Noncoding RNA in Extracellular Vesicles Regulate Differentiation of Mesenchymal Stem Cells

Chaoting Yan1,2,3 and Jinhua Yu1,2*

1 Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, Nanjing, China; 2 Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, China; 3 Department of Stomatology, The First People’s Hospital of Lianyungang, Lianyungang Clinical Medical College of Nanjing Medical University, Lianyungang, China

To achieve the desired outcome in tissue engineering regeneration, mesenchymal stem cells need to undergo a series of biological processes, including differentiating into the ideal target cells. The extracellular vesicle (EV) in the microenvironment contributes toward determining the fate of the cells with epigenetic regulation, particularly from noncoding RNA (ncRNA), and exerts transportation and protective effects on ncRNAs. We focused on the components and functions of ncRNA (particularly microRNA) in the EVs. The EVs modified by the ncRNA favor tissue regeneration and pose a potential challenge.

Keywords: noncoding RNA, extracellular vesicles, mesenchymal stem cell, exosome, differentiation

INTRODUCTION

Mesenchymal stem cell (MSC) therapy solves several problems related to the paracrine system, and it is not known for its salutary or rescue effects (1). Transplantation relies on the proliferation, self-renewal, and differentiation of the MSCs to achieve the regenerative goal, but it is limited by donor and guidelines. Cell-free therapy is also known as cell homing, which depends on the host cell under the given microenvironment to complete the task (2). The factors influencing the results of cell transplantation therapy also affect the results of cell-free therapy, including quality, reproducibility, and production potency (3). Extracellular vesicle (EV) from MSC (MSC-EV), especially highly homologous MSC, could perform tissue regeneration and immunoregulation function and help in avoiding the aforementioned problems (4). For example, bone marrow mesenchymal stem cell (BMSC) exosome rescues radiation-related bone defects, which is similar to MSC therapy (5). Exosome from dental pulp stem cells has been demonstrated to be a biomimetic tool for pulp regeneration (6). MSC-originated exosome has been shown to promote nerve regeneration in an animal model (7). The regulation of each step of regeneration by EVs is critical. Researchers have explored the bioactive content of EVs and have focused on the key aspect of noncoding RNA (ncRNA) (4). There seems to be some connection between EV and ncRNA. The parent cell targets the recipient cell via EV cargo, such as ncRNA, and leads to a biological process (8). Exosome from the MSC mainly inhibits immunity and attenuate injury by delivery miR-182 (9, 10). Release of exosome and microRNA (miRNA) is significant for BMSC function and bone homeostasis and can be inhibited by the simultaneous demethylation of P2rx7 (11). Shuttling cytosolic ncRNA, EVs perform epigenetic regulation as a special nano-communication system (12). The transcriptional and post-transcriptional genetic modification provides a controllable, manageable, and feasible avenue for regulating the differentiation of MSCs into lineage-specific
Extracellular vesicle (EV)-derived ncRNA leads to the differentiation of the mesenchymal stem cell (MSC).

ncRNA EXISTS IN EVS

Interest in This Field

There are several publications on EVs and ncRNA, especially exosome and miRNA, and they are increasing exponentially. For example, in 2020 alone, articles pertaining to the mentioned keywords amount to 1,390. Hence, over the past years, the topic has received immense attention, and researchers have contributed to the development of exosome-based ncRNA delivery and the biological behaviors of the recipient cells. It was first reported in 2007 that “exosomal” regulation of cell reprogramming is dependent on miRNA and mRNA (30). The genetic information of the EVs resembles that of the parent cell (12), and miRNA always serves as the biologically active material in the EV for downstream clarification (31).
The Achievement in This Field

Many types of ncRNAs, including transfer RNA (tRNA), Y RNA, ribosomal RNA (rRNA), PIWI-interacting RNA (piRNA), circular RNA (circRNA), and unannotated RNAs are contained in the exosomes (4, 32–34). It has been demonstrated that RNase I generates extracellular Y RNA and tRNA (21), and that these RNAs partially exist in the open extracellular space (35). A stress-regulated vesicle as tRNA (trNA) signaling approach promotes proliferation, protein translation, and differentiation (36). PIWI-piRNA complexes silence the targets during transcription via transporting by MSC-EVs (37, 38). The release of EVs is believed to be the clearing mechanism of circRNA from the plasma (39), while EV also protects circRNA to contain the equilibrium (40). Long noncoding RNAs (lncRNAs) from exosomes could be a biomarker for disease (41), and the lncRNA–miRNA–mRNA network has been investigated in exosomes (42). Furthermore, the network function can be described as follows: (1) function as a sponge; (2) co-expression of ncRNAs; (3) reciprocal repression; (4) role of miRNAs as negative regulators of lncRNAs; (5) other unconventional miRNA functions (44). Despite the continued emergence of new species, nowadays, most reports are focused on miRNA and lncRNA and great progress has been made (45).

