Echo Processing and Identifying Surface and Bottom Layer with Simrad Ek/Ey 500

Lubis MZ*, Wulandari PD1, Mujahid M2, Hargreaves J3 and Pant V4

1Faculty of Fisheries and Marine Sciences, Department of Marine Science and Technology, Bogor Agricultural University, Indonesia
2Bandung Institute of Technology, LAP-I-ITB, Jln. Ganesha, Bandung, Indonesia
3Acoustics research centre, University of Salford, Salford, Greater Manchester, UK
4Indian Institute of Astrophysics, Koramangala, Bangalore, India

Abstract

Simrad Ek/Ey 500 Scientific 38-kHz and 120-kHz echo sounding system in the acoustics lab will be turned on during all scientific operations and should be monitored regularly for the presence of unusual acoustic signals or heavy fish sign. In the acoustic system, split beam processor is one of the acoustic devices that can help to echogram processing. The hardware required in the form of hardware, SIMRAD Ek 500, and software, SIMRAD Echo EP 500. Processor 500 can be used for the calculation of the density of fish from fish or fish group. In echogram there are 12 scale color representing the image signal strength emitted by the object affected. Range Sa value on surface layer is -10 dB - (-4) dB, range Sv value on surface layer is 0 dB - (-89) dB, range Sa value on bottom layer is 15 dB - (-2) dB, range Sv value on bottom layer is -57 dB - (-74) dB. The total value Sa (dB) produces the extraction of data on surface layer using simple linear regression equation which produce y=0.0961x - 6.4388, R²=0.9159, with alpha value is 5, the results obtained shows the relationship between the value Sa obtained by looking at the percentage value that is 91%. In this paper the result there is a difference between the processing value Sa and Sv, where the value of Sv.

Keywords: Simrad EK 500; Frequency; Scattering area (Sa); Scattering volume (Sv); Processor 500

Introduction

Indonesia is a maritime country in need an instrument or method to get information about the surrounding seas. Oceanographic observation is needed to be able to provide a wide range of useful information among others, to determine the spread of the abundance of fish, mapping the distribution of organisms, an observation of fish behavior, as well as the depth of the bathymetry of the ocean. Instruments used in oceanographic observations in the past have been minimal so that the costs used more and more. In the acoustic system, split beam processor is one of the acoustic devices that can help to echogram processing. Research on the echogram with acoustic instrument or instruments (Hydroacoustic) never done before by Akbar H and Moniharapon D [1,2], research of hydroacoustic with used single beam echosounder (Cruzpro fishfinder) according to Lubis MZ [3]. Quantifying sea bottom surface backscattering strength and identifying bottom fish habitat by quantitative echo sounder according in Manik H and Manik H et al. [4,5]. Effects Of grain size, roughness, and hardness of sea floor on back scattering value based on hydroacoustic detection according to Pujiyati S et al. [6].

Simrad Ek/Ey 500 Scientific 38-kHz and 120-kHz echo sounding system in the acoustics lab will be turned on during all scientific operations and should be monitored regularly for the presence of unusual acoustic signals or heavy fish sign. The bridge should notify the scientific watch on duty if any unusual sign appears on the bridge echo sounder. The hardware required in the form of hardware, SIMRAD Ek 500, and software, SIMRAD Echo EP 500. Processor 500 can be used for the calculation of the density of fish from fish or fish group, carried out by integrating the detected echo in the vertical direction on each layer waters and averaged in the horizontal direction along the track [7]. EP 500 is used to set the path that has been used against targets that are not flocking observations EK 500 [7-9]. Echogram a depth chart of recording the results of conventional echosounder (ITB Central library). Ping is a pulse issued by each transducer [10]. The coefficient of back-scattered area (Sa) is a measure of the energy that is returned from the seam between the two depths in the water column while Backscattering Strength (Sv) is the ratio between the intensity reflected by a group of single target diinsonifikasikan instantaneously measured at a distance of 1 meter from target with a sound intensity that hit the target [11]. Target Strength (TS) is a reflection of the strength of the echo (echo), or decibel measure of sound intensity returned by the target [12]. This paper was made aiming to analyze the target surface, pelagic, and bottom waters with EP 500.

