Astro2020 Science White Paper

Towards a high accuracy measurement of the local black hole occupation fraction in low mass galaxies

Thematic Areas:
- □ Planetary Systems
- □ Star and Planet Formation
- □ Formation and Evolution of Compact Objects
- □ Cosmology and Fundamental Physics
- □ Stars and Stellar Evolution
- □ Resolved Stellar Populations and their Environments
- □ Galaxy Evolution
- □ Multi-Messenger Astronomy and Astrophysics

Principal Author:
Name: Elena Gallo
Institution: University of Michigan
Email: egallo@umich.edu

Co-authors:
Edmund Hodges-Kluck (NASA Goddard Space Flight Center)
Tommaso Treu (University of California, Los Angeles)
Jenny Greene (Princeton University)
Belinda Wilkes (Smithsonian Astrophysical Observatory)
Anil Seth (University of Utah)
Amy Reines (Montana State University)
Vivienne Baldassare (Yale University)
Richard Plotkin (University of Nevada)
Rupali Chandar (University of Toledo)

Abstract: This document illustrates the feasibility of a few per cent level measurement of the local black hole occupation fraction in low mass galaxies through wide-field, high angular resolution X-ray imaging observations of local volume galaxies. The occupation fraction, particularly at the low end of the galaxy luminosity function, is a key benchmark for any model which aims to reproduce the formation and growth of super-massive black holes and their host galaxies. Our proposed measurement will complement orthogonal efforts that are planned in X-rays at high red-shifts, as well as in the local Universe with ground-based facilities.
1 The local black hole occupation fraction in a cosmological context

Two quantities necessary to understand the connection between massive black holes (BHs) and their host galaxies are the active fraction (f_{active}) and occupation fraction (f_{occ}) in the present-day universe, defined respectively as the fraction of galaxies with an AGN (down to an arbitrary luminosity) and the fraction of galaxies with a central BH, regardless of its activity level. Knowledge of f_{occ} is also key to completing the inventory of BHs across the mass spectrum, and thus establishing the black hole mass density function. For massive galaxies, dynamical measurements indicate that f_{occ} is of order ~ 1. However, owing to their smaller sphere of influence and lower accretion powered luminosity, f_{occ} becomes increasingly hard to measure moving down the mass function, particularly in dwarf galaxies. This document illustrates the feasibility of a few per cent level measurement of the local BH occupation fraction in low mass hosts through wide field, high angular resolution X-ray imaging observations of local volume galaxies.

To calibrate their prescriptions for BH growth, semi-analytical and numerical models alike rely on (i) the measured luminosity function of AGN and quasars, combined with (ii) the inferred BH mass density. The latter is estimated from the z-dependent galaxy luminosity function, folded with (iii) the local stellar velocity dispersion:BH mass relation, under the assumption that all $z=0$ galaxies host a central, massive BH12,3. Despite strong evidence for their ubiquity at the high mass end of the galaxy population, evidence for massive BHs is scarce, and hard to acquire4,5, below host stellar masses $\log(M_*/M_\odot) \lesssim 10$, where the BH:host galaxy scaling relations also exhibit large scatter6,7.

In addition to providing a much needed $z=0$ anchor for the BH mass function, quantifying the BH occupation fraction in this regime is crucial to a number of high-stakes astrophysical problems. Between $9 \lesssim \log(M_*/M_\odot) \lesssim 10$, the fraction of galaxies hosting BHs is thought to depend sensitively on the predominant mechanism by which BHs were ‘seeded’ at high redshifts, with semi-analytical models suggesting that, by $z=0$, low mass galaxies are much more likely to contain massive BHs if low-mass, Pop III remnants provide the dominant seeding mode, as opposed to global gas collapse on galaxy-size scales, leading to larger but rarer seeds8,9,10,11,12,14. Additionally, if the occupation fraction of dwarf galaxies were close to 100%, then their BHs (rather than supernovae) could be entirely responsible for quenching star formation in these systems14,15. Finally, the expected rate of tidal disruption events is hugely sensitive to the BH occupation fraction at the low mass end of the galaxy population16.

