Carboxyl-terminal Fragments of Alzheimer β-Amyloid Precursor Protein Accumulate in Restricted and Unpredicted Intracellular Compartments in Presenilin 1-deficient Cells*

Absence of functional presenilin 1 (PS1) protein leads to loss of γ-secretase cleavage of the amyloid precursor protein (βAPP), resulting in a dramatic reduction in amyloid β peptide (Aβ) production and accumulation of α- or β-secretase-cleaved COOH-terminal fragments of βAPP (α- or β-CTFs). The major COOH-terminal fragment (CTF) in brain was identified as βAPP-CTF (11–98), which is consistent with the observation that cultured neurons generate primarily Aβ (11–40). In PS1+/− neurons and fibroblasts expressing the loss-of-function PS1 ΔE355A mutant, CTFs accumulated in the endoplasmic reticulum, Golgi, and lysosomes, but not late endosomes. There were some subtle differences in the subcellular distribution of CTFs in PS1+/− neurons as compared with PS1 ΔE355A mutant fibroblasts. However, there was no obvious redistribution of full-length βAPP or of markers of other organelles in either mutant. Blockade of endoplasmic reticulum-to-Golgi trafficking indicated that in PS1+/− neurons (as in normal cells) trafficking of βAPP to the Golgi compartment is necessary before α- and β-secretase cleavages occur. Thus, although we cannot exclude a specific role for PS1 in trafficking of CTFs, these data argue against a major role in general protein trafficking. These results are more compatible with a role for PS1 either as the actual γ-secretase catalytic activity or in other functions indirectly related to γ-secretase catalysis (e.g., an activator of γ-secretase, a substrate adaptor for γ-secretase, or delivery of γ-secretase to βAPP-containing compartments).

The presenilin 1 (PS1)1 and presenilin 2 (PS2) genes encode polytopic transmembrane proteins (1, 2), which are components of high molecular weight, multimeric protein complexes predominantly located in the nuclear envelope, endoplasmic reticulum (ER), Golgi, and selected intracellular vesicular structures (3–9). These proteins play major roles in controlling the proteolytic processing of Notch and the β-amyloid precursor protein (βAPP) (10–15). Absence of PS1 is associated with failure of γ-secretase-mediated cleavage of the COOH-terminal fragments (CTFs) generated by α- or β-secretase cleavage of the βAPP (10–12). Thus, PS1 deficiency results in accumulation of the CTFs of βAPP and a dramatic reduction in Aβ production.

The mechanism by which absence of PS1 function causes loss of γ-secretase activity is unclear; but the observations that 1) mutation of two transmembrane aspartate residues in PS1 (Asp257 and Asp385) causes loss of γ-secretase cleavage; and 2) a transition state aspartyl protease inhibitor, which block γ-secretase activity bind to PS1 and PS2 (16, 17), have led to speculation that PS1 may itself be a novel aspartyl protease with γ-secretase activity (18). However, we have recently observed that aspartyl mutants disrupt the maturation of PS1 into high molecular weight functional complexes (19). Consequently, alternate explanations for the roles of PS1 in the processing of type 1 transmembrane proteins like βAPP and Notch must be formally evaluated (11, 13). For instance, PS1 might be involved in the trafficking of selected substrate proteins to site(s) where γ-secretase cleavage occurs (11). It is also possible that PS1 serves as an adaptor for the βAPP/γ-secretase reaction or that it is necessary for the activation or trafficking of γ-secretase itself. To address these questions, we have investigated the intracellular distribution of COOH-terminal βAPP derivatives in homogenates from PS1+/− mouse

