A_{CP} Puzzle : Possible Evidence for Large Strong Phase in
$B \to K\pi$ Color-Suppressed Tree Amplitude

T. N. Pham
Centre de Physique Théorique, CNRS
Ecole Polytechnique, 91128 Palaiseau, Cedex, France
(Dated: October 14, 2009)

In QCD Factorization(QCDF), the suppression of the color-suppressed tree amplitude relative to
the color-allowed one in $B \to K\pi$ decay implies a direct CP asymmetry in $B^- \to K^-\pi^0$
to be of the same sign and comparable in magnitude to that in $B^0 \to K^+\pi^-$, in contradiction with experiment.
This is the A_{CP} $B \to K\pi$ puzzle. One of the current proposal to solve this puzzle is the existence of
a large color-suppressed amplitude with large strong phase which implies also a large negative
$B^0 \to \bar{K}^0\pi^0$ CP asymmetry. In this paper, by an essentially model-independent calculation, we
show clearly that the large negative direct CP asymmetry in $B^0 \to K^0\pi^0$ implies a large C/T,
the ratio of the color-suppressed to the color-allowed tree amplitude and a large negative strong
phase for C. By adding to the QCDF amplitude an additional color-suppressed term to generate
a large C/T and a large strong phase for C and an additional penguin-like contribution, we obtain
branching ratios for all $B \to K\pi$ modes and CP asymmetry for $B^0 \to K^+\pi^-$ and $B^- \to K^-\pi^0$ in
agreement with experiment, and a large and negative CP asymmetry in $B^0 \to \bar{K}^0\pi^0$ which could
be checked with more precise measurements.

PACS numbers: 13.25.Hw, 12.38.Bx

I. INTRODUCTION

In the penguin-dominated $B \to K\pi$ decays, the color-suppressed tree contribution(C) is suppressed relative
to the color-allowed tree contribution(T) because of the small Wilson coefficient a_2 relative to a_1. One would then
expect the direct CP asymmetries in $B \to K^-\pi^0$ and $B^0 \to K^-\pi^+$ to be essentially given by the color-allowed
tree and strong penguin interference terms(TP). The
CP asymmetry(A_{CP}) in $B^- \to K^-\pi^0$ would be of the
same sign and comparable in magnitude to that in $B^0 \to K^+\pi^-$. The current measurements[1], though with large
errors, seem to indicate a positive CP asymmetry for $B^- \to K^-\pi^0$, in opposite sign to the negative $B^0 \to K^+\pi^+$
CP asymmetry measured with greater accuracy. This is the A_{CP} puzzle[2, 3, 4, 6, 7, 8, 10, 11, 12].

To reverse the sign of the predicted $B^- \to K^-\pi^0$ CP asymmetry, one would need a large color-suppressed tree
terms, i.e a large C/T ratio, and also a large strong phase for C, as will be shown in the following. Since
the color-suppressed tree-penguin interference term in $B^- \to K^-\pi^0$ is opposite in sign to that in $B^0 \to \bar{K}^0\pi^0$,
the $B^0 \to \bar{K}^0\pi^0$ CP asymmetry would become large and
negative. If the positive asymmetry for $B^- \to K^-\pi^0$ and a large negative $B^0 \to \bar{K}^0\pi^0$ CP asymmetry are
confirmed by new measurements, this would be a clear
evidence for the enhanced color-suppressed tree contribution to CP asymmetries in $B \to K\pi$ decays. Apart
from the possibility of new physics[8, 13] to solve the A_{CP} $B \to K\pi$ puzzle, recent calculations in the standard
model(SM), as done in perturbative QCD (pQCD)[2, 3], in QCD Factorization(QCDF) with large hard scattering
corrections[14] seem to obtain a large color-suppressed enhancement in $B \to \pi\pi$ and $B \to K\pi$ decays. The calculation in [5] also shows that the color-suppressed
tree contribution has to be large to solve the $B \to K\pi$ A_{CP} puzzle within the standard model. Various
phenomenological analyses[15] using $SU(3)$ symmetry obtain also a large C/T ratio. Final state interaction
(FSI) rescattering term with a large absorptive part, like the charmed meson rescattering charming penguin
contribution(16, 17, 18, 19, 20, 21, 22), could also produce a large C/T with a strong phase[3, 22, 23, 24], for example, through the CKM-suppressed, color-allowed
tree rescattering $B \to K^*\rho \to K\pi$ process, which produces a tree-penguin interference term responsible for
CP asymmetry, similar to the process $B \to \rho\rho \to \pi\pi$ in $B \to \pi\pi$ decays. Before going further in analyzing these
possibilities, one would like to have a model-independent calculation to show that, apart from the possibility of new
physics, the solution to the A_{CP} puzzle is an enhanced color-suppressed contribution to CP asymmetry in
$B \to K\pi$ decays. In the next section we will show in an essentially model-independent calculation that the large
negative $B^0 \to \bar{K}^0\pi^0$ CP asymmetry requires a large ratio C/T with C mainly absorptive. We then show that
with this additional contribution to the color-suppressed tree term and a penguin-like additional term as given in
25, QCDF could predict all the branching ratios and CP asymmetries for $B \to K\pi$ decays consistent with
experiment.

