Effects of Medicinal Plants and Flavonoids on Parkinson’s Disease: A Review on Basic and Clinical Evidences

Mohammad Reza Khazdair, Majid Kianmehr, Akbar Anaeeigoudari

1 Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
2 Esfarayen Faculty of Medical Sciences, Esfarayen, Iran.
3 Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.

Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder which is characterized by typical symptoms including gradual progressive muscle rigidity, tremor and loss of motor skills. Although there is no definitive cure for PD, the extract of some medicinal plants and their ingredients have been suggested to relieve its symptoms and to prevent disability in patients. This review is focused on therapeutic effects of some medicinal plants and their ingredients on PD. The findings presented in this review were collected from experimental and clinical studies in databases including PubMed, Web of Science and Google Scholar until the end of May 2019. The keywords “neurotoxicity” or “Parkinson’s disease” or “neuroprotective” and “Medicinal plants” and “Flavonoids” were searched. Based on the results of animal and clinical studies, the extract of medicinal plants and their components which are discussed in this review have neuroprotective effects against PD. These protective properties mainly are mediated through inhibition of dopamine metabolizing enzymes, reduction oxidant markers, increase of antioxidant agents and suppression of neuro-inflammation.

Introduction
Parkinson’s disease (PD) is considered as the most common neuronal destructive disease after Alzheimer’s disease (AD). This neurodegenerative disorder results from progressive damage in dopamine secreting cells in substantia nigra. Oxidative stress and neuro-inflammation have been recognized as key causes in dopaminergic neurons death in various forms of PD. Researchers have been suggested that overload of reactive oxygen species (ROS) followed by brain ischemia can cause neurotoxicity resulting in PD. In addition, the contribution of nuclear factor kB (NF-kB), an effective key factor in expression of pro-inflammatory cytokines, to neuronal death in PD has been understood. The harmful impact of inflammatory mediators including tumor necrosis factors-α, interleukin (IL)-1β and IL-6, oxygen free radicals and inducible nitric oxide synthase on dopaminergic cells in substantia nigra pars compacta has been also documented. The drugs used for the cure of PD such as levodopa (L-dopa) and monoamine oxidase B (MAO-B) inhibitors and dopamine agonists medulate the brain dopamine content or trigger intracellular signalings through activating the dopamine receptors. Anticholinergic drugs have been also suggested to have anti-parkinsonian effects. These medications have beneficial effects on rigidity and tremor in PD patients. In addition, antioxidant and anti-inflammatory agents have been shown to play a vital role in survival of neurons and alleviation of PD symptoms. Recently, the strong neuro-protective effect of medicinal plants extracts and phytochemicals in reduction of PD signs due to antioxidant and anti-inflammatory properties has been highlighted in various studies. Phytochemicals such as thymoquinone (TQ), crocin, curcumin and polyphenols have been shown to have cosiderable protective effects on nervous system via moulation oxidative stress and inflammatory responses. Therefore, the present review was aimed to investigate the therapeutic effects of medicinal plants and ingredients on PD.

Methods
The data narrated in our review were assembled from databases PubMed, Web of Science and Google Scholar until the end of May 2019. Data consist of animal and clinical researches. Letter to the editors and non-English language articles were not considered.

Mucuna pruriens
Mucuna pruriens from the Fabaceae family has been used in Indian traditional medicine for curing diseases such as PD (see Figure 1). One of the principal constitutes of this plant is L-dopa. The administration of food endocarp of M. pruriens seeds (5 g/kg) combined with carbidopa (50...
mg/kg) had better effect than L-dopa in the test of free contralateral rotation induced by 6-hydroxydopamine (6-OHDA) in mice.\(^\text{23}\) \(M.\) pruriens seeds extract (400 mg/kg) also applied a significant anti-Parkinson effect in rats.\(^\text{24}\) Treatment with \(M.\) pruriens powder (2.5 or 5 g/kg/d) remarkably elevated the endogenous level of L-dopa, dopamine, norepinephrine and serotonin in the substantia nigra in 6-OHDA-induced PD rat model.\(^\text{25}\)

The HP-200 is a commercial preparation derived from \(M.\) pruriens in Ayurveda which has been proposed to have anti-Parkinson effects. The impact of \(M.\) pruriens endocarp in form of HP-200 (2.5, 5 or 10 g/kg/d) on the content of monoaminergic neurotransmitters in the different areas of the rats’ brain such as substantia nigra, striatum, cortex and hippocampus was pursued. Based on the results, this form of \(M.\) pruriens noticeably elevated the dopamine concentration in brain cortex of rats. Data also showed that this drug did not affect the concentration of L-dopa, dopamine, serotonin and norepinephrine in the nigrostriatal pathway of rats. These findings emphasize that the anti-Parkinson properties of \(M.\) pruriens endocarp may be mediated via phytochemicals other than L-dopa or it likely can amplify the L-dopa effects.\(^\text{26}\)

The clinical and pharmacokinetics effect of L-dopa followed by two doses of \(M.\) pruriens seeds powder (15 and 30 g) was assessed and compared with single doses of standard L-dopa/carbidopa (LD/CD) (200/50 mg) in PD patients. The results revealed that 30 g of \(M.\) pruriens seeds powder formulation possesses a marked quantity of L-dopa. This property was accompanied with the decreased duration without change of dyskinesia intensity in L-dopa response with respect to standard dose of this drug. These results suggest that this important and natural resource of L-dopa can possess helpful effects on L-dopa preparation in long lasting management of PD patients.\(^\text{27}\)

Oral administration of \(M.\) pruriens powdered seeds (15 to 40 g) showed symptomatic control with the 4.5 to 5.5% of L-dopa in 33 patients with PD in a clinical trial.\(^\text{28}\) In the case report, carbidopa significantly led to the betterment of motor activities in a 48-year-old Parkinson woman when it was added to \(M.\) pruriens. This finding confirms that usage of a dopa-decarboxylase inhibitor to \(M.\) pruriens can be helpful for management of PD patients who are not interested to begin L-dopa.\(^\text{29}\) The protective effects of \(M.\) pruriens on PD have been presented in Table 1.