1 The abbreviations used are: PS1, presenilin 1; PS2, presenilin 2; βAPP, β-amyloid precursor protein; CTF, COOH-terminal fragments of β-amyloid precursor protein arising from α-secretase or β-secretase cleavage; ER, endoplasmic reticulum; SELDI, surface-enhanced laser desorption/ionization; Aβ, amyloid β-peptide; NTF, NH2-terminal fragments of β-amyloid precursor protein; BFA, brefeldin A; TGN, trans-Golgi network; eEF, smooth endoplasmic reticulum; FL-βAPP, full-length β-amyloid precursor protein; NCZ, nocardazole; PNS, postnuclear supernatant; PBS, phosphate-buffered saline; MES, 4-morpholineethanesulfonic acid; Tricine, N-tris(hydroxymethyl)methylglycine.
brain, in cultured PS1-/- mouse neurons, and in murine fibroblasts expressing the PS1D385A loss-of-function mutation, paying particular attention to those intracellular compartments (ER, Golgi, endosome-lysosome endocytic pathway, and caveolae) previously associated with Aβ peptide generation. We have also investigated the early trafficking events that precede the accumulation of βAPP CTFs in these same tissues. Our data indicate that, in the absence of functional PS1, CTFs accumulate in a subset of the putative intracellular sites of Aβ generation (i.e. ER and Golgi, but not late endosomes). These experiments also indicate that trafficking of full-length βAPP (FL-βAPP) at least as far as the Golgi apparatus is required before βAPP-CTFs begin to accumulate. Presenilin deficiency causes no obvious abnormality in the subcellular distribution of FL-βAPP or organelle marker proteins.

MATERIALS AND METHODS

PS1 Null Mice—Mice lacking functional expression of PS1 were generated using homologous recombination to introduce a neomycin cassette flanked byloxP sequences approximately 200 base pairs downstream of exon 5 of the murine PS1 gene. When theloxP flanked neomycin cassette is not removed by cre recombinase, the presence of cryptic splice sites within the neomycin cassette results in the generation of extremely low quantities of unstable transcripts which lack an open reading frame after exon 5. These transcripts result in no detectable PS1 protein expression in ES cells or in the brains of animals homozygous for this construct. As expected, homozygous PS1-deficient mice (PS1-/-) displayed the previously reported skeletal abnormalities as well as absent α-secretase activity (20, 21).

PS1D385A Cells—Wild-type murine fibroblasts were transformed with human PS1D385A mutant cDNA using the pREV retroviral vector (CLONTECH). Functional expression was confirmed using species-specific antibodies to show replacement of endogenous murine PS1 by the mutant human PS1 (22).

Electron Microscopy—Brain tissue was obtained from 2-month-old PS1-/- or PS1-+/- mice and was prepared for electron microscopy as described previously (23). Brain pieces were fixed with 4% paraformaldehyde, 0.2% glutaraldehyde. Vibratome sections (70–100 μm) were cut and processed with the ABC method, using the anti-βAPP COOH-terminal antibody 369. The sections were post-fixed in 2% glutaraldehyde overnight and in 1% osmium tetroxide for 1 h. The sections were then dehydrated, flat embedded in Epon, and polymerized. Ultrathin sections were cut, stained with uranyl acetate and lead citrate, and viewed with a Hitachi H-7000 electron microscope.

Subcellular Fractionation—Two methods were used to isolate ER and Golgi-enriched fractions from mouse brain tissue. Brains were homogenized in 2 ml of 0.25 M sucrose in buffer A (5 mM HEPES, 1 mM EDTA, pH 7.2, and 5 μg/ml chymostatin, pepstatin, leupeptin, and antipain), and centrifuged at 1,000 × g for 10 min. The postnuclear supernatant (PNS) was then layered on a discontinuous sucrose gradient (29). After homogenization in 0.25 M sucrose in buffer A and centrifuged at 100,000 × g for 30 min. The pellets were washed, post-fixed with 1% osmium tetroxide for 1 h, stained with 2% aqueous uranyl acetate, dehydrated, and embedded in Epon. Ultrathin sections were cut, stained with uranyl acetate and lead citrate, and examined by electron microscopy.

