The base of the Toarcian (Early Jurassic) in the Almonacid de la Cuba section (Spain). Ammonite biostratigraphy, magnetostratigraphy and isotope stratigraphy

1 Departamento–UEI de Paleontología, UCM - CSIC. José Antonio Novais, 2, 28040 Madrid, Spain; E-mail: mjcomas@geo.ucm.es; angoy@geo.ucm.es
2 Departamento de Estratigrafía–UEI de Correlaciones, UCM - CSIC. José Antonio Novais, 2, 28040 Madrid, Spain; E-mail: jgomez@geo.ucm.es
3 Departamento de Física de la Tierra I. Avenida Complutense s/n, Universidad Complutense, 28040 Madrid, Spain; E-mail: mlosete@fis.ucm.es, ali@fis.ucm.es

The Almonacid de la Cuba section, located in the Iberian Range, in central–eastern Spain (Fig.1), shows a good representative record for the Pliensbachian–Toarcian boundary (Early Jurassic). Four ammonite assemblages, characterized respectively by the presence of Pleuroceras, Canavaria, Dactylioceras (Eodactylites) and Dactylioceras (Orthodactylites) have been distinguished. The base of the Toarcian is located at level CU35.2, based on the first occurrence of Dactylioceras. The presence of Boreal and Mediterranean taxa allows correlation between both bioprovinces. Magnetostratigraphy shows the most complete record of reversals of the Earth magnetic field for the base of Toarcian. The onset of the positive δ¹³C excursion which has been found in the Toarcian of several sections in Europe has been recorded. Average paleotemperatures for the latest Pliensbachian Spinatum Zone was about 12.5°C. Seawater temperature rise during the lowermost Toarcian, reaching average temperatures of 16.7°C at the Tenuicostatum Zone. The ⁸⁷Sr/⁸⁶Sr curve fits with the LOWESS calibration curve.

Introduction

The Almonacid de la Cuba section, located in the Iberian Range of central–eastern Spain (Fig.1), shows a good representative record for the Pliensbachian–Toarcian boundary under outstanding outcrop conditions. The succession has been previously described by Sequeiros et al. (1978), Comas-Engilfo (1982), Comas-Engilfo and Goy (1997), Comas-Engilfo et al. (1999, 2010) and proposed as a complementary section of the Toarcian global stratotype (Goy et al., 2006).

The current official candidate for designation as the Global Stratotype Section and Point (GSSP) for the base of the Toarcian Stage is the Peniche section, located in western Portugal (Elmi et al., 1996; Elmi, 2004, 2006; Hesselbo et al., 2007). However, no magnetostratigraphic scale has been constructed in the potential stratotype. Stable isotope curves in the Peniche section have been acquired from bulk carbonates (Duarte, 1998; Hesselbo et al., 2007), from brachiopods (Suan et al., 2008), and δ¹³C and ⁸⁷Sr/⁸⁶Sr from belemnite carbonates (Hesselbo et al., 2007). However, δ¹⁸O curves have been obtained from brachiopods and the resolution of the record of paleotemperature variations based on δ¹⁸O proxies across the Pliensbachian–Toarcian is low (Suan et al., 2008).

Here we present the biostratigraphy, lithostratigraphy, sedimentology, sequence stratigraphy, magnetostratigraphy and isotope stratigraphy of the Almonacid de la Cuba section which contains a continuous record of the Pliensbachian–Toarcian boundary. Results are compared with other European and American sections and discussed.

Material and methods

The Almonacid de la Cuba section has been studied bed by bed, collected ammonites were classified and belemnites prepared for isotopic studies. The natural gamma ray of the sediments was measured with a portable scintillation counter.

The magnetostratigraphic sampling was carried out using a gasoline-powered drilling machine. A magnetic compass and an inclinometer were used for sample orientation. A total of 57 oriented cores were collected for the magnetostratigraphic study. To perform field test, an additional site (18 samples) with a different structural tilt was studied (ACI site, Fig.1b). The structure sampled is not a single cylindrical fold, therefore the only-inclination fold-test was performed. Magnetic analyses of specimens were carried out in the Paleomagnetic Laboratories of the ETH in Zürich and Madrid. The natural remanent magnetisation (NRM) of the samples was measured.
using a three-axis 2G-Enterprise cryogenic and a JR5 spinner
magnetometers. Stepwise acquisition of isothermal remanent
magnetization (IRM) followed by isothermal remagnetisation in three
orthogonal directions and subsequent progressive thermal
demagnetisation was carried out in order to identify the magnetic
mineralogy of the samples. The field applied along the three
orthogonal axes was: 2 T, 0.4 T and 0.12 T.

To obtain the primary seawater stable and strontium isotope signal,
a total of 40 belemnite rostra were collected and analysed. The rostra
were studied on polished samples and thick sections under the
petrographic and cathodoluminescence microscope. The potentially
unaltered non-luminescent portions of the rostra were sampled using
a microscope-mounted dental drill. Stable isotopes analyses were
performed in the Michigan University (USA) labs. In all samples,
isotope ratios are reported in per mil with respect to the standard
Peedee belemnite (PDB). A total of 15 diagenetically screened
belemnite calcite were analyzed for strontium isotope in the Laboratory
of Geochronology and Isotopic Geochemistry of the Universidad
Complutense of Madrid.

