On saturation of Berge hypergraphs

Dániel Gerbner1 Balázs Patkós1,2 Zsolt Tuza1,3 Máté Vizer1

1 Alfréd Rényi Institute of Mathematics
2 Moscow Institute of Physics and Technology
3 Department of Computer Science and Systems Technology, University of Pannonia

Abstract
A hypergraph $H = (V(H), E(H))$ is a Berge copy of a graph F, if $V(F) \subset V(H)$ and there is a bijection $f : E(F) \rightarrow E(H)$ such that for any $e \in E(F)$ we have $e \subset f(e)$. A hypergraph is Berge-F-free if it does not contain any Berge copies of F. We address the saturation problem concerning Berge-F-free hypergraphs, i.e., what is the minimum number $\text{sat}_r(n, F)$ of hyperedges in an r-uniform Berge-F-free hypergraph H with the property that adding any new hyperedge to H creates a Berge copy of F. We prove that $\text{sat}_r(n, F)$ grows linearly in n if F is either complete multipartite or it possesses the following property: if $d_1 \leq d_2 \leq \cdots \leq d_{|V(F)|}$ is the degree sequence of F, then F contains two adjacent vertices u, v with $d_F(u) = d_1$, $d_F(v) = d_2$. In particular, the Berge-saturation number of regular graphs grows linearly in n.

1 Introduction

Given a family \mathcal{F} of (hyper)graphs, we say that a (hyper)graph G is \mathcal{F}-free if G does not contain any member of \mathcal{F} as a subhypergraph. The obvious question is how large an \mathcal{F}-free (hyper)graph can be, i.e. what is the maximum number $\text{ex}(n, \mathcal{F})$ of (hyper)edges in an \mathcal{F}-free n-vertex (hyper)graph is called the extremal/Turán problem. A natural counterpart to this well-studied problem is the so-called saturation problem. We say that G is \mathcal{F}-saturated if G is \mathcal{F}-free, but adding any (hyper)edge to G creates a member of \mathcal{F}. The question is how small an \mathcal{F}-saturated (hyper)graph can be, i.e. what is the minimum number $\text{sat}(n, \mathcal{F})$ of (hyper)edges in an \mathcal{F}-saturated n-vertex (hyper)graph.

In the graph case, the study of saturation number was initiated by Erdős, Hajnal, and Moon \cite{erdos1964}. Their theorem on complete graphs was generalized to complete uniform hypergraphs by Bollobás \cite{bollobas1979}. Kászonyi and Tuza \cite{kaszonyi1991} showed that for any family \mathcal{F} of graphs, we have $\text{sat}(n, \mathcal{F}) = O(n)$. For hypergraphs, Pikhurko \cite{pikhurko2012} proved the analogous result that for any family \mathcal{F} of r-uniform hypergraphs, he proved that we have $\text{sat}(n, \mathcal{F}) = O(n^{r-1})$. \vspace{1cm}

1
For some further types of saturation (“strongly F-saturated” and “weakly F-saturated” hypergraphs) the exact exponent of n was determined in [11] for every forbidden hypergraph F.

In this paper, we consider some special families of hypergraphs. We say that a hypergraph H is a Berge copy of a graph F (in short: H is a Berge-F) if $V(F) \subset V(H)$ and there is a bijection $f : E(F) \to E(H)$ such that for any $e \in E(F)$ we have $e \subset f(e)$. We say that F is a core graph of H. Note that there might be multiple core graphs of a Berge-F hypergraph and F might be the core graph of multiple Berge-F hypergraphs.

Berge hypergraphs were introduced by Gerbner and Palmer [8], extending the notion of hypergraph cycles in Berge’s definition [1]. They studied the largest number of hyperedges in Berge-F-free hypergraphs (and also the largest total size, i.e. the sum of the sizes of the hyperedges). English, Graber, Kirkpatrick, Methuku and Sullivan [3] considered the saturation problem for Berge hypergraphs. They conjectured that $\text{sat}_r(n, \text{Berge-} F) = O(n)$ holds for any r and F, and proved it for several classes of graphs. Here and throughout the paper the parameter r in the index denotes that we consider r-uniform hypergraphs, and we will denote $\text{sat}_r(n, \text{Berge-} F)$ by $\text{sat}_r(n, F)$ for brevity. The conjecture was proved for $3 \leq r \leq 5$ and any F in [4]. In this paper we gather some further results that support the conjecture.

