Ion-By-Ion Cooling Efficiencies

Orly Gnat
California Institute of Technology

Gary J. Ferland
University of Kentucky, gary@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Gnat, Orly and Ferland, Gary J., "Ion-By-Ion Cooling Efficiencies" (2012). Physics and Astronomy Faculty Publications. 136.
https://uknowledge.uky.edu/physastron_facpub/136

This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Ion-By-Ion Cooling Efficiencies

Digital Object Identifier (DOI)
https://doi.org/10.1088/0067-0049/199/1/20

Notes/Citation Information
Published in The Astrophysical Journal Supplement Series, v. 199, no. 1, 20, p. 1-5.

© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

The copyright holder has granted permission for posting the article here.

This article is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/136
ION-BY-ION COOLING EFFICIENCIES

ORLY GNAT1,3 AND GARY J. FERLAND2

1 Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125, USA, and Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel; orlyg@tapir.caltech.edu
2 Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA

Received 2010 October 11; accepted 2012 January 4; published 2012 March 1

ABSTRACT

We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H–Zn) individually. We present results for gas temperatures between 10^4 and 10^8 K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

Key words: atomic processes – ISM: general – plasmas

Online-only material: color figure, supplemental data file (tar.gz)

1. INTRODUCTION

The radiative cooling efficiencies4 of hot (10^4–10^8 K) low-density gas are important quantities in the study of the diffuse interstellar and intergalactic medium. They determine the thermal and dynamical properties and evolution in a variety of astrophysical systems, ranging from local interstellar clouds to shocks in intergalactic filaments.

Computations of hot gas cooling efficiencies assuming collisional ionization equilibrium (CIE) have been studied extensively (House 1964; Tucker & Gould 1966; Allen & Dupree 1969; Cox & Tucker 1969; Jordan 1969; Raymond et al. 1976; Shull & van Steenberg 1982; Gaetz & Salpeter 1983; Arnaud & Rothenflug 1985; Boehringer & Hensler 1989; Sutherland & Dopita 1993; Landi & Landini 1999; Benjamin et al. 2001). These CIE cooling efficiencies depend only on the gas temperature and metallicity. However, there are many cases for which CIE conditions do not apply. For example, nonequilibrium ionization is bound to occur when an initially hot gas cools radiatively below $\sim 10^6$ K (Kafatos 1973; Shapiro & Moore 1976; Edgar & Chevalier 1986; Schmutzler & Tscharnuter 1993; Sutherland & Dopita 1993; Smith et al. 1996; Gnat & Sternberg 2007). Below this temperature, cooling becomes rapid compared to electron–ion recombinations, and the gas temperature tends to remain “overionized” compared to gas in CIE. In conduction fronts surrounding evaporating clouds (e.g., Borkowski et al. 1990; Gnat et al. 2010), nonequilibrium ionization occurs when the ionization time is long compared to the rate of temperature change. In this case, the gas tends to remain underionized compared to CIE. Nonequilibrium ionization also plays a role in fast radiative shock waves (e.g., Allen et al. 2008; Gnat & Sternberg 2009) and in turbulent mixing layers (e.g., Slavin et al. 1993).

When departures from CIE are significant, the cooling efficiencies are no longer a function of just the gas temperature and metallicity, but instead depend on the specific time-dependent ion fractions. The use of convenient tables with known CIE cooling efficiencies must be replaced with a detailed computation of the nonequilibrium cooling, taking into account all the relevant microphysical processes which include numerous emission lines, thermal bremsstrahlung, and ionization and recombination cooling. This requires the collection of a large set of atomic data for all the relevant processes and is computationally complex compared with using look-up tables.

Recently, first attempts have been made at including nonequilibrium ionization physics in large-scale hydrodynamical simulations, with applications for both cosmological metal absorption through the warm/hot intergalactic medium (e.g., Cen & Ostriker 2006; Cen & Fang 2006) and emission lines from galaxy clusters (e.g., Akahori & Yoshikawa 2010). Because of the complexity of nonequilibrium cooling, such simulations have so far not included self-consistent nonequilibrium cooling efficiencies. It is simpler to include nonequilibrium cooling in hydrodynamical simulations by using look-up tables for the nonequilibrium cooling rate (e.g., Oppenheimer & Davé 2009). However, in these simplified models, the nonequilibrium cooling rates are not consistent with the assumed ion fractions.

