CHARACTER SHEAVES AND GENERALIZATIONS

G. Lusztig

Dedicated to I. M. Gelfand on the occasion of his 90th birthday

1. Let k be an algebraic closure of a finite field \mathbb{F}_q. Let $G = GL_n(k)$. The group $G(\mathbb{F}_q) = GL_n(\mathbb{F}_q)$ can be regarded as the fixed point set of the Frobenius map $F : G \to G, (g_{ij}) \mapsto (g_{ij}^q)$. Let $\overline{\mathbb{Q}}_l$ be an algebraic closure of the field of l-adic numbers, where l is a prime number invertible in k. The characters of irreducible representations of $G(\mathbb{F}_q)$ over an algebraically closed field of characteristic 0, which we take to be $\overline{\mathbb{Q}}_l$, have been determined explicitly by J.A.Green [G]. The theory of character sheaves [L2] tries to produce some geometric objects over G from which the irreducible characters of $G(\mathbb{F}_q)$ can be deduced for any q. This allows us to unify the representation theories of $G(\mathbb{F}_q)$ for various q. The geometric objects needed in the theory are provided by intersection cohomology.

Let X be an algebraic variety over k, let X_0 be a locally closed irreducible, smooth subvariety of X and let \mathcal{E} be a local system over X_0 (we say "local system" instead of "$\overline{\mathbb{Q}}_l$-local system"). Deligne, Goersky and MacPherson attach to this datum a canonical object $IC(\overline{X}_0, \mathcal{E})$ (intersection cohomology complex) in the derived category $D(X)$ of $\overline{\mathbb{Q}}_l$-sheaves on X; this is a complex of sheaves which extends \mathcal{E} to X (by 0 outside the closure \overline{X}_0 of X_0) in the most economical possible way so that local Poicaré duality is satisfied. We say that $IC(\overline{X}_0, \mathcal{E})$ is irreducible if \mathcal{E} is irreducible.

Now take $X = G$ and take $X_0 = G_{rs}$ to be the set of regular semisimple elements in G. Let T be the group of diagonal matrices in G. For any integer $m \geq 1$ invertible in k we have an unramified $n!/m^n$-fold covering

$$\pi_m : \{(g, t, xT) \in G_{rs} \times T \times G/T; x^{-1}gx = t^m\} \to G_{rs}, \quad (g, t, xT) \mapsto g.$$ An irreducible local system \mathcal{E} on G_{rs} is said to be admissible if it is a direct summand of the local system $\pi_m^!\overline{\mathbb{Q}}_l$ for some m as above. The character sheaves on G are the complexes $IC(G, \mathcal{E})$ for various admissible local systems \mathcal{E} on G_{rs}.

We show how the irreducible characters of $G(\mathbb{F}_q)$ can be recovered from character sheaves on G. If A is a character sheaf on G then its inverse image F^*A under F is again a character sheaf. There are only finitely many A (up to isomorphism) such that F^*A is isomorphic to A. For any such A we choose an isomorphism

Supported in part by the National Science Foundation

Typeset by AMS-TEX
φ \colon F^* A \sim \to A \text{ and we form the characteristic function } \chi_{A,\phi} : G(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l \text{ whose value at } g \text{ is the alternating sum of traces of } \phi \text{ on the stalks at } g \text{ of the cohomology sheaves of } A. \text{ Now } \phi \text{ is unique up to a non-zero scalar hence } \chi_{A,\phi} \text{ is unique up to a non-zero scalar. It turns out that}

(a) \chi_{A,\phi} \text{ is (up to a non-zero scalar) the character of an irreducible representation of } G(\mathbf{F}_q) \text{ and } A \mapsto \chi_{A,\phi} \text{ gives a bijection between the set of (isomorphism classes of) character sheaves on } G \text{ that are isomorphic to their inverse image under } F \text{ and the irreducible characters of } G(\mathbf{F}_q).

(This result is essentially contained in [L1,L3].) The main content of this result is that the (rather complicated) values of an irreducible character of } G(\mathbf{F}_q) \text{ are governed by a geometric principle, namely by the procedure which gives the intersection cohomology extension of a local system.}

2. More generally, assume that } G \text{ is a connected reductive algebraic group over } k. \text{ The definition of the } IC(G, \mathcal{E}) \text{ given above for } GL_n \text{ makes sense also in the general case. The complexes on } G \text{ obtained in this way form the class of uniform character sheaves on } G. \text{ Consider now a fixed } \mathbf{F}_q \text{-rational structure on } G \text{ with Frobenius map } F : G \to G. \text{ The analogue of property 1(a) does not hold in general for } (G, F). \text{ It is still true that the characteristic functions of the uniform character sheaves that are isomorphic to their inverse image under } F \text{ are linearly independent class functions } G(\mathbf{F}_q) \to \mathbf{Q}_l. \text{ However they do not form a basis of the space of class functions. Moreover they are in general not irreducible characters of } G(\mathbf{F}_q) \text{ (up to a scalar); rather, each of them is a linear combination with known coefficients of a "small" number of irreducible characters of } G(\mathbf{F}_q) \text{ (where "small" means "bounded independently of } q\)"}; \text{ this result is essentially contained in [L1,L3].}

It turns out that the class of uniform character sheaves can be naturally enlarged to a larger class of complexes on } G.

For any parabolic } P \text{ of } G, \text{ } U_P \text{ denotes the unipotent radical of } P. \text{ For a Borel } B \text{ in } G, \text{ the images under } c^B : G \to G/U_B \text{ of the double cosets } BwB \text{ form a partition } G/U_B = \bigcup_w (BwB/U_B).

An irreducible intersection cohomology complex } A \in \mathcal{D}(G) \text{ is said to be a character sheaf on } G \text{ if it is } G\text{-equivariant and if for some/any Borel } B \text{ in } G, \text{ } c^B_* A \text{ has the following property:}

(*) \text{ any cohomology sheaf of this complex restricted to any } BwB/U_B \text{ is a local system with finite monodromy of order invertible in } k.

Then any uniform character sheaf on } G \text{ is a character sheaf on } G. \text{ For } G = GL_n \text{ the converse is also true, but for general } G \text{ this is not so.}

Consider again a fixed } \mathbf{F}_q \text{-rational structure on } G \text{ with Frobenius map } F : G \to G. \text{ The following partial analogue of property 1(a) holds (under a mild restriction on the characteristic of } k).

