DETERMINATION OF THE TOTAL PHENOLICS AND ANTIOXIDANT ACTIVITY IN THE RIND EXTRACTS OF *GARCINIA MANGOSTANA* L., *GARCINIA COWA* ROXB., AND *GARCINIA ATROVIRIDIS* GRIFF. EX T. ANDERS.

REGINA ANDAYANI*, FITRHIANI ARMIN, AINUL MARDHIYAH

Department of Pharmacy, Faculty of Pharmacy, Andalas University, Limau Manis Campus, Padang, West Sumatera, 25163, Indonesia.

Email: reginaandayani@phar.unand.ac.id

Received: 01 December 2019, Revised and Accepted: 06 June 2020

ABSTRACT

Objectives: *Garcinia atroviridis* Griff. ex T. Anders., *Garcinia mangostana* L., and *Garcinia cowa* Roxb. are plants of the genus *Garcinia* that have been widely used by the community as a food flavoring, spices, and also as a herbal medicinal ingredient. This research aimed to evaluate the total phenolics and antioxidant activity from three species of *Garcinia* (*G. atroviridis* Griff. ex T. Anders., *G. mangostana* L., and *G. cowa* Roxb.)

Methods: The total phenolic content (TPC) of the extracts was estimated as Gallic Acid Equivalent by the Folin-Ciocalteu method. Antioxidant activity was assessed using Ferric Reducing Antioxidant Power assay.

Results: The TPC of *G. mangostana* L. rind extract is higher (31.83±3.70%), than *G. cowa* Roxb. (4.35±0.17%) and *G. atroviridis* Griff. ex T. Anders. (2.47±0.42%). Based on the antioxidant activity, *G. mangostana* L. rind has a higher total antioxidant activity (24.68 µmol Fe(II)/g) than *G. cowa* Roxb. (18.88±0.12 µmol Fe(II)/g) and *G. atroviridis* Griff. ex T. Anders. (17.61±0.05 µmol Fe(II)/g).

Conclusion: The results showed that *G. mangostana* L. rind extract contains a higher level of TPC and antioxidant activity among the other rinds. The results obtained indicate that the three samples have the potential to be a source of natural antioxidants. Further studies must be carried out to isolate compounds that have antioxidant activity.

Keywords: Total phenolic, Antioxidant activity, *Garcinia atroviridis* Griff. ex T. Anders., *Garcinia mangostana* L., and *Garcinia cowa* Roxb.

INTRODUCTION

Antioxidants are substances that can prevent and protect against diseases related to oxidative stress through preventing the free-radical formation, scavenging and neutralizing reactive oxygen species, and inhibiting oxidative reactions [1]. Therefore, widespread interest has been recently concerned about the evaluation of antioxidant plants and phytochemicals for reducing the risk of various diseases and improving the quality of life [2,3]. Several plants have significant antioxidant activity due to the presence of certain natural products responsible for scavenging the excess free radicals from the system [4-6].

*Garcinia atroviridis* Griff. ex T. Anders. has also been attributed with anti-inflammatory properties and has been found useful in cases of acne. *G. atroviridis* Griff. ex T. Anders., *Garcinia mangostana* L., and *Garcinia cowa* Roxb. are plants of the genus *Garcinia* which is widely used by people as a food flavoring, spices, and also as herbal medicinal ingredients [4].

The *G. atroviridis* Griff. ex T. Anders fruit contains citric acid, tartaric acid, malic acid, ascorbic acid, γ-lactone compounds, atroviridin, atroviridione, atrovirinone, pentadecanoic, octadecanoic, nonadecanoic, dodecanoic acid, and flavonoids [7]. *G. mangostana* L. contains xanthone compounds, mangostin, garsinon, flavonoids, and tannis in the fruit rind [8]. Whereas *G. cowa* Roxb. contains secondary metabolites, especially triterpenoids, flavonoids, xanthone, and florogusinol [9]. The plants contain many antioxidant compounds, such as phenolics. Many of the isolated compounds have a full range of pharmacological activities, including antitumor, anti-inflammatory, antibacterial, antiviral, antifungal, anti-HIV, antidepressant, and antioxidant [7-9].

