Assessment of quadriceps angle in children aged between 2 and 8 years

Tamer Çankaya, Ömer Dursun, Bahar Davazlı, Hidayet Toprak, Hatice Çankaya, Barış Alkan

Bolu Abant İzzet Baysal Üniversitesi, Sağlık Bilimleri Fakültesi, Fizyoterapi ve Rehabilitasyon Bölümü, Bolu, Türkiye
Bolu Abant İzzet Baysal Üniversitesi, Sağlık Bilimleri Enstitüsü, Fizik Tedavi ve Rehabilitasyon Anabilim Dalı, Bolu, Türkiye
Bolu Abant İzzet Baysal Üniversitesi, İzzet Baysal Eğitim ve Araştırma Hastanesi, Bolu, Türkiye
Bolu İl Sağlık Müdürlüğü, İzzet Baysal Devlet Hastanesi, Ortopedi ve Travmatoloji Kliniği, Bolu, Türkiye

Sorumlu Yazar/Corresponding Author: Tamer Çankaya
E-posta/E-mail: tamercankaya@hotmail.com

Aim: The quadriceps angle is the angle between the line drawn from the spina iliaca anterior superior to the midpoint of the patella, and the line drawn from the midpoint of the patella to the tuberositas tibiae. It is important for lower extremity posture. The aim of this study was to determine the normative quadriceps angle value by measurement, and to assess the probable effect of factors such as measurement position, age, sex, and presence of pes planus on these values.

Material and Methods: A total of 599 children consisting of 296 (49.4%) girls and 303 (50.6%) boys aged between 2 and 8 years, were included in the study. The children were divided into three groups by age as 2–4 years, 4–6 years, and 6–8 years. After the children’s demographic data were collected, the quadriceps angle was measured using an electronic goniometer. Pes planus was assessed by drawing the Feiss line.

Results: In bilateral measurement, it was found that the quadriceps angle decreased with age both in the supine and standing positions (p<0.05). It was observed that sex and presence of pes planus had no effect on the quadriceps angle independent from measurement positions.

Cite this article as: Çankaya T, Dursun Ö, Davazlı B, Toprak H, Çankaya H, Alkan B. Assessment of quadriceps angle in children aged between 2 and 8 years. Turk Pediatri Ars 2020; 55(2): 124–30.
pozisyonunda da vücut kitle indeksi ile quadriseps açısı arasında düşük düzeyde negatif ilişki saptandı (p<0.05).

Çokaraş: Sağlıklı çocuklarda pozisyon değişiklikleri ve ekstremité üzerine ağırlık verinin diz pozisyonunda değişikliğe sebep olmadığını görüldü. Kuadriseps açısının 2–8 yaş arası çocuklarda giderek azalmasının ağırlık vermenin diz pozisyonunda değişikliğe sebep olmadığı gösterebileceğini düşünülmektedir.

Anahtar sözcükler: Diz, genu valgum, genu varum, patella

Giriş

Kuadriseps açısı (Q açısı) ilk olarak Brattström (1) tarafından tanımlanmıştır ve alt ekstremitelerde görülebilecek olan belirli patolojilerin yanında da patolojilerin yan etkisi göz önünde bulundurulduğunda gerek ginekolojide, memeli hastalıklarında, ya da cerebral palsi gibi nörolojik etmenlere bağlı olarak değişiklik gösterebilir (2). Kuadriseps açısı, genu valgum, genu varum, patella femorotibiale, patellofemoral ağrı sendromu gibi sorunlara neden olabilen bir değerdir (16, 17). Dizde stabilite, patellofemoral sıçrama riskini artırabilir (16, 17). Q açısı değerinin normalden sapma oranına göre bireyin statik ve dинamik pozisyonuna da etkisi olmaktadır. Q açısı normal yerinde pozisyon verilmiş olan bireylerde gözlem görmektez (16, 17). Normal değer, 2–8 yaş arası çocuklarda, normal kabul edilmektedir (1–6). Q açısı, 2–8 yaş arası çocukla ölçüldüğünde, normal kabul edilmişdir (1, 30).

