Imputation provides an opportunity to study filaggrin (\textit{FLG}) null mutations in large population cohorts that lack bespoke genotyping

Lavinia Paternoster1, Ashley Budu-Aggrey1, Sara J. Brown2

1MRC Integrative Epidemiology Unit, Bristol Medical School, Population Health Sciences, The University of Bristol, Bristol, BS8 2BN, UK
2Centre for Genomics and Experimental Medicine, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK

First published: 01 Feb 2022, 7:36
https://doi.org/10.12688/wellcomeopenres.17657.1

Abstract

Background

Null mutations within the filaggrin (\textit{FLG}) gene are established genetic risk factors for atopic dermatitis. Studies of \textit{FLG} have typically used sequencing or bespoke genotyping. Large-scale population cohorts with genome-wide imputed data offer powerful genetic analysis opportunities, but bespoke \textit{FLG} genotyping is often not feasible in such studies. Therefore, we aimed to determine the quality of selected \textit{FLG} null genotype data extracted from genome-wide imputed sources, focussing on UK population data.

Methods

We compared the allele frequencies of three \textit{FLG} null mutations that could be detected by imputation (p.Arg501Ter, p.Arg2447Ter and p.Ser3247Ter; commonly referred to as R501X, R2447X and S3247X respectively) in directly genotyped and genome-wide imputed data in the ALSPAC cohort. Logistic regression analysis was used to test the association of atopic dermatitis with imputed and genotyped \textit{FLG} null mutations in ALSPAC and UK Biobank to investigate the usefulness of imputed \textit{FLG} data.

Results

The three \textit{FLG} null mutations appear to be well imputed in datasets
that use the Haplotype Reference Consortium (HRC) for imputation (0.3% discordance compared with directly genotyped data). However, a greater proportion of null alleles failed imputation compared to wild-type alleles. Despite the calling of FLG mutations in imputed data being imperfect, they are still strongly associated with atopic dermatitis (p-values between 7×10^{-10} and $5 \times 10^{-7.5}$ in UK Biobank).

Conclusions

HRC imputed data appears to be adequate for UK population-based genetic analysis of selected FLG null mutations (p.Arg501Ter, p.Arg2447Ter and p.Ser3247Ter).

Keywords
Filaggrin, genotyping, ALSPAC, UK Biobank

This article is included in the Avon Longitudinal Study of Parents and Children (ALSPAC) gateway.
Amendments from Version 1

In this revised version of the manuscript, we have made clear the 3 FLG null mutations that were investigated, and have updated the nomenclature of the variants. We have also provided further details of the method used for genotyping and for estimating the discordance between the imputed and directly genotyped data.

Any further responses from the reviewers can be found at the end of the article

Abbreviations

AD Atopic dermatitis
ALSPAC Avon Longitudinal Study of Parents and Children
CI Confidence interval
FLG Gene encoding filaggrin
HRC Haplotype Reference Consortium
KASP Competitive (Kompetative) allele-specific PCR
OR Odds ratio
PCA Principal component analysis
UK10K The UK 10,000 Cohorts project

Introduction

The gene encoding filaggrin (FLG) has long been established as an important genetic risk factor for atopic dermatitis (AD)\(^1\). Several low frequency variants that truncate the protein product (loss-of-function, null mutations) have been identified and the most common are regularly genotyped in studies of AD. These mutations were identified in sequencing studies\(^2\), and specific TaqMan® genotyping assays\(^3\) have been designed and used, and more recently KASP™ assays have been validated for genotyping these mutations in population epidemiological studies\(^4\). With the rapid expansion of genome-wide genotyping and imputation procedures to generate consistent genome-wide data in large cohort studies, we wanted to investigate if such imputation procedures are sufficiently accurate to be used for generating genotype information for the most common FLG null mutations. If genome-wide imputation can recapitulate FLG null mutation information then this would facilitate the study of this gene in some very large population cohort studies without bespoke genotyping, including the UK Biobank (N=500,000 participants) and 23andMe (N=2 million).

Here we investigate the imputation quality of three FLG null mutations in 2 well characterised cohorts: The Avon Longitudinal Study of Parents and Children (ALSPAC, HRC imputation, N=5000) and the UK Biobank (HRC+UK10,000 cohorts project (UK10K) imputation, N=330,000), to determine whether use of imputed FLG genotypes is appropriate in epidemiological studies.

In the ALSPAC cohort we have undertaken bespoke genotyping of 4 FLG mutations using KASP™ (p.Arg501Ter, c.2282_2285del, p.Arg2447Ter and p.Ser3247Ter commonly referred to as R501X, 2282del4, R2447X and S3247X respectively). Also available for the same individuals are genome-wide imputed data using the Haplotype Reference Consortium (HRC.r1.1, 2016\(^5\)). The deletion c.2282_2285del is not captured by the HRC imputation panel, therefore in this study we compared imputed data for the 3 other mutations with the bespoke genotype data to investigate whether the associations with AD using different genetic data sources are reproducible. We also investigated the association between AD and imputed FLG variants from the UK Biobank cohort.

