Chern-Ricci invariance along G-geodesics

NEFTON PALI

Abstract

Over a compact oriented manifold, the space of Riemannian metrics and normalized positive volume forms admits a natural pseudo-Riemannian metric G, which is useful for the study of Perelman’s W functional. We show that if the initial speed of a G-geodesic is G-orthogonal to the tangent space to the orbit of the initial point, under the action of the diffeomorphism group, then this property is preserved along all points of the G-geodesic. We show also that this property implies preservation of the Chern-Ricci form along such G-geodesics, under the extra assumption of complex anti-invariant initial metric variation and vanishing of the Nijenhuis tensor along the G-geodesic. More in general we show that the main obstruction to the invariance of the Chern-Ricci form is the vanishing of the Nijenhuis tensor. This result is useful for a slice type theorem needed for the proof of the dynamical stability of the Soliton-Kähler-Ricci flow.

1 Statement of the invariance result

We consider the space \mathcal{M} of smooth Riemannian metrics over a compact oriented manifold X of dimension m. We denote by \mathcal{V}_1 the space of positive smooth volume forms with integral one. Notice that the tangent space of $\mathcal{M} \times \mathcal{V}_1$ is

$$
T_{\mathcal{M} \times \mathcal{V}_1} = C^\infty(X, S^2T^*_X) \oplus C^\infty(X, \Lambda^m T^*_X)_{\Omega},
$$

where $C^\infty(X, \Lambda^m T^*_X)_{\Omega} := \{ V \in C^\infty(X, \Lambda^m T^*_X) \mid \int_X V = 0 \}$. We denote by $\text{End}_g(T_X)$ the bundle of g-symmetric endomorphisms of T_X and by $C^\infty_0(X, \mathbb{R})$ the space of smooth functions with zero integral with respect to Ω. We will use the fact that for any $(g, \Omega) \in \mathcal{M} \times \mathcal{V}_1$ the tangent space $T_{\mathcal{M} \times \mathcal{V}_1, (g, \Omega)}$ identifies with $C^\infty(X, \text{End}_g(T_X)) \oplus C^\infty_0(X, \mathbb{R})_{\Omega}$ via the isomorphism

$$(v, V) \mapsto (v_g^*, V_{\Omega}) := (g^{-1}v, V_{\Omega}).$$

In [Pal6], we consider the pseudo-Riemannian metric G over $\mathcal{M} \times \mathcal{V}_1$, defined over any point $(g, \Omega) \in \mathcal{M} \times \mathcal{V}_1$ by the formula

$$
G_{g, \Omega}(u, U; v, V) = \int_X \left[\langle u, v \rangle_g - 2U^\flat V_{\Omega} \right] \Omega,
$$

Key words: Almost complex manifolds, Chern-Ricci form, Bakry-Emery-Ricci tensor.

AMS Classification: 32Q60, 32Q15.
for all \((u, U), (v, V) \in T_{M \times V}\). The gradient flow of Perelman’s \(W\)-functional \[\text{Per}\] with respect to the structure \(G\) is a modification of the Ricci flow with relevant properties (see \[\text{Pal6, Pal7}\]). The \(G\)-geodesics exists only for short time intervals \((-\varepsilon, \varepsilon)\). This is because the \(G\)-geodesics are uniquely determined by the evolution of the volume forms and the latter degenerate in finite time (see section \[2\]). In \[\text{Pal6}\], we show that the space \(G\)-orthogonal to the tangent of the orbit of a point \((g, \Omega) \in M \times V\), under the action of the identity component of the diffeomorphism group is

\[
\mathbb{F}_{g, \Omega} := \{(v, V) \in T_{M \times V} | \nabla^* g_{\omega} v + \nabla g V = 0\},
\]

where \(\nabla^* g_{\omega}\) denotes the adjoint of the Levi-Civita connection with respect to the volume form \(\Omega\). In this paper we show the following conservative property.

Proposition 1 Let \((g_t, \Omega_t)_{t \in (-\varepsilon, \varepsilon)} \subset M \times V\) be a \(G\)-geodesic such that \((g_0, \Omega_0) \in \mathbb{F}_{g_0, \Omega_0}\). Then \((g_t, \Omega_t) \in \mathbb{F}_{g_t, \Omega_t}\) for all \(t \in (-\varepsilon, \varepsilon)\).

We consider now a compact symplectic manifold \((X, \omega)\) and we denote by \(\mathcal{J}_\omega\) the space of smooth almost complex structures compatible with the symplectic form \(\omega\). We notice that the variations inside the space of metrics \(\mathcal{M}_\omega := -\omega \cdot \mathcal{J}_\omega \subset M\), at a point \(g = -\omega J\), are \(J\)-anti-invariant. Thus, in this set-up, it is natural to consider the sub-space

\[
\mathbb{F}^J_{g, \Omega} := \{(v, V) \in \mathbb{F}_{g, \Omega} | v = -J^* v J\}.
\]

With these notations we state the following result.

Theorem 1 (Main result. The invariance of the Chern-Ricci form). Let \((X, J_0, g_0)\) be a compact almost-Kähler manifold with symplectic form \(\omega := g_0 J_0\). Then for any \(G\)-geodesic \((g_t, \Omega_t)_{t \in (-\varepsilon, \varepsilon)} \subset M \times V\), with initial speed \((g_0, \Omega_0) \in \mathbb{F}^{J_0}_{g_0, \Omega_0}\) holds the properties \(J_t := -\omega^{-1} g_t \in \mathcal{J}_\omega\), \((g_t, \Omega_t) \in \mathbb{F}^{J_t}_{g_t, \Omega_t}\) and the variation formulas

\[
\frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = -d \text{Tr}_{g_t} [\omega(\bullet \cdot N_{g_t}) g_t^*],
\]

\[
2 \frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = d \text{Tr}_{g_t} [\omega(\bullet \cdot \overline{\partial f_{X,J_t}} g_t^*)].
\]

In particular if the Nijenhuis tensor vanishes identically along the \(G\)-geodesic, then \(\text{Ric}_{J_t}(\Omega_t) = \text{Ric}_{J_0}(\Omega_0)\), for all \(t \in (-\varepsilon, \varepsilon)\).

Our unique interest in this result concerns the Fano case \(\omega = \text{Ric}_{J_{\omega}}(\Omega_0)\). In this case the space of \(\omega\)-compatible complex (integrable) structures \(\mathcal{J}_\omega\) embeds naturally inside \(M \times V\) via the Chern-Ricci form. (This is possible thanks to the \(\overline{\partial \partial}\)-lemma). The image of this embedding is

\[
S_{\omega} := \{(g, \Omega) \in \mathcal{M}_\omega \times V | \omega = \text{Ric}_J(\Omega), J = -\omega^{-1} g\},
\]
with $\mathcal{M}_\omega := -\omega J_\omega \subset \mathcal{M}$. It is well-known that the J-anti-linear endomorphism sections associated to the metric-variations in \mathcal{M}_ω at a point $g = -\omega J$, are $\overline{\partial} T_{X,J}$-closed. Thus, in the integrable set-up, it is natural to consider the sub-space

$$E^J_{g,\Omega}[0] := \left\{ (v, V) \in E^J_{g,\Omega} \mid \overline{\partial} T_{X,J} v = 0 \right\}.$$

It has been showed in [Pal6] that this is the space G-orthogonal to the tangent to the orbit of the point $(g, \Omega) \in S_\omega$, under the action of the identity component of the ω-symplectomorphisms group. (See the identity 1.14 in [Pal6]). Furthermore the product $G_{g,\Omega}$ is positive over $E^J_{g,\Omega[0]}$, thanks to a result in [Pal6]. We conjecture the following slice type result.

