Do Price Ranges Increase Click-throughs?

Patrick Ng Drew Plant Yiran Sheng

UC Berkeley (Master of Information and Data Science)

Abstract

An important goal of online comparison shopping services is to “convert” a viewer from general product category pages (for example product groups such as “smartphones” or “air-conditioners”) to detailed product pages and ultimately to order pages. Comparison shopping websites provide a familiar web interface as well as a chance for consumers to purchase items at competitive prices. In return for providing access to a large market of potential consumers, the comparison shopping service usually receives financial compensation for product clicks and orders. This study looked at 2.5 million product listing visits at price.com.hk to determine whether a modification in the way prices are displayed on general category pages resulted in more “conversions” to product detail pages. We found a statistically significant improvement over-all as a result of the new price display resulting in 3.6% more product clicks over all categories. Additional analysis showed that the effect is heterogeneous among different categories, and in a few cases there may be some categories negatively affected by the display modification.

Keywords: e-commerce, web conversions, AB testing, comparison shopping websites, price comparison, online shopping.

1. Introduction

Comparison shopping websites have the potential for providing users the convenience of easily searching for competitive prices and evaluating different related products in a very efficient manner. Among comparison shopping websites there is competition for viewers as highlighted by Belleflamme.

Price.com.hk is a top ecommerce website in Hong Kong where users can find a variety of products and compare prices offered by different sellers. These products are from a wide range of categories, including mobile phones, digital cameras, TV’s, washers, heaters, air conditioners, diapers, baby formula, computers, and toys.

A typical user of Price.com.hk is interested in only one or a few product categories. On a category listing page, a user can see a list of products, together with a singular price for each
product. When a user clicks on a product, she sees a detailed product page including more product information along with a list of all sellers and offered prices. An example category listing page and resultant “click-through” product detail page are shown in Figure 1.1. For each product in the listing page, the single price shown represents the latest updated price from a pool of sellers.

![Figure 1.1: a category listing page click opens up a product detail page](image)

An inexperienced user may not realize that the single price shown represents only a sample from potentially many competing sellers. What if we display the price range from all sellers instead? Will that attract more users to click on the product? Our research strives to answer this question through a controlled field experiment. Several studies have been carried out exploring the effects of displaying product prices on web-sites towards purchasing behavior. For example, Dholakia & Simonson showed that in online auction sites, flanking a product and its bid-price with comparison prices for the same product tends to move the average bid-price for the product in the direction of the flanking (comparison) prices. However in our experience this is the first attempt to study how moving from a single-price display to price ranges for each product on a product category page impacts user click-throughs to detailed product pages.

There are a few reasons to suspect that displaying a price range rather than a single price for products on a category listing page might result in more product page clicks:

1. Having a range of prices for each product enables users to get a better feel for how their product of interest stacks up against other products. For instance if I’m keen on a particular camera and I see that its price overlaps with that of another camera of obviously inferior quality and status, I might likely be more inclined to investigate my camera further, knowing that some retailers are offering it at a competitive price.

2. On the other hand if I see only single price for my “dream” camera and the inferior one I may choose alternate means (in the form of online comparison searches at alternative site), especially if I believe that only one price for my favorite camera is being offered through the current comparison shopping site.

In the same vein, it is reasonable to hypothesize that different product categories might show different sensitivity to this type of price-range “treatment”. In particular, online shoppers are
likely to spend more time in detailed comparisons of big-ticket items such as TV’s or smart-phones than small-price consumables such as diapers in order to eke out maximum feature satisfaction at the best price.

Our research studies data from 2.5 millions listing page views, collected from a 20-day period in April 2016. Given the large sample size, our experiment was able to resolve treatment effects that are both statistically significant and practically important.

2. Experimental Design

This experiment randomly assigned a different method for displaying product prices on an aggregated product category listing page. By design, treatment assignment was done at the user level. Here is an explanation of the original price display method vs. treatment price display method along with our measurement outcome:

Original method: A **single** price is displayed for each product position on the category page. This single price represents the last modified price offered by any retailer for this product. There are a maximum of 15 products displayed on a listing page. Here is an example of the original price for a particular-model of smart phone:

![HK$5,250](Figure 2.1: Single price UI)

Treatment method: Each product displays a price **range** (low-price - high-price) range of prices currently offered for each respective product. In fact two ranges are listed: one official product range and one so-called “water-price”\(^1\) range. Using our same smart-phone example the price display applying our treatment looks like:

![HK$5,190-5,998, HK$4,780-5,480](Figure 2.2: Price range UI)

Figure 2.3 compares category listing pages using both the control and treatment price display methods.

