Clinical and molecular characterization of COVID-19 hospitalized patients

Elisa Benetti1, Annarita Giliberti2, Arianna Emiliozzi1,3, Floriana Valentino2, Laura Bergantini4, Chiara Fallerini2, Federico Amedda5, Sara Amitrano6, Edoardo Conticini7, Rossella Tita8, Miriana d’Alessandro4, Francesca Fava2,6, Simona Marcantoni6, Margherita Baldassarri2, Michele Brutti2,6, Maria Antonietta Mazzei6, Francesca Montagnani91,3, Marco Mandala9, Elena Bargagli4, Simone Furini1, GEN-COVID Multicenter Study1, Alessandra Renieri2,6*, Francesca Mari2,6

1 Department of Medical Biotechnologies, University of Siena, Siena, Italy, 2 Medical Genetics, University of Siena, Siena, Italy, 3 Department of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Sene, Italy, 4 Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy, 5 Department of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy, 6 Genetica Medica, Azienda Ospedaliera Universitaria Senese, Sene, Italy, 7 Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy, 8 Department of Medical, Surgical and Neuro Sciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena, Azienda Ospedaliera Universitaria Senese, Sene, Italy, 9 Otolaryngology Unit, University of Siena, Siena, Italy

¶ Membership of the Termite Genome Working Group is listed in the Acknowledgments.

* alessandra.renieri@unisi.it

Abstract

Clinical and molecular characterization by Whole Exome Sequencing (WES) is reported in 35 COVID-19 patients attending the University Hospital in Siena, Italy, from April 7 to May 7, 2020. Eighty percent of patients required respiratory assistance, half of them being on mechanical ventilation. Fifty-one percent had hepatic involvement and hyposmia was ascertained in 3 patients. Searching for common genes by collapsing methods against 150 WES of controls of the Italian population failed to give straightforward statistically significant results with the exception of two genes. This result is not unexpected since we are facing the most challenging common disorder triggered by environmental factors with a strong underlying heritability (50%). The lesson learned from Autism-Spectrum-Disorders prompted us to re-analyse the cohort treating each patient as an independent case, following a Mendelian-like model. We identified for each patient an average of 2.5 pathogenic mutations involved in virus infection susceptibility and pinpointing to one or more rare disorder(s). To our knowledge, this is the first report on WES and COVID-19. Our results suggest a combined model for COVID-19 susceptibility with a number of common susceptibility genes which represent the favorite background in which additional host private mutations may determine disease progression.
Introduction

Italy has been the first European Country experiencing the epidemic wave of SARS-CoV-2 infection, with an apparently more severe clinical picture, compared to other countries. Indeed, the case fatality rate has peaked to 14% in Italy, while it remains stable around 5% in China. At the time of the study, 12 May 2020, SARS-CoV-2 positive subjects in Italy have reached the threshold of 200,000 cases [1]. Since the beginning of the epidemic wave, one of the first observations has been a highly heterogeneous phenotypic response to SARS-CoV-2 infection among individuals. Indeed, while most affected subjects show mild symptoms, a subset of patients develops severe pneumonia requiring mechanical ventilation with a 20% of cases requiring hospitalization; 5% of cases admitted to the Intensive Care Unit (ICU), and 6.1% requiring intensive support with ventilators or extracorporeal oxygenation (ECMO) machines [2]. Although patients undergoing ventilatory assistance are often older and are affected by other diseases, like diabetes [3], the existing comorbidities alone do not fully explain the differences in clinical severity. As demonstrated for other viral diseases, the basis of these different outcomes there are host predisposing genetic factors leading to different immunogenicity/cytokine responses as well as specific receptor permissiveness to virus and antiviral defence [4–6]. Similarly, during the study of host genetics in influenza disease, a pattern of genetic markers has been identified which underlies increased susceptibility to a more severe clinical outcome (as reviewed in [7]). This hypothesis is also supported by a recent work reporting 50% heritability of COVID-19 symptoms [8].

The identification of host genetic variants associated with disease severity is of utmost importance to develop both effective treatments, based on a personalized approach, and novel diagnostics. Also, it is expected to be of high relevance in providing guidance for the health care systems and societal organizations. However, nowadays, little is known about the impact of host genome variability on COVID-19 susceptibility and severity.

On March 16th, 2020 the University Hospital in Siena launched a study named GEN-COVID with the aim to collect the genomic DNA of 2,000 COVID-19 patients for host genetic analysis. More than 30 different hospitals and community centers throughout Italy joined the study and are providing samples and clinical detailed information of COVID-19 patients. This study is aimed to identify common and rare genetic variants of SARS-CoV-2 infected individuals, using a whole exome sequencing (WES) analysis approach, in order to establish an association between host genetic variants and COVID-19 severity and prognosis.

Results

Clinical data

The cohort consists of 35 COVID-19 patients (33 unrelated and 2 sisters) admitted to the University Hospital in Siena, Italy, from April 7 to May 7, 2020. All patients are of Caucasian ethnicity, except for one North African and one Hispanic. The mean and median age is 64 years (range 31–98): 11 females (median age 66 years) and 24 males (median age 62 years).

The population is clustered into four qualitative severity groups depending on the respiratory impairment and the need for ventilation (groups 1–4 in Table 1 and different colors in Fig 1) (see Methods section). In the two most severe groups (groups 1 and 2, including 13 patients) there are 11 males and 2 females, while in the two mildest groups (groups 3 and 4 including 22 patients) males are 13 while females are 9.

Patients were also assigned a lung imaging grading according to X-Rays and CT scans. The mean value is 13 for high care intensity group, 12 for intermediate care intensity group, 8 for low care intensity group and 5 for very low care intensity group.
Table 1. Clinical characteristics COVID19 patients admitted to the University Hospital of Siena (Italy).

