Liver transplantation for a giant mesenchymal hamartoma of the liver in an adult: Case report and review of the literature

Jiang Li, Jin-Zhen Cai, Qing-Jun Guo, Jun-Jie Li, Xiao-Ye Sun, Zhan-Dong Hu, David KC Cooper, Zhong-Yang Shen

Jiang Li, Jin-Zhen Cai, Qing-Jun Guo, Jun-Jie Li, Xiao-Ye Sun, Zhong-Yang Shen, Department of Transplant Surgery, Tianjin First Central Hospital, Tianjin 300192, China
Zhan-Dong Hu, Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
David KC Cooper, Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15260, United States

Author contributions: Shen ZY, Cai IZ and Guo QJ performed transplant surgery and provided the intellectual content; Li JJ summarized the clinical data; Sun XY performed the follow-up; Hu ZD contributed to the pathology; Li J performed a literature review and wrote the initial manuscript; Cooper DKC contributed critical comments and revised the manuscript; all authors read, contributed to, and approved the final manuscript.

Supported by National Natural Science Foundation of China, No. 81400680; and the National High Technology Research and Development Program of China, No. 2012 AA021001.

Ethics approval: Approval from the Ethics Committee of the Tianjin First Central Hospital was obtained for this study.

Informed consent: The patient gave her written informed consent before entering the study and gave consent to the study protocol.

Conflict-of-interest: We declare that we have no financial and personal relationships with other people or organizations that can inappropriate influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Zhong-Yang Shen, MD, Department of Transplant Surgery, Tianjin First Central Hospital, Nankai District of Tianjin Rehabilitation Road No. 24, Tianjin 300192, China. shenyzy_009@sina.com

Telephone: +86-22-23626860
Fax: +86-22-23626199
Received: November 2, 2014
Peer-review started: November 3, 2014
First decision: December 26, 2014
Revised: January 26, 2015
Accepted: February 11, 2015
Published online: May 28, 2015

Abstract

Mesenchymal hamartomas of the liver (MHLs) in adults are rare and potentially premalignant lesions, which present as solid/cystic neoplasms. We report a rare case of orthotopic liver transplantation in a patient with a giant MHL. In 2013, a 34-year-old female sought medical advice after a 2-year history of progressive abdominal distention and respiratory distress. Physical examination revealed an extensive mass in the abdomen. Computed tomography (CT) of her abdomen revealed multiple liver cysts, with the diameter of largest cyst being 16 cm × 14 cm. The liver hilar structures were not clearly displayed. The adjacent organs were compressed and displaced. Initial laboratory tests, including biochemical investigations and coagulation profile, were unremarkable. Tumor markers, including levels of AFP, CEA and CA19-9, were within the normal ranges. The patient underwent orthotopic liver transplantation in November 2013, the liver being procured from a 40-year-old man after cardiac death following traumatic brain injury. Warm ischemic time was 7.5 min and cold ischemic time was 3 h. The recipient underwent classical orthotopic liver transplantation. The recipient operative procedure took 8.5 h, the anhepatic phase lasting for 1 h without the use of venovenous bypass. The immunosuppressive regimen included...
common. Laboratory results are noncontributory and nonspecific, though abdominal pain is the most neoplasm. The patient’s symptoms are typically premalignant lesion that presents as a solid/cystic is extremely rare in adults older than five years is rare (about 5% of cases) and a slight male predilection. Its occurrence in children infants and children in the first two years of life, with mesenchymal tumor affecting almost exclusively Mesenchymal hamartoma of the liver (MHL) was INTRODUCTION DOI: http://dx.doi.org/10.3748/wjg.v21.i20.6409 URL: World J Gastroent of the liver in an adult: ZY . Liver transplantation for a giant mesenchymal hamartoma Li J, Cai JZ, Guo QJ, Li JJ, Sun XY , Hu ZD, Cooper DKC, Shen Core tip: Mesenchymal hamartoma of the liver is a rare disease in adults. Only 45 patients with this condition have been reported worldwide. This report presents a rare case of adult giant mesenchymal hamartoma of the liver that could not be treated by partial hepatectomy. Orthotopic liver transplantation relieved compression of other organs and avoided the risk of malignant change. Liver transplantation should be considered as an option in the treatment of non-resectable MHL.