Outcome measure: We measured the number of clicks (those which open detailed individual-product pages) for each category listing page and each user. Observations were made at the level of unique user and individual category page for that user. Therefore, if Jane Chan clicks to three detailed product pages from her first listing page of category “smart-phone”, she scores a \(\text{clicks} = 3\) for that category listing page.

\(^1\)“Water-price” refers to the price for parallel import items, which typically don’t carry warranties but are usually offered for cheaper prices than corresponding official market items.
Do Price Ranges Increase Click-throughs?

Figure 2.3: The control (left) and the treatment (right) prices on category listing page

In price.com.hk parlance, the term category refers to the first-level aggregation of product types. The aforementioned price-range treatment was applied to category product listing pages randomly assigned to receive treatment. In fact, price.com.hk has a product classification hierarchy with headings of zone → group → category → product. Simply put, our experiment applied treatment at the category level and involved subsetting of data at the zone level as will be discussed later.

Our web-logs provided a rich set of other attributes such as productPos, a product’s position on a category page (typically 1-15) and pageNumber within a particular category listing. Also included are (1) status on whether a user is logged in and (2) the browser being used. These other attributes provide rich food for further consideration towards discovering other potentially interesting treatment interactions.

As previously mentioned there is reason to believe that the treatment might result in less user confusion and greater potential for the user to click-advance to one or more product detail, thus resulting in more order-potential for products, more ad exposure in general and more revenue for the comparison shopping service provider.

Our data was collected in the time period in 2016 from Apr 1 - Apr 25. The data consisted of 6 million records from web-logs during that period. Our randomized treatment was applied on Apr 6, 2016, so entry rows prior to that period show the old single-price range display. Treatment was randomized at the level of a user’s rendered product category listing page (represented by the variable sessionId).

Table 2.1 provides a top-level summary of our experiment:

To test that randomization was done properly, A/A testing was carried out by modeling treatment assignment against category grouped at the level of user (anonyId) using data prior to the actual treatment application (in other words, prior to the cut-over to price range on Apr 6.) As discussed in Section 4, A/A stage placebo test indicated that randomization was

2Initially, the design specified that treatment be assigned through a cookie randomized at the user-browser level. Unfortunately cookies were erroneously re-assigned at periodic intervals, causing some users to have multiple assignments. Nonetheless assignments remained unique at the listing session level. As discussed in Section 3.1 we don’t believe this anomaly affected the essential part of our conclusions.
Table 2.1: Experiment Summary

The Experiment
Time period:
Length of Experiment:
Number of category views observed:
Number of product click-throughs observed:
Mean product click-throughs for control group:
Mean product click-throughs for treatment group:

valid over a variety of observed potential exogenous covariates.

For A/B analysis, we studied the effect of price range display on number of clicks per category listing page. This was first studied in a simple model which regressed clicks against the single binary variable treat (where 0 == “control” and 1 == “treatment.”) We then used a more involved model which also included as a covariate the average click-rate from each category listing page without treatment (from A/A data). In general we expected that different categories have different visit average rates and so including this base level rate as a function of different categories might reduce our model overall standard error. We then had a third set of A/B models which involved subsetting by zone which is the largest group level of products. As an example, the Communication zone includes smartphone category along with other categories Service Plan and Prepaid Sim. Subsetting our models by one zone at a time to consider only categories within the respective zone greatly simplified our model computation and allowed us to focus on those zones showing the most significant effects.

Power analysis was done in order to estimate number of samples required for treatment effects of interest. Based on our A/A stage base-level average outcome rate of 0.32 clicks per listing session, we were interested in resolving treatment effects on the order of 3%. Our power analysis indicated that with a minimum of half a million samples we could resolve a treatment effect of 3% ($\alpha = 0.05$) with a statistical power of 99%. Given that our record set has over 2 million listing sessions (after cleanup), we felt that we had a good experimental setup for resolving an effect at at least 3% of our baseline.

3. Data Collection

We primarily rely on server side tracking technologies to gather experimental data. Raw data is collected through web server logs. For an overview of web tracking technologies and their usage in the industry, Schmucker (2011) provides a detailed summary. We will outline relevant techniques employed in our study in this section.

