Hypermethylation of tumor suppressor genes is a risk factor for poor prognosis in ovarian cancer

A meta-analysis

Li-yuan Feng, PhD, Chang-xian Chen, MD, Li Li, MD, PhD∗

Abstract
Objective: DNA methylation is the earliest and most studied epigenetic modification in cancer. The literature reported that the abnormal methylation level of multiple genes was associated with poor prognosis in ovarian cancer. However, due to a small sample size, the results reported in the literature vary widely. In this study, the correlation between aberrant methylation level of genes and poor prognosis of ovarian cancer was reviewed in order to clarify the role of DNA methylation in the prognosis of ovarian cancer.

Methods: A systematic research of PubMed, EMBase, Cochrane Library, China Biology Medicine disc (CBMdisc), China National Knowledge Infrastructure (CNKI), Wanfang databases, and EMBASE was performed, and calculated the hazard ratio (HR) of overall survival (OS) and progression-free survival (PFS) and its 95% confidence interval.

Results: HR of the OS obtained of target genes was 2.32 (95% CI: 1.54–3.48, P = .000); HR of the PFS obtained of target genes was 1.318 (95% CI: 0.848–2.050, P = .220). HR of OS achieved by tumor suppressor genes was 3.09 (95% CI 1.80 – 5.30, P = .000).

Conclusion: Hypermethylation of tumor suppressor genes indicate poor prognosis of ovarian cancer.

Abbreviations: CBMdisc = China biology medicine disc, CNKI = China National Knowledge Infrastructure, MSP = methylation-specific polymerase chain reaction, OS = overall survival, PFS = progression-free survival, TSGs = tumor suppressor genes.

Keywords: methylation, ovarian cancer, prognosis, tumor suppressor genes

1. Introduction
Ovarian cancer is the most lethal gynecological malignancy due to the lack of biomarkers for early detection and treatment options.[1] Although there has been a lot of progress in surgery and adjuvant therapy, the survival rate of ovarian cancer has barely changed since the platinum treatment began 30 years ago.[2] The poor overall survival is caused by late presentation, poor surgical outcomes and the development of chemotherapy resistance.[3] It is widely accepted that size of residual disease following surgery, stage, pathological type, peritoneal metastasis, lymph node status, and morphological characteristics are prognostic factors in ovarian cancer.[4]

DNA methylation is the primary and most studied epigenetic modification.[5] Gene hypermethylation in cancer can silence gene expression and regulate biological processes, especially the tumor suppressor genes.[6,7] Aberrant DNA methylation is a common phenomenon in malignancy and the methylation profiles are altered in various tumors which might be associated with clinical outcomes.[8] Epigenetic modifications at specific CpG sites correlate with PFS and OS in ovarian cancer patients treated with conventional chemotherapeutics.[9–12] However, due to a small sample size, the results indicated in the literature vary greatly.[11,13] In this study, the correlation between abnormal methylation level of genes and poor prognosis of ovarian cancer was reviewed in order to elucidate the role of DNA methylation in the prognosis of ovarian cancer.

2. Materials and methods

2.1. Research strategy and selection criteria

Literature on target genes methylation level as a prognostic factor of ovarian cancer was researched from the PubMed, EMBase, Cochrane Library, CBM, CNKI, Wanfang databases, and EMBASE databases, and the search time was up to July 31, 2018. Search keywords such as “ovarian cancer or ovarian carcinoma or ovarian neoplasm or ovary cancer”, “prognosis or prognostic factor” and “DNA methylation or methylation” were combined search (shown in Table 5).

The articles included in this study should meet the following standards:

1. the study is written in English or Chinese;
2. The study reported specific data on ovarian cancer OS and PFS; and
3. the study detects gene methylation level in tissue, serum, or plasma.
Studies that meet the following criteria will be excluded:
1. the article is a review or comment;
2. the study lacks usable data, such as HR of OS and PFS; and
3. the study data were repeated with previous articles.

2.2. Data extraction and quality assessment
The included articles were extracted from the following data by 2 readers: first author, year of publication, country, sample size, methylation detection technology, target gene, cutoff value, follow-up time, and HRs for OS and PFS. Since meta-analysis of prognostic studies have not received a broad consensus on the quality of the literature, the necessity along with the credibility of the score are controversial and we have not been able to grade the literature obtained.\[14\]

2.3. Statistical analysis
The pooled HRs for OS and PFS were used to evaluate the association between methylation of the target genes and prognosis of ovarian cancer. Sensitivity analysis was used to eliminate a large difference of the study. Q test and I^2 statistics were utilized to detect the heterogeneity of the included studies. $I^2 > 50\%$ or $P < .05$ for the Q test were considered to be statistically heterogeneous, the random-effects model was utilized. Meta-regression and subset analysis was used to analyze sources of heterogeneity. Otherwise, a fixed-effects model was utilized. Publication bias was evaluated using the funnel plot and Begg test.\[15\] All of the analyses were performed using STATA (version 12.0). P values were 2 sides $< .05$ was regarded as statistically significant.

