Associations of polymorphisms in \textit{CTLA-4} and \textit{IL-18} with liver diseases: evidence from a meta-analysis

Running title: Polymorphisms in \textit{CTLA-4/IL-18} and liver diseases

Shenglong Zhang, M.D. 1,2, Xianwei Yang, M.D. 1, and Wentao Wang, M.D. 1*

* Corresponding author

Address:

1. Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China

2. Department of Hepatobiliary Surgery, Second People’s Hospital of Chengdu, Chengdu, Sichuan, China

Correspondence to: Dr. Wentao Wang, Department of Liver Surgery, West China Hospital of Sichuan University, No. 37 Guoxue Road, Chengdu 610041, Sichuan, China. E-mail address: wangwentao62@163.com
Abstract

Background: Associations between polymorphisms in *cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)* / *interleukin-18 (IL-18)* and susceptibility to liver diseases were already reported by many publications. The aim of this meta-analysis was to clarify associations between polymorphisms in *CTLA-4/IL-18* and liver diseases by combing the results of all relevant publications.

Methods: Eligible publications were searched from Pubmed, Embase, WOS and CNKI. The latest literature searching update was performed on 2nd October, 2019. We used Review Manager to combine the results of individual studies.

Results: Sixty-seven studies were included in this study. Combined results revealed that *CTLA-4* rs231775 (dominant comparison: OR 0.83, 95 % CI 0.79-0.88; recessive comparison: OR 1.33, 95 % CI 1.23-1.43; allele comparison: OR 0.84, 95 % CI 0.78-0.90), *IL-18* rs1946518 (dominant comparison: OR 0.85, 95 % CI 0.78-0.92; recessive comparison: OR 1.29, 95 % CI 1.13-1.48; allele comparison: OR 0.79, 95 % CI 0.71-0.88) and *IL-18* rs187238 (dominant comparison: OR 1.28, 95 % CI 1.07-1.53; over-dominant comparison: OR 0.81, 95 % CI 0.68-0.97; allele comparison: OR 1.22, 95 % CI 1.07-1.39) polymorphisms were all significantly associated with liver diseases in the general population. We also obtained similar significant associations for *CTLA-4* rs231775, *CTLA-4* rs5742909, *CTLA-4* rs3087243, *IL-18* rs1946518 and *IL-18* rs187238 polymorphisms in subgroup analyses.

Conclusions: Collectively, this meta-analysis proved that *CTLA-4* rs231775, *CTLA-4*
rs5742909, CTLA-4 rs3087243, IL-18 rs1946518 and IL-18 rs187238 polymorphisms may confer susceptibility to various types of liver diseases.

Keywords: Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4); Interleukin-18 (IL-18); Liver diseases; Meta-analysis

Introduction

Liver disease is one of the leading causes of death all over the world [1-2]. Although we still did not figure out the exact mechanism of its pathogenesis, it was believed that genetic components were essential in the development of various types of liver diseases. Firstly, the incidences of liver diseases in different populations were quite different [3-4], and different genetic background was probably one of reasons behind differences in disease prevalence across different populations. Secondly, numerous susceptible genetic loci of different types of liver diseases were identified and validated by existing genetic association studies [5-6]. Nevertheless, the etiologies of liver diseases are highly complex and the genetic determinants underlying liver disease are not fully elucidated. Since genetic makeup could substantially influence and contribute to the development of liver diseases, it is believed that identifying potential genetic biomarkers is of critical importance for further improving early diagnosis of liver diseases.

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) belongs to the
immunoglobulin super-family. It is a negative regulator of T cells and plays vital roles in inducing immune tolerance [7]. Interleukin-18 (IL-18) is a cytokine that resembles IL-1 structurally and IL-12 functionally. It enhances the activity of NK cells and cytotoxic T cells [8]. Although their functions are somehow different, CTLA-4 and IL-18 are both crucial modulators of T cell activation and proliferation. So if a genetic polymorphism could alter the transcription activity of CTLA-4/IL-18 or the protein structure of CTLA-4/IL-18, there is possibility that this polymorphism may impact function of T cells, give rise to immune dysfunction and inflammatory cellular injuries, and ultimately lead to the development of many types of diseases (including but not limited to infectious, auto-immune, inflammatory and malignant diseases).

In the past twenty years, many publications reported findings about associations between polymorphisms in CTLA-4/IL-18 and liver diseases, yet the conclusions of these publications were somehow inconsistent. To better clarify associations between polymorphisms in CTLA-4/IL-18 and liver diseases, we designed this study to get a more credible conclusion by combing the results of all relevant publications.

Materials and methods

We wrote this meta-analysis as requested by PRISMA guideline [9].

Literature search and inclusion criteria

To retrieve eligible articles, we searched Pubmed, WOS and Embase with key words
listed below: (interleukin-18 or IL-18 or interleukin 18 or IL 18 or cytotoxic T lymphocyte antigen-4 or CTLA-4) and (polymorphism or variant or variation or mutation or SNP or genome-wide association study or genetic association study or genotype or allele) and (liver disease or viral hepatitis or hepatitis or HAV or HBV or HCV or HDV or HEV or non-alcoholic fatty liver disease or non-alcoholic fatty liver or non-alcoholic steatohepatitis or alcoholic liver disease or autoimmune hepatitis or liver failure or liver cirrhosis or hepatocellular carcinoma). The latest literature searching update was performed on 2nd October, 2019. The references of retrieved articles were also screened by us in case some related publications may be missing.

