Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases

Jae-Ung Lee1,2†, Li-Kyung Kim1,2† and Je-Min Choi1,2*

1Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea, 2Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea

The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promoter region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.

Keywords: NFAT, T cell, autoimmune disease, immune modulatory drugs, NFAT5

INTRODUCTION: CLASSICAL NFATS

Nuclear factor of activated T cells (NFAT) is a family of transcription factors identified in activated T cells, which promote the expression of interleukin-2 (IL-2) and the IL-2 receptor (1–3). Ligation of the T cell receptor (TCR) with antigen: major histocompatibility complex class II (MHCII) mediates multiple signaling cascades, including phospholipase C (PLC)-dependent pathways, which generates the secondary messengers inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 binds to IP3 receptor in the endoplasmic reticulum (ER) and releases Ca2+ ions to the cytoplasm (4, 5). Calmodulin captures free Ca2+ ions and activates the serine/threonine phosphatase calcineurin. Calcineurin dephosphorylates multiple serine residues in NFATs, resulting in their translocation into the nucleus (5, 6). NFAT proteins differentially regulate the expression of genes related to T cell development, activation, and differentiation (1, 7–11).
The NFAT family proteins share a conserved N-terminal NFAT-homology region (NHR) and REL-homology region (RHR). The NHR is moderately conserved among NFAT family members and contains several serine-rich regions (SRR) and a transactivation domain. The NFAT family consists of five proteins: NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), NFAT4 (NFATc3 or NFATx), and NFAT5 (TonEBP or OREBP) (Figure 1) (12). NFAT1 is constitutively expressed in normal human T cells, whereas NFAT2 is induced by activation (13). NFAT1 and NFAT2 are regulated by calcineurin, which dephosphorylates NFATs and promotes their nuclear translocation (12). NFAT3 is rarely expressed in T cells because of lower chromatin accessibility and enhancer activity of its promoter (14). NFAT4 is weakly expressed in unstimulated cells and its expression is not enhanced by activation (13). NFAT1 and NFAT2 are the most-studied NFAT family members because of their high expression level in T cells. NFAT1 and NFAT2 surpass the ability of NFAT4 to bind to their target cytokine promoters (15). NFAT5 is expressed by almost all cells and is activated in response to osmotic stress (16). Translocated NFAT proteins interact with different transcription factors (such as AP1, FOXP3, and BATF) (1, 17–19). Depending on partner proteins, NFATs can either enhance immune responses or induce immune tolerance. AP1, the most widely known partner protein of NFATs, forms a complex with NFATs and induces various cytokines (such as IL-2, IL-4, and IFN-γ) and other T cell activation-induced proteins (7).

As NFATs are involved in diverse molecular interactions, they are tightly regulated by post-translational modifications in the normal state (12). Several kinases, including casein kinase 1 (CK1), glycogen synthase kinase 3 (GSK3), JUN N-terminal kinase (JNK), and p38, phosphorylate the serine-rich motifs located in the NHR domain of NFAT proteins and maintain them in inactive state (20–23). In addition to phosphorylation, NFAT can be regulated by protein acetylation, proteolytic cleavage, and SUMOylation by the small ubiquitin-like modifier (SUMO) (24–26).

Considering the important role of NFAT proteins in regulation of T cell activation, several therapeutic approaches were developed to inhibit NFAT signaling. Calcineurin inhibitors, such as cyclosporine A (CsA) and tacrolimus (FK506), have been used to treat graft rejection and autoimmune diseases, including atopic dermatitis, rheumatoid arthritis, and lupus nephritis (27–32). More inhibitors specifically targeting NFATs (such as VIVIT peptide, INCA-1, ST-1959, and UR-1505) were developed and are being verified; however, they are yet to be analyzed in suitable animal models of autoimmune diseases to investigate their potential of ameliorating diseases (33–36).

NFAT IN T CELL SUBSETS: TH1, TH2, TH17, TREG, AND TFH

Th1: Although NFAT was originally identified to play important roles in the activation of T cells, it has also been shown that NFAT proteins differentially affect T helper (Th) cell differentiation (Figure 2) (37–41). Each differentiated T subset is characterized by the expression of their specific master regulator transcription factors and signature cytokines. Th1 cells are essential effectors of T cells against intracellular bacteria and virus infections (42, 43). Th1 differentiation is induced by TCR signaling and priming cytokines such as IFN-γ and IL-12 (44, 45). Together with antigen stimulation, cytokine-mediated signal transducer and activator of transcription 1 (STAT1) activates T-bet (TBX21), a master transcription factor of Th1 (46, 47). The expression of NFAT2a, an isotype of NFAT2, is more elevated in Th1 and Th2 than in Th17 and Treg (48). NFAT1 binds to IFN-γ promoter region (11, 49). Loss of NFAT1 promotes mild bias toward Th2 cell differentiation with decreased production of IFN-γ and increased production of IL-4 (38, 39, 44, 50–52). In double knockout (DKO) mice, the levels of Th2-related cytokines such as IL-4 and IL-5 increased 25–75-fold compared to in wild type mice with increased IgG1 and IgE titers (39). Recent studies showed that Ca2+ response is more intense and sustained in Th1 and that NFAT nuclear localization is shorter in Th2 than in Th1 (53), suggesting that NFAT1 and/or NFAT4 are positive regulators of Th1 inflammation.

Th2: In contrast, Nfat2-deficient mice show impaired production of IL-4 and Th2 cytokines and reduced IgG1 and IgE levels (40). Th2 cells express IL-4, IL-5, and IL-13, which stimulates mucosal immunity against parasite infections (54–56). Various transcription factors, namely, GATA3, STAT6, RBPJκ, MAF, IRF4, and JUNB, have been implicated in Th2 differentiation and function (10, 57–61). GATA3 forms a chromatin hub with NFAT1 in Il4 and Il13 promoter regions (62). IRF4 synergizes with NFAT1 and c-Maf to augment Il4 promoter activity (10, 40). Ubiquitin-specific peptidase 4 (USP4) interacts with IRF4 and NFAT1 to enhance NFAT-mediated Il4 promoter activity (63). RUNX3 physically interacts with NFAT2 and suppresses IL-4 production (64). NFAT1 competitively binds to the CRTh2 promoter with GATA3 and negatively regulates CRTh2 expression, which mediates the production of Th2 cytokines such as IL-4, IL-5, and IL-13 (65). Nfat1 deficiency increased Th2 cytokine levels, enhanced chromatin accessibility, and increased DNA demethylation in the Il4 promoter region, inducing preferential recruitment of JUNB/SATB1 to the Il4 promoter (51, 52). Similarly, Nfat1/4 DKO CD4 T cells secrete large amounts of IL-4 upon TCR stimulation, and show increased Th2 cytokine production, which is not dependent on IL-4 production (40). Early growth response protein-1 (EGR1) is expressed predominantly in Th2 and cooperatively binds to the Il4 enhancer element with NFAT1/2 (66). IL-31 cytokine induction in Th2 cells require Ca2+ mediated NFAT1/2 activation (67). NFAT2 and STAT6 synergistically enhance Il31 promoter activity. These studies suggest that NFAT2 plays positive regulatory roles in Th2 inflammation with possible reciprocal relationship with NFAT1 or NFAT4.

