Review of the inquilinous fauna associated with insect galls in Brazilian restingas

Revisão da fauna inquilina associada a galhas de insetos em restingas brasileiras

V. C. Maia*
*Unividade Federal do Rio de Janeiro – UFRJ, Museu Nacional, Departamento de Entomologia, Rio de Janeiro, RJ, Brasil

Abstract
Several records of associated fauna, including parasitoids, inquilines, predators, and successors, have been reported by insect gall inventories in Brazilian restingas. Although most guilds are well established, inquilines have frequently been misinterpreted. In this paper, the inquilinous fauna of insect galls is revised based on five criteria: food habit; coexistence with the inducer; modification of gall tissues or production of new tissues; phylogenetic relationship with the inducer; and mobility. Gall inventories dated from 1988 to 2019 were examined, totaling 16 publications, eight of them with inquiline records. This guild was reported in 53 gall morphotypes in 44 plant species and four morphospecies distributed among 36 genera of 24 host families for a total of 65 records. Most inquilines were repositioned into the cecidophage guild and others into the kleptoparasite guild, resulting in a large reduction in the frequency of inquilines (from 65 to five records), and in first reports of cecidophages and kleptoparasites, with 46 and 13 records, respectively. Cecidophages was the most diverse guild with insects of five orders (Diptera, Coleoptera, Lepidoptera, Hemiptera, and Thysanoptera) while kleptoparasites were represented only by two orders (Diptera and Hymenoptera) and inquiline solely by Hymenoptera. Other results indicate that Leptothorax sp. (Formicidae) could be a successor and not an inquiline.

Keywords: Cecidophages, kleptoparasites, gall-inducing insects, Atlantic Forest.

Resumo
Vários registros de fauna associada, incluindo parasitoides, inquilinos, predadores e sucessores são encontrados em inventários de galhas de insetos em restingas brasileiras. Embora a maioria das guildas esteja bem estabelecida, os inquilinos são frequentemente interpretados de forma equivocada. Nesse trabalho, a fauna inquilina de galhas de insetos é revisada com base em cinco critérios: hábito alimentar, coexistência com o induzidor, modificação dos tecidos da galha ou produção de novos tecidos, relação filogenética com o induzidor e mobilidade. Inventários de galhas publicados entre 1988 e 2019 foram examinados, totalizando 16 artigos, oito deles com registro de inquilinos. Essa guilda foi assinalada em 53 morfotipos de galhas em 44 espécies de plantas e quatro morfoespécies distribuídas em 36 géneros de 24 famílias vegetais, totalizando 65 registros. A maioria dos inquilinos foi reposicionada na guilda dos cecidófagos e outros na guilda dos kleptoparasitas, resultando em uma grande redução da frequência dos inquilinos (de 65 para cinco registros), e na primeira ocorrência de cecidófagos e cleptoparasitas, com 46 e 13 registros, respectivamente. A guilda dos cecidófagos foi a mais diversa, com insetos de cinco ordens (Diptera, Coleoptera, Lepidoptera, Hemiptera e Thysanoptera), enquanto que os kleptoparasitas foram representados apenas por duas ordens (Diptera e Hymenoptera) e os inquilinos somente por Hymenoptera. Outros resultados indicam que Leptothorax sp. (Formicidae) pode ser um sucessor e não um inquilino.

Palavras-chave: Cecidófagos, kleptoparasitas, insetos indutores de galhas, Mata Atlântica.

1. Introduction

Data on the arthropod fauna associated with insect galls have been reported by several inventories in five phytogeographic domains in Brazil: (1) Amazon Forest (Maia, 2011; Carvalho and Motta, 2018), (2) Atlantic Forest (Maia, 2001, 2013, 2014; Maia et al., 2008, 2014; Bregonci et al., 2010; Rodrigues et al., 2014; Maia and Souza, 2013; Carvalho-Fernandes et al., 2016; Maia and Carvalho-Fernandes, 2016; Maia and Mascarenhas, 2017; Ansaloni et al., 2018; Flor et al., 2018; Maia and Siqueira, 2020), (3) Caatinga (Carvalho-Fernandes et al., 2012; Costa et al., 2014; Brito et al., 2018), (4) Cerrado (Fernandes et al., 1988; Urso-Guimarães et al., 2003; Maia and Fernandes, 2004; Araújo et al., 2007; Santos et al., 2010; Araújo et al., 2011; Saito and Urso-Guimarães, 2012; Santos et al., 2012, 2018; Bergamini et al., 2017; Lima and Calado, 2018; Silva et al., 2018 a, b; Vieira et al., 2018;
Ribeiro et al., 2019), and (5) Pantanal (Ascendino and Maia, 2018). Several gall inventories of Atlantic Forest areas were carried out in restingas, mainly in the state of Rio de Janeiro (Maia, 2001; Rodrigues et al., 2014; Carvalho-Fernandes et al., 2016), but also in Espírito Santo (Bregonci et al., 2010), and São Paulo (Maia et al., 2008). This fauna has been classified as parasitoids, inquilines, gall modifiers, successors, and predators. Nevertheless, other guilds are known, such as cecidophages, symbionts and kleptoparasites, but they were not been cited in these publications, probably due to terminological problems.

Mani (1964) defined most of these guilds. According to this author, successors are organisms that use the gall after the inducer leaves. They are mostly mites, spiders, thrips, beetles, ants and springtails, which apparently use gall tissues for food and shelter, but dead or decaying gall tissue is probably attacked by fungi that also serve as food. Inquilines and cecidophages use galls simultaneously with the galler. Both are phytophagous and consume gall tissues, but only the former promote the production of new tissues (they have been referred to as "gall modifiers" in some inventories). Kleptoparasites steal the resource (in this case the gall) from other organism, causing the galler death or its expulsion from the gall (Mound and Morris, 2000). Predators invade galls and feed on their inducers, killing them immediately, such as some species of Carabidae and Coccinellidae, for example (Ramamurthy, 2007). Parasitoids are organisms that live in close association with the host at the host’s expense, which results in its death when the parasitoids complete their development (Godfray, 1994).

Guilds of predators, parasitoids, and successors are well delimited in the literature, while inquilines are a major problem as historically all organisms associated with galls that were not predators or parasitoids were placed in this guild (Redfern and Askew, 1992). Mani (1964), Godfray (1994), and Mound and Morris (2000) provided tools for distinguishing among these guilds, but none of them used multiple non-superposed parameters.

Luz and Mendonça-Júnior (2017) proposed five interaction parameters to conceptualize and differentiate inquilines, cecidophages and kleptoparasites from each other: food habit; coexistence with the inducer; modification of gall tissues or production of new tissues; phylogenetic relationship with the inducer; and mobility. According to these authors, inquilines are exclusively phytophagous, coexist with the gall-inducer, modify gall tissues or stimulate production of new tissues, have a close phylogenetic relationship with the inducer and are sedentary. Cecidophages are exclusively phytophagous, coexist with the gall-inducer, but do not modify gall tissues or stimulate production of new tissues, do not have a close phylogenetic relationship with the inducer and have high mobility, while kleptoparasites are omnivorous, do not coexist with the inducer, do not modify gall tissues or stimulate production of new tissues, can have a close phylogenetic relationship with the inducer and have low mobility. Based on these criteria, the inquilinous fauna associated with insect galls in Brazilian restingas is reviewed herein.

