Stability for Two-class Multiserver-job Systems

ISAAC GROSOF, Carnegie Mellon University, USA
MOR HARCHOL-BALTER, Carnegie Mellon University, USA
ALAN SCHELLER-WOLF, Carnegie Mellon University, USA

Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Much is known in the dropping setting, where jobs are immediately discarded if they require more servers than are currently available. However, very little is known in the more practical setting where jobs queue instead.

In this paper, we derive a closed-form analytical expression for the stability region of a two-class (non-dropping) multiserver-job system where each class of jobs requires a distinct number of servers and requires a distinct exponential distribution of service time, and jobs are served in first-come-first-served (FCFS) order. This is the first result of any kind for an FCFS multiserver-job system where the classes have distinct service distributions. Our work is based on a technique that leverages the idea of a “saturated” system, in which an unlimited number of jobs are always available.

Our analytical formula provides insight into the behavior of FCFS multiserver-job systems, highlighting the huge wastage (idle servers while jobs are in the queue) that can occur, as well as the nonmonotonic effects of the service rates on wastage.

1 INTRODUCTION

Traditional queueing theory is built on models, such as the M/G/k, where every job occupies exactly one server, however many servers are available. These models have been popular for decades because they capture the behavior of previous computing systems, while admitting theoretical analysis. However, traditional one-server-per-job models are no longer representative of many modern computing systems.

Consider large-scale computing centers today, such as those of Google, Facebook, and Microsoft. Even though the servers in these data centers still resemble the servers in traditional models such as the M/G/k, the jobs have changed; these systems now by default have jobs that require multiple servers. For instance, in Fig. 1, we show the distribution of the number of CPUs requested by jobs in Google’s recently published trace of its “Borg” computation cluster [27]. The distribution is highly variable, with jobs requesting anywhere from 1 to 100,000 normalized CPUs. Throughout this paper, we will focus on what we call the “multiserver-job model,” by which we refer to the common situation in modern systems where each job occupies a fixed number of servers (typically more than one), throughout its time in the system.

The multiserver-job model is fundamentally different from the one-server-per-job model. For example, in the one-server-per-job model a work-conservation property holds, where as long as enough jobs are present, no servers will be idle. In the multiserver-job model work conservation is no longer guaranteed, since a job might be forced to wait simply because it demands more servers than are currently available, and thus cannot “fit,” even though some servers are idle. As a result, server utilization and system stability are affected by the scheduling policy in the multiserver-job

1The data was published in a scaled form [27]. We rescale the data so the smallest job in the trace uses one normalized CPU.

This work was supported by NSF-CMMI-1938909, NSF-XPS-1629444, and NSF-CSR-1763701 and by a Google 2020 Faculty Research Award.
Authors’ addresses: Isaac Grosof, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA, igrosof@cs.cmu.edu; Mor Harchol-Balter, Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, USA, harchol@cs.cmu.edu; Alan Scheller-Wolf, Carnegie Mellon University, Tepper School of Business, Pittsburgh, PA, USA, awolf@andrew.cmu.edu.
1.1 Prior multiserver-job models

Almost all existing work on multiserver-job systems has focused on the dropping model, where jobs that cannot receive service are dropped. In a paper from 1979, Arthurs and Kaufman [3] consider this dropping model and derive general analytical results describing the steady state distribution. In Section 2.1 we describe a few generalizations of [3], still within the context of the dropping model.

Unfortunately, the dropping model is unrealistic. Large-scale systems run by companies like Google, Facebook and Microsoft have long queues to avoid dropping jobs, as can be seen in Google’s Borg trace [27]. Consequently, we choose to study a multiserver-job model which assumes unbounded queues with no dropping. We further assume that jobs that queue up are served in first-come-first-served (FCFS) order, which is often the default used in production systems [6, 23].

A few papers address an FCFS multiserver-job model with more than two servers in an analytic (non-numerical) manner [1, 20, 22]. Each of these papers assumes that all jobs have service times drawn from a single distribution, regardless of the number of servers required by the job. Having done so, the papers derive analytical formulas for their systems’ stability regions. Unfortunately, in real systems, jobs requiring different numbers of servers typically also require different amounts of service time. For instance, in Fig. 2, we show that there is a correlation between a job’s number of requested CPUs and the job’s duration for jobs in Google’s recent Borg trace [27].

Thus, to handle real-world settings, it is vital that our multiserver-job model should both allow jobs to queue, as well as allow multiple classes of jobs with different service rates. Unfortunately, when the classes have different service rates, prior analytical techniques become inapplicable. In this paper, we take the first step in solving a multiclass multiserver-job model with both FCFS queueing and different per-class service rates. Due to the added complexity of having different service rates, our analysis is limited to a two-class model.

1.2 Our multiserver-job model

The classes in our two-class multiserver-job model are labeled class 1 and class 2. Class i jobs have duration (size) distributed $\text{Exp}(\mu_i)$, and require a fixed number of servers, n_i, where $n_1 < n_2$. The
total number of servers available is \(n \), where \(n_2 \leq n \). We make no assumptions on the relationship between \(\mu_1 \) and \(\mu_2 \). Jobs arrive to the system according to a Poisson process with rate \(\lambda \). Arriving jobs are independently in class \(i \) with probability \(p_i \). Jobs that cannot immediately receive service queue up and are served in first-come-first-served (FCFS) order.

1.3 Wastage and Stability

In this paper we study the stability region of the model given in Section 1.2. We derive the maximum arrival rate \(\lambda^* \) such that the system is stable (positive recurrent) for any arrival rate \(\lambda < \lambda^* \).

The key to understanding stability in the multiserver-job system is understanding “wasted servers” or “wastage,” which we can think of as the number of servers which are idle while at least one job is in the queue. Understanding stability and wastage in a multiclass multiserver-job model is a difficult open problem, and is fundamental to capacity provisioning for today’s data centers.

To make the idea of wastage concrete, first let us define \(N_{\text{idle}} \) to be the number of servers which are idle in steady state, and define \(N_{\text{busy}} \) similarly. Note that \(N_{\text{idle}} + N_{\text{busy}} = n \).

Let us define the number of wasted servers, or the “wastage,” to be \(E[N^*_{\text{idle}}] \) (\(E[N^*_{\text{busy}}] \) is defined analogously):

\[
E[N^*_{\text{idle}}] = \lim_{\lambda \to \lambda^*} E[N_{\text{idle}}] = \lim_{\lambda \to \lambda^*} E[N_{\text{idle}}|\text{queue nonempty}].
\]

The second equality holds because the probability that the queue is nonempty goes to 1 as \(\lambda \to \lambda^* \). When it is clear from context, we will sometimes refer to “limiting wastage” as simply “wastage.”

To relate the number of wasted servers to the stability region, let us define \(S \) to be the distribution of server-seconds demanded per job, i.e. the number of servers demanded multiplied by the time demanded. At the border of stability, \(\lambda^* \) jobs per second are arriving on average, demanding \(E[S] \) server-seconds per job; the jobs are being served by \(E[N^*_{\text{busy}}] \) servers. As a result, \(\lambda^* = E[N^*_{\text{busi}}]/E[S] \).

In contrast, if we ignored wasted servers, we would overestimate \(\lambda^* \) as \(n/E[S] \), an estimate that we call \(\lambda^*_{\text{naive}} \). We can thus write wastage in terms of \(\lambda^* \) and \(\lambda^*_{\text{naive}} \):

\[
\text{Wastage} = E[N^*_{\text{idle}}] = n - E[N^*_{\text{busy}}] = (\lambda^*_{\text{naive}} - \lambda^*)E[S].
\]

As a result, we can also think of wastage as proportional to the gap between \(\lambda^* \) and \(\lambda^*_{\text{naive}} \).

Wastage can have a major impact on response time (time from arrival to departure) in multiserver-job systems. We illustrate this impact in Fig. 3, where the solid red and blue curves show the mean response time \(E[T] \) as a function of \(\lambda \) in two different systems. Both systems have the same mean server-seconds per job \(E[S] = 1 \) and same number of servers \(n = 10 \), so both systems have the same naive stability region \(\lambda^*_{\text{naive}} = 10 \), shown by the black line. However, the two systems have very different amounts of wastage, and hence very different values of \(\lambda^* \), shown by the dotted lines. Moreover, these very different values of \(\lambda^* \) shape two very different response time curves, shown by the solid lines.

If we only had the simple estimate \(\lambda^*_{\text{naive}} \), multiserver-job systems would be unpredictable and mysterious. By deriving \(\lambda^* \) for the two-class multiserver-job system, we not only characterize wastage and stability, but also take an important step towards understanding response time.

1.4 Novel Perspective: Saturated vs. Non-saturated

We solve the stability problem by shifting our focus: Instead of directly analyzing the model described in Section 1.2, we start by analyzing an alternate model, the saturated system. In the saturated system there are always additional jobs in the queue, so we never have to worry about states where the queue is empty. Instead, we can focus on only the states in which the servers
are as close to full as possible, given the FCFS service policy. This focus enables us to derive a product-form steady state distribution for the saturated system, given in Theorems 4.1 and 4.2.

Next, we derive Theorem 4.3, which characterizes the stability region of the original model in terms of the saturated system: We show that \(\lambda^* \), the arrival rate which forms the upper boundary of the stability region of the original system, is equal to the throughput of the saturated system. Combining Theorems 4.1 to 4.3 allows us to characterize the stability region of our original model.

1.5 Insights from our results

Our analysis brings to light three important features of wastage in multiserver-job systems, which are detailed in Section 9.

(1) A significant portion of the naive stability region can be lost to wastage, potentially 50% or more. Wastage is at its worst when \(n_2 \) is close to or equal to \(n \).

(2) Wastage is lower when jobs demanding fewer servers take less time, i.e. when \(\mu_1 > \mu_2 \). In practice, jobs demanding fewer servers typically do take less time, as seen in trace shown in Fig. 2. When \(\mu_1 \) and \(\mu_2 \) are roughly equal, or when \(\mu_1 < \mu_2 \), wastage is relatively higher.

(3) Wastage varies in complex and non-monotonic patterns. While (1) and (2) describe broad trends, these trends can temporarily run in reverse.

1.6 Contributions

We derive the exact, closed-form stability region for the two-class multiserver-job system. This is the first analytical result for any non-dropping multiserver-job system where different classes of jobs have different service rates. Moreover, our stability region result has a simple sum-of-products formula, because it is based on a product-form steady state result for the saturated system.

In addition, we use our saturated-system framework to give a dramatically simpler proof of the stability region result of [22], in Section 8. Our proof illustrates why the stability region of the model in [22] has a simple sum-of-products formula, which is not addressed in [22].

Finally, in Section 9, we use our solution for the stability region to study wastage in our system.

1.7 Outline

In Section 2, we discuss the prior work on multiserver-job systems. In Section 3, we formally define our system model. In Section 4, we overview our results, deferring the proofs to Sections 5 to 7. In
Section 8, we provide a dramatically simpler analysis of the single-service-time-distribution model in [22]. In Section 9, we discuss practical lessons. Finally, in Section 10, we discuss future directions.

2 PRIOR WORK

While FCFS multiserver-job models are not very common in the queueing literature, there is some prior analytical and empirical work on related models, which we describe in Sections 2.1 to 2.3. In Section 2.4 we describe prior work in our FCFS multiserver-job model.

2.1 Dropping multiserver-job model

Almost all existing analytical work in the multiserver-job model has focused on a model where jobs which cannot immediately receive service are dropped. The *dropping* multiserver-job model is well understood, with steady state results known for very general settings.

