KSBA SURFACES WITH ELLIPTIC QUOTIENT SINGULARITIES, $\pi_1 = 1$, $p_g = 0$, AND $K^2 = 1, 2$

ARÍE STERN AND GIANCARLO URZÚA

Abstract. Among log canonical surface singularities, the ones which have a rational homology disk smoothing are the cyclic quotient singularities $\frac{1}{n^a}(1, na - 1)$ with $\gcd(a, n) = 1$, and three distinguished elliptic quotient singularities. We show the existence of smoothable KSBA normal surfaces with $\pi_1 = 1$, $p_g = 0$, and $K^2 = 1, 2$ for each of these three singularities. We also give a list of new (and old) normal surface singularities in smoothable KSBA surfaces for invariants $\pi_1 = 1$, $p_g = 0$, and $K^2 = 1, 2, 3, 4$.

1. Introduction

An elliptic quotient singularity is a normal two dimensional singularity which has discrepancy (-1), and its canonical covering (index one cover) is a simple elliptic singularity. Although there are four possible groups to quotient a simple elliptic singularity, mainly $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, and $\mathbb{Z}/6\mathbb{Z}$, there are infinitely many such singularities. The list can be found in [GI10, §4]. Among them, there are only three which admit a smoothing whose Milnor fiber has second Betti number equals to zero, i.e. a rational homology disk smoothing (c.f. [Wahl81]). This smoothing is a \mathbb{Q}-Gorenstein smoothing over a smooth analytic curve germ; see [Wahl13] for a general discussion. In fact these three elliptic quotient singularities and Wahl singularities (i.e. cyclic quotient singularities $\frac{1}{n^a}(1, na - 1)$ with $\gcd(n, a) = 1$) form the complete list of log canonical singularities which have a rational homology disk smoothing.

Let $(P \in X)$ be one of the three elliptic quotient singularities above. Then there is minimal resolution $\pi: \tilde{X} \to X$ such that the exceptional divisor consists of 4 smooth rational curves E_1, E_2, E_3, and F. The curves E_i are disjoint, each meets the central curve F transversally at one point, and

$$[-E_1^2, -E_2^2, -E_3^2; -F^2] = [3, 3, 3; 4], [4, 2, 4; 3], \text{ or } [2, 3, 6; 2]$$

which correspond to $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z}$, and $\mathbb{Z}/6\mathbb{Z}$ respectively. Since these singularities are determined by their exceptional divisors, we refer to
them using the symbol $[-E_1^2, -E_2^2, -E_3^2; -F^2]$. The set of these three singularities will be denoted by $\mathbb{Q}Eq$.

Let X be a normal projective surface with either one Wahl singularity or one $\mathbb{Q}Eq$ singularity. Assume X has no local-to-global obstructions to deform. Then the surface X determines a codimension one component of the Kollár–Shepherd-Barron–Alexeev (KSBA) boundary of the moduli space of surfaces of general type with fixed topological invariants $\chi(O_X)$ and K_X^2; c.f. [H11]. In the pioneering work [LP07], Lee and Park show the existence of such surfaces (see [Urz13a]) for invariants $p_g = 0$ (and so $\chi = 1$), trivial topological fundamental group, and $K^2 = 1, 2$. Using a similar strategy, in this paper we prove the existence of such surfaces for all the $\mathbb{Q}Eq$ singularities and same invariants.

In §2, we explain the Lee-Park method [LP07] adapted to our situation. In §3 and §4, we show the existence of the above mentioned KSBA surfaces with $\mathbb{Q}Eq$ singularities for $K^2 = 1$ and $K^2 = 2$ respectively. In §5, we list the known Wahl singularities appearing for invariants $p_g = 0$, $\pi_1 = 1$, and $K^2 = 1, 2, 3, 4$ (the allowed K^2 for surfaces with no-local-to-global obstructions). In that list we show many new singularities. In particular we achieve the highest known indices for $K^2 = 2$ ($n = 58$), and for $K^2 = 3$ ($n = 123$). Also, we identify for each singularity the minimal smooth model of the general surface of the corresponding KSBA divisor, using the explicit birational geometry in [HTU13] (see also [Urz13a]). The majority of them are rational surfaces, for explicitness one can use [Urz13b].

Notation. We use Kodaira’s notation for singular fibers of elliptic fibrations. A canonical divisor of a normal surface S is denoted by K_S. The strict transform of a curve under a birational map is denoted by the same letter. A SNC divisor in a smooth surface is a nodal divisor formed by nonsingular curves. We denote de dual of F by F^\vee. We write $\pi_1(A)$ for the topological fundamental group of A.

Acknowledgements. We thank H. Park and D. Shin for providing us the list [PSlist]. This is part of the master’s thesis [S13] of Arié Stern at the Pontificia Universidad Católica de Chile. Both authors were supported by a FONDECYT Inicio grant funded by the Chilean Government (11110047).

2. The Lee-Park method

In this section we explain the Lee-Park method in [LP07] slightly modified for $\mathbb{Q}Eq$ singularities. The steps below will be explicitly shown in each of the examples of the upcoming sections.
Pencil of cubics. We start with a suitable pencil of cubics in \mathbb{P}^2 which produces an elliptic fibration with sections. By blowing ups this fibration, we construct the exceptional divisors of Wahl and $\mathbb{Q}Eq$ singularities. Singular fibers and sections of this elliptic fibration, and maybe some other special curves, give us curves to begin the construction of the exceptional divisors. Many such exceptional configurations can be constructed from a given elliptic fibration. The point is that we need a “equilibrium” on some data to construct the KSBA surface X we want. This surface X will be the contraction of the Wahl and/or $\mathbb{Q}Eq$ configurations. Notice that the configurations are exceptional divisors of rational singularities, and so by Artin’s criterion [BHPV04, III §3] they can be contracted to a normal projective surface X.

No local-to-global obstructions. Given a normal projective surface X, we say that it has no-local-to-global obstructions to deform if any deformation of each of the singularities of X can be glued together to a global deformation of X. The obstruction relies on $H^2(X, \Omega_X^1 \vee)$.