To be included in this meta-analysis, some criteria must be met: I. About associations between polymorphisms in CTLA-4/IL-18 and liver diseases in humans; II. Offer genotypic or allelic distribution of CTLA-4/IL-18 polymorphisms in patients with liver diseases and controls; III. Full manuscript in English is retrievable. Publications were deemed to be ineligible if: I. Not about polymorphisms in CTLA-4/IL-18 and liver diseases; II. Narrative reviews, systematic reviews or comments; III. Studies only involved liver diseases patients. We only included the most up to date study if duplicate publications were found during literature search.

Data extraction and quality assessment

Two authors extracted following essential information from eligible publications: I. Name of the leading author; II. Published year; III. Country of the leading author; IV. Ethnicity of involved participants; V. Number of patients with liver diseases and
controls in each study; VI. Genotype distributions of polymorphisms in \textit{CTLA-4/IL-18} among patients with liver diseases and controls. \(P\) values of Hardy-Weinberg equilibrium (HWE) were also calculated.

The authors used Newcastle-Ottawa scale (NOS) to assess the quality of eligible publications [10]. The score range of NOS is between zero and nine, when a publication got a score of seven or more, we considered that the methodology of this publication is good.

Two authors extracted data and assessed quality of eligible publications. The authors wrote to the leadings authors for additional information if essential information was found to be incomplete.

\textbf{Statistical analyses}

We used Review Manager to combine the results of individual studies. \(Z\) test was employed to assess associations between polymorphisms in \textit{CTLA-4/IL-18} and liver diseases in dominant, recessive, over-dominant and allele models. All investigated polymorphisms contain a major allele (M) and a minor allele (m), the dominant comparison is defined as MM versus Mm + mm, recessive comparison is defined as mm vs. MM + Mm, over-dominant comparison is defined as Mm versus MM + mm, and the allele comparison is defined as M versus m. The statistical significant threshold of \(p\) value was set at 0.05. We used \(I^2\) statistics to assess between-study heterogeneities. We used Random-effect models (DerSimonian-Laird method) to combine the results if \(I^2\) is larger than 50\%. Otherwise, fixed-effect models
(Mantel-Haenszel method) were used to combine the results. We further carried out subgroup analyses by ethnicity to get ethnic-specific results. We also carried out subgroup analyses by type of disease. We examined the stability of combined results by deleting one study each time and combining the results of the rest of studies. We used funnel plots to estimate whether our combined results may be influenced by publication biases.

Results

Characteristics of included studies

We found five hundred and seven publications during literature searching. Ninety-two publications were assessed for eligibility after excluding unrelated or duplicate publications. We further excluded seventeen reviews and five case controls, and another three publications were excluded because of missing crucial data. Totally sixty-seven publications were ultimately found to be eligible for inclusion (Fig. 1). Extracted data of eligible publications were summarized in Table 1.

Meta-analyses results for polymorphisms in CTLA-4 and liver diseases

CTLA-4 rs231775 (dominant comparison: OR 0.83, 95 % CI 0.79-0.88; recessive comparison: OR 1.33, 95 % CI 1.23-1.43; allele comparison: OR 0.84, 95 % CI 0.78-0.90) polymorphism was found to be significantly associated with liver diseases in overall combined analyses. Subgroup analyses showed positive findings for
CTLA-4 rs231775 polymorphism in Caucasians (dominant and over-dominant comparisons), East Asians (dominant, recessive and allele comparisons) and South Asians (recessive and allele comparisons). Moreover, we found that CTLA-4 rs5742909 polymorphism was significantly associated with liver diseases in Caucasians (allele comparison) and South Asians (dominant and allele comparisons), and we also found that CTLA-4 rs3087243 polymorphism was significantly associated with liver diseases in East Asians (recessive comparison). Significant associations with CTLA-4 rs231775 polymorphism were observed in patients with hepatitis B virus infection (HBV), autoimmune hepatitis (AIH), liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Positive relationships with CTLA-4 rs5742909 polymorphism were observed in patients with hepatitis C virus infection (HCV). CTLA-4 rs3087243 polymorphism was also found to be significantly associated with susceptibility to AIH (see Table 2).

Meta-analyses results for polymorphisms in IL-18 and liver diseases

IL-18 rs1946518 (dominant comparison: OR 0.85, 95 % CI 0.78-0.92; recessive comparison: OR 1.29, 95 % CI 1.13-1.48; allele comparison: OR 0.79, 95 % CI 0.71-0.88) and IL-18 rs187238 (dominant comparison: OR 1.28, 95 % CI 1.07-1.53; over-dominant comparison: OR 0.81, 95 % CI 0.68-0.97; allele comparison: OR 1.22, 95 % CI 1.07-1.39) polymorphisms were both found to be significantly associated with liver diseases in overall combined analyses. Subgroup analyses showed positive findings for IL-18 rs1946518 polymorphism in South Asians (dominant, recessive and
allele comparisons). Moreover, we also found that *IL-18* rs187238 polymorphism was significantly associated with liver diseases in East Asians (dominant, over-dominant and allele comparisons). Significant associations with *IL-18* rs1946518 polymorphism were observed in patients with HBV and HCV, and positive relationships with *IL-18* rs187238 polymorphism were also observed in patients with HBV and LC (see Table 2).

