Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic

Jian-Dong Huang, 1,2 Todd Dubnicoff, 1,3 Gwo-Jen Liaw, 4 Yijian Bai, 1 Scott A. Valentine, 1 Jill M. Shirokawa, 1 Judith A. Lengyel, 3,4 and Albert J. Courey 1,3,5

1Department of Chemistry and Biochemistry, 2Department of Molecular, Cell, and Developmental Biology, and 3Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095 USA

The Dorsal morphogen is a transcription factor that activates some genes and represses others to establish multiple domains of gene expression along the dorsal/ventral axis of the early Drosophila embryo. Repression by Dorsal appears to require accessory proteins that bind to corepression elements in Dorsal-dependent regulatory modules called ventral repression regions (VRRs). We have identified a corepression element in decapentaplegic (dpp), a zygotically active gene that is repressed by the Dorsal morphogen. This dpp repression element (DRE) is located within a previously identified VRR and close to essential Dorsal-binding sites. We have purified a factor from Drosophila embryo extracts that binds to the DRE but not to mutant forms of the DRE that fail to support efficient repression. This protein also binds to an apparently essential region in a VRR associated with the zerknillt (zen) gene. One of the DREs in the dpp VRR overlaps the binding site for a potential activator protein suggesting that one mechanism of ventral repression may be the mutually exclusive binding of repressor and activator proteins. We have found the DRE-binding protein to be identical to NTF-1 (equivalent to Elf-l, the product of the grainyhead gene), a factor originally identified as an activator of the Ultrabithorax and Dopa decarboxylase promoters. NTF-1 mRNA is synthesized during oogenesis and deposited in the developing oocyte where it is available to contribute to ventral repression during early embryogenesis. Previous studies have shown that overexpression of NTF-1 in the postblastoderm embryo results in a phenotype that is consistent with a role for this factor in the repression of dpp later in embryogenesis.

[Key Words: Decapentaplegic, dorsal morphogen, corepressor, dorsal/ventral pattern formation, transcription]

Received June 20, 1995; revised version accepted October 25, 1995.

Dorsal/ventral pattern formation in the Drosophila embryo is mediated by the morphogen encoded by the maternally active dorsal (dl) gene. Dorsal protein forms a nuclear concentration gradient along the dorsal/ventral axis of the blastoderm embryo (Steward et al. 1988; Roth et al. 1989; Rushlow et al. 1989; Steward 1989). At high concentrations, Dorsal activates twist and snail in the most ventral region of the embryo, which gives rise to the mesoderm (Jiang et al. 1991; Pan et al. 1991; Thiss et al. 1991; Ip et al. 1992a). Intermediate concentrations of Dorsal binding to the mesoderm [Jiang et al. 1991; Pan et al. 1991; Thiss et al. 1991; Ip et al. 1992a]. Low concentrations of Dorsal allow the expression of thomboid and single-minded in ventrolateral regions, which become neurogenic ectoderm [Ip et al. 1992b; Kasai et al. 1992]. Low concentrations of Dorsal or no Dorsal result in the expression of decapentaplegic (dpp), zerknillt (zen), and tolloid (tld) in dorsal and dorsolateral regions, which differentiate into amnioserosa and dorsal ectoderm [Ip et al. 1991; Huang et al. 1993; Kirov et al. 1994]. Transcriptional activation and repression of the genes mentioned above are mediated by Dorsal-binding sites in their regulatory regions. In particular, the ventral-specific repression of dpp is mediated by multiple Dorsal-binding sites in cis-regulatory modules that have been termed ventral repression regions [VRRs] [Huang et al. 1993]. Mutations in these Dorsal-binding sites result in ventral derepression. The dpp VRRs, which are located in the second intron of the gene ~2 kb downstream of the transcriptional start site, are long-range silencers that can repress transcription from a distance.

The effect of Dorsal protein on gene expression depends on the context of the Dorsal-binding sites. Isolated Dorsal-binding sites mediate only weak activation; for Dorsal binding to give rise to high levels of expression, interactions between Dorsal and other activator proteins, such as Zeste and certain basic-helix-loop-helix transcription factors are required [Pan et al. 1991; Jiang and Levine 1993].
rect positioning of Dorsal-binding sites relative to the binding sites for other proteins in the VRR is critical. This is apparently because interactions between Dorsal and other DNA-binding proteins are required for repression. Proteins that assist Dorsal in the repression of transcription are termed corepressor proteins and the elements within VRRs to which they bind are termed corepression elements [for review, see Courey and Huang 1995]. A VRR in the zen gene contains two putative corepression elements termed AT-1 and AT-2. Mutagenesis of AT-1 results in a dramatic reduction in ventral repression, whereas mutagenesis of AT-2 converts the zen VRR into a ventral-specific transcriptional enhancer (Jiang et al. 1993; Kirov et al. 1993). In addition, the zen VRR contains binding sites for a high mobility group (HMG)-like Drosophila factor (DSP1) that blocks Dorsal-mediated activation in yeast cells and converts Dorsal from an activator to a repressor in HeLa cells (Lehming et al. 1994).

In this paper we report the identification of a corepression element in the major dpp VRR. This element [the dpp repression element or DRE] constitutes a novel corepression element, as it does not bear homology to the previously identified corepression elements in the zen VRR. Because a region of the zen VRR essential for repression contains a DRE sequence, the DRE may mediate not only dpp but also zen ventral repression. A DRE-binding protein has been purified from Drosophila embryo extracts and found to be identical to the Drosophila transcription factor NTF-1 [equivalent to Elf-1], a factor that activates the Drosophila Ultrabithorax (Ubx) and Dopa decarboxylase (Ddc) promoters in vitro (Bray et al. 1989; Dynlacht et al. 1989). Overexpression of NTF-1 in the postblastoderm Drosophila embryo [Attardi et al. 1993] was shown previously to result in a phenotype that is consistent with a role for NTF-1 in the repression of dpp during later embryogenesis.

