Infinite products with strongly B-multiplicative exponents

J.-P. Allouche
CNRS, LRI, Bâtiment 490
F-91405 Orsay Cedex (France)
allouche@lri.fr

J. Sondow
209 West 97th Street
New York, NY10025 (USA)
jsondow@alumni.princeton.edu

To Professor Kátai on the occasion of his 70th birthday

Abstract

Let $N_{1,B}(n)$ denote the number of ones in the B-ary expansion of an integer n. Woods introduced the infinite product $P := \prod_{n \geq 0} \left(\frac{2n+1}{2n+2} \right)^{(-1)^{N_{1,2}(n)}}$ and Robbins proved that $P = 1/\sqrt{2}$. Related products were studied by several authors. We show that a trick for proving that $P^2 = 1/2$ (knowing that P converges) can be extended to evaluating new products with (generalized) strongly B-multiplicative exponents. A simple example is

$$\prod_{n \geq 0} \left(\frac{Bn+1}{Bn+2} \right)^{(-1)^{N_{1,B}(n)}} = \frac{1}{\sqrt{B}}$$

MSC: 11A63, 11Y60.

1 Introduction

In 1985 the following infinite product, for which no closed expression is known, appeared in [8, p. 193 and p. 209]:

$$R := \prod_{n \geq 1} \left(\frac{(4n+1)(4n+2)}{4n(4n+3)} \right)^{\varepsilon(n)}$$

where $(\varepsilon(n))_{n \geq 0}$ is the ± 1 Prouhet-Thue-Morse sequence, defined by

$$\varepsilon(n) = (-1)^{N_{1,2}(n)}$$

with $N_{1,2}(n)$ being the number of ones in the binary expansion of n. (For more on the Prouhet-Thue-Morse sequence, see for example [5].)
On the one hand, it is not difficult to see that $R = \frac{3}{2^{\sqrt{2}}}$, where

$$Q := \prod_{n \geq 1} \left(\frac{2n}{2n+1} \right)^{\varepsilon(n)} .$$

Namely, splitting the simpler product into even and odd indices and using the relations $\varepsilon(2n) = \varepsilon(n)$ and $\varepsilon(2n+1) = -\varepsilon(n)$, we get

$$Q = \left(\prod_{n \geq 1} \left(\frac{4n}{4n+1} \right)^{\varepsilon(n)} \right) \left(\prod_{n \geq 0} \left(\frac{4n+2}{4n+3} \right)^{-\varepsilon(n)} \right) = \frac{3}{2} \prod_{n \geq 1} \left(\frac{4n(4n+3)}{(4n+1)(4n+2)} \right)^{\varepsilon(n)} = \frac{3}{2R} .$$

(Note that, whereas the logarithm of R is an absolutely convergent series, the logarithm of Q – and similarly the logarithm of the product P below – is a conditionally convergent series, as can be seen by partial summation, using the fact that the sums $\sum_{0 \leq k \leq n} \varepsilon(k)$ only take the values $+1$, 0 and -1, hence are bounded.)

On the other hand, the product Q reminds us of the Woods-Robbins product \[18, 12\]

$$P := \prod_{n \geq 0} \left(\frac{2n+1}{2n+2} \right)^{\varepsilon(n)} = \frac{1}{\sqrt{2}}$$

(generalized for example in \[13, 1, 2, 3, 4, 14\]).

In 1987 during a stay at the University of Chicago, the first author, convinced that the computation of the infinite product Q should not resist the even-odd splitting techniques he was using with J. Shallit, discovered the following trick. First write QP as

$$QP = \left(\frac{1}{2} \right)^{\varepsilon(0)} \prod_{n \geq 1} \left(\frac{2n}{2n+1} \cdot \frac{2n+1}{2n+2} \right)^{\varepsilon(n)} = \frac{1}{2} \prod_{n \geq 1} \left(\frac{n}{n+1} \right)^{\varepsilon(n)} .$$

Now split the indices as we did above, obtaining

$$\prod_{n \geq 1} \left(\frac{n}{n+1} \right)^{\varepsilon(n)} = \left(\prod_{n \geq 1} \left(\frac{2n}{2n+1} \right)^{\varepsilon(n)} \right) \left(\prod_{n \geq 0} \left(\frac{2n+1}{2n+2} \right)^{-\varepsilon(n)} \right) = QP^{-1} .$$

This gives $QP = \frac{1}{2} QP^{-1}$: as the hope of computing Q fades, the trick at least yields an easy way to compute $P = 1/\sqrt{2}$. By extending this trick to B-ary expansions, the second author \[14\] found the generalization of $P = 1/\sqrt{2}$ given in Corollary \[5\] of Section \[4.2\].

It happens that the sequence $(\varepsilon(n))_{n \geq 0}$ is strongly 2-multiplicative (see Definition \[1\] in the next section). The purpose of this paper is to extend the trick to products with more general exponents. For example, we prove the following.