Arthurs and Kaufman [3] study a multiserver-job model with an arbitrary number of job classes, each of which requires a fixed number of servers and a different exponential distribution of service time. Arthurs and Kaufman [3] demonstrate that the steady state distribution follows a simple product form, using a local balance argument.

Building upon the work of Arthurs and Kaufman [3], Whitt [30] generalizes the dropping multiserver-job model to allow jobs to demand two different types of server resources simultaneously. In this generalized model, Whitt derives another simple product-form solution for the steady state distribution, also making use of a local balance technique.

More recently, van Dijk [28] generalizes the work of Arthurs and Kaufman [3] in a different direction, allowing each job class to require a general service time distribution, in contrast to the exponential service time distributions of prior work [3, 30]. In contrast to the prior models, van Dijk considers a closed system, where job completions trigger new arrivals after a general “think time” distribution. In this highly general setting, van Dijk [28] demonstrates an insensitivity result, showing that a product-form steady state distribution continues to hold.

Finally, Tikhonenko [26] combines the generality of [30] and [28], allowing two resources to be required as well as allowing a general service time distribution, while returning to a Poisson arrival process. Here the solution is far less simple, but the author still derives a steady state solution.

All of the above works assume a dropping multiserver-job model.

2.2 Supercomputing

In supercomputing centers, actual systems closely resemble the queueing multiserver-job model, where jobs might demand anywhere from one core to thousands of concurrent cores [13, 29]. Unfortunately, all the studies in this literature are simulation-based or empirical, rather than analytical. A particular focus area for these papers is studying system utilization under a variety of scheduling policies, such as FCFS, backfilling, and more novel policies. Low utilization is the counterpart to a high number of wasted servers.

Many supercomputing papers have empirically observed that utilization saturates well below 100% efficiency under FCFS scheduling [7, 14]; in some settings, FCFS utilization can be as low as 40% [14]. Our findings in Section 9.1 help explain this observation.

Due to the severity of wastage, the supercomputing field is highly motivated to find ways to mitigate this behavior. For example, reducing the maximum number of cores that any job can demand has been observed to improve utilization [14]. Our findings in Section 9.2 help give an analytical explanation for this observation.

A wide variety of scheduling policies have been proposed to alleviate the shortcomings of FCFS scheduling [2, 8, 16, 24, 25]. These policies must juggle the tradeoff between fairness, where FCFS
excels, and utilization, where FCFS is often lackluster. Due to the lack of theoretical understanding of these systems, extensive simulation is often performed to evaluate these policies [16, 24].

The extensive study of the multiserver-job model in the supercomputing literature motivates the need for theoretical studies of the model, such as ours.

2.3 Virtual Machine scheduling

In the field of cloud computing, the Virtual Machine (VM) scheduling problem is essentially a multi-resource generalization of the queueing multiserver-job model. In the VM scheduling literature, theoretical papers typically focus on finding a throughput-optimal policy [11, 12, 18, 19, 21], and have achieved strong theoretical results in this direction. However, their techniques are specific to throughput-optimal policies. It is straightforward to characterize the stability region that a throughput-optimal policy achieves, and so these results focus on proving that a specific policy has that stability region, which proves that the policy is throughput optimal.

In contrast, just characterizing the stability region under FCFS scheduling is highly nontrivial, and the techniques developed for the throughput-optimal setting do not apply. This is unfortunate, because the default scheduling policy used in the cloud-computing industry is the FCFS policy; for example, FCFS is the default scheduling policy in the CloudSim, iFogSim, CEPSim and GridSim cloud computing simulators [17]. However, despite the practical importance of FCFS scheduling, comparisons with more advanced policies have been limited to simulation [5, 17].

Our results take an initial step towards analytically characterizing the performance of FCFS scheduling in the VM scheduling setting. In doing so, we complement the work on throughput-optimal policies, enabling an analytical comparison between these policies and FCFS.

2.4 FCFS multiserver-job model

There are very few analytical results for the FCFS multiserver-job model (without dropping). All such results assume that jobs of any class come from a single job size distribution.

In 1979, Kim [15] studies an (FCFS) multiserver-job model where jobs can demand any number of servers, but all jobs require the same exponential distribution of service time. Kim gives a matrix-geometric algorithm to compute the steady state distribution of the number of jobs in the system. Unfortunately, Kim’s algorithm scales exponentially as the size of the system increases, making it impractical for all but the smallest systems.

In 1984, Brill and Green [4] focus on a two-server multiserver-job model, with two classes that have the same exponential distribution of service time, but require one or two servers respectively. Brill and Green derive the steady state distribution of the system. Unfortunately, their solution is highly complex, involving the roots of a quartic equation. As a result, their direct method does not easily generalize beyond the two-server system, and does not provide much intuition.

In 2007, Filippopoulos and Karatza [9] again study the two-server multiserver-job model, with the same restriction that the two job classes require the same exponential distribution of service time. Filippopoulos and Karatza also derive the steady state distribution of the system. Like Brill and Green [4], their solution is highly complex, requiring the roots of a similar quartic equation. Due to the complexity of the solution, Filippopoulos and Karatza give simpler approximations for mean queue length and mean response time.

Given the complexity of the steady state distribution for even a two-server model, an attractive alternative approach is to characterize the stability region of more general models. In 2016, Rumyantsev and Morozov [22] study a multiserver-job model where jobs can demand any number of servers, but again all jobs require the same exponential distribution of service time. Rumyantsev and Morozov exactly characterize the stability region of the system with a simple formula. But despite the simple formula, their proof technique provides little in the way of intuition for the
solution. In 2016, Morozov and Rumyantsev [20] generalize their model to allow Markov Arrival Process arrivals, and show that the same stability region holds.

In 2019, Afanaseva et al. [1] again study the stability region of a multiserver job model. They further generalize the arrival model of [20] to allow any regenerative arrival process. They also generalize the service time distribution to allow hypoexponential service times, though they only derive an explicit solution for a simple two-server case. Once again, all jobs must require the same distribution of service time. To handle their highly general arrival process, they introduce an “auxiliary queueing system,” which resembles our saturated system.

All prior analytical results in FCFS multiserver-job models only consider systems in which all jobs require the same distribution of service time. This paper gives the first analytical characterization of stability in a model without that assumption.

3 SYSTEM MODEL

In this section we will define our system model and our notation. First, we will introduce the standard, non-saturated system in Section 3.1. This is referred to as the two-class multiserver-job model throughout this paper. Afterwards, we will introduce the saturated system in Section 3.2. We will first analyze the saturated system, then use that analysis to solve the non-saturated system.

In both systems, we have two kinds of jobs: class 1 and class 2. Class 1 jobs require \(n_1 \) servers and require \(\text{Exp}(\mu_1) \) time at each server; \(n_2 \) and \(\mu_2 \) are defined similarly. A job must be served concurrently at each of its servers until the job is finished. The system has \(n \) servers in total. We assume that \(n_1 < n_2 \leq n \), so class 1 jobs require fewer servers. We assume that an arriving job (or a job in the saturated queue) is class 1 with i.i.d. probability \(p_1 \), and is class 2 with probability \(p_2 = 1 - p_1 \). Finally, we assume that jobs are served in strict FCFS order.

3.1 Non-saturated system

In the non-saturated system jobs arrive over time, either entering service immediately or being queued. We assume that jobs arrive according to a Poisson process with rate \(\lambda \). Our goal is to characterize the values of \(\lambda \) for which the system is stable.

A crucial aspect of our analysis is choosing the right state descriptor for the system. For example, consider a system with \(n_1 = 3, n_2 = 10 \), and \(n = 30 \). We will call this the “3-10-30 system.” Suppose the 3-10-30 system is in the state shown in Fig. 4. One straightforward way to describe the state would be to list the classes of all jobs in the queue, in arrival order, and count the number of jobs in each class at the server. In Fig. 4, that descriptor would be \([[1, 1, 1, 2]; 4; 1]\), or in general

\[
[[\text{Queue}]; \# \text{class 1 in service}; \# \text{class 2 in service}]
\]
However, this state descriptor contains some unnecessary information. At this moment in time, we do not need to know the classes of the three jobs at the back of the queue. To simplify the state description, we can delay sampling the classes of those jobs until their classes become relevant.

The classes of the other jobs in the system are all relevant in this example. The classes of the jobs in service always matter, because they determine the rate of job completions. Here, the class of the job at the front of the queue is also important: Because the front job in the queue is a class 2 job, demanding 10 servers, it cannot receive service, while a class 1 job, demanding 3 servers, would fit. In situations where a class 2 job does not fit but a class 1 job would fit, we describe the class 2 job as “blocking the head of the queue,” or “blocking” for short.

In contrast, if there were two more class 1 jobs in service, there would only be 2 remaining servers available. In that case, neither class of job would be able to fit. In cases where neither class of job fits, we say that all jobs in the queue are non-blocking.

A simpler state description gives only the necessary information: the number of non-blocking jobs in the queue (of unspecified class), the number (0 or 1) of blocking jobs, and the number of jobs of each class in service. For the example in Fig. 4, that descriptor is [3, 1, 4, 1], or in general

\[
[\text{# (non-blocking) jobs in queue, # blocking jobs, # class 1 in service, # class 2 in service}]
\]

We will use this state descriptor in this paper. Note that by definition, a blocking job must be a class 2 job, and there can be at most one such job in the system.

3.2 Saturated System

To describe a state in the saturated system, we simply omit the number of non-blocking jobs in the queue, and otherwise use the same descriptor as the non-saturated system. For instance, the saturated system state corresponding to Fig. 4 would be [1, 4, 1].

Notice that in the saturated system, there are only a finite number of possible states. For instance, in the 3-10-30 system from Fig. 4, the possible states are:

\[
[0, 0, 3], [1, 1, 2], [1, 2, 2], [0, 3, 2], [1, 4, 1], [1, 5, 1], [0, 6, 1], [1, 7, 0], [1, 8, 0], [1, 9, 0], [0, 10, 0].
\]

Note that there is exactly one state for each possible number of class 1 jobs in service. To see why, imagine starting with a given number of class 1 jobs in service, then adding class 2 jobs until either the servers are “full” (there are not enough servers for an additional job of either class) or the queue is blocked. This will always result in a unique state of the saturated system. We will refer to the unique state with exactly a class 1 jobs in the server as \(s_1(a)\). This state can be blocking or non-blocking. In the 3-10-30 system, \(s_1(4)\) is the state [1, 4, 1], while \(s_1(6)\) is the state [0, 6, 1].

There can be many states with a given number of class 2 jobs in service, but there is always a unique state of the system with a given number of class 2 jobs in service and no job blocking the queue. To see why, imagine starting with a given number of class 2 jobs in service, then adding class 1 jobs until no more class 1 jobs will fit into service. This will always result in a unique non-blocked state of the saturated system. We will refer to the unique non-blocked state with exactly b class 2 jobs in the server as \(s_2(b)\). For instance, in the 3-10-30 system, \(s_2(2)\) is the state [0, 3, 2].

We will analyze two different Markov chains based on the saturated system. First, there is the standard continuous-time Markov chain (CTMC). Second, we will analyze the embedded DTMC where we only record the state just after each job completion. The CTMC is characterized by the rate at which transitions occur from each state, as well as the probability of transitioning to each other state. In the embedded DTMC, we only need to think about the transition probabilities.

