Ramanujan Bipartite Graph Products for Efficient Block Sparse Neural Networks

Dharma Teja Vooturi, Girish Varma, Kishore Kothapalli
Center for Security Theory and Algorithmic Research
International Institute of Information Technology Hyderabad, India
dharmateja.vooturi@research.iiit.ac.in

Abstract

Sparse neural networks are shown to give accurate predictions competitive to denser versions, while also minimizing the number of arithmetic operations performed. However current hardware like GPU’s can only exploit structured sparsity patterns for better efficiency. Hence the run time of a sparse neural network may not correspond to the arithmetic operations required.

In this work, we propose RBGP(Ramanujan Bipartite Graph Product) framework for generating structured multi level block sparse neural networks by using the theory of Graph products. We also propose to use products of Ramanujan graphs which gives the best connectivity for a given level of sparsity. This essentially ensures that the i.) the networks has the structured block sparsity for which runtime efficient algorithms exists ii.) the model gives high prediction accuracy, due to the better expressive power derived from the connectivity of the graph iii.) the graph data structure has a succinct representation that can be stored efficiently in memory. We use our framework to design a specific connectivity pattern called RBGP4 which makes efficient use of the memory hierarchy available on GPU.

We benchmark our approach by experimenting on image classification task over CIFAR dataset using VGG19 and WideResnet-40-4 networks and achieve 5-9x and 2-5x runtime gains over unstructured and block sparsity patterns respectively, while achieving the same level of accuracy.

1 Introduction

Sparsity is an essential tool for generating compute and memory efficient neural networks. Despite this, the predominant choice of deep neural networks in production are dense instead of sparse. This is mainly because sparse neural networks tend to have poor runtime performance on the widely used dense AI hardware like GPU/TPU, that are primarily designed for accelerating dense neural networks. So in order to truly uncover the potential of sparsity in production, it is necessary to generate sparse neural networks, that are in harmony with the dense AI hardware.

Pruning \[16, 11, 10, 9\] is one of the widely used approach for generating sparse neural networks. In element pruning, individual parameters/elements are removed from a pre-trained dense neural network based on some criterion such as magnitude, and then the resultant sparse network is finetuned to recover accuracy. Significant number of parameters can be removed by using element pruning with minimal loss in model accuracy. But the main issue with element pruning is that the generated sparse neural networks have irregular compute and memory access patterns due to unstructured sparsity pattern, and thus cannot be efficiently mapped onto dense AI hardware. Structured pruning methods \[18, 26, 12, 22, 23, 36, 4, 33\] are proposed to improve the runtime performance of sparse neural networks. Unlike element pruning, where parameters are removed at an individual level, in structured pruning, parameters are first divided into structural units like filter, channel, block, multi-block etc and

Preprint. Under review.
Figure 1: Tiled matrix multiplication of RBGP4 sparse matrix W_s with a dense matrix $I (O = W_s \times I)$ on GPU. A tile in O (OT) is mapped to a thread block TB, and each thread in TB is mapped to a 2D strided grid of element blocks in OT, where the number of strides, and the size of the element block in row dimension are set to $|G_{r,U}|$ and $|G_{b,U}|$ respectively. OT is computed in steps, where in each step, tiles WT and IT are first loaded into shared memory from DRAM, and a thread in TB loads corresponding elements from shared memory to registers before performing the computation. Then are removed at a unit level based on the strength of the unit. Structured sparse neural networks have better run-time performance than unstructured sparse neural networks. But this improvement in run-time performance comes at the cost of accuracy due to the imposed structural constraints while removing parameters from a trained model. For example, Mao et al. [23] have shown that for a given amount of pruning, model accuracy decreases and run-time performance increases with increase in coarseness of structural unit from 0D to 3D in pruning 4D weight tensors in convolutional neural networks. This trade-off between run-time and accuracy limits the possibility of generating efficient structured sparse neural networks using structured pruning methods. Structured sparse neural networks can also be generated using structure aware training (STAT) methods [35, 29, 19, 14, 34, 15], where structure is part of the training process. Because the structure is coupled with the training process, STAT methods are better placed than structured pruning methods in generating efficient structured sparse neural networks.

Runtime of a sparse neural network on a given hardware is dependent on the efficiency with which SDMM (Multiplication of a Sparse Matrix with a Dense matrix) operation can be implemented. On a hardware like GPU with memory hierarchy (Registers > Shared memory > L2 cache > DRAM), SDMM operation will have good runtime efficiency if and only if it maximizes data accesses from faster memory through data reuse. And for a structured sparse neural network, the amount of reuse depends on the choice of the structured sparsity pattern. Additionally, the chosen pattern should be well connected to allow for good flow of information in the neural network. In this work, we address these requirements and generate structured sparse networks that are performant and connected. Following are our main contributions:

- Proposed RBGP (Ramanujan Bipartite Graph Product) framework for generating structured sparse neural networks that have multiple levels of block sparsity, good connectivity, and takes less memory for storage.
- Using RBGP framework, we proposed RBGP4 structured sparsity pattern for the GPU, a representative dense hardware, and achieve good runtime efficiency for the SDMM (Multiplication of a sparse matrix with a dense matrix) operation on GPU.
- We demonstrate the utility of RBGP4 sparsity pattern on image classification task over CIFAR dataset and achieve 5-9x and 2-5x runtime gains over unstructured and block sparsity patterns respectively, while achieving the same level of accuracy.

