Association of MICA Polymorphism with HLA-B51 and Disease Severity in Korean Patients with Behçet’s Disease

The HLA-B51 allele is known to be associated with Behçet’s disease (BD) in many ethnic groups. However, it has not yet been clarified whether the HLA-B51 gene itself is the pathogenic gene related to BD or whether it is some other gene in linkage disequilibrium with HLA-B51. Recently, the Triplet repeat (GCT/AGC) polymorphism in transmembrane region of the MHC class I chain-related A (MICA) gene was identified. To investigate the association of MICA with BD, we studied the MICA polymorphism in 108 Korean BD patients and 204 healthy controls in relation to the presence of HLA-B51 and clinical manifestations. The triplet repeat polymorphism was determined by polymerase chain reaction (PCR)-denaturing polyacrylamide gel electrophoresis (PAGE). The phenotype frequency of the MICA*A6 allele (relative risk, RR=2.15, p=0.002) and HLA-B51(RR=1.87, p=0.022) were significantly increased in the Korean patients with BD. A strong linkage disequilibrium was observed between the MICA*A6 and HLA-B51 in both the patients with BD and control subjects. Stratification analysis showed that MICA*A6 homozygosity was strongly associated with BD in the HLA-B51-negative population, and HLA-B51 was also associated with MICA*A6-negative population. In conclusion, MICA*A6 rather than HLA-B51 was strongly associated with Korean patients with BD, and the MICA*A6 allele is a useful susceptibility marker of BD, especially in the HLA-B5-negative subjects.

Key Words: MICA Polymorphism; Behçet’s Disease; HLA-B51

INTRODUCTION

Behçet’s disease (BD) is a multisystemic inflammatory disorder characterized by recurrent oral and genital ulcers, and ocular, joint, and skin lesions. Involvement of the gastrointestinal tract, central nervous system, or pulmonary vasculature is less common, but accounts for the majority of mortality associated with the disease (1, 2). BD has a worldwide distribution but its prevalence and severity are geographically variable. Although its etiology and pathogenesis remain unclear, its onset is believed to be triggered by the involvement of some external factors in individuals with a particular genetic background (1-7).

BD is known to be associated with HLA-B51 in many different ethnic groups. MHC class I chain-related genes A (MICA) located only 46 kb centromeric of the HLA-B gene, has been identified within the class I region (3-9). Expression of MICA has been detected in fibroblast and epithelial cells, gastrointestinal epithelium, keratinocytes, endothelial cells, and monocytes (10, 11). The MICA gene is regulated by promoter heat shock elements similar to those of the hsp70 genes (9). An association with MICA and BD has been reported with a triplet repeat microsatellite polymorphism (GCT/AGC)n in the transmembrane (TM) region of the MICA gene (3-6, 8). The six (GCT) repetition (MICA*A6) was present in significantly more BD patients than controls in the Japanese, Middle Eastern, and Greek populations (1, 3, 4, 12, 13). On the other hand, there was a lack of association between the MICA TM region polymorphism and BD in the Spanish and Italian populations (14, 15). The MICA microsatellite polymorphism exhibits a strong linkage disequilibrium with the HLA-B locus. Therefore, the roles (primary versus secondary) of polymorphism of the MICA molecule in the susceptibility and the severity of BD are still unclear.

We investigated the microsatellite polymorphism of the MICA gene in Korean patients with BD and analyzed the relationship between these polymorphisms and HLA-B51 and the clinical manifestations.

MATERIALS AND METHODS

Patients and controls

One-hundred and eight Korean patients with BD and 204 ethnically matched healthy controls were enrolled in this study.
BD was diagnosed and classified according to the criteria proposed by the International Behçet’s disease study group (16). The mean age of the patients was 41.2 yr (range, 21-62 yr) and the mean duration of the disease was 3.8 yr (range, 0.4-25.5 yr). This study was performed in accordance with the Declaration of Helsinki.

DNA extraction

DNA was prepared from peripheral blood cells of patients and controls by salting out of cellular proteins and alcohol precipitation.

HLA-B typing

HLA-B typing was performed using the ARMS (amplification-refractory mutation system)-PCR (polymerase chain reaction) method (17). Each tube contained a primer mix consisting of the allele- or group-specific primer pairs and a positive control primer, which matched the non-allelic sequences. HLA-B typing included 39 sets of primer mixtures. PCR reactions were performed in a volume of 13 μL as modified in the class I ARMS-PCR reference manual of the 12th International Histocompatibility Workshop. The PCR product size was defined on 1.5% agarose gel pre-stained with ethidium bromide.