3. Results
3.1. Characteristic of study
Our study included 2174 ovarian cancer patients in 13 studies published between 2004 and 2017.\[12,16–27\] Twelve studies reported data on methylation and ovarian cancer OS,
Table 1
The main features of enrolled studies.

Author	Year	Sample size	Population	Sample Method	Gene	Type	Cut-off	Follow-up (month)
Strathdee	2005	41	England tissue	Bisulfite restriction analysis	MCJ	Unknown	>90%	100
Liao	2014	168	China tissue	QMSP	HST1H2BN	Unknow	M-index>618	84
Ho	2012	47	China tissue	MS-MLPA	HHN-1	tumor suppressor gene	>30%	median 56
Beeghly	2007	215	America tissue	MSP	IGF-II P2	tumor suppressor gene	---	34 (1,93)
Gifford	2004	138	England plasma	MSP	hMLH1	tumor suppressor gene	---	median 31.1 (0.6~114.1)
Ding	2015	112	Australia tissue	MSP	DLEC1	tumor suppressor gene	---	median 52.4
Montavon	2012	80	Australia tissue	MSP	DLEC1	tumor suppressor gene	---	150
Zhou	2014	179	Germany tissue	MSP	OPOML	tumor suppressor gene	Unreported	47 (6~60)
Beeghly	2007	215	America tissue	MSP	IGF-II P2	tumor suppressor gene	---	36
Montavon	2012	80	Australia tissue	MSP	DLEC1	tumor suppressor gene	---	150
Zhou	2014	179	Germany tissue	MSP	BRCA1	tumor suppressor gene	---	median 21.6 (1.3~90.5) for group I and 14.5 (2.5~62.8) for group II
Flanagan	2013	880	England plasma	Bisulfite sequencing	SFN	oncogene	mean	mean 18

Table 2
HRs for target genes methylation.

Study	Gene	Sample size	OS (95% CI)	HR (95% CI)
			P	
		High level/ Methylated	Low level/ Unmethylated	Hypermethylation

3.2. Meta-analysis of target genes methylation and OS/PFS

Due to heterogeneity (OS: $I^2=64.8\%$, $P=.001$; PFS: $I^2=79.4\%$, $P=.001$), the random model was used in our meta-analysis. Target genes hypermethylation indicates a poor overall survival in ovarian cancer patients (HR = 2.32, 95% CI: 1.54–3.48, $P=.000$), (forest map is shown in Fig. 2A). Target genes of hypermethylation and PFS were not statistically significant (HR = 1.318, 95% CI: 0.848–2.05, $P=.220$), (forest map is shown in Fig. 2B). Due to the different biological functions of oncogenes and tumor suppressor genes (TSGs), we conducted a meta-analysis of tumor suppressor genes alone. The result...
Figure 2. A. Forest plots of the correlation between gene methylation and OS in ovarian cancer patient. B. Forest plot of the correlation between gene methylation and PFS in ovarian cancer patient. C. Forest plot of the correlation between tumor suppressor genes methylation and OS in ovarian cancer patient. D. Subgroup analysis. OS = overall survival, PFS = progression-free survival.
indicates that tumor suppressor genes hypermethylation indicates a poor overall survival in ovarian cancer patients (HR=3.09, 95% CI 1.80–5.30, \(P=0.000\)) (forest map is shown in Fig. 2C) and no heterogeneity was found in this meta-analysis (OS: I² = 49.4%, \(P=0.079\)). Due to the small size of the studies on oncogenes, this study does not perform the meta-analysis.

3.3. Heterogeneity source analysis

We used meta-regression and subset analysis to explore heterogeneity sources in the study. We conducted a multiple regression model with 7 variables (Country, Sample Type, Method, Methylation level, Gene type, Year, and Sample size) on OS, But the results show that these variables were not the source
of heterogeneity (shown in Table 3, BS method: REML). Due to the small size of the studies on PFS, this study did not perform the meta-regression analysis. We performed a subset analysis to further analyze the sources of heterogeneity according to country (Asians and other countries), method (MSP and other methods), year (before 2010 and after 2010) and n (n < 100 and n ≥ 100).

No heterogeneity exists in MSP subset in subgroup analysis, all other subgroups had heterogeneity and were calculated using a random-effects model (I² = 0.0%, P = .477 in MSP subgroup).

