Effects of duloxetine, fluoxetine and pregabalin on fentanyl-induced hyperalgesia in rattus novergicus

Sebastião José de Carvalho1, Márcia Helena de Aguiar Afonso1, Irimar de Paula Posso1

ABSTRACT

BACKGROUND AND OBJECTIVES: Opioids are drugs used to relieve pain, but may cause increased pain sensitivity, known as opioid-induced hyperalgesia, which adversely affects pain management. This study aimed to check if fentanyl, an opioid widely used in the clinical practice, produces hyperalgesia that can be attenuated by duloxetine, fluoxetine, and pregabalin.

METHODS: Thirty male Wistar rats were divided into six groups.

RESULTS: Two hours after the procedure, no differences were observed between G1 and G2, although G3, G4, and G5 showed less hyperalgesia. On day one and day three, a greater hyperalgesic effect was observed in G2 when compared to G1, G3, G4 and G5. On day five, there was a hyperalgesic effect on G2, and on day seven there were no differences among the groups.

CONCLUSION: The results suggest that fentanyl induces hyperalgesia and the efficacy of duloxetine, fluoxetine, and pregabalin in reducing it.

Keywords: Duloxetine, Fentanyl, Fluoxetine, Hyperalgesia, Pregabalin, Rats.

RESUMO

JUSTIFICATIVA E OBJETIVOS: Opioides são fármacos utilizados para o alívio da dor, porém, podem causar aumento da sensibilidade dolorosa, denominada hiperalgesia induzida por opioides, que afeta negativamente o tratamento da dor. O objetivo deste estudo foi avaliar se o fentanil, opioide amplamente utilizado na prática clínica, produz hiperalgesia que pode ser atenuada pela duloxetina, fluoxetina e pregabalina.

MÉTODOS: Trinta ratos Wistar machos, foram divididos em 6 grupos. No grupo 1, os animais receberam 1mL de solução intraperitoneal (IP) e gavagem; nos grupos 3, 4 e 5 receberam fentanil na dose de 100µg.kg⁻¹ IP e 0.9% salino por gavagem, respectivamente. Under general anesthesia with isoflurane, with duloxetine, fluoxetine, and pregabalin, all animals were submitted to plantar surgical incision. The application of Von Frey filaments assessed hyperalgesia at the second hour, one, three, five and seven days after treatment.

RESULTADOS: Na 2ª hora pós-procedimento não foram observadas diferenças entre G1 e G2, entretanto, G3, G4 e G5 se mostraram com menor hiperalgesia. No 1º e 3º dias foi observado maior efeito hiperalgésico em G2 quando comparado com G1, G3, G4 e G5. No 5º dia foi observado efeito hiperalgésico no G2, e no 7º dia não houve diferenças entre os grupos.

CONCLUSÃO: Os resultados sugerem que o fentanil induz hiperalgesia e eficácia da duloxetina, fluoxetina e pregabalina na sua redução.

Descritores: Duloxetina, Fentanil, Fluoxetina, Hiperalgesia, Pregabalina, Ratos.

INTRODUÇÃO

A dor é uma das mais importantes e complexas experiências humanas, associada à lesão tecidual real ou potencial, e o seu tratamento com opioides aumentou substancialmente nos últimos anos, tornando-os comumente prescritos nos Estados Unidos1,2. No entanto, o aumento de prescrições tem causado muitos problemas, entre os quais está a falta de conhecimento referente à eficácia em longo prazo, uso abusivo e eventos adversos associados ao uso prolongado, incluindo a hiperalgesia induzida por opioides (HIO), fenômeno...
pelo qual, paradoxalmente, o opioide pode induzir ou sensibilizar os pacientes à dor aguda. Nesse sentido, pacientes que recebem altas doses de opioíde podem sofrer intensa dor aguda após cirurgia, com aumento da dose de analgésicos, e ansiedade tanto para o paciente quanto para o médico.

Múltiplos são os mecanismos propostos como responsáveis pela HIO, entre os quais alterações de receptores N-metil-D-aspartato (NMDA) e segundos mensageiros, ativação de ciclo-oxigenase (COX) espinal, liberação de aminoácidos excitatórios, redução de neurotransmissores inibitórios, facilitação descendente e o sistema antianalgésico.

