On parsimonious edge-colouring of graphs with maximum degree three

J.L. Fouquet and J.M. Vanherpe
L.I.F.O., Faculté des Sciences, B.P. 6759
Université d’Orléans, 45067 Orléans Cedex 2, FR

Abstract

In a graph G of maximum degree Δ let γ denote the largest fraction of edges that can be Δ edge-coloured. Albertson and Haas showed that $\gamma \geq \frac{13}{15}$ when G is cubic [1]. We show here that this result can be extended to graphs with maximum degree 3 with the exception of a graph on 5 vertices. Moreover, there are exactly two graphs with maximum degree 3 (one being obviously the Petersen graph) for which $\gamma = \frac{13}{15}$. This extends a result given in [14]. These results are obtained by giving structural properties of the so called δ–minimum edge colourings for graphs with maximum degree 3.

Keywords : Cubic graph; Edge-colouring;
Mathematics Subject Classification (2010) : 05C15.

1 Introduction

Throughout this paper, we shall be concerned with connected graphs with maximum degree 3. We know by Vizing’s theorem [15] that these graphs can be edge-coloured with 4 colours. Let $\phi : E(G) \to \{\alpha, \beta, \gamma, \delta\}$ be a proper edge-colouring of G. It is often of interest to try to use one colour (say δ) as few as possible. When an edge colouring is optimal, following this constraint, we shall say that ϕ is δ–minimum. In [3] we gave without proof (in French, see [5] for a translation) results on δ – minimum edge-colourings of cubic graphs. Some of them have been obtained later and independently by Steffen [13, 14]. Some other results which were not stated formally in [4] are needed here. The purpose of Section 2 is to give those results as structural properties of δ–minimum edge-colourings as well as others which will be useful in Section 3.

An edge colouring of G using colours $\alpha, \beta, \gamma, \delta$ is said to be δ–improper provided that adjacent edges having the same colours (if any) are coloured with δ. It is clear that a proper edge colouring (and hence a δ–minimum edge-colouring) of G is a particular δ–improper edge colouring. For a proper or δ–improper edge colouring ϕ of G, it will be convenient to denote $E_\phi(x) (x \in \{\alpha, \beta, \gamma, \delta\})$ the set of edges coloured with x by ϕ. For $x, y \in \{\alpha, \beta, \gamma, \delta\}, x \neq y$, $\phi(x, y)$ is the partial subgraph of G spanned by these two colours, that is $E_\phi(x) \cup E_\phi(y)$ (this subgraph being a union of paths and even cycles where the colours x and y alternate). Since any two δ–minimum edge-colourings of G have the same number of edges coloured δ we shall denote by $s(G)$ this number (the colour number as defined in [13]).
As usual, for any undirected graph G, we denote by $V(G)$ the set of its vertices and by $E(G)$ the set of its edges and we suppose that $|V(G)| = n$ and $|E(G)| = m$. A strong matching C in a graph G is a matching C such that there is no edge of $E(G)$ connecting any two edges of C, or, equivalently, such that C is the edge-set of the subgraph of G induced on the vertex-set $V(C)$.

2 On δ–minimum edge-colouring

The graph G considered in the following series of Lemmas will have maximum degree 3.

Lemma 1 [3, 4, 5] Any 2-factor of G contains at least $s(G)$ disjoint odd cycles.

Lemma 2 [3, 4, 5] Let ϕ be a δ–minimum edge-colouring of G. Any edge in $E_\phi(\delta)$ is incident to α, β and γ. Moreover each such edge has one end of degree 2 and the other of degree 3 or the two ends of degree 3.

Lemma 3 Let ϕ be a δ–improper colouring of G then there exists a proper colouring of $G \phi'$ such that $E_{\phi'}(\delta) \subseteq E_\phi(\delta)$

Proof Let ϕ be a δ-improper edge colouring of G. If ϕ is a proper colouring, we are done. Hence, assume that uv and uw are coloured δ. If $d(u) = 3$ we can change the colour of uv to α, β or γ since v is incident to at most two colours in this set.

If $d(u) = 3$ assume that the third edge uz incident to u is also coloured δ, then we can change the colour of uw for the same reason as above.

If uz is coloured with α, β or γ, then v and w are incident to the two remaining colours of the set $\{\alpha, \beta, \gamma\}$ otherwise one of the edges uw, uv can be recoloured with the missing colour. W.l.o.g., consider that uz is coloured α then v and w are incident to β and γ. Since u has degree 1 in $\phi(\alpha, \beta)$ let P be the path of $\phi(\alpha, \beta)$ which ends on u. We can assume that v or w (say v) is not the other end vertex of P. Exchanging α and β along P does not change the colours incident to v. But now uz is coloured α and we can change the colour of uw with β.

In each case, we get hence a new δ-improper edge colouring ϕ_1 with $E_{\phi_1}(\delta) \subseteq E_\phi(\delta)$. Repeating this process leads us to construct a proper edge colouring of G with $E_{\phi'}(\delta) \subseteq E_\phi(\delta)$ as claimed. \square

Proposition 4 Let $v_1, v_2, \ldots, v_k \in V(G)$ such that $G - \{v_1, v_2, \ldots, v_k\}$ is 3-edge colourable. Then $s(G) \leq k$.

