Oncoplastic breast consortium recommendations for mastectomy and whole breast reconstruction in the setting of post-mastectomy radiation therapy

Walter Paul Weber a,⁎, Jane Shaw c, Andrea Pusic d, Lynda Wyld e, Monica Morrow f, Tari King g, Zoltán Mátra h, Jörg Heil i, Florian Fitzal j, Shelley Potter k, Isabel T. Rubio l, Maria-Joao Cardoso m, Oreste Davide Gentilini n, Viviana Galimberti o, Virgilio Sacchini p, Emiel J.T. Rutgers q, John Benson q,r, Tanir M. Allweis s, Martin Haug t, Regis R. Paulinelli u, Tibor Kovacs v,w, Yves Harder x,y, Bahadir M. Gulluoglu z, Eduardo Gonzalez aa, Andree Faridi ab, Elisabeth Elder ac, Peter Dubsky ja, Jens-Uwe Blohmer ae, Vesna Bjelic-Radisic af, Mitchel Barry ag, Susanne Dieroff Hay ah, Kimberly Bowles ai, James French ac, Roland Reitsamer aj, Rupert Koller ak, Peter Schrenk al, Daniela Kauer-Dorner am, Jorge Biazus an, Fabricio Brenelli ao, Jaime Letzkus ap, Ramon Saccilotto bq, Sarianna Joukainen bq, Susanna Kauhanen at, Ulla Karhunen-Enckeli au, Juergen Hoffmann at, Ulrich Kneser au, Thorsten Kühn av, Michalis Kontos aw, Ekaterini Christina Tampaki ax, Moshe Carmon ay, Tal Hadar az, Giuseppe Catanuto az, Carlos A. Garcia-Etienne bba, Linetta Koppert bb, Pedro F. Gouveia ba, Jakob Lægsgaard bc,bc, Tor Svendsjö be,b, Nadia Maggi b, Elisabeth A. Kappos f, Fabienne D. Schwab a, Liliana Castreanza a, Daniel Steffens a, Janna Krol a, Christoph Tausch b, Andreas Günther bg, Michael Knauer bh, Maria C. Katapodi b, Susanne Buecher bi, Nik Hauser bj, Christian Kurzeder c, Rosine Mucklow c, Pelagia G. Tsoutsou bk, Atakan Sezer b, Gülşen Karadeniz Çakmak bm, Hasan Karanlik bn, Patricia Fairbrother bo, Laszlo Romics bp, Giacomo Montagna b, Cicero Urban ba, Melanie Walker bw,bs, Silvia C. Formenti b, Guenther Gruber bu,bv, Frank Zimmermann bw, Daniel Rudolf Zawahlen bx, Sherko Kuemmel be,by, Mahmoud El-Tamer fy, Marie Jeanne Vrancken Peeters ba, Orit Kaidar-Person ca,cb, Michael Gnant cc, Philip Poortmans cd, Jana de Boniface bd,ce

⁎ Corresponding author. University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland.
E-mail address: walter.weber@usb.ch (W.P. Weber).

https://doi.org/10.1016/j.breast.2022.03.008
Received 1 December 2021; Received in revised form 3 March 2022; Accepted 14 March 2022
Available online 18 March 2022
0960-9776/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Demand for nipple- and skin-sparing mastectomy (NSM/SSM) with immediate breast reconstruction (BR) has increased at the same time as indications for post-mastectomy radiation therapy (PMRT) have broadened. The aim of the Oncoplastic Breast Consortium initiative was to address relevant questions arising with this clinically challenging scenario.

Methods: A large global panel of oncologic, oncoplastic and reconstructive breast surgeons, patient advocates and radiation oncologists developed recommendations for clinical practice in an iterative process based on the principles of Delphi methodology.
Introduction

Selection criteria for nipple- or skin-sparing mastectomy (NSM and SSM respectively) in conjunction with immediate breast reconstruction (BR) have become less stringent with an increase in proportion of patients potentially eligible for breast conserving therapy undergoing mastectomy and BR [1,2]. A parallel trend has been broadening of the indications for post-mastectomy radiation therapy (PMRT) that is often combined with nodal irradiation for low volume nodal disease [3–8]. Hence, there is dual consideration of both BR and PMRT for many patients who undergo mastectomy for surgical treatment of breast cancer [9,10]. PMRT increases risk of complications and diminishes aesthetic outcomes and quality of life (QoL) following BR, especially when implant-based [11–13]. The 2018 OPBC consensus conference revealed major heterogeneity in BR practice in the context of planned PMRT with a majority of the panel agreeing that type and timing of BR in this setting should be standardized [14]. The 2019 OPBC consensus conference ranked type and timing of BR in the setting of PMRT as the two most important knowledge gaps in the wider field of BR [15]. This year’s OPBC consensus conference therefore systematically addressed relevant questions pertaining to type and timing of BR when PMRT is planned and provided expert recommendations for clinical practice.

Material and methods

2.1. 2021 OPBC expert panel

The OPBC was founded in March 2017 as a global non-profit organization and comprises a membership of 616 oncologic, oncoplastic and reconstructive breast surgeons and 38 patient advocates from 79 countries at the time of manuscript writing. The OPBC is committed to bringing safe and effective oncoplastic breast surgery to routine patient care, namely oncoplastic breast conserving surgery, NSM/SSM with immediate BR and aesthetic flat closure after conventional mastectomy. The global 2021 OPBC expert panel was selected by evident expertise in breast cancer management with a practice primarily dedicated to breast cancer. Panellists originated from 22 countries and included 68 oncologic, oncoplastic and plastic breast surgeons from private, public, community and academic settings, six patients with international renown as patient advocates along with nine radiation oncologists with robust scientific credentials and international standing (appendix B.3.1–2). Finally, 52 non-panel OPBC members attended the conference and performed live audience voting, which was displayed separately to panel voting (appendix B3.3.).