Giris: Kuadriseps açısı (Q açısı)

Bu çalışmadan, 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı, normal değerinin altında oransal olarak büyük olup, normal değerinin üzerinde oransal olarak küçüktür (2–8 yaş arası健康的 çocuklarda quadriseps açısı normal kabul edilmektedir (1–6), 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı normal kabul edilmektedir.

Cevap: Küçük:

Çalışmaya alınan çocukların ebeveynleri çalışma hakkında bilgilendirildi ve yazılı onamları alındı. Bu çalışmada Helsinki Deklarasyonu ilkelerine uygun olarak Bolu Abant İzzet Başal Üniversitesi Sosyal Bilimlerde İnsan Araştırmaları Etik Kurulu'nda (02.09.2015-2015/122) ve İl Milli Eğitim Müdürlüğü'nde gerekli izninin alınması sağlanmıştır. Çalışma, çocuklarda quadriseps açısı normal değerinin altında veya üzerinde oldugunun tespit edilmesi amacıyla yapılmıştır.

Cevap: Küçük:

Çalışmaya alınan sağlıklı çocuk grupları erkek ve kadınlardır. Çalışma hâlinde normal ve normalden fazla quadriseps açısı olan bireylerin statik ve dинamik pozisyonlarına da etkisi gözlenmiştir. Quadriseps açısı, genu valgum, genu varum, patella femorotibiale gibi etkenlerle ve alt ekstremitelerde görülebilecek olan belirli patolojilerin yanında da patolojilerin yan etkisi göz önünde bulundurulduğunda gerek ginekolojide, memeli hastalıklarında, ya da cerebral palsi gibi nörolojik etmenlere bağlı olarak değişiklik gösterebilir (2). Kuadriseps açısı, genu valgum, genu varum, patella femorotibiale, patellofemoral ağrı sendromu gibi sorunlara neden olabilen bir değerdir (16, 17). Dizde stabilite, patellofemoral sıçrama riskini artırabilir (16, 17). Q açısı değerinin normalden sapma oranına göre bireyin statik ve dинамik pozisyonuna da etkisi olmaktadır. Q açısı normal yerinde pozisyon verilmiş olan bireylerde gözlem görmektez (16, 17). Normal değer, 2–8 yaş arası çocuklarda, normal kabul edilmektedir (1–6). Q açısı, 2–8 yaş arası çocukla ölçüldüğünde, normal kabul edilmektedir (1, 30).

Giris: Kuadriseps açısı (Q açısı)

Bu çalışmadan, 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı, normal değerinin altında oransal olarak büyük olup, normal değerinin üzerinde oransal olarak küçüktür (2–8 yaş arası健康的 çocuklarda quadriseps açısı normal kabul edilmektedir (1–6), 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı normal kabul edilmektedir.

Cevap: Küçük:

Çalışmaya alınan çocukların ebeveynleri çalışma hakkında bilgilendirildi ve yazılı onamları alındı. Bu çalışmada Helsinki Deklarasyonu ilkelerine uygun olarak Bolu Abant İzzet Başal Üniversitesi Sosyal Bilimlerde İnsan Araştırmaları Etik Kurulu'nda (02.09.2015-2015/122) ve İl Milli Eğitim Müdürlüğü'nde gerekli izninin alınması sağlanmıştır.

Cevap: Küçük:

Çalışmaya alınan sağlıklı çocuk grupları erkek ve kadınlardır. Çalışma hâlinde normal ve normalden fazla quadriseps açısı olan bireylerin statik ve dинамik pozisyonlarına da etkisi gözlenmiştir. Quadriseps açısı, genu valgum, genu varum, patella femorotibiale gibi etkenlerle ve alt ekstremitelerde görülebilecek olan belirli patolojilerin yanında da patolojilerin yan etkisi göz önünde bulundurulduğunda gerek ginekolojide, memeli hastalıklarında, ya da cerebral palsi gibi nörolojik etmenlere bağlı olarak değişiklik gösterebilir (2). Kuadriseps açısı, genu valgum, genu varum, patella femorotibiale, patellofemoral ağrı sendromu gibi sorunlara neden olabilen bir değerdir (16, 17). Dizde stabilite, patellofemoral sıçrama riskini artırabilir (16, 17). Q açısı değerinin normalden sapma oranına göre bireyin statik ve dинамik pozisyonuna da etkisi olmaktadır. Q açısı normal yerinde pozisyon verilmiş olan bireylerde gözlem görmektez (16, 17). Normal değer, 2–8 yaş arası çocuklarda, normal kabul edilmektedir (1–6). Q açısı, 2–8 yaş arası çocukla ölçüldüğünde, normal kabul edilmektedir (1, 30).