This paper also aims to answer the following questions: (1) Which are the most frequent and richest taxa of inquilines, cecidophages, and kleptoparasites? (2) Which gall-inducing taxa host the richest fauna of inquilines, cecidophages, and kleptoparasites? (3) In how many gall morphotypes and plant species, genera and families have these guilds been recorded? (4) Which plant families, genera and species shelter the richest guilds of inquilines, cecidophages, and kleptoparasites? (5) What are the most frequent features of host galls? (6) What is known about the taxonomy of the inquilines, cecidophages, and kleptoparasites of gall? and (7) What is necessary for the correct positioning of the associated fauna in the different guilds?

2. Material and Methods

A survey of scientific papers involving Brazilian restingas published from 1988 to 2019 was carried out by consulting the database “Web of Science” using "gall" or "galha" and “restinga” as keywords. Sixteen publications about galls in Brazilian restingas were found and examined. Eight of the publications provided data on inquilinous fauna, which were retrieved, compiled and analyzed, following the criteria established by Luz and Mendonça-Júnior (2017). The new positioning of associated fauna among guilds was based on literature data, as well as on unpublished biological information obtained from laboratory works, including gall arthropod rearing, gall dissection and observation of gall tissues and gall dweller behavior. These laboratory works were carried out during inventories of which I have participated, namely Maia, 2001; Maia et al., 2008; Bregonci et al., 2010; and Rodrigues et al. 2014. Finally, the positioning of the associated fauna into parasitoid and predator guilds was not revised, since the conceptions of these guilds are well understood.

3. Results

3.1. Literature data

Eight publications provided data on inquilinous fauna: Bregonci et al. (2010), Maia (1995, 2001, 2013), Maia and Azevedo (2009), Maia et al. (2002, 2008), and Rodrigues et al. (2014). However, this guild was misinterpreted, since it also comprised cecidophages and kleptoparasites, without discriminating them. Diptera (Cecidomyiidae, Chloropidae, Muscomorpha, Sciariidae, and Tephritidae), Coleoptera, Hemiptera (Aphididae, Coccidae, and Tingidae), Hymenoptera (Eulophidae, Formicicidae and Tanaostigmatidae), Lepidoptera, and Thysanoptera were represented among the taxa indicated as inquilines by these authors (Table 1), with Diptera, Lepidoptera, and Coleoptera being the most frequent (Table 2). This secondary fauna was found in 53 gall morphotypes and totaled 65 records in 44 plant species and four morphosppecies distributed among 36 genera of 24 host families. Myrtaceae was the family with the greatest number of records (Table 3). Most inquilines were positioned in other guilds, as shown below.
Table 1. Inquilines found in insect gall inventories in Brazilian restingas published from 1988 to 2019.

Family	Host Plant	Gall-inducer	Inquiline	Reference
Anacardiaceae	Atronium sp.	Hemiptera	Clinodiplosis sp. (Cecidomyiidae)	Maia (2013)
	Asteraceae	Mikania cf. biformis DC.	Contarinia ubiquita Gagné, 2001 (Cecidomyiidae)	Maia et al. (2008)
		Liodiplosis conica Gagné, 2001	Trotteria sp. (Cecidomyiidae)	Maia et al. (2008)
		Liodiplosis conica Gagné, 2001	Acanthocheilla sp. (Tingidae) Aphididae and Coccidae (Hemiptera), Curculionidae (Coleoptera),	
Baccharis singularis (Vell.) G. M. Barroso		Neolasioptera sp.	Thysanoptera	Maia et al. (2008)
Baccharis speciosa DC.		Alycaulini (Cecidomyiidae)	Lepidoptera	Maia et al. (2008)
Piptocarpha cf. cinerea Baker		Cecidomyiidi (Cecidomyiidae)	Lepidoptera	Maia et al. (2008)
Liodiplosis conica Gagné, 2001		Asphondyla sp.	Lepidoptera and Curculionidae (Coleoptera)	Maia et al. (2008)
Porophyllum ruderale (Jack.) Cass.		Neolasioptera sp.	Trypaneus sp. (Diptera, Tephritidae)	Rodrigues et al. (2014)
Bignoniaceae	Parabignonia unguiculata (Vell.) A. H. Gentry		Resseliella sp. (Cecidomyiidae)	Maia et al. (2008)
Boraginaceae	Varronia curassavica Jacq.	Lopesini (Cecidomyiidae)	Curculionidae (Coleoptera)	Maia et al. (2008)
Calophyllaceae	Calophyllum brasiliense Cambess.		Lopesia elliptica Maia, 2003 (Cecidomyiidae)	Maia et al. (2008)
Celastraceae	Elachyptera micrantha (Cambess.) A. C. Sm.		Lopesia indaiensis (Cecidomyiidae)	Maia et al. (2008)
Erythroxylaceae	Erythroxylum ovalifolium Peyrs		Lopesia erythroxyli Rodrigues and Maia, 2010	Maia (2001)
Euphorbiaceae	Croton compressus Lam.	Not determined	Curculionidae (Coleoptera)	Rodrigues et al. (2014)
Fabaceae	Andira fraxinifolia Benth.	Lopesia indaiensis Maia & Oliveira, 2018	Curculionidae (Coleoptera), Lepidoptera and Cecidomyiidae	Maia et al. (2008), Rodrigues et al. (2014)
Andira nitida Mart. ex Benth.		Asphondyliina	Curculionidae (Coleoptera)	Maia et al. (2008)
Inga laurina (Sw.) Willd.		Neolasioptera sp. (Cecidomyiidae)	Lepidoptera	Rodrigues et al. (2014)
Inga sp.		Neolasioptera sp. (Cecidomyiidae)	Lepidoptera	Rodrigues et al. (2014)
Lauraceae	Ocotea lobii (Meisn.) Rohwer	Ceclidiomyiidae	Curculionidae (Coleoptera)	Maia et al. (2008)
Ocotea notata (Nees & Mart.) Mez		Not determined	Trotteria sp. (Cecidomyiidae)	Maia et al. (2008)
Lamiaceae	Hyptis fasciculata Benth.	Ceclidiomyiidae	Curculionidae (Coleoptera)	Maia et al. (2008)
Maia & Oliveira, 2018		Asphondyliina	Curculionidae (Coleoptera)	Maia et al. (2008)
Inga sp.		Neolasioptera sp. (Cecidomyiidae)	Lepidoptera	Rodrigues et al. (2014)
Lauraceae	Ocotea lobii (Meisn.) Rohwer	Ceclidiomyiidae	Curculionidae (Coleoptera)	Maia et al. (2008)
Ocotea notata (Nees & Mart.) Mez		Not determined	Trotteria sp. (Cecidomyiidae)	Maia et al. (2008)
Lauraceae	Ocotea lobii (Meisn.) Rohwer	Ceclidiomyiidae	Curculionidae (Coleoptera)	Maia et al. (2008)
Bregonci et al. (2010)		Asphondyliina	Curculionidae (Coleoptera)	Maia et al. (2008)
Table 1. Continued...