2.2. Search strategy and selection criteria

We purposefully refrained from performing a systematic literature search as a basis for questionnaire development in order for the OPBC to identify and address questions relevant to current clinical practice irrespective of available evidence to inform treatment. Nonetheless, in support of these aims, two members of staff (Elisabeth Kappos and Nadia Maggi) independently performed specific searches in PubMed, MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL) from 2000 to 2021 (search terms “mastectomy, subcutaneous” OR “mastectomy” AND “subcutaneous” OR “subcutaneous mastectomy” OR “nipple” AND “sparing” AND “mastectomy” OR “nipple sparing mastectomy” OR “breast reconstruction” OR “whole-breast reconstruction” OR “breast reconstructive surgery” OR autologous breast reconstruction” OR “implant-based breast reconstruction” OR “post-mastectomy radiotherapy OR “irradiation” OR “radiotherapy” OR “breast reconstruction algorithm” OR “PMRT reconstruction” OR “PMRT breast reconstruction” OR “breast reconstruction algorithm radiation” OR “breast reconstruction” AND “radiation”). Their review of all abstracts and full texts of relevant articles was used to finalize the questionnaire and helped the chairs and moderators to prepare for the consensus conference. Questions, answers and content of discussions were placed in context with published evidence in the form of this report.

2.3. Development of questionnaire for pre-voting

The iterative process in question development, pre-voting, presentation of results, discussion, live re-voting and development of phraseology for recommendation outcomes followed a modified Delphi methodology. The predefined protocol was published on the OPBC website on June 08, 2021 (appendix A) [16]. The protocol pre-specified the identification of questions to include, as follows: Those questions from the OPBC 2018 conference that reported disagreement among experts on NSM/SSM and immediate BR were included with the two co-chairs adding key questions based on their expert opinion. This preliminary set of questions was amended by expert representatives based on the specific literature search. At that point in time, the list was sent for review to the entire OPBC community as well as nine radiation oncologists. The chairs adjusted these questions according to feedback and finalized the list by iterative consultation with the panellists over the months preceding the conference (appendix C).

The iterative voting process started with pre-voting, which also allowed participation of conference non-attenders, provided opportunity to prepare the agenda for live voting that focused on areas of controversy, and served as back-up in the event of technical failure during live conference voting. Results of pre-voting were revealed to panel and audience for the first time during the conference thereby promoting spontaneous discussion.

2.4. Consensus conference with live voting

The 2021 OPBC consensus conference on September 02, 2021 was held virtually using online video conferencing software (Zoom by Zoom Video Communications, Inc). This platform provided separate rooms for the OPBC panel and OPBC members who registered for audience participation. Three panel members presented their respective views as plastic surgeon, oncoplastic surgeon and radiation oncologist with subsequent structured discussion. In the second half, outcomes of pre-
voting were presented, followed by live voting by both panellists and audience in case of controversy identified from pre-voting and whenever pre-voting results were challenged or demanded reinforcement. In addition, the customized live voting platform allowed questions to be devised ad hoc based on panel discussion. Results of live voting were displayed separately for the OPBC panel versus audience.

Question	Yes	No	Abstain
1. Is NSM contraindicated when PMRT is planned?			
Live: Panel	2%		
Live: Members	11%		
Live: Panel			
Live: Members	96%		
Live: Members	84%		
Abstain			
Live: Panel	2%		
Live: Members	5%		

2. In a woman with cup size ≥ C and ptosis ≥ grade 2 and planned or expected PMRT, but no other obvious risk factors for nipple necrosis and no signs of ischemia during surgery, would you be concerned about aesthetic results when offering NSM without skin reduction?			
Live: Panel	70%		
Live: Members	86%		
Live: Panel			
Live: Members	19%		
Live: Members	8%		
Abstain			
Live: Panel	11%		
Live: Members	5%		

| 3. Outside of clinical trials, planned or expected PMRT is a contraindication to immediate one-stage pre-pectoral IBRR | | | |
|---|
| Live: Panel | 11% | | |
| Live: Members | 29% | | |
| Live: Panel | | | |
| Live: Members | 74% | | |
| Live: Members | 54% | | |
| Abstain | | | |
| Live: Panel | 15% | | |
| Live: Members | 16% | | |

| 4. Optimal timing of delayed autologous reconstruction in women with rapid skin healing following PMRT should be individualized | | | |
|---|
| Live: Panel | 89% | | |
| Live: Members | 88% | | |
| Live: Panel | | | |
| Live: Members | 2% | | |
| Live: Members | 0% | | |
| Abstain | | | |
| Live: Panel | 9% | | |
| Live: Members | 12% | | |

Fig. 1. Questions developed or adjusted ad hoc during consensus conference
Abbreviations used in questionnaire: NSM (nipple-sparing mastectomy), PMRT (post-mastectomy radiotherapy), BR (Breast reconstruction), IBRR (implant-based breast reconstruction)
5. Do you think that PMRT is a contraindication for delayed implant-based breast reconstruction?

Yes
Live: Panel 40% 20/50
Live: Members 16% 4/25

No
Live: Panel 56% 28/50
Live: Members 68% 17/25

Abstain
Live: Panel 4% 2/50
Live: Members 16% 4/25

6. What is the maximum acceptable failure rate after IBBR in clinical practice with a follow up of 2 years

5%
Live: Panel 25% 11/44
Live: Members 40% 10/25

10%
Live: Panel 52% 23/44
Live: Members 36% 9/25

15%
Live: Panel 23% 10/44
Live: Members 24% 6/25

7. In the setting of planned or expected PMRT, which of the following measures do you recommend most strongly for use in all future studies that involve patient-reported outcomes?

All or selected scales of BREAST-Q
Live: Panel 78% 32/41
Live: Members 70% 14/20

All or selected scales of EORTC breast reconstruction module questionnaire
Live: Panel 12% 5/41
Live: Members 10% 2/20

None of the above
Live: Panel 0% 0/41
Live: Members 5% 1/20

Abstain
Live: Panel 10% 4/41
Live: Members 15% 3/20

8. Immediate BR impairs oncologic outcomes by delaying adjuvant therapy due to complications

Yes
Live: Panel 30% 13/43
Live: Members 43% 10/23

No
Live: Panel 56% 24/43
Live: Members 48% 11/23

Abstain
Live: Panel 14% 6/43
Live: Members 9% 2/23

Fig. 1. (continued).
2.5. Final questionnaire

The final questionnaire comprised a total of 66 questions and sub-questions in nine categories. Eight questions were newly formulated or adjusted ad hoc during the conference based on the discussion (Fig. 1); live re-voting was performed for five questions whilst no live re-voting was recommended for the remaining 53 questions with results of pre-voting being reported. The answers yes, no or abstain applied to 54 statements or questions whilst the single most appropriate answer from a list of options applied in 12. Simple majority was defined by agreement among 51–75% of participants and consensus by agreement above 75%. Abstaining was recommended when panel members had any conflict of interest or considered the question not to be clear, outside their expertise, or the correct answer was missing. All abstentions were reported and included in percentages unless otherwise stated.

