Fluctuations in network dynamics: SMAR1 can trigger apoptosis

Md. Zubbair Malik, Md. Jahoor Alam, Romana Ishrat, Subhash M. Agarwal and R.K. Brojen Singh

1Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India.
2College of Applied Medical Sciences, University of Hail, Hail-2440, Kingdom of Saudi Arabia.
3Bioinformatics Division, Institute of Cytology and Preventive Oncology, 1-7, Sector - 39, Noida 201301, India.
4School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India.

SMAR1 is a sensitive signaling molecule in p53 regulatory network which can drive p53 network dynamics to three distinct states, namely, stabilized (two), damped and sustain oscillation states. In the interaction of p53 network with SMAR1, p53 network sees SMAR1 as a sub-network with its new complexes formed by SMAR1, where SMAR1 is the central node, and fluctuations in SMAR1 concentration is propagated as a stress signal throughout the network. Excess stress induced by SMAR1 can drive p53 network dynamics to amplitude death scenario which corresponds to apoptotic state. The permutation entropy calculated for normal state is minimum indicating self-organized behavior, whereas for apoptotic state, the value is maximum showing breakdown of self-organization. We also show that the regulation of SMAR1 together with other signaling molecules p300 and HDAC1 in the p53 regulatory network can be engineered to extend the range of stress such that the system can be save from apoptosis.

I. INTRODUCTION

More than three decades of its discovery, p53 protein is still an important and critical molecule to study to explore new insights of cellular functional organization. Several experimental work have been done on p53 to understand how it regulates various cellular functions, but system level organization of these functional pathways controlled by p53 in normal, stress and cancerous cells are still to be investigated rigorously to understand the role of p53 at various cellular states at fundamental level. Due to its importance in cellular mechanisms, it is nominated as molecule of the year and also molecule of the month by the science magazine in 1993. p53 is composed of 393 amino acids [1]. It has a very short half-life of 15-30 minutes [2]. It takes part in many important cellular processes such as cell differentiation, maintaining genome integrity, apoptosis [3] etc. One of the most important negative regulator of the p53 is Mdm2 protein [3, 4]. Mdm2 forms the complex with p53 and then degraded the complex through its enzymatic activity. p53 acts as transcription factor for various important signaling molecules which participate in several important cellular networks and pathways. It helps in the formation of Mdm2 protein through positive feedback, but in turn Mdm2 negatively regulates p53 [5] to maintain minimum p53 level at normal state. These feedbacks lead to the oscillatory behavior of p53 in the regulatory network system. Further, p53 is very sensitive molecule which is generally activated due to several types of cellular stresses, namely DNA damage, interacting with various signaling molecules such as nitric oxide (NO), reactive oxygen synthase (ROS), calcium etc. Once cell comes under the influence of stress the inactive form of ATM kinase get activated and this activated ATM sent the damage information to p53 by interacting with it [6]. Consequently this leads to the phosphorylated p53, and encounters to several statges of reactions network to repair DNA damage and comes back to normal state, otherwise move to apoptosis [7, 8].

p300 is an acetylating agent which acetylate p53 at its c-terminal and this leads to the prevention of p53–Mdm2 interaction and this activity leads to the suppression of p53 degradation [9, 10]. It is also reported that p300 also interact with Mdm2 protein to form p300 – Mdm2 complex as a result of which the level of Mdm2 is decreased in the system [11–13].

On the other hand, HDAC1 is a deacetylating agent which deacetylate the acetylated form of p53. The deacetylation of p53 by HDAC1 is indirect which occurs due to the recruitment of Mdm2 by HDAC1 [14]. However, the deacetylated form of p53 is very vurnable and comes easily in contact with Mdm2, which leads to the degradation of p53 [14, 15].

SMAR1, a p53 target gene, is very a versatile molecule as reported by several experimental study so far [16–18]. It can interact with p53, Mdm2 as well p300 molecule with different affinity [17]. It is reported that it enhances p53 transcriptional activity and stability of p53 [16, 17]. Moreover, it also shows negative impact on both Mdm2 and p300 [17]. This molecule is expressed upon DNA damages in a p53 dependent manner [18]. It is also indicates that the interaction of SMAR1 with p53 in the nucleus helps in stabilizing the p53 by displacing its negative regulator Mdm2 [19]. Further, p53 has been shown to be deacetylated by its interaction with Mdm2 through recruitment of HDAC1 [14]. It can also interact with and deacetylate p53 by recruiting HDAC1 [20]. However, knockdown of HDAC1 only partially rescues p53 acetylation suggesting that SMAR1 employs supplemental mechanisms to regulate p53 acetylation [21]. Hence, SMAR1 can be considered as an important m-
clear matrix binding transcription factor which acts as a repressor by recruiting HDAC1 [22].

There have been several mathematical models constructed from the p53 regulatory network by taking care of various feedback mechanisms in the network [8, 23, 24], incorporating radiotherapy [25], by taking into account apoptosis inhibitors (caps3, caps9) showing various states such as bistability [26], considering DNA damage via irradiation [6, 27], modeling apoptosis from stress p53 [28, 29], taking into account pharmacodynamics target such nutilin [30, 31], incorporating somatogenesis with Wnt, Axin and nutilin [32], embodying signaling molecules such as calcium with NO [32] and p300 and HDAC1 [33], integrating with cell cycle pathway [34]. These studies show that the introduction of stress in the p53 regulatory network allows to switch the stabilized p53 state to oscillatory dynamics via DNA damage [27, 32] and excess stress may lead to apoptosis. It has been observed with evidences that the switching mechanism at different dynamical states of p53 correspond to various cellular states. However, the monitoring of specific reactions in the p53 regulating network could save the system from apoptosis is an open question. The complexity measurement of various possible states of the system could tell many information inherited in the time series and need to be investigated systematically. The study of role of SMAR1 in p53 regulation may open up new understanding in the regulatory network, stress management in the stress system, monitoring apoptosis and switching in cancer phase. We present p53 regulation driven by SMAR1 incorporating p300 and HDAC1 in section II with quasi-steady state approximation technique and permutation entropy description. Results of simulation of the constructed model with discussion in the section III and conclusion based on the simulation results are described in section IV.