Subcellular Fractionation—Two methods were used to isolate ER and Golgi-enriched fractions from mouse brain tissue. Brains were homogenized in 2 ml of 0.25 M sucrose in buffer A (5 mM HEPES, 1 mM EDTA, pH 7.2, and 5 μg/ml chymostatin, pepstatin, leupeptin, and antipain), and centrifuged at 1,000 × g for 10 min. The postnuclear supernatant (PNS) was then layered on a discontinuous sucrose gradient containing four step concentrations of sucrose in buffer A (1 mL2.0 M, 3.4 mL1.3 M, 3.4 mL1.0 M, and 2.7 mL0.6 M), and centrifuged at 280,000 × g for 2 h at 4 °C. Twenty-four 0.5-ml fractions were collected from the bottom of the centrifugation tube. ER and Golgi membranes were also separated in independent experiments using iodixanol gradients (28). Brain tissue was homogenized in 1.5 ml of buffer (130 mM KC1, 25 mM NaCl, 25 mM Tris, 1 mM EDTA, pH 7.4), and spun for 10 min at 3,000 × g. Supernatants were removed, spun for 10 min at 3,000 × g; layered on a step gradient consisting of 1 ml each of 30%, 25%, 20%, 15%, 12.5%, 10%, 7.5%, 5%, and 2.5% (v/v) iodixanol for 2h at 4 °C, centrifuged at 275,000 × g for 18 h at 4 °C. Twelve 1-ml fractions were collected from the top of the gradient. The pellet from each fraction was diluted 10-fold in buffer C containing 1% sodium deoxycholate (SDS) and an equal volume of Laemmli sample buffer. For detergent purification, the tissues were washed twice with ice-cold PBS and homo-
The protein A-Sepharose beads were washed four times with 0.1% Triton X-100, 0.4% Tween 20, and 5 mM EDTA. After removal of the protein A-Sepharose, marker proteins were replaced with antibodies to βAPP-CTF and FL-βAPP, and on Tri-glycine gels for PS1-NTF, PS1-CTF, and FL-βAPP, and on Tris-glycine gels for PS1-NTF, PS1-CTF, and marker proteins. After transfer to polyvinylidene difluoride membrane (pore size, 0.1 μm; Millipore), Western blots were probed with antibodies to βAPP-CTF and FL-βAPP (antibody 369), PS1-NTF (antibody 14), and PS1-CTF (polyclonal antibody 1143). Marker proteins for specific organelles were detected by ECL (Amersham Pharmacia Biotech) with the appropriate antibodies for the ER (calnexin, StressGel), Golgi (Rab6, Santa Cruz Biotechnology; β-COP, Sigma), trans-Golgi network (TGN)-to-plasma membrane transport vesicles (Rab8, Transduction Laboratories), lysosomes (cathepsin D, Biodesign), endosomes (Rab9 and Rab7, gift from Dr. S. Pfeffer), and caveolae (flotillin, Transduction Laboratories) (26, 27, 29).

Metabolic Labeling and Immunoprecipitation—Primary cultures of cerebellar granule neurons were obtained from dissociated cerebella of 6-day-old mice. Cells were plated in minimal essential medium (with 10% fetal bovine serum, 0.5% glucose, and 25 mM KCl) on poly-n-lysine-coated plastic 60-mm dishes. 4 μM cytosine arabinoside was added 18 h after plating. Cultures were ~95% neuronal, as indicated by immunostaining with neuron-specific enolase.

After 7–9 days in culture, neurons were pre-incubated for 1 h in methionine-free and cysteine-free Dulbecco’s modified Eagle’s medium containing 25 mM KCl with or without brefeldin A (BFA; 2 μg/ml, Sigma) or nocodazole (NCZ; 10 or 30 mM, Sigma). 100 μCi/ml Tran[35]S-labeling reagent (ICN) was added for 2 h, and then the media were replaced with unlabeled conditioned medium for 4 h at 37 °C. In temperature block experiments, cells were pre-incubated in methionine- and cysteine-free medium at 16 °C for 45 min before the addition of Tran[35]S-labeling reagent. Metabolic labeling continued at the respective temperature for 2 h, followed by a chase for 4 h in conditioned minimal essential medium at 16 °C or 37 °C. Cells were washed in cold PBS and then lysed in 1 ml of buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM EDTA, 1% Nonidet P-40, and protease inhibitors) on ice for 30 min. The lysates were spun at 13,000 rpm for 5 min, and the FL-βAPP and βAPP-CTFs were immunoprecipitated with the polyclonal antibody 369 and analyzed by 10–20% Tris-Tricine SDS-polyacrylamide gel electrophoresis (Novex). Gels were dried and exposed to Kodak Biomax film, and the intensities of autoradiographic bands were measured by densitometry, corrected for the moles of methionine and cysteine residues per mole of FL-βAPP or βAPP-CTFs, and the data were expressed as a percentage of the initially labeled FL-βAPP at t = 0.

For secreted βAPP and Aβ immunoprecipitations, culture media were collected and immunoprecipitated using monoclonal antibodies 5A3/1G7 and polyclonal FCA18 as described (11, 36).