II. MODEL-INDEPENDENT DETERMINATION
OF STRONG PHASES IN $B \to K\pi$

As our analysis is based on QCD Factorization, for convenience, we reproduce here the QCDF $B \to \bar{K}\pi$ decay
amplitudes given in \[25\]. We have \[26, 27, 28, 29\]:

\[
A(B^- \to K^- \pi^0) = -i \frac{G_F}{2} f_K F_0^{B*}(m_K^2)(m_B^2 - m_\pi^2) \\
(V_{ub} V_{us}^* a_1 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) [a_4 + a_{10} + (a_6 + a_8) r_\chi]) \\
-i \frac{G_F}{2} f_P F_0^{B*K}(m_\pi^2)(m_B^2 - m_K^2) \\
\times (V_{ub} V_{us} a_2 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) \times \frac{3}{2} (a_9 - a_7)) \\
-i \frac{G_F}{2} f_B f_J f_\pi \\
\times [V_{ub} V_{us}^* b_2 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) \times (b_3 + b_3^{cw})] \\
\times \left(\frac{1}{2} \bar{\Gamma}(A) + \frac{1}{2} \bar{\Gamma}(P) \right)
\]

\[
A(B^- \to K^0 \pi^-) = -i \frac{G_F}{\sqrt{2}} f_K F_0^{B*}(m_K^2)(m_B^2 - m_\pi^2) \\
(V_{us} V_{ub}^* [a_4 + a_{10} + (a_6 + a_8) r_\chi]) \\
-i \frac{G_F}{\sqrt{2}} f_B f_J f_\pi \\
\times [V_{ub} V_{us}^* b_2 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) \times (b_3 + b_3^{cw})] \\
\times \left(\frac{1}{2} \bar{\Gamma}(A) + \frac{1}{2} \bar{\Gamma}(P) \right)
\]

and for \(B^0\):

\[
A(B^0 \to K^- \pi^+) = -i \frac{G_F}{\sqrt{2}} f_K F_0^{B*}(m_K^2)(m_B^2 - m_\pi^2) \\
(V_{ub} V_{us}^* a_1 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) [a_4 + a_{10} + (a_6 + a_8) r_\chi]) \\
-i \frac{G_F}{\sqrt{2}} f_B f_J f_\pi \\
\times (V_{ub} V_{us}^* V_{cs}^* a_2 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) \times \frac{3}{2} (a_9 - a_7)) \\
+i \frac{G_F}{2} f_B f_J f_\pi \\
\times (V_{ub} V_{us}^* V_{cs}^* a_2 + (V_{ub} V_{us}^* + V_{cb} V_{cs}^*) \times (b_3 - b_3^{cw})/2)
\]

where \(r_\chi = \frac{2 m_\pi^2}{(m_b - m_d)(m_b + m_s)}\) is the chirally-enhanced term in the penguin \(O_6\) matrix element. The annihilation term \(b_1\) is evaluated with the factor \(f_B f_J f_M\) included and normalized relative to the factor \(f_K F_0^{B*}(m_\pi^2)(m_\pi^2 - m_\pi^2)\) in the factorisable terms. For the \(B^- \to \pi^- \pi^0\) amplitude, we have:

\[
A(B^- \to \pi^- \pi^0) = -i \frac{G_F}{2} f_P F_0^{B*}(m_\pi^2)(m_B^2 - m_\pi^2) \\
(V_{ud} V_{us}^* (a_1 + a_2) + (V_{ud} V_{us}^* + V_{cd} V_{cs}^*) \times \frac{3}{2} (a_9 - a_7)) \\
\times \left(a_9 - a_7 + a_{10} + a_{sr_\chi} \right)
\]