II. MATERIALS AND METHODS

A. p53 − Mdm2 − SMAR1 regulatory model

p53 maintained at low levels in unstressed cell due to p53 and Mdm2 protein feedback mechanism [4]. It binds to the Mdm2 gene in nucleus which leads to the transcription of Mdm2 messenger RNA (mRNA) with a rate constant k3, subsequently this leads to translation into Mdm2 protein with a rate constant k2 [6]. The half life of the Mdm2 mRNA, Mdm2 is less which occurs with rate k4, k5 respectively. The synthesis of p53 protein in cells varies according to the half life of p53 protein. We considered the rate of p53 synthesis takes place at the rate k6. The interaction of p53 and Mdm2 is reported with rate k8 which leads to formation of Mdm2−p53 complex. It is reported by several research that Mdm2 functions as an E3 ubiquitin ligase and this leads to the degradation of p53 protein with rate k7. Further the dissociation of the Mdm2−p53 complex occurs with a rate k9. When cell experience stress the inactivated form of ATM transform into activated form Mdm2 which supposed to be occurs with a rate k10. Further it is reported that activated form transform into inactivated ATM with a rate k11. The activated form of ATM interact with p53 which leads to phosphorylation of p53 with a rate k12. This phosphorylated form of p53 further dephosphorylates with a rate k13. p300 is an important protein which interact with p53 and forms p53-p300 complex with a rate k15 and this subsequently leads to the production of acetylated p53 with a rate k16. The synthesis of p300 is reported as rate of k23. Similarly due to its short half life the degradation of p300 is reported to occur with a rate k14. p300 is also interact with a rate k20 to form Mdm2−p300 complex. Further it is reported that Mdm2−p300 complex interact with p53 and leads to degradation of complex at rate k1 [5, 9]. It also reported that Mdm2−p53 complex can interact with p300 to form Mdm2−p53−p300 ternary complex with rate k19. Further the dissociation of this complex leads to the formation Mdm2 and p53−p300 complex with a rate k21. HDAC1 deacetylate acetylated p53 with rate k33 by recruiting Mdm2 with rate k32. The synthesis and degradation of the HDAC1 due to its half life occurs with rate k24 and k22. SMAR1 is an important signaling molecule which interact with p53 and phosphorylates it with a rate k29. SMAR1 interact with Mdm2 to form Mdm2−SMAR1 complex with a rate k18. Mdm2−SMAR1 complex interact with HDAC1 to form Mdm2−SMAR1−HDAC1 complex with rate k25. Now this bigger complex interact with acetylated p53 which leads to the formation of deacetylated p53 with a rate k17. The synthesis and degradation of the SMAR1 due to its half life occurs with rate k26 and k27. The degradation of Mdm2−SMAR1 complex takes place with rate k28. SMAR1 interact with p300 and degraded its level with rate k35. The interaction of SMAR1 with Mdm2−p53 complex occurs with a rate k30 which leads to the formation of p53−Mdm2−SMAR1 complex. Further it is reported that the dissociation of this complex with rate k31 leads to the formation of phosphorylated p53 and Mdm2−SMAR1 complex. It is also reported that SMAR1 can interact with p53−p300 complex with rate k34.

The stress p53 − Mdm2 − SMAR1 model network we study is defined by N = 18 (18 molecular species) and M = 35 (35 reaction channels). The molecular species, possible reactions, kinetic laws and the rate constants in this model are listed in Table 1 and Table 2 respectively. The state vector at any instant of time t is given by, ̄x(t) = (x1, . . . , x18)T, where the variables in the vector are various proteins and their complexes which are listed in Table 1. The classical deterministic equations
constructed from these reaction network are given by,

\[
\begin{align*}
\frac{dx_1}{dt} &= -k_1 x_1 x_{14} + k_6 - k_8 x_1 x_2 + k_9 x_4 - k_{12} x_1 x_6 \\
&\quad + k_{13} x_7 + k_{17} x_0 x_{12} - k_{29} x_1 x_{15} \\
&\quad + k_{33} x_9 x_{15} \\
\frac{dx_2}{dt} &= k_2 x_3 - k_5 x_2 + k_7 x_4 - k_8 x_1 x_2 + k_9 x_4 \\
&\quad - k_{18} x_2 x_{15} - k_{20} x_2 x_8 + k_{21} x_{13} \\
&\quad - k_{32} x_2 x_{11} \\
\frac{dx_3}{dt} &= k_3 x_1 - k_4 x_3 \\
\frac{dx_4}{dt} &= -k_7 x_4 + k_8 x_1 x_2 - k_9 x_4 - k_{19} x_4 x_8 \\
&\quad - k_{30} x_4 x_{15} \\
\frac{dx_5}{dt} &= -k_{10} x_5 + k_{11} x_6 \\
\frac{dx_6}{dt} &= k_{10} x_5 - k_{11} x_6 - k_{12} x_1 x_6 \\
\frac{dx_7}{dt} &= k_{12} x_1 x_6 - k_{13} x_7 - k_{15} x_7 x_{18} + k_{29} x_1 x_{15} \\
&\quad + k_{31} x_{17} \\
\frac{dx_8}{dt} &= -k_{14} x_8 - k_{15} x_8 x_7 - k_{19} x_4 x_8 - k_{20} x_2 x_8 \\
&\quad + k_{21} x_{13} + k_3 - k_{35} x_8 x_{15} \\
\frac{dx_9}{dt} &= k_{15} x_8 x_7 - k_{16} x_9 - k_{34} x_9 x_{15} \\
\frac{dx_{10}}{dt} &= k_{16} x_9 - k_{17} x_{10} x_{12} - k_{33} x_{10} x_{18} \\
\frac{dx_{11}}{dt} &= -k_{25} x_{11} x_{16} - k_{22} x_{11} + k_{24} - k_{32} x_2 x_{11} \\
\frac{dx_{12}}{dt} &= -k_{17} x_{10} x_{12} + x_{25} x_{11} x_{16} \\
\frac{dx_{13}}{dt} &= k_{19} x_4 x_8 - k_{21} x_{13} \\
\frac{dx_{14}}{dt} &= -k_1 x_1 x_{14} + k_{20} x_2 x_8 \\
\frac{dx_{15}}{dt} &= -k_{18} x_2 x_{15} + k_{26} - k_{27} x_{15} - k_{29} x_1 x_{15} \\
&\quad - k_{30} x_4 x_{15} \\
\frac{dx_{16}}{dt} &= k_{18} x_2 x_{15} - k_{25} x_{11} x_{16} - k_{28} x_{16} \\
&\quad + k_{31} x_{17} \\
\frac{dx_{17}}{dt} &= k_{30} x_4 x_{15} - k_{31} x_{17} \\
\frac{dx_{18}}{dt} &= k_{32} x_2 x_{11} - k_{33} x_{11} x_{18}
\end{align*}
\]

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

where, \(\{k_i\} \) and \(\{x_i\}, i = 1, 2, \ldots, N(N = 18) \) represent the sets of rate constants of the reactions listed in Table 2 and concentration variables of the molecular species listed in Table 1. This complicated coupled set of non-linear differential equations can be solved numerically using standard fourth order Runge-Kutta method of numerical integration [39] to get the dynamical behavior of the variables listed in Table 1.

Fluctuations in p53 network dynamics triggered by stress inducing molecular species could highlight some of basic regulatory mechanisms of how regulatory network works and self-organized by itself to maintain normal functioning of the network. The p53 network sees a stress inducing molecular species not as a single species but as a sub-network of that species in which the species itself is the central node (removing this node cause break down of the sub-network). Fluctuations in any one of the reaction channel in the sub-network cause changes in all the components of the sub-network, and then impart that overall perturbation to the main p53 network which alters the topological characteristics and dynamics of the network. These changes in the properties of the network induce fluctuations in the properties of individual behavior of the components of the network.

