RESEARCH ARTICLE

Acceptability measures of water, sanitation and hygiene interventions in low- and middle-income countries, a systematic review

Rose Hosking†‡, Suji Y O’Connor†‡, Kinley Wangdi†, Johanna Kurscheid‡, Aparna Lal‡‡

1 National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Acton, Australia, 2 Swiss Tropical and Public Health Institute, Associate Institute of University of Basel, Allschwil, Switzerland

†‡ These authors are co-first authors on this work.
* Aparna.lal@anu.edu.au

Abstract

Background

Inadequate access to water, sanitation, and hygiene (WASH) is an environmental risk factor for poor health outcomes globally, particularly for children in low- and middle-income countries (LMIC). Despite technological advancements, many interventions aimed at improving WASH access return less than optimal results on long term impact, efficacy and sustainability. Research focus in the ‘WASH sector’ has recently expanded from investigating ‘which interventions work’ to ‘how they are best implemented’. The ‘acceptability’ of an intervention is a key component of implementation that can influence initial uptake and sustained use. Acceptability assessments are increasingly common for health interventions in clinical settings. A broad scale assessment of how acceptability has been measured in the WASH sector, however, has not yet been conducted.

Methods/Principal findings

We conducted a systematic literature review of intervention studies published between 1990 and 2021 that evaluated the acceptability of WASH interventions in LMIC settings. Using an implementation science approach, focused outcomes included how acceptability was measured and defined, and the timing of acceptability assessment. We conducted quality assessment for all included studies using the Cochrane Risk of Bias tool for randomised studies, and the Newcastle-Ottawa Scale for non-randomised studies.

Of the 1238 records; 36 studies were included for the analysis, 22 of which were non-randomised interventions and 16 randomized or cluster-randomized trials. We found that among the 36 studies, four explicitly defined their acceptability measure, and six used a behavioural framework to inform their acceptability study design. There were few acceptability evaluations in schools and healthcare facilities. While all studies reported measuring WASH acceptability, the measures were often not comparable or described.
Conclusions
As focus in WASH research shifts towards implementation, a consistent approach to including, defining, and measuring acceptability is needed.

Author summary
The COVID-19 pandemic highlighted the need for sustainable and effective water, sanitation and hygiene (WASH) interventions in low and middle-income countries (LMIC). There is a significant body of literature measuring the impact of WASH interventions on health outcomes, such as diarrhoea or soil-transmitted helminth infections. The importance of behavioural determinants is also recognized and measured. However, many WASH interventions are not sustainable long-term. To improve this, research focus in the WASH sector has recently shifted towards implementation. This includes a significant number of process evaluations that focus on how well programs are implemented.

A key component of implementation that has been recognized for health interventions in clinical settings is the initial and ongoing ‘acceptability’ to the recipient population. Sekhon et al. developed a theoretical framework of acceptability to capture the aspects of acceptability that may influence intervention uptake and sustained use. This is the first review of acceptability of WASH interventions. The outcomes of this review add new evidence on how and why it has been measured, and the potential place of acceptability evaluations in WASH to improve the impact and sustainability of interventions. The findings of this review may be useful for WASH stakeholders including intervention researchers, implementers, and recipients.

Introduction
Inadequate access to water, sanitation, and hygiene (WASH) is an environmental risk factor for poor health outcomes globally, particularly for children in low- and middle-income countries (LMIC) [1]. Adverse health outcomes associated with poor WASH include worm, enteric, respiratory, skin and ear infections [2]. Despite technological advancements, we remain short of achieving universal access to ‘safe’ WASH by 2030; goal 6 of the United Nations Sustainable Development Goals [3]. WASH interventions, such as infrastructure provision (e.g. taps, latrines, soap), and education programs aimed at behaviour change are critical for achieving this goal and have been implemented widely in low-resource settings [4]. However, many interventions return less than optimal results on long term impact, efficacy and sustainability [5].