(a) The characteristic functions of the various character sheaves } A \text{ on } G \text{ (up to isomorphism) such that } F^* A \sim A \text{ form a basis of the vector space of class functions } G(\mathbf{F}_q) \to \mathbf{Q}_l.
3. We now fix a parabolic P of G. For any Borel B of P let $\tilde{c}^B : G/U_P \to G/U_B$ be the obvious map. Now P acts on G/U_P by conjugation.

An irreducible intersection cohomology complex $A \in D(G/U_P)$ is said to be a parabolic character sheaf if it is P-equivariant and if for some/any Borel B in P, $\tilde{c}^B_* A$ has property 2(*). When $P = G$, we recover the definition of character sheaves on G.

Consider now a fixed F_q-rational structure on G with Frobenius map $F : G \to G$ such that P is defined over F_q. Then G/U_P has a natural F_q-rational structure with Frobenius map F. The following generalization of 2(a) holds (under a mild restriction on the characteristic of k).

(a) The characteristic functions of the various parabolic character sheaves A on G/U_P (up to isomorphism) such that $F^* A \xrightarrow{\sim} A$ form a basis of the vector space V of $P(F_q)$-invariant functions $G(F_q)/U_P(F_q) \to \bar{Q}_l$.

The proof is given in [L5]. It relies on a generalization of property 2(a) to not necessarily connected reductive groups which will be contained in the series [L6].

If $h : G(F_q) \to \bar{Q}_l$ is the characteristic function of a character sheaf as in 2(a) then by summing h over the fibres of $G(F_q) \to G(F_q)/U_P(F_q)$ we obtain a function $\bar{h} \in V$. It turns out that each function \bar{h} is a linear combination of a "small" number of elements in the basis of V described above. (The fact such a basis of V exists is not apriori obvious.)

The parabolic character sheaves on G/U_P are expected to be a necessary ingredient in establishing the conjectural geometric interpretation of Hecke algebras with unequal parameters given in [L4].

4. In this section G denotes an abelian group with a given family \mathfrak{F} of automorphisms such that

- (i) if $F \in \mathfrak{F}$ and $n \in \mathbb{Z}_{>0}$, then $F^n \in \mathfrak{F}$;
- (ii) if $F \in \mathfrak{F}$, $F' \in \mathfrak{F}$ then there exist $n, n' \in \mathbb{Z}_{>0}$ such that $F^n = F'^{n'}$;
- (iii) for any $F \in \mathfrak{F}$, the map $G \to G, x \mapsto F(x)x^{-1}$ is surjective with finite kernel.

For $F \in \mathfrak{F}$ and $n \in \mathbb{Z}_{>0}$, the homomorphism

$$N_{F^n/F} : G \to G, x \mapsto xF(x) \ldots F^{n-1}(x),$$

restricts to a surjective homomorphism $G^{F^n} \to G^F$. (If $y \in G^F$ we can find $z \in G$ with $y = F^n(z)z^{-1}$, by (i),(iii). We set $x = F(z)z^{-1}$. Then $x \in G^{F^n}$ and $N_{F^n/F}(x) = y$.) Let X be the set of pairs (F, ψ) where $F \in \mathfrak{F}$ and $\psi \in \text{Hom}(G^F, \bar{Q}_l^*)$. Consider the equivalence relation on X generated by $(F, \psi) \sim (F^n, \psi \circ N_{F^n/F})$. Let $G^* = \text{Hom}(G^F, \bar{Q}_l^*)$. We define a group structure on G^*. We consider two elements of G^*; we represent them in the form $(F, \psi), (F', \psi')$ where $F = F'$ (using (ii)) and we define their product as the equivalence class of $(F, \psi\psi')$; one checks that this product is independent of the choices. This makes G^* into an abelian group. The unit element is the equivalence class of $(F, 1)$ for any $F \in \mathfrak{F}$. For $F \in \mathfrak{F}$ we define an automorphism $F^* : G^* \to G^*$ by sending an element of G^* represented by (F^n, ψ) with $n \in$
Consider the local system \(E \) on \(G \) (group.) Then properties 4(i)-4(iii) are satisfied for \(\mathcal{G} \) the map \(\text{Hom}(G^F, \bar{Q}_l^+) \rightarrow G^* \), \(\psi \mapsto (F, \psi) \) is

(a) a group isomorphism of \(\text{Hom}(G^F, \bar{Q}_l^+) \) onto the subgroup \((G^*)^F \) of \(G^* \).

(This follows from the surjectivity of \(N_{F^n/F} : G^{F^n} \rightarrow G^F \).)

5. Assume now that \(G \) is an abelian, connected (affine) algebraic group over \(k \). We define the notion of character sheaf on \(G \).

Let \(\mathfrak{F} \) be the set of Frobenius maps \(F : G \rightarrow G \) for various rational structures on \(G \) over a finite subfield of \(k \). (These maps are automorphisms of \(G \) as an abstract group.) Then properties 4(i)-4(iii) are satisfied for \((G, \mathfrak{F}) \) hence the abelian group \(G^* \) is defined as in §4. We will give an interpretation of \(G^* \) in terms of local systems on \(G \). Let \(F \in \mathfrak{F} \). Let \(L : G \rightarrow G \) be the Lang map \(x \mapsto F(x)x^{-1} \). Consider the local system \(E = L_! \bar{Q}_l \) on \(G \). Its stalk at \(y \in G \) is the vector space \(E_y \) consisting of all functions \(f : L^{-1}(y) \rightarrow \bar{Q}_l \). We have \(E_y = \bigoplus_{\psi \in \text{Hom}(G^F, \bar{Q}_l^+)} E^\psi_y \)

where

\[
E^\psi_y = \{ f \in E_y ; f(zx) = \psi(z)f(x) \quad \forall z \in G^F, x \in L^{-1}(y) \}
\]

We have a canonical direct sum decomposition \(E = \bigoplus \psi E^\psi \) where \(E^\psi \) is a local system of rank 1 on \(G \) whose stalk at \(y \in G \) is \(E^\psi_y \) (\(\psi \) as above). There is a unique isomorphism of local systems \(\phi : F^*E^\psi \rightarrow E^\psi \) which induces identity on the stalk at 1. This induces for any \(y \in G \) the isomorphism \(E^\psi_{F(y)} \rightarrow E^\psi_y \) given by \(f \mapsto f' \) where \(f'(x) = f(F(x)) \). If \(y \in G^F \), this isomorphism is multiplication by \(\psi(y) \).