Server side tracking is usually conducted by including a small payload for tracking purposes alongside normal application code. Payloads are typically injected in two places:

1. Page url query strings
2. Browser cookies
A “query string” is part of a URL and can be recognized by the fact that it is not part of the normal URL hierarchical path. It contains an arbitrary number of named parameters along with their values. The query string is processed by the server application to locate specific resources requested by the client in conjunction with the rest of the URL. Within the query string an owner of a website can append additional parameters for purposes of tracking or providing context to a page request. These added parameters will be ignored by web servers and not affect normal site operation; however, they are faithfully recorded by server logging for retrieval and analysis later. As an example consider the following hypothetical URL query string:

?product_id=123&click_type=thumbnail

This query string contains two parameters: product_id and click_type. product_id is a request for the web server to retrieve the specific product page a user is requesting. click_type is an added parameter for usage tracking, and has no user-discernible effect on the web page returned. Rather, it is used to indicate the type of link which was used to open up the current page; in our example the user clicked a thumbnail image to navigate to the product page. This tracking parameter thus provides rich additional context to the page request.

An HTTP “cookie” is a small piece of data sent from a website and stored in the user’s web browser while the user is browsing. Every time the user loads the website, the browser sends the cookie back to the server thus notifying the server of the user’s activity history. Similar to query strings, cookies can be used both to serve functional and tracking purposes. For instance, authentication cookies keep track of whether a user is logged in or not, and if so which account she has been using. Tracking cookies, on the other hand, are used to build a long-term history of a given user’s browsing behavior. In its most basic form, a tracking cookie may assign a random but persistent unique id to a user when she first visits a website. Later when she returns the cookie is sent back to the server, signaling a page is requested by a returning visitor.

In our experiment, each user is assigned two persistent cookies: annoyId and treat. annoyId is a unique identifier for each visitors and treat is a binary indicator of whether this visitor is assigned to control or treatment group. After a user’s first visit to price.com.hk, subsequent page requests are accompanied by these two pieces of data which are sent to the server and recorded in web logs. The server examines the treat cookie and (based on the value of treat) creates listing pages with or without treatment UI. In theory, this setup assigns treatment at the visitor level. A new visitor is randomly assigned to control or treatment, and her treatment remains the same for all subsequent visits to the site.

In addition to managing treatment assignment, we need to label each product page with the category listing from which that product page was requested. This “parent-page” information is tracked using query strings. When a visitor requests a category listing page, the server creates a unique session id, and appends the id inside of a query string to all product URL links on the listing page. This sessionId parameter is applied in query strings for both control and treatment groups.

One interesting data-logging challenge was how to associate sessionId with the category page it identifies. The parameter sessionId is unique to each category listing visit; however it is generated after a user requests that listing page. Therefore, when the server first generates
a listing page and enters a corresponding web-log there is no sessionId available to attach to the log entry. To retroactively assign sessionId to a listing page, a special technique is used. On every listing page an invisible, one-pixel image is added at the bottom. The url of the one-pixel image contains a query string which includes the generated sessionId. The browser makes a request for that image resulting in sessionId being passed as a query string parameter and thereby getting logged alongside the initial listing-page session web-log entry. This technique is commonly employed by web tracking tools such as Google Analytics.

Figure 3.1 provides an overview of click-through data over the entire experiment period for control and treatment groups.

![Figure 3.1: Daily Click-through for Control and Treatment Groups](image)

3.1. Complications on Data Integrity

It’s not uncommon when analyzing web traffic data to encounter complications with data hygiene and implementation / clerical errors. Our experiment was no exception.

As mentioned previously, during the A/A data analysis stage, we discovered that a non-trivial portion of visitors were mistakenly assigned to both treatment and control group. We reckoned this was a consequence of users clearing cookies or some unknowable technical factors. Upon further discussion with the engineering team, we confirmed this was due to an implementation bug: cookies had been set to expire resulting in treatments being reassigned every 90 hours. Figure 3.2 illustrates the scale of this issue.

Users with re-assigned treatment accounted for 22% of total traffic. Moreover 38% of listing sessions were generated by users having treatment status which varied during the course of the experiment. This issue raised a new challenge to our analysis. We reasoned that this does not add significant bias to our analysis when estimating ATE, either intuitively or statistically. Our rationale is that treatment should only affect the outcome for the current listing page (not future listing pages which may have a different treatment assignment). In other words we

3 The “tracking pixel” is appended to the bottom of a page so as to not degrade overall site performance. However, asynchronous image loading (commonly done by most browsers) can result in the sessionId not getting logged. This will happen for example if a user loads a listing session page and immediately clicks on a product link before the tracking pixel can be loaded by the browser. This would result in an orphaned product click (with no identifying sessionId). We removed occurrences of these orphaned product clicks from our data prior to analysis.
believe that there should be no cross-session spillover effects. For a more in-depth discussion, refer to Appendix 8.3.

