CLASSIFICATION OF RESOLVING SUBCATEGORIES AND GRADE CONSISTENT FUNCTIONS

HAILONG DAO AND RYO TAKAHASHI

Abstract. We classify certain resolving subcategories of finitely generated modules over a commutative noetherian ring R by using integer-valued functions on $\text{Spec } R$. As an application we give a complete classification of resolving subcategories when R is a locally hypersurface ring. Our results also recover a “missing theorem” by Auslander.

Contents

1. Introduction 1
2. Resolving subcategories in $\text{PD}_0(R)$ 4
3. Resolving subcategories of modules of finite projective dimension 8
4. Dominant resolving subcategories over a Cohen-Macaulay ring 11
5. Proofs of Theorems 1.1 and 1.2 13
6. Classification for locally hypersurface rings 16
References 17

1. Introduction

Let R be a commutative noetherian ring with identity which is not necessarily of finite Krull dimension. All modules are assumed to be finitely generated. We denote by $\text{mod } R$ the category of (finitely generated) R-modules. A resolving subcategory of $\text{mod } R$ is a full subcategory that contains projective modules and is closed under direct summands, extensions and syzygies. In this paper we give a classification of certain resolving subcategories of $\text{mod } R$ using functions from $\text{Spec } R$ to the integers. Our results can be applied to obtain a complete classification of all resolving subcategories when R is a locally hypersurface ring.

There has been a flurry of research activities on classification of subcategories associated to algebraic objects in recent years. These results are becoming increasingly influential in ring theory, homotopy theory, algebraic geometry and representation theory. For instance, Gabriel [12] classified all Serre subcategories of $\text{mod } R$ using specialization closed subsets of $\text{Spec } R$. Devinatz, Hopkins and Smith [11, 16] classified thick subcategories in the category $\text{mod } R$ using function algebras on $\text{Spec } R$ to the integers. Our results can be applied to obtain a complete classification of all resolving subcategories when R is a locally hypersurface ring.

References

The first author was partially supported by NSF grants DMS 0834050 and DMS 110417. The second author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 22740008 and by JSPS Postdoctoral Fellowships for Research Abroad.
stable homotopy category. Hopkins [15] and Neeman [18] gave a similar result for thick subcategories of the derived categories of perfect complexes over R. The Hopkins-Neeman Theorem was extended to schemes by Thomason [25] and very recently to group algebras by Benson, Iyengar and Krause [6]. For many other similar results, see [5, 17, 19, 21, 23] and the references therein.

Generally speaking, the less restrictive conditions one imposes on the subcategories the harder it is to classify them. A difficulty is the fact that $\text{mod } R$ is “too big”, even when R is nice (say, regular local). Thus attentions are naturally restricted to more special categories such as that of maximal Cohen-Macaulay modules, or derived categories. However, it has recently emerged that resolving categories of $\text{mod } R$ are reasonable objects to look at, and they capture substantial information on the singularities of R, see [9, 10]. Therefore, it is natural to ask if one can classify all such subcategories.

Our main results indicate that such task is quite subtle but at the same time not hopeless. The key new insight is to use certain integer-valued functions on $\text{Spec } R$ and not just the subsets of it. Let us describe such a class of functions which will be crucial for the rest of the paper. Let \mathbb{N} denote the set of nonnegative integers. Let f be an \mathbb{N}-valued function on $\text{Spec } R$. We call f grade consistent if it satisfies the following two conditions.

- For all $p \in \text{Spec } R$ one has $f(p) \leq \text{grade } p$.
- For all $p, q \in \text{Spec } R$ with $p \subseteq q$ one has $f(p) \leq f(q)$.

We denote by $\text{PD}(R)$ the subcategory of $\text{mod } R$ consisting of modules of finite projective dimension. One of our main results states

Theorem 1.1. Let R be a commutative noetherian ring. There exists a one-to-one correspondence

$$
\{\text{Resolving subcategories of } \text{mod } R \text{ contained in } \text{PD}(R)\} \overset{\phi}{\longrightarrow} \{\text{Grade consistent functions on } \text{Spec } R\}
$$

Here ϕ, ψ are defined as follows:

$$
\phi(X) = \{p \mapsto \max_{X \in X} \{\text{pd } X_p\}\},
$$

$$
\psi(f) = \{M \in \text{mod } R \mid \text{pd } M_p \leq f(p) \text{ for all } p \in \text{Spec } R\}.
$$

For $M \in \text{mod } R$ we denote by $\text{add } M$ the subcategory of $\text{mod } R$ consisting of modules isomorphic to direct summands of finite direct sums of copies of M. We say that a resolving subcategory \mathcal{X} of $\text{mod } R$ is dominant if for every $p \in \text{Spec } R$ there exists $n \geq 0$ such that $\Omega^n \mathcal{X}(p) \in \text{add } X_p$, where X_p denotes the subcategory of $\text{mod } R_p$ consisting of modules of the form X_p with $X \in \mathcal{X}$. Over a Cohen-Macaulay ring, the grade consistent functions also classify the dominant resolving subcategories.

Theorem 1.2. Let R be a Cohen-Macaulay ring. Then one has the following one-to-one correspondence

$$
\{\text{Dominant resolving subcategories of } \text{mod } R\} \overset{\phi}{\longrightarrow} \{\text{Grade consistent functions on } \text{Spec } R\}
$$

where ϕ, ψ are defined by:
\[
\phi(\mathcal{X}) = \{ p \mapsto ht p - \min_{X \in \mathcal{X}} \{ \text{depth} X_p \} \},
\]
\[
\psi(f) = \{ M \in \text{mod} R \mid \text{depth} M_p \geq ht p - f(p) \text{ for all } p \in \text{Spec} R \}.
\]

For an R-module M we denote by $\text{IPD}(M)$ the infinite projective dimension locus of M, i.e., the set of prime ideals p with $\text{pd}_{R_p} M_p = \infty$. For a subcategory \mathcal{X} of $\text{mod} R$, set $\text{IPD}(\mathcal{X}) = \bigcup_{X \in \mathcal{X}} \text{IPD}(X)$. Let $\text{Sing} R$ denote the singular locus of R, that is, the set of prime ideals p of R such that R_p is not a regular local ring. Let W be a subset of $\text{Sing} R$. We say that W is specialization closed if $V(p) \subseteq W$ for every $p \in W$. We denote by $\text{IPD}^{-1}(W)$ the subcategory of $\text{mod} R$ consisting of modules whose infinite projective dimension loci are contained in W. Recall that R is said to be locally hypersurface if for each $p \in \text{Spec} R$ the local ring R_p is a hypersurface. The above results allow us to give complete classification of resolving subcategories of $\text{mod} R$ when R is a locally hypersurface ring:

Theorem 1.3. Let R be a locally hypersurface ring. There exists a one-to-one correspondence
\[
\begin{align*}
\{ \text{Resolving subcategories of } \text{mod} R \} & \quad \xrightarrow{\Phi} \quad \{ \text{Specialization closed subsets of } \text{Sing} R \} \times \{ \text{Grade consistent functions on } \text{Spec} R \}.
\end{align*}
\]
Here Φ, Ψ are defined as follows:
\[
\Phi(\mathcal{X}) = (\text{IPD}(\mathcal{X}), \phi(\mathcal{X})), \text{ where } \phi(\mathcal{X}) = \{ p \mapsto ht p - \min_{X \in \mathcal{X}} \{ \text{depth} X_p \} \},
\]
\[
\Psi(W, f) = \{ M \in \text{IPD}^{-1}(W) \mid \text{depth} M_p \geq ht p - f(p) \text{ for all } p \in \text{Spec} R \}.
\]

For an R-module M we denote by $\text{res} M$ the resolving closure of M, that is, the smallest resolving subcategory of $\text{mod} R$ containing M. As another interesting application we can recover a “missing” result by Auslander. One says that Tor-rigidity holds for $\text{PD}(R)$ if for any module $M \in \text{PD}(R)$ and $N \in \text{mod} R$, $\text{Tor}^R_i(M, N) = 0$ forces $\text{Tor}^R_j(M, N) = 0$ for $j > i$. It is known that Tor-rigidity holds for $\text{PD}(R)$ when R is regular or a quotient of an unramified regular local ring by a regular element. The equivalence of (1) and (3) in the following theorem for unramified regular local rings was announced by Auslander in his 1962 ICM speech but never published (cf. [11 Theorem 3]):

Theorem 1.4. Let R be a commutative noetherian ring. Suppose that Tor-rigidity holds for $\text{PD}(R_p)$ for all $p \in \text{Spec} R$. Consider two modules $M, N \in \text{PD}(R)$. The following are equivalent:

1. $\text{pd} M_p \leq \text{pd} N_p$ for all $p \in \text{Spec} R$.
2. $M \in \text{res} N$.

