Obstructive sleep apnea and comorbidities: a dangerous liaison

Maria R. Bonsignore 1,2*, Pierpaolo Baiamonte 1, Emilia Mazzuca 1, Alessandra Castrogiovanni 3 and Oreste Marrone 2

Abstract

Obstructive sleep apnea (OSA) is a highly prevalent disease, and is traditionally associated with increased cardiovascular risk. The role of comorbidities in OSA patients has emerged recently, and new conditions significantly associated with OSA are increasingly reported. A high comorbidity burden worsens prognosis, but some data suggest that CPAP might be protective especially in patients with comorbidities. Aim of this narrative review is to provide an update on recent studies, with special attention to cardiovascular and cerebrovascular comorbidities, the metabolic syndrome and type 2 diabetes, asthma, COPD and cancer. Better phenotypic characterization of OSA patients, including comorbidities, will help to provide better individualized care. The unsatisfactory adherence to CPAP in patients without daytime sleepiness should prompt clinicians to examine the overall risk profile of each patient in order to identify subjects at high risk for worse prognosis and provide the optimal treatment not only for OSA, but also for comorbidities.

Keywords: Mortality, prognosis, cardiovascular disease, diabetes, asthma, COPD, cancer

Obstructive sleep apnea (OSA) is highly prevalent in the general population, and occurs at all ages [1]. OSA is characterized by collapse of upper airways during sleep with ineffective respiratory efforts, intermittent hypoxia and sleep disruption. Continuous positive airway pressure (CPAP), mandibular advancement devices, and upper airway (UA) and maxillo-facial surgery are therapeutic options that prevent UA closure during sleep, CPAP being the gold standard for moderate-severe OSA. The typical OSA patient is overweight or obese, sleepy in passive situations or while driving, and often affected by systemic hypertension, type 2 diabetes, and dyslipidemia [1].

The frequent association of OSA with metabolic and cardiovascular diseases has been recognized since the early studies, but the role of OSA as an independent risk factor has long remained controversial due to the presence of powerful confounders, such as hypertension and obesity [2]. Interest in the role of comorbidities in OSA has grown in the last decade, as shown by the rising number of publications on the topic (Fig. 1). This review will examine some epidemiological aspects of comorbidities in OSA, and summarizes the current state of the art on the most frequent comorbidities encountered in clinical practice in OSA patients.

Comorbidities in OSA: the size of the problem

Currently, comorbidities are a major topic in clinical research on OSA. Several recent studies reported a high prevalence of comorbidities in OSA patients [3–6] (Fig. 2). The distribution of comorbidities differed between men and women, with diabetes and ischemic heart disease being more prevalent in men with OSA, and hypertension and depression being more prevalent in women with OSA compared to non-OSA subjects [3, 7]. According to some studies, the comorbidity burden progressively increases with OSA severity [5, 6, 8, 9].

A recent study from Taiwan in a large number of OSA patients analyzed prevalence of comorbidities at diagnosis and their relationship with mortality risk during follow up [10]. The study confirmed that OSA patients show a high prevalence of cardiovascular diseases (systemic hypertension, coronary artery disease, arrhythmias, ischemic stroke), respiratory diseases (COPD, asthma), and metabolic disorders (diabetes mellitus, dyslipidemia, gout). Many other disorders were also identified, including peptic ulcer disease, gastroesophageal reflux, chronic liver
disease, anxiety, insomnia, and depression. The authors identified ten comorbid conditions associated with increased mortality risk, and developed a comorbidity score for OSA by taking into account the relative risk associated with each disease state and the number of comorbidities. Such an approach allows to focus on those comorbidities that are prognostically more relevant in OSA. For example, the highest risk was associated with end-stage renal disease and aortic aneurysm, which showed the lowest prevalence in the sample [10]. In addition, the higher the comorbidity score, the higher the mortality risk [10]. Unfortunately, the impact of OSA treatment was not evaluated in detail.

Comorbidities and mortality in CPAP-treated OSA

Other studies on the prognostic impact of comorbidities in OSA patients examined the effects of CPAP treatment. In a large study from Denmark, negative predictors for survival were male gender, age ≥60 years, no CPAP treatment, prior comorbidity, and low educational level [11]. Another study found that age and occurrence of comorbidities predicted mortality in OSA patients [12]. In patients aged >50 years, protective effects of CPAP treatment were shown only in patients with comorbidities [12]. In patients with moderate-severe obesity and OSA, treatment with CPAP or noninvasive ventilation was associated with fewer cardiovascular events only in patients with a high number of comorbidities.
The protective effect of CPAP might be larger in males than females with OSA [14, 15]. Other observational studies reported a protective effect of CPAP treatment in elderly OSA patients, who usually show a high prevalence of cardiometabolic comorbidities [16, 17].

Therefore, occurrence of comorbidities could identify subgroups of OSA patients at high risk, who might show benefit from CPAP treatment. Several studies have tried to define clinical phenotypes of OSA, and a cluster of patients with few OSA symptoms but high comorbidity burden has been reported by most studies published so far; such a cluster at least partly overlaps with the cluster of elderly OSA patients [18]. More recent analyses pointed to sleep fragmentation and hypoxia as risk factors for cardiovascular events or death, and regular CPAP use appeared to exert a protective effect [19].

