Third-family quark-lepton unification with a fundamental composite Higgs

Javier Fuentes-Martín1 and Peter Stang21

1Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland
2Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR5108, CNRS, Université de Savoie Mont-Blanc, B.P. 110, F-74941 Annecy-le-Vieux Cedex, France

We present a model for third-family quark-lepton unification at the TeV scale featuring a composite Higgs sector. The model is based on a variant of the Pati-Salam model, the so-called 4321 model, consisting of the gauge group $SU(4) \times SU(3) \times SU(2)_L \times U(1)_X$. The spontaneous symmetry breaking to the SM gauge group is triggered dynamically by a QCD-like confining sector. The same strong dynamics also produces the Higgs as a pseudo Nambu-Goldstone boson, connecting the energy scales of both sectors. The model predicts a massive U_1 vector leptoquark coupled dominantly to the third generation, recently put forward as a possible solution to the B-meson anomalies.

I. INTRODUCTION

The LHC discovery of a 125 GeV Higgs boson provides the Standard Model (SM) with its final eluding piece that completes it. However, it is still unclear whether the Higgs represents the first indication of a yet unknown natural theory, or just an ingredient of an unnatural Higgs sector. While nowadays some degree of tuning seems unavoidable, one viable solution to the naturalness problem is that of the Higgs being a composite particle arising from a strongly-coupled sector.

Historically, the main hurdles for composite scenarios have been electroweak (EW) precision data and flavor violation. In models where the Higgs is a pseudo Nambu-Goldstone boson (pNGB), it is possible to separate EW and compositeness scales \cite{1}. Corrections to the EW precision parameters are then under control if the pNGB decay constant is around (or above) the TeV \cite{2}. The flavor problem is commonly solved by making the SM fermions partially composite \cite{3}. This way, one can generate the required Yukawa interactions with the Higgs, while having partial protection against flavor violating observables. Even in this case, a non-trivial flavor structure is necessary to keep the pNGB decay constant around the TeV \cite{4,5}. An alternative approach consists in generating the Yukawas via bilinear terms of the form $\bar{\psi}_\text{SM} H \psi_\text{SM}$, with $H \equiv \Psi \bar{\Psi}$ being a composite operator \cite{6,7}. This solution is often disregarded based on the argument that the dynamics generating these operators is also likely to produce large flavor violation from operators of the form $(\bar{\psi}_\text{SM} \psi_\text{SM})^2$, which is strongly constrained experimentally. Such a conclusion drastically changes if one invokes flavor symmetries. Indeed, assuming that the underlying dynamics respects an approximate $U(2)^5$ flavor symmetry \cite{9,10}, it is possible to generate the required Yukawa couplings, without conflicting any flavor bound on the four-fermion operators.

While there is no direct signal of New Physics (NP) at the end of LHC Run II, present B-physics data show intriguing hints of lepton flavor universality violation that the SM cannot explain, the so-called B anomalies \cite{12,22}. Although the statistical significance of each anomaly is well below the discovery level, the overall set of deviations is very consistent, and a coherent NP picture seems to be emerging. The NP scale inferred from these anomalies is a few TeV, sustaining the hope that such NP sector might be related to the solution of the hierarchy problem \cite{23,24}. Moreover, the non-trivial flavor structure suggested by the data is consistent with the previously mentioned $U(2)^5$ flavor symmetry \cite{30,32}, pointing to a possible solution to the flavor problem in composite models \cite{25,27,29} and (or) the SM flavor puzzle \cite{53,55}.

The B anomalies have triggered a renewed interest in models of low-scale quark-lepton unification. Indeed, one of the most popular explanations involves the U_1 vector leptoquark \cite{31,32,36}, transforming under the SM gauge group as $(3, 1, 2/3)$. Interestingly, this is the same leptoquark appearing in the Pati-Salam model \cite{37}. However, the Pati-Salam leptoquark cannot accommodate this data, since it has to be very heavy to satisfy the tight bounds derived from its couplings to light SM fermions. The search for a renormalizable model with a TeV-scale U_1 leptoquark has led to the so-called 4321 models \cite{43,44,45}, based on the gauge group $G_{4321} \equiv SU(4) \times SU(3) \times SU(2)_L \times U(1)_X$. These models present several theoretically appealing features that go beyond the explanation of the B anomalies. For instance, they bring the possibility of unifying third-generation quarks and leptons at energy scales as low as TeV, introducing an (approximate) accidental $U(2)^5$ flavor symmetry, and can naturally explain the smallness of the Cabibbo-Kobayashi-Maskawa (CKM) mixing with the third family.

It is useful to compare the 4321 symmetry breaking pattern to that of the EW sector, given the astonishing similarity between the two. In the limit of vanishing gauge and Yukawa couplings, the SM Higgs sector has an $SU(2)_L \times SU(2)_R$ global symmetry. The Higgs vacuum expectation value (vev) spontaneously breaks this...
FIG. 1. Moose diagrams for the EW sector (left) and the 43(2)1 model (right). Following the notation in [45], we draw a solid circle when the entire global symmetry is gauged, and a dashed circle when a subgroup is. The solid lines represent sigma masses. The circle when the entire global symmetry is gauged, and a dashed circle when a subgroup is. The solid lines represent sigma masses.

As it is well known, QCD with Nf quark flavors has an SU(Nf)L × SU(Nf)R global symmetry that is spontaneously broken to its diagonal SU(Nf)V subgroup. In this case, the breaking is not induced by the vev of a scalar field, but by the quark condensate that forms after QCD becomes strongly coupled. While the scale of this breaking is far too low to explain the observed W and Z masses, it inspired the idea that a scaled-up version of QCD, known as technicolor [46–48], could be responsible for EW symmetry breaking. After the discovery of the Higgs boson, traditional technicolor was excluded. However, a technicolor-like breaking is still possible for the 4321 symmetry.

Given the apparent coincidence of scales between composite Higgs models and the B anomalies, and the fact that both seem to benefit from the same underlying flavor symmetries, we entertain the possibility of having both 4321 and EW symmetries broken by the same strongly-coupled “hypercolor” (HC) group. Our construction resembles a generalization of technicolor for the 4321 symmetry breaking, while the EW symmetry is broken by the vev of a composite Higgs arising as a pNGB of the same strong dynamics.

The outline of this letter is as follows: In Section II we introduce the 4321 models and define our conventions. The idea of a technicolor-like breaking of the 4321 symmetry is developed in Section III while Section IV is devoted to the discussion of the composite Higgs sector. We conclude in Section V.

II. THE 4321 MODEL(S)

A. Gauge sector

The 4321 models are defined by the gauge group

\[G_{4321} \equiv SU(4) \times SU(3)' \times SU(2)_L \times U(1)_X. \]

We denote the respective gauge fields by \(H^\mu_a, C^\mu_a, W^\mu_I \) and \(B^\mu_I \), and the gauge couplings by \(g_4, g_3, g_L \) and \(g_1 \), with indices \(A = 1, \ldots, 15, a = 1, \ldots, 8 \) and \(I = 1, 2, 3 \). The SM gauge group is embedded in the 4321 gauge group, with \(SU(3)_c \times U(1)_Y \equiv [SU(4) \times SU(3)' \times U(1)_X]_{\text{diag}} \) and \(SU(2)_L \) corresponding to the SM one. The hypercharge is defined in terms of the \(U(1)_X \) charge, \(X \),

1 Actually, what is gauged in the SM is the linear combination \(Y = T^3_R + \frac{1}{2} X_{B-L} \), where \(Y \) is the hypercharge generator and \(X_{B-L} \) is the generator of the baryon minus lepton number symmetry.
and the $SU(4)$ generator $T^4_4 = \frac{1}{2\sqrt{6}} \text{diag}(1,1,1,-3)$ by $Y = X + \sqrt{2/3} T^4_4$. In analogy to the EW sector, it is convenient to define the mixing angles $\theta_{1,3}$, which relate the 4321 gauge couplings to the SM ones,

\begin{align}
 g_c &= g_4 \sin \theta_3 = g_3 \cos \theta_3 , \\
 g_Y &= \sqrt{\frac{3}{2}} g_4 \sin \theta_1 = g_1 \cos \theta_1 ,
\end{align}

with g_c and g_Y denoting the $SU(3)_c$ and $U(1)_Y$ gauge couplings, respectively. These relations imply that, once we fix the SM gauge couplings, there is only one free gauge coupling in the 4321 models, which we choose to be g_4. Also note that, since $g_c > g_Y$, the relation $\sin \theta_1 > \sin \theta_3$ holds for any value of g_4.