Thus, the characteristic function \(\chi_{E^\psi, \phi} : G^F \rightarrow \bar{Q}_l \) is the character \(\psi \).

Let \(n \in \mathbb{Z}_{\geq 0} \). Let \(L' : G \rightarrow G \) be the map \(x \mapsto F^n(x)x^{-1} \). Consider the local system \(E' = L'_! \bar{Q}_l \) on \(G \). Its stalk at \(y \in G \) is the vector space \(E'_y \) consisting of all functions \(f' : L'^{-1}(y) \rightarrow \bar{Q}_l \). We define \(E_y \rightarrow E'_y \) by \(f \mapsto f' \) where \(f'(x) = f(N_{F^n/F}x) \) (note that \(N_{F^n/F}(L'^{-1}(y)) \subset L^{-1}(y) \)). This is induced by a morphism of local systems \(E \rightarrow E' \) which restricts to an isomorphism \(E^\psi \rightarrow E'^{\psi'} \) where \(\psi' = \psi \circ N_{F^n/F} \in \text{Hom}(G^{F^n}, \bar{Q}_l^+) \).

From the definitions we see that, if \(\psi, \psi' \in \text{Hom}(G^F, \bar{Q}_l^+) \) then for any \(y \in G \) we have an isomorphism \(E^\psi_y \otimes E^\psi'_y \rightarrow E^{\psi \psi'}_y \) given by multiplication of functions on \(L^{-1}(y) \). This comes from an isomorphism of local systems \(E^\psi \otimes E^\psi' \rightarrow E^{\psi \psi'} \).

A character sheaf on \(G \) is by definition a local system of rank 1 on \(G \) of the form \(E^\psi \) for some \((F, \psi) \) as above. Let \(\mathcal{S}(G) \) be the set of isomorphism classes of character sheaves on \(G \). Then \(\mathcal{S}(G) \) is an abelian group under tensor product. The arguments above show that \((F, \psi) \mapsto E^\psi \) defines a (surjective) group homomorphism \(G^* \rightarrow \mathcal{S}(G) \). This is in fact an isomorphism. (It is enough to show that, if \((F, \psi) \) is as above and \(\psi' \in \text{Hom}(G^F, \bar{Q}_l^+) \) is such that the local systems \(E^\psi, E^{\psi'} \) are isomorphic, then \(\psi = \psi' \). As we have seen earlier, each of \(E^\psi, E^{\psi'} \) has a unique isomorphism \(\phi, \phi' \) with its inverse image under \(F : G \rightarrow G \) which induces the identity at the stalk at 1. Then we must have \(\chi_{E^\psi, \phi} = \chi_{E^{\psi'}, \phi'} \) hence \(\psi = \psi' \). Note that for \(F \in \mathfrak{F} \), the map \(F^* : G^* \rightarrow G^* \) corresponds under the isomorphism
$G^* \xrightarrow{\sim} S(G)$ to the map $S(G) \to S(G)$ given by inverse image under F. Using this and 4(a), we see that, for $F \in \mathcal{F}$, the map $\text{Hom}(G^F, \mathbb{Q}_l^\ast) \to S(G), \psi \mapsto E^\psi$ is a group isomorphism of $\text{Hom}(G^F, \mathbb{Q}_l^\ast)$ onto the subgroup of $S(G)$ consisting of all character sheaves on G that are isomorphic to their inverse image under F. We see that in this case the analogue of 1(a) holds.

From the definitions, we see that,

(a) if $\mathcal{L}_1 \in S(G)$ and $m : G \times G \to G$ is the multiplication map then $m^* \mathcal{L}_1 = \mathcal{L}_1 \otimes \mathcal{L}_1$.

In the case where $G = k$, our definition of character sheaves on G reduces to that of the Artin-Schreier local systems on k.

6. In this section we assume that G is a unipotent algebraic group over k of "exponential type" that is, such that the exponential map from Lie G to G is well defined (and an isomorphism of varieties.) In this case we can define character sheaves on G using Kirillov theory. Namely, for each G-orbit in the dual of Lie G we consider the local system $\mathcal{E} \in S(k)$, $\mathcal{E} \neq \mathbb{Q}_l$ extended by 0 on the complement of the orbit. Taking the Fourier-Deligne transform we obtain (up to shift) an irreducible intersection cohomology complex on Lie G (since the orbit is smooth and closed, by Kostant-Rosenlicht). We can view it as an intersection cohomology complex on G via the exponential map. The complexes on G thus obtained are by definition the character sheaves of G. Using Kirillov theory (see [K]) we see that in this case the analogue of 1(a) holds.

Assume, for example, that G is the group of all matrices

$$[a, b, c] = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

with entries in k and that $2^{-1} \in k$. Consider the following intersection cohomology complexes on G:

(i) the complex which on the centre \{(0, b, 0); b \in k\} is the local system $\mathcal{E} \in S(k)$, $\mathcal{E} \neq \mathbb{Q}_l$ extended by 0 to the whole of G;

(ii) the local system $f^* \mathcal{E}$ where $f[a, b, c] = (a, c)$ and $\mathcal{E} \in S(k^2)$.

The complexes (i),(ii) are the character sheaves of G.

7. In this section we assume that G is a connected unipotent algebraic group over k (not necessarily of exponential type). We expect that in this case there is again a notion of character sheaf on G such that over a finite field, the characteristic functions of character sheaves form a basis of the space of class functions and each characteristic function of a character sheaf is a linear combination of a "small" number of irreducible characters. Thus here the situation should be similar to that for a general connected reductive group rather than that for GL_n. We illustrate this in one example. Assume that k has characteristic 2. Let G be the group
consisting of all matrices of the form

\[
\begin{pmatrix}
1 & a & b & c \\
0 & 1 & d & b + ad \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\end{pmatrix}
\]

with entries in \(k \); we also write \([a, b, c, d] \) instead of the matrix above. (This group can be regarded as the unipotent radical of a Borel in \(Sp_4(k) \).)