Common comorbidities in OSA patients
A comprehensive review of all possible comorbidities associated with OSA is beyond the scope of this article. Only the most frequent diseases will be discussed, with special attention to the most recent publications.

Cardiovascular and cerebrovascular diseases
Many studies have examined the role of OSA as a pathogenetic factor in cardiovascular and cerebrovascular diseases, as well as the potential protective effects of CPAP treatment. OSA may increase cardiovascular risk through multiple intermediate mechanisms, such as intermittent hypoxia, high sympathetic nervous activity, systemic hypertension, endothelial cell dysfunction, oxidative stress, inflammation, and accelerated atherosclerosis [1]. On the other hand, chronic intermittent hypoxia could also activate some protective mechanisms, for example through the development of coronary vessel collaterals in patients with ischemic heart disease [20, 21].

Systemic hypertension
The best studied cardiovascular comorbidity in OSA is systemic hypertension [22]. Respiratory events during sleep are associated with hypertensive peaks occurring at the end of apneas and hypopneas, increased mean nocturnal blood pressure, and increased variability of blood pressure [23]. A dose-response relationship has been shown between OSA severity and blood pressure [24]. OSA patients may show elevated blood pressure values during sleep only, or during sleep and wakefulness, making 24-hour monitoring of blood pressure highly advisable in the OSA population [22]. Resistant hypertension, i.e. incomplete blood pressure control on three antihypertensive drugs, is also frequent in OSA patients.

Several studies assessed the potential benefit of CPAP treatment on blood pressure values, and meta-analyses demonstrated that on average blood pressure decreased by only a small amount during CPAP treatment. However, the therapeutic effect of CPAP on hypertension varied according to OSA severity, compliance to CPAP treatment, and baseline blood pressure values [25]. OSA patients with resistant hypertension showed a quite large decrease in blood pressure during CPAP [26]. Antihypertensive drugs, and diuretics in particular, may slightly decrease AHI in OSA [27]. In general, pharmacological treatment to control hypertension is necessary in hypertensive OSA patients, given the small effects of CPAP on blood pressure [28, 29].

Cardiovascular events and/or death
Several studies have addressed the question of OSA and cardiovascular morbidity and mortality. The prospective cohort study by Marin and coworkers reported a high cardiovascular risk in patients with severe OSA, which was normalized by CPAP treatment [30]. The results of observational studies confirmed the association of untreated OSA with overall and cardiovascular mortality [31]. In patients undergoing percutaneous coronary intervention, OSA was associated with occurrence of cardiovascular events during follow up [32, 33].

Randomized controlled trials (RCTs) in OSA patients with known coronary artery or cerebrovascular disease were then designed to verify whether treatment of OSA in patients at high cardiovascular risk might exert a protective role. However, RCTs on the effects of CPAP in patients with known coronary or cerebrovascular disease failed to show any protective effect of CPAP treatment on cardiovascular risk [34]. Current uncertainty is due to the discrepancy between data obtained from observational studies and RCTs [35]. Different patients’ characteristics according to the type of study may explain the different results. In particular, only patients without excessive daytime sleepiness were included in long-term RCTs, since it would be unethical to withdraw treatment in symptomatic patients. It is known that compliance to CPAP treatment in non-sleepy patients is low, as underlined in a recent pro-con debate [36, 37]. Good compliance to CPAP, i.e. mean nightly use ≥ 4 hours, was associated with some protection, especially for occurrence of stroke [38].

Another area of current interest is whether OSA may modify the outcomes of acute coronary syndromes (ACS). OSA prevalence is high in patients with ACS, and severe OSA occurs in 25% of the patients [39]. The ongoing ISAACC trial (Impact of Continuous Positive Airway Pressure on Patients with ACS and Nonsleepy OSA) will provide long-term data on the effects of treating OSA in this population [40].
Arrhythmias

Arrhythmias are frequent in OSA patients, especially atrial fibrillation (AF). A permissive role of OSA towards the arrhythmogenic mechanism of AF is suggested by the higher risk of recurrence of AF in patients with OSA compared to non-OSA subjects and by the protective effect of CPAP treatment [41, 42]. Conversely, the literature on ventricular arrhythmias is relatively scarce and heterogeneous, as pointed out by a recent review [43]. Incidence of sudden cardiac death is increased at night in OSA according to some reports [44] while other studies found a uniform distribution over 24 hours [45]. Studies in patients with implantable cardioverter-defibrillator devices (ICD) have reported a high frequency of nocturnal discharge in OSA compared to non-OSA patients [46] or patients with chronic heart failure and central apneas [47, 48].

Cerebrovascular disease

Several studies reported an increased risk of stroke in snorers [49] and OSA patients [50]. CPAP treatment may reduce the risk of stroke [51], but most studies have used a composite cardiovascular outcome including stroke, rather than reporting data for each type of event. Available RCTs on the effects of CPAP in patients with stroke and OSA are usually short-term, and the low acceptance of CPAP treatment in patients with OSA and previous stroke is an additional difficulty to be considered. A recent meta-analysis on RCTs in the latter population reported improvement in neurological function in CPAP users [52]. More studies are necessary to evaluate the possible protective effects of CPAP on survival after stroke.