Another challenge to maintaining data integrity was garbage data generated by bot traffic. Many automated systems such as web crawlers generate a large volume of web traffic, and we are not interested in treatment impact on their behavior. We removed all known bots (i.e. those self-declared through user agent in web logs) and utilized a few conservative heuristics in detecting non-obvious bots. For instance we noticed that a very small number of users logged an abnormally large number of web requests and displayed unusual click patterns, for instance showing an equal number of clicks for every product in each of the 15 page positions for every page of the listing category. Unfortunately this approach may result in a few false negatives since sophisticated bots which are trained to spoof their user agent can easily bypass such heuristics.

All these complications may impact results in subtle ways. While we did our best to mitigate discovered issues, it’s worth keeping them in mind when interpreting and generalizing results.

4. Models

Prior to implementation of the experiment we carefully considered choices for how best to model the behavior of interest. Three key considerations to achieving this goal were:

- how best to ensure randomization was done correctly,
- how to model our outcome measure so as to provide a regression model which is defensible as most closely representing reality, and
- how to consider and handle error heteroskedasticity.

4.1. Randomization Validation

Since random assignment was performed at user/browser level, we wanted to validate there were no systematic differences in browser-level measures between control and treatment group. Randomized assignment was done at the A/A stage of data collection (before actual treatment was done). We used A/A stage data therefore to perform a placebo test. A logistic regression
model was used to study whether browser-level measures correlate with treatment assignment. See equation (4.1).

\[\text{treat} \sim 1 + \text{UA} + \text{categoryCountPerAnonyId} \quad (4.1) \]

Model (4.1) regresses treat against categoryCountPerAnonyId which counts the number of category pages accessed by user-browser. This regression produced 252 coefficients (one for each category) along with p-values indicating how significant each category was towards increasing or decreasing likelihood of treatment assignment. Noticeably, only 12 of these categories (4.76%) are significant below the \(\lambda = 0.05 \) level. However, due to chance alone and by definition of type I errors, we expect 5% of them to be accidentally significant. Using the Bonferroni correction (requiring a p-value of 0.05 / 252 = 0.000198 for rejection of randomization defects) our placebo test indicates that we don’t need to reject the null hypothesis. We therefore have no reason to suspect that randomization was done improperly.

4.2. OLS vs Poisson Regression

OLS (Ordinary Least Squares) regression has proven to be a robust tool in experimental studies due to its simplicity and flexibility. However, in our experiment, some of the standard conditions for application of OLS are violated to some degree. It was therefore necessary for us to address how robust OLS models are against these deviations from standard practice. One particular concern surrounded the normality assumption for regression model residuals.

Clearly, the outcome measure in our experiment is *not* normally distributed. Observed click counts per session are discrete, non-negative values, and have a long tail in their distribution. A good candidate for modeling discrete non-negative random variables is the Poisson distribution. We evaluated GLM (generalized linear model) using Poisson covariance matrix (Poisson Regression) as an alternative to OLS prior to A/B stage data collection. The downsides to using the Poisson Regression are:

1. Use of Poisson residuals requires the assumption that outcome mean and variance are equal \(\sigma^2 = \mu \).

2. Poisson Regression parameter coefficients are hard to interpret when covariates are included due to nonlinear transformation of regression outputs.

To weigh the relative merits of these two modeling approaches (OLS vs. Poisson), we conducted a statistical simulation. We generated random data modeled from a Poisson distribution based on assumed treatment effect, which manifests itself in the differences between the Poisson distribution parameters \(\lambda \) (average clicks per listing session) of the control and treatment groups. Details of the simulation can be found in the Appendix 8.1. The simulation showed that as the true treatment effect used in generating simulated data increases, OLS tends to underestimate the standard error of the treatment effect. On the other hand, OLS produces nearly identical estimates of treatment effect compared to Poisson Distribution\(^4\). In our experiment, we expected the treatment effect to be small compared to the average level of outcome observed in A/A stage (0.33 clicks per listing session), therefore we decided that underestimation of standard error would probably not be an issue.

\(^4\)By Gauss–Markov theorem, OLS estimates are best linear unbiased estimators (BLUE).
4.3. Regression Models and Residual Covariance Structure

After settling on OLS as our main analytical approach, the base-line model is given by (expressed in R notation):

\[\text{clicks} \sim 1 + \text{treat} \] (4.2)

This model is equivalent to a two-sampled T-test with population variance assumed to be equal between control and treatment group. This assumption also is not entirely accurate. Note in our experiment, each unit of observation/data point is a category listing page session, rather than an individual typically seen in socio-economic studies. In addition, our experiment is conducted at the category listing session level, clustering on each user (identified by cookie \text{anonyId}). Therefore, we need to correct for the fact that listing sessions which are generated by the same user are correlated. We accounted for this by applying correction clustering by \text{anonyId} to achieve robust standard error estimates for the treatment effect(s). Throughout this section, all models discussed have this clustering standard error correction applied to them.