2.6. Report

Questions, answers and content of discussions were placed in context with current published evidence in the form of this report. Specific details of the literature search were scrutinised by chairs and expert representatives with inclusion of additional references cited in articles identified through searches of personal files. The report was circulated among all panellists as part of an iterative process until agreement was reached on the precise wording of each question such that this reflected the strength of panel support for each recommendation. Voting results are shown graphically and as exact numbers.

3. Results and discussion

Consensus agreement was reached on 20 questions, majority agreement on 21, no consensus and no majority on a further 21 with the strength of agreement differing between panellists and members in four questions (Figs. 1–5, 7, and appendix figure E1). A total of 73 panellists completed the pre-voting questionnaire; 59 panellists and 52 members participated in live conference voting.

3.1. Nipple- and skin sparing mastectomy

Both OPBC panel and audience stated with strong consensus that NSM is not contraindicated when PMRT is planned (question (q) 1, Fig. 1). There was broad agreement that PMRT can be associated with hypopigmentation and shrinkage of the nipple-areola complex (NAC; q1, Fig. 2). A majority of both panel and audience felt that planned or

Fig. 2. Questions on nipple- and skin-sparing mastectomy.
1. PMRT increases the overall risk of complications – defined as an adverse postoperative, surgery-related event requiring additional treatment – after all types of IBRR (one stage, two stage, pre-pectoral, sub-pectoral, with synthetic mesh, with biologic mesh, without mesh)

	Yes		
Pre-voting	87% 62/71		
No	8% 6/71		
Abstain	4% 3/71		

2. Among patients who are expected to receive PMRT, the overall long-term risk of complications associated with immediate autologous reconstruction compared to IBRR is

	Higher		
Pre-voting	17% 12/71		
Live: Panel	9% 5/54		
Live: Members	9% 3/33		
Lower			
Pre-voting	51% 36/71		
Live: Panel	74% 40/54		
Live: Members	70% 23/33		
Comparable			
Pre-voting	21% 15/71		
Live: Panel	11% 6/54		
Live: Members	12% 4/33		
Abstain			
Pre-voting	11% 8/71		
Live: Panel	6% 3/54		
Live: Members	9% 3/33		

3. In case of expected PMRT and planned autologous reconstruction, your preferred method – provided that patient preference and anatomical preconditions are met – is

	Immediate autologous reconstruction		
Pre-voting	30% 20/67		
Live: Panel	40% 21/53		
Live: Members	33% 9/27		
Immediate reconstruction as combination of an implant and a flap			
Pre-voting	3% 2/67		
Live: Panel	2% 1/53		
Live: Members	0% 0/27		
Delayed-immediate reconstruction (expander/implant to autologous reconstruction after PMRT)			
Pre-voting	40% 27/67		
Live: Panel	36% 19/53		
Live: Members	48% 13/27		
Delayed autologous reconstruction after PMRT			
Pre-voting	18% 12/67		
Live: Panel	11% 6/53		
Live: Members	7% 2/27		
Abstain			
Pre-voting	9% 6/67		
Live: Panel	11% 6/53		
Live: Members	11% 3/27		

Fig. 3. Type of breast reconstruction.
3.2. Type of breast reconstruction

There was general consensus that PMRT increases the risk of complications following all types of implant-based BR (q1, Fig. 3) in agreement with the published literature [11,13,26]. Interestingly, a majority also held the view that PMRT significantly increases complication risk after immediate autologous BR despite results of the Mastectomy Reconstruction Outcomes Consortium (MROC) study (q2a-e, appendix figure E1) [13]. During the conference, one of the authors of this prospective multicentre cohort study discussed the report, which compared complications and patient-reported outcomes (PROs) for 622 irradiated and 1625 non-irradiated patients undergoing implant-based and autologous BR between 2012 and 2015. Among patients who underwent autologous BR, PMRT did not increase the risk of complications. Among patients who received PMRT, autologous reconstruction was associated with lower risk of complications than was implant-based BR (OR = 0.47, 95% CI = 0.27 to 0.82, p = 0.007) and a higher BREAST-Q satisfaction with breasts score (63.5 vs 47.7; p = 0.002). The measurable impact of PMRT on QoL after implant-based BR was confirmed by another large survey of breast cancer survivors [21]. Following extensive discussion of these data, a strong majority of both panel and audience agreed that the overall long-term risk of complications in the setting of PMRT is lower after immediate autologous reconstruction compared to implant-based BR (q2, Fig. 3). When asked about timing of autologous BR in the setting of PMRT, the panel clearly favoured immediate (direct to autologous BR) or delayed-immediate (immediate use of temporary implant or expander until delayed autologous BR) over fully delayed autologous reconstruction (Q3, Fig. 3). In general, autologous BR options were preferred over all implant-based BR options in the setting of PMRT (q4, appendix figure E1). Nevertheless, the panel strongly felt that planned or anticipated PMRT is not an absolute contraindication for any type of BR (q3a-h, appendix figure E1).

