The multiperiodic Blazhko modulation of CZ Lacertae

Á. Sótor, J. Jurcsik, B. Szeidl, M. Váradi, A. Henden, K. Vida, Zs. Hurta, I. Dékány, and A. Szing

1 Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67, H-1525 Budapest, Hungary
2 Observatoire de Genève, Université de Genève, CH-1290 Sauverny, Switzerland
3 American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
4 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22, Chile

ABSTRACT

A thorough analysis of the multicolour CCD observations of the RRab-type variable, CZ Lacertae, is presented. The observations were carried out in two consecutive observing seasons in 2004 and 2005 within the framework of the Konkoly Blazhko Survey of bright, northern, short-period RRab variables. The O − C variation of CZ Lac indicated that a significant period decrease took place just around the time of the CCD observations. Our data gave a unique opportunity to study the related changes in the pulsation and modulation properties of a Blazhko star in detail. Two different period components (∼14.6 and ∼18.6 d) of the Blazhko modulation were identified. Both modulation components had similar strength. The periods and amplitudes of the modulations changed significantly from the first season to the next, while the mean pulsation amplitude decreased slightly. The modulation frequencies were in a 5:4 resonance ratio in the first observing season, and then the frequencies shifted in opposite directions, and their ratio was close to the 4:3 resonance in the next season. The interaction of the two modulations caused beating with a period of 74 d in the first season, which resembled the 4-yr-long cycle of the ∼40-d modulation of RR Lyr. The mean values of the global physical parameters and their changes with the Blazhko phase of both modulation components were determined by the inverse photometric method.

Key words: methods: data analysis – techniques: photometric – stars: horizontal branch – stars: individual: CZ Lac – stars: oscillations – stars: variables: RR Lyrae.

1 INTRODUCTION

RR Lyrae variables have great astrophysical importance because they are tracers of stellar evolution, are used as distance indicators and are test objects of stellar pulsation theories. We think that these objects are known fairly well. They are pure radial pulsators oscillating in fundamental mode, in first overtone and, in some cases, in both.

There is, however, a flaw in this nice picture: the so-called Blazhko effect (Blazhko 1907), the periodic variation of the light-curve shape of some of the RR Lyrae stars. Although the phenomenon has been known for more than a century, its physical origin is still unknown. Recently, it has been found that a much larger percentage of the RR Lyrae stars exhibit light-curve modulation than it was previously assumed (Jurcsik et al. 2009b; Benkő et al. 2010), which makes the problem even more embarrassing.

To explain the light-curve modulation, several models have been put forward during the past decades, but none of them is able to reproduce most of the observed properties of the modulation. The oblique magnetic rotator models (Cousens 1983; Shibahashi 2000) are based on the presumption of a bipolar magnetic field with a magnetic axis oblique to the axis of rotation. The resonance models (Nowakowski & Dziembowski 2001; Dziembowski & Mizerski 2004) explain the modulation with the excitation of non-radial modes of low radial degree. According to the model proposed by Stothers (2006, 2010), a turbulent dynamo in the envelope triggers the light-curve modulation. The analysis of the 127-d-long quasi-continuous Kepler data raised the possibility that a 9:2 radial–overtone – fundamental-mode resonance might be connected to the Blazhko phenomenon (Szabó et al. 2010).

To find the physical explanation for the Blazhko effect, we have to know how it manifests itself in the observed properties, i.e. detailed observations of Blazhko stars are needed. Therefore, we launched the Konkoly Blazhko Survey in 2004 (Sódor 2007; Jurcsik et al. 2009a).
Table 1. Log of the CCD observations of CZ Lac obtained with the 60-cm automatic telescope. Note that, due to technical problems, observations were not obtained in each band on 10 nights in the second observing season.

Season	From (JD)	To (JD)	Filter	Nights	Points
First	245 3266	245 3411	B	68	3669
			V	68	3683
			R_C	68	3649
			I_C	68	3629
Second	245 3648	245 3731	B	42	3011
			V	52	4460
			R_C	50	3446
			I_C	50	3371

2009b), which aimed at collecting extended, accurate, multicolour photometric data of Blazhko stars. In this paper, we report the results on CZ Lacertae, one of the most intriguing targets of our survey.

CZ Lac has an optical companion at 10-arcsec separation, which makes low-resolution photometric observations defective.

CZ Lac was observed with a photometer attached to the 60-cm telescope of the Konkoly Observatory, Széchenyi István University, Budapest, through B and V filters on seven nights in 1967. These observations showed light-curve variability; however, no secondary period was found. The light-curve changes were attributed to the light contamination of the close companion at that time. The photometric data are available online as Supporting Information (Table A1). This table lists the differential B and V magnitudes of CZ Lac relative to the comparison star, BD +50 3664.

We observed CZ Lac with the same, refurbished and automated 60-cm telescope equipped with a Wright Instruments 750 × 1100 CCD camera (field of view 17 × 24 arcmin) in 2004 and 2005. About 29 000 frames were obtained in $BV(R_C)I_C$ bands. The data of the two seasons spanned 146 and 84 d. The gap between the consecutive seasons’ observations was 237-d-long. Due to problems with the filter changer, B, R_C and I_C observations were not obtained on each of the nights in the second season. The log of the CCD observations is presented in Table 1.

To tie the instrumental CCD magnitudes to the standard Johnson–Cousins system, observations of stars in a 20 × 20 arcmin field centred on CZ Lac were made with the USNO Flagstaff Station 1.0-m telescope equipped with a Site/Tektronix 1024 × 1024 CCD. The positions and the $BV(R_C)I_C$ magnitudes of these stars are available online as Supporting Information (Table A2).

2.2 CCD reduction, photometry

Standard CCD calibration was done using the program package IRAF. In order to eliminate the light contamination of the close companion, Image Subtraction Method (ISM), as implemented by Alard (2000), was applied on the calibrated frames.

The relative fluxes of the variable, i.e. the differences between the measured fluxes and the flux of the variable in a reference image, were determined for each frame by aperture photometry using the DAOPHOT package of IRAF. To convert the relative fluxes to differential magnitudes, the fluxes and the corresponding magnitudes of the variable were measured in the reference image by aperture photometry using the standard magnitudes of three surrounding field stars (USNO-A2.0 1350–16354156, . . .16333516 and . . .16335838; see Table A2). The reference magnitudes corrected for atmospheric extinction and transformed into the standard Johnson–Cousins system are listed in Table 2. The standard relative $BV(R_C)I_C$ time series of CZ Lac are given in electronic form as Supporting Information (Tables A3–A6). The differential magnitudes correspond to the reference magnitudes given in Table 2.