Key words: Liver; Mesenchymal hamartoma; Adult; Organ donor; After cardiac death; Transplantation © The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION Mesenchymal hamartoma of the liver (MHL) was first described by Edmondson in 1956[1]. It is a rare mesenchymal tumor affecting almost exclusively infants and children in the first two years of life, with a slight male predilection. Its occurrence in children older than five years is rare (about 5% of cases) and is extremely rare in adults[2-4]. MHL is a potentially premalignant lesion that presents as a solid/cystic neoplasm. The patient’s symptoms are typically nonspecific, though abdominal pain is the most common. Laboratory results are noncontributory and radiographic imaging is variable and inconclusive. Needle biopsy is rarely diagnostic and surgical excision of symptomatic or enlarging lesions is recommended to exclude the possibility of malignancy and to establish a diagnosis[5].

CASE REPORT A 34-year-old, previously healthy, woman presented in 2011 with abdominal fullness and loss of appetite. She took no medications, had no history of liver disease, and denied alcohol and drug use, including the use of anabolic steroids. She presented to our hospital with increasing abdominal girth, abdominal pain, and vomiting. Physical examination revealed a grossly distended abdomen without evidence of ascites, a firm and massively enlarged liver extending below the umbilicus, and tenderness in the upper quadrant. Contrast enhanced computed tomography (CT) of the abdomen revealed near replacement of the liver with diffuse cystic masses of low density (Figure 1). Initial laboratory test results were unremarkable. Hematological, biochemical investigations and the coagulation profile were within normal limits. Tumor markers, including levels of α-fetoprotein, and carcinoembryonic antigen, carbohydrate antigen 19-9, were within the normal ranges. Serology for hepatitis B virus, hepatitis C virus and human immunodeficiency virus was negative. The extensive hepatic involvement precluded resection, and so she was evaluated and placed on the waiting list for liver transplantation.

The patient underwent orthotopic liver transplantation in November 2013. Our techniques of organ procurement and preservation have been previously described[6,7]. The liver graft was procured from a 40-year-old male donor after cardiac death. The liver graft was preserved in 4°C UW solution. The warm ischemia time was 7.5 min and cold ischemia time was 3 h.

The native diseased liver filled about 80% of the abdominal cavity and displaced the normal vascular anatomy. The excised diseased native liver weighed 20 kg (dry weight) and measured 41 cm × 32 cm × 31 cm (Figure 2). The recipient operation was conducted according to the classical orthotopic liver transplantation procedure[8]. The whole transplant procedure took 8.5 h and the total blood volume loss was 5500 mL. A blood reinfusion system replaced 3000 mL, and an additional 10 units of packed RBC and 1000mL of plasma were infused. The anhepatic phase lasted for 1 h without the use of venovenous bypass. After release of the vascular clamps, Doppler ultrasound demonstrated the liver graft to be well perfused (Figure 3). The patient was extubated on the second day after surgery.

The immunosuppressive regimen included intraoperative induction with basiliximab and high-dose methylprednisolone, and postoperative maintenance with tacrolimus, mycophenolate mofetil and prednisone. No acute rejection episode was documented. The
patient was discharged home on postoperative day 20, at which time all laboratory tests were within normal limits. Three months after the operation, the immunosuppressive regimen was reduced to tacrolimus monotherapy, and the T-tube was removed after cholangiography showed no abnormalities. After 12 mo, the patient remains well and is carrying out all normal activities.

