Macroscopic description of particle systems with non-local density-dependent diffusivity.

Cristóbal López

1Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca, Spain.

(Dated: March 23, 2022)

In this paper we study macroscopic density equations in which the diffusion coefficient depends on a weighted spatial average of the density itself. We show that large differences (not present in the local density-dependence case) appear between the density equations that are derived from different representations of the Langevin equation describing a system of interacting Brownian particles. Linear stability analysis demonstrates that under some circumstances the density equation interpreted like Ito has pattern solutions, which never appear for the Hänggi-Klimontovich interpretation, which is the other one typically appearing in the context of nonlinear diffusion processes. We also introduce a discrete-time microscopic model of particles that confirms the results obtained at the macroscopic density level.

PACS numbers: 87.23.Cc, 05.10.Gg, 05.40.-a

In the mathematical description of many ecological systems the mobility of the species depends on the local density or concentration of the individuals [1, 2]. A standard example of this is given by models for animal or insect dispersal where it is usually considered that there is an increase of the diffusion coefficient due to population pressure. These models are written down as an extension of the diffusion equation which includes a diffusivity depending on the population density. Under the generic name of nonlinear diffusion equations similar equations arise in other contexts like in the flow through a porous medium, bacterial dynamics, and transport in plasmas [3, 4].

Generally, the nonlinear diffusion equations for the density correspond to a coarse-grained description of the more fundamental particle stochastic dynamics. Similarly to the case of diffusion in nonhomogeneous media where the diffusion coefficient varies in space, a heuristic derivation of the nonlinear diffusion density equations has to deal with the Ito-Stratonovich dilemma [4, 5]. (To be precise one should speak about the interpretation of the Langevin equation since, as we will see later, the Stratonovich realization does not appear in our study and one has instead the Hänggi-Klimontovich interpretation of the Langevin equation [6].) In the context of noise-induced phase transitions this is of a major importance [6], and this work pretends to show that it is also specially relevant when one considers nonlocal interactions between the particles.

In a biological setting, nonlocal effects have been widely considered since they account for the interaction between individuals that are separated in space [5]. More recently, there has appeared interest in models where the mobility depends on an averaged density rather than on its value at a point [5]. The spatial non-locality is there introduced in order to take into account the finite-size of the particles or the senses (visual, hearing, etc.) of the organisms, that somehow determine their mobility. The idea behind is that the diffusivity of any particle may depend on the configuration of other particles in its vicinity.

Thus, in this work we study a nonlocal version of a general density-dependent diffusion equation for the number density of individuals. We focus on its pattern and clustering formation properties. Making linear stability analysis we first show that, contrarily to what happens in the local case, completely different results can be obtained for the Ito and Hänggi-Klimontovich descriptions. In fact, spatial patterns can emerge for the first but never for the second. Then, we introduce two microscopic interacting particles systems whose continuum evolutions are given by the Ito and Hänggi-Klimontovich density equations. Numerical simulations of these systems confirm the calculations made with the continuum density equations.

Let us consider a population dynamics model of relevance for insect dispersal. The diffusion coefficient depends on the local density of particles, i.e., \(D = D(\rho) \), where \(\rho(x, t) \) is the population density (we assume that \(D \) is not an explicit function of the spatiotemporal coordinates). We only study positive density-dependence, which is the most widespread hypothesis and indicates that competition increases dispersing because individuals have better survival rates by leaving high-density areas [10]. Mathematically, \(D' (\rho) \equiv dD/d\rho > 0 \). The mean-field density descriptions in Ito and Hänggi-Klimontovich interpretations are [4, 6, 7]:

\[
\frac{\partial \rho(x, t)}{\partial t} = \nabla^2 (D(\rho) \rho), \quad (1)
\]

\[
\frac{\partial \rho(x, t)}{\partial t} = \nabla \cdot (D(\rho) \nabla \rho). \quad (2)
\]