Sensitivity analyses

We examined the stability of combined results by deleting one study each time and combining the results of the rest of studies. The trends of associations remained consistent in sensitivity analyses, which indicated that the combined results were statistically stable.

Publication biases

Funnels plots were employed to estimate whether our combined results may be influenced by publication biases. Funnel plots of every comparison were symmetrical, which indicated that the combined results were unlikely to be seriously impacted by overt publication biases (see Supplementary figure 1).

Discussion

The combined results of this meta-analysis revealed that *CTLA-4* rs231775,
rs5742909 and rs3087243 polymorphisms were significantly associated with susceptibility to various types of liver diseases. Moreover, IL-18 rs1946518 and rs187238 polymorphisms were also found to be significantly associated with susceptibility to various types of liver diseases. The trends of associations remained consistent in sensitivity analyses, which indicated that the combined results were stable. These results also suggested that the above mentioned CTLA-4/IL-18 polymorphisms may serve as potential genetic biomarkers of liver diseases.

To better understand the combined results of this meta-analysis, some points should be considered. First, past basic researches revealed that rs231775, rs5742909 and rs3087243 polymorphisms in CTLA-4 as well as rs1946518 and rs187238 polymorphisms in IL-18 could alter transcription activity of CTLA-4/IL-18 or protein structure of CTLA-4/IL-18 [11-13]. So these variations may influence biological function of CTLA-4/IL-18, result in immune dysfunction, cause hepatocellular injury and ultimately confer susceptibility to various liver diseases. Thus, our meta-analysis may be statistically insufficient to observe the real underlying associations between polymorphisms in CTLA-4/IL-18 and liver diseases in certain subgroups. Therefore, future studies still need to confirm our findings. Second, significant heterogeneities were found to be existed among eligible publications for CTLA-4 rs5742909, CTLA-4 rs3087243 and IL-18 rs1946518 polymorphisms in some of comparisons. Nevertheless, an obvious reduction of heterogeneity was observed in further subgroup analyses by ethnicity, which indicated that ethnic background differences could explain part of heterogeneities among eligible publications. The heterogeneities
among eligible publications and opposite trends of associations observed in subgroup analyses by ethnicity also indicated that the distributions of $CTLA-4$ rs5742909, $CTLA-4$ rs3087243 and $IL-18$ rs1946518 polymorphisms vary significantly from population to population. So the genetic associations between polymorphisms in $CTLA-4/IL-18$ and liver disease may be ethnic-specific, and we should not try to generalize the combined results to a broader population. Thirdly, the etiologies of liver diseases are very complicated, so we highly recommend further genetic association studies to explore the effects of haplotypes and gene-gene interactions on disease susceptibility [14]. Fourthly, we aimed to investigate associations between all polymorphisms in $CTLA-4/IL-18$ and liver diseases in the very beginning. However, we did not find any study on other $CTLA-4/IL-18$ polymorphisms, so we only focused on five polymorphisms in this meta-analysis.

Some limitations of this meta-analysis should also be mentioned. Firstly, the results regarding associations between polymorphisms in $CTLA-4/IL-18$ and liver diseases were based on combining unadjusted findings of eligible publications due to lack of raw data [15]. Secondly, relationship between polymorphisms in $CTLA-4/IL-18$ and liver diseases may also be affected by environmental factors. Unfortunately, the majority of eligible publications only focused on associations between polymorphisms in $CTLA-4/IL-18$ and liver diseases, so we could not explore genetic-environmental interactions in this meta-analysis [16]. Thirdly, grey literatures were not searched. So although funnel plots of every comparison were symmetrical, it is still possible that the combined results may be affected by publication biases [17].
In summary, this meta-analysis proved that \textit{CTLA-4} rs231775, \textit{CTLA-4} rs5742909, \textit{CTLA-4} rs3087243, \textit{IL-18} rs1946518 and \textit{IL-18} rs187238 polymorphisms may confer susceptibility to various types of liver diseases. These results supported that the above mentioned polymorphisms may be used to identify individuals at higher risk of developing liver diseases in the general population. However, the combined results of this meta-analysis should still be verified by studies with larger sample sizes. Besides, given that the etiologies of liver diseases are extremely complex, despite our comprehensive analyses, we still strongly recommend further studies to explore potential roles of gene-gene interactions and gene-environmental interactions in the development of liver diseases.

\textbf{Authors' contributions}

Shenglong Zhang and Wentao Wang conceived and designed the study. Shenglong Zhang and Xianwei Yang conducted the literature review. Shenglong Zhang and Xianwei Yang analyzed data. Shenglong Zhang and Wentao Wang drafted the manuscript. All authors have read and approved the final manuscript.

\textbf{Acknowledgments}

None.
Funding

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors, thus ethical approval and informed consent are not required.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

1. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, Jensen
ET, Shaheen NJ, Barritt AS, Lieber SR, Kochar B, Barnes EL, Fan YC, Pate V, Galanko J, Baron TH, Sandler RS. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology. 2019; 156: 254-272.

2. Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018; 38 (Suppl 1): 2-6.

3. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019; 70: 151-171.

4. Setiawan VW, Stram DO, Porcel J, Lu SC, Le Marchand L, Noureddin M. Prevalence of chronic liver disease and cirrhosis by underlying cause in understudied ethnic groups: The multiethnic cohort. Hepatology. 2016; 64: 1969-1977.