Our second model included the following additional covariates:

- \text{catClickRateAA} (the average number of clicks per listing session per user computed from A/A stage data for this particular category)
- \text{pageNo} (the page number of the category listing being viewed)
- \text{itemsPerPage} (the number of products on the current category listing page)
- \text{isLoggedIn} (whether the current user has logged into the website.)

It’s worth noting that while we believe these covariates are useful for explaining outcome clicks, they are not necessarily causal in their contribution to model (4.2). Among them, \text{catClickRateAA} is worth special mention. This variable represents average A/A stage data. Our hope was that a lot of variation in click rate between categories could be explained by variation in base-level click rates. Therefore, by including it as a covariate, we hoped the overall regression model’s explanatory power could be improved, and standard error of the treatment effect coefficient could be reduced.

\[\text{clicks} \sim 1 + \text{treat} + \text{pageNo} + \text{itemsPerPage} + \text{isLoggedIn} + \text{catClickRateAA} \] (4.3)

Furthermore, the potentially heterogeneous effect of treatment on clicks averaged at the zone level was deemed to have a particularly interesting business interpretation. In other words, what is the specific impact of displaying a price range on average clicks within each large grouping of products? We therefore estimated an individual model (4.3) using only data for each zone.

In fact we could have combined heterogeneous treatment effects for all zones into a unified model and estimated it on the entire dataset. However, in doing so, we would have needed to force the assumption that residual terms have identical variances for all zones, which we believe is unreasonable. See Appendix 8.2 for further discussion.
5. Treatment Effect

A comparison of model (4.2) and model (4.3) is shown in Table 5.1.

Table 5.1: Effect of display of Price Range on Product Click-through

Dependent variable:	Product Click-through	
	Basic	Full
treat	0.011*** (0.002)	0.011*** (0.002)
pageNo	−0.008*** (0.001)	
itemsPerPage	−0.004*** (0.0002)	
isLogin	0.076*** (0.007)	
catClickRateAA	0.870*** (0.009)	
Constant	0.305*** (0.001)	0.105*** (0.004)

Observations 2,482,654 2,438,223
R^2 0.0001 0.016
Adjusted R^2 0.0001 0.016
Residual Std. Error 0.766 (df = 2482652) 0.765 (df = 2438217)
F Statistic 135.000*** (df = 1; 2482652) 8,124.000*** (df = 5; 2438217)

Note: *p<0.1; **p<0.05; ***p<0.01
SE are cluster-robust, clustering on per-browser-instance

Both models yielded similar treatment effect estimates of 0.011. On average, the treatment (price range) boosts clicks by 0.011 which amounts to a 3.6% increase. Adding covariates to the simple model (4.2) increased overall explanatory power of the regression (evidenced by the apparent improvement in R^2); however contrary to our expectation, the standard error of treatment effect remains the same, after adjusting for robust clustered standard errors.

It’s worth considering the practical ramifications of these results: The estimated treatment effect translates into an expected increase of 1,268 daily product page views, with a 95% confidence bound of (807, 1,729)\(^5\). To put these numbers into perspective, the normal fluctuation of daily listing session count is around +/-7,000, as measured by standard deviation. Zone-level treatment effects are reported in Table 5.2 and Table 5.3, showing the four zones with highest traffic volume.

The following interesting observations can be made from Table 5.2 and 5.3:

1. The treatment effect for each zone (Camera & Photo, Audio-visual, Computer, and Home Appliance) is significant to the p < 1% level.
2. The Camera&Photo zone shows a negative ATE, indicating a potential reduction in average clicks from treatment.
3. Other zones show significant positive ATE’s, suggesting improvement of click rate with treatment.

\(^5\)Based on A/A stage daily average of listing session counts across all categories (averaging 115,285.5).
Do Price Ranges Increase Click-throughs?

Table 5.2: Effect of display of Price Range on Product Click-through (Zone 2 & 3)

Dependent variable:	Zone 2 - Camera and Photo	Zone 3 - AV1
treat	-0.012*** (0.003)	0.011*** (0.003)
pageNo	-0.012*** (0.0004)	-0.006*** (0.0003)
itemsPerPage	0.00000 (0.0005)	-0.001*** (0.0004)
isLogin	0.057*** (0.007)	0.075*** (0.008)
catClickRateAA	0.859*** (0.017)	0.856*** (0.014)
Constant	0.062*** (0.009)	0.066*** (0.007)
Observations	308,331	255,811
R²	0.012	0.018
Adjusted R²	0.012	0.018
Residual Std. Error	0.745 (df = 308325)	0.737 (df = 255805)
F Statistic	745.000*** (df = 5; 308325)	937.000*** (df = 5; 255805)

