0 Introduction

Throughout this paper, k is a field, R is an algebra over k, and H is a Hopf algebra over k. We say that $R\#\sigma H$ is the crossed product of R and H if $R\#\sigma H$ becomes an algebra over k by multiplication:

$$(a\#h)(b\#g) = \sum_{h,g} a(h_1 \cdot b)\sigma(h_2, g_1)\#h_3g_2$$

for any $a, b \in R, h, g \in H$, where $\Delta(h) = \sum h_1 \otimes h_2$ (see, [2, Definition 7.1.1].)

Let $lpd(RM)$, $lid(RM)$ and $lfd(RM)$ denote the left projective dimension, left injective dimension and left flat dimension of left R-module M, respectively. Let $lgD(R)$ and $wD(R)$ denote the left global dimension and weak dimension of algebra R, respectively.

Crossed products are very important algebraic structures. The relation between homological dimensions of algebra R and crossed product $R\#\sigma H$ is often studied. J.C.Mcconnell and J.C.Robson in [4, Theorem 7.5.6] obtained that

$$rgD(R) = rgD(R * G)$$

for any finite group G with $|G|^{-1} \in k$, where $R * G$ is skew group ring. It is clear that every skew group ring $R * G$ is a crossed product $R\#\sigma kG$ with trivial σ. Zhong

*This work is supported by National Science Foundation
Yi in [9] obtained that the global dimension of crossed product $R \ast G$ is finite when the global dimension of R is finite and some other conditions hold.

In this paper, we obtain that the global dimensions of R and the crossed product $R\#_\sigma H$ are the same; meantime, their weak dimensions are also the same, when H is finite-dimensional semisimple and cosemisimple Hopf algebra.

1 The homological dimensions of modules over crossed products

In this section, we give the relation between homological dimensions of modules over R and $R\#_\sigma H$.

If M is a left (right) $R\#_\sigma H$-module, then M is also a left (right) R-module since we can view R as a subalgebra of $R\#_\sigma H$.

Lemma 1.1 Let R be a subalgebra of algebra A.

(i) If M is a free A-module and A is a free R-module, then M is a free R-module;
(ii) If P is a projective left $R\#_\sigma H$-module, then P is a projective left R-module;
(iii) If P is a projective right $R\#_\sigma H$-module and H is a Hopf algebra with invertible antipode, then P is a projective right R-module;
(iv) If $P_M : \cdots P_n \overset{d_n}{\rightarrow} P_{n-1} \cdots \rightarrow P_0 \overset{d_0}{\rightarrow} M \rightarrow 0$ is a projective resolution of left $R\#_\sigma H$-module M, then P_M is a projective resolution of left R-module M;
(v) If $P_M : \cdots P_n \overset{d_n}{\rightarrow} P_{n-1} \cdots \rightarrow P_0 \overset{d_0}{\rightarrow} M \rightarrow 0$ is a projective resolution of right $R\#_\sigma H$-module M and H is a Hopf algebra with invertible antipode, then P_M is a projective resolution of right R-module M.

Proof. (i) It is obvious.

(ii) Since P is a projective $R\#_\sigma H$-module, we have that there exists a free $R\#_\sigma H$-module F such that P is a summand of F. It is clear that $R\#_\sigma H \cong R \otimes H$ as left R-module, which implies that $R\#_\sigma H$ is a free R-module. Thus it follows
from part (i) that F is a free R-module and P is a summand of F as R-module. Consequently, P is a projective R-module.

(iii) By [2, Corollary 7.2.11], $R\#_{\sigma}H \cong H \otimes R$ as right R-module. Thus $R\#_{\sigma}H$ is a free right R-module. Using the method in the proof of part (i), we have that P is a projective right R-module.

