July 2017 and March 2019 were included. Medical records were reviewed for site of positive GAS culture (blood, wound, joint fluid, or tissue cultures), demographics, comorbidities, surgical management, and antibiotic regimen and duration. The primary outcome was cure at 90 days defined as clinical improvement without recurrent or new infection, or further surgical or medical management at 90 days after treatment completion. The secondary outcome was erythrocyte sedimentation rates (ESR) before and after treatment.

Results. The median age of the 12 patients was 56 years (range 3–75); 58% were female and 58% had a body mass index ≥ 30 kg/m². The median Charlson comorbidity index score was 3 (range 0–7) with 58% having diabetes mellitus. Two patients had rheumatoid arthritis or monoclonal gamopathy (Table 1). Most patients had severe infections; 33% with necrotizing fasciitis and 25% with orthopedic implants. All patients had an elevated initial ESR, including 75% with ESR ≥ 40 mm/h. 92% required surgery, including 42% amputations and 17% prosthetic removals. Patients were mostly treated with β-lactams and vancomycin (92%); only 50% received clindamycin or linezolid. Most patients (75%) required at least 2 weeks of antibiotics. Five patients (42%) were not cured at 90 days, and 1 died of infectious complications (Table 2).

Conclusion. Severe GAS orthopedic infections necessitate both surgical management and prolonged antibiotics. 42% of our patients were not cured at 90 days and most eventually required amputation. Toxin mediators, clindamycin and linezolid, were underutilized. Chronic suppressive antibiotics should be considered for patients with orthopedic implants, especially those with durable immune suppression.

Table 1: Patient Demographics and Host Factors

Patient	Age (years)	Gender	Body Mass Index (BMI)	Charlson Comorbidity Index	Immunosuppressing and Immunosuppressive Medicines
1	55	F	30	3	DM, PVD
2	70	M	32	2	DM
3	55	M	30	1	DM, PVD
4	55	F	31	3	DM, PVD
5	59	M	31	2	DM
6	70	F	29	4	DM
7	75	F	29	5	DM, PVD
8	3	F	17	0	-
9	3	F	26	1	DM
10	30	M	27	3	PVD
11	45	F	35	4	PVD
12	54	F	56	3	RA

Discussion. All authors: No reported disclosures.

381. Clinical Outcome of Polymicrobial Prosthetic Joint Infection Managed with Debridement, Antibiotics, and Implant Retention (DAIR)

Babak Hooshmand, MD; Dimas Youssef, MD; Kathleen M. Riesbeck, MD; Ashley Bhargava, MD; Ascension Health, Saint John Hospital and Medical Center, Grosse Pointe Woods, Michigan; Ascension St. John Hospital, Grosse Pointe, Michigan; Ascension St. John, Grosse Pointe Woods, Michigan

Session: 48. Infections of Joints

Thursday, October 3, 2019: 12:15 PM

Background. Polymicrobial (PM) prosthetic joint infections (PJIs) account for 4% to 37% of all PJIs. There is limited literature on surgical debridement, antibiotic and implant retention (DAIR) in PMPJIs. We aimed to assess clinical outcomes of PMPJIs managed with DAIR.

Methods. A retrospective cohort was studied at three Ascension hospitals in Detroit from January 2012 to December 2018. Cases were identified using the International Classification of Diseases, 9th and 10th Revision code specific for PJIs. Patient's electronic medical records were reviewed.

Results. Twenty-six PMPJIs managed with DAIR were identified. Mean age of the infected patients was 66 years. 18 (69%) patients were female and 19 (73%) were Caucasians. Infected sites were in hip 15 (58%), knee in 10 (38%) and ankle in 1 (4%) patient. 22 (85%) patients had osteoarthritis, 3 (12%) had diabetes, 3 (12%) on steroids and 1 (4%) had rheumatoid arthritis. Symptom onset of less than a week was noted in 14 (58%) and 3 or more weeks in 8 (31%) patients. Pain, swelling and drainage were present in 21 (81%), 13 (50%) and 18 (69%) cases. Fever on admission was noted in 7 (27%) patients. 11 (42%) patients were re-admitted in the following 12 months after DAIR. 2 (9%) patients developed superficial surgical site infection (SSI) while 9 (38%) patients developed deep surgical site infections (DAIR). DAIR failure, noted in 23% of our cases, required implant removal within 12 months of follow-up.