Lithostratigraphy, sedimentology and sequence stratigraphy

Two lithostratigraphical units can be recognized in the Almonacid
de la Cuba section: the upper part of the Barahona Fm, which is
composed of bioclastic wackestone–packstone limestone with
interbedded marls, and the lower part of the Turmiel Fm which is
constituted by an alternation of lime mudstones and marls, except on
its lowermost part, where the limestones are bioclastic lime
wackestones. The Pliensbachian–Toarcian boundary is located within
the deposits of the Turmiel Fm (Fig.2). The Barahona Fm was
deposited in an internal shallow, well-oxygenated carbonate platform
on which oysters (*Gryphaea*) predominated, but remains of nektic
organisms, such as ammonites and belemnites, are rare (Gómez and
Goy, 2005). Deposition of the Turmiel Fm at Almonacid de la Cuba
took place in a low-energy, normal salinity, open-marine external
platform environment. The hemipelagic facies of the Turmiel Fm in
the Almonacid de la Cuba section were deposited in the downthrown
block of a syndepositional fault, where expanded sections with no
significant discontinuities and containing ammonites and belemnites,
were deposited (Goy et al., 1997; Gómez and Goy, 2005).

The Upper Pliensbachian deposits are organized in shallowing-
upward sequences characterized by thickening-upward carbonates,
which are frequently topped by soft- to firm-grounds and occasionally
by hard-grounds with ferruginous crusts. The Pliensbachian–Toarcian
boundary is located within one of these shallowing-upward sequences,
where no indications of significant stratigraphic gaps were found.
The set of shallowing-upward sequences containing the
Pliensbachian–Toarcian boundary, which corresponds to the LJ3–1
cycle for Central and Northern Spain (Gómez and Goy, 2005), is
interrupted by an ephemeral transgressive interval that occurred in
the lower Tenuicostatum Zone. However, the shallowing-upward
sequences continue up to the top of level 64, where a new transgressive
episode corresponding to cycle LJ3–2 starts. The “Toarcian
transgression” developed in a few pulses, reaching the transgressive
peak at the Middle Toarcian Bifrons Zone, as it was observed in many
other areas of Spain (Gómez and Goy, 2000, 2005).

Ammonite record and biostratigraphy

The ammonite assemblages of both the Spinatum and the
Tenuicostatum zones are well represented in the Almonacid de la Cuba
section. The studied time interval is characterized by the occurrence of *Pleuroceras, Canavarria, Dactylioceras (Eodactylites)*
and *D. (Orthodactylites).* The latest subgenus also occurs in younger
beds. A similar succession was recognized in the Peniche section of
Portugal (Mouterde, 1955; Elmi, 2004, 2006), and in northwestern
Algeria (Elmi et al., 2006).

Spinatum Zone (Upper Pliensbachian). The ammonite
assemblages of the Upper Pliensbachian Spinatum Zone (at least
Episodes Vol. 33, no. 1

10.16 m thick) are characterized by the presence of Pleuroceras and Canavaria. Other genera are Emaciaticeras, Fontanelliceras, Lioceratoides and Neolioceratoides. The Spinatum Zone has been subdivided into a lower Apyrenum Subzone and an upper Hawkserense Subzone (Dean et al., 1961; Dommergues et al., 1997; Page, 2003; Meister et al., 2006).

The 4.98 m thick Apyrenum Subzone is characterized by the occurrence of Amaltheidae, particularly of the genus Pleuroceras (P. solare, P. spinatum, P. apyrenum and P. yeovilense). Hildoceratidae (Harpoceratinae) of the genera Lioceratoides (L. cf. serotinus) and Neolioceratoides (N. cf. hoffmanni) also occur.

In the Hawkserense Subzone, the Amaltheidae are recorded together with the last occurrences of Hildoceratidae (Harpoceratinae). Between beds CU16 and CU34, the Pleuroceras are replaced by Hildoceratidae (Hildoceratinae) of the genus Emaciaticeras, Canavaria and locally, Fontanelliceras. This subzone, which is 5.18 m thick, is characterized by Pleuroceras (P. spinatum, P. cf. yeovilense, P. hawkerense). The Pleuroceras occur together with Lioceratoides (L. cf. serotinus) and Neolioceratoides (N. cf. hoffmanni), as well as Canavaria [C. (C.) zancleana, C. (C.) cf. gregalis, C. (T.) elisa, and C. (T.) cf. nodosa]. In the lower part of its stratigraphic range, the genus Pleuroceras occurs together with Emaciaticeras (E. lottii, E. cf. imitator, E. emaciatum) whereas in the upper part, it occurs with Fontanelliceras (F. fontanellense) and Neolioceratoides (N. hoffmanni). In summary, the assemblages of the lower part of this subzone are dominated by the amaltheids (i.e. Pleuroceras), whereas in some levels of the upper part the Arieticeratinae became the only constituent of the ammonite assemblage. No Arieticeratinae were found, the Harpoceratinae are less than the 10% of the total, and the Harpoceratinae are always present but in a low proportion.