Conjecture 1 Let (X, J) be a Fano manifold and let $\omega \in 2\pi c_1 (X)$ be a Kähler form. Then the distribution $(g, \Omega) \in S_\omega \mapsto E^J_{g,\Omega[0]}$, with $J := -\omega^{-1} g$ is integrable over the space S_ω, with leave at the point (g, Ω) given locally, in a neighborhood of this point, by $\Sigma^\omega_{g,\Omega} := \{ (\gamma, \mu) \in \text{Exp}_G (E^J_{g,\Omega}) \mid \nabla_{\gamma} \omega = 0 \}$. We invite the readers to compare with [F-S] for other approaches concerning slice type problems in the space of compatible complex structures. In view of the results in section 9 of [Pal6], the solution of this conjecture is crucial for the proof of the dynamical stability of the Soliton-Kähler-Ricci flow [Pal9]. An important ingredient for the proof of the main theorem is the general variation formula [11]. Particular cases of this variation formula have been intensively studied. See [Fu, Do, Mo, Ga, Pal5]. These formulas allow to establish an important moment map picture in Kähler-geometry. See [Fu] for the integrable case and [Do] for the almost complex case. In the last section we provide a formula relating the Bakry-Emery-Ricci tensor with the Chern-Ricci form.

2 Pure evolving volume nature of the G-geodesic equation

We remind that the equation of a G-geodesic $(g_t, \Omega_t)_{t \in (-\varepsilon, \varepsilon)}$, (see [Pal6]), rewrites under the form

$$\left\{ \begin{array}{l}
\frac{d}{dt} \hat{g}_t^* + \hat{\Omega}_t^* \hat{g}_t^* = 0, \\
\hat{\Omega}_t + \frac{1}{4} \left(|\hat{g}_t|_{g_t}^2 - 2(\hat{\Omega}_t^*)^2 - \int_X \left[|\hat{g}_t|_{g_t}^2 - 2(\hat{\Omega}_t^*)^2 \right] \Omega_t \right) \Omega_t = 0.
\end{array} \right.$$

The invariance of the scalar product of the speed of geodesics implies

$$G_t := G_{g_t, \Omega_t} (\dot{g}_t, \dot{\Omega}_t; g_t, \Omega_t) \equiv G_{g_0, \Omega_0} (\dot{g}_0, \dot{\Omega}_0; g_0, \Omega_0).$$

Therefore a solution of the system (S) satisfies also

$$\left\{ \begin{array}{l}
\frac{d}{dt} \hat{g}_t^* + \hat{\Omega}_t^* \hat{g}_t^* = 0, \\
\hat{\Omega}_t + \frac{1}{4} \left[|\hat{g}_t|_{g_t}^2 - 2(\hat{\Omega}_t^*)^2 - G_0 \right] \Omega_t = 0.
\end{array} \right.$$
The first equation in the system \((S_1)\) rewrites as
\[
\dot{g}^* = \frac{\Omega_0}{\Omega_t} \dot{g}_0^*,
\]
which provides the expression
\[
g_t = g_0 \exp \left(\dot{g}_0^* \int_0^t \frac{\Omega_0}{\Omega_s} ds \right).
\]
We set \(u_t := \Omega_t / \Omega_0\), and we observe the trivial identities
\[
|\dot{g}_t|^2 = \text{Tr}_R (\dot{g}_t^*)^2 = u_t^{-2} |\dot{g}_0|^2,
\]
\[
\dot{\Omega}_t^* = \dot{u}_t / u_t.
\]
We deduce that the system \((S_1)\) is equivalent to the system
\[
\begin{cases}
 g_t = g_0 \exp \left(\dot{g}_0^* \int_0^t u_s^{-1} ds \right), \\
 \Omega_t = u_t \Omega_0, \\
 4\ddot{u}_t + \frac{|\dot{g}_0|^2}{u_s} - 2a_t^2 - u_t G_0 = 0, \\
 u_0 = 1, \\
 \int_X \dot{u}_0 \Omega_0 = 0.
\end{cases}
\]
The solution \(u\) is given by the explicit formula
\[
u_t = 1 + \hat{u}_0 \sum_{k \geq 0} \frac{(G_0/2)^k}{(2k + 1)!} t^{2k + 1} - \frac{1}{4} N_0 \sum_{k \geq 1} \frac{(G_0/2)^{k-1}}{(2k)!} t^{2k},
\]
\[
N_0 := N_0 - G_0,
\]
\[
N_0 := |\dot{g}_0|^2 \gamma_0 - 2(\dot{\Omega}_0^*)^2.
\]
Thus the solution \((g_t, \Omega_t)_{t \in (-\infty, \epsilon)}\) of the system \((S_1)\) satisfies \(\int_X \Omega_t \equiv 1\). This implies \(G_t \equiv G_0\). We infer that the system \((S_1)\) is equivalent to the system \((S)\).

In the case \(G_0 > 0\), the previous formula for \(u_t\) reduces to the expression
\[
u_t = 1 + \Omega_0^* \gamma_0^{-1} \sinh (\gamma_0 t) - N_0 (2\gamma_0)^{-2} [\cosh (\gamma_0 t) - 1],
\]
with \(\gamma_0 := (G_0/2)^{1/2}\).
3 Conservative properties along G-geodesics

In this section we show proposition 1.

Proof We remind first the fundamental variation formula

$$2\left[(D_{g,\Omega} \nabla^* \cdot) (v, V)\right] = \frac{1}{2} \nabla_g |v|^2_g - 2 v_g^* \cdot (\nabla^*_g v_g^* + \nabla_g V^*_g),$$

(3.1)

obtained in [Pal8], (see the formula 19 in [Pal8]). Using (3.1) we develop the derivative

$$2 \frac{d}{dt} \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right) = - 2 \dot{g}_t^* \cdot \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right) + \frac{1}{2} \nabla_g |\dot{g}_t|^2_g,$$

$$+ 2 \nabla^*_g \frac{d}{dt} \dot{g}_t^* + 2 \nabla_g \frac{d}{dt} \dot{\Omega}_t^* - 2 \dot{g}_t^* \cdot \nabla_g \dot{\Omega}_t^*.$$

Writing the equations defining the G-geodesic $(g_t, \Omega_t)_{t \in (-\epsilon, \epsilon)}$, under the form

$$\begin{aligned}
\left\{ \begin{array}{l}
\frac{d}{dt} \dot{g}_t^* + \Omega_t^* \dot{g}_t^* = 0, \\
2 \frac{d}{dt} \dot{\Omega}_t^* + (\dot{\Omega}_t^*)^2 + \frac{1}{2} |\dot{g}_t|^2_g - \frac{1}{2} G_{g,\Omega} (\dot{g}_t, \dot{\Omega}_t; \dot{g}_t, \dot{\Omega}_t) = 0,
\end{array} \right.
\end{aligned}$$

we infer

$$2 \frac{d}{dt} \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right) = - 2 \dot{g}_t^* \cdot \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right) - 2 \nabla^*_g \left(\dot{\Omega}_t^* \dot{g}_t^* \right) - \nabla_g \left(\dot{\Omega}_t^* \right)^2 - 2 \dot{g}_t^* \cdot \nabla_g \dot{\Omega}_t^*,$$

and thus

$$2 \frac{d}{dt} \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right) = - 2 \left(\dot{g}_t^* + \dot{\Omega}_t^* \right) \cdot \left(\nabla^*_g \dot{g}_t^* + \nabla_g \dot{\Omega}_t^* \right).$$

Then the conclusion follows by Cauchy’s uniqueness. \qed

Let $J \subset C^\infty(X, \text{End}_\mathbb{R}(T_X))$ be the set of smooth almost complex structures over X. For any non degenerate closed 2-form ω over a symplectic manifold, we define the space J^ω_{ac} of ω-compatible almost complex structures as

$$J^\omega_{ac} := \{ J \in J \mid - \omega J \in \mathcal{M} \}.$$

With these notations holds the following result.