5. Karlsen TH, Lammert F, Thompson RJ. Genetics of liver disease: From pathophysiology to clinical practice. J Hepatol. 2015; 62(1 Suppl): S6-S14.

6. Lammert F. Genetics in Common Liver Diseases: From Pathophysiology to Precise Treatment. Dig Dis. 2016; 34: 391-395.

7. Chikuma S. CTLA-4, an Essential Immune-Checkpoint for T-Cell Activation. Curr Top Microbiol Immunol. 2017; 410: 99-126.

8. Sedimbi SK, Hägglöf T, Karlsson MC. IL-18 in inflammatory and autoimmune disease. Cell Mol Life Sci. 2013; 70: 4795-4808.

9. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA group. Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151: 264-269.

10. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25: 603-605.

11. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005; 204: 102-115.

12. Ghaderi A. CTLA4 gene variants in autoimmunity and cancer: a comparative review. Iran J Immunol. 2011; 8: 127-149.

13. Smith AJ, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev. 2009; 20: 43-59.

14. Nishi A, Milner DA Jr, Giovannucci EL, Nishihara R, Tan AS, Kawachi I, Ogino S. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn. 2016; 16: 11-23.

15. Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Impact of host gene polymorphisms on susceptibility to chronic hepatitis B virus infection. Infect Genet Evol. 2016; 44: 94-105.

16. Boccuto L, Abenavoli L. Genetic and Epigenetic Profile of Patients With Alcoholic Liver Disease. Ann Hepatol. 2017; 16: 490-500.

17. Wu Z, Qin W, Zeng J, Huang C, Lu Y, Li S. Association Between IL-4 Polymorphisms and Risk of Liver Disease: An Updated Meta-Analysis. Medicine (Baltimore). 2015; 94: e1435.
Figure legends

Fig. 1. Flowchart of study selection for the present study.
First author, year	Country	Ethnicity	Type of disease	Sample size	Genotype distribution	P-value for HWE	NOS score	
					Cases: Controls			
CTLA-4 rs231775								
Agarwal 2000	UK	Caucasian	AIH	155/102	50/84/21: 51/38/13	0.173	8	
Agarwal 2000	UK	Caucasian	LC	200/200	57/106/37: 99/80/21	0.424	8	
Aiba 2011	Japan	East Asian	LC	450/371	191/204/55: 181/124/66	<0.001	7	
Bittencourt 2003	Brazil	Mixed	AIH	106/67	42/49/15: 29/30/8	0.955	8	
Bittencourt 2003	Brazil	Mixed	LC	50/67	23/23/4: 29/30/8	0.955	8	
Chaouali 2017	Tunisia	South Asian	AIH	50/100	12/24/14: 34/57/9	0.031	7	
Chen 2014	China	East Asian	HBV	465/204	198/214/53: 82/102/20	0.146	8	
Chen 2014	China	East Asian	LC	209/204	66/97/46: 82/102/20	0.146	8	
Chen 2014	China	East Asian	HCV	234/204	92/100/42: 82/102/20	0.146	8	
Danilovic 2012	Brazil	Mixed	HCV	112/183	59/34/19: 81/67/35	0.003	7	
Donaldson 2007	UK	Caucasian	LC	316/390	115/159/42: 160/177/53	0.716	8	
Duan 2011	China	East Asian	HBV	172/145	50/89/33: 61/68/16	0.648	7	
Enciso-Vargas 2018	México	Mixed	HCV	205/215	67/104/34: 93/89/33	0.134	7	
Fan 2004	China	East Asian	AIH	62/160	6/34/22: 23/93/44	0.021	7	
Fan 2004	China	East Asian	LC	77/160	6/34/37: 23/93/44	0.021	7	
Gu 2010	China	East Asian	HBV	570/407	244/251/75: 183/179/45	0.902	8	
Gu 2010	China	East Asian	HCC	367/407	150/166/51: 183/179/45	0.902	8	
Hu 2010	China	East Asian	HCC	853/854	367/380/106: 399/376/79	0.476	7	
Jiang 2007	China	East Asian	HBV	24/143	5/15/4: 70/61/12	0.800	7	
Joshi 2010	Japan	East Asian	LC	308/268	123/143/42: 91/131/46	0.922	7	
Juran 2010	USA	Mixed	LC	351/205	131/161/59: 79/99/27	0.644	7	
Juran 2010	Canada	Mixed	LC	351/279	122/170/59	111/130/38	0.995	7
---	---	---	---	---	---	---	---	---
Kann 2006	Japan	East Asian	LC	45/73	5/20/20	14/33/26	0.545	8
Khorshied 2014	Egypt	South Asian	HCV	52/460	28/40/5	203/204/53	0.872	7
Ksiaa 2015	Tunisia	South Asian	HCV	500/358	225/198/77	176/142/40	0.168	7
Li 2013	China	East Asian	LC	312/375	20/140/152	40/214/112	<0.001	8
Liu 2015	China	East Asian	HCC	80/78	29/36/15	38/33/7	0.966	8
Mantaka 2012	Greece	Caucasian	LC	100/158	47/50/3	77/72/9	0.136	7
Mohammad 2006	Iran	South Asian	HBV	51/150	9/16/26	41/52/57	<0.001	8
Ng 2013	New Zealand	Caucasian	AIH	77/455	33/32/12	168/212/75	0.557	8
Poupon 2008	France	Caucasian	LC	258/286	95/123/40	145/177/24	0.953	7
Roy 2012	India	South Asian	ALD	180/107	68/90/22	42/56/9	0.105	7
Schott 2007	Germany	Caucasian	AIH	127/202	41/64/22	78/87/37	0.149	7
Schott 2007	Germany	Caucasian	LC	180/202	58/90/32	78/87/37	0.149	7
Sepahi 2017	Iran	South Asian	HCV	65/65	NA	NA	NA	7
Thio 2004	USA	Mixed	HBV	378/676	NA	NA	NA	7
Umemura 2008	Japan	East Asian	AIH	76/100	11/36/29	22/47/31	0.601	8
van Gerven 2013	The Netherlands	Caucasian	AIH	667/498	240/324/103	188/233/77	0.732	7
Walker 2009	Canada	Mixed	LC	481/1245	162/223/96	493/577/178	0.661	7
Xiao 2015	China	East Asian	HCV	816/375	358/375/83	176/168/31	0.300	8
Yang 2019	China	East Asian	HCC	575/920	290/221/64	444/389/87	0.893	7
Zhang 2012	China	East Asian	HBV	172/145	50/89/33	61/68/16	0.648	8