Let $B > 1$ be an integer. For $k = 1, \ldots, B - 1$ define $N_{k,B}(n)$ to be the number of occurrences of the digit k in the B-ary expansion of the integer n. Also, let

$$s_B(n) := \sum_{0 < k < B} kN_{k,B}(n)$$
be the sum of the B-ary digits of n, and let $q > 1$ be an integer. Then

$$
\prod_{n \geq 0} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^{N_k,B(n)}} = \frac{1}{\sqrt{B}},
$$

$$
\prod_{n \geq 0} \prod_{\substack{0 < k < B \\text{mod } q}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi k}{q} \sin \frac{\pi (2s_B(n) + k)}{q}} = \frac{1}{\sqrt{B}},
$$

and

$$
\prod_{n \geq 0} \prod_{\substack{0 < k < B \\text{mod } q}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi k}{q} \cos \frac{\pi (2s_B(n) + k)}{q}} = 1.
$$

Note that the use of the trick is not necessarily the only way to compute products of this type: real analysis is used for computing P in [12] and to compute products more general than P in [13]; the core of [1] is the use of Dirichlet series, while [2] deals with complex power series and the second part of [3] with real integrals. It may even happen that, in some cases, the use of the trick gives less general results than other methods. For example, in Remark 3 we show that Corollary 5 of [14] can also be obtained as an easy consequence of [2, Theorem 1].

2 Strongly B-multiplicative sequences

We recall the classical definition of a strongly B-multiplicative sequence. (For this and for the definitions of B-multiplicative, B-additive, and strongly B-additive, see [6, 9, 7, 11, 10].)

Definition 1. Let $B \geq 2$ be an integer. A sequence of complex numbers $(u(n))_{n \geq 0}$ is strongly B-multiplicative if $u(0) = 1$ and, for all $n \geq 0$ and all $k \in \{0, 1, \ldots, B-1\}$,

$$u(Bn + k) = u(n)u(k).$$

Example 1. If z is any complex number, then the sequence u defined by $u(0) := 1$ and $u(n) := z^{s_B(n)}$ for $n \geq 1$ is strongly B-multiplicative.

Remark 1. If we do not impose the condition $u(0) = 1$ in Definition 1, then either $u(0) = 0$ holds, or the sequence $(u(n))_{n \geq 0}$ must be identically 0. To see this, note that the relation $u(Bn + k) = u(n)u(k)$ implies, with $n = k = 0$, that $u(0) = u(0)^2$. Hence $u(0) = 1$ or $u(0) = 0$. If $u(0) = 0$, then taking $n = 0$ in the relation gives $u(k) = 0$ for all $k \in \{0, 1, \ldots, B-1\}$, which by (1) implies $u(n) = 0$ for all $n \geq 0$.

Proposition 1. If the sequence $(u(n))_{n \geq 0}$ is strongly B-multiplicative, and if the B-ary expansion of $n \geq 1$ is $n = \sum_j e_j(n)B^j$, then $u(n) = \prod_j u(e_j(n))$. In particular, the only strongly B-multiplicative sequence with $u(1) = u(2) = \cdots = u(B-1) = \theta$, where $\theta = 0$ or 1, is the sequence $1, \theta, \theta, \theta, \ldots$.

3
Proof. Use induction on the number of base B digits of n. ■

We now generalize the notion of a strongly B-multiplicative sequence different from $1, 0, 0, 0, \ldots$

Definition 2. Let $B \geq 2$ be an integer. A sequence of complex numbers $(u(n))_{n \geq 0}$ satisfies Hypothesis H_B if there exist an integer $n_0 \geq B$ and complex numbers $v(0), v(1), \ldots, v(B-1)$ such that $u(n_0) \neq 0$ and, for all $n \geq 1$ and all $k = 0, 1, \ldots, B - 1$,
\[u(Bn + k) = u(n)v(k). \]

Proposition 2.

1. If a sequence $(u(n))_{n \geq 0}$ satisfies Hypothesis H_B, then the values $v(0), v(1), \ldots, v(B-1)$ are uniquely determined.

2. A sequence $(u(n))_{n \geq 0}$ has $u(0) = 1$ and satisfies Hypothesis H_B with $u(Bn + k) = u(n)v(k)$ not only for $n \geq 1$ but also for $n = 0$, if and only if the sequence is strongly B-multiplicative and not equal to 1, 0, 0, 0, \ldots. In that case, $v(k) = u(k)$ for $k = 0, 1, \ldots, B - 1$.

Proof. If the sequence $(u(n))_{n \geq 0}$ satisfies Hypothesis H_B, then $v(k) = u(Bn_0 + k)/u(n_0)$ for $k = 0, 1, \ldots, B - 1$. This implies (1).

To prove the “only if” part of (2), take $n = 0$ in the relation $u(Bn + k) = u(n)v(k)$, yielding $u(k) = u(0)v(k) = v(k)$ for $k = 0, 1, \ldots, B - 1$. Hence $u(Bn + k) = u(n)u(k)$ for all $n \geq 0$ and $k = 0, 1, \ldots, B - 1$. Thus $(u(n))_{n \geq 0}$ is strongly B-multiplicative. Since $u(n_0) \neq 0$ for some $n_0 \geq B$, the sequence is not 1, 0, 0, 0, \ldots.