We see that the \(B \to K\pi\) decay amplitudes consist of a QCD penguin(P) \(a_4 + a_6 r_\chi\), a color-allowed tree(T) \(a_1\), a color-suppressed tree(C) \(a_2\), a color-allowed electroweak penguin(EW) \(a_9 - a_7\), a color-suppressed electroweak penguin(EWC) \(a_1 + a_{sr_\chi}\) terms. (There are also the penguin contribution given by \(a_3^{ew} + a_3^{ew} r_\chi\) term not shown in the above expressions, for simplicity). Because of the relative large Wilson coefficients, the QCD penguin, the color-allowed tree and the color-allowed electroweak contribution are the major contributions in \(B \to K\pi\) decays. The \(B \to K\pi\) amplitude in Eqs. \(1\)–\(4\) are then given as the sum of the allowed-tree \(T\), the color-suppressed tree \(C\), the color-allowed electroweak penguin \(P_W\), the color-suppressed electroweak penguin, \(P_{WC}\), tree-annihilation \(A\) (the \(b_2\) terms in Eq.\(1\)–\(2\)) the penguin-induced weak annihilation \(P_A\). One can further simplify the expressions, by grouping together the penguin and penguin weak annihilation as an effective penguin \(P_{eff}\) as usually done\[28\], furthermore, since the CKM-suppressed, color-suppressed \(b_2\) terms are much smaller than the color-allowed tree term, we could also neglect \(A\), and put the tree terms and the CKM-suppressed part of \(P\) and \(P_A\) into an effective \(T_{eff}\) and \(C_{eff}\). The \(B \to K\pi\) amplitudes in terms of the effective penguin and tree amplitude are then (putting \(P_{eff} = P_{T}, T_{eff} = T, C_{eff} = C\), we have (in the notations of Ref.\[14\]):

\[
A(B^- \to K^- \pi^0) = \frac{1}{\sqrt{2}} (P_{e^{i\delta_P}} + T e^{i\delta_T} e^{i\gamma} + C e^{i\delta_C} e^{-i\gamma}) \\
+ P_W + \frac{2}{3} P_{WC},
\]

\[
A(B^- \to K^0 \pi^-) = P e^{i\delta_P} - \frac{1}{3} P_{WC},
\]

\[
A(B^0 \to K^- \pi^+) = P e^{i\delta_P} + T e^{i\delta_T} e^{-i\gamma} + \frac{2}{3} P_{WC},
\]

\[
A(B^0 \to K^0 \pi^0) = -\frac{1}{\sqrt{2}} (P_{e^{i\delta_P}} - C e^{i\delta_C} e^{-i\gamma}) \\
- P_W - \frac{1}{3} P_{WC}. \tag{6}
\]

with the strong phase \(\delta_P, \delta_T, \delta_C\) for the penguin, color-allowed and color-suppressed tree, respectively and the weak phase \(\gamma\) of the CKM matrix element \(V_{ub}\) is written explicitly in the color-allowed \(T\) and color-suppressed \(C\) terms. In terms of the relative strong phase \(\delta_P, \delta_T, \delta_C\), and to take into account of the fact that the real part of the penguin amplitude \(P\) is negative in QCDF, we have \(\delta_P = \delta_P + \pi + \delta_T\), and \(\delta_C = \delta_C + \delta_T\).

Consider now the CP-averaged \(\Gamma_{as}\) and CP-difference \(\Gamma_{as}\) for \(B \to K\pi\) decay rates are then, with \(\Gamma_{as} = (\Gamma(B \to K\pi) + \Gamma(B \to K\pi))/2, \Gamma_{as} = (\Gamma(B \to K\pi) - \Gamma(B \to K\pi)) \) and \(\Gamma(B \to K\pi)\) and \(\Gamma(B \to K\pi)\) denotes the decay rate for the corresponding charge-conjugate
mode. We have
\begin{align}
\Gamma_{av}(B^- \rightarrow K^- \pi^0) = \frac{P^2}{2} - PT \cos(\delta_{PT}) \cos(\gamma), \\
-PC \cos(\delta_{PT} - \delta_{CT}) \cos(\gamma) + TC \cos(\delta_{CT}), \\
-PPW \cos(\delta_{PT} + \delta_T) \cos(\gamma) + TPW \cos(\delta_{PT}) \cos(\gamma), \\
+CPW \cos(\delta_{CT} + \delta_T) \cos(\gamma) + \frac{T^2}{2} + \frac{C^2}{2} + \frac{P^2_W}{2}, \tag{7}
\end{align}
\begin{align}
\Gamma_{av}(B^- \rightarrow \bar{K}^0 \pi^-) = P^2 + PC \cos(\delta_{PT} - \delta_{CT}) \cos(\gamma), \\
+PPW \cos(\delta_{PT} + \delta_T) \cos(\gamma), \\
+CPW \cos(\delta_{CT} + \delta_T) \cos(\gamma) + \frac{C^2}{2} + \frac{P^2_W}{2}, \tag{8}
\end{align}
\begin{align}
\Gamma_{av}(\bar{B}^0 \rightarrow K^- \pi^+) = P^2 - 2PT \cos(\delta_{PT}) \cos(\gamma) + T^2, \tag{9}
\end{align}
\begin{align}
\Gamma_{av}(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0) = \frac{P^2}{2} + PC \cos(\delta_{PT} - \delta_{CT}) \cos(\gamma), \\
+PPW \cos(\delta_{PT} + \delta_T) \cos(\gamma), \\
+CPW \cos(\delta_{CT} + \delta_T) \cos(\gamma) + \frac{C^2}{2} + \frac{P^2_W}{2}, \tag{10}
\end{align}

