Psychiatric manifestations in cerebrotendinous xanthomatosis
M J Fraidakis

To cite this version:
M J Fraidakis. Psychiatric manifestations in cerebrotendinous xanthomatosis. Translational Psychiatry, 2013, 3, pp.e302. <10.1038/tp.2013.76>. <hal-01595966>

HAL Id: hal-01595966
https://hal.sorbonne-universite.fr/hal-01595966
Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Psychiatric manifestations in cerebrotendinous xanthomatosis

MJ Fraidakis1,2

Cerebrotendinous xanthomatosis (CTX) is a rare and severe, but treatable, inborn disorder of bile acid biosynthesis and sterol storage with autosomal recessive inheritance and variable clinical presentation. CTX treatment consists of chenodeoxycholic acid and must be started as early as possible to prevent permanent disability. Psychiatric manifestations are rare and non-specific, and often lead to significant diagnostic and treatment delay. Therefore, better recognition of the gamut of psychiatric manifestations in CTX can diminish the risk of misdiagnosis and irreversible neurological deterioration. We hereby describe the psychiatric features in CTX. A complete review of all published cases of CTX in the medical literature was undertaken and the case reports with psychiatric presentation were collected and analyzed. We also describe the psychiatric features in relation to the neurological semiology in six patients with CTX diagnosed at the La Salpêtrière Hospital. We conclude that psychiatric manifestations in CTX follow a bimodal/bitemporal pattern, appearing early in the disease course in the form of a behavioral/personality disorder associated with learning difficulties or mental retardation, or manifesting in advanced disease in the setting of dementia as rich neuropsychiatric syndromes, such as frontal, orbitofrontal or frontotemporal syndromes of cortico-subcortical dementia encompassing behavioral/personality disturbance, affective/mood disorders or psychotic disorders. Behavioral/personality disturbance in childhood or adolescence, especially when accompanied by learning difficulties, should therefore lead to further investigation to exclude CTX, as early diagnosis and treatment is critical for prognosis.

Keywords: behavior/personality disorder; cerebrotendinous xanthomatosis; chenodeoxycholic acid; cholestanol; psychiatric manifestations; young-onset dementia

INTRODUCTION

Cerebrotendinous xanthomatosis (CTX) (OMIM 213700) is a rare and severe inborn disorder of bile acid biosynthesis and sterol storage with autosomal recessive inheritance and variable clinical presentation. The enzymatic defect of sterol 27-hydroxylase impairs the synthesis of the bile acids, cholic and chenodeoxycholic, with a resultant overproduction and accumulation of several bile acid synthetic pathway byproducts in large deposits in many organs, including the central nervous system (CNS). Diagnosis is strongly suggested by specific clinical features, such as juvenile cataracts, tendon xanthomas or chronic diarrhea, and is confirmed by the lab finding of elevated cholestanol in the plasma or cerebrospinal fluid, and by molecular genetic analysis. Early diagnosis is of paramount importance, as treatment can halt disease progression. The mainstay treatment consists of chenodeoxycholic acid (CDCA) per os administration, 250 mg three times daily. Cholesterol levels can be further reduced by the addition of a statin, usually simvastatin or pravastatin, but with uncertain evidence-based clinical benefit, apart from the prophylactic effect against atherosclerosis. Timely therapy is effective in alleviating some of the neurological symptoms, but unfortunately, as a rule, diagnosis is made with a delay of up to many years if ever.

More than 400 cases have been described previously worldwide. Published cases of CTX and its psychiatric features are unusual, with only sporadic reports. Intellectual deterioration may progress to veritable cortical/subcortical dementia, yet mental function may remain apparently normal in some patients. Systemic manifestations are premature atherosclerosis with cardiovascular morbidity, pulmonary dysfunction and osteoporosis predisposing to bone fractures. Psychiatric manifestations have been reported only sporadically.

Magnetic resonance imaging (MRI) is helpful in demonstrating early lesions in the cerebellum, in the form of hyperintensities in the dentate nuclei and hemispheres, and in folia atrophy, on T2-weighted images. Other MRI lesions can be seen in the brain stem, often symmetrically in the pyramidal tracts, the medial lemnisci and the inferior olives, whereas supratentorially, slight, non-specific signal alterations are seen periventricularly, always on T2 images. In advanced untreated cases, symmetrical dentate
hypointensities have been reported with T1-weighted imaging, suggesting calcium and hemosiderin deposition, also detectable by transcranial ultrasonography.14–46 The cerebral cortex and centrum semiovale appear normal on MRI images, similar to that usually seen histologically.13,28,44–46 Macroscopically, large granulomatous lipid deposits (1–2 cm) with extensive demyelination can be found in the cerebellar hemispheres, the cerebellum being most conspicuously affected by lipid deposition, which can otherwise also involve the brain stem and spinal cord.1,12,28 Microscopically, white matter is replaced by neutral fat, needle-like clefts and cystic spaces; foamy vacuolated macrophages and multilucented giant cells can be found in the affected CNS areas.28

Psychiatric and behavioral manifestations in CTX are rare, especially in the younger patients, and are often misattributed to psychiatric disease when grave or are overlooked when subtle.10 Personality changes with irritability and aggressivity, depression, delusional syndrome, even catatonia, frank psychosis and suicidal ideation have all been reported in scant reports previously. Dementia often develops in advanced CTX, and in older patients it may be heralded or may coexist with florid psychiatric manifestations.20,24,34

We hereby describe the psychiatric manifestations from a cohort of 13 patients with CTX evaluated at the Pitie-Salpetriere University Hospital. Psychiatric manifestations in the setting of early or advanced dementia in our cohort are described to serve as a counterpoint to the psychiatric picture of younger CTX patients without dementia. A complete review of all published cases of CTX in the medical literature from 1936 to date was also undertaken and the case reports with psychiatric presentation were collected and analyzed. The results from our series are compared with the findings from the review of the medical literature. Conclusions are drawn on the spectrum of psychiatric manifestations in CTX in relation to patient age and disease stage.

MATERIALS AND METHODS

We reviewed 13 cases of genetically confirmed CTX, diagnosed and followed up at the Neurology Department of the La Salpetriere University Hospital for the presence of psychiatric manifestations at any stage of the disease history. Patients and their parents were interviewed to obtain the best estimates for lifetime diagnoses. Furthermore, all psychiatric and medical charts, as well as school notes, were collected to confirm the clinical information, both in terms of symptoms and of time course.

A Medline search was done (1968–2012) on CTX. From the reference list of the papers thus collected, we found all articles on the subject, which were published before 1968, as far back as the original publications of Schneider (1936) and van Bogaert et al.7,44 monograph. These papers were collected from medical libraries and were reviewed thoroughly on the basis of the documentation of CTX case reports. Original and review articles in English, French, Italian, Spanish, German and Dutch were read. Articles written in Japanese were not reviewed, but their abstracts were taken into account. Although the occasional review articles in Hebrew and Russian were not read, they did not contain any case reports. From the review of the above mentioned medical literature, we managed to collect data on 425 cases, which is most probably an underestimate of the worldwide disease prevalence. Although many case descriptions were poor in information, we extracted the case reports that contained even the slightest hint of a psychiatric semeiology. In our analysis of the psychiatric manifestations of CTX, however, we did not include the cases that were simply described as having developed learning difficulties, mental retardation or dementia. Nevertheless, we included all case reports wherein psychiatric manifestations were mentioned in the setting of CTX-related dementia.