In terms of the original 4321 gauge bosons, the SM gluon, G^a, and hypercharge gauge boson, B_μ, are given by

\begin{align}
 B_\mu &= \sin \theta_1 H_\mu^{15} + \cos \theta_1 B'_\mu , \\
 G^a_\mu &= \sin \theta_3 H^a_\mu + \cos \theta_3 C^a_\mu .
\end{align}

Apart from these, the 4321 gauge sector contains three additional gauge bosons, transforming under the SM subgroup as $U_1 \sim (3,1,2/3)$, $Z' \sim (1,1,0)$, and $G' \sim (8,1,0)$. After the spontaneous symmetry breaking $G_{4321} \rightarrow G_{\text{SM}}$ takes place, these additional gauge bosons acquire the masses

\begin{align}
 M_U = \frac{1}{2} g_4 f_U , \\
 M_{Z',G'} = \frac{1}{2} \frac{g_4}{\cos \theta_{1,3}} f_{Z',G'} ,
\end{align}

with the values of $f_{U,Z',G'}$ depending on the specific vev structure that triggers 4321 symmetry breaking. For instance, in the models in [44, 45], the breaking takes place through the vevs of the scalar fields $\Omega_1 \sim (4,1,1,-1/2)$, $\Omega_3 \sim (4,3,1,1/6)$ and $\Omega_{15} \sim (15,1,1,0)$.

\begin{align}
 (\Omega^0_1) = \frac{\omega_1}{\sqrt{2}} \delta_{4,4} , \\
 (\Omega^i_3) = \frac{\omega_3}{\sqrt{2}} \delta_{i,i} , \\
 (\Omega^A_{15}) = \frac{\omega_{15}}{\sqrt{2}} \delta_{A,15} ,
\end{align}

where $\alpha = 1,2,3,4$, $i = 1,2,3$, and $\Omega_{15} = \Omega^A_{15} T^A_4$ with T^A_4 being the $SU(4)$ generators normalized so that $\text{Tr}(T^A_4 T^B_4) = 1/2 \delta_{AB}$. This vev structure yields the following values for $f_{U,Z',G'}$:

\begin{align}
 f_U &= \sqrt{\omega_1^2 + \omega_3^2 + \frac{4}{3} \omega_{15}^2} , \\
 f_{Z'} &= \sqrt{\frac{3}{2} \omega_1^2 + \frac{1}{2} \omega_3^2} , \\
 f_{G'} &= \sqrt{2} \omega_3 .
\end{align}

Note that these vevs break the global $SU(4)_D$ discussed in Section 1 except $\omega_1 = \omega_3$ and $\omega_{15} = 0$. In this case, one has $f_U = f_{Z'} = f_{G'}$. Additional vev structures have been discussed in [44]. As shown in this reference, it is not possible to significantly decouple $f_{Z'}$ from f_U, irrespective of the chosen vev structure.

TABLE I. SM fermion content and 4321 representations

Field	$SU(4)$	$SU(3)_c$	$SU(2)_L$	$U(1)_X$
c^c_R	1	1	2	$-1/2$
c^c_L	1	1	-1	
q^c_L	1	3	2	1/6
u^c_R	1	3	1	2/3
d^c_R	1	3	1	$-1/3$
ψ_L	4	1	2	0
ψ^c_R	4	1	1	1/2
ψ^c_R	4	1	1	$-1/2$

Charging light and third generation quarks under two different $SU(4)$, $SU(3)_c$ and $SU(2)_L$ symmetry breaking sources, as discussed in [44, 43, 45]. This vev structure yields the accidental flavor symmetry

\begin{align}
 U(2)^5 \equiv U(2)_q \times U(2)_t \times U(2)_u \times U(2)_d \times U(2)_e .
\end{align}

This is also an approximate symmetry of the SM Yukawa sector [41, 42], offering a good starting point for the explanation of the observed SM Yukawa hierarchies [43].

B. Fermion content

There are several possible embeddings of the SM fields into 4321 representations (see Appendix A). While many of the results of this letter are independent of this embedding and also to other 4321 models, we focus on the implementation realizing third-family quark-lepton unification [43, 44]. In this implementation, first and second families are charged as in the SM under $SU(3)' \times SU(2)_L \times U(1)_X$, while third-family quarks and leptons are unified in $SU(4)$ multiplets (see Table I).}

Note that we have introduced a third-generation right-handed neutrino to complete the corresponding right-handed 4-plet.

This model provides an example of third-family quark-lepton unification at an energy scale which can be considerably below the grand unification scale. As in the Pati-Salam model, the proton is stable due to the presence of an accidental global symmetry at the level of renormalizable operators [43, 44]. Moreover, if the Higgs is embedded into a singlet representation of $SU(4)$, the model predicts equal Higgs Yukawa couplings at the unification scale for bottom and tau, and for top and tau-neutrino. This is a good approximation to the observed values of bottom and tau masses. The required (small) mass splitting between the two can be obtained from additional $SU(4)$-breaking sources, as discussed in Section 1. Naturally light neutrino masses with a low $SU(4)$-breaking scale can be realized through an inverse see-saw mechanism by introducing additional gauge-singlet fermions [44, 45].

In the limit of vanishing Yukawa interactions, the non-universal gauge structure yields the accidental flavor symmetry

\begin{align}
 U(2)^5 \equiv U(2)_q \times U(2)_t \times U(2)_u \times U(2)_d \times U(2)_e .
\end{align}

This is also an approximate symmetry of the SM Yukawa sector [41, 42], offering a good starting point for the explanation of the observed SM Yukawa hierarchies [43].

2 Charging light and third generation quarks under two different groups that yield QCD as a diagonal subgroup is reminiscent of topcolor models [42, 43].
Moreover, the approximate accidental $U(2)^5$ flavor symmetry provides a protection mechanism against the stringent flavor constraints. Indeed, in the absence of fermion mixing terms (see Section III), only third-generation fermions couple to the U_1 leptoquark, while Z' and G' couplings to light-generation fermions are suppressed for large g_4. As a result, the NP scale can lie around the TeV without conflicting any low-energy or high-p_T bound [43]. Furthermore, this flavor structure is well compatible with the observed NP hints in B-meson decays [30] [44].

III. TECHNICOLORED 4321

We assume that the 4321 gauge group is broken to the SM subgroup à la technicolor by confining strong dynamics. Such breaking pattern is minimally realized in $SU(N)_{HC}$ with 4 hyper-quark flavors that transform in complex and vector-like representations of HC. We denote the hyper-quarks by ζ, and assume for simplicity that they transform in the fundamental of HC. This model has an $SU(4)_L \times SU(4)_R \times U(1)_V$ global symmetry that we partially gauge to reproduce the 4321 gauge sector. More precisely, we identify the $SU(4)_R$, $SU(3)_L$, and $U(1)_L$ global symmetry subgroups with $SU(4)$, $SU(3)'$, and part of $U(1)_X$ in Θ_{4321}. The $U(1)_X$ symmetry is a combination of $U(1)_L$ with another $U(1)$, which together with $SU(2)_L$ belongs to the sector of the theory discussed in Section IV. This partial gauging fixes the 4321 representations of the ζ hyper-quarks (see Table I).

