Materials Research Express

PAPER

One-step chemical synthesis of MgCNi3 nanoparticles embedded in carbon nanosheets utilizing waste polyethylene as carbon source

Liangbiao Wang1, Weicheng Dai1, Tinghai Yang1, Kailong Zhang1,2, Wanyu He1, Qianyu Kong1, Junhao Zhang1, Xian Wang1, Tao Mei1, Yuhua Hu1, Hanqi Shen1 and Yitai Qian1

1 School of Chemistry and Environment Engineering, Jiangsu University of Technology, Changzhou 213001, People’s Republic of China
2 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China

Abstract

MgCNi3 nanoparticles embedded in carbon nanosheets have been successfully synthesized from waste polyethylene (PE) by one-step chemical reaction at a relatively low temperature of 800 °C. X-ray diffraction pattern indicates that the obtained sample is anti-perovskite structured MgCNi3. Transmission electron microscopy image shows that MgCNi3 nanoparticles are embedded in the carbon nanosheets. Magnetization measurement shows that the obtained sample has a superconducting transition at 6.8 K. This method is not only to develop an effective method to synthesize MgCNi3 superconductor under mild conditions but also to provide a novel technique to convert waste polyethylene to valuable carbide materials.

1. Introduction

The anti-perovskite structured compounds have attracted attention since the remarkable discovery of superconductivity at about 8 K in MgCNi3 [1]. In the past years, ternary carbides and nitrides with the anti-perovskite structure have been extensively investigated for their excellent properties, such as giant magnetoresistance effect [2, 3], nearly zero temperature resistivity coefficient [4–6], giant barocaloric effect [7], magnetostriiction [8], negative thermal expansion [9], phase separation [10], magnetocaloric effect [11], and spin-glass behavior [12–15].

Since He and co-workers first prepared the superconductor MgCNi3 from the mixture of bright Mg flakes, nickel powder and glassy carbon spherical powder through repeated sintering [1], several synthetic methods for producing MgCNi3 have been reported. MgCNi3 has been synthesized by self-propagating high-temperature synthesis (SHS) technique followed by an isothermal treatment at 1123 K under an inert Ar atmosphere [16]. MgCNi3 can also be obtained from Mg (or Mg2Ni), metallic nickel and graphite powders by mechanical alloying (MA) method [17]. MgCNi3 superconductor bulk materials have been synthesized by using carbon nanotubes as carbon source via the conventional powder metallurgy [18]. Xia and co-workers have synthesized MgCNi3 bulk materials using a hybrid microwave heating method at 850 °C for several tens of minutes [19]. The single crystalline MgCNi3 of several hundred micrometers in size can also been successfully synthesized by heat treatment of the mixture of Mg, C, and Ni powders under high-pressure (4.25 GPa) conditions at 1200 °C for 1 h [20]. MgCNi3 particles encapsulated in carbon nanolaks have been synthesized by using metallic Mg-EtOH powder and Ni(CO)3 as starting materials at 1000 °C for 3 h [21]. However, many of the above synthesis methods require multi-step process and high reaction temperature. Therefore, to explore a one-step method to synthesize MgCNi3 is still a challenging subject.
Plastics has become an indispensable part of everyday life for their excellent properties such as durability, light, low toxicity, low cost, and resistance to corrosions. However, waste plastic has become solid pollutants in environment for its poor degradability. Thus, to develop an effective technology for the recycling of waste plastic is highly necessary. Recently, many studies have been reported to convert waste plastics to valuable carbon with varied morphologies such as nanoparticles, onion-like carbon microspheres, nanotubes, and metal-carbon composites [22–30]. Our group recently has developed an effective method to convert waste plastic (PE, PVC, and PTFE) to carbides under mild conditions [31–37]. Efficient HER electroncatalysts based on metal-carbon composites have been synthesized from electronic waste or resin [38–42]. In this study, MgCNi3 nanoparticles embedded in carbon nanosheets have been synthesized by using waste PE, metallic Na, magnesium chloride and metallic nickel as starting materials at 800 °C. The purpose of this work is not only to develop one-step chemical reaction method to synthesize MgCNi3 superconductor, but also to provide a novel technique to convert waste PE to valuable materials.

