Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease

Emmelie Cansby, …, Brian W. Howell, Margit Mahlapuu

JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140483.

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
Depletion of Protein Kinase STK25 Ameliorates Renal Lipotoxicity and Protects Against Diabetic Kidney Disease

Emmelie Cansby, Mara Caputo, Lei Gao, Nagaraj M. Kulkarni, Annika Nerstedt, Marcus Ståhlman, Jan Borén, Rando Porosk, Ursel Soomets, Matteo Pedrelli, Paolo Parini, Hanns-Ulrich Marschall, Jenny Nyström, Brian W. Howell, and Margit Mahlapuu

*the authors contributed equally to this work

1Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden; 2Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden; 3Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia; 4Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; 5Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 6Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden; 7Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 8Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY

Corresponding author

Prof. Margit Mahlapuu, University of Gothenburg,
Box 462, SE 40530, Gothenburg, Sweden
Phone: +46 706310109; Email: Margit.Mahlapuu@gu.se

Conflict of interest statement The authors have declared that no conflict of interest exists
Brief summary

STK25 controls the progression of diabetic kidney disease by regulating renal lipid accumulation as well as structural and functional kidney injury.
ABSTRACT

Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Further, we find that STK25 silencing in human kidney cells protects against lipid deposition as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
INTRODUCTION

Diabetic kidney disease (DKD) occurs in almost one-third of diabetes patients and is one of the most fatal long-term diabetic complications (1). The structural hallmarks of DKD include glomerular mesangial expansion (GME), glomerular basement membrane (GBM) thickening, podocyte loss, tubulointerstitial injury, renal fibrosis and arteriolar hyalinosis, resulting in a progressive decline in kidney function. Although DKD is the most common cause of end-stage renal disease (ESRD) in the Western world, accounting for nearly 40% of newly diagnosed cases that require dialysis or kidney transplantation (1), its molecular pathogenesis remains incompletely understood.

Hyperglycemia has been suggested as the main underlying cause for the progression of DKD. However, multiple large-scale studies have now demonstrated that intensive glycemic control has only modest effect on renal endpoints in diabetes (2). Hence, disease mechanisms other than hyperglycemia may be more relevant in DKD (3).

Recently, kidney lipotoxicity (i.e., lipid accumulation in glomerular and tubular cells) has emerged as a critical trigger in the pathogenesis of DKD through induction of renal oxidative stress, chronic low-grade inflammation, and extracellular matrix deposition (4-8). Deciphering the molecular mechanisms responsible for excessive renal lipid storage is therefore important to accelerate the design of novel therapeutic strategies against DKD.

In search of novel targets that control ectopic lipid deposition, we recently identified serine/threonine protein kinase (STK)25, a member of the sterile 20 kinase superfamily (9), as a critical regulator of lipotoxicity in the context of nutritional stress and obesity. We found that mice with global overexpression of STK25 accumulate excessive fat in the liver, skeletal muscle, pancreas, and vascular wall, which is accompanied by the influx of macrophages and nutritional fibrosis, and the reciprocal phenotype is seen in Stk25 knockout mice (10-17). Furthermore, we found that STK25 mRNA and protein levels correlate with the severity of hepatic steatosis and lobular inflammation in human liver biopsies, and several common nonlinked SNPs in the human STK25 gene are associated with altered liver fat (15, 18).

STK25 is highly expressed in human and rodent kidneys (19) but its renal function is unknown. On the basis of our previous findings, which reveal a critical role of STK25 in the control of lipid accumulation, chronic low-grade inflammation, and fibrosis in several metabolic organs prone to diabetic damage, we hypothesized that STK25 is also involved in regulation of renal dysfunction in connection to obesity. Here we investigated the
impact of STK25 signaling on susceptibility to lipotoxicity-mediated progression of DKD using a model of high-fat diet-fed mice that displays renal lesions similar to DKD in patients with metabolic syndrome (20). In addition, we performed in vitro studies using cultured human kidney cells to assess the direct renoprotective role of STK25 inactivation.

RESULTS

Overexpression of STK25 in Mice Aggravates the Development of Diet-Induced DKD

Mice fed a high-fat diet during an extended period of time is a common nonclinical model for studies of DKD (6). Here we analyzed whether overexpression of STK25 in high-fat-fed mice exacerbates diet-induced renal lipid accumulation and progression of DKD (Fig. 1A). On the high-fat diet, the STK25 mRNA and protein abundance was upregulated 6.3±0.2- and 4.4±0.4-fold, respectively, in whole kidney lysates from transgenic mice compared with wild-type littermates (Fig. 1B-C). Notably, renal protein levels of STK25 were not affected by the diet (Fig. S1). In kidney samples from wild-type mice, endogenous STK25 protein could be detected in both glomerular and renal tubular cells, and this expression was augmented in transgenic mice (Fig. 1D, Fig. S2A-B). Consistent with the broad expression of STK25 throughout mouse kidney, we found that human podocytes, endothelial and mesangial cells, and tubular epithelial cells express high levels of endogenous STK25 protein (Fig. 1E).

During the high-fat feeding, lipid droplets visualized by immunofluorescence staining of adipophilin (also known as ADRP or PLIN2), and neutral lipids (triglycerides and cholesterol esters) visualized by Oil Red O staining, accumulated in the kidneys from wild-type mice (Fig. 1F-G). Importantly, we found aggravated glomerular as well as tubular deposition of lipid droplets and neutral lipids in high-fat-fed Stk25 transgenic mice compared with wild-type controls (Fig. 1F-G). In parallel, elevated albuminuria (measured as the urinary albumin to creatinine ratio) was observed in Stk25 transgenic vs. wild-type mice after a dietary challenge, indicating exacerbated glomerular injury with loss of permselectivity (Fig. 1H). Higher urinary levels of sodium detected in high-fat-fed Stk25 transgenic mice may also suggest an aggravated tubular injury (Fig. 1I).

Overexpression of STK25 had no effect on the renin-angiotensin system (Fig. S3A-B).

Kidney sections from Stk25 transgenic and wild-type mice collected at the end of the high-fat diet feeding period
were analyzed for glomerular and tubular injuries typically seen in DKD. Periodic acid-Schiff (PAS) staining and scanning electron microscopy (SEM) analysis showed that glomerular hypertrophy and GME were significantly increased in Stk25 transgenic vs. wild-type kidneys (Fig. 2A; Fig. S4A). A morphometric analysis of the transmission electron microscopy (TEM) images also revealed an impairment in GBM thickness and exacerbated podocyte vacuolation in Stk25 transgenic kidneys (Fig. 2B; Fig. S4B). Semiquantitative scoring of H&E-stained kidney sections further demonstrated a more pronounced tubular vacuolation and interstitial edema in mice overexpressing STK25 (Fig. 2C). Notably, we found that glomerulosclerosis and tubulointerstitial fibrosis were markedly aggravated in Stk25 transgenic mice as measured by immunofluorescence analyses of collagen IV and by Picrosirus Red staining (labels both collagen type I and type III) (Fig. 2D-E). Moreover, overexpression of STK25 exacerbated renal arteriolar hyalinosis as indicated by elevated abundance of α-SMA (Fig. 2F). Infiltration of cells positive for CD68 (a marker of activated macrophages) was also 2.5±0.4-fold higher in the kidneys from high-fat-fed Stk25 transgenic vs. wild-type mice, demonstrating increased inflammation both in glomeruli and in the tubular area (Fig. 2G). Importantly, Stk25 transgenic kidneys displayed marked impairment in the integrity of glomerular filtration barrier (GFB) as evidenced by decreased abundance of the podocyte-specific protein nephrin and the endothelial-specific protein Pecam (3.3±0.6- and 2.0±0.4-fold reduction, respectively) (Fig. 2H-I).

The structural changes in kidney cells characteristic of DKD are known to be preceded by exacerbated oxidative and endoplasmic reticulum (ER) stress (21). Interestingly, we found that the levels of 4-hydroxynonenal (4-HNE), an end-product of peroxidation of membrane N-6-polyunsaturated fatty acids and considered a reliable biomarker of oxidative damage, and the dye dihydroethidium (DHE), which detects superoxide radicals (O₂⁻), were significantly higher in kidney sections from high-fat-fed Stk25 transgenic mice compared with wild-type controls (Fig. 3A-B). In parallel, we observed 1.9±0.1-fold enhanced immunostaining for KDEL, a well-characterized ER stress indicator, in Stk25 transgenic kidneys (Fig. 3C). Notably, overexpression of STK25 also resulted in elevated renal peroxisomal activity as evidenced by 6.0±0.7-fold increase in immunostaining for peroxisomal biogenesis marker PEX5 (Fig. 3D).