Major heterogeneity in clinical practice was evident for implant-based BR in the setting of PMRT. No majority or consensus agreement was reached in terms of recommendations for type, timing, implant...
Question	Frequency	Votes
1. Optimal timing of delayed autologous reconstruction in women with rapid skin healing following PMRT		
A minimum of 12 months after end of PMRT	24%	17/70
A minimum of 6 months after end of PMRT	56%	39/70
A minimum of 3 months after end of PMRT	9%	6/70
≤ 3 months after end of PMRT	1%	1/70
Abstain	10%	7/70
2. Optimal timing of change to implant after PMRT to tissue expander in women with rapid skin healing following PMRT		
A minimum of 12 months after end of PMRT	19%	13/68
A minimum of 6 months after end of PMRT	53%	36/68
A minimum of 3 months after end of PMRT	13%	9/68
≤ 3 months after end of PMRT	1%	1/68
Abstain	13%	9/68
3. Optimal timing of fat grafting after NSM/SSM and immediate IBBR followed by PMRT?		
A minimum of 12 months after end of PMRT	31%	15/48
A minimum of 6 months after end of PMRT	54%	26/48
A minimum of 3 months after end of PMRT	15%	7/48
≤ 3 months after end of PMRT	0%	0/48
4. Do you recommend fat grafting to address contour deformities, implant rippling or volume deficiency at any time point during or after NSM/SSM and immediate IBBR followed by PMRT?		
Yes	76%	54/71
No	7%	5/71
Abstain	17%	12/71

Fig. 4. Timing of breast reconstruction.
position, or use of mesh (q4, Fig. 3). Furthermore, panelists disagreed on whether pre-pectoral implant-based BR is associated with a higher risk of complications and failure rates than sub-pectoral implant-based BR in the context of PMRT (q5, Fig. 3). A majority of the panel considered the use of immediate one-stage pre-pectoral implant-based BR to be compatible with PMRT whilst more of the audience displayed
uncertainty on this point (q3, Fig. 1).

3.3. Timing of breast reconstruction

A strong panel majority recommended waiting for a minimum of 6–12 months after initial surgery in the setting of PMRT, both before delayed autologous BR and exchange of tissue expander for a permanent implant (q1 and 2, Fig. 4). During discussion, the panel emphasized that the optimal timing of delayed autologous reconstruction should be individualized (q4, Fig. 1) and also recommended waiting for 6–12 months before performing fat grafting. The latter was recommended as a method for improving outcomes after both autologous and implant-based BR (q3-5, Fig. 4). The panel was divided on the issue of irradiation of the tissue expander or the permanent implant in two-stage implant-based BR (with or without adjuvant chemotherapy; q6 and 7, Fig. 4). Indeed, several large series have shown that favourable outcomes can be achieved with implant-based BR in the context of radiotherapy using either timing strategy for the two-stage approach [22,23]. Although the panel acknowledged that there are no specific indications for neoadjuvant radiotherapy in routine clinical practice, there was a difference of opinion on delayed implant-based BR after PMRT (q8 and 9, Fig. 4). A majority of panellists who perform delayed implant-based BR discouraged use of highly cohesive implants, smooth implants, polyurethane implants and synthetic mesh in efforts to reduce complications, while advocating use of biologic mesh and fat grafting for purposes of delayed IBBR (q6a-e and h, appendix figure E1). Nonetheless, there was no consensus on pre-versus sub-pectoral implant positioning in this setting (q6f and g, appendix figure E1).

3.4. Special considerations: research and outcomes

Almost all panellists acknowledged current trends toward increasing use of BR in the setting of PMRT (q1, Fig. 5) [10]. The panel endorsed the need for prospective studies to optimize surgical and radiation treatments and conceded that the poor quality of available data broadly precludes evidence-based recommendations at this time (q2 and 3, Fig. 5). Of note, the OPBC ranked the question on the optimal type of reconstruction in the setting of planned adjuvant radiotherapy as top knowledge gap in the field already during the 2019 consensus conference [15]. A randomized controlled trial (RCT) design, as suggested by the scientific secretaries at the time, achieved not even a majority recommendation by the panel during two rounds of voting. It was considered not appropriate mostly due to a lack of feasibility. The study design was then adjusted according to the panel discussion into a prospective cohort study with propensity score matching and patient-reported satisfaction with breast, assessed by the BREAST-Q questionnaire at two years, as primary outcome. The question on the optimal timing of reconstruction in the setting of planned adjuvant radiotherapy was ranked as second most important priority in 2019. Therefore, the study design was adjusted and the panel finally achieved consensus to recommend a prospective registry to commonly address type and timing and the present project to focus on this important topic. This year, the OPBC voting results stressed the need for phase III RCTs to specifically address the optimal timing of implant-based BR, the positioning of implants and the use of adjunctive mesh. Of note, multiple observational studies over the past three years on pre-versus sub-pectoral implant-based BR have predominantly shown either no difference or marginally favoured pre-pectoral positioning [24–33]. However, most were small, retrospective and single-centre studies, with only a few prospective or multicentre studies [25,26,28]. The OPBC-02/PREPEC trial is a pragmatic multicentre RCT designed to investigate QoL two years after pre-versus sub-pectoral implant-based BR and has currently randomized 245 of a total of 372 patients at 22 breast centres in 6 countries [34]. One of the formal substudies prospectively investigates the impact of pre-versus sub-pectoral implant-based BR on risk of early complications. Rates of unplanned reoperation were reported to be as
Fig. 6. Post-mastectomy radiation therapy.
high as 59% after immediate implant-based BR in the setting of PMRT [35]. Until risk profiles are better understood and strategies to reduce morbidity are optimized, the panel endorsed the viewpoint that patients undergoing implant-based BR must be fully informed and consent to the possibility of increased risk of complications in the setting of planned PMRT (q4, Fig. 5). Panellists and members could not agree on an acceptable upper limit for failure rate at two years after implant-based BR in daily practice (5% vs 10% vs 15%; q6, Fig. 1).

Almost all panellists supported use of pre- and postoperative photographs and prospective collection of patient-reported outcomes (q5a

5. When bilateral two stage IBBR is performed in your clinical practice, the contralateral tissue expander is deflated to avoid the need for compromises during PMRT

Option	Yes	No	Abstain
Pre-voting	17%	39%	44%

6. Irrespective of the availability of modern radiotherapy techniques, type of immediate BR may affect the effectiveness of PMRT

Option	Yes	No	Abstain
Pre-voting	25%	51%	24%

7. Irrespective of the availability of modern radiotherapy techniques, type of immediate BR may affect the overall risk of complications after PMRT

Option	Yes	No	Abstain
Pre-voting	75%	10%	15%

8. Nuances in PMRT technique, such as the use of a bolus or boost, radiotherapy modality, fractionation, and nodal target volumes, are all important in determining the final aesthetic outcome after immediate BR

Option	Yes	No	Abstain
Pre-voting	79%	6%	16%

Fig. 6. (continued).
and b, Fig. 5). The majority of panellists and members sanctioned use of BREAST-Q either in entirety or selected scales for this purpose (q7, Fig. 1) [36–41].