Lemma 2.1. Let Z be a nonsingular projective surface. Let W_1, \ldots, W_r be disjoint exceptional divisors in Z of either Wahl or $\mathbb{Q}Eq$ singularities. Assume that $H^2(Z, \Omega_Z^1 \log(\sum_{i=1}^r W_i))^\vee = 0$. Let $f: Z \to X$ be the contraction of W_1, \ldots, W_r. Then X has no-local-to-global obstructions to deform.

Proof. The key is to prove $R^1 f_*(\Omega_Z^1 \log (\sum_{i=1}^r W_i))^\vee = 0$. For this, we only need that the singularities are rational and taut, to then apply the argument in [LP07, Lemma 1]. Note that $\mathbb{Q}Eq$ are rational and taut. See also [Wahl11, §8]. After that, it follows through the same argument as in [LP07, Theorem 2]. □

With the following lemmas one can prove the vanishing of the above cohomology in many cases. Their proofs can be found in [LP07] and [PSU13].

Lemma 2.2. Let $g: Y \to \mathbb{P}^1$ be an elliptic fibration with at least one section. Assume Y has two singular fibers F_1 and F_2 of type I_n and I_m with $n, m \geq 1$. Let $\pi: Y' \to Y$ be the blow-up of Y in a node of F_1 and in a node of F_2. Then $H^2(Y', \Omega_{Y'}^1, (\log(F_1 + F_2))^\vee) = 0$. This is also true if we consider only one singular fiber.

Lemma 2.3. Let Y be a nonsingular projective surface, and let D be a SNC divisor. Let $\pi: Y' \to Y$ be the blow-up of Y at some point, and let E be the corresponding (-1)-curve. Then, $H^2(Y, \Omega_Y^1, (\log D)^\vee) = H^2(Y', \Omega_{Y'}^1, (\log (D + E))^\vee).$
Furthermore, if \(G \) is a \((-1)\)-curve on \(Y \) such that \(D + G \) is a SNC divisor, then \(H^2(Y, \Omega^1_Y(\log(D))^\vee) = H^2(Y, \Omega^1_Y(\log(D + G))^\vee) \).

Lemma 2.4. Let \(Y \) be a nonsingular projective surface, and let \(D \) be a SNC divisor. Assume that there exists configurations of curves \(\{D_1, \ldots, D_r\} \) which correspond to disjoint exceptional divisors of ADE singularities. Assume that for \(1 \leq i \leq r \) we have \(D \cap D_i = \emptyset \). Then \(H^2(Y, \Omega^1_Y(\log(D))^\vee) = H^2(Y, \Omega^1_Y(\log(D + \sum_{i=1}^r D_i))^\vee) \).

Let \(X \) be a normal projective surface with no-local-to-global obstructions to deform, and only Wahl and \(\mathbb{Q}Eq \) singularities. Then, there are partial \(\mathbb{Q} \)-Gorenstein smoothings \(X \subset \mathcal{X} \to 0 \in \mathcal{D} \) of \(X \) over an analytic smooth curve germ \(\mathcal{D} \) for any subset of singularities of \(X \). This is, the deformation \(\mathcal{X} \to \mathcal{D} \) is locally on the singularities of \(X \) either trivial (preserving the singularity) or a rational homology disk smoothing.

Numerical invariants. Assume \(X \) to be a rational surface, as it will be in our examples. Let \(X \subset \mathcal{X} \to 0 \in \mathcal{D} \) be any smoothing of \(X \). Then by [GS83 §3], the first Betti number of \(X_t \) is constant for all \(t \), where \(X_t \) is the fiber at \(t \). This implies that the irregularity \(q(X_t) = \dim_{\mathbb{C}} H^1(\mathcal{O}_{X_t}) = 0 \). Since \(\chi(X_t) \) is independent of \(t \), we also have \(p_g(X_t) = \dim_{\mathbb{C}} H^2(\mathcal{O}_{X_t}) = 0 \).

When \(X \subset \mathcal{X} \to 0 \in \mathcal{D} \) is a partial \(\mathbb{Q} \)-Gorenstein smoothing, then \(K^2_{X_t} = K^2_X \) for any \(t \). We use the following known fact to compute it.

Proposition 2.5. Let \(X \) be a normal projective surface with only Wahl and \(\mathbb{Q}Eq \) singularities \(Q_1, \ldots, Q_n \). Let \(Z \to X \) be the minimal resolution, and let \(l_i \) be the number of exceptional curves over \(Q_i \). Then, \(K^2_X = K^2_Z + \sum_{i=1}^n l_i \).

Positivity of \(K \). Each of our examples \(X \) will be built from a contraction \(Z \to X \). We then manage to write the pullback in \(Z \) of \(K_X \) with positive rational coefficients. After that, we intersect it with each of the curves in its support, and verify that these intersection numbers are nonnegative. This implies that \(K_X \) is nef, and so \(K_{X_t} \) is nef, where \(X \subset \mathcal{X} \to 0 \in \mathcal{D} \) is any partial \(\mathbb{Q} \)-Gorenstein smoothing of \(X \). Given that \(K_X \) is nef, we use the Nakai-Moishezon criteria to prove ampleness. We determine precisely which are the curves whose intersection with \(K_X \) is zero, and then contract them (if necessary) to obtain the canonical model. It turns out that, in our examples, the pullback of \(K_X \) under the contraction \(Z \to X \) can be written with a \(\mathbb{Q} \)-effective support which contains all the components of a fiber of \(Z \to \mathbb{P}^1 \). Thus, we only need to look at components of fibers in
$Z \to \mathbb{P}^1$, that is a simple verification. Notice that ampleness of K_X implies ampleness of K_{X_t} for any t.

Fundamental group. We use the same method as in [LP07] to compute the fundamental group of X_t from the data in X. The difference will be the local fundamental group of the $\mathbb{Q}E_q$ singularities. Below we compute these groups using [Mum61].

