LP-SASAKIAN MANIFOLDS EQUIPPED WITH ZAMKOVOY CONNECTION AND CONHARMONIC CURVATURE TENSOR

Abhijit Mandal\(^1\), Ashoke Das\(^2\)
\(^1\)Raiganj Surendranath Mahavidyalaya, Raiganj, Uttar Dinajpur, West Bengal, India-733134.
Email: abhijit4791@gmail.com
\(^2\)Raiganj University, Raiganj, Uttar Dinajpur, West Bengal, India-733134.
Email: ashoke.avik@gmail.com

Abstract. The paper concerns with some results on conharmonically flat, quasi-conharmonically flat and \(\phi\)-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection. Also, it contains study of generalized conharmonic \(\phi\)-recurrent LP-Sasakian manifolds with respect to Zamkovoy connection. Moreover, the paper deals with LP-Sasakian manifolds satisfying \(K^* (\xi, U^*) R^* = 0\), where \(K^*\) denotes conharmonic curvature tensor and \(R^*\) denotes Riemannian curvature tensor with respect to Zamkovoy connection, respectively.

Key words and Phrases: LP-Sasakian manifold, Zamkovoy connection, Conharmonic curvature tensor

1. Introduction

In 1989, K. Matsumoto \([13]\) first introduced the notion of Lorentzian para-Sasakian manifolds (briefly, LP-Sasakian manifolds). Also, in 1992, I. Mihai and R. Rosca \([14]\) introduced independently the notion of Lorentzian para-Sasakian manifolds in classical analysis. The generalized recurrent manifolds was introduced by Dubey \([8]\) and it was studied by De and Guha et al. \([6]\). In this context, \(\phi\)-recurrent LP-Sasakian manifold was first studied by A. A. Shaikh, D. G. Prakasha and Helaluddin Ahmad \([15]\). On the other hand, \(\phi\)-conharmonically flat LP-Sasakian manifold was introduced by A. Taleshian \([16]\). Apart from these, the properties of LP-Sasakian manifolds were studied by several authors, namely U. C. De \([7]\), C. Ozgur \([17]\) and many others.

2020 Mathematics Subject Classification: 53C15, 53C50
Received: 02-10-2020, accepted: 06-04-2021.
A. Mandal and A. Das

In 2008, a new non-metric canonical connection on para contact manifold was introduced by S. Zamkovoy [18]. This connection named as Zamkovoy connection was further studied in Sasakian manifolds, LP-Sasakian manifolds and para-Kenmotsu manifolds by several researcher et al. ([3], [1], [2], [10], [11], [12], [5]). Zamkovoy connection ∇^* for an n-dimensional almost contact metric manifold M equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a $(1,1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric g is given by

$$\nabla^*_XY = \nabla_XY + (\nabla_X\eta)(Y)\xi - \eta(Y)\nabla_X\xi + \eta(X)\phi Y,$$

for all $X, Y \in \chi(M)$, where ∇ is the Levi-Civita connection and $\chi(M)$ is the set of all vector fields on M.

In 1957, Y. Ishii [9] first studied the notion of a conharmonic curvature tensor. A rank three tensor K, that remains invariant under conharmonic transformation for an n-dimensional Riemannian manifold M is given by

$$K(X,Y)Z = R(X,Y)Z - \frac{1}{n-2} [S(Y,Z)X - S(X,Z)Y]$$

$$- \frac{1}{n-2} [g(Y,Z)QX - g(X,Z)QY],$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the set of all vector fields of the manifold M and R denotes the Riemannian curvature tensor of type $(1,3)$, S denotes the Ricci tensor of type $(0,2)$, Q is the Ricci operator.

The conharmonic curvature tensor (K^*) with respect to Zamkovoy connection is given by

$$K^*(X,Y)Z = R^*(X,Y)Z - \frac{1}{n-2} [S^*(Y,Z)X - S^*(X,Z)Y]$$

$$- \frac{1}{n-2} [g(Y,Z)Q^*X - g(X,Z)Q^*Y],$$

for all $X, Y, Z \in \chi(M)$, where R^*, S^* and Q^* are Riemannian curvature tensor, Ricci tensor and Ricci operator with respect to Zamkovoy connection, respectively.

Definition 1.1. An n-dimensional LP-Sasakian manifold M is said to be generalized η–Einstein manifold if the Ricci tensor of type $(0,2)$ is of the form

$$S(Y,Z) = k_1g(Y,Z) + k_2\eta(Y)\eta(Z) + k_3\omega(Y,Z),$$

for all $Y, Z \in \chi(M)$, where k_1, k_2 and k_3 are scalars and ω is a 2–form.