2 Related work

Post training: Generating sparse neural network from a trained dense model dates back to decades old work of Lecun et al. [16] and Hassibi & Stork [11] where they use second-derivative information to prune weights from a dense model. The idea of pruning was revived by Han et al. [10, 9] by simply pruning weights based on their magnitude. To improve runtime performance on dense AI hardware, structured pruning methods [18, 20, 12, 22, 23, 36, 4, 33] are proposed with various structured sparsity patterns like filter, channel, block and multi-block.
We consider the Bipartite graph \(\lambda \) Graphs are the graphs with the optimal connectivity (as measured by the spectral gap) for a given level of sparsity \([21]\). A Ramanujan bipartite graph is a Ramanujan bipartite graph: \(\lambda \) is less than or equal to \(2 \). The eigenvalues of a graph \(\lambda \) are the eigenvalues \(\{ \pm \lambda_1, ..., \pm \lambda_N/2 \} \) respectively. The \(\lambda_1, \lambda_2 \) is a measure of the connectivity properties of the graph \([1]\). Ramanujan Graphs are the graphs with the optimal connectivity (as measured by the spectral gap) for a given level of sparsity \([21]\).

Ramanujan bipartite graph: A Ramanujan bipartite graph is a \((d_1, d_r) \)-biregular bipartite graph, where the second largest eigenvalue \(\lambda_2 \) is less than or equal to \((\sqrt{d_1}-1 + \sqrt{d_r}-1) \).

Bipartite Graph Product \((\otimes)\): Bipartite graph product \(G_p = G_1 \otimes_b G_2 \) takes two bipartite graphs, \(G_1(U_1, V_1, E_1) \) and \(G_2(U_2, V_2, E_2) \) as the input and produces a bigger bipartite graph \(G_p(U_p, V_p, E_p) \), where \(U_p = U_1 \times U_2, V_p = V_1 \times V_2, \) and \(E_p \) is constructed using cross product of edges from \(G_1 \) and \(G_2 \) i.e, \(E_p = \{(u_1, u_2, (v_1, v_2))|((u_1, v_1) \in E_1 \& ((u_2, v_2)) \in E_2\}. \)

During training: Sparse neural networks are generated during the training process either by gradually removing the connections or rearranging existing set of connections \([32, 28, 2, 25, 27, 17, 6] \). Similarly, structured sparse networks are generated by removing elements at a structural unit level during training. Wen et al. \([35]\) used group Lasso regularization to induce channel and filter sparsity in CNNs. Narang et al. \([29]\) used gradual pruning along with group Lasso regularization to induce block sparsity pattern in RNNs. In \([19, 14, 34]\), structure is induced by assigning a learnable parameter for some or all elements as non-zeros.

Before training(predefined): Sparsity can be incorporated apriori to the training process by choosing a mask(choice of connections) in each layer of the sparse neural network and keeping it fixed through out the training. Prior works in predefined approach differ in the way the mask is chosen. Prabhu et al. \([30]\) makes use of expander graphs, and generates a random mask with row uniformity pattern, where all the rows in the mask have same number of non zeros. Sourya et al. \([7]\) generates a random mask with both row and column uniformity. Frankie et al. \([8]\) uses an unstructured mask generated by pruning a trained dense model. Kepner et al. \([13]\) uses the idea of radix topology to generate a mask with cyclical diagonal pattern. Blocking pattern is the key requirement for achieving runtime performance on dense AI hardware, and none of the above works incorporate blocks sparsity pattern. In this work, we impose impose block sparsity pattern at multiple levels using RBGP framework, and achieve good runtime performance on GPU, a representative dense AI hardware.

3 Preliminaries

In this section, we setup various definitions and notations used throughout the paper. First we define various types of block sparsity patterns.

Block Sparse (BS) matrix: A BS matrix \(W_{bs} \) is a sparse matrix, where non zero elements are structured in the form of blocks of size \((bh, bw)\). Matrix \(W_{bs} \) has \((W_{bs}.rows/bh \times W_{bs}.columns/bw)\) number of blocks, and a block in \(W_{bs} \) is either a zero block with all zeros or a non-zero block with some or all elements as non-zeros.

Uniform Block Sparse (UBS) matrix: A UBS matrix \(W_{ubs} \) is a block sparse matrix with block size \((bh, bw)\), where all the row/column blocks of size \((bh, W_{ubs}.columns)/(W_{ubs}.rows, bw)\) have equal number of non-zero blocks of size \((bh, bw)\).

Cloned Block Sparse (CBS) matrix: A CBS matrix is a block sparse matrix with block size \((bh, bw)\), where all the non zero blocks of size \((bh, bw)\) have the same non-zero pattern.

Cloned Uniform Block Sparse (CUBS) matrix: A CUBS matrix is a block sparse matrix with block size \((bh, bw)\) that is both UBS and CBS matrix with block size \((bh, bw)\).

Recursive CUBS (RCUBS) matrix: An RCUBS matrix \(W_s \) is a sparse matrix with \(K \) levels of blocking \(B_1, ... B_K \) and following recursion: \(W_s \) is a CUBS matrix with block size \(B_1 \), and a non zero block of size \(B_1 \) in \(W_s \) is again a CUBS matrix with block size \(B_{i+1} \). Figure \([\text{3}]\) shows an example of RCUBS matrix with three levels of blocking.

