The effect of teacher-delivered nutrition education programs on elementary-aged students: An updated systematic review and meta-analysis

Wayne Cottona,⁎, Dean Dudlev, Louisa Peraltaa, Thea Werkhovena

a The University of Sydney, NSW 2006, Australia
b Macquarie University, NSW, Australia

ARTICLE INFO

Keywords:
Nutrition review
Meta-analysis
Elementary students

ABSTRACT

Research shows that schools can make a positive impact on children's nutritional outcomes. However, it is also reported that schools and teaching staff note many barriers, which may restrict nutritional education programming and delivery. This is concerning, considering the view that teachers are the key agents for promoting health and nutrition within schools. The purpose of the updated systematic review and meta-analysis was to ascertain the impact that nutrition education programs have on elementary-aged students' energy intake, fruit, vegetable, sugar consumption and nutritional knowledge. A systematic literature search was conducted using electronic databases (The Cochrane Central Register of Controlled Trials (CENTRAL); A + Education; ERIC; PsycINFO; MEDLINE; ProQuest Central, Journals@Ovid and SAGE Health Sciences Full-Text Collection) from 1990 to 31st October 2018. This process yielded 34 studies for inclusion in this systematic review and meta-analysis. Of these studies, seven studies had a focus on energy intake, five had a focus on sugar consumption, 21 of the studies looked at fruit and vegetable consumption and 13 studies focused on nutritional knowledge. The results suggest that the teaching of nutrition education in elementary schools by qualified teachers can make an important contribution to the knowledge and dietary habits of children. The small and medium effect sizes indicate that prudent, evidence-based decisions need to be made by policy makers and pedagogues as to the teaching strategies employed when delivering nutrition education programs to elementary-aged students.

The review is reported in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (van Sluijs et al., 2007).

1. Introduction

Nutrition-related health conditions, such as obesity, Type 2 diabetes, and hypertension are becoming prevalent in children (Goran et al., 2003; Kelsey et al., 2014). Children with these conditions often suffer physical discomfort, ill-health, lower self-esteem, poorer academic outcomes and negative socio-emotional (van Geel et al., 2014; Reilly and Kelly, 2011). Furthermore, the risk of these conditions tracking into adulthood is high (United Nations Educational Scientific and Cultural Organization, 2015). As such, there have been international calls to focus on prevention through nutrition education in schools (World Health Organization, 2012; Story et al., 2009). Schools are ideal settings for preventive nutrition education efforts targeting children due to their reach, structure and cost effectiveness (Graziose et al., 2017; Dudley et al., 2015). Two recent systematic reviews and meta-analysis suggests nutrition education programs delivered in elementary schools can positively influence children's energy intake, fruit and vegetable consumption, sugar consumption and nutritional knowledge, particularly those programs embedding experiential learning strategies and cross-curricular approaches, engaging parents by means of face-to-face sessions and assuring fidelity by training teachers or recruiting trained experts to support the delivery of the intervention (Murimi et al., 2018; Peralta et al., 2016).

Despite research showing that schools can make a positive impact on children’s nutritional outcomes, it is also reported that schools and teaching staff note many barriers that restrict nutritional education programming and delivery. First, nutrition education is often seen as unnecessary because the content is not included on standardized tests.
Second, elementary school teaching staff do not have access to appropriate resources and may not have the expertise, motivation or capacity to deliver evidence-based nutrition education (Dudley et al., 2015). Third, preservice teachers only receive limited training in nutrition education during their tertiary studies (de Vlieger et al., 2019). Finally, providing professional learning for teachers is time consuming and often requires financial investment that may not align with the school’s professional learning goals (Porter et al., 2018). To overcome these barriers, schools and teachers have sought community organizations, who are experts in nutrition education, to deliver nutrition education programs in elementary schools (Moher et al., 2009). This is concerning, considering the educative view that qualified teachers are the key agents for promoting health and nutrition within schools (World Health Organization, 2012).

To emphasise the importance and effect of elementary school nutrition education programs on children’s energy intake, fruit, vegetable and sugar consumption and nutritional knowledge, and to capture the exponential growth of studies reporting on elementary school nutrition education programs in the previous five years, an updated systematic review and meta-analysis was undertaken (Murimi et al., 2018). The purpose of the updated systematic review and meta-analysis was to ascertain the impact that nutrition education programs have on elementary-aged students’ energy intake, fruit, vegetable, sugar consumption and nutritional knowledge by widening the search through increasing the number of inclusion criteria and reviewing data from more recent studies.

2. Materials and methods

A systematic literature search was conducted using electronic databases (The Cochrane Central Register of Controlled Trials (CENTRAL); A+ Education; ERIC; PsycINFO; MEDLINE; ProQuest Central, Journals@Ovid and SAGE Health Sciences Full-Text Collection) from 1990 to 31st October 2018. The search strategy included the use of terms in four broad categories: (i) participants; (ii) delivery; (iii) strategies; and (iv) design. The title and abstract fields were searched using the following terms:

1. primary student* or primary school* or elementary student* or elementary school* or child* or school-based* and
2. teach* or class* or health edu* or nutrition education* or healthy eat* or curricul* or reward* or nutritional intervention or education program* and
3. nutrition* or energy or cook* or food* or fruit* or vegetable* or sugar* or kilojoule* or calorie* or eating or diet* and
4. test or RCT or randomi* or control or trial or evaluat* or quasi-expert* or cluster or intervention*.

Reference lists of included studies were manually searched for additional articles.

2.1. Inclusion and exclusion criteria

Studies were included if they: (1) targeted elementary-aged children’s nutritional consumption or knowledge; (2) employed a nutritional education program taught by an elementary school teacher; and (3) reported nutritional consumption and/or knowledge outcomes using independent group difference values.

2.2. Study selection, data extraction and analysis

After duplicate deletion, one author (TW) initially screened all articles based on title and abstracts for preliminary inclusion (Stage 1); before screening remaining articles by full text based on inclusion criteria (Stage 2). In cases where there was uncertainty, a second reviewer (DD) assessed the article and consensus was reached by discussion. See Fig. 1 for an overview of this process.

The standardised mean difference score was calculated for each stated variable by using Cohen’s d. The pooled ES was estimated by using a random-effects model based on the DerSimonian and Laird (van Sluijs et al., 2007) method. We assessed and reported heterogeneity across studies by using the following statistical analyses. 1. The Q-statistic provided a test of the null hypothesis as to whether all studies share a common effect size; 2. the I² statistic reports the proportion of the observed variance that are indicative of changes in true effect sizes rather than sampling error; 3. T² is the variance of true effect sizes; and 4. Prediction interval is range of true effect size for 95% of all samples observed.

Classic Fail Safe N and Trim and Fill (Collaboration and Fail-safe, 2011) methods were used to assess publication bias. Studies were only included in the meta-analysis if they provided complete data for pre- and post-intervention measurements and included a control or comparison group.