Immunoprecipitation of APP CTFs for Mass Spectrometry—Brains were removed from young PS1−/− mice or from non-transgenic Swiss Webster mice. Each brain was homogenized in 2% SDS/PBS buffer containing a mixture of protease inhibitors (Complete; Roche Molecular Biochemicals), at 1:10 w/v ratio. The homogenates were centrifuged at 100,000 × g for 30 min at room temperature. The supernatants were diluted 5-fold with 2.5% Triton X-100/PBS (to a final SDS concentration of 0.4%), and precleared by an overnight incubation with protein A-Sepharose beads. After removal of the protein A-Sepharose, ~5 μg of brain protein was immunoprecipitated using antiseraum 369. The immunoprecipitated material was collected on protein A-Sepharose beads. The protein A-Sepharose beads were washed four times with 0.1% Triton X-100/PBS buffer, once in PBS and once in nanopure water. The sample was then air-dried for 15 min and mixed with 200 μl of a-cyano-4-hydroxycinnamic acid (2 mg/ml) in 50% acetonitrile, 0.2% trifluoroacetic acid. A 20-μl aliquot was then spotted onto a hydrophobic H1 protein chip array, and mass identification was performed with a combination of 100 laser shots through each spot with a Ciphergen SELDI Protein Biology System II (PBSII). Sequence assignment of each peak was made by using PAWS software (Rockefeller University) with the default setting at mass accuracy of 1000 parts per million.

RESULTS

Analysis of βAPP processing in brain homogenates from the PS1−/− mice showed normal amounts of N- and O-glycosylated full-length βAPP (Fig. 2). In agreement with previous reports (10–12), there was a dramatic increase in steady state levels of βAPP-CTFs in brain homogenates from PS1−/− mice (Fig. 2). A similar increase in steady state levels of CTFs was observed in cells overexpressing the PS1D385A mutation (Fig. 2). A similar increase in steady state levels of CTFs was observed in cells overexpressing the PS1D385A mutation (Fig. 2). A similar increase in steady state levels of CTFs was observed in cells overexpressing the PS1D385A mutation (Fig. 2). A similar increase in steady state levels of CTFs was observed in cells overexpressing the PS1D385A mutation (Fig. 2). A similar increase in steady state levels of CTFs was observed in cells overexpressing the PS1D385A mutation (Fig. 2).
Values of 7604.4, 7639.5, 8902.4, 8977.6, and 9874.4 Da, were mined by SELDI-time-of-flight mass spectroscopy using a Ciphergen ProteinChip system. Five major APP CTFs, with mass values of 7604.4, 7639.5, 8902.4, 8977.6, and 9874.4 Da, were detected in the PS+/+ brain homogenates (Fig. 3 and Table I). The 9874.4-Da peak represents the major form of APP-CTF, but rather a protein recovered by rodent neurons in culture is APP-CTF-(1–99) or APP-CTF-(17–99) were detected.

Species with masses of 7604.9, 7639.5, 8902.4, and 8977.6 Da were specifically associated with PS1 knock-out mice. Computer-assisted sequence assignment indicates that the peak with a mass of 8902.4 Da did not match any known mouse βAPP-CTF and is probably not a βAPP-CTF, but rather a protein recovered due to nonspecific binding of anti-βAPP COOH-terminal antibodies. The 7604.9-Da peak is identical to the calculated mass of E[3–73]P and F[4–74]E. The 7639.5-Da peak is identical to the mass of E[11–98]Q (predicted mass = 8979.40) or G[9–90]T (predicted mass = 8975.40). Determination of βAPP-CTF concentrations based on their relative peak intensities was not meaningful due to the dramatic differences in the binding efficiency between the various CTFs and the matrix.

In order to identify the intracellular sites in which βAPP-CTFs accumulate, we investigated brain and cultured neurons from PS1−/− mice using both morphological and biochemical methods. Particular attention was paid to the ER, Golgi, endosome-lysosome, and caveolae compartments because these organelles have been implicated in β generation. We reasoned that abnormalities in protein trafficking or in γ-secretase catalytic activity in PS1−/− cells would most likely be reflected by changes in the distribution or concentration of CTFs in these compartments. PS1−/− cells were chosen for these analyses instead of the PS1D385A cells because PS1−/− cells can be investigated without potential artifacts arising from overexpression of exogenous mutant PS1D385A. No obvious differences were detected in the ultrastructural morphology or number of perinuclear intracytoplasmic membrane bound structures, or in the number or ultrastructural distribution of intracellular membranous structures containing COOH-terminal βAPP immunoreactive epitopes on immunoelectron microscopy (data not shown). However, membranous structures containing CTFs could not be discriminated from those containing FL-βAPP because all available COOH-terminal reactive anti-βAPP antibodies detect both FL-βAPP and its CTFs. Consequently, we also purified membranes from intracellular organelles by biochemical fractionation, which allows FL-βAPP to be distinguished from CTFs on the basis of molecular mass. The purity of these biochemical fractions was verified by ultrastructural morphology (Fig. 1).