Pathologic examination of the excised diseased native liver was carried out. It contained multiple well-circumscribed masses, ranging in diameter from 2-16 cm. All masses were cystic in the central portion and contained 20-50 mL of muddy yellowish or bloody fluid. The liver mass contained dilated bile ducts with connective tissue forming multiple cysts. Histologically, corresponding to the cystic areas noted grossly, myxoid stroma and spindle cells showed smooth muscle differentiation, confirmed by positive staining for vimentin and smooth muscle actin. Benign dilated bile ducts were confirmed by positive staining for cytokeratin 7. In peripheral areas, only small amounts of liver tissue remained, with a lack of lobular architecture. There was a clear boundary between the liver parenchyma and proliferating connective tissue (Figure 4). The diagnosis of MHL was based on the typical morphological appearance, as described above.

DISCUSSION

MHL was first reported by Maresch in 1903[9]. Until relatively recently, this disease was known by different names, such as cavernous lymph adenomatoid tumor, bile cell fibroadenoma and benign mesenchymoma. The first definitive description of MHL was provided by Edmondson[1]. While the precise pathogenesis of MHL is uncertain, the most common theory relates to aberrant mesenchymal development in the portal tract, likely related to the bile ducts[10,11]. The clinical presentation of MHL appears to depend
on the age of the patient. Most pediatric patients present with painless abdominal enlargement, normally appreciated by their parents. However, in adult patients (age range: 19-87 years; females 62%, mean age 39 years; males 40%, mean age 60 years [Table 1], clinical features included hepatomegaly, and diffuse abdominal pain or pain in the right hypochondrium or left upper quadrant. In severe cases, there may be compression of the diaphragm and lungs causing respiratory difficulties. In the present case, the patient suffered from progressive abdominal distention and respiratory distress caused by the expanding multiple cystic masses distributed throughout the liver.

Concerning the localization and structure of the tumor, pediatric and adult populations have different characteristics. MHLs are more common in the left liver lobe in children. In adults, 17 cases (38%) were localized to the left lobe, 22 (49%) to the right lobe, and in six (13%) extended into both lobes (Table 1). All six cases of MHLs involving both lobes occurred in females. Among 45 cases of MHLs, 30 (67%) presented with cystic lesion, 12 (26%) with solid lesions, and three (7%) with both types. Of 30 cases of cystic MHLs, 21 (70%) were reported in females and only nine (30%) in males (Table 1).

MHLs are difficult to diagnose by laboratory tests or other investigations because of its nonspecificity. Liver function tests and AFP values for MHLs are usually within normal limits. Additionally, all imaging methods, including ultrasonography, CT and magnetic resonance imaging (MRI), provide nonspecific findings. The differential diagnosis of a cystic MHL includes simple liver cysts, hydatid cysts, biliary cystadenocarcinoma, and cystic metastases. If a lesion consists of a solid mass, the differential diagnosis includes focal nodular hyperplasia, hepatic adenoma, cavernous hemangioma, angiomyolipoma and hepatocellular carcinoma. In the present case, the initial abdominal enhanced CT scan revealed multiple liver cysts, which could easily have been misdiagnosed as a polycystic liver.

The diagnosis of MHL often relies on histological examination of tissue obtained by biopsy or by tumor resection; however, the histological appearance of the stromal component of an MHL can be variable. Hematoxylin and eosin (HE) staining, as well as immunohistochemical studies, have indicated MHLs as having spindle cells positive for vimentin and smooth muscle actin, and negative for CD31, CD34 and S100 proteins, while the ducts stain positive for cytokeratin 7 and negative for cytokeratin 20.

MHLs have premalignant potential, particularly in adult patients. The potential malignant evolution of a subset of MHLs into embryonal sarcoma or angiosarcoma supports the necessity for complete surgical excision both in children and adults. Incomplete resection or marsupialization must be avoided because of the possibility of recurrence.

