Development and Validation of Nasal Polyposis Quality of Life Questionnaire (NPQ)

Ilaria Baiardini
Humanitas University

Giovanni Paoletti (✉ giovanni.paoletti@hunimed.eu)
Humanitas University https://orcid.org/0000-0003-3953-9225

Alessia Mariani
Clinical Institute Humanitas: Istituto Clinico Humanitas

Luca Malvezzi
Clinical Institute Humanitas: Istituto Clinico Humanitas

Francesca Pirola
Clinical Institute Humanitas: Istituto Clinico Humanitas

Giuseppe Mercante
Humanitas University

Giuseppe Sprìano
Humanitas University

Francesca Puggioni
Clinical Institute Humanitas: Istituto Clinico Humanitas

Francesca Racca
Clinical Institute Humanitas: Istituto Clinico Humanitas

Giulio Melone
Clinical Institute Humanitas: Istituto Clinico Humanitas

Giacomo Malipiero
Clinical Institute Humanitas: Istituto Clinico Humanitas

Sebastian Ferri
Clinical Institute Humanitas: Istituto Clinico Humanitas

Giorgio Walter Canonica
Clinical Institute Humanitas: Istituto Clinico Humanitas

Enrico Heffler
Clinical Institute Humanitas: Istituto Clinico Humanitas

Research

Keywords: Chronic rhinosinusitis, nasal polyps, Patient Reported Outcomes, Quality of Life, Validation
Abstract

BACKGROUND: To date, no disease-specific tool is available to assess the impact of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) on Health Related Quality of Life (HRQoL). Therefore, the purpose of this study was to develop and validate a questionnaire specifically designed to this aim: the Nasal Polyposis Quality of Life questionnaire –NPQ.

METHODS: According to the current guidelines, the development and validation of the NPQ occurred in two separate steps involving different groups of patients.

RESULTS: In the development process of NPQ an initial list of items of 40 items was given to 60 patients with CRSwNP; the 27 most significant items were selected and converted into questions. The validation procedure involved 107 patients (mean age 52.9±12.4). NPQ revealed a five-dimensional structure and high levels of internal consistency (Cronbach's alpha 0.95). Convergent validity (Spearman' coefficient r=0.75; p< 0.01), discriminant validity (sensitivity to VAS score), reliability in a sample of patients with a stable health status (Interclass Coefficient 0.882) were satisfactory. Responsiveness to clinical changes was accomplished. The minimal important difference was 7.

CONCLUSIONS: NPQ is the first questionnaire for the assessment of HRQoL in CRSwNP. Our results provide that the new tool is valid, reliable, and sensitive to individual changes.

Background

Chronic Rhinosinusitis with Nasal Polyps (CRSwNP) is a chronic inflammatory disease of the paranasal sinuses affecting 2 - 4% of the general population. It is the most severe subtype of CRS, characterized by symptoms often lasting for many years. Management of CRSwNP is difficult and recurrences are frequent, despite medical treatment and surgery approaches. As a consequence, CRSwNP has a considerable impact on health related quality of life (HRQoL). This expression refers to the impact of an illness and its therapy upon a patient, as perceived by the patient himself. The burden of troublesome symptoms (nasal blockage, loss of smell, rhinorrhea, and sneezing), the presence of comorbid diseases (chronic rhinosinusitis, asthma, aspirin sensitivity), the necessity of long term medical therapies, the need of surgical treatments, the changes to habits and lifestyle, all negatively impact physical, emotional and social aspects of daily life.

Despite the literature in this field is not rich, available data confirm the clinical findings. Some studies explored the subjective burden of CRSwNP by means of the Short Form (36) Health Survey (SF-36), a generic measure that permit to assess health status in patients and healthy subject. Compared to general population, patients with CRSwNP had worse scores in all SF-36 domains except for physical functioning. The disease burden has been detected also comparing CRSwNP with other chronic diseases, such as obstructive pulmonary disease, asthma and coronary artery disease. No correlation was found between SF-36 scores and age, gender, nasal symptoms, CT scan, and polyp size.
HRQoL has been also assessed by mean of the Sinonasal Outcome Test (SNOT-22) a speciality-specific questionnaire that covers a broad range of rhinologic and general health issues. This widely-used tool has is not specific for the phenotype with NP and for its characteristics has been used to assess the presence and the severity of sino-nasal disorders in clinical conditions really different from CRSwNP: smell dysfunction, sino-nasal symptoms in cystic fibrosis, allergic rhinitis, sleep apnea, chronic obstructive pulmonary disease (COPD), hereditary haemorrhagic telangiectasia, Wegener’s granulomatosis.

