Flatness of CR Submanifolds in a Sphere

Shanyu Ji and Yuan Yuan

November 2, 2009

Dedicated to Professor Yang, Lo in the Occasion of his 70th Birthday

1 Introduction

The Cartan-Janet theorem asserted that for any analytic Riemannian manifold \((M^n, g)\), there exist local isometric embeddings of \(M^n\) into Euclidean space \(\mathbb{E}^N\) as \(N\) is sufficiently large. The CR analogue of Cartan-Janet theorem is not true in general. In fact, Forstneric \cite{F086} and Faran \cite{Fa88} proved the existence of real analytic strictly pseudoconvex hypersurfaces \(M^{2n+1} \subset \mathbb{C}^{n+1}\) which do not admit any germ of holomorphic mapping taking \(M\) into sphere \(\partial \mathbb{B}^{N+1}\) for any \(N\).

There are recent progress on CR submanifolds in sphere \(\partial \mathbb{B}^{N+1}\). Zaitsev \cite{Za08} constructed explicit examples for the Forstneric and Faran phenomenon above. Ebenfelt, Huang and Zaitsev \cite{EHZ04} proved rigidity of CR embeddings of general \(M^{2n+1}\) into spheres with CR co-dimension \(< \frac{n}{2}\), which generalizes a result of Webster that was for the case of co-dimension 1 \cite{We79}. S.-Y. Kim and J.-W. Oh \cite{KO06} gave a necessary and sufficient condition for local embeddability into a sphere \(\partial \mathbb{B}^{N+1}\) of a generic strictly pseudoconvex psuedo-hermitian CR manifold \((M^{2n+1}, \theta)\) in terms of its Chern-Moser curvature tensors and their derivatives.

In Euclidean geometry, for a real submanifold \(M^n \subset \mathbb{E}^{n+a}\), \(M\) is a piece of \(\mathbb{E}^n\) if and only if its second fundamental form \(II_M \equiv 0\). In projective geometry, for a complex submanifold \(M^n \subset \mathbb{C}P^{n+a}\), \(M\) is a piece of \(\mathbb{C}P^n\) if and only if its projective second fundamental form \(II_M \equiv 0\) (c.f. \cite{IL03}, p.81). In CR geometry, we prove the CR analogue of this fact in this paper as follows:

Theorem 1.1 Let \(H : M' \to \partial \mathbb{B}^{N+1}\) be a smooth CR-embedding of a strictly pseudoconvex CR real hypersurface \(M' \subset \mathbb{C}^{n+1}\). Denote \(M := H(M')\). If its CR second fundamental
form $II_M \equiv 0$, then $M \subset F(\partial B^{n+1}) \subset \partial B^{N+1}$ where $F : B^{n+1} \rightarrow B^{N+1}$ is a certain linear fractional proper holomorphic map.

Previously, it was proved by P. Ebenfelt, X. Huang and D. Zaitsev ([EHZ04], corollary 5.5), under the above same hypothesis, that M' and hence M are locally CR-equivalent to the unit sphere ∂B^{n+1} in \mathbb{C}^{n+1}.

There are several definitions of the CR second fundamental forms II_M of M (see Section 3, 4, 5, and 6). The result in [EHZ04] used Definition 1 or 2. However, to prove Theorem 1.1, we need to use Definitions 3 and 4. We’ll prove in Section 4 that $II_M \equiv 0$ by any one of the four definitions will imply $II_M \equiv 0$ for all other three definitions. One of the ingredients for our proof of Theorem 1.1 is the result of Ebenfelt-Huang-Zaitsev [EHZ04] so that M can be regarded as the image of a rational CR map $F : \partial \mathbb{H}^{n+1} \rightarrow M \subset \partial \mathbb{H}^{N+1}$. Another ingredient is a theorem of Huang ([Hu99]) that such a map F is linear if and only if its geometric rank κ_0 is zero. The third one is a result from [HJY09] about a special lift for maps between spheres.

Acknowledgments We would like to thank Professor Xiaojun Huang for the constant encouragement and support. The second author is also grateful to Wanke Yin and Yuan Zhang for helpful discussions.

2 Preliminaries

- **Maps between balls** We denote by $\text{Prop}(B^n, B^N)$ the space of all proper holomorphic maps from the unit ball $B^n \subset \mathbb{C}^n$ to B^N, denote by $\text{Prop}_k(B^n, B^N)$ the space $\text{Prop}(B^n, B^N) \cap C^k(B^n)$, and denote by $\text{Rat}(B^n, B^N)$ the space $\text{Prop}(B^n, B^N) \cap \{\text{rational maps}\}$. We say that F and $G \in \text{Prop}(B^n, B^N)$ are equivalent if there are automorphisms $\sigma \in \text{Aut}(B^n)$ and $\tau \in \text{Aut}(B^N)$ such that $F = \tau \circ G \circ \sigma$.

Write $\mathbb{H}^n := \{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} : \text{Im}(w) > |z|^2\}$ for the Siegel upper-half space. Similarly, we can define the space $\text{Prop}(\mathbb{H}^n, \mathbb{H}^N)$, $\text{Prop}_k(\mathbb{H}^n, \mathbb{H}^N)$ and $\text{Rat}(\mathbb{H}^n, \mathbb{H}^N)$ similarly. By the Cayley transformation $\rho_n : \mathbb{H}^n \rightarrow B^n$, $\rho_n(z, w) = (\frac{2z}{1-w^2}, \frac{1+iw}{1-w^2})$, we can identify a map $F \in \text{Prop}_k(\mathbb{H}^n, B^N)$ or $\text{Rat}(\mathbb{H}^n, B^N)$ with $\rho_N^{-1} \circ F \circ \rho_n$ in the space $\text{Prop}_k(\mathbb{H}^n, \mathbb{H}^N)$ or $\text{Rat}(\mathbb{H}^n, \mathbb{H}^N)$, respectively. We say that F and $G \in \text{Prop}(\mathbb{H}^n, \mathbb{H}^N)$ are equivalent if there are automorphisms $\sigma \in \text{Aut}(\mathbb{H}^n)$ and $\tau \in \text{Aut}(\mathbb{H}^N)$ such that $F = \tau \circ G \circ \sigma$.

We denote by $\partial \mathbb{H}^n = \{(z, w) \in \mathbb{C}^{n-1} \times \mathbb{C} : \text{Im}(w) = |z|^2\}$ for the Heisenberg hypersurface. For any map $F \in \text{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$, by restricting on $\partial \mathbb{H}^n$, we can regard F as a C^2 CR map from $\partial \mathbb{H}^n$ to $\partial \mathbb{H}^N$, and we denote it as $F \in \text{Prop}_2(\partial \mathbb{H}^n, \partial \mathbb{H}^N)$. We say that F and $G \in \text{Prop}_2(\partial \mathbb{H}^n, \partial \mathbb{H}^N)$ are equivalent if there are automorphisms $\sigma \in \text{Aut}(\partial \mathbb{H}^n) = \text{Aut}(\mathbb{H}^n)$ and $\tau \in \text{Aut}(\partial \mathbb{H}^N) = \text{Aut}(\mathbb{H}^N)$ such that $F = \tau \circ G \circ \sigma$.

We can parametrize $\partial \mathbb{H}^n$ by (z, \overline{z}, u) through the map $(z, \overline{z}, u) \to (z, u + i|z|^2)$. In what follows, we will assign the weight of z and u to be 1 and 2, respectively. For a non-negative integer m, a function $h(z, \overline{z}, u)$ defined over a small ball U_0 in $\partial \mathbb{H}^n$ is said to be of quantity $o_{\text{wt}}(m)$ if $\frac{h(z, \overline{z}, u)}{|z|^m} \to 0$ uniformly for (z, u) on any compact subset of U as $t(\in \mathbb{R}) \to 0$.

- **Partial normalization of F** Let $F = (f, \phi, g) = (\tilde{f}, g) = (f_1, \cdots, f_n-1, \phi_1, \cdots, \phi_{N-n}, g)$ be a non-constant map in Prop$_2(\partial \mathbb{H}^n, \partial \mathbb{H}^N)$ with $F(0) = 0$. For each $p \in \partial \mathbb{H}^n$, we write $\sigma_p^0 \in \text{Aut}(\mathbb{H}^n)$ with $\sigma_p^0(0) = p$ and $\tau_p^F \in \text{Aut}(\mathbb{H}^N)$ with $\tau_p^F(F(p)) = 0$ for the maps

\[
\begin{align*}
\sigma_p^0(z, w) &= (z + z_0, w + w_0 + 2i(z, \overline{z}_0)), \\
\tau_p^F(z^*, w^*) &= (z^* - \tilde{f}(z_0, w_0), w^* - g(z_0, w_0) - 2i(z^*, \overline{\tilde{f}(z_0, w_0)})).
\end{align*}
\]

F is equivalent to $F_p = \tau_p^F \circ F \circ \sigma_p^0 = (f_p, \phi_p, g_p)$. Notice that $F_0 = F$ and $F_p(0) = 0$. The following is basic for the understanding of the geometric properties of F.

Lemma 2.1 ([82, Lemma 5.3, Hu99], [Lemma 2.0, Hu03]): Let F be a non-constant map in Prop$_2(\partial \mathbb{H}^n, \partial \mathbb{H}^N)$, $2 \leq n \leq N$ with $F(0) = 0$. For each $p \in \partial \mathbb{H}^n$, there is an automorphism $\tau_p^\ast \in \text{Aut}_0(\mathbb{H}^N)$ such that $F_p^\ast := \tau_p^\ast \circ F_p$ satisfies the following normalization:

\[
\begin{align*}
f_p^\ast &= z + \frac{i}{2} \partial_p^\ast(1)(z)w + o_{\text{wt}}(3), \\
\phi_p^\ast &= \phi_p^\ast(2)(z) + o_{\text{wt}}(2), \\
g_p^\ast &= w + o_{\text{wt}}(4), \\
\langle \overline{z}, \overline{a_p^\ast(1)}(z) \rangle |z|^2 &= |\phi_p^\ast(2)(z)|^2.
\end{align*}
\]

Let $A(p) = -2i(\partial^2(f_p^\ast)^\ast)_{1 \leq i, j \leq n-1}$, $\partial_p^\ast(1)(z)w = \partial_p^\ast(2)(z) + o_{\text{wt}}(2)$. We call the rank of $A(p)$, which we denote by $Rk_F(p)$, the geometric rank of F at p. $Rk_F(p)$ depends only on p and F, and is a lower semi-continuous function on p. We define the geometric rank of F to be $\kappa_0(F) = \max_{p \in \partial \mathbb{H}^n} Rk_F(p)$. Notice that we always have $0 \leq \kappa_0 \leq n - 1$. We define the geometric rank of $F \in \text{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$ to be the one for the map $\rho_n^{-1} \circ F \circ \rho_n \in \text{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$.

Lemma 2.2 (ct. [Hu99], theorem 4.3) $F \in \text{Prop}_2(\mathbb{H}^n, \mathbb{H}^N)$ has geometric rank 0 if and only if F is equivalent to a linear map.

