Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update

Parina Asgharian1, Cristina Quispe2, Jesús Herrera-Bravo3,4, Mahsa Sabernavai5, Kamran Hosseini6,7, Haleh Forouhandeh8, Tahereh Ebrahim8, Paria Sharafi-Badr9, Vahideh Tarhriz8, Saiedeh Razi Soofiyan10,10*, Paweł Helon11, Jovana Rajkovic12,12*, Sevgi Durna Daştan13,14, Anca Oana Docea15, Javad Sharifi-Rad16,16*, Daniela Calina17,17*, Wojciech Koch18* and William C. Cho19*

Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative treatment option in the treatment of neuropsychiatric disorders is gaining more attention.

Abbreviations: ABA, applied behavioural analysis; b.w., body weight; BDNF, brain-derived neurotrophic factor; COMT, catechol-O-methyltransferase; CNS, central nervous system; CBT, cognitive-behavioural therapy; cAMP, cyclic adenosine monophosphate; FA, ferulic acid; GABA, gamma-aminobutyric acid; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; IL-1β, interleukin 1 beta; i.p., intraperitoneal administration; MDD, major depressive disorder; MAOIs, monoamine oxidase inhibitors; p.o., oral administration; PDE-4, phosphodiesterase-4; SNRIs, serotonin-norepinephrine reuptake inhibitors; SOD, superoxide dismutase; TNF-α, tumor necrosis factor-alpha.
alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.

KEYWORDS
neuropsychiatric disorders, natural compounds, pharmacological mechanisms, bioactive compounds, preclinical pharmacology

1 Introduction

Neuropsychiatric disorders are a group of disorders that cause great morbidity and disability. Globally, the psychiatric disorder’s prevalence is estimated at 6.7%. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum, attention-deficit/hyperactivity, and conduct disorder. Different studies have been probed to clarify the basic molecular mechanism involved in such a disease’s occurrence. Recently, it has been shown that early-life experiences can affect adulthood behaviour. Nurturance, genetics, and environment are important factors that influence behaviour in adulthood. Like other multifactorial disorders, non-genetic factors are important factors in the aetiology of this condition (Martens and van loo, 2007; Cannon and Greenamyre, 2011).

Neuropsychiatric disorders are dealing with mental and cerebral disorders often associated with brain dysfunction (Yudofsky and Hales, 2002; Nussbaum et al., 2017). Many researchers use beneficial therapies with the least side effects to treat these patients. Therefore, choosing the right type of treatment depends on the variety of diseases that the person is suffering from (Reddy et al., 2020). Patients with any brain injury are more sensitive to the side effects of chemical drugs than patients without injury. Therefore, the physician should be careful in choosing the appropriate type of medication, dose, and duration of treatment (Silver et al., 1990; Silver et al., 1991; Silver et al., 1994). Numerous studies on animal models have shown that some chemical drugs, such as haloperidol, benzodiazepines, and clonidines, may interfere with the recovery of neuronal damage and eventually disrupt the normal physiological processes in the brain (Kuhn et al., 2019). Current medications for neuropsychiatric diseases mainly target disease symptoms. Therefore, there is a critical necessity to develop therapeutics which can delay, stop or reverse the progression of the condition (Paul and Snyder, 2019).

Clinical studies use antioxidants to interfere in disease progression, but the results are not satisfactory. Most of the antioxidants non-specifically target neuroprotective pathways. Consequently, new studies are needed to discover new potential agents that restore redox balance along with reducing neuronal damage (Underwood et al., 2010). Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety (Quetglas-Llabrés et al., 2022). In this article, we discuss the most important and common psychiatric illnesses mentioned in various studies
along with conventional therapies and their pharmacological therapies.

2 Search methodology

For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. The following MeSH terms were used for the search: “Plants, Medicinal”, “Antidepressive Agents/isolation and purification”, “Antidepressive Agents/pharmacology”, “Action Potentials/drug effects”, “Animals”, “Disease Models”, “Animal, Plant Bark/chemistry”, “Plant Extracts/chemistry”, “Serotonin/metabolism”, “Synapsis agonists”, “Brain/drug effects”, “Brain/metabolism”, “Seizures/prevention and control”, “Attention Deficit Disorder with Hyperactivity/drug therapy,” “Phytotherapy/methods,” “Phytotherapy/adverse effects,” “Evidence-Based Medicine,” “Treatment Outcome,” “Autism/natural products/treatment,” “schizophrenia/natural products/treatment.” Preclinical pharmacological studies were included to explain the effects and potential mechanisms of natural bioactive compounds in some common neuropsychiatric disorders. Only papers written in English that included the potential mechanisms of natural compounds in psychiatric disorders were selected. The plants’ taxonomy has been validated according to PlantList (Heinrich et al., 2020; Plantlist, 2021). Duplicate papers, communications, and studies that included homeopathic preparations or other brain conditions such as tumors were excluded.

3 Treatment of neuropsychiatric disorders in conventional meaning, using approved drugs and bioactive compounds: Underlying potential mechanisms

3.1 Major depressive disorder

Major depressive disorder (MDD) is identified by two characteristics: depressive state in several conditions and apathy with somatic and cognitive disturbances (World Health Organization, 1992; Otte et al., 2016; Vlad et al., 2020). The most common time of onset is between the ages of 20 and 30, and women are twice as likely as men to be affected (American Psychiatric Association, 1980; Wolif et al., 2015). Its lifetime prevalence is 16.6% per person (Weisman and Olifon, 1995; Kessler et al., 2005). The physiopathology of the disease is not yet clear, but it is associated with abnormalities in the brain’s monoamine receptors or neurotransmitters, metinflammation conditions and as well as the serotoninergic, noradrenergic, and neuropeptide systems are abnormal (Manji et al., 2001; Charney and Manji, 2004). Numerous studies have shown that the hypothalamic-pituitary-adrenal (HPA) axis is involved in this process and contributes to neuronal atrophy (Nestler et al., 2002; Mann and Currier, 2006).

3.1.1 Treatment of major depressive disorder using approved drugs

Conventional disease treatments include lifestyle changes such as exercise and smoking cessation (Goldberg et al., 2005; Taylor et al., 2014), somatic treatments such as electroconvulsive therapy (effective in resistant depression) (Paul et al., 1981; Prudic et al., 1996), focused psychotherapies (such as relaxation and mindfulness, behavioural therapy, and interpersonal therapy) (DeRubeis et al., 2005), and pharmacotherapy.

Pharmacotherapeutic therapies include selective serotonin reuptake inhibitors (SSRIs) such as citalopram, escitalopram, paroxetine, etc. (Papakostas, 2010); serotonin-norepinephrine reuptake inhibitors (SNRIs) such as venlafaxine (Stahl et al., 2005); tricyclic antidepressants such as amitriptilin, clomipramine, doxepine, etc. (Moore and O’Keeffe, 1999); and monoamine oxidase inhibitors (MAOIs) such as phenelzine, vortioxetine and others (Table 1 (Quitkin et al., 1984; Quitkin et al., 1988).

3.1.2 Treatment of major depressive disorder and bioactive compounds

MDD is a significant prospect of global mental and economic burden. In most patients, the specific clinical features following symptoms such as sleep dysregulation, depressed mood, fatigue, suicidal thoughts, and loss of interest and appetite are observed (Yeni et al., 2022). The change in serotonin, norepinephrine and dopamine levels has been linked to clinical symptoms based on the monoamine hypothesis (Shyn and Hamilton, 2010; Willner et al., 2013).

Some plants are effective in modifying the mood by the effect on the monoamine neurotransmission, similar to Hypericum perforatum, as well as have an impact on GABA, opioid, and cannabinoid systems (Table 2) (Spinella, 2001; Heinrich et al., 2017).

For example, membrane-like alkaloids in plants like Narcissus (Amaryllidaceae) and Sceletium have potential antidepressant properties (Hanks, 2002; Berkov et al., 2020). Narcissus is a source of neuroactive substances like galantamine that has been used in the treatment of Alzheimer’s disease (Smith et al., 1996). Mesembrine-like alkaloids demonstrated some SSRI activity in mood disorders (Gerici and Van Wyk, 2001a). In addition, mesembrine alkaloids have been shown to phosphodiesterase-4 (PDE-4) inhibition. They act by changing the levels of cyclic AMP (cAMP) as well as the induction of Brain-Derived Neurotrophic Factor (BDNF) mRNA, which has an antidepressant effect in patients who accompany MDD (Fujimaki et al., 2000).
Disease	Main group of drugs	Biological functional	References
MDD	Citalopram (Celexa)	Serotonin reuptake inhibitors (SSRIs)	(Fava et al., 2004; Papakostas, 2010; Ravindran and Stein, 2010)
	Escitalopram (Lexapro)	Serotonin reuptake inhibitors (SSRIs)	
	Paroxetine (Paxil, Paxil CR)	Serotonin reuptake inhibitors (SSRIs)	
	Sertraline (Zoloft)	Serotonin reuptake inhibitors (SSRIs)	
	Fluvoxamine (Luvox)	Serotonin reuptake inhibitors (SSRIs)	
	Fluoxetine (Prozac)	Serotonin reuptake inhibitors (SSRIs)	
	Venlafaxine (Effexor, Effexor XR)	Serotonin-norepinephrine reuptake inhibitors (SNRIs)	(Stahl et al., 2005)
	Desvenlafaxine (Pristiq)	Serotonin-norepinephrine reuptake inhibitors (SNRIs)	
	Duloxetine (Cymbalta)	Serotonin-norepinephrine reuptake inhibitors (SNRIs)	
	Amitriptyline (Elavil)	Blocking the activity of serotonin 5-HT2 receptors	(Snyder and Yamamura, 1977; Preskorn and Simpson, 1982; Lavoie et al., 1990; Atkinson et al., 1998; Moore and O’Keeffe, 1999; Menza et al., 2009)
	Clomipramine (Anafranil)	Blocking the activity of serotonin 5-HT2 receptors	
	Desipramine (Norpramin)	Blocking the activity of serotonin 5-HT2 receptors	
	Nortriptyline (Pamelor)	Blocking the activity of serotonin 5-HT2 receptors	
	Protriptyline (Vivactil)	Blocking the activity of serotonin 5-HT2 receptors	
	Amoxapine (Asendin)	Blocking the activity of serotonin 5-HT2 receptors	
	Maprotiline (Ludiomil)	Blocking the activity of serotonin 5-HT2 receptors	
	Phenelzine (Nardil) Tranylcypromine (Parnate)	Blocking the activity of serotonin 5-HT2 receptors	
	Isocarboxazid (Marplan)	Blocking the activity of serotonin 5-HT2 receptors	
	Selegiline (Eldepryl)	Blocking the activity of serotonin 5-HT2 receptors	
	Selegiline transdermal (Emsam)	Blocking the activity of serotonin 5-HT2 receptors	
Schizophrenia	First-generation antipsychotics (Phenothiazines, Butyrophenones, Thioxanthenes,	Dopamine antagonist (Blocking dopamine receptors)	Freedman, (2010)
	Dibenzepines, Dihydroindolones, Diphenylbutylpiperidines)	Dopamine antagonist (Blocking dopamine receptors)	
	Second-generation antipsychotics (clozapine, olanzapine, quetiapine, risperidone,	Serotonin-Dopamine Antagonists (D2, 5-HT1A, and 5-HT2A receptors)	(Gupta et al., 1994; Seeger et al., 1995; Möller, 2005; Schmid et al., 2014; Brenner and Stevens, 2017)
	paliperidone, ziprasidone, and molindone)	Serotonin-Dopamine Antagonists (D2, 5-HT1A, and 5-HT2A receptors)	
	Third-generation antipsychotics (aripiprazole, brexpiprazole and cariprazine)	D2 partial agonists	(Burris et al., 2002; Shapiro et al., 2003; De Deurwaerder, 2016; Hope et al., 2018)
Autism	Risperidone	Serotonin-Dopamine Antagonists	(Leskovec et al., 2008; Rapin and Tuchman, 2008; Ji and Findling, 2015)
	Aripiprazole	Serotonin-Dopamine Antagonists	
	Fluoxetine and fluvoxamine	Serotonin reuptake inhibitors (SSRIs)	Johnson and Myers, (2007)
	Methylphenidate	Norepinephrine—dopamine reuptake inhibitor (NDRI)	
Bipolar Disorder	mood stabilizers (Lithium, Divalproex, Carbamazepine)	Norepinephrine release and increasing serotonin synthesis	(Allen et al., 2006; Malhi et al., 2009; Miura et al., 2014)
	antipsychotic drugs (aripiprazole, Quetiapine, Risperidone, Olanzapine, Paliperidone)	Blocking dopamine D2 receptors	Jain, (2020)
ADHD	Methylphenidate	Norepinephrine—dopamine reuptake inhibitor (NDRI)	Storebo et al. (2015)
	Viloxazine	Norepinephrine reuptake inhibitor	Banaschewski et al. (2004)
	Atomoxetine	Norepinephrine reuptake inhibitor	
	Bupropion	Norepinephrine—dopamine reuptake inhibitor (NDRI) and antagonist of several nicotinic	
	Guanfacine	Norepinephrine—dopamine reuptake inhibitor (NDRI) and antagonist of several nicotinic	
	clonidine	Activating a2A adrenoceptors	
		Agonist of alpha-2A adrenergic receptor	