We consider the bipartite graph \(G = (U, V, E) \) representation of matrices (with dimension \(|U| \times |V|\)). In a biregular bipartite graph, all the vertices in \(U \) and \(V \) have same degree \(d_l \) and \(d_r \) respectively. The degree also characterizes the sparsity of such graphs. The eigenvalues of a graph \(G \) are the eigenvalues of its adjacency matrix and they characterize many graph properties including connectivity \([5]\). Bipartite graph with \(N \) vertices have Eigen values \(\pm \lambda_1, ..., \pm \lambda_{N/2} \), where \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{N/2} \). The spectral gap between \(\lambda_1, \lambda_2 \) is a measure of the connectivity properties of the graph \([1]\).
A bipartite graph $G(U, V, E)$ can be represented as a bi-adjacency matrix BA of size $(|U|, |V|)$, with $BA_{uv} = 1$ if $(u, v) \in E$, and zero otherwise. For the biparite graph product $G_p = G_1 \otimes_b G_2$, bi-adjacency matrix of G_p is equal to the Tensor product (\otimes) of the bi-adjacency matrices of the input bipartite graphs G_1 and G_2 i.e, $BA_p = BA_1 \otimes BA_2$. Figure 2 shows an example of bipartite graph product both from the viewpoint of both graph and matrix.

4 **Ramanujan Bipartite Graph Product Framework**

The connectivity between neurons in a layer L of a sparse neural network can be captured using a bipartite graph G, where left/right neurons in L corresponds to left/right vertices in G, and the connections between left and right neurons in L corresponds to undirected edges between left and right vertices in G. The core idea in RBGP (Ramanujan Bipartite Graph Product) framework is to express G as a bipartite graph product of Ramanujan bipartite graphs i.e $(G = G_1 \otimes_b ... \otimes_b G_K)$, where K is the number of base graphs. In the rest of the section, we show how expressing connectivity of a layer using bipartite graph products leads to sparse neural networks that have structured sparsity, good connectivity, and memory efficiency.

Structured sparsity. In bipartite graph product $(G_p = G_1 \otimes_b G_2)$, the biadjacency matrix of G_p is equal to the Tensor product (\otimes) of the biadjacency matrices of G_1 and G_2 i.e., $BA_p = BA_1 \otimes BA_2$. And in Tensor product, BA_p is constructed by replacing each non zero element in BA_1 with BA_2 matrix, and each zero element in BA_1 with zero matrix of size BA_2. As BA_2 is repeated, BA_p will have CBS (Cloned Block Sparse) sparsity pattern with block size equal to the size of BA_2 or $(|G_2_U|, |G_2_V|)$. Figure 2 shows an example of bipartite graph product, where the biadjacency matrix of the product graph has CBS pattern with block size $(2,2)$. Additionally, when G_1 is a biregular bipartite graph, BA_p will have CUBS (Cloned Uniform Block Sparse) sparsity pattern as BA_1 will have equal number of elements in all rows, and all columns. In RBGP framework, the bipartite graph G of a layer L in the neural network is constructed by performing a series of $(K - 1)$ bipartite graph products on K base bipartite graph G_i that are Ramanujan. Bipartite graph G can be rewritten as $G = G_1 \otimes_b CG_2$, where $CG_2 = (G_2 \otimes_b ... \otimes_b G_K)$. As G_1 is a biregular bipartite graph, BA (biadjacency matrix of G) will have CUBS sparsity pattern with block size $(\sum_{i=2}^{K} |G_i.U|, \sum_{i=2}^{K} |G_i.V|)$. Going deeper, as $CG_i = (G_i \otimes_b CG_{i+1})$, and also as all the base graphs are biregular, BA will have RCUBS (Recursive Cloned Uniform Block Sparse) sparsity pattern with $(K - 1)$ blocking levels $B_1 \cdots B_{(K-1)}$, where $B_i = (\sum_{j=i+1}^{K} |G_i.U|, \sum_{j=i+1}^{K} |G_i.V|)$. Figure 3 shows an example bipartite graph generated using RBGP framework that uses four base graphs and has three block sizes $(16, 16)$, $(8, 8)$, and $(2,2)$.

Memory efficiency. A sparse neural network can be efficiently stored by only storing the information related to the connections that are present in the sparse layers. For a sparse layer L and it’s associated bipartite graph G, $|E(G)|$ memory is required for storing the parameters corresponding to connections, and another $|E(G)|$ memory is required for storing connectivity information in the form of adjacency list of G. Thus a total of $2 \times |E(G)|$ memory is required for storing the information of a layer in a sparse neural network. But in a RBGP sparse neural network, the memory requirement can be reduced by reducing the memory required for storing connectivity information. In RBGP sparse neural network, as G is constructed using K base bipartite graphs $(G = G_1 \otimes_b ... \otimes_b G_K)$, the connectivity information of G can be reduced from $E(G)/(\prod_{i=1}^{K} |E(G_i)|)$ to $\sum_{i=1}^{K} |E(G_i)|$, by only storing the connectivity information of the individual base graphs. For example, the bipartite graph
Figure 3: Biadjacency matrix BA of a bipartie graph generated using RBGP framework. BA has RCUBS (Recursive Cloned Uniform Block Sparse) sparsity pattern with three blocking levels (16, 16), (8, 8) and (2, 2).

graph G generated using RBGP framework in Figure 3 has 512 edges ($8 \times 2 \times 8 \times 4$), but it only requires storing 22 edges ($8+2+8+4$) from the base graphs to construct the connectivity information of G, thus leading to a 23x reduction in memory requirement for storing the connectivity information when compared to a random bipartite graph with same number of edges as G.

Good connectivity. Connectivity in a sparse neural network is key for ensuring good flow of information. It is well known [1] that connectivity of the graph is characterized by the spectral gap between the largest and second largest eigenvalue (in absolute terms) of the adjacency matrix. In this section, we show that the spectral gap for the block sparse graph we construct using graph products are optimal for any level of sparsity, for large graphs.