EVs have the potential to aid in the diagnosis, research, and application because of the packaging of the cytoplasmic contents into natural lipid membranes and their shuttle through the natural barrier (46). Remarkably, miRNA selectively captured in the exosomes is partially dependent on the endosomal sorting complex required for transport (ESCRT) (47, 48), which is the classical exosome biogenesis mechanism. Furthermore, other factors are also involved in miRNA packaging. These include CD63, MHC1, CD47 (49), neutral sphingomyelinase 2 (nSMase2)-ceramide (47), miRNA associated protein of RNA-induced silencing complex (RISC) component (50), RNA binding protein (synergistical function), membrane transportation (51), and motif-binding protein of RNA binding protein (52, 53). The isolation manner also impacts the RNA cargoes via lipoproteins (54). The ncRNA content of the EV is also determined by the cytoplasmic level of the genes of the parent cell (12).

Naturally occurring exosomes can be transported to neighboring and remote sites via body fluids (55) and alter multiple genes and signaling pathways in the target cells (56). The exosomes modified by tissue engineering navigate the targets by membrane protein modification (57) or the physics method (58).

The miRNA expression undergoes striking changes based on the cell-cell communication in a specific microenvironment (59). This interaction is also named “exosome-shuttle miRNAs” (60). Remarkably, interaction also exists between the extracellular matrix and the exosome (61).

Methodology in This Field

Using the advanced methods of quantitative real-time polymerase chain reaction, microarray, and sequencing technology, genomic complexities and functions were gradually revealed by biological experiments or bioinformatic analysis.

Databases, such as Exocarta, Vesiclepedia, and EVpedia, make the above information publicly accessible and develop the relevant software, thereby creating a convenient platform for upstream and downstream investigations (62). Normally, the comparison has always been set among the EVs of different origins because EVs and their originating cells always play similar roles in biological behavior. However, differential expression also exists between the originating cells and their exosomes (63, 64).

ORIGINATING CELLS CONTRIBUTE TO EV-DERIVED ncRNAs

In the early stages of life, the epigenome has been determined by both inherited and nutritional factors. Subsequently, the environmental factors become involved, that is, external stimuli (65). Cells present in the microenvironment experience various physical, chemical, and biological changes, and they can adjust themselves based on epigenetic regulation and delivery crosstalk information, such as the release of content-reprogramed EVs (66–68). Generally, MSCs from craniofacial tissues are roughly divided into BMSC, dental MSC, and adipose stem cell (ADSC) with potential for hard and soft tissue repair and regeneration. Under specific conditions (origin, inflammation, aging and apoptosis, physical stimulus, ncRNA modification, and differentiation), the cells differ in their ability to express EVs (Table 1).

The Expression of ncRNA in MSC-Origin EVs

Exosomes from ADSC promote neuronal survival by transporting MALAT1 (69). Microvesicles from the same parent cell promote both proliferation and migration by delivering miR-210 (70). ADSC and BMSC share highly identical small RNA profiles (mainly involving miRNA and snRNA), and so does the exosome. However, differential expression of trNA was observed, which could be explained by tissue origin and stemness (33). The expression of piRNA in exosomes from stem cells from apical papilla (SCAP) provides a novel insight into the functions, such as biological regulation (38). miR-1470 is one of the exosomal biomarkers of BMSCs for its high expression when exosomes from fibroblast serve as the control (71). Equipped with miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and miR-181a-5p, exosome from neuronal stem cell has therapeutic potential (78).

The Modification of Cells Triggers EV to Transfer ncRNAs

Macrophage polarization changes the EV function in bone repair/regeneration by adjusting enclosed miRNA (79). Inflammation modifies the loading and quality of EVs by RNA binding protein FMR1 and ESCRT pathway (80).