Metabolic diseases

The relationship between OSA and metabolism is highly complex. On one hand, OSA is often associated with obesity, which by itself is characterized by disturbed energy metabolism and adipose tissue inflammation [53]. On the other hand, nocturnal intermittent hypoxia has been shown to affect glucose metabolism, and OSA could independently contribute to the pathogenesis of metabolic disorders [54]. The bidirectional relationships between OSA and disturbed energy metabolism [55] or type 2 diabetes [56] are current topics of interest, given the obesity epidemics and the increasing prevalence of type 2 diabetes worldwide.

OSA and diabetes

The bidirectional relationship between OSA and diabetes is especially interesting from a clinical point of view [77]. Treatment of OSA may help to prevent severe consequences of diabetes. This might indeed be the case, since although glycemic control does not improve during CPAP treatment according to meta-analyses [78, 79], untreated OSA in diabetic patients is associated with increased prevalence of neuropathy [80], peripheral arterial disease [81], diabetic retinopathy [82] and diabetic nephropathy [83–85]. Data on the effects of CPAP on diabetic complications are scarce. Compared to poorly compliant patients, optic nerve function improved in severe OSA patients with good compliance to CPAP treatment [86]. A recent post-hoc analysis of data from the SAVE study highlighted a higher risk of adverse outcomes in diabetic compared to non-diabetic patients, and a protective effect of CPAP on recurrent cardiovascular events only in diabetic patients with OSA showing a good adherence to CPAP treatment, i.e. at least 4 h/night, in the first 2 years of the study [87].

In summary, OSA may worsen metabolic abnormalities, and OSA treatment with sufficient adherence could play a protective role, especially when concomitant lifestyle interventions and weight loss are implemented. Screening for OSA in diabetic patients should be systematically done, since CPAP treatment for at least 4 h/night may be protective, especially when diabetic complications are also present [88].
Renal disease
Renal diseases and OSA share common risk factors, like arterial hypertension, diabetes mellitus, obesity and advanced age. Each of such factors may give some independent contribution to the onset and progression of the other one [89]. OSA may endanger the kidney through several interacting mechanisms, including nocturnal intermittent hypoxemia, recurrent nocturnal blood pressure peaks, sympathetic hyperactivity, hyperactivation of intrarenal renin-angiotensin system, oxidative stress and systemic inflammation, endothelial dysfunction. A relationship between nocturnal hypoxemia and hyperactivation of the intrarenal renin-angiotensin system has been experimentally demonstrated [90].

Cross-sectional epidemiological studies have not consistently reported an association between OSA and either albumin excretion or eGFR. When an association was found, either severity of nocturnal hypoxemia [91] or the apnea/hypopnea index [92] were reported to correlate to renal alterations. These studies highly differed in design, sample size, recruitment criteria (patients referred to sleep laboratories, general population, diabetes as an inclusion or an exclusion criterion), so that it is difficult to draw firm conclusions from them.

More interesting and consistent results were obtained from longitudinal investigations. In a large study on US veterans, the annual rate of decline of eGFR was higher among patients diagnosed with sleep apnea than among controls [93]. Three retrospective cohort studies in Taiwan found a higher incidence of chronic kidney disease (any stage) among OSA than control subjects [94–96]. However, all these studies lacked polysomnographic information about OSA severity. Another longitudinal study on patients recruited in a sleep laboratory found that an accelerated decline in eGFR was more common among subjects who spent >12% of sleep time with oxygen saturation <90% than in less hypoxic subjects [97]. By contrast, a long-term study on the population-based Wisconsin Sleep Cohort did not find any difference in the rate of decline of eGFR between subjects initially showing an AHI≥15 and other subjects [98]. However, the less severe nocturnal hypoxemia in sleep apnea subjects from the general population may at least partly explain the different results obtained in the Wisconsin cohort and in studies on OSA patients.

Most papers on the effects of OSA treatment on kidney function showed positive effects of CPAP. Two small studies on subjects with a high baseline GFR found a reduction of filtration fraction due to decrease in glomerular hyperfiltration [99, 100]. Two other small studies on subjects with mildly or severely impaired renal function observed an increase in eGFR [101] or a decrease in eGFR decline [102]. More recently, a RCT could not demonstrate a difference in the rate of eGFR decline between subjects with OSA and cardiovascular diseases treated by CPAP or under “usual care”; however, the power of the study could be insufficient to demonstrate a difference between the two groups [103]. In a study with a larger number of patients recruited in different sleep laboratories, therapy with fixed CPAP, but not with autoadjusting CPAP, could blunt the spontaneous trend of eGFR to decline over time [104].

In summary, there is some evidence that OSA may worsen kidney function through several mechanisms, and CPAP may exert beneficial effects.