where \(P, T, C \) and \(PW \) are positive and the negative real part of the penguin term has been taken into account in the phase \(\delta_P = \pi + \delta_{PT} + \delta_T \) as mentioned above. To simplify the analysis, we have neglected the color-suppressed electroweak penguin \(PW \) contribution which is smaller than the color-allowed electroweak penguin \(PW \) by an order of magnitude as can be seen from the \(a_8 \) and \(a_{10} \) terms in Eqs. [11, 12]. For the CP-difference decay rates, we obtain:
\begin{align}
\Gamma_{as}(B^- \rightarrow K^- \pi^0) = 2PT \sin(\delta_{PT}) \sin(\gamma), \\
+2PC \sin(\delta_{PT} - \delta_{CT}) \sin(\gamma) + 2TPW \sin(\delta_T) \sin(\gamma), \\
+2CPPW \sin(\delta_{CT} + \delta_T) \sin(\gamma), \tag{11}
\end{align}
\begin{align}
\Gamma_{as}(B^- \rightarrow \bar{K}^0 \pi^-) = 0, \tag{12}
\end{align}
\begin{align}
\Gamma_{as}(\bar{B}^0 \rightarrow K^- \pi^+) = 4PT \sin(\delta_{PT}) \sin(\gamma), \tag{13}
\end{align}
\begin{align}
\Gamma_{as}(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0) = -2PC \sin(\delta_{PT} - \delta_{CT}) \sin(\gamma), \\
+2CPPW \sin(\delta_{CT} + \delta_T) \sin(\gamma). \tag{14}
\end{align}

and the CP asymmetries are then given by:
\begin{align}
A_{CP}(B \rightarrow K\pi) = \frac{\Gamma_{as}(B \rightarrow K\pi)}{2\Gamma_{av}(B \rightarrow K\pi) \cos(\gamma)} \tag{15}
\end{align}

As the \(B \rightarrow K\pi \) branching ratios have been measured with an accuracy at the 10^{-6} level, it is possible to use the differences in the measured branching ratios and CP asymmetry to determine the relative \(T/P, C/T \) and the strong phase \(\delta_{PT}, \delta_{CT} \), as done for \(B \rightarrow \pi\pi \) decays\[^{24, 30}\] in which the relative strong phase \(\delta_{PT} \) can be extracted from the measured mixing-induced and direct CP asymmetry parameters \(S_{\pi^+\pi^-} \) and \(C_{\pi^+\pi^-} \). For example, by neglecting the \((P/T)^2 \) term in \(S_{\pi^+\pi^-} \), one would obtain:
\begin{align}
tan(\delta_{PT}) \approx -C_{\pi^+\pi^-}/S_{\pi^+\pi^-} \tag{16}
\end{align}

which gives, for \(\bar{B}^0 \rightarrow \pi^-\pi^+ \), \(\delta_{PT} = -36.5^\circ \) close to the value \(-41.3^\circ \) in a more precise determination\[^{24}\]. Similar determination of the strong phase could be done for \(B \rightarrow K\pi \) decays by using the quantity
\begin{align}
D = 2(\Gamma_{av}(\bar{B}^0 \rightarrow K^- \pi^+) - \Gamma_{as}(B^- \rightarrow \bar{K}^0 \pi^-) - T^2) \tag{17}
\end{align}

which is given by:
\begin{align}
D = -4PT \cos(\delta_{PT}) \cos(\gamma)
\end{align}

The ratio \(R_{K^-\pi^+} = \frac{\Gamma_{as}(\bar{B}^0 \rightarrow K^- \pi^+)/D}{\Gamma_{as}(B^- \rightarrow \bar{K}^0 \pi^-)/D} \) is then:
\begin{align}
R_{K^-\pi^+} = -\tan(\delta_{PT}) \tan(\gamma)
\end{align}

from which we obtain:
\begin{align}
\tan(\delta_{PT}) = \frac{-R_{K^-\pi^+}}{\tan(\gamma)}, \\
\sin(\delta_{PT}) = -\frac{R_{K^-\pi^+}}{\sqrt{(\tan^2(\gamma) + R_{K^-\pi^+}^2)}} \tag{19}
\end{align}