Lemma 1 Let $J_0 \in J^\omega_{ac}$ and let $(g_t, \Omega_t)_{t \in (-\epsilon, \epsilon)} \subset \mathcal{M} \times \mathcal{V}_1$ be a G-geodesic such that $g_0 = -\omega J_0$ and $g_t^* J_0 = -J_0 g_t^*$. Then $J_t := -\omega^{-1} g_t \in J^\omega_{ac}$, for all $t \in (-\epsilon, \epsilon)$.

Proof

Using the identity $\dot{J}_t = J_t \dot{g}_t^*$ and the G-geodesic equation

\[\frac{d}{dt} \dot{g}_t^* + \dot{\Omega}_t^* \dot{g}_t^* = 0, \]

we obtain the variation formula

\[\frac{d}{dt} (J_t \dot{g}_t^* + \dot{g}_t^* J_t) = \left(J_t \dot{g}_t^* + \dot{g}_t^* J_t \right) \cdot \left(\dot{g}_t^* - \dot{\Omega}_t^* \right). \]

This implies $\dot{g}_t^* J_t = -J_t \dot{g}_t^*$, for all $t \in (-\varepsilon, \varepsilon)$, by Cauchy’s uniqueness. We deduce in particular the evolution identity $2 \dot{J}_t = [J_t, \dot{g}_t^*]$. Then $J_t^2 = -\mathbb{I}_{T_X}$, thanks to lemma 4 in [Pal3]. We infer the required conclusion. \(\square \)

4 The first variation of the Ω-Chern-Ricci form

Let (X, J) be an almost complex manifold. Any volume form $\Omega > 0$ induces a hermitian metric h_Ω over the canonical bundle $K_{X,J} := \Lambda^{n,0}_J T^*_X$, which is given by the formula

\[h_\Omega(\alpha, \beta) := \frac{n! \Omega^{n^2} \alpha \wedge \overline{\beta}}{\Omega}. \]

We define the Ω-Chern-Ricci form

\[\text{Ric}_J(\Omega) := -i C_{h_\Omega}(K_{X,J}), \]

where $C_h(F)$ denotes the Chern curvature of a hermitian vector bundle $(F, \overline{\partial}^F, h)$, equipped with a $(0,1)$-type connection. Consider also a J-invariant hermitian metric ω over X. We remind that the ω-Chern-Ricci form is defined by the formula

\[\text{Ric}_J(\omega) := \text{Tr}_\omega [JC_{\omega}(T_{X,J})]. \]

The fact that the metric h_{ω^n} over $K_{X,J}$ is induced by the metric ω over $T_{X,J}$ implies, by natural functorial properties, the identity $\text{Ric}_J(\omega) = \text{Ric}_J(\omega^n)$. Let now

\[KS := \left\{(J, g) \in J \times \mathcal{M} \mid g = J^* g J, \nabla g J = 0\right\}, \]

be the space of Kähler structures over a compact manifold X. We remind that if $A \in \text{End}_\mathbb{R}(T_X)$, then its transposed A^T_g with respect to g is given by $A^T_g = g^{-1} A^* g$. We observe that the compatibility condition $g = J^* g J$, is equivalent to the condition $J^T_g = -J$. We define also the space of almost Kähler structures as

\[AKS := \left\{(J, g) \in J \times \mathcal{M} \mid g = J^* g J, d (g J) = 0\right\}. \]

With these notations hold the following first variation formula for the Ω-Chern-Ricci form. (Compare with [Fu, Do, Mol, Ga, Pal5].)
Proposition 2 Let \((J_t, g_t)_t \subset AKS\) and \((\Omega_t)_t \subset V\) be two smooth paths such that \(J_t = (J_t)_g\). Then hold the first variation formula
\[
2 \frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = L_{\partial_t} \Omega_t + \partial_t \Omega_t + \Omega_t \omega_t, \tag{4.1}
\]
with \(\omega_t = g_t J_t\).

Proof STEP I. Local expressions. We consider first the case of constant volume form \(\Omega\). We remind a general basic identity. Let \((L, \Omega, g)\) be a (0, 1)-type connection, equipped with a \((0, 1)\)-type connection, over an almost complex manifold \((X, J)\) and let \(D_{L,h} = \partial_{L,h} + \nabla_L\) be the induced Chern connection. In explicit terms \(\partial_{L,h} := \partial_{L,h} \circ \nabla_L\). We observe that for any local non-vanishing \(\sigma \in C^\infty(U, L \times 0)\) over an open set \(U \subset X\), holds the identity
\[
\sigma^{-1} \partial_{L,h} \sigma(\eta) = |\sigma|_h^{-2} h(\partial_{L,h} \sigma(\eta), \sigma) = |\sigma|_h^{-2} \left[\eta_1, 0 \right] \sigma|_h^2 - h(\sigma, \nabla_L \sigma(\eta)) \right] = \eta_1, 0 \log |\sigma|_h^2 - \sigma^{-1} \nabla_L \sigma(\eta),
\]
for all \(\eta \in T_X \otimes \mathbb{C}\). We infer the formula
\[
i \sigma^{-1} \partial_{L,h} \sigma = i \partial_j \log |\sigma|_h^2 + 2 \Re(i \sigma^{-1} \nabla_L \sigma).
\]
In the case \(L = K_{X,J} := \Lambda^{n,0}_{J,t} T_X^*\) and \(h \equiv h_{11}\) we get for all
\[
\beta_t = \beta_1, 0 \wedge \ldots \wedge \beta_n, 0 \in C^\infty(U, K_{X,J} \times 0),
\]
with \(\beta^{1,0}_{r,t} := \beta_r, 0 \wedge \ldots \wedge \beta_n, 0, r = 1, \ldots, n,\) the formula for the 1-form \(\alpha_t\),
\[
\alpha_t := i \beta^{-1}_t D_{K_{X,J}, h_{11}} \beta_t = i \partial_j \log \frac{i^n \beta_t \wedge \beta_t}{\Omega} + 2 \Re(i \beta^{-1}_t \nabla_{K_{X,J}, \beta_t}).
\]
We also notice the local expression \(\text{Ric}_{J_t}(\Omega) = -i C_{h_{11}} (K_{X,J}) = -d \alpha_t\). In order to expand the time derivative of the expression
\[
\alpha_t(\eta) = i \eta_1, 0 \log \frac{i^n \beta_t \wedge \beta_t}{\Omega} + 2 \Re \left[i \beta^{-1}_t \sum_{r=1}^n \beta^{1,0}_{r,t} \wedge \ldots \wedge \left(\eta_1, 0 - \nabla_{J_t} \beta^{1,0}_{r,t} \right) \wedge \ldots \wedge \beta^{1,0}_n \right],
\]
we observe first the formula
\[
2 \frac{d}{dt} \left(\partial_{J_t} \beta^{1,0}_{J_t} \right) = J_t \partial_t \left[(d - 2 \nabla_{J_t}) \beta^{1,0}_{J_t} \right] - i \left[\beta \left(\beta \cdot J_t \right) \right]^{1,1}.
\tag{4.2}
\]
We notice indeed that for bi-degree reasons holds the identity

\[2\partial_{J^{1,0}_{j,t}} = 2\left(d\beta_{1,0}^{1,0}\right)_{J_{t}} = d\beta_{1,0}^{1,0} + J_{t}^{*}d\beta_{1,0}^{1,0}J_{t}. \]

Then time deriving the latter we infer the required formula (4.2).