The state of the dynamical system given by coupled ordinary differential equations (ODE) (1)-(18) at any instant of time ‘t’ is given by state vector, \(\vec{x}(t) = (x_1, x_2, \ldots, x_N)^T \), where, \(T \) is the transpose of the vector and \(N = 18 \). The system of reactions (Table 2), from which the ODEs (1)-(18) are constructed, can be approximately divided into two types of elementary reactions, namely fast and slow reactions [40]. The variables in the state vector \(\vec{x} \) can be divided into fast and slow vectors.
Table 1 - List of molecular species

S.No.	Species Name	Description	Notation
1.	p53	Unbounded p53 protein	x₁
2.	Mdm2	Unbounded Mdm2 protein	x₂
3.	Mdm2_mRNA	Mdm2 messenger mRNA	x₃
4.	Mdm2-p53	Mdm2 with p53 complex	x₄
5.	ATM_p	Inactivated ATM protein	x₅
6.	ATM_p	Activated ATM protein	x₆
7.	p53_P	Phosphorylated p53 protein	x₇
8.	p300	Unbounded p300 protein	x₈
9.	p53_p300_P	Phosphorylated p53-p300 complex	x₉
10.	p53_A	Acetylated p53 protein	x₁₀
11.	HDAC1	Unbounded HDAC1 protein	x₁₁
12.	Mdm2_HDAC1_SMAR1	Mdm2, HDAC1 and SMAR1 complex	x₁₂
13.	Mdm2_p53_p300	Mdm2, p53 and p300 complex	x₁₃
14.	Mdm2_p300	Mdm2 and p300 complex	x₁₄
15.	SMAR1	Unbounded SMAR1 protein	x₁₅
16.	Mdm2_SMAR1	Mdm2 and SMAR1 complex	x₁₆
17.	p53_Mdm2_SMAR1	p53, Mdm2 and SMAR1 complex	x₁₇
18.	HDAC1_Mdm2	HDAC1 and Mdm2 complex	x₁₈

Table 2 - List of chemical reaction, propensity function and their rate constant

S.No.	Reaction	Name of the process	Kinetic Law	Rate Constant	References
1	x₁ + x₁₄	p53 degradation	k₁⟨x₁⟩⟨x₁₄⟩	8.25 × 10⁻⁴ sec⁻¹	[5, 9]
2	x₁ → x₁₃ + x₂	Mdm2 creation	k₂(x₂)	4.95 × 10⁻⁴ sec⁻¹	[6]
3	x₁ → x₁₃ + x₃	Mdm2_mRNA creation	k₃(x₁)	1.0 × 10⁻⁴ sec⁻¹	[6]
4	x₁ → x₁₃	Mdm2_mRNA degradation	k₄(x₃)	1.0 × 10⁻⁴ sec⁻¹	[6]
5	x₂ → x₃	Mdm2 degradation	k₅(x₂)	4.33 × 10⁻⁴ sec⁻¹	[6]
6	φ → x₁	p53 synthesis	k₀	0.078 sec⁻¹	[6]
7	x₄ → x₁₃	Mdm2_p53 degradation	k₇(x₄)	8.25 × 10⁻⁴ sec⁻¹	[35, 36]
8	x₁ + x₂ → x₄	Mdm2_p53 synthesis	k₈(x₁)⟨x₂⟩	11.55 × 10⁻⁴ sec⁻¹	[6]
9	x₄ → x₅ + x₂	Mdm2_p53 dissociation	k₉(x₄)	11.55 × 10⁻⁶ sec⁻¹	[6]
10	x₅ → x₆	ATM activation	k₁₀(x₅)	1.0 × 10⁻⁴ sec⁻¹	[36, 37]
11	x₆ → x₅	ATM deactivation	k₁₁(x₆)	5.0 × 10⁻⁴ sec⁻¹	[36, 37]
12	x₁ + x₆ → x₇	Phosphorylation of p53	k₁₂(x₁)⟨x₆⟩	5.0 × 10⁻⁴ sec⁻¹	[36]
13	x₇ → x₈	Dephosphorylation of p53	k₁₃(x₇)	5.0 × 10⁻¹ sec⁻¹	[36, 37]
14	x₈ → x₉	p300 degradation	k₁₄(x₈)	1.0 × 10⁻⁴ sec⁻¹	[38, 45]
15	x₉ → x₁₀	p53_p300 formation	k₁₅(x₉)⟨x₈⟩	1.0 × 10⁻⁴ sec⁻¹	[11]
16	x₉ → x₁₀	Acetylation of p53	k₁₆(x₉)	1.0 × 10⁻⁴ sec⁻¹	[10, 12]
17	x₁₀ + x₁₂	Deacetylation of p53	k₁₇(x₁₀)⟨x₁₂⟩	1.0 × 10⁻⁵ sec⁻¹	[12]
18	x₁₂ + x₁₅	Creation of Mdm2_SMAR1	k₁₈(x₁₂)⟨x₁₅⟩	2.0 × 10⁻⁴ sec⁻¹	[12]
19	x₄ + x₈	Creation of Mdm2_p53_p300	k₁₉(x₄)⟨x₈⟩	5.0 × 10⁻⁴ sec⁻¹	[11]
20	x₂ + x₈	Formation of Mdm2_p300	k₂₀(x₂)⟨x₈⟩	5.0 × 10⁻⁴ sec⁻¹	[5, 6]
21	x₁₃	Dissociation of Mdm2_p53_p300	k₂₁(x₁₃)	1.0 × 10⁻⁴ sec⁻¹	[11, 35]
given by,

\[
\vec{x}^f = \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6 \\
 x_7 \\
 x_8 \\
 x_9 \\
 x_{10} \\
 x_{11} \\
 x_{12} \\
 x_{13} \\
 x_{14} \\
 x_{15} \\
 x_{16} \\
 x_{17} \\
 x_{18}
\end{bmatrix};
\vec{\dot{x}}^f = \begin{bmatrix}
 x_3 \\
 x_4 \\
 x_5 \\
 x_6 \\
 x_7 \\
 x_8 \\
 x_9 \\
 x_{10} \\
 x_{11} \\
 x_{12} \\
 x_{13} \\
 x_{14} \\
 x_{15} \\
 x_{16} \\
 x_{17} \\
 x_{18}
\end{bmatrix}
\]

(19)

\[
\frac{d\vec{x}^f}{dt} \approx 0; \quad \vec{x}^{\ast f} = \frac{d\vec{x}^f}{dt}
\]

(20)

The fast variables are normally corresponding to complex molecular species. Generally, formation of complex molecular species due to fast reactions are followed by fast decay of these complexes, the dynamics of the fast variables reach steady state much quickly as compared to the dynamics of slow variables \[41, 42\]. We then use Henri-Michaelis-Menten-Briggs-Haldane approximation to assume that the time evolution of fast state vector \(\vec{x}^f\) reach equilibrium state defined by \(\vec{x}^{\ast f}\) much faster as compared to the time evolution of slow state vector \(\vec{x}^s\) \[41, 42\]. Applying this approximation, we can reach the following steady state for fast variables,

\[
\frac{d\vec{x}^s}{dt} = \frac{d}{dt} \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6 \\
 x_7 \\
 x_8 \\
 x_9 \\
 x_{10} \\
 x_{11} \\
 x_{12} \\
 x_{13} \\
 x_{14} \\
 x_{15} \\
 x_{16} \\
 x_{17} \\
 x_{18}
\end{bmatrix}
\approx 0
\]

\[
\frac{d\vec{x}^s}{dt} = \frac{d}{dt} \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6 \\
 x_7 \\
 x_8 \\
 x_9 \\
 x_{10} \\
 x_{11} \\
 x_{12} \\
 x_{13} \\
 x_{14} \\
 x_{15} \\
 x_{16} \\
 x_{17} \\
 x_{18}
\end{bmatrix}
\]

(21)

The approximate solution of the complex model can be obtained from this reduced model using quasi steady state approximation.
and stabilized (2), damped and sustain oscillation states in all

FIG. 2: (A) The dynamics of p following. The time series of the variable S substituting variable x to slide along the sequence i to find the probabilities of occurrence of each inequality in w_i. Since q out of $r!$ permutations are distinct, one can define a normalized permutation entropy $x_{15}(t)$ as $H_i = -\frac{1}{\ln(r)} \sum_{j=1}^{r} p_j \ln(p_j)$ where, $0 \leq H_i(r) \leq 1$. The mapped permutation entropy spectrum of time series $x(t)$ is $H = \{H_1, H_2, ..., H_M\}$ which is the measure of complexity of time series $x(t)$. For self-organized state corresponds to order state giving $H \to 0$.