Let \(\mathcal{E}_0 \in S(k) \) be the local system on \(k \) associated in §5 to \(F_q \) and to the homomorphism \(\psi_0 : F_q \to \mathbb{Q}_l^+ \) (composition of the trace \(F_q \to F_2 \) and the unique injective homomorphism \(F_2 \to \mathbb{Q}_l^+ \)).

Consider the following intersection cohomology complexes on \(G \):

(i) the complex which on the centre \([0, b, c, 0]; (b, c) \in k^2 \) is the local system \(\mathcal{E} \in S(k^2), \mathcal{E} \neq Q_1 \) (see §5) extended by 0 to the whole of \(G \);

(ii) the complex which on \([a_0, b, c, 0]; (b, c) \in k^2 \) (with \(a_0 \in k^* \) fixed) is the local system \(pr_2^* \mathcal{E} \) where \(\mathcal{E} \in S(k), \mathcal{E} \neq Q_1 \) (see §5) extended by 0 to the whole of \(G \);

(iii) the complex which on \([0, b, c, d_0]; (b, c) \in k^2 \) (with \(d_0 \in k^* \) fixed) is the local system \(f^* \mathcal{E}_0 \) where \(f[0, b, c, d_0] = \alpha b + \alpha^2 d_0 c \) (with \(\alpha \in k^* \) fixed) extended by 0 to the whole of \(G \);

(iv) the complex which on \([a_0, b, c, d_0]; (b, c) \in k^2 \) (with \(a_0, d_0 \in k^* \) fixed) is the local system \(f^* \mathcal{E}_0 \) where \(f[a_0, b, c, d_0] = a_0^{-2} d_0^{-1} c \) extended by 0 to the whole of \(G \);

(v) the local system \(f^* \mathcal{E} \) on \(G \) where \(f[a, b, c, d] = (a, d) \in k^2 \) and \(\mathcal{E} \in S(k^2) \).

By definition, the character sheaves on \(G \) are the complexes in (i)-(v) above. Note that there are infinitely many subvarieties of \(G \) which appear as supports of character sheaves (this in contrast with the case of reductive groups). There is a symmetry that exchanges the character sheaves of type (ii) with those of type (iii). Namely, define \(\xi : G \to G \) by

\[
[a, b, c, d] \mapsto [d, c + ab + a^2 d, b^2 + dc + abd, a^2].
\]

Then \(\xi \) is a homomorphism whose square is \([a, b, c, d] \mapsto [a^2, b^2, c^2, d^2] \); moreover, \(\xi^* \) interchanges the sets (ii) and (iii) and it leaves stable each of the sets (i), (iv) and (v).

Now \(G \) has an obvious \(F_q \)-structure with Frobenius map \(F : G \to G \). We describe the irreducible characters of \(G(F_q) \).

(I) We have \(q^2 \) one dimensional characters \(U \to \mathbb{Q}_l^+ \) of the form \([a, b, c, d] \mapsto \psi_0(xa + yd) \) (one for each \(x, y \in F_q \)).

(II) We have \(q - 1 \) irreducible characters of degree \(q \) of the form \([0, b, c, 0] \mapsto q \psi_0(xb) \) (all other elements are mapped to 0), one for each \(x \in F_q - \{0\} \).

(III) We have \(q - 1 \) irreducible characters of degree \(q \) of the form \([0, b, c, 0] \mapsto q \psi_0(xc) \) (all other elements are mapped to 0), one for each \(x \in F_q - \{0\} \).
(IV) We have $4(q - 1)^2$ irreducible characters of degree $q/2$, one for each quadruple (a_0, d_0, e_1, e_2) where

$a_0 \in F_q, d_0 \in \mathbb{F}_q^*, e_1 \in \text{Hom}(\{0, a_0\}, \pm 1), e_2 \in \text{Hom}(\{0, d_0\}, \pm 1),$

namely

$$[a, b, c, d] \mapsto (q/2)e_1(a)e_2(d)\psi_0(a_0^{-2}d_0^{-1}(ba + ba_0 + c)),$$

if $a \in \{0, a_0\}, d \in \{0, d_0\}$; all other elements are sent to 0.

A character of type (II) is obtained by inducing from the subgroup $\{[a, b, c, d] \in G(F_q); d = 0\}$ the one dimensional character $[a, b, c, 0] \mapsto \psi_0(xb)$ where $x \in F_q - \{0\}$. A character of type (III) is obtained by inducing from the commutative subgroup $\{[a, b, c, d] \in G(F_q); a = 0\}$ the one dimensional character $[0, b, c, d] \mapsto \psi_0(xc)$ where $x \in F_q - \{0\}$. A character of type (IV) is obtained by inducing from the subgroup $\{[a, b, c, d] \in G(F_q); a \neq 0\}$ where $a \in F_q - \{0\}$; the one dimensional character $[a, b, c, d] \mapsto \epsilon_1(a)\psi_0(fd + a_0^{-2}d_0^{-1}(ba + ba_0 + c))$ where $f \in F_q$ is chosen so that $\psi_0(fd_0) = \epsilon_2(d_0)$ (the induced character does not depend on the choice of f).

Consider the matrix expressing the characteristic functions of character sheaves A such that $F^*A \cong A$ (suitably normalized) in terms of irreducible characters of $G(F_q)$. This matrix is square and a direct sum of diagonal blocks of size 1×1 (with entry 1) or 4×4 with entries $\pm 1/2$, representing the Fourier transform over a two dimensional symplectic \mathbb{F}_2-vector space. There are $(q - 1)^2$ blocks of size 4×4 involving the irreducible characters of type IV.

We see that, in our case, the character sheaves have the desired properties. We also note that in our case, $G(F_q)$ has some irreducible character whose degree is not a power of q (but $q/2$) in contrast with what happens in the situation in §6.

