Uranyl-catalyzed C-H Alkynylation and Olefination

Yu Mao
Nanjing University

Yeqing Liu
Nanjing University

Lei Yu
Nanjing University

Shengyang Ni
Nanjing University

Yi Wang (✉️ yiwang@nju.edu.cn)
Nanjing University https://orcid.org/0000-0002-8700-7621

Yi Pan
Nanjing University

Article

Keywords: uranium, uranyl cation, crystallographic analysis

DOI: https://doi.org/10.21203/rs.3.rs-296153/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Uranyl cation (UO$_2^{2+}$) has been identified as highly oxidizing agent to abstract hydrogen atoms from C-H bonds for the formation of carbon-centered radicals. This work described a photocatalytic strategy to utilize uranyl peroxo complexes for direct alkynylation and olefination of C(sp3) aliphatics. Crystallographic analysis revealed that the in situ generated uranyl peroxide accelerated the reaction.

Introduction

Uranium is a substantial unexploited resource with crustal abundance of 2.3×10$^{-4}$ %. After separation of its fissile isotope 235U for power generation and nuclear weaponry, 99.3% of non-fissile isotope 238U was wasted in magnitude of two million tons globally. As the dominant form of uranium in the environment, the [UVIO$_2$]$^{2+}$ cation has been noticed for its unique photon properties. Under the irradiation of blue light (450–495 nm), the uranyl cation possesses a highly oxidizing excited state via the ligand-to-metal charge transfer (LMCT). The single electron shifts from O to U in the O = U = O group forms a UV center and an oxygen radical. This oxidizing species is prone to abstract hydrogens from C-H bonds to generate carbon-centered radicals. Meanwhile, the excited state of uranyl undergoes hydrogen evolution to generate uranyl peroxide. Furthermore, the U center is found capable of rapid electron transfer and ligand exchange (Fig. 1A). Despite these distinctive reactivities, the chemistry of the uranyl cation was underdeveloped until in recent years, direct functionlizations of the U-activated carbon radicals, such as oxidation, fluorination, cyanation, and Giese reaction have been reported. Nevertheless, uranyl cation promoted cross-coupling has not yet been disclosed.

Alkynes are versatile intermediates for diverted transformations and broadly employed in fuel industry, material science, chemical biology and drug discovery. The Sonogashira reaction was the most renowned approach to access substituted alkynes from various organic halides. To avoid halogenated alkyl sources, the direct C-H alkynylation of hydrocarbons has been developed with the assistance of pre-installed directing groups. However, modification of the hydrocarbons and use of expensive catalysts inevitably restricts the application of such strategies. Recently, prefunctionalized alkynyl reagent such as sulfones or hypervalent iodines were employed in Giese-type reactions for radical alkynylation (Fig. 1B). We envisioned that the direct sp-sp3 cross-coupling could be achieved by ubiquitous C-H sources and alkynyl halides. In this context, a highly oxidizing species is required for the continuous generation of sp3 carbon radicals and captured by alkyne reagents. Based on the recently discovery on the uranyl peroxide complex for photoinduced hydrogen evolution and subsequent mechanistic studies, we have designed a uranyl peroxide catalyzed C-H alkynylation reaction using readily available aliphatics (Fig. 1C). Initially, hydrogen evolution of uranyl catalyst under blue-light irradiation gives the uranyl peroxide, which would abstract hydrogens from C-H bonds to generate alkyl radicals. The radical could be trapped by electrophilic bromoalkynes and gives bromoalkenyl radical. Subsequently, desired alkynylated products could be furnished by cleavage of the C-Br bond.
Results

Reaction optimization. To confirm our hypothesis, we evaluated the conditions for this alkynylation reaction after a survey (see Supplementary Information) and found out in the presence of Uranyl nitrate hexahydrate catalyst (8 mol%) and 2-(2-pyridyl)benzimidazole (pbi) (10 mol%) with (bromoethyl)benzene (0.2 mmol) in the solvent of N,N-dimethylacetamide (2 mL) at ambient temperature, the desired C-H alkynylation product was obtained in 98% yield under irradiation of 452 nm LEDs (Table 1, entry 1). Control experiment showed a decreased yield (73%) without adding ligand (entry 2). The uranyl catalyst and light were proven necessary (entries 3,4). The use of other HAT photocatalysts such as benzophenone or tetrabutylammonium decatungstate (TBADT) did not lead to any products (entries 5,6). The reaction proceeded slowly with benzene as solvent and 5 equiv. of N,N-dimethylacetamide (32%, entry 7). Even after 72 h the yield was only 62% (entry 8).
Table 1. Condition Control Experiment.

