy Immunol. 2019;30(3):341-347.
13. Dua S, Ruiz-Garcia M, Bond S, et al. Effect of sleep depriva-
tion and exercise on reaction threshold in adults with peanut allergy: a randomized controlled study. J Allergy Clin Immunol. 2019;144(4):1584-1594.e2.
14. van Erp FC, Knulst AC, Kentie PA, Pasmans SG, van der Ent CK, Meijer Y. Can we predict severe reactions during peanut challenges in children? Pediatr Allergy Immunol. 2013;24(6):596-602.
15. Pettersson ME, Koppelman GH, Flokstra-de Blok BMJ, Kollen BJ, Dubois AEJ. Prediction of the severity of allergic reactions to foods. Allergy. 2018;73(7):1532-1540.
16. Reier-Nilsen T, Michelsen MM, Ladrup Carlsen KC, et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clin Exp Allergy. 2018;48(4):415-423.
17. Yanagida N, Sato S, Takahashi K, et al. Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatr Allergy Immunol. 2018;29(4):417-424.
18. Turner PJ, Duca B, Chastell SA, et al. IgE-sensitization predicts threshold but not anaphylaxis during oral food challenges to cow’s milk. Allergy. 2022;77(4):1291-1293. doi:10.1111/all.15195
19. Arkwright PD, MacMahon J, Koplin J, et al. Severity and thresh-
old of peanut reactivity during hospital-based open oral food challenges: an international multicenter survey. Pediatr Allergy Immunol. 2018;29(7):754-761.
20. Cianferoni A, Garrett JP, Naimi DR, Khullar K, Spiegel JM. Predictive values for food challenge-induced severe reactions: development of a simple food challenge score. Isr Med Assoc J. 2012;14(1):24-28.
21. Sampson HA, Mendelson L, Rosen JP. Fatal and near-fatal anaphylac-
tic reactions to food in children and adolescents. N Engl J Med. 1992;327(6):380-384.
22. Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001;107(1):191-193.
23. Bock SA, Muñoz-Furlong A, Sampson HA. Further fatalities caused by anaphylactic reactions to food, 2001–2006. J Allergy Clin Immunol. 2007;119:1016-1018.
24. Colver AF, Nevantas H, Macdougall CF, Cant AJ. Severe food-
allergic reactions in children across the UK and Ireland, 1998–2000. Acta Paediatr. 2005;94(6):689-695.
25. Clark AT, Ewan PW. Good prognosis, clinical features, and circumstances of peanut and tree nut reactions in children treated by a specialist allergy center. J Allergy Clin Immunol. 2008;122:286-289.
26. Rudders SA, Banerji A, Vassallo MF, Clark S, Camargo CA Jr. Trends in pediatric emergency department visits for food-induced anaphylaxis. J Allergy Clin Immunol. 2010;126:385-388.
27. Neuman-Sunshine DL, Eckman JA, Keet CA, et al. The natural history of persistent peanut allergy. *Ann Allergy Asthma Immunol*. 2012;108(5):326-331.e3.

28. Deschildre A, Elegbéédé CF, Just J, et al. Peanut-allergic patients in the MIRABEL survey: characteristics, allergists’ dietary advice and lessons from real life. *Clin Exp Allergy*. 2016;46(4):610-620.

29. Rollinck-Werninghaus C, Niggemann B, Grabenhenrich L, Wahn U, Beyer K. Outcome of oral food challenges in children in relation to symptom-eliciting allergen dose and allergen-specific IgE. *Allergy*. 2012;67(7):951-957.

30. Mulla ZD, Simons FE. Concomitant chronic pulmonary diseases and their association with hospital outcomes in patients with anaphylaxis and other allergic conditions: a cohort study. *BMJ Open*. 2013;3(7):e003197.

31. Brown SG, Stone SF, Fatovich DM, et al. Anaphylaxis: clinical patterns, mediator release, and severity. *J Allergy Clin Immunol*. 2013;132(5):1141-1149.e5.

32. Xu YS, Kastner M, Harada L, Xu A, Salter J, Waserman S. Anaphylaxis-related deaths in Ontario: a retrospective review of cases from 1986 to 2011. *Allergy Asthma Clin Immunol*. 2014;10(1):38.

33. Clark S, Wei W, Rudders SA, Camargo CA Jr. Risk factors for severe anaphylaxis in patients receiving anaphylaxis treatment in US emergency departments and hospitals. *J Allergy Clin Immunol*. 2014;134(5):1125-1130.