Proof Let us consider a 3-edge colouring of $G - \{v_1, v_2, \ldots, v_k\}$ with α, β and γ and let us colour the edges incident to v_1, v_2, \ldots, v_k with δ. We get a δ-improper edge colouring ϕ of G. Lemma 3 gives a proper colouring of $G \phi'$ such that $E_{\phi'}(\delta) \subseteq E_\phi(\delta)$. Hence ϕ' has at most k edges coloured with δ and $s(G) \leq k$ \square

Proposition 4 above has been obtained by Steffen [13] for cubic graphs.
Lemma 5 Let ϕ be a δ--improper colouring of G then $|E_\phi(\delta)| \geq s(G)$

Proof Applying Lemma 3, let ϕ' be a proper edge colouring of G such that $E_{\phi'}(\delta) \subseteq E_\phi(\delta)$. We clearly have $|E_\phi(\delta)| \geq |E_{\phi'}(\delta)| \geq s(G)$. \qed

Lemma 6 [3, 4, 5] Let ϕ be a δ--minimum edge-colouring of G. For any edge $e = uv \in E_\phi(\delta)$ there are two colours x and y in $\{\alpha, \beta, \gamma\}$ such that the connected component of $\phi(x, y)$ containing the two ends of e is an even path joining these two ends.

Remark 7 An edge of $E_\phi(\delta)$ is in A_ϕ when its ends can be connected by a path of $\phi(\alpha, \beta)$, B_ϕ by a path of $\phi(\beta, \gamma)$ and C_ϕ by a path of $\phi(\alpha, \gamma)$. It is clear that A_ϕ, B_ϕ and C_ϕ are not necessarily pairwise disjoint since an edge of $E_\phi(\delta)$ with one end of degree 2 is contained in 2 such sets. Assume indeed that $e = uv \in E_\phi(\delta)$ with $d(u) = 3$ and $d(v) = 2$ then, if u is incident to α and β and v is incident to γ, we have an alternating path whose ends are u and v in $\phi(\alpha, \gamma)$ as well as in $\phi(\beta, \gamma)$. Hence e is in $A_\phi \cap B_\phi$. When $e \in A_\phi$ we can associate to e the odd cycle $C_{A_\phi}(e)$ obtained by considering the path of $\phi(\alpha, \beta)$ together with e. We define in the same way $C_{B_\phi}(e)$ and $C_{C_\phi}(e)$ when e is in B_ϕ or C_ϕ. In the following lemma we consider an edge in A_ϕ, an analogous result holds true whenever we consider edges in B_ϕ or C_ϕ as well.

Lemma 8 [3, 4, 5] Let ϕ be a δ--minimum edge-colouring of G and let e be an edge in A_ϕ then for any edge $e' \in C_{A_\phi}(e)$ there is a δ--minimum edge-colouring ϕ' such that $E_{\phi'}(\delta) = E_\phi(\delta) - \{e\} \cup \{e'\}$, $e' \in A_\phi$ and $C_{A_\phi}(e) = C_{A_\phi}(e')$. Moreover, each edge outside $C_{A_\phi}(e)$ but incident with this cycle is coloured γ, ϕ and ϕ' only differ on the edges of $C_{A_\phi}(e)$.

For each edge $e \in E_\phi(\delta)$ (where ϕ is a δ--minimum edge-colouring of G) we can associate one or two odd cycles following the fact that e is in one or two sets among A_ϕ, B_ϕ or C_ϕ. Let C be the set of odd cycles associated to edges in $E_\phi(\delta)$.

Lemma 9 [3, 4, 5] For each cycle $C \in C$, there are no two consecutive vertices with degree two.

Lemma 10 [3, 4, 5] Let $e_1, e_2 \in E_\phi(\delta)$ and let $C_1, C_2 \in C$ be such that $C_1 \neq C_2$, $e_1 \in E(C_1)$ and $e_2 \in E(C_2)$ then C_1 and C_2 are (vertex) disjoint.

By Lemma 8 any two cycles in C corresponding to edges in distinct sets A_ϕ, B_ϕ or C_ϕ are at distance at least 2. Assume that $C_1 = C_{A_\phi}(e_1)$ and $C_2 = C_{A_\phi}(e_2)$ for some edges e_1 and e_2 in A_ϕ. Can we say something about the subgraph of G whose vertex set is $V(C_1) \cup V(C_2)$? In general, we have no answer to this problem. However, when G is cubic and any vertex of G lies on some cycle of C (we shall say that C is spanning), we have a property which will be useful later. Let us remark first that whenever C is spanning, we can consider that G is edge-coloured in such a way that the edges of the cycles of C are alternatively coloured with α and β (except one edge coloured δ) and the remaining perfect matching is coloured with γ. For this δ--minimum edge-colouring of G we have $B_\phi = \emptyset$ as well as $C_\phi = \emptyset$.

