Do Financing and Investment Determine the Capital Market Reaction? Evidence from Listed Mining Companies in Indonesia

Bambang Surahman*, Elisa Khairani, Erna, Erita
Management Dept of Economic Faculty, Universitas Gajah Putih Takengon, Indonesia
Animal Husbandry Dept of Agriculture Faculty, Universitas Gajah Putih Takengon, Indonesia
*Corresponding author: bambangsurahman.ugp@gmail.com

Abstract
Objective – The level of trust in the stocks market is one of the important factors to improve the company’s image in facing the increasingly challenging global market. The stock market’s trust can be analyzed by the business capital owned by its company. This research aims to analyze the influence of financing and investment on the dependent variables of capital reaction taking the samples of mining companies listed on the Indonesia Stock Exchange (IDX). This study also analyzes the responses in the ability of mining companies in the capital market.

Design/methodology – The associative approach has been used in this research and a descriptive research model has been utilized. This research is intended to examine the free effect of financing and investment on the dependent variable of the market reaction. The sample used in this study is saturated sampling. Samples of 32 companies out of 44 mining companies listed on the IDX were drawn for analysis purposes.

Results – This study found that DER financing and PER investment (price-earnings ratio) have no significant impact on capital market reaction TVA (trading volume activity) in listed mining companies in Indonesia. It can be concluded that increasing quality of mining companies in Indonesia are mostly not influenced by the power of DER and investment PER.

Keywords: Stocks Market, DER (Debt to Equity Ratio), PER (Price Earnings Ratio).

1. Introduction
Optimizing firm value is deemed as utmost important for every company. Optimization of firm value can be achieved by the implementation of well financial management (Sharma et al., 2019), where financial decision will affect all finances and subsequently having an impact on the value of the enterprise (Xu et al., 2020). According to Hasnawati (2005b: 29), financial management involves the resolution of important decisions taken by the company, including financing or funding and investment decisions. An optimal combination of the two will maximize the value of the company which in turn will increase the wealth of shareholders’ wealth.

Financing is the management policy to obtain funds that will be used to fund their company. Financing of a company can be sourced from within the company (retained earnings) or funds sourced from outside the company (debt and issuance of shares). Funding policy can be seen from the comparison between the amount of debt with capital owned by a company or often known as DER (debt to equity ratio) (Anuar & Chin, 2016). Research by Chai and Zhang (2011: 391) and Kurniati (2003: 21) found that capital markets react negatively and significantly to a company’s DER information. Susilowati and Turyanto (2011: 19) find conflicting evidence that the capital market reacts positively to a company’s DER information.

Capital investment is one of the main aspects of investment in addition to determining the composition of assets. Capital allocation decisions in investment proposals must be evaluated and linked to the risks and expected outcomes (Hasnawati, 2005a: Journal of Accounting Research, Organization and Economics Vol. 3 (1), 2020: 1-14)
According to signaling theory, investment expenditure provides a positive signal about the company’s growth in the future, so that it can increase the price of shares used as an indicator of company value (Wahyudi and Pawestri, 2006: 38).

Decisions concerning investment will determine the source and form of funds for financing (Segura & Zeng, 2020). The problem that must be answered in funding related to the source of funds is whether the source is internal or external (Hudenko & Pocs, 2014; Ly & Shimizu, 2018), the size of the debt and their capital, and how to type of debt and the capital will be used, bearing in mind the financing structure will determine the cost of capital that will be the basis for determining the required return is desirable (Iwaki, 2019).

In formulating its financing and investment policy, the company’s ultimate goal in the long run is to optimize company value (Wahyudi and Pawestri, 2006: 40). The value of the company will be reflected in its share price (Fama, 1978: 37; Wright and Ferris, 1997: 57). Stock prices in the capital market are formed based on an agreement between the demand and supply of investors hence the stock price is a fair price that can be used as the value of the company (Hasnawati, 2005a: 41 and 2005b: 39). Stock return is a reflection of the ability of business units to generate profits by using company resources efficiently, hence the higher the profit of the company, the higher the value of the company (Wright and Ferris, 1997: 59).

If the market can react or optimally utilize funding and investment information in making funding and investments, then investment and funding information will have an impact on changes in stock prices and trading volume activity (TVA). Thus, the research analyzed the influences of financial DER (Debt to Equity Ratio) and PER investment (Price Earning Ratio) to stock market reaction TVA (Trading Volume Activity) is important. This research is focusing to the influence of both funding and investment to the capital market reaction of the mining companies in the Indonesia stock market.

