Self-beneficial belief updating as a coping mechanism for stress-induced negative affect

Nora Czekalla*, Janine Stierand, David S. Stolz, Annalina V. Mayer, Johanna F. Voges, Lena Rademacher, Frieder M. Paulus, Sören Krach & Laura Müller-Pinzler*

Being confronted with social-evaluative stress elicits a physiological and a psychological stress response. This calls for regulatory processes to manage negative affect and maintain self-related optimistic beliefs. The aim of the current study was to investigate the affect-regulating potential of self-related updating of ability beliefs after exposure to social-evaluative stress, in comparison to non-social physical stress or no stress. We assessed self-related belief updating using trial-by-trial performance feedback and described the updating behavior in a mechanistic way using computational modeling. We found that social-evaluative stress was accompanied by an increase in cortisol and negative affect which was related to a positive shift in self-related belief updating. This self-beneficial belief updating, which was absent after physical stress or control, was associated with a better recovery from stress-induced negative affect. This indicates that enhanced integration of positive self-related feedback can act as a coping strategy to deal with social-evaluative stress.

Human beings strive to be accepted by others and to maintain a positive social image\(^1\). Thus, social evaluation of our behavior can pose a threat to our social image, eliciting a stress response in our body\(^2\)–\(^4\). This initiates various physiological processes\(^5\) and is associated with negative affective consequences, like anxiety or embarrassment\(^6\)–\(^8\). Social evaluation, however, is fundamental to self-related learning processes, as it gives one the opportunity to integrate the feedback we receive from others and update the beliefs about ourselves accordingly\(^9\),\(^10\). Biases in how we process self-related feedback on our behaviors, i.e. whether we focus more on negative or positive feedback, impact our affective reactions\(^11\),\(^12\) and, in the case of self-serving processing, may function as a coping strategy\(^11\). While (social) stress is a risk factor for many psychiatric conditions\(^13\), successful coping is an important factor in maintaining mental health\(^14\). In the current study we implemented a computational modeling approach to investigate the coping mechanism of self-beneficial belief updating after social-evaluative stress and tested whether shifted information processing after stress predicts recovery from stress-induced negative affect.

When we receive feedback regarding our behaviors, information processing and belief updating is shaped by self-relevant motivations\(^15\), especially the motivation to maintain optimistic beliefs about the self\(^16\). Many studies have demonstrated that the process of self-related belief updating is biased in favor of positive information, i.e. self-related beliefs are updated more strongly when feedback is better than expected\(^17\)-\(^20\). However, updating biases towards negative feedback have been reported in performance contexts\(^21\),\(^22\), which indicates that the context of learning (i.e. learning about own abilities or learning about one's personality), type of feedback and prior assumptions are important factors when explaining self-related belief updating biases.

While there are only relatively few studies on the effects of stress on self-related belief updating, various studies on reward processing and non-self-related feedback processing have shown that stress is an influencing factor in this regard. One key mechanism for feedback-based learning is the prediction error signal, indicating the difference between a predicted and an actual outcome\(^23\),\(^24\), which is being minimized by updating beliefs during learning. This signal is generated by dopaminergic neurons of the ventral striatum\(^25\), which might be particularly important for the stress-induced modulation of prediction error signals as the dopamine system is sensitive to stress\(^26\),\(^27\). However, these effects depend on the type, intensity and schedule of the stress exposure\(^28\), which might also explain heterogeneous effects of stress on reward processing and feedback-based learning. Research on declarative memory has shown that timing of stress matters. In the acute stress phase, mainly characterized by a rapid sympathetic response, catecholamines and non-genomic glucocorticoid actions lead to increased memory formation of the stressful event. Cortisol is released with a delay and inhibits memory consolidation later on to

Social Neuroscience Lab at the Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany. *email: n.czekalla@uni-luebeck.de; laura.muellerpinzler@uni-luebeck.de
avoid interference with non-stress-related information. Besides this inhibition of hippocampus-dependent declarative memory, neuro-imaging research on classification learning also found a shift towards striatum-based procedural learning after stress, i.e. also non-declarative learning processes are modulated by stress. Acute stress is associated with an increased extinction resistance in fear conditioning. When learning takes place with a delay to stress, trace conditioning and updating in reversal fear conditioning are attenuated, cortisol is associated with reduced fear conditioning and working memory is reduced. Timing of stress seems to be important for feedback-based or reward-based learning as well. Initially, acute stress (e.g. a threat of a shock during learning) impairs feedback-based learning of reward. Neurally, acute stress attenuates the response to reward in the striatum and orbitofrontal cortex and enhances the striatal response to aversive feedback. Accordingly, under acute stress self-related belief updating is more strongly driven by unfavorable feedback, i.e. the learning bias in favor of positive information (optimism bias) usually found in self-related belief updating is absent. The opposite effects are reported when learning takes place with a delay to stress (e.g. after a public speech), a phase mainly characterized by an increase of cortisol. Here, feedback processing is more strongly driven by stimuli signaling reward and possibly associated with stress-induced cortisol change, while learning from negative feedback is decreased, potentially linked to cortisol levels before learning. On the neural systems level, stress recovery is associated with increased striatal responses to rewarding feedback at 50 min after stress. Moreover, specifically individuals with low striatal reward reactivity showed an association of recent life stress with lower positive affect, which makes striatal reactivity a potential factor of successful coping.

In the present study, we aim to investigate the effects of social-evaluative stress on the updating of self-related ability beliefs and the propensity to engage into self-beneficial learning after social-evaluative stress. By means of two well validated and highly reliable paradigms, the Trier Social Stress Test (public speech) and the Cold Pressor Test, as well as a no stress control condition, we directly manipulated levels of social-evaluative stress in a between-groups design. After stress manipulation we used computational modeling to describe participants’ self-related belief updating behavior using the learning of own performance (LOOP) task. In this task participants continuously update beliefs about their abilities in epistemologically novel behavioral domains. We then used participants’ learning bias from positive and negative feedback to predict their recovery from stress-induced negative affect. We found that social but not physical stress shifted subsequent self-related belief updating in a more self-beneficial direction which predicted better recovery from negative affect. We elaborate on the relationship between stress (specifically the components of negative affect and cortisol response), self-related belief updating and affect regulation in healthy participants and discuss the potential of our findings for a better understanding of maladaptive self-related belief systems in psychiatric conditions such as depression.