Subject characteristics	Group 1	Group 2	Group 3	Group 4	
No. of subjects (%)	6 (17.1%)	7 (20%)	15 (42.9%)	7 (20%)	
Mean age (SD)	63 (6.2)	61.6 (12.3)	70 (14)	54 (15.7)	
Gender					
Male [n (%)]	5 (14%)	6 (17%)	7 (20%)	6 (17.1%)	
Female [n (%)]	1 (2.8%)	1 (2.8%)	8 (22.8%)	1 (2.8%)	
PaO2/FiO2 [median (IQR)]	94.5 (37.7)	156 (74)	279.5 (162)	304 (73.5)	
Lung imaging grading (CXR score)	[median (IQR)]	13 (3.7)	13 (3)	8 (4)	5(6)
Laboratory findings					
CD4+ T cells count	[median (IQR)]	300 (330.7)	582 (661)	458 (906)	623 (360)
NK cells count	[median (IQR)]	79.5 (72.2)	73 (110)	112 (90)	204 (174)
IL-6 value	[median (IQR)]	598 (777.7)	567 (648.2)	14.9 (28.4)	19 (5.3)
Fibrinogen	[median (IQR)]	406 (409.7)	518 (296)	566 (209)	546 (239)
CRP	[median (IQR)]	1.22 (24.54)	0.43 (4.6)	0.36 (1.52)	3.14 (4.97)
LDH	[median (IQR)]	377 (217)	407 (319)	272 (121)	255 (81)
D-Dimer	[median (IQR)]	5069.5 (20183)	1526 (54221)	1167 (2022)	884.5 (786.3)
Hyposmia (VAS score)	[n (%)]				
<2 (normal)	4 (11.3%)	6 (17.1%)	14 (40%)	7(20%)	
2-5 (intermediate)	1 (2.8%)	0 (0%)	0 (0%)	0 (0%)	
>5 (severe)	0 (0%)	1(2.8%)	1(2.8%)	0 (0%)	
Hypogeusia (VAS score)	[n (%)]				
No	4 (11.3%)	6(17.1%)	13(37.1%)	7(20%)	
Yes	1 (2.8%)	1(2.8%)	2(5.7%)	0 (0%)	
Heart involvement [n (%)]					
Yes	4(11.3%)	3(8.6%)	6(17.1%)	0 (0%)	
T = T-Troponin >15 (ng/L); B = pro-BNP M > 88 (pg/ml); F > 153 (pg/ml); A = arrhythmia	T/B 2 (5.7%)	T/B 1 (2.8%)	T/B 2 (5.7%)	T/B 1 (2.8%)	
	B 2 (5.7%)	T 1 (2.8%)	T/A 1 (2.8%)	A 1 (2.8%)	
	A 1 (2.8%)	B/A 1 (2.8%)	B 1 (2.8%)	B/A 1 (2.8%)	
	No	2 (5.7%)	4(11.3%)	9 (25.7%)	7(20%)
	Unknown	0 (0%)	0 (0%)	0 (0%)	
Hepatic (H)/Pancreatic involvement (P) [n (%)]	H and P	2(5.7%)	5(14.3%)	6(17.1%)	1(2.8%)
	H only	3(8.6%)	0 (0%)	1(2.8%)	1(2.8%)
	P only	0 (0%)	0 (0%)	1(2.8%)	1(2.8%)
	None	1 (2.8%)	2(5.7%)	7(20%)	4 (11.3%)
Kidney involvement [n (%)]	Yes	0 (0%)	3(8.6%)	5(14.3%)	1(2.8%)

(Continued)
Regarding immunological findings, a decrease in the total number of peripheral CD4^+ T cells were identified in 13 subjects, while NK cells’ count was impaired in 10 patients. Six patients showed a reduction of both parameters. IL-6 serum level was elevated in 13 patients. Hyposmia was present in 3 out of 34 evaluated cases (8.8%), and hypogeusia was present in the same subjects plus another case. These four cases belong to the first three severity groups. Liver involvement was present in 7 cases (20%), while pancreas involvement in 4 cases (11%); 10 patients presented both (29%). Heart involvement was detected in 13 cases (37%). 9 patients (25%) showed kidney involvement. Fibrinogen values below 200 mg/dL were identified in 2 cases (6%), between 200 and 400 mg/dL in 7 cases (20%), and above 400mg/dL in 22 cases (63%). D-dimer value below 500 ng/mL was present in 1 case (3%), between 500 and 5000 ng/mL in 26 cases (74%), and in 7 cases (20%) was 10 times higher than the normal value (>5000 ng/mL) (Table 1).

Unbiased collapsing gene analysis

At first, we tested the hypothesis that susceptibility could be due to one or more common factor(s) in the cohort of patients compared to controls. According to this idea, damaging variants of that/those gene(s) should be either over- or under- represented in patients vs controls. We used, as controls, individuals of the Italian population assuming that the majority of them, if infected, would have shown no severe symptoms. WES data of 35 patients were compared with those of 150 controls (the Siena cohort of the Network of Italian Genomes NIG: http://www.nig.cineca.it) using a gene burden test which compares the rate of disruptive mutations per gene. The variants were collapsed on a gene-by-gene basis, in order to identify genes with mutational burden statistically different between COVID-19 samples and controls. The analysis identified genes harboring deleterious mutations (according to the DANN score) with a statistically significant higher frequency in controls than in COVID-19 patients such as the olfactory receptor gene OR4C5 (adjusted p-value of 1.5E-10), (Fig 2 and S1 Table) and NDUFAF7, although to a lesser extent (Fig 2 and S1 Table). For all these genes, the susceptibility factor is represented by the functioning (or more functioning) gene. We also identified two additional genes, PRKRA and LAPTM4B, for which the probability of observing a deleterious variant was computed higher in the COVID-19 samples compared to controls (Fig 2 and S2 Table). In these latter cases, the functioning gene represents indeed a protective factor.