3.5. Post-mastectomy radiation therapy

A majority of the panel felt that immediate BR has the potential to affect oncologic outcomes by delaying adjuvant therapy due to complications (q1, Fig. 6). Clinical studies are inconsistent in reports of how postoperative complications affect recurrence and survival in patients undergoing immediate BR [42–45]. Indeed, one of the largest studies showed that patients with postoperative complications had significantly worse disease-free survival than those without complications (hazard ratio (HR) 2.25; P = 0.015) [45]. However, this remained significant in patients who received adjuvant therapy without delay (8 weeks or less after surgery; HR 2.45; P = 0.034). After intense discussion of this topic, the question was re-phrased to ask whether immediate BR impairs oncologic outcomes by delaying adjuvant therapy in clinical practice. About half of panellists and members rejected that statement (q8, Fig. 1) and it was discussed that whilst there may be delays in some patients with potential impact on oncological safety, overall the average delay following PMBR is not clinically significant.

There was major disagreement regarding whether immediate BR with creation of a breast mound compromised the accuracy of radiation dosimetry in terms of target coverage and normal tissue dose irrespective of modern radiotherapy techniques (q2, Fig. 6). Similarly, there was disagreement as to whether bilateral placement of implants impairs PMRT planning and quality of PMRT delivery (q3, Fig. 6). Indeed, early experience with immediate BR resulted in compromised target coverage and/or dose to organs at risk in case of PMRT. This was most apparent for irradiation of left-sided tumours, internal mammary nodes, and for cases of bilateral reconstruction [46]. Later reports suggested that correct target volume definition and modern radiation techniques can reduce the risks posed by BR, be this unilateral or bilateral [47–49]. To date, various measures can be applied to minimize dosage to organs at risk whilst ensuring adequate coverage of target volumes such as deep inspiration breath hold with or without continuous positive airway pressure (CPAP) [50,51]. Techniques for PMRT continue to evolve and routine use of a bolus for mastectomy cases is controversial as this may be associated with increased toxicity without improving local control [52]. Therefore, current European consensus guidelines do not recommend a bolus unless deemed necessary to ensure that the therapeutic dose of irradiation adequately covers those areas at high-risk for recurrence, e.g., in skin invading cancer [53]. Moreover, data on safety and efficacy in the setting of breast reconstruction is lacking [54]. Nonetheless, a boost in this setting was commonly practiced to enhance radiation dosage to the mastectomy scar in order to reduce local recurrence [55]. A study by Naoum et al. aimed to evaluate whether a chest wall boost was independently associated with reconstructive complications [55]. The study cohort included patients who had delayed reconstruction procedures. Scar boost was significantly linked with higher rates of infection, skin necrosis, and implant exposure. Furthermore, a boost dose was independently associated with a higher risk of complete implant failure and addition of a boost did not improve local tumor control, even among high-risk subgroups. Therefore, routine use of a boost or bolus for PMRT cases with or without reconstruction is not recommended. It is mandatory that radiation planning is tailored to the surgical procedure with awareness of potential adverse radiation effects on BR and adherence to international guidelines [53,56–58].

In contemporary practice, the type of BR is usually determined by body habitus, patient preference, and expertise of the surgeon. PMRT planning is rarely taken into account but close liaison between the surgical and radiation teams from the outset will facilitate optimal clinical decision-making in terms of BR and PMRT. In real-world practice, shape and size of the reconstructed breast mound can challenge PMRT planning and dose delivery (Fig. 7). Additionally, in case of expander with a metallic port, the ability to determine the accurate dose distribution and accurate RT delivery may be hindered [59].

Fig. 7: Axial view of radiation CT planning of a young patient who underwent bilateral mastectomy for left-sided breast cancer and immediate implant-based breast reconstruction. The size, shape and position of the reconstruction challenged the delivery of radiation to the left breast and regional lymphatics. Radiation is a trade-off between the objectives of target volume coverage and exposure of organs at risk. The radiation technique affects the interplay between these objectives (e.g., low dose bath to the lung, dose to the contralateral breast) but cannot escape the physical properties of the radiation beam.

Bearing in mind the impact of reconstructed breast volume on PMRT delivery, the panel also addressed the issue of volume in relation to tissue expanders. About half of each of panellists and members opted for full expansion of the expander before PMRT in the case of unilateral two-stage BR. However, the others were divided between rejection and abstention. This reflected a degree of controversy and uncertainty (q4, Fig. 6), which was more apparent when asking whether the contralateral expander should be deflated after bilateral two-stage BR (q5, Fig. 6). From a radiation perspective, the volume of the expander at the time of CT planning and during irradiation should be maintained, as dosimetry is based on the target volume at the time of CT planning. Complete inflation can hinder PMRT planning and necessitate deflation of the expander prior to PMRT. Modern radiation techniques can ameliorate but not eliminate the physical properties of the radiation beam [60,61]. Use of volumetric-based PMRT and advanced radiation techniques to overcome a “non-anatomical” protruding reconstructed breast may result in unnecessary exposure of organs at risk and a low-dose-bath of radiation (leading to potential toxicity, late heart morbidity and risk of secondary cancers) [60,61]. Half of the panel rejected the statement that irrespective of the availability of modern radiotherapy techniques, type of immediate breast reconstruction may influence the effectiveness of PMRT (q6, Fig. 6). However, there was consensus among panellists that the type of immediate BR affects overall risk of complications with PMRT, irrespective of modern radiotherapy, but PMRT techniques will impact upon final aesthetic outcome (q7 and q8, Fig. 6).

4. Conclusions

During the 2021 OPBC consensus conference, a large international panel comprised of breast surgery specialists, leading radiation oncologists and patient advocates was convened to systematically develop recommendations for mastectomy, BR and PMRT. The panel agreed that
surgical technique for NSM/SSM should not be modified when PMRT is planned; it favoured the use of autologous over implant-based BR in the setting of PMRT due to lower long-term risk of complications and recommended immediate and delayed-immediate approaches. The panel strongly felt that PMRT is not an absolute contraindication for implant-based BR despite higher overall rates of complications. Nonetheless, no specific recommendations were made regarding implant positioning, use of mesh or timing due to absence of high-quality evidence to guide treatment. The panel encouraged routine use of pre- and postoperative photographs and endorsed patient-reported outcomes in clinical practice. It was acknowledged that shape and size of the reconstructed breast can be a geometric challenge for radiotherapy planning and the importance of PMRT techniques in determining the final aesthetic outcome after immediate BR was emphasized. Moreover, the panel unanimously supported the need for prospective studies, especially randomised trials, and proposed that surgical and radiation oncology teams work together at the outset to evaluate optimal sequencing and techniques for integrating PMRT with BR for each patient.

