Comparison of Intracoronary Versus Intravenous Tirofiban in Acute STEMI Patients Undergoing Primary PCI

Xiuying Tang (✉ 13472996700@163.com)
Department of Cardiology, The First Hospital Of Qinhuang Dao https://orcid.org/0000-0001-5399-1993

Runjun Li
People's Hospital of Quzhou

Research Article

Keywords: acute ST-elevation myocardial infarction, glycoprotein IIb/IIIa inhibitor, tirofiban, C-reactive protein, erythrocyte sedimentation rate, myocardial troponin I

Posted Date: December 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1081547/v1

License: ☺️ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective: This study aimed to investigate the effect of intracoronary tiroban compared to intravenously administered tiroban in acute ST-elevation myocardial infarction (STEMI) patients treated with primary percutaneous coronary intervention (PPCI).

Methods: This study included 180 patients who were admitted with the diagnosis of acute STEMI and undergoing primary PCI. Patients were randomized into an observation group (n = 90) and control group (n = 90). Both groups received typical treatments, such as aspirin and clopidogrel/ticagrelor. During the procedure, the observation and control groups were administered intracoronary (IC) or intravenous (IV) injections of tiroban, respectively, followed by an intravenous infusion of tiroban for 24 hours. Changes in thrombolysis in myocardial infarction (TIMI) flow grading, TIMI myocardial perfusion grade 3 (TMP grade 3), thrombus aspiration, brain natriuretic peptide (BNP) levels, creatine kinase peak and inflammatory factor levels, infarct size, resolution of the sum of ST-segment elevation (Sum-STR) two hours after the operation, and cardiac functional parameters were investigated before and/or after treatment and 6 months after discharge. The incidence of major adverse cardiovascular events (MACE) and adverse reactions (AEs) such as bleeding were compared between the two groups.

Results: There were no statistically significant differences observed in the indices of BNP, creatine kinase peak, cardiac functional parameters, thrombus aspiration, or incidence of bleeding between the two groups before treatment. Following treatment, TIMI flow grading and TMP grade 3 were improved in the observation group that received intracoronary tiroban compared to the control group (p = 0.022 and p = 0.014, respectively). Additionally, the Sum-umi two hours after operation in the observation group was better than that in the control group (p = 0.029). The incidence of MACEs in patients given IC tiroban administration was lower than that in those given IV tiroban (p = 0.012). Furthermore, levels of glutamic oxaloacetictransaminase (AST), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and myocardial troponin I (TNI) in the observation group was significantly decreased compared to the control group after five days of treatment (p = 0.039, p = 0.040, p = 0.001, and p = 0.041, respectively). Functional heart parameters including CO and LVEF were significantly improved in the observation group 6 months after discharge.

Conclusion: This study found that IC administration of tiroban in patients with STEMI who underwent PPCI improved TIMI, TMP flow and cardiac function including CO and LVEF 6 months after discharge, and reduced CRP, ESR, and TNI. However, the incidence of bleeding between the two groups was comparable. These findings suggest that IC administration should be applied in certain acute STEMI patients.

Introduction
Acute ST-elevation myocardial infarction (STEMI) is the most severe form of coronary artery disease, contributing to increased morbidity, mortality, and rehospitalization. Primary percutaneous coronary intervention (PPCI) is accepted as the most effective therapy for STEMI [1–4]. However, the restoration of large-vessel flow does not necessarily equate to recovery of myocardial tissue perfusion and lessening of ischemia-reperfusion injury. Studies demonstrated that serious cardiovascular adverse events, such as cardiac failure, cardiogenic shock, malignant arrhythmia, and sudden cardiac death, appear after PPCI, due to a lack of effective myocardial perfusion and insufficient oxygen supply in the myocardium [3–5]. Thromboembolic complications range from 5–25% in STEMI patients undergoing PPCI with slow flow or no-reflow complications, also promoting morbidity and mortality [6, 7]. Glycoprotein IIb/IIIa inhibitors (GPI) reduce fibrous protein in plasma and block the GP IIb/IIIa receptor to inhibit platelet aggregation. GPI is recommended for use in STEMI patients undergoing PPCI with hyperthrombotic burden or as a prophylactic treatment when the risk of thrombi formation is significant [8–10]. Yet, optimal application of GPIs to prevent thromboembolic complications remains to be determined. The current study investigated whether intracoronary (IC) administration of the GPI tirofiban has an advantage over intravenous IV administration in STEMI patients undergoing PCI with a hyperthrombotic burden.