III. RESULTS AND DISCUSSION

Based on above equation we have obtained from our proposed integrated model, the simulation have been done. Here we only limits our study upto the deterministic solution of the equation. We have solved the set of differential equation using standard runge-kutte 4th order differential equation.

A. Approximate solution of the model

The fast state vector reach steady state quickly and can be taken as constant as compared to slow state variable (equations (20) and (21)). From equations (18) and (20), one can reach $x_2 = \frac{k_{27}}{k_{30}} x_1^*$ showing the direct dependence of x_2 on x_1^* is steady state of HDA1-Mdm2 complex. Similarly, from equations (3) and (20) we get $x_1 = \frac{k_{32}}{k_{33}} x_3^*$ indicating direct proportional to the steady state of Mdm2-mRNA complex. Putting these equations to equation (15) and using equation (20), we have the following equation,

$$\frac{dx_{15}}{dt} + U x_{15} = k_{26}$$

where, $U = k_{27} + \frac{k_{1} k_{2}}{k_{32}} x_1^* + \frac{k_{3}}{k_{33}} x_3^* + k_{30} x_1^*$ is a constant within quasi-steady state approximation. The solution of this equation (22) is given by,

$$x_{15}(t) = \frac{k_{26}}{U} \left(1 - e^{-Ut}\right) + x_{15}(0) e^{-Ut}$$

where, $x_{15}(0)$ is the initial concentration of x_{15} at $t = 0$. The solution (23) shows that the rate of increase of x_{15} SMAR1 in the system is restricted by the steady state values of x_3, x_4 and x_{18} via U; and time. The asymptotic value of x_{15} as $t \to \infty$ is found to be $x_{15} \approx \frac{k_{26}}{k_{30}}$ reaching a steady state. For small values of time ‘t’, keeping upto linear terms in the expansion $e^{xt} \sim 1 + xt + O(t^2)$, we get $x_{15}(t) \approx \left[k_{26} - U x_{15}(0)\right] t$ which shows minimal sufficient condition for x_{15} creation is $k_{26} > U x_{15}(0)$.

The equations (11), (21), (20) and $x_2 = \frac{k_{32}}{k_{33}} x_1^*$ can be used to get the following ODE of variable $x_{11},$

$$\frac{dx_{11}}{dt} + V x_{11} = k_{24}$$

where, $V = k_{22} + k_{25} x_{16} + k_{33} x_3^*$ is a constant. Then the solution of the ODE (24) can be obtained given by,

$$x_{11}(t) = \frac{k_{24}}{V} \left(1 - e^{-Vt}\right) + x_{11}(0) e^{-Vt}$$
where, $x_{11}(0)$ is the initial value of x_{11} at $t = 0$. The asymptotic value of x_{11} at $t \to \infty$ is given by $x_{11} \approx \frac{k_{24}}{V}$ which is the steady state. At small time limit where exponential expansion is approximated upto linear terms, we obtain $x_{11}(t) \sim \left[k_{24} - V x_{11}(0) \right] t$. The minimal sufficient condition for formation of x_{11} is $k_{24} > V x_{11}(0)$.

Similarly, using equations (8), (21) and (20) we can reach the following ODE,

$$\frac{dx_8}{dt} + x_8 \left[W + k_{35} \left(\frac{k_{26}}{U} + W e^{-Ut} \right) \right] = k_{23} + k_{13} k_{21}$$

(26)

where, $W = k_{14} + k_{15} x_{17}^* + k_{19} x_{13}^* + k_{32} x_{18}^*$ is a constant.

The solution of this ODE can be obtained by taking $f \to f_0^\infty$ which is also true for positive values of x_8, and is given by,

$$x_8(t) = \left[C_1 - G \left(\frac{U}{W} \right)^{H/U} \Gamma \left(\frac{H}{U} \right) \right] e^{-Ht + \frac{W}{U} e^{-Ut}}$$

(27)

where, $G = \frac{k_{23} + k_{13} x_{17}^*}{U}$ and $H = W + \frac{k_{32} x_{18}^*}{U}$ are constants. The constant C_1 can be obtained by using initial condition i.e. $t = 0$. Putting back the expression for C_1 to equation (27), we get,

$$x_8(t) = x_8(0) e^{-W} e^{-Ht + \frac{W}{U} e^{-Ut}}$$

(28)

It is observed that for large value of t, the term Ht dominates e^{-Ut}, and therefore we have $x_8(t) \propto e^{-Ht}$. However, for small t, we have $x_8(t) \sim x_8(0) e^{-W/U} [1 - (H + W)t]$, which indicates that the minimal existence of x_8 will have the condition $(H + W)t < 1$.

Now, to get the solution for x_2, the equations (12) and (16) using (20) are added, and the result is substituted in equation (2). The simplified ODE of x_2 is given by,

$$\frac{dx_2}{dt} + x_2 \left[R + \frac{S}{e^{Vt}} \right] = D$$

(29)

where, $R = k_5 + \frac{k_{14} k_{25}}{k_{33}}$, $S = k_{32} \left(x_{11} - \frac{k_{23}}{V} \right)$ and $D = k_2 x_3^* + k_7 x_4^* + k_6 x_{13} + k_{31} x_{17} - \frac{k_{32}}{k_{33}} x_5^* - k_{17} x_{10} x_{12} - k_{28} x_{16}^* - \frac{k_{32} k_{33} x_{18}^*}{k_3}$ are constants. The solution of the equation (29) is given by,

$$x_2(t) = \left[C_2 - D S V \left(\frac{V}{S} \right)^{P-1} \Gamma \left(\frac{R}{V} \right) \right] e^{-Rt + \frac{S}{V e^{Vt}}}$$

(30)

where, C_2 is a constant which can be obtained from initial condition $t = 0$. Then putting back the expression for C_2 to the equation (30), we get,

$$x_2(t) = x_2(0) e^{-\frac{S}{V} e^{-Rt + \frac{S}{V e^{Vt}}}$$

(31)

The large t limit in the equation (31) show that $x_2(t) \sim x_2(0) e^{-S/V e^{-Rt}}$ which shows that $x_2(t) \propto e^{-Rt}$. However, it further indicates that $\lim_{t \to \infty} x_2(t) = 0$. Small t approximation to the equation (31) leads to the expression $x_2(t) \sim x_2(0) e^{-S/V} [1 - (R + S)t]$, which shows that minimal condition for existence of x_2 is $1 > (R + S)t$.

Similarly, proceeding same way as above, from equations (1), (7), (9) and (steady) we obtain the following ODE for x_1,

$$\frac{dx_1}{dt} + F x_1 = G + P e^{-Vt}$$

(32)

where, $F = k_1 x_{14}^* + \frac{k_{15} k_{25}}{k_{33}}$, $G = k_6 + k_{31} x_{17}^* + k_{17} x_{10} x_{12}^* + k_{31} x_{17}^* - k_{13} x_7^* - k_{16} x_{18}^* + \frac{k_{32} k_{33} k_{18}}{k_3}$, and $P = k_{32} k_{18}$ are constants. The solution of the equation (32) is given by,

$$x_1(t) = \frac{G}{F} \left(1 - e^{-Ft} \right) + \frac{P}{F - V} \left(e^{-Vt} - e^{-Ft} \right) + x_1(0) e^{-Ft}$$

(33)

Now, the small t approximation allows to simplify equation (33) to obtain $x_1(t) \sim x_1(0) + t[P - G - F x_1(0)]$. The minimal condition for x_1 existence in the system is given by, $x_1(0) > |t[G + F x_1(0) - P]|$. However, in the large t approximation, we have, $x_1(t) = \frac{G}{F} (1 - e^{-Ft})$ and for non-negative value of x_1 the condition is, $e^{Ft} \leq 1$. However, we have $\lim_{t \to \infty} x_1(t) = -\infty$.