For a d-regular bipartite graph the largest eigenvalue in absolute value is d and $-d$. The next largest eigenvalue is considered as the second largest eigenvalue λ_2. The spectral gap is $d - \lambda_2$ and larger this quantity, the better connected the graph. Suppose the bipartite graph has n vertices on both sides, the degree $d = \alpha n$ where α is the fractional sparsity. For a given value of d, the best possible spectral gap of $d - 2\sqrt{d} - 1$ is achieved by Ramanujan Graphs. We construct block sparse graphs using graph products of smaller Ramanujan Graphs and show below that this construction has similar spectral gap as $n \to \infty$. For simplicity we consider the case where the bipartite graph G is the graph product of G_1, G_2 which are bipartite graphs with n vertices on each sides and degree $d = \alpha n$. Note that G has degree d^2 and sparsity $1 - (1 - \alpha)^2$.

Theorem 1. Let $G = G_1 \otimes_b G_2$ where G_i are bipartite graphs with n vertices on each sides and degree $d = \alpha n$. Then for any fixed level of sparsity α,

$$\frac{\text{IdealSpectralGap}_{d^2}}{\text{SpectralGap}(G)} \to 1 \quad \text{as} \quad n \to \infty$$

where $\text{IdealSpectralGap}_{d^2} = d^2 - 2\sqrt{d^2} - 1$ is the best possible spectral gap for d^2-regular graphs and $\text{SpectralGap}(G)$ is the spectral gap of the block sparse graph G that we construct.

Proof. The biadjacency matrix of G is the tensor product of biadjacency matrices of G_1, G_2. Hence the eigenvalues of the biadjacency matrix is the product of eigenvalues of biadjacency matrices of G_1, G_2. Since G_1, G_2 are Ramanujan Graphs, their second largest eigenvalue is $2\sqrt{d} - 1$. Hence second largest eigenvalue of G is $\lambda_2(G) = d \times 2\sqrt{d} - 1$. The ideal value of second largest eigenvalue for graphs of degree d^2 is $2\sqrt{d^2} - 1$. Hence Equation 1 becomes

$$\frac{d^2 - 2\sqrt{d^2} - 1}{d^2 - 2\sqrt{d^2} - 1} = \frac{1 - 2\sqrt{1/d^2} - 1/d^2}{1 - 2\sqrt{1/d} - 1/d^2}.$$

Hence for any fixed level of sparsity α, $n \to \infty$ (large matrices), $d \to \infty$, the LHS of Equation 1 $\to 1$.

\[\square\]
5 RBGP framework for GPU

A GPU is fundamentally a many core architecture with thousands of cores, and have multiple memory subsystems (DRAM, L2 cache, L1 cache/shared memory, and registers) with data access times decreasing in that order. The reason for having many memory subsystems is to feed data into cores at a higher rate by avoiding data accesses to slower memory say DRAM, when data is already available on faster memory say L2 cache. On GPU, a computational task can have good runtime efficiency, if it can avoid idling of cores by maximizing memory accesses from faster memories through data reuse. Sparse neural networks with unstructured sparsity pattern offers limited data reuse due to irregular memory access patterns, and thus has poor runtime performance on GPU. The only way for sparse neural networks to achieve good runtime performance on GPU is by embracing structured sparsity patterns. In this section, using our proposed RBGP framework, we design RBGP4 structured sparsity pattern to effectively use memory subsystems on GPU by facilitating data reuse, and achieve good runtime performance for RBGP4 sparse neural networks.

RBGP4 sparsity pattern. In RBGP framework, bipartite graph $G(G = G_1 \otimes_b \ldots \otimes_b G_K)$ corresponding to a layer in the sparse neural network is configured by the number of base graphs (K), and for each base graph G_i, it’s type (sparse or complete). RBGP4 sparsity pattern corresponds to a specific configuration, where G is constructed using four base Ramanujan bipartite graphs $(G = G_o \otimes_p G_r \otimes_p G_1 \otimes_p G_b)$, with graphs G_o and G_1 being sparse, and G_r and G_b being complete bipartite graphs. Figure [1] shows an example of RBGP4 sparsity pattern, where G_o and G_1 are 50% sparse, and G_r and G_b are (2,1) and (2,2) complete bipartite graphs respectively.

GPU Implementation. Compute in each layer of an RBGP4 sparse neural network is composed of RBGP4MM (Multiplication of a sparse matrix W_s with RBPG4 sparsity pattern, and a dense matrix I) operation $(O = W_s \times I)$, where W_s, I, and O, corresponds to sparse weight matrix, batched input activations, and batched output activations respectively. We use tiling approach for efficiently processing RBGP4MM operation. In tiling approach, matrices are divided into tiles, and OT (a tile in O) is computed in steps, where each step is comprised of matrix multiplication of WT_s (a sparse tile in W) with IT (a dense tile in I) i.e, $OT = WT_s \times IT$. For RBGP4MM, we set tile size in W_s is set to be $[G_{1,2} \times G_{2,1}]$, where $G_i = (G_r \otimes_p G_1 \otimes_p G_b)$. On GPU, we associate computation of OT to a block thread, and with in a thread block, each thread maps to a strided 2D grid of element blocks in OT, with $[G_r,U]$ number of strides and $[G_b,U]$ element block size in row dimension. We exploit the data reuse offered by RBGP4 sparsity pattern and make efficient use of memory hierarchy on GPU, by first loading tiles WT_s and IT into shared memory in each step of OT, and each thread loads its share of data from registers from shared memory before performing the computation. Figure [1] shows an example of using tiling approach for RBGP4MM operation on GPU. A more detailed GPU algorithm can be found in Appendix.

Why RBGP4? RBGP4 sparsity pattern $(G = G_o \otimes_p G_r \otimes_p G_1 \otimes_p G_b)$ is designed to achieve runtime efficiency for SDMM operation $(O = W_s \times I)$ on GPU. Towards that, all the four base graphs $G_o, G_r, G_1,$ and G_b in RBGP4 sparsity pattern have a specific role to play.

