Surgical correction of polymelia in ISA-brown Chicken: A case report

Gapsiso RH, Mutah AA, Mana HP, Yoksa DT, Aiga PS and Bokko PB

DOI: https://doi.org/10.22271/veterinary.2020.v5.i6a.306

Abstract
Polymelia is a congenital anomaly which is associated with extra limbs in animals and humans. Predisposing factors are associated with genetic, environmental agents, or a combination of factors. A case of polymelia was observed in 5 days old ISA-brown chick during a routine check in commercial poultry farm with about 5000 pullets of ISA-Brown strain. On physical examination, there were two extra limbs located caudally, initially touching ground but as the bird grows, the extra limbs were off the ground, rigid, shrunken, smaller, and non-functional yet responded to stimulus. Radiographic evaluation with plain X-ray revealed that the extra limb originated from the left acetabulum, having one short femur pointing caudally, one short tibiotarsus bones bifurcated into two and giving rise to two tarsometatarsus bones, each having four curled digits. Surgical amputation of the extra limb was carried out when the chicken was 10 weeks old under xylazine and ketamine anaesthesia. Full recovery was attained in 14 days and the chicken was walking normally without any deformity in the gait.

Keywords: Polymelia, amputation, ISA-brown, tibiotarsus, tarsometatarsus, extra limbs

Introduction
Polymelia is a rare congenital defect involving limbs, in which the affected animal has more than the usual number of limbs (Bharati, 2017) [4]. Polymelia is a foetal developmental anomaly usually linked to genetic factors (trans-genes, chromosomes mutation), and environmental agents (infections, toxins, indiscriminate use of drugs, teratogens, exposure to ionizing radiation, fertilization techniques, hatching of eggs with double yolk etc.) or a combination of factors (Keeler et al., 1981; Newman et al., 1999; Hirschberg et al., 2012; Bharati 2017; Onmus et al., 2017) [8, 10, 7, 4, 12]. It often occur with some other congenital abnormalities affecting the limbs in domestic animals such as: polydactyly, hemimelia and duplication of some organs like colon, caecum and cloaca or rudimentary wing as reported by; Noh et al., (2003) [11], Zhao et al., (2006) [17], Azeez and Oyagbemi, (2013) [2], Bharati, (2017) [4]; Neupane, et al., (2017) [9]; Newman et al., Daneze and Brasil, (2018) [5].

Case History and Clinical Examination
A chick was identified with extra limbs and isolated at five (5) days old during a routine vaccination and checks in a commercial poultry farm with about five thousand (5000) pullets of ISA-Brown strain in Abeokuta and brought to Maiduguri, Borno State, Nigeria. The chick was kept and fed until it reached 10 weeks of age and attained a live weight of 0.65kg before clinical evaluation and surgical correction was carried out at the Small Animal Surgery Theatre, Department of Veterinary Surgery and Radiology, University of Maiduguri, Borno State, Nigeria.

Clinical evaluation
Physical examination revealed two extra limbs located caudally, it was short, rigid and immovable and also off the ground but responded to stimulus with needle prick (Figure 1). Plain x-ray also revealed that extra limb originated from the left acetabulum, it had short femur, tibiotarsus bifurcates into two giving rise to two distinct tarsometatarsal bones and each having four curled digits (Figure 2).
Fig 1: Arrow showing 2 extra limbs with curled digits located caudally

Fig 2: X-ray showing extra limb originated from left side, with short femur (black arrow), tibiotarsal bones bifurcates into two, leading to two tarso-metatarsal bones and two curled digits (green arrow).