In addition, the following statistical assumptions were applied: (1) when two cohorts were included in studies, their data were investigated as combined samples; (2) when two or more tests measuring the same variable were included in the studies, the combined effect size at the study level was used; (3) when two or more learning outcomes were used, the results were treated as independent samples; and (4) when two or more follow-up measurements were reported, only the last measurement was considered.

Comprehensive Meta-Analysis software, version 3 (Biosoft, New York, NY) was used to perform all Statistical analyses.

2.3. Data collection process and data items

Characteristics and results of studies were extracted by all authors. Studies with multiple published articles were reported as a single group. For meta-analysis, final mean and standard deviation (SD) or change in mean and SD were extracted energy intake, sugar consumption, fruit and vegetable consumption and nutritional knowledge. In some studies, the required statistics for meta-analysis were not reported. If available, other statistics e.g., 95% confidence interval (CI) or standard error (SE) were converted to the required form according to the calculations outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Section 7.7 and 16.1.3.2) (DerSimonian and Laird, 1986).

2.4. Quality assessment

The methodological quality of the individual studies were assessed using an assessment scale derived from van Sluijs and colleagues (van Sluijs et al., 2007) (See Table 1). For each included article, three reviewers (WC, LP & TW) independently assessed whether the assessed item was present or if the assessed item was absent. If an item was not described sufficiently it was allocated an absent score. For each article, agreement between reviewers for each article was set a priori at 80% (DerSimonian and Laird, 1986) (i.e., reviewers were required to agree that the items were either present or absent for eight of the 10 items). If this did not occur, further discussions were conducted until consensus was reached.

The standardized effect sizes (Cohen, 1988) were interpreted as minimal (< 0.02), small (0.2), medium (0.5), and large (0.8).

3. Results

The combined search retrieved 5257 peer-reviewed articles published in English from the 1st January 1990 to the 31st October 2018. After removing duplicates, 3922 individual articles were ready for the initial review. Decisions were made about the inclusion of articles in two stages. In Stage 1, one author (TW) scanned the titles and abstracts for relevance (i.e., did they have a nutrition education focus in...
Records identified through database searching: n = 5257

- Cochrane CENTRAL: 555
- A + Education: 27
- ERIC (via Ovid): 949
- PsycINFO (via Ovid): 661
- Medline: 268
- ProQuest Central: 2329
- Journals@Ovid: 439
- SAGE Health Sciences: 29

Date: from 1st January 1990 to 31st October 2018

3922 records after duplicates removed

Stage 1

3922 records screened → 3642 records excluded

Stage 2

280 full-text articles assessed for eligibility *and* reference lists manually searched for additional articles → 255 articles excluded

9 additional articles found

34 individual studies included in synthesis

- Energy Intake: 7
- Sugar Consumption: 5
- FV Consumption: 21
- Nutritional Knowledge: 13

Fig. 1. Flow of information through the different phases of the systematic review.
elementary schools).

This resulted in a subgroup of 280 remaining articles. In Stage 2, three authors (TW, LP & WC) conducted full text reviews of remaining articles, including reference lists. This process yielded 34 studies for final inclusion in this systematic review and meta-analysis. Of these 34 studies, seven studies had a focus on energy intake, five had a focus on sugar consumption, 21 of the studies looked at fruit and vegetable consumption and 13 studies focused on nutritional knowledge.

Fig. 1 shows a diagrammatic overview of the review process.

An overview of methodological quality of the studies are reported in Table 2.

3.1. Studies included in energy intake Meta-Analysis

In the seven studies included in the energy intake meta-analysis (Anderson et al., 2005; Evans et al., 2010; Gatto et al., 2017; Gortmaker et al., 1999; Liquori et al., 1998; Manios et al., 2002; Simons-Morton et al., 1991), the researchers reported the energy intake of elementary school-aged children as taught through a curriculum approach,

Table 1
Methodological quality assessment items (Adapted from (van Sluijs et al., 2007)).

Item	Description
A	Key baseline characteristics are presented separately for treatment groups (age, and one relevant outcome (food consumption/energy intake; fruit and vegetable consumption or preference; reduced sugar consumption or preference; nutritional knowledge) and for randomised controlled trials and controlled trials, positive if baseline outcomes were statistically tested and results of tests were provided.
B	Randomisation procedure clearly and explicitly described and adequately carried out (generation of allocation sequence, allocation concealment and implementation)
C	Validated measures of food consumption/energy intake and/or fruit and vegetable consumption or preference and/or reduced sugar consumption or preference and/or nutritional knowledge (validation in same age group reported and/or cited)
D	Drop out reported and ≤20% for < 6-month follow-up or ≤30% for ≥6-month follow-up
E	Blinded outcome variable assessments
F	Food consumption/energy intake and/or fruit and vegetable consumption or preference and/or reduced sugar consumption or preference and/or nutritional knowledge assessed a minimum of 6 months after pre-test
G	Intention to treat analysis for food consumption/energy intake and/or fruit and vegetable consumption or preference and/or reduced sugar consumption or preference and/or nutritional knowledge outcomes(s) (participants analysed in group they were originally allocated to, and participants not excluded from analyses because of non-compliance to treatment or because of some missing data)
H	Potential confounders accounted for in outcome analysis (e.g. baseline score, group/cluster, age)
I	Summary results for each group + treatment effect (difference between groups) + its precision (e.g. 95% confidence interval)
J	Power calculation reported, and the study was adequately powered to detect hypothesized relationships

Table 2
Methodological quality assessment.

Paper Author (Year)	Methodological Quality Assessment Items	No. of criteria met
Amaro et al. (2006)	√ x x √ x √ x √ x √ x √	6
Anderson et al. (2005)	√ x x x x √ x x x x	3
Auld et al. (1998)	√ x √ x x √ x x √ x	5
Baranowski et al. (2000)	√ x √ √ x x √ x √	7
Battjes-Fries et al. (2015)	√ x √ x x √ x √	5
Bere et al. (2006)	√ x √ x x x x √ x	5
Campbell et al. (2012)	x x √ x x x x x	2
Cooke et al. (2011)	√ x x x x x	4
Day et al. (2008)	√ x √ x x x x √	5
Evans et al. (2010)	√ √ √ √ x x x x √	7
Fahlman et al. (2008)	√ √ x x x x x	5
Francis et al. (2010)	√ √ √ x x	4
Friel et al. (1999)	√ x √ x x x	4
Gatto et al. (2017)	√ √ x x	4
Gibbs et al. (2013)	√ x √ x x x	6
Gortmaker et al. (1999)	√ √ √ x x x x √	6
Govula et al. (2007)	√ x x √ x x	3
Horne et al. (2004)	√ x √ x x x x √ x	4
Katz et al. (2011)	√ x √ x x x	4
Kipping et al. (2014)	√ √ √ x x √	10
Kristjansdottir et al. (2010)	√ x x x √ x x	5
Lakshman et al. (2010)	√ x √ x x √ x x	6
Liquori et al. (1999)	x x x x x x x	2
Manios et al. (2002)	√ x x x x x	6
McAleese and Rankin (2007)	√ x x x x x x x	2
Morgan et al. (2010)	√ x x x x x √	7
Parmer et al. (2009)	√ x x x x x √	7
Prelip et al. (2012)	√ x x x x x	4
Randsej et al. (2007)	√ x x	4
Rosário et al. (2012)	√ x x x x x	6
Simons-Morton et al. (1991)	√ x x x x x x	2
Strumpler et al. (2014)	√ x x x x x x	5
van de Gaar et al. (2014)	√ x x	7
Vigiano et al. (2015)	√ x x x x x	6
Percentage/mean	94% 29% 76% 47% 9% 50% 21% 50% 88% 35%	5

(N.B. √ = criteria met; x = criteria not met).
Table 3
An overview of the studies found in the systematic review and included in the meta-analysis.

