Assessment methods and the validity and reliability of measurement tools in online objective structured clinical examinations: a systematic scoping review

Jonathan Zachary Felthun¹, Silas Taylor², Boaz Shulruf³, Digby Wigram Allen¹,*

¹School of Medicine, The University of New South Wales, Kensington, NSW, Australia
²Office of Medical Education, University of New South Wales, Sydney, NSW, Australia
³Centre for Medical and Health Sciences Education, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

The coronavirus disease 2019 (COVID-19) pandemic has required educators to adapt the in-person objective structured clinical examination (OSCE) to online settings in order for it to remain a critical component of the multifaceted assessment of a student’s competency. This systematic scoping review aimed to summarize the assessment methods and validity and reliability of the measurement tools used in current online OSCE (hereafter, referred to as teleOSCE) approaches. A comprehensive literature review was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Articles were eligible if they reported any form of performance assessment, in any field of healthcare, delivered in an online format. Two reviewers independently screened the results and analyzed relevant studies. Eleven articles were included in the analysis. Pre-recorded videos were used in 3 studies, while observations by remote examiners through an online platform were used in 7 studies. Acceptability as perceived by students was reported in 2 studies. This systematic scoping review identified several insights garnered from implementing teleOSCEs, the components transferable from telemedicine, and the need for systemic research to establish the ideal teleOSCE framework. TeleOSCEs may be able to improve the accessibility and reproducibility of clinical assessments and equip students with the requisite skills to effectively practice telemedicine in the future.

Keywords: Australia; COVID-19; Objective Structured clinical examination; Online assessment; Educational technology

Introduction

Rationale

The objective structured clinical examination (OSCE) serves as a component of a broader multimodal assessment process that ultimately endeavors to determine whether a student in the health professions can provide safe and effective patient-centered care [1]. Recently, the coronavirus disease 2019 (COVID-19) pandemic has imposed constraints on physical interactions between students and patients due to social distancing, and has necessitated methodological adaptations in education delivery and assessment. Although educators are broadly familiar with the move to online educational delivery platforms, video conferencing technology in particular should be highlighted as a way to achieve the desired objectivity and structure of the OSCE while respecting contemporary demands for infection risk reduction and improved accessibility, with a relatively neutral budget imposition.

Despite an abundance of literature addressing the in-person OSCE, there is a paucity of information on its online counterpart, which we refer to as the teleOSCE. Nevertheless, the adoption of
online platforms for telemedicine presents striking similarities to
the transition from the in-person OSCE to the teleOSCE; there-
fore, telemedicine is an invaluable resource when considering te-
leOSCE format and design. Just as it may be challenging to estab-
lish diagnoses that require tactile assessment or diagnostic maneu-
ers using a telemedicine platform [2], the assessment of physical
examinations may be troublesome over a teleOSCE interface and
require alternative assessment modalities. A possible way of re-
solving this dilemma may be that, with the transition to the te-
leOSCE platform, the assessment of hands-on skills could shift to
complementary testing strategies, such as clinical workplace-based
assessments. The teleOSCE is not a perfect reflection of the tele-
medicine “virtual visit”—as such, fortunately, some of telemedici-
ne’s limitations are surmountable. Examination stations can be
enriched by the provision of additional fictional information. Ad-
ditionally, the issues of assessing physical examinations could be
overcome by using an assessment configuration wherein the ex-
aminee and simulated patient occupy the same room, with the ex-
aminer situated remotely. In a broader context, modeling the te-
leOSCE on telemedicine consultations may additionally prepare
students to function more effectively as future clinicians in an en-
vironment that encourages humans to work harmoniously with
 technological innovations to meet growing healthcare demands
[3]. Although teleOSCEs may theoretically have many benefits,
they must be proven practical before they can be widely adopted.

Objectives

This article aimed to summarize the various methods of te-
leOSCE delivery and assessment in the published literature, with
a particular focus on determining their validity, reliability, and ulti-
mately, their utility. On the basis of the findings, key attributes of
teleOSCEs are highlighted and suggestions are provided for fu-
ture endeavors in teleOSCE design.