The HR of the target genes hypermethylation and OS in Asian population was 3.49 (95% CI = 1.94–6.28, P = .000) and 1.57 (95% CI = 0.90–2.75, P = .112) in people of other countries. The HR of the target genes methylation and OS in MSP subgroup was 1.70 (95% CI = 1.33–2.17, P = .000) and 3.96 (95% CI = 1.48–10.54, P = .006) in other methods subgroup. The HR of the target genes methylation and OS in before 2010 subgroup was 1.99 (95% CI = 1.18–3.34, P = .009) and 2.64 (95% CI = 1.42–4.91, P = .002) in after 2010 subgroup. The HR of the target genes methylation and OS in n < 100 subgroup was 3.25 (95% CI = 1.19–8.89, P = .021) and 1.88 (95% CI = 1.34–2.64, P = .000) in n ≥ 100 subgroup. Tumor suppressor genes studies did not perform the meta-regression because there was no heterogeneity and insufficient observations.

3.4. Publication bias and sensitivity analysis

The publication bias was detected by funnel plot and Begg test (shown in Fig. 3), the results show that the funnel plot was asymmetrical and the Begg test P = .003 (<.05), showing that all target genes had publication bias in meta-analysis of OS. But no publication bias was found for the tumor suppressor genes studies used for the meta-analysis for overall survival (Begg test, P = .133). Sensitivity analysis was performed on a case-by-case basis for all included studies (shown in Fig. 4). The result indicates that there was no obvious influence of every individual study on the pooled HR. Publication bias and sensitivity analysis were not performed for this study due to the small size of the studies on PFS.

4. Discussion

Since genetic factors cannot be reversed, the potential reversibility of epigenetic mechanisms makes them attractive candidates for the prevention and treatment of ovarian carcinoma. Increasing evidence has shown that epigenetic alterations including DNA methylation play a significant role in cancer, from the silencing of tumor suppressors to the activation of oncogenes and the promotion of metastasis. The majority of studies assessing the
methylation status of TSGs in ovarian cancer almost focused on a single gene. However, hypermethylation in ovarian cancer has been found to be associated with the inactivation of almost every pathway including DNA repair, cell cycle regulation, apoptosis, cell adherence, and detoxification pathways.\cite{28,29}

Our meta-analysis assessed the role of target genes methylation as a prognostic factor in ovarian cancer. The result indicates that tumor suppressor genes hypermethylation indicates a poor overall survival in ovarian cancer patients (HR = 3.09, 95% CI 1.80–5.30), it suggests that tumor suppressor genes hypermethylation might be promising markers for predicting the survival rate of ovarian cancer. In this meta-analysis, no publication bias was found for the tumor suppressor genes studies on overall survival (Begg test, \(P = .133 \)). This result provides a new idea for finding a combined gene model for prognostic factors in ovarian cancer. For 12 studies which report genes methylation as a prognostic factor of OS, a multiple regression found no source of significant heterogeneity. Subgroup analysis showed that the HR value of Asian population subgroup (HR = 3.49) was higher than that in people of other countries subgroup (HR = 1.57), suggesting that target genes methylation status as prognostic factor in ovarian cancer for Asian population is more valuable. In addition, methylation sequencing results have huge variation even coming from the same sources. Subgroup analysis of methods showed this difference. This has caused that even for the same gene, literature reported different levels of methylation with poor prognosis in ovarian cancer. Different methylation detection methods which in determining a site are high or low methylation have no standardized reference value and repetition rate was low. It needs a further study on how

![Figure 4. Sensitivity analysis of 12 studies included in this meta-analysis for OS. OS = overall survival.](image)