O aumento da liberação de glutamato no corno dorsal da medula espinal, e o consequente aumento mantido de estímulo e resposta, aumenta a liberação de glutamato no corno dorsal da medula espinal (COX) espinal, liberação de aminoácidos excitatórios, redução de neurotransmissores inibitórios, facilitação descendente e o sistema antianalgésico.

As vias descendentes facilitadoras, mediadas por opioíde, que atuam como neurotransmissores excitatórios facilitando a entrada de cálcio na célula e sensibilização central (SC). A entrada de cálcio provoca aumento da atividade da proteína C-fos em neurônios sensitivos e sintetização de eicosanoïdes, com oxidação do ácido araquidônico. A proteína C-fos é uma proteína ativada durante os processos de inativação de receptores opioides, além de causar aumento de oxido nítrico sintase.

A HIO tem sido associada ao aumento de colecistocinina, peptídeo relacionado ao gene da calcitonina (CGRP), substância-P e nociceptina na medula rostral ventromedial devido ao aumento da expressão de receptores opioides excitatórios, em detrimento dos receptores opioides inibitórios.

As vias descendentes facilitadoras, mediadas por opioíde, localizadas na medula rostral ventromedial, também parecem estar envolvidas na HIO devido à existência de neuropatias, visto que a exposição à morfina causa alteração neutroplástica na medula rostral ventromedial, com aumento da liberação de dinorfina e neurotransmissores de fibras aferentes primárias. Nessa linha, a administração de opioide provocará aumento de dinorfina, que pode favorecer a HIO.

Há evidências de que a dinorfina espinal é pronociceptiva, provocando liberação de neurotransmissores excitatórios de neurônios aferentes primários, sugerindo retroalimentação positiva, amplificando a aferência sensitiva. Além disso, as prostaglandinas, as citocinas e as quimocinas também podem ser relevantes no desenvolvimento de HIO, visto que os opioíde ativam a liberação de citocinas, com aumento de proteína C-fos em neurônios sensitivos da medula. Outros sistemas que podem estar envolvidos na HIO com redução do controle inibitório glicinérgico são o oxido nítrico sintase e a hemo-oxigenase.

Estudos em roedores têm demonstrado que o fentanil causa HIO e sugeriu que a proteína quinase II (CaMKII) dependente de Ca2+/calmodulina na cápsula lateral do núcleo central da amígdala e na medula espinal pode desempenhar papel fundamental na modulação da HIO.

A duloxetina, fármaco antidepressivo da classe dos inibidores seletivos da recaptação de serotonina e noradrenalina (ISRSN), é indicada no tratamento do transtorno depressivo, transtorno de ansiedade generalizada e em condições dolorosas crônicas, como a dor neuropática diabética, fibromialgia e dores musculoesqueléticas crônicas. O papel da serotonina e noradrenalina na regulação do humor ocorre por meio das vias neurais ascendentes, a partir da porção média do cérebro, estendendo-se para o sistema límbico e para o córtex pré-frontal. Além disso, as projeções noradrenérgicas e serotoninérgicas do tronco cerebral descem pela medula espinal, onde se acredita estarem envolvidas na regulação da percepção somática sensorial. Alterações nas vias serotoninérgicas e noradrenérgicas modificam tanto a percepção cerebral dos estímulos sensoriais das vias ascendentes, como alteram o mecanismo de inibição da dor pelas vias descendentes. A depressão e a dor crônica compartilham essas vias neurais serotoninérgicas e noradrenérgicas, razão pela qual a duloxetina tem sido mostrada eficaz nessas duas condições.

A duloxetina se mostrou eficaz em condições dolorosas crônicas como a fibromialgia, a neuropatia diabética periférica, sintomas dolorosos da osteoartrose do joelho e dores lombares crônicas. Há também evidências de alívio dos sintomas dolorosos associados à depressão e ao transtorno de ansiedade generalizada.

