Metal- and base-free tandem sulfonylation/cyclization of 1,5-dienes with aryldiazonium salts \textit{via} the insertion of sulfur dioxide†

Xiaohong Wang,‡ Fengzhi You,‡ Baojian Xiong, Lei Chen, Xuemei Zhang* and Zhong Lian**

A metal- and base-free 5-endo-trig sulfonylative cyclization between 1,5-dienes, aryldiazonium salts and \(\text{SO}_2 \) (from SOgen) is presented. This method could successfully produce sulfonylated pyrrolin-2-ones in one pot with excellent regioselectivity and good-to-excellent yields. This strategy features mild reaction conditions and broad substrate scope. Moreover, a scale-up reaction and three synthetic applications demonstrate the practicality of this method. Lastly, control experiments indicate that the 5-endo-trig sulfonylative cyclization may proceed in a radical pathway.

Introduction

Pyrrolin-2-ones and their N-heterocyclic compound derivatives, widely exist in natural plants,\(^1\) pharmaceuticals\(^2\) and bioactive molecules.\(^3\) Similarly, sulfonyl groups are frequently found in pharmaceuticals\(^4\) and photoelectric materials\(^5\) due to their unique chemical properties. Numerous studies have indicated that the incorporation of sulfonyl groups into heterocycles could enhance their pharmacological activity.\(^6\) Therefore, great efforts have been devoted to explore efficient and straightforward methods to build sulfone-containing N-heterocyclic frameworks.

Radical cascade cyclization reactions represent a powerful strategy for the synthesis of functionalized cyclic structure, characterized by multiple C-C/C-X bond-forming in one step.\(^7\) The incorporation of sulfonyl group into heterocycles by radical cascade cyclization reactions has aroused extensive interest among scientists.\(^8\) In recent years, many sulfone-containing heterocyclic frameworks have been constructed by radical cascade cyclization reactions, such as sulfonylindoles,\(^9\) sulfonylindolinols,\(^10\) sulfonylated pyrrolidines,\(^11\) sulfonylated phenanthridines,\(^12\) sulfonylated benzofurans,\(^13\) sulfonated oxazolines,\(^14\) sulfonylated spirocycles\(^15\) and others.\(^16\) In 2021, sulfonylated pyrrolinones were synthesized via sulfonylation/cyclization of 1,5-dienes with sulfonyl chlorides or sodium sulfinates by Wang and co-workers (Fig. 1a and b).\(^17\) However, due to the limited accessibility of sulfonyl chlorides and sodium sulfinates, these two methods suffered from a narrow range of substrates. Besides, transition metal (Cu and Ag), base and elevated temperature were essential in these transformations.

On the other hand, direct insertion of sulfur dioxide (\(\text{SO}_2 \)) provides an alternative and efficient approach to introduce sulfonyl moiety into molecules.\(^18,19\) Recently, a cheap and bench-stable \(\text{SO}_2 \) surrogate (SOgen) has been developed by our group, which has been successfully applied in several sulfonylation reactions.\(^20\) Inspired by Wang’s work and our continuous...
interests in SO₂ chemistry, we herein attempt to construct sulfonylated pyrrolinones using SOgen as SO₂ surrogate (Fig. 1c). This transformation features metal- and base-free conditions and could proceed smoothly at room temperature to form sulfonylated pyrrolinones with excellent regioselectivity and good to excellent yields.

Results and discussion

We started the studies by evaluating the reaction between 1,5-diene (1a), 4-methylbenzenediazonium tetrafluoroborate (2a) and SO₂ gas (from SOgen) under metal- and base-free conditions. Pleasently, when the reaction was carried out in NMP at room temperature for 24 h, desired product 3a was successfully obtained in 91% yield with excellent regioselectivity (Table 1, entry 1).

Then we explored the influence of other solvents on this reaction, the target product (3a) was not obtained in most solvents, such as THF, MeCN, DCM, toluene and MeOH (Table 1, entries 2–6). When the solvent was DMA, DMF and DMSO, 3a was formed in only poor yields (Table 1, entries 7–9). Next, the amount of SO₂ (from 2.5 equiv. to 4.0 equiv.) was investigated, and the results indicated that 4.0 equiv. was the best choice (Table 1, entries 10–12). Although this reaction could work under an air atmosphere, argon atmosphere proved to be more beneficial for the transformation (Table 1, entry 13). Finally, other sulfur dioxide surrogates were examined. The use of DABSO and inorganic SO₂ surrogates (Na₂S₂O₅ and K₂S₂O₇) could both lead to the formation of product 3a but with lower yields (Table 1, entries 14–16). Unfortunately, rongalite reagent (HOCH₂SO₂Na·H₂O) would hamper the reaction (Table 1, entry 17).