2. Experimental

Magnesium chloride (chemically pure, 99%) used in our experiments was purchased from Shanghai Macklin Biochemical Co., Ltd. All of the other raw materials (such as metallic Na, metallic nickel, and absolute ethyl alcohol) were purchased from Sinopharm Chemical Reagent Co., Ltd. Waste PE was obtained from waste plastic bags. First, waste plastic bags (waste PE) were washed with water, and were cut into small pieces to facilitate loading. Subsequently, metallic nickel (1.80 g), magnesium chloride (1.60 g), waste PE (1.00 g), and excess metallic sodium (2.00 g) were put into a stainless steel autoclave (the volume of the autoclave is about 20 ml). After closing tightly, the autoclave was heated in an electronic furnace. Then, the temperature of the electronic furnace was increased from room temperature to 800 °C at a rate of 10 °C/min and kept at 800 °C for 10 h. After the autoclave was allowed to cool down to room temperature naturally, the black product was collected from the autoclave. The obtained raw product was washed with alcohol, distilled water, and dilute HCl for several times, respectively, to remove the by-product and unreacted raw materials. After drying under vacuum 60 °C for several hours, the final black powder was collected for further characterization. XRD measurement was carried out with a Philips X-pert x-ray diffractometer (CuKα = 1.54178 Å). The morphology of the obtained samples was studied by scanning electron microscopy (SEM, JEOL-JSM-6700F) and transmission electron microscopy (TEM, H7650). High-resolution transmission electron microscopy (HRTEM) image was obtained on transmission electron microscope (a JEOL-2010) with selected-area electron diffraction (SAED) pattern attached. The magnetization measurements were carried out at 2–20 K and at 10 Oe using a SQUID magnetometer (MPMS, Quantum Design).

3. Results and discussion

The structure of the obtained sample is investigated by powder x-ray diffraction. A typical powder XRD pattern of the obtained sample is shown in figure 1. The six diffraction peaks located at 2θ = 23.30°, 33.21°, 41.08°, 47.67°, 53.74°, and 69.74° in figure 1 could be indexed as the (100), (110), (111), (200), (210), and (220) diffraction planes of the anti-perovskite structured MgCNi3, with lattice constant of a = 3.813 Å, which is in agreement with the reported value (JCPDS cards No. 41-0903, a = 3.816 Å). The peak located at 2θ = 26.50° can be indexed as the (002) diffraction plane of hexagonal graphite. All the above results prove that the obtained sample is composed of carbon and MgCNi3.

The morphology and microstructure of the obtained sample are further investigated by SEM, TEM, and HRTEM. SEM image of the obtained sample is shown in figure 2(a), which reveals that the sample is composed of carbon nanosheets. A typical TEM image (figure 2(b)) shows that MgCNi3 nanoparticles with a size of 20–100 nm are embedded in the carbon nanosheets. The HRTEM image (shown in figure 2(c)) shows that the crystal lattice spacings are about 0.38 nm, corresponding to the interplanar (010) and (100) distances of MgCNi3, respectively. A typical SAED pattern is shown in figure 2(d), which records along the <001> zone axis. The diffraction spots could be indexed to the diffractions of anti-perovskite structured MgCNi3, which is consistent with the XRD pattern. It confirms that the obtained MgCNi3 nanoparticles are well crystalline.

Magnetization measurements on MgCNi3 nanoparticles embedded in carbon nanosheets are measured at 2–20 K and at 10 Oe with SQUID. Magnetization as a function of temperature (M–T curve) is shown in figure 3. The superconducting transition temperature (Tc) of the obtained sample is determined by magnetization measurement under conditions of zero field cooling (ZFC) and field cooling (FC) at 10 Oe. The clear onset of a strong Meissner effect can be observed, which indicates that the Tc for the obtained sample is 6.8 K. The diamagnetism signal observed in the FC measurement is obviously weaker than that in the ZFC measurement.
This T_c of 6.8 K is a little lower than the highest of 7.4 K for polycrystalline MgC$_x$Ni$_3$ ($x = 1.5$) [1], which may originate from the lower carbon stoichiometry in the obtained sample.