Results
After exposure to social-evaluative stress (SOC, Trier Social Stress Test), non-social, physical stress (PHY, Cold Pressor Test) or a no stress control condition (CON, reading) participants performed the LOOP task, which was covered as a measure of cognitive estimation skills (see Fig. 1). The central idea of the LOOP task is to create a performance context and provide manipulated positive or negative feedback in comparatively neutral domains in which people have only vague prior assumptions. By this means, individuals form a concept about their own abilities over the course of the experiment. In a previous study, we showed that this process of self-related belief updating can be described best by a computational prediction error learning model (adapted from Rescorla and Wagner) with two separate learning parameters for positive and negative prediction errors. During the LOOP task, participants were asked to answer estimation questions in two different estimation domains (e.g. estimating the weight of animals and the height of buildings) and received manipulated performance feedback implying a rather good performance in one category and a rather bad performance in the other one (high vs. low ability condition). In the beginning of each trial participants saw a cue indicating the estimation category and had to rate their expected performance for the upcoming estimation question in this category. A manipulated feedback on their estimation performance in relation to an alleged reference group was presented afterwards. Saliva cortisol as well as negative affect, including perceived stress, embarrassment, anger, and frustration, were assessed several times during the experiment. Pre-stress baseline measures (T1AFFCORT) were taken after a 10-min-period of rest in the beginning of the session. Post-stress negative affect was rated immediately after the stress exposure or control task (T2AFF) to calculate the mean change of negative affect (ΔAFF). Post-stress cortisol samples were taken after another 10-min period of rest (T2CORT) to calculate the mean cortisol change (ΔCORT). After performing the LOOP task, saliva samples and negative affect were again obtained (T3AFFCORT) for a detailed description see methods.

Cortisol response and negative affect. Cortisol change. The stress manipulation was effective and social-evaluative stress, as well as physical stress, led to a stronger increases of cortisol levels from baseline T1CORT to post-stress T2CORT than in the no stress control group (Scheirer-Ray-Hare test on ΔCORT controlled for time
of the day [TIME]: main effect factor Stress group $H_2 = 18.9, p < 0.001$, post-hoc Dunn-Bonferroni-Tests for factor Stress group: SOC vs. CON: $z = -4.29, p < 0.001$; PHY vs. CON: $z = -2.76, p = 0.018$; see Table S1). There was no statistically significant difference between the two stress groups (SOC vs. PHY: $z = 1.56, p = 0.355$; baseline cortisol levels did not significantly differ between groups $H_2 = 1.74, p = 0.419$ controlled for TIME, see Fig. 2a,c).

Change in negative affect. Mean negative affect increased significantly after social-evaluative stress but not after physical stress compared to the control group (Kruskal Wallis test on ΔAFF: $H_2 = 43.9, p < 0.001$, post-hoc Dunn-Bonferroni-tests: SOC vs. CON: $z = -6.45, p < 0.001$, PHY vs. CON: $z = -1.88, p = 0.182$, SOC vs. PHY: $z = -4.59, p < 0.001$; baseline negative affect did not significantly differ between groups $H_2 = 3.2, p = 0.201$; see Fig. 2b,d and Supplementary Fig. S1).

Forming self-related beliefs over time. In a model free behavior analysis we replicated previous findings regarding the LOOP task which indicates self-related belief updating in response to the feedback\(^3^1\). Over the time of 30 trials, participants adapted their performance expectation ratings (EXP) towards the positive and negative feedback of the two ability conditions, i.e. they updated their self-related beliefs (Fig. 3c, significant factor Ability condition high vs. low $t_{5156} = 8.52, p < 0.001$, significant Trial x Ability condition interaction $t_{5156} = 32.72, p < 0.001$). Social-evaluative stress modulated self-related belief updating over time, i.e. performance expectation ratings became increasingly higher compared to physical stress or no stress (Trial x Ability condition x Stress group split into the contrasts social [SOC] vs. non-social [PHY, CON] and the orthogonal contrast PHY vs. CON; interaction for contrast SOC vs. [PHY, CON]; $t_{5156} = 4.01, p < 0.001$). In the physical stress group performance expectation ratings were even more negative over time than in the no stress control condition (Trial x Ability condition x Contrast PHY vs. CON $t_{5156} = -2.15, p = 0.031$; mixed-effects model with the within-group factor Ability condition, the between-group factor Stress group, and the continuous variable trial, plus interactions, see Supplementary Table S2).

Model selection for computational models of learning behavior. To capture the updating of the performance expectation ratings over time in a learning model, a similar model comparison to that of Müller-Pinzler et al.\(^3^1\) was performed. All three main models of the model space followed the idea of a Rescorla-Wagner model\(^5^8\) with one or two learning rates for each participant reflecting the degree to which people weighted pre-
diction errors \((PE = \text{Feedback} - \text{EXP}) \) to update their expectation rating (see Fig. 3a and for model descriptions see method section).

In line with Müller-Pinzler et al.21, the Valence Model outperformed all other models in all three groups according to Bayesian Model Selection59 (see Fig. 3b; protected exceedance probability for the whole sample \(p_{\text{Exp}} > 0.999 \), Bayesian omnibus risk \(\text{BOR}_{\text{Total}} < 0.001 \) as well as separately for the three groups \(p_{\text{Exp}} \text{SOC} = 0.985, \text{BOR}_{\text{SOC}} = 0.019, p_{\text{Exp}} \text{PHY} > 0.999, \text{BOR}_{\text{PHY}} < 0.001, p_{\text{Exp}} \text{Control} > 0.999, \text{BOR}_{\text{Control}} < 0.001 \); see Table 1 and Supplementary Table S3 for more details on model comparisons). This model, with two separate learning rates for positive PEs \((\alpha_{\text{PE}+}) \) and negative PEs \((\alpha_{\text{PE}^-}) \) across ability conditions, assumes that learning differs depending on the valence of prediction errors. Learning parameters from the Valence Model were used for further analysis.

The modeled performance expectations of our winning model predicted the performance expectation ratings on the individual subject level within each ability condition with \(R^2 = 0.33 \pm 0.24 \) (\(M \pm SD \)). Repeating the model

Figure 2. (a) Cortisol levels over the course of the experiment separately for the three stress groups (social-evaluative stress \([n = 29] \) vs. physical stress \([n = 30] \) vs. no stress \([n = 30] \)). Lines connect group medians. Group means are depicted as gray ovals within the box. (b) Mean negative affect ratings (embarrassment, anger, frustration and perceived stress) over the course of the experiment separately for the three stress groups depicted as in (a). (c) Change in salivary cortisol levels after stress induction (post-stress T2\textsubscript{CORT} - baseline T1\textsubscript{CORT}). (d) Change in negative affect (post-stress T2\textsubscript{AFF} - baseline T1\textsubscript{AFF}), SOC = Social-evaluative stress group, PHY = Physical stress group, CON = no stress control group. Line inside box: median, lower/upper box hinges: 25th and 75th percentile, lower/upper box whiskers: smallest/largest value within 1.5 \times \text{inter-quartile range from hinges}, * \(p < 0.050 \), ** \(p < 0.001 \).
free analysis with the modeled performance expectations confirmed the results from the original analysis (see Supplementary Table S4).