STEP II. Local choices. We fix an arbitrary time \(\tau \). We want to compute the time derivative \(\dot{\alpha}_{\tau}(\eta) \). We take the open set \(U \subset X \) relatively compact. Then for a sufficiently small \(\varepsilon > 0 \), the bundle map

\[\varphi_{t} := \det_{c}^{n^{1,0}}_{j_{t}} : \Lambda_{j_{t}}^{n,0}T_{U}^{*} \rightarrow \Lambda_{j_{t}}^{n,0}T_{U}^{*} \]

\[\beta_{1} \wedge \ldots \wedge \beta_{n} \rightarrow \beta_{t} := \beta_{1,0}^{1,0} \wedge \ldots \wedge \beta_{n,0}^{1,0}, \]

is an isomorphism for all \(t \in (\tau - \varepsilon, \tau + \varepsilon) \). We set for notations simplicity \(D_{t} := D_{KX,J^{1,0}H_{0}} \). We consider also the connection \(D_{\varphi_{t}} := \varphi_{t}^{*}D_{t} \) over the bundle \(\Lambda_{j_{t}}^{n,0}T_{U}^{*} \). Explicitly \(D_{\varphi_{t}}\beta = \varphi_{t}^{-1}D_{t}\beta \). Then the expression \(D_{t}\beta_{t} = \alpha_{t} \otimes \beta_{t} \) implies \(D_{\varphi_{t}}\beta = \alpha_{t} \otimes \beta \). We deduce that

\[\dot{\alpha}_{t} = \frac{d}{dt}D_{\varphi_{t}}, \]

is independent of the choice of \(\beta \). We want to compute \(\dot{\alpha}_{\tau} \) at an arbitrary point \(p \in U \).

STEP IIa. The Kähler case. (We consider first this case since is drastically simpler). Let \(\nabla_{g_{\tau}} \) be the Levi-Civita connection of \(g_{\tau} \). Using parallel transport and the Kähler assumption \(\nabla_{g_{\tau}}J_{\tau} = 0 \), we can construct (up to shrinking \(U \) around \(p \)), a frame \((\beta_{r})_{r=1}^{n} \subset C^{\infty}(U, \Lambda_{j_{t}}^{1,0}T_{U}^{*}) \), satisfying \(\nabla_{g_{\tau}}\beta_{r}(p) = 0 \), for all \(r = 1,\ldots,n \), and the identity

\[\omega_{\tau} = \frac{i}{2} \sum_{r=1}^{n} \beta_{r} \wedge \bar{\beta}_{r}, \]

over \(U \). Then \(dV_{g_{\tau}} = 2^{-n}i^{n^{2}}\beta_{r} \wedge \bar{\beta}_{r} \). We set now \(f_{\tau} := \log dV_{g_{\tau}} \). The identity \(d\beta_{r} = \text{Alt} \nabla_{g_{\tau}}\beta_{r} \wedge \bar{\beta}_{r} \) implies \(d\beta_{r}(p) = 0 \). Then formula (4.2) implies the identity at the point \(p \),

\[\frac{d}{dt}_{|t=\tau} \left(J_{\tau}^{1,0}_{r,t} \right) = -i\beta_{r} \left(\nabla_{g_{\tau}}\beta_{r} \right)_{j_{t}}^{1,1} \]

\[= -i\beta_{r} \text{Alt} \left(\nabla_{g_{\tau}}^{1,0}_{j_{t}}\beta_{r} \right). \]

(The last equality follows from the Kähler assumption). We deduce

\[\eta_{j_{t}}^{1,0} - 2\frac{d}{dt}_{|t=\tau} \left(J_{\tau}^{1,0}_{r,t} \right) = i\beta_{r} \nabla_{g_{\tau}}^{1,0}_{j_{t}}\beta_{r} \cdot \eta_{j_{t}}^{0,1} = i\beta_{r} \nabla_{g_{\tau}}^{1,0}_{j_{t}}\beta_{r} \cdot \eta, \]

8
at the point \(p \). (The last equality follows also from the Kähler assumption).

Using this last identity we obtain the expression at the point \(p \),

\[
\dot{\alpha}_\tau (\eta) = \frac{1}{2} J_{\tau} \cdot \eta \cdot f_{\tau} + \eta^{1,0}_{\tau} \Re \left(\beta_{1}^{-1} \sum_{r=1}^{n} \beta_1 \wedge \ldots \wedge \left(\beta_r J_{\tau} \right)^{1,0} \wedge \ldots \wedge \beta_n \right) \\
- \Re \left(\beta_{1}^{-1} \sum_{r=1}^{n} \beta_1 \wedge \ldots \wedge \beta_r \nabla_{g_{\tau}} J_{\tau} \cdot \eta \wedge \ldots \wedge \beta_n \right) \\
= - \frac{1}{2} \left(\text{Tr}_{\mathbb{R}} \nabla_{g_{\tau}} \dot{J}_{\tau} - df_{\tau} \cdot \dot{J}_{\tau} \right) (\eta),
\]

thanks to the elementary identities \((\beta_r J_{\tau})^{1,0} = 0 \), \(\text{Tr}_{\mathbb{C}} A = \text{Tr}_{\mathbb{C}} A^* \), and \(\text{Tr}_{\mathbb{R}} B = 2 \Re (\text{Tr}_{\mathbb{C}} B^{1,0}) \), for all \(B \in \text{End}_{\mathbb{R}}(T_X) \). Using now the symmetry identities \(\dot{J}_{\tau} = (\dot{J}_{\tau})^T_g \) and \(\nabla_{g_{\tau}, \xi} \dot{J}_{\tau} = (\nabla_{g_{\tau}, \xi} J_{\tau})^T_{g_{\tau}} \), we obtain

\[
2 \dot{\alpha}_\tau = \nabla_{g_{\tau}} \dot{J}_{\tau} - g_{\tau},
\]

over \(U \). We conclude, thanks to the Kähler condition and Cartan’s identity, the required formula for arbitrary time \(t \), in the case of constant volume form.

STEP IIb. The almost Kähler case. We remind first that in this case holds the classical identity

\[
g\left(\nabla_{g_{\tau}} J \cdot \eta, \mu \right) = -2 g \left(J \xi, N_j (\eta, \mu) \right), \tag{4.3}
\]

where \(N_j \) is the Nijenhuis tensor, defined by the formula

\[
4 N_j (\xi, \eta) := [\xi, \eta] + J[\xi, J\eta] + J[J\xi, \eta] - [J\xi, J\eta].
\]

The identity (4.3) combined with the identity \(N_j (J\eta, \mu) = -J N_j (\eta, \mu) \), implies

\[
\nabla_{g_{\tau}, \xi} J = -J \nabla_{g_{\tau}} J. \tag{4.4}
\]

We consider also the Chern connection \(D^\omega_{\Lambda^1_{J,0} T_X} \) of the complex vector bundle \(\Lambda^1_{J,0} T_X \) with respect to the hermitian product

\[
\langle \alpha, \beta \rangle_{\omega} := \frac{1}{2} \text{Tr}_{\omega} (i \alpha \wedge \bar{\beta}).
\]

