ON SOME NEW P_{δ}-TRANSFORMS OF KUMMER’S CONFLUENT
HYPERGEOMETRIC FUNCTIONS

Rakesh K. Parmar, Vivek Rohira and Arjun K. Rathie

Abstract. The aim of our paper is to present P_{δ}-transforms of the Kummer’s confluent
hypergeometric functions by employing the generalized Gauss’s second summation theo-
rem, Bailey’s summation theorem and Kummer’s summation theorem obtained earlier
by Lavoie, Grondin and Rathie [9]. Relevant connections of certain special cases of the
main results presented here are also pointed out.

Keywords. Hypergeometric functions; Gauss’s second summation theorem; gamma
functions; Summation theorems.

1. Introduction

The generalized hypergeometric function pF_q with p numerator and q denominator
parameters is defined as follows:

\[pF_q \left[\begin{array}{c} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{array} \mid z \right] := \sum_{m=0}^{\infty} \frac{(a_1)_m \cdots (a_p)_m}{(b_1)_m \cdots (b_q)_m} \frac{z^m}{m!}, \]

where $b_j \notin \mathbb{Z} \setminus \{0\}$, $j \in \{1, 2, \cdots, q\}$. Here and in the following text, let \mathbb{C}, \mathbb{R}
and $\mathbb{Z}_{\geq 0}$ be the sets of complex numbers, real numbers, and non-positive integers,
respectively. The series converges for all $z \in \mathbb{C}$ if $p \leq q$. It is divergent for all $z \neq 0$
when $p > q + 1$, unless at least one numerator parameter is a negative integer in
which case (1.1) is a polynomial. Finally, if $p = q + 1$, the series converges on the unit
circle $|z| = 1$ when $\text{Re} \left(\sum b_j - \sum a_j \right) > 0$. The importance of the hypergeometric
series lies in the fact that almost all elementary functions such as exponential,
binomial, trigonometric, hyperbolic, logarithmic are its special cases. It should
be remarked here that whenever generalized hypergeometric functions reduce to
gamma functions, the results are important from the applications point of view.
Thus, the well-known classical summation theorems such as those of the Gauss
second summation theorem, Bailey summation theorem and Kummer’s summation theorem for the series $2F_1$ [11] given below play an important role in the theory of hypergeometric functions.

The Gauss’s second summation theorem

$$2F_1\left[\frac{a, b}{a+b+1} \left| \frac{1}{2} \right] \right] = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}(a+b+1)\right)}{\Gamma\left(\frac{1}{2}(a+1)\right)\Gamma\left(\frac{1}{2}(b+1)\right)};$$

Bailey’s summation theorem

$$2F_1\left[\frac{a, 1-a}{b} \left| \frac{1}{2} \right] \right] = \frac{\Gamma\left(\frac{1}{2}b\right)\Gamma\left(\frac{1}{2}(b+1)\right)}{\Gamma\left(\frac{1}{2}(b+a)\right)\Gamma\left(\frac{1}{2}(b-a+1)\right)};$$

Kummer’s summation theorem

$$2F_1\left[\frac{a, b}{1+a-b} \left| -1 \right] \right] = \frac{\Gamma\left(1 + \frac{1}{2}a\right)\Gamma\left(1 + a - b\right)}{\Gamma\left(1 + a\right)\Gamma\left(1 + \frac{1}{2}a - b\right)};$$

During 1992-96, in a series of three research papers, Lavoie et al. [7, 8, 9] have generalized various classical summation theorems such as the Gauss second, Bailey and Kummer ones for the $2F_1$ series, as well as the Watson, Dixon and Whipple ones for the $3F_2$ series. However, in our present investigation, we are interested in the following generalized Gauss’s second summation theorem, Bailey’s summation theorem and Kummer’s summation theorem given in [9]

$$2F_1\left[\frac{a, b}{\frac{3}{2}(a+b+i+1)} \left| \frac{1}{2} \right] \right] = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a+b+\frac{1}{2}+i\right)\Gamma\left(\frac{1}{2}a-b-\frac{1}{2}+i\right)}{\Gamma\left(\frac{1}{2}a-b+\frac{1}{2}+i\right)\Gamma\left(\frac{1}{2}a+b+\frac{1}{2}+i\right)}$$