Figure 4 Clear boundary between liver parenchyma and proliferating connective tissue. A: The mass consisted of loose connective tissue full of myxoid matrix forming visible cysts (upper arrow). Small amounts of remaining liver tissue, with a lack of lobular architecture, were located in peripheral areas (lower arrow) (HE, original magnification × 100); Myxoid stroma with spindle cells showing smooth muscle differentiation were confirmed by positive staining for vimentin (B) and smooth muscle actin (C) (original magnification × 100); Benign dilated bile ducts were confirmed by positive staining for cytokeratin 7 (D) (original magnification × 100).
Table 1 Cases of adult mesenchymal hamartomas of the liver reported in the literature

No.	Ref.	Year	Sex	Age (yr)	Clinical manifestation	Size (cm)	Gross appearance (cystic or solid)	Liver lobe(s) affected	Surgical treatment
1	Yamamura et al[(36)]	1976	F	22	NA	24 × 19 × 8	Cystic	Both	NA
2	Grases et al[(37)]	1979	F	19	Abdominal pain, jaundice, hepatomegaly	17 × 10	Cystic	Right	Hemihepatectomy
3	Li et al[(38)]	1983	F	21	Asymptomatic	6 × 8	Cystic	Left	Left hepatic lobectomy
4	Kawata et al[(39)]	1984	F	43	NA	16 × 16 × 7.7	Cystic	Both	NA
5	Ishizuka et al[(40)]	1985	M	59	NA	22 × 15 × 10	Solid	Left	NA
6	Kawakami et al[(41)]	1986	M	67	NA	30 × 28 × 12	Cystic	Right	NA
7	Jennings et al[(42)]	1987	F	32	Asymptomatic	14 × 11	Cystic	Left	Left hepatic lobectomy
8	Kato et al[(43)]	1988	M	66	Asymptomatic	18	Both	Left hepatic lobectomy	
9	Gutierrez et al[(44)]	1988	F	30	NA	18	Both	Non-resectable	NA
10	Gramlich et al[(45)]	1988	F	28	Abdominal distention, weight loss	30 × 20 × 14	Cystic	Right	Lateral segmentectomy
11	Alcen et al[(46)]	1989	F	20	Asymptomatic	6 × 8	Cystic	Left	Left hepatic lobectomy
12	Ito et al[(47)]	1989	F	43	Asymptomatic	16 × 16 × 7.7	Cystic	Both	NA
13	Urabe et al[(48)]	1990	F	39	Asymptomatic	1.2	Solid	Left	Left hepatic lobectomy
14	Drachen et al[(49)]	1991	F	69	Asymptomatic	26 × 20 × 11.3	Cystic	Left	NA
15	Wada et al[(50)]	1992	M	62	Asymptomatic	6 × 6 × 4.5	Solid	Left	Hepatectomy
16	Chua et al[(51)]	1994	M	53	Abdominal pain	28 × 14 × 10	Cystic	Right	NA
17	Megremis et al[(52)]	1994	F	56	Abdominal pain	7.5	Cystic	Both	NA
18	Yamamoto et al[(53)]	1994	M	52	Abdominal distention, weight loss	6 × 4 × 3.5	Cystic	Left	Lateral segmentectomy
19	Chung et al[(54)]	1999	F	57	Abdominal distention, weight loss	6 × 4 × 3.5	Solid	Right	Right hepatectomy
20	Papastratis et al[(55)]	2000	F	21	Abdominal pain, abdominal mass	17 × 10	Cystic	Right	Right hepatectomy
21	Cook et al[(56)]	2002	F	46	Abdominal pain	6 × 4 × 5	Cystic	Right	Right hepatectomy
22	Cook et al[(56)]	2002	F	46	Abdominal pain	5 × 4 × 2	Cystic	Right	Right hepatectomy
23	Cook et al[(56)]	2002	F	63	Abdominal pain	11 × 16 × 24	Solid	Left	Left hepatic lobectomy
24	Mao et al[(57)]	2002	M	44	Abdominal pain	2 × 2	Solid	Left	Hepatectomy
25	Mao et al[(57)]	2002	M	76	Abdominal pain	4 × 5 × 4	Cystic	Right	Right hepatectomy
26	Biric et al[(58)]	2003	M	38	Abdominal pain	8 × 5	Solid	Right	Right hepatectomy
27	Kim et al[(59)]	2003	M	NA	Asymptomatic	5	Both	Right	NA
28	Yesim et al[(60)]	2005	F	54	NA	2.5 × 2.5 × 1.5	Cystic	Left	Total cystectomy
29	Yesim et al[(60)]	2005	F	51	NA	6 × 7 × 8	Cystic	Right	Unroofing procedure
30	Kim et al[(61)]	2006	F	40	Asymptomatic	5 × 5	Cystic	Right	Right hepatectomy
31	Ayadi-Kaddour et al[(62)]	2006	F	21	NA	11 × 5	Cystic	Left	NA
32	Hernández et al[(63)]	2006	M	51	NA	19 × 13	Solid	Right	Liver transplantation (4th reported)
33	Chang et al[(64)]	2006	M	79	Asymptomatic	2 × 2	NA	Right	NA
34	Chang et al[(64)]	2006	F	39	Asymptomatic	5 × 5	Cystic	NA	NA
35	Li et al[(65)]	2007	F	33	Abdominal distention, abdominal pain	16	Both	Both	NA
36	Mori et al[(65)]	2008	F	36	Abdominal distention, abdominal pain	20 × 15 × 10	Cystic	Right	Right hemihepatectomy
37	Gianippero et al[(66)]	2009	M	87	Abdominal distention, abdominal pain	20 × 20	Cystic	Right	Hemihepatectomy
38	Nakajo et al[(67)]	2009	M	38	Asymptomatic	5 × 5	Solid	Right	Right hepatectomy
39	Klaassen et al[(68)]	2010	F	53	NA	9 × 9 × 7.5	Cystic	Right	Hepatectomy
40	Kulkarni et al[(69)]	2010	F	20	Abdominal mass, abdominal pain,	14 × 11	Abdominal distention, abdominal pain	Right	Mass resection
41	Tucker et al[(70)]	2012	W	74	Abdominal distention, abdominal pain	18 × 15 × 13	Cystic	Left	Left hepatectomy
42	Liu et al[(71)]	2013	M	42	Asymptomatic	1.5 × 1.0 × 1.0	Solid	Left	Hepatectomy
43	Lakk et al[(72)]	2014	M	44	Asymptomatic	2.9 × 3.1 × 3.5	NA	Left	Hepatectomy
44	Sharma et al[(73)]	2014	M	81	Abdominal distention, abdominal pain	21.8 × 12.3 × 18.6	Cystic	Left	Hepatectomy