Tenuicostatum Zone (Lower Toarcian). The Lower Toarcian Tenuicostatum Zone has been marked by the first appearance datum of the genus Dactylioceras, used here for recognition of the base of the Toarcian. The assemblage is characterized by species of the subgenera Dactylioceras (Eodactylites) and Dactylioceras (Orthodactylites) which characterize the Mirabile and the Semicelatum subzones, respectively. The stratigraphic range of the Tenuicostatum Zone in the Iberian Range coincides with the Polymorphum Zone in the Betic Cordillera, and with the Semicelatum Zone in Portugal (Mouterde, 1967; Comas-Rengifo and Goy, 1978; Goy et al., 1988; Elmi et al., 1989, 1994, 1997).

The 1.57 m thick Mirabile Subzone is characterized by species of the subgenus Dactylioceras (Eodactylites) such as D. (E.) simplex and D. (E)
Magnetic polarity column for the Pliensbachian–Toarcian boundary at the Almonacid de la Cuba section has been constructed on the basis of the polarities of the ChRM (Fig. 2). Three normal and two reversed polarity magnetozones have been identified. Named N1–3 and R1–2. Within R1 magnetozone, a smaller magneto-subzone has been identified and labeled nR1. Polarity identified by only one sample is marked by a discontinuous bar.

At the bottom of the column, the N1 magnetozone is observed within the Pliensbachian Apyrenum Subzone. R1 is a long magnetozone extending up to the upper Hawskerense Subzone. The small magnetosubzone nR1 is located near the top of the Barahona Fm. The end of the Hawskerense Subzone is characterized by a normal polarity (N2 magnetozone). R2 nearly coincides with the boundaries of the Mirabile Subzone and the lower boundary of the Toarcian. N3 is a long magnetozone which characterizes the Tenuicostatum Zone, starting in the upper part of the Mirabile Subzone and extending up to the top of the section (Semicelatum Subzone).

Isotope stratigraphy and palaeotemperatures

The presence of belemnites in virtually all the studied beds allowed obtaining excellent $^{87} \text{Sr}/^{86} \text{Sr}$ and $^{13} \text{C}_{\text{b}}$ curves based on diagenetically screened belemnite calcite (Fig. 2).

Stable isotope record. The $^{13} \text{C}_{\text{b}}$ record shows values ranging from −0.52 to 3.59 ‰ PDB. These values tend to be quite uniform at within the uppermost Pliensbachian, averaging 1 ‰ PDB, but they tend to increase at the Lower Toarcian, where average values of 1.88 ‰ PDB were reached. The increase in the $^{13} \text{C}_{\text{b}}$ values marks the onset of a positive excursion which has been recorded in most European sections, whether in bulk rock or belemnite carbonates, in marine organic matter, and in wood (e.g. Jenkyns and Clayton, 1997; Schouten et al., 2000; McArthur et al., 2000; Hesselbo et al., 2007; Gómez et al., 2008).

In the $^{18} \text{O}_{\text{b}}$ curve, which shows values ranging from 0.73 ‰ to −1.71 ‰ PDB, also significant changes at the Pliensbachian–Toarcian transition are observed. At the Spinatum Zone, the $^{18} \text{O}_{\text{b}}$ values were slightly negative (−0.29 ‰ PDB in average), but around the transition between both stages, an excursion towards more negative values, averaging −1.3 ‰ PDB, is recorded. This negative $^{18} \text{O}_{\text{b}}$ shift has also been reported in many European sections such as the Whitby and the Yorkshire areas in the UK (Sælen et al., 1996; Jenkyns, 2003), in the French Paris Basin (Dera et al., 2009), in the Peniche section in Portugal (Suan et al., 2008), in Bulgaria (Metodieva and Koleva-Rekalova, 2008), in Northern Spain, in the Basque-Cantabrian Basin (Rosa et al., 2004), Asturias (Gómez et al., 2008), and in Central Spain (Gómez et al., 2008).

Seawater palaeotemperatures. The obtained $^{18} \text{O}_{\text{b}}$ values have been used as a proxy for calculation of the seawater palaeotemperatures at the Pliensbachian–Toarcian transition, using the Anderson and Arthur (1983) equation.

The temperature variations during the Late Pliensbachian–Early Toarcian are shown in Fig. 2. At the uppermost Pliensbachian Spinatum Zone, the palaeotemperatures were relatively low, from 9.2°C recorded around the Apyrenum–Hawskerense zonal boundary, up to 17°C calculated for one sample located near the Pliensbachian–
Toarcian boundary. Average paleotemperature of 12.5°C calculated for the Late Pliensbachian notably increased during the Early Toarcian, where average calculated temperatures were 16.7°C, including peak values above 19.5°C, reached at the Mirabile and the Semicelatum subzones.

\(^{87}\text{Sr}/^{86}\text{Sr} \text{ curve.} \) Plots of obtained \(^{87}\text{Sr}/^{86}\text{Sr} \) values against the stratigraphic column are displayed in Fig.2. The highest values (0.707104) are recorded at the uppermost Pliensbachian Apyrennum Zone. These values gradually fall towards values lower than 0.707050 around the Pliensbachian–Toarcian boundary, shifting towards higher values in the Lower Toarcian, where values of 0.707062 are reached in the belemnite calcite sampled in the Semicelatum Subzone.