After determining the optimal reaction conditions, we began to explore the substrate scope of this reaction, and the results are summarized in Scheme 1. We first investigated the functional group compatibility of aryldiazenium tetrafluoroborates in the transformation. Alkyl substituted aryldiazenium tetrafluoroborates at the meta- or para-position of the phenyl ring proceeded well and afforded corresponding products 3b–3d in good yields (83–93%). While a methyl substituent at the ortho-position could lead to a lower yield (67%, 3e), possibly due to the steric hindrance. In addition, substrates with methoxy or phenoxo group delivered desired products 3f and 3g in 83% and 86% yield, respectively. Substrates bearing a biphenyl or 2-naphthyl group showed good reactivity, producing expected products (3h and 3i) in excellent yields. Notably, halogen groups were found to be well tolerated under the standard conditions (3j–3q). Moreover, substrates with electron-withdrawing groups such as MeC(O)₂, PhC(O)₂, CF₃C(O)₂, MeSO₂C(O)₂ were subject to the reaction conditions, and gave corresponding products (3r–3v) in good yields. In addition, heterocyclic diazonium salt was found to be compatible in the transformation (3w). Finally, aryldiazenium tetrafluoroborates with complicated substituent structures could also work smoothly to afford 3x and 3y in 92% and 90% yield, respectively.

Next, the substrate scope of 1,5-dienes was investigated. The results showed that halogen groups (–Cl, –Br and –I) on 1,5-dienes had little effect on the reaction, and the corresponding products 3z–3ae were formed in 80–93% yields. Notably, 1,5-diene with a strongly electron-withdrawing group (–NO₂) could deliver desired products 3af in an excellent yield (90%). Meanwhile, the one with an electron-donating group (–Me) could also give products 3ag in a similar yield (91%). Naphthalene ring was well tolerated, achieving 3ah in 92% yield and the configuration of compound 3ah was confirmed by X-ray crystallography. Pyridine moiety was also adapted to the reaction conditions and generated 3ai in 80% yield. In addition, it was found that benzodioxole moiety (3aj) could be well tolerated under the standard conditions. When R₂ group was replaced by other substituents, such as benzyl, phenyl, n-butyl and –CH₂COOEt, desired products (3ak–3ap) could still be made in good-to-excellent yields. When R₃ group was alkyl, the sulfonylation reaction could still proceed, demonstrated by two successful examples (3aq and 3ar). It was worth noting that compound 3ar contained two isomers (3ar-1 : 3ar-2 = 1 : 1).

The practicality of this methodology was successfully illustrated by the production of 3a with 90% yield in a scale-up reaction (Scheme 2(1)). To further demonstrate the synthetic utility of this method, 3a was then applied in subsequent transformations. In the presence of diethylamine, the acetyl group on the nitrogen atom could be easily removed in a quantitative yield (Scheme 2(2)). Then, different substituents could be introduced on the N atom. For example, N–H could be

Entry	Variation from std conditions	Yield of 3a (%)
1	None	91 (87)
2	THF instead of NMP	0
3	MeCN instead of NMP	0
4	MeCN instead of NMP	0
5	Toluene instead of NMP	0
6	MeOH instead of NMP	0
7	DMSO instead of NMP	21
8	DMF instead of NMP	20
9	DMA instead of NMP	56
10	3.5 equiv. of SO₂	86
11	3.0 equiv. of SO₂	80
12	2.5 equiv. of SO₂	74
13	Air instead of Ar	54
14	DABSO as SO₂ surrogate	71
15	Na₂S₂O₅ as SO₂ surrogate	53
16	K₂S₂O₇ as SO₂ surrogate	52
17	HOCH₂SO₂Na·H₂O as SO₂ surrogate	0

* Standard conditions: chamber A, SOgen (0.80 mmol), 1-methyl-4-vinylbenzene (0.81 mmol), tetradecane (1.0 mL), at 100 °C for 10 min; chamber B, 1a (0.2 mmol, 1.0 equiv.), 2a (0.44 mmol, 2.2 equiv.), NMP (1.0 mL), at room temperature for 24 h under argon atmosphere. Yields were determined by ¹H-NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. Isolated yield in the parentheses. The reaction was set up in a 4 mL vial.
transferred to N–Me (5) in 90% yield in a mixture of sodium hydride and iodomethane (Scheme 2(3)). In addition, the amide moiety of 3a could be reduced to hydroxy amine (6) via ring-opening by NaBH₄ in excellent yield (Scheme 2(4)).

