Expression status and clinical significance of IncRNA APPAT in the progression of atherosclerosis

Fanming Meng ¹, Jie Yan ², Qiongshan Ma ¹, Yunjuan Jiao ¹, Luyang Han ¹, Jing Xu ³, Fan Yang ⁴, Junwen Liu ¹

¹ Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People’s Republic of China
² Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People’s Republic of China
³ Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
⁴ Department of Internal Neurology, Tongliao KEQU First Hospital, Tongliao, People’s Republic of China

Corresponding Author: Junwen Liu
Email address: liujunwen@csu.edu.cn

Background. Long non-coding RNAs (lncRNAs) have been reported to modulate cardiovascular diseases, and expression dynamics of lncRNAs in bloodstream were proposed to be potential biomarkers for clinical diagnosis. However, few cardiovascular diseases-related circulating lncRNAs were identified and their prediction power hasn’t been investigated in depth. Here we report a new circulating lncRNA, *atherosclerotic plaque pathogenesis associated transcript* (APPAT), and evaluated its role and predicting ability in atherosclerotic development.

Methods. APPAT was analyzed and screened by high-throughput sequencing, and then detected *in vitro* and *in vivo*. Immunofluorescence-fluorescence in situ hybridization (IF-FISH) was utilized to explore distribution and subcellular location of APPAT. The expressing alteration of APPAT in samples of healthy and pathological coronary artery was explored further. We also assessed the level of circulating APPAT in blood samples from healthy individuals, and patients with angina pectoris (AP) or myocardial infarction (MI). Additionally, we predicted and validated microRNA targets of APPAT, then showed the expression level of a candidate target which was primarily measured in human VSMCs cell line, coronary artery, and blood samples. Lastly, we examined the potential indicating ability of APPAT for the risk of AP or MI.

Results. APPAT showed significantly reduction in ox-LDL treated human VSMCs *in vitro*. It enriched in contractile VSMCs of artery tunica media and mainly existed in cytoplasm. Significant down-regulation of APPAT was found in coronary artery samples with severe stenosis. More importantly, we observed decreased expression of APPAT in blood samples accompanying disease progression. ROC and correlation analyses further verified the relatively high predicting ability of APPAT. We also observed the predicted miRNA exhibited opposite expression direction to that of APPAT.

Conclusions. This study revealed that circulating IncRNA-APPAT may performs important function and has some indicating ability on the development of atherosclerosis.
Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis

Fanming Meng¹, Jie Yan², Qiongshan Ma¹, Yunjuan Jiao¹, Luyang Han¹, Jing Xu³, Fan Yang⁴, Junwen Liu¹*

¹ Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People’s Republic of China
² Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, People’s Republic of China
³ Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
⁴ Department of Internal Neurology, Tongliao KEQU First Hospital, Tongliao, People’s Republic of China

* Corresponding Author:

Junwen Liu, Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, People’s Republic of China. Tel: 86-731-82650436; Fax: 86-731-82650400.
E-mail address: liujunwen@csu.edu.cn.

Abstract

Background. Long non-coding RNAs (lncRNAs) have been reported to modulate cardiovascular diseases, and expression dynamics of lncRNAs in bloodstream were proposed to be potential biomarkers for clinical diagnosis. However, few cardiovascular diseases-related circulating lncRNAs were identified and their prediction power hasn’t been investigated in
depth. Here we report a new circulating lncRNA, *atherosclerotic plaque pathogenesis associated transcript (APPAT)*, and evaluated its role and predicting ability in atherosclerotic development.

Methods. *APPAT* was analyzed and screened by high-throughput sequencing, and then detected *in vitro* and *in vivo*. Immunofluorescence-fluorescence in situ hybridization (IF-FISH) was utilized to explore distribution and subcellular location of *APPAT*. The expressing alteration of *APPAT* in samples of healthy and pathological coronary artery was explored further. We also assessed the level of circulating *APPAT* in blood samples from healthy individuals, and patients with angina pectoris (AP) or myocardial infarction (MI). Additionally, we predicted and validated microRNA targets of *APPAT*, then showed the expression level of a candidate target which was primarily measured in human VSMCs cell line, coronary artery, and blood samples. Lastly, we examined the potential indicating ability of *APPAT* for the risk of AP or MI.

Results. *APPAT* showed significantly reduction in ox-LDL treated human VSMCs *in vitro*. It enriched in contractile VSMCs of artery tunica media and mainly existed in cytoplasm. Significant down-regulation of *APPAT* was found in coronary artery samples with severe stenosis. More importantly, we observed decreased expression of *APPAT* in blood samples accompanying disease progression. ROC and correlation analyses further verified the relatively high predicting ability of *APPAT*. We also observed the predicted miRNA exhibited opposite expression direction to that of *APPAT*.

Conclusions. This study revealed that circulating lncRNA-*APPAT* may performs important function and has some indicating ability on the development of atherosclerosis.

Introduction

Atherosclerosis concerns a chronic inflammatory progress which caused by pathological vascular change. The process of atherosclerotic plaques accumulating on the arterial wall results in many cardiovascular problems like angina pectoris (AP), coronary disease, myocardial
infarction (MI) and heart failure (Harada et al. 2014; Libby et al. 2011). Dysfunction or
activation of multiple cell types in artery wall under stress of stimuli risk factors are involved in
the pathogenesis of atherosclerosis (Shan et al. 2016; Zhou et al. 2016). Activated vascular
smooth muscle cells (VSMCs) plays vital role in the progression and stability of atherosclerotic
plaques (Gorenne et al. 2013; Lovren et al. 2012; Wang et al. 2015). As lesion accumulating on
artery wall, the alteration of VSMCs phenotype, extracellular matrix deposition, and formation
of fibrous cap thus contributing to the thickening and stiffening of arterial wall (Toba et al.
2014).

