Low-energy behavior of $E2$ strength functions

R. Schwengner

Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

(Dated: November 5, 2014)

Electric quadrupole strength functions have been deduced from averages of a large number of $E2$ transition strengths calculated within the shell model for the nuclides 94Mo and 95Mo. These strength functions are at variance with phenomenological approximations as provided by the Reference Input Parameter Library RIPL-3 for calculations of reaction rates on the basis of the statistical model.

PACS numbers: 25.20.Dc, 21.10.Tg, 21.60.Jz, 23.20.-g, 27.50.+e

I. INTRODUCTION

Photonuclear reactions and the inverse radiative-capture reactions, in particular radiative neutron capture, play a central role in the synthesis of heavy elements in various stellar environments \[1, 2\] and also in next-generation nuclear technologies, such as the transmutation of long-lived nuclear waste \[1, 3\]. As these reactions include the excitation and deexcitation of nuclear states at high excitation energy and large level density, the so-called quasicontinuum of states, the statistical reaction theory is the basis for calculations of rates of these reactions. A critical input to such calculations is photon strength functions that describe average electromagnetic transition strengths. Modifications of the strength functions can change reaction rates considerably. For example, modifications of the electric dipole ($E1$) strength function have drastic consequences for the abundances of elements produced via neutron capture in the r-process.

In the calculations using statistical codes (e.g. TALYS \[4\]), usually $E1$, electric quadrupole ($E2$), and magnetic dipole ($M1$) strength functions are taken into account. In the energy range below the particle-separation energies, which is relevant for radiative capture reactions, the dipole strength function is dominated by the low-energy tail of the isovector giant dipole resonance (GDR). The GDR is considered as a collective vibration of the neutron system against the proton system. The damping of the vibration is described by a Lorentz curve as a function of the photon energy \[6, 8\]. Combinations of two or three Lorentz curves are used to describe the double or triple humps of the GDR caused by quadrupole and triaxial deformation of the nuclei \[9, 11\]. Such a parametrization gives a good description of the experimental photoabsorption cross section $\sigma_\gamma = 3 (\pi \hbar c)^2 E_\gamma f_1(E_\gamma)$ of nuclei in the ground state. The so-called Brink-Axel hypothesis \[6, 7\] expresses the assumption that the strength function does not depend on the excitation energy. This means that the strength function describing the absorption of photons is identical with the one for the emission of photons from highly excited states, for example following neutron capture. The Generalized Lorentzian (GLO) \[12\] includes a correction to the Standard Lorentzian (SLO) \[6, 7\], which accounts for the temperature of the nucleus emitting the photons. The magnetic dipole ($M1$) contribution to the strength function used in statistical-reaction codes is also approximated by a Lorentz curve with parameters derived from systematics \[8\]. This curve accounts for the spin-flip mode that appears around 8 MeV \[13\].

In several experiments, deviations from the phenomenological strength functions have been observed. A bump of the $M1$ strength around 3 MeV in deformed nuclei is generated by the scissors mode, which is interpreted as a small-amplitude rotation of the neutron system against the proton system \[13\]. After it had been well established in the absorption spectra of the ground state, it was recently also identified in the emission from highly excited states \[14\].

An enhancement of $E1$ strength has been found in the energy region from about 6 MeV up to the respective neutron-separation. This additional strength on top of the low-energy tail of the GDR is considered as the pygmy dipole resonance (PDR) which is interpreted as the vibration of excessive neutrons against the symmetric $N = Z$ neutron-proton system. A review of experimental studies of the PDR can be found in Ref. \[15\].

In contrast to the Lorentz curves used for the $E1$ and $M1$ strength functions, which decrease toward $E_\gamma = 0$, an increase of the dipole strength below 3 MeV toward low γ-ray energy has been found in several nuclides in the mass range from $A \approx 50$ to 160, such as $^{56, 57}$Fe \[16\], 60Ni \[17\], various Mo isotopes \[18\], and $^{105, 106}$Cd \[19\]. Neither of these measurements were able to distinguish clearly between $E1$ and $M1$ strength, although an indication for an $M1$ character of the low-energy enhancement was discussed for the case of 60Ni \[17\]. In an analysis of $M1$ strength functions deduced from shell-model calculations of a large number of transitions in the isotopes 90Zr, 94Mo, 95Mo, and 96M \[20\], we showed that the low-energy enhancement of the dipole strength can be explained by $M1$ transitions between many close-lying states of all considered spins located above the yrast line in the transitional region to the quasi-continuum of nuclear states. Inspecting the wave functions, one finds large $B(M1)$ values for transitions between states containing a large component of the same configuration with broken pairs of both protons and neutrons in high- \[j\] orbits. The large $M1$ matrix elements connect con-
figurations with the spins of high-\(j\) protons re-coupled with respect to those of high-\(j\) neutrons to the total spin \(J_f = J_i, J_i \pm 1\).