The role of G_o is to reduce the number of steps required to process OT (a tile in O) by inducing sparsity at the tile level in W_s. Performing bipartite graph product to the left of G_t with G_o, i.e. $(G = G_o \otimes_b G_t)$ results in block sparsity pattern in W_s with block size $[G_t,U]$. As we set tile size in W_s to be the block size, sparsity is induced at the tile/block level in W_s, which intern reduces the number of steps for processing CT by skipping computation corresponding to zero tiles in W_s. For example in Figure [1], we can see that the number of steps required to compute OT is reduced from two to one, as W_s has only two non zero tiles out of four tiles due to 50% sparsity in G_o.

The role of graphs G_r and G_b in RBGP4 sparsity pattern is to maximize data reuse from registers in GPU threads by inducing row repetition in WT_s (a tile in W_s). In row repetition, rows are divided into groups of equal size, where all the rows in a group have non zeros at the same locations. Having row repetition pattern in WT_s implies that all the rows in a group will have same memory access patterns into IT, and thus allows for reuse of data from WT_s and IT. Performing bipartite graph product to the left and right of G_t with complete graphs G_r and G_b, respectively, i.e. $(G_t = G_r \otimes G_1 \otimes G_b)$ results in row repetition in WT_s with $|G_r,U|$ groups, and $|G_r,U| \times |G_b,U|$ rows in each group. For example in Figure [1], we can see that as G_r and G_b are complete bipartite graphs with (2,1) and (2,2) sizes, the sparsity pattern of WT_s has row repetition pattern with 4 rows. In computation associated...
Sparsity in %	Pattern	VGG19	WideResnet-40-4						
		CF10	CF100	Mem	Time	CF10	CF100	Mem	Time
00.00	Dense	93.14	70.64	77.39	22	95.01	77.20	34.10	40
50.00	Unstructured	92.67	70.31	77.39	165	95.42	77.92	18.12	241
	Block	92.45	70.75	41.12	94	95.49	77.52	18.12	165
	RBGP4	92.58	70.48	38.76	20	95.34	78.27	17.13	32
75.00	Unstructured	92.58	70.48	38.76	20	95.34	78.27	17.13	32
	Block	91.93	68.72	20.57	48	94.92	76.50	9.07	85
	RBGP4	91.99	68.34	19.40	13	94.72	76.80	8.57	20
87.50	Unstructured	90.88	65.41	19.37	79	94.48	75.21	8.53	102
	Block	90.62	65.37	10.30	25	94.56	74.55	4.54	45
	RBGP4	90.48	65.39	9.72	8	94.38	75.25	4.30	16
93.75	Unstructured	90.01	62.33	9.70	50	93.57	73.09	4.27	69
	Block	89.40	62.90	5.16	14	93.55	71.86	2.27	26
	RBGP4	89.32	62.79	4.88	6	93.53	72.44	2.16	14

Table 1: Image classification on CIFAR10 (CF10) and CIFAR100 (CF100) datasets using VGG19 and WideResnet-40-4 networks. Models are trained using predefined approach with unstructured, block, and RBGP4 sparsity patterns. For block pattern, we set block size to be (4, 4). Memory (Mem) is given in MB, and time is given in milliseconds for one forward pass in training.

The role of G_i in RBGP4 sparsity pattern is to allow W_s to have any level of sparsity even when the tile size in W_s is big. When the tile size in W_s is relatively large when compared to the size of W_s, it is not possible to obtain desired level of sparsity if a non zero tile in W_s is dense. For example, if a tile in W_s is of size (64, 64), and W_s is of size (128, 64), only by allowing tiles in W_s to be sparse, can sparsity greater than 50% can be obtained. Bipartite graph G_t corresponds to sparsity pattern of W_t, and in RBGP4 sparsity pattern $G_t = (G_r \otimes_b G_i \otimes_b G_b)$. As G_r and G_b are dense complete, G_i has to be sparse to achieve a desired level of sparsity in W_s.

6 Results

We study the effect of RBGP4 sparsity pattern on model accuracy for the task of image classification and compare with unstructured and block structured sparsity patterns. Further more, we study the effect of changing configuration of base graphs in RBGP4 sparsity pattern on runtime. We perform all our experiments on V100 GPU, where we benchmark unstructured and block sparsity patterns using cuSparse library, and dense pattern using cuBLAS library from NVIDIA.

Image classification benchmark. In this benchmark, we perform the image classification task on CIFAR dataset using VGG19 [31] as adapted by Liu et al. [20] and WideResnet-40-4 [37] networks. To train the models, we use predefined approach, where the mask(choice of connections) is chosen apriori to the training process. As a sparse neural network has less number of parameters, we first train the dense model and guide the sparse neural network using knowledge distillation [13]. For all our experiments, we incorporate equal amount of sparsity in all layers, except for the first layer connected to input and the final classifier layer. For the optimizer, we use SGD optimizer with momentum of 0.9 and weight decay of 1e-4. VGG19/WideResnet-40-4 model is trained for 160/200 epochs with batch size of 256/128. Initial learning rate is set to 0.1. For VGG19, learning rate is multiplied by 0.1 at epochs 60,120, and 160. And for WideResnet-40-4, learning rate is multiplied by 0.2 at epochs...
From Table 1, we can see that RBGP4 is as accurate as unstructured and block sparsity patterns, but takes 2x less memory and is 5-9x faster when compared to unstructured, and is 2-5x faster when compared to block sparsity pattern.