In order to understand the mechanism of this reaction, three control experiments with radical scavengers were carried out. Firstly, in the presence of radical scavenger (TEMPO), the desired product (3a) was totally quenched and TEMPO adduct 7

Scheme 1 Substrate scope. Reaction conditions: chamber A, SOgen (0.80 mmol), 1-methyl-4-vinylbenzene (0.81 mmol), tetradecane (1.0 mL), at 100 °C for 10 min; chamber B, 1 (0.2 mmol, 1.0 equiv.), 2 (0.44 mmol, 2.2 equiv.), NMP (1.0 mL), at rt for 24 h under argon atmosphere. All yields are isolated yields.
was identified by LC-MS (Scheme 3a(1)). Secondly, when 1,1-diphenylethylene or BHT was added, the reaction showed similar result and corresponding aryl radicals adduct (8) or (10) sulfonyl radicals adduct (9) or (11) were identified, respectively (Scheme 3(2) and (3)). These results indicated that this transformation might proceed through a radical pathway.

Base on the control experiments and literature, a plausible reaction mechanism is proposed herein (Scheme 3b). One of lone-pair electrons on the N atom of 1,5-diene is transferred to aryl diazonium tetrafluoroborate, which leads to the formation of nitrogen radical cation species (A) and aryl radical. Then aryl radical is trapped by sulfur dioxide and gives aryl sulfone radical (B). Sulfonyl radical (B) selectively adds to the double bond of 1,5-diene and produces alkyl radical species (C). Subsequently, intramolecular 5-endotrig cyclization produces intermediate (D), which has an equilibrium with (E). Finally, the desired product (3) is produced via tautomerization from (E).

Conclusions

In conclusion, a metal- and base-free sulfonylative cyclization of 1,5-dienes with aryl diazonium salts via the insertion of SO\(_2\) (from SO\(_2\)gen) has been developed. This method can work under mild conditions and provide the desired products in good yields with excellent regioselectivity. In addition, this approach greatly expands the substrates scope compared with previous reported work. Preliminary mechanism studies indicate that this 5-endotrig sulfonylative cyclization may proceed in a radical pathway.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is supported by National Natural Science Foundation of China (21901168), “1000-Youth Talents Plan”, Sichuan Science and Technology Program (2021YJ0395) and “1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University”. We also thank Jing Li from the Comprehensive Training Platform of Specialized Laboratory in College of Chemistry at Sichuan University for sample analysis.

Notes and references

1 For selected examples, see: (a) N. Dev, A. K. Das, M. A. Hossain and S. M. M. Rahman, Chemical Compositions of Different Extracts of Ocimum Basilicum Leaves, J. Sci. Res., 2011, 3, 197–206; (b) S. Chu, S. Liu, W. Duan, Y. Cheng, X. Jiang, C. Zhu, K. Tang, R. Wang, L. Xu, X. Wang, X. Yu, K. Wu, Y. Wang, M. Wang, H. Huang and J. Zhang, The Anti-Dementia Drug Candidate, (−)-Clausenamide, Improves Memory Impairment Through Its Multi-target Effect, Pharmacol. Ther., 2016, 162, 179–187.

2 For selected examples, see: (a) R. Kontnik and J. Clardy, Codinaeopsin, an Antimalarial Fungal Polyketide, Org. Lett., 2008, 10, 4149–4151; (b) S. Castellano, H. D. G. S. Fiji, S. S. Kinderman, M. Watanabe, P. deLeon, F. Tamanoi and O. Kwon, Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I, J. Am. Chem. Soc., 2007, 129, 5843–5845.