8. Let ϵ be an indeterminate. For $r \geq 2$ let $A_r = k[\epsilon]/(\epsilon^r)$. Let $G = GL_n(A_r)$. Let B (resp. T) be the group of upper triangular (resp. diagonal) matrices in G. Then G is in a natural way a connected affine algebraic group over k of dimension n^2r and B, T are closed subgroups of G. On G we have a natural \mathbb{F}_q-structure with Frobenius map $F : G \to G, (g_{ij}) \mapsto (g_{ij}^{(q)})$ where for $a_0, a_1, \ldots, a_{r-1}$ in k we set $\left(a_0 + a_1\epsilon + \cdots + a_{r-1}\epsilon^{r-1}\right)^{(q)} = a_0^q + a_1^q\epsilon + \cdots + a_{r-1}^q\epsilon^{r-1}$. The fixed point set of $F : G \to G$ is $GL_n(\mathbb{F}_q[\epsilon]/(\epsilon^r))$. For $i \neq j$ in $[1, n]$, we consider the homomorphism $f_{ij} : k \to T$ which takes $x \in k$ to the diagonal matrix with ii-entry equal to $1 + \epsilon^{r-1}x$, jj-entry equal to $1 - \epsilon^r - x$ and other diagonal entries equal to 1. Since T is connected and commutative, the group $S(T)$ is defined (see §5). Let $L \in S(T)$. We will assume that L is regular in the following sense: for any $i \neq j$ in $[1, n]$, f_{ij}^*L is not isomorphic to Q_i.

Let $\pi : B \to T$ be the obvious homomorphism. Consider the diagram

$$G \overset{a}{\leftarrow} Y \overset{b}{\to} T$$

where

$$Y = \{(g, xB) \in G \times G/B; x^{-1}gx \in B\}, a(g, xB) = g, b(g, xB) = \pi(x^{-1}gx).$$
Then \(b^*\mathcal{L} \) is a local system on \(Y \) and we may consider the complex \(a_i b^*\mathcal{L} \) on \(G \).

As in \(\S 5 \), we can find an integer \(m_0 > 0 \) such that, for any \(m \in \mathcal{M} = \{m_0, 2m_0, 3m_0, \ldots \} \), \(\mathcal{L} \) is associated to \((\mathbb{F}_{q^m}, \psi_m) \) where \(\psi_m \in \text{Hom}(T^{F^m}, Q_l^\ast) \). We can regard \(\psi_m \) as a character \(B(\mathbb{F}_{q^m}) \to Q_l^\ast \) via \(\pi : B \to T \); inducing this from \(B(\mathbb{F}_{q^m}) \) to \(G(\mathbb{F}_{q^m}) \) we obtain a representation of \(G(\mathbb{F}_{q^m}) \) whose character is denoted by \(c_m \). It is easy to see (using the regularity of \(\mathcal{L} \)) that this character is irreducible.

For \(m \in \mathcal{M} \), there is a unique isomorphism \((F^m)^\ast \mathcal{L} \iso \mathcal{L} \) of local systems on \(T \) which induces the identity on the stalk of \(\mathcal{L} \) at 1. This induces an isomorphism \((F^m)^\ast (b^* \mathcal{L}) \iso b^* \mathcal{L} \) (where \(F : Y \to Y \) is \((g, xB) \mapsto (F(g), F(x)B) \)) and an isomorphism \((F^m)^\ast (a_i b^* \mathcal{L}) \iso a_i b^* \mathcal{L} \) in \(\mathcal{D}(G) \). Let \(\chi_m : G^{F_m} \to Q_l^\ast \) be the characteristic function of \(a_i b^* \mathcal{L} \) with respect to this isomorphism. From the definitions we see that \(\chi_m = c_m \). This shows that \(a_i b^* \mathcal{L} \) behaves like a character sheaf except for the fact that it is not clear that it is an intersection cohomology complex.

We conjecture that:

(a) if \(\mathcal{L} \) is regular then \(a_i b^* \mathcal{L} \) is an intersection cohomology complex on \(G \).

(The conjecture also makes sense and is expected to be true when \(GL_n \) is replaced by any reductive group, and \(G \) by the corresponding group over \(A_r \).) Thus one can expect that there is a theory of character sheaves for \(G \), as far as generic principal series representations and their twisted forms is concerned. But one cannot expect a complete theory of character sheaves in this case (see \(\S 13 \)).

In \(\S 9-\S 12 \) we prove the conjecture in the special case where \(G = GL_2(k) \) and \(r = 2 \).

9. Let \(\mathcal{A} = \mathcal{A}_2 = k[\epsilon]/(\epsilon^2) \). Let \(V \) be a free \(\mathcal{A} \)-module of rank 2. Let \(G \) be the group of automorphisms of the \(\mathcal{A} \)-module \(V \). This is the group of all automorphisms of the 4-dimensional \(k \)-vector space \(V \) that commute with the map \(\epsilon : V \to V \) given by the \(\mathcal{A} \)-module structure. Hence \(G \) is an algebraic group of dimension 8 over \(k \). Let \(\mathcal{G} \) be the set of all pairs \((g, V_2) \) where \(g \in G \) and \(V_2 \) is a free \(\mathcal{A} \)-submodule of \(V \) of rank 1 such that \(gV_2 = V_2 \). For \(k = 1, 2 \), let \(X_k \) be the set of all \(\mathcal{A} \)-submodules of \(V \) that have dimension \(k \) as a \(k \)-vector space. Let \(\tilde{G} \) be the set of all triples \((g, V_1, V_2) \) where \(g \in G \), \(V_1 \subset X_1, V_2 \subset X_2, V_1 \subset V_2, gV_1 = V_1, gV_2 = V_2 \) and the scalars by which \(g \) acts on \(V_1 \) and \(V_2/V_1 \) coincide. We can regard \(\mathcal{G} \) as a subset of \(\tilde{G} \) by \((g, V_2) \mapsto (g, \epsilon V_2, V_2) \). Note that \(\tilde{G} \) is naturally an algebraic variety over \(k \) and \(0\tilde{G} \) is an open subset of \(\tilde{G} \).