(iv) and (v) can be obtained by part (ii) and (iii). □

Lemma 1.2 (i) Let R be a subalgebra of A. If M is a flat right (left) A-module and A is a flat right (left) R-module, then M is a flat right (left) R-module;

(ii) If F is a flat left $R\#_{\sigma}H$-module, then F is a flat left R-module;

(iii) If F is a flat right $R\#_{\sigma}H$-module and H is a Hopf algebra with invertible antipode, then F is a flat right R-module;

(iv) If

$\mathcal{F}_M : \cdots F_n \xrightarrow{d_n} F_{n-1} \cdots \rightarrow F_0 \xrightarrow{d_0} M \rightarrow 0$

is a flat resolution of left $R\#_{\sigma}H$-module M, then \mathcal{F}_M is a flat resolution of left R-module M;

(v) If

$\mathcal{F}_M : \cdots F_n \xrightarrow{d_n} F_{n-1} \cdots \rightarrow F_0 \xrightarrow{d_0} M \rightarrow 0$

is a flat resolution of right $R\#_{\sigma}H$-module M and H is a Hopf algebra with invertible antipode, then \mathcal{F}_M is a flat resolution of M;

Proof. (i) We only show part (i) in the case which M is a right A-module and A is a right R-module; the other cases can similarly be shown. Let

$0 \rightarrow X \xrightarrow{f} Y$

be an exact left $R\#_{\sigma}H$-module sequence. By assumptions,

$0 \rightarrow A \otimes_R X \xrightarrow{A \otimes f} A \otimes_R Y$

and

$0 \rightarrow M \otimes_A (A \otimes_R X) \xrightarrow{M \otimes (A \otimes f)} M \otimes_A (A \otimes_R Y)$

are exact sequences. Obviously,

$M \otimes_A (A \otimes_R X) \cong M \otimes_R X \quad \text{and} \quad M \otimes_A (A \otimes_R Y) \cong M \otimes_R Y$
as additive groups. Thus

\[0 \rightarrow M \otimes_R X \xrightarrow{M \otimes f} M \otimes_R Y \]

is an exact sequence, which implies \(M \) is a flat \(R \)-module.

(ii)-(v) are immediate consequence of part (i) \(\Box \)

The following is a immediate consequence of Lemma 1.1 and 1.2.

Proposition 1.3 (i) If \(M \) is a left \(R#_\sigma H \)-module, then
\[\text{lpd}(RM) \leq \text{lpd}(R#_\sigma H M) \]

(ii) If \(M \) is a right \(R#_\sigma H \)-module and \(H \) is a Hopf algebra with invertible antipode, then
\[\text{rpd}(MR) \leq \text{rpd}(M R#_\sigma H) \]

(iii) If \(M \) is a left \(R#_\sigma H \)-module, then
\[\text{lfd}(RM) \leq \text{lfd}(R#_\sigma H M) \]

(iv) If \(M \) is a right \(R#_\sigma H \)-module and \(H \) is a Hopf algebra with invertible antipode, then
\[\text{rfd}(MR) \leq \text{rfd}(M R#_\sigma H) \]

Lemma 1.4 Let \(H \) be a finite-dimensional semisimple Hopf algebra, and let \(M \) and \(N \) be left \(R#_\sigma H \)-modules. If \(f \) is an \(R \)-module homomorphism from \(M \) to \(N \), and
\[\bar{f}(m) = \sum \gamma^{-1}(t_1)f(\gamma(t_2)m) \]
for any \(m \in M \), then \(\bar{f} \) is an \(R#_\sigma H \)-module homomorphism from \(M \) to \(N \), where \(t \in f_H^* \) with \(\epsilon(t) = 1 \), and \(\gamma \) is a map from \(H \) to \(R#_\sigma H \) sending \(h \) to \(1#h \).

Proof. (see, the proof of [2, Theorem 7.4.2]) For any \(a \in R, h \in H, m \in M \), we see that
\[
\bar{f}(am) = \sum \gamma^{-1}(t_1)f((t_2 \cdot a)\gamma(t_3)m) \\
= \sum \gamma^{-1}(t_1)(t_2 \cdot a)f(\gamma(t_3)m) \\
= \sum a\gamma^{-1}(t_1)f(\gamma(t_2)m) \\
= a\bar{f}(m)
\]
and
\[\bar{f}(\gamma(h)m) = \sum \gamma^{-1}(t_1)f(\gamma(t_2)\gamma(h)m) \]
\[= \sum \gamma^{-1}(t_1)f(\sigma(t_2, h_1)\gamma(t_3 h_2)m) \text{ by } [2, \text{ Definition 7.1.1}] \]
\[= \sum \gamma^{-1}(t_1)\sigma(t_2, h_1)f(\gamma(t_3 h_2)m) \]
\[= \sum \gamma(h_1)\gamma^{-1}(t_1 h_2)f(\gamma(t_2 h_3)m) \]
\[= \sum \gamma(h)\gamma^{-1}(t_1)f(\gamma(t_2)m) \text{ since } \sum h_1 \otimes t_1 h_2 \otimes t_2 h_3 = \sum h \otimes t_1 \otimes t_2 \]
\[= \gamma(h)\bar{f}(m) \]