3 For selected examples, see: (a) S. S. Ariya, J. Baby, V. Santhanam and H. Waheeta, Computational Analysis of Compounds form Ocimum Sanctum for Anticancer Activity Against Oral Squamous Cell Carcinoma, Asian J. Pharm.
4 For selected examples, see: (a) A. Guerrini, A. Tesei, C. Ferroni, G. Paganelli, A. Zamagni, S. Carloni, M. D. Donato, G. Castoria, C. Leonetti, M. Porru, M. De Cesare, N. Zaffaroni, G. Luca Beretta, A. Del Rio and G. Varchi, A New Avenue toward Androgen Receptor Pan-antagonists: C2 Sterically Hindered Substitution of Hydroxy-propanamides, *J. Med. Chem.*, 2014, 57, 7263–7279; (b) K. G. Liu, A. J. Robichaud, R. C. Bernotas, Y. Yan, J. R. Lo, M. Y. Zhang, Z. A. Hughes, C. Huselton, G. M. Zhang, J. Y. Zhang, D. M. Kowal, D. L. Smith, L. E. Schechter and T. A. Comery, 5-Piperazinyl-3-Sulfonylindazoles as Potent and Selective 5-Hydroxytryptamine-6 Antagonists, *J. Med. Chem.*, 2010, 53, 7639–7646.

5 (a) A. Ulman, C. S. Willand, W. Kohler, D. R. Robello, D. J. Williams and L. Handley, New Sulfonyl-containing Materials for Nonlinear Optics: Semiempirical Calculations, Synthesis, and Properties, *J. Am. Chem. Soc.*, 1990, 112, 7083–7090; (b) Y. Huang, L. J. Huo, S. Q. Zhang, X. Guo, C. C. Han, Y. F. Li and J. H. Hou, Sulfonyl: a New Application of Electron-Withdrawing Substituent in Highly Efficient Photovoltaic Polymer, *Chem. Commun.*, 2011, 47, 8904–8906.

6 For selected examples, see: (a) W. Grell, R. Hurnaus, G. Griss, R. Sauter, E. Rupprecht, M. Mark, P. Luger, H. Nar, H. Wittneben and P. Müller, Repaglinide and Related Hypoglycemic Benzoic Acid Derivatives, *J. Med. Chem.*, 1998, 41, 5219–5246; (b) T. Uchida, K. Hayashi, K. Kido and M. Watanabe, Diuretic Action of the Novel Loop Diuretic Torasemide in the Presence of Angiotensin II or Endothelin-1 in Anaesthetized Dogs, *J. Pharm. Pharmacol.*, 2011, 44, 39–43.

7 For selected examples, see: (a) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino and C. Nevado, Cyclization Cascades *via* N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds, *J. Am. Chem. Soc.*, 2015, 137, 964–973; (b) J. Xuan and A. Studer, Radical Cascade Cyclization of 1,6-enynes and Diynes for the Synthesis of Carbonylated Benzofurans, *Angew. Chem., Int. Ed.*, 2014, 53, 9017–9022.

8 For selected examples, see: (a) W. T. Wei, M. B. Zhou, J. H. Fan, W. Liu, R. J. Song, Y. Liu, M. Hu, P. Xie and J. H. Li, Synthesis of Oxindoles by Iron-Catalyzed Oxidative 1,2-Alkylarylation of Activated Alkenes with an Aryl C(sp²)-H Bond and a C(sp³)-H Bond Adjacent to a Heteroatom, *Angew. Chem., Int. Ed.*, 2013, 52, 1–5; (b) N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino and C. Nevado, Cyclization Cascades *via* N-Amidyl Radicals toward Highly Functionalized Heterocyclic Scaffolds, *J. Am. Chem. Soc.*, 2015, 137, 964–973; (c) M. Hu, R. J. Song and J. H. Li, Metal-Free Radical 5-exo-dig Cyclizations of Phenol-Linked 1,6-Enynes for the Synthesis of Carboxylated Benzofurans, *Angew. Chem., Int. Ed.*, 2014, 53, 608–613; (d) Z. Z. Chen, S. Liu, W. J. Hao, G. Xu, S. Wu, J. N. Miao, B. Jiang, S. L. Wang, S. J. Tu and G. Li, Catalytic Arylsulfonyl Radical-Triggered 1,5-Enyne-Bicyclizations and Hydrosulfonylation of α,β-Conjugates, *Chem. Sci.*, 2015, 6, 6654–6658; (e) B. Huang, L. Zeng, Y. Shen and S. Cui, Nickel-Catalyzed Acetamidation and Lactamization of Arylboronic Acids, *Chem. Commun.*, 2017, 53, 11996–11999; (f) C. Z. Zhang, D. S. Wang, W. C. Cindy Lee, A. M. McKillop and X. P. Zhang, Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures, *J. Am. Chem. Soc.*, 2021, 143, 11130–11140; (g) D. M. Zeng, M. Wang, W. P. Deng and X. F. Jiang, The Same Oxygenation-State Introduction of Hypervalent Sulfur under Transition-metal-free Conditions, *Org. Chem. Front.*, 2020, 7, 3956–3966.