Family	Host Plant	Species	Gall-inducer	Inquiline	Reference
Loranthaceae	Ocotea pulchella (Nees) Mez		Cecidomyiidae	Hemiptera	Maia et al. (2008)
			Not determined	Trotteria sp.	Maia et al. (2008)
	Struthanthus concinnus Mart.		Asphondylia sp.	Cecidomyiidae and	Rodrigues et al. (2014)
			(Cecidomyiidae)	Thysanoptera	
Malvaceae	Luehea divaricata Mart		Cecidomyiidae	Ocella sp. (Chloropidae,	Rodrigues et al. (2014)
Melastomataceae	Miconia cinnamomifolia (DC.)		Euphormyonia	Reselliella sp. (Cecidomyiidae)	Maia (2001)
	Naudin.		miconta Maia, 2001		
	Tibouchina trichopoda (DC.)		Cucurbitaceae	Curculionidae (Coleoptera)	Maia et al. (2008)
	Ball.				
Myrtaceae	Campomanesia guaviroba (DC.)		Clinodiplosis sp.	Membracidae (Hemiptera)	
	Klaersk.		(Cecidomyiidae)		
	Eugenia astringens Cambess.		Euphormyonia	Leia (Cecidomyiidae)	
			rotundiflorum	Maia, 1994	Maia (1995)
	Eugenia copacabanensis Klaersk.		Euphormyonia	Leia (Cecidomyiidae)	
			rotundiflorum	Maia, 1994	Maia (1995)
	Eugenia hiemalis Cambess.		Euphormyonia	Leia (Cecidomyiidae)	
			sp.	Maia, 1994	Maia (1995)
	Eugenia punicifolia (Kunt) DC.		Not determined	Curculionidae (Coleoptera)	Rodrigues et al. (2014)
	Eugenia speciosa Cambess.		Schizomyiina	Sannosa (Butler, 1877)	Personnal observation
			Clinodiplosis sp.		
			(Cecidomyiidae)		
	Myrcia ovata Cambess.		Myrciamyia		
			maricaensis Maia, 1995		
	Myrciaria floribunda (H.West ex		Euphormyonia		
	Wild.l.) O. Berg.		sp.		
	Neomitranthes obscura (DC.) N.		Euphormyonia		
	J. E. Silveira		rotundiflorum		
			Maia, 1996		
			Euphormyonia		
			sp.		
Nyctaginaceae	Guapira opposita (Vell.) Reitz		Brugmannia elongata	Lepidoptera	Maia et al. (2008)
			Maia & Couri, 1993		
			(Cecidomyiidae)		
			Brugmannia sp.	Lepidoptera	Rodrigues et al. (2014)
			(Cecidomyiidae)		
			Pisphondylia sp.	Lepidoptera	Rodrigues et al. (2014)
Ochnaceae	Guapira pernambucensis (Casar.)		Cecidomyiidae	Lepidoptera	Bregonci et al. (2010)
	Lundell				
	Ouratea cuspidata (A.St.-Hil.)		Cecidomyiidae	Lepidoptera	Bregonci et al. (2010)
	Engl.				
Peraceae	Chaetocarpus myrsinites Baill.		Cecidomyiidae	Lepidoptera	Bregonci et al. (2010)
Polygalaceae	Securidaca sp.		Cecidomyiidae	Muscomorpha (Diptera)	Rodrigues et al. (2014)
Fauna associated with galls

These disturbances can lead to the death of the gall-inducer, as previously reported (Maia, 2001). Whenever larvae of coleopterans and lepidopterans were observed, the gall-inducer died, which did not happen when dipterans, hemipterans and thysanopterans were present.

The cecidophage guild was obtained from 39 gall morphotypes (75%) on plants of 20 families (83%), 28 genera (78%) and 35 species (83%) (Table 5). Asteraceae and Myrtaceae were the host families with the greatest number of records, with ten and six, respectively, which corresponded to about 21% and 13% of the total. However, in both families, the number of gall morphotypes (six) and plant species (five) that hosted cecidophages was nearly the same, corresponding to 15% and 14%, respectively. Fabaceae totaled five records (11%), three gall morphotypes (8%), and three plant species (8%), followed by Nyctaginaceae with four (9%), four (10%) and three (8%), respectively.

Mikania Wild. (Asteraceae), Andira Juss. (Fabaceae), and Guapira Aubl. (Nyctaginaceae) were the plant genera with the highest number of records of cecidophages, with four each (9%).

Table 1. Continued...

Family	Host Plant	Gall-inducer	Inquiline	Reference
Polygonaceae	Coccoloba alnifolia Casar	Lopesia sp.	Lepidoptera	Rodrigues et al. (2014)
Sapindaceae	Paullinia weinmannifolia Mart.	Paulliniomyia ampla Maia, 2001 (Cecidomyiidae)	Eulophidae (endogaller)	Maia (2001)
	Paullinia sp.	Neolasioptera sp. (Cecidomyiidae)	Lepidoptera	Maia et al. (2008)
	Serjania communis Cambess.	Cinodiplosis sp. (Cecidomyiidae)	Sciaridae (Diptera)	Maia et al. (2008)
Sapotaceae	Pouteria venosa (Mart.) Baehni	Lopesia singularis Maia, 2001 (Cecidomyiidae)	Lepidoptera	Maia et al. (2008)
	Manilkara subsericea (Mart.) Dubard	Cecidomyiidi (Cecidomyiidae)	Contarinia sp. (Cecidomyiidae)	Maia (2001)
	Pouteria caimito (Ruíz & Pav.) Radlk.	Youngomyia pouteriae Maia, 2001 (Cecidomyiidae)	Coleoptera	Bregoni et al. (2010)
	Sideroxylon obtusifolium (Roem. & Schult.) T. D. Penn.	Bruggmannniella sideroxyli Rodrigues & Maia, 2020	Cecidomyiidae	Rodrigues et al. (2014)
Solanaceae	Aureliana fasciculata (Vell.) Sendtn.	Cinodiplosis sp. (Cecidomyiidae)	Curculionidae (Coleoptera)	Maia et al. (2008)
	Stachytarpheta sp.	Schizomyia stachytarphetae Barnes, 1932 (Cecidomyiidae)	Haplothrips gowdeyi (Franklin, 1908) (Thysanoptera, Phlaeothripidae)	Rodrigues et al. (2014)

3.2. Recategorization (Table 4)

3.2.1. Cecidophage guild

Although Coleoptera, Sciaridae, Tephritidae, Chloropidae, Muscomorpha, Cinodiplosis sp. (Cecidomyiidae), Hemiptera, Lepidoptera, and Thysanoptera were represented among the taxa considered inquilines, biological observations indicated these to be cecidophages since they feed on galls without modifying them or stimulating production of new tissues, coexisted with the inducer and had high mobility.

Other laboratory observations showed that immature stages of dipterans, coleopterans and lepidopterans occurred in galls, but not the adults, since they left galls immediately after their emergence. Different from these insects, adult hemipterans and thysanopterans were frequently observed in galls together with their eggs and nymphs. Pupal exuviae of coleopterans, lepidopterans, tephritids and chloropids were found in galls, while those of sciarids remained attached to gall openings, in the same way as cecidomyiidi exuviae.

