A generalized quadratic loss for SVM and Deep Neural Networks.∗

Filippo Portera∗[0000−0002−2179−372X]

Universita’ degli Studi ”Ca’ Foscari” di Venezia

Abstract. We consider some supervised binary classification tasks and a regression task, whereas SVM and Deep Learning, at present, exhibit the best generalization performances. We extend the work [3] on a generalized quadratic loss for learning problems that examines pattern correlations in order to concentrate the learning problem into input space regions where patterns are more densely distributed. From a shallow methods point of view (e.g.: SVM), since the following mathematical derivation of problem (9) in [3] is incorrect, we restart from problem (8) in [3] and we try to solve it with one procedure that iterates over the dual variables until the primal and dual objective functions converge. In addition we propose another algorithm that tries to solve the classification problem directly from the primal problem formulation. We make also use of Multiple Kernel Learning to improve generalization performances. Moreover, we introduce for the first time a custom loss that takes in consideration pattern correlation for a shallow and a Deep Learning task. We propose some pattern selection criteria and the results on 4 UCI data-sets for the SVM method. We also report the results on a larger binary classification data-set based on Twitter, again drawn from UCI, combined with shallow Learning Neural Networks, with and without the generalized quadratic loss. At last, we test our loss with a Deep Neural Network within a larger regression task taken from UCI. We compare the results of our optimizers with the well known solver SVMlight and with Keras Multi-Layers Neural Networks with standard losses and with a parameterized generalized quadratic loss, and we obtain comparable results.1

Keywords: SVM · Multiple Kernel Learning · Deep Neural Networks · Binary Classification and Regression · Generalized Quadratic Loss

1 Introduction

SVM and Neural Networks methods are widely used to solve binary classification, multi-class classification, regression tasks, In supervised binary classification learning tasks, SVM and Deep Learning methods are spread and represents the state-of-the-art in achieving best generalization performances. The work of

† Supported by organization Universita’ degli Studi ”Ca’ Foscari” di Venezia.
1 Code is available at: https://osf.io/fbzsc/
and showed the potential different implementations of SVM, while there are different software to develop Deep Neural Network such as TensorFlow and PyTorch, to name a few. Our goal is to improve the generalization performances of those algorithms, considering pattern correlations in the loss function. In [3] we proposed a generalized quadratic loss for SVM, but we mathematical development was erroneous. In details, [3] presents a step from eq. 8 and eq. 9 that is wrong, since we said that $(\bar{\alpha} + \bar{\lambda})^\prime S^{-1}(\bar{\alpha} + \bar{\lambda})$ is monotonically increasing, and this is not proved. We don’t try to solve this problem, we restart from problem 8 and try to find methods to solve it in its dual and primal form. Nevertheless the idea could be valid since if the matrix used to implement the loss is the identity matrix the loss reduces to the well know quadratic loss. Here we develop the loss introduced in [3] further, in the sense that we propose 2 correct optimizers for the SVM setting and, perhaps more interesting, a custom loss that can be plugged-in into a Deep Learning framework. In section 2, we cover some related works about the problem we are studying. In section 3, we state the mathematical problem and we present the matrix S. In section 4, we report some definitions for the proposed algorithms. In subsection 5.1, we describe the SMOS optimization technique. In subsection 5.2, we characterize the RTS optimization technique. In subsection 5.3, we elucidate the Deep Learning framework that exploits a loss function defined with the S matrix. In section 6, we present the results obtained with 2 artificially generated data-sets, 4 binary classification data-sets for SVM, and 2 larger data-sets experiments carried on with Multiple Layers Neural Nets. Finally, in section 7, we draw some statements about the overall procedure and the results.

2 Related works

We explore the use of a new loss with two different scopes: SVM and Neural Networks. The canonical SVM model was first introduced in [14], and the losses used are a class of loss functions that doesn’t take into consideration pattern correlations. Several optimizers have been proposed for this model and they can be found in [6], [2], [15], etc., and almost all of them are based on the linear loss version of SVM. On the other side, again, the losses used in Shallow and Deep Neural Networks are not considering pattern distribution. For the Twitter sentiment analysis task there is a work [16] that propose a Deep Convolutional Neural Network approach and [17] where they add also an attempt with LSTMs. The YearPredictionMSD data-set has been studied in [18], and in [19], to name a few.