Denote by $S_0 = \{(j, l) : 1 \leq j \leq \kappa_0, 1 \leq l \leq (n - 1), j \leq l\}$ and write $S := \{(j, l) : (j, l) \in S_0, \text{ or } j = \kappa_0 + 1, l \in \{\kappa_0 + 1, \cdots, \kappa_0 + N - n - \frac{(2n - \kappa_0 - 1)\kappa_0}{2}\}\}$.
Lemma 2.3 ([Lemma 3.2, Hu03]): Let F be a C^2-smooth CR map from an open piece $M \subset \partial \mathbb{H}^n$ into $\partial \mathbb{H}^N$ with $F(0) = 0$ and $Rk_F(0) = \kappa_0$. Let $P(n, \kappa_0) = \frac{\kappa_0(2n - \kappa_0 - 1)}{2}$. Then $N \geq n + P(n, \kappa_0)$ and there are $\sigma \in Aut_0(\partial \mathbb{H}^n)$ and $\tau \in Aut_0(\partial \mathbb{H}^N)$ such that $F^{***} = \tau \circ F \circ \sigma := (f, \varphi, g)$ satisfies the following normalization conditions:

\[
\begin{align*}
 f_j &= z_j + \frac{i\mu_j}{2} z_j w + o_w(3), \quad \frac{\partial^2 f_j}{\partial w^2}(0) = 0, \quad j = 1, \ldots, \kappa_0, \quad \mu_j > 0, \\
 f_j &= z_j + o_w(3), \quad j = \kappa_0 + 1, \ldots, n - 1 \\
 g &= w + o_w(4), \\
 \phi_{jl} &= \mu_j z_j z_l + o_w(2), \text{ where } (j, l) \in S \text{ with } \mu_{jl} > 0 \text{ for } (j, l) \in S_0 \text{ and } \mu_{jl} = 0 \text{ otherwise}
\end{align*}
\]

where $\mu_{jl} = \sqrt{\mu_j + \mu_l}$ for $j, l \leq \kappa_0$ if $j \neq l$, $\mu_{jl} = \sqrt{\mu_j}$ if $j \leq \kappa_0$ and $l > \kappa_0$ or if $j = l \leq \kappa_0$.

- Pseudohermitian metric and Webster connection
Let M be a C^2 smooth real hypersurface in \mathbb{C}^{n+1}. We denote by $T^*M = TM \cap iTM \subset TM$ its maximal complex tangent bundle with the complex structure $J : T^cM \rightarrow T^cM$. Here $J(\frac{\partial}{\partial x_j}) = \frac{\partial}{\partial y_j}$ and $J(\frac{\partial}{\partial y_j}) = -\frac{\partial}{\partial x_j}$ in terms of holomorphic coordinates. We denote by $\mathcal{V} = T_{0,1}M = \{X + iJX \mid X \in T^cM\} \subset \mathbb{C}TM := TM \otimes \mathbb{C}$ the CR bundle. We also denote $T^{1,0}M = \overline{\mathcal{V}}$. All T^cM, \mathcal{V} and $\overline{\mathcal{V}}$ are complex rank n vector bundles.

Write $T^0M := (T^{1,0}M \oplus T^{0,1}M)\perp \subset CT^*M$ for its rank one subbundle. Write $T'M := T^{0,1\perp} \subset \mathbb{C}T^*M$ for its rank $n + 1$ holomorphic or $(1,0)$ cotangent bundle of M. Here $T^0 \subset T'M$.

A real nonvanishing 1-form θ over M is called a contact form if $\theta \wedge (d\theta)^n \neq 0$. Let M be as above given by a defining function r. Then the 1-form $\theta = i\partial r$ is a contact form of M.

We say that (M, θ) is strictly pseudoconvex if the Levi-form L_θ is positive definite for all $z \in M$. Here the Levi-form L_θ with respect to θ is defined by

\[L_\theta(\overline{\nu}, \overline{v}) := -i\partial(\nu \wedge \overline{v}), \quad \forall \nu, \overline{v} \in T^{1,0}_p(M), \forall p \in M.\]

Associated with a contact form θ one has the Reeb vector field R_θ, defined by the equations: (i) $d\theta(R_\theta, \cdot) \equiv 0$, (ii) $\theta(R_\theta) \equiv 1$. As a skew-symmetric form of maximal rank $2n$, the form $d\theta|_{T_pM}$ has a 1- dimensional kernel for each $p \in M^{2n+1}$. Hence equation (i) defines a unique line field $\langle R_\theta \rangle$ on M. The contact condition $\theta \wedge (d\theta)^n \neq 0$ implies that θ is non-trivial on that line field, so the unique real vector field is defined by the normalization condition (ii).
According to Tanaka [T75] and Webster [We78], \((M, \theta) \) is called a strictly pseudoconvex pseudohermitian manifold if there are \(n \) complex 1-forms \(\theta^\alpha \) so that \(\{ \theta^1, ..., \theta^n \} \) forms a local basis for holomorphic cotangent bundle \(H^\ast (M) \) and

\[
d\theta = i \sum_{\alpha, \beta = 1}^n h_{\alpha \beta} \theta^\alpha \wedge \theta^\beta
\]

where \((h_{\alpha \beta}) \), called the Levi form matrix, is positive definite. Such \(\theta^\alpha \) may not be unique. Following Webster (1978), a coframe \((\theta, \theta^\alpha) \) is called admissible if (5) holds. The admissible coframes are determined up to transformations \(\tilde{\theta}^\alpha = u^\alpha_\beta \theta^\beta \) where \((u^\alpha_\beta) \in GL(\mathbb{C}^n) \).

Theorem 2.4 (Webster, 1978) Let \((M^{2n+1}, \theta) \) be a strictly pseudoconvex pseudohermitian manifold and let \(\theta^j \) be as in (5). Then there are unique way to write

\[
d\theta^\alpha = \sum_{\gamma = 1}^n \theta^\gamma \wedge \omega^\alpha_\gamma + \theta \wedge \tau^\alpha,
\]

where \(\tau^\alpha \) are \((0,1)\)-forms over \(M \) that are linear combination of \(\theta^\alpha \) and \(\omega^\beta_\alpha \) are 1-forms over \(M \) such that

\[
0 = dh_{\alpha \beta} - h_{\gamma \beta} \omega^\gamma_\alpha - h_{\alpha \gamma} \omega^\gamma_\beta,
\]

We may denote \(\omega_{\alpha \beta} = h_{\gamma \beta} \omega^\gamma_\alpha \) and \(\overline{\omega_{\alpha \beta}} = h_{\alpha \gamma} \omega^\gamma_\beta \). In particular, if

\[
h_{\alpha \beta} = \delta_{\alpha \beta},
\]

the identity in (7) becomes \(0 = -\omega_{\alpha \beta} - \overline{\omega_{\alpha \beta}} \), i.e.,

\[
0 = \omega^\alpha_\beta + \omega^\beta_\alpha.
\]

The condition on \(\tau^\beta \) means:

\[
\tau^\beta = A^\beta_\gamma \theta^\gamma, \quad A^\alpha_\beta = A^\beta_\alpha,
\]

which holds automatically. The curvature is given by

\[
d\omega^\alpha_\beta - \omega^\gamma \wedge \omega^\beta_\gamma = R^\alpha_\beta \mu \nu \theta^\mu \wedge \theta^\nu + W^\alpha_\beta \mu \nu \theta^\mu \wedge \theta - W^\beta_\alpha \mu \nu \theta^\nu \wedge \theta + i \theta^\alpha \wedge \tau^\beta - i \tau^\alpha \wedge \theta^\beta
\]

where the functions \(R^\alpha_\beta \mu \nu \) and \(W^\alpha_\beta \mu \) represent the pseudohermitian curvature of \((M, \theta) \).
3 CR second fundamental forms —– Definition 1

We are going to survey four definitions of the CR second fundamental forms II_M of M in $\partial \mathbb{H}^{N+1}$. We start with Definition 1 which is the intrinsic one in terms of a coframe.

Lemma 3.1 ([EHZ04], corollary 4.2) Let M and \tilde{M} be strictly pseudoconvex CR-manifolds of dimensions $2n+1$ and $2\tilde{n}+1$ respectively, and of CR dimensions n and \tilde{n} respectively. Let $F: M \rightarrow \tilde{M}$ be a smooth CR-embedding. If $(\theta, \theta^{\alpha})$ is an admissible coframe on M, then in a neighborhood of a point $\tilde{p} \in F(M)$ in \tilde{M} there exists an admissible coframe $(\tilde{\theta}, \tilde{\theta}^{\alpha})$ on \tilde{M} with $F^*(\tilde{\theta}, \tilde{\theta}^{\alpha}, 0) = (\theta, \theta^{\alpha}, 0)$. In particular, the Reeb vector field \tilde{R} is tangent to $F(M)$. If we choose the Levi form matrix of M such that the functions $h_{\alpha\beta}$ in (5) with respect to $(\theta, \theta^{\alpha})$ to be $\delta_{\alpha\beta}$, then $(\tilde{\theta}, \tilde{\theta}^{\alpha})$ can be chosen such that the Levi form matrix of \tilde{M} relative to it is also δ_{AB}. With this additional property, the coframe $(\tilde{\theta}, \tilde{\theta}^{\alpha})$ is uniquely determined along M up to unitary transformations in $U(n) \times U(\tilde{n} - n)$.

If $(\theta, \theta^{\alpha})$ and $(\tilde{\theta}, \tilde{\theta}^{\alpha})$ are as above such that the condition on the Levi form matrices in Lemma 3.1 are satisfied, we say that the coframe $(\tilde{\theta}, \tilde{\theta}^{\alpha})$ is adapted to the coframe $(\theta, \theta^{\alpha})$. In this case, by (9), we have

$$d\theta^{\alpha} = \sum_{\gamma=1}^{n} \theta^{\gamma} \wedge \omega^{\alpha}_{\gamma} + \theta \wedge \tau^{\alpha}, \quad 0 = \omega^{\beta}_{\alpha} + \omega^{\alpha}_{\beta}, \quad \forall 1 \leq \alpha, \beta \leq n,$$

and

$$d\tilde{\theta}^{A} = \sum_{B=1}^{\tilde{n}} \tilde{\theta}^{C} \wedge \tilde{\omega}^{A}_{C} + \tilde{\theta} \wedge \tilde{\tau}^{A}, \quad 0 = \tilde{\omega}^{B}_{A} + \tilde{\omega}^{A}_{B}, \quad \forall 1 \leq A, B \leq N.$$

For simplicity, we may denote $F^*\tilde{\omega}^{A}_{B}$ by ω^{A}_{B}. We also denote $F^*\tilde{\omega}^{A}_{AB}$ by ω^{A}_{AB} where $\omega^{A}_{AB} = \omega^{AB}_{A}$.

Write $\omega^{\mu}_{\alpha \beta} = \omega^{\mu \beta}_{\alpha}$. The matrix of $(\omega^{\mu}_{\alpha \beta})$, $1 \leq \alpha, \beta \leq n$, $n+1 \leq \mu \leq 2n$, defines the CR second fundamental form of M. It was used in [We79] and [Fa90].

4 CR second fundamental forms —– Definition 2

Definition 2 introduced in [EHZ04] will be the extrinsic one in terms of defining function.

Let $F: M \rightarrow \tilde{M}$ be a smooth CR-embedding between $M \subset \mathbb{C}^{n+1}$ and $\tilde{M} \subset \mathbb{C}^{N+1}$ where M and \tilde{M} are real strictly pseudoconvex hypersurfaces of dimensions $2n+1$ and $2\tilde{n}+1$, and
CR dimensions n and \tilde{n}, respectively. Let $p \in M$ and $\tilde{p} = F(p) \in \tilde{M}$ be points. Let $\tilde{\rho}$ be a local defining function for \tilde{M} near the point \tilde{p}. Let

$$E_k(p) := \text{span}_\mathbb{C}\{L^J(\tilde{\rho}_Z \circ F)(p) \mid J \in (\mathbb{Z}^n)^n, 0 \leq |J| \leq k\} \subset T^{1,0}_p\mathbb{C}^{n+1},$$

where $\tilde{\rho}_Z := \partial_{\tilde{\rho}}$ is the complex gradient (i.e., represented by vectors in \mathbb{C}^{n+1} in some local coordinate system Z' near \tilde{p}). Here we use multi-index notation $L^J = L_{1}^{\alpha} \cdots L_{n}^{\alpha}$ and $|J| = J_1 + \cdots + J_n$. It was shown in [La01] that $E_k(p)$ is independent of the choice of local defining function $\tilde{\rho}$, coordinates Z' and the choice of basis of the CR vector fields L_T, \ldots, L_N.

The CR second fundamental form H_M of M is defined by (cf. [EHZ04], §2)

$$IH_M(X_p, Y_p) := \pi(XY(\tilde{\rho}_Z \circ f)(p)) \in \tilde{T}_pM/E_1(p) \quad (12)$$

where $\tilde{\rho}_Z = \partial_{\tilde{\rho}}$ is represented by vectors in \mathbb{C}^{n+1} in some local coordinate system Z' near \tilde{p}, X, Y are any $(1,0)$ vector fields on M extending given vectors $X_p, Y_p \in T^{1,0}_p(M)$, and $\pi : \tilde{T}_pM \to \tilde{T}_pM/E_1(p)$ is the projection map.