3 PULSATION-PERIOD VARIATIONS: THE O − C DIAGRAM

Normal maximum times were derived for the middle of the observations of the two seasons' CCD V band data by fitting mean pulsation light curves. These normal maximum times and the times of the six photoelectric V maxima observed in 1967 are listed in Table 3.

There are 87 light maxima of CZ Lac collected in the GEOS2 data base (see references therein). We omitted four discrepant, visual observations and complemented the data set with the eight Konkoly data. The O − C diagram, constructed from these maximum times, is plotted in the top panel of Fig. 1. The following ephemerides were used for the calculation:

$T_{\text{max}}^{(\text{calc})}(\text{HJD}) = 2453338.647 + 0.432173 dE$.

The initial epoch and the period were taken from the light-curve solution of the first season’s CCD observations. There might be
were also identified in the spectra. The most intriguing feature is in at least one modulation component. (54000 − C and (Koll 50000 significance − C diagram shows that the pulsation period of CZ Lac and an own-developed code, which fitted the light curves of the two observing seasons, folded with m1σ 45000 f and m2 55000 V data sets in one season. The solution periods are 0.432 183 and 0.432 138 d. The pulsation-period change of CZ Lac did not change abruptly, but the period change lasted for several years.

The multiperiodic Blazhko modulation of CZ Lac underwent a significant decrease just about when the Konkoly CCD observations were obtained. The O − C plot after 1990 is shown magnified in the middle panel of Fig. 1. These data are fitted linearly before and after 2005.5 (HJD 245 3520); the corresponding pulsation periods are 0.432 183 and 0.432 138 d. The pulsation-period changes can be followed in the bottom panel of Fig. 1. Periods determined from the O − C data prior to and after 2005.5 and found in the two seasons' CCD observations are shown. Our CCD data indicate that a small period decrease occurred between the two observing runs (see Table 4). As the periods determined for 2004–2005 fell between the two period values obtained from the O 244 8000 (1990) are shown magnified in the middle panel. These data indicate a sudden period decrease just around the time of the CCD observations (2004–2005). The straight lines fitted to the data shown in this panel prior to and after 2005.5 (HJD 245 3520) are also drawn. Bottom panel shows the period values determined from the O − C data and from the Konkoly CCD observations. This figure proves that, contrary to the O − C results, the pulsation period of CZ Lac did not change abruptly, but the period change lasted for several years.

uncertainties in the epoch counts when large gaps occurred between the observations, for example, around HJD 244 7000, when observations were missing for a 3300-d-long interval.

The O − C diagram shows that the pulsation period of CZ Lac decreased during the period of observation around 1990. However, no continuous, extended observation of any Blazhko star has ever been obtained coincidentally with a rapid period change event. CZ Lac was observed in 2004–2005, just around the time when a rapid change in its period began. It gave us a serendipitous opportunity to study such an event in detail.

4 LIGHT-CURVE ANALYSIS

4.1 Light-curve solutions

The CCD V light curves of the two observing seasons, folded with the pulsation period, are shown in Fig. 2. The plots indicate that the modulation properties changed notably between the two seasons. The overall strength of the amplitude and phase modulations decreased, which did not allow us to analyse all the data together. Therefore, the two seasons were treated separately.

A mathematical description of the brightness variations was sought in the form of Fourier sums, utilizing discrete Fourier transformation and nonlinear and linear least-squares fitting methods. We used the program package Sura (Kollath 1990), the fitting abilities of gnuplot3 and an own-developed code, which fitted the data with independent frequencies and their linear combinations nonlinearly.4

The Fourier components were identified in the data successively until the residual spectra showed peaks higher than 4σ in at least two colour bands at the same frequency. In addition, peaks at linear-combination frequencies of independent frequencies found in the spectra were taken into account down to about the 2σ significance level, if they appeared in at least two bands of the same season’s data.

Different components at different frequencies were needed to accurately fit the two seasons’ data, but the same components were used for the R, V, Rv and Ic data sets in one season. The solutions of the first and second seasons’ data comprised 134 and 119 frequencies, respectively.

The analysis revealed modulation components located symmetrically around the pulsation frequency (f1) and its harmonics in the Fourier amplitude spectra, which is characteristic of Blazhko stars. Side frequencies corresponding to modulations of two different frequencies (f m1 and f m2) were detected in both seasons. All the identified Fourier components were derived from the three independent (base) frequencies: f1, f m1 and f m2; Note that the ‘m1’ and ‘m2’ indices are arbitrary, and do not reflect the dominance of the f m1 modulation component.

Several modulation peaks appeared in the spectra around the pulsation peaks with separations of the two modulation frequencies and their linear combinations. The modulation frequencies f m1 and f m2 were also identified in the spectra. The most intriguing feature is the detection of the frequencies with separations of half of f m2 (kfp ± 0.5 f m2). Linear combination terms involving this half frequency also appeared in the first seasons’ data.

Having the relevant Fourier components identified, their frequency values were fixed to the values obtained from the V-band light-curve solutions as the signal-to-noise ratio properties were the

3 http://gnuplot.info/
4 http://konkoly.hu/staff/sodor/nnlfit.html
best in this band. The V-band solutions were obtained by nonlinear
fits that allowed to adjust the three independent base frequencies,
and the combination frequencies were locked to the base-frequency
values during the fitting process. The base frequencies, their absolu-
tude and relative changes and the formal 1σ errors of the V-band
solutions are given in Table 4 for the two seasons.

To determine the amplitudes and phases of the frequency com-
ponents in the four bands, linear fits were calculated with all the
frequencies fixed to their accepted values. The parameters of the
solutions are listed in Tables 5 and 6. The formal 1σ errors of the Fourier amplitudes and phases are also given.

The detected frequencies are illustrated schematically in Fig. 3.
The complexity of the multiplet structures in the Fourier spectra,
and the changes in the frequencies, amplitudes and in the appearing
linear combination terms between the two seasons can be well
followed in this figure.