Every transition consists of a job completion, followed by zero, one or many jobs moving from the infinite queue into service, and possibly a class 2 job blocking the head of the queue.
The rate of transitions out of each state must equal the rate of completions in that state. In state [·, a, b], this rate is \(a \mu_1 + b \mu_2\). For instance, in the 3-10-30 system, in state \([1, 4, 1]\), completions occur at a rate of \(4 \mu_1 + \mu_2\). Note that we consider every completion to be a transition, even if a job enters from the queue which matches the completed job, resulting in the state not changing. For instance, if we are in state \([0, 10, 0]\) in the 3-10-30 system, and a class 1 job completes and another class 1 job enters from the queue, we consider this event to be a transition.

Every transition can be specified by the class of job which completes, and the classes of jobs which enter from the queue. For a given state \(s\), as a result, for a given transition there is only one possible order in which jobs can enter from the queue. For instance, in the 3-10-30 system, from Fig. 4, \(f\) to \(f\), \(f\), let \(f_1(s)\) denote the probability that the next completion is a class 1 job, and let \(f_2(s) = 1 - f_1(s)\) denote the probability the next completion is a class 2 job. For a given state \([·, a, b]\), we have

\[
f_1([·, a, b]) = \frac{a \mu_1}{a \mu_1 + b \mu_2}, \quad f_2([·, a, b]) = \frac{b \mu_2}{a \mu_1 + b \mu_2}.
\] (1)

To calculate the probability of a specific transition occurring, there are four factors to consider:

- The initial state \(s\).
- The class of the completing job: \(i\).
- The number of class 1 jobs which must enter from the queue: \(j\).
- The number of class 2 jobs which must enter from the queue: \(k\).

Observe that \(k \leq 1\). More specifically, observe that if a class 2 job enters from the queue, as opposed to from a blocking position, that job must be the last job to enter from the queue in a given transition. For instance, in the 3-10-30 system, and a class 1 job completes and another class 1 job moves into service, the blocking job must be the last job to enter from the queue in a given transition. Thus, every transition has a probability of occurring of the form \(f_1(s)p_1^i p_2^k\).

Generically, we refer to the probability of transitioning from state \(s\) to state \(s'\) as \(P(s, s')\). For example, in the 3-10-30 system, from Fig. 4,

\[P([1, 4, 1], [0, 6, 1]) = f_2([1, 4, 1]) p_1^2\]

since we can only transition from \([1, 4, 1]\) to \([0, 6, 1]\) if a class 2 job completes, the blocking job moves into service, and the next two jobs in the queue are class 1 jobs.

4 OVERVIEW OF RESULTS

Our goal is to derive the stability region of the (non-saturated) multiserver-job system. In order to do so, we start by deriving the throughput of the saturated system.

We will first study the embedded DTMC of the saturated system, where we only look at the state after each departure (Theorem 4.1). This result will then enable us to derive the throughput of the CTMC of the saturated system (Theorem 4.2). We will then use the throughput of the saturated system to find the stability region of the original non-saturated system (Theorem 4.3).

Our first theorem gives the steady state of the embedded chain of the saturated system:

Theorem 4.1. The steady state distribution of the embedded DTMC of the saturated system is:

\[
\pi_{[0, a, b]} = C p_1^a p_2^b \prod_{i=1}^{a} \frac{1}{f_1(s_1(i))} \prod_{j=1}^{b} \frac{1}{f_2(s_2(j))}
\]

\[
\pi_{[1, a, b]} = C p_1^a p_2^{b+1} \prod_{i=1}^{a} \frac{1}{f_1(s_1(i))} \prod_{j=1}^{b} \frac{1}{f_2(s_2(j))}
\] (2)

where \(C\) is a normalizing constant.

From Theorem 4.1, we derive the steady state and throughput of the CTMC of the saturated system:
The decomposed stationary equations in Eq. (4) are sufficient, though not necessary, for the system, the decomposed stationary equations require that.

\[p_1 \pi_s = \sum_{s'} \pi_{s'} P_1(s', s) \quad p_2 \pi_s = \sum_{s'} \pi_{s'} P_2(s', s) \]

The 3-10-30 system, the stationary equation, also holds. By proving that each decomposed equation holds, we will prove that their sum, the stationary equation for state \(s \), is the throughput of the saturated system, and unstable if \(\lambda > \lambda^* \).

We will prove Theorem 4.1 in Section 5, Theorem 4.2 in Section 6, and Theorem 4.3 in Section 7.

5 EMBEDDED CHAIN OF SATURATED SYSTEM: PROOF OF THEOREM 4.1

Proof of Theorem 4.1. In order to verify the guess in Eq. (2), we must show that the stationary equations hold for each state:

\[\pi_s = \sum_s \pi_{s'} P(s', s) \]

For instance, take the 3-10-30 system, with \(n_1 = 3 \), \(n_2 = 10 \) and \(n = 30 \). Let’s write down the stationary equation for state \(s = [1, 5, 1] \). First, the possible states that can transition to state \(s \) are \([0, 6, 1], [0, 3, 2], [1, 4, 1], [1, 5, 1]\).

Therefore, Eq. (3) states that under the steady state guess,

\[\pi_{[1,5,1]} = \pi_{[0,6,1]} P([0,6,1], [1,5,1]) + \pi_{[0,3,2]} P([0,3,2], [1,5,1]) + \pi_{[1,4,1]} P([1,4,1], [1,5,1]) + \pi_{[1,5,1]} P([1,5,1], [1,5,1]) \]

\[= \pi_{[0,6,1]} f_1([0,6,1]) p_2 + \pi_{[0,3,2]} f_2([0,3,2]) p_1 p_2 + \pi_{[1,4,1]} f_1([1,4,1]) p_1 p_2 + \pi_{[1,5,1]} f_2([1,5,1]) p_2 \]

In order to simplify the process of proving that the stationary equations hold, we will decompose each stationary equation into two simpler equations, corresponding to the class of the job completed in each transition. By proving that each decomposed equation holds, we will prove that the their sum, the stationary equation, also holds.

Let \(P_1(s', s) \) be the probability a transition from \(s' \) to \(s \) due to a completion of a class 1 job, and define \(P_2(s', s) \) similarly. Note that \(P_1(s', s) + P_2(s', s) = P(s', s) \).

Let us define a pair of decomposed stationary equations for any state \(s \):

\[p_1 \pi_s = \sum_{s'} \pi_{s'} P_1(s', s) \quad p_2 \pi_s = \sum_{s'} \pi_{s'} P_2(s', s) \]

The decomposed stationary equations in Eq. (4) are sufficient, though not necessary, for the stationary equation Eq. (3) to hold. For a specific example, in the state \(s = [1, 5, 1] \) in the 3-10-30 system, the decomposed stationary equations require that

\[p_1 \pi_{[1,5,1]} = \pi_{[0,6,1]} f_1([0,6,1]) p_2 \]

\[p_2 \pi_{[1,5,1]} = \pi_{[0,3,2]} f_2([0,3,2]) p_1 p_2 + \pi_{[1,4,1]} f_1([1,4,1]) p_1 p_2 + \pi_{[1,5,1]} f_2([1,5,1]) p_2 \]
Towards proving that the decomposed stationary equations hold, we will first enumerate the transitions which are possible from each state, in Section 5.1. Then, we will use that enumeration to verify the decomposed stationary equations in the rest of Section 5.

Specifically, we will prove that the decomposed stationary equations hold in five cases, collectively covering all states and all decomposed stationary equations:

- The class 1 decomposed equation for states without a blocking job, i.e. \([0, a, b]\): see Section 5.2.
- The class 1 decomposed equation for states with a blocking job, i.e. \([1, a, b]\): see Section 5.3.
- The class 2 decomposed equation for \([0, a, b]\) states: see Section 5.4.
- The class 2 decomposed equation for \([1, a, b]\) states: see Section 5.5.
- Edge cases where \(a\) or \(b\) is 0: see Section 5.6.

5.1 Possible transitions

In Lemma 5.1, we enumerate all transitions which are possible from each state in a generic system. To help visualize this, Fig. 5 shows all possible transitions for part of the 3-10-30 system.

Lemma 5.1. The possible transitions in the saturated system are exactly:

- i. From \([0, a, b]\) to \([0, a, b]\), via a class 1 completion, whenever \(a > 0\).
- ii. From \([0, a, b]\) to \(s_1(a - 1)\), via a class 1 completion, whenever \(a > 0\).
- iii. From \([0, a, b]\) to \([0, a, b]\), via a class 2 completion, whenever \(b > 0\).
- iv. From \([0, a, b]\) to \(s_2(b - 1)\), via a class 2 completion, whenever \(b > 0\).
- v. From \([0, a, b]\) to \([1, a', b - 1]\), where \(a'\) is any number greater than \(a\) and less than the number of class 1 jobs in state \(s_2(b - 1)\). Occurs via a class 2 completion, can occur whenever \(b > 0\).
- vi. From \([1, a, b]\) to \(s_1(a - 1)\), via a class 1 completion, whenever \(a > 0\).
- vii. From \([1, a, b]\) to \(s_2(b)\), via a class 2 completion, whenever \(b > 0\).
- viii. From \([1, a, b]\) to \([1, a', b]\), where \(a'\) is any number greater than or equal to \(a\) and less than the number of class 1 jobs in state \(s_2(b)\). Occurs via a class 2 completion, can occur whenever \(b > 0\).

Proof. We will first handle the case of starting from non-blocking states, then the case of starting from blocking states.

5.1.1 Non-blocking states. First, consider starting from the state \([0, a, b]\). Out of the \(n\) servers, at most \(n_1 - 1\) can be unoccupied. Otherwise, a job would either enter service or block the queue.

Every transition begins with a job completion. The job which completes can be either a class 1 job or a class 2 job (unless \(a\) or \(b\) is 0). If a class 1 job completes, then between \(n_1\) and \(2n_1 - 1\) servers are unoccupied. At this point, another job must enter from the queue. If that job is a class 1 job, then we are back in state \([0, a, b]\), and our transition is complete.

If that job is a class 2 job, then either the job enters service, leaving fewer than \(n_1 - 1\) servers unoccupied, or the job blocks the head of the queue. In either case, the transition is complete. The
state transitioned to is \(s_1(a - 1) \), which may be either \([0, a - 1, b + 1]\) or \([1, a - 1, b]\). In the 3-10-30 system, the transition from \([0, 3, 2]\) to \([1, 2, 2]\) would fall into this category.

On the other hand, if we are in state \([0, a, b]\) and a class 2 job completes, between \(n_2\) and \(n_2 + n_1 - 1\) servers are unoccupied. At this point, a job must enter from the queue. If that job is a class 2 job, then we are back in state \([0, a, b]\), and our transition is complete.

If that job is a class 1 job, then at most \(n_2 - 1\) servers are unoccupied. At this point, more jobs may enter from the queue. In the case where only class 1 jobs arrive from the queue, filling the servers, the system transitions to state \(s_2(b - 1)\), since no job ends up blocking the head of the queue. In the 3-10-30 system, the transition from \([0, 3, 2]\) to \([0, 6, 1]\) falls into this category.

On the other hand, a class 2 job may arrive after at least one class 1 job has arrived but before the servers are full. The class 2 job cannot fit into service, since there were previously at most \(n_2 - 1\) unoccupied servers. Instead, the class 2 job will block the head of the queue. Transitions in this category can take us to any state of the form \([1, a', b - 1]\), where \(a'\) is greater than \(a\) but less than the number of class 1 jobs in the state \(s_2(b - 1)\). In the 3-10-30 system, the transitions from \([0, 3, 2]\) to \([1, 4, 1]\) and \([1, 5, 1]\) fall into this category.

That completes the proof for states of the form \([0, a, b]\).

