On Integrable Structure behind the Generalized WDVV Equations

A. Morozov
ITEP, Moscow

ABSTRACT

In the theory of quantum cohomologies the WDVV equations imply integrability of the system \((I∂_µ - zC_µ)ψ = 0\). However, in generic situation – of which an example is provided by the Seiberg-Witten theory – there is no distinguished direction (like \(t^0\)) in the moduli space, and such equations for \(ψ\) appear inconsistent. Instead they are substituted by \((C_µ∂_ν - C_ν∂_µ)ψ \sim (F_µ∂_ν - F_ν∂_µ)ψ = 0\), where matrices \((F_µ)_{αβ} = \partial_α∂_β∂_µF\).

1 Quantum Cohomologies (a brief summary)

The WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations \([1]\) are an important ingredient of the theory of quantum cohomologies (2d topological \(σ\)-models) and play a role in the formulation of mirror transform. The central object in these studies is the prepotential: a function of “time”-variables \(F(t^α)\), which satisfies the WDVV equations:

\[C_µC_ν = C_νC_µ, \quad \forall µ, ν. \tag{1} \]

Here \(C_µ\) are matrices,

\[(C_µ)_{β}^γ = η^{αγ}(F_µ)_{γβ}, \quad (F_µ)_{αβ} = \frac{∂^3F}{∂τ^α∂τ^β∂τ^µ} \tag{2} \]

1 If the prepotential is interpreted as the “quantum” deformation of the generating function of intersection numbers on some manifold \(M\) (a Gromov-Witten functional for \(M\)), the variables \(t^α\) are associated with “observables” \(φ_α\) – the elements of the cohomology ring \(H^*(M)\). Basically,

\[F(t) = \langle \exp \left(\sum_{α=1}^{\dim H^*(M)} t^αφ_α \right) \rangle_0 \]
and the “metric"

\[\eta_{\alpha\beta}^{(0)} = (F_0)_{\alpha\beta} = \frac{\partial^3 F}{\partial t^\alpha \partial t^\beta}, \quad \eta^{\alpha\beta} \eta_{\beta\gamma} = \delta_{\alpha}^{\gamma}. \tag{3} \]

In conventional theory of quantum cohomologies there is a distinguished variable \(t^0 \) (associated with the unity \(\phi_0 = I \) in the ring \(H^* (M) \)), such that the metric \(\eta = \eta^{(0)} = F_0 \) in (3) is constant:

\[\frac{\partial \eta}{\partial t^\alpha} = 0 \quad \tag{4} \]

As a corollary, the matrices \(F_\mu \) and \(C_\mu \) are independent of \(t^0 \). In these circumstances the set of WDVV equations (1) together with the relations (2) – saying that the “structure constants” \(C_\mu \) are essentially the third derivatives of a single function \(F(t) \) – implies the consistency condition

\[[D_\mu (z), D_\nu (z)] = 0 \quad \forall \mu, \nu \tag{5} \]

for the set of differential equations (2)

\[D_\mu (z) \psi_z = \left(I \frac{\partial}{\partial t^\mu} - z C_\mu (t) \right) \psi_z (t) = 0 \quad \left(\partial_\mu \psi_z^\alpha = z C_{\mu\beta} \psi_z^\beta \right) \tag{6} \]

with arbitrary “spectral parameter” \(z \).

This reveals an integrable (Whitham-like) structure behind the conventional WDVV equations. (Direct interpretation of (6 is in terms of deformations of the Hodge structures on Kahler manifolds.)

The “Baker-Ahiezer vector-function” \(\psi_z (t) \) has various interpretations.