Research Methods

Area backscattering coefficients (Sa)

When the target individual is very small and a large amount within the sample volume, echo-echo signal received combined to form a continuous basis with varying amplitude. It is no longer possible to separate the individual target, but the intensity of the echo is still the size of the biomass in the water column. Measurement of acoustic base is back-scattered coefficient of volume, Sv, which is obtained from the integration of echo formulated as follows:

\[
Sv = 2\sigma_s / N_i
\]

According to Simmonds J [13], the coefficient of back-scattered area (Sa) is a measure of the energy that is returned from the seam between

*Corresponding author: Muhammad Zainuddin Lubis, Marine acoustic laboratory assistant, Faculty of Fisheries and Marine Sciences, Department of Marine Science and Technology, Bogor Agricultural University, Kampus IPB Dramaga Bogor, Jl. Raya Dramaga, Bogor, Jawa Barat, 16680 Indonesia, Tel: 622518628448; E-mail: lubiszainuddin@gmail.com

Received May 23, 2016; Accepted June 09, 2016; Published June 19, 2016

Citation: Lubis MZ, Wulandari PD, Mujahid M, Hargreaves J, Pant V (2016) Echo Processing and Identifying Surface and Bottom Layer with Simrad Ek/Ey 500. J Biosens Bioelectron 7: 212. doi:10.4172/2155-6210.1000212

Copyright: © 2016 Lubis MZ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
the two depths in the water column. \(S_v\) is defined as the integral of which is connected to a depth which passes through the layer. \(S_a\) is an important parameter in fisheries acoustics because most of the echo-integrators providing data integration with one or more layers. Because \(S_a\) \(S_v\) and is the result of the distance, then \(S_a\) dimensionless. This makes it difficult to show \(S_a\) numerical values clearly different when the scale factor is applied. 1 base unit for \(S_a\) should be written as \((m^2/m^3)\) which means integration obs per square meter of the surface layer. Many of the various versions of \(S_a\) commonly used, especially Nautical Area Scattering Coefficient (NASC) for the symbol \(S_a\). Although \(S_a\) is dimensionless, it is very important to show the scale of the current quote numerical values.

Scattering volume (\(S_v\))

Backscattering Strength (\(S_v\)) is the ratio between the intensity reflected by a single target group instantaneously measured at a distance of 1 meter from the target to the intensity of noise about the target [11]. Scattering volume (\(S_v\)) is the ratio between the intensity of the sound is reflected by a single target group at a certain volume of water (1 m\(^3\)) and measured at a distance of 1 meter from the target group is concerned with the intensity of sounds on targets (incident intensity). The calculations are done vertically i.e., per strata depth. To overcome the depth of integration at a divided by an interval of 1 meter. The higher the value, the greater the \(S_v\) alleged group size fish. To overcome the depth of integration at a distance \(R_1-R_2\) for the transmission of a measure of the intensity \(S_v\) alleged group size fish. Many of the various versions of \(S_a\) commonly used, especially Nautical Area Scattering Coefficient (NASC) for the symbol \(S_a\). Although \(S_a\) is dimensionless, it is very important to show the scale of the current quote numerical values.

\[
S_v = 10 \log \rho_v + TS
\]
(2)

\(S_v\)=Volume Backscattering Strength
\(\rho_v\)=densitas ikan per volume
\(TS\)=Target strength

Target strength (TS)

In the estimation of fish stock with the acoustic method, the most important factor to be noted is the Target Strength. Target Strength (TS) is a reflection of the strength of the echo (echo), or decibel measure of sound intensity returned by the target, measured at a distance of one meter from the acoustic center, relative to the intensity of sounds on targets [14,15]. Meanwhile, according in Simmonds J [13], stating that the Target Strength (TS) is power of targets to reflect a sound and has a close relationship with the size of the fish, where there is a tendency of the greater size of the fish, the greater the TS obtained. Target Strength is also defined as ten times the logarithm of the intensity of the fish (\(I_i\)) [16]. Here is the formulation of TS:

\[
TS = 10 \log(I_i/I_e)
\]
(3)

\(TS_i\)=intensity target strength
\(I_i\)=intensity of the reflected sound is measured at a distance of 1 meter from the target
\(I_e\)=intensity of sound that the fish are and based energy

Strength targets formulated as follows:

\[
TS_i = 10 \log(E_i/E_e)
\]
(4)

\(TS_i\)=Energy Target strength
\(E_i\)=reflected sound energy measured at a distance of 1 meter from the target
\(E_e\)=energy target strength

According to MacLennan [16], TS is the scattering cross section of the target which returns a signal and is expressed in equation form:

\[
TS = 10 \log(o/4\pi)
\]
(5)

Result and Discussion

In echogram there are 12 scale colors representing the image signal strength emitted by the object affected. Echo force is divided into twelve categories of color, the weakest is gray and the strongest echoes are represented by the brightest color (brown) (SIMRAD Kongsberg Company). Echogram movement on the screen is determined by the setting of parameter echogram speed (Display Menu) and the current ping interval used (Menu Operations). Color echogram presentation was mainly influenced by TS and minimum \(S_v\) chosen color and type of TVG (Display/echogram Menu). Echogram information can be seen in Figures 3 and 4.