RBGP4 runtime characteristics. RBGP4 sparse matrix W_s of a given size and sparsity can be obtained in multiple ways by varying the sizes of base graphs G_o, G_p, G_i, G_b, and sparsities of G_o and G_i. For example, setting sparsities of (G_o, G_i) to either $0, 75\%$ or $50\%, 50\%$ leads to 75% sparsity in W_s, and setting sizes of base graphs to either $(8, 4), (1, 1), (8, 4), (1, 1)$ or $(8, 4), (2, 2), (4, 2), (1, 1)$ leads to W_s of size $(64, 16)$. In this section, we study the effect of RBGP4 configuration on runtime of SDMM operation ($O = W_s \times I$). For all our experiments, we set sizes of matrices O, W_s, and I to be 4096×4096.

Sparsity distribution: In RBGP4 sparsity pattern, sparsity is solely due to presence of sparse graphs G_o and G_i, as G_r and G_b are dense or complete graphs. We run experiments with 75\%, 87.5\%, and 93.75\% sparsity amounts distributed between G_o and G_i, while keeping sizes of G_o, G_r, G_i, G_b fixed to $(32, 128), (4, 1), (32, 32), (1, 1)$. From Table 2 we can see that for a given sparsity, as sparsity of G_o increases, the runtime decreases. This is because sparsity in G_o incorporates sparsity at the tile level, and this reduces runtime due to skipping of computation and memory loads associated with zero tiles. For dense case (0\% sparsity), we use cuBLAS library from NVIDIA.

Row repetition: In row repetition, matrix W_s can be divided into row groups of equal size, where all the rows in a row group have non zeros exactly at the same locations. Having row repetitions allows us to effectively reuse data from I as rows have same non zero pattern. G_r and G_b in RBGP4 introduces $|G_r| \times |G_b|$ amount of row repetition in W_s. We run experiments with 1, 2, and 4 repetition amounts, while keeping size of $G_i(G_r \otimes G_i \otimes G_b)$ fixed at $(128, 32)$, and sparsity of G_o at 50\%. From Table 3 we can see that increasing the size of G_r or G_b, or both leads to improved runtime performance as repetition amount increases.

Sp(G)\%	Sp(G_o)\%	Sp(G_i)\%	Time(ms) for Sp(G)\%
75.00	0.00	75.00	5.64 (2x)
50.00	0.00	50.00	4.44 (2.5x)
87.50	0.00	87.50	4.31 (2.6x)
50.00	0.00	75.00	2.74 (4.1x)
75.00	0.00	50.00	2.29 (4.9x)
93.75	0.00	93.75	3.76 (3x)
50.00	0.00	87.50	1.93 (5.8x)
75.00	0.00	75.00	1.44 (7.8x)
87.50	0.00	50.00	1.22 (9.2x)

Table 2: Effect of varying sparsities of sparse graphs G_o and G_i in RBGP4 sparsity pattern on runtime.

Sizes	Time(ms) for Sp(G)\%		
G_r	G_b		
(1,1)	7.07	3.91	2.45
(2,1)	4.89	3.02	1.97
(4,1)	4.47	2.75	1.92
(1,1)	4.85	3.01	2.03
(1,1)	4.47	2.84	2.02
(2,1)	4.41	2.75	1.98

Table 3: Effect of varying sizes of complete graphs G_r and G_b in RBGP4 sparsity pattern on runtime.

7 Conclusion

We used ideas from extremal graph theory and combinatorics to make sparse neural networks runtime efficient. Ramanujan graphs which gives the optimal connectivity for a given level of sparsity are used to model connections in a neural network layer. Furthermore, we obtain structured block sparsity by using products of Ramanujan graphs. We prove that the product graph also has the optimal connectivity for large matrices. For the specific case of GPUs, we describe how the block sparsity can be efficiently implemented in hardware, by exploiting the memory hierarchy through data reuse. Benchmarks of this implementation is shown to give significant runtime improvements.

Similar ideas could be used for generating structured sparsity patterns that results in runtime efficient implementations in other hardware as well. For the future work, generating combinatorial structured sparsity patterns like RBGP4 during the training process could lead to more accurate models as structure is induced in a gradual manner.
References

[1] Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)

[2] Bellec, G., Kappel, D., Maass, W., Legenstein, R.: Deep rewiring: Training very sparse deep networks. arXiv preprint arXiv:1711.05136 (2017)

[3] Bilu, Y., Linial, N.: Lifts, discrepancy and nearly optimal spectral gap. Combinatorica 26(5), 495–519 (Oct 2006). https://doi.org/10.1007/s00493-006-0029-7, https://doi.org/10.1007/s00493-006-0029-7

[4] Cao, S., Zhang, C., Yao, Z., Xiao, W., Nie, L., Zhan, D., Liu, Y., Wu, M., Zhang, L.: Efficient and effective sparse lstm on fpga with bank-balanced sparsity. In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. pp. 63–72 (2019)

[5] Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)

[6] Dettmers, T., Zettlemoyer, L.: Sparse networks from scratch: Faster training without losing performance. CoRR abs/1907.04840 (2019), http://arxiv.org/abs/1907.04840

[7] Dey, S., Huang, K.W., Beerel, P.A., Chugg, K.M.: Pre-defined sparse neural networks with hardware acceleration. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9(2), 332–345 (2019)

[8] Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)

[9] Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (2016), http://arxiv.org/abs/1510.00149

[10] Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in neural information processing systems. pp. 1135–1143 (2015)

[11] Hassibi, B., Stork, D.G., Wolff, G.: Optimal brain surgeon: Extensions and performance comparisons. In: Advances in neural information processing systems. pp. 263–270 (1994)

[12] He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1389–1397 (2017)

[13] Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015), http://arxiv.org/abs/1503.02531