Thus \(\bar{f} \) is an \(R^\# \sigma H \)-module homomorphism. \(\square \)

In fact, we can obtain a functor by Lemma 1.4. Let \(R^\# \sigma H \mathcal{M} \) denote the full subcategory of \(R \mathcal{M} \); its objects are all of left \(R^\# \sigma H \)-modules and its morphisms from \(M \) to \(N \) are all of \(R \)-module homomorphisms from \(M \) to \(N \). For any \(M, N \in \text{ob} R^\# \sigma H \mathcal{M} \) and \(R \)-module homomorphism \(f \) from \(M \) to \(N \), we define that

\[F : R^\# \sigma H \mathcal{M} \longrightarrow R^\# \sigma H \mathcal{M} \]

such that

\[F(M) = M \quad \text{and} \quad F(f) = \bar{f}, \]

where \(\bar{f} \) is defined in Lemma 1.4. It is clear that \(F \) is a functor.

Lemma 1.5 Let \(H \) be a finite-dimensional semisimple Hopf algebra, and let \(M \) and \(N \) be right \(R^\# \sigma H \)-modules. If \(f \) is an \(R \)-module homomorphism from \(M \) to \(N \), and

\[\bar{f}(m) = \sum f(m\gamma^{-1}(t_1))\gamma(t_2) \]
for any \(m \in M \), then \(\bar{f} \) is an \(R\#_\sigma H \)-module homomorphism from \(M \) to \(N \), where \(t \in \int_H \) with \(\epsilon(t) = 1 \), \(\gamma \) is a map from \(H \) to \(R\#_\sigma H \) sending \(h \) to \(1\# h \).

Proof. (see, the proof of [2, Theorem 7.4.2]) For any \(a \in R, h \in H, m \in M \), we see that

\[
\bar{f}(ma) = \sum f(ma\gamma^{-1}(t_1))\gamma(t_2) = \sum \sum f(m\gamma^{-1}(t_1)(t_2 \cdot a))\gamma(t_3) = \sum \sum f(m\gamma^{-1}(t_1))(t_2 \cdot a)\gamma(t_3) = \sum f(m\gamma^{-1}(t_1))\gamma(t_2)a = \bar{f}(m)a
\]

and

\[
\bar{f}(m\gamma(h)) = \sum f(m\gamma(h)\gamma^{-1}(t_1))\gamma(t_2) = \sum f(m\gamma(h_1)\gamma^{-1}(t_1h_2))\gamma(t_2h_3) = \sum f(m\gamma^{-1}(t_1)\sigma(t_2, h_1))\gamma(t_3h_2) = \sum f(m\gamma^{-1}(t_1))\gamma(t_2)\gamma(h) = \bar{f}(m))\gamma(h)
\]

Thus \(\bar{f} \) is an \(R\#_\sigma H \)-module homomorphism. \(\Box \)

Proposition 1.6 Let \(H \) be a finite-dimensional semisimple Hopf algebra.

(i) If \(P \) is a left (right) \(R\#_\sigma H \)-modules and a projective left (right) \(R \)-module, then \(P \) is a projective left (right) \(R\#_\sigma H \)-module;

(ii) If \(E \) is a left (right) \(R\#_\sigma H \)-modules and an injective left (right) \(R \)-module, then \(E \) is an injective left (right) \(R\#_\sigma H \)-module;

(iii) If \(F \) is a left (right) \(R\#_\sigma H \)-modules and a flat left (right) \(R \)-module, then \(F \) is a flat left (right) \(R\#_\sigma H \)-module.