9 J. H. Chen, M. L. Liu, G. Y. S. Qiu and J. Wu, A Three-Component Reaction of Aryldiazonium Tetrafluoroborates, Sulfur Dioxide, and 1-{Prop-2-yn-1-yl}Indoles under Catalyst-Free Conditions, *Adv. Synth. Catal.*, 2019, 361, 146–150.

10 T. Liu, D. Q. Zheng and J. Wu, Synthesis of 3-{Arylsulfonyl}methyl)Indolin-2-ones via Insertion of Sulfur Dioxide using Anilines as the Aryl Source, *Org. Chem. Front.*, 2017, 4, 1079–1083.

11 L. Zhang, Z. Z. Zhou, Y. T. He, L. H. Li, J. W. Ma, Y. F. Qiu, P. X. Zhou, X. Y. Liu, P. F. Xu and Y. M. Liang, Iodine-Promoted Radical Cyclization in Water: A Selective Reaction of 1,6-Enynes with Sulfonyl Hydrazides, *J. Org. Chem.*, 2016, 81, 66–76.

12 X. F. Wang, Y. W. Li, G. Y. S. Qiu and J. Wu, Synthesis of 6-{Sulfonylmethyl}Phenantidine through a Reaction of Aryldiazonium Tetrafluoroborates, Sulfur Dioxide, and Vinyl Azides, *Org. Chem. Front.*, 2018, 5, 2555–2559.

13 J. Xu, X. Yu, J. Yan and Q. Song, Synthesis of 3-Arylsulfonyl benzothiophenes and Benzosenelenophenes *via* TBHP-Initiated Radical Cyclization of 2-Alkynylthioanisoles or -selenoanisoles with Sulfinic Acid, *Org. Lett.*, 2017, 19, 6292–6295.

14 Z. C. Chen, H. Zhang, S. F. Zhou and X. L. Cui, Photoredox-Catalyzed Synthesis of Sulfonylated Oxazolines from N-
allylamides through the Insertion of Sulfur Dioxide, *Org. Chem. Front.*, 2022, 9, 364–369.

15. W. Dong, L. Qi, J. Y. Song, J. M. Chen, J. X. Guo, S. Shen, L. J. Li, W. Li and L. J. Wang, Direct Synthesis of Sulfonylated Spiro[indole-3,3′-pyrrolidines] by Silver-Mediated Sulfonylation of Acrylamides Coupled with Indole Dearomatization, *Org. Lett.*, 2020, 22, 1830–1835.

16. (a) Z. C. Chen, H. Zhang, S. F. Zhou and X. L. Cui, K₂S₂O₈-Initiated Cascade Cyclization of 2-AlkynylNitriles with Sodium Sulfitates: Access to Fused Cyclopenta[gh]phenanthridines, *Chin. J. Org. Chem.*, 2020, 40, 3866–3872; (b) Z. Cao, Q. Zhu, Y. W. Lin and W. M. He, The Concept of Dual Roles Design in Clean Organic Preparation, *Chin. Chem. Lett.*, 2019, 30, 2132–2144; (c) K. D. Zhou, J. Zhang, G. Y. S. Qiu and J. Wu, Copper(II)-Catalyzed Reaction of 2,5-Allenolic Acids, Sulfur Dioxide, and Aryldiazonium Tetrafluoroborates: Route to 4-Sulfonylated Furan-2(5H)-ones, *Org. Lett.*, 2019, 21, 275–278; (d) F. Herrera, P. Esteban, A. Luna and P. Almendros, Metal-Catalyzed Reactivity Reversal in the Sulfonylation Reaction of α-Allenols: Controlled Synthesis of 4-(Arylsulfonyl)-2,5-Dihydrofurans, *Adv. Synth. Catal.*, 2021, 363, 3952–3956.

17. (a) R. Ding, M. H. Mao, W. Z. Jia, J. M. Fu, L. Liu, Y. Y. Mao, Y. Guo and P. L. Wang, Synthesis of Sulfonylated Pyrrolines and Pyrrolinones via Ag-Mediated Radical Cyclization of Olefinic Enamides with Sodium Sulfinates, *Asian J. Org. Chem.*, 2021, 10, 366–370; (b) R. Ding, Y. L. Liu, H. Hao, C. Y. Chen, L. Liu, N. S. Chen, Y. Guo and P. L. Wang, Regioselective, Copper(I)-Catalyzed, Tandem Sulfonylation-Cyclization of 1,5-Dienes with Sulfonyl Chlorides, *Org. Chem. Front.*, 2021, 8, 3123–3127.