Since \tilde{M} and M are strictly pseudoconvex, the Levi form of \tilde{M} (at \tilde{p}) with respect to $\tilde{\rho}$ defines an isomorphism

$$\tilde{T}^{1,0}_p\tilde{M}/E_1(p) \cong T^{1,0}_p\tilde{M}/F_1(T^{1,0}_pM)$$

and the CR second fundamental form can be viewed as an \mathbb{C}-linear symmetric form

$$IH_{M,p} : T^{1,0}_pM \times T^{1,0}_pM \to T^{1,0}_p\tilde{M}/F_1(T^{1,0}_pM) \quad (13)$$

that does not depend on the choice of $\tilde{\rho}$ (cf.[EHZ04], §2).

The relation between Definition 1 and Definition 2 was discussed in [EHZ04]. Let $(M, \tilde{M}), (\theta, \theta^\alpha), (\tilde{\theta}, \tilde{\theta}^\alpha)$ be as in Lemma 3.1, and we abuse the structure bundle (θ, θ^α) on M with the structure bundle $(\tilde{\theta}, \tilde{\theta}^\alpha)$ on \tilde{M}. We can choose a defining function $\tilde{\rho}$ of \tilde{M} near a point $\tilde{p} = F(p) \in \tilde{M}$ where $p \in M$ such that $\theta = i\tilde{\rho}$ on \tilde{M}, i.e., in local coordinates Z' in \mathbb{C}^{n+1}, we have

$$\theta = i \sum_{k=1}^{N+1} \frac{\partial \tilde{\rho}}{\partial \tilde{Z}_k} d\tilde{Z}_k,$$

where we pull back the forms $d\tilde{Z}_1, \ldots, d\tilde{Z}_{N+1}$ to \tilde{M}. Then we consider the coframe $(\theta, \theta^\alpha) = (F^*\tilde{\theta}, F^*\tilde{\theta}^\alpha)$ on M near p with $F(p) = \tilde{p}$. We take its dual frame (T, L_A) of (θ, θ^A) and have

$$L_\beta(\tilde{\rho}_Z \circ F)^\alpha = -iL_\beta \omega d\theta = g_{\beta\gamma}^\alpha d\theta^\gamma = g_{\beta\gamma}^\alpha \theta^\gamma.$$

(14)
Here we used the definition of the construction, (5) and the dual relationship \(\langle L_\beta, \theta^\alpha \rangle = \delta^\alpha_\beta \) and also notice that \(g_{\beta \gamma} = \delta_{\beta \gamma} \). Applying \(L_\alpha \) to both sides of (14), we obtain
\[
L_\alpha L_\beta (\tilde{\rho} Z \circ F) = g_{\beta \gamma} L_\alpha \omega_{\alpha} \theta^\gamma \mod (\theta, \theta^\gamma)
\]
which implies
\[
II_M(L_\alpha, L_\beta) = \omega_{\alpha} \beta, n + 1 \leq \mu \leq N.
\]
This identity gives the equivalent relation of the intrinsic and extrinsic definitions of \(II_M \).

Notice that we need a right choice of \((\theta, \theta^A), (T, L_A)\) and \(\tilde{\rho}\).

By using \((\omega_{\alpha}^b \beta)\) and (15), as in (13), we can also define
\[
II_{M,p} : T_{p}^{1,0} M \times T_{p}^{1,0} M \to T_{p}^{1,0} \tilde{M}/F_{p}(T_{p}^{1,0} M)
\]
which is independent of the choice of the adapted coframe \((\theta, \theta^A)\) in case \(\tilde{M}\) is locally CR embeddable in \(\mathbb{C}^{N+1}\) (cf. [EHZ04], § 4).

5 CR second fundamental forms —— Definition 3

Definition 3 will be the one as a tensor with respect to the group \(GL^Q(\mathbb{C}^{N+2}) \).

The bundle \(GL^Q(\mathbb{C}^{N+2}) \) over \(\partial \mathbb{H}^{N+1} \)

We consider a real hypersurface \(Q \) in \(\mathbb{C}^{N+2} \) defined by the homogeneous equation
\[
\langle Z, Z \rangle := \sum A Z^A Z^A + \frac{i}{2} (Z^0 Z^{N+1} - Z^0 Z^{N+1}) = 0,
\]
where \(Z = (Z^0, Z^A, Z^{N+1})^t \in \mathbb{C}^{N+2} \). Let
\[
\pi_0 : \mathbb{C}^{N+2} - \{0\} \to \mathbb{CP}^{N+1}, \quad (z_0, ..., z_{N+1}) \mapsto [z_0 : ... : z_{N+1}],
\]
be the standard projection. For any point \(x \in \mathbb{CP}^{N+1} \), \(\pi_0^{-1}(x) \) is a complex line in \(\mathbb{C}^{N+2} - \{0\} \). For any point \(v \in \mathbb{C}^{N+2} - \{0\} \), \(\pi_0(v) \in \mathbb{CP}^{N+1} \) is a point. The image \(\pi_0(Q - \{0\}) \) is the Heisenberg hypersurface \(\partial \mathbb{H}^{N+1} \subset \mathbb{CP}^{N+1} \).

For any element \(A \in GL(\mathbb{C}^{N+2}) \):
\[
A = (a_0, ..., a_{N+1}) = \begin{bmatrix} a_0^{(0)} & a_1^{(0)} & \cdots & a_{N+1}^{(0)} \\ a_0^{(1)} & a_1^{(1)} & \cdots & a_{N+1}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_0^{(N+1)} & a_1^{(N+1)} & \cdots & a_{N+1}^{(N+1)} \end{bmatrix} \in GL(\mathbb{C}^{N+2}),
\]
where each a_j is a column vector in \mathbb{C}^{N+2}, $0 \leq j \leq N + 1$. This A is associated to an automorphism $A^* \in Aut(\mathbb{C}P^{N+1})$ given by

$$A^*\left([z_0 : z_1 : \ldots : z_{N+1}]\right) = \left[\sum_{j=0}^{N+1} a_j^{(0)} z_j : \sum_{j=0}^{N+1} a_j^{(1)} z_j : \ldots : \sum_{j=0}^{N+1} a_j^{(N+1)} z_j\right]. \quad (20)$$

When $a_0^{(0)} \neq 0$, in terms of the non-homogeneous coordinates (w_1, \ldots, w_n), A^* is a linear fractional from \mathbb{C}^{N+1} which is holomorphic near $(0, \ldots, 0)$:

$$A^*(w_1, \ldots, w_{N+1}) = \left(\sum_{j=0}^{N+1} a_j^{(1)} w_j, \ldots, \sum_{j=0}^{N+1} a_j^{(N+1)} w_j\right), \quad \text{where } w_j = \frac{z_j}{z_0}. \quad (21)$$

We denote $A \in GL^{Q}(\mathbb{C}^{N+2})$ if A satisfies $A(Q) \subseteq Q$ where we regard A as a linear transformation of \mathbb{C}^{N+2}. If $A \in GL^{Q}(\mathbb{C}^{N+2})$, we must have $A^*(\partial \mathbb{H}^{N+1}) \subseteq \partial \mathbb{H}^{N+1}$, so that $A^* \in Aut(\partial \mathbb{H}^{N+1})$. Conversely, if $A^* \in Aut(\partial \mathbb{H}^{N+1})$, then $A \in GL^{Q}(\mathbb{C}^{N+2})$.

We define a bundle map:

$$\pi : \quad GL(\mathbb{C}^{N+2}) \rightarrow \mathbb{C}P^{N+1} \\
A = (a_0, a_1, \ldots, a_{N+1}) \mapsto \pi_0(a_0).$$

Then by (20), for any map $A \in GL(\mathbb{C}^{N+2})$, $A \in \pi^{-1}(\pi_0(a_0)) \iff A^*([1 : 0 : \ldots : 0]) = \pi_0(a_0)$. In particular, by the restriction, we consider a map

$$\pi : \quad GL^{Q}(\mathbb{C}^{N+2}) \rightarrow \partial \mathbb{H}^{N+1} \\
A = (a_0, a_1, \ldots, a_{N+1}) \mapsto \pi_0(a_0). \quad (22)$$

We get $\partial \mathbb{H}^{N+1} \simeq GL^{Q}(\mathbb{C}^{N+2})/P_1$ where P_1 is the isotropy subgroup of $GL^{Q}(\mathbb{C}^{N+2})$. Then by (20), for any map $A \in GL^{Q}(\mathbb{C}^{n+2})$,

$$A \in \pi^{-1}(\pi_0(a_0)) \iff A^*([1 : 0 : \ldots : 0]) = \pi_0(a_0). \quad (23)$$

CR submanifolds of $\partial \mathbb{H}^{N+1}$ Let $H : M' \rightarrow \partial \mathbb{H}^{N+1}$ be a CR smooth embedding where M' is a strictly pseudoconvex smooth real hypersurface in \mathbb{C}^{n+1}. We denote $M = H(M')$.

Let $R_{M'}$ be the Reeb vector field of M' with respect to a fixed contact form on M'. Then the real vector $R_{M'}$ generates a real line bundle over M', denoted by $\mathcal{R}_{M'}$. Since we can regard the rank n complex vector bundle $T^{1,0}M'$ as the rank $2n$ real vector bundle, over the real number field \mathbb{R} we have:

$$TM' = T^cM' \oplus \mathcal{R}_{M'} \simeq T^{1,0}M' \oplus \mathcal{R}_{M'}. \quad (24)$$
given by
\[(a_j \frac{\partial}{\partial x_j}, b_j \frac{\partial}{\partial y_j}) + cR_{M'} \mapsto (a_j + ib_j) \frac{\partial}{\partial z_j} + cR_{M'}, \; \forall a_j, b_j, c \in \mathbb{R}. \tag{25}\]

Since \(H \) is a CR embedding, we have
\[H_*(T^{1,0}M') = T^{1,0}M \subset T^{1,0}(\partial \mathbb{H}^{N+1}), \; TM \simeq H_*(T^{1,0}M') \oplus H_*(\mathcal{R}_{M'}) \subset T(\partial \mathbb{H}^{N+1}). \tag{26}\]

Lifts of the CR submanifolds Let \(M = H(M') \subset \partial \mathbb{H}^{N+1} \) be as above. Consider the commutative diagram
\[\begin{array}{ccc}
GL^Q(\mathbb{C}^{N+2}) & \xrightarrow{e} & M \\
\downarrow \pi & & \leftarrow \downarrow \partial \mathbb{H}^{N+1} \\
\end{array}\]

Any map \(e \) satisfying \(\pi \circ e = Id \) is called a lift of \(M \) to \(GL^Q(\mathbb{C}^{N+2}) \).

In order to define a more specific lifts, we need to give some relationship between geometry on \(\partial \mathbb{H}^{N+1} \) and on \(\mathbb{C}^{N+2} \) as follows. For any subset \(X \in \partial \mathbb{H}^{N+1} \), we denote \(\hat{X} := \pi_0^{-1}(X) \) where \(\pi_0: \mathbb{C}^{N+2} - \{0\} \to \mathbb{CP}^{N+1} \) is the standard projection map \((18) \). In particular, for any \(x \in M, \hat{x} \) is a complex line and for the real submanifold \(M^{2n+1} \), the real submanifold \(M^{2n+3} \) is of dimension \(2n + 3 \).

For any \(x \in M \), we take \(v \in \hat{x} = \pi_0^{-1}(x) \subset \mathbb{C}^{N+2} - \{0\} \), and we define
\[\hat{T}_x M = T_v \hat{M}, \; \hat{T}_x^{1,0} M = T_v^{1,0} \hat{M}, \; \hat{R}_{M,x} := \hat{R}_{\hat{M},v}\]
where \(\hat{R}_{\hat{M}} = \cup_{v \in \hat{M}} \hat{R}_{\hat{M},v} \). These definitions are independent of choice of \(v \).

