On Domination Number and Distance in Graphs

Cong X. Kang
Texas A&M University at Galveston, Galveston, TX 77553, USA
kangc@tamug.edu

September 16, 2014

Abstract

A vertex set S of a graph G is a dominating set if each vertex of G either belongs to S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of S as S varies over all dominating sets of G. It is known that $\gamma(G) \geq \frac{1}{3}(\text{diam}(G) + 1)$, where $\text{diam}(G)$ denotes the diameter of G. Define C_r as the largest constant such that $\gamma(G) \geq C_r \sum_{1 \leq i < j \leq r} d(x_i, x_j)$ for any r vertices of an arbitrary connected graph G; then $C_2 = \frac{1}{2}$ in this view. The main result of this paper is that $C_r = \frac{1}{r(r-1)}$ for $r \geq 3$. It immediately follows that $\gamma(G) \geq \mu(G) = \frac{1}{n(n-1)} W(G)$, where $\mu(G)$ and $W(G)$ are respectively the average distance and the Wiener index of G of order n. As an application of our main result, we prove a conjecture of DeLaViña et al. that $\gamma(G) \geq \frac{1}{2}(\text{ecc}_G(B) + 1)$, where $\text{ecc}_G(B)$ denotes the eccentricity of the boundary of an arbitrary connected graph G.

Key Words: domination number, distance, diameter, spanning tree

2010 Mathematics Subject Classification: 05C69, 05C12

1 Introduction

We consider finite, simple, undirected, and connected graphs $G = (V(G), E(G))$ of order $|V(G)| \geq 2$ and size $|E(G)|$. For $W \subseteq V(G)$, we denote by $(W)_G$ the subgraph of G induced by W. For $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = \{u \in V(G) \mid uv \in E(G)\}$, and the closed neighborhood of v is $N[v] = N_G(v) \cup \{v\}$. Further, let $N(S) = \cup_{v \in S}N(v)$ and $N[S] = \cup_{v \in S}N[v]$ for $S \subseteq V(G)$. The degree of a vertex $v \in V(G)$ is $\deg_G(v) = |N_G(v)|$. The distance between two vertices $x, y \in V(G)$ in the subgraph H, denoted by $d_H(x, y)$, is the length of the shortest path between x and y in the subgraph H. The diameter $\text{diam}(H)$ of a graph H is $\max\{d_H(x, y) \mid x, y \in V(H)\}$.

A set $S \subseteq V(G)$ is a dominating set (resp. total dominating set) of G if $N[S] = V(G)$ (resp. $N(S) = V(G)$). The domination number (resp. total domination number) of G, denoted by $\gamma(G)$ (resp. $\gamma_t(G)$), is the minimum cardinality of S as S varies over all dominating sets (resp. total dominating sets) in G; a dominating set (resp. total dominating set) of G of minimum cardinality is called a $\gamma(G)$-set (resp. $\gamma_t(G)$-set).

Both distance and (total) domination are very well-studied concepts in graph theory. For a survey of the myriad variations on the notion of domination in graphs, see [4].

It is well-known that $\gamma(G) \geq \frac{1}{3}(\text{diam}(G) + 1)$ (\ast): a “proof” to (\ast) can be found on p.56 of the authoritative reference [3]. However, the “proof” contained therein is logically flawed. We provide a counterexample to a crucial assertion in the “proof” and then present a correct proof to (\ast). Upon some
reflection, we see that (*) is the two parameter case of a family of inequalities existing between \(\gamma(G) \) and the distances in \(G \), in the following way: \(\gamma(G) \geq \frac{1}{2}(diam(G)+1) = \frac{1}{3r}\left(\left(\begin{array}{c} r \\ 1 \end{array}\right)diam(G) + \left(\begin{array}{c} r \\ 2 \end{array}\right)\right) \). The inequality \(\gamma(G) \geq \frac{1}{3r}\left(\sum_{1 \leq i < j \leq r} d(x_i, x_j)\right) \) naturally brings up the question: What is the largest constant \(C_r \), such that \(\gamma(G) \geq C_r \left(\sum_{1 \leq i < j \leq r} d(x_i, x_j)\right) \), for all connected graphs \(G = (V, E) \) and arbitrary vertices \(x_1, \ldots, x_r \in V \), where \(r \geq 2 \)? Taking this viewpoint, we have \(C_2 = \frac{1}{3} \) by (*).