34. Turner PJ, Gowland MH, Sharma V, et al. Increase in anaphylaxis-related hospitalizations but no increase in fatalities: an analysis of United Kingdom national anaphylaxis data, 1992-2012. *J Allergy Clin Immunol*. 2015;135(4):956-963.e1.

35. Song Y, Wang J, Leung N, et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. *Ann Allergy Asthma Immunol*. 2015;114(4):319-326.

36. Nieto-Nieto A, Tejedor-Alonso MA, Farias-Aquino E, et al. Clinical profile of patients with severe anaphylaxis hospitalized in the Spanish hospital system: 1997-2011. *J Investig Allergol Clin Immunol*. 2017;27(2):111-126.

37. Motossie MS, Bellolio MF, Van Houten HK, Shah ND, Campbell RL. Risk factors for severe anaphylaxis in the United States. *Ann Allergy Asthma Immunol*. 2017;119(4):356-361.e2.

38. Yanagida N, Sato S, Asaumi T, Ogura K, Ebisawa M. Risk factors for severe reactions during double-blind placebo-controlled food challenges. *Int Arch Allergy Immunol*. 2017;172(3):173-182.

39. Purington N, Chinthrajah RS, Long A, et al. Eliciting dose and safety outcomes from a large dataset of standardized multiple food challenges. *Front Immunol*. 2018;9:2057.

40. Chinthrajah RS, Purington N, Andorf S, et al. Development of a tool predicting severity of allergic reaction during peanut challenge. *Ann Allergy Asthma Immunol*. 2018;121(1):69-76.e2.

41. Worm M, Francuzik W, Renaudin JM, et al. Factors increasing the risk for a severe reaction in anaphylaxis: an analysis of data from The European Anaphylaxis Registry. *Allergy*. 2018;73(6):1322-1330.

42. Francuzik W, Dölle-Bierke S, Knop M, et al. Refractory anaphylaxis: data from the European anaphylaxis registry. *Front Immunol*. 2019;10:2482.

43. Poussel G, Beaudouin E, Tanno LK, et al. Food-related anaphylaxis fatalities: analysis of the Allergy Vigilance Network® database. *Allergy*. 2019;74(6):1193-1196.

44. Ramsey NB, Guffey D, Anagnostou K, Coleman NE, Davis CM. Epidemiology of anaphylaxis in critically ill children in the United States and Canada. *J Allergy Clin Immunol Pract*. 2019;7(7):2241-2249.

45. Versluys A, van Os-Medendorp H, Blom WM, et al. Potential cofactors in accidental food allergic reactions are frequently present but may not influence severity and occurrence. *Clin Exp Allergy*. 2019;49(2):207-215.

46. Olabarri M, Vázquez P, Gonzalez-Posada A, et al. Risk factors for severe anaphylaxis in children. *J Pediatr*. 2020;225:193-197.e5.

47. Maris I, Dölle-Bierke S, Renaudin JM, et al. Peanut-induced anaphylaxis in children and adolescents: data from the European Anaphylaxis Registry. *Allergy*. 2021;76(5):1517-1527.

48. Gabrielli S, Clarke A, Morris J, et al. Evaluation of prehospital management in a Canadian emergency department anaphylaxis cohort. *J Allergy Clin Immunol Pract*. 2019;7(7):2232-2238.e3.

49. Lyons SA, Datema MR, Le TM, et al. Walnut allergy across Europe: distribution of allergen sensitization patterns and prediction of severity. *J Allergy Clin Immunol Pract*. 2021;9(1):225-235.e10.

50. Kennedy K, Alfaro MKC, Spergel ZC, Dorris SL, Spergel JM, Capucilli P. Differences in oral food challenge reaction severity based on increasing age in a pediatric population. *Ann Allergy Asthma Immunol*. 2021;127(5):562-567.e1.

51. Błażowski L, Kurzawa R, Majak P. The usefulness of molecular diagnostics in the assessment of the aetiology, clinical phenotypes and risk of food-induced anaphylaxis in children. *Pediatr Medycyna Rodzinna*. 2021;17:121-131. doi:10.15557/PiMR.2021.0020

52. Tejedor-Alonso MA, Farias-Aquino E, Pérez-Fernández E, et al. Association Between Severity of Anaphylaxis and Co-occurrence of Respiratory Diseases: a systematic review and meta-analysis of observational studies. *J Investig Allergol Clin Immunol*. 2021;31(2):132-144.

53. Summers CW, Pumphrey RS, Woods CN, McDowell G, Pemberton PW, Arkwright PD. Factors predicting anaphylaxis to peanuts and tree nuts in patients referred to a specialist center. *J Allergy Clin Immunol*. 2008;121:632-638.e2.