Discussion and conclusions

The Almonacid de la Cuba section contains an excellent record of the Pliensbachian–Toarcian boundary, where no indications of major sedimentary breaks have been found. Four ammonite assemblages, characterized respectively by the presence of *Pleuroceras*, *Canavaria*, *Dactylioceras* (*Eodactylites*) and *Dactylioceras* (*Orthodactylites*) have been distinguished. The base of the Toarcian is located at level CU35.2, based on the first occurrence of *Dactylioceras*.

The Spinatum Zone is characterized by the succession of *Pleuroceras* (*P. transiens* - *P. solare* - *P. cf. hawskerense*), which are also used as zonal marker in NW Europe (Howarth, 1958; Comas-Rengifo, 1982; Dommergues et al., 1997; Meister et al., 2006). However, the assemblages of the upper part of the Spinatum Zone at Almonacid de la Cuba can also be compared with the ammonite zonation proposed for Southern Europe, on which the use of the Emaciaticeras Zone, subdivided into the Solare and the Elisa subzones, is preferred (Braga et al., 1982, 1984; Braga, 1983; Macchioni, 2002; Meister et al., 2006). Beds containing *P. hawskerense* are correlated with the Hawskerense Subzone of the NW European province (Dommergues et al., 1997; Page, 2003; Meister et al., 2006). Levels with *Emaciaticeras* and *Canavaria* can be correlated with the Elisa Subzone of the Emaciaticeras Zone, described by Braga (1983) in the Betic Cordillera (Southern Spain), and also documented in the Mediterranean area by Macchioni and Cecca (2002), Macchioni and Meister (2003), Page (2003) and Meister et al. (2006).

Ammonite assemblages of the Tenuicostatum Zone mainly contain taxa characteristic of the NW European province such as *Plectogrammoceras pallium* and *Dactylioceras* (*Orthodactylites*) with predominance of *Dactylioceras* and smaller *Harpoceratinae*. However, taxa of the Mediterranean province, such as *Neolioceratoides*, *Dactylioceras* (*Eodactylites*) and *P. madagascariense* are only recognized in a few levels. In the Mirabile Subzone, *D. (Eodactylites)* co-occurs with *P. pallium*. The occurrence of taxa from both provinces in the Almonacid de la Cuba section is useful to improve the correlation between the NW European and the Mediterranean provinces.

Two paleobiogeographic features can be highlighted: (1) the occurrence of *D. (E.) simplex* allows correlation with the level 1SE of the Peniche section, as well as with some North American and South American sections (Elmi et al., 1974, 2006; Hillebrandt and Schmidt-Effing, 1981); (2) *P. pallium* is a good marker for correlation with the NW European and the Mediterranean provinces. In the Ricla section (Iberian Range, Spain), Peniche section (Lusitanian Basin, Portugal) and the Melllala section (Traras Mountains, Algeria), this species, or a similar form, occurs at the base of the Mirabile Subzone (Goy and Martínez, 1990; Elmi, 2004; Bécaud, 2006; Elmi et al., 2006). Also Macchioni (2002) found that *P. pallium* is common at the Mirabile Horizon in the Mediterranean area.

Referring magnetostratigraphy, N3 is a clear magnetozone observed at the Iznalloz section (Betic Cordillera, southern Spain) by Galbrun et al. (1990) and recently described at the Sierra Palomera and Arriño sections (Iberian Range, Central Spain) by Ossete et al. (2007). R2 magnetozone is also in agreement with the reversed polarity observed in the lower part of the Iznalloz section. R2 and R1 were also recorded in the Breggia section (Horner and Heller, 1983), but the N2 magnetozone was not detected in the Alpine section. Probably because the Lower Toarcian is only poorly represented in Breggia (the Tenuicostatum Zone is around 30 cm thick, Horner and Heller, 1983). According with data presented here, it seems that there is a gap at the Pliensbachian–Toarcian boundary in the Alpine section.

The Magnetic Polarity Time Scale (MPTS) proposed by Ogg (1995, 2004) was mostly based on the Breggia section, consequently, is consistent with the general pattern of our data, but the N2 magnetozone is absent, and the age control of lower Toarcian reversals is poor. The new MPTS proposed by Osete et al. (2007) for the Toarcian is in agreement with the new data presented here, but it does not extend below the Toarcian. The magnetostratigraphic study of the Neuquén section (Iglesia-Llanos and Riccardi, 2000) has not enough resolution to describe in detail the reversals of the earth magnetic field for this time period. Therefore the magnetostratigraphic data presented here are the most complete record of reversals of the earth magnetic field for the Pliensbachian–Toarcian boundary.