The main objective of this study is to evaluate the antioxidant activity in three *Garcinia* rind extracts using total phenolic content (TPC) analysis and ferric reducing antioxidant power (FRAP) assay.

METHODS

Chemicals

About 70% ethanol (Merck), gallic acid (Sigma-Aldrich), Folin-Ciocalteu (FC) (Sigma-Aldrich) reagent, sodium carbonate (Sigma-Aldrich), ferroin (Sigma-Aldrich), iron (III) chloride (Sigma-Aldrich), aquadest (Brataco), iron (II) sulfate heptahydrate (Sigma-Aldrich), sodium acetate trihydrate (Sigma-Aldrich), and iron (III) chloride hexahydrate (Sigma-Aldrich).

Plant material and preparation of extracts

The sample used was fruit rinds of *G. atroviridis* Griff. Ex T. Anders. from Medan, North Sumatra, *G. mangostana* L. from the Batusangkar, West Sumatra, and *G. cowa* Roxb. from Padang, West Sumatra. Plant identification was carried out at Andalas University Herbarium (ANDA) Department of Biology FMIPA Andalas University, Padang, West Sumatera.

Fresh samples were collected and cleaned with water, then drained. Then, the samples were dried in an oven at 50°C for 72 h and ground to powder using an electric grinder. Each powder was weighed 300 g, and then extracted using 3 l of 70% ethanol. Soak for the first 6 h, stirring occasionally, then allowed to stand for 18 h. After that, the extract was separated, and then evaporated with a rotary evaporator so that a thick extract was obtained [10].

Screening of phytochemical of rind extracts

Qualitative phytochemical tests on *G. atroviridis* Griff. ex T. Anders, *G. cowa* Roxb, and *G. mangostana* L. rind extracts were carried out using ferric reducing antioxidant power (FRAP) assay.
to identify the availability of the main phytoconstituents including alkaloids, tannins, saponins, flavonoids, steroids, and terpenoids [11].

The TPCs
The TPC of samples were determined using PC assay as described by Singleton and Rossi (1956) with slight modification. Extracted samples of 0.2 mL were pipetted into test tubes. PC reagent (2 mL) was added into each test tube and was vortexed. Then, the mixtures were left standing at room temperature for 8 min. An amount of 1.6 ml 7.5% Na2CO3 was added into the mixture and vortexed again. The mixtures were allowed to stand for 2 h in the dark at room temperature (20±5°C). The absorbance was measured at 751 nm using a ultraviolet (UV)-visible spectrophotometer; and a calibration curve was prepared using gallic acid at the concentration of 300, 400, 500, 600, and 700 mg/L (r²=0.9999). The results were expressed as mg gallic acid equivalents (GAE)/100 g of dried samples [12].

FRAP assay
The ability to reduce ferric ions was measured using the method described by Benzie and Strain (1996) with slight modification. The FRAP reagent was produced just before use by mixing 10 mL of 0.3 M sodium acetate buffer (pH 3.6), 1 mL of 10 mmol ferroin solution, and 1 mL of 20.0 mmol FeCl3·6H2O solution in a ratio of 10:1:1 in volume. The samples were then added to 3 mL of FRAP reagent, and the reaction mixture was incubated at 37°C for 30 min. Absorbance was read at 510 nm. The FRAP value of Garcinia rind extracts was equated with that of L-ascorbic acid. The values obtained were expressed as µmol of ferrous equivalent Fe (II) per gram of dried sample [13]. New working solutions of FeSO4 were used for calibration. Series of stock solution at 0.3, 0.4, 0.5, 0.6, and 0.7 mM were prepared (r²=0.9996) using aqueous solution of FeSO4·7H2O as standard curve.

Statistical analysis
The experiments were done 3 times, and the result was evaluated as a mean, standard deviation. The data obtained are displayed in the form of bar charts and linear graphs to see the relationship of total phenolic levels with the antioxidant activity of the extracts of each sample.