3
Lemma 11 Assume that \(G \) is cubic and \(C \) is spanning. Let \(e_1, e_2 \in A_\phi \) and let \(C_1, C_2 \in C \) such that \(C_1 = C_{A_\phi}(e_1) \) and \(C_2 = C_{A_\phi}(e_2) \). Then at least one of the followings is true

(i) \(C_1 \) and \(C_2 \) are at distance at least 2

(ii) \(C_1 \) and \(C_2 \) are joined by at least 3 edges

(iii) \(C_1 \) and \(C_2 \) have at least two chords each

Proof Since \(e_1, e_2 \in A_\phi \) and \(C \) is spanning we have \(B_\phi = C_\phi = \emptyset \). Let \(C_1 = v_0v_1 \ldots v_{2k_1} \) and \(C_2 = w_0w_1 \ldots w_{2k_2} \). Assume that \(C_1 \) and \(C_2 \) are joined by the edge \(v_0w_0 \). By Lemma 6, we can consider a \(\delta \)–minimum edge-colouring \(\phi \) such that \(\phi(v_0v_1) = \phi(w_0w_1) = \delta, \phi(v_1v_2) = \phi(w_1w_2) = \beta \) and \(\phi(v_0v_{2k_1}) = \phi(w_0w_{2k_2}) = \alpha \). Moreover each edge of \(G \) (in particular \(v_0w_0 \)) incident with these cycles is coloured \(\gamma \). We can change the colour of \(v_0w_0 \) in \(\beta \). We obtain thus a new \(\delta \)–minimum edge-colouring \(\phi' \). Performing that exchange of colours on \(v_0w_0 \) transforms the edges coloured \(\delta \) \(v_0v_1 \) and \(w_0w_1 \) in two edges of \(C_{\phi'} \) lying on odd cycles \(C'_1 \) and \(C'_2 \) respectively. We get hence a new set \(C' = C - \{C_1, C_2\} \cup \{C'_1, C'_2\} \) of odd cycles associated to \(\delta \)–coloured edges in \(\phi' \).

From Lemma 8 \(C'_1 \) (\(C'_2 \) respectively) is at distance at least 2 from any cycle in \(C - \{C_1, C_2\} \). Hence \(V(C'_1) \cup V(C'_2) \subseteq V(C_1) \cup \{C_2\} \). It is an easy task to check now that (ii) or (iii) above must be verified. \(\square \)

Lemma 12 [3, 4, 5] Let \(e_1 = u_1v_1 \) be an edge of \(E_\phi(\delta) \) such that \(v_1 \) has degree 2 in \(G \). Then \(v_1 \) is the only vertex in \(N(u) \) of degree 2 and for any edge \(e_2 = u_2v_2 \in E_\phi(\delta), \{e_1, e_2\} \) induces a \(2K_2 \).

Lemma 13 [3, 4, 5] Let \(e_1 \) and \(e_2 \) be two edges of \(E_\phi(\delta) \). If \(e_1 \) and \(e_2 \) are contained in two distinct sets of \(A_\phi, B_\phi \) or \(C_\phi \) then \(\{e_1, e_2\} \) induces a \(2K_2 \) otherwise \(e_1, e_2 \) are joined by at most one edge.

Lemma 14 [3, 4, 5] Let \(e_1, e_2 \) and \(e_3 \) be three distinct edges of \(E_\phi(\delta) \) contained in the same set \(A_\phi, B_\phi \) or \(C_\phi \). Then \(\{e_1, e_2, e_3\} \) induces a subgraph with at most four edges.

3 Applications and problems

3.1 On a result by Payan

In [10] Payan showed that it is always possible to edge-colour a graph of maximum degree 3 with three maximal matchings (with respect to the inclusion) and introduced henceforth a notion of strong-edge colouring where a strong edge-colouring means that one colour is a strong matching while the remaining colours are usual matchings. Payan conjectured that any \(d \)–regular graph has \(d \) pairwise disjoint maximal matchings and showed that this conjecture holds true for graphs with maximum degree 3.

The following result has been obtained first by Payan [10], but his technique does not exhibit explicitly the odd cycles associated to the edges of the strong matching and their properties.
Theorem 15 Let G be a graph with maximum degree at most 3. Then G has a δ–minimum edge-colouring ϕ where $E_\phi(\delta)$ is a strong matching and, moreover, any edge in $E_\phi(\delta)$ has its two ends of degree 3 in G.

Proof Let ϕ be a δ–minimum edge-colouring of G. From Lemma 13, any two edges of $E_\phi(\delta)$ belonging to distinct sets from among A_ϕ, B_ϕ and C_ϕ induce a strong matching. Hence, we have to find a δ–minimum edge-colouring where each set A_ϕ, B_ϕ or C_ϕ induces a strong matching (with the supplementary property that the end vertices of these edges have degree 3). That means that we can work on each set A_ϕ, B_ϕ and C_ϕ independently. Without loss of generality, we only consider A_ϕ here.

Assume that $A_\phi = \{e_1, e_2, \ldots, e_k\}$ and $A'_\phi = \{e_1, \ldots, e_i\}$ ($1 \leq i \leq k - 1$) is a strong matching and each edge of A'_ϕ has its two ends with degree 3 in G. Consider the edge e_{i+1} and let $C = C_{e_{i+1}}(\phi) = (u_0, u_1 \ldots u_2p)$ be the odd cycle associated to this edge (Lemma 6).

