AVERAGE DIMENSION OF FIXED POINT SPACES WITH APPLICATIONS

ROBERT M. GURALNICK AND ATTILA MARÓTI

Abstract. Let G be a finite group, F a field, and V a finite dimensional FG-module such that G has no trivial composition factor on V. Then the arithmetic average dimension of the fixed point spaces of elements of G on V is at most $(1/p) \dim V$ where p is the smallest prime divisor of the order of G. This answers and generalizes a 1966 conjecture of Neumann which also appeared in a paper of Neumann and Vaughan-Lee and also as a problem in The Kourovka Notebook posted by Vaughan-Lee. Our result also generalizes a recent theorem of Isaacs, Keller, Meierfrankenfeld, and Moretó. Various applications are given. For example, another conjecture of Neumann and Vaughan-Lee is proven and some results of Segal and Shalev are improved and/or generalized concerning BFC groups.

Dedicated to Peter M. Neumann on the occasion of his 70th birthday.

1. Introduction

Let G be a finite group, F a field, and V a finite dimensional FG-module. For a non-empty subset S of G we define

$$\text{avgdim}(S, V) = \frac{1}{|S|} \sum_{s \in S} \dim C_V(s)$$

to be the arithmetic average dimension of the fixed point spaces of all elements of S on V. In his 1966 DPhil thesis Neumann \[12\] conjectured that if V is an irreducible FG-module then $\text{avgdim}(G, V) \leq (1/2) \dim V$. This problem was restated in 1977 by Neumann and Vaughan-Lee \[13\] and was posted in 1982 by Vaughan-Lee in The Kourovka Notebook \[9\] as Problem 8.5. The conjecture was proved by Neumann and Vaughan-Lee \[13\] for solvable groups G and also in the case when $|G|$ is invertible in F. Later Segal and Shalev \[17\] showed that $\text{avgdim}(G, V) \leq (3/4) \dim V$ for an arbitrary finite group G. This was improved by Isaacs, Keller, Meierfrankenfeld, and Moretó \[8\] to $\text{avgdim}(G, V) \leq ((p+1)/2p) \dim V$ where p is the smallest prime factor of $|G|$. Our first main theorem is

\begin{thebibliography}{9}

\end{thebibliography}
Theorem 1.1. Let G be a finite group, F a field, and V a finite dimensional FG-module. Let N be a normal subgroup of G that has no trivial composition factor on V. Then $\text{avgdim}(Ng, V) \leq (1/p) \dim V$ for every $g \in G$ where p is the smallest prime factor of the order of G.

Theorem 1.1 not only solves the above-mentioned conjecture of Neumann and Vaughan-Lee but it also generalizes and improves the problem in many ways. First of all, G need not be irreducible on V; the only restriction we impose is that G has no trivial composition factor on V. Secondly, we prove the bound $(1/2) \dim V$ not just for $\text{avgdim}(G, V)$ but for $\text{avgdim}(S, V)$ where S is an arbitrary coset of a normal subgroup of G with a certain property. Thirdly, Theorem 1.1 involves a better general bound, namely $(1/p) \dim V$ where p is the smallest prime divisor of $|G|$. Note that the example [8, Page 3129] of a completely reducible FG-module V for an elementary abelian p-group G shows that $\text{avgdim}(G, V) = (1/p) \dim V$ can occur in Theorem 1.1. There are examples for equality in Theorem 1.1 even when V is an irreducible module. Just consider a non-trivial irreducible representation of $G = C_p$ for p an arbitrary prime. Our other example works for arbitrarily large dimensions. Let p be an arbitrary odd prime, let G be the extraspecial p-group of order p^{1+2a} (for a positive integer a) of exponent p, let $N = Z(G)$, let F be an algebraically closed field of characteristic different from p, and let V be an irreducible FG-module of dimension p^a. Then for every element $x \in G \setminus N$ we have $\dim C_V(x) = (1/p) \dim V$ and so $\text{avgdim}(Ng, V) = (1/p) \dim V$ for every $g \in G$. In particular we have $\text{avgdim}(H, V) = (1/p) \dim V$ for every subgroup H of G containing N.