Methods

Ethics statement

This was a literature-based study; therefore, neither approval
from the institutional review board nor informed consent was re-
quired.

Study design

This was a systematic scoping review, described in accordance
with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)
guidelines [4].

Protocol and registration

An internal review protocol was developed, but was not regis-
tered nor published.

Eligibility criteria

This review included studies of any form of performance assess-
ment, in any field of healthcare, delivered in an online format. The
studies were limited to those published in the preceding 10 years,
in an effort to focus on the use of contemporary online technolo-
y. Articles were excluded if their focus was on using online tech-
nology for teaching or learning and if they were not in English. An
online format was defined as any use of technology that permitted
the student to undertake the assessment in a remote location from
either the patient or examiner (e.g., video recordings of patients or
telemmedicine technology).

Information sources

PubMed (from 2010 to July 2020), Scopus (from 2010 to July
2020), and PROSPERO (until May 2021) were searched.

Search

Two reviewers (J.Z.F., D.W.A.) independently conducted a sys-
tematic search for studies examining performance assessments in
healthcare delivered in an online format. PubMed (from 2010 to
July 2020) was searched using the terms (exploded, all subhead-
ings) as follows:

• ((online[Title/Abstract]) OR (video[Title/Abstract]) OR (re-
 mote[Title/Abstract]) OR (web[Title/Abstract]) AND ((OS-
 CE[Title/Abstract]) OR (long case[Title/Abstract]) OR (short
case[Title/Abstract]) OR (“performance assessment”) OR
 (“performance examination”)) NOT (teaching[Title/Abstract])
NOT (learning[Title/Abstract]))

Our search was limited to studies in humans in English and was
supplemented by hand-searching the reference lists of the identi-
fied papers. Scopus was utilized to search for recent articles citing
seminal papers without using a formal search strategy. The PROS-
PERO database was searched using the above-described strategy
(title/abstract portion redacted) to confirm that no recent or on-
going systematic scoping studies had been completed on the topic.

Selection of sources of evidence

Two authors (J.Z.F., D.W.A.) screened the titles and abstracts of
identified studies based on inclusion and exclusion criteria [5]
(Fig. 1). The full texts of the shortlisted studies were analyzed and
evaluated independently for eligibility by the same 2 authors
(J.Z.F., D.W.A.). In instances of uncertainty (n = 3), the other 2 au-

Two authors (J.Z.F., D.W.A.) screened the titles and abstracts of
identified studies based on inclusion and exclusion criteria [5]
(Fig. 1). The full texts of the shortlisted studies were analyzed and
evaluated independently for eligibility by the same 2 authors
(J.Z.F., D.W.A.). In instances of uncertainty (n = 3), the other 2 au-

Two authors (J.Z.F., D.W.A.) screened the titles and abstracts of
identified studies based on inclusion and exclusion criteria [5]
(Fig. 1). The full texts of the shortlisted studies were analyzed and
evaluated independently for eligibility by the same 2 authors
(J.Z.F., D.W.A.). In instances of uncertainty (n = 3), the other 2 au-
The following data were extracted and entered into a standardized form: publication authors, year, study design, and configuration of the online OSCE (Supplement 1).

Data items
Articles were included if they featured any variable relating to the method of delivery and method of assessment. Reliability, validity, and acceptability were variables of particular interest.

Critical appraisal of individual sources of evidence
Not done.

Synthesis of results
The principal investigators performed an analysis to derive key themes represented in the search strategy output. The themes included the configuration of the teleOSCE, the aims and focus of the study, the primary results, and the subsequent conclusions.

Results
Selection of sources of evidence
The search strategy yielded 363 published articles, and 5 additional articles were found by screening the reference sections of appropriate articles. After duplicates were removed, 365 articles were screened. The initial title and then abstract screening excluded 349 articles, leaving 16 articles for full-text analysis. Of these, 3 had insufficient information on the analysis of the online OSCE component of the exam, 1 used video recordings to assess features of the traditional OSCE, as opposed to evaluating the online platform, and 1 focused on assessing telemedicine skills rather than using an online platform for assessment. The exclusion of those 5 studies left 11 articles to be included in the qualitative synthesis for the scoping study (Fig. 1).

