Research Article
A New Adaptive Controller for Nonlinear Systems with Uncertain Virtual Control Gains

Wei Xiao,1,2 Zhixiang Yin,3 Tianyue Zhou,4 Zi Ye,5 and Xiaoqi Yang6

1School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, China
2Guohua Energy Investment Co., Ltd., Beijing, China
3School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, China
4School of Information Science and Engineering, Shandong University, Jinan, Qingdao, China
5State Grid General Aviation Co., Ltd., Beijing, China
6Otis Elevator (China) Co., Ltd., Jinan, China

Correspondence should be addressed to Wei Xiao; wei.xiao.k@chnenergy.com.cn

Received 1 November 2021; Revised 6 February 2022; Accepted 23 February 2022; Published 28 March 2022

1. Introduction

The tracking control has received considerable attention for the purpose of ensuring the output of the system is tracking a desired trajectory. To deal with the uncertainties in nonlinear systems, one of the most popular methods, adaptive control, has been introduced for controller design. There have been many related results in this area [1–11]. An adaptive data-driven controller was designed for nonlinear systems using goal representation heuristic and dynamic programming [4]. In view of unknown nonlinear fractional-order systems, an adaptive control scheme was proposed [5]. For nonlinear systems with dead-zone and actuator failure, two novel finite-time adaptive tracking controllers were developed [7–9]. By introducing a new performance function, [10, 11] they constructed two adaptive tracking controllers via prescribed performance control and funnel control, respectively. It needs to be emphasized that the VCGs (virtual control gains) of systems in the above papers are assumed to be known.

However, the VCGs are uncertain for many actual systems. In response to this challenge, the Nussbaum gain technique was first proposed [12]. There have been many achievements for nonlinear systems, whose VCGs were unknown constants [13–16]. Two adaptive control strategies were given for unknown nonlinear SISO (single input, single output) systems and stochastic nonlinear systems based on state observers [13, 14]. In consideration of unmodeled dynamics and an unknown dead-zone, an improved control strategy was addressed [15]. In view of nonlinear systems with actuator faults and state/input constraints, a controller was designed based on dynamic surface and Nussbaum gain [16]. Taking into account uncertain time-varying VCGs, an improved adaptive control method was given [17], which was further improved [18] such that the Nussbaum gain technique was applied to nonlinear systems whose virtual control gains were unknown nonlinear functions of system states. To handle time-varying uncertain control gains, new Nussbaum functions were defined [19]. Two adaptive robust control schemes were proposed [20] for nonlinear systems.
with certain and uncertain signs of VCGs. Aiming at nonlinear systems with uncertain dead-zone output, an adaptive fuzzy control scheme was designed using a state observer [21]. To achieve full state constraints, adaptive tracking control was studied by the Barrier Lyapunov function [22]. Considering MIMO (multiple input, multiple output) nonlinear systems with input saturations and uncertain control gains, two adaptive NN (neural network) controllers were constructed [23, 24]. A dynamic surface control strategy was given for nonlinear systems with uncertain VCGs using fuzzy logic [25].

Fuzzy logic and neural networks were also usually applied to handle the unknown VCGs. The VCGs were supposed to have known upper and lower bounds and were approximated by fuzzy logic, and then the adaptive fuzzy tracking controllers were constructed for strict feedback [26] and switched nonlinear systems [27]. Two adaptive fuzzy control schemes were proposed for nonaffine [28] and nonstrict-feedback [29] nonlinear systems based on funnel control and dynamic surface control, respectively. Several adaptive NN tracking controllers were constructed for different-type uncertain nonlinear systems [30–32]. Besides, by utilizing $|z| - z^2/\sqrt{z^2 + \delta^2} < \delta$ with $\delta > 0$ and z being any real number, two controllers were designed by invoking the lower bounds of unknown VCGs [33, 34]. By describing UVCCs in terms of their known and unknown parts, a new adaptive tracking controller was constructed and applied to the attitude control of quadrotors [35]. More research results on nonlinear systems with unknown VCGs can be seen in [36, 37].

In summary, only the boundedness of tracking error can be obtained in the aforementioned achievements. The better tracking performance of asymptotic stability was not researched for nonlinear systems with uncertain VCGs being functions of system states. Recently, an adaptive asymptotic tracking control method was presented in [38]. There were also some others that dealt with unknown nonlinear functions and external disturbances by neural networks. However, according to the literature review, there has been no work reported on adaptive asymptotic tracking controllers for nonlinear systems with VCGs being uncertain state functions without using fuzzy logic or neural networks.

Inspired by the mentioned research achievements, the paper is concerned with adaptive tracking control for nonlinear systems with external disturbances, whose VCGs are uncertain functions of system states. An adaptive tracking controller is designed in a stepwise strategy and applied to the control of a robot system, which ensures both the boundedness of all the signals in the closed-loop system and the asymptotic stability of the tracking error. The effectiveness and practicability of the developed control strategy are validated by both theoretical analysis and simulations.

The paper possesses the following features:

1. Different from the control methods based on the Nussbaum gain technique [13–25], a Nussbaum function is only employed in the first step and an improved adaptive law for the Nussbaum variable is defined such that the asymptotic stability of the tracking error is achieved. This is the main improvement on [13–32], which can only guarantee that the tracking error is bounded. Without using fuzzy logic or neural networks [26–32], and the lemma of $|z| - z^2/\sqrt{z^2 + \delta^2} < \delta$ [33, 34], novel control laws are constructed in the remaining steps without the bounds of the unknown VCGs.

2. To compensate for unknown VCGs, unknown external disturbances, and parameter uncertainties, new adaptive laws are adopted so that the assumption of unknown VCGs can be relaxed as in Assumption 2, where unknown VCGs only have unknown lower and upper bounds [22, 25, 26, 29, 31, 34, 38]. Unknown VCGs are assumed to be bounded by with known upper and lower bounds [14, 18], known lower bounds [27, 30], and known upper bounds [13, 16]. In [32], unknown VCGs are assumed to be strictly either positive or negative. All the above assumptions are more restrictive. Therefore, the proposed controller can be suitable for more nonlinear systems.

3. The reference signal is only required to be differentiable and the assumption is written as Assumption 1, which is less restrictive than the related assumption that the reference signal and its time derivatives up to the n-th order are continuous and bounded [13, 17, 18, 20–22, 26, 28–31, 33, 38].

The outline of this paper is presented below. In Section 2, the preliminaries and problem formulation are described. The design of an adaptive control algorithm and stability analysis are given in Section 3. Sections 4 and 5 provide the simulation examples of a second-order nonlinear system and a robotic system, respectively, and the summary of the paper.

2. Problem Formulation and Preliminaries

The uncertain nonlinear system is considered as follows:

$$
\begin{align*}
\dot{x}_i &= g_i(x)_{i+1} + \theta^T \phi_i(x) + d_i(t), \quad i = 1, \ldots, n - 1, \\
\dot{x}_n &= g_n(x)_{n} + d_n(t), \\
y &= x_1,
\end{align*}
$$

where $x = [x_1, \ldots, x_n]^T \in \mathbb{R}^n$, $u \in \mathbb{R}$, $y \in \mathbb{R}$ are the state vector, input, and output of the system, respectively, $i = 1, \ldots, n$, $g_i(x) \in \mathbb{R}$ denotes the VCG, which is an unknown smooth non-zero nonlinear function. $\theta \in \mathbb{R}^m$ is an unknown parameter vector, and $\phi_i(x) \in \mathbb{R}^m$ denotes a nonlinear function, which is known and smooth, s_i is a positive integer; $d_i(t) \in \mathbb{R}$ is an unknown bounded external disturbance.

Assumption 1 (see [24]). The ideal output vector $y_d(t) = [y_d(t), y_d(t), \ldots]^T$ is absolutely continuous and bounded.
Assumption 2 (see [22]). Let us assume that the sign of \(g_i(x_i) \), does not change for all \(x_i \) and \(g_i(x_i) \) satisfies

\[
0 < g_{im} < |g_i(x_i)| \leq g_{IM} < +\infty, \tag{2}
\]

with \(g_{im} \) and \(g_{IM} \) being unknown positive constants.