Results

Identification of dpp repression elements

To identify possible DNA sequences serving as binding sites for transcription factors controlling dpp expression, we carried out DNase I footprinting and sequence analysis of the region of the dpp gene spanning from +1608 to +2148. This region, which lies within the second intron of the gene, was shown previously to contain a VRR as well as a general activation region [Huang et al. 1993]. We refer to the VRR in this region as the major dpp VRR. This VRR contains two Dorsal-binding sites (dl-A and dl-B) that are critical for the ventral repression of dpp [Huang et al. 1993]. DNase I footprinting assays show that the major dpp VRR is protected extensively by Drosophila embryo nuclear extracts [Fig. 1A,B].

The region was also searched for previously identified transcription factor-binding sites, matches for the zen AT-rich corepression elements [Jiang et al. 1993; Kirov et al. 1993], as well as for repetitive DNA sequences [Fig. 1B]. The rationale behind searching for repetitive sequences is that regulatory proteins frequently interact with repeated elements in an important regulatory region. Other than the Dorsal-binding sites, no significant matches to binding sites for previously known factors were revealed by this search. Matches for the AT-rich sites were found only when two mismatches were allowed. However, several repetitive sequences were identified. Two repeated TACCTGC elements were of particular interest, [1] because they coincide with regions that were protected from DNase I digestion by nuclear extracts, and [2] because they are each within 50 bp of one of the two critical Dorsal-binding sites (dl-A and dl-B). For reasons that will be made apparent below, we refer to these two elements as dpp repression element A [DRE-A] and dpp repression element B [DRE-B].

To test the role of DRE-A and DRE-B in ventral repression, clustered point mutations were introduced into these elements and the effects of these mutations were assayed by germ-line transformation. Specifically, four substitutions were introduced into each of the two TACCTGC elements by site-directed mutagenesis of a fragment of dpp extending from +1608 to +2400, which includes the major dpp VRR. The mutated DNA was linked to the lacZ reporter gene under control of the dpp promoter and introduced into Drosophila by P-element-mediated germ-line transformation. In this experiment, and in all subsequent experiments involving P-element-mediated transformation, the results reported for each construct were reproducibly observed in multiple independent transformant lines.

The expression pattern of the lacZ reporter gene, as revealed by mRNA in situ hybridization, demonstrates that simultaneously mutating DRE-A and DRE-B results in partial ventral derepression [Fig. 2]. Embryos containing the wild-type DREs always exhibit completely dorsal-specific lacZ expression with a relatively sharp border between the expressing and nonexpressing domains [Fig. 2A,C]. Mutation of the DREs results in embryos exhibiting a gradient of lacZ expression that extends all the way to the ventral midline [Fig. 2B]. Thus, one or both DREs function as corepression elements. Once cellularization begins [nuclear cycle 14], ventral repression is reestablished in embryos containing mutant DREs. In the late cellular blastoderm embryo, there is no difference between embryos bearing wild-type and mutant DREs, suggesting that additional unidentified corepression elements cooperate with Dorsal-binding sites to bring about complete ventral repression at this stage [data not shown]. Although the DRE mutant embryos exhibit ventral expression in the syncytial blastoderm embryo, mutagenesis of other footprinted elements within the VRR outside the DREs and Dorsal-binding sites had very little effect on the pattern of reporter gene expression [Fig. 2C; data not shown].

Purification of a DRE-binding protein

To further investigate the mechanism of dpp ventral repression, we purified a DRE-binding protein based on its sequence-specific interaction with DRE-B. As noted above [see Fig. 1], 0- to 12-hr Drosophila embryo extracts
Characterization of a dpp repression element

Figure 1

Analysis of the major dpp VRR reveals multiple potential regulatory sites. (A) DNase I footprinting with 0- to 12-hr Drosophila embryo nuclear extracts. Footprinting probes were 5' end-labeled on the coding strand at position +1605 (left) or at position +1835 (right). The coordinates shown to the left of each panel are in base pairs and are relative to the transcriptional start site at +1. (Lanes 1) G + A chemical sequencing ladder; (lanes 2) G chemical sequencing ladder; (lanes 3,8) no protein controls; (lanes 4,5) 4 µl of nuclear extract; (lanes 6, 7) 8 µl of nuclear extract. (B) Analysis of the dpp VRR sequence. Shading indicates regions protected from DNase I digestion by 0- to 12-hr nuclear extracts. Two Dorsal binding sites (dl-A and dl-B, enclosed in rectangles) were shown previously to be required for ventral repression (Huang et al. 1993). Each of these Dorsal-binding sites falls within 50 bp of a repeated TACCTGC element (DRE-A and DRE-B, enclosed in ovals). In addition, a third repeat of this element, whose function has not been analyzed, is found farther downstream (DRE-C) on the noncoding strand. A short palindromic sequence consisting of two inverted repeats of the sequence TAAAAGGAC (PLS, indicated by two converging arrows) is found adjacent to DRE-B.

Results

- **Protecting the DREs in dpp VRR from DNase I digestion.** In our initial efforts to purify the activity responsible for this footprint, 0- to 12-hr Drosophila embryo nuclear extracts were subjected to heparin-Sepharose chromatography. Footprinting activities protecting DRE-B eluted at 0.3-0.35 M KCl. However, in addition to protecting wild-type DRE-B, this activity also protected probes containing a mutated form of DRE-B that fails to support efficient repression [Fig. 3A]. Thus, a specific DRE-B-binding activity is undetectable in the heparin-Sepharose fractions.