Not unexpectedly, lysosomes from PS1−/− brain tissue contained substantial amounts of βAPP-CTFs (Fig. 4). The endocytic pathway has been implicated as a prominent site for β generation (38, 39). However, the amount of βAPP CTFs in late endosome fractions was remarkably low (Fig. 4).

The most intriguing results were obtained from the analysis of gradients containing ER- and Golgi-derived membranes. In the discontinuous sucrose gradients from both PS1−/− mouse brain and PS1D385A cells (Fig. 5), there was a discrete accumulation of stubs in fractions 8–11, with lesser amounts in fractions 14–17. Fractions 14–17 contain morphological and biochemical markers of the Golgi apparatus, while fractions 8–11 contain morphologically non-distinctive vesicles devoid of ribosomes, and have previously been referred to as smooth ER (sER) (26) (Fig. 5). Iodixanol gradient analysis of both PS1−/− brain homogenates and PS1D385A cell lysates confirmed that βAPP-CTFs were broadly present throughout the gradient, but the majority were contained in the ER-associated fractions 7–10 (Fig. 6). A βAPP-CTF species of relatively higher molecular mass was present in both the ER and Golgi fractions, and was the main species in the Golgi fractions (Figs. 5 and 6), a result that is in agreement with previous work suggesting that both β- and γ-secretase cleavage can occur in the ER and Golgi prior to budding from the TGN (39–42). However, although the sucrose gradient gels do not resolve the βAPP-CTFs as well as the gels run for the iodixanol gradients (the weak band above the very intense βAPP-CTF band in Fig. 6 is likely an artifact due to the overloading of the gel rather than a distinct βAPP-CTF species), both fractionation methods revealed significant amounts of CTFs in the ER fractions (Figs. 5 and 6). This result is surprising, in view of evidence that most secretase cleavages occur during transport to (or at) the cell surface (32, 43). Careful inspection of the distribution of CTFs

TABLE I

Sequence assignment of major species of βAPP-CTF recovered by immunoprecipitation of PS1−/− mouse brain homogenates (see Fig. 3)

Measured mass	Calculated mass	Predicted sequence
9874.4	9873.5	E[11–98]Q
8977.6	8979.40	D[7–88]N
8902.4	8975.40	G[9–90]T
7639.5	7639.1	R[13–82]Q
7604.9	7604.9	E[3–73]P
9874.4	9873.5	E[11–98]Q

3 F. Chen, D.-S. Yang, S. Petanceska, A. Yang, A. Tandon, G. Yu, R. Rozmahel, J. Ghiso, M. Nishimura, D. M. Zhang, T. Kawarai, G. Levesque, J. Mills, L. Levesque, Y.-Q. Song, E. Rogaeva, D. Westaway, H. Mount, S. Gandy, P. St George-Hyslop, and P. E. Fraser, unpublished observations.
obvious doublet in PS1 species was consistently apparent, in contrast to the frequently more restricted to ER fractions, and that only a single major mass spectrometry analysis of protein kinase activities at the various neuronal harvesting times. Fig. 6) may well be due to variations in cyclin-dependent protein distribution of PS1 mutants cells is under way. It is worth noting, however, that these data suggest that there may be subtle differences in the exact mechanisms by which PS1 \(-/-\) and PS1D385A mutants cause loss of \(\gamma\)-secretase catalytic activity. These differences may be attributable to cell type differences (brain versus fibroblasts).