Similarly to the QCD case, once the HC group becomes strongly coupled, the ζ hyper-quarks form a condensate

$$\langle \bar{\zeta}_L^{\alpha} \zeta_R^{\beta} \rangle = -\frac{1}{2} B_\zeta f_\zeta^2 \delta_{\alpha,\beta} \approx -4\pi f_\zeta^3 \delta_{\alpha,\beta},$$

with $\alpha, \beta = 1, 2, 3, 4$, and where B_ζ and f_ζ are non-perturbative constants with dimension of energy. The hyper-quark condensate triggers the symmetry breaking

$$SU(4)_L \times SU(4)_R \times U(1)_V \rightarrow SU(4)_V \times U(1)_V,$$

where V denotes the diagonal $L + R$. As a result, also the 4321 gauge symmetry is broken dynamically to the SM gauge group, with $SU(3)_c$ and part of $U(1)_Y$ corresponding to a subgroup of the unbroken $SU(4)_V$. All the NGBs associated with the chiral symmetry breaking are eaten by the massive gauge bosons. Furthermore, similarly to what happens in technicolor, this dynamical breaking implies $f_{U} \approx f_{Z'} \approx f_{G'} \approx f_{G}$ for the gauge boson masses in [3]. This is a result of the approximate hyper-custodial symmetry $SU(4)_V$. In analogy with the ρ parameter in the SM, we define the quantities

$$\rho_{1,3} \equiv \frac{M_G^2}{M_{Z',G'}^2 \cos^2 \theta_{1,3}},$$

which are predicted to be 1 in the absence of $SU(4)_V$ breaking sources. Since $\cos \theta_{1,3}$ is completely fixed in terms of SM gauge couplings and g_4, we have $M_G \lesssim M_{Z'} < M_{G'}$. In particular, in the limit $g_4 \gg g_s$ the heavy gauge boson spectrum is quasi-degenerate, while for $g_4 \approx g_s$ there is a large splitting between the coloron mass and that of the other two gauge bosons. The gauging of QCD and some of the extended HC interactions (see below) introduce an explicit breaking of the global $SU(4)_V$ symmetry. As a result, the relation among $f_{U,Z',G'}$ receives loop corrections proportional to these breaking sources. Given the smallness of these corrections, the relation $\rho_1 \approx \rho_3 \approx 1$ is a robust prediction of our setup. The same symmetry breaking pattern and heavy gauge bosons masses are reproduced by the vev of fundamental scalars Ω_1 and Ω_3 as in [4], satisfying the relation $\omega_1 = \omega_3$. However, an important difference with respect to this setup is the absence of scalar radial excitations, i.e. the analogous to the SM Higgs boson in the $\Omega_{1,3}$ fields. This further implies different predictions of the corresponding oblique parameters of the U_1, G' and Z' gauge bosons.

Apart from the ζ hyper-quarks, additional HC-singlet fermions, which we denote by χ, are required to cancel gauge anomalies. These play a similar role to that of the leptons in the SM. The requirement of anomaly cancellation completely fixes the transformation properties of these fermions under $SU(4) \times SU(3)'$ and their multiplicity in terms of the number of hypercolors N, but there is freedom in the choice of transformations under the EW gauge sector. For a specific choice of EW quantum numbers, the fermions χ, which are vector-like under the SM gauge group, can mix with the would-be SM fermions. This allows them to perform two important tasks. First, they induce U_1 couplings to the light-generation SM fermions through this mixing. Second, in the presence of Higgs Yukawa couplings with χ and third-generation SM fermions, the same mixing also generates the 2-3 entries of the CKM matrix. Both of these effects are phenomenologically required, either to explain the B anomalies or to reproduce the structure of the CKM matrix. In other models based on the 4321 gauge group, the introduction of such vector-like fermions is ad hoc. We stress that in our construction, the χ fermions serve to cancel gauge anomalies and are thus not only

Field	$SU(N)_{HC}$	$SU(4)$	$SU(3)'$	$SU(2)_L$	$U(1)_X$
ζ_R	\Box	4	1	1	0
ζ_R'	\Box	1	3 + 1	1	1/6 + 1/2
χ_L	1	4	1	2	0
χ_{LR}'	1	1	3 + 1	2	1/6 + 1/2

TABLE II. Matter content and gauge symmetry representations for the technicolor-like sector. The HC-singlet fermions in the lower blocks, with family index $i = 1, \ldots, N/2$, are introduced to cancel gauge anomalies.

[3] Alternative implementations of a technicolor-like breaking of the 4321 gauge group are discussed in Appendix B.
phenomenologically motivated but theoretically required, and that, furthermore, their multiplicity is determined by the number of hypercolors N. Moreover, in contrast to other 4321 models, the mass of these fermions is not arbitrary and can be connected to the scale of the HC condensate, as we show below.

The right mixing between χ and would-be SM fermions to perform the two tasks mentioned above is obtained when we arrange the χ fermions in $N/2$ families of $SU(2)_L$ doublets (see Table I). With this choice of quantum numbers, a mass-mixing term between the left-handed SM-like families and the χ fermions is allowed,

$$\mathcal{L} \supset -M_q (\bar{q}_L \chi^q_R) - M_\ell (\bar{\ell}_L \chi^\ell_R),$$

(10)

with $M_{q,\ell}$ being $2 \times N/2$ matrices in flavor space. The minimal phenomenologically viable implementation is obtained for $N = 4$, yielding one family of χ for each SM-like family [43]. The mass mixing terms induce a coupling between the corresponding SM fields and the χ fermions is

$$M_{q,\ell} \propto \delta_{ij} \text{ such that the } \chi \text{ fermions appropriately transform under this symmetry.}$$

We assume the existence of an extended hypercolor (EHC) sector, which generates the following four-fermion interactions

$$\mathcal{L}_{\text{EHC}} \supset \frac{1}{\Lambda_{\text{EHC}}^2} c_{\chi}^{q,\ell} (\bar{\chi}_L X^{q,\ell}_R) (\bar{\chi}^c_R),$$

(11)

where Λ_{EHC} is the EHC scale, and $c_{\chi}^{q,\ell}$ are $N/2 \times N/2$ matrices. This operator induces a technicolor-like mass for the χ fields after condensation,

$$M_{q,\ell} \approx \frac{4\pi f_\Lambda^3}{\Lambda_{\text{EHC}}^2} c_{\chi}^{q,\ell}.$$

(12)

The simultaneous presence of $M_{q,\ell}$ and $M_{\chi}^{q,\ell}$ yields a collective breaking of the $U(2)^5$ flavor symmetry, irrespective of the form of $M_{q,\ell}$. We take $M_{q,\ell} \ll M_{\chi}^{q,\ell}$ so that the mass mixing between SM-like and χ fermions is small, and $U(2)^5$ still remains a good approximate symmetry. Even in this case, one typically requires that the relation $M_{q,\ell}^{q,\ell} \propto \delta_{ij}$ is approximately respected to pass the stringent constraints from $\Delta F = 2$ observables [42-44]. To avoid LHC constraints on the new QCD-colored fermions, we require M_q to lie at the TeV scale. This in turn implies $\Lambda_{\text{EHC}} \approx 10^2$ TeV for $f_\Lambda \approx 2.5$ TeV and $\mathcal{O}(1)$ couplings.

We also introduce the following four-fermion operators

$$\mathcal{L}_{\text{EHC}} \supset \frac{1}{\Lambda_{\text{EHC}}^2} c_{\psi \chi}^{q,\ell} (\bar{\psi}_L X^{q,\ell}_R) (\bar{\chi}^c_R),$$

(13)

with $c_{\psi \chi}^{q,\ell}$ being $N/2$-dimensional vectors, which induce a mass mixing between χ_L and ψ_L after HC condenses. This mixing is expected to be sizable if the EHC dynamics generating these operators is the same that also generates the operators in [11]. As with the mixing between χ and the SM-like families, this is a welcome feature for the explanation of the B anomalies [44].

Additional higher dimensional operators could in principle also be generated by the same EHC dynamics. The most relevant are operators of the type $(\bar{\psi}_L \chi^q_R)^2$, $(\bar{\psi}_L \chi_R) (\bar{\chi}_R \chi_L)$ or $(\bar{\chi}_L \chi_R)^2$. After mass mixing, these would induce one loop contributions to flavor violating four-fermion processes with two light and two third-generation SM fermions, or with four light-generation SM fermions. The approximate $U(2)^5$ flavor symmetry is enough to prevent them from violating current flavor bounds for the assumed value of Λ_{EHC}.

IV. THE COMPOSITE HIGGS SECTOR

The naturalness problem in the Higgs sector is solved if the Higgs boson is a composite state of strong dynamics confining at a scale Λ not far from the TeV scale. The splitting $m_h \ll \Lambda$, required for phenomenological reasons, is achieved if the Higgs arises as a pNGB from the spontaneous breaking of an (approximate) global symmetry of the strong dynamics. We consider the possibility that the same strong dynamics triggering 4321 spontaneous symmetry breaking also produces such composite Higgs boson.