FIG. 3: (A) The Mdm2 dynamics induced by stress inducers, k_{SMAR1}, k_{p300} and k_{HDAC1} showing three different distinct states as obtained in the case of p53. (B) The permutation entropy spectrum of the three states of Mdm2 dynamics induced by SMAR1.
The changes in the states of the dynamics of p53 are triggered by various signaling molecules, namely, SMAR1, p300 and HDAC1 respectively (Fig. 2) and found three distinct states, two steady states, damped oscillation state and sustain oscillation states. When p53 regulatory network interacts with one of the signaling molecules, the network saw that signaling molecule as a sub-network (see Fig. 1) which involves a number of interaction and a number of complexes due to the interaction. So the changes in the p53 dynamics are due to the fluctuations in the sub-network associated with the signaling molecule.

The concentration of HDAC1 in the system depends on the value of creation rate of it \(k_{26} \) which we have taken as \(k_{HDAC1} \) in our simulation. At low concentration of HDAC1 (small value of \(k_{HDAC1} \)) allows p53 to maintain its normal state (stabilized state) in the system (Fig. 2 left upper panels). As one increase the concentration of HDAC1 in the system (increasing the value of \(k_{HDAC1} \)), HDAC1 starts active interaction with Mdm2 and SMAR1 forming various complexes followed by indirect interaction with p53 (Table 2). This indirect interaction of HDAC1 and p53 impart stress in p53 dynamics which starts exhibit damped oscillation (mixture of stress and stabilized state) indicating the induction of stress by the available HDAC1 concentration in the system and then come back to the normal state\[14, 45]\.

The range of damped oscillation increases as \(k_{HDAC1} \) value increases and after sufficient value of \(k_{HDAC1} \), p53 dynamics become sustain oscillation for a certain range of \(k_{HDAC1} \rightarrow [0.007 − 0.05] \). This sustain oscillation state corresponds to strong activated or stress state which is found to be maximum at \(k_{HDAC1} = 0.07 \) (where amplitude of p53 of the corresponding sustain oscillation is maximum \(\sim 123.2 \pm 2 \)), then start decreasing as \(k_{HDAC1} \) increases. After \(k_{HDAC1} > 0.05 \), the dynamics of p53 become damped oscillation, which indicates that large HDAC1 concentration in the system trigger large stress which can’t be repair back and may probably go to apoptosis. This range of stress in this case decreases with amplitude as the value of \(k_{HDAC1} \) increases. Excess HDAC1 concentration in the system may trigger immediate apoptosis of the system (stabilized state)\[46–48]\.

Similarly, the three states of p53 are also found when the p53 regulatory network is perturbed by sub-network of SMAR1 (Fig. 2 middle panels) which is composed of SMAR1 and its interaction partners i.e. associated complexes (Fig. 1) and acts as main hub in the sub-network. The rate constant of formation of SMAR1 in the system \(k_{26} \), which we take \(k_{SMAR1} \) as notation, corresponds to the availability of SMAR1 concentration in the system to induce perturbation in p53 network\[17]\.

This accessible concentration of SMAR1 affects the dynamics its own sub-network, and then impart perturbation to p53 network. The results of perturbation, similar to that of HDAC1, shows nearly normal state for \(k_{SMAR1} < 0.0001 \) for fixed values of \(k_{HDAC1} = 0.01 \) and \(k_{p300} = 0.1 \), damped states in two ranges \([0.0001 − 0.005] \) (increasing range of damped oscillation as \(k_{SMAR1} \) increases) and \([0.06 − 0.2] \) (decreasing range of damped oscillation as \(k_{SMAR1} \) increases), and sustain oscillation in the range \([0.051 − 0.058] \) which decreases p53 amplitude as \(k_{SMAR1} \) increases. Therefore, excess SMAR1 concentration in the system triggers apoptosis. Similar behavior is found in Mdm2 case (Fig. 3).

Similar behavior of these three states is found for the case of p300 induced p53 dynamics (Fig. 2 right panels). Similar behavior is found in Mdm2 case (Fig. 3). This reveals that this signaling molecule has also the tendency to induce apoptosis in the system\[12, 33]\.

The permutation entropies \(H_{p53} \) of the three states of p53 driven by SMAR1 are calculated for p53 dynamics to understand complexity of the perturbed network (Fig. 2 lowermost panel). We took embedded dimension \(r = 3 \) and window size to be \(w_s = 512 \). We also tried for other values of embedded dimension i.e. \(4, 5 \) and \(6, \) and found the results almost the same. The results show that for normal state (low value of \(k_{SMAR1} = 0.0001 \)) the values of \(H_{p53} \) is low, with large gaps among nearly periodic curves which consist of large number of near zero points. This low values of \(H_{p53} \) indicates more self-organized behavior at normal state of the system. If we increase the values of \(k_{SMAR1} \) (\(k_{SMAR1} = 0.001, 0.01, 0.04 \)) the \(H_{p53} \) values start increasing, and the gap between neighbouring curves decreases, showing significant increase of \(H_{p53} \).
taining oscillation. Larger values of stress parameter than this range, the transition of sustain to damped oscillation states takes place. Further larger values of stress parameter force the dynamics to amplitude death scenario again (Fig. 4 and Fig. 5). This transition of various oscillating states as a function of stress parameter give corresponding signatures of the state of the system [34].

Normal state of \(p53 \) dynamics (small values of stress parameter) show amplitude death scenario of \(p53 \) as a function of \(k_{HDAC1} \) for different values of \(k_{SMAR1} \) (Fig. 4 upper left panel). The transition from amplitude death (normal state) to damped state (mixture of stress then come back to normal after removing of stress) is for small range of \(k_{HDAC1} \) only, and suddenly move to the sustain oscillation state (we took long time series of 500 hours i.e. 5 days duration after removing transients). Within the range of sustain oscillation state, the amplitude of \(p53 \) (\(A_{p53} \)) increases as a function of \(k_{HDAC1} \) (equation (33)). The amplitude \(A_{p53} \) suddenly drops to zero (amplitude death scenario) after a short range \(k_{HDAC1} \). This second regime of amplitude death scenario could be the apoptotic state of the modeled system. Further, it can also be seen that for the same range of \(k_{HDAC1} \), as \(k_{SMAR1} \) increases the range of sustain oscillation decreases and on the other hand the amplitude of \(p53 \) decreases. It reveals that if the value of \(k_{SMAR1} \) is large enough the the system will go to amplitude death (apoptotic) regime directly. Similar transition the states can also be found in the case of \(Mdm2 \) dynamics also (Fig. 5).

The transition of the states can also be seen in the parameter space of \(p53 \) and \(k_{HDAC1} \) for different values of \(k_{p300} \) and for fixed value of \(k_{SMAR1} \) (Fig. 4 upper right panel). The different in behavior in this is the increase in the regime of sustain oscillation as \(k_{p300} \) increases until \(k_{p300} = 0.1 \). This indicates that within this range of \(k_{p300} \), increasing \(k_{p300} \) can able to increase the range of \(k_{HDAC1} \) before reaching apoptosis. After this value the \(A_{p53} \) behavior does not usual transition and goes to zero amplitude quickly (Fig. 4 upper right panel). This means that one can engineer the modeled system in such a way that increasing \(k_{p300} \) can able to increase the accessible \(k_{HDAC1} \) to save the system from apoptosis.

