Serendipita indica E5′NT modulates extracellular nucleotide levels in the plant apoplast and affects fungal colonization

Shadab Nizam1,2, Xiaoyu Qiang1,2, Stephan Wawra2, Robin Nostadt1, Felix Getzke2, Florian Schwanke2, Ingo Dreyer3, Gregor Langen2, and Alga Zuccaro1,2,*

Abstract

Extracellular adenosine 5′-triphosphate (eATP) is an essential signaling molecule that mediates different cellular processes through its interaction with membrane-associated receptor proteins in animals and plants. eATP regulates plant growth, development, and responses to biotic and abiotic stresses. Its accumulation in the apoplast induces ROS production and cytoplasmic calcium increase mediating a defense response to invading microbes. We show here that perception of extracellular nucleotides, such as eATP, is important in plant–fungus interactions and that during colonization by the beneficial root endophyte Serendipita indica, eATP accumulates in the apoplast at early symbiotic stages. Using liquid chromatography–tandem mass spectrometry, and cytological and functional analysis, we show that S. indica secretes SIE5′NT, an enzymatically active ecto-5′-nucleotidase capable of hydrolyzing nucleotides in the apoplast. Arabidopsis thaliana lines producing extracellular SIE5′NT are significantly better colonized, have reduced eATP levels, and altered responses to biotic stresses, indicating that SIE5′NT functions as a compatibility factor. Our data suggest that extracellular bioactive nucleotides and their perception play an important role in fungus–root interactions and that fungal-derived enzymes can modify apoplastic metabolites to promote fungal accommodation.

Keywords DORN1; extracellular nucleotides; lectin receptor kinase LecRK-I.9; Piriformospora indica; purinergic signaling
Subject Categories Microbiology, Virology & Host Pathogen Interaction; Plant Biology
DOI 10.15252/embr.201847430 | Received 20 November 2018 | Revised 13 December 2018 | Accepted 14 December 2018 | Published online 14 January 2019
EMBO Reports (2019) 20: e47430

Introduction

ATP is a coenzyme that serves as a universal energy currency and as a building block of nucleic acids and secondary metabolites. Additionally, ATP and adenosine are important extracellular regulators in plants and animals [1–5]. In plants, it has been shown that cells release ATP during growth, physical injury, and in response to various biotic and abiotic stresses and microbe-derived elicitors [4–13]. Accumulation of extracellular ATP (eATP) triggers the production of reactive oxygen species (ROS), nitric oxide, callose deposition, cytoplasmic calcium increase, transient phosphorylation of MPK3 and MPK6, and expression of genes involved in plant stress response and immunity [8,14]. To be physiologically relevant, eATP must be sensed by specific receptors at the cell surface. Recently, the Arabidopsis thaliana lectin receptor kinase DORN1 (DOes not Respond to Nucleotides 1, At5g60300), also known as the LecRK-I.9 (lectin receptor kinase I.9), was identified as the first plant purinoceptor essential for the plant response to eATP, unveiling an eATP signaling pathway in plants [8]. The RXLR-dEER effector protein IPI-O secreted by the oomycete pathogen Phytophthora infestans targets LecRK-I.9/DORN1 [15–18], suggesting that some microbes have the tools to manipulate host eATP perception/signaling. LecRK-I.9/DORN1 mutant plants show enhanced susceptibility to pathogen infections such as the oomycete P. brassicae and the bacterium Pseudomonas syringae (Pst). Consistently, overexpression of LecRK-I.9/DORN1 increases plant resistance to Phytophthora spp. and Pst [19]. Taken together, these results suggest a role for an eATP-receptor protein in plant immunity.

There is increasing evidence that fungi, both pathogenic and mutualistic, have large repertoires of secreted effectors. Some were functionally shown to be able to manipulate the host cell physiology, suppress plant defense, and ultimately promote fungal colonization [20]. Among fungi, compatibility factors are mainly reported from biotrophic and hemibiotrophic leaf pathogens [21]. In contrast, only few factors have been functionally characterized from root mutualistic fungi [22–25]. Therefore, the basis and mode of action of mutualistic fungal compatibility factors remain poorly understood.

The filamentous root endophyte Serendipita indica (syn. Piriformospora indica) belongs to the order Sebacinales (Basidiomycota). Serendipita indica colonizes the root epidermal and cortex cells.
without penetrating the central cylinder and displays a biphasic colonization strategy [26–29]. During the initial phase of biotrophic colonization, the fungus invades the root cells inter- and intracellularly. Subsequently, S. indica switches to a host cell death-associated phase, although a defined switch to necrotrophy with massive cell death does not occur [26,27,29]. Serendipita indica colonization exhibits various effects on host plants including enhanced growth, improved assimilation of nitrate and phosphate, increased tolerance to abiotic stresses, and resistance against pathogens [30–33]. Since S. indica establishes symbiotic interactions with a wide range of experimental hosts, including the dicot model plant A. thaliana and the monocot cereal crop Hordeum vulgare (barley), it represents an excellent model system to study the role of extracellular bioactive nucleotides and eATP-mediated plant responses in the roots of unrelated hosts.

In order to identify S. indica secreted effectors, proteins present in the apoplastic fluid (APF) of colonized barley roots were analyzed at three different symbiotic stages by liquid chromatography–tandem mass spectrometry (LC-MS/MS). One secreted fungal protein consistently found in the apoplast at all time points is a predicted 5’-nucleotidase. The gene encoding this enzyme is induced during colonization of both barley and A. thaliana but not in axenic culture. Animal ecto-5’-nucleotidases (ES’N Ts) have been considered to play a key role in the conversion of AMP to adenosine, counteracting eATP release from stimulated cells and further purinergic signaling together with ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP), ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), and alkaline phosphatases [AP] [34,35]. The importance of bioactive nucleotide-triggered signaling and fungal extracellular ES’NT activity during plant–fungus interactions is unknown. We show here that S. indica ES’NT is capable of hydrolyzing ATP, ADP, and AMP to adenosine and phosphate, altering eATP levels and plant responses to fungal colonization. Considering the important role ES’NT plays in S. indica accommodation at early symbiotic stages, we propose that modulation of extracellular nucleotide levels plays a role in compatibility during plant–fungus interactions.

Results

Identification of fungal proteins in the apoplast of barley roots

In order to identify soluble secreted candidate effector proteins during S. indica root colonization, the proteins present in the APF of barley roots at three different symbiotic stages, 5, 10, and 14 days postinoculation (representing the biotrophic, early, and late cell death-associated phases) were analyzed together with the proteins found in the culture filtrate (CF) obtained from S. indica axenically grown in liquid complex medium (CM). To assess possible cytoplasmic contaminations, a strain constitutively expressing an S. indica codon-optimized GFP under the SiGPD promoter [36] was used. The absence of fungal cytoplasmic GFP protein contamination due to cell lysis was corroborated by Western blotting of the apoplastic protein samples using anti-GFP antibody (Appendix Fig S1).

LC-MS/MS analysis after tryptic digestion led to the identification of 102 S. indica proteins putatively targeted to the apoplast of which 33 were present at all three time points in at least one of the biological replicates (Table EV1, Dataset EV1 and Fig 1A and B). Predictions using ApoplastP [http://apoplastp.cisro.au/] and SecretomeP [http://www.cbs.dtu.dk/services/SecretomeP-1.0/] indicated that 48 of the 102 S. indica proteins are putatively targeted to the plant apoplast (47%) with nine proteins predicted to be secreted via a non-canonical secretion pathway (Table EV2). No peptides for GFP were found in any of the apoplastic fluid samples, confirming the GFP Western blotting analysis. Twenty proteins were uniquely identified at 3 dpi, 4 at 10 dpi, and 21 at 14 dpi, suggesting differential secretion of S. indica proteins at different stages of colonization (Table EV1).

Twenty-one of the 102 identified apoplastic proteins were also found in the culture filtrate of S. indica grown in CM, which included a large proportion of enzymes acting on peptide bonds (Fig 1A and B). The majority of these proteases might conceivably play a role in nutrition rather than in suppression of host defense because of the large overlap with the culture filtrate proteome and because amino acid uptake seems to be an active process during root colonization based on transcriptomic data [27,28,37]. Four peptidases (PIIN_00628, PIIN_02239, PIIN_02952, and PIIN_07002), however, were specifically present in the apoplastic fluid, which makes them good candidate effectors possibly involved in host defense suppression (Table EV1).