Credit author statements

Allweis: Conceptualization, Data curation, Writing – review & editing. Barry: Conceptualization, Data curation, Writing – review & editing. Benson: Conceptualization, Data curation, Writing – review & editing. Biazus: Conceptualization, Data curation, Writing – review & editing. Bjelic-Radisic: Conceptualization, Data curation, Writing – review & editing. Blohm: Conceptualization, Data curation, Writing – review & editing. Laughon: Conceptualization, Data curation, Writing – review & editing. Bowles: Conceptualization, Methodology, Validation. Data curation, Writing – review & editing. Brenelli: Conceptualization, Data curation, Writing – review & editing. Buhr: Conceptualization, Data curation, Writing – review & editing. Cardoso: Conceptualization, Data curation, Writing – review & editing. Carmon: Conceptualization, Data curation, Writing – review & editing. Castrezzana: Conceptualization, Data curation, Writing – review & editing. de Bonifacis: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing – review & editing. Visualization, Project administration. Dieroff Hay: Conceptualization, Methodology, Validation, Data curation, Review & Editing. Dubsky: Conceptualization, Data curation, Writing – review & editing. Elder: Conceptualization, Data curation, Writing – review & editing. El-Tamer: Conceptualization, Data curation, Writing – review & editing. Fairbrother: Conceptualization, Data curation, Writing – review & editing. Faridi: Conceptualization, Data curation, Writing – review & editing. Fitzal: Conceptualization, Methodology, Validation, Data curation, Writing – review & editing. Formenti: Conceptualization, Data curation, Writing – review & editing. Garcia-Etienne: Conceptualization, Data curation, Writing – review & editing. Gentilini: Conceptualization, Data curation, Writing – review & editing. Galimbetti: Conceptualization, Data curation, Writing – review & editing. Gnant: Conceptualization, Data curation, Writing – review & editing. Gonzalez: Conceptualization, Data curation, Writing – review & editing. Gouveia: Conceptualization, Data curation, Writing – review & editing. Gruber: Conceptualization, Data curation, Writing – review & editing. Gutlugu: Conceptualization, Data curation, Writing – review & editing. Günther: Conceptualization, Data curation, Writing – review & editing. Hadar: Conceptualization, Data curation, Writing – review & editing. Harder: Conceptualization, Data curation, Writing – review & editing. Haug: Conceptualization, Data curation, Writing – review & editing. Hauser: Conceptualization, Data curation, Writing – review & editing. Heil: Conceptualization, Methodology, Validation, Data curation, Writing – review & editing. Hoffmann: Conceptualization, Data curation, Writing – review & editing. Kaidar-Person: Conceptualization, Data curation, Writing – review & editing. Kappos: Conceptualization, Data curation, Writing – review & editing. Karadeniz Çakmak: Conceptualization, Data curation, Writing – review & editing. Karanlik: Conceptualization, Data curation, Writing – review & editing. Karhu- nen-Enckell: Conceptualization, Data curation, Writing – review & editing. Katapodi: Conceptualization, Data curation, Writing – review & editing. Kauer-Dorner: Conceptualization, Data curation, Writing – review & editing. Kauhanen: Conceptualization, Data curation, Writing – review & editing. Knauer: Conceptualization, Data curation, Writing – review & editing. Köhler: Conceptualization, Data curation, Writing – review & editing. Kontos: Conceptualization, Data curation, Writing – review & editing. Koppert: Conceptualization, Data curation, Writing – review & editing. Kovacs: Conceptualization, Data curation, Writing – review & editing. Krol: Conceptualization, Data curation, Writing – review & editing. Kuehnel: Conceptualization, Data curation, Writing – review & editing. Kühn: Conceptualization, Data curation, Writing – review & editing. Kurzeder: Conceptualization, Data curation, Writing – review & editing. Lagergren: Conceptualization, Data curation, Writing – review & editing. Leitzkes: Conceptualization, Data curation, Writing – review & editing. Maggi: Conceptualization, Data curation, Writing – review & editing. Mårtal: Conceptualization, Data curation, Writing – review & editing. Montagna: Conceptualization, Data curation, Writing – review & editing. Morrow: Conceptualization, Data curation, Writing – review & editing. Mucklow: Conceptualization, Data curation, Writing – review & editing. Paulinelli: Conceptualization, Data curation, Writing – review & editing. Poortmans: Conceptualization, Methodology, Validation, Data curation, Writing – review & editing. Potter: Conceptualization, Data curation, Writing – review & editing. Pusic: Conceptualization, Data curation, Writing – review & editing. Reit-samer: Conceptualization, Data curation, Writing – review & editing. Rubio: Conceptualization, Data curation, Writing – review & editing. Rutgers: Conceptualization, Data curation, Writing – review & editing. Sacchini: Conceptualization, Data curation, Writing – review & editing. Saccilotto: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing – review & editing. Visualization, Project administration. Schenk: Conceptualization, Data curation, Writing – review & editing. Schwab: Conceptualization, Data curation, Writing – review & editing. Sezer: Conceptualization, Data curation, Writing – review & editing. Shaw: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing – review & editing. Visualization, Project administration. Steffens: Conceptualization, Data curation, Writing – review & editing. Tampaki: Conceptualization, Data curation, Writing – review & editing. Tausch: Conceptualization, Data curation, Writing – review & editing. Tsoutsou: Conceptualization, Data curation, Writing – review & editing. Urban: Conceptualization, Data curation, Writing – review & editing. Vancken Peeters: Conceptualization, Data curation, Writing – review & editing. Walker: Conceptualization, Data curation, Writing – review & editing. Weber: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing. Visualization, Supervision, Project administration. Wyld: Conceptualization, Data curation, Writing – review & editing. Zimmermann: Conceptualization, Data curation, Writing – review & editing. Zwahlen: Conceptualization, Data curation, Writing – review & editing.