The need of a specific questionnaire to assess HRQoL in patients seems to be justified by several reasons:

- a specific questionnaire that encompasses all relevant aspects of HRQoL in CRSwNP does not exist;
- the use of both generic and specific tools to assess HRQoL is recommended;
- the use of generic or speciality-specific instruments is insufficient in capturing the impact of CRSwNP on patient's life and the changes of HRQoL.

The aim of the study was to develop and validate a specific questionnaire to assess HRQoL in patients affected by CRSwNP.

Methods

The development and validation of the new questionnaire occurred in two separate steps involving different groups of patients. The method used for the two phases is described in detail below.

Consecutive patients who visited the Otorhinolaryngology and Personalized Medicine, Asthma and Allergy units from Istituto Clinico Humanitas between September 2018 and May 2020, were invited to participate in the study.

The Ethics Committee of the Humanitas University (Milan) approved the study protocol (approval no. P.R. 1920). The protocol complies with the general principles of Good Clinical Practice and the Declaration of Helsinki as amended in Edinburgh in 2000. Participation was voluntary and anonymous, and informed consent was obtained from all patients before study entry.

The inclusion criteria were as follows: confirmed diagnosis of CRSwNP; age ≥ 18 years; comprehension of spoken and written Italian language; availability and willingness to participate in the study.

Participants were excluded in case of the presence of other ear–nose–throat disorders.

Development process
In order to make certain that the questionnaire included items appropriate and relevant for CRSwNP patients, items generation and selection was conducted on the basis of current guidelines19–21:

- Item generation.

The first step had the aim to collect potentially relevant and troublesome problems related to CRSwNP on the basis of the following sources: (i) literature review of the available HRQL questionnaires used with CRSwNP patients; (ii) round-tables with ENT specialists and pulmonologists; (iii) unstructured interviews to 10 adult outpatients with CRSwNP. This resultant list included practical, emotional, social and physical aspects of daily life that could be influenced by CRSwNP.

- Item selection.

The second step was comprised of an item importance ranking, in order to identify the most relevant problems related to CRSwNP. The questions found during the item generation procedure, were randomly listed and administered to patients who were asked to indicate: a) which of the items they experienced as consequence of CRSwNP; the response options were yes/no; b) how relevant each of the identified items was, by a 5-points response option, indicating the degree of importance related to each item (1 = not important, 4 = very important).

In this first phase, a sample of 60 consecutive outpatients with CRSwNP has been accrued during a 2-month period. On the basis of collected data we calculated:

1. the percentage of patients who identified each item as a consequence of CRSwNP (frequency range: 0–100);
2. the mean importance attributed to each item (range: 0–4);
3. the overall impact of each item, calculated as the product of the frequency and the mean importance divided by 100 (range: 0–4).

Selected items have been converted to questions where patients had to indicate how much they had been troubled by each problem during the last 2 weeks on a 5-point Likert scale (1 = not at all, 5 = very much).

This format of the questionnaire has been administered to a different group of patients for the validation process. Patients were selected using a convenience sampling method. The aim was to include almost 100 patients. The name of the new questionnaire is Nasal Polyposis Quality of Life (NPQ) questionnaire.

Validation process

Patients were assessed twice with a 4-week interval between visits.

At both visits, a physician collected a complete and accurate medical history reporting the ongoing therapy and patients filled in the NPQ along with the following tools:
- Visual analogue scale (VAS): patients were asked to indicate on a horizontal line measuring 10 cm the degree of CRSwNP severity, giving a score from 0 to 10 (worse). The score obtained can be divided into mild (VAS 0–3), moderate (VAS 3–7) and severe (VAS >7)

- The SNOT-22 (11) encompassss 22 items scored from 0 (meaning no problem reported) to 5 (as bad as it can be) giving a score to maximum 110 points; where, the higher the score the worse is the patient's QoL related to the disease. It has been adapted and validated in several languages and it is now available also in Italian 22.

