Eukaryotic cells contain distinct organelles, but not all of these compartments are enclosed by membranes. Some intrinsically disordered proteins mediate membraneless organelle formation through liquid–liquid phase separation (LLPS). LLPS facilitates many biological functions such as regulating RNA stability and ribonucleoprotein assembly, and disruption of LLPS pathways has been implicated in several diseases. Proteins exhibiting LLPS typically have low sequence complexity and specific repeat motifs. These motifs promote multivalent connections with other molecules and the formation of higher-order oligomers, and their removal usually prevents LLPS. The intrinsically disordered C-terminal domain of TAR DNA-binding protein 43 (TDP-43), a protein involved in motor neuron disease and dementia lacks a dominant LLPS motif, however, and how this domain forms condensates is unclear. Using extensive mutagenesis of TDP-43, we demonstrate here that three residues are most important for TDP-43 to undergo LLPS. Our results also suggested that only a few residues may be required for TDP-43 LLPS because the α-helical segment (spanning ~20 residues) in the middle part of the C-terminal domain tends to self-assemble, reducing the number of motifs required for forming a multivalent connection. Our results indicating that a self-associating α-helical element with a few key residues regulates condensate formation highlight a different type of LLPS involving intrinsically disordered regions. The C-terminal domain of TDP-43 contains ~50 disease-related mutations, with no clear physicochemical link between them. We propose that they may disrupt LLPS indirectly by interfering with the key residues identified here.

Eukaryotic cells have different membrane-enclosed compartments (1) but not all of these are enclosed by a lipid membrane. Membraneless organelles, such as the stress granules that regulate RNA stability or the nucleoli that regulate ribonucleoprotein assembly (2), are also biologically important. Both in vitro and in-cell experiments have shown that some of the proteins in membraneless organelles can reversibly form condensates through liquid–liquid phase separation (LLPS) (reviewed in Refs. 3–7). Multivalency (the presence of multiple binding sites) is critical for LLPS, as highlighted by the importance of tandem-repeat Src homology 3 domains and polyproline-rich motifs for signal transduction in actin regulation (8). Intrinsically disordered proteins (IDPs) with low sequence complexity, repeated sequence motifs, and structural plasticity facilitate multivalent interactions, as has been shown for several RNA-binding proteins, including hnRNPs (9–12), FUS (11, 13–16), and Whi3 (17). These RNA-binding proteins maintain protein homeostasis in cells by storing RNA inside membraneless organelles, whereas it has also been suggested that their impaired or irreversible aggregation may lead to proteinaceous diseases (9, 13). Signal transduction and RNA storage are not the only functions of the condensates: the protein BuGz facilitates the assembly of microtubules (18); SPD-5 is a key scaffold protein in the nucleation of microtubules in pericentriolar material (19); gene silencing has been shown to involve the LLPS of heterochromatin proteins (20, 21); the protein Tau, implicated in Alzheimer’s disease, has been shown to form condensates (22); and the yeast prion protein Sub35 undergoes LLPS in response to cellular stress (23). Our previous study also suggests that the LLPS of galectin-3’s low-complexity N-terminal domain is important for the formation of extracellular galectin-glycan lattices (24).

A number of amino acid motifs in IDPs with low sequence complexity are known to facilitate LLPS; for instance, tyrosines flanked with glycine or serine in FUS protein (11), the large number of FG and RG dipeptide repeats in Ddx4 (25), arginine-rich dipeptide repeats in C9orf72 (26), or the prevalence of negatively charged and aromatic/hydrophobic residues in the disordered domain of nephrin (27); and nucleoporins multivalently interact with transport factors through their FG repeats, hinting at a similar tendency to form condensates (28, 29). In these proteins, the formation of multivalent connections is facilitated by the presence of dozens of these motifs. In contrast, there is no dominant LLPS motif in the intrinsically disordered C-terminal domain of the TAR DNA-binding protein of 43 kDa (TDP-43; Fig. 1), which also forms condensates (9, 30–32): this ~160-residue domain contains only six positively and three negatively charged amino acids, four typical (G/S)-
(F/Y)-(G/S) LLPS motifs, and three sparsely distributed FG repeats (Fig. 1A). How this intrinsically disordered domain forms condensates using relatively few LLPS motifs is an open question. One of the main differences between TDP-43 and other IDP LLPS systems is its central α-helical element (residues 320–340) (30, 31, 33), which is critical for forming condensates (30, 32). This α-helix assists intermolecular self-association (30, 31), and we have shown in a previous study (31) that LLPS is driven by hydrophobicity and inhibited by electrostatic repulsion. Although we demonstrated that removing a hydrophobic tryptophan in this α-helix severely disrupts LLPS (31), we did not untangle the network through which TDP-43 molecules make multivalent contacts using these sparse LLPS motifs. Here, we use mutagenesis to systematically investigate the effects on LLPS of seven aromatic residues that precede or follow glycine or serine (Fig. 1). We show that the most important elements for TDP-43 LLPS are the three tryptophans in this domain, especially Trp-334, whereas other aromatic motifs contribute to a lesser extent. This mechanism, involving just a few repeated motifs and an α-helical assembly center, is different from those previously described for LLPS and provides a new perspective on the disease-associated mutations of TDP-43.