Field and laboratory observations showed that caterpillars, such as that of Stenoma annosa, for example, could be voracious, feeding and destroying several galls (Butler, 1877). Furthermore, their excrement is accumulated in the internal chamber(s). These disturbances can lead to the death of the gall-inducer, as previously reported (Maia, 2001).

Whenever larvae of coleopterans and lepidopterans were observed, the gall-inducer died, which did not happen when dipterans, hemipterans and thysanopterans were present.

The cecidophage guild was obtained from 39 gall morphotypes (75%) on plants of 20 families (83%), 28 genera (78%) and 35 species (83%) (Table 5). Asteraceae and Myrtaceae were the host families with the greatest number of records, with ten and six, respectively, which corresponded to about 21% and 13% of the total. However, in both families, the number of gall morphotypes (six) and plant species (five) that hosted cecidophages was nearly the same, corresponding to 15% and 14%, respectively. Fabaceae totaled five records (11%), three gall morphotypes (8%), and three plant species (8%), followed by Nyctaginaceae with four (9%), four (10%) and three (8%), respectively.

Mikania Wild. (Asteraceae), Andira Juss. (Fabaceae), and Guapira Aubl. (Nyctaginaceae) were the plant genera with the highest number of records of cecidophages, with four each (9%). Mikania cf. biformis DC., Andira fraxinifolia Benth. (Fabaceae), Guapira opposita (Vell.) Reitz (Nyctaginaceae), Piptocarpha cf. cinerea Baker, and Neomitranthes obscura (DC.) N. J. E. Silveira (Myrtaceae) were the plant species...
Table 2. Number of host species, gall morphotypes and records of inquilines by plant family in insect gall inventories in Brazilian restingas published from 1988 to 2019.

Host Plant	Number of species	Number of gall morphotypes	Number of records of inquilines
Myrtaceae	9	10	11
Asteraceae	5	8	11
Fabaceae	4	5	7
Sapotaceae	4	5	5
Lauraceae	3	4	4
Nyctaginaceae	2	4	4
Sapindaceae	3	3	3
Melastomataceae	2	2	2
Anacardiaceae	1	1	1
Bignoniaceae	1	1	1
Boraginaceae	1	1	1
Calophyllaceae	1	1	1
Celastraceae	1	1	1
Erythroxylaceae	1	1	1
Euphorbiaceae	1	1	1
Lamiaceae	1	1	1
Loranthaceae	1	1	2
Malvaceae	1	1	1
Ochnaceae	1	1	1
Peraceae	1	1	1
Polygalaceae	1	1	1
Polygonaceae	1	1	1
Solanaceae	1	1	1
Verbenaceae	1	1	1

Table 3. Frequency of inquilines in insect gall inventories in Brazilian restingas published from 1988 to 2019.

Inquiline	Number of records
Diptera	19
Cecidomyiidae	14
Sciaridae	2
Chloropidae	1
Muscomorpha	1
Tephritidae	1
Lepidoptera	15
Coleoptera	14
Hymenoptera	7
Thysanoptera	4
Hemiptera	6

with more than one cecidophage record. The first hosted aphids, coccids, tingids (Hemiptera), and curculionids (Coleoptera) in only one gall morphotype; the second hosted curculionids and lepidopterans in one morphotype as well; the third hosted curculionids and lepidopterans in two morphotypes; and the last, hosted lepidopterans in two gall morphotypes.

Concerning plant organs, cecidophages were obtained from galls on leaves, stems, buds, tendrils, flowers, and fruits, with leaf galls being most frequent (61%). They occurred in galls of several shapes, but mainly in globose galls (31%). Although they were obtained from green, brown, yellow, red, and purple galls, 67% occurred in green galls, and 95% occurred in glabrous galls.

Cecidophages represented five insect orders: Coleoptera, Diptera (Cecidomyiidae, Chloropidae, Muscomorpha, Tephritidae), Hymenoptera (Aphididae, Membracidae), Lepidoptera, and Thysanoptera. Among these, lepidopterans and coleopterans were the
Table 4. Records of cecidophages, kleptoparasites, and inquilines in insect galls in Brazilian restingas.

Host Plant	Gall-inducers	Associated fauna
Atronium sp.	Hemiptera	Clinodiplosis sp. (cecidophage)
Mikania cf. *biformis* DC.	*Clinodiplosis annulipes* Gagné, 2001	*Contarinia ubiquita* Gagné, 2001
Baccharis singularis (Vell.) G. M. Barroso	*Liodiplosis conica* Gagné, 2001	*Trotteria* sp. (kleptoparasite)
Baccharis speciosa DC.	Neolasioptera sp.	Thysanoptera (cecidophage)
Piptocarpa cf. *cinerea* Baker	Cecidomyiidae	Lepidoptera (cecidophage)
Porophyllum ruderale (Jack.) Cass.	Asphondyliina	Lepidoptera (cecidophage)
Parabignonia unguiculata (Vell.) A. H. Gentry	*Cecidomyiidae*	Resseliella sp. (kleptoparasite)
Varronia curassavica Jacq.	Lopesiini	Curculionidae (cecidophage)
Calophyllum brasilense Cambess.	*Lopesia elliptica* Maia, 2003	Coleoptera (cecidophage)
Elachyptera micrantha (Cambess.) A. C. Sm.	*Cecidomyiidae*	Lepidoptera (cecidophage)
Erythroxylum ovalifolium Peyrs.	*Lopesia erythroxyl* Rodrigues and Maia, 2010	Eulophidae (inquiline)
Croton compressus Lam.	Not determined	Curculionidae (cecidophage)
Andira fraxinifolia Benth.	*Cecidomyiidae*	Curculionidae and Lepidoptera (cecidophages)
Ocotea lobbii (Meisn.) Rohwer	Hemiptera	Cucurbitidae (cecidophage)
Ocotea notata (Nees & Mart.) Mez	*Cecidomyiidae*	Lepidoptera (cecidophage)
Ocotea pulchella (Nees) Mez	Not determined	*Trotteria* sp. (kleptoparasite)
Struthanthus concinnus Mart.	*Cecidomyiidae*	*Cecidomyiidae* (kleptoparasite) and Thysanoptera (cecidophage)
Luehea divaricata Mart.	Asphondyliina	Lepidoptera (cecidophage)
Miconia cinnamomifolia (DC.) Naudin.	Epihormomyia miconiae Maia, 2001	Eulophidae (inquiline)
Tibouchina trichopoda (DC.) Baill.	*Cecidomyiidae*	Curculionidae (cecidophage)
Campomanesia guaviroba (DC.) Kiaersk.	Clinodiplosis sp.	Membracidae (cecidophage)
Eugenia astringens Cambess.	Stephomyia rotundifoliorum Maia, 1994	Eulophidae (inquiline)
Eugenia copacabanensis Kiaersk.	*Stephomyia tetraloba* Maia, 1994	*Trotteria* sp. (kleptoparasite)
Eugenia hiemalis Cambess.	Stephomyia sp.	Leptothorax sp. (successor)
Eugenia punicifolia (Kunt) DC.	Not determined	Curculionidae (cecidophage)
Myrcia ovata Cambess.	Schizomyiina	Sciariidae (cecidophage)
Myrtiaria floribunda (H. West ex Willd.) O. Berg	*Cecidomyiidae*	*Eulophidae* sp.1 and *Eulophidae* sp. 2 (inquilines)
Neomitrantes obscursa (DC.) N. J. E. Silveira	Neomitrantes robusta Maia, 2001	*Trenora annosa* (Butler, 1877) (cecidophage)
Table 4. Continued...