The residual spectra showed no signal stronger than 4σ, except
one peak in each of the B, Rε and Iε bands, which appeared, how-
ever, at different frequencies in the first season’s data. These peaks
were most probably artefacts and were not intrinsic to the variable.
Inspecting the residual light curves folded with the pulsation period,
we found extended scatter around the phase of the middle of the
rising branch. Similar behaviour of the residuals of other Blazhko
stars has been shown in Jurcsik et al. (2008a) and in Poretti et al.
(2010).

The Fourier frequency components $f_p \pm 0.5 f_{m2}$ are extraordinary.
No similar peak has ever been detected in any other Blazhko
star. A recent study on the long-term behaviour of Blazhko stars in
the globular cluster, M5 (Jurcsik et al. 2010), revealed that V2M5 had
a modulation period of 67 d at around the middle of the 20th cen-
tury, while its Blazhko cycle turned to be 130 d, just about twice of
its previous value, after 1960. Anomalous modulation components
with 11.5f_m, 12.5f_m and 13.5f_m separations were also detected in
MW Lyr (Jurcsik et al. 2008a). These examples indicate that half of
the modulation frequency might have some relevance in the inter-
pretation of the data. It cannot even be excluded that 0.5f_m is one of the real modulation frequencies of CZ Lac and peaks with
separations of f_m, 2f_m and 3f_m are, in fact, its second, fourth and
sixth modulation harmonics. The side-lobe peaks with 0.5f_m sepa-

4.2 Changes between the seasons

It has been shown in the previous sections that a slight increase of the
pulsation period (0.0000043 ± 0.0000010 d) was accompanied by
significant frequency and amplitude changes of the complex mod-
ulation of CZ Lac. The CCD V magnitudes of the two seasons are
plotted against HJD in Fig. 4. The upper envelopes derived from the
synthetic light curves are also drawn. The interaction between the
two modulations produced beating in the first season; they cancelled
each other out periodically as can be seen around HJD 245 3290 and
HJD 245 3365. The envelope of the second season shows a weaker
amplitude modulation.

The $k f_p \pm f_m$ modulation components had somewhat higher
amplitudes than the amplitudes of the $k f_p \pm f_{m2}$ frequencies in the
first season. The amplitudes of both modulations decreased to the
second season by different rates, so that the amplitude relation of
the two modulations reversed. The amplitudes of the $k f_p \pm f_{m2}$
modulation components were larger than those of the $k f_p \pm f_m$
components then.

Table 4. Independent (base) frequencies of the light-curve solutions (f_p – pulsation frequency; f_{m1}, f_{m2} – modulation frequencies),
their errors and their absolute and relative changes between the two seasons. The last two columns list the corresponding period values.

Component	First season Freq. (cd$^{-1}$)	Second season Freq. (cd$^{-1}$)	Freq. change	First season Absolute (cd$^{-1}$)	Second season Absolute (cd$^{-1}$)	First season Relative	Second season Relative	First season Period (d)	Second season Period (d)
f_p	2.313887 ± 0.000002	2.313910 ± 0.000003	2.3 x 10$^{-5}$	9.9 x 10$^{-6}$	0.5 x 10$^{-5}$	2.2 x 10$^{-6}$	0.0000004	0.0000006	
f_{m1}	0.05406 ± 0.00002	0.05347 ± 0.00007	-5.9 x 10$^{-4}$	-1.1 x 10$^{-2}$	0.9 x 10$^{-4}$	0.2 x 10$^{-2}$	18.50	18.70	
f_{m2}	0.06757 ± 0.00002	0.06954 ± 0.00007	19.7 x 10$^{-4}$	2.9 x 10$^{-2}$	0.7 x 10$^{-4}$	0.1 x 10$^{-2}$	14.804	14.38	

© 2010 The Authors, MNRAS 411, 1585–1596
Monthly Notices of the Royal Astronomical Society © 2010 RAS
Table 5. Frequencies, amplitudes (in mag) and phases (in rad) of the B, V, R_C and I_C light-curve solutions of CZ Lac in the first observing season. The full table is available as Supporting Information with the online version of this article.

Identification	f (cd$^{-1}$)	B Amplitude	Phase	V Amplitude	Phase	R_C Amplitude	Phase	I_C Amplitude	Phase
f_{1p}	2.313887	0.4894(6)	3.39(1)	0.3535(5)	3.33(1)	0.2763(4)	3.248(2)	0.2110(5)	3.117(2)
f_{2p}	4.627774	0.2537(6)	2.909(2)	0.1895(5)	2.896(2)	0.1500(5)	2.868(3)	0.1137(5)	2.822(4)
f_{3p}	6.941660	0.1472(6)	2.737(4)	0.1115(5)	2.731(4)	0.0891(5)	2.726(5)	0.0691(6)	2.728(7)
...
f_{m1}	2.257653	0.0235(5)	1.34(2)	0.0172(4)	1.33(2)	0.0137(4)	1.41(3)	0.0107(4)	1.52(4)
f_{m2}	2.357079	0.0272(5)	0.67(2)	0.0202(4)	0.69(2)	0.0159(4)	0.74(2)	0.0122(4)	0.78(3)

Table 6. Frequencies, amplitudes (in mag) and phases (in rad) of the B, V, R_C and I_C light-curve solutions of CZ Lac in the second observing season. The full table is available as Supporting Information with the online version of this article.

Identification	f (cd$^{-1}$)	B Amplitude	Phase	V Amplitude	Phase	R_C Amplitude	Phase	I_C Amplitude	Phase
f_{1p}	2.313910	0.4854(5)	2.86(1)	0.3509(4)	2.802(1)	0.2749(4)	2.721(1)	0.2046(4)	2.577(2)
f_{2p}	4.627821	0.2495(5)	1.84(3)	0.1863(6)	1.830(2)	0.1469(4)	1.808(3)	0.1094(4)	1.783(4)
f_{3p}	6.941731	0.1454(5)	1.13(4)	0.1109(4)	1.121(3)	0.0886(4)	1.134(2)	0.0689(4)	1.159(6)
...
f_{m1}	2.313887	0.0114(4)	4.0(4)	0.0015(3)	4.1(2)	0.0015(3)	4.0(2)	0.0014(3)	4.2(2)
f_{m2}	4.627774	0.0036(4)	2.9(1)	0.0018(3)	3.7(2)	0.0018(3)	4.7(2)	0.0016(3)	4.4(2)
$f_{m1} - f_{m1}$	2.367380	0.0191(6)	5.3(3)	0.0151(4)	5.19(3)	0.0118(4)	5.24(4)	0.0094(5)	5.42(5)
$f_{m2} - f_{m1}$	4.681290	0.0137(6)	4.2(6)	0.0120(4)	4.18(3)	0.0107(4)	4.27(4)	0.0082(5)	4.41(6)

It seemed that no changes occurred in the frequencies and amplitudes within one season, so the pulsation and modulations of CZ Lac could be described reasonably well by stationary harmonic functions in both seasons. The first season’s data were extended enough to be divided into two parts at HJD 245 3350. A separate analysis indicated that no systematic changes in the frequencies and/or amplitudes occurred in the first observing season. Had the amplitudes and frequencies changed somewhat during any of the observing seasons, the residual spectra would show significant peaks around the subtracted frequencies, which was not the case. These arguments support that the changes took place dominantly between the two seasons, within a relatively short interval of 237 d.