No differences in body weight, or in the level of hyperglycemia or hyperinsulinemia, were detected comparing the Stk25 transgenic and wild-type mice over the high-fat feeding period (Fig. S5A-D). Furthermore, glucose
tolerance and insulin sensitivity assessed at the end of the high-fat diet feeding regimen were similar between the genotypes (Fig. S5E-F). A challenge with a high-fat diet progressively increased the levels of plasma lipids in both Stk25 transgenic and wild-type mice, without any difference comparing the genotypes (Fig. S6A-D).

Genetic Ablation of STK25 in Mice Halts the Progression of Diet-Induced DKD

To determine if reducing endogenous STK25 expression could prevent diet-induced renal lipid deposition and protect against the development of DKD, we examined the effects of Stk25 loss-of-function in high-fat-fed mice (Fig. 1A). The loss of STK25 protein expression in kidney samples from Stk25−/− mice was confirmed by Western blot as well as immunofluorescence analysis (Fig. 4A-C).

We found that high-fat diet-induced accumulation of lipid droplets (assessed by adipophilin immunostaining) and neutral lipids (assessed by ORO staining) was reduced both in glomeruli and in the tubular area from Stk25−/− kidneys compared with with-type kidneys (Fig. 4D-E). In parallel, we detected trends of decreased albuminuria and sodium in the urine from high-fat-fed Stk25 knockout mice, suggesting an improvement in glomerular permselectivity and tubular absorptive capacity (Fig. 4F-G). Notably, Stk25−/− mice also displayed lower abundance of plasma renin and angiotensin II compared with wild-type littermates (Fig. S3C-D).

PAS staining as well as SEM and TEM analysis of kidney sections collected at the end of the high-fat diet feeding period revealed that glomerular hypertrophy and mesangial matrix hyperplasia were significantly suppressed, whereas GBM thickness and podocyte vacuolation were decreased, in Stk25−/− mice compared with wild-type littermates (Fig. 5A-B; Fig. S4C-D). Furthermore, depletion of STK25 lowered the scores of tubular vacuolation and interstitial edema by 1.7±0.2- and 1.6±0.2-fold, respectively (Fig. 5C). We also detected less glomerulosclerosis and tubulointerstitial fibrosis (assessed by collagen IV immunofluorescence analysis and by Picrosirus Red staining) in the kidneys from high-fat-fed Stk25 knockout vs. wild-type mice, in parallel with suppressed arteriolar hyalinosis (quantified by α-SMA immunostaining) (Fig. 5D-F). Ablation of STK25 resulted in decreased diet-induced renal inflammatory infiltration as evidenced by 1.8±0.3-fold lower immunostaining for CD68 (Fig. 5G). Importantly, we found 2.9±0.4- and 1.7±0.2-fold higher abundance of nephrin and Pecam, respectively, in kidney sections from high-fat-fed Stk25−/− vs. wild-type mice, suggesting a prevention of podocyte injury/loss, increased vessel density, and an improvement of GFB integrity (Fig. 5H-I).
Reciprocally to our observations in Stk25 transgenic mice, the oxidative stress indicators 4-HNE and DHE as well as ER stress marker KDEL were about 2-4-fold decreased both in glomeruli and in the tubular area of the kidneys from high-fat-fed Stk25−/− vs. wild-type mice (Fig. 6A-C). We also found that the ratio of reduced to oxidized glutathione (GSH/GSSG) was 1.5±0.1-fold higher in kidney lysates from Stk25−/− mice, indicating an improved antioxidant capacity (Fig. 6E). Notably, 3.4±0.7-fold lower PEX5 immunostaining suggested suppressed peroxisomal biogenesis in STK25-deficient kidneys (Fig. 6D).

It has recently been shown that increasing fatty acid oxidation alone by genetic or pharmacological tools is sufficient to protect the kidneys from fibrotic injury (22). The rate-limiting step in β-oxidation is the transport of fatty acids into the mitochondria by carnitine palmitoyltransferase 1 (CPT1), which conjugates fatty acids with carnitine. Interestingly, we found that the ratio between free carnitine (C0) and the sum of palmitoylcarnitine and stearoylcarnitine (C16+C18) was 1.4±0.2-fold lower in kidney lysates from high-fat-fed Stk25−/− mice compared with wild-type controls, indicating elevated CPT1 activity (Fig. 6F).

The fasting blood glucose levels were similar comparing the genotypes throughout the high-fat diet feeding experiment; however, plasma insulin and the homeostasis model assessment score of insulin resistance (HOMA-IR) were about 2-fold lower in Stk25−/− mice than in wild-type littermates at the end of the feeding regimen, which was paralleled by a modest reduction in diet-induce weight gain (Fig. S7A-D). Consistent with our previous studies (10), Stk25 knockout mice also exhibited small but significant improvement in glucose tolerance and insulin sensitivity when assessed at the end of the high-fat feeding period (Fig. S7E-F). Plasma lipid levels markedly increased in both Stk25 knockout and wild-type mice during the period of high-fat diet feeding, with the lipid profile remaining similar between the genotypes (Fig. S6E-H). Notably, we did not observe any differences in general behaviour or clinical signs (body posture, mood, and motor activity) in high-fat-fed Stk25−/− mice compared with wild-type controls.

STK25 Cell-Autonomously Controls Ectopic Fat Accumulation in Human Kidney Cells by Regulating both Lipid Synthesis and Oxidation

To investigate the cell-specific role of STK25 in regulation of renal lipotoxicity, we transfected human embry-
onic kidney (HEK)293 cells, which are frequently used to study nephrotoxicity (23, 24), with STK25-specific small interfering (si)RNA or with a nontargeting control (NTC) siRNA. In order to mimic conditions in high-fat-fed mice and high-risk individuals, we subsequently exposed the cells for 48 hours to oleic acid, known to efficiently induce steatosis in vitro. In HEK293 transfected with STK25 siRNA, the target mRNA expression was repressed by approximately 80% whereas the protein abundance of STK25 was below the Western blot detection limit (Fig. 7A-B). Similarly to our previous observations in mouse and human hepatocytes (11, 18), we found that the endogenous STK25 protein was mainly (but not solely) localized to the intracellular lipid droplets in HEK293 cells transfected with NTC siRNA (evidenced by largely colocalized immunostaining of STK25 with Bodipy 493/503 that detects neutral lipids in lipid droplets; Fig. 7C). As expected, no STK25 immunostaining was detected in HEK293 cells transfected with STK25 siRNA (Fig. 7C).

The silencing of STK25 suppressed intracellular lipid deposition in HEK293 cells treated with oleic acid about 4-fold as assessed by quantification of the Bodipy-positive area (Fig. 7D). Lipidomic analysis confirmed significantly reduced accumulation of triacylglycerol (TAG) in HEK293 transfected with STK25 siRNA compared with NTC siRNA (Fig. 7E). Analysis of individual TAG species further revealed that depletion of STK25 decreased the levels of all the main TAG species (Table S1; Fig. S8).

We next investigated the mechanisms underlying the suppression of ectopic lipid storage in HEK293 cells by STK25 knockdown. We found that the staining with MitoTracker Red, a fluorescent dye that specifically accumulates within respiring mitochondria, was significantly augmented in oleate-treated HEK293 transfected with STK25 siRNA vs. NTC siRNA (Fig. 7F). Consistently, silencing of STK25 resulted in about 25% increase in β-oxidation rate measured by quantification of [%H]-labeled water as the product of [9,10-3H(N)]palmitic acid oxidation (Fig. 7G). Notably, the mRNA levels of FASN and ACC1 controlling de novo fatty acid synthesis, and DGAT and HMGCR catalyzing the commitment steps in TAG and cholesterol biosynthesis, respectively, were lower in HEK293 cells transfected with STK25 siRNA, along with reduced expression of lipogenic transcription factor PPARγ (Fig. 7H).