(Continued on following page)
Polyphenols like curcumin (*Curcuma longa*) are strongly recommended in the treatment procedures for MDD (Darvesh et al., 2013) (Table 2). Some authors reported that curcumin affects stressed mice by modulation of the various neurotransmitter systems in forced swim test (FST), similar to imipramine affection (Xu et al., 2005a; Xu et al., 2007). In another study, modulation of the serotoninergic system was approved via the cAMP pathway induced by curcumin (Li et al., 2009). Also, glutamate receptors are involved in curcumin’s antidepressant effect by inhibiting the presynaptic voltage-gated calcium channels (Lin et al., 2011). In one study, the inhibitory effect of curcumin on glutamate release and the enhancement of the antidepressant activity of fluoxetine were reported (Kulkarni et al., 2008; Wang et al., 2008; Wang et al., 2010; Lin et al., 2011; Zhang et al., 2013). In the reports, apigenin, one of the bioflavonoids in behavioral test models, displayed significant anti-immobility action and neurotransmitters turnover induction in the mice model (Nakazawa et al., 2003). Moreover, haloperidol reversed the antidepressant action of apigenin (Han et al., 2007). The molecular mechanism behind its antidepressant activity was the inhibition of interleukin 1β and the activation of NLRP3 inflammasome in rat brains (20 mg/kg b. w., intragastrically) (Li et al., 2016). Amentoflavone is a bioflavonoid apigenin dimer (Hossain et al., 2021; Rajib et al., 2021), inhibited the flumazenil binding to rat brain at GABA receptors (Gutmann et al., 2002; Colovic et al., 2008; Ishola et al., 2012). Some authors reported that oral administration of amentoflavone in forced swim test (FST) was more potent than imipramine (Ishola et al., 2012).

In other studies, chlorogenic acid, a polyphenol (in coffee), could enhance mood in patients (Crockley et al., 2012). The mechanism of the antidepressant action of chlorogenic acid was hypothesized to act through the opioidergic pathway (Kwon et al., 2010; Park et al., 2010; Girish et al., 2012), but also reduce neuroinflammation and oxidative stress conditions (Chen et al., 2021). Ferulic acid (FA) induces an anti-immobility effect in behavioral despair models, including FST and TST (Zeni et al., 2012) and can be effectively supplemented in depressive disorders accompanying epilepsy (Singh and Goel, 2016). Some research showed the antidepressant activity of quercetin bioflavonoid by inhibiting MAO activity in the brain (Figure 1) (Butterweck et al., 2000; Haleagrahara et al., 2009; Clarke and Ramsay, 2011; Lam et al., 2012; Soofiyan et al., 2021) and by regulating the copine 6 and TREM1/2 imbalance related to the BDNF factor (Fang et al., 2020). In addition, quercetin showed antidepressant-like action in streptozotocin-induced diabetic mice compared to fluzoxetine or imipramine (Kaur et al., 2007; Kawabata et al., 2010). Quercetin in some studies showed the inhibition of the breakdown of serotonin neurotransmitters in mouse brain mitochondria (Yoshino et al., 2011). The other molecule, hesperidin reduced the immobility period in the locomotor activity animal model (Souza et al., 2013).

Other acts of hesperidin are anti-inflammatory (reduction of TNF-α, Interleukin 1 beta (IL-1b) levels) and antioxidant activity in strokes (Figure 1) (Raza et al., 2011). *Hypericum perforatum* has a glycoside flavonoid—rutin—that is used for the treatment of depression (Machado et al., 2008; Galeotti, 2017) and exhibits anti-inflammatory properties (Parashar et al., 2017) and immobility time-reducing action (30–120 mg/kg p.o. in mice) (Yusoh’u et al., 2017). Rutin showed spatial memory enhancement and increased the levels of natural polyphenols in managing significant depression in the hippocampus of aged rat brains (Pyrzanowska et al., 2012). Resveratrol, another phenolic compound in grapes, significantly decreases the immobility period in animal models of locomotor activity and increases noradrenaline and serotonin levels (Yáñez et al., 2006; Haleagrahara et al., 2009; Clarke and Ramsay, 2011; Lam et al., 2012; Soofiyan et al., 2021) and by regulating the copine 6 and TREM1/2 imbalance related to the BDNF factor (Fang et al., 2020). In addition, quercetin showed antidepressant-like action in streptozotocin-induced diabetic mice compared to fluzoxetine or imipramine (Kaur et al., 2007; Kawabata et al., 2010). Quercetin in some studies showed the inhibition of the breakdown of serotonin neurotransmitters in mouse brain mitochondria (Yoshino et al., 2011). The other molecule, hesperidin reduced the immobility period in the locomotor activity animal model (Souza et al., 2013).

3.2 Schizophrenia

3.2.1 Treatment of schizophrenia using approved drugs

Another mental disorder characterized by periods of continuous or recurrent psychosis with symptoms such as delusions, hallucinations, disorganized speech or behaviour,
TABLE 2 Summarizes the effects and potential effects for the most important phytochemicals as a promising therapy for treating major depressive disorders.

Compounds	Main group of compounds	Verified effective concentrations/model	Potential effects	References
Alkaloids	membrane-like alkaloids	Dose = 25 mg randomized double-blind placebo-controlled study	↑ amygdala response to scary facial expressions	(Chiu et al., 2014) (Chiu et al., 2017) (Gercke and Van Wyk, 2001b) (Napoletano et al., 2001) (Houlay et al., 2005)
Curcumin		Dose = 5–10 mg/kg mice	↑ serotonin in the frontal cortex and hippocampal brain	(Xu et al., 2005b; Darvesh et al., 2012)
Phenolic Phytochemicals	in vivo		↑ serotonin	(Chiu et al., 2014) (Chiu et al., 2017) (Gercke and Van Wyk, 2001b) (Napoletano et al., 2001) (Houlay et al., 2005)
Amentoflavone		Dose = 6.25–50 mg/kg mice	↑ immobility inhibition flumazenil binding to GABA receptor	Ishola et al. (2012), Baureithel et al. (1997)
Chlorogenic acid		Dose = 200–400 mg/kg mice	↑ MAOB, ↑ ROS, ↑ axon and dendrite growth, ↑ serotonin release through enhancing synapsin expression act through the opioidergic pathway ↑ neuroinflammation and oxidative stress	(Wu et al., 2016; Lim et al., 2018) (Park et al., 2010) (Chen et al., 2021)
Ellagic acid		Dose = 25–100 mg/kg mice	↑ immobility period in both FST and TST effect in monoaminergic neurotransmitter receptors	Girish et al. (2012)
Ferulic acid		Dose = 0.01–10 mg/kg mice	↑ serotonin reuptake anti-inflammatory antioxidant	(Zeni et al., 2012) (Sasaki et al., 2019)
Fisetin		Dose = 10–25 mg/kg mice	↑ MAO, ↑ 5-HT, ↑ NA, ↑ DA reuptake	(Zheng et al., 2008; Zhen et al., 2012; Yao et al., 2020)
Quercetin		Dose = 50–100 mg/kg mice	↑ MAO isoenzymes, ↑ BDNF, ↓ MAO isoenzymes, ↓ serotonin uptake	(Anjaneyulu et al., 2003; Clarke and Ramsay, 2011) (Yoshino et al., 2011) (Fang et al., 2020)
Resveratrol		Dose = 20–80 mg/kg mice	↑ immobility period in mouse models of behavioral despair without affecting locomotor activity ↑ noradrenaline, ↑ serotonin uptake	(Yáñez et al., 2006; Xu et al., 2010a)
Hesperidin		Dose = 0.1–1 mg/kg mice	↑ immobility period and the antidepressant-like activity was independent of alterations in locomotor activity anti-inflammatory ↑ antioxidant activity	(Raza et al., 2011; Carlos Filho et al., 2013)
Rutin		Dose = 0.1–3 mg/kg mice	↓ inactivity in TST modulation of monoaminergic neurotransmitter systems	(Machado et al., 2008; Ramos-Hryb et al., 2018)
Naringenin		Dose = 0.1–50 mg/kg mice	↑ immobility in the TST	(Olisen et al., 2008) (Olisen et al., 2008) (Olisen et al., 2008) (Olisen et al., 2008)

(Continued on following page)
TABLE 2 (Continued) Summarizes the effects and potential effects for the most important phytochemicals as a promising therapy for treating major depressive disorders.

Compounds	Main group of compounds	Verified effective concentrations/ model	Potential effects	References
Proanthocyanidins	Polyphenols	Dose = 25–50 mg/kg mice in vivo	↓ alterations in the locomotor activity ↑ serotonin ↑ noradrenaline ↑ synaptic plasticity	(Xu et al., 2010b; Wang et al., 2012)
Nobiletin		Dose = 25–100 mg/kg mice in vivo	↓ immobility period in both FST and TST serotoninergic, noradrenergic, dopaminergic effects	Yi et al. (2011)
Tannins	Tannic acid	Dose = 30 mg/kg rats in vivo	↑ levels of monoaminergic neurotransmitters in the brain Non-selective inhibitor of monoamine oxidase	Ludovico et al. (2020)
Iridoids	Geniposide	Dose = 25, 50, 100 mg/kg rats in vivo	Upregulation the hypothalamic GRα mRNA level Upregulation the GRα protein expression	Cai et al. (2015)
Coumarins	Scopoletin	Dose = 1–100 mg/kg mice in vivo	Activation of postsynaptic α1- and α2-adrenoceptors	Capra et al. (2010)
	Umbelliferone	Dose = 15 mg/kg, 30 mg/kg rats in vivo	Downregulation of Rho-associated protein kinase (ROCK) signaling Upregulation of protein kinase B (Akt) signaling	Qin et al. (2017)
Hypericum perforatum			Monoamine reuptake inhibitor Supportive towards the hypothalamic pituitary adrenal axis	Sarris et al. (2021)

Symbols: ↑, increase; ↓, decrease.

