Selective far-field addressing of coupled quantum dots in a plasmonic nanocavity

Jianwei Tang, Juan Xia, Maodong Fang, Fanglin Bao, Guanjun Cao, Jianqi Shen, Julian Evans & Sailing He

Plasmon–emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.
Plasmonic nanostructures are nanocavities with ultra-small mode volumes capable of mediating extremely strong self\(^{12-13}\) and mutual\(^{14-24}\) emitter interactions with large bandwidth and rich topologies at the deep subwavelength scale. Plasmonic nanostructures are also well known as efficient nanoantennas, capable of tailoring the excitation\(^{12,25}\) and radiation\(^{26-29}\) of single emitters, providing rich degrees of freedom for system addressing. Owing to these superior properties, plasmon–emitter hybrid nanosystems hold great promise as testbeds and building blocks for quantum optics and informatics\(^{30,31}\). Notably, they are currently the only room-temperature system to reach the strong coupling regime at the single-emitter level\(^{30,32}\).

Despite remarkable strides made in the construction of emitter–plasmon hybrid nanosystems, all of the reports we are aware of involve only one addressable emitting site, which limits their relevance for a wide range of fundamental experiments and devices involving interactions among emitters\(^{33-35}\). Moving one step forward to involve more than one addressable emitter in a plasmon–emitter hybrid nanosystem is urgent but a significant challenge of both nano fabrication and design.

Here we open up this critical degree of freedom by demonstrating that in a properly designed plasmon–emitter hybrid nanosystem the coupled emitters can be selectively excited and detected from the far field. To this end, two silica-encapsulated colloidal quantum dots (QDs) are employed as the emitters and precisely coupled to a U-shaped gold nanostructure that is designed to function as a combination of nanocavity and nanoantenna. As a nanocavity, the plasmonic nanostructure can enhance the emitter interactions, while as a nanoantenna it can make the emitters selectively excitable and detectable. Both selective excitation and selective detection are experimentally demonstrated with a high selectivity around 0.96 (defined as \((I_n - I_s)/(I_n + I_s)\), where \(I_n\) is the signal from the emitter to be selectively excited or detected and \(I_s\) is the signal from the other emitter). The emission rates of both QD emitters in the nano system are strongly Purcell-enhanced (by ~45-fold for Q1 and ~132-fold for Q2), which indicates that both emitters strongly couple to the plasmonic modes.

Results

Construction of the hybrid nanosystem. The designed nanosystem consists of two silica-encapsulated colloidal QD emitters (Q1 and Q2) and three colloidal gold nanorods (GNRs; G1, G2 and G3) assembled into a U shape on a silica glass substrate (Fig. 1a) using atomic force microscopy (AFM) nanomanipulation (Methods). Figure 1b shows an AFM topographic image of the fabricated nanosystem. The constituent QDs Q1 and Q2 have similar emission spectra with a central wavelength of ~808 nm (Fig. 1c). Clear blinking behaviours (random switching between on and off states) can be identified in their emission intensity time trajectories (Supplementary Fig. 1a, b), which is characteristic of single QDs\(^{36}\). The GNRs G1, G2 and G3 have similar plasmonic responses with a resonance wavelength of ~715 nm (Fig. 1c). See Supplementary Note 1 for detailed description of the structure parameters.

Operating mechanisms. Owing to the topology of the nanosystem, both x- and y-polarized illuminations predominantly generate y-oriented enhanced local fields at the QDs (Supplementary Fig. 5). This allows us to selectively excite each QD (by enhancing the excitation of one QD while suppressing the excitation of the other QD) through local field interference using elliptically polarized excitation light that defines the amplitude ratio (tan \(\theta\)) and phase difference (\(\phi\)) between the y- and x-components of the excitation (Supplementary Note 2). Theoretically, for illumination with 740 nm wavelength, if its polarization is the anti-clockwise ellipse shown in the bottom-left corner of Fig. 1d, the local field is strongly suppressed (~0.086-fold of the local field without the gold nanostructure) at Q2, whereas strongly enhanced (~150-fold) at Q1; if its polarization is the clockwise ellipse shown in the bottom-left corner of Fig. 1e, the local field is strongly suppressed (~0.046-fold) at Q1, whereas strongly enhanced (~200-fold) at Q2. This combination of enhancement and suppression yields an excitation ratio of ~1700 (~4300), corresponding to a selectivity of ~0.9989 (~0.9995) for selective excitation of Q1 (Q2).