A good record of the onset of the positive \(^{87}\text{Sr}/^{86}\text{Sr} \) excursion reported in many European sections has been obtained in the Almonacid de la Cuba section. Most authors are in agreement about the interpretation of the Early Toarcian positive excursion as the response of water masses to excess and rapid burial of large amounts of organic carbon rich in \(^{13}\text{C} \), that led to enrichment in \(^{13}\text{C} \) of the sediments (Jenkyns and Clayton 1997; Schouten et al., 2000), or to removal from oceans of large amounts of isotopically light carbon as organic matter into black shales or methane hydrates, which leaves oceanic carbon isotopically heavy (McArthur et al., 2000). Data presented in this work show a good latest Pliensbachian–earliest Toarcian \(^{87}\text{Sr}/^{86}\text{Sr} \)-based paleotemperature curve (Fig. 2). Average paleotemperatures measured in the latest Pliensbachian Spinatum Biochron of about 12.5°C are in good agreement with average temperatures of 11.6°C calculated in Asturias (Northern Spain, Gómez et al., 2008) and of 12°C in the Basque-Cantabrian Basin (also in Northern Spain, Rosales et al., 2004). These temperatures can be considered low for a calculated Central Spain palaeolatitude of about 35°N during the Pliensbachian–Toarcian (Osete et al., in press). Similar values of oceanic paleotemperatures recorded in the UK and in Germany (Bailey et al., 2003) confirm that the latest Pliensbachian and the earliest Toarcian represent a relative cooling interval.

A marked increase of the seawater temperature started during the Toarcian. At the Tenuicostatum Zone average temperatures of 16.7°C in the Almonacid de la Cuba section, 15°C in the Asturias sections, in Northern Spain and 16°C in the La Almunia-Ricla section, located in the Iberian Range, near the studied section, were reached (Gómez et al., 2008). That represents a ΔT between 4 and 5°C around the Pliensbachian–Toarcian transition. This palaeotemperature rise is probably one of the main causes of the so-called upper Pliensbachian...
biotic crises, and clearly marks the onset of the outstanding Early Toarcian warming interval which accelerates around the Tenuicostatum - Serpentinum zonal boundary in many European sections and extensively develops during the Early and Middle Toarcian (McArthur et al., 2000; Jenkyns, 2003; Rosales et al., 2004; Gómez et al., 2008).

The 87Sr/86Sr values obtained in the Almonacid de la Cuba section fully agree with the previously published data (McArthur et al., 2000, 2001; McArthur and Howarth, 2004; Hesselbo et al., 2007). Upper Pliensbachian 87Sr/86Sr values generally decrease at the Hawskerense Zone, reaching a first minimum value below 0.707050 in the upper portion of this Zone and a slight increase in the uppermost portion of this Zone. Minimum values are recorded at the base of the Toarcian, as predicted by the LOWESS calibration curves, and 87Sr/86Sr slowly recovers along the Tenuicostatum Zone. These results strongly support the reliability of the available 87Sr/86Sr values and the good geochemical signal included in the belemnite calcite of this section.

Acknowledgements

This research work was financed by projects CGL2008-01273, CGL2008-02203 and CGL2008-03112/BTE of the Spanish Ministerio de Educación. We acknowledge Prof. F. Heller for his valuable advice and to the group of paleomagnetism of the Institut für Geophysik (ETH Zurich) for the use of the paleomagnetic laboratory, as well as Prof. G. Pavia and M.H. Enriquez, who provided useful criticism and valuable suggestions for the improvement of the manuscript. Authors dedicated this work to the memory of Prof. S. Elmi (+) and kindly acknowledge his comments and interesting suggestions on the Almonacid de la Cuba section.

References

Anderson, T.F., Arthur, M.A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S., eds., Stable Isotopes in Sedimentary Geology, SEPM Short Course, vol. 10, pp. 1 - 151. Tulsa.

Bailey, T. R., Rosenthal, Y., McArthur J. M., van de Schootbrugge, B., and Thirlwall, M. F., 2003. Paleocceanographic changes of the Late Pliensbachian/Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic event: Earth and Planetary Science Letters, v. 212, pp. 307 - 320.

Bécaud, M., 2006, Les Hildoceratidae (Ammonitina) du Toarcien de la bordure sud et sudest du Massif Armoricain (France): Documents des Laboratoires de Géologie Lyon, v. 162, pp. 1 - 245.

Braga, J. C., 1983, Ammonites del Domerense de la Zona Subbética (Cordilleras Béticas, S. de España): Tesis Doctoral, Universidad de Granada, Granada, 410 pp.

Braga, J. C., Comas-Rengifo, M. J., Goy, A., and Rivas P., 1982, Comparaciones faunísticas y correlaciones en el Pliensbachien de la Zona Subbética y Cordillera Ibérica: Boletín de la Real Sociedad Española de Historia Natural, Geología, v. 80, pp. 221 - 244.

Braga, J. C., Comas-Rengifo, M. J., Goy, A., and Rivas, P., 1984, The Pliensbachian of Spain. Ammonite succession, boundaries and correlations, in Michelsen, O., and Zeiss, A., ed, I International Symposium on Jurassic Stratigraphy, Copenhagen, 1984, v. 1, pp. 160 - 176.

Comas-Rengifo, M. J., 1982, El Pliensbachiense de la Cordillera Ibérica: Tesis Doctoral, Facultad de Ciencias Geológicas, UCM. Colección Tesis Doctorales, UCM, v. 19/1985, pp. 1 - 591.