Let $(P \in X)$ be a $\mathbb{Q}E_q$ singularity, and let \tilde{X} be its minimal resolution. We are going to compute the fundamental group of the complement in \tilde{X} of the exceptional divisor $E_1 + E_2 + E_3 + F$ (see §1 for notation). Let α_i be a loop around the curve E_i, and let γ be a loop around the central curve F. By [Mum61, p.12], we have that the fundamental group is generated by these loops subject to the relations:

\[
\alpha_i \gamma = \gamma \alpha_i, 1 = \gamma \alpha_1^{E_1^2}, 1 = \gamma \alpha_2^{E_2^2}, 1 = \gamma \alpha_3^{E_3^2}, 1 = \alpha_1 \alpha_2 \alpha_3 \gamma^{F^2}.
\]

From these relations, for the singularity $[4, 2, 4; 3]$, we get that $\gamma = \alpha_1^4 = \alpha_3^4$ and $\alpha_2 = \alpha_1^{-1} \alpha_3^{11}$. Hence

\[
\pi_1(\tilde{X} \setminus [4, 2, 4; 3]) = \langle \alpha_1, \alpha_3 | \alpha_1^4 = \alpha_3^4 \rangle.
\]

Analogously, for the other two $\mathbb{Q}E_q$ singularities we get that

\[
\pi_1(\tilde{X} \setminus [3, 3, 3; 4]) = \langle \alpha_1, \alpha_3 | \alpha_1^3 = \alpha_3^3 \rangle
\]

and $\pi_1(\tilde{X} \setminus [2, 3, 6; 2]) = \langle \alpha_1, \alpha_3 | \alpha_1^2 = \alpha_3^0 \rangle$.

3. $K^2 = 1$

3.1. $[4, 2, 4; 3]$. Let L_1, \ldots, L_6 be lines in general position in \mathbb{P}^2. Consider the pencil

\[
\Gamma_{\lambda, \mu} = \{ \lambda L_1 L_2 L_3 + \mu L_4 L_5 L_6 = 0 \}
\]

with $[\lambda : \mu] \in \mathbb{P}^1$, and let $Y \to \mathbb{P}^1$ be the elliptic fibration obtained by blowing up \mathbb{P}^2 at the base points. Note that there are two I_3 singular fibers in $Y \to \mathbb{P}^1$, which consists of the strict transforms of L_1, L_2, L_3 and L_4, L_5, L_6. There are also six nodal singular fibers. Let $Z \to Y$ be the blow-up on 10 points of Y as shown in the picture below. Relevant curves are the sections E_1, E_2, E_3, the chosen nodal fiber F, and the exceptional curves G_1, \ldots, G_{10} of $Z \to Y$, whose subindices follow the order of the blow-ups.

Let $Z \to X$ be the contraction of the following three Wahl configurations, and one $[4, 2, 4; 3]$:

\[
E_1 = [4], \ E_2 = [4], \ G_1, F, E_3, L_5, L_4 = [2, 7, 2, 2, 3], \ L_1, G_3, L_3; L_2 = [4, 2, 4; 3].
\]
Then we have, by applying several times the lemmas in Section 2, that X has no-local-to-global obstructions to deform (see [LP07, Urz13a]).

We compute via Proposition 2.5 that $K^2_X = -10 + 1 + 1 + 4 + 5 = 1$, and so a \mathbb{Q}-Gorenstein smoothing of X is a nonsingular projective surface with $q = p_g = 0$ and $K^2 = 1$.

We have that
\[K_Z \equiv \frac{-F}{2} + \frac{-L_1}{2} + \frac{-L_2}{2} + \frac{-L_3}{2} + \frac{G_2 + G_3}{2} + \frac{3G_4}{2} + \frac{G_5 + G_7}{2} + \frac{G_8 + G_9}{2} + G_{10} \]
and, by adding the discrepancies, the pullback $f^*(K_X)$ is numerically equivalent to
\[\frac{7}{18}F + \frac{1}{4}L_1 + \frac{1}{2}L_2 + \frac{1}{4}L_3 + \frac{4}{9}G_1 + \frac{1}{2}G_2 + G_3 + \frac{3}{2}G_4 + \frac{1}{2}G_5 + \frac{1}{2}G_7 + \frac{1}{2}G_8 + \frac{1}{2}G_9 + G_{10} + \frac{1}{2}E_1 + \frac{1}{2}E_2 + \frac{7}{9}E_3 + \frac{5}{9}L_4 + \frac{6}{9}L_5. \]

As explained in Section 2, we now intersect $f^*(K_X)$ with all the curves in its \mathbb{Q}-effective support. One can verify that these numbers are nonnegative. In addition, its support contains all the components of a fiber of $Z \to \mathbb{P}^1$, mainly G_1, G_2, F, G_8, G_9. Therefore, a curve Γ in X with $K_X \cdot \Gamma = 0$ has strict transform Γ in Z with $\Gamma \cdot f^*(K_X) = 0$, and it is part of a fiber. One can verify this cannot happen, so by the Nakai-Moishezon criteria, the canonical class K_X of X is ample.

In this way, we have shown that X is a KSBA smoothable surface, and also the existence of KSBA surfaces X' with one $[4, 2, 4; 3]$ singularity, $K^2 = 1$, and $q = p_g = 0$. Using the technique explained in [Urz13a], one can prove that X' is rational.

For the fundamental group we do the following. It is known that given a singularity $\frac{1}{m}(1, q)$, the fundamental group of its link is $\mathbb{Z}/m\mathbb{Z}$. If $E_1 + \ldots + E_s$ represents the exceptional divisor of its minimal resolution, which is a chain of \mathbb{P}^1’s in that order, then the group is generated by a loop around E_1 (or by a loop around E_s) [Mum61]. Another known fact is that given two disjoint exceptional configurations W_1 and W_2, and a \mathbb{P}^1 which intersects one component of the exceptional divisor W_1 and one component of the exceptional divisor of W_2 at one point each,
then we get that loops around these components are homotopic in the fundamental group of the complement, exactly as used in [LP07].

In this example, using the curve G_{10}, we get that loops around E_1 and loops around L_4 are homotopic. Since the order of the fundamental groups of theirs links are coprime, we conclude that both of these loops are trivial in the complement. Then by using the curve G_9, we get that a loop around E_2 is trivial, and then using the curves G_4, G_5 and G_7, we obtain that loops around G_3, L_3 and L_1 are trivial. Finally, we know (by the Mumford’s relations explained in Section 2) that $1 = \gamma \alpha^{-4}$ where γ is a loop around L_2 and α is a loop around L_1. Since α is trivial, we conclude that γ is trivial. Hence the fundamental group of the complement of the exceptional configurations in Z is trivial. This is enough to conclude that a Q-Gorenstein smoothing of X is simply connected; cf. [LP07].