The peak-to-peak mean pulsation amplitudes of both seasons were determined from the synthetic light curves taking into account only the pulsation harmonics. Their errors were estimated as the sum of the errors of the amplitudes of the pulsation harmonic components. Because the errors of the amplitudes were correlated and the phases were not taken into account, these errors overestimated the true uncertainties. We found that the mean pulsation amplitude decreased by 0.027 ± 0.011, 0.023 ± 0.009, 0.015 ± 0.008 and 0.017 ± 0.009 mag in B, V, R_C and I_C bands, respectively, simultaneously with the diminution of the modulation amplitudes. The epoch-independent phase differences of the pulsation harmonics did not change significantly between the two seasons, indicating that the shape of the mean light pulse curve remained stable, whilst its amplitude decreased.

© 2010 The Authors, Monthly Notices of the Royal Astronomical Society. © 2010 RAS.
Figure 3. Multiplet structures of the light-curve solutions of CZ Lac in the two observing seasons. Horizontal axes show the pulsation harmonic order \((k)\). The vertical axes show the vicinity of the pulsation harmonic frequencies. The identification of the frequency components is given. The \(V\) amplitudes are colour-coded; amplitudes higher than 0.03 mag are shown in full black. These figures demonstrate that significantly different frequency components are needed to fit the two seasons’ data. Note the discernible changes in the amplitudes and separations of the modulation components.

Figure 4. CCD \(V\) light curves of CZ Lac versus HJD. The upper envelope of the data shows the brightness variations of the light maxima. The properties of the modulation changed considerably between the two seasons. The overall strength of the modulation decreased.

Simultaneous pulsation-period and pulsation-amplitude changes were also detected in RR Gem around the year 1938 (Sógor et al. 2007), when the character of the modulation of the star changed as well. The pulsation period and amplitude increased in RR Gem, while they decreased in CZ Lac.

4.3 Resonances: one or two modulation frequencies?

The frequency ratio of the two modulations was \(f_{m2}/f_{m1} = 1.2499 \pm 0.0008\) in the first season, i.e. the frequencies were in a 5:4 resonance ratio well within the error limit. As Table 4 shows, the modulation frequencies changed in opposite directions between the two seasons, and as a consequence escaped from the 5:4 resonance. The frequency ratio of the two modulations was 1.301 \(\pm\) 0.002 in the second season, which was closer to the 4:3 resonance ratio than to the 5:4 one.

The transition from the 5:4 resonance to the near 4:3 resonance hints that the two modulation frequencies prefer to be in resonance. Considering this finding, one might wonder if indeed two linearly independent modulation frequencies exist in CZ Lac. Could the light curves be described with only one modulation frequency and many of its harmonics, as, for example, in MW Lyr (Jurcsik et al. 2008a) and in V1127 Aql (Chadid et al. 2010)? In this case, the base modulation frequencies of the two seasons were significantly different; they were \(f_m = 0.006757\) cd\(^{-1}\) \(= f_{m1}/8 \approx f_{m1}/10\) and \(f_m = 0.008802\) cd\(^{-1}\) \(\approx f_{m1}/6 \approx f_{m2}/8\) in the first and second seasons, respectively. The residual scatters of the one-modulation-frequency fits are the same in the first season, and they
are only 3–5 per cent larger in the second season than those of the two-modulation-frequency solutions. The one-modulation solution would also give a natural explanation for the appearance of the combination terms. However, serious problems emerge when one tries to interpret this solution.

One of the problems is that it is ambiguous how to relate the different modulation components of the two seasons’ solutions in this case. The one-modulation-frequency solutions incorporate different-order modulation sidelobe frequencies \((k_f \pm n f_m) \) in the two seasons. Components corresponding to \(n = \{2, 3, 5, 8, 10, 16, 18, 20\} \) and \(n = \{2, 4, 6, 8, 12, 14, 16, 24\} \) are involved in the first and second seasons’ solutions, respectively. In contrast, if we accept the two-modulation-frequency solution, a consistent identification of the modulation components can be set, and the connection between the frequencies of the two seasons is straightforward.

Another problem of the one-modulation-frequency solution is that, in this case, the modulation harmonics of CZ Lac would behave rather differently than those in other Blazhko stars. In well-observed Blazhko stars with quintuplets and higher-order multiplet structures detected, the frequency components at the smallest separation \((n = 1) \) had always the largest amplitude (e.g. V1127 Aql – Chadid et al. 2010, DM Cyg – Jurcsik et al. 2009a, MW Lyr – Jurcsik et al. 2008a, RV UMa – Hurta et al. 2008). In contrast, according to the one-modulation solution of CZ Lac the largest-amplitude, dominant modulation peaks are the \(n = 8 \) and 10 components in the first season and the \(n = 8 \) and 6 components in the second one. The \(n = 1 \) component is not even detectable in any of the seasons. It has been shown in Szeidl & Jurcsik (2009) that the \(f_p \pm f_m \) frequencies are always the largest-amplitude modulation components in the frequency spectrum of an amplitude- and phase-modulated harmonic oscillation, provided that the amplitude of the phase modulation is relatively small compared to the period of the oscillation. Note that the same argument applies against the acceptance of \(0.5 f_m \) as the base modulation frequency of the second modulation.

All these arguments lead us to the conclusion that indeed two independent modulations of CZ Lac coexisted and their frequencies changed in opposite directions between the two observing seasons.