3. $\text{Supp} \text{Tor}^R_i(M, X) \subseteq \text{Supp} \text{Tor}^R_i(N, X)$ for all $i > 0$ and all $X \in \text{mod} R$.

We also note that our methods give concrete information such as generators for the categories considered. For example, see Theorem 2.1, a special case and a crucial step in the proof of Theorem 1.4. Here we are able to describe subcategories of $\text{PD}(R)$ as the smallest extension-closed subcategories containing the transposes of certain syzygies of the residue field.
The paper is organized as follows. Section 2 is devoted to proving Theorem 2.1. Sections 3 and 4 consist of various technical results concerning resolving subcategories of PD(R) and dominant resolving subcategories respectively. We prove Theorem 1.4 in Section 3. Section 5 gives the proofs of Theorems 1.1 and 1.2. In the final section, Section 6, the previous results are applied to prove Theorem 1.3.

Convention. For an R-module M, we denote its n-th syzygy by Ω^n M and its transpose by Tr M (see [2] for the definition of the transpose). Whenever R is local, we define them by using a minimal free resolution of M, so that they are uniquely determined up to isomorphism. The depth of the zero R-module is ∞ as a convention.

2. Resolving subcategories in PD_0(R)

Throughout this section, let (R, m, k) be a local ring. An extension-closed subcategory of mod R is defined as a subcategory of mod R which is closed under direct summands and extensions. For an R-module M we denote by ext M the extension closure of M, that is, the smallest extension-closed subcategory of mod R containing M. We denote by PD_0(R) the subcategory of mod R consisting of modules that have finite projective dimension and that are locally free on the punctured spectrum Spec R \ {m}. For an integer n ≥ 0, we denote by PD^n_0(R) the subcategory of mod R consisting of modules which are of projective dimension at most n and locally free on the punctured spectrum of R.

This section is devoted to proving the following Theorem which is an important step in proving Theorem 1.1.

Theorem 2.1. Let R be a commutative noetherian local ring of depth t and with residue field k. Then one has a filtration

\[\text{add } R = \text{PD}_0^0(R) \subsetneq \text{PD}_0^1(R) \subsetneq \cdots \subsetneq \text{PD}_0^t(R) = \text{PD}_0(R) \]

of resolving subcategories of mod R, and these are all the resolving subcategories contained in PD_0(R). Moreover, when t > 0, for each integer 1 ≤ n ≤ t one has

\[\text{PD}_0^n(R) = \text{res}(\text{Tr} \Omega^{n-1} k) = \text{ext}(R \oplus \bigoplus_{i=0}^{n-1} \text{Tr} \Omega^i k). \]

The key is detailed inspection of syzygies and transposes. We begin with stating several basic properties of syzygies and transposes; the following proposition will be used basically without reference.

Proposition 2.2. For an R-module M the following hold.

1. Let 0 → L → M → N → 0 be an exact sequence of R-modules. Then one has exact sequences:

 \[0 \rightarrow \Omega N \rightarrow L \oplus R^a \rightarrow M \rightarrow 0, \]
 \[0 \rightarrow \Omega L \rightarrow \Omega M \oplus R^b \rightarrow \Omega N \rightarrow 0, \]
 \[0 \rightarrow N^* \rightarrow M^* \rightarrow L^* \rightarrow \text{Tr} N \rightarrow \text{Tr} M \oplus R^c \rightarrow \text{Tr} L \rightarrow 0 \]

 for some a, b, c ≥ 0.

2. There are isomorphisms (Tr M)^* ≅ Ω^2 M and M^* ≅ Ω^2 Tr M ⊕ R^n for some n ≥ 0.

3. The module Tr M has no nonzero free summand.
(4) One has an isomorphism $M \cong \text{TrTr} M \oplus R_{\geq n}$ for some $n \geq 0$. Hence $\text{TrTr} M$ is isomorphic to a maximal direct summand of M without nonzero free summand.

(5) There is an exact sequence

$$0 \to \text{Ext}^1(M, R) \to \text{Tr} M \xrightarrow{f} (\Omega^2 M)^* \to \text{Ext}^2(M, R) \to 0$$

of R-modules with $\text{Im} f \cong \Omega \text{Tr} \Omega M$.

\textbf{Proof.} (1) The first sequence is a consequence of a pullback diagram made by 0

$$0 \to L \to M \to N \to 0 \quad \text{and} \quad 0 \to \Omega N \to R_{\geq n} \to N \to 0.$$ The second and third sequences are obtained by the horseshoe and snake lemmas from the original sequence.

(2) These isomorphisms are obtained easily by definition.

(3) This statement follows from (the proof of) \cite[Lemma 4.2]{24}.

(4) The former assertion is straightforward. The latter is by (3).

(5) Applying \cite[Proposition (2.6)(a)]{2} to $\text{Tr} M$ and using the first isomorphism in (2), we get such an exact sequence. It follows from \cite[Appendix]{2} that the image of f is isomorphic to $\Omega \text{Tr} \Omega M \oplus R_{\geq n}$ for some $n \geq 0$. We have surjections $\text{Tr} M \to \Omega \text{Tr} \Omega M \oplus R_{\geq n} \to R_{\geq n}$, which shows that $\text{Tr} M$ has a free summand isomorphic to $R_{\geq n}$. By (3) we have $n = 0$. ■

\textbf{Lemma 2.3.} Let $0 \to L \to M \to N \to 0$ be an exact sequence of R-modules. Let $n \geq 0$ be an integer such that $\text{Ext}^n(L, R) = 0$. Then there is an exact sequence

$$0 \to \text{Tr} \Omega^n N \to \text{Tr} \Omega^n M \oplus R_{\geq n} \to \text{Tr} \Omega^n L \to 0.$$

\textbf{Proof.} We have an exact sequence $0 \to \Omega^n L \to \Omega^n M + R_{\geq n} \to \Omega^n N \to 0$. The following three exact sequences are induced:

$$\begin{align*}
(\Omega^n M \oplus R_{\geq n})^* & \xrightarrow{\alpha} (\Omega^n L)^* \xrightarrow{\beta} \text{Tr} \Omega^n N \to \text{Tr} \Omega^n M \oplus R_{\geq n} \to \text{Tr} \Omega^n L \to 0, \\
(\Omega^n M \oplus R_{\geq n})^* & \xrightarrow{\alpha} (\Omega^n L)^* \xrightarrow{\gamma} \text{Ext}^{n+1}(N, R) \xrightarrow{\delta} \text{Ext}^{n+1}(M, R), \\
0 & = \text{Ext}^n(L, R) \to \text{Ext}^{n+1}(N, R) \xrightarrow{\delta} \text{Ext}^{n+1}(M, R).
\end{align*}$$

Hence we observe: δ is injective, γ is zero, α is surjective, and β is zero. ■

\textbf{Proposition 2.4.} Assume $\text{depth} R = t > 0$. Let M be an R-module which is locally free on the punctured spectrum of R. Then for each integer $0 \leq i < t$, there exists an exact sequence

$$0 \to \text{Tr} \Omega^{i+1} \text{Tr} \Omega^i M \to \text{Tr} \Omega^i \text{Tr} \Omega^i M \oplus R_{\geq n} \to \text{Tr} \Omega^i \text{Ext}^{i+1}(M, R) \to 0.$$

\textbf{Proof.} Applying Proposition \cite[5]{22} to $\Omega^i M$, we have an exact sequence $0 \to \text{Ext}^{i+1}(M, R) \to \text{Tr} \Omega^i M \to \Omega \text{Tr} \Omega^{i+1} M \to 0$. The assumption implies that $\text{Ext}^{i+1}(M, R)$ has finite length. Since $i < t$, we have $\text{Ext}^i(\text{Ext}^{i+1}(M, R), R) = 0$. The assertion now follows from Lemma \cite{23}. ■

\textbf{Lemma 2.5.} Assume $\text{depth} R = t > 0$. Let $L \neq 0$ be an R-module of finite length, and let $0 \leq n < t$ be an integer. Take a minimal free resolution $\cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \to L \to 0$ of L. Then one has an exact sequence

$$0 \to F_0^* \xrightarrow{d_1^*} \cdots \xrightarrow{d_2^*} F_{n-1}^* \xrightarrow{d_n^*} F_n^* \xrightarrow{d_{n+1}^*} F_{n+1}^* \to \text{Tr} \Omega^n L \to 0,$$
which gives a minimal free resolution of TrΩ^nL. Hence,
\[\Omega^i TrΩ^nL \cong \begin{cases}
\text{TrΩ}^{n-i}L & (0 \leq i \leq n), \\
F^*_0 & (i = n + 1), \\
0 & (i \geq n + 2).
\end{cases} \]

In particular, pd(TrΩ^nL) = n + 1.