Methods

ALSPAC cohort

Enrolment of the ALSPAC cohort has been fully described previously\(^6\). Briefly, pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the study. The initial number of pregnancies enrolled was 14,541. Of these initial pregnancies, there were 14,676 foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. When the oldest children were approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who had failed to join the study originally. As a result, the total sample size for analyses using any data collected after the age of seven is 15,454 pregnancies, resulting in 15,589 foetuses. Of these individuals, 14,901 were alive at 1 year of age. The study website contains details of all the data that is available through a freely searchable data dictionary and variable search tool. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

The children have been followed up with regular questionnaires and clinic visits. Data collected from questionnaires was used to classify children as AD cases or controls. When the children were approximately 81, 91, 103 months, 10, 13, 14 years, parents were asked the following questions [possible answers]:

1. Has your child in the past 12 months had eczema? [Yes and saw a Dr; Yes, but did not see a Dr; No]

2. Has a doctor ever actually said that your child has eczema? [yes; no] (asked at 10 & 14 years)

We defined AD cases as the children whose parents answered “Yes and saw a Dr” to Q1 or “yes” to Q2. We defined controls as the children who were not a case and whose parents answered “No” to Q2 at 14 years.

ALSPAC - Genetic data

Four FLG mutations (p.Arg501Ter, c.2282_2285del, p.Arg2447Ter, p.Ser3247Ter) were genotyped in the ALSPAC mothers and children by LGC Genomics (Middlesex, UK) using KASP™ genotyping technology. This is based on a competitive allele-specific polymerase chain reaction (PCR) and utilises a fluorescence resonance energy transfer (FRET) -based assay to enable bi-allelic scoring of variants at specific loci. Genotypes were available for 10,197 children and 8,811 mothers.

Two combined null genotype variables were generated using these data. One included all 4 genotyped variants, and a
second that excluded c.2282_2285del to allow comparison with the imputed data, where this variant was not available. For each of these FLG combined null variables, presence of any one FLG mutation was sufficient to class that individual as filaggrin haploinsufficient. Individuals with no missing data and no FLG mutations were categorised as normal wild-type genotype.

The ALSPAC genome-wide data has been described previously\(^8\). Briefly, ALSPAC children were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 23andme subcontracting the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory Corporation of America, Burlington, NC, US. The resulting raw genome-wide data were subjected to standard quality control methods. Individuals were excluded on the basis of sex mismatches; minimal or excessive heterozygosity; disproportionate levels of individual missingness (> 3%) and insufficient sample replication (IBD < 0.8). Population stratification was assessed by multidimensional scaling analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, Japanese and Yoruba reference populations; all individuals with non-European ancestry were removed. SNPs with a minor allele frequency of < 1%, a call rate of < 95% or evidence for violations of Hardy-Weinberg equilibrium (p < 5x10\(^{-7}\)) were removed. Cryptic relatedness was measured as proportion of identity by descent (IBD > 0.1). Related subjects that passed all other quality control thresholds were retained during subsequent phasing and imputation. 9,115 subjects and 500,527 SNPs passed these quality control filters. ALSPAC mothers were genotyped using the Illumina human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with Illumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial set of 10,015 subjects and 557,124 directly genotyped SNPs. SNPs were removed if they displayed more than 5% missingness or a Hardy-Weinberg equilibrium p-value of less than 1.0x10\(^{-5}\). Additionally, SNPs with a minor allele frequency of less than 1% were removed. Samples were excluded if they displayed more than 5% missingness, had indeterminate X chromosome heterozygosity or extreme autosomal heterozygosity. Samples showing evidence of population stratification were identified by multidimensional scaling of genome-wide identity by state pairwise distances using the four HapMap populations as a reference, and then excluded. Cryptic relatedness was assessed using an identical by descent (IBD) estimate of more than 0.125 which is expected to correspond to approximately 12.5% alleles shared IBD or a relatedness at the first cousin level. Related subjects that passed all other quality control thresholds were retained during subsequent phasing and imputation. 9,048 subjects and 526,688 SNPs passed these quality control filters.

The 477,482 SNP genotypes in common between the sample of mothers and sample of children were combined. SNPs with genotype missingness above 1% due to poor quality were removed (11,396 SNPs) and a further 321 subjects were removed due to potential ID mismatches. This resulted in a dataset of 17,842 subjects containing 6,305 duos and 465,740 SNPs (112 were removed during liftover and 234 were out of HWE after combination). Haplotypes were estimated using ShapeIT v2\(^8\) which utilises relatedness during phasing. The phased haplotypes were then imputed to the Haplotype Reference Consortium (HRCr1.1, 2016) panel of approximately 31,000 phased whole genomes. The HRC panel was phased using ShapeIt v2\(^2\), and the imputation was performed with the Michigan imputation server using the MACH algorithm. R\(^2\) imputation quality measures were available for all imputed variants.

This gave 8,237 eligible children and 8,196 eligible mothers with available genotype data after exclusion of related subjects using cryptic relatedness measures described previously.

Data on the 3 imputed FLG variants (p.Arg501Ter:rs61816761, p.Arg2447Ter:rs138726443 & p.Ser3247Ter:rs150597413) were extracted from this data.

Best-guess calls and genotype probabilities for the three possible genotypes at each variant were available for all individuals. Best guess genotypes were generated using a hard-call-threshold of 0.1 in Plink. These 3 best-guess genotypes were also combined into an overall imputed FLG combined null genotype, where presence of any one FLG mutation was sufficient to class that individual as filaggrin haploinsufficient. Individuals with no missing data and no FLG mutations were categorised as wild-type.