In his DPhil thesis [12], Neumann showed that if V is a non-trivial irreducible FG-module for a field F and a finite solvable group G then there exists an element of G with small fixed point space. Specifically, he showed that there exists $g \in G$ with $\dim C_V(g) \leq (7/18) \dim V$. Neumann conjectured that in fact, there should exist $g \in G$ such that $\dim C_V(g) \leq (1/3) \dim V$. Segal and Shalev [17] proved, for an arbitrary finite group G, that there exists an element $g \in G$ with $\dim C_V(g) \leq (1/2) \dim V$. Later, under milder conditions (V is a completely reducible FG-module with $C_V(G) = 0$), Isaacs, Keller, Meierfrankenfeld, and Mórtens [8] showed that there exists an element $g \in G$ with $\dim C_V(g) \leq (1/p) \dim V$ where p is the smallest prime divisor of $|G|$. Under even weaker conditions we improve this latter result.

Corollary 1.2. Let G be a finite group, F a field, and V a finite dimensional FG-module. Let N be a normal subgroup of G that has no trivial composition factor on V. Let x be an element of G and let p be the smallest prime factor of the order of G. Then there exists an element $g \in Nx$ with $\dim C_V(g) \leq (1/p) \dim V$ and there exists an element $g \in N$ with $\dim C_V(g) < (1/p) \dim V$.

Note that Corollary 1.2 follows directly from Theorem 1.1 just by noticing that $\dim C_V(1) = \dim V$. Note also that if V is irreducible and faithful in Corollary 1.2 then no non-trivial normal subgroup of G has a non-zero fixed point on V and so the N above can be any non-trivial normal subgroup of G. During the last stage of the writing of this paper Neumann’s above-mentioned conjecture was proved in [6]; if V is a non-trivial irreducible FG-module for a finite group G then there exists an element $g \in G$ such that $\dim C_V(g) \leq (1/3) \dim V$.

Let \(\text{cl}_G(g) \) denote the conjugacy class of an element \(g \) in a finite group \(G \), and for a positive integer \(n \) and a prime \(p \) let \(n_p \) denote the \(p \)-part of \(n \). In [8] Isacs, Keller, Meierfrankenfeld, and Moretó conjecture that for any primitive complex irreducible character \(\chi \) of a finite group \(G \) the degree of \(\chi \) divides \(|\text{cl}_G(g)| \) for some element \(g \) of \(G \). Using their result mentioned before the statement of Corollary 1.2 they showed that if \(\chi \) is an arbitrary primitive complex irreducible character of a finite solvable group \(G \) and \(p \) is a prime divisor of \(|G| \) then \(\chi(1)_p \) divides \((|\text{cl}_G(g)|)^3 \) for some \(g \in G \). Using Theorem 1.4 we may prove more than this.

Corollary 1.3. Let \(\chi \) be an arbitrary primitive complex irreducible character of a finite solvable group \(G \) and let \(p \) be a prime divisor of \(|G| \). Then the number of \(g \in G \) for which \(\chi(1)_p \) divides \((|\text{cl}_G(g)|)^3 \) is at least \((2|G|)/(1 + k) \) where \(k = \log_p |G|_p \). Furthermore if \(\chi(1)_p > 1 \) then there exists a \(p' \)-element \(g \in G \) for which \(p^3 \cdot \chi(1)_p \) divides \((|\text{cl}_G(g)|)^3 \).

Recall that a chief factor of a finite group is a section \(X/Y \) of \(G \) with \(Y < X \) both normal in \(X \) and \(Y \). Note that \(X/Y \) is a direct product of isomorphic simple groups. If \(X/Y \) is abelian, then it is an irreducible \(G \)-module. If \(X/Y \) is non-abelian, then \(G \) permutes the chief factors transitively. A chief factor is called central if \(G \) acts trivially on \(X/Y \) and non-central otherwise. Let \(G \) be a finite group acting on another finite group \(Z \) by conjugation. For a non-empty subset \(S \) of \(G \) define

\[
\text{geom}(S, Z) = \left(\prod_{s \in S} |C_Z(s)| \right)^{1/|S|}
\]

to be the geometric mean of the sizes of the centralizers of elements of \(S \) acting on \(Z \). Similarly, for a non-empty subset \(S \) of \(G \) define

\[
\text{avg}(S, Z) = \frac{1}{|S|} \sum_{s \in S} |C_Z(s)|
\]

to be the arithmetic mean of the sizes of the centralizers of elements of \(S \) acting on \(Z \). Our next result is a non-abelian version of Theorem 1.1 proved using some recent work of Fulman and the first author [5].