The simplest implementation of this idea consists in having different HC representations for the hyper-quarks, triggering 4321 breaking and for those generating the Higgs. This way, the global symmetry group factorizes, minimizing the number of pNGBs. We focus on the minimal composite Higgs implementation, and discuss other options in Appendix B. We fix $N = 6$, and introduce four chiral fermions ξ in the pseudoreal three-index antisymmetric representation of $SU(6)_{\text{HC}}$, $A_3 = 20$. The transformations of the ξ hyper-quarks under the 4321 gauge group are given in Table III. Note that $N = 6$ corresponds to three families of χ HC singlets (see Table I). Alternatively, we can arrange the HC singlets into two families of χ and one family of $\tilde{\chi}$, transforming as χ except that they are $SU(2)_L$ singlets and their $U(1)_X$ charges are shifted by $\pm \frac{1}{2}$. The latter option allows to modify the couplings of the heavy vector bosons to right-handed third-generation fermions via mass mixing, analogously to the mixing with χ discussed in Section I.
TABLE III. Gauge symmetry representations for the hyper-quarks producing the pNGB Higgs.

Field	$SU(6)_{HC}$	$SU(4)$	$SU(3)^f$	$SU(2)_L$	$U(1)_X$
ξ_L	20	1	1	2	0
$\xi_R^{e_1} \oplus \xi_R^{e_2}$	20	1	1	1	1/2 \oplus $-1/2$

resulting in 6 pNGBs: the Higgs doublet, H, and two real singlets, η_1, related to the $U(1)_A$ breaking, and η_R. The unbroken $Sp(4) \cong SO(5)$ symmetry contains the partially gauged $SO(4) \cong SU(2)_L \times SU(2)_R$ as a subgroup. This global subgroup contains the diagonal $SU(2)_V$ custodial symmetry, which protects the ratio of W and Z masses against corrections from the strongly-coupled dynamics. There is another alignment of the ξ condensate of physical interest: $\langle \xi_L^e \xi_R^e \rangle \propto \delta_{ij}$, analogous to the one in (7). In contrast to the condensate in (15), this one breaks the EW symmetry to its $U(1)_{em}$ subgroup, and is the condensate used in minimal technicolor models [46-48]. As we discuss in Section IV B, radiative corrections induced by the Yukawa interactions tend to align the vacuum along the technicolor direction. The resulting misalignment from the EW preserving direction gives rise to a successful EW symmetry breaking triggered by the composite Higgs.

A. Yukawa interactions

To generate Yukawa couplings between the elementary fermions and the composite Higgs, the two sectors must be coupled. In modern composite Higgs models, this is usually done by introducing mixing terms between composite fermions and the would-be SM fermions. After mixing, the SM states are then partially composite, and the required Higgs Yukawas are generated. This approach requires light composite partners for the top. In fundamental composite Higgs models, these partners should correspond to composite baryons, whose natural mass scale is close to the compositeness scale $\Lambda_{HC} \approx 4\pi f_\xi/\sqrt{6}$, far too heavy to generate enough mixing for the large top mass. Even if one could argue for a large mixing, our setup does not have fermionic baryons in the absence of strongly-coupled scalars [51]. Alternatively, one can couple the elementary fermion bilinears directly to scalar operators of the strong sector. These couplings can arise from four-fermion operators involving two hyper-quarks and two elementary fermions, analogous to those in Section III.

To this end, we introduce the following EHC interactions

$$\mathcal{L} \supset -M_L \bar{\xi}_L^{c} \epsilon_{ij} \xi_L^{j} - M_R \bar{\xi}_R^{c} \epsilon_{ij} \xi_R^{j},$$

where the c superscript denotes charge conjugation and ϵ_{ij} is the antisymmetric tensor of $SU(2)_{L,R}$. The masses $M_{L,R}$ are taken to be real and positive. This can be done without loss of generality by an appropriate field redefinition. These masses explicitly break the global $SU(4) \times U(1)_A$ symmetry. However, they do not break the $SU(2)_L \times SU(2)_R$ subgroup.

The ξ hyper-quarks also form condensates once HC becomes strongly coupled

$$\langle \bar{\xi}_L^{c} \xi_L^{j} \rangle = \langle \bar{\xi}_R^{c} \xi_R^{j} \rangle = -\frac{1}{2} B_\xi f_\xi^2 \epsilon_{ij} \approx -4\pi f_\xi^2 \epsilon_{ij},$$

with B_ξ and f_ξ being non-perturbative constants with dimension of energy, different from B_ζ and f_ζ in (7), but expected to be of similar size. This condensate triggers the spontaneous global symmetry breaking6

$$SU(4) \times U(1)_A \rightarrow Sp(4),$$

resulting in 6 pNGBs: the Higgs doublet, H, and two real singlets, η_1, related to the $U(1)_A$ breaking, and η_R. The unbroken $Sp(4) \cong SO(5)$ symmetry contains the partially gauged $SO(4) \cong SU(2)_L \times SU(2)_R$ as a subgroup. This global subgroup contains the diagonal $SU(2)_V$ custodial symmetry, which protects the ratio of W and Z masses against corrections from the strongly-coupled dynamics. There is another alignment of the ξ condensate of physical interest: $\langle \xi_L^{e_1} \xi_R^{e_2} \rangle \propto \delta_{ij}$, analogous to the one in (7). In contrast to the condensate in (15), this one breaks the EW symmetry to its $U(1)_{em}$ subgroup, and is the condensate used in minimal technicolor models [46-48]. As we discuss in Section IV B, radiative corrections induced by the Yukawa interactions tend to align the vacuum along the technicolor direction. The resulting misalignment from the EW preserving direction gives rise to a successful EW symmetry breaking triggered by the composite Higgs.

A. Yukawa interactions

To generate Yukawa couplings between the elementary fermions and the composite Higgs, the two sectors must be coupled. In modern composite Higgs models, this is usually done by introducing mixing terms between composite fermions and the would-be SM fermions. After mixing, the SM states are then partially composite, and the required Higgs Yukawas are generated. This approach requires light composite partners for the top. In fundamental composite Higgs models, these partners should correspond to composite baryons, whose natural mass scale is close to the compositeness scale $\Lambda_{HC} \approx 4\pi f_\xi/\sqrt{6}$, far too heavy to generate enough mixing for the large top mass. Even if one could argue for a large mixing, our setup does not have fermionic baryons in the absence of strongly-coupled scalars [51]. Alternatively, one can couple the elementary fermion bilinears directly to scalar operators of the strong sector. These couplings can arise from four-fermion operators involving two hyper-quarks and two elementary fermions, analogous to those in Section III.

To this end, we introduce the following EHC interactions

$$\mathcal{L} \supset \frac{1}{\Lambda_{HC}^2} \left\{ \left[y_{\psi}^+ (\bar{\psi} L \psi_R^+) + y_{\chi}^+ (\bar{\chi} L \psi_R^+) \right] (\xi_R^{e_1} \xi_L) + \left[y_{\psi}^- (\bar{\psi} L \psi_R^-) + y_{\chi}^- (\bar{\chi} L \psi_R^-) \right] (\xi_R^{e_2} \xi_L) \right\}. \quad (17)$$

Here y_{ψ}^\pm are numbers and y_{χ}^\pm are 2-dimensional vectors in flavor space. Once the HC group confines, the scalar current of hyper-quarks is interpolated to a composite Higgs field, giving rise to Higgs Yukawa interactions for the would-be third-family SM fermions and the χ. To reproduce the observed top mass with an $O(1)$ coupling, the EHC scale for the corresponding operator should be of similar size to the one in (11), that is $\Lambda_{HC} \approx 10$ TeV. The smallness of bottom and tau masses compared to

6 Fundamental composite Higgs models with the $SU(4) \rightarrow Sp(4)$ symmetry breaking have first been discussed in [52] and more recently in [53-55]. Lattice studies can be found in [74,79].
the top mass requires either the EHC scale for the corresponding interactions to be larger, or having a large mixing between the χ fermions and right-handed bottom and tau. Note that the Yukawa interactions above give $m_b = m_\tau$ in the absence of fermion mixing. Experimentally, one finds

$$\frac{m_b - m_\tau}{m_b} \big|_{\mu = 2 \text{ TeV}} \approx 0.2,$$

(18)
close to the unification condition. The fermion mixing with χ and (or) $\bar{\chi}$ introduce $SU(4)$-breaking sources that modify the tau-bottom mass relation. These can easily accommodate the (small) mass difference. The 2-3 entries in the CKM matrix are generated via the second and fourth operator in (17) through the mixing between χ^q and the light-generation SM-like quarks. The smallness of this CKM matrix element is naturally explained if this mixing is small, as we assumed in the previous section. Alternatively, one could have a larger mixing, and a (slightly) larger EHC scale for these operators. The approximate $U(2)^5$ flavor symmetry protects the model against large flavor violating contributions from possible four-fermions operators of the form $(\bar{\psi}_L \psi_R)^2$ and $(\bar{\chi}_L \psi_R)^2$, keeping them below current flavor bounds. On the other hand, four-fermion operators with only ξ fields would produce a breaking of the global symmetry similar to the one in (17).