Note: *p<0.1; **p<0.05; ***p<0.01
SE are cluster-robust, clustering on per-browser-instance

Table 5.3: Effect of display of Price Range on Product Click-through (Zone 4 & 6)

Dependent variable:	Zone 4 - Computer	Zone 6 - Home Appliance
treat	0.012*** (0.001)	0.029*** (0.002)
pageNo	-0.007*** (0.0002)	-0.013*** (0.0003)
itemsPerPage	0.003*** (0.0002)	-0.013*** (0.0003)
isLogin	0.063*** (0.004)	0.099*** (0.006)
catClickRateAA	0.964*** (0.010)	0.765*** (0.011)
Constant	-0.027*** (0.005)	0.272*** (0.006)
Observations	958,688	615,977
R²	0.012	0.017
Adjusted R²	0.012	0.017
Residual Std. Error	0.707 (df = 958682)	0.895 (df = 615971)
F Statistic	2,251.000*** (df = 5; 958682)	2,132.000*** (df = 5; 615971)

Note: *p<0.1; **p<0.05; ***p<0.01
SE are cluster-robust, clustering on per-browser-instance
6. Conclusion

From this controlled experiment, we found that the UI change in the product listing page increased the per-listing product click-through from 0.305 to 0.316, an increase of 0.11 (3.6%). The effect is heterogeneous across different product groupings or zones. Positive effects were observed in zones Audio-Video (+0.011), Computer (+0.012) and Home Appliance (+0.029) whereas a negative effect was observed in the Camera & Photo zone (-0.012).

Prior to the experiment, Price.com.hk expected the UI change would have a pronounced positive effect on behavior of inexperienced users. The idea is this: Inexperienced users may believe the single price shown on a listing page is the only price available. They therefore may not be motivated to click-through to the product-detail page. On the other hand experienced users recognize that the price is just one price among all prices from all sellers and feel more confident in clicking to view other prices on the product page. Therefore the price-range treatment expectedly is more valuable for inexperienced users. Price.com.hk speculates that a large portion of users in the Home Appliance zone are inexperienced. Our experimental results support that theory.

One notable exception to the otherwise positive observed treatments is the negative ATE in the Camera & Photo zone. We need to dig further into per-category effects to confirm and further explain this negative effect. Based on later findings we might suggest modifying or perhaps removing the price-range treatment for category pages in this zone.

Finally it is worth stressing that among the explanatory variables used in the model, only treat has a causal interpretation on the change in outcome clicks. Other model variables such as category level average click through do not have a causal interpretation despite their relatively large coefficients. These other variables are included in the model as covariates to reduce the standard error of the treat variable.

7. Recommendations for Future Experimentation

A common complaint regarding A/B testing for web-page changes on conversion rate is the difficulty in drawing conclusions on persistence of the treatment effect. Given the short duration of our study we were not able to include measures of ATE persistence, though given a longer study period this perhaps would be possible. Two competing hypotheses could explain the increase in click-through rate: (1) our treatment led to higher click-through which persisted over time -or- (2) the novelty factor of treatment temporarily boosted click-through but the effect eventually died out. A follow-up study conducted over a longer time period of several weeks or months could better discriminate persistence in long-term treatment effects.

Given that our experiment showed different ATEs for different zones, it would be natural to prescribe treatment only for those zones showing positive ATEs but not for the zones showing negative ATE. However, our experiment setting only varied treatment assignment at user level without regard to zones. It’s worth considering what a zone-conditional application of treatment might mean on outcomes: if an individual user sees price ranges on category pages within a “treatment zone” but only single prices on category pages within a “non-treatment zone” it might cause confusion and lower over click-through rates. The risk of “cross-zone spill-over” is something to be considered prior to conditionally applying treatment, though our current experimental setup cannot formally test for this possibility.
To understand the effects of non-uniform treatment application, a followup experiment could be carried out randomizing treatment across different zones and different users. In this scenario, one group could have treatment applied across all zones whereas another treatment group see treatment only for one of the eleven zones. Such an experiment would potentially provide insight helpful in deciding whether to introduce price range treatment only for selected zones.

Finally it would be interesting to include the effects of price (and price ranges) on click-through rate. In our experimental setup we only had access to prices of products which were clicked but not for products listed on the category page which were not clicked (ie. with a click-rate of 0.) A future experiment whereby 0-click product pricing were made available (ie by joining web log data with product data) could answer interesting questions regarding treatment effects from different price levels or price ranges.