Theorem 1.4. Let \(G \) be a finite group with \(X/Y = M \) a non-abelian chief factor of \(G \) with \(X \) and \(Y \) normal subgroups in \(G \). Then, for any \(g \in G \), we find that \(\text{geom}(Xg, M) \leq \text{avg}(Xg, M) \leq |M|^{1/2} \).

In fact, one can do slightly better than \(1/2 \) in the exponent of the statement of Theorem 1.3 but it is a bit easier to write down the proof of this result. It is easy to see that one cannot do better than \(1/3 \) (consider \(G = \text{SL}(2, q) \) with \(q = 2^e > 2 \) – then all non-trivial elements have centralizers of orders \(q - 1, q \), or \(q + 1 \) which are approximately \(|G|^{1/3} \)).

Let \(\text{ccf}(G) \) and \(\text{ncl}(G) \) be the product of the orders of all central and non-central chief factors (respectively) of a finite group \(G \). (In case these are not defined put them equal to 1.) These invariants are independent of the choice of the chief series of \(G \). Let \(F(G) \) denote the Fitting subgroup of \(G \). Note that \(F(G) \) acts trivially on every chief factor of \(G \). Using Theorems 1.3 and 1.4 we prove
Theorem 1.5. Let G be a finite group. Then $\text{geom}(G, G) \leq \text{ccf}(G) \cdot (\text{ncf}(G))^{1/p}$ where p is the smallest prime factor of the order of $G/F(G)$.

By taking the reciprocals of both sides of the inequality of Theorem 1.5 and multiplying by $|G|$, we obtain the following result.

Corollary 1.6. Let G be a finite group. Then $\text{ncf}(G) \leq \left(\prod_{g \in G} |\text{cl}_G(g)| \right)^{p/(p-1)|G|}$ where p is the smallest prime factor of the order of $G/F(G)$.

A group is said to be a BFC group if its conjugacy classes are finite and of bounded size. A group G is called an n-BFC group if it is a BFC group and the least upper bound for the sizes of the conjugacy classes of G is n. One of B. H. Neumann’s discoveries was that in a BFC group the commutator subgroup G' is finite [11]. One of the purposes of this paper is to give an upper bound for $|G'|$ in terms of n for an n-BFC group G. Note that $C_G(G')$ is a finite index nilpotent subgroup. Thus, $F(G)$ is well defined for BFC groups.

If G is a BFC group, then there is a finitely generated subgroup H with $H' = G'$ and $G = H C_G(G') = H F(G)$. Then H has a finite index central torsionfree subgroup N. Set $J = H/N$. So J' and G' are G-isomorphic. In particular, $\text{ncf}(J) = \text{ncf}(G)$. Clearly, $G/F(G) \cong J/F(J)$. Thus, for the next result, it suffices to consider finite groups. Our first main theorem on BFC groups follows from Corollary 1.6 (by noticing that $|\text{cl}_G(1)| = 1$ and that in that result, we may always assume the action is faithful).

Theorem 1.7. Let G be an n-BFC group with $n > 1$. Then $\text{ncf}(G) < n^{\log n} \leq n^2$, where p is the smallest prime factor of the order of $G/F(G)$.

Theorem 1.7 solves [13, Conjecture A].

Not long after B. H. Neumann’s proof that the commutator subgroup G' of a BFC group is finite, Wiegold [20] produced a bound for $|G'|$ for an n-BFC group G in terms of n and conjectured that $|G'| \leq n^{(1/2)(1+\log n)}$ where the logarithm is to base 2. Later Macdonald [10] showed that $|G'| \leq n^{6n(\log n)^3}$ and Vaughan-Lee [19] proved Wiegold’s conjecture for nilpotent groups. For solvable groups the best bound to date is $|G'| \leq n^{(1/2)(5+\log n)}$ obtained by Neumann and Vaughan-Lee [13]. In the same paper they showed that for an arbitrary n-BFC group G we have $|G'| \leq n^{(1/2)(3+5\log n)}$. Using the Classification of Finite Simple Groups (CFSG) Cartwright [2] improved this bound to $|G'| \leq n^{(1/2)(41+\log n)}$ which was later further sharpened by Segal and Shalev [17] who obtained $|G'| \leq n^{(1/2)(13+\log n)}$. Applying Theorem 1.7 at the bottom of [17, Page 511] we arrive at a further improvement of the general bound on the order of the derived subgroup of an n-BFC group.

