Abstract

Owing to technical advances and improvement of the software, diffusion weighted imaging and diffusion tensor imaging (DWI and DTI) greatly improved the diagnostic value of magnetic resonance imaging (MRI) of the pelvic region. These imaging sequences can exhibit important tissue contrast on the basis of random diffusion (Brownian motion) of water molecules in tissues. Quantitative measurements can be done with DWI and DTI by apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values respectively. ADC and FA values may be changed by various physiological and pathological conditions providing additional information to conventional MRI. The quantitative DWI assists significantly in the differentiation of benign and malignant lesions. It can demonstrate the microstructural architecture and cellular density of the normal and diseased uterine zones. On the other hand, DWI and DTI are useful for monitoring the treatment outcome of the uterine lesions. In this review, we discussed advantages of DWI and DTI of the normal and diseased uterus.

Key words: Magnetic resonance imaging; Diffusion weighted imaging; Diffusion tensor imaging; Uterus

Correspondence to: Ozgur Kilickesmez, MD, Associate Professor of Radiology, Department of Diagnostic and Interventional Radiology, Istanbul Training and Research Hospital, Org. Nafiz Gurman St, 34098 Samatya, Istanbul, Turkey. okilickesmez@yahoo.com Telephone: +90-532-7346196 Fax: +90-216-4693796

Received: February 9, 2015
Peer-review started: February 9, 2015
First decision: March 20, 2015
Revised: April 25, 2015
Accepted: May 7, 2015
Article in press: May 8, 2015
Published online: July 28, 2015
and monitoring the treatment outcome of the uterine diseases.

Kara Bozkurt D, Bozkurt M, Nazli MA, Mutlu IN, Kilickesmez O. Diffusion-weighted and diffusion-tensor imaging of normal and diseased uterus. World J Radiol 2015; 7(7): 149-156 Available from: URL: http://www.wjgnet.com/1949-8470/full/v7/i7/149.htm DOI: http://dx.doi.org/10.4329/wjr.v7.i7.149

INTRODUCTION

Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) sequence structured on the basis of diffusion (Brownian motion) of water molecules in the extracellular space and is being increasingly used to evaluate the female pelvis. The quantitative parameter acquired from DWI sequences is the apparent diffusion coefficient (ADC) value. The basic factors affecting the ADC values are tissue structures, interactions between the molecules and cellular density. Thus, ADC is altered by many physiological and pathological conditions of the body[6].

Uterus is a fibromuscular solid organ under the effect of the hormones and is composed of three layers: the endometrial, the junctional and the myometrial zones. Physiological (menstrual cycle, menopausal period) fluctuations of these zones change the ADC values used in the evaluation of uterine abnormalities[6].

Diffusion is a multi-dimensional process, which occurs in different values in different directions depending on the microstructure of the tissues. Since uterine myometrium is composed of smooth muscle bundles and connective tissue diffusion reflects anisotropic features. Though DWI gives information about the direction of diffusion and cellularity of the tissue, anisotropic characteristics of tissues can be assessed appropriately by diffusion tensor imaging (DTI). It can be used to detect water diffusion directionality which in turn shows the microstructural architecture of normal and diseased tissue. Fractional anisotropy (FA) is the main quantitative parameter obtained from DTI data. Initially DTI has been used to show and evaluate the integrity of white matter tracts in neuroradiology. With the improvement of the MRI hardware and softwares, fast imaging techniques, after the use of DWI also DTI was implemented to abdominal imaging for some of the abdominal organs like uterus. The initial researches have been published regarding DTI of the uterus specimens of the patients to whom hysterectomy was performed for medical reasons[6-8] and then in vivo on the uterus of the patients[9].

Non-functional (conventional) MRI provides excellent anatomical information of the uterus, however, the morphological appearance still may not differentiate some of the benign and malignant uterine lesions[8]. DWI and DTI which provide functional information and when combined with conventional MRI become a complementary diagnostic tool for the uterus and giving more information for the differentiation and extension of benign and malignant lesions, and for the follow up of treatment outcome after uterine arterial embolization (UAE), oncological therapies[7].