Remarkably, 19 of the 33 common proteins found in the APF at all three time points were not present in the CF samples, implying an induced secretion for these proteins during interaction with the plant roots (Table EV1, and Fig 1B). We did not identify any peptides derived from the S. indica bacterial endosymbiont Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. Agrobacterium fabrum) [38,39] in the APF or CF samples, suggesting that R. radiobacter’s contribution to successful symbiosis does not involve accumulation of bacterial proteins in the apoplast of barley.

In a first step for functional interpretation of the resultant fungal protein list from the APF and CF, we assigned Gene Ontology terms [40–42]. GO term enrichment analysis for biological processes showed an over-representation of GO terms associated with proteolysis in the culture filtrate obtained from axenically grown S. indica, whereas the apoplastic fungal proteins were related to purine metabolism and specifically to ATP metabolic processes (Table EV3, Appendix Figs S2 and S3).

Among the fungal proteins specifically present in the apoplastic fluid of colonized roots, several ATP-scavenging enzymes, including...
Figure 1. Modulation of apoplastic nucleotides

A. S. indica apoplastic proteins

B. Table of gene and sequence descriptions

gene	seq_desc
PIIN_01611	hsp70-like protein
PIIN_08676	glucose-6-phosphate isomerase
PIIN_05452	related to TAL1-Transaldolase
PIIN_05400	probable GLR1-glutathione reductase (NADPH)
PIIN_08857	hypothetical protein
PIIN_02595	d-xylose reductase
PIIN_06558	GTP-binding ypt3/rab
PIIN_06879	probable glucan 1,4-alpha-glucosidase (GH15)
PIIN_10005	5'-nucleotidase
PIIN_06436	related to NonF protein, involved in nonactin biosynthesis
PIIN_02117	glyceraldehyde-3-phosphate dehydrogenase
PIIN_04255	Nucleoside-diphosphate-sugar epimerase
PIIN_06515	probable HHF1-histone H4
PIIN_03008	translation elongation factor 1a
PIIN_04285	related to UBI4-Ubiquitin
PIIN_07952	hypothetical protein
PIIN_04107	6-phosphogluconate dehydrogenase
PIIN_05133	calmodulin
PIIN_10033	enolase
PIIN_06568	related to pepsin precursor (aspartate protease)
PIIN_00112	zinc carboxypeptidase
PIIN_04941	related to bacterial leucyl aminopeptidase precursor
PIIN_00333	related to UBI4-Ubiquitin
PIIN_04685	related to aminopeptidase
PIIN_04025	probable extracellular elastinolytic metalloproteinase precursor
PIIN_04931	related to bacterial leucyl aminopeptidase precursor
PIIN_09051	related to pepsin/Lys metalloendopeptidase precursor
PIIN_09032	related to bacterial leucyl aminopeptidase precursor
PIIN_04932	related to bacterial leucyl aminopeptidase precursor
PIIN_06613	macroage activating glycoprotein
PIIN_02492	related to subtilisin-like serine protease
PIIN_10092	hypothetical protein
PIIN_07640	related to alpha-glucosidase b (GH31)
a 5′-nucleotidase (PIIN_01005) and a nucleoside diphosphate kinase (PIIN_00784), were identified (Table EV1 and Appendix Figs S2 and S4). Twenty-one orthologues of the S. indica apoplastic proteins were also found in the APF of rice leaves infected by the rice blast pathogen Magnaporthe oryzae, including an orthologue of the secreted S. indica nucleoside diphosphate kinase (Table EV4 and Appendix Fig S2 asterisks) [43]. The presence of fungal-derived ATP-scavenging enzymes in the apoplast of colonized plants indicates that extracellular nucleotides may be important during plant-fungus interactions.

eATP plays a role during fungal colonization in barley and in Arabidopsis

The enrichment for GO terms related to ATP metabolic processes among the fungal-derived apoplastic proteins led us to test whether root colonization by S. indica triggers changes in eATP levels at different symbiotic stages and in different plant species. We used a specific luminescent ATP detection assay to assess eATP levels of Arabidopsis seedlings grown in liquid medium or barley root apoplastic fluid samples both from S. indica-colonized and from mock-treated plants at 3, 5, 7, and 10 dpi. It was not possible to extract apoplastic fluid from the roots of Arabidopsis seedlings for these experiments because this young tissue is very delicate and fragile. All our efforts to collect apoplastic fluids ended up with cytoplasmic contaminations (measured by the LC-MS/MS proteomic analysis). Moreover, the expression of this gene can be induced by the addition of the nucleotides AMP and ATP to the medium (Appendix Fig S6).

Ecto-5′-nucleotidases have been found in bacteria, animals, and fungi and display significant differences in the range of substrates hydrolyzed and localization. Studies of mammalian Ecto-5′-nucleotidases have shown that a membrane-bound form and soluble forms exist. A C-terminal glycosylphosphatidylinositol (GPI) anchor for PIIN_01005 was predicted by the program FragAnchor [44]. The presence of this fungal protein in the apoplastic fluid of barley indicates that a soluble form might originate during interaction in planta from cleavage of the anchor by phosphatidylinositol-specific phospholipase or by proteolytic cleavage as suggested for some animal 5′-nucleotidases [45–47]. Most fungi have at least one copy of a cytosolic 5′NT without predicted signal peptide and GPI anchor, whereas the secreted ecto-enzyme members are discontinuously distributed within the fungal kingdom (Fig 3A). E5′NT members are not represented in the available genomes for the Ustilaginomycotina, Pucciniomycotina, and Saccharomycotina and only rarely found in the Eurotiomycetes. However, they are widely distributed in two fungal Ascomycota classes, the Sordariomycetes with 107 from the 121 taxa examined and the Dothideomycetes with 24 from 37 taxa. In the Basidiomycota, E5′NT members are only present in the Agaricomycota (Fig 3A). These fungal classes are among the largest groups of fungi with a high level of ecological diversity, including many plant and insect pathogens infecting a broad range of hosts.

Sequence alignment with homologous E5′NT protein sequences from animals and bacteria showed that the loop structure formed by the amino acid residues Cys476-Pro428 in human E5′NT is absent from bacterial and S. indica E5′NT proteins (Fig 3B, Appendix Fig S7). It has previously been shown that this loop structure is required for dimerization of human E5′NT and that this dimeric state is important for the enzyme’s narrow substrate specificity [48]. In contrast, bacterial E5′NT enzymes function as monomers and have broad substrate specificity being able to hydrolyze ATP, ADP, AMP, and other 5′-ribo and 5′-deoxyribonucleotides [49]. Our structural predictions (Fig 3B and C) suggest that the fungal E5′NT is monomeric and likely capable of hydrolyzing different nucleotides.

In order to evaluate potential substrates for S. indica E5′NT, full-length S. indica E5′NT was expressed in A. thaliana and in the phytopathogenic fungus Ustilago maydis, neither of which has a gene encoding a secreted E5′NT predicted in their genome. Ecto-5′-nucleotidase activity was determined by the rate of inorganic phosphate release after incubation of 50 or 100 µM of either ATP, ADP, or AMP with washed culture suspensions of U. maydis and with preparations of plasma membrane proteins from A. thaliana transgenic lines, respectively. Intact cells of the U. maydis control strains expressing mCherry, E5′NT without the GPI anchor, or E5′NT without the secretory signal peptide (SP) and the GPI anchor under the synthetic otf promoter were able to hydrolyze ATP and ADP to a certain extent, whereas hydrolysis of AMP occurred at a very low rate. The U. maydis strain expressing the full-length S. indica ecto-5′-nucleotidase showed significantly higher hydrolysis rates for all three nucleotides tested compared to the control strains. This

Serendipita indica PIIN_01005 is an ecto-5′-nucleotidase capable of hydrolyzing ATP, ADP, and AMP

Since our data show that detection of eATP plays a role during root–S. indica interaction, we hypothesized that this fungus has evolved an intrinsic mechanism to manipulate extracellular nucleotides levels to counteract eATP-mediated host immune responses. The secreted S. indica PIIN_01005, consistently found in the apoplastic fluid but not in the culture filtrate samples, is a suitable candidate for such a mechanism because of its putative hydrolytic activity on nucleotides. Microarray analysis of fungal transcripts [27,28,37] and gene expression experiments on colonized H. vulgaris and A. thaliana root tissue showed that PIIN_01005 is induced during root colonization in both experimental hosts but not in CM (Table EV1 and Fig 2D), confirming our results of the LC-MS/MS analysis. Moreover, the expression of this gene can be induced by the addition of the nucleotides AMP and ATP to the medium (Appendix Fig S6).
Figure 2. *Serendipita indica* colonization leads to increased eATP levels in barley and *Arabidopsis* roots.

