CANCELLATION CONJECTURE FOR FREE ASSOCIATIVE ALGEBRAS

VESSELIN DRENSKY AND JIE-TAI YU

Abstract. We develop a new method to deal with the Cancellation Conjecture of Zariski in different environments. We prove the conjecture for free associative algebras of rank two. We also produce a new proof of the conjecture for polynomial algebras of rank two over fields of zero characteristic.

1. Introduction and main results

There is a famous

Conjecture 1.1. (Cancellation Conjecture of Zariski) Let R be an algebra over a field K. If $R[z]$ is K-isomorphic to $K[x_1, \ldots, x_n]$, then R is isomorphic to $K[x_1, \ldots, x_{n-1}]$.

Conjecture 1.1 is proved for $n = 2$ by Abhyankar, Eakin and Heizer [1], and Miyanishi [10]. For $n = 3$, the Conjecture is proved by Fujita [5], and Miyanishi and Sugie [11] for zero characteristic, and by Russell [12] for arbitrary fields K. For $n \geq 4$, the Conjecture remains open to the best of our knowledge. See [4, 6, 7, 8, 9, 14] for Zariski’s conjecture and related topics.

In view of Conjecture 1.1, it is natural and interesting to raise

Conjecture 1.2. (Cancellation Conjecture for Free Associative Algebras) Let R be an algebra over a field K. If the free product $R \ast K[z]$ is K-isomorphic to $K\langle x_1, \ldots, x_n \rangle$, then R is K-isomorphic to $K\langle x_1, \ldots, x_{n-1} \rangle$.

In this paper we develop a new method based on conditions of algebraic dependence, which can be used in different environments. In particular, by this method we prove Conjecture 1.2 for $n = 2$.

2000 Mathematics Subject Classification. Primary 16S10. Secondary 13B10, 13F20, 14R10, 16W20.

Key words and phrases. Cancellation Conjecture of Zariski, algebras of rank two, polynomial algebras, free associative algebras, commutators, Jacobians, algebraic dependence.

The research of Vesselin Drensky was partially supported by Grant MI-1503/2005 of the Bulgarian National Science Fund.

The research of Jie-Tai Yu was partially supported by an RGC-CERG Grant.
Theorem 1.3. Let R be an algebra over an arbitrary field K. If $R \ast K[z]$ is K-isomorphic to $K \langle x, y \rangle$, then R is K-isomorphic to $K[x]$.

We also produce a new and simple proof for Conjecture 1.1 for $n = 2$ in the zero characteristic case [1, 10]:

Proposition 1.4. Let R be an algebra over a field K of zero characteristic. If $R[z]$ is K-isomorphic to $K[x, y]$, then R is isomorphic to $K[x]$.

2. Preliminaries

First let us recall the structure of the free product $R \ast K[z]$. If as a vector space the (not necessarily commutative) unitary algebra R has a basis $\{r_i \mid i \in I\}$ and its multiplication is defined by

$$r_ir_j = \sum_{k \in I} \alpha_{ij}^k r_k,$$

then the basis of $R \ast K[z]$ consists of all products $r_{i_0}zr_{i_1}z\cdots r_{i_a-1}zr_{i_a}$ and the multiplication in $R \ast K[z]$ is defined by

$$(r_{i_0}z\cdots r_{i_{a-1}}zr_{i_a})(r_{j_0}zr_{j_1}z\cdots r_{j_b}) = \sum_{k \in I} \alpha_{i_0, j_0}^k r_{i_0}z\cdots r_{i_{a-1}}zr_kzr_{j_1}z\cdots r_{j_b}.$$

The free associative algebra of rank n can be defined as

$$K\langle x_1, \ldots, x_n \rangle \cong K[x_1] \ast \cdots \ast K[x_n].$$

To prove the main results, we need the well-known necessary and sufficient conditions for algebraic dependence.

Lemma 2.1. Let K be an arbitrary field, $f, g \in K\langle x_1, \ldots, x_n \rangle$. Then f and g are algebraically dependent over K if and only if $[f, g] = 0$, where $[f, g] = fg - gf$ is the commutator of f and g.

See Bergman [2] (or Cohn [3]), for a proof.

Lemma 2.2. Let K be a field of zero characteristic, $f, g \in K[x_1, \ldots, x_n]$. Then f and g are algebraically dependent over K if and only if $J_{x_i, x_j}(f, g) = 0$ for all $1 \leq i < j \leq n$, where $J_{x_i, x_j}(f, g)$ is the Jacobian determinant of f and g with respect to x_i and x_j.

See, for instance, Jie-Tai Yu [15], for a proof.

We also need a description of the subset of all elements of a polynomial or free associative algebra which are algebraically dependent to a fixed element. The following result is due to Bergman [2], see also Cohn [3].

Lemma 2.3. Let K be an arbitrary field, $f \in K\langle x_1, \ldots, x_n \rangle \backslash K$, and let $\mathcal{C}(f)$ be the subset of $K\langle x_1, \ldots, x_n \rangle$ consisting of all g such that $[f, g] = 0$. Then $\mathcal{C}(f) = K[u]$ for some $u \in K\langle x_1, \ldots, x_n \rangle$.