In this paper, we aimed to focus on and review their diagnostic importance of the DWI and DTI techniques of the normal and diseased uterus.

DWI AND DTI TECHNIQUE

Optimal MRI of the female pelvis should be performed on a high field strength MRI system (1.5 or 3 T) using local phased-array coils. High field strenght MRI and phased-array coils increase the signal-to-noise ratio, provide high resolution images for the DWI and DTI sequences. Besides development of ultra-fast pulse sequences such as echo-planar imaging and parallel imaging technique, enabled to prevent motion artefacts and consequently functional MRI of the female pelvis[8].

For conventional MRI T1, T2 and fat saturated T2-weighted fast spin echo sequences followed with pre and post contrast three dimensional gradient-recalled echo volumetric interpolated breath-hold sequences and three plane imaging is necessary which give morphological information about the uterine zones. The addition of DWI and DTI sequences to the conventional MRI gives functional data about the uterus.

DWI is acquired by the measurement of signal loss after a series of two motion-providing gradient (MPG) pulses with the addition of a 180° refocusing radio frequency pulse to both sides for enhancing the variations of molecular diffusion between tissues. The density of MPG pulses is shown by the b-value, an paramount criterion affecting the signal intensity of the DWI[7]. An appropriate b value is necessary for the female pelvic MRI.

In several studies, DTI has been used to demonstrate fiber structures of the ex vivo uterus, because of problematic conditions leading to artefacts such as body motions, heartbeat, intestinal and respiratory movements, and uterine peristalsis[2-4]. Fiocchi et al[5], examined the DTI of in vivo uterus with a 3 T MRI using a 3D tractography algorithm and revealed that DTI is useful for imaging fibre architecture of in vivo human uterus.

DWI AND DTI OF NORMAL UTERUS

In reproductive age groups, T1 and T2 signal intensity characteristics of the uterine zones (endometrial, junctional and myometrial) demonstrate variations during ongoing phases of the menstrual cycle and with menapausal status. Physiological fluctuations affect the normal ADC values used in the evaluation of uterine pathologies[8].

On conventional MRI, the endometrial zone reflects high signal on T2-weighted sequences, however not so high like urinary bladder and low signal intensity on
The menstrual cycle includes three different phases. The initial four days of the menstrual phase is named as menstruation. On the fifth day the proliferative (follicular) phase begins and continues until the ovulation which is estimated to occur on the 14th day of the menstrual cycle. The secretory (luteal) phase begins with ovulation and lasts on the first day of the next menstrual period. Tsili et al[13], reported that the ADC values of the endometrial and myometrial zones were different in the three phases of the cycle (menstrual phase: 1.25 ± 0.27, 1.91 ± 0.35; proliferative phase: 1.39 ± 0.20, 1.72 ± 0.27; secretory phase: 1.50 ± 0.18, 1.87± 0.28, respectively). A wide variation of ADC values of normal endometrial and myometrial zones is detected during different periods of the menstrual cycle. These variations probably depends on the physiologic-histologic fluctuations[14]. In the menstrual period, periodic contractions of the spiral artery walls in the normal endometrial zone, cause interruption of the epithelium and rupture of the vessels. Endometrial discharge caused by the torn ends of venous structures, arteries and glands result in restricted diffusion in the endometrial zone during the menstrual phase. In the secretory phase, expanded uterine glands, prominent arteries in the normal endometrial zone, accompanied by less amount of cells in stratum basalis and higher interstitial fluid can be among the probable explanations for the higher ADC values[13].