From the measured \(B \rightarrow K\pi \) branching ratios and the QCDF expression for \(T^2 \), we obtain \(D = -5.35 \), \(R_{K^-\pi^+} = 0.71 \) (in terms of the branching ratios and in unit of 10^{-6}) which give,
\begin{align}
\tan(\delta_{PT}) = -0.30, \quad \delta_{PT} = -17^\circ. \tag{20}
\end{align}

within an error of \(20 - 30\% \), including a small theoretical uncertainty in the use of QCDF for \(T^2 \) which makes only a small contribution to \(D \) relative to the main tree-penguin interference term. This value is smaller than the value \(-36.5^\circ \) for \(\delta_{PT} \) in \(\bar{B}^0 \rightarrow \pi^-\pi^+ \) mentioned above, but the small value of the strong phase \(\delta_{PT} \) we obtained here from \(B^0 \rightarrow K^- \pi^+ \) could be due to the cancellation between the factorisable term, penguin-induced weak annihilation and FSI charmed meson intermediate states contribution to produce a negative CP asymmetry in \(B^0 \rightarrow K^- \pi^+ \) decay\[^{25}\].

We now come to the \(A_{CP} \) puzzle. As mentioned earlier, the solution of the puzzle requires a moderate \(C/T \) ratio, but with a strong phase \(\delta_{CT} \) sufficiently large to keep the real part of the color-suppressed tree contribution close to QCDF prediction, like those computed for \(B \rightarrow \pi\pi \) decays\[^{31}\]. Then the large absorptive part could find an explanation from FSI effects as mentioned earlier. Indeed, as shown in the following, such a large strong phase for \(C \) is required to produce a large \(C \) asymmetry for \(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0 \). Defining \(R_{K^0\pi^0} = \frac{\Gamma_{as}(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0)}{\Gamma_{av}(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0)} \), we have:
\begin{align}
R_{K^0\pi^0} = -\frac{1}{2T} \frac{C}{ \frac{3}{2} F_{\bar{B}^0 K} \left(\frac{1}{2} \right) / \left| a_6 - a_7 \right| } \left(\sin(\delta_{CT}) \tan(\gamma) + \cos(\delta_{CT}) R_{K^-\pi^+} + RW \sin(\delta_{CT} + \delta_T) \sqrt{(R_{K^-\pi^+}^2 + \tan^2(\gamma))} \right) \tag{21}
\end{align}

where \(RW = P_{W}/P \) which is given approximately by QCDF\[^{28}\]:
\begin{align}
RW = \frac{3 f_{\pi} F_{\bar{B}^0 \pi\pi}}{2 f_{K} F_{\bar{B}^0 \pi}} \frac{|a_6 - a_7|}{|a_4 + a_6 f_{\chi}|} \approx 0.13 \tag{22}
\end{align}

The CP asymmetry for \(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0 \) is then
\begin{align}
A_{CP}(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0) = \frac{D R_{K^0\pi^0}}{2 |B(\bar{B}^0 \rightarrow \bar{K}^0 \pi^0)|} \tag{23}
\end{align}
with D given in terms of the CP-averaged $B \to K\pi$ branching ratios, experimentally, $D = -5.35$, as mentioned above (in unit of 10^{-6}).

A nice feature of the above expression for $R_{K^0\pi^0}$ is that it gives the CP asymmetry for $B^0 \to \bar{K}^0\pi^0$ in terms of the strong phase δ_{CT}, the measured $B^+ \to K^-\pi^+$ CP asymmetry and the weak phase γ. For a large strong phase δ_{CT}, the $\cos(\delta_{CT})R_{K^-\pi^+}$ term is suppressed so that the dependence of $R_{K^0\pi^0}$ on $R_{K^-\pi^+}$ is weak. There is also some dependence on δ_T in the electroweak contribution to $R_{K^0\pi^0}$ which could produce a small uncertainty on the CP asymmetry, about $10 - 15\%$, roughly the size of the electroweak penguin contribution. Thus the CP asymmetry for $B^0 \to \bar{K}^0\pi^0$ depends essentially on the strong phase of the color-suppressed tree contribution δ_{CT}.

Numerically, from the measured $B(B^0 \to K^-\pi^+)$, the CP asymmetry $A_{CP}(\bar{B}^0 \to K^-\pi^+) \approx 76^\circ$, and taking $\delta_T = 30^\circ$, we obtain:

$$A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0) = 0.27 \frac{C}{T} [1.31 \sin(\delta_{CT}) + 0.44 \cos(\delta_{CT})]$$