Giris: Kuadriseps açısı (Q açısı)

Bu çalışmadan, 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı, normal değerinin altında oransal olarak büyük olup, normal değerinin üzerinde oransal olarak küçüktür (2–8 yaş arası健康的 çocuklarda quadriseps açısı normal kabul edilmektedir (1–6), 2–8 yaş arası sağlıklı çocuklarda quadriseps açısı normal kabul edilmektedir.

Cevap: Küçük:

Çalışmaya alınan çocukların ebeveynleri çalışma hakkında bilgilendirildi ve yazılı onamları alındı. Bu çalışmada Helsinki Deklarasyonu ilkelerine uygun olarak Bolu Abant İzzet Başal Üniversitesi Sosyal Bilimlerde İnsan Araştırmaları Etik Kurulu'nda (02.09.2015-2015/122) ve İl Milli Eğitim Müdürlüğü'nde gerekli izninin alınması sağlanmıştır.

Cevap: Küçük:

Çalışmaya alınan sağlıklı çocuk grupları erkek ve kadınlardır. Çalışma hâlinde normal ve normalden fazla quadriseps açısı olan bireylerin statik ve dинамik pozisyonlarına da etkisi gözlenmiştir. Quadriseps açısı, genu valgum, genu varum, patella femorotibiale gibi etkenlerle ve alt ekstremitelerde görülebilecek olan belirli patolojilerin yanında da patolojilerin yan etkisi göz önünde bulundurulduğunda gerek ginekolojide, memeli hastalıklarında, ya da cerebral palsi gibi nörolojik etmenlere bağlı olarak değişiklik gösterebilir (2). Kuadriseps açısı, genu valgum, genu varum, patella femorotibiale, patellofemoral ağrı sendromu gibi sorunlara neden olabilen bir değerdir (16, 17). Dizde stabilite, patellofemoral sıçrama riskini artırabilir (16, 17). Q açısı değerinin normalden sapma oranına göre bireyin statik ve dинамik pozisyonuna da etkisi olmaktadır. Q açısı normal yerinde pozisyon verilmiş olan bireylerde gözlem görmektez (16, 17). Normal değer, 2–8 yaş arası çocuklarda, normal kabul edilmektedir (1–6). Q açısı, 2–8 yaş arası çocukla ölçüldüğünde, normal kabul edilmektedir (1, 30).
Çankaya ve ark. Çocuklarda Q Açısı

1. Sırt üstü yatarken Q açısı ölçümü

Ayakta Q açısı ölçümü için olgulara pozisyon verilmesi dışında, sırtüstü yatarken yapılan ölçüm işleminin aynı uygulandı. Ölçüm öncesi bireylere, ayakları omuz genişliğinde açılmış ve karşıyı gösterecek şekilde pozisyon verildi (25).

2. Ayakta Q açısı ölçümü

Pes planus, Feiss çizgisi yöntemi kullanılarak değerlendirildi. Katılımcıların ayakta dururken 1. metatarsofalan her iki tarafında, tuberositas navikula, medial malleolleri ve skaphoid tüberkülün palpe edilip, asetat kalemi yardımıyla işaretlendi. İşaretleme sonrası bu noktaları birleştirecek şekilde Feiss çizgisi olarak bilinen doğru çizildi. Çizimden sonra skaphoid tüberkülüün çizgiye göre konumu değerlendirildi. Çizgilerin kesişim noktaları aralarında Feiss çizgisi olarak bilinen doğru çizildi. Çizimden sonra skaphoid tüberkülüünün çizgiye göre konumu değerlendirildi. Skaphoid tüberkülüün, Feiss çizgisi yer arası uzaklığının üçte biri kadar aşağıda kalması birinci derece, üçte ikisi kadar aşağıda kalması ikinci derece, tama- men yerde olması ise üçüncü derece pes planus olarak tanımlanmaktadır (31).