In this paper, we present ion-by-ion cooling efficiencies. We list the cooling efficiencies for each ion of the first 30 elements (H–Zn) individually. We present results for gas temperatures between 10^4 and 10^8 K, assuming optically thin, low-density conditions. The sum of ionic cooling efficiencies, weighted by the nonequilibrium ion densities, then provides an efficient-to-compute and self-consistent nonequilibrium cooling efficiency. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the remaining cooling due to elements not included in any time-dependent computation.
This paper is not a new calculation of the cooling functions (cf. Schure et al. 2009). We do not present any new atomic data. Instead, we list the current cooling functions included in Cloudy (version 10.00) in convenient online tables that are useful in any numerical computation in which the ion abundances are not in photoionization or collisional equilibrium. It is the first time that the individual ionic cooling efficiencies are listed in an accessible format. As we describe below, the new framework that we present here will be periodically maintained and updated as improved atomic data become available.

The outline of this paper is as follows. In Section 2, we describe the computational method. In Section 3, we present the results for the ion-by-ion cooling efficiencies, and for the element-by-element CIE cooling efficiencies. We summarize in Section 4.

2. METHOD

We used Cloudy (version 10.00; Ferland et al. 1998) to compute the ion-by-ion cooling efficiencies of every ion of the first 30 elements (H–Zn). All the cooling processes considered by Cloudy are described in detail in Osterbrock & Ferland (2006), and include collisional excitations followed by line emission, recombinations with ions, collisional ionizations, and thermal bremsstrahlung. The electron cooling efficiency includes the removal of electron kinetic energy via recombinations with ions, collisional ionizations, collisional excitations followed by prompt line emissions, and thermal bremsstrahlung. Cloudy does not include the ionization potential energies as part of the total internal energy, but instead follows the loss and gain of the electron kinetic energy only. Therefore, while the energy of each recombination photon is the sum of the electron kinetic energy and the binding energy of the ion, in the definition of the cooling (see Osterbrock & Ferland 2006; Gnat & Sternberg 2007) the ionization potential energy that is included in the recombination radiation does not appear. Only the kinetic energy of the recombinating electrons contributes to the cooling efficiency. On the other hand, kinetic energy removed via collisional ionization is included in the cooling. If ionization potential energy is considered as part of the total internal energy, then collisional ionization does not lead to a net energy loss, since the kinetic energy removed is merely stored as potential energy. Either way of accounting for the energy losses leads to the same net (i.e., cooling minus heating) cooling efficiency.

For each ionization state \(i\) of each element \(E\), we constructed a series of models for different gas temperature between \(10^4\) and \(10^8\) K. Each model includes only hydrogen and the element \(E\). The abundances of all other elements are set to zero. We set an electron density \(n_e = 1 \text{ cm}^{-3}\), regardless of composition and ionization state. We define the ionization states of the element \(E\) so that the fractional abundance of the species \(E_i\) is 1, and the abundances of all other ions are 0. We further set the abundance of element \(E\) to be \(10^{15}\) larger than that of hydrogen, so that \(n_{ii} = 10^{-15} \text{ cm}^{-3}\) and \(n(E) = 1 \text{ cm}^{-3}\), and we force an electron density \(n_e = 1 \text{ cm}^{-3}\). We allow Cloudy to compute the CIE ion fractions \(x(E_i)\). For each element \(E\), the ion fractions \(x(E_i) = n(E_i)/n(E)\) must at all times satisfy

\[
\sum_i x(E_i) = 1, \tag{1}
\]

where \(n(E_i)\) is the density (cm\(^{-3}\)) of ions in ionization stage \(i\) of element \(E\), \(n(E) = n_{ii}A_{ii}\), \(n_{ii}\) is the total hydrogen density, and \(A_{ii}\) is the abundance of element \(E\) relative to hydrogen. These models yield the total cooling efficiency due to the CIE ion distribution of element \(E\).

The tables presented in this paper provide easy access to different components of the total cooling function computed in version 10.00 of Cloudy. The cooling functions included in Cloudy are constantly being updated as improved data become available. We will update this table, keeping its current format, to provide ready access to these future calculations (see http://wise-obs.tau.ac.il/~orlyg/ion_by_ion/). This way, codes that can parse the current tables can be easily updated as better atomic data become available.