Author (Year), Country, Funding agency	Design/Dominant Theory Framework	Sample	Treatment Length	Teaching Strategy/Approach	Relevant Outcome Categories	Statistical Significance (p value/95% CI)	
Amaro et al. (2006), Italy, Amici di Raoul Follereau (AIFO)	CT / NR	241 × students Mean age: 12yrs	24 weeks	Kaleido Board Game (15-30mins play time p/w)	Nutritional knowledge (31 items)	< 0.05	
					BMI (z-score)	NS	
Anderson et al. (2005), UK, Food Standards Agency	CT / TPR	129 × Grades 1–6 students Mean age: 8yrs	36 weeks	(Curriculum approach) based on experiential learning, video & literary abstraction Marketing and canteen provisions	Cognitive & attitudinal (Likert scale)	0.001	
					- Diet heart disease knowledge	0.034	
					- Preference for HFSS foods	0.617	
					3-day food diary	0.327	
					- FV consumption (g)	0.578	
					- Energy (kJ)		
					- Sucrose (g)		
Auld et al. (1998), USA, Kraft Foods, Inc., USDA Food and Consumer Services Cooperative, National Institute of Health/Centers for Disease Control and Prevention 5 A Day Evaluation Grant, and The Lindsay Trust.	QE / SCT	760 students in grades 2–4. Mean age: NR	16 weekly sessions	(Curriculum approach) Nutrition education sessions	FV knowledge	< 0.001	
					FV consumption		
					- Fruits	< 0.05	
					- Vegetables	< 0.05	
					Plate wastage		
					- Fruits	< 0.01	
					- Vegetables	< 0.001	
					- FV	< 0.001	
					Attitudes to food		
					- School lunches	< 0.01	
					- Wholegrains	< 0.001	
					Self-Efficacy scores		
					Fruit Vegetable and Juice consumption		
					- Fruits	< 0.05	
					- Vegetables	< 0.001	
					- FV	< 0.001	
					- FVJ eaten at weekday lunch	< 0.10	
					- Knowledge of FVJ		
					Fruit and Vegetable self-efficacy		
Baronowski et al. (2000), USA, NR.	RCT / SCT	1712 children in grades 3–5. Mean age: NR	6 weeks with 12 sessions	(Curriculum approach) Nutrition education sessions. Videotapes, point of purchase education	Curriculum enjoyment (Likert scale)	< 0.001	
					Determinants of taste acceptance		
					- Number of foods known	NS	
					- Positive taste	< 0.05	
					- Number of foods tasted	NS	
					- Willingness to taste food		
					Determinants of target behaviours		
					- Knowledge	NS	
					- Awareness	NS	
					- Attitude		
Battjes-Fries et al. (2015), The Netherlands, Ministry of Economic Affairs of the Netherlands.	QE / NR	1183 children aged between 9 and 12 years. Mean age: 9yrs.	10–12 sessions	(Curriculum design) nutrition education Experiential Learning (cooking and tasting food)	Determinants of taste acceptance	< 0.05	
					- Number of foods known	NS	
					- Positive taste	< 0.05	
					- Number of foods tasted	NS	
					- Willingness to taste food		
					Determinants of target behaviours		
					- Knowledge	NS	
					- Awareness	NS	
					- Attitude		
Bere et al. (2006), Norway, Norwegian Research Council.	CT / SCT	369 × Grade 6 students Mean age: 11yrs	28 weeks	(Curriculum approach) National Curriculum Experiential learning (Cooking/Food Prep)	Curriculum enjoyment (Likert scale)	24hr recall of Daily Dietary Intake	0.41
					- FV consumption	0.004	

(continued on next page)
Author (Year), Country, Funding agency	Design/Dominant Theory Framework*	Sample	Treatment Length	Teaching Strategy/Approach	Relevant Outcome Categories	Statistical Significance (p value/95% CI)
Campbell et al. (Campbell et al., 2012), Canada, the Provincial Health Service Authority (PHSA) and by the Child and Family Research Institute (CFRI).	RCT / NR	873 students in grades 3-7. Mean age NR	21 lessons spanning 1 year	(Curriculum design) nutrition education, peer to peer instruction	Healthy behaviours	< 0.001
Cooke et al. (2011), UK, Medical Research Council National Prevention Research Initiative	CT / mixed	442 × Kindergarten students Mean age: 6yrs	2 weeks	Contingent reinforcement for vegetable tasting	Liking of vegetables (Likert scale)	0.001
Day et al. (Day et al., 2008), Canada, NR	CT / NR	444 × Grades 4–5 students Mean age: 10yrs	12 weeks	Integrates classroom learning, environmental change strategies, and a family/community component to promote the consumption of FV	Intake of vegetables (Likert scale)	0.001
Evans et al. (Evans et al., 2010), UK, NR. Meta-analysis / NR		Trials of children aged 5 to 11 years. Mean age NR	NR NR		FV schemes - Fruit portions - Vegetable portions	Significant
Fahlman et al. (Fahlman et al., 2008) USA, NR	QE / NR	576 × students Mean age: 12yrs	4 weeks	(Curriculum approach) adapted Health Belief Model	24hr recall of Daily Dietary Intake - Fruit consumption (Servings) - Vegetable consumption (Servings) - FV consumption (Servings) - Variety of FV consumption (Servings)	0.05
Francis et al. (Francis et al., 2010) Trinidad & Tobago, Self-Funded	RCT / NS	579 × Grade 6 students Mean age: 10yrs	32 weeks	(Curriculum approach) Bloom's mastery learning model	Children's Eating Attitude Test-26 (M)	< 0.05