Th17: Th17 subsets are important players in protection against extracellular pathogens and inflammatory response in autoimmune diseases (68, 69). Signature cytokines including IL-17A, IL-17F, IL-21, and IL-22 produced by Th17 cells induce massive tissue reaction such as neutrophil recruitment (70). NFAT is also important in the induction of these cytokines. NFAT1 and 2 directly bind to the Il17 promoter region.
(71–74). CD4-specific Nfat2-deficient mice showed reduced IL-17 expression, and Nfat1 and Nfat2-deficient mice (DKO) showed reduction in IL-17 expression (75). In a model of experimental colitis, Nfat1 deficiency showed protective effects with reduced production of IL-6 and IL-17 by mucosal T lymphocytes (76). Hyperactivation of NFAT1, increased affinity for calcineurin, and decreased affinity for CK1, resulted in higher IL-17 and IL-10 production because of direct binding of NFAT1 to distal regulatory regions of Il17 and Il10 loci (73). Although NFAT1 hyperactivation induced production of IL-17 in vitro, mice were more resistant to induction of experimental autoimmune encephalomyelitis (EAE), with increased production of IL-10 and accumulation of Treg cells in the central nervous system. Conversely, CD4-specific Nfat2-deficient mice showed reduced levels of RORyt, a master transcription regulator of Th17, as well as reduction in IL-17A, IL-17F, and IL-21 production and protected from EAE (77). Although Nfat1-deficient mice also showed decreased inflammatory response in the EAE model, the underlying mechanism is different from that in Nfat2-deficient mice. CD4-specific Nfat1-deficient T cells secrete IL-17 along with IL-4 and IL-10, and these non-pathogenic Th17 cells contribute to protection from diseases (78). The above observations suggest that both NFAT1 and NFAT2 contribute to Th17 response.

Treg: FOXP3+ Treg cells are a distinct population suppressing other effector Th cells (79) and is divided into thymus-derived natural FOXP3+ (nTreg) T cells and peripheral inducible Treg (iTreg) (80). Studies on Treg cells were facilitated by the identification of mutations in Foxp3 in mice and patients of immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome (81–83). Treg-mediated immune suppression is caused by multiple mechanisms such as CTLA-4-, IL-10-, TGFβ-, and antigen presenting cell (APC)-mediated indirect inhibition (84–86). Most of these Treg-related molecules are regulated by NFAT proteins (17, 73, 87). Ablation of Nfat1, Nfat2, and Nfat4 alone or in combination such as Nfat1/2 and Nfat1/4 double KO diminished iTreg but not nTreg differentiation, suggesting specific roles of the NFAT family in peripheral activation and differentiation of regulatory T cells from naive T cells (75). Studies show that NFAT facilitates the interaction between conserved noncoding sequence 2 (CNS2) at the Foxp3 locus and Foxp3 promoter, and that NFAT2 directly regulates SMAD3 and FOXP3 binding to CNS1, enhancing production of effector molecules in Treg (88–91). Specific inhibition of NFAT1/FOX3 interaction using a FOXP3-derived peptide, FOXP3 393–403, impaired Treg-mediated suppressor function in a dose-dependent manner (92). This peptide also inhibited Treg differentiation in mice and human T cells and showed enhanced antitumor responses. However, several recent studies have reported that Nfat KO mice show increased GITR+ Treg cells in the lung after allergen challenge and protection in graft-vs.-host diseases (GVHD) (93, 94). The functions of NFAT in Treg responses are still controversial and more accurate studies are required.

Tfh: Tfh cells were recently identified as helper T cells expressing transcription factor B-cell lymphoma 6 (BCL6) (95). Tfh cells are distinguished from other Th cells by their...
FIGURE 2 | Various combinations of NFAT and interacting partner proteins in T helper cells. Differentiation of each Th cell is initiated by activation of T cell receptor (TCR), costimulatory receptor signals (e.g., CD28 or ICOS), and specific lineage determining cytokine signals. These signals orchestrate to induce the NFAT/AP-1 complex to express lineage-related transcription factors such as T-bet for Th1, GATA3 for Th2, RORγt for Th17, and BATF for follicular helper T (Tfh) cells. In combination with these transcription factors, NFAT/partner protein complexes determine their lineage differentiation and functional characteristics (surface receptors and cytokine production).
NFAT5 IN T CELLS

NFAT5, also known as tonicity-responsive enhancer binding protein (TonEBP) or osmotic response element binding protein (OREBP), is the most recently identified member of the NFAT family (113–116). NFAT5 does not possess calcineurin binding domain, and is hence the only NFAT family protein that is not regulated by calcium signaling (117). In response to osmotic stress, NFAT5 is activated by p38/MAPK signaling and regulates the expression of osmoprotective genes required for normal function (118). Therefore, studies on NFAT5 initially focused primarily on kidney medulla, skin, and eyes exposed to hypertonicity (119). However, NFAT5 is expressed not only in these tissues but also in the thymus and activated T lymphocytes (16). NFAT5 binds to TNF-α and lymphotixin β promoter, suggesting that NFAT5 plays another role in the immune system, especially in T cells (120). Dominant negative (DN) Nfat5 transgenic mice presented impaired thymic development and reduced peripheral T cell numbers. In addition, transgenic T cells and Jurkat cell lines expressing DN Nfat5 also exhibited impaired proliferation and viability (121). Furthermore, Nfat5-null mice had hyponatremia and T cell lymphopenia, whereas T cell-specific Nfat5 knockout mice had isotonic plasma and normal T cell numbers, but decreased survival and proliferation in hypertonic condition. These altered T cell homeostasis are associated with NFAT5-dependent CD24 induction in T cells (122). Other studies have shown that NFAT5 also has omostress-independent functions. In the thymus, NFAT5 regulates the progression from double-negative stage and therefore controls survival during thymocyte development. Nfat5-deficient mice had smaller thymus and less mature CD4 and CD8 cells in the spleen and lymph nodes (123). Recent studies showed that high salt conditions promote the differentiation of naïve T cells into Th17 cells via NFAT5-dependent mechanisms with more pathogenic characteristics and GM-CSF production. Short hairpin RNA (shRNA)-mediated silencing of Nfat5 in CD4 T cells decreased IL-17A and CCR6 expression in Th17 polarizing conditions, suggesting a new role in the pathogenesis of autoimmune diseases involving NFAT5 activation (124, 125). High-salt diet increases the number of Th17 cells in vivo and aggravates EAE via the Nfat5/SKGI pathway (125). Under hypertonic conditions, NFAT5 enhances the expression of the pathogenic Th17-related cytokine IL-17A and Th17-associated genes, Rorc and Il23r, in T cells. In contrast, in vitro-activated Nfat-deficient CD4 T cells were skewed toward increased IFNγ and IL-17A expression, and T cell-restricted Nfat5-deficient mice exhibited more severe pathology and enhanced IFNγ mRNA expression in lymph nodes and colon of an animal model of experimental colitis (126). Recent studies identified that several miRNAs can target Nfat5. mir-20b was studied in thymoma-associated myasthenia gravis, where it inhibited NFAT5 expression with reduced T cell proliferation (127). mir-568 expression decreased during Treg activation and correlated inversely with NFAT5 expression. Overexpression of mir-568 inhibited Treg differentiation and TGFB and IL-10 production (128). Another study showed that the expression of the microRNA cluster 106a~363 decreased during Th17 cell
NFAT TARGETING DRUGS FOR AUTOIMMUNITY: BEYOND CYCLOSPORINE A AND TACROLIMUS