It is reasonable that \(g_i(x_i) \) is bigger than a positive constant \(g_{im} \) due to the system controllable condition of \(g_i(x_i) \) being away from 0, which could eliminate the controller singularity problem and has been given in many control strategies [22, 25, 26, 29, 31, 34, 38] and the references therein. It is worth noting that the VCGs in the above references possess the following synthesis: the lower and upper bounds of the VCGs are only used in the procedures of the controller design and are not required in the controller, which means that \(g_{im} \) and \(g_{IM} \) can be unknown. Without loss of generality, we assume that \(g_i(x_i) > 0 \).

Assumption 3. There exists an unknown positive constant \(\bar{d}_i \) satisfying

\[
|d_i(t)| \leq \bar{d}_i. \tag{3}
\]

Definition 1 (see [12]). A continuous function \(N(x) \) is named as a Nussbaum function when the following conditions hold:

\[
\lim_{\epsilon \to E} \sup \frac{1}{\epsilon} \int_0^\epsilon N(x) \, dx = +\infty, \tag{4}
\]

\[
\lim_{\epsilon \to -\infty} \inf \frac{1}{\epsilon} \int_0^\epsilon N(x) \, dx = -\infty.
\]

There are many Nussbaum-type functions, such as \(e^x \cos(x/2) \), \(e^x \sin(x/2) \), \(e^x \cos(x) \), and \(e^x \sin(x) \).

Lemma 1 (see [18]). Let \(g(x) \in [g_i, g_i] \) with \(g_i \), \(g_i \) being non-zero real numbers and 0 \(\notin [g_i, g_i] \), \(N(x) \) is an even Nussbaum function, \(z(t) \) is an absolutely continuous function, and \(x(t) \) is another function. If there exist \(E \) and \(\zeta(t) \) such that a function \(V(t) = fQ_he_procedure_of_the_adaptive_controller_design_and_stability_analysis \) holds

\[
V(t) \geq e^{\zeta(t)}, \tag{5}
\]

then \(\zeta(t) \), \(\int_0^t (g(x)N(x) + 1) \zeta(t) \, dt \) and \(V(t) \) are all bounded on \([0, t_f] \).

According to Proposition 2 in [39], \(t_f \) can be extended to \(+\infty \), when the solution of the closed-loop system is bounded.

3. Design and Analysis of the Controller

The procedure of the adaptive controller design and stability analysis is presented.

Firstly, the common coordinate transformation is introduced as

\[
\xi_1 = x_1 - y_d, \quad z_i = x_i - \alpha_{i-1}, \quad i = 2, \ldots, n \tag{6}
\]

with \(\alpha_{i-1} \) being the intermediate control law designed later.

The system (1) is changed into

\[
\begin{aligned}
\dot{z}_1 &= g_1(x_1)x_2 + \beta \varphi_i(x_1) + d_1(t) - y_d, \\
\dot{z}_i &= g_i(x_i)x_{i+1} + \beta \varphi_i(x_i) + d_i(t) - \alpha_{i-1}, \\
\dot{z}_n &= g_n(x_n)u + \beta \varphi_n(x_n) + d_n(t) - \alpha_{n-1}, \\
y &= x_1,
\end{aligned} \tag{7}
\]

In order to estimate the unknown VCGs \(g_i(x_i) \), unknown parameter vector \(\theta \), and uncertain external disturbances \(d_i(t) \), define

\[
\omega_i^* = \| \Gamma_i \|, \quad i = 1, 2, \ldots, n, \tag{8}
\]

\[
\tilde{\omega}_i = \omega_i^* - \tilde{\omega}_i, \tag{9}
\]

where \(\| \cdot \| \) is the 2-norm of vectors, \(\Gamma_i \) is an unknown bounded vector given later; \(\tilde{\omega}_i \) is the approximation error with \(\omega_i^* \) being the estimation of \(\omega_i^* \).

In what follows, the controller will be constructed in a stepwise strategy via backstepping. For convenience, let \(g_i = g_i(x_i) \), \(\varphi_i = \varphi_i(x_i) \), and \(d_i = d_i(t) \).

Step 1. We choose the first Lyapunov function candidate as

\[
V_1 = \frac{1}{2g_{im}} z_1^2 + \frac{1}{2g_{il}} \tilde{\omega}_1^2, \tag{10}
\]

where \(q_1 \) is a positive constant.

Differentiating \(V_1 \) and invoking (9) produce

\[
\dot{V}_1 = \frac{1}{2g_{im}} z_1 \dot{z}_1 - \frac{1}{q_1} \tilde{\omega}_1 \tilde{\omega}_1^*, \tag{11}
\]

Substituting \(\dot{z}_1 \) in (7) into (11) and considering (6) yield

\[
\dot{V}_1 = \frac{z_1}{q_1} (g_1z_2 + g_1a_1 + \beta \varphi_i + d_1 - y_d) - \frac{1}{q_1} \tilde{\omega}_1 \tilde{\omega}_1^*. \tag{12}
\]

Based on Young inequality, we have

\[
\frac{1}{2g_{im}} z_1^2 \leq \frac{1}{2} g_{im}^2 z_1^2 + \frac{1}{2} g_{im}^2 z_2^2, \tag{13}
\]

\[
\frac{1}{2g_{im}} \beta \varphi_i \leq \frac{1}{2a_1} \beta \varphi_i a_1 + \frac{a_1}{2g_{im}} z_1^2, \tag{14}
\]

\[
\frac{1}{2g_{im}} z_1 d_1 \leq \frac{1}{2b_1} g_{im}^2 z_1^2 + \frac{b_1}{2g_{im}} \frac{1}{2g_{im}} z_1^2 + \frac{b_1}{g_{im}}, \tag{15}
\]

\[
\frac{1}{2c_1} \beta \varphi_i \leq \frac{1}{2c_1} z_1^2 + \frac{c_1}{2g_{im}} \frac{1}{2g_{im}} z_1^2 + \frac{c_1}{g_{im}}. \tag{16}
\]

where \(a_1, b_1, \) and \(c_1 \) are positive constants and \(y_{dm} \) is the maximum of \(|y_d| \) and unknown.

By invoking (13), \(\dot{V}_1 \) is described as
\[
V_1 \leq \frac{g_1}{\bar{g}_{1m}} z_1 \alpha_1 + \frac{1}{2} \bar{g}_{1M} z_2 + \frac{1}{2} \bar{g}_{1M} z_2^2 + \frac{1}{2} a_1 \bar{g}_{1m} + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\]

(14)

Let us define

\[
\Gamma_1 = \left[\begin{array}{c}
\frac{g_1}{\bar{g}_{1m}} \frac{\bar{g}_{1m}}{\bar{g}_{1m}} \frac{z_2}{\bar{g}_{1m}} \\
\end{array} \right],
\]

(15)

\[
Y_1 = \left[\begin{array}{c}
\frac{1}{2} a_1 \bar{g}_{1m} + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\end{array} \right]
\]

(16)

Substituting (15) and (16) into (14) results in

\[
\dot{V}_1 \leq \frac{g_1}{\bar{g}_{1m}} z_1 \alpha_1 + \frac{1}{2} \bar{g}_{1M} z_2 + \frac{1}{2} \bar{g}_{1M} z_2^2 + \frac{1}{2} a_1 \bar{g}_{1m} + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\]

(17)

In the following, the virtual control signal \(\alpha_1 \) is defined as

\[
\alpha_1 = N(\xi) \bar{\alpha}_1,
\]

(18)

\[
\bar{\alpha}_1 = k_1 z_1 + \bar{\omega}_1 Y_1 \| z_1, \]

(19)

where \(N(\xi) \) is a Nussbaum-type even function and \(k_1 \) is a positive design parameter.

\(\xi \) is adjusted according to the following law:

\[
\dot{\xi} = \frac{g_1}{\bar{g}_{1m}} z_1 N(\xi) \bar{\alpha}_1 + z_1 \bar{\alpha}_1 - z_1 \bar{\alpha}_1 + \bar{\omega}_1 Y_1 \| z_1^2 + \frac{1}{2} \bar{g}_{1m} z_2 + \frac{1}{2} \bar{g}_{1M} z_2^2 + \frac{1}{2} a_1 \bar{g}_{1m} + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\]

(20)

where \(\lambda > 0 \) is a design parameter.

