Families of algebraic structures
Joint works with Loïc Foissy, Xing Gao and Yuanyuan Zhang

Dominique Manchon
CNRS-Université Clermont Auvergne

Higher structures emerging from renormalization,
Erwin Schrödinger Institut, October 12th 2020
1. Introduction: family Rota-Baxter algebras

2. Family dendriform algebras

3. Family pre-Lie algebras

4. Marcelo Aguiar’s results (2020)

5. Main results
Family Rota-Baxter algebras
Ebrahimi-Fard–Gracia-Bondía–Patras/Li Guo, 2007

- Rota-Baxter algebra : \((A, R)\) with

\[
R(a)R(b) = R(R(a)b + aR(b) + \lambda ab).
\]
Family Rota-Baxter algebras
Ebrahimi-Fard–Gracia-Bondía–Patras/Li Guo, 2007

- Rota-Baxter algebra : \((A, R)\) with
 \[R(a)R(b) = R(R(a)b + aR(b) + \lambda ab). \]

- **Family** Rota-Baxter algebra : \(\big(A, (R_\omega)_{\omega \in \Omega} \big)\) with \(\Omega\) semigroup and
 \[R_\alpha(a)R_\beta(b) = R_{\alpha\beta}(R_\alpha(a)b + aR_\beta(b) + \lambda ab). \]
First instance (EGP), coming from the momentum scheme in renormalization (with $\Omega = \mathbb{N}$).
• **First instance** (EGP), coming from the momentum scheme in renormalization (with $\Omega = \mathbb{N}$).

• **Simplest example**, coming from minimal subtraction scheme (with $\Omega = \mathbb{Z}$) : Algebra of Laurent series $A = k[z^{-1}, z]]$. Rota-Baxter family algebra of weight -1, with $\Omega = (\mathbb{Z}, +)$. Here R_ω = projection onto the subspace $A_{<\omega}$ generated by $\{z^k, k < \omega\}$ parallel to the supplementary subspace $A_{\geq \omega}$ generated by $\{z^k, k \geq \omega\}$.
Another interesting example in weight zero: \(\Omega = (\mathbb{R}, +) \), and let \(A \) be the \(\mathbb{R} \)-algebra of continuous functions from \(\mathbb{R} \) to \(\mathbb{R} \). For any \(\alpha \in \mathbb{R} \), define \(R_\alpha : A \rightarrow A \) by

\[
R_\alpha(f)(x) = e^{-\alpha a(x)} \int_0^x e^{\alpha a(t)} f(t) \, dt,
\]

where \(a \) is a fixed nonzero element of \(A \). Then \((R_\alpha)_{\alpha \in \Omega} \) is a Rota-Baxter family of weight zero.
Family dendriform algebras
X. Gao - Y. Y. Zhang

- Ω semigroup,
- $(D, <_\omega, >_\omega)_{\omega \in \Omega}$ such that for $x, y, z \in D$ and $\alpha, \beta \in \Omega$,

\[
\begin{align*}
(x <_\alpha y) <_\beta z &= x <_{\alpha\beta} (y <_\beta z + y >_\alpha z), \\
(x >_\alpha y) <_\beta z &= x >_\alpha (y <_\beta z), \\
(x <_\beta y + x >_\alpha y) >_{\alpha\beta} z &= x >_\alpha (y >_\beta z).
\end{align*}
\]
The free Ω-family dendriform algebra generated by a set X can be described in terms of planar binary trees with internal nodes decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).
The free Ω-family dendriform (resp. tridendriform) algebra generated by a set X can be described in terms of planar binary (resp. Schröder) trees with internal nodes (resp. internal node angles) decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).
- The free Ω-family dendriform (resp. tridendriform) algebra generated by a set X can be described in terms of planar binary (resp. Schröder) trees with internal nodes (resp. internal node angles) decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).

- The free Ω-family Rota-Baxter algebra of weight λ generated by a set X can be described in terms of planar rooted trees with internal node angles decorated by X and edges typed by Ω (X. Gao - DM - Y. Y. Zhang).
An X-decorated Ω-typed PBT
Outline

Introduction: family Rota-Baxter algebras
Family dendriform algebras
Family pre-Lie algebras
Marcelo Aguiar’s results (2020)
Main results

\[
\begin{align*}
\alpha & \quad \beta \\
\quad \delta & \quad \gamma \\
\alpha & \quad \beta
\end{align*}
\]

An X-decorated Ω-typed PBT

\[
\begin{align*}
\alpha & \quad \beta \\
\quad \delta & \quad \gamma \\
\alpha & \quad \beta
\end{align*}
\]

An angularly X-decorated Ω-typed Schröder tree
Outline
Introduction: family Rota-Baxter algebras
Family dendriform algebras
Family pre-Lie algebras
Marcelo Aguiar’s results (2020)
Main results

An X-decorated Ω-typed PBT

An angularly X-decorated Ω-typed Schröder tree

An angularly X-decorated Ω-typed planar rooted tree
Any Ω-family Rota-Baxter of weight zero (resp. one) is an Ω-family dendriform (resp. tridendriform) algebra (family version a well-known result of M. Aguiar, resp. K. Ebrahimi-Fard).