(continued on next page)
Author (Year), Country, Funding agency	Design/Dominant Theory Framework*	Sample	Treatment Length	Teaching Strategy/Approach	Relevant Outcome Categories	Statistical Significance (p value/95% CI)
Friel et al. (Friel et al., 1999), Ireland, the Department of Health.	QE / SLT	821 children aged 8-10 years. Mean age NR	20 sessions over 10 weeks	(Curriculum approach) Worksheets, homework tasks. Aerobic exercise regimen.	Food Behaviour	< 0.01
Gatto et al. (Gatto et al., 2017), USA, The NIH and a Community Benefit grant from the Keck School of Medicine.	RCT / Self-Efficacy	375 elementary school students. Mean age: 9yrs	12x weekly sessions of 90 min	School gardening and cooking lessons	Food Preference	< 0.01
Gibbs et al. (Gibbs et al., 2013), Australia, NR	CT / mixed	764 × Grades 3 to 6: Mean age: NR	2 years	(Curriculum approach) Stephanie Alexander’s Kitchen Garden Program. Experiential (gardening and cooking classes)	Food Knowledge	NS
Gortmaker et al. (Gortmaker et al., 1999), USA, Walton Family Foundation.	QE / SCT BCT	336 × Grades 4–5 students. Mean age: 9yrs	2 years	Cross-curricular (Math, science, language, social studies, physical education) coupled with a Social Marketing Approach	Parent-proxy questionnaire	0.11
Govula et al. (Govula et al., 2007), USA, NR	QE / NR	33 × Grade 3 students Mean age: NR	6 weeks	(Curriculum approach) MyPyramid and Medicine Wheel Nutrition for Native Americans Culturally appropriate lessons	Fruit consumption /d	< 0.001
Horne et al. (Horne et al., 2004) UK, Horticultural Development Council, Fresh Produce Consortium, ASDA, Co-operative Group, Safeway, Sainsbury, Somerfield, Tesco, Bird’s Eye	QE / SLT	749 × Grades K-6 students Mean age: NR	16 weeks	Animation abstraction and contingent reinforcement for F&V consumption	Consumption based on teacher visual estimates	< 0.002
Katz et al. (2011), USA, NR	RCT / NR	1180 × Grades 2–4 students. Mean age: NR	3 months	(Curriculum approach) developed with teachers and supported by homework, letters to parents and information evenings with parents	Nutrition Knowledge	0.04
Kipping et al. (2014), UK, UK National Institute for Health Research (NHR) Public Health Research Programme	RCT / SCT	2121 × Grade 5 students. Mean age: 9yrs	12 months	(Curriculum approach) Active For Life Year 5 intervention. Included teacher training, provision of lesson and child-parent interactive homework plans, all materials required for lessons and homework, and written materials for school newsletters and parents.	A Day in the Life Questionnaire	0.51
Kristjandottir et al. (2010), Iceland, The University of Iceland, The Icelandic Centre for Research, Brim Seafood	CT / NR	171 × Grade 2 students Mean age: NR	2 years	(Curriculum approach) co developed with teachers and supported by homework, letters to parents and meetings with parents	Food record by parents	< 0.001
(continued on next page)						
Author (Year), Country, Funding agency	Design/Dominant Theory Framework *	Sample	Treatment Length	Teaching Strategy/Approach	Relevant Outcome Categories	Statistical Significance (p value/95% CI)
---	---	---	---	---	---	---
Lakshman et al. (2010), UK, Health Enterprise East, NHS innovations hub for East of England.	RCT / NR	2519 × Grades 5–6 students. Mean age: NR	9 weeks	(Curriculum approach) Healthy eating curriculum + Top Grub card game to be implemented in classroom and at home.	Healthy eating quiz	- Knowledge < 0.001
Liquori et al. (Liquori et al., 1998) USA, NR.	QE / SCT	590 × Grades K-6 students Mean age: NR	1 year	Experiential learning (Cooking, environment and community garden)	Food intake based on teacher visual estimates (%)	- Self-report < 0.01
Manios et al. (2002), Greece, Kellogg’s, Greek Ministry of Sport, Greek Ministry of Education.	QE / NR	1006 × Grade 1 students Age range: 5.5–6.5yrs Mean age: NR	6 years	(Curriculum approach) Literary abstraction		- Energy (kJ) < 0.05
McAleeese & Rankin (McAleese and Rankin, 2007), USA, NR.	QE / NR	99 × Grade 6 students Mean age: 11yrs	12 weeks	(Curriculum approach) Nutrition in the Garden Experiential learning (School garden)	24 hr recall of Daily Dietary Intake	- Fruit (Servings/day) < 0.001
Morgan et al. (Morgan et al., 2010) Australia, Hunter Medical Research, Coles.	QE / SCT	127 × Grades 5–6 students Age range: 11-12yrs Mean age: NR	10 weeks	(Curriculum approach) Nutrition in the Garden – Modified Experiential learning (School garden)	FV knowledge (Gimme 5 Questionnaire)	- < 0.01
Parmer et al. (2009), USA, NR	CT / ELT	115 × 2nd Grade students Mean age: 7yrs	28 weeks	(Curriculum approach) Nutrition lessons + school garden Experiential Learning (Gardening + Food Prep)	FV Survey (Likert Scale)	- MyPyramid food groups NS
			1 year of schooling	(Curriculum approach) National curriculum and teacher training workshops	Researcher Observed	- Vegetable intake (Servings/day)
					Lunch Choices	- Vegetable choice (Servings)

(continued on next page)
Table 3 (continued)

Author (Year), Country, Funding agency	Design/Dominant Theory Framework	Sample	Treatment Length	Teaching Strategy/Approach	Relevant Outcome Categories	Statistical Significance (p value/95% CI)		
Prelip et al. (Prelip et al., 2012), USA, the Network for a Healthy California through the United States Department of Agriculture.	QE / SCT, TPB	399 × Grades 3–5. Age range: 8-11 yrs. Mean age: NR	11 months	Provision of fruit and vegetables at school	- Vegetable intake	< 0.01		
					- Fruit availability	NS		
					- Vegetable availability	NS		
					FV Questionnaire			
					- Food group knowledge	NS		
					- FV related attitudes	NS		
					- FV attitude influence	NS		
					- FV influence from parent	NS		
					- FV influence from teacher	NS		
Ransley et al. (Ransley et al., 2007), United Kingdom, NR.	QE / NR	3703 × Children. Age range: 4–6 yrs. Mean age 6 yrs	11 months	Provision of fruit and vegetables at school	Fruit intake	95% CI (7 mth follow up)	0.2 (0.1–0.4)	
					- At reception age	0.3 (0.1–0.6)		
					- In year 1	0.2 (0.1–0.3)		
					- In year 2	0.2 (0.1–0.3)		
					Vegetable portions			
					- At reception age	0.2 (0.1–0.3)		
					- In year 1	0.2 (0.1–0.3)		
					- In year 2	0.2 (0.1–0.3)		
					Fruit and vegetable intake			
					- At reception age	0.2 (0.1–0.3)		
					- In year 1	0.2 (0.1–0.3)		
					- In year 2	0.2 (0.1–0.3)		
					Energy intake			
					- At reception age	-0.03 (-0.25 – 0.19)		
					- In year 1	0.03 (-0.05 – 0.1)		
					- In year 2	0.03 (-0.05 – 0.1)		
Rosário et al. (2012), Portugal, NR.	RCT / SCT, Health Promotion Model	464 × Grades 1–4. Mean age: 8 yrs	6 months of lessons	(Curriculum approach)	Nutrition lessons			
					FV Intake			
					- Fruit (grams)	< 0.01		
					- Vegetables (grams)	< 0.05		
					- Fruits and vegetables (grams)	< 0.001		
					- BMI	< 0.01		
					- Weight control	< 0.05		
Simons-Morton et al. (1991), USA, NHLBI funded	RCT / SCT	Total sample size NR. Children in kindergarten – 4th grade. Mean age NR	3x spring sessions spanning 3 years	(Curriculum approach)	Classroom nutrition lessons, Physical activity, School lunches	Nutrient Intake	Value (95% CI range)	849.3 (816.8 – 881.8)
					- Energy (kcal) [School 3]	840.9 (800.7 – 881.1)		
					- Energy (kcal) [School 4]	849.3 (816.8 – 881.8)		
					- Fruit intake (weekly)			
					- Fruit intake			
					- Physical activity (weekly)			