Kido et al[15], examined both intraindividual and interindividual differences of the ADC values of the normal uterine zones during the phases of the menstrual cycle in young age group. In this report, the ADC values for myometrial and endometrial zones were lower in the menstrual phase in comparison to the periovulatory and the secretory phase, although significant variability among individuals was reported. These preliminary results must be kept in mind, that the menstrual cycle and individual differences in reproductive women should be taken into account during the interpretation of the ADC values of uterine zones[11].

Kuang et al[16], studied the ADCs of the normal uterine zones during different periods of the menstrual cycle between reproductive women with different ages. The ADC values of the uterine zones were statistically different from each other. Endometrial ADC values of the females in their 30 s were higher than the ones in their 20 s and in their 30 s in the midproliferative and midsecretory periods. Also the ADC values of endometrial zone for all age groups were lower in the midproliferative phase in comparison to midsecretory phase, however the ADC values of the myometrial and junctional zones were not statistically different between the phases and age groups. According to this study patient age, menstrual period and the zone evaluated should be taken into consideration during quantitative evaluation[16].

The relationship of the uterine zonal ADC values were investigated by Fornasa et al[17], between the different periods of the cycle. The ADC values of the endometrium calculated on the fifth day of the cycle were lower when compared with periovulatory ADC values at the fundus (mean 0.923 mm²/s vs 1.256 × 10⁻³ mm²/s) and at the isthmus (mean 1.297 mm²/s vs 1.529 × 10⁻³ mm²/s). Ischmic endometrial ADC values were higher than the fundal ADC values (mean 1.420 × 10⁻³ mm²/s vs 1.132 mm²/s). These findings were statistically significant. Physiological fluctuations occurring in the ADC values of the endometrium of normal females should be kept in mind during the interpretation of the DW images of the patients[15].

DTI revealed two basic systems of fibers: circular and longitudinally oriented fibers as shown ex-vivo. Examination of the non cesarean scarred uteri showed anisotropy and fiber directions could be depicted[5]. Knowledge of the architectural data can help to understand the details of functionality during gestation and birth. The connective tissue architecture in the uterus of reproductive age is composed of three different layers. The first inner layer is a non-organized cluster-like interweaving of the fiber complex, secondly circular fibers in the middle layer and finally longitudinal fibers in the exterior layer[16]. In the postmenopausal uterus, the cervical region primarily includes well oriented longitudinal fibers[4].

Fiocchi et al[5], argued that two third of the caesarean scarred uteri had altered fiber structure in comparison to normal uteri in sutural zone. Numeric data of 13 volunteers (8 nulliparous- I group, 5 with caesarean delivery- II group) revealed lowest regional fiber number and density in the anterior isthmic portion (respectively 105, 77 and 9.3, 6.7), suture localization, especially in two patients with a big scar caused placental complication at subsequent delivery. The mean FA and ADC of the whole uterus were 0.4 ± 0.0 and 3.4 ± 0.4 × 10⁻³ mm²/s respectively. The ADC of group I was higher than group II, but not statistically significant. In this study they concluded that 3 T DTI may show in-vivo human uterine fiber structures and may detect significant caesarean scars which may lead to subsequent placental...
metastatic lymph nodes with high signal against suppressed background signal of normal tissues, and this sequence may be used like a positron emission tomography image for fast and accurate cancer detection (Figure 1).

Myometrial lesions

The most frequent lesions encountered in the myometrial zone are fibroids. These are benign overgrowths of uterine muscle, reported to be probably to be found in up to 70% of females of reproductive age [22]. Myometrial malignant lesions are leiomyosarcomas and stromal sarcomas [23]. Some of the benign fibroids, in association with different types of degeneration or cellular types may lead to high signal intensity on T2-weighted sequences. Thus, the discrimination of benign and malignant myometrial lesions are challenging on conventional MRI.