3.2. $[3,3,3;4]$. Let L_1, L_2, L_3, L be lines in general position in \mathbb{P}^2. Let C be a general conic. Consider the pencil

$$\Gamma_{\lambda, \mu} = \{ \lambda L_1 L_2 L_3 + \mu LC = 0 \}$$

with $[\lambda : \mu] \in \mathbb{P}^1$, and let $Y \to \mathbb{P}^1$ be the elliptic fibration obtained by blowing up \mathbb{P}^2 at the base points. Note that there is one I_3 and one I_2 singular fibers, corresponding to the proper transforms of L_1, L_2, L_3 and L, C respectively. We also get other 7 nodal singular fibers. Let $Z \to Y$ be the blow-up on 9 points of Y as shown in the picture below. Relevant curves are the sections E_1, E_2, the chosen nodal fiber F, and the exceptional curves G_1, \ldots, G_9 of $Z \to Y$, whose subindices follow the order of the blow-ups.

The computations below are as we did in the previous example, so we omit details.

$$E_2, G_4 = [5, 2], \ G_1, F, E_1, C = [2, 6, 2, 3], \ L_1, L_3, G_3; L_2 = [3, 3, 3; 4]$$

Let $f: Z \to X$ be the contraction of these three configurations. Then we have $K_X^2 = -9 + 2 + 4 + 4 = 1$, and

$$K_Z \equiv -\frac{F}{2} + \frac{-L_1}{2} + \frac{-L_2}{2} + \frac{-L_3}{2} + \frac{G_2}{2} + \frac{G_3}{2} + \frac{3}{2} G_4 + 3 G_5 + \frac{G_7}{2} + \frac{G_8}{2} + G_9$$
As before one proves that X has no-local-to-global obstructions to deform, and that X is a KSBA surface. It produces KSBA surfaces with the singularity $[3, 3, 3; 4]$. These surfaces are rational via [HTU13] (see [Urz13a]).

Using the curve G_9 we get that loops around E_2 and loops around C are homotopic. Since the orders of the fundamental groups of its links are coprime, we get that both loops are trivial. Then by using G_5 and G_8 we get that loops around G_3 and L_2 are trivial. From the construction of the pencil, we see that there exists a section passing through L_3 and F. By using this section we get that loops around these curves are homotopic, and since loops around F are trivial, then we have that loops around L_3 are also trivial. Finally, using G_6 we have that loops around L_1 are trivial, and we conclude that the fundamental group of the complement of these configurations in Z is trivial. As before, this is enough to conclude that a \mathbb{Q}-Gorenstein smoothing of X is simply connected; cf. [LP07].

3.3. $[2, 3, 6; 2]$. Let C_1, C_2, L_1 and L_2 be two conics and two lines respectively in general position in \mathbb{P}^2. Consider the pencil

$$\Gamma_{\lambda, \mu} = \{\lambda C_1 L_1 + \mu C_2 L_2 = 0\}$$

with $[\lambda : \mu] \in \mathbb{P}^1$, and let $Y \to \mathbb{P}^1$ be the elliptic fibration obtained by blowing up \mathbb{P}^2 at the base points. Note that there are two I_2 singular fibers in $Y \to \mathbb{P}^1$, which consist of the strict transform of C_1, L_1 and C_2, L_2. There are also eight nodal singular fibers. Let M be a line through one point in $L_1 \cap C_2$ and the node of one of the nodal singular fibers. Then after blowing up the base points, M becomes a double section for the elliptic fibration $Y \to \mathbb{P}^1$. Let $Z \to Y$ be the blow-up on 6 points of Y as shown in the picture below. Relevant curves are the section E_1, the chosen nodal fibers F_1, F_2 and the exceptional curves G_1, \ldots, G_6 of $Z \to Y$, whose subindices follow the order of the blow-ups.

The computations below are as we did in the first example, so we omit details.

$$K_Z \equiv -\frac{1}{2}F_1 - \frac{1}{2}F_2 + \frac{1}{2}G_3 + \frac{1}{2}G_4 + \frac{1}{2}G_5 + \frac{1}{2}G_6$$
As before one proves that X has no-local-to-global obstructions to deform, and it is a KSBA surface. It produces KSBA surfaces with the singularity $[2, 3, 6; 2]$. These surfaces are rational via [Urz13a].

Let $\alpha_1, \alpha_2, \alpha_3, \gamma$ and β be loops around L_2, G_2, F_2, M and F_1 respectively. Then using the curve G_1 we get that $\alpha_3^2 = 1$, and by the Mumford’s relations explained in Section 2 we get that $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = 1$. Using the curve G_3 we have that β and α_2 are homotopic, then $\alpha_2^{16} = 1$ since β has order 16. But $\alpha_2^3 = 1$ and $\alpha_2^{16} = 1$ implies that $\alpha_2 = 1$. Then $\beta = 1$ and using the curves G_5 and G_6 we get that $\alpha_3 = 1$ and $\gamma = 1$. Finally, using Mumford’s relations again we have that $1 = \alpha_1 \alpha_2 \alpha_3 \gamma^{-2}$ so $\alpha_1 = 1$. Hence the fundamental group of the complement of the exceptional configurations in Z is trivial.

4. $K^2 = 2$

4.1. $[4, 2, 4; 3]$. Let L_1, L_2, L_3 and L be general lines in \mathbb{P}^2, and let M be a general line passing through $L_2 \cap L_3$. Consider the pencil

$$
\Gamma_{\lambda, \mu} = \{\lambda L_1 L_2 L_3 + \mu L^2 M = 0\}
$$

with $[\lambda : \mu] \in \mathbb{P}^1$. Let $Y \to \mathbb{P}^1$ be the elliptic fibration obtained by blowing up \mathbb{P}^2 at the base points. Note that there is one I_4 singular fiber corresponding to the triangle $L_1 L_2 L_3$. There is also one I_0 singular fiber which consists of the strict transform of L, M and the first exceptional curves of the blow-ups at the points of intersection between L and L_1, L_2, L_3. Let N be a line passing through the intersection of L with L_3, and by the node of one of the I_1 fibers of the pencil. Then after blowing up the base points, N becomes a double section of the elliptic fibration. Let $Z \to Y$ be the blow-up on 13 points of Y as shown in the
picture below. Relevant curves are the sections E_2 and E_7, the chosen nodal fiber F, and the exceptional curves G_1, \ldots, G_{13} of $Z \to Y$, whose subindices follow the order of the blow-ups.