This connection is obviously the dual of the Chern connection \(D^\omega_{T^1_{X,j}} T_X \) of the hermitian vector bundle \((T^{1,0}_{X,j}, \omega) \). We denote by \(D^\omega_{T X, j} \) the Chern connection of \((T_{X,j}, \omega) \). By abuse of notations, we denote with the same symbol its complex linear extension over \(T_X \otimes_{\mathbb{R}} \mathbb{C} \). The latter satisfies the formula

\[
D^\omega_{T X, j} \xi = D^\omega_{T^1_{X,j}} \xi^j + \overline{D^\omega_{T^1_{X,j}} \xi^j}, \quad \forall \xi \in C^\infty (X, T_X \otimes_{\mathbb{R}} \mathbb{C}).
\]
In the almost Kähler case, $D_{T_X, J}^\omega$ is related to the Levi-Civita connection ∇_g (see [Pal2] and use identity (4.3)), via the formula

$$D_{T_X, J}^\omega \xi \eta = \nabla_g \xi \eta - \frac{1}{2} J \nabla_g J \cdot \xi \eta,$$

for all $\xi, \eta \in C^\infty (X, T_X \otimes \mathbb{C})$. Thus

$$D_{T_X, J}^{\omega_0} \xi^1_0 = \nabla_g \xi^1_0 - \frac{1}{2} J \nabla_g J \cdot \xi^1_0,$$

and

$$D_{A^1_T X, J}^{\omega_1, 0} \xi^1_0 = \nabla_g \beta^1_0 \cdot \xi^1_0 + \frac{1}{2} i \beta^1_0 \cdot \nabla_g J \cdot \xi^1_0$$

$$= \nabla_g \beta^1_0 \cdot \xi^1_0,$$

since $\nabla_g J \cdot J = -J \nabla_g J$. We apply now these considerations to the almost Kähler structure (J_T, g_T). Using parallel transport, we can construct a complex frame $(\beta_r)_{r=1}^n \subset C^\infty (U, \Lambda^1_{\beta}, T^* U)$, satisfying $D_{A^1_T X, J}^{\omega_1, 0} \beta_r (p) = 0$, for all $r = 1, \ldots, n$, and the identity

$$\omega_r = \frac{i}{2} \sum_{r=1}^n \beta_r \wedge \bar{\beta}_r,$$

over U. Then as before, holds the identity $dV_{g_r} = 2^{-n} i^n \beta_r \wedge \bar{\beta}_r$. We infer

$$\overline{\partial}_J \beta_r (p) = 0,$$

$$\left(\nabla_{g_r} \beta_r \cdot \xi^1_{1r} \right) (p) = 0,$$

$$\partial_J \beta_r (p) = 0,$$

for all $r = 1, \ldots, n$. The last one follows indeed from the elementary identities

$$\partial_J \beta_r (\xi, \eta) = d \beta_r (\xi, \eta) = \nabla_{g_r} \xi \beta_r \cdot \eta - \nabla_{g_r} \eta \beta_r \cdot \xi,$$

for all $\xi, \eta \in C^\infty (X, T^1_{X, J_1})$. We observe now that formula (4.2) writes as

$$2 \frac{d}{dt} \left(\overline{\partial}_J \beta_r^1 \right) = J_r \cdot J_r \left[(\partial_{J_r} - \overline{\partial}_{J_r}) \beta_r^1 - \beta_r^1 \cdot N_{J_r} \right] - i \left[d \left(\beta_r \cdot J_r \right) \right]_{J_r}. \tag{4.2}$$

Thus at the point p holds the identity

$$2 \frac{d}{dt} \left|_{t=\tau} \right. \left(\overline{\partial}_J \beta_r^1 \right) \left(\eta_{J_r}, \mu \right) = - \beta_r \cdot N_{J_r} \left(\eta_{J_r}, \mu \right)$$

$$- i \left[d \left(\beta_r \cdot J_r \right) \right]_{J_r} \left(\eta_{J_r}, \mu \right)$$

$$= i \beta_r \cdot N_{J_r} \left(\eta_{J_r}, \mu \right)$$

$$- i \left[d \left(\beta_r \cdot J_r \right) \right] \left(\eta_{J_r}, \mu \right).$$
We set for notations simplicity $\eta_r^{0,1} := \eta_r^{0,1}, \mu_r^{1,0} := \mu_r^{1,0}$ and we observe the expansion

\[
d(\beta_r \cdot \dot{J}_r) (\eta_r^{0,1}, \mu_r^{1,0}) = \nabla_{g_r, \eta_r^{0,1}} \beta_r \cdot \dot{J}_r \mu_r^{1,0} + \beta_r \cdot \nabla_{g_r, \eta_r^{0,1}} \dot{J}_r \cdot \mu_r^{1,0} - \nabla_{g_r, \mu_r^{1,0}} \beta_r \cdot \dot{J}_r \eta_r^{0,1} - \beta_r \cdot \nabla_{g_r, \mu_r^{1,0}} \dot{J}_r \cdot \eta_r^{0,1}.
\]

We notice also the trivial identity $\beta_r \cdot \dot{J}_r \mu_r^{1,0} = \beta_r \cdot (\dot{J}_r \mu_r)^{0,1} = 0$, over U. Taking a covariant derivative of this we infer

\[0 = \nabla_{g_r, \eta_r^{0,1}} \beta_r \cdot \dot{J}_r \mu_r^{1,0} + \beta_r \cdot \nabla_{g_r, \eta_r^{0,1}} \dot{J}_r \cdot \mu_r^{1,0} + \beta_r \cdot \dot{J}_r \nabla_{g_r, \eta_r^{0,1}} \mu_r^{1,0}.
\]

The identity (4.4) implies

\[
\nabla_{g_r, \eta_r^{0,1}} \mu_r^{1,0} = \left(\nabla_{g_r, \eta_r^{0,1}} \mu - \frac{i}{2} \nabla_{g_r, \eta} \cdot \mu \right)^{1,0}_{\dot{\eta}_r}.
\]

Thus

\[
\beta_r \cdot \dot{J}_r \nabla_{g_r, \eta_r^{0,1}} \mu_r^{1,0} = \beta_r \cdot \left[\dot{J}_r \left(\nabla_{g_r, \eta_r^{0,1}} \mu - \frac{i}{2} \nabla_{g_r, \eta} \cdot \mu \right) \right]^{0,1}_{\dot{\eta}_r} = 0,
\]

and

\[
d(\beta_r \cdot \dot{J}_r) (\eta_r^{0,1}, \mu_r^{1,0}) = -\beta_r \cdot \nabla_{g_r, \mu_r^{1,0}} \dot{J}_r \cdot \eta_r^{0,1}, \quad (4.9)
\]

at the point p, since

\[
\nabla_{g_r, \mu_r^{1,0}} \beta_r \cdot \dot{J}_r \eta_r^{0,1} = \nabla_{g_r, \mu_r^{1,0}} \beta_r \cdot \left(\dot{J}_r \eta \right)^{1,0}_{\dot{\eta}_r} = 0,
\]

at p thanks to (4.7). Taking a covariant derivative of the identity

\[
\dot{J}_r J_r + J_r \dot{J}_r = 0,
\]

we obtain

\[
\nabla_{g_r} \dot{J}_r J_r + \dot{J}_r \nabla_{g_r} J_r + \nabla_{g_r} J_r \dot{J}_r + J_r \nabla_{g_r} \dot{J}_r = 0,
\]

and thus

\[
2 \beta_r \cdot \nabla_{g_r, \mu_r^{1,0}} \dot{J}_r \cdot \eta_r^{0,1} = 2 \beta_r \cdot \left(\nabla_{g_r, \mu_r^{1,0}} \dot{J}_r \cdot \eta \right)^{1,0}_{\dot{\eta}_r}
\]

\[- i \beta_r \cdot \left(\dot{J}_r \nabla_{g_r, \mu_r^{1,0}} J_r + \nabla_{g_r, \mu_r^{1,0}} J_r \dot{J}_r \right) \eta
\]

\[= 2 \beta_r \cdot \nabla_{g_r, \mu_r^{1,0}} \dot{J}_r \cdot \eta - i \beta_r \cdot \dot{J}_r \nabla_{g_r, \mu} J_r \cdot \eta,
\]

11
thanks to (4.4) and the fact that β_r is of type $(1,0)$ with respect to J_τ. We deduce

$$-id \left(\beta_r \cdot \dot{J}_\tau \right) \left(\eta_r^{0,1}, \mu_r^{1,0} \right) = i \beta_r \cdot \left(\nabla^{1,0}_{g_r,J_\tau,\mu} \dot{J}_\tau - \frac{1}{2} J_\tau \dot{J}_\tau \nabla g_r, J_\tau \right) \eta,$$

thanks to (4.9), and thus

$$\eta_r^{0,1} - 2 \frac{d}{dt} \left(\overline{\beta}_r^{1,0}_{J_\tau, t} \right) = i \beta_r \cdot N_{J_\tau} \left(\eta, \dot{J}_\tau \right)$$

$$+ i \beta_r \cdot \left(\nabla^{1,0}_{g_r,J_\tau,\mu} \dot{J}_\tau - \frac{1}{2} J_\tau \dot{J}_\tau \nabla g_r, J_\tau \right) \eta. \quad (4.10)$$