A significant body of WASH intervention research focuses on which interventions ‘work’. This is commonly determined by changes in health or behavioural outcomes [6,7]. Examples of health metrics include diarrheal incidence, worm infections [6,7], treatment outcomes and growth rates in children [8]. Changes in WASH-related behaviour, and attitudes towards a health outcome are also frequently assessed through self-reported ‘knowledge, attitudes and practice’ surveys [9]. Other measured outcomes include patient satisfaction [10], absenteeism and cognitive performance in children [8]. A framework for incorporation of behavioural determinants into WASH intervention design and evaluation has also been developed through systematic review [11].
To improve impact and sustainability, research focus in the 'WASH sector’ has recently expanded from investigating 'which interventions work' to 'how they are best implemented’ [12]. The increased focus on implementation has led to the promotion of community-based behaviour change approaches and the inclusion of psychosocial theory in WASH intervention delivery [9]. The ‘acceptability’ of an intervention is a key component of implementation [13]. This is because acceptability can influence initial uptake, and sustained use of an intervention [14]. Sekhon et al. recently developed the theoretical framework of acceptability (TFA) for healthcare interventions [15]. The TFA outlines seven component constructs of acceptability: “affective attitude, burden, perceived effectiveness, ethicality, intervention coherence, opportunity costs, and self-efficacy.” While acceptability assessments of healthcare interventions are increasingly common in clinical settings [15], their place in WASH has not yet been reviewed.

To address this gap, the aim of this review is to synthesise the existing literature on the acceptability measures of WASH interventions and methods of measurement in resource poor settings. We achieve this by an implementation science approach to address the following questions: (1) In what range of settings has the acceptability of WASH interventions been evaluated? (2) What methods have been used to evaluate acceptability? (3) How has acceptability been defined in these different contexts? In answering these questions, we make recommendations on the utility and current methods for evaluating the acceptability of WASH interventions.

Methods

We designed the review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Inclusion and exclusion criteria can be found in Table A in S1 Table.

Search strategy

We searched online databases for WASH intervention studies that purported to measure acceptability published between January 1990 and December 2021. The search was restricted to articles published in the English language (Box 1).

Box 1. Databases and search terms for the systematic review on acceptability of WASH interventions

We searched PubMed, Web of Science, Scopus and the Cochrane Collaboration databases using the following key words in the title, abstract or topic:

(WASH OR "water, sanitation and hygiene” OR water OR sanitation OR hygiene OR toilet OR latrine OR handwash OR "drinking water") AND intervention AND (accept*)

Study selection

One author (RH) removed duplicates and conducted the initial title scan. The title and abstracts were independently screened by two authors (RH, SYO). A full-text review of retained articles was then conducted by two authors (AL, KW). Any conflicts were resolved by discussion between four authors (AL, KW, RH, SYO). Forward and backward citation analysis and hand-search of reference lists were undertaken for all included studies, and relevant reviews and meta-analyses identified.
Data analysis and quality assessment

Two authors (RH, SYO) extracted data using standardized extraction tables. The pro forma included acceptability definition, method of measurement, timing, use of the acceptability assessment and whether the study was a precursor to further randomised controlled trials (RCTs) or implementations. We undertook quality assessment for all included studies. The Cochrane risk-of-bias tool (ROB-2) was used for randomised studies [16]; degree of bias was determined using the pre-existing criteria set out by Cochrane. Non-randomised studies were assessed using an adapted version of the Newcastle-Ottawa Quality Assessment Scale (NOS) developed by Modesti and Colleagues [17]. NOS scores were considered as follows: 0–3 low quality, 4–6 moderate quality, and 7–10 high quality.

Results

Search results

The initial search strategy generated 1238 articles, after removing duplicates and screening non-relevant abstracts, 87 full text articles were assessed for eligibility. Of the 87 studies included for full text review, 36 met the inclusion criteria (Fig 1).

Designs, settings and WASH interventions

The majority (22/36) of identified studies were non-randomized designs including cross-sectional, case-control, household trials (aka trials of improved practice) and pilot and feasibility studies (Table 1). The remaining 14 studies were RCT or cluster-RCTs (Table 2). Of the included studies, 29 were household-level interventions. Most of these studies (22/29) were implemented in rural areas, but three of these also occurred in urban areas and seven in urban areas only. All household studies assessed physical interventions; in ten cases this was combined with a health education component. Five of the household studies also included a community-level intervention aimed at more than one household.

Five studies evaluated the acceptability of a community-level intervention only. Three of these were ‘health education’ interventions involving community workshops and education sessions and two were community water interventions. We identified two WASH intervention studies that measured acceptability in schools or healthcare facilities. The school study evaluated a drinking water hardware and hygiene education intervention in rural and urban Bangladesh [18]. The healthcare study occurred in a Vietnamese paediatric intensive care unit and evaluated the acceptability of visual reminders for hand hygiene [19].