The computations below are as we did in the previous section, so we omit details, except in the case of no-local-to-global obstructions. For that, Lemma 2.2 can be easily adapted (see e.g. [PSU13, §4]) to have F_1 nodal and F_2 a simple normal crossings singular fiber. In our case F_2 is the I^*_0 fiber (and reduced).

$$E_2 = [4], \ E_1, L_3 = [5, 2], \ L_2, G_9 = [5, 2], \ M, E_4, E_8; L = [4, 2, 4; 3], \ E_6, E_7, F, G_1, N, G_6 = [3, 2, 6, 2, 4, 2], \ K^2_X = -13 + 1 + 2 + 2 + 6 + 4 = 2,$$

$$K_Z \equiv -\frac{F}{2} + \frac{-L}{2} + \frac{-M}{2} + \frac{-E_4}{2} + \frac{-E_6}{2} + \frac{-E_8}{2} + \frac{1}{2} G_2 + \frac{1}{2} G_3 + \frac{1}{2} G_4 + \frac{1}{2} G_5 + \frac{1}{2} G_6 + G_7 + G_9 + 2G_{10} + G_{11} + G_{12} + G_{13}$$

$$f^*(K_X) \equiv \frac{15}{34} F + \frac{1}{2} L + \frac{1}{4} M + \frac{3}{34} E_6 + \frac{1}{4} E_8 + \frac{15}{17} G_1 + \frac{1}{2} G_2 + \frac{1}{2} G_3 + \frac{1}{2} G_4 + \frac{1}{2} G_5 + \frac{31}{34} G_6 + G_7 + \frac{4}{3} G_9 + 2G_{10} + G_{11} + G_{12} + G_{13} + \frac{2}{3} E_1 + \frac{1}{2} E_2 + \frac{2}{3} L_2 + \frac{1}{3} L_3 + \frac{13}{17} E_7 + \frac{14}{17} N$$

Therefore we have \mathbb{Q}-Gorenstein smoothable KSBA surfaces with one singularity $[4, 2, 4; 3], p_g = 0,$ and $K^2 = 2$. These surfaces are rational via [Urz13a]. We notice that X itself is not KSBA since G_{10} is a zero curve and the only one. Thus the corresponding KSBA surface is the contraction of G_{10}.

We prove that the fundamental group is trivial as before. Using the curve G_{13} we get that loops around E_2, E_1 and L_3 are trivial. Then using G_{10} we get that loops around G_9 and L_2 are trivial. Then using G_4 we have that loops around M are trivial, and using Mumford’s relations we get that loops around L are trivial. Then using G_8 we get that loops around E_6 are trivial, so loops around E_7, F, G_1, N, G_6
are also trivial. Then using G_7 we get that loops around E_8 are trivial and finally, using Mumford’s relations once again we have that loops around E_4 are trivial. Hence the fundamental group of the complement of the exceptional configurations in Z is trivial.

4.2. $[3, 3, 3; 4]$. Let L_1, L_2, L_3, L be general lines in \mathbb{P}^2, and let C be a conic tangent to L_1 at $L_1 \cap L_2$ and general everywhere else. Consider the pencil

$$\Gamma_{\lambda, \mu} = \{ \lambda L_1 L_2 L_3 + \mu CL = 0 \}$$

with $[\lambda : \mu] \in \mathbb{P}^1$. Let $Y \to \mathbb{P}^1$ be the elliptic fibration obtained by blowing up \mathbb{P}^2 at the base points. Note that there is one I_5 singular fiber corresponding to the triangle $L_1 L_2 L_3$. There is also one I_2 singular fiber which consist of the proper transforms of C and L. We also get four nodal singular fibers. Let $Z \to Y$ be the blow-up on 9 points of Y as shown in the picture below. Relevant curves are the sections E_4, E_7, E_9, the chosen nodal fiber F, and the exceptional curves G_1, \ldots, G_9 of $Z \to Y$, whose subindices follow as always the order of the blow-ups. Again, the computations below are as we did in the previous section, so we omit details.

\begin{align*}
L_1, L_2 &= [5, 2],
G_1, F, E_4, E_3, L_1 &= [2, 7, 2, 2, 3],
L, E_7, E_9; C &= [3, 3, 3; 4],
K_X^2 &= -9 + 2 + 5 + 4 = 2,

K_Z &= -\frac{F}{2} + \frac{-C}{2} + \frac{-L}{2} + \frac{1}{2} G_2 + \frac{1}{2} G_3 + \frac{1}{2} G_4
\quad + \frac{1}{2} G_6 + G_7 + G_8 + G_9

f^*(K_X) &= \frac{7}{18} F + \frac{1}{2} C + \frac{1}{6} L + \frac{4}{9} G_1 + \frac{1}{2} G_2 + \frac{1}{2} G_3
\quad + \frac{1}{2} G_4 + \frac{1}{2} G_6 + G_7 + G_8 + G_9 + \frac{5}{9} L_1
\quad + \frac{1}{3} L_2 + \frac{2}{3} L_3 + \frac{6}{9} E_3 + \frac{7}{9} E_4 + \frac{2}{3} E_7 + \frac{2}{3} E_9
\end{align*}
Therefore we have \(\mathbb{Q} \)-Gorenstein smoothable KSBA surfaces with one singularity \([3, 3, 3; 4]\), \(p_g = 0 \), and \(K^2 = 2 \). These surfaces are rational via [Urz13a].