2. Theory

Financing

Financing mainly refers to the efforts of the company to provide funds that the company will use to finance its investment. It leads to policy for spending decision or investment funding (Cuthbertson et al., 2016). Financing policy is a policy regarding investment spending or financing decisions. It includes ways to fund the company’s activities to be optimal, how to obtain funds for efficient investment and how to compose an optimal source of funds that must be maintained (Ouoba, 2020). An increase in debt is interpreted by outsiders concerning the company’s ability to pay obligations in the future. An indication of low business risk will be subsequently responded positively by the market. There are two views about business financing. The first view is known as the traditional view which states that the capital structure affects the value of the company. The traditional view is represented by two theories namely Trade off Theory and Pecking Order Theory (Frank & Goyal, 2007). Meanwhile, another financing approach described that capital structures does not affect the enterprise value (Ogbulu & Emeni, 2012).

Several research discuss a number of factors relevance to financing and found that that there is an increase in abnormal returns the day before and after the announcement of an increase in the proportion of debt, on the contrary there is a decrease in abnormal returns when the company announces a decrease in the proportion of debt. It was also found that the company’s share price rises when it is announced that a loan will be issued to buy back the company’s shares. (Masulis, 1980). Other study also discovered that investments resulting from leverage have positive information about the company in the future, subsequently a positive impact on the value of the company (Fama & French, 1998) and also influences enterprise value (Ouoba, 2020).
Debt to Equity Ratio (DER) is one of the leverage ratio (solvability) which measures the contribution of own capital and long-term investment in the company’s capital structure (Anuar & Chin, 2016). Debt to Equity Ratio (DER) means the comparison between debt with equity. DER quantified by the percentage formula (Ang, 1997). This research uses the debt to equity ratio (DER) for financing policy. DER or “leverage” quantified by comparison between the company’s debt with capital possessed by the company. Leverage describe the management alternative for the funding source that utilized for the investment. Therefore, the greater leverage indicates the large proportion of the debt to capital and conversely.

Investment

Investment is policies related to how companies allocate funds to various forms of investment. Financial management relates to the use of funds obtained by the company both from banks and the capital market or from other parties that are invested in fixed assets and current assets. In general, investments can be in the form of real assets such as land, gold, machinery, buildings and others, and can also be in the form of investments in financial assets (financial assets) such as deposits or purchases of securities. (Dwi Cahyaningdyah, 2013).

The investment can also be defined as current consumption delays to be included in earning assets for a certain period of time, either in the form of real assets (such as houses, land and gold) or in the form of financial assets (securities) that are traded among investors (Hartono, 2010).

The value of a company formed through the stock market value indicator is strongly influenced by investment opportunities. Investment expenditure gives a positive signal about the company’s growth in the future, thus increasing stock prices as an indicator of company value (signaling theory). (Kromidha & Li, 2019). Price Earning Ratio (PER) is a market ratio that compares the market price of a stock with the Earning Per Share of the relevant stock. Data on Price To Earning Ratio (PER) is measured in units (Jogiyanto, 2000).

Capital Market Reaction

Essentially capital market is basically a meeting place of parties who have excess funds (surplus funds) by investing in securities issued by the company and those who need funds (entities) by offering securities by listing in advance at the authority in the capital market as a company. Shares are proof of ownership of the capital of a company. Shares are one source of funds obtained by companies that come from capital owners with the consequence that companies must pay dividends (Kaldoninski et al., 2019; Wijayana & Achjari, 2019).

Definition of the share was also rescribed by Bambang Riyanto as proof of taking part or participants in the enterprise. In an efficient capital market, all securities are traded at market prices (Riyanto, 2001). Stock market prices are prices determined by investors through an agreement of demand and supply. The agreement can occur because investors deal with the price of a stock. The formation of stock market prices as the stock market price is formed through the mechanism of demand and supply in the capital market (Sartono, 2001).

The capital market is a one of business trading securities such as stocks, stock certificates, and bonds. In the classical sense, as can be seen in practice in capitalist countries, securities trading is actually a private enterprise activity. The main motive lies in the problem of capital requirements for companies that want to further advance the business by selling their shares to money owners or investors both groups and business institutions.

Much information outstanding in the market can affect the share market situation. Moreover, capital market reaction to information can also be seen with Trading Volume Activity (TVA) (Koubaa & Slim, 2019). Trading Volume Activity is an instrument that
can be used to observe capital market reactions to information through the parameters of the movement of stock trading volume activities in the capital market. Trading Volume Activity calculation is done by comparing the number of shares of a company traded in a certain period with the total number of shares outstanding from that company in the same period.

