Prevalence and Management of Major Diseases of Garlic is it Global Level: A Review

Prahlad, Anupriya¹, S.L. Godara, D.R. Kumhar, Nitin Chawla¹

ABSTRACT

The garlic (Allium sativum L.) is family amaryllidaceae, perennial plant are the most important commercial crop grown all over world and consumed in various forms. These crops are generally grown throughout the country especially China, India, Bangladesh, Egypt, south Korea, Russian Federation, Ukraine, Spain, Uzbekistan and Myanmar in India is the major growing of the states of Maharashtra, Uttar Pradesh, Orissa, Gujarat, Madhya Pradesh, Haryana, Punjab, Rajasthan, Uttaranchal, Jammu and Kashmir, Bihar andhra Pradesh and Kamataka. Garlic contains at least 33 sulfur compounds, several enzymes and the minerals germanium, calcium, copper, iron, potassium, magnesium, selenium and zinc; vitamins A, B1 and C, fiber and water and also contains amino acids lysine, histidine, arginine, aspartic acid threonine, glutamine, proline, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, histidine, arginine, aspartic acid threonine, glutamine, proline, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tryptophan and phenylalanine garlic extract is effective against bacteria, fungi, parasites, lower blood pressure, blood cholesterol and blood sugar, prevent blood clotting, protect the liver and contains antitumor properties in humans garlic extracts have exhibited activity against. The garlic crop is cultivated in several countries and susceptible to number of diseases at various stages of plant growth. From different parts of the world, downy mildew, rust, purple blotch; Stemphylium blight, basal rot, have been observed leading to substantial. Apart from reduction in crop yield, the disease also poses harmful effects during harvesting, post harvesting, processing and marketing stages, which lower the quality and export potential of the crops that significantly causes the economic loss of qualitative and quantitative. The diseases alter the cropping pattern and also affect the local and export markets. The consistent use of chemicals to control the plant diseases not only poses a serious threat to the environment and mankind but also slowly build up resistance in the pathogens.

Key words: Garlic, Pink rot, Purple blotch, Stemphyllum spp., White rot.

The garlic (Allium sativum L.) is useful to mitigate the effect of medicinal and culinary properties throughout the world. Biochemical constituents including thiosulfimates, thiosulfonates, allicin, ajonjen that make the crop very precious in human health care system. Effective antimicrobial properties of garlic have been well accepted. The crop has exhibited a potential therapeutic medicinal value with antifungal, antibacterial, antiviral, anti helminthic, antiseptic and anti-inflammatory properties. The most recent classification scheme of garlic is class Liliopsida, subclass Liliidae, superorder Liliinae, order Amaryllidales, family Amaryllidaceae subfamily Allioideae, tribe Allieae and genus Allium which is mainly based on the sequences of nuclear ribosomal DNA (Reuter et al., 1996).

Garlic is a herbaceous annual bulbous plant in the family Amaryllidaceae grown for its pungent, edible bulb. The garlic plant can either have a short, woody central stem (Hard neck) or a softer pseudo-stem made of overlapping leaf sheaths (soft neck). India ranks second with 2.0 lakh ha area and production with 10.58 lakh tons at global level, however, productivity remains low with 5.05 t/ha as compared with Egypt (25.28 t/ha) and China (23.60 t/ha). Long day and Short day type of garlic are cultivated in India. In Madhya Pradesh short day type varieties are grown. Long day type of garlic is confined to hills of India, especially in Jammu and Kashmir, Himachal Pardesh and Uttarakhand region. Worldwide, garlic was grown over 14.22 lakh hectares and had a total production of 237.70 lakh tons and an average productivity of 16.71 t/ha (Source: FAOSTAT, 2013). Among 140 countries where garlic is grown, China is world leader in production (80.92%), followed by India (4.45%). Per hectare productivity of garlic is the highest in Egypt (24.36 t/ha).

The garlic crop is cultivated in several countries and susceptible to number of diseases at various stages of plant growth (Walker, 1952). From different parts of the world, downy mildew, rust, purple blotch; Stemphylium blight, basal rot, have been observed leading to substantial losses.
Investigation on various aspects of Purple blotch (*Alternaria porri*) (Dhiman *et al*., 1986; Quadri *et al*., 1982); Stemphylium blight (Thind *et al*., 1985; Singh *et al*., 1977), basal rot (*Fusarium oxysporum*) (Mathur and Sankhala, 1963) Rust (*Puccinia porri*) (Sandhu and Kang, 1988); garlic mosaic virus (Ahlawat, 1974), downy mildew (Singh *et al*., 1987) are reported from India. Management approaches for purple blotch; Stemphylium blight, basal rot, rusts; garlic mosaic virus, downy mildew has been worked out in various agro ecological zones of India (Shrivastava *et al*., 1992; Anon., 2013).