A lift \(e = (e_0, e_\alpha, e_\mu, e_{N+1}) \) of \(M \) into \(GL^Q(\mathbb{C}^{N+2}) \), where \(1 \leq \alpha \leq n \) and \(n + 1 \leq \mu \leq N \), is called a first-order adapted lift if it satisfies the conditions:
\[e_0(x) \in \pi_0^{-1}(x), \; \text{span}_\mathbb{C}(e_0, e_\alpha)(x) = \hat{T}_x^{1,0} M, \; \text{span}(e_0, e_\alpha, e_{N+1})(x) = \hat{T}_x^{1,0} M \oplus \hat{R}_{M,x} \tag{27}\]
where
\[\text{span}(e_0, e_\alpha, e_{N+1})(x) := \{c_0 e_0 + c_\alpha e_\alpha + c_{N+1} e_{N+1} \mid c_0, c_\alpha \in \mathbb{C}, \; c_{N+1} \in \mathbb{R}\}. \tag{28}\]

Here we used \((25) \) and the fact that the Reeb vector is real. Locally first-order adapted lifts always exist (see Theorem \(7.1 \) below).

We have the restriction bundle \(\mathcal{F}^0_M := GL^Q(\mathbb{C}^{N+2})|_M \) over \(M \). The subbundle \(\pi: \mathcal{F}^1_M \to M \) of \(\mathcal{F}^0_M \) is defined by
\[\mathcal{F}^1_M = \{(e_0, e_j, e_\mu, e_{N+1}) \in \mathcal{F}^0_M \mid [e_0] \in M, \; (27) \text{ are satisfied}\}. \]
Local sections of \mathcal{F}_M^1 are exactly all local first-order adapted lifts of M.

For two first-order adapted lifts $s = (e_0, e_j, e_\mu, e_{N+1})$ and $\tilde{s} = (\tilde{e}_0, \tilde{e}_j, \tilde{e}_\mu, \tilde{e}_{N+1})$, by (27), we have

\[
\begin{align*}
\tilde{e}_0 &= g_0^0 e_0, \\
\tilde{e}_j &= g_j^0 e_0 + g_j^k e_k, \\
\tilde{e}_\mu &= g_\mu^0 e_0 + g_\mu^j e_j + g_\mu^{N+1} e_{N+1}, \\
\tilde{e}_{N+1} &= g_{N+1}^0 e_0 + g_{N+1}^j e_j + g_{N+1}^{N+1} e_{N+1}, \\
\end{align*}
\]

(29)

Notice that by (25), g_{N+1}^{N+1} is some real-valued function, while other are complex-valued functions. In other words, $\tilde{s} = s \cdot g$ where

\[
g = (g_0, g_j, g_\mu, g_{N+1}) = \begin{pmatrix} g_0^0 & g_0^k & g_0^{N+1} \\
g_j^0 & g_j^k & g_j^{N+1} \\
g_\mu^0 & g_\mu^j & g_\mu^{N+1} \\
g_{N+1}^0 & g_{N+1}^j & g_{N+1}^{N+1} \end{pmatrix}
\]

(30)

is a smooth map from M into $GL^Q(\mathbb{C}^{N+2})$. Then the fiber of $\pi : \mathcal{F}_M^1 \to M$ over a point is isomorphic to the group

\[
G_1 = \left\{ g = \begin{pmatrix} g_0^0 & g_0^k & g_0^{N+1} \\
g_j^0 & g_j^k & g_j^{N+1} \\
g_\mu^0 & g_\mu^j & g_\mu^{N+1} \\
g_{N+1}^0 & g_{N+1}^j & g_{N+1}^{N+1} \end{pmatrix} \in GL^Q(\mathbb{C}^{N+2}) \right\},
\]

where we use the index ranges $1 \leq \alpha, \beta \leq n$ and $n + 1 \leq \mu, \nu \leq N$.

We pull back the Maurer-Cartan form from $GL^Q(\mathbb{C}^{N+2})$ to \mathcal{F}_M^1 by a first-order adapted lift e of M as

\[
\omega = \begin{pmatrix} \omega_0^0 & \omega_0^\alpha & \omega_0^\mu & \omega_0^{N+1} \\
\omega_\beta^0 & \omega_\beta^\alpha & \omega_\beta^\mu & \omega_\beta^{N+1} \\
\omega_\mu^0 & \omega_\mu^\alpha & \omega_\mu^\mu & \omega_\mu^{N+1} \\
\omega_{N+1}^0 & \omega_{N+1}^\alpha & \omega_{N+1}^\mu & \omega_{N+1}^{N+1} \end{pmatrix}.
\]

Since $\omega = e^{-1} de$, i.e., $e \omega = de$. Then we have

\[
\begin{align*}
d e_0 &= e_0 \omega_0^0 + e_\alpha \omega_0^\alpha + e_\mu \omega_0^\mu + e_{N+1} \omega_0^{N+1}. \\
\end{align*}
\]

(31)

On the other hand, we claim:

\[
\begin{align*}
d e_0 &= e_0 \omega_0^0 + e_\alpha \omega_0^\alpha + e_{N+1} \omega_0^{N+1}. \\
\end{align*}
\]

(32)
In fact, take local coordinates systems \((x_1, \ldots, x_{2n+1})\) for the real manifold \(M\), and \((y_1, y_2, x_1, \ldots, x_{2n+1})\) for the real manifold \(\hat{M}\) where \((y_1, y_2)\) is the coordinates for fibers. By the first condition in (27), fixing \(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{2n+1}\), \(e_0(\ldots, x_j, \ldots)\) is a curve into \(\hat{M}\) with parameter \(x_j\). Then \(\frac{\partial e_0}{\partial x_j} \in T_M\) is a tangent vector to this curve. Since \(\text{span}(e_0, e_\alpha, e_{N+1})(x) = \hat{T}_x^{1,0} M \oplus \hat{R}_{M,x}\) in (27) and \(T\hat{M} \cong T^{1,0} \hat{M} \oplus R_M\), we obtain

\[
\frac{\partial e_0}{\partial x_j} = b_0^j e_0 + b_\alpha^j e_\alpha + b_{N+1}^j e_{N+1}, \quad 1 \leq j \leq 2n + 1
\]

(33)

for some functions \(b_0^j, b_\alpha^j\) and \(b_{N+1}^j\). We also have

\[
\frac{\partial e_0}{\partial y_i} = 0, \quad \text{for} \ i = 1, 2,
\]

(34)

because \((y_1, y_2)\) are the coordinates for fibers. From (33) and (34), we get

\[
de_0 = \frac{\partial e_0}{\partial y_1} dy_1 + \frac{\partial e_0}{\partial y_2} dy_2 + \sum_j \frac{\partial e_0}{\partial x_j} dx_j = \sum_j (b_0^j e_0 + b_\alpha^j e_\alpha + b_{N+1}^j e_{N+1}) dx_j
\]

\[
= (\sum_j b_0^j dx_j) e_0 + (\sum_j b_\alpha^j dx_j) e_\alpha + (\sum_j b_{N+1}^j dx_j) e_{N+1}.
\]

(35)

Since the 1-forms \(\omega_0^\alpha, \omega_0^\alpha, \omega_{N+1}^\alpha\) in (31) are unique, from (35), it proves Claim (32).

By (31) and (32), we conclude \(\omega_0^\alpha = 0, \forall \mu\). By the Maurer-Cartan equation \(d\omega = -\omega \wedge \omega\), one gets \(0 = d\omega_\mu = -\omega_\mu^\nu \wedge \omega_\nu^\alpha - \omega_\nu^{\alpha+1} \wedge \omega_0^{N+1}\), i.e., \(0 = -\omega_\mu^\nu \wedge \omega_\nu^\alpha \mod(\omega_0^{N+1})\). Then by Cartan’s lemma,

\[
\omega_\beta^\mu = q_\alpha^\beta \omega_\nu^\alpha \mod(\omega_0^{N+1}),
\]

for some functions \(q_\alpha^\beta = q_\beta^\alpha\).

The CR second fundamental form In order to define the CR second fundamental form \(\Pi_M = \Pi^*_M = q_\alpha^\beta \omega_\alpha^\mu \omega_\beta^\nu \otimes e_\mu \mod(\omega_0^{N+1})\), let us define \(e_\alpha\) as follows.

For any first-order adapted lift \(e = (e_0, e_\alpha, e_\nu, e_{N+1})\) with \(\pi_0(e_0) = x\), we have \(e_\alpha \in \hat{T}_x^{1,0} M\). Recall \(T_E G(k, V) \simeq E^* \otimes (V/E)\) where \(G(k, V)\) is the Grassmannian of \(k\)-planes that pass through the origin in a vector space \(V\) over \(\mathbb{R}\) or \(\mathbb{C}\) and \(E \in G(k, V)\) ([IL03], p.73). Then \(T_x M \simeq (\hat{x})^* \otimes (\hat{T}_x M/\hat{x})\) and hence the vector \(e_\alpha\) induces \(e_\alpha \in T_x^{1,0} M\) by

\[
e_\alpha = e_0 \otimes (e_\alpha \mod(e_0)),
\]

where we denote by \((e_0, e_\alpha, e_\nu, e_{N+1})\) the dual basis of \((\mathbb{C}^{N+2})^*\). Similarly, we let

\[
e_\mu = e_0 \otimes (e_\mu \mod(\hat{T}_x^{1,0} M)) \in N_x^{1,0} M,
\]

(36)
where $N^{1,0}M$ is the CR normal bundle of M defined by $N^{1,0}_x M = T_x^{1,0} (\partial \mathbb{H}^{N+1}) / T_x^{1,0} M$.

By direct computation, we obtain a tensor

$$II_M = II_M^\ast = q^\mu_{\alpha \beta} \psi^0_{\alpha} \psi^0_{\beta} \otimes e^\mu \in \Gamma (M, S^2 T^{1,0}_{\pi_0(e_0)} M \otimes N^{1,0}_{\pi_0(e_0)} M) \mod (\omega^0_{N+1}).$$

(37)

The tensor II_M is called the CR second fundamental form of M.

Pulling back a lift

Let $M \subset \partial \mathbb{H}^{N+1}$ be as above with a point $Q_0 \in M$. Let $A \in GL^Q (\mathbb{C}^{N+2})$, $A^* \in Aut (\partial \mathbb{H}^{N+1})$ with $A^*(Q_0) = P_0$ and $\tilde{M} = A^* (M)$. Let $\tilde{s} : \tilde{M} \rightarrow GL^Q (\mathbb{C}^{N+2})$ be a lift. We claim:

$$s := A^{-1} \cdot \tilde{s} \circ A^*,$$

(38)

is also a lift from M into $GL^Q (\mathbb{C}^{N+2})$. In fact, in order to prove that s is a lift, it suffices to prove: $\pi s = Id$, i.e., for any point $Q \in M$ near Q_0, $\pi s (Q) = Q$. In fact,

$$\pi s (Q) = \pi (A^{-1} \cdot \tilde{s} \circ A^*) (Q) = \pi (A^{-1} \cdot \tilde{s} (P)) = (A^*)^{-1} (\pi \tilde{s} (P)) = (A^*)^{-1} (P) = Q.$$

so that our claim is proved.

If, in addition, \tilde{s} is a first-order adapted lift of \tilde{M} into $GL^Q (\mathbb{C}^{N+2})$, s is also a first-order adapted lift of M into $GL^Q (\mathbb{C}^{N+2})$.

Let Ω be the Maurer-Cartan form over $GL^Q (\mathbb{C}^{N+2})$. Then by the invariant property $A^* \Omega = \Omega$, we have $s^* \Omega = (A^{-1} \cdot \tilde{s} \circ A^*)^* \Omega = (A^*)^* (\tilde{s}^*)^* (A^{-1})^* \Omega = (A^*)^* (\tilde{s})^* \Omega$, i.e., it holds on M that

$$\omega = (A^*)^* \tilde{\omega}$$

(39)

where $\omega = s^* \Omega$ and $\tilde{\omega} = \tilde{s}^* \Omega$ so that $\omega^\alpha_\alpha = (A^*)^* \tilde{\omega}^\alpha_\alpha$ and $\omega^\mu_\beta = (A^*)^* \tilde{\omega}^\mu_\beta$. The last equality yields

$$q^\mu_{\alpha \beta} = \tilde{q}^\mu_{\alpha \beta} \circ A^*.$$

(40)

6 CR second fundamental forms —— Definition 4

Definition 4 will be the one as a tensor with respect to the group $SU(N+1,1)$.