Remark 1. From (19) and the definition of \(\bar{\alpha}_1, \bar{\omega}_1 \), it can be known that all the terms of \(\xi \) are nonnegative, which is the key to proving the asymptotic stability of the tracking error later.

By invoking (18) and (20), \(\dot{V}_1 \) is shown as

\[
\dot{V}_1 \leq \frac{g_1}{\lambda \bar{g}_{1m}} z_1 N(\xi) \xi + z_1 \bar{\alpha}_1 - z_1 \bar{\alpha}_1 + \bar{\omega}_1 Y_1 \| z_1^2 + \frac{1}{2} \bar{g}_{1m} z_2 + \frac{1}{2} \bar{g}_{1M} z_2^2 + \frac{1}{2} a_1 \bar{g}_{1m} + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\]

(21)

The adaptive law \(\bar{\omega}_1 \) is defined as

\[
\bar{\omega}_1 = q_1 Y_1 \| z_1^2 - \sigma_1 \bar{\omega}_1.
\]

(22)

With \(\sigma_1 > 0 \) being a design parameter.

Replacing \(\bar{\omega}_1 \) in (21) by (22), \(\dot{V}_1 \) can be given as

\[
\dot{V}_1 \leq - k_1 z_1^2 + \frac{g_1}{\lambda \bar{g}_{1m}} N(\xi) \xi + \frac{1}{\lambda} \xi + \frac{\sigma_1}{q_1} \bar{\alpha}_1 \bar{\omega}_1 + \frac{1}{2} \bar{g}_{1M} z_2^2 + \frac{\bar{g}_{1m}}{2} a_1 + \frac{b_1}{2} + \frac{c_1}{2} \bar{g}_{1m} z_2^2 - \frac{1}{q_1} \bar{\alpha}_1 \bar{\omega}_1.
\]

(23)

Step 2. A Lyapunov function candidate is given as
\[V_2 = V_1 + \frac{1}{2g_{2m}} \dot{z}_2^2 + \frac{1}{2q_2} \ddot{\omega}_2^2, \]

(24)

where \(q_2 > 0 \) is a constant.

Based on (23) and \(\dot{z}_2 \) in (7), we have

\[V_2 = \dot{V}_1 + \frac{1}{q_2} \dot{z}_2 \dddot{z}_2 - \frac{1}{q_2} \dddot{\omega}_2 \]

\[\leq -k_1 \dot{z}_1^2 + \frac{g_1}{\lambda g_{1m}} N(\dot{z}_1) \dot{z}_1 + \frac{1}{\lambda} \dot{\alpha}_x \dddot{\alpha}_x + \frac{1}{2} \frac{g_{1M}}{g_{1m}} \dot{z}_2^2 + \frac{a_1}{2g_{1m}} \]

\[+ \frac{b_1}{2g_{1m}} + \frac{c_1}{2g_{2m}} + \frac{1}{g_{2m}} \dddot{\omega}_2 \]

\[- \frac{1}{q_2} \dddot{\omega}_2 - \frac{1}{g_{2m}} \dddot{\alpha}_x \dddot{x}_1 (g_1 \dot{x}_1 + \alpha_2) + \theta^T \varphi_2 + d_2 \]

(25)

Substituting (26) into (25) leads to

\[\dot{\alpha}_x = \frac{\partial \alpha_x}{\partial x_1} \dot{x}_1 + \frac{\partial \alpha_x}{\partial y_d} \dot{y}_d + \frac{\partial \alpha_x}{\partial \varphi} \varphi + \frac{\partial \alpha_x}{\partial \ddot{\omega}} \ddot{\omega}, \]

(26)

According to Young inequality, the following inequalities hold

\[\frac{g_2}{g_{2m}} \dot{z}_2 \dot{z}_1 \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \dot{z}_2^2 + \frac{1}{2} g_{2m} \dot{z}_1^2, \]

\[\frac{1}{g_{2m}} \dot{z}_2 \dot{d}_2 \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \dot{z}_2^2 + \frac{b_2}{2g_{2m}}, \]

\[\frac{1}{g_{2m}} \theta^T \varphi_2 \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \theta^T \varphi_1 \theta + \frac{a_2}{2g_{2m}}, \]

\[\frac{1}{g_{2m}} \dddot{y}_d \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \dddot{y}_d, \]

\[\frac{1}{g_{2m}} \dddot{\alpha}_x \dddot{x}_1 \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \dddot{\alpha}_x \dddot{x}_1 + \frac{c_2}{2g_{2m}}, \]

\[\frac{1}{g_{2m}} \dddot{\alpha}_x \dddot{\varphi}_1 \leq \frac{1}{2} \frac{g_{2M}}{g_{2m}} \dddot{\alpha}_x \dddot{\varphi}_1 + \frac{l_2}{2g_{2m}}. \]

(28)

where \(a_2, b_2, c_2, l_2, \) and \(m_2 \) are positive constants.

Substituting (28) into (27) leads to
\[
V_2 \leq -k_1z_1^2 + \frac{g_1}{\lambda g_{1m}} N(\xi)\dot{\xi} + \frac{1}{\lambda} \dot{\xi} + \frac{\sigma_1}{q_1} \ddot{\omega}_1 \ddot{\omega}_1 + \sum_{i=1}^{2} a_i \dot{b}_i + c_i + \frac{g_2}{2 g_{2m}} \ddot{z}_2 \dot{\alpha}_2 \\
+ \frac{1}{2} \frac{g_{2M} z_2^2}{g_{2m}^2} + \frac{1}{2} \frac{g_{2M}^2 z_2^2}{g_{2m}^2} - \frac{1}{q_2} \ddot{\omega}_2 \ddot{\omega}_2 + \frac{1}{2} \frac{2g_2}{g_{2m}} \frac{1}{2} \frac{d^2 z^2}{g_{2m}} \\
+ \frac{1}{2} \frac{1}{2g_{2m}} \dot{y}_{dM}^2 \left(\frac{\partial \alpha_1}{\partial y_d} \right)^2 z_2^2 + \frac{1}{2l_2} \frac{g_{2M}^2}{g_{2m}^2} \dot{x}_1^2 \left(\frac{\partial \alpha_1}{\partial x_1} \right)^2 z_2^2 + \frac{l_2}{2m_2} \frac{1}{2g_{2m}} \left(\frac{\partial \alpha_1}{\partial x_1} \ddot{\omega}_1 + \frac{\partial \alpha_1}{\partial \dot{\omega}_1} \dot{\omega}_1 \right)^2 + \frac{m_2}{2g_{2m}}.
\]

(29)

\[\Gamma_2 \text{ and } Y_2 \text{ are written as}
\]
\[
\Gamma_2 = \left[\frac{g_{2M} + \frac{g_{2M}}{q_1} + \frac{\sigma_1}{q_1} \ddot{\omega}_1 \ddot{\omega}_1 + \sum_{i=1}^{2} a_i \dot{b}_i + c_i}{2 g_{2m}} \right],
\]
\[
Y_2 = \left[\frac{1}{2} \frac{g_{2M}^2}{g_{2m}^2} \dot{x}_1^2 \left(\frac{\partial \alpha_1}{\partial x_1} \right)^2 z_2^2 + \frac{l_2}{2m_2} \frac{1}{2g_{2m}} \left(\frac{\partial \alpha_1}{\partial x_1} \ddot{\omega}_1 + \frac{\partial \alpha_1}{\partial \dot{\omega}_1} \dot{\omega}_1 \right)^2 + \frac{m_2}{2g_{2m}} \right].
\]

(30)

Invoking (30) and (31) produces

\[
V_2 \leq -k_1z_1^2 + \frac{g_1}{\lambda g_{1m}} N(\xi)\dot{\xi} + \frac{1}{\lambda} \dot{\xi} + \frac{\sigma_1}{q_1} \ddot{\omega}_1 \ddot{\omega}_1 + \sum_{i=1}^{2} a_i \dot{b}_i + c_i
\]
\[
+ \frac{l_2}{2g_{2m}} + \frac{m_2}{2g_{2m}} + \frac{g_2}{2 g_{2m}} \ddot{z}_2 \dot{\alpha}_2 + \omega_2^2 \left(\frac{1}{2} \frac{g_{2M}^2 z_2^2}{g_{2m}^2} - \frac{1}{q_2} \ddot{\omega}_2 \ddot{\omega}_2. \right)
\]

(32)

Designing the following virtual control signal as
\[
\alpha_2 = -k_2z_2 - \omega_2 \left\| Y_2 \right\| z_2.
\]

(33)

\[
V_2 \leq -k_1z_1^2 + \frac{g_1}{\lambda g_{1m}} N(\xi)\dot{\xi} + \frac{1}{\lambda} \dot{\xi} + \frac{\sigma_1}{q_1} \ddot{\omega}_1 \ddot{\omega}_1 + \sum_{i=1}^{2} a_i \dot{b}_i + c_i
\]
\[
+ \omega_2^2 \left(\frac{1}{2} \frac{g_{2M}^2 z_2^2}{g_{2m}^2} - \frac{1}{q_2} \ddot{\omega}_2 \ddot{\omega}_2. \right)
\]

(34)

where \(k_2 > 0 \) is a design parameter.