3 The modified loss SVM problem

In order to see if there is space for better generalization performances, we introduce a new loss as stated in [3]. For the rest of the paper we will use an S matrix defined as:
A generalized quadratic loss for SVM and Deep Neural Networks.

\[S_{i,j} = e^{-\gamma_s ||\vec{x}_i - \vec{x}_j||^2} \]

which is a symmetric, positive semi-definite, and invertible matrix (if there aren’t repeated patterns).

Therefore, reconsidering section 2 of [3], we obtain the dual problem:

\[\vec{a}' \vec{1} - \frac{1}{2} \vec{a}' \mathbf{Y} \mathbf{K} \vec{a} - \frac{1}{4C} (\vec{a} + \vec{\lambda})^\top \mathbf{S}^{-1} (\vec{a} + \vec{\lambda}) \]

subject to the following constraints:

\[\vec{a}' \vec{y} = \vec{0} \quad \text{(3)} \]
\[i = 1, \ldots, l : \quad \vec{a}_i \geq 0 \quad \text{(4)} \]
\[\vec{\lambda}_i \geq 0 \quad \text{(5)} \]

4 Notation

In order to have a dual problem, \(\mathbf{S} \) must be invertible. If there are repeated patterns in the training set, \(\mathbf{S} \) is not invertible. Thus we remove the repeated patterns from the training set.

Let:

\[i = 1, \ldots, l, \quad j = 1, \ldots, l : \]

\[K(\vec{x}_i, \vec{x}_j) = e^{-\gamma_s ||\vec{x}_i - \vec{x}_j||^2} \]

\[f(\vec{x}_i) = \sum_{j=1}^{l} \vec{a}_j \vec{y}_j K(\vec{x}_i, \vec{x}_j) + b \]

5 Algorithms

In the following we propose 2 different algorithms to solve the primal problem.

5.1 The SMOS optimization algorithm

With the same method reported in [4], we isolate the part of the dual function that depends on the updated variables:

\[\vec{a}_{i+1} \leftarrow \vec{a}_i + \vec{\varepsilon}_i = \vec{a}_i + \nu \vec{y}_i \quad \text{(10)} \]
\[\vec{a}_{j+1} \leftarrow \vec{a}_j + \vec{\varepsilon}_j = \vec{a}_j - \nu \vec{y}_j \quad \text{(11)} \]
\[\vec{\lambda}_{k+1} \leftarrow \vec{\lambda}_k + \vec{\mu}_k \quad \text{(12)} \]
where \(\vec{\varepsilon} \) is a vector of dimension \(l \) of all zeros, apart the \(i \) and \(j \) components that are, respectively, \(\vec{\varepsilon}_i = \nu \vec{y}_i \) and \(\vec{\varepsilon}_j = -\nu \vec{y}_j \). While \(\vec{\mu} \) is a vector of dimension \(l \) of all zeros, apart the \(k \) component that is equal to \(\mu_k \).

Omitting the derivation from the dual function of the optimized variables and deriving \(D(\vec{\alpha} + \vec{\varepsilon}, \vec{\lambda} + \vec{\mu}) \) by \(\nu \), and setting the partial derivative to 0 in order to get the maximum for a fixed \(\mu_k \), we obtain:

\[
\psi = \vec{y}_i - \vec{y}_j + \\
+ \sum_{p=1}^{l} \vec{\alpha}_p \vec{y}_p K(\vec{x}_p, \vec{x}_i) - \sum_{p=1}^{l} \vec{\alpha}_p \vec{y}_p K(\vec{x}_p, \vec{x}_j) + \\
- \frac{1}{2C} \left(\sum_{p=1}^{l} \vec{\alpha}_p \vec{\gamma}_p S^{-1}[p,i] - \sum_{p=1}^{l} \vec{\alpha}_p \vec{\gamma}_p S^{-1}[p,j] + \\
+ \sum_{p=1}^{l} \vec{\lambda}_p \vec{\gamma}_p S^{-1}[p,i] - \sum_{p=1}^{l} \vec{\lambda}_p \vec{\gamma}_p S^{-1}[p,j] + \\
+ \sum_{p=1}^{l} \vec{\mu}_p \vec{\gamma}_p S^{-1}[p,i] - \sum_{p=1}^{l} \vec{\mu}_p \vec{\gamma}_p S^{-1}[p,j] \right)
\]

