Gut Microbiota as a Missing Link Between Nutrients and Traits of Human

Hea-Jong Chung 1, Thi T. B. Nguyen 1, Hyeon Jin Kim 2 and Seong-Tshool Hong 1*

1 Department of Biomedical Sciences, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea, 2 JINIS BDRD Institute, JINIS Biopharmaceuticals Co., Wanju, South Korea

Keywords: gut microbiota, nutrients, human traits, diet, disease

CONTRIBUTION OF GUT MICROBIOTA IN DETERMINING HUMAN DISEASES

With the development of next generation sequencing (NGS) technology, the role of gut microbiota in human health has been extensively studied. Metagenome sequencing analysis, which is based on NGS, and subsequent statistical analysis showed that the relationship between gut microbiota and humans is not merely commensal but rather a mutualistic relationship (Chen et al., 2013; Jandhyala et al., 2015). Recent advances in the field of gut microbiota are elucidating our understanding of human biology.

The microbiota of the human gut is a massive and complex microbial community consisting of 100 trillion microbes in the intestine. The gut microbiota is essential to the health and well-being of the host (Marchesi et al., 2016). Although interactions between gut microbiota and its host have negative effects in some cases, these interactions positively affect the host in most cases. It is now clear that the gut microbiota contributes significantly to the traits of humans as much as our genes, especially in the case of atherosclerosis, hypertension, obesity, diabetes, metabolic syndrome, inflammatory bowel disease (IBD), gastrointestinal tract malignancies, hepatic encephalopathy, allergies, behavior, intelligence, autism, neurological diseases, and psychological diseases (Chen et al., 2013; Nguyen et al., 2017; Zhang et al., 2017; Table 1). It has also been found that alteration of the composition of the gut microbiota in its host affects the behavior, intelligence, mood, autism, psychology, and migraines of its host through the gut-brain axis (Chen et al., 2013). Thus, the effect of the gut microbiota on human phenotypes has become a booming area of research and presents a new paradigm of opportunities for medical and food applications.

THE GUT MICROBIOTA OF HUMANS FLUCTUATES IN RESPONSE TO NUTRITIONAL UPTAKE RATHER THAN REMAINING STABLY IMMUTABLE THROUGHOUT LIFE

Recent studies have elucidated that the gut microbiota plays essential roles in the health and well-being of its host, and whether the composition of the gut microbiota fluctuates or stays constant throughout the lifetime of its host has become one of the main questions to ponder in the scientific community. The prevailing opinion has been that the gut microbiota develops rapidly right after birth and fluctuates only until it matures, which usually takes ~2 years after birth (Koenig et al., 2011). Once the gut microbiota is established, its composition remains stably immutable throughout life. However, recent evidence shows that this opinion is wrong, and the composition of gut microbiota can fluctuate during the lifetime of its host (Wu et al., 2011; David et al., 2014).
It is observed that the growth of almost all microbial organisms is very sensitive to their ambient nutrients. Additionally, considering the diversity and number of microbes in the gut microbiota, it would be more reasonable to speculate that the composition of the gut microbiota could constantly fluctuate, reflecting the diet of its host. Wu et al. recently showed that the long-term consumption of different diets, such as plant-based diets or animal-based diets, drastically altered the composition of gut microbiota, even at the phylum level in the taxonomic hierarchy (Wu et al., 2011). Vegetarian diets consist of fibers containing resistant starch and non-starch polysaccharides. Interestingly, numerous studies have shown that vegetarian diets increased the abundance of carbohydrate-degrading microbes, such as Prevotella, Roseburia, Eubacterium rectale, and Ruminococcus bromii, in their gut microbiota (Wu et al., 2011; David et al., 2014). In contrast, western diets high in protein and fat, which promote chylomicron and bile acids, increase the abundance of bile acid-tolerant microbes, such as Alistipes, Bilophila, and Bacteroides, in their gut microbiota (David et al., 2014). A defined food consumption experiment by David et al. even showed that the composition of gut microbiota is promptly affected by the dietary fluctuations within a day. Even cyclical shifts in daily feeding or fasting affected the increase of specific genera in the gut microbiota (David et al., 2014). These studies clearly show that the composition of the human gut microbiota constantly fluctuates in response to the nutritional composition of the diet rather than remaining stably immutable throughout life.