A eATP levels in APF from *S. indica*-inoculated and mock-treated barley root samples collected at the predominantly biotrophic phase (3 and 5 dpi) as well as the predominantly cell death-associated phase (7 and 10 dpi). Error bars show the standard error of the mean obtained from three independent biological replicates at *P* < 0.05 (*), 0.01 (***) analyzed by Student's t-test. RLU: relative light units.

B eATP levels measured from culture medium collected from mock-treated and *S. indica*-colonized *Arabidopsis* seedlings at 3, 5, 7, and 10 dpi. Error bars represent ±SE of the mean from three independent biological replicates. RLU: relative light units. Asterisks indicate significance at *P* < 0.05 (*), 0.01 (***) analyzed by Student's t-test.

C *S. indica* colonization of *Arabidopsis* dorn1-3 mutant and the parental Col-0a† lines quantified by qPCR at 3, 5, 7, and 10 dpi. The ratio of fungal (SiTEF) to plant (AtUBI) amplicons representing fungal colonization levels in plant root tissue was calculated using gDNA as template and the 2^−ΔΔCT method. Error bars represent standard error of the mean of three technical replicates. The experiment was repeated three times for 3, 5, and 7 dpi with similar outcomes.

D Transcript levels of *S. indica* E5'NT during colonization of barley and *Arabidopsis* at different symbiotic stages and in axenic culture. Error bars represent standard error of the mean of three independent biological replicates. CM = complex medium.
Modulation of apoplastic nucleotides

Shadab Nizam et al

Figure 3.

A

No SP & No GPI

- Basidiomycota
 - Pucciniomycotina (0/5)
 - Ustilaginomycotina (17/17)
 - Agaricomycotina (85/85)

- Dikarya
 - Eurotiomycetes (118/118)
 - Dothideomycetes (37/37)
 - Leotiomycetes (14/18)
 - Sordariomycetes (117/121)
 - Saccharomycotina (1/26)

SP + GPI

- Basidiomycota
 - Pucciniomycotina (0/5)
 - Ustilaginomycotina (0/17)
 - Agaricomycotina (12/85)

- Dikarya
 - Eurotiomycetes (6/118)
 - Dothideomycetes (24/37)
 - Leotiomycetes (6/18)
 - Sordariomycetes (107/121)
 - Saccharomycotina (9/26)

B

S. indica E5'NT & *H. sapiens* E5'NT

Sequence identity = 32%

RMSD = 2.27
TM-score = 0.91184

C

S. indica E5'NT & *Thermus thermophilus* 5'NT

Sequence identity = 36%

RMSD = 0.46
TM-score = 0.96168
indicates that as for the monomeric bacterial variant, ATP, ADP, and AMP are potential substrates for SiE5’NT (Appendix Fig S8) and that SiE5’NT has extracellular activity. This was confirmed by the activity measurements of ectopically expressed SiE5’NT in A. thaliana. Three A. thaliana transgenic lines in Col-0 background expressing either full-length E5’NT (303 1L3), SP\textsubscript{E5’NT}:mCherry:E5’NT fusion (304 6L8), or cytoplasmic mCherry (305 2L1) under the control of the 35S promoter were selected based on their expression levels in the T3 generation (Appendix Fig S9A and B). Ecto-5’-nucleotidase activity in the membrane fractions demonstrated that expression of the native form of SiE5’NT in A. thaliana leads to the production of a membrane-localized enzyme capable of hydrolyzing ATP, ADP, and AMP (Fig 4A). In contrast, the membrane fraction of the A. thaliana line expressing SP\textsubscript{E5’NT}:mCherry:E5’NT fusion did not show increased activity compared to the mCherry control line, suggesting that modification at the N-terminus of the protein impacts protein activity or function. Interestingly, the absence of hydrolytic activity on AMP for A. thaliana lines expressing mCherry or SP\textsubscript{E5’NT}:mCherry:E5’NT fusion implies that no E5’NT-like activity is naturally present at the membrane under this growth condition in A. thaliana. The lines expressing SiE5’NT were otherwise morphologically similar to the control lines in having the same shoot fresh weight (Appendix Fig S9C and D) but produced significantly fewer seeds during propagation (Appendix Fig S9E).

To confirm secretion of the fungal enzyme in A. thaliana transgenic lines, confocal microscopy was carried out with the SP\textsubscript{E5’NT}:mCherry:E5’NT fusion line (304 6L8). A fluorescence signal in the red channel was visible at the periphery of the plant cells but not in the cytoplasm (Fig 4B, Appendix Fig S10A). Arabidopsis roots were treated with a 0.5 M sorbitol solution to trigger effusion of water from the cytoplasm leading to a volumetric extension of the apoplastic space and plasmolysis. After plasmolysis, the fluorescence signal in the red channel was visible at the membranes and cell walls (Appendix Fig S10B), indicating that the full-length mCherry-tagged E5’NT fusion protein is correctly secreted and that the GPI anchor is functional. However, we cannot exclude that the E5’NT part of the fusion protein is partially misfolded leading to the observed impaired hydrolytic activity in this line. No auto-fluorescence signals were detected in the UV channel and in the control Col-0 WT line (Appendix Fig S10A and B).

SiE5’NT affects eATP levels and fungal colonization

To investigate the role of SiE5’NT in fungal accommodation in plant roots, the A. thaliana line 303 1L3 constitutively expressing the enzymatically active SiE5’NT (Fig 4A) was used along with the SP\textsubscript{E5’NT}:mCherry:E5’NT fusion line 304 6L8 and mCherry line 305 2L1 for colonization assays at 3, 5, and 7 dpi (Fig 4C and Appendix Fig S11A–C). We observed a significantly enhanced fungal colonization at all time points in the SiE5’NT 303 1L3 plants with respect to the A. thaliana lines with no enhanced ecto-5’NT enzyme activities (Fig 4C). This phenotype was confirmed in independent transgenic lines (Appendix Fig S11A–C). Correspondingly, the SiE5’NT plants accumulated significantly lower levels of ATP in the growth medium than the control lines at 5 dpi, the time point at which we observed the highest levels of eATP accumulation upon fungal colonization (Fig 4D). Interestingly, mutation of the DORN1 receptor did not affect eATP concentrations (Fig 4D), suggesting that perception of eATP is not involved in the regulation of its extracellular abundance.

To define the transcriptional response of the A. thaliana transgenic SiE5’NT line to fungal colonization at 5 dpi, we determined the expression of AT1g58420, a marker gene reported to be induced by ATP and wounding [8]. In our experiments, AT1g58420 was highly responsive to S. indica colonization (Fig 4E and F). Analysis of the expression profiles of this gene upon different treatments showed that AT1g58420 is also responsive to other danger- and microbe-associated molecular patterns (DAMPs and MAMPs), including chitin and flagellin (Appendix Fig S12, and public microarrays, GENEVESTIGATOR, https://genevestigator.com/gv/). Mutation of the DORN1 receptor was shown to abolish ATP-induced gene expression and to reduce wounding-induced gene expression [8]. Upon colonization with S. indica, the dorn1-3 mutant plants displayed an increased expression of the marker gene AT1g58420 compared to the colonized control line Col-0+, which correlates to the increased fungal biomass (Fig 4E and F). This indicates that induction of this marker gene by S. indica is not necessarily related to increased eATP levels and its detection by DORN1. Interestingly, despite a similar level of fungal colonization, the SiE5’NT plants had a significantly lower induction of this marker gene compared to the dorn1-3 mutant plants (Fig 4E and F). Expression of two additional marker genes responsive to eATP, CPK28, and RBOHD [8] was also analyzed. These genes showed a similar pattern as observed for the AT1g58420 marker gene with lower induction for the SiE5’NT plants compared to the dorn1-3 mutant plants, but their induction in response to fungal colonization was not as high as for the marker gene AT1g58420 (Appendix Fig S13).