COPD
Both OSA and chronic obstructive pulmonary disease (COPD) are common and may occur in the same patient. Their association is known as “overlap syndrome” since the early studies [105]. Prevalence of the overlap syndrome has been reported at 1.0 to 3.6% in the general population, 8-56% in OSA patients, and 3-66% in COPD patients [106]. In OSA patients, prevalence of the overlap syndrome was found to increase with age, in agreement with COPD being more prevalent in elderly than middle-aged subjects [106]. In COPD patients, prevalence of respiratory events during sleep was high, with sleep disordered breathing (SDB) in 66% of patients with moderate to severe COPD [107]. In COPD patients undergoing pulmonary rehabilitation an AHI≥15/h was found in 45% of the sample [108]. COPD patients often show poor sleep quality [109, 110] and hypoventilation during sleep [111]. Use of oxygen during sleep could contribute to diagnostic uncertainty regarding OSA [107]. In addition, insufficient data are available on the role of either COPD or OSA severity on the clinical presentation or outcomes of the overlap syndrome, since the consequences of severe OSA associated with mild COPD may differ from those of mild OSA associated with severe COPD.

As outcomes are concerned, early studies reported lower PaO2 and higher PaCO2 in overlap patients compared to OSA patients with a similar AHI, associated with higher pulmonary artery pressure at rest and during exercise [112]. More recent observational studies reported increased mortality in overlap patients compared to OSA patients [113–115], and a protective effect of CPAP treatment [113, 116, 117]. By contrast, a complex study in over 6,000 subjects from the general population recently reported that mortality was higher in patients with SDB defined as AHI≥5, but occurrence of SDB and SDB severity could mitigate the effects of decreasing FEV1 on mortality [118]. These data suggest that OSA and COPD pathophysiology may interact, with low body mass index (BMI) and lung hyperinflation protecting against OSA in COPD, and upper airway and systemic inflammation in COPD potentiating the detrimental effects of OSA [119, 120]. Better phenotypic
characterization of patients with overlap syndrome is needed, to optimize therapeutic strategies of both diseases.

Asthma

Asthma and obstructive sleep apnea (OSA) are highly prevalent disorders which are often associated [121]. OSA symptoms are frequent in asthmatic patients [122–126], who also report daytime sleepiness [127], poor asthma control [128–131], and reduced quality of life [132]. Longitudinal data from the Wisconsin Sleep Cohort suggested that asthma at baseline increased the risk to develop OSA during follow up [133].

Sleep studies confirmed that OSA is more common in asthmatics than in controls [134–136], and OSA resulted associated with a higher frequency of asthma exacerbations [136]. Mild-moderate OSA occurred in 49% of patients with difficult-to-treat asthma [137]. Patients with severe asthma showed increased apnea-hypopnea index (AHI), poor sleep quality and daytime sleepiness [138]. However, lower airway resistance was shown to increase in asthmatic patients during slow wave sleep, whereas upper airway resistance remained low [139]. Moreover, hypopneas rather than apneas were the main type of respiratory events recorded in asthmatic patients [138]. On the other hand, upper airways in patients with OSA and asthma were shown to be smaller than in patients with either disease or controls, suggesting a synergistic role on upper airway inflammation played by both OSA and asthma [140].

In patients with suspected or confirmed OSA, some studies highlighted the association of asthma and obesity, especially in women [141–143]. In the European Sleep Apnea Database (ESADA), OSA and asthma were frequent in obese women [144]. A community-based study in Uppsala reported worse sleep quality and occurrence of nocturnal hypoxemia in women with both OSA and asthma, who showed higher BMI compared to controls or women with either asthma or OSA [145]. Other studies reported a positive relationship between severity of OSA and severity of asthma symptoms [138], higher prevalence of mild-moderate rather than severe OSA in patients with asthma [135, 143] or no relationship between asthma and OSA severity [6]. In the ESADA cohort, the distribution of OSA severity was similar in patients with and without physician-diagnosed asthma, and unaffected by treatment for asthma or for gastroesophageal reflux [144]. These differences in results among studies may at least partly reflect variable referral patterns for sleep studies in asthmatic patients, and further studies are needed to better define the real impact of OSA in asthma, and of asthma in OSA.

It is still uncertain whether treatment of OSA with continuous positive airway pressure (CPAP) might improve asthma control or pulmonary function. Some studies reported positive results [146–148] while other studies were negative [149, 150]. One study reported a decreased rate of FEV₁ decline in asthmatic patients treated with CPAP [136], but the majority of studies agree on unchanged pulmonary function after CPAP. A recent systematic review pointed out that results of different studies do not allow to document a definite improvement in asthma control, although a positive effect of CPAP treatment seems to occur in patients with severe OSA or poorly controlled asthma [151].

In summary, the association of asthma and OSA would benefit from careful phenotyping of both diseases. Neutrophilic rather than eosinophilic inflammation was found in asthmatic patients with OSA [137, 152], suggesting a possible contribution of OSA to neutrophilic asthma. Further studies are needed to assess whether CPAP treatment could be a useful adjunct of asthma treatment in OSA patients, especially in cases of poorly controlled asthma.