3. Research Method

The associative approach has been used in this research and a descriptive research model has been utilized. This research is intended to examine the free effect of financing and investment on the dependent variable of the market reaction. The selection of this methodology is considered relevant, considering that associative research is more directed towards statistical data and the use of formulas with this descriptive study, it is probable that the author will obtain accurate information about the effect of financing and investment towards market reactions in mining companies listed on the Indonesia Stock Exchange.

The sample used in this study is saturated sampling. Saturated sampling is sampling technique which use all members of the population as samples, whereby criteria are based on certain characteristics, traits or characteristics, which are the main characteristics of the population (Arikunto, 2006: 134). Based this definition, then from a population of 44 mining companies listed on the IDX, only 32 companies have complete data which will then become the research sample, as in table 1.

No	Stock Code	Companies
1	ADRO	Adaro Energy Tbk
2	ATPK	ATPK Resources Tbk
3	BORN	Borneo Lumbung Energy & Metal Tbk
4	BRAU	Berau Coal Energy Tbk
5	BUMI	Bumi Resources Tbk
6	BYAN	Bayan Resources Tbk
7	DEWA	Darma HenwaTbk
8	DOID	Delta Dunia Makmur Tbk
9	GTBO	Garda Tujuh Buana Tbk
10	HRUM	Harum energy Tbk
11	IMTG	Indo Tambangraya Megah Tbk
12	KKGI	Resource Alam Indonesia Tbk
13	MYOH	Myoh Technology Tbk
14	PKPK	Perdana Karya Perkasa
15	PTBA	Tambang Batubara Bukit Asam (Persero) Tbk
16	PTRO	Petrosea Tbk
17	SMMT	Golden Eagle Energy Tbk
18	ARTI	Ratu Prabu energi Tbk
19	BIPI	Benakat Integra Tbk
20	ELSA	Elnusa Tbk
21	ENGR	Energy Mega Persada Tbk
22	MEDC	Medeo Energi International Tbk
23	RUIS	Radiant Utama Interinsco Tbk
24	SUGI	Sugih Energy Tbk
25	ANTM	Aneka Tambang (Persero) Tbk
26	CITA	Cita Mineral Tbk
27	CRKA	Cakra Mineral Tbk
28	INCO	Vale Indonesia Tbk
29	TINS	Timah (Persero) Tbk
30	CNKO	Exploitasi Energi Indonesia Tbk
31	CTTH	Citatah Tbk
32	MITI	Mitra Investindo Tbk
4. Result and Discussion

Descriptive Analysis

a) DER Descriptive Analysis

The DER variable has two forming variables, namely the company's total debt as a numerator and the company's total capital as the denominator. DER or leverage is often calculated by comparing the debt held by the company with its capital.

No	Companies	1st year (%)	2nd year (%)	3rd year (%)	4th year (%)	5th year (%)	Average (%)
1	ADRO	1.18	1.32	1.23	1.11	1.08	1.18
2	ATPK	0.70	1.89	2.44	0.33	0.31	1.13
3	BORN	0.30	0.81	4.85	(5.32)	(3.48)	(0.57)
4	BRAU	4.06	2.93	7.87	23.97	701.84	148.13
5	BUMI	4.06	5.26	17.75	(24.12)	(28.90)	(5.19)
6	BYAN	1.81	1.24	1.70	2.48	2.29	1.90
7	DEWA	0.37	0.29	0.61	0.65	0.71	0.53
8	DOID	10.85	10.33	11.96	14.81	16.08	11.73
9	GTBO	0.74	0.42	0.29	0.21	0.23	0.38
10	HRUM	0.40	0.31	0.26	0.22	0.23	0.28
11	IMTG	0.51	0.46	0.49	0.44	0.43	0.47
12	KKGI	0.72	0.49	0.42	0.45	0.32	0.48
13	MYOH	(4.41)	1.36	3.77	1.32	1.35	0.68
14	PKPK	1.59	1.43	1.49	1.27	1.06	1.37
15	PTBA	0.36	0.41	0.50	0.55	0.57	0.48
16	PTRO	0.84	1.37	1.83	1.58	1.57	1.44
17	SMMT	(2.19)	(1.50)	0.08	0.35	0.43	(0.57)
18	ARTI	0.27	0.81	0.67	0.70	0.69	0.63
19	BIFI	0.40	0.19	0.20	1.82	1.79	0.88
20	ELSA	0.89	1.30	1.10	0.91	0.77	0.99
21	ENGR	1.00	1.83	2.00	1.61	1.53	1.59
22	MEDC	1.86	2.02	2.15	1.82	1.81	1.93
23	RUIS	1.78	3.65	3.94	3.88	4.23	3.50
24	SUGI	0.01	0.03	0.03	0.41	0.86	0.27
25	ANTM	0.27	0.41	0.54	0.71	0.72	0.53
26	CTIA	0.98	0.81	0.73	0.80	0.70	0.80
27	CKRA	0.02	0.01	0.03	0.01	0.01	0.02
28	INCO	0.30	0.37	0.36	0.33	0.30	0.33
29	TINS	0.40	0.43	0.34	0.61	0.64	0.48
30	CNKO	0.34	0.67	1.04	0.64	0.70	0.68
31	CTTH	1.66	1.87	2.32	3.13	2.98	2.39
32	MITI	2.24	0.88	0.57	0.41	0.45	0.91