Definition 1.2. An n-dimensional LP-Sasakian manifold M is said to be conharmonically flat with respect to Zamkovoy connection if $K^*(X,Y)Z = 0$, for all $X, Y, Z \in \chi(M)$.

Definition 1.3. An n-dimensional LP-Sasakian manifold M is said to be ξ–conharmonically flat with respect to Zamkovoy connection if $K(X,Y)\xi = 0$, for all $X, Y, Z \in \chi(M)$.
Definition 1.4. An n-dimensional LP-Sasakian manifold M is said to be generalized conharmonic ϕ-recurrent with respect to Zamkovoy connection if

$$\phi^2 (\nabla^*_W K^*) (X,Y) Z = A(W) K(X,Y) Z + B(W) [g(Y,Z) X - g(X,Z) Y],$$

for all $X,Y,Z,W \in \chi(M)$, where A and B are 1-forms and B is non vanishing such that $A(W) = g(W,\rho_1), B(W) = g(W,\rho_2)$ and ρ_1, ρ_2 are vector fields associated with 1-forms A and B, respectively.

This paper is structured as follows:

After introduction, a short description of LP-Sasakian manifold has been given in section (2). In section (3), we have obtained Riemannian curvature tensor R^*, Ricci tensor S^*, scalar curvature r^* with respect to Zamkovoy connection in LP-Sasakian manifold. Section (4) contains conharmonically flat and ξ-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection. In section (5), we have discussed quasi-conharmonically flat LP-Sasakian manifold with respect to Zamkovoy connection. Section (6) contains ϕ-conharmonically flat LP-Sasakian manifold with respect to ∇^*. Section (7) concerns with a generalized conharmonic ϕ-recurrent LP-Sasakian manifold with respect to ∇^*. In section (8), we have discussed an LP-Sasakian manifold satisfying $K^* (\xi, U). R^* = 0$.

2. Preliminaries

An n-dimensional differentiable manifold is called an LP-Sasakian manifold if it admits a $(1, 1)$ tensor field ϕ, a vector field ξ, a 1-form η and a Lorentzian metric g which satisfies:

$$\phi^2 Y = Y + \eta(Y) \xi, \eta(\xi) = -1, \eta(\phi X) = 0, \phi \xi = 0,$$ \hspace{1cm} (5)

$$g(\phi X, \phi Y) = g(X,Y) + \eta(X)\eta(Y),$$ \hspace{1cm} (6)

$$g(X, \phi Y) = g(\phi X, Y), \eta(Y) = g(Y, \xi),$$ \hspace{1cm} (7)

$$\nabla_X \xi = \phi X, \quad g(X, \xi) = \eta(X),$$ \hspace{1cm} (8)

$$\nabla_X (\phi Y) = g(X,Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi,$$ \hspace{1cm} (9)

for all $X, Y \in \chi(M)$, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Let us introduced a symmetric $(0, 2)$ tensor field ω such that

$$\omega(X, Y) = g(X, \phi Y).$$ \hspace{1cm} (10)

Also, since the vector field η is closed in LP-Sasakian manifold M, we have

$$(\nabla_X \eta) Y = \omega(X,Y), \omega(X, \xi) = 0,$$ \hspace{1cm} (11)

for all $X, Y \in \chi(M)$.
In LP-Sasakian manifold the following relations also hold:

\begin{align}
\eta(R(X,Y)Z) &= g(Y,Z)\eta(X) - g(X,Z)\eta(Y), \\
R(X,Y)\xi &= \eta(Y)X - \eta(X)Y, \\
R(\xi,Y)Z &= g(Y,Z)\xi - \eta(Z)Y, \\
R(\xi,Y)\xi &= \eta(Y)\xi + Y, \\
S(X,\xi) &= (n-1)\eta(X), \\
S(\phi X,\phi Y) &= S(X,Y) + (n-1)\eta(X)\eta(Y),
\end{align}

\[Q\xi = (n-1)\xi, Q\phi = \phi Q, S(X,Y) = g(QX,Y), S^2(X,Y) = S(QX,Y). \tag{18} \]

Lemma 2.1. The relation between Zamkovoy connection and Levi-Civita connection in an LP-Sasakian manifold is given by

\[\nabla_X^* Y = \nabla_X Y + g(X,\phi Y)\xi - \eta(Y)\phi X + \eta(X)\phi Y, \tag{19} \]

where the torsion tensor of Zamkovoy connection is

\[T^*(X,Y) = 2[\eta(X)\phi Y - \eta(Y)\phi X]. \tag{20} \]