Various diseases have been reported on garlic bulbs in particular are affected by association of number of fungal pathogens both in fields and storages. The bulbs due to

| Disease                          | Causal organism                     | Distribution               | Reference |
|----------------------------------|-------------------------------------|----------------------------|-----------|
| Basal Rot                        | *Fusarium oxysporum f. sp. cepae*   | Worldwide                  |           |
| Black Mold                       | *Aspergillus niger*                 | Worldwide                  |           |
| Black Stalk Rot                  | *Stemphylium botryosum*             | Worldwide                  |           |
| Blue Mold                        | *Penicillium species*               | Worldwide                  |           |
| Botryls Brown Stain              | *Botryts cinerea*                   | North America and Europe   |           |
| Botryls Leaf Blight              | *Botryts squamosal*                 | North America and Europe   |           |
| Damping-Off                      | *Fusarium species, Pythium spp, Rhizoctonia solani* | Worldwide                  |           |
| Downy Mildew                     | *Peronospora destructor*            | worldwide in temperateand cool growing regions |           |
| Leaf Blotch                      | *Cladosporium allii*                | British Isles and Canada   |           |
| Neck Rot                         | *Botryts allii*                     | Worldwide                  |           |
| Phytophthora Neck,Bulb Rot       | *Phytophthora nicotianae*           | Brazil and Taiwan          |           |
| Pink Root                        | *Phoma terrestris*                  | Worldwide                  |           |
| Powdery Mildew                   | *Leveillula taurica*                | Brazil, Israel, Italy, Turkey and USA |           |
| Purple Blotch                    | *Alternaria porri*                  | Worldwide                  |           |
| Rust                             | *Puccinia allii*                    | Worldwide                  |           |
| Smut                             | *Urocystis colchici*                | Worldwide                  |           |
| Stemphylium Blight               | *Stemphylium vesicarium*            | India and USA              |           |
| White Rot                        | *Sclerotium cepivorum*              | Worldwide                  |           |
| White Tip                        | *Phytophthora porri*                | Worldwide                  |           |

| Disease                          | Causal organism                     | Distribution               | Reference |
|----------------------------------|-------------------------------------|----------------------------|-----------|
| Garlic common latent carlavirus  | GCLV                                | South America, Central America, India, China | Delecolle and Lot (1981), Raichen (1991) |
| Garlic dwarf reovirus            | GDV                                 | Southern France            | Lot, INRA, Montfavet |
| Leek yellow stripe potyvirus     | LYSV                                | Europe, South America, Australia, New Zealand | Walkey *et al.* (1987) |
| Mite-borne filamentous viruses   | MbFV                                | Cosmopolitan               | Kanyuka *et al.* (1992), Yamashita *et al.* (1996) |
| Onion yellow dwarf potyvirus     | OYDV                                | Cosmopolitan               | Bos (1976), Louie and Lorbeer (1996) |
| Shallot latav carlavirus         | SLV                                 | Asia , Europe, Mexico      | Bos (1982), van Dijk (1993) |
| Shallot yellow stripe potyvirus   | SYSV                                | Asia                       | van Dijk (1993), Barg *et al.* (1997) |
| Cucumber mosaic cucumovirus      | CMV                                 | Yugoslavia                 | Stefanac (1980) |
| Lettuce necrotic Yellows rhabdovirus | LNYV                              | Australia                  | Sward (1990) |
| turnip mosaic potyvirus          | TMV                                 | Slovenian, Israel          | Gera *et al.* (1997) |
| Garlic mosaic virus              | GMV                                 | South America, Central America, India, China | |

**Bacterial diseases**

| Disease                          | Causal organism                     | Distribution               |
|----------------------------------|-------------------------------------|----------------------------|
| Bacterial flower stalk and leaf necrosis | *Erwinia herbicola*                | North America and Europe   |
| Bacterial internal brown rot     | *Pseudomonas aeruginosa*            | Worldwide                  |
| Bacterial soft rot               | *Pectobacterium carotovorum*        | worldwide in temperateand cool growing regions |
| Center rot                       | *Pantoea ananatis, Erwinia ananatis*| British Isles and Canada   |
| Sour skin                        | *Pseudomonas cepacia*               | Worldwide                  |
| Xanthomonas leaf blight          | *Xanthomonas axonopodis pv. allii*  | Asia and Europe, Mexico    |
| Center rot                       | *Pantoea ananatis*                  | Worldwide                  |
Prevalence and Management of Major Diseases of Garlic at Global Level: A Review

Handling, cultivation practices and ill storage are infected severely by number of fungal pathogens. The bulbs are significantly damaged and destroyed resulting in bulb rot and bulb necrosis (Rai and Agarwal, 1976; Georgieva and Kotev, 1977).

In India
Garlic was grown on Madhya Pradesh, Gujarat, Rajasthan, Uttar Pradesh, Assam, Punjab, Maharashtra on various aspects of Purple blotch (Alternaria porri) (Dhiman et al., 1986; Quadri et al., 1982); Stemphylium blight (Thind et al., 1985; Singh et al., 1977), basal rot (Fusarium oxysporum) (Mathur and Sankhala, 1963) Rust (Puccinia porri) (Sandhu and Kang, 1988); garlic mosaic virus (Ahlawat, 1974), downy mildew (Singh et al., 1987) are reported from India.