and:

\[
\omega = K(\vec{x}_i, \vec{x}_i) - 2K(\vec{x}_i, \vec{x}_j) + K(\vec{x}_j, \vec{x}_j) + \\
+ \frac{S^{-1}[i,i] - 2\vec{y}_i \vec{y}_j S^{-1}[i,j] + S^{-1}[j,j]}{2C}
\]

which implies:

\[
\nu = \frac{\psi}{\omega} \tag{13}
\]

While, fixing \(\vec{a}_i, \vec{a}_j, \nu \), and deriving \(14 \) by \(\mu_k \), we get:

\[
\frac{\partial D(\vec{\alpha} + \vec{\varepsilon}, \vec{\lambda} + \vec{\mu})}{\partial \mu_k} = 0 \tag{14}
\]

\[
\frac{\partial}{\partial \mu_k} - \frac{1}{4C} \left(\mu_k^2 S^{-1}_{k,k} + 2\mu_k \nu \vec{y}_i S^{-1}_{k,i} - 2\mu_k \nu \vec{y}_j S^{-1}_{k,j} \right) = 0 \tag{15}
\]

then:

\[
\mu_k = \frac{\nu(\vec{y}_i S^{-1}_{k,i} + \vec{y}_j S^{-1}_{k,j})}{S^{-1}_{k,k}} \tag{16}
\]

These equations, \(13 \) \(16 \) are used for the updates described in \(10 \) \(11 \) and \(12 \).

The increment variables are then clipped as follows:
A generalized quadratic loss for SVM and Deep Neural Networks.

If \(\vec{a}_i + \vec{y}_i \nu < 0 \) then \(\nu = -\vec{y}_i \) (previous) \(\vec{a}_i \)
If \(\vec{a}_j - \vec{y}_j \nu < 0 \) then \(\nu = \vec{y}_j \) (previous) \(\vec{a}_j \)
If \(\lambda_k + \mu_k < 0 \) then \(\lambda_k = 0 \)

Let \(\text{SelectPatterns}(i, \mu_k, k) \) a procedure that selects all patterns \(j \) that after an optimal \(\nu \) update gives an increment above a threshold \(\beta \), and \(\text{dof} \) is the acronym for "dual objective function":

\[
\beta = \delta \ast \left(\text{best dof} - \text{previous dof} \right) + \text{previous dof}
\] \hspace{1cm} (17)

where \(0 < \delta \leq 1 \), best dof is the maximum dual objective function value obtained for all \(j \in [1, \ldots, l] \), previous dof is the initial value of the dual objective function without any updates on \(\vec{a}_i \) or \(\vec{a}_j \). We found that the optimal value of \(\delta \) is 1, so only 1 pattern is selected for further real update.

While the new \(b \) is computed at each iteration with:

\[
b_{\text{new}} \leftarrow \sum_{i=1, \xi_i > 0}^{l} \{ y_i - [f(\vec{x}_i) - b_{\text{old}}] \} / n
\] \hspace{1cm} (18)

where \(n \) is the number of positive \(\xi_i \)'s.

We introduced a solver monitor script, that eliminates the solver process whenever it employs more than 120 seconds to converge to a solution of the generalized quadratic loss SVM problem. This monitor is employed also to stop SVMlight whenever it takes too much time to converge to a solution.

5.2 The RTS optimization algorithm

A last attempt to solve the model problem is the Representer Theorem with S (RTS), where we consider solutions in the form:

\[
f(\vec{x}) = \sum_{i=1}^{l} \vec{a}_i K(\vec{x}_i, \vec{x}) + b
\]

from the Representer Theorem \([5]\), with \(\vec{a}_i \in \mathbb{R}, \ i \in 1, \ldots, l \), and \(b \in \mathbb{R} \). We solve the problem directly in its primal form.