İstatistiksel Çözümle

Verilerin çözümlenmesinde SPSS 20 programı kullanıldı ve anlamlılık düzeyi p<0,05 olarak alındı. Cinsiyetin Q açısına etkisi bağımsız gruplarda t testi ile incelendi. Yaş grupları ve pes planus derecelerinin Q açısına etkisi ise One Way ANOVA ve Bonferroni testi ile incelendi. Vücut kitle indeksinin (VKİ) Q açısı ile olan ilişkisi Pearson Korelasyon testi ile incelendi.

Sendur ve ark. (32) yaptığı çalışmanın Q açıs ölçümünün sonuçları kullanılan G*Power analizinde ortala- ma etki büyüklüğü 0,17 bulundu. Bu etki büyüklüğünde α<0,05 β=95% alındığında gerekli örneklem sayısının 540 olduğu hesaplandı (33).

Bulgular

Çalışmaya alınan bireylerin demografik verileri Tablo 1’de verildi.

Tüm yaş gruplarında kız çocuklarının ortalama Q açısı değerleri ile erkeklerin ortalama Q açısı değerlerinin benzer olduğu görüldü. Her iki cinsiyet grubunda tüm yaş aralıklarında sağ ve sol Q açısı değerleri arasında anlamli fark bulunmadı (Tablo 2).

Çalışmaya alınan çocukların dört yüzelli beşinde (%76) Feiss çizgisi yönteminde göre farklı derecelerde pes planus olduğu görüldü. 224 çocuktan (%40,7) 1. derece, 192 çocuktan (%32,1) 2. derece, 19 çocuktan (%3,2) 3. derece pes planus varten, 144 çocuktan (%24) ise pes planus bulunmamaktaydı. Dağılının birinci derece pes planus en fazla görülürken en az görülü üçüncü seviye ise planus.

Tablo 1. Katılımcıların demografik ve fiziksel verileri

	Min.	Maks.	Ortalama	SS
Yaş (yıl)	2	8	4,76	1,60
Vücut ağırlığı (kg)	12,4	53	20,51	5,15
Boy uzunluğu (m)	0,90	1,54	1,11	0,09
VKİ (kg/m²)	10,48	38,06	16,19	2,28

Min.: Minimum; Maks.: Maksimum; SS: Standart sapma; VKİ: Vücut kitle indeksi

Tablo 2. Cinsiyetin Q-açısına olan etkisi

	Kız	Erkek	p
Q-açısıa (sağ)	13,32°±1,17°	13,30°±1,21°	0,637
Q açısıb (sol)	13,29°±1,14°	13,25°±1,22°	0,717
Q-açısıa (sağ)	13,30°±1,16°	13,27°±1,22°	0,583
Q açısıb (sol)	13,29°±1,18°	13,25°±1,23°	0,617

a: Sırtüstü ölçüm verileri; b: Ayakta ölçüm verileri. Bağımsız gruplarda t testi
Çankaya ve ark. Çocuklarda Q Açısı

127

Sırtüstü ve ayakta yapılan Q açısı ölçümleri arasında tüm yaş grupları arasında anlamlı fark bulundu ve Q açısının yaşla beraber azaldığı görüldü (p<0,05) (Tablo 3). Bu farkın hangi gruptan kaynaklandığını belirlemek için yapılan Post-Hoc analiz sonucunda, bütün yaş grupları arasında fark olduğu saptandı (p<0,05) (Tablo 4).

Bireyler pes planus derecelerine göre gruplara ayrıldığında hem sırtüstü hem de ayakta yapılan Q açısı ölçümlerinin benzer olduğu bulundu (p>0,05) (Tablo 5).

Sırtüstü ve ayakta yapılan Q açısı ölçümleri ile VKİ arasında negatif yönlü düşük düzeyli bir ilişki bulundu (Tablo 6).

Tartışma

Çalışmamız 2–8 yaş arası sağlıklı çocukların yaşla birlikte azaldığını ve açısal değerin cinsiyet, pes planus ve ölçüm pozisyonu gibi etmenlere bağlı olmadığını ve vücut kitle indeksi ile Q açısı arasında düşük düzeyde ilişki olduğunu gösterdi.

