Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group (Insecta, Ephemeroptera, Baetidae) from Cyprus, with annotated checklist of Baetidae in the Mediterranean islands

Roman J. Godunko¹², Tomáš Soldán², Arnold H. Staniczek³

¹ State Museum of Natural History, National Academy of Sciences of Ukraine, Teatralna 18, 79008 Lviv, Ukraine ² Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ–37005 České Budějovice, Czech Republic ³ Stuttgart State Museum of Natural History, Department of Entomology, Rosenstein 1, 70191 Stuttgart, Germany

Corresponding author: Arnold H. Staniczek (arnold.staniczek@smns-bw.de)

Academic editor: L. Pereira-da-Conceição | Received 5 September 2016 | Accepted 5 December 2016 | Published 10 January 2017

http://zoobank.org/AC258A03-9F0C-45DC-B87F-6100E6E936E4

Citation: Godunko RJ, Soldán T, Staniczek AH (2017) Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group (Insecta, Ephemeroptera, Baetidae) from Cyprus, with annotated checklist of Baetidae in the Mediterranean islands. ZooKeys 644: 1–32. https://doi.org/10.3897/zookeys.644.10413

Abstract
A detailed description of the larvae of Baetis (Baetis) cypronyx sp. n., a representative of the Baetis alpinus species-group within the mayfly family Baetidae, is provided, including a differential diagnosis with regard to closely related species of the group, especially Baetis melanonyx (Pictet, 1843) and B. baroukianus Thomas & Dia, 1984. The new species is mainly distinguished by mouthparts (i.e. the shape and setation of labrum, maxillary and labial palps, details of paraglossae and mandibular incisors), setation of legs and abdominal terga, and length of paracercus. All available data on the biology of this putative endemic species of Cyprus are summarized. Annotated distributional data of the 33 species of Baetidae so far recorded from the Mediterranean islands are given, including new records and also including first data from Malta.

Keywords
Baetinae, Baetis alpinus species-group, checklist, distribution, endemism, Mediterranean islands
Introduction

The first contribution to the Baetidae of Cyprus (Soldán and Godunko 2008) included the description of two new species from Cyprus and neighbouring island of Rhodos in Greece. *Baetis mirkae* Soldán & Godunko, 2008 of the *Baetis lutheri* species-group was found on both islands, and later considered as East Mediterranean (Pontomediterranean) species (Bauernfeind and Soldán 2012: 124). *B. irenkae* Soldán & Godunko, 2008 of the *Baetis buceratus* species-group is so far only known from three Cypriote localities and probably is endemic to Cyprus (Soldán and Godunko 2008: 95, Bauernfeind and Soldán 2012: 167). Two of these localities are in Limassol District (Kryos River at Kalidonia waterfalls and Diplos River at Chantara waterfalls) and were sampled during an extensive survey of aquatic invertebrates in May–June of 2004 (Soldán and Godunko 2008). Both localities revealed a relatively high diversity of benthic insects, namely high abundances of the mayfly genera *Epeorus* (*Ironopsis*), *Electrogena*, and *Baetis* (*Baetis* s. str., *Nigrobaetis* Novikova & Kluge, 1987). One species belonging to the *Baetis alpinus* species-group is described below as *Baetis (Baetis) cypronyx* sp. n.

The *Baetis alpinus* species-group was established by Müller-Liebenau (1969: 46) [i.e. *alpinus*-Gruppe] for three species, namely *B. (B.) alpinus* (Pictet, 1843) B (*B. melanonyx* (Pictet, 1843) and *B. (B.) nubecularis* Eaton, 1898. This species-group with Holarctic distribution includes 12 Western Palaearctic species from Europe, Mediterranean, Minor Asia, and North Africa. According to Müller-Liebenau (1969), Jacob (2003), Soldán and Godunko (2009), and Bauernfeind and Soldán (2012), the distinguishing characters for this species-group can be summarized as follows:

Larvae: (i) body flattened ventrally, with shortened abdomen; (ii) segments of antennal flagellum each shortened in the distal two thirds of the antenna; (iii) labrum usually with more than 6–7 (up to 22) long, submarginal setae; (iv) outer mandibular incisor group roughly triangular and often fused; (v) segment 2 of maxillary palp with one or more (sometimes numerous) stout setae on conical protuberance; (vi) pronotum with conspicuous dark pattern; (vii) sternal protuberances on meso- and metathorax more or less developed, pointed or rounded apically; (viii) outer margin of femora with medium or long bristles, acutely pointed or obtuse apically, arranged in 1–3 rows centrally and proximally; (ix) tarsal claws with a pair of fine subapical setae; (x) abdominal terga generally light, with marked dark spots centrally; (xi) posterior margins of abdominal terga with a row of triangular, more or less pointed spines; (xii) surface of abdominal terga usually without distinct corrugations, and usually covered with numerous, tongue-shaped, triangular or spatulate scales and their sockets; (xiii) paracercus more or less reduced (occasionally strongly reduced).

Imagines: (xiv) hind wings with three longitudinal veins, cross veins present or absent; (xv) abdominal terga relatively dark and translucent; (xvi) basal segment of forceps roughly cylindrical or subcylindrical, with inner, more or less expanded, conspicuous apicominal projection, often forming a distinct rim; (xvii) forceps segment 2 subcylindrical, more or less constricted near base; (xviii) forceps segment 3 variable, egg-shaped or subcylindrical, nearly 2–3 times longer than wide.
Apart from the description of the new species, additional objectives of this contribution are to discuss its differential diagnosis and its difference to other representatives of the *B. alpinus* species-group, to summarise available data on the biology and distribution of the new species, and to present an annotated checklist of the Baetidae in the Mediterranean islands.

Material and methods

Material

Most specimens of the new species were collected in the Kryos River at Kalidonian Waterfalls; additional material was collected in Diplos River at Chantara Waterfalls (for numbers of specimens, their proper localities, and deposition see below). Holotype and 45 paratypes of the new species are housed in the Institute of Entomology, BC CAS (České Budějovice, Czech Republic), 22 paratypes in the collection of State Museum of Natural History NASU (Lviv, Ukraine), and 22 paratypes are stored in the Staatliches Museum für Naturkunde (Stuttgart, Germany). Additional paratypes are deposited in the collection of CNR-IRSA Water Research Institute (Brugherio, Italy).

Morphological study

The specimens were preserved in 70–80% ethanol. Eight paratypes were mounted on slides with Euparal liquid. Drawings were made using a Zeiss Axioplan microscope with a camera lucida. Photographs of larvae were taken using a Leica Z16 APO microscope and processed with Leica Application Suite™ Version 3.1.8 to obtain combined photographs with enlarged depth of field. Photographs were subsequently enhanced with Adobe Photoshop™ CS3.

Specimens used for SEM were dissected and dehydrated through a stepwise immersion in ethanol and then dried by critical point drying (Leica EM CPD300). The mounted material was coated with a 5 nm Au/Pd layer (Leica EM ACE200) and subsequently examined and photographed with a Zeiss EVO LS 15 scanning electron microscope. SEMs were subsequently enhanced with Adobe Photoshop™ CS3.

Terminology

Terminology and corresponding acronyms recently proposed for the representatives of the subgenus *Rhodobaetis* Jacob, 2003 by Godunko et al. (2015) are used to describe body setation (e.g. to characterise types of stout setae and scales). Further acronyms e.g. *FT* (for designation of flat-tipped sensillum), *B* (for sensillum basiconicum) and *Hr* (for hair-like setae) used here have been proposed earlier by Gaino and Rebora (1996, 2003). Addi-
tionally, a new type of tongue-shaped scales (SC-tg; 7.5–11.0 µm in length) is described and depicted. Morphological characters to distinguish *Baetis (Baetis) cypronyx* sp. n. from other representatives of *B. alpinus* species-group, and especially from closely related *B. melanonyx* are given according to Müller-Liebenau (1969), Thomas et al. (1983), Thomas and Dia (1984), Peru and Thomas (2001), Jacob (2003), Kluge and Novikova (2011), Bauernfeind and Soldán (2012) and Sroka et al. (2012). All discriminating characters are summarized in Table 1.

Taxonomy

Baetis (Baetis) cypronyx sp. n.
http://zoobank.org/0B11F59C-97F2-42F2-AFD4-A68B6E3D3DCB
Figs 1–24

Type material. *Holotype:* mature larva, CYPRUS, Limassol [Lemesos; Λεμεσός] District, Troodos [Τρόοδος] Mts., Kryos River [Κρύος ποταμός], Kalidonia Waterfalls, app. 1250 m a.s.l., N34 53.561 E32 52.043, 22.v.2004, leg. T. Soldán.