Characteristics of the sources of evidence
The included articles originated from several countries (United Kingdom [6], Canada [7], Northern Ireland [8], United States of America [9,10], Bahrain [11], Qatar [12], Germany [13], Philippines [14], and Taiwan [15]) and focused on participants with different levels of experience (medical students [7,8,10-15], emergency medicine residents [16], pediatric trainees [6], anesthesiology residents [9], surgical residents, and qualified surgeons [13]).

Critical appraisal within sources of evidence
Not done.

Results of individual sources of evidence
The relevant data from the included studies addressing the review questions are summarized in Supplement 2.
Synthesis of results

Methods of teleOSCE assessment and delivery

Three studies utilized pre-recorded videos of patients or doctor-patient encounters in place of in-person simulated patients amongst traditional OSCE stations [6,8,12]. Another used the consensus between an expert examiner’s appraisal of pre-recorded doctor-patient encounters and that of a student examinee, to evaluate the student’s knowledge of communication skills [11]. The remaining 7 studies evaluated the degree to which it was feasible to conduct assessments in which remote examiners observed students through an online platform. Two of these studies utilized live video feeds of examinee-patient encounters [7,15]. Four studies supported the use of remote examiners through recorded footage of the examinee-patient encounter, often using a real-time, on-site examiner for comparison [9,13,14,16]. One study placed the student, examiner, and patient all in separate rooms [10].

Outcome measures

The studies were highly varied in the outcome measures that were reported, all of which are outlined in Supplement 2. However, all achieved success in at least 1 of the factors of reliability, validity, and acceptability. Four studies commented on reliability, with 2 focusing on internal consistency [8,13], 1 on inter-item correlation [6], and 1 on inter-observer reliability [14]. Ten studies commented on validity, all of which evaluated criterion validity by comparing their teleOSCE method to an in-person format [6-10,12-16]. Two studies used construct validity; 1 study evaluated its’ scoring as an indicator of knowledge growth [11], while the other compared students to residents and experts [13].

Discussion

Summary of evidence

Beyond the lessons garnered from telemedicine, this scoping review reveals a developing body of literature outlining attempts at implementing teleOSCEs. Given the inherent differences in the application of telemedicine and OSCE consultations, the findings of this study are imperative for understanding how an online platform may affect the assessment process and outcomes. All the studies retrieved from the literature search reported desirable outcomes for validity, reliability, and/or acceptability regarding the technological innovations analyzed in their methods. While this trend may reflect publication bias to a certain extent, as few studies suggested possible improvements to their methods, these findings nonetheless demonstrate that with careful consideration, coupled with appropriate tailoring to the individual setting, teleOSCEs can achieve the same values that their in-person counterparts aim to attain. Nevertheless, the validity of OSCEs can vary according to the context in which they are performed [17]. More meaningful insights for future studies could potentially be gleaned by evaluating the online assessment process, as opposed to measuring the psychometric outcomes, with a focus on how the online platform impacts students’ performance and examiners’ judgments.

For example, it is critical to understand whether substituting an examiner with a camera has an impact on students’ performance. The audience effect is a component of social facilitation theory that attempts to explain performance changes in the presence, or perceived presence, of others [15]. Simply put, an individual’s performance of unfamiliar and complex tasks is impaired in the presence of others, while the presence of others improves the performance of tasks that have been mastered [15]. Hamilton and Lind [18] suggested that performing a recorded examination may replicate the audience present when performing in front of an examiner in close proximity. To optimize the OSCE pre-exam process, technological advancements, including e-learning orientation modules and eye-tracking enriched training videos, have been utilized to improve examiners’ and examinees’ preparation for OSCEs, respectively [19,20]. However, as shown by this review, there have been minimal practical investigations of these technologies in high-stakes examinations.