- **An explanation for this lack of DRE specificity is provided by the results obtained when the nuclear extract is applied to SP-Sepharose and eluted with a series of salt steps.** DNase I footprint analysis of the fractions from this column reveal two chromatographically distinct activities covering DRE-B, one eluting at 0.21 M KCl and the other eluting at 0.3 M KCl [Fig. 3B]. The weak footprint found in the 0.21 M KCl fractions is centered well around DRE-B, whereas the stronger footprinting activity in the 0.3 M salt fractions includes the DRE but is centered over a palindromic element (PLS) adjacent to the DRE. It is this PLS-binding activity that appears to be primarily responsible for the footprints observed in the heparin-Sepharose fractions.

- To explore the possibility that the weak footprinting activity eluting from the SP-Sepharose column at 0.21 M salt was DRE-specific, this activity was further purified and concentrated by DEAE-Sephacel chromatography and then footprinted using probes containing wild-type and mutant versions of DRE-A. As shown in Figure 3C, the activity binds to a probe containing the wild-type DRE but not to a probe containing the same quadruple point mutation that resulted in ventral derepression. Similar results are obtained with wild-type and mutant versions of DRE-B (see below).
Figure 2. DRE-A and DRE-B are required for efficient ventral repression in the blastoderm embryo. Transgenic embryos bearing the lacZ-coding region under the control of the dpp promoter and 5′-flanking region plus wild-type and mutant versions of the major dpp VRR were collected and stained to reveal the pattern of lacZ mRNA expression. lacZ mRNA was detected by whole-mount in situ hybridization with digoxigenin-labeled RNA probes. The embryos are shown in sagittal view and are oriented so that dorsal is up and anterior is to the left. [A] The expression pattern directed by the wild-type VRR. [B] The expression pattern directed by a VRR in which DRE-A and DRE-B have been mutagenized as shown. [C] The expression pattern directed by a mutant dpp VRR in which footprinted elements adjacent to each of the DREs have been mutagenized. In A and C, expression is specific for the dorsal side of the embryo; in B ventral derepression attributable to the inactivation of DRE-A and DRE-B results in a gradient of expression that extends to the ventral midline.

Further purification of the DRE-binding protein was achieved by DNA affinity chromatography and velocity sedimentation through a glycerol gradient (Fig. 4A). The footprinting activity was found to copurify with three polypeptide species of ~130, 120, and 77 kD in molecular mass (Fig. 4B). The finding that these three species coseediment with one another in the absence of DNA indicates that they most likely form a complex in solution.

We also carried out UV cross-linking studies utilizing a 32P-labeled oligonucleotide probe in which the 5-methyl groups on thymine residues were replaced with iodine atoms. The iodine atoms render the probe extremely photoreactive without significantly altering the affinity of the probe for the DRE-binding protein as assessed by electrophoretic gel mobility shift assays (data not shown). DRE-binding protein purified as shown in Figure 4, A and B, was incubated with this probe and irradiated with UV light. The reaction products were then analyzed by SDS-PAGE and autoradiography. All three species became covalently attached to the radioactive probe (Fig. 4C), giving rise to three species with apparent molecular masses of ~140, 130, and 90 kD. The increased apparent molecular mass after cross-linking is attributable to the mass of the covalently attached probe. The signal was competed away by the cold DRE-containing oligonucleotide, and ~10- to 20-fold less efficiently by an oligonucleotide containing a mutated (nonfunctional) DRE. Additional radiolabeled species visible in the autoradiograph of the cross-linking gel may be attributable to occasional multiple cross-linking events, photolysis of the protein, or to the probe cross-linking to itself (see legend to Fig. 4). These UV cross-linking results indicate that all three polypeptide species of the DRE-binding protein are in contact with the DRE.

As noted above, SP-Sepharose chromatography separates an activity that protects a palindromic sequence [the PLS, +1907 to +1930] adjacent to DRE-B from the DRE-binding protein (Fig. 3B). To explore the possibility of an interaction between these two factors, footprinting reactions were carried out in which increasing amounts of the DRE-binding protein were mixed with the SP-Sepharose fraction containing the PLS-binding activity (Fig. 5A). The probe was the region from the dpp VRR containing DRE-B and the adjacent PLS. The results show that the binding of the two proteins is mutually exclusive. In the presence of the PLS-binding protein, higher concentrations of DRE-binding protein are required before a footprint is detected over DRE-B (cf. lanes 5–8 with lanes 9–12). Furthermore, at concentrations of DRE-binding protein sufficient to saturate DRE-B (lane 12), the PLS-binding protein is unable to occupy the adjacent element.

The factor that binds to the PLS may function as a transcriptional activator. This is demonstrated by an experiment in which four copies of the isolated palindromic element were inserted upstream of the dpp promoter and 5′-flanking region fused to the lacZ reporter gene. The dpp 5′-flanking region by itself directs little or no expression in the blastoderm embryo (Fig. 5B). However, addition of the palindromic element results in near uniform expression throughout the early embryo (Fig. 5C). The pattern includes almost the entire embryo, although there is usually a gap in the expression at the posterior end. This expression is first apparent in some embryos at nuclear cycle 13 and is always observed by nuclear cycle 14. The expression persists throughout gastrulation and germ band elongation. Thus, a short-range repression mechanism may contribute to ventral repression, i.e., the DRE-binding protein may reduce the level of transcription of dpp by preventing the binding of an activator protein.

