Angioscopic Observation of Chronic Neointimal Regression after Endeavor Zotarolimus-Eluting Stent Implantation

Minoru Ichikawa, MD, PhD* and Yoshiyuki Kijima, MD, PhD

Department of Cardiology, Higashi-Osaka City Medical Center, Higashi-Osaka, Osaka, Japan

Background: Vascular response after intracoronary bare metal stent (BMS) implantation is biphasic, composed of early restenosis phase and chronic regression phase. The phase transition occurred at around 6 months after stenting. The biphasic vascular response after drug-eluting stent (DES) implantation has not yet been reported so far.

Aim: The aim of this study was to document if chronic neointimal regression occurs after implantation of Endeavor zotarolimus-eluting stent (E-ZES), the second-generation DES.

Methods: Enrolled were 12 E-ZES-implanted lesions without restenosis in 10 patients with coronary heart diseases. Coronary angioscopy was performed twice after stent implantation, at early phase (1–3 years) and chronic phase (3–6 years), to reveal neointimal coverage (NC) on stent struts. NC was semi-quantified from grade 0, no coverage; grade 1, thin coverage; grade 2, thick coverage; and grade 3, invisible stent struts fully embedded into thick neointima. Angioscopy also visualized presence of in-stent yellow plaques (YP) and mural thrombus (MT).

Results: Dominant NC grade at early phase was greater than that at chronic phase (2.91 ± 0.29 vs. 1.83 ± 0.83, P = 0.0008). YP was observed more frequently at early phase than at chronic phase (17% vs. 8%). MT was not detected at both phases.

Conclusions: Chronic neointimal regression occurred after E-ZES implantation although the vascular response to E-ZES progressed more slowly than BMS implantation.

Key words: coronary angiography, neointimal regression, Endeavor zotarolimus-eluting stent

Introduction

Vascular response after intracoronary stent implantation is a healing process of vasculature.1,2 This process is biphasic and composed of early restenosis phase and chronic regression phase after implantation of bare metal stents (BMS).3,4 This phase transition occurs at around 6 months after BMS implantation. In the era of drug-eluting stents (DES), however, in-stent restenosis at 6 months after the implantation is a rare adverse event.5 Thus, we still do not know if and when the biphasic vascular response occurs after DES implantation.

Coronary angioscopy is a unique imaging devise to visualize in-stent appearance, that is, in-stent neointimal coverage (NC), in-stent yellow plaque (YP), and in-stent mural thrombus (MT).6,7 This study aimed to document if and when the biphasic transition occurred from in-stent neointimal growth to its regression after implantation of Endeavor zotarolimus-eluting stent (E-ZES), the second-generation DES.

Methods

Patients and lesions

Enrolled were 12 E-ZES-implanted lesions without in-stent restenosis in 10 patients with coronary heart diseases (three acute coronary syndrome and seven stable angina) (Table 1). Patients underwent twice cardiac catheterization including coronary angiography and angioscopy at early phase (330–950 days) and chronic phase (1014–2070 days after the stent implantation). Interval between the two phases was 1110 days (488, 1673) days as median (minimum, maximum) (Table 2). Enrollment period for the early phase was from 2010 August to 2013 December. That for the chronic phase was from 2013 June to 2016 October. Diabetes mellitus was defined as medication dependent, including oral antihyperglycemic drugs and insulin or as previously known diabetes, that is, fasting plasma glucose concentration >126 mg/dL or plasma glucose concentration >200 mg/dL at any timing. Dyslipidemia was defined as medication-dependent or as previously known dyslipidemia, that is, low-density lipoprotein cholesterol of >140 mg/dL or total cholesterol of >220 mg/dL. Hypertension was defined as medication-dependent or as
Ichikawa M and Kijima Y

Quantitative coronary angiography (QCA) was performed with an automated edge detection algorithm (CASS 5.9.2, Pie Medical Imaging, Eindhoven, Netherlands). Coronary angiograms were recorded after intracoronary administration of 0.2 mg nitroglycerin. Diameters of guiding catheters were measured to calibrate magnification. In-stent restenosis was defined as a percent diameter stenosis of >50%.

Coronary angiography

Coronary angiography (Visible®, Fibertech, Tokyo, Japan) was performed safely with manual pullback under transparent low-molecular-weight dextran solution flush as described previously. Angiography semi-quantified NC grades on stent struts, that is, grade 0, no coverage, struts barely exposed in the vessel lumen; grade 1, thin coverage, struts visible translucently; grade 2, thick coverage, struts still bulging into vessel lumen and visible translucently; and grade 3, struts embedded in thick neointima and angioscopically invisible. NC was usually heterogeneous through a stent. Dominant, maximum, and minimum NC grades were determined through a stent. Heterogeneity index was defined as maximum–minimum NC grade, to evaluate the heterogeneity of NC. Angioscopy also visualized in-stent MT and YP.