54. Vetander M, Helander D, Fodström C, et al. Anaphylaxis and reactions to foods in children – a population-based case study of emergency department visits. *Clin Exp Allergy*. 2012;42:568-577.

55. Gabrielli S, Clarke AE, Morris J, et al. Fruit-induced anaphylaxis: clinical presentation and management. *J Allergy Clin Immunol Pract*. 2021;9(7):2825-2830.e2.

56. Lam HCY, Turner PJ, Hemmings D, Jarvis DL. Seasonality of food-related anaphylaxis admissions and associations with temperature and pollen levels. *J Allergy Clin Immunol Pract*. 2021;9(1):518-520.e2. doi:10.1016/j.jaip.2020.07.032

57. Datema MR, van Ree R, Asero R, et al. Component-resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy. *Allergy*. 2018;73(3):549-559. Erratum in: Allergy. 2020;75(8):2145.

58. Datema MR, Lyons SA, Fernández-Rivas M, et al. Estimating the risk of severe peanut allergy using clinical background and IgE sensitization profiles. *Front. Allergy*. 2021. doi:10.3389/fagly.2021.670789

59. Scala E, Abeni D, Guerra EC, et al. Cosensitization to profilin is associated with less severe reactions to foods in nslTPs and storage proteins reactors and with less severe respiratory allergy. *Allergy*. 2018;73(9):1921-1923.

60. Bogas G, Muñoz-Cano R, Mayorga C, et al. Phenotyping peack- allergic patients sensitized to lipid transfer protein and analysing severity biomarkers. *Allergy*. 2020;75(12):3228-3236.

61. Eller E, Bindslev-Jensen C. Clinical value of component-resolved diagnostics in peanut-allergic patients. *Allergy*. 2013;68(2):190-194.

62. Klemans RJ, Broekman HC, Knol EF, et al. Ara h 2 is the best predictor for peanut allergy in adults. *J Allergy Clin Immunol Pract*. 2013;1(6):632-638.e1.

63. Masthoff LJ, Mattsson L, Zuidmeer-Jongejan L, et al. Sensitization to Cor a 9 and Cor a 14 is highly specific for a hazelnut allergy with objective symptoms in Dutch children and adults. *J Allergy Clin Immunol*. 2013;132(2):393-399.

64. Masthoff LJ, van Hoffen E, de Reus A, et al. Hazelnut allergy differs between children and adults in frequency of severity, aetiology and relevance of diagnostic parameters. *Clin Exp Allergy*. 2014;44(12):1539-1545.

