CROSS CHARACTERISTIC REPRESENTATIONS OF $3D_4(q)$ ARE REDUCIBLE OVER PROPER SUBGROUPS

by

Hung Ngoc Nguyen and Pham Huu Tiep
Department of Mathematics
University of Florida
Gainesville, FL 32611, U.S.A.
hnguyen@math.ufl.edu, tiep@math.ufl.edu

with an appendix by

Frank Himstedt
Technische Universität München
Zentrum Mathematik – M11
Boltzmannstr. 3, 85748 Garching, Germany
himstedt@ma.tum.de

Running title: Cross characteristic representations of $3D_4(q)$

2000 Mathematics Subject Classification: Primary 20C20, Secondary 20C33, 20C15.

Abstract. We prove that the restriction of any absolutely irreducible representation of Steinberg’s triality groups $3D_4(q)$ in characteristic coprime to q to any proper subgroup is reducible.

Part of the paper was written while the authors were participating in the Special Semester on Group Representation Theory at the Bernoulli Center, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. It is a pleasure to thank the organizers, Professors. M. Geck, D. Testerman, and J. Thevenaz for generous hospitality and support and stimulating environment. The authors are grateful to J. Saxl for helpful discussion.

The second author gratefully acknowledges the support of the NSF (grant DMS-0600967).

Date: Nov. 27, 2007.
1. Introduction

Finite primitive permutation groups have been studied since the pioneering work of Galois and Jordan on group theory; they have had important applications in many different areas of mathematics.

If \(G \) is a primitive permutation group with a point stabilizer \(M \) then \(M < G \) is a maximal subgroup. Thanks to work of Aschbacher, O’Nan, Scott \([AS]\), and of Liebeck, Praeger, Saxl, and Seitz \([LPS], [LiS]\), most problems involving such a \(G \) can be reduced to the case where \(G \) is a finite classical group. In this case, Aschbacher's theorem \([A]\) describes all possible choices for the maximal subgroup \(M \) of \(G \). Work of Kleidman and Liebeck \([KL]\) and others essentially reduces the question of whether a subgroup \(M \) from this list is indeed maximal in \(G \) to the following problem.

Problem 1. Let \(\mathbb{F} \) be an algebraically closed field of characteristic \(\ell \). Classify all triples \((K,V,H)\) where \(K \) is a finite group with \(K/Z(K) \) almost simple, \(V \) is an \(\mathbb{F}K \)-module of dimension greater than one, and \(H \) is a proper subgroup of \(K \) such that the restriction \(V|_H \) is irreducible.

Our main focus is on the case where \(K \) is a finite group of Lie type in characteristic \(\neq \ell \). If, furthermore, \(K \) is of type \(A \), then Problem 1 has been solved recently in \([KT]\). On the other hand, the case where \(K \) is an exceptional group of type \(G_2, 2B_2, \) or \(2G_2 \), was settled in \([N]\).

The main result of this paper is the following:

Theorem 2. Let \(G = \mathbb{3}D_4(q) \) and let \(\Phi \) be any irreducible representation of \(G \) in characteristic \(\ell \) coprime to \(q \). If \(H \) is any proper subgroup of \(G \) and \(\deg(\Phi) > 1 \), then \(\Phi|_H \) is reducible.

In the case of complex representations, Theorem 2 was proved by Saxl \([S]\).

2. Basic Reduction

Given a finite group \(X \), we denote by \(\mathfrak{d}_\ell(X) \) and \(\mathfrak{m}_\ell(X) \) the smallest and largest degrees of absolutely irreducible representations of degree greater than one of \(X \) in characteristic \(\ell \); furthermore, let \(\mathfrak{m}_\ell(X) = m_0(X) \). From now on, \(\mathbb{F} \) stands for an algebraically closed field of characteristic \(\ell \), and \(q \) is a power of a prime \(p \). If \(\chi \) is a complex character of \(X \), we denote by \(\hat{\chi} \) the restriction of \(\chi \) to \(\ell \)-regular elements of \(X \). By \(\text{IBr}_\ell(X) \) we denote the set of irreducible \(\ell \)-Brauer characters, or the set of absolutely irreducible \(\mathbb{F}X \)-representations, depending on the context.

First we record a few well-known statements.

Lemma 3. Let \(K \) be a finite group. Suppose \(V \) is an irreducible \(\mathbb{F}K \)-module of dimension greater than one, and \(H \) is a proper subgroup of \(K \) such that the restriction \(V|_H \) is irreducible. Then

\[
\sqrt{|H/Z(H)|} \geq \mathfrak{m}_\ell(H) \geq \mathfrak{d}_\ell(H) \geq \dim(V) \geq \mathfrak{d}_\ell(K).
\]
Lemma 4. [I, p. 190] Let K be a finite group and H be a normal subgroup of K. Let $\chi \in \operatorname{Irr}(K)$ and $\theta \in \operatorname{Irr}(H)$ be a constituent of χ_H. Then $\chi(1)/\theta(1)$ divides $|K/H|$.