Proof. There is an exact sequence 0 → Ω^nL → F_{n-1} → ... → F_0 → L → 0. Since n < t, we have Ext^i(L, R) = 0 for any i ≤ n. Hence the sequence
\[0 \rightarrow F_0^* \rightarrow ... \rightarrow F_{n-1}^* \rightarrow (\Omega^nL)^* \rightarrow 0 \]
is exact. Splicing this with 0 → (Ω^nL)^* → F_n^* → F_{n+1}^* → TrΩ^nL → 0, we are done. ■

Proposition 2.6. Assume depth R = t > 0. Let L ≠ 0 be an R-module of finite length. Then res(TrΩ^nL) = res(TrΩ^nR) for every 0 ≤ n < t.

Proof. As L ≠ 0, there is an exact sequence 0 → L' → L → k → 0. Since L' has finite length and n < t, we have Ext^n(L', R) = 0, and get an exact sequence
\[0 \rightarrow \text{TrΩ}^nR \rightarrow \text{TrΩ}^nL \oplus R^{\oplus m} \rightarrow \text{TrΩ}^nL' \rightarrow 0 \]
by Lemma 2.3. Induction on the length of L shows that TrΩ^nL belongs to res(TrΩ^nR), which implies
\[(2.6.1) \quad \text{res}(\text{TrΩ}^nL) \subseteq \text{res}(\text{TrΩ}^nR). \]
(Note that this inclusion relation is still valid for L = 0.) The above exact sequence induces an exact sequence
\[(2.6.2) \quad 0 \rightarrow \Omega \text{TrΩ}^nL' \rightarrow \Omega \text{TrΩ}^nR \oplus R^{\oplus d} \rightarrow \Omega \text{TrΩ}^nL \oplus R^{\oplus m} \rightarrow 0. \]
Let us prove
\[(2.6.3) \quad \Omega \text{TrΩ}^nR \subseteq \text{res}(\Omega \text{TrΩ}^nL) \]
by induction on n. When n = 0, the module ΩTrΩ^nL' is free by Lemma 2.5 and (2.6.3) follows from (2.6.2). When n ≥ 1, we have:
\[\Omega \text{TrΩ}^{n-1}L' \cong \text{TrΩ}^{n-1}L' \subseteq \text{res}(\text{TrΩ}^{n-1}L) \subseteq \text{res}(\text{TrΩ}^{n-1}L) \cong \text{res}(\Omega \text{TrΩ}^nL) \subseteq \text{res}(\Omega \text{TrΩ}^nL). \]
Here (1),(4) follow from Lemma 2.5 (2) from (2.6.1), and (3) from the induction hypothesis. Now (2.6.3) is obtained by (2.6.2). Consequently, we have the inclusion
\[\text{res}(\Omega \text{TrΩ}^nL) \supseteq \text{res}(\Omega \text{TrΩ}^nR). \]

Lemma 2.7. Let M be an R-module such that ΩM ∈ ext(R ⊕ M). Then one has ext(R ⊕ M) = res M.

Proof. It is clear that ext(R ⊕ M) is contained in res M. Let us consider the subcategory
\[\mathcal{K} = \{ N \in \text{ext}(R \oplus M) \mid \Omega N \in \text{ext}(R \oplus M) \} \subseteq \text{ext}(R \oplus M). \]
By assumption \(\mathcal{K} \) contains \(R \oplus M \), and we easily see that \(\mathcal{K} \) is closed under direct summands. Let 0 → S → T → U → 0 be an exact sequence of R-modules with S, U ∈ \(\mathcal{K} \).
Then \(T, \Omega S, \Omega U \) are in \(\text{ext}(R \oplus M) \), and there is an exact sequence \(0 \to \Omega S \to \Omega T \oplus R^\oplus n \to \Omega U \to 0 \). Hence \(\Omega T \) belongs to \(\text{ext}(R \oplus M) \), which implies \(T \in \mathcal{X} \). Therefore \(\mathcal{X} \) is closed under extensions, and thus \(\mathcal{X} = \text{ext}(R \oplus M) \). Now \(\text{ext}(R \oplus M) \) is closed under syzygies, which means that it is resolving. \(\blacksquare \)

Now we can achieve the main purpose of this section.

Proof of Theorem 2.1. First of all, it is easy to observe that there is a filtration

\[
\text{add } R = \text{PD}_0^0(R) \subseteq \text{PD}_1^1(R) \subseteq \cdots \subseteq \text{PD}_t^t(R) = \text{PD}_0(R),
\]

and that each \(\text{PD}_n^i(R) \) is a resolving subcategory of \(\text{mod} R \). When \(t = 0 \), we have \(\text{PD}_0(R) = \text{PD}_0^0(R) = \text{add } R \), which is the smallest resolving subcategory of \(\text{mod} R \). So, we may assume \(t > 0 \).

1. Let us prove the equalities

\[
\text{PD}_0^i(R) = \text{res} (\text{Tr} \Omega^{n-1} k) = \text{ext}(R \oplus \bigoplus_{i=0}^{n-1} \text{Tr} \Omega^i k)
\]

for each \(1 \leq n \leq t \). Lemma 2.3 implies that \(\text{Tr} \Omega^{n-1} k \) belongs to \(\text{PD}_0^0(R) \). Hence \(\text{PD}_0^0(R) \) contains \(\text{res}(\text{Tr} \Omega^{n-1} k) \). Let \(M \) be an \(R \)-module in \(\text{PD}_0^0(R) \). By Proposition 2.4 we have

\[
\text{res}(\text{Tr} \Omega^i \text{Tr} \Omega^j M) \subseteq \text{res}(\text{Tr} \Omega^{i+1} \text{Tr} \Omega^{j+1} M + \text{Tr} \Omega^i \text{Ext}^{i+1}(M, R))
\]

for \(0 \leq i < n \). As \(\text{Ext}^{i+1}(M, R) \) has finite length, \(\text{Tr} \Omega^i \text{Ext}^{i+1}(M, R) \) is in \(\text{res}(\text{Tr} \Omega^j k) \) by Proposition 2.6. Since \(M \) has projective dimension at most \(n \), the module \(\text{Tr} \Omega^n \text{Tr} \Omega^n M \) is free. Lemma 2.3 implies that \(\text{Tr} \Omega^i = \Omega^{n-1-i} \text{Tr} \Omega^{n-1} k) \) in \(\text{res}(\text{Tr} \Omega^{n-1} k) \) for every \(0 \leq i \leq n-1 \). Also, \(\text{Tr} \Omega^n \text{Tr} \Omega^n M \) is isomorphic to \(M \) up to free summand. Hence we obtain

\[
\text{res } M = \text{res}(\text{Tr} \Omega^0 \text{Tr} \Omega^0 M) \subseteq \text{res}(\text{Tr} \Omega^1 \text{Tr} \Omega^1 M + \text{Tr} \Omega^{n-1} k) \subseteq \text{res}(\text{Tr} \Omega^2 \text{Tr} \Omega^2 M + \text{Tr} \Omega^{n-1} k)
\]

\[
\subseteq \cdots \subseteq \text{res}(\text{Tr} \Omega^n \text{Tr} \Omega^n M + \text{Tr} \Omega^{n-1} k) = \text{res}(\text{Tr} \Omega^{n-1} k).
\]

Therefore \(\text{PD}_0^0(R) = \text{res}(\text{Tr} \Omega^{n-1} k) \) holds. The equality \(\text{res}(\text{Tr} \Omega^{n-1} k) = \text{ext}(R \oplus \bigoplus_{i=0}^{n-1} \text{Tr} \Omega^i k) \) is a consequence of Lemmas 2.5 and 2.7.

2. Let us prove that every resolving subcategory contained in \(\text{PD}_0(R) \) coincides with one of \(\text{PD}_0^0(R), \ldots, \text{PD}_0^t(R) \). We start by establishing a claim.

Claim. Let \(1 \leq n \leq t \). Let \(X \) be an \(R \)-module in \(\text{PD}_0^0(R) \setminus \text{PD}_0^{n-1}(R) \). Then \(\text{Tr} \Omega^i L \) belongs to \(\text{res } X \) for all \(R \)-modules \(L \) of finite length and all integers \(0 \leq i \leq n-1 \).

