CASE REPORT

Prenatal presentation of an adrenocortical tumor

Jeffrey H. Schwartz1,2 | Erlyn Smith1,2

1Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
2UF Health Pediatric Subspecialty Clinic, Pensacola, Florida, USA

Correspondence
Jeffrey H. Schwartz, UF Health Pediatric Subspecialty Clinic, 5153 N 9th Avenue, Pensacola, FL 32504, USA.
Email: schwartzj@ufl.edu

Abstract

Background: Prenatally identified suprarenal masses are most often found to be adrenal hemorrhage. The most common tumor in this situation is neuroblastoma.

Case Presentation: We report the case of a rare adrenocortical tumor found prenatally on ultrasound. While most patients with adrenocortical tumors present with virilizing symptoms, our patient did not have evidence of virilization and was presumed to have neuroblastoma.

Conclusion: Following a period of observation, our patient underwent surgical resection due to tumor growth revealing the unexpected diagnosis.

KEYWORDS
adrenal, adrenocortical, neuroblastoma, suprarenal

1 | INTRODUCTION

Prenatally diagnosed adrenal masses are uncommon.1 Most often, these masses are due to an adrenal hemorrhage although tumors and other etiologies occur as well.2–5 Even though imaging may not confirm a definitive diagnosis, surgical intervention is not always required. Adrenocortical tumors are rare pediatric tumors and most patients present in early childhood with signs or symptoms of endocrinopathy.6,7 Herein, we report the case of an adrenocortical tumor diagnosed by prenatal ultrasound without associated endocrinopathy.

2 | CASE PRESENTATION

A 3-day-old female was transferred from an outside hospital for evaluation of a right adrenal mass. She was born at 39 weeks via repeat Cesarean section. Pregnancy was complicated by maternal preeclampsia and hyperglycemia. Additionally, a right adrenal mass was found on a routine ultrasound 2 weeks prior to delivery. She subsequently had two follow up ultrasounds, one prior to birth and another shortly after birth, which again demonstrated the presence of the right adrenal mass. The abdominal ultrasound showed a 4.8 \times 3.9 \times 3.3 cm mass that appears confluent to and/or abutting the posterior right kidney. This was followed by a CT abdomen which showed a 4.6 \times 3.3 \times 3.2 cm right adrenal mass (Figure 1) and the MRI of the abdomen confirmed the presence of the tumor measuring 4.5 \times 4 \times 3.7 cm.

On exam, the infant was well appearing without any signs of virilization. There was also no evidence of Cushing's syndrome. Her family history was positive only for maternal hypertension; there was no reported history of benign or malignant tumors within the family. Urine catecholamine metabolites were normal: homovanillic acid (HVA) was 13 and vanillylmandelic acid (VMA) was 7. Evaluation for additional adrenocortical hormones was not performed. Metaiodobenzylguanidine (MIBG) scan was negative. She was diagnosed with presumed neuroblastoma without any clinical or radiological evidence of metastatic disease. We followed Children’s Oncology Group clinical trial ANBL1232 (off study) of which she was categorized as Group A1 per International Neuroblastoma Risk Group classification (INRG; L1 tumor, age <6 months, tumor size 3.1–5 cm) since she was ineligible for the clinical trial. She was observed every 6 weeks with abdominal ultrasounds and urine catecholamines. At the first 6 week interval, the abdominal ultrasound was unchanged and the urine catecholamine metabolites were slightly increased compared to the initial values though still normal (HVA 19, VMA 10).

At 12 weeks, the adrenal mass increased in size by greater than 50%, measuring at 5.6 \times 4.2 \times 4.7 cm (Figure 1). Urine catecholamine metabolites were further elevated compared to previous values.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2022 The Authors. Cancer Reports published by Wiley Periodicals LLC.
(HVA 24, VMA 13) although still within normal limits. The parents decided to proceed to tumor resection. The tumor was resected without any complications and pathology showed a 6.3 cm adrenocortical tumor. The tumor was encapsulated with no invasion of the capsule or extension into adjacent structures seen. Focal areas of hemorrhage with necrosis were present. Mitotic figures were ~10 per 20 HPF. Inhibin and Calretinin were both strongly and diffusely positive. Synaptophysin was weakly positive. Chromogranin A was negative and Ki67 showed ~10% to 15% positivity; Chromogranin B was not performed.

3 | DISCUSSION

The differential diagnosis of a prenatal suprarenal mass includes malignant and benign tumors, as well as nontumor etiologies. The most common etiology is an adrenal hemorrhage. Depending on the case series, neuroblastoma and pulmonary sequestrations are the next most common etiologies.\(^2\)\(^-\)\(^5\) Prenatal ultrasounds are the standard first mode of imaging. Fetal MRI has been utilized for follow-up imaging, with one case series showing a 70% concordance rate between ultrasound and MRI.\(^4\)

Postnatal evaluations of adrenal masses frequently include a repeat ultrasound followed by either CT scan or MRI. If imaging does not exclude neuroblastoma, urinary random catecholamine metabolites should be sent, including HVA and VMA. Additionally, an MIBG scan should be obtained. Further management will depend on the underlying etiology.