Case reports (La Salpetriere Hospital)

Early psychiatric manifestations (not associated with dementia)
Patient 1 (P1). The 24-year-old male patient was born to non-consanguineous parents. Psychomotor development was normal. The ability to read was acquired normally. At the age of 6 years, frequent falls, clumsiness and learning difficulties in writing, spelling and arithmetic were noticed. He began attending the local Child Development Center at the end of first grade and attended regular sessions with a reading specialist. Interpersonal relational problems and behavioural disturbance were noticed at elementary school. He was reported to be hyperactive, impulsive and sometimes violent. At the age of 13 years, he was hospitalized after an episode of aggressive behavior towards his mother during a family quarrel when he threatened her with a knife. Psychiatric diagnoses at adolescence were borderline intelligence, attention-deficit hyperactivity disorder, predominant hyperactive–impulsive subtype and oppositional-defiant disorder, and no pharmacologic treatment was administered. His high-school education was disorganized and underachieving because of his psychiatric problems and further intellectual decline. His behavioral disturbance with irritability, aggressivity and oppositional behavior persisted throughout adolescence. He showed indifference and aggressivity towards his mother, non-adherence to rehabilitation orders and negligence of basic hygiene. At 21 years of age, neuropsychological testing revealed diminished global cognitive efficiency, difficulties in abstract reasoning, deficit in attention and dysexecutive syndrome affecting the instrumental capacities (Mini Mental Scale (MMS): 21/29; Frontal Assessment Battery (FAB):49,50, 16/18). At physical and neurological examination, elongated facies, pes cavus and cerebellar ataxia were found, and electroneuromyography evidenced mild peripheral neuropathy. MRI scanning showed discrete cerebellar and parieto-occipital white matter hyperintensities. Cholesterol levels were abnormally high and genetic analysis found mutation of the CYP27 alleles in a compound heterozygous state (E6:R395C/E8:R479C). The diagnosis of CTX was made after her brother’s diagnosis, when she was 17 years old. Standard treatment resulted in substantial improvement of her psychiatric condition.8

Patient 2 (P2). She is the 19-year-old sister of P1. Psychomotor development was normal. Her medical history was non-specific, except for pes cavus with hammer toes discovered at the age of 7 years, as well as chronic diarrhoea since childhood. During school years, the patient was active in sports but was underperformed academically, and exhibited oppositional behaviors and deficits in attention. She received methylphenidate (10–20 mg per day) for attention-deficit hyperactivity disorder from ages 9 to 11 years. The treatment was discontinued because of worsening of impulsivity, aggressiveness and cognitive decline, forcing her to leave school. Neuropsychological examination and electroneuromyography found mild signs of sensorimotor axonal peripheral neuropathy. Results of brain MRI scanning and ophthalmological examinations were normal. Cholesterol levels were abnormally high and genetic analysis found mutation of the CYP27 alleles in a compound heterozygous state (E6:R395C/E8:R479C). The diagnosis of CTX was made after her brother’s diagnosis, when she was 17 years old. Standard treatment resulted in substantial improvement of her psychiatric condition.8

Late psychiatric manifestations (associated with dementia)
Patient 4 (P4). The patient is a 50-year-old male, born to non-consanguineous parents. Psychomotor development was normal. He has several siblings, among whom one sister was with a psychiatric illness and Achilles tendon xanthomas were noticed at clinical examination. Retrospective psychiatric evaluation revealed only learning difficulties in childhood and adolescence with poor scholastic performance. The patient was lost to follow-up and did not receive specific treatment for CTX. Cholesterol levels were abnormally high and, similar to her brother, he was a carrier of the the pathogenic IVS4-1G>T mutation in the CYP27A1 gene in a homozygous state.

The diagnosis of CTX was made after her brother’s diagnosis, when she was 17 years old. Standard treatment resulted in substantial improvement of her psychiatric condition.8

Translational Psychiatry (2013), 1 – 11
RESULTS

In the cohort of 13 patients at the La Salpêtrière Hospital, 6 patients exhibited psychiatric symptoms at some point in the disease course, and in half of them psychiatric symptoms occurred

Patient 5 (P5). The patient is a 49-year-old female. Psychomotor development was normal. Epilepsy with petit mal seizures appeared at the age of 7 months. She was schooled until the sixth class and later followed special education because of learning difficulties. She recalls that her gait problems began at the age of 30 years and progressed with time. At 42 years, a pyramidal syndrome with spasticity of all members was found at clinical examination and her gait deteriorated more rapidly thereafter. At 43 years, she was unemployed, on invalidity pension, living with her parents and suffering from depression attributed to her sorrow over her husband's death. Clinical examination revealed spastic paraparesis with gait ataxia, hyperreflexia of deep tendon reflexes with bilateral Babinski and Hoffmann signs, and mental retardation (IQ: 50; MATTIS: 118/144). At the age of 44 years, neuropsychologic testing scores were 21/30 and 10/18 for MMS and FAB, respectively. Ultimately, metabolic screening revealed elevated cholestanol and the diagnosis of CTX was confirmed with genetic analysis. The patient did not have visible tendon xanthomas. MRI imaging demonstrated bilateral cerebellar white matter hyperintensities, periventricular white matter hyperintensities, and diffuse cortical and subcortical atrophy subterritorially and supraterritorially. A combined regimen of pravastatin (20 mg per day) and CDCA (250 mg three times daily) was initiated at 45 years, and the patient was followed up. The patient experienced a substantial and quantifiable benefit from treatment. On a follow-up, 6 months later, MMS was 25/30 and FAB was 12/18, the remaining neurologic status being stable. On a second follow-up 1 year after the last, FAB was 13/18. On a third follow-up 9 months later, the patient reported sustained improved gait and cognitive benefits (better concentration capacity and less apraxiatism). MMS was 28/30 and FAB was 15/18.

Patient 6 (P6). A 56-year-old female patient of French descent born to non-consanguineous parents. She was operated several times during childhood because of bilateral cataract. Gait difficulties and dysequilibrium appeared in her thirties and worsened steadily thereafter during the course of 20 years, resulting in severe spastic paraparesis and ataxia that rendered the patient wheel-chair bound. Along the same timeline, signs of dementia appeared and progressed (anterograde and retrograde amnesia, frontal syndrome signs, emotional liability and irritability). At the age of 56 years, the patient was hospitalized. Neuropsychiatric testing confirmed global dementia with MMS at 21/30 and dysexecutive syndrome with FAB at 12/18. MRI imaging revealed diffuse cerebral cortical and subcortical atrophy, as well as cerebellar cortical atrophy, diffuse moderate leukoencephalopathy, hyperintensities of the corticospinal tract at the capsular and cerebral peduncle levels, and T1–T2–FLAIR hypointensities of the dentate nuclei, corresponding to calcifications. Biochemical analysis revealed elevated cholestanol and sterol precursors of cholesterol, and the diagnosis of CTX was confirmed with genetic analysis. Treatment with CDCA was initiated at 56 years and resulted in alleviation of psychiatric symptoms, but neuropsychological signs did not improve.

Table 1. Clinical description of CTX patients with psychiatric manifestations examined and diagnosed at the La Salpêtrière Hospital

Gender	Origin	D (years)	X (years)	N (years)	Female	Male	Behavioral/personality	Mood/affection	Dementia	
P1	M	Fr–Sp	22	25	ado	6	Yes*	Aggr., irritability, ADHD, ODD	Behavioral/personality	LD/MR
P2	F	Fr–Sp	17	20	16	16	Yes*	Aggr., irritability, ADHD, ODD	Behavioral/personality	LD/MR
P3	F	French	20	35	ch.	ado	No	Aggressivity, psychosis	Psychotic	LD
P4	M	French	48	50	13	44	No	Irritability, anxiety/depr., apathy	Mood/affection	Dementia
P5	F	French	45	49	7	43	F	Anxiety/depression	Mood/affection	Dementia
P6	F	French	58	58	ch.	50	No	Irritability, emotional liability	Mood/affection	Dementia

Abbreviations: ADHD, attention-deficit hyperactivity disorder; ado, adolescence not specified; Aggr., aggressive; ch, childhood not specified; Cog, psychiatric manifestations associated with LD, MR or dementia; CTX, cerebrotendinous xanthomatosis; D, age at diagnosis; Depr., depression; F, female; Fr., French; LD, learning difficulties; M, male; MR, mental retardation; N, age at neurological debut; ODD, oppositional-defiant disorder; Sp., Spanish; X, age at last examination.