Tüm yaş gruplarında, yaşla beraber Q açısı ortalama değerinde var olan çalışmalarla benzer şekilde azaldığı görüldü. Azalmada yaşla beraber kuadriseps kas gücünde meydana gelen değişimin etkili olduğunu düşünülmektedir. Guerra ve ark. (8) kuadriseps kas gücündeki artışa bağlı olarak Q açısının azaldığını vurgulayan çalışması bu düşüncenin desteklemektedir. Q açısındaki azalma bir diğer etken ise; arastırmayı yaptığımız yaş grupları arasında femur boy uzamasının pelvis genişlemesinden orantısal olarak daha fazla olması olabilir.
Çalışmamızda kız ve erkek çocukları karşılaştırıldığında, tüm yaş gruplarında Q açısı değerlerinin benzer olduğu saptandı. Her iki cinsiyet grubunda da benzer açısal değerler buldularak gruplar arası boy uzunluğunun etkili olduğu görülüştü. Cinsiyete göre Q açısı ortalamaları arasında anlamlı fark bulunmasında etkili olan bir diğer etken de yaşa bağlı cinsiyete özgü; pelvis genişliği ve femur uzunluğu gibi birtakım morfolojik karakteristik farklılaşmaların tam olarak tamamlanmamış olmasıdır. Çalışmamızda bireylerin yaş aralığının erken dönem kapsamasını ve konuya ilişkin Hortön ve Hall’ın (13) çalışması hipotezimizi doğrulamaktadır.

Q açısına etki eden etmenlerden bir diğeri ise ayak bileyinde görülen deformitelerdir (15). Elvan ve ark. (35) Q açısının artması ile birlikte ayağın pronasyona gittiğini ve medialde tıkanış yüksek miktarın arttırığı, Q açısının azalmasını ise ayak supinasına ve lateralde fazla tıkanışa neden olduğunu bildirmiştir. Ayrıca Q açısına etki eden en önemli belirtecin naviküler yüksekliği olduğunu ifade etmişlerdir. Çalışmamızdaki bir çelikinlik ekarte etme olayının erken dönem kapsamasına ve konuya ilişkin Hortön ve Hall’ın (13) çalışması hipotezimizi doğrulamaktadır.

Ölçüm pozisyonunun Q açısında değişime neden olduğu birçok çalışmada vurgulanmaktadır (19, 36). Çalışmamızda sırtüstü ve ayakta ölçülen Q açısı ortalaması değerlerini bu çalışmamızda karşılaştırıldığında anlamlı bir fark saptanmadı. Ölçüm pozisyonları arasında fark bulunmamasında Guerra ve ark. (8) belirttiği gibi ayakta duruşa meydana gelen pelvis genişliği artışının patellanın lateral hareketi ile kompanse edilmesini etkili olduğunu düşündü. Diğer bir etken ise; ölçüm pozisyonunun standardizasyonunun halen sağlanmamış olmasıdır (19, 25, 36). Dizde bazı çalısmalarda Q açısının sırtüstü pozisyonunda diz 20°–25° fleksiyonda ölçülmesi, bu çalışmalarda ise çalısmamızda sırtüstü ölçülen Q açısının birlikte iki etken de nedeniyle belirgin olmamasına neden olmuştur (25, 27, 30).

Tablo 6. VKİ’nin Q açısına etkisi

VKİ	Q-açısı (sağ)	Q-açısı (sol)	Q-açısı (sağ)	Q-açısı (sol)
1	-280	-294	-297	-293
p<0,05	p<0,05	p<0,05	p<0,05	
599	599	599	599	599
Q-açısı (sağ)	1	0,991	0,953	0,962
p<0,05	p<0,05	p<0,05		
599	599	599	599	599
Q-açısı (sol)	1	0,958	0,967	0,958
p<0,05	p<0,05	p<0,05		
599	599	599	599	599
Q-açısı (sağ)	1	0,989	0,989	0,989
p<0,05	p<0,05	p<0,05		
599	599	599	599	599
Q-açısı (sol)	1	1	1	1

a: Sırtüstü ölçüm verileri; b: Ayakta ölçüm verileri; VKİ: Vücut kitle indeksi. Pearson Korelasyon Analizi