English, Gerbner, Methuku and Tait [4] extended this conjecture to hypergraph-based Berge hypergraphs. Analogously to the graph-based case, we say that a hypergraph H is a Berge copy of a hypergraph F (in short: H is a Berge-F) if $V(F) \subset V(H)$ and there is a bijection $f : E(F) \to E(H)$ such that for any $e \in E(F)$ we have $e \subset f(e)$. We say that F is a core hypergraph of H. The conjecture in this case states that if F is a u-uniform hypergraph, then $\text{sat}_r(n, F) = O(n^{u-1})$.

For a hypergraph $H = (V(H), E(H))$ and a family of hypergraphs \mathcal{F} we say that H is \mathcal{F}-oversaturated if for any hyperedge $h \subset V(H)$ that is not in H, there is a copy of a hypergraph $F \in \mathcal{F}$ that consists of h and $|E(F)| - 1$ hyperedges in $E(H)$. Let $\text{osat}_r(n, \mathcal{F})$ denote the smallest number of hyperedges in an \mathcal{F}-oversaturated r-uniform hypergraph on n vertices.

Proposition 1.1. For any u-uniform hypergraph F and any $r > u$, we have $\text{osat}_r(n, F) = O(n^{u-1})$. Moreover, there is an r-uniform hypergraph H with $O(n^{u-1})$ hyperedges such that adding any hyperedge to H creates a Berge-F such that its core hypergraph F_0 (which is a copy of F) is not a core hypergraph of any Berge-F in H.

We remark that in the case $u = 2$, the linearity of $\text{osat}_r(n, \mathcal{F})$ follows from either of the next two theorems, as they imply $\text{sat}_r(n, K_k) = O(n)$. Indeed, if v is the number of vertices of any graph in \mathcal{F}, then any Berge-K_v-saturated hypergraph is obviously Berge-\mathcal{F}-oversaturated.
Theorem 1.2. For any \(r, s \geq 2 \) and any sequence of integers \(1 \leq k_1 \leq k_2 \leq \cdots \leq k_{s+1} \) we have
\[
\text{sat}_r(n, K_{k_1, k_2, \ldots, k_{s+1}}) = O(n).
\]

Let \(F \) be a fixed graph on \(v \) vertices with degree sequence \(d_1 \leq d_2 \leq \cdots \leq d_v \). Set \(\delta := d_2 - 1 \). We say that \(F \) is of type I if there exist vertices \(u_1, u_2 \) with \(d_F(u_1) = d_1, d_F(u_2) = d_2 \) that are joined with an edge. Otherwise \(F \) is called of type II. Observe that any regular graph is of type I.

Theorem 1.3. For any graph \(F \) of type I and any \(r \geq 3 \) we have \(\text{sat}_r(n, F) = O(n) \).

2 Proofs

Proof of Proposition \[1.4\] We define \(V(H) \) as the disjoint union of a set \(R \) of size \(r - u \) and a set \(L \) of size \(n - r + u \). We take an \(F \)-saturated \(u \)-uniform hypergraph \(G \) with vertex set \(L \) that contains \(O(n^{u-1}) \) hyperedges. Such a hypergraph exists by the celebrated result of Pikhurko \[10\]. As another alternative, one may take an oversaturated hypergraph with \(O(n^{u-1}) \) hyperedges, whose existence is guaranteed by \[11\], Theorem 1. Then we let the hyperedges \(h \) of \(H \) be the \(r \)-sets with the property that \(h \cap L \) is a hyperedge of \(G \) or has at most \(u - 1 \) vertices from \(L \).

Obviously \(H \) has \(O(n^{u-1}) \) hyperedges. Clearly we have that every \(r \)-set \(h \) that is not a hyperedge of \(H \) contains a \(u \)-element subset \(e \) of \(L \) that is not a hyperedge of \(G \). Then \(e \) creates a copy of \(F \). We let \(f(e) = h \), and for each other edge \(e' \) of that copy of \(F \), we let \(f(e') = e' \cup R \). This shows that this copy of \(F \) is the core of a Berge-\(F \). \(\square \)

Proof of Theorem \[1.5\] We consider two cases according to how large the uniformity \(r \) is compared to the sum of class sizes \(k_1, k_2, \ldots, k_{s+1} \). We set \(N := \sum_{i=1}^s k_i - 1 \). For brevity, we write \(K \) for \(K_{k_1, k_2, \ldots, k_{s+1}} \).