Interestingly, we also detected repressed intracellular lipid storage, increased mitochondrial β-oxidation, and suppressed lipogenic gene expression in STK25-deficient HEK293 cultured without oleate supplementation; however, the effect of STK25 silencing was less pronounced in cells maintained under basal conditions (Fig. S9.
Consistent with lower fat storage in STK25-deficient HEK293 cells, we found substantially reduced intracellular lipid deposition in oleate-treated human proximal tubular (HK-2) cells, mesangial cells, and podocytes transfected with STK25 siRNA vs. NTC siRNA (Fig. S10A-B, E-F, I-J).

Silencing of STK25 Protects Human Kidney Cells Against Oxidative and ER Stress and Activates Autophagy

Lipid accumulation is known to display direct toxic effect on renal cells by initiating oxidative and ER stress, leading to a vicious cycle of inflammation, fibrosis, and apoptosis (21, 25). Indeed, we found that, in parallel with reduced lipid storage, silencing of STK25 protected HEK293 cells challenged with oleic acid against oxidative damage as evidenced by suppressed lipid peroxidation (2.8±0.2-fold lower 4-HNE-positive area and 1.5±0.2-fold lower TBARS concentration; Fig. 8A, Fig. S11) and decreased superoxide anion levels (1.5±0.2-fold lower DHE-positive area; Fig. 8B). We also detected 1.8±0.1-fold reduction in immunostaining for ER stress marker KDEL in STK25-deficient HEK293 treated with oleic acid (Fig. 8C). Furthermore, the mRNA abundance of the major indicators of ER stress CHOP (also known as DDIT3), BIP (also known as HSPA5 or GRP78), and EDEM1 was significantly lower in HEK293 transfected with STK25 siRNA compared with NTC siRNA, along with reduced expression of pro-inflammatory cytokines TNFα and IL8 as well as profibrotic cytokine TGFβ (Fig. 7H). Consistently, the mRNA expression of pro-apoptotic markers caspase 3 and 7 (CASP3 and CASP7) was decreased in STK25-deficient HEK293 cells (Fig. 7H) and the level of activated c-Jun-N-terminal kinase (phospho-JNK Thr183/Tyr185), an important downstream mediator of lipoapoptosis, was markedly lower (Fig. 8G). Similar to our findings in the kidneys from Stk25⁻/⁻ mice, the silencing of STK25 in oleate-treated HEK293 cells also suppressed the peroxisomal activity as evidenced by 1.4±0.1-fold lower immunostaining for peroxisomal membrane protein PMP70 and peroxisomal biogenesis marker PEX5 (Fig. 8D-E). Notably, reduced oxidative and ER stress as well as decreased peroxisomal function were observed even in STK25-deficient HEK293 cultured without oleic acid supplementation in the culture media (Fig. S9E-I).

Consistent with these findings in HEK293, we detected significantly suppressed oxidative and ER stress assessed by immunostaining for 4-HNE and KDEL, respectively, in oleate-treated human proximal tubular (HK-2) cells, mesangial cells, and podocytes transfected with STK25 siRNA vs. NTC siRNA (Fig. S10C-D, G-H, K-L).
To elucidate whether the increased STK25 abundance in human kidney cells leads to a reciprocal effect compared with STK25 knockdown (i.e., aggravated oxidative stress and increased peroxisomal activity), we transfected HEK293 with human STK25 expression plasmid or empty control plasmid. Cells transfected with STK25 expression plasmid displayed about 5- to 7-fold higher STK25 protein abundance (Fig. S12A). Indeed, we found markedly elevated oxidative damage (assessed by 4-HNE- and DHE-positive area) in STK25-overexpressing HEK293 cells, both with and without oleate challenge, in parallel with enhanced peroxisomal activity (assessed by PMP70- and PEX5-positive area) (Fig. S12B-E).

Recent studies have provided indirect and direct evidence that down-regulation of autophagy is involved in the pathogenesis of DKD, including both glomerular and tubulointerstitial lesions (26, 27). To evaluate the possible role of autophagy in the protective effects observed in STK25-deficient kidney cells, we next compared the protein abundance of autophagic markers in oleate-treated HEK293 transfected with STK25 siRNA vs. NTC siRNA. Western blot analysis revealed that the silencing of STK25 increased the conversion of LC3-I to LC3-II about 3.5-fold, which is considered a key marker of enhanced autophagic flux, and significantly elevated the protein levels of autophagy inducer Beclin-1 (Fig. 8G). Consistently, there were more LC3-II-positive puncta in HEK293 transfected with STK25 siRNA compared with NTC siRNA (Fig. 8F). Again, the activation of autophagy in STK25-deficient HEK293 cells was detected independently of oleate supplementation in the culture media (Fig. S9J-K).

DISCUSSION

This study unravels a hitherto unknown role of protein kinase STK25 in the development and progression of DKD. We found that overexpression of STK25 in mice challenged with a high-fat diet triggered DKD-associated pathologies including exacerbated glomerular mesangial matrix expansion, GBM thickening, and impairment in the integrity of GFB, vacuolar degeneration of tubular cells and interstitial edema, worsened glomerulosclerosis and tubulointerstitial fibrosis, aggravated renal arteriolar hyalinosis, and elevated albuminuria (Fig. 9). Reciprocally, we observed that the genetic ablation of STK25 was sufficient to attenuate glomerular and tubulointerstitial injury and preserve kidney function in a mouse model with diet-induced DKD (Fig. 9). A marked impact of altered STK25 signaling on structural and functional damage of glomerular and tubular cells
is consistent with the high expression levels of endogenous STK25 in both these compartments.

Interestingly, we found that exacerbated diet-induced kidney injury in Stk25 transgenic mice was associated with excessive lipid storage both in glomeruli and in the tubular area compared with wild-type controls. Reciprocally, the renoprotective effects observed in high-fat-fed Stk25−/− mice were accompanied by attenuated lipid deposition in the kidney. To date, the molecular mechanisms controlling renal lipid accumulation remain elusive; however, renal steatosis has been shown to develop when lipogenesis in the kidney is enhanced or fatty acid oxidation is compromised (22, 28-32). Notably, kidneys preferentially oxidize fatty acids as energy source and are not a major contributor to circulating glucose catabolism (22). Here we found that silencing of STK25 in cultured human kidney cells also suppressed intracellular lipid storage, and this was paralleled by reduced expression of key enzymes catalyzing the commitment steps in lipid synthesis pathway and, reciprocally, substantially enhanced mitochondrial β-oxidation rate. Taken together, these results suggest that inhibition of STK25 signaling can ameliorate diet-induced renal steatosis by directly reprograming cell metabolism with a decrease in lipogenesis and an increase in mitochondrial biogenesis. Consistent with our observations in kidney cells, depletion of STK25 in mouse and human hepatocytes was previously demonstrated to suppress lipid droplet anabolism through reduced TAG synthesis and enhance lipid droplet catabolism through elevated β-oxidation and very low-density lipoprotein (VLDL)-TAG secretion (11, 14, 18). Importantly, the fasting plasma concentrations of TAG and cholesterol are similar comparing high-fat-fed Stk25 transgenic and knockout mice with their wild-type littermates [(10, 33) as well as this study], suggesting that differences in circulating lipids did not contribute to the alterations in renal or hepatic fat storage.

Recent evidence accumulated in humans and experimental animals suggests a key role of renal lipids in structural and functional injury of both glomerular and tubular cells to propose the development of obesity-related DKD (34). Although the precise mechanisms linking renal lipotoxicity to the initiation and progression of DKD are not fully understood, the aggravated oxidative and ER stress triggered by excessive lipid storage has been shown to display direct toxic effects on kidney cells and induce local inflammation and fibrosis, ultimately leading to renal failure (21, 35-39). Notably, apart from exaggerated kidney damage with excessive inflammatory infiltration and fibrosis, we also found substantially increased oxidative and ER stress both in glomeruli and in the tubular area of high-fat-fed Stk25 transgenic mice compared with wild-type controls. In contrary, protection
against DKD-associated pathologies in Stk25 knockout mice was paralleled by alleviated renal oxidative and ER stress. Consistent with our observations in Stk25−/− mice, silencing of STK25 in cultured human kidney cells also reduced oxidative damage and suppressed the abundance of ER stress indicators and pro-apoptotic markers. Hence, our data suggest that inhibition of STK25 activity directly attenuates the initiation and progression of DKD by ameliorating lipotoxicity-induced oxidative and ER stress in kidney cells.