Methods of acceptability evaluations

The prospective (i.e. anticipated) acceptability of the intervention was measured in 11 studies. Of these, six also measured retrospective (i.e. experienced) acceptability. All of the prospective evaluations used either focus group discussions, interviews or surveys (Tables 1 and 2). Prospective evaluation was used to make changes to the design, communication, or implementation of the WASH interventions for subsequent randomized controlled trials in seven cases. The remaining five studies made recommendations for changes to the intervention without further trialling. Three found the intervention to be acceptable and recommended wider implementation (Table A and B in S2 Table).

The remaining 27 studies evaluated retrospective acceptability. The timing of these evaluations ranged from one day to four years later (Table A and B in S2 Table). The most-common follow-up times were 3, 6 and 12 months after the intervention was initiated. Three of the studies that conducted retrospective evaluations were ‘pilot and feasibility studies’ undertaken in...
Fig 1. PRISMA diagram of search and included articles.

https://doi.org/10.1371/journal.pntd.0010702.g001
Table 1. Research articles published January 1990- December 2021 where the acceptability of water, sanitation or hygiene intervention was evaluated, by year– non-randomized designs.

Study	Design	Setting	Level	Intervention type	Intervention	Acceptability measure^a	Measurement method	Timing	Quality
Aikhomu et al. (2000) [27]	Case-control	Rural	Households	Physical intervention	Communal water filtration units made from metal oil drums with a filter cloth inserted in the top and spigots at the bottom.	Perceptions of positive and negative features	Survey	Retrospective	Moderate
Rainey et al. (2005) [28]	Cross-sectional	Rural	Households	Physical intervention	Solar water disinfection (SODIS) in a village in Nepal.	Based on Health Belief Model	Survey	Retrospective	Moderate
Simms et al. (2005) [29]	Cross-sectional	Rural	Households	Physical intervention	Follow up study of improved pit latrines provided as part of a trachoma control programme in Gambia.	Satisfaction (happy/ unhappy)	Interview	Retrospective	Moderate
Rose et al. (2006) [30]	Cohort	Urban	Households	Physical intervention	100 children were assigned to receive drinking water subject to SODIS with 100 age and sex matched controls.	Feelings towards the intervention, ease, cost, limitations	Focus Group + Survey + Interview	Retrospective	Moderate
Diallo et al. (2007) [31]	Cross-sectional	Rural	Households	Health Education + Physical intervention	Installed latrines in Zinder, Niger & health education on personal hygiene and environmental sanitation.	Reported advantages of latrine use (vs. disadvantages)	Interview	Retrospective	Moderate
Hulland et al. (2013) [32]	Household trials	Urban + Rural	Households	Physical intervention	Assessment of seven candidate handwashing technologies during two iterative phases.	Satisfaction, willingness to use, and perceived appropriateness of handwashing station	Interview	Retrospective	High
Francis et al. (2015) [33]	Cross-sectional	Rural	Community	Physical intervention	The Skyhydrant, a high throughput membrane filter for drinking water installed in 5 kiosks in 3 villages.	Support for the intervention, willingness to pay for clean water	Focus group + Interview	Retrospective	Moderate
Hogarh et al. (2015) [34]	Cross-sectional	Rural	Households	Physical intervention	Point-of-use water filter, the ‘biosand filter’.	Willingness to purchase, interest	Interview	Prospective	Moderate
Kundu et al. (2016) [22]	Cross-sectional	Rural	Households + Community	Physical intervention	Three safe drinking water interventions: the arsenic removal household (Sono) filter, community deep tube well, and an improved dug well.	Authors’ definition of social acceptance: “the willingness of users to receive and use a technology”.	Focus group + Interview	Retrospective	Moderate
Ashraf et al. (2017) [35]	Household trials	Rural	Households	Health Education + Physical intervention	Non-randomized trial of strategies to promote soapy water for handwashing. Three intervention arms: promotion only, promotion and handwashing stations and promotion, stations, and detergent refills.	Derived from IBM-WASH: convenience, ease of use, perceived value and sharing, motivations for use, experiences, and barriers.	Focus group + Interview	Retrospective	High

