Letters to the Editor

Prevalence of depression in community dwelling elderly: Study from rural population of India

Sir,

We read "Meta‑analysis" by Barua et al. with great interest. Depression is among the major psychiatric illnesses affecting elderly population. Several somatic and neurological changes related to aging contribute to the development of depression. Recent meta‑analysis on median prevalence rate of depression in elderly population across India has been estimated to be 21.9%.[1] However, epidemiological studies from rural areas remain scant. This issue needs attention as predominant population of developing countries like India resides in rural area. We conducted a study on the prevalence of depression in community dwelling elderly in rural population of India.

The present study was carried out with approval from institutional ethics committee. A survey was conducted in the village of Halsoor (in the state of Karnataka) from December/January 2011 to February 2011. All 90 households of the village were visited. Elderly (age > 65 years) were interviewed by a trained rater after obtaining consent. Response rate was 96%. Total of 70 subjects participated in the study. Hamilton depression rating scale (HDRS) was administered to all subjects.[2] Stukenberg et al. showed that HDRS has good psychometric property and can be used as a tool for screening in community settings.[3] Subject with a score ≥ 7 were considered to be "cases" of depression. There were 33 (47.1%) males and 37 (52.9%) females with a mean age of 67.27 years (SD = 3.97). Prevalence of depression was found to be 14.3% [confidence interval 95%: 6.1‑22.5%]. Prevalence of depression was 12.1% in males and 16.2% in females. Prevalence of depression in our rural population appears to be lower, compared to the meta‑analysis results mentioned above (21.9%).[1] However, most of the studies included in meta‑analysis were done in urban population. Stress and nuclear family pattern are some of the important psycho‑social risk factor for the development of depression, which differ grossly between urban and rural areas.[4] Lower prevalence rate of depression in rural area could be attributed to joint family structure, which is widely prevalent in rural areas. Major limitation of the study is its small sample size. Further large scale studies are urgently needed to assess the psycho‑social factors affecting depression and association of medical illness with depressive symptoms.

Hulegar A Abhishekh, Karthik Raghuram, Swathi Shivakumar, Arjun L Balaji
1 Intern, Bangalore Medical College and Research Institute, Bangalore, India,
1 Yale School of Public Health, New Heaven, Connecticut, USA
Address for correspondence: Dr. Hulegar A. Abhishekh, Bangalore Medical College and Research Institute, Fort Road, Bangalore ‑ 56000, India. E‑mail: abhishek.h.a.123@gmail.com

References
1. Barua A, Ghosh M, Kar N, Basilio M. Distribution of depressive disorders in the elderly. J Neurosci Rural Pract 2010;1:67‑73.
2. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56‑62.
3. Stukenberg KW, Dura JR, Kiecolt‑Glaser JK. Depression screening scale validation in an elderly, community‑dwelling population. J Consult Clin Psychol 1990;2:134‑8.
4. Grover S, Dutt A, Avasthi A. An overview of Indian research in depression. Indian J Psychiatry 2010;52:S178‑88.

Post traumatic tubercular osteomyelitis of skull vault

Sir,

Tuberculosis of the skull is a rare entity with occurrence of 1 in 10,000 cases of tuberculosis.[1] Calvarial tuberculosis was first reported by Reid in 1842. Tuberculous osteomyelitis of the skull is a rare manifestation of extra‑pulmonary disease. An eighteen years old male presented to the emergency as a case of road traffic accident following which he was paraplegic. The patient was conscious, oriented with a Glasgow coma scale score of 15/15. He had a lacerated wound in the right frontal region, multiple rib fractures on right side and

Published online: 2019-09-26
spinal tenderness from D7-D11. A right sided Inter-costal drainage (ICD) was inserted and on further evaluation by magnetic resonance imaging (MRI) patient was found to have compression fracture of D8-D10 vertebral bodies with cord contusion, computed tomography (CT) brain showed comminuted fracture in right zygomatic process of frontal bone and right supra orbital plate. Chest X-ray showed no evidence of tuberculosis. Patient was taken up for surgery and underwent D8-D10 laminectomy with cord decompression and hook/rod fixation between D7 and D11. Debridement and suturing of right frontal scalp wound was also done by plastic surgery team. Patient was discharged a few days later after removal of ICD. Three months later patient presented with persistent serous discharge from the right supra orbital wound. Plain X-ray showed osteolytic lesion over right supra orbital region [Figure 1]. CT brain showed osteolytic lesion of right supra orbital frontal bone and mild soft tissue swelling over the region [Figure 2]. There was no epidural or parenchymal collection [Figure 3]. The patient underwent surgical curettage and debridement of the right frontal bone and the tissue was sent for HPE and Culture sensitivity. The C/S came negative and the HPE picture showed langhans giant cells, epithelioid cells and lymphocytes suggestive of tuberculosis [Figure 4]. Patient was discharged on anti tubercular therapy and on last follow up of two months the surgical wound has healed well. A repeat CT brain was performed and was normal.