Lemma 5. Let K be a simple group and V an absolutely irreducible $\mathbb{F}K$-module of dimension greater than one. Suppose H is a subgroup of K such that $V|_H$ is irreducible. Then $Z(H) = C_K(H) = 1$.

In the following theorem, we use results and notation of [K].

Theorem 6 (Reduction Theorem). Let $G = {^3D_4}(q)$ and let φ be an irreducible representation of G in characteristic ℓ coprime to q. Suppose $\varphi(1) > 1$ and M is a maximal subgroup of G such that $\varphi|_M$ is irreducible. Then M is G-conjugate to one of the following groups:

(i) P, a maximal parabolic subgroup of order $q^{12}(q^6 - 1)(q - 1)$,
(ii) Q, a maximal parabolic subgroup of order $q^{12}(q^3 - 1)(q^2 - 1)$,
(iii) $G_2(q)$,
(iv) $^3D_4(q_0)$ with $q = q_0^2$.

Proof. By [MMT, Theorem 4.1], $\mathfrak{d}_\ell(^3D_4(q)) \geq q^5 - q^3 + q - 1$ for every ℓ coprime to q. Next, according to [K], if M is a maximal subgroup of G, but M is not a maximal parabolic subgroup, then M is G-conjugate to one of the following groups:

1) $G_2(q)$,
2) $PGL_3^\epsilon(q)$, where $4 \leq q \equiv 1(\text{mod } 3)$, $\epsilon = \pm$,
3) $^3D_4(q_0)$ with $q = q_0^2$, α prime, $\alpha \neq 3$,
4) $L_2(q^3) \times L_2(q)$, where $2 \nmid q$, a fundamental subgroup,
5) $C_2(q) = (SL_2(q^3) \circ SL_2(q)).2$, q odd, involution centralizer,
6) $((\mathbb{Z}_{q^2+q+1}) \circ SL_2(q)).f_+2$, where $f_+ = (3, q^2 + q + 1)$,
7) $((\mathbb{Z}_{q^2-q+1}) \circ SU_3(q)).f_-2$, where $f_- = (3, q^2 - q + 1)$,
8) $((\mathbb{Z}_{q^2+q+1})^2 SL_2(3)$,
9) $((\mathbb{Z}_{q^2-q+1})^2 SL_2(3)$,
10) $\mathbb{Z}_{q^4-q^2+1}^4$.

We only need to consider the following cases.

• $M = PGL_3^\epsilon(q)$, where $4 \leq q \equiv 1(\text{mod } 3)$, $\epsilon = \pm$.

We have $|PGL_3^\epsilon(q)| = q^3(q^2 - 1)(q^3 \pm 1)$. So $m_C(M) \leq \sqrt{q^3(q^2 - 1)(q^3 + 1)} < q^5 - q^3 + q - 1$ for every $q \geq 4$. Therefore $m_C(M) < \mathfrak{d}_\ell(^3D_4(q))$, contradicting Lemma 3.

• $M = ^3D_4(q_0)$ with $q = q_0^2$, α prime, $\alpha \neq 2, 3$.

We have $|^3D_4(q_0)| = q_0^{12}(q_0^6 - 1)^2(q_0^4 - q_0^2 + 1) < q_0^{28}$. Hence, $m_C(M) \leq \sqrt{q_0^{28}} = q_0^{14}$. Since α is prime and $\alpha \neq 2, 3, 5 \geq 5$. It follows that $m_C(M) < q_0^{14/5} < q^5 - q^3 + q - 1 \leq \mathfrak{d}_\ell(^3D_4(q_0))$.

• $M = L_2(q^3) \times L_2(q)$, where $2 \nmid q$.

It is well known that $m_C(L_2(q)) = q + 1$ except that $m_C(L_2(2)) = 2$, $m_C(L_2(3)) = 3$ and $m_C(L_2(5)) = 5$. So we have $m_C(L_2(q^3)) = q^3 + 1$ for every q. Hence $m_C(M) =$
\((q + 1)(q^3 + 1)\) for \(q \geq 4\) and \(m_G(M) = 18\) for \(q = 2\). It is easy to see that \((q + 1)(q^3 + 1) < q^5 - q^3 + q - 1\) for every \(q \geq 4\). When \(q = 2\), we also have \(m_G(M) = 18 < 25 = 2^5 - 2^3 + 2 - 1\). Therefore, \(m_G(M) < \varphi(3D_4(q))\) for every \(q\).

- \(M = C_G(s) = (SL_2(q^3) \circ SL_2(q)).2\), \(s\) an involution.
 Here \(C_G(M) \ni s \neq 1\), contradicting Lemma 5.