Notes:
- abdominal pain includes nausea, distention, and weight loss.
- left hepatic lobectomy includes left hepatic lobectomy and left hepatic hemihepatectomy.
Laparoscopic liver resection for MHLs has been reported with successful outcomes\(^\text{[22]}\).

Very rarely an MHL is non-resectable, even in an experienced center, and liver transplantation may have to be considered. Tepetes et al.\(^\text{[23]}\) reported two children who underwent liver transplantation following partial resections for MHLs. One died from intraoperative bleeding and the other survived. Bejarano et al.\(^\text{[24]}\) described a neonate with a recurrent MHL (after resection) who underwent successful liver transplantation. Hernández et al.\(^\text{[25]}\) reported the first case of an MHL in an adult that was treated by liver transplantation.

In conclusion, giant MHLs in adults are extremely rare. Clinical features, laboratory results and radiographic imaging are often nonspecific and inconclusive. Surgical excision of the whole lesion is imperative for both definitive diagnosis and cure. Liver transplantation should be considered as an option in the treatment of non-resectable MHLs.

REFERENCES

1. Edmondson HA. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. *AMA J Dis Child* 1956; 91: 168-186 [PMID: 1328629]
2. Stringer MD, Alizai NK. Mesenchymal hamartoma of the liver: a systematic review. *J Pediatr Surg* 2005; 40: 1681-1690 [PMID: 16291152 DOI: 10.1016/j.jpedsurg.2005.07.052]
3. Isaacs H. Fetal and neonatal hepatic tumors. *J Pediatr Surg* 2007; 42: 1797-1803 [PMID: 18022426 DOI: 10.1016/j.jpedsurg.2007.07.047]
4. Meyers RL. Tumors of the liver in children. *Surg Oncol* 2007; 16: 195-203 [PMID: 17714939 DOI: 10.1016/j.suronc.2007.07.002]
5. Klaassen Z, Paragi PR, Chamberlain RS. Adult Mesenchymal Hamartoma of the Liver: Case Report and Literature Review. *Case Rep Gastroenterol* 2010; 4: 84-92 [PMID: 21103233 DOI: 10.1159/000260183]
6. D’Alessandro AM, Hoffmann RM, Knechtle SJ, Eckhoff DE, Love RB, Kalayoglu M, Sollinger HW, Belzer FO. Successful extracorporeal transplantation from non-heart-beating donors. *Transplantation* 1995; 59: 977-982 [PMID: 7704958]
7. D’ Alessandro AM, Hoffmann RM, Knechtle SJ, Odorico JS, Becker YT, Musat A, Pirsch JD, Sollinger HW, Kalayoglu M. Liver transplantation from controlled non-heart-beating donors. *Surgery* 2000; 128: 579-588 [PMID: 11015901 DOI: 10.1067/msy.2000.108421]
8. Starzl TE, Groth CG, Brettschneider L, Penn I, Fulginiti VA, Moon JB, Blanchard H, Martin AJ, Porter KA. Orthotopic homotransplantation of the human liver. *Ann Surg* 1968; 168: 392-415 [PMID: 4875859]
9. Motiwale SS, Karmarkar SJ, Oak SN, Kalugutkar AD, Deshmukh SS. Cystic mesenchymal hamartoma of the liver—a rare condition. *Indian J Cancer* 1996; 33: 157-160 [PMID: 9055492]
10. Dehner LP, Ewing SL, Sumner HW. Infantile mesenchymal hamartoma of the liver. Histologic and ultrastructural observations. *Arch Pathol* 1975; 99: 379-382 [PMID: 1170838]
