Correction: Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner

The PLOS ONE Staff

Fig. 5 is incorrect. The authors have provided a corrected version here.
1. Jiménez-Maldonado A, de Álvarez-Buylla ER, Montero S, Melnikov V, Castro-Rodríguez E, Gamboa-Domínguez A, et al. (2014) Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner. PLoS ONE 9(12): e115177. doi:10.1371/journal.pone.0115177 PMID: 25531651

Fig 5. Pancreatic immunohistochemistry, effects of an 8-week treadmill exercise regimen in studied rats. (A) Insulin distribution and (B) pancreatic islet size. Light micrographs reveal the staining patterns of the pancreatic islets; the pancreatic islet areas (mm²) were evaluated in 209 islets. C, control sedentary group; CK sedentary rats that received K252a as in MITK and HITK groups; MIT, medium-intensity training rats; MITK, as MIT with a TrkB inhibitor (K252a) injection; HIT, high-intensity training rats; HITK, as HIT with a TrkB inhibitor injection; data are shown as means ± S.E. *p<0.05 vs. C; §p<0.05 vs. HITK; ANOVA and Tukey’s tests.

doi:10.1371/journal.pone.0119047.g001

Reference

1. Jiménez-Maldonado A, de Álvarez-Buylla ER, Montero S, Melnikov V, Castro-Rodríguez E, Gamboa-Domínguez A, et al. (2014) Chronic Exercise Increases Plasma Brain-Derived Neurotrophic Factor Levels, Pancreatic Islet Size, and Insulin Tolerance in a TrkB-Dependent Manner. PLoS ONE 9(12): e115177. doi: 10.1371/journal.pone.0115177 PMID: 25531651