Prediction of Deflection of Single-pile Nailed-slab by Using the Allowable Equivalent Modulus of Subgrade Reaction in Case of Additional Modulus from Modified Hardiyatmo Method

A Puri¹, F Oktavia², D B E Dharmowijoyo³ and M Ali³

¹ Department of Civil Engineering, Islamic University of Riau - Indonesia
² Civil Engineering Postgraduate Program, Islamic University of Riau - Indonesia
³ Department of Civil and Environmental Engineering, Universiti of Teknologi Petronas - Malaysia

Corresponding author: anaspuri@eng.uir.ac.id

Abstract. An equivalent modulus of subgrade reaction was proposed for analyzing the Nailed-slab Pavement System. This modulus is defined by accumulating the modulus of subgrade of the slab and the additional modulus of subgrade reaction which is contributed by a pile under the slab. The additional modulus can be defined by the Modified Hardiyatmo Method. The equivalent modulus of subgrade reaction only considers a safety factor for additional modulus of subgrade reaction. In this research, a global safety factor will be considered for all modulus. This research is aimed to learn the prediction of the slab deflection by using the allowable equivalent modulus of subgrade reaction. The global safety factor was varied by 1.0, 2.0; 2.5; and 3.0. The slab deflection was calculated by using Beam on Elastic Foundation. Data of the nailed-slab and the soil were based on the previous researcher for a single pile nailed-slab model. Results show that the calculated deflection of the slab was in good agreement with the observed deflection. Increasing the global safety factor resulted in the over-estimated slab deflections. It means the design by using allowable equivalent modulus of subgrade reaction tends to result in a safety zone.

1. Introduction

Physical modeling of nailed-slab and its analytical study have been conducted for soft clay ([1],[2], [3], [4], [5], [6], [7], [8], [9], [10]). An equivalent modulus of subgrade reaction was proposed to analyze the Nailed-slab System ([3], [4], [6], [7], [8], [9], [11], [12], [13], [14]). The equivalent modulus of subgrade reaction is cumulative of the modulus of subgrade reaction of the slab (k) and additional modulus of subgrade reaction (Δk). The additional modulus of subgrade reaction based on the relative displacement between the pile and soils was used [4]. The development of the formula was based on static theory. A new approach for practical purposes in designing the Nailed-slab System was proposed [7]. This approach considered that the pile friction resistance is fully mobilized and a tolerable settlement is adopted. The proposed method of analysis is applied on one row of the pile of the Nailed-slab. In the practice, the Nailed-slab will be constructed by multiple rows of piles. This system will have higher capacity and stiffness. Hence, designing the Nailed-slab System based on an analysis of the one-row pile will produce a safe design ([7], [9]).

In designing the Nailed-slab, it is required an equivalent modulus of subgrade reaction due to pile bearing contribution (k'). The analytical approach of this modulus is determined by accumulating the
modulus of subgrade reaction of the slab \((k)\) and the additional modulus of subgrade reaction \((\Delta k)\). The \(\Delta k\) is representing the contribution of the installed pile under the slab. The equivalent modulus of subgrade reaction \((k')\) is given as follows ([4], [3], [6], [7]):

\[
k' = k + \Delta k
\]

where \(k\) is the modulus of subgrade reaction from plate load test \((\text{kN/m}^3)\), \(\Delta k\) is the additional modulus of subgrade reaction \((\text{kN/m}^3)\).

The mobilization of unit friction resistance of pile shaft is ranged in the elastic zone [7]. Safety factor 2.5 is usually used in the practice of determining the pile allowable bearing capacity. Then the additional modulus of subgrade reaction \((\Delta k)\) can be defined by the Modified Hardiyatmo Method (Equation (2)). In this case, the end bearing resistance of the pile is neglected due to the small dimension of the pile and the embedded pile in soft soils.

\[
\Delta k = \frac{f_s A_s}{2.5 \delta_a A_{ps}}
\]

where \(\delta_a\) is the tolerable settlement of rigid pavement slab \((\text{m})\), \(f_s\) is the ultimate unit friction resistance of pile shaft \((\text{kN/m}^2)\), \(A_s\) is the surface area of pile shaft \((\text{m}^2)\), \(A_{ps}\) is the area of plate zone which supported by a single pile \((\text{m}^2)\), and 2.5 is the safety factor. And the equation (2) can be written as [9]

\[
\Delta k = \frac{f_s A_s}{SF \delta_a A_{ps}}
\]

The end bearing resistance of pile can be ignored for nailed-slab which resting on soft soils. Previous researchers were applied Equation (3) with variation in \(SF\) ([15], [16]).