As for Definition 3, we consider the real hypersurface Q in \mathbb{C}^{N+2} defined by the homogeneous equation

$$\langle Z, Z \rangle := \sum_A Z^A Z^A + \frac{i}{2} (Z^{N+1} \overline{Z^0} - \overline{Z^0} Z^{N+1}) = 0,$$

(41)
where \(Z = (Z^0, Z^A, Z^{N+1})^t \in \mathbb{C}^{N+2} \). This can be extended to the scalar product
\[
\langle Z, Z' \rangle := \sum_A Z^A \overline{Z'^A} + \frac{i}{2}(Z^{N+1}\overline{Z^0} - Z^0\overline{Z^{N+1}}),
\]
for any \(Z = (Z^0, Z^A, Z^{N+1})^t, Z' = (Z'^0, Z'^A, Z'^{N+1})^t \in \mathbb{C}^{N+2} \). This product has the properties: \(\langle Z, Z' \rangle \) is linear in \(Z \) and anti-linear in \(Z' \); \(\langle Z, Z \rangle = \langle Z', Z \rangle \); and \(Q \) is defined by \(\langle Z, Z \rangle = 0 \).

Let \(SU(N+1, 1) \) be the group of unimodular linear transformations of \(\mathbb{C}^{N+2} \) that leave the form \(\langle Z, Z \rangle \) invariant (cf. [CM74]).

By a \(Q \)-frame is meant an element \(E = (E_0, E_A, E_{N+1}) \in GL(\mathbb{C}^{N+2}) \) satisfying (cf. [CM74, (1.10)])
\[
\begin{align*}
det(E) &= 1, \\
\langle E_A, E_B \rangle &= \delta_{AB}, \\
\langle E_0, E_{N+1} \rangle &= -\langle E_{N+1}, E_0 \rangle = -\frac{i}{2},
\end{align*}
\]
while all other products are zero.

There is exactly one transformation of \(SU(N+1, 1) \) which maps a given \(Q \)-frame into another. By fixing one \(Q \)-frame as reference, the group \(SU(N+1, 1) \) can be identified with the space of all \(Q \)-frames. Then \(SU(N+1, 1) \subset GL^Q(\mathbb{C}^{N+1}) \) is a subgroup with the composition operation. By \([22]\) and the restriction, we have the projection
\[
\pi : SU(N+1, 1) \to \partial\mathbb{H}^{N+1}, \quad (Z_0, Z_A, Z_{N+1}) \mapsto \text{span}(Z_0).
\]
which is called a \(Q \)-frames bundle. We get \(\partial\mathbb{H}^{N+1} \cong SU(N+1, 1)/P_2 \) where \(P_2 \) is the isotropy subgroup of \(SU(N+1, 1) \). \(SU(N+1, 1) \) acts on \(\partial\mathbb{H}^{N+1} \) effectively.

Consider \(E = (E_0, E_A, E_{N+1}) \in SU(N+1, 1) \) as a local lift. Then the Maurer-Cartan form \(\Theta \) on \(SU(N+1, 1) \) is defined by \(dE = (dE_0, dE_A, dE_{N+1}) = E\Theta \), or \(\Theta = E^{-1} \cdot dE \), i.e.,
\[
d\begin{pmatrix} E_0 & E_A & E_{N+1} \end{pmatrix} = \begin{pmatrix} E_0 & E_B & E_{N+1} \end{pmatrix} \begin{pmatrix} \Theta_0^0 & \Theta_0^A & \Theta_0^{N+1} \\ \Theta_B^0 & \Theta_B^A & \Theta_B^{N+1} \\ \Theta_{N+1}^0 & \Theta_{N+1}^A & \Theta_{N+1}^{N+1} \end{pmatrix},
\]
where \(\Theta_A^B \) are 1-forms on \(SU(N+1, 1) \). By \([13]\) and \([15]\), the Maurer-Cartan form \(\Theta \) satisfies
\[
\begin{align*}
\Theta_0^0 + \Theta_{N+1}^{N+1} &= 0, & \Theta_0^{N+1} &= \overline{\Theta_0^{N+1}}, & \Theta_0^0 &= \overline{\Theta_0^{N+1}}, \\
\Theta_{N+1}^0 &= 2i\Theta_A^A, & \Theta_{N+1}^A &= -\frac{i}{2}\Theta_A^A, & \Theta_B^0 + \Theta_B^A &= 0, & \Theta_0^0 + \Theta_A^A + \Theta_{N+1}^{N+1} &= 0.
\end{align*}
\]
where $1 \leq A \leq N$. For example, from $\langle E_A, E_B \rangle = \delta_{AB}$, by taking differentiation, we obtain
\[\langle dE_A, E_B \rangle + \langle E_A, dE_B \rangle = 0. \]

By (45), we have
\[
\begin{align*}
\langle E_0 \Theta_A^0 + E_B \Theta_B^0 + E_{N+1} \Theta_{N+1}^0, E_B \rangle &+ \langle E_A, E_0 \Theta_A^0 + E_B \Theta_B^0 + E_{N+1} \Theta_{N+1}^0 \rangle = 0,
\end{align*}
\]
which implies $\Theta_A^0 + \Theta_B^0 = 0$. In particular, from (46), $\Theta_A^0 = -2i \Theta_A^0$. Θ satisfies
\[d\Theta = -\Theta \wedge \Theta. \quad (47) \]

Let $M \hookrightarrow \partial \mathbb{H}^{N+1}$ be the image of $H : M' \to \partial \mathbb{H}^{N+1}$ where $M' \subset \mathbb{C}^{n+1}$ is a CR strictly pseudoconvex smooth hypersurface. Consider the inclusion map $M \hookrightarrow \partial \mathbb{H}^{N+1}$ and a lift $e = (e_0, e_1, ..., e_{N+1}) = (e_0, e_\alpha, e_\nu, e_{N+1})$ of M where $1 \leq \alpha \leq n$ and $n + 1 \leq \nu \leq N$
\[
\begin{array}{c}
\pi_0(e_0(x)) = x, \quad \text{span}_C(e_0, e_\alpha)(x) = \tilde{T}^{1,0}_x M, \quad \text{span}_C(e_0, e_\alpha, e_{N+1})(x) = \tilde{T}_x^{1,0} M \oplus \hat{R}_{M,x}.
\end{array}
\]
(48)
Locally first-order adapted lifts always exist (see Theorem 7.1 below). We have the restriction bundle $\mathcal{F}^0_M := SU(N+1,1)|_M$ over M. The subbundle $\pi : \mathcal{F}^1_M \to M$ of \mathcal{F}^0_M is defined by
\[\mathcal{F}^1_M = \{(e_0, e_j, e_\mu, e_{N+1}) \in \mathcal{F}^0_M \mid [e_0] \in M, \ (48) \text{ are satisfied} \}. \]
Local sections of \mathcal{F}^1_M are exactly all local first-order adapted lifts of M. The fiber of $\pi : \mathcal{F}^1_M \to M$ over a point is isomorphic to the group
\[G_1 = \left\{ g = \begin{pmatrix} g_0^0 & g_0^\beta & g_0^\nu & g_0^{N+1} \\ g_\beta^0 & g_\beta^\alpha & g_\beta^\nu & g_\beta^{N+1} \\ g_\nu^0 & g_\nu^\alpha & g_\nu^\nu & g_\nu^{N+1} \\ 0 & 0 & 0 & g_\nu^{N+1} \end{pmatrix} \in SU(N+1, 1) \right\}, \]
where we use the index ranges $1 \leq \alpha, \beta \leq n$ and $n + 1 \leq \mu, \nu \leq N$.

By the remark below (29), g_{N+1}^{N+1} is real-valued. By (43), we have $\langle g_0, g_{N+1} \rangle = -\tau$, it implies $g_0 \cdot g_{N+1} = 1$. In particular, both g_{N+1}^{N+1} and g_0^0 are real. Since $\langle g_0, g_\mu \rangle = 0$ and $g_0^0 \neq 0$, it implies $g_{N+1}^\mu = 0$. Since $\langle g_\alpha, g_\beta \rangle = \delta_{\alpha\beta}$, it implies that the matrix (g_α^β) is unitary. Since $\text{deg}(g) = 1$, it implies $g_0^0 \cdot \det(g_\alpha^\beta) \cdot \det(g_\mu^\nu) \cdot g_{N+1}^{N+1} = 1$, i.e., $\det(g_\alpha^\beta) \cdot \det(g_\mu^\nu) = 1$.

By considering all first-order adapted lifts from M into $SU(N + 1, 1)$, as the definition of II_M in Definition 3, we can defined CR second fundamental form II_M as in (37):

$$II_M = II_M^s = g_{\alpha\beta}^\mu \omega_\alpha^\mu \omega_\alpha^\beta \otimes \varepsilon_\mu \in \Gamma(M, S^2T^1_{\pi_0(e_0)} M \otimes N^{1,0}_{\pi_0(e_0)} M), \text{ mod}(\omega_0^{N+1}),$$

which is a well-defined tensor, and is called the CR second fundamental form of M.

We remark that the notion of II_M in Definition 4 was introduced in a paper by S.H. Wang [Wa06].

Pulling back a lift

Let $M \subset \partial H^{N+1}$ be as above with a point $Q_0 \in M$. Let $A \in SU(N + 1, 1)$, $A^* \in \text{Aut}(\partial H^{N+1})$ with $A^*(Q_0) = P_0$ and $\tilde{M} = A^*(M)$. Let $\tilde{s} : \tilde{M} \to SU(N + 1, 1)$ be a lift. We claim:

$$s := A^{-1} \circ \tilde{s} \circ A^*,$$

is also a lift from M into $SU(N + 1, 1)$. Similarly as in (39) and (40), we have

$$\omega = (A^*)^* \tilde{\omega}$$

and

$$g_\alpha^\mu = g_\alpha^\beta \circ A^*.$$

where $\omega = s^* \Omega$, $\tilde{\omega} = \tilde{s}^* \Omega$ and Ω is the Maurer-Cartan form over $SU(N + 1, 1)$.

Example

Consider the maps in (11) and (2):

$$\sigma_p^0(z, w) = (z + z_0, w + w_0 + 2i\langle z, \overline{z_0} \rangle),$$

$$\tau_p^F(z^*, w^*) = (z^* - \tilde{f}(z_0, w_0), w^* - g(z_0, w_0) - 2i\langle z^*, \tilde{f}(z_0, w_0) \rangle)$$

where $p = (z_0, w_0)$, $z = \mathbb{C}^n$, $w = z_{n+1}$, $\sigma_p^0 \in \text{Aut}(\partial H^{N+1})$, and $\tau_p^F \in \text{Aut}(\partial H^{N+1})$.

By (19) and (21), these two maps correspond to two matrices:

$$A_{\sigma_p^0} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ z_0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ z_0 & 0 & \cdots & 1 & 0 \\ w_0 & 2iz_0 & \cdots & 2iz_0 & 1 \end{bmatrix} \in SU(n + 1, 1)$$

(53)
and

$$A_{gF} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ -\widetilde{f}_{01} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -\widetilde{f}_{0N-n} & 0 & \cdots & 1 & 0 \\ -g(z_0, w) & -2i\bar{f}_1(z_0, w_0) & \cdots & -2i\bar{f}_{N-n}(z_0, w_0) & 1 \end{bmatrix} \in SU(N+1, 1) \quad (54)$$

where $z_0 = (z_{01}, \ldots, z_{0n})$ and $w_0 = z_{0n+1}$.