Considering the important role of NFAT signaling in T cell function, NFAT has long been considered as an attractive target for therapeutic approaches to control autoimmune responses and graft rejection (Table 2) (30, 31, 163, 164). The most well-known drugs targeting NFAT are the calcineurin inhibitors CsA and FK506. CsA was first identified in 1971 from the fungus Tolypocladium inflatum (165, 166). Later, tacrolimus, also known as FK506, was isolated from a fungus named Streptomyces tsukubaensis (167). CsA and FK506 function similarly in that they bind to immunophilins called cyclophilin and FK-binding protein 12 (FKBP12), respectively (168–170). This inhibitor-immunophilin complex directly binds to calcineurin and inhibits its phosphatase activity, thereby inhibiting NFAT dephosphorylation (171). Both drugs have been well-used to treat graft rejection and autoimmune diseases. CsA and tacrolimus are used in atopic dermatitis and in other autoimmune diseases, including lupus nephritis, and many clinical trials have been conducted to determine the efficacy of calcineurin inhibitors.
TABLE 2 | Calcineurin-NFAT inhibitors and their mechanisms.

Inhibitors	Mechanism	Inhibitory effect	References
INHIBITORS THAT INHIBIT CALCINEURIN ACTIVITY			
Cyclosporine A	Binds with cyclophilin and inhibits calcineurin activity.	Inhibits T cell proliferation and cytokine expression.	(131–133)
Tacrolimus	Binds with FKBP12 and inhibits calcineurin activity.	Inhibits T cell proliferation and cytokine expression.	(134–136)
Vocilsporin (ISA247)	Binds with cyclophilin and inhibits calcineurin activity.	Better efficacy than cyclosporine A.	(137)
Pimerolimus	Binds with FKBP12 and inhibits calcineurin activity.	Inhibits T cell proliferation and cytokine expression.	(138)
Thiopental	Binds to calcineurin and inhibits calcineurin activity.	Inhibits T cell proliferation and IL-2, and IFNγ expression	(139)
Kaempferol	Binds to the catalytic domain of calcineurin A and inhibits calcineurin activity.	Inhibits IL-2 expression in Jurkat cells.	(140, 141)
Tropisetron	Inhibits calcineurin activity.	Inhibits IL-2 production in primary T cells.	(142)
INHIBITORS THAT INHIBIT CALCINEURIN-NFAT INTERACTION			
PxixT peptide	Calcineurin docking site of NFAT; Inhibits calcineurin-NFAT binding.	Inhibits NFAT-dependent expression in Jurkat cells.	(143)
VIVIT peptide	Inhibits calcineurin-NFAT binding.	Inhibits IL-2 production and proliferation of Jurkat cells; Increases graft survival in islet transplantation mice.	(144, 145)
LxVP peptide	Inhibits calcineurin-NFAT binding and inhibits calcineurin activity.	Inhibits IL-2 production in Jurkat cells.	(146)
AKAP79	Inhibits calcineurin-NFAT binding.	Inhibits IL-2 production in T cells.	(147)
Cabin-1/Cain	Inhibits calcineurin-NFAT binding.	Inhibits IL-2 promoter activation in T cells.	(148)
INCA-1, 2, and 6	Inhibits calcineurin-NFAT binding.	Inhibits cytokine expression in T cells.	(149)
Dipyradomole	Inhibits calcineurin-NFAT binding.	Inhibits cytokine production.	(150)
NG3	Causes allosteric changes in calcineurin and inhibits calcineurin-NFAT binding.	Inhibits T cell proliferation and IL-2 expression in Jurkat and primary human T cells.	
INHIBITORS THAT AFFECT NFAT MIGRATION			
ST1959	Induces NFAT1 nuclear export.	Inhibits T cell activation, proliferation, and cytokine production.	(151)
Helenalin	Inhibits NFAT1 nuclear translocation.	Inhibits T cell proliferation and IL-2 production.	(152)
Roc-1,2, and 3	Inhibits NFAT2 nuclear translocation.	Inhibits IL-2, IL-4, and IFNγ expression.	(153)
INHIBITORS THAT DIRECTLY AFFECT NFAT STABILITY			
Zoledronic acid	Induces NFAT degradation by inhibition of GSK3β.	Inhibits cell growth by inducing G1 cell cycle arrest.	(154)
Genistein	Reduces mRNA and protein expression of NFAT.	Induces apoptosis; decreases number of T cells.	(155)
INHIBITORS THAT INHIBIT NFAT-DNA INTERACTION			
UR-1505	Inhibits NFAT binding to DNA.	Inhibits T cell proliferation and IFNγ expression.	(156)
Caffeic acid phenethyl ester (CAPE)	Inhibits NFAT nuclear translocation and DNA binding.	Inhibits T cell proliferation and IL-2 production of T cells.	(157)
Punicalagin	Inhibits NFAT nuclear translocation and DNA binding.	Inhibits IL-2 production of CD4+ T cells.	(158)
Imperatorin	Inhibits NFAT nuclear translocation and DNA binding.	Inhibits T cell proliferation.	(159)
WIN 53071	Alters NFATc-DNA complex formation.	Inhibits IL-2 expression in primary human T cells.	(160)
YM-53792	Inhibits NFAT1-DNA binding.	Inhibits IL-2, IL-4 expression in primary human T cells.	(161)
AM-404	Inhibits NFAT1-DNA binding.	Inhibits T cell proliferation and IL-2 and TNFα transcription.	(162)
Digitoxin	Inhibits NFAT1 binding to c-Myc promoter.	Inhibits proliferation and induces apoptosis.	(163)
INHIBITORS THAT INHIBIT NFAT-TRANSCRIPTION PARTNER INTERACTION			
FOXP3 393–403	Inhibits FOXP3-NFAT binding	Inhibits conversion into regulatory cells and enhances T cell proliferation.	(164)

successfully increased transplant survival in islet transplanted mice (145). Other studies showed that Sim-2-conjugated VIVIT was efficiently delivered into cells and inhibited IL-2 and alleviated ovalbumin (OVA)-induced asthma in a murine model (192). In addition, the C-terminus of the regulatory domain possesses a conserved calcineurin binding motif, LxVP, which facilitates calcineurin docking and NFAT dephosphorylation (193, 194). However, LxVP presented weak binding strength for NFAT1 and affected calcineurin phosphatase activity (146, 195). Endogenous calcineurin inhibitors such as AKAP79,
Cabin-1/Cain, MCIP1, and A238L have sequences similar to that of the PxIxIT motif (147, 148, 196–198).