2 Measuring f_{occ} from high resolution X-ray imaging

2.1 Methods

The number of detected, actively accreting BHs in a sample of galaxies that is unbiased with respect to nuclear properties constrains f_{occ}. The most efficient way to detect such BHs down to the lowest Eddington ratios is through X-ray observations, as major issues/contaminants such as absorption by dust, incompleteness due to star formation/host contamination, and unknown massive star physics are all mitigated, if not totally eliminated, by working at X-ray energies. The basis of the constraint on f_{occ} is an empirical relationship between the BH X-ray luminosity, L_X, and the stellar mass
Figure 1: Qualitative predictions for the local BH occupation fraction from semi-analytical models17. Low mass galaxies are expected to have retained memory of their predominant BH seeding mechanism.

of its host galaxy, M_*, that makes f_{active} a function of the sensitivity (see Fig. 2). This relation likely results from the $M_{\text{BH}}:M_*$ relation and the small amount of fuel needed to sustain weak X-ray activity. If $f_{\text{occ}}=1$, then a survey with arbitrary sensitivity would detect a nuclear X-ray source in every galaxy. The ratio between the expected and observed number of sources thus constrains f_{occ}.

Prior surveys18;19;20;21;22, with the Chandra X-ray Telescope, probe Eddington ratios as low as $\sim 10^{-8} - 10^{-5}$ (whereas \textit{bona fide} AGN have $\gtrsim 10^{-3}$23). The best current constraint below log(M_*/M_\odot)≤ 10 comes from Chandra data for 326 galaxies within 20 Mpc, finding that $f_{\text{occ}} > 40\%$ (68\% C.L.; Fig. 3, let panel). This approach must account for contamination by high Eddington ratio X-ray binaries (XRBs), which have similar L_X to weakly accreting BHs. This is difficult to do on a case-by-case basis, but a statistical assessment is possible24;25. To first order, the expected luminosity ($L_{X,\text{XRB}}$) can be related to M_*: for low-mass XRBs $L_{X,\text{XRB}} \propto M_*$, whereas for high-mass XRBs $L_{X,\text{XRB}} \propto \text{SFR}$ (the star-formation rate)26;27;28. Along the “main sequence” of star-forming galaxies29;30, SFR $\propto M_*^{\alpha}$. Since XRB formation is (to first order) a local process, the nuclear $L_{X,\text{XRB}}$ is related to the stellar mass in the nucleus. XRBs are discrete and follow a near-universal luminosity function31;27, so the $L_{X,\text{XRB}}$ can be converted into the probability of detecting a bright nuclear XRB or a combination of unresolved XRBs, P_{XRB}. The contamination in existing surveys is several percent18;20;21;32;24;25.

The combination of P_{XRB} and the expected BH detection rate (f_{active}) implies a number of galaxies needed to constrain f_{occ} to some precision, N_{gal}. For example, detecting only 50/300 sources when the combination of P_{XRB} and f_{active} implies an expected detection rate of 100/300 rules out $f_{\text{occ}}=1$ with high confidence. In this simplified picture, Fig. 2 shows the number of galaxies
(\(N_{\text{gal}}\)) needed to constrain \(f_{\text{occ}}\) to 5% precision (68% confidence interval) as a function of \(P_{\text{XR}}\) and \(f_{\text{active}}\), at a given \(M_\star\). Clearly, this is most feasible for \(f_{\text{active}} \gtrsim 0.3\) and \(P_{\text{XR}} < 0.1\) (the bottom right corner), and simulations assuming these values and based on a realistic distribution of galaxy masses\(^{33}\) (3, right panel) indicate that about 3000 galaxies are needed to measure \(f_{\text{occ}}\) between \(8 < \log M_\star < 10\) in mass bins of 0.5 dex.

2.2 Instrumental requirements

To maximize \(f_{\text{active}}\), minimize \(P_{\text{XR}}\), and observe a large number of galaxies requires:

Collecting area—Maximizing \(f_{\text{active}}\): \(N_{\text{gal}}\) is a strong function of \(f_{\text{active}}\), which depends on the sensitivity. Fig. 2 shows that \(\sim 100\times\) better sensitivity than existing surveys is needed to constrain \(f_{\text{active}} \gtrsim 0.3\) in the low mass (dwarf) regime where \(f_{\text{occ}}\) is sensitive to the predominant BH seeding mechanism (i.e. between \(7 < \log M_\star < 10\)). Observing enough galaxies within a nominal mission lifetime (3-5 years) requires at least 10 times greater collecting area than Chandra.

High resolution—Minimizing \(P_{\text{XR}}\): Sharp images enable the rejection of off-nuclear X-ray sources and reduce the chance of confusing flux from multiple unresolved XRBs with a nuclear source. We simulated observations based on realistic galaxies and X-ray facilities and found that \(P_{\text{XR}} \propto \theta\). A half-power diameter \(\lesssim 0.6\) arcsec is needed to maintain \(P_{\text{XR}} < 0.1\) for galaxies within a distance of \(\sim 200\) Mpc.