Results

TDP-43 liquid–liquid phase separation

In addition to its functions in gene regulation and mRNA transportation (34), TDP-43 has been identified as the main disease protein in the biopsies of amyotrophic lateral sclerosis (ALS) patients (35). Like many other ALS-associated RNA-binding proteins such as FUS, some hnRNPs, and TIA-1 (36), TDP-43 has been shown to undergo LLPS (9). It has been suggested, furthermore, that the disruption of LLPS increases the pathological fibrilization of these proteins (36). The mechanism governing LLPS for TDP-43 is therefore important for its pathogenicity. Cell-based studies have demonstrated that TDP-43 droplet-like properties are inducible under certain conditions (32, 37). Conicella et al. (30) have also characterized in detail the LLPS properties of the C-terminal domain of TDP-43 in vitro. They reported that this domain only undergoes LLPS in the presence of ions or RNA molecules (30), whereas with a slightly different construct and buffer conditions, we induced LLPS of TDP-43 at low temperatures in the absence of salt or RNA molecules (31). We measured the turbidity of the WT sample (the optical density at 600 nm, OD600 nm) and the three ALS-associated mutations (Q331K, A315E, and A315T) at different temperatures (Fig. 2B) to confirm the occurrence of LLPS. We also collected time-lapse micrographs from low to high and then back to low temperatures to confirm the reversibility of the process (Fig. 2C, and supporting Movie S1). Although turbidity depends on both the number and the size of the particles, the TDP-43 condensates were all found to be around 1 μm in diameter (Fig. 2B and supporting Fig. S1) in agreement with Moliex et al.’s observation (9). This situation differs from the spread of condensate sizes usually observed for LLPS proteins. For TDP-43 therefore, turbidity reflects only the number of particles present. We thus used the turbidity of the sample, supported by micrographs, to indicate the presence of LLPS. We measured the turbidity and collected microscopic images of the ALS-related mutants Q331K (net charge increased from +3 to +4) and A315E (net charge reduced from +3 to +2), artificial W334G (removal of a hydrophobic residue), the Q331K variant in the presence of NaCl (screening of charge–charge interactions), and the WT in the presence of urea or 1,6-hexanediol (disruption of hydrophobic interactions) to confirm that LLPS occurs as a competition between
TDP-43 LLPS mediated by a few key residues

Figure 2. Liquid–liquid phase separation of the C-terminal domain of TDP-43. A, the optical density at 600 nm (OD_{600 nm}) of a 20 μM WT sample at different temperatures, highlighting the reversibility of the process. B, micrographs (scale bar: 10 μm) at different static temperatures. C, time-lapse micrographs demonstrating the reversibility of condensate formation (see “Experimental procedures” for details of how these images were collected). D, turbidity measured at 5 °C for different mutants in a 10 mM phosphate buffer at pH 6.5 only (solid bars) or with additional compounds (NaCl, urea, or hexanediol, open bars). E, micrographs from the samples whose turbidity is shown in panel D.

hydrophobic and electrostatic forces, as we demonstrated previously using different buffer conditions (Fig. 2, D and E) (31). NMR spectroscopy analysis shows that these mutations and different buffer conditions have little effect on the α-helical propensity of the central domain (Ref. 31 and supporting Fig. S2).

The three key tryptophans critical for LLPS

In our previous study, we demonstrated that replacing hydrophobic Trp-334 with glycine disrupts LLPS despite favorable conditions, i.e. high protein concentration (40 μM), high NaCl concentration (300 mM), and low temperature (5 °C) (31). We also noted that LLPS still occurs for W334G when the protein concentration is greater than 100 μM. (Note that all the ALS-associated mutants we have studied and the WT precipitated rapidly when the protein concentration is higher than 40 μM under our standard buffer conditions: pH 6.5, 10 mM phosphate buffer.) Increasing the protein concentration increases the chance for the protein molecules to interact with one another and thus compensates for the loss of the attraction from Trp-334 driven by the hydrophobic interaction. A single residue, however, is unlikely to disrupt all the multivalent contacts that contribute to forming the higher-order assembly unless this assembly is divergent. Trp-334 follows a serine and precedes a glycine residue, which is reminiscent of a recognized LLPS motif: tyrosine or phenylalanine flanked by glycine or serine (10, 11, 14). It is noteworthy that there are only three tryptophans in the C-terminal domain, and all three present this motif (Trp-334, Trp-385, and Trp-412, purple bars in Fig. 1). Conicella et al. (30) performed intermolecular paramagnetic relaxation enhancement studies using a nitroxide spin-label introduced at residue 317 and observed enhanced NMR relaxation rates from the central α-helix of one molecule to that of another and between the middle α-helix and residues 382–385 (containing Trp-385). Although this was not mentioned in the original study, the relaxation rates of residues ~400–412 were also increased, indicating contacts between the spin label at position 317 and the region around Trp-412. Furthermore, tryptophans have been shown to initiate the refolding of a denatured protein in acidic urea (38), which also suggests that tryptophans may initiate higher-order intermolecular assembly.