Stress and learning parameters. In line with Müller-Pinzler et al.21, the physical stress and no stress control group showed a negativity bias in their learning behavior, i.e. a stronger self-related belief updating after negative than positive prediction errors ($\alpha_{PE-} \neq \alpha_{PE+}$ within group comparison for PHY: $W = 100, Z = -2.73, p = 0.005$ and CON: $W = 84, Z = -2.89, p = 0.003$, Wilcoxon test). This negativity bias was absent after social-evaluative stress ($\alpha_{PE-} \neq \alpha_{PE+}$ within group comparison for SOC: $W = 193, Z = -0.53, p = 0.609$; significant PE-Valence x Contrast SOC vs. PHY, CON interaction $b_{VALXSOC} = 0.114$, $t_{85} = 2.30, p = 0.024$; PE-Valence x Contrast PHY vs. CON: $b_{VALXPHY} = -0.026$, $t_{85} = -0.72, p = 0.471$; betas standardized, see Fig. 3d and Supplementary Table S5).

To better capture biased learning behavior, a valence bias score was computed (valence bias score = ($\alpha_{PE+} - \alpha_{PE-}$)/($\alpha_{PE+} + \alpha_{PE-}$)), which represents updating after positive compared to negative prediction errors. More positive valence bias scores indicate more self-beneficial belief updating, while negative valence bias scores speak for stronger self-related belief updating after negative feedback.

Negative affect and cortisol change predict subsequent self-beneficial belief updating. To further assess which aspect of the stress response is associated with self-beneficial belief updating, we correlated negative affect and cortisol with the valence bias scores across all three experimental groups. While both stress groups (SOC and PHY) only differ significantly in terms of an increase in negative affect but not cortisol levels, both measures...
Learning bias and affective recovery. A more positive valence bias score predicted better recovery from stress-induced negative affect during learning in the social-evaluative stress group, the only group with significantly increased levels of negative affect after stress (Fig. 3c; REC, change in negative affect post-stress $T_{2AFF} - \text{T1AFF}$). This supports the idea of self-beneficial belief updating as a coping strategy. Analysis across the whole sample trend-wise confirmed this effect ($b_{\Delta AFF} = 0.238, t_{ES} = 1.922, p = 0.058$). However, regression coefficients of the valence bias score predicting the affective recovery within the two other experimental groups alone, which exhibit no substantial increase in negative affect in the first place, were not significant (PHY: $b_{\Delta AFF} = 0.147, t_2 = 0.999, p = 0.327$, CON: $b_{\Delta AFF} = 0.000, p > 0.999$, rank regression). A stronger relationship in the social stress group compared to the other groups, i.e. a modulation of the factor Stress group, showed a trend-wise effect (BIAS x Contrast SOC vs. [PHY, CON]) interaction $b_{\text{BHASN-SOC}} = 0.322, t_{ES} = 1.70, p = 0.093$, rank regression of the affective recovery predicted by valence bias score, Stress group split into the contrasts social [SOC] vs. non-social [PHY, CON] and PHY vs. CON, the increase in negative affect, plus the bias x Stress group interactions for the two contrasts, Supplementary Table S7).

Discussion

After being devalued for example at work or school we need to empower ourselves in order to uphold or boost our self-image. Research has shown that the ability to adopt a positive attitude towards oneself after receiving criticism is central to positive affect and good mental health outcomes in the long run. In the current study we investigated how people apply self-beneficial belief updating during a performance feedback situation as a means to counter their negative affect. Using computational modelling, we provide a mechanistic explanation on how individuals engage in more self-beneficial updating of ability beliefs after experiencing a threat to their social image and how this shift in social learning of self-related information predicts recovery from stress-induced negative affect.

The positive shift of self-related updating of ability beliefs after social-evaluative stress, going along with a better recovery from negative affect, fits nicely to the notion of a belief's own value as recently posited by Bromberg-Martin and Sharot. In their revised framework, general belief updating is not solely driven by external outcomes like rewards or punishments but also by the agent's motivation to optimize internal states like positive affect. In the present study we show this direct link between self-related belief updating and a change in the affective state indicating that self-related belief updating might be motivated by the wish to uphold or even recover a positive affective state. This is in line with the idea of motivated cognition, i.e. the assumption that cognitive processes like attention, information processing and decision making are not neutral on their own, but are always shaped by needs, feelings and desires of the individual. Especially when processing information that challenges one's self-image, self-related belief updating is not only informed by the history of previous feedback, as it has often been assumed in classical reinforcement learning tasks, but also by various self-relevant needs and goals. Transferred to the present study, this implies that the motivation to restore an endangered self-image and to regulate one's affect back to a set point directly impacts self-related information processing. The pattern of an active counter-regulation of negative affect by self-beneficial belief updating can be described as a striving for homeostasis. To better capture the fluctuation of the affective state and its involvement in the trial-by-trial self-related belief updating loop, following the framework by Bromberg-Martin and Sharot, future studies should consider repeated assessments of affective states during the task to predict the empowering potential of shifts in learning on the single trial level.

Table 1. PSIS-LOO scores for the whole sample. LOO = sum PSIS-LOO, approximate leave-one-out cross-validation (LOO) using Pareto-smoothed importance sampling (PSIS); LOO-SE = Standard error of PSIS-LOO; LOO-Diff (SE-Diff) = Difference in expected predictive accuracy (PSIS-LOO) for all models from the model with the highest PSIS-LOO (Valence Model) and standard errors of differences; percentage of \hat{k} — estimated shape parameters of the generalized Pareto distribution—exceeding 0.7 (all according to Vehtari et al.);