\(V.\) faba L.

\(V.\) faba which is known as broad beans, horse beans, or field beans is used as food for many years in the Mediterranean area, India, Pakistan, and China (Figure 2). The seeds of this rich natural source of L-dopa are full of proteins, carbohydrates, fiber, and vitamins.\(^\text{30}\) In a report, the usage of \(V.\) faba in remedy of PD patients resulted in ameliorating motor activity. This effect was comparable with treatment by L-dopa (125 mg) plus carbidopa (12.5 mg). It was indicated that the severity of dyskinesia in \(V.\) faba-treated three patients was similar to those of treated by L-dopa. In addition, plasma content of L-dopa significantly was high after \(V.\) faba ingestion in PD patients.\(^\text{31}\) In another study, administration of \(V.\) faba (250 g cooked) after 12 hours off medication in healthy volunteers (n=5) and PD patients (n=6) improved the clinical signs and enhanced the plasma content of L-dopa.\(^\text{32}\) Single dose of \(V.\) faba mixture (200 g) plus carbidopa in six PD patients showed the increased duration of motor response to \(V.\) faba compared with L-dopa medication. The prolonged motor response to \(V.\) faba corresponded to a much higher plasma concentration of L-dopa.\(^\text{33}\) These scientific documents exhibit that the consumption of \(V.\) faba can lead to a considerable enhancement in plasma concentration of L-dopa along with improvement in motor proficiency in PD patients. The protective effects of \(V.\) faba on PD were summarized in Table 2.

\(N.\) sativa L.

\(N.\) sativa is one of plant species of Ranunculaceae family which is flourished in the most part of world (Figure 3). The seeds of this medicinal plant are added as a food additive and spice to Persian foods including bread, pickle and salads.\(^\text{34}\) Ethanolic extracts of \(N.\) sativa (200 and

Figure 1. Mucuna pruriens.

Figure 2. Vicia faba L.

Figure 3. Nigella sativa L.
400 mg/kg) remarkably attenuated catalepsy in rats group extract compared to those treated by chlorpromazine (CPZ) (3 mg/kg i.p.). N. sativa extracts also significantly decremented the amount of lipid peroxidation and level of nitrite and augmented glutathione vis-à-vis CPZ-treated group.35

The protective effects of N. sativa and its effective ingredient, TQ, on central nervous system (CNS) disorders such as neurotoxicity, epilepsy, PD and AD have been reviewed.36,37 N. sativa and TQ have been also documented to possess the anti-inflammatory, anti-oxidant, anti-cancer, anti-genotoxic and hepato-protective effects.38-40 It has been also reported that N. sativa oil can protect nervous system against Aβ-caused neurotoxicity through antioxidant effect in primary cerebellar neurons in rats as well as its effect on learning and memory.41 Oral administration of N. sativa hydroalcoholic seeds extract (100 and 200 mg/kg) has been reported to improve perphenazine-induced muscle rigidity score in mice, while in animals treated with 50 mg/kg of this plant extract had no any significant effect on this parameter compared to control group.42

Administration of N. sativa capsules (500 mg) twice daily for 9 weeks in 40 healthy volunteers increased attention, cognition and memory with respect to the placebo (500 mg) capsules-treated group.43 Similarly, in the other clinical study the effects of N. sativa capsules (500 mg) on healthy adolescent 14 - 17 years old (n=48) once daily for one month were evaluated. All healthy adolescent were managed for mood, cognition and anxiety with the relative tests in the start and the end of the study. N. sativa capsules (500 mg) decreased anxiety, stabilized mood and modulated cognition at the end of study.44

Therapeutic effect of TQ on behavioral, cellular changes and oxidative stress biomarkers in 6-OHDA-induced Parkinson’s rat model was assessed. Pretreatment with TQ (5 and 10 mg/kg) reduced the level of malondialdehyde (MDA) and prevented the loss of substantia nigra pars compact neurons.45 The neuro-protective effects of TQ against 1-methyl-4-phenylpyridinium (MPP+) and rotenone caused-toxicity in cell culture of dopaminergic cells of mouse mesencephalic were also investigated. Treatment with TQ (0.1 and 1 μM) saved about 25% of dopaminergic cultures (THir neurons) against MPP+-induced cell death. Furthermore, TQ (0.1, 1 and 10 μM) in a dose-dependent manner protected the THir neurons respectively 65%, 74% and 79% against rotenone-induced toxicity.46 The results of other study suggested that TQ had neuro-protective potential and could exert as a promising therapeutic agent to reduce the risk of developing of AD and other neurodegenerative disorders of the CNS such as PD.47

Carvacrol (CAR) is a monoterpenic phenol which is found in many aromatic plants such as N. sativa. Anti-inflammatory and antioxidant effects of carvacrol have been showed previously.48-50

In a study, CAR (40 mg/kg) induced a considerable neuro-protective effect against the unilateral 6-OHDA-caused Parkinson model in male mice. This protective effect was associated with down-regulation of caspase -3.51 Intrapretoneal administration of CAR (12.5 or 25 mg/kg) in a reserpine (RES)-triggered rat model of PD could prevent the increase in catalepsy behavior and number of vacuous chewing movements, but could not revert the decreased locomotor activity in open field test. Furthermore, CAR impeded the decrease in tyrosine hydroxylase (TH) immunostaining induced by RES in the substantia nigra pars compact and dorsal striatum.52