In light of these studies, our hypothesis was that the three tryptophans are involved in the initiation of LLPS and may form multivalent connections by themselves. To understand the importance of each tryptophan for LLPS, we created all possible tryptophan-to-glycine constructs and used the turbidity and micrographs of the corresponding samples under conditions favoring condensate formation. At 5 °C and a protein concentration of 20 μM, clear evidence of LLPS was only observed for the WT sample (Fig. 3A). In the presence of 100 mM NaCl at the same protein concentration (Fig. 3, B and D, and supporting Fig. S1), the only constructs for which increased turbidity and condensates in the micrographs were observed were two single tryptophan-replaced (Δ1W) variants: W385G and W412G. When we increased the protein concentration to 100 μM but without salt, all three Δ1W variants showed signs of LLPS with W385G and W412G having a stronger phase separation tendency than W334G (Fig. 3, C and D, and supporting Fig. S1). Under these conditions, condensates and increased turbidity were observed for all three double-tryptophan (Δ2W) mutants, more so for the W385G/W412G variant than the W334G/W385G and W334G/W412G variants. There were almost no detectable signs of LLPS for the triple-tryptophan (Δ3W) mutant, W334G/W385G/W412G. When salt was added at this high protein concentration, the W385G and W412G samples
precipitated immediately (Fig. S3) and the Δ2W variants followed a similar trend to the one shown in Fig. 3C, namely that the strongest signs of LLPS were observed for the variant with Trp-334 retained (W385G/W412G). The turbidity of the Δ3W sample was insignificant. We also performed the experiments “reversibly,” to demonstrate that the samples with zero optical density do still contain protein molecules. We centrifuged 100 μL samples at 15,000 x g at 5 °C for 5 min with a higher protein concentration in the supernatant indicating a lesser propensity for LLPS. The results are consistent (Fig. S4).

These results indicate that Trp-334 is the most important of the three tryptophans for LLPS, as its removal severely reduces the LLPS tendency of the corresponding WT and disease related variants under the conditions considered here (Figs. 2D and 3B). Only when the protein concentration is increased to 100 μM are condensates observed for the W334G variant. The 20 μM samples of the W385G and W412G mutants are more prone to LLPS than W334G (Fig. 3, B–D), reinforcing this interpretation that Trp-334 is more important than Trp-385 or Trp-412 for LLPS. The Δ2W variants with Trp-334 removed (W334G/W385G and W334G/W412G) show much less of a tendency toward LLPS than the W385G/W412G variant, also in agreement with this interpretation. Although we do not have NMR chemical shift assignments for all these tryptophan mutants, we have shown previously that the W334G mutation, which is within the α-helical region, has little effect on its α-helical propensity (31). The good overlap between the NMR spectra of the W334G and Δ3W variants (Fig. 3F), especially for cross-peaks from residues in the α-helix, indicates that their conformations are similar.

The LLPS network between tryptophans and other motif residues

Because alanine is generally regarded as being as hydrophobic as tryptophan (39) or more so (40, 41), and has a greater α-helical propensity (42), we replaced Trp-334 with alanine to investigate the role of hydrophobicity and secondary structure in TDP-43’s LLPS. (Note that we did not insert phenylalanine or tyrosine because (G/S)-(F/Y)-(G/S) is also an LLPS motif.) Samples of the W334A (unaltered or increased hydrophobicity) variant were found to have a similar turbidity to those of the W334G (reduced hydrophobicity) variant under all conditions, suggesting that Trp-334 is involved in intermolecular multivalent linking (Fig. 4).

The Δ2W construct with Trp-334 retained (W385G/W412G) still shows signs of LLPS when the protein concentration is high (100 μM, Fig. 3, C and D), indicating that residues other than the three tryptophans are involved in the formation of condensates (i.e. it is not simply a trivalent network that drives LLPS). Accordingly, we introduced glycines to replace the single tyrosine and three phenylalanine residues in (G/S)-(F/Y)-(G/S) motifs in the W385G/W412G variant, leaving Trp-334 only in place (i.e. Δ2W.Δ3F.Δ1Y in the nomenclature introduced above). No increase in turbidity was observed for this construct under any conditions, nor were any condensates observed in the micrographs (Fig. 4), as was the case for the Δ3W variant. These results for the Δ2W (W385G/W412G) and Δ2W.Δ3F.Δ1Y constructs indicate that the corresponding tyrosine and phenylalanine residues are also involved in the formation of condensates. However, their contribution is...
TDP-43 LLPS mediated by a few key residues

Figure 4. Turbidity of samples of WT TDP-43 and W334A and other phenylalanine-to-glycine and tyrosine-to-glycine variants. All data were collected at 5 °C. A and B, turbidity of 20 µm protein samples (A) in the absence and (B) in the presence of 100 mM NaCl. C, turbidity of 100 µm protein samples in the absence of 100 mM NaCl. The gray bars indicate samples that precipitated before measurements could be taken, the error bars represent the standard deviation of three repeated measurements (blue squares). D, comparison of micrographs of some of the variants indicated with gray stars in panel C (scale bar, 10 µm). E, schematic representations of the constructs.