To examine the kinetics of production and intracellular distribution of \(\beta\)APP-CTFs, we undertook metabolic labeling experiments in cultured PS1 \(+/+\) and PS1 \(-/-\) neurons. In agreement with previous work (10), the accumulation of CTFs represented only a minor portion of the total \(\beta\)APP initially synthesized and occurred after a significant delay (i.e. CTFs were undetectable prior to 60 min, and were maximum at 120 min) (data not shown). The generation of \(\beta\)APP-CTFs in PS1 \(-/-\) cells appeared to follow a similar time course, although this was difficult to quantify accurately because of the very weak signal intensities for endogenous \(\beta\)APP-CTFs in PS1 \(-/-\) neurons (48, 49). Furthermore, the appearance of secreted endogenous \(\beta\)APP in the conditioned medium of PS1 \(-/-\) cells followed a time course very similar to that in PS1 \(-/-\) neurons (data not shown). This result contrasts with a previous study, which examined processing of exogenous human \(\beta\)APP overexpressed in PS1 \(-/-\) neurons, where the release of \(\beta\)APP occurred abnormally early (11). It is unclear whether this difference reflects an increased sensitivity to small perturbations in \(\beta\)APP processing that are detectable only in systems overexpressing \(\beta\)APP, or an artifact of that overexpression system. The fact that the generation of \(\beta\)APP-CTFs and \(\beta\)APP \(_{as}\) appears to proceed on schedule in our PS1 \(-/-\) system using endogenous murine \(\beta\)APP argues in favor of the latter explanation.

In order to investigate \(\beta\)APP-CTF metabolism further, we used brefeldin A (BFA), 16 °C temperature block, and NCZ to block forward or retrograde trafficking through the secretory pathway. As expected (50, 51), metabolic pulse-labeling and chase for 4 h in the presence of BFA reduced the maturation of \(\beta\)APP in both PS1 \(-/-\) and PS1 \(-/-\) cultures (Fig. 7). BFA was also found to block the generation of \(\beta\)APP-CTFs in PS1 \(-/-\) cells (Fig. 7). This effect was readily reversible. Thus, when BFA was removed from the medium, N\(^\gamma\)- and O\(^\gamma\)-glycosylated \(\beta\)APP reappeared in PS1 \(-/-\) and PS1 \(-/-\) cells, and the \(\beta\)APP-CTFs reappeared in PS1 \(-/-\) cells (Fig. 7). These results suggest that \(\beta\)APP must first traffic to the Golgi compartment before \(\alpha\)- or \(\beta\)-cleavage. This interpretation is supported by experiments in which ER-to-Golgi transport was blocked by incubation at 16 °C (Fig. 7), which causes the accumulation of proteins within the ER-Golgi intermediate compartment (52). The maturation of \(\beta\)APP and the appearance of CTFs were inhibited at 16 °C, but reappeared when the temperature was subsequently shifted to 37 °C (Fig. 7). These results are all consistent with published results using wild-type cells to study \(\beta\)APP metabolism (53).

NCZ, a microtubule depolymerizing reagent, causes a temporary reduction in forward secretory trafficking and a lasting inhibition of microtubule-dependent retrograde trafficking (e.g. from the plasma membrane to endosomes and possibly from Golgi to ER) (54–56). Administration of NCZ to PS1 \(-/-\) cells did not affect the O\(^\gamma\)-glycosylation of mature \(\beta\)APP (indicating that \(\beta\)APP molecules entered the Golgi compartment normally), and did not detectably alter \(\beta\)APP-CTF levels (Fig. 7). However, NCZ did inhibit the appearance of the higher molecular weight species, but had only a minor effect on the lower molecular weight species (Fig. 7). This suggests that in PS1 \(-/-\) neurons, a microtubule-dependent retrograde transport event (possibly from the plasma membrane) may be involved in the formation of \(\beta\)APP-CTFs by regulated proteolysis of \(\beta\)APP (57).