Host Plant	Gall-inducers	Associated fauna
Guapira opposita (Vell.) Reitz	Clinodiplosini	Stenoma annosa (cecidophage)
Bruggmannia elongata Maia & Couri, 1993		
Bruggmannia sp.		
Pisphodylia sp.		
G. pernambucensis (Catar.) Lundell	Cecidomyiidae	Lepidoptera (cecidophage)
Ouratea cuspidata (A.St.-Hil.) Engl.	Contarinia sp.	Coleoptera (cecidophage)
Chaetocarpus myrsinates Baill.	Not determined	Lepidoptera (cecidophage)
Securidaca sp.	Cecidomyiidae	Muscomorpha (cecidophage)
Coccoloba a Frips. Casar	Lopesia sp.	Lepidoptera (cecidophage)
Paulinia weinmannifolia Mart.	Pualliniacyampa ampla, 2001	Eulophidae (inquiline)
Paulinia sp.		
Serjania communis Cambess.	Clinodiplosis sp.	Sciaridae (cecidophage)
Pouteria venosa (Mart.) Baehni	Lopesia singularis, 2001	Lepidoptera (cecidophage)
Manilkara subsericea (Mart.) Dubard	Cecidomyiidae	Contarinia sp. (kleptoparasite)
Pouteria cainito (Ruiz & Pav.) Radlk.	Youngomyia pouteriae, 2001	Coleoptera (cecidophage)
Sideroxylon obtusifolium (Roem. & Schult.) T. D.	Bruggmanniella sideroxyl	Cecidomyiidae (kleptoparasite)
Aureliana fasciculata (Vell.) Sendtn.	Clinodiplosis sp.	Curculionidae (cecidophage)
Stachytarpheta sp.	Schizomyia stachytarphetae, 1932	Haplothrips gowdeyi, (Franklin, 1908)

Table 5. Cecidophages, kleptoparasites and inquilines found in gall inventories in Brazilian restingas and gall characterization.

Guilds	Inquilines	Host plant	Host organ	Shape	Color	Trichomes
Eulophidae	Erythroxylum ovalifolium Peyrs.	Bud	Conical	Green	Absent	
Eulophidae sp.1	Myrica ovata Cambess.	Bud	Cylindrical	Brown	Absent	
Eulophidae sp. 2	Myrica ovata	Bud	Ovoid	Green	Absent	
Eulophidae	Paulinia weinmannifolia Mart.	Leaf	Conical	Green	Absent	
Kleptoparasites	Andira fraxinifolia Benth.	Leaf	Vermiform	Green	Absent	
Cedicomyiidae	Struthanthus concinnus Mart.	Leaf and stem	Conical	Green	Absent	
Cedicomyiidae	Sideroxylon obtusifolium (Roem. & Schult.) T. D. Penn.	Fruit	Globoid	Green	Absent	
Contarinia ubi	Mikania cf. biformis DC.	Leaf vein, petiole and stem	Fusiform	Green	Absent	
Contarinia sp.	Manilkara subsericea (Mart.) Dubard	Leaf	Lenticular	Green	Absent	
Resseliella sp.	Parabignonia unguiculata (Vell.) A. H. Gentry	Leaf	Lenticular	Green	Absent	
Resseliella sp.	Miconia cinnamonifolia (DC.) Naudin.	Bud	Ovoid	Green	Absent	
Table 5. Continued...

Guilds	Host plant	Inquilines	Host organ	Shape	Color	Trichomes
Tanaostigmatidae	*Inga laurina* (Sw.) Willd.	Trotteria quadridentata	Leaf	Cylindrical	Yellow	Absent
Pouteria caimito (Ruiz & Pav.) Radlk.		Trotteria sp.	Leaf	Conical	Green	Absent
Ocotea lobbia (Meisn.) Rohwer		Trotteria sp.	Leaf and stem	Conical	Green	Absent
Ocotea pulchella (Nees) Mez		Trotteria sp.	Stem	Fusiform	Brown	Absent
Eugenia copacabanensis Klaersk.		Trotteria sp.	Leaf	Fusiform	Red	Absent
Coccidophages						
Clinodiplosis sp.	*Atronium* sp.	Thysanoptera	Leaf	Globoid	Green	Absent
Baccharis singularis (Vell.) G. M. Barroso			Leaf and stem	No data	No data	No data
Acanthocheilla sp. (Tingidae, Hemiptera)						
Mikania cf. biformis DC.		Acanthocheilla sp. (Hemiptera)	Leaf	Globoid	Green	Absent
Aphididae (Hemiptera)			Leaf	Globoid	Green	Absent
Coccidae (Hemiptera)	*Mikania cf. biformis* DC.		Leaf	Globoid	Green	Absent
Curculionidae (Coleoptera)	*Mikania cf. biformis* DC.		Leaf	Globoid	Green	Absent
Lepidoptera	*Baccharis speciosa* DC.		Stem and bud	No data	No data	No data
Lepidoptera	*Piptocarpha cf. cinerea* Baker		Leaf vein, stem and bud	Ovoid	Brown	Absent
Curculionidae (Coleoptera)	*Piptocarpha cf. cinerea* Baker		Leaf petiole, stem, bud	Globoid	Brown	Absent
Lepidoptera	*Piptocarpha cf. cinerea* Baker		Leaf petiole, stem, bud	Globoid	Brown	Absent
Trypanea sp.	*Porophyllum ruderale* (Jack.) Cass.	Curculionidae	Inflorescence	Fusiform	Green	Absent
Curculionidae	*Varronia curassavica* Jacq.		Leaf vein	Fusiform	Green	Absent
Coleoptera	*Calophyllum brasiliense* Cambess.	Curculionidae	Leaf	Fusiform	Green	Absent
Lepidoptera	*Elachyptera micranta* (Cambess.) A. C. Sm.	Curculionidae	Leaf and bud	Conical	Green	Absent
Curculionidae	*Croton compressus* Lam.	Curculionidae	Inflorescence	Amorphous	Yellow	Present
Curculionidae	*Andira fraxinfolia* Benth.	Curculionidae	Leaf	Vermiform	Green	Absent
Lepidoptera	*Andira fraxinfolia*	Curculionidae	Leaf	Vermiform	Green	Absent
Curculionidae	*Andira fraxinfolia*	Curculionidae	Leaf	Vermiform	Green	Absent
Coleoptera	*Andira nitida* Mart. ex Benth	Curculionidae	Leaf	Lenticular	Green	Absent
Lepidoptera	*Inga* sp.		Stem	Fusiform	Green, Brown	Present
Curculionidae	*Hyptis fasciculata* Benth.	Curculionidae	Leaf vein, petiole and stem	Fusiform	Green, brown	Absent
Cecidomyiidae	*Ocotea notata* (Nees & Mart.) Mez	Membracidae	Leaf	Lenticular	Green, yellow	Absent
Hemiptera	*Ocotea pulchella* (Nees) Mez		Leaf and bud	Fusiform	No data	Absent
Thysanoptera	*Struthanthus concinnus* Mart.		Leaf and stem	Conical	Green	Absent
Olea sp.	*Luehea divaricata* Mart.		Stem	Globoid	Brown	Absent
Curculionidae	*Tibouchina trichopoda* (DC.) Baill.	Curculionidae	Stem	Fusiform	Brown	Absent
Membracidae	*Campomanesia guaviroba* (DC.) Klaersk.	Membracidae	Leaf vein	Globoid	No data	Absent
Table 5. Continued...