(continued on next page)
Author (Year), Country, Funding agency	Design/Dominant Theory Framework*	Sample	Treatment Length	Teaching Strategy/Approach Relevant Outcome Categories	Statistical Significance (p value/95% CI)	
Struempler et al. (Struempler et al., 2014), USA, Alabama Cooperative Extension System and the US Department of Education SNAP	Experiential Learning Theory	1288 × Grades 2 – 7. Mean age NR	1 year	(Curriculum based) Healthy lifestyle promotion, Physical activity	Vegetable intake (weekly servings) < 0.001, Sugar sweetened beverage consumption (parent report) 0.79 (0.47 – 1.34), Sugar sweetened beverage consumption (child report) 1.32 (0.78 – 2.34)	
van de Gaar et al. (2014), The Netherlands, ZonMw, the Netherlands Organization for Health Research and Development and The Netherlands Organization for Scientific Research (NWO)	RCT	115 × Grades 2 – 7. Mean age NR	1 year	(Curriculum based) Healthy lifestyle promotion, Physical activity	Vegetable intake (weekly servings) < 0.001, Sugar sweetened beverage consumption (parent report) 0.79 (0.47 – 1.34), Sugar sweetened beverage consumption (child report) 1.32 (0.78 – 2.34)	
Viggiano et al. (2015) Italy, Second University of Naples, Associazione Culturale Kaleido, Regione Campania (Assessorato all’Istruzione), Provincia di Napoli, Provincia di Salerno (Assessorato al Sport), Comune di Cercola (Assessorato all’istruzione) and Fondazione per l’Assistenza all’Infanzia	RCT	3110 × 9–19 year olds. Mean age 13yrs.	20 weeks	Board game based education	Adolescent Food Habit Checklist, Nutrition Knowledge Questionnaire, Healthy and Unhealthy Diet and Food Questionnaire, Food Habits Questionnaire	< 0.001, < 0.001, < 0.001, < 0.001

(N.B. TPB = Theory of Planned Behaviour; SCT = Social Cognitive Theory; SLT = Social Learning Theory; BCT = Behavioural Choice Theory; RCT = Randomised controlled trial; QE = Quasi-experimental; CT = Cluster-controlled trial; NR = Not reported; NS = Not significant; FV = Fruit and vegetable; SLB = Sugar-laden beverages; HFSS = High fat, sugar & salt; HFF = High Fat Food; FF = Fast food, BMI = Body Mass Index).
experiential learning activities or provision of food at school through lunches or the school canteen. In these studies, researchers included information on energy intake using food diaries that were completed by: (1) parents of children in the study; (2) self-reported; or (3) teacher estimates.

3.1.1. Study quality

Of the seven studies whose quality was assessed by using the methodological quality assessment items adapted from van Sluijs et al. (2007), only three of the six papers met five or more of the assessment criteria (Evans et al., 2010; Gortmaker et al., 1999; Manios et al., 2002). One paper met four of the criteria (Gatto et al., 2017), one met three criteria (Anderson et al., 2005) and two studies met only two of the prescribed criteria (Liquori et al., 1998; Simons-Morton et al., 1991). All seven papers reported their findings using validated measures.

3.1.2. Summary

The analysis is based on seven studies that evaluated the effect of teaching-based interventions on energy intake of students aged 5–12 years of age attending primary/elementary schools. In each study, students were assigned to either a reduction of energy intake teaching intervention or their regular curricular and the researchers recorded their energy intake at the conclusion of the intervention period. The effect size is the standardised mean difference and is reported using Cohen’s d. The Cohen’s d effect size estimate is calculated using a relative weight assignment to each of the included studies based on the precision of the effect reported. In other words, studies that reported higher degrees of precision (i.e. less variance around the mean) contribute more to the overall Cohen's d that those with less precision (i.e. greater variance around the mean).

The studies in this analysis were sampled from a universe of possible studies defined by the inclusion/exclusion criteria defined earlier in the paper. For this reason, the random-effects model was employed for analysis. The conclusion (below) applies to that universe.

3.1.3. Do teaching-based interventions affect student energy intake?

The standardised difference in means is $d = 0.396$. On average, students receiving the teaching-based intervention reduced their energy intake by over a third of a standard deviation than those students who did not receive a nutrition teaching intervention.

The confidence interval for the standardised difference in means is 0.042 to 0.751, which tells us that the mean effect size in the universe of studies could fall anywhere in this range.

The Z-value for testing the null hypothesis (that $d = 0.0$) is 2.190, with a $p = 0.029$. Thus, we can reject the null that teaching-based interventions have no effect on student energy intake with greater than 95% certainty.

3.1.4. How much does the effect size vary across studies (Heterogeneity)?

To test the null hypothesis that all studies in the analysis share a common effect size the Q-statistic was used in conjunction with the I^2 statistic (what proportion of the observed variance reflects differences in true effect sizes rather than sampling error), T (the standard deviation of true effects) and T^2 (the variance of true effect sizes). The Q-value is 71.783 with 6 degrees of freedom and $p < 0.001$. Thus, we reject the null hypothesis that the true effect size is identical in all studies. The I^2 is 91.681%, T^2 is 0.184 and T is 0.429 indicating considerable heterogeneity among the included studies.

The prediction interval is -0.8009 to 1.5929. We would expect the true effect size for 95% of all populations receiving the interventions to fall within this range.

3.1.5. To what extent would publication bias or the small-study effect alter these findings?

Publication bias suggests that not all completed studies are published, instead studies that have large effects are more likely to be submitted and/or accepted for publication than studies that do not have such large effect sizes. As the treatment effect estimate was calculated from a potentially biased collection of studies, the following analyses were applied to assess the extent of that bias.

Initially, the Classic fail-safe analysis was undertaken. The results showed that the incorporated data from seven studies yielded a z-value of 5.59397 and corresponding 2-tailed $p < 0.0001$. The fail-safe N in this case is 51. This suggests that 51 ‘null’ studies would need to be included for a combined 2-tailed $p > 0.05$ i.e., for the effect to be nullified.

Next, we applied Duval and Tweedie’s (Duval and Tweedie, 2000) ‘Trim and Fill’ method that looks for missing studies in a symmetric funnel plot. This method looks for missing studies to the left side of the mean effect. The result suggests that no studies should be trimmed from the left or right of the mean to reduce the potential publication bias in this instance.