Aging leads to the change of exosome from BMSC, which clarifies immune-associated miRNA profiles, and toll-like receptor 4-regulating miR-21-5p is highly expressed in the prepubertal group (81). Similarly, the upregulation of miR-128-3p
in the exosome of the BMSC of an aged mouse inhibits fracture healing (72). miR-31a-5p from BMSC exosome of aged rats promotes osteoclastic and attenuates osteoblastic differentiation, which is similar behaviors when compared with its origin (73). Stauroporine-treatment results in ribosomal RNA cleavage and degradation (82).

Hypoxia preconditioning changes the content of miR-126 in the exosomes from MSCs and makes it fit for bone fracture healing (74). Hypoxia also induces angiogenic miR-135b to increase expression in exosomes (83). Mechanical strain upregulates miR-181b-5p in the exosomes of osteocytes (84).

miRNA-modified originating cell leads to the same miRNA increase in the exosome. In other words, transfection of miRNA can promote the secretion of itself in the supernatant (4, 85). For example, miR-181-5p modified adipose stem cell delivers therapeutic EV to the damaged site and contributes to recovery via activating autophagy (86). miR-181c-overexpressed MSC exosome significantly reduces the burn origin inflammation (75). Exogenous mimic or inhibitor has been reported to regulate the downstream cell with more efficiency and less toxicity compared with the conventional manner (87). Microvesicles from miR-34a overexpressing BMSC carry three-fold higher miR-34a than the control (88). Transfection of miR-20a makes BMSC-EV favorable for alveolar bone-implant osteointegration via pro-osteogenic effects (89). Similarly, osteogenic differentiation-related to miR-375 can be capsulated by adipose stem cell exosome and the exosome can induce BMSC osteogenic commit (90).

During osteogenesis, BMSC releases lncH19-containing exosomes which have been validated by observing the bone microstructure of immunocompromised nude mice (76). Osteogenic induction modifies the EV cargoes of PDLCSC with miR-122-5p as the top one by miRNA differential expression analysis (77). Moreover, different cell types possess distinct RNA profiles (91), and the miRNA in adipose-derived exosomes is related to insulin-associated metabolism (92).

EV-DERIVED ncRNA INDUCES DIFFERENTIATION

The biogenesis of EVs is implicated in a series of biological processes, including the differentiation of MSCs. Exchange of EV ncRNA cargo is also important in achieving cell population homeostasis between the progenitor cell and the differentiated cell (93). RNase completely abolishes the biological effect of exosome-like microvesicles, which indicates the participation of RNA-like components (94, 95). EV programs MSCs and makes them produce more specific EVs to disseminate miRNA and mRNA (96).

EV-Derived ncRNA Induces Osteogenic Differentiation

Exosomes carrying miR-122-5p negatively regulate SPRY2 to initiate osteoblastic phenotypes (97). Radiation-induced gingival fibroblasts highly express miR-23a in their exosomes, thereby resulting in the osteogenic differentiation of BMSC (98). The lncRNA RUNX2-AS inhibits the key osteogenic regulator—, RNUX2, by the transportation of exosomes (99). miR-21/Smad7 axis detected by the exosome of BMSC is the mechanism of negative osteogenesis in osteoporosis patients (100). After 21 days of osteogenic inducement, miR-101 is upregulated in BMSC-derived exosomes, and the target demonstrates osteogenic potential upon functional verification (101). miR-335/VapB/Wnt/β-catenin axis promotes bone fracture recovery and osteblast differentiation, which is attributed to BMSC-derived EVs (102). Osteogenic and odontogenic lineage progression includes the epigenic involvement of RUNX2 and BMP2 (103, 104). Furthermore, exosomal miR-135a enhances the output of the dentin matrix via Wnt/β-catenin signaling pathway and contributes to tooth development (105). NEAT1-containing exosomes induce BMSC osteogenic commitment by sponging miR-205-5p (106). MiR-223 decreased exosomes promote differentiation into osteoblasts (107). Exosomes from

TABLE 1 | A summary of several common ncRNA derived from extracellular vesicles (EVs) of mesenchymal stem cells (MSCs).