Finally, to test whether SiE5’NT would also increase susceptibility to fungal disease, we additionally assessed colonization of Arabidopsis roots by the pathogen Colletotrichum incanum which colonizes members of the Brassicaceae, Fabaceae, and Solanaceae and which severely inhibits Arabidopsis growth [50]. The SiE5’NT plants had a significantly higher colonization by this pathogen (Appendix Fig S14).
Modulation of apoplastic nucleotides
Shadab Nizam et al

Figure 4.

Ecto-5'NT activity on ATP, ADP and AMP in transgenic *A. thaliana* lines in Col-0 background

Time (min)	ATP	ADP	AMP
30			
60			
90			
120			

- P35S::S/E5’NT #303 (1) L3
- P35S::S/E5’NT::mCherry #304 (6) L8
- P35S::mCherry #305 (2) L1
- Buffer

Colonization of transgenic lines by *S. indica* (gDNA)

dpi	2(AUB1-STEFL)
3	0.5 ± 0.1
5	1.0 ± 0.2
7	2.0 ± 0.3

- P35S::S/E5’NT #303 (1) L3
- P35S::S/E5’NT::mCherry #304 (6) L8
- P35S::mCherry #305 (2) L1

Colonization of transgenic lines (cDNA)

At1g58420 expression in transgenic lines (cDNA)
- mock; + *S. indica*
- dorn1-3

RLU	mock	dorn1-3
0	b	b
20000	a	a
40000	b	b
60000	b	b
80000	b	b

- P35S::S/E5’NT #303 (1) L3
- P35S::S/E5’NT::mCherry #304 (6) L8
- Col-0^m

- P35S::mCherry #305 (2) L1
Phosphate released from the hydrolysis of eATP could serve as a nutrient

Extracellular SIE5'NT activity leads to significantly decreased amounts of free eATP in the apoplast of colonized root tissue and, consequently, an increased availability of phosphate (Pi). It has previously been shown that S. indica transfers phosphate to the host and improves plant growth more effectively at low phosphate compared to high phosphate conditions at later colonization stages [51,52]. To evaluate the effect of an additional apoplastic Pi-source on the nutrient exchange between plant and fungus, we employed a computational cell biology approach and simulated the dynamics of a network of proton pumps and proton-coupled transporters during the early biotrophic interaction phase. We first used a model where the plant provides sugar to the fungus while the fungus provides phosphate to the plant as described for classical mycorrhizal associations [53]. When apoplastic ATP levels and subsequent Pi levels increase, the computational simulations predict that the sugar flux from the plant to the fungus is not affected but the phosphate fluxes change (Fig 5). An external Pi-source provokes an increased Pi-uptake by the plant and a reduced Pi-release or even an uptake of Pi by the fungus. Thus, the hydrolysis of eATP to adenosine and phosphate reduces the amount of Pi that the fungus has to provide to obtain sugar from the plant and could also serve for the Pi-nutrition of the fungus in the early colonization phase without affecting sugar transfer. These new insights might guide future experiments to clarify whether the activity of SIE5'NT in the apoplast could serve both nutritional needs and modulation of host immunity.

Discussion

To establish an integrated and holistic view of the role of the metabolic interplay between plants and their microbes, it is of paramount importance to investigate the mechanisms by which plant-associated microbes manipulate plant-derived metabolites and how plant metabolism is linked to immunity. Apoplastic communication and its metabolic fluxes have crucial functions in mediating microbial accommodation. During root colonization, plants and microbes secrete a number of proteins to the apoplast that are important determinants for the outcome of the interaction. Plant cells release small amounts of ATP into their extracellular matrix as they grow [7]. The eATP level can modulate the rate of cell growth in diverse tissues. Besides the physiological role in growth modulation, eATP is released to the extracellular environment in response to biotic stresses modulating defense responses, e.g., upon wounding and also when their plasma membranes are stretched during delivery of secretory vesicles [4]. This implicates a regulatory role for enzymes that can hydrolyze extracellular nucleotides and thus limit their accumulation in the extracellular environment. In plants, the level of extracellular nucleotides is controlled by various phosphatases, prominent among which are apyrase EC 3.6.1.5 (nucleoside triphosphate diphosphohydrolases, NTPDases) [4]. In animals, ectonucleotidases play a pivotal role in purinergic signal transmission where the major extracellular purine and pyrimidine compounds known to elicit cell surface receptor-mediated signals are ATP, ADP, UTP, UDP, UDP-glucose, some additional nucleotide sugars, some dinucleoside polyphosphates, and the nucleoside adenosine [2,54]. The four major groups of ecto-nucleotidases involved in extracellular purinergic signaling include the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-5'-nucleotidase (eN), ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs), and alkaline phosphatases (APs) [55]. Depending on subtype, ectonucleotidases typically hydrolyze nucleoside tri-, di-, and monophosphates and dinucleoside polyphosphates producing nucleoside diphosphates, nucleoside monophosphates, nucleosides, phosphates, and inorganic pyrophosphate (Pi) [55]. The extracellular membrane-bound ecto-5'-nucleotidase CD73 is anchored to the plasma membrane via a glycosyl phosphatidylinositol (GPI) anchor [55,56]. This enzyme hydrolyzes AMP to adenosine where ADP and ATP are competitive inhibitors, with inhibition constants in the low micromolar range [48]. The CD73 together with the ecto-apyrase CD39 that catalyzes the phosphohydrolysis of ATP and ADP to AMP is part of a cascade to terminate the action of nucleotides as extracellular signaling molecules by decreasing the levels of eATP and eADP and by generating adenosine. In animals, this latter bioactive nucleoside can activate the purinergic ligand-gated ion channel P2X and the G protein-coupled P2Y receptors, counteracting ATP-induced signaling [55]. A purinergic receptor for extracellular adenosine or other bioactive nucleosides is not known in plants.
and its presence at the host cell surface needs to be proven. Yet, it is tempting to speculate that a similar mechanism is also in place in S. indica – interaction in the roots and that S. indica has an intrinsic mechanism to modulate bioactive extracellular nucleotides modulate eATP-triggered immunity once the signal is no longer required. Additionally, in support of the hypothesis that hydrolysis products may mediate colonization, Daumann et al. [57] have shown in a recent study that accumulation of adenosine in the apoplast of Arabidopsis can promote pathogenic fungal infection in plants. Metabolomics data obtained from APF of colonized roots by sebacoid fungi showed an accumulation of adenosine at 6 dpi compared to non-colonized roots (Gerd Balcke, Hanna Rövenich, et al.)
and Alga Zuccaro, personal communication). Thus, it would be important to analyze the role of purine nucleosides in plant root–fungus interactions. Although our data indicate that the activity of the SiE50NT is important for its function in the apoplast, we cannot fully exclude the possibility that an additional function independent of the hydrolytic activity is responsible for the effects observed in this study. Enzymatic inactivation by targeted point mutations in the catalytic domain could help address this possibility.

Modeling of phosphorus/carbon exchange between the plant and the fungus in the presence of an apoplastic Pi-source derived from eATP hydrolysis suggests that in the early phase of interaction, the fungus could reduce phosphate transfer to the plant without affecting the carbohydrate flux from the plant and eventually use this phosphate as a nutrient to support its own growth. Secreted E50NT homologues are present also in fungal pathogens as C. incanum and other endophytes of Arabidopsis, such as C. tofieldiae, where their expression is induced during colonization [50]. Fungal genes encoding enzymes involved in ATP-scavenging were also found in the apoplastic fluid of rice leaves infected with the rice pathogens M. oryzae and C. miyabeanus [43,58], suggesting that extracellular purine-based biomolecules play a role also in other plant–fungus interactions. Hydrolysis of plant-derived primary metabolites with immune modulating functions in the apoplast could thus represent a general mechanism of plant-associated fungi in modulating plant nucleotides signaling as well as serving nutritional needs.