Role of the funding source

This work was supported by the Department of Surgery of the University of Basel. The funding source had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. This research did not receive any specific grant from funding agencies in the
Declaration of competing interests

No competing interests in the current work were reported. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
F. Brenelli had personal honoraria for Roche, MSD and Zodiac.
P. Dubsky received other from Amgen, AstraZeneca, Pfizer, Roche and Merck, grants from Cepheid/Danaher, Agenda, Myriad and from Oncomark.
M. Gaunt reports personal fees/travel support from Amgen, DaiichiSankyo, AstraZeneca, EliLilly, LifeBrain, Nanostrut, Novartis; an immediate family member is employed by Sandoz.

Support for meetings and teaching tasks has been paid to the research Department directed by Y. Harder from Establishment Labs, S. A, Costa Rica, Integra Life Sciences, USA and Hilottherm GmbH, Germany.

S Kueimmel has minority non-profit ownership at WSG Study Group; has a consulting/advisory board role at Amgen, AstraZeneca, Celgene, Daiichi-Sankyo, Genomic Health, Lilly, MSD, Novartis, Seagen. Pfizer, pfM Medical, Roche, Somatex, Seagen, Hologic; and received fees from Roche, Somatex, Novartis, Lilly, and personal fees from Roche, Novartis and Hologic.

Ch. Kurzeder receives honoraria from Tesaro, GSK, Astra Zeneca, Novartis, Pharmamar, Genomic Health, Roche, Eli Lilly S.A, Pfizer, Daichi, and travel fees from GSK, Astra Zeneca, Roche. He has a consulting or advisory role for Tesaro, GSK, Astra Zeneca, Novartis, Pharmamar, Genomic Health, Roche, Eli Lilly S.A, Merck MSD, Pfizer.

Travel, Accommodations, Expenses: GSK, Astra Zeneca, Roche.

A. Pusic is a co-developer of the BREST-Q and receives royalties when it is used in for-profit, industry-sponsored clinical trials.

M. Walker has received personal honoraria from Gubert and Roche Products Pty Ltd.

W. P. Weber received research from Takeda Pharmaceuticals International paid to the Swiss Group for Clinical Cancer Research (SAKK) and personal honoraria from Genomic Health, Inc, USA, for meetings was paid to his institution from Sandoz, Genomic Health, Medtronic Medtronic, Novartis Oncology, Pfizer and Eli Lilly.

S. Formenti reports: Consultant for: Bayer, Bristol Myers Squibb, Varian, ViewRay, Elekta, Janssen, Regeneron, GlaxoSmithKline, Eisai, Astra Zeneca, Merck US, EMD Serono/Merck, Genentech/ROCHE, Boheringer, Accuray.

Grant/Research support from: Bristol Myers Squibb, Varian, Regeneron, Merck, Celldex, ArcusM. Morrow reports personal fees from Exact Sciences and Roche.

All other authors declare no competing interests.

Acknowledgements

The authors want to thank Araya Bernhard for her assistance in the organization and performance of the OPBC 2021 consensus conference.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.breast.2022.03.008.

