Superheavy Nuclei XI: 1500 ≤ A < 1600 Systems

Joseph Bevelacqua

Funding: The author(s) received no specific funding for this work.
Potential competing interests: The author(s) declared that no potential competing interests exist.

Abstract

Decay properties of nuclei are calculated in the mass region 1500 ≤ A < 1600. The calculations are performed using the adjusted Rost interaction. Model calculations suggest that two new islands of stability could exist in the vicinity of the Z = 414 N = 1088 (X(414, 1502)) and Z = 420 N = 1120 (X(420, 1540)) systems.

1.0 Introduction

The investigation of the stability of superheavy nuclei has been a continuing area of active experimental and theoretical interest\(^1\)\(^-\)\(^3\)\(^2\)\(^3\)\(^2\)\(^4\)\(^5\)\(^2\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\)\(^14\)\(^15\)\(^16\)\(^17\)\(^18\)\(^19\)\(^20\)\(^21\)\(^22\)\(^23\)\(^24\)\(^25\)\(^26\)\(^27\)\(^28\)\(^29\)\(^30\)\(^31\). Theoretical predictions of stability in superheavy nuclei necessarily require extrapolations of the nuclear interaction\(^2\)\(^2\)\(^3\)\(^4\)\(^5\), and are fraught with uncertainty. Accordingly, only qualitative results are possible.

Neutron shells at N = 184, 228, and 308 have been previously investigated\(^3\)\(^5\)\(^6\) and stability at N = 406 has been suggested\(^3\)\(^7\)\(^8\), and further investigated\(^2\)\(^1\). In a previous paper\(^2\)\(^1\), calculations for 570 ≤ A ≤ 620 superheavy nuclei evaluated stability near the N = 406 neutron shell and found that an island of stability existed at Z = 204. A weaker shell closure was also found at Z = 210 and N = 406. Ref. 22 investigated 620 < A < 700 systems which suggested an additional island of stability near N = 432 for a small range of A values associated with the Z = 204 shell. Binding energy calculations of 700 ≤ A < 800 nuclei indicated that an island of stability may exist near the N = 504 shell for a small range of A values associated with the Z = 226 shell\(^2\)\(^3\)\(^4\)\(^5\). Compared to the aforementioned mass regions, calculations in 800 ≤ A < 900 systems exhibit a decrease in overall binding energy\(^2\)\(^5\). Within the 800 ≤ A < 900 mass region, enhanced stability is associated with the Z = 274 shell\(^2\)\(^5\). Stability at Z = 282 is predicted with the closure of the $3f_{7/2}$ shell in 900 ≤ A < 1000 systems, but it is weaker than in the aforementioned mass regions\(^2\)\(^6\). In terms of the number of bound nuclei, overall stability in the 1000 ≤ A < 1100 mass region\(^2\)\(^7\) is weaker than in 800 ≤ A < 1000 systems\(^2\)\(^5\)\(^2\)\(^6\). However, calculations suggest that a new island of stability exists for Z = 310-318 systems\(^2\)\(^7\). Stability continues to weaken in the 1100 ≤ A < 1200 mass region\(^2\)\(^8\). Significantly enhanced stability was noted in the 1200 ≤ A < 1300 mass region\(^2\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\) with eight systems having half-lives greater than 10\(^{10}\) yr. Stability is considerably degraded in the 1300 ≤ A < 1400 mass region\(^2\)\(^1\) with the most stable systems having half-lives in the 10\(^6\) to 10\(^9\) yr\(^2\)\(^1\). The 1400 ≤ A < 1500 mass region\(^2\)\(^2\)\(^1\), is predicted to have maximum half-lives on the order of minutes.

This paper describes calculations for 1500 ≤ A < 1600 superheavy nuclei and finds that 25 even-even nuclear systems theoretically exist within this mass range. The stability of 1500 ≤ A < 1600 systems is evaluated by calculating single-particle neutron and proton levels using a methodology previously used to investigate A = 298 – 472 doubly-closed shell nuclei\(^5\) and nuclear systems in the 570 ≤ A ≤ 620\(^2\)\(^1\), 620 < A < 700\(^2\)\(^2\), 700≤A<800\(^2\)\(^3\), 800 ≤ A < 900\(^2\)\(^5\), 900 ≤ A < 1000\(^2\)\(^6\),
1000 ≤ A < 1100, 1100 ≤ A < 1200, 1200 ≤ A < 1300, 1300 ≤ A < 1400 and 1400 ≤ A < 1500 mass regions. The calculations presented herein provide an opportunity to investigate a mass region that has received minimal theoretical investigation. Moreover, these calculations provide insight into binding energy systematics and nuclear stability beyond the mass regions explored by the calculations of Refs. 3 and 5 and the neighboring 570 ≤ A < 1500 mass region.