Small molecules are similar in structure and function to classical inhibitors but have lesser side effects. Voclosporin (ISA247), an analog of CsA, possesses higher affinity to cyclophilin than CsA and was effective at lower concentrations (137). Therefore, it is considered a promising treatment option for arthritis and psoriasis (199, 200). Other drugs such as ST-1959, and Roc-1, 2, and 3 inhibit T cell responses by enhancing nuclear export of NFAT1 and NFAT2 (35, 152). Drugs such as zolendronic acid induce NFAT1 degradation via GSK3β inhibition (153). Certain inhibitors such as UR-1505 and digitoxin block the binding of NFAT to DNA (155). Remarkably, digitoxin specifically inhibits interaction between NFAT1 and the c-Myc promoter and thereby inhibits c-Myc-dependent transcription (162). The FOXP3-derived peptide, FOXP3 393–403, specifically inhibits FOXP3/NFAT interaction. This inhibitory peptide suppresses T cell conversion into iTregs and enhances T cell proliferation, thereby exhibiting antitumor effects (92). These strategies indicated that blockage of NFAT binding to a specific promoter or inhibition of its interaction to a particular transcriptional partner might selectively suppress its function.

To develop these NFAT inhibitory molecules as a new drug for human diseases, both T cells and other cells also should be considered for therapeutic purposes. Recent studies in myeloid cells have revealed the importance of NFAT in both innate and adaptive immunity. In an early response to pathogens, pattern recognition receptors (PRRs) such as TLR4 and dectin-1 induce the production of IL-2 from dendritic cells (201, 202). These signals activate PLCγ2 and promote NFAT-dependent IL-2 expression. In macrophages that express various NFAT family members except NFAT3, calcineurin/NFAT inhibitor treatment results in macrophages that are tolerant to lethal dose of lipopolysaccharide (LPS) (203–205). Other myeloid cells such as mast cells and neutrophils are influenced by Ca²⁺/NFAT signaling and produce cytokines and multiple immune mediators (206, 207). Therefore, NFAT targeting strategies should consider non-T cell mediated adverse effects as well as its potent effect of disease control and immune suppression.

Considering the multiple roles of calcineurin-NFAT signaling in both immune and non-immune cells, new methods for targeting NFAT are required. For peptide inhibitors such as VIVIT and LxVP, improved CPPs such as dNP2 can be used to enhance efficiency of in vivo delivery (208). Alternatively, more specific inhibition strategies other than calcineurin targeting can be used. Recent results regarding the role of each NFAT family member in T cells and the molecular mechanisms via which they regulate T cell responses indicate that new inhibitors that can block specific molecular interactions should be developed to reduce side effects and reinforce the efficacy of autoimmune disease therapy.

CONCLUDING REMARKS AND PERSPECTIVES

In the current review, we have summarized recent advances in our understanding of the role of NFAT family members in T cell responses and presented an overview of therapeutic agents targeting NFAT proteins for treating autoimmune diseases. Classically, NFAT has been studied as an important transcription factor for T cell activation under calcium signaling. However, recent studies revealed that NFAT function is not just limited to T cell activation but it also actively functions in differentiation of effector T cell subsets such as Th1, Th2, Th17, Treg, and Thf cells. Based on better understanding of molecular mechanism of NFAT by direct interaction with T-bet, GATA3, RORγt, FOXP3, and BCL6, or by promotor binding to control T cell differentiation-related genes, we now are able to suggest a strategy to develop specific NFAT inhibitor to control a particular function of NFATs. Unlike other calcineurin-dependent NFAT proteins, NFAT5 in T cells is just recently recognized that it seems to be involved in thymocyte development and T cell survival and proliferation. Interestingly, it could be activated under high salt condition in T cells to commit more pathogenic Th17 differentiation in multiple sclerosis model. While it is still questionable whether specific NFAT5 inhibition in T cells would be beneficial for autoimmunity, it could be worth to investigate as a new target of NFAT inhibition for treating autoimmune diseases. As previously developed NFAT targeting drugs show significant adverse effects owing to the diverse calcium signaling-related target genes of NFAT proteins, a novel strategy either targeting specific NFAT family members or molecular interference of NFAT binding proteins will be more beneficial for controlling T cell function and autoimmune diseases.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This work was supported by the Bio & Medical Technology Development Program (NRF-2017M3A9C8027972) and Basic Science Research Program (NRF-2016R1E1A1A01941034) of the National Research Foundation of Korea.

REFERENCES

1. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science (1988) 241:202–5. doi: 10.1126/science.3260404

2. Chen L, Rao A, Harrison SC. Signal integration by transcription-factor assemblies: interactions of NF-AT1 and AP-1 on the IL-2 promoter. Cold Spring Harb Symp Quant Biol. (1999) 64:527–31. doi: 10.1101/sqb.1999.64.527
3. Henderson DJ, Naya I, Bundick RV, Smith GM, Schmidt JA. Comparison of the effects of FK-506, cyclosporin A and rapamycin on IL-2 production. *Immunochemistry* (1991) 7:316–21.

4. Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. *Annu Rev Immunol.* (2010) 28:491–533. doi: 10.1146/annurev.immunol.021908.132550

5. Sekse C. Calcium signalling in lymphocyte activation and disease. *Nat Rev Immunol.* (2007) 7:690–702. doi: 10.1038/nri1522

6. Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. *Genes Dev.* (2003) 17:2205–32. doi: 10.1101/gad.1102703

7. Macian F, Lopez-Rodríguez C, Rao A. Partners in transcription: NFAT and AP-1. *Oncogene* (2001) 20:2476–89. doi: 10.1080/02615430110083904

8. Jain J, McCaffrey PG, Valge-Archer VE, Rao A. Transcriptional regulation of inflammatory cytokine genes. *Oncogene* (2001) 20:2476–89. doi: 10.1080/02615430110083904

9. Hivroz A, Van Neck K, Pio D, Wang W, Phan X, Hovig E, et al. The immunosuppressor st1959, a 3,5-diaryl-1H-pyrazole derivative, inhibits T cell activation by reducing NFAT accumulation of NFAT4 opposed by the JNK signal transduction pathway. *Science* (1997) 278:1638–41.