65. Kukkonen AK, Pelkonen AS, Mäkinen-Kiljunen S, Voutilainen H, Mäkelä MJ. Ara h 2 and Ara h 6 are the best predictors of severe
peanut allergy: a double-blind placebo-controlled study. Allergy. 2015;70(10):1239-1245.
66. Usuf CG, Villalta D, Conte ME, et al. Different co-sensitizations could determine different risk assessment in peach allergy? Evaluation of an anaphylactic biomarker in Pru p 3 positive patients. Clin Mol Allergy. 2015;13:30.
67. Chan JCK, Peters RL, Koplin JJ, et al. Food challenge and community-reported reaction profiles in food-allergic children aged 1 and 4 years: a population-based study. J Allergy Clin Immunol Pract. 2017;5(2):398-409.e3.
68. Palouso K, Kukkonen AK, Pelkonen AS, Mäkelä MJ, Gal d 1-specific IgE predicts allergy to heated egg in Finnish children. Pediatr Allergy Immunol. 2018;29(6):637-643.
69. Datema MR, Eller E, Zwinderman AH, et al. Ratios of specific IgG4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy. 2019;49(2):216-226.
70. Ballmer-Weber BK, Lidholm J, Lange L, et al. Allergen recognition patterns in walnut allergy are age dependent and correlate with the severity of allergic reactions. J Allergy Clin Immunol Pract. 2019;7(5):1560-1567.e6.
71. Kiewiet MBG, Apostolovic D, Starkhammar M, Grundström J, Hamsten C, van Hage M. Clinical and serological characterization of the α-gal syndrome-impact of atopy for symptom severity in a European cohort. J Allergy Clin Immunol Pract. 2020;8(6):2027-2034.e2.
72. Santos AF, Du Toit G, O'Rourke C, et al. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. J Allergy Clin Immunol. 2020;146(2):344-355.
73. Turner PJ, Custovic A. Life-threatening anaphylaxis to peanut — impossible to predict? J Allergy Clin Immunol. 2022;149(3):1128-1129. doi:10.1016/j.jaci.2021.12.767.
74. Santos AF, Evans E, O'Rourke C, Bahnsen HT, Lack G. Reply to: Life-threatening anaphylaxis to peanut — impossible to predict? J Allergy Clin Immunol. 2022;149(3):1129-1131. doi:10.1016/j.jaci.2021.12.766.
75. Kaur N, Mehr S, Katelaris C, et al. Added diagnostic value of peanut component testing: a cross-sectional study in Australian Children. J Allergy Clin Immunol Pract. 2021;9(1):245-253.e4.
76. Goldberg MR, Appel MY, Nega R, et al. A prospective validation of the NUT CRACKER diagnostic algorithm for walnut and pecan allergy with prediction of severity. J Allergy Clin Immunol Pract. 2021;9(1):265-274.e6.
77. Dang TD, Tang M, Choo S, et al. Increasing the accuracy of peanut allergy diagnosis by using Ara h 2. J Allergy Clin Immunol. 2012;129(4):1056-1063.
78. Petersen TH, Mortz CG, Bindslev-Jensen C, Eller E. Cow’s milk allergic children – can component-resolved diagnostics predict duration and severity? Pediatr Allergy Immunol. 2018;29(2):194-199.
79. González-Mancebo E, González-de-Olano D, Trujillo MJ, et al. Prevalence of sensitization to lipid transfer proteins and profilins in a population of 430 patients in the south of Madrid. J Investig Allergol Clin Immunol. 2011;21:278-282.
80. Ballmer-Weber BK, Lidholm J, Fernández-Rivas M, et al. IgE recognition patterns in peanut allergy are age dependent: perspectives of the EuroPrevall study. Allergy. 2015;70:391-407.
81. Sky palpia II. Can patients with oral allergy syndrome be at risk of anaphylaxis? Curr Opin Allergy Clin Immunol. 2020;20(5):459-464.
82. Turner PJ, Campbell DE. A food allergy syndrome by any other name? Clin Exp Allergy. 2014;44:1458-1460.
83. Amlot PL, Kemeny PM, Zachary C, Parkes P, Lessof MH. Oral Allergy Syndrome (OAS): symptoms of IgE mediated hypersensitivity to foods. Clin Allergy. 1987;17:33-42.
84. Pastorello EA, Farinoli L, Pravettoni V, et al. Pru p 3-sensitised Italian peach-allergic patients are less likely to develop severe symptoms when also presenting IgE antibodies to Pru p 1 and Pru p 4. Int Arch Allergy Immunol. 2011;156(4):362-372.
85. Bahri R, Custovic A, Korosce P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142(2):485-496.e16.
86. Wang J, Lin J, Bardina L, et al. Correlation of IgE/IgG4 milk epitopes and affinity of milk-specific IgE antibodies with different phenotypes of clinical milk allergy. J Allergy Clin Immunol. 2010;125(3):695-702, 702.e1-702.e6.
87. Hemnings O, Niazi U, Kwok M, et al. Combining allergen component improvements the accuracy of peanut allergy diagnosis. J Allergy Clin Immunol Pract. 2022;10(1):189-199.
88. El-Khouly F, Lewis SA, Pons L, Burks AW, Hourihane JO. IgG and IgE avidity characteristics of peanut allergic individuals. Pediatr Allergy Immunol. 2007;18:607-613.
89. Shreffler WG, Beyer K, Chu TH, Burks AW, Sampson HA. Microarray immunoadassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol. 2004;113(4):776-782.
90. Flinterman AE, Knol EF, Lencer DA, et al. Peanut epitopes for IgE and IgG4 in peanut-sensitized children in relation to severity of peanut allergy. J Allergy Clin Immunol. 2008;121(3):737-743.e10.
91. Bonadonna P, Zanotti R, Pagani M, et al. How much specific is the association between hymenoptera venom allergy and mastocytosis? Allergy. 2009;64:1379-1382.
92. Lyons JJ, Chovanec J, O’Connell MP, et al. Heritable risk for severe anaphylaxis associated with increased α-tryptase-encoding germline copy number at TPSAB1. J Allergy Clin Immunol. 2021;147(2):622-632.
93. De Schryver S, Halbrich M, Clarke A, et al. Tryptase levels in children with food allergy. J Allergy Clin Immunol. 2021;149(3):1128-1131.e5. doi:10.1016/j.jaci.2021.12.780 . Epub ahead of print.
94. Varshney P, Steele PH, Vickery BP, et al. Adverse reactions during peanut oral immunotherapy home dosing. J Allergy Clin Immunol. 2009;124:1351-1352.
95. Anagnostou K, Clark A, King Y, Islam S, Deighton J, Ewan P. Efficacy and safety of high-dose oral peanut immunotherapy with factors predicting outcome. Clin Exp Allergy. 2011;41:1273-1281.
96. Brown KR, Baker J, Vereda A, et al. Safety of peanut (Arachis hypogaea) allergen powder-dnfp in children and teenagers with peanut allergy: a pooled summary of phase 3 and extension trials. J Allergy Clin Immunol. 2021;10091-6749(21)02740-8. doi: 10.1016/j.jaci.2021.12.780. Epub ahead of print.
97. Huang F, Chawla K, Järvinen KM, Nowak-Węgrzyn A. Anaphylaxis in a New York City pediatric emergency department: triggers, treatments, and outcomes. J Allergy Clin Immunol. 2012;129(1):162-168.e3.
98. Johnson J, Malinovschi A, Alving K, Lidholm J, Borres MP, Nordvall L. Ten-year review reveals changing trends and severity of allergic reactions to nuts and other foods. Acta Paediatr. 2014;103(8):862-867.
99. Baseggio Conrado A, Patel N, Turner PJ. Global patterns in anaphylaxis due to specific foods: a systematic review. J Allergy Clin Immunol. 2021;148(6):1515-1525.e3.
100. Grabenhennich LB, Dollé S, Moneret-Vautrin A, et al. Anaphylaxis in children and adolescents: The European Anaphylaxis Registry. J Allergy Clin Immunol. 2016;137(4):1128-1137.e1.
142. Gertie JA, Zhang B, Liu EG, et al. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. *J Allergy Clin Immunol*. 2022;149(1):262-274.