Methods

Study design

The study protocol was approved by the local ethics committee (Approval #: 201601B003). The study enrolled patients between January 1, 2019, and February 28, 2021 who were diagnosed with STEMI and undergoing PPCI with hyperthrombotic burden. The included patients consented to participate in the study who were informed consent. STEMI was defined in accordance with acute myocardial infarction (AMI) guidelines [1]. This study was a prospective, randomized, open-label trial. All included patients received the same drug regimen, except for the administration route of GPI, including ACEIs/ARBs, β-blockers, and statins in accordance with the guidelines for the management of AMI [1, 2, 4]. The included patients were randomized into either IC or IV bolus of GPI (tirofiban, 10 µg/kg, 1–3 min) with subsequent intravenous infusion over 24 hours, at 0.15 µg/kg per minute. All researchers involved in this study were physicians.

Inclusion criteria were: 1) age > 18 years; 2) diagnosed with STEMI within 12 hours, in accordance with guidelines for the management of AMI; 3) underwent PPCI with hyperthrombotic burden; 4) Killip class ≤ 3; and 5) informed consent obtained.

Exclusion criteria were: 1) cardiogenic shock; 2) life-threatening diseases or malignant tumor; 3) malignant systema sanguineum disease; 4) severe hepatic and/or renal dysfunction; 5) anemia defined as a haemoglobin less than 60 g/L; 6) no provision of informed consent; and 7) suspected mechanical complications of AMI (e.g., septal rupture, wall rupture, or ischemic mitral valve regurgitation).

Study endpoints
The primary endpoints were the indices of coronary artery and myocardial perfusion, including thrombolysis in myocardial infarction (TIMI) flow grading, TIMI myocardial perfusion grade 3 (TMP grade 3), the number of thrombus aspirations in the operation, resolution of the sum of ST-segment elevation (Sum-STR) two hours after the operation, and certain blood indices. These included brain natriuretic peptide (BNP), creatine kinase (CK) and isoenzyme (CK-MB), serum glutamic pyruvic transaminase (ALT), glutamic oxaloacetictransaminase (AST), N-terminal pro-brain natriuretic peptide (NT-pro-BNP), blood uric acid (UA), blood glucose, glycosylated haemoglobin A1c (HbA1c), serum urea, serum creatinine (Cr), and myocardial troponin I (TNI). Other study endpoints were left-ventricular end-diastolic dimension (LVEDD), left-ventricular ejection fraction (LVEF), and cardiac output (CO). Additionally, the study examined inflammatory factors in serum including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum tumour necrosis factor (TNF-α), transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6), and interleukin-10 (IL-10). The second endpoints were bleeding events and major adverse cardiovascular events (MACEs) following PPCI. Bleeding events were classified by the Global Utilization of Streptokinase and GPI for Occluded Coronary Arteries (GUSTO) criteria. MACEs were defined as sudden cardiac death, angina pectoris, nonfatal reinfarction, target vessel rethrombosis, and heart failure. Of note, the study examined HbA1c as a primary endpoint among patients with diabetes.

Follow-up

All data were collected in the hospital. CK, CKMB, cTnI, UA, NT-pro-BNP, blood glucose, serum urea, and Cr were assessed immediately on presentation and again at 6 AM on day 2 post-procedure. ALT, AST, HbA1c, CRP, TNF-α, TGF-β1, IL-6, and IL-10 were assessed on day 2 post-procedure. Some indices, including ALT, AST, cTnI, CRP, UA, ESR, serum urea, and Cr, were tested again at 6 AM on day 5 post-procedure. Cardiac functional parameters, including LVEDD, LVEF, and CO, were determined on days 5 or 6 post-procedure and 6 months after discharge. ECGs were collected before PPCI and at two hours after PPCI. The Sum-STR was obtained to determine if there was difference between the two groups. According to the guidelines issued by the European Society of Cardiology and the American College of Cardiology/American Heart Association [1, 5, 11], a Sum-STR ≥ 50% was considered effective myocardial perfusion and a Sum-STR < 50% was taken as incomplete or ineffectual myocardial perfusion. TIMI and TMP grades were used to evaluate coronary blood flow and myocardial perfusion and were determined during the procedure. The determination of TIMI and TMP grade was made by two experienced physicians. TIMI flow grade was classified as 0, 1, 2, or 3. A TIMI flow grade of 0 is defined as no-reflow in the culprit artery; TIMI flow grade 1 is defined as partial contrast penetration without distal vessel filling; TIMI flow grade 2 indicates full perfusion with slow filling and clearance rates; and TIMI flow grade 3 indicates full perfusion with normal filling and clearance rates. TMP flow was also graded into 0, 1, 2, or 3. TMP flow was classified as follows: grade 0 indicated no myocardial perfusion in the distribution of the infarct vessel; grade 1, slight penetration of contrast medium, without clearance from the coronary microcirculation; grade 2, moderate penetration of contrast medium, with slow clearance from the coronary microcirculation; and grade 3, normal myocardial perfusion with normal blush. In this study, TIMI flow grade 3 and TMP flow grades 2–3 were considered good coronary perfusion and efficient...
myocardial perfusion. In addition, bleeding events and MACEs that occurred within the hospital were recorded.