Cancer

The association of OSA and cancer has been explored in the last few years. In mice bearing human subcutaneous melanoma xenografts, intermittent hypoxia exposure accelerated tumor progression, and was associated with both metastases and resistance to treatment [153]. Such an effect was possibly mediated by activation of the hypoxia inducible factor (HIF) 1-alpha pathway [153, 154].

Epidemiological and clinical studies have explored the association of OSA and cancer in humans. Cancer mortality during follow up was increased in OSA patients compared to controls in general population samples [155, 156], cohorts of OSA patients [157], and cohorts of cancer patients [158], in association with OSA severity and duration of nocturnal hypoxemia. Some studies however did not show increased mortality associated with occurrence of OSA in the general population [159] or cohorts of cancer patients [160, 161].

Other studies reported increased incidence of cancer in cohorts of OSA patients compared to controls [156, 159, 162–165]; however, two population-based studies were negative [166, 167], but one study assessed only OSA symptoms rather than collecting objective sleep data [166]. According to some reports, incidence of cancer was especially high in relatively young OSA patients [157, 162]. Two studies assessing different cancer localizations reported a high risk of pancreatic cancer and melanoma in OSA patients, whereas risk for colorectal cancer was relatively low compared to non-OSA subjects [159, 160]. Therefore, although most studies indicate that intermittent hypoxia in OSA may increase cancer risk, firm evidence is still lacking, as confirmed by results of two recent meta-analyses [168, 169].
A series of studies focused on the association of OSA and cutaneous malignant melanoma (CMM), to verify whether data from the mouse model could be confirmed in humans. Tumor aggressiveness was increased in CMM patients with OSA and long time spent at low oxygen saturation (CT90%) or high oxygen desaturation index (ODI 4%) [158, 170–173]. Interestingly, tumor aggressiveness was positively associated with expression of the adhesion molecule VCAM-1 [171], HIF-1alpha [173], but not with expression of vascular endothelial growth factor (VEGF) [173]. Similar results were reported in patients with lung cancer and OSA [158].

In summary, the association of OSA and cancer is biologically plausible, as shown by the experimental studies using the intermittent hypoxia model. Human data on incidence of cancer and mortality in OSA patients confirm experimental data, especially in cohorts of CMM patients. However, no definitive evidence is available, and further studies are required especially concerning the possible higher risk of cancer in young OSA patients. Moreover, no study has assessed the potentially protective role of CPAP treatment, and studies based on administrative data often lack adjustments for known risk factors for cancer.

Conclusions

Comorbidities are frequent in OSA patients, and OSA appears as a potential trigger for worse prognosis by worsening chronic organ damage [174], justifying the hypothesis of a dangerous liaison between OSA and comorbidities. Although the possible protective role of OSA treatment is still uncertain, it could differ among different clinical phenotypes of OSA patients. In that regard, studies are still moving their first steps [18, 175], but some data are available showing different responses depending on OSA phenotype [19]. Such view is confirmed by the recent report developed by European experts on OSA, which suggests that both symptoms and organ damage should be considered when choosing the appropriate treatment for OSA [174]. Although personalized medicine is slowly developing in the OSA field, testing a model similar to the model developed for COPD might provide useful hints on the possible detrimental role of comorbidities in OSA patients and suggest the best therapeutic approaches. Moreover, it is necessary to consider the role of comorbidities in elderly OSA patients and women with OSA, given the differences in pathophysiology and clinical presentation compared to the usual model of middle-aged men that dominates the current literature. Careful assessment of comorbidities should become standard clinical practice for OSA patients.

Abbreviations

ACS: Acute Coronary Syndromes; AF: Atrial fibrillation; AHI: Apnea-Hypopnea Index; BMI: Body mass index; CMM: Cutaneous malignant melanoma; COPD: Chronic Obstructive Pulmonary Disease; CPAP: Continuous Positive Airway Pressure; eGFR: Estimated glomerular filtration rate; FEV\textsubscript{1}: Forced expiratory volume in 1 s; HIF: Hypoxia Inducible Factor; ICD: Implantable cardioverter-defibrillator; MetS: Metabolic syndrome; OSA: Obstructive sleep apnea; PaO\textsubscript{2}: Arterial partial pressure of oxygen; PaCO\textsubscript{2}: Arterial partial pressure of carbon dioxide; RCTs: Randomized controlled trials; SDB: Sleep Disordered Breathing; UA: Upper airways; VEGF: Endothelial Growth Factor
6. Tveit RL, Lehmann S, Bjørvatin B. Prevalence of several somatic diseases depends on the presence and severity of obstructive sleep apnea. PLoS ONE. 2018;13(2):e0192671. https://doi.org/10.1371/journal.pone.0192671.

7. Heinz R, Marti-Soler H, Marques-Vidal P, Tobback N, Andries D, Waeber G, Preisig M, Vollegenweider P, Haba-Rubio J. Impact of sex and menopausal status on the prevalence, clinical presentation, and comorbidities of sleep-disordered breathing. Sleep Med. 2018;51:29–36. https://doi.org/10.1016/j.sleep.2018.04.016.

8. Robjichaud-Halle L, Beaudry M, Fortin M. Obstructive sleep apnea and multimorbidity. BMC Pulm Med. 2012 Sep 24;12:60. https://doi.org/10.1186/1471-2466-12-60.