DISCUSSION

Consistent with other reports (10–12), we have demonstrated that absence of functional PS1, whether generated by null mutations or by missense substitution of conserved asparagine residues, is associated with reduced \(\gamma\)-secretase activity and with accumulation of \(\beta\)APP-CTFs. However, our data also provide new insights. They suggest that, in the absence of functional PS1, there are subtle changes in the intracellular distribution of \(\beta\)APP-CTFs, and that in neurons there is accu-
mulation not only of the predominant βAPP-CTF-(11–98) species present in wild type neurons, but also of several other species, that are not simple degradation products of this physiologic βAPP-CTF-(11–98) species. The elevated βAPP-CTF levels provide enhanced sensitivity for studying the βAPP processing events that generate them. Thus, the accumulation of βAPP-CTFs in the ER and the preponderance of putative β-stubs in the Golgi are consistent with prior data suggesting that the ER-cis-Golgi intermediate compartment is one site for the production of Aβ (39–42, 58). Our results are also consistent with the observation that most secretase activity predominantly occurs late in the secretory pathway after βAPP exits the TGN (30, 32, 59). Moreover, our data support the notion that only a minority of βAPP molecules enter a pathway that would lead to γ-secretase cleavage and Aβ production, an observation that again concurs with prior work (61, 62). Finally, our pulse-chase studies reveal that, even when functional PS1 is absent, the CTFs from endogenous βAPP do not accumulate in the first 20–60 min, as might have been predicted if PS1 function or α/β- and γ-secretase cleavage simply represented “quality control” processing events during the initial stages of βAPP biogenesis. Instead, the levels of CTFs are maximal at 80–120 min. This suggests that, in PS1-deficient cells, α/β-secretases act upon βAPP molecules in late compartments. This interpretation is compatible with work suggesting that glycosylation of βAPP in wild type cells occurs prior to α- and β-secretase cleavage (63, 64). The appearance of CTFs in earlier compartments in PS1−/− cells (e.g. the ER and Golgi), however, does raise the possibility that CTFs are subsequently transported back to these early compartments (see below).

There are also several unexpected results that would not have been predicted based on published data regarding the intracellular sites of Aβ generation. Although concurring with prior reports on βAPP-CTF distributions in PS1−/− cells (11, 12), the substantial accumulation of CTFs in ER fractions (or an ER-like fraction such as autophagic vacuoles) is surprising. This would not be predicted to occur because previous studies have suggested that both secretase activities occur predominantly after the TGN, at or near the cell surface, and possibly in caveolae (30, 32, 59). One explanation for the presence of CTFs in ER fractions of PS1-deficient cells is that our ER fractions are contaminated with membranes derived from other organelles or the cell membrane. This would be supported by the fact that these fractions do contain small amounts of membranes immunoreactive for markers of other organelles. However, several observations argue this result is not artifactual. First, there was the significant enrichment (>9-fold) of COOH-terminal stubs (as well as calnexin, cathepsin D precursor and N-glycosylated βAPP, which are normally resident only in the ER) in our ER fractions relative to the weaker enrichment (<3-fold) of non-ER/Golgi marker proteins. Second, electron microscopy examination of the sER fractions revealed only smooth vesicles devoid of ribosomes or lysosomes, suggest-
ing that these fractions contain authentic ER/ER-like membranes, and are not significantly contaminated with non-ER membranes. Consequently, it is likely either that there is some secretase activity in the ER (65), or more probably, that in PS1-deficient cells at least, βAPP-CTFs are retrogradely trafficked to the ER (or an ER-derived compartment such as autophagic vacuoles) from other organelles such as the plasma membrane, TGN, or clathrin-coated vesicles. We have recently used a panel of mutagenesis, subcellular fractionation, immunofluorescence, and metabolic labeling approaches to provide strong evidence that PS1 can control γ-secretase processing of βAPP stubs in pre-Golgi compartments of hippocampal neurons (66). These published results support our conclusion that, in PS1+/− and PS1D385A cells, some βAPP-CTFs may be targeted to a pre-Golgi, ER-like compartment. Finally, it is also possible that the massive accumulation of CTFs in lysosomes and their paucity in the endosome precursors in PS1-deficient cells represent a specific disturbance of normal βAPP processing in the endocytic pathway in the absence of PS1. Indeed, we cannot exclude the possibility that, in PS1+/− cells, βAPP-CTFs bypass the endosomal system and traffic directly to lysosomes. Such a scenario could plausibly underlie the failure of PS1+/− cells to generate Aβ.