10. Akamara H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. *Mol Cell Biol.* (2004) 24:11350–64. doi: 10.1128/MCB.24.11.1350-1364.2004

11. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR. Nuclear export of NF-κB enhanced by the glycogen synthase kinase-3. *Science* (1997) 275:1930–4. doi: 10.1126/science.275.5308.1930

12. Chow CW, Rincón M, Cavanagh J, Dickens M, Davis RJ. Nuclear accumulation of NFAT4 opposed by the INK signal transduction pathway. *Science* (1997) 278:1638–41.

13. Omakara H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. *Mol Cell Biol.* (2004) 24:11350–64. doi: 10.1128/MCB.24.11.1350-1364.2004

14. Yang TT, Xiong Q, Enslin H, Davis RJ, Chow CW. Phosphorylation of NFATc4 by p38 mitogen-activated protein kinases. *Mol Cell Biol.* (2002) 22:3892–904. doi: 10.1128/MCB.22.11.3892-3904.2002

15. Kim JH, Kim K, Youn BU, Jin HM, Kim YJ, Moon JB, et al. RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. *Biochem J.* (2011) 436:253–62. doi: 10.1042/BJ20110062

16. Wu W, Misra RS, Russell JQ, Flavell RA, Rincón M, Budd RC. Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3. *J Biol Chem.* (2006) 281:10682–90. doi: 10.1074/jbc.M511759200

17. Kiani A, Viola JP, Lichtman AH, Rao A. Down-regulation of IL-4 gene expression in TH2 cells family members. *J Immunol.* (2009) 182:5125–36. doi: 10.4049/jimmunol.0802538

18. Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. *J Exp Med.* (2005) 201:181–7. doi: 10.1084/jem.20041538

19. Khader SA, Cooper AM. IL-23 and IL-17 in tuberculosis. *Cytokine* (2008) 41:79–83. doi: 10.1016/j.cyto.2007.11.022
59. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Blood (2001) 98:1480–8. doi: 10.1182/blood.V98.5.1480

60. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. (2007) 96:41–101. doi: 10.1016/S0065-2776(07)96002-2

61. Lohoff M, Mittrücker HW, Prechtl S, Aebischer T, Ehnninger G, et al. Regulation of interferon-gamma gene expression by nuclear factor of activated T cells (NFAT). Blood (2001) 98:279–86. doi: 10.1182/blood.V98.3.279

62. Yao X, Zha W, Song W, He H, Huang M, Jazrawi E, et al. Coordinated IL-4 production in T cells via physical interaction with NFAT. Biochem Biophys Res Commun. (2009) 381:214–7. doi: 10.1016/j.bbrc.2009.02.026

63. MacLean Scott E, Solomon LA, Davidson C, Storie J, Palmiter BS, Cameron L. Activation of Th2 cells downregulates CRTH2 through an NFAT1-mediated mechanism. PLoS ONE (2018) 13:e0199156

64. Lee SH, Jeong HM, Choi JM, Cho YC, Kim TS, Lee KY, et al. Runx3 inhibits IL-4 production in T cells via physical interaction with NFAT. Biochem Biophys Res Commun. (2009) 381:214–7. doi: 10.1016/j.bbrc.2009.02.026

65. Agarwal S, Avni O, Rao A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunology (2000) 100:643–52. doi: 10.1046/j.1365-2567.2000.01201.x

66. Veldhoen M, Rudolf R, Patra AK, Pham DA, Muhammad K, et al. NFATc1 induction in peripheral T and B lymphocytes. J Immunol. (2013) 190:2345–53. doi: 10.4049/jimmunol.1201591

67. Izsépi E, Himer L, Szilagyi O, Hajdu P, Panyi G, Laszlo G, et al. Membrane receptor: a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol. (2002) 3:549–57. doi: 10.1038/nm794

68. Hock M, Vaeth M, Rudolf R, Patra AK, Leder P. IL-4 induces allergic-like inflammatory disease and airway responsiveness. Am J Respir Cell Mol Biol. (2009) 40:66–75. doi: 10.1165/rcmb.2007-0102OC

69. Lee et al. Role of NFAT in T Cell Immunity

70. Hersh EM, Ringler D, Iannone R, Kuder T, Hobby SA, et al. Dysregulated T helper cell differentiation in the absence of nuclear factor of activated T cells. J Immunol. (2009) 182:6088–94. doi: 10.4049/jimmunol.0802459

71. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Annu Rev Immunol. (2010) 28:423–57. doi: 10.1146/annurev.immunol.032709.093417

72. Hermann-Kleiter N, Meisel M, Fresser F, Thuille N, Müller K, et al. Nuclear orphan receptor NR2F6 directly antagonizes NFAT and RORgamma binding to the Il17a promoter. J Autoimmun. (2012) 39:428–40. doi: 10.1016/j.jaut.2012.07.007

73. Ghosh S, Korolov SB, Stevanovic I, Sundrud MS, Sasaki Y, Rajewsky K, et al. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proc Natl Acad Sci USA. (2010) 107:15169–74. doi: 10.1073/pnas.10013107

74. Hermann-Kleiter N, Baier G. Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun Signal. (2014) 12:38. doi: 10.1186/1478-811X-12-38

75. Vaeth M, Schliesser U, Müller G, Reissig S, Satoh K, Tütenberg A, et al. Nuclear factor of activated T-cells (NFAT) levels discriminate conventional T-cells from Foxp3+ regulatory T-cells. Proc Natl Acad Sci USA. (2012) 109:16258–63. doi: 10.1073/pnas.1203870109

76. Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, et al. The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. J Exp Med. (2008) 205:2099–110. doi: 10.1084/jem.20072484

77. Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Annu Rev Immunol. (2010) 28:423–57. doi: 10.1146/annurev.immunol.032709.093417

78. Hersh EM, Ringler D, Iannone R, Kuder T, Hobby SA, et al. Dysregulated T helper cell differentiation in the absence of nuclear factor of activated T cells. J Immunol. (2009) 182:6088–94. doi: 10.4049/jimmunol.0802459

79. Veldhoen M, Rudolf R, Patra AK, Leder P. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell (1999) 92:457–67. doi: 10.1016/S0092-8674(99)00113-0

80. Ricci M, Maturacci A, Rossi O. IL-4 as a key factor influencing the development of allergen-specific Th2-like cells in atopic individuals. J Investig Allergol Clin Immunol (1997) 7:144–50.

81. Perrigoue JG, Zaph C, Guild K, Du Y, Artis D. IL-31-IL-31R interactions limit the magnitude of Th2 cytokine-dependent immunity and inflammation following intestinal helminth infection. J Immunol. (2009) 182:6088–94. doi: 10.4049/jimmunol.0802459

82. Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity (1998) 9:765–75.

83. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell (2004) 117:515–26. doi: 10.1016/s0092-8674(04)00451-9

84. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell (1997) 89:587–96.