Model	PSIS-LOO	LOO-SE	LOO-Diff (SE-Diff)	% of $\hat{k} > 0.7$	No. est. parameters
Unity model (M1)	−2028.5	257.0	287.1 (52.0)	0.09	3
Ability model (M2)	−1884.4	247.4	123.0 (95.9)	0.53	4
Valence model (M3)	−1761.4	280.4	0.17 (4)	4	
Mean model (M0)	−2531.9	219.2	770.5 (93.5)	0.00	2
Since negative self-related beliefs are at the core of psychiatric conditions like depression, this study targets clinically highly relevant processes. Depression is associated with seeking negative feedback which confirms negative self-related beliefs and seeking negative feedback in combination with a stressful life event can further increase depressive symptoms. Furthermore, depression is associated with a weaker stress recovery mediated by an attentional bias towards negative feedback. Understanding the mechanisms of how people form self-related beliefs in a context mimicking everyday performance settings and linking these to the regulation of negative affect after stress has important implications for understanding the etiology of depressive symptoms. The present study set-up, including a social-evaluative stress induction followed by a social-evaluative performance situation also addresses one of the fundamental fears of individuals with social anxiety: being devalued by others. Since both depression and social anxiety are associated with negatively biased updating behavior in response to self-related feedback, we assume that the affect-regulating and empowering potential of self-beneficial belief updating after social-evaluative stress would be less pronounced in depression or social anxiety and would thereby possibly exacerbate the symptomatology in a self-fulfilling way. Future studies with similar experimental set-ups and clinical samples could examine the relationship between self-beneficial belief updating and affect regulation in more detail and develop potential intervention strategies based on empowering individuals on their way to processing newly incoming information.

Replicating a previous study of ours, self-related belief updating was negatively biased in the control condition in which participants were not exposed to any stress. In the prior study, this negativity bias has been shown to be specific for self-related belief updating in comparison to belief updating about another person. In the present study, we found that after physical stress participants also exhibited a negativity bias in forming self-related beliefs, i.e. participants tended to make greater responses in response to negative prediction errors in contrast to positive prediction errors. The negativity bias stands in contrast to other studies reporting a positivity or optimism bias in feedback-based learning e.g. when receiving feedback about the chance to encounter negative life events, about one’s intelligence or about one’s personality (for a review see). There are several possible explanations for the motivation behind the negativity bias in contrast to the reported positivity biases of other studies which was, however, not the focus of the present study (for a discussion on the negativity bias see). In order to test for the specificity of self-beneficial belief updating after social-evaluative stress, it would be interesting to test if this effect also accounts for experiments that typically yield a positivity bias (e.g. for life events, IQ or personality) in feedback-based learning tasks.

Here, we demonstrated that both, negative affect and cortisol stress responses, go along with a shift in self-related belief updating. It has been shown that experiencing social emotions (e.g. embarrassment or shame) is related to increased cortisol levels in situations which threaten one’s social image, like the social-evaluative stress induction. Cortisol has been linked to reward processing and feedback-based learning in the stress triggers additional reward salience—STARS—model which proposes that stress and the associated release of cortisol modulates the dopamine system, resulting in an increased salience of rewards, thus biasing learning towards rewarding feedback and The current results, however, suggest that the quality of stress (here, social vs. physical) might make a difference, and the STARS model, based on a rather unspecifically triggered cortisol response, cannot fully explain the present stress effect on self-related belief updating after social but not physical stress.

Although both groups showed a significantly greater increase in cortisol compared to control, this effect was less pronounced in the physical stress group. While the Cold Pressor Test is known to elicit a strong sympathetic activity, studies reported only low to moderate cortisol effects, that were weaker than after the Trier Social Stress Test. Our alteration of the Cold Pressor Test, to remove the social element of the conductor, might have even further reduced stress effects as compared to the original Cold Pressor Test protocol. We did find an association of the negative affect response (i.e. self-evaluative emotions like embarrassment), which is typically specific for social-evaluative stress and absent during physical stress, with shifts in learning behavior in our study. But also cortisol as a rather unspecific stress component was associated with shifts in learning behavior. Thus, we cannot rule out that a more intense physical stress protocol with higher cortisol responses would have led to similar effects on learning rates. A more detailed recording of negative affect and a comparison between different negative affective states as well as more detailed recording of the physiological stress response might help in future studies to better differentiate between different stress qualities and understand specific effects of social-evaluative stress on self-beneficial belief updating.

To summarize, our results indicate a shift towards more self-beneficial belief updating after social-evaluative but not physical stress. This shift goes along with a better recovery from stress-induced negative affect. Linking self-related belief updating to affect is an important step in understanding biases in self-related learning and its relation to affect regulation. The special feature of the present study was the study-set that allowed to examine a link between negative affect and self-related belief updating. By introducing a performance context with consecutive self-related feedback, corresponding to real-life school or work-related performance situations, individuals can form beliefs about their own abilities over time and potentially use this formation process as a means to regulate their affect. With this approach we aimed to increase the ecological validity of the study in order to trigger and investigate motivational processes that might be less relevant in more abstract study settings. Since social evaluation represents a constant stressor in everyday life, the question of an appropriate coping strategy to regulate negative affect is of great importance when handling everyday social situations.

Materials and methods

Participants. Eighty-nine participants recruited at the University of Lübeck Campus were included in the study. Upon appearance, participants were assigned to either a social-evaluative stress group (SOC; n = 29, 21 female, aged 18–28 years; M = 22.9; SD = 2.76), a physical stress group (PHY; n = 30, 20 female, aged 19–27 years;
Manipulation procedure. **Social-evaluative stress.** Social-evaluative stress was induced by a public speech similarly to the Trier Social Stress Test. Participants were instructed to prepare a short self-presentation for an application for a scholarship, which had to be presented in front of a selection committee who allegedly assess the participant’s verbal skills and body language. The selection committee consisted of the experimenter, who was passive during the speech, a second experimenter, who was allegedly responsible for measuring verbal skills, and a passive camera assistant, who pretended to videotape the speech. Before starting the 10-min preparation period, participants briefly visited the room with the selection committee. After the preparation time was over, participants were asked to come back to this room and present their speech. Talking time was 5 min (M = 4.9 min, SD = 0.16) with a minimum of 3 min of uninterrupted speech. If the participant finished the speech before the time was over, the second experimenter waited for at least 15 s with a motionless face and then asked the participant to continue. If the participant stopped speaking again and the 3 min of free speech had passed, the second experimenter asked standardized questions until the 5 min of talking time were over (“Explain why it is important for you to achieve a good performance.”, “Do you think it is important to improve yourself throughout your life?”, “Do you consider yourself a person who values his/her independence?”). Average social-evaluative stress duration (start subsequent rest period – start speech preparation) was M = 16.4 min, SD = 1.2.