The use of single-particle energy levels to evaluate nuclear stability is appropriate since extrapolations to the superheavy mass regions are speculative. Using a more sophisticated method is not warranted in view of the uncertainties encountered in these calculations. Methods that are more sophisticated are appropriate when data are available to examine fine model details and interaction characteristics. As was demonstrated in Refs. 3 and 5, single-particle energy level calculations are entirely appropriate for initial calculations into a superheavy mass region where there is no experimental data to guide the calculations. Moreover, theoretical calculations are currently the only way to investigate the 1500 ≤ A < 1600 mass region because an experimental investigation is not currently feasible.

Alpha decay, beta decay, positron decay, electron capture, and spontaneous fission half-lives are calculated to determine the stability of these superheavy systems. The stability in the 1500 ≤ A < 1600 mass region is dominated by alpha decay and beta decay. These half-lives are derived from the calculated single-particle level spectrum. The single-particle level energies are sensitive to the model potential. This paper also addresses model weaknesses and possible experimental methods to investigate 1500 ≤ A < 1600 systems.

2.0 Calculational Methodology

Since the method for calculating single-particle energies in a spherically symmetric potential is well established, only salient features are provided. Details of the methodology were provided in Ref. 21, which extended the approach of Petrovich et al. Specific details of the numerical method, model, and convergence criteria are provided in Refs. 2, 5, 21-35.

2.1 Theoretical Model

The model describing the nucleon plus nuclear core system represents an application of the standard method of Lukasiak and Sobiczewski and Petrovich et al. The calculational method used to generate a single-particle level spectrum determines the binding energy E_{NLSJ} of a particle in the field of a spherical nuclear core by solving the radial Schrödinger Equation

$$\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} \left(\frac{L(L + 1)}{r^2} - E_{NLSJ} - V_{LSJ}(r) \right) U_{NLSJ}(r) = 0(1)$$

where r is the radial coordinate defining the relative motion of the nuclear core and the particle; $V_{LSJ}(r)$ is the model interaction; E_{NLSJ} is the core plus particle binding energy; $U_{NLSJ}(r)$ is the radial wave function; and L, S, and J are the orbital, spin, and total angular momentum quantum numbers, respectively. N is the radial quantum number and μ is the reduced mass. Additional details of the model and associated interactions are provided in Refs. 2, 5 and 21-35.

2.2 Determination of Q Values and Half-Lives

The reader is strongly cautioned not to interpret the calculated half-lives as representing a definitive value. As noted in
subsequent discussion, the half-lives represent relative values, and the largest values suggest regions of possible stability relative to other systems whose properties are calculated with the same interaction.

The Q value for alpha decay and the alpha and beta decay half-lives of \(1500 \leq A < 1600\) superheavy nuclei with effective half-lives \(\geq 0.1\) s are listed in Table 1. The alpha decay energies are calculated using the relationship based on Ref. 1.

\[
Q_\alpha = 28.3\text{MeV} - 2S_n - 2S_p(2)
\]

where \(S_n\) and \(S_p\) are the binding energies of the last occupied neutron and proton single-particle energy levels, respectively. Alpha half-lives \((T_{1/2}^\alpha)\) were estimated from \(Q_\alpha\) using standard relationships provided in Ref. 3.

The beta decay half-lives \((T_{1/2}^\beta)\) are determined following the log ft methodology of Wong. \(^1\) Allowed (first-forbidden) transition half-lives were derived using the values of \(\log ft = 5\) \(^8\). Given the uncertainties in the calculated single-particle level energies, second and higher forbidden transitions were not determined. The beta half-life values in Table 1 listed as stable are either beta particle stable or decay by these higher order forbidden transitions.

3.0 Nuclear Interaction

Nuclear stability with respect to alpha decay, beta decay, positron decay, electron capture, and spontaneous fission is addressed using the method previously published by the author\(^{21-32}\) and coworkers\(^5\) that is similar to the approach of Ref. \(^3\). The single-particle level spectrum is generated using a Woods-Saxon potential with parameters optimized to permit extrapolation into the superheavy region\(^{2,24,29}\).

Uncertainties in the nuclear interaction for \(A \geq 1200\) superheavy nuclei preclude absolute theoretical predictions of nuclear properties including single-particle energies, half-lives, and Q-values. However, a model potential can be developed to predict trends in these properties and suggest islands of stability in \(A \geq 1200\) nuclei\(^{29}\).