LncRNA is generally defined as transcripts that longer than 200 nucleotides and absent in
potential of coding proteins. Mechanistic models are starting to explore their functions under
physiological and pathological conditions both (Leone & Santoro 2016). A few of studies have
investigated that dynamic expression and multiple function of LncRNA closely associate with the
progress of atherosclerosis through regulating the function of endothelial cell, phenotype of
VSMCs, metabolism and inflammation, although they were suggested to be transcriptional
noises before (Bell et al. 2014; Bochenek et al. 2013; Ellis et al. 2014). Increasing evidences
have proved that ncRNAs exist in bloodstream, which suggest the potential of circulating
LncRNAs in serving as diagnostic biomarkers by testing their dynamic expression in body fluids.

Stabilized secondary structures of LncRNA enable their detection in blood or urine as free
nucleic acids (Reis & Verjovski-Almeida 2012). Such a non-invasive test in blood would enable
early detection of at-risk individuals. Research of circulating LncRNA mostly focused on their
role in cancer development monitoring or classification so far (Liang et al. 2016; Su et al. 2015;
Zhang et al. 2016). However, the secretion, transportation and stabilization of circulating
LncRNAs, and the precise molecular mechanisms of how LncRNAs function remains unclear. To
date, researches about circulating LncRNA in pathogenesis of cardiovascular disease is just at the
beginning (Cai et al. 2016; Kumarswamy et al. 2014; Yan et al. 2016; Yang et al. 2015).

Here we uncovered a circulating LncRNA ENST00000620272, renamed as atherosclerotic
plaque pathogenesis associated transcript (APPAT). APPAT was screened by high throughput
sequencing analyses, possibly acting as a contractile VSMCs cytoplasmic IncRNA in coronary artery tissue. We further found \textit{APPAT} was stable in plasma and its dynamical expression could be validated in patients with atherosclerotic disease. The \textit{APPAT} exhibited a clinical significance and might be contribute to the non-invasive diagnosis of atherosclerosis progress.

\textbf{Materials and Methods}

\textbf{Cell culture and ox-LDL treatment}

Rabbit and human VSMCs (Cellbio, Shanghai, China) were cultured in RPMI 1640 culture medium (Invitrogen, USA) with 10\% fetal calf serum, 100 units/ml penicillin and 100 \textmu g/ml streptomycin. The ox-LDL was used as stimuli on cultured rabbit and human VSMCs. Cells were exposed to ox-LDL (Yiyuan Bio, Guangzhou, China) in concentration of 80 \textmu g/ml for 48h. And cells without ox-LDL treatment were left as control group.

\textbf{RNA-Seq: preparation, sequencing, genome mapping, and transcriptome assembly}

Total RNA of each sample was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA). The NanoPhotometer spectrophotometer (IMPLEN, Westlake Village, CA), the Qubit RNA Assay Kit in Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA), and the RNA Nano 6000 Assay Kit of Bioanalyzer 2100 System (Agilent Technologies, Santa Clara, CA) ware utilized to check the purity, concentration, and integrity of RNA respectively. Eight cDNA libraries in total were constructed from ox-LDL-treated rabbit VSMCs (n=4) and control group (n=4). Sequencing libraries were generated using NEB-Next Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA) followed by library fragments purification and quality assessment. Finally libraries were sequenced on Illumina HiSeq 4000 Platform, and paired-end reads with 150 bp were generated by Illumina HiSeq 2500 Platform. We screened out clean reads of high-quality from raw data (66.1 GB, SRA accession ID: SRP124805) for subsequent analyses. The rabbit (\textit{Oryctolagus cuniculus}) genome (OryCun2.0 in the NCBI Assembly database) was used as reference genome for reads mapping through TopHat v2.0.9 (Kim et al. 2013; Trapnell et al. 2009). Cufflinks v2.1.1 was used for mapped reads assembly of each sample (Trapnell et al. 2010).
LncRNA identification and expression

All successfully assembled reads were combined by Cuffcompare software. Then qualified transcripts (≥200 bp, or ≥2 exons, ≥3 reads coverage) were screened out. Comparison between transcripts and reference rabbit lncRNAs was performed by Cuffcompare software. RNA transcripts like tRNA, rRNA, snoRNA, snRNA, pre-miRNA, and pseudogenes were also detected and discarded. Software CNCI, CPC, PFAM, and phyloCSF were used to assessing the coding potential of transcripts (Kong et al. 2007; Lin et al. 2011; Mistry et al. 2007; Sun et al. 2013).

The expression levels of lncRNAs in each sample were evaluated using Cuffdiff (v2.1.1). Fragments per kilo-base of exon per million fragments (FPKM) for expressing evaluation followed the previous method (Trapnell et al. 2010). The threshold of “*P* <0.05, FC (fold change) >2 or <0.5, and False discovery rate (FDR) <0.05” was used to judge the significance of gene expression differences between control and ox-LDL-treated group. FDR was generated by Cuffdiff.

Participants and ethical approval

Blood samples of clinical patients were collected and classified as normal subjects (n=43, ages: 54-72), AP (n=48, ages: 53-79) and MI (n=47, ages: 48-75) after clinical diagnose from The Third Xiangya Hospital of Central South University. MI was diagnosed through combination of several clinical parameters: ischemic symptom plus increased cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB), pathological Q wave.

The studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki. The Institutional Ethics Committee (The Third Xiang Ya Hospital of Central South University) approved the study and written informed consent was obtained from all patients (approval number: 2015-S177).