Statistical analyses

PASS 15.0 software was used to calculate the sample size. Indicators of myocardial perfusion were noted significantly improved in a high-dose treatment group (20 µg/kg) over the medium-dose group (10 µg/kg), while resolution of the Sum-STR two hours after operation was 92.21% in the high-dose treatment group and 74.07% in the medium-dose group [5]. In our study, results in the IC group were expected to be consistent with those of the high-dose group. We sought to achieve 90% power at a 5% significance level (2-sided). Therefore, 85 patients per group were estimated to be needed to demonstrate a treatment effect. The current study included 90 patients in both the control and experimental groups.

Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL). Continuous variables were analyzed using the Student’s t test and are expressed as mean ± SD. Dichotomous variables were analyzed using the chi-square test. All comparisons were two-tailed, and p < 0.05 was considered statistically significant.

Results

A total of 184 STEMI patients were randomized into either IC or IV bolus tirofiban (10 µg/kg, 1–3 min), with both groups receiving an intravenous infusion over 24 hours at 0.15 µg/kg per minute (Fig. 1). Four patients were excluded because of no follow-up, resulting in 90 patients in the IC and IV cohorts. Baseline characteristics of the included patients are presented in Table 1. No age or sex differences were observed between groups [age: (59.92 ± 10.96) vs (59.21 ± 9.95), p = 0.649, sex: male 71% vs 69%, p = 0.745]. There were no significant differences between groups regarding the distribution of infarction location [acute anterior myocardial infarction: 41(46%) vs 30 (33%), p = 0.093]. The onset-to-wire times were also similar between groups [(3.46 ± 1.95) vs (4.05 ± 3.19) hours, p = 0.133]. The numbers of stents placed were comparable between the groups [(1.08 ± 0.55) vs (1.14 ± 0.57), p = 0.425]. Comorbid diseases between the IC and IV groups were also similar (see Table 1). Routine treatments and the baseline biochemical criterion were not found to be significantly different between the two groups (Tables 2 and 3).
Table 1
Baseline clinical characteristics

Characteristic	Intravenous tirofban (n = 90)	Intracoronary tirofban (n = 90)	p value
Age (years)	59.92 ± 10.96	59.21 ± 9.95	0.649
Male, n (%)	64 (71%)	62 (69%)	0.745
Diabetes mellitus, n (%)	30 (33%)	33 (37%)	0.639
Hypertension n (%)	57 (63%)	51 (57%)	0.361
Hyperlipidaemia n (%)	7 (8%)	11 (12%)	0.320
Previous myocardial infarction, n (%)	7 (8%)	14 (16%)	0.104
• Previous cerebrovascular and peripheral vascular diseases, n (%)	23 (25%)	18 (20%)	0.374
• Previous digestive disorders, n (%)	5 (6%)	6 (7%)	0.550
Current or previous smoker, n (%)	50 (55%)	44 (49%)	0.371
Current or previous alcoholism, n (%)	22 (24%)	16 (18%)	0.273
Distribution of infarction location (anterior myocardial infarction), n (%)	41 (46%)	30 (33%)	0.093
Onset-to-wire time, hours	3.46 ± 1.95	4.05 ± 3.19	0.133
Distribution of infarction location	30 (33%)	44 (49%)	0.097
Number of stents	1.08 ± 0.55	1.14 ± 0.57	0.425

Table 2
Pharmacologic treatments

Drug	Intravenous tirofban (n = 90)	Intracoronary tirofban (n = 90)	p value
Aspirin	90	90	–
Ticagrelor	85	80	0.178
β-blockers	46	57	0.097
ACEIs/ARBs	35	42	0.292
Statins	88	84	0.278
Nitrates	81	84	0.418

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.
Table 3
Baseline laboratory data at admission.