RESULTS

The TPC assay
For calibration curves used standard solution of gallic acid with various concentrations of 300 µg/L; 400 µg/L; 500 µg/L; 600 µg/L; and 700 µg/L. The relationship between concentration and absorbance of gallic acid standard solution obtained a regression equation Y=0.0009X+0.1384 with r²=0.9999. A value of r close to 1 proves that the regression equation is linear. Gallic acid calibration curves are shown in Fig. 1. TPC of the selected rind extracts was expressed with GAE, and the contents were obtained using the regression calibration curve Y=0.0009x+0.1384 with r=0.9999. TPC obtained from G. mangostana L. rind extract were 31.83±3.70, G. cowa Roxb. rind extract were 24.68±0.19 µM Fe(II)/g, and G. atroviridis Griff. Ex T. Anders rind extract was 18.88±0.12 µM Fe(II)/g. This showed that G. mangostana L. rind extract had the highest TPC value among others. However, this value is lower than Vitamin C (Table 2 and Fig. 3).

The antioxidant activity of G. mangostana L. rind extract was 4.35±0.17 g GAE/100 g sample, G. atroviridis Griff. Ex T. Anders rind extract was 17.61±0.05 µM Fe(II)/g. This showed that G. mangostana L. rind extract had the highest FRAP value among others. However, this value is lower than Vitamin C (Table 2 and Fig. 3).

DISCUSSION
Screening of phytochemical of rind extracts
The presence of alkaloids, flavonoids, tannins, saponins, and terpenoids in all the extracts of G. atroviridis Griff. Ex T. Anders, G. cowa Roxb., and G. mangostana L. is shown in Table 3. Ethanolic extracts of G. atroviridis Griff. Ex T. Anders, G. cowa Roxb., and G. mangostana L. fruit rinds contain flavonoids and terpenoids as the main phytochemical compounds. The rich flavonoid plants could manifest themselves as good sources of antioxidants that would assist in the enhancement
FRAP (µM Fe+2/g) in Rind extracts major phytochemicals in fruit rind extracts

Table 2: Antioxidant activity of Garcinia atroviridis Griff. Et Anders., Garcinia mangostana L., and Garcinia cowa Roxb. rind extracts

Table 3: Screening of major phytochemicals in fruit rind extracts

The results showed that G. mangostana L. rind extract has higher antioxidant activity than extracts of G. cowa Roxb. and G. atroviridis Griff. Ex T. Anders. It shows that G. mangostana L. rind extract contains many compounds that act as antioxidants. The previous studies documented that there were 40 xanthones present in the pericarp of the fruit, the most abundant xanthones found are α-mangostin, β-mangostin, and γ-mangostin [19] contribute to its antioxidant activity.

However, the increase in TPC in mangosteen rind extract was not comparable to the increase in antioxidant activity. This can be due to the extraction solvent of 70% ethanol which cannot extract the α-mangostin compound (as the abundant antioxidant) completely. In earlier researcher reported, the ethyl acetate was the best solvents capable of extracting the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water [20].

It can be concluded that the extraction solvent significantly affects the yield and antioxidant activity of mangosteen rind extract.

CONCLUSION

The results showed that G. mangostana L. rind extract contained total phenolic level and antioxidant activity which was higher than those of G. cowa Roxb. and G. atroviridis Griff. Ex T. Anders. The three samples have the potential to be a source of natural antioxidants. Further studies must be carried out to isolate compounds that have antioxidant activity.

AUTHORS FUNDING

Authors are grateful to the Dean of the Faculty Andalas University Pharmacy, which has funded this research is through the DIPA funds from the Faculty of Pharmacy for the fiscal year 2019.

CONFLICTS OF INTEREST

The authors declare that they have no competing interests, and also, there are no conflicts of interest among them.

AUTHORS CONTRIBUTION

The author declares that this work was done by the authors named in this article.

REFERENCES

1. Houston MC. The role of nutrition, nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Altern Ther Health Med 2013;19 Suppl 1:32-49.
2. Yegdaneh A, Rafieian-Kopaei M, Bahrami B. The effects of *Anethum graveolens* essence on scopolamine-induced memory impair in mice. Res Pharm Sci 2016;11:145-51.