Theorem 1.8. Let G be an n-BFC group with $n > 1$. Then $|G'| < n^{(1/2)(7+\log n)}$.

A word ω is an element of a free group of finite rank. If the expression for ω involves k different indeterminates, then for every group G, we obtain a function from \mathbb{Z}^k to G by substituting group elements for the indeterminates. Thus we can consider the set G_ω of all values taken by this function. The subgroup generated by G_ω is called the verbal subgroup of ω in G and is denoted by $\omega(G)$. An outer
commutator word is a word obtained by nesting commutators but using always
different indeterminates. In [4] Fernández-Alcober and Morigi proved that if \(\omega \) is an
outer commutator word and \(G \) is any group with \(|G_\omega| = m \) for some positive integer
\(m \) then \(|\omega(G)| \leq (m - 1)^{m-1} \). They suspect that this bound can be improved to a
bound close to one obtainable for the commutator word \(\omega = [x_1, x_2] \). By noticing
that every conjugacy class of a group \(G \) has size at most the number of commutators
of \(G \) we see that Theorem 1.8 yields

Corollary 1.9. Let \(G \) be a group with \(m \) commutators for some positive integer \(m \)
at least 2. Then \(|G'| < m^{(1/2)(7+\log m)} \).

Segal and Shalev [17] showed that if \(G \) is an \(n \)-BFC group with no non-trivial
abelian normal subgroup then \(|G| < n^4 \). We improve and generalize this result
in Theorem 1.10. For a finite group \(X \) let \(k(X) \) denote the number of conjugacy
classes of \(X \).

Theorem 1.10. Let \(G \) be an \(n \)-BFC group with \(n > 1 \). If the Fitting subgroup
\(F(G) \) of \(G \) is finite, then \(|G| < n^2 k(F(G)) \). In particular, if \(G \) has no non-trivial
abelian normal subgroup then \(|G| < n^2 \).

Since \(F(G) \) has finite index in \(G \), the hypotheses of Theorem 1.10 imply that
\(G \) is finite. Note that even more is true than Theorem 1.10 if \(G \) is a finite group then
\(|G| \leq a^2 k(F(G)) \) where \(a = |G|/k(G) \) is the (arithmetic) average size of a
conjugacy class in \(G \) (this is [17 Theorem 10 (i)]). If \(b \) denotes the maximal size of a
set of pairwise non-commuting elements in \(G \) then, by Turán’s theorem [18] applied
to the complement of the commuting graph of \(G \), we have \(a < b + 1 \). Thus if \(G \)
is a finite group with no non-trivial abelian normal subgroup then \(|G| < (b + 1)^2 \).
This should be compared with the bound \(|G| < c^{(\log b)^3} \) holding for some universal
constant \(c \) with \(c \geq 2^{20} \) which implicitly follows from [15, Lemma 3.3 (ii)] and
should also be compared with the remark in [15, Page 294] that for a non-abelian
finite simple group \(G \) we have \(|G| \leq 27 \cdot b^3 \).

The final main result concerns \(n \)-BFC groups with a given number of generators.
Segal and Shalev [17] proved that in such groups the order of the commutator
subgroup is bounded by a polynomial function of \(n \). In particular they obtained the bound
\(|G'| \leq n^{5d+4} \) for an arbitrary \(n \)-BFC group \(G \) that can be generated by \(d \) elements. By applying Theorem 1.7 to [17, Page 515] we may improve this result.

Corollary 1.11. Let \(G \) be an \(n \)-BFC group that can be generated by \(d \) elements.
Then \(|G'| \leq n^{3d+2} \).

Finally, the following immediate consequence of Corollary 1.11 sharpens [17,
Corollary 1.5].