Proof. In view of (1) and (11), we have

\[(\nabla_X^* g)(Y,Z) = -2g(Y,\phi Z)\eta(X). \tag{21} \]

Suppose that the Zamkovoy connection \(\nabla^* \) defined on an \(n \)-dimensional LP-Sasakian manifold \(M \) is connected with the Levi-Civita connection \(\nabla \) by the relation

\[\nabla_X^* Y = \nabla_X Y + P(X,Y), \tag{22} \]

where \(P(X,Y) \) is a tensor field of type \((1,1)\). Then by definition of torsion tensor, we have

\[T^*(X,Y) = P(X,Y) - P(Y,X). \tag{23} \]

Zamkovoy connection is a non-metric connection and hence from (22), we get

\begin{align}
g(P(X,Y),Z) + g(P(X,Z),Y) &= 2g(Y,\phi Z)\eta(X), \\
g(P(Y,X),Z) + g(P(Y,Z),X) &= 2g(X,\phi Z)\eta(Y), \\
g(P(Z,X),Y) + g(P(Z,Y),X) &= 2g(X,\phi Y)\eta(Z). \tag{26} \end{align}

In view of (24), (25), (26) and (23), we have

\begin{align}
g(T^*(X,Y),Z) + g(T^*(Z,X),Y) + g(T^*(Z,Y),X) &= g(P(X,Y),Z) - g(P(Y,X),Z) - g(P(X,Z),Y) \\
&- g(P(Y,Z),X) - g(P(Z,X),Y) - g(P(Z,Y),X) \\
&= 2g(P(X,Y),Z) - 2g(Y,\phi Z)\eta(X) \\
&- 2g(X,\phi Z)\eta(Y) + 2g(X,\phi Y)\eta(Z). \tag{27} \end{align}

Setting

\begin{align}
g(T^*(Z,X),Y) &= g(\overline{T}(X,Y),Z), \tag{28} \\
g(T^*(Z,Y),X) &= g(\overline{T}(Y,X),Z), \tag{29} \end{align}
in (27), we have
\[g(T^*(X,Y),Z) + g(T(X,Y),Z) + g(T(Y,X),Z) = 2g(P(X,Y),Z) - 2g(Y,\phi Z)\eta(X) \\
-2g(X,\phi Z)\eta(Y) + 2g(X,\phi Y)\eta(Z), \tag{30} \]
which implies that
\[P(X,Y) = \frac{1}{2}[T^*(X,Y) + T(X,Y) + T(Y,X)] \\
+\eta(X)\phi Y + \eta(Y)\phi X - g(X,\phi Y)\xi. \tag{31} \]
In reference to (20), (28) and (29), we have
\[T(X,Y) = 2g(X,\phi Y)\xi - 2\eta(X)\phi Y, \tag{32} \]
\[T(Y,X) = 2g(X,\phi Y)\xi - 2\eta(Y)\phi X. \tag{33} \]
Using (20), (32) and (33) in (31), we obtain
\[P(X,Y) = g(X,\phi Y)\xi - \eta(Y)\phi X + \eta(X)\phi Y. \tag{34} \]
In reference to (22) and (34), we can easily bring out the equation (19).

From the equation (19), it is obvious that
\[\nabla_X\xi = 2\phi X. \tag{35} \]

Proposition 2.2. The Zamkovoy connection on an \(n \)-dimensional LP-Sasakian manifold is a non-metric linear connection with torsion tensor given by equation (20).

3. Some properties of LP-Sasakian manifold with respect to Zamkovoy connection

Let \(R^* \) be the Riemannian curvature tensor with respect to Zamkovoy connection and it be defined as
\[R^*(X,Y)Z = \nabla_X\nabla_Y^*Z - \nabla_Y\nabla_X^*Z - \nabla^*_{[X,Y]}Z. \tag{36} \]
Using (5), (8), (9) and (19) in (36), we get the Riemannian curvature \(R^* \) with respect to Zamkovoy connection as
\[R^*(X,Y)Z = R(X,Y)Z + 3g(X,Z)\eta(Y)\xi \\
-3g(Y,Z)\eta(X)\xi + 3g(Y,\phi Z)\phi X - 3g(X,\phi Z)\phi Y \\
-\eta(X)\eta(Z)Y + \eta(Y)\eta(Z)X. \tag{37} \]
Consequently, one can easily bring out the followings:
\[S^*(Y,Z) = S(Y,Z) + (n-1)\eta(Y)\eta(Z) + 3\psi g(Y,\phi Z), \tag{38} \]
\[S^*(\xi,Z) = S^*(Z,\xi) = 0, \tag{39} \]
\[Q^*Y = QY + (n-1)\eta(Y)\xi + 3\psi\phi Y, \tag{40} \]
\[Q^*\xi = 0, \tag{41} \]
\[r^* = r - n + 1 + 3\psi^2, \tag{42} \]
\[R^* (X, Y) \xi = 0, \quad (43) \]
\[R^* (\xi, Y) Z = 4g (\phi Y, \phi Z) \xi, \quad (44) \]
\[R^* (X, \xi) Z = -4g (\phi X, \phi Z) \xi, \quad (45) \]