The behavior of \(A_{p53} \) as a function of \(k_{p300} \) for various values of \(k_{HDAC1} \) and for a fixed value of \(k_{SMAR1} \) shows two states transition, namely sustain oscillation and amplitude death (apoptotic state) (Fig. 4 left middle panel). This is due to the choice of value of \(k_{SMAR1} \) is to induce sustain oscillation. The increase in \(k_{HDAC1} \) allow the system to reach amplitude death regime quickly. Same is true for the case of \(A_{p53} \) versus \(k_{p300} \) for various values of \(k_{SMAR1} \) (Fig. 4 right middle panel).

The scenario of transition of the states is different in the case of \(A_{p53} \) as a function of \(k_{SMAR1} \) for various values of \(k_{HDAC1} \) which shows the increase in the range of accessible \(k_{SMAR1} \) as \(k_{HDAC1} \) increases (Fig. 4 lower left panel). However, increase in \(k_{p300} \) forces \(A_{p53} \) to reach amplitude death regime (apoptotic) quicker (Fig. 4 lower right panel). Similar scenario of transition of

C. Amplitude death: signature of apoptosis

The amplitude of \(p53 \) oscillatory dynamics due to fluctuations induced by changes in some part of the network (for example changes in concentration of \(SMAR1 \), \(p300 \), \(HDAC1 \) with corresponding sub-networks associated with them) refers to the amount of stress induced in its dynamics. The amount of stress imparted in the system allows active interaction of this \(p53 \) with the respective fluctuated molecular species directly or indirectly, and once the stress is removed, the active interaction stays for sometime with damped oscillation which we call "Restoration time" and come back to normal situation where the amplitude becomes zero (amplitude death) (Fig. 2 and Fig. 3). The relaxation time increases as the amount of stress is increased, and become infinite for certain range of value of stress parameter \((k_{SMAR1}, k_{p300}, k_{HDAC1} etc)\) which is the case of sustained oscillation. Larger values of stress parameter than this range, the transition of sustain to damped oscillation states takes place. Further larger values of stress parameter force the dynamics to amplitude death scenario again (Fig. 4 and Fig. 5). This transition of various oscillating states as a function of stress parameter give corresponding signatures of the state of the system [34].

Normal state of \(p53 \) dynamics (small values of stress parameter) show amplitude death scenario of \(p53 \) as a function of \(k_{HDAC1} \) for different values of \(k_{SMAR1} \) (Fig. 4 upper left panel). The transition from amplitude death (normal state) to damped state (mixture of stress then come back to normal after removing of stress) is for small range of \(k_{HDAC1} \) only, and suddenly move to the sustain oscillation state (we took long time series of 500 hours i.e. 5 days duration after removing transients). Within the range of sustain oscillation state, the amplitude of \(p53 \) (\(A_{p53} \)) increases as a function of \(k_{HDAC1} \) (equation (33)). The amplitude \(A_{p53} \) suddenly drops to zero (amplitude death scenario) after a short range \(k_{HDAC1} \). This second regime of amplitude death scenario could be the apoptotic state of the modeled system. Further, it can also be seen that for the same range of \(k_{HDAC1} \), as \(k_{SMAR1} \) increases the range of sustain oscillation decreases and on the other hand the amplitude of \(p53 \) decreases. It reveals that if the value of \(k_{SMAR1} \) is large enough the the system will go to amplitude death (apoptotic) regime directly. Similar transition the states can also be found in the case of \(Mdm2 \) dynamics also (Fig. 5).

The transition of the states can also be seen in the parameter space of \(p53 \) and \(k_{HDAC1} \) for different values of \(k_{p300} \) and for fixed value of \(k_{SMAR1} \) (Fig. 4 upper right panel). The different in behavior in this is the increase in the regime of sustain oscillation as \(k_{p300} \) increases until \(k_{p300} = 0.1 \). This indicates that within this range of \(k_{p300} \), increasing \(k_{p300} \) can able to increase the range of \(k_{HDAC1} \) before reaching apoptosis. After this value the \(A_{p53} \) behavior does not usual transition and goes to zero amplitude quickly (Fig. 4 upper right panel). This means that one can engineer the modeled system in such a way that increasing \(k_{p300} \) can able to increase the accessible \(k_{HDAC1} \) to save the system from apoptosis.

The behavior of \(A_{p53} \) as a function of \(k_{p300} \) for various values of \(k_{HDAC1} \) and for a fixed value of \(k_{SMAR1} \) shows two states transition, namely sustain oscillation and amplitude death (apoptotic state) (Fig. 4 left middle panel). This is due to the choice of value of \(k_{SMAR1} \) is to induce sustain oscillation. The increase in \(k_{HDAC1} \) allow the system to reach amplitude death regime quickly. Same is true for the case of \(A_{p53} \) versus \(k_{p300} \) for various values of \(k_{SMAR1} \) (Fig. 4 right middle panel).

The scenario of transition of the states is different in the case of \(A_{p53} \) as a function of \(k_{SMAR1} \) for various values of \(k_{HDAC1} \) which shows the increase in the range of accessible \(k_{SMAR1} \) as \(k_{HDAC1} \) increases (Fig. 4 lower left panel). However, increase in \(k_{p300} \) forces \(A_{p53} \) to reach amplitude death regime (apoptotic) quicker (Fig. 4 lower right panel). Similar scenario of transition of

FIG. 5: The variation of amplitude of \(Mdm2 \) dynamics induced by \(k_{SMAR1} \), \(k_{p300} \) and \(k_{HDAC1} \) which shows three different states: stabilized state (one for normal and the other for apoptotic states, indicated by amplitude death case), damped states and sustain states.
states is found in the case of A_{Mdm2} (Fig. 5)[50].

D. Regulation of apoptosis

Taming stress imparted in a system by stress induced parameters is important to save the system from apoptosis. The calculated critical value of k_{SMAR1}, k_{SMAR1}^c, at which the amplitude of $p53$ is zero, and larger than this value the system goes to apoptosis, corresponds to a value of k_{HDAC1} for each k_{SMAR1} (Fig. 6 upper panel). The phase diagram in the parameter space (k_{HDAC1}, k_{SMAR1}) show the distinct demarcation of stress and apoptotic states (Fig. 6 upper panel). The result indicates that even for large value of k_{SMAR1} which drives the system to apoptotic state, one can vary k_{HDAC1} so that the range of stress state be broaden such that the system can be pull back to normal state once the stress is removed.

The average value of mid-value of sustain oscillation regime $p53$ amplitude (A_{p53}^{av}) for ten ensembles with different initial conditions modulated by $HDAC1$ as a function of k_{SMAR1} shows monotonous decrease A_{p53}^{av}, as k_{SMAR1} increases and will reach amplitude death for sufficiently large value of k_{SMAR1} (Fig. 6 lower panel). Even though k_{SMAR1} drives the $p53$ network to apoptosis (Fig. 6 lower panel), this apoptotic state can be regulated by $HDAC1$ interaction to save from apoptosis[48, 51].