Conversely, suppose that $(u(n))_{n \geq 0}$ is strongly B-multiplicative and is not 1, 0, 0, 0, \ldots. Then there exists an integer $\ell_0 \geq 1$ such that $u(\ell_0) \neq 0$. Hence $n_0 := B\ell_0 \geq B$ and $u(n_0) = u(B\ell_0) = u(\ell_0)u(0) = u(\ell_0) \neq 0$. Defining $v(k) := u(k)$ for $k = 0, 1, \ldots, B - 1$, we see that $(u(n))_{n \geq 0}$ satisfies Hypothesis H_B, and the proposition follows. ■

Example 2. We construct a sequence which satisfies Hypothesis H_B but is not strongly B-multiplicative. Let z be a complex number, with $z \notin \{0, 1\}$, and define $u(n) := z^{N_0,B(n)}$, where $N_0,B(n)$ counts the number of zeros in the B-ary expansion of n for $n > 0$, and $N_0,B(0) := 0$ (which corresponds to representing zero by the empty sum, that is, the empty word). Note that for all $n \geq 1$ the relation $N_0,B(Bn) = N_0,B(n) + 1$ holds, and for all $k \in \{1, 2, \ldots, B - 1\}$ and all $n \geq 0$ the relation $N_0,B(Bn + k) = N_0,B(n) + N_0,B(k)$ holds. Hence the nonzero sequence $(u(n))_{n \geq 0}$ satisfies Hypothesis H_B, with $v(0) := z$ and $v(k) := 1 = u(k)$ for $k = 1, 2, \ldots, B - 1$. But the sequence is not strongly B-multiplicative: $u(B \times 1 + 0) = z \neq 1 = u(1)u(0)$.

Remark 2. The alternative definition $N_0,B(0) := 1$ (which would correspond to representing zero by the single digit 0 instead of by the empty word) would also not lead to a strongly B-multiplicative sequence u, since then $u(0) = z \neq 1$, which does not agree with Definition \[.\] (see also Remark \[.\]). On the other hand, the new sequence would still satisfy Hypothesis H_B, with the same values $v(k)$, as the same proof shows, since $u(0)$ does not appear in it.
3 Convergence of infinite products

Inspired by the Woods-Robbins product P, we want to study products given in the following lemma.

Lemma 1. Let $B > 1$ be an integer. Let $(u(n))_{n \geq 0}$ be a sequence of complex numbers with $|u(n)| \leq 1$ for all $n \geq 0$. Suppose that it satisfies Hypothesis \mathcal{H}_B with $|v(k)| \leq 1$ for all $k \in \{0, 1, \ldots, B-1\}$, and that $\left| \sum_{0 \leq k < B} v(k) \right| < B$. Then for each $k \in \{0, 1, \ldots, B-1\}$, the infinite product

$$ \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{u(n)} $$

converges, where δ_k — a special case of the Kronecker delta — is defined by

$$ \delta_k := \begin{cases}
0 & \text{if } k \neq 0 \\
1 & \text{if } k = 0.
\end{cases} $$

Proof. For $N = 1, 2, \ldots$, let

$$ F(N) := \sum_{0 \leq n < N} u(n). $$

Also define for $j = 1, 2, \ldots, B-1$

$$ G(j) := \sum_{0 \leq n < j} v(n) $$

and set $G(0) := 0$. Then, for each $b \in \{0, 1, \ldots, B-1\}$, and for every $N \geq 1$,

$$ F(BN + b) = \sum_{0 \leq n < BN} u(n) + \sum_{BN \leq n < BN+b} u(n) $$

$$ = \sum_{0 \leq n < N} \sum_{0 \leq \ell < B} u(Bn + \ell) + \sum_{0 \leq \ell < b} u(BN + \ell) $$

$$ = \sum_{0 \leq \ell < B} u(\ell) + \sum_{1 \leq n < N} \sum_{0 \leq \ell < B} u(n)v(\ell) + u(N) \sum_{0 \leq \ell < b} v(\ell). $$

Hence, using $|u(n)| \leq 1$ and $|G(b)| \leq B - 1 < B$,

$$ |F(BN + b)| = |F(B) + (F(N) - u(0))G(B) + u(N)G(b)| $$

$$ < |F(B) - u(0)G(B)| + |F(N)||G(B)| + B. $$

This gives the case $d = 1$ of the following inequality, which holds for $d \geq 1$ and $e_\ell \in \{0, 1, \ldots, B-1\}$, and which is proved by induction on d using $|F(e_\ell)| \leq B$:

$$ \left| F \left(\sum_{0 \leq \ell \leq d} e_\ell B^\ell \right) \right| < |F(B) - u(0)G(B)| \left(1 + \sum_{1 \leq \ell \leq d-1} |G(B)|^\ell \right) + B \left(1 + \sum_{1 \leq \ell \leq d} |G(B)|^\ell \right). $$

5
Hence

\[F\left(\sum_{0 \leq t \leq d} e_t B^t \right) < \begin{cases} B(3d + 1) & \text{if } |G(B)| \leq 1, \\ 3B |G(B)|^{d+1} - 1 & \text{if } |G(B)| > 1. \end{cases} \]

This implies that for some constant \(C = C(B, v) \), and for every \(N \) large enough,

\[|F(N)| < \begin{cases} C \log N & \text{if } |G(B)| \leq 1, \\ \frac{C|G(B)|}{\log B} & \text{if } |G(B)| > 1. \end{cases} \]

Since \(|G(B)| < B \) by hypothesis, we can define \(\alpha \in (0, 1) \) by

\[\alpha := \begin{cases} \frac{1}{2} \frac{\log |G(B)|}{\log B} & \text{if } |G(B)| \leq 1, \\ \frac{1}{2} \frac{\log |G(B)|}{\log B} & \text{if } |G(B)| > 1. \end{cases} \]

Hence for every \(N \) large enough \(|F(N)| < CN^\alpha \). It follows, using summation by parts, that the series \(\sum_n u(n) \log \frac{Bn + k}{Bn + k + 1} \) converges, hence the lemma. \(\blacksquare \)

Remark 3.

