Automatically identifying changes in the semantic orientation of words

Paul Cook and Suzanne Stevenson
University of Toronto
Amelioration and pejoration

- Changes in a word's meaning to have a more positive or negative evaluation

- Historical examples
 - Amelioration: Urbane
 - Pejoration: Hussy

- Contemporary examples
 - Amelioration: Pimp
 - Pejoration: Gay
Challenges

● Natural language processing
 – Many systems for sentiment analysis require appropriate and up-to-date polarity lexicons

● Lexicography
 – Identify new word senses and changes in established senses to keep dictionaries current
Inferring semantic orientation

- Semantic orientation from association with known positive and negative words
 - Turney and Littman's (2003) SO-PMI

\[
SO-PMI(t) = PMI(t, POS) - PMI(t, NEG)
\]

\[
PMI(t, S) \approx \log \left(\frac{N \sum_{s \in S} freq(t, s)}{freq(t) \sum_{s \in S} freq(s)} \right)
\]

- A difference in polarity between corpora of differing time periods indicates amelioration or pejoration
General Inquirer Dictionary

● Lexicon intended for text analysis
 – Some entries mark positive or negative outlook

● Seed words: All words labelled positive or negative (but not both)

● 1621 positive seeds, 1989 negative seeds
 – Turney and Littman: 7 positive seeds, 7 negative seeds
Corpora

- Three corpora of British English from differing time periods.

Corpus	Size (millions of words)	Time period
Lampeter	1	1640-1740
CLMETEV	15	1710-1920
BNC	100	Late 20th c.
Inferring polarity

● Verify that our method for inferring polarity works well on small corpora

● Leave-one-out experiment
 – Classify each seed word with frequency greater than 5 using all others as seeds
 – Performance metric: Accuracy over all words, and only words with calculated polarity in top 25%
Inferring polarity: Results

Corpus	Accuracy: All	Accuracy: top-25%
Lampeter	75	88
CLMETEV	80	92
BNC	82	94

- Most frequent class baseline: 55%
Historical data

● Small dataset of ameliorations and pejorations
 - Taken from texts on semantic change, dictionaries, and Shakespearean plays
 - Underwent change in (roughly) 18th c.
 - 6 ameliorations, 2 pejorations

● Compare calculated change in polarity (Lampeter to CLMETEV) to change indicated by resources
Historical data: Results

Expression	Change identified from resources	Calculated change in polarity
ambition	amelioration	0.52
eager	amelioration	0.97
fond	amelioration	0.07
luxury	amelioration	1.49
nice	amelioration	2.84
succeed	amelioration	-0.75
artful	pejoration	-1.71
plainness	pejoration	-0.61
Artificial data

● Suppose *good* in one corpus and *bad* in another were in fact the same word
 – Similar to WSD evaluations using artificial words
 – Requires choosing pairs of words

● Instead compare average polarity of all positive words in one corpus to that of all negative words in another
Artificial data: Results

Polarity in lexicon	Average polarity in corpus		
	Lampeter	CLMETEV	BNC
Positive	0.58	0.50	0.40
Negative	-0.74	-0.67	-0.76
Hunting new senses

- **Hypothesis**: Words with largest change in polarity between two corpora have undergone amelioration or pejoration
- Identify candidate ameliorations and pejorations
 - 10 largest increases/decreases in polarity from CLMETEV to BNC
Usage extraction

● For each candidate extract 10 random usages (or as many as are available) from each corpus
 – Extract the sentence containing each usage

● Randomly pair each usage from CLMETEV with a usage from BNC
Usage annotation

- Use **Amazon Mechanical Turk** to obtain judgements
- Present **turkers** with pairs of usages
- Turkers judge which usage is more positive/negative (or if usages are equally positive)
- 10 independent judgements per pair
Hunting new senses: Results

Candidate type	Proportion of judgements for corpus of more positive usage		
	CLMETEV (earlier)	BNC (later)	Neither
Ameliorations	0.28	0.34	0.37
Pejorations	0.36	0.27	0.36
Noisy seed words

・Seed words may undergo amelioration and pejoration!

・Randomly change polarity of n% of positive and negative seeds
 - E.g., *good* is negative, *bad* is positive

・Repeat experiment on inferring synchronic polarity
Noisy seed words: Results

![Graph showing accuracy percentage vs. noisy seed words percentage]

- BNC
- CLMETEV
- Lampeter
Conclusions

● First computational study focusing on amelioration and pejoration
 – Encouraging results identifying historical and artificial ameliorations and pejorations

● Future work:
 – More extensive evaluation
 – Methods for identifying semantic change and dialectal variation in word usage
Thank you

● We thank the following organizations for financially supporting this research
 – The Natural Sciences and Engineering Research Council of Canada
 – The University of Toronto
 – The Dictionary Society of North America