(Continued)
Study	Design	Setting	Level	Intervention type	Intervention	Acceptability measurea	Measurement method	Timing	Quality	
Hussain et al. (2017) [23]	Household trials	Rural	Households	Physical intervention	Three locally available child potty models. "An acceptable behaviour . . . in which participants are willing to adopt and practice, that is feasible, practical, beneficial, and can be adjusted through negotiation"	Focus group + Interview	Prospective & Retrospective	Moderate		
Yeasmin et al. (2017) [36]	Pilot & feasibility	Urban + Rural	Households + Community	Health Education + Physical intervention	Behaviour change communication discouraging rubbish disposal in communal toilets and installation and promotion of rubbish bins next to toilets. Derived from IBM-WASH: perceptions, benefits and barriers.	Focus group + Interview	Prospective & Retrospective	Moderate		
Crider, et al. (2018) [37]	Cross-sectional	Urban	Households	Physical intervention	Drinking water chlorination, 25 tasted sodium hypochlorite and 25 tasted NaDCC.	Perceived taste acceptability threshold	Survey	Prospective	High	
Sultana et al. (2018) [38]	Pilot & feasibility	Urban	Households	Health Education + Physical intervention	The 'soapy water bottle' handwashing system was introduced to households and promoted by community health promoters and a supervisor. Monthly meeting were held to educate about key handwashing times. Derived from IBM-WASH: satisfaction	Focus group + Interview	Retrospective	Moderate		
Yeasmin et al. (2019) [18]	Pilot & feasibility	Urban + Rural	Schools	Health Education + Physical intervention	A 1 month intervention in 4 schools consisting of POU drinking water hardware, teacher training on drinking chlorinated water, cue cards and visual aids. None	Focus Group + Interview + Survey	Prospective & Retrospective	Moderate		
Alam et al. (2020) [39]	Mixed-methods	Urban’	Households + Community	Physical intervention	Piped water chlorination program and household level chlorine tablet distribution	Barriers and motivations.	Focus group + Interview	Retrospective	Moderate	
Bitew et al. (2020) [40]	Cross-sectional	Urban + Rural	Households	Physical intervention	SODIS was implemented in some villages in an earlier trial and control villages where it was not implemented. Cultural acceptance, barriers and enablers	Focus group + Interview	Retrospective	Moderate		
Campbell et al. (2020) [19]	Mixed-methods	Urban	Healthcare	Health Education	Visual reminder tools for Hand Hygiene and brief verbal instruction aimed at families in paediatric intensive care unit	None	Focus group + Survey	Prospective & Retrospective	Moderate	
Guo et al. (2021) [41]	Qualitative	Rural	Households	Physical intervention	New sanitation chains in rural China. Perceived social acceptability	Survey	Retrospective	Moderate		
preparation for further randomized controlled trials or wider implementations of the evaluated intervention. Retrospective evaluation was used to make changes to, or select the best, intervention design for subsequent trials or implementation in five cases (Table A in S2 Table). One used a retrospective evaluation to explain the results of an RCT with low uptake and adherence [20]. The remaining studies used the evaluations to make recommendations for further use or changes to future implementations without specified subsequent trials or implementations.

Defining acceptability

Across the 36 included studies, four explicitly defined their acceptability measure: ("things liked and not liked" [21]; "social acceptance, i.e., the willingness of users to receive and use a technology" [22]; “An acceptable behaviour is one in which participants are willing to adopt and practice, that is feasible, practical, beneficial, and can be adjusted through negotiation” [23]; and “participant’s satisfaction with use of the models” [24]). For the remaining studies, we extracted implicit definitions based on provided interview/survey results or terminology used by the authors. These fell into six distinct but overlapping groups: social/cultural acceptability, behavioural models, measures of use (uptake, compliance, adherence, and adoption), willingness (to use or purchase), barriers and motivations, and feelings towards the interventions (Fig 2).

Five studies based their evaluation on health behaviour models, four of which describe the Integrated Behavioural Model for water, sanitation and hygiene (IBM-WASH) [25]. The remaining study considered the Health Belief Model [26]. For explanation of reviewers grouping of implied definitions, see Table A in S4 Table.

Risk of bias

All 14 randomised studies were found to be at risk of bias based on the Cochrane RoB assessment [16]. Seven were at high risk of bias, and seven had some concerns relating to bias.
Table 2. Research articles published January 1990- December 2021 where the acceptability of water, sanitation or hygiene intervention was evaluated, by year–randomized designs.