for all \(X, Y, Z \in \chi (M) \), where \(\psi = \text{trace} (\phi) \).

Proposition 3.1. Let \(M \) be an \(n \)-dimensional LP-Sasakian manifold admitting Zamkovoy connection \(\nabla^* \), then

(i) The curvature tensor \(R^* \) of \(\nabla^* \) is given by (37),

(ii) The Ricci tensor \(S^* \) of \(\nabla^* \) is given by (38),

(iii) The scalar curvature \(r^* \) of \(\nabla^* \) is given by (42),

(iv) The Ricci tensor \(S^* \) of \(\nabla^* \) is symmetric,

(v) \(R^* \) satisfies:

\[R^* (X,Y) Z + R^* (Y,Z) X + R^* (Z,X) Y = 0. \quad (46) \]

4. **Conharmonically flat and \(\xi \)-conharmonically flat LP-Sasakian manifolds with respect to Zamkovoy connection**

Theorem 4.1. If an \(n \)-dimensional LP-Sasakian manifold \(M (n > 2) \) is conharmonically flat with respect to Zamkovoy connection, then the scalar curvature is given by \(r = n - 1 - 3\psi^2 \).

Proof. In view of (2) and (3), we have

\[K^* (X, Y) Z = K (X, Y) Z + 3g (X, Z) \eta (Y) \xi - 3g (Y, Z) \eta (X) \xi \]
\[+ 3g (Y, \phi Z) \phi X - 3g (X, \phi Z) \phi Y - \eta (X) \eta (Y) (Z) Y + \eta (Y) \eta (Z) X \]
\[- \frac{n - 1}{n - 2} [g (Y, Z) \eta (X) \xi - g (X, Z) \eta (Y) \xi] \]
\[- \frac{3\psi}{n - 2} [g (Y, Z) \phi X - g (X, Z) \phi Y] \]
\[- \frac{n - 1}{n - 2} [\eta (Y) X - \eta (X) Y] \eta (Z) \]
\[- \frac{3\psi}{n - 2} [g (Y, \phi Z) X - 3\psi g (X, \phi Z) Y]. \quad (46) \]

Let us consider an LP-Sasakian manifold \(M \) which is conharmonically flat with respect to Zamkovoy connection, then from (3), we have

\[R^* (X, Y) Z = \frac{1}{n - 2} [S^* (Y, Z) X - S^* (X, Z) Y] \]
\[+ \frac{1}{n - 2} [g (Y, Z) Q^* X + g (X, Z) Q^* Y]. \quad (47) \]
Taking inner product of (47) with a vector field V, we get

\[g\left(R^* (X, Y) Z, V \right) = \frac{1}{n-2} \left[S^* (Y, Z) g(X, V) - S^* (X, Z) g(Y, V) \right] + \frac{1}{n-2} \left[g(Y, Z) S^* (X, V) - g(X, Z) S^* (Y, V) \right]. \quad (48) \]

Taking an orthonormal frame field of M and contracting (48) over X and V, we obtain

\[r = n - 1 - 3\psi^2. \]

This gives the theorem. \[\square \]

Corollary 4.2. If an n-dimensional LP-Sasakian manifold is conharmonically flat with respect to Zamkovoy connection, then its scalar curvature is constant, provided that $\text{trace} (\phi) = 0$.

Theorem 4.3. An n-dimensional LP-Sasakian manifold ($n > 2$) is $\xi-$conharmonically flat with respect to Zamkovoy connection if and only if it is so with respect to Levi-Civita connection, provided that the vector fields are horizontal vector fields.