A specific interaction for investigating \(A \geq 1200\) systems was developed in Ref. \(^{29}\). Any potential applicable to \(A \geq 1200\) systems must be constructed in a manner that is consistent with the general uncertainties in the nuclear interaction. Ref. \(^{29}\) reviewed a representative sample of these uncertainties in order to guide the determination of the strength of an interaction applicable for use in \(A \geq 1200\) systems. The adjusted Rost interaction for use in \(A \geq 1200\) systems is based on calculations and associated uncertainties that span a wide range of nuclear systems including structure and single-particle level calculations in (1) light nuclei, (2) nuclei throughout the periodic table based on over 4000 data values incorporating pp and np scattering in the range of \(0 – 350\) MeV, (3) the lead region, (4) \(A = 400 – 500\) systems, and (5) nuclear matter. Based on the calculations summarized in Ref. \(^{29}\), an uncertainty in the potential strength of 10% was judged to be reasonable.

To account for the 10% potential strength uncertainty in calculating the properties of \(A \geq 1200\) systems, this paper uses the adjusted Rost interaction\(^{29}\):

\[
V_0 = 51.6A\left(1 \pm 0.73 \frac{N - Z}{A}\right)^3
\]

with \(\lambda = 1.10\) and the unmodified pairing interaction of Blomqvist and Wahlborn\(^{35}\) to investigate the bounding
characteristics of $A \geq 1200$ superheavy nuclear systems. The adjusted Rost interaction accommodates the range of interaction strengths that were evaluated in Ref. 29.

4.0 Results and Discussion

The calculations presented in this paper are based on the adjusted Rost interaction29 which has a potential strength that is 10\% stronger than the Rost interaction2 used in Refs. 5 and 21-23. Accordingly, direct comparison of half-lives with the $A = 298 - 472, 570 \leq A \leq 620^{\text{21}}, 620 < A < 700^{\text{22}},$ and $700 \leq A < 800^{\text{23}}$ mass regions is not appropriate because they were based on the unmodified Rost interaction2. Similarly, comparison to calculations based on the modified Rost interaction24 used in $800 \leq A < 1200^{\text{25-28}}$ systems is also not appropriate since the interactions are not the same. However, comparisons to existing nuclear and $1200 \leq A < 1500$ systems30-32 are outlined in subsequent discussion.

The effective half-life (Eq. 4) for nuclei with $1500 \leq A < 1600$ is plotted in Fig. 1. The alpha decay Q value (Q_{α}), and beta ($T_{1/2}^{\beta}$) and alpha ($T_{1/2}^{\alpha}$) decay half-lives for the most stable $1500 \leq A < 1600$ systems are provided in Table 1. Q_{α} values for nuclei with $1500 \leq A < 1600$ are plotted in Fig. 2.

Nucleus	$T_{1/2}^{\beta}$ (yr)	Q_{α} (MeV)	$T_{1/2}^{\alpha}$ (yr)
412 1088	0.71 sa	26.2	1.4 x1011
414 1088	b	26.6	2.9 x1010
414 1090	0.15 sc	26.5	5.4 x1010
414 1092	0.13 sc	26.4	1.2 x1011
414 1094	0.11 sc	26.2	2.7 x1011
416 1096	0.15 sd	26.9	1.6 x1010
416 1098	0.11 sa	26.9	1.9 x1010
420 1120	b	27.4	5.6 x109

a First forbidden $4_{1/2}^{1}\left(n\right) \rightarrow 2_{1/2}^{1}\left(n\right)$ beta decay.

b Beta stable.

c First forbidden $6_{5/2}^{2}\left(n\right) \rightarrow 4p_{3/2}\left(n\right)$ beta decay.

d First forbidden $7_{1/2}^{1}\left(n\right) \rightarrow 4p_{3/2}\left(n\right)$ beta decay.

e First forbidden $6_{5/2}^{2}\left(n\right) \rightarrow 4p_{3/2}\left(n\right)$ beta decay.
Fig. 1. Three-dimensional plot of the effective half-life (T$_{1/2}^{eff}$) as a function of N and Z for 1500 ≤ A < 1600 nuclear systems. To simplify the plot, the half-lives of the X(414, 1502) and X(420, 1540) systems are shown as 10$^{-6}$ yr rather than their actual values of 2.9x10$^{-10}$ and 5.6x10$^{-9}$ yr, respectively. Using the actual half-life values would compress most of the figure causing a loss of detail.
All $1500 \leq A < 1600$ systems decay through alpha emission. Beta decays occur in most bound $1500 \leq A < 1600$ systems through the transitions addressed in subsequent discussion. The most stable $1500 \leq A < 1600$ systems (i.e., X(414, 1502) and X(420, 1540)) are beta stable.