Isolation of human plasma

For lncRNA detection, whole blood samples (5 ml per patient) were collected from subjects via a direct venous puncture into tubes containing sodium citrate, centrifuged at 3000 rpm for
15 min, then the supernatant (plasma) was carefully transferred into an RNase-free tube and
restored in -80°C.

Obtain and classification of coronary artery samples

Coronary artery samples were gained from forensic pathological cadaver autopsy of Center
of Forensic Service of Xiangya of Hunan Province. The cadavers were all selected and judged by
forensic pathological identification, then classified as normal (n=21) and coronary artery stenosis
(n=28) based on carefully checking under microscope.

Total RNA extraction, amplification and quantitative real-time PCR (qPCR)

Total RNAs of rabbit and human VSMCs were isolated using Eastep™ Total RNA
Extraction Kit (Promega, Beijing). Blood samples were extracted by RNeasySerum/Plasma Kit
(Qiagen, Germany), and RNeasy FFPE Kit (Qiagen, Germany) for FFPE total RNA.

Amplification of lncRNA and miRNAs was performed by GoScript™ Reverse Transcription
System (Promega, USA) and Bulge-LoopTM miRNA qRT-PCR Primer Kit (Ribio, China)
respectively. The qPCR was performed on Applied Biosystems® 7500 Real-Time PCR System
with SYBR green method. Glyceraldehyde phosphate dehydrogenase (GAPDH) was used as
edogenous reference for lncRNA expression while U6 for miRNAs expression.

LncRNA Immunofluorescence and Fluorescence In Situ Hybridization (IF-FISH)

Slides were processed by combined IF-FISH protocol which developed for the simultaneous
detection of protein and RNA. The slides were hybridized by Cy3-probes specific for the RNA.
Subsequently, IF was performed on the same slides. The α-SMA for contractile VSMCs were
purchased from Abcam (USA). Incubated the slides with anti-protein for 24 h at 4°C. The
reaction was developed with FITC AffiniPure Goat Anti-Mouse IgG (Sigma, USA). Nuclei were
counterstained with DAPI (Beyotime, China). IF-FISH analysis was performed by epifluorescent
microscope (Leica DMI6000B).

Prediction and primary validation of miRNA targets for APPAT

The pictar, miRDB, IncBase and mirna22 online databases were used for predicting
miRNAs targets of APPAT. The intersection of these predicting results assemblages was
calculated. Then candidate miRNAs were primarily selected as which were at least included in
three databases. And further screening work was based on an integrated consideration of hybrid
ability, number of binding site, sequence identity, and research background of them. The
expressing change of miRNAs in human VSMCs was detected after ox-LDL treatment.

Statistical Analysis

Statistical significance was assumed at $P < 0.05$. And statistical significance of the means
(\pmstandard deviation, SD) which were determined by Student’s t-test or one way ANOVA
analyses. False discovery rate (FDR) was utilized for multiple testing with a threshold of FDR
<0.05 (van den Oord 2008). Receiver operating characteristic (ROC) curves were calculated and
the area under the curve (AUC) were evaluated subsequently. Pearson’s correlation analyses was
employed to verify the relationship between APPAT and screened miRNA in blood sample.
Graphpad prism 5 (GraphPad Software Inc., La Jolla, CA, USA) was used to perform analyses
and graphs plot. Medcalc (v17.9.7) was used for AUCs comparison.

Results

Identification of differential expressed lncRNAs in ox-LDL treated rabbit VSMCs

The high-throughput RNA-seq technique was used to analyze the expression of lncRNAs in
ox-LDL treated VSMCs of rabbit. A total of 42,533,007 clean reads were generated after
discarded those reads with poly-N >10%, adapters, or any other type of contaminants. All clean
reads were mapped to the reference genome of rabbit, and the final mapping rate was ranged
from 71.39 to 74.23% in all rabbit VSMCs samples. The Cufflinks results indicated that 147,153
transcripts were assembled at the first step.

Then sequences were qualified and the rest transcripts were blasted with latest
transcriptome of rabbit lncRNAs as well as known types of RNAs. 3630 presumed lncRNAs
transcripts were detected and all of these lncRNAs were recognized as novel sequence without
any report before. After protein-coding predicting analyses, 2037 novel lncRNAs were identified
with no protein-coding ability for following analysis (Fig. 1A).

The expression level of lncRNA transcripts were estimated, and a total of 28 lncRNA
transcripts differentially expressed in ox-LDL treated rabbit VSMCs group comparing to control group, including 17 up-regulated transcripts and 11 down-regulated (FDR <0.05, P <0.05). These 28 differentially expressed transcripts corresponded to 28 lncRNA unknown rabbit genes. Among them, 7 transcripts were significantly up-regulated as well as 5 down-regulated (Fold change ≥2, FDR <0.05, P <0.01) (Table S1).

Selection and validation of lncRNAs from rabbit and human

2 up-regulated (TCONS_02288701, TCONS_02225105) and 2 down-regulated (TCONS_00489746, TCONS_02443383) lncRNAs were selected for validation of RNA sequencing data using qPCR. All of these selected lncRNA transcripts were successfully amplified using designed primers (Tabel S2) and exhibited statistically differential expression between ox-LDL-treated and control groups (n=3, P <0.01) (Fig. 1B). The expression pattern of these 4 lncRNA were consistent with their RNA sequencing data.

These 4 selected rabbit lncRNAs sequences were chosen and compared with human sequence data on the NCBI website. Within the blast result, human lncRNAs with relatively high alignment identity were selected and amplified from total RNA production of human VSMCs using designed primer respectively (Table S3). Finally, ENST00000620272, corresponding to rabbit lncRNA transcript TCONS_00489746, was successfully amplified from human VSMCs and prepared for the subsequent study. ENST00000620272, renamed as APPAT, was a long intergenic non-protein coding RNA, which firstly generated from sequencing data of human blood sample. The protein-coding potential of APPAT was assessed using PhyloCSF and gained a score <20 which met the threshold as lncRNA (Lin et al. 2011; Pauli et al. 2012).