The first one corresponds to Ito and the second to Hänggi-Klimontovich, and in the following we will de-
note them, respectively, as IE and HKE. The HKE is the one that is usually considered when modeling at the macroscopic level \([1, 2]\), since one writes down the density evolution as a flux equation \(\partial_t \rho = -\nabla \cdot J\) with the density-dependent flux \(J = -D(\rho) \nabla \rho\). But this is not a definitive argument and, as it is discussed in \([11]\), the IE should be the correct one for a continuum description of a discrete population dynamics model of non-overlapping generations. A proper derivation of density equations from the fundamental stochastic particle dynamics, once a right interpretation for this is assumed, can be consulted in \([12]\). Note that they are stochastic, but in our study we neglect the fluctuations by considering a kind of mean-field approximation \([13]\). Let us assume an initial constant density \(\rho(x, 0) = \rho_0\). We now perform a linear stability analysis of the stationary homogeneous (identical to \(\rho_0\) because particle number is conserved) solution for both IE and HKE. Writing \(\rho(x, t) = \rho_0 + \psi(x, t)\), where \(\epsilon\) is a small parameter, and \(\psi\) the space-time dependent perturbation, we obtain (we label the equations with IE or HKE):

\[
\begin{align*}
(IE) \quad \partial_t \psi(x, t) &= (D(\rho_0) + \rho_0 D'(\rho_0)) \nabla^2 \psi \\
(HKE) \quad \partial_t \psi(x, t) &= D(\rho_0) \nabla^2 \psi.
\end{align*}
\]

Note that in both the perturbation follows a simple diffusion equation and there is, therefore, no instability in the density equation that could give rise to the formation of patterns or aggregates of particles. From this point of view, the Ito and Hänggi-Klimontovich frameworks (Eqs. \([11, 2]\) are equivalent.

Now let us consider that the diffusivity depends on an averaged density over the whole system, \(\bar{\rho}(x, t) = \int_{\mathbb{R}^d} d\mathbf{r} G(\mathbf{r})\rho(\mathbf{r}, t)\), where the kernel, \(G(\mathbf{r})\), represents the effect of population density at \(\mathbf{r}\) on the density at \(x\). It embodies the forces of attraction and repulsion of neighbors \([14]\). We assume that \(G\) is normalized so that \(\int_{\mathbb{R}^d} d\mathbf{r} G(\mathbf{r}) = 1\). Then let us consider \(D = D(\bar{\rho})\) in Eqs. \([11, 2]\) and make again a linear stability analysis around \(\rho_0\) for the now nonlocal HKE and IE,

\[
(HE) \quad \epsilon \partial_t \psi(x, t) = \nabla \left[D(\rho_0 + \epsilon \int d\mathbf{r} G(\mathbf{r}-x)\psi(\mathbf{r}, t)) \nabla (\rho_0 + \epsilon \psi) \right],
\]

so that to first order in \(\epsilon\) the perturbation simply diffuses, \(\partial_t \psi = D(\rho_0) \nabla^2 \psi\), and no instability happens in HKE. However, when we consider the Ito description we have:

\[
\begin{align*}
(IE) \quad \epsilon \partial_t \psi(x, t) &= \nabla^2 \left[D(\rho_0 + \epsilon \int d\mathbf{r} G(\mathbf{r}-x)\psi(\mathbf{r}, t)) (\rho_0 + \epsilon \psi(x, t)) \right] \\
&= \epsilon \nabla^2 \left[D(\rho_0) \psi + \rho_0 D(\rho_0) \int d\mathbf{r} G(\mathbf{r} - x) \psi(\mathbf{r}, t) \right].
\end{align*}
\]

Considering a harmonic perturbation \(\psi(x, t) = \exp(\lambda t + i\mathbf{k} \cdot \mathbf{x})\) it is not difficult to obtain the following dispersion relation

\[
\lambda(k) = -k^2 \left(D(\rho_0) + \rho_0 D'(\rho_0) \hat{G}(k) \right),
\]

where \(k = |\mathbf{k}|\) and \(\hat{G}(k) = \int d\mathbf{r} G(\mathbf{r})e^{-i\mathbf{k} \cdot \mathbf{r}}\) is the Fourier transform of the kernel. The important fact with Eq. \((7)\) is that depending on the kernel function (note that the form of the diffusivity functional is almost irrelevant once we have assumed that it is an increasing function of the density, \(D'(\rho) > 0\), the perturbation growth rate can be positive, giving rise to the aggregation of particles or formation of spatial patterns \([3, 14]\). As we have just seen, this is absolutely different to the result obtained in the Hänggi-Klimontovich framework, Eq. \((5)\) and below.