Pretreatment with CAR (10 mg/kg/d) also attenuated the neurotoxicity effect of 6-OHDA in hemi-Parkinson rat model. In this study, CAR significantly decreased the levels of MDA and nitrite content and enhanced catalase activity in midbrain. These results indicated that protective effect of CAR probably was mediated through ameliorating oxidative stress.53 Administration of CAR (25, 50 and 100 mg/kg, ip) for 6 weeks in 6-OHDA-lesioned rat model

| Table 1. The protective effect of Mucuna pruriens on PD |
|------------------------------------|---------------|
| **Doses used** | **Model of study** | **Effects** | **Ref.** |
| 5 g/kg + carbidopa | Mice | Improvement in the test of free contralateral rotation induced by 6-OHDA compared with L-dopa | 23 |
| 400 mg/kg | Rat | Significant anti-Parkinson effect | 24 |
| 2.5 or 5 g/kg/d | Rat | Restoration of endogenous neurotransmitters such as, L-dopa, dopamine, norepinephrine and serotonin content in the substantia nigra | 25 |
| 2.5, 5 or 10 g/kg/d of Endocarp form of HP-200 | Rat | Elevation of the dopamine concentration in brain cortex. | 26 |
| 30 g | Human | Induction of marked quantity of L-dopa accompanied with the decreased duration without change of dyskinesia intensity in L-dopa response with respect to standard dose of this drug | 27 |
| 15 to 40 g | Human | Symptomatic control with the 4.5% to 5.5% of L-dopa | 28 |

| Table 2. The protective effects of V. faba on PD |
|------------------------------------|---------------|
| **Doses used** | **Model of study** | **Effects** | **Ref.** |
| 250 g cooked | Human | Improvement of the clinical signs in PD patients and enhancement of plasma level of L-dopa | 32 |
| 200 g + carbidopa | Human | Increase in duration of motor response along with enhancement in plasma concentration of L-dopa | 32 |
of PD ameliorated memory deficits. The results showed that CAR did not affect the rotation and hyperalgesia in lesioned rats. Based on results, CAR in mentioned doses also could not reduce the decreased level of total thiol in the striatum of animals treated with 6-OHDA. The protective effect of *N. sativa* and its components on PD were shown in Table 3.

Crocus sativus L.

Crocus sativus or saffron from the Iridaceae family was cultivated in many countries including Iran, Turkey, Afghanistan and Spain (Figure 4). C. sativus and its constituents are used to treat cognitive disorders and some neural disorders. This herb is also used as smooth muscle relaxant agents in Iranian traditional medicine. Saffron and its components have been suggested to have useful effects in neurodegenerative disorders in animal studies. The protective effect of *C. sativus* on dopaminergic cells in the substantia nigra pars compact and retina in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced acute PD was studied. Administration of *C. sativus* (0.01% w/v) in drinking water saved dopaminergic cells of the substantia nigra pars compact and retina from MPTP-induced injury in mice.

Formation and accumulation of toxic amyloid structures can result in induction of neurodegenerative disorders including PD and AD. Crocin and safanal, two main components of *C. sativus*, have been reported to inhibit fibrillation of apo-α-lactalbumin causing neuronal damage under amyloidogenic conditions. Treatment with *C. sativus* (50 mg/kg) has been also shown to prevent the development of PD in lead (Pb)-induced damage in nervous system. This effect was associated with the increase of TH level in various brain areas including substantia nigra compacta, locus coeruleus, dorsal striatum and medial forebrain bundle of mice.

The oral administration of crocin (30 mg/kg) on MPTP-stimulated Parkinson model in male BALB/c mice after 15 days treatment resulted in the increment of staying time on the wire in the hanging test. Treatment with crocin also improved MPTP-induced cell death in the substantia nigra compacta of mice. Intraperitoneal administration of crocin (30 and 60 mg/kg/d) could also diminish the thiobarbituric acid reactive substance and nitrite levels in the hippocampus after 6 weeks in 6-OHDA model of PD in rats. Intraperitoneal injection of *C. sativus*-extracted crocetin (25, 50 and 75 mg/kg) has been also indicate to have neuro-protective effects in Parkinsonism rat model caused by 6-OHDA. In this study, the enhanced level of antioxidant indicators and dopamine content was reported. Crocetin also has been shown to rescue substantia nigra compacta against thiobarbituric acid when it was intraperitoneally infused. The Results of research studies indicated that crocin derived from *C. sativus* (10 µM) protects the PC12 cells against MPP+-caused injury and can improve cytotoxicity related to endoplasmic reticulum. The protective effects of *C. sativus* and crocin on neurotoxicity and PD has been condensed in Table 4.