Guilds	Host plant	Inquilines	Host organ	Shape	Color	Trichomes
Curculionidae	*Eugenia paniculata* (Kunt) DC.	**Stenoma annosa** (Lepidoptera)	Fruit	Globoid	Green, yellow, Red	Absent
Sciariidae	*Eugenia speciosa* Cambess.	**Stephomyia rotundifoliorum** (Diptera)	Leaf	Conical	Yellow	Absent
Thysanoptera	*Myrcia floribunda* (H.West ex Willd.)	**Lepidoptera** Guapira opposita (Vell.) Reitz	Leaf	Globoid	Green	Present
Stenoma annosa	*Neomitrantes obscura* (DC.) N. J. E. Silveira	**Lepidoptera** Guapira opposita	Leaf	Marginal roll	Green	Absent
Sciaridae	*Neomitrantes obscura*	**Lepidoptera** Guapira opposita	Bud	Conical	Green	Absent
Thysanoptera	*Myrcia floribunda* (H.West ex Willd.)	**Aphididae** Guapira opposita	Leaf	Lenticular	Green	Absent
Stenoma annosa	*Neomitrantes obscura*	**Lepidoptera** Guapira opposita	Leaf	Globoid	Brown	Absent
S. annosa	*Neomitrantes obscura*	**Lepidoptera** Guapira opposita	Flower peduncle	Globoid	Green, Brown, red	Absent
Lepidoptera	*Guapira pernambucensis* (Casar.) Lundell	**Lepidoptera** Guapira opposita	Leaf	Lenticular	Green, Brown	Absent
Coleoptera	*Ouratea cuspidata* (A.St.-Hil.) Engl.	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf	Conical	Brown	Absent
Lepidoptera	*Chaetocarpus myrsinites* Baill.	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf	Lenticular	Green, Brown	Absent
Muscomorpha	*Securidaca* sp.	**Lepidoptera** Cocclobo ahiifolia Casar	Closed flower	Ovoid	Purple	Absent
Lepidoptera	*Cocclobo ahiifolia* Casar	**Lepidoptera** Chaetocarpus myrsinites Baill.	Inflorescence	Globoid	Green, Yellow	Absent
Lepidoptera	*Paulinia* sp.	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf petiole, vein and tendril	Fusiform	Green	Absent
Sciariidae	*Serjania communis* Cambess.	**Lepidoptera** Chaetocarpus myrsinites Baill.	Bud	Ovoid	Red	Absent
Lepidoptera	*Pouteria venosa* (Mart.) Baehni	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf	Globoid	Green	Absent
Coleoptera	*Manilkara subservica* (Mart.) Dubard	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf	Lenticular	Green	Absent
Curculionidae	*Aureliana fasciculata* (Vell.) Sendtn.	**Lepidoptera** Chaetocarpus myrsinites Baill.	Leaf vein	Fusiform	Green	Absent
Haplothrips	**Haplothrips gowdeyi**	**Lepidoptera** Chaetocarpus myrsinites Baill.	Inflorescence	Globoid	Green	Present

Most frequent, being recorded in 38% and 36% of the galls with cecidophagous insects, while dipterans, hemipterans, and thysanopterans were recorded in 15%, 13%, and 13% of the galls, respectively.

Only two cecidophages were identified to species: *Stenoma annosa* (Lepidoptera) and *Haplothrips gowdeyi* (Thysanoptera). Four were identified to genus: *Clinodiplosis* (Cecidomyiidae), *Acanthochella* (Tingidae), *Trypanea* (Tephritidae), and *Occella* (Chloropidae). All other cecidophage records were identified to suprageneric categories.

3.2.2. Inquiline guild

Only eulophids (Hymenoptera) were considered inquilines in this revision, since their larvae were sedentary, exclusively phytophagous, coexisted with the gall-inducer and caused modification of gall tissues or stimulated the production of new tissues.

Modifications of gall tissues were reported in three gall morphotypes, one induced by *Lopesia erythroxylif* Rodrigues & Maia, 2010 (Cecidomyiidae) on *Erythroxylum ovalifolium* Peyrs (Erythoxylaceae) (Figure 1), another induced by *Stephomyia rotundifoliorum* Maia, 1994 (Cecidomyiidae) on *Eugenia astringens* Camb. (Myrtaceae) (Figure 2), and the third induced by *Myrciamyia maricaensis* Maia, 1995 (Cecidomyiidae) on *Myrcia ovata* Camb. (Myrtaceae). The production of new tissues was reported in two gall morphotypes, one induced by *Paulliniamyia ampla* Maia, 2001 (Cecidomyiidae) on *Paullinia weinmannifolia* Mart. (Sapindaceae) and the other induced by *M. maricaensis* on *Myrcia ovata* (Figures 3 and 4). None of these inquilines...
Trotteria (Cecidomyiidae), Tavares, 1916, sp.: Tephritidae) and , and , sp.). Galls induced by Kieffer, 1894, hosted only Tavares, 1906. Membracids, sciarids and Rübsaamen, 1908, hosted . Representatives of Diptera Felt, 1908, Loew, 1850, and .

3.2.4. Kleptoparasites (Myrtaceae). These two cases are probably the same. Successor in similar galls on not be considered cecidophagous since it did not feed on gall tissues. Furthermore, these larvae showed low mobility and did not modify or stimulate production of new gall tissues. Therefore, they can be considered as kleptoparasites. Nevertheless, the criterion of food habit was not met, since their larvae were phytophagous and not omnivorous.

Tanaostigmatids, reported in galls of Meunieriella (Cecidomyiidae), were also considered kleptoparasites. This guild totaled 13 records (20%) in 12 gall morphotypes (23%) on plants of eight families (33%), 11 genera (30%) and 12 species (27%). All plant taxa had a similar number of records, so none of them can be highlighted as the most frequent (Table 5).

Kleptoparasites were represented by cecidomyiids (Diptera) and tanaostigmatids (Hymenoptera), which were obtained from leaf, stem, bud and fruit galls, being more frequent in the leaf galls (69%). Kleptoparasites occurred in conical, globoid, fusiform, lenticular, ovoid, cylindrical and vermiciform galls, but mainly in the first (33%). Galls were green, yellow, brown, and red, but most (75%) were green. All reports were in glabrous galls.

Two kleptoparasites were identified to species, Contarinia ubiquita and Trotteria quadridentata (Cecidomyiidae), seven to genera, Contarinia (N=1), Resseliella (N=2), and Trotteria (N=4), and four to family, Cecidomyiidae (N=3) and Tanaostigmatidae (N=1).