Similarly to renal lipotoxicity, obesity-related fat accumulation within the liver and pancreas [i.e., non-alcoholic fatty liver disease (NAFLD) and non-alcoholic fatty pancreas disease (NAFPD), respectively] has emerged as a key causative factor in local inflammation and fibrogenic process, leading to cell damage and apoptosis (40, 41). Intramyocellular lipid storage is also known to impair insulin action in skeletal muscle, contributing to the pathogenesis of type 2 diabetes (42), whereas lipid deposition in the vascular intima results in progression to complex atherosclerotic lesions, predisposing the patients to cardiovascular diseases, such as myocardial infarction and stroke (43). Importantly, in addition to the direct impact of STK25 on diet-induced renal steatosis and kidney injury described in this study, our previous investigations have revealed that STK25 also critically controls lipid accumulation, meta-inflammation, and nutritional fibrosis in liver, pancreas, skeletal muscle, and aorta in the context of obesity (10-17). Thus, STK25 emerges as a key regulator governing susceptibility to lipotoxicity and an inhibition of STK25 activity may prevent various complex metabolic diseases that are associated with ectopic lipid deposition in peripheral tissues, including kidney. Notably, we have shown earlier that high-fat-fed Stk25−/− mice also display improved mitochondrial function and suppressed diet-induced cell hypertrophy, inflammatory infiltration, and extracellular matrix deposition in brown and white adipose depots (44), suggesting that repression of STK25 signaling may even contribute to establishing a healthier adipose tissue.

Interestingly, we found that peroxisomal biogenesis was markedly suppressed in the kidneys from Stk25−/− mice and in STK25-deficient human kidney cells, and the reciprocal phenotype was seen when STK25 was overexpressed. Impaired renal peroxisomal function has been shown to increase ROS production in several studies (45, 46); however, here we found that lower peroxisomal biogenesis in STK25-deficient kidney cells clearly correlated with substantially reduced oxidative damage. Notably, our recent studies using global proteomic analysis also revealed that a number of proteins involved in peroxisomal function, including mediators
of peroxisomal fatty acid transport, metabolism, and β-oxidation, are coordinately suppressed in the livers from high-fat diet-fed Stk25−/− mice, which is paralleled by alleviated ROS production and protection against hepatic inflammation, fibrosis, and cell damage (47). Thus, our data suggest that suppressed peroxisomal biogenesis, at least when paralleled with an increase in mitochondrial activity as seen in STK25-deficient kidney and liver cells (11, 18), may result in reduced rather than increased oxidative stress.

The results of this study also reveal that autophagy was significantly induced by inhibition of STK25 signaling in human kidney cells, which we observed both in basal culture conditions and when cells were challenged by oleic acid. Autophagy has been demonstrated to play an essential role in protecting the renal cells against injury under diabetic conditions through removal of protein aggregates and damaged organelles as well as by promoting cell survival, and the activation of autophagy has recently been suggested as a potential new therapeutic strategy for DKD (26, 48-51). Autophagy is thought to be especially important for maintaining the homeostasis of post-mitotic cells, such as podocytes, which have only limited capacity for regeneration and display a high level of basal autophagy (27, 52-54). However, the autophagic process is a very complicated pathway, and persistent over-activation of autophagy can also exaggerate renal injury (55-57). It is not currently known whether the silencing of STK25 also enhances the autophagy flux in extrarenal tissues prone to diabetic damage.

The whole-body overexpression and depletion of STK25 in transgenic and knockout mice, respectively, do not allow us to conclude whether the impact of STK25 on the kidney damage is direct or secondary to the action of this kinase in extrarenal tissues, which is a limitation of the models used. Notably, although the fasting blood glucose levels remained similar in Stk25−/− and wild-type mice in this study, Stk25 knockout mice exhibited suppressed hyperinsulinemia and increase in whole-body glucose tolerance and insulin sensitivity at the end of the high-fat feeding period. Thus, it cannot be excluded that these alterations in glucose and insulin homeostasis contributed to the improvement in renal function observed in Stk25−/− mice. In contrast, we detected no differences in circulating glucose or insulin concentrations, or glucose tolerance or insulin sensitivity, in high-fat-fed Stk25 transgenic vs. wild-type mice, suggesting that overexpression of STK25 aggravated the development of diet-induced DKD in mice independent of changes in systemic glucose and insulin homeostasis. Importantly, in vitro experiments performed in different human kidney cell lines in this study clearly support the direct renoprotective role of STK25 antagonism.
In contrast to our observations in this study, we previously found that transgenic mice overexpressing STK25, when challenged with a high-fat diet, are characterized by elevated fasting plasma insulin, and impaired systemic glucose tolerance and insulin sensitivity, compared to wild-type controls (33). Furthermore, in addition to improved glucose tolerance and insulin sensitivity as well as lower plasma insulin concentration detected in Stk25 knockout mice in this study, we previously also observed reduced hyperglycemia in high-fat-fed Stk25−/− vs. wild-type mice (10). Importantly, even though the mice were challenged with a pelleted high-fat diet in all these studies, the composition of the obesogenic diets was not identical [diet with 60 kcal% derived from fat was used in the current study compared to diet with 45 kcal% derived from fat applied in our previous studies (10, 33)]. It is therefore likely that the differences in glucose and insulin homeostasis observed comparing these cohorts of mice are explained by the differences in the dietary regimens applied.

STK25 belongs to the GCKIII subfamily of sterile 20 kinases together with the two closely related proteins MST3 and MST4 (9). Notably, we found that depletion of STK25 in the kidneys of knockout mice did not result in any compensatory increase in the expression levels of MST3 or MST4 (Fig. S1A-B). Even though the localization of STK25 and MST3/4 in the kidney overlaps (58), and these proteins share high sequence homology (9), the results of this study clearly show that the presence of MST3 and MST4 in kidney cells cannot compensate for the loss of STK25 in regulation of renal lipid homeostasis and metabolic stress. Thus, our study establishes a unique role of STK25 in DKD.

The current treatment paradigms for DKD, mainly involving glucose lowering and anti-hypertensive therapies, are not sufficiently effective and DKD still poses a major risk factor for the development of ESRD (59). Hence, new pharmacological approaches are urgently needed to counteract progressive renal decline in patients with diabetes. Importantly, the mechanisms underlying the initiation and progression of DKD have not been fully delineated, which hampers the development of new anti-DKD therapies. Here we provide compelling evidence for essential and multiple roles of protein kinase STK25 in DKD in the context of obesity and show that antagonizing the STK25 signaling can ameliorate diet-induced renal lipotoxicity and, as a consequence, preserve the glomerular and tubular structural and functional integrity. Whereas the phenotypes across the studied mouse strains and kidney cell lines are consistent with a critical role for STK25 in DKD, we have not yet fully resolved the mechanism-of-action of STK25 in the kidney tissue, or its potential substrates, which will be the focus of
our future studies. Future studies are also needed to address the potential therapeutic relevance of pharmacological STK25 antagonism as a strategy to dampen or abrogate the development of DKD in humans.