Light-generation masses are obtained via the EHC operators

$$\mathcal{L}_{EHC} \supset \frac{1}{\Lambda_{EHC}^2} \left[y_{ud}(\bar{q}_L u_R)(\bar{\xi}_L^+ \xi_L) + y_{ud}(\bar{q}_L d_R)(\bar{\xi}_R^+ \xi_L) + y_c(\bar{\xi}_L e_R)(\bar{\xi}_R^+ \xi_L) \right],$$

(19)

where $y_{ud,e}$ are 2×2 matrices in flavor space. We assume that there is a large separation of scales between the dynamics generating these operators and those introduced before, namely $\Lambda_{EHC} \ll \Lambda_{EHC}$. From the charm Yukawa coupling, we estimate this scale to be $\Lambda_{EHC} \approx 100$ TeV. This assumption, which is entirely motivated by the observed SM Yukawa hierarchies, gives a $U(2)$-like protection from other possible four-fermion operators involving only SM-like fields. Such protection is enough to pass the stringent bounds from $\Delta F = 2$ observables, provided these operators receive a loop suppression compared to the ones in (19). This could easily be achieved if the mediators generating the EHC operators are charged under HC. Alternatively, one could obtain this additional suppression if the strong sector is close to a conformal fixed point and the condensate has a sizable anomalous dimension, as in walking technicolor [82].

Finally, we could also introduce EHC operators of the form

$$\mathcal{L}_{EHC} \supset \frac{1}{\Lambda_{EHC}^2} \left[c_\eta (\bar{q}_L \chi^q_R) + c_\ell (\bar{\ell}_L \chi^\ell_R) \right] (\bar{\xi}_R^c \xi_L^c),$$

(20)

with c_η, c_ℓ being 2×2 flavor matrices, and analogously with $(\bar{\xi}_L^c \xi_L^c)$. After HC condensation, these would give mass mixing terms as in [10], together with a Yukawa coupling to the pNGB singlets. The smallness of these terms compared to those in (11) can be explained by requiring $\Lambda_{EHC} \ll \Lambda_{EHC}$. As in the case above, this scale separation provides a sufficient flavor protection for possible operators with two SM-like and two χ fields. Similarly, operators with χ and $\bar{\psi}_R$ would introduce mass-mixing terms analogous to (10), which are already present at the level of renormalizable interactions, or four-fermion interactions that are not phenomenologically relevant.

B. The pNGB potential

The compositeness scale sets the masses of most of the composite particles. The pNGBs constitute an exception since their mass is protected by the global symmetry. The potential for these bosons is proportional to the different explicit symmetry breaking terms: the ξ fermion masses, the 4321 gauging, and the EHC four-fermion operators. In this section we discuss the pNGB masses obtained from these breaking terms, and the necessary conditions for EW symmetry breaking.

Like the quark masses in the QCD chiral Lagrangian, the hypercolored fermion masses in (14) provide an explicit global symmetry breaking and give masses to the pNGBs. Using spurion analysis for the pNGB Lagrangian, we find

$$m^2_\eta = B_\ell (M_L + M_R).$$

(21)

The singlets mix for $M_L \neq M_R$, similarly to what happens with the π^0 and the η in QCD. Their squared-mass matrix in the (η_1, η_5) basis reads

$$m^2_\eta = B_\xi \left(\begin{array}{cc} \tilde{\eta}_5^2 (M_L + M_R) & \tilde{\eta}_5 (M_L - M_R) \\ \tilde{\eta}_5 (M_L - M_R) & (M_L + M_R) \end{array} \right).$$

(22)

We defined $\tilde{\eta}_5 \equiv 2 q_f f/f_1$, where $q_5 = -1/\sqrt{10}$ is the $U(1)_A$ charge of the ξ hyper-fermions and f_1 is the decay constant of η_1, normalized as in [66]. The ξ fundamental masses provide the dominant contribution to the pNGB singlet masses. Moreover, as we discuss below, they are also needed to obtain a phenomenologically viable breaking of the EW symmetry.

The explicit breaking of the global symmetry due to the 4321 gauging also yields contributions to the pNGB potential. This is analogous to the gauging of electromagnetism in the QCD chiral Lagrangian, responsible for the mass splitting of pions and kaons. Analogously to the QCD case [83], the η_5 singlet does not receive mass corrections from the gauging, while those to η_1 are suppressed in the large N limit. Therefore, gauge corrections are only relevant for the Higgs. They give positive contributions to the pNGB mass squared and hence do not induce a vacuum misalignment [83].

In order to misalign the vacuum, fermion-loop contributions to the pNGB potential induced by the EHC operators are required. The operators in (17) do not induce
a vev for η_5, but they could do so for η_1. For simplicity, we assume that this is not the case and leave a more general analysis for future work. A vanishing vev of η_1 would follow automatically, for instance, if the model parameters are chosen such that η_1 is a CP eigenstate. Hence, to study the potential, we set to zero all fields except the physical Higgs boson, h. In this case, the fluctuations around the EW preserving vacuum can be parameterized by $\theta = \theta_{\text{min}} + h/f_\xi$. The Coleman-Weinberg potential [85] for θ reads

$$V(\theta) \approx -C_m f_\xi^4 \cos \theta - (C_y - C_g) f_\xi^2 \sin^2 \theta,$$

(23)

with the following definitions

$$C_y \approx \frac{2 \Lambda_{\text{HC}}^2}{16 \pi^2 f_\xi^2} \sum_i c_i |g_i|^2, \quad C_m = \frac{m_H^2}{f_\xi^2},$$

$$C_y = \frac{3 \Lambda_{\text{HC}}^2}{32 \pi^2 f_\xi^2} \left(\frac{3}{\sqrt{2}} g_L c_L + \frac{1}{4} g_Y^2 c_Y \right),$$

(24)

where the index i spans the EHC interactions in [17], $\dot{g}_i \approx g_i \sqrt{f_\xi^2/\Lambda_{\text{HC}}^2}$ are the Higgs Yukawa couplings, and c_L,Y,i are non-perturbative coefficients expected to be of $\mathcal{O}(1)$ and positive. The angle θ_{min} parameterizes the orientation of the true vacuum between the EW preserving and the technicolor vacuum. The EW symmetry is unbroken when $\theta_{\text{min}} = 0$, while for $\theta_{\text{min}} = \pi/2$ we obtain a technicolor breaking. As can be seen from [23], the ξ fundamental masses and gauge radiative contributions tend to align the vacuum along the EW preserving direction. The Yukawa contributions tend to align it along the technicolor direction, provided the non-perturbative coefficients are indeed positive. A non-zero θ_{min} is obtained when $C_m < 2(C_y - C_g)$. Minimizing the potential gives the EW symmetry breaking condition

$$\frac{v^2}{f_\xi^2} \equiv \sin^2 \theta_{\text{min}} = 1 - \frac{C_y^2}{4(C_y - C_g)^2},$$

(25)

with $v \approx 246$ GeV corresponding to the SM Higgs vev. To achieve the desired $\sin \theta_{\text{min}}$ value, this condition has to be tuned by appropriately choosing the HC masses and Yukawa couplings. The mass of the Higgs boson is readily obtained from the potential and reads

$$m_H^2 = 2(C_y - C_g)v^2.$$

(26)

In the limit where C_y is saturated by the top Yukawa contribution, we can rewrite the expression above as

$$m_H^2 \approx \frac{4}{3} c_\xi^2 m_t^2 \frac{3}{2} c_L m_W^2 - \frac{1}{2} c_Y (m_{Z}^2 - m_W^2),$$

(27)

where we took $A_{\text{HC}} \approx 4\pi f_\xi/\sqrt{6}$. The non-perturbative coefficients c_i are not free parameters and can be determined from the HC dynamics. At present, no determination of these coefficients is available, but naive dimensional analysis suggests that no further tuning seems necessary for the Higgs mass, once the tuning in (25) is achieved.