Comas-Rengifo, M. J., and Goy, A., 1997, Ammonoïdes del tránsito Pliensbachiense-Toarciano en la sección de Almonacid de la Cuba (Sector Central de la Cordillera Ibérica, España), in Meléndez, G., and Pérez-Urresti, I., eds, Comunicaciones IV Congreso del Jurásico de España, Alcañiz, 1997, p. 55.

Comas-Rengifo, M. J., and Goy, A., 1978, El Pliensbachiense-Toarciano en la Rambla del Salto (Sierra Palomera, Teruel): Dpto. Paleontología, Facultad de CC. Geológicas, Universidad Complutense de Madrid, pp. IV.1 - IV.11.

Comas-Rengifo, M. J., Arias, C., Gómez, J. J., Goy, A., Herrero, C., Osote, M. L., Palencia, A., 2010, A complementary section for the proposed Toarcian (Lower Jurassic) Global Stratotype: the Almonacid de la Cuba section (Spain): Stratigraphy and Geological Correlations, in press.

Comas-Rengifo, M. J., Gómez, J. J., Goy, A., Herrero, C., Periñí, L., and Rodrigo, A., 1999, El Jurásico Inferior en la sección de Almonacid de la Cuba (Sector central de la Cordillera Ibérica, Zaragoza, España): Cuadernos de Geología Ibérica, v. 25, pp. 27 - 57.

Dean, W. T., Donovan, D. T., and Howarth, M. K., 1961, The Liassic ammonite zones and subzones of the north-west European Province: Bulletin of the British Museum (Natural History), Geology Series, v. 4, pp. 435 - 505.

Dera, G., Pucéat, E., Pellenard, P., Neige, P., Delsate, D., Joachimski, M.M., Reisberg, L., and Martínez, M. 2009, Water mass exchange and variations in seawater temperature in the NW Tethys during the Early Jurassic: Evidence from neodymium and oxygen isotopes of fish teeth and belemnites: Earth and Planetary Science Letters, v. 286, pp. 198 – 207.

Dommergues, J.-L., Meister, C., and Mouterde, R., 1997, 3. Pliensbachien, in Cariou, E., and Henriques, M. H., eds., Carboniferous and Jurassic Carbonate Platforms of Iberia, 23nd IAS Meeting Sedimentology, Coimbra, 2004, Field Trip Guide Book v. I, pp. 64 - 67.

Elmi, S., 2004, Early Jurassic carbonate evolution in the Lusitanian Basin (Portugal): Cuadernos de Geología Ibérica, v. 24, pp. 69 - 98.

Elmi, S., 2006, Early Jurassic carbonate evolution in the Lusitanian Basin (Portugal): facies, sequence stratigraphy and cyclicity. Stop 6. Toarcian GSSP candidate: the Peniche section, in Duarte, L., V., Duarte, L., V., and Henriques, M. H., eds., Carboniferous and Jurassic Carbonate Platforms of Iberia, 23nd IAS Meeting Sedimentology, Coimbra, 2004, Field Trip Guide Book v. I, pp. 64 - 67.

Elmi, S., 2006, Pliensbachian/Toarcian boundary: the proposed GSSP of Peniche (Portugal): Volumina Jurassica, v. 4, pp. 5 - 16.

Elmi, S., Atrops, F., and Mangold, C., 1974, Les zones d’ammonites du Domérien-Callovien de l’Algérie Occidentale. 1ère partie: Domérien-Toarcien: Documents des Laboratoires de Géologie Lyon, v. 61, pp. 3 - 83.

Elmi, S., Gabilly, J., Mouterde, R., Rulleau, L., and Rocha, R., 1996, Létage Toarcien de l’Europe et de la Téthys: divisions et corrélations: Geobios, Mémoire Spécial, v. 17, pp. 149-159.

Elmi, S., Goy, A., Mouterde, R., Rivas, P., and Rocha, R. B., 1989, Correlations biostratigraphicas en el Toarciano de la Península Ibérica: Cuadernos de Geología Ibérica, v. 13, pp. 265 - 277.

Elmi, S., Rulleau, L., Gabilly, J., and Mouterde, R., 1997, 4. Toarcian, in Cariou, E., and Hantzpergue, P., coord, Biostratigraphie du

March 2010
Jurassique ouest-européen et méditerranéen: zonations parallèles et distribution des invertebrés et microfossiles. Bulletin du Centre Recherches Elf Exploration-Production, Mém. 17, pp. 25 - 36.

Elmi, S., Marok, A., Sebane, A., and Almeras, Y., 2006, Importance of the Mellata section (Traras Mountains, NW Algeria) for the correlations of the Pliensbachian/Toarcian boundary: Volumina Jurassica, v. 4, pp. 158 - 160.

Fisher, R. A., 1953, Dispersion on a sphere: Proceedings of the Royal Society of London, v. A 217, pp. 295 - 305.

Galbrun, B., Baudin, F., Fourcade, E., and Rivas, P., 1990, Magnetostratigraphy of the Toarcian Ammonitico Rosso limestone at Iznalix: Spain: Geophysical Research Letters, v. 17, pp. 2441 - 2444.

Gómez, J. J., and Goy, A., 2000, Sequential analysis of the Toarcian in the northern and central-eastern part of the Iberian subplate: Spain: GeoResearchForum, v. 6, pp. 301 - 309.