A single point mutation that reduces the affinity of DRE-B for the DRE-binding protein results in ventral derepression

To further analyze the DNA-binding specificity of the DRE-binding protein, we generated a series of footprinting probes containing single and double mutations in DRE-B. The mutations affected DNA-binding activity to varying extents (Fig. 6A). Two of the three double muta-
Characterization of a dpp repression element

Figure 3. Nuclear extracts contain a DNA-binding activity specific for the DRE, as well as an activity that binds to the palindromic sequence adjacent to DRE-B. (A) Nuclear extracts (0- to 12-hr) were applied to heparin-Sepharose column at 0.1 M KCl. The column was eluted with the indicated concentrations of KCl. The protein peaks observed at each salt step were pooled and assayed for DNase I footprinting activity using probes bearing either the wild-type DRE-B or a mutant DRE-B that fails to support ventral repression in Drosophila embryos [Fig. 2]. The binding activity detected in the 0.3 and 0.35 M KCl steps binds equally well to the wild-type and mutant probes. (Lanes 1, 5, 6, 10) No protein controls. (B) Nuclear extracts (0- to 12-hr) were applied to an SP-Sepharose column at 0.1 M KCl. The column was eluted with the indicated concentrations of KCl, and fractions were assayed for DNase I footprinting activity using a probe bearing the wild-type DRE-B. (Lane 1) No protein control. (Lane 2) Starting material. An activity generating a footprint centered over DRE-B elutes at 0.21 M KCl (lanes 3, 4), whereas an activity generating a footprint centered over the adjacent PLS elutes at 0.3 M KCl (lanes 7, 8). The 0.21 M salt step was diluted to 0.05 M KCl and fractionated on a DEAE-Sephacel column. The concentrated DRE-binding protein elutes in a 0.15 M salt step (lanes 9-12). The DRE-specific footprinting activity is very weak in the SP-Sepharose fractions (lanes 3, 4) but is readily apparent after concentration on DEAE-Sephacel as shown in lanes 9-12. See Materials and methods for further details of the purification. (C) DEAE-Sephacel-purified DRE-binding activity was assayed using footprinting probes containing either a wild-type or mutant DRE-A. The activity binds to the wild-type probe (lanes 1, 2), but not to the mutant probe (lanes 4, 5). (Lanes 3, 6) No protein controls. Similar results are observed with wild-type and mutant versions of DRE-B [Fig. 6; data not shown].

sions tested (lanes 7-15) had dramatic effects on DNA binding. Of the four single mutations (lanes 16-27), three had very minor effects on DNA binding. However, a single point mutation that altered G6 to C dramatically reduced binding (lanes 25-27). Thus, we decided to engineer this point mutation into the dpp VRR to test its effects on ventral repression. Specifically, we generated two VRR variants: one containing a quadruple point mutation in DRE-A and a wild-type DRE-B, and the other containing the quadruple point mutation in DRE-A and the single G6 to C point mutation in DRE-B. Both constructs were linked to the lacZ reporter gene under control of the dpp 5'-promoter region and introduced into the Drosophila germ-line by P-element mediated transformation. In situ hybridization reveals that mutagenesis of DRE-A alone [Fig. 6C] has very little effect on the ventral expression of the reporter gene relative to the wild-type VRR [Fig. 6B]. However, the addition of the single G6 to C point mutation in DRE-B [Fig. 6D-G] resulted in partial ventral derepression. Although the derepression is somewhat less dramatic than that observed in embryos containing quadruple point mutations in both DREs [see Fig. 2B], the embryos still exhibit a gradient of expression that extends to the ventral midline of the syncytial blastoderm embryo. Thus, a single point mutation that strongly reduces binding of the DRE-binding protein to DRE-B results in a reduction in Dorsal-mediated ventral repression.

The DRE-binding protein binds a region of the zen VRR essential for repression

We suspect that the DRE-binding protein may also be required for the ventral repression directed by the zen VRR. Evidence for this conclusion comes from studies examining the regulatory sequences required for the activity of the zen VRR [Jiang et al. 1993; Kirov et al. 1993]. These studies focused on the importance of the AT-rich
corepression elements in the zen VRR. Taken together, however, they also show that a region of the zen VRR containing an element with homology to the DRE is important for ventral repression. Specifically, Kirov et al. (1993) found that a 55-bp region from the zen VRR containing an AT-rich site and a Dorsal-binding site mediates ventral repression, whereas Jiang et al. (1993) found that a 37-bp region containing the same two elements failed to repress transcription (Fig. 7A). Our examination of the sequences present in the 55-bp fragment, but absent from the 37-bp fragment, reveals an element with homology to the dpp DREs (Fig. 7B). Purified DRE-binding protein binds to the DRE homologous element as shown by footprinting assays (Fig. 7C).

The DRE-binding protein is NTF-1

Shortly after purification of the DRE-binding protein to near homogeneity, we noticed that the molecular sizes of the polypeptides in our purified preparation were very similar to those of the polypeptides in purified NTF-1 (Dynlacht et al. 1989), equivalent to Elf-1, (Bray et al. 1989), the product of the grainyhead (grh) gene (Bray and Kafatos 1991). In addition, the DRE exhibits some sequence similarity to previously described consensus NTF-1-binding sites (Liaw et al., this issue). To determine whether the DRE-binding protein is NTF-1, we carried out DNase I footprinting assays using a probe from the Ubx proximal-promoter region containing NTF-1.
Characterization of a dpp repression element

A

Figure 5. Mutually exclusive-binding of the DRE-binding protein and a potential activator protein that binds to the PLS may contribute to ventral repression. (A) DNase I footprint analysis of the interactions between DRE-binding protein and a PLS-binding protein. The source of PLS-binding activity is a 0.3 M salt cut from an SP-Sepharose column similar to that shown in Fig. 3B, lanes 7 and 8. (Lanes 1,2) No protein controls. The remaining samples contained 1 µl (lanes 3,4,9–12) of PLS-binding activity and 2 µl (lanes 5,9), 5 µl (lanes 6,10), 10 µl (lanes 7,11), or 24 µl (lanes 8,12) of DRE-binding protein. (B,C) Transgenic embryos bearing the lacZ-coding region under the control of the dpp promoter and 5′-flanking region alone (B) or the dpp promoter and 5′-flanking region plus four copies of an oligonucleotide containing the PLS (C) were collected and stained to reveal the pattern of lacZ mRNA expression, lacZ mRNA was detected by whole-mount in situ hybridization with digoxigenin-labeled RNA probes. The embryos are shown in sagittal view and are oriented so that dorsal is up and anterior is to the left.