O efeito da fluoxetina sobre o sistema serotoninérgico (ISRS) é conhecido, evidenciando a fluoxetina como opção de tratamento para diferentes condições de dor crônica como fibromialgia, cefaleia tipo tensional crônica, enxaqueca sem aura, neuropatia diabética dolorosa, dor musculoesquelética, dor pélvica crônica e síndrome coronariana. Devido aos efeitos dos ISRS elevando a serotonina no sistema nervoso central (SNC), postula-se que a duloxetina e a fluoxetina podem ter utilidade na atenuação da HIO.

O envolvimento da neurotransmissão do glutamato na plasticidade sinápática sugere que a pregabalina também pode ser útil na atenuação da HIO, sendo um fármaco análogo do GABA, que se liga de forma competitiva e se liga aumentando a fluoxetina como opção de tratamento para diferentes condições de dor crônica como fibromialgia, cefaleia tipo tensional crônica, enxaqueca sem aura, neuropatia diabética dolorosa, dor musculoesquelética, dor pélvica crônica e síndrome coronariana. Devido aos efeitos dos ISRS elevando a serotonina no sistema nervoso central (SNC), postula-se que a duloxetina e a fluoxetina podem ter utilidade na atenuação da HIO.

Diversos ensaios clínicos documentaram seu efeito no alívio da dor e na qualidade de vida, incluindo humor e distúrbios do sono, sendo, portanto, indicada para o tratamento da fibromialgia, dor neuropática e transtorno de ansiedade generalizada.

A pregabalina tem mostrado eficácia no tratamento da fibromialgia, com melhora de vários parâmetros do sono. Foi evidenciada a redução da dor, independentemente ou não de sintomas de ansiedade ou depressão, sugerindo que a redução da dor propiciada pela pregabalina resulta, principalmente, de efeito direto do tratamento, e não de efeito indireto pela melhora dos sintomas de ansiedade e depressão. Testes comportamentais como a aplicação de filamentos de von Frey e hiperalgésia térmica têm sido utilizados para a avaliação da hiperalgésia em ratos. Neste estudo foi utilizado o teste com os filamentos de von Frey com o objetivo de avaliar se o fentanil, opioide amplamente utilizado na prática clínica, produz hiperalgésia que pode sofrer interferência dos fármacos duloxetina, fluoxetina e pregabalina.

MÉTODOS

Foram utilizados, pelas características da amostra animal e por conveniência, 30 ratos Wistar machos, pesando entre 220 e 300g, alocados em número de 5 animais por compartimento, onde permaneceram por 15 dias antes do início do experimento para adequada adaptação, tratados com ração balanceada comercial e água "ad libitum", ciclo claro-escuro de 12 horas e temperatura ambiente variando entre 19 e 25°C.
Para a realização dos procedimentos experimentais foram obedecidas as Normas Éticas da IASP que regula experimentos realizados em animais (Committee for Research and Ethical Issues of the IASP, 1983). Todos os experimentos foram realizados nas dependências do Laboratório de Farmacologia e Fisiologia da Universidade de Taubaté, SP.

Para obter indução anestésica suave, os animais foram colocados em uma câmara de vidro transparente com medidas de 15x25x15cm, dotada de cobertura transparente para possibilitar a visualização do animal, com orifício na parte anterior e posterior para permitir entrada e saída de oxigênio (O2), gases anestésicos e gás carbônico, respectivamente. O agente halogenado utilizado na indução anestésica foi o isoflurano (Isoforine®, Cristália, Itapira, Brasil), na concentração de 4,0% em fração inspirada de oxigênio (FiO2) de 1,0, mantido por três minutos, tempo necessário para que o animal apresentasse perda dos reflexos posturais e incapacidade de deslocamento. A seguir, o animal foi retirado da câmara e posicionado com o focinho em uma máscara por onde recebia isoflurano a 4% em O2, como na câmara de indução da anestesia.