In general, it is expected that any bound superheavy nucleus will be strongly influenced by its shell structure. Based on previous calculations3, 5, 21-32, a bound superheavy nucleus is formed from the extra binding energy from closed-shell effects. The importance of these shell effects are noted in subsequent discussion.

The $1500 \leq A < 1600$ calculations suggest that two new islands of stability could exist in the vicinity of the X(414, 1502) and X(420, 1540) systems. Maximum stability occurs in the doubly-closed X(414, 1502) nucleus, which has closed $5g_{7/2}$ neutron and $2i_{15/2}$ proton shells.

As noted in Table 1, effective half-lives ≥ 0.1 s occur in a subset of the 25 bound nuclei within $1500 \leq A < 1600$ systems. These enhanced stability regions occur at $Z = 414$ ($N = 1088$) and $Z = 420$ ($N = 1120$). As used in this paper, an effective half-life includes the combined effect of the alpha and beta decay modes:

$$\tau_{1/2}^{\text{eff}} = \frac{\tau_{1/2}^{\alpha} \tau_{1/2}^{\beta}}{(\tau_{1/2}^{\alpha} + \tau_{1/2}^{\beta})}$$
Most of the 1500 ≤ A < 1600 systems summarized in Fig. 1 have effective half-lives less than one second. The calculated half-lives of most 1500 ≤ A < 1600 nuclei are shorter than the observed half-lives in Z = 114 - 118 systems\(^{36}\). The longest-lived systems summarized in Table 1 represent a subset of the 25 bound 1500 ≤ A < 1600 nuclei.

Spontaneous fission stability is expected to be enhanced near doubly-closed shells. Detailed calculations of the fission half-lives of 1500 ≤ A < 1600 nuclei have not been attempted. However, estimates using the Wentzel-Kramers-Brillouin (WKB) approximation methodology and the phenomenological parameter values of Ref. 3 suggest fission half-lives near closed shells are much greater than the effective decay half-lives. However, a more refined calculation is required to establish definitive spontaneous fission half-lives.

The results of the calculations suggest that for a given A value, \(S_p\) tends to decrease and \(S_n\) tends to increase as Z increases. This usually results in increasing \(Q_{\alpha}\) values as Z increases for a fixed A value. The beta decay systematics are more complex, and depend on the occupancy of specific single-particle levels, single-particle level quantum numbers, and single-particle energy level values that permit an allowed or forbidden transition to occur. The specific trends in alpha and beta stability are addressed in the subsequent discussion of nuclear stability.

A few general items are noted and are consistent with the trends noted in Refs. 21-32. For a given A value, alpha decay half-lives tend to decrease and beta decay half-lives tend to increase as Z increases. For a fixed Z, alpha decay half-lives tend to increase and beta decay half-lives tend to decrease as A increases.

In general, most decays in the 1500 ≤ A < 1600 systems occur through both alpha and beta pathways. The specific beta decay mode varies in the bound 1500 ≤ A < 1600 systems and is noted in subsequent discussion.

The discussion of specific nuclear systems focuses on the nuclides summarized in Table 1. These nuclei have the longest half-lives of the 25 even-even systems found to theoretically exist within the 1500 ≤ A < 1600 mass region.

Most of the calculated 1500 ≤ A < 1600 half-lives are shorter than the longest-lived Z = 114 – 118 nuclei\(^{36}\). X(414, 1502) (2.9x10\(^{10}\) yr) and X(420, 1540) (5.6x10\(^{9}\) yr) are exceptions. Within the Z = 114 – 118 region, the longest-lived nucleus is \(^{285}\)Cn that has a half-life of about 34 s\(^{36}\).

4.1 1500 ≤ A < 1510 Systems

In the 1500 ≤ A < 1510 mass region, beta decays occur most frequently through first forbidden 6d\(_{5/2}\)(n) to 4p\(_{3/2}\)(p) and 6d\(_{5/2}\)(n) to 4p\(_{1/2}\)(p) beta decay transitions. Most systems in the 1500 ≤ A < 1510 mass region have effective half-lives that are < 1 s.

The most stable system in the 1500 ≤ A < 1510 mass region is X(414, 1502) that is stable with respect to beta decay, and has an alpha decay half-life of 2.9x10\(^{10}\) yr. X(414, 1502) is doubly-closed, and has closed 5g\(_{7/2}\) neutron and 2j\(_{15/2}\) proton shells.