In this paper used data sources 04191352.DT2 echogram taken in the area of Belitung. This data is then analyzed using EP 500 in each of the layers consisting of Surface layers, layers and Bottom layers resulting value \(S_a\) (dB) and \(S_v\) (dB) on each of the layers. The coefficient of backscattered area (\(S_a\)) is a measure of the energy that is returned from the beam between the two depths in the water column while Backscattering Strength (\(S_v\)) is the ratio between the intensity reflected by a group of single target instantaneously measured at a distance of 1 meter from target with a sound intensity that hit the target. Furthermore, the value \(S_a\) and \(S_v\) is made in the form of graphs that can be seen on the result sheet. Echogram surface layer in \(S_a\) (dB), and \(S_v\) (dB) surface layer can be seen in Figure 5 (Figures 5-8).

In the chart above there is a difference between each respective layer. This is caused by the difference in the depth of which is owned by each of the layers. Surface layers on data extracted from a depth of 4 meters, while for bottom layers taken from a depth of 12 meters.

Figure 1: Flowchart of data processing.

Figure 2: Visualization of EK/EY 500 in monitor.
Figure 3: Echogram A) Pings 0-9898, B) Pings 1200-1800.

Figure 4: Echogram A) Pings 0-6344, B) Pings 1200-1800.

Figure 5: Surface layers a) Echogram surface layer in Sa (dB), b) Sa (dB) surface layer.
There are differences in the processing of value where value Sv and Sa previously had to be linearized first and then averaged and converted into a form dB.

Range Sa value on sufrace layer is -10 dB - (-4) dB (Figure 5b), range Sv value on sufrace layer is 0 dB - (-89) dB (Figure 6b). Range Sa value on bottom layer is 15 dB - (-2) dB (Figure 7b), range Sv value on bottom layer is -57 dB - (-74) dB (Figure 8b). Scattering value (Sa) of the area will be affected by the detection object detected by the pulse of the tool [17-20], it is apparent that the resulting value of the surface layer and bottom layer have a range of different values. Sv value will be affected by the depth and the target was detected [21-25].

Figure 5b on the total value Sa (dB) produces the extraction of data on surface layer using simple linear regression equation which produce \(y = 0.0961x - 6.4388 \), \(R^2 = 0.9159 \), with alpha value is 5, the results obtained
shows the relationship between the value S_a obtained by looking at the percentage value that is 91%. Figure 6b on the surface layer shows the total value of S_v have in common is $y=0.9012x - 67.687$ with alpha value is 5, the results obtained show little relevance or influence between S_v value by looking at the percentage value that is 4%, and this percentage is still far from 95%.

Figure 7b on the total value S_a (dB) produces the extraction of data on bottom layer using simple linear regression equation which produce $y=1.0468x + 4.7894 R^2=0.7793$, with alpha value is 5, the results obtained shows the relationship between the value S_a obtained by looking at the percentage value that is 77%. Figure 8b on the bottom layer shows the total value of S_v have in common is $y=0.9012x - 67.687 R^2=0.7732$, the results obtained shows the relationship between the value S_v obtained by looking at the percentage value that is 77%.

Conclusion

In this paper capable of analyzing a target on the surface and bottom waters with EP 500 and find out about the echogram readings along with their parts, and as a result there is a difference between the processing value S_a and S_v, where the value of S_v.

References

1. Akbar H, Pujiyati S, Natsir M (2014) The relation between sea bottom type and demersal fish in pangkajene waters south sulawesi 2011. Journal of fisheries and marine technology.

2. Moniharapon D, Jaya I, Manik H, Pujiyati S, Hestrianto T, et al. (2014) Daily migration and contribution of calanoida zooplankton to scattering volume in bandea sea, Indonesia. Journal of Environment and Ecology 5: 103-116.