According to equation (1), (2), and (3), the safety factor is only considered for additional modulus. In this research, a safety factor will be considered for all modulus of Equation (1). Hence, equation (1) is written as

\[
k'_a = \frac{k'}{SF_G}
\]

\[
k'_u = \frac{k' + \Delta k_m}{SF_G}
\]

where \(k'_a\) is the allowable equivalent modulus of subgrade reaction \((\text{kN/m}^3)\), and \(SF_G\) is a global safety factor. Since Equation (4) has a global safety factor, a safety factor in Equation (2) and (3) should be neutral \(1.0\). Then the additional modulus of subgrade reaction should be deformed as a modified additional modulus of subgrade reaction \((\Delta k_m)\).

\[
\Delta k_m = \frac{f_s A_s}{\delta_a A_{ps}}
\]

This paper is aimed to learn the prediction of the slab deflection by using the allowable equivalent modulus of subgrade reaction. In this case, a single-pile nailed-slab that loaded on concentric load will be considered.

2. Methodology

Puri [13] presented the detail of the procedure on single-pile full-scale Nailed-slab and briefly described also in Puri, et.al. ([11], [17]). The single-pile full-scale nailed-slab was constructed on soft clay. The model was loaded by a hydraulic jack on the center of the slab. The loads were transferred to the slab surface by using a circular steel plate. Slab deflections were measured by dial gauge on the center of the slab and each corner of the slab. Figure 1 shows the schematic diagram of the testing investigation and Figure 2 presents photographs of the investigation [13].
Figure 1. Schematic Diagram of The Testing Investigation: a). Plan View; b). Cross Section and Loading Equipment [13].

Figure 2. Photographs of Concentric Loading Test on The Single-Pile Nailed-Slab System [13].

The soft clay properties are presented in Table 1. The slab and piles were reinforced concrete. The concrete strength characteristic of the slab and piles was 29.2 MPa and 17.4 MPa respectively. The flexural strength of the slab was 4,397.6 kPa. The coefficient of subgrade reaction was 15,000 kPa/m based on the standard plate load test. The corrected coefficient was 3,750 kPa/m based on the dimension and shape of the slab [18].
Table 1. Soft Clay Properties [11]

Parameter	Unit	Average
Specific gravity, G_s		2.55
Consistency limits:		
- Liquid limit, LL	%	88.46
- Plastic limit, PL	%	28.48
- Shrinkage limit, SL	%	9.34
- Plasticity index, PI	%	59.98
- Liquidity index, LI	%	0.36
Water content, w	%	54.87
Clay content	%	92.93
Sand content	%	6.89
Bulk density, γ	kN/m3	16.32
Dry density, γ_d	kN/m3	10.90
Undrained shear strength, s_u	kN/m2	20.14
CBR	%	0.83
Soil classification:		
- AASHTO	-	A-7-6
- USCS	-	CH

Figure 3 shows the P-δ relationship for loading tests. The installed pile under the slab reduced slab settlement and increased the bearing capacity of the structure. The elastic condition reached about 30 kN.

![Figure 3. P-δ Relationship for Loading Tests of Single-Pile Nailed Slab [13].](image)

The SF_G was varied by 1.0; 2.0; 2.5 and 3.0. An analysis of the deflection was calculated by the theory of Beams on the Elastic Foundation (BoEF). The BoEF analysis was conducted by using the “BoEF.xls software version 1.4”. According to the limitation of BoEF, some simplification has to be done ([9], [13]), neglecting the lean concrete reaction modulus and slab thickening. Since the slab thickening was neglected, then the pile length was adjusted by adding the thickness of slab thickening with the initial pile length. The comprehensive analysis procedure is presented in Puri, et.al [11], and Puri [9]. Briefly, the analysis procedure as follows: a) calculating the corrected coefficient of subgrade reaction of the soft clay under the slab (corrected due to the dimension and the shape of the slab—in this study, the correction based on Das method [16]), b) calculating the modified additional modulus
of subgrade reaction of the soft clay by using Equation (5) (the tolerable settlements (δ_a) were taken by using observed deflections), c) calculating the equivalent modulus of subgrade reaction, d) calculating the allowable equivalent modulus of subgrade reaction by using Equation (4b), e) calculating the inertia moment of the slab, f) input the required parameters into BoEF software, and g) investigate the results (output of the bearing pressure is not considered).