Gene	Methylation status in drug-resistant tissue/cell	Expression of gene	Drugs	Regulation manner of drug resistance	Refs.
MCJ	Hypermethylation	Silenced expression	Cisplatin, paclitaxel	Drug delivery system, regulator of mitochondrial respiration	\cite{23,25,24}
HST1H2BN	Hypermethylation	–	Cisplatin	Structural unit of chromosome	\cite{21}
HIN-1	Hypermethylation	Downregulation	Paclitaxel, cisplatin	Cell growth, apoptosis, AKT signalling pathway	\cite{17}
CA1N1A	Hypermethylation	–	–	–	\cite{17}
BLU	Hypermethylation	Downregulation	Paclitaxel	Apoptosis, colony formation	\cite{22}
HERV-K	Hypermethylation	Upregulation	–	–	\cite{19,28,32–33}
GPCML	Hypermethylation	Downregulation	–	–	\cite{12}
DLEC1	Hypermethylation	Downregulation	–	–	\cite{18,20,34–37}
FANCf	Hypermethylation	Upregulation	Alkylating agent, cisplatin	Cell cycle, migration, DNA mismatch repair, apoptosis, FA/BRC A pathway	\cite{25}
hMLH1	Hypermethylation	Downregulation	Carboplatin, cisplatin, taxol	DNA mismatch repair, microsatellite instability, apoptosis	\cite{27,38–39}
IGF-II P2	Hypermethylation	–	Fluorouracil and cisplatin	Cell proliferation, apoptosis, AKT signalling pathway	\cite{26,40–41}
MLK3	Hypomethylation	–	–	–	\cite{20,42–43}
BRCA1	Hypermethylation	Upregulation	Cisplatin	DNA mismatch repair	\cite{25}
SFN	Hypomethylation	–	–	–	\cite{24}
to find stable and reliable markers from these tags. In the future, more standardized standards and testing methods will be needed for the detection of methylation. There were some limitations to our study. Firstly, included studies only included published in English and Chinese, ignoring the published studies in other languages. Secondly, there was some heterogeneity in the included literature. Although meta regression did not find the source of heterogeneity, subset analysis could explain some of the sources of heterogeneity. Thirdly, due to the lack of literature reports, more studies are necessary to confirm the conclusions of PFS in our meta-analysis.

In summary, although there are some defects in this study, the following conclusions can be drawn: tumor suppressor genes promoter hypermethylation indicates a poor overall survival in ovarian cancer patients. Tumor suppressor genes hypermethylation is an effective biomarker for predicting the prognosis of ovarian cancer. At the same time, we consider that gene methylation levels exert biological functions by regulating gene expression.

Chemotherapy resistance is one of the causes of poor prognosis in patients with ovarian cancer. Studies have shown that hypomethylation agents can reverse the sensitivity of ovarian cancer patients to chemotherapy. So what is the mechanism of these genes participate in drug resistance affecting prognosis? To explore this mechanism, we summarized the biological mechanism of the target genes for chemotherapy resistance in our study (Shown in Table 4). Restoration of the function of these methylation genes would be an important step to develop new treatment strategies for ovarian cancer patients with genes hypermethylation.

Author contributions

Data curation: Li-yuan Feng, Chang-xian Chen.
Writing – original draft: Li-yuan Feng.
Writing – review & editing: Li Li.

Li-yuan Feng orcid: 0000-0002-0699-0645.