[Example] Consider the map $F_{\lambda, r, \bar{a}, U} = (f, g) \in Aut_0(\partial \mathbb{H}^{n+1})$

$$f(z) = \frac{\lambda(z + \bar{a}w)}{1 - 2i\langle z, \bar{a} \rangle - (r + i\|\bar{a}\|^2)w}, \quad g(z) = \frac{\lambda^2 w}{1 - 2i\langle z, \bar{a} \rangle - (r + i\|\bar{a}\|^2)w}$$

where $\lambda > 0, r \in \mathbb{R}, \bar{a} \in \mathbb{C}^n$ and $U = (u_{\alpha\beta})$ is an $(n-1) \times (n-1)$ unitary matrix. By (19) and (21), its corresponding matrix,

$$A_{F_{\lambda, r, \bar{a}, U}} = \begin{bmatrix} 1 & -2i\bar{a}_1 & \cdots & -2i\bar{a}_n & -(r + i\|\bar{a}\|^2) \\ 0 & \lambda u_{11} & \cdots & \lambda u_{1n} & \lambda a_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \lambda u_{n1} & \cdots & \lambda u_{nn} & \lambda a_n \\ 0 & 0 & \cdots & 0 & \lambda^2 \end{bmatrix}, \quad (55)$$

is not in $SU(n+1, 1)$ in general. In fact, we can write

$$F_{\lambda, r, \bar{a}, U} = F_{\lambda, 0,0, Id} \circ F_{1,0,0, U} \circ F_{1,r, \bar{a}, Id} \quad (56)$$

or $A_{F_{\lambda, r, \bar{a}, U}} = A_{F_{\lambda, 0,0, Id}} \cdot A_{F_{1,0,0, U}} \cdot A_{F_{1,r, \bar{a}, Id}}$. Here $A_{F_{1,0,0, U}}$ and $A_{F_{1,r, \bar{a}, Id}}$ are in $SU(N+1, 1)$; while $A_{F_{\lambda, 0,0, Id}}$ is in $SU(N+1, 1)$ if and only if $\lambda = 1$. Therefore

$$A_{F_{\lambda, r, \bar{a}, U}} \text{ is in } SU(n+1, 1) \text{ if and only if } \lambda = 1. \quad (57)$$

7 Existence of First-order Adapted Lifts from M into $SU(N+1, 1)$ or into $GL^Q(\mathbb{C}^{N+2})$

Existence of first-order adapted lifts. Let $(M', 0)$ be a germ of smooth real hypersurface in \mathbb{C}^{n+1} defined by the defining function

$$r = \sum_{j=1}^{n} z_j\bar{z}_j + \frac{i}{2}(w - \bar{w}) + o(2). \quad (58)$$
We take
\[\theta = i \partial r = i \left(\sum_{j=1}^{n} z_j \, dz_j - \frac{1}{2} \, dw \right) + o(1). \]
as a contact form of \(M' \).

Write \(w = u + iv \). Here \(v = \sum_{j=1}^{n} |z_j|^2 + o(2) \). Take \((z_j, u) \) as a coordinates system of \(M' \). By considering the coordinate map: \(h : \mathbb{C}^n \times \mathbb{R} \to M', (z_j, u) \mapsto (z_j, u + i|z_j|^2 + o(2)) \), we get the pushforward
\[h_*(\frac{\partial}{\partial z_j}) = L_j := \frac{\partial}{\partial z_j} + i(z_j + o(1)) \frac{\partial}{\partial u}, \quad h_*(\frac{\partial}{\partial u}) = R_{M'} := (1 + o(1)) \frac{\partial}{\partial u} \]
for \(j = 1, 2, \ldots, n \). Then \(\{L_j\}_{1 \leq j \leq n} \) form a basis of the complex tangent bundle \(T^{1,0}M' \) of \(M' \). Since \(d\alpha = -i \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j \), we see that \(R \) is the Reeb vector field of \(M' \). In particular, as the restriction at 0, we have
\[L_j|_0 = \frac{\partial}{\partial z_j}|_0, \quad R_{M'}|_0 = \frac{\partial}{\partial u}|_0. \] (59)

Theorem 7.1 Let \(M \hookrightarrow \partial \mathbb{H}^{N+1} \) be the image of \(H : M' \to \partial \mathbb{H}^{N+1} \) where \(M' \subset \mathbb{C}^{n+1} \) is a smooth strictly pseudoconvex CR-hypersurface. Then for any point in \(M \), the first-order adapted lift \(E = (E_0, E_\alpha, E_\mu, E_{N+1}) \) of \(M \) into \(SU(N+1,1) \) (hence into \(GL^Q(\mathbb{C}^{N+2}) \)) exists in some neighborhood of the point in \(M \).

Proof: **Step 1.** Without of loss of generality, we assume that \(0 \in M \) so that it suffices to construct a lift \(E = (E_0, E_\alpha, E_\mu, E_{N+1}) \) in a neighborhood of the point 0. Here we denote \([1 : 0 : \ldots : 0]\) by 0.

Assume that \(M' \) is defined by the equation \(\text{Im} \, w = |z|^2 + o(|z|^2) \) in \((z, w) \in \mathbb{C}^n \times \mathbb{C} \) where \(w = u + iv \). Assume that \(H = (1, f_\alpha, \phi_\mu, g) \) is the smooth CR embedding of \(M' \) into \(\partial \mathbb{H}^{N+1} \) with \(H(0) = 0 \) and
\[f = z + O(|(z, w)|^2), \quad \phi = O(|(z, w)|^2), \quad g = w + O(|(z, w)|^2). \] (60)
Let \(L_\alpha, \alpha = 1, 2, \ldots, n \) be a basis of the CR vector fields and \(R \) is the Reeb vector field on \(M' \). Then as in (59) with (60), we have
\[L_\alpha|_0 = \frac{\partial}{\partial z_j}|_0, \quad \text{and} \quad R|_0 = \frac{\partial}{\partial u}|_0. \] (61)
It follows that $\bar{L}_\alpha H = 0$ as H is a CR map. By the Lewy extension theorem, H extends holomorphically to one side of M', denoted by D, where D is obtained by attaching the holomorphic discs. By applying the maximum principle and the Hopf lemma to the sub-harmonic function $\sum |f_\alpha|^2 + \sum |\phi_\mu|^2 + \frac{i}{2} (g - \bar{g})$ on D, it follows that $\frac{\partial Im g}{\partial u}(0) \neq 0$. Since $\frac{\partial g}{\partial w} = 0$ and $\frac{\partial Im g}{\partial u}(0) = 0$, we have $Rg(0) = \frac{\partial g}{\partial u}(0) = \frac{\partial Im g}{\partial u}(0) \neq 0$.

Step 2. Direct construction of E_0, E_α and E_{N+1}

We define

$$E_0 := \begin{bmatrix} 1 \\ f_\alpha(z, w) \\ \phi_\mu(z, w) \\ g(z, w) \end{bmatrix}$$

which can be regarded as a point in $\partial \mathbb{H}^{N+1}$. Then $\langle E_0, E_0 \rangle = 0$ holds:

$$\sum f_\alpha \bar{f}_\alpha + \sum \phi_\mu \bar{\phi}_\mu + \frac{i}{2} (g - \bar{g}) = 0, \text{ on } M. \quad (63)$$

Apply the CR vector field L_β to E_0, we define

$$\tilde{E}_\beta = (0, L_\beta f_\alpha, L_\beta \phi_\mu, L_\beta g)^t,$$

which form the basis of the complex tangent bundle $T^{1,0}_{\pi_0(E_0)}(M)$. Then in a neighborhood of 0 in M, we have

$$Span_C(E_0, \tilde{E}_\alpha) = \hat{T}^{(1,0)}_{\pi_0(E_0)}M.$$

Now, we have $\langle E_0, \tilde{E}_\alpha \rangle = 0$ by applying L_β to $\langle E_0, E_0 \rangle = 0$:

$$\sum \bar{f}_\alpha L_\beta f_\alpha + \sum \bar{\phi}_\mu L_\beta \phi_\mu + \frac{i}{2} L_\beta g = 0. \quad (64)$$

By the Gram-Schmid orthonormalization procedure, we can obtain, from $\{\tilde{E}_\beta\}$, an orthonormal set with respect to the usual Hermitian inner product \langle , \rangle_0; we denote it by $\{E_\beta\}$. By the definition (62), we notice that for any $Z = (Z^0, Z^A, Z^{N+1})$ and $Z' = (Z^0', Z^A', Z'^{N+1})$,

$$\langle Z, Z' \rangle = \left\langle \left(\frac{i}{2} Z^{N+1}, Z^A, -\frac{i}{2} Z^0 \right), \left(Z^0', Z^A', Z'^{N+1} \right) \right\rangle_0 = \langle \hat{Z}, Z' \rangle_0, \quad (65)$$

where \langle , \rangle_0 is the usual Hermitian inner product and $\hat{Z} := (\frac{i}{2} Z^{N+1}, Z^A, -\frac{i}{2} Z^0)$. Then we see from (64) that

$$\langle E_0, E_\beta \rangle = \left\langle \left(\frac{i}{2} g, f_\alpha, \phi_\mu, -\frac{i}{2} \right), \left(0, L_\beta f_\alpha, L_\beta \phi_\mu, L_\beta g \right) \right\rangle_0 = 0.$$
Also we observe \(\langle E_\alpha, E_\beta \rangle = \langle E_\alpha, E_\beta \rangle_0 = \delta_{\alpha\beta} \). Then \(\langle E_0, E_0 \rangle = 0, \langle E_0, E_\beta \rangle = 0 \) and \(\langle E_\alpha, E_\beta \rangle = \delta_{\alpha\beta} \) hold.

Applying the Reeb vector field \(R \), we define another vector
\[
\tilde{E}_{n+1} := (0, R f_\alpha, R \phi, R g)^t
\]
over a neighborhood of 0 in \(M \) such that
\[
\text{span}(E_0, E_\alpha, \tilde{E}_{n+1}) = \hat{T}_{\pi_0(E_0)} M.
\]

We want to construct
\[
E_{n+1} = AE_0 + B_\alpha E_\alpha + C \tilde{E}_{n+1}
\]
such that
\[
\langle E_{n+1}, E_0 \rangle = \frac{i}{2}, \langle E_\alpha, E_{n+1} \rangle = 0, \text{ and } \langle E_{n+1}, E_{n+1} \rangle = 0.
\]

From \(\langle E_{n+1}, E_0 \rangle = \frac{i}{2} \), we get \(\langle AE_0 + B_\alpha E_\alpha + C \tilde{E}_{n+1}, E_0 \rangle = \frac{i}{2} \) so that
\[
C = \frac{i}{2 \langle \tilde{E}_{n+1}, E_0 \rangle}.
\] (66)

By (61), we notice that
\[
\langle \tilde{E}_{n+1}, E_0 \rangle |_0 = \sum \frac{\partial f_\alpha}{\partial u} |_0 \tilde{f}_\alpha(0) + \sum \frac{\partial \phi_\mu}{\partial u} |_0 \phi_\mu(0) + \frac{i}{2} \frac{\partial g}{\partial u} |_0
\]
and therefore \(\langle \tilde{E}_{n+1}, E_0 \rangle |_0 = \frac{i}{2} R g(0) \neq 0 \).

From \(\langle E_{n+1}, E_\alpha \rangle = 0 \), we get \(\langle AE_0 + B_\beta E_\beta + C \tilde{E}_{n+1}, E_\alpha \rangle = 0 \) so that
\[
B_\alpha = -C \delta_{\alpha \beta} \langle \tilde{E}_{n+1}, E_\beta \rangle = -C \langle \tilde{E}_{n+1}, E_\alpha \rangle.
\] (67)

From \(\langle E_{n+1}, E_{n+1} \rangle = 0 \), we get \(\langle AE_0 + B_\beta E_\beta + C \tilde{E}_{n+1}, AE_0 + B_\beta E_\beta + C \tilde{E}_{n+1} \rangle = 0 \).