4.2 1510 ≤ A < 1520 Systems

The 1510 ≤ A < 1520 mass region has a lower level of stability than the 1500 ≤ A < 1510 systems. No 1510 ≤ A < 1520 systems have an effective half-life ≥ 1 s.

The 1510 ≤ A < 1520 systems have effective half-lives in the range of 0.04 – 0.2 s. In the 1510 ≤ A < 1520 mass region, beta decays predominantly occur through first forbidden 6d\(_{3/2}\)(n) to 4p\(_{3/2}\)(p) beta decay transitions.
X(416, 1512) is the most stable 1510 ≤ A < 1520 system. This system has partially filled 4\(p_{3/2}\) neutron and closed 7\(s_{1/2}\) proton shells. Z = 416 N = 1096 has a beta decay half-life of 0.15 s and its limiting beta decay is a first forbidden 7\(s_{1/2}\) (n) to 4\(p_{3/2}\) (p) beta decay transition. It has an alpha decay half-life of 1.6×10^10 yr.

4.3 1520 ≤ A < 1530 Systems

No bound 1520 ≤ A < 1530 systems were identified by the calculational model.

4.4 1530 ≤ A < 1540 Systems

X(420, 1538) is the only bound system in the 1530 ≤ A < 1540 mass region. This nucleus has an effective half-life of 0.099 s.

X(420, 1538) has partially filled 3\(l_{9/2}\) neutron and 2\(j_{15/2}\) proton shells. It decays through a first forbidden 6\(d_{3/2}\) (n) to 4\(p_{3/2}\) (p) beta decay transition with a half-life of 0.099 s. Z = 420 N = 1118 has an alpha decay half-life of 3.0×10^11 y.

4.5 1540 ≤ A < 1600 Systems

The 1540 ≤ A < 1600 mass region produces only one bound system. X(420, 1540) has closed 3\(l_{9/2}\) neutron and 4\(p_{1/2}\) proton shells. It has an alpha decay half-life of 5.6×10^9 y. X(420, 1540) is stable with respect to beta decay.

The X(414, 1502) and X(420, 1540) systems are the most stable nuclei in the 1500 ≤ A < 1600 mass region. Both of these systems have doubly-closed neutron and proton shells and are beta stable. As noted in Table 1, their half-lives are on the order of 10^{10} yr.

4.6 Shell Closure

The most stable system in the 1500 ≤ A < 1600 mass region is X(414, 1502) that is stable with respect to beta decay, and has an alpha decay half-life of 2.9×10^{10} yr. X(414, 1502) is doubly-closed, and has closed 5\(g_{7/2}\) neutron and 2\(j_{15/2}\) proton shells.

The X(414, 1502) 2\(j_{15/2}\) (5\(g_{7/2}\)) proton (neutron) shell closure gaps are about 0.024 MeV (0.015 MeV). These gaps are defined by the energy difference between the last occupied proton (neutron) level energy and the energy level that lies above it. For protons, the 4\(p_{3/2}\) level lies above the 2\(j_{15/2}\) level. The 6\(d_{5/2}\) level lies above 5\(g_{7/2}\) neutron level. These gaps are considerably smaller that the gaps noted in the most stable 1200 ≤ A < 1500 systems^{30-32}.

X(410, 1478) Z = 410 N = 1068 is the most stable system in the 1400 ≤ A < 1500 mass region^{32}. This system has partially filled 1\(r_{27/2}\) neutron and 2\(j_{15/2}\) proton shells. The Z = 410 N = 1068 2\(j_{15/2}\) (1\(r_{27/2}\)) proton (neutron) shell closure gaps are about 0.20 MeV (0.06 MeV). These gaps are defined by the energy difference between the last occupied proton (neutron) level energy and the energy level that lies above it. For protons, the 2\(j_{15/2}\) is the last bound proton level. The 7\(s_{1/2}\) level lies above 1\(r_{27/2}\) neutron level. These gaps are considerably smaller that the X(382, 1344) Z = 382 N = 962 gaps noted in the most stable 1200 ≤ A < 1500 system^{31}.

The X(382, 1344) Z = 382 N = 962 single-particle level structure illustrates closure of the Z = 382 proton shell as well as closure of the neutron shell at N = 962. This system has 4\(p_{3/2}\) (3\(k_{15/2}\)) proton (neutron) shell closure gaps of 0.34 MeV (0.55 MeV). These gaps are defined by the energy difference in the closed shell proton (neutron) level energy and the 4\(p_{1/2}\) (4\(i_{13/2}\)) level that lies above it^{31}.