In an alternative work the low-energy enhancement could be described by \(E1\) strength generated by the thermal coupling of quasiparticles to the continuum of unbound states \(^{21}\). This effect appears at temperatures above 1.4 MeV, whereas experimentally deduced values and values predicted by the constant-temperature and Fermi-gas models are below 1.0 MeV \(^{15, 22}\).

For the \(E2\) strength function a Lorentz shape is recommended as well in the RIPL-3 reaction data base \(^{23}\). The Lorentz function in combination with the factor \(E^{\gamma_{2L+1}}\) produces an unrealistic pole at \(E_{\gamma} = 0\). An experimental test of the real behavior of the \(E2\) strength function at low transition energy has not been feasible so far. However, model calculations may gain information about the \(E2\) strength function at low energy. As our shell-model calculations were successful in describing the low-energy enhancement of the \(M1\) strength observed in various experiments \(^{20}\), these calculations are expected to predict also the low-energy behavior of the \(E2\) strength functions in the considered nuclei near \(N = 50\).

II. SHELL-MODEL CALCULATIONS

In the present work we present shell-model calculations of \(E2\) transition strengths in \(^{94}\)Mo and \(^{95}\)Mo. The calculations were performed by means of the code RITSSCHIL \(^{24}\) using a model space composed of the \(\pi(0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2})\) proton orbits and the \(\nu(1p_{1/2}, 0g_{9/2}, 1d_{5/2})\) neutron orbits relative to a \(^{68}\)Ni core. The configuration space was tested in detail in our earlier shell-model studies of nuclei with \(N = 46 - 54\) \(^{25-29}\) and was found appropriate for the description of level energies as well as \(M1\) and \(E2\) transition strengths in nuclides around \(A = 90\). As a further test, we compared the energies of yrast and yrare levels in \(^{94}\)Mo and \(^{95}\)Mo from the present calculation with the experimental ones, which agree within 300 keV.

The calculations included states with spins from \(J = 0\) to 10 for \(^{94}\)Mo and from \(J = 1/2\) to 21/2 for \(^{95}\)Mo. Two protons were allowed to be lifted from the \(1p_{3/2}, 1p_{1/2}\) orbits to the \(0g_{9/2}\) orbit and two neutrons from the \(0g_{9/2}\) orbit to the \(1d_{5/2}\) orbit. This resulted in configuration spaces with dimensions of up to about 16000. For each spin the lowest 40 states were calculated. The reduced transition probabilities \(B(E2)\) were calculated for all transitions from initial to final states with energies \(E_f < E_i\) and spins \(J_f = J_i, J_i \pm 1, J_i \pm 2\). For the minimum and maximum \(J_i\), the cases \(J_f < J_i\) and \(J_f > J_i\), respectively, were excluded. This resulted in more than 36000 \(E2\) transitions for each parity \(\pi = +\) and \(\pi = -\), which were sorted into 100 keV bins according to the excitation energy of the initial state \(E_i\) or the transition energy \(E_{\gamma} = E_i - E_f\). The average \(B(E2)\) value for one energy bin was obtained as the sum of all \(B(E2)\) values divided by the number of transitions within this bin. Effective charges of \(e_\pi = 1.72e\) and \(e_\nu = 1.44e\) \(^{25}\) were applied.

III. RESULTS

Average calculated \(B(E2)\) values in 100 keV wide energy bins of initial excitation energy of positive-parity and negative-parity states in \(^{94}\)Mo are shown in Figs. 1 and 2 respectively. The \(B(E2)\) values are separately shown for transitions with \(J_f = J_i - 2, J_f = J_i + 2\), and \(J_f = J_i, J_i \pm 1\). The latter represent the \(E2\) admixtures to the \(M1\) transitions discussed in Ref. \(^{24}\).