Table 1. (Continued)

Subject characteristics	Group 1	Group 2	Group 3	Group 4
No	6(17.1%)	4(11.3%)	10 (28.6%)	6(17.1%)
Co-morbidities [n (%)]				
Cardiovascular disease	1(2.8%)	2(5.7%)	3(8.6%)	
Hypertension	2(5.7%)	2(5.7%)	8(22.8%)	
Tumor	2(5.7%)	1(2.8%)	2(5.7%)	1(2.8%)
Diabetes		4 (11.3%)		
Pulmonary disease	1(2.8%)	1(2.8%)		

COVID-19 cohort is grouped in 4 qualitative severity groups depending on the respiratory impairment and the need of ventilation. Group 1 requires invasive ventilation. Group 2 requires CPAP/BiPAP/high-flows oxygen therapy. Group 3 requires conventional oxygen therapy. Group 4 does not require oxygen therapy. Clinical characteristics are listed and the number of patients are indicated for each of them.

https://doi.org/10.1371/journal.pone.0242534.1001
Gene analysis using the Mendelian-like model

We then tested the hypothesis that COVID-19 susceptibility is due to different variants in different individuals. A recently acquired knowledge on the genetic bases of Autism Spectrum Disorders suggests that a common disorder could be the sum of many different rare disorders and this genetic landscape can appear indistinguishable at the clinical level [9]. Therefore, we...
analyzed our cohort treating each patient as an independent case, following a Mendelian-like model. According to the “pathogenic” definition in ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/), for each patient, we identified an average of 1 mutated gene involved in viral infection susceptibility and pinpointing to one or more rare disorder(s) or a carrier status of rare disorders (Fig 1). Following the pipeline used in routine clinical practice for WES analysis in rare disorders we then moved forward checking for rare variants "predicted" to be relevant for infection by the means of common annotation tools. We thus identified an average of additional 1–5 variants per patient which summed up to the previous identified pathogenic variants (Fig 1, S3 Table).

Known common susceptibility/protective variants analysis

We then checked the cohort for known non rare variants classified as either “pathogenic” or “protective” in ClinVar database and related to viral infection. Variants in six different genes matched the term of “viral infection” and “pathogenic” according to ClinVar (Fig 1). Overall, a mean of 3 genes with “pathogenic” common variants involved in viral infection susceptibility were present (Fig 1).

Among the common protective variants, we list as example three variants which confer protection to Human Immunodeficiency Virus (HIV), the first two, and leprosy, the third one: a
CCR2 variant (rs1799864) identified in 8 patients, a CCR5 variant (rs1800940) in one patient and a TLR1 variant (rs5743618) in 26 patients (not shown). A ILAR variant (rs1805015) associated with HIV slow progression was present in 8 patients (not shown).

Candidate gene overview

Although not identified by unbiased collapsing gene analysis a number of obvious candidate genes were specifically analyzed. First, we noticed that SARS-CoV-2 receptor, ACE2 protein is preserved in the cohort, only a silent mutation V749V being present in 2 males and 2 heterozygous females. This is in line with our previous suggestion that either rare variants or polymorphisms may impact infectivity [10]. The IFITM3 polymorphism (rs12252) was found in heterozygosity in 4 patients as expected by frequency. Eight patients had heterozygous missense mutations in CFTR gene reported as VUS/mild variants, 7/8 being among the more severely affected patients.

Discussion

In this study, we present a cohort of 35 COVID-19 patients admitted between April and May 2020 to the University Hospital of Siena who were clinically characterized by a team of 29 MDs belonging to 7 different specialties. As expected, the majority of hospitalized patients are males, confirming previously published data reporting a predominance of males among the most severe COVID-19 affected patients [11]. Lung imaging involvement, evaluated through a modified lung imaging grading system, did not completely correlate with respiratory impairment since among the 13 patients who required mechanical ventilation (group 1 and 2), grading was either moderate (10) or mild (3). In line with our previous data, lymphocyte subset immunophenotyping revealed a decrease in the total number of CD4 and NK cells count, especially in the most severe patients [12]. Laboratory tests revealed a multiple-organ involvement, confirming that COVID-19 is a systemic disease rather than just a lung disorder (Fig 1). We thus propose that only a detailed clinical characterization can allow to disentangle the complex relationship between genes and signs/symptoms.

In order to test the hypothesis that the COVID-19 susceptibility is due to one or more genes in common among patients, we used the gene burden test to compare the rate of disrupting mutations per gene. This test has already been successfully applied to discover susceptibility genes for Respiratory Syncytial Virus infection [13]. We identified 2 genes whose damage represents a susceptibility factor. Mutations in PRKRA (protein kinase activator A, alias PACT; OMIM# 603424), a protein kinase activated by viral double-stranded RNA may impair the down-stream IFN-mediated immune response [14, 15]. Mutations in LAPTM4B (Lysosomal Protein Transmembrane 4 Beta) gene, may impair endosomal network, eventually compromising productive viral infection [16, 17].

We then identified 2 genes whose damage represents a protective factor: OR4C5 and NDUFAF7. OR4C5 is a “resurrected” pseudogene, known to be non functioning in half of the European population, with a frequency of inactive allele of 0.62 in Asians, 0.48 in Europeans and 0.16 in Africans [18, 19]. Expression of the “resurrected” pseudogene OR4C5 may help in triggering the natural immunity leading to virus and cell death [20, 21]. It is interesting to note that protein atlas shows OR4C5 protein expression in the liver without the corresponding mRNA expression (www.proteinatlas.org) suggesting that OR4C5 reaches the liver through nerve terminals [22]. If this is the case, those individuals expressing the resurrected OR4C5 gene may have more triggers of innate immunity and subsequently higher liver damage, in agreement with the putative expression of OR4C5 (white boxes) in patients with liver impairment (Fig 1).
Previous studies reported a prevalence of olfactory disorders in COVID-19 population ranging from 5% to 98%. A recent meta-analysis of 10 studies demonstrated a 52.73% prevalence for smell dysfunction in COVID-19 subjects [23]. In our population, only 3/35 (8.6%) subjects reported olfactory disorders. Both the limited sample size and the characteristic of the population (severely affected hospitalized subjects) could explain this result. However, a report focusing on smell dysfunction in severely affected hospitalized subjects reported a prevalence of 23.7% among 59 patients [24].