Case I. \(r \leq \sum_{i=1}^{s+1} k_i - 3 \)

Let \((C, B_1, B_2, \ldots, B_m, R) \) be a partition of \([n] \) with \(|C| = N \), \(|B_i| = k_{s+1} \) for all \(i \leq m \) where \(m = \lceil \frac{n-N}{k_{s+1}} \rceil \), and \(|R| \equiv n - N \pmod{k_{s+1}} \), \(|R| < k_{s+1} \). Consider the family \(\mathcal{G} = \{ A \in \binom{[n]}{k_i} : A \subset C \cup B_i \text{ for some } i \} \). Observe that \(\mathcal{G} \) is Berge-\(K \)-free. Indeed, a copy of a Berge-\(K \) must contain a vertex \(v \) in the smallest \(s \) classes of the core from outside \(C \). But then, if \(v \in B_i \), either the whole copy is in \(C \cup B_i \) or \(C \) must contain all classes of the core of the copy. As none of these are possible, \(\mathcal{G} \) is indeed Berge-\(K \)-free.

Next observe that adding any \(r \)-set \(G \) to \(\mathcal{G} \) that contains two vertices \(u \) and \(v \) from different \(B_i \)s, say \(u \in B_i, v \in B_j \) (\(i \neq j \)), would create a copy of a Berge-\(K \). Indeed, the assumption \(r \leq \sum_{i=1}^{s+1} k_i - 3 \) ensures that there exist bijections \(f_i : \binom{C \cup B_i}{2} \to \binom{C \cup B_j}{r} \) with \(e \in f(e) \). Then vertices of \(C \) and \(u \) can play the role of the \(s \) smallest classes of \(K \), and \(\{v\} \cup B_i \setminus \{u\} \) can play the role of the largest class of \(K \).
This shows that the additional hyperedges of any \(K \)-saturated family that contains \(G \) are subsets of \(C \cup B_1 \cup R \) for some \(i \), and hence there is only a linear number of them. As \(G \) also contains a linear number of hyperedges, the total size of such \(K \)-saturated families is \(O(n) \).

Case II. \(r \geq \sum_{i=1}^{s+1} k_i - 2 \)

Once again, we define a partition \((C, B_1, B_2, \ldots, B_m, R) \) of \([n] \) with \(|C| = N \), but now with \(|B_i| = r - 2 \) and \(|R| \equiv n - N \pmod{r - 2} \), \(|R| < r - 2 \). Let \(x_1, x_2, \ldots, x_N \) be the elements of \(C \), let \(e_1, e_2, \ldots, e_{\binom{N}{2}} \) be the edges of the complete graph on \(C \), and finally let \(\pi_1, \pi_2, \ldots, \pi_{\binom{N}{2}} \) be permutations of \(C \) such that the endvertices of \(e_i \) are the values \(\pi_i(j), \pi_i(j+1) \) for some \(j \).

Then let us define the family \(G \) as

\[
G = \bigcup_{i=1}^{m} \{ \{ x_{\pi_i(j)}, x_{\pi_i(j+1)} \} \cup B_i : 1 \leq j \leq N, \ h \equiv i \pmod{\binom{N}{2}} \}.
\]

First, we claim that \(G \) is Berge-\(K \)-free. Indeed, there are only \(N \) vertices with degree at least \(N + 1 \).

Next, observe that if we add a family \(F \) to \(G \) that contains a Berge-\(S_{k+1}(r-2) \) (a star with \(k+1(r-2) \) leaves) with core completely in \(\bigcup_{i=1}^{m} B_i \), then \(G \cup F \) contains a Berge-\(K \). Indeed, if \(v \) is the center of the star, then \(C \cup \{ v \} \) plays the role of the smallest classes of \(K \), and \(k+1 \) leaves that belong to distinct \(B_i \)'s can play the role of the largest class of \(K \). Here, we use the facts that every edge in \(\binom{C}{2} \) is contained in an unbounded number of hyperedges of \(G \) as \(n \) tends to infinity and that for any vertex \(u \in \bigcup_{i=1}^{m} B_i \), \(G \) contains a Berge-star with center \(u \) and core \(C \cup \{ u \} \); and if \(u \) and \(u' \) belong to different \(B_i \)'s, then the hyperedges of these Berge-stars are distinct.

