Author’s reply

The valuable comments made by Babu et al. are very much appreciated. Babu et al. stress the value of exercise oxygen consumption and oxygen pulse to assess mortality risk.[1,2] Indeed, both CPET parameters were reduced in the presented patient and remained reduced after the start of therapy.[3] Babu et al. hypothesize that the lack of normalization in CPET parameters may have been explained by a short duration (4 months) of therapy. However, during her recent 1 year follow-up evaluation, we observed no further improvements in maximal exercise capacity (from 167 to 162 W), maximal oxygen consumption (from 2.11 to 2.03 l/min), or oxygen pulse (from 12 to 11 ml/beat). It is difficult to determine whether the lack of normalization of CPET parameters translates into a poor prognosis. The prognostic value of changes in CPET parameters after the start of therapy remains unclear. Studies examining the prognostic utility of CPET in pulmonary arterial hypertension (PAH) were performed in a relatively small number of patients,[4] and in these studies, measurements were only done at baseline. Babu et al. make valuable comments on the usefulness of CPET as a screening tool for patients with a family history of PAH. They suggest that in the presented case, it may have been appropriate to perform yearly CPET along with a blood workup and echocardiography. They hypothesize that the patient may have had steady decrements in CPET parameters between 2009 (no PAH) and 2012 (diagnosis of PAH). Although we agree that steady decrements may have been visualized by repeated tests, we question if performance of CPET would have altered this patient’s management. She was seen by a cardiologist between 2009 and 2012 and repeated echocardiography did not reveal any signs of PH. In addition, the patient only started to experience physical complaints in November of 2011. We would probably not have performed a right heart catheterization in a patient with no physical complaints or signs of PH on echocardiography, even if CPET would have shown some subtle abnormalities. We agree with Babu et al. that only a prospective follow-up study in offspring of heritable PAH patients will determine the value of CPET as a screening tool for PAH.

Pia Trip, Anton Vonk‑Noordegraaf, and Harm Jan Bogaard

Department of Pulmonary Medicine, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands

Email: hj.bogaard@vumc.nl

REFERENCES

1. Groepenhoff H, Vonk‑Noordegraaf A, Boonstra A, Spreeuwenberg MD, Postmus PE, Bogaard HJ. Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc 2008;40:1725‑32.
2. Oliveira RB, Myers J, Araújo CG, Abella J, Mandic S, Froelicher V. Maximal exercise oxygen pulse as a predictor of mortality among male veterans referred for exercise testing. Eur J Cardiovasc Prev Rehabil 2009;16:358‑64.
3. Trip P, Vonk‑Noordegraaf A, Bogaard HJ. Cardiopulmonary exercise testing reveals onset of disease and response to treatment in a case of heritable pulmonary arterial hypertension. Pulm Circ 2012;2:387‑9.
4. Arena R, Lavie CJ, Milani RV, Myers J, Guazzi M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: An evidence‑based review. J Heart Lung Transplant 2010;29:159‑73.

Rare etiological causes of Takotsubo cardiomyopathy

Regarding “Takotsubo cardiomyopathy after treatment of pulmonary arterial hypertension”

Editor:

I read with great interest the recent article by Cork et al.[1] Takotsubo cardiomyopathy (TTC) may occur secondary to a number of rare causes.

For instance, emotional stress may initiate TTC.[2] This is especially more likely in females. The patients may present with chest pain and dyspnea that on further evaluation turns out to be TTC. Severe burns may also result in TTC. [3] Physiological stress secondary to the burn results in left ventricular dysfunction characteristic of TTC. Rarely, migratory TTC may occur secondary to intra-abdominal infections like acute cholecystitis.[4] Inverted TTC has also

Regarding “Takotsubo cardiomyopathy after treatment of pulmonary arterial hypertension”

Editor:

I read with great interest the recent article by Cork et al.[1] Takotsubo cardiomyopathy (TTC) may occur secondary to a number of rare causes.