11. von Schweinitz D, Danmeier BG, Giller S. Mesenchymal hamartoma of the liver—new insight into histogenesis. *J Pediatr Surg* 1999; 34: 1269-1271 [PMID: 10466610]
12. Yesim G, Gupse T, Zafer U, Ahmet N. Mesenchymal hamartoma of the liver in adulthood: immunohistochemical profiles, clinical and histopathological features in two patients. *J Hepatobiliary Pancreat Surg* 2005; 12: 502-507 [PMID: 16365828 DOI: 10.1007/s00535-005-1025-9]
13. Cook JR, Pfeifer JD, Dehner LP. Mesenchymal hamartoma of the liver in the adult: association with distinct clinical features and histological changes. *Hum Pathol* 2002; 33: 893-898 [PMID: 12378513]
14. Karpelowsky JS, Pansini A, Lazarus C, Rode H, Millar AJ. Difficulties in the management of mesenchymal hamartomas. *Pediatr Surg Int* 2008; 24: 1171-1175 [PMID: 18751987 DOI: 10.1007/s00383-008-2239-0]
15. Ito H, Kishikawa T, Toda T, Arai M, Muro H. Hepatic
mensenchymal hamartoma of an infant. J Pediatr Surg 1984; 19: 315-317 [PMID: 6205130]
16 Lauwers GY, Grant LD, Donnelly WH, Meloni AM, Foss RM, Sanberg AA, Langham MR. Hepatic undifferentiated (embryonal) sarcoma arising in a mesenchymal hamartoma. Am J Surg Pathol 1997; 21: 1248-1254 [PMID: 9331300]
17 Li Q, Wang J, Sun Y, Cui Y, Hao X. Hepatic angiosarcoma arising in an adult mesenchymal hamartoma. Int Semin Surg Oncol 2007; 4: 3 [PMID: 17257403 DOI: 10.1186/1477-780X-4-3]
18 von Schweinitz D. Neonatal liver tumours. Semin Neonatol 2003; 8: 403-410 [PMID: 15001128 DOI: 10.1016/S1084-2755(03)00002-7]
19 Shuto T, Kinoshita H, Yamaeda C, Hirohashi K, Shiokawa C, Kubo S, Fujio N, Kobayashi Y. Bilateral lobectomy excluding the caudate lobe for giant mesenchymal hamartoma of the liver. Surgery 1993; 113: 215-222 [PMID: 8430370]
20 Murray JD, Ricketts RR. Mesenchymal hamartoma of the liver. Am Surg 1998; 64: 1097-1103 [PMID: 9798778]
21 Sharif K, Ramani P, Lochbühler H, Grundy R, de Ville de Goyet J. Recurrent mesenchymal hamartoma associated with 19q translocation. A call for more radical surgical resection. Eur J Pediatr Surg 2006; 16: 64-67 [PMID: 16544232 DOI: 10.1055/ s-2005-873072]
22 Yoon YS, Han HS, Choi YS, Lee SL, Jang JY, Suh KS, Kim SW, Lee KU, Park YH. Total laparoscopic left lateral sectionectomy performed in a child with benign liver mass. J Pediatr Surg 2006; 41: e25-e28 [PMID: 16410084 DOI: 10.1016/j.jpedsurg.2005.10.068]
23 Tepetes K, Selby R, Webb M, Madariaga JR, Iwatsuki S, Starzl TE. Orthotopic liver transplantation for benign hepatic neoplasms. Arch Surg 1995; 130: 153-156 [PMID: 7848084]
24 Bejarano PA, Serrano MF, Casillas J, Dehner LP, Bazzana MS, Cosentino V, Papadimitriou JC, Rivero MA, Wood C. Distinctive case. Adult mesenchymal hamartoma of the liver: report of a case with light microscopic, FNA cytology, immunohistochemistry, and ultrastructural studies and review of the literature. Med Pathol 1991; 4: 392-395 [PMID: 20680867]