binding sites. These experiments show that our purified DRE-binding protein binds specifically to the Ubx proximal–promoter generating footprints indistinguishable from those published for NTF-1 [Fig. 8A, cf. Fig. 1 of Dynlacht et al. (1989)]. In addition, recombinant NTF-1 protein generates a footprint over DRE-B essentially indistinguishable from that generated by DRE-binding protein [Fig. 8B]. Finally, antibodies raised against recombinant NTF-1 react with all three polypeptides in our NTF-1 preparation [Fig. 8C]. In addition to verifying that the DRE-binding protein is NTF-1, the results of the immunoblot strongly suggest that the three polypeptides species that copurify as an apparent complex are all the products of a single gene. Their different apparent molecular masses may be attributable to posttranslational modification and/or proteolysis.

Maternal expression of NTF-1

Because dpp is one of the earliest genes to be expressed after fertilization [St. Johnston and Gelbart 1987], we would expect genes encoding potential regulators of dpp to be expressed maternally. As the maternal expression of grh [the gene encoding NTF-1] has not been reported previously, we examined egg chambers by in situ hybridization using a grh probe. By stage 6 of oogenesis, expression is clearly observed in the maternal germ line [Fig. 9A]. Transcripts are most concentrated in the cytoplasm immediately surrounding the nucleus of the developing oocyte and are also observed in the nurse cells. By stage 10, expression in the nurse cells has increased. The apparent decrease in the amount of transcript in the oocyte may simply reflect its dilution by yolk. At this stage, the nurse cell transcripts appear to be streaming into the oocyte [Fig. 9B].

In addition to being maternally expressed, grh is expressed in the blastoderm embryo. Zygotic transcripts are first visible at nuclear cycle 13 when they are faintly detected throughout the embryo [Fig. 9C]. By nuclear cycle 14, grh expression intensifies and the pattern is refined in an unexpected way: The transcript is now excluded from a longitudinal domain along the ventral midline that appears to coincide with the mesodermal anlage [Fig. 9 D,E]. The expression patterns observed during later embryogenesis [data not shown] are in agreement with those published previously [Dynlacht et al. 1989].

Discussion

Multiple elements contribute to ventral repression

A variety of elements that contribute to ventral repression in the Drosophila embryo have been identified. These include Dorsal-binding sites [Huang et al. 1993; Ip et al. 1991; Kirov et al. 1994], the DRE, which we have shown to contribute to dpp repression and possibly zen repression, and AT-rich sequences [i.e., AT-1 and AT-2], which others have shown to contribute to zen repression [Jiang et al. 1993; Kirov et al. 1993]. Although AT-1 and AT-2 may be two copies of the same element, we believe it is more likely that they are distinct elements, as the individual mutagenesis of these sites results in different

Cold Spring Harbor Laboratory Press on July 23, 2018 - Published by genesdev.cshlp.org Downloaded from genesdev.cshlp.org on July 23, 2018 - Published by Cold Spring Harbor Laboratory Press
Figure 6. A single point mutation that blocks binding activity also interferes with ventral repression. (A) DNase I footprinting assays on wild-type and mutant versions of DRE-B. DNase I footprinting assays were carried out to test the binding of DRE-binding protein to a variety of DRE-B mutants. (Lanes 1-3) Wild-type DRE; (lanes 4-6) the indicated quadruple mutant DRE; (lanes 7-15) the indicated double-mutant DREs; (lanes 16-27) the indicated single-mutant DREs. (–) No protein control; (+) each contains equal amounts of DNA-affinity purified DRE-binding protein. (B-G) Transgenic embryos bearing the lacZ-coding region under the control of the dpp promoter and 5′-flanking region plus wild-type and mutant versions of the major dpp VRR were collected and stained to reveal the pattern of lacZ mRNA expression. lacZ mRNA was detected by whole-mount in situ hybridization with digoxigenin-labeled RNA probes. The embryos are shown in sagittal view and are oriented so that dorsal is up and anterior to the left. (B) The expression pattern directed by the wild-type major dpp VRR. (C) The expression pattern directed by a mutant dpp VRR containing a quadruple point mutation in DRE-A. (D-G) The expression pattern directed by a mutant dpp VRR containing a quadruple point mutation in DRE-A and a single point mutation in DRE-B. These four embryos are representative of the derepression observed prior to cellularization. Once cellularization begins, complete ventral repression is reestablished.

phenotypes (Jiang et al. 1993) and as they interact with different factors present in crude embryo extracts (Jiang et al. 1993; S.A. Valentine, unpubl.). In addition, a yeast assay system has been used to identify an HMG-like protein that binds to distinct sites in the zen VRR and converts Dorsal from an activator into a repressor in HeLa cells (Lehming et al. 1994).