Proof. Setting $Z = \xi$ in (46), we have

\[\mathcal{K}^* (X, Y) \xi = \mathcal{K} (X, Y) \xi + \frac{1}{n-2} \left[\eta(Y) X - \eta(X) Y \right] - \frac{3\psi}{n-2} \left[\eta(Y) \phi X - \eta(X) \phi Y \right] \]

\[= \mathcal{K} (X, Y) \xi, \quad \text{if } X, Y \text{ are horizontal vector fields on } M. \quad (49) \]

This gives the theorem. \[\square \]

Theorem 4.4. If an n-dimensional LP-Sasakian manifold ($n > 2$) is $\xi-$conharmonically flat with respect to Zamkovoy connection, then its scalar curvature with respect to Zamkovoy connection vanishes.

Proof. Setting $Z = \xi$ in (3), we have

\[\mathcal{K}^* (X, Y) \xi = \frac{1}{n-2} \left[\eta(Y) Q^* X - \eta(X) Q^* Y \right]. \quad (50) \]

If M is $\xi-$conharmonically flat with respect to Zamkovoy connection, then it follows from (50) that

\[0 = \eta(Y) Q^* X - \eta(X) Q^* Y. \quad (51) \]

Taking inner product of (51) with a vector field V, we obtain

\[0 = \eta(Y) S^* (X, V) - \eta(X) S^* (Y, V). \quad (52) \]

Setting $Z = \xi$ in (52)

\[S^* (X, V) = 0. \quad (53) \]
Taking an orthonormal frame field of M and contracting (53) over X and V, we get
\[r^* = 0. \]

This gives the theorem. \qed

5. Quasi-conharmonically flat LP-Sasakian manifold with respect to Zamkovoy connection.

Theorem 5.1. If an n-dimensional LP-Sasakian manifold M $(n > 2)$ is quasi-conharmonically flat with respect to Zamkovoy connection, then its scalar curvature with respect to Zamkovoy connection vanishes.

Proof. Let us consider an LP-Sasakian manifold M which is quasi-conharmonically flat with respect to Zamkovoy connection, i.e.,
\[g(\mathcal{K}^*(\phi X, Y) Z, \phi V) = 0, \quad (54) \]
for all $X, Y, Z, V \in \chi(M)$.

Then, in view of (3), we have
\[
g(R^*(\phi X, Y) Z, \phi V) = \frac{1}{n-2} [S^*(Y, Z) g(\phi X, \phi V) - S^*(\phi X, Z) g(Y, \phi V)] + \frac{1}{n-2} [g(Y, Z) S^*(\phi X, \phi V) - g(\phi X, Z) S^*(Y, \phi V)]. \quad (55)\]

Let $\{e_i\} (1 \leq i \leq n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $Y = Z = e_i$ in the equation (55) and taking summation over $i (1 \leq i \leq n)$, we get
\[
\sum_{i=1}^{n} g(R^*(\phi X, e_i) e_i, \phi V) = \frac{1}{n-2} \left[\sum_{i=1}^{n} S^*(e_i, e_i) g(\phi X, \phi V) - \sum_{i=1}^{n} S^*(\phi X, e_i) g(e_i, \phi V) \right] \\
+ \frac{1}{n-2} \left[\sum_{i=1}^{n} g(e_i, e_i) S^*(\phi X, \phi V) - \sum_{i=1}^{n} g(\phi X, e_i) S^*(e_i, \phi V) \right]. \quad (56)\]

It can be easily seen that
\[
\sum_{i=1}^{n} g(e_i, e_i) = n, \quad (57) \\
\sum_{i=1}^{n} S^*(\phi X, e_i) g(e_i, \phi V) = S^*(\phi X, \phi V), \quad (58) \\
\sum_{i=1}^{n} S^*(e_i, e_i) = r^*. \quad (59)\]
Using (57), (58) and (59) in (56), we get
\[r^* = 0. \]

This gives the theorem. \(\square\)

6. \(\phi\)--conharmonically flat LP-Sasakian manifold with respect to Zamkovoy connection

Theorem 6.1. If an \(n\)--dimensional LP-Sasakian manifold \(M\) \((n > 2)\) is \(\phi\)--conharmonically flat with respect to Zamkovoy connection, then \(M\) is a generalized \(\eta\)--Einstein manifold.

Proof. Let us consider an LP-Sasakian manifold \(M\) which is \(\phi\)--conharmonically flat with respect to Zamkovoy connection, i.e.,
\[g(K^* (\phi X, \phi Y) \phi Z, \phi V) = 0, \quad (60) \]
for all \(X, Y, Z, V \in \chi(M)\).