3.3. Gall-inducing taxa and cecidophage, inquiline and kleptoparasite guilds

Cecidophages, inquilines and kleptoparasites were recorded in 46 gall morphotypes induced by cecidomyiids (Diptera) and in two morphotypes induced by hemipterans. Cecidomyiid galls comprised all three of these guilds, while those of hemipterans sheltered only cecidophages. Some kleptoparasites and cecidophages were obtained from five gall morphotypes (9% of the total) whose inducers are still unknown.

Cecidophages, inquilines and kleptoparasites were associated with 16 species and 15 morphospecies of gall-inducing cecidomyiids of 18 genera. Among these, galls induced by species of Lopesia Rūbšačen, 1908, hosted the greatest variety of guilds (cecidophages, inquilines, and kleptoparasites) and associated taxa (Coleoptera, Eulophidae, Cecidomyiidae, and Lepidoptera), followed by galls induced by species of Stephomyia Tavares, 1916, the galls of which sheltered inquilines (Eulophidae) and kleptoparasites (Trotteria sp.). Galls induced by species of Clinidiplosis Kieffer, 1894, hosted only cecidophages, as did those induced by species of Neolasioptera Felt, 1908, Asphondylia Loew, 1850, and Brugmannia Tavares, 1906. Membracids, sciarids and curculionids were recorded in galls of Clinodiplosis, while thysanopterans and lepidopterans were recorded in galls of Neolasioptera. Representatives of Diptera (Cecidomyiidae and Trypaneae sp.: Tephritidae) and Thysanoptera were obtained from galls of Asphondylia,
whereas representatives of Hemiptera (Aphididae) and Lepidoptera were obtained from galls of Brugmannia. The other gall midge genera sheltered a single guild and a single insect taxon.

Gall-inducing hemipterans were identified only to the level of order. Their galls hosted cecidomyiids, one of them identified to genus (*Clinodiplosis* sp.) and the other to family. The new composition of these guilds allows the questions proposed at the beginning of this paper to be answered:

1. The most represented taxa among cecidophages were Lepidoptera and Coleoptera. Inquilines represented only Eulophidae (Hymenoptera) and kleptoparasites mainly Cecidomyiidae (Diptera). The richest taxa were not indicated, as most records were in suprageneric categories, without the discrimination of morphospecies;

2. Cecidomyiidae is the gall-inducing taxon with the richest fauna of inquilines, cecidophages and kleptoparasites;

3. Inquilines were reported in four gall morphotypes, four plant species, four genera and three families; cecidophages in 39 gall morphotypes, 35 plant species, 28 genera, and 20 families; and kleptoparasites in 12 gall morphotypes, eight plant families, 11 genera, and 12 species;

4. Asteraceae and Myrtaceae, *Mikania* (Asteraceae), *Andira* (Fabaceae), and *Guapira* (Nyctaginaceae), *Mikania cf. biforments*, *Andira fraxinifolia* (Fabaceae), *Guapira opposita* (Nyctaginaceae), *Piptocarpha cf. cinerea*, and *Neomitrantes obscura* (Myrtaceae) were the plant taxa with the richest cecidophagus guild. No plant taxa were highlighted as sheltering the richest kleptoparasite guild or inquiline guild;

5. Cecidophages, inquilines and kleptoparasites were recorded mainly in leaf, green, and glabrous galls. The first occurred more frequently in globoid galls, the second in conical and ovoid galls, and the last in conical galls;

6. The taxonomic knowledge of these guilds remains poor, since most were identified to suprageneric categories, and only four to species level;

7. Biological data are necessary for the correct positioning of associated fauna into guilds.

4. Discussion

In this review, the cecidophagus guild was easily determined based on the five criteria proposed by Luz and Mendonça-Júnior (2017). On the other hand, some conceptual problems were faced in determining inquilines and kleptoparasites. According to these authors, inquilines have a close phylogenetic relationship with the gall-inducing species. This criterion was not met, but the other four (food habit, coexistence with the inducer, modification of gall tissues or production of new tissues, and mobility) were fulfilled. Regarding food habits, kleptoparasites are defined as omnivorous, which is a criterion not met by gall midges, although they met the other criteria. The use of these five criteria is only possible when biological data are known, which demands long-term studies.

The presence of cecidophages, inquilines and kleptoparasites can indirectly cause the death of the inducer, which can be important for population dynamics of gall-inducing species. However, this effect was little discussed in Luz and Mendonça-Júnior (2017). Nevertheless, these guilds should be considered since their presence can be an important mortality factor, as indicated by Maia, 2001.

Cecidophages were represented mainly by lepidopterans and coleopterans. These two insect orders were also indicated as the most represented among the secondary fauna inhabiting galls of cynipids (Hymenoptera) (Giannetti et al., 2019).

Cecidophages and kleptoparasite guilds were obtained mainly from leaf, green, and glabrous galls. These are the predominant features of insect galls in Brazilian restingas (Maia, 2001; Maia et al., 2008; Rodrigues et al., 2014), suggesting that guild frequency is related to resource availability. Nevertheless, other gall features were predominant for inquilines, but the number of records was too low to make generalizations. Most records were for cecidomyiid galls, the most diverse, abundant and frequent gall-inducing taxon in restingas (Maia, 2001; Maia et al., 2008; Rodrigues et al., 2014).

Asteraceae and Myrtaceae hosted the greatest richness and frequency of cecidophages, which was expected since they are the plant families with the greatest gall richness in restingas (Maia, 2013). Both families are well represented in this ecosystem (Lourengo and Barbosa, 2012; Melo-Júnior and Boeger, 2018). No plant family stood out as exhibiting the greatest number of kleptoparasite or inquiline records since both guilds were similarly distributed among different families. However, their records are also few, so new and broad studies are likely to modify this scenario.

The plant genera and species with the highest number of cecidophages were not necessarily those that hosted the greatest number of galls, since only *Mikania* and *Guapira opposita* (Nyctaginaceae) have been been cited as super host taxa (Maia and Oliveira, 2010; Maia, 2013; Rodrigues et al., 2014). Thus, cecidophagus richness appears not to be related to gall richness. In fact, some galls can be more attractive than others, probably due to their own morphological and chemical features.

The high frequency of cecidophagy found here reveals the importance of gall-inducing insects as ecosystem engineers in restingas. Inducers do not merely provide habitat for specialists, but can also influence the structure of communities that do not directly interact with galls, as Wetzel et al. (2016) has shown. They can have significant impacts on the herbivore community not only by changing plant morphology, but also by altering host quality and modifying plant-induced responses to subsequent herbivory (Usukie et al., 2016).

The taxonomic knowledge of cecidophagus, kleptoparasite, and inquiline guilds remains still poor. The scarcity of identified species, for example, does not allow discussions to be made about their specificity. A more complete review of guild richness, including also parasitoids, predators and symbionts, can contribute
to revealing the importance of associated faunas for gall systems. However, in order to know the composition of each guild, specific identification is essential, as well as the correct categorization of inquilines, kleptoparasites and cecidophages, which depends on taxonomical and biological data, respectively.

5. Conclusions

Although cecidophages were not previously recorded in insect gall inventories in Brazilian restingas, they are actually frequent. Kleptoparasites are also present. Both of these guilds are formally reported here for the first time in this ecosystem. On the other hand, the frequency and diversity of inquilines are low, differing from literature data. These new records resulted from recategorization among guilds based on literature data and biological observations, following criteria proposed by Luz and Mendonça-Júnior (2017).