For instance, emotional stress may initiate TTC.[2] This is especially more likely in females. The patients may present with chest pain and dyspnea that on further evaluation turns out to be TTC. Severe burns may also result in TTC. [3] Physiological stress secondary to the burn results in left ventricular dysfunction characteristic of TTC. Rarely, migratory TTC may occur secondary to intra-abdominal infections like acute cholecystitis.[4] Inverted TTC has also
been reported secondary to adrenal masses as well as secondary to pharmaceutical agents like chloroquine.\cite{5,6}

Rarely, TTC may occur as a complication of intra-cerebral hemorrhage.\cite{7,8} In this case, electrocardiogram (ECG) changes as well as brain natriuretic peptide determination help in diagnosing the TTC. Similarly, TTC may result secondary to an intra-cerebral infarction. Rarely, status migrainosus may result in cardiac changes including TTC.\cite{9}

Most patients make a complete recovery after resolution of the stressor.

TTC has also been reported following organ transplantation. For instance, Tachotti et al. have recently reported two cases of TTC that occurred following hepatic transplantation.\cite{10} Typical apical ballooning was seen on echocardiographic examination in both the cases. Surgery like thyroidectomies may also result in TTC as a post-surgical complication.\cite{11}

Similarly, rarely, induction of general anesthesia may result in TTC.\cite{12} Diagnostic tests like dobutamine stress echo can also result in TTC.\cite{13}

The above examples clearly illustrate that TTC may occur secondary to myriad causes ranging from burns to anesthesia induction. There is a clear need to increase awareness about this syndrome among physicians, especially cardiologists.

Shailendra Kapoor
Mechanicsville Hospital, Private Practice, Mechanicsville, VA, USA
Email: shailendrakapoor@yahoo.com

REFERENCES

1. Cork DP, Mehrotra AK, Gomberg-Maitland M. Takotsubo cardiomyopathy after treatment of pulmonary arterial hypertension. Pulm Circ 2012;2:390-4.
2. Bounhoure JP. Takotsubo or stress cardiomyopathy. Cardiovasc Psychiatry Neurol 2012;2012:637672.
3. Fagin A, Sen S, Palmieri T, Greenhalgh D. Takotsubo cardiomyopathy caused by severe burn injury. J Burn Care Res 2012;33:e243-6.
4. Aggarwal V, Krantz MJ. Migratory Takotsubo cardiomyopathy in the setting of plasma brain natriuretic peptide measurement. Rinsho Shinkeigaku 2012;52:778-81.
5. Park JY, Kim SJ. Inverted-Takotsubo cardiomyopathy secondary to adrenal mass. Arch Cardiovasc Dis 2012;105:596-7.
6. Champion S, Maliszin I, Cleophax C, Vodovar D, Deye N, Mégarbane B, et al. Chloroquine poisoning-associated inverted Takotsubo cardiomyopathy. Clin Toxicol (Phila) 2012;50:721-2.
7. Shiromoto T, Shibazaki K, Kimura K, Sakai K. A case of cerebellar hemorrhage complicated with Takotsubo cardiomyopathy - usefulness of plasma brain natriuretic peptide measurement. Rinsho Shinkeigaku 2012;52:778-81.
8. Mayor-Gómez S, Erro MF, Olaz-Preciado F, Ciriza-Esandi M, Gállego-Cullere J. Stroke and Takotsubo syndrome: A reciprocal relationship. Rev Neurol 2012;55:475-8.
9. Jalan P, Dhakal L, Pandav V, Omar AI. Status migrainosus as a potential stressor leading to Takotsubo cardiomyopathy. Cephalalgia 2012;32:1140-3.
10. Tachotti Pires LJ, Cardoso Curiati MN, Vissoci Reiche F, Silvestre OM, Mangini S, Carballo Afonso R, et al. Stress-induced cardiomyopathy (Takotsubo cardiomyopathy) after liver transplantation - Report of two cases. Transplant Proc 2012;44:2497-500.
11. Gundara JS, Lee JC, Ip J, Sidhu SB. Takotsubo cardiomyopathy complicating thyroidectomy for Graves’ disease. Thyroid 2012;22:975-6.
12. Goonewardene M, Aziz S. Takotsubo cardiomyopathy during elective general anaesthetic induction. BMJ Case Reports 2012;doi:10.1136/bcr-2012-006373
13. Chia PL, Lee E. Reverse Takotsubo pattern stress cardiomyopathy in a male patient induced during dobutamine stress echocardiography. Ann Acad Med Singapore 2012;41:264.