Let us mark any vertex v of degree 3 on C with a $+$ whenever the edge of colour γ incident to this vertex has its other end which is a vertex incident to an edge of A'_ϕ and let us mark v with $-$ otherwise. By Lemma 9 a vertex of degree 2 on C has its two neighbours of degree 3 and by Lemma 12 these two vertices are marked with $-$. By Lemma 14 we cannot have two consecutive vertices marked with $+$. Hence, C must have two consecutive vertices of degree 3 marked with $-$ whatever is the number of vertices of degree 2 on C.

Let u_{j} and u_{j+1} be two vertices of C of degree 3 marked with $-$ (j being taken modulo $2p + 1$). We can transform the edge colouring ϕ by exchanging colours on C uniquely, in such a way that the edge of colour δ of this cycle is $u_{j}u_{j+1}$. In the resulting edge colouring ϕ_1 we have $A_{\phi_1} = A_\phi - \{e_{i+1}\} \cup \{u_j, u_{j+1}\}$ and $A'_{\phi_1} = A'_\phi \cup \{u_j, u_{j+1}\}$ is a strong matching where each edge has its two ends with degree 3. Repeating this process we are left with a new δ–minimum colouring ϕ' where $A_{\phi'}$ is a strong matching.

Corollary 16 Let G be a graph with maximum degree 3 then there are $s(G)$ vertices of degree 3 pairwise non-adjacent $v_1 \ldots v_{s(G)}$ such that $G - \{v_1 \ldots v_{s(G)}\}$ is 3-colourable.

Proof Pick a vertex on each edge coloured δ in a δ–minimum colouring ϕ of G where $E_\phi(\delta)$ is a strong matching (Theorem 15). We get a subset S of vertices satisfying our corollary.

Steffen [13] obtained Corollary 16 for bridgeless cubic graphs.

3.2 Parsimonious edge colouring

Let $\chi'(G)$ be the classical chromatic index of G. For convenience let

$$e(G) = \max\{|E(H)| : H \subseteq G, \chi'(H) = 3\}$$

$$\gamma(G) = \frac{e(G)}{|E(G)|}$$

Staton [12] (and independently Locke [9]) showed that whenever G is a cubic graph distinct from K_4 then G contains a bipartite subgraph (and hence a 3-edge colourable graph, by König’s theorem [8]) with at least $\frac{7}{8}$ of the edges of
G. Bondy and Locke [2] obtained \(\frac{1}{3} \) when considering graphs with maximum degree at most 3.

In [1] Albertson and Haas showed that whenever \(G \) is a cubic graph, we have \(\gamma(G) \geq \frac{13}{15} \) while for graphs with maximum degree 3 they obtained \(\gamma(G) \geq \frac{26}{31} \).

Our purpose here is to show that \(\frac{13}{15} \) is a lower bound for \(\gamma(G) \) when \(G \) has maximum degree 3, with the exception of the graph \(G_5 \) depicted in Figure 1 below.

\[\text{Figure 1: } G_5 \]

Lemma 17 Let \(G \) be a graph with maximum degree 3 then \(\gamma(G) = 1 - \frac{s(G)}{m} \).

Proof Let \(\phi \) be a \(\delta \)-minimum edge-colouring of \(G \). The restriction of \(\phi \) to \(E(G) - E_\phi(\delta) \) is a proper 3-edge-colouring, hence \(c(G) \geq m - s(G) \) and \(\gamma(G) \geq 1 - \frac{s(G)}{m} \).

If \(H \) is a subgraph of \(G \) with \(\chi(H) = 3 \), consider a proper 3-edge-colouring \(\phi : E(H) \to \{\alpha, \beta, \gamma\} \) and let \(\psi : E(G) \to \{\alpha, \beta, \gamma, \delta\} \) be the continuation of \(\phi \) with \(\psi(e) = \delta \) for \(e \in E(G) - E(H) \). By Lemma 3 there is a proper edge-colouring \(\psi' \) of \(G \) with \(E_\psi'(\delta) \subseteq E_\psi(\delta) \) so that \(|E(H)| = |E(G) - E_\psi(\delta)| \leq |E(G) - E_\psi'(\delta)| \leq m - s(G) \), \(c(G) \leq m - s(G) \) and \(\gamma(G) \leq 1 - \frac{s(G)}{m} \). \(\square \)

In [11], Rizzi shows that for triangle free graphs of maximum degree 3, \(\gamma(G) \geq 1 - \frac{2}{s_{odd}(G)} \) (where the odd girth of a graph \(G \), denoted by \(s_{odd}(G) \), is the minimum length of an odd cycle).

Theorem 18 Let \(G \) be a graph with maximum degree 3 then \(\gamma(G) \geq 1 - \frac{2}{s_{odd}(G)} \).

Proof Let \(\phi \) be a \(\delta \)-minimum edge-colouring of \(G \) and \(E_\phi(\delta) = \{e_1, e_2 \ldots e_{s(G)}\} \). \(\mathcal{C} \) being the set of odd cycles associated to edges in \(E_\phi(\delta) \), we write \(\mathcal{C} = \{C_1, C_2 \ldots C_{s(G)}\} \) and suppose that for \(i = 1, 2 \ldots s(G) \), \(e_i \) is an edge of \(C_i \). We know by Lemma 10 that the cycles of \(\mathcal{C} \) are vertex-disjoint.