(1) Here and in what follows, expressions of the form \(a^z \), where \(a \) is a positive real number and \(z \) a complex number, are defined by \(a^z := e^{z \log a} \), and \(\log a \) is real.

(2) For more precise estimates of summatory functions of (strongly) \(B \)-multiplicative sequences, see for example [7, 10]. (In [10] strongly \(B \)-multiplicative sequences are called completely \(B \)-multiplicative.)

4 Evaluation of infinite products

This section is devoted to computing some infinite products with exponents that satisfy Hypothesis \(\mathcal{H}_B \), including some whose exponents are strongly \(B \)-multiplicative.

4.1 General results

Theorem 1. Let \(B > 1 \) be an integer. Let \((u(n))_{n \geq 0} \) be a sequence of complex numbers with \(|u(n)| \leq 1 \) for all \(n \geq 0 \). Suppose that \(u \) satisfies Hypothesis \(\mathcal{H}_B \), with complex numbers \(v(0), v(1), \ldots, v(B-1) \) such that \(|v(k)| \leq 1 \) for \(k \in \{0, 1, \ldots, B-1\} \) and \(|\sum_{0 \leq k < B} v(k)| < B \). Then the following relation between nonempty products holds:

\[
\prod_{0 \leq k < B} \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{u(n)(1-v(k))} = \frac{1}{B^{u(0)}} \prod_{0 < k < B} \left(\frac{k}{k + 1} \right)^{u(k)-u(0)v(k)}.
\]

Proof. The condition \(|\sum_{0 \leq k < B} v(k)| < B \) prevents \(v \) from being identically equal to 1 on \(\{0, 1, \ldots, B-1\} \), so the left side of the equation is not empty. Since \(B > 1 \), so is the right.

We first show that

\[
\prod_{0 \leq k < B} \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{u(n)} = \frac{1}{B^{u(0)}} \prod_{n \geq 1} \left(\frac{n}{n + 1} \right)^{u(n)} \quad (*)
\]
Example 3. As in Example 2, the sequence \(u \) defined by \(u(n) = z^{N_0, B(n)} \), with \(z \notin \{0, 1\} \), satisfies Hypothesis \(\mathcal{H}_B \), and \(\sum_{0 \leq k < B} v(k) = z + B - 1 \). If furthermore \(|z| \leq 1 \), then

\[
\prod_{n \geq 1} \left(\frac{Bn}{Bn + 1} \right)^{u(n)(1-z)^{N_0, B(n)}} = B.
\]

Corollary 1. Fix an integer \(B > 1 \). If \((u(n))_{n \geq 0}\) is strongly \(B \)-multiplicative, satisfies \(|u(n)| \leq 1 \) for all \(n \geq 0 \), and is not equal to either of the sequences 1, 0, 0, 0, . . . or 1, 1, 1, . . . , then

\[
\prod_{n \geq 0} \prod_{0 < k < B \atop u(k) \neq 1} \left(\frac{Bn + k}{Bn + k + 1} \right)^{u(n)(1-u(k))} = \frac{1}{B}.
\]

Proof. Using Theorem 1 and Proposition 2, part (2) it suffices to prove that \(| \sum_{0 \leq k < B} u_k | < B \). Since \(|u_n| \leq 1 \) for all \(n \geq 0 \), we have \(| \sum_{0 \leq k < B} u_k | \leq B \). From the equality case of the triangle inequality, it thus suffices to prove that the numbers \(u_0, u_1, \ldots, u_{B-1} \) are not all equal to a same complex number \(z \) with \(|z| = 1 \). If they were, then, since \(u_0 = 1 \), we would have \(u_0 = u_1 = \ldots = u_{B-1} = 1 \). Hence \((u(n))_{n \geq 0} = 1, 1, 1, \ldots \) from Proposition 1, a contradiction.

Addendum. Theorem 1 and Corollary 7 can be strengthened, as follows.

(1) If \(B, u, \) and \(v \) satisfy the hypotheses of Theorem 1, then

\[
\sum_{0 \leq k < B \atop u(k) \neq 1} (1 - v(k)) \sum_{n \geq \delta_k} u(n) \log \frac{Bn + k}{Bn + k + 1} = -u(0) \log B + \sum_{0 < k < B} (u(k) - u(0)v(k)) \log \frac{k}{k + 1}.
\]
(2) If B and u satisfy the hypotheses of Corollary 1, then
\[
\sum_{n \geq 0} \sum_{\substack{0 < k < B \\ u(k) \neq 1}} u(n)(1 - u(k)) \log \frac{Bn + k}{Bn + k + 1} = - \log B.
\]

Proof. Write the proofs of Theorem 1 and Corollary 1 additively instead of multiplicatively.