*Psychiatric initial presentation, psychiatric first referral of CTX or none of these; **Psychiatric semiology; Dementia, type of psychiatric disorder.

in the setting of organic dementia (Table 1). Out of the three younger patients without dementia at the time of psychiatric symptoms (P1, P2 and P3), only two siblings had a purely psychiatric presentation of CTX, occurring in their early-to-middle adolescence and associated with mild cognitive and intellectual decline without mental retardation (P1 and P2). Notably, they both presented with behavioral and personality disturbance, initially diagnosed as attention-deficit hyperactivity disorder and oppositional-defiant disorder. Aggressivity, irritability and insubordination was a major component of their psychiatric tableau as has been seen in other CTX cases we reviewed.21,22 Both siblings received standard treatment (per os administration of Chenofalk, 250 mg three times daily), and follow-up psychiatric examination confirmed a clear and substantial improvement of their psychiatric condition.8 Standard treatment of the three older patients with CTX-related organic dementia also led to the alleviation of psychiatric symptomatology and/or mild improvement of cognitive status (P4, P5 and P6). In two families testing of the members at risk proved the diagnosis in a second sibling, and in one family this led to timely treatment with beneficial results for the psychiatric condition of the patients (P1 and P2).

Psychiatric manifestations in CTX have only been described in sporadic case reports and in only one case series.20 in total, we found that 54 patients of the 425 CTX cases published in the medical literature in the period 1937–2012 have had psychiatric manifestations ranging from personality changes and behavioral disorder to frank affective and psychotic disorders20–43 (Tables 2 and 3). This amounts to an incidence of 12.7% for psychiatric manifestations in the CTX population. This figure is informative but only approximate. The true figure could be higher because of underreporting of psychiatric signs in the poorly described case reports.10 It could even be lower because of underdiagnosis of CTX in general.10

There was significant variation of psychiatric phenotype in the above mentioned 54 cases (Tables 2 and 3). The most common manifestation was behavioral/personality disorder (n = 24, 5.6%) followed by mood/affective disorder (n = 10, 2.3%) and anxiety (n = 5, 1.2%), whereas there was only one case report of catatonia in the setting of CTX (n = 1, 0.2%) (Figure 1). Patients with mood/affective disorders reportedly suffered from depression, except for one patient who suffered from dysthymia (Tables 2 and 3).

It was possible to determine the approximate age of onset and mode of disease onset for 34 out of the total of 54 patients found in the bibliography, with CTX and psychiatric manifestations at some point in the disease course (Tables 2 and 3). As expected, in most cases (26 out of these 34) CTX-related symptoms or signs led to hospital referral before the age of 26 years, as usually CTX is an inborn metabolic disease of childhood onset. Pure psychiatric presentation of CTX occurred most often during childhood and never occurred after the age of 26 years (Tables 2 and 3, Figures 2
Psychiatric symptomatology occurred in the absence of overt cognitive decline. In the remaining 8 out of the above mentioned 17 cases, psychiatric manifestations had appeared at an older age, and a more advanced disease stage and mental retardation or dementia were already established (Table 2, color-coded red, not marked with * in column Ψ_d). In the other 17 out of the above mentioned 34 CTX cases, psychiatric manifestations were a late feature of the disease in the setting of established CTX with either mental retardation or dementia, and in most cases the diagnosis had been made many years previously; hence, the psychiatric symptomatology did not aid the clinical diagnosis (Table 2, not color-coded in column Ψ_d). The gamut of psychiatric pathology in these patients was more broad, encompassing affective/mood disorders, psychotic disorders and psychiatric cognitive decline. In the remaining 8 out of the above mentioned 17 cases, psychiatric manifestations had appeared at an older age, and a more advanced disease stage and mental retardation or dementia were already established (Table 2, color-coded red, not marked with * in column Ψ_d). In the other 17 out of the above mentioned 34 CTX cases, psychiatric manifestations were a late feature of the disease in the setting of established CTX with either mental retardation or dementia, and in most cases the diagnosis had been made many years previously; hence, the psychiatric symptomatology did not aid the clinical diagnosis (Table 2, not color-coded in column Ψ_d). The gamut of psychiatric pathology in these patients was more broad, encompassing affective/mood disorders, psychotic disorders and psychiatric

Table 2. Clinical description of CTX patients with psychiatric manifestations drawn from the medical literature

Reference	P	G	Origin	D	C	Age at diagnosis; depr., depression; F, female; LD, learning difficulties; M, male; MR, mental retardation; N, age at neurological debut; NS, not specified; X, age at psychiatric debut; Ψ, psychiatric initial presentation, psychiatric first referral of CTX or none of these; Ψ_d, psychiatric symptomatology; Ψ_d (Axis), type of psychiatric disorder.
Philippart and van Bogaert &3	P1	F	Flemish	42	42	10 Yes* Behavioral/personality MR P1
Shapiro et al.	P2	M	US (Caucasian)	45	50	34 Yes Mood/affective Dementia P2
Burton et al. &1	P3	M	US (Caucasian)	42	42	32 No NS P3
Laurent et al. &14	P4	F	French	43	43	40 No Behavioral/personality Dementia P4
Laurent et al. &15	P5	M	French	39	39	29 No Behavioral/personality Dementia P5
Laurent et al. &16	P6	M	French	28	28	9 Yes* Behavioral/personality MR P6
Laurent et al. &17	P7	F	French	49	49	8 <49 No Mood/affective Dementia P7
Berginer et al. &18	P8	M	Israel	42	42	22 Yes Behavioral/personality MR P8
Berginer et al. &19	P9	M	Israel	25	18	37 No Psychosis Dementia P9
Berginer et al. &20	P10	M	Israel	22	12	37 No Catatonia Dementia P10
Berginer et al. &21	P11	M	Israel	32	32	12 Yes Behavioral/personality MR P11
Wevers et al. &22	P12	F	Dutch	37	37	25 Yes NS MR P12
Soffer et al. &23	P13	F	Moroccan Jewish	30	37	5 <24 Yes Behavioral/personality MR P13
Verrips et al. &24	P14	F	Dutch	33	35	17 Yes NS MR P14
Sperhake et al. &25	P15	M	Germany	52	52	<6 Yes* Behavioral/personality LD P15
Sugama et al. &26	P16	F	Japanese	44	44	38 No Behavioral/personality Dementia P16
Dotti et al. &27	P17	M	Italian	39	?	? Yes* Behavioral/personality P17
Dotti et al. &28	P18	F	Italian	48	?	? Yes* Psychosis P18
Dotti et al. &29	P19	M	Italian	52	?	? Yes* Behavioral/personality P19
Dotti et al. &30	P20	F	Italian	32	?	? Yes* Behavioral/personality P20
Dotti et al. &31	P21	M	Italian	39	?	? Yes* Psychosis P21
Dotti et al. &32	P22	F	Italian	39	?	? Yes* Behavioral/personality P22
Dotti et al. &33	P23	M	Italian	42	?	? Yes* Behavioral/personality P23
Dotti et al. &34	P24	F	Italian	47	?	? Yes* Behavioral/personality P24
Dotti et al. &35	P25	M	Italian	54	?	? Yes* Mood/affective/depr. P25
Dotti et al. &36	P26	M	Italian	51	?	? Yes* Psychosis P26
Dotti et al. &37	P27	F	Italian	37	?	? Yes* Psychosis P27
Lee et al. &38	P28	F	Taiwan	31	41	6 Yes Mood/affective MR P28
Lee et al. &39	P29	M	Taiwan	32	43	<5 Ado Yes* Behavioral/personality MR P29
Lee et al. &40	P30	F	Taiwan	37	48	<5 Ado Yes* Behavioral/personality MR P30
Grandas et al. &41	P31	F	Spanish	39	51	26 Yes* Mood/affective MR P31
Bartholdi et al. &42	P32	F	Swiss	51	51	6 49 No Mood/affective Dementia P32
Guyant-Maréchal et al. &43	P33	M	French	53	53	15 44 Yes Behavioral/personality Dementia P33
Siman-Tov et al. &44	P34	M	Israeli (Ashkenazi)	29	29	4 29 No Behavioral/personality MR P34
Price Evans et al. &45	P35	F	Saudi	22	17	10 Yes* Behavioral/personality MR P35
Price Evans et al. &46	P36	M	Saudi	30	18	18 Yes Behavioral/personality MR P36
Gonzalez-Cuyar et al. &47	P37	F	USA	49	49	40 No NS MR P37
de la Fuente et al. &48	P38	M	French	52	40	18 Yes* Behavioral/personality Dementia P38
Szlago &49	P39	M	Argentina	17	17	0 Ado Yes Behavioral/personality MR P39
Zacherl et al. &50	P40	F	Germany	44	44	20 No Mood/affective Dementia P40
Filippi et al. &51	P41	M	Chile	39	20 <20 Ado Yes Mood/affective Dementia P41	
Bonnot et al. &52	P42	M	French-Spanish	23	24	6 <10 Yes Behavioral/personality LD P42
Bonnot et al. &53	P43	F	French-Spanish	17	19	7 Yes Behavioral/personality LD P43
Chang et al. &54	P44	M	Chinese	24	29	? No Anxiety MR P44
Chang et al. &55	P45	F	Chinese	31	48	? No Mood/affective Dementia P45
de la Fuente et al. &56	P46	M	Spain	?	?	? Yes NS ? P46
de la Fuente et al. &57	P47	F	Spain	?	?	? NS ? P47
de la Fuente et al. &58	P48	F	Spain	?	?	? NS ? P48
de la Fuente et al. &59	P49	F	Spain	?	?	? NS ? P49
de la Fuente et al. &60	P50	M	Spain	?	?	? NS ? P50
de la Fuente et al. &61	P51	M	Spain	?	?	? NS ? P51
de la Fuente et al. &62	P52	F	Spanish	?	?	? NS ? P52
de la Fuente et al. &63	P53	?	?	?	? NS ? P53	
de la Fuente et al. &64	P54	?	?	?	? NS ? P54	