We explored the hypothesis that each patient could have one unique combination of rare pathogenic/highly relevant variants related for different reasons to infection susceptibility [9] (Fig 1): G6PD-deficient cells are more susceptible to several viruses including coronavirus and have down-regulated innate immunity (in line with the observed very low levels of IL-6) (Fig 1) [25]; ZEB1-linked corneal dystrophy, known to function in immune cells, and playing an important role in establishing both the effector response and future immunity in response to pathogens [26]; TGFBI mutations (associated with corneal dystrophy); ABCC6 gene mutations (associated with pseudoxanthoma elasticum); likely hypomorphic mutations in CHD7 or COL5A1/2 variants, playing a role as modulators of immune cells activity and/or response to infections [27–34]; ADAR, involved in viral RNA editing; CLEC4M, an alternative receptor for SARS-CoV [35] HCRTR1/2, receptors of Hypocretin, important in the regulation of fatigue during infections [36]; FURIN, a serine protease that cleaves the SARS-Cov-2 minor capsid protein important for ACE2 contact and viral entry into the host cells [37, 38].

Finally, interesting rare variants have been identified in NitricOxide synthase NOS3 and Opioid receptor OPRM1. Opioid ligands may regulate the expression of chemokines and chemokine receptors [39]. NitricOxide (NO), mainly produced by epithelial and white blood cells (iNOS) and to a lesser extent by endothelial cells (eNOS), is able to significantly reduce viral infection and replication of SARS-CoV in normal condition through two distinct mechanisms: impairment of the fusion between the spike protein and its receptor ACE2, and reduction of viral RNA production [40]. Mutations in NO synthase may disrupt one or both the above reported functions and clinical trials are ongoing to evaluate the effectiveness of inhaled NO in COVID-19 patients [41, 42].

Several rare variants in Interleukins (ILs) and Interleukins receptors (ILRs) are found. Interleukins are crucial in modulating immune response against all types of infective agents. The variants reported in this study include different interleukins that are not specifically involved in the defense against virus but are critical in balancing both innate and specific adaptive immune response (Fig 1).

Furthemore, we identified common “pathogenic” variants in genes known to be linked to viral infection, such as MBL2, IRGM and SAA1, and/or specific organ damage as PRSS1. Polymorphisms in PRSS1, a serine protease secreted from the pancreas, are associated with autosomal dominant hereditary pancreatitis (OMIM#167800) [43]. Polymorphisms in MBL2, a mannose-binding lectin secreted by the liver, cause increased susceptibility to infections, possibly due to a negative impact on the ability to mount an immune response [44, 45]. Polymorphisms in IRGM may lead to impairment of autophagy which in turn controls innate and adaptive immunity [46, 47]. SAA1, encoding the serum amyloid A (SAA) protein, is an apolipoprotein reactant, mainly produced by hepatocytes and regulated from inflammatory cytokines. In patients with chronic inflammatory diseases, the SAA cleavage product, Amyloid protein A (AA), is deposited systemically in vital organs including liver, spleen and kidneys, causing amyloidosis [48].

For the last above reported genes and pathogenic variants or predicted variants relevant for infection, a statistically significant difference in variant’s frequency was not found between cases and controls looking at either the single variant or the single gene, as a burden effect of
variants. However, as depicted in the overall Fig 1, we could hypothesize a combined model in which common susceptibility genes will sum to less common or private susceptibility variants. A specific combination of these 2 categories may determine type (organotropism) and severity of the disease.

Our observations related to the huge amount of data, both on phenome and genome sides, and represented in Fig 1, could also lay the bases for association rule mining approaches. Artificial intelligence techniques based on pattern recognition may discover an intelligible picture which appears blurred at present.

We know that a possible limitation of this study is the heterogeneity of patients and controls, which are not matched for gender, major comorbidities and other clinical characteristics. For this reason, further analyses in a larger cohort of samples are mandatory in order to test this hypothesis of a combined model for COVID-19 susceptibility with a number of common susceptibility genes which represent the fertile background in which additional private, rare or low frequency mutations confer to the host the most favorable environment for virus growth and organ damage.

Methods

Patients clinical data and samples collection

The GEN-COVID study was approved by the University Hospital of Siena Ethical Review Board (Prot n. 16929, dated March 16, 2020). Thirty-five patients admitted to the University Hospital in Siena, Italy, from April 7 to May 7, 2020 were recruited. WES data of these 35 patients were compared with those of 150 controls (the Siena cohort of the Network of Italian Genomes NIG http://www.nig.cineca.it). Patients have a mean age of 64 years with a Standard Deviation (SD) of 14.3 while the controls have a mean age of 46 years with a SD of 9.5. The percentage of males (M) and females (F) in patients is 68.5% and 31.4% respectively, while in controls is 51% and 49% respectively. The patients are clustered into four qualitative severity groups depending on the respiratory impairment and the need for ventilation: high care intensity group (those requiring invasive ventilation), intermediate care intensity group (those requiring non invasive ventilation i.e. CPAP and BiPAP, and high-flows oxygen therapy), low care intensity group (those requiring conventional oxygen therapy) and very low care intensity group (those not requiring oxygen therapy) (groups 1–4 in Table 1 and different colors in Fig 1).