At Visit 2, patients filled the same questionnaires of the Visit 1 and a Global Rating Scale (GRS) to assess any change in health status.

The psychometric properties of the NPQ were tested as following:

- **Construct validity** was evaluated by mean of factorial analysis; the principal component method with Varimax rotation was adopted.

- **Convergent validity** was calculated by Spearman correlations to examine the relationships between the new questionnaire and an established measure (SNOT-22). Convergent validity is confirmed with correlations ranging from 0.4 to 0.8. Two instruments are considered too similar if the correlation is 0.8 or more (the tested instrument has no added value) (23).

- **Discriminant validity** was evaluated comparing patients according their VAS score by using ANOVA (Fischer's test)

- **Internal consistency** was estimated using Chronbach's correlation coefficient on the extracted factors. Measures with reliability of 0.50–0.70 or greater have been recommended for the purpose of comparing group 24.

- **Reliability** was evaluated by means of the Intraclass Correlation Coefficient (ICC) in the subsample of patients with a stable health status (GRS = 0). An ICC of > 0.75 indicates excellent reproducibility while an ICC between 0.4 and 0.75 indicates a good reproducibility 24.

- **Responsiveness** was assessed, analyzing the correlation between changes in the score of the new questionnaire and changes in GRS (GRS ≠ 0) and VAS by means of a non-parametric test (Spearman correlation coefficient).

- **Clinical significance** was explored by assessing the minimal important difference (MID). The receiver operating characteristics (ROC) curve method was applied 25. The entire cohort for one dichotomization point (i.e., 'no change' vs 'any improvement or deterioration') was adopted.

The possible effect of age (Spearman's correlation coefficient), gender, smoking habits and comorbid asthma (Fisher's ANOVA) on patients' answers was also tested. The frequency distribution of the answers
was calculated to evaluate whether patients used the entire answer scale and whether all possible scores were obtained.

Results

Development process

Sixty patients completed the development-phase questionnaire of 40 items. Most of these patients (63.3%) were female, and the mean (Standard Deviation, SD) age was 41.4 (8.3) years, ranging from 18 to 74 years.

On the basis of patients’ answers, items included in the questionnaire were those that scored highest in impact. Where an arbitrary cut-off value of 1.5 was used for impact, 13 items were excluded. Table 1 summarizes the results of this first phase, indicating the items selected due to the total importance.
Table 1
Development process: results of item reduction

N	Item	Frequency (0-100)	Mean Importance (0–4)	Overall impact (0–4)
1	Sleep problems	73.33	2.81	2.06
2	Having to spend money	65	2.26	1.47
3	Dry mouth	76.67	2.67	2.05
4	Restricted in sport activities	63.33	2.66	1.69
5	Bad breath	65	2.72	1.76
6	Restricted in physical activities of daily life	55	2.67	1.46
7	Wake up during night to drink	60	2.39	1.43
8	Having a bad taste in the mouth	60	2.67	1.60
9	Difficulty enjoying food and wine	81.67	3.41	2.78
10	Feeling irritable	70	2.95	2.06
11	Difficulty concentrating	58.33	2.94	1.71
12	Feeling tired	66.67	3.1	2.07
13	Loss of smell	86.67	3.81	3.38
14	Feeling uncomfortable with other people	60	2.89	1.73
15	Feeling embarrassed due to the symptoms	63.33	2.61	1.65
16	Kneaded mouth	63.33	2.71	1.71
17	Being worried	73.33	2.79	2.04
18	Anxiety	50	2.26	1.13
19	Feeling embarrassed in social life	63.33	2.42	1.53
20	Dark circles	53.33	2.34	1.24
21	Swollen face	55	1.01	0.56
22	Having to do CT scans	53.33	1.91	1.02
23	Hearing problems	50	2.5	1.25
24	Being bothered by medication side effects	70	2.8	1.96