References

[1] Kummerow KL, Du L, Penso DF, et al. Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg 2015;150:9–16.
[2] Siroc M, Kyriillos AM, Lapin BR, et al. Trends and variation in the use of nipple-sparing mastectomy for breast cancer in the United States. Breast Cancer Res Treat 2016;160:111–20.
[3] McGale P, Taylor C, Correa C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014;383:1127–35.
[4] Budach W, Kammers K, Boelle E, Matuschek C. Adjuvant radiotherapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials. Radiat Oncol 2013;8:267.
[5] Pootrongsamphath M, Colettte S, Kikovic C, et al. Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med 2015;373:317–27.
[6] Whelan TJ, Olivotto IA, Parulekar WR, et al. Regional nodal irradiation in early-stage breast cancer. N Engl J Med 2015;373:307–16.
[7] Thorsen LB, Offeren BW, Dao N, et al. DBCG-00M: a population-based cohort study on the effect of internal mammary node irradiation in early-node-positive breast cancer. J Clin Oncol 2016;34:314–20.
[8] Coates AS, Winer EP, Goldhirsch A, et al. Tailoring therapies-improving the management of early breast cancer: galien international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol 2015;26:1533–46.
[9] Shumway DA, Momoh AG, Sabel MS, Jaggi I. Integration of breast reconstruction and postmastectomy radiation therapy. J Clin Oncol 2020;38:2329–40.
[10] Frasier LL, Holden S, Holden T, et al. Temporal trends in postmastectomy radiation therapy and breast reconstruction associated with changes in national comprehensive cancer network guidelines. JAMA Oncol 2016:2:95–101.
[11] Reih RG, Lin A, Phillips NA, et al. Breast reconstruction outcomes after nipple-sparing mastectomy and radiation therapy. Plast Reconstr Surg 2015;135:959–66.
[12] Berry T, Brooks S, Sydow N, et al. Complication rates of radiation on tissue expander and autologous tissue breast reconstruction. Ann Surg Oncol 2010;17 (Suppl 3):202–10.
[13] Jaggi R, Momoh AO, Qi J, et al. Impact of radiotherapy on complications and patient-reported outcomes after breast reconstruction. J Natl Cancer Inst 2018;110.
[14] Weber WP, Haug M, Kurzeder C, et al. Oncoplastic Breast Consensus conference on nipple-sparing mastectomy. Breast Cancer Res Treat 2018;172:521–37.
[15] Weber WP, Morrow M, Boniface J, et al. Knowledge gaps in oncoplastic breast surgery. Lancet Oncol 2020;21:e375–85.
[16] Weber WP. Oncoplastic breast Consortium. https://oncoplasticbo.com/documents/research/opbc-2021-protocol-and-questionnaire-20210809.pdf. [Accessed 18 September 2021].
[17] Colwell AS, Tessler O, Lin AM, et al. Breast reconstruction following nipple-sparing mastectomy: predictors of complications, reconstruction outcomes, and 5-year trends. Plast Reconstr Surg 2014;133:496–506.
[18] Donovan CA, Harit AP, Chung A, et al. Oncological and surgical outcomes after nipple-sparing mastectomy: do incisions matter? Ann Surg Oncol 2016;23:3226–31.
[19] Robertson SA, Rusby JE, Cutress RI. Determinants of optimal mastectomy skin flap thickness. Br J Surg 2014;101:899–911.
[20] Jaggi R, Jiang J, Momoh AO, et al. Complications after mastectomy and immediate breast reconstruction for breast cancer: a claims-based analysis. Ann Surg 2016;263:219–27.
[21] Jaggi R, Li Y, Morrow M, et al. Patient-reported quality of life and satisfaction with cosmetic outcomes after breast conservation and mastectomy with and without reconstruction: results of a survey of breast cancer survivors. Ann Surg 2015;261:1198–206.
[22] Kronowitz SJ, Lam C, Terefe W, et al. A multidisciplinary protocol for planned skin-preserving delayed breast reconstruction for patients with locally advanced breast cancer requiring postmastectomy radiation therapy: 3-year follow-up. Plast Reconstr Surg 2011;127:2154–66.
[23] Cordeiro PG, Albomor CR, McCormick B, et al. What is the optimum timing of postmastectomy radiotherapy in two-stage prosthetic reconstruction: radiation to the tissue expander or permanent implant? Plast Reconstr Surg 2015;135:1509–17.
[24] King CA, Bartholomew AJ, Sosin M, et al. A critical appraisal of late complications of prepectoral versus subpectoral breast reconstruction following nipple-sparing mastectomy. Ann Surg Oncol 2020;27:263:219–30.
[25] Potter S, Conroy EJ, Cutress RI, et al. Short-term safety outcomes of mastectomy and immediate implant-based breast reconstruction with and without mesh (iBRA): a multicentre, prospective cohort study. Lancet Oncol 2019;20:254–66.
[26] Ribudio D, Berra G, De Vita R, et al. Dual-plane retro-pectoral versus pre-pectoral DTI breast reconstruction: an Italian multicenter experience. Aesthetic Plast Surg 2021;45:51–60.
[27] Momeni A, Remington AC, Wan DC, et al. A matched-pair analysis of prepectoral with subpectoral breast reconstruction: is there a difference in postoperative complication rate? Plast Reconstr Surg 2019;144:801–7.
[28] Mirhaidari SJ, Azouz V, Wagner DS. Prepectoral versus subpectoral direct to implant immediate breast reconstruction. Ann Plast Surg 2020;84:263–70.
[29] Walker NJ, Park JG, Maus JC, et al. Prepectoral versus subpectoral breast reconstruction in high-body mass index patients. Ann Plast Surg 2021:87:196–43.
[30] Manrique OJ, Kapoor T, Banneles J, et al. Single-stage direct-to-implant breast reconstruction: a comparison between subpectoral versus prepectoral implant placement. Ann Plast Surg 2020;84:590–1.
[31] Thangarajah J, Treetee T, Krug B, et al. Comparison of subpectoral versus prepectoral immediate implant reconstruction after skin- and nipple-sparing mastectomy in breast cancer patients: a retrospective hospital-based cohort study. Breast Care 2019;14:382–7.
[32] Caputo GG, Zingaretti N, Kiprianidis I, et al. Quality of life and early functional evaluation in direct-to-implant breast reconstruction after mastectomy: a comparative study between prepectoral versus dual-plane reconstruction. Clin Breast Cancer 2021;21:344–51.
[33] Nealon KP, Weitzman RE, Sobti N, et al. Preceptor direct-to-implant breast reconstruction: safety outcome endpoints and delineation of risk factors. Plast Reconstr Surg 2020;145:898e-898e.

[34] Kappos EA, Schulz A, Regan MM, et al. Preceptor versus subpercutaneous implant-based breast reconstruction after skin-sparing mastectomy or nipple-sparing mastectomy (OPBC-02/PREPEC): a pragmatic, multicentre, randomised, superiority trial. BMJ Open 2021;11:e052796.

[35] Eriksson M, Anveden L, Celabhioglu F, et al. Radiotherapy in implant-based immediate breast reconstruction: risk factors, surgical outcomes, and patient-reported outcome measures in a large Swedish multicenter cohort. Breast Cancer Res Treat 2013;142:591–601.

[36] Breast-Q user’s manual version 2.0. May 2015. http://qportfolio.org/breastq/wp-content/uploads/2016/08/Breast-Q-USERS-MANUAL-2015.pdf. [Accessed 24 September 2021].

[37] Cano SJ, Klassen AF, Scott AM, et al. The BREAST-Q: further validation in independent clinical samples. Plast Reconstr Surg 2012;129:293–302.

[38] Cohen WA, Mundy LR, Ballard TN, et al. The BREAST-Q in surgical research: a review of the literature 2009-2015. J Plast Reconstr Aesthetic Surg 2016;69:149–62.

[39] Meghana Shamsunder LGAPAHSVJN. A systematic review of breast reconstruction and patient reported outcomes utilizing the BREAST-Q.

[40] Mundy LR, Homa K, Klassen AF, et al. Breast cancer and reconstruction: normative data for interpreting the BREAST-Q. Plast Reconstr Surg 2017;139:1046e–55e.

[41] Pusic AL, Klassen AF, Scott AM, et al. Development of a new patient-reported outcome measure for breast surgery: the BREAST-Q. Plast Reconstr Surg 2009;124:345–53.

[42] Beecher SM, O’Leary DP, McLaughlin R, et al. Influence of complications following immediate breast reconstruction on breast cancer recurrence rates. Br J Surg 2016;103:391–8.

[43] Mousa M, Barnea Y, Arad U, et al. Association between postoperative complications after immediate alloplastic breast reconstruction and oncologic outcome. Clin Breast Cancer 2018;18:e699–702.

[44] Valente SA, Liu Y, Upadhyaya S, et al. The effect of wound complications following mastectomy with immediate reconstruction on breast cancer recurrence. Am J Surg 2019;217:514–8.

[45] Lee KT, Jung JH, Mun GH, et al. Influence of complications following total mastectomy and immediate reconstruction on breast cancer recurrence. Br J Surg 2020;107:1154–62.

[46] Motwani SB, Strom EA, Schechter NR, et al. The impact of immediate breast reconstruction on the technical delivery of postmammary radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:76–82.

[47] Chung E, Marsh RB, Griffith KA, et al. Quantifying dose to the reconstructed breast: can we adequately treat? Med Dosim 2013;38:355–9.