Peripheral blood samples in EDTA-containing tubes and detailed clinical data were collected. All these data were inserted in a section dedicated to COVID-19 of the established and certified Biobank and Registry of the Medical Genetics Unit of the Hospital. An example of the Clinical questionnaire is illustrated in S1 Fig.

Each patient was assigned a continuous quantitative respiratory score, the PaO2/FiO2 ratio (normal values >300) (P/F), as the worst value during the hospitalization.

Patients were also assigned a lung imaging grading according to X-Rays and CT scans. In particular, lung involvement was scored through imaging at the time of admission and during hospitalization (worst score), annotating the chest X-Ray (CXR) score (in 34 patients) and CT score in 1 patient for whom X-Rays were not available. To obtain the score (from 0 to 28) each CXR was divided in four quadrant (right upper, right lower, left upper and left lower) and for each quadrant the presence of consolidation (0 = no consolidation; 1 <50%, 2 >50%), ground glass opacities (GGOs: 0 = no GGOs, 1 <50%, 2 >50%), reticulation (0 = no GGOs, 1 <50%, 2 >50%) and pleural effusion on left or right side (0 = no, 1 = minimal; 2 = large) were recorded. The same score was applied for CT (1 patient).
For each patient, the presence of hyposmia and hypogeusia was also investigated through otolaryngology examination, Burghart sniffin’ sticks [49] and a visual analog scale (VAS). Whenever the sign was present, a score ranging from 0 to 10 was assigned to each patient using VAS where 0 means the best sense of smell and 10 represents the absence of smell sensation [50]. The presence of hepatic involvement was defined on the basis of a clear hepatic enzymes elevation as glutamic pyruvic transaminase (ALT) and glutamic oxaloacetic transaminase (AST) both higher than 40 UI/l. Pancreatic involvement was considered on the basis of an increase of pancreatic enzymes as pancreatic amylase higher than 53 UI/l and lipase higher than 60UI/l. Heart involvement was defined on the basis of one or more of the following abnormal data: Troponin T (>15 ng/L), indicative of ischemic disorder; NT-proBNP (M >88; F >153 pg/ml), indicative of heart failure and arrhythmias (indicative of electric disorder). Kidney involvement was defined in the presence of a creatinine value higher than 1,20 mg/dl in males and higher than 1,10 mg/dl in females (Fig 1).

Whole exome sequencing analysis

Genomic DNA was extracted from peripheral blood using the MagCore® Genomic DNA Whole Blood kit (RBC Biosciences) according to manufacturer’s protocol. Whole exome sequencing analysis was performed on Illumina NovaSeq 6000 system (Illumina, San Diego, CA, USA). DNA fragments were hybridized and captured by Illumina Exome Panel (Illumina) according to manufacturer’s protocol. The libraries were tested for enrichment by qPCR, and the size distribution and concentration were determined using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). The Novaseq 6000 platform (Illumina), along with 150 bp paired-end reads, was used for sequencing of DNA.

Genetic data analysis

Reads were mapped to the hg19 reference genome by the Burrow-Wheeler aligner BWA [51]. Variants calling was performed according to the GATK4 best practice guidelines [52]. Namely, duplicates were first removed by MarkDuplicates, and base qualities were recalibrated using BaseRecalibration and ApplyBQSR. HaplotypeCaller was used to calculate Genomic VCF files for each sample, which were then used for multi-sample calling by GenomictDBImport and GenotypeGVCF. In order to improve the specificity-sensitivity balance, variants quality scores were calculated by VariantRecalibrator and ApplyVQSR. Variants were annotated by ANNOVAR [53], and with the number of articles answering the query “gene_name AND viral infection” in Pubmed, where gene_name is the name of the gene affected by the variant.

In order to identify candidate genes according to the Mendelian-like model, rare variants were filtered by a prioritization approach. We used the ExAC database (http://exac.broadinstitute.org/), in particular the ExAC_NFE reported frequency to filter variants according to a minor allele frequency < 0.01. Synonymous, intronic and non-coding variants were excluded from the analysis. Mutation disease database ClinVar (ncbi.nlm.nih.gov/clinvar/) was used to identify previous pathogenicity classifications and variants reported as likely benign/benign were discarded. Filtering and prioritization of variants was completed using the CADD_Phred pathogenicity prediction tool. Finally, we selected genes involved in infection susceptibility using the term “viral infection” as Pubmed database search.
In order to identify genes with a different prevalence of functionally relevant variants between COVID-19 patients and control samples, the following score was calculated:

\[x_j = \sum_{i=1}^{K} w_i x_{ij}, \]

(1)

Where \(w_i \) is a weight associated with the \(i \)-th variant; and \(x_{(i,j)} \) is equal to 0 if the variant is not present in sample \(j \), 1 if sample \(j \) has the variant in heterozygous state, and 2 if sample \(j \) has the variant in homozygous state. The weight \(w_i \) was assumed equal to the DANN score of the variant [54], which provides an estimate of the likelihood that the variant has deleterious functional effects (i.e. variants more likely to have a functional effect contribute more to the score). The sum in equation (1) was performed over all the variants in the gene where the DANN score was available. Genes with less than 5 annotated variants were discarded from the analysis. The scores calculated by equation (1) were ranked for all the samples, and the sum of the ranking for the COVID-19 samples, named \(r_{\text{COVID}} \), was calculated. Then, sample labels were permuted 10,000 times, and these permutations were used to estimate the average value and the standard deviation of \(r_{\text{COVID}} \) under the null-hypothesis. The p-value was calculated assuming a normal distribution for the sum of the ranking [55]. Moreover, we performed an additional more stringent quality check of genetic variants in the selected genes in order to remove calling artifacts that skipped the previous quality control.