Corollary 1.12. Let \(G \) be a \(d \)-generator group. Then
\[
|\{[x, y] : x, y \in G\}| \geq |G'|^{1/(3d+2)}.
\]

The example \(T_m(p) \) [13, Page 213] shows that Theorem 1.8, Corollary 1.9, Corol-
lary 1.11 and Corollary 1.12 are close to best possible.
We point out that Theorem 1.1 for \(p \) odd requires only the Feit-Thompson Odd Order Theorem \cite{FeitThompson}. However, most of the results in this paper depend on CFSG as do the results in \cite{Isaacs} and \cite{Burnside} (for groups of even order).

2. Proof of Theorem 1.1

Our first lemma sharpens and generalizes \cite{Isaacs} Theorem 6.1.

Lemma 2.1. Let \(G \) be a finite group, \(F \) a field, and \(V \) a finite dimensional \(FG \)-module. Let \(N \) be an elementary abelian normal subgroup of \(G \) such that \(C_V(N) = 0 \). Then \(\text{avgdim}(Ng,V) \leq (1/p) \text{dim}V \) for every \(g \in G \) where \(p \) is the smallest prime factor of the order of \(G \).

Proof. Let us consider a counterexample with \(|G| \) and \(\text{dim}V \) minimal. It clearly suffices to assume that \(G = \langle g,N \rangle \). We may assume that \(V \) is irreducible (since if we have the inequality on each composition factor of \(V \) we have it on \(V \)). We may also assume that \(V \) is absolutely irreducible. Finally, we may assume that \(N \) acts faithfully on \(V \). If \(N \) does not act homogeneously on \(V \), then \(g \) transitively permutes the components in an orbit of size \(t \geq p \) and so every element in \(Ng \) has a fixed point space of dimension at most \((1/t) \text{dim}V \leq (1/p) \text{dim}V \). So we may assume that the elementary abelian group \(N \) acts homogeneously on \(V \). This means that it acts as scalars on \(V \). Thus \(N \leq Z(G) \) and \(G/Z(G) \) is cyclic. It follows that \(G \) is abelian and so \(\text{dim}V = 1 \). At most 1 element in the coset \(Ng \) is the identity and so \(\text{avgdim}(Ng,V) \leq (1/|N|) \text{dim}V \leq (1/p) \text{dim}V \). The result follows. \(\square \)

We first need a result about generation of finite groups. This is an easy consequence of the proof of the main results of \cite{Aschbacher}.

Theorem 2.2. Let \(G \) be a finite group with a minimal normal subgroup \(N = L_1 \times \ldots \times L_t \) for some positive integer \(t \) with \(L_i \cong L \) for all \(i \) with \(1 \leq i \leq t \) for a non-abelian simple group \(L \). Assume that \(G/N = \langle xN \rangle \) for some \(x \in G \). Then there exists an element \(s \in L_1 \leq N \) such that \(|\{ g \in Nx : G = \langle g,s \rangle \}| > (1/2)|N| \).

Proof. First suppose that \(t = 1 \). This is an immediate consequence of \cite{Aschbacher} Theorem 1.4] unless \(G \) is one of \(Sp(2n,2), n > 2 \), \(S_{2m+1} \) or \(L = \Omega^+(8,2) \) or \(A_6 \).

If \(G = Sp(2n,2), n > 2 \), then the result follows by \cite{Aschbacher} Proposition 5.8. If \(G = S_{2m+1} \), then apply \cite{Aschbacher} Proposition 6.8.

Suppose that \(L = A_6 \). Note that the overgroups of \(s \) of order 5 in \(A_6 \) are two subgroups isomorphic to \(A_5 \) (of different conjugacy classes) and the normalizer of the Sylow 5-subgroup generated by \(s \). The result follows trivially from this observation.

Finally consider \(L = \Omega^+(8,2) \). We take \(s \) to be an element of order 15. It follows by the discussion in \cite{Aschbacher} Section 4.1] that given \(G \), there is an element of order 15 satisfying the result (although it is possible that the choice of \(s \) depends on which \(G \) occurs).