Bold faces indicate highly important items (overall impact ≥ 1.5)
Item	Frequency (0-100)	Mean Importance (0–4)	Overall impact (0–4)
Being bothered for the possibility of surgery	81.67	2.89	2.36
Being annoyed by frequent medical control	50	2.2	1.10
Feeling stressed	65	2.49	1.62
Feeling to have poor disease control	71.67	3.37	2.41
Nasal voice	78.33	2.7	2.11
Snoring	76.67	2.67	1.71
Having to do invasive clinical examinations	58.33	2.23	1.30
Having difficulties in intimate life	48.33	2.13	1.03
Essere preoccupato che i farmaci a lungo andare siano meno efficaci	69.74	3.01	2.10
Kissing difficulty	50	2.23	1.11
Having difficulties in controlling symptoms	85	2.45	2.08
Fear that the problem will recur	85	3.21	2.73
Afraid not to notice to stink (when you sweat)	75	3.22	2.41
Facial pain	45	2.33	1.05
Headache	71.67	2.67	1.91
Make less than you would like	57.89	3.06	1.77

Bold faces indicate highly important items (overall impact ≥ 1.5)

Validation process

107 subjects were enrolled in the study. The mean age was 52.9 with a SD of 12.4; the majority were male (61.7%) and non-smoker (92.5%).

Comorbid asthma was found in 63 (58.9%) of patients.

Regarding atopy (as at least one allergen sensitization via skin prick test), 54 (50.5%) were found positive. Acetyl salicylic acid (ASA) intolerance, meaning patients reporting some kind of respiratory symptoms upon aspirin or any nonsteroidal anti-inflammatory drugs (NSAIDS) intake, was found in 14 (13.1%) patients; 5 subjects out of 107 (4.7%) were affected by Samter’s triad.

- Construct validity:
the factorial analysis with eigenvalue > 1 extracted five factors which explain up to 66.97% of the total variance. Items belonging to each factor are listed in Table 2.

- **Convergent validity:**

Spearman’ correlations between NPQ scores and SNOT-22 were significant (r = 0.75; p < 0.01)

- **Discriminant validity:**

the group of patients with VAS > 7 had NPQ scores significantly higher than patients with VAS ≤ 7 (81.88 ± 21.02 vs 61.4 ± 15.65, p-value < 0.001).

- **Internal consistency:** Cronbach’s alpha coefficient value of 0.95 was obtained for the whole instrument, exceeding the minimum internal consistency standard of 0.70 recommended for group comparison.

- **Reliability:**

Interclass Coefficient (ICC) was 0.882, exceeding the cut-off of 0.75 indicating an excellent test reliability.

- **Responsiveness:**

the assessment of a subsample of 44 patients reporting an improvement or deterioration in health status (GRS ≠ 0) demonstrate that a significant Spearman correlation between the variation of NPQ Total Score between the two visits and the change in VAS score (0.628 p< 0.001) and in GRS (-0.528 p < 0.001) (Fig. 1).
Table 2
Factors identified using principal components analysis on full data set

Item	Factors				
	1	2	3	4	5
Sleep disturbance	0.520	0.341	0.240	0.311	0.270
Dry throat	0.570	0.298	0.311	0.090	0.274
Being limited in sport activities	0.602	0.378	-0.111	0.159	0.275
Halitosis	0.077	**0.731**	0.099	0.028	0.067
Difficulty enjoying food and wine	0.165	0.124	0.129	-0.008	**0.801**
Being irritable	**0.583**	0.511	0.227	0.266	0.061
Being worried by medication side effects	0.341	-0.056	0.394	**0.656**	-0.051
Feeling embarrassed in social life	0.492	0.069	**0.656**	0.172	0.145
Nasal voice	0.138	0.198	**0.720**	0.021	0.136
Being worried by the disease	**0.558**	0.111	0.358	0.446	0.046
Feeling to have poor disease control	**0.721**	-0.025	0.234	0.257	0.278
Afraid not to notice to stink (when you sweat)	0.325	0.218	0.217	0.111	**0.593**
Headache	0.046	0.443	**0.497**	0.030	0.199
Fear that the problem will recur	**0.658**	-0.080	0.167	0.356	0.252
Being worried for the possibility of surgery	0.092	0.129	-0.053	**0.792**	0.022
Being stressed	0.077	**0.562**	-0.126	0.304	0.204
Snoring	**0.691**	0.372	0.170	0.407	0.027
Difficulty concentrating	**0.693**	0.315	0.263	-0.002	0.153
Loss of smell	0.115	0.092	0.105	0.082	**0.836**
Feeling embarrassed due to the symptoms	0.490	0.078	**0.493**	0.380	0.261
Having a bad taste in the mouth	0.251	**0.723**	0.433	-0.069	0.036
Kneaded mouth	0.339	**0.644**	0.404	0.091	0.215
Feeling tired	**0.691**	0.506	0.012	0.227	-0.002
Being worried by long term drug efficacy	0.326	0.172	0.098	**0.662**	0.171