Proof of Claim. Fix an \(R \)-module \(L \) of finite length. Set \(E = \text{Ext}^n(X, R) \). Since \(X \) has projective dimension \(n \), we see that \(E \) is a nonzero module of finite length. Proposition 2.6 yields \(\text{Tr} \Omega^{n-1} L \in \text{res}(\text{Tr} \Omega^{n-1} k) = \text{res}(\text{Tr} \Omega^{n-1} E) \). It is easy to see that \(E \cong \text{Tr} \Omega^{n-1} X \), whence \(\text{Tr} \Omega^{n-1} E \cong \text{Tr} \Omega^{n-1} \text{Tr} \Omega^{n-1} X \). Thus:

\[
\text{(2.7.1)} \quad \text{Tr} \Omega^{n-1} L \in \text{res}(\text{Tr} \Omega^{n-1} \text{Tr} \Omega^{n-1} X).
\]

We show the claim by induction on \(n \). When \(n = 1 \), it follows from \((2.7.1) \) and Proposition 2.3(4). Let \(n \geq 2 \). Since \(\Omega X \in \text{PD}_0^{n-1}(R) \setminus \text{PD}_0^{n-2}(R) \), the induction hypothesis implies that \(\text{Tr} \Omega^j L \) is in \(\text{res } X \) for all \(0 \leq j \leq n-2 \). Hence:

\[
\text{(2.7.2)} \quad \text{Tr} \Omega^j L \in \text{res } X \quad (0 \leq j \leq n-2).
\]
By Proposition 2.3, there are exact sequences

\[0 \to \text{Tr} \Omega^{j+1} \to \text{Tr} \Omega^j X \oplus R^{\oplus m_j} \to \text{Tr} \Omega^j E_j \to 0 \quad (0 \leq j \leq n - 2), \]

where \(E_j = \text{Ext}^{j+1}(X, R) \). As \(E_j \) has finite length, \(\text{Tr} \Omega^j E_j \) is in \(\text{res} X \) for \(0 \leq j \leq n - 2 \) by (2.7.2). Using the above exact sequences, we inductively observe that:

(2.7.3) \hspace{1cm} \text{Tr} \Omega^{n-1} \text{Tr} \Omega^{n-1} X \in \text{res} X.

Combining (2.7.1), (2.7.2) and (2.7.3) yields that \(\text{Tr} \Omega^i L \) belongs to \(\text{res} X \) for any integer \(0 \leq i \leq n - 1 \).

Now, let \(\mathcal{X} \neq \text{add} R \) be a resolving subcategory of \(\text{mod} R \) contained in \(\text{PD}_0(R) \). Then there exists a unique integer \(1 \leq n \leq t \) such that \(\mathcal{X} \) is contained in \(\text{PD}_0^n(R) \) but not contained in \(\text{PD}_0^{n-1}(R) \). We find an \(R \)-module \(X \in \mathcal{X} \) that does not belong to \(\text{PD}_0^{n-1}(R) \). The above claim says that \(\text{Tr} \Omega^{n-1} k \) is in \(\text{res} X \), and hence in \(\mathcal{X} \). It follows from (1) that \(\mathcal{X} = \text{PD}_0^n(R) \).

We close this section by stating a corollary of Theorem 2.1, which will be used later.

Corollary 2.8. Let \(R \) be a local ring. Let \(M \) be an \(R \)-module in \(\text{PD}_0(R) \). Then one has \(\text{res} M = \text{PD}_0^n(R) \), where \(n = \text{pd} M \).

Proof. Theorem 2.1 shows that \(\text{res} M = \text{PD}_0^n(R) \) for some integer \(m \). Since \(M \) is in \(\text{res} M \), we have \(n \leq m \). Suppose \(n < m \). Then \(M \) is in \(\text{PD}_0^{m-1}(R) \). As \(\text{PD}_0^{m-1}(R) \) is resolving, \(\text{res} M \) is contained in \(\text{PD}_0^{m-1}(R) \). This is a contradiction, which implies \(n = m \). ■

3. Resolving subcategories of modules of finite projective dimension

In this section, we study resolving subcategories whose objects are modules of finite projective dimension. Let us start by recalling two useful results, see [9, Lemma 4.5 and 4.6].

Lemma 3.1. Let \(R \) be a local ring. Let \(0 \to L \to M \to N \to 0 \) be an exact sequence of \(R \)-modules. Then one has the equality

\[\inf \{ \text{depth} L, \text{depth} N \} = \inf \{ \text{depth} M, \text{depth} N \}. \]

For an \(R \)-module \(M \), denote by \(\text{NF}(M) \) the nonfree locus of \(M \), that is, the set of prime ideals \(\mathfrak{p} \) of \(R \) such that the localization \(M_{\mathfrak{p}} \) is nonfree as an \(R_{\mathfrak{p}} \)-module. It is a well-known fact that \(\text{NF}(M) \) is a closed subset of \(\text{Spec} R \) in the Zariski topology.

The following result enables us to replace in a resolving subcategory a module with a module whose nonfree locus is irreducible. This is a generalization of [22, Theorem 4.3], and will also be used in the next section.

Proposition 3.2. Let \(M \) be an \(R \)-module. For every \(\mathfrak{p} \in \text{NF}(M) \) there exists \(X \in \text{res} M \) satisfying \(\text{NF}(X) = V(\mathfrak{p}) \) and \(\text{depth} X_\mathfrak{q} = \inf \{ \text{depth} M_\mathfrak{q}, \text{depth} R_\mathfrak{q} \} \) for all \(\mathfrak{q} \in V(\mathfrak{p}) \).

Next we state two results which are essentially proved in [23].

Lemma 3.3. Let \(\mathcal{X} \) be a resolving subcategory of \(\text{mod} R \).

(1) For each \(\mathfrak{p} \in \text{Spec} R \), the subcategory \(\text{add} \mathcal{X}_\mathfrak{p} \) of \(\text{mod} R_\mathfrak{p} \) is resolving.
Let \(Z \) be a nonempty finite subset of \(\text{Spec} R \). Let \(M \) be an \(R \)-module such that \(M_p \in \text{add} \mathcal{X}_p \) for all \(p \in Z \). Then there exist exact sequences

\[
0 \to K \to X \to M \to 0,
\]
\[
0 \to L \to M \oplus K \oplus R^{\oplus n} \to X \to 0
\]

of \(R \)-modules with \(X \in \mathcal{X} \), \(\text{NF}(L) \subseteq \text{NF}(M) \) and \(\text{NF}(L) \cap Z = \emptyset \).

Proof. Note that the results [23, Lemmas 4.6 and 4.8] hold even if the ring \(R \) is not local, as the proofs show. The first assertion now follows, and the second one can be shown along the same lines as in the proof of [23, Proposition 4.7]. ■

Next we investigate the relationship between a module in a resolving subcategory and its localization. Thanks to the following proposition, we can reduce problems on resolving subcategories to the case where the base ring is local.

Proposition 3.4. Let \(\mathcal{X} \) be a resolving subcategory of \(\text{mod} R \). The following are equivalent for an \(R \)-module \(M \).

(1) \(M \in \mathcal{X} \).
(2) \(M_p \in \text{add} \mathcal{X}_p \) for all \(p \in \text{Spec} R \).
(3) \(M_m \in \text{add} \mathcal{X}_m \) for all \(m \in \text{Max} R \).

Proof. (1) \(\Rightarrow \) (3) \(\Rightarrow \) (2): Localization shows these implications.

(2) \(\Rightarrow \) (1): Assume that \(M \) is not in \(\mathcal{X} \). Then

\[
\{ \text{NF}(N) \mid N \in \text{mod} R \setminus \mathcal{X} \text{ and } N_p \in \text{add} \mathcal{X}_p \text{ for all } p \in \text{Spec} R \}
\]

is a nonempty family of closed subsets of \(\text{Spec} R \). Since \(\text{Spec} R \) is noetherian, this set has a minimal element \(\text{NF}(L) \); see [14, Chapter I, Exercise 1.7]. As \(L \notin \mathcal{X} \), we see that \(L \) is not projective. Hence \(\text{min NF}(L) \) is nonempty. Applying Lemma 3.3(2) to \(\text{min NF}(L) \), we get exact sequences

\[
0 \to K \to X \to L \to 0,
\]
\[
0 \to H \to L \oplus K \oplus R^{\oplus n} \to X \to 0
\]

of \(R \)-modules with \(X \in \mathcal{X} \), \(\text{NF}(H) \subseteq \text{NF}(L) \) and \(\text{NF}(H) \cap \text{min NF}(L) = \emptyset \). Since \(\text{min NF}(L) \neq \emptyset \), we have \(\text{NF}(H) \subseteq \text{NF}(L) \). Fix a prime ideal \(p \) of \(R \). Lemma 3.3(1) shows that \(\text{add} \mathcal{X}_p \) is a resolving subcategory of \(\text{mod} R_p \). Localizing the above two exact sequences at \(p \), we observe that \(H_p \) is in \(\text{add} \mathcal{X}_p \). The minimality of \(\text{NF}(L) \) implies that \(H \) belongs to \(\mathcal{X} \). It is seen from the second exact sequence above that \(L \) is in \(\mathcal{X} \), which is again a contradiction. Consequently, we have \(M \in \mathcal{X} \). ■

The proposition below, which is a corollary of Theorem 2.1, will be a basis of the proof of the main result of this section.