Now assume that \(t > 1 \). Write \(x = (u_1, \ldots, u_t) \sigma \) where \(\sigma \) just cyclically permutes the coordinates of \(N \) (sending \(L_i \) to \(L_{i+1} \) for \(i < t \)) and \(u_i \in \text{Aut}(L_i) \). By conjugating by an element of the group \(\text{Aut}(L_1) \times \ldots \times \text{Aut}(L_t) \) we may assume that
Let \(f : Nx \to \text{Aut}(L_1) \) be the map sending \(wx \) to the projection of \((wx)^t\) in \(\text{Aut}(L_1) \). Write \(w = (w_1, \ldots, w_t) \) with \(w_i \in L_i \). Then \(f(wx) = w_tw_{t-1} \cdots w_1u_1 \) is in \(L_1u_1 \). Moreover, we see that every fiber of \(f \) has the same size. By the case \(t = 1 \), we know that the probability that \((f(wx), s) = \langle L_1, u_1 \rangle \) is greater than \(1/2 \).

We claim that if \(L_1 \leq \langle (f(wx), s) \rangle \), then \(G = \langle wx, s \rangle \). The claim then implies the result. So assume that \(L_1 \leq \langle (f(wx), s) \rangle \) and set \(H = \langle wx, s \rangle \). Let \(M \leq N \) be the normal closure of \(s \) in \(J := \langle (wx)^t, s \rangle \). This projects onto \(L_1 \) by assumption, but is also contained in \(L_1 \), whence \(M = L_1 \). So \(L_1 \leq H \). Since any element of \(Nx \) acts transitively on the \(L_i \), it follows that \(N \leq H \) and so \(G = H \).

The next result we need is Scott’s Lemma [16]. See [14] for a slightly easier proof of the result which depends only on the rank plus nullity theorem in linear algebra.

Lemma 2.3 (Scott’s Lemma). Let \(G \) be a subgroup of \(\text{GL}(V) \) with \(V \) a finite dimensional vector space. Suppose that \(G = \langle g_1, \ldots, g_r \rangle \) with \(g_1 \cdots g_r = 1 \).

\[
\sum_{i=1}^r \dim[g_i, V] \geq \dim V + \dim[G, V] - \dim C_V(G).
\]

We will apply this in the case \(r = 3 \). Noting that \(\dim V = \dim[x, V] + \dim C_V(x) \) for any \(x \), we can restate this as:

\[
\sum_{i=1}^3 \dim C_V(g_i) \leq \dim V + \dim C_V(G) + \dim V/[G, V].
\]

Theorem 2.4. Let \(G \) be a finite group. Assume that \(G \) has a normal subgroup \(E \) that is a central product of quasisimple groups. Let \(V \) be a finite dimensional \(FG \)-module for some field \(F \) such that \(E \) has no trivial composition factor on \(V \). If \(g \in G \), then \(\text{avgdim}(gE, V) \leq (1/2) \dim V \).

Proof. Let us consider a counterexample with \(|G| \) and \(\dim V \) minimal. There is no loss of generality in assuming that \(F \) is algebraically closed, \(G = \langle E, g \rangle \), and then assuming that \(V \) is an irreducible (hence absolutely irreducible) and faithful \(FG \)-module. If \(Z(E) \neq 1 \), the result follows by Lemma 2.1 (by taking \(N = Z(E) \) and noting that \(Z(E) \) is completely reducible on \(V \) with \(C_V(Z(E)) = 0 \) (since \(V \) is a faithful \(FG \)-module)). So we may assume that \(E \) is a direct product of non-abelian simple groups. If \(V \) is not a homogeneous \(FE \)-module, then \(g \) transitively permutes the homogeneous components and so any element in \(gE \) has fixed point space of dimension at most \((1/2) \dim V \). So we may assume that \(V \) is a homogeneous \(FE \)-module. Thus \(E = L_1 \times \cdots \times L_m \) with the \(L_i \)’s non-abelian simple groups. So \(V \) is a direct sum of say \(t \) copies of \(V_1 \otimes \cdots \otimes V_m \) where \(V_i \) is an irreducible nontrivial \(FL_i \)-module. (Since \(G/E \) is cyclic and \(V \) is irreducible, it follows that \(t = 1 \) (by Clifford theory) but we will not use this fact.) We may replace \(E \) by a minimal normal subgroup of \(G \) contained in \(E \) (the hypothesis on the minimal normal subgroup will hold by Clifford’s theorem) and so assume that \(g \) transitively permutes the isomorphic subgroups \(L_1, \ldots, L_m \).
Let \(s \in L_1 \leq E \) be chosen so that \(Y := \{ y \in gE : \langle y, s \rangle = G \} \) has size larger than \((1/2)|E|\). Such an element exists by Theorem 2.2. Set \(c = \dim C_V(s) \). If \(y \in Y \) then, by Lemma 2.3 (applied to the triple \((y, s, (ys)^{-1})\)), we have
\[
c + \dim C_V(y) + \dim C_V(ys) \leq \dim V.
\]
For any \(y \in Y' := gE \setminus Y \), we at least have
\[
\dim C_V(y) + \dim C_V(ys) \leq \dim V + c.
\]
Thus,
\[
2 \sum_{y \in gE} \dim C_V(y) = \sum_{y \in gE} \left(\dim C_V(y) + \dim C_V(ys) \right)
\]
is at most
\[
|Y| (\dim V - c) + |Y'| (\dim V + c) < |E| \dim V.
\]
This gives \(\text{avgdim}(gE) \leq (1/2) \dim V \) as required. \(\square \)