Lemma 2.4. Let K be a field of zero characteristic, $f \in K[x_1, \ldots, x_n] \setminus K$, and let $C(f)$ be the subset of $K[x_1, \ldots, x_n]$ consisting of all g such that $J_{x_i,x_j}(f,g) = 0$ for all $1 \leq i < j \leq n$. Then $C(f) = K[u]$ for some $u \in K[x_1, \ldots, x_n]$.

3. Proofs of the main results

Proof of Theorem 1.3. Let $R \ast K[z] \cong K\langle x, y \rangle$ and let (z) be the ideal of $R \ast K[z]$ generated by z. Clearly, $(R \ast K[z])/(z) \cong R$. Since the algebra $R \ast K[z]$ is isomorphic to the free algebra of rank 2, it is two-generated and the same holds for its homomorphic image $(R + K[z])/(z) \cong R$. Hence R is generated by $v, w \in R$. Now we use that R is a subalgebra of the free associative algebra $R \ast K[z] \cong K\langle x, y \rangle$. If v and w are algebraically independent over K, then R is isomorphic to the free algebra $K\langle t_1, t_2 \rangle$ and $R \ast K[z] \cong K\langle t_1, t_2, z \rangle$ is the free algebra of rank 3, which is impossible. Hence v and w are algebraically dependent. It follows that any element $f \in R$ and v are algebraically dependent over K. By Lemmas 2.1 and 2.3, $R \subset K[u]$ for some $u \in R \ast K[z]$. Write $u = u_0 + u_1$, where $u_0 \in R$ and u_1 contains all monomials of u with z-degree at least 1. For any $f \in R$, $f = h(u) = h(u_0 + u_1)$, h is a polynomial over K in one variable. Substituting $z = 0$, we obtain $f = h(u_0)$. Therefore $R \subset K[u_0]$. Now $K[u_0] \subset R \subset K[u_0]$. It forces $R = K[u_0]$. Hence R is K-isomorphic to $K[x]$. □

Proof of Proposition 1.4. As $R[z]$ is K-isomorphic to $K[x, y]$, it is easy to know that R has transcendental degree 1 over K. Therefore there exists a $g \in R \setminus K$ such that for all $f \in R$, f and g are algebraically dependent over K. By Lemmas 2.2 and 2.3, $R \subset K[u]$ for some $u \in R[z]$. Write $u = u_0 + u_1$, where $u_0 \in R$ and u_1 contains all monomials of u with z-degree at least 1. For any $f \in R$, $f = h(u) = h(u_0 + u_1)$, h is a polynomial over K in one variable. Substituting $z = 0$, we obtain $f = h(u_0)$. Therefore $R \subset K[u_0]$. Now $K[u_0] \subset R \subset K[u_0]$. It forces $R = K[u_0]$. Hence R is K-isomorphic to $K[x]$. □

Acknowledgements

The authors are grateful to the Beijing International Center for Mathematical Research for warm hospitality during their visit when this work was carried out. They also would like to thank Leonid Makar-Limanov and Vladimir Shpilrain for helpful discussion.
REFERENCES

[1] S.S. Abhyankar, P. Eakin, W.J. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342.
[2] G.M. Bergman, Centralizers in free associative algebras, Tran. Amer. Math. Soc. 137 (1969), 327-344.
[3] P.M. Cohn, Free Rings and Their Relations, 2nd edition, London Mathematical Society Monographs, 19, Academic Press, Inc. London, 1985.
[4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, Birkh"auser-Verlag, Basel-Boston-Berlin, 2000.
[5] T. Fijita, On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979) 106-110.
[6] H. Kraft, Challenging problems on affine n-spaces, Astérisque, 237 (1996) 295-317.
[7] S. Kaliman, M. Zaidenberg, Families of affine spaces: the existence of a cylinder, Michigan Math. J. 49 (2001) 353-367.
[8] L. Makar-Limanov, P. van Rossum, V. Shpilrain, J.-T. Yu, The stable equivalence and cancellation problems, Comment. Math. Helv. 79 (2004) 341-349.
[9] A.A. Mikhalev, V. Shpilrain, J.-T. Yu, Combinatorial Methods: Free Groups, Polynomials, and Free Algebras, CMS Books in Mathematics, Springer, New York, 2004.
[10] M. Miyanishi, Some remarks on polynomial rings, Osaka J. Math. 10 (1973), 617-624.
[11] M. Miyanishi, T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980) 11-42.
[12] P. Russell, On affine-ruled rational surfaces, Math. Ann. 255 (1981) 287-302.
[13] I.P. Shestakov, U.U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials, J. Amer. Math. Soc. 17 (2004), 181-196.
[14] V. Shpilrain, J.-T. Yu, Affine varieties with equivalent cylinders, J. Algebra 251 (2002) 295-307.
[15] J.-T. Yu, On relations between Jacobians and minimal polynomials, Linear Algebra Appl. 221 (1995), 19-29.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
E-mail address: drencry@math.bas.bg

Department of Mathematics, The University of Hong Kong, Hong Kong SAR, CHINA
E-mail address: yujt@hkucc.hku.hk, yujietai@yahoo.com