Source: Indonesia Stock Exchange (IDX)

The information needed for the DER is on a company's balance sheet. The balance sheet requires total shareholder equity to equal assets minus liabilities, which is a rearranged version of the balance sheet equation:

\[
DER = \frac{\text{Total Liabilities}}{\text{Total Shareholder's Equities}} \times 100\% \tag{1}
\]

And

\[
\text{Assets} = \text{Liabilities} + \text{Shareholder Equity} \tag{2}
\]

b) PER Descriptive Analysis

The PER variable has two forming variables namely the market price of shares as a numerator and the company's net income as the denominator.
Analysts and investors review a company’s PER when they determine if the share price accurately represents the projected earnings per share. The formula and calculation used for this process follow.

\[
PER = \frac{Market \ Value \ per \ Share}{Earnings \ per \ Share} \times 100\% \tag{3}
\]

To determine the PER value, one simply must divide the current stock price by the earnings per share (EPS). The current stock price (P) can be gleaned by plugging a stock’s ticker symbol into any finance website, and although this concrete value reflects what investors must currently pay for a stock, the EPS is a slightly more nebulous figure.

Table 3. Average PER of Samples of Mining Companies Listed on the Indonesia Stock Exchange (IDX)

No	Companies	1st year (%)	2nd year (%)	3rd year (%)	4th year (%)	5th year (%)	Average (%)
1	ADRO	36.95	11.16	13.78	12.26	9.43	16.72
2	ATPK	(6.05)	(5.55)	(7.05)	81.44	20.23	16.60
3	BORN	67.60	7.70	(1.79)	(1.27)	(0.23)	14.40
4	BRAU	28.72	9.93	(3.92)	(10.36)	(3.28)	4.22
5	BUMI	22.49	23.16	(1.81)	(1.07)	0.98	8.75
6	BYAN	80.99	28.74	46.44	(67.81)	(115.98)	(55.52)
7	DEWA	293.85	(7.82)	(2.81)	(4.11)	(20.30)	51.76
8	DOID	(68.90)	(15.49)	(7.44)	(3.66)	(18.11)	
9	GTBO	184.56	19.63	6.45	119.37	(3.50)	51.76
10	HRUM	29.49	10.82	12.02	13.23	5.69	14.25
11	IMTG	31.29	8.74	11.38	11.28	5.36	13.61
12	KKGI	22.29	14.33	7.34	9.47	12.96	
13	MYOH	238.94	58.76	34.18	5.97	3.91	68.35
14	PKPK	12.87	(37.40)	(14.88)	51.20	30.73	8.50
15	PTBA	26.32	12.95	15.33	14.17	11.61	16.08
16	PTRO	6.91	7.01	2.80	4.53	19.89	8.23
17	SMMT	(55.96)	(101.42)	228.11	204.94	623.24	179.78
18	ARTI	16.23	41.63	7.86	9.47	7.79	16.60
19	BIP1	(31.83)	(30.21)	(47.84)	11.15	9.61	(17.82)
20	ELSA	37.12	2.62	9.31	15.32	13.69	15.61
21	ENGR	(80.75)	28.59	12.48	0.99	6.22	(6.49)
22	MEDC	15.08	1.83	92.26	45.19	55.62	42.00
23	RUIS	12.01	42.26	0.18	5.22	3.24	12.58
24	SUGI	28.03	28.47	282.79	(78.77)	246.44	101.39
25	ANTM	13.88	8.03	4.08	22.41	(9.48)	7.78
26	CITA	10.72	4.06	4.33	2.27	(6.64)	2.95
27	CKRA	(7.69)	28.69	(332.19)	9550.48	(108.11)	1847.86
28	INCO	12.34	10.51	38.48	35.97	43.22	28.10
29	TINS	14.60	9.37	17.79	42.83	26.07	22.13
30	CNKO	9.25	5.71	18.74	51.04	91.54	35.26
31	CITH	6.93	95.36	25.87	13.07	5.38	29.32
32	MITI	19.63	4.79	9.66	9.83	14.33	11.65