The expression level of APPAT was checked by qPCR. A similar expressing trend was found between APPAT and TCONS_00489746. The former showed significantly decrease (n=4, P <0.01) in ox-LDL treated group compared with control group in human VSMCs (Fig 1C).

Distribution and location of APPAT in tissue and subcellular level

Since VSMCs was the major constituent of tunica media of artery, and APPAT could be successfully amplified from cultured VSMCs, samples of coronary artery was collected to
determine the distribution and subcellular location of \textit{APPAT}. We utilized designed 5’Cy3-probe for RNA IF-FISH to investigate visuospatial information of \textit{APPAT} within human coronary artery (Table S4). On the IF-FISH images of coronary artery slides, \textit{APPAT} intriguingly located in VSMCs of tunica media of coronary artery but no obviously stain in tunica intima and adventitia (Fig 2A, B). By contrast, the atherosclerotic plaque area on slide exhibited negative fluorescent signals of \textit{APPAT} probe as the \textit{α-SMA} probe did (Fig. 2B). \textit{APPAT} and \textit{α-SMA} exhibited similarly distributing and co-expression pattern. Furthermore, it could be distinguished under high magnification that \textit{APPAT} was mainly localized in the cytoplasm but not the nuclear area (Fig. 2C).

\textbf{\textit{APPAT} level in coronary artery sample with severe stenosis}

Level of coronary artery stenosis was utilized to reflect the development of atherosclerosis plaque. The normal group contained coronary artery samples of dead people under unambiguously determination of death reason. And those samples with no obvious plaque were selected as the normal group (Fig. 3A). Samples of coronary artery with III-IV stenosis (Fig. 3B) were selected as pathology group after forensic pathological diagnose (J.Chen & Zhou 2015). A statistically significant down-regulation was detected in the arteriostenosis group (P<0.01) (Fig. 3C). The sharp decline of \textit{APPAT} in arteriostenosis group seemed identical with the severity of pathological artery stenosis.

\textbf{Detection of \textit{APPAT} in circulating blood of patients with coronary artery disease}

For patients characteristics, see Table 1. The level of \textit{APPAT} in extracellular circulating blood was investigated for whether it was detectable in blood sample, as well as existence of any dysregulation in atherosclerosis pathophysiologic process. Total RNA production was extracted and successfully amplified in all three groups. An obviously decreasing tendency of circulating \textit{APPAT} was found from normal, to AP group, then to MI group (Fig. 3D). The level of \textit{APPAT} was slightly decreased in AP group without statistical significance, but sharply declined in the MI group. This result exhibited the down-regulation of \textit{APPAT} was identical with the pathological progress of MI, since AP was usually treated as the early stage of coronary heart
The effect of diabetes and hypertension on \textit{APPAT} level in circulating blood

The clinical diagnosis of hypertension and diabetes of those patients with MI were investigated. Patient with MI was further classified as MI (none of hypertension or diabetes) group with MI+hypertension group and MI+diabetes group respectively. No significant differences of \textit{APPAT} level was found between MI (n=23) and MI+hypertension group (n=24) \((P >0.05)\) (Fig. S1A). And similar situation found in MI (n=13) and Mi+diabetes group (n=34) \((P >0.05)\) (Fig. S1B).

Predictive power of circulating \textit{APPAT} for patients with AP or MI

The ROC curve displayed the relationship regarding sensitivity and specificity for the \textit{APPAT} to predict the patients with AP or MI. In addition, ROC curve of cTnI level in blood was calculated and compared with that of \textit{APPAT}. A similar predictive power between cTnI (sensitivity: 80.85, specificity: 97.67) and \textit{APPAT} (sensitivity: 78.72, specificity: 93.02) was found. ROC analysis of \textit{APPAT} revealed an AUC of 0.9302 [95% confidence interval CI: 0.8795-0.9810, \(P <0.0001\)] (Fig. 4A) in MI group, whereas AUC of cTnI was 0.8951 [95% CI: 0.8247-0.9655, \(P <0.0001\)]. Comparison of AUCs between \textit{APPAT} and cTnI was calculated, and there was no significant difference \((P =0.4678)\).

By contrast, ROCs curves revealed low predicting power of \textit{APPAT} (sensitivity: 89.58, specificity: 30.23) and cTnI (sensitivity: 45.83, specificity: 90.7) in AP patients, and relatively low AUC was also found both in \textit{APPAT} (0.5833 [95% CI: 0.4641-0.7026], \(P =0.1716\)) and cTnI (0.6221 [95% CI: 0.5027-0.7415], \(P =0.04520\)) (Fig. 4B). The AUCs comparison was calculated either \((P =0.6420)\).

Prediction on miRNA targets for \textit{APPAT} and primary validation

Cytoplasmic lncRNAs could acted as sponge for miRNAs thus play role in a competing endogenous RNAs (ceRNAs) regulation loop, which derepressing associated mRNAs by decreasing concentration of targeting microRNA (miRNA) (Chen 2016). We applied the pictar, miRDB, lncBase and mirna22 online databases to search for the potential miRNAs for \textit{APPAT},
and calculated the intersection of these predicting results assemblages. Then candidate miRNAs were primarily selected as which were at least included in three databases (Fig. S2). And further screening work was based on an integrated consideration of hybrid ability, number of binding site, sequence identity, even the research background of them. Three miRNAs, miR-135b, miR-647 and miR-1229 were selected as candidate targets of APPAT (Table S5). All of those three miRNAs could be amplified from RNA extraction of human VSMCs. Moreover, we validated the expressing change of miRNAs in human VSMCs after ox-LDL treatment. The results exhibited miR-647 was significantly up-regulated in ox-LDL treated VSMCs, whereas no obvious change in miR-135b and miR-1229 (n=3, P<0.05) (Fig. 5A). We selected miR-647 as the potential miRNA target of APPAT for the further analyses.