Let \(\alpha_2 \) be a loop around \(E_7 \). Using the curve \(G_7 \) we have that \(\alpha_2 \) is homotopic to a loop around \(L_3 \) which has order nine, then we get that \(\alpha_2^9 = 1 \). On the other hand, by Mumford’s relations, we have that \(\alpha_2^3 = \gamma \), and then \(1 = \alpha_2^9 = \gamma^3 \). Using Mumford’s relations again, we have that \(\alpha_1^3 = \gamma \) where \(\alpha_1 \) is a loop around \(L_1 \), and using the curve \(G_5 \) we get that \(\alpha_1 \) is homotopic to \(\gamma \), then by combining these two facts we get that \(\gamma \) is homotopic to \(\gamma^3 = 1 \), i.e. \(\gamma = 1 \). From the construction of the elliptic fibration, one can see that if we take the line through \(L_1 \cap L_2 \) and \(L \cap L_3 \), then after blowing up base points we get a section that intersects \(E_2 \), \(F \), and \(C \). By using this section we get that loops around \(F \) are trivial since they are homotopic to \(\gamma \). Then using the curves \(G_2 \) and \(G_3 \) have that loops around \(G_1 \) and \(L_3 \) are trivial, and so the fundamental group of the complement of the exceptional configurations in \(Z \) is trivial. Therefore we are in the simply connected case again.

4.3. \([2, 3, 6; 2]\). Let \(L_1, L_2, L_3 \) be general lines in \(\mathbb{P}^2 \). Let \(L \) be a general line passing through \(L_1 \cap L_3 \), and let \(C \) be a conic which is tangent to \(L_1 \) in \(L_1 \cap L_2 \) and general everywhere else. Consider the pencil

\[
\Gamma_{\lambda, \mu} = \{ \lambda L_1 L_2 L_3 + \mu C L = 0 \}
\]

with \([\lambda : \mu] \in \mathbb{P}^1\). Let \(Y \to \mathbb{P}^1 \) be the elliptic fibration obtained by blowing up \(\mathbb{P}^2 \) at the base points. Note that there is one \(I_6 \) singular fiber on this fibration corresponding to the triangle \(L_1 L_2 L_3 \). There is also one \(I_2 \) singular fiber which consists of the proper transforms of \(C \) and \(L \). We also get four nodal singular fibers. Let \(Z \to Y \) be the blow-up on 11 points of \(Y \) as shown in the picture below. Relevant curves are the sections \(E_3, E_5 \) and \(E_7 \), the chosen nodal fibers \(F_1 \) and \(F_2 \), and the exceptional curves \(G_1, \ldots, G_{11} \) of \(Z \to Y \), whose subindices follow as always the order of the blow-ups.

Again, the computations below are as we did in the previous section, so we omit details.

\[
E_3, G_{10} = [5, 2], G_2, G_1, F_1, E_5, E_4, L_1, E_2 = [2, 2, 8, 2, 2, 2, 4],
L_2, C, F_2; E_7 = [2, 3, 6; 2], K_X^2 = -11 + 2 + 7 + 4 = 2,
\]

\[
K_Z \equiv \frac{-F_1}{2} + \frac{-F_2}{2} + \frac{1}{2} G_2 + G_3 + \frac{1}{2} G_5 + \frac{1}{2} G_6
+ \frac{1}{2} G_7 + \frac{1}{2} G_8 + G_9 + G_{10} + 2G_{11}
\]
Therefore we have \mathbb{Q}-Gorenstein smoothable KSBA surfaces with one singularity $[2, 3, 6; 2]$, $p_g = 0$, and $K^2 = 2$. These surfaces are rational via \cite{Urz13a}.

Using the curve G_{11} we get that loops around E_2 and G_{10} are homotopic and since the orders of the fundamental groups of the links are coprime we get that both loops are trivial. Then using G_5, G_8 and G_9 we get that loops around E_7, F_2 and C are trivial. Finally using Mumford’s relations we have that $1 = \alpha_1 \alpha_2 \alpha_3 \gamma^{-2}$ where $\alpha_1, \alpha_2, \alpha_3$ and γ are loops around L_2, C, F_2 and E_7 respectively. Since we have already shown that α_2, α_3 and γ are trivial, we conclude that α_1 is also trivial. Thus the fundamental group of the complement of the exceptional divisors in Z is trivial.

5. Overview of Wahl singularities in these moduli spaces

In the following tables we list new and old Wahl singularities that appear on normal KSBA surfaces with no-local-to-global obstructions to deform for the invariants $\pi_1 = 1$, $p_g = 0$, and $K^2 = 1, 2, 3, 4$. This is a list with the known (to us) examples, we give one reference for each. We remark that $K^2 = 4$ is the maximum allowed K^2 for the Lee-Park type of construction (see e.g. \cite{PSU13}).

Each table shows:

- Value of n and a corresponding to $\frac{1}{n\pi}(1, na - 1)$.

\begin{align*}
f^*(K_X) &\equiv \frac{7}{16} F_1 + \frac{2}{6} F_2 + \frac{10}{16} G_1 + \frac{13}{16} G_2 + G_3 + \frac{1}{2} G_5 + \frac{1}{2} G_6 \\
&\quad + \frac{1}{2} G_7 + \frac{1}{2} G_8 + G_9 + \frac{4}{3} G_{10} + 2G_{11} + \frac{11}{16} E_2 + \frac{2}{3} E_3 \\
&\quad + \frac{13}{16} E_4 + \frac{14}{16} E_5 + E_7 + \frac{12}{16} L_1 + \frac{1}{2} L_2 + \frac{2}{3} C
\end{align*}
• The associated Hirzebruch-Jung continued fraction
\[
\frac{n^2}{na - 1} = e_1 - \frac{1}{e_2 - \frac{1}{\ddots - \frac{1}{e_s}}} = [e_1, \ldots, e_s].
\]

• Type of the minimal model of the resolution of the KSBA surface with that one singularity (TMMR). Here we have the following types: rational (Rat), Dolgachev surface of type (2, 3) (Dol(2,3)), general type with \(K^2 = k\) (GenType\(k\)). To know the type, we apply the explicit MMP in [HTU13] (see [Urz13a]).

• In the last column, we put one reference where it was constructed (there may be more references).