Weaker than that of the tryptophans. Indeed, condensates were observed once more when one or both of the mutated tryptophans were reintroduced (respectively Δ1WΔ3FΔ1Y and Δ0WΔ3FΔ1Y, Fig. 4, C and D).

Supporting Fig. S2 shows that mutating Trp-334 has no effect on the structural propensity of the α-helical region. Because all the other mutations investigated here affect residues outside the α-helical region, one can assume that the α-helical propensity is likewise unchanged in these variants. This would also be consistent with our studies of ALS-associated mutants: G298S, Q331K, M337V (31), A315E in this study (Fig. S2), G294V, G294A, and A315T variants (Fig. S5), and data from other groups (30, 33).

NMR spectroscopy indicates that self-association is enhanced in the presence of Trp-334

In our previous work, we showed using NMR peak intensity ratios and chemical shift perturbations between 40 and 20 µm samples and that the C-terminal domain TDP-43 self-associates. The NMR peak intensity ratio in the α-helical region is less than would be expected from the change in protein concentration, indicating a shift in equilibrium from the monomeric to the self-associated state, as shown also by the chemical shift differences (31). These two NMR parameters are more difficult to measure for the mutants studied here because they are less prone to undergo LLPS so we increased the concentration ratios from two to five (i.e. we compared 100 and 20 µm samples). We collected NMR spectra at 15 °C, a temperature at which no condensate is observed but self-association still occurs (31). For W334G, self-association of the α-helix between protein molecules still occurs; the signal ratios for the α-helical region are slightly less than the expected five-to-one ratio and there are small changes in chemical shift between the two concentrations (upper panels in Fig. 5, A and B, and supporting Fig. S6A). Replacing Trp-334 with hydrophobic alanine does not recover self-association (middle panels in Fig. 5, A and B, and supporting Fig. S6B). These results for the W334G and W334A variants imply that the self-association tendency of the α-helical element is independent from the effects of Trp-334. On the other hand, removing all the aromatic residues in LLPS motifs except Trp-334 (Δ2WΔ3FΔ1Y), leads to more self-association than in the variants without Trp-334 (bottom panels in Fig. 5, A–C). This indicates that Trp-334 strongly enhances the self-association of the α-helix. However, the Δ2WΔ3FΔ1Y variant does not form condensates (Fig. 4C) because even though it self-associates more, multivalent contacts are still required for the protein to undergo LLPS.

Discussion

Protein multivalency is crucial for the assembly of higher-order oligomers (8). Intrinsically disordered regions favor higher-order assembly, but those with a low sequence complexity are more likely to be multivalent (11). These simple sequences often contain repeated patterns that act as alternative contact sites. For example, clustered blocks of positively and negatively charged residues are critical for the LLPS of Ddx4 (25), and (G/S)-(F/Y)-(G/S) motifs have been identified as important for LLPS in FUS protein (11). On the other hand, in the case of complex coacervation for the C-terminal domain of nephrin, the total charge composition is more important than the primary sequence (27), suggesting that hybrid connections between charged and aromatic/hydrophobic residues are involved. Systematically removing these patterns or motifs gradually reduces the LLPS tendency of the corresponding constructs, as shown in a recent study in which any consecutive 5 of the 27 tyrosines in an IDP were shown to be of equal importance for phase separation (16). Of the 25 tyrosine or phenylalanine residues in hnRNP A2 on the other hand,
about 11, clustered in a specific block, have been shown to be more important than the others for LLPS (12). The mechanism of LLPS for the C-terminal domain of TDP-43 is different, however, because only a small number of residues are involved. The most important of these is Trp-334, followed by Trp-385 and Trp-412. When the latter two tryptophans are removed, LLPS still occurs at 5 °C but only at high protein and high salt concentrations, whereas it does not when all the aromatic residues in LLPS motifs other than Trp-334 are removed, suggesting that these aromatic residues are involved in LLPS but to a lesser extent.

Why is LLPS controlled by just a few residues in TDP-43?