Noncoding RNA- target gene	Target cell	Parent cell and EV type	Biological behavior
MALAT1-PKCαII [69]	HT22 neuronal cells	ADSC and exosome	Survival and proliferation
miR-210-RUNK3 [70]	human umbilical vein endothelial cells	ADSC and microvesicle	Proliferation, migration and invasion
miR-1470-c-Jun [71]	CD4 + CD25 + FOXP3 + Tregs	BMSC and exosome	Differentiation
miR-128-3p-Smad5 [72]	MSC	aged MSC and exosome	Inhibition of osteogenic differentiation
miR-31a-5p-SATB2 [73]	BMSC	BMSC from aged rats and exosome	Osteoclastogenesis
miR-126-SPRED1 [74]	human umbilical vein endothelial cell	hypoxic human umbilical cord MSC and exosome	Angiogenesis, proliferation and migration
miR-181c-TLR4 [75]	macrophages	human umbilical cord MSC and exosome	Inflammation reverse
H19-miR-106-Angpt1 [76]	/	BMSC and exosome	Osteogenesis and angiogenesis
miR-122-5p, miR-25-3p, and miR-142-5p Δ [77]	rat BMSCs	Osteogenic differentiated human periodontal ligament stem cell and exosomes	Osteogenic differentiation

This article is derived from experiment in vivo. Δ This article does not involve downstream functional verification.
BMSC promote osteoblast proliferation and differentiation by releasing STAT1-targeting miR-935 (108).

EV-Derived ncRNA Induces Chondrogenic Differentiation

Exosomal miR-92a-3p regulates chondrogenic development by directly targeting Wnt5A and therefore holds therapeutic potential in osteoarthritis (109). Chondrogenic differentiation also makes the BMSC exosomes highly express 35 kinds of miRNA, including miR-92a (110). Chondrocytes induce BMSC chondrogenic differentiation via the delivery of miR-8485-containing exosomes in a co-culture system (111). miR-95-5p is overexpressed in the chondrocytes, and the chondrocytes in turn produce chondrogenic exosomes, which can inhibit HDAC2/8 (112). Adipose stem cells deliver exosomal miR-145 and miR-221 to regenerate the cartilage and ameliorate osteoarthritis (113).

EV-Derived ncRNA Induces Neurogenic Differentiation

Vascularization is considered the key factor for successful transplantation and regeneration as vascular supply necessary nutrition and oxygen. Stem cells from deciduous teeth (SHED) aggregates secrete miR-26-enriched exosomes to forge a suitable microenvironment for pulp regeneration (114). Serum exosomal miR-1956 stimulates the angiogenic differentiation of adipose stem cells by activating Notch-1 (115).

EV-Derived ncRNA Induces Adipogenic Differentiation

Exosomal miR-92a-3p regulates C/EBPα at the post-transcriptional level to block adipogenic differentiation of adipose stem cells (121). Obesity and high-fat treatment break the bone–fat equilibrium and downregulate the expression of Lnc H19 in the circulation and output of BMSC-origin exosomes (122).

CHALLENGES AND PROSPECTS

Although organelles, cytokines, and lipids enrich EV constituents (123), this review implicates ncRNA. To facilitate clinical translation, high purity, low cost, and largescale exosome isolation techniques need to be developed (124). 3D culture and isolation by tangential flow filtration can potentially pave the road from bench to bed (125). A specific aptamer for exosomal application is also necessary since the exosomes significantly enhance the osteoblastic differentiation of BMSC in vitro but not in vivo (126).

Largescale studies on RNA according to the miRNA nomenclature guidelines are also inadequate; so are the studies on clusters and other EV-derived ncRNAs (excluding LncRNA and miRNA). Moreover, the autocrine system is an issue worth exploring (127).

It is hoped that EVs would be a better drug vehicle than lipids since they can pass natural biological barriers (128, 129) or exert functions with their anatomical apposition (130). They are safe for use in the field of oncology and can be modified using multiple methods (131). Moreover, “EV encapsulated RNA drugs” combined with engineering modification is a powerful cell-free gene therapy tool that holds considerable promise for regenerative therapy in the future.

AUTHOR CONTRIBUTIONS

CY contributed to the design and conception, manuscript writing, and final approval of the manuscript. JY contributed to the design and conception, manuscript revising, financial support, and final approval of the manuscript. Both authors have read and approved the final version of the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (grant numbers: 81873707 and 82170940).