$$\times \left\{ \begin{array}{l}
A_{(a,b)}(i) + B_{(a,b)}(i) \\
C_{(a,b)}(i) + D_{(a,b)}(i)
\end{array} \right\};$$

$$2F_1\left[\frac{a, 1-a+i}{b} \left| \frac{1}{2} \right] \right] = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(b+\frac{1}{2}+i\right)\Gamma\left(1-a-i\right)}{\Gamma\left(\frac{1}{2}b-a+\frac{1}{2}+i\right)\Gamma\left(\frac{1}{2}a+b+\frac{1}{2}+i\right)}$$

$$\times \left\{ \begin{array}{l}
C_{(a,b)}(i) + D_{(a,b)}(i) \\
E_{(a,b)}(i) + F_{(a,b)}(i)
\end{array} \right\};$$

respectively. Here, and in what follows, $i = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$. Also, throughout the paper, as usual, $[x]$ denotes the greatest integer less than or equal to the real number x and its absolute value is denoted by $|x|$. The coefficients which appear in (1.5), (1.6) and (1.7) are listed in Tables 1-3 and that, for $i = 0$, these equations reduce, respectively to (1.2), (1.3) and (1.4).
On Some New \mathcal{P}_H-Transforms of Kummer’s Confluent Hypergeometric Functions

Table 1

i	$A_i(a, b)$	$B_i(a, b)$
5	$-(a+b+6)^2+\frac{1}{2}(b-a+6)(b+a+6)+\frac{1}{2}(b-a+6)^211(b+a+6)-\frac{12}{7}(b-a+6)+20$	$(a+b+6)^2+\frac{1}{2}(b-a+6)(b+a+6)-\frac{1}{7}(b-a+6)^2-17(b+a+6)-\frac{1}{7}(b-a+6)+62$
4	$\frac{1}{2}(a+b+1)(a+b-3)-\frac{1}{2}(b-a+3)(b-a-3)$	$-2(b+a-1)$
3	$\frac{1}{2}(b-a+4)-(b+a+4)+3$	$\frac{1}{2}(b-a+4)+(b+a+4)-7$
2	$\frac{1}{2}(b+a+3)-2$	-2
1	-1	1
0	1	0
-1	1	1
-2	$\frac{1}{2}(b+a-1)$	2
-3	$\frac{1}{2}(3a+b-2)$	$\frac{1}{7}(3b+a-2)$
-4	$\frac{1}{2}(a+b-3)(a+b+1)-\frac{1}{2}(b-a-3)(b-a+3)$	$2(b+a-1)$
-5	$(b+a-4)^2-\frac{1}{2}(b-a-4)(b-a-4)-\frac{1}{4}(b-a-4)^2+4(b+a-4)-\frac{7}{2}(b-a-4)$	$(b+a-4)^2+\frac{1}{2}(b+a-4)(b-a-4)-\frac{1}{4}(b-a-4)^2+8(b+a-4)-\frac{1}{7}(b-a-4)+12$

Table 2

i	$C_i(a, b)$	$D_i(a, b)$
5	$-(4b^2-2ab-a^2-22b+13a+20)$	$4b^2+2ab-a^2-34b-a+62$
4	$2(b-2)(b-4)-(a-1)(a-4)$	$-4(b-3)$
3	$a-2b+3$	$a+2b-7$
2	$b-2$	-2
1	-1	1
0	1	0
-1	1	1
-2	b	2
-3	$2b-a$	$a+2b+2$
-4	$2b(b+2)-a(a+3)$	$4(b+1)$
-5	$4b^2-2ab-a^2+8b-7a$	$4b^2+2ab-a^2+16b-a+12$
The main objective of this paper is to derive three new interesting and general P_δ-transforms of the Kummer’s confluent hypergeometric functions by employing the generalized Gauss’s second summation theorem, Bailey’s summation theorem and Kummer’s summation theorem given in (1.5), (1.6) and (1.7), respectively. Relevant connections of certain special cases of the main results presented here with those earlier ones are also pointed out.