Conclusion. All authors: No reported disclosures.

382. Difference in Pathogens Between Hip and Knee Prosthetic Joint Infection

Michael Henry, MD; Milan Kapadia, MD; Joseph Nguyen; Barry Brasse, FDSAS (Mid) and Andy O. Miller, MD; Hospital for Special Surgery, New York, New York; Weill Cornell University Medical College, New York, New York

Session: 48. Infections of Joints

Thursday, October 3, 2019: 12:15 PM

Background. There is contradicting evidence characterizing the difference in pathogens that cause hip and knee prosthetic joint infection (PJI). A possible difference in microbiome may inform choice in antibiotic etiology, prophylaxis, and empiric treatment. We sought to analyze a large cohort of PJIs to see whether there was a significant difference in pathogen between joints.

Methods. A retrospective cohort of hip and knee PJIs, from 2008 to 2016, were identified using ICD code and surgical codes. The PJI pathogen was identified from synovial or intra-articular tissue cultures. The Student’s t-test was used to compare continuous variables. Chi-square tests were used to compare the categorical variables to joint.

Results. 807 PJI cases were identified including 444 knees and 363 hips. There were no significant differences between hip and knee PJIs in age, sex, history of PJI, rheumatoid arthritis, Charlson comorbidity index and laterality. There was a higher frequency of diabetes in knee PJIs (25.3%) compared with hip PJIs (15.7%), P < 0.001. No significant difference was found in the prevalence of fungal, staphylococcal (including Staphylococcus aureus), streptococcal, or enterococcal pathogens between hip and knee PJIs.

Conclusion. In this single-center cohort, hip and knees PJIs are infected with similar pathogens. Multiple site studies are needed to characterize the microbiology of PJIs at a larger scale.

Disclosures. All authors: No reported disclosures.

383. Rheumatic Disease Patients Have More Culture Negative Prosthetic Joint Infections: Are There Clinical Differences?

Milan Kapadia, MD; Andy O. Miller, MD; Allina Nocen, PhD MPH1; Peter Solcos, MD; Susan M. Sepanak, PhD; Weill Cornell University Medical College, New York, New York

Session: 48. Infections of Joints

Thursday, October 3, 2019: 12:15 PM

Background. Rheumatic disease (RD) patients are at increased risk for prosthesis joint infections (PJI), however, diagnosis is challenging because active RD may mimic joint infection. We aimed to assess the incidence of culture-negative (CN) PJI in a population of RD and osteoarthritic (OA) PJI using an institutional PJI registry. Baseline clinical differences between CN-RD and culture-positive (CP) RD as well as the relationship of culture negativity to survivorship of the prosthesis were also evaluated.

Methods. A retrospective cohort of hip and knee PJIs, from 2009 to 2016, were identified using ICD code and use of RD-specific medications. CN cases were defined as PJs with no evidence of microbial growth in intraoperative cultures. Demographics, medications, microbiology, surgical therapy and outcome were abstracted. Baseline characteristics were evaluated using Fisher’s exact and Chi-Square tests. Kaplan–Meier estimates were used to calculate survivorship.

Results. 803 PJI cases were identified including 36 RD (33 rheumatoid arthritis and 3 systemic lupus erythematosus) and 771 OA. A higher proportion of RD PJI were CN (N = 10, 27%) vs. OA PJI (N = 109, 14%), P = 0.02. Fewer CN-RD cases met PJI histopathology criteria compared with CN-OA, (P = 0.08). On average, RD-CN were younger than OA-CN (59 vs 69, P = 0.01), but no different than RD-CP cases. One year survivorship of CN-OA and CN-RD were 87% and 66%, respectively and 10% and 17%, respectively.

Conclusion. All authors: No reported disclosures.