Index	Intravenous tirofiban (n = 90)	Intracoronary tirofiban (n = 90)	p value
CK	190.6 ± 154.6	153.6 ± 85.6	0.052
CKMB	19.63 ± 14.9	16.8 ± 5.2	0.088
cTNI	0.8 ± 2.9	1.5 ± 4.3	0.217
UA	373.8 ± 120.0	392.9 ± 131.7	0.321
NT-pro-BNP	1596.3 ± 4936.7	1752.8 ± 4863.3	0.857
Cr	78.5 ± 46.7	85.5 ± 52.2	0.344
Urea	6.9 ± 2.5	7.8 ± 6.0	0.206
Glucose	10.1 ± 4.5	10.5 ± 4.6	0.605

CK and CK-MB, serum creatine kinase and its isoenzyme; cTNI, cardiac troponin I; UA, blood uric acid; NT-pro-BNP, N-terminal pro-Brain Natriuretic Peptide; Cr, serum creatinine

Study endpoints

CK, CKMB, cTNI, ALT, AST, NT-pro-BNP, blood glucose, HbA1C, CRP, TNF-α, TGF-β1, IL-6, and IL-10 were not significantly lower among cohorts at day 2 post-procedure (p = 0.112, p = 0.056, p = 0.074, p = 0.830, p = 0.972, p = 0.787, p = 0.316, p = 0.774, p = 0.334, p = 0.809, p = 0.183, p = 0.593, and p = 0.677 respectively). However, by day 6 post-procedure, cTNI, AST, CRP, and ESR were lower in the IC versus the IV group (p = 0.041, p = 0.039, p = 0.040, and p = 0.001, respectively; Table 4). Markers of kidney function, including serum urea, Cr, and UA, were not significantly different between groups (p = 0.749, p = 0.412, and p = 0.163, respectively; Table 4). In addition, the study showed no difference in LA, LVEDD, CO, or LVEF between groups (p = 0.163, p = 0.160, p = 0.555, and p = 0.360, respectively; Table 5). However, various indicators of cardiac function, including CO and LVEF 6 months after discharge, were increased, albeit modestly, in the observation group (p = 0.019 and p = 0.026, respectively; Table 5). Still, TIMI flow grade 3 after PPCI, TMP flow grades 2–3 after PPCI, Sum-STR ≥ 50%, and in-hospital MACEs were improved in the IC versus the IV group (p = 0.022, p = 0.014, p = 0.029, and p = 0.012, respectively). Bleeding events were not significantly different between the two groups (p = 0.703).
Table 4
In-hospital post-admission laboratory data.

Index	Intravenous tirofiban (n = 90)	Intracoronary tirofiban (n = 90)	p value
CK on day 2	2029.2 ± 1293.1	2505.3 ± 2417.4	0.112
CKMB on day 2	179.4 ± 115.7	224.4 ± 181.1	0.056
cTNI on day 2	74.0 ± 40.3	86.5 ± 51.9	0.074
cTNI on day 6	8.9 ± 6.4	6.9 ± 6.6	0.041
ALT on day 2	41.5 ± 32.6	40.5 ± 27.8	0.830
AST on day 2	96.8 ± 124.3	96.3 ± 95.9	0.972
ALT on day 6	39.3 ± 36.7	45.6 ± 39.1	0.272
AST on day 6	60.8 ± 58.7	45.0 ± 39.4	0.039
Cr on day 6	80.5 ± 49.3	78.3 ± 41.2	0.749
Urea on day 6	6.5 ± 3.2	6.1 ± 2.5	0.412
UA on day 6	360.4 ± 128.7	390.9 ± 144.8	0.163
Glucose on day 2	6.9 ± 2.7	6.6 ± 1.9	0.316
HbA1C on day 2	6.6 ± 1.5	6.7 ± 1.6	0.774
NT-pro-BNP on day 2	2079.0 ± 3654.6	1891.0 ± 3634.2	0.787
CRP on day 2	110.2 ± 203.1	84.3 ± 151.4	0.334
TNF-α on day 2	53.4 ± 92.7	50.2 ± 83.0	0.809
TGF-β1 on day 2	69.3 ± 130.3	47.2 ± 86.8	0.183
IL-6 on day 2	8.4 ± 13.6	7.4 ± 10.2	0.593
IL-10 on day 2	17.3 ± 26.8	15.8 ± 21.8	0.677
CRP on day 6	38.6 ± 42.1	26.5 ± 24.5	0.040
ESR on day 6	33.2 ± 18.6	24.0 ± 14.9	0.001
Table 5
In-hospital (days 5–6 post-procedure) and 6 months after discharge echocardiogram indices (±s)

Index	Intravenous tirofiban (n=90)	Intracoronary tirofiban (n= 90)	P value
LA (mm)	37.2±3.9	36.3±3.7	0.146
	37.2±3.9	36.3±3.7	0.146
LVEDD (mm)	53.3±6.3	52.0±5.3	0.160
	53.9±6.2	52.4±5.2	0.135
CO (L/min)	5.4±1.1	5.3±1.0	0.555
	5.1±0.9	5.4±0.9	0.019
LVEF (%)	54.4±8.6	56.0±11.8	0.360
	55.0±8.5	58.1±8.5	0.026

LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; CO, cardiac minute output.
Index	Intravenous tirofiban (n = 90)	Intracoronary tirofiban (n = 90)	P value
Thrombus aspiration, n (%)	28 (31%)	19 (21%)	0.127
TIMI flow after PPCI (Grade 3), n (%)	77 (86%)	86 (96%)	0.022
TMP flow after PPCI (Grades 2–3), n (%)	66 (73%)	79 (88%)	0.014
Sum-STR ≥ 50%	76 (84%)	85 (94%)	0.029
MACEs	39 (43%)	23 (26%)	0.012
Sudden cardiac death	0	1 (1%)	1.000
Angina pectoris	17 (19%)	12 (13%)	0.311
Acute heart failure	20 (22%)	10 (11%)	0.046
Recurrent MI	1 (1%)	0	1.000
Repeat revascularization	1 (1%)	0	1.000
Bleeding (total incidence)	18 (20%)	16 (18%)	0.703
Intracranial hemorrhage, n (%)	0	0	--
Gastrointestinal hemorrhage, n (%)	4 (4%)	2 (2%)	0.678
Hemorrhage at puncture place, n (%)	5 (6%)	7 (8%)	0.550
Other hemorrhage, n (%)	9 (10%)	7 (8%)	0.600
Thrombocytopenia	0	0	--

MACEs, major adverse cardiovascular events; TIMI, thrombolysis in myocardial infarction; PPCI, primary percutaneous coronary intervention; TMP, TIMI myocardial perfusion; Sum-STR, resolution of the sum of ST-segment elevation; MI, myocardial infarction
Table 7
Comparison of cardiac ultrasound indices between treatment groups

	LA	LVEDD	LVEF	CO
Intravenous tirofban (n = 90)	37 ± 4	53 ± 5	54 ± 9	5.1 ± 1.1
Intracoronary tirofban (n = 90)	36 ± 4	51 ± 6	56 ± 8	5.3 ± 0.9
t value	1.290	1.100	0.777	0.789
p value	0.200	0.274	0.439	0.432

LA, left heart atrium; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; CO, cardiac minute output.

Discussion

AMI is caused by unstable plaque rupture, intima injury, platelet aggregation, and thrombosis during its progression [1–4]. PPCI is an important treatment for acute ST-segment elevation myocardial infarction (STEMI), and is the preferred strategy in STEMI patients if it can be performed within 12 hours of symptom onset [1–4]. Antiplatelet therapy is also a cornerstone of AMI treatment. Yet, regardless of intervention, no-reflow is common and can occur after PPCI [3–7, 12–5]. Indeed, in severe instances this is termed thromboembolic syndrome [12–17]. Studies found that GPI administration improved TIMI flow, ameliorated myocardial reperfusion injury, prevented myocardial ischemia, reduced MACEs, and improved prognosis [5, 18–21].

Tirofiban is a highly specific, reversible antagonist of platelet GP IIb/IIIa receptor. It inhibits platelet aggregation by binding to the glycoprotein IIb/IIIa complex, thereby reducing thrombi levels. In the current randomized study, IC administration of tirofiban to STEMI patients with angiographic intracoronary thrombus significantly improved TIMI and TMP flow and improved Sum-STR, consistent with other reports [5, 18–21]. However, there were no significant benefits observed in terms of in-hospital cardiac function, or hepatic and kidney function. Sum-STR can reflect early microcirculation and myocardial recovery from ischemia and reperfusion injury after PPCI in STEMI patients. The present study found that the number of patients with sum-STR ≥ 50% was significantly higher in patients given IC tirofiban versus patients treated with IV tirofiban. We postulate that IC tirofiban provided for increased targeted delivery of the drug compared to standard IV administration and that this accounted for, in part, the study findings. While not definitive, the findings of reduced myocardial infarction and increased Sum-STR support this idea [5, 18–21].