By placing an excited emitter at a location with tailored local density of photon states (LDOS), the decay channels of the emitter’s excitonic energy can be engineered\(^{37}\). Here the plasmonic modes of the gold nanostructure provide high LDOS at the location of the QDs. Because the LDOS at Q1 (Q2) is almost exclusively associated with the plasmonic mode shown in Fig. 1f (g), the excitonic energy of Q1 (Q2) transfers almost exclusively to that plasmonic mode. The mode profile shows that the plasmonic mode is confined to a small volume that contains both QDs, which enhances both the self and mutual interactions for the QDs. Without coherence between the QDs in the current experimental system, the enhanced self interaction enhances spontaneous emission rate (known as the Purcell effect\(^{38}\), Supplementary Note 3)\(^{11,13}\), while the enhanced mutual interaction enhances Förster energy transfer rate between the QDs (Supplementary Note 4)\(^{14-17}\). Although the energy transfer rate is theoretically expected to be enhanced in the nanosystem, it is still much smaller than the enhanced spontaneous emission rates, and therefore, considering the competition between the energy transfer and the spontaneous emission of the donor\(^{16}\), the energy transfer efficiency is so low that we can neglect the energy transfer in the experiment (Supplementary Note 4).

Since the excitonic energy of the emitter is transferred almost exclusively to the plasmonic mode, the radiation characteristics of the emitter is determined by the radiation characteristics of the plasmonic mode. This enables radiation engineering with plasmonic nanostructures\(^{12,26-30}\). Because Q1 and Q2 transfer their excitonic energy to their respective plasmonic modes that are distinct from each other due to the QDs’ distinct locations in the nanosystem (comparing between Fig. 1f and Fig. 1g), their far-field radiations should have distinct characteristics. The three constituent GNRs G1, G2 and G3 behave like three linearly polarized electric dipoles with respective orientations, amplitudes and phases (see the electric displacement vectors in Fig. 1f, g), which combine to form an elliptically polarized effective electric dipole, with its x-component contributed by G3 and its y-component contributed by G1 and G2. For both modes in Fig. 1f, g, since the GNRs are similar and the emitter is in the middle of the gap between the two nearby orthogonally oriented GNRs, the amount of energy coupled from the emitter to the two nearby GNRs should be similar, and therefore the x- and y-components of the effective electric dipole should have similar amplitudes. The key distinction between the two modes in Fig. 1f, g is the phase relation between the x- and y-components of the effective electric dipole. The x- and y-components of the effective electric dipole in Fig. 1f (g) are roughly in-phase (anti-phase) and of similar amplitude, which should therefore combine to produce a nearly linearly polarized effective electric dipole oriented at an angle of around 45° (135°). These two roughly orthogonal effective electric dipoles should produce far-field radiations with roughly orthogonal polarizations. Through far-field projections of the simulated near fields of the respective plasmonic modes, the polarization states of the far-field radiations from Q1 and Q2 can be precisely obtained as shown inFig. 1h, i. The far-field...
radiation from Q1 (Q2) is linearly polarized with a degree of linear polarization (DOLP) of 0.98 (0.96) and a polarization angle of 41° (137°). Since the far-field radiations from Q1 and Q2 are nearly linearly polarized and their polarization angles are roughly orthogonal, we can selectively detect the emission from either QD with high transmittance by simply blocking the emission from the other QD using a linear polarizer. Generally, it is possible to selectively detect emitters with high transmittance if their emissions have pure polarizations well separated on the Poincaré sphere.