3. ION-BY-ION COOLING EFFICIENCIES

We have carried out computations of the cooling efficiencies \(\Lambda_{\text{ion}}(T)\) for each ion of the first 30 elements, H–Zn (with atomic numbers 1–30), as a function of temperature. The results are listed in tabular form in Table 1. The full table is available as a supplemental data file in the online version and is divided into lettered parts A–AD, as is outlined in Table 2. For each element \(E\) with atomic number \(Z\), the first column in Table 1 lists the temperature, and the next \(Z + 1\) columns list the cooling efficiencies, \(\Lambda_{\text{ion}}\) (erg s\(^{-1}\) cm\(^3\)) for the different ionization states, starting with the neutral atom, and ending with the fully stripped ion. The cooling rate per unit volume due to ionization state \(i\) of element \(E\) is then given by

\[
\text{Table 1}
\]

\(T\) (K)	\(\Lambda_{\text{H}1}(\text{H})\) (erg cm\(^3\) s\(^{-1}\))	\(\Lambda_{\text{H}1}(\text{H}^+)\) (erg cm\(^3\) s\(^{-1}\))	\(\Lambda_{\text{H}1}(\text{H} at \text{ CIE})\) (erg cm\(^3\) s\(^{-1}\))
\(1.00 \times 10^4\)	\(4.59 \times 10^{-24}\)	\(6.26 \times 10^{-25}\)	\(4.58 \times 10^{-24}\)
\(1.05 \times 10^4\)	\(7.93 \times 10^{-24}\)	\(6.36 \times 10^{-25}\)	\(7.90 \times 10^{-24}\)
\(1.10 \times 10^4\)	\(1.33 \times 10^{-23}\)	\(6.46 \times 10^{-25}\)	\(1.32 \times 10^{-23}\)

Notes. The full table (available in the online version as a supplemental data file) lists the ion-by-ion cooling efficiencies for all the different ions of the first 30 elements (H–Zn), and for the elemental cooling efficiencies assuming CIE. For a guide see Table 2.

5 Cloudy is available at http://www.nublado.org/. The code documentation including a full description of all cooling processes is available at http://viewvc.nublado.org/index.cgi/tags/release/08.00-docs/?root=cloudy (and will be described in G. J. Ferland et al., 2012, in preparation). To get the full list of references to the atomic data in this version, see instructions in Section 13.5 of Cloudy’s third volume of documentation (Hazy3.08.pdf).

6 The cooling is always computed with respect to the source ion (e.g., recombinations are attributed to the more ionized species).

\(7\) We verify that the contribution of hydrogen to each model is negligible by changing the abundance of the relevant species from \(10^{15}\) times \(n_H\) to \(10^{10}\) times \(n_H\) and verifying that the results remain unaltered.
neutral hydrogen cools orders of magnitude more efficiently than ionized hydrogen (upper panel) and for helium (lower panel). This figure from Cloudy, based on Grevesse & Sauval (1998); (DT) Drake & Testa (2005).

References
1 Hydrogen 1A 1
2 Helium 1B 8.33×10^{-2} B
3 Lithium 1C 2.04×10^{-9} C
4 Beryllium 1D 2.63×10^{-11} C
5 Boron 1E 6.17×10^{-10} C
6 Carbon 1F 2.45×10^{-4} A
7 Nitrogen 1G 6.03×10^{-5} A
8 Oxygen 1H 4.57×10^{-4} A
9 Fluorine 1I 3.02×10^{-8} C
10 Neon 1J 1.95×10^{-4} DT
11 Sodium 1K 2.14×10^{-6} C
12 Magnesium 1L 3.39×10^{-5} A
13 Aluminum 1M 2.95×10^{-6} C
14 Silicon 1N 3.24×10^{-5} A
15 Phosphorus 1O 3.20×10^{-7} C
16 Sulfur 1P 1.38×10^{-5} A
17 Chlorine 1Q 1.91×10^{-7} C
18 Argon 1R 2.51×10^{-6} C
19 Potassium 1S 1.32×10^{-7} C
20 Calcium 1T 2.29×10^{-6} C
21 Scandium 1U 1.48×10^{-9} C
22 Titanium 1V 1.05×10^{-7} C
23 Vanadium 1W 1.08×10^{-8} C
24 Chromium 1X 4.68×10^{-7} C
25 Manganese 1Y 2.88×10^{-7} C
26 Iron 1Z 2.82×10^{-5} A
27 Cobalt 1AA 8.32×10^{-8} C
28 Nickel 1AB 1.78×10^{-6} C
29 Copper 1AC 1.62×10^{-8} C
30 Zinc 1AD 3.98×10^{-8} C