- \(M = ((\mathbb{Z}_{q^2 + q + 1}) \circ SL_3(q)).f_+2\), where \(f_+ = (3, q^2 + q + 1)\).
 By Lemma 4, \(m_G(M) \leq 2.f_+.m_G((\mathbb{Z}_{q^2 + q + 1}) \circ SL_3(q)) \leq 2.f_+.m_G(SL_3(q))\). From [SF], we have

\[
m_G(SL_3(q)) = \begin{cases} 8, & q = 2, \\ 39, & q = 3, \\ 84, & q = 4, \\ (q + 1)(q^2 + q + 1), & q \geq 5. \end{cases}
\]

It is easy to check that \(2.f_+.m_G(SL_3(q)) < q^5 - q^3 + q - 1\) for every \(q \geq 2\). Therefore \(m_G(M) < q^5 - q^3 + q - 1\).

- \(M = ((\mathbb{Z}_{q^2 + q + 1}) \circ SU_3(q)).f_-2\), where \(f_- = (3, q^2 - q + 1)\).
 By Lemma 4, \(m_G(M) \leq 2.f_-m_G((\mathbb{Z}_{q^2 + q + 1}) \circ SU_3(q)) \leq 2.f_-m_G(SU_3(q))\). From [SF], we have

\[
m_G(SU_3(q)) = \begin{cases} 8, & q = 2, \\ (q + 1)^2(q - 1), & q \geq 3. \end{cases}
\]

It is easy to check that \(2.f_-m_G(SU_3(q)) < q^5 - q^3 + q - 1\) for every \(q \geq 3\). Therefore \(m_G(M) < q^5 - q^3 + q - 1\) for every \(q \geq 3\).

When \(q = 2\), we have \(m_G(M) \leq \sqrt{|M|} = 36\). Therefore if \(\varphi|_M\) is irreducible then \(\deg(\varphi) \leq 36\). Inspecting the character tables of \(3D_4(2)\) in [Atlas1] and [Atlas2], we see that \(\deg(\varphi) = 25\) for \(\ell = 3\) or \(\deg(\varphi) = 26\) for \(\ell \neq 3\). Moreover, when \(\ell \neq 3\), \(\varphi\) is the reduction modulo \(\ell\) of the unique irreducible complex representation \(\rho\) of degree 26. Since \(26 \nmid |M| = 1296\), \(M\) does not have any irreducible complex representation of degree 26, whence \(\rho|_M\) and \(\varphi|_M\) must be reducible. When \(\ell = 3\), \(M = ((\mathbb{Z}_3) \circ SU_3(2)).3.2 \simeq 3^{1+2}.2S_4\). So \(m_3(M) = m_3(3^{1+2}.2S_4) = m_3(2S_4) \leq m_G(2S_4) \leq \sqrt{|2S_4|} \leq 7\). Therefore if \(\deg(\varphi) = 25\) then \(\varphi|_M\) is reducible.

- \(M = (\mathbb{Z}_{q^2 + q + 1})^2.SL_2(3)\).
 We have \(m_G(M) \leq |SL_2(3)| = 24\). Since \(q^5 - q^3 + q - 1 > 24\) for every \(q \geq 2\), \(m_G(M) < \varphi_4(3D_4(q))\).

- \(M = \mathbb{Z}_{q^4 - q^2 + 1}.4\).
 We have \(m_G(M) \leq 4 < 4_4(G)\). The Theorem is proved. \(\square\)

3. Restrictions to \(G_2(q)\) and to \(3D_4(\sqrt{q})\)

In this section we handle two of the maximal subgroups singled out in Theorem 6.
Theorem 7. Let $M \simeq G_2(q)$ be a subgroup of $G = 3D_4(q)$ and $\varphi \in \mathrm{IBr}_q(G)$ be of degree > 1. Then $\varphi|_M$ is reducible.

Proof. Assume the contrary: $\varphi|_M$ is irreducible. By Lemma 3, $\varphi(1) < \sqrt{|M|} < q^7$. We will identify the dual group G^* with G. By the fundamental result of Broué and Michel [BM], φ belongs to a union $\mathcal{E}_\ell(G,s)$ of ℓ-blocks, labeled by a semisimple ℓ'-element $s \in G$. Moreover, by [HM], $\varphi(1)$ is divisible by $(G : C_G(s))_{\ell'}$. Assume $s \neq 1$. Then it is easy to check, using [DM] for instance, that $(G : C_G(s))_{\ell'} \geq q^8 + q^4 + 1$. Since $\varphi(1) < q^7$, it follows that $s = 1$, i.e. φ belongs to a unipotent block.

According to [K], $M = C_G(\tau)$ for some (outer) automorphism τ of order 3 of G. Furthermore, the degrees of all complex irreducible characters of G are listed in [DM]. An easy inspection reveals that G has a unique irreducible character of degree $\varphi(1)$ for every unipotent character $\psi \in \mathrm{Irr}(G)$. It follows that every unipotent (complex) character of G is τ-invariant.