Multivalent connections in IDPs that undergo LLPS typically involve a large number of different motifs (11, 25) or specific types of residues (27) distributed throughout the amino acid sequence. For the C-terminal domain of TDP-43, however, LLPS is driven by just three tryptophans with minor contributions from one tyrosine and three phenylalanines. One potential reason why LLPS is controlled by fewer motifs in the C-terminal domain of TDP-43 is the presence of an α-helix. This element spans roughly 20 residues in the center of the domain (Fig. 1) and is involved in intermolecular interactions (30, 31). It is highly conserved (32) and mediates pre-mRNA splicing through interactions with other hnRNP proteins (43–45). Deleting this α-helical region or reducing its secondary structure propensity by point mutations or by inserting random sequences (30, 32) prevents LLPS. Moreover, as demonstrated in model polyalanine and polyglutamine systems, Polling et al. (46) suggest that polyalanine-formed α-helices can promote self-assembly. They also suggest that α-helical driven clustering may facilitate the nucleation of amyloid fibrils when, as for polyadenylate-binding nuclear protein 1, the fibril-promoting region is outside the polyalanine stretch. The C-terminal domain of TDP-43 has a similar sequence arrangement: the QN-rich region is outside the polyalanine stretch. The C-terminal domain of TDP-43 has a similar sequence arrangement: the α-helix in the center of the domain (Fig. 1) is known to be involved in the protein’s aggregation (47–49). Trp-334 in this α-helix may enhance the intrinsic tendency toward self-assembly of the helical element (Fig. 5), and this enhanced intermolecular interaction may thus facilitate LLPS. There is less self-association in the absence of the α-helix so many more LLPS motifs would be required to sufficiently increase the chance of intermolecular contacts via weak electrostatic interactions, hydrophobicity, and/or translational diffusion. A large number of repeated LLPS motifs may be an evolutionary advantage (25, 50). However, by bringing the molecules closer together, the α-helix reduces the number of motifs required to form higher-order assemblies.

It has been shown for several proteins that a reduced tendency toward LLPS increases the likelihood of pathological aggregation (9, 13). There are around 50 ALS-associated variants of the C-terminal domain of TDP-43 but no clear physicochemical link between the corresponding mutations. It has recently been reported that the phosphorylation of FUS protein close to LLPS-related tyrosine sites may cause disease (15, 16). Several of the ALS-associated mutations of TDP-43 (black stars in Fig. 1A) and the Ser-409 and Ser-410 phosphorylation sites (51, 52) are also close to the LLPS motifs we identified here. Studying the effect of these ALS mutants on LLPS motifs may offer an alternative avenue toward understanding the cause of this disease and others. Furthermore, the fact that the LLPS of this intrinsically disordered domain is controlled by just a few residues may explain the unusual droplet form of TDP-43 (9).
TDP-43 LLPS mediated by a few key residues

Table 1

Constructs	Extinction coefficient	A_{280 nm} (1%, g/100 ml)
WT	17,990	11.31
W334G	12,490	7.92
W334A	12,490	7.91
W385G	12,490	7.92
W412G	12,490	7.92
W334G/W385G	6,990	4.47
W385G/W412G	6,990	4.47
Δ3W	1,490	0.96
Δ2W.Δ3F.Δ1Y	5,500	3.6
Δ1W.Δ3F.Δ1Y	11,000	7.14
Δ0W.Δ3F.Δ1Y	16,500	10.62

Experimental procedures

Protein expression and purification

The constructs of the C-terminal domain of TDP-43 (residues 266–414) were prepared using a His6 tag as described previously (31, 53). This purification tag has no effect on the α-helical propensity or the LLPS tendency of the domain (31). Most mutants were created using a designed primer (Table S1). The Δ2W.Δ3F.Δ1Y construct was created by whole gene synthesis and the Δ1W.Δ3F.Δ1Y and Δ0W.Δ3F.Δ1Y constructs were created with adapted primers (Table S1). All constructs were verified by DNA sequencing. The same protein expression, purification, and sample quality control protocols were used as described in our previous publication (31). In short, the overexpressed protein was extracted from inclusion bodies using 8 M urea and purified using a nickel-charged immobilized metal-ion affinity chromatography column (Qiagen, Inc.) and then a C4 reverse phase column (Thermo Scientific, Inc.) using an HPLC system. The purified sample was lyophilized for storage, and then dissolved in 10 mM phosphate buffer at pH 6.5 for experiments. The protein concentration was determined using the Beer-Lambert law by measuring the absorbance at 280 nm using a NanoDrop UV-visible spectrometer (Thermo Scientific, Inc.) with the appropriate extinction coefficients (Table 1). The extinction coefficients were calculated based on the primary sequence using the ExPaSy server (54).

Turbidity measurements

The turbidity of the protein samples was quantified by measuring light transmittance at 600 nm using a JASCO V550 UV-visible spectrophotometer. The temperature of the spectrophotometer was controlled using a water bath. For each measurement, the sample was left to equilibrate in the temperature-controlled water bath for 5 min. Ten scans were accumulated for each measurement and measurements at each temperature point were repeated three times to estimate the associated errors. The data are reported as mean ± S.D. The samples were all left to return to room temperature after each measurement to confirm the reversibility of the LLPS process.