9. Ruel G, Martin SA, Lévesque JF, Wittert GA, Adams RJ, Appleton SL, Shi Z, Taylor AW. Association between multimorbidity and undiagnosed obstructive sleep apnea severity and their impact on quality of life in men over 40 years old. Glob Health Epidemiol Genom. 2018 Jun 4;3:e10. https://doi.org/10.1017/gheg.2018.9.

10. Chiang CL, Chen YT, Wang KL, Su VY, Wu LA, Perng DW, Chang SC, Chen YM, Chen TJ, Chou KT. Comorbidities and risk of mortality in patients with sleep apnea. Avn Med. 2017;49:373–83. https://doi.org/10.1080/08858580.2017.1282167.

11. Jennun P, Tannenes P, Iben R, Kjellberg J. All-cause mortality from obstructive sleep apnea in male and female patients with and without continuous positive airway pressure treatment: a registry study with 10 years of follow-up. Nat Sci Sleep. 2015;7:43–50. https://doi.org/10.2147/NSS.S575166.

12. Marrone O, Lo Bue A, Salvaggio A, Dardanoni G, Insalaco G. Comorbidities and survival in obstructive sleep apnoea beyond the age of 50. Eur J Clin Invest. 2015;45:23–33. https://doi.org/10.1111/eci.12511.

13. Marotta AM, Borel JC, Galenemea LM, Tamisier R, Bonsignore MR, Pépin JL. Cardiovascular events in moderately to severely obese obstructive sleep apnea patients on positive airway pressure therapy. Respiration. 2017;93:179–88. https://doi.org/10.1159/000454988.

14. Jennun P, Tannenes P, Iben R, Kjellberg J. Obstructive sleep apnea: effect of comorbidities and positive airway pressure on all-cause mortality. Sleep Med. 2017;36:52–61. https://doi.org/10.1016/j.sleep.2016.08.013.

15. de Batlle J, Bertran S, Turino C, Escarrabill J, Sánchez-de-la-Torre M, Woehrle H, Barbé F. Mortality in patients treated with continuous positive airway pressure at the population level. Am J Respir Crit Care Med. 2018;197:1486–148. https://doi.org/10.1164/rccm.201709-1889LE.

16. López-Padilla D, Alonso-Moralejo R, Martínez-García MA, De la Torre CS. Díaz de Atauri MJ. Continuous positive airway pressure and survival of very elderly persons with moderate to severe obstructive sleep apnea. Sleep Med. 2016;19:23–30. https://doi.org/10.1016/j.sleep.2015.10.015.

17. Ou Q, Chen Y-C, Zheng Z, Luo Y, Yi H, Xu H, Guan J, Yin S. Meta-analysis of all-cause and cardiovascular mortality in obstructive sleep apnea with or without continuous positive airway pressure treatment. Sleep Breath. 2017;21:181–9. https://doi.org/10.1007/s11325-016-1393-9.

18. Lee CH, Sethi R, Li R, Ho HH, Hein T, Jim MH, Loo G, Kuo CY, Gao XF, Chandra S, Yang XX, Furlan SF, Ge Z, Mundhekar A, Zhang WW, Uchida CH, Khanwar RB, Chan PF, Chen SJ, Chan MY, Richards AM, Tan HC, Ong TH, Roldan G, Tai BC, Drager LF, Zhang JJ. Obstructive sleep apnea and cardiovascular events after percutaneous coronary intervention. Circulation. 2016;133:2008–17. https://doi.org/10.1161/CIRCULATIONAHA.115.019392.

19. Wang X, Fan J-Y, Zhang Y, Nie S-P, Wei Y-X. Association of obstructive sleep apnea with cardiovascular outcomes after percutaneous coronary intervention. A systematic review and meta-analysis. Medicine. 2018;97(16):621. https://doi.org/10.1097/MD.0000000000010621.

20. Yu J, Zhou Z, McEvoy RD, Anderson CS, Rodgers A, Perkovic V, Neal B. Association of positive airway pressure with cardiovascular events and death in adults with sleep apnea: a systematic review and meta-analysis. JAMA. 2018;318:156–66. https://doi.org/10.1001/jama.2017.7967.

21. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S. INCOAST. Initiative (International Collaboration of Sleep Apnea Cardiovascular Trialists). Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136:840–50. https://doi.org/10.1161/CIRCULATIONAHA.117.029400.

22. Martínez-García MA, Campos-Rodríguez F, Javaheri S, Gozal D. Pro: continuous positive airway pressure and cardiovascular prevention. Eur Respir J 2018; 51. pii: 170221. doi: https://doi.org/10.1183/13993003.03400-2017.

23. McEvoy RD, Kohler M. Con: continuous positive airway pressure and cardiovascular prevention. Eur Respir J 2018; 51. pii: 170221. doi: https://doi.org/10.1183/13993003.03407-2017.

24. Khan SU, Duran CA, Rahman H, Lekkala M, Saleem MA, Kaluski E. A meta-analysis of continuous positive airway pressure therapy in prevention of cardiovascular events in patients with obstructive sleep apnea. Eur Heart J. 2018;39:2291–7. https://doi.org/10.1093/eurheartj/ehy997.