Paratypes: 75 larvae, the same date and place as holotype; 14 larvae, CYPRUS, Limassol [Lemesos; Λεμεσός] District, Troodos [Τρόοδος] Mts., Diplos River [Διπλός ποταμός], Chantara [Xantara] Waterfalls, near Trooditissa [Μοναστήρι Τροοδίτισσας] Monastery, app. 1300 m a.s.l., N34 54.429 E32 50.303, 23.v.2004, leg. T. Soldán;

4 larvae, ibid., Paphos District [Επαρχία πάφου], Gialia River [Γιαλιά], in the forest “Pochalantra”, app. 5 km upstream from Gialia [Γιαλιά] village, app. 400–410 m a.s.l., N35 04.364 E32 33.575, 12.xii.2005, leg. A. Buffagni;

10 larvae, United Nations Buffer Zone in Cyprus, Nicosia District [Επαρχία Λευκωσίας], upstream of Kargotis River [Καρκωτή], vicinity of Kakopetria [Κακοπετριά] village, Mitro place, app. 150–200 m a.s.l., N34 59.012 E32 54.000, 22.iii.2006, leg. A. Buffagni;

2 larvae, ibid., Agios Nikolaos Lefkas [Άγιος Νικόλαος Λεύκας] village (abandoned), app. 100–120 m a.s.l., N35 5.280 E32 53.500, 24.iii.2006, leg. A. Buffagni.

Comparative material.
Baetis baroukianus Thomas & Dia, 1984: 1 male and 1 female mature larvae, LEBANON, Chouf District, type locality of *B. baroukianus*, branch of Salam (Râs el Mâ) spring near Harêt Jandal Municipality, app. 800 m a.s.l., 25.vii.1979, leg. Dia A. (see Thomas and Dia 1984: 10).

28 larvae (10 males, 18 females), IRAN [new record], Elburz Mts., Gilan Province, Rudbar County, Central District, unnamed brook in Divresh village, right tributary of Siah Rud River (SE upstream of Shirkooh village), app. 285 m a.s.l., N36 53.59 E49 35.06, 13.v.2016, leg. Bojková J., Soldán T. & J. Imanpour Namin, det. Sroka P.

2 larvae (1 male, 1 female), ibid, Fuman County, Sardar-e Jingal District, unnamed brook below of Masuleh City (right tributary of Rudkhan River), app. 710 m a.s.l., N37 09.42 E49 01.17, 22.v.2016, leg. Bojková J., Soldán T. & J. Imanpour Namin, det. Sroka P.
Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group...

Figures 1–2. Colour pattern of Baetis (Baetis) cypronyx sp. n., larva, male, paratype (material from type locality): 1 body, dorsal view 2 body, lateral view.

3 larvae (1 male, 2 females), ibid, Rudbar County, Central District, unnamed brook, left tributary of Sefid-Rūd River, below Rostamabad City, app. 155 m a.s.l., N37 09.47 E49 00.17, 22.v.2016, leg. Bojková J., Soldán T. & J. Imanpour Namīn, det. Sroka P.

Baetis melanonyx (Picēt, 1843): 30 larvae (7 larvae mounted with Liquide de Faure), Czech Republic, Ústí nad Labem district, Elbe river-basin, Divoká Orlice River, Líšnice village, 432 m a.s.l., 2.vii.1972, leg. T. Soldán (for details see Soldán 1978); 24 larvae (8 larvae mounted with Euparal), Germany: Baden-Württemberg, Boll, vor Tannegger Wasserfall, Wutach River, 623 m a.s.l., 03.vi.2008, leg. B. Frey. For other comparative material of B. melanonyx see Godunko (1999).

Diagnosis. Baetis cypronyx sp. n. differs from all other representatives of the Baetis alpinus species-group by the following combination of larval characters (see Table 1): (i) labrum of distinctly oblong shape, nearly rectangular (Fig. 6a–c), (ii) outer mandibular incisor group distinctly fused, narrow and triangular (Fig. 8); (iii) segment 2 of maxillary palps usually with single seta, exceptionally with two stout apical setae
Table 1. Morphological characters in *Baetis* (Baetis) *cypronyx* sp. n. (Figs 1–4, 5A, 5C, 6–24) *B. baroukianus* Thomas & Dia, 1984 (Figs 29–32), and *B. melanonyx* (Pictet, 1843) (Figs 5B, 5D, 25–28). Important differences in characters are marked in grey. Quotient q was proposed by Sroka et al. (2012), representing the degree of asymmetry of labial palps. * – based on published data and our own larval material.

No.	Character	*Baetis cypronyx* sp. n.	*Baetis baroukianus* Thomas & Dia, 1984*	*B. melanonyx* (Pictet, 1843)*		
		Head				
1.	Setation of clypeus	solitary FT, B, and Hr setae along with their bases	solitary B and Hr setae along with their base, FT setae more abundant	solitary B and Hr setae along with their bases, FT setae more abundant		
2.	Setation of frons	solitary FT, B, and Hr setae along with their bases	solitary FT and Hr setae, along with their bases	solitary FT and Hr setae, along with their bases		
3.	Setation of scape and pedicel	solitary FT and Hr setae, only B setae more abundant	solitary FT and Hr setae, only B setae more abundant	solitary FT and Hr setae, only B setae more abundant		
		Mouthparts				
4.	Labrum: shape	distinctly oblong-shaped, nearly rectangular	distinctly oblong-shaped, nearly rectangular	rather oblong-shaped, narrowed proximally		
5.	Labrum: mean width/length ratio	1.80–1.88	1.80–1.95	1.75–2.00		
6.	Labrum: number of long submarginal setae	1 + 11–18	1 + 19–21 (15–18)	1 + 14–22 (14–21)		
7.	Labrum: number of long marginal setae	6–9	6–8	8–12		
8.	Mandibles: number of teeth of inner incisor group	3–4	2	1–2		
9.	Mandibles: number of teeth on prostheca	8–10	8–10	9–10		
10.	Maxillary palps: number of stout setae at the tip of distal segment	1 (occasionally 2)	1	1		
11.	Paraglossae: number of regular rows of apical bristles	2	4–5	3		
12.	Paraglossae: number of bristles on outer margin	5–10	6–12	8–12		
13.	Paraglossae: number of setae on ventral surface	3–5	3–6	4–6		
14.	Labial palps: shape of segment 3	nearly symmetrical and evenly rounded	distinctly asymmetrical and conical	nearly symmetrical and evenly rounded		
15.	Labial palps: mean width/length ratio of segment 3	1.03–1.07	1.07–1.09	1.30–1.35		
16.	Labial palps: number of stout setae on dorsal surface of segment 3	18–25	14–16	22–28		
17.	Labial palps: degree of asymmetry [quotient q]	0.76–0.88	0.52–0.56	0.82–0.94		
	Thorax and legs	promont, pointed	prominent, rounded	small, rounded		
18.	Shape of sternal protuberances on meso- and metathorax	20.	Foreleg tibia/femur length ratio	1.0	0.9–1.0	0.9–1.0
Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group...

20.	Hind leg tibia/femur ratio	0.9–1.0	0.9–1.0	0.8–1.0
21.	Outer margin of femora: shape of long bristles	bluntly pointed and/or obtuse apically	acutely pointed apically	acutely pointed apically
22.	Outer margin of femora: number of rows of long bristles proximally and centrally	2–3	1	1 (occasionally 2)
23.	Outer margin of femora: shape of submarginal stout setae	STSm-bp	STSm-bp	STSe-bp
24.	Outer margin of tibia: shape of stout setae	STSm-p, STSm-bp	STSm-p, STSm-bp	STSe-bp
25.	Tarsal claw: number of strong teeth	10–11	12–14	8–11
26.	Tarsal claw: number of rows of marginal teeth	1	1	1
27.	Tarsal claw: two subapical hair-like setae	present	present	present

Abdomen

28.	Surface of terga: scales	present, not numerous	present, not numerous	present, not numerous
29.	Surface of terga: scales sockets	present, not numerous, often absent on tergum X	present, not numerous, always present on tergum X	present, numerous, always present on tergum X
30.	Surface of terga: shape of scales	SC-it, SC-ig	SC-it, SC-ig	SC-it, SC-ig
31.	Posterior margin of terga II–VIII: shape of spines	triangular, not shortened, some bluntly pointed and some acutely pointed	triangular, shortened, some bluntly pointed and some acutely pointed	triangular, shortened, some bluntly pointed and some acutely pointed
32.	Posterior margin of terga III–VIII (IX): submarginal row of smaller spines	present	absent	absent
33.	Shape of gills I and VII	nearly symmetrical	nearly symmetrical	slightly asymmetrical
34.	Shape of gills II–V	asymmetrical	asymmetrical	asymmetrical
35.	Paraproct plate (inner margin): number of marginal spines	8–12	0–4	7–11
36.	Paraproct plate (inner margin): number of submarginal stout setae	2–8	5–8	8–12
37.	Paraproct plate (inner margin): shape of submarginal stout setae	STSs-bp, STSm-bp	STS-ov, STSm-ov, occasional STSm-bp and STSm-bp	STS-ov, STSm-ov, occasional STSm-bp and STSm-bp
38.	Paraproct plate (surface centrally): type of setation	tiny setae only	tiny setae only	tiny setae only
39.	Paracercus	reduced; 2–16 segments	well-developed (1/2–2/3 of cerci length) or shortened (more than 15 segments)	well developed; 1/2–2/3 of cerci length
40.	Cerci and paracercus: posterior margin of segments	row of broad triangular spines, additional uneven submarginal row of smaller spines	row of broad triangular spines	row of broad triangular spines
Figures 3–4. Colour pattern of *Baetis* (*Baetis*) *cypronyx* sp. n., larvae, male (3) and female (4), paratypes (material from type locality): 3 body, ventral view 4 body, dorsal view.