Microscopy

The micrographs were collected using an Olympus BX51 microscope with a ×40 long working distance objective lens. The images were recorded with a Zeiss AxioCam MRm camera. The images were recorded with a Zeiss AxioCam MRm microscope with a cryogenic probe. The data were processed using NMRPipe (60). Kjaergaard et al.’s (61) database of random-coil NMR spectroscopy was recorded using the standard pulse sequence and the WATERGATE solvent saturation scheme (57) before and after all NMR experiments. Standard chemical shift assignment experiments were recorded with nonuniform sampling schemes (58, 59). All spectra were recorded on a Bruker AVIII 600 MHz spectrometer with a cryogenic probe. The data were processed using NMRPipe (60). Kjaergaard et al.’s (61) database of random-coil shifts was used for secondary chemical shift analysis. The procedure used to analyze the peak intensities has been described in detail previously (31). Briefly, the nonlinear line shape modeling function in NMRPipe was applied to all the HSQC spectra, with a Lorentzian-to-Gaussian window function. The averaged chemical shift difference (Δδav) was calculated using

\[
\Delta \delta_{av} = \sqrt{\left(\Delta \delta_{1}\right)^2 + \left(\frac{1}{5}\Delta \delta_{2}\right)^2}
\]

where Δδ1 and Δδ2 are the chemical shift differences between two 1H-15N HSQC spectra, respectively, for the amide proton and the nitrogen chemical shifts.

Concentration measurements after centrifugation

Different 100 μl protein samples were prepared in 1.5-ml Eppendorf tubes. The samples were centrifuged at 15,000 × g at 5 °C for 5 min. The concentration of the supernatants was measured using a NanoDrop spectrometer. The experiments were repeated three times for each variant. The results are reported as mean ± S.D.

Author contributions—H.-R. L. and J.-r. H. conceptualization; H.-R. L. and W.-C. C. data curation; H.-R. L., W.-C. C., P.-C. C., and J.-r. H. formal analysis; H.-R. L., P.-C. C., and J.-r. H. funding acquisition; H.-R. L., W.-C. C., P.-C. C., and J.-r. H. investigation; H.-R. L., W.-C. C., P.-C. C., and J.-r. H. methodology; H.-R. L. and W.-C. C. visualization; W.-J. W. and J.-r. H. supervision; W.-J. W. and J.-r. H. funding acquisition; J.-r. H. writing-original draft; J.-r. H. project administration; J.-r. H. writing-review and editing.

Acknowledgment—We thank Professor Mei-Lin Ho (Soochow University) for access to the temperature-controlled microscope stage.
TDP-43 LLPS mediated by a few key residues

1. Larson, A. G., Elnatan, D., Keenan, M. M., Trnka, M. J., Johnston, J. B., Burlingame, A. L., Agard, D. A., Redding, S., and Narlikar, G. J. (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. *Nature 547*, 236–240 CrossRef Medline

2. Strom, A. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X., and Karpen, G. H. (2017) Phase separation drives heterochromatin domain formation. *Nature 547*, 241–245 CrossRef Medline

3. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E., and Zweckstetter, M. (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. *Nat. Commun. 8*, 275 CrossRef Medline

4. Franzmann, T. M., Jahnel, M., Pozniakovsky, A., Mahamid, J., Holehouse, A. S., Nüske, E., Richter, D., Baumeister, W., Grill, S. W., Pappu, R. V., Hyman, A. A., and Alberti, S. (2018) Phase separation of a yeast prion protein promotes cellular fitness. *Science 359*, eaao5654 CrossRef Medline

5. Lin, Y. H., Qiu, D. C., Chang, W. H., Yeh, Y. Q., Jeng, U. S., Liu, F. T., and Huang, J. R. (2017) The intrinsically disordered N-terminal domain of galec-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. *J. Biol. Chem. 292*, 17845–17856 CrossRef Medline

Reference

1. Warren, G., and Wickner, W. (1996) Organelle inheritance. *Cell 84*, 395–400 CrossRef Medline

2. Courchaine, E. M., Lu, A., and Neugebauer, K. M. (2016) Droplet organelles! *EMBO J. 35*, 1603–1612 CrossRef Medline

3. Hyman, A. A., Weber, C. A., and Jülicher, F. (2014) Liquid-liquid phase separation in biology. *Annu. Rev. Cell Dev. Biol. 30*, 39–58 CrossRef Medline

4. Guo, L., and Shorter, J. (2015) It’s raining liquids: RNA tunics viscoelasticity and dynamics of membraneless organelles. *Mol. Cell 60*, 189–192 CrossRef Medline

5. Chong, P. A., and Forman-Kay, J. D. (2016) Liquid-liquid phase separation in cellular signaling systems. *Curr. Opin. Struct. Biol. 41*, 180–186 CrossRef Medline

6. Banani, S. F., Lee, H. O., Hyman, A. A., and Rosen, M. K. (2017) Biomolecular condensates: organizers of cellular biochemistry. *Nat. Rev. Mol. Cell Biol. 18*, 285–298 CrossRef Medline

7. Shin, Y., and Brangwynne, C. P. (2017) Liquid phase condensation in cell physiology and disease. *Science 357*, eaaf4382 CrossRef Medline

8. Li, P., Banjade, S., Cheng, H. C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J. V., King, D. S., Banani, S. F., Russo, P. S., Jiang, Q. X., Nixon, B. T., and Rosen, M. K. (2012) Phase transitions in the assembly of multivalent signalling proteins. *Nature 483*, 336–340 CrossRef Medline

9. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A. P., Kim, H. J., Mittag, T., and Taylor, J. P. (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. *Cell 163*, 123–133 CrossRef Medline