Next we show that φ is also τ-invariant. First consider the case where q is odd. Then Corollary 6.9 of [G1] states that the ℓ-modular decomposition matrix of G has a lower unitriangular shape. In particular, this implies that φ is an integral linear combination of $\hat{\psi}$, with $\psi \in \mathcal{E}(G,1)$, the set of unipotent characters of G. But each such $\hat{\psi}$ is τ-invariant, whence φ is τ-invariant. Now assume that q is even. Then $\ell \neq 2$, and so it is a good prime for G, and ℓ does not divide $|Z(G)|$, where G is the simple, simply connected algebraic group of type D_4. Hence, by the main result of [G2], $\{\hat{\psi} \mid \psi \in \mathcal{E}(G,1)\}$ is a basic set of Brauer characters of $\mathcal{E}_\ell(G,1)$. It follows that φ is an integral linear combination of $\hat{\psi}$, with $\psi \in \mathcal{E}(G,1)$, and so it is τ-invariant as above.

Consider the semidirect product $\hat{G} = G \rtimes \langle \phi \rangle$. Then $G \triangleleft \hat{G}$, and \hat{G}/G is cyclic. Since φ is \hat{G}-invariant, it extends to \hat{G} by [F, Theorem III.2.14]. But $C_{\hat{G}}(M) \ni \tau \neq 1$, hence $\varphi|_M$ cannot be irreducible by Lemma 5. \hfill \square

Theorem 8. Let $H \simeq 3D_4(q^2)$ be a maximal subgroup of $G = 3D_4(q^2)$ and $V \in \mathrm{IBr}_q(G)$ be of dimension > 1. Then $V|_H$ is reducible.

Proof. Again assume the contrary. We consider a long-root parabolic subgroup $P = q^{2+16} \cdot SL_2(q^6) \cdot \mathbb{Z}_{q^2-1}$ of G, which also contains a long-root parabolic subgroup $P_H = q^{1+8} \cdot SL_2(q^3) \cdot \mathbb{Z}_{q-1}$ of H.

It is well known that $V|_Z$ affords all the nontrivial linear characters λ of the long-root subgroup $Z := Z(P')$ (which is elementary abelian of order q^2), and the corresponding eigenspaces V_λ are permuted regularly by the torus \mathbb{Z}_{q^2-1}. Let $U = q^{2+16}$ denote the unipotent radical of P and consider any such λ. Then $\mathrm{IBr}_q(U)$ contains a unique representation (of degree q^8), on which Z acts via the character λ. Moreover, since $P'/U \simeq SL_2(q^6)$ has trivial Schur multiplier and is perfect, this representation of U extends to a unique representation of P', which we denote by E_λ. By Clifford
theory, the P'-module V_λ is isomorphic to $E_\lambda \otimes A$ for some $A \in \text{IBr}_f(P'/U)$. Suppose that A contains a nontrivial composition factor, as a $SL_2(q^6)$-module. Then $\dim(A) \geq (q^6 - 1)/2$. It follows that

$$\dim(V) \geq (q^2 - 1)q^8(q^6 - 1)/2.$$

On the other hand, the irreducibility of $V|_H$ implies that

$$\dim(V) < \sqrt{|H|} < q^{14},$$

contradicting (1). Thus all composition factors of A are trivial. In particular, the P'-module V_λ contains a simple submodule which is isomorphic to E_λ.

Notice that we can embed P_H in P in such a way that Z contains $Z_H := Z(P'_H)$ (a long-root subgroup in H, which is elementary abelian of order q), and U contains the unipotent radical $U_H = q^{1+8}$ of P_H. Now choose λ such that $Z_H \leq \text{Ker}(\lambda)$. Then it is easy to see that $E_\lambda|_{U_H}$ is just the regular representation, whence the subspace L of U_H-fixed points in it is one-dimensional, and, since $U_H \not\subseteq P'_H$, this subspace is acted on by P'_H. But $P'_H/U_H \cong SL_2(q^3)$ is perfect, hence P'_H acts trivially on L.

We have shown that, for the given choice of λ, P'_H has nonzero fixed points in V_λ. Let W be the subspace consisting of all P'_H-fixed points in V. Then $P_H/P'_H \cong \mathbb{Z}_{q-1}$ acts on W and so W contains a one-dimensional P_H-submodule T. By the Frobenius reciprocity, $0 \neq \dim \text{Hom}_{P_H}(T,V|_{P_H}) = \dim \text{Hom}_H(\text{Ind}_{P_H}^{H}(T),V|_{H})$. But $V|_H$ is irreducible, hence it is a quotient of $\text{Ind}_{P_H}^{H}(T)$. In particular,

$$\dim(V) \leq (H : P_H) \cdot \dim(T) = (q + 1)(q^8 + q^4 + 1).$$

On the other hand, Theorem 4.1 of [MMT] implies that

$$\dim(V) \geq q^2(q^8 - q^4 + 1) - 1,$$

contradicting (2). \hfill \Box

4. Restriction to maximal parabolic subgroups

Lemma 9. Let Q denote the maximal parabolic subgroup of order $q^{12}(q^3 - 1)(q^2 - 1)$ of $G = 3D_4(q)$, and let $U := O_p(Q)$. Then

(i) For any prime $r \neq p$, $O_r(Q) = 1$.