We now prove Theorem 1.1. As usual, we may assume that \(F \) is algebraically closed, \(V \) is an irreducible \(FG \)-module, and \(N \) acts faithfully on \(V \). Let \(A \) be a minimal normal subgroup of \(G \) contained in \(N \). Since \(V \) is a faithful completely reducible \(FN \)-module, \(A \) has no trivial composition factor on \(V \). Now apply Lemma 2.1 and Theorem 2.4 to conclude that \(\text{avgdim}(Ag, V) \leq (1/p) \dim V \) where \(p \) is the smallest prime divisor of \(|G| \). Since \(Ng \) is the union of cosets of \(A \), the result follows.

3. Proof of Corollary 1.3

Let us first prove the first statement of Corollary 1.3. By making the assumptions of the proof of [8, Corollary D], it is sufficient to show that the number of \(g \in G \) such that \(\dim C_V(g) \leq (1/2) \dim V \) is at least
\[
\frac{2|G|}{1 + \log_p |G|} \leq \frac{2|G|}{2 + \dim V}.
\]
But this is clear by Theorem 1.1 noting that \(\dim V \) is even.

Let us prove the second statement of Corollary 1.3. Use the notations and assumptions of the last part of the proof of [8, Corollary D]. Let \(H \) be a Hall \(p' \)-subgroup of \(G \). Since \(V \) is a completely reducible \(G \)-module with \(C_V(G) = 0 \), the vector space \(V \) is also a completely reducible \(H \)-module with \(C_V(H) = 0 \). Hence applying Corollary 1.2 to the \(H \)-module \(V \) we get that there exists \(g \in H \) with \(\dim C_V(g) < (1/2) \dim V \). So the last displayed inequality of the proof of [8, Corollary D] becomes
\[
\frac{[\text{cl}_G(g)]_p}{p} \geq (1)^{1/3}
\]
since \(\dim V \) is even. From this we get that \(p^3 \chi(1) \leq [\text{cl}_G(g)]_p^3 \).
4. Proof of Theorem 1.4

Note that Y centralizes M and so there is no loss in working in G/Y and assuming that $X = M$ is a minimal normal subgroup of G. We can replace G by $\langle M, g \rangle$ and so assume that g acts transitively on the direct factors of M.

What we need to show is that the arithmetic mean of the positive integers $|C_M(x)|$ for $x \in gX$ is at most $|M|^{1/2}$. If there are $t > 1$ direct factors in M, then every element in gM has centralizer at most $|M|^{1/t} \leq |M|^{1/2}$ and the result follows. So assume that $t = 1$ and M is simple.

We compute the arithmetic mean of the positive integers $|C_M(x)|$ for $x \in gM$. All elements in a given M-conjugacy class in gM have the same centralizer size. If $h \in gM$, then the M-conjugacy class of h has $|M : C_M(h)|$ elements. Thus, we see that the arithmetic mean is precisely the number of conjugacy classes in gM. By [5, Lemma 2.1], this is at most $k(M)$, the number of conjugacy classes in M, and again by [5, Proposition 5.3], this is at most $|M|^{41} < |M|^{1/2}$, whence the result.