Source: Indonesia Stock Exchange (IDX)

c) Descriptive Trading Volume Activity (TVA)

Trading Volume is one variable that uses Trading Volume Activity (TVA) as an indicator or instrument that can be used to see capital market reactions to information through the parameters of the movement of stock trading volume activities in the capital market. Changes in stock trading volume indicate stock trading activities on the stock exchange and reflect investment decisions taken by investors. Calculation of Trading Volume Activity (TVA) is carried out with the number of shares of a company traded in a certain period with the total number of shares outstanding in the same period of
time by observing data for 5 years (2010-2014). TVA can be measured with a formulation as follows:

$$TVA = \frac{\text{Number of shares i traded time } t}{\text{Number of shares i outstanding at time } t}$$ (4)

No	Companies	1st year (%)	2nd year (%)	3th year (%)	4th year (%)	5th year (%)	Average (%)
1	ADRO	0.06	0.66	0.09	0.08	0.12	0.20
2	ATPK	0.30	0.34	0.25	0.05	0.91	0.37
3	BORN	0.41	0.04	0.05	0.08	0.00	0.12
4	BRAU	0.07	0.01	0.08	0.04	0.10	0.06
5	BUMI	0.04	0.03	0.07	0.12	0.15	0.08
6	BYAN	0.01	0.10	0.04	0.04	0.51	0.14
7	DEWA	0.02	0.05	0.01	0.03	0.15	0.05
8	DOID	0.25	0.04	0.07	0.23	0.08	0.14
9	GTBO	0.13	0.23	0.00	0.07	0.12	0.11
10	HRUM	0.14	0.08	0.09	0.07	0.10	0.10
11	IMTG	0.08	0.06	0.05	0.06	0.11	0.07
12	KKGI	0.47	0.02	0.11	0.02	0.07	0.14
13	MYOH	0.00	4.22	0.01	0.00	0.00	0.85
14	PKPK	0.01	0.05	0.04	0.09	0.02	0.04
15	PTBA	0.06	0.05	0.07	0.08	0.08	0.07
16	PTRO	0.00	0.00	0.17	0.02	0.06	0.05
17	SMMT	0.12	0.01	0.12	0.99	0.00	0.25
18	ARTI	0.00	0.04	0.01	0.03	0.33	0.08
19	BIPI	0.02	0.22	4.00	0.09	0.14	0.89
20	ELSA	0.04	0.09	0.07	0.14	0.12	0.09
21	ENGR	0.07	0.10	0.04	0.03	0.09	0.07
22	MEDC	0.09	0.02	0.11	0.02	0.18	0.08
23	RUIS	0.04	0.05	0.21	0.00	0.03	0.07
24	SUGI	0.48	0.61	0.29	0.07	0.14	0.32
25	ANTM	0.04	0.04	0.06	0.09	0.08	0.06
26	CTIA	1.02	0.11	0.00	0.00	0.01	0.23
27	CKRA	0.04	0.02	0.00	0.02	0.36	0.09
28	INCO	0.03	0.04	0.11	0.09	0.12	0.08
29	TINS	0.06	0.04	0.06	0.05	0.17	0.08
30	CNKO	0.04	0.09	0.15	0.03	0.18	0.10
31	CTTH	0.02	0.08	0.10	0.01	0.12	0.07
32	MITI	0.24	0.07	0.02	0.02	0.11	0.10

Source: Indonesia Stock Exchange (IDX)

Based on tables 2, 3 and 4, it turns out that the average DER, PER and TVA data are not normally distributed, thus data transformation must be carried out to obtain normally distributed data, as in table 5.

No	Companies	DER (X1)	PER (X1)	TVA (Y)
1	ADRO	1.392	279.560	0.040
2	ATPK	1.277	275.560	0.136
3	BORN	0.325	207.360	0.014
4	BRAU	296.260	17.818	0.004
5	BUMI	26.934	76.562	0.006
6	BYAN	3.610	30.470	0.019

Source: Indonesia Stock Exchange (IDX)

Table 5. Transformer Tabulation Data of Variable DER, PER and TVA Variables of Mining Companies Listed on the Indonesia Stock Exchange (BEI)
Calculation of Trading Volume Activity (TVA) is carried out with the number of shares of companies traded in a certain period with the total number of shares circulating in the same period of time by observing data for 5 years.

d) Descriptive Statistics

Descriptive statistics provide a description of the value characteristics of the variable under study. The characteristic value of a variable can be the mean (mean) and standard deviation (standard deviation). Descriptive statistics of each variable are presented in Table 6.