The group of units \(\mathcal{A}' \) of \(\mathcal{A} \) is an algebraic group isomorphic to \(k^* \times k \). Hence \(S(\mathcal{A}') \) is defined. Let \(\mathcal{L}_1 \in S(\mathcal{S}'), \mathcal{L}_2 \in S(\mathcal{S}') \). Let \(\mathcal{L} = \mathcal{L}_1 \boxtimes \mathcal{L}_2 \in S(\mathcal{A'} \times \mathcal{A}) \), \(\mathcal{E} = \mathcal{L}_2 \boxtimes \mathcal{L}_1^* \in S(\mathcal{A}') \). Define \(f : 0\tilde{G} \to \mathcal{A'} \times \mathcal{A'} \) by \(f(g, V_2) = (\alpha_1, \alpha_2) \) where \(\alpha_1 \in \mathcal{A}' \) is given by \(g v = \alpha_1 v \) for \(v \in V_2 \) and \(\alpha_2 \in \mathcal{A}' \) is given by \(g v' = \alpha_2 v' \) for \(v' \in V/V_2 \). Let \(\tilde{\mathcal{L}} = f^*(\mathcal{L}_1 \boxtimes \mathcal{L}_2) \), a local system on \(0\tilde{G} \). Define \(f_i : 0\tilde{G} \to \mathcal{A}' \) (\(i = 1, 2 \)) by \(f_1(g, V_2) = \alpha_1 \alpha_2, f_2(g, V_2) = \alpha_1 \) where \(\alpha_1, \alpha_2 \) are as above. Then \(\tilde{\mathcal{L}} = f_1^* \mathcal{L}_1 \boxtimes f_2^* \mathcal{L}_2 \). (We use \(5(a) \).)

We shall assume that \(\mathcal{L} \) is regular in the following sense: the restriction of \(\mathcal{E} \) to
the subgroup $T = \{1 + \epsilon c; c \in \mathbb{k}\}$ of \mathcal{A}' is not isomorphic to \mathbb{Q}_l.

Lemma 10. (a) \tilde{G} is an irreducible, smooth variety and $\tilde{G} - 0\tilde{G}$ is a smooth irreducible hypersurface in \tilde{G}.

(b) We have $IC(\tilde{G}, \tilde{L})|_{\tilde{G} - 0\tilde{G}} = 0$.

Note that $f_1 : 0\tilde{G} \to \mathcal{A}'$ extends to the whole of \tilde{G} by $f_1(g, V_1, V_2) = \det_A(g : V \to V)$. Hence $f_1^*\mathcal{L}_1$ extends to a local system on \tilde{G} and we have $IC(\tilde{G}, \tilde{L}) = f_1^*\mathcal{L}_1 \otimes IC(\tilde{G}, f_2^*\mathcal{E})$. Hence to prove (b) it is enough to show that $IC(\tilde{G}, f_2^*\mathcal{E})$ is zero on $\tilde{G} - 0\tilde{G}$.

Let Z (resp. H) be the fibre of the second projection $\tilde{G} \to X_1$ (resp. $\tilde{G} - 0\tilde{G} \to X_1$) at $V_1 \in X_1$. Since \mathcal{G} acts transitively on X_1 it is enough to show that Z is smooth, irreducible, H is a smooth, irreducible hypersurface in Z and $IC(Z, f_2^*\mathcal{E})$ is zero on H (the restriction of f_2 to Z is denoted again by f_2).

Let e_1, e_2 be a basis of V such that $V_1 = k e_1$. The subspaces $V_2 \subset V_2$ such that $V_1 \subset V_2$ are exactly the subspaces $V_2 z', z'' = k e_1 + k(z'e_1 + z'' e_2)$ where $(z', z'') \in \mathbb{k}^2 - \{0\}$. An element $g \in \mathcal{G}$ is of the form

$$g e_1 = a_0 e_1 + b_0 e_2 + a_1 e_1 + b_1 e_2,$$

$$g e_2 = c_0 e_1 + d_0 e_2 + c_1 e_1 + d_1 e_2$$

where $a_i, b_i, c_i, d_i \in \mathbb{k}$ satisfy $a_0 d_0 - b_0 c_0 \neq 0$.

The condition that $ge e_1 \in ke e_1$ is $b_0 = 0$. The condition that $g V_2 z', z'' = V_2 z', z''$ is that $z'b_1 + z'' d_0 = a_0 z''$ if $z' \neq 0$ (no condition if $z' = 0$). The condition that the scalars by which g acts on V_1 and $V_2 z', z'' / V_1$ coincide is $a_0 = d_0$ if $z' = 0$ (no condition if $z' \neq 0$).

We see that we may identify Z with

$$\{(a_0, c_0, d_0, a_1, b_1, c_1, d_1; z', z'') \in \mathbb{k}^7 \times (\mathbb{k}^2 - \{0\})/\mathbb{k}^*;$$

$$a_0 \neq 0, d_0 \neq 0, z'b_1 = z''(a_0 - d_0)\}$$

and H with the subset defined by $z' = 0$. In this description it is clear that Z is irreducible, smooth and H is a smooth, irreducible hypersurface in Z. The function f_2 takes a point with $z' \neq 0$ to $a_0 + \epsilon(a_1 + z'' z' c_0)$. To prove the statement on intersection cohomology we may replace Z by the open subset $z'' \neq 0$ containing H. Thus we may replace Z by

$$Z_1 = \{(a_0, c_0, d_0, a_1, b_1, c_1, d_1; z) \in \mathbb{k}^7 \times \mathbb{k}; a_0 \neq 0, d_0 \neq 0, zb_1 = a_0 - d_0\}$$

and H by the subset defined by $z = 0$. The function f_2 is defined on $Z_1 - H$ by

$$a_0 + \epsilon(a_1 + z^{-1} c_0) = (a_0 + \epsilon a_1)(1 + \epsilon z^{-1} c_0 a_0^{-1}).$$

Thus $f_2 = f_3 f_4$ where f_3 (resp. f_4) is defined on $Z_1 - H$ by $a_0 + \epsilon a_1$ (resp. $1 + \epsilon z^{-1} c_0 a_0^{-1}$). Hence $f_2^*\mathcal{E} = f_3^*\mathcal{E} \otimes f_4^*\mathcal{E}$. Now f_3 extends to Z_1 hence $f_3^*\mathcal{E}$ extends
to a local system on \(Z_1 \). We have \(IC(Z_1, f_2^*\mathcal{E} \otimes f_4^*\mathcal{E}) = f_2^0\mathcal{E} \otimes IC(Z_1, f_4^*\mathcal{E}) \). It is enough to show that \(IC(Z_1, f_4^*\mathcal{E}) \) is zero on \(H \). We make the change of variable \(c = c_0a_0^{-1} \). Then \(Z_1 \) becomes

\[
Z_1 = \{(a_0, c, a_1, b_1, c_1, d_1; z) \in k^7 \times k; a_0 \neq 0, a_0 - zb_1 \neq 0\},
\]