Gómez, J. J., and Goy, A., 2005, Late Triassic and Early Jurassic palaeogeographic evolution and depositional cycles of the Western Tethys Iberian platform system (Eastern Spain): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 222, pp. 77 - 94.

Gómez, J. J., Goy, A., and Canales, M. L., 2008, Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in Central and Northern Spain. Comparison with other European sections: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, pp. 28 - 58.

Goy, A., Comas-Rengifo, M. J., Arias, C., García Joral, F., Gómez, J. J., Herrero, C., Martínez, G., and Rodrigo, A., 1997, El Tránsito Pliensbachieni/Toarcien en el sector central de la Rama Aragonesa de la Cordillera Ibérica (España): Cahiers de l’Institut Catholique de Lyon, v. 10, pp. 159 - 179.

Goy, A., Comas-Rengifo, M. J., Arias, C., Gómez, J. J., González, A., Herrero, C., Palencia, A., Perilli, N., and Rodrigo, A., 2006, The Pliensbachian/Toarcian boundary in the Almonacid de la Cuba section (Iberian Range, Spain): Volumina Jurassica, v. 4, pp. 164 - 165.

Goy, A., Jiménez, A., Martínez, G., and Rivas, P., 1988, Difficulties in correlating the Toarcian ammonite sucesión of the Iberian and Betic Cordilleras, in Rocha, R., and Soares, A., eds, 2nd International Symposium on Jurassic Stratigraphy, Lisboa, 1988, pp. 155 - 178.

Goy, A., and Martínez, G., 1990, Biozonación del Toarciano en el sector central de la Rama Aragonesa de la Cordillera Ibérica (España): Cuadernos de Geología Ibérica, v. 14, pp. 11 - 53.

Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V., and Oliveira, L. C. V., 2007, Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal): Earth and Planetary Science Letters, v. 253, pp. 455 - 470.

Hillebrandt, A., and Schmidt-Effing, R., 1981, Ammoniten aus dem Toarcium (Jura) von Chile (Sudamerika): Zitteliana, v. 6, pp. 3-64.

Horner, F., and Heller, F., 1983, Lower Jurassic magnetostratigraphy at the Breggia Gorge (Ticino, Switzerland) and Alpe Turati (Como, Italy): Geophysical Journal of the Royal Astronomical Society, v. 73, pp. 705 - 718.

Howarth, M. K., 1958, A monograph of the ammonite of the Liassic family Amaltheidae in Britain: Palaeontographical Society of London, v. 1958, part II, pp. xv-xxxvii, 27 - 53.

Howarth, M. K., 1973, The stratigraphy and ammonite fauna of the Upper Liassic grey shales of the Yorkshire coast: Bulletin of the British Museum (Natural History), Geology Series, v. 24, pp. 235 - 227.

Iglesia-Llanos, M. P., and Riccardi, A. C., 2000, The Neuquén composite section: magnetostratigraphy and biostratigraphy of the marine lower Jurassic from the Neuquén basin (Argentina): Earth and Planetary Science Letters, v. 181, pp. 443 - 457.

Jenkyns, H. C., 2003, Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world: Philosophical Transactions of the Royal Society of London, v. A 361, pp. 1885 - 1916.

Jenkyns, H. C., and Clayton, C. J., 1997, Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chronostratigraphic signals and the early Toarcian anoxic event: Sedimentology, v. 44, pp. 687 - 706.

Macchioni, F., 2002, Myths and legends in the correlation between the Boreal and Tethyan Realms. Implications on the dating of the Early Toarcian mass extinctions and the Oceanic Anoxic Event: Geobios, Mémoire Spécial, v. 35, pp. 150 - 164.

Macchioni, F., and Cecca, F., 2002, Biodiversity and biogeography of middle-late Liassic ammonoids: implications for the early Toarcian mass extinction: Geobios, Mémoire Spécial, v. 35, pp. 165 - 175.

Macchioni, F., and Meister, C., 2003, Ammonite biostratigraphy of some Mediterranean sections: 2: The succession of the Gola del F. Burano (Umbria-Machigiano Basin, Apennine), a reference section for Tethyan Domain: Revue de Paléobiologie Genéve, v. 22, pp. 363 - 420.

McArthur, J. M., Donovan, D. T., Thirwall, M. F., Fouke, B. W., and Mattey, D., 2000, Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures: Earth and Planetary Science Letters, v. 179, pp. 269 - 285.

McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr isotope curve for 0 - 509 Ma and accompanying look-up table for deriving numerical age: Journal of Geology, v. 109, no.2, pp. 155 - 170.

McArthur, J. M., and Howarth, R. J., 2004, Strontium isotope stratigraphy, in, Ogg, J. G., and Smith, A. G., eds, A Geologic Time Scale 2004, Cambridge University Press, pp. 96 - 105.

McFadden, P. L., and Jones, D. L., 1981, The fold test in palaeomagnetism: Geophysical Journal of the Royal Astronomical Society, v. 67, no. 1, pp. 53 - 58.

McFadden, P. L., and McElhinny, M. W., 1990, Classification of the reversal test in palaeomagnetism: Geophysical International Journal, v. 103, pp. 725 - 729.