Study	Design	Setting	Level	Intervention type	Intervention	Acceptability measure*	Measurement method	Timing	Risk of Bias
Firth et al. (2010) [45]	RCT	Rural	Households	Health Education + Physical intervention	Hygiene education and 4 water-purification intervention arms: closed valve container, *M. oleifera* seeds, chlorine or control.	Satisfaction, interest, compliance, preference	Survey	Prospective & Retrospective	High
McGuigan et al. (2011) [46]	RCT	Rural	Households	Physical intervention	SODIS in the intervention arm and no treatment of drinking water in the control group.	Use after 6 months; taken to be culturally acceptable (compliance)	Interview	Retrospective	Some concerns
Habib et al. (2013) [47]	Cluster-RCT	Rural	Households + Community	Health Education + Physical intervention	Intervention group received a “diarrhoea pack” containing zinc tablets, water purification tablets and an education leaflet via community health workers and the control group received existing health care provisions only.	Usage, perceived effectiveness, willingness to purchase	Survey	Retrospective	High
Rajaraman et al. (2014) [21]	RCT	Rural	Community	Health Education	Health promotion campaign of ‘SuperAmma’ targeted at children; included a cartoon, posters, rewards and certificates for children who pledged to practice hand washing with soap, community events.	"Things liked and not liked"	Interview	Retrospective	Some concerns
Biswas et al. (2017) [48]	RCT	Rural	Households	Health Education + Physical intervention	One group received a handwashing station, the other received a promotion encouraging self-creation of a handwashing station.	Motivations, ease of use, costs, barriers, likes/dislikes	Focus group + Interview	Retrospective	Some concerns
Biran et al. (2018) [49]	RCT	Urban	Community	Health Education	An intervention arm received an inclusiveness training workshop for community-led total sanitation facilitators to improve access to sanitation for people with disability, controls did not receive this inclusiveness training.	Whether it was offensive, willingness to do actions	Interview	Retrospective	High
Ditai et al. (2018) [50]	Pilot & feasibility	Rural	Households	Health Education + Physical intervention	Three different ABHR formulations: plain, bitterant and perfumed in 100mL bottles. Used for 5 days and followed by a 2 week ‘washout’ period.	Overall satisfaction	Survey	Retrospective	High
McGuiness et al. (2018) [20]	RCT	Rural	Households	Physical intervention	Sequential introduction of piped riverbank filtration-treated drinking water and control was initial delivery of piped untreated water. Hygiene and safe water storage education given before study commencement.	Based on COB-M to identify barriers and enablers	Focus group + Interview	Retrospective	Some concerns

(Continued)
Among the 28 non-randomised studies, only four were classed as ‘high quality’ in accordance with the modified Newcastle-Ottawa Scale [17] (Table A, B and C in S3 Table).

Discussion

There is a substantial gap in the inclusion of consistent measures of acceptability across WASH intervention studies. This review identified 36 articles evaluating the acceptability of WASH interventions in LMIC published between 1990 and 2021. These studies comprise a fraction of WASH interventions implemented in the same time period [9,12]. Given the significant amount of resources that have already been spent on WASH service delivery [56], and the amount required to reach universal access by 2030 [57], it is important to maximise the effectiveness of WASH by considering acceptability as a key component that must be evaluated to increase sustainability [13].

There were few acceptability studies in schools and healthcare settings. While schools and healthcare facilities are priority targets for WASH interventions in LMIC [58], the lack of acceptability evaluations in these settings is stark. Infections due to inadequate WASH can spread quickly in these settings [59–61]. A lack of WASH effectiveness evaluations in healthcare facilities and schools was recently highlighted in a global evidence and gap map [9]. Acceptability evaluations that involve school children and healthcare workers in co-design
have the potential to encourage hygiene and sanitation related behaviour at a large scale and drive sustainability of WASH interventions. Schools and healthcare facilities may also be less homogenous than single communities, so they are vital conduits to spread health promotion messages and increase adoption of healthy behaviours to diverse audiences [9].

Evaluating prospective acceptability is valuable because it can influence participation and uptake rates [14], and we recommend that this is routinely included in implementation. Only one-third of the WASH studies evaluated the prospective acceptability of the interventions; fewer still used this information to influence the design or implementation of the intervention. Prospective evaluation also encourages genuine community co-design which can further improve intervention effectiveness [62], and be used to refine intervention design prior to larger trials or wide implementation [15], ensuring the efficient use of resources. Most of the included studies conducted prospective assessments with a combination of focus group discussions and interviews.

Given the time and resource constraints commonly imposed on WASH service delivery [9], cross-sectional surveys with potential users may be more widely achievable. Electronic surveys are an increasing possibility as the number of internet and digital technology users in LMIC steadily climbs [63]. Retrospective acceptability evaluations can improve the sustained use of interventions, but their timing should be carefully considered, and based on whether the intervention is physical or sessional. Evaluations of physical interventions should allow sufficient time for users to experience any difficulties in use and maintenance without external support. Educational interventions that are sessional in nature, such as community education sessions or meetings, should be evaluated soon enough that participants have had recent experiences to aid with recall.