Similar study of the impact of k_{SMAR1} on $p53$ network in regulating apoptotic phase in the presence of another stress inducer $p300$ via k_{p300} shows different scenario. The apoptotic phase diagram in the parameter space (k_{p300}, k_{SMAR1}) indicate two distinct scenarios, first k_{SMAR1}^c increases as k_{p300} increases up to a maximum value, and secondly k_{SMAR1}^c decreases as k_{p300} increases (Fig. 7 upper panel). In the first case, for any critical value of k_{SMAR1}^c, one can extend the range of stress regime by increasing the concentration of $p300$ (increasing the value of k_{p300}) in the system and save the system from apoptosis after removing the stress. In the second case, the range of stress can be increased for any value of k_{SMAR1}^c by decreasing concentration of $p300$ and can save from apoptotic state.

The value of A_{p53}^{av} modulated by $p300$ decays slowly as a function of k_{SMAR1} (exponential decay) as compared to the case of $HDAC1$ (Fig. 7 lower panel). The amplitude death scenario can be seen in this case also but with slow variation.

IV. CONCLUSION

Fluctuations imparted in a network, due to interaction of stress inducing molecular species in the form of a sub-network where the stress inducer species is the central in the sub-network, are propagated throughout the network and dynamical as well as topological properties of each individual component in the network get changed. However, the amount of perturbation signal in the form of stress recieved by various components in the network are not equal, and depend on how far the components are from the stress epicentre in the network. Biological network, corresponding to a certain biological function, is generally self-organized and tries to protect the network organization to maintain its own normal functioning. However, if the stress is large enough the network functioning of the organization will break down and move to apoptosis.

$SMAR1$ is found to be a very dynamic and stress inducer signaling molecule which interfere the $p53$ regulatory network. It also interacts with many other signaling molecules such as $p300$, $HDAC1$ etc in the $p53$ network and regulate $p53$ dynamics. The concentration of this signaling molecular species in the network trigger the $p53$ dynamics to different states, which correspond to different cellular states, and even it can induce apoptosis to the cell. The mathematical modeling of this network provides various dynamical properties of the network which
is reflected in the dynamics of the state vector which is the vector of molecular species variables in the system. The complexity of these states can be determined by calculating the permutation entropies of these states, and found that normal state corresponds to smallest value of permutation entropy. As stress increases, complexity also increases and permutation entropy is increased correspondingly, and surprisingly the permutation entropy of second stabilized state, which corresponds to apoptotic state, has highest value. This indicates that at apoptotic state the self-organization of the network has lost and become disorder in the network organization.

The amplitude death scenario obtained from the dynamical study of the p53 regulatory network model could be used as the signature of apoptosis. Because the dynamics of this state has large complexity due to the lost of self-organization at this state. On the other hand, the amplitude death for the case of normal state (stabilized state) has minimum complexity due to the maintainance of self-organization of the system.

Abnormality in one signaling molecule in a system may trigger apoptosis to the system. However, since the network involves a number of other signaling molecules which can regulate the network, one can probably use other signaling molecules to save the system from apoptosis. The reason is that even though abnormality of one signaling molecule drives the system to apoptosis, a change in another signaling molecule may extend the range of stress and save the system from apoptosis. Thus even though SMAR1 can trigger apoptosis to p53 regulatory network, regulating other signaling molecule p300 or HDAC1 or both can possibly save the system from apoptosis. However, one needs experimental investigation and engineering of the signaling molecules in p53 regulatory network on such issues. Experimental and theoretical investigations in this direction are needed because these study will open up new understanding in the disease dynamics caused by abnormalities in signaling molecules, their preventive measures and cancer engineering.

Acknowledgments

MZZ is financially supported by Indian Council of Medical Research under SRF (Senior Research Fellowship). RKBS is financially supported by Department of Science and Technology (DST), New Delhi, India under sanction no. SB/S2/HEP-034/2012.

[1] Bai L, Zhu WG. 2006 p53: Structure, Function and Therapeutic Applications. J Cancer Mol 2, 141-153.
[2] Finlay CA. 1993 The Mdm2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol 13, 301-6. (doi: 10.1128/MCB.13.1.301)
[3] Levine AJ. 1997 p53, the cellular gatekeeper for growth and division. Cell 88, 323-31. (doi:10.1016/S0092-8674(00)81871-1)
[4] Kubbutat MHG, Jones SN, Vousden KH. 1997 Regulation of p53 stability by Mdm2. Natute 387, 299. (doi:10.1038/387299a0)
[5] Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Liv-}

ingston DM. 1998 p300/Mdm2 complexes participate in Mdm2-mediated p53 degradation. Mol Cell 2, 405-415. (doi:10.1016/S1097-2765(00)80140-9)
[6] Proctor CJ, Gray DA. 2008 Explaining oscillations and variability in the p53-Mdm2 system. BMC Systems Biol 2, 75. (doi:10.1186/1752-0509-2-75)
[7] Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN. 1998 Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273, 33048-53. (doi: 10.1074/jbc.273.49.33048)
[8] Wagner J, Ma L, Rice JJ, Hu W, Levine AJ, Stolovitzky GA. 2005 p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM
and delayed feedback. *SystBiol* **152**,109-18.

[9] Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL,Tagami H, Nakatani Y, Livingston DM.2003 Polyubiquitination of p53 by p300. *Science* **300**(5617), 342-344. (doi: 10.1126/science.1080386)

[10] Gu W, Roeder RG. 1997 Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain. *Cell* **90**,595-606 (doi:10.1016/S0092-8674(00)80521-8).

[11] Kobet E, Zeng X, Zhu Y, Keller D, Lu H. 2000 Mdm2 inhibits p300-mediated p53 acetylation and activation by forming a ternary complex with the two proteins. *ProcNatAcadSciUSA* **97**, 1254712552. (doi:10.1073/pnas.97.23.12547)

[12] Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Et-tore Appella,Tso-Pang Yao.2001 p300/CBP-mediated acetylation of p53 acetylation is commonly induced by p33-acivating agents and inhibited by Mdm2. *EMBOJ* **20**, 1331-40. (doi:10.1093/emboj/20.6.1331).

[13] Li, Luo J, Brooks CL, Gu W. 2002 Acetylation of p53 Inhibits Its Ubiquitination by Mdm2. *J BiolChem* **277**, 50607-50611. (doi: 10.1042/jbc.C200578200)

[14] Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y,Appella E, Yao TP. 2002 Mdm2HDAC1-mediated deacetylation of p53 is required for its degradation. *EMBOJ* **21**,6236-6245. (doi:10.1093/emboj/cdf161).

[15] Juan LJ, Shia WJ, Chen MH, Yang WM, Sato E, Lin YS, Wu CW. 2000 Histone deacetylases specifically down-regulate p53-dependent gene activation. *J BiolChem* **275**, 20436-20443. (doi:10.1042/jbc.M000202200).

[16] Pavithra L, Mukherjee S, Sreenath K, Kar S, Sakaguchi K, Roy S, Chattopadhyay S. 2009 SMAR1 Forms a Terrnary Complex with p53-Mdm2 and Negatively Regulates p53-mediated Transcription. *J Mol Biol* **388**, 691-702. (doi: 10.1016/j.jmb.2009.03.033)

[17] Sinha S, Malonina S K, Mittal S P K, Mathai J, Pal J K, Chattopadhyay S. 2012 Chromatin remodelling protein SMAR1 inhibits p53 dependent transactivation by regulating acetyl transferase p300. *Int JBiochemandCellBio* **44**,46-52. (doi: 10.1016/j.biocel.2011.10.020).

[18] Singh K, Mogare D, Giridharagopalan RO, Gorajru R, Pande G, Chattopadhyay S. 2007 p53 target gene SMAR1 is dysregulated in breast cancer: its role in cancer cell migration and invasion. *PLoSOne* **2**, e660. (doi:10.1371/journal.pone.0000660).