Materials and Methods

Fungal strains and culturing techniques

Serendipita indica (syn. Piriformospora indica, DSM11827, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell
Cultures, Braunschweig, Germany) and *Serendipita indica* GoGFP strain expressing cytosolic GFP [36] were grown in liquid CM supplemented with 2% glucose and incubated at 28°C with constant agitation at 120 rpm, or on solid medium supplemented with 1.5% agar [59]. *Ustilago maydis* SG200 [60] cultures were propagated on potato dextrose agar (Difco) or YEPDlight liquid medium at 28°C [61]. *Colletotrichum incanum* strain MAFF238704 was kindly provided by Prof. Paul Schulze-Lefert, MPIZ, Cologne, and propagated on solid CM supplemented with 1.5% agar in darkness at 25°C [50].

Plant growth conditions and fungal inoculation

Barley seeds (*Hordeum vulgare* cv. Golden Promise) were surface sterilized as described previously [36] and germinated for 3 days in the dark on wet filter paper. Germlings were transferred into jars with 1/10 PNM agar [59] and inoculated with 3 ml (300,000 spores/ml) *S. indica* chlamydospores in 0.002% Tween-20 aqueous solution and cultivated in a growth chamber with a day : night cycle of 16 h : 8 h (light intensity 108 μmol/m²/s and temperature of 22°C: 18°C). Tween water-treated germlings were used as control. Three independent biological replicates were used. For each biological replicate, four to five barley seedlings in one jar were pooled at each time point.

Arabidopsis seeds were surface sterilized with 70% ethanol for 10 min followed by 100% ethanol for 7 min and then air-dried. The sterilized seeds were transferred to half-strength Murashige and Skoog (½ MS) medium containing 1% sucrose and 0.4% Gelrite (Duchefa), incubated for 3 days in the dark at 4°C, and subsequently grown for 7 days with a day : night cycle of 8 h: 16 h (light intensity, 47 μmol/m²/s) and temperature of 18°C. Tween water-treated germlings were used as control. Three independent biological replicates were used. For each biological replicate, three plates containing 20 plants each were pooled. For colonization studies, 500,000 spores/ml of *S. indica* chlamydospores in 0.002% Tween-20 aqueous solution was applied to the roots of each plant of 7-day-old seedlings. Tween water-treated seedlings were used as control.

For colonization analysis using *C. incanum*, *Arabidopsis* seedlings were grown for 10 days under a day: night cycle of 8 h: 16 h regime (light intensity 111 μmol/m²/s and temperature of 22°C: 18°C). Roots were drop-inoculated with 200,000 spores/ml of *C. incanum* suspended in sterile distilled water. Water-treated seedlings served as control. Three independent biological replicates were used each representing a pool of roots from 20 plants.

Identification of *S. indica* proteins in apoplastic fluid and culture filtrate

Barley seeds (*Hordeum vulgare* L. cv Golden Promise) were surface sterilized for 1 min under light shaking in 70% ethanol followed by 1 h in 12% sodium hypochlorite. Subsequently, seeds were washed repeatedly for 1 h with sterile distilled water. After germination for 3 days at 22°C in complete darkness on wet filter paper, germinated seeds were transferred into jars with 1/10 PNM [59] under sterile conditions and inoculated with 3 ml of chlamydospores (concentration 500,000 spores/ml) of *S. indica* GoGFP strain [36] and cultivated in a growth chamber with a day : night cycle of 16 h: 8 h (light intensity, 108 μmol/m²/s) and temperature of 22°C:18°C. For APF extraction, three time points reflecting different interaction stages have been chosen: biotrophic phase (5 dpi) as well as cell death-associated phase (10 and 14 dpi). After respective growth time, roots from 300 seedlings for each treatment and time point were thoroughly washed and cut into pieces of 2 cm length (2nd to 4th cm of the root). Samples were vacuum-infiltrated (Vacuubrand, CVC 3000, VWR) with deionized water 5 × 15 min at 250 mbar with 1-min atmospheric pressure break. Bundled infiltrated roots were centrifuged in 5-ml syringe barrels at 2,000 rpm in a swing bucket rotor (800 g) for 15 min at 4°C as described in Ref. [25]. Pooled APF samples were stored at −20°C. In order to exclude cytoplasmic contamination, apoplastic fluid samples were tested in immunoblots with GFP antibody. For Western blotting, proteins from unstained gels were transferred onto nitrocellulose membranes using a semidry blotting system from Bio-Rad (Hercules, USA). Anti-GFP antibody was obtained from Cell Signaling Technology (Danver, USA) and used at a 1:2,000 dilution. An anti-mouse antibody purchased from Sigma (Munich, Germany) was used as secondary antibody at a dilution of 1:2,000. For higher peptide mass accuracy, part of the APF samples was deglycosylated with Protein Deglycosylation Mix (P6039S, New England Biolabs, Ipswich, USA) under denaturing conditions. In agreement with Ref. [62], at the centrifugation force used the samples were free from obvious symplastic contamination and were thus regarded as being of apoplastic origin.

Secreted proteins from culture filtrate were prepared as follows: *S. indica* cultures grown for 7 days in liquid CM were passed through a miracloth filter (Merk Millipore, Darmstadt), a filtering fold filter type 600P (Carl Roth, Karlsruhe, Germany), and finally a 0.45-μm syringe filter (Millex-GP, Merck Millipore, Darmstadt, Germany) to remove small mycelium fragments and spores. Proteins were precipitated by addition of 10% (v/v, final concentration) trichloroacetic acid and incubation at −20°C overnight and subsequent centrifugation at 40,000 g. For SDS-PAGE, pelleted secreted proteins resolved in 50 μl of 1× SDS sample buffer and 15 μl were used. For mass spectrometric analysis, pelleted secreted proteins were solved in 50 μl TBS (50 mM Tris pH 7.5, 150 mM NaCl). Half of the samples were deglycosylated with the Protein Deglycosylation Mix (New England Biolabs, Ipswich, USA) under denaturing conditions according to manufacturer’s protocol. Proteins were then analyzed via liquid chromatography–electron spray ionization–tandem mass spectrometry (LC-ESI-MS/MS; LTQ Orbitrap Discovery; Thermo Fisher Scientific, Waltham, USA) after tryptic digest (FASP™ Protein Digestion Kit; ExpeD, Swavesey, UK) in the facilities of CEACAD/CMMC Proteomics Facility in Cologne, Germany. Peptide masses were compared to *S. indica* in silico trypsin-digested proteome (Genbank, NCBI) with an inclusion of GFP, with a barley dataset downloaded from the IPK Gatersleben homepage (http://webblast.ipk-gatersleben.de/barley_ibsc/downloads/) and with Rhizobium radiobacter F4 (syn. Agrobacterium tumefaciens, syn. Agrobacterium fabrum) dataset downloaded from Genbank, NCBI (WGS project JZLLL01000000, https://www.uniprot.org/proteomes/UP00033487). The exact instrument settings can be found in the Supplementary Appendix containing the processed data. Mass spectrometric raw data were processed with Proteome Discoverer (v1.4, Thermo Scientific) and SEQUEST. Briefly, MS2 spectra were searched against the respective databases, including a list of common contaminants. The minimal peptide length was set to seven amino acids, and carbamidomethylation at cysteine residues was considered as a fixed modification. Oxidation (M) and Acetyl (Protein
N-term) were included as variable modifications. The match-between-runs option was enabled. Fungal-derived proteins matched to peptides were analyzed for the presence of signal peptides and exclusiveness for the three specific time points of APF extraction.

Construction of plasmids

Full-length E5’NT (PIIN_01005) was amplified from cDNA of barley roots inoculated with S. indica at 5 dpi by respective oligonucleotides (Table EV5) and cloned into the TOPO® cloning plasmid (Thermo Fisher Scientific, Waltham, USA) resulting in TOPO-E5’NT. For the expression of various E5’NT constructs under the control of the synthetic otf promoter which exhibits strong constitutive expression [63], full-length E5’NT, E5’TtwoGPI, and E5’NTwoSpGPI were amplified from the plasmid TOPO-E5’NT using Phusion DNA polymerase (NEB) by respective oligonucleotides (Table EV5) and cloned into the BamHI-NotI digested plasmid {PoRep: Yup1(RFP)}2 [64] using Gibson assembly [65], generating the plasmids {PoRep: E5’NT, PoRep: E5’TtwoGPI, and PoRep: E5’NTwoSpGPI}, respectively.