5. Proof of Theorem 1.5

Let us fix a chief series for a finite group G. Let N be the set of non-central chief factors of this series. Let p be the smallest prime factor of the order of $G/F(G)$. If $N \in \mathcal{N}$ is abelian then, by Theorem 1.4 (noting that $F(G)$ acts trivially on N), we have $\text{geom}(G, N) \leq |N|^{1/p}$. If $N \in \mathcal{N}$ is non-abelian then, by Theorem 1.4 and the Feit-Thompson Odd Order Theorem [3], we again have $\text{geom}(G, N) \leq |N|^{1/p}$. Notice also that for any $g \in G$ we have the inequality $|C_G(g)| \leq \text{ccf}(G) \prod_{N \in \mathcal{N}} |C_N(g)|$. From these observations Theorem 1.5 already follows since

$$\text{geom}(G, G) = \left(\prod_{g \in G} |C_G(g)| \right)^{1/|G|} \leq \text{ccf}(G) \left(\prod_{g \in G} \prod_{N \in \mathcal{N}} |C_N(g)| \right)^{1/|G|} = \text{ccf}(G) \left(\prod_{N \in \mathcal{N}} \text{geom}(G, N) \right) \leq \text{ccf}(G) \cdot \left(\prod_{N \in \mathcal{N}} |N|^{1/p} \right) = \text{ccf}(G) \cdot (\text{ncf}(G))^{1/p}.$$

REFERENCES

[1] T. Breuer; R. M. Guralnick; W. M. Kantor. Probabilistic generation of finite simple groups, II. J. Algebra Vol. 320, 2, (2008), 443-494.
[2] M. Cartwright. The order of the derived group of a BFC group. J. London Math. Soc. (2) 30 (1984), 227-243.
[3] W. Feit; J. G. Thompson. Solvability of groups of odd order. Pacific J. Math. 13 (1963), 775-1029.
[4] G. A. Fernández-Alcober; M. Morigi. Outer commutator words are uniformly concise, preprint.
[5] J. Fulman; R. M. Guralnick. Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, preprint.
[6] R. M. Guralnick; G. Malle. Uniform triples and fixed point spaces, preprint.
[7] R. M. Guralnick; G. R. Robinson. On the commuting probability in finite groups. J. Algebra Vol. 300, No. 2, (2006), 509-528.
I. M. Isaacs; T. M. Keller; U. Meierfrankenfeld; A. Moretó. Fixed point spaces, primitive character degrees and conjugacy class sizes. *Proc. Am. Math. Soc.* **134** 11, (2006), 3123-3130.

[9] The Kourovka Notebook. Unsolved problems in group theory. Sixteenth augmented edition, 2006. Edited by V. D. Mazurov and E. I. Khukhro.

[10] I. D. Macdonald. Some explicit bounds in groups with finite derived groups. *Proc. London Math. Soc.* (3) **11** (1961), 23-56.

[11] B. H. Neumann. Groups covered by permutably subsets. *J. London Math. Soc.* **29** (1954), 236-248.

[12] Peter M. Neumann. A study of some finite permutation groups. DPhil thesis, Oxford, 1966.

[13] Peter M. Neumann; M. R. Vaughan-Lee. An essay on BFC groups. *Proc. London Math. Soc.* (3) **35** (1977), 213-237.

[14] M. Neubauer. On monodromy groups of fixed genus. *J. Algebra* **153** (1992), 215-261.

[15] L. Pyber. The number of pairwise non-commuting elements and the index of the centre in a finite group. *J. London Math. Soc. (2)* **35**, (1987), no. 2, 287-295.

[16] L. Scott. Matrices and cohomology. *Ann. of Math.* **105** (1977), 473-492.

[17] D. Segal; A. Shalev. On groups with bounded conjugacy classes. *Quart. J. Math. Oxford* **50** (1999), 505-516.

[18] P. Turán. An extremal problem in graph theory. *Mat. Fiz. Lapok* **48**, (1941), 436-452.

[19] M. R. Vaughan-Lee. Breadth and commutator subgroups of p-groups. *J. Algebra* **32** (1974) 278-285.

[20] J. Wiegold. Groups with boundedly finite classes of conjugate elements. *Proc. Roy. Soc. London Ser. A* **238** (1956), 389-401.

E-mail address: guralnic@usc.edu

MTA Alfréd Rényi Institute of Mathematics, Réaltanoda utca 13-15, H-1053, Budapest, Hungary

E-mail address: maroti@renyi.hu