Management approaches for purple blotch, Stemphylium blight, basal rot, rusts, garlic mosaic virus, downy mildew has been worked out in various agro ecological zones of India (Shrivastava et al., 1992).

Prevalence and management of garlic diseases
White Rot (Sclerotium cepivorum)
Distribution
The disease has been recorded from various part of India

| Nematode diseases | Causal organism | Distribution | Reference |
|-------------------|----------------|--------------|-----------|
| Lesion nematode   | Pratylenchus penetrans | Worldwide in temperate and cool growing regions | Dhillon (1986), Quadri (1982) |
| Needle nematode   | Longidorus africanus | Worldwide | Singh (1987), Sharma and Thind (1985) |
| Root-knot nematode| Meloidogyne hapla | India and USA | Mathur and Sankhala (1963) |
| Stem and bulb nematode | Ditylanchus sp | Worldwide | Tamire et al. (2007) |
| Sting nematode    | Belonolaimus longicaudatus | Worldwide | Sandhu and Kang (1988) |
| Stubby-root nematode | Paratrichodorus allius | South America, Central America, India, China | Gupta and Srivastava (1992) |

Fungal diseases

| Disease | Causal organism | Distribution | Reference |
|---------|----------------|--------------|-----------|
| Purple blotch | Alternaria porri | Maharashtra, Gujarat, Rajasthan, Punjab | Dhillon (1986), Quadri (1982) |
| Stemphylium blight | Stemphylium vesicarium | UP, HP, Punjab | Singh (1987), Sharma and Thind (1985) |
| Basal rot | Fusarium oxysporum | Rajasthan, MP, Punjab | Mathur and Sankhala (1963) |
| White rot | Sclerotium cepivorum | Rajasthan, MP, Punjab, UP | Sandhu and Kang (1988) |
| Smut | Urocystis cepulae | Rajasthan, MP, Maharashtra | Gupta and Srivastava (1992) |
| Rust | Puccinia porri | Punjab, MP, Rajasthan, Gujarat | |
| Black mold | Aspergillus niger | Rajasthan, MP, Punjab | |
| Downy mildew | Peronospora destructor | Punjab, MP, UP | |
| Neck rot | Botrytis allii | Rajasthan, MP, Punjab | |
| Damping off | Pythium spp. | Rajasthan, MP, Punjab | |

Virus diseases

| Disease | Causal organism | Distribution |
|---------|----------------|--------------|
| Garlic common latent carlavirus | GCLV | Maharashtra, Gujarat, Rajasthan, Punjab |
| Garlic dwarf reovirus | GDV | UP, HP, Punjab |
| Leek yellow stripe potyvirus | LYSV | Rajasthan, MP, Punjab |
| Mite-borne filamentous viruses | MbFV | MP, Punjab, UP |
| Onion yellow dwarf potyvirus | OYDV | Rajasthan, MP, Maharashtra |
| Garlic mosaic virus | GMV | Punjab, MP, Rajasthan, Gujarat |

Bacterial diseases

| Disease | Causal organism | Distribution |
|---------|----------------|--------------|
| Bacterial internal brown rot | Pseudomonas aeruginosa | Rajasthan, MP, Maharashtra |
| Bacterial soft rot | Pectobacterium carotovorum | Punjab, MP, Rajasthan, Gujarat |
| Center rot | Pantoea ananatis | Madhya pardesh, Gujarat, Harayana |
| Sour skin | Pseudomonas cepacia | Rajasthan, Madhya pardesh |
| Xanthomonas leaf blight | Xanthomonas axonopodis pv allii | Madhya pardesh, Gujarat, Harayana |
| Center rot | Pantoea ananatis | Rajasthan, MP, Maharashtra |

Nematode diseases

| Disease | Causal organism | Distribution |
|---------|----------------|--------------|
| Root-knot nematode | Meloidogyne hapla | Rajasthan, MP, Punjab |
| Stem and bulb nematode (Bloot) | Ditylanchus allii | Rajasthan, MP, Punjab |
| Sting nematode | Belonolaimus longicaudatus | Punjab, Harayana |
| Stubby-root nematode | Paratrichodorus allius | MP, Rajasthan |
and abroad. White rot is one of the most important garlic diseases in the world, including Iran. Sclerotium cepivorum Berk. The causal agent of white rot and is found in practically all regions where species of Allium are grown (Entwistle, 1990; Crowe et al., 1993; Schwartz and Mohan, 1995; Davis et al., 2007).

Management

Attempts have also made to evolve and approaches as IPM technique using sclerotial germination stimulants in a field prior to planting there after introducing a biological control agent at the time of sowing. A number of research groups are investigating multiple approaches to disease control, that include combining solarization, biocontrol and application of vermicompost germination stimulants, fungicides and solarization (Dennis, 1997; Metcalf and Wilson, 1997). Application of microbial antagonists has shown a suitable ecologically-friendly candidate which could replace chemical pesticides. Different fungal and bacterial antagonists have proved to be potential bio control agents for controlling many plant pathogenic fungi (Cook and Baker, 1988). Different species of Trichoderma have been successfully used and have produced promising results for controlling garlic seedling basal rot disease (Metcalf et al., 2004; Heydari and Pessarakli, 2010; Sharifi et al., 2010; Francisco et al., 2011; Kakvan et al., 2013; Naraghi et al., 2013; Blaszczyk et al., 2014; Khiyami et al., 2014).