As our patient had a solid adrenal mass confirmed by CT and MRI, the most likely etiology was felt to be neuroblastoma. Previous studies of neuroblastoma have shown that infants with small localized masses can be observed without intervention.\(^6\)\(^-\)\(^9\) Of 83 patients observed without intervention, only 19% ultimately underwent surgery. Of those 16 patients, 6 had diagnoses other than neuroblastoma including 2 with adrenocortical tumors. The 3 year Event Free Survival was 97.7% and the 3 year Overall Survival was 100%. A current Children's Oncology Group Clinical trial is investigating expanding the criteria for clinical observation to infants up to 12 months old with INRG Stage L1 adrenal tumors less than 5 cm in greatest diameter.

| TABLE 1 | Clinical features at birth of patients with adrenocortical tumors diagnosed prenatally |
|----------|---------------------------------------------------------------|
| Series   | Gender | Postnatal clinical findings |
| Godil et al. | M | Abdominal mass, seizure, pulmonary metastases |
| Izbizky et al. | F | Abdominal mass, cliteromegaly |
| Michalkiewicz et al. | NR | NR |
| Miele et al. | NR | NR |
| Sarwar et al. | M | Abdominal mass |
| Present case | F | None |

Abbreviations: NR, not reported.

After extensive discussion and review of the literature with the family, the decision was made to observe our patient closely to avoid surgery. Due to the tumor growth and rising catecholamine metabolites (although never elevated per age-based reference ranges), our patient underwent an uncomplicated resection revealing an adrenocortical tumor.

Adrenocortical tumors have an incidence of 0.2 per 1 000 000 children in the United States according to the Surveillance, Epidemiology, and End Results (SEER) Program.\(^9\) Most pediatric cases occur in children less than 4 years of age and there is a female predominance.\(^6\)\(^-\)\(^7\) It is uncommon that a diagnosis is made prenatally by ultrasound, with only five previous patients reported to our knowledge.\(^6\)\(^-\)\(^7\)\(^10\)\(^-\)\(^12\) All of the patients with available information had a palpable abdominal mass on exam, unlike our patient who had a normal abdominal exam (Table 1). The majority of patients with adrenocortical tumors has localized disease and present with virilizing symptoms.\(^6\)\(^-\)\(^12\) Our patient had localized disease but did not have virilizing symptoms or other evidence of endocrinopathy. As such, the diagnosis of adrenocortical tumor was not considered likely. Of the adrenocortical tumors, a minority (20%~33%) is adenomas\(^9\)\(^-\)\(^14\) and differentiation between adenoma and carcinoma in pediatric patients can be challenging.\(^7\) A study by Wienke et al. proposed a scoring system which accurately predicts benign versus aggressive tumor behavior.\(^15\)\(^-\)\(^17\) Our patient’s tumor met only one of the Wienke criteria definitively (atypical mitosis) with an additional criterion being...
TABLE 2  Pathologic features of adrenocortical tumors associated with worse clinical outcomes

| Pathologic feature                      | Published criteria | Our patient’s results |
|-----------------------------------------|--------------------|-----------------------|
| Tumor weight                            | >400 g             | 136 g*                |
| Tumor size                              | >10.5 cm           | 6.3 cm                |
| Vena cava invasion                      | Present            | Absent               |
| Capsular and/or vascular invasion       | Present            | Absent               |
| Extension into perirenal soft tissue    | Present            | Absent               |
| Severe necrosis                          | Present            | Focal areas of necrosis |
| >15 Mitotic figures per 20 HPF          | Present            | 10 Mitotic figures per 20 HPF |
| Atypical mitotic figures                 | Present            | Present              |
| Ki67 index positivity                    | >15%               | ~10%–15%             |

Note: All criteria published by Wienke et al. except (Ki67 index positivity) published by Picard et al.

*Weight not documented; estimated based on pre-surgical imaging measurements.

due to tumor growth revealing an adrenocortical tumor with predicted benign activity. This case exemplifies the importance of maintaining a broad differential diagnosis and close observation when there is not a definitive diagnosis.

AUTHOR CONTRIBUTIONS
Jeffrey H. Schwartz: Conceptualization (lead); investigation (supporting); methodology (equal); writing – original draft (lead); writing – review and editing (equal). Erlyn Smith: Conceptualization (supporting); investigation (lead); methodology (equal); writing – original draft (supporting); writing – review and editing (equal).

CONFLICT OF INTEREST
The authors have stated explicitly that there are no conflicts of interest in connection with this article.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ETHICS STATEMENT
Institutional approval was not required for this single patient case report. Informed consent for publication was obtained from the patient’s parents for the publication of case details and use of images.