Abbreviations: Ado, adolescence not specified; Cog, psychiatric manifestations associated with LD, MR or dementia; CTX, cerebrotendinous xanthomatos; D, age at diagnosis; depr., depression, F, female; LD, learning difficulties; M, male; MR, mental retardation; N, age at neurological debut; NS, not specified; X, age at psychiatric debut; Ψ, psychiatric initial presentation, psychiatric first referral of CTX or none of these; Ψ_d, psychiatric symptomatology; Ψ_d (Axis), type of psychiatric disorder.
manifestations typical of subcortical dementia, which, in some cases, were compatible to a clinical diagnosis of frontotemporal dementia (Figure 4).

Documentation of the type of psychiatric diagnosis existed for 41 out of the total of 54 patients found in the bibliography, with CTX and psychiatric manifestations at some point in the disease course (Tables 2 and 3). Behavioral/personality disorder was the most frequent psychiatric manifestation in the small group of young CTX patients with pure psychiatric presentation ($n = 9$) of CTX, whereas in the larger group of CTX patients with non-psychiatric presentation ($n = 32$) of CTX it was as frequent as all the other psychiatric manifestations together (Figure 3). For 31 out of the 41 CTX cases with documentation of the type of psychiatric diagnosis, there was also available information on its age of onset (Figure 4). Behavioral/personality disorder was the most frequent psychiatric manifestation in all age groups, but especially so in patients younger than 26 years, followed by mood/affective disorder. In patients older than 26 years, psychiatric pathology was

Table 3. Detailed description of psychiatric history and manifestations of CTX patients drawn from the medical literature

Psychiatric symptoms and signs (age)
P1: (BEHAVIORAL/PERS. disorder)
P2: (MOOD/AFFECTIVE disorder)
P3: NS (32)
P4: (BEHAVIORAL/PERS. disorder)
P5: (BEHAVIORAL/PERS. disorder)
P6: (BEHAVIORAL/PERS. disorder)
P7: (MOOD/AFFECTIVE disorder)
P8: (BEHAVIORAL/PERS. disorder)
P9: (PSYCHOSIS)
P10: (CATATONIA)
P11: (BEHAVIORAL/PERS. disorder)
P12: NS (25)
P13: (BEHAVIORAL/PERS. disorder)
P14: NS (between 17–33)
P15: (BEHAVIORAL/PERS. disorder)
P16: (BEHAVIORAL/PERS. disorder)
P17: (BEHAVIORAL/PERS. disorder)
P18: (PSYCHOSIS)
P19: (MOOD/AFFECTIVE disorder)
P20: (BEHAVIORAL/PERS. disorder)
P21: (PSYCHOSIS)
P22: (BEHAVIORAL/PERS. disorder)
P23: (BEHAVIORAL/PERS. disorder)
P24: (BEHAVIORAL/PERS. disorder)
P25: (MOOD/AFFECTIVE disorder)
P26: (PSYCHOSIS)
P27: (PSYCHOSIS)
P28: (MOOD/AFFECTIVE disorder)
P29: (BEHAVIORAL/PERS. disorder)
P30: (BEHAVIORAL/PERS. disorder)
P31: (MOOD/AFFECTIVE disorder)
P32: (MOOD/AFFECTIVE disorder)
P33: (BEHAVIORAL/PERS. disorder)
P34: (BEHAVIORAL/PERS. disorder)
P35: (BEHAVIORAL/PERS. disorder)
P36: (BEHAVIORAL/PERS. disorder)
P37: NS (40s)
P38: (BEHAVIORAL/PERS. disorder)
P39: (BEHAVIORAL/PERS. disorder)
P40: (MOOD/AFFECTIVE disorder)
P41: (MOOD/AFFECTIVE disorder)
P42: (BEHAVIORAL/PERS. disorder)
P43: (BEHAVIORAL/PERS. disorder)
P44: (MOOD/AFFECTIVE disorder)
P45: (MOOD/AFFECTIVE disorder)
P46: NS
P47: NS
P48: NS
P49: NS
P50: NS
P51: NS
P52: NS
P53: NS
P54: NS

Abbreviations: ADHD, attention-deficit hyperactivity disorder; CTX, cerebrotendinous xanthomatosis; NS: not specified. In parentheses, age at onset of psychiatric symptomatology/semeiology.
more complex, with richer semiology often in the context of predementia/dementia (Figure 4).

In conclusion, based on the 425 CTX case reports we reviewed, the overall incidence of psychiatric manifestations was 12.7%, whereas only 9 CTX cases, for which documentation was adequate to allow further analysis, presented with essentially psychiatric symptoms early in the disease course and in the absence of overt neurological disease (overall incidence 2.5%). In seven out of nine of these cases, the manifestation of a pure psychiatric presentation was behavioral/personality disturbance (overall incidence 1.7%). Interestingly, all seven CTX patients, with premonitory psychiatric manifestations in the form of behavioral/personality disorder, were younger than 18 years (range 6–18 years) and all suffered from learning difficulties or mental retardation (Tables 2 and 3). It is concluded therefore that psychiatric manifestations in CTX follow a bimodal/bitemporal pattern. They appear (a) either early in the disease course, that is, during childhood or adolescence, in the form of a behavioral/personality disorder associated with learning difficulties or mental retardation, or (b) they manifest in advanced disease in older patients, often in the context of dementia as rich neuropsychiatric syndromes, such as frontal, orbitofrontal or frontotemporal syndromes of cortico-subcortical dementia encompassing behavioral/personality disturbance, affective/mood disorders and/or psychotic disorders.

