Frequency and Severity of the Dawn Phenomenon in Type 2 Diabetes

Relationship to age

LOUIS MONNIER, MD1
CLAUDE COLETTE, PHD1
MATHEU SARDINOUX, MD2

GREGORY BAPTISTA, MD3
ALYNE REGNIER-ZERBIB, MD1
DAVID OWENS, MD4

OBJECTIVE—To know whether age has an independent effect on the dawn phenomenon in noninsulin-using type 2 diabetes.

RESEARCH DESIGN AND METHODS—Eighty-one individuals with type 2 diabetes were matched for HbA1c, and divided by age into three subgroups of 27 individuals (1: ≥70 years; 2: 60–69 years; and 3: ≤59 years). All underwent ambulatory continuous glucose monitoring for quantifying the dawn phenomenon (i.e., the absolute [ΔG, mg/dL] or relative [ΔG%] increments from nocturnal nadirs to prebreakfast time points).

RESULTS—HbA1c levels and 24-h glycemic profiles were similar across the three groups. Glucose increments (mean ± SEM) were identical in the three groups: ΔG (mg/dL), 22.0 ± 4.7 (1), 21.3 ± 3.6 (2), and 18.0 ± 3.6 (3) and ΔG (%), 19.9 ± 4.9 (1), 21.6 ± 4.4 (2), and 17.6 ± 4.2 (3). Using the most common definition (ΔG >10 mg/dL), the prevalence of the dawn phenomenon was 52, 70, and 59% in groups 1, 2, and 3, respectively.

CONCLUSIONS—The dawn phenomenon is present in the elderly.

Diabetes Care 35:2597–2599, 2012

The dawn phenomenon is a feature of dysglycemia likely to be common in most subjects with type 1 or type 2 diabetes (1–3). However, the definition of this condition remains somewhat unclear, and controversy still exists about its magnitude and frequency, especially in elderly individuals with type 2 diabetes (4,5). For that reason, we set out to explore whether the magnitude and frequency of the dawn phenomenon in type 2 diabetes varied across different age categories.

RESEARCH DESIGN AND METHODS—This study was conducted in 81 individuals with type 2 diabetes who were divided into three groups of 27 patients according to whether the ages were ≥70 years (group 1), between 60 and 69 years (group 2), or ≤59 years (group 3). The three groups were matched for HbA1c.

Modalities of treatment were classified into three categories and similarly distributed within the three groups: 1) insulin sensitizers alone (metformin and/or thiazolidinediones), 2) insulin secretagogues alone (sulfonylureas or glinides), and 3) combinations of insulin secretagogues and insulin sensitizers.

The study was observational in design. All participants were investigated at the outpatient clinic of the University Hospital in Montpellier from 2005–2010 and gave informed consent in accordance with French law in article L-1121-1 of the Code for Public Health concerning the conductance of Biomedical Research (6).

HbA1c levels were determined using a high-performance liquid chromatography assay (Menarini Diagnostic, Florence, Italy) (7). All patients underwent ambulatory continuous interstitial glucose monitoring for 3 consecutive days by second-generation Minimed systems (Medtronic, Northridge, CA). All calculations were derived from data averaged over a 48-h period on 2 consecutive days.

The dawn phenomenon was quantified by detecting the exact time point and value of the glucose nadir during the nocturnal period (starting at midnight) and subtracting this value from that observed just before the beginning of breakfast. The breakfast time was recorded by each individual in a logbook. When all nocturnal glucose values were above the prebreakfast glucose value, the blood glucose rise in the early morning was considered to be absent, and its magnitude and duration were recorded as being equal to 0. The duration was assessed by measuring the time interval between the nadir and prebreakfast time points. On the basis of published studies (2,8,9), three definitions were used: an absolute dawn increase in glucose level above either 10 or 20 mg/dL and a relative increase >6.9% (10). The features of the dawn phenomenon as defined by these three criteria were compared among the three groups of subjects investigated.

Results are given as means ± SEM. Comparisons of magnitude of the dawn phenomenon in the different groups were made using ANOVA. Prevalence of the dawn phenomenon was compared among the three groups by using the χ² Fisher exact test for comparison of frequency. Statistical comparisons were considered significant when P values were <0.05. Analyses were performed with the Statview statistical package, version 5 for Macintosh (SAS Institute, Cary, NC).

RESULTS—The demographic characteristics of the patients were as follows in groups 1, 2, and 3, respectively: mean HbA1c levels ± SEM, 7.96 ± 0.28, 7.97 ± 0.29, and 7.97 ± 0.27%; mean age ± SEM, 73.4 ± 0.5, 64.0 ± 0.5, and 53.2 ± 1.1 years; and mean BMI ± SEM, 30.3 ± 1.2, 30.1 ± 1.0, and 29.9 ± 1.1 kg/m². Mean glucose profiles are illustrated in Fig. 1A.
The dawn phenomenon with aging in diabetes

In three groups of patients, the absolute glucose increments (Δ glucose, mg/dL) from nocturnal glucose nadir to prebreakfast value were similar: 22.0 ± 4.7 mg/dL (group 1), 21.3 ± 3.6 mg/dL (group 2), and 18.0 ± 3.6 mg/dL (group 3). In addition, no differences were found when the results were expressed as relative glucose increments from value at nadir to those observed at prebreakfast time point (Δ glucose, %): 19.9 ± 4.9 (group 1), 21.6 ± 4.4 (group 2), and 17.6 ± 4.2 (group 3). Mean durations of the dawn phenomenon were not statistically different between the three groups: 171 ± 28 min (group 1), 204 ± 23 min (group 2), and 166 ± 27 min (group 3).