Mass spectrometry analysis of immunoprecipitated βAPP-CTFs has also demonstrated significant differences in their processing based on the appearance of PS1+/− specific species. In wild-type neurons, the predominant CTF corresponded to the 11–98 sequence, suggesting that, under normal conditions, subsequent γ-secretase cleavage would lead to production of Aβ peptides containing residues 11–40/42, as has previously been reported (37). This finding has implications for the potential contribution of such Aβ species to the generation of senile plaques as it has, for example, been demonstrated in vitro that these truncated peptides are actually more amyloidogenic than the full-length Aβ protein (69–71). In the case of PS1+/− neurons, we observed several additional unique βAPP-CTFs that, based on their NH2- and COOH-terminal heterogeneity (e.g., 4–74 and 7–90), do not appear to arise through processing of the wild-type 11–98 fragment. The amino-terminal data are potentially consistent with the observation that amyloid

	PS1+/+	PS1+/−	PS1 D385A
Calnexin			
Rab 6			
β-cop			
Rab 8			
NTF-PS1			
FL-βAPP			
βAPP C-terminal stubs			

FIG. 6. Distribution of ER (lanes 8–10) and Golgi (lanes 4–6) fractions using iodixanol gradients. Note the subtle difference in speciation of βAPP-CTFs in PS1+/− mouse brain and of PS1D385A fibroblasts.
plaques contain Aβ species beginning at Aβ3, Aβ4, Aβ6, Aβ7, Aβ8, Aβ9, and Aβ11 (72). In the PS1−/− mice, the massive accumulation of CTFs may lead to the accumulation of these presumably quantitatively minor species. However, these novel fragments could also be generated via alternate processing pathways resulting from the loss of functional PS1, or they could indicate a more generalized disruption of the normal proteolysis of the fragments generated by the α- and β-secretases.

The alterations in the distribution of βAPP-CTFs in PS1-deficient cells are relatively subtle. These changes do not strongly support a model for PS1 function which involves control of major, fundamental aspects of general protein trafficking (e.g. of the organelle marker proteins used in these studies) or of FL-βAPP in particular. In support of this, we have shown previously that absence of PS1 does not significantly affect trafficking of β-catenin, a known PS1 ligand (however, pathogenic gain-of-function mutations do affect β-catenin trafficking to the nucleus (see Ref. 8)). We cannot exclude a more restricted role for PS1 in trafficking of βAPP-CTFs, but the subtle nature of the observed alterations in CTF distribution in PS1-deficient cells would not seem sufficient to account for the profound alteration in γ-secretase activity. Our data therefore are most consistent with the interpretation that PS1 either is the γ-secretase active site (or is a component of a γ-secretase complex, for example, as a γ-secretase activating cofactor or a βAPP-γ-secretase adaptor protein), or is closely, but indirectly, involved in γ-secretase proteolysis (e.g. as a modulator of delivery of γ-secretase to α- and β-stub-containing compartments). Our documentation that the major accumulating βAPP-CTF is probably βAPP-CTF-(11–98) underscores the importance of the utilization of the cleavage of Aβ between residues 10 and 11 by β-secretase (73). This result may have implications for the potential toxicity of therapeutic γ-secretase inhibitors since Aβ-(11–98) may itself aggregate (74) and/or undergo nonspecific proteolysis and release amyloidogenic peptides (75). These results also raise the possibility that Aβ-(11–40) and Aβ-(11–42) peptides are important in the pathobiology of Aβ aggregation, deposition, clearance, and toxicity associated with Alzheimer’s disease. Finally, these data underscore the importance of mass and/or sequence analysis for the accurate assignment of identities to βAPP-CTFs.

Acknowledgments—We thank Dr. E. Koo and F. Checler for the kind gifts of antibodies 5A3/1G7 and FCA18, respectively.

REFERENCES
1. Sherrington, R., Rogaev, E., Liang, Y., Rogaeva, E., Levesque, G., Ikeda, M., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Fraser, P., Rommens, J. M., and St. George-Hyslop, P. (1995) Nature 375, 754–760
2. Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T., Mar, L., Sorbi, S., Nacmias, B., Piacentini, S., Amaducci, L., Chumakov, I., Cohen, D., Lannfelt, L., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. (1995) Nature 376, 775–778
3. Capell, A., Grunberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuther, K., Selkoe, D. J., and Haass, C. (1998) J. Biol. Chem. 273, 3205–3211
4. Yu, G., Chen, P., Levesque, G., Nishimura, M., Zhang, D.-M., Levesque, L., Rogaeva, E., Xu, D., Liang, Y., Duthie, M., St. George-Hyslop, P., and Fraser, P. E. (1998) J. Biol. Chem. 273, 16470–16475
5. Walter, J., Capell, A., Grunberg, J., Pesold, B., Schindzielorz, A., Prior, R.,