Remark 2. Based on (32), Assumption 2, and the definition of \(\omega_2 \), it is easy to check that all the items of \(V_2 \) are nonpositive, and \(\left(g_{2M}/g_{2m} \right) \geq 1 \), which means that \(g_{2M}/g_{2m} \) can be replaced by 1 in the controller design. \(V_2 \) is changed to

\[
V_2 \leq -\sum_{i=1}^{2} k_i z_i^2 + \frac{g_1}{\lambda g_{1m}} N(\xi)\dot{\xi} + \frac{1}{\lambda} \dot{\xi} + \frac{\sigma_1}{q_1} \ddot{\omega}_1 \ddot{\omega}_1 + \sum_{i=1}^{2} a_i \dot{b}_i + c_i
\]
\[
+ \frac{l_2}{2g_{2m}} + \frac{m_2}{2g_{2m}} - \frac{1}{q_2} \ddot{\omega}_2 \ddot{\omega}_2 + \frac{1}{2g_{2m}} \left(\frac{g_{2M}^2 z_2^2}{g_{2m}^2} + \frac{1}{2g_{2m}} \right). \]

(35)
We construct an adaptive law as
\[\dot{\omega}_2 = q_2 \| Y_2 \| z_2^2 - \sigma_2 \dot{\omega}_2, \quad (36) \]
where \(\sigma_2 \) is a positive constant.

Substituting (36) into (35) produces
\[V_2 \leq - \sum_{i=1}^{\bar{n}} k_i z_i^2 + \frac{g_1}{\lambda g_1 \lambda} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \sum_{i=1}^{\bar{n}} \frac{\dot{\omega}_i}{q_i} \dot{\omega}_i + \sum_{i=1}^{\bar{n}} a_i + b_i + c_i + \frac{l_2}{g_2 \lambda} + m_2 + \frac{1}{2} \mathcal{J}_{j-1} z_j^2, \quad (37) \]

Step \(j \) (\(3 \leq j \leq n - 1 \)): For the \(j \)th subsystem of (6), a Lyapunov function candidate is iteratively chosen from the previous step.
\[V_j = V_{j-1} + \frac{1}{2g_j} z_j^2 + \frac{1}{2q_j} \dot{\omega}_j, \quad (38) \]

Substituting (40) into (39) gives
\[\dot{V}_j \leq - \sum_{i=1}^{j-1} k_i z_i^2 + \frac{g_1}{\lambda g_1 \lambda} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \sum_{i=1}^{j-1} \frac{\dot{\omega}_i}{q_i} \dot{\omega}_i + \sum_{i=1}^{j-1} a_i + b_i + c_i + \frac{l_j}{g_j \lambda} + m_j + \frac{1}{2} \mathcal{J}_{j-1} z_j^2 + \frac{1}{2} \mathcal{J}_{j-1-M} z_j^2, \quad (41) \]

where \(a_i, b_i, c_i, l_i, m_i, \sigma_i, q_j \) are all positive constants.

Furthermore, \(\dot{V}_j \) is expressed as
\[\dot{V}_j = q_{j-1} \| Y_{j-1} \| z_{j-1}^2 - \sigma_{j-1} \dot{\omega}_{j-1}, \quad (42) \]

Based on the completion of squares, one has
Similarly, we define

\[
\Gamma_j = \begin{bmatrix} \bar{\mathcal{J}}_{j-1,M} & \bar{\mathcal{J}}_{j-1,M} \bar{\theta}^T \bar{\mathcal{J}}_{j,M} \bar{\mathcal{Y}}_{j-1,M} \bar{\mathcal{Y}}_{j,1} \bar{\mathcal{Y}}_{j,2} \end{bmatrix} \begin{bmatrix} \bar{\mathcal{J}}_{j-1,M} & \bar{\mathcal{J}}_{j-1,M} \bar{\theta}^T \bar{\mathcal{J}}_{j,M} \bar{\mathcal{Y}}_{j-1,M} \bar{\mathcal{Y}}_{j,1} \bar{\mathcal{Y}}_{j,2} \end{bmatrix}^{-1}.
\]

\[
Y_j = \begin{bmatrix} 2a_j \| \phi_j - \sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) \phi_i \| \end{bmatrix}^2,
\]

\[
Y_{j1}^* = \begin{bmatrix} \left(\| \partial \alpha_{j-1} / \partial y_d \| \right)^2 \left(\sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) x_{i+1} \right)^2 \end{bmatrix},
\]

\[
Y_{j2}^* = \begin{bmatrix} \left(\| \partial \alpha_{j-1} / \partial \alpha \| \right)^2 \left(\sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial \alpha) \right)^2 \end{bmatrix}.
\]

By invoking (46) and (47), \(V_j \) is shown as

\[
V_j \leq \sum_{i=1}^{j-1} k_i \| \phi_i - \sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) \phi_i \|^2 + \sum_{i=1}^{j-1} a_i + b_i + c_i + \sum_{i=2}^{j} l_i + m_i + \sum_{i=2}^{j} \frac{1}{2g_m} \| \phi_j - \sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) \phi_i \|^2 \]

\[
+ \frac{1}{2} \bar{\mathcal{J}}_{j-1,M} \bar{\mathcal{Y}}_{j-1,M} + \frac{1}{2} \bar{\mathcal{J}}_{j-1,M} \bar{\theta}^T \bar{\mathcal{J}}_{j,M} \bar{\mathcal{Y}}_{j-1,M} + \frac{1}{2} \bar{\mathcal{J}}_{j-1,M} \bar{\theta}^T \bar{\mathcal{J}}_{j,M} \bar{\mathcal{Y}}_{j-1,M} + \frac{1}{2} \bar{\mathcal{J}}_{j-1,M} \bar{\theta}^T \bar{\mathcal{J}}_{j,M} \bar{\mathcal{Y}}_{j-1,M}.
\]

Similarly, we define

\[
Y_j = \begin{bmatrix} 2a_j \| \phi_j - \sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) \phi_i \| \end{bmatrix}^2,
\]

\[
Y_{j1}^* = \begin{bmatrix} \left(\| \partial \alpha_{j-1} / \partial y_d \| \right)^2 \left(\sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial x_i) x_{i+1} \right)^2 \end{bmatrix},
\]

\[
Y_{j2}^* = \begin{bmatrix} \left(\| \partial \alpha_{j-1} / \partial \alpha \| \right)^2 \left(\sum_{i=1}^{j-1} (\partial \alpha_{j-1} / \partial \alpha) \right)^2 \end{bmatrix}.
\]

Defining the \(j \) th virtual control law as

\[
\alpha_j = -k_j \phi_j - \partial \phi_j \| Y_j \| \phi_j,
\]

and substituting it into (48) to yield
\[
\dot{V}_j \leq -\sum_{i=1}^{j-1} k_i z_i^2 + \frac{g_j}{\lambda g_{jm}} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \dot{\zeta} + \sum_{i=1}^{j-1} \sigma_i \dot{\varphi}_i + \sum_{i=1}^{j-1} a_i + b_i + c_i + \sum_{i=1}^{j} l_i + m_i + \frac{1}{2} g_{jm} \dot{z}_{j+1} + \Phi_j \|z_j \|^2 - \frac{1}{\eta_j} \Phi_j, \tag{50}
\]

where \(k_j > 0 \) is a constant.