Curcuma longa

Curcuma longa, turmeric, is widely grown and cultivated as spice in the south-east Asian countries (Figure 5). This medicinal plant possesses natural polyphenol and non-flavonoid modulating oxidative damage of nervous system and other body organs. *C. longa* has been also realized to have several pharmacological effects including anti-inflammatory and anti-cancer. In a study, the aqueous extract of *C. longa* (560 mg/kg) significantly could inhibit the activity of dopamine metabolizing enzyme, monoamine oxidase A (MAO-A), in the brain of mice. The *C. longa* extract (0.001, 0.01, 0.05, 0.1, 0.2 and 0.4 mg/mL) also ameliorated salolinol-induced toxicity in human neuroblastoma cells (SH-SY5Y cells), reduced

Table 3. The protective effect of *N. sativa* and its components on neurotoxicity and Parkinson’s disease

Plants /component	Dose	Model of study	Effects	Ref.
Nigella sativa				
	200 and 400 mg/kg	Rat	Attenuation of catalepsy, reduction of the amount of lipid peroxidation and nitrite level, augmentation of glutathione content	45
	100 and 200 mg/kg	Mice	Improvement of perphenazine-induced muscle rigidity score	43
	500 mg/kg	Human	Enhancement of attention, memory and cognition	44
	500 mg/kg	Human	Decrease of anxiety, stabilization of mood and modulation of cognition	45
TQ	5 and 10 mg/kg	Rat	Reduction of MDA level and prevention of the loss of substantia nigra pars compact neurons	46
	0.1 and 1 µM	TH1 neurons	Protection of dopaminergic cultures against MPP and rotenone-induced cell death.	47
	40 mg/kg	mice	down-regulation of caspase -3	51
Curcucrol	12.5 or 25 mg/kg	Rat	Prevention of increase in catalepsy behavior and number of vacuous chewing movement and mitigation of HT in RES-triggered rat model of PD in the substantia nigra pars compact and dorsal striatum	52
	10 mg/kg/d	Rat	Attenuation of neurotoxicity, decrement of MDA and nitrite and enhancement of catalase activity in 6-OHDA-caused hemi-Parkinson rat model	53
	25, 50 and 100 mg/kg	Rat	Amelioration of memory deficits 6-OHDA- lesioned rat model of PD	54

Effects of medicinal plants and flavonoids on PD
mitochondria-derived ROS and down-regulated caspase 3 activity. It has been reported that water soluble extract of curcumin (50-200 mg/kg p.o.) increased serotonin and dopamine level in the brain tissues and dose 50 mg/kg of it enhanced the antidepressant-like effect of classical antidepressants drugs in mice. Curcumin (5, 10 and 20 mg/kg) increased the content of monoaminergic neurotransmitters including noradrenaline and dopamine in hippocampal tissue. Furthermore, curcumin obviously up-regulated the expression of derived neurotrophic factor (BDNF), TrkB, and phosphatidylinositide 3-kinases (PI3K) in hippocampal tissue. Administration of curcumin at doses 50, 100 and 200 mg/kg improved cognitive deficits and mitochondrial dysfunction in mice. Intraperitoneal injection of curcumin (50 and 100 mg/kg) improved neurological deficits and increased the number of NeuN-labeled neurons in the ischemia reperfusion in rats. Immunohistochemistry results showed that curcumin (0.1, 1 and 10 μM) inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region of rats. Li et al also suggested that curcumin exerts protective effects on rats brain against cerebral ischemia-reperfusion injury through increasing neuron survival, reducing inflammatory cytokine production and activating JAK2/STAT3 signaling pathway. It has been documented that curcumin (5 and 10 μM) restored malic impact of OxyHb on livability of primary cortical cells and decreased their apoptosis. Wang et al reported that curcumin (10 μm) significantly inhibited 6-OHDA-induced NFκB transcription in the MES23.5 cells and inhibited ROS intracellular accumulation. Curcumin has been also reported to improve nitric oxide (NO)-mediated degeneration in PC12 cells. Curcumin (500nM) also could inhibit the MAO_B activity with both the competitive and noncompetitive inhibition. This effect of curcumin was comparable with the effect of selegline as a MAO_B inhibitor. According to these results, curcumin can be considered as a possible cause for inhibiting MAO_B and be used in the treatment of PD and other neurological disorders. Oral administration of curcumin (100 mg/kg) ameliorated muscular strength in rotenone-induced motor deficits in rats. Treatment with curcumin also drastically increased the falling time of rats from inverted screen compared to treated group with rotenone. Curcumin also significantly improved stride length of forelimb, hind limb; hind base and paw overlapping in rats. Curcumin pretreatment significantly attenuated the decreasing effect of rotenone on function of dopaminergic system in striatum via increasing the level of dopamine and dihydroxyphenylacetic acid. In addition, the glutathione levels of treated rats with curcumin significantly increased with respect to those of rotenone group. The protective effects of C. longa and curcumin on PD were compacted in Table 5.

Table 4. The protective effects of *C. sativus* and crocin on neurotoxicity and Parkinson’s disease

Plants /Component	Doses	Model of study	Effects	Ref.
C. sativus	0.01% w/v	Mice	Protection of dopaminergic cells in the substantia nigra pars compact and retina against MPTP-induced injury	59
	50 mg/kg	Mice	Prevention of the development of PD in Lead (Pb)-induced damage in nervous system, increase of TH level in various brain areas including substantia nigra compacta, locus coeruleus, dorsal striatum and medial forebrain bundle	61
	30 mg/kg	Mice	Increment of staying time on the wire in the hanging test and prevention of cell death in the substantia nigra compacta in MPTP-stimulated Parkinson model	62
Crocin	30 and 60 mg/kg/d	Rat	Decrease of thioarbituric acid reactive substance and nitrite level in the hippocampus after 6 weeks in 6-OHDA model of PD	63
	25, 50 and 75 μg/kg	Rat	Enhanced level of antioxidant indicators and dopamine content in Parkinsonism model caused by 6-OHDA	64

Conclusion

Our review narrates an overview of therapeutic properties of medicinal plants and their ingredients on PD. The
Effects of medicinal plants and flavonoids on PD

Experimental data emphasize neuroprotective effect of medicinal plants including *M. pruriens*, *V. faba*, *N. sativa* and *C. sativus* mainly are mediated via reduction of oxidative stress and anti-inflammation resulting in the induction of PD. In addition, a part of anti-Parkinson properties of these plants can be attributed to the inhibition of MAOs and to modulate the content of neurotransmitters such as dopamine, norepinephrine and serotonin in substantia nigra.