Table 1 Patient characteristics

Patient number	Gender (male/female)	Age (y.o.)	ACS	HT	DM	DL	Smoking	DAPT	Anticoagulant	Statin
1	M	69	+	+	+	+	+	+	-	+
2	F	80	+	+	+	+	-	-	-	+
3	M	73	+	-	+	+	-	+	-	+
4	M	73	-	-	-	+	+	-	-	-
5	M	74	-	+	-	+	+	+	-	-
6	M	76	-	+	-	-	+	+	-	-
7	M	79	-	+	+	-	+	-	-	-
8	F	78	-	+	-	-	-	+	-	+
9	M	77	-	+	+	+	+	+	-	-
10	M	74	-	-	+	+	+	-	+	+
n (%)		3 (30)	7 (70)	7 (70)	8 (80)	6 (60)	10 (100)	0	6 (60)	

Seven patients had undergone DAPT at chronic phase. Three patients underwent single anti-platelet therapy at chronic phase. LDL-C level decreased from 96.0 ± 27.9 at early phase to 83.9 ± 27.4 mg/dL at chronic phase (P < 0.049). Data were given as mean ± SD or n (%). DAPT: dual anti-platelet therapy.

Table 2 Temporal change of dominant NC grade

Patient number	Lesion number	Elapse after stenting (days)	Dominant NC grade	DAPT	Anticoagulant	Statin
		Early	Chronic	Early	Chronic	
1	1	379	1101	3	2	
2	2	366	1282	3	3	
3	3	366	1282	3	2	
4	5	364	1134	3	2	
5	6	442	1542	3	2	
6	7	352	1674	3	1	
7	8	526	1014	3	1	
8	9	330	1329	3	1	
9	10	950	2070	3	1	
10	11	565	1685	2	3	
	12	357	1546	3	1	
Mean		448	1501	2.91†	1.83	
SD		174	349	0.29	0.83	

Abbreviations: ACS, acute coronary syndrome; HT, hypertension; DM, diabetes mellitus; DL, dyslipidemia; Smoking, smoking status; DAPT, dual anti-platelet therapy; Anticoagulant, anticoagulant therapy; Statin, statin therapy.

†P = 0.0008 versus dominant NC grade at the chronic phase. NC: neointimal coverage.
Regression of neoatherosclerosis might be affected by cytosuppressive drug and solvent polymer-induced inflammation. We first reported here the biphasic vascular response after E-ZES implantation, the second-generation DES. QCA failed to detect significant regression of in-stent neointima at chronic phase (Table 3). Coronary angioscopy, a unique imaging device more sensitive to detect in-stent neointimal growth and regression than angiography, revealed the sufficient in-stent NC at early phase and the decrease in NC grade at chronic phase (Figs. 1–2, Tables 2 and 4). The putative phase transition date from proliferation to regression was 931 ± 241 days after stenting (Fig. 2).

The mechanism of this intriguing vascular response has not yet been fully understood. We would propose two hypotheses. First, the chronic neointimal regression we observed in this study would be regression of neatherosclerosis. Neatherosclerosis is pathological diagnosis defined as in-stent neointimal atherosclerotic change which has developed at more than a year after stenting. In clinical settings, neatherosclerosis was diagnosed by coronary angioscopic findings including YP. Regression of neatherosclerosis might be affected by clinical status, for example, statin use. Our intravascular imaging data at early phase, that is, no in-stent restenosis (Table 3) and the low incident rate of YP and MT (Table 4), however, do not support the presence of neatherosclerosis at early phase. Second, the chronic neointimal regression would be a part of vascular healing process after E-ZES implantation. At early phase, stent-related vessel injury induced proliferative activity at vessel wall. At chronic phase, apoptosis played a certain role in reduction of cell number in neointima. The phase transition appeared to occur more slowly after E-ZES implantation than BMS implantation.
and NC grade of C-SES were significantly less than BMS,\(^5,6\) whereas those of E-ZES was similar to those of BMS.\(^13\) Using angioscopy, we have previously demonstrated case reports of a relatively rapid healing process for an E-ZES-related coronary pseudoaneurysm.\(^5,16\) We also reported the good NC at 1 year after E-ZES implantation in patients either with acute coronary syndrome or with stable angina pectoris.\(^9\) These unique features of E-ZES might allow us to detect the biphasic vascular response after stent implantation.