Experimental demonstration. To perform far-field selective excitation and detection, the key task is to experimentally find, for each QD, the optimal polarization for excitation suppression and optimal polarizer angle for emission blocking. We first solve these two tasks when only Q1 is in the nanosystem (before Q2 is moved into the nanosystem; Fig. 2a inset). We find the optimal excitation polarization by successively searching the elliptical polarization parameters ϕ and θ to minimize the emission intensity. When we excite with the polarization optimized at a specified wavelength (e.g. 730, 740 and 760 nm; Fig. 2a), the measured excitation enhancement spectrum shows a Fano-like dip at the desired wavelength (Fig. 2a). The non-vanishing enhancement factors at the dips (~2.9, ~2.3 and ~1.8) are attributed to imperfections in the fabrication and measurement. Since the local fields are strongly enhanced for both x- and y-polarized excitations, small imperfections can lead to significant changes in the enhancement factors. To find the optimal polarizer angle for emission blocking, we record the detected emission intensity vs. the polarizer angle.

The measurement shows a high DOLP of ~0.96, in stark contrast to the partially polarized emission before Q1 couples to the gold nanostructure (Fig. 2b).

When both QDs are in the nanosystem (Fig. 1b), determining the optimal polarization for selective excitation and the optimal polarizer angle for selective detection is non-trivial due to their mutual dependence. To find the optimal excitation polarization to suppress either QD, we have to selectively detect the QD to minimize its emission intensity. To find the optimal polarizer angle to selectively detect either QD, we have to selectively excite the QD to minimize its emission intensity. When we record the detected emission intensity vs. the polarizer angle.
the QD to measure its emission polarization. We overcome the mutual dependence by iteratively optimizing the excitation polarization and the polarizer angle until stable values emerge after a small number of iterations (Supplementary Note 5). When we excite with the polarization e1 (e2) optimized at 740 nm wavelength, the measured excitation enhancement spectrum for Q2 (Q1) shows a Fano-like dip at 740 nm while Q1 (Q2) remains strongly enhanced (Fig. 3a), which enables selective excitation of Q1 (Q2) at 740 nm. The measured polarizations of the emissions from the selectively excited QDs are nearly linear and roughly orthogonal (Fig. 3b), which facilitates far-field selective detection. Selective excitation can be realized in a broad spectral range (Supplementary Note 2). Already with the knowledge of the emission polarizations, we can directly find the optimal excitation polarizations for selective excitations at any other wavelength (e.g. 760 nm; Fig. 3c) without iterative optimization. The excitation enhancement factors for Q1 and Q2 change sinusoidally with emission polarizations, we can directly tune the excitation ratio ranging from equal to selective excitation through setting the polarizer angle until stable values emerge (Supplementary Note 5). When Q1 (Q2) is selectively excited with polarization e1 (e2), the measured lifetime curve (blue (red) solid data points in Fig. 4) is nearly mono-exponential, with a remarkably reduced lifetime of ~6.47 ns (~1.88 ns) compared with the intrinsic lifetime of ~291 ns (~248 ns). The fitting for the lifetime curve of selectively excited Q1 (Q2) reveals a minor ~3.4% (~4.8%) decay component with a lifetime of ~1.88 ns (~6.47 ns), which is just the lifetime of the other QD (Supplementary Note 6). Under selective excitation, the photon emission is predominantly from the target QD and the remainder is from the other QD due to the finite excitation selectivity. When Q1 and Q2 are equally excited with the excitation polarization e3 (Fig. 3d,e), the lifetime curve (yellow-green solid data points in Fig. 4) fits to a bi-exponential decay, indicating ~54% photons from Q1 (lifetime ~6.47 ns) and ~46% photons from Q2 (lifetime ~1.88 ns). Under this equal excitation, when we selectively detect only the photons from Q1 or Q2 (by setting the polarizer angle according to Fig. 3b), the nearly mono-exponential decay behaviours recover (blue and red hollowed data points in Fig. 4). The selectively detected photon emission is predominantly (~97.3% when Q1 is selectively detected; ~96.4% when Q2 is selectively detected) from the target QD and the remainder is from the other QD due to the finite detection selectivity. Since the lifetime curves are nearly mono-exponential under selective excitation or selective detection and the minor decay component can be attributed to the contribution from the other QD due to the finite selectivity, the decay of each QD can be regarded as mono-exponential. When only Q1 is in the nanosystem, the measured lifetime curve is indeed mono-exponential (Supplementary Fig. 9a). The mono-exponential decay behaviours are expected in our measurement for two reasons. First, the QDs are weakly excited, so the probability of excitation of biexcitons or multie excitons can be neglected and the measured decay dynamics is of monoe excitons. Second, at room temperature the decay dynamics is still much slower than thermalization, so the decay dynamics can be well described with an effective decay rate.