Using (4.6) and (4.10) we obtain

$$2 \dot{\alpha}_\tau (\eta) = \dot{J}_\tau \eta + f_\tau$$

$$+ 2 \text{Re} \left\{ i \beta_r^{-1} \sum_{l=1}^n \beta_1 \wedge \ldots \wedge \left[\eta_r^{0,1} - 2 \frac{d}{dt} \left(\overline{\beta}_r^{1,0}_{J_\tau, t} \right) \right] \wedge \ldots \wedge \beta_n \right\}$$

$$= d f_\tau \cdot \dot{J}_\tau \eta$$

$$- 2 \text{Re} \text{Tr}_c \left[N_{J_\tau} \left(\eta, \dot{J}_\tau \right) + \left(\nabla^{1,0}_{g_r,J_\tau,\mu} \dot{J}_\tau - \frac{1}{2} J_\tau \dot{J}_\tau \nabla g_r, J_\tau \right) \eta \right]$$

$$= d f_\tau \cdot \dot{J}_\tau \eta - \text{Tr}_n \left[N_{J_\tau} \left(\eta, \dot{J}_\tau \right) + \left(\nabla g_r \dot{J}_\tau - \frac{1}{2} J_\tau \dot{J}_\tau \nabla g_r, J_\tau \right) \eta \right].$$

We show now the identity

$$2 \text{Tr}_n \left[N_{J_\tau} \left(\eta, \dot{J}_\tau \right) \right] = \text{Tr}_n \left(\dot{J}_\tau \nabla g_r, J_\tau, \eta \right). \quad (4.11)$$

Indeed, let $(e_k)_{k=1}^{2n} \subset T_{X,p}$ be a g_r (p)-orthonormal basis. Using (4.3), (4.4) and the symmetry assumption $\dot{J}_\tau = (\dot{J}_\tau)_g^T$, we obtain

$$2g \left(e_k, N_{J_\tau} \left(\eta, \dot{J}_\tau e_k \right) \right) = g \left(\nabla g_r, J_\tau e_k, J_\tau, \eta e_k \right)$$

$$= -g \left(\dot{J}_\tau J_\tau \nabla g_r, J_\tau, \eta, e_k \right)$$

$$= g \left(J_\tau J_\tau \nabla g_r, J_\tau, \eta, e_k \right),$$

and thus the required identity (4.11). We infer the formula

$$2 \dot{\alpha}_\tau (\eta) = - \text{Tr}_n \left(\nabla g_r, \dot{J}_\tau, \eta \right) + d f_\tau \cdot \dot{J}_\tau \eta,$$
over U. Using the symmetry identities $\dot{J}_\tau = (\dot{J}_\tau)^T_g$, and $\nabla_{g_\tau, \xi} \dot{J}_\tau = (\nabla_{g_\tau, \xi} \dot{J}_\tau)^T_g$, we infer
\[
2\dot{\alpha}_\tau = \nabla_{g_\tau}^* \dot{J}_\tau - g_\tau
\]
\[
= -J_\tau \nabla_{g_\tau}^* \dot{J}_\tau - \omega_\tau,
\]
over U. We conclude the required variation formula for arbitrary time t, in the case of constant volume form. In the case of variable volume forms, we fix an arbitrary time τ and we time derive at $t = \tau$ the decomposition
\[
\text{Ric}_{J_t}(\Omega_t) = \text{Ric}_{J_t}(\Omega_\tau) - dd^c_{J_t} \log \frac{\Omega_t}{\Omega_\tau}.
\]
We obtain
\[
\frac{d}{dt} \bigg|_{t=\tau} \text{Ric}_{J_t}(\Omega_t) = \frac{d}{dt} \bigg|_{t=\tau} \text{Ric}_{J_t}(\Omega_\tau) - dd^c_{J_\tau} \dot{\Omega}_\tau^*,
\]
and thus
\[
2 \frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = d \left[\left(J_t \nabla_{g_t}^* \dot{J}_t - \nabla_{g_t}^* \dot{\Omega}_t^* \right) - \omega_t \right],
\]
thanks to the variation formula for the fixed volume form case. The conclusion follows from Cartan’s identity for the Lie derivative of differential forms.

We infer the following corollary.

Corollary 1 Let ω be a symplectic form and let $\langle J_t, \Omega_t \rangle \subset J^{ac}_\omega \times \mathcal{V}$ be an arbitrary smooth family. Then holds the variation formulas
\[
2 \frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = -L_{\nabla_{g_t}^* \dot{g}_t^* + \nabla_{g_t}^* \dot{\Omega}_t^*} \omega - 2d \text{Tr}_{g_t} \left[\omega(\cdot \nabla_{N_j} \dot{g}_t^*) \dot{g}_t^* \right], \quad (4.12)
\]
and
\[
2 \frac{d}{dt} \text{Ric}_{J_t}(\Omega_t) = -L_{\nabla_{g_t}^* \dot{g}_t^* + \nabla_{g_t}^* \dot{\Omega}_t^*} \omega + d \text{Tr}_{g_t} \left[\omega(\cdot \nabla_{\mathcal{T}_{X, g_t}} \dot{g}_t^*) \dot{g}_t^* \right], \quad (4.13)
\]
with $g_t := -\omega J_t$.

Proof We have $\dot{g}_t^* = -\dot{J}_t^* \dot{J}_t$ and thus the property $\dot{J}_t = (\dot{J}_t)^T_{g_t}$, which allows to apply (4.11). We notice now the equality
\[
\nabla_{g_t}^* \left(J_t \dot{J}_t \right) = -\nabla_{g_t, e_k} J_t \dot{J}_t e_k + J_t \nabla_{g_t}^* \dot{J}_t,
\]
with respect to a g_t-orthonormal local frame of T_X. We deduce
\[
2\dot{\alpha}_t = -\left(\nabla_{g_t}^* \left(J_t \dot{J}_t \right) + \nabla_{g_t, e_k} J_t \dot{J}_t e_k \right) - \omega.
\]
The identity (4.3) implies
\[\omega(\nabla_{g_t,e_k} J_t \cdot \dot{J}_t e_k, \xi) = 2 \omega(e_k, N_{J_t} (\dot{J}_t e_k, J_t \xi)) \]
\[= 2 \omega(e_k, N_{J_t} (J_t \dot{J}_t e_k, \xi)) \]
\[= -2 d \text{Tr}_{g_t} \left[\omega(\xi \sim N_{J_t} \dot{g}_t) \right]. \]

We infer the variation formula (4.12). In order to show (4.13) we notice first the identity
\[\omega(e_k, N_{J_t} (\dot{g}_t^{-1} e_k, \xi)) \equiv 0, \text{ for arbitrary real local frame } (e_k) \text{ of } T_X. \]

Time deriving this we obtain
\[\omega(e_k, N_{J_t} (\dot{g}_t^* e_k, \xi)) = \omega(e_k, \dot{N}_{J_t} (e_k, \xi)), \]
with respect to our \(g_t \)-orthonormal local frame. Then the general formula
\[2 \frac{d}{dt} N_{J_t} = \overline{\partial}_{T_X,J_t} (J_t \dot{J}_t) + J_t \dot{J}_t N_{J_t} - (J_t \dot{J}_t) \sim N_{J_t}, \]
(see the proof of lemma 7 in [Pal3]), implies
\[\omega(e_k, N_{J_t} (\dot{g}_t^* e_k, \xi)) = \omega(e_k, \dot{N}_{J_t} (e_k, \xi)) \]
\[- \omega(e_k, \partial_{T_X,J_t} \dot{g}_t^* (e_k)) \]
\[= \omega(e_k, N_{J_t} (\dot{g}_t^* e_k, \xi)) - \omega(\dot{g}_t^* e_k, N_{J_t} (e_k, \xi)) \]
\[- \omega(\partial_{T_X,J_t} \dot{g}_t^* (\xi, e_k), e_k). \]

Assuming for simplicity that the \(g_t \)-orthonormal local frame diagonalizes \(\dot{g}_t^* \) we deduce the identity
\[2 \text{Tr}_{g_t} \left[\omega(\bullet \sim N_{J_t} \dot{g}_t) \right] = - \text{Tr}_{g_t} \left[\omega(\bullet \sim \overline{\partial}_{T_X,J_t} \dot{g}_t) \right], \]
which implies the variation formula (4.13). \(\square \)

Combining lemma 1, proposition 1 and corollary 1 we deduce the main theorem 1.