3. Results and Discussion

3.1. Allowable Equivalent Modulus of Subgrade Reaction

The soil modulus of subgrade reaction for 1.20 m slab width was 4,500 kPa/m. The equation (5) was used to calculate the modified additional modulus of subgrade reaction due to single-pile installation under the slab; the results are shown in Table 2 by variation in safety factor. The tolerable settlements (δ_a) were taken by using maximum observed deflections. Allowable equivalent modulus of subgrade reaction is included in Table 2.

Load, P (kN)	$\delta_s = \delta_s$ (mm)	SF_G	Δk_m (kN/m3)	$k_{a'}$ (kN/m3)
5	0.24	1.0	66200.71	1.0
		2.0	33100.36	2.0
		2.5	26480.28	2.5
		3.0	22066.90	3.0
10	0.48	1.0	35803.09	1.0
		2.0	17901.54	2.0
		2.5	14321.23	2.5
		3.0	11934.36	3.0
20	0.98	1.0	19689.80	1.0
		2.0	9844.90	2.0
		2.5	7875.92	2.5
		3.0	6563.27	3.0
40	2.95	1.0	4783.35	1.0
		2.0	4783.35	2.0
		2.5	3826.68	2.5
		3.0	3188.90	3.0
60	5.86	1.0	7048.05	1.0
		2.0	7048.05	2.0
		2.5	2819.22	2.5
		3.0	2349.35	3.0

3.2. Result of Slab Deflection

The results of the deflection analysis are shown in Figure 4. Good results are obtained in the sense that the calculated settlement is in very good agreement with observation for $SF_G = 1.0$. For $SF_G = 1.0$, the over-estimated about 34% for maximum load 60 kN. The modified additional modulus of subgrade reaction (Δk_m) was done by using the tolerable settlements (δ_s) which were taken from observed deflections. In case this proposed method to be used for preliminary design analysis, the design could
have an additional safety level. Because the \(\delta_a \) should not exceed 5 mm to avoid the surface crack of the concrete slab.

\(SF_G \) variation affects the calculated deflections. All calculated deflection based on the variation of \(SF_G \) tends to over-estimate. The over-estimated tends to increase by increasing in \(SF_G \). For \(SF_G = 3.0 \), the over-estimated about 229% for maximum load.

![Figure 4. P-\(\delta \) relationship on loading point of single-pile nailed-slab by variation of \(SF_G \).](image)

It is also shown in Figure 4 that \(P-\delta \) curves are in the elastic-plastic zone which is deferred with the theory. Higher the \(SF_G \), elastic-plastic behavior is weaker. In this case, the Poisson’s ratio did not influence the slab deflections [13]. The BoEF analysis is two dimensional (2D). Poisson’s ratio can influence the inner stresses. Hence, the failure criteria of the slab will increase. This means that the preliminary design by using Equation (4) will be in the safety zone.

4. Conclusions
This paper introduced the allowable equivalent modulus of subgrade reaction and the modified additional modulus of subgrade reaction. The additional modulus of subgrade reaction was calculated by Modified Hardiyatmo Method. The deflection of the slab was calculated by variation in the global safety factor and compared to the observed deflection. Results show that the calculated deflection of the slab was in good agreement with the observed deflection. Increasing the global safety factor resulted in the over-estimated slab deflections. In case this proposed method to be used for preliminary design analysis, the design could have an additional safety level. Because the \(\delta_a \) should not exceed 5 mm to avoid the surface crack of the concrete slab. Others, in the field, this Nailed-slab pavement system would be constructed by many numbers of pile rows that could increase the stiffness of the system. Hence, the slab deflections would be smaller. It means the design by using allowable equivalent modulus of subgrade reaction tends to result in a safety zone. Then, this research should be followed up by further research which is considering the number of pile rows.

5. References
[1] H C Hardiyatmo and B Suhendro 2003 Pile Foundation with Thin Pile Cap as an Alternative to Solve Problems of Building on Soft Soils Report of Competitive Grant Research of Higher Education (Yogyakarta: Institute for Research and Community Service Gadjah Mada University).
[2] H C Hardiyatmo 2008 Nailed-Slab System for Reinforced Concrete Slab on Rigid Pavement Proc. of the National Seminar on Appropriate Technology for Handling Infrastructures (Yogyakarta: MPSP JTSF FT UGM) p M-1-M-7.
[3] H C Hardiyatmo 2009 Method to Analyze the Slab Deflection by Using Equivalent Modulus of
Subgrade Reaction for Flexible Slab Structure *Dinamika Teknik Sipil* Vol. 9 pp. 149-154

[4] H C Hardiyatmo 2011 Method to Analyze the Deflection of the Nailed Slab System *IJCEE-IJENS* Vol. 11 pp. 22-28 (Islamabad: IJENS Publisher)