Ethical Issues
Not applicable.

Conflict of Interest
The authors declare that there is no conflict of interest regarding the publication of this paper.

References
1. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. *Metallomics* 2015;7(8):1213-28. doi: 10.1039/c5mt0075k
2. Maggio R, Riva M, Vaglini F, Foroni F, Molteni R, Armogida M, et al. Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. *J Neurochem* 1998;71(6):2439-46. doi: 10.1046/j.1471-4159.1998.71062439.x
3. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. *Aging Cell* 2019;18(6):e13031. doi: 10.1111/ace.13031
4. Siesjö BK, Memezawa H, Smith ML. Neurotoxicity: pharmacological implications. *Fundam Clin Pharmacol* 1991;5(9):755-67. doi: 10.1111/j.1472-8206.1991.tb00765.x
5. Qu M. The neuroprotective effect of steroid receptor coactivator-interacting protein (SIP) in astrocyte model of 1-methyl-4-phenylpyridinium (MPP⁺)-induced Parkinson’s disease. *Med Sci Monit* 2019;25:5776-84. doi: 10.12659/msm.912106
6. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. *Cell* 2010;140(6):918-34. doi: 10.1016/j.cell.2010.02.016
7. Javed H, Azimullah S, Meeran MFN, Ansari SA, Ojha S. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease. *Int J Mol Sci* 2019;20(7). doi: 10.3390/ijms20071538
8. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson’s disease. *Ann N Y Acad Sci* 2003;991:214-28. doi: 10.1111/j.1749-6632.2003.tb07478.x
9. Sybertz E, Krainc D. Development of targeted therapies for Parkinson’s disease and related synucleinopathies. *J Lipid Res* 2014;55(10):1996-2003. doi: 10.1194/jlr.R047381
10. Kostelnik A, Cegan A, Pohanka M. Anti-Parkinson drug biperiden inhibits enzyme acetylcholinesterase. *Biomed Res Int* 2017;2017:2532764. doi: 10.1155/2017/2532764
11. Yuan H, Zhang ZW, Liang LW, Shen Q, Wang XD, Ren SM, et al. Treatment strategies for Parkinson’s disease. *Neurosci Bull* 2010;26(1):66-76. doi: 10.1007/s12264-010-0302-z
12. Giri B, Belanger K, Seamon M, Bradley E, Purohit S, Chong R, et al. Nicacin ameliorates neuro-inflammation in Parkinson’s disease via GPR109A. *Int J Mol Sci* 2019;20(18):4559. doi: 10.3390/ijms20184559
13. Schirinzi T, Martella G, Imbriani P, Di Lazzaro G, Franco D, Colona VL, et al. Dietary vitamin E as a protective factor for Parkinson’s disease: clinical and experimental evidence. *Front Neurol* 2019;10:148. doi: 10.3389/fneur.2019.00148
14. Javed H, Nagoor Meenan MF, Azimullah S, Adem A, Sadek

Table 5. The protective effects of *C. longa* and curcumin on neurotoxicity and PD

Plants /Component	Doses	Model of study	Effects	Ref.
C. longa	560 mg/kg	Mice	Inhibition of the activity of dopamine metabolizing enzyme, MAO_A in the brain	72
	0.001-0.4 mg/ml	SH-SY5Y cells	Amelioration of salosinol-induced toxicity, reduction of mitochondria-derived ROS and down-regulation of caspase 3 activity	73
	50-200 mg/kg	Mice	Increase of serotonin and dopamine levels in the brain tissues and enhancement of the antidepressant-like effect of classical antidepressants drugs	74
	5, 10 and 20 mg/kg	Rat	Increase of monoaminergic neurotransmitters content and up-regulation of derived neurotrophic factor (BDNF), TrkB, and phosphatidylinositol 3-kinases (PI3K) expression in hippocampal tissue	75, 76
	50, 100, 200 mg/kg	Mice	Improvement of cognitive deficits and mitochondrial dysfunction	77
	50 and 100 mg/kg	Rat	Improvement of neurological deficits and increase the number of NeuN-labeled neurons in the ischemia reperfusion	76, 79
Curcumin	0.1, 1 and 10 µM	Rat	Inhibition of p-IRE1α, p-PERK and NLRP1 expression in hippocampus CA1 region	80
	5 and 10 µM	Cortical neurons	Improvement of cell viability and decreased neuronal apoptosis	82
	10 µm	MES23.5 cells	Inhibition of 6-OHDA-induced NfκB transcription and ROS intracellular accumulation	83
	500nM	Rat	Inhibition of the MAO_A activity with both the competitive and noncompetitive amelioration of muscular strength, increase of falling time, improvement of stride length of forelimb, hind limb; hind base and paw overlapping in rotenone-induced motor deficits. Attenuation of the decreasing effect of rotenone on glutathione level and function of dopaminergic system in striatum via increasing the level of dopamine and dihydroxyphenylacetic acid.	84

Advanced Pharmaceutical Bulletin, 2021, Volume 11, Issue 2 | 229
R, Ojha SK. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson's disease models. *Front Pharmacol* 2018;9:1555. doi: 10.3389/fphar.2018.01555

15. Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal extracts in the products of treatment in Parkinson's disease. *Clin Ter* 2018;169(1):e23-e33. doi: 10.7417/t.2018.2050