5.1.2 Blocking states. Next, consider starting from the state \([1, a, b]\). Out of the \(n\) servers available, between \(n_1\) and \(n_2 - 1\) servers are unoccupied. Any more, and the blocking job would enter service. Any fewer, and the job at the head of the queue would not be a blocking job.

If a class 1 job completes, then between \(2n_1\) and \(n_1 + n_2 - 1\) servers are left unoccupied. If fewer than \(n_2\) servers are left unoccupied, then there is not enough room for the job blocking the head of the queue to enter service, and the transition is complete. The state transitioned to is \([1, a - 1, b]\). In the 3-10-30 system, the transition from \([1, 5, 1]\) to \([1, 4, 1]\) falls into this category.

Otherwise, the class 2 job enters service, leaving at most \(n_1 - 1\) servers unoccupied. This is not enough room for another job, so the transition is complete. The state transitioned to is \([0, a - 1, b + 1]\). In the 3-10-30 system, the transition from \([1, 4, 1]\) to \([0, 3, 2]\) falls into this category.

These two cases, transitioning from \([1, a, b]\) to either \([1, a - 1, b]\) or \([0, a - 1, b + 1]\), can be summarized as a transition to state \(s_1(a - 1)\).

On the other hand, if we are in state \([1, a, b]\) and a class 2 job completes, the job blocking the head of the queue will enter service. At this point, between \(n_1\) and \(n_2 - 1\) servers are left unoccupied, so more jobs must enter from the queue. In the case where only class 1 jobs arrive from the queue, filling the servers, the system transitions to state \(s_2(b)\). In the 3-10-30 system, the transition from \([1, 4, 1]\) to \([0, 6, 1]\) falls in this category.

The other possibility is that a class 2 job may arrive from the queue, possibly after some class 1 jobs have arrived. The class 2 job must block the head of the queue, since there were previously at most \(n_2 - 1\) unoccupied servers. Transitions in this category can take us to any state of the form \([1, a', b]\), where \(a'\) is at least \(a\) and less than the number of class 1 jobs in state \(s_2(b)\). In the 3-10-30 system, the transitions from \([1, 4, 1]\) to \([1, 4, 1]\) and \([1, 5, 1]\) fall into this category.

That completes the proof for states of the form \([1, a, b]\), and hence the proof of Lemma 5.1. □

5.2 Class 1 completions, no blocking job

Starting in state \([0, a, b]\), we want to show that the class 1 decomposed stationary equation holds:

\[
p_1\pi_{[0,a,b]} = \sum_{s'}\pi_{s'}P_1(s', [0, a, b]).
\]

To start with, we enumerate the states that can transition to \([0, a, b]\) via the completion of a class 1 job. By inspecting Lemma 5.1, we can see that transitions to non-blocking states via class 1
completions only occur in cases i, ii, and vi. Case i corresponds to the predecessor state \([0, a, b]\), while cases ii and vi correspond to the potential predecessor states \([0, a + 1, b - 1]\) and \([1, a + 1, b - 1]\), respectively. Only one of these states exists in a given system, and that state is referred to as \(s_1(a + 1)\). By Lemma 5.1, states \([0, a, b]\) and \(s_1(a + 1)\) are the only possible states that could transition to \([0, a, b]\) after a class 1 job completes.

We will prove that the decomposed stationary equation holds both when \(s_1(a + 1)\) is \([0, a + 1, b - 1]\), and when \(s_1(a + 1)\) is \([1, a + 1, b - 1]\).

To prove the steady state guess, we must show that

\[
p_1 \pi_{[0, a, b]} = \pi_{[0, a, b]} P_1([0, a, b], [0, a, b]) + \pi_{s_1(a+1)} P(s_1(a+1), [0, a, b]).
\]

(5)

Note that \(P_1([0, a, b], [0, a, b]) = f_1([0, a, b]) p_1\), so Eq. (5) simplifies to

\[
p_1 \pi_{[0, a, b]} = \pi_{s_1(a+1)} P(s_1(a+1), [0, a, b]).
\]

(6)

Note that \(P([0, a + 1, b - 1], [0, a, b]) = f_1([0, a + 1, b - 1]) p_2\) and that \(P([1, a + 1, b - 1], [0, a, b]) = f_1([1, a + 1, b - 1])\). By examining the steady state guess Eq. (2), we can see that in either case, Eq. (6) must hold. As a result, the decomposed stationary equation must hold as well.

5.3 Class 1 completions, blocking job

This case is similar to the case in Section 5.2 and is proven in Appendix A.1.

5.4 Class 2 completions, no blocking job

Starting in state \([0, a, b]\), we want to show that the class 2 decomposed stationary equation holds:

\[
p_2 \pi_{[0, a, b]} = \sum_{s'} \pi_{s'} P_2(s', [0, a, b]).
\]

To start with, we enumerate the states that can transition to \([0, a, b]\) via the completion of a class 2 job. By inspecting Lemma 5.1, we can see that transitions to non-blocking states via class 2 completions only occur in cases iii, iv, and vii. Case iii corresponds to the predecessor state \([0, a, b]\), with transition probability \(f_2([0, a, b]) p_2\). Case iv corresponds to the predecessor state \(s_2(b + 1)\). If we write \(s_2(b + 1)\) as \([0, a - i^*, b + 1]\) for some \(i^*\), then this case has transition probability \(f_2(s_2(b + 1)) p_2\). Case vii corresponds to the set of predecessor states of the form \([1, a - i, b]\), where \(1 \leq i < i^*\), with transition probabilities \(f_2([1, a - i, n]) p_1\).

To prove the decomposed stationary equation, we must show that

\[
p_2 \pi_{[0, a, b]} = \pi_{[0, a - i^*, b + 1]} f_2([0, a - i^*, b + 1]) p_2^{i^*} + \pi_{[0, a, b]} f_2([0, a, b]) p_2 + \sum_{i=1}^{i^*-1} \pi_{[1, a - i, b]} f_2([1, a - i, b]) p_1^i
\]

\[
\iff p_2 \pi_{[0, a, b]} = \pi_{[0, a - i^*, b + 1]} f_2([0, a - i^*, b + 1]) p_2^{i^*} + \sum_{i=1}^{i^*-1} \pi_{[1, a - i, b]} f_2([1, a - i, b]) p_1^i
\]

Let us apply an auxiliary lemma:

Lemma 5.2. For all \(a, b\) and all \(q \leq r\) such that both \([1, a - q, b]\) and \([1, a - r, b]\) are valid states, under the steady state guess in Eq. (2),

\[
\sum_{i=q}^{r} p_1^i \pi_{[1, a - i, b]} f_2([1, a - i, b]) = p_1^q \pi_{[1, a - q, b]} - p_1^r \pi_{[1, a - r, b]} f_1([1, a - r, b]).
\]

Proof. Deferred to Appendix A.4.
We first define the Augmented Saturated System (AugSS), which consists of the ordinary saturated system and a counter whose value mirrors the number of jobs in the non-saturated system. We assumed that states of the form \(s_{λ} \) hold in every state. Thus, we have proven that the stationary equations hold in every state. Therefore, Combining Sections 5.2 to 5.6, we have now proven that the decomposed stationary equations must hold in every state. Therefore, Eq. (2) gives the stationary distribution for the embedded chain divided by the rate of departures from state \(s \). The original non-saturated system is stable with arrival rate \(λ \) if \(λ < λ^* \), where \(λ^* = X \) is the throughput of the saturated system, and unstable if \(λ > λ^* \).

5.5 Class 2 completions, blocking job

This case is similar to the case in Section 5.4 and is proven in Appendix A.1.

5.6 Edge cases

In the preceding cases, we verified that the decomposed stationary equations hold, but in doing so we assumed that states of the form \(s_1(a + 1) \) and \(s_2(b + 1) \) exist. In certain edge-case states, this assumption does not hold, so we must verify that the decomposed stationary equations still hold.

The main additional fact we will use is that if jobs of only one class are in service, then a job of that class must complete next. In other words, \(f_1([\cdot, a, 0]) = 1 \) and \(f_2([\cdot, 0, b]) = 1 \). The proof of these cases is deferred to Appendix A.3.

5.7 Completing the proof of Theorem 4.1

Combining Sections 5.2 to 5.6, we have now proven that the decomposed stationary equations must hold in every state. Thus, we have proven that the stationary equations hold in every state. Therefore, Eq. (2) gives the stationary distribution for the embedded chain of the saturated system.

6 CONTINUOUS-TIME SATURATED SYSTEM: PROOF OF THEOREM 4.2

Theorem 4.2 follows from a generic transformation between the steady state of the embedded chain of a CTMC and the steady state of the CTMC itself. The stationary probability \(p_s \) of each state \(s \) in the CTMC is simply the probability \(π_s \) in the embedded DTMC divided by the rate of departures from state \(s \). The formal proof is deferred to Appendix B.

7 STABILITY REGION: PROOF OF THEOREM 4.3

Theorem 4.3. The original non-saturated system is stable with arrival rate \(λ \) if \(λ < λ^* \), where \(λ^* = X \) is the throughput of the saturated system, and unstable if \(λ > λ^* \).

7.1 Proof sketch

The main part of the proof will show that when \(λ < X \), the non-saturated system is positive recurrent. Subsequently, we will show that when \(λ > X \), the non-saturated system is transient.

Assuming that \(λ < X \), define the set \(E \) to consist of the states in the non-saturated system with no non-blocking jobs in the queue. We call the states in \(E \) the “near-empty” states. Our goal is to prove that the system returns to \(E \) with probability 1, and in finite mean time. We say that \(E \) is a positive-recurrent set if this property holds.

In order to show that \(E \) is a positive-recurrent set, we define two additional coupled systems. We first define the Augmented Saturated System (AugSS), which consists of the ordinary saturated system and a counter whose value mirrors the number of jobs in the non-saturated system.
From here, we will derive a long period of time \(t_1 \), such that the expected number of completions in the AugSS over any interval of length \(t_1 \) exceeds \(\lambda t_1 \). We will use this interval to define an embedded DTMC for the AugSS which samples the state every \(t_1 \) time steps.

We will show that this embedded DTMC is positive recurrent, which in turn implies that the Augmented Saturated System is positive recurrent, and so \(\mathcal{E} \) must be a positive-recurrent set for the original non-saturated system.

7.2 Proof of Theorem 4.3

Proof. Let us assume that \(\lambda < X \). We want to show that the non-saturated system is positive recurrent, by showing that \(\mathcal{E} \) is a positive-recurrent set.

We start by defining the Augmented Saturated System (AugSS), which consists of two parts: A saturated system, as described in Section 3.2, and an additional "jobs counter." The jobs counter increments according to a Poisson process with rate \(\lambda \), and decrements when jobs complete in the saturated system. As an edge condition, the jobs counter cannot decrement below 0.

We couple the AugSS to the original non-saturated system by matching up their departure and arrival processes. Whenever the two systems have the same numbers of jobs of each class in service, we couple the same class of job to depart simultaneously in both systems. Otherwise, departures occur independently in the two systems. If completions occur in both systems, requiring the sampling of the classes of jobs in both systems for entrance into service, we couple the sampling so that the jobs’ classes match in the two systems. Furthermore, we couple together the arrivals to the non-saturated system and the increments of the job counter.

With this coupling in place, we inaugurate the AugSS at the moment when the non-saturated system exits the set \(\mathcal{E} \). At this point, we set the state of the saturated subsystem to match the jobs in the non-saturated system at the servers and blocking the head of the queue. We also inaugurate the jobs counter to match the total number of jobs in the non-saturated system.