Table 2

Z	Element	Table	Abundance ($X/H\odot$)	References
1	Hydrogen	IA	1	
2	Helium	IB	8.33×10^{-2}	B
3	Lithium	IC	2.04×10^{-9}	C
4	Beryllium	ID	2.63×10^{-11}	C
5	Boron	IE	6.17×10^{-10}	C
6	Carbon	IF	2.45×10^{-4}	A
7	Nitrogen	IG	6.03×10^{-5}	A
8	Oxygen	IH	4.57×10^{-4}	A
9	Fluorine	II	3.02×10^{-8}	C
10	Neon	IJ	1.95×10^{-4}	DT
11	Sodium	IK	2.14×10^{-6}	C
12	Magnesium	IL	3.39×10^{-5}	A
13	Aluminum	IM	2.95×10^{-6}	C
14	Silicon	IN	3.24×10^{-5}	A
15	Phosphorus	IO	3.20×10^{-7}	C
16	Sulfur	IP	1.38×10^{-5}	A
17	Chlorine	IQ	1.91×10^{-7}	C
18	Argon	IR	2.51×10^{-6}	C
19	Potassium	IS	1.32×10^{-7}	C
20	Calcium	IT	2.29×10^{-6}	C
21	Scandium	IU	1.48×10^{-9}	C
22	Titanium	IV	1.05×10^{-7}	C
23	Vanadium	IW	1.08×10^{-8}	C
24	Chromium	IX	4.68×10^{-7}	C
25	Manganese	IY	2.88×10^{-7}	C
26	Iron	IZ	2.82×10^{-5}	A
27	Cobalt	1AA	8.32×10^{-8}	C
28	Nickel	1AB	1.78×10^{-6}	C
29	Copper	1AC	1.62×10^{-8}	C
30	Zinc	1AD	3.98×10^{-8}	C

Figure 1. Ion-by-ion cooling efficiencies for hydrogen ions (upper panel) and for helium ions (lower panel).

The last column in each part (A–AD) of Table 1 lists the total CIE cooling efficiency of each element as a function of temperature. Figure 3 shows the CIE cooling efficiencies of the major coolants as a function of temperature, assuming a solar metallicity. In making Figure 3, we adopt the elemental abundances for C, N, O, Mg, Si, S, and Fe reported by Asplund et al. (2005) for the photosphere of the Sun and the enhanced Ne abundance recommended by Drake & Testa (2005). For the other elements we use the abundances reported by Grevesse & Sauval (1998). We list these abundances in Table 2.

Figure 3 shows the familiar peaks in the CIE cooling efficiency due to different elements. The low-temperature peak at $\sim 2 \times 10^4$ K is mainly due to hydrogen Lyα cooling. As the hydrogen neutral fraction becomes small, the contribution of hydrogen Lyα decreases. This peak is followed by peaks at 10^5, 3×10^5, 5×10^5, and 1.5×10^6 K due, respectively, to contributions of carbon, oxygen, neon, and iron. A second iron peak can be seen at $\sim 10^7$ K. At higher temperatures cooling is dominated by thermal bremsstrahlung due to fully stripped ions. Contributions by other cooling elements are also shown in C$^{2+}$ and C$^{3+}$. These ions are responsible for the familiar carbon peak in the solar metallicity CIE cooling curve at $\sim 10^5$ K (see Section 3.1). The second peak, at $\sim 10^6$ K, is due to C$^{3+}$ and C$^{5+}$, and is two order of magnitude lower.