Entry	Deviation from the reaction conditions	Yield\[^{b}\] [%]
1	N/A	98
2	w/o pbi	73
3	w/o \(\text{UO}_2(\text{NO}_3)_2\cdot6\text{H}_2\text{O}\)	-
4	in darkness	-
5	TBADT (2 mol%) instead of \([\text{UO}_2]\)	-
6	\(\text{Ph}_2\text{CO}\) (10 mol%) instead of \([\text{UO}_2]\)	-
7\[^{c}\]	5 equiv. of \(1\)	32
8\[^{c}\]	5 equiv. of \(1\), 72 h	62

\[^{a}\] All reactions were carried out with \(1\) (2 mL), \(2\) (0.2 mmol, 1 equiv.), \(\text{UO}_2(\text{NO}_3)_2\cdot6\text{H}_2\text{O}\) (8 mol %), pbi (10 mol %), 25 °C, 452 nm Kessil Lamp (60 W), 24 h. \[^{b}\] Yields were determined by GC-FID using cyclododecane as internal standard. \[^{c}\] 1mL of benzene was added.

Substrate scope with respect to the C\((\text{sp}^3)\)-H sources and the alkynyl bromides. With the optimized reaction conditions, we examined the substrate scope for this C\((\text{sp}^3)\)-H alkynylation (Figure 2A). Linear amides (3 & 7) and imide (6) are tolerated to access propargyl amides. The alkynylation of DMF resulted in two isomers in 52% and 29% isolated yield (4 & 5). Secondary amide could also be converted to the product (8) with moderate yield. Interestingly, the alkynylation of N-methyl pyrrolidine occurred on the methylene instead of methyl substitution (9). Pivaloyl piperidine (10) resulted in the alkynylated product in 48% yield. For the urea derivative and the phosphoric amide, alkynylation proceeded efficiently (11, 12). Notably, chiral proline derivative could also convert to the corresponding product in which the trans
diastereomer was dominant (13). Furthermore, ethers were also found suitable for this transformation (14-18). Unfortunately, the previously reported simple alkanes9-13 such as cyclohexane and adamantane proceeded slowly and could not be tolerated. The alkynylation of cyclooctane generated the desired products in good yield after long reaction time (19).

We next employed N,N-dimethylacetamide to examine the scope of alkynyl bromides (Figure 2B). Both alkyl group and halogen substituted substrates were tolerated under the same condition (20-24). Electron-withdrawing ester group led to moderate yield (25). The dibromoethyl(E)yl substrate furnished a mixture of mono- and di-substituted products in 52% and 45% isolated yields (26, 27). Besides, the alkynylsilane and the aliphatic alkyne transformed into the corresponding products in good yields (28, 29). Pharmaceutical Ethisterone and herbicide Clodinafop-propargyl were also subjected to the standard conditions to furnish the propargylic derivatives in 61% and 49% yields (30, 31).

Substrate scope for C(sp^3)-H alkenylation and allylation. Furthermore, we expanded the scope of this radical C-H functionalization to olefination. By using alkenyl or allyl bromides, we were delighted to discover that C(sp^3)-C(sp^2) and C(sp^3)-C(sp^3) coupling products (32 & 39) were readily furnished under the same conditions (Figure 3). Unsaturated bromides bearing halogen (33, 40), trifluoromethoxy (34), methoxy (35), acetoxy (36), thiophene (37), naphthyl (41) substitutions were tolerated under the conditions. Disubstituted ethylene bromide was applicable for generating the desired products in good yields (38). For 2,3-dibromo-1-propene, the reaction only occurred on the allylic site (42). The bromo-Carvone was also successfully converted into the corresponding derivative in 55% yield (43).