[14] Huang, Z., Wang, N.: Data-driven sparse structure selection for deep neural networks. In: The European Conference on Computer Vision (ECCV) (September 2018)

[15] Kepner, J., Robinett, R.: Radix-net: Structured sparse matrices for deep neural networks. In: 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 268–274. IEEE (2019)

[16] LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in neural information processing systems. pp. 598–605 (1990)

[17] Lee, N., Ajanthan, T., Torr, P.H.S.: SNIP: single-shot network pruning based on connection sensitivity. CoRR abs/1810.02340 (2018), http://arxiv.org/abs/1810.02340

[18] Li, H., Kadav, A., Durduanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

[19] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2736–2744 (2017)

[20] Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network pruning (2018)

[21] Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

[22] Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural network compression. In: Proceedings of the IEEE international conference on computer vision. pp. 5058–5066 (2017)
[23] Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., Dally, W.J.: Exploring the granularity of sparsity in convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (July 2017)

[24] Marcus, A.W., Spielman, D.A., Srivastava, N.: Interlacing families i: Bipartite ramanujan graphs of all degrees. Annals of Mathematics 182(1), 307–325 (2015), http://www.jstor.org/stable/24523004

[25] Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H., Gibescu, M., Liotta, A.: Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature communications 9(1), 1–12 (2018)

[26] Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440 (2016)

[27] Mostafa, H., Wang, X.: Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. In: International Conference on Machine Learning. pp. 4646–4655 (2019)

[28] Narang, S., Elsen, E., Diamos, G., Sengupta, S.: Exploring sparsity in recurrent neural networks. arXiv preprint arXiv:1704.05119 (2017)

[29] Narang, S., Undersander, E., Diamos, G.: Block-sparse recurrent neural networks. arXiv preprint arXiv:1711.02782 (2017)

[30] Prabhu, A., Varma, G., Namboodiri, A.: Deep expander networks: Efficient deep networks from graph theory. In: The European Conference on Computer Vision (ECCV) (September 2018)

[31] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

[32] Srinivas, S., Subramanya, A., Venkatesh Babu, R.: Training sparse neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 138–145 (2017)

[33] Vootturi, D.T., Kothapalli, K.: Efficient sparse neural networks using regularized multi block sparsity pattern on a gpu. In: High Performance Computing and Data Analytics (HiPC) (December 2019)

[34] Vootturi, D.T., Varma, G., Kothapalli, K.: Dynamic block sparse reparameterization of convolutional neural networks. In: The IEEE International Conference on Computer Vision (ICCV) Workshops (Oct 2019)

[35] Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Lee, D.D., Sugiyma, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 2074–2082. Curran Associates, Inc. (2016), http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf

[36] Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y., Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2018)

[37] Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Richard C. Wilson, E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC). pp. 87.1–87.12. BMVA Press (September 2016). https://doi.org/10.5244/C.30.87, https://dx.doi.org/10.5244/C.30.87
8 Appendix

8.1 Ramanujan Bipartite Graph Generation

A construction for Ramanujan Bipartite graph (RBG) was given by Bilu et al. [3]. The proof that this construction obtains the optimal eigenvalue gap was given by Marcus et al. [24]. We use algorithms (graph lifts) derived from these construction to generate Ramanujan Bipartite Graphs for a given sparsity.

2-lift operation: A 2-lift is an operation applied on a graph \(G \) to produce a bigger graph \(G_L \) that is twice as big as \(G \) in both vertices and edges. In the 2-lift operation, a clone graph \(G_c \) is first created and the vertex set of \(G_L \) is set to be the union of vertex sets of \(G \) and \(G_c \) i.e, \(V(G_L) = V(G) \cup V(G_c) \).

The edge set of \(G_L \) i.e, \(E(G_L) \) is then constructed in the following way: For an edge \((u, v) \in G \), and it’s corresponding clone edge \((u^c, v^c) \in G_c \), either the identity edge pair \(\{(u, v), (u^c, v^c)\} \) or the crossover edge pair \(\{(u, v^c), (u^c, v)\} \) is chosen at random and added to \(E(G_L) \). Figure 4 shows an example of 2-lift operation.

Generating sparse biregular bipartite graph: A 2-lift operation when applied on a biregular bipartite graph also results in a biregular bipartite graph that is twice as big with same left and right degrees. A biregular graph \(G(U, V, E) \) with sparsity \((1.0 - |E(G)|/(|G.U| \times |G.V|)) \) sp, can be generated by repeatedly applying \(\log_2(1/(1 - sp)) \) 2-lift operations on a complete bipartite graph with \((1 - sp) \times |G.U| \) left and \((1 - sp) \times |G.V| \) right vertices.

Generating RBG graph: A Ramanujan bipartite graph is first a biregular bipartite graph with an additional constraint on second largest eigenvalue of the adjacency matrix of the graph. To generate an RBG graph, we sample sparse biregular bipartite graphs generated using 2-lift operations until the sampled graph is Ramanujan. We found that an RBG graph with sizes in the order of thousands can be generated in the order of minutes. For a layer in RBGP sparse neural network, the base Ramanujan graphs are generated only once before training and hence sampling approach is not a bottleneck.