Remark 4. The Addendum cannot be proved by just taking logarithms in the formulas in Theorem 1 and Corollary 1. To illustrate the problem, note that while
\[
\prod_{n \geq 0} e^{(-1)^n 8i} = 1
\]
(because the product converges to $e^{2\pi i}$), the log equation is false:
\[
\sum_{n \geq 0} \frac{(-1)^n 8i}{2n + 1} = 2\pi i \neq 0 = \log 1.
\]

Example 4. With the same u and z as in Example 3, Addendum (1) yields
\[
\sum_{n \geq 0} z^{N_{0,B}(n)} \log \frac{Bn}{Bn + 1} = \log B + \frac{1}{z - 1}.
\]
Hence
\[
\prod_{n \geq 1} \left(\frac{Bn}{Bn + 1} \right)^{z^{N_{0,B}(n)}} = B^{\frac{1}{z - 1}}.
\]
(Note the similarity between this product and the one in Example 3. Neither implies the other, but of course the preceding log equation implies both.)

If we modify the sequence u as in Remark 2, we get the same two formulas, because the value $N_{0,B}(0)$ does not appear in them.

Corollary 2. Fix integers B, q, p with $B > 1$, $q > p > 0$, and $B \equiv 1 \mod q$. Then
\[
\prod_{n \geq 0} \prod_{\substack{0 < k < B \\ k \not\equiv 0 \mod q}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi kp}{q} \sin \frac{\pi (2n+k)p}{q}} = \frac{1}{\sqrt{B}}
\]
and
\[
\prod_{n \geq 0} \prod_{\substack{0 < k < B \\ k \not\equiv 0 \mod q}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi kp}{q} \cos \frac{\pi (2n+k)p}{q}} = 1.
\]
Proof. Let \(\omega := e^{2\pi ip/q} \). Since \(B \equiv 1 \mod q \), we may take \(u(n) := \omega^n \) in Addendum (2), yielding the formula

\[
\sum_{n \geq 0} \sum_{0 < k < B, \ k \not\equiv 0 \mod q} \omega^n(1 - \omega^k) \log \frac{Bn + k}{Bn + k + 1} = -\log B.
\]

Writing \(\omega^n(1 - \omega^k) = -2i\omega^{n+k} \sin \frac{\pi kp}{q} \), and multiplying the real and imaginary parts of the formula by \(1/2 \), the result follows. \(\blacksquare \)

Example 5. Take \(B = 5 \), \(p = 1 \), and \(q = 4 \). Squaring the products, we get

Define \(\sigma(n) \) to be \(+1\) if \(n \) is a square modulo \(4 \), and \(-1\) otherwise, that is,

\[
\sigma(n) := \begin{cases} +1 & \text{if } n \equiv 0 \text{ or } 1 \mod 4, \\ -1 & \text{if } n \equiv 2 \text{ or } 3 \mod 4. \end{cases}
\]

Then

\[
\prod_{n \geq 0} \left(\frac{5n + 1}{5n + 2} \right)^{\sigma(n)} \left(\frac{5n + 2}{5n + 3} \right)^{\sigma(n) + \sigma(n + 1)} \left(\frac{5n + 3}{5n + 4} \right)^{\sigma(n + 1)} = \frac{1}{5}
\]

and

\[
\prod_{n \geq 0} \left(\frac{5n + 1}{5n + 2} \right)^{\sigma(n - 1)} \left(\frac{5n + 2}{5n + 3} \right)^{\sigma(n - 1) + \sigma(n)} \left(\frac{5n + 3}{5n + 4} \right)^{\sigma(n)} = 1.
\]

4.2 The sum-of-digits function \(s_B(n) \)

Other products can also be obtained from Corollary 1. We give three corollaries, each of which generalizes the Woods-Robbins formula \(P = 1/\sqrt{2} \) in the Introduction. Recall that \(s_B(n) \) denotes the sum of the \(B \)-ary digits of the integer \(n \).

Corollary 3. Fix an integer \(B > 1 \) and a complex number \(z \) with \(|z| \leq 1 \). If \(z \notin \{0, 1\} \), then

\[
\prod_{n \geq 0} \prod_{0 < k < B, \ z^k \neq 1} \left(\frac{Bn + k}{Bn + k + 1} \right)^{s_B(n)(1 - z^k)} = \frac{1}{B}.
\]

Proof. Take \(u(n) := z^{s_B(n)} \) in Corollary 1 and note that \(s_B(k) = k \) when \(0 < k < B \). \(\blacksquare \)

Example 6. Take \(B = 2 \) and \(z = 1/2 \). Squaring the product, we obtain

\[
\prod_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{(1/2)^{s_2(n)}} = \frac{1}{4}.
\]

Corollary 4. Let \(B, p, q \) be integers with \(B > 1 \) and \(q > p > 0 \). Then

\[
\prod_{n \geq 0} \prod_{0 < k < B, \ k \not\equiv 0 \mod q} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi kp}{q}} \sin \frac{\pi (2s_B(n) + k)p}{q} = \frac{1}{\sqrt{B}}
\]
and
\[
\prod_{n \geq 0} \prod_{0 < k < B \mod q} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \frac{\pi kp}{q} \cos \frac{\pi (2s_B(n) + k)p}{q}} = 1.
\]

Proof. Use the proof of Corollary \[2\] but replace \(B \equiv 1 \mod q \) with \(s_B(Bn + k) = s_B(n) + k \) when \(0 \leq k < B \), and replace \(\omega^n \) with \(\omega^{s_B(n)} \).