Additionally, the review revealed little about whether examiners extract different information about student performance from teleOSCEs and in-person assessments. Traditionally, 1 or more examiners in close proximity, in addition to a patient and an examinee, occupy the room, and the examiners’ observations usually comprise the majority of the assessment [15]. The examiners are often free to move around the room, altering their perspective and interactions with the examinee. This possibility is more limited and contingent on available resources within a teleOSCE. For instance, Chen et al. [15] implemented a camera that could pan 360°, theoretically allowing examiners to obtain more information than is possible using a stationary camera. Furthermore, the use of 2 cameras might enable an isolated examiner to evaluate multiple perspectives simultaneously, which cannot be replicated for an in-person examiner. With regard to the set assessment task, Chan et al. [7] suggested that a single camera is adequate for history-based stations, while physical examination–based stations require a second camera. This scoping review has demonstrated a consistently good correlation between the assessment of recorded OSCE stations and live in-person examinations, but is lacking in guidance as to how a camera may limit—or expand—the ability of examiners to observe students as they perform the examinations.
The influence of an online platform on the derivation of emotional and perceptual information by simulated patients, examiners, and examinees is of paramount interest and largely unexplored in the studies analyzed herein. Cognitive theories assert that such perceptions are the composite of interrelated cues from a range of sources, including facial expressions, body language, and contextual information, all integrated through the construct of an individual’s knowledge, beliefs, biases, gender, ethnicity, level of experience, and emotional state [21-23]. Hence, restricting the input to what can be garnered from a screen may impede examinees’ capacity to make these judgements. For instance, if a close-up shot restricts the frame to the face of an examinee, an examiner could miss the fidgeting of hands or tapping of feet, which may represent important information for gauging an individual’s confidence, poise, and capability. This may explain why Chan et al. [7] and Chen et al. [15] demonstrated differences in results between on-site and remote examiners, but only when using the more subjective global rating scale. Conversely, research suggests that humans are extraordinarily well-adapted to perceiving emotional states, with the ability to derive conclusions about complex emotions from photographs of human faces in just 1 second [24]. The ability of an individual to exercise this cognitive skill across a range of clinical domains, such as mental health assessments and the delivery of bad news, is a vital component of operating as a competent practitioner. As such, it is important to consider how the configuration of a teleOSCE may influence this process and whether multiple camera angles are necessary to capture detailed contextual data, or if sufficient information can instead be gleaned from a more minimalist approach.

Limitations
An important limitation of this article is that it explored methods of teleOSCE delivery and assessment in the published literature. It is possible that education providers may be conducting teleOSCEs without publishing their findings; as such, the conclusions of this analysis may have been influenced by positive publication bias. Furthermore, only manuscripts published in English were reviewed and cost outcomes were not reported. Lastly, the methodological quality of several studies could have been enhanced by including an in-person OSCE control group for comparison.

Suggestion
The heterogeneous approach to teleOSCE structure and inconsistencies in the evaluation of the psychometric aspects of online assessments have contributed to the lack of consensus surrounding an appropriate teleOSCE configuration. This is largely due to the small sample size of published studies that can furnish the basis for evaluating teleOSCE delivery and assessment. As such, future empirical research is necessary to establish the ideal format for teleOSCE assessments. We suggest that future studies aim to compare in-person assessments with teleOSCEs using matched cohorts and employ established measures of reliability and validity to present their results. Moreover, additional research and—arguably more importantly—increasingly innovative ideas are necessary to adapt assessments of physical examinations to online platforms. The probable future shift to teleOSCEs may necessitate that certain aspects of performance assessment be undertaken in other formats such as clinical workplace assessments.