8. Appendix

8.1. OLS vs Poisson Regression Simulation

Let the number of clicks per session exposed to control be denoted by $Y(0)$ and the number of clicks per session exposed to treatment by $Y(1)$. Let D be the randomized treatment assignment. We make the following assumptions regarding population:

- $D \sim \text{Bernoulli}(0.5)$
- $Y(0) \sim \text{Poisson}(\lambda_0)$
- $Y(1) \sim \text{Poisson}(\lambda_1)$
- $\lambda_1 = \lambda_0 + ATE, ATE \neq 0$
- Denote observed click rate Y, and $Y = Y(1) \cdot D + Y(0)(1 - D)$

Operationally, we generate observations 5000 control observations $y_i | d_i = 0$ from Poisson distribution with $\lambda_0 = 0.35$. This number is picked by computing A/A stage overall average click through. In addition, 5000 hypothetical treatment observations $y_i | d_i = 1$ are generated with $\lambda_1 = \lambda_0 + ATE$, where ATE vary between 0.001 and 0.35 (0.2% to 100% of λ_0). The mixed y_i’s are regressed on d_i, with both OLS and Poisson Regression.

The OLS formulation of the regression model is given by:

$$E[Y|D] = \alpha_{OLS} + \beta_{OLS}D$$ (8.1)

We have:

$$ATE = \hat{\beta}_{OLS}$$ (8.2)

And Poisson Regression model:

$$\log(E[Y|D]) = \alpha_{POIS} + \beta_{POIS}D$$ (8.3)
To derive estimate of \hat{ATE} from Poisson Regression:

$$\hat{ATE} = \exp(\hat{\alpha}_{POIS} + \hat{\beta}_{POIS}) - \exp(\hat{\alpha}_{POIS})$$ \hspace{1cm} (8.4)

R’s `lm` and `glm` functions are used to estimated model (8.1) and (8.3). We plot the estimated \hat{ATE} from both models against each other for each level of assumed true ATE in \{0.001, 0.002, …, 0.35\} in Figure 8.1. Confidence bounds of \hat{ATE} (based on estimated standard error of β) with plus and minus 2SE for both models are also included.

Table 8.1 reports standard errors from both models and the ratio of them. OLS tend to underestimate the standard error of treatment effect. But for small ATE, this effect is not great.

![Figure 8.1: GLM(Poisson) vs OLS ATE estimate with 95% Confidence Bound](image)

8.2. Modeling Zone Level Heterogenous Effects

When studying zone level (heterogenous) treatment effects, we opted to estimate a separate model (4.3) subsetting our dataset for each zone. It would have been possible to combine all zone level treatment effects into one model and estimate on all data with the model given in equation (8.5).

$$\text{clicks} \sim 1 + \text{zone} + \text{treat} + \text{treat:zone} + \text{pageNo} + \text{itemsPerPage} + \text{isLogin} + \text{catClickRateAA}$$ \hspace{1cm} (8.5)

The key difference between these two approaches is that model (4.3) has smaller degrees of freedom compared to the combined models in (8.5). Moreover, model (8.5) assumes the coefficients of covariates are the same for all zones. For instance, let the coefficient for `catClickRateAA` be denoted as β_{aa}. The single combined regression model assumes the
Do Price Ranges Increase Click-throughs?

	True.ATE	OLS.se	GLM.se	Ratio
1	0.0060	0.0118	0.0122	0.9655
2	0.0090	0.0120	0.0119	1.0089
3	0.0120	0.0118	0.0123	0.9615
4	0.0150	0.0119	0.0123	0.9709
5	0.0180	0.0119	0.0123	0.9699
6	0.0210	0.0119	0.0121	0.9869
7	0.0240	0.0119	0.0123	0.9696
8	0.0270	0.0122	0.0125	0.9789
9	0.0300	0.0121	0.0130	0.9276
10	0.0330	0.0119	0.0124	0.9573
11	0.0360	0.0121	0.0128	0.9442
12	0.0390	0.0122	0.0127	0.9592

Table 8.1: GLM(Poisson) vs OLS ATE estimate and Standard Errors

The same β_{aa} for all zones. In other words, A/A stage click-through by category is assumed to be equally powerful in explaining variances as A/B stage click-throughs for all zones.

We argue this assumption is not realistic. For one thing, different zones have different number of categories and very different traffic volume. Also Table 5.2 and 5.3 suggest the coefficients for β_{aa} do in fact, vary across zones (for zone 4, catClickRateAA has a larger than average explanatory power).

Furthermore, another key assumption baked into model (8.5) is that the same residuals standard error exists across all zones; again, Table 5.2 and 5.3 provide informal evidence of violation of this assumption.