(Figs 11a–c, 19); (vi) paraglossae with two irregular rows of long, stout bristles apically (Fig. 9); (v) segment 3 of labial palps not elongated, nearly symmetrical and evenly rounded (Fig. 12a–c); (vi) sternal protuberances on meso- and metathorax pointed apically; (vii) outer margin of femora with 2–3 rows of long, apically obtuse to bluntly pointed bristles proximally and centrally (Figs 13, 20, 21); (viii) irregular row of small submarginal spines on abdominal terga III–VIII (IX) (Fig. 22); (ix) surface of abdo-
minal terga with few scales in sockets, scales triangular to tongue-shaped, not elongated, mostly lacking on tergum X (Figs 23, 24); (x) paraproct plate with bluntly pointed
stout setae near to inner margin (Figs 16, 17); (xi) paracercus strongly reduced, 2–16 segmented (Fig. 24).

Description. Mature larva: female body length: 7.5–8.0 mm, length of cerci: 9.0–11.5 mm; male body length: 6.0–8.0 mm; length of cerci: 7.0–10.0 mm; paracercus vestigial or strongly reduced.
Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group...

Figure 5. Colour pattern of *Baetis (Baetis) cypronyx* sp. n., larvae (A, C paratypes; material from Diplos River) and *Baetis (Baetis) melanonyx* (Pictet, 1843), larvae (B, D material from Germany): 5 head, dorsal view: A–B males C–D females.
Figures 6–8. *Baetis* (*Baetis*) *cypronyx* sp. n., larva, paratypes, details of mouthparts: 6a–c shape of labrum, dorsal view 7 hypopharynx 8 R: right mandible (incisors and prostheca), dorsal view; L: left mandibular (incisors and prostheca), dorsal view.
Figures 9–12. *Baetis (Baetis) cypronyx* sp. n., larva, details of mouthparts: 9 paraglossa, ventral view 10 glossa; ventral view 11a–c apical part of maxillary palp, dorsal view 12a–c shape of third segment of labial palps, ventral view.
Figures 13–14. *Baetis (Baetis) cypronyx* sp. n., larva, paratype, hind leg: 13 general dorsal view 14 tarsal claw, dorsal view.

Cuticular coloration (Figs 1–5). Due to ten to twelve years of material storage in ethanol, the herein described colour pattern might be slightly paler compared to fresh material.

General colour yellowish brown to brown. Head light brown with paler genae; clypeus light brown; frons with several small, isolated brown spots. Antennae light brown, flagellum paler than scape and pedicel.

Pronotum yellowish brown with two pairs of oblique brownish bands; mesonotum yellowish brown to brown, with longitudinal brown bands centrally, and several spots of the same colour centrally and laterally; metanotum brown with darker smudge centrally (Figs 1, 4). Lateral sides of thorax with brown pleurites (Fig. 2). Ventral side of thorax paler than dorsal side; sterna yellowish (Fig. 3). Legs pale. Femora yellowish brown with two darker, usually isolated longitudinal spots along outer margin; tibia light brown; base and apex of tarsi brown, darker than middle part; tarsal claw brown (Figs 2, 3).
Abdominal terga (Figs 1, 4) yellowish brown to brown; terga I–III (IV) and VI–VIII darker. Terga I–III (IV) brownish centrally, with broad pale area laterally; median brown spot on terga III and IV occasionally divided into two longitudinal spots; all terga with more or less well visible brownish band along anterior margin of segment; a pair of diffuse brownish maculae near posterior margin of terga V–VIII; a pair of brownish paramedian dots on terga II–X, terga III–VI occasionally with additional oblique streaks fused with paramedian dots and forming a diffuse brownish U-shaped pattern in anterior half of segment. Abdominal sterna with a pair of sublateral elongated spots. Cerci yellowish brown to brown, 3–5 first segments slightly darker.

Hypodermal coloration. Hypoderm without contrasting markings.
Figures 16–18. *Baetis (Baetis) cypronyx* sp. n., larva, paratype, details of paraproct: 16 paraproct, general ventral view 17 inner margin of paraproct plate, ventral view 18 spines of inner margin of cercotractor.

Head. Surface of clypeus and frons covered with solitary *FT*, *B*, and *Hr* setae. Larval turbinate eyes brown to intensively brown apically. Antennae slightly longer than 1/2 of body length. Scape and pedicel with solitary *FT* and *Hr*, and more abundant *B* setae only, without any particular cuticular ornamentation (e.g. corrugation/chagrin; see Bauernfeind and Soldán 2012), which is present in some representatives of the *B. alpinus* species-group and in the closely related *B. lutheri* and *B. pavidus* species-groups.

Mouthparts. Labrum (Figs 6a–c) distinctly wider than long, nearly rectangular, with width/length ratio 1.80–1.88; dorsal surface with 1 + 11–18 long submarginal setae, arranged in a single irregular row (occasionally 1–4 bristles form an additional weekly defined row); 6–8 smaller setae laterally on both margins; dorsal surface of labrum covered with sparsely arranged *B* and only a few *FT* setae grouped mainly pos-terolaterally; ventral side with 2–5 small pointed setae anterolaterally. Median incurva-tion of middle part of anterior margin of labrum clearly shallow and wide.

Outer mandibular incisor group narrow and triangular, distinctly fused; inner incisor group not prominent, with 3–4 small teeth (of which most distal tooth is the biggest), both groups separated by a shallow incision. Right and left prostheca of same size, nearly symmetrical, with 8–10 apical teeth (Fig. 8).

Maxillary palp two-segmented; segment 1 shorter than second segment; segment 2 asymmetrical apically, with pronounced tip (conical protuberance), and one dis-
Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group...

Figures 19–22. Baetis (Baetis) cypronyx sp. n., larva, SEM: 19 apical part of maxillary palp 20 outer margin of hind femur, proximally, dorsal view 21 apical part of long bristles of outer margin of femur, dorsal view 22 posterior margin of abdominal tergum V, dorsal view.

tinct, stout seta; one additional stout seta occasionally near apex of segment 2; surface of both segments with B setae [uniporous sensillum basiconicum sensu Gaino and Rebora (2003: 449, figs 19–21)] which are clearly dense on distal part of segment 2 (Figs 11a–c, 19).

Hypopharynx relatively slender, anterior side laterodistally covered with fine, elongated setae along outer margins of lingua and superlinguae, lingua with prominent central lobe, superlinguae with marked hump (Fig. 7).

Labium with relatively slender glossae, slightly shorter than paraglossae (Figs 9, 10); glossae each with 8–10 stout bristles on inner margin, and 3–5 bristles on outer margin; 5–7 pairs of long, stout bristles form two irregular rows on tip of paraglossae; additionally 5–10 long bristles along outer margin and 3–5 medium sized setae on ventral side of paraglossae. Segment 2 of labial palp 1.30–1.42 longer than segment 3, covered only with sparse B and Hr setae; segment 3 not elongated, nearly symmetrical and evenly rounded, only slightly broader than long (width/length ratio 1.03–1.07); surface of segment 3 with 18–25 slender, pointed, stout setae [long and short hairs sensu Gaino and Rebora (2003)], and long Hr setae; quotient q changes from 0.76 to 0.88 (see Sroka et al. 2012, 29, 31: fig. 2) (Fig. 12a–c).
Figures 23–24. *Baetis (Baetis) cypronyx* sp. n., larva, SEM: 23A–C surface of tergum VII: general dorsal view (23A); tongue-shaped scales [SC-tg] (23B); triangular scales [SC-it] (23C) 24 tergum X, dorsal view.

Thorax. Surface of pronotum with few FT and Hr setae only. Sternal protuberances on meso- and metathorax well visible, pointed apically, yellowish brown to brown.