FIGURE 1
Schematic illustration of the possible mechanisms of natural compounds in neuropsychiatric disorders. Abbreviations and symbols: ↑, increase; ↓, decrease; TNF-α, tumour necrosis alpha; IL, interleukin; SOD, superoxide dismutase; MAO, monoaminooxidase; PDE-4, phosphodiesterase 4; cAMP, cyclic adenosine monophosphate; BDNF, brain-derived neurotrophic factor.
and impaired cognitive ability is called schizophrenia (World Health Organization, 1992; Lavretsky, 2008). The most important pathophysiological cause of the disease is abnormalities in neurotransmitters such as dopamine, serotonin, glutamate, aspartate, glycine, and gamma-aminobutyric acid (GABA) (Lavretsky, 2008). The prevalence of the disease in the United States is estimated to be between 0.6 and 1.9, and the prevalence is the same in men and women, but the onset of symptoms is seen faster in men than in women (Wu et al., 2006; Van Os and Kapur, 2009).

3.2.2 Treatment of schizophrenia and bioactive compounds

Schizophrenia treatment is divided into two categories: pharmacological and non-pharmacological: non-pharmacological treatments include targeting symptoms, preventing recurrence of the disease, and increasing adaptive function to eventually return the person to the community (Dipiro et al., 2014). The individual, group, and cognitive-behavioural psychotherapeutic therapies can also be used in non-pharmacological treatments (Dickerson and Lehman, 2011). Drug therapies include the use of first-generation antipsychotics, which are dopamine and serotonin antagonists such as lumateperone, risperidone (Marder and Meibach, 1994; Blair, 2020), clozapine (Leponex) (Stahl and Meyer, 2020), olanzapine (Zyprexa) (Bhana et al., 2001), quetiapine (Komossa et al., 2010), and ziprasidone (Lüllmann and Mohr, 2006). Also, fluoxetine was proved to bring positive outcomes when administered to patients, as it induced slight decrease in depressive symptoms (Spina et al., 1994). Some classifications of natural products are determined for their antipsychotic potentials, such as terpenoids, beta-caryophyllene, and limonene. Also, the antipsychotic saponin, polygalasaponin, was recognized for possessing antipsychotic properties by inhibiting cannabinoid receptors (Chung et al., 2002; Ajao et al., 2018). In the study of Abdul Rahim et al. 2022 Polygonum minus leaf extract (100 mg/L, 4 days) was found to decrease the level of cortisol in a zebra fish anxiety model, similarly to fluoxetine. In another study, a coumarin–scopolentin was described as an antidopaminergic agent with a U-shaped dose dependent activity towards the stereotyped behaviors in mice. The dose of 0.1 mg/kg b. w. (per os) was found effective in the alleviation of positive symptoms of schizophrenia psychosis. Another natural product, the derivative of anthracene–emodin was found to interfere with the schizophrenic responses induced in murine models (Mitra et al., 2018). The attenuation of pre-pulse inhibition and improvement of startle responses were observed in neonatal rats treated with 15 and 50 mg/kg emodin in a subchronic model. Its possible mechanism of action may be related to the stimulation of the phosphorylation process of both ErbB1 and ErbB2. The efficacy of curcumin was determined in several in vivo clinical trials. This phenolic compound from turmeric tuber was administered to 36 schizophrenic patients (360 mg/day for 8 weeks) in a double-blind, placebo-controlled study to research its impact on the BDNF that is engaged in the neurodegeneration and cell survival processes (x). The compound was found to increase the level of BDNF. Furthermore, Hosseiniwasab and co-investigators (2021) described the influence of curcumin on both positive and negative symptoms in an 8-weeks- long clinical trial with 300 mg of curcumin added to the conventional medication. Curcumin was proved to alleviate memory processes and decrease the IL-6 levels and was well-tolerated by the patients. Table 3 presents natural products and their mechanism of action which were tested in the treatment of schizophrenia.

3.3 Bipolar disorder

Bipolar disorder or chronic manic depression manifests as a recurrent illness with symptoms of depression or manic (Jann, 2014). The disease most often affects adolescents or adults, and sometimes the elderly (Tiihonen et al., 2017). The disease is classified into two categories: type I (episodes of depression and persistent mania) and type II (episodes of depression and hypomania) (Cooper, 2018). The prevalence of this disease worldwide is 1%–3% and its incidence is the same in men and women considering different ethnicities and races (Ferrari et al., 2011; Moreira et al., 2017). The exact pathophysiology of the disease has not yet been determined, but more than 85% of cases are due to heredity (McGuffin et al., 2003). It has been shown that there is a relative overlap of the catechol-o-methyltransferase (COMT) gene for schizophrenia and bipolar disorder, which controls dopamine metabolism (Berrettini, 2003; Murray et al., 2004).

3.3.1 Treatment of bipolar disorder using approved drugs

To treat Bipolar Disorder, two psychosocial methods (using physical methods to establish individual relationships to help change the behaviour of the individual in society) (Woodward, 2015) and pharmacological therapies are used. Medications include the use of mood stabilizers such as lamotrigine, lithium, clozapine, divalproex, carbamazepine, olanzapine, and atypical antipsychotics such as quetiapine, risperidone, aripiprazole, and ziprasidone, and antidepressants such as buproprion and SSRIs (Jain, 2020). Herbal products can be considered to treat symptoms of insomnia and anxiety in bipolar patients. Valerian, chamomile, ginkgo, hops, and passionflower might be beneficial. However, some of their constituents’ effectiveness and safety have not been approved and need more studies (Baek et al., 2014).

3.3.2 Treatment of bipolar disorder and bioactive compounds

Oxidative stress is one of the major factors described in the etiology of mania. That is why several experimental studies focus on the development of drug candidates that could restore
oxidation-reduction balance. In the light of this information, natural products that are proved to exhibit antioxidant properties are important to drug candidates in the reduction of manic episodes (Recart et al., 2021). Herbal intervention in bipolar disorder is recommended and prescribed, accompanied by mood stabilizers (Currier and Trenton, 2002; Mohr et al., 2005). *Hypericum perforatum* might not be used in patients alone. A clinical trial using ashwagandha provided substantial benefits for cognitive performance compared with a placebo (Chengappa et al., 2013). Ethanolic extracts of saffron (*Crocus sativus*) have been used in preclinical animal models, and its constituents, safranal, and crocin have shown antidepressant effects (Hosseinzaehed and Noraei, 2009). *Curcuma longa* (turmeric) and *H. perforatum* (St John’s wort) are other plants used in various nervous system disorders and have been used over the past decades in the treatment of MDD (Gopi et al., 2017; Kunnumakkara et al., 2017). Acute and chronic administration of carvone (50 and 100 mg/kg, i. p.)—a monoterpenes present in volatile oils of several plant species, e.g., *Mentha* spp., *Carum carvi*, and others—in a methylphenidate mice mania model resulted in a decreased locomotor activity in the tested animals, possibly thanks to the GABAergic activity and sodium channels blockage (Nogoceke et al., 2016). Gallic acid (GA) a phenolic acid that is widely spread in the plant kingdom was used in the treatment of ketamine-induced mania in rats and compared to the action of lithium. Similarly to lithium (45 mg/g twice a day) GA (50 and 100 mg/kg b. w) administered for 14 days decreased the hyperlocomotion of the animals, induced the antioxidant properties and prevented the cholinergic dysfunctions in the brain (Recart et al., 2021). In the studies of Kanazawa and collaborators (2016, 2017) quercetine administered intraperitoneally (10–40 mg/kg b. w.) showed antioxidant properties and inhibition of protein kinase C. In turn the flavonoid regulated sleep deprivation and diminished the

TABLE 3 The most representative bioactive compounds and their major effects in treatment and prevention of schizophrenia.

Disease	Main group of compounds	Neuro-biological functions	References	
Schizophrenia	Alkaloids	Huperzine A	reversible AChE inhibitor	(Zangara, 2003; Wang et al., 2006)
	Polygono musin leaf extract	L-SPD	agonist on D1 receptors in the medial prefrontal cortex (mPFC)	Mo et al. (2007)
	Coumarin	Scopoletin	↓ cortisol level in zebrafish model	(Nurhidayaha et al., 2022)
	Anthraquinone	Emodin	↑ phosphorylation process of both ErbB1 and ErbB2	Mitra et al. (2022)
	Phenolic compounds	Curcumin	↓ pre-pulse inhibition and improvement of startle reponses in rats dose = 15–50 mg/kg b.w	(Hossain et al. 2021)

TABLE 4 Bioactive compounds and their major effects in the treatment of bipolar disorders.

Disease	Main group of compounds	Neuro-biological functions	References
Bipolar Disorder	Ginkgo	↑ cerebrovascular blood flow	Nourbala and Akhoundzadeh, (2006)
	Monoterpenes	↑ hyperactivity	Nogoceke et al. (2016)
	Carvone	↑ locomotor activity sodium channels blockage	(Recart et al. 2021)
	Phenolic compounds	↓ free radicals formation	(Kanazawa et al. (2016), Kanazawa et al. (2017)
	Gallic acid	↓ hyperactivity prevented cholinergic dysfunctions	(Kanazawa et al. (2016), Kanazawa et al. (2017)
	Quercetin	↓ protein kinase C	(Kanazawa et al. (2016), Kanazawa et al. (2017)
		↓ hyperlocomotion	(Kanazawa et al. (2016), Kanazawa et al. (2017)
induced hyperlocomotion in mice. Table 4 summarizes natural compounds which are used in the treatment of bipolar disorders.

3.4 Autism spectrum disorders

Autism is a disorder of the nervous system that is associated with poor communication, social interaction, and repetitive behaviours, and usually manifests itself in childhood or adolescence (Landa, 2008; Tuchman et al., 2010; Edition, 2013). Causes of autism include immaturity of brain parts (London, 2007), brain-intestinal axis abnormalities (Wasilewska and Kłakowski, 2015; Isaeyan and Margolis, 2019), synaptic dysfunction (Levy and Ds, 2009), and mutations in the genes of cellular adhesion proteins involved in the synaptic region (Walsh et al., 2008). The prevalence of this disease is 10–16 per 10,000 people, and boys are more likely to develop autism than girls (Fombonne, 2006; Fombonne, 2009). The rate of disease in the United States is increasing every year (Newschaffer et al., 2007).

3.4.1 Treatment of autism spectrum disorders using approved drugs

The treatment for autism includes two categories: pharmacological and non-pharmacological: non-pharmacological treatments include parent education (Kilpatrick et al., 2001), applied behavioural analysis (ABA) (Cooper et al., 2007), treatment and education of children with autism (Schopler et al., 2010), and cognitive-behavioural therapy (CBT) (Wood et al., 2009; Reaven et al., 2012). Atypical antipsychotic drugs called risperidone and aripiprazole can be used to treat aggressive and self-harming behaviours caused by autism (Leskovec et al., 2008; Rapin and Tuchman, 2008; Ji and Findling, 2015). Fluoxetine and fluvoxamine can be used to reduce ritualistic and repetitive behaviours. Methylphenidate is also used to treat hyperactivity in children with autism (Dubowitz et al., 2008).