DISCUSSION

CTX (also known as sterol 27-hydroxylase deficiency, cholestanolosis, van Bogaert–Scherer–Epstein disease or simply van Bogaert’s disease) is a rare, inborn neurometabolic disorder of bile acid biosynthesis and sterol storage with autosomal recessive inheritance and variable clinical presentation.\(^1\)–5,23,26,49–53 The mutated gene, the sterol 27-hydroxylase gene (CYP27), on the 2q33ter locus, codes for a mitochondrial cytochrome P450, which associates with two protein cofactors (adrenodoxin and adrenodoxin reductase) and catalyzes the hydroxylation at position C27 of the side chain of sterol intermediates, which constitutes the first step in their oxidative cleavage.\(^5\)–54,55 More than 50 different mutations of the gene have been described, most of them within the adrenodoxin-binding and the heme-binding sites of the enzyme.\(^5\)–58,64 As a consequence, CDCA synthesis is deficient and so is the negative feedback that CDCA exerts on cholesterol synthesis, with resultant increase in cholesterol synthesis and shunting of cholesterol towards cholestanol (5α-dihydrocholesterol) and other bile alcohol synthesis byproducts.\(^5\)–51,58–65 Accumulation of cholestanol, as well as cholesterol and various bile alcohols, in large deposits in many organs, particularly in the CNS, tendons, vascular system and lungs, is the pathophysiological mechanism behind CTX.\(^5\)–51,52,54,65–69 In the brain, cholestanol deposition far exceeds that of other sterols, ultimately comprising up to 30% of total sterols in the cerebellum.\(^36\)–70 Interestingly, despite increased cholesterol synthesis, plasma total cholesterol remains below or within the normal-range byproducts.\(^5\)–54,64 Laboratory diagnostic tests for the detection of elevated cholestanol in the plasma and cerebrospinal fluid, and the presence of bile alcohols (such as lathosterol, 7α-hydroxylated bile acids and so on) and bile alcohol glycuronides in the plasma and/or urine.\(^5\)–52,63,64,70 In bile, cholestanol is increased but CDCA is virtually absent.\(^5\)–52,63,64,70 Diagnosis is confirmed by mutation analysis, and genetic counseling is necessary for at-risk relatives, as appropriate treatment can alleviate symptoms and slow disease progression in symptomatic patients, and, most importantly, prevent or minimize disability in asymptomatic homozygotes.\(^4\)–59 The mainstay treatment consists of CDCA (Chenofalk) oral supplementation, 250 mg three times daily, which is the lacking bile acid that reestablishes the negative feedback and balance in the cholesterol and bile acid synthetic pathways, respectively, and normalizes cholesterol levels in the blood.\(^3\)–5,6,70–72 Cholesterol levels can be further reduced by the addition of a statin, usually simvastatin or pravastatin, but without an evidence-based clinical benefit.\(^5\)–73 Treatment is effective in that it can alleviate some constitutional, neurologic and even psychiatric symptoms.\(^4\)–6,70–80 Electrophysiological, neuropsychological and neuroradiological evaluation results support the notion that timely and adequate specific treatment may partially reverse neural tissue damage in the CNS and peripheral nervous system.\(^4\)–72–80

More than 400 cases have been described previously worldwide in the medical literature, and psychiatric manifestations of CTX have been reported only rarely and sporadically.\(^2\)–4,6–8,70–80 To date, no comprehensive review of the psychiatric manifestations of CTX has been published. Psychiatric manifestations in CTX present a variability that reflects the variability of the rest of CTX semiology. These encompassed behavioral/personality disorders, affective/mood disorders, psychotic disorders and dementia-associated psychopathology (Tables 2 and 3). We found that psychiatric manifestations in CTX follow a bimodal/bitemporal pattern, that is, they would either appear early in the disease course in the form of a behavioral/personality disorder associated with learning difficulties or mental retardation, or they would manifest in advanced disease in the context of dementia as rich neuropsychiatric syndromes, such as frontal, orbitofrontal or frontotemporal syndromes of cortico-subcortical dementia encompassing behavioral/personality disturbance, affective/mood disorders and/or psychotic disorders.

Unfortunately, many of the sporadic cases in the medical literature were poorly documented. The Dotti et al.\(^32\) and the de la Fuente et al.\(^32\) series comprised, respectively, 11 and 9 patients with psychiatric symptoms, yet these were presented monolocically and the evaluation of their importance and temporal correlation with non-psychiatric manifestations was not possible. Among 13 CTX patients with ocular signs scrutinized by Dotti et al.\(^32\), 11 had a psychiatric disturbance (Table 2), of which 5 had behavioral changes, 4 had psychosis and 2 had depression. Thus, clearly, in this series the psychiatric manifestations were overrepresented, which is in contrast to the rarity of psychiatric signs in CTX. In the only published case series specifically focusing on the psychiatric spectrum of CTX, Berginer et al.\(^20\) reported four patients with disparate psychiatric syndromes. In this series, the first patient required numerous hospitalizations before and after the age of 32 years for irritability and personality changes with occasional hypersexuality and ended up with paranoid delusion and suicidal ideation at the age of 41 years. The second patient presented at the age of 37 years with atypical psychosis and paranoid delusion. The third patient suffered a severe catatonic episode at the age of 27 years and also had urinary–fecal incontinence. The last patient had been referred to a psychiatrist at the age of 22 years for aggressivity and agitation, and ultimately required many hospitalizations. In all patients of this series, however, the diagnosis of CTX had been easily made 10–15 years before the appearance of the psychiatric manifestations, as all four patients had had pes cavus and Achilles tendon xathomas since early in the adolescent period. Out of four patients had learning difficulties and cognitive deterioration since childhood, and two out of four patients had bilateral cataracts. Importantly, by the time of the psychiatric evaluation, three out of four patients had already developed spastic paraparesis and cerebellar ataxia, that is, the disease had advanced enough to extensively involve the CNS.

Psychiatric manifestations and dementia in CTX are primarily the result of diffuse white matter pathology affecting multiple distributed intrahemispheric and interhemispheric neural networks. White matter pathology is caused by alterations of myelin lipid composition with markedly disproportional cholestanol incorporation into the glial cellular membranes, substitution of other sterols and extensive demyelination of white matter
tracts. However, alterations of the composition of the lipid bilayer of neuronal plasma membranes may also have repercussions in neuronal integrity and/or function at the level of soma, synapse or circuitry. Moreover, intracerebral lipid deposition in the form of xanthomas and local inflammatory reaction take their toll on myelinated axonal tracts, central grey matter formations and neuronal cell bodies. Thus, both demyelination and inevitable neuronal loss ultimately lead to the neurologic and complex psychiatric manifestations of CTX. This hypothesis is supported by anatomopathological findings, and both conventional and advanced neuroimaging. Despite the definite organic etiopathogenesis of the neurobehavioral manifestations of CTX, depressive and anxiety symptoms, which constitute the second most common psychiatric manifestations in CTX, may sometimes be attributable in part to the physical and psychosocial impact of a chronic neurologic disease.
and cognitive decline on role functioning and quality of life, especially in younger patients without dementia.82

Multiple sclerosis (MS) is another CNS disease, where primarily white matter and secondarily grey matter are damaged in a random fashion, albeit by a different pathogenetic mechanism. MS may cause cognitive disturbance or dementia and, less often, organic psychopathology encompassing behavioural/personality disturbance, mood/affective disorders or psychosis.53–104