MICA transmembrane region analysis

For analysis of the microsatellite repeat polymorphism in the TM region of the MICA gene, PCR primers flanking the TM region (MICA-SF, 5′-CTTCTTTTTTCAAGGAAAGTGC-3′; MICA-SR, 5′-CCTTACACTTCCAGAACACTGC-3′) were designed. The MICA-SR primer corresponds to the intron 4 and exon 5 boundary region and MICA-SF is located in the intron 5. PCR conditions and purification were performed as described by Mizuki et al. (6).

PCR was carried out in a Perkin Elmer 9600 Thermal Cycler with mixtures consisting of 40 ng of genomic DNA, 10× PCR buffer (10 mM Tris-HCl, pH 8.3, 40 mM KCl, and 15 mM MgCl2, Bioneer, Korea), 250 μM dNTPs (Bioneer), 10 pmole of each primer (Bioneer), and 1 U of Taq polymerase (Bioneer). Amplified products were mixed with equal volumes of denaturing solution (95% formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol FF). The mixtures were denatured at 95°C for 2 min. Five microliters of each of the mixtures was loaded onto a 6% denaturing polyacrylamide gel. Polymorphic fragments in the gel were visualized by silver staining. Single-strand conformational polymorphism analysis was applied to determine the one- or two-base differences in the MICA alleles (MICA 5, MICA 5.1, and MICA 6) as described by Choi et al. (18).

Table 1. Gene frequencies of the microsatellite polymorphism in the transmembrane region of the MICA gene in patients with Behçet’s disease

Microsatellite allele	BD n=216 (%)	Control n=408 (%)	p value	RR
A4	19 (8.8)	53 (13.0)	NS*	
A5	60 (27.7)	107 (26.2)	NS	
A5.1	9 (4.2)	78 (19.1)	< 0.001	0.18
A6	99 (45.8)	108 (26.5)	< 0.001	2.35
A9	29 (13.4)	62 (15.2)	NS	

BD, Behçet’s disease; RR, relative risk; *NS, not significant.

Analysis of the data demonstrated that the gene frequency of the MICA*A6 allele was significantly increased in BD patients, as compared with healthy controls (45.8% vs 26.5%, RR=2.35, p<0.001), and that the MICA*A5.1 allele was significantly decreased in BD patients (4.2% vs 19.1%, RR=0.18, p<0.001) (Table 1). The phenotype frequency of the MICA*A6 allele was significantly higher in BD than in control (63.9% vs 45.1%, RR=2.15, p=0.002). Furthermore, the phenotype frequency of those homozygous for the MICA*A6 allele was more strongly associated with BD (27.8% vs 4.8%, RR=4.52, p<0.001) than that of those heterozygous for MICA*A6 allele (Table 2). Thirty-eight of the 108 BD patients were HLA-B*51 positive (35.2%), as compared with

Table 2. Phenotype frequencies of the microsatellite polymorphism in the TM region of the MICA gene in patients with Behçet’s disease

Microsatellite allele	BD n=108 (%)	Control n=204 (%)	p value	RR
A4	14 (13.0)	49 (24.0)	0.028	0.47
A5	51 (47.2)	91 (44.6)	NS*	
A5.1	7 (6.5)	64 (31.4)	< 0.001	0.15
A6	69 (63.9)	92 (45.1)	0.002	2.15
A6/A6	30 (27.8)	16 (8.3)	< 0.001	4.52
A9	29 (26.9)	57 (27.9)	NS	
HLA-B*51	38 (35.2)	46 (22.5)	0.022	1.87

BD, Behçet’s disease; RR, relative risk; *NS, not significant.
B. Association between BD and HLA-B51 in the presence or absence of MICA*A6 allele

HLA-B51	MICA*A6 allele positive	MICA*A6 allele negative
BD	34 35	4 35
Control	44 44	2 110

*p=0.007, RR=2.29; ′p=0.039, RR=6.29. BD, Behçet’s disease; RR, relative risk.