Naeimi and Zare (2014) have conducted studies using chemical and bioagent the study was conducted during 2013/14 under greenhouse condition. The results of the study revealed that the efficacy of both fungicides, when tested alone, against S. cepivorum was lower than those treated with Trichoderma spp. alone and the fungicide combined treatments. Among all treatments, (Apron Star 42 WS fungicide combined with T. hamatum and T. viride) has provided the best antagonistic activity against S. cepivorum with no disease incidence, followed by T. viride alone and Tebuconazole combined with T. hamatum both 11.1% incidence.

Gupta et al. (2011), Ahmad and Tribe (1977) have noticed that biocontrol agents T. viride, Gliocladium zeae and Coniothyrium mimitans provided effective control of white rot disease of garlic.

Trichoderma as a potent fungal biocontrol agent against a range of plant pathogens has attracted considerable scientific attention. Chaube et al. (2002) and Harman et al. (2004) concluded that bio agent produce volatile and non volatile antibiotic compounds, which inhibit fungal growth at very low concentration and Trichoderma species are among the most promising bio control agents against many fungal pathogens (Rini and Sulochana, 2007; Akrami et al., 2009).

Fungal and bacterial antagonists have been proved to be potential biocontrol agents for controlling many plant pathogenic fungi (Metcalf et al., 2004; Heydari and Pessarakli, 2010; Sharifi et al., 2010; Francisco et al., 2011; Kakvan et al., 2013; Naraghi et al., 2013; Blaszczyk et al., 2014; Khiyami et al., 2014).

White rot disease caused by S. cepivorum could be controlled by application of bio agent Trichoderma were used in study, because the antagonistic fungus has effectively been used in the control and management of different plant diseases in the previous studies (Francisco et al., 2011; El-Hassan et al., 2013; Kakvan et al., 2013; Naeimi and Zare, 2014).

Purple Blotch (Alternaria porri)

Distribution

The disease has been observed in all the major onion and garlic producing regions. Purple blotch caused by Alternaria porri has been reported in India and abroad (Hausbeck et al., 1999; Meyer et al., 2000). In Pakistan, fungal diseases cause a lot of problems in the production of onion and garlic. In fungal diseases, purple blotch of onion that is caused by Alternaria porri is a major threat for the onion and garlic crop (Lancaster et al., 1996). In India, the diseases caused by unseasonal rains have ruined almost 70 per cent of the kharif garlic crop in Maharashtra in 2010, which is responsible for the nationwide shortage of the commodity (Shrivastava, 2010).

Management

Use of disease free bulb should be selected for planting. Seeds should be treated with Thiram @ 4 g/kg seed. The field should be well drained. Three foliar sprayings with Copper oxychloride 0.25% or Chlorothalonil 0.2% or Zineb 0.2% or Mancozeb 0.2% were effective (Anon., 2011).

Bisht and Thomas (1992) have evaluated several systemic fungicide for the management of the disease. Purple blotch caused by Alternaria porri is a major constraint and causes severe yield loss. Borkar and Patil (1995) reported that purple blotch and stemphylium blight disease of garlic could be managed by 3 to 4 sprays of 0.25% mancozeb at 10 days intervals that reduced the incidence and intensity of foliar diseases of garlic under condition of Marathwada region of Maharashtra.

Studies conducted on management of purple blotch in Marathwada region of Maharashtra and revealed that lowest disease severity of purple blotch with spray of mancozeb @ 0.25%, hexaconazole @ 0.1% and difenconazole @ 0.05% systemic fungicides tebuconazole @ 0.1% and azoxystrobins @ 0.1% have effectively controlled purple blotch disease of garlic. The highest percent efficacy of disease control (PEDC) of purple blotch (62.21%) with foliar sprays of mancozeb @ 0.25% followed by tebuconazole @ 0.1% (55.63%) and azoxystrobins @ 0.1% (54.78%) in comparison was noticed (Wangikar et al., 2012).

Tripathy et al. (2014) reported that purple blotch disease in garlic. Could effectively managed by mancozeb @ 0.25%+methomyl @ 0.8 g per lit. tricyclozole / propiconazol @ 0.01%+carbosulfan @ 2 ml per lit.and copper oxychloride @ 0.25% / hexaconazole @ 0.1%+profenofos 1 ml per lit. At 30, 45 and 60 DAT against purple blotch under Odisha condition efficacy of tricyclozoles, propiconazole and hexaconazole in controlling Alternaria porri has been reported.
Maximum disease incidence in field was recorded on plants sprayed with Dora (54.05%) followed by Dorazole (43.31%), Score (36.54%) but the lowest disease incidence was on plants that were treated with Mancozeb (22.22%) as compared to control with 78%. Dithiocarbamate, which is active ingredient of Mancozeb, destroys fungal spores (Koike and Heinderson, 1998).