In Fig. 1 the peak at 0.65 MeV (energy bin from 0.6 to 0.7 MeV) arises from the \(2_1^+ \to 0_1^+\) transition. The
calculated transition strength of $B(E2) = 347\ e^2\text{fm}^4$ is compatible with the experimental value of $B(E2) = 407(9)\ e^2\text{fm}^4$ [40]. The peak at 0.95 MeV corresponds to the $4_{1}^{+} \rightarrow 2_{1}^{+}$ transition. Its calculated value of $B(E2) = 178\ e^2\text{fm}^4$ is considerably smaller than the value of $B(E2) = 661(92)\ e^2\text{fm}^4$ deduced from Coulomb excitation [40]. On the other hand, the calculated value of $B(E2, 4_{1}^{+} \rightarrow 2_{1}^{+}) = 303\ e^2\text{fm}^4$, that predominates in the peak at 1.95 MeV, exceeds the experimental value of $B(E2, 4_{1}^{+} \rightarrow 2_{1}^{+}) = 147(23)\ e^2\text{fm}^4$. The distributions at higher E_{i} from about 2.5 to 5.5 MeV include contributions from transitions between states with various spins. The $B(E2)$ values generally decrease with increasing excitation energy, which is also found for the experimental values compiled in Ref. [40]. In Fig. 2 the large peaks at 2.65 and 3.15 MeV are dominated by the large $E2$ admixtures to the $5_{1}^{+} \rightarrow 4_{1}^{+}$ and $5_{2}^{+} \rightarrow 4_{2}^{+}$ transitions. The $B(E2)$ distributions for the negative-parity states start at higher excitation energy and decrease faster toward higher energy in comparison with the ones for positive parity.

The values calculated for ^{95}Mo shown in Figs. 3 for positive-parity states and in Fig. 4 for negative-parity states display a similar behavior. In Fig. 3 the peak at 0.35 MeV is caused by the $E2$ admixture to the $3/2^{+} \rightarrow 5/2^{+}$ transition. The calculated value of $B(E2) = 758\ e^2\text{fm}^4$ overestimates the experimental value of $B(E2) = 554(28)\ e^2\text{fm}^4$ [41]. The peak at 0.65 MeV corresponds to the value of $B(E2, 9/2_{1}^{+} \rightarrow 5/2_{1}^{+}) = 278\ e^2\text{fm}^4$ that agrees well with the experimental value of $B(E2, 9/2_{1}^{+} \rightarrow 5/2_{1}^{+}) = 291(15)\ e^2\text{fm}^4$ [41]. In Fig. 4 the peak formed by the values at 2.55, 2.65, and 2.75 MeV in the distribution of values with $J_f = J_i \pm 1$ is caused by the large $B(E2)$ strengths of the $3/2_{1}^{+} \rightarrow 5/2_{1}^{+}$, $7/2_{1}^{+} \rightarrow 5/2_{1}^{+}$, $7/2_{2}^{+} \rightarrow 5/2_{1}^{+}$, and $5/2_{2}^{+} \rightarrow 3/2_{1}^{+}$ transitions. Main contributions to the peak formed at the same energies in the distribution of $J_f = J_i - 2$ transitions arise from several $7/2^{−} \rightarrow 3/2^{−}$, $9/2^{−} \rightarrow 5/2^{−}$, $11/2^{−} \rightarrow 7/2^{−}$, $13/2^{−} \rightarrow 9/2^{−}$, and $15/2^{−} \rightarrow 11/2^{−}$ transitions.

With regard to strength functions it is interesting to consider average $B(E2)$ values as a function of transition energy. These values are shown in Fig. 5 for positive-parity states and in Fig. 6 for negative-parity states in ^{94}Mo. For both parities, the $\overline{B}(E2)$ values of stretched transitions with $J_f = J_i - 2$ peak in the energy region between 0.4 and 1 MeV, whereas the $\overline{B}(E2)$ values of the $J_f = J_i + 2$ and $J_f = J_i, J_i \pm 1$ increase with a slope getting gentle toward $E_{i} = 0$. The decrease toward high energy is followed by peaks around 4.5 MeV for each parity. For positive-parity states shown in Fig. 5 the peak in the distribution of $J_f = J_i - 2$ transitions arises from transitions depopulating high-lying 2^{+} to the 0_{1}^{+} and 0_{2}^{+} states, high-lying 4^{+} to the 2_{1}^{+} and 2_{2}^{+} states.
and so on. The pronounced peak seen for \(J_f = J_i + 2 \)
transitions is caused by transitions from high-lying \(0^+ \)
to the \(2^1_2 \) and \(2^2_2 \) states. The relatively large \(\overline{B}(E2) \)
values for \(J_f = J_i, J_i \pm 1 \) transitions in the energy range
between about 4 and 5 MeV belong to transitions from
high-lying \(1^+ \) and \(2^+ \) states to the \(2^1_2 \) and \(2^2_2 \) states.
For negative-parity states shown in Fig. 6, the peak in
the distribution of \(J_f = J_i + 2 \) states around 4.5 MeV is
formed by transitions from high-lying \(0^- \) to the \(2^1_2 \) and
\(2^2_2 \) states. The large and sharp peak for \(J_f = J_i, J_i \pm 1 \)
transitions at 4.25 MeV is caused by the \(10^{26} \rightarrow 9^{15} \) and
\(10^{25} \rightarrow 9^{15} \) transitions. Also shown in Figs. 5 and 6 are
the distributions including all transitions of positive and
negative parity, respectively. At energies below about 2
MeV, these distributions may be approximated by Gauß
curves \(\overline{B}(E2) = B_0 \exp(-E_0^2/\sigma^2) \) with \(B_0 = 11.2 \ e^2fm^4 \),
\(\sigma = 1.0 \) MeV for positive parity and \(B_0 = 9.5 \ e^2fm^4 \), \(\sigma = 0.9 \) MeV for negative parity.