CTLA-4 rs5742909

Chaouali 2017	Tunisia	South Asian	AIH	50/100	47/3/0	91/9/0	0.637	7
Chen 2014	China	East Asian	HBV	464/200	342/112/10	160/38/2	0.877	8
Chen 2014	China	East Asian	LC	202/200	136/58/8	160/38/2	0.877	8
Chen 2014	China	East Asian	HCC	224/200	176/48/0	160/38/2	0.877	8
Study	Country	Ethnicity	Disease	HLA-A1/RA1/RA2	HLA-A2/RA1/RA2	HLA-A2/RA2/RA3	Migration	Frequency	Ref.
Danilovic 2012	Brazil	Mixed	HCV	112/183	92/19/1	152/31/0	0.211	7	
Donaldson 2007	UK	Caucasian	LC	246/289	215/31/0	252/36/1	0.811	8	
Duan 2011	China	East Asian	HBV	172/145	141/28/3	105/39/1	0.194	7	
Enciso-Vargas 2018	Mexico	Mixed	HCV	205/215	183/22/0	193/21/1	0.604	7	
Fan 2004	China	East Asian	AIH	62/160	54/8/0	122/30/8	0.003	7	
Fan 2004	China	East Asian	LC	77/160	63/12/2	122/30/8	0.003	7	
Joshi 2010	Japan	East Asian	LC	308/268	NA	NA	NA	7	
Juran 2010	USA	Mixed	LC	351/279	NA	NA	NA	7	
Khorshied 2014	Egypt	South Asian	HCV	54/503	33/13/8	403/67/29	<0.001	7	
Li 2013	China	East Asian	LC	312/375	246/49/17	288/68/19	<0.001	8	
Mohammad 2006	Iran	South Asian	HBV	51/150	41/10/0	134/16/0	0.492	8	
Poupon 2008	France	Caucasian	LC	258/286	NA	NA	NA	7	
Schott 2007	Germany	Caucasian	HBV	323/202	276/42/5	150/47/5	0.570	7	
Schott 2007	Germany	Caucasian	LC	72/202	66/6/3	150/47/5	0.570	7	
Sepahi 2017	Iran	South Asian	HCV	65/65	55/10/0	55/9/1	0.392	7	
Thio 2004	USA	Mixed	HBV	378/676	NA	NA	NA	7	
Umemura 2008	Japan	East Asian	AIH	76/100	61/14/1	80/20/0	0.267	8	
Walker 2009	Canada	Mixed	LC	481/1248	377/99/5	1055/183/10	0.509	7	
Xiao 2015	China	East Asian	HCV	816/375	523/269/24	266/99/10	0.829	8	
Zhang 2012	China	East Asian	HBV	172/145	141/28/3	105/39/1	0.194	8	

CTLA-4 rs3087243

Study	Country	Ethnicity	Disease	HLA-A1/RA1/RA2	HLA-A2/RA1/RA2	HLA-A2/RA2/RA3	Migration	Frequency	Ref.
Aiba 2011	Japan	East Asian	LC	450/371	NA	NA	NA	7	
Chaouali 2017	Tunisia	South Asian	AIH	50/100	4/29/17	22/50/28	0.971	7	
Chen 2014	China	East Asian	HBV	467/203	301/148/18	116/79/8	0.223	8	
Chen 2014	China	East Asian	LC	211/203	121/72/18	116/79/8	0.223	8	
Chen 2014	China	East Asian	HCC	231/203	134/81/16	116/79/8	0.233	8	
Study	Country	Ethnicity	Disease	IL-18 SNP	MAF (log10)	Age (median)	Sex	IL-18 rs1946518	
---------------	------------------	----------------	---------	-----------	-------------	--------------	-----	-----------------	
Danilovic 2012	Brazil	Mixed	HCV	112/183	38/53/21	62/95/26		0.279	
Donaldson 2007	UK	Caucasian	LC	195/276	32/104/59	57/137/82		0.987	
Joshita 2010	Japan	East Asian	LC	308/268	NA	NA		NA	
Juran 2010	USA	Mixed	LC	351/205	117/168/66	70/94/41		0.005	
Ksiaa 2015	Tunisia	South Asian	HCV	500/358	194/217/89	124/158/76		0.056	
Li 2013	China	East Asian	LC	312/375	159/112/41	170/152/53		0.048	
Mantaka 2012	Greece	Caucasian	LC	100/158	32/43/25	37/84/37		0.426	
Oertelt 2005	USA	Mixed	LC	154/166	27/87/40	45/72/49		0.089	
Thio 2004	USA	Mixed	HBV	378/676	NA	NA		NA	
Umemura 2008	Japan	East Asian	AIH	76/100	3/35/38	12/47/41		0.792	
Walker 2009	Canada	Mixed	LC	481/1248	198/205/78	362/613/273		0.656	
Xiao 2015	China	East Asian	HCV	816/375	555/231/30	266/99/10		0.829	
Yang 2019	China	East Asian	HCC	575/921	325/221/29	609/282/30		0.703	