Surgical Amputation
The chicken was prepared for surgery by carefully removing the feathers around the proposed incision site under sedation and aseptically scrubbed with 0.3% w/v chlorhexidine. Anaesthesia was achieved with Xylazine (2mg/kg) and Ketamine (20mg/kg) combination administered at the pectoralis muscles. The bird was placed on lateral recumbency and properly draped. A 3cm skin incision was made, while the muscles and connective tissues over the point of articulation of the extra limb were reflected (Figure 3). The femur of the accessory limb was disarticulated from the joint, using scalp knife blade, scissors and forceps (Figures 4 & 5). The surgical wound closure was carried out using simple interrupted suture pattern with polyglycolic acid (PGA) suture material (Figure 6). The chicken recovered uneventfully from the anaesthesia, took water and feeds few hours after the surgery.

Post-Operative Care and Recovery
Post-surgical analgesia was achieved with Meloxicam 5 mg/kg x 3/7, Ceftriaxone (Rocephin®) 75mg/kg x 5/7 and Oxytetracycline spray 5/7. Full recovery was achieved following the post-surgical treatments with evidence of walking without any deformity and sutures removed on day 14 following surgery. (Figures 7 & 8)
Innervations (Pohlmeyer, 1974; Amatya, 2014; Bharati 2017) et al., similar to report of Pohlmeyer (1974) [13]. Radiographical extra limbs, stiff joints, and spares muscles with innervation often non-functional with stiff joints and sparse muscles with the extra limbs are usually abnormal in shape and size, and more limbs in four legged animals and three or more in birds, which could lead to shortened life span as reported by Noh [polymelia without duplication of any of the internal organs to 8 weeks after hatching. This may be attributed to localised birds often have shortened life span and died within few days to report of Abu-Seida (2014) [1] who reported surgical amputation of polymelia in a layer chicken in Egypt. Cases of avian polymelia in Nigeria are rarely reported and corrected as reported by Azzez and Oyagbemi 2008) who reported Nera black chicken (Gallus domesticus) without deformity. Furthermore, other ways of managing the condition and giving the affected birds (especially exotic birds) a chance to live a normal life for providing the surgical facilities.

Discussion
Polymelia is believed to arise from organogenesis phase of embryonic development usually linked to genetic factors and environmental agents. The specific cause of this condition in this present case could not be ascertained. Polymelia has been recorded in humans and most animals’ species such as ovine, bovine, caprine and poultry but very rare in swine (Hiraga & Demis, 1993; Ramadan et al., 1998; Talamillo et al., 2005) [6, 14-16]. Polymelia usually manifest as extra limbs, with five or more limbs in four legged animals and three or more in birds, the extra limbs are usually abnormal in shape and size, and often non-functional with stiff joints and sparse muscles with innervations (Pohlmeyer, 1974; Amatya, 2014; Bharati 2017) [13, 3, 4]. The clinical signs observed in this case were short extra limbs, stiff joints, and spares muscles with innervation similar to report of Pohlmeyer (1974) [13]. Radiographical evaluation carried out to determine the position and origin of the extra limbs and surgical amputation in this case is similar to report of Abu-Seida (2014) [1] who reported surgical amputation of polymelia in a layer chicken in Egypt. Cases of avian polymelia in Nigeria are rarely reported and corrected as reported by Azzez and Oyagbemi 2008) who reported Nera black chicken (Gallus domesticus) with polymelia and rudimentary wing from Nigeria. The survival of the chicken in this case report and the progressive growth to the point of laying eggs varies with Azeez & Oyagbemi, (2013) [3] who reported that affected birds often have shortened life span and died within few days to 8 weeks after hatching. This may be attributed to localised polymelia without duplication of any of the internal organs which could lead to shortened life span as reported by Noh et al., (2003) [11], Zhao et al., (2006) [17], Bharati, (2017) [4]; Neupane, et al., (2017) [9]; Daneze and Brasil, (2018) [5].

Conclusion
Surgical amputation of an extra limb in avian species is one of the ways to managing the condition and giving the affected birds (especially exotic birds) a chance to live a normal life without deformity. Furthermore, other ways of managing the deformity can be explored and documented.

Conflict of Interests
The authors have no conflict of interest to declare.