143. Francuzik W, Nassiri M, Babina M, Worm M. Impact of sex on anaphylaxis severity – data from the Anaphylaxis Registry. *J Allergy Clin Immunol*. 2015;136(5):1425-1426.

144. Fukunaga K, Chinuki Y, Hamada Y, et al. Genome-wide association study reveals an association between the HLA-DPB1∗02:01:02 allele and wheat-dependent exercise-induced anaphylaxis. *Am J Hum Genet*. 2021;108(8):1540-1548.

145. Kraft M, Scherer Hofmeier K, Ruëff F, et al. Risk factors and characteristics of biphasic anaphylaxis. *J Allergy Clin Immunol Pract*. 2020;8(10):3388-3395.e6.

146. Shaker MS, Wallace DV, Golden DBK. Anaphylaxis – a 2020 practice parameter update, systematic review, and Grading of Recommendations, Assessment, Development and Evaluation (GRADE) analysis. *J Allergy Clin Immunol*. 2020;145(4):1082-1123.

147. Dodd A, Hughes A, Sargant N, Whyte AF, Soar J, Turner PJ. Evidence update for the treatment of anaphylaxis. *Resuscitation*. 2021;163:86-96.

148. Lee S, Bellolio MF, Hess EP, Erwin P, Murad MH, Campbell RL. Time of onset and predictors of biphasic anaphylactic reactions: a systematic review and meta-analysis. *J Allergy Clin Immunol Pract*. 2015;3(3):408-416.e1-2.

149. Turner PJ, DunnGalvin A, Hourihane JO. The emperor has no symptoms: the risks of a blanket approach to using epinephrine autoinjectors for all allergic reactions. *J Allergy Clin Immunol Pract*. 2016;4:1143-1146.

150. Ruiz-Garcia M, Bartra J, Alvarez O, et al. Cardiovascular changes during peanut-induced allergic reactions in human subjects. *J Allergy Clin Immunol*. 2021;147(2):633-642.

151. Turner PJ, Ruiz-Garcia M, Durham SR, Boyle RJ. Limited effect of intramuscular epinephrine on cardiovascular parameters during peanut-induced anaphylaxis: an observational cohort study. *J Allergy Clin Immunol Pract*. 2021;9(1):527-530.e1.

152. Su KW, Patil SU, Stockbridge JL, et al. Food aversion and poor weight gain in food protein-induced enterocolitis syndrome: a retrospective study. *J Allergy Clin Immunol*. 2020;145(5):1430-1437.e11.

153. Miceli Sopo S, Sinatti D, Gelsomino M. Retrospective analysis of 222 oral food challenges with a single dose in acute food protein-induced enterocolitis syndrome. *Pediatr Allergy Immunol*. 2021;32(5):1066-1072.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Turner PJ, Arasi S, Ballmer-Weber B, et al; the Global Allergy, Asthma European Network (GA2LEN) Food Allergy Guideline Group. Risk factors for severe reactions in food allergy: Rapid evidence review with meta-analysis. *Allergy*. 2022;77:2634–2652. doi:10.1111/all.15318