5 RESEMBLANCE BETWEEN THE MODULATIONS OF CZ LAC AND RR LYR

The ≈40-d-long Blazhko modulation of RR Lyr seemed to be ceased in every 4 yr (Dette & Szeidl 1973). The latest weak-modulation phase had been detected in 1975 (Szeidl 1976) in the Konkoly observations, which continued until 1981. Although RR Lyr was not regularly observed in the past three decades, photometric observations were obtained in 1990–1993 (Szeidl et al. 1997), 1993–1994 (Belserene 1997), 1996 (Smith et al. 2003), 2003–2004 (Kolenberg et al. 2006) and 2006–2007 (Kolenberg et al. 2008). All these observations showed maximum-light variation in V band of at least 0.2-mag amplitude during the Blazhko cycle. The amplitude of the modulation was also large in 2009 according to the recent Kepler observations (Szabó et al. 2010). The spectroscopic observations from 1994 to 1995 (Chadid & Gillet 1996), 1994 to 1997 (Chadid 2000), 1996 to 1997 (Chadid et al. 1999) and 2000 (Chadid & Chapellier 2006), all showed clear evidence of strong amplitude modulation. It seems that, in spite of the above-mentioned observational activities, the weak-modulation states of RR Lyr have been either missed or the cyclic behaviour of the modulation has been less pronounced during the last decades.

Variation in the modulation period of RR Lyr was also reported by Kolenberg et al. (2006), Kolenberg et al. (2008). In contrast with the 40–41 d Blazhko period found in previous investigations, a 38–39 d period was detected in these recent studies.

Many aspects of the Blazhko behaviour of CZ Lac resemble the properties of RR Lyr. The modulation of CZ Lac seemed to cease in every 74 d in the first season, as a consequence of the interaction between two, similarly strong modulations. This beating is shown by the envelope in Fig. 4. The beating period is \(1/(f_m - f_2) = 0.0742 \). We suppose that the 4-yr cycle of RR Lyr can also be explained by the beating of two modulations of similar strength, if the periods of the modulations differ by about 1 d. To resolve modulation peaks being so close to each other, continuous observations of more than 4 yr are needed, which will be available from the Kepler mission.

The strength of the modulation components of CZ Lac changed significantly from the first observing season to the next; while the 18.5-d modulation \((f_m) \) had somewhat larger amplitude than the 14.8-d modulation \((f_2) \) in the first season, the amplitude of the longer-period component \((f_m) \) was extremely small in the second one. Consequently, no cancellation (beating) of the modulations was detected then. A similar behaviour might explain the vanishing of the 4-yr cycles of RR Lyr during the last decades and the strong change in its observed modulation period.

6 CHANGES IN PHYSICAL PARAMETERS

We have developed an inverse photometric Baade–Wesselink method (IPM) (Sórdor, Jurcsik & Szeidl 2008) to determine the mean physical parameters of RR Lyrae stars, such as effective temperature \((T_{\text{eff}}) \), absolute visual magnitude \((M_V) \), radius \((R) \), distance \((d) \), mass \((M) \) and dereddened colours \((B - V)_0, (V - I)_0\), from multicolour photometric observations. It has been shown that using good quality multicolour photometry, IPM yields results of similar accuracy as direct spectroscopic Baade–Wesselink methods. The IPM also gives the variations with pulsation phase of those parameters that change during the pulsation cycle. This method has been successfully applied to derive the mean physical parameters and their changes during the Blazhko cycle already for four modulated RRab stars (MW Lyr – Jurcsik et al. 2008b; DM Cyg – Jurcsik et al. 2009a; RR Gem, SS Cnc – Sórdor 2009). The IPM is a useful tool to unravel astrophysics buried deep in the hundreds of Fourier coefficients obtained by the light-curve-fitting process.

In order to determine the changes with any of the modulations of CZ Lac by the IPM, the two modulations had to be separated first. It was achieved by generating synthetic light curves from the solutions of each season’s data taking into account only the pulsation frequencies and terms that belonged to one of the modulations only. The coupling modulation terms were omitted, as they were not periodic with any of the modulations. Considering their small amplitudes, the omission of these terms presumably had a negligible effect on the results. The synthetic V light curves of the two modulations for both seasons are plotted in Fig. 5.

6.1 Constant parameters

Following the methodology of our previous investigations, we started the analysis by determining those parameters that obviously did not change. These were the metallicity \(([\text{Fe}/\text{H}]) \), mass \((\Omega) \), distance \((d) \) and the interstellar reddening \((E(B - V)) \) of the star.

The metallicity of CZ Lac was determined spectroscopically (Suntzeff, Kraft & Kinmann 1994) and photometrically (Jurcsik
et al. 2009b) to be −0.13 and −0.26, respectively. Therefore, static atmosphere model grids corresponding to [Fe/H] = −0.20 (Castelli & Kurucz 2003) were used for the IPM analysis.

With the exception of the metallicity, all the other constant parameters were derived by the IPM using the mean pulsation light curves, which were generated from the light-curve solutions taking into account only the pulsation components. To assess the uncertainties of the mean global physical parameters and the distance, the IPM was run with four different internal settings (for details see Sódor et al. 2008, table 1) using the mean light curves of the two observing seasons. These runs yielded eight results for each physical parameter. Their averages are listed in Table 7. The errors of the output parameters, with the exception of $E(B - V)$, were estimated as the rms of the corresponding eight results. The error of the derived interstellar reddening depended on the calibration of our photometry, i.e. on the accuracy of the standard reference magnitudes given in Table 2. The IPM yielded an interstellar reddening value of $E(B - V) = 0.19$ mag for CZ Lac in accordance with the 0.28 mag value given by the reddening map of Schlegel, Finkbeiner & Davis (1998). The eight different results for the mass and the distance of CZ Lac were within the ranges of 0.590–0.618 M⊙ and 1182–1205 pc, respectively. These narrow ranges proved the stability of the results obtained with the IPM.

Possible changes in the mean radius, luminosity and temperature between the two seasons were also checked. After fixing the constant parameters (metallicity, mass, distance and interstellar reddening) to their values determined in the previous step, IPM was run again for the mean pulsation light curves of the two seasons separately. The results did not show any significant variation in any of the free parameters between the two seasons. This finding was in accordance with the photometric results, which showed that the mean $BV(RI)C$ colours of the light curves remained the same within the millimagnitude limit in the two seasons. The differential magnitude zero-points of the light-curve solutions for the two seasons are compared in Table 8.