Synthetic applications. In order to simplify the procedure, bromoalkyne could be prepared in situ from terminal alkyne and the coupling product could be afforded in single operation (Figure 4A). Considering dibromoethene as key intermediate in Corey-Fuchs reaction for converting aldehydes to alkynes39. Previous procedures36,40,41 employed strong base to transfer dibromoethene (46) into the terminal alkyne (48) and three-step transformation to access propargyl amide (47). Following our uranyl-catalytic protocol, 47 could be conveniently obtained in 65% yield in single step (Figure 4B).

The scalability of this reaction was also evaluated, we chose bromo-Ethisterone (51) as substrate and achieved 1.06 g of substituted progesterone (30) (Figure 4C). In order to further improve the reaction efficiency, we applied continuous flow technique to this transformation42-44. (Bromoethyl(E)nyl)benzene (0.1 M DMAc solution), uranyl nitrate (0.008 M DMAc solution) and ligand (0.01 M DMAc solution) were mixed thoroughly and pumped into the flowing reactor in 0.33 mL/min of current velocity under blue LED illumination. The propargyl amide was furnished in 26 mmol L⁻¹ h⁻¹ (51 % yield) within 2 h and 11 mmol L⁻¹ h⁻¹ (97 % yield) in 9 h. Further studies on the reaction rate demonstrated that continuous flow technique distinctly accelerated the process comparing with the batch reaction (98%, 24 h, see Supplementary Information for details).

Mechanistic investigation. In order to investigate the reaction mechanism, the control experiments have been performed. We exposed a solution of uranyl nitrate hexahydrate with the same mole of 2-(2-
pyridyl)benzimidazole (pbi) in acetone to 452 nm LED for 1 h under ambient conditions. Single crystals of the uranyl nitrate peroxide complex \([\text{UO}_2(\text{pbi})(\text{NO}_3)]_2(\text{O}_2)\cdot2\text{Me}_2\text{CO}\) (52) were formed (Figure 5A). The crystallographic analysis of 52 revealed two symmetrically distinct and nearly linear \((\text{UO}_2)^{2+}\) uranyl ions with \(\text{U} \equiv \text{O}\) bond lengths in the range of 1.75(5)−1.78(3) Å. These uranyl ions are bridged by a \(\mu-\eta_2^2: \eta_2^2\) peroxo ligand that has an O–O bond length of 1.55(2) Å. The U–O–U dihedral angle is 148°, consistent with those found in a variety of uranyl peroxides. Each uranyl ion is further coordinated by a bidentate nitrate group, and two N atoms of 2-(1H-benzoimidazole-2-yl)pyridine ligands, together resulting in a hexagonal bipyramidal coordination geometry about the \(\text{U}^{VI}\) cation. Using the isolated uranyl peroxide crystals 52 as the photocatalyst, the same alkynylated product 3 could be generated with a yield of 95% in 16 h (Figure 5B).

Discussion

The control experiments demonstrated that the product could be generated without pbi ligands and the reaction could proceed with uranyl cation by itself. When adding the ligand, uranyl peroxide was smoothly formed under the irradiation. Based on the above results and previous studies on uranyl cations and uranyl peroxides, a plausible mechanism is proposed (Fig. 6). In the absence of ligands (Fig. 6A), photoinduced LMCT of \(\text{U}^{VI}\) catalyst (56) generates \(\text{U}^{V}\) centered oxygen radical (53), which extracts C-H of dimethylacetamide (1) to give sp3-carbon radical (57) that trapped by electrophilic bromoalkynes (2). The cleavage of bromoalkenyln radical (58) gives the desired products (3) and bromine radicals. \(\text{U}^{VI}\) catalyst can be regenerated by SET and deprotonation from the \(\text{U}^{V}\) intermediate 54. With pbi ligands (Fig. 6B), the hydration of uranyl nitrate (59) furnishes a hydroxo-bridged diuranyl complex (60). Under visible light irradiation, the LMCT from oxygen to uranium gives an oxygen radical (61) and intramolecular HAT furnishes the intermediate 62. The following hydrogen evolution of 62 furnishes the uranyl peroxide 52. Subsequently, complex 52 can either undergo homolysis of O–O bond to give diradical 63, or photoinduced LMCT of U-O bond to generate oxygen radical 64 and the following hydrogen abstraction of dimethylacetamide 1 gives the alkyl radical 57. Overall, this uranyl peroxide catalytic process accelerated the formation of alkyl radicals.