Let \(F \) be such that \(F \cup G \) is Berge-\(K \)-free. Then by the above, \(F' = \{ F \cap (\bigcup_{i=1}^{m} B_i) : F \in F \} \) is Berge-\(S_{k+1}(r-2) \)-free. Note that \(|F'| \leq 2^{\lceil C \cup R \rceil} |F| \), thus showing that \(|F'| = O(n) \) finishes the proof. It is well-known that forbidding a Berge-star (or any Berge-tree) results in \(O(n) \) hyperedges, but for sake of completeness we include a proof for stars.

Observe that \(F' \) being Berge-\(S_{k+1}(r-2) \)-free is equivalent to the condition that for every \(x \in \bigcup_{i=1}^{m} B_i \), the family \(\{ F \setminus \{ x \} : x \in F \in F' \} \) is not disjointly \(k+1(r-2) \)-representable, i.e. there do not exist \(y_1, y_2, \ldots, y_{k+1(r-2)} \) and sets \(F_1, F_2, \ldots, F_{k+1(r-2)} \in F' \) with \(y_a \in F_{x, y_a, \ldots, j-1 \neq \alpha} \cup F_{\alpha} \setminus \bigcup_{j=1, j \neq \alpha}^{k+1(r-2)} F' \). By a well-known result of Frankl and Pach [7] if all sets of a family \(\mathcal{H} \) with this property have size at most \(r \), then \(|\mathcal{H}| \) is bounded by a constant depending only on \(r \) and \(k+1(r-2) \). That is, \(|F'_{x, y_a, \ldots, j-1 \neq \alpha}| \) is bounded by the same constant independently of \(x \), and therefore the size of \(F' \), and thus the size of \(G \) is linear. We obtained that any \(k \)-saturated family \(G' \) with \(G \subset G' \) has \(O(n) \) hyperedges.

Proposition 2.1. Let \(F \) be a graph with no isolated vertex and with an isolated edge \((u_1, u_2) \). Then for any \(r \geq 3 \) we have \(\operatorname{sat}_r(n, F) = O(n) \).

Proof. Let \(U \) be a set of size \(n \). Let \(v \) denote the number of vertices of \(F \), let \(F' \) be the graph obtained from \(F \) by removing the edge \((u_1, u_2) \) and let \(C \) be a \((v-2) \)-subset of \(U \). Suppose
first $r \leq v - 1$, and let G_0 be a Berge copy of F' with core C and $G_0 \subseteq G_{C,1} \subseteq \binom{V}{r}$, where $G_{C,1}$ is the set of r-sets that contain at most one vertex from $U \setminus C$. Note that $G_{C,1}$ contains a linear number of r-subsets. Then let G be an r-graph with $G_0 \subseteq G \subseteq G_{C,1}$ such that any $H \in G_{C,1} \setminus G$ creates a Berge copy of F with G. Then G has linearly many hyperedges and is clearly F-saturated since if G contains at least two vertices from $U \setminus C$, then G can play the role of (u_1, u_2) and together with the Berge copy of F' they form a Berge-F.

If $r \geq v$, then any G with $e(F) - 1$ r-subsets sharing $v - 2$ common elements (denote their set by C) is F-saturated. Indeed, any additional r-set G contains at least 2 vertices not in C, so those two vertices can play the role of u_1 and u_2, G can play the role of the edge (u_1, u_2), and the r-sets of G form a Berge copy of F' with core C.

Observe that if F is of type I, then it cannot contain isolated vertices, and since graphs with an isolated edge are covered by Proposition 2.1, we may and will assume that $d_2 - 1 = \delta \geq 1$ holds.

Proof of Theorem 1.3. Let F be a graph of type I on v vertices and let u_1, u_2 be a pair of vertices of F showing the type I property. Set $d := |N(u_1) \cap N(u_2)|$ and let F' denote the subgraph of F on $N(u_1) \cap N(u_2)$ spanned by the edges incident to u_1 or u_2 with the edge (u_1, u_2) removed. Our strategy to prove the theorem is to construct a Berge-F-free r-graph G with $O(n)$ hyperedges such that any F-saturated r-graph $G' \supseteq G$ contains at most a linear number of extra hyperedges.