IL-18 rs1946518

Study	Country	Ethnicity	Disease	IL-18 SNP	MAF (log10)	Age (median)	Sex	IL-18 rs1946518	
Abdelrahem 2016	Egypt	South Asian	HCV	100/100	21/47/32	42/51/7		0.104	
An 2008	USA	Caucasian	HCV	384/212	NA	NA		NA	
An 2008	USA	African	HCV	364/182	NA	NA		NA	
Bakr 2018	Egypt	South Asian	HCV	189/90	30/79/80	24/48/18		0.498	
Bakr 2018	Egypt	South Asian	HCV	90/90	13/34/43	24/48/18		0.498	
Bao 2015	China	East Asian	HBV	153/165	37/73/43	41/76/48		0.322	
Bao 2015	China	East Asian	HCC	153/165	37/73/43	41/76/48		0.322	
Bouzgarrou 2008	Tunisia	South Asian	HCV	81/82	24/38/19	21/44/17		0.493	
Bouzgarrou 2011	Tunisia	South Asian	LC	47/34	7/25/15	12/13/9		0.181	
Cheong 2010	South Korea	East Asian	HBV	696/313	183/321/192	87/148/78		0.344	
Dai 2017	China	East Asian	HBV	250/250	61/134/55	64/124/62		0.900	
Dai 2017	China	East Asian	HCC	247/250	67/118/62	64/124/62		0.900	
Study Year	Country	Region	Disease	Genotype	Age 1/2/3	Genotype 1/2/3	MA 1/2/3	Freq 1/2/3	p-value
------------	---------	--------	---------	-----------	-----------	---------------	----------	-----------	---------
Dai 2017	China	East Asian	LC	250/250	72/118/60	64/124/62	0.900	8	
Estfanous 2019	Egypt	South Asian	HCV	201/95	70/92/39	47/37/11	0.378	8	
Falleti 2007	Italy	Caucasian	HCV	46/105	12/22/12	33/42/30	0.041	8	
Haas 2009	Germany	Caucasian	HCV	757/791	276/347/134	300/369/122	0.628	8	
Hirankarn 2007	Thailand	East Asian	HBV	140/140	33/68/39	39/83/18	0.012	8	
Imran 2014	Pakistan	South Asian	HCV	140/120	25/50/55	35/53/32	0.203	7	
Karra 2015	India	South Asian	HBV	271/280	70/152/49	102/144/34	0.120	8	
Kim 2009	South Korea	East Asian	HCC	55/549	16/23/16	142/254/153	0.082	7	
Ksiaa 2011	Tunisia	South Asian	HCV	100/100	30/44/26	26/50/24	0.997	8	
Lau 2016	Taiwan	East Asian	HCC	342/559	88/167/87	148/276/135	0.777	8	
Li 2012	China	East Asian	HBV	501/301	121/239/141	85/156/60	0.448	7	
Lu 2015	China	East Asian	HBV	129/160	32/58/39	40/73/47	0.278	8	
Lu 2015	China	East Asian	LC	86/160	22/39/25	40/73/47	0.278	8	
Mandour 2014	Egypt	South Asian	HCV	123/123	20/63/40	26/58/39	0.608	8	
Migita 2009	Japan	East Asian	HBV	204/63	55/119/30	20/30/13	0.777	8	
Santos 2015	Brazil	Mixed	HCV	304/376	36/156/112	68/192/116	0.459	8	
Teixeira 2013	Brazil	Mixed	HCC	112/202	56/38/18	105/85/12	0.334	8	
Wu 2011	China	East Asian	HBV	12/109	3/8/1	37/46/26	0.124	7	
Yue 2013	China	East Asian	HCV	552/784	NA	NA	NA	7	
Zhang 2005	China	East Asian	HBV	231/300	53/116/62	74/160/66	0.243	8	