Wahl singularities for \(K^2 = 1\):

\(^n\)	Chain	TMMR	Reference
1	[4]	Dol(2,3)	LP07
1/2	[5, 2]	Dol(2,3)	S13
1/3	[5, 2]	Rat	PN
1/4	[6, 2, 2]	Rat	Urz13a
1/5	[7, 2, 2, 2]	Rat	Urz13a
1/6	[3, 5, 2]	Rat	Urz13a
1/7	[8, 2, 2, 2, 2]	Rat	LP07
1/8	[9, 2, 2, 2, 2, 2]	Rat	PList
1/9	[4, 5, 2, 2]	Rat	PN
1/10	[2, 6, 2, 3]	Rat	PSU13
1/1	[3, 5, 3, 2]	Rat	PSU13
1/2	[5, 5, 2, 2, 2]	Rat	PN
1/3	[2, 7, 2, 2, 3]	Rat	PList
1/4	[2, 2, 6, 2, 4]	Rat	S13
1/5	[6, 5, 2, 2, 2, 2]	Rat	S13
1/6	[4, 5, 3, 2, 2]	Rat	LN12
1/7	[3, 6, 2, 3, 2]	Rat	S13
1/8	[2, 8, 2, 2, 2, 3]	Rat	PList
1/9	[2, 4, 5, 2, 3]	Rat	S13
1/10	[2, 4, 5, 2, 3]	Rat	S13
1/11	[2, 2, 6, 2, 5]	Rat	PN
1/12	[2, 2, 7, 2, 2, 4]	Rat	S13
1/13	[3, 3, 5, 3, 2]	Rat	S13
1/14	[5, 5, 3, 2, 2, 2]	Rat	S13
Note that the singularity in \((3)_1\) appears twice in the table above but in two different ways. This is the only singularity known so far in these moduli spaces with this property. This situation is opposite to the one for \(\frac{1}{4}(1, 1)\), where the TMMR must be a Dol(2,3) (see e.g. [Urz13a]).

Wahl singularities for \(K^2 = 2:\)

\(\binom{n}{a}\)	Chain	TMMR	Reference
\(\binom{4}{1}\)	[4]	GenType1	LP07
\(\binom{5}{1}\)	[5, 2]	Dol(2,3)	LP07
\(\binom{6}{1}\)	[6, 2,2]	Dol(3,3)	PPS09
\(\binom{7}{1}\)	[7, 2,2,2]	Rat	LP07
\(\binom{8}{2}\)	[3, 5,2]	Dol(3,3)	PSlist
\(\binom{9}{2}\)	[8, 2,2,2,2]	Rat	PSlist
\(\binom{10}{2}\)	[9, 2,2,2,2]	Rat	S13
\(\binom{11}{2}\)	[4, 5,2,2]	Rat	S13
\(\binom{12}{3}\)	[2, 6,2,3]	Rat	S13
\(\binom{13}{3}\)	[3, 5,3,2]	Rat	S13
\(\binom{14}{3}\)	[2, 7,2,2,3]	Rat	LP07
\(\binom{15}{4}\)	[12, 2,2,2,2,2,2]	Rat	PN
\(\binom{16}{4}\)	[4, 2,6,2,2]	Rat	S13
\(\binom{17}{4}\)	[6, 5,2,2,2,2]	Rat	S13
\(\binom{18}{4}\)	[4, 5,3,2,2]	Rat	S13
\(\binom{19}{4}\)	[3, 6,2,3,2]	Rat	S13
\(\binom{20}{5}\)	[2, 8,2,2,2,3]	Rat	PN
\(\binom{21}{5}\)	[2, 4,5,2,3]	Rat	S13
\(\binom{22}{5}\)	[5, 2,6,2,2,2]	Rat	S13
\(\binom{23}{5}\)	[2, 2,7,2,2,4]	Rat	PSlist
(13)	[3, 3, 5, 3, 2]	Rat	S13
(13)	[2, 9, 2, 2, 2, 2, 3]	Rat	PN
(13)	[5, 5, 3, 2, 2, 2]	Rat	S13
(14)	[2, 4, 5, 2, 3]	Rat	S13
(14)	[4, 6, 2, 3, 2, 2]	Rat	S13
(15)	[2, 10, 2, 2, 2, 2, 2, 3]	Rat	LP07
(15)	[2, 2, 8, 2, 2, 2, 4]	Rat	PSList
(16)	[2, 2, 7, 2, 2, 2, 5]	Rat	S13
(17)	[3, 8, 2, 2, 2, 3, 2]	Rat	S13
(17)	[2, 4, 2, 6, 2, 3]	Rat	S13
(17)	[2, 11, 2, 2, 2, 2, 2, 3]	Rat	PSList
(18)	[2, 3, 6, 2, 3, 3]	Rat	S13
(19)	[4, 7, 2, 2, 3, 2, 2]	Rat	PSList
(19)	[2, 2, 9, 2, 2, 2, 4]	Rat	PSList
(19)	[3, 4, 5, 2, 3, 2]	Rat	S13
(19)	[2, 4, 5, 3, 2, 3]	Rat	S13
(20)	[2, 6, 5, 2, 2, 2, 3]	Rat	S13
(21)	[3, 3, 5, 3, 2]	Rat	S13
(22)	[2, 2, 10, 2, 2, 2, 2, 4]	Rat	PSList
(23)	[6, 6, 2, 3, 2, 2, 2, 2]	Rat	LN12
(23)	[3, 10, 2, 2, 2, 2, 2, 3, 2]	Rat	PSList
(24)	[5, 7, 2, 2, 3, 2, 2, 2]	Rat	PSU13
(24)	[2, 7, 5, 2, 2, 2, 2, 3]	Rat	S13
(25)	[2, 2, 11, 2, 2, 2, 2, 2, 4]	Rat	LP07
(25)	[3, 5, 5, 2, 2, 3, 2]	Rat	S13
(27)	[3, 4, 2, 6, 2, 3, 2]	Rat	S13
(29)	[8, 2, 2, 2, 2, 2, 2, 2, 2]	Rat	S13
(29)	[2, 6, 2, 6, 2, 2, 3]	Rat	S13
(30)	[3, 4, 5, 3, 2, 3, 2]	Rat	S13
(31)	[2, 4, 3, 5, 3, 2, 3]	Rat	S13
(34)	[4, 5, 5, 2, 2, 3, 2, 2]	Rat	S13
(35)	[2, 2, 7, 5, 2, 2, 2, 2, 4]	Rat	S13
(37)	[2, 7, 5, 3, 2, 2, 2, 2, 3]	Rat	PN
(41)	[2, 8, 2, 6, 2, 2, 2, 2, 3]	Rat	S13
(42)	[2, 2, 6, 2, 6, 2, 2, 2, 4]	Rat	S13
(42)	[2, 6, 6, 2, 3, 2, 2, 2, 3]	Rat	S13
For this case, the largest index is $n = 58$. The chain corresponding to the exceptional divisor of the minimal resolution of this singularity was obtained by blowing up nine times the elliptic fibration $I_4 + 8I_1$ with one double section as shown in Figure 1.