From this point in time onwards, as long as the non-saturated system remains outside of the set \(\mathcal{E} \), the set of jobs at the servers and blocking the head of the queue will remain identical in the non-saturated system and in the AugSS. Likewise, the value of the jobs counter will match the total number of jobs in the non-saturated system.

To prove that \(\mathcal{E} \) is a positive-recurrent set for the non-saturated system, it suffices to show that the set of states with job-counter equal to zero is a positive-recurrent set for the AugSS. By the time the job counter reaches zero, the non-saturated system must have entered a state in \(\mathcal{E} \).

Next, we derive the period of time \(t_1 \) that we will use to define the embedded DTMC of the AugSS. Because the saturated system is a finite-state CTMC, it must converge to its steady state. In particular, for any \(\epsilon > 0 \) there exists a time \(t_0 := t_0(\epsilon) \) such that regardless of the starting state, at any time \(t > t_0 \), the probability that the saturated system is in a given state \(s \) is within \(\epsilon \) of the steady-state probability \(\pi_s \). As a result, the expected completion rate over any interval which begins after time \(t_0 \) must exceed \(X - f(\epsilon) \), where \(f \) is a function that vanishes as \(\epsilon \) approaches 0.

In particular, suppose we choose \(\epsilon \) such that \(X - f(\epsilon) = \lambda + \delta \) for some \(\delta > 0 \). Such an \(\epsilon \) must exist, because \(X > \lambda \) and \(f(\epsilon) \to 0 \) as \(\epsilon \to 0 \). Then at a given time \(t > t_0 \), the expected number of jobs completed in the saturated system is at least \((t - t_0)(\lambda + \delta) \).

Let \(C(t) \) denote the number of jobs completed in the saturated system by time \(t \), and let \(A(t) \) denote the number of jobs which arrive to the non-saturated system by time \(t \) (or equivalently, the number of times the jobs counter increments). Let \(t_1 \) be the time

\[
t_1 = \frac{t_0(\lambda + \delta) + 1}{\delta}.
\]
Then we can lower bound the expected number of jobs completed by time t_1:

$$E[C(t_1)] \geq (t_1 - t_0)(\lambda + \delta) = \left(t_0(\lambda + \delta) + 1 \right) \delta - t_0(\lambda + \delta) + t_0 \frac{\lambda + \delta}{\delta} = t_1 + 1$$

Thus, $E[C(t_1)]$ is strictly greater than $E[A(t_1)]$, which equals λt_1. More generally, because the above argument holds when starting from an arbitrary initial state, the expected number of completions over any interval of length t_1 must exceed the expected number of arrivals over that interval.

Let us define the embedded Markov chain of the AugSS, or the "embedded chain," to sample the AugSS’s state every t_1 time steps. The expected number of completions between every update of this DTMC exceeds the expected number of arrivals. We will use this property of the embedded chain to employ Foster’s theorem [10], which will show that the embedded chain is positive recurrent. In particular, we will use the value of the jobs counter as the Lyapunov function for Foster’s theorem.

Lemma 7.1. Let V be Lyapunov function which maps each state in the embedded chain to the value of its jobs counter. Then V satisfies the conditions of Foster’s theorem, showing that the embedded chain is positive recurrent.

Proof. Deferred to Appendix C. □

Because the embedded chain is positive recurrent, the AugSS must also be positive recurrent. This implies that E forms a positive-recurrent set for the original non-saturated system, as desired.

To show that the non-saturated system is unstable for $\lambda > X$, we can use a very similar argument. The only difference is that we can now show that every t_1 time steps, the expected number of arrivals exceeds the expected number of arrivals. As a result, the embedded DTMC for the AugSS is unstable, and so the AugSS is unstable as well, and so the original system is also unstable. □

8 A SIMPLER PROOF OF RUMYANTSEV AND MOROZOV [22]

Our method of analyzing the stability region of multiserver-job systems can be applied beyond the two-class model studied in this paper. In this section, we show how our method can be used to derive the stability region of the multiserver-job model in [22], where jobs can require any number of servers, but all jobs require the same exponential distribution of service time, regardless of the number of servers required. Our method has the advantage of providing clearer intuition into the nature of the stability region. Moreover, we will essentially reuse Theorems 4.2 and 4.3, allowing the portion of the proof which is specific to the model from [22] to be considerably simpler.

The system in [22] has n servers, where jobs arrive according to a Poisson process with rate λ. Each job requires k servers with i.i.d. probability p_k, and requires $\text{Exp}(\mu)$ time to complete. We will refer to a job requiring k servers as a "class k job." Jobs are served FCFS, as in this work.

The state descriptor consists of two parts: The "phase vector" m of the number of servers required by the n oldest jobs present in the system (padded with empty entries if necessary), and the number of other jobs in the queue. Let m_j denote the number of servers required by the jth oldest job in the queue. The number of jobs in service is defined to be $\sigma(m)$. Let M denote the set of phase vectors where n jobs are present, so no padding is needed.

With the model specified, we may state the stability region result:

Theorem 8.1. The (non-saturated) system is positive recurrent if

$$\frac{\lambda}{\mu} \sum_{m \in M} \frac{\prod_{j=1}^{n} p_{m_j}}{\sigma(m)} < 1 \quad (9)$$

and unstable if “$<$” is replaced by “$>$.”

2This parameter is denoted s in [22].
Note that we do not address the case of exact equality (which [22] does). We believe that our method could be extended to cover this case, but it would significantly complicate the proof.

Let us define the saturated system to always contain exactly \(n \) jobs, so the state of the saturated system corresponds to a phase vector in \(\mathcal{M} \). We will define the embedded Markov chain as usual, transitioning on each departure. The embedded Markov chain of the saturated system has an extremely simple product-form steady-state distribution:

Theorem 8.2. The steady state distribution of the embedded DTMC of the saturated system is:

\[
\pi_m = \prod_{j=1}^{n} p_{m_j}.
\]

Proof. Let us consider the balance equation for a given state \(m \):

\[
\pi_m = \sum_{m' \in \mathcal{M}} \pi_{m'} P(m', m).
\] \hspace{1cm} (10)

For each possible number of servers required \(1 \leq k \leq n \), a state could transition to \(m \) via the completion of a class \(k \) job. Let \(m^k(1) \) denote one specific predecessor state to \(m \), the state \(m^k(1) = [k, m_1, m_2, \ldots, m_{n-1}] \). Starting in state \(m^k(1) \), if the class \(k \) job in position 1 completes, and then a class \(m_n \) job arrives, the system transitions to state \(m \).

Several more states can transition to state \(m \) via the completion of a class \(k \) job. If a state has a class \(k \) job in service, and the other \(n-1 \) jobs in the phase vector are in classes \(m_1 \) through \(m_{n-1} \), in that order, then the state will transition to state \(m \) if the class \(k \) job completes. In total, there are \(\sigma(m^k(1)) \) such states, because the class \(k \) job will be in service if and only if it is in one of the positions that received service in state \(m^k(1) \)

\[
m^k(1) = [k, m_1, m_2, \ldots, m_{n-1}],
\]

\[
m^k(2) = [m_1, k, m_2, \ldots, m_{n-1}],
\]

\[
m^k(\sigma(m^k(1))) = [m_1, m_2, \ldots, m_{\sigma(m^k(1))−1}, k, m_{\sigma(m^k(1))}, \ldots, m_{n-1}]
\]

Note that \(\sigma(m^k(i)) = \sigma(m^k(1)) \) for all \(i \leq \sigma(m^k(1)) \), because the same jobs are served in each state.

From state \(m^k(i) \), the probability \(P(m^k(i), m) \) of transitioning to state \(m \) after a departure is

\[
\frac{p_{m_n}}{\sigma(m^k(1))}.
\]

This holds because each of the \(\sigma(m^k(i)) = \sigma(m^k(1)) \) jobs in service are equally likely to depart, because each job has the same exponential completion rate. If the \(i \)th oldest job departs, a class \(m_n \) job must then arrive to complete the transition to state \(m \).

The steady state probability of state \(m^k(i) \) under the steady state guess is \(\pi_{m^k(i)} = \pi_m \frac{p_k}{p_{m_n}} \). Thus,

\[
\sum_{i=1}^{\sigma(m^k(1))} \pi_{m^k(i)} P(m^k(i), m) = \pi_m p_k.
\]

Summing over all classes \(k \), we see that the balance equation Eq. (10) must hold. Since \(m \) was chosen arbitrarily, the balance equation holds for all states, and the steady state distribution is correct. \(\square \)

Via the equivalent of Theorem 4.2, because each saturated state \(m \) has departure rate \(\mu \sigma(m) \), we find that the saturated system has throughput

\[
X = \left(\sum_{m \in \mathcal{M}} \prod_{j=1}^{n} \frac{P_{m_j}}{\mu \sigma(m)} \right)^{-1}.
\]

Via the equivalent of Theorem 4.3, the non-saturated system is stable if \(\lambda < X \) and unstable if the opposite inequality holds, which proves Theorem 8.1. Thus, we can now see that the simple form

3 We will count otherwise identical states where the inserted job is inserted in distinct locations separately in this proof.
\begin{align*}
\lambda_1 &= 1, \quad n_1 = 1, \quad n_2 = 100, \quad n = 200 \\
\lambda_1 &= 1, \quad n_1 = 1, \quad n_2 = 200, \quad n = 200
\end{align*}

Fig. 6. The blue line depicts the stability region of the multiserver-job system, as the arrival rate of jobs in each class varies. For comparison, the red line shows where the stability region would lie if jobs could always be packed perfectly onto servers, so no servers were ever wasted. The grey shaded region shows the set of arrival rates where the system is unstable due to wastage. In each system, $\mu_1 = 2$ and $\mu_2 = 1$.

Of the stability result in [22] emerges directly from the simple product-form steady state of the embedded Markov chain of the saturated system.

9 LESSONS LEARNED ABOUT WASTAGE

Our analytical results, proven in Theorems 4.1 to 4.3, give us a closed-form expression for the stability region of the two-class multiserver-job system. These results enable us to derive important insights into the behavior of such systems, across a variety of parameter regimes. All of the plots in this section are consequences of our analytical formula, with no simulation needed.

9.1 Number of servers wasted can approach n_2

Our first key insight is that the number of servers wasted in steady state can approach n_2. In any given state, at most $n_2 - 1$ servers can be wasted, because if n_2 servers are free, any job can fit. Our results show that under some conditions, most of those n_2 servers can indeed be wasted in steady state, yielding very high wastage and very poor utilization, especially if n_2 is close to n.

For example, consider the two systems depicted in Fig. 6. In both cases, the stability regions achieved are far from ideal. The red lines illustrate the “naive” stability region, i.e. where the stability region would lie if jobs were always packed perfectly onto servers, so no server was ever wasted. The shaded region illustrates the reduction in the stability region due to wastage. The reduction can be relatively moderate or more severe, depending on the proportion of jobs which are in each class, $p_1 = \lambda_1 / \lambda$ and $p_2 = \lambda_2 / \lambda$. In Fig. 6(a), wastage reaches a peak when $p_2 \sim 6.4\%$, meaning that 93% of server-seconds are demanded by class 2 jobs (since they require so many more servers). In this case, 77 servers are wasted in steady state, nearing $n_2 = 100$, which results in a system utilization of only 61%. Figure 6(b) depicts an even more extreme situation, as $n_2 = n$. Here, wastage reaches a peak when $p_2 \sim 1.3\%$, meaning that 84% of server-seconds are demanded by class 2 jobs. In this case, 125 servers are wasted in steady state, compared to $n_2 = 200$, which results in a system utilization of only 37%.