METHODS

Animal Experiments and Metabolic Measurements

Stk25 transgenic and knockout mice were generated and genotyped as previously described (33, 60). In all experiments, Stk25 transgenic and knockout mice were compared with their corresponding wild-type littermates only because the genetic background of these lines differs (C57BL6/N for Stk25 transgenic mice and C57BL6/J for Stk25/− mice). The male transgenic and knockout mice and their corresponding wild-type littermates were weaned at 3 wk of age and housed 3 to 5 per cage in a temperature-controlled (21°C) facility with a 12 hours light-dark cycle and free access to chow and water. From the age of 6 wk, the mice were fed a pelleted high-fat diet (60 kcal% fat; D12492; Research Diets, New Brunswick, NJ, USA) for 20 wk. Age-matched chow-fed mice served as lean controls. Body weight, fasting blood glucose and plasma insulin levels, intraperitoneal glucose tolerance test (GTT), and intraperitoneal insulin tolerance test (ITT) were assessed as previously described (15). Urine was collected and albumin and creatinine levels were determined using the Mouse Albumin ELISA Kit and the Creatinine Assay Kit (Abcam, Cambridge, UK), respectively, and urinary sodium levels were measured using the Sodium Assay Kit (Abcam). At the age of 26 wk, the mice were euthanized after withholding food for 4 hours. Blood was collected by heart puncture. Plasma levels of renin and angiotensin II were determined using murine ELISA kits (Sigma-Aldrich, St. Louis, MO, USA; Abcam). Plasma TAG, cholesterol, and free fatty acid levels were measured using the Triglyceride Colorimetric Assay Kit (Cayman Chemical, Ann Arbor, MI, USA), Cholesterol Quantitation Kit (Sigma-Aldrich), and Free Fatty Acid Quantitation Kit (Sigma-Aldrich), respectively. Plasma lipoproteins were separated in pooled samples from each group by size-exclusion chromatography, and cholesterol was quantified with a system of detection online as described (61). Kidney samples were collected for histologic analysis (see Histological Analysis of Kidney Sections) or snap frozen in liquid nitrogen and stored at -80°C for analysis of gene and protein expression and biochemical assays. The mice received humane care according to the National Institutes of Health (NIH; Bethesda, MD, USA) recommendations outlined in the Guide for the Care and Use of Laboratory Animals.
Histological Analysis of Kidneys Sections

Kidney samples from mice were fixed with 4% (vol/vol) phosphate buffered formaldehyde (Histolab Products, Gothenburg, Sweden), embedded in paraffin, sectioned, and stained with PAS (Sigma-Aldrich), Picrosirius Red (Histolab Products), or hematoxylin and eosin (H&E; Histolab Products). Sections stained with H&E were used to determine tubular injury in 20 randomly selected microscopic fields (x20) per mouse as previously described (20, 62). Kidney samples were also embedded in optimal cutting temperature mounting medium (Histolab Products) and frozen in liquid nitrogen, followed by cryosectioning. Cryosections were stained with Oil Red O (Sigma-Aldrich) for neutral lipids or DHE (Life Technologies, Grand Island, NY, USA) to assess oxidative stress as previously described (12). For immunofluorescence analysis, kidney sections were incubated with primary antibodies, followed by incubation with fluorescent-dye conjugated secondary antibodies (see Table S2 for antibody information). The stained area was quantified in 6-8 randomly selected microscopic fields (x20) per mouse using the ImageJ software (1.47v; NIH). Electron microscopy analysis of kidney tissue was performed by SEM and TEM (Zeiss Gemini II 450 with Atlas software; Zeiss, Oberkochen, Germany; Thermo Fisher Scientific Talos L120 C with 4x4k Ceta camera; Thermo Fisher Scientific, Waltham, MA, USA). Prior to electron microscopy analysis, the kidney cortex pieces from mice perfused with modified Karnovsky fixative (2.5% glutaraldehyde, 2% formaldehyde, 0.02% sodium azide in 0.05 mol/l sodium cacodylate buffer) were subjected to microwave-assisted processing (Leica EM AMW; Leica Microsystems, Wetzlar, Germany) in previously described reagents (63).

Biochemical Analysis of Kidney Samples

Phase extraction of metabolites from the frozen kidney samples of mice was performed as previously described (64). The AbsoluteID p180 Kit (Biocrates Life Sciences, Innsbruck, Austria) was used to determine 186 metabolites. The samples were measured on mass spectrometer QTRAP 4500 (Sciex, Framingham, MA, USA), in combination with a high-performance liquid chromatography (Agilent Technologies, Waldbronn, Germany). The concentrations of the metabolites were calculated automatically by the MetIDQ software (Biocrates Life Sciences). The levels of reduced glutathione and oxidized glutathione were quantified with a luminescence-
based glutathione assay (GSH-Glo; Promega, Madison, WI, USA). See Table S3 for the summary of all significantly altered metabolites in the kidneys from Stk25+/− vs. wild-type mice.

Culture, Transient Transfections, and Assessments of Human Kidney Cells

HEK293 cells (human embryonic kidney; American Type Culture Collection, Manassas, VA, USA) and human mesangial cells (Lonza, Basel, Switzerland) were maintained in Dulbecco's modified Eagle's medium (DMEM) GlutaMAX, high glucose (Thermo Fisher Scientific) and RPMI 1640 medium (Gibco, Paisley, UK), respectively, supplemented with 10% (vol/vol) FBS and 1% (vol/vol) penicillin/streptomycin (Gibco). HK-2 cells (human immortalized proximal tubule epithelial cell line; American Type Culture Collection) were maintained in keratinocyte serum-free medium, supplemented with 109 µmol/l bovine pituitary extract and 4 µmol/l human recombinant epidermal growth factor (Gibco). Human immortalized podocytes (a kind gift from Professor Moin Saleem, University of Bristol, Bristol, UK) were grown and differentiated as previously described (65). Cells were demonstrated to be free of mycoplasma infection by use of the MycoAlert Mycoplasma Detection Kit (Lonza). For RNA interference, cells were transfected with human STK25 siRNA (s20570; Ambion, Austin, TX, USA) or scrambled siRNA (SIC001; Sigma-Aldrich) using Lipofectamine RNAiMax (Thermo Fisher Scientific). For transient overexpression, cells were transfected with pFLAG-STK25 (GeneCopoeia, Rockville, MD, USA) or an empty control plasmid using Lipofectamine 2000 (Thermo Fisher Scientific). In most experiments, cells were exposed to 50 µmol/l oleic acid (Sigma-Aldrich) for 48 hours before assessments.

Cells were stained with Bodipy 493/503 (Invitrogen, Carlsbad, CA, USA) for neutral lipids or MitoTracker Red (Thermo Fisher Scientific) for active mitochondria as previously described (58). For DHE staining, cells were incubated with 5 µmol/l DHE (Life Technologies) in PBS containing 1% (weight/vol) BSA at 37°C for 5 min. Cells were also processed for immunofluorescence with anti-STK25, anti-4-HNE, anti-KDEL, anti-PMP70, anti-PEX5, or anti-LC3 antibodies (see Table S2 for antibody information). The labeled area was quantified in 6-10 randomly selected microscopic fields (x10, x20, or x40) per well using the ImageJ software. To measure β-oxidation, cells were incubated in the presence of (9,10-3H[N])-palmitic acid, and (3H)-labeled water was quantified as the product of free fatty acid oxidation (18). Thiobarbituric acid-reactive substance (TBARS) levels
were measured in cell extract using the TBARS Assay Kit (Sigma-Aldrich). Lipids were also extracted using the BUME method (66) and quantified using direct infusion on a QTRAP 5500 mass spectrometer (Sciex, Concord, Canada) equipped with a robotic nanoflow ion source, the TriVersa NanoMate (Advion BioSciences, Ithaca, NJ, USA).

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

RNA was isolated from mouse kidneys and HEK293 cells with the EZNA Total RNA Kit (Omega Bio-Tek, Norcross, GA, USA) according to the manufacturer’s recommendations. cDNA was synthesized using the High-Capacity Complementary DNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Relative quantification was performed with the CFX Connect Real-Time System (BioRad, Hercules, CA, USA). Relative quantities of target transcripts were calculated after normalization of the data to the endogenous control, 18S ribosomal RNA (Applied Biosystems).

Western Blot

Western blot was performed as previously described (33) (see Table S2 for antibody information).

Statistics

Statistical significance between the groups was evaluated using the two-sample Student's t test, and among more than two groups by one-way ANOVA followed by a two-sample Student's t test for post-hoc analysis. The Shapiro-Wilk’s and the Levene’s tests were applied to confirm the normality of distribution of residuals and the homogeneity of variances, respectively. Differences were considered statistically significant at a P value of <0.05. All statistical analyses were performed using SPSS statistics (v24; IBM Corporation, Armonk, NY, USA).