Tamai et al [24] reported that DWI may be an useful for discriminating uterine sarcomas from benign fibroids. The ADC values of normal myometrial zone and degenerated fibroids were higher than uterine sarcomas and there was no overlap; however, there was an overlap with non-degenerated and cellular fibroids [24]. Pathological examination of the large fibroids with central necrosis revealed fibrosis. This finding was consistent with isotropic diffusion in DTI of the associated lesion. Fibrotic leiomyomas include non-parallel collagen fibrils, whereas...
there were well-structured collagen bundles neighbouring to smooth muscle cells in the normal myometrial zone\[25,26\]. Irregularity of these collagen bundles could be the reason for the lower degree of anisotropy in the fibroids when compared with the neighbouring myometrium.

The ADC values may also be beneficial for determining the therapeutic outcome after UAE, radiotherapy and/or chemotherapy\[7\]. The effect of UAE or focused ultrasound may be evaluated by the detection of ablated tissue with DWI. The ADC values of fibroids after treatment are lower when compared with initial ADC values\[27,28\].

Endometrial lesions

The most frequent gynecologic malignancy is endometrial cancer. It should be discriminated from benign hyperplasia of the endometrium along with polyps. The ADC value of polyps (1.27-1.58 × 10⁻³ mm²/s) and of normal endometrial zone (1.53 × 10⁻³ mm²/s) is significantly higher than endometrial cancer (0.88-0.98 × 10⁻³ mm²/s)\[24-29\] (Figures 2 and 3).

Histologic grade, stage, level of myometrium invasion, existence of nodal metastases, invasion of lymphoid and vascular structures all effect the prognosis of endometrial cancer. However the most important factor effecting prognosis is the depth of myometrium invasion\[30\]. The success of DWI has been improved in the assessment of accurate myometrium invasion detection and in differentiating tumor recurrence from post-therapeutic findings\[31\]. The first surgical staging of endometrial cancer was proposed in 1988, and than the update of the International Federation of Gynecology and Obstetrics (FIGO) staging was done in 2009\[32\]. In this revised FIGO staging system, stage I A tumors include the tumors invading solely the inner half of the myometrial zone and the tumors confined to endometrium\[32,33\]. Tumors infiltrating the exterior half of the myometrial zone are defined as stage I B tumors. These revisions include simplification of stage I disease and determination of cervical infiltration as a distinct stage to increase the diagnostic value of MRI\[30\].

According to Fuji et al\[29\], the ADC value was 84.6% successful in detecting endometrial cancer. Toba et al\[2\] investigated the feasibility of DTI for evaluating the myometrial invasion of endometrial cancer. The degree of myometrium invasion was subgrouped as stage E (confined to endometrial zone), more than 50%. The ADC values of the cancer, inner or exterior myometrial zones were not statistically different. Tumoral FA values (0.21 ± 0.05) were lower than the inner layer of the myometrial zone (0.44 ± 0.01) and exterior myometrium (0.32 ± 0.08) (P < 0.01). The inner or exterior myometrial FA values, (0.45 ± 0.05 vs 0.43 ± 0.04) were not statistically different in stage E cancers. However, in stage S and D tumors the FA values of the inner or exterior myometrial FA zones were significantly different (0.5 ± 0.05 vs 0.3 ± 0.04, P < 0.01; 0.39 ± 0.03
vs 0.22 ± 0.01, $P < 0.01$; respectively). Myometrial infiltration of endometrial tumor may be detected with the disruption of the anisotropic layer.

DWI and DTI have a potential role for the discrimination of benign and malignant endometrial masses. It may also give additional information for preoperative assessment and should be performed as a part of routine MRI for endometrial tumors. Besides, DWI is a useful technique increasing the accuracy of staging\cite{30}.

Cervical lesions

Cervical cancer is a common gynaecological tumor. However, its incidence has decreased in developed countries as a result of screening with the Papanicolaou test (Pap smear), cervical cancer is still an important cause of tumor-related death in developing countries\cite{34}.

ADC measurements made significant supplement for the discrimination of normal cervical zone and cancers preoperatively. Besides there was correlation between tumor type, stage and ADC values\cite{35}.