Let us write \(\mathcal{C} = \mathcal{C}_2 \cup \mathcal{C}_3 \), where \(\mathcal{C}_2 \) denotes the set of odd cycles of \(\mathcal{C} \) which have a vertex of degree 2, while \(\mathcal{C}_3 \) is for the set of cycles in \(\mathcal{C} \) whose all vertices have degree 3. Let \(k = |\mathcal{C}_2| \), obviously we have \(0 \leq k \leq s(G) \) and \(\mathcal{C}_2 \cap \mathcal{C}_3 = \emptyset \).

If \(C_1 \in \mathcal{C}_2 \), we may assume that \(e_1 \) has a vertex of degree 2 (see Lemma 8) and we can associate to \(e_1 \) another odd cycle say \(C'_1 \) (Remark 7) whose edges distinct from \(e_1 \) form an even path using at least \(\frac{s_{odd}(G)}{2} \) edges which are not
edges of C_i. Hence, $C_i \cup C'_i$ contains at least $\frac{3}{2}g_{\text{odd}}(G)$ edges. Consequently there are at least $\frac{3}{2} \times k \times g_{\text{odd}}(G)$ additionnal edges which are incident to a vertex of $\bigcup_{C_i \in C_3} C_i$.

When $C_i \in C_3$, C_i contains at least $g_{\text{odd}}(G)$ edges, moreover, each vertex of C_i being of degree 3, there are $\frac{s(G)-k}{2} \times g_{\text{odd}}(G)$ additionnal edges which are incident to a vertex of $\bigcup_{C_i \in C_3} C_i$.

Since $C_i \cap C_j = \emptyset$ and $C_i \cap C_j = \emptyset$ (1 $\leq i, j \leq s(G)$, $i \neq j$), we have

$$m \geq \frac{3}{2}g_{\text{odd}}(G) \times k \times (s(G)-k) \times g_{\text{odd}}(G) + \frac{s(G)-k}{2} \times g_{\text{odd}}(G) = \frac{3}{2} \times s(G) \times g_{\text{odd}}(G).$$

Consequently $\gamma(G) = 1 - \frac{s(G)}{m} \geq 1 - \frac{2}{3g_{\text{odd}}(G)}$.

\[\square\]

Lemma 19 [1] Let G be a graph with maximum degree 3. Assume that $v \in V(G)$ is such that $d(v) = 1$ then $\gamma(G) > \gamma(G-v)$.

A triangle $T = \{a, b, c\}$ is said to be reducible whenever its neighbours are distinct. When T is a reducible triangle in G (G having maximum degree 3) we can obtain a new graph G' with maximum degree 3 by shrinking this triangle into a single vertex and joining this new vertex to the neighbours of T in G.

Lemma 20 [1] Let G be a graph with maximum degree 3. Assume that $T = \{a, b, c\}$ is a reducible triangle and let G' be the graph obtained by reduction of this triangle. Then $\gamma(G) > \gamma(G')$.

Theorem 21 Let G be a graph with maximum degree 3, V_2 be the set of vertices with degree 2 in G and V_3 those of degree 3. If $G \neq G_5$ then $\gamma(G) \geq 1 - \frac{3}{4 + \frac{9}{|V_3|}}$.

Proof From Lemma 19 and Lemma 20 we can consider that G has only vertices of degree 2 or 3 and that G contains no reducible triangle.

Assume that we can associate a set P_e of at least 5 distinct vertices of V_3 for each edge $e \in E_\phi(\delta)$ in a ϕ–minimum edge-colouring ϕ of G. Assume moreover that

$$\forall e, e' \in E_\phi(\delta) \quad P_e \cap P_{e'} = \emptyset$$

(1)

Then

$$\gamma(G) = 1 - \frac{s(G)}{m} = 1 - \frac{s(G)}{2|V_3| + |V_2|} \geq 1 - \frac{|V_2|}{2|V_3| + |V_2|}$$

Hence

$$\gamma(G) \geq 1 - \frac{3}{4 + \frac{9}{|V_3|}}$$

It remains to see how to construct the sets P_e satisfying Property (1). Let C be the set of odd cycles associated to edges in $E_\phi(\delta)$ (see Lemma 10). Let $e \in E_\phi(\delta)$, assume that e is contained in a cycle $C \in C$ of length 3. By Lemma 10, the edges incident to that triangle have the same colour in $\{\alpha, \beta, \gamma\}$. This triangle is hence reducible, impossible. We can thus consider that each cycle of
C has length at least 5. By Lemma 2 and Lemma 12, we know that whenever such a cycle contains vertices of V_2, their distance on this cycle is at least 3. Which means that every cycle $C \in \mathcal{C}$ contains at least 5 vertices in V_2 as soon as C has length at least 7 or C has length 5 but does not contain a vertex of V_2. For each edge $e \in E_C(\delta)$ contained in such a cycle we associate P_e as any set of 5 vertices of V_3 contained in the cycle.