\(H \) is the subset defined by \(z = 0 \) and \(f_4 : Z_1 - H \to \mathcal{A}' \) is given by \(1 + \varepsilon z^{-1}c \). Let \(\tilde{Z}_1 = \{(a_0, c, a_1, b_1, c_1, d_1; z) \in k^7 \times k \} \) and let \(H_1 \) be the subset of \(\tilde{Z}_1 \) defined by \(z = 0 \). Then \(Z_1 \) is open in \(\tilde{Z}_1 \) and \(f_4 \) is well defined on \(\tilde{Z}_1 - H_1 \) by \(1 + \varepsilon z^{-1}c \).

Hence \(f_4^*\mathcal{E} \) is well defined on \(\tilde{Z}_1 - H_1 \). It is enough to show that \(IC(\tilde{Z}_1, f_4^*\mathcal{E}) \) is zero on \(H_1 \). Let \(H' = \{(c, z) \in k^2; z = 0\} \) and define \(f' : k^2 - H' \to \mathcal{A}' \) by \(f'(c, z) = 1 + \varepsilon z^{-1}c \). It is enough to show that \(IC(k^2, f'^*\mathcal{E}) \) is zero on \(H' \). Let \(P \) be the projective line associate to \(k^2 \). Then \(H' \) defines a point \(x_0 \in P \). Since \(f' \) is constant on lines, it defines a map \(h : P - \{x_0\} \to \mathcal{A}' \). Since \(P \) is 1-dimensional we have \(IC(P, h^*\mathcal{E}) = \mathcal{F} \) where \(\mathcal{F} \) is a constructible sheaf on \(P \) whose restriction to \(P - \{x_0\} \) is \(h^*\mathcal{E} \). It is enough to show that

- \((c)\) the stalk of \(\mathcal{F} \) at \(x_0 \) is 0;
- \((d)\) \(H^i(P, \mathcal{F}) = 0 \) for \(i = 0, 1 \).

(Indeed, \((c)\) implies that \(IC(k^2, f'^*\mathcal{E}) \) is zero at \((c, 0)\) with \(c \neq 0 \) and \((d)\) implies that \(IC(k^2, f'^*\mathcal{E}) \) is zero at \((0, 0)\).)

Consider the standard \(F_q \)-rational structures on \(k^2, X, \mathcal{A}' \) and let \(F \) be the corresponding Frobenius map. We may assume that \(\mathcal{E} \) is associated as in §5 to \((F_q, \psi)\) where \(\psi \in \text{Hom}(\mathcal{A}', \bar{Q}_l^e) \). For any \(m \in \mathbb{Z}_{\geq 0} \) there is a unique isomorphism \(\phi_m : (F^m)^*\mathcal{E} \isom \mathcal{E} \) which induces the identity on the stalk of \(\mathcal{E} \) at \(1 \). The characteristic function of \(\mathcal{E} \) with respect to this isomorphism is \(a' \mapsto \psi(N_{F_m/F}(a')) \), \(a' \in \mathcal{A}'_{/F_m} \). Since, by assumption, \(\mathcal{E}|_T \) is not isomorphic to \(\bar{Q}_l^e \), \(\psi|_T \) is not the trivial character. Hence \(\psi \circ N_{F_m/F} : \mathcal{A}'_{/F_m} \to \bar{Q}_l^e \) is non-trivial on \(T_{/F_m} \). Now \(\phi_m \) induces an isomorphism \(\phi'_m : (F^m)^*h^*\mathcal{E} \isom h^*\mathcal{E} \). We show that

\[
\sum_{x \in P \setminus \{x_0\}} \text{tr}(\phi'_m, (h^*\mathcal{E})_x) = 0.
\]

An equivalent statement is:

\[
\sum_{(c, z) \in (F_q)^m \times \bar{F}_{q^m}^*} (\psi \circ N_{F_m/F}) (1 + \varepsilon c^{-1}z) = 0,
\]

which follows from the fact that \(\psi \circ N_{F_m/F} : \mathcal{A}'_{/F_m} \to \bar{Q}_l^e \) is non-trivial on \(T_{/F_m} \).

Introducing \((e)\) in the trace formula for Frobenius, we see that

\[
\sum_{i=0}^2 (-1)^i \text{tr}(\phi'_m, H^i(P, \mathcal{F})) = \text{tr}(\phi'_m, \mathcal{F}_{x_0})
\]

where \(\mathcal{F}_{x_0} \) is the talk of \(\mathcal{F} \) at \(x_0 \) and \(\phi'_m \) is in fact equal to \(\phi_1' m \) (for \(m = 1, 2, 3, \ldots \)). By Deligne’s purity theorem, \(H^i(P, \mathcal{F}) \) together with \(\phi'_1 \) is pure of weight \(i \); by Gabber’s theorem [BBD], \(\mathcal{F}_{x_0} \) together with \(\phi'_1 \) is mixed of weight \(\leq 0 \). Hence from \((f)\) we deduce that \(H^1(P, \mathcal{F}) = 0, H^2(P, \mathcal{F}) = 0 \) and \(\dim H^0(P, \mathcal{F}) = \dim \mathcal{F}_{x_0} \). By the hard Lefschetz theorem [BBD] we have \(\dim H^0(P, \mathcal{F}) = \dim H^2(P, \mathcal{F}) \). It follows that \(H^0(P, \mathcal{F}) = 0 \) hence \(\mathcal{F}_{x_0} = 0 \). This proves \((c),(d)\). The lemma is proved.

Lemma 11. Define \(\rho : \tilde{G} \to G \) by \((g, V_2) \mapsto g \). Let \(K = \rho_\tilde{L} \). Let \(G_0 \) be the open dense subset of \(G \) consisting of all \(g \in G \) such that \(g : eV \to eV \) is regular,
semisimple. Let $\rho_0 : \rho^{-1}(G_0) \to G_0$ be the restriction of ρ. Then $\rho_0! \mathcal{L}$ is a local system on G_0. We have $\dim \text{supp} H^i K < \dim G - i$ for any $i > 0$.