Psychiatric syndromes, such as bipolar disorders and atypical psychosis, often unassociated with cognitive disturbance or dementia, have been described, and euphoria sclerotica is a characteristic psychiatric syndrome in MS.53,54

Pure psychiatric presentation in MS is rare, as is the case for CTX.8,55,97,106,107,109–111 Major depressive disorder, which often is prodromal leading to diagnostic delay, is overrepresented in MS patients, as are suicidal ideation, anxiety and sleep disorders, and they are mainly believed to be secondary to physical illness and/or disease-modifying treatment.84–87,90,93,95,96,98,99,102,104,107,108 Although in MS a detrimental autoimmune process is the culprit, and not an enzymatic metabolic defect as in CTX, the relative infrequency, variability and complexity of psychiatric signs in both these diseases can be explained by the stochasticity and widespread nature of neural tissue damage, and the prerequisite of a cumulative effect and critical burden of white/grey matter loss or dysfunction.85,86,90,103,104–111 Moreover, one can further classify the organic neuropsychiatric syndromes associated with CTX and MS, as primarily related to the integrity of subcortical myelinated systems, as is also reflected in similarities in their neuropsychological profiles with cognitive slowing, dysexecutive syndrome and attentional disorder.107–112 Indeed, the characteristics of dementia in the setting of CTX and MS merit their classification as white-matter dementias.109,112

Systematic advanced neuroimaging studies with positron emission topography, single photon emission computerized tomography, magnetic resonance spectroscopy and diffusion tensor imaging are needed to clarify the importance of white matter functional, biochemical and microstructural abnormalities in the cognitive and neurobehavioural syndromes associated with CTX at various stages in the disease course, correlate these findings to neuropsychological assessment parameters and scores, as well as monitor the effects of disease-modifying treatment.111,117,90,113,114

Several other hereditary lipid disorders that cause leukoencephalopathy or leukodystrophy may result in or rarely present with complex organic neuropsychiatric syndromes by affecting the cerebral white matter integrity and/or the neuronal elements and circuitry.108–144 In most lipid storage diseases of the nervous system (neurolipidoses) or leukodystrophies, which can present at some point with acute, progressive or relapsing psychosyndromes (Tay–Sachs and Sandhoff disease, Fabry disease, metachromatic leukodystrophy, adrenoleukodystrophy, Niemann–Pick type C, ceroid neuronal lipofuscinoses), pharmacotherapy of psychiatric manifestations has either poor effect or even worsens the condition, for example, as in adult-onset GM2 gangliosidoses, where phenothiazines and tricyclic antidepressants may have a detrimental effect by inhibiting the activity of lysosomal enzymes, thereby increasing lipid storage in neuronal cells.135–143

This is a little known domain of neuropsychiatry, because neurodegenerative/neurometabolic diseases are rare and seldom end up in the principal care of the psychiatrist.8,115,117,134,142 The latter happens when these conditions present either as complex neuropsychiatric syndromes or, more often, as cognitive/behavioral syndromes or learning difficulties in young age.8,117,135,119,120,132,125,127,131,133,134,142

Although psychiatric manifestations in CTX are not uncommon, psychiatric presentation in CTX is rare and, therefore, is the initial pharmacotherapy of CTX with psychoactive drugs.5 Our own clinical experience from the CTX patients evaluated at the La Salpêtrière University Hospital is that pharmacotherapy (anxiolytic, antidepressive or antipsychotic treatments) and psychotherapy (cognitive-behavioral treatments) have little or only temporary effects in CTX-related organic psychosyndromes without improving prognosis, both in patients with advanced disease and dementia, and also in younger patients with mild cognitive disturbance. However, if psychiatric symptomatology is compounded by secondary depression or anxiety disorder in CTX, it may be partially amenable to symptomatic pharmacotherapy with antidepressants or anxiolytics, such as selective serotonin reuptake inhibitors, and a treatment trial in a CTX patient with mild or major depressive or anxiety disorder is unavoidable, as it is warranted.52 However, specific disease-modifying treatment with CDCA has the potential to both alleviate symptomatology and improve prognosis by slowing down neurodegeneration and disease progression, thus preventing or even reversing psychiatric manifestations.8 This is all the more important for the young undiagnosed patient with CTX that presents to the child and adolescent psychiatry department, with an elusive psychosyndrome that is slowly but steadily progressive and is often associated with cognitive disturbance.8,145,146 Therefore, timely diagnosis and specific treatment is the ultimate goal in the management of neuropsychiatric manifestations of CTX.

In conclusion, psychiatric manifestations in CTX are variable, encompassing personality, affective and psychotic disorders, and either appear late in the course of the disease in the context of an organic dementia complicating a chronic neurologic tableau of spastic paraparesis and the cerebellar or early in the course of the illness preceded by cognitive disturbance. Chronic diarrheas, tendon xanthomas and cataracts are salient early features of this systemic illness that herald the neurological or psychiatric signs and should raise the diagnostician’s index of suspicion.145–148 The earlier the onset of psychiatric symptoms, the milder is their severity, with personality/behavioral disorder, irritability and aggressivity most prominent in the ‘younger than 25’ age group. Irritability, aggressivity, attention-deficit hyperactivity disorder and oppositional-defiant disorder in childhood or adolescence, which easily can be disregarded or misdiagnosed as ‘travails of youth’ or ‘peer-group influence’, should therefore prompt a thorough neurologic evaluation with a complete physical and ophthalmologic check-up, especially in a background of consanguinity that increases the probability for autosomal recessive inherited disorders.144 The attending psychiatrist should be aware of CTX, its psychiatric manifestations and its characteristic physical signs, and strive to exclude it, especially as anecdotal reports have shown a beneficial effect of timely CDCA treatment on psychiatric symptoms and overall prognosis.8,145–148 We hope that this review will raise awareness of this devastating but treatable neuropsychiatric inherited disorder among psychiatrists.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

1 Harris Jr WR. Cerebrotendinous xanthomatosis. N Engl J Med 1968; 278: 857.
2 Berginer VM, Salen G, Shefer S. Cerebrotendinous xanthomatosis. Neurol Clin 1989; 7: 55–74.
3 Moghadasian MH, Salen G, Frohlich JJ. Scudamore CHT. Cerebrotendinous xanthomatosis: a rare disease with diverse manifestations. Arch Neurol 2002; 59: 427–429.
4 Moghadasian MH. Cerebrotendinous xanthomatosis: clinical course, genotypes and metabolic backgrounds. Clin Invest Med 2004; 27: 42–50.
5 Salen G, Shefer S, Berginer V. Biochemical abnormalities in cerebrotendinous xanthomatosis. Dev Neurosci 1991; 13: 363–370.
6 Leitersdorf E, Meiner V. Cerebrotendinous xanthomatosis. Curr Opin Lipidol 1994; 5: 138–142.

Translational Psychiatry (2013), 1 – 11
© 2013 Macmillan Publishers Limited
3 Monaldi M, Sicurelli F, Scarpini C, Dotti MT, Federico A. Cerebrotendinous xanthomatosis: 11-year treatment with chenodeoxycholic acid in five patients. An electrophysiological study. J Neurol Sci 2001; 190: 29–33.

8 Bonnet O, Fradakis MJ, Lucanto R, Chauvin D, Kelley N, Plaza M et al. Cerebrotendinous xanthomatosis presenting with severe externalized disorder: improvement after one year of treatment with chenodeoxycholic acid. CNS Spectr 2010; 15: 231–236.

9 Verrips A, Wevers RA, Van Engelen BG, Keyser A, Wolthers BG, Barkhof F et al. Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 1999; 48: 233–238.