NUTRIENTS AFFECT THE COMPOSITION OF THE GUT MICROBIOTA, AND BOTH MODIFIED GUT MICROBIOTA AND NUTRIENTS AFFECT HUMAN TRAITS TOGETHER

Nutrients are dietary components that an organism metabolizes for survival and growth. Nutrients are substances that provide energy and/or form a component of body tissues. Higher organisms, such as humans, intake nutrients in their diets to maintain the precisely functioning metabolic machinery affecting the health and well-being of the organism. Because nutrients are essential substances for sustaining life, there is much less genetic variation in the genes involved in processing nutrients compared to other genes in humans (Fraser, 2015). Considering that nutrients absorbed by an organism are precisely processed by the well-orchestrated metabolic machinery in the bodies of organisms, diets have a limited ability in terms of affecting the traits of human. However, epidemiological research has proven that diet significantly affects human traits (Sharief et al., 2011; Boada et al., 2016). The quantity of calories and dietary patterns are key determinants of the anthropometric quantitative traits, which are especially reflected in the positive height trend in the developed countries (Jelenkovic et al., 2016). In the context of the nature of nutrients, an association between anthropometric quantitative traits and nutrients is expected. Interestingly, the effect of nutrients on human traits is not limited to numerical measures of height and weight; they also impact many other traits, such as immune response to the gut community and the innate immune system (Bacteroides; Bifidobacteria; Clostridium difficile; Faecalibacterium prausnitzii; Lactobacillus; Roseburia inulinivorans; Streptococcus; Staphylococcus; Enterococcus; Eubacterium rectale; Prevotella). The impact of nutrients on human traits is as follows:

TABLE 1 | Effect of the gut microbiota on human diseases.

Disease/disorder	Implicated microbiota	Potential role of the microbiome
METABOLIC DISEASES		
Obesity	Firmicutes/Bacteroidetes ratio	Significant changes in gut microbiota are associated with increased obesity
Type II diabetes	Bacteroidetes/Firmicutes, Bacteroides-Prevotella, Faecalibacterium prausnitzii, Roseburia intestinals, Roseburia inulinivorans	Shifts in gut microbiota are associated with increases in plasma glucose concentrations
Hypertension	Prevotella, Klebsiella, Bifidobacterium, Butyryrivibrio, Coprococcus, Faecalibacterium, Roseburia	Gut dysbiosis increases hypertension
IMMUNE DISEASES		
IBD	Bacteroidetes, Lachnospiraceae, Actinobacteria, Proteobacteria, Clostridium leptum, Clostridium cocoides, Faecalibacterium prausnitzii, Firmicutes/Bacteroidetes ratio, Bifidobacteria	Immune response to the gut microbial community is associated with decreased allergies
Celiac disease	Bacteroides vulgatus, Escherichia coli, Clostridium cocoides	Early colonization with more diverse microbiota might prevent allergies
Type I diabetes	Bacteroides, Streptococcus, Clostridium cluster IV and XIVa	High diversity in Celiac disease patients vs. control
Rheumatoid arthritis	Bifidobacteria, Bacteroides, Porphyromonas, Prevotella, Bacteroides fragilis, Eubacterium rectale, Clostridium cocoides	Early colonization with Lactobacillus is associated with decreased allergies
Atopy and asthma	Bifidobacteria, Bacteroides, Staphylococcus spp., Streptococcus spp., Enterobacteria, Clostridium difficile	Treg-promoting organisms depleted; overgrowth of bacteria that induce Th17 cell populations, leading to inflammation
AUTISM		
Autism	Clostridial species	Increased bacterial diversity in the feces of autistic children compared to control
PSYCHOLOGICAL DISEASE		
Anxiety and depression	Lactobacillus reuteri, Lactobacillus rhamnosus, Bifidobacterium infantis	Decreased anxiety and stress-induced increase of corticosterone
Chung et al. Gut Microbiota as a Missing Link

FIGURE 1 | The schematic diagram on how nutrients affect the human traits through gut microbiota.