IL-18 rs187238

Study Year	Country	Region	Disease	Genotype	Age 1/2/3	Genotype 1/2/3	MA 1/2/3	Freq 1/2/3	p-value
An 2008	USA	Caucasian	HCV	384/212	NA	NA	NA	NA	7
An 2008	USA	African	HCV	364/182	NA	NA	NA	NA	7
Bakr 2018	Egypt	South Asian	HCV	189/90	99/87/3	30/58/2	<0.001	8	
Bakr 2018	Egypt	South Asian	HCC	90/90	66/22/2	30/58/2	<0.001	8	
Bao 2015	China	East Asian	HBV	153/165	122/28/3	106/54/5	0.548	8	
Study	Country	Region	Disease	Count 1	Count 2	Count 3	p-Value	Study Method	
---------	-------------	------------	---------	---------	----------	----------	---------	--------------	
Bao 2015	China	East Asian	HCC	153/165	122/28/3	106/54/5	0.548		
Bouzgarrou 2008	Tunisia	South Asian	HCV	81/82	38/31/12	35/35/12	0.506		
Bouzgarrou 2011	Tunisia	South Asian	LC	47/34	23/20/4	15/11/8	0.059		
Cheong 2010	South Korea	East Asian	HBV	707/316	546/155/6	237/67/12	0.013		
Dai 2017	China	East Asian	HBV	250/250	200/48/2	183/65/2	0.142		
Dai 2017	China	East Asian	HCC	245/250	187/49/9	183/65/2	0.142		
Dai 2017	China	East Asian	LC	249/250	202/42/5	183/65/2	0.142		
Estfanous 2019	Egypt	South Asian	HCV	201/95	102/94/5	52/36/7	0.824		
Falleti 2007	Italy	Caucasian	HCV	50/96	23/23/4	49/38/9	0.681		
Haas 2009	Germany	Caucasian	HCV	757/791	386/315/56	439/299/53	0.829		
Hirankarn 2007	Thailand	East Asian	HBV	140/140	105/29/6	102/35/3	0.999		
Imran 2014	Pakistan	South Asian	HBV	140/120	57/70/13	43/61/16	0.437		
Jiang 2014	China	East Asian	HBV	276/254	221/51/4	168/80/6	0.324		
Karra 2015	India	South Asian	HBV	271/280	123/134/14	159/108/13	0.320		
Kim 2009	South Korea	East Asian	HCC	56/558	37/17/2	434/122/2	0.031		
Ksiaa 2011	Tunisia	South Asian	HCV	100/100	53/33/14	44/44/12	0.845		
Lau 2016	Taiwan	East Asian	HCC	342/559	266/73/3	476/78/5	0.370		
Lu 2015	China	East Asian	HBV	129/160	100/27/2	103/52/5	0.610		
Lu 2015	China	East Asian	LC	86/160	69/16/1	103/52/5	0.610		
Migita 2009	Japan	East Asian	HBV	204/63	167/32/5	52/10/1	0.531		
Ognjanovic 2009	USA	Mixed	HCC	117/216	NA	NA	NA		
Santos 2015	Brazil	Mixed	HCV	304/376	100/120/84	128/132/116	<0.001		
Teixeira 2013	Brazil	Mixed	HCC	112/202	57/48/7	100/84/18	0.952		
Wu 2011	China	East Asian	HBV	12/109	11/1/0	85/22/2	0.682		
Yue 2013	China	East Asian	HCV	552/784	NA	NA	NA		
Zhang 2005	China	East Asian	HBV	231/300	182/45/4	202/90/8	0.588		
Abbreviations: CTLA-4, Cytotoxic T-lymphocyte-associated antigen 4; IL-18, Interleukin-18; HBV, Hepatitis B virus infection; HCV, Hepatitis C virus infection; HCC, Hepatocellular carcinoma; LC, Liver cirrhosis; AIH, Autoimmune hepatitis; NAFLD, Nonalcoholic fatty liver disease; ALD, Alcoholic liver disease; HWE, Hardy-Weinberg equilibrium; NOS, Newcastle-Ottawa scale; NA, Not available.
Table 2. Meta-analysis results of this study.

Variables	Sample size	Dominant comparison (MM vs. Mm + mm)	Recessive comparison (mm vs. MM + Mm)	Over-dominant comparison (Mm vs. MM + Mm)	Allele comparison (M vs. m)				
		p value	OR (95%CI)						
Overall	10879/12266	<0.0001	0.83 (0.79-0.88)	<0.0001	1.33 (1.23-1.43)	0.20	1.06 (0.97-1.16)	<0.0001	0.84 (0.78-0.90)
HBV	1832/1870	0.03	0.70 (0.51-0.96)	0.002	1.46 (1.15-1.86)	0.68	1.03 (0.88-1.22)	0.0007	0.75 (0.63-0.88)
HCV	1750/1656	0.64	0.94 (0.73-1.21)	0.14	1.19 (0.94-1.49)	0.51	1.05 (0.90-1.23)	0.07	0.90 (0.80-1.01)
AIH	1320/1684	0.02	0.83 (0.70-0.97)	0.18	1.15 (0.94-1.41)	0.27	1.09 (0.94-1.27)	0.03	0.88 (0.79-0.99)
LC	3688/4486	0.0002	0.75 (0.65-0.87)	0.02	1.33 (1.04-1.70)	0.48	1.06 (0.90-1.24)	0.002	0.81 (0.71-0.92)
HCC	2109/2463	0.19	0.92 (0.82-1.04)	0.0004	1.40 (1.16-1.68)	0.34	0.94 (0.84-1.06)	0.008	0.89 (0.81-0.97)
Caucasian	2080/2493	0.005	0.73 (0.59-0.91)	0.22	1.12 (0.94-1.33)	0.0004	1.25 (1.10-1.41)	0.06	0.85 (0.72-1.01)
East Asian	5867/5593	0.0002	0.86 (0.79-0.93)	<0.0001	1.45 (1.20-1.74)	0.61	0.97 (0.86-1.09)	<0.0001	0.81 (0.73-0.89)
South Asian	898/1240	0.21	0.88 (0.72-1.08)	0.002	1.56 (1.18-2.07)	0.57	1.16 (0.70-1.91)	0.006	0.81 (0.70-0.94)