Similar to (36), \(\dot{\varphi}_j \) can be specified as

\[
\dot{\varphi}_j = q_j \|Y_j \|^2 - \sigma_j \Phi_j, \tag{51}
\]

with \(\sigma_j > 0 \) being a design parameter.

Then, \(\dot{V}_j \) is given as

\[
\dot{V}_n = V_{n-1} + \frac{1}{g_{mn}} \dot{z}_n + \frac{1}{2} \omega_n^2, \tag{53}
\]

Step \(n \): following the similar procedure for (38) in Step \(j \), the Lyapunov function candidate for the last step is designed as

\[
\dot{V}_n \leq -\sum_{i=1}^{n-1} k_i z_i^2 + \frac{g_n}{\lambda g_{jm}} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \dot{\zeta} + \sum_{i=1}^{n-1} \sigma_i \dot{\varphi}_i + \sum_{i=1}^{n-1} a_i + b_i + c_i + \sum_{i=1}^{n-1} l_i + m_i + \frac{1}{2} g_{jm} \dot{z}_{n+1} + \Phi_n \|z_n \|^2 - \frac{1}{\eta_n} \Phi_n, \tag{55}
\]

where \(a_i, b_i, c_i, l_i, m_i, \sigma_i, \) and \(q_i \) are all positive constants.

\[
\dot{V}_n \leq -\sum_{i=1}^{n-1} k_i z_i^2 + \frac{g_n}{\lambda g_{jm}} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \dot{\zeta} + \sum_{i=1}^{n-1} \sigma_i \dot{\varphi}_i + \sum_{i=1}^{n-1} a_i + b_i + c_i + \sum_{i=1}^{n-1} l_i + m_i + \frac{1}{2} g_{jm} \dot{z}_{n+1} + \Phi_n \|z_n \|^2 - \frac{1}{\eta_n} \Phi_n, \tag{56}
\]

where

\[
\dot{\varphi}_{n-1} = \sum_{i=1}^{n-1} \frac{\partial \varphi_{n-1}}{\partial x_i} \dot{x}_i + \frac{\partial \varphi_{n-1}}{\partial y_d} \dot{y}_d + \frac{\partial \varphi_{n-1}}{\partial \zeta} \dot{\zeta} + \frac{\partial \varphi_{n-1}}{\partial \varphi_{n-1}}, \tag{57}
\]

\[
\dot{\omega}_{n-1} = q_{n-1} \|Y_{n-1} \|^2 - \sigma_{n-1} \Phi_{n-1}, \tag{58}
\]

Furthermore, \(\dot{V}_n \) is reformulated as

\[
\dot{V}_n \leq -\sum_{i=1}^{n-1} k_i z_i^2 + \frac{g_n}{\lambda g_{jm}} N(\zeta) \dot{\zeta} + \frac{1}{\lambda} \dot{\zeta} + \sum_{i=1}^{n-1} \sigma_i \dot{\varphi}_i + \sum_{i=1}^{n-1} a_i + b_i + c_i + \sum_{i=1}^{n-1} l_i + m_i + \frac{1}{2} g_{jm} \dot{z}_{n+1} + \Phi_n \|z_n \|^2 - \frac{1}{\eta_n} \Phi_n, \tag{58}
\]
Repeating the similar procedures in Step j, we have

\[
\begin{align*}
\bar{a}^T z_n \left(\varphi_n - \sum_{i=1}^{n-1} \frac{\partial \alpha_{n-1}}{\partial x_i} \varphi_i \right) & \leq \frac{1}{2a_n} \bar{a}^T \bar{a} \left\| \varphi_n - \sum_{i=1}^{n-1} \frac{\partial \alpha_{n-1}}{\partial x_i} \varphi_i \right\|^2 z_n^2 + \frac{a_n}{2a_n}, \\
\frac{1}{n} \zeta_n, d_n & \leq \frac{1}{2b_n} \frac{1}{2a_n} \frac{1}{2} z_n^2 + \frac{b_n}{2g_{mm}} \\
\frac{1}{2c_n} \frac{1}{2} z_n^2 + \frac{1}{2} e_n, & \leq \frac{1}{2D_n} \left(\frac{\partial \alpha_{n-1}}{\partial y_d} \right)^2 z_n^2 + \frac{e_n}{2g_{mm}}, \\
\frac{1}{2g_{mm}} \left(\sum_{i=1}^{n-1} \frac{\partial \alpha_{n-1}}{\partial x_i} \varphi_i \right) & \leq \frac{1}{2l_n} \frac{1}{2} z_n^2 + \frac{l_n}{2g_{mm}}, \\
\frac{1}{2m_n} \left(\frac{\partial \alpha_{n-1}}{\partial \omega_{n-1}} \right) & \leq \frac{1}{2m_n} \left(\frac{\partial \alpha_{n-1}}{\partial \omega_{n-1}} \right)^2 + \frac{m_n}{2g_{mm}},
\end{align*}
\]

(59)

\[
\begin{align*}
\Gamma_n = \left[\frac{g_{n-1,m}}{g_{n-1,n}} \bar{a}^T \bar{a}, g_{mm} \bar{a}^T \bar{a}, g_{mm} \bar{a}^T \bar{a}, g_{mm} \bar{a}^T \bar{a}, \right] \\
Y_n = \left[\frac{1}{2} \left\| \varphi_n - \sum_{i=1}^{n-1} \left(\frac{\partial \alpha_{n-1}}{\partial x_i} \varphi_i \right) \right\|^2 \frac{1}{2b_n} Y_{n1}, Y_{n2} \right] \\
Y_{n1} = \left[\frac{1}{2} \left(\frac{\partial \alpha_{n-1}}{\partial y_d} \right)^2 \frac{1}{2l_n} \left(\sum_{i=1}^{n-1} \left(\frac{\partial \alpha_{n-1}}{\partial x_i} \varphi_i \right) \right)^2 \right] \\
Y_{n2} = \left[\frac{\left(\frac{\partial \alpha_{n-1}}{\partial \omega_{n-1}} \right)^2}{2m_n} \right],
\end{align*}
\]

(60)

(61)

where a_n, b_n, c_n, l_n, and m_n are positive design parameters and $\bar{g}_{nm} = \max\{\bar{g}_{1,m}, \ldots, \bar{g}_{n-1,m}\}$.

Substituting (60) and (61) into (58) results in

\[
\begin{align*}
V_n & \leq - \sum_{i=1}^{n-1} k_i z_i^2 + \frac{g_1}{\lambda g_{1m}} N(c) \xi + \frac{1}{\lambda} \sum_{i=1}^{n} q_i \bar{\omega}_i \\
+ \sum_{i=1}^{n} a_i + b_i + c_i + \sum_{i=1}^{n} l_i + m_i & + \frac{g_n}{2g_{mm}} z_n^2 + \omega_n^2 \| Y_n \| z_n^2 - \frac{1}{q_n} \bar{\omega}_n \bar{\omega}_n.
\end{align*}
\]

(62)

Similar to (49) and (51), the real control law and n th adaptive law can be defined, respectively, as follows:

\[
u = -k_n z_n - \bar{\omega}_n \| Y_n \| z_n
\]

(63)

and

\[
\bar{\omega}_n = q_n \| Y_n \| z_n^2 - \sigma_n \bar{\omega}_n
\]

(64)

where k_n and σ_n are positive design parameters.

By some direct calculations, \dot{V}_n can be described as

\[
\begin{align*}
\dot{V}_n & \leq - \sum_{i=1}^{n-1} k_i z_i^2 + \frac{g_1}{\lambda g_{1m}} N(c) \xi + \frac{1}{\lambda} \sum_{i=1}^{n} q_i \bar{\omega}_i \\
+ \sum_{i=1}^{n} a_i + b_i + c_i + \sum_{i=1}^{n} l_i + m_i & + \frac{g_n}{2g_{mm}} z_n^2 + \omega_n^2 \| Y_n \| z_n^2 - \frac{1}{q_n} \bar{\omega}_n \bar{\omega}_n.
\end{align*}
\]

(65)

According to the above controller design, the main conclusion is summarized as

Theorem 1. For system (1) with Assumptions 1–3, there exists an adaptive controller with the adaptive laws in (21), (35), (51), (65), and real control signal ν in (64), which can
Complexity

guarantee the boundedness of all the signals in the closed-loop system for \(t \in [0, +\infty) \) and asymptotic convergence of the tracking error.