85. Li B, Tournier C, Davis RJ, Flavell RA. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J. (1999) 18:420–32.

86. Lohoff M, Mittrücker HW, Prechtl S, Bischof S, Sommer F, Kock S, et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci USA. (2002) 99:11808–12. doi: 10.1073/pnas.182425099

87. Yao X, Zha W, Song W, He H, Huang M, Jazrawi E, et al. Coordinated regulation of IL-4 and IL-13 expression in human T cells: 3C analysis for DNA looping. Biochem Biophys Res Commun. (2012) 417:996–1001. doi: 10.1016/j.bbrc.2011.12.069

88. Guo Z, Xu P, Ge S, Zhang C, Zheng X, Xu J, et al. Ubiquitin specific peptidase 4 stabilizes interferon regulatory factor protein and promotes its function to facilitate interleukin-4 expression in T helper type 2 cells. Int J Mol Med. (2017) 40:979–86. doi: 10.3892/imj.2017.3087

89. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a new forkhead/winged-helix protein, scurfyn, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. (2001) 27:68–73. doi: 10.1038/38784
82. Bennett CL, Christie J, Ramsdell F, Brunkowski ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. *Nat Genet.* (2001) 27:20–1. doi: 10.1038/3713

83. Wilson RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. *Nat Genet.* (2001) 27:18–20. doi: 10.1038/3707

84. Read S, Greenwald R, Izcue A, Robinson N, Mandelbrot D, Francisco L, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. *J Immunol.* (2006) 177:4376–83. doi: 10.4049/jimmunol.177.7.4376

85. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA. Natural and induced inflammation at environmental interfaces. *J Exp Med.* (2015) 216:980–90. doi: 10.1084/jem.20143004

86. Bhattacharyya S, Deb J, Patra AK, Thuy Pham DA, Chen W, Vaeth M, et al. NFATc1 affects mouse splenic B cell function by controlling the calcineurin–NFAT signaling network. *J Exp Med.* (2011) 208:823–39. doi: 10.1084/jem.20100945

87. Yoshida H, Nishina H, Yakimoto H, Maengre L, Wakeham A, Bouchard D, et al. The transcription factor NFATc1 regulates lymphocyte proliferation and Th2 cytokine production. *Immunity* (1998) 8:115–24.

88. Martinez GJ, Hu JK, Pereira RM, Crampton JS, Togher S, Bild N, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome is the human equivalent of mouse scurfy. *Immunobiology* (2015) 219:545–61. doi: 10.1002/eji.201300604

89. Kim HP, Korn LL, Camerillo AM, Leonard WJ. Calcium-dependent activation of the transcription factor TonEBP. *Int Rev Cytol.* (2006) 252:1–41. doi: 10.1016/j.devcel.2005.07.002

90. Xu D, Zhao Y, Gao H, Li Z, Wang Z, Li Z, et al. The transcription factor IRF4 determines germinal center formation through its enhancer binding protein. *Biochim Biophys Res Commun.* (2014) 453:690–702. doi: 10.1016/j.bbr.2014.09.017

91. Graef IA, Gastier JM, Francke U, Crabtree GR. Evolutionary relationships among Rel domains indicate functional diversification by recombination. *Proc Natl Acad Sci USA.* (2001) 98:5740–5. doi: 10.1073/pnas.101602398
118. Burg MB, Kwon ED, Kültz D. Regulation of gene expression by hypertonicity. Annu Rev Physiol. (1997) 59:437–55.

119. Neuhof W, Beck FX. Cell survival in the hostile environment of the renal medulla. Annu Rev Physiol. (2005) 67:531–55. doi: 10.1146/annurev.physiol.67.030103.154546.

120. López-Rodríguez C, Aramburu J, Lu H, Rakeman AS, Mischino M, Rao A. Bridging the NFT5 and NF-kappaB families: NFT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity (2001) 15:47–58. doi: 10.1016/S1074-7613(01)00165-0.

121. Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transduction pathway leading to sustained activation of interleukin-2 synthesis of human T lymphocytes by selectively preventing a transmembrane signal transduction pathway. Proc Natl Acad Sci USA. (2013) 110:16091–6. doi: 10.1073/pnas.1215934110.

122. Luo T, Ji WJ, Yuan F, Guo ZZ, Li YX, Dong Y, et al. Th17/Treg Imbalance Induced by Dietary Salt Variation Indicates Inflammation of Target Organs in Humans. Sci Rep. (2016) 6:25677. doi: 10.1038/srep25677.

123. Kleinewietfeld M, Manzel A, Titze J, Iwakawa H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature (2016) 496:518–22. doi: 10.1038/nature12186.

124. Alberdi M, Iglesias M, Tejedor S, Merino R, López-Rodríguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN-γ expression by the transcription factor NFT5. Immunity Cell Biol. (2017) 95:56–67. doi: 10.1038/iscb.2016.60.

125. Xin Y, Cai H, Lu T, Zhang Y, Yang Y, Cui Y. miR-20b Inhibits T Cell Proliferation and activation via NFAT Signaling pathway in thymoma - A novel cancer inhibitor. Am J Respir Cell Mol Biol. (2009) 41:516–22. doi: 10.1165/ajrcmb.20.3.3266.

126. Almawi WY, Assi JW, Chudzik DM, Jaoude MM, Rieder MJ. Selective inhibition of NFAT activation by a peptide spanning the calcineurin binding site. Proc Natl Acad Sci USA. (2004) 101:18322–3. doi: 10.1073/pnas.0219029101.

127. Kim SD, Park S, Lee S, Lee S, Lee JY, Jang HJ. Inhibitory role of NFAT5 on the proliferation of human T cell lines. Cell Transplant. (2010) 19:2163–71. doi: 10.3727/000000010785683867.

128. Sakuma S, Higashi Y, Sato N, Sasakawa T, Sengoku T, Ohkubo Y, et al. T-cell lymphoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog. (2015) 54:301–11. doi: 10.1002/mc.22100.

129. Noguchi H, Matsushita M, Okitsu T, Moriwaki K, Kang S, et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med. (2004) 10:305–9. doi: 10.1038/nm994.

130. Martinez-Martínez S, Rodríguez A, López-Maderuelo MD, Ortega-Pérez I, Vázquez J, Redondo JM. Blockade of NFAT activation by the second calcineurin binding site. J Biol Chem. (2006) 281:6227–35. doi: 10.1074/jbc.M513885200.

131. Sun L, Pink MD, Murphy JG, Stein A, Dell’Acqua ML, Hogan PG. Balanced interactions of calcineurin with AKA979 regulates Ca2⁺/calcineurin-NFAT signaling. Int J Biochem Cell Biol. (2012) 44:1937–45. doi: 10.1016/j.biocel.2012.06.038.

132. Sun L, Youn HD, Loh C, Stolow M, He W, Liu J, et al. Blockade of NFAT activation by the second calcineurin binding site. J Biol Chem. (2006) 281:6227–35. doi: 10.1074/jbc.M513885200.