Conclusion
There are many examples of successful teleOSCE delivery and assessment that have achieved favorable results in terms of reliability, validity, and acceptability for students and examiners. The video interface is most suited to clinical scenarios that rely on communication skills and observations as opposed to physical examinations. For more complex observation tasks, it may be useful to employ multiple cameras and fabricated clinical information that moves beyond what is possible to assess using current technology, such as the provision of vital signs, physical examination findings, or investigation results. Alongside this guidance and insights that will be gleaned from future studies, the broader adoption of teleOSCEs will be possible. This may foreseeably improve the accessibility and reproducibility of clinical assessments whilst contributing to equipping students with an increased capacity to subsequently undertake online patient assessments as future clinicians.

ORCID
Jonathan Zachary Felthun: https://orcid.org/0000-0002-3485-8190; Silas Taylor: https://orcid.org/0000-0003-1992-8485; Boaz Shulruf: https://orcid.org/0000-0003-3644-727X; Digby Wigram Allen: https://orcid.org/0000-0003-0243-4948

Authors’ contributions
Conceptualization: JZF, DWA. Data curation: JZF, DWA. Formal analysis: JZF, DWA. Funding acquisition: not applicable. Methodology: ST, BS. Project administration: DWA. Writing–original draft: JZF, DWA. Writing–review & editing: JZF, DWA, ST, BS.

Conflict of interest

Boaz Shulruf has been an associate editor of the *Journal of Educational Evaluation for Health Professions* since 2017, but had no role in the decision to publish this review. No other potential conflict of interest relevant to this article was reported.

Funding

None.

Data availability

None.

Acknowledgments

None.

Supplementary materials

Supplementary files are available from Harvard Dataverse: https://doi.org/10.7910/DVN/28ZNMI

1. **Supplement 1.** Data extraction form.
2. **Supplement 2.** Characteristics of key findings of included studies.
3. **Supplement 3.** Audio recording of the abstract.

References

1. Lockyer J, Carraccio C, Chan MK, Hart D, Smee S, Touchie C, Holmboe ES, Frank JR; ICBME Collaborators. Core principles of assessment in competency-based medical education. Med Teach 2017;39:609-616. https://doi.org/10.1080/0142159X.2017.1315082
2. Romanick-Schmiedl S, Raghu G. Telemedicine: maintaining quality during times of transition. Nat Rev Dis Primers 2020;6:45. https://doi.org/10.1038/s41572-020-0185-x
3. Quinlin L, Clark Graham M, Nikolai C, Teall AM. Development and implementation of an e-visit objective structured clinical examination to evaluate student ability to provide care by tele-health. J Am Assoc Nurse Pract 2020;33:359-365. https://doi.org/10.1177/1071978420895588
4. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akp EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garrity C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moirarty J, Clifford T, Tuncaplo O, Straus SE. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467-473. https://doi.org/10.7326/M18-0850
5. Webb EA, Davis L, Muir G, Lissauer T, Nanduri V, Newell SJ. Improving postgraduate clinical assessment tools: the introduction of video recordings to assess decision making. Med Teach 2012;34:404-410. https://doi.org/10.3109/0142159X.2012.668242
6. Chan J, Humphrey-Murto S, Pugh DM, Su C, Wood T. The objective structured clinical examination: can physician-examiners participate from a distance? Med Educ 2014;48:441-450. https://doi.org/10.1111/medu.12326
7. Watson P, Stevenson M, Hawkins S. Neurology assessment by objective structured video examination. Clin Teach 2016;13:348-351. https://doi.org/10.1111/ctc.12443
8. Isak R, Stieger M, Hobbs G, Martinelli SM, Zvara D, Arora H, Chen F. Comparing real-time versus delayed video assessments for evaluating ACGME sub-competency milestones in simulated patient care environments. Cureus 2018;10:e2267. https://doi.org/10.7759/cureus.2267
9. Lara S, Foster CW, Hawks M, Montgomery M. Remote assessment of clinical skills during COVID-19: a virtual, high-stakes, summative pediatric objective structured clinical examination. Acad Pediatr 2020;20:760-761. https://doi.org/10.1016/j.acap.2020.05.029
10. Nickell F, Hendrie JD, Stock C, Salama M, Preukschas AA, Senft JD, Kowalewski KF, Wagner M, Kennett HG, Linke GR, Fischer L, Muller-Stich BP. Direct observation versus endoscopic video recording-based rating with the objective structured assessment of technical skills for training of laparoscopic cholecystectomy. Eur Surg Res 2016;57:1-9. https://doi.org/10.1159/000444449
11. Baribeau DA, Mukovozov I, Sabljic T, Eva KW, deLottinville CB. Using an objective structured video exam to identify differential understanding of aspects of communication skills. Med Teach 2012;34:e242-e250. https://doi.org/10.3109/0142159X.2012.660213
12. Nickell F, Hendrie JD, Stock C, Salama M, Preukschas AA, Senft JD, Kowalewski KF, Wagner M, Kennett HG, Linke GR, Fischer L, Muller-Stich BP. Direct observation versus endoscopic video recording-based rating with the objective structured assessment of technical skills for training of laparoscopic cholecystectomy. Eur Surg Res 2016;57:1-9. https://doi.org/10.1159/000444449
13. Bautista JM, Manalastas RE. Using video recording in evaluating students’ clinical skills. Med Sci Educ 2017;27:645-650. https://doi.org/10.1007/s40670-017-0446-9
14. Chen TC, Lin MC, Chiang YC, Monrouxe L, Chien SJ. Remote and onsite scoring of OSCEs using generalisability theory: a three-year cohort study. Med Teach 2019;41:578-583. https://doi.org/10.1080/0142159X.2018.1508828
15. House JB, Dooley-Hash S, Kowalenko T, Sikavitsas A, Seeyave
DM, Younger JG, Hamstra SJ, Nypaver MM. Prospective comparison of live evaluation and video review in the evaluation of operator performance in a pediatric emergency airway simulation. J Grad Med Educ 2012;4:312-316. https://doi.org/10.4300/JGME-D-11-00123.1