3.2. Studies included in sugar consumption Meta-Analysis

Five studies (Anderson et al., 2005; Evans et al., 2010; Fahlman et al., 2008; Francis et al., 2010; van de Gaar et al., 2014) were included that investigated the sugar intake of elementary school-aged children as taught through a curriculum approach, experiential learning and provision of fruits and vegetables at school. The sugar consumption was reported through the variables of: (1) sugar-sweetened beverage consumption; (2) 24-hour dietary recalls; and (3) self-reported intake of sugary foods.

3.2.1. Study quality

Of the five studies whose quality was assessed by using the methodological quality assessment items adapted from van Sluijs et al. (van Sluijs et al., 2007), three of the five studies met seven of the assessment criteria (Evans et al., 2010; Francis et al., 2010; van de Gaar et al., 2014). One study met three criteria (Anderson et al., 2005) and the last met only two of the criteria (Fahlman et al., 2008). All five papers reported their findings using validated measures.

3.2.2. Summary

The analysis is based on five studies that evaluated the effect of teaching-based interventions on sugar consumption of students aged 5–12 years of age attending primary/elementary schools. In each study, students were assigned to either a reduction of sugar consumption teaching intervention or their regular curricular and the researchers recorded their sugar consumption at the conclusion of the intervention or follow-up period (whichever was the latter).

3.2.3. Do teaching-based interventions affect student sugar consumption?

The standardised difference in means is $d = 0.144$. On average, students receiving the teaching-based intervention reduced their sugar consumption by an eighth of a standard deviation than those students receiving the teaching intervention or their regular curricular and the researchers recorded their sugar consumption at the conclusion of the intervention or follow-up period (whichever was the latter).

3.2.4. How much does the effect size vary across studies (Heterogeneity)?

The Q-value is 23.919 with 4 degrees of freedom and $p = 0.004$. We reject the null hypothesis that the true effect size is identical in all studies. The I^2 is 71.630%, T^2 is 0.017 and T is 0.130. The prediction interval is -0.3291 to 0.6171. We concluded that there is substantial heterogeneity across these studies.
3.3.4. How much does the effect size vary across studies (Heterogeneity)?

The Q-value is 129.223 with 20 degrees of freedom and p < 0.001. We reject the null hypothesis that the true effect size is identical in all studies. I² is 84.523%, T² is 0.029, and T = 0.169 indicating that considerable heterogeneity exists across the included studies. The prediction interval is −0.1403 to 0.5963.

3.3.5. To what extent would publication bias or the small-study effect alter these findings?

The Classic fail-safe analysis showed this meta-analysis incorporated data from 21 studies and yield a z-value of 10.70447 and corresponding 2-tailed p < 0.0001 for observed studies. The fail-safe N in this case is 606. There would need to be 29 missing studies for every observed study for the effect to be nullified.

The 'Trim and Fill' method based on a random effects model suggests that no studies were missing from the left of the mean and three studies from the right of the mean. If three studies were to be trimmed to account for this bias, the adjusted standardised difference in means would only slightly decrease to = 0.272.

3.4. Studies included in nutritional knowledge Meta-Analysis

Thirteen studies were included (Anderson et al., 2005; Liquori et al., 1998; Fahlman et al., 2008; Francis et al., 2010; Govula et al., 2007; Morgan et al., 2010; Prelip et al., 2012; Amaro et al., 2006; Auld et al., 1998; Baranowski et al., 2000; Campbell et al., 2012; Friel et al., 1999; Lakshman et al., 2010), with researchers reporting on elementary school children’s level of nutrition knowledge as taught through curriculum approaches in the classroom, the use of board games and experiential learning tasks including school gardens. Knowledge of nutrition was measured using: (1) eating attitude tests; (2) self efficacy scales; (3) nutrition knowledge questionnaires; and (4) attitudes to food questionnaires.

3.4.1. Study quality

Of the 13 studies whose quality was assessed by using the methodological quality assessment items adapted from van Sluijs et al. (2007), 13 had between 5 and 7 of the assessment criteria (Anderson et al., 2005; Liquori et al., 1998; Francis et al., 2010; Govula et al., 2007; Morgan et al., 2010; Prelip et al., 2012; Amaro et al., 2006; Auld et al., 1998; Baranowski et al., 2000; Campbell et al., 2012; Friel et al., 1999; Lakshman et al., 2010) and seven studies met between two and four of the assessment criteria (Anderson et al., 2005; Liquori et al., 1998; Fahlman et al., 2008; Preilip et al., 2012) and 2 studies had only 2 of the assessment criteria (Fahlman et al., 2008; McAlereese and Rankin, 2007). All 21 papers reported their findings using validated measures.

3.4.2. Summary

The analysis is based on 13 studies that evaluated the effect of teaching-based interventions on nutritional knowledge of students aged 5–12 years of age attending primary/elementary schools. In each study, students were assigned to either a nutrition focused teaching intervention or their regular curriculum and the researchers recorded their nutritional knowledge at the conclusion of the intervention period.

3.4.3. Do teaching-based interventions affect student nutritional knowledge?

The standardised difference in means is d = 0.224. On average, students receiving the teaching-based intervention consumed almost a quarter of a standard deviation more fruit and vegetables than those students who did not receive a teaching intervention. The confidence interval for the standardised difference in means is 0.142 to 0.305. Similarly, the Z-value for testing the null hypothesis (that d is 0.0) is 5.384, with a p < 0.001. We can reject the null that teaching-based interventions have no effect on student nutritional knowledge.
3.4.4. How much does the effect size vary across studies (Heterogeneity)?

The Q-value is 29.446 with 12 degrees of freedom and \(p < 0.001 \). The I^2 statistic reflecting the proportion of the observed variance differences in true effect sizes rather than sampling error is 59.248\%, \(T^2 = 0.010 \) and \(T = 0.102 \). The prediction interval is \(-0.0142 \) to \(0.4662 \). Again, in this instance we are led to conclude that substantial heterogeneity exists across the studies included in this analysis.

3.4.5. To what extent would publication bias or the small-study effect alter these findings?

The Classic fail-safe analysis that showed this meta-analysis incorporated data from 13 studies and yield a z-value of 9.18895 and corresponding 2-tailed \(p < 0.0001 \). The fail-safe N in this case is 3246. There would need to be 21 missing studies for every observed study for the effect to be nullified.

Secondly, the 'Trim and Fill' method using a random effects model suggests that six studies are missing to the left of the mean but none from the right. It suggests six studies could be trimmed from the left of the mean to reduce bias which would decrease the observed effect to \(d = 0.156 \).

4. Discussion

The main findings of this review and meta-analysis indicate that nutrition education programs in elementary schools that are delivered by teachers can have modest effects on a child’s nutritional knowledge and eating behaviours. It appears that elementary school teachers and nutritional education programs can have a small to medium effect on reducing children’s energy intake \((d = 0.396)\), followed by smaller effects on increasing fruit and vegetable consumption \((d = 0.228)\) and nutritional knowledge \((d = 0.224)\). The smallest effect was found on reducing children’s sugar consumption, with teachers and nutritional education programs having a very small effect \((d = 0.144)\).