Study Approval

All animal experiments were performed after prior approval from the local ethics committee.
Author Contributions

E.C., M.C., and L.G. generated the bulk of the results and reviewed and edited the manuscript. N.M.K and A.N. contributed to the research data and reviewed and edited the manuscript. M.S. performed the lipidomics analysis and reviewed and edited the manuscript. R.P. and U.S. performed the metabolic analysis and reviewed and edited the manuscript. M.P. and P.P. examined TAG and cholesterol distribution across the lipoprotein fractions and reviewed and edited the manuscript. H.-U.M., J.N., and J.B. provided advice and expertise, contributed to the discussion, and reviewed and edited the manuscript. B.W.H. provided advice and reagents and reviewed and edited the manuscript. M.M. directed the project; designed the study; interpreted the data; and wrote, reviewed, and edited the manuscript. M.M. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgements

We acknowledge the Centre for Cellular Imaging at the University of Gothenburg and the National Microscopy Infrastructure, NMI (VR-RFI 2016-00968) for providing assistance in SEM/TEM. This work was supported by grants from the Swedish Research Council, the European Foundation for the Study of Diabetes/Novo Nordisk Programme for Diabetes Research in Europe, the West Sweden Avtal om Läkarutbildning och Forskning (ALF) Program, the Novo Nordisk Foundation, the Swedish Heart-Lung Foundation, the Torsten Söderbergs Foundation, the Swedish Diabetes Foundation, the Royal Society of Arts and Sciences in Gothenburg, the Å. Wiberg Foundation, the Adlerbert Research Foundation, the I. Hultman Foundation, the S. and E. Goljes Foundation, the F. Neubergh Foundation, the Prof. N. Svartz Foundation, the L. and J. Grönberg Foundation, the W. and M. Lundgren Foundation, and the I-B. and A. Lundbergs Research Foundation.
FIGURE LEGENDS

Fig. 1. Overexpression of STK25 in mice aggravates high-fat diet-induced renal lipid accumulation and impairs kidney function. (A) Schematic presentation of the experimental design of the *in vivo* study. (B-C) Renal STK25 mRNA (B) and protein (C) abundance. Protein levels were analyzed by densitometry; representative Western blots are shown with pan-actin used as a loading control. (D) Representative kidney sections processed for immunofluorescence with anti-STK25 antibody (yellow); nuclei stained with DAPI (blue). (E) Representative Western blot comparing protein expression of STK25 in kidney cells of human origin; liver is included as a reference. (F) Representative kidney sections processed for immunofluorescence with anti-adipophilin antibody (red); nuclei stained with DAPI (blue). Quantification of the staining. (G) Representative kidney sections stained with Oil Red O. (H-I) Measurement of urinary ACR (H) and sodium levels (I). In (D), the scale bars at the left and right represent 50 and 25 µm, respectively; in (F), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (G), the scale bars at the top and two bottom represent 50 and 25 µm, respectively. Data are mean ± SEM from 8-12 mice per group. CD, chow diet; EC, endothelial cells; HFD, high-fat diet; HK-2, human kidney-2; KO, knockout; MC, mesangial cells; Podo, podocytes; TG, transgenic; WT wild-type. *P<0.05, ***P<0.001 by a two-sample Student's *t* test in (B-C, H-I) and one-way ANOVA followed by a two-sample Student's *t* test in (F).

Fig. 2. STK25 overexpression in mice exacerbates high-fat diet-induced glomerular mesangial matrix expansion, GBM thickening, tubulointerstitial injury, glomerulosclerosis and tubulointerstitial fibrosis, renal inflammation and arteriolar hyalinosis, and impairs the integrity of GFB. (A) Representative kidney sections stained with PAS and quantification of glomerular hypertrophy and GME. (B) Representative TEM images of the kidney and measurement of the thickness of GBM (black arrows). (C) Representative kidney sections stained with H&E and scoring of tubular vacuolation (white arrows) and interstitial edema (black arrows). (D, G-I) Representative kidney sections processed for immunofluorescence with anti-collagen IV (green; D), anti-CD68 (yellow; G), anti-nephrin (green; H), or anti-Pecam (red; I) antibodies; nuclei stained with DAPI (blue). Quantification of the staining. (E) Representative kidney sections stained with Picrosirius Red. (F) Representative kidney sections processed for immunofluorescence with anti-α-SMA (green) antibody and
quantification of arteriolar wall thickness. In (A, D, G-I), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (B), the scale bars represent 500 nm; in (C), the scale bars represent 50 µm; in (E), the scale bars at the left and middle/right represent 100 and 25 µm, respectively; in (F), the scale bars represent 10 µm. Data are mean ± SEM from 8-10 mice per group, except in (B), where n=3 per group. CD, chow diet; HFD, high-fat diet; TG, transgenic; WT, wild-type.

Fig. 3. Overexpression of STK25 in high-fat-fed mice results in substantially increased renal oxidative and ER stress as well as elevated peroxisomal biogenesis. (A-D) Representative kidney sections processed for immunofluorescence with anti-4-HNE (red; A), anti-KDEL (red; C), or anti-PEX5 (green; D) antibodies, or stained with DHE (red; B); nuclei stained with DAPI (blue). Quantification of the staining. In (A-C), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (D), the scale bars represent 25 µm. Data are mean ± SEM from 7-10 mice per group. CD, chow diet; HFD, high-fat diet; TG, transgenic; WT, wild-type. *P<0.05, ***P<0.001 by one-way ANOVA followed by a two-sample Student's t test in (A-C) and one-way ANOVA followed by a two-sample Student's t test in (D, F-I)

Fig. 4. Genetic ablation of STK25 in mice prevents high-fat diet-induced renal lipid accumulation and improves kidney function. (A-B) Renal STK25 mRNA (A) and protein (B) abundance. Protein levels were analyzed by densitometry; representative Western blots are shown with pan-actin used as a loading control. (C) Representative kidney sections processed for immunofluorescence with anti-STK25 antibody (yellow); nuclei stained with DAPI (blue). (D) Representative kidney sections processed for immunofluorescence with anti-adipophilin antibody (red); nuclei stained with DAPI (blue). Quantification of the staining. (E) Representative kidney sections stained with Oil Red O. (F-G) Measurement of urinary ACR (F) and sodium levels (G). In (C), the scale bars at the left and right represent 50 and 25 µm, respectively; in (D), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (E), the scale bars at the top and two bottom represent 50 and 25 µm, respectively. Data are mean ± SEM from 8-11 mice per group. CD, chow diet; HFD, high-fat diet; KO, knockout; WT wild-type. *P<0.05, ***P<0.001 by a two-sample Student's t test in (A-B, F-G) and one-way ANOVA followed by a two-sample Student's t test in (D)
Fig. 5. Depletion of STK25 in mice alleviates high-fat diet-induced glomerular mesangial matrix expansion, GBM thickening, tubulointerstitial injury, glomerulosclerosis and tubulointerstitial fibrosis, renal inflammation and arteriolar hyalinosis, and improves the integrity of GFB. (A) Representative kidney sections stained with PAS and quantification of glomerular hypertrophy and GME. (B) Representative TEM images of the kidney and measurement of the thickness of GBM (black arrows). (C) Representative kidney sections stained with H&E and scoring of tubular vacuolation (white arrows) and interstitial edema (black arrows). (D, G-I) Representative kidney sections processed for immunofluorescence with anti-collagen IV (green; D), anti-CD68 (yellow; G), anti-nephrin (green; H), or anti-Pecam (red; I) antibodies; nuclei stained with DAPI (blue). Quantification of the staining. (E) Representative kidney sections stained with Picrosirius Red. (F) Representative kidney sections processed for immunofluorescence with anti-α-SMA (green) antibody and quantification of arteriolar wall thickness. In (A, D, G-I), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (B), the scale bars represent 500 nm; in (C), the scale bars represent 50 µm; in (E), the scale bars at the left and middle/right represent 100 and 25 µm, respectively; in (F), the scale bars represent 10 µm. Data are mean ± SEM from 7-9 mice per group, except in (B), where n=3 per group. CD, chow diet; HFD, high-fat diet; KO, knockout; WT, wild-type. *P<0.05, **P<0.01, ***P<0.001 by a two-sample Student's t test in (A-C) and one-way ANOVA followed by a two-sample Student's t test in (D, F-I)