Let us say that G is F-good if its vertex set V can be partitioned into $V = C \cup B_1 \cup B_2 \cup \cdots \cup B_m \cup R$ such that $|C| = v - 2$, all B_i’s have equal size b at most r, $|R| < b$ and the following properties hold:

1. every hyperedge of G not contained in C is of the form $A \cup B_i$ for some $i = 1, 2, \ldots, m$ with $A \subset C$,
2. every vertex $u \in \cup_{i=1}^m B_i$ has degree δ in G,
3. for every $1 \leq i < j \leq m$ and $y \in B_i, y' \in B_j$, the sub-r-graph $\{G \in G : y \in G\} \cup \{G \in G : y' \in G\}$ contains a Berge-F' with y, y' being the only vertices of the core not in C and y, y' playing the role of u_1, u_2,
4. for any $1 \leq i < j \leq m$ there exist $(v-2)_r$ hyperedges $G_1, G_2, \ldots, G_{(v-2)_r} \in G$ that are disjoint from $B_i \cup B_j$ and if $e_1, e_2, \ldots, e_{(v-2)_r}$ is an enumeration of the edges of the complete graph on C, then $e_h \subset G_h$ for all $h = 1, 2, \ldots, (v-2)_r$, i.e., these hyperedges form a Berge-K_{v-2} with core C.

Claim 2.2. If G is F-good, then G is Berge-F-free and any F-saturated supergraph G' of G contains at most a linear number of extra edges compared to G.

5
Proof of Claim. Observe first that \(G \) is Berge-F-free as the core of a copy of a Berge-F should contain at least two vertices not in \(C \), both of degree \(\delta < d_2 \).

Next, we claim that for any hyperedge \(H \) meeting two distinct \(B \)'s, say \(B_i \) and \(B_j \), the \(r \)-graph \(G \cup \{ H \} \) contains a Berge-F. Indeed, let \(y \in B_i \cap H, y' \in B_j \cap H \). Then by item 3 of the \(F \)-good property, \(y \) can play the role of \(u_1 \) and \(y' \) can play the role of \(u_2 \). \(H \) can play the role of the edge \((u_1u_2)\), and item 4 of the \(F \)-good property ensures that the other vertices of \(C \) can play the role of the rest of the core of \(F \).

Finally, let \(G' \) be any \(F \)-saturated \(r \)-graph containing \(G \). Then by the above, any hyperedge in \(G' \setminus G \) meets at most one \(B_i \), and thus is of the form \(P \cup Q \) with \(P \subset C \cup R, Q \subset B_i \) for some \(i \). The number of such sets is at most \(2^b 2^{v-2+b} m = O(n) \).

Claim 2.3. For any type I graph \(F \) on \(v \geq 7 \) vertices with \(\delta > 0 \) and any integer \(r \geq 6 \) there exists an \(F \)-good \(r \)-graph \(G \) with \(O(n) \) hyperedges.

Proof of Claim. We fix a set \(D \subset C \) of size \(d \).

Case I. \(r \leq v-4 \)

Then putting all \(r \)-subsets of \(C \) into \(G \) ensures item 4 of the \(F \)-good property. We set \(b = r - 2 \), so all further sets will meet \(C \) in \(2 \) vertices. Observe that \(d_1 - 1 - d + \delta - d_2 \leq v - 2 - d \) is equivalent to \(2(d_1 - 1 - d) + \delta - d_1 + 1 \leq v - 2 - d \). Let \(D = \{ x_1, x_2, \ldots, x_d \} \), and \(y_1, 1, y_2, 1, y_2, 2, \ldots, y_{d_1-1-d_1}, y_{d_1-1-d_2}, z_1, z_2, \ldots, z_{\delta-d_1+1} \) be distinct vertices in \(C \). Note that \(d_1 - 1 \leq \delta \) implies that \(\delta - d_1 + 1 \) is non-negative. Then let \(G_0 := \{ \{ x_\ell, x_{\ell+1} \} : 1 \leq \ell \leq d \} \cup \{ \{ y_{\ell,1}, y_{\ell,2} \} : 1 \leq \ell \leq d_1 - 1 - d \} \cup \{ \{ z_\ell, z_{\ell+1} \} : 1 \leq \ell \leq \delta - d_1 + 1 \} \), where addition is always modulo the underlying set, i.e., \(G_0 \) consists of two cycles and a matching. Let us put all sets of the form \(A \cup B_h \) with \(A \in G_0 \) and \(1 \leq h \leq m \) into \(G \). Then items 1 and 2 of the \(F \)-good property are satisfied, thus we need to check item 3.