In summary, we have developed a uranyl-catalyzed alkynylation reaction of C(sp\(^3\))-H bonds. The photoexcitation of uranyl cations provides a feasible strategy to generate a range of carbon-centered radicals, which can be successfully applied in cross-coupling reaction with a broad range of bromoalkynes. Under the same protocol, the alkenylation and allylation have also been achieved. Crystallographic analysis demonstrated that the uranyl peroxides were generated in situ from uranyl cations and suitable ligands. The mechanistic studies revealed that the uranyl peroxide accelerated the hydrogen abstraction from various substrates and promoted the alkynylation.

Methods

General procedure for C-H Alkynylation, Alkenylation and Allylation.
Method A (C-H sources as solvent). Uranyl nitrate hexahydrate (8.0 mg, 8 mol%), 2-(2-pyridyl)benzimidazole (pbi) (3.9 mg, 10 mol%) and the bromide (if solid, 0.2 mmol, 1.0 equiv.) were added into a screw-cap test tube with stirring bar. The alkyl source (2 mL, 0.1 M) was injected into the tube, followed with the bromide (if liquid, 0.2 mmol, 1.0 equiv.). Afterwards, the tube was set between two lamps (10 cm away from the lamp, 60 W each) and stirred at room temperature (with a fan to cool down the reaction) for 24 h. The mixture was diluted with ethyl acetate and washed with saturated NaHCO$_3$ (10 mL), water (10 mL x 3) and brine (10 mL). The organic layer was dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by column chromatography to afford the corresponding product.

Method B (benzene as solvent). Uranyl nitrate hexahydrate (8.0 mg, 8 mol%) and 2-(2-pyridyl)benzimidazole (3.9 mg, 10 mol%) were added into a screw-cap test tube with stirring bar. The bromide (0.2 mmol, 1.0 equiv.) and the alkyl source (1 mmol, 5.0 equiv.) were dissolved in benzene (1 mL, 0.2 M) and the solution was injected into the tube. Afterwards, the tube was set between two lamps (10 cm away from the lamp, 60 W each) and stirred at room temperature (with a fan to cool down the reaction) for 24–96 h. The mixture was diluted with ethyl acetate and washed with saturated NaHCO$_3$ (10 mL), water (10 mL x 3) and brine (10 mL). The organic layer was dried over anhydrous Na$_2$SO$_4$, and concentrated under reduced pressure. The crude material was purified by column chromatography to afford the corresponding product.

Data Availability

The authors declare that the main data supporting the findings of this study, including experimental procedures and compound characterization, are available within the article and its Supplementary Information files. X-ray structural data of compound 52 are available free of charge from the Cambridge Crystallographic Data Center under the deposition number CCDC 2055096. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Declarations

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21772085, 21971107, 22071101) and the Fundamental Research Funds for the Central Universities (Nos. 020514380220, 020514380131, 020514913412, 020514913214). We also thank Collaborative Innovation Center of Advanced Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials at Nanjing University for support.

Author contributions
Y.W. designed and guided this project. Y.M. is responsible for the plan and implementation of the experimental work. S.N. and Y.W. wrote the manuscript. Y.P. was responsible for funding application.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information accompanies this paper at https://doi.org/10.1038/xxxx.

Correspondence and requests for materials should be addressed to Y.W.

Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions/

References

1. Lide, D. *CRC Handbook of Chemistry and Physics* (CRC, Boca Raton, 2000).
2. Hubbell, M. W. *The Fundamentals of Nuclear Power Generation: Questions and Answers* (Author House, Bloomington, 2011).
3. Cowie, B. E., Purkis, J. M., Austin, J., Love, J. B. & Arnold, P. L. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [UVIO$_2$]$^{2+}$. *Chem. Rev.* **119**, 10595–10637 (2019).
4. Burrows, H. D. & Kemp, T. J. The photochemistry of the uranyl ion. *Chem. Soc. Rev.* **3**, 139 (1974).
5. Syt’ko, V. V. & Umreiko, D. S. Spectroscopic properties and electronic structure of uranyl complex compounds (Review). *J. Appl. Spectrosc.* **65**, 857–870 (1998).
6. Paine, R. T. & Kite M. S. *Lanthanide and Actinide Chemistry and Spectroscopy* 369–380 (American Chemical Society, Washington, DC, 2009).
7. Jørgensen, C. K. & Reisfeld, R. Uranyl photophysics. in *Topics in Inorganic and Physical Chemistry* vol. 50 121–171 (Springer Berlin Heidelberg, 1982).
8. McGrail, B. T., Pianowski, L. S. & Burns, P. C. Photochemical Water Oxidation and Origin of Nonaqueous Uranyl Peroxide Complexes. *J. Am. Chem. Soc.* **136**, 4797–4800 (2014).
9. Li, Y. *et al.* Selective Late-Stage Oxygenation of Sulfides with Ground-State Oxygen by Uranyl Photocatalysis. *Angew. Chem. Int. Ed.* **58**, 13499–13506 (2019).
10. Arnold, P. L. *et al.* Controlled Photocatalytic Hydrocarbon Oxidation by Uranyl Complexes. *ChemCatChem* **11**, 3786–3790 (2019).
11. West, J. G., Bedell, T. A. & Sorensen, E. J. The Uranyl Cation as a Visible-Light Photocatalyst for C(sp3) – H Fluorination. *Angew. Chem. Int. Ed.* **55**, 8923–8927 (2016).
12. Azam, M. et al. Seven-coordinated chiral uranyl(VI) salen complex as effective catalyst for C–H bond activation of dialkylanilines under visible light. *Polyhedron* **124**, 177–183 (2017).

13. Capaldo, L., Merli, D., Fagnoni, M. & Ravelli, D. Visible Light Uranyl Photocatalysis: Direct C–H to C–C Bond Conversion. *ACS Catal.* **9**, 3054–3058 (2019).

14. Lam, J., Breteler, H., Arnason, T. & Hansen, L. *Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds* (Elsevier, Amsterdam, 1988).

15. Patai, S. *Chemistry of Triple-Bonded Functional Groups* (Wiley-VCH, New York, 1994).

16. Stang, P. J. & Diederich, F. *Modern Acetylene Chemistry* (Wiley-VCH, Weinheim, 1995).

17. Pässler et al. *Ullman’s Encyclopedia of Industrial Chemistry* (Wiley-VCH, Weinheim, 2002).

18. Liu, Y., Lam, J. W. Y. & Tang, B. Z. Conjugated polymers developed from alkynes. *Natl. Sci. Rev.* **2**, 493–509 (2015).

19. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. *Chem. Soc. Rev.* **39**, 1272 (2010).

20. Thirumurugan, P., Matosiuk, D. & Joziwak, K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. *Chem. Rev.* **113**, 4905–4979 (2013).

21. Sonogashira, K., Tohda, Y. & Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. *Tetrahedron Lett.* **16**, 4467–4470 (1975).

22. Chinchilla, R. & Nájera, C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry †. *Chem. Rev.* **107**, 874–922 (2007).

23. Chinchilla, R. & Nájera, C. Recent advances in Sonogashira reactions. *Chem. Soc. Rev.* **40**, 5084 (2011).

24. Wu, Q.-F. et al. Formation of α-chiral centers by asymmetric β-C(sp^3)–H arylation, alkenylation, and alkyynylation. *Science* **355**, 499–503 (2017).

25. Fu, H. et al. Ligand-Enabled Alkynylation of C(sp^3)–H Bonds with Palladium(II) Catalysts. *Angew. Chem. Int. Ed.* **56**, 1873–1876 (2017).

26. Liu, T., Qiao, J. X., Poss, M. A. & Yu, J.-Q. Palladium(II)-Catalyzed Site-Selective C(sp^3)–H Alkynylation of Oligopeptides: A Linchpin Approach for Oligopeptide-Drug Conjugation. *Angew. Chem. Int. Ed.* **56**, 10924–10927 (2017).

27. Tan, E., Zanini, M. & Echavarren, A. M. Iridium-Catalyzed β-Alkynylation of Aliphatic Oximes as Masked Carbonyl Compounds and Alcohols. *Angew. Chem. Int. Ed.* **59**, 10470–10473 (2020).