ORCID
Jeffrey H. Schwartz https://orcid.org/0000-0002-1636-0444

REFERENCES
1. Vasilatou-Kosmidis H. Cancer in neonates and infants. Med Pediatr Oncol. 2003;41:7-9.
2. Yao W, Li K, Xiao X, et al. Neonatal suprarenal mass: differential diagnosis and treatment. J Cancer Res Clin Oncol. 2013;139(2):281-286.
3. Moon S, Shin H, Seo J, Lee S. Clinical features and surgical outcome of suprarenal mass detected before birth. Pediatr Surg Int. 2010;26(3):241-246.
4. Flanagan SM, Rubesova E, Jaramillo D, Barth RA. Fetal suprarenal masses—assessing the complementary role of magnetic resonance and ultrasound for diagnosis. Pediatr Radiol. 2016;46(2):246-254.
5. Lazow SP, Richman DM, Dionigi B, et al. Prenatal imaging diagnosis of suprarenal lesions. Fetal Diagn Ther. 2021;48(3):235-242.
6. Michalkiewicz E, Sandrini R, Figueiredo B, et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international pediatric adrenocortical tumor registry. J Clin Oncol. 2004;22:838-845.
7. Miele E, Di Giannatale A, Croccoli A, et al. Clinical, genetic, and prognostic features of adrenocortical tumors in children: a 10-year single-center experience. Front Oncol. 2020;10:554388. doi: 10.3389/fonc.2020.554388.
8. Nuchtert JG, London WB, Barnewolt CE, et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children’s oncology group study. Ann Surg. 2012;256(4):573-580.
9. Surveillance, epidemiology, and end results (SEER) program SEER*Stat Database: Incidence—SEER Research Data, 16 SEER Registries, Nov 2020 Sub (1975–2018). www.seer.cancer.gov.
10. Godil MA, Atlas MP, Parker RI, et al. Metastatic congenital adrenocortical carcinoma: a case report with tumor remission at 3 ½ years. J Clin Endocrinol Metab. 2000;85:3964-3967.
11. Izbizky G, Elias D, Gallo A, et al. Prenatal diagnosis of fetal bilateral adrenal carcinoma. *Ultrasound Obstet Gynecol*. 2005;26:669-671.
12. Sarwar ZU, Ward VL, Mooney DP, et al. Congenital adrenocortical adenoma: case report and review of literature. *Pediatr Radiol*. 2004;34:991-994.
13. Ciftci AO, Senocak ME, Tanyel FC, Buyukpamukcu N. Adrenocortical tumors in children. *J Pediatr Surg*. 2001;36(4):549-554.
14. Teinturier C, Pauchard MS, Brugieres L, et al. Clinical and prognostic aspects of adrenocortical neoplasms in childhood. *Med Pediatr Oncol*. 1999;32(2):106-111.
15. Wiencke JA, Thompson LDR, Heffess CS. Adrenal cortical neoplasms in the pediatric population: a clinicopathologic and immunophenotypic analysis of 83 patients. *Am J Surg Pathol*. 2003;27(7):867-881.
16. Martins-Filho SN, Almeida MQ, Soares I, et al. Clinical impact of pathological features including the Ki-67 labeling index on diagnosis and prognosis of adult and pediatric adrenocortical tumors. *Endocr Pathol*. 2021;32(2):288-300.
17. Jehangir S, Nanjundaiah P, Sigamani E, et al. Pathological prognostication of paediatric adrenocortical tumours: is a gold standard emerging? *Pediatr Blood Cancer*. 2019;66(4):e27567.
18. Picard C, Orbach D, Carton M, et al. Revisiting the role of the pathological grading in pediatric adrenal cortical tumors: results from a national cohort study with pathological review. *Mod Pathol*. 2019;32(4):546-559.
19. Hanna AM, Pham TH, Askegard-Giesmann JR, et al. Outcome of adrenocortical tumors in children. *J Pediatr Surg*. 2008;43(5):843-849.
20. Varley JM, McGown G, Thorncroft M, et al. Are there low-penetration TP53 alleles? Evidence from childhood adrenocortical tumors. *Am J Hum Genet*. 1999;65(4):995-1006.
21. Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. *J Clin Oncol*. 2009;27(8):1250-1256.
22. Correa H. Li-Fraumeni syndrome. *J Pediatr Genet*. 2016;5(2):84-88.
23. Pinto EM, Rodriguez-Galindo C, Lam CG, et al. Adrenocortical tumors in children with constitutive chromosome 11p15 paternal uniparental disomy: implications for diagnosis and treatment. *Fron Endocrinol*. 2021;12:756523.

**How to cite this article:** Schwartz JH, Smith E. Prenatal presentation of an adrenocortical tumor. *Cancer Reports*. 2022;5(10):e1670. doi:10.1002/cnr2.1670