6.2 Blazhko-phase-dependent parameters

After determining the mass, the distance and the interstellar reddening of CZ Lac, the IPM were run for the data of different phases of

Table 7. Mean physical parameters of CZ Lac and their errors derived from the mean light curves by the inverse photometric method, using static atmosphere models of [Fe/H] = −0.20 metallicity.

Parameter	First season	Second season
M (M⊙)	0.60 ± 0.01	0.60 ± 0.01
d (pc)	1188 ± 8	1188 ± 8
$E(B - V)$ (mag)	0.19 ± 0.03	0.19 ± 0.03
M_V (mag)	0.66 ± 0.01	0.66 ± 0.01
$(B - V)_0$ (mag)	0.276 ± 0.002	0.276 ± 0.002
$(V - I)_0$ (mag)	0.344 ± 0.002	0.344 ± 0.002
R (R⊙)	4.46 ± 0.03	4.46 ± 0.03
L (L⊙)	46.5 ± 0.5	46.5 ± 0.5
T_{eff} (K)	7100 ± 10	7100 ± 10

Figure 5. Synthetic V light curves of CZ Lac corresponding only one of the modulation components are phased according to the pulsation and modulation frequencies for the two seasons. These data were used as input for the IPM to determine the variations of the pulsation-averaged physical parameters with Blazhko phase. Lines indicate the phase and brightness variations in maximum and minimum light.

Table 8. Differential magnitude zero-points of the solutions for the two observing seasons in the four photometric bands. Relative values with respect to the reference magnitudes listed in Table 2 are given.

Band	First season	Second season
B	0.2902(2)	0.2907(3)
V	0.1538(3)	0.1544(3)
R_c	0.1327(3)	0.1346(2)
I_c	0.1073(3)	0.1086(2)
the modulations, keeping these parameters fixed during the fitting process. In this way, the changes in radius, luminosity and temperature with the Blazhko phase were obtained for both modulations in the two observing seasons.

The synthetic light curves of both modulations were divided into 20 Blazhko-phase bins of equal width. These data showed practically no light-curve modulation in any of the bins. The light curves of the modulation phase bins were then fitted with the harmonics of the pulsation frequency. These fits were used as the input for the IPM. The results, the pulsation-phase-dependent output parameters of the IPM were averaged for the whole pulsation cycle, i.e. their arithmetic means were calculated in order to detect any Blazhko-phase-dependent changes. At this stage, eight different internal settings of the IPM were used to estimate the uncertainties of the results. The choices of the \(V_{rad} \) template curves and their weights during the fitting process were the same as the ones we had used in our earlier analyses (see Sődor et al. 2008, table 1). Furthermore, we used two different \(\Delta(V_{rad})-V_{amp} \) relations (for details see Jurcsik et al. 2008b).

The mean values of the observational data, derived from the photometry, and the results of the IPM are plotted in Fig. 6 for both modulations in both seasons. In the left-hand panels, the observed mean quantities are plotted as a function of Blazhko phase: the peak-to-peak pulsation amplitude in \(V \) band, the variation of the pulsation period calculated from the phase variation of the \(f_5 \) pulsation-frequency, and the different pulsation averages of the magnitudes and colours. The right-hand panels show the quantities derived by the IPM for each Blazhko phase: the pulsation-averaged mean values of the radius, the surface gravity, the absolute visual brightness averaged by magnitude and intensity units, the luminosity and the effective temperature. In full accordance with our previous findings (Jurcsik et al. 2008b, 2009a), the actual values of the fixed parameters had an influence only on the average values of those physical parameters that changed with Blazhko phase, and had no effect on their changes around the averages.

As the amplitudes of both modulations decreased from the first season to the next, the amplitudes of the changes in most of the derived parameters decreased, too. Although the two modulations had rather different characteristics, apart from the reduced amplitudes, their behaviour remained the same from the first season to the second. The consistency of the IPM results for the two modulations in the different seasons is a strong argument for the reliability of the method. Taking into account that the input data of the IPM are completely independent for the two seasons, such a consistent result can hardly be explained by any artefact.

In accordance with our previous results (Jurcsik et al. 2008b, 2009a; Sődor 2009), the intensity-averaged mean \(V \) brightness reflects the mean luminosity changes of CZ Lac very well. The luminosity is always the highest at the high-amplitude Blazhko phases. The luminosity variations connected to the first modulation \(f_{m1} \) are caused predominantly by temperature changes in both seasons. The radius changes corresponding to this modulation component are very small and are in anti-correlation with the luminosity variations. At the same time, the luminosity changes connected to the second modulation \(f_{m2} \) are induced mainly by radius changes in both seasons. The small temperature changes with this modulation are out of phase in the first season and are the opposite of the luminosity variations in the second season.

The strength of the phase (period) modulations seems to have no influence on the strength of any of the detected variations of the parameters.

7 DISCUSSION AND SUMMARY

Multiperiodic modulation has already been found in some Blazhko RR Lyrae stars (LaCluyzé et al. 2004; Sődor et al. 2006; Szczygiel & Fabrycky 2007; Wils, Kleidis & Broens 2008; Benkő et al. 2010). However, one of the modulations was always dominant, with much higher amplitude than the other, in these stars. CZ Lac is the first multiperiodically modulated RR Lyrae star with two modulations of similar strength. The good phase coverage of our multicolour CCD observations made it possible to study the nature of the multiperiodic modulation of CZ Lac in detail.

The analysis of the data from two consecutive observing seasons revealed that the Fourier spectra of the light curves showed complex multiplet structures around the pulsation harmonics; frequencies at \(kf_5 \pm f_{m1}, kf_5 \pm f_{m2}, kf_5 \pm (f_{m1} + f_{m2}), kf_5 \pm (f_{m1} - f_{m2}), kf_5 \pm 2f_{m1}, kf_5 \pm 2f_{m2}, kf_5 - 3f_{m2} \) were detected. One of the most remarkable properties of the multiperiodic modulation of CZ Lac was that, similarly to multimode pulsation, combination terms of the modulations also appeared in the spectra. Modulation peaks with separations of half the \(f_{m2} \) frequency and linear combination terms involving this component \(kf_5 \pm 0.5f_{m2} \) and \(kf_5 \pm (f_{m1} - 0.5f_{m2}) \) were also identified. No similar frequency component has ever been detected in any other Blazhko star. No additional frequency at \(0.5f_{m1} \) separation has been reported even in the high-precision CoRoT and Kepler space missions’ data (Chadid et al. 2010; Benkő et al. 2010). The appearance of the \(0.5f_{m2} \) component makes the interpretation of the spectrum rather difficult. Taking also into account that modulation periods of 130 d and about its half, 67 d were detected at different epochs in one of the RRab stars (V2) in the globular cluster M5 (Jurcsik et al. 2010), one might have some doubt whether \(f_{m2} \) or its half is the true base frequency of this modulation.