3.4.2 Treatment of autism spectrum disorders and bioactive compounds

Luteolin, a natural plant flavonoid, significantly counteracted IL-6 in astrocytes (Gullotta et al., 1985; Zuiki et al., 2017; Deb et al., 2020) and exhibited neuroprotective, anti-inflammatory activities (Bertolino et al., 2017). Luteolin formulation (NeuroProtek®) was prescribed accompanied to the drugs of compounds which are used in the treatment of bipolar disorders. Luteolin also inhibited the stimulation of activated T cells and reduced inflammatory molecules (Kritas et al., 2013). Daily intake of green tea extract (Camellia sinensis), a polyphenols source, is proved to exhibit health effects (Schimdt et al., 2017). This plant enhanced the locomotion activity in valproate-induced autistic mice (Banji et al., 2011; Takeda et al., 2011; Sundberg and Sahin, 2015; Kumaravel et al., 2017; Urdaneta et al., 2018). Major antioxidant enzymes such as superoxide dismutase were increased by catechin, in autistic children (Rossignol and Frye, 2014). The action of the piperine, a major alkaloid isolated from pepper species, displays considerable anti-oxidative effects and enhancement of memory with the regulation of Ca²⁺ ion entry into the neurons and the presynaptic release of glutamine (Wattanathorn et al., 2008; Fu et al., 2010; Pragnya et al., 2014). Piperine is progressing its future beneficial effects in autistic children (Wattanathorn et al., 2008).

Curcumin in Curcuma longa was found for its neuroprotective activities and cellular signalling role in regulating oxidative stress (Salehi et al., 2020). Moreover, curcumin could reduce inflammatory factors in diseases and exhibit antioxidant radical scavenging activities (Salehi et al., 2019a; Quispe et al., 2022). As a potential treatment for autism, Ginkgo Biloba extract was used accompanied by risperidone. The results showed that the treated group indicated fewer adverse effects as compared to the control group (Hasanzadeh et al., 2012). Several studies investigated the role of antioxidants and natural anti-inflammatory products such as curcumin, resveratrol, naringenin, and piperine to reduce the symptoms of autism spectrum disorder (in vivo and in vitro). In a study, curcumin increased the level of antioxidant enzymes and helped diminish dysfunctions. Curcumin in the dose of 200 mg/kg in autistic rats can attenuate oxidative stress and release tumor necrosis factor (TNF-α). However, exploring their potential clinical effects and drug delivery methods is essential (Fu et al., 2010; Al-Askar et al., 2017). Table 5 summarizes the effects of bioactive compounds as potential agents in the treatment of autism.

3.5 Attention deficit hyperactivity disorder

Attention deficit hyperactivity disorder (ADHD) is a mental-behavioural disorder associated with the development of the nervous system that presents with symptoms such as inattention, excessive energy, hyper-fixation, and impulsivity (American Psychiatric Association, 1980; Cotterill, 2019). These people have difficulty controlling their emotions and have difficulty in executive activities (Mandah and Osuagwu, 2020). The exact cause of the disease is not yet fully understood, but in more than 75% of cases, genetic causes are involved (Mandah and Osuagwu, 2020). Also, dysfunction of neurotransmitters such as dopamine and norepinephrine (Chandler et al., 2014; Stansfield, 2019) and signs of signal change in the Central Nervous System (CNS) such as paradoxical reaction is observed in this regard (Langguth et al., 2011). It affects 6%–7% of people in the age group of 18 years (Willcutt, 2012) and the incidence of the disease in men is three times higher than in women (Singh, 2008).
3.5.1 Treatment of attention deficit hyperactivity disorder using approved drugs

Treatments for this disease include behavioural therapies such as psychoeducational input, behaviour therapy, cognitive behavioural therapy, interpersonal psychotherapy, family therapy, school-based interventions, social skills training, behavioural peer intervention, organization training, and parent management training (Health, 2009; Evans et al., 2018; Lopez et al., 2018); medical counselling; medications such as stimulants, atomoxetine, alpha-2 adrenergic receptor agonists, and sometimes antidepressants (Wilens and Spencer, 2010; Bidwell et al., 2011); or as a combination therapy. Some studies have recommended the use of methylphenidate (Storebø et al., 2015).

3.5.2 Treatment of attention deficit hyperactivity disorder and bioactive compounds

Natural products, which may be potentially used in the treatment of ADHD were presented in Table 6. American ginseng (Panax quinquefolium) in children with ADHD improved significantly on a social problems measure (Lyon et al., 2001; Trebatická et al., 2006). Another plant, Ginkgo biloba enhanced cerebrovascular blood flow and reduced hyperactivity due to the lack of focus (Nourbala and Akhoundzadeh, 2006). It has been documented that Passiflora might be a novel therapeutic agent for treating ADHD (Salehi et al., 2010; Uebel-von Sandersleben et al., 2014). One study in adults with ADHD revealed that lobeline as an alkaloid improves working memory in patients with no significant impact on the attention noted (Martin et al., 2018). Whereas, a comprehensive study is needed to make more definitive statements regarding the effect of lobeline and the usage of methylphenidate. Lobeline could have different effects based on individual differences. Some pediatric patients with ADHD use natural products such as flavonoids. Although herbal remedies are generally considered safe when used appropriately with other treatment strategies (Martin et al., 2018).

A double-blind and placebo-controlled randomized trial (112 males aged 6–14 years) in a population of males supplemented with Bacopa monnieri extract showed the reduction of hyperactivity, inattention and decreased error-
Compounds	Main group of compounds	Verified effective concentrations/model	Potential effects	References
Alkaloids	Aconitum	IC₅₀ = 0.1–1 µM rats hippocampal slices	↓ GABA	Ameri et al. (1996)
Isoquinoline	Montanine	Dose = 64.7–67.6 mg/kg rats	modulation of benzodiazepine GABA_A receptors	Da Silva et al. (2006)
	Berberine	Dose = 10–20 mg/kg/i.p. mice	modulation of neurotransmitter systems	Bhutada et al. (2010)
	Tetrahydropalmatine	Dose = 10–50 mg/kg/i.p. mice	↓ dopamine output	Lin et al. (2002)
	Palmatine	Dose = 450 µM/7 days	↓ locomotor activity	Gaswel et al. (2020)
	Zebrafish		↓ BDNF and c-fos levels	
	Amide alkaloid	Pipilartine	↓ epileptiform activity	Felipe et al. (2007)
Ergot alkaloids		no data	different doses	Anlezark and Meldrum, (1978)
Piperidine	piperine	Dose = 1–2.5 mg/kg/i.p. mice	modulation of the GABAergic system	Da cruz et al. (2013)
Flavonoids	Hesperidin	Dose = 500 mg/kg mice	↓ convulsant effects of PTZ	(Dimpfel, 2006; Kumar et al., 2014)
	Apigenin	Dose = 25–50 mg/kg rats	↓ GABA-activated chloride ion channel	Avallone et al. (2000)
	Fisetin	Dose = 10–25 mg/kg mice	antioxidant	Raygude et al. (2012)
	Wagonin	Dose = 5–10 mg/kg rats	↑ Cl⁻ influx	Park et al. (2007)
	Baicalin	Dose = 100 mg/kg rats and mice	↑ Cl⁻ influx antioxidant	(Yoon et al., 2011; Liu et al., 2012)
	Chrysin	Dose = 3 mg/kg rats and mice	Acting on central RZD receptors	Medina et al. (1996)
	Oroxylin A	Dose = 3.67–60 mg/kg rats	antagonistic effects by adverse action on α-2,3,5 subunits of the GABA receptor	Huen et al. (2003)
	Luteolin	Dose = 10 mg/kg rats	↓ frequency of seizures	Birman et al. (2012)
	Hispidululin	Dose = 10 mg/kg rats	positive modulator of GABA receptors	(Kavvadas et al., 2004; Lin et al., 2012)
	Naringenin	Dose = 20–40 mg/kg rats	modulation of the benzodiazepine site of the GABA receptors	(Golechha et al., 2014; Shakzad et al., 2017)
	Rutin	Dose = 90 mg/kg, i.p. rats	Interacting with GABA Abenzodiazepine receptor	Nassiri-ali et al. (2008)
	Vitexin	Dose = 90 mg/kg, i.p. rats	↑ GABA	Abbasi et al. (2012)

(Continued on following page)
Another clinical trial performed in a group of twenty males and females aged 10 ± 2.1 years described by Hsu and co-investigators (2021) denotes that the administration of 25 or 50 mg pine bark extract for 14 days resulted in a significant reduction of inattention, hyperactivity, and impulsivity.

3.6 Psychiatric disorders associated with epilepsy

Epilepsy is a neurological diseases manifested by recurrent seizures is called epilepsy, which is classified as short and short periods to long and severe periods (Sharifi-Rad et al., 2021b; Kwon et al., 2022). The main mechanisms of epilepsy include abnormal activity in the cerebral cortex, brain damage, stroke, brain tumours, various brain infections, and genetic defects at birth (Begley et al., 2022; Kanner and Bicchi, 2022). The prevalence of this disease varies in different countries and is generally 7.6 people per 1,000 people (Kelvin et al., 2007; Fies et al., 2017). The incidence of epilepsy is higher in men than in women and affects very young and very old people (Fies et al., 2017).

3.6.1 Treatment of epilepsy using approved drugs

There are many treatments for epilepsy, including surgery (such as cutting the hippocampus, removing tumors, and removing part of the neocortex) (Ryvlin et al., 2014), specific

TABLE 7 (Continued) Phytochemicals and their potential effects in treatment and prevention of neuropsychiatric disorders in epilepsy.

Compounds	Main group of compounds	Verified effective concentrations/model	Potential effects	References
α-Terpineol	Dose = 100, 200,400 mg/kg rats	Terpenoids	Protective effects against PTZ- and MES-induced convulsive seizures in mice	(De Sousa et al., 2007; Silva et al., 2009)
Carvacrol borneol	Dose = 50, 100, 200 mg/kg mice	GABA		(Quintans-Júniorm e et al., 2010)
Isopulegol	Dose = 200 mg/kg rats	Positive modulation of benzodiazepine sensitive GABA receptors antioxidant	Silva et al. (2009)	
Eugenol	Dose = 100 mg/kg rats	↑ neuronal excitability, ▼ INa inactivation	Huang et al. (2012)	
Ursolic acid	Dose = 2.3 mg/kg rats and mice	GABA		(Taviano et al., 2007; Kazmi et al., 2012)
Saponins	Saikosaponin IC50=1µM in vitro	Voltage-gated sodium channel blocking	(Yu et al., 2012; Zhu et al., 2014)	
Phenolic compounds	6-gingerol Dose=37.5 µM/6 days	▼ GLU level	(Gawel et al., 2021)	
Coumarins	Esculetin Dose = 1, 2, 5 mg/kg mice	▼ frequency of seizures, ▼ length of seizures		(Wo et al., 2011)
	Osthole Dose = 259–631 mg/kg mice	GABA modulation		(Łuszczki et al., 2009; Łuszczki et al., 2010; Zhu et al., 2014)
	Imperatorin Dose = 300 mg/kg mice			
	Oxypeucedanin Dose = 300 mg/kg mice			

...
diet (for instance ketogenic diet) (Martin-McGill et al., 2020), avoidance therapy (reducing or eliminating certain triggers factors such as excessive light) (Verrotti et al., 2005), exercise (Arida et al., 2009), and medication such as midazolam, diazepam (Uk, 2012), lorazepam, phenytoin, lamotrigine, levetiracetam (Uk, 2012), carbamazepine, and valproate, etc. (Nevitt et al., 2018; Nevitt et al., 2019). In Table 2 are summarized data regarding used current pharmacological therapies.

3.6.2 Treatment of epilepsy and bioactive compounds

Lycopene, a carotenoid antioxidant, has neuroprotective properties against oxidative stress and mitochondrial dysfunction in PTZ-induced seizures of epilepsy (Sakurada et al., 2009; Bhardwaj and Kumar, 2016) (Table 7). Some authors reported that the extract of *Nardostachys jatamansi* (Valerianaceae) and the synergistic use with phenytoin reduced mental weakness as well as enhanced the seizure threshold in the animal model of generalized tonic-clonic seizures (Luszczi et al., 2009; Jiang et al., 2015). Aconitum alkaloids induce their anticonvulsant activities via interaction with voltage-dependent Na+ channels in various experimental models, including PTZ (Charveron et al., 1984; Chen et al., 1996; Lin et al., 2002; Da Silva et al., 2006; Felipe et al., 2007; Da cruz et al., 2013) (Table 7).