2. P_δ-transforms

The P_δ-transforms or pathway transforms of the function $f(t) \ (t \in \mathbb{R})$ is a function $F_\delta(s)$ of a complex variable s defined by (see, e.g., [6])

\[
P_\delta \{ f(t); s \} = F_\delta(s) = \int_0^\infty [1 + (\delta - 1)s]^{-1} f(t) \, dt \quad (\delta > 1),
\]

For the sufficient condition for the existence of the P_δ-transform (2.1) to exist, we refer the reader to [6]. The P_δ-transform of the power function $t^{\mu-1}$ is given by [6, p. 7, Eq. (32)]

\[
(2.2) P_\delta \{ t^{\mu-1}; s \} = \left(\frac{\delta - 1}{\ln[1 + (\delta - 1)s]} \right)^{\mu} \Gamma(\mu) = \frac{\Gamma(\mu)}{\Lambda(\delta; s)^{\mu}} \quad (\Re(\mu) > 0; \ \delta > 1).
\]

Furthermore, upon letting $\delta \to 1$ in the definition (2.1), the P_δ-transform reduces to the classical Laplace transform (see, e.g., [13]):

\[
(2.3) \quad L \{ f(t); s \} = \int_0^\infty e^{-st} f(t) \, dt \quad (\Re(s) > 0).
\]
In view of the power function formula (2.2), it is easy to derive the \mathcal{P}_δ-transform of the generalized hypergeometric function to obtain the following formula (see, [6, p. 8, Eq. (42)]):

$$
\int_0^\infty [1 + (\delta - 1)s]^{-\frac{\mu-1}{\delta}} p F_q \left[\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right] \omega t \, dt
= \frac{\Gamma(\mu)}{\Gamma(\delta)} \left[\begin{array}{c} a, \mu \\ b, \omega \end{array} \right],
$$

for $p < q$, $\Re(\mu) > 0$, $\Re \left(\frac{\ln(1 + (\delta - 1)s)}{\delta - 1} \right) > 0$ and $\delta > 1$ or for $p = q$, $\Re(\mu) > 0$, $\Re \left(\frac{\ln(1 + (\delta - 1)s)}{\delta - 1} \right) > \Re(\omega)$ and $\delta > 1$.

If $p = q = 1$, we get the following formula:

$$
\int_0^\infty [1 + (\delta - 1)s]^{-\frac{\mu-1}{\delta}} \, dt
= \frac{\Gamma(\mu)}{\Gamma(\delta)} \left[\begin{array}{c} a, \mu \\ b, \omega \end{array} \right],
$$

for $\Re(\mu) > 0$, $\Re(\omega) > 0$, $\Re \left(\frac{\ln(1 + (\delta - 1)s)}{\delta - 1} \right) > \Re(\omega)$ and $\delta > 1$. In the next section, we shall demonstrate how one can obtain three rather general \mathcal{P}_δ-transforms of the Kummer’s confluent hypergeometric functions by employing the results (1.5), (1.6) and (1.7).

3. \mathcal{P}_δ-transforms of $\,_{1}F_{1}(a; b; x)$

In this section, we establish the following integral formulas, asserted in Theorem(3.1), Theorem(3.2) and Theorem(3.3).

Theorem 3.1. Let $\Re(b) > 0$, $\Re \left(\frac{\ln(1 + (\delta - 1)s)}{\delta - 1} \right) > 0$ and $\delta > 1$. Then

$$
\int_0^\infty [1 + (\delta - 1)s]^{-\frac{\mu-1}{\delta}} t^{b-1} \, dt
= \frac{\Gamma(\delta)}{\Gamma(\delta)} \left[\begin{array}{c} a \\ \frac{1}{2} \end{array} \right] \left[\begin{array}{c} \frac{1}{2} \end{array} \right]
$$

$$
\times \left\{ \frac{A_1(a, b)}{\Gamma\left(\frac{1}{2} + \alpha + \beta + \gamma + \delta + \eta\right)} + \frac{B_1(a, b)}{\Gamma\left(\frac{1}{2} + \alpha + \beta + \gamma - \delta - \eta\right)} \right\},
$$