Bold typeface shows the component upon which each item loaded most highly: 1 – Daily life impact; 2 – Mouth problems; 3 – Embarrassment; 4 – Treatment impact; 4 – Loss of smell
Item	Factors
Feeling uncomfortable with other people	0.554
Having difficulty in controlling symptoms	0.761
Not performing well	0.847

Bold typeface shows the component upon which each item loaded most highly: 1 – Daily life impact; 2 – Mouth problems; 3 – Embarrassment; 4 – Treatment impact; 4 – Loss of smell

- **Clinical significance:**

The results of the ROC analyses are presented in Table 3. A 7-point change in RAPP maximizes sensitivity, specificity, and the number of individuals correctly classified, identifying the MID.

Cutoff ≥	Sensitivity (%)	1-Specificity (%)
11	0.77	0.69
9	0.80	0.69
7*	0.83	0.63
5	0.83	0.44
3	0.87	0.06

By the use of T-test, no significant difference was found in mean CRS-NP-QoL total score value comparing gender, comorbid asthma, atopy and ASA sensitivity. Smokers had a higher NPQ total score mean value in respect to non-smokers (90.6 ± 20.1 vs 74.3 ± 20.5, p = 0.03). No significant correlation was found between age and NPQ total score by the use of a linear regression analysis.

Discussion

HRQoL has become a crucial outcome in chronic conditions, allowing to capture the patient’s perspective about disease and treatment.

The availability of generic and rhinologic-specific questionnaires allowed to highlight that CRSwNP significantly affects patients HRQoL. However there is no specific validated tool to assess HRQoL impairment of patients suffering from CRSwNP, that account approximately for 25–30% of CRS cases\(^26\).
Recently it has been shown that nasal polyposis might have a variable impact on HRQoL and that patients with CRSwNP present a different HRQoL profile compared to those with CRSsNP.

To address this gap we developed and validated the first disease specific tool to detect HRQoL impairment in patients with CRSwNP, by following the established methodological guidelines and a recognized framework of questionnaire design. The procedure we adopted provides evidences that the new instruments appropriately reflects HRQoL of patients suffering from CRSwNP. In fact, the development process guarantees that the item selection has been determined by the patients on the basis of their experience.

The new questionnaire consists of 27 items, that can be summed up to a total score and to five factorial scores. As expected, a moderate, significant correlation was obtained between NPQ and SNOT-22.

Discriminant validity was demonstrated through the tool’s ability to discriminate between groups defined according to the VAS.

NPQ was shown to be an internally reliable tool as indicated by very high Cronbach α coefficients. It was also a reliable questionnaire as supported by satisfactory ICC in stable patients. High responsiveness to changes were confirmed by a significant correlation between the change of NPQ. Total score between the two visits and the change in VAS score and in GRS. The ROC analysis indicates that 7 point is the smallest change that patients perceive as an improvement or deterioration.

The new questionnaire has several advantages: it is simple to complete and to score; it owns the necessary psychometric properties; the cutoff MID makes it easy to determine the clinical significance of the results and changes over time. Moreover, answers were not influenced by socio-demographic characteristics, thus enabling the NPQ to be used regardless of the patient’s sex, age and education.