Supporting information

S1 Fig. Clinical Data Questionnaire. The Questionnaire includes five different categories of data: Patient personal anamnesis and family history, Diagnostic Information, Laboratory Tests, Therapy and Complications. Clinical data were collected in detail for all COVID-19 patients.

(TIF)

S1 Table. List of genes conferring COVID-19 susceptibility identified with the gene burden test analysis. Genes harboring deleterious mutations with statistically significant higher frequency in control than in COVID-19 patients are ordered based on p-value deriving from gene burden test analysis. The p-value adjusted is provided after Bonferroni correction.

(XLSX)

S2 Table. List of COVID-19 protective genes identified with the gene burden test analysis. Genes harboring deleterious mutations with statistically significant higher frequency in COVID-19 patients than in control are ordered based on p-value deriving from gene burden test analysis. The p-value adjusted is provided after Bonferroni correction.

(XLSX)

S3 Table. Rare variants identified in patients cohort. Rare variants identified in COVID-19 patients according to the Mendelian-like model are reported (see Methods section).

(XLSX)

Acknowledgments

This study is part of GEN-COVID, https://sites.google.com/dbm.unisi.it/gen-covid the Italian multicenter study aimed to identify the COVID-19 host genetic bases. The Genetic and COVID-19 Biobank of Siena, member of BBMRI-IT, of Telethon Network of Genetic Biobanks (project no. GTB18001), of EuroBioBank, and of D-Connect, provided us with specimens. We thank the CINECA consortium for providing computational resources and Network for
Italian Genomes NIG http://www.nig.cineca.it. We thank private donors’ support to A.R. (Department of Medical Biotechnologies, University of Siena) for the COVID-19 host genetics research project (D.L n.18 of March 17th 2020).

GEN-COVID Multicenter Study (composition at May 22, 2020, the representative of the GEN-COVID multicenter study is Prof. Francesca Mari email: francesca.mari@unisi.it)

Gabriella Doddato1, Susanna Croci1, Laura Di Sarno1, Andrea Tommasi1,2, Sergio Daga1, Maria Palmieri2, Massimiliano Fabbiani3, Barbara Rossetti5, Giacomo Zanelli5, Paolo Cameli6, David Bennett6, Simona Marcantonio7, Sabino Scoletta7, Federico Franchi7, Luca Cantarini9, Bruno Frediani9, Danilo Tacconi10, Chiara Spertilli10, Marco Feri11, Alice Donati11, Raffaele Scala12, Luca Guidelli12, Agostino Ognibene13, Genni Spargi14, Marta Corrì14, Cesira Nencioni15, Leonardo Croci15, Gian Piero Caldarelli16, Maurizio Spagnesi17, Paolo Piacentini17, Anna Canaccini18, Agnese Verzuri18, Valentina Anemoli18, Massimo Vaghi19, Antonella D’Arminio Monforte20, Esther Merlini20, Mario Umberto Mondelli23,24, Stefania Mantovani25, Serena Ludovisi24, Massimo Girardis25, Sophie Venturelli25, Andrea Cozzari26, Andrea Antinori27, Alessandra Vergori27, Stefano Rusconi28,29, Matteo Siano28,29, Arianna Gabrielli29, Daniela Francisci30,31, Elisabetta Schiaroli30, Pier Giorgio Scotton32, Francesca Andretta32, Sandro Panese33, Renzo Scagni34, Saverio Giuseppe Parisi35, Francesco Castelli35, Maria Eugenia Quiros Roldan35, Paola Magro36, Cristina Minardi36, Matteo Della Monica37, Carmelo Piscopo37, Marco Capasso38,39,40, Massimo Carella41, Marco Castori41, Giuseppe Merla41, Filippo Aucella42, Pamela Raggi43, Matteo Bassetti44,45, Antonio Di Biagio45, Maurizio Sanguinetti46,47, Luca Masucci46,47, Chiara Gabbi49, Serafina Valente49, Susanna Guerrini49, Elisa Frullanti1, Ilaria Meloni1, Maria Antonietta Mencarelli4, Caterina Lo Rizzo2, Anna Maria Pinto2

10) Department of Specialized and Internal Medicine, Infectious Diseases Unit, San Donato Hospital Arezzo, Italy

11) Department of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy

12) Department of Specialized and Internal Medicine, Pneumology Unit and UTIP, San Donato Hospital, Arezzo, Italy

13) Clinical Chemical Analysis Laboratory, San Donato Hospital, Arezzo, Italy

14) Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy

15) Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy

16) Clinical Chemical Analysis Laboratory, Misericordia Hospital, Grosseto, Italy

17) Department of Prevention, Azienda USL Toscana Sud Est, Italy

18) Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Italy

19) Independent Scientist, Milan, Italy

20) Department of Cardiovascular Diseases, University of Siena, Italy

21) Chirurgia Vascolare, Ospedale Maggiore di Crema, Italy

22) Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy

23) Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Pavia, Italy

24) Department of Internal Medicine and Therapeutics, University of Pavia, Italy

25) Department of Anesthesia and Intensive Care, University of Modena and Reggio Emilia, Modena, Italy

26) Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy

27) HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy
Author Contributions

Conceptualization: Annarita Giliberti, Alessandra Renieri, Francesca Mari.

Data curation: Elisa Benetti, Chiara Fallerini, Rossella Tita, Simone Furini.

Formal analysis: Elisa Benetti, Simone Furini.

Investigation: Annarita Giliberti, Arianna Emiliozzi, Floriana Valentino, Laura Bergantini, Federico Anedda, Sara Amitrano, Edoardo Conticini, Miriana d’Alessandro, Francesca Fava, Simona Marcantonio, Margherita Baldassarri, Mirella Bruttini, Maria Antonietta Mazzei, Francesca Montagnani, Marco Mandalà, Elena Bargagli, Alessandra Renieri, Francesca Mari.