For any \(1 \leq i < j \leq m, D \) plays the role of \(N(u_1) \cap N(u_2) \) and the hyperedges \(B_j \cup \{ x_\ell, x_{\ell+1} \}, B_j \cup \{ x_\ell, x_{\ell+1} \} \) play the role of the edges connecting \(u_1, u_2 \) to vertices of \(D \), respectively. Vertices \(y_{\ell,1} \) play the role of vertices in \(N(u_1) \setminus (N(u_2) \cup \{ u_2 \}) \), while vertices \(y_{\ell,2} \) with \(\ell = 1, 2, \ldots, d_1 - 1 - d \) and \(z_\ell \) with \(\ell' = 1, 2, \ldots, \delta - d_1 + 1 \) play the role of \(N(u_2) \setminus (N(u_1) \cup \{ u_1 \}) \). The use of hyperedges as edges is straightforward.

Case II. \(r > v-4 \)

Then we set \(b = r - (v-4) \) and thus every hyperedge meets \(C \) in \(c := v - 4 = |C| - 2 \) vertices. Consequently, \(|R| \) is the residue of \(n - v + 2 \) modulo \(b \). By \(v \geq 7 \), we obtain \(c \geq 3 \). Let \(e_1, e_2, \ldots, e_{\binom{n-2}{2}} \) be an enumeration of the edges of the complete graph on \(C \). Then for any \(1 \leq h \leq m \), we will put a hyperedge of the form \(A_{1,h} \cup B_h \) with \(e_\alpha \subset A_{1,h} \subset C \) where \(\alpha \equiv h (mod(\binom{n-2}{2})) \). As \(n \) tends to infinity, so does \(m \), and this will ensure item 4 of the \(F \)-good property.

Suppose first \(d > 0 \) and observe that \((d_1 - 1) + \delta \leq v - 2 - d \), as \(d_1 - 1 \) is the size of \(N(u_1) \setminus (N(u_2) \cup \{ u_2 \}) \) and \(\delta \) is the size of \(N(u_2) \setminus (N(u_1) \cup \{ u_1 \}) \). For any \(1 \leq h \leq m \),
we define \(A_{1,h}, A_{2,h}, \ldots, A_{d,h}\) and put \(A_{\ell,h} \cup B_h\) into \(G\) for all \(1 \leq \ell \leq \delta\) as follows. Let \(x_1, x_2, \ldots, x_d\) be the elements of \(D\), and \(A_{1,h}\) be a \((v-4)\)-element set containing \(x_1\) and \(e_\alpha\) (with \(\alpha\) defined in the previous paragraph), and for \(2 \leq \ell \leq d\) let \(A_{\ell,h}\) be an arbitrary \((v-4)\)-element subset of \(C\) containing \(x_1, x_\ell\). (We need \(v-4 \geq 3\) to be able to make the choice of \(A_{1,h}\).) Finally, let \(A_{d+1,h}, A_{d+2,h}, \ldots, A_{d,h}\) be distinct \((v-4)\)-element subsets of \(C \setminus \{x_1\}\). There are \(v-3\) such subsets, each missing one element of \(C \setminus \{x_1\}\). We take them one by one, starting with those that miss an element from \(D \setminus \{x_1\}\). The choice of \(A_{1,h}\) verifies item 4 of the \(F\)-good property and items 1 and 2 hold by definition.

To see item 3, let \(1 \leq i < j \leq m\). We need to create a copy of a Berge-\(F\). Vertices of \(D\) will play the role of \(N(u_1) \cap N(u_2), A_{1,i} \cup B_i, A_{2,i} \cup B_i, \ldots, A_{d,i} \cup B_i\) will play the role of the edges connecting \(u_1\) to all the vertices of \(D\) and similarly \(A_{1,j} \cup B_j, A_{2,j} \cup B_j, \ldots, A_{d,j} \cup B_j\) will play the role of the edges connecting \(u_2\) to all the vertices of \(D\). To finish the Berge copy of \(F\) we will connect both \(u_1\) and \(u_2\) to all the vertices in \(C \setminus D\) (thus in fact we present a Berge copy of \(K_{2,v-2}\), which clearly contains \(F\)).