For the construction of SP_E5’NT:mCherry:E5’NTwoSP, SP_E5’NT without signal peptide (E5’NTtwoSP) was amplified from the plasmid TOPO-E5’NT using Phusion DNA polymerase (NEB) by respective oligonucleotides (Table EV5) and cloned into the BamHI digested plasmid {ProImPl2: SP_DmG:mCherry:Dd1woSP} (Nostadt et al, unpublished data), generating the plasmid {ProImPl2: SP_DmG:mCherry: E5’NTwoSP}. Subsequently, {ProImPl2: SP_DmG:mCherry: E5’NTwoSP} was digested with Sacl and Ncol and ligated with a DNA fragment encoding the E5’NT signal peptide (SP_E5’NT) digested with the same restriction enzymes, replacing the Dd1 signal peptide (SP_Dd1) and generating the construct {ProImPl2: SP_E5’NT:mCherry: E5’NTwoSP}. For expression in A. thaliana under the control of CaMV 35S promoter (Pro35S), full-length E5’NT, SP_E5’NT:mCherry: E5’NTwoSP, and mCherry were amplified from the plasmids TOPO-E5’NT and {ProImPl2: SP_E5’NT:mCherry: E5’NTwoSP}, respectively, using Phusion DNA polymerase (NEB) by respective oligonucleotides (Table EV5) and cloned into the BamHI digested pCXSN [66], using Gibson assembly, generating the plasmids {Pro35S: E5’NT, Pro35S: SP_E5’NT: mCherry: E5’NTwoSP}, and {Pro35S: mCherry}, respectively.

Ustilago maydis transformation

The U. maydis strains were transformed by integration of the p123-derived plasmids into the ip locus in the haploid solopathogenic strain SG200 as previously described [67].

Ustilago maydis cell surface 5’-nucleotidase activity assay

For the cell surface 5’-nucleotidase activity assay, {PoRep: E5’NT, PoRep: E5’NTwoGPI, PoRep: E5’NTwoSpGPI} along with the control {PoRep: mCherry} U. maydis strains were grown overnight in YEPSlight. Then, the cultures were diluted in PD broth and grown until OD600 reached 0.8. The cells were harvested through centrifugation and washed two times with 0.9% NaCl and finally re-suspended in equal volume of sterile double deionized water. Then 100 µl of cell suspension from each U. maydis strains was incubated with 50 µM of ATP, ADP, or AMP for 30 min, and the hydrolysis of these nucleotides was measured by quantifying the amount of phosphate released using EnzChek® Phosphate Assay Kit (Thermo Fisher Scientific).

Arabidopsis thaliana transformation

The plasmids Pro35S::E5’NT (#303), Pro35S::SP_E5’NT:mCherry: E5’NTwoSP (#304), and Pro35S::mCherry (#305) were transformed into the Agrobacterium strain GV3101 by electroporation using Gene Pulser Xcell Electroporation System (Bio-Rad Laboratories, Hercules, CA, USA) following the manufacturer indications. The cells were plated on LB medium containing 25 µg/ml of rifampicin and 50 µg/ml of kanamycin. Agrobacterium-mediated transformation of A. thaliana was carried out by means of the floral dip method [68,69]. Stratified seeds from T0 plants were grown in ½ MS containing 30 mg/l hygromycin under short day condition. Putative transgenic lines were selected by their hygromycin resistance. Putative transgenic lines were transferred to soil and 2 weeks later tested by PCR using a gene-specific primer (Table EV5). The T3 transgenic lines from 35Spro::E5’NT (#303) and 35Spro::SP_E5’NT:mCherry: E5’NTwoSP (#304) were confirmed again by both hygromycin resistance and PCR using a gene-specific primer. In addition, the elevated expression level of E5’NT in 35Spro::E5’NT (#303) and in 35Spro::SP_E5’NT:mCherry: E5’NTwoSP (#304) as well as the mCherry in 35Spro::mCherry (#305) lines was analyzed by quantitative real-time PCR. The transgenic lines which had the highest transcript levels were selected for further studies.

ATP assay

To test whether colonization of S. indica in Arabidopsis and barley triggers the release of eATP, 7-day-old Arabidopsis seedlings and 3-day-old barley seedlings were treated either with a S. indica spore suspension in 0.01% tween water (5 × 10⁵ spores/ml) or with 0.01% tween water for 2.5 h. The Arabidopsis treated seedlings were transferred to 60-mm petri plates (3 plates per treatment). Each plate contained 3 ml of liquid ½ MS (ammonium-free) medium and 15 treated seedlings. Subsequently, seedlings were grown for 3, 5, 7, and 10 days postinoculation (dpi) with constant light at 22°C. Three individual samples of 50-µl media were collected from each plate, flash frozen in liquid nitrogen, and stored in −80°C until eATP measurements were carried out. Apoplastic fluid from colonized and non-colonized barley roots was collected as mentioned above, flash frozen in liquid nitrogen, and stored in −80°C until eATP measurements were carried out. The measurement of eATP in the growth media and in the APF was performed using the ENLITEN ATP Assay System from Promega. Reactions were carried out in 96-well plates, and luminescence was detected using a microplate reader (TECAN Safire).

Membrane protein purification

Membrane-bound proteins were extracted from 1 g shoot material from the respective A. thaliana lines (25 days old) grown in soil. The material was ground in liquid nitrogen and re-suspended in 5 ml 0.05 M Tris–HCl buffer containing 1 mM MgCl2 (pH 7.5). After centrifugation for 20 min at 12,000 g, the pellet was re-suspended in 5 ml Tris buffer containing 1% IGEPA CAL-630 (Sigma), gently stirred at 4°C for 30 min, and subsequently centrifuged at 5,000 g
for 10 min. The supernatant was cleared by ultracentrifugation at 100,000 g for 45 min. The resulting supernatant was used for subsequent enzyme activity assays.

Measurement of E5’NT and apyrase activity assay in A. thaliana lines

The activity of purified, membrane-bound apyrases and the overexpressed SiE5’NT was monitored using the EnzChek® Phosphate Assay Kit (Thermo Fisher Scientific) according to manufacturer’s instruction. 15 µl of purified membrane proteins were used for the enzyme kinetics assay. 100 µM ATP, ADP, or AMP (in 10 mM Tris/ MES buffer containing 2 mM MgCl2 and 30 mM KCl; pH 6.5) were used as substrates. The background absorbance at 360 nm was monitored for 5 min before the addition of the substrates. Subsequently, kinetics were measured for 2 h.

Real-time PCR analysis

DNA isolation was performed from ~200 mg of ground material. The powder was incubated for 5 min at RT under slight rotation with ~500 µl CTAB buffer (2% hexadecyl trimethyl-ammonium bromide, 100 mM Tris–HCl, 20 mM EDTA, 1.4 M NaCl, and 1% polyvinyl pyrrolidone vinlypyrrolidine homopolymer Mw 40,000, pH 5.0). Subsequently, 250 µl chloroform : isoamyl-alcohol (24:1) was added followed by an additional incubation for 5 min at RT and centrifugation. The water phase was collected, and polysaccharides were precipitated using ethanol before final DNA precipitation using 1 volume of isopropanol. Total RNA was isolated from 200 mg of ground fungal material or colonized and non-colonized plant root material using the TRIzol® reagent (Invitrogen, USA) as described previously [36]. Contaminating genomic DNA was removed by DNase I treatments (Thermo Fisher Scientific, USA) according to manufacturer’s protocol. First-strand cDNA was synthesized with 1 µg of total RNA primed with Oligo-dT and random hexamer using First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA). The resulting cDNA preparations were diluted to a final concentration of 2.5 ng/µl and 4 µl of each cDNA sample was used for qRT–PCR. Serendipita indica translation elongation factor 1 (SiTEF) and A. thaliana SAND or UBI gene primers were used for qPCR amplifications. The reactions were performed in 96-well reaction plate (Bio-Rad, USA) on a Real-Time PCR System (Bio-Rad, USA). Each well contained 7.5 µl of 2× SYBR® Green QPCR Master Mix (Promega, USA), 4 µl of cDNA or 10 ng of DNA, and 0.7 µl of each primer from a 10 µM stock, in a final volume of 15 µl. Transcripts of each gene were amplified using the primers described in Table EV5. The threshold cycles (Ct) of each gene were averaged from three replicate reactions, and the relative expression or plant to fungus ratio from gDNA was calculated using the 2−ΔΔCt method [70].