The changes in inflammatory markers observed may be secondary to injury-related hypoxia. CRP, TNF-α, TGF-β1, IL-6, IL-10, and ESR are deemed early markers of inflammation and tissue damage. Markers of inflammation and cTNI are correlated to myocardial ischemia and injury and are useful for diagnosis and evaluation when treating AMI [3, 22–29]. Inflammatory marker and cTnl levels positively correlated with culprit artery thrombosis, no-reflow of the culprit artery, and MACEs [22, 25, 26], as previous studies have...
also shown [5, 18]. We found that cTNI, AST, CRP, and ESR levels were significantly lower in STEMI patients given IC tirofiban compared to IV by day 6 post-procedure. However, IC therapy was not associated with obvious differences in CK, CKMB, cTnI, NT-pro-BNP, blood glucose, HbA1C, ALT, AST, CRP, TNF-α, TGF-β1, IL-6, or IL-10 on day 2, or UA on day 6 post-procedure. The incidence rate of MACEs was lower in IC treated versus IV treated patients, with acute heart failure being the largest contributor to this difference. However, we did not observe a significant difference in sudden cardiac death, angina pectoris, nonfatal reinfarction, or target vessel revascularization among treatment groups. In addition, we observed a statistically significant difference in cardiac ultrasound findings including CO and LVEF 6 months after discharge.

The present study has several limitations. First, this study sample size was small and likely genetically non-diverse. Second, this study did not conduct an economic benefit analysis. Third, the follow-up duration was short and limited to in-hospital time and 6 months after discharge. Future studies should include longer follow-up. Finally, this study was not a double-blind trial, which may have introduced observer and patient bias.

Conclusions

Compared to IV administration, IC tirofiban administration in STEMI patients with intracoronary thrombus reduced myocardium infarct size; improved TIMI, TMP flow and cardiac function, including CO and LVEF 6 months after discharge; lowered levels of certain inflammation-associated proteins; and reduced MACEs. These benefits were obtained through a simple change in the route of administration and without increasing the expense of care. IC tirofiban should be considered more often in AMI patients with increased thrombosis.

Declarations

Author Contributions

Xiuying Tang conceived and designed the experiment. Xiuying Tang and Runjun Li performed the experiment and analysed the data. Xiuying Tang and Runjun Li wrote first draft of the paper.

Conflict of interest

The authors declare that they have no conflicts of interest in relation to the manuscript.

Source of funding: The study is supported by Hebei Provincial Department of Science and Technology Plan Project (No.17277777D).

Data availability statements

The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.
References

1. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, Hindricks G, Kastrati A, Lenzen MJ, Prescott E, Roffi M, Valgimigli M, Varenhorst C, Vranckx P, Widimský P; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018 Jan 7;39(2):119-177. doi: 10.1093/eurheartj/ehx393. PMID: 28886621.

2. Szummer K, Wallentin L, Lindhagen L, Alfredsson J, Erlinge D, Held C, James S, Kellerth T, Lindahl B, Ravn-Fischer A, Rydberg E, Yndigegn T, Jernberg T. Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995-2014. Eur Heart J. 2017 Nov 1;38(41):3056-3065. doi: 10.1093/eurheartj/ehx515. PMID: 29020314; PMCID: PMC5837507.

3. Wickramatilake CM, Mohideen MR, Pathirana C. Association of testosterone, inflammation with the severity of first acute ST-elevation myocardial infarction. Indian Heart J. 2017 Mar-Apr;69(2):291. doi: 10.1016/j.ihj.2017.02.002. Epub 2017 Feb 12. PMID: 28460787; PMCID: PMC5414987.

4. Pryds K, Hjortbak MV, Schmidt MR. Influence of Cardiovascular Risk Factors, Comorbidities, Medication Use and Procedural Variables on Remote Ischemic Conditioning Efficacy in Patients with ST-Segment Elevation Myocardial Infarction. Int J Mol Sci. 2019 Jul 2;20(13):3246. doi: 10.3390/ijms20132346. PMID: 31269650; PMCID: PMC6650921.

5. Wang H, Feng M. Influences of different dose of tirofiban for acute ST elevation myocardial infarction patients underwent percutaneous coronary intervention. Medicine (Baltimore). 2020 Jun 5;99(23):e20402. doi: 10.1097/MD.00000000000020402. PMID: 32501985; PMCID: PMC7306376.

6. Liang T, Liu M, Wu C, Zhang Q, Lu L, Wang Z. Risk Factors for No-Reflow Phenomenon after Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome. Rev Invest Clin. 2017 May-Jun;69(3):139-145. doi: 10.24875/ric.17002190. PMID: 28613283.

7. Zhou J, Xu J, Cheng A, Li P, Chen B, Sun S. Effect of nicorandil treatment adjunctive to percutaneous coronary intervention in patients with acute myocardial infarction: a systematic review and meta-analysis. J Int Med Res. 2020 Nov;48(11):30060520967856. doi: 10.1177/0300060520967856. PMID: 33249959; PMCID: PMC7708727.

8. Capodanno D, Milluzzo RP, Angiolillo DJ. Intravenous antiplatelet therapies (glycoprotein IIb/IIIa receptor inhibitors and cangrelor) in percutaneous coronary intervention: from pharmacology to indications for clinical use. Ther Adv Cardiovasc Dis. 2019 Jan-Dec;13:1753944719893274. doi: 10.1177/1753944719893274. PMID: 31823688; PMCID: PMC6906352.