Figure 1. Largest index for $K^2 = 2$

Figure 2. Largest index for $K^2 = 3$

Wahl singularities for $K^2 = 3$:
GenType2	GenType1	GenType1	GenType1
PPS09	Urz13a	PN	S13
Rat	S13	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	S13	S13	S13

Table:

GenType2	GenType1	GenType1	GenType1
PPS09	Urz13a	PN	S13
Rat	S13	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	S13	S13	S13

GenType2	GenType1	GenType1	GenType1
PPS09	Urz13a	PN	S13
Rat	S13	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	S13	S13	S13

GenType2	GenType1	GenType1	GenType1
PPS09	Urz13a	PN	S13
Rat	S13	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	PPS09	S13	S13
Rat	S13	PN	S13
Rat	Urz13a	S13	S13
Rat	S13	S13	S13
In this case, the largest index is \(n = 123 \). The chain corresponding to the exceptional divisor of the minimal resolution of this singularity was obtained by blowing up seventeen times the elliptic fibration \(I_3^* + 3I_1 \) with two double sections. This configuration has another chain corresponding to the Wahl singularity with \(n = 5 \) and \(a = 1 \), as shown in Figure 2.

Wahl singularities for \(K^2 = 4 \):

\(n \)	Chain	TMMR	Reference
\((23) \)	[7, 2, 12, 2, 2, 2, 2, 2, 2, 2, 2]	Rat	S13

We end with some remarks.

(1) We do not know if \(Q_{Eg} \) appears on smoothable KSBA surfaces with \(p_g = 0 \), and \(K^2 = 3, 4 \).

(2) There exist a general bound for the indices of normal surface singularities that show up in the KSBA compactification. In particular, Y. Lee gives in [L99] an explicit bound for the indices \(n \) when the TMMR is of general type: \(n \leq 2^{400(K^2)^4} \). The largest indices we found above are not even close to this bound (and the majority has TMMR rational). We do not know an optimal bound.

(3) For \(K^2 = 1, 2, 3 \) we have many examples of Wahl singularities, for \(K^2 = 4 \) have very few. Essentially none of them is new in this case, they come from degenerations of the examples in [PPS09-2]. The moduli space for \(K^2 = 4 \) is expected to be a surface, and so it may be simpler to study. With this in hand, it would be interesting to construct new \(K^2 = 4 \) examples, they would define KSBA boundary curves which may connect the known examples.

References

BHPV04. W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven. *Compact complex surfaces*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., second edition, vol. 4, Springer-Verlag, Berlin, 2004.
GS83. G.-M. Greuel, and J. Steenbrink. *On the topology of smoothable singularities*, Proceedings of Symposia in Pure Mathematics, v.40(1983), part 1, 535–545.

GI10. T. S. Gustavsen, and R. Ile. *Representation theory for log-canonical surface singularities*, Ann. Inst. Fourier (Grenoble) 60(2010), n.2, 389–416.

H11. P. Hacking. *Compact moduli spaces of surfaces of general type*, Compact moduli spaces and vector bundles, 1-18, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012.

HTU13. P. Hacking, J. Tevelev, and G. Urzúa. *Flipping surfaces*, arXiv:1310.1580 [math.AG], pre-print 2013.

KM98. J. Kollár and S. Mori. *Birational geometry of algebraic varieties*, CTM 134 (1998).

L99. Y. Lee. *Numerical bounds for degenerations of surfaces of general type*, Internat. J. Math. 10(1999), No.1, 79–92.

LN12. Y. Lee, and N. Nakayama. *Simply connected surfaces of general type in positive characteristic via deformation theory*, Proc. Lond. Math. Soc. (3)106(2013), no.2, 225-286.

LP07. Y. Lee, and J. Park. *A simply connected surface of general type with \(p_g = 0 \) and \(K^2 = 2 \)*, Invent. Math. 170, 483–505 (2007).

Mum61. D. Mumford. *The topology of normal singularities of an algebraic surface and a criterion for simplicity*, Publ. Math., Inst. Hautes Étud. Sci. 36, 229–246 (1961).

PPS09. H. Park, J. Park, and D. Shin. *A simply connected surface of general type with \(p_g = 0 \) and \(K^2 = 3 \)*, Geom. Topol. 13 (2009), 743–767.

PPS09-2. H. Park, J. Park, and D. Shin. *A simply connected surface of general type with \(p_g = 0 \) and \(K^2 = 4 \)*, Geom. Topol. 13 (2009), 1483–1494.

PSU13. H. Park, D. Shin, and G. Urzúa. *A simply connected numerical Campedelli surface with an involution*, Math. Ann. 357(2013), no. 1, 31–49.

PS13a. H. Park, and D. Shin. *Personal communication*.

S13. A. Stern. *Nuevas singularidades en superficies estables simplemente conexas con \(p_g = 0 \)*, Master’s thesis, Pontificia Universidad Católica de Chile, July 2013.

Urz13a. G. Urzúa. *Identifying neighbors of stable surfaces*, arXiv:1310.4353 [math.AG], pre-print 2013.

Urz13b. G. Urzúa, *Q-Gorenstein smoothings of surfaces and degenerations of curves*, arXiv:1311.4844 [math.AG], pre-print 2013.

PN. G. Urzúa. *Personal notes*.

Wahl81. J. Wahl, *Smoothing of normal surface singularities*, Topology 20 (1981), no. 3, 219-246.

Wahl11. J. Wahl, *On rational homology disk smoothings of valency 4 surface singularities*, Geometry & Topology 15 (2011), 1125–1156.

Wahl13. J. Wahl, *Log-terminal smoothings of graded normal surface singularities*, Michigan Math. J. 62 (2013), 475–489.

Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile.

E-mail address: stern@math.umass.edu

E-mail address: urzua@mat.puc.cl