The analogous plots for positive-parity states and
negative-parity states in \({}^{95}\text{Mo} \) are shown in Figs. 7 and 8
respectively. The distributions in this odd-mass \(N = 53 \)
uhlide look similar to the ones in the even-mass \(N = 52 \)
neighbor and are created by states analogous to the ones
in \({}^{94}\text{Mo} \). The low-energy parts of the distributions of all transitions
may be approximated by Gauß curves with parameters of
\(B_0 = 11.2 \ e^2fm^4 \), \(\sigma = 0.93 \) MeV for positive
parity and \(B_0 = 8.7 \ e^2fm^4 \), \(\sigma = 0.9 \) MeV for negative
parity, which are very close to the corresponding values
in \({}^{94}\text{Mo} \).

IV. \(E2 \) STRENGTH FUNCTIONS

\(E2 \) strength functions have been deduced from the
\(\overline{B}(E2) \) distributions in a way analogous to the one
described in Ref. 20. To calculate the \(E2 \) strength function
the relation \(f_2(E_i) = 0.80632 \times 10^{-12} \overline{B}(E2, E_i) \)
\(\rho(E_i) \) was used, where \(\rho(E_i) \) is the level density in MeV\(^{-1}\)
at the energy of the initial state. The \(f_2(E_i) \) values
were deduced in energy bins as done for the \(\overline{B}(E2) \)
values (see above). The total level densities \(\rho(E_i, \pi) \) were
determined by counting the calculated levels within energy
intervals of 1 MeV for the two parities separately. The total
level densities \(\rho(E_i) \) are well reproduced by the constant-
temperature expression \(\rho(E_i) = \rho_0 \exp(E_i/T_0) \) for \(E_i < 5 \)
MeV. For higher energies the level density decreases
with excitation energy, which is due to missing levels at
high energy in the present configuration space and spin
range. The parameters of the expression for \(\rho \) are \(\rho_0 = 1.37 \)
MeV\(^{-1}\), \(T_0 = 0.67 \) MeV for \({}^{94}\text{Mo} \) and \(\rho_0 = 1.90 \)
MeV\(^{-1}\), \(T_0 = 0.54 \) for \({}^{95}\text{Mo} \).

The total \(E2 \) strength functions for \({}^{94}\text{Mo} \) and \({}^{95}\text{Mo} \) are
shown in Figs. 9 and 10 respectively. As for the \(\overline{B}(E2) \),
the \(E2 \) strength functions are bell-shaped at low energy

![Image](image_url)
FIG. 9: (Color online) E2 strength function for 94Mo deduced from the present shell model calculations (blue line) and the E2 strength function according to the expression given in the RIPL handbook (black curve) [23].

For comparison, the curves calculated according to the phenomenological expression recommended in the RIPL handbook [23] for the E2 strength function are plotted in Figs. 9 and 10. At $E_\gamma = 0$ these curves have an unphysical pole in contrast to the finite maximum resulting from the present shell-model calculations. At medium energies the low-energy tails of the Lorentz curves underestimate the E2 strength predicted in the shell-model calculations by more than one order of magnitude.