UK Biobank cohort

UK Biobank is a population-based health research resource consisting of approximately 500,000 people, aged between 38 years and 73 years, who were recruited between the years 2006 and 2010 from across the UK\(^10\). Particularly focused on identifying determinants of human diseases in middle-aged and older individuals, participants provided a range of information (such as demographics, health status, lifestyle measures, cognitive testing, personality self-report, and physical and mental health measures) via questionnaires and interviews; anthropometric measures, BP readings and samples of blood, urine and saliva were also taken (data available at www.ukbiobank.ac.uk). A full description of the study design, participants and quality control (QC) methods have been described in detail previously\(^11\). UK Biobank received ethical approval from the North West Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382).

Individuals were defined as having atopic dermatitis (AD) based on their response during a verbal interview with a trained member of staff at the assessment centre. Participants were asked to tell the interviewer which serious illnesses or disabilities they had been diagnosed with by a doctor and were defined as AD cases if this disease was mentioned. Disease information was also obtained from the Hospital Episode Statistics (HES) data extract service where health-related outcomes had been defined by International Classification of Diseases (ICD)-10 code L20. Additionally, anyone who had answered “yes” to “Has a doctor ever told you that you have hay fever, allergic rhinitis or eczema”, were excluded from the AD controls.
UK Biobank – Genetic data
Overall, 49,979 individuals were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank axiom array (n=488,377 total). Pre-imputation QC, phasing and imputation are described elsewhere. In brief, prior to phasing, multiallelic SNPs or those with MAF ≤1% were removed. Phasing of genotype data was performed using a modified version of the ShapeIt v2 algorithm. Genotype imputation to a reference set combining the UK10K haplotype and HRC reference panels was performed using IMPUTE2 algorithms. MAF and Info scores were recalculated on the derived ‘European’ subset. Additional quality control exclusions were applied to the data as described previously. Briefly, individuals with sex-mismatch, sex chromosome aneuploidy, outlying degrees of heterozygosity and/or missingness and related individuals were excluded. For this analysis we also restricted the sample to individuals of white British ancestry who self-report as “White British” and who have very similar ancestral backgrounds according to the principal component analysis (PCA), as described by Bycroft. This resulted in 337,076 individuals with available genetic imputed data.

Data on the 3 imputed FLG variants (p.Arg501Ter:rs61816761, p.Arg2447Ter:rs138726443 & p.Ser3247Ter:rs150597413) were extracted from this data.

Best-guess calls and genotype dosages were available for all individuals. Best guess genotypes were generated using a hard call threshold of 0.1. These 3 best-guess genotypes were also combined into an overall imputed FLG combined null genotype, where presence of any one FLG mutation was sufficient to class that individual as filaggrin haploinsufficient. Individuals with no missing data and no FLG mutations were categorised as wild-type.

Concordance of KASP™ and imputed genetic data
Minor allele frequencies for KASP™ genotyped and best-guess imputed data were calculated in R (version 3.6.1) from the genotype call frequencies. Minor allele frequencies for uncertain imputation data (i.e. genotype probabilities or dosages) were extracted directly from the relevant imputation output for each cohort.

Concordance of genotypes at an individual level between the KASP™ genotyped and imputed data was assessed for ALSPAC by producing contingency tables in R. Proportions were then calculated to assess the overall discordance and the proportions mis-called or missing for particular categories. Discordance was assessed by taking the number of discordant genotypes away from the total number of genotypes assessed, then dividing this by the total number of genotypes assessed and multiplying by 100.

Associations between genotypes and AD in ALSPAC
In ALSPAC, associations between AD and individual KASP™ genotypes was conducted using general linear modelling in R (adjusting for sex and 10 principal components) and assuming an additive model, using the genotype probabilities (and the em algorithm) to account for the uncertainty in the genotype calling.

Associations between AD and FLG combined null genotype for both KASP genotyped and imputed data was conducted using general linear modelling in R (adjusting for sex). The KASP genotyped combined null genotype analyses were conducted including and excluding the c.2282_2285del variant, for comparison.

In UK Biobank, associations between AD and imputed variants were conducted in PLINK 2.0 using general linear modelling, assuming an additive model and adjusting for sex, chip and 10 principal components. This was performed with genotype dosages to account for the uncertainty in the genotype calling. Associations between AD and FLG combined null genotype was also conducted using general linear modelling in R (adjusting for sex).

Results and discussion
Table 1 shows the allele frequencies of FLG p.Arg501Ter, p.Arg2447Ter and p.Ser3247Ter from the ALSPAC KASP™ data versus the HRC imputed data. The UK Biobank HRC frequencies are also shown for comparison. The allele frequencies of the complete imputed data are consistent between the two ALSPAC genetic datasets; the UK Biobank frequencies are also in keeping with expected values. However, of note, the frequencies calculated from only those individuals for whom a confident genotype call could be made are lower for all 3 SNPs in the ALSPAC data and for p.Arg501Ter in the UK Biobank data, suggesting that those with mutations are disproportionately harder to call from the imputed data than those with homozygous wild-type genotype. The proportion of individuals who carry at least 1 FLG null mutation at any of these positions (combined null genotype) as inferred from imputed data is slightly lower (4%) than when the genotyped data is used (6%), and it is important to note that omission of c.2282_2285del from the imputed data means that the total percentage of individuals with FLG haploinsufficient (combined null genotype) is substantially lower than the percentage defined by genotype data including all 4 null mutations (10%) (Table 1).