Fig. 6. Knockdown of STK25 in high-fat-fed mice substantially suppresses renal oxidative and ER stress and decreases peroxisomal biogenesis. (A-D) Representative kidney sections processed for immunofluorescence with anti-4-HNE (red; A), anti-KDEL (red; C), or anti-PEX5 (green; D) antibodies, or stained with DHE (red; B); nuclei stained with DAPI (blue). Quantification of the staining. (E) The ratio of reduced to oxidized glutathione. (F) The ratio of free carnitine to the sum of palmitoylcarnitine and stearoylcarnitine. In (A-C), the scale bars at the top and bottom represent 50 and 25 µm, respectively; in (D), the scale bars represent 25 µm. Data are mean ± SEM from 6-9 mice per group. CD, chow diet; HFD, high-fat diet; KO, knockout; WT, wild-type. *P<0.05, **P<0.01, ***P<0.001 by one-way ANOVA followed by a two-sample Student's t test in (A-D) and a two-sample Student's t test in (E-F)
Fig. 7. Silencing of STK25 protects HEK293 cells against ectopic lipid storage. HEK293 cells were transfected with STK25 siRNA or NTC siRNA and challenged with oleic acid for 48 hours. (A-B) STK25 mRNA (A) and protein (B) abundance. Protein levels were analyzed by densitometry; representative Western blots are shown with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) used as a loading control. (C) Representative images of cells processed for immunofluorescence with anti-STK25 antibody (green) and stained with Bodipy (red). Merged image shows co-localization in yellow; nuclei stained with DAPI (blue). (D, F) Representative images of cells stained with Bodipy (green; D) or MitoTracker Red (red, F); nuclei stained with DAPI (blue). Quantification of the staining. (E) Lipidomic analysis in cell extracts. (G) Oxidation of radiolabeled palmitate. (H) Measurement of the mRNA expression of selected markers. The gene functions are indicated at the bottom. In (C), the scale bars represent 20 µm; in (D, F), the scale bars represent 40 µm. Data are mean ± SEM from 6-10 wells per group. CE, cholesteryl ester; LPC, lysophosphatidylcholine; ND, not detected; OA, oleic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; Transf., transfection. *P<0.05, **P<0.01, ***P<0.001 by a two-sample Student's t test.

Fig. 8. Silencing of STK25 protects HEK293 cells against oxidative and ER stress, and activates autophagy. HEK293 cells were transfected with STK25 siRNA or NTC siRNA and challenged with oleic acid for 48 hours. (A-F) Representative images of cells processed for immunofluorescence with anti-4-HNE (green; A), anti-KDEL (green; C), anti-PMP70 (red; D), anti-PEx5 (red; E), or anti-LC3 (green, F) antibodies, or stained with DHE (red; B); nuclei stained with DAPI (blue). Quantification of the staining. (G) Cell lysates were analyzed by Western blot using antibodies specific for phospho-JNK (Thr183/Tyr185), JNK, LC3, Beclin-1, and STK25. Protein levels were analyzed by densitometry; representative Western blots are shown with GAPDH used as a loading control. The scale bars represent 40 µm. Data are mean ± SEM from 4-8 wells per group. *P<0.05, **P<0.01, ***P<0.001 by a two-sample Student's t test.

Fig. 9. Schematic illustration of the impact of STK25 signaling on susceptibility to lipotoxicity-mediated progression of DKD. Overexpression of STK25 in mice challenged with a high-fat diet triggers DKD-
associated pathologies; reciprocally, genetic ablation of STK25 in high-fat-fed mice is sufficient to protect against glomerular and tubulointerstitial structural and functional changes characteristic of DKD. KO, knockout; TG, transgenic.
REFERENCES

1. Saran R, Robinson B, Abbott KC, Agodoa LYC, Bragg-Gresham J, Balkrishnan R, et al. US Renal Data System 2018 Annual Data Report: Epidemiology of Kidney Disease in the United States. *Am J Kidney Dis.* 2019;73(3S1):A7-A8.

2. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, and Parikh CR. Role of intensive glucose control in development of renal end point in type 2 diabetes mellitus: systematic review and meta-analysis of intensive glucose control in type 2 diabetes. *Arch Intern Med.* 2012;172(10):761-9.

3. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, and Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. *JAMA.* 2011;305(24):2532-9.

4. Khan S, Abu Jawdeh BG, Goel M, Schilling WP, Parker MD, Puchowicz MA, et al. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. *J Clin Invest.* 2014;124(3):1057-68.

5. Patel M, Wang XX, Magomedova L, John R, Rasheed A, Santamaria H, et al. Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. *Diabetologia.* 2014;57(2):435-46.

6. Falkevall A, Mehlem A, Palombo I, Heller Sahlgren B, Ebarasi L, He L, et al. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease. *Cell Metab.* 2017;25(3):713-26.

7. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, and Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. *J Lipid Res.* 2014;55(3):561-72.

8. Rutledge JC, Ng KF, Aung HH, and Wilson DW. Role of triglyceride-rich lipoproteins in diabetic nephropathy. *Nat Rev Nephrol.* 2010;6(6):361-70.

9. Pombo CM, Iglesias C, Sartages M, and Zalvide JB. MST Kinases and Metabolism. *Endocrinology.* 2019;160(5):1111-8.

10. Amrutkar M, Cansby E, Chursa U, Nunez-Duran E, Chanclon B, Stahlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Defects in a Diet-Induced Type 2 Diabetes Model. *Diabetes.* 2015;64(8):2791-804.

11. Amrutkar M, Cansby E, Nunez-Duran E, Pirazzi C, Stahlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. *FASEB J.* 2015;29(4):1564-76.

12. Amrutkar M, Chursa U, Kern M, Nunez-Duran E, Stahlman M, Sutt S, et al. STK25 is a critical determinant in nonalcoholic steatohepatitis. *FASEB J.* 2016;30(10):3628-43.

13. Cansby E, Magnusson E, Nunez-Duran E, Amrutkar M, Pedrelli M, Parini P, et al. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. *Arterioscler Thromb Vasc Biol.* 2018;38(8):1723-37.

14. Cansby E, Nunez-Duran E, Magnusson E, Amrutkar M, Booten SL, Kulkarni NM, et al. Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver Disease. *Cell Mol Gastroenterol Hepatol.* 2019;7(3):597-618.

15. Nunez-Duran E, Aghajan M, Amrutkar M, Sutt S, Cansby E, Booten SL, et al. Serine/threonine protein kinase 25 antisense oligonucleotide treatment reverses glucose intolerance, insulin resistance, and nonalcoholic fatty liver disease in mice. *Hepatol Commun.* 2018;2(1):69-83.

16. Nunez-Duran E, Chanclon B, Sutt S, Real J, Marschall HU, Wernstedt Asterholm I, et al. Protein kinase STK25 aggravates the severity of non-alcoholic fatty pancreas disease in mice. *J Endocrinol.* 2017;234(1):15-27.

17. Chursa U, Nunez-Duran E, Cansby E, Amrutkar M, Sutt S, Stahlman M, et al. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle. *Diabetologia.* 2017;60(3):553-67.

18. Amrutkar M, Kern M, Nunez-Duran E, Stahlman M, Cansby E, Chursa U, et al. Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans. *Diabetologia.* 2016;59(2):341-53.
19. Nerstedt A, Cansby E, Andersson CX, Laakso M, Stancakova A, Bluher M, et al. Serine/threonine protein kinase 25 (STK25): a novel negative regulator of lipid and glucose metabolism in rodent and human skeletal muscle. *Diabetologia*. 2012;55(6):1797-807.

20. Glastras SJ, Chen H, Teh R, McGrath RT, Chen J, Pollock CA, et al. Mouse Models of Diabetes, Obesity and Related Kidney Disease. *PLoS One*. 2016;11(8):e0162131.

21. Ruan XZ, Varghese Z, and Moorhead JF. An update on the lipid nephrotoxicity hypothesis. *Nat Rev Nephrol*. 2009;5(12):713-21.

22. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. *Nat Med*. 2015;21(1):37-46.

23. Mitrofanova A, Mallela SK, Ducasa GM, Yoo TH, Rosenfeld-Gur E, Zelnik ID, et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. *Nat Commun*. 2019;10(1):2692.

24. Hong F, Liu B, Wu BX, Morreall J, Roth B, Davies C, et al. CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. *Nat Struct Mol Biol*. 2017;24(10):834-9.

25. D'Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. *Nat Rev Nephrol*. 2016;12(8):453-71.

26. Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. *J Am Soc Nephrol*. 2013;24(11):1769-81.