Physical stress. Physical stress was induced by an exposure to ice water according to the Cold Pressor Test protocol. Participants were asked to dip their non-dominant hand in cold water (water temperature 3–5.5 °C = 37.4–41.9°F, M = 4.26 °C, SD = 0.50) for as long as possible up to 3 min (duration 48 s–3 min, M = 2.7 min, SD = 0.7). The water was kept in motion with a small electrical pump to prevent the water temperature from rising around the participant’s hand. To control for the procedure of the social-evaluative stress condition, participants visited the room with the cold pressor apparatus first, had a 10-min preparation period and came back into the room for the stress exposure. During the preparation time, participants were asked to imagine dipping their hands in a freezing cold environment and write down their associations. To make the stress exposure less social, the experimenter was not present in the room but waited in an adjacent room. If the participant took out their hand before the 3 min were over, they had to signal this immediately by ringing a bell. The experimenter could roughly observe the participant in the reflection of the glass door, thus ensuring that she/he dipped the hand into the water. Average physical stress duration (including preparation period) was M = 16.2 min, SD = 1.5.

No stress control condition. In the control condition, participants performed a reading task that was described to them as measuring reading speed. They had 10 min to rehearse two different texts about applying for a scholarship. Afterwards, they were guided to the other room with nobody present and were asked to measure their reading time, while reading the two texts aloud at a natural speed. Average control duration was M = 15.3 min, SD = 1.3.

Manipulation checks. **Cortisol.** Three saliva samples were collected during the experiment for cortisol analysis (see Fig. 1a). The first sample (baseline T1CORT) was taken after a 10 min period of rest immediately before starting the instruction for the stress manipulation (mean time between T1CORT and start of the SOC, PHY or CON preparation phase: M = 3.7 min, SD = 1.4). The post-stress cortisol sample T2CORT was collected after another 10 min resting period following the stress manipulation and the last sample (T3CORT) was collected after the learning task (M = 45.6 min (SD = 3.3) post stress). The stress-induced cortisol change (ΔCORT) was determined by subtracting the cortisol levels of T2CORT − T1CORT. Saliva was collected with Salivettes (Sarstedt, Nümbrecht, Germany), stored at −30 °C and sent to the bio-psychological lab at TU Dresden, Dresden, Germany for analysis (here stored at −20 °C until analysis). Salivary free cortisol levels were determined using a chemoluminescence immunoassay (IBL International, Hamburg, Germany).

Negative affect. We assessed negative affect by means of a short pen and paper questionnaire, covering the emotions embarrassment, anger, frustration, as well as the perceived stress with one rating each. The questionnaires were handed out at baseline (T1AFF) as well as at the very end of the experiment (T3AFF). The post-stress negative affect was measured immediately after the stress manipulation (T2AFF, see Fig. 1). Ratings were averaged for each measurement point to get a composite measure of negative affect (see Supplementary Fig. S1 for separate
scores). The change in negative affect after stress (ΔAFF) was determined by subtracting T1 negative affect from T2 (T2AFF − T1AFF). The recovery from negative affect (REC) was determined by subtracting T3 negative affect from T2 (T2AFF − T3AFF).

Behavioral task. Learning of own performance task. The Learning of own performance (LOOP) task\(^1\) (Fig. 1b) allows to measure self-related belief updating through trial-by-trial performance expectation ratings and subsequent performance feedback. The task included estimation questions in two different estimation categories (heights of houses and weights of animals) and was presented to the participants as a measure of estimation abilities. To make participants learn about their estimation ability the two estimation categories were paired with manipulated performance feedback implying high ability for one category and low ability for the other (e.g. heights of houses = high ability and weights of animals = low ability, estimation categories were counterbalanced between ability conditions). The assignment of the categories to the ability conditions was independent of the participants’ actual performance and their performance expectation ratings. Thus, participants could learn over the course of the experiment that they were good in one estimation category and rather bad in the other one. Each trial began with a cue displaying the category of the next estimation question followed by a performance expectation rating for this question. Afterwards, the estimation question was presented together with a picture for 10 s. Continuous response scales below the pictures determined a range of plausible answers for each question, and participants indicated their responses by navigating a pointer on the response scale with a computer mouse. Subsequently, feedback indicating the estimation accuracy as percentiles compared to an alleged reference group of 350 university students was presented for 5 s (e.g. “You are better than 72% of the reference participants.”). The order of the two estimation categories/ability conditions was intermixed with a maximum of two consecutive trials of the same condition and 30 trials per condition in total. The estimation questions were randomized within the estimation category/ability conditions. A fixed sequence of ability conditions and feedback was presented for all participants. In the low ability condition, feedback was approximately normally distributed around the 35th percentile (SD = 16; range 1–60%) and in the high ability condition around the 65th percentile (SD = 16; range 40–99%). The task started with detailed instructions and three test trials. All stimuli were presented using MATLAB Release 2015b (The MathWorks, Inc.) and the Psychophysics Toolbox\(^7\).

Procedure. To minimize noise in the cortisol saliva samples, participants were asked to follow behavioral rules prior to the experimental session. These were in detail: no alcohol on the evening before the experiment and bed rest at about 10 p.m. (ideal case eight hours of sleep); one hour before the session: no sport, no smoking, no drinks containing caffeine or theine, no food (including bonbons and chewing gums) and no juices. Upon arrival at the laboratory, participants read the participant information including the cover story regarding the stress manipulation and the LOOP task. After signing the consent form, they were asked to fill out a questionnaire checking the adherence to the behavioral rules. Participants rested for 10 min before the baseline measurement, including saliva cortisol and negative affect, was obtained (T1AFF/CORT). During the resting period, they filled out a short personality questionnaire (not included in this study). Subsequently, participants of the social and physical stress groups were challenged with a stress protocol while participants of the control group did the control reading task. Directly afterwards, participants rated their affective state (T2AFF) followed by another 10 min resting period, which was terminated with a saliva sampling (T2CORT). In the second part of the experiment participants performed the LOOP task. Finally, another cortisol sample and affective ratings were collected (T3AFF/CORT). After completing a post-experimental interview, including additional questionnaires, participants were debriefed about the cover story. The experimental sessions were run between 10.00 a.m.–12.00 p.m., 1.00–3.00 p.m. or 3.45–5.45 p.m. The allocation to the time slots did not differ between the experimental groups (Pearson’s Chi-squared test \(p = 0.867 \), see Supplementary Table S9b). See Fig. 1a for a graphical illustration of the procedure.

Statistical analysis. Stress manipulation. To test whether the stress manipulation was effective, the stress-induced changes in cortisol as well as affect were compared between the three experimental groups. Due to the stress manipulation, the variance of the cortisol and negative affect responses were unequal between the three experimental groups (Levene test \(p < 0.05 \)). Since the distributions of the cortisol and affective stress response were skewed in some groups (Lilliefors-corrected Kolmogorov–Smirnov normality test \(p < 0.05 \)) for the cortisol change in the control group and for the change in negative affect in all groups) non-parametric tests were used. Since cortisol levels are known to undergo circadian fluctuations\(^9\) all cortisol analysis were controlled for time of the day (morning vs. noon vs. afternoon, see Procedure). Responses in negative affect were compared with the Kruskal–Wallis test, the cortisol response was compared with the Scheirer-Ray-Hare test, an extension of the Kruskal–Wallis test that allows to control for time of the day. Post-hoc comparisons between the groups were performed with Dunn’s test.