Previous research focusing on elementary school-based nutritional education programs shows that effectiveness depends on the duration of the program, having a few focused nutrition-related outcomes, the appropriate use of theoretical frameworks, fidelity of nutritional education programs, support from school leadership and policy makers, changes in the food school environment, provision of professional learning alongside the delivery of the nutritional education program for teachers, and strategies embedded to engage parents and families \((\text{Murimi et al., 2018; Peralta et al., 2016; Dudley et al., 2015; Australian Bureau of Statistics, 2014; Colley et al., 2018)}\).

In regards to energy intake, unhealthy foods, such as sugary, salty snacks and sugar-sweetened beverages, can contribute up to 40% of 2- to 13-year-old children’s total energy intake, with the greatest increase in this intake occurring with children aged 3 to 4 years and 5 to 8 years \((\text{Department of Health FSA, 2012; Keast et al., 2013; Van Cauwenbergh et al., 2010)}\). When these behaviours are targeted through multifaceted school-based nutrition education programs, with regular curricular and non-curricular lessons, delivered by nutritionists or teachers, and engaged parents \((\text{Micha et al., 2018})\), energy intake can be reduced, and reduced substantially as shown through this meta-analysis.

When focusing on increasing fruit and vegetable consumption only, findings of two previous reviews \((\text{Murimi et al., 2018; Savoie-Roskos et al., 2017)}\) emphasise that multifaceted interventions that include improved availability of fruit and vegetables, a nutrition education curriculum delivered by teachers with embedded experiential learning experiences, and parental involvement can improve intake of fruits and vegetables. As such, it is not surprising that there has been a proliferation of elementary school nutrition education programs that have used these findings and assessed the impact of gardening and curriculum programs on elementary school children’s fruit and vegetable consumption. A systematic review of gardening interventions \((\text{World Health Organization. Guideline: Sugars intake for adults and children. Geneva, Switzerland;, 2015)}\) found that 10 of the 14 articles reviewed produced statistically significant increases in fruit or vegetable consumption among children. Due to many of the 10 studies being limited by the use of convenience samples, small sample sizes, and self-reported measurements of fruit and vegetable consumption, it is important to note that the evidence is not yet clear, with future studies needing to include control groups, randomized designs, and assessments of fruit and vegetable consumption over at least 1 year to advance the literature.

Estimates on sugar consumption suggests that approximately 5% of energy is attributed to sugar sweetened beverage consumption \((\text{Bleich and Vercammen, 2018)}\). This is concerning, as it would appear that sugar sweetened beverage consumption alone is already meeting the new World Health Organization’s guidelines for maximum free-sugar consumption \((\text{Bleich and Vercammen, 2018)}\) and therefore should be a prime target for reducing sugar consumption in children. Despite the clear and consistent evidence that consumption of sugar sweetened beverage consumption increases obesity risk and dental caries among children, and emerging evidence supporting an association with insulin resistance and caffeine-related effects \((\text{Nathan et al., 2019)}\), reducing children’s sugar consumption seems to be challenging and complex. A recent systematic review and meta-analysis focusing on the effectiveness of lunchbox interventions in elementary and pre-schools \((\text{Nathan et al., 2019)}\), found that removing items that are less healthy from students’ lunchboxes may be more difficult than adding healthier options like fruit and vegetables. Consequently, the researchers suggested that greater formative evaluation with the lunch box packers \((\text{i.e., the parents})\) may be required to improve the shape and impact of future interventions that target high sugar foods.

Only one study included in our meta-analysis included parental engagement as a teaching strategy but reported the second largest effect size recorded \((\text{van de Gaar et al., 2014; d = 0.144})\). A qualitative paper interviewing elementary school-aged children and their perceptions of sugar sweetened beverage consumption, reported that children had a high level of awareness of beverages, the sugar content and health effects \((\text{Battram et al., 2016)}\). Hence, children highlighted that they made choices based on taste, parental control practices, accessibility, and advertising, and offered suggestions or strategies for school nutrition education programs that focused on sugar consumption. These included limiting advertising of sugar sweetened beverage consumption, providing incentives to purchase healthy options, and increasing the cost of sugar sweetened beverages or lowering the cost of healthy beverage choices, more education at school and education for parents \((\text{Battram et al., 2016)}\).

A limitation of this study was that only one author screened the articles based on titles and abstracts (stage 1) and that a second author was only used in cases of uncertainty in stage 2. This could increase the risk of bias \((\text{Cooper, 2015)}\).

5. Conclusion

The findings of this systematic review and meta-analysis suggest that the teaching of nutrition education in elementary schools by teachers can make an important contribution to the knowledge and dietary habits of children. A subsequent finding also suggests that parents and caregivers have an important role to play. The small and medium effect sizes indicate that prudent and evidence-based decisions need to be made by policy makers and pedagogues as to the teaching strategies they employ however not all nutrition education approaches render the same effect. Future intervention research in this field would be well served by augmenting strategies that demonstrate higher effects in nutritional knowledge, reducing energy intake, and increasing fruit and vegetable consumption. New, and a greater number of studies, need to be employed that reduce sugar consumption by children.
Funding
The University of Sydney’s Research Recognition and Incentive Fund partly funded this study. The funding was used to employ a research assistant to conduct, record and collate initial literature searches.

CRediT authorship contribution statement
Wayne Cotton: Conceptualization, Methodology, Investigation, Writing - original draft, Writing - review & editing, Validation, Supervision, Project administration, Funding acquisition. Dean Dudley: Conceptualization, Methodology, Formal analysis, Writing - original draft. Louisa Peralta: Conceptualization, Writing - original draft, Data curation, Resources, Investigation, Writing - original draft, Visualization - review & editing.