9. Dornbos D 3rd, Katz JS, Youssef P, Powers CJ, Nimjee SM. Glycoprotein IIb/IIIa Inhibitors in Prevention and Rescue Treatment of Thromboembolic Complications During Endovascular Embolization of Intracranial Aneurysms. Neurosurgery. 2018 Mar 1;82(3):268-277. doi: 10.1093/neuros/nyx170. PMID: 28472526.
10. Karathanos A, Lin Y, Dannenberg L, Parco C, Schulze V, Brockmeyer M, Jung C, Heinen Y, Perings S, Zeymer U, Kelm M, Polzin A, Wolff G. Routine Glycoprotein IIb/IIIa Inhibitor Therapy in ST-Segment Elevation Myocardial Infarction: A Meta-analysis. Can J Cardiol. 2019 Nov;35(11):1576–1588. doi: 10.1016/j.cjca.2019.05.003. Epub 2019 May 7. PMID: 31542257.

11. Bainey KR, Armstrong PW, Zheng Y, Brass N, Tyrrell BD, Leung R, Westerhout CM, Welsh RC. Pharmacoinvasive Strategy Versus Primary Percutaneous Coronary Intervention in ST-Elevation Myocardial Infarction in Clinical Practice: Insights From the Vital Heart Response Registry. Circ Cardiovasc Interv. 2019 Oct;12(10):e008059. doi: 10.1161/CIRCINTERVENTIONS.119.008059. Epub 2019 Oct 14. PMID: 31607152.

12. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020 Dec;17(12):773-789. doi: 10.1038/s41569-020-0403-y. Epub 2020 Jul 3. PMID: 32620851.

13. Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol. 2019 Oct 15;114(6):45. doi: 10.1007/s00395-019-0756-8. PMID: 31617010.

14. Maznyczka AM, Oldroyd KG, Greenwood JP, McCartney PJ, Cotton J, Lindsay M, McEntegart M, Rocchiccioli JP, Good R, Robertson K, Eteiba H, Watkins S, Shaukat A, Petrie CJ, Murphy A, Petrie MC, Berry C. Comparative Significance of Invasive Measures of Microvascular Injury in Acute Myocardial Infarction. Circ Cardiovasc Interv. 2020 May;13(5):e008505. doi: 10.1161/CIRCINTERVENTIONS.119.008505. Epub 2020 May 15. PMID: 32408817; PMCID: PMC7237023.

15. Marc MC, Iancu AC, Bălănescu Ş, Dregoesc Ml. Microvascular obstruction in acute myocardial infarction: an old and unsolved mystery. Med Pharm Rep. 2019 Jul;92(3):216–219. doi: 10.15386/mpr-1261. Epub 2019 Jul 31. PMID: 31460500; PMCID: PMC6709958.

16. Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, van Royen N, Schulz R, Heusch G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res. 2019 Jun 1;115(7):1143-1155. doi: 10.1093/cvr/cvy286. PMID: 30428011; PMCID: PMC6529918.

17. Clarke JD, Kennedy R, Duarte Lau F, Lancaster Gl, Zarich SW. Invasive Evaluation of the Microvasculature in Acute Myocardial Infarction: Coronary Flow Reserve versus the Index of Microcirculatory Resistance. J Clin Med. 2019 Dec 29;9(1):86. doi: 10.3390/jcm9010086. PMID: 31905738; PMCID: PMC7019371.

18. Chang ST, Yang YT, Chu CM, Pan KL, Hsu JT, Hsiao JF, Lin YS, Chung CM. Protein kinases are involved in the cardioprotective effects activated by platelet glycoprotein IIb/IIIa inhibitor tirofiban at reperfusion in rats in vivo. Eur J Pharmacol. 2018 Aug 5;832:33–38. doi: 10.1016/j.ejphar.2018.05.014. Epub 2018 May 17. PMID: 29778748.

19. Karathanos A, Lin Y, Dannenberg L, Parco C, Schulze V, Brockmeyer M, Jung C, Heinen Y, Perings S, Zeymer U, Kelm M, Polzin A, Wolff G. Routine Glycoprotein IIb/IIIa Inhibitor Therapy in ST-Segment
Elevation Myocardial Infarction: A Meta-analysis. Can J Cardiol. 2019 Nov;35(11):1576–1588. doi: 10.1016/j.cjca.2019.05.003. Epub 2019 May 7. PMID: 31542257.