Although the kleptoparasites found did not fulfill the food habit criterion, and the inquilines did not satisfy the phylogenetic relationship criterion, both guilds could be easily established based on the other four criteria. In my opinion, future studies about insect galls and associated fauna should adopt these criteria to avoid misinterpretation and improve knowledge about these guilds in Brazil.

Acknowledgements

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Proc. 301481/2017-2).

References

ANSALONI, S., SALMAZO, J.R. and URSO-GUIMARÃES, M.V., 2018. Entomogen galls in a Seasonal Semideciduous Forest area in Sorocaba, Southeast of São Paulo State, Brazil. Biota Neotropica, vol. 18, no. 4, pp. e20180523. http://dx.doi.org/10.1590/1676-0611-bn-2018-0523.

ARAUJO, W.S., GOMES-KLEIN, V.L. and SANTOS, B.B., 2007. Galhas entomógenas associadas à vegetação do Parque Estadual da Serra dos Pireneus, Pirenópolis, Goiás, Brasil. Revista Brasileira de Biociências, vol. 5, suppl. 1, pp. 45-47.

ARAUJO, W.S., SANTOS, B.B. and GOMES-KLEIN, V.L., 2011. Insect galls from Serra dos Pireneus, GO, Brazil. Biota Neotropica, vol. 11, no. 2, pp. 357-365. http://dx.doi.org/10.1590/S1676-0632010000200034.

ASCENDINO, S. and MAIA, V.C., 2018. Insects galls of Pantanal regional in the State of Mato Grosso do Sul, Brazil: characterization and occurrence. Anais da Academia Brasileira de Ciências, vol. 90, no. 2, pp. 1543-1564. http://dx.doi.org/10.1590/0001-3765201820170553. PMid:29791563.

BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B. and ARAUJO, W.S., 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvania. Papéis Avulsos de Zoologia, vol. 57, no. 2, pp. 413-431. http://dx.doi.org/10.1590/0031-1049.2017.5732.

BREGONCI, J.M., POLYCARPO, P.V. and MAIA, V.C., 2010. Galhas de insetos do Parque Estadual Paulo César Vinha (Guarapari, ES, Brasil). Biota Neotropica, vol. 10, no. 1, pp. 265-274. http://dx.doi.org/10.1590/S1519-616900301000023.

BRITO, G.P., COSTA, E.C., CARVALHO-FERNANDES, S.P. and SANTOS-SILVA, J., 2018. Riqueza de galhas de insetos em áreas de Caatinga com diferentes graus de antropização do estado da Bahia, Brasil. Iheringia. Série Zoologia, vol. 108, e2018003. http://dx.doi.org/10.1590/1678-4766e2018003.

CARVALHO, A.N. and MOTA, J.S., 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. EntomBrasiliensis, vol. 11, no. 2, pp. 118-123. http://dx.doi.org/10.12741/ebrasiliensis.v11i2.786.

CARVALHO-FERNANDES, S.P., ALMEIDA-CORTEZ, J. and FERREIRA, A.L.N., 2012. Riqueza de galhas entomógenas em áreas antropizadas e preservadas de caatinga. Revista Árvore, vol. 36, no. 2, pp. 269-277. http://dx.doi.org/10.1590/S0100-67622012000200008.

CARVALHO-FERNANDES, S.P., ASCENDINO, S., MAIA, V.C. and COURI, M.S., 2016. Diversity of insect galls associated with coastal shrub vegetation in Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências, vol. 88, no. 3, pp. 1407-1418. http://dx.doi.org/10.1590/0001-3765201520150658. PMid:27627066.

COSTA, E.C., CARVALHO-FERNANDES, S.P. and SANTOS-SILVA, J., 2014. Galhas entomógenas associadas à Leguminosae do entorno do rio Jatobá, Caetité, Bahia, Brasil. Revista Brasileira de Biociências, vol. 12, no. 2, pp. 115-120.

FERNANDES, G.W.A., TAMEIRÃO NETO, E. and MARTINS, R.P., 1988. Ocorrência e caracterização de galhas entomógenas do Campus Pampulha da Universidade Federal de Minas Gerais. Revista Brasileira de Zoologia, vol. 5, no. 1, pp. 11-29. http://dx.doi.org/10.1590/S0101-81751988000100002.

FERRAZ, F.F.F. and MONTEIRO, R.F., 2003. Complex interactions involving a gall midge Myricamyia maricaensis Maia (Diptera, Cecidomyiidae), phytophagous modifiers and parasitoids. Revista Brasileira de Zoologia, vol. 20, no. 3, pp. 433-437. http://dx.doi.org/10.1590/S1676-0603200003000011.

FLOR, I.C., FLOR, J.R. and FURTADO, P.S.N., 2018. Insect galls of the Floresta da Cícuta (Volta Redonda, RJ, Brazil). Papéis Avulsos de Zoologia, vol. 58, e20185824.

GIANNETTI, D., CASTRACANI, C., SPOTTI, F.A., MORI, A. and GRASSO, A., 2019. Gall-colonizing ants and their role as plant defenders: from “bad job” to “useful service”. Insects, vol. 10, no. 11, pp. 392. http://dx.doi.org/10.3390/insects10110392. PMid:31608823.

GOODFAY, H.C.J., 1994. Parasitoids: behavioral and evolutionary ecology. Princeton: Princeton University Press, 473 p. http://dx.doi.org/10.1515/9780691207025.

LIMA, V.P. and CALADO, D., 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Brazilian Journal of Biology = Biota Neotropica, vol. 78, no. 4, pp. 636-643. http://dx.doi.org/10.1519/1519-6084.169502. PMid:29197573.

LOURENÇO, A.R. and BARBOSA, M.R.V., 2012. Myrtaceae em restingas no limite norte de distribuição da Mata Atlântica, Brasil. Rodriguésia, vol. 63, no. 2, pp. 373-393. http://dx.doi.org/10.1590/S0101-817520120000200011.

LUZ, F.A. and MENDONÇA-JÚNIOR, M.S., 2017. Guilds in insect galls: who is who. The Florida Entomologist, vol. 102, no. 1, pp. 207-210. http://dx.doi.org/10.1635/024.102.0133.

MAIA, V.C. and CARVALHO-FERNANDES, S.P., 2016. Insect galls of a protected remnant of the Atlantic Forest tableland from Rio de Janeiro State (Brazil). Revista Brasileira de Entomologia, vol. 60, no. 1, pp. 40-56. http://dx.doi.org/10.1016/j.rbe.2015.09.001.
Biota Neotropica, vol. 18, no. 2, pp. e20170402. http://dx.doi.org/10.1590/1676-0611-bn-2017-0402.

WETZEL, W.C., SCREEN, R.M., LI, I., MCKENZIE, J., PHILLIPS, K.A., CRUZ, M., ZHANG, W., GREENE, A., LEE, E., SINGH, N., TRAN, C. and YANG, L.H., 2016. Ecosystem engineering by a gall-forming wasp indirectly suppresses diversity and density of herbivores on oak trees. Ecology, vol. 97, no. 2, pp. 427-438. http://dx.doi.org/10.1890/15-1347.1. PMid:27145617.