O procedimento cirúrgico constou de uma incisão cirúrgica, longitudinal, de 1,0cm de extensão, na pata posterior direita, de acordo com o modelo de dor pós-operatória e. Essa incisão foi realizada com o auxílio de um bisturi com lâmina número 11, incisando a pele e a fáscia da região plantar da pata, iniciando-se a 0,5cm da borda do calcâneo e estendendo-se em direção aos podóclíticos. A seguir, o músculo plantar foi elevado e incisado longitudinalmente, permanecendo a sua inserção intacta. Após hemostasia com leve pressão sobre a área cirúrgica, todos os planos foram aproximados e suturados com dois pontos separados com fio agulhado mononylon 4-0. Os animais foram divididos aleatoriamente em seis grupos para receber volumes semelhantes de fármacos ou solução fisiológica (SF) e os grupos (p<0,05). Na 1ª hora após o procedimento cirúrgico, a intensidade da dor, avaliada pelos filamentos de von Frey estão expressas na figura 1, mostrando não haver diferença significante quando comparado o G1 com o G2 (p=0,3759), mas com significância estatística quando estes foram comparados aos grupos G3, G4 e G5 (p<0,05).

No primeiro dia após o procedimento cirúrgico, a intensidade da dor, avaliada pelos filamentos de von Frey, está expressa na figura 2, mostrando diferença significante entre G1 e G2 (p<0,05) e, entre estes e os grupos G3, G4 e G5 (p<0,01).

No terceiro dia após o procedimento cirúrgico, a intensidade da dor, avaliada pelos filamentos de von Frey está expressa na figura 3, mostrando diferença significante entre o G1 e G2 (p<0,05) e, entre estes e os grupos G3, G4 e G5 (p<0,05).

No 5º dia após o procedimento cirúrgico, a intensidade da dor, avaliada pelos filamentos de von Frey, está expressa na figura 4, mostrando diferença significante entre G2 e os grupos G1, G3, G4 e G5 (p<0,05).

No 7º dia após o procedimento cirúrgico, a intensidade da dor, avaliada pelos filamentos de von Frey, está expressa na figura 5, sem mostrar diferença significante entre os grupos.
Efeitos da duloxetina, fluoxetina e pregabalina sobre a
hiperalgesia induzida por fentanil em rattus novergicus
BrJP. São Paulo, 2020 jan-mar;3(1):14-8

DISCUSSÃO

Os opioides são fármacos fundamentais para o tratamento da dor. Porém, ao mesmo tempo em que inicialmente são analgésicos e anti-hiperalgésicos, posteriormente podem provocar hiperalgesia, tornando o paciente mais sensível à dor 2-5.

A HIO tem sido atribuída à dessensibilização aguda de receptores por descarrilamento da proteína G dos receptores opioides, ativação dos receptores NMDA, entre outros mecanismos 2.

Um estudo evidenciou que o uso concomitante de baixas doses de antagonistas opioides e antagonistas dos receptores NMDA podem prevenir ou reduzir o desenvolvimento da HIO, e que a cetamina em baixa dose pode modular a HIO 7,22,23.

Uma revisão comprova que os mecanismos implicados no desenvolvimento da HIO incluem o sistema glutamatérgico e receptores NMDA, ativação de ciclo-oxigenase espinhal, aminoácidos excitatórios, dinorfinas, citocinas e quimocinas, prostaglandinas e facilitação descendente. Nesse sentido, especula-se que a modulação da hiperalgesia pode ser feita com antagonistas de receptores NMDA, agonistas alfa-2 adrenérgicos, inibidores seletivos da recaptação de serotonina, inibidores de ciclooxigenases e análogos do GABA 24.

Em acordo com os presentes resultados, um estudo utilizando fentanil em ratos Sprague-Dawley provocou a HIO e demonstrou efeito atenuante pelos fármacos duloxetina e pregabalina 12.

Figura 2. Teste t de Student mostrou diferença significativa quando comparou o G1* com o G2** e com o G3***, G4*** e G5*** (p<0,01).

Figura 3. Teste t de Student mostrou diferença significante quando comparou o G1* com o G2* (p<0,05) e com o G3***, G4*** e G5*** (p<0,01).

Figura 4. Teste t de Student mostrou diferença significante quando comparou o G2* com os grupos G1, G3, G4 e G5 (p<0,005).