St-Onge C, Young M, Eva KW, Hodges B. Validity: one word with a plurality of meanings. Adv Health Sci Educ Theory Pract 2017;22:853-867. https://doi.org/10.1007/s10459-016-9716-3

Hamilton AFC, Lind F. Audience effects: what can they tell us about social neuroscience, theory of mind and autism? Cult Brain 2016;4:159-177. https://doi.org/10.1007/s40167-016-0044-5

18. Khamisa K, Halman S, Desjardins I, Jean MS, Pugh D. The implementation and evaluation of an e-Learning training module for objective structured clinical examination raters in Canada. J Educ Eval Health Prof 2018;15:18. https://doi.org/10.3352/jeehp.2018.15.18

19. Sanchez-Ferrer F, Ramos-Rincon JM, Grima-Murcia MD, Luisa Sanchez-Ferrer M, Sanchez-Del Campo F, Compan-Rosique AF, Fernandez-Jover E. Utility of eye-tracking technology for preparing medical students in Spain for the summative objective structured clinical examination. J Educ Eval Health Prof 2017;14:27. https://doi.org/10.3352/jeehp.2017.14.27

20. Chong L, Taylor S, Haywood M, Adelstein BA, Shulruf B. The sights and insights of examiners in objective structured clinical examinations. J Educ Eval Health Prof 2017;14:34. https://doi.org/10.3352/jeehp.2017.14.34

21. Zaki J. Cue integration: a common framework for social cognition and physical perception. Perspect Psychol Sci 2013;8:296-312. https://doi.org/10.1177/1745691613475454

22. Chong L, Taylor S, Haywood M, Adelstein BA, Shulruf B. Examiner seniority and experience are associated with bias when scoring communication, but not examination, skills in objective structured clinical examinations in Australia. J Educ Eval Health Prof 2018;15:17. https://doi.org/10.3352/jeehp.2018.15.17

23. Wilhelm O, Hildebrandt A, Manske K, Schacht A, Sommer W. Test battery for measuring the perception and recognition of facial expressions of emotion. Front Psychol 2014;5:404. https://doi.org/10.3389/fpsyg.2014.00404

24. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097