The most stable nucleus in 1200 ≤ A < 1300 system^{30} is X(354, 1226) Z = 354 N = 872. The Z = 354 N = 872 2\(i_{1/2}\) (5\(f_{5/2}\)) proton (neutron) shell closure gap is 0.40 MeV (0.058 MeV)^{30}. These gaps are defined by the energy difference in
the closed shell proton (neutron) level energy and the 4\(p_{3/2}\) (6\(p_{3/2}\)) level that lies above it\(^{30}\).

A comparison to other systems should only be made for calculations using the same model interaction. The adjusted Rost interaction\(^{29}\) was developed for \(A \geq 1200\) systems. Therefore, only a comparison of the \(1500 \leq A < 1600\) systems summarized in this paper to \(1200 \leq A < 1500\) system\(^{30-32}\) is appropriate.

More specific comments regarding the relative stability to previously investigated \(A = 298 - 472\) doubly-closed shell nuclei\(^5\) and nuclear systems in the \(570 \leq A \leq 620\)\(^{21}\), \(620 < A < 800\)\(^{22}\), \(800 \leq A < 900\)\(^{25}\), \(900 \leq A < 1000\)\(^{26}\), \(1000 \leq A < 1100\)\(^{27}\) and \(1100 \leq A < 1200\)\(^{28}\) mass regions are not appropriate since these calculations used either the unmodified Rost interaction\(^2\) or the modified Rost interaction\(^{24}\). As noted previously, the \(1500 \leq A < 1600\) calculations only provide regions of possible stability and should only be compared with calculations that utilize the adjusted Rost interaction\(^{29}\).

Table 1 summarizes the current list of most stable \(1500 \leq A < 1600\) systems that utilize the adjusted Rost interaction\(^{29}\).

As a matter of comparison, \(X(354, 1226)\) \(Z = 354\) \(N = 872\) with an effective half-life of \(4.8 \times 10^{12}\) yr\(^{30}\) is the most stable system determined to date using the adjusted Rost interaction.

5.0 Model Weaknesses

The adjusted Rost interaction\(^{29}\) is extrapolated from \(Z \leq 82\) data without the benefit of experimental benchmarks in the \(1400 \leq A < 1500\) mass region. Although this is a necessity due to the lack of experimental data, it must be acknowledged as a weakness in the present approach. This weakness will be applicable for any current theoretical investigation in the \(1500 \leq A < 1600\) mass region.

In Ref. 30, there were eight \(1200 \leq A < 1300\) systems with effective half-lives >\(10^{10}\) y which is on the order of the current estimate for the age of the Universe (\(\approx 1.4 \times 10^{10}\) y). In the \(1500 \leq A < 1600\) mass region, the \(X(414, 1502)\) and \(X(420, 1540)\) systems have half-lives of \(2.9 \times 10^{10}\) and \(5.6 \times 10^{9}\) yr, respectively.

Table 1 notes that the model predicts 8 nuclear systems with effective half-lives >\(0.1\) s. The proposed model does not account for the possibility that as the nucleus \(A\), \(N\), and \(Z\) values become larger, new, more rapid decay modes could exist. These decay modes would then be more likely to dominate all decay processes of these superheavy systems. This is a significant weakness of the proposed extension of the theory beyond its origin via connection to known isotopes.

Another weakness of the approach outlined in this paper is treating all evaluated nuclei as spherically symmetric systems. Many of these systems are likely deformed, and these deformations should be included in subsequent investigations. These calculations have been initiated. However, it seems unlikely that any given \(A(N, Z)\) nuclear system will have a deformed structure that is more stable than the spherically symmetric configuration utilized in the model outlined in Section 2.0.

These limitations preclude absolute determinations of single-particle energies, \(Q\) values, and half-lives. The model does facilitate a comparison of the relative stability of nuclear systems and identification of possible islands of stability. These limitations are unavoidable given the lack of experimental data and uncertainties in the model and supporting nuclear interaction\(^{29}\). The adjusted Rost interaction formulated in Ref. 29 accounted for the uncertainties in the potential strength noted in studies of a wide range of nuclear systems.

The aforementioned weaknesses are difficult to assess, but the model prediction of \(X(414, 1502)\) stability can be partially addressed by comparing the \((A, Z)\) values of this system to the predictions of Adler’s relationship\(^{37,38}\) that
provides the most stable nucleus Z value for a given A:

$$Z = \frac{0.487A}{1 + W}$$ \hspace{1cm} (5)

where

$$W = \frac{A^{2/3}}{166}$$ \hspace{1cm} (6)

This relationship suggests that the X(414, 1502) system should be most stable for a Z value of 409 which is about 1.2% smaller than the $Z = 414$ result obtained by the spherical model outlined in this paper. Although qualitative, the reasonable comparison between the model and predictions of the Adler relationship of Eq. 5 serves to place a portion of the model weakness issues into perspective.