In our experiments, waste plastic bags decompose generating carbon and H$_2$ with the temperature increasing (equation (1)). The molten MgCl$_2$ (melting point, 714 °C) is then reduced by metallic sodium to Mg (equation (2)) at the reaction temperature of 800 °C. The newly formed Mg and C atoms have reacted with metallic nickel to produce MgCNi$_3$ at a low temperature of 800 °C (equation (3)). When metallic Mg is used to replace metallic Na and MgCl$_2$ as raw materials, MgCNi$_3$ cannot be produced from the reaction of waste plastic bags, metallic Ni and Mg at 800 °C through similar process. This may be because the newly formed Mg atoms have highly reactive. In addition, the reaction (equation (2)) is thermodynamically spontaneous (-164.80 kJ mol$^{-1}$) and exothermic (-180.83 kJ mol$^{-1}$) according on the calculations of free energy. A large amount of heat generated from the reaction (equation (2)) is benefit to the formation of MgCNi$_3$ at reaction temperature. Therefore, the possible formation process of MgCNi$_3$ has been described as follows:

$$\frac{1}{n}[\text{CH}_2]_n = \text{C} + \text{H}_2 \quad \text{(1)}$$
$$2\text{Na} + \text{MgCl}_2 = \text{Mg} + 2\text{NaCl} \quad \text{(2)}$$
$$\text{C} + 3\text{Ni} + \text{Mg} = \text{MgCNi}_3 \quad \text{(3)}$$

Figure 1. A typical XRD pattern of the obtained sample.

Figure 2. (a) SEM image of the obtained sample; (b) A typical TEM image of the obtained sample; (c) HRTEM image of the obtained sample; (d) SAED pattern along the (001) zone axis.
All the total reaction process can be represented as follows:

$$2\text{Na} + \frac{1}{n}\text{CH}_2\text{I}_n + 3\text{Ni} + \text{MgCl}_2 = \text{MgCNi}_3 + 2\text{NaCl} + \text{H}_2$$

4. Conclusion

In conclusion, MgCNi$_3$ nanoparticles embedded in carbon nanosheets have been successfully and directly synthesized from waste PE by a facile one-step chemical reaction. The obtained MgCNi$_3$ particles are well protected by the carbon nanosheets that have not affect the superconducting properties of the MgCNi$_3$ nanoparticles. This simple approach takes advantage of using waste PE as carbon source, simple apparatus, and low reaction temperature. Furthermore, it could provide a new method to deal with waste plastics.

Acknowledgments

This work was supported by Natural Science Foundation of Jiangsu Province (grants No. BK20160292), the National Natural Science Foundation of China (No. 21701061 and 21831006) and the Changzhou Sci&Tech Program (Grant No. CJ20179015).

ORCID iDs

Liangbiao Wang https://orcid.org/0000-0002-7950-5604

References

[1] He T et al 2001 Superconductivity in phenon-oxide perovskite MgCNi$_3$, Nature 411 54–6
[2] Wang B S, Tong P, Sun Y P, Li L J, Tang X B, Yang Z R and Song W H 2009 Enhanced giant magnetoresistance in Ni-doped antiperovskite compounds GaCMn$_{1-x}$Ni$_x$ (x = 0.05, 0.10) Appl. Phys. Lett. 95 222509
[3] Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M, Mori N, Sasaki T and Kanomata T 2000 Giant magnetoresistance in the intermetallic compound Mn$_4$GaC Phys. Rev. B 63 024426
[4] Lin S, Wang B S, Lin J C, Huang Y N, Lu W J, Zhao B C, Tong P, Song W H and Sun Y P 2012 Tunable room-temperature zero temperature coefficient of resistivity in antiperovskite compounds Ga$_{1-x}$CFe$_3$ and Ga$_{1-y}$Al$_y$CFe$_3$ Appl. Phys. Lett. 101 011908
[5] Ding L, Wang C, Chu L H, Yan J, Na Y Y and Huang Q Z 2011 Near zero temperature coefficient of resistivity in antiperovskite Mn$_4$Ni$_{1-x}$Cu$_x$N Appl. Phys. Lett. 99 251905
[6] Chi E O, Kim W S and Hur N H 2001 Nearly zero temperature coefficient of resistivity in antiperovskite compound Cu$_x$Mn$_4$ Solid State Commun. 120 307–10
[7] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn$_4$GaN Nat. Mater. 14 73–8
[8] Asano K, Koyama K and Takenaka K 2008 Magnetostriiction in Mn$_4$GaN Appl. Phys. Lett. 92 161909
[9] Takenaka K and Takagi H 2005 Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides Appl. Phys. Lett. 87 261902