Then in view of (3), we have
\[
g (R^* (\phi X, \phi Y) \phi Z, \phi V) = \frac{1}{n-2} [S^* (\phi Y, \phi Z) g (\phi X, \phi V) - S^* (\phi X, \phi Z) g (\phi Y, \phi V)] \\
+ \frac{1}{n-2} [g (\phi Y, \phi Z) S^* (\phi X, \phi V) - g (\phi X, \phi Z) S^* (\phi Y, \phi V)]. \quad (61)\]

Let \(\{e_i, \xi\} \ (1 \leq i \leq n-1)\) be a local orthonormal basis of the tangent space at any point of the manifold \(M\). Using the fact that \(\{\phi e_i, \xi\} \ (1 \leq i \leq n-1)\) is also a local orthonormal basis of the tangent space and setting \(Y = Z = e_i\) and taking summation over \(i(1 \leq i \leq n-1)\) it follows from (61) that
\[
\sum_{i=1}^{n-1} R^* (\phi X, \phi e_i, \phi e_i, \phi V) \\
= \frac{1}{n-2} \left[\sum_{i=1}^{n-1} S^* (\phi e_i, \phi e_i) g (\phi X, \phi V) - \sum_{i=1}^{n-1} S^* (\phi X, \phi e_i) g (\phi e_i, \phi V) \right] \\
+ \frac{1}{n-2} \left[\sum_{i=1}^{n-1} g (\phi e_i, \phi e_i) S^* (\phi X, \phi V) - \sum_{i=1}^{n-1} g (\phi X, \phi e_i) S^* (\phi e_i, \phi V) \right]. \quad (62)\]
It can be easily seen that
\[\sum_{i=1}^{n-1} g(\phi e_i, \phi e_i) = n - 1, \]
(63)
\[\sum_{i=1}^{n-1} S^* (\phi X, \phi e_i) g(\phi e_i, \phi V) = S^* (\phi X, \phi V), \]
(64)
\[\sum_{i=1}^{n-1} S^* (\phi e_i, \phi e_i) = r^*. \]
(65)

Using (63), (64) and (65) in (62), we have
\[S(X, V) = (r - n + 1 + 3\psi^2) g(X, V) \]
\[+ (r - 2n + 2 + 3\psi^2) \eta(X) \eta(V) - 3\psi \omega(X, V), \]
(66)
where \(\omega(X, V) = g(X, \phi V) \) and \(\psi = \text{trace}(\phi). \)

Therefore \(M \) is a generalized \(\eta \)-Einstein manifold. \(\square \)

7. Generalized conharmonic \(\phi \)-recurrent LP-Sasakian manifold with respect to Zamkovoy connection

Theorem 7.1. If an \(n \)-dimensional LP-Sasakian manifold \(M (n > 2) \) is generalized conharmonic \(\phi \)-recurrent with respect to Zamkovoy connection, then 1-forms \(A \) and \(B \) are related as
\[B(W) = \left[\frac{r - n + 1 + 3\psi^2}{n(n-1)} \right] A(W), \]
where \(W \) is an arbitrary vector field on \(M \) and \(\psi = \text{trace}(\phi). \)

Proof. Let \(M \) be a generalized conharmonic \(\phi \)-recurrent LP-Sasakian manifold with respect to Zamkovoy connection, then
\[\phi^2 (\nabla^*_W K^*) (X, Y) Z \]
\[= A(W) K^* (X, Y) Z + B(W) [g(Y, Z) X - g(X, Z) Y], \]
(67)
where the 1-forms are given by \(A(W) = g(W, \rho_1), B(W) = g(W, \rho_2), B(W) \neq 0 \) and \(\rho_1, \rho_2 \) are vector fields associated with 1-forms \(A \) and \(B \), respectively.

Using (5) in (67), we have
\[(\nabla^*_W K^*) (X, Y) Z \]
\[= -\eta((\nabla^*_W K^*) (X, Y) Z) \xi A(W) K^* (X, Y) Z \]
\[+ B(W) [g(Y, Z) X - g(X, Z) Y]. \]
(68)
The inner product of the equation (68) with vector field \(V \) gives
\[g((\nabla^*_W K^*) (X, Y) Z, V) \]
\[= -\eta((\nabla^*_W K^*) (X, Y) Z) \eta(V) + A(W) g(K^* (X, Y) Z, V) \]
\[+ B(W) [g(Y, Z) g(X, V) - g(X, Z) g(Y, V)]. \]
(69)
In view of (3), it is easily seen that

\[
\begin{align*}
g ((\nabla^W K^*) (X, Y) Z, V) \\
= g ((\nabla^W R^*) (X, Y) Z, V) \\
- \frac{1}{n-2} \left[(\nabla^* S^*) (Y, Z) g (X, V) - (\nabla^* S^*) (X, Z) g (Y, V) \right] \\
- \frac{1}{n-2} \left[g (Y, Z) (\nabla^* S^*) (X, V) - g (X, Z) (\nabla^* S^*) (Y, V) \right],
\end{align*}
\]