Table 5. Clinical association of MICA*A6 and MICA*A9 allele in Behçet’s disease

Clinical manifestations	MICA*A6	MICA*A9		
	positive	positive	negative	negative
Oral ulcer	69 (100)	39 (100)	29 (100)	79 (100)
Genital ulcer	40 (58.0)	25 (64.1)	18 (62.1)	47 (59.5)
Skin lesion	41 (59.4)	26 (66.7)	19 (65.5)	48 (60.8)
Arthritis	37 (53.6)	25 (64.1)	16 (55.2)	46 (58.2)
Uveitis	28 (40.6)	11 (28.2)	8 (27.6)	31 (39.2)
Gl lesion	6 (8.7)	1 (2.6)	0 (0.0)	7 (8.9)
CNS lesion	3 (4.3)	2 (5.1)	1 (3.4)	4 (5.1)
Thrombosis	4 (5.8)	2 (5.1)	1 (3.4)	5 (6.3)
Complicated form *	31 (44.9)	14 (35.9)	8 (27.6)	45 (53.2)

*Uveitis/CNS/GI/thrombosis; ′p=0.018. Gl lesion, gastrointestinal lesion; CNS lesion, central nervous system lesion.

46 of 204 controls (22.5%) (RR = 1.87, p = 0.022) (Table 2).

The MICA*A6 allele was present in most (89.5%) of the HLA-B51-positive patients and in additional 35 (50.0%) B51-negative patients. Thirty-four of the 69 MICA*A6-positive patients had HLA-B*51 and 4 of the 39 MICA*A6-negative patients had HLA-B*51 (Table 3).

Therefore, to elucidate which allele, MICA*A6 or HLA-B*51, has the stronger association with BD, the association of the MICA*A6 allele with BD, after stratification for the effect of HLA-B51, was estimated. The MICA*A6 allele was significantly associated with BD (RR = 2.29, p = 0.007). On the other hand, when we estimated the association of HLA-B51 with BD after stratification for the effect of MICA*A6 allele, a significant association between B51 and BD was observed (RR = 6.29, p = 0.039) (Table 3). The susceptibility risk of the MICA*A6 homozygosity for BD was elevated in the HLA-B51-negative patients (RR = 21.27, p < 0.001) (Table 4). Our results suggest that the MICA*A6 allele, rather than HLA-B51, is strongly associated with BD in Korea and an useful susceptibility marker for BD, especially in the HLA-B51-negative Korean population.

However, most of the B51-positive patients (89.5%) and B51-positive healthy controls (95.7%) possessed the MICA*A6 allele, demonstrating a strong linkage disequilibrium of MICA*A6 and HLA-B51. We analyzed clinical manifestations according to the MICA gene polymorphism and the presence of HLA-B51. As is summarized in Table 5, patients with MICA*A6 tended to show intestinal and ocular involvement more frequently, but this was not statistically significant.

Involvement of the gastrointestinal tract, central nervous system (CNS), ocular and vascular systems is related with poor prognosis of BD. Therefore, the clinical manifestations with the involvement of those systems were considered to be severe complications of BD.

The frequency of the MICA*A9 allele was no different between BD and the controls, whereas patients with MICA*A9 had less severe BD complications, in terms of uveitis, thrombosis, and intestinal involvement, than those without (Table 5). However, no associations were observed between the clinical features and HLA-B*51 (data not shown).
MICA Polymorphism in Behçet's Disease

It is well established that BD is associated with the HLA-B51 molecule that has a relatively high incidence, which ranges from 36.3% to 76.9% in many ethnic groups including the Asian and Eurasians (1, 12, 21). In our study, the prevalence of HLA-B51 was found to be significantly increased in patients with BD (35.2% vs 22.5%).

In the present study, we demonstrate that the MICA*A6 allele is significantly associated with the susceptibility to BD, as was shown by the previous data on Japanese population (6). However, the MICA*A6 allele is not associated with BD in some ethnic groups (Table 6).

Mizuki et al. suggested that a genetic predisposition to BD appears to play an important role with a strong association with the MICA gene rather than HLA-B51 (6), but a recent report has suggested that the real pathogenic gene for BD is the HLA-B8 gene itself and the HLA-B*51 allele is the major susceptibility gene responsible for the development of BD (4, 13, 15, 22). Therefore, we cannot be certain whether HLA-B51 itself or a closely linked gene is responsible for the susceptibility to BD.