5 The decomposition of the Bakry-Emery-Ricci tensor

We compare first the Riemannian Ricci tensor \(\text{Ric}(g) \) with the \(\omega \)-Chern-Ricci tensor.
Lemma 2 Let \((X, J, g)\) be an almost Kähler manifold with symplectic form \(\omega := gJ\). Then holds the identity

\[
\text{Ric}_J(\omega)(\xi, J\eta) = \text{Ric}(g)(\xi, \eta) + \omega(\nabla^*_g \overline{\nabla}_g J \xi, \eta) + \frac{1}{4} \text{Tr}_\mathbb{R}(\nabla_{g, \xi} J \cdot \nabla_{g, \eta} J),
\]

where \(\overline{\nabla}_g J (\xi, \eta) := \nabla_g J (\eta, \xi)\).

Proof Using formula (4.5), the standard Curvature identity

\[
(\nabla_{g, \xi} \nabla_{g, \eta} - \nabla_{g, \eta} \nabla_{g, \xi} - \nabla_{g, [\xi, \eta]} \mu = \mathcal{R}_g (\xi, \eta) \mu,
\]
a similar one for the Chern curvature \(\mathcal{C}_\omega (T_X, J)\) and the trivial equality

\[
\nabla^2_{g, \xi, \eta, J} - \nabla^2_{g, \eta, \xi, J} = [\mathcal{R}_g (\xi, \eta), J],
\]
we obtain the relation

\[
\mathcal{C}_\omega (T_X, J) (\xi, \eta) \mu = \mathcal{R}_g (\xi, \eta)_J^{1, 0} \mu - \frac{1}{4} (\nabla_{g, \xi} J \cdot \nabla_{g, \eta} J - \nabla_{g, \eta} J \cdot \nabla_{g, \xi} J) \mu. \tag{5.3}
\]

Let now \((e_k)_{k=1}^n \subset T_{X, p}\) be a \(\omega (p)\)-orthonormal and \(J (p)\)-complex basis. Then

\[
\text{Ric}_J(\omega)(\xi, J\eta) = \sum_{k=1}^n g \left(J\mathcal{C}_\omega (T_X, J)(\xi, J\eta) e_k, e_k \right)
\]

\[
= - \sum_{k=1}^n g \left(\mathcal{C}_\omega (T_X, J)(\xi, J\eta) e_k, Je_k \right),
\]
thanks to the identity \([\mathcal{C}_\omega (T_X, J)(\xi, \eta), J] = 0\). Using formula (5.3) we obtain

\[
\text{Ric}_J(\omega)(\xi, J\eta) = - \sum_{k=1}^n g \left(\mathcal{R}_g (\xi, J\eta)_J^{1, 0} e_k, Je_k \right)
\]

\[
+ \frac{1}{4} \sum_{k=1}^n g \left((\nabla_{g, \xi} J \cdot \nabla_{g, J\eta} J - \nabla_{g, J\eta} J \cdot \nabla_{g, \xi} J) e_k, Je_k \right).
\]

We notice now the equalities

\[
-g \left(\mathcal{R}_g (\xi, J\eta)_J^{1, 0} e_k, Je_k \right) = -\frac{1}{2} g \left(\mathcal{R}_g (\xi, J\eta) e_k, Je_k \right)
\]

\[
+ \frac{1}{2} g \left(\mathcal{R}_g (\xi, J\eta) Je_k, e_k \right)
\]

\[
- g \left(\mathcal{R}_g (\xi, J\eta) e_k, Je_k \right).
\]
thanks to the anti-symmetry identity \((\mathcal{R}_g (\xi, J\eta))^T_g = -\mathcal{R}_g (\xi, J\eta)\). Using the first Bianchi identity and the identity (4.4), we infer
\[
\text{Ric}_j (\omega) (\xi, J\eta) = \sum_{k=1}^n g (\mathcal{R}_g (J\eta, e_k) \xi + \mathcal{R}_g (e_k, \xi) J\eta, J e_k) \\
+ \frac{1}{4} \sum_{k=1}^n g \left((\nabla_{g, J\xi} J \cdot \nabla_{g, J\eta} J + \nabla_{g, J\eta} J \cdot \nabla_{g, J\xi} J) e_k, e_k \right) \\
= \sum_{k=1}^n [\mathcal{R}_g (J\eta, e_k, J e_k, \xi) + g (\mathcal{R}_g (e_k, \xi) J\eta, J e_k)] \\
+ \frac{1}{4} \text{Tr}_n (\nabla_{g, J\xi} J \cdot \nabla_{g, J\eta} J),
\]
where \(\mathcal{R}_g \in C^\infty (X, S^2_R(\Lambda^2_T X))\) is the Riemannian curvature form. Using its symmetry properties we have
\[
\mathcal{R}_g (J\eta, e_k, J e_k, \xi) = \mathcal{R}_g (J e_k, \xi, J\eta, e_k) \\
= -\mathcal{R}_g (J e_k, \xi, e_k, J\eta) \\
= -g (\mathcal{R}_g (J e_k, \xi) J\eta, e_k),
\]
We infer the equality
\[
\text{Ric}_j (\omega) (\xi, J\eta) = -\sum_{k=1}^n [g (J \mathcal{R}_g (J e_k, \xi) J\eta, J e_k) + g (J \mathcal{R}_g (e_k, \xi) J\eta, e_k)] \\
+ \frac{1}{4} \text{Tr}_n (\nabla_{g, J\xi} J \cdot \nabla_{g, J\eta} J),
\]
Using (5.2) we deduce
\[
\text{Ric}_j (\omega) (\xi, J\eta) = \sum_{k=1}^n [g (\mathcal{R}_g (J e_k, \xi) \eta, J e_k) + g (\mathcal{R}_g (e_k, \xi) \eta, e_k)] \\
+ \sum_{k=1}^n g \left(J \left[\nabla^2_{g, J\xi, J e_k} J - \nabla^2_{g, J e_k, \xi} J \right] \eta, J e_k \right) \\
+ \sum_{k=1}^n g \left(J \left[\nabla^2_{g, J e_k, \xi} J - \nabla^2_{g, e_k, \xi} J \right] \eta, e_k \right) \\
+ \frac{1}{4} \text{Tr}_n (\nabla_{g, J\xi} J \cdot \nabla_{g, J\eta} J),
\]
and thus

\[\text{Ric}_J(\omega)(\xi, J\eta) = \text{Ric}(g)(\xi, \eta) \]

\[+ \sum_{k=1}^n g \left([\nabla^2_{g,\xi,Je_k} J - \nabla^2_{g,Je_k,\xi}] \eta, e_k \right) \]

\[- \sum_{k=1}^n g \left([\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi}] \eta, J e_k \right) \]

\[+ \frac{1}{4} \text{Tr}_x \left(\nabla_{g,\xi} J \cdot \nabla_{g,\eta} J \right). \quad (5.4) \]

We notice now that the identity \(J^T_g = -J \), implies \(\left(\nabla^2_{g,\xi,\eta} J \right)^T_g = -\nabla^2_{g,\xi,\eta} J \).