The imputation quality scores (reported in Table 1) show that all three variants had good imputation quality in the two cohorts (R²>0.6 and info>0.7 for MAF<1% variants). However, we note that for rare variants these metrics may not be completely fit for purpose, as whilst the quality of imputation may look very good across all individuals, if the quality is poor for individuals with rare genotypes, we may have poor quality data on the most informative individuals. Therefore, we further investigated where exactly the discordance is observed between KASP genotyped and HRC imputed genotypes on an individual basis in the ALSPAC data.

For each individual FLG genotype there is very little discordance in genotypes between the two methods (0.3% for p.Arg501Ter and <0.1% for p.Arg2447Ter and p.Ser3247Ter)
Table 1. Allele frequencies and imputation quality of FLG null mutations in ALSPAC (as measured by KASP™ genotyping and HRC imputation) and in UK Biobank (HRC-UK10K imputation only).

FLG variants	rs ID	ALSPAC KASP	ALSPAC HRC imputation	UK Biobank imputation		
		Freq (confident calls)	R²	Freq (confident calls)	info	
p.Arg501Ter	rs61816761 (T)	0.021	0.023 (0.015)	0.82	0.023 (0.016)	0.89
p.Arg2447Ter	rs138726443 (T)	0.004	0.005 (0.002)	0.73	0.005 (0.005)	1
p.Ser3247Ter	rs150597413 (A)	0.003	0.003 (0.001)	0.79	0.004 (0.004)	1
Combined null genotype	3 mutations*	0.06 (0.10)*	- (0.04)	-	-	

Frequencies displayed are for the rare allele at each position (the allele is shown in the rsID column). “Freq” is the minor allele frequency calculated from all individuals – but accounts for the uncertainty of individual genotype calls. The minor allele frequency calculated only from the individuals with “confident calls” (uncertainty<0.1) are also shown. For the combined null genotype status the freq. columns show the proportion of individuals that carry at least 1 FLG null mutation. *For the KASP genotyped data, two proportions are given, one counting only the 3 SNP variants and the second in brackets also includes the c.2282_2285del mutation.

*“R²” and “info” denote the imputation quality measures estimated during the imputation procedures: R² is the imputation quality score reported by Minimac and info is reported by IMPUTE software.

FLG, filaggrin; HRC, Haplotype Reference Consortium; KASP, Competitive (Kompetative) allele-specific PCR.

amongst the 15,550 individuals with data from both, i.e. the vast majority fall in the concordant shaded cells of Table 2a–c. A potential limitation is that FLG null alleles are disproportionately represented in the individuals without confident calls in the imputed data (shown in missing rows of Table 2) as compared with the direct genotyping. Therefore, a proportion of likely true FLG mutation carriers would be excluded if using a ‘best-guess’ imputed data approach or more measurement error may be introduced if a dosage or probability imputed data approach is used.

For p.Arg501Ter, the overall discordance between the KASP™ and imputed genotypes is only 0.3%, with 12 (<0.1%) genotyped as wildtype (no p.Arg501Ter mutations) by KASP™ called as heterozygotes following imputation and 33 (5%) genotyped as heterozygotes called wild type in imputation. However, 237 (36%) of those genotyped as heterozygotes and 3 (75%) of those genotyped as rare homozygotes at this SNP had missing genotypes when only confident calls are counted in the imputed data.

For p.Arg2447Ter, overall discordance is <0.1%, with no individuals genotyped as wildtype imputed as having a p.Arg2447Ter mutation and 13 (10%) genotyped as heterozygotes imputed as wildtype. However, 69 (51%) of those genotyped as heterozygotes at this SNP had missing genotypes when only confident calls are counted in the imputed data. p.Arg501Ter and R2247X represent the same sequence alteration occurring at different locations within the highly repetitive sequence of FLG exon 3 and this may in contribute to genotype and imputation missing data.

For p.Ser3247Ter, overall discordance is <0.1%, with only 2 (<0.1%) genotyped as wildtype imputed as heterozygotes and 2 (2%) genotyped as heterozygotes imputed as wildtype. However, 50 (56%) of those genotyped as heterozygotes at this SNP had missing genotypes when only confident calls are counted in the imputed data.

Considering FLG genotypes are often dichotomised into groups with 1 or 2 FLG null mutations versus wild type genotype for statistical analysis, we demonstrate that overall discordance for such a variable is small (0.4%), only 13 (<0.1%) genotyped as wild type were imputed to harbour at least one FLG null mutation and 47 (5%) with at least one FLG null mutation in the genotyped data were imputed as wild type. However, as also seen on the individual mutation basis, a large proportion (351, 41%) of individuals genotyped to have at least one FLG mutation, had missing data when only confident calls are counted in the imputed data. Furthermore, when we consider that the c.2282_2285del FLG mutation is not available in the imputed data, greater discordance (5%) is seen between KASP™ genotyped data of all 4 mutations and the imputed data for 3 SNPs.