3.1. Element-by-element CIE Cooling

The last column in each part (A–AD) of Table 1 lists the total CIE cooling efficiency of each element as a function of temperature. Figure 3 shows the CIE cooling efficiencies of the major coolants as a function of temperature, assuming a solar metallicity. In making Figure 3, we adopt the elemental abundances for C, N, O, Mg, Si, S, and Fe reported by Asplund et al. (2005) for the photosphere of the Sun and the enhanced Ne abundance recommended by Drake & Testa (2005). For the other elements we use the abundances reported by Grevesse & Sauval (1998). We list these abundances in Table 2.

Figure 3 shows the familiar peaks in the CIE cooling efficiency due to different elements. The low-temperature peak at $\sim 2 \times 10^4$ K is mainly due to hydrogen Lyα cooling. As the hydrogen neutral fraction becomes small, the contribution of hydrogen Lyα decreases. This peak is followed by peaks at 10^5, 3×10^5, 5×10^5, and 1.5×10^6 K due, respectively, to contributions of carbon, oxygen, neon, and iron. A second iron peak can be seen at $\sim 10^7$ K. At higher temperatures cooling is dominated by thermal bremsstrahlung due to fully stripped ions. Contributions by other cooling elements are also shown in
CIE cooling efficiencies for carbon ions, and sulfur also contribute to the cooling below 10^4 K. For solar metallicity gas the helium contribution is larger. Nitrogen, magnesium, and silicon line cooling. However, at subsolar metallicities the relative contribution of helium is smaller compared with that of carbon ions to the CIE, solar metallicity cooling efficiency. These results are identical to the cooling efficiencies computed by Cloudy (version 10.00) assuming CIE and a solar composition (including all elements). For comparison, the dotted curve shows the CIE cooling efficiencies of Gnat & Sternberg (2007), which were computed using the cooling function included in Cloudy version 06.02. The agreement is excellent for $T \lesssim 2 \times 10^6$ K, but some differences appear at higher temperatures. This is mostly due to improved treatment of the He-like iso-sequence (see Porter & Ferland 2007) included in the newer version of Cloudy (the cooling due to He-like neon, oxygen, and magnesium was overestimated in version 06.02).

4. SUMMARY

In this paper, we present computations of the cooling efficiencies of each ion of the first 30 elements (hydrogen–zinc) individually. We use the cooling functions included in Cloudy (version 10.00) to compute the cooling efficiencies as a function of temperature, between 10^4 and 10^8 K, assuming optically thin conditions.

The results are listed in tabular form in Table 1 (Section 3) and are available as a supplemental data file in the online version (for a guide see Table 2). For each ion, we list the cooling efficiency $\Lambda_{e,\text{ion}}(T)$ (erg cm$^{-3}$ s$^{-1}$) as a function of temperature. The total cooling rate for any ionic composition can then be computed by multiplying the ionic efficiencies by the ion densities, $n_e \sum \Lambda_{e,\text{ion}}$ (erg s$^{-1}$ cm$^{-3}$).

As opposed to gas in CIE, for which the cooling efficiencies depend only on the gas temperature and metallicity, for nonequilibrium conditions the cooling efficiencies must be evaluated locally depending on the nonequilibrium ion fractions. A self-consistent computation therefore requires the collection of a large set of atomic data for all the relevant microphysical cooling processes, including numerous emission lines, thermal bremsstrahlung, and ionization and recombination processes. The results presented in this paper allow for an efficient estimate of the total cooling efficiency regardless of the ionization state.

The tables presented here use the current atomic data set within Cloudy version 10.00. The tables provide a flexible way to access the cooling of individual species. The Cloudy atomic database is continuously updated and new versions of these tables, using the same format, will be created as the atomic data are improved. These tables will then provide easy access to future improvements as they occur.

The online tables are useful when constructing theoretical models in which nonequilibrium ionization plays a significant role and can be used, for example, in models for radiatively cooling gas, conduction fronts, fast shock waves, and turbulent mixing layers. They can also simplify the inclusion of self-consistent nonequilibrium cooling in large-scale cosmological hydrodynamical simulations.

In Section 3.1, we present the elemental cooling efficiencies as a function of temperature for each of the first 30 elements (H–Zn) assuming CIE conditions. These results can be used to easily construct CIE cooling efficiencies for non-solar abundance ratios, as well as to estimate the cooling by elements not included in any time-dependent, nonequilibrium computations.