25. Huang Z, Zheng Z, Luo Y, Li S, Zhi J, Liu J. Prevalence of sleep-disordered breathing in acute coronary syndrome: a systematic review and meta-analysis. Sleep Breath. 2017;21:217–26. https://doi.org/10.1007/s11325-016-1398-9.

26. Esquinas C, Sánchez-de-la Torre M, Almodóvar A, Flores M, Martínez M, Barceló A, Barbé F. Spanish Sleep Network. Rationale and methodology of the impact of continuous positive airway pressure on patients with ACS and non-sleepy OSA: the ISACKT Trial. Clin Cardiol. 2013;36:495–501. https://doi.org/10.1002/clc.22166.

27. Deng F, Raza A, Guo J. Treating obstructive sleep apnea with continuous positive airway pressure reduces risk of recurrent atrial fibrillation after catheter ablation: a meta-analysis. Sleep Med. 2018;14:65–11. https://doi.org/10.1016/j.sleep.2018.02.013.
neurology: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186:434–41. https://doi.org/10.1164/rccm.201112-215OC.

Stadler S, Julli S, Schreib A, Jung B, Zeman F, Böger CA, Heid IM, Arzt M. DIACORE study group. Association of sleep-disordered breathing with severe chronic vascular disease in patients with type 2 diabetes. Sleep Med. 2018;48:53–60. https://doi.org/10.1016/j.sleep.2018.05.001.

Altaf QA, Dodson P, Ali A, Raymond NT, Wharton H, Fellows H, Hampshire-Jones P, Neely J, Gagnadoux F, Darmon P, Kessler L, Gagnadoux F. Obstructive sleep apnoea with chronic kidney disease in a large cohort from Taiwan. Sleep Breath. 2018;22:177–85. https://doi.org/10.1007/s11325-017-1554-x.

Labarca G, Reyes T, Jorquera J, Dreye J, Drake L, CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin Respir J. 2018;12:2361–8. https://doi.org/10.1183/23120176.12915.

Tahranii AA, Ali A, Raymond NT, Bégum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186:434–41. https://doi.org/10.1164/rccm.201112-215OC.

77. Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest. 2017;152:1070–86. https://doi.org/10.1016/j.chest.2017.05.009.

78. Zhu B, Ma C, Chaiard J, Shi C. Effect of continuous positive airway pressure on glucose metabolism in adults with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sleep Breath. 2018;22:287–95. https://doi.org/10.1007/s11325-017-1554-x.

79. Labarca G, Reyes T, Jorquera J, Dreye J, Drake L. CPAP in patients with obstructive sleep apnea and type 2 diabetes mellitus: Systematic review and meta-analysis. Clin Respir J. 2018;12:2361–8. https://doi.org/10.1183/23120176.12915.

80. Tahranii AA, Ali A, Raymond NT, Bégum S, Dubb K, Mughal S, Jose B, Piya MK, Barnett AH, Stevens MJ. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186:434–41. https://doi.org/10.1164/rccm.201112-215OC.

81. Stadler S, Julli S, Schreib A, Jung B, Zeman F, Böger CA, Heid IM, Arzt M. DIACORE study group. Association of sleep-disordered breathing with severe chronic vascular disease in patients with type 2 diabetes. Sleep Med. 2018;48:53–60. https://doi.org/10.1016/j.sleep.2018.05.001.

82. Altaf QA, Dodson P, Ali A, Raymond NT, Wharton H, Fellows H, Hampshire-Jones P, Neely J, Gagnadoux F, Darmon P, Kessler L, Gagnadoux F. Obstructive sleep apnoea with chronic kidney disease in a large cohort from Taiwan. Sleep Breath. 2018;22:177–85. https://doi.org/10.1007/s11325-017-1554-x.

83. Molnar MZ, Mucsi I, Novak M, Szabo Z, Freire AX, Huch KM, Arah OA, Ma JZ, Chu H, Shih CJ, Ou SM, Chou KT, Lo YH, Chen YT. Association of sleep apnoea with chronic kidney disease in a large cohort from Taiwan. Respir Res. 2016;21:754–60. https://doi.org/10.1186/s12890-016-0205-x.

84. Lin YS, Liu PH, Lin SW, Chuang LP, Ho WJ, Chou YT, Juan KC, Lo MT, Chu PH, Chen NH. Simple obstructive sleep apnea patients without hypertension or diabetes accelerate kidney dysfunction: a population follow-up cohort study from Taiwan. Sleep Breath. 2017;21:85–91. https://doi.org/10.1007/s11325-016-1376-2.

85. Ahmed SB, Ronsky PE, Hemmelgarn BR, Tsai WH, Mannis BJ, Tonelli M, Klarenbach SW, Chin R, Clement FM, Hanly PJ. Nocturnal hypoxia and loss of kidney function. PLoS One. 2011;6(4):e19029. https://doi.org/10.1371/journal.pone.0019029.