10 Lorincz MT, Rainier S, Thomas D, Fink JK. Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol 2005; 62: 1459–1463.

11 Reshef A, Meiner V, Berginer VM, Leitersdorf E. Molecular genetics of cerebrotendinous xanthomatosis in Jews of north African origin. J Lipid Res 1994; 35: 478–483.

14 Grandas F, Martin-Moro M, Garcia-Muñozarena S, Anaya JA. Early-onset parkinsonism in cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry 1993; 56: 405–406.

15 Fleischmajer R, Ting GS, Bennett HD. Normalpicromembrane, tendinous and tuberosal xanthomas. J Am Acad Dermatol 1981; 5: 290–296.

17 Chen PS, Fleck RP, Calisi CM, Kozina JA, Feld GK. Macrocirculatory ventricular tachycardia and coronary artery disease in cerebrotendinous xanthomatosis. Am J Cardiol 1989; 60: 680–682.

18 Kawabata M, Kuriyama M, Mori S, Sakashita I, Osame M. Pulmonary manifestations in cerebrotendinous xanthomatosis. Intern Med 1998; 37: 901–902.

19 Bergmer VM, Shany S, Alkalay D, Berginer J, Dekel S, Salen G et al. Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism 1993; 42: 1497–1498.

20 Bergmer VM, Foster NL, Sadowsky M, Townsend 3rd JA, Siegel GJ, Salen G. Cerebrotendinous xanthomatosis in patients with cerebrotendinous xanthomatosis. Am J Psychiatry 1988; 145: 354–357.

21 Lee Y, Lin PY, Chiu NM, Chang WN, Wen JK. Cerebrotendinous xanthomatosis: 11-year treatment with chenodeoxycholic acid in five patients. J Neurol Neurosurg Psychiatry 1993; 56: 405–406.

25 Burnstein M, Buckwalter KA, Martel W, McClatchey KD, Quint D. Case report: Cerebrotendinous xanthomatosis revisited: a case report and review of the literature. Eur J Neurol 2011b; 18: 1203–1211.

27 Galid R, Lamp Y, Lev D, Sadach M. Cerebrotendinous xanthomatosis without xanthomas. Clin Genet 1999; 56: 405–406.

28 Fleischmajer R, Ting GS, Bennett HD. Normalpicromembrane, tendinous and tuberosal xanthomas. J Am Acad Dermatol 1981; 5: 290–296.

29 Grandas F, Martin-Moro M, Garcia-Muñozarena S, Anaya JA. Early-onset parkinsonism in cerebrotendinous xanthomatosis. Mov Disord 2002; 17: 13691379.

30 Simon-Tov T, Meiner V, Gadoth N. Could steroids mask the diagnosis of cerebrotendinous xanthomatosis? Am J Med Genet A 2007; 1459–1463.

35 Siman-Tov V, Meiner V, Gadoth N. Could steroids mask the diagnosis of cerebrotendinous xanthomatosis? J Neurol Sci 2006; 243: 83–86.

36 Gonzalez-Cuay LF, Hunter B, Harris PL, Perry G, Smith MA, Castellani RJ. Cerebro- tendinous xanthomatosis: case report with evidence of oxidative stress. Redox Rep 2007; 12: 119–122.

37 Pilo de la Fuente B, Ruiz I, Lopez de Munain A, Jimenez-Escrig A. Cerebro- tendinous xanthomatosis: neuropathological findings. J Neurol 2008; 255: 839–842.

38 Szlago M, Gallus GN, Schenone A, Patino ME, Sfaelo Z, Rifa A et al. The first cerebro- tendinous xanthomatosis family from Argentina: a new mutation in CYP27A1 gene. Neurology 2008; 70: 402–404.

39 Zarcheri M, Souej H, Beham A, Embberger W, Leitner A, Windhager W. [Cerebro- tendinous xanthomatosis, Hereditary lipid storage disease leading to bilateral swelling of Achilles tendon]. Orthopade 2008; 37: 704–708[in German].

40 Filippi J, Irrazaval S, Peredo P, Mellado P. [Cerebrotendinous xanthomatosis: report of one case]. Rev Med Chil 2009; 137: 815–820[in Spanish].

41 Chang CC, Liu CC, Wang JJ, Huang SH, Lu CH, Chen C et al. Multi-parametric neuroimaging evaluation of cerebrotendinous xanthomatosis and its correlation with neuropsychological presentations. BMC Neurol 2010; 10: 59.

42 Pilo de la Fuente B, Sobrido MJ, Giros M, Pozo L, Lustres M, Barrero F et al. [Usefulness of cholesterol levels in the diagnosis and follow-up of patients with cerebrotendinous xanthomatosis]. Neurologia 2011a; 26: 397–404[in Spanish].

43 Pilo de-la-Fuente B, Jimenez-Escrig A, Lorenzo JRD, Pardo A, Arias M, Ares-Luque A et al. Cerebrotendinous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur J Neurol 2011b; 18: 1203–1211.

44 Barkhof F, Verrips A, Wesseling P, Van Der Knapp MS, Van Engelen BG, Gabriels FJ et al. Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology 2000; 217: 869–876.

45 Vanrietvelde F, Lemmerling M, Mespreuve M, Crevits L, De Reuck J, Kunnem M. MRI of the brain in cerebrotendinous xanthomatosis. Eur Radiol 2000; 10: 576–578.

46 De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthoma- tosis. Brain 2001; 124: 121–131.

47 van Bogaert L, Scherer HJ, Epstein E A. Cerebro- tendinous xanthomatosis in children. Etiology, pathogenesis and clinical manifestations. J Neurological Sciences 1987; 96: 233–240.

48 van Bogaert L, Scherer HJ, Epstein E A. Cerebro- tendinous xanthomatosis in children. Etiology, pathogenesis and clinical manifestations. J Neurological Sciences 1987; 96: 233–240.

49 van Bogaert L, Scherer HJ, Epstein E A. Cerebro- tendinous xanthomatosis revisited: a clinical survey of the patient population in The Nether- lands. J Neurol Sci 1987; 89: 169–175.

50 Burnstein M, Buckwalter KA, Martel W, McClatchey KD, Quint D. Case report: Cerebrotendinous xanthomatosis. Skeletal Radiol 1987; 16: 346–349.

51 Laurent A, Dairou F, Luc G, Truffert J, Lapresle J, de Gennes JL. [Van Bogaert's xanthomatosis. A study at 3 cases]. Ann Med Interne (Paris) 1988; 139: 395–402[in French].

52 Wevers RA, Frings-Robert J, Van Heijst AJ, Janssen-Zijlstra FS, Renier WO, Van Engelen BG et al. Paediatric cerebrotendinous xanthomatosis. J Inherit Metab Dis 1992; 15: 374–376.

53 Soffer D, Benharroch D, Berginer V. The neuropathology of cerebrotendinous xanthomatosis revisited: a case report and review of the literature. Acta Neuropathol 1995; 90: 213–220.

54 Varriols A, Steinbergen-Spanjes GC, Lytten JA, van den Heuvel LP, Keyser A, Gabreels FJ et al. Two new mutations in the steroid 27-hydroxylase gene in two families with cerebrotendinous xanthomatosis. J Inherit Metab Dis 1983; 17: 568–571.

55 Bartholdi D, Zumsteg D, Verrips A, Wevers RA, Sistermans E, Hess K et al. Spinal phenotype of cerebrotendinous xanthomatosis—a pitfalls in the diagnosis of multiple sclerosis. J Neurol 2004; 251: 105–107.
Lee MH, Hazard S, Carpent JD, Yi S, Cohen J. Gerhardt GT et al. Fine-mapping, mutation analyses, and structural mapping of cerebrotendinous xanthomatosis in U.S. pedigrees. J Lipid Res 2001; 42: 159–169.