Using this we obtain

\[\mathfrak{X}_k := g \left([\nabla^2_{g,\xi,Je_k} J - \nabla^2_{g,Je_k,\xi}] \eta, e_k \right) \]

\[+ g \left([\nabla^2_{g,e_k,\xi} J - \nabla^2_{g,\xi,e_k} J] \eta, J e_k \right) \]

\[= g \left(\eta, [\nabla^2_{g,Je_k,\xi} J - \nabla^2_{g,\xi,Je_k} J] e_k + [\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi} J] J e_k \right) \]

\[= g \left(J \eta, J \left[[\nabla^2_{g,Je_k,\xi} J - \nabla^2_{g,\xi,Je_k} J] e_k + J [\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi} J] J e_k \right] \right). \]

Taking a covariant derivative of the identity \(\nabla_g J \cdot J = -J \nabla_g J \) we infer

\[J \nabla^2_{g,\xi,\eta} J = -\nabla^2_{g,\xi,\eta} J \cdot J - \nabla_g \xi \nabla_g \eta J - \nabla_g \eta \nabla_g \xi J. \]

Using this we deduce

\[J \left[[\nabla^2_{g,Je_k,\xi} J - \nabla^2_{g,\xi,Je_k} J] e_k + J [\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi} J] J e_k \right] \]

\[= [\nabla^2_{g,\xi,Je_k} J - \nabla^2_{g,Je_k,\xi}] J e_k + [\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi}] e_k \]

\[- \nabla_g J e_k \cdot \nabla_g \xi J e_k - \nabla_g \xi \nabla_g J e_k \]

\[+ \nabla_g J e_k \cdot \nabla_g \xi J e_k + \nabla_g J e_k \cdot \nabla_g \xi J e_k \]

\[- \nabla_g \xi J \cdot \nabla_g e_k J e_k - \nabla_g e_k J \cdot \nabla_g \xi J e_k \]

\[+ \nabla_g e_k J \cdot \nabla_g \xi J \cdot J e_k + \nabla_g \xi J \cdot \nabla_g e_k J \cdot J e_k \]

\[= [\nabla^2_{g,\xi,Je_k} J - \nabla^2_{g,Je_k,\xi}] J e_k + [\nabla^2_{g,\xi,e_k} J - \nabla^2_{g,e_k,\xi}] e_k. \]
by obvious diagonal cancellations. We notice now that the identity (4.4) implies
\(\nabla^* \xi = 0. \) A covariant derivative of this identity implies
\(\text{Tr}_g (\xi \nabla^* \xi) = 0. \) We deduce
\[
\sum_{k=1}^n \mathcal{X}_k = g \left(\nabla^* \nabla \xi, J \eta \right).
\]
This combined with (5.4) implies the required formula (5.1).

Let \(\Omega > 0 \) be a smooth volume form over an oriented Riemannian manifold \((X, g)\). We define the \(\Omega \)-Bakry-Emery-Ricci tensor of \(g \) as
\[
\text{Ric}_g(\Omega) := \text{Ric}(g) + \nabla_g d \log \frac{dV_g}{\Omega}.
\]
We set for notations simplicity
\[
[\text{Tr}_x (\nabla g \cdot J) \cdot \nabla g \cdot J] (\xi, \eta) := \text{Tr}_x (\nabla g \xi \cdot \nabla g \eta).
\]

Lemma 3 Let \((X, J, g)\) be an almost Kähler manifold with symplectic form \(\omega := gJ \) and let \(\Omega > 0 \) be a smooth volume form. Then hold the decomposition formula
\[
\text{Ric}_g(\Omega) = -\text{Ric}_J(\Omega)J + \omega(\bullet, \nabla^* g J \bullet) - \frac{1}{4} \text{Tr}_x (\nabla g \bullet J \cdot \nabla g \bullet J)
+ g \left(\partial_{T_X,J} \nabla g \log \frac{dV_g}{\Omega} - \nabla g \log \frac{dV_g}{\Omega} \nabla J \right), \tag{5.5}
\]

Proof. This formula follows directly from the identities
\[
\text{Ric}_J(\Omega) = \text{Ric}_J(\omega^n) + dd^c f \log \frac{\omega^n}{\Omega},
\]
\[
\text{Ric}_J(\omega^n) = \text{Ric}_J(\omega), \text{ the identity (5.1) and the decomposition formula}
\]
\[
\nabla g df = -dd^c f \cdot J + g \left(\partial_{T_X,J} \nabla g f - \nabla g f \nabla J \right),
\]
for all twice differentiable function \(f \). The latter follows from a straightforward modification of the proof of lemma 29 in [Pal4]. □

Acknowledgments. I warmly thank the referee for pointing out a few inaccuracies in the original version of this manuscript.
References

[Do] DONALDSON, S.K., Remarks on gauge theory, complex geometry and 4-manifold topology. In Fields Medallists' Lectures, volume 5 of World Sci. Ser. 20th Century Math., pages 384-403. World Sci. Publ., River Edge, NJ, 1997.

[Fu] FUJIKI, A., Moduli space of polarized algebraic manifolds and Kähler metrics, (translation of Sugaku 42, no 3 (1990), 231-243), Sugaku Expositions 5, no 2 (1992), 173-191. Publ. RIMS, Kyoto Univ. 24 (1988), 141-168.

[F-S] FUJIKI, A., SCHUMACHER, G., The moduli space of Kähler Structures on a real Compact Symplectic Manifold, Publ. RIMS, Kyoto Univ. 24 (1988), 141-168.

[Ga] GAUDUCHON, P. Calabi extremal metrics: An elementary introduction, book available on the web.

[Mo] MODSEN, O. Symplectomorphisms hamiltoniens et métriques kähleriennes, Mémoire de DEA, Univ. Paris 7, 2003.

[Pal1] PALI, N., Plurisubharmonic functions and positive (1,1)-currents over almost complex manifolds, Manuscripta Mathematica, volume 118, (2005) issue 3, pp. 311 - 337.

[Pal2] PALI, N., The Chern connection of the tangent bundle of almost complex manifolds, New York J. Math. 11 (2005), 597-634.

[Pal3] PALI, N., The total second variation of Perelman’s W-functional, arXiv:1201.0969v1. (2012), Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 115144.

[Pal4] PALI, N., The Soliton-Kähler-Ricci Flow over Fano Manifolds, New York J. Math. 20 (2014), 845-919.

[Pal5] PALI, N., Variation formulas for the complex components of the Bakry-Emery-Ricci endomorphism, arXiv:1406.0805 (2014), Complex Var. Elliptic Equ. 60 (2015), no. 5, 635-667.

[Pal6] PALI, N., The Soliton-Ricci Flow with variable volume forms, Complex Manifolds, Vol 3, Issue 1, (2016), 41-144.

[Pal7] PALI, N., Variational stability of Kähler-Ricci solitons, Advances in Mathematics 290, (2016), 15-35.

[Pal8] PALI, N., On complex deformations of Kähler-Ricci solitons, arXiv (2015).

[Pal9] PALI, N., The stability of the Soliton-Kähler-Ricci flow, in preparation.
[Per] PERELMAN, G., *The entropy formula for the Ricci flow and its geometric applications*, arXiv:math/0211159.

Nefton Pali
Université Paris Sud, Département de Mathématiques
Bâtiment 425 F91405 Orsay, France
E-mail: nefton.pali@math.u-psud.fr