Model free analysis of performance expectation ratings. The analysis of the expectation ratings including computational modeling was adapted from Müller-Pinzel et al.\(^1\). To illustrate basic effects of the expectation ratings, a linear mixed model with the factors Ability condition (high ability vs. low ability), the continuous variable Trial (30 Trials), and Stress group (with the two contrasts SOC vs. [PHY, CON] and PHY vs. CON) as a between subject factor was performed.

Computational modeling of learning behavior. The dynamic changes in self-related beliefs, which were measured by the performance expectation ratings in response to the provided performance feedback, were modeled using prediction error delta-rule update equations (adapted from Rescorla-Wagner model\(^1\)). There were three main
models of the model space with one or two learning rates modeled separately for each participant (see Fig. 3a).
The first model (Unity Model) included a single learning rate for the whole time course (\(\text{EXP}_{t+1} = \text{EXP}_t + \alpha_{\text{uni}} \cdot \text{PE}_t\)).
The second model (Ability Model) contained two separate learning rates for the two ability conditions allowing
to capture a difference in expectation updating when receiving feedback in a high ability context (\(\alpha_{\text{high ability}}\)) or
low ability context (\(\alpha_{\text{low ability}}\)). The third model (Valence Model) with two separate learning rates for positive PEs
(\(\alpha_{\text{PE+}}\)) and negative PEs (\(\alpha_{\text{PE-}}\)) across ability conditions allows to model learning that differs depending on the
valence of prediction errors rather than different ability conditions. The three models were compared to a Mean
Model with two performance expectations means reflecting the assumption of stable expectations for each ability
condition without learning over time. In addition to the learning rates, we fitted two parameters for the initial
belief about the participant’s performance, separately for both ability conditions (see Table 1).

Model fitting. For model fitting we used the RStan package\(^8\), which uses Markov chain Monte Carlo (MCMC)
sampling algorithms. All learning models of the model space were fitted separately for each subject. To sample
posterior parameter distributions, a total of 2400 samples were drawn after 1000 burn-in samples (overall 3400
samples; thinned with a factor of 3) in three MCMC chains. Convergence of the MCMC chains to the target
distributions was assessed by \(\hat{R}\) values\(^6\) for all model parameters. One subject was excluded due to implausible
model parameters, i.e. mean learning rate of almost 1, as well as \(\hat{R}\) values of 1.1 and low effective sample sizes
(\(\hat{n}_{\text{eff}}\) estimates of the effective number of independent draws from the posterior distribution) for some model
parameters of the valence model. Otherwise the effective sample sizes were greater than 1000 (>1400 for most
parameters). Posterior distributions for all parameters for each of the participants were summarized by their
mean resulting in a single parameter value per subject that we used to calculate group statistics.

Bayesian model selection and family inference. To select the model that describes the participants’ updating
behavior best, we estimated pointwise out-of-sample prediction accuracy for all fitted models separately for each
participant by approximating leave-one-out cross-validation (LOO)\(^9\). To this end, we applied Pareto-smoothed
importance sampling (PSIS) using the log-likelihood calculated from the posterior simulations of the parameter
values as implemented by Vehtari et al.\(^6\) (loo R package\(^8\)). Sum PSIS-LOO scores for each model as well as
information about \(\hat{k}\) values, the estimated shape parameters of the generalized Pareto distribution, indicating the
reliability of the PSIS-LOO estimate, are depicted in Table 1. As summarized in Table 1 very few trials resulted
in insufficient parameter values for \(\hat{k}\) and thus potentially unreliable PSIS-LOO scores (on average 0.20% of
trials per subject with \(\hat{k} > 0.7\)). Bayesian model selection on PSIS-LOO scores was performed on the group
level accounting for group heterogeneity as described by Stephan et al.\(^5\)\(^9\)\(^8\). This procedure provides the pro-
tected exceedance probability for each model (psp), indicating how likely a given model has a higher probability
explaining the data than all other models, as well as the Bayesian omnibus risk (BOR), the posterior probability
that model frequencies for all models are all equal to each other\(^2\). Additionally, difference scores of PSIS-LOO
for all models in contrast to the winning model were computed, which can be interpreted as a simple ‘fixed-
effect’ model comparison\(^6\) (see Table 1).

Posterior predictive checks. To test whether the predicted values of the winning model could capture the vari-
ce in the performance expectation ratings a regression analysis (\(\text{EXP} \sim \text{pred. values}\)) was performed for each
subject separately for the two ability conditions. R-squared statistic was determined and averaged. In addition,
the model free analysis of the expectation ratings was repeated with the predicted values of the winning model to
assess if the predicted data captured the effects that were present in the data of the expectation ratings.

Analysis of learning parameters. Learning rates for positive (\(\alpha_{\text{PE+}}\)) and negative prediction errors (\(\alpha_{\text{PE-}}\), factor
PE-Valence) were compared between the three groups in a linear mixed model with the factors PE-Valence
and group (split into the contrasts SOC vs. [PHY, CON] and PHY vs. CON). Additional post-hoc tests for the
PE-Valence within each group were performed with the Wilcoxon test. To test whether the variance in
affective response and the cortisol response created by our stress manipulation is related to a bias in the updat-
ing behavior, we calculated a normalized learning rate valence bias score (valence bias score = \((\alpha_{\text{PE+}} - \alpha_{\text{PE-}}))/\((\alpha_{\text{PE+}} + \alpha_{\text{PE-}}))\)\(^2\)\(^3\)\(^4\)\(^5\)\(^6\) and tested whether the affective response and the cortisol response predicted this bias. Since
the distribution of the cortisol and affective response is left-skewed due to the experimental manipulation and
thus absence of the response in parts of the subjects (valence bias score is normally distributed in the whole
sample as well as all subgroups) we used rank regressions following Klokke et al.\(^8\). In case of the cortisol response,
time of the day was additionally included in the regression analysis as a control variable to take into account cir-
cadian fluctuations of cortisol levels. To test whether the learning bias is associated with the recovery from nega-
tive affect elicited by stress (change in affective ratings post-stress \(T2_{\text{post}} - \text{post-learning T3}_{\text{AFT}}\)), rank regressions
with the valence bias score predicting the recovery were computed with the stress-induced increase in negative
affect as an additional control variable to take into account regression to the mean. This was computed within
the three experimental groups as well as for the whole sample, here with the additional variable group (split into
the contrasts SOC vs. [PHY, CON] and PHY vs. CON) as well as the interaction bias x group to test whether
the correlation differs between the three experimental groups. Data was analyzed in with the software R version
3.6.0\(^8\) and plots were made with the R package ggplot2\(^2\)\(^4\).
References

1. Baumeister, R. F & Leary, M. R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

2. Rohleder, N., Beulen, S. E., Chen, E., Wolf, J. M. & Kirschbaum, C. Stress on the dance floor: the cortisol stress response to social-emotional threat in competitive ballroom dancers. Personal. Soc. Psychol. Bull. 33, 69–84 (2007).