E5’NT expression levels in axenic culture in response to nucleotides

In order to test whether SiE5’NT expression is induced in the presence of nucleotides, WT S. indica spores (500,000 spores/ml) were used to inoculate liquid CM medium and grown for 5 days at 28°C with 110 rpm shaking. Subsequently, the culture was filtrated through miracloth, and the mycelium was crushed and regenerated in 100 ml fresh CM medium for 2 days. After regeneration, 5 ml of fungal suspension was diluted with 45 ml of CM medium supplemented with 100 µM of the respective nucleotides. At the indicated time points, the mycelium was harvested by filtration, washed with water, and flash frozen in liquid nitrogen before processing according to the Real-Time PCR Analysis Protocol listed above. Three to six independent biological replicates for each time point/nucleotide combination were performed.

Calcium influx quantification

All calcium influx experiments were conducted using plants that ectopically express aequorin as Ca2+ reporter (Choi et al 2014). Seven-day-old seedlings grown on ½ MS plates containing 1% sucrose were transferred to 96-well plates containing 50 µl 10 µM coelenterazine (Promega) in reconstitution buffer (2 mM MES/KOH containing 10 mM CaCl2; pH 5.7). After 16 h, the luminescence background was measured for 5 min followed by the addition of different adenylates (final concentration 100 µM ATP, ADP, AMP, or adenosine). Luminescence was monitored for 30 min.

Confocal microscopy

Confocal images were recorded using a TCS-SP8 confocal microscope (Leica, Bensheim, Germany). mCherry fluorescence was imaged with an excitation of 561 nm and a detection bandwidth set to 580–630 nm. DAPI and auto-fluorescence of the samples were assessed by laser light excitation at 405 nm with a detection bandwidth set to 415–465 nm.

Homology modeling of SiE5’NT

In order to carry out the homology modeling of SiE5’NT, best template was selected through PSI BLAST against the PDB database (http://www.rcsb.org/pdb/home/home.do). The best hit with high sequence identity and atomic resolution < 1.8 Angstroms was selected as template. The three-dimensional structure of SiE5’NT was generated using a restrained-based approach in MODELLER 9v11 [71]. Initial refinement of the 3D model generated was carried out with the help of loop refinement protocol of MODELLER. The assessment of the final structural model was carried out with PROCHECK [72], ProSA [73], and QMEAN [74] analyses. The structure was visualized using PyMOL (http://www.pymol.org/).

Computational cell biology

The nutrient exchange of phosphates (Pi) and sugars (C) between plant and fungus was essentially performed as described previously in mycorrhizal interactions [53], in a minimal model combining proton-coupled phosphate (H/P) and sugar (H/C) transporters and proton pump-driven background conductances. The minimal model was enlarged by adding the release of ATP from the plant into the apoplast and its subsequent cleavage into phosphates and adenosine (A) by E5’NT enzymes. The Pi and C exchange between the plant and the fungus was simulated for different values of ATP-release and Pi-production. The ATP-release- and Pi-production rate were normalized that at the relative value of 1, the fungus does not export Pi. The mathematical description of these processes results in
redundant parameters, which were combined. Therefore, ATP-release and cleavage were considered as one process in this study, which was modeled as a constant Pi-production rate: \(d[Pi]_{ap} = \text{const}\times dt \). Following the mathematical description of all transporters, an in silico cellular system was programmed and computational cell biology (dry-lab) experiments were performed using the VCell Modeling and Analysis platform developed by the National Resource for Cell Analysis and Modeling, University of Connecticut Health Center [75].

Expanded View for this article is available online.

Acknowledgements

We are indebted to Prof. Gary Stacey for providing the Arabidopsis thaliana dorn1-3 mutant and Col-044 lines. Heidi Widmer is acknowledged for her excellent support in the laboratory. Ganga Jeena is acknowledged for her critical reading of the manuscript. ID was supported by the Fondecyt grant No. 1150054 of the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) of Chile. AZ acknowledge support from the Cluster of Excellence on Cell Communication and Disease (EXC 1028), DFG ZU 263/1-1, DFG ZU 263/3-1, and institutional funds of the Max Planck Society.

Author contributions

AZ and SN conceived the project, designed the experiments, and wrote the paper with contributions from SW and GL. SN, SW, XQ, RN, FG, FS, and GL performed experiments and analyzed the data. ID produced the P/C model.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24: 509–581
2. Burnstock G (2012) Purinergic signalling: its unpopolar beginning, its acceptance and its exciting future. BioEssays 34: 218–225
3. Chivasa S, Slabas AR (2012) Plant extracellular ATP signalling: new insight from proteomics. Mol BioSyst 8: 445–452
4. Clark GB, Morgan RO, Fernandez MP, Salmi ML, Roux SJ (2014) Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. Plant Sci 225: 107–116
5. Tanaka K, Choi J, Cao Y, Stacey G (2014) Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front Plant Sci 5: 446
6. Song Cj, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140: 1222–1232
7. Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12: 522–527
8. Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343: 290–294
9. Tanaka K, Gilroy S, Jones AM, Stacey G (2010) Extracellular ATP signaling in plants. Trends Cell Biol 20: 602–608
10. Cao YR, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-rhizobium symbiosis. Annu Rev Plant Biol 68: 535–561
11. Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142: 984–992
12. Wu SJ, Wu JY (2008) Extracellular ATP-induced NO production and its dependence on membrane Ca(2+)-flux in Salvia miltiorrhiza hairy roots. J Exp Bot 59: 4007–4016
13. Dark A, Demidchik V, Richards SL, Shabala S, Davies JM (2011) Release of extracellular purines from plant roots and effect on ion fluxes. Plant Signal Behav 6: 1855–1857
14. Lim MH, Wu J, Yao JC, Gallardo IF, Dugger JW, Webb LJ, Huang J, Salmi ML, Song JW, Clark G et al (2014) Apyrase suppression raises extracellular ATP levels and induces gene expression and cell wall changes characteristic of stress responses. Plant Signal Behav 7: e1001327
15. Bouwmeester K, de Sain M, Weide R, Gouvet A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I-9 is a novel phytothorresistance component and a potential host target for a RXL effector. Plos Pathog 7: e1001327
16. Wang Y, Nisibo DL, Juhr M, Govers F, Bouwmeester K (2016) Ectopic expression of Arabidopsis L-type lectin receptor kinase genes LecRK-I-9 and LecRK-I-1X in Nicotiana benthamiana confers phythophthora resistance. Plant Cell Rep 35: 845–855
17. Gouvet A, Senchou V, Govers F, Sanson A, Barre A, Rouge P, Pont-Lezica RP, Canut H (2006) Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140: 81–90
18. Senchou V, Weide R, Carrasco A, Bouysou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61: 502–509
19. Balague C, Gouvet A, Bouchez O, Souriac C, Haget N, Boutet-Mercey S, Govers F, Roby D, Canut H (2017) The Arabidopsis thaliana lectin receptor kinase LecRK-I-9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling. Mol Plant Pathol 18: 937–948
20. Rovenich H, Boshoven JC, Thoma BM (2014) Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Curr Opin Plant Biol 20: 96–103
21. Lo Presti L, Lanver D, Schweiger G, Tanaka S, Liang L, Zucaro A, Reissmann S, Kahmann R, Merchant S (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66: 513–545
22. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of glomus intraradices promotes symbiotic biotrophy. Curr Biol 21: 1204–1209
23. Plett JM, Daguerrre Y, Wittulsky S, Vayssieres A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C et al (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the populus JA26 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci USA 111: 8299–8304
24. Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21: 1197–1203
25. Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, Kesseler L, Kloppholz S, Kuhn H, Requena N et al (2014) The fungal-specific beta-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat Commun 7: 13188
26. Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Pinformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103: 18450–18457
EMBO reports