We will use the hyperedges \(A_{i,d+1}, A_{i,d+2}, \ldots, A_{i,d+1}, A_{i,d+1}\) to connect \(u_1\) to the vertices in \(C \setminus D\). As they each contain \(u_1\), it is enough to show an injection \(f\) from \(A_{1,d+1}, A_{1,d+2}, \ldots, A_{i,d+1}, A_{i,d+1}, A_{j,d+2}, \ldots, A_{j,d+1}, A_{j,d+1}\) to \(C \setminus D\) such that \(f(H) \in H\) for all sets. All we need to check is whether Hall’s condition holds: as for any two distinct sets, their union contains \(C \setminus D\), the only problem can occur if \(A_{i,d} \cap (C \setminus D) = A_{i,d} \cap (C \setminus D) \neq C \setminus D\) and \(|C \setminus D| = 1\) or \(2\). But then by \(v-2 \geq 5\), we have \(d \geq 3\) and thus all choices of \(A_{i,d}, A_{j,d}\) contain \(C \setminus D\) by the assumption that we picked those such subsets first that miss another element of \(D\) apart from \(x_1\).

Suppose next \(d = 0\). Then for any \(1 \leq h \leq m\) let us fix \(\pi_h\), a permutation \(z_1, z_2, \ldots, z_{v-2}\) of vertices of \(C\) with \(z_1, z_2\) being the endvertices of the edge \(e_\alpha\). Now let \(A_{1,h}, A_{2,h}, \ldots, A_{d,h}\) be cyclic intervals of length \(v-4\) of \(\pi_h\) with \(e_\alpha \subset A_{1,h}\). Then putting the sets of the form \(A_{\ell,h} \cup B_h\) to \(G\) will satisfy items 1 and 2 by definition, item 4 by the choice of \(A_{1,h}\), and item 3 by a similar Hall-condition reasoning as in the case of \(d > 0\).

Now we are ready to prove the theorem. If \(\delta = 0\), then \(F\) contains an isolated edge, and we are done by Proposition 2.1. Otherwise by Claim 2.3 there exists an \(F\)-good hypergraph \(G\) with \(O(n)\) hyperedges, and by Claim 2.2 any \(F\)-saturated extension of \(G\) has a linear number of hyperedges.

\section{Concluding remarks}

For any graph \(F\), integer \(r \geq 2\) and enumeration \(\pi: G_1, G_2, \ldots, G_{\binom{n}{r}}\) of \(\binom{n}{r}\) we can define a greedy algorithm that outputs a Berge-\(F\)-saturated \(r\)-uniform hypergraph \(G\) as follows: we let \(G_0 = \emptyset\), and then for any \(i = 1, 2, \ldots, \binom{n}{r}\) we let \(G_i = G_{i-1} \cup \{G_i\}\) if \(G_{i-1} \cup \{G_i\}\) is Berge-\(F\)-free, and \(G_i = G_{i-1}\) otherwise. Clearly, \(G_{\pi,r} = G_{\binom{n}{r}}\) is Berge-\(F\)-saturated.
Proof. Observe that no matter what δ at least Proposition 3.2. Suppose $e \in G$ the hyperedges of G is a star with e. Let B with $1 \leq i \leq j \leq m$, then $\{G\} \cup G_0$ contains a Berge-F. Indeed, G can play the role of the cut-edge with u_i and u_j as its two endpoints. We need to show that G_0, contains a Berge-F, with u played by u_i. (The proof for $G_{0,j}$ containing a Berge-F, with w played by u_j is identical.) The graph F_u contains at most $e(F) - 1$ edges. We need to verify Hall’s condition in the auxiliary bipartite graph B with one part the edges of F_u and the other part the hyperedges of $G_{0,i}$ and an edge e is connected to a hyperedge G if and only if $e \in G$. Note that the degree of any edge e is at least $e(F_u) - 2$ and if e_1 and e_2 are disjoint edges of F_u, then in B their neighborhood is $G_{0,i}$. Therefore the only problem that can occur is if F_u is a star with $e(F) - 1$ leaves. If the center of F_u is u, then F is also a star, contradicting our assumption. If the center c of F_u is not u, then a vertex $u' \in B_i$ that is contained in all hyperedges of $G_{0,i}$ can play the role of c. \qed

Proposition 3.2. Suppose F is connected and contains a cut-edge u,w. Then $r \geq e(F)$ implies $sat_r(n,F) = O(n)$.