First, [3, 4], as a function of \(z \) it is a generating function of the correlators, linear in gravitational descendants (Morita-Mumford classes) \(c^n (\phi) \):

\[\psi_{z,\rho}^\alpha (t) = \sum_{n=0}^{\infty} z^n \langle c^n (\phi_\rho) \phi^\alpha \phi^{\sum t^\beta} \rangle_0 \tag{7} \]

Thus \(\psi_z \) is an important part of the reconstruction of the full spherical prepotential \(F_0 (t^0_n) = \langle \exp \sum_{\alpha,n} t^0_n c^n (\phi_\alpha) \rangle_0, \#(\alpha) = \dim H^* (M), n = 0,1, \ldots \) – the generating function of correlators with arbitrary number of descendants. Original prepotential appears when all descendant time-variables vanish:

\[F(t^0) = F_0 (t^0_n) |_{n z_j = 0} \]

When descendants are included, \(\psi_z \) satisfies a hierarchy of quadratic equations

\[\frac{\partial}{\partial t^\mu} \psi_z^{\alpha,\rho} = \eta^{\alpha\gamma} \langle c^m (\phi_\mu) \phi_\gamma \phi_\beta \rangle \psi_z^{\beta,\rho} = \psi_z^{\beta,\rho} \int \frac{dy}{y^{m+1}} \frac{\partial}{\partial t^\alpha} \psi_y^{\alpha,\mu} \tag{8} \]
which is the “quasiclassical” limit of some full (i.e. possessing a group-theory interpretation in the spirit of [3]) integrable hierarchy – to which the full prepotential, the generating function of all correlators for all genera, is a solution.

Second, the function \(\psi_z \) usually possesses integral representations of the form

\[
\psi_z^\alpha(t) = \int_{\Gamma} \Omega_\alpha^z(t)
\]

along some cycles on some manifold \(\tilde{M} \) – which is interpreted as a mirror of \(M \).

In concrete examples (see, for example, [4]) this representation is implied by the hidden group-theory structure behind integrable system (6), which allows to interpret \(\psi_z \) as eigenfunctions of Casimir operators. Such eigenfunctions are well known to possess natural integrable representations, see [6] and references therein.

Clarification of these constructions, associating some (loop) algebra with a manifold, remains an interesting open question.

2 WDVV Equations in Seiberg-Witten Theory

The WDVV-like equations are now known to arise in a somewhat broader context than conventional quantum cohomologies. Namely, one can relax the condition (4) and study the WDVV equations in the situation when there is no distinguished modulus \(t^0 \) and no distinguished metric \(\eta^{(0)} \). Such situation arises, for example, in Seiberg-Witten theory [7] of low-energy effective actions for \(N = 2 \) SUSY Yang-Mills models in four and five dimensions. This theory is long known to involve integrable structures [8] and the prepotential (quasiclassical \(\tau \)-function) theory [9]. The WDVV-like equations arise in Seiberg-Witten theory in the form [10]:

\[
F_\mu F_\lambda^{-1} F_\nu = F_\nu F_\lambda^{-1} F_\mu, \quad \forall \lambda, \mu, \nu
\]

\[
(F_\mu)_{\alpha \beta} = \partial_\alpha \partial_\beta \partial_\mu F
\]

i.e. the role of the metric \(\eta \) can be played by any matrix \(F_\lambda \) (actually, by any linear combination of such matrices). Accordingly, the mutually commuting matrices \(C_{\mu}^{(\lambda)} = F_\lambda^{-1} F_{\mu} \),

\[
\left[C_{\mu}^{(\lambda)}, C_{\nu}^{(\lambda)} \right] = 0 \quad \forall \mu, \nu
\]

are now implicitly dependent on the choice of \(\lambda \).