\textbf{Proof:} since \(\bar{\omega}_1 = \bar{\omega}_1 (\omega_1^* - \bar{\omega}_1) \leq (1/2)\omega_1^2 - (1/2)\bar{\omega}_1^2 \), it is easy to check that

\[
\sum_{i=1}^{n} \sigma_i \bar{\omega}_1 = \sum_{i=1}^{n} \sigma_i \bar{\omega}_1 (\omega_1^* - \bar{\omega}_1) \leq \sum_{i=1}^{n} \sigma_i \omega_1^2 - \sum_{i=1}^{n} \frac{\sigma_i}{2} \bar{\omega}_1^2.
\]

(66)

Substituting (66) into (65) leads to

\[
V_n = - \sum_{i=1}^{n} k_i \zeta_i^2 + \frac{g_1}{\lambda g_{1m}} N (\zeta) \zeta + \frac{1}{\lambda} \zeta + \sum_{i=1}^{n} \sigma_i \bar{\omega}_1^2
\]

\[- \sum_{i=1}^{n} \frac{\sigma_i}{2} \bar{\omega}_1^2 + \sum_{i=1}^{n} \frac{a_i + b_i + c_i}{2 g_{im}} + \sum_{i=2}^{n} \frac{l_i + m_i}{2 g_{im}}
\]

\[
\leq - \kappa V_n + \frac{g_1}{\lambda g_{1m}} N (\zeta) \zeta + \frac{1}{\lambda} \zeta.
\]

(67)

with

\[
\kappa = \min \{ 2k_1, \ldots, 2k_n, \sigma_1, \ldots, \sigma_n \},
\]

\[
i = \sum_{i=1}^{n} \frac{a_i + b_i + c_i}{2 g_{im}} + \sum_{i=2}^{n} \frac{l_i + m_i}{2 g_{im}} + \sum_{i=1}^{n} \frac{\sigma_i}{2g_{im}} \bar{\omega}_1^2.
\]

(68)

Moving \(-\kappa V_n\) to the left-hand side and then multiplying both sides of (67) by \(e^{\kappa t} \) produce

\[
\frac{d(V_n e^{\kappa t})}{dt} \leq i e^{\kappa t} + \frac{g_1}{\lambda g_{1m}} N (\zeta) e^{\kappa t} + \frac{1}{\lambda} e^{\kappa t}.
\]

(69)

Integrating (69) gives

\[
V_n (t) e^{\kappa t} - V_n (0) \leq \int_0^t \frac{g_1 x_i (t)}{\lambda g_{1m}} N (\zeta (t)) (\zeta (t)) e^{\kappa t} dr
\]

\[
+ \int_0^t \frac{\zeta (t)}{\lambda} e^{\kappa t} dr + \frac{i}{\kappa} (e^{\kappa t} - 1).
\]

(70)

By some direct calculations, (70) is described as

\[
V_n (t) \leq e^{\kappa t} \int_0^t \left(\frac{g_1 x_i (t)}{\lambda g_{1m}} N (\zeta (t)) + 1 \right) \zeta (t) e^{\kappa t} dr + y.
\]

(71)

where \(y = V_n (0) + (i/\kappa) \) is a positive constant.

By virtue of Lemma 1, it is shown that \(V_n (t), N (\zeta (t)), \zeta (t) \) are bound for \(t \in [0, +\infty) \). Therefore, the boundedness of all the signals in the closed-loop system is certified for \(t \in [0, +\infty) \).

Furthermore, using the definition of \(\zeta \), it can be seen that

\[
\zeta = \lambda k_1 \zeta_1^2 + \lambda \bar{\omega}_1 \| Y \|^2 + \lambda k_1 \zeta_1^2.
\]

(72)

Based on the boundedness of \(\zeta (t) \), the following inequality holds.

\[
\lim_{t \to \infty} \int_0^t \lambda k_1 \zeta_1^2 dr \leq \lim_{t \to \infty} (\zeta (t) - \zeta (0)) < + \infty.
\]

(73)

From the definition of \(\dot{z}_1 \) in (6) and the boundedness of \(x_1, x_2 \), and \(\dot{y}_d \), it is easily shown that \(\dot{z}_1 \) is bounded.

Thus, by utilizing Barbalat’s Lemma, one has

\[
\lim_{t \to \infty} \dot{z}_1 (t) = 0.
\]

(74)

which means that the tracking error is asymptotically stable.

\textbf{Control parameters selection.} The selection ranges of \(\sigma_i \) and \(k_i \) are wide. The bigger the parameters \(\sigma_i \) and \(k_i \), the faster the asymptotic convergence and response. Besides, \(\lambda \) is the other key parameter, which affects the asymptotic convergence of the tracking error. According to the simulation tests (see Figure 1), the bigger \(\lambda \) the faster the transient process and the smaller the steady-state errors. But it cannot be too big. In addition, the choices of \(a_i, b_i, c_i, \) and \(q_i \) are flexible. \(\square \)

\section{4. Simulation Results}

To illustrate the feasibility of the developed adaptive control approach, an uncertain nonlinear system and a single-link robot are considered.

\subsection{4.1. Simulation of a Second-Order Nonlinear System}

Let us consider the strict-feedback nonlinear system as

\[
\begin{align*}
\dot{x}_1 &= g_1 (x_1) x_2 + \theta^T \phi_1 (x_1) + d_1 (t), \\
\dot{x}_2 &= g_2 (x_2) u + \theta^T \phi_2 (x_2) + d_2 (t), \\
y &= x_1,
\end{align*}
\]

(75)

where \(g_1 = 1 + 0.1 \sin x_1 \) with \(g_{1m} = 0.9 \) and \(g_{1M} = 1.1 \), \(g_2 = 1 + 0.1 \cos x_1 \sin x_2 \) with \(g_{2m} = 0.9 \), and \(g_{2M} = 1.1 \), \(\theta = [1, 1]^T \phi_1 = \cos x_1, \phi_2 = \sin x_1 \cos x_2, d_1 = e^{-t} \cos t, d_2 = e^{-t} \cos t. \)

The desired trajectories are selected as \(y_d (t) = 4 \sin (0.2t) \) and \(y_{d2} (t) = 2.5 \sin (0.5t) + \sin t \). In order to see the controller performance under different initial conditions for the system states, the initial value of \(x_1 \) is given as 1.5 and 3, respectively; \(\zeta (0) = 1 \); and other initial conditions are chosen to be 0.

The intermediate control signal \(a_1, \) Nussbaum variable \(\zeta \), and actual control law \(u \) of the developed control strategy are defined as (17), (19), and (64), where \(n = 2, k_1 = 5, \) and \(k_2 = 10, a_1 = a_2 = b_1 = b_2 = c_1 = c_2 = l_1 = m_2 = 10, \lambda = 0.1, 0.5, 1, \) and 3. It is worth noting that the upper limit of \(\lambda \) is 3.5. Otherwise, the controller is easy to be ill-defined such that the states in the system are divergent.

\(\bar{\omega}_1 \) and \(\dot{\bar{\omega}}_2 \) are designed as (21) and (65), with \(n = 2, q_1 = q_2 = 1, \) and \(\sigma_1 = \sigma_2 = 0.1. \)

The proposed controller (PC) is compared with the adaptive fuzzy (AFC) [28] and adaptive controllers (AC) [34], respectively.