27. Lahrmann U, Ding Y, Banhara A, Rath M, Hajirezaei MR, Doehlemann S, von Wieren N, Parniske M, Zuccaro A (2013) Host-related metabolic cues affect colonization strategies of a root endophyte. *Proc Natl Acad Sci USA* 110: 13965–13970

28. Zuccaro A, Lahrmann U, Gueldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M et al (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont *Piriformospora indica*. *PLoS Pathog* 7: e1002290

29. Qiang X, Zeichmann B, Reitz MU, Kogel KH, Schafer P (2012) The mutualistic fungus *Piriformospora indica* colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death. *Plant Cell* 24: 794 – 809

30. Lahrmann U, Zuccaro A (2012) Opprimo ergo sum-evasion and suppression in the root endophytic fungus *Piriformospora indica*. *Mol Plant Microbe Interact* 25: 727 – 737

31. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiß M, Carnica S, Zuccaro A (2013) Engymatic sebacinales. *Mycol Prog* 12: 1 – 27

32. Qiang X, Weiss M, Kogel KH, Schafer P (2012) *Piriformospora indica* a mutualistic basidiomycete with an exceptionally large plant host range. *Mol Plant Pathol* 13: 508 – 518

33. Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmuller R (2015) The interaction of *Arabidopsis* with *Piriformospora indica* shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. *BMC Plant Biol* 15: 58

34. Antonioli L, Pacher P, Vizi E, Hasko G (2013) CD39 and CD73 in immunity and inflammation. *Trends Mol Med* 19: 355 – 367

35. Matsuoka I, Ohkubo S (2013) Qiang X, Weiss M, Kogel KH, Schafer P (2011) Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont *Piriformospora indica*. *PLoS Pathog* 7: e1002290

36. Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte *Piriformospora indica* is not required for growth promotion but for biotrophic colonization of barley roots. *New Phytol* 196: 520 – 534

37. Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson S, Ding Y, Scheel D, Herklotz S, Hilbert M, Zuccaro A (2015) Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. *New Phytol* 207: 841 – 857

38. Guo Hj, Glaeser SP, Alabid I, Imani J, Hayghighi H, KAmper P, Kogel KH (2017) The abundance of endofungal bacterium rhizobium radiobacter (syn. *Agrobacterium tumefaciens*) increases in its fungal host *Piriformospora indica* during the tripartite sebacinalean symbiosis with higher plants. *Front Microbiol* 8: 629

39. Sharma M, Schmid M, Rothbailer M, Hause G, Zuccaro A, Imani J, Kaemper P, Domann E, Schafer P, Hartmann A et al (2008) Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. *Cell Microbiol* 10: 2235 – 2246

40. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21: 3674 – 3676

41. Zheng Q, Wang X (2008) COEAST: a web-based software toolkit for Gene Ontology enrichment analysis. *Nucleic Acids Res* 36: W358 – W363

42. Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS ONE* 6: e21800

43. Kim SG, Wang Y, Lee KH, Park ZY, Park J, Wu J, Kwon SJ, Lee YH, Agrawal GK, Rakwal R et al (2013) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. *J Proteomics* 78: 58 – 71

44. Poisson G, Chauve C, Chen X, Bergeron A (2007) FragAnchor: a large-scale predictor of glycosylphosphatidylinositol anchors in eukaryote protein sequences by qualitative scoring. *Genomics Proteomics Bioinformatics* 5: 121 – 130

45. Vogel M, Kowalewski H, Zimmermann H, Hooper NM, Turner AJ (1992) Soluble low-Km 5′-nucleotidase from electric-ray (Torpedo-Marmorata) electric organ and bovine cerebral-cortex is derived from the glycosylphosphatidylinositol-anchored ectoenzyme by phospholipase-C cleavage. *Biochem J* 284: 621 – 624

46. Klemens MR, Sherman WR, Holmberg NJ, Ruedi JM, Low MG, Thompson LF (1990) Characterization of soluble vs membrane-bound human placental 5′-nucleotidase. *Biochem Biophys Res Commun* 172: 1371 – 1377

47. Finci C, Talamo F, Cherri S, Coli M, Floridi A, Ferrara L, Scaloni A (2003) Biochemical and mass spectrometric characterization of soluble ecto-5′-nucleotide from bull seminal plasma. *Biochem J* 372: 443 – 451

48. Knapp K, Zebisch M, Pippel J, El Tayeb A, Muller CE, Strater N (2012) Crystal structure of the human ecto-5′-nucleotidase (CD73): insights into the regulation of purinergic signaling. *Structure* 20: 2161 – 2173

49. Thamavongsaa V, Missiakas DM, Schneeewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. *Science* 342: 863 – 866

50. Hacquard S, Kracher B, Hiruma K, Munch PC, Garrido-Oter R, Thon MR, Weinmann A, Dammt U, Dalley JF, Hainaut M et al (2016) Survival trades in plant roots during colonization by closely related beneficial and pathogenic fungi. *Nat Commun* 7: 11362

51. Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) *Piriformospora indica* enhances plant growth by transferring phosphate. *Plant Signal Behav* 6: 723 – 725

52. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endo-phytic fungus *Piriformospora indica* plays a role in phosphate transport to the host plant. *J Biol Chem* 285: 26532 – 26544

53. Schott S, Valdebenito B, Bustos D, Gomez-Porras JL, Sharma T, Dreyer I (2016) Cooperation through competition - dynamics and microeconomics of a minimal nutrient trade system in arbuscular mycorrhizal symbiosis. *Front Plant Sci* 7: 912

54. Burstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. *Physiol Rev* 87: 659 – 797

55. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. *Purinergic Signal* 8: 437 – 502

56. Strater N (2006) Ecto-5′-nucleotidase: structure function relationships. *Purinergic Signal* 2: 343 – 350

57. Daumann M, Fischer M, Niempk-Witz S, Girke C, Mohlmann T (2015) Apoplastic nucleoside accumulation in *Arabidopsis* leads to reduced photosynthetic performance and increased susceptibility against Botrytis cinerea. *Front Plant Sci* 6: 1158

58. Kim JY, Wu JN, Kwon SJ, Oh H, Lee SE, Kim SG, Wang YM, Agrawal GK, Rakwal R, Kang KY et al (2014) Proteomics of rice and *Cochliobolus miyabeanus* fungal interaction: insight into proteins at intracellular and extracellular spaces. *Proteomics* 14: 2307 – 2318

59. Basiewicz M, Weiss M, Kogel K-H, Langen G, Zorn H, Zuccaro A (2012) Molecular and phenotypic characterization of Sebacinaa uremifera strains associated with orchids, and the description of *Piriformospora williamsii* sp. nov. *Fungal Biol* 116: 204 – 213
60. Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97 – 101
61. Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19: 2293 – 2309
62. Yu Q, Tang C, Chen Z, Kuo J (1999) Extraction of apoplastic sap from plant roots by centrifugation. New Phytol 143: 299 – 304
63. Wang L, Berndt P, Xia X, Kahnt J, Kahmann R (2011) A seven-WD40 protein related to human RACK1 regulates mating and virulence in Ustilago maydis. Mol Microbiol 81: 1484 – 1498
64. Lenz JH, Schuchardt I, Straube A, Steinberg G (2006) A dynein loading zone for retrograde endosome motility at microtubule plus-ends. EMBO J 25: 2275 – 2286
65. Gibson DG, Smith HO, Hutchison CA, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7: 901 – U905
66. Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150: 1111 – 1121
67. Loubradou G, Brachmann A, Feldbrugge M, Kahmann R (2001) A homologue of the transcriptional repressor Sn6p antagonizes cAMP signalling in Ustilago maydis. Mol Microbiol 40: 719 – 730
68. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1: 641 – 646
69. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735 – 743
70. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25: 402 – 408
71. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654: 39 – 54
72. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283 – 291
73. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407 – W410
74. Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37: W510 – W514
75. Loew LM, Schaff JC (2001) The virtual cell: a software environment for computational cell biology. Trends Biotechnol 19: 401 – 406

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.