In general, we observe that wastage is at its worst when n_2 nears n, when most jobs are class 1 jobs, and when most server-seconds are demanded by class 2 jobs. For wastage to be at its worst, class 1 jobs must be common enough to consistently prevent class 2 jobs from fully utilizing the servers, but rare enough to not heavily utilize the servers themselves. Note that in either system in Fig. 6, if all jobs come from just one class, no wastage occurs. Wastage only arises from the interleaving of class 1 and class 2 jobs, with both classes of jobs blocking each other from service.
9.2 Wastage falls as μ_2 / μ_1 falls if n_2 divides n

Our next insight is that wastage is highly dependent on the relative service rates of the two classes. Throughout this section we assume that n_2 divides n, which is common in production systems where the number of servers required by a job and the total number of servers are often powers of two. If class 2 jobs require much more time than class 1 jobs, i.e. if $\mu_2 \ll \mu_1$, then few servers will be wasted. If $\mu_1 \approx \mu_2$ or if $\mu_1 \ll \mu_2$, then more servers can be wasted, potentially approaching n_2.

This result partially rests on the fact that if we hold constant all aspects of a system other than the service rates (i.e. if we hold n_1, n_2, n, p_1 and p_2 constant), then the number of wasted servers is only a function of the service rate ratio μ_2 / μ_1, regardless of the absolute service rates μ_1 and μ_2.

Claim 1. For a given ratio μ_2 / μ_1, and for given values of n_1, n_2, n, p_1, and p_2, the long-term average number of wasted servers in the saturated system is not dependent on the specific values of μ_1 and μ_2.

Proof. Deferred to Appendix D. ☐

To gain intuition into why wastage falls as μ_2 / μ_1 falls when n_2 divides n, we will examine our analytical results in two asymptotic regimes. As $\mu_2 / \mu_1 \to 0$, i.e. class 2 jobs require much more time than class 1 jobs, the steady-state concentrates on the state with only class 2 jobs present, namely $s_1(0)$. In this state, $n \mod n_2$ servers are wasted, which equals zero when class 2 jobs perfectly pack the available servers. In general, (i.e. when n_2 does not perfectly divide n) the steady state wastage will approach $n \mod n_2$.

As $\mu_2 / \mu_1 \to \infty$, the situation is much more complicated. The steady state concentrates on the set of states with only class 1 jobs in service. There are several such states, due to the possibility of a blocking job. Looking at the stationary distribution, we see that the most common such state is the state with the fewest class 1 jobs present, while still having only class 1 jobs in service. This state has $\lceil n-n_2+1 \rceil$ class 1 jobs in service. If n_2 is much larger than n_1, the distribution of additional class 1 jobs beyond the minimum is roughly a geometric distribution with probability of continuation p_1. Therefore, the number of wasted servers when n_2 is much larger than n_1 is approximately $n_2 - n_1/p_2$. Therefore, we see that in the two extremes (when n_2 divides n_1), wasted servers move from $n_2 - n_1/p_2$ as $\mu_2 / \mu_1 \to \infty$ to zero, as $\mu_2 / \mu_1 \to 0$. We see this in Fig. 7.

We also chart the number of wasted servers as a function of the service rate ratio μ_2 / μ_1, with fixed p_1 and p_2, as shown in Fig. 7. In both figures, few servers are wasted when μ_2 / μ_1 is very small. As μ_2 / μ_1 increases to 1, wastage grows to 60% of n_2 in these cases. As μ_2 / μ_1 rises further, many local optima and pessima exist, but as the ratio gets very high, wastage stabilizes at almost all of n_2, or more specifically $n_2 - n_1/p_2$.

\begin{figure}[h]
\centering
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{fig7a.png}
\caption{$n_1 = 1, n_2 = 10, n = 30$}
\end{subfigure}
\hfill
\begin{subfigure}{0.45\textwidth}
\centering
\includegraphics[width=\textwidth]{fig7b.png}
\caption{$n_1 = 1, n_2 = 100, n = 200$}
\end{subfigure}
\caption{Number of wasted servers in the saturated system in steady state as a function of the service rate ratio μ_2 / μ_1, in systems with $p_1 = p_2 = 0.5$.}
\end{figure}
9.3 Wastage is nonmonotonic and idiosyncratic

We also observe that our model can have nonmonotonic behavior, with wastage rising and falling in idiosyncratic patterns, rather than as part of larger trends. Nonmonotonic behavior is pronounced when \(n_2 \gg n_1 \), and muted or nonexistent when \(n_1 \) is closer to \(n_2 \).

For an example of this pattern, compare Fig. 7(a) and Fig. 8(a). In both cases, \(n/n_2 = 3 \), leading to a 3-peaked pattern with the peaks occurring at similar values of \(\mu_2/\mu_1 \). However, in Fig. 8(a), where \(n_2 \) is much larger than \(n_1 \), the peaks and troughs are very pronounced, while in Fig. 7(a) they are far more moderate. In Fig. 8(b), \(n_1 \) and \(n_2 \) are closer still, and the number of wasted servers is fully monotonic as a function of \(\mu_2/\mu_1 \). We posit that dips occur when class 1 jobs displace a class 2 job, leading to significant wastage if \(n_2 \gg n_1 \). However, the number of class 1 jobs is not completely concentrated on a single value. Rather, the number of class 1 jobs varies around its mean by about \(1/p_2 \) jobs, as discussed in Section 9.2. These extra jobs seem to counterbalance the changes in wastage that would otherwise occur when a class 2 job is displaced from service. This means that if \(n_1/p_2 \) is on the same order as \(n_2 \), the dips tend to get completely covered up, making wastage fully monotonic.

In addition to nonmonotonic behavior displayed when \(\mu_2/\mu_1 \) is varied, such behavior also occurs when \(p_1 \) and \(p_2 \) are varied, or when \(n \) is varied, to name just a few possibilities. In general, nonmonotonic behavior is more the rule than the exception in the multiserver-job model.

This pattern of nonmonotonic behavior is very important to understand when provisioning such a system or studying its workload: the presence of nonmonotonic behavior means that there are local optima to seek out and local pessima to be avoided, not just long-term trends to follow.

10 CONCLUSION AND DISCUSSION

In multiserver-job systems, jobs don’t always fit neatly into the servers, and the resulting wastage of servers can be very high and hard to predict. Because no prior analytical work in the FCFS multiserver-job model was capable of handling the setting where \(\mu_1 \) and \(\mu_2 \) differ, the important and complex effect of the service rate ratio \(\mu_2/\mu_1 \) on wastage was not previously understood.

We derive the first analytical formula for the stability region of a two-class multiserver-job system. This result allows us provide a detailed examination of the patterns of wastage, without resorting to noisy and computationally intensive methods such as simulation.

We employ a saturated-system technique to derive our results. We start by defining and studying the saturated system, where additional jobs are always present in the queue. We then derive a product-form steady-state distribution for the saturated system, in Theorems 4.1 and 4.2. We finish
by proving that the stability region of the original model equals the throughput of the saturated system, in Theorem 4.3. We also show in Theorem 8.1 that we can use our saturated-system technique to give a more intuitive proof of the stability region of the model in [22].

Our results focus on the two-class multiserver-job system. A natural next step is to consider systems with three or more classes with distinct rates. Unfortunately, in such models the steady state distribution of the saturated system no longer satisfies our product-form solution. Moreover, the decomposed stationary equations used in the proof of Theorem 4.1 (Eq. (4)) no longer hold. One possible direction of study would be to approximate a system with three or more classes by a related system with two classes, perhaps by preserving the number of servers required by the largest and smallest classes, or required by the two most common classes.

REFERENCES

[1] Larisa Afanaseva, Elena Bashtova, and Svetlana Grishunina. Stability analysis of a multi-server model with simultaneous service and a regenerative input flow. *Methodology and Computing in Applied Probability*, pages 1–17, 2019.

[2] T. G. Armstrong, Z. Zhang, D. S. Katz, M. Wilde, and I. T. Foster. Scheduling many-task workloads on supercomputers: Dealing with trailing tasks. In *2010 3rd Workshop on Many-Task Computing on Grids and Supercomputers*, pages 1–10, 2010.

[3] E. Arthurs and J. S. Kaufman. Sizing a message store subject to blocking criteria. In *Proceedings of the third international symposium on modelling and performance evaluation of computer systems: Performance of computer systems*, pages 547–564, 1979.

[4] Percy H. Brill and Linda Green. Queues in which customers receive simultaneous service from a random number of servers: A system point approach. *Management Science*, 30(1):51–68, 1984. doi: 10.1287/mnsc.30.1.51. URL https://doi.org/10.1287/mnsc.30.1.51.

[5] Yang Cao, CheuWoo Ro, and JianWei Yin. Comparison of job scheduling policies in cloud computing. In *Future information communication technology and applications*, pages 81–87. Springer, 2013.

[6] Yoav Etsion and Dan Tsafir. A short survey of commercial cluster batch schedulers. *School of Computer Science and Engineering, The Hebrew University of Jerusalem*, 44221:2005–13, 2005.

[7] Dror G. Feitelson and Larry Rudolph. Toward convergence in job schedulers for parallel supercomputers. In Dror G. Feitelson and Larry Rudolph, editors, *Job Scheduling Strategies for Parallel Processing*, pages 1–26, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-70710-3.

[8] Dror G Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel job scheduling—a status report. In *Workshop on Job Scheduling Strategies for Parallel Processing*, pages 1–16. Springer, 2004.

[9] D. Filippopoulos and H. Karatzas. An m/m/2 parallel system model with pure space sharing among rigid jobs. *Mathematical and Computer Modelling*, 45(5):491 – 530, 2007. ISSN 0895-7177. doi: https://doi.org/10.1016/j.mcm.2006.06.007. URL http://www.sciencedirect.com/science/article/pii/S0895717706002627.

[10] F. G. Foster. On the stochastic matrices associated with certain queuing processes. *Ann. Math. Statist.*, 24(3):355–360, 09 1953. doi: 10.1214/aoms/1177728976. URL https://doi.org/10.1214/aoms/1177728976.

[11] J. Ghaderi. Randomized algorithms for scheduling vms in the cloud. In *IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications*, pages 1–9, 2016.

[12] M. Guo, Q. Guan, and W. Ke. Optimal scheduling of vms in queuing cloud computing systems with a heterogeneous workload. *IEEE Access*, 6:15178–15191, 2018.

[13] Minnesota Supercomputing Institute. Queues, 2020. URL https://www.msi.umn.edu/queues.

[14] James Patton Jones and Bill Nitzberg. Scheduling for parallel supercomputing: A historical perspective of achievable utilization. In Dror G. Feitelson and Larry Rudolph, editors, *Job Scheduling Strategies for Parallel Processing*, pages 1–16, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-47954-3.

[15] Sung Shick Kim. *M/M/s queueing system where customers demand multiple server use*. PhD thesis, Southern Methodist University, 1979.

[16] Krzysztof Kurowski, Ariel Oleksiak, Wojciech Piatek, and Jan Weglarz. Hierarchical scheduling strategies for parallel tasks and advance reservations in grids. *Journal of Scheduling*, 16(4):349–368, 2013.

[17] Syed Hamid Hussain Madni, Muhammad Shafie Abd Latiff, Mohammed Abdullahi, Shafi‘i Muhammad Abdulhamid, and Mohammed Joda Usman. Performance comparison of heuristic algorithms for task scheduling in iaas cloud computing environment. *PLOS ONE*, 12(5):1–26, 05 2017. doi: 10.1371/journal.pone.0176321. URL https://doi.org/10.1371/journal.pone.0176321.