Proposition 3.5. Let \((R, m) \) be local. Let \(M \in \text{PD}_0(R) \) and \(N \in \text{PD}(R) \). If \(\text{pd} M \leq \text{pd} N \), then one has \(M \in \text{res} N \).

Proof. We may assume that \(M \) is nonfree. Hence \(N \) is also nonfree, and \(m \) belongs to \(\text{NF}(N) \). Proposition 3.2 shows that there exists an \(R \)-module \(L \in \text{res} N \) with \(\text{NF}(L) = \{ m \} \).
and depth $L = \inf\{\text{depth } N, \text{depth } R\}$. Since N has finite projective dimension, so is L. We have
\[
\text{pd } L = \text{depth } R - \text{depth } L = \text{depth } R - \inf\{\text{depth } N, \text{depth } R\} = \sup\{\text{pd } N, 0\} = \text{pd } N \geq \text{pd } M.
\]
Thus, replacing N with L, we may assume that N is in $\text{PD}_0(R)$. It follows from Corollary \[2.8\] that $\text{res } N = \text{PD}_n^n(R)$, where $n = \text{pd } N$. We have $\text{pd } M \leq \text{pd } N = n$, and therefore M belongs to $\text{PD}_0^n(R) = \text{res } N$.

Let $\text{LPD}(R)$ denote the subcategory of $\text{mod } R$ consisting of modules M such that $\text{pd}_{R_p} M_p < \infty$ for all $p \in \text{Spec } R$. The following theorem is the main result of this section, which gives a criterion for a module in $\text{LPD}(R)$ to belong to a resolving subcategory in $\text{LPD}(R)$.

Theorem 3.6. Let \mathcal{X} be a resolving subcategory of $\text{mod } R$ contained in $\text{LPD}(R)$. Then the following are equivalent for an R-module M.

1. One has $M \in \mathcal{X}$.
2. For every $p \in \text{NF}(M)$ there exists $X \in \mathcal{X}$ such that $\text{pd } M_p \leq \text{pd } X_p$.

Proof. The implication (1) \Rightarrow (2) is trivial. To prove the opposite implication, assume that the condition (2) holds. By Lemma \[3.3\](1) and Proposition \[3.4\], we may assume that (R, \mathfrak{m}) is local. Then we have $\text{LPD}(R) = \text{PD}(R)$. Let us deduce (1) by induction on $m := \dim \text{NF}(M)$.

When $m = -\infty$, the module M is free, and belongs to \mathcal{X}. When $m = 0$, we have $\text{NF}(M) = \{\mathfrak{m}\}$. Hence M is in $\text{PD}_0(R)$, and there exists $X \in \mathcal{X}$ with $\text{pd } M \leq \text{pd } X$. Proposition \[3.5\] implies that M belongs to $\text{res } X$, and thus $M \in \mathcal{X}$.

Now, let $m \geq 1$. Let $p \in \min \text{NF}(M)$. Then we have $\dim \text{NF}(M_p) = 0$. Lemma \[3.3\](1) and the basis of the induction show that $M_p \in \text{add } \mathcal{X}_p$. Hence we can apply Lemma \[3.3\](2) to the nonempty finite set $\min \text{NF}(M)$, and obtain exact sequences

\[
\begin{align*}
(3.6.1) & \quad 0 \rightarrow K \rightarrow Y \rightarrow M \rightarrow 0, \\
(3.6.2) & \quad 0 \rightarrow L \rightarrow M \oplus K \oplus R_{p}^{\oplus l} \rightarrow Y \rightarrow 0
\end{align*}
\]
with $Y \in \mathcal{X}$, $\text{NF}(L) \subseteq \text{NF}(M)$ and $\text{NF}(L) \cap \min \text{NF}(M) = \emptyset$. We easily see that $L \in \text{PD}(R)$ and that $\dim \text{NF}(L) < m$.

Let $p \in \text{NF}(L)$. Then p is in $\text{NF}(M)$, and hence $\text{pd } M_p \leq \text{pd } W_p$ for some $W \in \mathcal{X}$. There are exact sequences $0 \rightarrow K_p \rightarrow Y_p \rightarrow M_p \rightarrow 0$ and $0 \rightarrow L_p \rightarrow M_p \oplus K_p \oplus R_{p}^{\oplus l} \rightarrow Y_p \rightarrow 0$. We obtain inequalities
\[
\text{pd } L_p \leq \sup\{\text{pd } (M_p \oplus K_p \oplus R_{p}^{\oplus l}), \text{pd } Y_p - 1\} = \sup\{\text{pd } M_p, \text{pd } K_p, \text{pd } Y_p - 1\} \\
\leq \sup\{\text{pd } M_p, \text{sup}\{\text{pd } Y_p, \text{pd } M_p - 1\}, \text{pd } Y_p - 1\} \\
\leq \sup\{\text{pd } M_p, \text{pd } Y_p\} \leq \sup\{\text{pd } W_p, \text{pd } Y_p\} = \text{pd } Z_p,
\]
where Z is either Y or W. Therefore, the module L satisfies the condition (2). Applying the induction hypothesis to L, we get $L \in \mathcal{X}$. By \[3.6.2\] we observe $M \in \mathcal{X}$.

Remark 3.7. It is known that the equality $\text{LPD}(R) = \text{PD}(R)$ always holds; see \[7\ 4.5\].
Finally we give the proof of Theorem 1.4 from the Introduction:

Proof of Theorem 1.4. The implication (1) \Rightarrow (2) is a consequence of Theorem 3.6. The implication (3) \Rightarrow (1) follows by letting $X = R/p$ and localization at p.

Assume (2) and pick a prime ideal p which is not in $\text{Supp} \ Tor_i^R(N, X)$. Then $\text{Tor}_i^R(N_p, X_p) = 0$, thus $\text{Tor}_j^R(N_p, X_p) = 0$ for all $j \geq i$ by rigidity. Since $M \in \text{res } N$, it is easily seen that $\text{Tor}_i^R(M_p, X_p) = 0$.

4. Dominant resolving subcategories over a Cohen-Macaulay ring

In this section, we consider dominant resolving subcategories over a Cohen-Macaulay ring. In the first three results below, we investigate, over a Cohen-Macaulay local ring, the structure of resolving closures containing syzygies of the residue field.

Lemma 4.1. Let (R, m, k) be a Cohen-Macaulay local ring. Let \mathcal{X} be a resolving subcategory of $\text{mod } R$. Suppose that \mathcal{X} contains an R-module of depth 0. If $\Omega^n k$ is in \mathcal{X} for some $n \geq 0$, then k is in \mathcal{X}.

Proof. Let X be an R-module in \mathcal{X} with $\text{depth } M = 0$. If $\text{NF}(X)$ is empty, then X is free. If $\text{NF}(X)$ is nonempty, then m belongs to it, and applying Proposition 3.2 to m, we find a module $X' \in \text{res } X$ with $\text{depth } X' = 0$ and $\text{NF}(X') = \{m\}$. Thus, we may assume that X is locally free on the punctured spectrum of R. There is an exact sequence $0 \rightarrow k \rightarrow X \rightarrow C \rightarrow 0$, and by Proposition 2.2(1) we get an exact sequence

$$0 \rightarrow \Omega C \rightarrow k \oplus R^\oplus m \rightarrow X \rightarrow 0.$$

Fix an integer $i \geq 1$. Applying Proposition 2.2(1) ($(i - 1)$ times) gives an exact sequence

$$0 \rightarrow \Omega^i C \rightarrow \Omega^{i-1} k \oplus R^\oplus l \rightarrow \Omega^{i-1} X \rightarrow 0$$

for some $l \geq 0$. Since C is locally free on the punctured spectrum of R, it belongs to $\text{res}_R k$ by [23, Theorem 2.4]. Hence $\Omega^i C$ is in $\text{res}_R(\Omega^i k)$. Therefore,

$$\Omega^i k \in \mathcal{X} \implies \Omega^{i-1} k \in \mathcal{X} \text{ for each } i \geq 1.$$

Thus the assertion follows.