We investigated how the discordance (and missingness in the imputed data) affected the observed association with AD in ALSPAC. Only p.Arg501Ter and the combined FLG null genotype showed strong associations with AD when using the KASP™ genotyped data (p=2x10⁻⁹ and p=2x10⁻¹⁰, respectively, Table 3). The odds ratios were perhaps slightly attenuated in the imputed data (odds ratio 2.08 versus 2.22 for p.Arg501Ter and OR=2.05 versus 2.08 for combined FLG null genotype, with overlapping confidence intervals), but both were still strongly associated using the imputed data (p=6x10⁻¹⁰ and p=4x10⁻⁷, respectively). p.Arg2447Ter and p.Ser3247Ter associations, whilst in the expected direction, did not show evidence for association in either the genotyped or the imputed
Table 2. Concordance of FLG genotypes between KASP genotyping and HRC imputation in ALSPAC.

a. p.Arg501Ter	KASP genotypes			
Imputed genotypes	+/+	+/−	−/−	missing
+/+	14408	33 0	185	
+/−	12	394 0	18	
−/−	0 0	1 2		
missing	240	237 3	17	

b. p.Arg2447Ter	KASP genotypes			
Imputed genotypes	+/+	+/−	−/−	missing
+/+	15125	13 0	188	
+/−	0	54 0	8	
−/−	0 0	0 0		
missing	76	69 0	17	

c. p.Ser3247Ter	KASP genotypes			
Imputed genotypes	+/+	+/−	−/−	missing
+/+	15198	2 0	221	
+/−	2	38 0	1	
−/−	0 0	0 0		
missing	38	50 0	0	

d. Combined null genotype	3 KASP genotypes	4 KASP genotypes				
Imputed genotypes	No FLG mutations	1 or 2 FLG mutations	missing	No FLG mutations	1 or 2 FLG mutations	missing
No FLG mutations	13797	47 422	12879	699	687	
1 or 2 FLG mutations	13	468 47	13	460	55	
missing	359	351 46	342	358	56	

For each variant, +/+ refers to the common wild type genotype (i.e. no mutations), +/− refers to heterozygotes (i.e. individual with one mutation at this variant) and −/− refers to rare homozygote (i.e. both copies of the variant are mutated).

The 3 individual mutations are also collapsed into a combined null genotype variable (part d), where individuals are stratified into those with no FLG null mutations and those with one or two FLG null mutations. In the KASP™ genotyped data this collapsing has been carried out for the 3 mutations that are available in the imputed data (“3 KASP genotypes”) and repeated also including the c.2282_2285del mutation (“4 KASP genotypes”) to show the impact of this variant being unavailable in the imputed data.

Individuals are included as ‘missing’ if genotyping by both methods was attempted but failed in one or both for some reason. For the imputed data this includes individuals for whom the estimated dosages are not within the thresholds set for making hard genotype calls.

FLG, filaggrin; HRC, Haplotype Reference Consortium; KASP, Competitive (Kompetative) allele-specific PCR.

ASLPC data (all p>0.05). However, the much larger UK Biobank sample showed strong evidence for associations between AD and the three individual FLG variants and FLG combined null genotype (p-values ranging from 7x10⁻⁸ to 5x10⁻⁷), despite the data being imputed.

Our analyses have demonstrated that whilst some error is likely to be present in HRC imputed FLG variants, this method of calling FLG null genotypes in large population cohorts (where genome-wide imputation is readily available but bespoke genotyping is less often available and costly to obtain) is likely to
Table 3. Comparison of associations between FLG null mutations and atopic dermatitis in ALSPAC (using KASP™ genotyping and HRC imputation) and in UK Biobank (using HRC imputation).

Association with atopic dermatitis phenotype	ALSPAC – KASP	ALSPAC – imputed	UK Biobank - imputed
p.Arg501Ter	2.22 (1.72 to 2.88), p=2x10⁻⁶ (N=5,094)	2.08 (1.62 to 2.67), p=6x10⁻¹⁰ (N=5,155)	2.01 (1.86 to 2.16), p=5x10⁻⁷ (N=336,988)
p.Arg2447Ter	1.71 (1.00 to 2.92), p=0.051 (N=5,111)	1.42 (0.81 to 2.50), p=0.145 (N=5,155)	1.84 (1.58 to 2.15), p=9x10⁻¹⁶ (N=336,988)
p.Ser3247Ter	1.81 (0.89 to 3.68), 0.101 (N=5,110)	1.52 (0.74 to 3.10), p=0.193 (N=5,155)	1.75 (1.46 to 2.09), p=7x10⁻¹⁰ (N=336,988)
Combined null genotype (excluding c.2282_2285del)	2.08 (1.66 to 2.61), p=2x10⁻¹⁰ (N=5,019)	2.05 (1.55 to 2.70), p=4x10⁻⁷ (N=4,924)	1.85 (1.72 to 1.99), p=7x10⁻⁵² (N=328,996)
Combined null genotype (including c.2282_2285del)	1.96 (1.63 to 2.35), p=3x10⁻¹³ (N=4,934)	NA	NA

Results given are odds ratios (OR) and confidence intervals (CI) with the minor allele as the effect allele. The imputed analyses of individual genotypes use genotype probabilities or dosage to account for uncertainty in the genotype calls, the combined null genotype analyses use hard calls as defined in the methods.

FLG, filaggrin; HRC, Haplotype Reference Consortium; KASP, Competitive (Kompetative) allele-specific PCR; NA, not applicable.

be sufficient for many studies. Whilst there is likely to be some data missing-not-at-random (MNAR), when this is related only to exposure (so actual FLG status in this case) and confounders, but NOT the outcome (as seems likely in this case), then the exposure coefficient in a linear or logistic regression is unbiased18. However, measurement error in a variable will lower power to detect associations and could bias the association towards the null. Therefore, whilst the coefficient estimate may not be reliable, the large sample sizes of cohorts such as ALSPAC and UK Biobank increase power sufficiently to allow detection of associations, as demonstrated by the very strong evidence seen for associations between AD and FLG variants in UK Biobank.