10. Lin, Y., Potter, D. S., Rosen, M. K., and Parker, R. (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. *Mol. Cell 60*, 208–219 CrossRef Medline

11. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., Mirzaei, H., Goldsmith, E. J., Longgood, J., Pei, J., Grishin, N. V., Frantz, D. E., Schneidereit, J. W., Chen, S., Li, L., et al. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. *Cell 149*, 753–767 CrossRef Medline

12. Xiang, S., Kato, M., Wu, L. C., Lin, Y., Ding, M., Zhang, Y., Yu, Y., and Mc Knight, S. L. (2015) The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. *Cell 163*, 829–839 CrossRef Medline

13. Patel, A., Lee, H. O., Jawerth, L., Maharan, S., Jahnel, M., Hein, M. Y., Stoynov, S., Mahamid, J., Saha, S., Schröder, T., Pozniakowski, A., Poser, I., Magelli, N., Royer, L. A., Weigert, M., et al. (2015) A liquid-to-solid phase transition of the ALS protein FUS facilitated by disease mutation. *Cell 162*, 1086–1097 CrossRef Medline

14. Burke, K. A., Janke, A. M., Rhine, C. L., and Fawzi, N. L. (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. *Mol. Cell 60*, 231–241 CrossRef Medline

15. Monahan, Z., Ryan, V. H., Janke, A. M., Burke, K. A., Rholds, S. N., Zerex, G. H., O’Meally, R., Dignon, G. L., Conicella, A. E., Zheng, W., Best, R. B., Cole, R. N., Mittal, J., Shewmaker, F., and Fawzi, N. L. (2017) Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. *EMBO J. 36*, 2951–2967 CrossRef Medline

16. Lin, Y., Currie, S. L., and Rosen, M. K. (2017) Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. *J. Biol. Chem. 292*, 19110–19120 CrossRef Medline

17. Zhang, H., Elbaum-Garfinkle, S., Langdon, E. M., Taylor, N., Occhipinti, P., Bridges, A. A., Brangwynne, C. P., and Gladfelter, A. S. (2015) RNA controls polyQ protein phase transitions. *Mol. Cell 60*, 220–230 CrossRef Medline

18. Jiang, H., Wang, S., Huang, Y., He, X., Cui, H., Zhu, X., and Zheng, Y. (2015) Phase transition of spinele-associated protein regulate spindlle apparatus asram. *Cell 163*, 108–122 CrossRef Medline

19. Woodruff, J. B., Ferreira Gomes, B., Widlund, P. O., Mahamid, J., Honigmann, A., and Hyman, A. A. (2017) The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. *Cell 169*, 1066–1077.e1010 CrossRef Medline
TDP-43 LLPS mediated by a few key residues

36. Taylor, J. P., Brown, R. H., Jr, and Cleveland, D. W. (2016) Decoding ALS: from genes to mechanism. *Nature* 539, 197–206 CrossRef Medline

37. Gopal, P. P., Nirschl, J. J., Klinman, E., and Holzbaur, E. L. (2017) Amyotrophic lateral sclerosis-linked mutations increase the viscosity of liquid-like TDP-43 RNP granules in neurons. *Proc. Natl. Acad. Sci. U.S.A.* 114, E2466–E2475 CrossRef Medline

38. Klein-Seetharaman, J., Okawa, M., Grimson, S. B., Wirmer, J., Duchardt, E., Ueda, T., Imoto, T., Smith, L. I., Dobson, C. M., and Schwalbe, H. (2002) Long-range interactions within a nonnative protein. *Science* 295, 1719–1722 CrossRef Medline

39. Janin, J. (1979) Surface and inside volumes in globular proteins. *Nature* 277, 491–492 CrossRef Medline

40. Wolfenden, R., Andersson, L., Cullis, P. M., and Southgate, C. C. (1981) Affinities of amino acid side chains for solvent water. *Biochemistry* 20, 849–855 CrossRef Medline

41. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydrophatic character of a protein. *J. Mol. Biol.* 157, 105–132 CrossRef Medline

42. Levitt, M. (1978) Conformational preferences of amino acids in globular proteins. *Biochemistry* 17, 4277–4285 CrossRef Medline

43. D’Ambrogio, A., Buratti, E., Stuani, C., Guarnaccia, C., Romano, M., Ayala, Y. M., and Baralle, F. E. (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. *Nucleic Acids Res.* 37, 4116–4126 CrossRef Medline

44. Budini, M., Buratti, E., Stuani, C., Guarnaccia, C., Romano, V., De Conti, L., and Baralle, F. E. (2012) Cellular model of TAR DNA-binding protein 43 (TDP-43) aggregation based on its C-terminal Gln/Asn-rich region. *J. Biol. Chem.* 287, 7512–7525 CrossRef Medline

45. Appocher, C., Mohagheghi, F., Cappelli, S., Stuani, C., Romano, M., Feiguin, P., and Buratti, E. (2017) Major hnRNP proteins act as general TDP-43 functional modifiers both in *Drosophila* and human neuronal cells. *Nucleic Acids Res.* 45, 8026–8045 CrossRef Medline

