DESIGN, SYNTHESIS, AND ANTIBACTERIAL EVALUATION OF SOME NOVEL 3’-(PHENYLAMINO)-1’H-SPIRO[INDOLINE-3,2’-QUINAZOLINE]-2, 4’(3’H)-DIONE DERIVATIVES

Ali A. Mohammadi,1 Saber Askari,1 Hamed Rohi,2 and Ali Abolhasani Soorki3
1Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
2Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Tehran, Iran
3Research Institute of Applied Sciences, Academic Center for Education, Culture, and Research, Tehran, Iran

GRAPHICAL ABSTRACT

Abstract A combinatorial synthesis and evaluation of antibacterial activity against clinically isolated resistant strains of Gram-positive and Gram-negative bacteria of 3’-(phenylamino)-1’H-spiro[indoline-3,2’-quinazoline]-2, 4’(3’H)-dione derivatives is described.

Keywords Alum; antibacterial activity; isatoic anhydride; spirooxindole; quinazoline

INTRODUCTION

Multicomponent[1–5] and domino reactions[6–9] are powerful tools for the creation of several bonds in a single operation and in modern drug discovery process for lead finding and lead optimization.

Received March 3, 2013.
Address correspondence to Ali A. Mohammadi, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran. E-mail: aliamohammadi@ccerci.ac.ir
2,3-Dihydroquinazoline-4(3H)-one and spirooxindole derivatives are important in biologically active and heterocyclic compounds.

Quinazolinone derivatives are an important class of molecules with biological and pharmaceutical utility such as anti-inflammatory,[10] antihypertensive,[11] anticancer,[12] antiviral,[13] and antibacterial activity.[14] In addition, these compounds are present in several bioactive natural products.[15,16]

Spirooxindoles are useful as anti-bacterial, anti-inflammatory, anticancer, and laxative[17,18] agents. Furthermore, this ring structure was recently isolated from plants and fungi; for example, pteropodine or uncarine C (PT) was specifically isolated from cat’s claw;[19] spirotryprostatin B, a natural alkaloid, has been isolated from the fermentation broth of \textit{Aspergillus fumigatus} and identified as a novel inhibitor of microtubule assembly.[20,21] Also, horsfiline was isolated from the Malaysian

![Figure 1. Pteropoline, spirotryprostatin B, horsfiline, and elacomine.](image)

![Scheme 1. Synthesis of spirooxindoles 4a–m.](image)
Table 1. Synthesis of 2-aryl-3-(phenylamino)-1'H-spiro[indoline-3,2':quinazoline]-2,4'(3'H)-dione 4a–m

Entry	R₁	R₂	R₃	Product 4	Yield^a (%)	Time (h)
A	H	H	H	![Product A](image)	92	5.5
B	H	Br	H	![Product B](image)	97	5
C	CH₃	H	H	![Product C](image)	90	5
D	Bz	H	H	![Product D](image)	83	6
E	H	NO₂	H	![Product E](image)	95	4

(Continued)
Table 1. Continued

Entry	R₁	R₂	R₃	Product 4	Yield (%)	Time (h)
F	CH₃	Br	H	![Chemical Structure](image1.png)	85	5
G	Et	Br	H	![Chemical Structure](image2.png)	93	5
H	Me	NO₂	H	![Chemical Structure](image3.png)	90	4
I	Et	H	H	![Chemical Structure](image4.png)	60	7
J	H	Br	Cl	![Chemical Structure](image5.png)	87	6

(Continued)
medicinal plant *Horsfildea superba* warb,

There are several methods reported in the literature for the preparation of spirooxindole derivatives.

RESULTS AND DISCUSSION

We have concentrated most of our recent studies on the synthesis of heterocycles compounds,[28] alum,[29,30] and MCRs[31,32] for the synthesis of 2,3-dihydroquinazolin-4(3\textit{H})-one,[33] spiro[indoline-3,2-quinazoline]-2,4(3\textit{H})-dione,[34] oxindole,[35] and spirooxindole.[36] In the course of our investigations, we envisioned the one-pot, three-component synthesis of 3’-(phenylamino)-1’\textit{H}-spiro[indoline-3, 2’-quinazoline]-2,4’(3’\textit{H})-dione \textit{4a–m} from isatoic anhydride \textit{1}, isatins \textit{2}, and phenyl hydrazine \textit{3} in the presence of alum as a nontoxic, easily available and heterogeneous catalyst (Scheme 1).
The results of optimization experiments for the preparation of 3′-(phenylamino)-1′H-spiro[indoline-3,2′-quinazoline]-2,4′(3′H)-dione by a straightforward one-pot, three-component condensation involving isatoic anhydrides 1, isatins 2, and phenyl hydrazine 3 in ethanol was stirred and refluxed with alum as catalyst are presented in Table 1.