In our comparison, the UK Biobank suffers from an additional limitation that AD is likely to have been defined with more measurement error than it is in ALSPAC because in UK Biobank AD is a self-reported phenotype with recall bias or hospital statistic, whilst the participants in ALSPAC underwent longitudinal assessments (details in the Online Methods). However, despite the measurement error in both AD phenotype and FLG genotype, there is good evidence for the expected associations, in the expected direction (although probably with effect sizes that are biased somewhat towards the null).

Here, we have only assessed imputation using the HRC (r1.11) or the combined HRC-UK10K reference used by UKBiobank12 panel and so cannot comment directly on the utility of FLG imputations using other reference panels. But as HRC is the most advanced imputation panel developed to date, it is likely that previous imputation panels give less reliable genotype calls for these variants. The imputation quality of any SNP is also determined by the genotyping chip used in that study and particularly the density (and quality) of genotyping of SNPs in linkage disequilibrium with the variants of interest. ALSPAC was genotyped on the Illumina HumanHap550 quad array (children) or the Illumina human660W-quad array, and UK Biobank was genotyped on Applied Biosystems UK Biobank Axiom Array12. Imputation from other genotyping chips (particularly those with markedly different properties) might need further validation. However, in general the imputation quality score of a variant of interest gives some information on how reliably that variant is imputed.

A limitation of our work is that it focussed on UK population data in which the prevalence of FLG null mutations has been extensively studied. The 3 mutations studied in our work vary in prevalence across different populations even within Europe. The lower prevalence of these mutations and a greater diversity in SNP genotypes in many African and Asian populations means the application of imputation requires further testing. Whilst we have demonstrated that HRC imputation can provide adequate genotype calling for the most common FLG variants in large studies, we would still recommend caution if utilising such data. Imputation quality statistics should certainly be assessed, and we would also recommend the use of a positive-control analysis such as the associations with AD that we use in this study.

Data availability
ALSPAC data access is through a system of managed open access. The steps below highlight how to apply for access to the data included in this research article and all other ALSPAC
data. The datasets presented in this article are linked to ALSPAC project number B1533, please quote this project number during your application. The ALSPAC variable codes highlighted in the dataset descriptions can be used to specify required variables.

1. Please read the ALSPAC access policy which describes the process of accessing the data and samples in detail, and outlines the costs associated with doing so.

2. You may also find it useful to browse our fully searchable research proposals database, which lists all research projects that have been approved since April 2011.

3. Please submit your research proposal for consideration by the ALSPAC Executive Committee. You will receive a response within 10 working days to advise you whether your proposal has been approved.

If you have any questions about accessing data, please email alspac-data@bristol.ac.uk.

The study website also contains details of all the data that is available through a fully searchable data dictionary.

We used data from the UK Biobank resource under application number 10074 for this work. All bona fide researchers can apply to use the UK Biobank resource for health-related research that is in the public interest. Further information on the application process is available from the UK Biobank website.

Acknowledgements

We are extremely grateful to all the families who took part in the ALSPAC study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

This publication is the work of the authors and L.Paternoster will serve as guarantor for the contents of this paper.

References

1. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al.: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006; 38(4): 441-6. PubMed Abstract | Publisher Full Text
2. Rodriguez E, Baurecht H, Herberich E, et al.: Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. J Allergy Clin Immunol. 2009; 123(6): 1361-70.e7. PubMed Abstract | Publisher Full Text
3. Smith FJ, Irvine AD, Terron-Kwiatkowski A, et al.: Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006; 38(3): 357-42. PubMed Abstract | Publisher Full Text
4. Paternoster L, Standl M, Waage J, et al.: Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015; 47(12): 1449-56. PubMed Abstract | Publisher Full Text | Free Full Text
5. McCarthy S, Das S, Kretzschmar W, et al.: A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016; 48(10): 1279-83. PubMed Abstract | Publisher Full Text | Free Full Text
6. Boyd A, Golding J, Macleod J, et al.: Cohort Profile: The Children of the 90’s–the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013; 42(1): 111-27. PubMed Abstract | Publisher Full Text | Free Full Text
7. Fraser A, Macdonald-Wallis C, Tilling K, et al.: Cohort Profile: The Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013; 42(1): 97-110. PubMed Abstract | Publisher Full Text | Free Full Text
8. Morris TT, Davies NM, Hemani G, et al.: Population phenomena inflate genetic associations of complex social traits. Sci Adv. 2020; 6(16): eaay0328. PubMed Abstract | Publisher Full Text | Free Full Text
9. O’Connell J, Sharp K, Shrine N, et al.: Haplotype estimation for biobank-scale data sets. Nat Genet. 2016; 48(7): 817-20. PubMed Abstract | Publisher Full Text | Free Full Text
10. Allen NE, Sudlow C, Peakman T, et al.: UK biobank data: Come and get it. Sci Transl Med. 2014; 6(224): 224ed4. PubMed Abstract | Publisher Full Text
11. Collins R: What makes UK Biobank special? Lancet. 2012; 379(9822): 1173-4. PubMed Abstract | Publisher Full Text
12. Bycroft C, Freeman C, Petkova D, et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018; 562(7726): 203-209. PubMed Abstract | Publisher Full Text | Free Full Text
13. Huang J, Howie B, McCarthy S, et al.: Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015; 6: 8111. PubMed Abstract | Publisher Full Text | Free Full Text
14. Howie B, Marchini J, Stephens M: Genotype Imputation with Thousands of Genomes. G3 (Bethesda). 2011; 1(6): 457-70. PubMed Abstract | Publisher Full Text | Free Full Text
15. Mitchell R, Hemani G, Dudding T, et al.: UK Biobank Genetic Data: MRC-IEU Quality Control, version 2. Datasets - data bris. University of Bristol, 2019; [cited 2020 Apr 8]. Publisher Full Text
16. Marchini J, Howie B, Myers S, et al.: A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007; 39(7): 906-13. PubMed Abstract | Publisher Full Text
17. Pistis G, Porcu E, Vieste SL, et al.: Rare variant genotype imputation with thousands of study-specific whole-genome sequences: implications for cost-effective study designs. Eur J Hum Genet. 2015; 23(7): 975-83. PubMed Abstract | Publisher Full Text | Free Full Text
18. Hughes RA, Heron J, Sterne JAC, et al.: Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Int J Epidemiol. 2019; 48(4): 1294-304. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status:

Version 2

Reviewer Report 13 November 2024

https://doi.org/10.21956/wellcomeopenres.23964.r107080

© 2024 Pardo L. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Luba M Pardo
Erasmus University Medical Center, Rotterdam, The Netherlands

Review

In this report Paternoster L et al present the results of a comparative allele frequencies analysis of four common FLG null mutations (R501X, R2447X and S3247X) profiled using genotyping KASP™ essays, with these derived from imputation analysis in two well-known large population-based studies (ALSPAC and UK Biobank). The authors also carried out logistic regression analysis to test the association of atopic dermatitis with the genotyped FLG null mutations and compared the effect sizes in ALSPAC and UK Biobank to. The imputed datasets were already available and were done using the HRC reference for the imputation. The authors found comparable allele frequencies between the genotyped and the imputed FLG-null mutations (only 3 mutations were available in the imputed datasets), with slightly lower frequencies in the imputed datasets. Imputation called rates for both population-datasets. The authors performed association analysis between the FLG-null mutations and AD per population-datasets and found increased risk of AD versus controls in these carrying at least 1 (null mutation). The effect size was stronger for the ALSPAC genotyped data versus this of the imputed ALSPAC dataset, but similar to this of the imputed UKBiobank dataset. This suggests that larger samples sizes can compensate for the uncertainty of imputation for rare variants as well. Authors concluded that imputed data appears could be used to analyse selected FLG null mutations.

Main comments.

Paper is well-written, statistical analysis is clear as well as conclusions. The paper is relevant since it shows that in large enough datasets specific rare variants could have enough imputation quality for analysis. I only have one comment. The authors only used four known mutations but recent literature shows that other FLG-null mutations are likely to occur (PMID: 35042220). This may be relevant since in this report people without these 4 mutations were called as negative, which may decrease the strength of the associations. I think the authors should also discuss this in the report.

Is the work clearly and accurately presented and does it cite the current literature?

Yes
Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: genetic epidemiology. epidemiology of skin diseases.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 05 August 2024

https://doi.org/10.21956/wellcomeopenres.23964.r83819

© 2024 De Guzman Strong C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cristina De Guzman Strong
Department of Dermatology, Henry Ford Cancer Institute, Henry Ford Health, Michigan, USA

I have no further comments. Very nice paper.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes
Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Human Genetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 08 June 2023

https://doi.org/10.21956/wellcomeopenres.19533.r57780

© 2023 De Guzman Strong C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cristina De Guzman Strong

1 Department of Dermatology, Henry Ford Cancer Institute, Henry Ford Health, Michigan, USA
2 Department of Dermatology, Henry Ford Cancer Institute, Henry Ford Health, Michigan, USA

The manuscript by Paternoster et al provides a comprehensive study using ALSPAC and UK Biobank genotypes and imputation for three *FLG* null mutations to assert that HRC imputed data for UK-population-based genetic analysis can be used to identify specific *FLG* null mutations. As R501X, R2247X, and S3247X are difficult to accurately genotype, imputation circumvents this problem. There are only minor concerns that need clarifications and a moderate concern for the calculations of discordance in Table 2.

1. In the Abstract’s 1st sentence – please state the type of low frequency mutations? Null?

2. In the Abstract’s Methods – Nomenclature of the substitution variants needs to be consistent with varnomen.hgvs.org. See Sequence Variant Nomenclature (hgvs.org) for nonsense variants, ie R501*. This applies to the rest of the manuscript as well.

3. In the Abstract’s Conclusions, please list selected *FLG* null mutations.

4. Provide more details for KASP assays.

5. Please provide reference for ShapeIt v2.
6. Please provide reference for SNPTEST under “Associations between genotypes and AD in ALSPAC”.

7. It is not clear how the discordances of 0.3%, 0.1% and 0.1% for R501*, R2447* and S3247*, respectively, are calculated. I tried to calculate myself but perhaps I am missing a few details. Hence, I highlight that sufficient details of methods and analysis provided to allow replication by others are partly addressed and specific to this point.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Human Genetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 20 Apr 2024
Ashley Budu-Aggrey

Reviewer Comment:
The manuscript by Paternoster et al provides a comprehensive study using ALSPAC and UK Biobank genotypes and imputation for three FLG null mutations to assert that HRC imputed data for UK-population-based genetic analysis can be used to identify specific FLG null mutations. As R501X, R2247X, and S3247X are difficult to accurately genotype, imputation circumvents this problem. There are only minor concerns that need clarifications and a moderate concern for the calculations of discordance in Table 2.