We suspect that multiple corepressors, working through multiple corepression elements, are required to ensure full ventral repression in the early embryo. In accord with this idea, mutations in the DREs reduce but do not eliminate ventral repression, suggesting that the dpp VRR contains additional corepression elements. In addition, while mutations in the DREs result in partial
Characterization of a dpp repression element

A possible link between the dorsal/ventral and terminal patterning systems

Rusch and Levine (1994) have shown that the Dorsal-mediated repression of both dpp and zen can also be alleviated by the action of the terminal maternal patterning system. Although this may be the result of the inactivation of Dorsal protein, the results reported here and in the accompanying paper (Liaw et al., this issue) suggest another possible explanation, that is, that the relief of Dorsal-mediated repression may be attributable, in part, to the inactivation of NTF-1. In addition to its potential role as a corepressor in the dorsal/ventral patterning system, NTF-1 appears to function as a repressor of tailless (tll), a major zygotic target of the terminal patterning system. Recent evidence indicates that activation of the terminal pathway, a receptor tyrosine kinase (RTK)-activated protein phosphorylation cascade, alleviates tll repression at the anterior and posterior termini of the embryo (Liaw et al., this issue). The finding that NTF-1 is a substrate for MAP kinase (one of the kinases in the RTK-activated phosphorylation cascade) (Liaw et
al., this issue) suggests that one of the repressors targeted by the terminal pathway may be NTF-1 itself. Both because *dpp* and *tll* are expressed very early and because *grh* mutant embryos do not have detectable pattern defects (Bray and Kafatos 1991), any NTF-1 involved in regulating the initial expression of *dpp* and *tll* is most likely provided maternally. Consistent with this prediction, in situ hybridization to ovaries shows that NTF-1 mRNA is synthesized during oogenesis and deposited in the developing oocyte. One way to determine the requirement for maternal NTF-1 is to examine the phenotype of embryos resulting from females containing *grh* germ-line clones. We have recently made such females, and the resulting embryos exhibit a variable expansion of the *tll* expression domain (Liaw et al., this issue), confirming that NTF-1 functions as a repressor in the early embryo. We have not yet been able to draw definitive conclusions about the role of NTF-1 in *dpp* expression, and further analysis is under way.

Multiple mechanisms may contribute to ventral repression

We have shown previously that the *dpp* VRR can repress transcription over a long distance and thus has the characteristics of a silencer (Huang et al. 1993). The data presented here suggest that a short-range repression mechanism may also be important. Adjacent to DRE-B in the *dpp* VRR is a palindromic element that may serve as the-binding site for a general activator. The NTF-1 and general activator footprints overlap one another, and binding to the two sites is mutually exclusive. Perhaps the VRR employs both long- and short-range repression mechanisms to ensure complete repression on the ventral side of the embryo.

How might Dorsal cooperate with NTF-1 and/or other corepressors to repress transcription? In the absence of corepression elements, Dorsal protein functions to activate transcription. Perhaps the corepressor proteins are the true repressors and the role of Dorsal is simply to facilitate binding of these proteins to the DNA. Although we have been unable to demonstrate cooperative binding of Dorsal and NTF-1 so far, it is possible that Dorsal facilitates NTF-1 binding in vivo by perturbing chromatin structure and thereby allowing NTF-1 access to the template. Alternatively, perhaps Dorsal protein and corepressors work together to recruit other proteins to the DNA that directly repress transcription. A precedent for this is pro-

Figure 8. DRE-binding protein is equivalent to NTF-1. (A) DRE-binding protein protects the NTF-1-binding site in the Ubx 5’ flanking region from DNase I digestion. The footprinting probe used here is as described in Dynlacht et al. (1989). (Lane 1) No protein control; (lanes 2,3) 12.5 μl of DRE-binding protein. (Left) The sequence of the protected region. The boxed portion of the sequence represents the NTF-1-binding site (Dynlacht et al. 1989). (B) Recombinant NTF-1 binds to DRE-B. (Lane 1) No protein control. Footprinting reactions contained 2 μl (lane 2), 5 μl (lane 3), or 10 μl (lane 4) of DNA-affinity purified DRE-binding protein, or 25 μl (lanes 5,6) of a recombinant NTF-1/GST fusion protein expressed in Escherichia coli and purified by chromatography on a glutathione affinity resin. (C) A Western blot probed with antiserum (kindly provided by R. Tian, University of California, Berkeley) raised against vaccinia virus expressed recombinant NTF-1 protein. (Lane 1) The recombinant NTF-1 protein against which the antiserum was raised; (lane 2) DRE-binding protein. In addition to the three normal polypeptide components of DRE-binding protein with apparent molecular masses of 130, 120, and 77 kD, the Western blot reveals a series of lower molecular mass bands that we suspect to be degradation products of the larger species. Silver staining of a similar gel indicates that the amount of rNTF-1 in lane 1 is roughly equivalent to the amount of the 130- and 120-kD species in lane 2 (data not shown).
Figure 9. Expression of NTF-1 during oogenesis and early embryogenesis. In situ hybridization to whole mount egg chambers and embryos was performed using a digoxigenin-labeled antisense grh RNA probe. (A) A stage 6 egg chamber oriented with anterior to the left. Strongest staining is observed around the oocyte nucleus (arrow), with weaker staining observed in the nurse cells. (B) A stage 10 egg chamber oriented with anterior to the left. By this stage, staining is strongly and specifically observed in the nurse cells. Initial deposition of nurse cell transcripts into the oocyte is inferred from the additional staining adjacent and posterior to the oocyte nucleus (arrow). (C) A late syncytial blastoderm embryo (nuclear cycle 13) in sagittal view. By this stage, zygotic transcripts are clearly visible throughout the embryo. Staining is consistently stronger on the dorsal side than on the ventral side of the embryo. (D) A cellular blastoderm embryo (early stage 5) in ventrolateral view. By this stage, transcripts have nearly disappeared from a longitudinal band ~15–20 cells wide straddling the ventral midline (roughly the mesodermal anlage). (E) A higher magnification view of the same embryo shown in D.

Characterization of a dpp repression element

activators. When combined with one another in the correct spatial orientation, these factors probably cooperate in the recruitment of a protein complex that includes products of some of the SIR loci (Moretti et al. 1994). The SIR proteins appear to function to organize the chromatin into a heterochromatic state that is inaccessible to the transcriptional machinery (Loo and Rine 1994). Perhaps silencing by the Drosophila VRRs also involves the formation of an inaccessible chromatin conformation.