However, since generically there is no constant (moduli-independent) matrix \(F_\lambda \), the generalized WDVV equations (10) no longer imply (6). This system of

\footnote{
To avoid confusion, the set (10) is not richer than (6), as it can seem: with any given \(\lambda \) immediately implies the equations for all other \(\lambda \).}
consistent equations is instead substituted by

\[\left(\partial_\mu - C^{(\lambda)}_\mu \partial_\lambda \right) \psi = 0 \quad \forall \mu, \lambda \]

(12)

or, in a more symmetric form,

\[(F_\lambda \partial_\mu - F_\mu \partial_\lambda) \psi = 0 \quad \forall \mu, \lambda \]

(13)

It is easy to see that the operators with different \(\mu \) at the l.h.s. commute with each other:

\[
\left[\left(\partial_\mu - C^{(\lambda)}_\mu \partial_\lambda \right), \left(\partial_\nu - C^{(\lambda)}_\nu \partial_\lambda \right) \right] = \left[C^{(\lambda)}_\mu, C^{(\lambda)}_\nu \right] \partial^2_\lambda + \\
\left((\partial_\nu C^{(\lambda)}_\mu) - (\partial_\mu C^{(\lambda)}_\nu) + C^{(\lambda)}_\mu (\partial_\lambda C^{(\lambda)}_\nu) - C^{(\lambda)}_\nu (\partial_\lambda C^{(\lambda)}_\mu) \right) \partial_\lambda
\]

(14)

The first term at the r.h.s. vanishes due to the WDVV equations, and the second one can be seen to vanish if the definition of \(C^{(\lambda)}_\mu \) is used together with the fact that \(F_\mu \) are matrices, consisting of third derivatives. Eq. (13) is (12), multiplied by a matrix \(F_\lambda \) from the left.

It can still seem non-obvious that equations (13) are all consistent, i.e. that the vector \(\psi \) can be chosen in a \(\lambda \)-independent way. This follows from the relation:

\[
F_\mu \partial_\nu - F_\nu \partial_\mu = \\
F_\mu (\partial_\nu - C^{(\lambda)}_\nu \partial_\lambda) - F_\nu (\partial_\mu - C^{(\lambda)}_\mu \partial_\lambda)
\]

(15)

In order to return back from the generic system (12) to (6), it is enough to choose \(\psi = e^{zt} \psi_z \), what is a self-consistent anzats when all the \(C^{(0)}_\mu \) are \(t^0 \)-independent.

There is no spectral parameter in the system (13), instead it is homogeneous (linear) in derivatives and possesses many solutions. They can be formally represented in the form:

\[
\hat{\psi}(t) = P \exp \int^t dt' C^{(\lambda)}_\mu (t') \partial_\lambda = \left\{ I + \left(\int^t dt_1 C^{(\lambda)}_\mu (t_1) \right) + \\
+ \int^t dt_1 C^{(\lambda)}_\mu (t_1) \partial_\lambda \left(\int^t dt_2 C^{(\lambda)}_\nu (t_2) \right) + \ldots \right\} \hat{\psi}(t)
\]

(16)

and one can choose, for example, \(\hat{\psi}(t) = e^{zt} \). Then different terms of expansion of (13) in \(z \) are different solutions to (12).

3 As well as I understand such equations per se were studied as an alternative to (4) by B.Dubrovin (see ref. [1]) and other authors – but in the context of conventional quantum cohomology theory, with distinguished \(t^0 \)-direction.
As a simplest example, one can take

$$F = \frac{1}{2} \left(t_1^2 \log t_1 + t_2^2 \log t_2 + (t_1 - t_2)^2 \log(t_1 - t_2) \right)$$

(17)

which is the perturbative prepotential for $SU(3) N = 2$ SYM model in $4d$. Then the first few solution to (13) are:

$$
\psi = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix}, \quad \psi = \begin{pmatrix} t_1^2 - 2t_1 t_2 \\ t_2 - 2t_1 t_2 \end{pmatrix}, \\
\psi = \begin{pmatrix} t_1^3 - 2t_1^2 t_2 \\ -t_1 t_2 \end{pmatrix}, \quad \psi = \begin{pmatrix} t_1^3 - 2t_1^2 t_2 \\ -t_1^2 t_2 \end{pmatrix}, \quad \psi = \begin{pmatrix} -t_1 t_2 \\ t_3 - 2t_1 t_2 \end{pmatrix},
$$

(18)

By the way, $\psi^\alpha = t^\alpha$ is always a solution to (13) – this follows immediately from the definition of F_μ’s as the matrices of the 3-rd derivatives, which are symmetric under permutations of indices.