[18] S. T. Maguluri and R. Srikant. Scheduling jobs with unknown duration in clouds. *IEEE/ACM Transactions on Networking*, 22(6):1938–1951, 2014.
A PROOFS DEFERRED FROM SECTION 5

Here we present the proofs of various cases and lemmas that were deferred from Section 5.

A.1 Class 1 completions, blocking job

Let the current state be \([1, a, b]\). We want to show that the class 1 decomposed stationary equation must hold:

\[
p_1 \pi_{[1, a, b]} = \sum_{s'} \pi_{s'} p_1(s', [1, a, b]).
\]

To start with, we enumerate the states that can transition to \([1, a, b]\) via the completion of a class 1 job.

By inspecting Lemma 5.1, we can see that transitions to blocking states via class 1 completions only occur in cases \(ii\) and \(vi\), corresponding to potential predecessors \([0, a + 1, b]\) and \([1, a + 1, b]\), respectively. Only one of these states exists, namely state \(s_1(a + 1)\). Thus, the only possible state that can transition to \([1, a, b]\) via the completion of a class 1 job is the state \(s_1(a + 1)\).

If state \(s_1(a + 1)\) is \([1, a + 1, b]\), the completion of the class 1 job is not followed by any arrivals. This transition has probability \(f_1((1, a + 1, b)]\). If state \(s_1(a + 1)\) is \([0, a + 1, b]\), the completion of the class 1 job is followed by a class 2 job becoming the blocking job. This transition has probability \(f_1([0, a + 1, b])p_2\). For instance, in the 3-10-30 system, if the current state is \([1, 4, 1]\), then the prior state could only be \([1, 5, 1]\); if the current state is \([1, 2, 2]\), then the prior state could only be \([0, 3, 2]\).

We will prove that the decomposed stationary equation holds both when \(s_1(a + 1)\) is \([0, a + 1, b]\), and when \(s_1(a + 1)\) is \([1, a + 1, b]\).

If \(s_1(a + 1)\) is \([0, a + 1, b]\), then we must show that

\[
p_1 \pi_{[1, a, b]} = \pi_{[0, a + 1, b]} f_1([0, a + 1, b])p_2 = p_2 \pi_{[0, a + 1, b]} f_1(s_1(a + 1)).
\]
This follows immediately from the steady state guess, by comparing the expressions for states \([1, a, b]\) and \([0, a + 1, b]\).

If \(s_1(a + 1)\) is \([1, a + 1, b]\), then we must show that

\[
p_1\pi_{[1, a, b]} = \pi_{[1, a+1, b]}f_1([1, a + 1, b]) = \pi_{[1, a+1, b]}f_1(s_1(a + 1)).
\]

This follows immediately from the steady state guess, by comparing the expressions for states \([1, a, b]\) and \([1, a + 1, b]\).

With both scenarios covered, the decomposed stationary equation must hold in this case.

A.2 Class 2 completions, blocking job

Let the current state be \([1, a, b]\). We want to show that the class 2 decomposed stationary equation must hold:

\[
p_2\pi_{[1, a, b]} = \sum s' \pi_{s'}P_2(s', [1, a, b])
\]

To start with, we enumerate the states that can transition to \([1, a, b]\) via the completion of a class 2 job.

By inspecting Lemma 5.1, we can see that transitions to blocking states via class 2 completions only occur in cases \(v\) and \(viii\). Case \(v\) corresponds to the predecessor state \(s_2(b + 1)\). Let us write \(s_2(b + 1)\) as \([0, a - i^*, b + 1]\). Then case \(viii\) corresponds to the set of possible predecessor states \([1, a - i, b]\) where \(0 \leq i < i^*\). As a result, these states are all the possible states that could transition to \([1, a, b]\) after a class 2 job completes.

The state \(s_2(b + 1)\) could transition to \([1, a, b]\) if a class 2 job completed, then a series of class 1 jobs arrived until \(a\) were in service, then a class 2 job arrived to block the head of the queue. This transition has probability \(f_2([0, a - i^*, b + 1])p_1^{i^*}p_2\). For instance, in the 3-10-30 system, if the current state is \([1, 5, 1]\), then the possible prior state is \(s_2(2) = [0, 3, 2]\), and \(i^*\) is 2.

Another set of possible prior states are the states \([1, a - i, b]\) for any \(i\) such that \(0 \leq i < i^*\), including the state \([1, a, b]\) itself. These states could transition to \([1, a, b]\) if a class 2 job completed, the class 2 job blocking the head of the queue entered service, then \(i\) more class 1 jobs entered service from the queue, and finally a class 2 job arrived to block the head of the queue once more. This transition has probability \(f_2([1, a - i, b])p_1^{i}p_2\). For instance, in the 3-10-30 system, if the current state is \([1, 5, 1]\), then the possible prior states in this category are \([1, 4, 1]\) and \([1, 5, 1]\).

To prove the decomposed stationary equation, we must show that

\[
p_2\pi_{[1, a, b]} = \pi_{[0, a - i^*, b + 1]}f_2([0, a - i^*, b + 1])p_1^{i^*}p_2 + \sum_{i=0}^{i^*-1} \pi_{[1, a-i, b]}f_2([1, a - i, b])p_1^{i}p_2
\]

\[
\iff \pi_{[1, a, b]} = \pi_{[0, a - i^*, b + 1]}f_2([0, a - i^*, b + 1])p_1^{i^*}p_2 + \sum_{i=0}^{i^*-1} \pi_{[1, a-i, b]}f_2([1, a - i, b])p_1^{i}p_2
\]

Applying Lemma 5.2 with \(q = 0\) and \(r = i^* - 1\), our desired statement simplifies to

\[
\pi_{[1, a, b]} = p_1^{i^*}\pi_{[0, a - i^*, b + 1]}f_2([0, a - i^*, b + 1]) + \pi_{[1, a, b]} - p_1^{i^*-1}\pi_{[1, a-i^*+1, b]}f_1([1, a - i^* + 1, b])
\]

\[
\iff p_1^{i^*}\pi_{[0, a - i^*, b + 1]}f_2([0, a - i^*, b + 1]) = p_1^{i^*-1}\pi_{[1, a-i^*+1, b]}f_1([1, a - i^* + 1, b])
\]

\[
\iff p_1\pi_{[0, a - i^*, b + 1]}f_2([0, a - i^*, b + 1]) = \pi_{[1, a-i^*+1, b]}f_1([1, a - i^* + 1, b])
\]

This follows immediately from the steady state guess, by comparing the expressions for states \([0, a - i^*, b + 1]\) and \([1, a - i^* + 1, b]\).

Thus, the decomposed stationary equation holds in this case.
A.3 Edge cases

In Sections 5.2 and 5.4 and Appendices A.1 and A.2, we verified that the decomposed stationary equations hold, but in doing so we assumed that certain states existed. In particular, in Section 5.2 and Appendix A.1 (for class 1 completions) we assumed that state \(s_1(a+1) \) existed, and in Section 5.4 and Appendix A.2 (for class 2 completions) we assumed that state \(s_2(b+1) \) existed. In certain states, these neighboring states do not exist, so we verify that the decomposed stationary equations still hold here.

We will split up this section to handle distinct kinds of edge cases: states where \(s_1(a+1) \) does not exist, and states where \(s_2(b+1) \) does not exist. We will further subdivide the latter case by whether any class 1 jobs are present in the system.

Note that a state where \(s_1(a+1) \) does not exist is a state containing the maximum possible number of class 1 jobs, and similarly for states where \(s_2(b+1) \) does not exist.

A.3.1 Maximum possible number of class 1 jobs. If the state \(s_1(a+1) \) does not exist, this means that \(a+1 \) class 1 jobs cannot fit in the server. Therefore, a class 1 jobs must completely fill the server. In particular, this means that \(s_1(a) \) is \([0, a, 0]\). For instance, in the 3-10-30 system, this edge case occurs for state \([0, 10, 0]\). There is no state \(s_1(11) \).

We must show that the class 1 decomposed stationary equation holds for the state \([0, a, 0]\).

For a state to transition to \([0, a, 0]\) on a class 1 completion, there must be no class 2 jobs present in the prior state. The only state with no class 2 jobs present is \([0, a, 0]\) itself. This transition has probability \(f_1([0, a, 0])p_1 \).

To verify the class 1 decomposed stationary equation in this edge case, we must show that

\[
p_1π_{[0,a,0]} = π_{[0,a,0]}f_1([0,a,0]).
\]

Note that in state \([0, a, 0]\), a class 1 job is guaranteed to complete next. In other words, \(f_1([0, a, 0]) = 1 \). Therefore, the decomposed stationary equation holds.

A.3.2 Maximum possible number of class 2 jobs. Next, we consider the case where the state \(s_2(b+1) \) does not exist. This means that \(b+1 \) class 2 jobs cannot fit in the server.

In a given system, there can be one or more states in this edge case. For instance, in the 3-10-30 system, this edge case occurs for state \([0, 0, 3]\). There is no state \(s_2(4) \).

For another example, in a different system with \(n_1 = 1, n_2 = 4, n = 7 \), this edge case occurs for states \([0, 3, 1], [1, 2, 1], [1, 1, 1], \) and \([1, 0, 1] \). There is no state \(s_2(2) \) in that system.

Note that there always exists a state with no class 1 jobs present among the states in this edge case. We will handle the state without any class 1 jobs separately from the other states in this case.

A.3.3 No class 1 jobs. Call the state with no class 1 jobs \([h, 0, b]\). For a state to transition to \([h, 0, b]\) on a class 2 completion, there must be no class 1 jobs present in the prior state. The only state with no class 1 jobs present is \([h, 0, b]\) itself. This transition has probability \(f_2([h, 0, b])p_2 \). To verify the class 2 decomposed stationary equation in this edge case, we must show that

\[
p_2π_{[h,0,b]} = π_{[h,0,b]}f_2([h,0,b])p_2
\]

Note that in state \([h, 0, b]\), a class 2 job is guaranteed to complete next. In other words, \(f_2([h, 0, b]) = 1 \). Therefore, the decomposed stationary equation holds.

A.3.4 At least one class 1 job. Next, we consider the case where state \(s_2(b+1) \) does not exist, but there is at least one class 1 job in the system.

In the system with \(n_1 = 1, n_2 = 4, n = 7 \), these are the states \([0, 3, 1], [1, 2, 1], \) and \([1, 1, 1]\).

We will first consider states in this edge case that do not have a blocking job. Let the state be \([0, a, b]\). For a state to transition to \([0, a, b]\) on a class 2 completion, the prior state must have at
most a class 1 jobs. This means it must have at least b class 2 jobs. Since $s_2(b + 1)$ does not exist, the prior state must have exactly b class 2 jobs.

The prior state can be $[0, a, b]$ itself, if a class 2 job completes, and then a class 2 job arrives. This transition happens with probability $f_2([0, a, b])p_2$. The prior state can also be a state of the form $[1, a - i, b]$, where $1 \leq i \leq a$. This transition can happen if a class 2 job completes, then i class 1 jobs arrive. This transition happens with probability $f_2([1, a - i, b])p_1^i$. Since $a \geq 1$, there is at least one such state.