25 Wada M, Ohashi E, Jin H, Nishikawa M, Shintani S, Yamashita M, Kano M, Yamanaka N, Nishigami T, Shimoyama T. Mesenchymal hamartoma of the liver: report of an adult case and review of the literature. Intern Med 1992; 31: 1370-1375 [PMID: 1300174]
26 Chau K, Ho J, Wu P, Yuen W. Mesenchymal hamartoma of liver in a man: comparison with cases in infants. J Clin Pathol 1994; 47: 864-866
27 Megremis S, Sfakianaki E, Volulaki A, Chroniaris N. The ultrasonographic appearance of a cystic mesenchymal hamartoma of the liver observed in a middle-aged woman. J Clin Ultrasound 1994; 22: 338-341 [PMID: 8046044]
28 Yamamoto M, Higahara H, Mogaki M, Imuro Y, Fujii H, Ainota T, Akahane Y, Matsumoto Y. Adult mesenchymal hamartoma of the liver mimicking bile duct cystadenoma. J Gastroenterol 1994; 29: 518-524 [PMID: 7951866]
29 Chung JH, Cho KJ, Choi DW, Lee BH, Choi JG. Solid mesenchymal hamartoma of the liver in adult. J Korean Med Sci 1999; 14: 335-337 [PMID: 10402180]
30 Pappastris G, Margaris H, Zografos GN, Korkolis D, Mannika Z. Mesenchymal hamartoma of the liver in an adult: a review of the literature. Int J Clin Pract 2000; 54: 552-554 [PMID: 11198739]
31 Mao J, Chen Y, Zhang X. [Misdiagnosis of 3 adult liver hamartomas]. Zhonghua Gan Zang Bing Zazhi 2002; 10: 478 [PMID: 12502465]
32 Brkic T, Hrstic I, Vuclelic B, Jakic-Razumovic J, Skrgio M, Romic B, Cukovic-Cavka S, Pulanic R, Ostojic R. Benign mesenchymal hamartoma of liver in an adult male: a case report and review of the literature. Acta Med Austriaca 2003; 30: 134-137 [PMID: 15055160]
33 Kim KA, Park CM, Kim CH, Choi SY, Park SW, Kang EY, Seol HY, Cha IH. An interesting hepatic mass: splenosis mimicking a hepatocellular carcinoma (2003: 9b). Eur Radiol 2003; 13: 2713-2715 [PMID: 14705650]
34 Kim KA, Kim KW, Park SH, Jung SJ, Park MS, Kim PN, Lee MG, Ha HK. Unusual mesenchymal liver tumors in adults: radiologic-pathologic correlation. AJR Am J Roentgenol 2006; 187: W481-W489 [PMID: 17056878 DOI: 10.2214/AJR.05.0659]
35 Ayadi-Kaddour A, Saiji E, Ben Slama S, Chelly-Ennaffir I, Lahmar-Boufarou A, Goutaillier-Ben Faldev B, Ben Sassil L, Khalifallah MT, Mzbai-Regaya S. [Hepatic mesenchymal hamartoma in adulthood: a case report with literature review]. Tunis Med 2006; 84: 263-265 [PMID: 16833000]
36 Chang HJ, Jin SY, Park C, Park YN, Jang JJ, Park CK, Suh YL, Yu E, Kang DY, Bae HI. Mesenchymal hamartomas of the liver: comparison of clinicopathologic features between cystic and solid forms. J Korean Med Sci 2006; 21: 63-68 [PMID: 16479067]
37 Mori R, Morioka D, Morioka K, Ueda M, Sugita M, Takeda K, Matsu K, Tanaka K, Endo I, Sekido H, Togo S, Shimada H. Giant mesenchymal hamartoma of the liver in an adult. J Hepatobiliary Pancreat Surg 2008; 15: 667-669 [PMID: 18987942 DOI: 10.1007/s00534-007-1286-6]
38 Giunippero A, Maya AM, Gallo A, Bazzana MS, Cosentino V,
Li J et al. Liver transplantation for giant mesenchymal hamartoma