Here we observe strong Purcell effects for both QDs from the reduced emission lifetimes, indicating strong light–emitter interactions. The Purcell factor (the enhancement in the total decay rate) for Q2 is ~132 ± 8, which approaches the theoretical maximum for an optimally oriented 2D transition dipole (Supplementary Note 3). Such high Purcell factors beyond 100 are rarely reported for single QDs and other single emitters. We achieve this high Purcell factor using deterministic plasmon-emitter coupling and with unambiguous monoe exciton decay behaviour. The Purcell factor for Q1 is ~3.4% (~4.8%), which is lower than that for Q2 due to the larger gap at Q1 than at Q2 and the non-optimal orientation of Q1 (Supplementary Note 3). The strong Purcell effects, along with the plasmon-tailored emission polarizations consistent with...
Excitation enhancement spectra for Q1 (solid data points; in order to measure for Q1, Q1 is selectively detected) and Q2 (hollowed data points; in order to measure for Q2, Q2 is selectively detected) when excited with elliptical polarizations for optimal selective excitation of Q1 (blue data points; elliptical polarization e1) or Q2 (red data points; elliptical polarization e2) at 740 nm wavelength. Solid (dashed) curves are simulated excitation enhancement spectra for Q1 (Q2). b Polar plot of the emission polarization measurement when Q1 (blue solid data points) is selectively excited (using elliptical polarization e1) or when Q2 (red hollowed data points) is selectively excited (using elliptical polarization e2). The solid and dashed curves are simulated results. c Same as a but with excitation polarizations optimized at 760 nm wavelength. d Excitation enhancement factor at 740 nm wavelength as a function of φ (at two fixed θ values). Solid data points (experiment) and solid curves (simulation) are for Q1, while hollowed data points (experiment) and dashed curves (simulation) are for Q2. e Excitation ratio at 740 nm wavelength as a function of φ (at two fixed θ values). Solid data points (experiment) and solid curves (simulation) are the excitation ratio σ_{Q1}/σ_{Q2}, while hollowed data points (experiment) and dashed curves (simulation) are the excitation ratio σ_{Q2}/σ_{Q1}. The blue (red) circles in d and e indicate the polarizations for optimal selective excitation of Q1 (Q2) shown in a. The yellow-green circles indicate the polarization e3 (inset at the left of d) to equally excite Q1 and Q2.

Discussion

In our study, AFM nanomanipulation enables the construction of the designed hybrid nanosystem. It has been widely used to produce plasmonic nanostructures and couple individual emitting particles to plasmonic nanostructures. It is ideal for proof-of-principle studies, since it allows for high-precision nanoassembly and importantly active tuning or optimization of individual structural parameters. Photobleaching and chemical instability of QDs are the biggest challenges to this class of experiment and are mitigated with silica encapsulation in our experiment. If the QDs could be made very stable or stable emitters of other types are employed, the implementation of selective excitation and selective detection should be quite robust, although the optimal conditions (the excitation polarization for selective excitation and the polarizer angle for selective detection) and optimal selectivity may change a little with the fabricated structure parameters.

In this experiment, the interaction between the emitters is incoherent. If the plasmon-mediated interaction between the emitters is coherent, the emission fields of Q1 and Q2 are coupled.

Supplementary Note 4

[Link to the Supplementary Note 4]
emitters is further enhanced by narrowing the gaps between GNRs (see the structure in Supplementary Fig. 15a, which is achievable in principal with AFM nanomanipulation), and if nearly identical quantum emitters with longer dephasing times (for instance, colour centres in nanodiamonds) are employed, the plasmon-mediated interaction between the emitters can be made much faster than the dephasing processes between the emitters so that the emitters interact coherently with each other. Then plasmon-mediated entanglement can take place in a U-shaped nanosystem and the demonstrated concept of plasmonic nanoantennas throughout the process from excitation to decay and further to radiation. For excitation, the plasmonic nanosystem converts far-field excitation light into a desired local electric field distribution in a polarization-dependent manner, which allows far-field selective excitation of the emitters in close proximity. Further, the plasmonic nanosystem provides high LDOS to enhance the decay rates of the emitters (by up to ~132-fold) and to efficiently funnel the released energy from the excited emitters to their respective plasmonic modes in a location-dependent manner. Finally, the plasmonic nanosystem radiates the plasmonic modes to free space photons with distinct polarizations, which enables selective detection of the emitters from the far field. Our work represents a step forward in quantum nanophotonics by enabling selective addressing of coupled quantum emitters in deep subwavelength nanocavities, which may open up new degrees of freedom for light–matter interactions and space–time-resolved pump–probe spectroscopies at the nanoscale as well as promote the development of a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.