The main result of this paper is that \(C_r = \frac{1}{r(r-1)} \) for \(r \geq 3 \). Since, for a graph \(G \) of order \(n \), \(W(G) = \sum_{1 \leq i < j \leq n} d(x_i, x_j) \) is the Wiener index of \(G \) (see [1]) and \(\mu(G) = \frac{1}{n(n-1)} W(G) \) is the average distance (per definition found in [1]), it follows that \(\gamma(G) \geq \mu(G) = \frac{1}{r(r-1)} W(G) \). As an application of our main result, we prove a conjecture in [3] by DeLaViña et al. that \(\gamma(G) \geq \frac{1}{r}ecc_G(B) + 1 \), where \(ecc_G(B) \) denotes the eccentricity of the boundary of an arbitrary connected graph \(G \) (to be defined in Section 4).

This paper is motivated by the work of Henning and Yeo in [5], where they obtained similar inequalities for total domination number \(\gamma_t \) (rather than domination number \(\gamma \)). Given the close relation between the two graph parameters, we expect the techniques used in [5] to be readily adaptable towards the results of this paper. However, in striking contrast to [5], we avoid the painstaking case-by-case, structural analysis employed there by making use of the easy and well-known Lemma 5.1: this results in a much simpler and shorter paper. Further, we are able to obtain (in domination) the exact value of \(C_r \) for every \(r \), rather than only a bound (in total domination, c.f. [5]) for \(C_r \) for all but the first few values of \(r \).

2 An Error in the proof of \(\gamma(G) \geq \frac{1}{3}(diam(G) + 1) \) in FoDiG

For readers’ convenience, we first reproduce Theorem 2.24 and its incorrect proof as it appears on p.56 of [1], the authoritative reference in the field of domination titled Fundamentals of Domination in Graphs.

Theorem 2.1. For any connected graph \(G \), \[\left\lfloor \frac{diam(G)+1}{3} \right\rfloor \leq \gamma(G). \]

“Proof” (as found on p.56 of [1]). Let \(S \) be a \(\gamma \)-set of a connected graph \(G \). Consider an arbitrary path of length \(diam(G) \). This diametral path includes at most two edges from the induced subgraph \(\langle N[v]\rangle \) for each \(v \in S \). Furthermore, since \(S \) is a \(\gamma \)-set, the diametral path includes at most \(\gamma(G) - 1 \) edges joining the neighborhoods of the vertices of \(S \). Hence, \(diam(G) \leq 2\gamma(G) + \gamma(G) - 1 = 3\gamma(G) - 1 \) and the desired result follows.” \(\square \)

![Figure 1: a counter-example](image-url)
in Figure 1 notice that $S = \{u, v\}$ is a γ-set and the vertices $1, 2, 3, 4$ form a diametral path containing 3 edges joining $\langle N[u] \rangle$ with $\langle N[v] \rangle$, whereas $\gamma(G) - 1 = 1$.

3 Domination number and distance in graphs

The following lemma can be proved by exactly the same argument given in the proof of Lemma 2 in [2]; it was also observed on p.23 of [1].

Lemma 3.1. [1, 2] Let M be a $\gamma(G)$-set. Then there is a spanning tree T of G such that M is a $\gamma(T)$-set.

Now, we apply Lemma 3.1 to give a correct proof of Theorem 2.1.

Proof of Theorem 2.1. Given G, take a spanning tree T of G such that $\gamma(G) = \gamma(T)$. Suppose, for the sake of contradiction, $\gamma(G) < \frac{4}{3}(\text{diam}(G) + 1)$. Since $\gamma(T) = \gamma(G)$ and $\text{diam}(T) \geq \text{diam}(G)$, we have

$$\gamma(T) < \frac{1}{3}(\text{diam}(T) + 1) \tag{1}$$

Take a path P of T with length equal to $\text{diam}(T)$. If (1) holds, there must exist a vertex u of T such that $|V(P) \cap N[u]| \geq 4$. Since P is a path of T (a tree), this is impossible. □

Theorem 3.2. Given any three vertices x_1, x_2, x_3 of a connected graph G, we have

$$\gamma(G) \geq \frac{1}{6}(d_G(x_1, x_2) + d_G(x_1, x_3) + d_G(x_2, x_3)). \tag{2}$$

Further, if equality is attained in (2), then $d_G(u, v) \equiv 2 \pmod{3}$ for any pair $u, v \in \{x_1, x_2, x_3\}$.