27. Lenoir O, Jasieck M, Henique C, Guyonnet L, Hartleben B, Bork T, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. *Autophagy*. 2015;11(7):1130-45.

28. Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinshkik E, et al. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. *J Am Soc Nephrol*. 2016;27(5):1362-78.

29. Wang XX, Levi J, Luo Y, Myakala K, Herman-Edelstein M, Qiu L, et al. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy: SGLT2 PROTEIN INHIBITION DECREASES RENAL LIPID ACCUMULATION, INFLAMMATION, AND THE DEVELOPMENT OF NEPHROPATHY IN DIABETIC MICE. *J Biol Chem*. 2017;292(13):5335-48.

30. Kume S, Uzu T, Araki S, Sugimoto T, Isshiki K, Chin-Kanasaki M, et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet. *J Am Soc Nephrol*. 2007;18(10):2715-23.

31. Tanaka Y, Kume S, Maeda S, Osawa N, Takeda N, Chin-Kanasaki M, et al. Overexpression of acetyl CoA carboxylase beta exacerbates podocyte injury in the kidney of streptozotocin-diabetic diabetic mice. *Biochem Biophys Res Commun*. 2018;495(1):1115-21.

32. Jiang H, Shao X, Jia S, Qu L, Weng C, Shen X, et al. The Mitochondria-Targeted Metabolic Tubular Injury in Diabetic Kidney Disease. *Cell Physiol Biochem*. 2019;52(2):156-71.

33. Cansby E, Amrutkar M, Manners Holm L, Nerstedt A, Reyahi A, Stenfeldt E, et al. Increased expression of STK25 leads to impaired glucose utilization and insulin sensitivity in mice challenged with a high-fat diet. *FASEB J*. 2013;27(9):3660-71.

34. de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. *Lancet Diabetes Endocrinol*. 2014;2(5):417-26.

35. Tanaka Y, Kume S, Araki S, Isshiki K, Chin-Kanasaki M, Sakaguchi M, et al. Fenofibrate, a PPARalpha agonist, has renoprotective effects in mice by enhancing renal lipolysis. *Kidney Int*. 2011;79(8):871-82.

36. Declèves AE, Zolkipi Z, Satriano J, Wang L, Nakayama T, Rogac M, et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. *Kidney Int*. 2014;85(3):611-23.

37. Yang P, Xiao Y, Luo X, Zhao Y, Zhao L, Wang Y, et al. Inflammatory stress promotes the development of obesity-related chronic kidney disease via CD36 in mice. *J Lipid Res*. 2017;58(7):1417-27.

38. Wang D, Luo Y, Wang X, Orlicky DJ, Myakala K, Yang P, et al. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. *Int J Mol Sci*. 2018;19(1).
39. Koh ES, Lim JH, Kim MY, Chung S, Shin SJ, Choi BS, et al. Anthocyanin-rich Seoritae extract ameliorates renal lipotoxicity via activation of AMP-activated protein kinase in diabetic mice. *J Transl Med.* 2015;13:203.

40. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

41. Catanzaro R, Cuffari B, Italia A, and Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. *World J Gastroenterol.* 2016;22(34):7660-75.

42. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

43. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

44. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

45. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

46. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

47. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

48. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

49. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

50. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

51. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

52. Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. *Nat Rev Gastroenterol Hepatol.* 2019;16(6):377-86.

53. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

54. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

55. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

56. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

57. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

58. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

59. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

60. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

61. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

62. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

63. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

64. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

65. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.

66. Meex RCR, Blaak EE, and van Loon LJJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. *Obes Rev.* 2019;20(9):1205-17.
61. Pedrelli M, Davoodpour P, Degirolamo C, Gomaraschi M, Graham M, Ossoli A, et al. Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice. *PLoS One.* 2014;9(4):e93552.

62. Pulskens WP, Butter LM, Teske GJ, Claessen N, Dessing MC, Flavell RA, et al. Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction. *PLoS One.* 2014;9(1):e85775.

63. Mottahedin A, Joakim Ek C, Truve K, Hagberg H, and Mallard C. Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. *Brain Behav Immun.* 2019;79:216-27.

64. Porosk R, Terasmaa A, Mahlapuu R, Soomets U, and Kilk K. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice. *OMICS.* 2017;21(12):721-32.

65. Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. *J Am Soc Nephrol.* 2002;13(3):630-8.

66. Lofgren L, Forsberg GB, and Stahlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. *Sci Rep.* 2016;6:27688.
Figure 1

A

Start of HFD feeding

GTT

ITT

Termination and collection of kidneys

B

Relative STK25 expression

C

Relative STK25 abundance

D

STK25

DAPI

Adipophilin

WT CD

WT HFD

TG HFD

E

Adipophilin (% of field)

F

Adipophilin

DAPI

Oil Red O

G

Glomerulus

Tubulointerstitium

H

Albumin/creatinine (µg/mg)

Urinary Na+ (mmol/l)

Albuminuria

Tubular function
Figure 3

A

B

C

D

WT CD WT HFD TG HFD

Nephrin

DAPI

Oxidative damage

Superoxide radicals

ER stress

Peroxisomal activity
Figure 4

A) Relative Stk25 expression

B) Relative STK25 abundance

C) Adipophilin+

D) WT CD | WT HFD | KO HFD

E) WT CD | WT HFD | KO HFD

F) WT HFD | KO HFD

G) Albumin/creatinine (µg/mg)

H) Urinary Na+ (mmol/l)

I) Albuminuria

J) Tubular function

K) Lipid droplets

*** P = 0.07

* P = 0.06
Figure 5

A

WT CD	WT HFD	KO HFD

PAS

B

WT CD	WT HFD	KO HFD

Area of glomeruli (µm²)

C

WT CD	WT HFD	KO HFD

Area of edema

D

WT CD	WT HFD	KO HFD

Nephrin

E

WT CD	WT HFD	KO HFD

Picrosirius Red

F

WT CD	WT HFD	KO HFD

CD68

G

WT CD	WT HFD	KO HFD

Inflammatory infiltration

H

WT CD	WT HFD	KO HFD

Pecam

I

WT CD	WT HFD	KO HFD

Pecam+ (WT HFD set to 1)
Figure 6

A WT CD WT HFD KO HFD

B WT CD WT HFD KO HFD

C WT CD WT HFD KO HFD

D WT CD WT HFD KO HFD

E WT HFD KO HFD

F WT HFD KO HFD

- Oxidative damage
- Superoxide radicals
- ER stress
- Peroxisomal activity
- Antioxidant capacity
- CPT1 activity
Figure 7

A. Relative STK25 expression

B. Relative STK25 abundance

C. Confocal images showing STK25 and DAPI staining

D. Staining for STK25 and DAPI

E. Amounting protein

F. MitoTracker Red+ staining

G. β-oxidation

H. Relative gene expression

Legend:
- NTC siRNA
- STK25 siRNA

Statistical significance:
- *: p < 0.05
- **: p < 0.01
- ***: p < 0.001

Gene expression:
- FASN, ACC1, DGAT, HMGCR, PPARG, CHOP, BIP, EDEM1, TNFA, IL8, TGFB, CASP3, CASP7

Gene categories:
- Lipid synthesis
- ER stress
- Inflammation
- Fibrosis
- Apoptosis
Figure 8

A NTC siRNA STK25 siRNA

B NTC siRNA STK25 siRNA

C NTC siRNA STK25 siRNA

D NTC siRNA STK25 siRNA

E NTC siRNA STK25 siRNA

F NTC siRNA STK25 siRNA

G NTC STK25 NTC STK25
siRNA siRNA siRNA siRNA
Challenge with a high-fat diet (60 kcal% fat)

Stk25 KO → Stk25 TG

- Endothelial cell
- GBM
- Mesangial cell
- Glomerular capillary
- Albumin
- Podocyte
- Sodium
- Parietal cell
- Tubule epithelial cell
- Inflammary cell
- Tubule

Arteriolar hyalinosis
GBM thickening
Glomerular hypertrophy
Ectopic lipid accumulation
GME
Oxidative and ER stress
Glomerulosclerosis
Influx of inflammatory cells
Loss of podocytes and impairment in GFB
Albuminuria
Tubulointerstitial fibrosis
Tubular vacoulation
Increased urinary sodium

Increased urinary sodium

Stk25 KO

Stk25 TG

Figure 9