Methods

AFM nanomanipulation. An Agilent 5300 SPM system in tapping mode is used for both imaging and pushing. For imaging, the scanning parameters such as tapping amplitude, feedback gain and scan speed are optimized to produce high-quality images without moving the nanoparticles. For pushing, vibration amplitude...
of the tapping tip is set smaller than half the height of the target nanoparticle and the feedback loop is turned off. Using tapping mode for pushing can not only reduce the scan quality due to tip-particle adhesion but can also reduce wear of the AFM tip, which guarantees high-quality imaging and precise pushing during complicated nanosynthesis without the need for time-consuming AFM probe replacement and concomitant sample relocation. To avoid long-time exposure of the QDs to the AFM laser during AFM imaging and manipulation, we used a series of AFM probes coated with UV-cured aluminum coating on the cantilever (NanoSensors PPP-NCHR) as well as movable AFM laser spot away from the front end of the cantilever where the tip resides.

Sample fabrication. Gold markers for co-localization of nano-objects (GNRs, QDs and hybrid nanosystems) by optical microscopy (darkfield light scattering microscopy and fluorescence microscopy) and AFM imaging are prepared on a silica glass substrate through photolithography and lift-off. Collodial GNRs (Nanopartz Inc.) and silica-encapsulated silica-encapsulated colloidal CdSeTe/ZnS core–shell QDs (Intratopt, QD00 800 nm carboxy) are then successively transferred to the substrate through spin-coating. The silica encapsulation facilitates AFM nanomanipulation (by increasing the physical size of QDs and protecting QDs from impact with the AFM tip and laser light) and makes QDs stable on the substrate as shown in Supplementary Fig. 1). The constituent GNRs G1, G2 and G3 of the hybrid nanosystem are selected to have similar plasmonic responses with a resonance wavelength of ~715 nm according to their darkfield scattering spectra (Fig. 1c). The constituent QDs Q1 and Q2 are selected to have similar emission spectra with a central wavelength of ~808 nm and similar broadband excitation spectra (Fig. 1c). Through dark-field light scattering microscopy and fluorescence microscopy, the selected GNRs and QDs are optically localized with respect to the markers, which facilitates AFM localization. Finally, the selected GNRs and QDs are AFM localized and manipulated to assemble the hybrid nanosystem (Fig. 1b).

Photoluminescence characterization. We perform photoluminescence characterizations of the individual QDs and the hybrid nanosystem using a home-built microscopic single-molecule fluorescence detection system as shown in Supplementary Fig. 2, with an excitation module with automatic adaptive control over the wavelength, polarization and intensity of the excitation laser light.

The excitation laser light is generated and controlled as follows. A broadband pulse laser light is generated by pumping a nonlinear photonic crystal fiber (NKT Photonics, FemtoWHITE 800) with a 750 nm wavelength femtosecond pulse laser (Coherent, Mira 900). This broadband pulse laser light is subsequently filtered by a band-pass filter set (a long-pass edge filter and a short-pass edge filter) to generate a monochromatic pulsed laser light of a desired wavelength. The wavelength can be automatically selected or scanned by changing the filter set and tuning the incident angle of the filter. The polarization of the laser light is controlled with a linear polarizer, an achromatic half-wave plate (Thorlabs, SAHW05M-1700) and an achromatic quarter-wave plate (Thorlabs, SAQWP05M-1700) to generate a purely polarized laser light of any elliptical polarization parameters (θ, φ). The intensity of the excitation laser light is controlled by a motorized variable neutral density filter. Finally, the excitation laser light is focused on the sample by an achromatic focussing objective with low auto-fluorescence (Nikon, Plan Fluor ELWD 40x, NA 0.6). The residual chromatic aberration is compensated by adjusting the height of the focussing objective for every wavelength point. The position of the focal spot is controlled by a pair of beam-steering mirrors. A beam displacement plate and the pair of beam-steering mirrors compensate for the beam displacement and beam angle change caused by changing or tuning of any optical elements in the beam path during automatic measurements.