MiR-647 level in coronary artery and blood samples

The expression level of miR-647 in samples with stenosis (n=28) was almost three folds than that of normal group (n=21) (Fig. 5B). Furthermore, a statistically significant up-regulation of circulating miR-647 was found in the MI group (n=47) compared with the normal subjects (n=43) (Fig. 5C). The altering tendency was coincident with the founding of coronary artery sample.

The correlation analyses between level of circulating miR-647 and circulating APPAT in blood samples of myocardial infraction group was calculated. The level of circulating APPAT was negatively correlated with that of circulating miR-647(r=-0.7908, P<0.01) (Fig. 5D).

Discussion

Increasing evidences shows that IncRNAs with various classification plays the critical role in atherosclerosis, although they were considered as junk of genome in the past (Holdt et al. 2013; Michalik et al. 2014). IncRNAs generated from different cell types in vascular wall implicated in various aspects of disease progression, like vascular function, metabolic regulation, inflammation and immunity (Carpenter et al. 2013; Cui et al. 2015; Hu et al. 2015; Shan et al. 2016). While the majority of studies have focused on the intracellular roles of IncRNAs, there is increasing interest in the potential roles of extracellular circulating IncRNAs. The release of
cellular RNA species into circulation may reflect disease-specific tissue injury and/or remodeling, or potential intercellular signaling. The intergenic lncRNA-APPAT investigated in present paper could be amplified from human VSMCs and alteration of expressing level could be induced under stimulation of ox-LDL in vitro. Moreover, the expressions of APPAT and its targeting miR-647 were detectable in circulating blood and pathological tissue both. The dynamical alteration of APPAT might provide the potential value on the development of disease in clinical diagnosis.

As a main component of vessel wall, VSMCs performed vital function during the progression of atherosclerosis in response to various risk factors within plaques (Bennett et al. 2016; Chistiakov et al. 2015). The proliferation or apoptosis in VSMCs may result in atherosclerosis plaque instability and rupture (Chen et al. 2004; Ding et al. 2012; Okura et al. 2000). In this study, the expression of APPAT was significantly repressed under ox-LDL stimulation in human VSMCs. This reduction might associated with the progression of VSMCs proliferation or apoptosis, which needs further investigation on its target mRNAs and the molecular mechanism.

It is becoming clear that many lncRNAs express in specific cell type or tissues, and function of lncRNAs was associated with their unique subcellular localization as nuclear enriched, cytoplasmic enriched, or both (Batista & Chang 2013; Chen 2016; Chen & Carmichael 2010). The APPAT restrictively distributed in tunica media of artery, where mainly consisted of VMSCs. In the development of atherosclerosis plaque, the media oriented VSMCs differentiate from contractile to synthetic phenotype, and accumulate into the intima by proliferation or directed migration, which play vital role in this pathogenesis progress. Together with the negative fluorescent signals in adventitia and plaque area, it suggested that APPAT might highly express in contractile phenotype of VSMCs other than synthetic phenotype, since the latter commonly migrated into plaque area. Similar distribution pattern was detected from signal of α-SMA probe which was designed for contractile VSMCs stain specially. Furthermore, subcellular location of APPAT showed that it possibly performs the function in cytoplasm which mean it
may plays regulatory roles on post-transcription. Unlike mitochondrial genome originated lncRNAs which were mainly expressed in heart (Kumarswamy et al. 2014), *APPAT* gene was localized on autosomal (chromosomes 2) and should initially generated in nucleus but functioned in cytoplasm. Here we inferred *APPAT* was a contractile VSMCs enriched cytoplasmic lncRNA. The alteration of lncRNA level in cell may somewhat reflected on its total expression amount in tissue level. A meaningful change should be detectable when pathological symptom happened. We further confirmed this assumption that the expression level of *APPAT* was significantly declined in coronary artery tissue with serious stenosis. This result suggested that the expression level of *APPAT* seemed closely related with the severity of arteriostenosis which indicated by the pathological development of atherosclerotic plaques. Similarly, *lincRNA-p21* exhibited obviously lower expression in coronary artery samples of vascular disease patients compared to control subjects. It was believed *lincRNA-p21* functioned in the development of atherosclerosis and coronary artery disease (Wu et al. 2014). In this report, it has demonstrated that ox-LDL stimulation could reduce *APPAT*, and *APPAT* enriched in contractile VSMCs of tunica media. Together with the down-regulation in coronary artery of CAD patient, we inferred that *APPAT* possibly plays key role in maintaining phenotype of VSMCs in disease progression, thus influencing the severity of coronary artery stenosis, especially the vulnerable plaque stability.