3. Mesripour A, Rafieian-Kopaei M, Bahrami B. The effects of *Anethum graveolens* essence on scopolamine-induced memory impair in mice. Res Pharm Sci 2016;11:145-51.

4. Wahyuni FS, Siregar F, Dharma S. Uji efek sitotoksik ekstrak etanol akar asam kandis (*Garcinia cowa* Roxb.) pada mencit putih betina dengan metode micronucleus assay. J Sains dan Teknol Farm 2012;17:98-103.

5. Baehaki A, Lestari SD, Siregar N. Phytochemical compounds and antioxidant activity of yellow velvetleaf fruit (*Limnocharis flava*) extract. Asian J Pharm Clin Res 2020;13:55-7.

6. Nelson SS, Yadav SA. A comparative screening and evaluation of the total phenolics, flavonoids, and antioxidant properties in the seed extracts of *Panica granatum* L., *Psidium guajava* L., and *Vitis vinifera* L. Asian J Pharm Clin Res 2019;12:242-7.

7. Hengsa MS. Aktivitas Antibakteri Ekstrak Etanol Buah Asam Gelugur (*Garcinia atroviridis* Griff. Et Anders) Terhadap *Staphylococcus aureus* dan *Shigella dysenteriae* Serta Bioautografinya, Skripsi. Surakarta: Fakultas Farmasi Universitas Muhammadiyah Surakarta; 2014.

8. Andayani R, Wahyuni FS, Wirasti Y, Dachriyanus H. Development and validation of RP-HPLC method for quantitative estimation of α-mangostin in the rind extract and fractions of *Garcinia mangostana* L. and *Psidium guajava* L., and *Vitis vinifera* L. Asian J Pharm Clin Res 2019;12:242-7.

9. Wahyuni FS, Shaari K, Stanslas J, Lajis NH, Dachriyanus H. Cytotoxic xanthones from the stem bark of *Garcinia cowa* Roxb. J Chem Pharm Res 2015;7:174-8.

10. Departemen Kesehatan Republik Indonesia. Farmakope Herbal Indonesia. Jakarta: Departemen Kesehatan Republik Indonesia; 2008.

11. Harborne JB. Phytochemical Methods: A Guide to Modern Technique of Plant Analysis. London: Chapman and Hall; 1973.

12. Singleton VL, Rossi JA. Colourimetry of total phenolics with phosphomolybdc-phosphotungstic acid reagents. Am J Enol Vitic 1956;16:144-58.

13. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem 1996;239:70-6.

14. Suttirak W, Manarakchinakorn S. Total Phenolic Contents and Antioxidant Activities of Mangosteen Peel Extracts. Chonburi, Thailand: Proceedings of the 35th Congress on Science and Technology of Thailand; 2009.

15. Shariﬁfar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from *Teucrium polium* L. Food Chem 2009;112:885-8.

16. Amran AA, Zaiton Z, Faizah O, Morat P. Effects of *Garcinia atroviridis* on serum profiles and atherosclerotic lesions in the aorta of guinea pigs fed a high cholesterol diet. Singapore Med J 2009;50:295-9.

17. Esmaeili AK, Taha RM, Mohajer S, Banisalam B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from *In Vivo* and *In Vitro* grown *Trifolium pratense* L. (Red Clover). BioMed Res Int 2015;1-11.

18. Duh PD, Du PC, Yen GC. The action of methanolic extract of mung bean hulls as inhibitors of lipid peroxidation and non-lipid oxidative damage. Food Chem Toxicol 1999;37:1055-61.

19. Rohman A, Rafi M, Alam G, Muchtaridi M, Windarsih A. Chemical composition and antioxidant studies of underutilized part of mangosteen (*Garcinia mangostana* L.) fruit. J Appl Pharm Sci 2019;9:47-52.

20. Ghasemzadeh A, Jafar HZ, Baghadi A, Tayebi-Mezgooni A. Alpha-mangostin-rich extracts from mangosteen pericarp: Optimization of green extraction protocol and evaluation of the biological activity. Molecules 2018;23:1852-9.