There may exist edges in $E_C(\delta)$ contained in a 5-cycle of \mathcal{C} having exactly one vertex in V_2. Let $C = a_1a_2a_3a_4a_5$ be such a cycle and assume that $a_1 \in V_2$. By Lemma 2 and Lemma 14, a is the only vertex of degree 2 and by exchanging colours along this cycle, we can suppose that $a_1a_2 \in E_C(\delta)$. Since $a_1 \in V_2$, $e = a_1a_2$ is contained in a second cycle C' of \mathcal{C} (see Remark 7). If C' contains a vertex $x \in V_3$ distinct from a_2, a_3, a_4 and a_5 then we set $P_e = \{a_2, a_3, a_4, a_5, x\}$. Otherwise $C' = a_1a_2a_3a_4a_5$ and G is isomorphic to G_5, impossible.

The sets $\{P_e | e \in E_C(\delta)\}$ are pairwise disjoint since any two cycles of \mathcal{C} associated to distinct edges in $E_C(\delta)$ are disjoint. Hence property 1 holds and the proof is complete. \[\square\]

Albertson and Haas [1] proved that $\gamma(G) \geq \frac{2n}{3}$ when G is a graph with maximum degree 3 and Rizzi [11] obtained $\gamma(G) \geq \frac{5}{6}$. From Theorem 21 we get immediately $\gamma(G) \geq \frac{13}{16}$, a better bound. Let us remark that we get also $\gamma(G) \geq \frac{13}{15}$ by Theorem 18 as soon as $g_{odd} \geq 5$.

Lemma 22 Let G be a cubic graph which can be factored into $s(G)$ cycles of length 5 and without reducible triangle. Then every 2-factor of G contains $s(G)$ cycles of length 5.

Proof Since G has no reducible triangle, all cycles in a 2-factor have length at least 4. Let \mathcal{C} be any 2-factor of G. Let us denote n_4 the number of cycles of length 4, n_5 the number of cycles of length 5 and n_{6+} the number of cycles on at least 6 vertices in \mathcal{C}. We have $5n_5 + 6n_{6+} \leq 5s(G) - 4n_4$.

When $n_4 + n_{6+} > 0$, if $n_{6+} > 0$ then $n_5 + n_{6+} < n_5 + \frac{6n_{6+}}{5} \leq \frac{5s(G) - 4n_4}{5} \leq s(G)$ and if $n_{6+} = 0$, we have $n_4 > 0$ and $n_5 \leq \frac{5s(G) - 4n_4}{5} < s(G)$. A contradiction in both cases with Lemma 1. \[\square\]

Corollary 23 Let G be a graph with maximum degree 3 such that $\gamma(G) = \frac{13}{16}$. Then G is a cubic graph which can be factored into $s(G)$ cycles of length 5. Moreover every 2-factor of G has this property.

Proof The optimum for $\gamma(G)$ in Theorem 21 is obtained whenever $s(G) = \frac{|V_1|}{15}$ and $|V_2| = 0$. That is, G is a cubic graph admitting a 2-factor of $s(G)$ cycles of length 5. Moreover by Lemma 20 G has no reducible triangle, the result comes from Lemma 22. \[\square\]

As pointed out by Albertson and Haas [1], the Petersen graph with $\gamma(G) = \frac{13}{16}$ supplies an extremal example for cubic graphs. Steffen [14] proved that the only cubic bridgeless graph with $\gamma(G) = \frac{13}{16}$ is the Petersen graph. In fact, we can extend this result to graphs with maximum degree 3 where bridges are allowed (excluding the graph G_5). Let P' be the cubic graph on 10 vertices
obtained from two copies of G_5 (Figure 1) by joining by an edge the two vertices of degree 2.

Theorem 24 Let G be a connected graph with maximum degree 3 such that $\gamma(G) = \frac{13}{15}$. Then G is isomorphic to the Petersen graph or to P'.

Proof Let G be a graph with maximum degree 3 such that $\gamma(G) = \frac{13}{15}$.

From Corollary 23, we can consider that G is cubic and G has a 2-factor of cycles of length 5.

Let $C = \{C_1 \ldots C_{s(G)}\}$ be such a 2-factor (C is spanning).

Let ϕ be a $\delta-$minimum edge-colouring of G induced by this 2-factor.

Without loss of generality consider two cycles in C, namely C_1 and C_2, and let us denote $C_1 = v_1v_2v_3v_4v_5$ while $C_2 = u_1u_2u_3u_4u_5$ and assume that $v_1u_1 \in G$. From Lemma 11, C_1 and C_2 are joined by at least 3 edges or each of them has two chords. If $s(G) > 2$ there is a cycle $C_3 \in C$. Without loss of generality, G being connected, we can suppose that C_3 is joined to C_1 by an edge. Applying once more time Lemma 11, C_1 and C_3 have two chords or are joined by at least 3 edges, contradiction with the constraints imposed by C_1 and C_2. Hence $s(G) = 2$ and G has 10 vertices and no 4-cycle, which leads to a graph isomorphic to P' or the Petersen graph as claimed. \(\square\)

We can construct cubic graphs with chromatic index 4 (snarks in the literature) which are cyclically 4-edge connected and having a 2-factor of C_5’s.