The emitted photons from QDs are collected by an achromatic objective with low auto-fluorescence (Nikon, Plan Fluor ELWD 60x, NA 0.7), passed through a long-pass filter to remove the excitation laser light, detected and analysed by the photon-counting module. In the photon-counting module, photons are detected by single photon detectors with an impulse response with a single photon emission from quantum dots coupled to plasmonic nanocavities. Nat. Nanotechnol. 16, 270–275 (2011).

Matsuzaki, K. et al. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Sci. Rep. 7, 42307 (2017).

Hoang, T. B., Akserød, G. M. & Mikkelsen, M. H. Ultrastable room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 16, 270–275 (2015).

Wiertjes, E., Renger, J., Curto, A. G., Cogdell, R. & van Hulst, N. F. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching. Nat. Commun. 5, 4236 (2014).

Lee, K. G. et al. Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. Opt. Express 20, 23331–23338 (2012).

Akserød, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanosystems. Nat. Photonics 8, 835–840 (2014).

Wienk, R. et al. Single-molecule strong light–matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 118, 237401 (2017).

Santhosh, K., Bitton, O., Chuntonov, L. & Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016).

Zhang, Y. et al. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity. Nat. Commun. 8, 15225 (2017).

Groß, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

Zhang, X. et al. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Forster resonance energy transfer. ACS Nano 8, 1273–1283 (2014).

Ghenechue, P. et al. Matching nanoantenna field confinement to FRET distances enhances Forster energy transfer rates. Nano Lett. 15, 6193–6201 (2015).

Brown, S. et al. Competition between Forster resonance energy transfer and donor photodynamics in plasmonic dimer nanocavities. ACS Photonics 3, 895–903 (2016).

Aissoui, N. et al. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Nanoscale 9, 673–683 (2017).

He, Y. & Zhu, K. D. Strong coupling among semiconductor quantum dots induced by a metal nanoparticle. Nanoscale Res. Lett. 7, 95 (2012).

Artuso, R. D. & Bryant, G. W. Quantum dot-quantum dot interactions mediated by a metal nanoparticle: towards a fully quantum model. Phys. Rev. B 87, 125423 (2013).
20. Slowik, K., Filter, R., Straubel, J., Lederer, F. & Rockstuhl, C. Strong coupling of optical nanoantennas and atomic systems. Phys. Rev. B 88, 195414 (2013).

21. Ren, J., Wu, T. & Zhang, X. D. Multifrequency multi-qubit entanglement based on plasmonic hot spots. Sci. Rep. 5, 13941 (2015).

22. Otten, M. et al. Entanglement of two, three, or four plasmonically coupled quantum dots. Phys. Rev. B 92, 125432 (2015).

23. Rousseaux, B. et al. Adiabatic passage mediated by plasmons: a route towards a decoherence-free quantum plasmonic platform. Phys. Rev. B 93, 045422 (2016).

24. Hakami, J. & Zubairy, M. S. Nanoshell-mediated robust entanglement between coupled quantum dots. Phys. Rev. A 93, 023230 (2016).

25. Punji, D. et al. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nat. Nanotechnol. 8, 512–516 (2013).

26. Taminiau, T. H., Stefan, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nat. Photonics 2, 234–237 (2008).

27. Curtu, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanooptics. Science 329, 930–933 (2010).

28. Curtu, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 4, 1750 (2013).

29. Vercruyse, D. et al. Directional fluorescence emission by individual V-antennas explained by mode expansion. ACS Nano 8, 8232–8241 (2014).

30. Shen, H. et al. Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure. Laser Photonics Rev. 10, 647–655 (2016).

31. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

32. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 6, 631–641 (2016).

33. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

34. Kim, D., Carter, S. G., Greilich, A., Bracker, A. S. & Gammon, D. Ultrafast luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. B 78, 235404 (2008).