Wide field of view—Serendipitous sources: The Chandra resolution degrades sharply off-axis and the FOV with sub-arcsec resolution is only a few arcmin\(^2\). Widening the FOV within which \(\theta < 0.6\) arcsec to at least \(15 \times 15\) arcmin dramatically improves the observing efficiency, as many more serendipitous galaxies will be in-field, and fewer exposures are needed to tile dense regions.

These criteria are met by two mission concepts: the Lynx X-ray Surveyor\(^{34}\) and the Advanced X-ray Imaging Satellite\(^{35}\) (AXIS) Probe. The Lynx High Definition X-ray Imager has an area of 20,000 cm\(^2\) at 1 keV, an on-axis half-power diameter < 0.5 arcsec, and < 1 arcsec across the \(23 \times 23\) arcmin FOV. AXIS has a smaller collecting area of 7,000 cm\(^2\) at 1 keV, but a similar half-power diameter and FOV.

2.3 Notional observing strategy

Based on the Lynx and AXIS science drivers and notional exposure times, \(N_{\text{gal}}\) can be accumulated through commensal surveys and serendipitous sources at \(\log M_\star > 8.5\), from observations of cluster outskirts, deep fields, and large galaxies, while targeted snapshots are needed at lower masses:

Galaxy cluster outskirts: Mosaics of cluster outskirts to study accreting gas and plasma physics require long exposures. The combination of relatively high galaxy density and low intra-cluster medium surface brightness makes these fields sensitive probes of \(f_{\text{occ}}\) at \(\log M_\star \gtrsim 8.5\). Based on optical maps, complete mosaics of nearby clusters will contain \(\sim 2,000\) targets (total).

Deep fields: Surveys to count high-redshift AGNs will surpass the 4 Ms Chandra Deep Field-South, which already probes AGNs in sub-\(L^*\) galaxies in a cosmological volume. Assuming a uniform Eddington ratio distribution\(^{36}\), the distribution of X-ray sources probes \(f_{\text{occ}}\)\(^{32}\) especially at \(\log M_\star \gtrsim 10\), and places tight constraints on the slope and scatter in the \(L_X: M_\star\) relationship.
Figure 2:

Left: A schematic diagram of the $L_X:M_*$ relation (blue line) that enables the measurement of f_{occ}: the relationship predicts a detection rate at a given sensitivity (black lines), and the **ratio of observed to expected number constrains** f_{occ}. In practice, one simultaneously constrains $L_X:M_*$ and $f_{\text{occ}}^{21,32}$. The dashed and dotted red lines show the average nuclear $L_{X,XRB}$ for a galaxy at $d = 50$ Mpc for two detection cell sizes. $L_{X,XRB}$, combined with the XRB luminosity function 31,27, yields the likelihood (P_{XRB}) of detecting an XRB. High resolution helps to reject off-nuclear XRBs.

Right: The number of galaxies needed to measure f_{occ} to 5% precision as a function of f_{active} and P_{XRB}. This precision is feasible with an instrument and sample that reaches the lower right corner.

Normal galaxies: Many science goals for the concept missions target massive galaxies ($\log M_* > 10$). Since dwarfs are clustered around massive galaxies 37, such observations will yield useful, low-mass targets. Many will be unsuitable due to irregular morphology or high background, but 50-100 ks observations of galaxies within 100 Mpc will build up a sample of 2,000-6,000 dwarfs with $\log M_* < 9$, based on the galaxy luminosity function 38 and the Lynx and AXIS mirrors.

Targeted survey: There will be too few serendipitous galaxies with $\log M_* < 8.5$ because typical observations are only sensitive to these BHs within 25 Mpc (i.e., detecting such a BH at a larger distance is rare). This motivates a snapshot survey of 200-400 nearby dwarfs with exposures of 5-15 ks. The total observing time can be reduced to ~ 1.5 Ms (a very large Chandra program) by selecting fields with multiple galaxies, such as in Virgo.