6.0 Experimental Verification

$Z = 114$ to 118 superheavy nuclei have been created through fusion reactions between 48Ca beams and actinide targets\(^1\). Creation of elements with $Z > 118$ likely requires projectiles with $Z > 20$. These investigations have yet to be successful. Creating $A \geq 1500$ systems is significantly more complex than the near term challenge of synthesizing $Z > 118$ nuclei.

Conventional binary collision processes involving heavy ions beams are not currently capable of reaching the $1500 \leq A < 1600$ mass region. For example, 285Cn has a half-life of about 34 s\(^3\). Even if it were possible to perform a 285Cn + 285Cn collision, it would not produce the lightest system considered in this paper. Experimental investigation of the $1500 \leq A < 1600$ mass region requires a novel approach. For example, simultaneously colliding multiple 238U ions theoretically reaches the $1500 \leq A < 1600$ mass region, but this approach is not yet viable. In the interim, the author hopes that other theoretical work will challenge and refine the conclusions of this paper, and experimentalists will develop accelerator techniques to collide multiple beams or establish other approaches to reach the $1500 \leq A < 1600$ mass region.

A possible experimental approach is offered by the high alpha particle energies emitted by the postulated $1500 \leq A < 1600$ nuclei. The alpha particle energies of these theoretical superheavy nuclei are more than 100% larger than the measured $Z = 114$-118 values\(^3\). This substantial increase in alpha particle energies offers a possible avenue for the experimental verification of $1500 \leq A < 1600$ nuclei.

A final possible verification approach is based on the fact that various lead isotopes are the endpoint of known heavy element decay chains. If lead targets were vaporized, and then accelerated in a charged particle accelerator, they could then be separated by mass. Within this mass spectrum could be the remnants of the long-lived parent superheavy nuclei summarized in Table I. Extreme precision would be required to detect these primordial superheavy trace isotopes. At the
very least, an experimental bound could be placed on the existence of superheavy isotopes. This is an interesting possibility for an experimental technique, but sufficient sensitivity would be required. Although the needed sensitivity may not be achieved with existing technology, it is worth further investigation. This problem and the requirements for extreme sensitivity are similar to the challenges involved with ongoing neutrino oscillation experiments that investigate CP violation. Further discussion of this verification methodology is provided in Ref. 40.

7.0 Conclusions

Calculations in the $1500 \leq A < 1600$ mass region suggest that two new islands of stability could exist in the vicinity of the $Z = 414 \ N = 1088 \ (X(414, 1502))$ and $Z = 420 \ N = 1120 \ (X(420, 1540))$ systems. Using the adjusted Rost interaction29, 25 even-even nuclear systems are predicted in the $1500 \leq A < 1600$ mass region. The most stable system in the $1500 \leq A < 1600$ mass region is $X(414, 1502)$ that is stable with respect to beta decay, and has an alpha decay half-life of 2.9×10^{10} yr. $X(414, 1502)$ is doubly-closed, and has closed $5g_{7/2}$ neutron and $2i_{15/2}$ proton shells.

There is considerable uncertainty in extrapolating nuclear potentials to the $1500 \leq A < 1600$ mass region. Therefore, many of the quantitative details regarding half-lives presented in this paper may be incorrect. However, the qualitative results, including the general predictions of the range of N and Z combinations associated with stability are expected to be more reliable. It is hoped that this paper will foster more sophisticated investigations of the $1500 \leq A < 1600$ mass region.

8.0 Acknowledgments

The author acknowledges the assistance of Dr. John X. Wang from Poly Software International in using the PSI-Plot program to produce the graphics used in Figs. 1 and 2.

References
1) C. Y. Wong, Phys. Lett.\textbf{21}, 688 (1966).
2) E. Rost, Phys. Lett.\textbf{26B}, 184 (1968).
3) A. Lukasiak and A. Sobiczewski, Acta Phys. Pol.\textbf{B6}, 147 (1975).
4) R. V. Gentry, T. A. Cahill, N. R. Fletcher, H. C. Kaufmann, L. R. Medsker, J. W. Nelson, and R. G. Flocchini, Phys. Rev. Lett.\textbf{37}, 11 (1976).
5) F. Petrovich, R. J. Philpott, D. Robson, J. J. Bevelacqua, M. Golin, and D. Stanley, Phys. Rev. Lett\textbf{37}, 558 (1976).
6) G. N. Flerov and G. M. Ter-Akopian, \textit{Rep. Prog. Phys.} \textbf{46}, 817 (1983).