The AFC is presented as
complexity

\[\alpha_1' = \left(k_1 z_1 + 0.5 z_1 + \frac{1}{2 \alpha_1' } \zeta_1 \right) R_1 R_1', \]

\[u = \left(k_2 z_2 + 0.5 z_2 + \frac{1}{2 \alpha_2' } \zeta_2 \right) R_2 R_2', \]

\[\dot{\theta}_1 = q_1 \zeta_1^2 R_1 R_1', \]

\[\dot{\theta}_2 = q_2 \zeta_2^2 R_2 R_2'. \]

where \(\theta_i \) and \(R_i \) are defined in [28], \(k_i, a_i, q_i, \) and \(\sigma_i \) are taken the same values as the PC, \(i = 1, 2. \)

The AC is given as

\[\alpha_1 = -\frac{z_1 \alpha_1}{\sqrt{z_1 \alpha_1^2 + \delta_1}}, \quad \bar{\alpha}_1 = k_1 z_1 + \bar{\omega}_1 \| Y_1 \| z_1, \]

\[u = -\frac{z_2 \alpha_2^2}{\sqrt{z_2^2 \alpha_2^2 + \delta_2}}, \quad \bar{\alpha}_2 = k_2 z_2 + \bar{\omega}_2 \| Y_2 \| z_2, \]

\[\dot{\bar{\omega}}_1 = q_1 \| Y_1 \| z_1 - \sigma_1 \bar{\omega}_1, \]

\[\dot{\bar{\omega}}_2 = q_2 \| Y_2 \| z_2 - \sigma_2 \bar{\omega}_2, \]

where \(k_i, a_i, b_i, c_i, l_i, m_i, q_i, \) and \(\sigma_i \) are as same as the PC, \(i = 1, 2, \delta_1, \delta_2 \) are positive constants, \(\delta_1 = 0.1, \delta_2 = 1. \)

Figures 1–11 display the simulation results. In Figure 1, the tracking errors are drawn under different \(\lambda \). It can be seen that the transient processes of the tracking errors are faster and the steady-state errors decrease as \(\lambda \) increase. Under different initial values \(x_i(0) = 1.5 \) and 3, the comparisons of tracking performance for the desired trajectory \(y_{d1} \) between the AFC, AC, and PC are displayed in Figures 2–4. It is shown that the tracking performance with the PC is better and the tracking error is much smaller. Furthermore, the AFC can only ensure the boundedness of tracking errors, and the PC guarantees the asymptotic convergence of tracking errors, which is obvious in Figure 2. In addition, the absolute mean and root mean square values of tracking errors with the PC are smaller than the values with AFC and AC. Figures 5–7 draw the comparisons of tracking errors and tracking performance for the ideal trajectory \(y_{d1} \), and the similar conclusion can be obtained as Figures 2–4. The inputs \(u \) are given in Figure 8, which are large at the initial stage and converge rapidly to a range defined by \(\pm 10. \) The states \(x_1 \) and adaptive parameters \(\bar{\omega}_1^*, \bar{\omega}_2^* \) are presented in Figures 9 and 10, which are all bounded. Finally, Figure 11 shows the Nussbaum variables \(\varsigma \) which tends to positive constants from the initial values 1 as time goes on.

4.2. Simulation of a 3-Order Robot. In order to demonstrate the practicability, the developed controller is applied to the following 3-order robot system [40].

\[
\begin{align*}
\dot{x}_1 &= x_2, \\
\dot{x}_2 &= \frac{K_m}{M} x_3 + \frac{N \sin x_1 - B x_2}{M} + \frac{r_e}{M}, \\
\dot{x}_3 &= \frac{1}{L} V + \frac{-R x_3 - K_e x_3}{L}
\end{align*}
\]
where x_1, x_2, and x_3 denote the angle, angular velocity, and motor current of the manipulator, respectively. M is the system inertia, $K_m = KN_c$ represents the coefficient between the current and moment with K being the constant torque, and N_c expressing the joint reduction ratio. Furthermore, τ_e represents the uncertain disturbance of torque by the external environment, L is the armature inductance and unknown, K_e denotes the back electromotive force constant, R displays the circuitous resistance, and V is the input voltage. The formulae of B, N, and M are introduced as follows:

$$B = \frac{B_0}{K_T}$$

$$N = \frac{m_1dg + m_2dg}{2K_T} + \frac{m_2dg}{K_T}$$

$$M = \frac{J}{K_T} + \frac{m_1d^2}{3K_T} + \frac{m_2d^2}{K_T} + \frac{2m_3\delta^2}{5K_T}$$

where K_T expresses the coefficient of the electromechanical conversion of armature current to torque and B_0 shows the coefficient of viscous friction at the joint. g is the gravity.

Figure 2: The comparison of tracking errors between PC and AFC with y_{d1}.

Figure 3: The comparison of tracking errors PC and AC with y_{d1}.
coefficient, \(J \) denotes the rotor inertia, \(d \) represents the link length, \(\delta \) is the radius of the load, and \(m_1 \) and \(m_2 \) display the mass of the link and load. Moreover, the parameter values are as

\[
\begin{align*}
J &= 1.625 \times 10^{-3} \text{kg} \cdot \text{m}^2, \\
\delta &= 0.023 \text{m}, \\
m_1 &= 0.506 \text{kg}, \\
m_2 &= 0.434 \text{kg}, \\
K_e &= 0.9V \frac{s}{\text{rad}}
\end{align*}
\]

\(B_0 = 16.25 \times 10^{-3} Nm.s \) \(\text{rad}^{-1} \),

\(\delta = 0.023m, \)

\(K_r = 0.9N \frac{m}{A} \)

\(L = 25 \times 10^{-3} \text{H} \)

The external disturbance \(\tau_e \) is defined as the Gaussian white noise written as \(\text{wgn}(1, L, 0.2) \) with \(L \) being the time series.

The initial condition vector is selected as \([x_1(0), x_2(0), x_3(0), \dot{x}_1(0), \dot{x}_2(0)] \).

\[\text{Figure 4: The trajectories with } x_1(0) = 1.5. \]

\[\text{Figure 5: The comparison of tracking errors between PC and AFC with } y_{d2}. \]
The reference trajectory is chosen to be a step signal. To satisfy the first order differentiability, it is written as $y_d = 0.5(\tanh(p(t - 5)) + t1)$ with $p = 2$.

The Nussbaum variable ζ, control laws α_1, α_2, u, and adaptive laws $\hat{\omega}_1, \hat{\omega}_2, \hat{\omega}_3$ are defined as (19), (17), (32), (64), (21), (35), and (65) with $k_1 = 10, k_2 = 12, k_3 = 20, q_1 = 0.02, q_2 = 0.01, q_3 = 0.025, \sigma_1 = 15, \sigma_2 = 12, \sigma_3 = 28, \text{and } \lambda = 10$. The other parameters are equal to 1.

Figures 12–15 show the simulation results of the 3-order single-link robot. The angle tracking error is displayed in Figure 12, which converges to the initial value 0.1rad rapidly and oscillates at the step time $t = 5s$. In Figure 13, the output can track the reference trajectory well. This is a step signal. The input voltage u is presented in Figure 14. It is easily seen that the oscillation also occurs at the step time. The angular velocity x_2 and motor current x_3 are given in Figure 15, respectively, both of which are bounded.
Figure 8: The control inputs u with $x_1(0) = 1.5$.

Figure 9: The state variables x_2 with $x_1(0) = 1.5$.
Figure 10: The adaptive parameters ϑ_1, ϑ_2 with $x_1(0) = 1.5$.

Figure 11: The Nussbaum variables ς with $x_1(0) = 1.5$.
Figure 12: The angle error.

Figure 13: The output and desired trajectories.
5. Conclusion

In the article, an adaptive asymptotic tracking controller has been designed for nonlinear systems with uncertain VCGs. Compared with these existing achievements, the developed control method could not only handle the VCGs in the form of unknown nonlinear functions but also achieve the asymptotic stability of the tracking error, which was carried out without the approximation by fuzzy logic or neural network and repetitive use of Nussbaum-type functions. New adaptive laws were defined to compensate for unknown virtual control gains, uncertain parameters, and external disturbances. Finally, the proposed control scheme was designed and applied to the control of a robot system. Both theoretical analysis and simulation were used to validate the effectiveness and practicability of the developed control strategy. In the future, we plan to apply the proposed controller to MIMO nonlinear systems by combining dead zone, saturation, hysteresis, and so on.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.
References

[1] Y. D. Landau, *Adaptive Control-The Model Reference Approach*, Marcel Dekker, New York, NY, US, 1979.