Fig 2. Definitions of acceptability of water, sanitation and hygiene interventions published 1990–2021 (including explicit and implicit definitions). Venn diagram is not to scale.

https://doi.org/10.1371/journal.pntd.0010702.g002
There was a lack of consistency among conceptualisations of acceptability and associated measures in WASH intervention studies, limiting their comparability and usefulness to inform intervention sustainability. While all 36 included studies claimed to measure acceptability, most did not provide a theoretical basis for their acceptability study design methods, and only four explicitly defined their acceptability measure [21–24]. The first limitation arising from such inconsistency is that studies that used subjective measures, such as ‘feelings towards’ the intervention, missed other potentially key components such as ‘willingness to purchase’ or levels of use and vice versa. The second limitation is that variation in definition limits the comparability of acceptability assessments of the same intervention in different populations.

A consistent approach to acceptability measurement in WASH is needed. To achieve this, we advocate the use of a theory-based a priori definition for acceptability research in WASH to inform measure development and assessment. An example of this is Sekhon et al.’s definition for acceptability, “a multi-faceted construct that reflects the extent to which people delivering or receiving a healthcare intervention consider it to be appropriate, based on anticipated or experienced cognitive and emotional responses to the intervention” [15]. Sekhon et al.’s theoretical framework of acceptability outlines seven component constructs that capture: attitude towards the intervention (affective attitude), burden, perceived effectiveness, ethicality, understanding (intervention coherence), opportunity costs, and participant’s belief in whether they can use it (self-efficacy). This theory-based definition outlines clear parameters of what acceptability is, while still allowing for varied forms of measurement based on the requirements of the research. Future research may include a greater examination of how adaptable the theoretical framework is in relation to WASH in different settings.

Some authors used validated behavioural frameworks, such as the health belief model (HBM) and the Integrated Behavioural Model for Water, Sanitation, and Hygiene (IBM-WASH), to design their acceptability measures [35,36,44]. IBM-WASH is a tool designed to identify and address individual and contextual factors that affect behavioural outcomes for WASH interventions [25]. IBM-WASH and similar frameworks designed for health promotion more broadly can be used contextualize or interpret acceptability findings.

This review should be interpreted in light of some limitations. First, the number of studies included in this review may have been limited by the search and inclusion criteria; where only articles that included the word “accept” in the title, abstract or methods were searched for and retained in the final review. The implication of this is that WASH studies that measured related but not equivalent constructs, such as satisfaction, may have not appeared in the search and were not included. However, the aim of this review was to identify how "acceptability" was measured in WASH interventions. As such, the inclusion of studies that did not focus on acceptability would expand beyond the scope of this review and risk misinterpretation of the findings.

Second, this review was also limited to acceptability evaluations of WASH interventions published in English. This may represent a particular limitation for LMIC studies as researchers may prefer to publish in their own language for dissemination of study findings. Third, formative research, which informs the content and delivery of interventions, may involve acceptability components. It is possible that in restricting our review to specific interventions we have underestimated the number of prospective acceptability studies. However, this would not affect the number of studies reporting retrospective acceptability as a measure. The diversity of acceptability measurements and inclusion of a broad suite of interventions limited the potential for meta-analysis, however, a strength of this study was the breadth of WASH captured. While we found a degree of bias in the majority of research, we retained all studies that met the inclusion criteria because the exclusion of all low-quality studies would have considerably limited our review. As our focus is on acceptability measures, which include objective and
subjective measures, rather than quantifiable outcomes our findings may be less impacted by the quality of the studies.

Conclusions
We have identified four main areas that should be addressed for acceptability assessments in WASH. First, there is a need for acceptability evaluations in schools and healthcare facilities. Second, few studies conduct prospective evaluations which are useful for encouraging community collaboration, refining intervention design, and increasing initial uptake. Third, retrospective evaluations may contribute to sustained use, but their timing must be carefully considered. Finally, a clear and consistent approach to definition and measurement of acceptability in WASH development is needed. Inclusion of acceptability in the complex intervention development and evaluation cycle can contribute to improved effectiveness, sustainability and ultimately, use of resources to meet global development goals.

Supporting information
S1 Table. Inclusion and exclusion criteria.
(DOCX)

S2 Table. Additional extraction information. A file containing supplementary data tables including: Table A. For research articles published January 1990- December 2021 where the acceptability of water, sanitation and hygiene intervention was measured, by year. Table B. For research articles published January 1990- December 2021 where the acceptability of water, sanitation and hygiene intervention was measured, by year.
(DOCX)

S3 Table. Risk of Bias and quality assessments. A file containing supplementary data tables including: Table A. Newcastle-Ottawa Quality Assessment (adapted from cross-sectional NoS). Table B. Cochrane assessment, measured based on intention-to-treat based on standard practice for reviews.
(DOCX)

S4 Table. Acceptability measure categorisation.
(DOCX)

Acknowledgments
We would like to acknowledge Professor Darren Gray for his contribution to the conception of this work.