(ii) Let $\varphi \in \text{IBr}_f(Q)$ be an irreducible Brauer character of Q whose kernel does not contain U. If q is odd, assume in addition that φ is faithful. Then φ lifts to a complex character χ of Q. Moreover, χ is also faithful if φ is faithful.

Proof. (i) Since $O_r(Q), U < Q$ and $O_r(Q) \cap U = 1$, any element $g \in O_r(Q)$ is centralized by U, which has order q^{11}. Thus q^{11} divides $|C_Q(g)|$. Assuming $g \neq 1$, we see by [H1] and [H3] that g is Q-conjugate to the long-root element $u = x_{3\alpha+2\beta}(1)$. But then g is a p-element, a contradiction. Hence $O_r(Q) = 1$.

(ii) Let λ be an irreducible constituent of $\varphi|_U$, and let I denote the inertia group of λ in Q. By Clifford theory, $\varphi = \text{Ind}_I^Q(\psi)$ for some $\psi \in \text{IBr}_f(I)$ whose restriction
to U contains λ. Since $p \neq \ell$, we may view λ as an ordinary character of U. By our assumption, $\lambda \neq 1_U$. The structure of I/U is described in [H1], [H3]. In particular, if $2|q$, then I/U is always solvable. On the other hand, if q is odd, then I/U is solvable, except for one orbit, the kernel of any character in which however contains a long-root element $x_{3a+2\beta}(1)$ (in the notation of [H1]). Recall we are assuming that φ is faithful if q is odd. It follows that in either case I/U is solvable, and so I is solvable. By the Fong-Swan Theorem, ψ lifts to a complex character ρ of I. Hence φ lifts to the complex character $\chi:=\operatorname{Ind}_{I}^{G}(\rho)$.

Now assume that φ is faithful but $K:=\operatorname{Ker}(\chi)$ is non-trivial; in particular, $\ell \neq 0$. If K is not an ℓ-group, then K contains a non-trivial ℓ'-element g. Since $\varphi(g) = \chi(g) = \chi(1) = \varphi(1)$, we see that φ is not faithful, a contradiction. Hence K is an ℓ-group, and so $O_\ell(Q) \neq 1$, contradicting (i). □

Theorem 10. Let M be a maximal parabolic subgroup of $G = 3D_4(q)$ and $\varphi \in \operatorname{IBr}_\ell(G)$ be of degree >1. Then $\varphi|_M$ is reducible.

Proof. First suppose that $M = P$, the long-root parabolic subgroup of G. Then the statement follows from Theorem 1.6 of [11]. So we may assume that $M = Q$, the other maximal parabolic subgroup of G. Also assume the contrary: $\varphi|_Q$ is irreducible.

We will consider two particular long-root elements $u = x_{3a+2\beta}(1)$ and $v = x_\beta(1)$ of Q, in the notation of [H1], [H2], [H3]. Clearly, they are conjugate in G, so $\varphi(u) = \varphi(v)$. By Lemma[9] $\varphi|_Q$ lifts to a complex irreducible character χ of Q which is also faithful. Since u and v are ℓ'-elements, we have $\varphi(u) = \chi(u)$ and $\varphi(v) = \chi(v)$. It follows that

$$\chi(u) = \chi(v).$$

Note that $Z := Z(O_\ell(Q)) = X_{3a+2\beta}X_{3a+3\beta}$ has order q^3, and consists of the $q^3 - 1$ Q-conjugates of u and 1. Thus Q acts transitively on $Z \setminus \{1\}$ and on $\operatorname{Irr}(Z) \setminus \{1_Z\}$. Since $\operatorname{Ker}(\chi) = 1$, we conclude that $\chi(u) = -\chi(1)/(q^3 - 1)$.

First consider the case q is odd. Then u, resp. v, belongs to the Q-conjugacy class $c_{1,1}$, resp. $c_{1,2}$, in the notation of [H1]. According to [H1], the faithful character χ must be one of $\chi_j(k)$, $16 \leq j \leq 20$. If $j = 16$ or 17, then $\chi(v)$ is explicitly computed in [H1], and one sees that (3) is violated. Now suppose that $j = 18$ or 19. Then $\chi(u) = -q^3(q^3 - 1)/2$. On the other hand, according to Proposition 2.1 of the Appendix, $\chi(v) = mq(q^3 - 1)$ with $m \geq -(q^2 - 1)/2$. It follows that $\chi(v) > \chi(u)$, violating (3). Finally, suppose that $j = 20$. Then $\chi(u) = -q^3(q^3 - 1)$. Meanwhile, by Proposition 2.1 of the Appendix, $\chi(v) = mq(q^3 - 1)$ with $m \geq -(q^2 - 1)$. It follows that $\chi(v) > \chi(u)$, again violating (3).