Many flavonoids like hesperidin that prevent tonic-clonic seizures increased the protective effect of N-nitro-L-arginine methyl ester (L-NAME) on kindling induced by methyl ester (L-NAME) on kindling induced by methionine sulfoximine (MSO) in PTZ-induced seizures of epilepsy (Avallone et al., 2000). In addition, naringin is an anticonvulsant effect in kainic acid and PTZ models (Golechha et al., 2011; Golechha et al., 2014; Jeong et al., 2015). An alkaloid, piperine, has been recognized as an adjunct therapy with antiepileptic drugs, carbamazepine, and phenytoin. Administration of piperine could increase the bioavailability of synthetic anti-epilepsy drugs and decrease the adverse effects of synthetic drugs by diminishing the dose. On the other hand, apigenin, a flavonoid, can decrease the myeloperoxidase-mediated oxidative stress and inhibit cell death dependent on iron. It is characterized by the accumulation of lipid peroxides (ferropotosis) for rapidly discovering additional antiepileptic agents to prevent and treat epilepsy. Moreover, apigenin and other flavonoids have potentially antiepileptic and neuroprotective activity by inhibiting the glutamate receptors in mice (Aseervatham et al., 2016; Shao et al., 2020).

Zebrafish model was found to be an efficient screening method for the development of new drug candidates with antiseizure properties. In the studies of Gavel and co-investigators, palmatine from *Beberis sibirica* and 6-gingerol isolated from *Zingiber officinale* were effectively reducing the length of seizures and their number. The effect of 6-gingerol administration might have been achieved by the reduced glutamate and glutamate-to-GABA ratio levels in the fish brains analyzed by HPLC-MS instrumentation (Gavel et al., 2021). The administration of palmatine (450 μM, 7 days) decreased c-fos and BDNF levels, whereas, in the behavioral assay, palmatine decreased locomotor activity of animals. The described activity was higher in the combination with berberine (Gavel et al., 2020).

4 Limitations, challenges and clinical gaps

Psychiatric disorders are mental health problems characterized by different symptoms. The classification of mood disorders is still ambiguous. Some categories are defined as subgroups due to the symptoms (Enatescu et al., 2020; Trofor et al., 2020). The cause of these disorders is social, environmental, genetic issues, or psychotropic drugs. Neurological and psychiatric disorders account for 13% of the world’s total complications (Mondiale de la Santé, 2013). Many natural remedies are alternative procedures to increase the effectiveness of prescription drugs (Akhondzadeh, 2007; Salehi et al., 2019b; Sharifi-rad et al., 2021a). Herbal medicines contain a wide range of medicinal compounds with therapeutic effects (Bunariu et al., 2022; Taheri et al., 2022). Nowadays, many synthetic drugs originated from herbal medicines (Sharifi-rad et al., 2021d; Alshehri et al., 2022). Herbal medicines are still used in many diseases, primarily mental and neurological disorders (Sharifi-Rad et al., 2021c; Tsoukalas et al., 2021). According to the group of authors, plants used in traditional medicine contain main groups of components (Hossain et al., 2022; Painuli et al., 2022; Sharifi-Rad et al., 2022). Tropane alkaloids (agonists of acetylcholine) known as atropine, scopolamine, and hyoscynamine isolated from *Datura* sp. have some anticholinergic activities (Tätwe and Kuete, 2014). For instance, scopolamine is an anti-muscarinic used as a sedative and analgesic (Steenkamp et al., 2004). The anti-muscarinic and anticholinergic effects of these compounds may explain the use of *Datura* in treating mental illness (Maiga et al., 2005). Anxiety effects and neuroprotective activity have been reported in flavonoids. They can bind to GABA receptors with significant affinity (Zhang, 2004). Quercetin significantly reduces ischemic brain damage (Lake, 2000; Dajas et al., 2003; Guerne et al., 2016).

The therapeutic limitations of these compounds are represented by cytotoxic and cardiotoxic effects and must be used with caution (Al-snaifi, 2015). For example, securinact like strychnine in the range of 5–30 g/kg and causes spasms and death due to respiratory arrest (Maiga et al., 2005). Therefore, controlled use of these herbs should be promoted.
Integrative medicine concerning mental health is a concept that has developed a lot lately, in the conditions in which psychiatry no longer communicates notable advances in psychopharmacology in recent years. In this conjuncture of relative pharmacological stagnation, the complementary natural therapies capture the psychiatric patient, to the detriment of the indications from the treatment guidelines accepted by the psychiatric specialists. But extensive research to explore the combination of bioactive natural compounds with synthetic psychotropic drugs in the treatment of mental disorders is needed in the future.

The limitations of the current review are the inclusion in the study of evidence from preclinical pharmacological models, and meta-analyses focused on the therapeutic impact of bioactive compounds in psychiatric diseases and not from individual clinical trials. On the other hand, the inclusion and analysis of these meta-analyses is a strong point of this review, as they focused on potential pharmacological mechanisms of action, thus opening new therapeutic windows beneficial to natural bioactive compounds in the therapy of neuropsychiatric diseases.

Although comparative studies have been scrutinized in the pre-clinical area, no clinical trial has been found where herbal medicines are compared to drugs approved by the FDA for the treatment of psychiatric disorders. This is very important to highlight because it must be clear that evidence for the clinical efficacy of these products is not confirmed by head-to-head comparative studies and the conclusions concerning their efficacy derive only from preclinical experimental studies.

5 Overall conclusion

There are many factors behind the growing popularity of herbal remedies for a variety of chronic diseases. Many people who use herbal remedies know that health care alternatives are more in line with their values, beliefs, and philosophical orientations towards health and life. Although many chemical drugs are available to treat mental disorders, clinicians have found that many patients are unable to tolerate the side effects of chemical drugs or do not respond well enough. Many herbal remedies have far fewer side effects. Therefore, they can be used as an alternative treatment and could increase the effectiveness of prescription drugs. While the demand for herbal medicines is increasing, herbal extracts and active ingredients isolated from them need to be scientifically approved before being widely accepted and used. Therefore, “phytochemicals” may guarantee a new source of beneficial neuroleptics.

Author contributions

All authors contributed and made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas. That is, revising or critically reviewing the article; giving final approval of the version to be published; agreeing on the journal to which the article has been submitted; and, confirming to be accountable for all aspects of the work.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be evaluated in this article, is covered by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Abbas, E., Nassini, M., Shafei, M., and Sheikhi, M. (2012). Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chem. Biol. Drug Des. 80, 274–278. doi:10.1111/j.1747-0285.2012.01400.x
Abdul Rahim, N., Nordin, N., Ahmad Rasedi, N. I. S., Mohd Kauli, F. S., Wan Ibrahim, W. N., and Zakaria, F. (2022). Behavioral and cortisol analysis of the anti-stress effect of Polygnum minus (Huds) extracts in chronic unpredictable stress (CUS) zebra model. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 256, 109303. doi:10.1016/j.cbpc.2022.109303
Ajao, A. A.-N., Alimi, A. A., Olatunji, O. A., Balogun, F. O., and Saheed, S. A. (2018). A synopsis of anti-psychotic medicinal plants in Nigeria. Trans. R. Soc. S. Afr. 73, 33–41. doi:10.1080/0355919X.2017.1386138
Alkoudrudeh, S. (2007). “Herbal medicines in the treatment of psychiatric and neurological disorders,” in Low-cost approaches to promote physical and mental health (Springer).
Al-askar, M., Bhat, R. S., Selim, M., Al-Ayadhi, L., and EL-Ansary, A. (2017). Postnatal treatment using curcumin supplements to amend the damage in VPA-induced rodent models of autism. BMC Complement. Altern. Med. 17, 259–311. doi:10.1186/s12906-017-1763-7
Al-snaifi, A. E. (2015). The chemical constituents and pharmacological importance of Chrozophora tinctoria. Int J Pharm Res Rev 5, 391–396.
Allen, M. H., Hirschfeld, R. M., Wozniak, P. J., Baker, P. D., Jeffrey, D., and Bowden, C. L. (2006). Linear relationship of valproate serum concentration to response and optimal serum levels for acute mania. Am. J. Psychiatry 163, 272–275. doi:10.1176/appi.ajp.163.2.272
Alshehri, M. M., Quipe, C., Herrera-Bravo, J., Shantí-Rad, J., Tutuncu, S., Aydar, E. F., et al. (2022). A review of recent studies on the antioxidant and anti-infectious properties of Senna plants. Oxid. Med. Cell. Longev. 2022, 6025900. doi:10.1155/2022/6025900
American Psychiatric Association, A. (1980). Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association.

Anjaneyulu, M., Chopra, K., and Kaur, J. (2003). Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J. Med. Food. 6, 391–395. doi:10.1097/00003495-200006040-00002

Anlezark, G., and Meldrum, B. (1978). Blockade of photically induced epilepsy by valproate in antagonize ergot alkaloids. Psychopharmacology 57, 57–62. doi:10.1007/BF00429588

Arda, R. M., Scorza, A. F., Scorza, C. A., and Cavalheiro, E. A. (2009). Is physical activity beneficial for recovery in temporal lobe epilepsy? Evidences from animal studies. Neurosci. Biobehav. Rev. 33, 422–431. doi:10.neurobiorev.2008.11.002

Aseervatham, G. S. B., Suryakala, U., Sundaram, S., Bose, P. C., and Sivasudha, T. (2016). Expression pattern of NMDA receptors reveals anti-epileptic potential of amentoflavone in picrotoxin-induced epileptic mice. Pharmacol. Biochem. Behav. 82, 54–64. doi:10.1016/j.phbio.2016.04.066

Association, A. P. (2006). American psychiatric association practice guidelines for the treatment of psychiatric disorders. Compendium 2006. American Psychiatric Pub.