Proof. By Lemma 3.1 there exists a spanning tree T of G with $\gamma(T) = \gamma(G)$. Since $d_T(u, v) \geq d_G(u, v)$ for any two vertices $u, v \in V(T) = V(G)$, it suffices to prove (2) on T. If x_1, x_2, and x_3 all lie on one geodesic, then the inequality (2) obviously holds by Theorem 2.1. Thus, let $d_T(x_1, y) = a$, $d_T(x_2, y) = b$, and $d_T(x_3, y) = c$, with $0 \notin \{a, b, c\}$, as shown in Figure 2. Then, the inequality (2) on T becomes

$$\gamma(T) \geq \frac{1}{6}((a + b) + (a + c) + (b + c)) = \frac{1}{3}(a + b + c). \tag{3}$$

Let y' be the vertex lying on the x_2-y path and adjacent to y. Let P^1 and P^2 denote the x_1-x_3 path and the x_2-y' path, respectively. If there exists a $\gamma(T)$-set M not containing y, then M must contain a neighbor z of y. Suppose, WLOG, $z \neq y'$. Then, inequality (3) follows immediately from applying Theorem 2.1 to P^1 and P^2. If y belongs to every $\gamma(T)$-set M, then $\gamma(T) \geq 1 + \frac{4}{3}(a - 1) + \frac{1}{3}(b - 1) + \frac{1}{3}(c - 1) = \frac{1}{3}(a + b + c)$, and (3) again follows.

![Figure 2: $r = 3$ case](image-url)
Next, suppose equality is attained in \(\mathcal{E} \). Again, let \(T \) be a spanning tree with \(\gamma(T) = \gamma(G) \). Since \(d_G(x_i, x_j) \leq d_T(x_i, x_j) \) and \(\gamma(T) \geq \frac{1}{6}(d_T(x_1, x_2) + d_T(x_1, x_3) + d_T(x_2, x_3)) \) holds, we have \(\gamma(G) = \frac{1}{6}(d_G(x_1, x_2) + d_G(x_1, x_3) + d_G(x_2, x_3)) \). Thus, we deduce that \(\gamma(T) = \frac{1}{6}(d_T(x_1, x_2) + d_T(x_1, x_3) + d_T(x_2, x_3)) \) and \(d_G(x_1, x_2) = d_T(x_1, x_2) \) for each pair \((x_i, x_j) \). With \(a, b, c \) defined as above, the present assumption implies \(\gamma(T) = \frac{1}{3}(a + b + c) \). Observe, in light of Theorem 3.2, that the equality \(\gamma(T) = \frac{1}{3}(a + b + c) \) is only possible if the following “optimal domination” of \(T \) occurs: there is a \(\gamma(T) \)-set \(M \) which contains \(y \), a degree-three vertex in \(\langle V(P_1) \cup V(P_2) \rangle \); which dominates four or more vertices in \(T \); every other vertex of \(M \) dominates three or more vertices in \(T \); no vertex of \(T \) is dominated by more than one vertex of \(M \). (Note that Figure 2 only shows \(\langle V(P_1) \cup V(P_2) \rangle \), which may be a strict subgraph of \(T \).) This “optimal domination” condition clearly implies that each member of \(\{a, b, c\} \) must equal 1 (mod 3), which yields our second claim. \(\square \)

Next, we determine the largest \(C_r \) for \(r \geq 3 \) with the method deployed in \([5] \). However, rather than just getting a bound on \(C_r \) in the case of total domination there, we obtain the exact value of \(C_r \) for every \(r \).

Theorem 3.3. For \(r \geq 3 \), \(C_r = \frac{1}{r^2 - r} \).

Proof. First, we prove \(C_r \leq \frac{1}{r^2 - r} \). Let \(G = K_1, r \) be a star with \(r \) leaves labeled \(x_1, \ldots, x_r \). Then \(\gamma(G) = 1 \) and
\[
\sum_{1 \leq i < j \leq r} d(x_i, x_j) = \binom{r}{2} \cdot 2 = r(r - 1).
\]
So, \(C_r \leq \frac{1}{r(r - 1)} \).