86. Nishimura A, Kasai T, Kikuno S, Nagasawa K, Okubo M, Narui K, Mori Y. Effect of continuous positive airway pressure on glomerular hyperfiltration in patients with obstructive sleep apnoea syndrome. Clin Sci (Lond). 2004 Sep;107(3):317–22.

87. Nicholl DD, Hanly PJ, Poulin MJ, Handleby GB, Hemmelgarn BR, Sola DY, Ahmed SB. Evaluation of continuous positive airway pressure therapy on renin-angiotensin system activity in obstructive sleep apnea. Am J Respir Crit Care Med. 2014;190:572–80. https://doi.org/10.1164/rccm.201403-0526OC.

88. Koga S, Ikeda S, Yasunaga T, Nakata T, Maemura K. Effects of nasal continuous positive airway pressure on the glomerular filtration rate in patients with obstructive sleep apnea syndrome. Intern Med. 2013;52(3):345–9.

89. Puckrin R, Iqbal S, Zidulka A, Vaseilyevich M, Barre P. Reproductive effects of continuous positive airway pressure in chronic kidney disease patients with sleep apnea. Sleep. 2018;41(4):287–96. https://doi.org/10.1093/sleep/zys059.

90. Loffler KA, Leeley E, Reed J, Anderson CS, Brockway R, Corbett A, Chang CL, Douglas JA, Ferrier K, Graham N, Hamilton GS, Havas M, MCArde N, MCArCeh L, MKeller S, NAughton MT, THen F, Young A, GRunstein RP, RLamnre L, Woodrman RJ, Hanly PJ. McEvoy RD; SAVE (Sleep Apnea Cardiovascular Endpoints) Investigators. Effect of obstructive sleep apnea treatment on renal function in patients with cardiovascular disease. Am J Respir Crit Care Med. 2017;196:1456–62. https://doi.org/10.1164/rccm.201703-055OC.

91. Bonsignore et al. Multidisciplinary Respiratory Medicine
conditions? A systematic review. Respir Med. 2018;143:18–30. https://doi. org/10.1016/j.resmed.2018.08.004.

152. Teodorescu M, Broyton O, Curran-Everett D, Sorkness RL, Crisali G, Bleecker ER, Erzurum S, Gaiston BW, Wenzel SE, Jarjour NN. National Institutes of Health, National Heart, Lung and Blood Institute Severe Asthma Research Program (SARP) Investigators. Obstructive Sleep Apnea Risk, Asthma Burden, and Lower Airway Inflammation in Adults in the Severe Asthma Research Program (SARP) II. Allergy Clin Immunol Pract. 2015;3:566–575.e1. https://doi.org/10.1016/j.jaip.2015.04.002.

153. Almendros I, Martinez-Garcia MA, Obeso A, Gozal D. Obstructive sleep apnea and cancer. Insights from intermittent hypoxia hypoxia experimental models. Curr Sleep Med Rep. 2017;3:22–9. https://doi.org/10.1007/s40584-017-0064-5.

154. Yoon DW, So D, Min S, Kim J, Lee M, Khalmuratova R, Cho CH, Park JW, Shin HW. Accelerated tumor growth under intermittent hypoxia is associated with hypoxia-inducible factor-1-dependent adaptive responses to hypoxia. Oncotarget. 2017;8(37):61592-61603. doi: 10.18632/oncotarget.18644.

155. Nieto FJ, Peppard PE, Young T, Finn L, Hla KM, Mokhlesi B. Sleep Apnea and cancer: analysis of a nationwide population sample. Sleep Med. 2014;15:1016–20. https://doi.org/10.1016/j.sleep.2014.03.020.

156. Marshall NS, Wong KK, Cullen SR, Knuiman MW, Grunstein RR. Sleep apnea and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

157. Martínez-García MA, Campos-Rodriguez F, Duán-Cantolla J, de la Peña M, Martorell-Calatayud A, Moraleda M, Martínez M, Marin JM, Barbé F, Martínez F, Farré R, Montserrat JM. Spanish Sleep Network. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med. 2014;15:472–8. https://doi.org/10.1016/j.sleep.2014.01.020.

158. Li L, Lu J, Xue W, Wang L, Zhai Y, Fan Z, Wu G, Fan F, Li J, Zhang C, Zhang Y, Zhao J. Target of obstructive sleep apnea syndrome merge lung cancer: based on big data platform. Oncotarget. 2017;8:21567-21578. https://doi.org/10.18632/oncotarget.15372.

159. Gozal D, Ham SA, Mokhlesi B. Sleep Apnea and cancer: analysis of a nationwide population sample. Sleep Med. 2015;39:493–500. https://doi.org/10.1016/j.sleep.2015.05.004.

160. Vilaseca A, Nguyen DP, Vertosick EA, Corradi RB, Musquera M, Pérez M, Gozal D, Ham SA. Association between sleep disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am J Respir Crit Care Med. 2012;186:970–5. https://doi.org/10.1164/rccm.201201-0130OC.

161. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

162. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

163. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

164. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

165. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

166. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

167. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.

168. Marshall NS, Wong KK, Cullen SR, Knuffman MW, Grunstein RR. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J Clin Sleep Med. 2014;10:355–62. https://doi.org/10.5665/sleep.3600.