Pandey et al. (2002) tested fungicides against purple blotch which is a common disease of onion and garlic and reported that all fungicides significantly controlled disease but Indofil M-45 (Mancozeb) was found the best in respect to disease control. In vitro screening of fungicides revealed to be highly fungitoxic Mancozeb was the effective fungicide against purple blotch and four sprays of Mancozeb @ 0.3% with Monocrotrophos @ 0.05% was the best treatment and recorded the least disease incidence and highest yield (Vijay and Rahman, 2004).

Efficacy of bioagents against the disease has been reported. Among the bio agents, T. harzianum @ (1%) was found to be effective in delaying diseases severity with optimum yield (1134.44kg/ha) over check (893.33kg/ha) (Vannaci and Harman., 1987; Sharma, 2012; Shah-naz et al., 2013).

Aujla et al. (2010) noticed that application of Tebuconazole and Propiconazole were the most effective fungicides against purple blotch disease of onion and garlic and resulted in lowest disease severity (6.1 and 7.3 percent respectively) with 73.0 and 66.6 percent increase in seed yield over untreated control under Punjab conditions.

**Basal Rot (Fusarium oxysporum)**

**Distribution**
The basal rot disease has been reported around the world, including India, Thailand, China, Japan, Iran, Israel, Australia and Europe (FAO, 1999). Species of Fusarium including F. oxysporum, F. culmorum and F. proliferatum occur in North America.

In India, the incidence of basal rot was first reported in Coimbatore, Tamil Nadu (Mathur and Shukla., 1963; Ramakrishnan and Eswaremoothy., 1982).

**Management**
*Trichoderma* spp. and *Pseudomonas* sp. were screened against *F. oxysporum* f. sp. cepae by the dual culture method (Riker and Riker, 1936; Dennis and Webster, 1971).

Biological controls using fungal and bacterial antagonists have been suggested as a possible control method. Under *in vitro* conditions, fungal antagonists, *Trichoderma viride*, *T. harzianum*, *T. hamatum*, *T. koningii* and *T. pseudokoningii* and bacterial antagonists, *Pseudomonas fluorescens* and *Bacillus subtilis* were effective (Rajendran and Ranganathan, 1996).

**Stemphylium leaf blight (Stemphylium vesicarium)**

**Distribution**
The Stemphylium blight has been reported throughout the regions wherever the garlic is produced. It has now been observed in many countries worldwide, including the USA, South Africa, Spain, Brazil, Australia, Egypt and China (Rao and Pavigi, 1975, Miller et al., 1978; Zheng et al., 2008).

During the past 20 years the disease has become increasingly important in temperate and tropical regions throughout the world. It is a major disease of garlic in Southeast Asia and India. Stemphylium blight (*Stemphylium vesicarium*) is also an important foliage disease of garlic crop prevalent in almost all the onion cultivated areas of Northern and Eastern India (Gupta et al., 1996; Suhag and Bhatia, 2006).

**Management**
Gupta et al. (1996) reported that *Stemphylium vesicarium* is one of the major destructive diseases of garlic crop grown in the state of Maharashra. Bio-eficacy of eight fungicides was evaluated *in vitro* against *Stemphylium vesicarium*. All the fungicides tested were found fungicidal against the pathogen and significantly inhibited mycelial growth of the pathogen over untreated control. However, Mancozeb 75 WP recorded significantly highest mean inhibition (90.01%) followed by Carbendazim 50 WP and Copper oxychloride 50 WP which recorded mean growth inhibition, respectively of 89.25 and 86.86 per cent. Chlorothalonil 75 WP (84.77 % inhibition), Difenconazole 25 EC (84.02% inhibition), Thiophanate methyl 70 WP (78.21% inhibition), Pencoczone 10 EC (77.61% inhibition) and Hexaconazole 5 EC (76.43% inhibition) were promising for effective management of Stemphylium leaf blight of garlic (Srivastava et al., 1995).

The fungicide mancozeb and Copper oxychloride have been reported most effective and economical fungicides against stemphylium blight and purple blotch disease *in vitro* as well as under field conditions (Jakhar et al, 1996). Among the new fungicides tested Tebuconazole, Propiconazole and the combination of Carbendazim 12% + Mancozeb 63% WP have proved highly effective fungicides against the disease and the fungicides can further be used as an alternate fungicide in place of conventional fungicides (Hug et al., 1994).

Studies revealed that Tebuconazole 25.9 EC, Propiconazole 25 EC and the combination of Carbendazim 12% Mancozeb 63% (SAAF) appears to be promising alternatives to the conventional fungicides Mancozeb 75 WP and Copper oxychloride 50 WP for efficient management of stemphylium blight disease of garlic crop. Among the diseases, foliar blight plays an important role in decreasing the yields. A number of pathogens have been found responsible for the disease, of which *Alternaria porri*, *A. alternata* and *Stemphylium vesicarium* are the most common (Gupta et al., 1996). They reported that Mancozeb was at par with Hexaconazole (at 0.06%) in which disease intensity of 32.35 and 13.59 per cent was recorded during first and second year, respectively. The efficacy of Mancozeb in the control of foliar blight of garlic (Srivastava and Shrama et al., 1996) has been established.