1. In the Abstract’s 1st sentence – please state the type of low frequency mutations?
Null?

Author Response: This sentence has been edited to refer to null FLG mutations

Reviewer Comment:
1. In the Abstract's Methods – Nomenclature of the substitution variants needs to be consistent with varnomen.hgvs.org. See Sequence Variant Nomenclature (hgvs.org) for nonsense variants, ie R501*. This applies to the rest of the manuscript as well.

Author Response: The nomenclature of the substitution variants have been updated

Reviewer Comment:
1. In the Abstract's Conclusions, please list selected FLG null mutations.

Author Response: The FLG null mutations have now been listed.

Reviewer Comment:
1. Provide more details for KASP assays.

Author Response: Further details of the method have been included.

Reviewer Comment:
1. Please provide reference for ShapeIt v2.

Author Response: This reference has now been included

Reviewer Comment:
1. Please provide reference for SNPTEST under “Associations between genotypes and AD in ALSPAC”.

Author Response: This reference has now been included

Reviewer Comment:
1. It is not clear how the discordances of 0.3%, 0.1% and 0.1% for R501*, R2447* and S3247*, respectively, are calculated. I tried to calculate myself but perhaps I am missing a few details. Hence, I highlight that sufficient details of methods and analysis provided to allow replication by others are partly addressed and specific to this point.

Author Response: The discordances were calculated by taking the number of concordant genotypes away from the total number of genotypes assessed, dividing this by the total number of genotypes assessed and multiplying by 100. This has now been added to the main text.

Competing Interests: No competing interests were disclosed.
In this study, the ALSPAC and UK Biobank cohorts were used to investigate whether non-genotyped FLG null mutations can be imputed with high quality using the established imputation methodology used in genome-wide association studies (GWAS). The authors conclude that imputation based on the Haplotype Reference Consortium (HRC) resulted in an adequate determination of three of the most common FLG null mutations with discordance of 0.3% in UK populations.

○ In general, the manuscript is well written. All technical details regarding genotyping, imputation and quality control of each study are clearly explained. The methods used are also very sound and state of the art.

○ A major problem of this study is that the FLG deletion 2282del4 cannot be detected by imputation. This deletion is very common among the four most common genotyped FLG mutations in European populations. Although this drawback is discussed in the Results and Discussion section, it should also be mentioned in the abstract.

○ It would have been interesting to see if imputation based on other reference panels would give results of similar quality. This is raised as a limitation of the study and is not a major issue given that HRC is the most developed imputation reference panel.

○ It would be helpful for the reader to see the proportion of concordance/discordance presented in Table 2.

Minor comments:

○ Methods - ALSPAC cohort, page 4, 3rd paragraph: the imputation method used on the Michigan imputation server should be mentioned.

○ Please harmonize the spelling of the name of the ShapeIT algorithm, which is “ShapeIT (v2.r644)” and “ShapeIt v2” on page 4, 3rd paragraph, and “SHAPEIT2” in the 9th paragraph.

○ Please spell out UK10K on its first occurrence and add it to the abbreviations.

○ Please spell out PCA on its first occurrence and add it to the abbreviations.

Is the work clearly and accurately presented and does it cite the current literature?

Yes
Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: genetic epidemiology, epidemiology, atopic dermatitis research

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 20 Apr 2024
Ashley Budu-Aggrey

Reviewer Comment:

In this study, the ALSPAC and UK Biobank cohorts were used to investigate whether non-genotyped FLG null mutations can be imputed with high quality using the established imputation methodology used in genome-wide association studies (GWAS). The authors conclude that imputation based on the Haplotype Reference Consortium (HRC) resulted in an adequate determination of three of the most common FLG null mutations with discordance of 0.3% in UK populations.

○ In general, the manuscript is well written. All technical details regarding genotyping, imputation and quality control of each study are clearly explained. The methods used are also very sound and state of the art.

○ A major problem of this study is that the FLG deletion 2282del4 cannot be detected by imputation. This deletion is very common among the four most common genotyped FLG mutations in European populations. Although this drawback is discussed in the Results and Discussion section, it should also be mentioned in the abstract.

Author Response: The abstract now mentions that we investigated the three FLG null mutations that could be detected by imputation

Reviewer Comment:

○ It would have been interesting to see if imputation based on other reference panels
would give results of similar quality. This is raised as a limitation of the study and is not a major issue given that HRC is the most developed imputation reference panel.

- It would be helpful for the reader to see the proportion of concordance/discordance presented in Table 2.

Author Response: The discordances have now been included in Table 2

Reviewer Comment:

Minor comments:

1. Methods - ALSPAC cohort, page 4, 3rd paragraph: the imputation method used on the Michigan imputation server should be mentioned.

Author Response: We have mentioned that imputation was performed using the MACH algorithm

Reviewer Comment:

1. Please harmonize the spelling of the name of the ShapeIT algorithm, which is "ShapeIT (v2.r644)" and "ShapeIt v2" on page 4, 3rd paragraph, and "SHAPEIT2" in the 9th paragraph.

Author Response: This has now been harmonized to “ShapeIt v2”

Reviewer Comment:

1. Please spell out UK10K on its first occurrence and add it to the abbreviations.

Author Response: This has been spelt out and added to the abbreviations list

Reviewer Comment:

1. Please spell out PCA on its first occurrence and add it to the abbreviations.

Author Response: This has been spelt out and added to the abbreviations list

Competing Interests: No competing interests were disclosed.