(70)

\[
\begin{align*}
\eta ((\nabla^W K^*) (X, Y) Z) \\
= g ((\nabla^W R^*) (X, Y) Z, \xi) \\
- \frac{1}{n-2} \left[(\nabla^* S^*) (Y, Z) \eta (X) - (\nabla^* S^*) (X, Z) \eta (Y) \right],
\end{align*}
\]

(71)

\[
\begin{align*}
g (K^* (X, Y) Z, V) \\
= g (R^* (X, Y) Z, V) \\
- \frac{1}{n-2} \left[S^* (Y, Z) g (X, V) - S^* (X, Z) g (Y, V) \right] \\
- \frac{1}{n-2} \left[g (Y, Z) S^* (X, V) - g (X, Z) S^* (Y, V) \right].
\end{align*}
\]

(72)

Using (70), (71) and (72) in (69), we get

\[
\begin{align*}
g ((\nabla^W R^*) (X, Y) Z, V) \\
= \frac{1}{n-2} \left[(\nabla^* S^*) (Y, Z) g (X, V) - (\nabla^* S^*) (X, Z) g (Y, V) \right] \\
+ \frac{1}{n-2} \left[g (Y, Z) (\nabla^* S^*) (X, V) - g (X, Z) (\nabla^* S^*) (Y, V) \right] \\
+ \frac{1}{n-2} \left[(\nabla^* S^*) (Y, Z) \eta (X) - (\nabla^* S^*) (X, Z) \eta (Y) \right] \eta (V) \\
+ g (R^* (X, Y) Z, V) A (W) - g ((\nabla^W R^*) (X, Y) Z, \xi) \eta (V) \\
- \frac{1}{n-2} \left[S^* (Y, Z) g (X, V) - S^* (X, Z) g (Y, V) \right] A (W) \\
- \frac{1}{n-2} \left[g (Y, Z) S^* (X, V) - g (X, Z) S^* (Y, V) \right] A (W) \\
+ [g (Y, Z) g (X, V) - g (X, Z) g (Y, V)] B (W).
\end{align*}
\]

(73)
Taking an orthonormal frame field of M and contracting (73) over Y and Z, we get
\[
\left(\nabla^*_W S^*\right)(X, V) = 1 + \frac{1}{n-2} \left[\nabla^*_W r^* g(X, V) - g(\nabla^*_W S^*)(X, \xi) \eta(V)\right]
\]
\[
+ \frac{1}{n-2} \left[n \left(\nabla^*_W S^*\right)(X, V) - \left(\nabla^*_W S^*\right)(X, \xi) \eta(V)\right]
\]
\[
+ \frac{1}{n-2} \left[S^*(X, V) A(W) - \frac{1}{n-2} \left[r^* g(X, V) - S^*(X, V)\right] A(W)\right]
\]
\[
+ \frac{n-1}{n-2} \left[S^*(X, V) A(W) + (n-1) g(X, V) B(W)\right].
\]

(74)

Setting $V = \xi$ in (74),
\[
B(W) = \left[\frac{r - n + 1 + 3\psi^2}{(n-2)(n-1)}\right] A(W).
\]

(75)

This gives the theorem.

\[\square\]

8. LP-Sasakian manifold satisfying $K^*(\xi, U).R^* = 0$

Theorem 8.1. If in an n-dimensional $(n > 2)$ LP-Sasakian manifold M, the condition $K^*(\xi, U).R^* = 0$ holds, then the equation
\[
S^2(Y, U) + 9\psi^2 g(Y, U) + \left[(n-1)^2 + 9\psi^2\right] g(Y) \eta(U) + 6\psi S(Y, \phi U) = 0,
\]
is satisfied on M, where $Y, U \in \chi(M)$ and $\psi = \text{trace}(\phi)$.