Tuberculosis is quite prevalent in India with around 1.5% of its population being infected. Skeletal tuberculosis accounts for 1-3% of all cases of tuberculosis, of which calvarial involvement is seen only in 0.2-1.3% of which 1% involves the middle ear cavity. Almost half the reported cases are younger than 10 years, and 70-90% are younger than 20 years, however infants are rarely affected, probably because of the paucity of cancellous bone in the skull. There is no sex predilection. The frontal and the parietal bones are usually involved. Calvarial

![Figure 1: Plain X-ray skull showing osteolytic lesion](image1)

![Figure 2: CT brain (Bone window, coronal cut) showing lytic lesion and soft tissue swelling](image2)

![Figure 3: CT brain plain demonstrating absence of epidural/parenchymal lesion](image3)

![Figure 4: HPE image showing langhans giant cells, epithelioid cells and lymphocytes](image4)
tuberculosis usually occurs due to haematogenous spread from a primary focus elsewhere in the body that may not always be evident unless there has been direct inoculation of the bone by a penetrating injury or surgery.[5,6]

Trauma (surgery or injury) has been hypothesized to predispose patients to bony lesions by causing increased vascularity and transient immunosuppression.[2,3] This may help specific lodging of bacilli facilitated by the inflammatory cells which are attracted to the site of trauma and act as vectors for the bacilli.[7] The tuberculous focus in the skull starts in the diploe where concentrically placed proliferating fibroblasts encircle the tuberculous granulation tissue and prevent its further extension through the diploe.[3] If the process is not arrested, extension then takes place through either table. Outer table destruction leads to scalp swelling and sinus formation while involvement of the inner table results in extradural granulation tissue. The dura matter forms an excellent protective barrier. When the response to the infection is good, the lesion develops slowly, while decreased resistance will rapidly lead to subgaleal or extradural collections.

If the process is rapid, sequestration may occur which appears as “bone sand” on radiography. The rarity of calvarial tuberculosis is explained by the poor lymphatics of skull thus preventing lymphatic dissemination which is common in other bones.[8] The usual radiological feature of calvarial tuberculosis is a single lesion in the frontal or parietal region with both osteolytic and osteoblastic features. Lesions that are usually lytic at first can normally be seen on plain X-ray images of the skull which are helpful in screening high risk patients.[3]

Depending on the nature of calvarial destruction, three radiological types of the lesions of tuberculosis osteitis described are circumscribed sclerotic, circumscribed lytic and diffuse type. The type of lesion depends on the virulence of the organism and the immune response of the host with diffuse type more common in patients with poor immunity. Circumscribed lytic lesions also known as “perforating tuberculosis of the skull” are small punched-out lesions with granulation tissue covering both surfaces of the calvaria. There is no periosteal reaction as it tends not to spread. Circumscribed sclerotic type is least common,[5] thought to represent secondary infection.[9] Cold abscesses, commonly associated with this form of tuberculosis, are known to precede destructive changes in bone. CT is helpful in demonstrating soft tissue swelling, bony destruction, sequestrum and spread of the disease process to the extradural space, meninges, and brain parenchyma.

The surrounding meninges enhance intensely following contrast medium administration. The highly specific imaging characteristics of this technique can, in most cases, lead to a conclusive diagnosis.