Figure 3. Temperature dependence of magnetization for the obtained sample.
[10] Sun Y, Wang C, Huang Q Z, Guo Y F, Chu L H, Arai M and Yamaura K 2012 Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn$_3$Zn$_N$ Inorg. Chem. 51 7232–6
[11] Yan J, Sun Y, Wu H, Huang Q Z, Wang C, Shi Z X, Lu H Q and Chu L H 2014 Phase transitions and magnetocaloric effect in Mn$_{Cux,0.5}$Ni$_{0.5}$ Acta Mater. 74 58–65
[12] Wang B S, Tong P, Sun Y P, Zhu X B, Yang Z R, Song W H and Dai J M 2010 Observation of spin-glass behavior in antiperovskite compound Sn$_{Fe2}$ Appl. Phys. Lett. 97 042508
[13] Zhang X H, Yuan Q, Han J C, Zhao J G, Jian K, Zhang Z H and Song B 2013 Observation of spin-glass behavior in antiperovskite compound Mn$_{Cu1.89}$Ga$_{0.11}$ N Appl. Phys. Lett. 103 022405
[14] Dhar S, Brandt O, Trampert A, Friedland K J, Sun Y and Ploog K H 2003 Observation of spin-glass behavior in homogeneous (Ga, Mn)$_3$N layers grown by reactive molecular-beam epitaxy Phys. Rev. B 67 165205
[15] Song B, Jian J K, Bao H Q, Lei M, Li H, Wang G, Xu Y P and Chen X L 2008 Observation of spin-glass behavior in antiperovskite Mn$_3$GaN Appl. Phys. Lett. 92 192511
[16] Ferretti M, Ciccarelli C, Magnone E, Rubino S, Parodi N and Martinelli A 2004 Application of the SHS technique in the synthesis of the perovskite-type Mg$_3$Co$_2$Ni$_3$ compound Mater. Res. Bull. 39 647–54
[17] Wang H, Ouyang L Z, Zeng M Q and Zhu M 2004 Direct synthesis of MgCNi$_3$ by mechanical alloying Scripta Mater. 50 1471–4
[18] Xiao Q L, Yi J H, Peng Y D, Luo S D, Wang H Z and Li L Y 2008 Synthesis of superconductor Mg$_2$Ni$_3$ with carbon nanotubes Chin. Phys. B 17 1421
[19] Xia Q L, Yi J H, Ye T M, Peng Y D and Li L Y 2006 Hybrid microwave synthesis of Mg$_2$Ni$_3$ superconductor Supercond. Sci. Technol. 19 1282
[20] Lee H S, Jang D J, Lee H G, Lee S I, Choi S M and Kim C J 2007 Growth of Single Crystals of Mg$_2$Ni$_3$, Adv. Mater. 19 1807–9
[21] Rana R K, Pol V G, Felner I, Meridor E, Frydman A and Gedanken A 2004 Encapsulating a superconducting material, Mg$_2$Ni$_3$, in a carbon nanoflask Adv. Mater. 16 972–5
[22] Zhang J, Zhang L, Yang H, Kong W, Liu Y and Yuan A 2014 Sustainable processing of waste polypropylene to produce high yield valuable Fe-carbon nanotube composites CrystEngComm 16 8033–43
[23] Wei L Z, Yan N and Chen Q W 2011 Converting Poly(ethylene terephthalate) into carbon microspheres in a supercritical CO$_2$ system Environ. Sci. Technol. 45 534–9
[24] Zhang H J, Kong Q, Yang L and Wang D Y 2016 Few layered Co(OH)$_2$ ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardant to sustainable recycling Green Chem. 18 3066–74
[25] Hu H B, Gao L, Chen C L and Chen Q W 2014 Low-cost, acid-alkaline-resistant, and fluorine-free superhydrophobic fabric coating from onionlike carbon microspheres converted from waste polyethylene terephthalate Environ. Sci. Technol. 48 2928–33
[26] Zhang J H, Yan B, Wan S and Kong Q H 2013 Converting polyethylene waste into large scale one-dimensional Fe$_2$O$_3$C@C composites by a facile one-pot process Ind. Eng. Chem. Res. 52 5708–12
[27] Bajaj G S, Vijayakumar R P, Gupta A G, Jagtap V and Singh Y 2017 Production of liquid hydrocarbons, carbon nanotubes and hydrogen rich gases from waste plastic in a multi-core reactor J. Anal. Appl. Pyrol. 125 83–90