The main constraints on the value of $\sin \theta_{\text{min}}$ are obtained from EW precision tests, Higgs coupling modifications, and the modification to the $Zb_L\bar{b}_L$ coupling. Constraints from EW precision tests and Higgs coupling modifications for this class of models are discussed in [33]. A somewhat stronger bound is usually obtained from the modification to the $Zb_L\bar{b}_L$ coupling, whose experimental limit is at the per mille level. This constraint does not apply to our setup, unless the EHC sector contains vector operators producing a direct coupling between the vector resonances and the SM fermions. In any case, all these constraints are satisfied if f_ξ is around the TeV.

V. CONCLUSIONS

Models of low-scale partial unification have recently regained interest due to the anomalies in B-physics data. Indeed, one of the most compelling solutions to this puzzle consists in extending the SM gauge symmetry to the so-called 4321 gauge group, allowing for natural low-scale unification of third-family quarks and leptons.

Interestingly, the NP scale and flavor structure suggested by these anomalies hint at a possible connection with the solution of the hierarchy problem. Moreover, as we argue in this letter, there is a striking similarity between the 4321 and EW gauge sectors. This has taken us to consider the possibility of dynamically breaking both symmetries by hyper-quark condensates of the same strong dynamics, which we denoted as HC. The simplest way to realize this idea requires two sets of hyper-quarks transforming under different representations of the HC group. This way, each set is responsible for either 4321 or EW symmetry breaking. The minimal implementation for each of these sets is given by the ξ and ξ fermions in Tables II and III. The similarity between the 4321 and the EW sector is also manifest in the hyper-quark quantum numbers for these minimal implementations. However, a crucial difference between the two is that, while the ξ belong to a complex HC representation, the ξ belong to a pseudoreal one. This difference is instrumental in delaying a technicolor-like breaking of the EW symmetry, thus explaining the mass gap between 4321 and EW massive gauge bosons, and producing a pNGB composite Higgs.

Apart from introducing a composite Higgs and providing a dynamical mechanism for the 4321 symmetry breaking, the model presented here has also several other appealing features not found in most 4321 models discussed in the literature. Most importantly, it offers a theoretical motivation for the χ fermions, vector-like under the SM gauge group. The existence of these fermions and the requirement of having their mass close to the 4321 breaking scale, as needed for the phenomenological viability of these models, are ad-hoc features in most realizations. In our model, the χ fermions are theoretically required to cancel HC anomalies, analogously to the leptons in the SM, and their mass is connected to the 4321 break-
reading the manuscript and for useful comments. The work of JFM has received funding from the Swiss National Science Foundation (SNF) under contract 200021-159720, by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement 833280 (FLAY), and by the Generalitat Valenciana under contract SEJI/2018/033. PS is grateful for the support and hospitality of the Pauli Center for Theoretical Studies and the University of Zurich.

Appendix A: SM fermion embedding in 4321 models

The SM fermion content can be arranged in different representations under the extended gauge symmetry, yielding different 4321 model implementations. If we restrict to fundamental representations, each SM family admits three possibilities:

i) Pati-Salam-like representation, where both chiralities of quarks and leptons are unified into 4-plets of $SU(4)$. In this case, the corresponding fermions are singlets of $SU(3)'$, and transform as in the Pati-Salam model [37] under the $SU(4) \times SU(2)_L \times U(1)_X$ subgroup.

ii) SM-like representation, where quarks and leptons are singlets of $SU(4)$, and transform as in the SM under the $SU(3)' \times SU(2)_L \times U(1)_X$ subgroup. In this case, no direct couplings to the U_1 leptoquark are present.

iii) Mixed representation, where one of the chiralities of quarks and leptons are unified in a 4-plet, while the other remains SM-like. This option requires additional fermions to cancel gauge anomalies. These could be SM fermions from another family, or new fermions that either acquire a mass which is larger than the EW scale or which are charged under a new strong interaction. Moreover, in this case the SM Higgs needs to be embedded in a bi-fundamental representation under $SU(4) \times SU(3)'$ or the Yukawa couplings have to be provided through the mixing with additional vector-like fermions.

Several 4321 implementations have been recently considered in the literature in connection with the B anomalies. In the models in [30–42], the three families of would-be SM fermions (when neglecting the mixing with other fermions) are arranged in SM-like representations. Couplings to the U_1 leptoquark are induced via mass mixing with heavy vector-like fermions that are charged under the $SU(4)$ subgroup. An example of mixed representation can be found in a low-energy limit of the model in [37]. In this model, all three SM-like families are arranged in mixed representations, and additional matter is introduced to render the model anomaly free. In contrast to the previous realizations, in the models in [31–41],

ACKNOWLEDGEMENTS

We thank Gino Isidori, David Marzocca, Francesco Sannino and, in particular, Admir Greljo for carefully

\footnote{This has been show on the lattice for a strongly-coupled $SU(4)$ with fermions in the fundamental and two-index antisymmetric representation [39].}
corresponding to the low-energy limit of the Pati-Salam cubed model [43], the would-be SM families transform differently under the extended gauge symmetry. More precisely, the third family is arranged in the Pati-Salam-like representation, while the other two families are arranged in SM-like representations (see Table I). As in the models in [40, 42], one can introduce mass mixing with heavy vector-like fermions to induce U_1 leptoquark interactions with the light families and (or) Yukawa interactions among third and light families.

Appendix B: Model variations

In the main part of this letter, we introduce a minimal model that realizes a technicolor-like breaking of the 4321 symmetry, contains a composite Higgs, and features a well-motivated fermion sector, which renders the model free from gauge anomalies and preserves asymptotic freedom of the new strong interaction. There are various variations of the minimal setup that might be interesting to explore in future work. We summarize several possibilities in this appendix.

A main idea of this letter is to use a single strongly-coupled sector to both break the 4321 gauge group and to generate a pNGB Higgs. The breaking of the 4321 gauge group is achieved by embedding it into the global symmetries of the strong sector in such a way that it is spontaneously broken to the SM gauge group once the global symmetries are broken by a fermion condensate. To generate a viable pNGB Higgs, the breaking of the global symmetries further has to yield a pNGB with the quantum numbers of the Higgs doublet and leave the custodial $SU(2)_L \times SU(2)_R$ symmetry unbroken. In general, there are several possibilities for such global symmetry breaking in the chiral limit of strongly-coupled gauge theories. The different patterns of global symmetry breaking in the cases of massless fermions transforming in complex, real, or pseudoreal representations of the strongly-coupled gauge group are given by [48, 90].

i) Complex and vector-like representation with $2N_f$ Weyl or N_f Dirac fermions:

\[SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V, \]

with $N_f^2 - 1$ NGBs.

ii) Real representation with N_f Weyl or Majorana fermions:

\[SU(N_f) \rightarrow SO(N_f), \]

with $(N_f - 1)(N_f + 2)/2$ NGBs.

iii) Pseudoreal representation with $2N_f$ Weyl or N_f Dirac fermions:

\[SU(2N_f) \rightarrow Sp(2N_f), \]

with $(N_f - 1)(2N_f + 1)$ NGBs.