The modulation properties of CZ Lac changed significantly between the two observing seasons, while only very slight changes were detected in the mean pulsation properties. The periods of the two modulations changed in opposite directions: \(P_{m1} \) increased from 18.5 to 18.7 d, while \(P_{m2} \) decreased from 14.8 to 14.4 d. The amplitudes of both modulations decreased significantly from the first observing season to the next, and their relative strength reversed. The period and the \(V \) amplitude of the mean pulsation light curve decreased by \(4 \times 10^{-6} \) d and 0.015 mag, respectively. All the detected changes took place within a 237-d-long interval, as there was no sign of any frequency or amplitude change in the individual seasons’ data.

The two modulation frequencies of CZ Lac were in a 5:4 resonance ratio well within the error limit in the first observing season. The modulation frequencies changed to the second season so that they were close to the 4:3 resonance then, but the frequency ratio differed somewhat from the exact resonance value. The sudden transition from a 5:4 resonance to a near 4:3 resonance between the two seasons hints that the two modulations prefer to be in resonance and their frequencies are not fully independent. However, the strong, opposite period changes of the components have made it impossible to describe the light-curve variations of CZ Lac uniformly with a single base-modulation frequency in the two seasons. There is another example of a Blazhko star (V14 in M5) with modulation periods in 4:3 resonance (Jurcsik et al. 2010). However, the modulations with the different periods were not coincidental; they were observed at different epochs in this star. These observations suggest that the detected modulation periods of Blazhko stars may not be unique, which makes the interpretation of the phenomenon even more difficult.
Figure 6. Variations of the observed mean (left-hand panels) and derived physical parameters (right-hand panels) of CZ Lac during the Blazhko cycles. Each of the four blocks of panels corresponds to one modulation component (f_{m1} or f_{m2}) in one season. Magnitude- and intensity-averaged brightnesses and colours are denoted by angle and round brackets, respectively. From top to bottom, left-hand panels show: amplitude modulation – total pulsation amplitude; pulsation-phase or period modulation – variation of the phase of the f_p pulsation component (empty circles) and deviation of the instantaneous pulsation period from the mean pulsation period (continuous line); pulsation-averaged V magnitude; pulsation-averaged $B - V$ colour; pulsation-averaged $V - I_c$ colour. From top to bottom, right-hand panels show the pulsation averages of the following physical parameters: radius; surface gravity; absolute visual magnitude; luminosity; effective surface temperature.

© 2010 The Authors, MNRAS 411, 1585–1596
Monthly Notices of the Royal Astronomical Society © 2010 RAS
Changes in the physical parameters of CZ Lac were determined by the inverse photometric method (Sődor et al. 2008). No changes in the mean parameters were derived for the two consecutive seasons in accordance with the constancy of the mean colours and magnitudes during the whole 2-yr observations. Small changes in the mean effective temperature (T_{eff}), mean luminosity (L) and mean radius (R) with the phases of both modulations were unambiguously detected. The relations between the physical-parameter variations were different for the two modulations in both seasons. Although the large-amplitude phases of both f_{11} and f_{12} corresponded to $1-3$ per cent increased mean luminosity values, these luminosity changes were induced by either temperature or radius changes connected to one and the other modulations. This pattern remained unchanged from the first season to the next. Taking into account the independence of the input data (observations of the two seasons) and their separate analysis, such stability of the results confirms that the detected changes are real.

CZ Lac is an example for modulations of different character showing up simultaneously in a single star. Consequently, it seems that the stellar structure and parameters do not directly determine how the mean physical parameters vary with the Blazhko cycle. This fact may explain why no generally valid relation between pulsation and modulation properties of Blazhko stars has been revealed in spite of the efforts for establishing such a connection.

The phase relation between the pulsation-period and pulsation-amplitude variations during the Blazhko cycle should be an important parameter of the modulation according to the model of Stothers (2006, 2010). Examining these phase relations of the stars studied so far in the Konkoly Blazhko Survey and the data of the two modulations of CZ Lac, we have not found any connection between these properties and any of the observed and derived (by the IPM) parameters of the modulation. The only regularity that have been disclosed is that, in all the studied cases, the changes in the mean luminosity are always parallel to the amplitude variations of the pulsation, i.e. Blazhko stars are always slightly more luminous at their large-amplitude phase than at their small-amplitude phase.

The investigation of the long-term period changes using $O-C$ data showed that the pulsation period of CZ Lac underwent a significant decrease just around the time of our CCD observations in 2004 and 2005. Linear fits to the $O-C$ data for the 1990–2005.5 and 2005.5–2010 intervals yielded pulsation periods of 0.432 183 and 0.432 138 d, respectively. The CCD observations revealed that the pulsation-period change was not abrupt, but lasted for several years. The Konkoly CCD observations were made serendipitously at the time when the drastic period decrease started. Our data showed that the modulation properties (periods and amplitudes) changed significantly in 2004–2005, when the drastic pulsation-period decrease of CZ Lac just began. All these changes were presumably triggered by structural changes in the stellar interior. The strong variations observed in the modulation properties implied that the modulation was more sensitive to the changes in the interior and/or followed these changes more quickly than the properties of the pulsation. A similar, significant period change (an increase, however) occurred in RR Gem (Sődor et al. 2007, Fig. 1) around 1938, which was also accompanied by drastic changes in the modulation properties.

CZ Lac is the first Blazhko RR Lyrae star that showed two different modulations simultaneously with amplitudes of about equal strengths. If the two modulations are indeed independent of each other, then it contradicts any explanation of the Blazhko effect that connects the modulation period to the rotation of the star.

ACKNOWLEDGMENTS

The support of OTKA grant T-068626 is acknowledged.