Example 7. Take \(B = 2, q = 4, \) and \(p = 1 \). Squaring the products and defining \(\sigma(n) \) as in Example \[5\], we get
\[
\prod_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{\sigma(s_2(n))} = \frac{1}{2} \quad \text{and} \quad \prod_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{\sigma(s_2(n) + 1)} = 1.
\]

In the same spirit, we recover a result from \[3\] p. 369-370).

Example 8. Taking \(B = q = 3 \) and \(p = 1 \) in Corollary \[4\] we obtain two infinite products. Raising the second to the power \(-2/\sqrt{3}\) and multiplying by the square of the first, we get

Define \(\theta(n) \) by

\[
\theta(n) := \begin{cases}
1 & \text{if } n \equiv 0 \text{ or } 1 \mod 3, \\
-2 & \text{if } n \equiv 2 \mod 3.
\end{cases}
\]

Then
\[
\prod_{n \geq 0} (3n + 1)^{\theta(s_3(n))}(3n + 2)^{\theta(s_3(n) + 1)}(3n + 3)^{\theta(s_3(n) + 2)} = \frac{1}{3}.
\]

Corollary 5 (\[14\]). Let \(B > 1 \) be an integer. Then
\[
\prod_{n \geq 0} \prod_{0 < k < B \mod q} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^{s_B(n)}} = \frac{1}{\sqrt{B}}.
\]

Proof. Take \(z = -1 \) in Corollary \[3\] (or take \(q = 2 \) and \(p = 1 \) in Corollary \[4\]).

Example 9. With \(B = 2 \), since \(s_2(n) = N_{1,2}(n) \), we recover the Woods-Robbins formula \(P = 1/\sqrt{2} \). Taking \(B = 6 \) gives
\[
\prod_{n \geq 0} \left(\frac{(6n + 1)(6n + 3)(6n + 5)}{(6n + 2)(6n + 4)(6n + 6)} \right)^{(-1)^{s_6(n)}} = \frac{1}{\sqrt{6}}.
\]

Remark 5. Corollary \[\text{[5]}\] can also be obtained from \[\text{[2]}\] Theorem 1], as follows. Taking \(x \) equal to \(-1\) and \(j \) equal to 0 in that theorem gives
\[
\sum_{n \geq 0} (-1)^{s_B(n)} \log \frac{n + 1}{B[n/B] + B} = -\frac{1}{2} \log B
\]
where \([x]\) is the integer part of \(x\). But the series is equal to
\[
\sum_{m \geq 0} \sum_{0 \leq k < B} (-1)^{s_B(Bm+k)} \log \frac{Bm + k + 1}{Bm + B} = \sum_{m \geq 0} (-1)^{s_B(m)} \sum_{0 \leq k < B} (-1)^k \log \frac{Bm + k + 1}{Bm + B}
\]
\[
= \sum_{m \geq 0} (-1)^{s_B(m)} \left(\sum_{k \text{ odd}} \log \frac{Bm + k}{Bm + k + 1} \right)
\]
where the last equality follows by looking separately at the cases \(B\) even and \(B\) odd.

4.3 The counting function \(N_{j,B}(n)\)

We can also compute some infinite products associated with counting the number of occurrences of one or several given digits in the base \(B\) expansion of an integer.

Definition 3. If \(B\) is an integer \(\geq 2\) and if \(j\) is in \(\{0, 1, \ldots, B-1\}\), let \(N_{j,B}(n)\) be the number of occurrences of the digit \(j\) in the \(B\)-ary expansion of \(n\) when \(n > 0\), and set \(N_{j,B}(0) := 0\).

Corollary 6. Let \(B, q, p\) be integers with \(B > 1\) and \(q > p > 0\). Let \(J\) be a nonempty, proper subset of \(\{0, 1, \ldots, B-1\}\). Define \(N_{j,B}(n) := \sum_{j \in J} N_{j,B}(n)\). Then the following equalities hold:
\[
\prod_{k \in J} \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \left(\frac{2\pi N_{j,B}(n)+1}{q} \right)} = B^{\frac{-1}{2} \sin \frac{\pi p}{q}}
\]
and
\[
\prod_{k \in J} \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\cos \left(\frac{2\pi N_{j,B}(n)+1}{q} \right)} = 1.
\]

Proof. Let \(\omega := e^{2\pi i/p/q}\). We denote \(u_{q,j,B}(n) := \omega^{N_{j,B}(n)}\) and \(u_{q,j,B}(n) := \prod_{j \in J} u_{q,j,B}(n) = \omega^{N_{j,B}(n)}\). Note that, for every \(j\) in \(\{1, 2, \ldots, B-1\}\), the sequence \((u_{q,j,B}(n))_{n \geq 0}\) is strongly \(B\)-multiplicative and nonzero, hence satisfies Hypothesis \(\mathcal{H}_B\). The sequence \((u_{q,0,B}(n))_{n \geq 0}\) also satisfies Hypothesis \(\mathcal{H}_B\), as is seen by taking \(z = \omega\) in Example 2. Therefore the sequence \((u_{q,j,B}(n))_{n \geq 0}\) satisfies Hypothesis \(\mathcal{H}_B\), with, for \(k = 0, 1, \ldots, B-1\), the value \(v(k) := \omega\) if \(k \in J\) and \(v(k) := 1\) otherwise.