Frequencies were similar between the different age-groups irrespective of the criteria used for the definition of the dawn phenomenon (Fig. 1B).

CONCLUSIONS—The frequency of the dawn phenomenon did not differ when the subjects with type 2 diabetes were compared by age. In addition, the mean magnitude of blood glucose rise in the early morning from nocturnal nadirs to prebreakfast values did not show any difference among the groups and was equal to ~20 mg/dL. One of the main strength of the current study is that the quantification of the dawn phenomenon was assessed with continuous glucose monitoring systems that permit calculation of the absolute differences between nocturnal nadirs and prebreakfast glucose values with an accuracy not previously available (11–13).

Reverting to the frequency of the dawn phenomenon across categories of age, it must be noted that the percentages are similar for the different definitions that were used. As a consequence, this dysglycemic state should be taken into consideration in the treatment of individuals with type 2 diabetes, even of those who are >70 years of age. This position is reinforced by the fact that the dawn phenomenon is usually followed by an abnormally high postbreakfast glucose excursion, which corresponds to what is commonly referred to as the extended dawn phenomenon (11), a glycemic disorder that can be simply explained by the remnant effect of the hepatic glucose overproduction during the morning period (14) in combination with the dietary intake of carbohydrates at breakfast time. The dawn and extended dawn phenomena are both weak links in the management of many individuals with type 2 diabetes (11).

The glycemic patterns as observed in the current study demonstrate that both phenomena are evident in elderly type 2 diabetic subjects >70 years old to the same extent as those who are <70 years old.

In conclusion, failing to address the dawn and extended dawn phenomena can contribute to inadequate overall glycemic control and increase the risk for development or progression of diabetes complications even in the elderly. Due to the small size of the investigated population, the present results warrant further investigation.

Acknowledgments—This study was supported by academic funds provided by the University of Montpellier I.

No potential conflicts of interest relevant to this article were reported.

L.M. contributed to the design of the study, analyzed data of the study, and wrote, reviewed, and edited the manuscript. C.C. contributed to the analysis of data and reviewed and edited the manuscript. M.S. and G.B. participated in the clinical care and follow-up of the patients. A.R.-Z. and D.O. contributed to the design and reviewed the manuscript. L.M. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

1. Schmidt MI, Hadji-Georgopoulos A, Rendell M, Margolis S, Kowarski A. The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care 1981;4:579–585
2. Carroll MF, Schade DS. The dawn phenomenon revisited: implications for diabetes therapy. Endocr Pract 2005;11:55–64
3. Boll GB, Gerich JE. The “dawn phenomenon”– a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N Engl J Med 1984;310:746–750
4. Meneilly GS, Elahi D, Minaker KL, Rowe JW. The dawn phenomenon does not...
occurs in normal elderly subjects. J Clin Endocrinol Metab 1986;63:292–296
5. Meneilly GS, Elliott T, Tessier D, Hards L, Tildesley H. NIDDM in the elderly. Diabetes Care 1996;19:1320–1325
6. Code de la Santé Publique. Partie législative. Première partie. Livre premier. Titre II. Chapitre I, article L 1121-1 [Internet], 2006. Available from http://legifrance.com. Accessed 31 August 2009
7. John WG, Braconnier F, Miedema K, Aulesa C, Piras G. Evaluation of the Menarini-Arkay HA 81-80 hemoglobin A1c analyzer. Clin Chem 1997;43:968–975
8. Atiea JA, Luzio S, Owens DR. The dawn phenomenon and diabetes control in treated NIDDM and IDDM patients. Diabetes Res Clin Pract 1992;16:183–190
9. Carroll MF, Hardy KJ, Burge MR, Schade DS. Frequency of the dawn phenomenon in type 2 diabetes: implications for diabetes therapy. Diabetes Technol Ther 2002;4:595–605
10. Mooy JM, Grootenhuis PA, de Vries H, et al. Intra-individual variation of glucose, specific insulin and proinsulin concentrations measured by two oral glucose tolerance tests in a general Caucasian population: the Hoorn Study. Diabetologia 1996;39:298–305
11. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 2007;30:263–269
12. Buckingham B, Block J, Wilson DM. Continuous glucose monitoring. Curr Opin Endocrinol Diabetes 2005;12:273–279
13. Monnier L, Colette C, Boegner C, Pham TC, Lapinski H, Boniface H. Continuous glucose monitoring in patients with type 2 diabetes: Why? When? Whom? Diabetes Metab 2007;33:247–252
14. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 1996;45:1044–1050