Because of these characteristics, NPQ is appealing as an instrument to assess the patient experience of CRSwNP. It is also potentially useful to monitor the impact of both disease and treatment from the patient’s perspective owing to its satisfactory responsiveness to changes.

Although we reached the primary aim of our study by providing evidence to support the validity, reliability, and responsiveness of NPQ, our findings should be considered in the light of the following potential limitations.

First, the generalizability of the results should be limited because the sample was nonrandomized and the patients were enrolled in one specialistic center. Second, no objective measures of disease control and severity, besides patient’s reported outcomes, were adopted to determine the reliability and the sensitivity to change. Third, the acceptability of the new tool for both patients and physicians has not been evaluated. However these limitations may be faced through further studies.

Conclusions
In conclusion, NPQ is the first questionnaire for the assessment of HRQoL in CRSwNP. It is valid, reliable, and sensitive to individual changes. It is able to detect the specific burden of CRSwNP on HRQoL. This tool should yield data to improve our ability to effectively monitor the burden of disease and treatment on patients with CRSwNP.

Abbreviations

ASA – Acetyl Salicylic Acid

COPD – Chronic Obstructive Pulmonary Disease

CRSwNP – Chronic Rhinosinusitis with Nasal Polyps

GRS – Global Rating Scale

HRQoL – Health Related Quality of Life

ICC – Intraclass Correlation Coefficient

MID – Minimal Important Difference

NPQ – Nasal Polyposis Quality of Life

NSAIDS – Nonsteroidal Anti-Inflammatory Drugs

ROC – Receiver Operating Characteristics

SD – Standard Deviation

SF-36 – Short Form (36) Health Survey

SNOT-22 – Sinonasal Outcome Test

VAS – Visual Analogue Scale

Declarations

- **ETHICS APPROVAL AND CONSENT TO PARTICIPATE**

The Ethics Committee of the Humanitas University (Milan) approved the study protocol (approval no. PR. 1920). The protocol complies with the general principles of Good Clinical Practice and the Declaration of Helsinki as amended in Edinburgh in 2000. Participation was voluntary and anonymous, and informed consent was obtained from all patients before study entry.

- **CONSENT FOR PUBLICATION**
Not applicable.

- **AVAILABILITY OF DATA AND MATERIALS**

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

- **COMPETING INTERESTS**

Baiardini I received personal fees from Boehringer Ingelheim, Sanofi, GSK, Novartis, Mundifama, Menarini outside the submitted work.

Paoletti G reports personal fees from Novartis and Lusofarma, outside the submitted work.

Malvezzi L received grants and personal fees from: Sanofi; Novartis; AstraZeneca outside the submitted work.

Puggioni F received Personal fees from AstraZeneca, Sanofi, GSK, Menarini, Chiesi, Mundipharma, Valeas, Alk Abello, Allergy Therapeutics, Behringer, Grifols outside the submitted work.

Malipiero G reports personal fees from Allergy Therapeutics, outside the submitted work.

Canonica GW reports grants and personal fees from Menarini, Alk Abello, Anallergo Boehringer Ingelheim, Chiesi, Circassia, Genentech, Guidotti Malesci, GSK, Hal Allergy, Meda, Merck, Merck Sharp & Dome Novartis Recordati-InnuvaPharma, Roche, Sanof Stallergenes, UCB Pharma, Uriach Pharma, Teva AstraZeneca, Thermo Fisher, Valeas, Vibor Pharma, outside the submitted work.

Heffler E received grants and personal fees from: AstraZeneca; Sanofi; Novartis; GSK; Circassia; Nestlé, Purina, outside the submitted work.

Racca F received grants and personal fees from: GSK outside the submitted work.

Mariani A, Pirola F, Spriano G, Mercante G, Melone G, Ferri S do not have potential conflict of interest to declare.

- **FUNDING**

No funding.

- **AUTHORS’ CONTRIBUTIONS**

Ilaria Baiardini¹,², Giovanni Paoletti¹,², Alessia Mariani³, Luca Malvezzi³, Francesca Pirola³, Giuseppe Mercante³, Giuseppe Spriano³, Francesca Puggioni¹,², Francesca Racca², Giulio Melone², Giacomo Malipiero², Sebastian Ferri¹,², Giorgio Walter Canonica¹,², Enrico Heffler¹
IB, EH, GP, GWC contributed in designing the study, collecting and analyzing data, critically revising and interpreting the results, and writing the article.