REFERENCES

Alard C., 2000, A&AS, 144, 363
Belserev E. P., 1997, in Davis Philip A. G., Van Altena W. F., Uppgren A. R., eds, Ami Mirabiles, A Symposium Celebrating the 90th Birthday of Dorrit Hoflheit. L. David Press, Schenectady, NY, p. 85
Benkő J. M. et al., 2010, MNras, doi:10.1111/j.1365-2966.2010.17401.x
Blazhko S., 1907, Astron. Nachr., 175, 325
Castelli F., Kurucz R. L., 2003, in Piskunov N., Weiss W. W., Gray D. F., eds, Proc. IAU Symp. 210, Modelling of Stellar Atmospheres. Astron. Soc. Pac., San Francisco, p. A20
Chadid M., 2000, A&A, 359, 991
Chadid M., Chapellier E., 2006, A&A, 456, 305
Chadid M., Gillet D., 1996, A&A, 308, 481
Chadid M., Kolenberg K., Aerts C., Gillet D., 1999, A&A, 352, 201
Chadid M. et al., 2010, A&A, 510, 39
Cousens A., 1983, MNras, 203, 1171
Detre L., Szielid B., 1973, in Fernie J. D., ed., IAU Coll. 21, Variable Stars in Globular Clusters and Related Systems. Reidel, Dordrecht, p. 31
Dziembowski W. A., Mizerski T., 2004, Acta Astron., 54, 363
Florja N., 1940, Peremennye Zvedzy, 5, 258
Hurtza Zs., Jurcsik J., Szeidl B., Sődor Á., 2008, AJ, 135, 957
Jurcsik J. et al., 2008a, MNras, 391, 164
Jurcsik J. et al., 2008b, MNras, 393, 1553
Jurcsik J. et al., 2009a, MNras, 397, 350
Jurcsik J. et al., 2009b, MNras, 400, 1106
Jurcsik J. et al., 2010, MNras, in press
Kolenberg K. et al., 2006, A&A, 459, 577
Kolenberg K., Ulus N. D., Beck P. G., Gazeas K. D., Tsanillas S., Robertson C. W., 2008, Commun. Asteroseis., 157, 323
Kolláth Z., 1990, Occ. Techn. Notes Konkoly Obs., No. 1, http://www.konkoly.hu/staff/kollath/mufran.html
LaCluyzé A. et al., 2004, AJ, 127, 1653
Le Borgne J. F. et al., 2007, A&A, 476, 307
Nowakowski R. M., Dziembowski W. A., 2001, Acta Astron., 51, 5
Poretti E. et al., 2010, A&A, 520, 108
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Shibahashi H., 2000, in Szabados L., Kurtz D. W., eds, ASP Conf. Ser. Vol. 203, The Impact of Large-scale Surveys on Pulsating Star Research. Astron. Soc. Pac., San Francisco, p. 299
Smith H. A. et al., 2003, PASP, 115, 43
Sődor Á., 2007, Astron. Nachr., 328, 829
Sődor Á., 2009, in Guzik J. A., Bradley, P. eds, ASP Conf. Proc. 1170, Stellar Pulsation: Challenges for Theory and Observation. Am. Inst. Phys., New York, p. 294
Sődor Á., 2006, Inf. Bull. Variable Stars, 5705
Sődor Á., Szielid B., Jurcsik J., 2007, A&A, 469, 1033
Sődor Á., Jurcsik J., Szielid B., 2008, MNras, 394, 261
Stothers R. B., 2006, ApJ, 652, 643
Stothers R. B., 2010, PASP, 122, 536
Szabó R. et al., 2010, MNras, doi:10.1111/j.1365-2966.2010.17386.x
Szielid B., 1976, in Fitch W. S. ed., IAU Coll. No. 29., Multiple Periodic Variable Stars, ASL, Vol. 60. Reidel, Dordrecht, p. 133
Szielid B., Jurcsik J., 2009, Commun. Asteroseis., 160, 17
Szielid B., Guinan E. F., Oláh K., Szabados L., 1997, Communications from the Konkoly Obsr., 99, 1
Szielid B., Hurtza Zs., Jurcsik J., Clement C., Lovas M., 2010, MNras, in press
Suntzeff N. B., Kraft R. P., Kinnmann T. D., 1994, ApJS, 93, 271
Szczypiet D. M., Fabrycky D. C., 2007, MNras, 377, 1263
Wils P., Kleidis S., Brooks E., 2008, MNras, 387, 783

© 2010 The Authors, MNRAS 411, 1585–1596
Monthly Notices of the Royal Astronomical Society © 2010 RAS.

The multiperiodic Blazhko modulation of CZ Lac

1595
APPENDIX A: SAMPLES OF THE ELECTRONIC TABLES

Here, we present samples of the electronic tables available as Supporting Information (Tables A1–A6).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 5. Frequencies, amplitudes (in mag) and phases (in rad) of the B, V, Rc and Ic light-curve solutions of CZ Lac in the first observing season.

Table 6. Frequencies, amplitudes (in mag) and phases (in rad) of the B, V, Rc and Ic light-curve solutions of CZ Lac in the second observing season.

Table A1. Photoelectric B and V time series of CZ Lac relative to the comparison star, BD +50° 3664.

HJD 240 0000	Δmag	Band
39740.4237	0.816	B
39740.4244	0.433	V
39740.4258	0.774	B
39740.4265	0.426	V

... ...

Table A2. Photometric B, V, Rc and Ic sequence in the field of CZ Lac (A. Henden).

RA	Dec.	n	V	B − V (mag)	V − Rc (mag)	Rc − Ic (mag)	V − Ic (mag)	Errors
334.6(1)	51.62(1)	6	13.796	0.549	0.320	0.352	0.673	0.025
334.6(1)	51.49(15)	6	15.023	0.450	0.278	0.373	0.660	0.024
334.6(1)	51.34(04)	6	14.407	0.730	0.436	0.491	0.932	0.016

... ...

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Table A3. CCD ΔB time series of CZ Lac.

HJD 245 0000	ΔB (mag)
3266.29796	0.602
3266.30141	0.601
3266.30477	0.613

... ...

Table A4. CCD ΔV time series of CZ Lac.

HJD 245 0000	ΔV (mag)
3266.29889	0.376
3266.30240	0.379
3266.30575	0.388

... ...

Table A5. CCD ΔRc time series of CZ Lac.

HJD 245 0000	ΔRc (mag)
3266.29958	0.279
3266.30310	0.300
3266.30643	0.293

... ...

Table A6. CCD ΔIc time series of CZ Lac.

HJD 245 0000	ΔIc (mag)
3266.30026	0.229
3266.33218	0.256
3266.33583	0.272

... ...

This paper has been typeset from a TeX/ΛETEX file prepared by the author.