[19] Jalota A, Singh K, Pavithra L, Kaul-Ghanekar R, Jameel S, Chattopadhyay S. 2005 Tumor suppressor SMAR1 activates and stabilizes p53 through its arginine-serine-rich motif. *J BiolChem* **280**, 1601929. (doi:10.1042/jbioc.M413200200).

[20] Yang H, Yan B, Liao D, Huang S and Qiu Y. 2015 Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. *CellDeathandDisease* **6**, e1747. (doi:10.1038/cddis.2015.106).

[21] Sinha S, Malonina SK, Mittal SP, Singh K, Kadhreppa S, Kamar R, Pal JK, 2010 Chattopadhyay S. Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element. *EMBOJ* **29**, 83042. (doi: 10.1038/emboj.2009.395).

[22] Rampalli S, Pavithra L, Bhattacharya K, Kundu TK, Chattopadhyay S. 2005 Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. *MolCellBiol* **25**, 841529. (doi:10.1128/MCB.25.19.8415-8429.2005)

[23] Bar RL, Maya R, Segel LA, Alon U, Levine AJ, Orren M. 2000 Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. *ProcNatlAcadSc* **97**, 1125011255.

[24] Hunziker A, Jensen MH, Sandeep K. 2010 Stress-specific response of the p53-Mdm2 feedback loop. *BMCSystemsBiology* **4**, 94. (doi:10.1186/1752-0509-4-94)

[25] Qi JP, Shao SH, Xie J, Zhu Y. 2007 A mathematical model of p53 gene regulatory networks under radiotherapy. *Biosyst* **90**, 697086. (doi:10.1016/j.biosystems.2007.02.007)

[26] Legewie S, Nils B, Herzel H. 2006 Mathematical Modeling Identifies Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability. *PLOSCompBio* **2**(9), e120. (doi:10.1371/journal.pcbi.0020120)

[27] Cilibrato A, Novak B, Tyson JJ. 2005 Steady States and Oscillations in the p53/Mdm2 Network. *CellCycle* **4**, 488493.

[28] Boze I, Ghosh B. 2007 The p53-Mdm2 network: from oscillations to apoptosis. *JBioSc**32**, 991-997.

[29] Chong KH, Sandhya S, Kulasiri D. 2015 Mathematical modelling of p53 basal dynamics and DNA damage responses. *MathBio* **259**, 2742. (doi:10.1016/j.mbs.2014.10.010)

[30] Md.Zubbair Malik, Shahnawaz Ali, Md. Jahoor Alam, Romana Ishrat, R.K. Brojen Singh. 2015 Dynamics of p53 and Wnt cross talk. *ComputationalBiolog andChemistry*. (doi:10.1016/j.compbiolchem.2015.07.014)

[31] Krzysztof P, Gandolfi A, Donofrio A. 2014 The Pharmacodynamics of the p53-Mdm2 Targeting Drug Nutlin: The Role of Gene-Switching Noise. *PLOSCompBio* **10**(12), e1003991. (doi:10.1371/journal.pcbi.1003991).

[32] Alam Md J, Devi GR, Ravins, Ishrat R, Agarwal SM, and Singh RKB. 2013 Switching p53 states by calcium: Dynamics and interaction of stress systems. *MolBiosys* **9**, 508521. (doi:10.1039/c3mb25277a).

[33] Arora A, Gera S, Maheshwari T, Raghav D, Alam Md.J, Singh RKB, Agarwal SM. 2013 The Dynamics of Stress p53-Mdm2 Network Regulated by p300 and HDAC1. *PLOSOne* **8**(2), e52736. (doi:10.1371/journal.pone.0052736).

[34] Alam MJ, Kumar Singh, Singh RK.2015 Bifurcation in Cell Cycle Dynamics Regulated by p53. *PLOSOne* **10**(6), e0129620. (doi:10.1371/journal.pone.0129620).

[35] Meek DW, Anderson CW. 2009 Posttranslational Modification of p53: Cooperative Integrators of Function. *ColdSpringHarbPerspectBiol* **00**, a000950. (doi:10.1101/cshperspect.a000950).

[36] Rodriguez MS, Desterro JMP, Lain S, Lane DP, Hay RT. 2000 Multiple C-Terminal Lysine Residues Target p53 for Ubiquitin-Proteasome-Mediated Degradation. *MolCellBiol* **20**, 8458.

[37] Leslie PH. 1958 A Stochastic Model for Studying the Properties of Certain Biological Systems by Numerical Methods. *Biometrika* **45**, 1631. (doi:10.2307/2333042)

[38] Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R. 2006 Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. *JCellBiol**173**, 53344. (doi:10.1038/jcb.200512059).

[39] Press WH,Teukolsky SA, Vetterling WT, Flannery BP. 1992 Numerical Recipe in Fortran.
[40] Murray JD. 2003 Mathematical Biology I and II. Springer – Verlag 3rd Edition.

[41] Schauer M, Heinrich R. 1983 Quasi-steady state approximation in the Mathematical modeling of Biochemical reaction networks. *MathBiosc* 65, 155-170. (doi:10.1016/0025-5564(83)90058-5)

[42] Pedersen MG, Bersani AM, Bersani E. 2007 Quasi steady-state approximations in complex intracellular signal transduction networks-a word of caution. *JMathChem* 43, 1318. (doi:10.1007/s10910-007-9248-4)

[43] Bandt C, Pompe B. 2002 Permutation entropy: a natural complexity measure for time series. *PhysRevLett* 88, 174102. (doi:10.1103/PhysRevLett.88.174102)

[44] Cao Y, Tung, WW, Gao JJ, Protopopescu VA, Hively LM. 2004 Detecting dynamical changes in time series using the permutation entropy. *PhysRevE* 70, 046217. (doi:10.1103/PhysRevE.70.046217)

[45] Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. 2004 Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. *ProcNatlAcadScUSA* 101(8) 2259-2264. (doi:10.1073/pnas.0308762101)

[46] Luo J, Su F, Chen D, Shiloh A, Gu W. 2000 Deacetylation of p53 modulates its effect on cell growth and apoptosis. *Nature* 408(6810), 377381. (doi:10.1038/35042612)

[47] Bolden JE, Shi W, Jankowski K, Kan C-Y, Cluse L, Martin BP, MacKenzie KL, Smyth GK and Johnstone RW. 2013 HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. *CellDeathandDisease* 4, e19. (doi:10.1038/cddis.2013.9)

[48] Loewer A, Batchelor E, Gaglia G, Lahav G. 2010 Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells. *cell* 142, 89100. (doi:10.1016/j.cell.2010.05.031)

[49] Bizzarri AR, Cannistraro S. 2011 Free energy evaluation of the p53-Mdm2 complex from unbinding work measured by dynamic force spectroscopy. *PhysChemPhys* 13(7), 2738-43. (doi: 10.1039/c0cp01474e)

[50] Ingunn W. Jolma, Xiao Yu Ni, Ludger Rensing and Peter Ruoff. 2010 Harmonic Oscillations in Homeostatic Controllers: Dynamics of the p53 Regulatory System. *BiophysicalJournal* 98, 743752. (doi: 10.1016/j.bpj.2009.11.013)

[51] Zatorsky NG, Rosenfeld N, Itzkovitz S, Milo R, Sigal R, Dekel E, Yarnitzky T, LironY, Polak Y, Lahav G, Alon U. 2006 Oscillations and variability in the p53 system. *MolSystBiol* 2, 0033. (doi:10.1038/msb4100068)