AM, LM, FPi, GMel contributed in collecting and analyzing data, critically revising and interpreting the results, and writing the article

GMer, GS, FPu, FR, GMal, SF contributed in critically revising and interpreting the results, and writing the article

All the Authors read and approved the final version of the manuscript.

- ACKNOWLEDGEMENTS

not applicable

References

1. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl S29):1-464. Published 2020 Feb 20. doi:10.4193/Rhin20.600

2. Baiardini I, Bousquet PJ, Brzoza Z, et al. Recommendations for assessing patient-reported outcomes and health-related quality of life in clinical trials on allergy: a GA(2)LEN taskforce position paper. Allergy. 2010;65(3):290-295. doi:10.1111/j.1398-9995.2009.02263.x

3. Schipper H, Clinch J, Olweny CLM. Quality of life studies: definitions and conceptual issues. In: Spilker B, editors. Quality of life and pharmacoeconomics in clinical trials. Philadelphia: Lippincot Raven Press, 1990:11–23.

4. Serrano E, Neukirch F, Pribil C, et al. Nasal polyposis in France: impact on sleep and quality of life. J Laryngol Otol. 2005;119(7):543-549. doi:10.1258/0022215054352108

5. Ware JE, Snow KK, Kosinski M, Gandek B. SF-36 Health Survey. Manual and Interpretation Guide. Boston, Health Institute, New England Medical Center, 1993.

6. Alobid I, Benítez P, Bernal-Sprekelsen M, Guilemany JM, Picado C, Mullol J. The impact of asthma and aspirin sensitivity on quality of life of patients with nasal polyposis. Qual Life Res. 2005;14(3):789-793. doi:10.1007/s11136-004-1597-x

7. Alonso J, Prieto L, Ferrer M, et al. Testing the measurement properties of the Spanish version of the SF-36 Health Survey among male patients with chronic obstructive pulmonary disease. Quality of Life in COPD Study Group. J Clin Epidemiol. 1998;51(11):1087-1094. doi:10.1016/s0895-4356(98)00100-0

8. Espinosa De Los Monteros MJ, Alonso J, Ancochea J, González A. Calidad de vida en asma: fiabilidad y validez del cuestionario genérico SF-36 aplicado a la población asmática de un área sanitaria [Quality of life in asthma: reliability and validity of the short form generic questionnaire (SF-
36) applied to the population of asthmatics in a public health area]. Arch Bronconeumol. 2002;38(1):4-9. doi:10.1016/s0300-2896(02)75139-9

9. Gliklich RE, Metson R. The health impact of chronic sinusitis in patients seeking otolaryngologic care. Otolaryngol Head Neck Surg. 1995;113(1):104-109. doi:10.1016/s0194-5998(95)70152-4

10. Alobid I, Benítez P, Bernal-Sprekelsen M, et al. Nasal polyposis and its impact on quality of life: comparison between the effects of medical and surgical treatments. Allergy. 2005;60(4):452-458. doi:10.1111/j.1398-9995.2005.00725.x

11. Hopkins C, Gillett S, Slack R, Lund VJ, Browne JP. Psychometric validity of the 22-item Sinonasal Outcome Test. Clin Otolaryngol. 2009;34(5):447-454. doi:10.1111/j.1749-4486.2009.01995.x

12. Mercante G, Ferreli F, De Virgilio A, et al. Prevalence of Taste and Smell Dysfunction in Coronavirus Disease 2019 [published online ahead of print, 2020 Jun 18]. JAMA Otolaryngol Head Neck Surg. 2020;146(8):1-6. doi:10.1001/jamaoto.2020.1155

13. DiMango E, Overdevest J, Keating C, Francis SF, Dansky D, Gudis D. Effect of highly effective modulator treatment on sinonasal symptoms in cystic fibrosis [published online ahead of print, 2020 Jul 18]. J Cyst Fibros. 2020;S1569-1993(20)30794-3. doi:10.1016/j.jcf.2020.07.002