According to McVeigh et al\cite{36} the average median ADC of normal cervix was statistically higher than cervical cancers ($2.09 \times 10^{-3} \text{ mm}^2/\text{s}$ vs $1.09 \times 10^{-3} \text{ mm}^2/\text{s}$), and returned to the normal level following

Figure 3 A 42-year-old woman with endometrial polyp. A: Hypointense polyp in the endometrial cavity on sagittal T2-weighted image mimicking low grade endometrial carcinoma (arrows); B: Sagittal contrast-enhanced T1-weighted image with fat suppression shows enhancing endometrial polyp (arrows); C: On the axial DWI ($b = 1000 \text{ s/mm}^2$) image, the mass is hypointense clearly excluding malignancy (arrows); D: Corresponding axial apparent diffusion coefficient (ADC) map. The ADC value within the mass is $1.85 \times 10^{-3} \text{ mm}^2/\text{s}$.

Figure 4 Thirty two years old volunteer. A: Sagittal T2-weighted image of a normal uterus; B: 3D whole tractography image of the normal uterus. Red colors represent a right-left orientation, blue represents a crano-caudal orientation and green represents an antero-posterior orientation of diffusion. Changes in the intensity of the color represent different strengths of anisotropy.
CONCLUSION

According to this review, DWI and DTI emerge to be applicable and reliable sequences for the determination of physiological fluctuations of the uterus, detection of malignant lesions of the uterus and monitoring the therapeutic outcome. When combined with conventional MRI sequences, DWI and DTI provide further data about physiological and pathological conditions of the uterus. DWI and DTI are noninvasive, do not cause radiation exposure or need for contrast injection.

