Luminescent Response to the Phase Composition of Nd$^{3+}$:Y$_2$O$_3$-Al$_2$O$_3$ System

P V Toropova1,3, A V Spirina1, V I Solomonov1,2, V A Shitov1, A V Chukin2 and S O Cholakh2

1The Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, 106 Amundsen Str., Yekaterinburg, Russia, 620016
2Ural Federal University named after the first President of Russia B.N.Yeltsin, 19 Mira Str., Yekaterinburg, Russia, 620002

E-mail: greenpaulin@gmail.com

Abstract. The work demonstrates the luminescent method of identifying the phase composition of Nd$^{3+}$:Y$_2$O$_3$-Al$_2$O$_3$ system by building calibration curves using standard samples.

1. Introduction

The most prominent problem in the synthesis of optical ceramics is the one of controlling the presence of impurity phases, as even in small amounts they impact the optical properties severely [1]. The presence of a large amount of structural modifications and polymorphic changes in the process of ceramics synthesis requires the use of rapid and sensitive analytic methods for synthesis technology correction and final ceramics quality inspection. The standard method of phase composition identification is X-ray phase analysis. Meanwhile, it is the luminescent method that is a rapid and qualitatively more sensitive one for phase composition identification [2,3]. In paper [2], the luminescent method was used for quantitative phase analysis of Nd$^{3+}$:YAG (yttrium-aluminium garnet Nd$^{3+}$:Y$_3$Al$_5$O$_{12}$) ceramics and monocrystals with Nd$^{3+}$:YAP (yttrium-aluminium perovskite Nd$^{3+}$:YAlO$_3$) impurity phase. Physically, the method is based on different locations of Stark emission bands of Nd$^{3+}$ ion in crystal fields of various structures [4]. The luminescent parameter determining the concentration of the impurity phase is the ratio of light sums taken from two different spectrum ranges that include Nd$^{3+}$ ion emission bands localized both in YAG and YAP structures.

The purpose of this paper is to identify the quantitative phase composition using the luminescent method for Nd$^{3+}$:Y$_2$O$_3$-Al$_2$O$_3$ system.

2. Objects of research and experimental equipment

Specially prepared multiphase Nd$^{3+}$:Y$_2$O$_3$-Al$_2$O$_3$ systems used as the objects of the research. The starting material used were nanopowders of monoclinic Al$_2$O$_3$ and Nd$^{3+}$:Y$_2$O$_3$ prepared with the
method of target laser evaporation with a repetitively pulsed CO$_2$ LAERT laser, the mean emission power of which is 500 W and the emission wavelength is 10.6 μm [5]. Used as targets were commercial Al$_2$O$_3$ micron powder and a mixture of Y$_2$O$_3$ microsized powder and 1 mol. % of Nd$_2$O$_3$ powders, respectively. The resulting Nd$^{3+}$:Y$_2$O$_3$ and Al$_2$O$_3$ nanopowders were annealed at 1000 °C during 30 min and at 1250 °C during 3 h, respectively. Then, Nd$^{3+}$:Y$_2$O$_3$ and Al$_2$O$_3$ nanopowders were blended, with the ratio (Nd + Y) : Al = 3 : 5, which corresponds to yttrium-aluminium garnet stoichiometry. To prepare a multiphase system, a certain excessive amount of yttrium oxide or aluminium oxide was added to the resulting mixtures. The blending was carried out in ethanol during 48 h. After drying, the nanopowder mixtures were pressed into compacts with the method of dry monoaxial static pressing at 200 mPa. The prepared compact was annealed at 800 °C during 3 h, with following sintering at 1780°C during 20 h. The ceramics obtained was additionally annealed at 1300 °C for 5 h to reach transparency.

The additionally used one-phase samples were a Nd$^{3+}$:YAP monocrystal, monoclinic Al$_2$O$_3$ and cubic Nd$^{3+}$:Y$_2$O$_3$ nanopowders. The latter was obtained by annealing the starting monoclinic nanopowder in the air at T= 1500 °C during 3 h.

Photoluminescence (PL) was excited by DMH 808-4000 laser diode, emission wavelength 808 nm, emission power 4W. A spectograph photodetector was represented by Hamamatsu G9214-512S semiconductor InGaAs line that included 512 elements with the discretion of 0.5 nm at one unit of the array. The detection was carried out in the range 890-1150 nm in the air at room temperature. Pulsed cathodoluminescence (PCL) was excited by an electronic beam with the mean energy 180 keV and pulse duration of 2 ns which was emitted by RADAN-220 high-current electron accelerator [3]. The spectograph photodetector contains 2,048 elements with the discretion of 0.2 nm per one unit of the line. The detection was carried out in the range 350-890 nm in the air at room temperature. Precision for wavelength identification did not exceed 0.5 nm.