It is noticeable that when the isatoic anhydride 1a and b, isatin 2a–m, and phenyl hydrazine 3 in the presence of alum were stirred at reflux for 1 h, in all cases the reaction led to the formation of the intermediate 8 that could be isolated and characterized by spectroscopic methods. Furthermore, the continuation of reaction for 3 h led to a mixture of 4a–m and intermediates 8 (monitored by thin-layer chromatography, TLC, and spectroscopic methods); meanwhile, after the times indicated in Table 1, just 4a–m were obtained and the intermediates 8 was not detected in the final mixture.

According to the results, the reaction can be mechanistically considered to proceed via the initial formation of the intermediates 8 by the nucleophilic addition of phenyl hydrazine to isatoic anhydride as a key intermediate. Then, the isatin attacks N-atom from 8 to form an intermediate 9, leaving a water to afford 10, which then transforms the final product via nucleophilic attack by the nitrogen group (Scheme 2).

The newly synthesized compounds were screened in vitro for their antibacterial activities against of bacteria Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 85327, and Klebsiella pneumonia ATCC 29655 (Gram-negative bacteria) and Enterococcus faecalis ATCC 29737, Bacillus subtilis ATCC 465, Bacillus pumilus PTCC 1114, Micrococcus luteus PTCC 1110, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Streptococcus mutans PTCC 1601 (Gram-positive bacteria) by the disk diffusion method (IZ) and subsequently the minimum inhibitory concentration method (MIC).

Scheme 2. Reasonable mechanism for the formation of 3′-(phenylamino)-1′H-spiro[indoline-3, 2′-quinazoline]-2,4′(3′H)-dione derivatives 4a–m.
Table 2. Antibiotic activity of the synthesized compounds and standard antibiotics against some Gram-positive and Gram-negative bacteria, as determined by disc diffusion test (IZ) and minimum inhibitory concentration (MIC) methods

Microorganism	Tetracycline (30 µg/disc)	Gentamicin (10 µg/disc)	4a	4b	4c	4d	4e	4f	4g	4h	4i	4j	4k	4l	4m															
	IZ	MIC	IZ	MIC																										
Bacillus subtilis	21	4	0	NT	14	128	13	256	0	NT	0	NT	16	4	12	512	14	64	0	NT	0	NT	20	4	16	8	23	<2	0	NT
(ATCC 465)																														
Bacillus pumilus	17	8	0	NT	18	16	14	128	0	NT	0	NT	18	4	0	NT	13	128	0	NT	0	NT	22	<2	19	4	28	<2	0	NT
(PTCC 1114)																														
Micrococcus luteus	19	4	0	NT	14	64	12	256	0	NT	0	NT	16	8	0	NT	0	NT	0	NT	0	NT	18	4	16	8	20	2	0	NT
(PTCC 1110)																														
Staphylococcus aureus	20	4	0	NT	16	32	14	256	0	NT	0	NT	18	4	12	512	12	512	0	NT	0	NT	25	2	18	2	20	2	0	NT
(ATCC 25923)																														
Staphylococcus epidermidis	34	<2	0	NT	14	32	15	256	0	NT	0	NT	16	4	8	512	0	NT	0	NT	0	NT	23	2	15	4	19	2	0	NT
(ATCC 12228)																														
Sterptococcus mutans	24	2	0	NT	16	32	16	64	0	NT	0	NT	18	<2	15	32	0	NT	0	NT	0	NT	28	<2	17	8	16	8	0	NT
(PTCC 1601)																														
Escherichia coli	0	NT	23	4	14	64	0	NT	0	NT	0	NT	16	4	14	32	0	NT	0	NT	0	NT	22	<2	14	32	19	<2	0	NT
(ATCC 25922)																														
Enterococcus faecalis	9	8	0	NT	8	256	0	NT	0	NT	0	NT	14	16	0	NT	0	NT	0	NT	0	NT	19	<2	10	128	16	8	0	NT
(ATCC 29737)																														
Pseudomonas aeruginosa	0	NT	12	8	10	256	0	NT	0	NT	0	NT	15	32	0	NT	0	NT	0	NT	0	NT	17	8	0	NT	15	16	0	NT
(ATCC 85327)																														
Klebsiella pneumonia	8	16	0	NT	10	256	0	NT	0	NT	14	8	13	256	0	NT	0	NT	0	NT	15	4	0	NT	12	16	0	NT		
(ATCC 29655)																														

a Inhibition zone (mm).

b Minimum inhibitory concentration (µg/ml).

c Not tested.
Activities of each compound were compared with tetracycline and gentamicin as standards. MIC and IZ results for bacterial strains are shown in Table 2. The screening results indicate that some of the tested compounds exhibit significant antibacterial activities when compared with the reference drugs. It was observed that the compounds containing $R^1 = \text{H}$ and $R^3 = \text{Cl}$ substituted groups show better activity than the other test compounds and the reference (tetracycline and gentamicin), drugs.