Srivastava and Tiwari (2003) reported the efficacy of bio-control agents as compared to fungicides might be due.
to adverse environmental conditions causing their rapid desiccation. *T. viride* was found to increase germination of garlic clove.

The severity of Stemphylium blight was indexed at 30, 45, 60 and 75 days after transplanting on a 0-5 scale and Percent Disease Index (PDI) was computed (Sharma, 1995).

**Identification of diseases at field level**

**White rot**

The initial symptoms of white rot disease were the yellowing of leaves and later roots were destroyed. The leaves of infected plant exhibited girdling and dieback. Leaf decay at the base was observed and older leaves collapsed first. A semi watery decay of the stalks of bulb was recorded. The infected plant was easily pulled out from ground. Root was rotted. White fluffy growth around the base of the bulb was observed. The white fluffy fungal growth became more compact as the disease progressed, at later stage numerous small spherical black bodies (Sclerotia) formed on the mycelial mat, the sclerotia were approximately of the size of pin head, poppy seed, resembling mustard grain, the bulbs became soft and water soaked. Based upon the fungal characteristics the pathogen was identified as *Sclerotium cepivorum*.

**Pink rot**

The garlic affected by basal rot pathogen exhibited progressive yellowing. Affected roots were brown to dark pink. In severe condition of infection white fungal growth was noticed at the base infected bulb, when the infected bulb cut vertically a brown discoloration on the spilt was apparent. In some cases stem plate tissue became pitted and showed dry rot. Under dry conditions the stem plate lead to crick scales. In advanced stage the bulb started decaying from lower and ultimately whole plant died. On the basis of fungal characteristics the pathogen was identified as *Fusarium oxysporum*.

**Purple blotch**

The purple blotch symptoms were noticed on stalks as small sunken whitish flacks, with purple colour. Later the lesion girdled leaves and stalks leading the drooping. Oval shaped tan and deep purple lesions on leaves margin were recorded. Concentric zone were observed within the lesions. The initial symptoms of purple blotch were small water soaked lesion that appeared on older leaves. As the disease progressed the lesion onlarged became yellow and concentric ring formed on margins. Based on the fungal characteristics the pathogen was identified as *Alternaria porri*.

**Stemphylium tender tip blight**

The symptoms appeared as small yellow to orange flacks which turned brown, extended along the blade in both direction from the lesions. In advanced stages lesions girdled and killed leaves and stem, due to infection of *Stemphylium vesicarium*, under field conditions. Purple blotch and Stemphylium disease were differentiated on basis of margins of the lesions. In Stemphylium lesions were elongated spherical shaped surrounded in pinkish margin while in purple blotch small sunken whitish flacks with purple colour centres and the lesions were surrounded by yellow hallow.

**REFERENCES**

Ahlawat, Y.S. (1974). A mosaic disease of garlic in Darjeeling hills. Science and Culture. 40: 466-467.

Ahmad, A.H.M. and Tribe, H.T. (1977). Biological control of white rot of onion (*Sclerotium cepivorum*) by *Coniothyrium minitans*. Plant Pathology. 26: 75-78.

Ahmad, S. and Karimullah. (1998). Relevance of management practices to downy mildew in onion. Sarhad Journal of Agriculture. 14: 161-162.

Akrami, M., Ibrahimov, A., Zafari, D.M. and Valizadeh, E. (2009). Control of *Fusarium* rot of bean by combination by *Trichoderma harzianum* and *Trichoderma asperellum* in greenhouse condition. Agricultural Journal. 4: 121-123.

Apaza, W.E. and Matos, L. (2000). Reaction of onion cultivars to basal plate rot caused by *Fusarium oxysporum* f.sp. *cepeae*. Fitopatologia. 35: 231-236.

Aulja, I.S., Goswami, S., Thind, T.S., Sandeep, R. and Kumar, P. (2010). Related effectiveness of fungicides in controlling purple blotch of onion seed crop. Plant Disease Research. 25(1): 73-74.

Bisht, I.S. and Thomas, T.A. (1992). Field screening of garlic germplasm against purple blotch and stemphylium blight. Indian Phytopathology. 45: 244-245.

Blaszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J. and Jędryczka, M. (2014). *Trichoderma* spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research. 54(4): 309-317.

Borkar, S.G. and Patil, B.S. (1995). Chemical control of purple blotch of onion. Indian Journal of Mycology and Plant Pathology. 25(3): 289-290.

Cook, R.J. and Baker, K.F. (1988). The Nature and Practice of Biological Control of Plant Pathogens. St. Paul, Mnnisota APS Press.