Theorem 3.2. Let $\Re(1-a+i) > 0 (i = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5)$, $\Re \left(\frac{\ln(1 + (\delta - 1)s)}{\delta - 1} \right) > 0$ and $\delta > 1$. Then

$$
\int_0^\infty [1 + (\delta - 1)s]^{-\frac{\mu-1}{\delta}} t^{-a+i} \, dt
$$
\[\Gamma(1-a+i)\frac{\Gamma(b)}{\Gamma(a+b)}\frac{\Gamma(1-a)}{\Gamma(1-a+\frac{1}{2}+i)}\times\left\{\frac{C(a,b)}{\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+i\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+i-\left[\frac{1}{2}\right]\right)}+\frac{D(a,b)}{\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+i\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+i-\left[\frac{1}{2}\right]\right)}\right\}.

Theorem 3.3. Let \(\Re(b) > 0\), \(\Re\left(\frac{\ln(1+\delta)}{\delta-1}\right) > 0\) and \(\delta > 1\). Then

\[
\int_0^\infty [1+(\delta-1)s]^{-\frac{s}{2}} t^{b-1} \frac{1}{2}F_1 \left[\begin{array}{c} a \\ \frac{1}{2}(a+b+i) \end{array} \right| \frac{t\Lambda(\delta,s)}{2} \right] dt = \frac{\Gamma(b)}{\left\lfloor\Lambda(\delta,s)\right\rfloor!} \frac{\Gamma\left(\frac{1}{2}(a+b+i+1)\right)}{\Gamma\left(\frac{1}{2}(a+b+i+1)-\left[\frac{1}{2}\right]\right)}.
\]

Proof. In order to prove Theorem (3.1), setting \(\omega = \frac{\Lambda(\delta,s)}{2}\), \(\mu = b\) and \(c = \frac{1}{2}(a+b+i+1)\) for \(i = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\) in (2.5), we have

\[
\int_0^\infty [1+(\delta-1)s]^{-\frac{s}{2}} t^{b-1} \frac{1}{2}F_1 \left[\begin{array}{c} a \\ \frac{1}{2}(a+b+i+1) \end{array} \right| \frac{t\Lambda(\delta,s)}{2} \right] dt = \frac{\Gamma(b)}{\left\lfloor\Lambda(\delta,s)\right\rfloor!} \left\{\frac{1}{2}F_1 \left[\begin{array}{c} a, b \\ \frac{1}{2} \right| \frac{t\Lambda(\delta,s)}{2} \right] \right\}.
\]

We observe that the \(2F_1\) appearing on the right-hand side of (3.4) can be evaluated with the help of generalized Gauss’s second summation theorem (1.5). This yields the desired formula (3.1).

The results in Theorem (3.2) and Theorem (3.3) can also be proven in a similar way by applying summation theorems (1.6) and (1.7), respectively.

4. Special Cases

The particular cases \(i = 0\) of Theorem (3.1) to Theorem (3.3), reduce to the following interesting and presumably new results for classical ones.

Corollary 4.1. Let \(\Re(b) > 0\), \(\Re\left(\frac{\ln(1+\delta)}{\delta-1}\right) > 0\) and \(\delta > 1\). Then

\[
\int_0^\infty [1+(\delta-1)s]^{-\frac{s}{2}} t^{b-1} \frac{1}{2}F_1 \left[\begin{array}{c} a \\ \frac{1}{2}(a+b+1) \end{array} \right| \frac{t\Lambda(\delta,s)}{2} \right] dt = \frac{\Gamma(b)}{\left\lfloor\Lambda(\delta,s)\right\rfloor!} \frac{\Gamma\left(\frac{1}{2}(a+b+1)\right)}{\Gamma\left(\frac{1}{2}(a+b+1)-\left[\frac{1}{2}\right]\right)}.
\]