REFERENCES

1 Kido A, Kataoka M, Koyama T, Yamamoto A, Saga T, Togashi K. Changes in apparent diffusion coefficients in the normal uterus during different phases of the menstrual cycle. Br J Radiol 2010; 83: 524-528 [PMID: 20505034 DOI: 10.1259/bjr/11056533]
2 Toba M, Miyasaka N, Sakurai U, Yamada I, Eishi Y, Kubota K. Diagnostic possibility of diffusion tensor imaging for the evaluation of myometrial invasion in endometrial cancer: ex vivo study. J Magn Reson Imaging 2011; 34: 616-622 [PMID: 21752183 DOI: 10.1002/jmri.22693]
3 Thrupleton MJ, Bastin ME, Munro KI, Williams AR, Oniscu A, Jansen MA, Merrifield GD, McKillop G, Newby DE, Semple SI, Marshall I, Critchley HO. Ex vivo water diffusion tensor properties of the fibroid uterus at 7 T and their relation to tissue morphology. J Magn Reson Imaging 2011; 34: 1445-1451 [PMID: 21953730 DOI: 10.1002/jmri.22293]
4 Weiss S, Jaermann S, Schmid P, Staemphil P, Boesiger P, Niederer P, Caduff R, Bajka M. Three-dimensional fiber architecture of the nonpregnant human uterus determined ex vivo using magnetic resonance diffusion tensor imaging. Anat Rec A Discov Mol Cell Evol Biol 2006; 288: 84-90 [PMID: 16345078]
5 Fiocchi F, Noceti L, Siopis E, Currà S, Costi T, Ligabue G, Torricelli P. In vivo 3 T MR diffusion tensor imaging for detection of the fibre architecture of the human uterus: a feasibility and quantitative study. Br J Radiol 2012; 85: e1009-e1017 [PMID: 22744322 DOI: 10.1259/bjr/6963739]
6 Kuang F, Ren J, Huan Y, Chen Z, Zhong Q. Apparent diffusion coefficients of normal uterus in premenopausal women with 3.0-T magnetic resonance imaging. J Comput Assist Tomogr 2012; 36: 54-59 [PMID: 22261770 DOI: 10.1097/RCT.0b013e3182418885]
7 Namimoto T, Aishi K, Nakaura T, Yanaga Y, Hirai T, Yamashita Y. Role of diffusion-weighted imaging in the diagnosis of gynecological diseases. Eur Radiol 2009; 19: 745-760 [PMID: 18839179 DOI: 10.1007/s00330-008-1185-5]
8 Kilickesmez O, Bayramoglu S, Inci E, Cimilli T, Kayhan A. Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol 2009; 50: 340-347 [PMID: 19235579 DOI: 10.1080/02841850902735858]
9 Wasiak AP, Mazza MB, Liu PS. Normal and variant pelvic anatomy on MRI. Magn Reson Imaging Clin N Am 2011; 19: 547-566; viii [PMID: 21816330]
10 Brown HK, Stoll BS, Nicsova SV, Fiorica JV, Hambley PS, Clarke LP, Silbiger ME. Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 1991; 179: 409-413 [PMID: 1707545]
11 Scott LM, Flynn SD, Luthringer DJ, McCauley TR, McCarthy SM. Junctional zone of the uterus: correlation of MR imaging and histologic examination of hysterectomy specimens. Radiology 1991; 179: 403-407 [PMID: 2014282]
12 Brown MA, Kubik-huch RA, Reinhold C. Uterus and cervix. In: Semelka RC, editor. 2nd edition, Abdominal pelvic MRI, vol. 1. New Jersey, John Wiley & Sons, Inc. 2006: 1251-1332
13 Tsili AC, Argyropoulou MI, Tzarouchi L, Dalkalitis N, Kolipooulos G, Paraskevaidis E, Tampoulas K. Apparent diffusion coefficient values of the normal uterus: Interindividual variations during menstrual cycle. Eur J Radiol 2012; 81: 1951-1956 [PMID: 21621360 DOI: 10.1016/j.ejrad.2011.04.057]
14 Longacre TA, Bartow SA. A correlative morphologic study of human breast and endometrium in the menstrual cycle. Am J Surg Pathol 1986; 10: 382-393 [PMID: 3717495]
15 Fornasa F, Montemazzi S. Diffusion-weighted magnetic resonance imaging of the normal endometrium: temporal and spatial variations of the apparent diffusion coefficient. Acta Radiol 2012; 53: 586-590 [PMID: 22619357 DOI: 10.1085/ar.2012.11071]
16 Dubravszky V, Schwalm H, Fleischer M. [The fibre system of connective tissue in the childbearing age, menopause, and pregnancy]. Arch Gynakol 1971; 210: 276-292 [PMID: 5109671]
17 Koyama T, Togashi K. Functional MR imaging of the female pelvis. J Magn Reson Imaging 2007; 25: 1101-1112 [PMID: 17520731]
18 Ichikawa T, Erturk SM, Motoogui U, Sou H, Iino H, Araki T, Fujii H. High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 2006; 187: 181-184 [PMID: 16794174]
19 Natsu K, Kuroki Y, Navano S, Kuroki T, Tsukamoto T, Yamamoto S, Motoori K. Ueda T. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 2006; 239: 122-130 [PMID: 1693012]
20 Takahara T, Inai Y, Yamashita T, Yasuda S, Natsu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004; 22: 275-282 [PMID: 15468951]
21 Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007; 188: 1622-1635 [PMID: 17515386]
22 Trepano G, Amoroso S, Scambia G. Non-surgical management of uterine fibroids. Hum Reprod Update 2008; 14: 259-274 [PMID: 18344356 DOI: 10.1093/humupd/dmn006]
23 Goto A, Takeuchi S, Sugimura K, Maruo T. Usefulness of Gd-DTPA contrast-enhanced dynamic MRI and serum determination of LDH and its isozymes in the differential diagnosis of leiomyosarcoma from degenerated leiomyoma of the uterus. Int J
Kara Bozkurt D et al. DWI and DTI of uterus

Gynecol Cancer 2002; 12: 354-361 [PMID: 12144683]