Proposition 4.2. Let (R, m, k) be a d-dimensional Cohen-Macaulay local ring. Let M be an R-module of depth t. Then $\Omega^i k$ belongs to $\text{res}(M \oplus \Omega^n k)$ for all $n \geq 0$.

Proof. As $\text{res}_R(M \oplus \Omega^i R k) \subseteq \text{res}_R(M \oplus \Omega^i R k)$ for each $i \geq 0$, we may assume $n \geq d$. Then $\Omega^i R k$ is a maximal Cohen-Macaulay R-module. Let $x = x_1, \ldots, x_t$ be a sequence of elements of R having the following properties:

1. The sequence x is regular on both M and R,
2. The element $x_i \in m/(x_1, \ldots, x_{i-1})$ is not in $(m/(x_1, \ldots, x_{i-1}))^2$ for $1 \leq i \leq t$.

We can actually get such a sequence by choosing an element of m outside the ideal $m^2 + (x_1, \ldots, x_{i-1})$ and the prime ideals in $\text{Ass}_R M/(x_1, \ldots, x_{i-1}) M \cup \text{Ass}_R R/(x_1, \ldots, x_{i-1})$.
for each $1 \leq i \leq t$. Putting $N = M \oplus \Omega^n k$, we see that x is an N-sequence. Applying [20, Corollary 5.3] repeatedly, we have an isomorphism

$$\Omega^n k / x \Omega^n k \cong \bigoplus_{j=0}^{t} (\Omega^n_{R/(x)} k) \oplus (j).$$

Hence $\text{res}_{R/(x)}(N/xN) = \text{res}_{R/(x)}(M/xM + \Omega^n k / x \Omega^n k)$ contains $\Omega^n_{R/(x)} k$. Since $\text{res}_{R/(x)}(N/xN)$ contains the module M/xM of depth zero, it contains k by Lemma [4.1.]

It follows that $\Omega^n_R k$ belongs to $\text{res}_R(\Omega^n_R (N/xN))$. The Koszul complex of x with respect to N gives an exact sequence

$$0 \to N^\oplus(0) \to N^\oplus(t_{-1}) \to \cdots \to N^\oplus(0) \to N^\oplus(0) \to N/xN \to 0,$$

which shows that $\Omega^n_R (N/xN)$ is in $\text{res}_R N$ by [23, Lemma 4.3]. Therefore $\Omega^n_R k$ is in $\text{res}_R N$. ■

Corollary 4.3. Let R be a Cohen-Macaulay local ring with residue field k. Let M be an R-module of depth t that is locally free on the punctured spectrum of R. Then $\text{res}_R(M \oplus \Omega^n k) = \text{res}_R(\Omega^t k \oplus \Omega^n k)$ for all $n \geq 0$.

Proof. By [23, Theorem 2.4] the module M belongs to $\text{res}_R \Omega^t k$, which gives the inclusion $\text{res}_R(M \oplus \Omega^n k) \subseteq \text{res}_R(\Omega^t k \oplus \Omega^n k)$. The other inclusion follows from Proposition [4.2.]

We slightly extend the definition of a dominant resolving subcategory as follows.

Definition 4.4. Let W be a subset of $\text{Spec} R$, and let \mathcal{X} be a resolving subcategory of $\text{mod} R$. We say that \mathcal{X} is dominant on W if for all $p \in W$ there exists $n \geq 0$ such that $\Omega^n k (p) \in \text{add} \mathcal{X}_p$. (An dominant resolving subcategory of $\text{mod} R$ is nothing but a resolving subcategory that is dominant on $\text{Spec} R$.)

The main result of this section is the following theorem, which yields a criterion for a module to be in a dominant resolving subcategory.

Theorem 4.5. Let R be a Cohen-Macaulay ring. Let \mathcal{X} be a resolving subcategory of $\text{mod} R$. Let M be an R-module such that \mathcal{X} is dominant on $\text{NF}(M)$. Then the following are equivalent:

1. M belongs to \mathcal{X};
2. $\text{depth} M_p \geq \min_{X \in \mathcal{X}} \{ \text{depth} X_p \}$ holds for all $p \in \text{NF}(M)$.

Proof. The implication (1) \Rightarrow (2) is trivial. To show the implication (2) \Rightarrow (1), we may assume that R is local with maximal ideal m by Lemma [3.3(1)] and Proposition [3.4]. Let M be an R-module with $\text{depth} M_p \geq \min_{X \in \mathcal{X}} \{ \text{depth} X_p \}$ for all $p \in \text{Spec} R$.

We induce on $m := \dim \text{NF}(M)$ to prove that M belongs to \mathcal{X}. When $m = -\infty$, the module M is projective, and is in \mathcal{X}. When $m = 0$, we have $\text{NF}(M) = \{ m \}$. By assumption, $\Omega^n k$ is in \mathcal{X} for some $n \geq 0$. As M is locally free on the punctured spectrum, it follows from Corollary [4.3] that $\text{res}_R(M \oplus \Omega^n k) = \text{res}_R(\Omega^t k \oplus \Omega^n k)$, where $t = \text{depth} M$. We have $t = \text{depth} M \geq \min_{X \in \mathcal{X}} \{ \text{depth} X \}$, which gives an R-module $X \in \mathcal{X}$ with $t \geq \text{depth} X =: s$. Hence $t - s \geq 0$, and $\Omega^t k = \Omega^{t-s}(\Omega^s k)$ belongs to $\text{res}_R \Omega^s k$. Proposition [4.2] implies that $\Omega^s k$ is in $\text{res}(X \oplus \Omega^n k)$, and we have

$$M \in \text{res}_R(M \oplus \Omega^n k) = \text{res}_R(\Omega^t k \oplus \Omega^n k) \subseteq \text{res}_R(\Omega^s k \oplus \Omega^n k) \subseteq \text{res}_R(X \oplus \Omega^n k) \subseteq \mathcal{X}.$$
Let us consider the case $m \geq 1$. Using Lemma 3.3(1) and the basis of the induction, we observe that $M_p \in \text{add} \mathcal{X}^c$ for all $p \in \text{min} \text{NF}(M)$. Lemma 3.3(2) implies that there exist exact sequences

\begin{align}
0 \to K \to X \to M \to 0, \\
0 \to L \to M \oplus K \oplus R^{\oplus l} \to X \to 0
\end{align}

with $X \in \mathcal{X}$, $\text{NF}(L) \subseteq \text{NF}(M)$ and $\dim \text{NF}(L) < m$.

Here we claim that $\text{depth} L_p \geq \min_{Y \in \mathcal{X}} \{\text{depth} Y_p\}$ for all $p \in \text{NF}(L)$. Indeed, localizing the above exact sequences, we obtain inequalities

\begin{align}
\text{depth} L_p & \geq \inf \{\text{depth}(M_p \oplus K_p \oplus R^{\oplus l}_p), \text{depth} X_p + 1\} \\
& = \inf \{\text{depth} M_p, \text{depth} K_p, \text{depth} X_p + 1\} \\
& \geq \inf \{\text{depth} M_p, \text{inf}\{\text{depth} X_p, \text{depth} M_p + 1\}, \text{depth} X_p + 1\} \\
& \geq \inf \{\text{depth} M_p, \text{depth} X_p\} \geq \inf \{\text{depth} Y_p\},
\end{align}

where the last inequality follows from the fact that p is in $\text{NF}(M)$.

Now we can apply the induction hypothesis to L to get $L \in \mathcal{X}$. By (4.5.2), the module M belongs to \mathcal{X}. ■

The following result is a direct consequence of Theorem 4.5.

Corollary 4.6. Let R be a Cohen-Macaulay ring with $\dim R = d < \infty$. Let \mathcal{X} be a resolving subcategory of $\text{mod} R$. The following are equivalent:

1. \mathcal{X} is dominant;
2. For all $p \in \text{Spec} R$, there exists $n \geq 0$ such that $\Omega^n(R/p) \in \mathcal{X}$;
3. For all $p \in \text{Spec} R$, $\Omega^d(R/p) \in \mathcal{X}$.

Proof. (3) \Rightarrow (2) \Rightarrow (1): These implications are obvious.

(1) \Rightarrow (3): Let $q \in \text{Spec} R$. It is evident that $\Omega^d(R/p)_q$ is a maximal Cohen-Macaulay R_q-module. Hence the inequalities $\text{depth} \Omega^d(R/p)_q \geq \dim R_q \geq \min_{Y \in \mathcal{X}} \{\text{depth} Y_q\}$ hold, and $\Omega^d(R/p)$ belongs to \mathcal{X} by Theorem 4.5. ■

5. **Proofs of Theorems 1.1 and 1.2**

This section is devoted to proving Theorem 1.1 and 1.2 by using the results obtained in the previous two sections. First of all, we define subcategories determined by local finiteness of homological dimensions.