Meanwhile, $3'(\text{phenylamino})-1'H$-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione compounds $4e$, $4j$, $4k$, and $4l$ exhibited good activity, whereas the remaining compounds generally showed inferior activities against all the tested strains.

CONCLUSION

In summary, we have developed a new strategy that provides an efficient entry to $1'H$-spiro[isoindoline-1,2'-quinazoline]-3,4'(3'H)-dione derivatives via a one-pot, three-component reaction from isatoic anhydride, isatin, and phenyl hydrazine. Our designed process requires mild reaction conditions, has good yields of products, uses very simple accessible starting materials and solvents as well as an inexpensive, nontoxic, and easily available heterogeneous catalyst, and has an easy experimental workup procedure.

Melting points were obtained in open capillary tubes and were measured on an Electrothermal 9200 apparatus. Mass spectra were recorded on a Shimadzu QP 1100 BX mass spectrometer. The IR spectra were recorded on KBr pellets on a Shimadzu IR-470 spectrophotometer. ^1H and ^{13}C NMR spectra were determined on a Bruker 300 DRX Avance instrument at 300 and 75 MHz. Elemental analyses for C, H, and N were performed using a Heraus CHN rapid analyzer.

General Procedure for Preparation of 3'(\text{phenylamino})-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (3a–m)

A mixture of isatoic anhydride 1 (1 mmol), isatin 2 (1 mmol), phenyl hydrazine 3 (1 mmol), 0.3 g (0.6 mmol) alum, and 10 ml EtOH in a 50-ml flask was stirred at reflux for the time period as indicated in Table 1. After completion of the reaction (monitored by TLC, ethylacetate/n-hexane, 1:1), 25 ml EtOH was added to the reaction mixture, and it was recrystallized from ethanol to afford the pure product.

3'(\text{phenylamino})-1'H-spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione (4a)

Yellow powder (92%); mp 174–176°C. IR (KBr): $\nu_{\text{max}} = 3296, 3067, 1736, 1656, 1613$ cm$^{-1}$; ^1H NMR (CDCl$_3$) $\delta = 6.67$–7.92 (15H, m, H-Ar, 2NH), 10.45 (1H, s, NH) ppm; ^{13}C NMR (CDCl$_3$) $\delta = 78.7, 110.5, 110.8, 113.5, 113.9, 114.4, 117.9, 119.7, 122.2, 125.6, 127.7, 127.9, 128.7, 131.1, 134.4, 143.3, 146.7, 148.9, 165.6, 175.8 ppm; MS: m/z (%) = 356(M$^+$). Anal. calcd. for C$_{21}$H$_{16}$N$_4$O$_2$: C, 70.77; H, 4.53; N, 15.72%. Found: C, 70.71; H, 4.48; N, 15.64%.
SUPPLEMENTARY INFORMATION

General experimental procedures, IR, 1H and 13C NMR, and MS data and experimental analysis for compounds 4a–m are available online.

ACKNOWLEDGMENT

We gratefully acknowledge financial support from the Research Council of Iran National Science Foundation (INSF).