To verify the class 2 decomposed stationary equation in this case, we must show that

$$p_2\pi_{[0, a, b]} = \pi_{[0, a, b]}f_2([0, a, b])p_2 + \sum_{i=1}^{a} \pi_{[1, a-i, b]}f_2([1, a-i, b])p_1^i$$

$$\iff p_2\pi_{[0, a, b]}f_1([0, a, b]) = \sum_{i=1}^{a} \pi_{[1, a-i, b]}f_2([1, a-i, b])p_1^i$$

Applying Lemma 5.2 with $q = 1$ and $r = a$, our desired statement simplifies to

$$p_2\pi_{[0, a, b]}f_1([0, a, b]) = p_1\pi_{[1, a-1, b]} - p_1^a\pi_{[1, 0, b]}f_1([1, 0, b])$$

Since $[1, 0, b]$ has no class 1 jobs present, $f_1([1, 0, b]) = 0$. Thus, our desired statement simplifies to

$$p_2\pi_{[0, a, b]}f_1([0, a, b]) = p_1\pi_{[1, a-1, b]}$$

This follows immediately from the steady state guess, by comparing the expressions for states $[0, a, b]$ and $[1, a-1, b]$.

Finally, we consider the case where state $s_2(b + 1)$ does not exist, there is at least one class 1 job in the system, and there is a blocking job at the head of the queue. Let the state be $[1, a, b]$. For a state to transition to $[1, a, b]$ on a class 2 completion, the prior state must have at most a class 1 jobs. This means it must have at least b class 2 jobs. Since $s_2(b + 1)$ does not exist, the prior state must have exactly b class 2 jobs.

The prior state can be any state of the form $[1, a - i, b]$, where $0 \leq i \leq a$. This transition can happen if a class 2 job completes, the blocking job enters service, i class 1 jobs arrive, and then a class 2 job arrives to block the servers again. This transition happens with probability $f_2([1, a - i, b])p_1^i p_2$.

To verify the class 2 decomposed stationary equation in this case, we must show that

$$p_2\pi_{[1, a, b]} = \sum_{i=0}^{a} \pi_{[1, a-i, b]}f_2([1, a-i, b])p_1^i p_2$$

$$\iff \pi_{[1, a, b]} = \sum_{i=0}^{a} \pi_{[1, a-i, b]}f_2([1, a-i, b])p_1^i$$

Applying Lemma 5.2 with $q = 0$ and $r = a$, our desired statement simplifies to

$$\pi_{[1, a, b]} = \pi_{[1, a, b]} - p_1^a\pi_{[1, 0, b]}f_1([1, 0, b])$$

Since $f_1([1, 0, b]) = 0$, the statement must hold.

We have verified that the decomposed stationary equations hold in all cases.

A.4 Proof of Lemma 5.2

Lemma 5.2. For all a, b and all $q \leq r$ such that both $[1, a - q, b]$ and $[1, a - r, b]$ are valid states, under the steady state guess in Eq. (2),

$$\sum_{i=q}^{r} p_1^i \pi_{[1, a-i, b]}f_2([1, a-i, b]) = p_1^q \pi_{[1, a-q, b]} - p_1^r \pi_{[1, a-r, b]}f_1([1, a-r, b])$$
Thus, the inductive case holds. □

\[f \]

Next, note that by comparing the steady state guess for the states \([1, a - r, b]\) and \([1, a - (r - 1), b] = [1, a - r + 1, b]\), we find that

\[\pi_{[1, a - r, b]} \pi_1 = \pi_{[1, a - r + 1, b]} f_1(s_1(a - r + 1)) = \pi_{[1, a - r + 1, b]} f_1([1, a - r + 1, b]) \]

Performing this substitution into Eq. (11), we find that

\[\sum_{i=q}^{r-1} p_i^q \pi_{[1, a - i, b]} f_2([1, a - i, b]) = p_i^q \pi_{[1, a - q, b]} - p_i^{r-1} \pi_{[1, a - (r - 1), b]} f_1([1, a - (r - 1), b]) \]

Next, we add \(p_i^r \pi_{[1, a - r, b]} f_2([1, a - r, b]) \) to both sides of the equation, giving

\[\sum_{i=q}^{r} p_i^q \pi_{[1, a - i, b]} f_2([1, a - i, b]) = p_i^q \pi_{[1, a - q, b]} - p_i^r \pi_{[1, a - r, b]} f_1([1, a - r, b]) \]

Thus, the inductive case holds.

\(\square \)

B PROOF OF THEOREM 4.2

Theorem 4.2. The steady state distribution of the saturated system is:

\[\nu_{[h, a, b]} = \frac{\pi_{[h, a, b]}}{a \mu_1 + b \mu_2} \]

where \(X \), the normalizing constant, is the throughput of the saturated system:

\[X = \left(\sum_{[h, a, b]} \frac{\pi_{[h, a, b]}}{a \mu_1 + b \mu_2} \right)^{-1} \]

Proof. From Theorem 4.1, we know the steady state probability \(\pi_s \) that the embedded DTMC of the saturated system is in a given state \(s \). In particular, we know that the distribution \(\pi \) satisfies the balance equations for the embedded DTMC for all states \(s \):

\[\pi_s = \sum_{s'} \pi_{s'} P(s', s) \]

where \(P(s, s') \) denotes the probability of a transition from \(s \) to \(s' \).

To show that a distribution \(\nu_s \) is the steady state of the continuous-time saturated system, we must show that for all states \(s \),

\[\nu_s v_s = \sum_{s'} \nu_{s'} v_{s'} P(s', s) \]

where \(v_s \) denotes the rate of transitions out of state \(s \). In particular, let \(v \) denote the distribution

\[\nu_s = \frac{C' \pi_s}{v_s} \]
We know that we wish to bound P with transition probabilities. The system throughput V satisfies the conditions of Foster’s theorem, showing that the embedded chain is positive recurrent.

C PROOF OF LEMMA 7.1

Lemma 7.1. Let V be a Lyapunov function which maps each state in the embedded Markov chain of the Augmented Saturated System to the value of its jobs counter. Then V satisfies the conditions of Foster’s theorem, showing that the embedded chain is positive recurrent.

Proof. Foster’s theorem considers an irreducible Markov chain on a countable state space S with transition probabilities P_{ij} for $i, j \in S$. Foster’s theorem states that the Markov chain is positive recurrent if there exists a Lyapunov function $V : S \to \mathbb{R}$ and a finite set F such that

1. $V(i) \geq 0$ for all $i \in S$,
2. $\sum_{j \in S} P_{ij}V(j) < \infty$ for all $i \in F$, and
3. $\sum_{j \in S} P_{ij}V(j) \leq V(i) - \epsilon$ for all $i \notin F$, for some $\epsilon > 0$.

We will use the value of the jobs counter as the Lyapunov function V. The value of the jobs counter is always non-negative, satisfying the first property. As for the other properties, note that the change in the value of the jobs counter over some interval is equal to the number of arrivals during the interval minus the number of completions during the interval, except when the value of the jobs counter has already reached zero and further completions occur. Let $C_0(t, i)$ denote the number of completions that occur while the jobs counter has reached zero over an interval of length t, starting from state i. Let $J(t, i)$ denote the change in the value of the jobs function over an interval of length t, starting from state i. Then we can symbolically state that

$$J(t, i) = A(t, i) - (C(t, i) - C_0(t, i))$$

We wish to bound $E[J(t_1, i)]$, in order to show that the requirements of Foster’s theorem are satisfied. We know that

$$E[J(t_1, i)] = \sum_{j \in S} P_{ij}(V(j) - V(i)).$$
First, let us consider the second requirement of Foster’s theorem. Regardless of the choice of finite set F, there must be some finite upper bound on the value of the jobs counter for jobs in F. Then, after one step, the expected value of the jobs counter increases by at most

$$E[J(t_1, i)] \leq E[A(t_1, i)] = \lambda t_1.$$

The result must be finite, so the second requirement of Foster’s theorem is satisfied, regardless of the choice of F.

As for the third requirement, note that if the initial value of the jobs counter is very large, specifically much larger than $\mu_1 t_1$ and $\mu_2 t_1$, there is a very low probability that the jobs counter will reach zero during the next t_1 time, and $E[C_0(t_1, i)]$ over that interval will be very small. In particular, there must exist some c such that for any state i' with jobs counter at least c, the expected number of jobs completed while the counter is zero is at most 0.1. For any such state i', the expected change in the value of the jobs counter can be bounded:

$$E[A(t_1, i')] - E[C(t_1, i')] + E[C_0(t_1, i')] \leq \lambda t_1 - (\lambda t_1 + 1) + 0.1 = -0.9$$

Therefore, let us define F to be the finite set of states with jobs counter less than c. By the above argument, the third requirement of Foster’s theorem is satisfied with $\epsilon = 0.9$.

With all three requirements satisfied, Foster’s theorem tells us that the embedded Markov Chain of the Augmented Saturated System must be positive recurrent. □

D PROOF OF CLAIM 1

Claim 1. For a given ratio μ_2/μ_1, and for given values of n_1, n_2, and n, the long-term average number of wasted servers in the saturated system is not dependent on the specific values of μ_1 and μ_2.

Proof. We prove this claim in two ways: using Theorems 4.1 and 4.2, and directly via a time-scaling argument.

For the first proof, let us write out the steady-state expected number of wasted servers. First, note that in a given state $[h, a, b]$, the number of wasted servers is $n - an_1 - bn_2$. Therefore, using the result of Theorem 4.2, the expected number of wasted servers in steady-state is

$$E[\text{number of wasted servers}] = X \sum_{[h, a, b]} \frac{\pi_{[h, a, b]}(n - an_1 - bn_2)}{a\mu_1 + b\mu_2}$$

where X is the throughput:

$$X = \left(\sum_{[h, a, b]} \frac{\pi_{[h, a, b]}}{a\mu_1 + b\mu_2} \right)^{-1}$$

(14)

There are four components to this formula: the steady state of the embedded saturated system, $\pi_{[h, a, b]}$, the number of wasted servers, $n - an_1 - bn_2$, the completion rate, $a\mu_1 + b\mu_2$, and the throughput, X.

First, we will show that $\pi_{[h, a, b]}$ is only dependent on the ratio μ_2/μ_1, not the specific values of μ_1 and μ_2. Examining Eq. (2) in Theorem 4.1, we can see that $\pi_{[h, a, b]}$ depends on p_1 and p_2, as well as $f_1(\cdot)$ and $f_2(\cdot)$, the probabilities that the next job to complete from a given state is either a class 1 or class 2 job, respectively. Note that by the definition of $f_1(\cdot)$ and $f_2(\cdot)$ in Eq. (1), $f_1(\cdot)$ and $f_2(\cdot)$ are only dependent on the ratio μ_2/μ_1, not the specific values of μ_1 and μ_2. As a result, the same is true of $\pi_{[h, a, b]}$.

Next, consider the throughput X, given by Eq. (14). Because $\pi_{[h,a,b]}$ is only dependent on the ratio μ_2/μ_1, if we scale μ_1 and μ_2 by the same constant, X is scaled by that constant as well. As a result, the ratio

$$\frac{X}{a\mu_1 + b\mu_2}$$

is only dependent on the ratio μ_2/μ_1 for any given a and b.

Combining everything together, we find that each term of the form

$$X \frac{\pi_{[h,a,b]}(n - an_1 - bn_2)}{a\mu_1 + b\mu_2}$$

is only dependent on the ratio μ_2/μ_1. Thus, the expected number of wasted servers in steady-state is likewise only dependent on the ratio μ_2/μ_1, as desired.

For the second proof, note that increasing μ_1 and μ_2 by some multiplicative factor c is equivalent to speeding up the passage of time by a factor of c, because μ_1 and μ_2 are the only time-dependent quantities in the saturated system. Speeding up the passage of time by a factor of c cannot change the average number of wasted servers in the saturated system, because the same steady state will be observed. □