The scenarios yielding the smallest number of NGBs are those in which fermions transforming in two different representations of the strong gauge group are each responsible for either the 4321 symmetry breaking or the generation of the composite Higgs.

a. 4321 symmetry breaking. For the breaking of the 4321 symmetry, giving masses to the U_1, Z' and G', one can use either a complex, real, or pseudoreal representation. Some of the resulting NGBs will be pNGBs that act as longitudinal polarizations of the heavy gauge bosons, while the remaining ones are pNGBs that receive masses of several TeV from gauge boson loops. The minimal constructions are:

i) Complex representation: $SU(4) \times SU(4) \rightarrow SU(4)$

The gauged $SU(4) \times SU(3)'$ and part of $U(1)_X$ are embedded in the initial $SU(4) \times SU(4)$, while $SU(3)_c$ and part of $U(1)_Y$ are embedded in the unbroken diagonal $SU(4)$. The 15 NGBs transform under $SU(3)_c \times U(1)_Y$ as 8_0, $3_{+2/3}$, $\bar{3}_{-2/3}$, and 1_0, and they all correspond to would-be NGBs.

ii) Real representation: $SU(8) \rightarrow SO(8)$

The gauged $SU(4) \times SU(3)'$ and part of $U(1)_X$ are embedded in an $SU(4) \times SU(4)$ subgroup of $SU(8)$, while $SU(3)_c$ and part of $U(1)_Y$ are embedded in an $SU(4)$ subgroup of the unbroken $SO(8)$. The 35 Nambu-Goldstone bosons transform under $SU(3)_c \times U(1)_Y$ as 8_0, $3_{+2/3}$, $\bar{3}_{-2/3}$, 1_0, which are would-be NGBs, and $1_{\pm 1}$, $3_{\mp 1/3}$, $\bar{3}_{+1/3}$, $6_{+1/3}$, and $\bar{6}_{-1/3}$, which are pNGBs.

iii) Pseudoreal representation: $SU(8) \rightarrow Sp(8)$

The gauged $SU(4) \times SU(3)'$ and part of $U(1)_X$ are embedded in an $SU(4) \times SU(4)$ subgroup of $SU(8)$, while $SU(3)_c$ and part of $U(1)_Y$ are embedded in an $SU(4)$ subgroup of the unbroken $Sp(8)$. The 27 NGBs transform under $SU(3)_c \times U(1)_Y$ as 8_0, $3_{+2/3}$, $\bar{3}_{-2/3}$, 1_0, which are would-be NGBs, as well as $3_{\pm 1/3}$ and $\bar{3}_{\pm 1/3}$, which are pNGBs.

A different way of breaking the 4321 symmetry without invoking scalar fields could be realized in terms of a tumbling gauge group [91] that breaks itself. A 4321 gauge group that breaks itself to the SM has been described [91] in the context of topcolor and technicolor models.

b. Composite Higgs. For the composite Higgs sector, the requirements of generating a NGB with the quantum numbers of the Higgs doublet and preserving the custodial $SU(2)_L \times SU(2)_R$ symmetry leads to the following minimal constructions using a complex, real, or pseudoreal representation:

i) Complex representation: $SU(4) \times SU(4) \rightarrow SU(4)$

The 15 NGBs transform as 8_0, $2 \times 2_{\pm 1/2}$, 1_{\pm} and $2 \times 1_0$ under $SU(2)_L \times U(1)_Y$.

ii) **Real representation:** $SU(5) \rightarrow SO(5)$

The 14 NGBs transform as $2_{\pm \frac{1}{2}}$, 3_0, 3_{\pm}, and 1_0 under $SU(2)_L \times U(1)_Y$.

iii) **Pseudoreal representation:** $SU(4) \rightarrow Sp(4)$

The 5 NGBs transform as $2_{\pm \frac{1}{2}}$ and 1_0 under $SU(2)_L \times U(1)_Y$.

For each of these cases, minimal composite Higgs models have been constructed and analyzed in detail: see for instance [92, 93] for i), [55–59, 93–95] for ii), and [28, 55, 67, 73, 96, 105] for iii).

c. **4321 symmetry breaking with a composite Higgs.** It is possible to use fermions transforming under a single representation of the strong gauge group for both breaking the 4321 symmetry and generating a pNGB Higgs. In this case, the number of pNGBs increases compared to the cases in which two different representations are employed. However, such models have a simpler UV structure. The minimal constructions are:

i) **Complex representation:** $SU(8) \times SU(8) \rightarrow SU(8)$

featuring 63 NGBs:

- 15 like in the composite Higgs scenario where $SU(4) \times SU(4) \rightarrow SU(4)$,
- 15 like in the 4321 breaking scenario where $SU(4) \times SU(4) \rightarrow SU(4)$,
- 1 real singlet plus 16 complex scalars with the same quantum numbers as one full generation of SM fermions (plus an $SU(2)_L$-singlet neutrino).

ii) **Real representation:** $SU(11) \rightarrow SO(11)$

featuring 90 NGBs:

- 14 like in the composite Higgs scenario where $SU(5) \rightarrow SO(5)$,
- 35 like in the 4321 breaking scenario where $SU(8) \rightarrow SO(8)$,
- 1 real singlet plus 20 complex scalars with SM quantum numbers $(3, 2)^{\frac{2}{3}}$, $(3, 2)^{-1/3}$, $(3, 1)^{1/6}$, $(1, 2)^{0}$, $(1, 2)^{-1}$, $(1, 1)^{-1/2}$.

iii) **Pseudoreal representation:** $SU(12) \rightarrow Sp(12)$

featuring 65 NGBs:

- 5 like in the composite Higgs scenario where $SU(4) \rightarrow Sp(4)$,
- 27 like in the 4321 breaking scenario where $SU(8) \rightarrow Sp(8)$,
- 1 real singlet plus 16 complex scalars with the same quantum numbers as one full generation of SM fermions (plus a $SU(2)_L$-singlet neutrino).
lepton-universality violation in $B^+ \to K^+\ell^+\ell^-$ decays, Phys. Rev. Lett. 122 (2019) 191801, 1903.09252.
[17] BABAR collaboration, J. F. Lees et al., Evidence for an excess of $B \to D^{(*)}\tau\bar{\nu}_\tau$ decays, Phys. Rev. Lett. 109 (2012) 101802, 1205.5442.

[18] BELLE collaboration, M. Hudschle et al., Measurement of the branching ratio of $B \to D^{(*)}\tau\bar{\nu}_\tau$ relative to $B \to D^{(*)}\ell\bar{\nu}_\ell$ decays with hadronic tagging at Belle, Phys. Rev. D92 (2015) 072014, 1507.03233.

[19] LHCb collaboration, R. Aaij et al., Measurement of the ratio of branching fractions $B(B^0 \to D^{(*)}\tau\bar{\nu}_\tau)/B(B^0 \to D^{(*)}\mu^+\mu^-)$, Phys. Rev. Lett. 115 (2015) 111803, 1506.08614.

[20] LHCb collaboration, R. Aaij et al., Measurement of the ratio of branching fractions $B(B_s^+ \to J/\psi\tau\bar{\nu}_\tau)/B(B_s^+ \to J/\psi\mu^+\mu^-)$, Phys. Rev. Lett. 120 (2018) 121801, 1806.05033.

[21] LHCb collaboration, R. Aaij et al., Measurement of the ratio of the $B^0 \to D^{(*)}\tau\bar{\nu}_\tau$ and $B^0 \to D^{(*)}\mu^+\mu^-$ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802, 1708.08566.

[22] BELLE collaboration, A. Abeleslam et al., Measurement of $\Gamma(D^*)/\Gamma(D)$ with a semileptonic tagging method, 1904.08794.

[23] B. Gripaios, M. Nardecchia and S. A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006, 1412.1791.

[24] C. Niehoff, P. Stangl and D. M. Straub, Violation of lepton flavour universality in composite Higgs models, Phys. Lett. B747 (2015) 182–186, 1503.03865.

[25] R. Barbieri, C. W. Murphy and F. Senia, B-decay Anomalies in a Composite Leptoquark Model, Eur. Phys. J. C77 (2017) 8, 1611.04930.

[26] E. Megias, G. Pancio, O. Pujolas and M. Quiros, A Natural origin for the LHCb anomalies, JHEP 09 (2016) 118, 1608.02362.

[27] R. Barbieri and A. Testi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C78 (2018) 193, 1712.06844.

[28] F. Sannino, P. Stangl, D. M. Straub and A. E. Thomsen, Flavor Physics and Flavor Anomalies in Minimal Fundamental Partial Compositeness, Phys. Rev. D97 (2018) 115046, 1712.07646.

[29] D. Marzocca, Addressing the B-physics anomalies in a fundamental Composite Higgs Model, JHEP 07 (2018) 121, 1803.10972.

[30] J. Fuentes-Martin, G. Isidori, J. Pagés and K. Yamamoto, With or without $U(2)$? Probing non-standard flavor and helicity structures in semileptonic B decays, Phys. Lett. B800 (2020) 135080, 1909.02519.