Next we consider the case q is even. Then u, resp. v, belongs to the Q-conjugacy class $c_{1,1}$, resp. $c_{1,7}$, in the notation of [H3]. According to [H3], the faithful character χ must be one of $\chi_j(k)$, $14 \leq j \leq 16$. If $j = 14$ or 15, then $\chi(u)$ is explicitly computed in [H3], and one sees that (3) is violated. Finally, suppose that $j = 16$. Then $\chi(u) = -q^3(q^3 - 1)/2$. On the other hand, according to Proposition 2.1 of the Appendix, $\chi(v) = mq(q^3 - 1)$ with $m \geq -(q^2 - 1)/2$. It follows that $\chi(v) > \chi(u)$, again violating (3).
Then $\chi(u) = -q^3(q^3 - 1)$. On the other hand, by Proposition 1.1 of the Appendix, $\chi(v) = mq(q^3 - 1)$ with $m \geq -(q^2 - 1)$. It follows that $\chi(v) > \chi(u)$, again violating (3).

Proof of Theorem Assume the contrary: $\Phi|_H$ is irreducible. Without loss we may assume that Φ is absolutely irreducible and that H is a maximal subgroup of G. Now we can apply Theorem 6 to H to get four possibilities (i) – (iv) for H. None of them cannot however occur by Theorems 7, 8 and 10.

References

[A] M. Aschbacher, On the maximal subgroups of the finite classical groups, *Invent. Math.* **76** (1984), 469 – 514.

[AS] M. Aschbacher and L. Scott, Maximal subgroups of finite groups, *J. Algebra* **92** (1985), 44 – 80.

[BM] M. Brion, and J. Michel, Blocs et sérries de Lusztig dans un groupe réductif fini, *J. reine angew. Math.* **395** (1989), 56 – 67.

[Atlas1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, *’ATLAS of Finite Groups’*, Clarendon Press, Oxford, 1985.

[Atlas2] C. Jansen, K. Lux, R. Parker, R. Wilson, *’An ATLAS of Brauer characters’*, Clarendon Press, Oxford, 1995.

[DM] D. I. Deriziotis, G. O. Michler, Character tables and blocks of finite simple triality groups $^3D_4(q)$, *Trans. Amer. Math. Soc.* **303** (1987), 39 – 70.

[F] W. Feit, *’The Representation Theory of Finite Groups’*, North-Holland, Amsterdam, 1982.

[G1] M. Geck, Generalized Gelfand-Graev characters for Steinberg’s triality groups and their applications, *Comm. Algebra*, **19** (1991), 3249 – 3269.

[G2] M. Geck, Basic sets of Brauer characters of finite groups of Lie type. II, *J. London Math. Soc.* **47** (1993), 255 – 268.

[H1] F. Himstedt, Character tables of parabolic subgroups of Steinberg’s triality groups, *J. Algebra* **281** (2004), 774 – 822.

[H2] F. Himstedt, On the 2-decomposition numbers of Steinberg’s triality groups $^3D_4(q)$, q odd, *J. Algebra* **309** (2007), 569 – 593.

[H3] F. Himstedt, Character tables of parabolic subgroups of Steinberg’s triality groups $^3D_4(2^n)$, *J. Algebra* **316** (2007), 254 – 283.

[HM] G. Hiss and G. Malle, Low dimensional representations of special unitary groups, *J. Algebra* **236** (2001), 745 – 767.

[I] I. M. Isaacs, *’Character Theory of Finite Groups’*, Dover Publications, Inc., New York, 1994.

[K] P. B. Kleidman, The maximal subgroups of the Steinberg triality groups $^3D_4(q)$ and of their automorphism groups, *J. Algebra* **115** (1988), 182 – 199.

[KL] P. B. Kleidman and M. W. Liebeck, *’The Subgroup Structure of the Finite Classical Groups’*, London Math. Soc. Lecture Note Ser. no. 129, Cambridge University Press, 1990.

[KT] A. S. Kleshchev and Pham Huu Tiep, Representations of general linear groups that are irreducible over subgroups, (in preparation).

[LPS] M. W. Liebeck, C. Praeger, and J. Saxl, A classification of the maximal subgroups of the finite alternating groups and symmetric groups, *J. Algebra* **111** (1987), 365 – 383.
CROSS CHARACTERISTIC REPRESENTATIONS OF $^3D_4(q)$

[LiS] M. W. Liebeck and G. M. Seitz, On finite subgroups of exceptional algebraic groups, *J. reine angew. Math.* **515** (1999), 25 – 72.