MRI T1 and T2-weighted images show a high-signal-intensity soft tissue mass within the defect in bone projecting into the subgaleal and/or epidural spaces and show peripheral capsular enhancement on the contrast-enhanced image. MRI is more sensitive in detecting changes in the meninges, ventricular walls and parenchyma. A solitary discrete round or oval punched out osteolytic defect with minimal surrounding sclerosis in the frontoparietal bones is the commonest presentation of skull tuberculosis. The greater amount of cancellous bone at the frontal and parietal regions makes them the commonest sites of involvement, followed by the occipital and sphenoid bones.[9] The type of clinical presentation depends perhaps on the immunity of the individual. Systemic manifestations such as fever are rarely present and the appearance of fluctuant swelling, painless mass or ulcer with headache is the usual initial symptom. The swelling has a soft, fluctuant center with a surrounding firmly attached base, and can thus be differentiated from cephalohematoma. Microbiologic or histological confirmation is essential before starting chemotherapy because radiology and clinical findings are not confirmatory. Microscopic examination reveals caseation, langhans giant cells and multiple epitheloid and polymorphonuclear cells with proliferating vessels. The presence of caseous granulomas is most conclusive. Diagnosis is further supported by positive acid-fast bacilli staining in pus smear by using Ziehl Nelsen stain. Polymerase chain reaction has a high sensitivity and specificity in the diagnosis of tuberculosis. Isolation of mycobacteria from culture though tedious is diagnostic. The available treatment options are antituberculous therapy and surgery. Before the advent of modern antituberculosis chemotherapy, surgical excision was the mainstay of treatment. Current indications for surgery include the treatment of a subperiosteal abscess, removal of a sequestrum, lesions causing mass effect or when the patient has a large collection of caseous material. In such cases, complete excision of diseased bone and granulation tissue with extirpation of the sinus tract is recommended. A further indication would be excision biopsy of the lesion to establish the diagnosis, where there is high index of suspicion and other results are inconclusive. However, the treatment of tuberculous osteomyelitis is primarily medical, in the form of antituberculous chemotherapy along with appropriate antibiotics for secondary infection. Current trends advocate the administration of five drugs in the treatment of calvarial tuberculosis for
a period of at least twenty four months.[10] Because the role of anticonvulsants is controversial, its use in most cases is avoided. Tuberculosis of the skull, though rare, should be suspected in cases where persistent sterile discharge occurs from non healing wounds especially after local trauma. It is important to differentiate tubercular osteomyelitis from the more common pyogenic osteomyelitis because of the difference in treatment regimens.

Vijay I Sundar, Jitendra Shekhawat, Ashok Gupta, Virendra D Sinha

Department of Neurosurgery, Sawai ManSingh Medical College, Jaipur, Rajasthan, India

Address for correspondence: Dr. Vijay I Sundar, No. 6, Bharathi Nagar First Street, North Usman Road, T Nagar, Chennai - 600 017, Tamil Nadu, India. E-mail: drvijaysundar@gmail.com

References

1. Pandey AS, Surana A. Tuberculosis osteomyelitis of the bone flap following craniotomy; Indian J Tuberc 2011;58:129‑31.
2. Suchanda B, Alugolu R, Purohit A, Lakshmi V, Sundaram C. A rare concomitant tubercular and Fonsecaea pedrosoi fungal infection of the skull base. J Neurosci Rural Pracr 2012;3:189‑91.
3. Raut AA, Nagar AM, Muzumdar D, Chowla AJ, Nazlawar RS, Fattepurkar S, et al. Imaging features of calvarial tuberculosis: A study of 42 cases. AJNR Am J Neuroradial 2004;25:409‑14.
4. Bhandari R, Mandowara SL, Harish J. Tuberculous osteomyelitis of skull. Indian J Pediatr 1981;48:113‑5.
5. LeRoux PD, Griffin GE, Marsh HT, Winn HR. Tuberculosis of the skull-a rare condition: Case report and review of literature. Neurosurgery 1990;26:851‑5.
6. Binwale SN, Rajsheshkar V. Tuberculous osteomyelitis of bone flap following craniotomy for a glioma. Neurol India 2000;48:91‑2.
7. Jadhav RN, Paldane DA. Calvarial tuberculosis. Neurosurgery 1999;45:1345‑50.
8. Mulherjee KK, Kaushik R, Nada R, Khosla VK, Khandelwal N, Kak VK. Calvarial tuberculosis. Surg Neurol 2002;57:195‑202.
9. Patankar T, Varma R, Krishnan A, Prasad S, Desai K, Castillo M. Radiographic findings in tuberculosis of the calvarium. Neuroradiology 2000;42:518‑21.
10. Goel A, Pandya SK, Satoskar AR. Whither short course chemotherapy for tuberculous meningitis? Neurosurgery 1990;27:418‑21.