Figura 5. Teste t de Student não mostrou diferenças significativas entre os grupos (p>0,05)

Os opioides são fármacos fundamentais para o tratamento da dor. Porém, ao mesmo tempo em que inicialmente são analgésicos e anti-hiperalgésicos, posteriormente podem provocar hiperalgesia, tornando o paciente mais sensível à dor 2-5.

A HIO tem sido atribuída à dessensibilização aguda de receptores por descarrilamento da proteína G dos receptores opioides, ativação dos receptores NMDA, entre outros mecanismos 2.

Um estudo evidenciou que o uso concomitante de baixas doses de antagonistas opioides e antagonistas dos receptores NMDA podem prevenir ou reduzir o desenvolvimento da HIO, e que a cetamina em baixa dose pode modular a HIO 7,22,23.

Uma revisão comprova que os mecanismos implicados no desenvolvimento da HIO incluem o sistema glutamatérgico e receptores NMDA, ativação de ciclo-oxigenase espinhal, aminoácidos excitatórios, dinorfinas, citocinas e quimocinas, prostaglandinas e facilitação descendentes. Nesse sentido, especula-se que a modulação da hiperalgesia pode ser feita com antagonistas de receptores NMDA, agonistas alfa-2 adrenérgicos, inibidores seletivos da recaptação de serotonina, inibidores de ciclooxigenases e análogos do GABA 24.

Em acordo com os presentes resultados, um estudo utilizando fentanil em ratos Sprague-Dawley provocou a HIO e demonstrou efeito atenuante pelos fármacos duloxetina e pregabalina 12.

No presente estudo, na 2ª hora após o procedimento cirúrgico, não se observou diferenças entre os grupos controle, que receberam SF por via IP associado à SF por gavagem em comparação com o grupo que recebeu fentanil por via IP associado à SF por gavagem. Entretanto, quando se comparou estes com os animais que receberam duloxetina, fluoxetina ou pregabalina, foi encontrada menor hiperalgesia, demonstrando possível envolvimento dos receptores de serotonina, noradrenalina e redução de neurotransmissores pró-nociceptivos dependentes de cálcio, na liberação na medula espinhal, em concordância com outros estudos 25-27.

Quando os animais foram avaliados no 1º e 3º dia após o procedimento cirúrgico, o grupo que recebeu fentanil por via IP apresentou maior efeito hiperalgésico e com diferença estatisticamente significan-
te em relação ao grupo controle, evidenciando a HIO. Entretanto, o grupo que recebeu fentanil por via IP, além de apresentar diferença significante em relação ao controle com SF, exibiu diferença em relação ao grupo duloxetina, fluoxetina e pregabalina, que se mostraram diferentes do grupo controle que recebeu SF, sugerindo eficácia em reduzir a HIO.

No 5º dia após o procedimento cirúrgico, o grupo que recebeu fentanil manteve maior resposta àlgica quando comparado aos outros grupos. Porém, embora o G1, que recebeu SF, tenha mostrado menor efeito hiperalgíco em comparação ao grupo fentanil, não apresentou diferença em comparação aos grupos que receberam duloxetina, fluoxetina ou pregabalina, evidenciando ainda a presença de HIO.

No 7º dia não se observou diferenças entre os grupos, ou seja, o possível efeito residual da hiperalgesia induzida por dose única de fentanil não foi evidenciado.

Estudos utilizando duloxetina e fluoxetina no combate à dor em roedores apoiam os resultados deste estudo, que a 5-HT e a NE desempenham importante papel na atenuação dos mecanismos de dor persistente, presumivelmente por vias modulatórias descendentes da dor e consequentemente na HIO28-30.

O uso de pregabalina sobre o comportamento nociceptivo e a SC em modelo de dor trigeminal em ratos, atenuando a alodinia mecânica e a SC sobre o modelo de dor trigeminal referendava seu uso clínico no tratamento da dor e, embora sejam escassos estudos com a HIO, há evidência que poder ser útil no controle desse tipo de dor31.

**CONCLUSÃO**

O presente estudo apresentou evidências de que o fentanil produz HIO e de provável efeito atenuante mediado pela serotonina e noradrenalina e pelo bloqueio de canais de cálcio, pelos fármacos duloxetina, fluoxetina e pregabalina.