8.2 Pseudo code for RBGP4MM operation on GPU

Computation in each layer of a sparse neural network is an SDMM (Multiplication of a sparse matrix with a dense matrix) operation \(C = A_s \times B \). RBGP4MM is an SDMM operation where \(A_s \) has RBGP4 sparsity pattern. Algorithm [4] describes the pseudo code for RBGP4MM operation on a GPU. As RBGP4 sparsity pattern has equal number of non zero elements in each row, non zero elements in \(A_s \) can be stored using data array of size \((A_s.rows, (1 - sp) \times A_s.columns) \), and the index information of \(A_s \) is captured by storing adjacency lists of base bipartite graphs.
Algorithm 1: GPU algorithm for RBGP4MM($C = A_4 \times B$) operation using tiling approach. Tile sizes for A_4, B, and C are chosen to be $(TM, TK), (TK, TN)$, and (TM, TN) respectively. On GPU, each tile in C is mapped to a thread block, and each thread in the thread block is mapped to a group of $(RM \times BM \times RN \times BN)$ number of elements in a tile of C. Variables TM, TK, RM, RK, BM, BK are set based on RBGP4 configuration($G = G_r \otimes G_t \otimes G_i \otimes G_b$) of A_4.

1: function LBFM(matrix, $(bi,bj), (BH,BW)$) \hspace{1cm} \text{\small \triangleright Load Block From Matrix} \\
2: \hspace{1cm} block[BH][BW] \\
3: \hspace{1cm} for i in [0, BH) do \\
4: \hspace{2cm} for j in [0, BW) do \\
5: \hspace{3cm} block[i][j] = matrix[bi * BH + i][bj * BW + j] \\
6: \hspace{2cm} end for \\
7: \hspace{1cm} end for \\
8: \hspace{1cm} return block \\
9: end function \\

10: $G_1 = G_r \otimes G_t \otimes G_i \otimes G_b$ \hspace{1cm} \text{\small \triangleright Number of left and right vertices of bipartite graph G_i} \\
11: TM, TK = $|G_r.U|$, $|G_t.V|$ \\
12: RM, RK = $|G_i.U|$, $|G_b.V|$ \\
13: BM, BK = $|G_b.U|$, $|G_t.V|$ \\
14: gridBlockDim = (C.rows/TM, C.cols/TN) \hspace{1cm} \text{\small \triangleright 2D grid block} \\
15: threadBlockDim = (RM/(RM \times BM), TN/(RN \times BN)) \hspace{1cm} \text{\small \triangleright 2D thread block} \\
16: for (tbn, tbm) in [(0, 0) : gridBlockDim) do \hspace{1cm} \text{\small \triangleright Mapped to thread blocks} \\
17: \hspace{1cm} for (thm, thn) in [(0, 0) : threadBlockDim) do \hspace{1cm} \text{\small \triangleright Mapped to threads} \\
18: \hspace{2cm} Areg[RM][BM][BK] \hspace{1cm} \text{\small \triangleright Registers} \\
19: \hspace{2cm} Breg[RN][BK][BN] \hspace{1cm} \text{\small \triangleright Registers} \\
20: \hspace{2cm} Creg[RM][RN][BM][BN] \hspace{1cm} \text{\small \triangleright Registers} \\
21: \hspace{2cm} for outk in [0, $G_o.d_l$) do \hspace{1cm} \text{\small \triangleright $G_o.d_l$ is left degree of biregular bipartite graph G_o} \\
22: \hspace{3cm} oind = $G_o.\text{adj}_\text{list}[tbm][outk]$ \\
23: \hspace{2cm} Atile = LBFM($A_4.\text{data}$, (tbn, outk), (TM, $G_i.d_l$)) \hspace{1cm} \text{\small \triangleright DRAM to shared memory} \\
24: \hspace{2cm} Btile = LBFM($B, (oind, tbn), (TK, TN)$) \hspace{1cm} \text{\small \triangleright DRAM to shared memory(shMem)} \\
25: \hspace{2cm} _\text{synctreads}() \\
26: \hspace{2cm} for rk, ink in [0, RK) \times [0, $G_i.d_l$) do \\
27: \hspace{3cm} for rm in [0 : RM) do \\
28: \hspace{4cm} bm = rm * $|G_i.U| + thm$ \\
29: \hspace{4cm} bk = rk * $G_i.d_l + ink$ \\
30: \hspace{4cm} Areg[rm] = LBFM($Atile, (bm, bk), (BM, BK)$) \hspace{1cm} \text{\small \triangleright ShMem to registers} \\
31: \hspace{3cm} end for \\
32: \hspace{3cm} for rm in [0, RN) do \\
33: \hspace{4cm} bk = rk * $|G_i.V| + G_i.\text{adj}_\text{list}[thm][ink]$ \\
34: \hspace{4cm} bn = rm * $TN/(RN \times BN) + thn$ \\
35: \hspace{4cm} Breg[rm] = LBFM($Btile, (bk, bn), (BK, BN)$) \hspace{1cm} \text{\small \triangleright ShMem to registers} \\
36: \hspace{3cm} end for \\
37: \hspace{3cm} for rm, rn in [0, $RM) \times [0, RN) do \\
38: \hspace{4cm} Creg[rm][rn] += Areg[rm] \times Breg[rm] \hspace{1cm} \text{\small \triangleright Computation} \\
39: \hspace{3cm} end for \\
40: \hspace{2cm} _\text{synctreads}() \\
41: \hspace{2cm} end for \\
42: \hspace{2cm} end for \\
43: \hspace{2cm} for rm, rn in [0, $RM) \times [0, RN) do \\
44: \hspace{3cm} for m, n in [0 : BM) \times [0 : BN) do \\
45: \hspace{4cm} row = tbn * $TM + rm * (TM/RM) + thm * BM + m$ \\
46: \hspace{4cm} col = tbn * $TN + rn * (TN/RN) + thn * BN + n$ \\
47: \hspace{4cm} C[row][col] += Creg[rm][rn][m][n] \\
48: \hspace{3cm} end for \\
49: \hspace{3cm} end for \\
50: \hspace{2cm} end for \\
51: \hspace{2cm} end for