References

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30.
[2] Coleman MP, Forman D, Bryant H, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 2011;377:127–38.
[3] Suh W, Kobel M, Longacre TA, et al. Hormone-receptor expression and ovarian cancer survival: an ovarian tumor tissue analysis consortium study. Lancet Oncol 2013;14:853–62.
[4] Zhang M, Zhuang G, Sun X, et al. Risk prediction model for epithelial ovarian cancer using molecular markers and clinical characteristics. J Ovarian Res 2015;8:67.
[5] Bird A, Taggart M, Frommer M, et al. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 1985;40:91–9.
[6] Carrió E, Suelves M. DNA methylation dynamics in muscle development and disease. Front Aging Neurosci 2015;7:19.
[7] Huang T, Chen X, Hong Q, et al. Meta-analyses of gene methylation and smoking behavior in non-small cell lung cancer patients. Sci Rep 2015;5:8897.
[8] Wang S, Wu W, Claret FX. Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 2017;12:187–97.
[9] Su HY, Lai HC, Lin YW, et al. An epigenetic marker panel for screening and prognostic prediction of ovarian cancer. Int J Cancer 2009;124:387–93.
[10] Chou JL, Su HY, Chen LY, et al. Promoter hypermethylation of FBXO32, a novel TGF-beta/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab Invest 2010;90:414–23.
[11] Dai W, Teodoridis JM, Zeller C, et al. Systematic CpG islands methylation profiling of genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival. Clin Cancer Res 2011;17:4052–62.
[12] Montavon G, Gless B, Warton K, et al. Prognostic and diagnostic significance of DNA methylation patterns in high grade serous ovarian cancer. Gynecol Oncol 2012;124:582–8.
[13] Barton CA, Hacker NF, Clark SJ, et al. DNA methylation changes in ovarian cancer: implications for early diagnosis, prognosis and treatment. Gynecol Oncol 2008;109:129–39.
[14] Zhang L, Rietzdorf S, Wu G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 2012;18:5701–10.
[15] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
[16] Chiang YC, Chang MC, Chen PJ, et al. Epigenetic silencing of BLU through interfering apoptosis results in chemoresistance and poor prognosis of ovarian serous carcinoma patients. Endocr Relat Cancer 2013;20:213–27.
[17] Ho CM, Huang CJ, Huang CY, et al. Promoter methylation status of HIN-1 associated with outcomes of ovarian clear cell adenocarcinoma. Mol Cancer 2012;11:53.
[18] Dong J, Wang G, Shi WX, et al. Promoter hypermethylation of FANC E and susceptibility and prognosis of epithelial ovarian cancer. Reprod Sci 2016;23:24–30.
[19] Zhou F, Tao G, Chen X, et al. Methylation of OPCML promoter in ovarian cancer tissues predicts poor patient survival. Clin Chem Lab Med 2014;52:735–42.
[20] Ignatov T, Eggemann H, Costa SD, et al. BRCA1 promoter methylation is a marker of better response to platinum-taxane-based therapy in sporadic epithelial ovarian cancer. J Cancer Res Clin Oncol 2014;140:1437–63.
[21] Liao YP, Chen LY, Huang RL, et al. Hypomethylation signature of tumor-initiating cells predicts poor prognosis of ovarian cancer patients. Hum Mol Genet 2014;23:1894–906.
[22] Iramaneerat K, Rattanatunyong P, Khemapech N, et al. HERV-K hypomethylation in ovarian clear cell carcinoma is associated with a poor prognosis and platinum resistance. Int J Gynecol Cancer 2014;21:151–7.
[23] Straathede G, Vass JK, Oen KA, et al. Demethylation of the MCI gene in stage III/IV epithelial ovarian cancer and response to chemotherapy. Gynecol Oncol 2003;97:898–903.
[24] Flanagan JM, Wilhelm-Benartzi CS, Metcalf M, et al. Association of somatic DNA methylation variability with progression-free survival and toxicity in ovarian cancer patients. Ann Oncol 2015;24:2813–8.
[25] Gifford G, Paul J, Vasey PA, et al. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 2004;10:4420–6.
[26] Phelps DL, Borley JV, Flower KJ, et al. Methylation of MYLK3 gene promoter region: a biomarker to stratify surgical care in ovarian cancer in a multicentre study. Br J Cancer 2017;116:1287–93.
[27] Beeghly AC, Katsaros D, Wiley AL, et al. IGF-II promoter methylation and ovarian cancer prognosis. J Cancer ResClin Oncol 2007;93:179–83.
[28] Harle KM, Neveu W, Dietze O, et al. Methylation-controlled J protein promotes c-Jun degradation to prevent ABCB1 transporter expression. Mol Cell Biol 2007;27:2952–66.
[29] Zhao L, Li N, Yu JK, et al. RNAi-mediated knockdown of FANC E suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells. Braz J Med Biol Res 2014;47:24–34.
[30] Fang F, Balch C, Schilder J, et al. A phase I and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 2010;116:4043–53.
[31] Fernandez-Cabezudo MJ, Faour I, Jones K, et al. Deficiency of mitochondrial modulator MCJ promotes chemoresistance in breast cancer. JCI Insight 2016;1:

[32] Xu XC. Tumor-suppressive activity of retinoic acid receptor-beta in cancer. Cancer Lett 2007;253:14–24.

[33] McKie AB, Vaughan S, Zanini E, et al. The OPCML tumor suppressor functions as a cell surface repressor-adaptor, negatively regulating receptor tyrosine kinases in epithelial ovarian cancer. Cancer Discov 2012;2:156–71.

[34] Wu SY, Sood AK. New roles opined for OPCML. Cancer Discov 2012;2:115–6.

[35] Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 2003;9:568–74.

[36] D’Andrea AD. Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 2010;362:1909–19.

[37] Litman R, Gupta R, Brash RM Jr, et al. BRCA-FA pathway as a target for anti-tumor drugs. Anticancer Agents Med Chem 2008;8:426–30.

[38] Kowal P, Gurtan AM, Stuckert P, et al. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem 2007;282:2047–55.

[39] Li B, Tsao SW, Chan KW, et al. Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progression and chemoresistance-implications for IGF-II and IGF-IR-targeted therapy. Clin Cancer Res 2014;20:2651–62.

[40] Toretsky JA, Helman LJ. Involvement of IGF-II in human cancer. J Endocrinol 1996;149:367–72.

[41] Chan JY, Takeda M, Briggs LE, et al. Identification of cardiac-specific myosin light chain kinase. Circ Res 2008;102:571–80.

[42] Connell LE, Helfman DM. Myosin light chain kinase plays a role in the regulation of epithelial cell survival. J Cell Sci 2006;119:2269–81.

[43] Stordal B, Timms K, Farrell A, et al. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol 2013;7:567–79.