Next we introduce a model, choosing the density and the kernel functions, with a clearly oriented ecological application and where \(\lambda\) can take positive values. We study the distribution of organisms over a spatial area and thus we restrict to two spatial dimensions. A typical form for \(D(\rho)\) in animal dispersal models is \(D_0(\rho/\rho_0)^p\) where \(D_0\) and \(p\) are positive real numbers \([1, 2]\), and \(\rho_0\) is a reference density which we take equals to the initial one without loss of generality. Because of the normalization of the kernel function the averaged density, \(\bar{\rho}\), has the same dimensions as \(\rho\). Concerning the kernel, we take the usual top-hat function \([14]\): \(G(r) = 1/(\pi R^2)\) if \(|r| \leq R\) and \(G(r) = 0\) otherwise, which introduces a typical interaction length, \(R\), in the system. One obtains \(\hat{G}(k) = 2J_1(kR)/(kR)\) so that the dispersion relation takes the form

\[
\lambda(k) = -D_0 k^2 \left(1 + \frac{2pJ_1(kR)}{kR} \right).
\]

\(J_1\) is the first order Bessel function, and it is clear from Eq. \((5)\) that the value of \(D_0\) only sets the time scale of the system. The onset of pattern formation is \(\lambda > 0\) which numerically is approached for \(p\) larger than \(p_c \approx 7.6\). In Fig. \(1\) we show a long-time density solution for the IE (left) and HKE (right) with this kernel and \(D\) functions, and \(p = 9\). Note the hexagonal pattern formed in IE and the homogenous solution for HKE, i.e., the numerical results confirm the different spatial structures obtained for the two descriptions. We have checked that this is so for all \(p\), as can be seen below in Fig. \(3\).

Up to now we have shown that, for nonlinear nonlocal diffusion phenomena, the different interpretations, in terms of density equations, of the same system dynamics lead to very distinct results. One may ask if this also happens at the level of the discrete interacting particle dynamics. Since the IE and HKE are the mean-field density descriptions derived from the Langevin equation of a system of Brownian interacting particles, we expect that the same differences encountered before between both descriptions appear. We will show that this is in fact the case for two time-discrete microscopic systems which, in the continuous time limit, are the Ito and Hänggi-Klimontovich Langevin equations corresponding to the IE and HKE with the top-hat kernel and the typical diffusivity functional for insect dispersal.

Therefore, the problem is to find a discrete dynam-
ics from which deriving HKE and IE. Following the discussion in [11] (Section 5.4.2) we first take a population dynamics system of non-overlapping generations whose Langevin equation, in the time continuum limit, should be interpreted in Ito. The system consists of N particles with positions $r_i(t) = (x_i(t), y_i(t))$, $i = 1, ..., N$, in a two-dimensional periodic box of size $L = 1$ evolving as follows

$$r_i(t + \Delta t) = r_i(t) + \sqrt{2D_0(N_R(r_i(t))/N)^p} \Delta t \eta^{(i)}(t), \quad (9)$$

where D_0 and p are real positive numbers, Δt is the time step, $N_R(r_i(t))$ is the number of particles at a distance less than R of particle i at time t, and $\eta^{(i)}(t) = (\eta^{(i)}_x, \eta^{(i)}_y)$ is a Gaussian White noise with correlations $\langle \eta^{(i)}_x(t) \eta^{(j)}_y(s) \rangle = \delta_{ij} \delta_{ab} \delta_{ts}$. As already mentioned, in the limit $\Delta t \to 0$ one obtains an Ito Langevin equation,

$$\frac{dr_i}{dt} = \sqrt{2D_0(N_R(r_i(t))/N)^p} \eta^{(i)}(t), \quad (10)$$

and one can calculate $\frac{d}{dt} \mathcal{D}_n$ that the corresponding density equation of this Langevin is the nonlocal IE with the top-hat kernel and the density functional of insect dispersal. For the Hänggi-Klimontovich case, the first step is to interpret eq. (11) in this sense so that it is equivalent to the following Ito Langevin equation [15]:

$$\frac{dr_i}{dt} = g(r_i(t)) \nabla r_i g(r_i(t)) + \sqrt{2D_0(N_R(r_i(t))/N)^p} \eta^{(i)}(t), \quad (11)$$

where $g(r_i(t)) = \sqrt{2D_0(N_R(r_i(t))/N)^p}$. Thus, our discrete systems equivalent to the IE and HKE are given by Eq. (9) and the discrete-time version up to order Δt of Eq. (11), respectively. Note that, since our simulations are off-lattice, i.e., particles move in the continuum space, we have to consider an auxiliary grid to compute the gradients of $g(r_i(t))$ for the Hänggi-Klimontovich case. In Fig. 2 we show the long-time spatial distribution of particles for the same parameter values used in Fig. 1. Left corresponds to Ito and right to Hänggi-Klimontovich. The particles following the time-discrete-dynamics which give rise to the Ito Langevin equation arrange in an hexagonal pattern of clusters, while in the Hänggi-Klimontovich case the particles are randomly distributed in the space. This is completely in accord with what it happens in the macroscopic description.