18. For selected reviews, see: (a) E. J. Emmett and M. C. Willis, The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry, *Asian J. Org. Chem.*, 2015, 4, 602–611; (b) G. S. Qiu, K. D. Zhou, L. Gao and J. Wu, Insertion of Sulfur Dioxide Via a Radical Process: An Efficient Route to Sulfonyl Compounds, *Org. Chem. Front.*, 2018, 5, 691–705; (c) K. Hofman, N. W. Liu and G. Manoliakas, Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of SulfonyleContaining Molecules, *Chem.-Eur. J.*, 2018, 24, 11852–11863; (d) D. Joseph, M. A. Idris, J. Chen and S. Lee, Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds, *ACS Catal.*, 2021, 11, 4169–4204.

19. For selected examples, see: (a) D. Q. Zheng, Y. Y. An, Z. H. Li and J. Wu, Metal-Free Aminosulfonylation of Aryldiazonium Tetrafluoroborates with DABCO·SO₃H₂ and Hydrazines, *Angew. Chem., Int. Ed.*, 2014, 53, 2451–2454; (b) B. Nguyen, E. J. Emmett and M. C. Willis, Palladium-Catalyzed Aminosulfonylation of Aryl Halides, *J. Am. Chem. Soc.*, 2010, 132, 16372–16373; (c) Y. Meng, M. Wang and X. Jiang, Multicomponent Reductive Cross-Coupling of an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Diversely Functionalized Sulfones, *Angew. Chem., Int. Ed.*, 2020, 59, 1346–1353; (d) W. Li, H. Li, P. Langer, M. Beller and X. F. Wu, Palladium-Catalyzed Aminosulfonylation of Aryl Iodides by using Na₂SO₃ as the SO₂ Source, *Eur. J. Org. Chem.*, 2014, 3101–3103; (e) H. B. Zhu, Y. J. Shen, D. H. Wen, Z. G. Le and T. Tu, Selective Synthesis of ortho-Substituted Diarylsulfones by Using NHC-Au Catalysts under Mild Conditions, *Org. Lett.*, 2019, 21, 974–979; (f) Y. Wang, L. L. Deng, J. Zhou, X. C. Wang, H. B. Mei, J. L. Han and Y. Pan, Synthesis of Chiral Sulfonyl Lactones via Copper-Catalyzed Asymmetric Radical Reaction of DABCO·SO₃H₂, *Adv. Synth. Catal.*, 2018, 360, 1060–1065; (g) A. Shavnya, K. D. Hesp, V. Mascitti and A. C. Smith, Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)aryl Boronic Acids, *Angew. Chem., Int. Ed.*, 2017, 56, 5616–5619.

20. (a) X. W. Jia, S. Kramer, T. Skrydstrup and Z. Lian, Design and Applications of a SO₂ Surrogate in Palladium-Catalyzed Direct Aminosulfonylation between Aryl Iodides and Amines, *Angew. Chem., Int. Ed.*, 2021, 60, 7353–7359; (b) Y. Li, L. Shen, M. Zhou, B. J. Xiong, X. M. Zhang and Z. Lian, Copper-Catalyzed Chloro-Arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide, *Org. Lett.*, 2021, 23, 5880–5884; (c) L. Chen, M. Zhou, L. Shen, X. C. He, X. Li, X. M. Zhang and Z. Lian, Metal- and Base-Free C(sp³)-H Arylsulfonylation of Enamides for Synthesis of (E)-β-β-Amidovinyl Sulfones via the Insertion of Sulfur Dioxide, *Org. Lett.*, 2021, 23, 4991–4996; (d) G. Chen, J. Xu, B. J. Xiong, H. Z. Song, X. M. Zhang, X. L. Ma and Z. Lian, Copper-Catalyzed Trifluoromethylthio-arylsulfonylation of Styrene Derivatives via the Insertion of Sulfur Dioxide, *Org. Lett.*, 2022, 24(5), 1207–1212; (e) X. W. Jia, C. X. Huang, X. M. Zhang and Z. Lian, Metal-free Sulfonylative Annulations of Alkyl Diiodides with Sulfur Dioxide: Synthesis of Cyclic Aliphatic Sulfones, *Org. Chem. Front.*, 2021, 8, 5310–5315.