35. Siavash, S. et al. An integrated diamond nanophotonics platform for nanophotonic applications. Science 345, 847–850 (2016).

36. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

37. Dousse, A. et al. Ultraslide source of entangled photon pairs. Nature 466, 217–220 (2010).

38. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

39. Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257403 (2003).

40. Takata, H. et al. Detailed observation of multiphoton emission enhancement from a single colloidal quantum dot using a silver-coated AFM tip. Nano Lett. 16, 5770–5777 (2016).

41. Shafiee, F. et al. A subwavelength plasmonic metasurface exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 9, 95–99 (2013).

42. Kern, J. et al. Electrically driven optical antennas. Nat. Photonics 8, 582–586 (2015).

43. Bek, A. et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano. Lett. 8, 485–490 (2008).

44. Schietinger, S., Barth, M., Alkele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano. Lett. 9, 1694–1698 (2009).

45. Schell, A. W. et al. Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanoscale systems. Opt. Express 19, 7914–7920 (2011).

46. Ratchford, D., Shafiee, F., Kim, S., Gray, S. K. & Li, X. Q. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano. Lett. 11, 1049–1054 (2011).

47. Merle, J., J. et al. Nanomechanical control of an optical antenna. Nan. Photonics 2, 230–233 (2008).

48. Cao, H. J. et al. Design and synthesis of antiblinking and antibleaching quantum dots in multiple colors via wave function confinement. J. Am. Chem. Soc. 138, 15727–15735 (2016).

49. Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Progress. Phys. 74, 076501 (2011).

50. Urena, E. B. et al. Excitation enhancement of a quantum dot coupled to a plasmonic antenna. Adv. Mater. 24, OP314–OP320 (2012).

51. Ko, S. H., Du, K. & Liddle, J. A. Quantum-dot fluorescence lifetime engineering with DNA origami constructs. Angew. Chem. Int. Ed. 52, 1193–1197 (2013).

52. Zhang, T. S., Gao, N. Y., Li, S., Lang, M. J. & Xu, Q. H. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. J. Phys. Chem. Lett. 6, 2043–2049 (2015).

53. Braun, T., de Abajo, F. J. G., Schneider, J. & Pfeiffer, W. Nanoscopic ultrafast space-time-resolved spectroscopy. Phys. Rev. Lett. 95, 093901 (2005).

54. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

55. Li, X. T. & Stockman, M. I. Highly efficient spatiotemporal coherent control in nanoplasmics on a nanometer-femtosecond scale by time reversal. Phys. Rev. B 77, 195109 (2008).

56. Volpe, G., Molina-Terriza, G. & Quidant, R. Deterministic subwavelength control of light confinement in nanostructures. Phys. Rev. Lett. 105, 216802 (2010).

57. Schuler, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

58. Koenderink, A. F., Alu, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

59. Baur, C. et al. Nanoparticle manipulation by mechanical pushing: underlying phenomena and real-time monitoring. Nanotechnology 9, 360–364 (1998).

60. Kobayashi, Y. et al. Direct coating of quantum dots with silica shell. J. Sol.- Gel Sci. Technol. 55, 79–89 (2010).

61. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

Acknowledgements
The authors would like to thank Yungai Ma (Zhejiang University) for his helpful discussion. This work was supported by the National Key Research and Development Program of China (2017YFA0205700), the Guangdong Innovative Research Team Program (20101020040090), the National Natural Science Foundation of China (11621101, 91232008), the Fundamental Research Funds for the Central Universities (2017FA5001, 2018FA5001), the China Postdoctoral Science Foundation (2017M621920, 2017M622722) and the Science and Technology Department of Zhejiang Province.

Author contributions
J.T., J.X. and S.H. conceived the ideas for this research. J.T. and J.X. designed the structure and performed the numerical simulations. J.T., M.F., J.X. and F.B. fabricated the sample. J.T., J.X., F.B., M.F. and G.C. set up the optical system. J.T., M.F., J.X. and G.C. carried out the optical measurements. J.T. and J.X. did the theoretical study on entanglement. J.T., I.X. and S.H. wrote the manuscript. S.H. supervised the research. All authors discussed the manuscript and agreed on its final content.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-04077-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/