CTL A-4 rs231775

- Overall: 10879/12266
- HBV: 1832/1870
- HCV: 1750/1656
- AIH: 1320/1684
- LC: 3688/4486
- HCC: 2109/2463
- Caucasian: 2080/2493
- East Asian: 5867/5593
- South Asian: 898/1240

CTL A-4 rs5742909

- Overall: 5534/6726
- HBV: 1560/1518
- HCV: 1252/1341
- AIH: 188/360
- LC: 2052/3021
- Caucasian: 902/979
- East Asian: 2885/2328
- South Asian: 220/818

CTL A-4 rs3087243

- Overall: 5767/6389
- HCV: 1428/916
| | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | rs187238 | | | | | | | | | |
| | | OR | CI | | | | | | | | |
| | | 0.007 | 1.28 | (1.07-1.53) | 0.15 | 0.88 | (0.74-1.05) | 0.02 | 0.81 | (0.68-0.97) | 0.003 | 1.22 | (1.07-1.39) |
| | | 0.03 | 1.39 | (1.04-1.86) | 0.11 | 0.72 | (0.48-1.07) | 0.04 | 0.73 | (0.54-0.98) | 0.02 | 1.33 | (1.05-1.70) |
| | | 0.49 | 1.08 | (0.86-1.36) | 0.37 | 0.91 | (0.73-1.12) | 0.97 | 1.00 | (0.83-1.22) | 0.36 | 1.04 | (0.95-1.14) |
| | | 0.002 | 1.68 | (1.22-2.33) | 0.55 | 0.65 | (0.16-2.63) | 0.17 | 0.68 | (0.39-1.18) | 0.002 | 1.56 | (1.18-2.07) |
| | | 0.40 | 1.24 | (0.75-2.04) | 0.51 | 1.19 | (0.70-2.03) | 0.36 | 0.75 | (0.41-1.38) | 0.57 | 1.14 | (0.72-1.82) |
| | | 0.06 | 0.83 | (0.69-1.01) | 0.67 | 1.08 | (0.75-1.57) | 0.09 | 1.18 | (0.97-1.44) | 0.09 | 0.89 | (0.78-1.02) |
| | | 0.007 | 1.39 | (1.09-1.76) | 0.45 | 0.87 | (0.60-1.25) | 0.008 | 0.74 | (0.59-0.92) | 0.01 | 1.32 | (1.06-1.64) |
| | | 0.17 | 1.39 | (0.87-2.23) | 0.19 | 0.79 | (0.56-1.12) | 0.35 | 0.79 | (0.48-1.29) | 0.10 | 1.28 | (0.95-1.71) |

Abbreviations: OR, Odds ratio; CI, Confidence interval; NA, Not available; M, Major allele; m, Minor allele; HBV, Hepatitis B virus infection; HCV, Hepatitis C virus infection; LC, Liver cirrhosis; AIH, Autoimmune hepatitis; HCC, Hepatocellular carcinoma.
The values in bold represent there is statistically significant differences between cases and controls.
From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit www.prisma-statement.org.
Supplementary Figure 1. Funnel plots of investigated polymorphisms

Funnel plot of CTLA-4 rs231775 polymorphism and chronic liver disease under dominant comparison

Funnel plot of CTLA-4 rs231775 polymorphism and chronic liver disease under recessive comparison
Funnel plot of CTLA-4 rs231775 polymorphism and chronic liver disease under over-dominant comparison.

Funnel plot of CTLA-4 rs231775 polymorphism and chronic liver disease under allele comparison.
Funnel plot of CTLA-4 rs5742909 polymorphism and chronic liver disease under dominant comparison

Funnel plot of CTLA-4 rs5742909 polymorphism and chronic liver disease under recessive comparison
Funnel plot of CTLA-4 rs5742909 polymorphism and chronic liver disease under over-dominant comparison

Funnel plot of CTLA-4 rs5742909 polymorphism and chronic liver disease under allele comparison
Funnel plot of CTLA-4 rs3087243 polymorphism and chronic liver disease under dominant comparison

Funnel plot of CTLA-4 rs3087243 polymorphism and chronic liver disease under recessive comparison
Funnel plot of CTLA-4 rs3087243 polymorphism and chronic liver disease under over-dominant comparison

Funnel plot of CTLA-4 rs3087243 polymorphism and chronic liver disease under allele comparison
Funnel plot of IL-18 rs1946518 polymorphism and chronic liver disease under dominant comparison

Funnel plot of IL-18 rs1946518 polymorphism and chronic liver disease under recessive comparison
Funnel plot of IL-18 rs1946518 polymorphism and chronic liver disease under over-dominant comparison

Funnel plot of IL-18 rs1946518 polymorphism and chronic liver disease under allele comparison
Funnel plot of IL-18 rs187238 polymorphism and chronic liver disease under dominant comparison

Funnel plot of IL-18 rs187238 polymorphism and chronic liver disease under recessive comparison
Funnel plot of IL-18 rs187238 polymorphism and chronic liver disease under over-dominant comparison

Funnel plot of IL-18 rs187238 polymorphism and chronic liver disease under allele comparison