133. Sieber M, Karanik M, Krichel S, Miethke B, Arndt C, Pfuner A, et al. Tacrolimus differentially regulates the proliferation of human T cells via inhibition of the calcineurin/NFAT pathway. Int Immunopharmacol. (2001) 10:615–23. doi: 10.1016/S1567-5769(01)00165-0.

134. Isacoff WH, Bendetti JK, Barstis JJ, Jazieh AR, MacDonald JS, Philip PA. Phase II trial of infusional fluorouracil, leucovorin, mitomycin, and dipyridamole in locally advanced, unresectable pancreatic adenocarcinoma: SWOG S9701. J Clin Oncol. (2005) 23:1665–9. doi: 10.1200/JCO.2006.06.7637.

135. Sieber M, Karanik M, Brandt C, Bix C, Podtschaske M, Rieger N, et al. UR-1505, a new salicylate, blocks T cell activation through a novel mechanism of inhibition of nuclear factor of activated T cells. Mol Carcinog. (2004) 39:650–61. doi: 10.1002/mc.20125.

136. Aramburu J, Yaffe MB, López-Rodríguez C, Cantley LC, Hogan PG. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science (1999) 285:2129–33.

137. Aspeslet L, Freitag D, Trepanier D, Abel M, Naicker S, Kneteman N, Foster R. Disruption of a nuclear NFATc2 protein stabilization loop confers breast and pancreatic cancer growth suppression by zoledronic acid. Mol Carcinog. (2015) 54:301–11. doi: 10.1002/mc.22100.

138. Singh SK, Baumgart D, Singh G, König AO, Reutlinger K, Hofbauer LC, et al. Disruption of a nuclear NFATc2 protein stabilization loop confers breast and pancreatic cancer growth suppression by zoledronic acid. J Biol Chem. (2011) 286:28761–71. doi: 10.1074/jbc.M110.197533.

139. Dai W, Wang F, He L, Lin C, Wu S, Chen P, et al. Gene set enrichment analysis identifies hepatitis B virus core protein expression in hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog. (2015) 54:301–11. doi: 10.1002/mc.22100.

140. Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transduction pathway leading to sustained activation of interleukin-2 synthesis of human T lymphocytes by selectively preventing a transmembrane signal transduction pathway. Proc Natl Acad Sci USA. (2013) 110:16091–6. doi: 10.1073/pnas.1215934110.
156. Sanderson JT, Clabault H, Patton C, Lassalle-Claux G, Jean-François J, Paré AF, et al. Anti-proliferative, antiangiogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. Bioorg Med Chem. (2013) 21:7182–93. doi: 10.1016/j.bmc.2013.08.057

157. Aqil F, Munagala R, Vadhanam MV, Kausar H, Jeyabalan J, Schultz DJ, et al. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Res Int. (2012) 49:345–53. doi: 10.1016/j.foodres.2012.07.059

158. Chochoyau K, Chunhacha P, Pongrázhánan V, Luechaphidporn R, Chonvorchato P. Imperatorin sensitizes anokis and inhibits anchorage-independent growth of lung cancer cells. J Nat Med. (2016) 67:599–606. doi: 10.1007/s11418-016-1017-8

159. Baine Y, Stankunas BM, Miller P, Hobbs C, Tiberio L, Koch J, et al. Functional characterization of novel IL-2 transcriptional inhibitors. J Immunol. (1995) 154:3667–77.

160. Kuromitsu S, Fukunaga M, Lennard AC, Masuho Y, Nakada S. J-[13-Hydroxytridecyl]-1-[13-[3-pyridyl]tridecyl]pyridinium chloride (YM-53792), a novel inhibitor of NF-AT activation. Biochem Pharmacol. (1997) 54:999–1005.

161. Caballero FJ, Navarrete CM, Hess S, Fiebich BL, Appendino G, Macho A, et al. The acetylaminophen-derived bioactive N-acylphenolamine AM404 inhibits NEAT by targeting nuclear regulatory events. Biochim Biophys Acta. (2007) 1762:1013–23. doi: 10.1016/j.bjba.2006.12.001

162. Yang QF, Dalgard CL, Eidebo CM, Follas J, Pollard BS, Srivastava M, et al. Dovitox induces apoptosis in cancer cells by inhibiting nuclear factor of activated T-cells-driven c-MYC expression. J Carcinog. (2013) 12:8. doi: 10.4134/jcj.2013.116228

163. Ponticelli C, Tarantino A, Campise M, Montagnino G, Aroldi A, Passerini P. From cyclosporine to the future. Transplant Proc. (2014) 46(Suppl. 1):120. doi: 10.1016/j.transproceed.2014.02.006

164. Azzi JR, Sayegh MH, Mallat SG. Calcineurin inhibitors: 40 years later, can’t live without. J Immunol. (1995) 154:9785–91. doi: 10.4049/jimmunol.154.17.90055

165. Borel JF. History of the discovery of cyclosporin and of its early pharmacological development. Wien Klin Wochenschr. (2002) 114:433–7. doi: 10.1016/S0041-1345(02)8571-6

166. Borel JF, Feurer C, Gubler HU, Stähelin H. Biological effects of cyclosporin A and FK506: roles of calcineurin binding and cellular location. Agents Actions. (1999) 49:79–86. doi: 10.1111/j.1432-2277.2000.tb01004.x

167. Wang K, Shi L, Yu Z, Deng Z, He A, Li S, et al. Cyclosporine A suppresses the activation of the Th17 cells in patients with primary sjogren’s syndrome. Iran J Allergy Asthma Immunol. (2015) 14:198–207.

168. Naniwa T, Iwagaitu S, Kajiuira M. Efficacy of add-on tacrolimus on methylotrexate to maintain clinical remission after rediscussion of a tumor necrosis factor inhibitor in rheumatoid arthritis patients who relapsed shortly after discontinuation of the same tumor necrosis factor inhibitor due to clinical remission. Mod Rheumatol. (2017) 27:29–34. doi: 10.1007/s11495.2016.1174394

169. Bechstein WO. Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl Int (2000) 13:313–26. doi: 10.1111/j.1432-2277.2000.tb01004.x

170. Abramowicz D, Wissmann KM, Broeders N. Nephrotoxicity of calcineurin inhibitors: new therapeutic approaches. Transplant Proc. (2000) 32(1A Suppl.):35–55. doi: 10.1016/S0041-1345(00)80087-1

171. Snyder SH, Lai MM, Burnett PE. Immunophils in the nervous system. Neuron. (1998) 19:283–94.

172. Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV, Snyder SH. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell (1995) 83:463–72.