REFERENCES

1. Bazgir, A.; Ahadi, S.; Gahremanzadeh, R.; Khavasi, H. R.; Mirzaei, P. Ultrasound-assisted one-pot, three-component synthesis of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-2′(1′H)-diones in water. Ultrason. Sonochem. 2010, 17, 447–452.
2. Dabiri, M.; Arvin-Nezhad, H.; Khavasi, H. R.; Bazgir, A. A facile three-components, one-pot synthesis of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives under microwave-assisted conditions. J. Heterocycl. Chem. 2007, 44, 1009–1011.
3. Dömling, A. Recent developments in isocyanide-based multicomponent reactions in applied chemistry. Chem. Rev. 2005, 106, 17–89.
4. Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210.
5. Zhu, J. Recent Developments in the Isonitrile-Based multicomponent synthesis of heterocycles. Eur. J. Org. Chem. 2003, 2003, 1133–1144.
6. Karimi, A. R.; Sedaghatpour, F. Novel mono- and bis(spiro-2-amino-4H-pyrans): Alum-catalyzed reaction of 4-Hydroxycoumarin and malononitrile with isatin, quinones, or ninyhydrin. Synthesis 2010, 10, 1731–1735.
7. Subba Reddy, B. V.; Swain, M.; Reddy, S. M.; Yadav, J. S.; Sridhar, B. Gold-catalyzed domino cycloisomerization/Pictet–Spengler reaction of 2-(4-aminobut-1-yn-1-yl)anilines with aldehydes: Synthesis of tetrahydropyrido[4,3-b]indole scaffolds. J. Org. Chem. 2012, 77, 11355–11361.
8. Tietze, L. F.; Brasche, G.; Gericke, K. M. In Domino Reactions in Organic Synthesis; Wiley-VCH Verlag: Berlin, 2006; pp. 1–10.
9. Wahl, B.; Philipson, Y.; Bonin, H.; Mortreux, A.; Sauthier, M. Synthesis of α-alkylated β-ketoesters by alkoxycarbonylation/Michael addition domino reaction. J. Org. Chem. 2013, 78, 1547–1552.
10. Alagarsamy, V.; Murugesan, S. Synthesis and pharmacological evaluation of some 3-(4-methoxyphenyl)-2-substitutedamino-quinazolin-4(3H)-ones as analgesic and anti-inflammatory agents. Chem. Pharm. Bull. 2007, 55, 76–80.
11. Alagarsamy, V.; Pathak, U. S. Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg. Med. Chem. 2007, 15, 3457–3462.
12. Xu, L.; Russu, W. A. Molecular docking and synthesis of novel quinazoline analogues as inhibitors of transcription factors NF-kappaB activation and their anti-cancer activities. Bioorg. Med. Chem. 2013, 21, 540–546.
13. Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis, and antiviral activity of novel quinazolines. Eur. J. Med. Chem. 2012, 53, 275–282.
14. Tiwari, S.; Mujalda, V.; Sharma, V.; Saxena, P.; Shrivastava, M. Synthesis and evaluation of Schiff’s base of 4-quinazolinone analogues as antimicrobial agents. Asian J. Pharmaceut. Clin. Res. 2012, 5, 98–100.
15. Ma, C.; Li, Y.; Niu, S.; Zhang, H.; Liu, X.; Che, Y. N-Hydroxypyridones, phenylhydrazones, and a quinazolinone from *Isaria farinosa*. *J. Nat. Prod.* 2011, 74, 32–37.
16. Zhuang, Y.; Teng, X.; Wang, Y.; Liu, P.; Li, G.; Zhu, W. New quinazolinone alkaloids within rare amino acid residue from coral-associated fungus, *Aspergillus versicolor* LCIJ-5–4. *Org. Lett.* 2011, 13, 1130–1133.
17. Rojas-Duran, R.; Gonzalez-Aspajo, G.; Ruiz-Martel, C.; Bourdy, G.; Doroteo-Ortega, V. H.; Alban-Castillo, J.; Robert, G.; Auburger, P.; Deharo, E. Anti-inflammatory activity of Mitraphylline isolated from *Uncaria tomentosa* bark. *J. Ethnopharmacol.* 2012, 143, 801–804.
18. Arun, Y.; Bhaskar, G.; Balachandran, C.; Ignacimuthu, S.; Perumal, P. T. Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line. *Bioorg. Med. Chem. Lett.* 2013, 23, 1839–1845.
19. Kang, T. H.; Matsumoto, K.; Tohda, M.; Murakami, Y.; Takayama, H.; Kitajima, M.; Aimi, N.; Watanabe, H. Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT 2 receptors expressed in *Xenopus oocyte*. *Eur. J. Pharmacol.* 2002, 444, 39–45.
20. Khafagy, M. M.; Abd El-Wahab, A. H. F.; Eid, F. A.; El-Agrody, A. M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. *Farmaco* 2002, 57, 715–722.
21. Sebahar, P. R.; Williams, R. M. The asymmetric total synthesis of (+)- and (−)-spirotryprostatin B. *J. Am. Chem. Soc.* 2000, 122, 5666–5667.
22. Jossang, A.; Jossang, P.; Hadi, H. A.; Sévenet, T.; Bodo, B. Horsfiline, an oxindole alkaloid from *Horsfieldia superba*. *J. Org. Chem.* 1991, 56, 6527–6530.
23. James, M. N. G.; Williams, G. J. B. The molecular and crystal structure of an oxindole alkaloid (6-hydroxy-2,2’-(2-methylpropyl)-3,3’-spirotetrahydropyrrolidino-oxindole). *Can. J. Chem.* 1972, 50, 2407–2412.
24. Yao, C.; Xiao, Z.; Liu, R.; Li, T.; Jiao, W.; Yu, C. N-Heterocyclic-carbene-catalyzed reaction of α-bromo-α,β-unsaturated aldehyde or α,β-dibromoaldehyde with isatins: An efficient synthesis of spirocyclic oxindole-dihydropyranones. *Chem.—Eur. J.* 2013, 19, 456–459.
25. Shen, L. T.; Jia, W. Q.; Ye, S. Catalytic [4 + 2] cyclization of α,β-unsaturated acyl chlorides with 3-alkylenyloxindoles: Highly diastereo- and enantioselective synthesis of spirocarbocyclic oxindoles. *Angew. Chem. Internat. Ed.* 2013, 52, 585–588.
26. Rana, S.; Natarajan, A. Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones. *Org. Biomol. Chem.* 2013, 11, 244–247.
27. Tisseh, Z.N.; Ahmadi, F.; Dabiri, M.; Khavasi, H. R.; Bazgir, A. A novel organocatalytic multicomponent reaction: An efficient synthesis of polysubstituted pyrano-fused spirooxindoles. *Tetrahedron Lett.* 2012, 53, 3603–3606.
28. Azizian, J.; Karimi, A. R.; Kazemizadeh, Z.; Mohammadi, A. A.; Mohammadizadeh, M. R. A novel one-pot synthesis of some new interesting pyrrole derivatives. *J. Org. Chem.* 2005, 70, 1471–1473.
29. Mohammadi, A. A.; Sadat Hossini, S. S. KAl(SO$_4$)$_2$·12H$_2$O (alam)-catalyzed one-pot, three-component synthesis of 2-alkyl and 2-aryl-4(3H)-quinazolinone under microwave irradiation and solvent-free conditions. *Chin. J. Chem.* 2011, 29, 1982–1984.
30. Azizian, J.; Mohammadi, A. A.; Karimi, A. E.; Mohammadizadeh, M. R. A stereoselective three-component reaction: KAl(SO$_4$)$_2$·12H$_2$O, an efficient and reusable catalyst for the one-pot synthesis of *cis*-isoquinionic acids. *J. Org. Chem.* 2005, 70, 350–352.
31. Makarem, S.; Fakhari, A. R.; Mohammadi, A. A. Electro-organic synthesis of nanosized particles of 2-amino-pyranes. *Ind. Eng. Chem. Res.* 2012, 51, 2200–2204.
32. Mohammadi, A. A.; Akbarzadeh, R.; Rouhi, H. Multicomponent one-pot reactions: Synthesis of some new 6-oxopyrano[2,3-c]isochromenes by condensation of homophthalic
anhydride, dialkyl acetylenedicarboxylate, and isocyanides. Comb. Chem. High Throughput Screening 2009, 12, 536–542.