Table 6. Descriptive Statistic of Variables DER, PER and TVA

	N	Min.	Max.	Mean	Std. Dev
DER	32	-3.40	2.47	1.032	1.04762
PER	32	.94	6.53	2.6216	1.06137
TVA	32	-2.80	-.10	1.8889	.65308

Table 6 shows that the average DER is 0.1032, the average PER is 2.6216 and the average TVA is 1.8889. Furthermore, in normalizing the variable data, the SPSS 16.0 statistical program was used. The whole process of normalization of the data carried out made the number of N, which initially 44 pieces of data to only 32 pieces of data. From this amount of data, then the statistical calculation process is carried out.
Classical Assumption Test

a) Normality test

In a good regression model the data must be normally distributed. Normality test is performed by testing the normality of the residuals. Residual normality test on 44 samples of the company is carried out by issuing 12 samples that have extreme residual values (DER, PER and TVA data are incomplete), hence 32 samples are used for further testing. Residual normality test in this study used the Kolmogorov-Smirnov statistical test. The results of the Kolmogorov-Smirnov statistical test of the company can be seen in table 7.

Kolmogorov-Smirnov Test

N	32	
Normal Parameters	Mean	1.8889
	Std. Dev	.65308
Most Extreme Absolute Differences	Positive	.193
	Negative	-.106
Kolmogorov-Smirnov Z	1.089	
Asymp. Sig. (2-tailed)	186	

The normality test results obtained the Kolmogorov-Smirnov value of 1.089 with a significance level of 0.186. Because the significance value of the Kolmogorov-Smirnov test is greater than 0.05, it can be concluded that the residuals are normally distributed. The results of the assumption normality test of the regression model can also be analyzed using the graph as Figure 1.

Figure 1 shows that the data appears to spread along diagonal lines and histogram diagrams that are not skewed left or right. This shows that the residual data model is normally distributed. Then it can be stated that the linear regression model meets the assumptions of normality.

b) Multicollinarity Test

Assumptions that must be met by a model regression in order to produce results is that there is no multicolliniarity. Multicolliniarity test in this study was conducted by looking at the VIF value of each independent variable. The results of the company's multicollinnariarity test can be seen in table 8.

![Figure 1. Normal P-P Standard Residual Regression Graph.](image-url)
Based on table 8. It can be concluded that there is no independent variable that has a VIF value greater than 10, hence it can be concluded that there is no serious correlation between the independent variables in the regression model tested or in other words there is no multicollinearity in the regression model created.

c) Autocorrelation Test

Expected results from a regression model can be obtained if there is no autocorrelation. Autocorrelation test in this study was carried out with the Durbin-Watson test (DW test). The results of the Durbin-Watson test for the sample of this company can be seen in table 9 and 10.

Model Summary¹b
Model

1

Predictors : (Constant). PER. DER
Dependent Variable: TVA

The DW Table value as shown at table 4.9 is 2.318. Since of the DW Table value is greater than DW Test which is 1.574, it can be concluded that there is no autocorrelation in the regression model.

d) Heteroscedasticity Test

The regression model is considered good if there is no heteroscedasticity in the regression model. Heteroscedasticity test in this study was carried out using scatterplot charts. Detection of heteroscedasticity is done by analyzing certain types of scatterplot charts that have been studentized. Heteroscedasticity test results of the sample companies can be seen in table 11.
The Glejser test results showed that the significance level of DER was 0.901 and the significance level of PER was 0.350. Because none of these independent variables is significant to the residual value at the 0.05 level, it can be concluded that there was no heteroscedasticity in the regression model. Furthermore, if the heteroscedasticity test uses a scatterplot graph, the following results are obtained.

![Scatterplot](image)

Figure 2 shows the distribution of variates residual points spreading. The data point spreading up and down around the 0 (zero) point. Data point do not collect only above or below 0 (zero) point. The spread of data points cannot form a wavy pattern of spread then narrows and widens again and data point spread of patternless data points. The result indicate that there is no heteroscedasticity, thus the regression analysis can be applied.