REFERENCES

1. Bernardo ME, Pagliara D, and Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant. (2012) 47:164–71. doi: 10.1038/bmt.2011.81
2. Eramo S, Orcid Id, Natali A, Pinna R, and Milia E. Dental pulp regeneration via cell homing. Int Endod J. (2018) 51:405–19. doi: 10.1111/iej.12868
3. Phinney DG, and Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. (2018) 36:930–1. doi: 10.1002/stem.2575
4. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via endorsement of macrophage polarization. Stem Cell Res Ther. (2018) 9:320. doi: 10.1186/s13287-018-1069-9
5. Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. (2019) 10:30. doi: 10.1186/s13287-018-1121-9
6. Huang CC, Narayanan R, Alapati S, Ravindran S. Exosomes as biomimetic tools for stem cell differentiation: applications in dental pulp tissue regeneration. Biomaterials. (2016) 111:103–15. doi: 10.1016/j.biomaterials.2016.09.029
7. Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. (2019) 23:2822–35. doi: 10.1111/jcmm.14190
9. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischemia-reperfusion injury through miR-182-regulated macrophage polarization. *Cardiovasc Res.* (2019) 115:1205–16. doi: 10.1093/cvr/cvz040

10. Burrello J, Monticone S, Gai C, Gomez Y, Camussi G. Stem cell-derived extracellular vesicles and immune-modulation. *Front Cell Dev Biol.* (2016) 4:83. doi: 10.3389/fcell.2016.00083

11. Nechooshtan G, Yunusov D, Chang K, and Gingeras TR. Processing released by Jurkat and HL-60 cells undergoing noncoding landscape of extracellular RNA released by human glioma stem cells, *Neurobiol. Aging.* (2017) 52:131–57. doi: 10.1016/j.neurobiolaging.2017.03.010

12. Larios M, Bovine milk contains microRNA and messenger RNA that are released by Jurkat and HL-60 cells undergoing apoptosis: controlled demolition at the endoplasmic reticulum of nonmalignant cells. *J Biol Chem.* (2010) 285:17442–52. doi: 10.1074/jbc.M110.107821

13. Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, et al. Emerging miRNA-miRNA axis in cardiovascular diseases. *Front Mol Biol.* (2015) 2:47. doi: 10.3389/fmolb.2015.00047

14. Shao L, Orcid Id, Zhang Y, Lan B, Wang J, Zhang Z, et al. MiRNA sequence codes for small extracellular vesicle release and cellular mechanisms and intercellular transfer of microRNAs in living cells. *Cardiovasc Res.* (2011) 88:409. doi: 10.1111/j.1365-2983.2011.07751.x

15. Choi DY, Park JN, Paek SH, Choi SC, and Paek SH. Detecting early-stage malignant melanoma using a calcium switch-enriched exosome marker. *Biomed Res Int.* (2016) 2016:429692. doi: 10.1155/2016/429692

16. Wu CH, Silvers CR, Messing EM, and Lee YF. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. *J Biol Chem.* (2019) 294:3207–18. doi: 10.1074/jbc.RA118.006862

17. Imai H, Kosaka N, Shimizu T, Sekine K, Ochiya T, and Takase M. Exosomic microRNAs in the tumor microenvironment. *Front Med.* (2015) 2:47. doi: 10.3389/fmed.2015.00047

18. Dragomir MP, Knutsen E, Calin GA. SnapShot: unconventional miRNA functions. *Annu Rev Genet.* (2018) 52:131–57. doi: 10.1146/annurev-genet-120417-014111

19. Meissner CA, Fabry MH, Kneuss E, et al. piRNA-guided genome defense: from biogenesis to silencing. *Annu Rev Genet.* (2018) 52:131–57. doi: 10.1146/annurev-genet-120417-014111

20. Wang A, Shi Z, Wang X, Xing Y, Yang X. CircRNA encodes rare functional long noncoding RNAs in hepatocellular carcinoma. *Cancer Sci.* (2020) 111:3383–49. doi: 10.1111/cas.14516

21. Tiek D, Ruegg-Davis P, Orkin SH, and Teyton L. piRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. *Cell Stem Cell.* (2021) 28:1090–103.e9. doi: 10.1016/j.stem.2021.08.014

22. Burcher DJ, Li, et al. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. *J Cell Mol Med.* (2018) 22:5768–75. doi: 10.1111/jcmm.13866