3. Kirschbaum, C., Pipke, K.-M. & Hellhammer, D. H. The ‘Trier Social Stress Test’ – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).

4. Burt, S. P. Identity processes and social stress. Am. Sociol. Rev. 56, 836–849 (1991).

5. Joëls, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

6. Gruenewald, T. L., Kemeny, M. E., Aziz, N. & Fahey, J. L. Acute threat to the social self: Shame, social self-esteem, and cortisol activity. Psychosom. Med. 66, 915–924 (2004).

7. Campbell, I. & Ehlert, U. Acute psychosocial stress: Does the emotional stress response correspond with physiological responses?. Psychoneuroendocrinology 37, 1111–1134 (2012).

8. Müller-Pinzler, L. et al. Neural pathways of embarrassment and their modulation by social anxiety. Neuroimage 119, 252–261 (2015).

9. Markus, H. R. & Wurf, E. The dynamic self-concept: a social psychological perspective. Annu. Rev. Psychol. 38, 299–337 (1987).

10. Eisenberger, N. I., Inagaki, T. K., Muscatell, K. A., Byrne Haltom, K. E. & Leary, M. R. The neural sociometer: brain mechanisms underlying state self-esteem. J. Cogn. Neurosci. 23, 3448–3455 (2011).

11. Roese, N. J. & Olson, J. M. Better, stronger, faster: Self-serving judgment, affect regulation, and the optimal vigilance hypothesis. Perspect. Psychol. Sci. 2, 124–141 (2007).

12. Gotlib, I. H. & Krasnoperova, E. Biased information processing as a vulnerability factor for depression. Behav. Ther. 29, 603–617 (1998).

13. Kessler, R. C., Price, R. H. & Wortman, C. B. Social factors in psychopathology: stress, social support, and coping processes. Annu. Rev. Psychol. 36, 531–572 (1985).

14. Gloria, C. T. & Steinhardt, M. A. Relationships among positive emotions, coping, resilience and mental health. Stress Heal. 32, 145–156 (2016).

15. Broemel-Martin, E. S. & Sharot, T. The value of beliefs. Neuron 106, 561–565 (2020).

16. Sharot, T. & Garrett, N. Forming beliefs: why valence matters. Trends Cogn. Sci. 20, 25–33 (2016).

17. Mobius, M., Niederle, M., Niehaus, P. & Rosenblat, T. Managing self-confidence: theory and experimental evidence. Working Paper No. 17014. https://doi.org/10.3386/w17014 (National Bureau of Economic Research (NBER), 2011).

18. Iil, D. & Rao, J. M. The good news–bad news effect: asymmetric processing of objective information about yourself. Am. Econ. J. Microecon. 3, 114–138 (2011).

19. Korn, C. W., Prehn, K., Park, S. Q., Walter, H. & Heekeren, H. R. Positively biased processing of self-relevant social feedback. J. Neurosci. 32, 16832–16844 (2012).

20. Sharot, T., Korn, C. W. & Dolan, R. J. How unrealistic optimism is maintained in the face of reality. Nat. Neurosci. 14, 1475–1479 (2011).

21. Müller-Pinzler, L. et al. Negativity-bias in forming beliefs about own abilities. Sci. Rep. 9, 14416 (2019).

22. Iil, D. & Sharot, T. Does self-relevance affect information processing? Experimental evidence on the response to performance and non-performance feedback. J. Econ. Behav. Organ. 80, 532–545 (2011).

23. Watabe-Uchida, M., Eschel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

24. Glimcher, P. W. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. 108, 15647–15654 (2011).

25. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

26. Adler, C. M. et al. Effects of acute metabolic stress on striatal dopamine release in healthy volunteers. Neuropsychopharmacology 22, 545–550 (2000).

27. Payer, D. et al. Corticotropin-releasing hormone and dopamine release in healthy individuals. Psychoneuroendocrinology 76, 192–196 (2017).

28. Holly, E. N. & Michczek, K. A. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233, 183–186 (2016).

29. Schwabe, L., Joels, M., Roozendaal, B., Wolf, O. T. & Otzil, M. S. Stress effects on memory: an update and integration. Neurosci. Biobehav. Rev. 36, 1740–1749 (2012).

30. Joels, M., Pu, Z., Wiegert, O., Otzil, M. S. & Krugers, H. J. Learning under stress: how does it work?: Trends Cogn. Sci. 10, 152–158 (2006).

31. Schwabe, L. & Wolf, O. T. Stress modulates the engagement of multiple memory systems in classification learning. J. Neurosci. 32, 11042–11049 (2012).

32. Antov, M. I., Wölke, C. & Stockhorst, U. Differential impact of the first and second wave of a stress response on subsequent fear conditioning in healthy men. Biol. Psychol. 94, 456–468 (2013).

33. Wolf, O. T., Minnebusch, D. & Daum, I. Stress impairs acquisition of delay eyelid conditioning in men and women. Neurobiol. Learn. Mem. 91, 431–436 (2009).

34. Raio, C. M., Hartley, C. A., Oreredu, T. A., Li. J. & Phelps, E. A. Stress attenuates the flexible updating of aversive value. Proc. Natl. Acad. Sci. 114, 11241–11246 (2017).

35. Luethi, M., Meier, B. & Sandi, C. Stress effects on working memory, explicit memory, and implicit memory for neutral and emotional stimuli in healthy men. Front. Behav. Neurosci. 3, 1–9 (2009).

36. Qin, S., Herrmans, E. J., Van Marle, H. J. F., Luo, J. & Fernández, G. Acute psychological stress reduces working-memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32 (2009).

37. van Leeuwen, J. M. C. et al. Reward-related striatal responses following stress in healthy individuals and patients with bipolar disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 966–974 (2019).