Outer margin of femora with 2–3 rows of long bristles with obtuse to bluntly pointed tips proximally and centrally (Figs 13, 20, 21), and one row of shorter and stouter obtuse bristles distally; central part of outer margin of femora occasionally with long bristles arranged in 1–2 rows. Long marginal bristles alternating with submarginal STSm-bp setae and elongated Hr setae. Inner margin with 2–6 STSi-bp setae near to proximal end. Surface of femora with STSi-bp and STSi-ov setae and tiny setae [Hr and more abundant FT setae]. Outer and inner margins of tibiae with STSm-p and STSm-bp setae and short Hr setae; surface of tibia with STSi-bp to nearly STS-ov setae; a group of long Hr setae near distal end of outer margin of tibia. Tarsi with 6–10 middle to elongated STS-p setae along the inner margin, and several STSm-p and/or STSm-bp setae on outer margin; both margins of tarsi covered with tiny Hr setae; surface of tarsi with a few FT and more abundant Hr setae, and small STS-bp setae. Tarsal claws not elongated, moderately hooked; with 10–11 teeth arranged in single row and two subapical tiny Hr setae (Figs 13, 14).

Abdomen. Posterior margin of terga with broad triangular spines of different size, bluntly pointed or occasionally pointed apically; broader spines along posterior margin of terga III–VIII; spines alternating with 1–3 tiny B and a single Hr setae. Irregular
row of smaller submarginal spines on terga III–VIII (IX) (Fig. 22). Surface of terga with few, not elongated, tongue-shaped [SC-tg] to triangular [SC-it; bluntly pointed to rounded apically] scales, and their few sockets (mainly lacking on tergum X), concentrated on central part of segment (Figs 23, 24); solitary Hr and more abundant FT setae stretched over the whole surface of terga I–X. Posterior margin and surface of sterna without spines, stout setae or scales, with B and Hr setae only.

Paraproct plate as in Figs 16–18. Inner margin of paraproct with 8–12 spines of different size along apical half, alternating with tiny setae [solitary FT and more abundant B setae], and 2–8 (mainly 4–7) submarginal STSm-bp setae (Figs 16, 17); a single row of relatively small and stout spines along inner margin of cercotractor (for definition of cercotractor see Kluge 2004) (Fig. 18). Surface of paraproct covered with sparse FT, B and Hr setae and their bases only.

Tracheal gills whitish yellow to light brown, not elongated, broadly rounded apically (Fig.15, I–VII); gills I and VII nearly symmetrical; gills II–VI asymmetrical; serrated margins of gills more or less well marked, with tiny Hr setae inserting in small, articulated bases; tracheation poorly visible.

Cerci as long as 1.20–1.32 of body length. Paracercus reduced to 2–16 segments (Fig. 24). Posterior margin of cercal and paracercal segments with row of broad, triangular spines, and uneven submarginal row of smaller spines. Length of paracercus of mature larvae apparently variable in different populations, as well as in specimens within each population. Paracercus in larvae from Cryos River (type locality) vestigial (evidently shorter than abdominal tergum X, consisting of approximately up to 5–7 segments, some segments at least partially fused, Fig. 1); paracercus in paratype larvae from Diplos River strongly reduced (but evidently longer than abdominal tergum X), only consisting of about 10 or more apparently separated or distinguishable segments; Fig. 4).

Male and female adults. Unknown.

Etymology. The specific epithet is a combination of the name of Cyprus, where the new species was found, and the specific epithet of the closely related species B. melanonyx.

Discussion

Affinities

Baetis cypronyx sp. n. can be undoubtedly attributed to the B. alpinus species-group as defined above based on larval body shape and presence of (i) numerous submarginal long setae on dorsal surface of labrum, (ii) triangular outer mandibular incisor group, (iii) 1–2 stout setae at tip of maxillary palp segment 2, (iv) conspicuous brownish pattern on pronotum (similar to that in B. alpinus (Pictet, 1843)) and well visible pair of dark spots on abdominal terga, (v) numerous long bristles on outer margin of femora, (vi) relatively large spines on posterior margin of terga, (vii) a pair of hair-like setae
near tip of tarsal claw (see e.g. Müller-Liebenau 1969: 47; Jacob 2003: 67–68; Bauernfeind and Soldán 2012: 100–101).

The new species appears to be closely related to *B. melanonyx* known throughout Europe and to *B. baroukianus* Thomas & Dia, 1984 described from Lebanon. For the latter two species a separate subgenus *Patites* Thomas & Dia, 1999 was established based on larval and imaginal characters (Thomas and Dia 1999: 107; type species *Baetis (Patites) baroukianus* Thomas & Dia, 1984). On the other hand, Bauernfeind and Soldán (2012: 101) consider that the delimitation of taxa of *B. alpinus* species-group is rather difficult due to the high level of (probably clinal) variability combined with disjunctive area of many species. A separation of the *B. alpinus* species-group on genus or subgenus level is recently not considered to reflect phylogenetic lineages under the concept used for genera within *Baetinae* by these and other authors (e.g. Jacob 2003: 89; Bauernfeind and Soldán 2012: 101).

Baetis cypronyx sp. n., *B. baroukianus*, and *B. melanonyx* can be characterised by a distinctly fused, narrow and triangular outer mandibular incisor group; this character clearly distinguishes them from all other representatives of the *B. alpinus* species-group. Unfused teeth of outer mandibular incisors can be observed in *B. punicus* Thomas, Boumaiza & Soldán, 1983 and *B. berberus* Thomas, 1986 (Thomas et al. 1983: 108, fig. 3p; Thomas and Dia 1984: 8, fig. 4b; Peru and Thomas 2001: 77, fig. 2).

Differences between three above listed species can be observed in the arrangement of long setae on the dorsal surface of the labrum, i.e. *B. cypronyx* sp. n. with 1 + 11–18 long submarginal setae, in contrast to 1 + 14–21 long submarginal setae in *B. melanonyx*, and mainly 1 + 19–21 in *B. baroukianus* (Fig. 6a–c; Müller-Liebenau 1966: 70–78, figs 4–8; 1969: 62, fig. 27a; Thomas and Dia 1984: 8, fig. 2b). Additionally, in contrast to *B. melanonyx* with proximally narrowed labrum *B. cypronyx* sp. n. and *B. baroukianus* can also be characterized by a nearly rectangular labrum that is distinctly wider than long.

Two irregular rows of long, stout bristles can be observed on the tips of paraglossae in the new species, in contrast to 3 rows in *B. melanonyx* and 4–5 rows in *B. baroukianus* (see Table 1 and Fig. 9; Müller-Liebenau 1969: 62, fig. 27i; Thomas and Dia 1984: 8, fig. 6b). Additionally, in contrast to *B. melanonyx* with proximally narrowed labrum *B. cypronyx* sp. n. and *B. baroukianus* can also be characterized by a nearly rectangular labrum that is distinctly wider than long.

Differences between three above listed species can be observed in the arrangement of long setae on the dorsal surface of the labrum, i.e. *B. cypronyx* sp. n. with 1 + 11–18 long submarginal setae, in contrast to 1 + 14–21 long submarginal setae in *B. melanonyx*, and mainly 1 + 19–21 in *B. baroukianus* (Fig. 6a–c; Müller-Liebenau 1966: 70–78, figs 4–8; 1969: 62, fig. 27a; Thomas and Dia 1984: 8, fig. 2b). Additionally, in contrast to *B. melanonyx* with proximally narrowed labrum *B. cypronyx* sp. n. and *B. baroukianus* can also be characterized by a nearly rectangular labrum that is distinctly wider than long.

Two irregular rows of long, stout bristles can be observed on the tips of paraglossae in the new species, in contrast to 3 rows in *B. melanonyx* and 4–5 rows in *B. baroukianus* (see Table 1 and Fig. 9; Müller-Liebenau 1969: 62, fig. 27i; Thomas and Dia 1984: 8, fig. 6b). Additionally, in contrast to a markedly asymmetrical segment 3 in *B. baroukianus*, with \(q = 0.52–0.56 \) (Figs 12a–c; Thomas and Dia 1984: 9, figs 7a–c).

Thomas and Dia (1984: 7, 8, figs 1b, 1m) depicted the heads of the female larva of *B. baroukianus* and *B. melanonyx* in dorsal view, discussing the head width ratio for both species. For *B. baroukianus* was noted that its head is widest below the eyes between the genae, while in *B. melanonyx* the widest part was determined at eye level. According to Thomas and Dia (1984) the head width ratio for *B. baroukianus* / *B. melanonyx* below the eyes is 1.59 (with maximal value 1.46). However, in larvae of *B. baroukianus* from Iran that we examined, the width of head both at eye level and below eyes is nearly equal in both sexes, respectively (Figs 31, 32).
In contrast, female larvae of *B. cypronyx* sp. n. and *B. melanonyx* both have their maximal width of head at the level of eyes; the head width however is only slightly smaller at genal level below the eyes in both species (Fig. 5C, D). Similar proportions also apply for male larvae of the latter two species (Fig. 5A, B). The larval head width ratio for *B. cypronyx* sp. n. / *B. melanonyx* below the eyes at genal level is 1.05–1.15 in females, and 1.15–1.20 in males; at eye level the ratio is 1.00–1.05 in females, and 1.14–1.20 in males.