For each variable \(\vec{a}_i \) we take a Newton step:

\[
\vec{a}_{i+1} \leftarrow \vec{a}_i - \frac{\partial P_{\vec{a}_i}}{\partial \vec{a}_i^{\text{new}}} / \partial \vec{a}_i^{\text{old}}
\] \hspace{1cm} (19)

The determination of \(b \) is the same as showed before \([18]\). We exit the main loop whenever the problem diverges, or, for 100 consecutive steps, the Newton update is unable to lower the lowest objective function value found. One advantage of this approach is that it doesn't need the \(S \) matrix inversion. A monitor is used in order to eliminate processes that last more than 120 seconds.
5.3 The Deep Learning Framework

For a tutorial and survey on Deep Neural Networks you can read [7]. We use Keras 2.3.1 on TensorFlow 2.1.0 back-end in order to obtain Deep Neural Networks that are able to classify a number of input patterns of the order of $1E5$.

The initial shallow network is made of 3 layers: one input layer, one dense and regularized layer, and a sigmoid output layer. Then we add another dense layer, make algorithms comparisons, and at last, we compare our algorithms with 3 dense layers. In order to use the generalized quadratic loss we set the batch size to the entire training data-set and write a custom loss that considers pattern correlations. The S matrix used here is defined in (1). Therefore, the custom loss can be written as:

$$\text{loss} = \bar{o}^t S \bar{o}$$

where \bar{o} is the binary cross-entropy standard loss and t is the transposition operation.

We explore also a regression task with a neural network made of 10 dense and regularized layers. In this case the custom loss is still (20) but, the output it’s the square of the error between the true value and the predicted value, and we consider only the patterns that are present in the current batch in order to build S.

6 Results

We evaluate the results on 2 artificially created data-sets, with different concentration of patterns, which could help in understanding how this loss can support in solving the proposed task. For example, a uniform distribution of patterns and the use of the generalized quadratic loss should not improve the generalization performance w.r.t. a linear loss. While a clustered distribution of patterns should highlight the benefit of the generalized quadratic loss. The uniform distribution is generated with 800 random points uniformly distributed in the 3 axes, with a random target value randomly chosen in $\{-1, +1\}$. The normal distribution is generated with 800 random points, spread with a normal distribution with 0 mean and standard deviation equals to 3 in the 3 axes, with a random target value randomly chosen in $\{-1, +1\}$. The calibration procedure is described below.

We show the two distributions on figure [1].

For the artificial data-sets, we don’t report the results of the SMOS algorithm for a time constraint.

We also evaluate the algorithms on 5 UCI binary classification data-sets: Breast Cancer Wisconsin (Original), Haberman’s Survival, Ionosphere, Connectionist Bench (Sonar, Mines vs. Rocks), Twitter Absolute Sigma 500 [2] and an UCI regression data-set: YearPredictionMSD. The first 4 data-sets are used

\[2 \text{https://archive.ics.uci.edu/ml/datasets.php}\]
Fig. 1. A uniform distribution and a normal distribution in order to test the benefits of the generalized quadratic loss.

for SVM evaluation, while the Twitter and Year data-set are most suited for Multi-layer Neural Network Learning. Each data-set is shuffled and divided in a training, validation, and test sets. The Year data-set is an exception, because it is not shuffled.

The training dimensions (number of patterns × number of features), and the validation and test number of patterns are reported on table 1.

DS Name	training	validation	test
Uniform	550 × 3	150	100
Normal	550 × 3	150	100
Breast	400 × 9 (281)	150	149
Haberman	240 × 3 (272)	30	36
Iono	260 × 34 (260)	50	41
Sonar	130 × 60 (130)	40	38
Twit	5000 × 77	150000	12000
Year	150000 × 90	313000	51000

SMOS and RTS procedures are calibrated on three hyper-parameters: \(C \), \(\gamma_K \), and \(\gamma_S \) on a grid of \(6 \times 6 \times 6 \) with steps of powers of 10 starting from \((0.001, 0.001, 0.001)\) to \((100, 100, 100)\). For each data-set, the set of hyper-parameters that gave the best result, in term of F1 measure on the validation set, is saved together with the best dual variables \(\vec{\alpha} \) and best \(b \). Then these saved variables are used to evaluate the test set, which outputs the final F1 performance on that
data-set. We implement a SMO-like algorithm inspired by [1] and [2] to solve problem [2], and we name it SMOS. Besides we propose another simpler algorithm that works only in the primal problem [5,2]. At last we front the problem with an algorithm based on an objective function made only by the error term with S and no regularization term. We call this algorithm simply S. This procedure is calibrated on two hyper-parameters: γ_K and γ_S on a grid of 10×10 with steps of powers of 10 starting from $(1E^{-5}, 1E^{-5})$ to $(10000, 10000)$.