Clayton PT, Verrips A, Sisterrmans E, Mann A, Mieli-Vergani G, Wevers R. Mutations in the sterol 27-hydroxylase gene (CYP27A1) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis 2002; 25: 501–513.

Von Bahr S, Björkhem I, Van’t Hooft F, Alvelius G, Nemeth A, Sjöval J et al. Mutation in the sterol 27-hydroxylase gene associated with fatal cholestasis in infancy. J Pediatr Gastroenterol Nutr 2005; 40: 481–486.

Gallus GN, Dotti MT, Federico A. Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci 2006; 27: 143–149.

Fedrero A, Dotti MT, Loré F, Nuti R. Cerebrotendinous xanthomatosis: pathophysiological study on bone metabolism. J Neurol Sci 1993; 115: 67–70.

Dotti MT, Mondiello S, Plevnia K, Agricola E, Federico A. Cerebrotendinous xanthomatosis: evidence of lipomatous hypertrophy of the atrial septum. J Neurol 1998; 245: 723–6.

Verrips A, Nijhoff GT, Barkhof F, Van Engelen BG, Wesseling P, Luyten JA et al. Spinal xanthomatosis: a variant of cerebrotendinous xanthomatosis. Brain 1999; 122: 1589–1595.

Verrips A, Hoefsloot LH, Steenbergen GC, Theelen JP, Wevers RA, Gabreijls FJ et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 2000; 123: 908–19.

Dotti MT, Federico A, Garuti R, Calandra S. Cerebrotendinous xanthomatosis with predominant parkinsonian syndrome: further confirmation of the clinical heterogeneity. Mov Disord 2000; 15: 1017–20.

Ohno T, Kobayashi S, Hayashi M, Sakurai M, Kasazawa I. Dihydropyrlaline-responsive parkinsonism in cerebrotendinous xanthomatosis: long-term follow up of three patients. J Neurol Sci 2001; 182: 95–7.

Salen G, Meriwether TW, Nicolau G. Chenodesoxycholic acid inhibits increased cholesterol and cholesterol synthesis in patients with cerebrotendinous xanthomatosis. Biochem Med 1975; 14: 57–64.

Benginer VM, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 1984; 311: 1649–1652.

Dotti MT, Lütjohann D, von Bergmann K, Federico A. Normalisation of serum cholesterol concentration in a patient with cerebrotendinous xanthomatosis by combined treatment with chenodeoxycholic acid, simvastatin and LDL apheresis. Neurol Sci 2004; 25: 185–191.

Donahgy M, King RH, McKean RO, Schwartz MS, Thomas PK. Cerebrotendinous xanthomatosis: clinical, electrophysiological and nerve biopsy findings, and response to treatment with chenodeoxycholic acid. J Neurol 1990; 237: 216–219.

MondeLLi M, Rossi A, Scarpini C, Dotti MT, Federico A. Evoked potentials in cerebrotendinous xanthomatosis before and after treatment with chenodeoxycholic acid: a preliminary study. J Neurol Sci 1992; 112: 139–146.

Tokiura Y, Kuniyama M, Arimura K, Fujiyama J, Osame M. Electrophysiological studies in cerebrotendinous xanthomatosis. J Neurol Neurosurg Psychiatry 1992; 55: 52–55.

Van Heijst AF, Verrips A, Wevers RA, Cruysberg JR, Renier WO, Tolboom JJ. Combined treatment with chenodeoxycholic acid, simvastatin and LDL apheresis for patients with cerebrotendinous xanthomatosis. J Neurol Sci 2000; 177: 137–138.

Price A, Rayner L, Okon-Robert E, Evans A, Valraj K, Higgison U et al. Anti-depressants for the treatment of depression in neurological disorders: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry 2011; 82: 914–923.

Iacovides A, Andreoulaakis E. Bipolar disorder and resembling special psycho-pathological manifestations in multiple sclerosis: a review. Curr Opin Psychiatry 2011; 24: 336–340.

Stenager EN, Jensen B, Stenager M, Stenager K, Stenager E. Suicide attempts in multiple sclerosis. Mov Disord 2000; 15: 1265–1268.

Bruce JM, Lynch SG. Personality traits in multiple sclerosis: association with mood and anxiety disorders. J Psychosom Res 2011; 70: 479–485.

Baumstark-Barrack I, Simeoni MC, Reuter F, Klemina I, Aghababian V, Pelletier J et al. Cognitive function and quality of life in multiple sclerosis patients: a cross-sectional study. BMC Neurol 2011; 11: 17.

Bannock F, Arnett PA. Relationship between global cognitive decline and depressive symptoms in multiple sclerosis. Clin Neuropsychol 2011; 25: 193–209.

Gaskill A, Foley FW, Kolzet J, Picone MA. Suicidal thinking in multiple sclerosis. Disabil Rehabil 2011; 33: 1528–1536.

Goretti B, Portaccio E, Ghiazza A, Lori S, Moiola L, Fallaustano M et al. Multiple Sclerosis Study Group of the Italian Neurological Society. Fatigue and its relationships with cognitive functioning and depression in paediatric multiple sclerosis. Mult Scler 2012; 18: 329–334.

Giordano A, Ferrari G, Radice D, Randi G, Bisanti L, Solari A. POSMOS study. Health-related quality of life and depressive symptoms in significant others of people with multiple sclerosis: a community study. Eur J Neurol 2012; 19: 847–854.

Holmes JM, Ford E, Yull F, Drummond AE, Lincoln NB. Attendance at a psychological support group for people with multiple sclerosis and low mood. Disabil Rehabil 2012; 34: 1323–1327.

Sisterollo-Diniz D, Oliveira Ad, Paula DS, Rodrigues RV, Silva LA. Functional impairment in multiple sclerosis with a review of the mutations in the CYP27A1 gene. Clin Neuropharmacol 2012; 35: 33–34.

Bannock F, Arnett PA. Relationship between global cognitive decline and depressive symptoms in multiple sclerosis. Clin Neuropsychol 2011; 25: 193–209.

Gaskill A, Foley FW, Kolzet J, Picone MA. Suicidal thinking in multiple sclerosis. Disabil Rehabil 2011; 33: 1528–1536.

Goretti B, Portaccio E, Ghiazza A, Lori S, Moiola L, Fallaustano M et al. Multiple Sclerosis Study Group of the Italian Neurological Society. Fatigue and its relationships with cognitive functioning and depression in paediatric multiple sclerosis. Mult Scler 2012; 18: 329–334.

Giordano A, Ferrari G, Radice D, Randi G, Bisanti L, Solari A. POSMOS study. Health-related quality of life and depressive symptoms in significant others of people with multiple sclerosis: a community study. Eur J Neurol 2012; 19: 847–854.

Holmes JM, Ford E, Yull F, Drummond AE, Lincoln NB. Attendance at a psychological support group for people with multiple sclerosis and low mood. Disabil Rehabil 2012; 34: 1323–1327.

Sisterollo-Diniz D, Oliveira Ad, Paula DS, Rodrigues RV, Silva LA. Functional impairment in multiple sclerosis with a review of the mutations in the CYP27A1 gene. Clin Neuropharmacol 2012; 35: 33–34.

Bannock F, Arnett PA. Relationship between global cognitive decline and depressive symptoms in multiple sclerosis. Clin Neuropsychol 2011; 25: 193–209.

Gaskill A, Foley FW, Kolzet J, Picone MA. Suicidal thinking in multiple sclerosis. Disabil Rehabil 2011; 33: 1528–1536.

Goretti B, Portaccio E, Ghiazza A, Lori S, Moiola L, Fallaustano M et al. Multiple Sclerosis Study Group of the Italian Neurological Society. Fatigue and its relationships with cognitive functioning and depression in paediatric multiple sclerosis. Mult Scler 2012; 18: 329–334.