In some studies, it is beneficial to favor a model with larger degrees of freedom such as model (8.5), when the number of data points is small or heterogeneity in covariates and residual SEs are not of research interest. After all, all models are unrealistic to some extent. In our study, however, with millions of data points, we believe the reducing degree of freedom is an acceptable tradeoff and provides better control. In addition, we are not interested in interpreting contributions of covariates to outcome variable across zones, and only care about treatment effect. Therefore, we favor model (4.3) over (8.5).

8.3. Effect of Treatment Reassignment

To further study the impact of treatment reassignment, we created an indicator variable isDoubleAssigned. For each user, if in A/B stage we observe she was assigned to treatment in some sessions and control in others, we assign value 1 to isDoubleAssigned. Otherwise, if a user remained in one group consistently, we assign value 0 to isDoubleAssigned. It’s worth noting this variable is not randomly assigned. It’s correlated to site usage: heavy users tend to get reassigned. For any user who visits the site more than once with first visit and last visit spanning more than a 90 hour time, there’s a chance of getting reassigned treatment.

We included isDoubleAssigned as a covariate in model (4.3), and results are summarized in Table 8.2. Note the interaction term $\text{treat:isDoubleAssigned}$ is not included in the model.
It is tempting to estimate treatment effects based on `isDoubleAssigned`, and consider the differences being caused by treatment reassignment. However, since `isDoubleAssigned` is not experimentally determined and correlates to site usage, the resulting estimates will only be observational and not causal.

Table 8.2: Effect of display of Price Range on Product Click-through

Dependent variable:	Product Click-through	
	Full	Full + `isDoubleAssigned`
Treat	0.0115*** (0.0016)	0.0115*** (0.0015)
Page no.	-0.0079*** (0.0005)	-0.0079*** (0.0005)
Items per page	-0.0039*** (0.0002)	-0.0039*** (0.0002)
Is user logged in	0.0763*** (0.0067)	0.0677*** (0.0067)
Average click-through	0.8700*** (0.0090)	0.8700*** (0.0090)
`isDoubleAssigned`	0.0288*** (0.0020)	0.0949*** (0.0040)
Constant	0.1050*** (0.0012)	0.0949*** (0.0040)

Observations: 2,438,232 2,438,232
R\(^2\): 0.0164 0.0167
Adjusted R\(^2\): 0.0164 0.0167
Residual Std. Error: 0.7650 (df = 2438226) 0.7650 (df = 2438225)
F Statistic: 8,124.0000*** (df = 5; 2438226) 6,904.0000*** (df = 6; 2438225)

Note: *p<0.1; **p<0.05; ***p<0.01
SE are cluster-robust, clustering on per-browser-instance

The intercept term for `isDoubleAssigned` appears to be significant - not surprisingly. This can be interpreted as heavy users tend to have higher click through rates. In addition, standard error for treatment effect is slightly reduced, but remains constant in its value. `isDoubleAssigned` can be considered another covariate (which proxies site usage), and seems useful in explaining variations in click through. Its inclusion does not alter treatment effect estimate, because even though `isDoubleAssigned` itself is not experimentally determined, which group a user is assigned to still is random.

Furthermore, this comparison suggest not to remove reassigned users (a group that accounts for over 30% of listing sessions) from regression analysis. Including these users allow us to get a overall ATE estimate applicable to the entire population, as opposed to conditional on only light users. However, it’s worth remembering the ATE estimate will be an “impure” effect, compared to what the experiment initially was designed to measure. Lastly, we choose not to include `isDoubleAssigned` as a covariate when reporting results, even if it reduces standard error for treatment effect. The rationale is its interactions with other covariates and treatment is complex and not well understood, and we would rather settle for a more conservative standard error estimate.
Do Price Ranges Increase Click-throughs?

Reference

[1] Belleflamme, P. (Apr, 2015). How Do Comparison Shopping Sites Make a Living? An Update. IPDigIt, http://www.ipdigit.eu/2015/04/How-do-comparis...

[2] Dholakia, U. M. & Simonson, I. (2005). The Effect of Explicit Reference Points on Consumer Choice and Online Bidding Behavior. Marketing Science, 24(2):206-217. http://dx.doi.org/10.1287/mksc.1040.0099

[3] Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R. M.. (February 2009). Controlled Experiments on the Web: Survey and Practical Guide. Data Mining and Knowledge Discovery 18, 1 pp. 140-181. DOI=10.1007/s10618-008-0114-1 http://dx.doi.org/10.1007/s10618-008-0114-1.

[4] Niklas Schmucker. (2011). Web Tracking. SNET2 Seminar Paper http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.8976&rep=rep1&type=pdf