28. Ghiringhelli, F., Uttry, A., Ghosh, K. K. & Gemmeren, M. Direct β- and γ-C(sp^3)–H Alkynylation of Free Carboxylic Acids. *Angew. Chem. Int. Ed.* **59**, 23127–23131 (2020).

29. Ano, Y., Tobisu, M. & Chatani, N. Palladium-Catalyzed Direct Ethynylation of C(sp^3)–H Bonds in Aliphatic Carboxylic Acid Derivatives. *J. Am. Chem. Soc.* **133**, 12984–12986 (2011).
30. He, J., Wasa, M., Chan, K. S. L. & Yu, J.-Q. Palladium(0)-Catalyzed Alkynylation of C(sp3)–H Bonds. J. Am. Chem. Soc. **135**, 3387–3390 (2013).

31. Mahato, S. K. & Chatani, N. The Iridium(III)-Catalyzed Direct C(sp2)– and C(sp3)–H Alkynylation of 2-Acylimidazoles with Various Alkynyli Bromides: Understanding the Full Catalytic Cycle. ACS Catal. **10**, 5173–5178 (2020).

32. Landge, V. G., Parveen, A., Nandakumar, A. & Balaraman, E. Pd(II)-Catalyzed gamma-C(sp3)–H alkylnylation of amides: selective functionalization of R chains of amides R1C(O)NHR. Chem. Commun. **54**, 7483–7486 (2018).

33. Landge, V. G., Sahoo, M. K., Midya, S. P., Jaiswal, G. & Balaraman, E. Well-defined palladium(II) complexes for ligand-enabled C(sp3)-alkynylation. Dalton Trans. **44**, 15382–15386 (2015).

34. Gong, J. & Fuchs, P. L. Alkynylation of C–H Bonds via Reaction with Acetylenic Triones. J. Am. Chem. Soc. **118**, 4486–4487 (1996).

35. Zhang, R.-Y. et al. Metal-free alkylnylation of α-C–H bonds of ethers with ethynylbenziodoxolones. RSC Adv **4**, 54349–54353 (2014).

36. Paul, S. & Guin, J. Radical C(sp3)–H alkenylation, alkylnylation and allylation of ethers and amides enabled by photocatalysis. Green Chem. **19**, 2530–2534 (2017).

37. Matsumoto, K., Nakajima, M. & Nemoto, T. Visible Light-Induced Direct S$_0$→T$_n$ Transition of Benzophenone Promotes C(sp 3)–H Alkynylation of Ethers and Amides. J. Org. Chem. **85**, 11802–11811 (2020).

38. Petrus, E., Segado, M., Bandeira, N. A. G. & Bo, C. Unveiling a Photoinduced Hydrogen Evolution Reaction Mechanism via the Concerted Formation of Uranyl Peroxide. Inorg. Chem. **59**, 8353–8360 (2020).

39. Corey, E. J. & Fuchs, P. L. A synthetic method for formyl→ethynyl conversion (RCHO→RC≡CH or RC≡CR$'\)). Tetrahedron Lett. **13**, 3769–3772 (1972).

40. Xia, Y., Jin, Y., Kaur, N., Choi, Y. & Lee, K. HIF-1α inhibitors: Synthesis and biological evaluation of novel moracin O and P analogues. Eur. J. Med. Chem. **46**, 2386–2396 (2011).

41. Nair, V., Augustine, A. & Suja, T. D. CAN Mediated Reaction of Aryl Sulfinates with Alkenes and Alkynes: Synthesis of Vinyl Sulfones, β-Iodovinyl Sulfones and Acetylenic Sulfones. Synthesis 2259–2265 (2002).

42. Deng, H.-P., Zhou, Q. & Wu, J. Microtubing-Reactor-Assisted Aliphatic C–H Functionalization with HCl as a Hydrogen-Atom-Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst. Angew. Chem. Int. Ed. **57**, 12661–12665 (2018).

43. Jia, P. et al. Light-Promoted Bromine-Radical-Mediated Selective Alkylation and Amination of Unactivated C(sp3)–H Bonds. Chem **6**, 1766–1776 (2020).

44. Laudadio, G. et al. C(sp 3)–H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science **369**, 92–96 (2020).