The F1 scores on each data-set are reported in table 2, together with the F1 score of SMOS, RTS, S, and the well known SVMlight software [6].

Algorithm	DS Name	C	γ_K	γ_S	F1	Time
RTS	Uniform	100	10	10	0.589928	78m24s092ms
S	Uniform	1E-5	0.01	1	0.620690	38m50s996ms
SVMlight	Uniform	1E-05	1E-05	0.620690	0m43s178ms	
RTS	Normal	0.01	100	0.001	0.722581	51m29s542ms
S	Normal	100	1E-05	0.722581	40m57s976ms	
SVMlight	Normal	10000	0.1	0.719206	8m29s650ms	
SMOS	Breast	0.1	0.01	1	0.961538	5h28m8s453ms
RTS	Breast	0.1	100	0.001	0.938053	62m41s721ms
S	Breast	0.001	1E-5	0.971429	6m18s446ms	
SVMlight	Breast	1	0.0	0.971462	2m08s630ms	
SMOS	Haberman	0.1	0.001	10	0.885246	2h27m9s594ms
RTS	Haberman	0.1	0.1	1	0.857143	75m51s646ms
S	Haberman	0.001	0.1	0.896552	4m6s346ms	
SVMlight	Haberman	1	0.001	0.857143	0m18s850ms	
SMOS	Iono	1	0.1	100	0.958333	6h22m10s739ms
RTS	Iono	100	1	1	0.893617	47m38s634ms
S	Iono	0.1	100	0.958333	6m59s161ms	
SVMlight	Iono	10	0.1	0.9583	6m15s790s	
SMOS	Sonar	1	1	10	0.800000	3h39m10s839ms
RTS	Sonar	100	1	1	0.742857	47m50s459ms
S	Sonar	0.1	1	0.820513	8m50s875ms	
SVMlight	Sonar	10	1	0.800000	7m07s650ms	

We report in table (3) some experiments with a 10-fold cross-validation scheme, as described in [13], in order to give a greater significance level. We created 10 subsets of the training sets. Each algorithm is run 10 times, one time for each k sub training data-set. We consider the mean and the standard deviation of each resulting test F1 scores. The parameter grid explored is the same as defined before. The results with the SMOS method are not reported due to a time constraint.
Table 3. Results comparison with RTS, S, and SVMlight with standard linear loss with a 10-fold cross-validation procedure.

Algorithm	DS	Name	F1	σ	Time
RTS	Uniform	0.607557	0.013028	45h06m	
S	Uniform	**0.62069**	**1.110223E-16**	4h45m08s	
SVMlight	Uniform	0.611796	0.811098	13m56s54ms	
RTS	Normal	**0.719074**	0.0156605	38h39m	
S	Normal	0.717949	0.0	5h04m20s	
SVMlight	Normal	0.534307	7.869634	1h01m23s	
RTS	Breast	**0.975627**	**0.006172**	31h57m	
S	Breast	0.946792	0.012488	4h45m350ms	
SVMlight	Breast	0.967170	0.677366	12m15s972ms	
RTS	Haberman	**0.938325**	0.033040	33h47m	
S	Haberman	0.865720	**0.018494**	2h3m9s888ms	
SVMlight	Haberman	0.858132	2.340863	3m14s972ms	
RTS	Iono	**0.971863**	**0.016387**	5h17m54s	
S	Iono	0.961435	0.016616	29h13m	
SVMlight	Iono	0.915835	1.784254	44m42s632ms	
RTS	Sonar	**0.934440**	**0.026761**	22h55m	
S	Sonar	0.800656	0.059841	5h15m18s655ms	
SVMlight	Sonar	0.843513	0.794849	1h10m2ms953s	

Moreover, we describe some experiments in table (4) obtained with a K and S matrices generated with multiple kernels. We call this algorithm RTSMKL.