Baetis melanonyx and *B. baroukianus* markedly differ from the new species by their arrangement of setation at the outer margin of femora. There is only a single row of acutely pointed long bristles proximally and centrally, alternating with STSe-bp (in *B. melanonyx*) and STSm-bp (in *B. baroukianus*) submarginal setae, in contrast to *Baetis cypronyx* sp. n. that features 2–3 rows of bluntly pointed long bristles centrally and a group of STSm-bp submarginal setae (Figs 13, 20, 21). This character has been recently used for delimitation of two distinct evolutionary units of *B. alpinus* within the Central Alps (Leys et al. 2016), and much earlier for delimitation of *B. alpinus* and *B. melanonyx* (Figs 25, 26; Müller-Liebenau 1969; Godunko 1999: 26, fig. 3C).

The new species also clearly differs from *B. melanonyx* and *B. baroukianus* in the sternal protuberances near the coxae on meso- and metathorax that are pointed apically in the former species, in contrast to rounded apically protuberances in both latter species (Table 1).

Abdominal terga of *B. melanonyx* and *B. baroukianus* (including tergum X) are covered by numerous scale sockets, in contrast to only a few scales on terga of *B. cypronyx* sp. n., where scales and their sockets are missing on tergum X (see Figs 23, 24 for *B. cypronyx* sp. n.; Godunko 1999: 26, fig. 3D, and our Fig. 28 for *B. melanonyx* [the same for *B. baroukianus*]; Table 1); the shape of scales is similar in all three discussed species. The shape of marginal spines along the posterior margin of abdominal terga in all three species is generally similar, but the new species can be markedly recognized by the presence of not shortened stout spines and additional, submarginal, irregular row of smaller spines on terga III–VIII (IX) (see Fig. 22 for the new species in contrast to Fig. 27 for *B. melanonyx*); in *B. baroukianus* the single row of shortened stout spines is figured by Thomas and Dia (1984: 9, fig. 9). Marginal large spines alternating with Hr setae and with 1–3 setae of sensillum basiconicum type can be recognised in the new species (similarly to *B. alpinus*), in contrast to *B. melanonyx* and *B. baroukianus* showing a group of 1–5 setae.

Additional differences between the new species and the previously described *B. baroukianus* and *B. melanonyx* can be recognized in the colour pattern of abdominal terga. Thomas and Dia (1984: 10) noted similar colour patterns in *B. baroukianus*, *B. punicus*, and *B. alpinus*. Bauernfeind and Soldán (2012: 102, 106) discussed the presence of well pigmented paramedian dots and streaks or a mediolongitudinal strip on terga I (II)–IX (X) within all three species (Fig. 29). A similar pattern is described for *B. melanonyx*, but usually with terga IV, V and IX paler centrally (Müller-Liebenau 1966: 74–75, figs 6, 7; 1969: 52–53, 63–64, figs 19, 204).

Inner margin of paraproct plate of *B. cypronyx* sp. n. and *B. melanonyx* with more or less similar number of marginal spines (see Table 1), in contrast to *B. baroukianus*
with not more than four spines only. Other differences between species discussed above can be recognized in the number and shape of submarginal stout setae, i.e. 2–8 STSs-bp and STSm-bp setae in *B. cypronyx* sp. n., in contrast to 8–12 in *B. melanonyx* and up to 7 STSs-ov and STSm-ov setae in *B. baroukianus*.

Clearly visible differences between these species can be also recognized in the shape and length of paracercus, i.e. strongly reduced in *B. cypronyx* sp. n., with 2–16 segments; shortened or well-developed in *B. baroukianus* (from 15 segments to 1/2–2/3 of cerci length); well developed in *B. melanonyx*, as long as 1/2–2/3 of cerci length (Figs 3, 4, 24, 28; Table 1).

Other differences between the closely related species *B. cypronyx* sp. n. *B. baroukianus* and *B. melanonyx* are summarized in Table 1.

Thomas and Gazagnes (1984) described *B. cyrneus* Thomas & Gazagnes, 1984 from Corsica and placed this species in the *B. alpinus* species-group. *Baetis cyrneus* most probably also is an endemite of the Mediterranean islands (see below). It differs from *B. cypronyx* sp. n. by the arrangement of mouthparts, especially by the shape and setation of mandible with both groups of incisors well developed, segment 2 of maxillary palps with two regular stout setae apically, and by the elongated shape of labial palp segment 3. Additional differences can be observed in the paraproct plate, with numerous scale sockets on its surface, and in the length of paracercus with 10–25 segments.
Figures 29–32. Colour pattern of *Baetis baroukianus* Thomas & Dia, 1984, larvae (material from Iran); male (29, 30, 32), female (31): 29 body, dorsal view 30 body, lateral view 31, 32 head, dorsal view.
Larvae of *B. cypronyx* sp. n. were found solely on stony substrates (lithal) at depths of 5–40 cm (see also Soldán and Godunko 2008), preferably in stream sections with moderate to fast current (velocity approximately 20–50 cm/s⁻¹) (Figs 33–35). The mac-

Figures 33–35. Localities of *Baetis (Baetis) cypronyx* sp. n.: 33 Kryos River [*Κρύος ποταμός*], app. 1270 m a.s.l., near type locality (photo by Zsuzsa Miskolci, Budapest, Hungary) 34 ibid., app. 1285 m a.s.l. (photo by Philp J Stoate, Somerset, England) 35 Diplos River [*Διπλός ποταμός*], Chantara [Xantara] Waterfalls, app. 1100 m a.s.l., locality of *Baetis cypronyx* sp. n. (photo by Alexandros Constantinides, Cyprus)

Biological notes

Larvae of *B. cypronyx* sp. n. were found solely on stony substrates (lithal) at depths of 5–40 cm (see also Soldán and Godunko 2008), preferably in stream sections with moderate to fast current (velocity approximately 20–50 cm/s⁻¹) (Figs 33–35). The mac-
Table 2. Checklist of Baetidae in the Mediterranean islands (islands listed from west to east). Abbreviations and symbols: SP – Spain; IT – Italy; FR – France; MT – Malta; GR – Greece; CY – Cyprus. ● – previous records on occurrence of the species confirmed; ○ – occurrence based on our unpublished data; * – data on distribution and / or proper species identification require to be confirmed or clarified.