Proof. It is known that the saturation number of stars is linear, so we can assume that F is not a star. Let F_u denote the component of u in $F \setminus \{(u,w)\}$ and F_w denote the component of w in $F \setminus \{(u,w)\}$. Let us consider a partition $B_0, B_1, B_2, \ldots, B_m$ of an n-element set U with $|B_i| = |B_1| = \cdots = |B_m| = r + 1$ and $|B_0| \leq r$. For $i = 1, 2, \ldots, m$, let $G_{0,i}$ consist of $e(F) - 1$ r-subsets of B_i and let $G_0 = \cup_{i=1}^m G_{0,i}$. Clearly, G_0 is Berge-F-free as its components contain $e(F) - 1$ hyperedges. We claim that if G contains vertices $u_i \in B_i$ and $u_j \in B_j$ with $1 \leq i < j \leq m$, then $\{G\} \cup G_0$ contains a Berge-F. Indeed, G can play the role of the cut-edge with u_i and u_j as its two endpoints. We need to show that G_0, contains a Berge-F, with u played by u_i. (The proof for $G_{0,j}$ containing a Berge-F, with w played by u_j is identical.) The graph F_u contains at most $e(F) - 1$ edges. We need to verify Hall’s condition in the auxiliary bipartite graph B with one part the edges of F_u and the other part the hyperedges of $G_{0,i}$ and an edge e is connected to a hyperedge G if and only if $e \in G$. Note that the degree of any edge e is at least $e(F_u) - 2$ and if e_1 and e_2 are disjoint edges of F_u, then in B their neighborhood is $G_{0,i}$. Therefore the only problem that can occur is if F_u is a star with $e(F) - 1$ leaves. If the center of F_u is u, then F is also a star, contradicting our assumption. If the center c of F_u is not u, then a vertex $u' \in B_i$ that is contained in all hyperedges of $G_{0,i}$ can play the role of c. \qed

Acknowledgement

Research was supported by the National Research, Development and Innovation Office - NKFIH under the grants FK 132060, KH130371, KKP-133819 and SNN 129364. Research
of Vizer was supported by the János Bolyai Research Fellowship and by the New National Excellence Program under the grant number UNKP-20-5-BME-45. Research of Patkós was supported by the Ministry of Educational and Science of the Russian Federation in the framework of MegaGrant no. 075-15-2019-1926.

References

[1] C. Berge, Hypergraphes: combinatoire des ensembles finis, *Gauthier-Villars*, 1987.

[2] B. Bollobás, On generalized graphs, *Acta Mathematica Academiae Scientiarum Hungaricae*, 16 (1965) 447–452.

[3] S. English, N. Graber, P. Kirkpatrick, A. Methuku, E. C. Sullivan, Saturation of Berge hypergraphs, *Discrete Mathematics*, 342 (2019) 1738–1761.

[4] S. English, D. Gerbner, A. Methuku, M. Tait, Linearity of saturation for Berge hypergraphs, *European Journal of Combinatorics*, 78 (2019) 205–213.

[5] P. Erdős, A. Hajnal, J. Moon, A problem in graph theory, *American Mathematical Monthly*, 71 (1964) 1107–1110.

[6] J. R. Faudree, R. J. Faudree, J. R. Schmitt, A survey of minimum saturated graphs, *The Electronic Journal of Combinatorics*, 18 (2011) DS19.

[7] P. Frankl, J. Pach, On disjointly representable sets, *Combinatorica*, 4 (1984) 39–45.

[8] D. Gerbner, C. Palmer, Extremal Results for Berge hypergraphs, *SIAM Journal on Discrete Mathematics*, 31 (2017) 2314–2327.

[9] L. Kászonyi, Zs. Tuza, Saturated graphs with minimal number of edges, *Journal of Graph Theory*, 10 (1986) 203–210.

[10] O. Pikhurko, Results and open problems on minimum saturated hypergraphs, *Ars Combinatoria*, 72 (2004) 111–127.

[11] Zs. Tuza, Asymptotic growth of sparse saturated structures is locally determined, *Discrete Mathematics*, 108 (1992) 397–402.