Thus a large negative value for δ_{CT} could produce a large negative $A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0)$, which is needed to accommodate the measured positive asymmetry for $(B^- \to K^-\pi^0)^4$. For example, with $\delta_{CT} = -72^\circ$, one would get $A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0) = -0.30(C/T)$ which implies $C/T = 1/2$ for $A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0) = -0.15$. If we neglect the electroweak penguin P_W term, we would have:

$$A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0) = 0.27 \frac{C}{T} [1.17 \sin(\delta_{CT}) + 0.35 \cos(\delta_{CT})]$$

independent of δ_T. The same value for the CP asymmetry would imply $\delta_{CT} = -75^\circ$, close to the value obtained with electroweak penguin. Thus the determination of C/T will not be greatly affected by the electroweak penguin contribution. In general from QCDF one expects a small δ_T, in our calculation we will put $\delta_T = 30^\circ$. In terms of the measured $A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0)$, from Eq. (23), C/T is then:

$$C/T = \frac{A_{CP}(\bar{B}^0 \to \bar{K}^0\pi^0)}{0.27 [1.31 \sin(\delta_{CT}) + 0.44 \cos(\delta_{CT})]}$$

As shown in Fig. 1, for the strong phase in the range $-(50^\circ - 70^\circ)$, C/T is of the order $0.3 - 0.4$ for an asymmetry of -0.10, with a larger asymmetry of -0.15, C/T become larger, of the order $0.5 - 0.6$. Thus in an essentially model-independent calculation, we have shown that a large and negative $\bar{B}^0 \to \bar{K}^0\pi^0$ CP asymmetry, which is required to produce a sizable positive CP asymmetries in $B^- \to K^-\pi^0$, implies a large color-suppressed tree C term and its strong phase in $B \to K\pi$ decay, with a ratio C/T of the order $0.4 - 0.6$ and the strong phase δ_{CT} in the range $-(50 - 70)^\circ$. Indeed, a recent analysis in QCDF shows that the $A_{CP} B \to K\pi$ puzzle could be solved with a color-suppressed tree a_2 term large and having a large negative strong phase γ. In the next section, we will show that, by adding to the QCDF amplitude, an additional color-suppressed tree contribution with this size to reverse the sign of the $B^- \to K^-\pi^0$ asymmetry, together with the additional penguin terms (charming penguin etc.), indeed good agreement with experiment is obtained for all the $B \to K\pi$ branching ratios and CP asymmetries.

III. $B \to K\pi$ DECAYS IN QCDF WITH ADDITIONAL PENGUIN AND COLOR-SUPPRESSED CONTRIBUTIONS

In a previous paper, we have shown that the $B \to K\pi$ branching ratios and the $B^0 \to K^+\pi^-\bar{\nu}$ CP asymmetry could be described by QCDF with a mainly absorptive additional penguin terms (charming penguin etc.), with a strength 30% of the penguin term. However the predicted CP asymmetry for $B^- \to K^-\pi^0$ is of the same sign and magnitude to that for $B^0 \to K^-\pi^+$, in disagreement with the measured value. Therefore, to reverse the sign of the predicted asymmetry, we need a large negative $B^0 \to K^0\pi^0$ CP asymmetry and hence a color-suppressed tree term with large magnitude and large negative strong phase. By adding this term to the QCDF $B \to K\pi$ amplitudes given in our previous work, one would obtain correct predictions for $B \to K\pi$ branching ratios and CP asymmetries as will be shown below.

With the same hadronic, CKM parameters and the additional penguin term δP given in Eq. (25), and writing the color-suppressed additional term as $\delta C = ra_2(k_1 + i k_2)$ where ra_2 is the real part of a_2, and taking $k_1 = 0$, $k_2 = -1.7$, the computed branching ratios and direct CP asymmetries, with $\rho_H = 1$, $\phi_H = 0$ and $\phi_A = -55^\circ$ as in scenario S4 of (28) are shown in Fig. 2 and Fig. 3 as function of ρ_A. For convenience we also give in Table II and Table III the computed values at $\rho_A = 1$ as in S4 with and without the additional penguin-like δP and color-suppressed δC contribution. We see that with these additional contributions, all the branching ratios and CP asymmetries are in good agreement with the measured values. In particular, the $B^0 \to K^0\pi^0$ branching ratio is slightly larger than the previous predicted value of 8.9×10^{-6} due to the additional δC contribution and is closer to experiment, while other predicted branching ratios remain practically unchanged.

In our previous work, we give predictions for the $B^0 \to K^0\pi^0$, $B^- \to K^-\pi^0$ and $B^0 \to K^-\pi^+$ branching ratios in terms of the computed differences $2B(B^0 \to K^0\pi^0) - r_\pi B(B^- \to K^-\pi^+)$, $2r_\pi B(B^- \to K^-\pi^+) - B(B^0 \to K^-\pi^+)$, $B(B^0 \to K^-\pi^+) - r_\pi B(B^- \to K^0\pi^-)$ and the measured $B^0 \to K^-\pi^+$ and $B^- \to K^0\pi^-$ branching ratios. The good agreement with experiment
FIG. 1: The ratio C/T plotted against Δ_{CT}, the strong phase of the color-suppressed tree contribution C. (a1,a2) are the curves for $\mathcal{A}_{\text{CP}}(\bar{B}^0 \to \bar{K}^0\pi^0) = -0.10$ with δ_T taken to be 0.0 and 30°, respectively, (b1,b2) are similar curves for $\mathcal{A}_{\text{CP}}(\bar{B}^0 \to \bar{K}^0\pi^0) = -0.15$.