3 Conclusion and acknowledgements

The purpose of this letter is to explain that appropriate integrable structure on the moduli space exists behind the generalized WDVV equations, i.e. existence of a constant metric is not needed for such structure to emerge. I do not touch here neither interpretation, nor implications of this simple statement. They will be discussed elsewhere.

I appreciate illuminating discussions with A.Losev. This work was partly supported by the grant RFFI 96-15-96939.

References

[1] E.Witten, *Surv.Diff.Geom.* 1 (1991) 243;
R.Dijkgraaf, E.Verlinde and H.Verlinde, *Nucl.Phys.* B352 (1991) 59;
B.Dubrovin, *Geometry of 2D Topological Field Theories*, hep-th/9407018;
M.Kontsevich and Yu.Manin, *Comm.Math.Phys.* 164 (1994) 525.

[2] K.Saito, *Publ.RIMS* 19 (1983) 1231;
B.Block and A.Varchenko, *Int.J.Mod.Phys.* A7 (1992) 1467;
B.Dubrovin, ”Geometry and Integrability of Topological-Anti-topological Fusion”, preprint INFN-8/92-DSF;
S.Cecotti and C.Vafa, *Comm.Math.Phys.* 158 (1993) 569, hep-th/9211097.

[3] A.Losev, *Theor.Math.Phys.* 95 (1993) 595, hep-th/9211089; *JETP Lett.* 65 (1997) 374;
T.Eguchi, *Phys.Lett.* B305 (1993) 235;
A.Losev and I.Polyubin, *Int.J.Mod.Phys.* A10 (1995) 4161, hep-th/9305079.
[4] A. Givental, \texttt{alg-geom/9612001}.

[5] A. Morozov, \textit{Russian Physics Uspekhi} \textbf{37} (1994) 1, \texttt{hep-th/9303139}, \texttt{hep-th/9502091};
L. Vinet et al., \texttt{hep-th/9409093};
A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov et al., \textit{Int. J. Mod. Phys} \textbf{A10} (1995) 2589, \texttt{hep-th/9405011};
A. Mironov, L. Vinet et al., \textit{Theor. Math. Phys.} \textbf{100} (1995) 890, \texttt{hep-th/9312213}.

[6] A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, M. Olshanetsky et al. \textit{Int. J. Mod. Phys}. \textbf{A12} (1997) 2523, \texttt{hep-th/9601161}.

[7] N. Seiberg and E. Witten, \textit{Nucl. Phys.} \textbf{B426} (1994) 19, \texttt{hep-th/9407087};
\textit{Nucl. Phys.} \textbf{B431} (1994) 484, \texttt{hep-th/9408099}.

[8] A. Gorsky, I. Krichever, A. Marshall, A. Mironov et al., \textit{Phys. Lett.} \textbf{B355} (1995) 466, \texttt{hep-th/9505035};
E. Martinec and N. Warner, \texttt{hep-th/9509161};
R. Donagi and E. Witten, \texttt{hep-th/9510101}.

[9] I. Krichever, \texttt{hep-th/9205110}; \textit{Comm. Math. Phys.} \textbf{143} (1992) 415;
B. Dubrovin, \textit{Nucl. Phys.} \textbf{B379} (1992) 627;
T. Nakatsu and K. Takasaki, \texttt{hep-th/9509162};
H. Itoyama et al. \textit{Nucl. Phys.} \textbf{B491} (1997) 529, \texttt{hep-th/9512161}.

[10] A. Marshall, A. Mironov et al., \textit{Phys. Lett.} \textbf{B389} (1996) 43, \texttt{hep-th/9607106};
\textit{Mod. Phys. Lett.} \textbf{A12} (1997) 773, \texttt{hep-th/9701014}, \texttt{hep-th/9701123}. 6