Project administration: Alessandra Renieri, Francesca Mari.

Software: Simone Furini.

Writing – original draft: Elisa Benetti, Alessandra Renieri, Francesca Mari.
References

1. Dennison Himmelfarb CR, Baptiste D. Coronavirus Disease (COVID-19). J Cardiovasc Nurs. 2020; Publish Ah. https://doi.org/10.1097/jcn.0000000000000710 PMID: 32384299

2. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2002032 PMID: 32109013

3. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA. 2020. https://doi.org/10.1001/jama.2020.2648 PMID: 32091533

4. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996. https://doi.org/10.1016/s0092-8674(00)80110-5 PMID: 8756719

5. Woziwodzka A, Rybicka M, Szrnawskas A, Romanowski T, Drzewiecki M, Stalke P, et al. TNF-α polymorphisms affect persistence and progression of HBV infection. Mol Genet Genomic Med. 2019. https://doi.org/10.1002/mgg3.935 PMID: 31441603

6. Tian T, Huang P, Wu J, Wang C, Fan H, Zhang Y, et al. CD40 polymorphisms were associated with HCV infection susceptibility among Chinese population. BMC Infect Dis. 2019. https://doi.org/10.1186/s12879-019-4482-5 PMID: 31615434

7. Nogales A, Dediego ML. Host single nucleotide polymorphisms modulating influenza a virus disease in humans. Pathogens. 2019. https://doi.org/10.3390/pathogens8040168 PMID: 31574965

8. Williams FMK, Freydin M, Mangino C, Couvreur S, Visconti A, Bowyer R. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 2020. https://doi.org/10.1038/s41431-020-0691-z PMID: 32681121

9. Satterstrom FK, Kosnicki JA, Wang J, Breen MS, DeRubeis S, An JY, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020. https://doi.org/10.1016/j.cell.2019.12.036 PMID: 31981491

10. Benetti E, Spoga O, Ciolfi A, Birolo G, Bruselles A, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 2020. https://doi.org/10.1038/s41431-020-0691-z PMID: 32681121

11. Cali H. Sex difference and smoking predisposition in patients with COVID-19. The Lancet Respiratory Medicine. 2020. https://doi.org/10.1016/S2213-2600(20)30117-X PMID: 32171067

12. D’ Alessandro M, Bennett D, Montagnani F, Cameli P, Perrone A, Bergantini L, et al. Peripheral lymphocyte subset monitoring in COVID19 patients: a prospective Italian real-life case series. Minerva Med. 2020. https://doi.org/10.23736/S0026-4806-20-06638-0 PMID: 32407057

13. Salas A, Pardo-Seco J, Cebeý-López M, Gómez-Carbalia A, Obando-Pacheco P, Rivero-Cal le I, et al. Whole Exome Sequencing reveals new candidate genes in host genomic susceptibility to Respiratory Syncytial Virus Disease. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-15752-4 PMID: 29162850

14. Chan CP, Yuen CK, Cheung PTH, Fung SY, Lui PY, Chen H, et al. Antiviral activity of double-stranded RNA-binding protein PACT against influenza A virus mediated via suppression of viral RNA polymerase. FASEB J. 2018; 32: 4380–4393. https://doi.org/10.1096/fj.201701361R PMID: 29513570

15. Miyamoto M, Komuro A. PACT is required for MDA5-mediated immunore sponses triggered by Cardio vascular Viral Infections. ACS Chemical Neuroscience. 2016. https://doi.org/10.1021/acschemneuro.6b00043 PMID: 27058872

16. Waszak SM, Hasin Y, Zichner T, Olinger T, Keydar I, Khen M, et al. Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Comput Biol. 2010. https://doi.org/10.1371/journal.pcbi.1000998 PMID: 21085617

17. Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chemical Neuroscience. 2016. https://doi.org/10.1021/acschemneuro.6b00043 PMID: 27058872

18. Mori I, Goshima F, Imai Y, Kohsaka S, Sugiyama T, Yoshida T, et al. Olfactory receptor neurons prevent disseminations of neuroviral influenza A virus into the brain by undergoing virus-induced
22. Streba LAM, Vere CC, Ionescu AG, Streba CT, Rogoveanu I. Role of intrahepatic innervation in regulating the activity of liver cells. World Journal of Hepatology. 2014. https://doi.org/10.4245/wjh.v6.i3.137 PMID: 24672643

23. Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngology—Head and Neck Surgery (United States). 2020. https://doi.org/10.1177/0194599820926473 PMID: 32369429

24. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa330 PMID: 32215618

25. Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR, Chiu DTY. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 2008. https://doi.org/10.1086/528377 PMID: 18269318

26. Guan T, Dominguez CX, Amezquita RA, Laidlaw BJ, Cheng J, Henao-Mejia J, et al. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. J Exp Med. 2018. https://doi.org/10.1084/jem.20171352 PMID: 29449309

27. Klamer SE, Dorland YL, Kleijer M, Geerts D, Lento WE, Van Der Schoot CE, et al. TGFBI expressed by bone marrow niche cells and hematopoietic stem and progenitor cells regulates hematopoiesis. Stem Cells Dev. 2018. https://doi.org/10.1089/scd.2018.0124 PMID: 30084753

28. Ebersole JL, Peyyala R, Gonzalez OA. Biofilm-induced profiles of immune response gene expression by oral epithelial cells. Mol Oral Microbiol. 2019. https://doi.org/10.1111/omi.12251 PMID: 30407731

29. Marton J, Albert D, Wiltshire SA, Park R, Bergen A, Qureshi S, et al. Cyclosporine a treatment inhibits Abcc6-dependent cardiac necrosis and calcification following coxsackievirus B3 infection in mice. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0138222 PMID: 26375467

30. Janssen N, Bergman JEH, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Human Mutation. 2012. https://doi.org/10.1002/humu.22086 PMID: 22461308