Indeed, let G be a cubic cyclically 4-edge connected graph of order n and M be a perfect matching of G, $M = \{x_iy_i|i = 1 \ldots \frac{n}{2}\}$. Let $P_1 \ldots P_{\frac{n}{2}}$ be copies of the Petersen graph. For each P_i ($i = 1 \ldots \frac{n}{2}$) we consider two edges at distance 1 apart e_1^i and e_2^i. Let us observe that $P_i - \{e_1^i, e_2^i\}$ contains a 2-factor of two C_5’s (C_1^i and C_2^i).

We construct then a new cyclically 4-edge connected cubic graph H with chromatic index 4 by applying the well known operation dot-product (see Figure 2 for a description and [7] for a formal definition) on $\{e_1^i, e_2^i\}$ and the edge x_iy_i ($i = 1 \ldots \frac{n}{2}$). We remark that the vertices of G vanish in the operation and the resulting graph H has a 2 factor of C_5, namely $\{C_1^1, C_2^1, \ldots C_1^n, C_2^n\}$.

We do not know example an of a cyclically 5-edge connected snark (except the Petersen graph) with a 2-factor of induced cycles of length 5.

Problem 25 Is there any cyclically 5-edge connected snark distinct from the Petersen graph with a 2-factor of C_5’s ?

As a first step towards the resolution of this Problem we propose the following Theorem. Recall that a permutation graph is a cubic graph having some 2-factor with precisely 2 odd cycles.

Theorem 26 Let G be a cubic graph which can be factored into $s(G)$ induced odd cycles of length at least 5, then G is a permutation graph. Moreover, if G has girth 5 then G is the Petersen graph.

Proof Let \mathcal{F} be a 2-factor of $s(G)$ cycles of length at least 5 in G, every cycle of \mathcal{F} being an induced odd cycle of G. We consider the $\delta-$minimum edge-colouring ϕ such that the edges of all cycles of \mathcal{F} are alternatively coloured α and β except for exactly one edge per cycle which is coloured with δ, all the
Figure 2: The dot product operation on graphs G_1, G_2.
remaining edges of G being coloured γ. By construction we have $B_\phi = C_\phi = \emptyset$ and $A_\phi = F$.

Let xy be an edge connecting two distinct cycles of \mathcal{F}, say C_1 and C_2 ($x \in C_1$, $y \in C_2$). By Lemma 8 we may assume that there is an edge in C_1, say e_1, adjacent to x and coloured with δ, similarly there is on C_2 an edge e_2 adjacent to y and coloured with δ. Let z be the neighbour of y on C_2 such that $e_2 = yz$ and let t be the neighbour of z such that zt is coloured with γ. If $t \notin C_1$, there must be $C_3 \neq C_1$ such that $t \in C_3$, by Lemma 8 again there is an edge e_3 of C_3, adjacent to t and coloured with δ. But now $\{e_1, e_2, e_3\}$ induces a subgraph with at least 5 edges, a contradiction with Lemma 14.

It follows that C contains exactly two induced cycles of equal γ. Consequently G is a permutation graph. When this cycles have length 5, G is obviously the Petersen graph. □

Comments: The index $s(G)$ used here is certainly not greater than $o(G)$ the oddness of G used by Huck and Kochol [6]. The oddness $o(G)$ is the minimum number of odd cycles in any 2-factor of a cubic graph (assuming that we consider graphs with that property). Obviously $o(G)$ is an even number and it is an easy task to construct a cubic graph G with $s(G)$ odd which satisfies $0 < s(G) < o(G)$. We can even construct cyclically-5-edge-connected cubic graphs with that property with $s(G) = k$ for any integer $k \neq 1$ (see [4] and [14]). It can be pointed out that, using a parity argument (see [13]) in a graph of oddness at least 2 the colour of minimum frequency is certainly used at least twice. In other words, $o(G) = 2 \Leftrightarrow s(G) = 2$.

When G is a cubic bridgeless planar graph, we know from the Four Colour Theorem that G is 3–edge colourable and hence $\gamma(G) = 1$. Albertson and Haas [1] gave $\gamma(G) \geq \frac{3}{2} - \frac{\sqrt{5}}{2}$, when G is a planar bridgeless graph with maximum degree 3. Our Theorem 21 improves this lower bound (allowing moreover bridges). On the other hand, they exhibit a family of planar graphs with maximum degree 3 (bridges are allowed) for which $\gamma(G) = \frac{3}{2} - \frac{\sqrt{5}}{2}$.

As in [14] we denote $g(\mathcal{F}) = \min\{|V(C)| : C \text{ is an odd cycle of } \mathcal{F}\}$ and $g^+(G) = \max\{g(\mathcal{F}) : \mathcal{F} \text{ is a 2–factor of } G\}$. We suppose that $g^+(G)$ is defined, that is G has at least one 2-factor (when G is a cubic bridgeless graphs this condition is obviously fulfilled).

When G is cubic bridgeless, Steffen [14] showed that we have :

$$\gamma(G) \geq \max\{1 - \frac{2}{3g^+(G)} \} \frac{11}{12}$$

The difficult part being to show that $\gamma(G) \geq \frac{11}{12}$.

Theorem 27 Let G be a graph with maximum degree 3. Let V_i ($i = 1..3$) be the set of vertices of degree i.

Then $\gamma(G) \geq 1 - \frac{2n}{(3n - |V_2|)|V_3|} (2)$.