Multiple Linear Regression Analysis

After the assumption test is performed, the model suitability test and hypothesis test are performed. The results of the analysis that affect TVA are presented in Table 12 which shows that there are 2 variables that influence the TVA (Y) variable, namely DER (X1) and PER (X2)

Model	Unstandardized Coefficient	Unstandardized Coefficient	t	Sig.	Collinearity Statistics		
	B	Std. Error	Beta		Tolerance	VIF	
(Constant)	-2.248	.389		5.785	.000		
PER	.138	.145	.224	.950	.350	595	1.682
DER	.018	.147	.030	.126	.901	595	1.682

Table 12. Multi Linear Regression Test

To simplify the interpret the regression analysis, an equation form that contains constants and regression coefficients is obtained from the results of data processing that has been done previously. The regression equation is as follows

\[Y = -2.248 + 0.018X_1 + 0.138X_2 + \varepsilon \]

In this regression model, the constant values listed are -2.248. This shows that the average effect of all independent variables DER and PER on the TVA variable is -2.248. This means that each DER addition of 1.00 will add a TVA of 0.018 and each additional PER of 1.00 will add a TVA of 0.138
Hypothesis testing is simultaneously carried out by the F test, and partially carried out by the t test, with the level of significance in this study indicating $\alpha = 5\%$ or 0.05. Hypothesis testing results are described in the following section.

Test the Effect of Variables Simultaneously (F Testing)

Model	Sum of Square	df	Mean Square	F	Sig.	
1	Regression	.562	2	.281	.644	.532
	Residual	12.659	30	.437		
	Total	13.222	32			

Predictors : (Constant), PER, DER
Dependent Variable : TVA

The influence of DER and PER variables simultaneously using the F test is presented in Table 13 which shows that the F significance value is 0.532. The value obtained is greater than the probability of error that is tolerated, which is $\alpha = 5\%$ or 0.05. This shows that H_0 is accepted or H_1 is rejected, namely the DER (X1) and PER (X2) variables simultaneously have no significant effect on the TVA (Y) variable.

Partial Variable Influence Test (t Test)

After testing the effect of variables simultaneously, the discussion is continued with partial testing of the effect of variables. The results of the partial effect test using the t test are presented in Table 14.

Coefficients	Model	Unstandardized Coefficient	Unstandardized Coefficient	t	Sig.	Tolerance	VIF
	(Constant)	-2.248	.389	-5.785	.000		
PER	.138	.145	.224	.950	.350	-595	1.6
DER	.018	.147	.030	.126	.901	-595	1.6

Dependent Variable : TVA

1) DER

Table 14 shows that the DER variable has a t count of 0.126. T count value obtained is smaller than t table of 2.042. This shows that H_0 is accepted or H_1 is rejected, namely the DER variable (X1) partially does not significantly influence the TVA (Y) variable significantly.

2) PER

Table 14 shows that the PER variable has a calculated value of 0.950. $T\ count$ value obtained is smaller than $t\ table$ of 2.042. This shows that H_0 is accepted or H_1 is rejected, namely PER variable (X2) partially does not significantly influence the TVA (Y) variable.

3) Coefficient of Determination (R2)

The coefficient of determination (R2) of output data can be illustrated in Table 15.
Based on table 15 shows that the coefficient of determination (R2) obtained is 0.043. This shows that 4.3% of the TVA (Y) variable can be explained by the DER variable (X1), and the PER variable (X2).

5. Conclusions, Limitations, and Suggestions

The results of this study revealed that DER funding does not affect the capital market reaction of TVA (Trading Volume Activity) in the context of mining companies listed on the Indonesia Stock Exchange. Additionally PER investment does not also affect the capital market reaction of TVA (Trading Volume Activity) of mining companies listed on the Indonesia Stock Exchange. Meanwhile no effect were found of DER (Debt to Equity Ratio) funding and PER (Price Earning Ratio) investments on the capital market reaction of TVA (Trading Volume Activity) for mining companies listed on the Indonesia Stock Exchange.

This study is limited in several aspects particularly in the limited number of variables hence future studies are suggested to add other variables such as ratio of EPS, DAR, ROA, ROE, GPM, and OPM. These variables are expected to illustrate the analysis of DER funding (Debt to Equity Ratio) that there is an influence on TVA (Trading Volume Activity) capital market reaction of mining companies listed on the Indonesia Stock Exchange more accurately. Future studies may also extend the observation period, hence the conclusions of the research will be more generalized and be used by the public for consideration in policies making.

References

Ang, R. (1997). *Buku Pintar Pasar Modal Indonesia*. Media Staff Indonesia.