Notation 5.1. We denote by h either projective dimension pd or Cohen-Macaulay dimension CMdim. (For the definition of Cohen-Macaulay dimension, see [13, Definitions 3.2 and 3.2']). Let $L_h(R)$ denote the subcategory of $\text{mod} R$ consisting of modules M with $h_{R_p}(M_p) < \infty$ for all $p \in \text{Spec} R$.

Here are some basic properties of projective and Cohen-Macaulay dimension and their consequences, which will be used without reference.

Lemma 5.2. The following hold for $(\text{h}, \mathcal{P}) = (\text{pd}, \text{regular}), (\text{CMdim}, \text{Cohen-Macaulay})$.

1. Suppose that R is local.
(a) It holds for an R-module M that h(M) ∈ {−∞} ∪ N ∪ {∞}, and that h(M) = −∞ ⇔ M = 0.
(b) If M, N are R-modules with M ∼= N, then h(M) = h(N).
(c) For an R-module M, one has CMdim M ≤ pd M, whose equality holds if pd M < ∞.
(d) If M is an R-module and N is a direct summand of M, then h(N) ≤ h(M).
(e) If M is an R-module with h(M) < ∞, then h(M) = depth R − depth M.
(f) For a nonzero R-module M, one has h(Ω^n M) = sup{h(M) − n, 0}.
(g) If R satisfies P, then h(M) < ∞ for every R-module M.

(2) For M ∈ mod R and p, q ∈ Spec R with p ⊆ q, one has h_{R_p}(M_p) ≤ h_{R_q}(M_q).
(3) If R satisfies P, then Lh(R) = mod R.
(4) One has L_{pd}(R) = LPD(R) = PD(R).
(5) For every R-module M ∈ Lh(R), the inequality h(M_p) ≤ grade p holds.

Proof. The statements (1)–(4) are well-known for pd; the second equality in (4) has already been observed in Remark 3.7. Those for CMdim are stated in [13, §3]. Let us show the statement (5). There is an equality grade p = inf{depth R_p | q ∈ V(p)}, so we have grade p = depth R_q for some q ∈ V(p). Since h(M_q) is finite, it holds that h(M_p) ≤ h(M_q) = depth R_q − depth M_q ≤ depth R_q = grade p.

The following lemma will be necessary in both of the proofs of Theorems 1.1 and 1.2.

Lemma 5.3. Let f be a grade consistent function on Spec R. For each p ∈ Spec R there exists an R-module E satisfying:
(1) pd E < ∞,
(2) pd E_q ≤ f(q) for all q ∈ Spec R,
(3) pd E_p = f(p).

Proof. Put n = grade p. If n = 0, then f(p) = 0, and we can take E := R. Let n ≥ 1. Choose an R-sequence x = x_1, . . . , x_n in p. It is easy to observe that p belongs to NF(R/(x)). Proposition 3.2 implies that there exists an R-module X ∈ res(R/(x)) with NF(X) = V(p) and depth X_q = inf{depth R_{q/x x_q}, depth R_q} = depth R_q − n for all q ∈ V(p). Note that n − f(p) ≥ 0. Put E := Ω^{n−f(p)} X.

(1) As the R-module R/(x) has finite projective dimension, so does X, and so does E.
(2) If q is not in V(p), then q ∉ NF(X). Hence X_q is R_q-free, and so is E_q. Thus we may assume q ∈ V(p). Then we have
pd E_q = pd Ω^{n−f(p)} X_q = sup{pd X_q − n + f(p), 0}
= sup{depth R_q − depth X_q − n + f(p), 0} = sup{f(p), 0} = f(p) ≤ f(q).

(3) The above equalities imply that pd E_p = f(p).

Now we are on the stage to achieve the main purpose of this section.

Proof of Theorem 1.1. It is easy to verify that φ, ψ are well-defined maps.
Let X be a resolving subcategory contained in PD(R). Then
ψφ(X) = {M ∈ mod R | pd M_p ≤ max{pd X_p} for all p ∈ Spec R} ⊇ X.
It follows from Theorem 3.6 that $\psi \phi (\mathcal{X}) = \mathcal{X}$.

Let f be a grade consistent function on $\text{Spec } R$. Fix a prime ideal p. We have

$$\phi(f)(p) = \max \{ \text{pd } X_p \mid X \in \text{mod } R \text{ with } \text{pd } X_q \leq f(q) \text{ for all } q \in \text{Spec } R \} \leq f(p).$$

It follows from Lemma 5.3 that $\phi \psi (f)(p) = f(p)$. Therefore $\phi \psi (f) = f$.

Proof of Theorem 1.2. Fix $p \in \text{Spec } R$. We see from [8, Theorem 1.1] that the number $n := \text{Rfd}_R(R/p)$ is finite. It follows from [8, Proposition (2.3) and Theorem (2.8)] that $\text{CMdim}_{R_q}(R_q/pR_q) - n = \text{Rfd}_{R_q}(R_q/pR_q) - n \leq 0$, and hence $\text{CMdim}_{R_q} \Omega^n(R_q/pR_q) = \sup \{ \text{CMdim}_{R_q}(R_q/pR_q) - n \} = 0 \leq f(q)$ for each prime ideal q of R. Therefore $\Omega^n(R/p)$ is in $\psi(f)$, which implies that $\psi(f)$ is dominant. Now we easily check that ϕ, ψ are well-defined.

Let \mathcal{X} be a dominant resolving subcategory of $\text{mod } R$. Then we have

$$\psi \phi (\mathcal{X}) = \{ M \in \text{mod } R \mid \text{depth } M_p \geq \min \{ \text{depth } X_p \} \text{ for all } p \in \text{Spec } R \} \supseteq \mathcal{X}.$$

By virtue of Theorem 1.5, the equality $\psi \phi (\mathcal{X}) = \mathcal{X}$ holds.

Let f be a grade consistent function on $\text{Spec } R$, and let $p \in \text{Spec } R$. Then

$$\phi(f)(p) = \max \{ \text{CMdim } X_p \mid X \in \text{mod } R \text{ with } \text{CMdim } X_q \leq f(q) \text{ for all } q \in \text{Spec } R \} \leq f(p).$$

Taking an R-module E as in Lemma 5.3, we deduce that $\phi \psi (f)(p) = f(p)$. It follows that $\phi \psi (f) = f$.

As a common consequence of Theorems 1.1 and 1.2 we immediately obtain a complete classification of the resolving subcategories over a regular ring:

Corollary 5.4. Let R be a regular ring. Then there exist mutually inverse bijections

$$\left\{ \begin{array}{l}
\{ \text{Resolving subcategories of } \text{mod } R \} \\
\text{containing } \Omega^d k
\end{array} \right\} \quad \stackrel{\phi}{\longleftrightarrow} \quad \left\{ \begin{array}{l}
\{ \text{Grade consistent functions on } \text{Spec } R \}
\end{array} \right\}.$$

Here ϕ, ψ are defined as follows:

$$\phi(\mathcal{X}) = \{ p \mapsto \max \{ \text{pd } X_p \} \},$$

$$\psi(f) = \{ M \in \text{mod } R \mid \text{pd } M_p \leq f(p) \text{ for all } p \in \text{Spec } R \}.$$

Recall that R has (at most) an isolated singularity if R_p is a regular local ring for each nonmaximal prime ideal p of R. As an application of Theorem 1.2, we have the following.