3 Synergistic Efforts

From a conceptual standpoint, the same investigation as described above can be carried out at different wavelengths, provided that a comparably efficient diagnostics is identified for detecting highly sub-Eddington, massive BHs. Whereas traditional, optical emission line ratio diagnostics is only moderately efficient at detecting low Eddington ratio BH activity (see, however, 39), flat spectrum, compact, nuclear radio sources have the potential to reveal a large population of BHs in local low mass galaxies. Moreover, the radio to X-ray luminosity ratio of (radiatively inefficient) accreting BHs is a rising function of BH mass, through the so-called Fundamental Plane (FP) of BH activity 40,41. Using the FP as a reliable mass estimator, however, requires simultaneous multi-wavelength coverage as well as high quality radio and X-ray data (this is again for the purpose
of disentangling low Eddington ratio accretion onto a massive, central BH from \(\sim\)Eddington limited XRBs). This is best achieved by Chandra-like quality X-ray imaging, in concert with large baseline radio interferometry. Specifically, the development of the next generation VLA would dramatically increase the search volume, pushing the search for radio emission from sub-Eddington BHs to about 1 Gpc\(^{42}\) (to this end, it is important to notice that, owing to the large scatter to the FP, upper limits are not nearly as informative for the purpose of discriminating between massive BHs and bright XRBs\(^{43}\)).

In the X-ray regime, orthogonal efforts to identify the seeds of today’s billion \(M_\odot\) BHs are being planned in the high-redshift domain, where wide-field, high resolution X-ray imaging can yield direct detection of \(\lesssim 10^5\) \(M_\odot\) BHs up to \(z =10\), and answer the question whether heavy seeds ever form (regardless of whether they are the dominant seeding mechanism; see WP by Haiman et al.).

Lastly, with a factor \(\sim 5\) increase in angular resolution over current ground-based facilities, Extremely Large Telescopes will be sensitive to dynamical signatures of tens \(10^3\) \(M_\odot\) BHs in low mass galaxies at the distance of Andromeda – and \(10^4\) \(M_\odot\) BHs out to 5 Mpc. These targeted studies will answer complementary questions about BH feedback at low mass end of the mass spectrum, e.g. by establishing whether local empirical scaling relations between BH mass and host galaxy properties extend to the dwarf regime or exhibit substantial deviations (see WP by Greene et al.).
4 References

[1] Natarajan, P. General Relativity and Gravitation 46, 1702 May (2014).

[2] Sijacki, D., Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Snyder, G. F., Nelson, D., and Hernquist, L. MNRAS 452, 575–596 September (2015).

[3] Pacucci, F., Natarajan, P., and Ferrara, A. ApJ 835, L36 February (2017).

[4] Nguyen, D. D., Seth, A. C., Neumayer, N., Kamann, S., Voggel, K. T., Cappellari, M., Picotti, A., Nguyen, P. M., Böker, T., Debattista, V., Caldwell, N., McDermid, R., Bastian, N., Ahn, C. C., and Pechetti, R. ApJ 858, 118 May (2018).

[5] Nguyen, D. D., Seth, A. C., Neumayer, N., Iguchi, S., Cappellari, M., Strader, J., Chomiuk, L., Tremou, E., Pacucci, F., Nakanishi, K., Bahramian, A., Nguyen, P. M., den Brok, M., Ahn, C. C., Voggel, K. T., Kacharov, N., Tsukui, T., Ly, C. K., Dumont, A., and Pechetti, R. ApJ 872, 104 February (2019).

[6] Reines, A. E. and Comastri, A. Publ. Astr. Soc. Australia 33, e054 October (2016).

[7] Kormendy, J. Galactic Bulges 418, 431 (2016).

[8] Volonteri, M. and Natarajan, P. MNRAS 400, 1911–1918 December (2009).

[9] Volonteri, M. A&A Rev. 18, 279–315 July (2010).

[10] Volonteri, M. Science 337, 544 August (2012).

[11] Agarwal, B., Smith, B., Glover, S., Natarajan, P., and Khochfar, S. MNRAS 459, 4209–4217 July (2016).

[12] Valiante, R., Schneider, R., Volonteri, M., and Omukai, K. MNRAS 457, 3356–3371 April (2016).

[13] Ricarte, A. and Natarajan, P. MNRAS 481, 3278–3292 December (2018).

[14] Dashyan, G., Silk, J., Mamon, G. A., Dubois, Y., and Hartwig, T. MNRAS 473, 5698–5703 February (2018).

[15] Dickey, C., Geha, M., Wetzel, A., and El-Badry, K. arXiv e-prints February (2019).

[16] Stone, N. C. and Metzger, B. D. MNRAS 455, 859–883 January (2016).

[17] Greene, J. E. Nature Communications 3 December (2012).

[18] Gallo, E., Treu, T., Jacob, J., Woo, J.-H., Marshall, P. J., and Antonucci, R. ApJ 680, 154–168 June (2008).