In the present study, an association was observed between the MICA*A6 allele and BD, and also observed between HLA-B51 and BD. After stratification for the effect of HLA-B51, the MICA*A6 allele was significantly associated with BD. After stratification for the effect of the MICA*A6 allele, the association between HLA-B51 and BD was observed in the MICA*A6 allele-negative patients. We observed a strong linkage disequilibrium of MICA*A6 and HLA-B51. Our results suggest that the MICA*A6 allele rather than the HLA-B51 allele is strongly associated with Korean BD and an useful susceptibility marker for BD, especially in the HLA-B51-negative Korean population.

The etiologic role of the polymorphism in the MICA molecule is still unknown. Enhanced T cell proliferative response to the mycobacterial 65-kDa heat shock protein (hsp) peptides and their homologous peptides derived from human 60-kDa hsp have been demonstrated in patients with BD (23). An increased number of Vδ1 T cells preferentially respond to hsp65 in the peripheral blood and the involved tissues from patients with BD, and a phenotypically distinct subset of the Vδ T cells, CD45RA+CD45RO-Vγ9δ2+, may contribute to the immunological abnormalities, which in turn, probably lead to the complex pathophysiology of Behçet's disease (24-27). T cells expressing the Vγ1 receptor form 70-90% of Vδ1 T cells in the intestinal epithelium, where MICA is also expressed (1). It has also been reported that MICA*A6 may tend to activate Vγ1Vδ T cells more effectively via specific interaction with Vδ T cells, because of either the presence of specific amino acids in the a1/a2 domains linked to MICA*A6 or that of a particular Vγ1Vδ T-cell repertoire that can recognize the MICA molecule with MICA*A6 in an efficient way (5, 27).

In our study, the MICA*A6 allele was present in six of the seven patients with intestinal involvement, more specifically those that had experienced episodes of intestinal hemorrhage or ulcer. This result could be explained by the more effective activation of Vγ1 T cells of the intestinal epithelium by MICA*A6 than by other MICA alleles. Patients with the MICA*A6 allele tended to show intestinal and ocular involvement more frequently, whereas patients with MICA*A9 had less severe BD complications, in terms of uveitis, thrombosis, neurological, and intestinal involvement, than those without MICA*A9. Although the prevalence of severe complications associated with BD was low in our study group, it seems that the polymorphism of the MICA-TM allele is related with the clinical manifestations and severity of Korean patients with BD.

Recently, a MICA genotyping study showed a strong association between the MICA009 allele and BD in the Japanese population. In this study, the MICA gene was found not to be directly involved in the pathogenesis of BD (4). Further study is required to elucidate the role of the MICA gene in the development and severity of BD.

In summary, the MICA*A6 allele is a useful susceptibility marker for BD, especially in the HLA-B51-negative Korean population, and that the MICA gene polymorphism rather than that of HLA-B51 is strongly associated with the susceptibility to BD in the Korean population. Moreover, it is believed that the MICA gene polymorphism may play an important role in the severity of BD in the Korean population.

ACKNOWLEDGMENT

This study was supported by the Catholic University of Korea.

