Structural Parameters of Stellar Disks in Edge-on Galaxies from 2MASS Images

Mitronova S.1 and Bizyaev D. 2,3

ABSTRACT

We analyze the J, H, and Ks 2MASS images of 140 late-type edge-on galaxies selected from the RFGC catalog (which contains flat galaxies with major-to-minor axis ratio $a/b > 7$). The NIR scalelengths (h) and scaleheights (z_0) of the stellar disks are determined for all selected galaxies. The mean relative ratios of the scaleheights of their stellar disks are 1.00:0.91:0.86 in J:H:Ks bands, respectively. We infer that the scaleheight determined from the Ks-band images is, on average, 13\% larger than the extinction-free scaleheight. This difference is much larger if the scaleheights were found from the optical-band images. The relative thickness (z_0/h) of the stellar disks correlates well with their deprojected central surface brightness obtained from the 2MASS images. This project was partially supported by grant RFBR 04-02-16518.

1. Introduction, Data, and Analysis

Infrared observations are crucial for studies of the structure of edge-on galaxies. The all-sky 2MASS survey gives a good opportunity to enhance the number of edge-on galaxies available for studies in the near-infrared bands. Whereas faint parts of the galaxies are not seen in the 2MASS images, the thin disks of the galaxies are obtained with sufficient signal-to-noise (S/N).

We refer to the Revised Flat Galaxies Catalog (RFGC; it contains extragalactic objects with major-to-minor axis ratio $a/b > 7$) as to a source of edge-on galaxies. More than 200 RFGC galaxies with major axis size more than 1’ were selected. This size was estimated directly from the 2MASS images at the level $S/N \sim 3$ and is significantly less that commonly used diameter D_{25}. Of them, there are 140 galaxies taken in all three 2MASS bands: H, J, and Ks. We applied the technique described by Bizyaev & Mitronova (2002) to assess the structural parameters of edge-on disks: the radial (h) and vertical (z_0) scales, and central face-on surface brightness S_0. This method implies an analysis of photometric profiles drawn parallel to the major and minor axes of galaxy at a one-pixel interval. The h, z_0, and S_0 were obtained in the H, J, and Ks bands for selected 140 galaxies.

1Special Astrophysical Observatory, Nizhniy Arkhyz, Russia
2National Optical Astronomy Observatory, Tucson, AZ, USA
3Sternberg Astronomical Institute, Moscow, Russia
2. Results and Discussion

The dust layer in spiral galaxies is thinner than the stellar disk (see Xilouris E. et al. 1999). Since dust extinction is more significant in the J, and less important in the K_s, we expect to obtain smaller scaleheights for the same galaxies in the K_s and larger in the J. One of the program galaxy, RFGC 2946, is shown in Figure 1 in the J (top panel), H (middle), and K_s (bottom) bands. In Figure 2 (upper panel) one can see the scaleheights in different 2MASS bands for all considered edge-on galaxies. The scales in all bands are normalized by the scaleheight in the J. Histograms in lower panel of Figure 2 show the same normalized scaleheights in the H (dotted line) and K_s (dashed line). The mean relative ratios of the scaleheights are $1.00:0.91:0.86$ in J:H:K_s bands, respectively.

The different values of scaleheights z_0 for different bands enabled us to infer the structural parameters of our edge-on galaxies under assumption of zero extinction, i.e. if they had no dust. Here we assume that the ratio of scaleheights is a linear function of the internal extinction coefficient in given photometric band. It can be shown that this approximation should work well for small optical depths, i.e. for the case of NIR photometry). Hence, one can figure out the extinction-free z_0 for the case of zero extinction coefficient. The resulting value of the extinction-free scaleheights is, on average, 0.76 in units of z_0(J). Hence, the K_s scaleheight of thin stellar disks assessed in the K_s band overestimates the original scaleheight by, on average, only 13 %. Because of the large extinction, the scaleheights in the optical photometric bands much more significantly overestimate the real vertical scales of the stellar disks.

As it was shown in Bizyaev (2000); Bizyaev & Mitronova (2002); Kregel et al. (2005), the stellar disks with dimmer central surface brightness (S_0) tend to have smaller ratios of scales (z_0/h). The dust extinction may ne responsible for at least a part of this relation. Now we can check the relation z_0/h versus S_0 using the extinction-free scaleheights. The central surface brightness in the K_s band is considered as S_0. Since the scalelength for our galaxies does not indicate a clear systematic variation between the J, H, and K_s bands, we consider the K_s scalelength here as the "h". Figure 3 suggests that correlation between the vertical to radial scales ratio (z_0/h) and disks’ S_0 is not due to dust, but has a physical reason.

This project was partially supported by grant RFBR 04-02-16518. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the NASA and the NSF.

REFERENCES

Bizyaev, D., Mitronova, S. 2002, A&A, 389, 795

Xilouris, E. et al. 1999, A&A, 344, 868
Bizyaev, D. 2000, Astronomy Letters 26, 219

Kregel, M., van der Kruit, P. C., Freeman, K. C. 2005, MNRAS, 358, 503
Fig. 1.— Edge-on galaxy RFGC 2946 in the J (top), H (middle), and K$_s$ (bottom) bands.
Fig. 2.— Scale heights z_0 in 2MASS bands J, H, and K_s for all considered edge-on galaxies (top). All scales in all bands are normalized by the scale heights in the J. Histograms in the bottom panel show the same normalized scale heights in the H (dotted line), K_s (dashed line), and extinction-free (solid).
Fig. 3.— Relation between the vertical to radial scales ratio (z_0/h) and the deprojected disks’ central surface brightness S_0.