FIG. 2: The computed and measured CP-averaged branching ratios. The horizontal line are the measured values [1] with the unit of 10^{-6}, the gray areas represent the experimental errors. (a), (b), (c), (d) in the left and right figure represent the values for $B^- \to K^-\pi^0$, $B^- \to K^0\pi^-$, $\bar{B}^0 \to K^-\pi^+$ and $\bar{B}^0 \to K^0\pi^0$ respectively. The curves (a1)-(d1) and (a2)-(d2) are the corresponding QCDF predicted values for $\phi_A = -55^\circ$, without and with additional penguin-like δP and color-suppressed δC contribution respectively.

Decay Modes	$\delta P = 0$	$\delta P \neq 0$	$\delta C = 0$	$\delta C \neq 0$	Exp [1]
$B^- \to \pi^-\pi^0$	5.7	5.7	5.59 ± 0.4		
$B^- \to K^-\pi^0$	10.3	12.6	12.9 ± 0.6		
$B^- \to \bar{K}^0\pi^-$	18.1	22.9	23.1 ± 1.0		
$\bar{B}^0 \to K^+\pi^0$	15.5	19.9	19.4 ± 0.6		
$\bar{B}^0 \to \bar{K}^0\pi^0$	6.8	9.2	9.8 ± 0.6		

TABLE I: The CP-averaged $B \to K\pi$ Branching ratios in unit of 10^{-6} in QCDF with and without additional penguin-like δP and color-suppressed δC contribution and with $\rho_A = 1.0$, $\phi_A = -55^\circ$.

shows that QCDF could describe rather well the electroweak penguin contribution. We give here similar predictions with the additional color-suppressed term included (in unit of 10^{-6}):

$\mathcal{B}(\bar{B}^0 \to \bar{K}^0\pi^0) = 9.3 \pm 0.3$, \hspace{1cm} (27)

$\mathcal{B}(B^- \to K^-\pi^0) = 12.4 \pm 0.3$, \hspace{1cm} (28)

$\mathcal{B}(\bar{B}^0 \to K^-\pi^+) = 20.1 \pm 0.6$, \hspace{1cm} (29)

Decay Modes	$\delta P = 0$	$\delta P \neq 0$	$\delta C = 0$	$\delta C \neq 0$	Exp [1]
$B^- \to \pi^-\pi^0$	0.0	0.0	0.06 ± 0.05		
$B^- \to K^-\pi^0$	0.01	0.06	0.05 ± 0.025		
$B^- \to \bar{K}^0\pi^-$	0.004	0.01	-0.009 ± 0.025		
$\bar{B}^0 \to K^-\pi^+$	-0.02	-0.08	-0.098 ± 0.012		
$\bar{B}^0 \to \bar{K}^0\pi^0$	-0.02	-0.11	-0.01 ± 0.10		

TABLE II: The direct $B \to K\pi$ CP asymmetries in QCDF with and without additional penguin-like contribution δP and color-suppressed δC contribution and with $\rho_A = 1.0$, $\phi_A = -55^\circ$.

We see that because of the large color-suppressed contribution, the $\bar{B}^0 \to \bar{K}^0\pi^0$ predicted branching ratio is larger than the previous predicted value $(9.0 \pm 0.3) \times 10^{-6}$ and is closer to experiment, the other two predicted branching ratios are almost unchanged and are in good agreement with experiment within the current accuracy.
FIG. 3: The same as in Fig. 2 but for the computed CP asymmetries.

IV. CONCLUSION

By adding mainly absorptive additional penguin-like and color-suppressed tree terms to the QCDF $B \to K\pi$ decay amplitudes, we show that QCDF could successfully predict the $B \to K\pi$ branching ratios and CP asymmetries. In particular, with a large negative strong phase for the color-suppressed tree contribution, we obtain the correct magnitude and sign for the $\bar{B}_0 \to K^-\pi^+$ and $B^- \to K^-\pi^0$ CP asymmetry, and a large negative asymmetry for $\bar{B}_0 \to \bar{B}_0 \pi^0\pi^0$. Confirmation of these CP asymmetries by new measurements and the measurement of $B_0 \to \pi^0\pi^0$ CP asymmetry would be an evidence for a large C/T ratio and a large strong phase in $B \to \pi\pi$ and $B \to K\pi$ decays.

Acknowledgments

I would like to thank Hai-Yang Cheng for useful discussions. This work was supported in part by the EU contract No. MRTN-CT-2006-035482, "FLAVIAnet".