31. Theodoropoulos DS, Theodoropoulos GA, Edwards BM, Kilenny PR, Van Riper LA. Immune deficiency and hearing loss in CHARGE association [3]. Pediatrics. 2003. https://doi.org/10.1542/peds.111.3.711-a PMID: 12612267

32. Gennery AR, Slatter MA, Rice J, Hoefsloot LH, Barge D, McLean-Tooke A, et al. Mutations in CHD7 in patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome. Clin Exp Immunol. 2008. https://doi.org/10.1111/j.1365-2249.2008.03681.x PMID: 18505430

33. Randall V, McCue K, Roberts C, Kyriakopoulos V, Beddow S, Barrett AN, et al. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest. 2009. https://doi.org/10.1172/JCI37561 PMID: 19855134

34. Zhetkenev S, Khassan A, Khamzina A, Issanov A, Crape B, Akilzhanova A, et al. Association of rs12722 COL5A1 with Pulmonary Tuberculosis infection: a preliminary case-control study in a Kazakhstani population. 2019. https://doi.org/10.1101/19008995

35. Chan VSF, Chan KYK, Chen Y, Poon LLM, Cheung ANY, Zheng B, et al. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet. 2006. https://doi.org/10.1038/ng1698 PMID: 16369534

36. Zhan S, Cai GQ, Zheng A, Wang Y, Jia J, Fang H, et al. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination. Biochim Biophys Acta—Mol Basis Dis. 2011. https://doi.org/10.1016/j.bbadis.2010.11.003 PMID: 21094253

37. Braun E, Hotter D, Koepke L, Zech F, Groß R, Sparrer KMJ, et al. Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Rep. 2019. https://doi.org/10.1016/j.celrep.2019.04.063 PMID: 31091448

38. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.2003138117 PMID: 32376634

39. Finley MJ, Happel CM, Kaminsky DE, Rogers TJ. Opioid and nociceptin receptors regulate cytokine and cytokine receptor expression. Cellular Immunology. 2008. https://doi.org/10.1016/j.cellimm.2007.09.008 PMID: 18279847

40. Åkerström S, Gunalan V, Keng CT, Tan YJ, Mirazimi A. Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology. 2009. https://doi.org/10.1016/j.virol.2009.09.007 PMID: 19800919
41. Åkerström S, Mousavi-Jazi M, Klingström J, Leijon M, Lundkvist Å, Mirazimi A. Nitric Oxide Inhibits the Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus. J Virol. 2005. https://doi.org/10.1128/JVI.79.3.1966-1969.2005 PMID: 15650225

42. Zamanian RT, Pollack C V., Gentile MA, Rashid M, Fox JC, Mahaffey KW, et al. Outpatient inhaled nitric oxide in a patient with vasoreactive idiopathic pulmonary arterial hypertension and COVID-19 infection. American Journal of Respiratory and Critical Care Medicine. 2020. https://doi.org/10.1164/rccm.202004-0937LE PMID: 32369396

43. Teich N, Nemoda Z, Köhler H, Heinritz W, Mössner J, Keim V, et al. Gene conversion between functional trypsinogen genes PRSS1 and PRSS2 associated with chronic pancreatitis in a six-year-old girl. Hum Mutat. 2005. https://doi.org/10.1002/humu.20148 PMID: 15776435

44. Thio CL, Mosbruger T, Astemborski J, Greer S, Kirk GD, O’Brien SJ, et al. Mannose Binding Lectin Genotypes Influence Recovery from Hepatitis B Virus Infection. J Virol. 2005. https://doi.org/10.1128/JVI.79.14.9192-9196.2005 PMID: 15994813

45. Dean MM, Flower RL, Eisen DP, Minchinton RM, Hart DNJ, Vuckovic S. Mannose-binding lectin deficiency influences innate and antigen-presenting functions of blood myeloid dendritic cells. Immunology. 2011. https://doi.org/10.1111/j.1365-2567.2010.03365.x PMID: 21091907

46. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science (80-). 2006. https://doi.org/10.1126/science.1129577 PMID: 16888103

47. Rufini S, Ciccacci C, Di Fusco D, Ruffa A, Pallone F, Novelli G, et al. Autophagy and inflammatory bowel disease: Association between variants of the autophagy-related IRGM gene and susceptibility to Crohn’s disease. Dig Liver Dis. 2015. https://doi.org/10.1016/j.dld.2015.05.012 PMID: 26066377

48. Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Advances in Clinical Chemistry. 2019. https://doi.org/10.1016/bs.acc.2019.01.002 PMID: 31126611

49. Oleszkiewicz A, Schriever VA, Croy I, Hähner A, Hummel T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur Arch Oto-Rhino-Laryngology. 2019. https://doi.org/10.1007/s00405-018-5248-1 PMID: 30554358

50. Klimek L, Bergmann KC, Biedermann T, Bousquet J, Hellings P, Jung K, et al. Visual analogue scales (VAS)—Measuring instruments for the documentation of symptoms and therapy monitoring in case of allergic rhinitis in everyday health care. Allergo J. 2017. https://doi.org/10.1007/s40629-016-0006-7 PMID: 28217433

51. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010. https://doi.org/10.1093/bioinformatics/btp698 PMID: 20080505

52. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017. https://doi.org/10.1101/201178

53. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010. https://doi.org/10.1093/nar/gkq603 PMID: 20601685

54. Quang D, Chen Y, Xie X. DANN: A deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015. https://doi.org/10.1093/bioinformatics/btu703 PMID: 25338716

55. Dering C, Hemmelmann C, Pugh E, Ziegler A. Statistical analysis of rare sequence variants: An overview of collapsing methods. Genet Epidemiol. 2011. https://doi.org/10.1002/gepi.20643 PMID: 22128052