The natural embedding of planar binary trees into planar rooted trees is the embedding of the free Ω-family dendriform algebra into its enveloping Rota-Baxter algebra of weight zero.

The natural embedding of Schröder trees into planar rooted trees is the embedding of the free Ω-family dendriform algebra into its enveloping Rota-Baxter algebra of weight one.
Family pre-Lie algebras
DM - Y. Y. Zhang

- Let Ω be a **commutative** semigroup.
- Left pre-Lie family algebra : \((A, (\triangleright_\omega)_{\omega \in \Omega})\) such that
 \[
 x \triangleright_\alpha (y \triangleright_\beta z) - (x \triangleright_\alpha y) \triangleright_{\alpha \beta} z = y \triangleright_\beta (x \triangleright_\alpha z) - (y \triangleright_\beta x) \triangleright_{\beta \alpha} z, \quad (1)
 \]
 where $x, y, z \in A$ and $\alpha, \beta \in \Omega$.
Let Ω be a **commutative** semigroup.

Left pre-Lie family algebra : $(A, (\triangleright_\omega)_{\omega \in \Omega})$ such that

$$x \triangleright_\alpha (y \triangleright_\beta z) - (x \triangleright_\alpha y) \triangleright_\alpha \beta z = y \triangleright_\beta (x \triangleright_\alpha z) - (y \triangleright_\beta x) \triangleright_\beta \alpha z,$$ \hspace{1cm} (1)

where $x, y, z \in A$ and $\alpha, \beta \in \Omega$.

If A is an Ω-family dendriform algebra with Ω commutative, it is an Ω-family pre-Lie algebra with

$$x \triangleright_\omega y := x \succ_\omega y - y \prec_\omega x,$$ \hspace{1cm} for $\omega \in \Omega$.

Description of the free Ω-family pre-Lie algebra generated by X in terms of X-decorated Ω-typed non-planar rooted trees.
Description of the free Ω-family pre-Lie algebra generated by X in terms of X-decorated Ω-typed non-planar rooted trees.
These examples call for a general approach.

What is a family \mathcal{P}-algebra for an operad \mathcal{P}?
Marcelo Aguiar’s approach (2020)

- **Principle**: A is an Ω-family \mathcal{P}-algebra if and only if $A \otimes k\Omega$ is a graded \mathcal{P}-algebra.
Principle: A is an Ω-family \mathcal{P}-algebra if and only if $A \otimes k\Omega$ is a graded \mathcal{P}-algebra.

The family version of an operation of arity n is parametrized by Ω^n, where Ω is the semigroup at hand:

$$\alpha(a_1 \otimes \omega_1, \ldots, a_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(a_1, \ldots, a_n) \otimes \omega_1 \cdots \omega_n.$$
Principle: A is an Ω-family P-algebra if and only if $A \otimes k\Omega$ is a graded P-algebra.

The family version of an operation of arity n is parametrized by Ω^n, where Ω is the semigroup at hand:

$$\alpha(a_1 \otimes \omega_1, \ldots, a_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(a_1, \ldots, a_n) \otimes \omega_1 \cdots \omega_n.$$

In particular, the natural family version of a binary operation necessitates two parameters in Ω.

Dominique Manchon CNRS-Université Clermont Auvergne
Principle: A is an Ω-family P-algebra if and only if $A \otimes k\Omega$ is a graded P-algebra.

The family version of an operation of arity n is parametrized by Ω^n, where Ω is the semigroup at hand:

$$\alpha(a_1 \otimes \omega_1, \ldots, a_n \otimes \omega_n) = \alpha_{\omega_1, \ldots, \omega_n}(a_1, \ldots, a_n) \otimes \omega_1 \cdots \omega_n.$$

In particular, the natural family version of a binary operation necessitates two parameters in Ω.