$$K_{MKL}(\vec{x}_i, \vec{x}_j) = \sum_{i=1}^{nK} b_i * K_i(\vec{x}_i, \vec{x}_j)$$ \hspace{1cm} (21)

$$S_{MKL}(\vec{x}_i, \vec{x}_j) = \sum_{i=1}^{nS} c_i * S_i(\vec{x}_i, \vec{x}_j)$$ \hspace{1cm} (22)

where b_i and c_i are heuristically determined as in \cite{10}, the kernels $K_i()$ and $S_i()$ are defined as RBF kernels with different γ (for the definition see \cite{11}), and we set the maximum number of $nK = 10$ and the maximum number of $nS = 10$.

We report also some experiments with an algorithm based on the Representer Theorem with a linear loss and MKL, in order to try to understand if the benefits on the generalization performance is given by the MKL technique or the use of S. We call this algorithm RTMKL. We add that a monitor is adopted in order to eliminate SVMlight processes that take more than 120 seconds to converge, while no monitor is used for the RTS with MKL algorithm. In the last column, we report the calibration time plus the test evaluation time.

We report some experiments with different shapes of Neural Networks applied to the UCI Buzz in Social Media-Twitter data-set, in table (5), where the
Table 4. Results comparison with RT with MKL and linear loss, RTS with MKL and S, and SVMlight with standard linear loss.

Algorithm	DS Name	C	γ	best nKK	best nKS	F1	Time
RT_MKL	Breast	10	1	0.953271	6m44,947s		
RTS_MKL	Breast	0.1	2	1	0.972477	61m6,436s	
SVMlight	Breast	1	0.1	0.971462	2m08,630ms		
RT_MKL	Haberman	0.001	3	0.857143	0m16,233s		
RTS_MKL	Haberman	0.1	0.01	3	9	0.896552	24m55,662s
SVMlight	Haberman	1	0.001			0.857143	0m18,800ms
RT_MKL	Iono	0.01	2	0.836364	0m23,713s		
RTS_MKL	Iono	100	2	7	0.938776	35m12,091s	
SVMlight	Iono	10	0.1	0.9583			0m50,612s
RT_MKL	Sonar	0.01	1	0.800000	0m11,134s		
RTS_MKL	Sonar	1	2	1	0.717949	14m19,842s	
SVMlight	Sonar	10	1	0.800000	1m18,435s		

The algorithm is described in section 5.3. Hence we name SNN the standard Shallow multi-layer Neural Network algorithm, while we name GQLSNN the Shallow Neural Network with a generalized quadratic loss. We make a grid search to find the optimal hyper-parameters. We start with one dense layer made of 5 nodes and then we increase this size until we reach 25 nodes, following steps of 5. The same sequence is applied with the case with 2 and 3 dense and regularized layers. For the GQLSNN algorithm we add another hyper-parameter, that is γ_S. The line search on this hyper-parameter spans through $[10^{-5},...,0.1]$ with steps of powers of 10.

Each network run comprises a training procedure of 1000 epochs, with a batch size of 5000 patterns. We selected the hyper-parameters that perform at best from the whole grid, on the validation data-set. The test F1 score reported is determined by the evaluation of the best validation model on the test data-set.

For the Year data-set, described in details in [8], we trained a deeper network made of 10 dense and regularized layers, with 100 nodes for each layer. The batch size is 1000 and the number of epochs is 400. The standard Deep Neural Network setting is named DNN. For the GQLDNN algorithm the γ_S was calibrated with a line search that spans through $[10^{-5},...,0.1]$ with steps of powers of 10. We measure the Mean Square Error, and the performance is reported in table 6.

Every Neural Network we employ uses the Adam optimizer.

3 This software runs on a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 32.084 MB of RAM, 32.084 MB of swap space, and a SSD of 512 GB.
A generalized quadratic loss for SVM and Deep Neural Networks.

Table 5. Results comparison with SNN, and GQLSNN exploiting S with the Twitter data-set, with the optimal hyper-parameters: the number of nodes for layers number 2 to 4, the optimal γ_S selected by the calibration procedure, the training, validation and test time.