Materials and methods

P-element constructs and whole mount in situ hybridization

Mutated versions of the dpp VRR were generated as described previously (Huang et al. 1993). The mutated DNA was inserted into the -980/dpp/lacZ vector for introduction into the Drosophila germ line. To generate a P-element vector containing multiple copies of the PLS, an oligonucleotide containing the PLS was multimerized in the pAE5 vector (Liaw 1994). DNA fragments containing tandem repeats of the oligonucleotide were amplified by PCR with primers that had an EcoRI site at their 5' ends. The PCR products were treated with EcoRI and cloned into the EcoRI site of the -980/dpp/lacZ P-element vector. Whole mount in situ hybridization to embryos and ovaries was carried out as described in (Tautz and Pfeifle 1989). Staging of egg chambers was according to King (1970) and embryos according to Campos-Ortega and Hartenstein (1985).

Purification and assay of DRE-binding protein (NTF-1)

The DRE-binding protein (Fig. 4) was isolated as follows. Nuclear extracts were prepared according to the method of Soeller et al. (1988) and dialyzed to completion against HEMG [25 mM HEPES, K+ at pH 7.6, 12.5 mM MgCl2, 0.1 mM EDTA, 10% (vol/vol) glycerol, 1 mM dithiothreitol, 1 mM Sodium metabisulfite, 0.2 mM PMSF] containing 0.1 M KC1. The extract was applied to an SP-Sepharose column preequilibrated with the same buffer, washed extensively with this buffer, and then eluted with a series of salt steps (Fig. 4A). Elutions were monitored by UV absorbance and were continued until the absorbance of the eluate returned to baseline levels. The protein-containing fractions from the 0.21 M salt step were pooled together, diluted with HEMG to 0.05 M KC1 and loaded onto a preequilibrated DEAE–Sephacel column. The column was washed with HEM2.5G [same as HEMG except that the MgCl2 concentration is 2.5 mM] containing 0.05 M KC1 and loaded onto a preequilibrated DEAE–Sephacel column. The column was washed with HEM2.5G [same as HEMG except that the MgCl2 concentration is 2.5 mM] containing 0.05 M KC1 and then eluted with a series of salt steps (Fig. 4A). The DRE-binding activity eluted in the 0.15 M KC1 step. The active fractions were pooled and applied to a DNA affinity column. DNA affinity chromatography was performed as described by Kadonaga and Tjian (1986). The experiment shown in Figure 4 used an affinity column containing the dpp VRR sequences from nucleotides 1914 to 1959. DNA affinity chromatography was carried out in HEM2.5GN buffer (same as HEM2.5G with the addition of 0.05% NP-40). Active fractions were pooled and placed in dialysis tubing, which was first embedded in powdered polyethylene glycol to concentrate the activity and then dialyzed against HEM2.5GN containing a reduced concentration of glycerol (5%). The material was then layered onto a 10%–20% glycerol gradient for velocity sedimentation. Sedimentation was carried out in a Beckman SW-41 rotor at 36,000 rpm for 48 hrs. Fractions (0.5 ml) were dripped from the bottom of the tube before analysis by DNase I footprinting and SDS-PAGE.
Footprinting assays were carried out as described previously [Pan et al. 1991]. For UV cross-linking studies, iododeoxyuridine substituted probes were synthesized on a Pharmacia Gene Assembler using an iodinated phosphoramidite (Glen Research).

Acknowledgments

We thank R. Tjian and J.-L. Chen for kindly providing us with the NTF-1 cDNA clone, and aliquots of purified NTF-1 and rat polyclonal NTF-1 antiserum. We also thank R. Lehman for several embryo collections and C.-S. Chiang for suggestions in the protein purification. This work was supported by National Institutes of Health grants GM44522 to A.J.C. and GM51720 to J.A.L. and A.J.C.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Affolter, M., D. Nellen, U. Nussbaumer, and K. Basler. 1994. Multiple requirements for the receptor serine/threonine kinase thick veins reveal novel functions of TGFB beta homologs during Drosophila embryogenesis. Development 120: 3105–3117.

Attardi, L.D., D. Von Seggern, and R. Tjian. 1993. Ectopic expression of wild-type or a dominant-negative mutant of transcription factor NTF-1 disrupts normal Drosophila development. Proc. Natl. Acad. Sci. 90: 10563–10567.

Bray, S. J., B. Burke, N.H. Brown, and J. Hirsh. 1989. Embryonic expression of a family of Drosophila proteins that interact with a central nervous system regulatory element. Genes & Dev. 3: 1130–1145.

Bray, S.J. and F.C. Kafatos. 1991. Developmental function of Elf-1—An essential transcription factor during embryogenesis in Drosophila. Genes & Dev. 5: 1672–1683.

Campos-Ortega, J.A. and V. Hartenstein. 1985. The embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin, Germany.

Courey, A.J. and J. Huang. 1995. The establishment and interpretation of transcription factor gradients in the Drosophila embryo. Biochim. Biophys. Acta. 1261: 1–18.

Dynlacht, B.D., L.D. Attardi, A. Admon, M. Freeman, and R. Tjian. 1989. Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes & Dev. 3: 1677–1688.

Huang, J., D.H. Schwytzer, J.M. Shirotaka, and A.J. Courey. 1993. The interplay between multiple and silencer elements defines the pattern of decapentaplegic expression. Genes & Dev. 7: 694–704.

Ip, Y.T., R. Kraut, M. Levine, and C.A. Rushlow. 1991. The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in Drosophila. Cell 64: 439–446.