Son olarak her ne kadar yaş grup aralığımız dizindeki çalısmalarından farklı olsa da; var olan çalısmaların Q açıları ortalamaları ile çalısmamız Q açısı ortalamaları çalısmalarını karşılaştırıldığında çalısmamızın bazı çalısmalarla benzer (23, 24), bazı çalısmalarla ise farklı olduğu belirlendi.
(14, 25, 29). Bu noktada birçok çalışmada vurgulandığı üzere yaş ve etnisitenin ölçüm değerlerinde farklılaşmaya neden olduğu gerçekle şima çıkmaktadır (19, 28). Bu manada ileriye dönük olarak toplumumuzda diğer yaş gruplarına özgü olarak ortalama Q açısı normal değerlerinin belirlenmesi ve Q açısı ve pes planus gibi ölçümlerin fotoğrafi çekimi ve radyolojik görüntülü yöntemleri gibi daha objektif yöntemlerle değerlendirilmesi gerektmektedir. Ayrıca araştırmaımızda anımsal bulunan sonuçların klinik olarak anımsal olup olmadığını belirlenmesi açısından çocuk kliniklerinde de değerlendirilirilmesini önermektediz.

Ayrıca araştırmamızda anımsal bulunan sonuçların klinik olarak anımsal olup olmadığını belirlenmesi ve postürün Q açısı üzerindeki olması etkisinin belirlenmesi araçtırılmazın sınırlılıklardandır.

Ethics Committee Approval: Çalışma Helsinki deklarasyonu onaylı ve uygun olarak gerçekleştirilmiştir. Bu çalışma için etik kurulu onayı Bolu Abant İzzet Baysal Üniversitesi Sosyal Bilimlerde İnsan Araştırmaları Etik Kurulu’ndan alınmıştır (02.09.2015/122).

Informed Consent: Yazar katılımcı onamı bu çalışmaya katılan çocukların ebeveynlerinden alınmıştır.

Peer-Review: Externally peer-reviewed.

Author Contributions: Concept - T.Ç.; Design - T.Ç., B.D.; Supervision - T.Ç.; Funding - B.A., H.T.; Materials - B.D., H.T., B.A.; Data Collection and/or Processing - Ö.D., B.D., H.T.; Analysis and/or Interpretation - Ö.D., H.Ç.; Literature Review - T.Ç., Ö.D., H.Ç.; Writing - T.Ç.; Critical Review - T.Ç., B.A.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