An ideal biomarkers for noninvasive diagnosis should be stable and easily detected with high sensitivity and specificity (Qi et al. 2016; Shi & Yang 2016). Few evidence of utilizing circulating lncRNAs in diagnosing/prognosing cardiovascular disease has been reported. And it was encouraged that such experiment should be developed on human cells and clinical samples preferably (Beltrami et al. 2015). The mitochondrial long noncoding RNA-*LIPCAR* was found with a potential value of predicting future death in patients with heart failure. It showed a biphasic altering direction in which lncRNA-*LIPCAR* down-regulated after MI happened but up-regulated in subsequence stage (Kumarswamy et al. 2014). Circulating long noncoding RNA *UCA1* was reported as a novel biomarker of acute MI recently (Yan et al. 2016). As well as,
CoroMarker was also uncovered from circulating peripheral blood and possibly involved in the pathogenesis of coronary artery disease (Yang et al. 2015). In present study, a clearly down-regulating tendency of APPAT could be found from health group to AP group, then to the MI patients. It was reasonable to think this expressing tendency in circulating blood system may in line with the simultaneously pathological dysregulation of APPAT in coronary artery tissue. Furthermore, this down regulation seemed independent from the existence of hypertension and diabetes. The ROC analysis exhibited a similar tendency to that of cTnI. The dynamic change of APPAT might contribute to the indication of atherosclerotic plaque development before severe cardiovascular symptom happen. A more precisely accession on the predicting power of APPAT called for a relatively lager samples size which should be carried out in the future study.

Cytoplasmic located LncRNAs could influent miRNAs function and associated mRNAs expression by acting as competing endogenous RNA (ceRNA), which was described as a feed-forward intracellular regulatory loop (Cesana et al. 2011; Rashid et al. 2016; Wang et al. 2010). The ceRNAs indirectly correlate with each other by competing for miRNAs containing same binding site, thus regulate the availability of miRNAs (Tay et al. 2014). MiR-647 was a newly found biomarker for gastric cancer (Rawlings-Goss et al. 2014; Yang et al. 2014). Evidence from limited studies suggested that overexpression of miR-647 in cancer cell in vitro could inhibit cell proliferation and increase cell apoptosis (Cao et al. 2017). In the present study, we found an increasing tendency of miR-647 expression in ox-LDL treated VSMCs, pathological coronary artery samples and circulating blood samples of patients with cardiovascular disease, which obviously opposite to that of APPAT. And correlation analysis exhibited a negative correlation between miR-647 and APPAT further. This opposite expressing tendency between LncRNA and its targeting miRNA might be attributed to the ceRNA regulation, and finally resulted in corresponding change of their expressions at tissue and circulating blood level. Disease-specific up- or down-regulation of individual LncRNAs with the following alteration in ceRNA-mediated interactions, may cause great effects in pathophysiological conditions (Tay et al. 2014). This sort of co-expression may assist in understanding the function and role of APPAT in the pathogenesis...
of disease based on examination of blood samples.

Conclusions

Based on the aforementioned, we assumed that circulating lncRNA-APPAT may performs the important function and has some indicating ability on the development of atherosclerosis. Further researches will pay efforts on exploring the mechanism on how APPAT plays function in the pathological progression of atherosclerotic disease.

References

Batista PJ, and Chang HY. 2013. Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298-1307. 10.1016/j.cell.2013.02.012

Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D, and Miano JM. 2014. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 34:1249-1259. 10.1161/ATVBAHA.114.303240

Beltrami C, Angelini TG, and Emanuelli C. 2015. Noncoding RNAs in diabetes vascular complications. Journal of Molecular and Cellular Cardiology 89:42-50. 10.1016/j.yjmcc.2014.12.014

Bennett MR, Sinha S, and Owens GK. 2016. Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research 118:692-702. 10.1161/CIRCRESAHA.115.306361

Bochenek G, Hasler R, El Mokhtari NE, Konig IR, Loos BG, Jepsen S, Rosenstiel P, Schreiber S, and Schaefer AS. 2013. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Human Molecular Genetics 22:4516-4527. 10.1093/hmg/ddt299

Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, Yu J, Wang X, Fu J, Li C, Jose PA, Zeng C, and Zhou L. 2016. Circulating 'lncRNA OTTHUMT00000387022' from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research 112:714-724. 10.1093/cvr/cvw022

Cao W, Wei W, Zhan Z, Xie D, Xie Y, and Xiao Q. 2017. Role of miR-647 in human gastric cancer suppression. Oncology Reports 37:1401-1411. 10.3892/or.2017.5383

Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB, O'Neill LAJ, Moore MJ, Caffrey DR, and Fitzgerald KA. 2013. A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science 341:789-792. 10.1126/science.1240925

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, and Bozzi I. 2011. A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA. Cell 147:358-369. 10.1016/j.cell.2011.09.028

Chen J, Mehta JL, Haider N, Zhang X, Narula J, and Li D. 2004. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circulation Research 94:370-376. 10.1161/01.RES.000013782.07824.BE

Chen LL. 2016. Linking Long Noncoding RNA Localization and Function. Trends in Biochemical Sciences 41:761-772.
Chen LL, and Carmichael GG. 2010. Decoding the function of nuclear long non-coding RNAs. *Current Opinion in Cell Biology* 22:357-364. 10.1016/j.ceb.2010.03.003

Chistiakov DA, Orekhov AN, and Bobryshev YV. 2015. Vascular smooth muscle cell in atherosclerosis. *Acta Physiol (Oxf)* 214:33-50. 10.1111/apha.12466

Cui M, Xiao Z, Wang Y, Zheng M, Song T, Cai X, Sun B, Ye L, and Zhang X. 2015. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. *Cancer Research* 75:846-857. 10.1158/0008-5472.CAN-14-1192

Ding Z, Liu S, Yang B, Fan Y, and Deng X. 2012. Effect of oxidized low-density lipoprotein concentration polarization on human smooth muscle cells' proliferation, cycle, apoptosis and oxidized low-density lipoprotein uptake. *J R Soc Interface* 9:1233-1240. 10.1098/rsif.2011.0436

Ellis BC, Graham LD, and Molloy PL. 2014. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. *Biochimica et Biophysica Acta* 1843:372-386. 10.1016/j.bbamcr.2013.10.016

Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, and Bennett M. 2013. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. *Circulation* 127:386-396. 10.1161/CIRCULATIONAHA.112.124404