**REFERÊNCIAS**

1. Pain terms: a list with definition and note on usage. Recommended by the IASP subcommittee on taxonomy. Pain. 1979;6(3):249.
2. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104(3):570-87.
3. Chu LF, Angst MS, Clark D. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin J Pain. 2008;24(6):479-96.
4. Silverman SM. Opioid induced hyperalgesia: clinical implications for the pain practitioner. Pain Physician. 2009;12(3):679-84.
5. Mao J. Opioid-induced abnormal pain sensitivity: implications in clinical opioid therapy. Pain. 2002;100(3):213-7.
6. Vandereah TW, Osipow MH, Lai J, Malan TP Jr, Porteca F. Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain. 2001;92(1-2):5-9.
7. Rennikov I, Pud D, Eisenberg E. Oral opioid administration and hyperalgesia in patients with cancer or chronic nonmalignant pain. Br J Clin Pharmacol. 2005;60(3):311-8.
8. Céline E, Rivat C, Jun Y, Laulin JP, Larcher A, Reynier P, et al. Long-lasting hyperalgesia induced by fentanyl in rats: protective effect of ketamine. Anesthesiology. 2000;92(2):465-72.
9. Simonner G, Rivat C. Opioid-induced hyperalgesia: abnormal or normal pain? Neuroreport. 2003;14(1):1-7.
10. Osipow MH, Lai J, King T, Vanderah TW, Porteca F. Underlying mechanisms of nociceptive consequences of prolonged morphine exposure. Biopolymers. 2005;80(2-3):319-24.
11. Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev. 2004;27(7):729-37.
12. Li Z, Li C, Yin P, Wang ZJ, Luo F. Inhibition of CaMKII in the central nucleus of amygdala attenuates fentanyl-induced hyperalgesia in rats. J Pharmacol Exp Ther. 2016;359(1):82-9.
13. Li Z, Yin P, Chen J, Lin S, Liu J. CaMKII may modulate fentanyl-induced hyperalgesia via a CaLC-PAG-spinal cord descending facilitative pain pathway in rats. PLoS One. 2017;12(5):e0177412.
14. Pergolizzi JV Jr, Raffa RB, Taylor R Jr, Rodriguez G, Nalamasu C, Langlely P. A review of duloxetine 60 mg once-daily dosing for the management of diabetic peripheral neuropathic pain, fibromyalgia, and chronic musculoskeletal pain due to chronic osteoarthritis pain and low back pain. Pain Pract. 2013;13(3):239-52.
15. Smith HS, Harris R, Cloward D. Fibromyalgia: an afferent processing disorder leading to a complex pain generalized syndrome. Pain Physic. 2011;14(2):E217-45.
16. Chappell AS, Ossanna ML, Jiang F, Iyengar S, Skljarevski V, Li LC, et al. Duloxetine, a centrally acting analgesic, in the treatment of patients with osteoarthritis knee pain: a 13-week, randomized, placebo-controlled trial. Pain. 2009;146(3):253-60.
17. Dharakshata P, Tao Y, Kalba KS. Efficacy of antidepressants as analgesics: a review. J Clin Pharmacol. 2012;52(3):16-7.
18. Micó JA, Prieto R. Elucidating the mechanism of action of pregabalin: 0.2/8 as a therapeutic target in anxiety. CNS Drugs. 2012;26(8):637-48.
19. Belloto E, Martini E, Castoldi F, Barbassetti N, Martelli L, Bonaisia DE, et al. Fibromyalgia syndrome: etiology, pathogenesis, diagnosis, and treatment. Pain Res Treat. 2012;2012:426130.
20. Crofford LJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain. 1996;64(3):493-501.
21. Bellato E, Martini E, Castoldi F, Barbassetti N, Martelli L, Bonaisia DE, et al. Fibromyalgia syndrome: etiology, pathogenesis, diagnosis, and treatment. Pain Res Treat. 2012;2012:426130.
22. Cao Y, Wang H, Chiang CY, Dostrovsky JO, Sesel BJ. Pregabalin suppresses nociceptive behavior and central sensitization in a rat trigeminal neuropathic pain model. J Pain. 2013;14(2):193-204.