[28] Kong Q, Wu T, Zhang J and Wang D Y 2018 Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate Compus. Sci. Technol. 154 136–44
[29] Wang Q, Cao F Y and Chen Q W 2005 Formation of carbon micro–sphere chains by defluorination of PTFE in a magnesia and supercritical carbon dioxide system Green Chem. 7 735–5
[30] Yang X G, Li C, Wang W, Yang B J, Zhang S Y and Qian Y T 2004 A chemical route from PTFE to amorphous carbon nanoparticles in supercritical water Chem. Comm. 3 342–3
[31] Wang L B, Cheng Q L, Qin H F, Li C Z, Lou Z S, Lou J J, Zhang J H and Zhou Q F 2017 Synthesis of silicon carbide nanocrystals from waste polytetrafluoroethylene Trans. 46 2756–9
[32] Wang L B, Dai W C, Zhang K L, Mei T, Zhuang H Y, Song S S, Yang S and Zhou Q F 2018 One step conversion of waste polyethylene to Cr$_3$C$_2$ nanorods and Cr$_6$AlC$_2$ particles under mild conditions Inorg. Chem. Front. 5 2893–7
[33] Dai W C, Lou J J, Han Y X, Wang L B, Wang W J, Hu J M, Ma C C, Zhang K L and Mei T 2019 Facile synthesis of MoO$_3$ nanoparticles from waste polyvinyl chloride ACS Omega 4 4896–900
[34] Wang L B, Li Q W, Mei T, Shi L, Zhu Y C and Qian Y T 2012 A thermal reduction route to nanocrystalline transition metal carbides from waste polytetrafluoroethylene and metal oxides Mater. Chem. Phys. 137 1–4
[35] Wang L B, Dai W C, Zhao D J, Zhang F, Zhang K L, Cheng Q L, Luo Z S, He X H and Qian Y T 2019 A simple route for the direct conversion of waste plastic to hafnium carbide nanoparticles at low Temperature Nanos. Nanotech. Lett. 11 1027–31
[36] Wang L B, Zhang F, Dai D C, Cheng Q L, Lu J J, Zhang K L, Lin M Y, Shen M W and Wang D 2019 One step transformation of waste polyvinyl chloride to tantalum carbide@carbon nanocomposite at low temperature J. Am. Ceram. Soc. 102 6455–62
[37] Wang L B, Dai W C, Cheng Q L, Zhang K L, Yang T H, Mei T, Xu Z W, Chen F Y, Zhu L W and Qian Y T 2019 Converting waste polyethylene into ZnCo$_2$O$_4$ and Zn$_3$N$_2$, by a one-step thermal reduction process ACS Omega 4 15729–33
[38] Zhou W J, Xiao Q L, Shi H J, Zhou K, Zhu N W, Li L G, Tang Z H and Chen S W 2016 Bioreduction of precious metals by microorganism: efficient gold/N-doped carbon electrocatalysts for the hydrogen evolution reaction Angew. Chem. Int. Ed. 128 8536–60
[39] Yu Y, Li G X, Liu H, Zhao L L, Wang A Z, Liu Z L, Li H D, Liu H, Hu Y Y and Zhou W J 2019 Ru–P, Pd, Ni and NC@RuO$_2$, synthesized via environment-friendly and solid-phase phoshating process by saccharomyces as N/P sources and carbon template for overall water splitting in acid electrolyte Adv. Funct. Mater. 29 1901154
[40] Zhou Y C, Zhou W J, Hou D M, Li G Q, Wan J Q, Feng C H, Tang Z H and Chen S W 2016 Metal–carbon hybrid electrocatalysts derived from iron-exchange resin containing heavy metals for efficient hydrogen evolution reaction Small 12 2768–74
[41] Li G X, Yu Y, Jia J, Yang L J, Zhao L L, Zhou W J and Liu H 2018 Cobalt-cobalt phosphide nanoparticles@nitrogen–phosphorus doped carbon/graphene derived from cobalt ions adsorbed saccharomyces yeasts as an efficient, stable, and large-current-density electrode for hydrogen evolution reactions Adv. Funct. Mater. 28 1801332
[42] Yu Y, Li G X, Liu H, Zeng L J, Zhao L L, Jia J, Zhang M Y, Zhou W J, Liu H and Hu Y Y 2019 Electrochemical flocculation integrated hydrogen evolution reaction of Fe/N-doped carbon nanotubes on iron foam for ultralow voltage electrolysis in neutral media Adv. Sci. 6 1901458