The X-ray phase analysis was performed at D8 Discover diffractometer in copper emission with a graphite monochromator at a diffracted beam and also at XPert PRO MRD Panalitical diffractometer.

3. The results and discussion

Table 1 presents the tested samples and their phase composition according to the X-ray phase analysis.

Sample	YAG, %	YAP, %	Y$_2$Al$_2$O$_3$, %	cubic Y$_2$O$_3$, %	monoclinic γ-Al$_2$O$_3$, %
Ceramics no. 1	56.5	25.3	1	3.6	13.6
Ceramics no. 2	48.6	37	1	3.7	12.8
Ceramics no. 3	33.4	52.7	2.5	5.6	5.8
Ceramics no. 4	39	47	1.7	4.7	7.6
Monocryst. Nd$^{3+}$:YAP	-	100	-	-	-
Nd$^{3+}$:YAG ceramics	100	-	-	-	-
Al$_2$O$_3$ nanopowder	-	-	-	-	100
Nd$^{3+}$:Y$_2$O$_3$ nanopowder	-	-	-	100	-

In Figure 1, PCL and PL spectra of the tested samples are presented according to Table 1. The spectra of ceramics no. 1,2 and 3,4 are qualitatively identical, so for illustrative purposes only the
spectra of the samples of ceramics no. 1 and no. 3 are given, with the concentration of YAG and YAP phases, respectively, exceeding 50% (Table 1).

Assume the Nd3+:YAG phase is the main one, whereas the rest of them are impurity phases. Comparative qualitative analysis of single-phase samples spectra (Fig. 1 c, d, e, f) discovered ranges where Nd3+:YAG emission bands were pair-wise covered with the bands of only one of the impurity phases. That fact led to creation of a simple scheme for identifying Nd3+:Y\textsubscript{2}O\textsubscript{3}-Al\textsubscript{2}O\textsubscript{3} system phase composition with the luminescent method. It should be noted that the concentration of Nd3+:Y\textsubscript{4}Al\textsubscript{2}O\textsubscript{9} phases was low relatively to the rest of them, which resulted in absence of any significant Nd3+ luminescence in Y\textsubscript{4}Al\textsubscript{2}O\textsubscript{9} structure in the standard samples, although the spectrum included Nd3+:Y\textsubscript{4}Al\textsubscript{2}O\textsubscript{9} bands covered only with Nd3+: YAG bands. The scheme makes it possible to determine the composition of all phases except Nd3+:Y\textsubscript{4}Al\textsubscript{2}O\textsubscript{9}.

The scheme for determination of phase composition is as follows. On the basis of the obtained pair-wise covered ranges, multiphase systems can be presented as two-phase systems:
Nd$^{3+}$:YAG/Nd$^{3+}$:YAP, Nd$^{3+}$:YAG/Al$_2$O$_3$, Nd$^{3+}$:YAG/Nd$^{3+}$:Y$_2$O$_3$. In the first case the ceramics has only Nd$^{3+}$:YAG phases and Nd$^{3+}$:YAP impurity phase, in the second case it contains Nd$^{3+}$:YAG and Al$_2$O$_3$ impurity phase, in the third case - Nd$^{3+}$:YAG and Y$_2$O$_3$ impurity phase. Based on this, a recalculation of the initial percentages of phase concentrations was carried out with their ratio preserved. In Table 2 the example for the sample of ceramics no. 1 is given, where C_G, C_P, C_Y, C_A are the initial percentages of Nd$^{3+}$:YAG, Nd$^{3+}$:YAP, Nd$^{3+}$:Y$_2$O$_3$, Al$_2$O$_3$ concentrations according to Table 1, while \tilde{C}_{G1}, \tilde{C}_{G2}, \tilde{C}_{G3}, \tilde{C}_P, \tilde{C}_Y, \tilde{C}_A are the recalculated concentration percentages for the three cases of two-phase systems without regard to other phases.

Table 2. Recalculation of phase concentrations for ceramics no. 1
Ratio of initial phase concentrations
Nd$^{3+}$:YAG/Nd$^{3+}$:YAP
Nd$^{3+}$:YAG/Al$_2$O$_3$
Nd$^{3+}$:YAG/Nd$^{3+}$:Y$_2$O$_3$

For each ceramics, the following system of equations was obtained:

$$\begin{cases}
\frac{C_G}{C_P} = \frac{\tilde{C}_{G1}}{\tilde{C}_P} = k_1, \\
\frac{C_G}{C_A} = \frac{\tilde{C}_{G2}}{\tilde{C}_A} = k_2, \\
\frac{C_G}{C_Y} = \frac{\tilde{C}_{G3}}{\tilde{C}_Y} = k_3, \\
C_G + C_P + C_A + C_Y = 100 \%
\end{cases}$$

(1)