McFadden, P. L., and Reid, A., 1982, Analysis of paleomagnetic inclination data: Geophysical Journal of the Royal Astronomical Society, v. 69, pp. 307 - 319.

Meister, C., Schirrolli, P., and J-L. Dommergues, J.-L., 2006, Sinemurian to lowermost Toarcian of the Brescian Alps (Southern Alps, Italy): biostratigraphical framework and correlations: Volumina Jurassica, v. 4, pp. 184 - 185.

Metodiev, L., and Koleva-Rekalova, E., 2008, Stable isotope records (δ18O and δ13C) of Lower-Middle Jurassic belemnites from the Western Balkan mountains (Bulgaria): Palaeoenvironmental application: Applied geochemistry, v. 23, pp. 2845 - 2856.

Mouterde, R., 1955, Le Lias de Peniche. Comunicações dos Serviços Geológicos de Portugal, v. 36, pp. 87 - 115.

Ogg, J. G., 1995, Magnetic Polarity Time Scale of the Phanerozoic, in Grandstein, F., Ogg, J. G., and Smith, A., eds, A Geologic Time Scale 2004, Cambridge
University. Press, United Kingdom, pp. 307 - 343.
Osete, M. L., Gialanella P. R., Gómez, J. J., Villalain J. J., Goy A., and Heller, F., 2007, Magnetostratigraphy of Early - Middle Toarcian expanded sections from the Iberian Range (central Spain): Earth and Planetary Science Letters, v. 259, pp. 319 - 332.
Osete, M. L., Gómez, J. J., Pavón-Carrasco, F. J., Villalain J. J., Palencia, A., Ruiz-Martínez, V. C. and Heller, F., The evolution of Iberia during the Jurassic from palaeomagnetic data: Tectonophysics, in press.
Page, K., 2003, The Lower Jurassic of Europe: Its subdivision and correlation, in Ineson, J. R., and Surllyk, F., eds, The Jurassic of Denmark and Greenland: Geological Survey Denmark and Greenland Bulletin, v. 1, pp. 23 - 59.
Palencia-Ortas, A., 2004, Estudio paleomagnético de rocas de edad jurásica de la Península Ibérica y del Norte de Marruecos. Ph. D. Thesis, Univ. Complutense Madrid, 230 pp. Madrid.
Rosales, I., Quesada, S., and Robles, S., 2004, Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 203, pp. 253-275.
Ruiz, V., Lendínez, A., and Gabaldón, V., 1986, Geological map of Belchite: Instituto Tecnológico y Geominero de España, Sheet 440, scale 1:50.000.
Sælen, G., Doyle, P., and Talbot, M. R., 1996, Stable-Isotope Analyses of Belemnite Rostra from the Whitby Mudstone Fm., England: Surface Water Conditions During Deposition of a Marine Black Shale: Palaios, v. 11, pp. 97-117.
Schouten, S., van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M., and Sinninghe Damste, J. S., 2000, Effects on an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon: American Journal of Science, v. 300, pp. 1 - 22.
Sequeiros, L., Cólera, I., Valenzuela, R., and Sánchez, I., 1978, Bioestratigrafía del Jurásico (Lias y Dogger) en el sector Belchite-Almonacid de la Cuba (prov. de Zaragoza, Cordillera Ibérica): Estudios Geológicos, v. 34, pp. 293 - 298.
Suan, G., Mattioli, E., Pittet, B., Maillot, S., and Lécuyer, C., 2008, Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) Oceanic Anoxic Event from the Lusitanian Basin, Portugal: Paleoceanography, v. 23, PA 1202. doi: 10.1029/2007PA001459.

María José Comas-Rengifo is Full Professor of Palaeontology in the University Complutense of Madrid. She teaches Invertebrate Palaeontology at the Paleontology Department of the Faculty of Geological Sciences. She was Vice-dean of Research and Postgraduate and Doctorate studies of Faculty of Geological Sciences of UCM. Her research has concentrated on ammonite and brachiopod taxonomy, biostratigraphy and biocronology of the Sinemurian and Pliensbachian. She has been member of the Pliensbachian Working Group of the Subcommission on Jurassic Stratigraphy of the ICS since 1987.

Antonio Goy is Professor of Palaeontology at the University Complutense of Madrid. For twenty years he was Head of the Palaeontological Department of this University. Besides he has been President of the Spanish Society of Palaeontology, Spanish Mesozoic Group, and the Royal Society of Natural History. His research has been mainly focused on Lower Jurassic and Aalenian ammonite taxonomy, biostratigraphy and sequence stratigraphy. He has been member of the Toarcian Working Group of the Subcommission on Jurassic Stratigraphy of the ICS since 1987. From 1987 to 1994 he was Chairman of the Aalenian Working Group.

Juan J. Gómez obtained his degree in Geology in 1970 and completed his PhD in 1978 on the sedimentology of the Jurassic carbonates of the Iberian Range, in the University Complutense of Madrid (UCM). In 1987 he obtained a position of Professor in the Department of Stratigraphy of the UCM. His current research is focused on the links between climate changes and biotic crises and mass extinctions.