Atkinson, J. H., Slater, M. A., Williams, R. A., Zauk, S., Patterson, T. L., Grant, I., et al. (1998). A placebo-controlled randomized clinical trial of nortriptyline for chronic low back pain. Pain 76, 287–296. doi:10.1016/s0304-3959(98)00064-2

Avallone, R., Zanoli, P., Puia, G., Kleinchnitz, M., Schreuer, P., and Baraldi, M. (2000). Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem. Pharmacol. 59, 1387–1394. doi:10.1016/s0006-2952(00)00264-1

Baek, J. H., Nierenberg, A. A., and Kintz, G. (2014). Clinical applications of herbal medicines for anxiety and insomnia: Targeting patients with bipolar disorder. Aust. N. Z. J. Psychiatry 48, 705–715. doi:10.1177/0004867414539198

Banschweizer, T., Roessner, V., Dittmann, R. W., Santosh, P. J., and Rothenberger, A. (2004). Non-stimulant medications in the treatment of ADHD. Eur. Child. Adolesc. Psychiatry 13, i102–i116. doi:10.wsj/8707.004-1010-x

Banji, D., Banji, O. J., Abbagana, S., Hayath, M. S., Kambam, S., and Chilusa, V. L. (2011). Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res. 1410, 141–151. doi:10.1016/brains.2011.06.063

Baurerth, K. H., Buter, K. B., Engesser, A., Burkard, W., and Schaffner, W. (1997). Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of several species of Hypericum. Pharm. Acta Helv. 72, 153–157. doi:10.1007/BF00426958

Begley, C., Wagner, R. G., Abraham, A., Beghi, E., Newton, C., Kwon, C. S., et al. (2016). New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front. Neural Circuits 8, 53. doi:10.3389/fncir.2014.00053

Charveron, M., Assié, M.-B., Stenger, A., and Briley, M. (1984). Benzodiazepine antagonism-type activity of against, a rauwolfia serpentina–adrenal axis. Eur. Neuropsychopharmacol. 25, 1334–1341. doi:10.1016/euroeuro.2015.04.009

Cannon, J. R., and Greenemayer, J. T. (2011). The role of environmental exposures in neurodegenerative and neurodevelopmental diseases. Toxicol. Sci. 124, 225–250. doi:10.1093/toxsci/kfz039

Capra, J. C., Cunha, M. P., Machado, D. G., Zomkovickas, A. D., Mendes, B. G., Santos, A. R., et al. (2010). Antidepressant-like effect of scopolamine, a curarim isolated from Soligna salubris (polycyclaceae) in mice: Evidence for the involvement of monoaminergic systems. Eur. J. Pharmacol. 643, 232–238. doi:10.eurph.2010.06.043

Carlos fibio, F., Del Fabbro, L., DE Gomes, M. G., Goes, A. T., Souza, L. C., Boeira, S. P., et al. (2013). Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mice forced swimming test. Eur. J. Pharmacol. 698, 286–291. doi:10.eurph.2012.11.003

Chandler, D. J., Waterhouse, B. D., and Gao, W.-J. (2014). New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front. Neural Circuits 8, 53. doi:10.3389/fncir.2014.00053

Chen, H.-Q., Jin, Z.-Y., Wang, X.-J., Xu, X.-M., Deng, L., and Zhao, J.-W. (2008). Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci. Lett. 448, 175–179. doi:10.neurl.2008.09.046

Chen, K., Kakate, T. G., Donovan, S. D., Carroll, F. L. and Rogawski, M. A. (1996). Ibogaine block of the NMDA receptor: In vitro and in vivo studies. Neuropharmacology 24, 3, 433–431. doi:10.sph2:pho98061407-4

Chen, X. D., Tang, J. J., Feng, S., Huang, H., Lu, F. N., Lu, X. M., and Wang, Y. T. (2012). Chlorogenic acid improves PTZ-induced symptoms and associated mechanisms. Curr. Neuropharmacol. 19, (12), 2180–2187. doi:10.cnpa.13m08413

Chengappa, K. R., Bowie, C. R., Schlicht, P. J., Fleet, D., Brar, J. S., and Jindal, R. (2013). Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J. Clin. Psychiatry 74, 1076–1083. doi:10.ccpp.13m08413

Chiu, S., Gerice, N., Farina-Woodbury, M., Badaeva, V., Raheb, H., Terpstra, K. et al. (2014). Proof-of-concept randomized controlled study of cognition effects of withonis somnifera in healthy young adults. Int. J. Neuropsychopharmacol. 9. doi:10.1017/ijn.2013.020

Chung, J.-W., Moore, N. A., Oh, W.-K., O'Neill, M. F., Ahn, J.-S., Park, J.-B., et al. (2002). Behavioural pharmacology of polygalasaponins indicates potential antipsychotic efficacy. Pharmacol. Biochem. Behav. 71, 191–195. doi:10.sph2:9003-01046-8
hyperactivity disorder. J. Clin. Child Adolesc. Psychol. 47, 157–198. doi:10.1080/15374416.2017.1390757

Fang, K., Li, H. R., Chen, X. X., Gao, X. R., Huang, L. L., Du, A. Q., Jiang, C., Li, H., and Ge, J. F. (2020). Quercetin alleviates LPS-induced depression-like behavior in rats via regulating BDNF-related imbalance of Copine 6 and TREM1 in the hippocampus and PPC. Front. Pharmacol. 10, 1544. doi:10.3389/fphar.2019.01544

Fava, M., Alpert, J. E., Carmin, C. N., Wisniewski, S. R., Trivedi, M. H., Biggs, M. M., et al. (2004). Clinical correlates and symptom patterns of anxious depression among patients with major depressive disorder in STAR*D. Psychol. Med. 34, 1299–1308. doi:10.1017/S0033291704002612

Felipe, F. C. B., Sousa Filho, J. T., DE Oliveira Souza, L. E., Silveira, J. A., DE Andrade Uchoa, D. E., Silveira, E. R., et al. (2007). Pipilartine, an amid alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine. 14, 605–612. doi:10.1016/j.phymed.2006.12.015

Fernández, S. P., Wasowski, C., Paladini, A. C., and Marder, M. (2005). Synergistic interaction between hesperidin, a natural flavonoid, and diazepam. Eur. J. Pharmacol. 512, 189–198. doi:10.1016/j.ejphar.2005.02.039

Ferrari, A. J., Baxter, A. J., and Whiteford, H. A. (2011). A systematic review of the global distribution and availability of prevalence data for bipolar disorder. J. Affect. Disord. 134, 1–13. doi:10.1016/j.jad.2010.11.007

Fiest, K. M., Sauer, K. M., Wiebe, S., Patten, S. B., Kwon, C.-S., Dykeman, J., et al. (2017). Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88, 296–303. doi:10.1212/WNL.0000000000004359

Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598. doi:10.1038/pdr.2008.131

Fombonne, E. (2006). Past and future perspectives on autism epidemiology. Freedman, R. (2010). The American psychiatric publishing textbook of psychopharmacology. American Psychiatric Association Publishing.

Fu, M., Sun, Z.-H., and Zuo, H.-C. (2010). Neuroprotective effect of piperine on primarily cultured hippocampal neurons. Biol. Pharm. Bull. 33, 598–603. doi:10.1248/bpb.33.598

Fujimaki, K., Morinobu, S., and Duman, R. S. (2008). Administration of a AMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropharmacology 42, 24–51. doi:10.1016/S0028-3908(04)00890-4

Galeotti, N. (2017). Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 200, 136–146. doi:10.1016/j.jep.2017.02.016

Gawel, K., Kukula-Koch, W., Nicoczyn, D., Stepnick, K., Ent, V. W., Banono, N. S., et al. (2020). The influence of palmatine isolated from Berberisibirica Radix on pentylenetetrazole-induced seizures in rats. Cell 9 (3). 1233. doi:10.3390/ cells9031233

Gawel, K., Kukula-Koch, W., Banono, N. S., Nicoczyn, D., Targowska-Duda, K. M., Czernecka, L., Parada-Turska, J., and Esguerra, C. V. (2021). 6-Gingerol, a major constituent of Zingiber officinale rhizoma, exerts anticonvulsant activity in the pentylenetetrazol-induced seizure model in larval zebrafish. Int. J. Mol. Sci. 22 (4), 7745. doi:10.3390/ijms22147745

Gericke, N. P., and Van wyk, B.-E. (2001b). Pharmacological compositions containing memantine and related compounds. Google Patents.

Gericke, N., and Van wyk, B. (2004a). Afric Natural Health CC. Pharmacological compositions containing memantine and related compounds.

Gerish, C., Raj, V., Arya, J., and Balakrishnan, S. (2012). Evidence for the involvement of the monosynaptic system, but not the opioid system in the antidepressant-like activity of eflugic acid in mice. Eur. J. Pharmacol. 682, 118–125. doi:10.1016/j.ejphar.2012.02.034

Goldberg, D., Pilling, S., Kendall, T., Ferrier, N., Foster, T., Gates, J., et al. (2005). Management of depression in primary and secondary care. London, England, Gaskell.

Golechha, M., Chaudhry, U., Bhatia, J., Saluja, D., and Arya, D. S. (2011). Naringin protects against kainic acid-induced status epilepticus in rats: Evidence for an antioxidant, anti-inflammatory and neuroprotective intervention. Biol. Pharm. Bull. 34, 360–365. doi:10.1248/bpb.34.360

Golechha, M., Sarangal, V., Bhatia, J., Chaudhry, U., Saluja, D., and Arya, D. S. (2014). Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav. 41, 98–102. doi:10.1016/j.yebeh.2014.09.058