Kaynaklar

1. Brattström H. Shape of the intercondylar groove normally and in recurrent dislocation of the patella. Acta Orthop Scan 1964; 68: 1–44.
2. Jaiyesimi AO, Jegede OO. Influence of gender and leg dominance on Q-angle among Adult Nigerians. Afr J Phys and Reh Sci 2009; 1: 18–23.
3. Antinolfi P, Bartoli M, Placella G, et al. Acute patellofemoral instability in children and adolescents. Joints 2016; 4: 47–51.
4. Dileep KS, Krishna H, Rameez MP. Correlation of rearfoot angle to Q-angle in patellofemoral pain syndrome: a prospective study. Int J Res Orthop 2017; 3: 688e691.
5. Jimshad TU, Mainali S, Swethankh KS, John AT. Does Q angle change in spastic diplegia children? Indian J Pediatr 2016; 2: 85–9.
6. Denizoglu Kulli H, Yeldan I, Yildirim NU. Influence of quadriceps angle on static and dynamic balance in young adults. J Back Musculoskelet Rehabil 2019; 32: 857–62.
7. Lathinghouse LH, Trimble MH. Effects of isometric quadriceps contraction and body position. J Orthop Sports Phys Ther 1994; 19: 200–4.
8. Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med 1992; 20: 208–11.
2014; 3: 1–5.
15. Kramer PG. Patella malalignment syndrome: rationale to reduce excessive lateral pressure. J Orthop Sports Phys Ther 1986; 8: 301–9.
16. Byl T, Cole J, Livingston L. What determines the magnitude of the Q-angle? A preliminary study of selected skeletal and muscular measures. J Sports Reh 2000; 9: 26–34.
17. Wilson T, Kitsell F. Is the Q-angle an absolute or variable measure? Physiother 2002; 88: 296–302.
18. Schulthies SS, Francis RS, Fisher AG, Van de Graaff KM. Does the Q angle reflect the force on the patella in the frontal plane?. Phys Ther 1995; 75: 24–30.
19. Insall J. "Chondromalacia patellae": patellar malalignment syndrome. Orthop Clin North Am 1979; 10: 117–27.
20. Hughston JC. Subluxation of the patella. J Bone Joint Surg Am 1984; 66: 715–24.
21. Hirokawa S. Three-dimensional mathematical model analysis of the patellofemoral joint. J Biomech 1991; 24: 659–71.
22. Huberti HH, Hayes WC. Patellofemoral contact pressures. The influence of Q angle and tendofemoral contact. J Bone Joint Surg Am 1984; 50: 1003–26.
23. Örtqvist M, Moström EB, Ross EM, et al. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children. Knee Surg Sports Traumatol Arthrosc 2011; 19: 2060–6.
24. Herrington L, Nester C. Q-angle undervalued? The relationship between Q-angle and medio-lateral position of the patella. Clin Biomech (Bristol, Avon) 2004; 19: 1070–3.
25. Park SK, Stefanyshyn DJ. Greater Q angle may not be a risk factor of patellofemoral pain syndrome. Clin Biomech (Bristol, Avon) 2004; 19: 1070–3.
26. Pantano KJ, White SC, Gilchrist LA, Leddy J. Differences in peak knee valgus angles between individuals with high and low Q-angles during a single limb squat. Clin Biomech (Bristol, Avon) 2005; 20: 966–72.
27. Omololu BB, Ogunlade OS, Gopaldasani VK. Normal Q-angle in an adult Nigerian population. Clin Orthop Relat Res 2009; 467: 2073–6.
28. Olagbegi OM, Ayeni OG, Jegede JA, Kayode-Imoru OO, Areoye JO. Age grade distribution of high quadriceps angle in a selected Nigerian population. Medicina Sportiva 2014; 10: 2457–61.
29. Bayraktar B, Yucesir I, Ozturk A, et al. Change of quadriceps angle values with age and activity. Saudi Med J 2004; 25: 756–60.
30. Insall J, Falvo KA, Wise DW. Chondromalacia Patellae. A prospective study. J Bone Joint Surg Am 1976; 58: 1–8.
31. Nilsson MK, Friis R, Michaelsen MS, Jakobsen PA, Niels RO. Classification of the height and flexibility of the medial longitudinal arch of the foot. J Foot Ankle Res 2012; 5: 3.
32. Sendur OF, Gurer G, Yildirim T, Ozturk E, Aydeniz A. Relationship of Q angle and joint hypermobility and Q angle values in different positions. Clin Rheumatol 2006; 25: 304–8.
33. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175–91.
34. Grelsamer RP, Dubey A, Weinstein CH. Men and women have similar Q angles: a clinical and trigonometric evaluation. J Bone Joint Surg Br 2005; 87: 1498–501.
35. Elvan A, Simsek IE, Cakiroglu MA, Angin S. Association of quadriceps angle with plantar pressure distribution, navicular height and calcaneo-tibial angle. Acta Orthop Traumatol Turc 2019; 53: 145–9.
36. Sanchez HM, Sanchez EG, Baraúna MA, Canto RS. Evaluation of Q angle in different static postures. Acta Ortop Bras 2014; 22: 325–9.
37. Li Q, Duan WP, Cao XM, Guo H, Wang L, Wei XC. Case-control Study on the Relationship Between Body Mass Index and Lower Limb Alignment of Patients With Knee Osteoarthritis. [Article in Chinese]. Zhongguo Gu Shang 2011; 24: 911–4.
38. Bello AI, Danso JA, Bonney E, et al. The influence of body mass index, Q-angle and tibiofemoral alignment on the clinical deficits of osteoarthritis of the knee. J Phys Rehab Med 2015; 1: 005.