No. of species	Species / Mediterranean island	Comments in [] see below	Baleares (SP)	Sardina (IT)	Corsica (FR)	Elba (IT)	Sicily (IT)	Malta (MT)	Crete (GR)	Taos (GR)	Lesbos (GR)	Aegina (GR)	Kos (GR)	Karpathos (GR)	Tilos (GR)	Rhodos (GR)	Cyprus (CY)
Genus Baetis Leach, 1815																	
Subgenus Acentrella Bengtsson, 1912																	
1	*Baetis (Acentrella) sinaicus* (Bogoescu, 1931)[1]																
Subgenus Baetis Leach, 1815																	
Baetis alpinus species-group																	
2	*Baetis (Baetis) cypronyx* sp. n.																
3	*Baetis (Baetis) cyrneus* Thomas & Gazagnes, 1984[2]																
4	*Baetis (Baetis) melanonyx* (Pictet, 1843)[3]																
Baetis buceratus species-group																	
5	*Baetis (Baetis) buceratus* Eaton, 1870[4]																
6	*Baetis (Baetis) zdenkæ* Soldán & Godunko, 2009[5]																
Baetis lutheri species-group																	
7	*Baetis (Baetis) lutheri* Müeller-Liebenau, 1967[6]																
8	*Baetis (Baetis) mirkæ* Soldán & Godunko, 2008[7]																
Baetis pavidus species-group																	
9	*Baetis (Baetis) pavidus* Grandi, 1951[8]																
Baetis vernus species-group																	
10	*Baetis (Baetis) vernus* Curtis, 1834[9]																
Baetis fuscatus species-group																	
11	*Baetis (Baetis) fuscatus* (Linnaeus, 1761)[10]																
Subgenus Nigrobaetis Novikova & Kluge, 1987																	
12	*Baetis (Nigrobaetis) albínavis* Sartori & Thomas, 1989[11, 12]																
13	*Baetis (Nigrobaetis) digitata* Bengtsson, 1912[13]																
14	*Baetis (Nigrobaetis) muticus* (Linnaeus, 1758)[14]																
15	*Baetis (Nigrobaetis) cf. muticus* (Linnaeus, 1758)																
No. of																	
Species / Mediterranean island																	
Comments in [] see below																	
16	*Baetis (Nigrobaetis) cf. navasi* (Müller-Liebenau, 1974)[13]																
17	*Baetis (Nigrobaetis) niger* (Linnaeus, 1761)[16]																
Subgenus *Rhodobaetis* Jacob, 2003																	
18	*Baetis (Rhodobaetis) ingerdae* Thomas & Soldán, 1987[17]																
19	*Baetis (Rhodobaetis) irenkae* Soldán & Godunko, 2008[18]																
20	*Baetis (Rhodobaetis) rhodani* (Pictet, 1843)[19]																
21	*Baetis (Rhodobaetis) cf. rhodani* (Pictet, 1843)[19]																
Genus *Centroptilum* Eaton, 1869																	
22	*Centroptilum lutetium* (Müller, 1776)[20]																
Genus *Cloeon* Leach, 1815																	
Subgenus *Cloeon* Leach, 1815																	
23	*Cloeon (Cloeon) cognatum* Stephens, 1836[21]																
24	*Cloeon (Cloeon) dipterum* (Linnaeus, 1761)[22]																
25	*Cloeon (Cloeon) inscriptum* Bengtsson, 1917[23]																
26	*Cloeon (Cloeon) rubaudi* (Verrier, 1949)[24]																
Subgenus *Similicloeon* Kluge & Novikova, 1992																	
27	*Cloeon (Similicloeon) praetextum* Bengtsson, 1914[25]																
28	*Cloeon (Similicloeon) schoenemundi* Bengtsson, 1936[26]																
29	*Cloeon (Similicloeon) simile* Eaton, 1870[27]																
Genus *Procloeon* Bengtsson, 1915																	
Subgenus *Procloeon* Bengtsson, 1915																	
30	*Procloeon (Procloeon) bifidum* (Bengtsson, 1912)[28]																
Subgenus *Pseudocentroptilum* Boggsescu, 1947																	
31	*Procloeon (Pseudocentroptilum) facicicaudale* (Sowa, 1985)[29]																
32	*Procloeon (Pseudocentroptilum) pulchrum* (Eaton, 1885)[30]																
33	*Procloeon (Pseudocentroptilum) unguiculatum* (Tshernova, 1941)[31]																

1Recorded by Belfiore (1983: 57) for the first time; recent data on its distribution summarised by Belfiore and D’Antonio (1991: 260), Belfiore et al. (1991: 32) and Buffagni et al. (2003: 281).
Described by Thomas and Gazagnes (1984: 199) from Corsica. According to Bauernfeind and Soldán (2012: 105) only known from a few localities in terra typica (see also OPIE-benthos data). Nevertheless, Belfiore (1988), Belfiore and D’Antonio (1991), and Buffagni et al. (2003) report *B. cyrneus* also from the Toscana Region and some Mediterranean islands, i.e. Sicily and Sardinia. DNA barcoding (Gattolliat et al. 2015) however revealed that specimens determined as *B. cyrneus* represent four different cryptic species occurring in Corsica and Sardinia. So far no morphological differences have been determined for these putative species. The high intra-specific genetic distance in *B. cyrneus* recently detected by Cardoni et al. (2015) for populations from Corsica and Sardinia also point to cryptic variation.

Recorded by Belfiore and D’Antonio (1991) and Belfiore et al. (1991) for the first time.

Recorded by Belfiore and Gaino (1988: 77) for the first time in Sardinia and later also listed from Sicily (Belfiore and D’Antonio 1991; Buffagni et al. 2003); for Corsica based on OPIE-benthos data.

So far known only from type locality and a single additional locality in Rhodos (Soldán and Godunko 2009: 7–8), considered endemic to the island.

The record from Kos by Belfiore (1990: 266) probably belongs to or other, still undescribed species of the *B. lutheri* species-group.

Considered as probably East Mediterranean (Pontomediterranean) species by Bauernfeind and Soldán (2012: 124); so far known from three localities in Cyprus and from a single locality in Rhodos (Soldán and Godunko 2008: 95).

Recorded by Belfiore (1983) for the first time; recent data on distribution summarized by Belfiore and D’Antonio (1991: 260), Belfiore et al. (1991: 32) and Buffagni et al. (2003: 281).

Most probably missing on Mediterranean islands (Bauernfeind and Soldán 2012: 136). The record for Corsica by Sartori and Thomas (1989: 131) based on earlier data by Verrier (1954: 282 [sub. *Baetis type vernus*]; 284 [sub. *Baetis vernus*]) needs to be verified.

Reported from Corsica by Esben-Petersen (1912: 351, 1913: 22) [sub. *Baetis binoculatus* Linn.]; Kimmins (1930: 186) and Lestage (1922: 275; citation of M. Esben Petersen data) [sub. *Baetis binoculatus* L.] (see also OPIE-benthos data). Verrier (1954: 284; 1956: 95) reported [sub. *Bioculatus L.*] and [sub. *Baetis, type binoculatus L.*] from four localities in Crete, but conspecificity with *B. fuscatus* needs to be verified. For Sicily and Sardinia see summarized data in Belfiore (1983), Belfiore and D’Antonio (1991), Belfiore et al. (1991) and Buffagni et al. (2003). Recent data on DNA barcoding by Cardoni et al. (2015) based on Sardinian material.

The species can be considered endemic to Corsica. This conclusion is confirmed by recent DNA barcoding (Gattolliat et al. 2015; Cardoni et al. 2015). All previous records of *B. muticus* from Corsica refer to *B. albinatus* (see e.g. Hagen 1864: 39 [sub. *Cloe Pumila* Burm.]; Jakobson and Bianki 1905: 875 and Klapálek 1917: 193 [sub. *Baetis pumilus* (Burm.)]; Esben Petersen 1913: 22 [sub. *Baetis pumilus* Burm.]; Kimmins 1930: 186 [sub. *Baetis pumilus* Burm.] (citation of previous authors); Belfiore and D’Antonio 1991: 260 [sub. *Baetis muticus* (L.)]; see also OPIE-benthos data). Three species reported for Corsica by Hagen (1864: 38) within the genus *Baetis* (orig. *Bætis* Leach.) belong to the genera *Ecdyonurus* Eaton, 1868 and *Electrogena* Zurwerra & Tomka, 1985.

Sartori and Thomas (1991: 224) used the specimens from the type series of *B. albinatus* also to specify distinguishing characters of representatives of the *B. muticus* species-group.

Two records of this species from the islands Kos (Belfiore 1990: 266) and Rhodos (Soldán and Godunko 2009: 9) belong to hitherto undescribed species.
Reported by Grandi (1960), Belfiore et al. (1991), Belfiore and D’Antonio (1991) and Buffagni et al. (2003) from Sicily and Sardinia. The record from Corsica (Belfiore and D’Antonio 1991) in fact refers to B. albinatii (see above). The presence of new undescribed endemic species in Sardinia is confirmed based on DNA barcoding by Gattolliat et al. (2015).

Reported by Bauernfeind (2003: 100) based on a single male imago and two subimagines, with remarks on similarities to B. navasi Müller-Liebenau, 1974, but with some differences from continental B. muticus.

Most probably endemic to Corsica (Thomas and Soldán 1987: 23; Bauernfeind and Soldán 2012: 167). Recent investigation of DNA barcodes of Corsican mayflies by Gattolliat et al. (2015) clearly showed that it is not possible to assign the separate lineage of this species to a proposed insular Corso-Sardinian lineage; additional investigation of type material is urgently needed to clarify the systematic status of these questionable taxa.

So far only known from Cyprus; probably endemic to the island (Soldán and Godunko 2008: 91). The records from Corsica might in fact belong to B. ingridae and/or new undescribed species (see above). Taxonomical status of larval material reported by Verrier (1956: 95) from Crete (sub. B. gemellus Etn.) needs to be clarified; B. rhodani was formally listed for Sardinia by Buffagni et al. (2003). Taxonomical status of material from the Mediterranean islands attributed to "B. rhodani" remains unclear, since the existence of series of cryptic species among European populations is confirmed by molecular taxonomy (see Williams et al. 2006; Lucentini et al. 2011; Gattolliat et al. 2015). In Italy, 11 potential cryptic species have been recognised, one of these cryptic species clearly has a restricted geographical range within Sicily only (see the position of cryptic species G9 in Lucentini et al. 2011). Gattolliat et al. (2015) documented the existence of two separate insular clades (three clear lineages) for Corso-Sardinian material of B. gr. rhodani. Finally, Bisconti et al. (2016) reported about occurrence of three distinct and deeply divergent species within the "B. rhodani species group" in the north-western Mediterranean islands.