Since \(C \langle \tilde{E}_{n+1}, E_0 \rangle = \frac{i}{2}, C \langle E_0, \tilde{E}_{n+1} \rangle = -\frac{i}{2}, B_\alpha = -C \langle \tilde{E}_{n+1}, E_\alpha \rangle \) and \(B_\alpha = -C \langle E_\alpha, \tilde{E}_{n+1} \rangle \) by (66) and (67), we obtain
\[
-\frac{i}{2} A + \frac{i}{2} A - \sum_\alpha |B_\alpha|^2 + |C|^2 \langle E_{n+1}, E_{n+1} \rangle = 0,
\]
so that
\[
\text{Im}(A) = \sum_\alpha |B_\alpha|^2 - |C|^2 \langle E_{n+1}, E_{n+1} \rangle.
\] (68)
Therefore E_{N+1} is determined.

So far we have $\langle E_0, E_0 \rangle = \langle E_{N+1}, E_{N+1} \rangle = \langle E_0, E_0 \rangle = \langle E_{N+1}, E_{N+1} \rangle = 0$, $\langle E_0, E_0 \rangle = \delta_{\alpha\beta}$ and $\langle E_0, E_{N+1} \rangle = -\frac{i}{2}$ hold.

Step 3. Construction of E From Step 2, at the point 0, we have vectors

\[
E_0|_0 = [1 : 0 : \ldots : 0], \quad E_1|_0 = [0 : 1 : 0 : \ldots : 0], \ldots, E_n|_0 = [0 : 0 : \ldots : 1 : 0 : \ldots : 0],
\]

and

\[
E_{N+1}|_0 = [0 : 0 : \ldots : 0 : 1].
\]

Therefore we can define E at the point 0 by

\[
E(0) := Id \in SU(N + 1, 1).
\]

For any other point P in a small neighborhood of 0 in M, we are going to define $E(P) \in SU(N + 1, 1)$ as follows.

Write $H(p) = P$ for some $p \in M'$. Then we take a map $\Psi_P \in SU(N + 1, 1)$ such that

\[
\Psi_P^*(P) = 0, \quad T_0^{1,0}\Psi_0(M) = \text{span}_C(E_0|_0, E_0|_0), \quad \text{and} \quad T_0\Psi_0(M) = \text{span}(E_0|_0, E_0|_0, E_{N+1}|_0).
\]

where $E_0|_0, E_0|_0$ and $E_{N+1}|_0$ are defined in (59) and (70). The map Ψ_P can be defined as $A_{F_1,\sigma,\alpha} \circ A_{\sigma,\beta}$ where $A_{\sigma,\beta} \in SU(N + 1, 1)$ as in (54) and $A_{F_1,\sigma,\alpha} \in SU(N + 1, 1)$ as in (55).

Notice in the construction of the normalization F^{**} and F^{***}, we can always choose $\lambda = 1$ so that (50) can be used. Ψ_P is smooth as P varies. Then we define

\[
E(P) := (\Psi_P)^*E(0) = (\Psi_P)^{-1}E(0).
\]

This definition is the same as in (50). Since Ψ_P is invariant for the Hermitian scalar product $\langle \cdot, \cdot \rangle$ defined in (12) and $E(0)$ satisfies the identities (13), it implies that $E(P)$ satisfies the identities (13), i.e., $E(p) \in SU(N + 1, 1)$.

As a matrix, we denote $E(P) = (\hat{E}_0, \hat{E}_a, \hat{E}_{N+1})$. Since the map Ψ_P preserves the CR structures and the tangent vector spaces of M and $\Psi_P(M)$, we have

\[
\text{span}_C(\hat{E}_0, \hat{E}_a) = \text{span}_C(E_0, E_a)|_P, \quad \text{span}(\hat{E}_0, \hat{E}_a, \hat{E}_{N+1}) = \text{span}(E_0, E_a, E_{N+1})|_P.
\]

where E_0, E_a and E_{N+1} are constructed in Step 2. We remark that we can replace $(\hat{E}_0, \hat{E}_a, \hat{E}_{N+1})$ by (E_0, E_a, E_{N+1}). □

Existence of a more special first-order adapted lifts when M is spherical When $M = F(\mathbb{H}^{N+1})$ where $F \in Prop_2(\mathbb{H}^{N+1}, \mathbb{H}^{N+1})$, we can construct a more special first-order adapted lift of M into $SU(N + 1, 1)$ as follows (cf. [HJY09]).
Let $F = (f, \phi, g) \in \text{Prop}_2(\partial \mathbb{H}^{n+1}, \partial \mathbb{H}^{N+1})$ be any map with $F = F_p^{**}$. Then $F(0) = 0$. We introduce a local biholomorphic map near the origin

$$F_{fg} := (f, g) : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}, \ (z, z_{N+1}) \mapsto (f, g) = (\hat{z}, \hat{z}_{N+1})$$

with its inverse

$$F_{fg}^{-1} : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}, \ (\hat{z}, \hat{z}_{N+1}) \mapsto ((F_{fg}^{-1})^{(1)}, \ldots, (F_{fg}^{-1})^{(n)}(F_{fg}^{-1})^{(N+1)}) = (z, z_{N+1}).$$

Here we use (\hat{z}, \hat{z}_{N+1}) as a coordinates system of $M = F(\partial \mathbb{H}^{n+1})$ near $F(0) = 0$. Denote $\text{Proj}_{fg} : \mathbb{C}^{N+1} \to \mathbb{C}^{n+1}, (\hat{z}, \hat{z}_\mu, \hat{z}_{N+1}) \mapsto (\hat{z}, \hat{z}_{N+1})$. Then we have $\text{Proj}_{fg} \circ F = F_{fg}$:

$$F : \partial \mathbb{H}^{n+1} \to M$$

$$\downarrow \ F_{fg} \downarrow \text{Proj}_{fg}$$

$$\mathbb{C}^{n+1}$$

We also have a pair of inverse maps $F : \partial \mathbb{H}^{n+1} \to M$ and $(F_{fg}^{-1}) \circ \text{Proj}_{fg} : M \to \partial \mathbb{H}^{n+1}$.

Locally we can regard M as a graph: $F \circ F_{fg}^{-1} : \mathbb{C}^{n+1} \to M \subset \mathbb{C}^{N+2}$:

$$(\hat{z}, \hat{z}_{N+1}) \mapsto (\hat{z}, \phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1})), \hat{z}_{N+1})$$

Now let us define a lift of M into $SU(N + 1, 1)$

$$e = (e_0, e_\alpha, e_\mu, e_{N+1}) \in SU(N + 1, 1), \ 1 \leq \alpha \leq n, \ n + 1 \leq \mu \leq N \quad (73)$$

as follows.

We define $e_0 : M \hookrightarrow \mathbb{C}^{N+2}$ be the inclusion:

$$e_0(\hat{z}, \hat{z}_{N+1}) = F \circ F_{fg}^{-1}(\hat{z}, \hat{z}_{N+1}) = \left[1 : \hat{z} : \phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1})) : \hat{z}_{N+1} \right]^t \quad (74)$$

$\forall (\hat{z}, \hat{z}_{N+1}) \in \mathbb{C}^{n+1}$. We define $e_\alpha : M \to \mathbb{C}^{N+2}$ for $1 \leq \alpha \leq n$:

$$e_\alpha := \frac{1}{\sqrt{|L_\alpha f|^2 + |L_\alpha \phi|^2}} [0 : L_\alpha f : L_\alpha \phi : L_\alpha g]^t \circ F_{fg}^{-1}. \quad (75)$$

where $L_\alpha = \frac{\partial}{\partial z^\alpha} + 2i z^\alpha \frac{\partial}{\partial z_{N+1}}$. By the definition (12), we have $\langle e_0, e_0 \rangle = 0$ because $f \cdot \overline{f} + \phi \cdot \overline{\phi} - \frac{1}{2}(g - \overline{g}) = \hat{z} \cdot \overline{\hat{z}} + \phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1}))\overline{\phi((F_{fg})^{-1}(\hat{z}, \hat{z}_{N+1}))} + \frac{i}{2}(\hat{z}_{N+1} - \overline{\hat{z}_{N+1}}) = 0$ holds on $\partial \mathbb{H}^{n+1}$, and $\langle e_\alpha, e_\alpha \rangle = 0$ because $L_\alpha f \cdot \overline{f} + L_\alpha \phi \cdot \overline{\phi} + \frac{i}{2} L_\alpha g = 0$ holds on $\partial \mathbb{H}^{n+1}$, and $\langle e_\alpha, e_\beta \rangle = \delta_{\alpha \beta}$ because $L_\alpha f \cdot L_\beta \overline{f} + L_\alpha \phi \cdot L_\beta \overline{\phi} = 0$ holds on $\partial \mathbb{H}^{n+1}$ for $\alpha \neq \beta$.

22
If we define \(\tilde{e}_{N+1} := (0, T f, T \phi, T g)^t \circ F^{-1}_f \) where \(T = \frac{\partial}{\partial u} \) with \(z^{N+1} = u + iv \), then
\[
\text{span}(e_0, e_\alpha, \tilde{e}_{N+1}) = \hat{T} \pi_0(e_0) M.
\]
We then find coefficient functions \(A, B, C \) such that
\[
e_{N+1} = A e_0 + \sum B_\alpha e_\alpha + C \tilde{e}_{N+1}
\]
satisfies
\[
\langle e_0, e_{N+1} \rangle = -\frac{i}{2}, \quad \langle e_\alpha, e_{N+1} \rangle = 0, \quad \langle e_{N+1}, e_{N+1} \rangle = 0.
\]

(76)

8 Relationship among four definitions of \(II_M \)

Lemma 8.1 Let \(H : M' \to \partial \mathbb{H}^{N+1} \) be a CR smooth embedding where \(M' \) is a strictly pseudoconvex smooth real hypersurface in \(\mathbb{C}^{n+1} \). We denote \(M = H(M') \). Then the following statements are equivalent:

(i) The CR second fundamental form \(II_M \) by Definition 1 identically vanishes.
(ii) The CR second fundamental form \(II_M \) by Definition 2 identically vanishes.
(iii) The CR second fundamental form \(II_M \) by Definition 3 identically vanishes.
(iv) The CR second fundamental form \(II_M \) by Definition 4 identically vanishes.

Proof (i) \(\iff \) (ii) by \([15]\).

(iii) \(\iff \) (iv) The equivalence follows by the facts that, for Definition 3 and 4, \(II_M^e \equiv 0 \) for one first-order adapted lift \(e \) if and only if \(II_M^s \equiv 0 \) for any first-order adapted lift \(s \), that a first-order adapted lift from \(M \) to \(SU(N+1,1) \) must be a first-order adapted lift from \(M \) to \(GL_Q(\mathbb{C}^{N+2}) \).

(iv) \(\implies \) (i): Let \(M \subset \partial \mathbb{H}^{N+1} \) be a \((2n+1)\) dimensional CR submanifold with CR dimension \(n \) that admits a first-order adapted lift \(e \) into \(SU(N+1,1) \). Consider the pull-backed Maurer-Cartan form over \(M \) by \(e \)
\[
\omega = \begin{pmatrix}
\omega_0^0 & \omega_0^\alpha & \omega_0^{N+1} \\
\omega_\alpha^0 & \omega_\alpha^\alpha & \omega_\alpha^{N+1} \\
0 & \omega_\beta^\mu & \omega_\beta^{N+1} \\
\omega_0^{N+1} & \omega_\beta^{N+1} & 0 & \omega_\beta^{N+1}
\end{pmatrix}.
\]
with
\[
\omega_0^0 + \omega_{N+1} = 0, \quad \omega_0^{N+1} = \omega_0^0, \quad \omega_\alpha^{N+1} = \omega_\alpha^\alpha, \quad \omega_{N+1} = \omega_{N+1}^\alpha.
\]
\[
\omega_A^{N+1} = 2i \omega_A^0, \quad \omega_{N+1}^A = -\frac{i}{2} \omega_A^0, \quad \omega_B^A + \omega_A^B = 0, \quad \omega_0^0 + \omega_A^A + \omega_{N+1}^N = 0,
\]
where \(1 \leq A \leq N \).