Now \(|u_{q,j,B}(n)| = 1\) for \(n \geq 0\), and \(|v(k)| = 1\) for \(k = 0, 1, \ldots, B-1\). Furthermore, \(|\sum_{0 \leq k < B} v(k)| < B\), since \(v\) is not constant on \(\{0, 1, \ldots, B-1\}\). Thus we may apply Addendum (1) with \(u(n) := u_{q,j,B}(n)\), obtaining
\[
(1 - \omega) \sum_{k \in J} \sum_{n \geq \delta_k} \omega^{N_{j,B}(n)} \log \frac{Bn + k}{Bn + k + 1} = - \log B.
\]
Writing \((1 - \omega)\omega^{N_{j,B}(n)} = -2i\omega^{N_{j,B}(n)+1/2} \sin \frac{\pi p}{q}\), and taking the real and imaginary parts of the summation, the result follows. ■
Example 10. Taking $q = 2$ and $p = 1$ in the first formula gives
\[
\prod_{k \in J} \prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^{N_{j,B}(n)}} = \frac{1}{\sqrt{B}}.
\]

An application is an alternate proof of Corollary 5: take J to be the set of odd numbers in \{1, 2, \ldots, B - 1\}; since $s_B(n) = \sum_{0 < k < B} k N_{k,B}(n)$, it follows that $(-1) \sum_{j \in J} N_{j,B}(n) = (-1)^{s_B(n)}$.

Remark 6. Corollary 6 requires that J be a proper subset of \{0, 1, \ldots, B - 1\}. Suppose instead that $J = \{0, 1, \ldots, B - 1\}$. Then $N_{j,B}(n)$ is the number of B-ary digits of n if $n > 0$ (that is, $N_{j,B}(n) = \left\lfloor \frac{\log n}{\log B} \right\rfloor + 1$), and $N_{j,B}(0) = 0$. In that case, Corollary 6 does not apply, and the products may diverge. For example, when $B = q = 2$ and $p = 1$ the logarithm of the first product is equal to the series
\[
- \log 2 + \sum_{n \geq 1} (-1)^{\left\lfloor \frac{\log n}{\log 2} \right\rfloor} \log \frac{n + 1}{n},
\]
which does not converge. However, note its resemblance with Vacca’s (convergent) series for Euler’s constant \cite{16}
\[
\gamma = \sum_{n \geq 1} \left\lfloor \frac{\log n}{\log 2} \right\rfloor \frac{(-1)^n}{n}.
\]

Corollary 7. Let B, q, p be integers with $B > 1$ and $q > p > 0$. Then for $k = 0, 1, \ldots, B - 1$ the following equalities hold:
\[
\prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\sin \left(\frac{\pi(2N_{k,B}(n)+1)p}{q}\right)} = B^{-2 \sin \frac{\pi p}{q}}
\]
and
\[
\prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{\cos \left(\frac{\pi(2N_{k,B}(n)+1)p}{q}\right)} = 1.
\]

Proof. Take $J := \{k\}$ in Corollary 6 (The case $k = 0$ and $p = 1$ is Example 4 with $z = e^{2\pi i/q}$.)

Example 11. Taking $q = 2$ and $p = 1$ in the first formula (or taking $J = \{k\}$ in Example 10) yields
\[
\prod_{n \geq \delta_k} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^{N_{k,B}(n)}} = \frac{1}{\sqrt{B}}.
\]

In particular, if $B = 2$ the choice $k = 1$ gives the Woods-Robbins formula $P = 1/\sqrt{2}$, and $k = 0$ gives
\[
\prod_{n \geq 1} \left(\frac{2n}{2n + 1} \right)^{(-1)^{N_{0,2}(n)}} = \frac{1}{\sqrt{2}}.
\]
Remark 7. For base $B = 2$, the formulas in Example 11 are special cases of results in [4], where $N_{j,2}(n)$ is generalized to counting the number of occurrences of a given word in the binary expansion of n. On the other hand, the value of the product Q in the Introduction,

$$Q = \prod_{n \geq 1} \left(\frac{2n}{2n+1} \right)^{(-1)^{N_{j,2}(n)}}$$

remains a mystery.