[2] G. Feng and R. Lozano, *Adaptive Control Systems*, Elsevier, Amsterdam, Netherlands, 1999.

[3] A. L. Fradkov, *Nonlinear and Adaptive Control of Complex Systems (Mathematics and its Applications)*, Springer, Berlin, Germany, 2010.

[4] C. Mu, Z. Ni, C. Sun, and H. He, “Data-driven tracking control with adaptive dynamic programming for a class of continuous-time nonlinear systems,” *IEEE Transactions on Cybernetics*, vol. 47, no. 6, pp. 1460–1470, 2017.

[5] P. Gong and W. Lan, “Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems,” *IEEE Transactions on Cybernetics*, vol. 49, no. 4, pp. 1365–1376, 2019.

[6] Y. Liu, X. Liu, Y. Jing, X. Chen, and J. Qiu, “Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 31, no. 4, pp. 1222–1231, 2020.

[7] F. Wang and X. Zhang, “Adaptive finite time control of nonlinear systems under time-varying actuator failures,” *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 49, no. 9, pp. 1845–1852, 2019.

[8] H. Li, S. Zhao, W. He, and R. Lu, “Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone,” *Automatica*, vol. 100, pp. 99–107, 2019.

[9] S. Ahmed, H. Wang, and Y. Tian, “Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis,” *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 51, no. 2, pp. 1128–1137, 2021.

[10] C. Liu, H. Wang, X. Liu, Y. Zhou, and S. Lu, “Adaptive prescribed performance tracking control for strict-feedback nonlinear systems with zero dynamics,” *International Journal of Robust and Nonlinear Control*, vol. 29, no. 18, pp. 6507–6521, 2019.

[11] C. Liu, X. Liu, H. Wang, and Y. Zhou, “Event-triggered adaptive tracking control for uncertain nonlinear systems based on a new funnel function,” *ISA Trans.*, vol. 99, pp. 130–138, 2020.

[12] R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” *Systems & Control Letters*, vol. 3, no. 5, pp. 243–246, 1983.

[13] Y. M. Li and S. C. Tong, “Adaptive fuzzy backstepping output feedback control of nonlinear uncertain systems with unknown virtual control coefficients using MT-filters,” *Neurocomputing*, vol. 74, pp. 1557–1563, 2011.

[14] G. W. Dong, Y. M. Li, and S. Sui, “Fault detection and fuzzy tolerant control for complex stochastic multivariable nonlinear systems,” *Neurocomputing*, vol. 275, pp. 2392–2400, 2018.

[15] H. Ma, H. J. Liang, H. J. Ma, and Q. Zhou, “Nussbaum gain adaptive backstepping control of nonlinear strict-feedback systems with unmodeled dynamics and unknown dead zone,” *Int. J. Robust Nonlin.*, vol. 28, pp. 5326–5343, 2018.

[16] H. Habibi, H Nohooji, and I Howard, “Backstepping Nussbaum gain dynamic surface control for a class of input and state constrained systems with actuator faults,” *Informing Science*, vol. 482, pp. 27–46, 2019.

[17] S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” *IEEE Transactions on Automatic Control*, vol. 48, no. 8, pp. 1463–1469, 2003.

[18] S. S. Ge, F. Hong, and T. H. Lee, “Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients,” *IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics*, vol. 34, no. 1, pp. 499–516, 2004.

[19] Z. Y. Chen, “Nussbaum functions in adaptive control with time-varying unknown control coefficients,” *Automatica*, vol. 102, pp. 72–79, 2019.

[20] C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems,” *Automatica*, vol. 45, pp. 532–538, 2009.

[21] F. Wang, Z. Liu, and G. Y. Lai, “Fuzzy adaptive control of nonlinear uncertain plants with unknown dead-zone output,” *Fuzzy Sets and Systems*, vol. 263, pp. 27–48, 2015.

[22] D. J. Li and D. P. Li, “Adaptive tracking control for nonlinear time-varying delay systems with full state constraints and unknown control coefficients,” *Automatica*, vol. 93, pp. 444–453, 2018.

[23] G. B. Zhu, J. L. Du, J. Li, and Y. G. Kao, “Robust adaptive NN tracking control for MIMO uncertain nonlinear systems with completely unknown control gains under input saturations,” *Neurocomputing*, vol. 365, pp. 125–136, 2019.

[24] J. P. Yu, P. Shi, C. Lin, and H. S. Yu, “Adaptive neural command filtering control for nonlinear MIMO systems with saturation input and unknown control direction,” *IEEE Transactions on Cybernetics*, vol. 50, no. 6, pp. 2536–2545, 2020.

[25] W. R. Shi, L. J. Xu, and S. Y. Chen, “Dynamic surface control using fuzzy logic systems for uncertain strict-feedback, nonlinear systems with unknown control directions,” *IEEE Trans.*, vol. 15, pp. 140–150, 2020.

[26] S. C. Tong, X. Min, and Y. X. Li, “Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions,” *IEEE Transactions on Cybernetics*, vol. 50, no. 9, pp. 3903–3913, 2020.

[27] S. JinYoo, “Adaptive tracking control for uncertain switched nonlinear systems in nonstrict-feedback form,” *Journal of the Franklin Institute*, vol. 353, pp. 1409–1422, 2016.

[28] C. G. Liu, H. Q. Wang, X. P. Liu, and Y. C. Zhou, “Adaptive finite-time fuzzy funnel control for nonaffine nonlinear systems,” *IEEE Trans. Syst. Man, Cybern: Office Systems*, vol. 51, no. 5, pp. 2894–2903, 2021.

[29] L. J. Wang and C. C. L. Philip, “Adaptive fuzzy dynamic surface control of nonlinear constrained systems with unknown virtual control coefficients,” *IEEE Transactions on Fuzzy Systems*, vol. 28, no. 8, pp. 1737–1747, 2020.

[30] G. Arslan and T. Basar, “Disturbance attenuating controller design for strict-feedback systems with structurally unknown dynamics,” *Automatica*, vol. 37, pp. 1175–1188, 2001.

[31] B. Chen, X. P. Liu, K. F. Liu, and C. Lin, “Novel adaptive neural control design for nonlinear MIMO time-delay systems,” *Automatica*, vol. 45, pp. 1554–1560, 2009.

[32] H. J. Yang, P. Shi, X. D. Zhao, and Y. Shi, “Adaptive output-feedback neural tracking control for a class of nonstrict-feedback nonlinear systems,” *Informing Science*, vol. 334-335, pp. 205–218, 2016.

[33] C. L. Wang and Y. Lin, “Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems,” *Automatica*, vol. 54, pp. 16–24, 2015.
[34] Y. X. Li, “Barrier Lyapunov function-based adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients,” *Automatica*, vol. 121, pp. 1–9, 2020.

[35] C. G. Liu, X. P. Liu, H. Q. Wang, S. Y. Lu, and Y. C. Zhou, “Adaptive control and application for nonlinear systems with input nonlinearities and unknown virtual control coefficients,” *IEEE Transactions on Cybernetics*, 2021.

[36] E. Kharisov, N. Hovakimyan, and K. J. Astrom, “Comparison of architectures and robustness of model reference adaptive controllers and L-1 adaptive controllers,” *Int J Adapt Control*, vol. 28, no. 7-8, pp. 633–663, 2014.

[37] S. Roy, J. Lee, and S. Baldi, “A new adaptive-robust design for time delay control under state-dependent stability condition,” *IEEE Transactions on Control Systems Technology*, vol. 29, no. 1, pp. 420–427, 2021.

[38] K. Xie, C. Chen, F. L. Lewis, and S. L. Xie, “Adaptive asymptotic neural network control of nonlinear systems with unknown actuator quantization,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 29, no. 12, pp. 6303–6312, 2018.

[39] E. P. Ryan, “Adaptive finite-time bounded-H1 tracking control for a class of manipulator system,” *Systems & Control Letters*, vol. 16, pp. 209–218, 1991.

[40] X. H. Li, R. F. Yang, H. Liu, and S. He, “A universal adaptive stabilizer for a class of nonlinear systems,” *Control Theory & Applications*, vol. 38, no. 1, pp. 147–156, 2021.