Listed for Sicily and Sardinia by Belfiore and D’Antonio (1991); absent in the tabular list of Italian species summarized by Buffagni et al. (2003). Original record from Sicily of Belfiore (1991) concerns Caenis aromatica (see Grandi 1966). Original record from Sardinia (1983) concerns Caenis aromatica (see Belfiore et al. 1991). The original record from the Balearic islands needs to be confirmed (Alba-Tercedor and Jáimez-Cuéllar 2003: 92). Species inquirenda according to Bauernfeind and Soldán (2012: 189).
Baetis (Baetis) cypronyx sp. n., a new species of the Baetis alpinus species-group...

Numerous records from Mediterranean islands. Russev (1959: 272) recorded this species from the island of Tasos [sub. Cloeophragmus Eaton]. We collected this species in Malta for the first time (previously unpublished data). However, this finding was generally mentioned in a tabular summary by Belfiore and D’Antonio (1991) [sub. Pseudocentroptilum sp. n.]. The information published by Cardoni et al. (2015) needs to be clarified. So far known from several localities in Sicily and Sardinia (Belfiore and D’Antonio 1991; Buffagni et al. 2003; Bauernfeind and Soldán 2012). Reported from Elba and Sardinia may however represent a cryptic endemic species as they differ significantly from specimens of Continental Europe (Cardoni et al. 2015). Most probably part of material belongs to P. pulchrum. Species inquirenda according to Bauernfeind and Soldán (2012: 199).

So far only known from several localities in Sicily and Sardinia (see Sowa 1985; Sroka et al. 2010); probably endemic to the island. The problem with proper identification of material previously assigned to the P. pulchrum species group is briefly discussed by Belfiore (1988). Belfiore and D’Antonio (1991) and Belfiore et al. (1991). The respective taxonomical status of this material needs to be clarified. So far known from several localities in Rhodos (see Sowa 1985; Sroka et al. 2010); probably endemic to the island. The problem with proper identification of material previously assigned to the P. pulchrum species group is briefly discussed by Belfiore (1988).
roinvertebrate taxocene of both localities included several mayfly taxa, viz. *B. irenkae*, *Baetis* (*Baetis*) cf. *muticus* (Linnaeus, 1758), *Epeorus* (*Ironopsis*) sp., and *Electrogena* sp.

Flight period probably from May and during first half of summer months, since several nymphs ready to emerge were collected together with younger larvae.

Notes on distribution

As well as *B. irenkae*, a new species so far known only from several localities in Cyprus (type locality at Kryos River within Kalidonian Waterfalls, and another one locality at Diplos River within Chantara Waterfalls), and thus might be considered presently as endemic to this island (Table 2).

Annotated checklist of Baetidae in the Mediterranean islands

The history on the mayfly fauna of the Mediterranean islands dates back to the first published observations by Hagen (1864). In this contribution, seven mayfly species were reported from Corsica, including three species of Baetidae. Significant early publications dealing with the Corsican mayfly fauna and also including the description of new species were contributed by Esben Petersen (1912; 1913). All other publications in the early 20th century (Jakobson and Bianki 1905; Lestage 1922; Kimmins 1930) in fact were just compilations and summaries of H.A. Hagen’s and M. Esben-Petersen’s earlier investigations. The first records of the mayfly fauna of the Balearic Islands was published by Navás (1914). Literature on the distribution of Baetidae in the Mediterranean Islands however is scattered.

The annotated checklist presented here (Table 2) provides the first comprehensive compilation of records of Baetidae in the Mediterranean islands incorporating also most recent records and findings along with detailed critical comments on previous records.

Acknowledgements

We thank our colleagues Jindřiška Bojková (Masaryk University, Czech Republic), Stefania Erba and Andrea Buffagni (both CNR-IRSA Water Research Institute, Brugherio, Italy) for kindly providing material of *B. cypronyx* sp. n. The authors are grateful to Alain Thomas (University of Toulouse, France), Aref Dia (Lebanese University, Lebanon), Pavel Sroka (IE BC CAS, Czech Republic), Jean-Luc Gattolliat (Museum of Zoology, Lausanne, Switzerland) and an anonymous reviewer for critical remarks, comments, and help with comparative material. We are grateful to Milan Pallmann and Karin Wolf-Schwenninger (both SMNS) for macro photographs and SEMs. We also thank Zsuzsa Miskolci (Budapest, Hungary), Philp J. Stoate (Somerset, England), and Alexandros Constantinides (Cyprus) for photographs of localities.
This research was financially supported by the Ukrainian Ministry of Education and Science (Project No. M/29-2016) for RJG and conducted with institutional support RVO: 60077344 (IE, BC CAS) for RJG and TS.

References

Alba-Tercedor J, Jáimez-Cuéllar P (2003) Checklist and historical evolution of the knowledge of Ephemeroptera in the Iberian Peninsula, Balearic and Canary Islands. In: Gaino E (Ed.) Research update on Ephemeroptera & Plecoptera. Università di Perugia, Perugia, 91–97.

Bauernfeind E (2003) The mayflies of Greece (Insecta: Ephemeroptera) – A provisional checklist. In: Gaino E (Ed.) Research update on Ephemeroptera & Plecoptera. Università di Perugia, Perugia, 99–107.

Bauernfeind E, Soldán T (2012) The Mayflies of Europe (Ephemeroptera). Apollo Books, Ollerup, 781 pp. https://doi.org/10.1163/9789004260887

Belfiore C (1983) Efemerotteri (Ephemeroptera). Guide per il riconoscimento delle specie animali delle acque interne italiane, C.N.R., Progetto finalizzato “Promozione della qualita’ dell’ambiente”, 24, 106 pp.

Belfiore C (1988) Progressi nella conoscenza degli Efemerotteri italiani (1980–1987). Atti XV Congr. Naz. Ital. Entomol., L’Aquila, 107–114.

Belfiore C (1990) Efemerotteri delle isole dell’Egeo (Ephemeroptera). Fragmenta Entomologica, 22(2): 265–270.

Belfiore C, D’Antonio C (1991) Faunistic, taxonomic and biogeographical studies of Ephemeroptera from Southern Italy. In: Alba-Tercedor J, Sanchez Ortega J (Eds) Overview and Strategies of Ephemeroptera and Plecoptera. Sandhill-Crane Press, 253–262.

Belfiore C, D’Antonio C, Audisio P, Scillitani G (1991) Analisi faunistiche e biogeografiche sugli Efemerotteri della Sicilia (Insecta, Ephemeroptera). Animalia (Catania) 18(1990): 31–60.

Belfiore C, Gaino E (1988) Mayflies from Sardinia Italy (Ephemeroptera). Bollettino della Societa Entomologica Italiana 120(2): 75–83.

Bisconti R, Canestrelli D, Tenchini R, Belfiore C, Buffagni A, Nascetti G (2016) Cryptic diversity and multiple origins of the widespread mayfly species group Baetis rhodani (Ephemeroptera: Baetidae) on northwestern Mediterranean islands. Ecology and Evolution 2016: 1–10. https://doi.org/10.1101/056556

Buffagni A, Belfiore C, Erba S, Kemp JL, Cazzola M (2003) A review of Ephemeroptera species distribution in Italy: Gains from recent studies and areas for future focus. In: Gaino E (Ed.) Research update on Ephemeroptera & Plecoptera. Università di Perugia, Perugia, 279–290.

Cardoni S, Tenchini R, Ficulle I, Piredda R, Simeone MC, Belfiore C (2015) DNA barcode assessment of Mediterranean mayflies (Ephemeroptera), benchmark data for a regional reference library for rapid biomonitoring of freshwaters. Biochemical Systematics and Ecology 62: 36–50. https://doi.org/10.1016/j.bse.2015.07.035