173. Chen SR, Hu YM, Chen H, Pan HL. Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords. J Physiol. (2014) 592:215–27. doi: 10.1113/jphysiol.2013.263814

174. Martina M, Mozerzmas JW, Boddeke HW, Cherubini E. The calcineurin inhibitor cyclosporin A-cyclophilin A complex reduces desensitization of GABA-A-mediated responses in acutely dissociated rat hippocampal neurons. Neurosci Lett. (1996) 195:95–9. doi: 10.1016/0304-3940(96)12957-8

175. Kumashiro S, Lu YF, Tomizawa K, Matsuishi M, Wei FY, Matsu H. Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools. Neurosci Res. (2005) 51:435–43. doi: 10.1016/j.neures.2004.12.018

176. Hens JJ, De Wit M, Ghijsen WV, Leenders AG, Boddeke HW, Kissmehl R, et al. Role of calcineurin in Ca2+-induced release of catecholamines and neuropeptides. J Neurochem. (1998) 71:1978–86. doi: 10.1046/j.1471-4159.1998.71051978.x

177. Hämäläinen M, Lahitari, Molianen E. Calcineurin inhibitors, cyclosporin A and tacrolimus inhibit expression of inducible nitric oxide synthase in colon epithelial and macrophage cell lines. Eur J Pharmacol. (2002) 448:239–44. doi: 10.1016/S0014-2999(02)01947-7

178. Khanna AK, Cairns VR, Becker CG, Hosenpud JD. Transforming growth factor (TGF)-beta mimics and anti-TGF-beta antibody abrogate the in vivo effects of cyclosporine: demonstration of a direct role of TGF-beta in immunosuppression and nephrotoxicity of cyclosporine. Transplantation (1999) 67:882–9. doi: 10.1097/00007890-199903270-00016

179. Khanna A, Cairns V, Hosenpud JD. Tacrolimus induces increased expression of transforming growth factor-beta1 in mammalian lymphoid as well as nonlymphoid cells. Transplantation (1999) 67:614–9. doi: 10.1097/00007890-199903270-00021

180. Kakita T, Hasegawa K, Iwai-Kanai E, Adachi S, Morimoto T, Wada H, et al. Calcineurin pathway is required for endothelin–1-mediated protection against oxidant stress-induced apoptosis in cardiac myocytes. Circ Res. (2001) 88:1239–46. doi: 10.1161/01.hrr.2001.091794

181. Sadowski T, Subkowsi T, Diehr P, Bachtard D, Fritsche L, Neumayer HH, et al. Interaction of the endothelin system and calcineurin inhibitors after kidney transplantation. Clin Sci. (2002) 103(Suppl. 48):396S–8S. doi: 10.1042/CS103S396S

182. Miroux C, Morale O, Carpentier A, Dharancy S, Conti F, Boleslowski E, et al. Inhibitory effects of cyclosporin on human regulatory T cells in vitro. Transplant Proc. (2009) 41:3371–4. doi: 10.1016/j.transproceed.2009.08.043

183. Miroux C, Morales O, Ghazal K, Othanam SB, de Launoit Y, Pancré V, et al. In vitro effects of cyclosporine A and tacrolimus on regulatory T-cell proliferation and function. Transplantation (2012) 94:123–31. doi: 10.1097/TP.0b013e3182590d10

184. Choy JM, Sohn JH, Park TV, Park JW, Lee SK. Cell permeable NEAT inhibitor peptide Sim-2-VIVIT inhibits T-cell activation and alleviates allergic airway inflammation and hyper-responsiveness. Immunol Lett. (2012) 143:170–6. doi: 10.1016/j.imlet.2012.01.016
193. Park S, Uesugi M, Verdin GL. A second calcineurin binding site on the NFAT regulatory domain. *Proc Natl Acad Sci USA.* (2000) 97:7130–5.

doi: 10.1073/pnas.97.13.7130

194. Rodríguez A, Martínez-Martínez S, López-Maderuelo MD, Ortega-Pérez I, Redondo JM. The linker region joining the catalytic and the regulatory domains of CnA is essential for binding to NFAT. *J Biol Chem.* (2005) 280:9980–4.

doi: 10.1074/jbc.C400401200

195. Adachi S, Amasaki Y, Miyatake S, Arai N, Iwata M. Successive expression and activation of NFAT family members during thymocyte differentiation. *J Biol Chem.* (2000) 275:14708–16.

doi: 10.1074/jbc.275.19.14708

196. Lai MM, Burnett PE, Wolosker H, Blackshaw S, Snyder SH. Cain, a novel physiologic protein inhibitor of calcineurin. *J Biol Chem.* (1998) 273:18325–31.

doi: 10.1074/jbc.273.29.18325

197. Fuentes JJ, Genescà L, Kingsbury TJ, Cunningham KW, Pérez-Riba M, Estivill X, et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. *Hum Mol Genet.* (2000) 9:1681–90.

doi: 10.1093/hmg/9.11.1681

198. Miskin JE, Abrams CC, Goatley LC, Dixon LK. A viral mechanism for inhibition of the cellular phosphatase calcineurin. *Science* (1998) 281:562–5.

doi: 10.1126/science.281.5376.562

199. Maksymowych WP, Jhangri GS, Aspeslet L, Abel MD, Trepanier DJ, Naicker S, et al. Amelioration of accelerated collagen induced arthritis by a novel calcineurin inhibitor, ISA(TX)247. *J Rheumatol.* (2002) 29:1646–52.

200. Naidoo P, Rambiritch V. Voclosporin (ISA247) for plaque psoriasis. *Lancet* (2008) 372:888–9; author reply: 889.

doi: 10.1016/S0140-6736(08)61391-4

201. Zanoni I, Ostuni R, Capuano G, Collini M, Caccia M, Ronchi AE, et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. *Nature* (2009) 460:264–8.

doi: 10.1038/nature08118

202. Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. *J Immunol.* (2007) 178:3107–15.

doi: 10.4049/jimmunol.178.5.3107

203. Jennings C, Kusler B, Jones PP. Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo. *Innate Immun.* (2009) 15:109–20.

doi: 10.1177/1753423908100928

204. Greenblatt MB, Aliprantis A, Hu B, Glümcher LH. Calcineurin regulates innate antifungal immunity in neutrophils. *J Exp Med.* (2010) 207:923–31.

doi: 10.1084/jem.20092531

205. Buxadé M, Lunazzi G, Minguillón J, Iborra S, Berga-Bolaños R, Del Val M, et al. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFATs. *J Exp Med.* (2012) 209:379–93.

doi: 10.1084/jem.20111569

206. Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Tertilt C, Bopp T, et al. Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. *J Immunol.* (2006) 177:6667–74.

doi: 10.4049/jimmunol.177.10.6667

207. Baumruker T, Csonga R, Jaksche D, Novotny V, Prieschl EE. TNF-alpha and IL-5 gene induction in IgE plus antigen-stimulated mast cells require common and distinct signaling pathways. *Int Arch Allergy Immunol.* (1999) 118:108–11.

doi: 10.1159/000024042

208. Lim S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, et al. dNP2 is a blood-brain barrier-permeable peptide enabling cTcA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. *Nat Commun.* (2015) 6:8244.

doi: 10.1038/ncomms9244

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.