Ip, Y.T., R.E. Park, D. Kosman, K. Yazdanbakhsh, and M. Levine. 1992a. Dorsal-twist interactions establish snail expression in the presumptive mesoderm of the Drosophila embryo. Genes & Dev. 6: 1518–1530.

Ip, Y.T., R.E. Park, D. Kosman, E. Bier, and M. Levine. 1992b. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes & Dev. 6: 1728–1739.

Jiang, J. and M. Levine. 1993. Binding affinities and cooperative interactions with bHLH activators delimit threshold responses to the dorsal gradient morphogen. Cell 72: 741–752.

Jiang, J., D. Kosman, Y.T. Ip, and M. Levine. 1991. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes & Dev. 5: 1881–1891.

Jiang, J., H. Cai, Q. Zhou, and M. Levine. 1993. Conversion of a dorsal-dependent silencer into an enhancer–evidence for dorsal corepressors. EMBO J. 12: 3201–3209.

Kadonaga, J.T. and R. Tjian. 1986. Affinity purification of sequence-specific DNA-binding proteins. Proc. Natl. Acad. Sci. 83: 5889–5893.

Kasai, Y., J.R. Nambu, P.M. Lieberman, and S.T. Crews. 1992. Dorsal-ventral patterning in Drosophila—DNA binding of snail protein to the single-minded gene. Proc. Natl. Acad. Sci. 89: 3414–3418.

King, R.C. 1970. Ovarian development in Drosophila melanogaster. Academic Press, New York.

Kirov, N., L. Zelmin, J. Shah, and C. Rushlow. 1993. Conversion of a silencer into an enhancer—Evidence for a co-repressor in dorsal-mediated repression in Drosophila. EMBO J. 12: 3193–3199.

Kirov, N., S. Childs, M. Oconnor, and C. Rushlow. 1994. The Drosophila-dorsal morphogen represses the tolloid gene by interacting with a silencer element. Mol. Cell. Biol. 14: 713–722.

Laurenson, P. and J. Rine. 1992. Silencers, silencing, and heritable transcriptional states. Microbiol. Rev. 56: 543–560.

Lehming, N., D. Thanos, J.M. Brickman, J. Ma, T. Maniatis, and M. Prashne. 1994. An HMG-like protein that can switch a transcriptional activator to a repressor. Nature 371: 175–179.

Letsou, A., K. Arora, J.L. Wrana, K. Simin, V. Twombly, J. Jamal, K. Staehling-Hampton, F.M. Hoffmann, W.G. Gelbart, J. Massague, et al. 1995. Drosophila Dpp signaling is mediated by the punt gene product: A dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80: 899–908.

Liaw, G. 1994. Improved protocol for directional multimerization of a DNA fragment. BioTechniques 17: 668–670.

Liaw, G.-J., K.M. Rudolph, J. Huang, T. Dubnoff, A.J. Courey, and I.A. Lengyel. 1995. The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes & Dev., this issue.

Loo, S. and J. Rine. 1994. Silencers and domains of generalized repression. Science 264: 1768–1771.

Moretti, P., K. Freeman, L. Coodly, and D. Shore. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes & Dev. 8: 2257–2269.

Pan, D.J., I.D. Huang, and A.J. Courey. 1991. Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes & Dev. 5: 1892–1901.

Penton, A., Y. Chen, K. Staehling-Hampton, J.L. Wrana, L. Attisano, J. Szidonya, I.A. Cassill, J. Massague, and F.M. Hoffmann. 1994. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78: 239–250.

Roth, S., D. Stein, and C. Nusslein-Volhard. 1989. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59: 1189–1202.

Ruberte, E., T. Marty, D. Nellen, M. Affolter, and K. Basler. 1995. An absolute requirement for both the type II and type I receptors, punt and thick veins, for Dpp signaling in vivo. Cell 80: 889–897.

Rusch, J. and M. Levine. 1994. Regulation of the dorsal morphogen by the Toll and torso signaling pathways: A receptor
Characterization of a dpp repression element

tyrosine kinase selectively masks transcriptional repression. *Genes & Dev.* 8: 1247–1257.

Rushlow, C.A., K. Han, J.L. Manley, and M. Levine. 1989. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in *Drosophila*. *Cell* 59: 1165–1177.

Soeller, W., S.J. Poole, and T. Kornberg. 1988. In vitro transcription of the *Drosophila* engrailed gene. *Genes & Dev.* 2: 68–81.

St. Johnston, R.D. and W.M. Gelbart. 1987. Decapentaplegic transcripts are localized along the dorsal-ventral axis of the *Drosophila* embryo. *EMBO J.* 6: 2785–2791.

Steward, R. 1989. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. *Cell* 59: 1179–1188.

Steward, R., S.B. Zusman, L.H. Huang, and P. Schedl. 1988. The dorsal protein is distributed in a gradient in early *Drosophila* embryos. *Cell* 55: 487–495.

Tautz, D. and C. Pfeifle. 1989. A nonradioactive in situ hybridization method for the localization of specific RNAs in *Drosophila* embryos reveals translational control of the segmentation gene hunchback. *Chromosoma* 98: 81–85.

Terracol, R. and J.A. Lengyel. 1994. The thick veins gene of *Drosophila* is required for dorsoventral polarity of the embryo. *Genetics* 138: 165–178.

Thisse, C., F. Perrinschmitt, C. Stoetzel, and B. Thisse. 1991. Sequence-specific transactivation of the *Drosophila* twist gene by the dorsal gene product. *Cell* 65: 1191–1201.
Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic.

J D Huang, T Dubnicoff, G J Liaw, et al.

Genes Dev. 1995, 9:
Access the most recent version at doi:10.1101/gad.9.24.3177

References
This article cites 36 articles, 19 of which can be accessed free at:
http://genesdev.cshlp.org/content/9/24/3177.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](#).