References
Amaro, S., Viggiano, Alessandro, Di Costanzo, Anna, Madoe, Ida, Viggiano, Andrea, Bacari, Maria Ena, Marchitelli, Elena, Raia, Maddalena, Viggiano, Emanuela, De Luca, Simil, Monda, Maria, De Luca, Bruno, 2006. A new educational board-game, gives nutritional rudiments and encourages healthy eating in children: a pilot cluster randomized trial. Eur. J. Pediatr. 165 (9), 630.
Anderson, A.S., Porteous, L.E.G., Foster, E., Hinman, C., Stead, M., Hetherington, M., et al., 2013. The impact of a school-based nutrition education intervention on dietary intake and cognitive and attitudinal variables relating to fruits and vegetables. Public Health Nutr. 8 (6), 650–656.
Auld, G.W., R unanim, C., Heimendinger, J., Hambidge, C., Hambidge, M., 1998. Outcomes from a school-based nutrition education program using resource teachers and cross-disciplinary models. J. Nutr. Educ. 30 (5), 268–280.
Australian Bureau of Statistics. Australian health survey: nutrition first results – foods and nutrients, 2011–12: Australian Government; 2014 [Available from: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.007main+features112014].
Baranowski, T., Davis, M., Resnicow, K., Baranowski, J., Doyle, C., Lin, L.S., et al., 2000. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, on children’s health: an update of the literature. BMC Obesity. 5 (1), 6.
Baranowski, T., Davis, M., Resnicow, K., Baranowski, J., Doyle, C., Lin, L.S., et al., 2000. Children’s Perceptions, Factors of Influence, and Suggestions for Reducing Intake. J. Nutr. Educ. Behav. 48 (1), 27–34.e1.
Battjes-Fries, M.C.E., Haveman-Nies, A., Renes, R.-J., Meester, H.J., van’t Veer, P., 2015. Expanding Children’s Food Experiences: The Impact of a School-Based Kitchen Garden Program. J. Nutr. Educ. Behavior. 47 (2), 137–146.
Borch, T., Segge, K.P., Johansen, B., Blok, K., Macfarlane, S., Gold, L., et al., 2013. Impact of a school-based interdisciplinary intervention on diet and physical activity among urban primary schoolchildren: eat well and keep moving. Arch. Pediatr. Adolesc. Med. 159 (9), 975–983.
Bovia, C., Kattelmann, K., Ph.D., R.D., Ren, C., 2007. Culturally appropriate nutrition lessons increased fruit and vegetable consumption in American Indian children. Top Clin. Nutr. 22 (3), 219–221.
Braun, A., 2015. The effects of a school-based intervention on dietary and physical activity among young children: a pilot study. J. Public Health Nutr. 18 (1), 96–111.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The impact of a school-based nutrition education programme ‘Gimme 5 Fruit, Juice, and Vegetables for Fun and Health: Outcome Evaluation’. Public Health Nutr. 6 (1), 95–102.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennett, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Bennette, P., Thomas, S., Cunningham, L., Lodge, K., 2003. The Effectiveness of the Implementation of Healthy Buddies™, a School-Based, Peer-Led Health Promotion Program in Elementary Schools. Can. J. Diabetes 36 (6), 181–196.
Factors that contribute to effective nutrition education interventions in children: a systematic review. Nutr. Rev. 76 (8), 553–580.
Nathan, N., Janssen, L., Sutherland, R., Hodder, R.K., Evans, C.E.L., Booth, D., et al., 2019. The effectiveness of lunchbox interventions on improving the foods and beverages packed and consumed by children at centre-based care or school: a systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 16 (1), 38.
Parmer, S.M., Salisbury-Glennon, J., Shannon, D., Struempler, B., 2009. School gardens: an experiential learning approach for a nutrition education program to increase fruit and vegetable knowledge, preference, and consumption among second-grade students. J. Nutr. Educ. Behavior. 41 (3), 212–217.
Peralta, L.R., Dudley, D.A., Cotton, W.G., 2016. Teaching Healthy Eating to Elementary School Students: A Scoping Review of Nutrition Education Resources. J. Sch. Health. 86 (5), 334–345.
Porter, K.J., Koch, P.A., Contento, I.R., 2018. Why and how schools make nutrition education programs “work”. J. Sch. Health 88 (1), 23–33.
Prelip, M., Kinser, J., Thai, C.L., Erasusquin, J.T., Lasser, W., 2012. Evaluation of a school-based multicomponent nutrition education program to improve young children’s fruit and vegetable consumption. J. Nutr. Educ. Behavior. 44 (4), 310–318.
Ransley, J.K., Greenwood, D.C., Cade, J.E., Blenkinsop, S., Schagen, I., Teeman, D., et al., 2007. Does the school fruit and vegetable scheme improve children’s diet? A non-randomised controlled trial. J. Epidemiol. Community Health 61 (8), 699.
Reilly, J.J., Kelly, J., 2011. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int. J. Obesity 2014 35 (7), 691–698.
Rosário, R., Oliveira, B., Araújo, A., Lopes, O., Padrão, P., Moreira, A., ... Moreira, P., 2012. The impact of an intervention taught by trained teachers on childhood overweight. Int. J. Environ. Res. Public Health 9 (4), 1355–1367.
Rosário, R., Araújo, A., Padrão, P., Lopes, O., Moreira, A., Abreu, S., Vale, S., Pereira, B., Moreira, P., 2016. Impact of a school-based intervention to promote fruit intake: a cluster randomized controlled trial. Public Health 136, 94.
Savoie-Roskos, M.R., Wengreen, H., Durward, C., 2017. Increasing Fruit and Vegetable Intake among Children and Youth through Gardening-Based Interventions: A Systematic Review. J. Acad. Nutr. Dietetics. 117 (2), 240–250.
Simons-Morton, B.G., Parcel, G.S., Baranowski, T., Porthofer, R., O’Hara, N.M., 1991. Promoting physical activity and a healthful diet among children: results of a school-based intervention study. Am. J. Public Health 81 (8), 986.
Story, M., Nanney, M.S., Schwartz, M.B., 2009. Schools and obesity prevention: creating school environments and policies to promote healthy eating and physical activity. The Milbank Quarterly 87 (1), 71–100.
Struempler, B.J., Parmer, S.M., Mattiropoulos, I.M., Arsiwalla, D., Bubb, R.R., 2014. Changes in fruit and vegetable consumption of third-grade students in body quest: Food of the warrior, a 17-class childhood obesity prevention program. J. Nutr. Educ. Behavior. 46 (4), 286–292.
United Nations Educational Scientific and Cultural Organization, 2013. Making Education a Priority in the Post-2015 Development Agenda. UNESCO, Paris.
Van Cauwenberghhe, E., Maes, L., Spittaels, H., van Lenhe, P.J., Brug, J., Oppert, J.M., et al., 2010. Effectiveness of school-based interventions in Europe to promote healthy nutrition in children and adolescents: systematic review of published and ‘grey’ literature. Br. J. Nutr. 103 (6), 781–797.
van de Gaar, V., Jansen, W., Grienek, A., Borsboom, G., Kremers, S., Raat, H., 2014. Effects of an intervention aimed at reducing the intake of sugar-sweetened beverages in primary school children: A controlled trial. Int. J. Behav. Nutr. Phys. Activity 11 (1), 98.
van Geel, M., Vedder, P., Tanilon, J., 2014. Are overweight and obese youths more often bullied by their peers? A meta-analysis on the correlation between weight status and bullying. Int. J. Obesity 2014 38 (10), 1263–1267.
van Sluijs, E.M.F., McMinn, A.M., Griffin, S.J., 2007. Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials. BMJ (Clinical research ed). 335 (7622), 703–707.
Viggiano, A., Viggiano, E., Di Costanzo, A., Viggiano, A., Andreozzi, E., Romano, V., ... Amaro, S., 2015. Kaleo, a board game for nutrition education of children and adolescents at school: cluster randomized controlled trial of healthy lifestyle promotion. Euro. J. Ped. 174 (2), 217–228. https://doi.org/10.1007/s00431-014-2381-8.
World Health Organization, 2012. Population-Based Approaches to Childhood Obesity Prevention. World Health Organization, Geneva, Switzerland.
World Health Organization. Guideline: Sugars intake for adults and children. Geneva, Switzerland; 2015 31 March.