Esben Petersen M (1912) Addition to the knowledge of the Neuropterous insect fauna of Corsica. Entomologiske Meddelelser 4: 348–353.
Esben Petersen M (1913) Addition to the knowledge of the Neuropterous fauna of Corsica. II.
Entomologiske Meddelelser 10(1): 20–28.
FEWS (2004) Fauna Europaea Web Service, version 1.1. http://www.faunaeur.org
Gaino E, Rebora M (1996) Fine structure of flat-tipped antennal sensilla in three species of mayflies
(Ephemeroptera). Invertebrate Biology 115(2): 145–149. https://doi.org/10.2307/3227044
Gaino E, Rebora M (2003) The sensilla on the labial and maxillary palps of the nymph of Baetis
rhodani (Ephemeroptera: Baetidae). In: Gaino E (Ed.) Research update on Ephemeroptera
& Plecoptera. Università di Perugia, Perugia, 445–451.
Gattolliat J-L, Cavallo E, Vuataz L, Sartori M (2015) DNA barcoding of Corsican mayflies
(Ephemeroptera) with implications on biogeography, systematics and biodiversity. Arthropod Systematics & Phylogeny 73(1): 3–18.
Godunko RJ (1999) Species of the Alpinus Group of the Genus Baetis (Ephemeroptera, Baetidae)
from Ukraine. Vestnik Zoologii 33(4–5): 23–28.
Godunko RJ, Palatov DM, Martynov AV (2015) Mayflies of the Caucasus Mountains. III.
A new representative of the subgenus Rhodobaetis Jacob, 2003 (Baetidae: Baetis) from
the South-Western Caucasus. Zootaxa 3948(2): 182–202. https://doi.org/10.11646/
zootaxa.3948.2.2
Grandi M (1960) Ephemeroidea. Fauna d’Italia, 3, Edizioni Calderini, Bologna, 472 pp.
Grandi M (1966) Efemeroterri dell’Italia centro-meridionale e della Sicilia (Contricuti allo
studio degli Efemeroterri italiani XXVIII). Memorie del Museo Civio di Storia Naturale,
Verona 14: 325–334.
Hagen HA (1864) Névroptères (non Odonates) de la Corse, recueillis par M. E. Bellier de la
Chavignerie en 1860 et 1861. Annales de la Société Entomologique de France, Sér. 4(4):
38–45.
Jacob U (2003) Baetis Leach 1815, sensu stricto or sensu lato. Ein Beitrag zum Gattungskonzept
auf der Grundlage von Artengruppen mit Bestimmungsschlüsseln. Lauterbornia 47: 59–129.
Jakobson GG, Bianki VL (1905) Priamokrylya i lozhnosechkatokrylya Rossisskoy imperii I
supredel’nykh stran [Orthopterans and pseudoneupterans of the Russian Empire and adja-
cent countries]. Devrien A.F . Publisher, St. Petersburg, 952 pp. [In Russian]
Keffermüller M, Sowa R (1984) Survey of Central European species of the genera Centrotipilum
Eaton and Pseudocentrotipilum Bogoescu (Ephemeroptera, Baetidae). Polskie Pismo Ento-
mologiczne 54: 309–340.
Kimmins DE (1930) A list of the Corsican Ephemeroptera and Neuroptera. EOS: Revista Española de Entomología 6(2): 185–190.
Klapálek F (1917) Über die von Prof. A. Hetschko in Korsika gesammelten Neuropteroiden
nebst Bemerkungen über einige ungenügend bekannte Arten. Wiener Entomologische
Zeitung 36: 193–208. https://doi.org/10.5962/bhl.part.12934
Kluge NJ, Novikova EA (2011) Systematics of the mayfly taxon Acentrella (Ephemeroptera: Baetidae), with description of new Asian and African species. Russian Entomological Journal
20(1): 1–56.
Lestage J-A (1922) Catalogue des Éphémères de France. Annales de la Société Entomologique
de France 91: 273–276.
Leys M, Keller I, Räsänen K, Gattolliat J-L, Robinson CT (2016) Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evolutionary Biology 16: 1–15. https://doi.org/10.1186/s12862-016-0643-y

Lucentini L, Rebora M, Puletti ME, Gigiarelli L, Fontaneto D, Gaino E, Panara F (2011) Geographical and seasonal evidence of cryptic diversity in the Baetis rhodani complex (Ephemeroptera, Baetidae) revealed by means of DNA taxonomy. Hydrobiologia 673: 215–228. https://doi.org/10.1007/s10750-011-0778-1

Müller-Liebenau I (1966) Beschreibung einer neuen deutschen Eintagsfliegen-Art (Baetis bengtssonii n. sp., Insecta, Ephemeroptera). Gewässer und Abwässer 43: 65–79.

Müller-Liebenau I (1969) Revision der europäischen Arten der Gattung Baetis Leach, 1815 (Insecta, Ephemeroptera). Gewässer und Abwässer, 28/29, 214 pp.

Navás L (1914) Notas entomológicas 10. Neurópteros de Mallorca. Boletin de la Sociedad Aragonesa de Ciencias Naturales, 186 pp.

Office pour les insectes et leur environnement, OPIE-benthos: Baetidae. http://www.opie-benthos.fr/opie/pages_dyna.php?idpage=515 [accessed 30.11.2016]

Peru N, Thomas A (2001) Compléments et corrections à la faune des Ephéméroptère d’Afrique du Nord. 7. Description complémentaire de Baetis berberus Thomas, 1986 [Ephemeroptera, Baetidae]. Ephemera 3(2): 75–82.

Russev B (1959) Prinos kam faunata na ednodnevkite (Ephemeroptera) ot ostrov Tasos i Belomorieto [Addition to the fauna of mayflies (Ephemeroptera) of the Tasos island and Belomorie]. Izvestia na Zoologicheskiya institute 8: 271–274. [In Bulgarian]

Sartori M, Thomas AGB (1989) Contribution à la connaissance du genre Baetis Leach, 1815 en Corse (Ephemeroptera, Baetidae). B. albinatii n. sp. du groupe muticus (L.). Annales de Limnologie 25(2): 131–137. https://doi.org/10.1051/limn/1989013

Sartori M, Thomas AGB (1991) Contribution to the systematics of Baetis muticus (L.) and allied species from South Western Palearctic Region (Ephemeroptera; Baetidae). In: Alba Tercedor J, Sanchez Ortega J (Eds) Overview and Strategies of Ephemeroptera and Plecoptera. Sandhill-Crane Press, 223–233.

Soldán T (1978) Mayflies (Ephemeroptera) new to the fauna of Czechoslovakia found in 1972–1977. Acta Entomologica Bohemoslovaca 75: 319–329.

Soldán T, Godunko RJ (2008) Two new species of the genus Baetis Leach, 1815 (Ephemeroptera: Baetidae) from Cyprus. Annales de Limnologie 58(1): 79–104. https://doi.org/10.3161/000345408783897770

Soldán T, Godunko RJ (2009) Baetis zdenkae sp. n., a new representative of the Baetis bucera-tus species-group (Ephemeroptera: Baetidae) from Rhodos (Greece) with notes to species-grouping of the subgenus Baetis Leach, 1815 s. str. Zootaxa 1972: 1–19.

Sowa R (1985) Pseudocentroptilum fascicau-dale n. sp. (Ephemeroptera, Baetidae) from Greece. Acta Hydrobiologica 27(1): 75–80.

Sroka P, Godunko RJ, Soldán T (2010) Redescription of the species Procloeon (Pseudocentrop-tilum) fascicau-dale (Sowa, 1985) (Ephemeroptera: Baetidae) with notes to its taxonomic position, biology and distribution. Zootaxa 2490: 16–32.
Sroka P, Martynov AV, Godunko RJ (2012) Morphological and genetic variability of *Bae-
tis (Rhodobaetis) braaschi* Zimmermann, 1980 (Ephemeroptera: Baetidae). Zootaxa 3323:
27–49.

Thomas AGB, Boumaiza M, Soldán T (1983) *Baetis punicus* n. sp., Éphéméroptère nouveau
de Tunisie (Baetidae). Annales de Limnologie 19(2): 107–111. https://doi.org/10.1051/limn/1983010

Thomas AGB, Dia A (1984) *Baetis baroukianus* n. sp., Éphéméroptère nouveau du Liban
(Baetidae). Bulletin de la Société d’Histoire Naturelle de Toulouse 120: 7–12. https://doi.org/10.1051/limn/1984036

Thomas A, Dia A (1999) Compléments et corrections à la faune des Éphéméroptères du
Proche-Orient. 4. Description de l’imago mâle de *Baetis baroukianus* Thomas & Dia, 1984
et érection de *Patites* n. subgen. [Ephemeroptera, Baetidae]. Ephemera 1(2): 105–109.

Thomas AGB, Gazagnes G (1984) *Baetis cyrneus* n. sp., Éphéméroptère nouveau de Corse (Bae-
tidae). Annales de Limnologie 20(3): 199–202.

Thomas AGB, Soldán T (1987) *Baetis ingridae* n. sp., Éphéméroptère nouveau de Corse (Baeti-
dae). Annales de Limnologie 23(1): 23–26. https://doi.org/10.1051/limn/1987001

Verrier M-L (1954) Contribution a l’étude de la faune d’eau douce de Corse. Éphéméroptères.
Vie et Milieu 5(2): 280–290.

Verrier M-L (1956) Éphéméroptères capturés dans l’île de Crête par M.K. Lindberg. Bulletin de
la Société Entomologique de France 61: 95–96.

Williams HC, Ormerod SJ, Bruford MW (2006) Molecular systematics and phylogeography of
the cryptic species complex *Baetis rhodani* (Ephemeroptera, Baetidae). Molecular Phylo-
genetics and Evolution 40: 370–382. https://doi.org/10.1016/j.ympev.2006.03.004