Proof. (i) Let

\[
X \xrightarrow{f} Y \rightarrow 0
\]
be an exact sequence of left (right) $R\#_{\sigma}H$-modules and g be a $R\#_{\sigma}H$-module homomorphism from P to Y. Since P is a projective left (right) R-module, we have that there exists a R-module homomorphism φ from P to X, such that

$$f\varphi = g.$$

By Lemma 1.4 and 1.5, there exists a $R\#_{\sigma}H$-module homomorphism $\bar{\varphi}$ from P to X such that

$$f\bar{\varphi} = g.$$
Thus \(P \) is a projective left (right) \(R#_\sigma H \)-module.

Similarly, we can obtain the proof of part (ii).

(iii) Since \(F \) is a flat left (right) \(R \)-module, we have the character module \(\text{Hom}_\mathbb{Z}(F, \mathbb{Q}/\mathbb{Z}) \) of \(F \) is a injective left (right) \(R#_\sigma H \)-module. By part (ii), \(\text{Hom}_\mathbb{Z}(F, \mathbb{Q}/\mathbb{Z}) \) is a injective left (right) \(R#_\sigma H \)-module. Thus \(F \) is a flat left (right) \(R#_\sigma H \)-module. ✷

Proposition 1.7 Let \(H \) be a finite-dimensional semisimple Hopf algebra. Then for left (right) \(R#_\sigma H \)-modules \(M \) and \(N \),

\[
\text{Ext}^n_{R#_\sigma H}(M, N) \subseteq \text{Ext}^n_R(M, N),
\]

where \(n \) is any natural number.

Proof. We view the \(\text{Ext}^n(M, N) \) as the equivalent classes of \(n \)- extension of \(M \) and \(N \) (see, [8, Definition 3.3.7]). We only prove this result for \(n = 1 \). For other cases, we can similarly prove. We denote the equivalent classes in \(\text{Ext}^1_{R#_\sigma H}(M, N) \) and \(\text{Ext}^1_R(M, N) \) by \([E] \) and \([F]' \), respectively, where \(E \) is an extension of \(R#_\sigma H \)-modules \(M \) and \(N \), and \(F \) is an extension of \(R \)-modules \(M \) and \(N \). We define a map

\[
\Psi : \text{Ext}^1_{R#_\sigma H}(M, N) \to \text{Ext}^1_R(M, N), \quad \text{by sending } [E] \text{ to } [E]'.
\]

Obviously, \(\Psi \) is a map. Now we show that \(\Psi \) is injective. Let

\[
0 \to M \xrightarrow{f} E \xrightarrow{g} N \to 0 \quad \text{and} \quad 0 \to M \xrightarrow{f'} E' \xrightarrow{g'} M \to 0
\]

are two extensions of \(R#_\sigma H \)-modules \(M \) and \(N \), and they are equivalent in \(\text{Ext}^1_R(M, N) \). Thus there exists \(R \)-module homomorphism \(\varphi \) from \(E \) to \(E' \) such that

\[
\varphi f = f' \quad \text{and} \quad \varphi g = g'.
\]

By lemma 1.4 , there exists \(R#_\sigma H \)-module homomorphism \(\tilde{\varphi} \) from \(E \) to \(E' \) such that

\[
\tilde{\varphi} f = f' \quad \text{and} \quad \tilde{\varphi} g = g'.
\]

Thus \(E \) and \(E' \) is equivalent in \(\text{Ext}^1_{R#_\sigma H}(M, N) \), which implies that \(\Psi \) is injective. □
Lemma 1.8 For any \(M \in \mathcal{M}_{R \#_\sigma H} \) and \(N \in \mathcal{M}_{R \#_\sigma H} \), there exists an additive group homomorphism
\[
\xi : M \otimes_R N \to M \otimes_{R \#_\sigma H} N
\]
by sending \((m \otimes n)\) to \(m \otimes n\), where \(m \in M, n \in N\).

Proof. It is trivial. \(\square \)

Proposition 1.9 If \(M \) is a right \(R \#_\sigma H \)-module and \(N \) is a left \(R \#_\sigma H \)-module, then there exists additive group homomorphism
\[
\xi_* : \text{Tor}^R_n(M, N) \to \text{Tor}^{R \#_\sigma H}_n(M, N)
\]
such that \(\xi_*([z_n]) = [\xi(z_n)] \), where \(\xi \) is the same as in Lemma 1.8.