[MMT] K. Magaard, G. Malle and Pham Huu Tiep, Irreducibility of tensor squares, symmetric squares, and alternating squares, *Pacific J. Math.* **202** (2002), 379 – 427.

[N] H. N. Nguyen, Irreducible restrictions of Brauer characters of the Chevalley groups $G_2(q)$ to its proper subgroups, (submitted).

[S] J. Saxl, (unpublished manuscript).

[SF] W. A. Simpson and J. S. Frame, The character tables for $SL(3, q)$, $SU(3, q)$, $PSL(3, q)$, $PSU(3, q)$, *Can. J. Math.*, Vol. XXV, No. 3 (1973), 486 – 494.

[T] Pham Huu Tiep, Finite groups admitting grassmannian 4-designs, *J. Algebra* **306** (2006), 227 – 243.
Appendix

Faithful characters of a parabolic subgroup of $^3D_4(q)$

by Frank Himstedt

Let q be a prime power, $^3D_4(q)$ Steinberg’s triality group, and Q a maximal parabolic subgroup of order $q^{12}(q^3-1)(q^2-1)$ of $^3D_4(q)$. A classification and construction of all irreducible characters of Q is described in [H1, H3], and the values of almost all of these characters are given by Tables A.13 and A.14 in [H1, H3]. This appendix deals with some values of the faithful irreducible characters of Q which are not contained in [H1, H3]. More specifically, we are interested in the values of the faithful irreducible characters of Q on the “long root element” $x_\beta(1)$ (for a definition of $x_\beta(1)$, see [G1], for example). In particular, we prove bounds on these character values by considering scalar products with restrictions of unipotent irreducible characters of $^3D_4(q)$.

Suppose that q is even. We use the same notation as in [H3]. The faithful irreducible characters of Q are the characters $Q\chi_{14}(k)$, $Q\chi_{15}(k)$, $Q\chi_{16}(k)$ with k as in [H3, Table A.13]. The values of $Q\chi_{14}(k)$ and $Q\chi_{15}(k)$ are given in [H3, Table A.14], in particular those on $x_\beta(1)$. So we only deal with the values of $Q\chi_{16}(k)$ on $x_\beta(1)$.

Proposition 11. The values of $Q\chi_{16}(k)$ on $x_\beta(1)$ satisfy:

$$Q\chi_{16}(k)(x_\beta(1)) \in \{ q(q^3-1) \cdot m \mid m \in \mathbb{Z} \text{ with } -(q^2-1) \leq m \leq q^2(q-1) \}.$$

Proof. We recall the definition of $Q\chi_{16}(k)$ (see [H3, p. 258 and p. 256]): number the elements of the field F_q in some way, say $F_q = \{ x_1, x_2, \ldots, x_q \}$ with $x_1 = 0$. Then, $Q\chi_{16}(k)$ is the character of Q which is induced from the following linear character of the subgroup $X_\beta X_{\alpha+\beta} X_{2\alpha+\beta} X_{3\alpha+\beta} X_{3\alpha+2\beta}$:

$$x_\beta(d_2)x_{\alpha+\beta}(d_3)x_{2\alpha+\beta}(d_4)x_{3\alpha+\beta}(d_5)x_{3\alpha+2\beta}(d_6) \mapsto \phi'(x_k \cdot d_2 + d_4 + d_5)$$

where ϕ' is a linear character of the additive group of F_q^\times restricting nontrivially on F_q. Using the definition of induced characters and the relations in Tables 2.2-2.4 in [G1] we see that the value of $Q\chi_{16}(k)$ on $x_\beta(1)$ is:

$$y_k := \sum_{i=1}^{q^2-1} \sum_{j=1}^{q-1} \sum_{s \in F_{q^3}} \phi'(\tau(-q^2+q+1)i s^{q+1} + x_k \pi^{2j-i} + \pi^{j-i} s^{q^2+q+1})$$

where τ is a generator of the multiplicative group $F_{q^3}^\times$ and $\pi := \tau q^2+q+1$ a generator of $F_{q^3}^\times$. Since $x_\beta(1)$ is an involution we know $y_k \in \mathbb{Z}$ and so $y_k \leq q^3(q^3-1)(q-1)$. Let $[\varepsilon_2]_Q$ be the restriction of the unipotent irreducible character $[\varepsilon_2]$ of degree $q^2(q^4-q^2+1)$ of $^3D_4(q)$ (see [Sp]). Because we know the values of $Q\chi_{16}(k)$ on all conjugacy classes of Q where $[\varepsilon_2]_Q$ is nonzero, we can compute the scalar product.
(q \chi_{16}(k), [\varepsilon_2]Q) = \frac{q^6 - q^4 - q^3 + q^2 + q + 1}{q(q - 1)}$ using CHEVIE. Since this scalar product is a nonnegative rational integer the statement about $Q\chi_{16}(k)(x_\beta(1))$ follows.

\[\square \]

Remark: The value of $Q\chi_{16}(1)$ on $x_\beta(1)$ can be evaluated explicitly: using \([\text{4}]\) and \[\sum_{i=1}^{q^3-1} \phi^i(\tau^i) = \sum_{j=1}^{q^3-1} \phi^j(\pi^j) = -1 \] one gets $Q\chi_{16}(1)(x_\beta(1)) = q(q^3 - 1).