Anuar, H., & Chin, O. (2016). The Development of Debt to Equity Ratio in Capital Structure Model: A Case of Micro Franchising. *Procedia Economics and Finance, 35* (October 2015), 274–280. https://doi.org/10.1016/s2212-5671(16)00034-4

Cuthbertson, K., Nitzsche, D., & O’Sullivan, N. (2016). A review of behavioural and management effects in mutual fund performance. *International Review of Financial Analysis, 44*, 162–176. https://doi.org/10.1016/j.irfa.2016.01.016

Dwi Cahyaningdyah, Y. D. R. (2013). Pengaruh Kebijakan Manajemen Keuangan Terhadap Nilai Perusahaan. *Jurnal Dinamika Manajemen, 3*(1), 20–28. https://doi.org/10.15294/jdm.v3i1.2456

Fama, E. F., & French, K. R. (1998). Taxes, financing decisions, and firm value. *Journal of Finance, 53*(3), 819–843. https://doi.org/10.1111/0022-1082.00036

Frank, M. Z., & Goyal, V. K. (2007). Trade-Off and Pecking Order Theories of Debt. In *Handbook of Empirical Corporate Finance SET* (Vol. 1, Issue 06). Woodhead Publishing Limited. https://doi.org/10.1016/B978-0-444-53265-7.50004-4

Hartono, J. (2010). Bias dari Penggunaan Model di MBAR. *Jurnal Ekonomi Dan Bisnis Indonesia, 14*, 28–36.

Hudenko, J., & Pocs, R. (2014). The Effects of Internal Failures and External Regulations on State Funding of the Public-use Rail Infrastructure. *Procedia - Social and Behavioral Sciences, 156* (April), 216–218. https://doi.org/10.1016/j.sbspro.2014.11.176

Iwaki, H. (2019). The effect of debt market imperfection on capital structure and investment: Evidence from the 2008 global financial crisis in Japan. *Quarterly Review of
Economics and Finance, 74, 251–266. https://doi.org/10.1016/j.qref.2019.01.008

Jogiyanto. (2000). Teori Portofolio dan Analisis Investasi, Edisi Kedua. BPFE, Yogyakarta.

Kaldoński, M., Jewartowski, T., & Mizerka, J. (2019). Capital market pressure, real earnings management, and institutional ownership stability - Evidence from Poland. International Review of Financial Analysis, November 2018, 1–20. https://doi.org/10.1016/j.irfa.2019.01.009

Koubaa, Y., & Slim, S. (2019). The relationship between trading activity and stock market volatility: Does the volume threshold matter? Economic Modelling, 82(April 2018), 168–184. https://doi.org/10.1016/j.econmod.2019.01.003

Kromidha, E., & Li, M. C. (2019). Determinants of leadership in online social trading: A signaling theory perspective. Journal of Business Research, 97(March 2018), 184–197. https://doi.org/10.1016/j.jbusres.2019.01.004

Ly, K. C., & Shimizu, K. (2018). Funding liquidity risk and internal markets in multi-bank holding companies: Diversification or internalization? International Review of Financial Analysis, 57(2018), 77–89. https://doi.org/10.1016/j.irfa.2017.12.011

Masulis, R. (1980). The effect of capital structure change on security prices: A Study of exchange offer. Journal of Financial Economics, 8, 139–177.

Ogbulu, O. M., & Emeni, F. K. (2012). Capital Structure and Firm Value: Empirical Evidence from Nigeria. International Journal of Business and Social Science, 3(19), 252–261.

Ouoba, Y. (2020). Natural resources fund types and capital accumulation: A comparative analysis. Resources Policy, 66(October 2019), 101635. https://doi.org/10.1016/j.resourpol.2020.101635

Riyanto, B. (2001). Dasar-Dasar Pembelanjaan Perusahaan. BPFE, Yogyakarta.

Sartono, A. (2001). Manajemen Keuangan Internasional. BPFE, Yogyakarta.

Segura, A., & Zeng, J. (2020). Off-balance sheet funding, voluntary support and investment efficiency. Journal of Financial Economics. https://doi.org/10.1016/j.jfineco.2020.02.001

Sharma, S. S., Narayan, P. K., Thuraisamy, K., & Laila, N. (2019). Is Indonesia’s stock market different when it comes to predictability? Emerging Markets Review, 40(June), 100623. https://doi.org/10.1016/j.ememar.2019.100623

Wijayana, S., & Achjari, D. (2019). Market reaction to the announcement of an information technology investment: Evidence from Indonesia. Information and Management, March 2018, 103248. https://doi.org/10.1016/j.im.2019.103248

Xu, B., Costa-Climent, R., Wang, Y., & Xiao, Y. (2020). Financial support for micro and small enterprises: Economic benefit or social responsibility? Journal of Business Research, November 2019. https://doi.org/10.1016/j.jbusres.2020.01.071