Proof By Lemma 19, we may assume $V_1 = \emptyset$. Hence, $m = \frac{1}{2} (2|V_2| + 3|V_3|)$, moreover $n = |V_2| + |V_3|$, henceforth $m = \frac{3n - |V_2|}{2}$. We have $\gamma(G) = 1 - \frac{s(G)}{m}$ obviously, $s(G) \leq \frac{n}{g^+(G)}$. The result follows.
Theorem 28 Let G be a graph with maximum degree 3 having at least one 2-factor. Let V_i (i = 1..3) be the set of vertices of degree i. Assume that $|V_2| \leq \frac{n}{3}$ and $g^+(G) \geq 11$ then $\gamma(G) \geq \max\{1 - \frac{3}{4g^+(G)} \frac{11}{12}\}$.

Proof By assumption we have $V_1 = \emptyset$. From Theorem 27 we have just to prove that $\gamma(G) \geq \frac{11}{12}$. Following the proof of Theorem 21, we try to associate a set P_e of at least 8 distinct vertices of V_3 for each edge $e \in E(\delta)$ in a δ-minimum edge-colouring ϕ of G such that

$$\forall e, e' \in E(\delta) \quad P_e \cap P_{e'} = \emptyset$$

Indeed, let F be a 2-factor of G where each odd cycle has length at least 11 and let $C_1, C_2 \ldots C_{2k}$ be its set of odd cycles. We have, obviously $s(G) \leq 2k$. Let V'_3 and V'_2 be the sets of vertices of degree 3 and 2 respectively contained in these odd cycles. As soon as $|V'_3| \geq 8s(G)$ we have

$$\gamma(G) = 1 - \frac{s(G)}{m} = 1 - \frac{s(G)}{\frac{2}{3}|V_3| + |V_2|} \geq 1 - \frac{|V'_3|}{\frac{2}{3}|V_3| + |V_2|}$$

which leads to

$$\gamma(G) \geq 1 - \frac{2|V'_3|}{1 + \frac{2}{3}|V_2|}$$

Since $|V_3| \geq |V'_3|$, we have

$$\gamma(G) \geq 1 - \frac{2}{1 + \frac{2}{3}|V_2|}$$

and

$$\gamma(G) \geq \frac{11}{12}$$

as claimed.

It remains the case where $|V'_3| < 8s(G)$. Since each odd cycle has at least 11 vertices we have $|V'_2| > 11 \times 2k - |V'_3| > 3s(G)$.

$$\gamma(G) = \frac{m - s(G)}{m} \geq \frac{m - |V'_2|}{m}$$

We have

$$\frac{m - |V'_2|}{m} \geq \frac{11}{12}$$

when

$$m \geq 4|V'_2|$$

(4)

Since $|V_2| \leq \frac{n}{3}$ we have $|V_3| \geq \frac{2n}{3}$ and

$$m = 3\frac{|V_3|}{2} + |V_2| = 3\frac{n - |V_2|}{2} + |V_2| = \frac{3n}{2} - \frac{|V_2|}{2} \geq 4\frac{n}{3} \geq 4|V'_2|$$

(5)

and the result holds. □
References

[1] M.O. Albertson and R. Haas. Parsimonious edge colouring. Discrete Mathematics, 148:1–7, 1996.

[2] J.A. Bondy and S. Locke. Largest bipartite subgraphs in triangle free graphs with maximum degree three. J. Graph Theory, 10:477–504, 1986.

[3] J-L Fouquet. Graphes cubiques d’indice chromatique quatre. Annals of Discrete Mathematics, 9:23–28, 1980.

[4] J-L Fouquet. Contribution à l’étude des graphes cubiques et problèmes hamiltoniens dans les graphes orientés. PhD thesis, Université Paris SUD, 1981.

[5] J-L Fouquet and J-M Vanherpe. Tools for parsimonious edge-colouring of graphs with maximum degree three. http://hal.archives-ouvertes.fr/hal-00502201/PDF/ToolsForParsimoniousColouring.pdf.

[6] A. Huck and K. Kochol. Five cycle double covers of some cubic graphs. J. Combin. Theory Ser. B, 64:111–125, 1995.

[7] R. Isaacs. Infinite families of non-trivial trivalent graphs which are not Tait colorable. Am. Math. Monthly, 82:221–239, 1975.

[8] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Math. Ann, 77:453–465, 1916.

[9] S.C. Locke. Maximum k-colourable subgraphs. Journal of Graph Theory, 6:123–132, 1982.

[10] C. Payan. Sur quelques problèmes de couverture et de couplage en combinatoire. Thèse d’état, 1977.

[11] R. Rizzi. Approximating the maximum 3-edge-colorable subgraph problem. Discrete Mathematics, 309(12):4166–4170, 2009.

[12] W. Staton. Edge deletions and the chromatic number. Ars Combin, 10:103–106, 1980.

[13] E. Steffen. Classifications and characterizations of snarks. Discrete Mathematics, 188:183–203, 1998.

[14] E. Steffen. Measurements of edge-uncolorability. Discrete Mathematics, 280:191–214, 2004.

[15] V.G. Vizing. On an estimate of the chromatic class of p-graphs. Diskret. Analiz, 3:25–30, 1964.