14. Göker AE, Alagöz MH, Kumral TL, et al. An Evaluation of Oxidative Stress With Thiol/Disulfide Homeostasis in Patients With Persistent Allergic Rhinitis [published online ahead of print, 2020 Jul 20]. Ear Nose Throat J. 2020;145561320926336. doi:10.1177/0145561320926336

15. Bengtsson C, Jonsson L, Theorell-Haglow J, Holmstrom M, Janson C, Lindberg E. Sinonasal outcome test-22 and peak nasal inspiratory flow - valuable tools in obstructive sleep apnoea. Rhinology. 2020;58(4):341-348. doi:10.4193/Rhin19.189

16. Hens G, Vanaudenaerde BM, Bullens DM, et al. Sinonasal pathology in nonallergic asthma and COPD: ‘united airway disease’ beyond the scope of allergy. Allergy. 2008;63(3):261-267. doi:10.1111/j.1398-9995.2007.01545.x

17. Geisthoff UW, Heckmann K, D'Amelio R, et al. Health-related quality of life in hereditary hemorrhagic telangiectasia. Otolaryngol Head Neck Surg. 2007;136(5):726-735. doi:10.1016/j.otohns.2006.12.019

18. Srouji IA, Andrews P, Edwards C, Lund VJ. General and rhinosinusitis-related quality of life in patients with Wegener's granulomatosis. Laryngoscope. 2006;116(9):1621-1625. doi:10.1097/01.mlg.0000230440.83375.4b

19. Guyatt GH, Bombardier C, Tugwell PX. Measuring disease-specific quality of life in clinical trials. CMAJ. 1986;134(8):889-895.

20. Guyatt GH, Kirshner B, Jaeschke R. Measuring health status: what are the necessary measurement properties?. J Clin Epidemiol. 1992;45(12):1341-1345. doi:10.1016/0895-4356(92)90194-r

21. Patient-reported outcome measures: use in medical product development to support labeling claims. Available at: http://www.fda.gov/OHRMS/DOCKETS/98fr/06d-0044-gdl0001.pdf.

22. Mozanica F, Preti A, Gera R, et al. Cross-cultural adaptation and validation of the SNOT-22 into Italian. Eur Arch Otorhinolaryngol. 2017;274(2):887-895. doi:10.1007/s00405-016-4313-x
23. Streiner DL. Health Measurement Scales: A Practical Guide to Their Development and Use, 3rd edn. Oxford: Oxford University Press, 2003.

24. Fayers P, Hays RD, Revicki DA. Reliability and validity, including responsiveness. In: Fayers P, Hays RD, editors. Assessing Quality of Life in Clinical Trials: Methods and Practice. 2nd ed. New York: Oxford University Press, 2005: 25–39.

25. Turner D, Schünemann HJ, Griffith LE, et al. Using the entire cohort in the receiver operating characteristic analysis maximizes precision of the minimal important difference. J Clin Epidemiol. 2009;62(4):374-379. doi:10.1016/j.jclinepi.2008.07.009

26. Stevens WW, Schleimer RP, Kern RC. Chronic Rhinosinusitis with Nasal Polyps. J Allergy Clin Immunol Pract. 2016;4(4):565-572. doi:10.1016/j.jaip.2016.04.012

27. Schneider S, Campion NJ, Villazala-Merino S, et al. Associations between the Quality of Life and Nasal Polyp Size in Patients Suffering from Chronic Rhinosinusitis without Nasal Polyps, with Nasal Polyps or Aspirin-Exacerbated Respiratory Disease. J Clin Med. 2020;9(4):925. Published 2020 Mar 28. doi:10.3390/jcm9040925

28. Talat R, Speth MM, Gengler I, et al. Chronic Rhinosinusitis Patients With and Without Polyps Experience Different Symptom Perception and Quality of Life Burdens [published online ahead of print, 2020 May 21]. Am J Rhinol Allergy. 2020;1945892420927244. doi:10.1177/1945892420927244

Figures
Figure 1

NPQ total score mean values according to age, smoking habits, asthma, atopy and ASA sensitivity