Example 12. Take $B = q = 3$ and $p = 1$. Raising the first product to the power $2/\sqrt{3}$ and squaring the second, we obtain

Define $\eta(n)$ by

$$\eta(n) := \begin{cases} +1 & \text{if } n \equiv 0 \mod 3, \\ 0 & \text{if } n \equiv 1 \mod 3, \\ -1 & \text{if } n \equiv 2 \mod 3, \end{cases}$$

and define $\theta(n)$ as in Example 8. Then for $k = 0, 1, 2$

$$\prod_{n \geq \delta_k} \left(\frac{3n + k}{3n + k + 1} \right)^{\eta(N_{k,3}(n))} = \frac{1}{3^{2/3}} \quad \text{and} \quad \prod_{n \geq \delta_k} \left(\frac{3n + k}{3n + k + 1} \right)^{\theta(N_{k,3}(n) + 1)} = 1.$$

4.4 The Gamma function

It can happen that the exponent in some of our products is a periodic function of n. For example, this is obviously the case in Corollary 2. To take another example, it is not hard to see that if B odd, then $(-1)^{s_B(n)} = (-1)^n$. Hence Corollary 5 gives

$$\prod_{n \geq 0} \prod_{0 < k < B \text{ odd}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^n} = \frac{1}{\sqrt{B}} \quad (B \text{ odd}). \quad (**)$$

(This formula can also be obtained from Corollary 2 with $q = 2$ and $p = 1$.) For instance

$$P_{1,3} := \prod_{n \geq 0} \left(\frac{3n + 1}{3n + 2} \right)^{(-1)^n} = \frac{1}{\sqrt{3}}.$$

The product $P_{1,3}$ can also be computed using the following corollary of the Weierstrass product for the Gamma function [17, Section 12.13].

If d is a positive integer and $a_1 + a_2 + \cdots + a_d = b_1 + b_2 + \cdots + b_d$, where the a_j and b_j are complex numbers and no b_j is zero or a negative integer, then

$$\prod_{n \geq 0} \frac{(n + a_1) \cdots (n + a_d)}{(n + b_1) \cdots (n + b_d)} = \frac{\Gamma(b_1) \cdots \Gamma(b_d)}{\Gamma(a_1) \cdots \Gamma(a_d)}.$$

Combining this with the relation $\Gamma(x)\Gamma(1-x) = \pi/\sin \pi x$ gives $P_{1,3} = 1/\sqrt{3}$.

13
The computation can be generalized, using Gauss’ multiplication theorem for the Gamma function, to give another proof of Corollary 5 for B odd. Likewise, an analog of the odd-B case of Corollary 5 can be proved for even k:

$$\prod_{n \geq 1} \prod_{0 \leq k < B, k \text{ even}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^n} = \frac{\pi \sqrt{B}}{2^B} \left(\frac{B - 1}{(B - 1)/2} \right) (B \text{ odd}).$$

Multiplying this by the formula

$$\prod_{n \geq 1} \prod_{0 < k < B, k \text{ odd}} \left(\frac{Bn + k}{Bn + k + 1} \right)^{(-1)^n} = \frac{2^{B-1}}{\sqrt{B}} \left(\frac{B - 1}{(B - 1)/2} \right)^{-1} (B \text{ odd}),$$

which is (**) rewritten, yields Wallis’ product for π. (For an evaluation of the preceding two products when $B = 2$, see [15, Example 7].)

References

[1] J.-P. Allouche, H. Cohen, Dirichlet series and curious infinite products, Bull. Lond. Math. Soc. 17 (1985) 531–538.

[2] J.-P. Allouche, H. Cohen, M. Mendès France, J. Shallit, De nouveaux curieux produits purs, Acta Arith. 49 (1987) 141–153.

[3] J.-P. Allouche, M. Mendès France, J. Peyrière, Automatic Dirichlet series, J. Number Theory 81 (2000) 359–373.

[4] J.-P. Allouche, J. O. Shallit, Infinite products associated with counting blocks in binary strings, J. Lond. Math. Soc. 39 (1989) 193–204.

[5] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences and their Applications, Proceedings of SETA’98, C. Ding, T. Helleseth and H. Niederreiter (Eds.), 1999, Springer, pp. 1–16.

[6] R. Bellman, H. N. Shapiro, On a problem in additive number theory, Ann. Math. 49 (1948) 333–340.

[7] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21 (1972) 285–298.

[8] P. Flajolet, G. N. Martin, Probabilistic counting algorithms for data base applications, J. Comput. Sys. Sci. 31 (1985) 182–209.

[9] A. 0. Gel’fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968) 259–265.

[10] P. Grabner, Completely q-multiplicative functions: the Mellin transform approach, Acta Arith. 65 (1993) 85–96.
[11] M. Mendès France, Les suites à spectre vide et la répartition modulo 1, *J. Number Theory* 5 (1973) 1–15.

[12] D. Robbins, Solution to problem E 2692, *Amer. Math. Monthly* 86 (1979) 394-395.

[13] J. O. Shallit, On infinite products associated with sums of digits, *J. Number Theory* 21 (1985) 128–134.

[14] J. Sondow, Problem 11222, *Amer. Math. Monthly* 113 (2006) 459.

[15] J. Sondow, P. Hadjicostas, The generalized-Euler-constant function \(\gamma(z) \) and a generalization of Somos’s quadratic recurrence constant, *J. Math. Anal. Appl.* 332 (2007) 292–314.

[16] G. Vacca, A new series for the Eulerian constant \(\gamma = .577... \), *Quart. J. Pure Appl. Math.* 41 (1910) 363–364.

[17] E. T. Whittaker, G. N. Watson, *A Course of Modern Analysis*, Cambridge University Press, Cambridge, 1978.

[18] D. R. Woods, Problem E 2692, *Amer. Math. Monthly* 85 (1978) 48.