To determine concentrations of phases \tilde{C}_{G1}, \tilde{C}_{G2}, \tilde{C}_{G3}, \tilde{C}_P, \tilde{C}_Y, \tilde{C}_A the luminescent method for two-phase systems was used [2], where the parameter determining the concentration of the impurity phase is the ratio of light sums taken from two different spectrum ranges that include emission bands only from two phases. For a system consisting only of Nd$^{3+}$:YAG and Nd$^{3+}$:YAP, the luminescent parameter was calculated the following way:

$$l_{G/P} = \frac{s_1}{s_2} = \frac{\int_{420}^{580} I(\lambda) d\lambda}{\int_{420}^{580} I(\lambda) d\lambda},$$

(2)

where $I(\lambda)$ – is the luminescence intensity at wavelength λ measured in nm. After finding coefficient $l_{G/P}$ for the researched multiphase systems and for single-phase Nd$^{3+}$:YAG and Nd$^{3+}$:YAP, dependency $\tilde{C}_P(l_{G/P})$ was built (Figure 2a). With the help of approximation of the experimental points on the hyperbolic curve [2], a calibration curve was obtained, equation of which allows to find the ratio Nd$^{3+}$:YAG/Nd$^{3+}$:YAP using the luminescent method (Figure 2a).
Figure 2. Calibration curves for determining the ratio of Nd\(^{3+}\):YAG main phase to the impurity phases: a - Nd\(^{3+}\):YAP, b - \(\gamma\)-Al\(_2\)O\(_3\), c - Nd\(^{3+}\):Y\(_2\)O\(_3\).

The same coefficients \(I_{GA}\) and \(I_{GY}\) were calculated for the ratios Nd\(^{3+}\):YAG/Al\(_2\)O\(_3\) and Nd\(^{3+}\):YAG/Nd\(^{3+}\):Y\(_2\)O\(_3\) respectively. Unlike (2), in these cases the intensity ratio was used instead of the light sums ratio, as the spectrum ranges featuring the luminescence of only two phases appeared to be short. For parameter \(I_{GA}\) the ratio of intensities at wavelengths 577.0 nm and 688.0 nm was used. For \(I_{GY}\) – the ratio of intensities at 938.7 nm and 945.8 nm. The resulting calibration curves \(\tilde{C}_G (I_{GA})\) and \(\tilde{C}_Y (I_{GY})\) are presented in Fig. 2 b,c.

To find the initial concentration of all the phases \(C_G\), \(C_P\), \(C_Y\) and \(C_A\) the obtained values \(\tilde{C}_P (I_{GP})\), \(\tilde{C}_G (I_{GA})\), \(\tilde{C}_Y (I_{GY})\) should be put into (1).

Table 3 shows the percentage of concentrations of all phases according to X-ray phase analysis and the luminescent method (LM) for the multiphase ceramics, which was described above. The table shows that the found values proved to be close, but the present difference is associated with not taking into consideration Y\(_4\)Al\(_2\)O\(_9\) phase. When it is necessary to solve a problem of phase composition identification, including this structure, one has to create the corresponding standard samples where its concentration is enough to build a calibration curve.

Table 3. The composition of multiphase samples according to X-ray phase analysis and LM

Ceramics no.	Ceramics no. 2	Ceramics no. 3	Ceramics no. 4					
X-ray, %	LM, %	X-ray, %	LM, %					
Nd\(^{3+}\):YAG	56.5	56.6	48.6	47.9	33.4	33.2	39.0	40.8
Nd\(^{3+}\):YAP	25.3	25.6	37.0	36.0	52.7	54.8	47.0	47.5
Al\(_2\)O\(_3\)	13.6	13.9	12.8	12.4	5.8	6.3	7.6	7.3
Nd\(^{3+}\):Y\(_2\)O\(_3\)	3.6	4.0	3.7	3.7	5.6	5.7	4.7	4.4
Nd\(^{3+}\):Y\(_4\)Al\(_2\)O\(_9\)	1	-	1	-	2.5	-	1.7	-
Thus, using the example of Nd$^{3+}:\text{Y}_2\text{O}_3\text{-Al}_2\text{O}_3$ multiphase system, the possibility of rapid determination of the qualitative phase composition with the luminescent method is demonstrated, involving the building of calibration curves and featuring the use of standard samples.

The research has been conducted with the support of the President Grant of the Russian Federation MK-3669.2015.2

References
[1] Ikesue A and Aung Y L 2008 Nature photonics 2 721
[2] Osipov V V, Solomonov V I and Spirina A V 2011 J. Opt. Technol 78 408
[3] Solomonov V I, Michailov S G, Lipchak A I, Osipov V V, Shpak V G, Shunailov S A, Yalandin M I and Ulmaskulov M R 2006 Laser Physics 16 126
[4] Kaminskii A A 1990 Laser crystals (Berlin: Springer)
[5] Osipov V V, Platonov V V, Lisenkov V V, Podkîn A V and Zakharova E E 2013 Phys. Stat. Sol. C. 10 926