REFERENCES

1. Wallace GR, Verity DH, Delamaine LJ, Ohno S, Inoko H, Ota M, Mizuki N, Yabuki K, Kondiatis E, Stephens HA, Madanat W, Kanawati CA, Stanford MR, Vaughan RW. MICA allele profiles and HLA class I associations in Behçet's disease. Immunogenetics 1999; 49: 613-7.
2. Shiina T, Tamiya G, Oka A, Takishima N, Inoko H. Genome sequencing analysis of the 1.8 Mb entire human MHC class I region. Immunol Rev 1999; 167: 193-9.
3. Ota M, Mizuki N, Katsuyama Y, Tamiya G, Shiina T, Oka A, Ando H, Kimura M, Goto K, Ohno S, Inoko H. The critical region for Behçet disease in the human major histocompatibility complex is reduced to a 46-kb segment centromeric of HLA-B, by association analysis using refined microsatellite mapping. Am J Hum Genet 1999; 64: 1406-10.
4. Mizuki N, Ota M, Katsuyama Y, Yabuki K, Ando H, Goto K, Nakamura S, Bahram S, Ohno S, Inoko H. Association analysis between
the MIC-A and HLA-B alleles in Japanese patients with Behçet’s disease. Arthritis Rheum 1999; 42: 1961-6.
5. Yabuki K, Mizuki N, Ota M, Katsuyama Y, Palimeris G, Stavropoulos C, Koumantaki Y, Spyropoulou M, Giziaki E, Kaklamani V, Kaklamani E, Inoko H, Ohno S. Association of MICA gene and HLA-B*5101 with Behçet’s disease in Greece. Invest Ophthalmol Vis Sci 1999; 40: 1921-6.
6. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S, Inoko H. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behçet disease. Proc Natl Acad Sci USA 1997; 94: 1298-303.
7. Mizuki N, Inoko H, Ohno S. Pathogenic gene responsible for the predisposition of Behçet’s disease. Int Rev Immunol 1997; 14: 33-48.
8. Mizuki N, Inoko H, Ohno S. Molecular genetics (HLA) of Behçet’s disease. Yonsei Med J 1997; 38: 333-49.
9. Tamiya G, Shima T, Oka A, Tomizawa M, Ota M, Katsuyama Y, Yoshitome M, Makino S, Kimura M, Inoko H. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-8.
10. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T.
11. Groh V, Bauer S, Herman A, Beauchamp M, Spies T.
12. Mizuki N, Ota M, Katsuyama Y, Ando H, Onari K, Goto K, Imagawa Y, Mandanat W, Fayyad F, Stanford M, Ohno S, Inoko H.
13. Mizuki N, Ota M, Katsuyama Y, Ando H, Onari K, Goto K, Imagawa Y, Mandanat W, Fayyad F, Stanford M, Ohno S, Inoko H.
14. Tamiya G, Shima T, Oka A, Tomizawa M, Ota M, Katsuyama Y, Yoshitome M, Makino S, Kimura M, Inoko H.
15. Mizuki N, Ota M, Katsuyama Y, Palimeris G, Stavropoulos C, Koumantaki Y, Spyropoulou M, Giziaki E, Kaklamani V, Kaklamani E, Inoko H, Ohno S. Association of MICA gene and HLA-B*5101 with Behçet’s disease in Greece. Invest Ophthalmol Vis Sci 1999; 40: 1921-6.
16. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S, Inoko H. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behçet disease. Proc Natl Acad Sci USA 1997; 94: 1298-303.
17. Mizuki N, Inoko H, Ohno S. Pathogenic gene responsible for the predisposition of Behçet’s disease. Int Rev Immunol 1997; 14: 33-48.
18. Mizuki N, Inoko H, Ohno S. Molecular genetics (HLA) of Behçet’s disease. Yonsei Med J 1997; 38: 333-49.
19. Tamiya G, Shima T, Oka A, Tomizawa M, Ota M, Katsuyama Y, Yoshitome M, Makino S, Kimura M, Inoko H. New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 1999; 54: 221-8.
20. Groh V, Bauer S, Herman A, Beauchamp M, Spies T.
21. Groh V, Bauer S, Herman A, Beauchamp M, Spies T.
22. Mizuki N, Ota M, Katsuyama Y, Ando H, Onari K, Goto K, Imagawa Y, Mandanat W, Fayyad F, Stanford M, Ohno S, Inoko H.
23. Mizuki N, Ota M, Katsuyama Y, Ando H, Shina T, Nomura E, Onari K, Ohno S, Inoko H.
24. Suzuki Y, Hoshi K, Matsuda T, Mizushima Y. Increased peripheral blood gamma delta+T cells and natural killer cells in Behçet’s disease. J Rheumatol 1992; 19: 588-92.
25. Esin S, Gul A, Hodora V, Jeddi-Tehrani M, Dilsen N, Konice M, Anderson R, Wigzell H. Peripheral blood T cell expansions in patients with Behçet’s disease. Clin Exp Immunol 1997; 107: 520-7.
26. Hasan A, Fortune F, Wilson A, Harr K, Shimnick T, Mizushima Y, van der Zee R, Stanford MR, Sanderson J, Lehner T. Role of gamma delta + T cells in the development of Behçet’s disease. Clin Exp Immunol 1999; 118: 148-54.
27. Hasan A, Fortune F, Wilson A, Harr K, Shimnick T, Mizushima Y, van der Zee R, Stanford MR, Sanderson J, Lehner T. Role of gamma delta + T cells in the development of Behçet’s disease. Clin Exp Immunol 1999; 118: 148-54.
28. Groh V, Steinele A, Bauer S, Spies T. Recognition of stress-induced HLA molecules by intestinal epithelial γδ + T cells. Science 1998; 279: 1737-40.