[5] A Puri, H C Hardiyatmo, B Suhendro, and A Rifa’i 2011 Experimental Study on Deflection of Slab which Reinforced by Short Friction Piles in Soft Clay *Int. Proc. of 14th Annual Scientific Meeting (PIT) HATTI* pp. 317-321 (Yogyakarta: HATTI)

[6] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2011 Contribution of Wall Barrier to Reduce the Deflection of Nailed-Slab System in Soft Clay *Int. Proc. of 9th Indonesian Geotech. Conf. and 15th Annual Scientific Meeting (KOGEI IX & PIT XV)* HATTI pp. 299-306 (Jakarta: HATTI)

[7] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2012 Determining Additional Modulus of Subgrade Reaction Based on Tolerable Settlement for the Nailed-slab System Resting on Soft Clay *Int. Journal of Civil and Environmental Engineering IJCEE-IJENS* Vol. 12 (3) pp. 32-40 (Islamabad: IJENS Publisher)

[8] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2012 Application of The Additional Modulus of Subgrade Reaction to Predict The Deflection of Nailed-slab System Resting on Soft Clay Due to Repetitive Loadings *Int. Proc. of 16th Annual Scientific Meeting (PIT) HATTI* pp. 217-222 (Jakarta: HATTI)

[9] A Puri 2015 Behavior of Pavement of Nailed-slab System on Soft Clay *Dissertation Doctoral Program of Civil Engineering* (Yogyakarta: Gadjah Mada University)

[10] A Puri, B Suhendro and A Rifa’i 2017 Effects of Vertical Wall Barrier on The Rigid Pavement Deflection of Full-Scale 1-Pile Row Nailed-Slab System on Soft Sub Grade *Int. Journal of GEOMATE* Vol. 12 (32) pp. 25-29 (Mie: The Geomate International Society)

[11] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2013 Application of Method of Nailed-slab Deflection Analysis on Full Scale Model and Comparison to Loading Test *Int. Proc. the 7th National Conference of Civil Engineering (KoNTekS7)* pp. G201-211 (Surakarta: UNS)

[12] A K Somantri 2013 Kajian Lendutan Pelat Terpaku pada Tanah Pasir dengan Menggunakan Metode Beam on Elastic Foundation (BoEF) dan Metode Elemen Hingga *Master’s Thesis Program Studi Teknik Sipil* (Yogyakarta: Program Pascasarjana UGM).

[13] A Puri 2017 Developing the Curve of Displacement Factor for Determination the Additional Modulus of Subgrade Reaction on Nailed-slab Pavement System *Int. Journal of Technology* Vol. 8 pp. 124-133 (Depok: University of Indonesia)

[14] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2019 Validating The Curve of Displacement Factor Due To Full Scale Of One Pile Row Nailed-Slab Pavement System *Int. Journal of GEOMATE* Vol 17 (59) pp. 181-188 (Mie: The Geomate International Society)

[15] A Puri 2017 Effect of Safety Factors on The Calculated Deflection of 1-Pile Row Full Scale Nailed-Slab Pavement System Resting on Soft Clay Due to Concentric Loadings *ICoSET & ICoSEEH UIR 2017* (Pekanbaru: Islamic University of Riau).

[16] A Puri, F Oktavia, and R Mildawati 2018 Pengaruh Tahanan Ujung Tiang Dan Faktor Aman Terhadap Lendutan Pelat Terpaku Tiang Tunggal Pada Lempung Lunak Proceeding 20th SEAGC – 3rd AGISSEA Conference in conjunction with 22nd Annual Indonesian National Conference on Geotechnical Engineering pp. 529-533 (Jakarta: HATTI)

[17] A Puri, H C Hardiyatmo, B Suhendro and A Rifa’i 2014 The Behavior of Nailed-slab System on Soft Clay Due to Repetitive Loadings by Conducting a Full-Scale Test *IJCEE-IJENS* Vol. 14 pp. 24-30 (Islamabad: IJENS Publisher)

[18] B M Das 2011 *Principle of Foundation Engineering 7th ed* (Stamford- Cengage Learning).

[19] D R Agustin, A Puri and R Ardiansyah 2017 Perhitungan Lendutan Perkerasan Jalan Sistem Cakar Ayam Modifikasi dengan Variasi Faktor Aman pada Tambahan Modulus Reaksi *Subgrade J. Saintis* Vol. 01 pp. 15-23
Acknowledgments
Authors to thanks for supporting by Research Institute and Community Services (LPPM) and the Laboratory of Civil Engineering Computational of Islamic University of Riau.