The first assertion of the lemma follows from the fact that ρ_0 is a double covering. To prove the second assertion it is enough to show that, for $i > 0$, the set G_i consisting of the points $g \in G$ such that $\dim \rho^{-1}(g) = i$ and $\oplus_j H^j_\mathbb{C}(\rho^{-1}(g), \mathcal{L}) \neq 0$ has codimension $> 2i$ in G.

Consider the fibre $\rho^{-1}(g)$ for $g \in G$. We may assume that, with respect to a suitable A-basis of V, g can be represented as an upper triangular matrix $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ with a, c in A and $b \in A$. (Otherwise, $\rho^{-1}(g)$ is empty.) There are five cases:

Case 1. $a - d \in A'$. Then $\rho^{-1}(g)$ consists of two points.

Case 2. $a - d \in \epsilon A, b \in A'$. Then $\rho^{-1}(g)$ is an affine line.

Case 3. $a - d \in \epsilon A - \{0\}, b \in \epsilon A$. Then $\rho^{-1}(g)$ is a disjoint union of two affine lines.

Case 4. $a = d, b \in \epsilon A - \{0\}$. Then $\rho^{-1}(g)$ is an affine line.

Case 5. $a = d, b = 0$. Then $\rho^{-1}(g)$ is an affine line bundle over a projective line.

In case 2, we may identify $\rho^{-1}(g), \mathcal{L}|_{\rho^{-1}(g)}$ with $P - \{x_0\}, F|_{P - \{x_0\}}$ in the proof of Lemma 10. Then the argument in that proof shows that $H^j_\mathbb{C}(\rho^{-1}(g), \mathcal{L}) = 0$ for all j. We see that G_1 consists of all g as in case 3 and 4, hence G_1 has codimension 3 in G. We see that G_2 consists of all g as in case 5, hence G_2 has codimension 6 in G. The lemma is proved. Note that without the assumption that \mathcal{L} is regular, the last assertion of the lemma would not hold (there would be a violation coming from g in case 2.)

12. We show:

(a)

$$\rho_1! \mathcal{L} = IC(G, \rho_0! \mathcal{L}).$$

Define $\bar{\rho} : \tilde{G} \to G$ by $\bar{\rho}(g, V_1, V_2) = g$. Clearly, $\bar{\rho}$ is proper. Let $j : \mathcal{G} \to G$ be the inclusion. We have $\rho = \bar{\rho} \circ j$ hence $\rho_1! \mathcal{L} = \bar{\rho}_1! (j_1! \mathcal{L})$. By Lemma 10, we have $j_1! \mathcal{L} = IC(\mathcal{G}, \mathcal{L})$ hence $\rho_1! \mathcal{L} = \bar{\rho}_1! IC(\mathcal{G}, \mathcal{L})$. Since $\bar{\rho}$ is proper, $\bar{\rho}_1!$ commutes with the Verdier duality \mathcal{D}. Hence $\mathcal{D}(\rho_1! \mathcal{L}) = \bar{\rho}_1! \mathcal{D} IC(\mathcal{G}, \mathcal{L})$. Hence $\mathcal{D}(\rho_1! \mathcal{L})$ equals $\bar{\rho}_1 IC(\tilde{G}, \mathcal{L}^*)$ up to a shift. Now the same argument that shows $j_1! \mathcal{L} = IC(\mathcal{G}, \mathcal{L})$ shows also $j_1\mathcal{L}^* = IC(\mathcal{G}, \mathcal{L}^*)$. Hence, up to shift, $\mathcal{D}(\rho_1! \mathcal{L})$ equals $\bar{\rho}_1 j_1\mathcal{L}^* = \rho_1! \mathcal{L}^*$. Now the argument in Lemma 12 can also be applied to \mathcal{L}^* instead of \mathcal{L} and yields $\dim \text{supp} H^i \rho_1! \mathcal{L}^* < \dim G - i$ for any $i > 0$. Thus, $\rho_1! \mathcal{L}$ satisfies the defining properties of $IC(G, \rho_0! \mathcal{L})$ hence it is equal to it. This proves (a).

We see that conjecture 8(a) holds for $n = 2, r = 2$.

13. If G is a connected affine algebraic group over k which is neither reductive nor nilpotent, one cannot expect to have a complete theory character sheaves for G. Assume for example that G is the group of all matrices

$$[a, b] = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$
with entries in \(k \). The group \(G(F_q) \) (for the obvious \(F_q \)-rational structure) has \((q - 1) \) one dimensional representations and one \((q - 1)\)-dimensional irreducible representation. The character of a one dimensional representation can be realized in terms of an intersection cohomology complex (a local system on \(G \)), but that of the \((q - 1)\) dimensional irreducible representation appears as a difference of two intersection cohomology complexes, one given by the local system \(\overline{Q}_l \) on the unipotent radical of \(G \) and one supported by the unit element of \(G \). A similar phenomenon occurs for \(G \) as in §9 and for a \((q^2 - 1)\)-dimensional irreducible representation of \(G(F_q) \).

REFERENCES

[BBD] A.A.Beilinson, J.Bernstein and P.Deligne, Faisceaux pervers, Astérisque 100 (1982).
[G] J.A.Green, The characters of the finite general linear groups, Trans.Amer.Math.Soc. 80 (1955), 402-447.
[K] D.Kazhdan, Proof of Springer’s hypothesis, Israel J.Math. 28 (1977), 272-286.
[L1] G.Lusztig, Characters of reductive groups over a finite field, Ann.Math.Studies 107, Princeton U.Press, 1984.
[L2] G.Lusztig, Character sheaves, I-V, Adv.in Math. 56,57,59,61 (1985,1986).
[L3] G.Lusztig, Green functions and character sheaves, Ann.Math. 131 (1990), 355-408.
[L4] G.Lusztig, Hecke algebras with unequal parameters, CRM Monographs Series, vol. 18, Amer.Math.Soc., 2003.
[L5] G.Lusztig, Parabolic character sheaves, I, Moscow Math.J. (2003) (to appear).
[L6] G.Lusztig, Character sheaves on disconnected groups, I-III (2003), preprints.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139