20. Singh K, Rashid M, So DY, Glover CA, Froeschl M, Hibbert B, Chong AY, Dick A, Labinaz M, Le May M. Incidence, predictors, and clinical outcomes of early stent thrombosis in acute myocardial infarction patients treated with primary percutaneous coronary angioplasty (insights from the University of Ottawa Heart Institute STEMI registry). Catheter Cardiovasc Interv. 2018 Apr 1;91(5):842-848. doi: 10.1002/ccd.27215. Epub 2017 Jul 22. PMID: 28733995.

21. Ma Q, Ma Y, Wang X, Li S, Yu T, Duan W, Wu J, Wen Z, Jiao Y, Sun Z, Hou Y. Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study. Int J Cardiovasc Imaging. 2020 Jun;36(6):1121–1132. doi: 10.1007/s10554-020-01800-0. Epub 2020 Feb 20. PMID: 32078096.

22. Zhao X, Wang Y, Liu C, Zhou P, Sheng Z, Li J, Zhou J, Chen R, Chen Y, Zhao H, Yan H. Association between Variation of Troponin and Prognosis of Acute Myocardial Infarction before and after Primary Percutaneous Coronary Intervention. J Interv Cardiol. 2020 Jul 25;2020:4793178. doi: 10.1155/2020/4793178. PMID: 32774185; PMCID: PMC7399759.

23. Kamińska J, Koper OM, Siedlecka-Czyżyk E, Matowicka-Karna J, Bychowski J, Kemona H. The utility of inflammation and platelet biomarkers in patients with acute coronary syndromes. Saudi J Biol Sci. 2018 Nov;25(7):1263–1271. doi: 10.1016/j.sjbs.2016.10.015. Epub 2016 Oct 24. PMID: 30505168; PMCID: PMC6252018.

24. Pickering JW, Flaws D, Smith SW, Greenslade J, Cullen L, Parsonage W, Carlton E, Mark Richards A, Troughton R, Pemberton C, George PM, Than MP. A Risk Assessment Score and Initial High-sensitivity Troponin Combine to Identify Low Risk of Acute Myocardial Infarction in the Emergency Department. Acad Emerg Med. 2018 Apr;25(4):434–443. doi: 10.1111/acem.13343. Epub 2017 Dec 11. PMID: 29131477.

25. McCarthy CP, Neumann JT, Michelhaugh SA, Ibrahim NE, Gaggin HK, Sörensen NA, Schäefer S, Zeller T, Magaret CA, Barnes G, Rhyne RF, Westermann D, Januzzi JL Jr. Derivation and External Validation of a High-Sensitivity Cardiac Troponin-Based Proteomic Model to Predict the Presence of Obstructive Coronary Artery Disease. J Am Heart Assoc. 2020 Aug 18;9(16):e017221. doi: 10.1161/JAHA.120.017221. Epub 2020 Aug 6. PMID: 32757795; PMCID: PMC7660799.

26. Su W, Wang M, Zhu J, Li W, Ding X, Chen H, Li HW, Zhao XQ. Underweight Predicts Greater Risk of Cardiac Mortality Post Acute Myocardial Infarction. Int Heart J. 2020 Jul 30;61(4):658-664. doi: 10.1536/ihj.19-635. Epub 2020 Jul 8. PMID: 32641636.

27. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017 Mar;14(3):133-144. doi: 10.1038/nrcardio.2016.185. Epub 2016 Dec 1. Erratum in: Nat Rev Cardiol. 2017 May;14 (5):314. PMID: 27905474; PMCID: PMC5525550.

28. Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ. Inflammation following acute myocardial infarction: Multiple players, dynamic roles,
and novel therapeutic opportunities. Pharmacol Ther. 2018 Jun;186:73–87. doi: 10.1016/j.pharmthera.2018.01.001. Epub 2018 Jan 9. PMID: 29330085; PMCID: PMC5981007.

29. Newby LK. Inflammation as a Treatment Target after Acute Myocardial Infarction. N Engl J Med. 2019 Dec 26;381(26):2562-2563. doi: 10.1056/NEJMe1914378. Epub 2019 Nov 16. PMID: 31733139.

30. Zhang Y, Shao T, Yao L, Yue H, Zhang Z. Effects of tirofiban on stent thrombosis, Hs-CRP, IL-6 and sICAM-1 after PCI of acute myocardial infarction. Exp Ther Med. 2018 Oct;16(4):3383–3388. doi: 10.3892/etm.2018.6589. Epub 2018 Aug 8. PMID: 30233685; PMCID: PMC6143837.

Figures

Figure 1
Flowchart of patient enrollment. STEMI, acute ST-segment elevation myocardial infarction; IC, intracoronary; PPCI, primary percutaneous coronary intervention.