23. Dragomir MP, Knutsen E, Calin GA. SnapShot: unconventional miRNA functions. *Cell. Biol.* (2018) 174:1038–8.e1 doi: 10.1083/j.cell.2018.07.040

24. Li, et al. CircRNA, miRNA and mRNA expression profiles and ceRNA potential of exosomes in regenerative medicine for temporomandibular joint osteoarthritis. *Int J Mol Sci.* (2020) 21:1541. doi: 10.3390/ijms21041541

25. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of miRNAs and microRNAs is a novel mechanism of genetic exchange between cells. *Nat Cell Biol.* (2007) 9:654–9. doi: 10.1038/nclb1596

26. Taghi SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Perez Lanzon M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. *Cell Stem Cell Ther.* (2015) 6:1277. doi: 10.1186/s12248-015-0161-x

27. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. *Cell Res.* (2015) 25:981–4. doi: 10.1038/cr.2015.82

28. Cai Q, Orcid Id, Benamer T, Korasy HM, Orcid Id, Zeidan A, et al. Interplay between endoplasmic reticulum stress and large extracellular vesicles (microparticles) in endothelial cell dysfunction. *Biomedicines.* (2020) 8:409. doi: 10.3390/biomedicines8010049

29. Wu CH, Silvers CR, Messing EM, and Lee YF. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. *J Biol Chem.* (2019) 294:3207–18. doi: 10.1074/jbc.RA118.006862

30. Imai H, Kosaka N, Shimizu T, Sekine K, Ochiya T, and Takase M. Bovine milk contains microRNA and messenger RNA that are released by Jurkat and HL-60 cells undergoing apoptosis: controlled demolition at the endoplasmic reticulum of nonmalignant cells. *J Biol Chem.* (2010) 285:17442–52. doi: 10.1074/jbc.M110.107821
Yan and Yu
ncRNA in EV Regulate Differentiation

68. Gopal SK, Greening DW, Rai A, Chen M, Xu R, Shafiq A, et al. Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition. Biochim Biophys Acta 2017; 1747:24-45. doi: 10.1016/j.bbcan.20160606.

69. El Bassit G, Patel RS, Carter G, Shibu V, Patel AA, Song S, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PCK2 in HT22 cells. Endocrinology, 2017; 158:183-95. doi: 10.1210/en.2016-1819.

70. Zheng Z, Liu L, Zhan Y, Yu S, Kang T. Adipose-derived stem cell-derived microvesicle-released miR-210 promoted proliferation, migration and invasion of endothelial cells by regulating RUNX3. Cell Cycle. 2018; 17:1026–33. doi: 10.18722/10.53841.2018.1480207.

71. Zhuansun Y, Du Y, Huang F, Lin L, Chen R, Jiang S, et al. MSCs exosomal miR-1470 promotes the differentiation of CD4+ T(FOXp3+) Tregs in asthmatic patients by inducing the expression of P27KIP1. Int Immunopharmacol. 2019; 77:105981. doi: 10.1016/j.intimp.2019.105981.

72. Xu T, Luo Y, Wang J, Zhang N, Gu C, Li L, et al. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates. J Nanobiotechnol. 2020; 18:47. doi: 10.1186/s12951-020-00601-w.

73. Xu R, Shen X, Si Y, Fu Y, Zhu W, Xiao T, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 2018; 17:e12794. doi: 10.1111/acel.12794.

74. Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020; 103:196–212. doi: 10.1016/j.actbio.2019.12.020.

75. Li X, Liu L, Yang J, Yu Y, Chai I, Wang L, et al. Exosome derived from human umbilical cord mesenchymal stem cells mediates M181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016; 8:72–82. doi: 10.1016/j.ebiom.2016.04.030.

76. Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Ang1/1Tie2-NO signaling in CBS-hyperoxic mice. Theranostics. 2011; 11:775–34. doi: 10.7150/thno.58410.

77. Liu T, Hu W, Zou X, Xu J, He S, Chang L, et al. Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering microRNA profiles. Stem Cells Int. 2020; 2020:8852307. doi: 10.1155/2020/8852307.

78. Park JH, Choi Y, Lim CW, Park JM, Orcid Id, Yu SH, et al. Potential therapeutic effect of micrornas in extracellular vesicles from mesenchymal stem cells against SARS-CoV-2. Cells. 2021; 10:2939. doi: 10.3390/cells10092393.