Gopi, S., Jacob, J., Varma, K., Jude, S., Amalraj, A., Arundhati, C., et al. (2017). Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Plos One. 31, 1883–1891. doi:10.22105/prf.3991
recommendations for revised definitions - a report from the IaP epidemiology commission. *Epilepsia* 65, 551–564. doi:10.1111/j.1365-2878.2012.02448.x
Kwon, S.-H., Lee, H.-K., Kim, J.-A., Hong, S.-I., Kim, H.-C., Jo, T.-H., et al. (2010). Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. *Eur. J. Pharmacol.* 649, 210–217. doi:10.1016/j.ejphar.2010.09.001
Lake, J. (2008). Natural product-derived treatments of neuropsychiatric disorders: Review of progress and recommendations. *Stud. Nat. Prod. Chem.* 24, 1093–1137.
Lam, T. K., Shao, S., Zhao, Y., Marincola, F., Pesatori, A., Bertazzi, P. A., et al. (2012). Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues. *Cancer Epidemiol.* Biomarkers Prev. 21, 2176–2184. doi:10.1158/1055-9965.EPI-12-0745
Landa, R. J. (2008). Diagnosis of autism spectrum disorders in the first 3 years of life. *Clin. Pract. Neurol.* 4, 138–147. doi:10.1038/ncneuro0731
Lane, R., and Baldwin, D. (1997). Selective serotonin reuptake inhibitor-induced serotonin syndrome: Review. *J. Clin. Psychopharmacol.* 17, 208–221. doi:10.1097/00004714-199706000-00012
Langguth, B., Bär, R., Wodarz, N., Wittmann, M., and Lauflötter, R. (2011). Correspondence (letter to the editor): Paradoxical reaction in ADHD. *Dtsch. Arzneimittelwirkungen verstehen-Medikamente gezielt einsetzen; ein Lehrbuch für Apotheker und Gesundheitspolitiker; 129 Tabellen. Georg Thieme Verlag.
Luszczki, J. J., Andres-Mach, M., Ciosowski, W., Mazol, I., Gliwinksi, N., and Czuczwar, S. J. (2009). Oxtolone suppresses seizures in the mouse maximal electroshock seizure model. *Eur. J. Pharmacol.* 607, 107–109. doi:10.1016/j.ejphar.2009.02.022
Luszczki, J. J., Andres-Mach, M., Gliwinski, M., and Skalicka-Woźniak, K. (2010). Anticonvulsivant effects of four linear furanocoumarins, bergapten, imperatorin, oxyresinol, and xanthotoxin, in the mouse maximal electroshock-seizure model: A comparative study. *Pharmacol. Rep.* 62, 1231–1236. doi:10.1016/j.pharep.2010.06.006
Lyons, M. R., Cline, J. C., DE Zepetnek, T. J., Shan, J., Pang, P., and Benishin, C. (2001). Effect of the herbal combination panax quinquefolium and Ginkgo biloba on attention-deficit hyperactivity disorder: A pilot study. *J Psychiatry Neurosci.* 26, 221–228.
Machado, D. G., Bertio, L. E., Canha, M. P., Santos, A. R., Pizzolatti, M. G., Brighenti, J. M., et al. (2008). Anticonvulsivant-like effect of rutin isolated from the ethanolic extract of *Schinus molle* L. In mice: Evidence for the involvement of the serotoninergic and noradrenergic systems. *Eur. J. Pharmacol.* 587, 163–168. doi:10.1016/j.ejphar.2008.03.021
Maiga, A., Diallo, D., Fane, S., Sanogo, R., Paulsen, B. S., and Case, B. (2005). A survey of toxic plants on the market in the district of bamako, Mali: Traditional knowledge compared with a literature search of modern pharmacology and toxicology. *J. Ethnopharmacol.* 96, 183–193. doi:10.1016/j.jep.2004.09.005
Mitra, S., Anjum, J., Muni, M., Das, R., Rafal, A., Islam, F., et al. (2022). Exploring the journey of emodin as a potential neuroprotective agent: Novel therapeutic insights with molecular mechanism of action. *Biomed. Pharmacother.* 149, 112877. doi:10.1016/j.biopha.2022.112877
Mali, G., Adams, D., Lampe, L., Paton, M., O’Connor, N., Newton, L., et al. (2009). Clinical practice recommendations for bipolar disorder. *Acta Psychiatr. Scand.* 119, 27–116. doi:10.1111/j.1600-0447.2009.01383.x
Mandah, S. N., and Osuagwu, C. E. (2020). Characteristics behaviours and factors responsible for attention deficit hyperactivity disorder (ADHD) among senior secondary school students in rivers state, Nigeria. *Eur. J. Special Educ. Res.* 6.
Manji, H. K., Drevets, W. C., and Charney, D. S. (2001). The cellular neurobiology of depression. *Nat. Med.* 7, 541–547. doi:10.1016/S1096-7712(01)00366-6
Manji, H. K., and Carver, D. (2006). Effects of genes and stress on the neurobiology of depression. *Int. Rev. Neurobiol.* 73, 153–189. doi:10.1016/S0074-7742(06)73005-7
Marder, S., and Meibach, R. C. (1994). Risperidone in the treatment of schizophrenia. *Am. J. Psychiatry* 151, 825–835. doi:10.1176/ajp.151.6.825
Martens, G., and Van loo, K. (2007). Genetic and environmental factors in complex neurodevelopmental disorders. *Curr. Genomics* 8, 429–444. doi:10.2174/138920207783591717
Martin, C. A., Nuzzo, P. A., Ransee, J. D., Kleven, M. S., Gaenther, G., Williams, Y., et al. (2018). Lobeline effects on cognitive performance in adult ADHD. *J. Atten. Disord.* 22, 1361–1366. doi:10.1177/108705471875139791
Martin-mcgill, K. J., Bresnahan, R., Levy, R. G., and Cooper, P. N. (2020). Ketogenic diets for drug-resistant epilepsy. *Cochrane Database Syst. Rev.* 1, CD014588. doi:10.1002/14651858.cd014588.pub5
McGuflin, P., Rajdijk, F., Andrew, M., Sham, P., Katz, R., and Cardno, A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. *Arch. Gen. Psychiatry* 60, 497–502. doi:10.1001/archpsyc.60.5.497
Medina, J. H., Paladini, A. C., Wolfman, C., DE Stein, M. L., Calvo, D., Diaz, L. E., et al. (1998). Chrysatin (5, 7-di-OH-flavone), a naturally-occurring ligand for benzoazepine receptors, with anticonvulsivant properties. *Biochem. Pharmacol.* 40, 2227–2231. doi:10.1016/0006-2952(90)90716-x
Kanazawa, L. K., S. Débora, D. V., Etelí, W. M., Hocayan, P. A., de Reis Livero, F. A., Stipp, M. C., et al. (2016). Quercetin reduces mania-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice. *Free Rad. Biol. Med.* 99, 79–86. doi:10.1016/j.freeradbiomed.2016.07.027
Kanazawa, L. K., Vecchi, D. D., Wendler, E. M., Hocayan, P. A., Beirão, P. S., de Melo, M. L., et al. (2017). Effects of acute and chronic quercetin administration on methylamphetamine-induced hyperlocomotion and oxidative stress. *Life Sci.* 171, 1–8. doi:10.1016/j.lfs.2017.03.007
Kean, J. D., Downing, L. A., Sarris, J., Kaufman, J., Zangara, A., and Stough, C. (2012). Effects of Bacopa monnieri (CDRI 08®) in a population of males exhibiting inattention and hyperactivity aged 6 to 14 years: A randomized, double-blind, placebo-controlled trial. *Phytother. Res.* 36 (2), 996–1012. doi:10.1002/ptr.7372
Lidström, H., and Mohr, K. (2006). Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen-Medikamente gezielt einsetzen; ein Lehrbuch für Studierende der Medizin, der Pharmazie und der Biowissenschaften, eine Informationsquelle für Ärzte, Apotheker und Gesundheitspolitiker; 129 Tabellen. Georg Thieme Verlag.
Ramos-Hryb, A. B., Cunha, M. P., Kaster, M. P., and Rodrigues, A. L. S. (2018). Natural polyphenols and terpenoids for depression treatment: Current status. *Stud. Nat. Prod. Chem.* **55**, 181–221. doi:10.1016/S0978-444-X(06)80006-1

Rapin, I., and Tuchman, R. F. (2008). *Autism: Definition, neurobiology, screening, diagnosis*. *Pediatr. Clin. North Am.* **55**, 1129–1146. doi:10.1016/j.pcl.2008.07.005

Ravindran, I. N., and Stein, M. B. (2010). The pharmacologic treatment of anxiety disorders: A review of progress. *J. Clin. Psychiatry* **71**, 839–854. doi:10.4088/jcp.10r06218lia

Rayngude, K. S., Kandhare, A. D., Ghosh, P., and Bodanker, S. L. (2012). Anticonvulsant effect of fisetin by modulation of endogenous biomarkers. *Biomed. Prev. Nutr.* **2**, 215–222. doi:10.1016/j.bionut.2012.04.005

Raza, S. S., Khan, M. M., Ahmad, A., Ashafaq, M., Khawaja, G., Tabassum, R., et al. (2011). Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. *Brain Res.** 1420, 93–105. doi:10.1016/j.brainres.2011.08.047

Reaven, J., Blakeley-Smith, A., Cullhane-Shelburne, K., and Hepburn, S. (2012). Group cognitive behavior therapy for children with high-functioning autism spectrum disorders and anxiety: A randomized trial. *J. Child Psychol. Psychiatry** 53, 410–419. doi:10.1111/j.1469-7610.2011.02486.x

Reddy, H. M., Poole, J. S., Maguire, G. A., and Stahl, S. M. (2020). New medications for neuropyschiatric disorders. *Psychiatr. Clin. North Am.* **43**, 399–413. doi:10.1016/j.psc.2020.02.008

Recart, V. M., Spelzer, L., Soares, M. S. P., Mattos, B. d. S., Bona, N. P., Pedra, N. S., et al. (2021). Gallic acid protects cerebral cortex, hippocampus, and striatum against oxidative damage and cholinergic dysfunction in an experimental model of manic-like behavior: Comparison with lithium effects. *Int. J. Dev. Neurosci.* **81**, 167–178. doi:10.1016/j.ijdevneuro.2021.06.028

Rossignol, D. A., and Faye, R. E. (2014). Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. *Front. Physiol.* **5**, 150. doi:10.3389/fphys.2014.00150

Rylvlin, P., Cross, J. H., and Rheims, S. (2014). Epilepsy surgery in children and adults. *Lancet. Neurol.* **13**, 1114–1126. doi:10.1016/S1474-4422(14)70156-5

Sakurada, T., Kuwahata, H., Katsuyama, S., Komatsu, T., Morrone, L. A., Salehi, B., Calina, D., Docea, A. O., Koirala, N., Aryal, S., Lombardo, D., et al. (2019). Intraplantar injection of bergamot essential oil induces anti-inflammatory properties. *J. Clin. Med.* **8**, 237. doi:10.3390/jcm80200430

Salehi, B., Jornet, P. L., Lopez, E. P. F., Calina, D., Shariati, B., et al. (2019). Phytochemical constituents, biological activities, and health-promoting effects of the melissa of *Mentha citrata*. *Phytother. Res.* **34**, 80. doi:10.1002/ptr.6584693

Shariati-rad, J., Quispe, C., Herrera-Brajo, J., Akram, M., Abbaas, W., Semwal, J., et al. (2021a). Antidepressant-like activity of *Cuminum cyminum* in mice: Possible involvement of the serotoninergic system. *Neuroscience** 46, 2205–2225. doi:10.1016/j.neuroscience.2021.08.040

Shariati-rad, J., Quispe, C., Herrera-Brajo, J., Martorell, M., Sharopov, F., Tumer, T. B., et al. (2021b). A pharmacological perspective on plant-derived bioactive molecules for epilepsy. *Neurochem. Res.* **46**, 2205–2225. doi:10.1007/s11064-021-03376-0

Shariati-rad, J., Quispe, C., Kumar, M., Akram, M., Amin, M., Iqbal, M., et al. (2022). Hyssopus essential oil: An update of its phytochemistry, biological activities, and safety profile. *Oxid. Med. Cell. Longev.* **2022**, 8442734. doi:10.1155/2022/8442734

Shariati-rad, J., Quispe, C., Patra, J. K., Singh, Y. D., Panda, M. K., Das, G., et al. (2022a). Paclitaxel Application in modern oncology: Plant-derived bioactive molecules for childhood cancer therapy. *Oxid. Med. Cell. Longev.* **2021**, 3687705. doi:10.1155/2021/3687705

Shyn, S. L., and Hamilton, S. P. (2010). The genetics of major depression: Moving beyond the monoamine hypothesis. *Psychiatr. Clin. North Am.* **33**, 125–140. doi:10.1016/j.psc.2009.10.004

Silva, M. I. G., Silva, M. A. G., DE Aquino Neto, M. R., Moura, B. A., DE Sousa, H. L., DE Lavoir, E. P., et al. (2009). Effects of isofagomol on pentetetralenol-induced convulsions in mice: Possible involvement of GABAergic system and antioxidant activity. *J. Ethnopharmacol.* **115**, 506–513. doi:10.1016/j.jep.2009.06.011

Sijler, J., Hales, R., and Yudovsky, S. (1990). Psychiatric consultation to neurology. *Rev. Psychiatry* **9**, 130–136. doi:10.1016/0378-8741(95)01342-3

Sijler, J., Mvd, S. C., and Hales, R. E. (1991). Depression in traumatic brain injury. *Neuropsychiatry, Neuropsychology, Behav. Neurology* **6**, 101–110. doi:10.1016/0939-8573(95)0342-3

Snyder, S. H., and Yamamura, H. I. (1977). Antidepressants and the muscarinic receptor. *Neuropsychopharmacol. Biol. Psychiatry* **3**, 107–117. doi:10.1016/0398-614X(77)90100-5

Spenlehauer, E., Yousof, S., and Voss, E. (2014). Adjunctive fluoroxetine in the treatment of negative symptoms in chronic schizophrenia patients. *Int. Clin. Psychopharmacol.* **9**(4), 281–286. doi:10.1097/00004850-19940900-00007
Spinella, M. (2001). The psychopharmacology of herbal medicine: Plant drugs that alter mind, brain, and behavior. MIT Press.

Stahl, S. M., Grady, M. M., Moret, C., and Birley, M. (2005). SNRI's: Their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 10, 732–747. doi:10.1016/S1092-9599(01)9726-4

Stahl, S. M., and Meyer, J. M. (2020). The clozapine handbook. Cambridge University Press.