V. SUMMARY

A large number of E2 transitions between excited states up to $J = 10$ in 94Mo and 95Mo has been calculated using the shell model. The strength functions deduced from their average strengths increase toward zero transition energy and show a finite maximum of a Gauss-like shape. This is in strong contrast to the pole of the phenomenological expression recommended in the reaction data base RIPL. In the medium-energy range up to about 6 MeV the average E2 strength predicted by the shell-model calculations shows a complicated structure and is by orders of magnitude greater than the low-energy tail of the phenomenological expression. The continuation of the strength to higher energy beyond about 6 MeV remains an open question. The possible influence of the low-energy shape of the E2 strength functions on reaction rates may be tested by implementing these strength functions in statistical reaction codes.

VI. ACKNOWLEDGMENTS

Stimulating discussions with S. Frauendorf are gratefully acknowledged.

[1] M. Arnould et al., Phys. Rep. 450, 97 (2007).
[2] F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011).
[3] M. B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011).
[4] S. Goriely, Phys. Lett. B 436, 10 (1998).
[5] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, AIP Conf. Proc. 769, 1154 (2005).
[6] D. M. Brink, Ph. D. thesis, Oxford University, 1955, unpublished.
[7] P. Axel, Phys. Rev. 126, 671 (1962).
[8] R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).
[9] A. Bohr and B. R. Mottelson, Nuclear structure, vol. II, (W. A. Benjamin, Inc., Reading, Massachusetts, 1975).
[10] J. M. Eisenberg and W. Greiner, Nuclear theory, vol. I, (North-Holland, Amsterdam, 1975).
[11] A. R. Junghans et al., Phys. Lett. B 670, 200 (2008).
[12] J. Kopecky and M. Uhl, Phys. Rev. C 41, 1941 (1990).
[13] K. Heyde, P. von Neumann-Cosel, and A. Richter, Rev. Mod. Phys. 82, 2365 (2010).
[14] M. Gutormsen et al., Phys. Rev. Lett. 109, 162503 (2012).
[15] D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013).
[16] A. Voinov et al., Phys. Rev. Lett. 93, 142504 (2004).
[17] A. Voinov et al., Phys. Rev. C 81, 024319 (2010).
[18] M. Gutormsen et al., Phys. Rev. C 71, 044307 (2005).
[19] A. C. Larsen et al., Phys. Rev. C 87, 014319 (2013).
[20] R. Schwengner, S. Frauendorf, and A.C. Larsen, Phys. Rev. Lett. 111, 232504 (2013).
[21] E. Litvinova and N. Belov, Phys. Rev. C 88, 031302(R).
[22] T. von Egidy and D. Bucurescu, Phys. Rev. C 80, 054310 (2009).
[23] T. Belgya et al., *Handbook for calculations of nuclear reaction data, Reference Input Parameter Library-2*, Tech. Rep. IAEA-TECDOC-1506, International Atomic Energy Agency, Vienna, Austria, 2006 (see https://www-nds.iaea.org/RIPL-2/).
[24] D. Zwarts, Comput. Phys. Commun. 38, 365 (1985).
[25] R. Schwengner et al., Phys. Rev. C 80, 044305 (2009).
[26] R. Schwengner et al., Phys. Rev. C 66, 024310 (2002).
[27] R. Schwengner et al., Nucl. Phys. A584, 159 (1995).
[28] R. Schwengner et al., Phys. Rev. C 57, 2892 (1998).
[29] R. Schwengner et al., Phys. Rev. C 74, 034309 (2006).
[30] G. Winter et al., Phys. Rev. C 48, 1010 (1993).
[31] G. Winter et al., Phys. Rev. C 49, 2427 (1994).
[32] J. Reif et al., Nucl. Phys. A587, 449 (1995).
[33] E. A. Stefanova et al., Phys. Rev. C 62, 054314 (2000).
[34] Y. H. Zhang et al., Phys. Rev. C 70, 024301 (2004).
[35] A. Jungclaus et al., Nucl. Phys. A637, 346 (1998).
[36] A. Jungclaus et al., Phys. Rev. C 60, 014309 (1999).
[37] E. A. Stefanova et al., Phys. Rev. C 63, 064315 (2001).
[38] G. Rainovski et al., Phys. Rev. C 65, 044327 (2002).
[39] E. A. Stefanova et al., Phys. Rev. C 65, 034323 (2002).
[40] D. Abriola and A. A. Sonzogni, Nucl. Data Sheets 107, 2423 (2006).
[41] S. K. Basu, G. Mukherjee, and A. A. Sonzogni, Nucl. Data Sheets 111, 2555 (2010).