79. Kang M, Huang CC, Lu Y, Shirazi S, Gajendrareddy P, Ravindran S, et al. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020; 141:115627. doi: 10.1016/j.bone.2020.115627.

80. Wozniak AL, Adams A, King KE, Duna W, Christianson LK, Hung WT, et al. The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation. J Cell Biol. 2020; 219:e201912074. doi: 10.1083/jcb.201912074.

81. Fafán-Labora J, Lesende-Rodriguez I, Fernández-Pernas P, Sangiao-Alvarelos S, Monserrat L, Arntz OJ, et al. Effect of age on pro-inflammatory miRNAs contained in mesenchymal stem cell-derived extracellular vesicles. Sci Rep. 2017; 7:43923. doi: 10.1038/srep43923.

82. Spencer DM, Gauley J, Pisetzky DS. The properties of microparticles from RAW 264.7 macrophage cells undergoing in vitro activation or apoptosis. Innate Immun. 2014; 20:239–48. doi: 10.1177/1753453914522952.

83. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014; 124:3748–57. doi: 10.1182/blood-2014-05-576116.

84. Lv PY, Gao PF, Tian GJ, Yang YY, Mo FF, Wang ZH, et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/akt signaling pathway. Stem Cell Res Ther. 2020; 11:295. doi: 10.1186/s13287-020-01815-3.

85. Ohno S, Takahashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013; 21:185–91. doi: 10.1038/mt.2012.180.
Yan and Yu ncRNA in EV Regulate Differentiation

86. Qiu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Med. (2017) 21:2491-502. doi: 10.1111/jcem.13170

87. Momen-Heravi F, Bala S, Bukong T, Shazoo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine. (2014) 10:1517–27. doi: 10.1016/j.nano.2014.03.014

88. He J, Jiang YL, Wang Y, Tian XI, Sun SR. Micro-vesicles from mesenchymal stem cells over-expressing miR-34a inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition in renal tubular epithelial cells in vitro. Chin Med J. (2020) 133:800–7. doi: 10.1097/CM9.00000000000010720

89. Liu W, Huang J, Chen F, Xie D, Wang L, Ye C, et al. MSC-derived small extracellular vesicles overexpressing miR-20a promoted the osteointegration of porous titanium alloy by enhancing osteogenesis via targeting BAML. Stem Cell Res Ther. (2021) 12:348. doi: 10.1186/s12987-021-02303-y

90. Chen S, X. Id- Orcid, Tang Y, Liu Y, Zhang P, Lv L, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Proli. (2019) 52e12669. doi: 10.1111/cpr.12669

91. Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer. (2020) 19:102. doi: 10.1186/s12957-020-01199-1

92. Zhang B, Orcid Id, Yang Y, Xiang L, Orcid Id, Zhao Z, et al. Adipose-derived exosomes: a novel adipokine in obesity-associated diabetes. J Cell Physiol. (2019) 234:16692–702. doi: 10.1002/jcp.28354

93. Fatima F, Ekstrom K, Nazarenko I, Maugeri M, Valadi H, Hill AF, et al. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. J Cell Physiol. (2020) 234:16692–702. doi: 10.1002/jcp.28354

94. Deregibus MC, Tetta C, Camussi G. The dynamic stem cell-microvesicle exchange in the cardiovascular system. Stem Cells. (2019) 37:2995–3005. doi: 10.1002/stem.30027

95. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in tissue regeneration. Stem Cells. (2019) 37:2995–3005. doi: 10.1002/stem.30027

96. Léveillé N, Baglio SR. Exosome-transferred lncRNAs at the core of epithelium-mesenchyme crosstalk in organ development. ACS Nano. (2017) 11:7736–46. doi: 10.1021/acsnano.7b08087

97. Mo C, Huang B, Zhuang J, Jiang S, Guo Z, Mao X, et al. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer. Clin Transl Med. (2021) 11:e493. doi: 10.1002/cxm.2.493

98. Du W, Su L, Zhang N, Wang H. Exosomes derived from preadipocytes improve osteogenic differentiation, potentially via reduced miR-223 expression. Mol Med Rep. (2019) 19:951–8. doi: 10.3892/mmr.2018.9760

99. Zhang Y, Cao X, Li P, Fan Y, Zhang L, Ma X, et al. miRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. (2021) 272:119204. doi: 10.1016/j.lfs.2021.119204