Corollary 4.2. Let \(\Re(1-a) > 0\), \(\Re\left(\frac{\ln(1+\delta)}{\delta-1}\right) > 0\) and \(\delta > 1\). Then

\[
\int_0^\infty [1+(\delta-1)s]^{-\frac{s}{2}} t^{-a} \frac{1}{2}F_1 \left[\begin{array}{c} a \\ b \end{array} \right| \frac{t\Lambda(\delta,s)}{2} \right] dt = \frac{\Gamma(1-a)}{\left\lfloor\Lambda(\delta,s)\right\rfloor!} \frac{\Gamma\left(\frac{1}{2}(b+1)\right)}{\Gamma\left(\frac{1}{2}(b+1)-\left[\frac{1}{2}\right]\right)}.
\]
On Some New \mathcal{P}_δ-Transforms of Kummer's Confluent Hypergeometric Functions

Corollary 4.3. Let $\text{Re}(b) > 0, \text{Re}\left(\frac{\ln[1+(\delta-1)s]}{\delta-1}\right) > 0$ and $\delta > 1$. Then

$$
\int_0^\infty [1 + (\delta - 1)s]^{-\frac{\ln[1+(\delta-1)s]}{\delta-1}} t^{\delta-1} \, \mathcal{I}_1 \left[\begin{array}{c} \alpha \\ 1+a-b \end{array} \left| -t \Lambda(\delta; s) \right. \right] \, dt = \frac{\Gamma(\delta)}{[\Lambda(\delta; s)]^\delta} \frac{\Gamma(1+\frac{1}{2}a)\Gamma(1+a-b)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}.
$$

Similarly, for $i = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$, other results can also be obtained.

5. Concluding remarks

By letting $\delta \mapsto 1$ in the definition (2.1), the \mathcal{P}_δ-transform is reduced to the classical Laplace transform. Hence, for $\delta \mapsto 1$, the results (3.1), (3.2) and (3.3) immediately reduce to the corresponding results due to Kim et al. [5].

REFERENCES

1. D. Allen: Relations between the local and global structure of finite semigroups. Ph. D. Thesis, University of California, Berkeley, 1968.
2. P. Erdős: On the distribution of the roots of orthogonal polynomials. In: Proceedings of a Conference on Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.), Akademiai Kiado, Budapest, 1972, pp. 145–150.
3. A. Ostrowski: Solution of Equations and Systems of Equations. Academic Press, New York, 1966.
4. E. B. Saff and R. S. Varga: On incomplete polynomials II. Pacific J. Math. 92 (1981), 161–172.
5. Y. S. Kim, A. K. Rathie and D. Cvijovic: New Laplace Transforms of Kummer’s confluent hypergeometric functions, Mathematical and Computer Modelling. 55 (2012), 1068–1071.
6. D. Kumar: Solution of fractional kinetic equation by a class of integral transform of pathway type. Journal of Mathematical Phys. 54 (2013), 1–13. Article ID 043509.
7. J. L. Lavoie, F. Grondin and A. K. Rathie: Generalizations of Watson’s theorem on the sum of a $3F_2$. Indian J. Math. 34 (1992), 23–32.
8. J. L. Lavoie, F. Grondin, A. K. Rathie and K. Arora: Generalizations of Dixon’s theorem on the sum of a $3F_2$. Math. Comp. 62 (1994), 267–276.
9. J. L. Lavoie, F. Grondin and A. K. Rathie: Generalization of Whipple’s theorem on the sum of a $3F_2$. J. Comput. Appl. Math. 72 (1996), 293–300.
10. E. D. Rainville: Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
11. L. J. Slater: Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London, and New York, 1966.
12. L. J. Slater: Confluent Hypergeometric Functions, Cambridge University Press, Cambridge, London, and New York, 1960.
13. I. N. Sneddon, *The use of the Integral Transforms*, Tata McGraw-Hill, New Delhi, 1979.

Rakesh K. Parmar
Department of Mathematics
University College of Engineering and Technology, Bikaner
Bikaner Technical University
Bikaner-334004, Rajasthan, India
rakeshparmar27@gmail.com

Vivek Rohira
Research Scholar
Department of Mathematics
Career Point University
Kota-325003, Rajasthan, India
vivekrohira@yahoo.com

Arjun K. Rathie
Department of Mathematics
Vedant College of Engineering and Technology
Rajasthan Technical University
Bundi, Rajasthan, India
arjunkumarrathie@gmail.com