Algorithm	nNL2	nNL3	nNL4	γ_S	test F1	Time
SNN	15			0.88805829	1m5s274ms	
GQLSNN	25			0.90734076	50m47s075ms	
SNN	5	15		0.9005088	10m40s482ms	
GQLSNN	5	10		0.9118929	5h21m20s065ms	
SNN	25	20	10	0.9080214	28m9s709ms	
GQLSNN	10	10	20	0.91080284	26h53m59s	

Table 6. Results comparison with DNN, and GQLDNN exploiting S, with the optimal γ_S selected by the calibration procedure.

Algorithm	γ_S	test MSE	Time
DNN	129.3600	10m17s420ms	
GQLDNN	0.0001	114.95802	4h52s02ms

7 Conclusions

We can try other S matrices, in order to furtherly generalize the results. Another improvement could be to tune the MKL coefficients with an optimization procedure as suggested by [11]. In addition, Support Vector Regression and multi-class classification with a generalized quadratic loss could be investigated.

The results obtained with the Twitter data-set, a Neural Networks with 2, 3, 4 layers, and a generalized quadratic loss, are encouraging.

For the regression setting we tried a deeper neural network on a larger data-set (UCI Year) and we found that the generalized quadratic loss performed in a similar manner than standard sum of the errors loss’ square.

We still have to realize if the performances of the GQL for the Shallow and Deep Neural Networks are due to the greater number of trials needed to tune the S matrix, or to a real effect on the generalization ability of the algorithm induced by the use of the GQL. We made some preliminary experiments to establish this, but it is too premature to make an assertion.

Acknowledgments I would like to express my gratitude to Giovanna Zammara, Fabrizio Romano, Fabio Aiolfi, Alessio Micheli, Ralf Herbrich, Alex Smola, Alessandro Sperduti for their insightful suggestions.

References

1. V.N. Vapnik: Statistical Learning Theory. Wiley, New York, (1998)
2. J. Platt: Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Advances in Kernel Methods - Support Vector Learning, (1998)
3. F. Portera and A. Sperduti: A generalized quadratic loss for Support Vector Machines. ECAI’04 Proceedings of the 16th European Conference on Artificial Intelligence, pp. 628–632, (2004)
4. F. Aioli and A. Sperduti: An efficient SMO-like algorithm for multiclass SVM. Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, (2002)
5. Bernhard Scholkopf, Ralf Herbrich, and Alex J. Smola: A Generalized Representer Theorem. International Conference on Computational Learning Theory, pp. 416–426, (2001)
6. T. Joachims: Learning to Classify Text Using Support Vector Machines. (2002)
7. Vivienne Sze, Yu-Hsin Chen Tien-Ju Yang, Joel S. Emer: Efficient Processing of Deep Neural Networks: a Tutorial and Survey. Vol. 105, No. 12, Proceedings of the IEEE (2017)
8. Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere: The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), (2011).
9. Ivano Lauriola, Claudio Gallicchio, Fabio Aioli: Enhancing deep neural networks via multiple kernel learning. Pattern Recognition, Volume 101, May 2020, 107194
10. Shibin Qiu, Terran Lane: A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(2) pp. 190–199, (2009)
11. Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, Michael I. Jordan: Learning the kernel matrix with semidefinite programming. In Proceedings of the 19th International Conference on Machine Learning (2002)
12. Courcoubetis C., and Weber R.: Lagrangian Methods for Constrained Optimization. John Wiley and Sons, 2003, Ltd. ISBN: 0-470-85130-9
13. Rodriguez J. D., Perez A., and Lozano J. A., Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 3, MARCH 2010 pp. 569–575
14. Cortes C. and Vapnik V., Support-vector networks, Machine Learning 20, pp. 273—297 1995
15. R.-E. Fan, P.-H. Chen, and C.-J. Lin., Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, pp. 1889–1918, 2005.
16. Severyn A., Moschitti A., Twitter Sentiment Analysis with Deep Convolutional Neural Networks, SIGIR ’15: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2015, pp 959—962
17. Cliche M., BB	wwtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs, Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 573–580
18. Hernandez-Lobato J. M. and Adams R. P., Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks, ICML’15: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, 2015 pp. 1861—1869
19. Lakshminarayanan B, Pritzel A., and Blundell C., Simple and scalable predictive uncertainty estimation using deep ensembles. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017 pp. 6405—6416