Supplementary materials

Manuscript Title: “Hydrogel films based on chitosan and oxidized carboxymethylcellulose optimized for the controlled release of curcumin with applications in treating dermatological conditions”

Authors: Mohammed DELLALI, Camelia Elena IURCIUC (TINCU), Corina Lenuța SAVIN, Nawel SPAHIS, M’hamed DJENNAD, Marcel POPA

Figure S1:

Figure S1: Schematic representation of CMC’s oxidation reaction under the sodium periodate action.

Figure S2:

Figure S2. The structure of the hydrogel films based on chitosan and oxidized carboxymethyl cellulose - schematic presentation
Figure S3. Antioxidant activity determination expressed by IC50 values for the analyzed samples using the DPPH assay.

Figure S4:

![Graph showing absorbance vs. moles of chitosan amino groups/ml](image)

\[y = 0.056x \]
\[R^2 = 0.9992 \]

Figure S4: The CS calibration curve determined with ninhydrine test

Figure S5

![Graphs showing absorbance vs. curcumin concentration](image)

\[y = 0.0167x \]
\[R^2 = 0.999 \]

\[y = 0.0079x \]
\[R^2 = 0.9983 \]
Figure S5. Calibration curves of curcumin in ethanol (a), phosphate buffer at pH=7.4 (b), and acetate buffer at pH=5.5 (c)

Table S1. The CI values (%) for samples obtained by chemical cross-linking and physical interaction between CS and CMCOx, respectively, by the CS amino groups’ interaction with CMC’s carboxylic groups.

Samples	Molar ratios	CI chemical cross-linking and physical interactions (%)	CI physical interactions (%)	CI chemical cross-linking and physical interactions - CI physical interactions = CI chemical cross-linking (Shiff base) (%)
P1	0.25:1	42.27±0.1	16.47±2.5	25.8
P2	0.375:1	49.05±9.3	17.97±2.3	31.08
P3	0.5:1	61.83±7.3	23.89±3.7	37.94