Aulet FJ. [Mesenchymal hamartoma of the liver in an elderly man]. Medicina (B Aires) 2009; 69: 554-556 [PMID: 19897442]

54 Nakajo M, Jinnouchi S, Hamada N, Sueyoshi K, Matakita S, Tanabe H, Tateno R, Nakajo M. FDG PET/CT findings of mesenchymal hamartoma of the liver in an adult. Clin Nucl Med 2009; 34: 327-329 [PMID: 19387220 DOI: 10.1097/RLU.0b013e318191e504]

55 Kulkarni MP, Agashe SR, Singh RV, Sullhyan KR. Hepatic angiosarcoma arising in an adult mesenchymal hamartoma. Indian J Pathol Microbiol 2010; 53: 322-324 [PMID: 20551545 DOI: 10.4103/0377-4929.64311]

56 Tucker SM, Cooper K, Brownschidle S, Wilcox R. Embryonal (undifferentiated) sarcoma of the liver with peripheral angiosarcoma differentiation arising in a mesenchymal hamartoma in an adult patient. Int J Surg Pathol 2012; 20: 297-300 [PMID: 22134632 DOI: 10.1177/1066896911424899]

57 Liu Q, Liu J, Chen W, Mao S, Guo Y. Primary solitary fibrous tumors of liver: a case report and literature review. Diagn Pathol 2013; 8: 195 [PMID: 24294990 DOI: 10.1186/1746-1596-8-195]

58 Lakić TZ, Živojinov MM, Vuković M, Ilić-Sabo JR, Botšković T. Mesenchymal hamartoma of the liver in adults: Case report. Med Pregl 2014; 67: 399-403

59 Sharma M, Bansal P, Goyal NK. Adult hepatic mesenchymal hamartoma: an unusual case. J Lab Physicians 2014; 6: 124-126 [PMID: 25328340 DOI: 10.4103/0974-2727.141514]

P- Reviewer: Nakayama Y, Ohkohchi N S- Editor: Ma YJ L- Editor: Stewart G E- Editor: Wang CH