Proof. Let us consider an LP-Sasakian manifold M satisfying the condition
\[
(K^*(\xi, U).R^*)(X, Y) Z = 0.
\]

(76)

Then, we have
\[
0 = K^*(\xi, U) R^*(X, Y) Z - R^*(K^*(\xi, U) X, Y) Z
\]
\[
- R^*(X, K^*(\xi, U) Y) Z - R^*(X, Y) K^*(\xi, U) Z.
\]

(77)

Replacing Z by ξ in (77), we get
\[
0 = K^*(\xi, U) R^*(X, Y) \xi - R^*(K^*(\xi, U) X, Y) \xi
\]
\[
- R^*(X, K^*(\xi, U) Y) \xi - R^*(X, Y) K^*(\xi, U) \xi.
\]

(78)

In view of (37), (40), (3) and (78), we have
\[
0 = R^*(X, Y) K^*(\xi, U) \xi
\]
\[
= R^*(X, Y) Q^* U
\]
\[
= R^*(X, Y) Q U + 3\psi R^*(X, Y) \phi U.
\]

(79)

The inner product of the equation (79) with vector field V gives
\[
0 = g(R^*(X, Y) Q U, V) + 3\psi g(R^*(X, Y) \phi U, V).
\]

(80)
Let \(\{e_i\} (1 \leq i \leq n) \) be an orthonormal basis of the tangent space at any point of the manifold \(M \). Setting \(X = V = e_i \) and taking summation over \(i (1 \leq i \leq n) \) and using (18) in (80), we get

\[
0 = S^2(Y, U) + 9\psi^2 g(Y, U) + \left[(n - 1)^2 + 9\psi^2 \right] \eta(Y) \eta(U) + 6\psi S(Y, \phi U).
\]

This gives the theorem. \(\square \)

Acknowledgement

The authors would like to thank the referee for their valuable suggestions to improve the paper.

REFERENCES

[1] Biswas, A. and Baishya, K. K., “Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection”, *Bulletin of the Transilvania University of Brasov*, 12(2) (2020), 233-246.

[2] Biswas, A. and Baishya, K. K., “A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds”, *Scientific Studies and Research Series Mathematics and Informatics*, 29(1) (2019), 59-72.

[3] Blaga, A. M., “Canonical connection on Para Kenmoto manifold”, *Novi Sad J. Math.*, 45(2) (2015), 131-142.

[4] Blair, D. E., “Contact manifolds in Riemannian Geometry”, *Lect. Notes Math. Springer-Verlag, Berlin*, 509 (1976).

[5] Das, A. and Mandal, A., “Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection”, *The Aligarh Bull. of Math.*, 39(2) (2020), 47-61.

[6] De, U. C. and Guha, N., On generalized recurrent manifolds, *J. Nat. Acad. Math.*, 9 (1991), 85-92.

[7] De, U. C., Matsumoto, K. and Shaikh, A. A., “On Lorentzian para-Sasakian manifolds”, *Rendiconti del Seminario Matematico di Messina, Serie II, Supplemento*, 3 (1999), 149-158.

[8] Dubey, R. S., “Generalized recurrent spaces”, *Indian J. Pure Appl. Math.*, 10(12) (1979), 1508-1513.

[9] Ishii, Y., “On conharmonic transformations”, *Tensor, N. S.*, 11 (1957), 73-80.

[10] Mandal, A. and Das, A., “On M-Proietive Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection”, *Adv. Math. Sci. J.*, 9(10) (2020), 8929-8940.

[11] Mandal, A. and Das, A., “Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para Sasakian manifolds”, *J. Indones. Math. Soc.*, 26(3) (2020), 369-379.

[12] Mandal, A. and Das, A., “Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection”, *Bull. Cal. Math. Soc.*, 112(5) (2020), 431-450.

[13] Matsumoto, K., “On Lorentzian paracontact manifolds”, *Bull. of Yamagata Univ. Nat. Sci.*, 12(2) (1989), 151-156.

[14] Mihai, I. and Rosca, R., “On Lorentzian P-Sasakian manifolds, Classical Analysis”, *World Scientific Publ.*, (1992), 155-169.

[15] Shaikh, A. A., Prakash, D. G. and Ahmad, H., “On generalized \(\phi \)-recurrent LP-Sasakian manifolds”, *J. of the Egyptian Mathematical Society*, 23 (2015), 161-166.

[16] Taleshian, A., Prakash, D. G., Vikas, K. and Asghari, N., “On The conharmonic Curvature Tensor of LP-Sasakian Manifolds”, *Palestine J. of Math.*, 5(1) (2016), 177-184.

[17] Ozgur, C., “\(\phi \)-Conformally flat Lorentzian para Sasaki manifolds”, *Radovi Mathemeticki*, 12 (2003), 99-106.

[18] Zamkovoy, S., “Canonical connections on paracontact manifolds”, *Ann. Global Anal. Geom.*, 36(1) (2008), 37-60.