16. Morgan LA, Grundmann O. Preclinical and potential applications of common western herbal supplements as complementary treatment in Parkinson's disease. *J Dist Suppl* 2017;14(4):453-66. doi: 10.1080/19930211.2016.1263710

17. Dos Santos-Neto LL, de Vilhena Toledo MA, Medeiros-Souza P, de Souza GA. The use of herbal medicine in Alzheimer's disease-a systematic review. *Evid Based Complement Alternat Med* 2006;3(4):441-5. doi: 10.1093/ecam/nel071

18. Suk K. Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. *Neurosignals* 2005;14(1-2):23-33. doi: 10.1159/000085383

19. Khazdair MR, Anaegoudari A, Hashemzehi M, Mohebbati R. Neuroprotective potency of some spice herbs, a literature review. *J Tradit Complement Med* 2019;9(2):98-105. doi: 10.1016/j.jtcm.2018.02.002

20. Bagcheghi Y, Hosseini M, Beheshi F, Salhani M, Anaegoudari A. Thymoquinone reverses learning and memory impairments and brain tissue oxidative damage in hypothyroid juvenile rats. *Arg Neuropsiquiatr* 2018;76(1):32-40. doi: 10.1590/0004-282x20170182

21. Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. The magic velvet bean of Ayurveda and thymoquinone in neurodegenerative diseases. *Evid Based Complement Alternat Med* 2012;2(4):331-9. doi: 10.1016/c2225-4110(16)30119-5

22. Prakash D, Niranjan A, Tewari SK. Some nutritional properties of the seeds of three Mucuna species. *Int J Food Sci Nutr* 2001;52(1):79-82. doi: 10.1080/096374800200027264

23. Singh SK, Yadav D, Lal RK, Gupta MM, Dhanwan SS. Inducing mutations through γ-irradiation in seeds of *Mucuna pruriens* for developing high L-DOPA-yielding genotypes. *Int J Radiat Biol* 2017;93(4):426-32. doi: 10.1080/09637480.2016.1254832

24. Lien CA, Kunselman AR, Manyam BV, Venkiteswaran R. Neuroprotective effects of the antiparkinson drug HP-200 (*Mucuna pruriens*). *Phytother Res* 2004;18(9):706-12. doi: 10.1002/ptr.1514

25. Manyam BV, Dhanasekaran M, Hare TA. Neuroprotective effects of the antiparkinson drug *Mucuna pruriens*. *Phytother Res* 2008;18(9):706-12. doi: 10.1002/ptr.1514

26. Manyam BV, Dhanasekaran M, Hare TA. Effect of antiparkinson drug HP-200 (*Mucuna pruriens*). In the central monoaminergic neurotransmitters. *Phytother Res* 2004;18(2):97-101. doi: 10.1002/ptr.1407

27. Katzenschlager B, Evans A, Manson A, Patsalos PN, Ratnajar N, Watt H, et al. *Mucuna pruriens* in Parkinson's disease: a double blind clinical and pharmacological study. *J Neurol Neurosurg Psychiatry* 2004;75(12):1672-7. doi: 10.1136/jnnp.2003.028761

28. Vaidya AB, Rajagopalan TG, Mankodi NA, Antarkar DS, Tathed PS, Purohit AV, et al. Treatment of Parkinson's disease with the cowpea plant-*Mucuna pruriens* Bak. *Neurol India* 1978;26(4):171-6.

29. Radder DLM, Tiel Groenestege AT, Boers I, Müllwijk EW, Bloem BR. *Mucuna pruriens* combined with carbidopa in Parkinson's disease: a case report. *J Parkinsons Dis* 2019;9(2):437-9. doi: 10.3233/jpd-181500

30. Macarulla MT, Medina C, De Diego MA, Chavarrí M, Zule MA, Martínez JA, et al. Effects of the whole seed and a protein isolate of faba bean (*Vicia faba*) on the cholesterol metabolism of hypercholesterolaemic rats. *Br J Nutr* 2001;85(5):607-14. doi: 10.1079/bjn2000330

31. Rabey JM, Vered Y, Shabtai H, Graff E, Korczyn AD. Improvement of parkinsonian features correlate with high plasma levodopa values after broad bean (*Vicia faba*) consumption. *J Neurol Neurosurg Psychiatry* 1992;55(8):725-7. doi: 10.1136/jnnp.55.8.725

32. Rabey JM, Vered Y, Shabtai H, Graff E, Harsat A, Korczyn AD. Broad bean (*Vicia faba*) consumption and Parkinson's disease, *Adv Neurol* 1993;60:681-4.

33. Kempter PA, Bogetic Z, Secombe JW, Martin HD, Balazs ND, Wahlquist ML. Motor effects of broad beans (*Vicia faba*) in Parkinson's disease: single dose studies. *Asia Pac J Clin Nutr* 1993;2(2):85-9.

34. Hajhashemi V, Ghannadi A, Jafariadabi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. *Phytother Res* 2004;18(3):195-9. doi: 10.1002/ptr.1390

35. Sandhu KS, Rana AC. Evaluation of anti Parkinson's activity of *Nigella sativa* (kalonji) seeds in chlorpromazine induced experimental animal model. *Int J Pharm Sci Pharm* 2013;5(3):884-8.

36. Khazdair MR. The protective effects of *Nigella sativa* and its constituents on induced neurotoxicity. *J Toxicol* 2015:2015:841823. doi: 10.1155/2015/841823

37. Beheshi F, Khazaei M, Hosseini M. Pharmacological effects of *Nigella sativa*. *Avicenna J Phytomed* 2016;6(1):104-16.