33. Dabiri, M.; Salehi, P.; Otokesh, S.; Baghbanzadeh, M.; Kozehgary, G.; Mohammadi, A. A. Efficient synthesis of mono- and dissubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO₄)₂·12H₂O as a reusable catalyst in water and ethanol. Tetrahedron Lett. 2005, 46, 6123–6126.

34. Mohammadi, A. A.; Dabiri, M.; Qaraat, H. A regioselective three-component reaction for synthesis of novel 1'H-spiro[indoline-1,2'-quinazoline]-3,4'(3'H)-dione derivatives. Tetrahedron 2009, 65, 3804–3808.

35. Azizian, J.; Mohammadi, A. A.; Karimi, N.; Mohammadizadeh, M. R.; Karimi, A. R. Silica sulfuric acid a novel and heterogeneous catalyst for the synthesis of some new oxindole derivatives. Catal. Commun. 2006, 7, 752–755.

36. Azizian, J.; Karimi, A. R.; Arefrad, H.; Mohammadi, A. A.; Mohammadizadeh, M. R. Synthesis of some novel γ-spirolactones. Monatsh. Chem. 2004, 135, 729–733.

37. NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests; National Committee for Clinical Laboratory Standards: Villanova, PA, 1990; Approved Standard M2-A4.

38. NCCLS Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria, which Grows Aerobically, 5th ed.; National Committee for Clinical Laboratory Standards: Villanova, PA, 2000; Approved Standard M7-A5.