Acknowledgement
The authors acknowledge the Department of Veterinary Surgery and Radiology, University of Maiduguri, Borno State for providing the surgical facilities.

Fig 8: shows chicken fully recovered

References
1. Abu-Seida AM. Amputation of polymelia in a layer chicken. Avian Diseases. Case Report. 2014;58(2):330-332.
2. Azeez OL, Oyagbemi AA. ‘First report of polymelia and a rudimentary wing in a Nigerian Nera black chicken’, Journal of the South African Veterinary Association 2013;84(1):1082-1083. http://dx.doi.org/10.4102/jsava.v84i1.1082
3. Bhaha Amatya. First report of polymelia in Shakini breed chicken from Nepal Journal of Natural History Museum 2014;28:175-177.
4. Bharati K. Polymelia - Causes, Symptoms, Diagnosis, Treatment & Prevention. Polymelia. Medindia Medical Review Team 2017.
5. Daneze ER, Brasil FB. Polymelia and duplication of the descending colon in a Poodle dog; A case report. 154 Vet. Archichives 2018;88(1):149-157.
6. Hiraga T, Dennis S. 'Congenital duplication', Veterinary Clinic of North America, Food Animal Practice 1993;9:145-161. PMid:8457924
7. Hirschberg RM, Saleh M, Kaiser S, Lierz M, Hafez HM, Bragulla HH.Polymelia layer chic displaying additional malformation of the hind gut: case report and in-dept review of related literature. Anat. Histol. Embryol. 2012;41:262-273.
8. Keeler RF, Shupe JL, Crowe MW, Olson A, Balls LD. Nicotiana glauca -induced congenital deformities in calves: Clinical and pathologic aspects’ American Journal of Veterinary Research 1981;42:1231-1234. PMid:72710
9. Neupane M, Moss KD, Avila F, Raudsepp T, Marron BM, Beever JE et al. Polymelia in a holstein calf. Professional Animal Scientist 2017;33(3):378-386. June. DOI:https://doi.org/10.15232/pas.2016-01594
10. Newman SJ, Bailey TJ, Jones JC, Diggrassie WA, Whittier WD. ‘Multiple congenital anomalies in a calf’, Journal of Veterinary Diagnostic Investigation 1999;11:368-371. http://dx.doi.org/10.1177/104063879901100414,PMid:10 424656
11. Noh DH, Jeong WI, Lee CS, Jung CY, Chung JY, Jeew YH. ‘Multiple congenital malformation in a holstein calf. Journal of Comparative Pathology 2003;129:313-315. http://dx.doi.org/10.1016/S0021-9755(03)00044-6
12. Onmuş O, Siki M, Gül O, Yelken O. Polymelia and polydactyly in white stork (Ciconia ciconia). International Journal of Avian & Wildlife Biology 2017;2(3):70-71. DOI:10.15406/ijawb.2017.02.00019
13. Pohlmeyer K. Notomelie beim Kalb. Dtsch. tierärztl. Wschr 1974;82:190-195.
14. Ramadan R, Abdin-Bey M, Al-Holaibi A. 'Notomelia in goats and calves', Pakistan Veterinary Journal 1998;18:47-49.
15. Riverra R, Hootnick D, Gingold A, Levinsohn E, Kruger II, Talamillo A. ‘The developing limb and the control of the number of digits’, Clinical Genetics 2005;67:143-153. http://dx.doi.org/10.1111/j.1399-0004.2005.00404.x,PMid:15679824
16. Talamillo A, Batisda MF, Fernandez-Teran M, Ros MA. The developing limb and the control of the number of digit. Clinical Genetics. 2005;67(2):143-53 · DOI: 10.1111/j.1399-0004.2005.00404.x · Source: PubMed
17. Zhao L, Li MQ, Sun XT, Ma ZS, Guo G, Huang YT. Congenital lumbosacral limb duplication. A case report. J. Orthop. Surg. (Hong kSong) 2006;14:187-91.