Stansfield, R. L. (2019). When attention deficit meets the “Attention Economy”. Dissertation thesis. Available at: https://unscholar.lib.ubc.ca/record/11419820321

Steenkamp, P., Harding, N., VAN Heerden, F., and VAN Wyk, B.-E. (2004). Fatal Datura poisoning: Identification of atropine and scopolamine by high performance liquid chromatography/photodiode array/mass spectrometry. Forensic Sci. Int. 145, 31–39. doi: 10.1016/j.forsciint.2003.03.011

Stereo, O. J., Ramstad, E., Krogh, H. B., Nlausen, T. D., Scoog, M., Holmikov, M., et al. (2015). Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst. Rev. 2016. doi: 10.1002/14651858.cd009885.pub2

Sundberg, M., and Sahin, M. (2015). Cerebellar development and autism spectrum disorders in tuberous sclerosis complex. J. Child. Neurol. 30, 1954–1961. doi:10.1177/0883894215578443

Sundberg, M., and Sahin, M. (2015). Cerebellar development and autism spectrum disorder in tuberous sclerosis complex. Dissertation thesis. Available at: https://unbscholar.lib.unb.ca/islandora/object/unscholar:3198230

Tsoukalas, D., Buga, A. M., Docea, A. O., Sarandi, E., Mitrut, R., Renieri, E., et al. (2014). Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. Hum. Mol. Genet. 19, 3413–3429. doi:10.1093/hmg/ddt253

Urdaneta, K. E., Castillo, M. A., Montiel, N., Semprun-Hernández, N., Antonucci, N., and Siniscalco, D. (2018). Autism spectrum disorders: Potential neuro-psycho-pharmacotherapeutic plant-based drugs. Assay. Drug Dev. Technol. 16, 433–444. doi:10.1089/adt.2018.1448

Van os, J., and Kapur, S. (2009). Schizophrenia. LANCET 374, 635–645. doi: 10.1016/S0140-6736(09)61695-8

Verrotti, A., Tocco, A., Salladini, C., Latini, G., and Chiarelli, F. (2005). Human photosensitivity: From pathophysiology to treatment. Eur. J. Neuro. 12, 828–841. doi:10.1515/1468-1313.2005.01085.x

Vlad, R., Golu, F., Toma, A., Dragneuscu, D., Oprea, B., and Chipor, B. I. (2020). Depression and anxiety in Romanian medical students: Prevalence and associations with personality. Farmacia 68, 944–949. doi:10.31925/farmacologia.2020.5.24

Walsh, C. A., Morrow, E. M., and Rubenstein, J. L. (2008). Autism and brain development. Cell 135, 396–400. doi: 10.1016/j.cell.2008.10.015

Wang, J., Ferruzzi, M. G., Ho, L., Blount, J., Jalle, E. M., Gong, B., et al. (2012). Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J. Neurosci. 32, 5144–5150. doi:10.1523/JNEUROSCI.6437-11.2012

Wang, R., Li, Y.-B., Li, Y.-H., Xu, Yu, Yu, H.-L., Guo, H., et al. (2010). Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res. 1210, 84–91. doi:10.1016/j.brainres.2008.01.104

Wang, R., Li, Y.-H., Xu, Yu, Li, Y.-B., Wu, H.-L., Guo, H., et al. (2010). Curcumin promotes neuroprotective effects via activating brain-derived neurotrophic factor/ TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 147–153. doi:10.1016/j.pnpbp.2009.10.016

Wang, R., Yan, H., and Tang, X. C. (2006). Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin. 27, 1–26. doi:10.1111/j.1747-7254.2006.00255.x

Wasilewska, J., and Klukowski, M. (2013). Gastrointestinal symptoms and autism spectrum disorder: Links and risks–a possible new overlap syndrome. Pediatr. Health Med. Ther. 6, 153–166. doi:10.2147/PHMT.S58177

Wattanathorn, J., Chomphonphuikurut, P., Muchimapura, S., Prepim, A., and Tankamndhar, O. (2008). Piperine, the potential functional food for mood and cognitive disorders. Food Chem. Toxicol. 46, 3106–3110. doi:10.1016/j.fct.2008.06.014

Weissman, M. M., and Offson, M. (1995). Depression in women: Implications for health care research. Science 269, 799–801. doi:10.1126/science.7638596

Wèlens, T. E., and Spencer, T. J. (2010). Understanding attention-deficit/ hyperactivity disorder from childhood to adulthood. Postgrad. Med. 122, 97–109. doi:10.3810/pgm.2010.09.2206

Willcutt, E. G. (2012). The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 9, 490–499. doi:10.1007/s13311-012-0315-8

Willner, P., Schiel-Kruger, J., and Belzung, C. (2013). The neurobiology of depression and antidepressant action. Neurosci. Biobehav. Rev. 37, 2331–2371. doi:10.1016/j.neubiorev.2012.12.007

Woo, T. S., Yoon, S. Y., Chuong, I. H., Chai, J. Y., Lee, H. L., Choi, Y. J., et al. (2011). Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol. Ther. Seoul. 19, 342–347. doi:10.4266/biomolther.2011.19.3.342

Wood, J. J., Drahota, A., Set, K., Har, K., Chiu, A., and Langer, D. A. (2009). Cognitive behavioral therapy for anxiety in children with autism spectrum disorders: A randomized, controlled trial. J. Child. Psychol. Psychiatry 50, 224–234. doi:10.1111/j.1469-7610.2008.01498.x

Woodward, K. (2015). Psychosocial studies: An introduction. Routledge.

Wu, E. Q., Shi, L., Birnbaum, H., Hudson, T., and Kessler, R. (2006). Annual prevalence of diagnosed schizophrenia in the USA: A claims data analysis approach. Psychosocial studies: An introduction

Wu, J., Chen, H., Yang, Y., Tang, Y., Cao, S., et al. (2016). Antidepressant potential of chlorogenic acid-enthitched extract from Eucommia ulmoides Oliver bark with neuron protection and promotion of serotonin release through enhancing synapsin I expression. Molecules 21, 260. doi:10.3390/molecules21030260

Wulf, K., Donato, D., and Lurie, N. (2005). What is health resilience and how can we build it? Ann. Rev. Public Health 36, 361–374. doi:10.1146/annurev.publhealth.36.032004.101044

Wynn, J. K., Green, M. F., Hellemann, G., Karunaratne, K., Davis, M. C., and Marder, S. R. (2018). The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res. 195, 572–573. doi:10.1016/j.schres.2017.09.046

Xu, N., Li, X., and Zhong, Y. (2015). Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators Inflamm. 2015, 531518. doi:10.1155/2015/531518
Xu, Y., Ku, B.-S., Yao, H.-Y., Lin, Y.-H., Ma, X., Zhang, Y.-H., et al. (2005a). Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol. Biochem. Behav. 82, 200–206. doi:10.1016/j.physbeh.2005.08.009

Xu, Y., Ku, B.-S., Yao, H.-Y., Lin, Y.-H., Ma, X., Zhang, Y.-H., et al. (2003b). The effects of curcumin on depressive-like behaviors in mice. Eur. J. Pharmacol. 518, 40–46. doi:10.1016/j.ejphar.2005.06.002

Xu, Y., Ku, B., Cui, L., Li, X., Barish, P. A., Foster, T. C., et al. (2007). Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res. 1162, 9–18. doi:10.1016/j.brainres.2007.03.071

Xu, Y., Li, S., Chen, R., Li, G., Barish, P. A., You, W., et al. (2010a). Antidepressant-like effect of low molecular proanthocyanidin in mice: Involvement of monoaminergic system. Pharmacol. Biochem. Behav. 94, 447–453. doi:10.1016/j.pbb.2009.10.007

Xu, Y., Wang, Z., You, W., Zhang, X., Li, S., Barish, P. A., et al. (2010b). Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 20, 405–413. doi:10.1016/j.euroneuro.2010.02.013

Yáñez, M., Fraiz, N., Cano, E., and Oraño, F. (2006). Inhibitory effects of cis- and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity. Biochem. Biophys. Res. Commun. 344, 688–695. doi:10.1016/j.bbrc.2006.03.190

Yao, X., Li, L., Kandhare, A. D., Mukherjee-Kandhare, A. A., and Bodhankar, S. L. (2020). Attenuation of reserpine-induced fibromyalgia via ROS and serotoninergic pathways modulation by fisetin, a plant flavonoid polyphenol. Exp. Ther. Med. 19, 1345–1355. doi:10.3892/etm.2019.8328

Yeni, Y., Cakir, Z., Hacimuftuoglu, A., Taghizadehghalejoughi, A., Okkay, U., Genc, S., et al. (2022). A selective histamine H4 receptor antagonist, [N777120, role on glutamate transporter activity in chronic depression. J. Pers. Med. 12, 246. doi:10.3390/jpm12020246

Yi, L.-T., Xu, H.-L., Feng, J., Zhan, X., Zhou, L.-P., and Cui, C.-C. (2011). Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin. Physiol. Behav. 102, 1–6. doi:10.1016/j.physbeh.2010.10.008

Yoon, S. Y., DELA Peña, I. C., Shin, C. Y., Son, K. H., Lee, Y. S., Ryu, J. H., et al. (2011). Convulsion-related activities of Scutellaria flavones are related to the 5,7-dihydroxy structures. Eur. J. Pharmacol. 659, 155–160. doi:10.1016/j.ejphar.2011.03.012

Yoshino, S., Hara, A., Sakakibara, H., Kawabata, K., Tokumura, A., Ishisaka, A., et al. (2011). Effect of quercetin and glucuronic metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27, 847–852. doi:10.1016/j.nut.2010.08.002

Yu, Y.-H., Xie, W., Bao, Y., Li, H.-M., Hu, S.-J., and Xing, J.-L. (2012). Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS One 7, e56094. doi:10.1371/journal.pone.0056094

Yudofsky, S. C., and Hales, R. E. (2002). Neuropsychiatry and the future of psychiatry and neurology. Am. J. Psychiatry 159, 1261–1264. doi:10.1176/appi.ajp.159.8.1261

Yusa`u, Y., Muhammad, U. A., Nze, M., Egwuma, J. M., Igoumu, O. J., and Abdullakadir, M. (2017). Modulatory Role of Rutin Supplement on Open Space Forced Swim Test Murine Model of Depression. Niger. J. Physiol. Sci. 32 (2), 201–205.

Zangara, A. (2003). The psychopharmacology of hyperzine A: An alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol. Biochem. Behav. 75, 675–686. doi:10.1016/s0091-3057(03)00111-4

Zeni, A. L. B., Zomkowski, A. D. E., Maraschin, M., Rodrigues, A. L. S., and Tasca, C. I. (2012). Fucoid acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotoninergic system. Eur. J. Pharmacol. 679, 68–74. doi:10.1016/j.ejphar.2011.12.041

Zhang, F., Lu, Y.-F., Wu, Q., Liu, J., and Shi, J.-S. (2012). Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. 237, 943–948. doi:10.1258/ebm.2012.012044

Zhang, L., Xu, T., Wang, S., Yu, L., Liu, D., Zhan, R., et al. (2013). NMDA GluN2B receptors involved in the antidepressant effects of curcumin in the forced swim test. Prog Neuropsychopharmacol. Biol. Psychiatry 40, 12–17. doi:10.1016/j.pnpbp.2012.08.017

Zhang, Z.-J. (2004). Therapeutic effects of herbal extracts and constituents in animal models of psychiatric disorders. Life Sci. 75, 1659–1699. doi:10.1016/j.lfs.2004.04.014

Zhen, L., Zhu, J., Zhao, X., Huang, W., An, Y., Li, S., et al. (2012). The antidepressant-like effect of fisetin involves the serotoninergic and noradrenergic system. Behav. Brain Res. 228, 359–366. doi:10.1016/j.bbr.2011.12.017

Zheng, L. T., Ock, J., Kwon, B.-M., and Suk, K. (2008). Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol. 8, 484–489. doi:10.1016/j.intimp.2007.12.012

Zhu, H. L., Wan, J. B., Wang, Y. T., Li, B. C., Xiang, C., He, J., et al. (2014). Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 55, 3–16. doi:10.1111/epi.12463

Zukoski, M., Chiyonobu, T., Yoshida, M., Maeda, H., Yamashita, S., Kadowaki, S., et al. (2017). Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci. Lett. 653, 296–301. doi:10.1016/j.neulet.2017.06.004