Next, we show that \(C_r \geq \frac{1}{r^2 - r} \). Notice that \(C_3 = \frac{1}{3(3-1)} = \frac{1}{6} \) is given by Theorem 3.2. Thus, let \(x_1, x_2, \ldots, x_r \) be any arbitrary \(r \geq 4 \) vertices of \(G \). Since \(\gamma(G) \geq \frac{1}{6}(d_G(x_i, x_j) + d_G(x_i, x_k) + d_G(x_j, x_k)) \) holds for any triplet \(\{x_i, x_j, x_k\} \subseteq \{x_1, x_2, \ldots, x_r\} \), we have
\[
\binom{r}{3} \gamma(G) \geq \sum_{1 \leq i < j < k \leq r} \frac{1}{6}(d_G(x_i, x_j) + d_G(x_i, x_k) + d_G(x_j, x_k)) = \frac{r - 2}{6} \sum_{1 \leq i < j \leq r} d(x_i, x_j);
\]
note that the last equality comes from the fact that there are \(r - 2 \) triplets containing any given pair of vertices. Thus, \(C_r \geq \frac{1}{r(r - 1)} \) as well. \(\square \)

4 Applying Theorem 3.2 to a Conjecture of DeLaViña et al.

We need a few more definitions. The **eccentricity** of a vertex \(v \) in \(G \), denoted by \(ecc_G(v) \), is \(\max \{d_G(v, x) \mid x \in V(G)\} \). The **boundary** of \(G \) is defined as the set \(B(G) = \{v \in V(G) \mid ecc_G(v) = diam(G)\} \); we denote it simply as \(B \) hereafter. The distance between a vertex \(v \in V(G) \) and a set \(S \subseteq V(G) \) is defined as \(d_G(v, S) = \min \{d_G(v, x) \mid x \in S\} \). Further, the eccentricity of \(S \subseteq V(G) \) is defined as \(ecc_G(S) = \max \{d_G(x, S) \mid x \in V(G)\} \).

In \([3]\), DeLaViña et al. proved, for a tree \(G \), that \(\gamma(G) \geq \frac{1}{2}(ecc_G(B) + 1) \). They further conjectured that the inequality holds for any connected graph \(G \). As an application of Theorem 3.2, we prove this conjecture. Our proof follows the arguments given by Henning and Yeo in \([5]\) proving the analogous Graffiti.pc conjecture \(\gamma_t(G) \geq \frac{1}{2}(ecc_G(B) + 1) \).

Theorem 4.1. Let \(G \) be a connected graph. Then \(\gamma(G) \geq \frac{1}{2}(ecc_G(B) + 1) \).
Proof. If $B = V(G)$, then $ecc_G(B) = 0$ and the desired inequality obviously holds. So, suppose $B \neq V(G)$; this implies that $|V(G)| \geq 3$ and $|B| \geq 2$. Pick vertices x and y with $d(x, y) = diam(G)$; then, $x, y \in B$. Let $ecc_G(B) = R$. Pick $z \in V(G) \setminus B$ such that $d(z, B) = R$. We have $d(x, z) \geq R$, $d(y, z) \geq R$ and $d(x, y) = diam(G) \geq R + 1$. Hence, we have $d(x, y) + d(x, z) + d(y, z) \geq 3R + 1$ (♠). If equality holds in (♠), then $R = d(x, z) = d(y, z) = d(x, y) - 1$, and we can Not have both $d(x, z)$ and $d(x, y)$ be congruent to 2 mod 3. In this case, by Theorem 3.2 we have that $\gamma(G) > \frac{1}{2}(d(x, y) + d(x, z) + d(y, z)) = \frac{1}{2}(3R + 1) = \frac{1}{2}R + \frac{1}{2}$, which implies $\gamma(G) \geq \frac{1}{2}R + \frac{1}{2}$. On the other hand, if the inequality (♠) is strict, again by Theorem 3.2 we have that $\gamma(G) \geq \frac{1}{2}(d(x, y) + d(x, z) + d(y, z)) > \frac{1}{2}(3R + 1) = \frac{1}{2}R + \frac{1}{2}$, which again implies $\gamma(G) \geq \frac{1}{2}R + \frac{1}{2}$. \qed

References

[1] P. Dankelmann, Average distance and domination number. Discrete Appl. Math. 80 (1997) 21-35.
[2] E. DeLaViña, Q. Liu, R. Pepper, B. Waller, and D. West, Some conjectures of Graffiti.pc on total domination. Cong. Numer. 185 (2007), 81-95.
[3] E. DeLaViña, R. Pepper, B. Waller, Lower Bounds for the Domination Number. Discussiones Math. Graph Theory 30(3) (2010), 475-487
[4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998).
[5] M.A. Henning, A. Yeo, A new lower bound for the total domination number in graphs proving a Graffiti.pc Conjecture, Discrete Appl. Math.(2014), http://dx.doi.org/10.1016/j.dam.2014.03.013
[6] H. Wiener, Structural determination of paraffin boiling points, J. Ameri. Chem. Soc. 69 (1947) 17-20.