Corollary 5.5. Let (R, \mathfrak{m}, k) be a d-dimensional Cohen-Macaulay local ring with an isolated singularity. Then one has the following one-to-one correspondences.

$$\left\{ \begin{array}{l}
\{ \text{Resolving subcategories of } \text{mod } R \text{ containing } \Omega^d k \}
\end{array} \right\} \quad \stackrel{\phi}{\longleftrightarrow} \quad \left\{ \begin{array}{l}
\{ \text{Grade consistent functions on } \text{Spec } R \}
\end{array} \right\},$$

where ϕ, ψ are defined by:

$$\phi(\mathcal{X}) = \{ p \mapsto \text{ht } p \text{ - } \min \{ \text{depth } X_p \} \},$$

$$\psi(f) = \{ M \in \text{mod } R \mid \text{depth } M_p \geq \text{ht } p - f(p) \text{ for all } p \in \text{Spec } R \}.$$
Proof. According to Theorem 1.2, it is enough to check that a resolving subcategory \(X \) of \(\text{mod} \, R \) is dominant if and only if \(\Omega^d k \in X \). The ‘only if’ part is obvious. As to the ‘if’ part, take a prime ideal \(p \) of \(R \). Let us show \(\Omega^d k(p) \in \text{add} \, X_p \). It is clear if \(p = m \), so assume \(p \neq m \). Then \(R_p \) is regular, and \(\Omega^d k(p) \) is a free \(R_p \)-module. Hence it is in \(\text{add} \, X_p \). □

6. Classification for locally hypersurface rings

In this section, as an application of our results obtained so far, we give classification of resolving subcategories over a locally hypersurface ring. Let us start by giving a criterion for a module to be in a resolving subcategory:

Theorem 6.1. Let \(R \) be a locally hypersurface ring. Let \(X \) be a resolving subcategory of \(\text{mod} \, R \). Then an \(R \)-module \(M \) belongs to \(X \) if and only if it satisfies the following conditions:

1. \(\text{IPD}(M) \subseteq \text{IPD}(X) \),
2. \(\text{depth } M_p \geq \min_{X
\in \mathcal{X}} \{ \text{depth } X_p \} \) for all \(p \in \text{NF}(M) \).

Proof. The ‘only if’ part is trivial. In the following we prove the ‘if’ part. According to Lemma 3.3 and Proposition 3.4, we may assume that \(R \) is a local hypersurface. Then \(M \) admits a so-called finite projective hull, namely, there exists an exact sequence

\[
0 \to M \to P \to C \to 0
\]

of \(R \)-modules such that \(P \) has finite projective dimension and that \(C \) is maximal Cohen-Macaulay (cf. [3, Theorem 1.8]). Note that the inequality \(\text{depth } M_p \geq \min_{X \in \mathcal{X}} \{ \text{depth } X_p \} \) holds for all \(p \in \text{Spec } R \), as \(R \in \mathcal{X} \).

(a) Let \(p \in \text{Spec } R \). We have

\[
\text{depth } P_p \geq \inf \{ \text{depth } M_p, \text{depth } C_p \} = \text{depth } M_p \geq \min_{X \in \mathcal{X}} \{ \text{depth } X_p \},
\]

and hence \(\text{depth } P_p \geq \text{depth } X_p \) for some \(X \in \mathcal{X} \). The proof of [3] Lemma 4.13] yields a module \(Y \in \mathcal{X} \) with \(\text{pd } Y < \infty \) and \(\text{depth } Y_p \leq \text{depth } X_p \). Thus \(Y \in \mathcal{X} \cap \text{PD}(R) \) and \(\text{pd } P_p \leq \text{pd } Y_p \). Applying Theorem 3.6 to the resolving subcategory \(\mathcal{X} \cap \text{PD}(R) \), we see that \(P \in \mathcal{X} \).

(b) It holds that

\[
\text{NF}(C) = \text{IPD}(C) = \text{IPD}(M) \subseteq \text{IPD}(X) = \text{NF}(\mathcal{X} \cap \text{CM}(R)),
\]

where the inclusion relation \(\text{IPD}(X) \subseteq \text{NF}(\mathcal{X} \cap \text{CM}(R)) \) is shown by taking a high enough syzygy. Note that \(\mathcal{X} \cap \text{CM}(R) \) is a resolving subcategory of \(\text{mod} \, R \). Since \(R \) is a local hypersurface, we observe by [23, Main Theorem] that \(C \) is in \(\mathcal{X} \cap \text{CM}(R) \), and hence in \(\mathcal{X} \).

Now, it follows from (a) and (b) that \(M \) belongs to \(\mathcal{X} \). □

Making use of Theorem 6.1 we can prove Theorem 1.3.

Proof of Theorem 1.3. It is easy to check that \(\Phi, \Psi \) are well-defined. Theorem 6.1 yields \(\Psi \Phi = 1 \). Fix a specialization closed subset \(W \) of \(\text{Sing } R \) and a grade consistent
function f on $\text{Spec} R$. Using Lemma 5.3 we observe that $\phi(\Psi(W, f)) = f$ holds. It now remains only to prove the equality $\text{IPD}(\Psi(W, f)) = W$.

It is easily seen that $\text{IPD}(\Psi(W, f))$ is contained in W. Let $p \in W$. Put $n = \text{Rfd}_R(R/p)$ (cf. [4, Theorem 1.1]) and $M = \Omega^n_p(R/p)$. Since $\text{IPD}(M) = \text{IPD}(R/p) = V(p) \subseteq W$, the module M is in $\text{IPD}^{-1}(W)$. Take any prime ideal q of R. We see that $\text{CMdim}_R(R_q/(pR_q) = \text{Rfd}_R(R_q/pR_q) \leq n$ by [3 Proposition (2.3) and Theorem (2.8)], and hence the R_q-module M_q is maximal Cohen-Macaulay. Therefore $\text{depth} M_q \geq \text{ht} q \geq \text{ht} q - f(q)$ holds for every $q \in \text{Spec} R$, which shows that M belongs to $\Psi(W, f)$. Since $p \in V(p) = \text{IPD}(M)$, we conclude that $\text{IPD}(\Psi(W, f)) = W$. ■

References

[1] M. Auslander, Modules over unramified regular local rings, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm (1963), 230–233.
[2] M. Auslander; M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969.
[3] M. Auslander; R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Colloque en l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France (N.S.) 38 (1989), 5–37.
[4] L. L. Avramov; S. B. Iyengar; J. Lipman, Reflexivity and rigidity for complexes I: Commutative rings, Algebra Number Theory 4 (2010), no. 1, 47–86.
[5] D. J. Benson; J. F. Carlson; J. Rickard, Thick subcategories of the stable module category, Fund. Math. 153 (1997), no. 1, 59–80.
[6] D. J. Benson; S. B. Iyengar; H. Krause, Stratifying modular representations of finite groups, Ann. of Math. (2) 174 (2011), no. 3, 1643–1684.
[7] H. Bass; M. P. Murthy, Grothendieck groups and Picard groups of abelian group rings, Ann. of Math. (2) 86 (1967), 16–73.
[8] L. W. Christensen; H.-B. Foxby; A. Frankild, Restricted homological dimensions and Cohen-Macaulayness, J. Algebra 251 (2002), no. 1, 479–502.
[9] H. Dao; R. Takahashi, The radius of a subcategory of modules, Preprint (2011), arXiv:1111.2902v2.
[10] H. Dao; R. Takahashi, The dimension of a subcategory of modules, in preparation.
[11] E. S. Devinatz; M. J. Hopkins; J. H. Smith, Nilpotence and stable homotopy theory, I, Ann. of Math. (2) 128 (1988), no. 2, 207–241.
[12] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
[13] A. A. Gerko, On homological dimensions, Mat. Sb. 192 (2001), no. 8, 79–94; translation in Sb. Math. 192 (2001), no. 7-8, 1165–1179.
[14] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977.
[15] M. J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985), 73–96, London Math. Soc. Lecture Note Ser., 117, Cambridge Univ. Press, Cambridge, 1987.
[16] M. J. Hopkins; J. H. Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. (2) 148 (1998), no. 1, 1–49.
[17] H. Krause, Thick subcategories of modules over commutative Noetherian rings (with an appendix by Srikanth Iyengar), Math. Ann. 340 (2008), no. 4, 733–747.
[18] A. Neeman, The chromatic tower for $D(R)$, With an appendix by Marcel Bökstedt, Topology 31 (1992), no. 3, 519–532.
[19] G. Stevenson, Subcategories of singularity categories via tensor actions, arXiv:1105.4698.
[20] R. Takahashi, Syzygy modules with semidualizing or G-projective summands, J. Algebra 295 (2006), no. 1, 179–194.
[21] R. Takahashi, Classifying subcategories of modules over a commutative Noetherian ring, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 767–782.
[22] R. Takahashi, Modules in resolving subcategories which are free on the punctured spectrum, Pacific J. Math. 241 (2009), no. 2, 347–367.

[23] R. Takahashi, Classifying thick subcategories of the stable category of Cohen-Macaulay modules, Adv. Math. 225 (2010), no. 4, 2076–2116.

[24] R. Takahashi, Contravariantly finite resolving subcategories over commutative rings, Amer. J. Math. 133 (2011), no. 2, 417–436.

[25] R. W. Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997), no. 1, 1–27.

Department of Mathematics, University of Kansas, Lawrence, KS 66045-7523, USA
E-mail address: hdao@math.ku.edu
URL: http://www.math.ku.edu/~hdao/

Department of Mathematical Sciences, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan/Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA
E-mail address: takahasi@math.shinshu-u.ac.jp
URL: http://math.shinshu-u.ac.jp/~takahasi/