38. Samarghandian S, Farrkhonehdeh T, Samini F. A review on possible therapeutic effect of *Nigella sativa* and thymoquinone in neurodegenerative diseases. *CNS Neurol Drug Targets* 2018;17(6):412-20. doi: 10.2174/18712731766180702101455

39. Su X, Ren Y, Yu N, Kong L, Kang J. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. *Int Immunopharmacol* 2016;38:70-80. doi: 10.1016/j.intimp.2016.05.018

40. Mohebbatia R, Khazdair MR, Karimi S, Abbasnezhad A. Hepatoprotective effects of combination hydroalcoholic extracts of *Nigella sativa* and *Curcuma longa* on adriamycin-induced oxidative stress in rat. *J Rep Pharm Sci* 2017;6(2):93-102.

41. Ismail N, Ismail M, Latiff FA, Mazlan M, Mariod AA. Black cumin seed (*Nigella sativa Linn.*) oil and its fractions protect against beta amyloid peptide-induced toxicity in primary cerebellar granule neurons. *J Food Lipids* 2008;15(4):319-33. doi: 10.1111/j.1745-4522.2008.00137.x

42. Sahak MK, Kabir N, Abbas G, Draman S, Hashim NH, Hasan Adli DS. The role of *Nigella sativa* and its active constituents in learning and memory. *Evid Based Complement Alternat Med* 2016:2016:6075679. doi: 10.1155/2016/6075679

43. Hadipour Jahromy M, Jalili M, Jamshidi Mohajer A, Kamali Poor F, Mansoori Dara S. Effects of *Nigella sativa* seed extract on perphenazine-induced muscle rigidity in male mice. *World J Neurosci* 2014;4(4):313-8. doi: 10.4236/
Effects of medicinal plants and flavonoids on PD

44. Bin Sayeed MS, Asaduzzaman M, Morshed H, Hossain MM, Kadir MF, Rahman MR. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. *J Ethnopharmacol* 2013;148(3):780-6. doi: 10.1016/j.jep.2013.05.004

45. Bin Sayeed MS, Shams T, Fahim Hossain S, Rahman MR, Mostofa A, Fahim Kadir M, et al. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males. *J Ethnopharmacol* 2014;152(1):156-62. doi: 10.1016/j.jep.2013.12.050

46. Sedaghat R, Roghani M, Khalili M. Neuroprotective effect of thymoquinone, the nigella sativa bioactive compound, in 6-hydroxydopamine-induced hemi-parkinsonian rat model. *Iran J Pharm Res* 2014;13(1):227-34.

47. Radad K, Moldzio R, Taha M, Rausch WD. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. *Phytother Res* 2009;23(5):696-700. doi: 10.1002/ptr.2708

48. Alhibshi AH, Odawara A, Suzuki I. Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons. *Biochem Biophys Res Commun* 2019;511:122-6. doi: 10.1016/j.bbrc.2018.12.005

49. Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of *Zataria multiflora* Boiss. L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. *Fundam Clin Pharmacol* 2018;32(1):26-50. doi: 10.1111/fcp.12331

50. Khazdair MR, Alavinezhad A, Boskabady MH. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard-induced lung disorders: a randomized double-blind clinical trial. *J Clin Pharm Ther* 2018;43(5):664-74. doi: 10.1111/jcpt.12684

51. Dati LM, Ulrich H, Real CC, Feng ZP, Sun HS, Britto LR. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. *Neuroscience* 2017;356:176-81. doi: 10.1016/j.neuroscience.2017.05.013

52. Lins L, Souza MF, Bispo JMM, Gois AM, Melo TCS, Andrade RAS, et al. Carvacrol prevents impairments in motor and neuronal parameters in a model of progressive parkinsonism induced by reserpine. *Brain Res Bull* 2018;139:9-15. doi: 10.1016/j.brainresbull.2018.01.017

53. Baluchnejadmojarad T, Hassanabadi J, Roghani M, mansouri M, Raoufi S. Protective effect of carvacrol in progressive parkinsonism induced by reserpine. *J Parkinsons Dis* 2015;5(5):376-91.

54. Haddadi H, Rajaei Z, Alaei H, Shahidani S. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson's disease. *Arq Neuropsiquiatr* 2018;76(2):71-7. doi: 10.1590/0004-282x20170193

55. Ghaffari S, Roshanravan N, Saffron; an updated review on biological properties with special focus on cardiovascular effects. *Biomed Pharmacother* 2019;109:21-7. doi: 10.1016/j.biopha.2018.10.031

56. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of *Crocus sativus* (saffron) and its constituents on nervous system: a review. *Avicenna J Phytomed* 2015;5(5):376-91.

57. Hosseinzadeh H, Motamedshariaty V, Hadizadeh F. Antidepressant effect of keamperol, a constituent of saffron (*Crocus sativus*) petal, in mice and rats. *Pharmacologyonline* 2007;2:367-70.

58. Mokhtari-Zaer A, Khazdair MR, Boskabady MH. Smooth muscle relaxant activity of *Crocus sativus* (saffron) and its constituents: possible mechanisms. *Avicenna J Phytomed* 2015;5(5):365-75.