Crowe, F.J. and Hall, D.H. (1988). Soil temperature and moisture effects on *Sclerotia* germination and infection of onion seedlings by *Sclerotium cepivorum*. Phytopathology. 70: 74-78.

Davis, R.M., Hao, J.J., Romberg, M.K., Nunez, J.J. and Smith, R.F. (2007). Efficacy of germination stimulants of *Sclerotium cepivorum* for management of white rot of garlic. Plant Disease Research. 91: 204-208.

Dennis, B., Desharnais, R.A., Cushing, J.M. and Costantino, R.F. (1997). Nonlinear demographic dynamics: mathematical models, statistical methods and biological experiments. Ecological Monographs. 65: 261–281.

Dennis, C. and Webster, J. (1971a). Antagonistic properties of species groups of *Trichoderma I*. Production of non-volatile antibiotics. Transmition British Mycology Socety. 57: 25-39.

Deresse, D. (2010). Antibacterial effect of garlic (*Allium sativum*) on *Staphylococcus aureus*. An in vitro study. Asian Journal of Medical Sciences. 2(2): 62-65.

Dhiman, J.S., Chadha, M.L. and Sidhu, A.S. (1986). Studies on the reaction of onion genotypes against purple blotch. Vegetable Science. 13: 304-309.
El-Hassan, S.A., Gowen, S.R. and Pembroke, B. (2013). Use of *Trichoderma hamatum* for biocontrol of lentil vascular wilt disease efficacy mechanisms of interaction and future prospects. Journal of Plant Protection Research. 53(1): 12-26.

Entwistle, A.R. and Munasingue, H.L. (1990). Evidence for damage in sclerotia of *Sclerotium cepivorum* following subletal heat treatment. In [Entwistle AR, Mattusch P. (eds)]. Proceedings 4th International Workshop on Allium White Rot, Braunsweig, Germany 69-75p.

Everts, K.L. and Lacy, M.L. (1990). The influence of dew duration, relative humidity and leaf senescence on conidial formation and infection of onion by *Alternaria porri*. Phytopathology. 80: 1203-1207.

Francisco, D.H., Angelica, M.P., Gabriel, M., Melchor, C.S., Raul, R., Cristobal, N. and Francisco, C.R. (2011). *In vitro* antagonist action of *Trichoderma* strains against *Sclerotium sclerotiorum* and *Sclerotium cepivorum*. American Journal of Agriculture Biology Science. 6(3): 410-417.

Gupta, R.C., Srivastava, K.J. and Gupta, R.P. (2011). Management of economically important soil borne diseases in onion bulb crop. National symposium on vegetable biodiversity held at JNKVV, Jabalpur 87p.

Gupta, R.P., Srivastava, P.K. and Sharma, R.C. (1996). Chemical control of purple blotch and Stemphylium diseases of onion. Newsletter National Horticultural Research and Development Foundation. 16: 14-16.

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. and Lorito, M. (2004). *Trichoderma* species- opportunistic, avirulent plant symbionts. Natural Review Microbiology. 2: 43-56.

Hausbeck, M.K., Hartwell, J. and Byrne, J.M. (1999). Epidemiology of Stemphylium leaf spot and purple spot in no till asparagus. Acta Horticulture. 479: 205-210.

Heydari, A. and Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists Journal Biology Science 6(3): 410-417.

Heydari, A. and Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists Journal Biology Science 6(3): 410-417.

Huybers, K., Heydari, A. and Everts, K.L. (2013b). Promotion of growth characteristics in greenhouse cucumber and tomato by *Talaromyces flavus* Intranational Journal Agriculture Science Research. 2(3): 129-141.

Mathur, B.L. and Sankhla, H.C. (1963). Basal rot of onion. Current Science. 31: 40.

Mathur, K. and Shukla, S.N. (1968). Evaluation of fungicides against *Alternaria porri* and *Stemphylium vesicarium* disease of onion in Rajasthan. Journal Mycology Plant Pathology. 36(2): 323-324.

Metcalf, D.A., Dennis, J.J.C. and Wilson, C.R. (2004). Effect of inoculum density of *Sclerotium cepivorum* on the ability of *Trichoderma koningii* to suppress white rot of onion. Plant Disease Research. 88(3): 287-291.

Meyer, M.P., Haussbeck, M.K. and Podolsky, R. (2000). Optimal fungicide management of purple spot of asparagus and impact on yield. Plant Disease Research. 84: 525-530.

Miller, M.E., Taber, R.A. and Amador, J.M. (1978). Stemphylium blight of onion in South Texas. Plant Diseases Repoter. 62: 851-853.

Naeimi, S.H., Zare, R. (2014). Evaluation of indigenous *Trichoderma* spp. isolates in biological control of Botrytis cinerea the causal agent of strawberry gray mold disease. Biocontrol in Plant Protection. 1(2): 55-74.

Naraghi, L., Heydari, A., Rezaee, S., Razavi, M. and Afshari-Azad, H. (2013b). Promotion of growth characteristics in greenhouse cucumber and tomato by *Talaromyces flavus* Intranational Journal Agriculture Science Research. 2(3): 129-141.