Harada K, Harada K, Uetani T, Kataoka T, Takeshita M, Kunimura A, Takayama Y, Shinoda N, Kato B, Kato M, Marui N, Ishii H, Matsubara T, Amano T, and Murohara T. 2014. The different association of epicardial fat with coronary plaque in patients with acute coronary syndrome and patients with stable angina pectoris: analysis using integrated backscatter intravascular ultrasound. *Atherosclerosis* 236:301-306. 10.1016/j.atherosclerosis.2014.07.007

Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn K, Finstermeier K, Stahringer A, Wilfert W, Beutner F, Gielen S, Schuler G, Gabel G, Bergert H, Bechmann I, Studer PF, Thiery J, and Teupser D. 2013. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. *PLoS Genet* 9:e1003588. 10.1371/journal.pgen.1003588

Hu YW, Zhao JY, Li SF, Huang JL, Qiu YR, Mal T, Wu SG, Chen ZP, Hu YR, Yang JY, Wang YC, Gao JJ, Sha YH, Zheng L, and Wang Q. 2015. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. *Arteriosclerosis, Thrombosis, and Vascular Biology* 35:87-101. 10.1161/ATVBAHA.114.304296

J. Chen, and Zhou Q. 2015. *Pathology*. Beijing: People's Medical Publishing House.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, and Salzberg SL. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biology* 14:R36. 10.1186/gb-2013-14-4-r36

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, and Gao G. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. *Nucleic Acids Research* 35:W345-349. 10.1093/nar/gkm391

Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, and Thum T. 2014. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. *Circulation Research* 114:1569-1575. 10.1161/CIRCRESAHA.114.303915

Leone S, and Santoro R. 2016. Challenges in the analysis of long noncoding RNA functionality. *FEBS Letters* 590:2342-
Liang W, Lv T, Shi X, Liu H, Zhu Q, Zeng J, Yang W, Yin J, and Song Y. 2016. Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. *Medicine (Baltimore)* 95:e4608.

Libby P, Ridker PM, and Hansson GK. 2011. Progress and challenges in translating the biology of atherosclerosis. *Nature* 473:317-325. 10.1038/nature10146

Lin MF, Jungreis I, and Kellis M. 2011. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. *Bioinformatics* 27:i275-282. 10.1093/bioinformatics/btr209

Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, Steer BM, Ingram AJ, Gupta M, Al-Omran M, Teoh H, Marsden PA, and Verma S. 2012. MicroRNA-145 targeted therapy reduces atherosclerosis. *Circulation* 126:S81-90.

Michalik KM, You X, Manavski Y, Doddaballapur A, Zornig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, and Dimmeler S. 2014. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. *Circulation Research* 114:1389-1397. 10.1161/CIRCRESAHA.114.303265

Qi P, Zhou XY, and Du X. 2016. Circulating long non-coding RNAs in cancer: current status and future perspectives. *Molecular Cancer* 15:39. 10.1186/s12943-016-0524-4

Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, and Schier AF. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. *Genome Research* 22:577-591. 10.1101/gr.133009.111

Qi P, Zhou XY, and Du X. 2016. Circulating long non-coding RNAs in cancer: current status and future perspectives. *Molecular Cancer* 15:39. 10.1186/s12943-016-0524-4

Rashid F, Shah A, and Shan G. 2016. Long Non-coding RNAs in the Cytoplasm. *Genomics Proteomics Bioinformatics* 14:73-80. 10.1016/j.gpb.2016.03.005

Rawlings-Goss RA, Campbell MC, and Tishkoff SA. 2014. Global population-specific variation in miRNA associated with cancer risk and clinical biomarkers. *BMC Medical Genomics* 7:53. 10.1186/1755-8794-7-53

Shan K, Jiang Q, Wang XQ, Wang YN, Yang H, Yao MD, Liu C, Li XM, Yao J, Liu B, Zhang YY, J Y, and Yan B. 2016. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. *Cell Death Dis* 7:e2248. 10.1038/cddis.2016.145

Shi Q, and Yang X. 2016. Circulating MicroRNA and Long Noncoding RNA as Biomarkers of Cardiovascular Diseases. *Journal of Cellular Physiology* 231:751-755. 10.1002/jcp.25174

Su YJ, Yu J, Huang YQ, and Yang J. 2015. Circulating Long Noncoding RNA as a Potential Target for Prostate Cancer. *Int J Mol Sci* 16:13322-13338. 10.3390/ijms160613322

Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, and Zhao Y. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. *Nucleic Acids Research* 41:e166. 10.1093/nar/gkt646

Tay Y, Rinn J, and Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. *Nature*
Toba H, Cortez D, Lindsey ML, and Chilton RJ. 2014. Applications of miRNA technology for atherosclerosis. *Curr Atheroscler Rep* 16:386. 10.1007/s11883-013-0386-9

Trapnell C, Pachter L, and Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 25:1105-1111. 10.1093/bioinformatics/btp120

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, and Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology* 28:511-515. 10.1038/nbt.1621

van den Oord EJ. 2008. Controlling false discoveries in genetic studies. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics* 147B:637-644. 10.1002/ajmg.b.30650

Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, and Bennett M. 2015. Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. *Circulation* 132:1909-1919. 10.1161/CIRCULATIONAHA.115.016457

Wang JY, Liu XF, Wu HC, Ni PH, Gu ZD, Qiao YX, Chen N, Sun FY, and Fan QS. 2010. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. *Nucleic Acids Research* 38:5366-5383. 10.1093/nar/gkq285

Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, and Zeng C. 2014. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. *Circulation* 130:1452-1465. 10.1161/CIRCULATIONAHA.114.011675

Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian X, Li T, and Liu B. 2016. Circulating Long Noncoding RNA UCA1 as a Novel Biomarker of Acute Myocardial Infarction. *Biomed Res Int* 2016:8079372. 10.1155/2016/8079372

Yang B, Jing C, Wang J, Guo X, Chen Y, Xu R, Peng L, Liu J, and Li L. 2014. Identification of microRNAs associated with lymphangiogenesis in human gastric cancer. *Clinical & Translational Oncology* 16:374-379. 10.1007/s12094-013-1081-6

Yang Y, Cai Y, Wu G, Chen X, Liu Y, Wang X, Yu J, Li C, Chen X, Jose PA, Zhou L, and Zeng C. 2015. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. *Clinical Science (London, England: 1979)* 129:675-685. 10.1042/CS20150121

Zhang K, Luo Z, Zhang Y, Zhang L, Wu L, Liu Y, Yang J, Song X, and Liu J. 2016. Circulating IncRNA H19 in plasma as a novel biomarker for breast cancer. *Cancer Biomarkers* 17:187-194. 10.3233/CBM-160630

Zhou T, Ding JW, Wang XA, and Zheng XX. 2016. Long noncoding RNAs and atherosclerosis. *Atherosclerosis* 248:51-61. 10.1016/j.atherosclerosis.2016.02.025

Abbreviations

VSMCs, vascular smooth muscle cells

ox-LDL, oxidized low density lipoprotein

FFPE, formalin-fixed and paraffin-embedded

IncRNA, long noncoding RNA
qPCR, quantitative real-time PCR
miRNA, microRNA
cRNA, competing endogenous RNA
MI, myocardial infarction
AP, angina pectoris
CNCI, coding-non-coding index
CPC, coding potential calculator
PFAM, Pfam-scan
phyloCSF, phylogenetic codon substitution frequencies
Table 1 (on next page)

Patient characteristics
Table 1 Patient characteristics

Characteristics	Normal (n=43)	Angina pectoris (n=48)	P	MI (n=47)	P
Age (years)	63±4.84	65±6.62	0.08	63±8.25	0.75
Male/Female (n/n)	24/19	22/26	-	26/21	-
HDL^a (mmol/L)	1.06±0.39	1.10±0.34	0.64	1.04±0.23	0.58
LDL^b (mmol/L)	2.04±0.79	2.07±0.61	0.81	1.91±0.98	0.47
cTnI^c (ng/mL)	0.085±0.070	0.176±0.192	<0.01	3.962±4.299	<0.01
FBG^d (mmol/L)	5.69±2.07	5.80±0.83	0.74	7.05±4.31	0.81
CK-MB^e (U/L)	24.5±7.78	17.73±5.93	<0.01	27.58±12.55	<0.01
Diabetes (n, %)	5, 11.63	11, 22.96	-	24, 51.06	-
Hypertension (n, %)	13, 30.23	20, 41.67	-	34, 72.34	-

Notes.

^a HDL: high density lipoprotein

^b LDL: low density lipoprotein

^c cTnI: cardiac troponin I

^d FBG: fasting blood glucose

^e CK-MB: creatinine kinase-MB
Figure 1

Validation of high throughput sequencing results and *APPAT* expression in VSMCs.

(A) Venn diagram showed the total 2037 candidate lncRNAs after coding potential analyses. (B) Validation of relative expression of four selected lncRNAs in ox-LDL-treated rabbit VSMCs and control. The differential expression results was consistent with the RNA-seq data (n=3, *P <0.05, **P <0.01, ***P <0.001 vs control group). (C) Significant down-regulation of *APPAT* was detected in ox-LDL treated human VSMCs (n=4, **P <0.01, ***P <0.001 vs control group). *Student t-test was used in compression between two groups.
Figure 2

APPAT distribution and subcellular location.

IF-FISH was performed on coronary artery sample. DAPI, blue; APPAT, red; α-SMA, green. Scale bar, 50μm. (A) Tunica media, tunica adventitia and plaque area were labeled on red fluorescent image, white arrow showed the boundary of tunica intima. (B) Images of red and green fluorescent signals were merged to detect the co-expression of APPAT and α-SMA (mainly located in tunica media). (C) Red and blue fluorescent signals were merged to explore the subcellular distribution of APPAT. White arrows pointed to the merged area of DAPI (nuclear area) and APPAT (cytoplasmic area).
Figure 3

Expression level of circulating \textit{APPAT} in coronary artery tissue and blood samples.

(A) Normal coronary artery sample. (B) Coronary artery with severe arteriostenosis. (C) Expression level of \textit{APPAT} were quantified by qPCR in normal (n=21) and arteriostenosis (n=28). Significant difference were detected between two groups (***P <0.001 vs normal).

(D) Expression level of circulating \textit{APPAT} in plasma of patients with angina pectoris (n=48), MI (n=47) and healthy group (n=43). A decreasing tendency was detected from healthy to MI (***P <0.001 vs healthy group).
Figure 4

ROC curve analyses of APPAT and cTnI in angina pectoris and MI patients.

AUC indicates area under the ROC curve. Comparison between APPAT and cTnI in MI patients (A) and angina pectoris patients (B). No significant difference was found between APPAT and cTnI in MI or angina pectoris predicting ability.
Figure 5

Expression status of miR-647 and correlation analyses with APPAT.

(A) Expression levels of miRNA targets of APPAT in ox-LDL treated human VSMCs and control.
(B) The expression level of miR-647 in normal (n=21) and arteriosclerosis (n=28) samples.
(C) Expression levels of circulating miR-647 in plasma of patients with MI (n=47) and healthy group (n=43). (D) Correlation analysis of expression between circulating APPAT and circulating miR-647 in MI patients (n=47, r=-0.7908, P <0.001).