59. Purushothuman S, Nandasesa C, Peoples CL, El Massri N, Johnstone DM, Mitrofanis J, et al. Saffron pre-treatment offers neuroprotection to Nigral and retinal dopaminergic cells of MPTP-Treated mice. *J Parkinsons Dis* 2013;3(1):77-83. doi: 10.3233/jpd-130173

60. Ebrahim-Habibi MB, Amininasab M, Ebrahim-Habibi A, Sabbaghian M, Nemat-Gorgani M. Fibrillation of alpha-lactalbumin: effect of crocin and safranal, two natural small molecules from *Crocus sativus*. *Biopolymers* 2010;93(10):854-65. doi: 10.1002/bip.21477

61. Young MB, Esposito MG, Parodi F. Antioxidant and immunomodulatory effects of *Zataria multiflora* Boiss. L.; a possible link with Parkinson's disease. *Acta Histochem* 2019;121(2):171-81. doi: 10.1016/j. archhis.2018.12.003

62. Haeri P, Mohamadipour A, Heidari Z, Ebrahimizadeh-Bideskan A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson's disease model of mice. *Anat Sci Int* 2019;94(1):119-27. doi: 10.1007/s12565-018-0457-7

63. Rajaei Z, Hosseini M, Alaei H. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson's disease. *Arg Neuropsiquiatr* 2017;64(9):723-9. doi: 10.1590/0004-282x20160131

64. Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, et al. Neuroprotection by crocin in a hemi-parkinsonian rat model. *Pharmacol Biochem Behav* 2005;81(4):805-13. doi: 10.1016/j.pbb.2005.06.007

65. Josué Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaoqui S, Llorens S, Martínez-Tomé M, et al. Saffron: an old medicinal plant and a potential novel functional food. *Molecules* 2017;23(1):30. doi: 10.3390/molecules23010030

66. Zhang GF, Zhang Y, Zhao G. Crocin protects PC12 cells against MPP(+)-induced injury through inhibition of mitochondrial dysfunction and ER stress. *Neurochem Int* 2015;89:723-9. doi: 10.1016/j.neuint.2015.07.011

67. Karłowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A. Curcuma longa as medicinal herb in the treatment of diabetic complications. *Acta Pol Pharm* 2017;74(2):605-10.

68. Mehebbati R, Khazdair MR, Hedayati M. Neuroprotective effects of medicinal plants and their constituents on different induced neurotoxicity methods: a review. *J Rep Pharm Sci* 2017;6(1):34-50.

69. Mehebbati R, Shafei MN, Soukhtanloo M, Ebrahimzadeh A, Khazdair MR, Fakhraei M. Antioxidant and immunomodulatory effects of *Crocus sativus* (saffron) and its constituents: a possible link with Parkinson's disease. *Avicenna J Phytomed* 2015;5(5):365-75.

70. Mehebbati R, Aneigoudari A, Khazdair MR. The effects of *Crocus sativus* and curcumin on reproductive systems. *Endocr Regul* 2017;51(4):220-8. doi: 10.1515/embr-2017-0024
71. Atlan M, Neman J. Targeted transdermal delivery of curcumin for breast cancer prevention. *Int J Environ Res Public Health* 2019;16(24):4949. doi: 10.3390/ijerph16244949

72. Yu ZF, Kong LD, Chen Y. Antidepressant activity of aqueous extracts of *Curcuma longa* in mice. *J Ethnopharmacol* 2002;83(1-2):161-5. doi: 10.1016/s0378-8741(02)00211-8

73. Ma XW, Guo RY. Dose-dependent effect of *Curcuma longa* for the treatment of Parkinson's disease. *Exp Ther Med* 2017;13(5):1799-805. doi: 10.3892/etm.2017.4225

74. Kulkarni SK, Akula KK, Deshpande J. Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John's wort in behavioral paradigms of despair. *Pharmacology* 2012;89(1-2):83-90. doi: 10.1159/000335660

75. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. *J Biol Chem* 2005;280(7):5892-901. doi: 10.1074/jbc.M404751200

76. Yang J, Song S, Li J, Liang T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson's disease rat. *Pathol Res Pract* 2014;210(6):3357-62. doi: 10.1016/j.prp.2014.02.005

77. Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease. *Pharmacol Biochem Behav* 2016;150-151:39-47. doi: 10.1016/j.pbb.2016.09.002

78. Liu L, Zhang W, Wang L, Li Y, Tan B, Lu X, et al. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. *Neurochem Res* 2014;39(7):1322-31. doi: 10.1007/s11064-014-1315-1

79. Tu XK, Yang WZ, Chen JP, Chen Y, Ouyang LQ, Xu YC, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. *Inflammation* 2014;37(5):1544-51. doi: 10.1007/s10753-014-9881-6

80. Li Y, Li J, Li S, Li Y, Wang X, Liu B, et al. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. *Toxicol Appl Pharmacol* 2015;286(1):53-63. doi: 10.1016/j.taap.2015.03.010

81. Li L, Li H, Li M. Curcumin protects against cerebral ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway in rats. *Int J Clin Exp Med* 2015;8(9):14985-91.

82. Li X, Zhao L, Yue L, Liu H, Yang X, Wang X, et al. Evidence for the protective effects of curcumin against oxyhemoglobin-induced injury in rat cortical neurons. *Brain Res Bull* 2016;120:34-40. doi: 10.1016/j.brainresbull.2015.11.006

83. Wang J, Du XX, Jiang H, Xie JX. Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. *Biochem Pharmacol* 2009;78(2):178-83. doi: 10.1016/j.bcp.2009.03.031

84. Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. *Apoptosis* 2006;11(6):943-53. doi: 10.1007/s10495-006-6715-5

85. Khatri DK, Juvekar AR. Kinetics of inhibition of monoamine oxidase using curcumin and ellagic acid. *Pharmacogn Mag* 2016;12(Suppl 2):S116-20. doi: 10.4103/0973-1296.182168

86. Madiha S, Batool Z, Tabassum S, Liaquat L, Sadir S, Perveen T, et al. Therapeutic effects of *Curcuma longa* against rotenone-induced gross motor skill deficits in rats. *Pak J Zool* 2018;50(4):1245-56. doi: 10.17582/journal.pjz/2018.50.4.1245.1256