38. Bogdan, R. & Pizzagalli, D. A. Acute stress reduces reward responsiveness: implications for depression. Biol. Psychiatry 60, 1147–1154 (2006).

39. Porcelli, A. J., Lewis, A. H. & Delgado, M. R. Acute stress influences neural circuits of reward processing. Front. Neurosci. 6, 157 (2012).

40. Kumar, P. et al. Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience 266, 1–12 (2014).

41. Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K. & Grillon, C. Stress increases aversive prediction error signal in the ventral striatum. Proc. Natl. Acad. Sci. USA 110, 4129–4133 (2013).

42. Garrett, N., González-Garzón, A. M., Foulkes, L., Levita, L. & Sharot, T. Updating beliefs under perceived threat. J. Neurosci. 38, 7901–7911 (2018).
F. M. P., S. K., and L. M. P. discussed the data analyses and interpretation of the results and reviewed and edited suggestions from F. M. P., S. K. and L. M. P. N. C. prepared the manuscript. N. C., J. B., D. S. S., A. V. M., J. F. V., L. R., N. C., F. M. P., S. K., and L. M. P. designed the research. N. C., J. B. acquired the data. N. C. analyzed the data with 47. Lazarus, R. S. & Folkman, S. 48. Thoits, P. A. Stress, coping, and social support processes: where are we? What next? 49. Glanz, K. & Schwartz, M. D. Stress, coping, and health behavior. In 50. vanDellen, M. R., Campbell, W. K., Hoyle, R. H. & Bradfield, E. K. Compensating, resisting, and breaking: A meta-analytic examination of reactions to self-esteem threat. Personal. Soc. Psychol. Rev. 15, 51–74 (2011). 51. Judt, D. K. & Hinzs, V. B. Influences of positive and negative affect on decisions involving judgmental biases. Soc. Behav. Pers. 30, 45–52 (2002). 52. Sharot, T. The optimism bias. Curr. Biol. 21, R941–R945 (2011). 53. Taylor, S. E. & Brown, J. D. Illusion and well-being: a social psychological perspective on mental health. Psychol. Bull. 103, 193–210 (1988). 54. Beck, A. T. Cognitive models of depression. In Clinical Advances in Cognitive Psychotherapy: Theory and Application (eds Leahy, R. L. & Dowd, E. T.) 29–61 (Springer, 2002). 55. Korn, C. W., Sharot, T., Walter, H., Heekeren, H. R. & Dolan, R. J. Depression is related to an absence of optimistically biased belief updating about future life events. Psychol. Med. 44, 579–592 (2014). 56. Greenberg, J., Pyszczynski, T., Burling, J. & Tibbs, K. Depression, self-focused attention, and the self-serving attributional bias. Pers. Individ. Dif. 13, 959–965 (1992). 57. Hines, E. A. & Brown, G. E. A standard test for measuring the variability of blood pressure: its significance as an index of the prehypertensive state. Ann. Intern. Med. 7, 209–217 (1933). 58. Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non reinforcement. In Classical conditioning II: current research and theory (eds Black, A. & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, 1972). 59. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection for group studies. Neuroimage 46, 1004–1017 (2009). 60. Vehltari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017). 61. Niv, Y., Edlund, J. A., Dayan, P. & O’Doherty, J. P. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain. J. Neurosci. 32, 551–562 (2012). 62. Palminteri, S., Lefebvre, G., Kilford, E. J. & Blakemore, S. J. Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing. PLoS Comput. Biol. 13, e1005684 (2017). 63. Kloke, J. D. & McKean, J. W. Rfit: rank-based estimation for linear models. Annu. Rev. Psychol. 58, 317–344 (2007). 64. Stolz, D. S., Müller-Pinzler, L., Krach, S. & Paulus, F. M. Internal control beliefs shape positive affect and associated neural dynamics during outcome valuation. Nat. Commun. 11, 1–13 (2020). 65. Hughes, B. L. & Zaki, J. The neuroscience of motivated cognition. Trends Cogn. Sci. 19, 62–64 (2015). 66. Kuzmanovic, B. & Rigoux, L. Valence-dependent belief updating: Computational validation. Front. Psychol. 8, 1087 (2017). 67. Giesler, R. B., Josephs, R. A. & Swann, W. B. Self-verification in clinical depression: The desire for negative evaluation. J. Abnorm. Psychol. 105, 358–368 (1996). 68. Pettit, J. & Joiner, T. E. Negative feedback seeking leads to depressive symptom increases under conditions of stress. J. Psychopathol. Behav. Assess. 23, 69–74 (2001). 69. Kaban, L. et al. Social anxiety is characterized by biased learning about performance and the self. Emotion 17, 1144–1155 (2017). 70. Kuzmanovic, B., Jefferson, A. & Vogeley, K. The role of the neural reward circuitry in self-referential optimistic belief updates. Neuroimage 133, 151–162 (2016). 71. Mathur, M. & Lighthall, N. R. Both risk and reward are processed differently in decisions made under stress. Curr. Dir. Psychol. Sci. 21, 36–41 (2012). 72. Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008). 73. Meara, A. J. et al. Stress reactivity: biological and subjective responses to the cold pressor and Trier Social stressors. Psychoneuroendocrinology 21, 227–236 (2015). 74. Hines, E. A. & Brown, G. E. A standard stimulus for measuring vasomotor reactions: its application in study of hypertension. Proc. Staff Meet. Mayo Clin. 7, 332–335 (1932). 75. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997). 76. Weitzen, E. D. et al. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J. Clin. Endocrinol. Metab. 33, 14–22 (1971). 77. Stan Development Team. RStan: the R interface to Stan, R package version 2.19.2. (2019). 78. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992). 79. Vehltari, A., Gabry, J., Magnusson, M., Yao, Y. & Gelman, A. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2.1.0. (2019). 80. Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group studies - revisited. Neuroimage 84, 971–985 (2014). 81. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2013). 82. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Author contributions N.C., F.M.P., S.K., and L.M.P. designed the research. N.C., J.B. acquired the data. N.C. analyzed the data with suggestions from F.M.P., S.K. and L.M.P. N.C. prepared the manuscript. N.C., J.B., D.S.S., A.V.M., J.F.V., L.R., F.M.P., S.K., and L.M.P. discussed the data analyses and interpretation of the results and reviewed and edited the manuscript.
Funding
Open Access funding enabled and organized by Projekt DEAL. Research leading to this publication has been funded by Lübeck University internal funding (L.M.P.) and the German Research Foundation (DFG; MU 4373/1-1; KR 3803/11-1).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-96264-0.

Correspondence and requests for materials should be addressed to N.C. or L.M.-P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021