(77)
Let \(\theta = \omega_0^{N+1} \) which is a real 1-form by (77). By \(d\omega = -\omega \wedge \omega \) and (77), we obtain
\[
d\theta = -\omega^{N+1}_0 \wedge \omega_0^\alpha - \omega_0^{N+1} \wedge \omega_0^N = 2i\omega_0^\alpha \wedge \overline{\omega}_0^\alpha - \theta \wedge (\omega_0^0 + \overline{\omega}_0^0) = i\theta^\alpha \wedge \overline{\theta}^\alpha,
\]
where we denote
\[
\theta^\alpha = \sqrt{2}\omega_0^\alpha + c^\alpha \theta
\]
for some functions \(c^\alpha \). Therefore, (8) holds and hence \(M \) is a strictly pseudoconvex pseudoholomorphic manifold with an admissible coframe \((\theta, \theta^\alpha)\). Hence Definition 4 of \(II_M \equiv 0 \) implies Definition 1 of \(III_M \equiv 0 \).

(i) \(\Rightarrow \) (iv): Definition 1 of \(III_M \) gives a coframe \((\theta, \theta^\alpha)\) which corresponds to Definition 2 of \(III_M \) with respect to a defining function \(\rho \) of \(M \) in \(\partial H^{N+1} \).

Now take a first-order adapted lift \(e \) from \(M \) into \(SU(N+1, 1) \). By (78), it corresponds to a coframe \((\theta, \theta^\alpha)\) on \(M \) and by (16), it corresponds Definition 2 of \(III_M \) by some choice of the defining function \(\hat{\rho} \) of \(M \) in \(\partial H^{N+1} \).

The above \(\rho \) and \(\hat{\rho} \) may not be the same. But Definition 2 of \(III_M \equiv 0 \) is independent of choice of defining functions, which gives (i) \(\Rightarrow \) (iv).

9 Proof of Theorem 1.1

Lemma 9.1 (cf. [EHZ04], corollary 5.5) Let \(H : M' \to M \hookrightarrow \partial H^{N+1} \) be a smooth CR embedding of a strictly pseudoconvex smooth real hypersurface \(M \subset C^{n+1} \). Denote by \((\omega^\mu_{\alpha \beta})\) the CR second fundamental form matrix of \(H \) relative to an admissible coframe \((\theta, \theta^A)\) on \(\partial H^{N+1} \) adapted to \(M \). If \(\omega^\mu_{\alpha \beta} \equiv 0 \) for all \(\alpha, \beta \) and \(\mu \), then \(M' \) is locally CR-equivalent to \(\partial H^{n+1} \).

Proof of Theorem 1.1 Step 1. Reduction to a problem for geometric rank By Lemma 8.1 and Lemma 9.1 and the hypothesis that the CR second fundamental form identically vanishes, we know that \(M \) is locally CR equivalent to \(\partial H^{n+1} \).

Then \(M \) is the image of a local smooth CR map \(F : U \subset \partial H^{n+1} \to M \subset \partial H^{N+1} \) where \(U \) is an open set in \(\partial H^{n+1} \). By a result of Forstneric [Fo89], the map \(F \) must be a rational map. It suffices to prove that \(F \) is equivalent to a linear map. By Lemma 2.2 it is sufficient to prove that the geometric rank of \(F \) is zero: \(\kappa_0 = 0 \).

Suppose \(\kappa_0 > 0 \) and we seek a contradiction.

Step 2. Reduction to a lift of \((H \circ \tau_p^F)(M), 0\) Take any point \(p \in U \subset \partial H^{n+1} \) with \(\kappa_0 = \kappa_0(p) > 0 \), and consider the associated map (see Lemma 2.1)
\[
F_{p}^{***} = H \circ \tau_p^F \circ F \circ \sigma_p^0 \circ G : \partial H^{n+1} \to \partial H^{N+1}, \quad F_{p}^{***}(0) = 0,
\]
where σ^0_p is defined in (1), τ^F_p is defined in (2), $G \in Aut_0(\mathbb{H}^{n+1})$ and $H \in Aut_0(\mathbb{H}^{N+1})$ are automorphisms. By Theorem 2.3, $F_{p}^{\ast\ast\ast} = (f, \phi, g)$ satisfies the following normalization conditions:

$$
\begin{align*}
\begin{cases}
 f_j = z_j + i \mu_j \frac{z_j w + o_{wt}(3)}{2}, & \frac{\partial^2 f_j}{\partial w^2}(0) = 0, \quad j = 1 \cdots, \kappa_0, \quad \mu_j > 0, \\
 f_j = z_j + o_{wt}(3), & j = \kappa_0 + 1, \cdots, n - 1 \\
 g = w + o_{wt}(4), \\
 \phi_{jl} = \mu_{jl} z_j z_l + o_{wt}(2), & (j, l) \in S \text{ with } \mu_{jl} > 0 \text{ for } (j, l) \in S_0 \\
 \mu_{jl} = 0 \text{ otherwise}
\end{cases}
\end{align*}
$$

(80)

where $\mu_{jl} = \sqrt{\mu_j + \mu_l}$ for $j, l \leq \kappa_0$ and $j \neq l$, $\mu_{jl} = \sqrt{\mu_j}$ if $j \leq \kappa_0$ and $l > \kappa_0$ or if $j = l \leq \kappa_0$.

Here the assumption that $\kappa_0 > 0$ is used.

From (79) we obtain

$$
\begin{align*}
\begin{array}{c}
(M, F(p)) & \xrightarrow{H \circ \tau^F_p} & (H \circ \tau^F_p(M), 0) \\
\uparrow F & & \uparrow F_{p}^{\ast\ast\ast} \\
(\partial \mathbb{H}^{n+1}, p) & \xleftarrow{\sigma^0_p \circ G} & (\partial \mathbb{H}^{n+1}, 0)
\end{array}
\end{align*}
$$

If we can show that there exists a first-order adapted lift e from the submanifold $H \circ \tau^F_p(M)$ near 0 into $SU(N + 1, 1)$ such that the corresponding CR second fundamental form

$$
II^e_{H \circ \tau^F_p(M)} \neq 0 \text{ at } 0,
$$

(81)

then we obtain a first-order adapted lift $\tilde{e} := (H \circ \tau^F_p)^{-1} \circ e \circ H \circ \tau^F_p$ from the submanifold M near $F(p)$ into $GL^Q(\mathbb{C}^{N+1})$ such that the corresponding CR second fundamental form

$$
II^{\tilde{e}}_M \neq 0 \text{ at } F(p).
$$

(82)

Notice that the map $H \circ \tau^F_p \in GL^Q(\mathbb{C}^{N+2})$ but $H \circ \tau^F_p \notin SU(N + 1, 1)$, so that the lift \tilde{e} is not from M into $SU(N + 1, 1)$. This is why we have to introduce Definition 3.

Since we take arbitrary $p \in \partial \mathbb{H}^{n+1}$, from (82) it concludes that $II_M \neq 0$, but this is a desired contradiction.

Step 3. Calculation of the second fundamental form

It remains to prove existence of the lift e such that (81) holds.

The lift e constructed in the second half of Section 7 is a first-order adapted lift from $H \circ \tau^F_p(M)$ near 0 into $SU(N + 1, 1)$ which defines a CR second fundamental form as a
tensor $II_{H_{0\tau F_p}(M)} = q^\mu_{\alpha\beta}\omega^\alpha\omega^\beta \otimes (e_\mu)$ in (49). If we can show $q^\mu_{\alpha\beta}(0) = \partial^2 \phi_\mu \partial z_\alpha \partial z_\beta|_0$, where $F_{\ast\ast\ast} = (f, \phi, g) = (f_\alpha, \phi_\mu, g)$. Since we assume that $\kappa_0 > 0$, by (80) and (83), it implies $q^\mu_{\alpha\beta}(0) \neq 0, \forall \alpha, \beta$ and μ, i.e., $II_{H_{0\tau F_p}(M)} \neq 0$. This proves (81).

Let $E = (e_0, e_\alpha, \hat{E}_\mu, e_{N+1})$ be the lift constructed in Theorem 7.1 (see the remark at the end of the proof of Theorem 7.1) and in (74), (75) and (76). Since $E|_0 = Id$, we have $\omega|_0 = (E^{-1}|_0)(dE)|_0 = dE|_0$ so that

$$
\omega|_0 = \begin{bmatrix}
0 & * & ... & *
\end{bmatrix}
\begin{bmatrix}
dz_1 & * & ... & * \\
\vdots & \vdots & \ddots & \vdots \\
dz_n & * & ... & * \\
* & * & ... & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & ... & *
\end{bmatrix}.
$$

Hence $\omega^1|_0 = dz_1, \ldots, \omega^n|_0 = dz_n, \omega^{N+1}|_0 = dz_{N+1}$. Then by applying the chain rule, we obtain

$$
\omega^\mu_j|_0 = dE^\mu_j|_0 = d((L_j\phi_\mu) \circ (F_{fg})^{-1})|_0 = \partial \partial z_k (L_j\phi_\mu) \circ (F_{fg})^{-1})|_0 dz_k = \partial^2 \phi_\mu \partial z_k \partial z_j|_0 \omega^k|_0,
$$

for any $j, k \in \{1, 2, \ldots, n, N+1\}$, $n+1 \leq \mu \leq N$. Hence (83) is proved. The proof of Theorem 1.1 is complete. \(\square\)

References

[CM74] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271.

[EHZ04] P. Ebenfelt, X. Huang and D. Zaitsev, Rigidity of CR-immersions into spheres. Comm. Anal. Geom. 12(2004), no. 3, 631–670.
[Fa88] J. Faran, *The nonembeddability of real hypersurfaces in sphere*, Proc. A.M.S. 103 (1988), 902-904.

[Fa90] J. Faran, *A reflection principle for proper holomorphic mappings and geometric invariants*, Math. Z. 203 (1990), 363-377.

[Fo86] F. Forstneric, *Embedding strictly pseudoconvex domains into balls*, Trans. A.M.S. 295 (1986), 347-368.

[KO06] S.Y. Kim and J.W. Oh, *Local embeddability of pseudohermitian manifolds into spheres*. Math. Ann. 334 (2006), no. 4, 783–807.

[Fo89] F. Forstneric, *Extending proper holomorphic mappings of positive codimension*, Invent. Math., 95 (1989), 31-62.

[Hu99] X. Huang, *On a linearity problem of proper holomorphic mappings between balls in complex spaces of different dimensions*, J. of Diff. Geom. 51 (1999), 13–33.

[Hu03] X. Huang, *On a semi-rigidity property for holomorphic maps*, Asian J. Math. Vol(7) No. 4(2003), 463-492.

[HJY09] X. Huang, S. Ji and W. Yin, *The third gap for proper holomorphic maps between balls*, preprint.

[IL03] T.A. Ivey and J.M. Landsberg, *Cartan for beginners: differential geometry via moving frames and exterior differential systems*. Graduate Studies in Mathematics, 61. American Mathematical Society, Providence, RI, 2003. xiv+378 pp.

[La01] B. Lamel, *A reflection principle for real-analytic submanifolds of complex spaces*, J. Geom. Anal. 11, no. 4, 625-631, (2001).

[T75] N. Tanaka, *A differential geometric study on strongly pseudo-convex manifolds*. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975.

[Wa06] S.H. Wang, *A gap rigidity for proper holomorphic maps from \mathbb{B}^{n+1} to \mathbb{B}^{3n-1}*. arXiv:math/0604382v1 [math.DC], 2006.

[We78] S.M. Webster *Pseudo-Hermitian structures on a real hypersurface*. J. Differential Geom. 13 (1978), no. 1, 25–41.
[We79] S.M. Webster *The rigidity of C-R hypersurfaces in a sphere*. Indiana Univ. Math. J. 28 (1979), no. 3, 405–416.

[Za08] D. Zaitsev, *Obstructions to embeddability into hyperquadrtics and explicit examples*. Math Ann, 342(2088), 695-726.

Shanyu Ji (shanyuji@math.uh.edu), Department of Mathematics, University of Houston, Houston, TX 77204;
Yuan Yuan (yuanyuan@math.rutgers.edu), Department of Mathematics, Rutgers University, Piscataway, NJ 08854.