Pandey, P.K., Rajput, R.S. Lekh, R. and Rathore, R.S. (2002). Management of purple blotch of onion through the foliar application of fungicides and plant extracts (Abs.) Journal Mycology Plant Pathology. 32(2): 277.

Quadri, S.M.H., Shrivastava, K.S., Bhonde, S.R., Pandey, U.B. and Bhagchandani, P.M. (1982). Fungicidal bioassay against some important pathogens of onion. Pesticides 16: 11-16.

Rai, B., Agrawal, M., Agrawal, S.B. (1976). Threat to food security under current levels of ground level ozone: a case study for Indian cultivars of rice. Atmospheric Environment. 44: 4272-4282.

Rajendran, K. and Ranganathan, K. (1996). Biological control of onion basal rot (*F. oxysporum* f. sp. *cepa* ) by combined application of fungal and bacterial antagonists. Journal Biological Control. 10(2): 97-102.

Ramakrishnan, G. and Eswaramooorthy, S. (1982). Incidence of wilt and bulb rotting in onion. South Indian Horticulture. 30: 144-145.

Rao, N.N.R. and Paugi, M.S. (1975). Stemphylium leaf blight of onion. Mycopathology 56: 113-118.

Riker, A.J., Riker, P.B. (1935). Bacteria pathogenic on plants. In [Riker A.J., Riker, J.R. (eds)] The Genetics of Pathogenic Organisms Publication Berk Annals of Applied Biology Science. 45: 21-28.

Sandhu, K.S. and Kang, M.S. (1988). Occurrence of rust on garlic in Punjab. Plant Disease Research. 31(1): 50.

Schwartz, H.F. and Mohan, S.K. (1995). Compendium of onion and garlic diseases. American Phytopathological Society St. Paul Minnesota USA 54p.
Prevalence and Management of Major Diseases of Garlic at Global Level: A Review

Sharifi, K. and Zare, R. (2010). Investigation on genetics diversity of Fusarium oxysporum causing potato Fusarium wilt by pathogenicity tests and RAPD markers. Iranian Journal of Plant Pathology. 45: 9-25.

Shrivastava, K.J., Bhardwaj, B.S. and Gupta, R.P. (1992). Management of garlic diseases in India. NHRDF Newsletter. 15(3): 6-9.

Singh, B.M. and Sharma, Y.R. (1977). Occurrence of leaf blight of garlic caused by Stemphylium botryosum in India. Indian Phytopathology. 30: 272-273.

Singh, B.M., Singh, D. and Paul, Y.S. (1987). Outbreak of downy mildew of onion in Himachal Pradesh. Plant Disease Reporter. 2: 124.

Srivastava, K.J. and Tiwari, B.K. (2003). Nursery disease management in onion with biocontrol and plant products. NHRDF Newsletter. 23: 5-8.

Srivastava, P.K., Sharma, P.C. and Gupta, R.P. (1996). Effect of different fungicides on the control of purple blotch and stemphylium blight disease in onion seed crop. NHRDF Newsletter. 15(3): 6-9.

Suhag, L.S. and Bhatia, J.N. (2006). Stemphylium blight of Onion – A review in Seed Technology and Seed Pathology edited by Singh T and Aggarwal K. Pointer Publisher 392-412p.

Tamire, Z., Cemeda, F., Sakuja, P.K. and Seid, A. (2007). Association of white rot Sclerotium cepivorum of garlic with environmental factors and cultural practices in the north shewa highlands of Ethiopia.

Thind, T.S., Sharma, R.C. and Jhooty, J.S. (1985). Occurrence of two fungal diseases of onion in Punjab. Indian Journal of Mycology and Plant Pathology. 15: 90.

Tripathi, A.K., Prajanpati, V., Aggarwal, K.K. and Kumar, S. (2014). Toxicity feeding deterrence and effect of activity of 1, 8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera Tenebrionidae) Journal of Economic Entomology. 94: 979-983.

Vijay, M. and Rahman, M.A. (2004). Efficacy of fungicides in the control of leaf blight disease of onion Allium cepa Journal of Mycology and Plant Pathology. 34(2): 654-655.

Walker, J.C. (1952). Diseases of Vegetables Crops. McGraw Hill Rock Company Incorporation New York 529p.

Wangikar, A.A., Dandnaik, B.P., Falke, A.R. and Khandare, P.M. (2012). Management of purple blotch of onion caused by Alternaria porri in Marathwada region. In Abstract, IV National Symposium on Plant protection in horticultural crops. Emerging challenges and sustainable pest management organized at Indian Institute of Horticultural Research. 112p.

Wangikar, A.A. (2012). Studies on purple blotch of onion incited by Alternaria porri (Ellis). M. Sc. (Agri.) thesis Marathwada Krishi Vidyapeeth, Parbhani, MS India.

Zheng, L., Huang, J.B. and Hsiang, T. (2008). First report of leaf blight of garlic (Allium sativum) caused by Stemphylium solani in China. Plant Pathology. 57(2): 380. http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-3059.2007.01724.x