Proof. Let
\[
\mathcal{P}_M : \cdots P_n \overset{d_n}{\to} P_{n-1} \cdots \to P_0 \overset{d_0}{\to} M \to 0
\]
is a projective resolution of right \(R \#_\sigma H \)-module \(M \), and set
\[
T = - \otimes_{R \#_\sigma H} N \quad \text{and} \quad T^R = - \otimes_R N.
\]
We have that
\[
T \mathcal{P}_M : \cdots T(P_n) \overset{Td_n}{\to} T(P_{n-1}) \cdots \to T(P_1) \overset{Td_1}{\to} TP_0 \to 0
\]
and
\[
T^R \mathcal{P}_M : \cdots T^R(P_n) \overset{T^{Rd_n}}{\to} T^R(P_{n-1}) \cdots \to T^R(P_1) \overset{T^{Rd_1}}{\to} T^R(P_0) \to 0
\]
are complexes. Thus \(\xi \) is a complex homomorphism from \(T^R \mathcal{P}_M \) to \(T \mathcal{P}_M \), which implies that \(\xi_* \) is an additive group homomorphism. \(\square \)

2 The global dimensions and weak dimensions of crossed products

In this section we give the relation between homological dimensions of \(R \) and \(R \#_\sigma H \).
Lemma 2.1 If \(R \) and \(R' \) are Morita equivalent rings, then

(i) \(\text{rgD}(R) = \text{rgD}(R') \);
(ii) \(\text{lgD}(R) = \text{lgD}(R') \);
(iii) \(wD(R) = wD(R') \).

Proof. It is an immediate consequence of [1, Proposition 21.6, Exercise 22.12] \(\square \)

Theorem 2.2 Let \(H \) be a finite-dimensional semisimple Hopf algebra,

(i) \(\text{rgD}(R^\#_{\sigma}H) \leq \text{rgD}(R) \);
(ii) \(\text{lgD}(R^\#_{\sigma}H) \leq \text{lgD}(R) \);
(iii) \(wD(R^\#_{\sigma}H) \leq wD(R) \).

Proof. (i) When \(\text{lgD}(R) \) is infinite, obviously part (i) holds. Now we assume \(\text{lgD}(R) = n \). For any left \(R^\#_{\sigma}H \)-module \(M \), and a projective resolution of left \(R^\#_{\sigma}H \)-module \(M \):

\[
\mathcal{P}_M : \quad \cdots P_n \xrightarrow{d_n} P_{n-1} \cdots \xrightarrow{d_0} P_0 \xrightarrow{d_0} M \to 0,
\]

we have that \(\mathcal{P}_M \) is also a projective resolution of left \(R \)-module \(M \) by Lemma 1.1. Let \(K_n = \ker d_n \) be syzygy \(n \) of \(\mathcal{P}_M \). Since \(\text{lgD}(R) = n \), \(\text{Ext}^{n+1}_R(M, N) = 0 \) for any left \(R \)-module \(N \) by [8, Corollary 3.3.6]. Thus \(\text{Ext}^1_R(K_n, N) = 0 \), which implies \(K_n \) is a projective \(R \)-module. By Lemma 1.6 (i), \(K_n \) is a projective \(R^\#_{\sigma}H \)-module and \(\text{Ext}^{n+1}_{R^\#_{\sigma}H}(M, N) = 0 \) for any \(R^\#_{\sigma}H \)-module \(N \). Consequently,

\[\text{lgD}(R^\#_{\sigma}H) \leq n = \text{lgD}(R) \quad \text{by [8, Corollary 3.3.6]} . \]

We complete the proof of part (i).
We can similarly show part (ii) and part (iii). \(\square \)

Theorem 2.3 Let \(H \) be a finite-dimensional semisimple and cosemisimple Hopf algebra. Then

(i) \(\text{rgD}(R) = \text{rgD}(R^\#_{\sigma}H) \);
(ii) \(\text{rgD}(R) = \text{rgD}(R^\#_{\sigma}H) \);
(iii) \(wD(R) = wD(R^\#_{\sigma}H) \).
Proof. (i) By dual theorem (see, [2, Corollary 9.4.17]), we have \((R\#\sigma H)\#H^*\) and \(R\) are Morita equivalent algebras. Thus \(\lg D(R) = \lg D((R\#\sigma H)\#H^*)\) by Lemma 2.1 (i). Considering Theorem 2.2 (i), we have that

\[
\lg D((R\#\sigma H)\#H^*) \leq \lg D(R\#\sigma H) \leq \lg D(R).
\]

Consequently,

\[
\lg D(R) = \lg D(R\#\sigma H).
\]

Similarly, we can prove (ii) and (iii). \(\square\)

Corollary 2.4 Let \(H\) be a finite-dimensional semisimple Hopf algebra.