[19] Zhang, W. M., Soria, R., Zhang, S. N., Swartz, D. A., and Liu, J. F. ApJ 699, 281–297 July (2009).
[20] Gallo, E., Treu, T., Marshall, P., Woo, J.-H., Leipski, C., and Antonucci, R. *ApJ* **714**(25) (2010).

[21] Miller, B., Gallo, E., Treu, T., and Woo, J.-H. *ApJ* **747**, 57 March (2012).

[22] She, R., Ho, L. C., and Feng, H. *ApJ* **842**, 131 June (2017).

[23] Ho, L. C. *ARA&A* **46**, 475–539 September (2008).

[24] Foord, A., Gallo, E., Hodges-Kluck, E., Miller, B. P., Baldassare, V. F., Gültekin, K., and Gnedin, O. Y. *ApJ* **841**, 51 May (2017).

[25] Lee, N., Gallo, E., Hodges-Kluck, E., Côté, P., Ferrarese, L., Miller, B., Baldassare, V., Plotkin, R., and Treu, T. *arXiv e-prints* February (2019).

[26] Lehmer, B. D., Alexander, D. M., Bauer, F. E., Brandt, W. N., Goulding, A. D., Jenkins, L. P., Ptak, A., and Roberts, T. P. *ApJ* **724**, 559–571 November (2010).

[27] Mineo, S., Gilfanov, M., and Sunyaev, R. *MNRAS* **419**, 2095–2115 January (2012).

[28] Lehmer, B. D., Basu-Zych, A. R., Mineo, S., Brandt, W. N., Eufrasio, R. T., Fragos, T., Hornschemeier, A. E., Luo, B., Xue, Y. Q., Bauer, F. E., Gilfanov, M., Ranalli, P., Schneider, D. P., Shemmer, O., Tozzi, P., Trump, J. R., Vignali, C., Wang, J.-X., Yukita, M., and Zezas, A. *ApJ* **825**, 7 July (2016).

[29] Brinchmann, J., Charlot, S., White, S. D. M., Tremonti, C., Kauffmann, G., Heckman, T., and Brinkmann, J. *MNRAS* **351**, 1151–1179 July (2004).

[30] Pearson, W. J., Wang, L., Hurley, P. D., Malek, K., Buat, V., Burgarella, D., Farrah, D., Oliver, S. J., Smith, D. J. B., and van der Tak, F. S. *A&A* **615**, A146 July (2018).

[31] Gilfanov, M. *MNRAS* **349**, 146–168 March (2004).

[32] Miller, B. P., Gallo, E., Greene, J. E., Kelly, B. C., Treu, T., Woo, J.-H., and Baldassare, V. *ApJ* **799**, 98 January (2015).

[33] Blanton, M. R., Lupton, R. H., Schlegel, D. J., Strauss, M. A., Brinkmann, J., Fukugita, M., and Loveday, J. *ApJ* **631**, 208–230 September (2005).

[34] Gaskin, J. A., Dominguez, A., Gelmis, K., Mulqueen, J. J., Swartz, D., McCarley, K., Özsel, F., Vikhlinin, A., Schwartz, D., Tananbaum, H., Blackwood, G., Arenberg, J., Purcell, W., and Allen, L. In *Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series*, volume 10699, 106990N, July (2018).

[35] Mushotzky, R. *ArXiv e-prints* July (2018).

[36] Aird, J., Coil, A. L., Moustakas, J., Blanton, M. R., Burles, S. M., Cool, R. J., Eisenstein, D. J., Smith, M. S. M., Wong, K. C., and Zhu, G. *ApJ* **746**, 90 February (2012).

[37] Binggeli, B., Tarenghi, M., and Sandage, A. *A&A* **228**, 42–60 February (1990).
[38] Schechter, P. *ApJ* **203**, 297–306 January (1976).

[39] Trump, J. R., Sun, M., Zeimann, G. R., Luck, C., Bridge, J. S., Grier, C. J., Hagen, A., Juneau, S., Montero-Dorta, A., Rosario, D. J., Brandt, W. N., Ciardullo, R., and Schneider, D. P. *ApJ* **811**, 26 September (2015).

[40] Merloni, A., Heinz, S., and di Matteo, T. *MNRAS* **345**, 1057–1076 November (2003).

[41] Falcke, H., Körding, E., and Markoff, S. *A&A* **414**, 895–903 February (2004).

[42] Plotkin, R. M. and Reines, A. E. *arXiv e-prints* October (2018).

[43] Gültekin, K., King, A. L., Cackett, E. M., Nyland, K., Miller, J. M., Di Matteo, T., Markoff, S., and Rupen, M. P. *ApJ* **871**, 80 January (2019).