3. Lubis MZ, Pujiyati S (2016) Detection backscatter value of mangrove crab (scylla sp.) using cruzpro fishfinder pcfs-80 hydroacoustic instrument. J Biosens Bioelectron 7: 1-5.

4. Manik HM, Furusawa M, Amakasu K (2006) Quantifying sea bottom surface backscattering strength and identifying bottom fish habitat by quantitative echo sounder. Japanese journal of applied physics 45: 4865.

5. Manik HM (2006) Study on acoustic quantification of sea bottom using quantitative echo sounder. Doctoral dissertation, Ph. D Dissertation. Tokyo University of Marine Science and Technology, Japan.

6. Pujiyati S, Hartati S, Priyono W (2010) Effects of grain size, roughness, and hardness of sea floor on back scattering value based on hydroacoustic detection. Journal of Tropical Marine Science and Technology 2: 59-67.

7. Simrad EK (1992) Instruction manual. Simrad EK 500.

8. Neilson JD, Clark D, Melvin GD, Perley P, Stevens C (2003) The dielectric distribution and characteristics of pre-spawning aggregations of pollock (Pollachius virens) as inferred from hydroacoustic observations: the implications for survey design. ICES Journal of Marine Science: Journal du Conseil 60: 860-871.

9. Langh L, Ross A, Crooke E, Jones A, Nicholson C, et al. (2014) Integrated hydroacoustic flares and geomechanical characterization reveal potential hydrocarbon leakage pathways in the Perth Basin, Australia. Marine and Petroleum Geology 61: 63-69.

10. Harahap ZA, Manik HM, Pujiyati S (2010) Acoustic backscatter quantification of seabed using multibeam echosounder instrument. In Third International Conference on Mathematics and Natural Sciences, Bandung, Indonesia.

11. Johannesson KA, Milson RB (1983) Fisheries acoustics: a practical manual for acoustic biomass estimation. Food and Agriculture Organization of the United Nations. pp: 249.

12. Jackson AC, Balena FJ, LaBarge WL, Pei G (1986) Transport composite fuselage technology: Impact dynamics and acoustic transmission. NASA Technical Reports Server, Washington, USA.

13. Simmonds J, MacLennan DN (2008) Fisheries acoustics: theory and practice. John Wiley and Sons.

14. Love RH (1977) Target strength of an individual fish at any aspect. The Journal of the Acoustical Society of America 62: 1397-1403.

15. De Robertis A, Taylor K (2014) In situ target strength measurements of the scyphomedusa Chrysaora melanaster. Fisheries Research 153: 18-23.

16. MacLennan DN, Simmonds J (1992) Fisheries Acoustics. Fish and Fisheries Series 5: 456.

17. Li X, Huang G, Dong T (2013) Exact analysis of the main bistatic scattering area on sea surface. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, Atlantis Press.

18. Sanchis L, García-Chocano VM, Llopis-Pontiveros R, Cilmente A, Martínez-Pastor J, et al. (2013) Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Physical review letters 110: 124301.

19. Fölter S, Polilke W (2012) Identification of aero-acoustic scattering matrices from large eddy simulation. Application to a sudden area expansion of a duct. Journal of sound and vibration 331: 3096-3113.

20. Manik HM (2013) Measuring acoustic backscattering strength of underwater target using high frequency sonar. 3rd International Conference on IEEE, In Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). pp: 381-384.

21. Li C, Cao W, Yu J, Ke T, Lu G, et al. (2012) An instrument for in situ measuring the volume scattering function of water: design, calibration and primary experiments. Sensors 12: 4514-4533.

22. Jiang X, Li T, Peng G, Zhong R, Jiang Q, et al. (2012) SU-E-T-539: The effect of the scattering volume of phantom on dose calculation accuracy using ekltak's cone-beam computed tomography (CBCT) for head-neck radiotherapy. Medical Physics 39: 3829-3829.

23. Gillies RG, Hussey GC, Sofko GJ, McWilliams KA (2012) A statistical analysis of Super DARN scattering volume electron densities and velocity corrections using a radar frequency shifting technique. Journal of Geophysical Research: Space Physics.

24. Zhang H, Yin H, Jia H, Yang J, Chang S (2012) The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume. Optics communications 285: 1771-1776.

25. Newton RG (2013) Scattering theory of waves and particles. Springer Science and Business Media.