O.G. was supported by NASA through Chandra Postdoctoral Fellowship grant PF8-90053 awarded by the Chandra X-ray

![Figure 2. Cooling efficiencies of carbon ions. Upper panel: ion-by-ion cooling efficiencies for carbon ions. The cooling rate per unit volume is given by $n_{\text{ion}}\Lambda_{e,\text{ion}}(\text{ion})$. Middle panel: carbon CIE ion fractions. Lower panel: carbon CIE cooling efficiencies for carbon ions, $x_{\text{ion}}\Lambda_{e,\text{ion}}$. The cooling rate per unit volume is given by $n_e\sum x_{\text{ion}}\Lambda_{e,\text{ion}}(\text{ion})$. The sum of CIE cooling efficiencies by all carbon ions is shown by the thick gray curve.](image)
Figure 3. Element-by-element cooling efficiencies assuming CIE ion fractions and solar elemental abundance ratios (see Table 2). The total CIE cooling efficiency due to all elements is shown by the upper thick gray curve. The CIE cooling efficiency of Gnat & Sternberg (2007), which relied on Cloudy version 06.02, is shown by the upper dotted line for comparison. The differences between the two are due to updated atomic data included in Cloudy version 10.00. (A color version of this figure is available in the online journal.)

REFERENCES

Akahori, T., & Yoshikawa, K. 2010, PASJ, 62, 335
Allen, J. W., & Dupree, A. K. 1969, ApJ, 155, 27
Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S., & Kewley, L. J. 2008, ApJS, 178, 20
Arnaud, M., & Rothenflug, R. 1985, A&AS, 60, 425
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash (San Francisco, CA: ASP), 25
Ballantyne, D. R., Ferland, G. J., & Martin, P. G. 2000, ApJ, 536, 773
Benjamin, R. A., Benson, B. A., & Cox, D. P. 2001, ApJ, 554, L225
Boehringer, H., & Hensler, G. 1989, A&A, 215, 147
Borkowski, K. J., Balbus, S. A., & Fristrom, C. C. 1990, ApJ, 355, 501
Cen, R., & Fang, T. 2006, ApJ, 650, 573
Cen, R., & Ostriker, J. P. 2006, ApJ, 650, 560
Cox, D. P., & Tucker, W. H. 1969, ApJ, 157, 1157
Dalgarno, A., & McCray, R. A. 1972, ARA&A, 10, 375
Drake, J. J., & Testa, P. 2005, Nature, 436, 525
Edgar, R. J., & Chevalier, R. A. 1986, ApJ, 310, L27
Ferland, G. J., Korista, K. T., Werner, D. A., et al. 1998, PASP, 110, 761
Gaetz, T. J., & Salpeter, E. E. 1983, ApJS, 52, 155
Gnat, O., & Sternberg, A. 2007, ApJS, 168, 213
Gnat, O., & Sternberg, A. 2009, ApJ, 693, 1514
Gnat, O., Sternberg, A., & McKee, C. F. 2010, ApJ, 718, 1315
Graney, C. M., & Sarazin, C. L. 1990, ApJ, 364, 561
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161
House, L. L. 1964, ApJS, 8, 307
Jordan, C. 1969, MNRAS, 142, 501
Kafatos, M. 1973, ApJ, 182, 433
Landi, E., & Landini, M. 1999, A&A, 347, 401
Oppenheimer, B. D., & Dav´e, R. 2009, MNRAS, 395, 1875
Osterbrock, D. E., & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (2nd ed.; Sausalito, CA: Univ. Science Books)
Porter, R. L., & Ferland, G. J. 2007, ApJ, 664, 586
Raymond, J. C., Cox, D. P., & Smith, B. W. 1976, ApJ, 204, 290
Schmutzler, T., & Tscharnuter, W. M. 1993, A&A, 273, 318
Schure, K. M., Kosenko, D., Kastra, J. S., Keprens, R., & Vink, J. 2009, A&A, 508, 751
Shapiro, P. R., & Moore, R. T. 1976, ApJ, 207, 460
Shull, J. M., & van Steenberg, M. 1982, ApJS, 48, 95
Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83
Smith, R. K., Krzewina, L. G., Cox, D. P., Edgar, R. J., & Miller, W. W. I. 1996, ApJ, 473, 864
Tucker, W. H., & Gould, R. J. 1966, ApJ, 144, 244