46. Polling, S., Ormsby, A. R., Wood, R. J., Lee, K., Shoubridge, C., Hughes, J. N., Thomas, P. Q., Griffin, M. D., Hill, A. F., Bowen, Q., Bocking, T., and Hatters, D. M. (2015) Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation. *Nat. Struct. Mol. Biol.* 22, 1008–1015 CrossRef Medline

47. He, R. Y., Huang, Y. C., Chiang, C. W., Tsai, Y. J., Ye, T. I., Gao, H. D., Wu, C. Y., Lee, H. M., and Huang, J. J. (2015) Characterization and real-time imaging of the FTLD-related protein aggregation induced by amyloidogenic peptides. *Chem. Commun.* 51, 8652–8655 CrossRef Medline

48. Mompeán, M., Hervas, R., Xu, Y., Tran, T. H., Guarnaccia, C., Buratti, E., Baralle, F., Tong, L., Carrión-Vázquez, M., McDermott, A. E., and Laurents, D. V. (2015) Structural evidence of amyloid fibril formation in the putative aggregation domain of TDP-43. *J. Phys. Chem. Lett* 6, 2608–2615 CrossRef Medline

49. Mompeán, M., Buratti, E., Guarnaccia, C., Brito, R. M., Chakrabarty, A., Baralle, F. E., and Laurents, D. V. (2014) “Structural characterization of the minimal segment of TDP-43 competent for aggregation.” *Arch. Biochem. Biophys.* 545, 53–62 CrossRef Medline

50. Riback, J. A., Katanski, C. D., Kears-Scott, J. L., Pilipenko, E. V., Rojek, A. E., Sosnick, T. R., and Drummond, D. A. (2017) Stress-triggered phase separation is an adaptive, evolutionarily tuned response. *Cell* 168, 1028–1040.e1019 CrossRef Medline

51. Neumann, M., Kwong, L. K., Lee, E. B., Kremmer, E., Flatley, A., Xu, Y., Forman, M. S., Troost, D., Kretzschmar, H. A., Trojanowskii, J. Q., and Lee, V. M. (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. *Acta Neuropathol.* 117, 137–149 CrossRef Medline

52. Choksi, D. K., Roy, B., Chatterjee, S., Yusuff, T., Bakhoun, M. F., Sengupta, U., Ambegaokar, S., Kayed, R., and Jackson, G. R. (2014) TDP-43 Phosphorylation by casein kinase I epsilon promotes oligomerization and enhances toxicity in vivo. *Hum. Mol. Genet.* 23, 1025–1035 CrossRef Medline

53. Chen, T. C., Hisao, C. L., Huang, S. J., and Huang, J. R. (2016) The nearest-neighbor effect on random-coil NMR chemical shifts demonstrated using a low-complexity amino-acid sequence. *Protein Pept. Lett.* 23, 967–975 CrossRef Medline

54. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Appel, R. D., and Hochstrasser, D. F. (1999) Protein identification and analysis tools in the ExPaSy server. *Methods Mol. Biol.* 112, 531–552 CrossRef Medline

55. Piotto, M., Saudek, V., and Sklenář, V. (1992) Gradient-tailored excitation: a low-complexity amino-acid sequence. *Acta Phys. Chem.* 17, 539–552 CrossRef Medline

56. Bodenhausen, G., and Ruben, D. J. (1980) Natural abundance N-15 NMR clusters without amyloid-fibril formation. *J. Magn. Reson.* 42, 157, 277, 45, 287, 53–62 CrossRef Medline

57. Liu, M., Mao, X-a., Ye, C., Huang, H., Nicholson, J. K., and Lindon, J. C. (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. *J. Magn. Reson.* 132, 125–129 CrossRef Medline

58. Hyberts, S. G., Milbradt, A. G., Wagner, A. B., Arthanari, H., and Wagner, G. (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. *J. Biomol. NMR* 52, 315–327 CrossRef Medline

59. Hyberts, S. G., Frueh, D. P., Arthanari, H., and Wagner, G. (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. *J. Biomol. NMR* 45, 283–294 CrossRef Medline

60. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes, *J. Biomol. NMR* 6, 277–293 Medline

61. Kjærgaard, M., Brandt, S., and Poulsen, F. M. (2011) Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. *J. Biomol. NMR* 49, 139–149 CrossRef Medline

62. Radiovic, P., Obradovic, Z., Brown, C. J., and Dunker, A. K. (2003) Prediction of boundaries between intrinsically ordered and disordered protein regions. *Pac Symp. Biocomput.* 2003, 216–227 Medline

63. Obradovic, Z., Peng, K., Vucetic, S., Radiovic, P., and Dunker, A. K. (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. *Proteins* 61, 176–182 CrossRef Medline

64. Dosztányi, Z., Csizmok, V., Tompa, P., and Simon, I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. *Bioinformatics* 21, 3433–3434 CrossRef Medline

65. Wootton, J. C. (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. *Comput. Chem.* 18, 269–285 CrossRef Medline