Recent scientific evidence regarding the gut microbiota makes it possible to explain the link between nutrients and human traits. The gut microbiota not only directly interacts with the somatic cells of its host to affect the traits of human, as in the case of training immunological networks, but also generates various chemicals, which can directly modify the biochemical pathways of humans. The composition of the gut microbiota fluctuates based on the nutrient uptake of its host, and the composition of the gut microbiota affects various human traits as much as our genes (Figure 1). Therefore, it is reasonable to speculate that the effect of nutrients on human traits would be the combined results from both the gut microbiota modified by the nutrient uptake and the nutrients themselves. We believe that the gut microbiota is the missing link between nutrients and modifications of human traits.

AUTHOR CONTRIBUTIONS

S-TH conceived the idea and designed the structure of the manuscript. H-JC, TN, and S-TH drafted the manuscript, table and figure. All authors have critically read, corrected, and approved the final version of the manuscript and agree with the opinions expressed here.

FUNDING

This research was financially supported by the Global accompanied growth R&D program (N042600010) through the Ministry of Trade, Industry and Energy (MOTIE, Korea).

REFERENCES

Boada, L. D., Henríquez-Hernández, L. A., and Luzardo, O. P. (2016). The impact of red and processed meat consumption on cancer and other health outcomes: epidemiological evidences. Food Chem. Toxicol. 92, 236–244. doi: 10.1016/j.fct.2016.04.008
Chen, X., D’Souza, R., and Hong, S. T. (2013). The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 4, 403–414. doi: 10.1007/s13238-013-3017-x
David, L. A., Maurice, C. F., Carmody, R. N., Gooszenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the infant gut microbiome. Nature 505, 559–563. doi: 10.1038/nature12820
Fraser, A. (2015). Essential human genes. Cell Syst. 1, 381–382. doi: 10.1016/j.cels.2015.12.007
Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., and Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World J. Gastroenterol. 21, 8787–8803. doi: 10.3748/wjg.v21.i29.8787
Jelenkovic, A., Sund, R., Hur, Y. M., Yokoyama, Y., Hjellming, J. M., Möller, S., et al. (2016). Genetic and environmental influences on height from infancy to early adulthood: an individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6:28496. doi: 10.1038/srep28496
Koenig, J. E., Spora, A., Scalfoine, N., Fricker, A. D., Stombaugh, J., Knight, R., et al. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 108, 4578–4583. doi: 10.1073/pnas.100081107
Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., et al. (2016). The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339. doi: 10.1136/gutjnl-2015-309990
Nguyen, T. T. B., Jin, Y. Y., Chung, H. J., and Hong, S. T. (2017). Pharmabiotics as an emerging medication for metabolic syndrome and its related diseases. Molecules 22:1795. doi: 10.3390/molecules22101795

Rissanen, A., Hakala, P., Liisner, L., Mattlar, C. E., Koskenvuo, M., and Rönnemaa, T. (2002). Acquired preference especially for dietary fat and obesity: a study of weight-discordant monozygotic twin pairs. Int. J. Obes. 26, 973–977. doi: 10.1038/sj.ijo.0802014

Sharief, S., Jariwala, S., Kumar, J., Muntner, P., and Melamed, M. L. (2011). Vitamin D levels and food and environmental allergies in the United States: results from the National Health and Nutrition Examination Survey 2005-2006. J. Allergy Clin. Immunol. 127, 1195–1202. doi: 10.1016/j.jaci.2011.01.017

Spehlmann, M. E., Begun, A. Z., Saroglou, E., Hinrichs, F., Tiemann, U., Raedler, A., et al. (2012). Risk factors in German twins with inflammatory bowel disease: results of a questionnaire-based survey. J. Crohns. Colitis 6, 29–42. doi: 10.1016/j.crohns.2011.06.007

Thorburn, A. N., Macia, L., and Mackay, C. R. (2014). Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842. doi: 10.1016/j.immuni.2014.05.014

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108. doi: 10.1126/science.1208344

Zhang, M., Sun, K., Wu, Y., Yang, Y., Tso, P., and Wu, Z. (2017). Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol. 8:942. doi: 10.3389/fimmu.2017.00942

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Chung, Nguyen, Kim and Hong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.