A more quantitative comparison between the macroscopic and microscopic dynamics follows. The characterization of the pattern can be performed via the structure function, whose maxima identify periodic structures. In the case of the continuum density, the structure function in the steady state, S_c, is computed as the modulus of the Fourier transform of $\rho(x, t)$ averaged spherically and in time. In the case of the particle system the structure function, which is related but not identical to S_c, is calculated as $S_d(k) = \left\langle \sum_j e^{i k \cdot x_j(t)} \right\rangle / N$, where $x_j(t)$ is the position vector of particle j, k is a two-dimensional wave vector with modulus k, and the average indicates a spherical average over the wave vectors with modulus k, a temporal average in the steady state, and an average over many different realizations. In Fig. 3 we plot the maximum (for $k > 0$) value of S_c (left panel) and of S_d (right) versus the parameter p. With circles we plot the computed ones for IE and with squares for HKE. It is clear from the plot that the value of p at which the transition to pattern, in Ito, occurs is the same for both, and coincident with the numerical value obtained from stability analysis. Moreover, for any value of p no peak (i.e., no pattern) is ever observed in the Hänggi-Klimontovich prescription.

In summary, density evolution equations with density-
be pursued in the future.

I acknowledge useful conversations with Emilio Hernández-García and Umberto Marini Bettolo Marconi. Financial support from MEC (Spain) and FEDER through project CONOCE2 (FIS2004-00953) is greatly acknowledged. C.L. is a Ramón y Cajal research fellow of the Spanish MEC.

[1] A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Springer Verlag, New York (2001).
[2] J.D. Murray, Mathematical biology, Springer-Verlag, Berlin (2002).
[3] D. G. Aronson, in Nonlinear Diffusion Problems, A. Fasano and M. Primicerio (eds.), Lecture Notes in Mathematics 1224, Springer Verlag, Berlin (1985);
[4] N.G. van Kampen, Stochastic processes in physics and chemistry, 2nd ed., North-Holland, Amsterdam (1992); N. Van Kampen, J. Phys. Chem. Solids 49, 673 (1988);
[5] C.W. Gardiner, Handbook of Stochastic Methods, 2nd ed., Springer, Berlin (1985).
[6] J. M. Sancho, M. San Miguel and D. Dürr, J. Stat. Phys. 28, 291 (1982).
[7] P. Hänggi and H. Thomas, Phys. Rep. 88, 207 (1982); Y. L. Klimontovich, Physica A 163, 515 (1990).
[8] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994); C. Van den Broeck, J. M. R. Parrondo, R. Toral, and R. Kawai, Phys. Rev. E 55, 4084 (1997).
[9] G. Flierl, D. Grunbaum, S. Levin, and D. Olson, J. Theor. Biol. 196, 397 (1999); A. Mogilner and L. Edelstein-Keshet, J. Math. Biol. 38, 534 (1999); F. Cecconi, M. Marsili, J. R. Banavar, and A. Maritan, Phys. Rev. Lett. 89, 088102 (2002); C. Topaz and A. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004); Y. E. Maruvka and N. M. Shnerb, Phys. Rev. E 73, 011903 (2006).
[10] D. D. Holm and V. Putkaradze, Phys. Rev. Lett. 95, 226106 (2005); D. D. Holm and V. Putkaradze, arXiv:0506020.
[11] C. López, Physical Review E 72, 061109 (2005).
[12] E. Matthysen, Ecography 28, 403 (2005).
[13] W. Horsthemke and R. Lefever, Noise-induced transitions, (Springer, Berlin, 1984).
[14] D. S. Dean, J. Phys. A 29, L613 (1996).
[15] U.M.B. Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); A.J. Archer and M. Rauscher, J. Phys. A: Math. Gen. 37, 9325 (2004).
[16] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre, Phys. Rev. Lett. 91, 158104 (2003); E. Hernández-García and C. López, Phys. Rev. E 70, 016216 (2004); C. López and E. Hernández-García, Physica D 199, 223 (2004); M. G. Clerc, D. Escaff, and V. M. Kenkre, Phys. Rev. E 72, 056217 (2005).
[17] According to the Hänggi-Klimontovich interpretation, the discrete-time version of the Langevin equation Eq. (10) goes through the post-point discretization. However, in order to have a dynamics of non-overlapping generations we write down first its equivalent Langevin equation in Ito, Eq. (11), and then consider its time-discrete...
form to order Δt.