Now suppose that q is odd. We use the same notation as in [\text{11}]. The faithful irreducible characters of Q are $Q\chi_{16}(k)$, $Q\chi_{17}(k)$, $Q\chi_{18}(k)$, $Q\chi_{19}(k)$, $Q\chi_{20}(k)$ with k as in [\text{11} Table A.13]. The values of $Q\chi_{16}(k)$, $Q\chi_{17}(k)$ are given in [\text{11} Table A.14], in particular the values on $x_\beta(1)$. So we only deal with the values of $Q\chi_{18}(k)$, $Q\chi_{19}(k)$ and $Q\chi_{20}(k)$ on $x_\beta(1)$.

Proposition 12. The values $Q\chi_{18}(k)(x_\beta(1))$ and $Q\chi_{19}(k)(x_\beta(1))$ are elements of the set \(\{q(q^3 - 1) \cdot m \mid m \in \mathbb{Z} \text{ with } -(q^2 - 1)/2 \leq m \leq q^2(q - 1)/2\}\) and

\[Q\chi_{20}(k)(x_\beta(1)) \in \{q(q^3 - 1) \cdot m \mid m \in \mathbb{Z} \text{ with } -(q^2 - 1) \leq m \leq q^2(q - 1)\}. \]

Proof. The proof is similar to that of Proposition [\text{11}]. By construction (see p. 795 and 783 in [\text{11}]), the value of $Q\chi_{18}(k)$ and $Q\chi_{19}(k)$ on $x_\beta(1)$ is:

\[\sum_{i=1}^{q^3-1} \frac{(q-1)/2}{(q-1)} \sum_{j=1}^{q^3-1} \sum_{s \in \mathbb{F}_{q^3}} \phi^i(-\tau(-q^2-q+1)i\pi^j s - \pi^{-i-j+k}s^2+q+1) =: y_k'. \]

Because $x_\beta(1)$ is an involution we have $y_k' \in \mathbb{Z}$ and $y_k' \leq q^3(q^3 - 1)(q - 1)/2$. Using CHEVIE, we compute the scalar products $(Q\chi_{18}(k), [\varepsilon_2]Q) = (Q\chi_{19}(k), [\varepsilon_2]Q) = \frac{q^6 - q^4 - q^3 + q^2 + q + 1}{2q(q - 1)}$. The fact that this is a nonnegative integer implies the statement about $Q\chi_{18}(k)(x_\beta(1))$, $Q\chi_{19}(k)(x_\beta(1))$. By construction (see [\text{11} p. 795 and 784]):

\[Q\chi_{20}(k)(x_\beta(1)) = \sum_{i=1}^{q^3-1} \sum_{j=1}^{q^3-1} \phi^i \left(\frac{2j-i+k}{2} \right) s^j - \pi^{-i-j+k}s^2+q+1) =: y_k'' \]

for $1 \leq k \leq (q - 1)/2$ and

\[Q\chi_{20}(k)(x_\beta(1)) = \sum_{i=1}^{q^3-1} \sum_{j=1}^{q^3-1} \phi^i \left(\frac{2j-i+k}{2} \right) s^j - \pi^{-i-j+1}s^2+q+1) =: y_k'' \]

for $(q + 1)/2 \leq k \leq q - 1$. So $y_k'' \in \mathbb{Z}$ and $y_k'' \leq q^3(q^3 - 1)(q - 1)$. The fact $(Q\chi_{20}(k), [\varepsilon_2]Q) = \frac{q^6 - q^4 - q^3 + q^2 + q + 1}{q(q - 1)} \in \mathbb{Z}_{\geq 0}$ completes the proof.

\[\square \]

References

[Chev] M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, *Appl. Algebra Engng. Comm. Comput.*, 7 (1996), 175–210.
M. GECK, Generalized Gelfand-Graev characters for Steinberg’s triality groups and their applications, *Comm. Algebra*, 19 (1991), 3249–3269.

F. HIMSTEDT, Character tables of parabolic subgroups of Steinberg’s triality groups, *J. Algebra*, 281 (2004), 774–822.

F. HIMSTEDT, Character tables of parabolic subgroups of Steinberg’s triality groups $^3D_4(2^n)$, *J. Algebra*, 316 (2007), 254–283.

N. SPALTENSTEIN, Caractères unipotents de $^3D_4(q)$, *Comment. Math. Helviti*, 57 (1982), 676–691.