Table 4 Angioscopic findings

	Early	Chronic	P value
Dominant NC grade	2.91 ± 0.29	1.83 ± 0.83	0.0008
Maximum NC grade	2.83 ± 0.39	2.16 ± 0.71	0.016
Minimum NC grade	2.17 ± 0.83	1.08 ± 0.28	0.0008
Heterogeneity index\(^1\)	0.67 ± 0.78	1.08 ± 0.67	0.173
Yellow plaque	2 (17)	1 (8)	
Mural thrombus	0	0	

In all, 12 lesions were observed twice by coronary angioscopy.\(^1\) Heterogeneity index was defined as maximum-minimum NC grade. Data were given as mean ± SD or n (%). NC: neointimal coverage.
The authors have no conflicts of interest to declare.

E-ZES progressed more slowly than BMS implantation. After E-ZES implantation although the vascular response to noninvasive DES.

We conclude that the biphasic transition is a common phenomenon in DES. Further prospective study will be necessary to determine whether the late arterial repair might affect the vascular response after stenting.

There are several limitations in this study. First, this study was a single-center study composed of small number of patients. We analyzed only 12 lesions in 10 patients. Second, coronary angioscopy semi-quantified the neointimal response. Other imaging devices such as optical coherence tomography may provide more precise data. Third, because this study was a retrospective observational study, timings of angioscopic observation after stenting varied within wide range (Table 2). For example, elapsed days after stenting were 950 at early phase and 2070 days at chronic phase in one case, whereas those were 526 at early phase and 1014 days at chronic phase in another case. Fourth, control status of coronary risk factors during follow-up period might affect the vascular response after stenting. Further prospective study will be necessary to conclude that the biphasic transition is a common phenomenon in DES.

In conclusion, chronic neointimal regression occurred after E-ZES implantation although the vascular response to E-ZES progressed more slowly than BMS implantation.

Disclosure Statement
The authors have no conflicts of interest to declare.

References
1) Ichikawa M, Kijima Y: Optical coherence tomographic and angioscopic assessments of arterial healing in coronary artery perforation after implantation of zotarolimus-eluting stent. Int Heart J 2013; 54: 332–333.
2) Ichikawa M, Bando K, Kijima Y: Angioscopic observation of extremely late arterial repair after intracoronary implantation of the first-generation sirolimus-eluting stents. Int J Cardiol 2017; 230: 488–492.
3) Asakura M, Ueda Y, Nanto S, et al: Remodeling of in-stent neointima, which became thinner and transparent over 3 years: serial angiographic and angioscopic follow-up. Circulation 1998; 97: 2003–2006.
4) Kimura T, Abe K, Shizuta S, et al: Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries. Circulation 2002; 105: 2986–2991.
5) Morice MC, Serruys PW, Sousa JE, et al: A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002; 346: 1773–1780.
6) Kotani J, Awata M, Nanto S, et al: Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J Am Coll Cardiol 2006; 47: 2108–2111.
7) Takano M, Yamamoto M, Murakami D, et al: Lack of association between large angiographic late loss and low risk of in-stent thrombus: angioscopic comparison between paclitaxel- and sirolimus-eluting stents. Circ Cardiovasc Interv 2008; 1: 20–27.
8) Ichikawa M, Mishima M: Neointimal regression-induced incomplete coverage of a bare-metal stent in the left main trunk: serial angiographic and angioscopic evidence obtained by 5-year follow-up. Catheter Cardiovasc Interv 2009; 73: 787–790.
9) Kawai K, Ichikawa M, Masuyama T, et al: Angioscopic comparison of arterial repair after second-generation drug-eluting stent implantation into vulnerable and stable coronary plaques. Int J Cardiol 2016; 221: 855–858.
10) Nakazawa G, Otsuka F, Nakano M, et al: The pathology of neoaortic hyperplasia in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 2011; 57: 1314–1322.
11) Hirayama A, Saito S, Ueda Y, et al: Plaque-stabilizing effect of atorvastatin is stronger for plaques evaluated as more unstable by angioscopy and intravenous ultrasound. Circ J 2011; 75: 1448–1454.
12) Chhatriwalla AK, Nicholls SJ, Nissen SE: The ASTEROID trial: coronary plaque regression with high-dose statin therapy. Future Cardiol 2006; 2: 651–654.
13) Schatz RA, Palmaz JC, Tio FO, et al: Balloon-expandable intracoronary stents in the adult dog. Circulation 1987; 76: 450–457.
14) Isner JM, Kearney M, Bortman S, et al: Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703–2711.
15) Ichikawa M, Kijima Y: Spontaneous resolution of pseudoaneurysm after zotarolimus-eluting stent implantation: imaging evidence at 13 months of follow-up. Cardiovasc Interv Ther 2015; 30: 168–170.
16) Ishihara T, Awata M, Sera F, et al: Arterial repair 4 months after zotarolimus-eluting stent implantation observed on angioscopy. Circ J 2013; 77: 1186–1192.