24 Tamai K, Koyama T, Saga T, Morisawa N, Fujimoto K, Mikami Y, Togashi K. The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. *Eur Radiol* 2008; 18: 723-730 [PMID: 17929022]

25 Catherino WH, Leppert PC, Stenmark MH, Payson M, Potlog-Nahari C, Nieman LK, Segars JH. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. *Genes Chromosomes Cancer* 2004; 40: 204-217 [PMID: 15139000]

26 Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. *Fertil Steril* 2004; 82 Suppl 3: 1182-1187 [PMID: 15474093]

27 Jacobs MA, Herskovits EH, Kim HS. Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery--preliminary study. *Radiology* 2005; 236: 196-203 [PMID: 15987974]

28 Liapi E, Kamel IR, Bluemke DA, Jacobs MA, Kim HS. Assessment of response of uterine fibroids and myometrium to embolization using diffusion-weighted echoplanar MR imaging. *J Comput Assist Tomogr* 2005; 29: 83-86 [PMID: 15665689]

29 Fujii S, Matsusue E, Kigawa J, Sato S, Kanasaki Y, Nakanishi J, Sugihara S, Kaminou T, Ogawa T. Diagnostic accuracy of the apparent diffusion coefficient in differentiating benign from malignant uterine endometrial cavity lesions: initial results. *Eur Radiol* 2008; 18: 384-389 [PMID: 17917730]

30 Beddy P, O’Neill AC, Yamamoto AK, Addley HC, Reinhold C, Sala E. FIGO staging system for endometrial cancer: added benefits of MR imaging. *Radiographics* 2012; 32: 241-254 [PMID: 22236905]

31 Sala E, Rockall A, Ranagaran D, Kubik-Huch RA. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. *Eur J Radiol* 2010; 76: 367-385 [PMID: 20810230]

32 Creasman W. Revised FIGO staging for carcinoma of the endometrium. *Int J Gynaecol Obstet* 2009; 105: 109 [PMID: 19345353]

33 Odcino F, Pecorelli S, Zigliani L, Creasman WT. History of the FIGO cancer staging system. *Int J Gynaecol Obstet* 2008; 101: 205-210 [PMID: 18199437]

34 Solomon D, Breen N, McNeel T. Cervical cancer screening rates in the United States and the potential impact of implementation of screening guidelines. *CA Cancer J Clin* 2007; 57: 105-111 [PMID: 17392387]

35 Demirbaş T, Cimilli T, Bayramoğlu S, Güner NT, Hocaoğlu E, Inci E. Contribution of diffusion-weighted imaging to diagnosis and staging of cervical cancer. *Balkan Med J* 2014; 31: 154-157 [PMID: 25207188]

36 McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. *Eur Radiol* 2008; 18: 1058-1064 [PMID: 18193428 DOI: 10.1007/s00330-007-0843-3]

37 Shen SH, Chiu YY, Wang JH, Yen MS, Lee RC, Lai CR, Chang CY. Diffusion-weighted single-shot echo-planar imaging with parallel technique in assessment of endometrial cancer. *AJR Am J Roentgenol* 2008; 190: 481-488 [PMID: 18212236 DOI: 10.2214/AJR.07.2155]

38 Li C, Chen M, Li S, Zhao X, Zhang C, Liu M, Zhou C. Diffusion tensor imaging of prostate at 3.0 Tesla. *Acta Radiol* 2011; 52: 813-817 [PMID: 21586608 DOI: 10.1258/ar.2011.100487]

39 Kinoshita M, Hashimoto N, Goto T, Kagawa N, Kishima H, Izumoto S, Tanaka H, Fujita N, Yoshimine T. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. *Neuroimage* 2008; 43: 29-35 [PMID: 18672074 DOI: 10.1016/j.neuroimage.2008.06.041]

P- Reviewer: Chu JP, Gao BL, Gumustas OG, Nouh MR
S- Editor: Ji FF L- Editor: A E- Editor: Liu SQ