[1] Heavy Flavor Averaging Group, E. Barberio et al, arXiv:0808.1297 [hep-ex].
[2] Y. Y. Charng and H. n. Li, Phys. Rev. D 71, 014036 (2005); H.-n. Li, S. Mishima, and A. I. Sanda, ibid 72, 074005 (2005).
[3] C. S. Kim, S. Oh and C. Yu, Phys. Rev. D 72, 074005 (2005) ; D. Chang, C. S. Chen, H. Hatanaka, and C. S. Kim, Talk given at the third International Conference on Flavor Physics(ICFP 2005), Chong-ri, Taiwan, R. O. C, Oct. 2005, arXiv:hep-ph/0510328.
[4] R. Fleischer, Talk given at 4th International Workshop on the CKM Unitarity Triangle (CKM 2006), Nagoya, Japan, 12-16 Dec 2006, hep-ph/0701217.
[5] H. n. Li and S. Mishima, arXiv:0901.1272 [hep-ph].
[6] M. Gronau and J. L. Rosner, Phys. Lett. B 644, 237 (2007).
[7] R. Fleischer, S. Jager, D. Pirjol and J. Zupan, Phys. Rev. D 78, 111501 (2008).
[8] C. S. Kim, S. Oh and Y. W. Yoon, Phys. Lett. B 665, 231 (2008).
[9] M. Gronau and J. L. Rosner, Phys. Lett. B 666, 467 (2008).
[10] M. Ciuchini, E. Franco, G. Martinelli, M. Pierini and L. Silvestrini, Phys. Lett. B 674, 197 (2009).
[11] S. Baek, C. W. Chiang and D. London, Phys. Lett. B 675, 59 (2009).
[12] S. Baek, C. W. Chiang, M. Gronau, D. London and J. L. Rosner, arXiv:0905.1495 [hep-ph].
[13] S. Khalil, A. Masiero, and H. Murayama, arXiv:0908.3216 [hep-ph].
[14] H. Y. Cheng, C. K. Chua, arXiv:0908.3506 [hep-ph]; arXiv:0910.5229 [hep-ph].
[15] C. W. Chiang, M. Gronau, J. L. Rosner and D. A. Suprun, Phys. Rev. D 70, 034020 (2004) ; Y. L. Wu and Y. F. Zhou, Phys. Rev. D 72, 034037 (2006) ; C. W. Chiang and Y. F. Zhou, JHEP 0612, 027 (2006).
[16] C. Isola, M. Ladisa, G. Nardulli, T. N. Pham, and P. Santorelli, Phys. Rev. D 64 041029 (2001), ibid., Phys. Rev. D 65 094005 (2002).
[17] M. Ciuchini, E. Franco, G. Martinelli, L. Reina, and L. Silvestrini, Phys. Lett. B 316 127 (1993); M. Ciuchini, E. Franco, G. Martinelli, and L. Reina, Nucl. Phys. B 415 403 (1994).
[18] C. Isola, M. Ladisa, G. Nardulli, and P. Santorelli, Phys. Rev. D 68 114001 (2003).
[19] M. Ladisa, V. Laporta, G. Nardulli, and P. Santorelli, Phys. Rev. D 70 114025 (2004).
[20] P. Colangelo, F. De Fazio and T. N. Pham, Phys. Lett. B 542, 71 (2002); Phys. Rev. D 69 054023 (2004).
[21] F. Colangelo, F. De Fazio and T. N. Pham, Phys. Lett. B 597 291 (2004).
[22] F. Colangelo, T. N. Pham, and A. Prapotnik Brdnik, Phys. Rev. D 72 114001 (2005).
[23] S. Jou, T. N. Pham, and P. Santorelli, Phys. Rev. D 74, 014010 (2006) ; T. N. Pham, Talk given at Workshop on Theory, Phenomenology and Experiments in Heavy Flavor...
Physics, Capri, Italy, 29-31 May 2006, Nucl. Phys. B (Proc.Suppl.) 163, 35 (2007).

[25] T. N. Pham, [arXiv:0908.2320 [hep-ph]].

[26] A. Ali, G. Kramer, and C. Lü, Phys. Rev. D 58, 094009 (1998).

[27] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Nucl. Phys. B 606, 245 (2001).

[28] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).

[29] D. S. Du, H. Gong, J. F. Sun, D. S. Yang and G. H. Zhu, Phys. Rev. D 65 074001 (2002).

[30] L. Wolfenstein and F. Wu, Phys. Rev. D 72, 077501 (2005).

[31] M. Beneke and S. Jager, Nucl. Phys. B 751, 160 (2006); V. Pilipp, ibid 794, 154 (2008); G. Bell, ibid 822, 172 (2009).