100. Mao G, Zhang Z, Hu S, Zhang Z, Zhang C, Huang Z, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and prevent the development of osteoarthritis. Stem Cell Res Ther. (2018) 9:247. doi: 10.1186/s12955-018-01004-0

101. Sun H, Orcid Id, Hu S, Zhang Z, Lun J, Liu A, et al. Expression of exosomal miRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J Cell Biochem. (2019) 120:171–81. doi: 10.1002/jcb.27289

102. Li Z, Wang Y, Xiang S, Zheng Z, Bian Y, Feng B, et al. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem Biophys Res Commun. (2020) 523:506–13. doi: 10.1016/j.bbrc.2019.12.065

103. Mao G, Hu S, Zhang Z, Wu P, Zhao X, Lin R, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J Cell Med. (2018) 22:3534–66. doi: 10.1111/jcmm.13808

104. Zhao C, Chen JY, Peng WM, Yuan B, Bi Q, Xu YJ. Exosomes from adipose-derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR-145 and miR-221. Mol Med Rep. (2020) 21:18811–9. doi: 10.3892/mmr.2020.10892

105. Wu M, Orcid Id, Liu X, Orcid Id, Li Z, Huang X, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β1/SMAD2/3 signalling. Cell Proli. (2021) 54:e13074. doi: 10.1111/cpr.13074

106. Gao L, Mei S, Zhang H, Qin Q, Li H, Liao Y, et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells. Theranostics. (2020) 10:1060–73. doi: 10.7150/thno.37678

107. Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. (2018) 49:747–53. doi: 10.1161/STROKEAHA.116.015204

108. Xin H, Li Y, Boller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. (2012) 30:1556–64. doi: 10.1002/stem.1129

109. Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. (2018) 32:512–28. doi: 10.1096/fj.201706673r

110. Huang JH, Xu Y, Yin XM, Lin FY. Exosomes derived from miR-126-modified MSCs promote angiogenesis and neuroregeneration and attenuate apoptosis after spinal cord injury in rats. Neurosci. (2020) 242:133–45. doi: 10.1016/j.neurosci.2019.10.043

111. Wang Y, Lai X, Wu D, Liu B, Wang N, Rong L, et al. Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/4-15p-5p-mediated NGF/TrkA signaling pathway in rats. Stem Cell Res Ther. (2021) 12:117. doi: 10.1186/s13287-021-02629-7

112. Wan Z, Orcid Id, Chen X, Gao X, Dong Y, Zhao Y, et al. Chronic myocardial ischemia induced exosomes attenuate adipogenesis of dermal derived mesenchymal stem cells via transporting miR-92a-3p. J Cell Physiol. (2019) 234:21274–83. doi: 10.1002/jcp.28732

113. Wang Y, Chen W, Zhao L, Li Y, Liu Z, Gao H, et al. Obesity regulates miR-467/HoxA10 axis on osteogenic differentiation and fracture healing by methylation. PLoS ONE. (2013) 8:e61423. doi: 10.1371/journal.pone.0061423
BMC-derived exosome LncRNA H19. J Cell Mol Med. (2021) 25:1712–24. doi: 10.1111/jcmm.16273

123. Boilard E. Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res. (2018) 59:2037–2046. doi: 10.1194/jlr.R084640

124. Venkat P, Chopp M, Chen J, Orcid Id. Cell-based and exosome therapy in diabetic stroke. Stem Cells Transl Med. (2018) 7:451–5. doi: 10.1002/sctm.18-0014

125. Haraszti RA, Miller R, Stoppato M, Sere YY, Coles A, Didiot MC, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther. (2018) 26:2838–47. doi: 10.1016/j.ymtl.2018.09.015

126. Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. (2019) 11:20884–92. doi: 10.1039/C9NR02791B

127. Hu X, Zhong Y, Kong Y, Chen Y, Feng J, Zheng J, et al. Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs. Stem Cell Res Ther. (2019) 10:170. doi: 10.1186/s13287-019-1278-x

128. Galieva LR, James V, Mukhamedshina YO, Rizvanov AA. Therapeutic potential of extracellular vesicles for the treatment of nerve disorders. Front Neurosci. (2019) 13:163. doi: 10.3389/fnins.2019.00163

129. Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med. (2018) 24:242–56. doi: 10.1016/j.trendsmolmed.2018.01.006

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Yan and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.