The semigroup Ω must be commutative unless the operad is non-sigma, e.g. Assoc, Dup or Dend.
Example: family associative algebras.

\[x \cdot_{\alpha,\beta} (y \cdot_{\beta,\gamma} z) = (x \cdot_{\alpha,\beta} y) \cdot_{\alpha\beta,\gamma} z. \]
Example: family associative algebras.

\[x \cdot_{\alpha,\beta,\gamma} (y \cdot_{\beta,\gamma} z) = (x \cdot_{\alpha,\beta} y) \cdot_{\alpha\beta,\gamma} z. \]

The family associative algebra is commutative if moreover

\[x \cdot_{\alpha,\beta} y = y \cdot_{\beta,\alpha} x. \]

This immediately yields the commutativity of the semigroup \(\Omega \).
Our approach
(L. Foissy - DM - Y. Y. Zhang)

- **Same Principle**: A is an Ω-family \mathcal{P}-algebra if and only if $A \otimes k\Omega$ is a graded \mathcal{P}-algebra.
Our approach
(L. Foissy - DM - Y. Y. Zhang)

- **Same Principle**: A is an Ω-family P-algebra if and only if $A \otimes k\Omega$ is a graded P-algebra.

- **But**: Ω need not be a semigroup: it is just a set a priori.
Our approach
(L. Foissy - DM - Y. Y. Zhang)

- **Same Principle**: A is an Ω-family P-algebra if and only if $A \otimes k\Omega$ is a **graded** P-algebra.

- **But** Ω need not be a semigroup: it is just a set a priori.

- the starting (linear) operad P **together with its presentation**

$$P = M_E/R = k.M_E/R$$

defines a \mathfrak{P}-algebra structure on Ω, where \mathfrak{P} is a set operad.
The set operad $\hat{\mathcal{P}}$ depends on \mathcal{P} and its presentation:

$$\hat{\mathcal{P}} = \mathcal{M}_E / \mathcal{R},$$

where \mathcal{R} is the set-operadic equivalence relation generated by \mathcal{R}.
The set operad \mathfrak{P} depends on \mathcal{P} and its presentation:

$$\mathfrak{P} = \mathcal{M}_E / \mathcal{R},$$

where \mathcal{R} is the set-operadic equivalence relation generated by \mathcal{R}.

If \mathcal{P} is (the linearization of) a set operad, then $\mathfrak{P} = \mathcal{P}$.

Dominique Manchon CNRS-Université Clermont Auvergne
The set operad \(\mathcal{P} \) depends on \(\mathcal{P} \) and its presentation:

\[
\mathcal{P} = \mathcal{M}_E / \mathcal{R},
\]

where \(\mathcal{R} \) is the set-operadic equivalence relation generated by \(\mathcal{R} \).

If \(\mathcal{P} \) is (the linearization of) a set operad, then \(\mathcal{P} = \mathcal{P} \).

If \(\mathcal{P} \) is quadratic and if the Koszul dual \(\mathcal{P}^! \) of \(\mathcal{P} \) is a set operad, we have

\[
\mathcal{P} = \mathcal{P}^!.
\]
Upshot

Let $\mathcal{P} = \mathcal{M}_E/R$ be a finitely presented linear operad, and let \mathcal{P} be the corresponding set operad.
Upshot

Let $\mathcal{P} = \mathcal{M}_E/R$ be a finitely presented linear operad, and let $\tilde{\mathcal{P}}$ be the corresponding set operad.

- The **color-mixing operad** $\tilde{\mathcal{P}}$ is a subquotient of the uniform Ω-colored operad \mathcal{P}^Ω.
Upshot

Let $\mathcal{P} = \mathcal{M}_E / \mathcal{R}$ be a finitely presented linear operad, and let \mathcal{P} be the corresponding set operad.

- The **color-mixing operad** $\tilde{\mathcal{P}}$ is a subquotient of the uniform Ω-colored operad \mathcal{P}^Ω.

- If Ω is a \mathcal{P}-algebra, an Ω-family \mathcal{P}-algebra is an Ω-graded algebra over $\tilde{\mathcal{P}}$, for which the underlying Ω-graded object is uniform.
Upshot

Let $\mathcal{P} = \mathcal{M}_E/\mathcal{R}$ be a finitely presented linear operad, and let \mathcal{P} be the corresponding set operad. The color-mixing operad $\tilde{\mathcal{P}}$ is a subquotient of the uniform Ω-colored operad \mathcal{P}^Ω.

If Ω is a \mathcal{P}-algebra, an Ω-family \mathcal{P}-algebra is an Ω-graded algebra over $\tilde{\mathcal{P}}$, for which the underlying Ω-graded object is uniform.

In the color-mixing operad, the color of the output is obtained by combining the n input colors by means of an operation of arity n in $\tilde{\mathcal{P}}$.
Thank you for your attention!