(i) If \(R\) left (right) semi-hereditary, then so is \(R\#\sigma H\);

(ii) If \(R\) is von Neumann regular, then so is \(R\#\sigma H\).

Proof. (i) It follows from Theorem 2.2 and [8, Theorem 2.2.9].

(ii) It follows from Theorem 2.2 and [8, Theorem 3.4.13]. \(\square\)

By the way, part (ii) of Corollary 2.4 give one case about the semiprime question in [2, Question 7.4.9]. That is, If \(H\) is a finite-dimensional semisimple Hopf algebra and \(R\) is a von Neumann regular algebra (notice that every von Neumann regular algebra is semiprime), then \(R\#\sigma H\) is semiprime.

Corollary 2.5 Let \(H\) be a finite-dimensional semisimple and cosemisimple Hopf algebra. Then

(i) \(R\) is semisimple artinian iff \(R\#\sigma H\) is semisimple artinian;

(ii) \(R\) is left (right) semi-hereditary iff \(R\#\sigma H\) is left (right) semi-hereditary;

(iii) \(R\) is von Neumann regular iff \(R\#\sigma H\) is von Neumann regular.

Proof. (i) It follows from Theorem 2.3 and [8, Theorem 2.2.9].

(ii) It follows from Theorem 2.3 and [8, Theorem 2.2.9].

(iii) It follows from Theorem 2.3 and [8, Theorem 3.4.13]. \(\square\)

If \(H\) is commutative or cocommutative, then \(S^2 = id_H\) by [7]. Consequently, by [6, Proposition 2 (c)], \(H\) is semisimple and cosemisimple iff the character \(ch_{ark}\) of \(k\) does not divides \(dim H\). Considering Theorem 2.3 and Corollary 2.5, we have:
Corollary 2.6 Let H be a finite-dimensional commutative or cocommutative Hopf algebra. If the character $\text{char} k$ of k does not divides $\dim H$, then

(i) $\text{rg} D(R) = \text{rg} D(R \#_{\sigma} H)$;
(ii) $\text{rg} D(R) = \text{rg} D(R \#_{\sigma} H);$
(iii) $wD(R) = wD(R \#_{\sigma} H);$
(iv) R is semisimple artinian iff $R \#_{\sigma} H$ is semisimple artinian;
(v) R is left (right) semi-hereditary iff $R \#_{\sigma} H$ is left (right) semi-hereditary;
(vi) R is von Neumann regular iff $R \#_{\sigma} H$ is von Neumann regular.

Since group algebra kG is a cocommutative Hopf algebra, we have that

$$\text{rg} D(R) = \text{rg} D(R * G).$$

Thus Corollary 2.6 implies in [4, Theorem 7.5.6].

References

[1] F.W.Anderson and K.P.Fuller, Rings and categories of modules, Springer-Verlag , New York, 1974

[2] Montgomery, Hopf algebras and their actions on rings, CBMS Number 82, Published by AMS, 1992.

[3] J.J.Rotman, An introduction to homological algebras, Academic press, New York, 1979.

[4] J.C.McCommell and J.C.Robson, Noncommutative Noetherian rings, John Wiley & Sons, New York, 1987.

[5] J.J.Rotman, An introduction to homological algebras, Academic press, New York, 1979.

[6] D.E.Radford, The trace function and Hopf algebras, J. algebra 163 (1994), 583-622.
[7] M.E.Sweedler, Hopf algebras, Benjamin, New York, 1969.

[8] Wenting Tong, An introduction to homological algebras, Chinese education press, 1998.

[9] Zhong Yi, Homological dimension of skew group rings and crossed products, Journal of algebra, 164 1984, 101-123.