[31] D. Buttazzo, A. Greloj, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044, 1706.07808.

[32] R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and $U(2)$ flavour symmetry, Eur. Phys. J. C76 (2016) 67, 1512.01560.

[33] M. Bordone, C. Cornella, J. Fuentes-Martín and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B779 (2018) 317–323, 1712.01358.

[34] A. Greloj and B. A. Stane, Third family quark–lepton unification at the TeV scale, Phys. Lett. B782 (2018) 131–138, 1802.04274.

[35] R. Barbieri and R. Ziegler, Quark masses, CKM angles and Lepton Flavour Universality violation, JHEP 07 (2019) 023, 1904.04121.

[36] R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184, 1505.05164.

[37] J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275–289.

[38] H. Georgi and Y. Nakai, Diploton resonance from a new strong force, Phys. Rev. D94 (2016) 075005, 1606.05855.

[39] B. Diaz, M. Schmutz and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP 10 (2017) 097, 1706.05033.

[40] L. Di Luio, A. Greloj and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D96 (2017) 115011, 1708.08450.

[41] M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801, 1801.07256.

[42] L. Di Luio, J. Fuentes-Martin, A. Greloj, M. Nardecchia and S. Renner, Maximal Flavour Violation: a Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081, 1808.00942.

[43] M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, Low-energy signatures of the PS3 model from B-physics anomalies to LFV, JHEP 10 (2018) 148, 1805.09328.

[44] C. Cornella, J. Fuentes-Martin and G. Isidori, Revisiting the vector leptoquark explanation of the B-physics anomalies, JHEP 07 (2019) 168, 1903.11517.

[45] R. S. Chivukula, H.-J. He, J. Howard and E. H. Simmons, The Structure of electroweak corrections due to extended gauge symmetries, Phys. Rev. D69 (2004) 015009, hep-ph/0307209.

[46] S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D13 (1976) 974–996.

[47] L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D20 (1979) 2619–2625.

[48] E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277.

[49] C. T. Hill, Topcolor: Top quark condensation in a gauge extension of the standard model, Phys. Lett. B266 (1991) 419–424.

[50] S. P. Martin, Renormalizable top quark condensate models, Phys. Rev. D 45 (1992) 4283–4293.

[51] S. P. Martin, A Tumbling top quark condensate model, Phys. Rev. D 46 (1992) 2197–2202, hep-ph/9204204.

[52] S. P. Martin, Selfbreaking technicolor, Nucl. Phys. B 398 (1993) 359–375, hep-ph/9211229.

[53] C. T. Hill, Topcolor assisted technicolor, Phys. Lett. B345 (1995) 483–489, hep-ph/9411426.

[54] P. Fileviez Perez and M. B. Wise, Low Scale Quark-Lepton Unification, Phys. Rev. D88 (2013) 057703, 1307.6215.

[55] G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077, 1312.5330.

[56] G. Ferretti, UV Completions of Partial Compositeness:
The Case for a SU(4) Gauge Group, JHEP 06 (2014) 142, 1404.7137.

M. Golterman and Y. Shamir, Top quark induced effective potential in a composite Higgs model, Phys. Rev. D 91 (2015) 094506, 1502.00390.

M. Golterman and Y. Shamir, Effective potential in ultraviolet completions for composite Higgs models, Phys. Rev. D 97 (2018) 095005, 1707.06033.

A. Agugliaro, G. Cacciapaglia, A. Deandrea and S. De Curtis, Vacuum misalignment and pattern of scalar masses in the SU(5)/SO(5) composite Higgs model, JHEP 02 (2019) 089, 1808.10175.

T. DeGrand, Y. Liu, E. T. Neil, Y. Shamir and B. Svetitsky, spectroscopy of SU(4) gauge theory with two flavors of sextet fermions, Phys. Rev. D 91 (2015) 114502, 1501.05665.

T. A. DeGrand, M. Golterman, W. I. Jay, E. T. Neil, Y. Shamir and B. Svetitsky, Radiative contribution to the effective potential in composite Higgs models from lattice gauge theory, Phys. Rev. D94 (2016) 054501, 1606.02695.

V. Ayyar, T. DeGrand, M. Golterman, D. C. Hackett, W. I. Jay, E. T. Neil et al., Spectroscopy of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D 97 (2018) 074505, 1710.00806.

V. Ayyar, T. Degrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir et al., Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations, Phys. Rev. D 97 (2018) 114505, 1801.05809.

V. Ayyar, T. DeGrand, D. C. Hackett, W. I. Jay, E. T. Neil, Y. Shamir et al., Finite-temperature phase structure of SU(4) gauge theory with multiple fermion representations, Phys. Rev. D97 (2018) 114502, 1802.09644.

G. Cossu, L. Del Debbio, M. Panero and D. Preti, Strong dynamics with matter in multiple representations: SU(4) gauge theory with fundamental and sextet fermions, Eur. Phys. J. C79 (2019) 638, 1904.08885.

T. DeGrand, M. Golterman, E. T. Neil and Y. Shamir, One-loop Chiral Perturbation Theory with two fermion representations, Phys. Rev. D94 (2016) 025020, 1605.07738.

D. B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187–190.

E. Katz, A. E. Nelson and D. G. Walker, The Intermediate Higgs, JHEP 08 (2005) 074, hep-ph/0504252.

B. Grinstein, M. Piai and B. Grinstein, Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies, Phys. Rev. D99 (2019) 055025, 1812.01603.

M. E. Peskin, The Alignment of the Vacuum in Composite Higgs Models, JHEP 11 (2016) 029, 1607.01659.

J. Bijnens and J. Prades, Electromagnetic corrections for pions and kaons: Masses and polarizabilities, Nucl. Phys. B 490 (1997) 239–271, hep-ph/9610360.

E. Witten, Some Inequalities Among Hadron Masses, Phys. Rev. Lett. 51 (1983) 2351.

S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D7 (1973) 1888–1910.

S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625–650.

B. Fornal, S. A. Gadam and B. Grinstein, Left-Right SU(4) Vector Leptoquark Model for Flavor Anomalies, Phys. Rev. D99 (2019) 055025, 1812.01603.

A. Hietanen, L. Kaler, C. Pica and F. Sannino, Composite Goldstone Dark Matter: Experimental Predictions from the Lattice, JHEP 12 (2014) 130, 1308.4130.

A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP 07 (2014) 116, 1404.2794.

R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev. D 85 (2012) 014504, 1109.3613.

R. Lewis, C. Pica and F. Sannino, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216–220.
[95] M. J. Dugan, H. Georgi and D. B. Kaplan, *Anatomy of a Composite Higgs Model*, Nucl. Phys. B 254 (1985) 299–326.

[96] M. Redi and A. Tesi, *Implications of a Light Higgs in Composite Models*, JHEP 10 (2012) 166, 1205.0232.

[97] T. Alanne, H. Gertov, F. Sannino and K. Tuominen, *Elementary Goldstone Higgs boson and dark matter*, Phys. Rev. D 91 (2015) 095021, 1411.6132.

[98] H. Gertov, A. Meroni, E. Molinaro and F. Sannino, *Theory and phenomenology of the elementary Goldstone Higgs boson*, Phys. Rev. D 92 (2015) 095003, 1507.06666.

[99] J. Serra, *Beyond the Minimal Top Partner Decay*, JHEP 09 (2015) 176, 1506.05110.

[100] H. Cai, T. Flacke and M. Lespinasse, *A composite scalar hint from di-boson resonances?*, 1512.04508.

[101] J. Galloway, A. L. Kagan and A. Martin, *A UV complete partially composite-pNGB Higgs*, Phys. Rev. D 95 (2017) 035038, 1609.05883.

[102] A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, *UV complete composite Higgs models*, Phys. Rev. D 95 (2017) 035019, 1609.07122.

[103] G. Ferretti, *Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC*, JHEP 06 (2016) 107, 1604.06467.

[104] C. Niehoff, P. Stangl and D. M. Straub, *Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model*, JHEP 04 (2017) 117, 1611.09356.

[105] G. Cacciapaglia, H. Gertov, F. Sannino and A. E. Thomsen, *Minimal Fundamental Partial Compositeness*, Phys. Rev. D 98 (2018) 015006, 1704.07845.