7) R. Smolańczuk, Phys. Rev. C \textbf{56}, 812 (1997).

8) M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C \textbf{58}, 2126 (1998).
9) S. Hofmann and G. Münzenberg, Rev. Mod. Phys.\textbf{72}, 733 (2000).
10) S. B. Duarte, O. A. P. Tavares, M. Gonçalves, O. Rodríguez, F. Guzmán, T. N. Barbosa, F. García, and A. Dimarco, \textit{J. Phys. G: Nucl. Part. Phys} \textbf{30}, 1487 (2004).
11) H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor. Phys.\textbf{113}, 305 (2005).
12) P. Mohr, Phys. Rev. C\textbf{73}, 031301(R) (2006).
13) Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, and R. W. Lougheed, Phys. Rev. C 74, 044602 (2006).
14) P. R. Chowdhury, C. Samanta, and D. N. Basu, Phys. Rev. C 77, 044603 (2008).
15) C. Samanta, Prog. Part. Nucl. Phys. 62, 344 (2009).
16) P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304 (2009).
17) A. Marinov, Int. J. Mod. Phys. E 19, 131 (2010).
18) D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. Lett. 107, 062503 (2011).
19) Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, Phys. Rev. Lett. 109, 162501 (2012).
20) K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, Y. Kudou, T. Sumita, Y. Wakabayashi, A. Yoneda, K. Tanaka, S. Yamaki, R. Sakai, T. Akiyama, S. Goto, H. Hasebe, M. Huang, T. Huang, E. Ideguchi, Y. Kasamatsu, K. Katori, Y. Kariya, H. Kikunaga, H. Koura, H. Kudo, A. Mashiko, K. Mayama, S. Mitsuoka, T. Moriya, M. Murakami, H. Murayaya, S. Namai, A. Ozawa, N. Sato, K. Sueki, M. Takeyama, F. Tokani, T. Yamaguchi, and A. Yoshida, J. Phys. Soc. Japan 81, 103201 (2012).
21) J. J. Bevelacqua, Physics Essays 25, 475 (2012).
22) J. J. Bevelacqua, Physics Essays 26, 516 (2013).
23) J. J. Bevelacqua, Physics Essays 27, 655 (2014).
24) J. J. Bevelacqua, Physics Essays 28, 300 (2015).
25) J. J. Bevelacqua, Physics Essays 29, 490 (2016).
26) J. J. Bevelacqua, Physics Essays 30, 1 (2017).
27) J. J. Bevelacqua, Physics Essays 30, 392 (2017).
28) J. J. Bevelacqua, Physics Essays 31, 235 (2018).
29) J. J. Bevelacqua, Physics Essays 31, 377 (2018).
30) J. J. Bevelacqua, Physics Essays 33, 276 (2020).
31) J. J. Bevelacqua, Physics Essays 34, 54 (2021).
32) J. J. Bevelacqua, Superheavy Nuclei X: 1400 ≤ A < 1500 Systems, Qeios EIVJC0, 1 (2022). https://doi.org/10.32388/EIVJC0.
33) G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46, 598 (1963).
34) L. Fox and E. T. Godwin, Proc. Cambridge Philos. Soc. 45, 373 (1949).
35) J. Blomqvist and S. Wahlborn, Ark. Fys. 16, 545 (1959).
36) E. M. Baum, M. C. Ernesti, H. D. Knox, T. R. Miller, and A. M. Watson, *Nuclides and Isotopes – Chart of the Nuclides*, 17th ed (Knolls Atomic Power Laboratory, Schenectady, NY, 2010).

37) K. Adler, Coulomb Interactions with Heavy Ions, CONF-720669, Proceedings of the Heavy Ion Summer School, June 12 – July 1, 1972, Oak Ridge National Laboratory, Oak Ridge, TN (1972).

38) J. J. Bevelacqua, *Contemporary Health Physics: Problems and Solutions*, 2nd ed. (Wiley-VCH, Weinheim, 2009).

39) J. J. Bevelacqua, *Basic Health Physics: Problems and Solutions*, 2nd ed. (Wiley-VCH, Weinheim, 2010).

40) J. J. Bevelacqua, Proposed Mass Spectrometry Method to Facilitate the Observation of Primordial Superheavy Nuclei, *QEIOS QATSLS*, 1 (2020). https://doi.org/10.32388/QATSLS.