Author Contributions
Conceptualization: Rose Hosking, Suji Y O’Connor, Johanna Kurscheid, Aparna Lal.
Data curation: Rose Hosking.
Methodology: Rose Hosking, Suji Y O’Connor.
Supervision: Aparna Lal.
Writing – original draft: Rose Hosking, Suji Y O’Connor.
Writing – review & editing: Rose Hosking, Suji Y O’Connor, Kinley Wangdi, Johanna Kurscheid, Aparna Lal.
References

1. Reiner RC Jr., Wiens KE, Deshpande A, Baumann MM, Lindstedt PA, Blacker BF, et al. Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–2013: analysis for the Global Burden of Disease Study 2017. Lancet. 2020; 395(10239):1779–801.

2. Prüss-Ustün A, Wolf J, Bartram J, Clasen T, Cumming O, Freeman MC, et al. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low- and middle-income countries. Int J Hyg Environ Health. 2019; 222(5):765–77. https://doi.org/10.1016/j.ijheh.2019.05.004 PMID: 31088724

3. United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2021. 68p. New York; United Nations Publications; 2021. Available at: https://unsdsn.un.org/sdgs/report/2021/The-Sustainable-Development-Goals-Report-2021.pdf [Accessed 9 Jan 2022]

4. Andres L, Borja-Vega C, Fenwick C, Gomez-Suarez R, De Jesus Filho J. A Brief Summary of Global WASH Interventions. Water Global Practice Knowledge Brief.; World Bank, Washington, DC: World Bank; 2018.

5. Haque Sabrina S, Freeman Matthew C. The Applications of Implementation Science in Water, Sanitation, and Hygiene (WASH) Research and Practice. Environ Health Perspect. 2021 129(6):065002.

6. Dwipayanti NMU, Phung TD, Rutherford S, Chu C. Towards sustained sanitation services: a review of existing frameworks and an alternative framework combining ecological and sanitation life stage approaches. J Water Sanit Hyg Dev. 2017; 7(1):25–42.

7. Hulland K, Martin N, Dreibelbis R, Valliant J, Winch P. What factors affect sustained adoption of safe water, hygiene and sanitation technologies? A systematic review of literature. EPPi-Centre, Social Science Research Unit, UCL Institute of Education, University College London, London. 2015. ISBN: 978-1-907345-77-7.

8. Joshi A, Amadi C. Impact of water, sanitation, and hygiene interventions on improving health outcomes among school children. J Environ Pub Health 2013; 2013:984626.

9. Chirgwin H, Cairncross S, Zehra D, Sharma Waddington H. Interventions promoting uptake of water, sanitation and hygiene (WASH) technologies in low- and middle-income countries: An evidence and gap map of effectiveness studies. Campbell Syst Rev 2021; 17(4):e1194.

10. Bouzid M, Cumming O, Hunter PR. What is the impact of water sanitation and hygiene in healthcare facilities on care seeking behaviour and patient satisfaction? A systematic review of the evidence from low-income and middle-income countries. BMJ Glob Health 2018 9(3):e000648. https://doi.org/10.1136/bmjgh-2017-000648 PMID: 29765776

11. Dreibelbis R, Winch PJ, Leontsini E, Hulland KR, Ram PK, Unicom b L, et al. The integrated behavioural model for water, sanitation, and hygiene: a systematic review of behavioural models and a framework for designing and evaluating behaviour change interventions in infrastructure-restricted settings. BMS Pub Health 2013; 13(1):1–13.

12. Huang L, Zhou M. Trends in global research on sanitation: a 30-year perspective from 1990 to 2019. Environ Rev 2021; 29(1):75–86.

13. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bung er A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011; 38(2):65–76. https://doi.org/10.1007/s10488-010-0319-7 PMID: 20957426

14. Sekhon M, Cartwright M, Lawes-Wickwar S, Mc Bain H, Ezra D, Newman S, et al. Does prospective acceptability of an intervention influence refusal to participate in a randomised controlled trial? An interview study. Contemp Clin Trials Commun. 2021; 21:100698. https://doi.org/10.1016/j.conctc.2021.100698 PMID: 33537506

15. Sekhon M, Cartwright M, Francis JJ. Acceptability of healthcare interventions: an overview of reviews and development of a theoretical framework. BMC Health Serv Res. 2017; 17(1):88. https://doi.org/10.1186/s12913-017-2031-8 PMID: 28126032

16. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019; 366:i4898. https://doi.org/10.1136/bmj.i4898 PMID: 31462531

17. Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic Differences in Blood Pressure in Europe: A Systematic Review and Meta-Analysis. PLoS One. 2016; 11(1):e0147601. https://doi.org/10.1371/journal.pone.0147601 PMID: 26808317

18. Yeasmin F, Sultana F, Unicom b L, Nizame FA, Rahman M, Kabir H, et al. Piloting a Shared Source Water Treatment Intervention among Elementary Schools in Bangladesh. Am J Trop Med Hyg. 2019; 101(5):984–93. https://doi.org/10.4269/ajtmh.18-0984 PMID: 31549607
19. Campbell JI, Pham TT, Le T, Dang TTH, Chandonnet CJ, Truong TH, et al. Facilitators and barriers to a family empowerment strategy to improve healthcare worker hand hygiene in a resource-limited setting. *Am J Infect Control*. 2020; 48(12):1485–90. https://doi.org/10.1016/j.ajic.2020.05.030 PMID: 32492500

20. McGuinness SL, O’Toole J, Giuriani A, Gaonkar CA, Reddy V, Patil K, et al. Perceptions, experiences and acceptability of a water intervention using riverbank filtration technology in rural India. *Am J Trop Med Hyg* 2018; 99(4):431.

21. Rajaraman D, Varadharajan KS, Greenland K, Curtis V, Kumar R, Schmidt WP, et al. Implementing effective hygiene promotion: lessons from the process evaluation of an intervention to promote handwashing with soap in rural India. *BMC Public Health*. 2014; 14:1179. https://doi.org/10.1186/1471-2458-14-1179 PMID: 2540795

22. Kundu DK, Gupta A, Mol APJ, Nasreen M. Understanding social acceptability of arsenic-safe technologies in rural Bangladesh: a user-oriented analysis. *Water Policy*. 2016; 18(2):318–34.

23. Hussain F, Luby SP, Unicom L, Leontsini E, Naushin T, Buckland AJ, et al. Assessment of the Acceptability and Feasibility of Child Potties for Safe Child Feces Disposal in Rural Bangladesh. *Am J Trop Med Hyg*. 2017; 97(2):469–76. https://doi.org/10.4269/ajtmh.15-0932 PMID: 28722606

24. Heitzinger K, Hawes SE, Rocha CA, Alvarez C, Evans CA. Assessment of the Feasibility and Acceptability of Using Water Pasteurization Indicators to Increase Access to Safe Drinking Water in the Peruvian Amazon. *Am J Trop Med Hyg* 2020; 103(1):455–64. https://doi.org/10.4269/ajtmh.18-0963 PMID: 32372790

25. Dreibelbis R, Winch PJ, Leontsini E, Hulland KRS, Ram PK, Unicom L, et al. The Integrated Behavioural Model for Water, Sanitation, and Hygiene: a systematic review of behavioural models and a framework for designing and evaluating behaviour change interventions in infrastructure-restricted settings. *BMC Pub Health* 2013; 13(1):1015.

26. Green EC, Murphy EM, Gryboski K. The Health Belief Model. In: Sweeney K, Robbins ML, Cohen LM, editors. The Wiley Encyclopedia of Health Psychology. 2020. p. 211–4. https://doi.org/10.1002/9781119057840.ch68

27. Aikhomu SE, Brieger WR, Kale OO. Acceptance and use of communal filtration units in guinea worm eradication. *Trop Med Int Health* 2000; 5(1):47–52. https://doi.org/10.1046/j.1365-3156.2000.00510.x PMID: 10672205

28. Rainey RC, Harding AK. Acceptability of solar disinfection of drinking water treatment in Kathmandu Valley, Nepal. *Int J Environ Health Res* 2005; 15(5):361–72. https://doi.org/10.1080/0960312050029168 PMID: 16416753

29. Simms VM, Makalo P, Bailey RL, Emerson PM. Sustainability and acceptability of latrine provision in The Gambia. *Trans R Soc Trop Med Hyg* 2005; 99(8):631–7. https://doi.org/10.1016/j.trstmh.2004.10.004 PMID: 15927217

30. Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, et al. Solar disinfection of water for diarrhoeal prevention in southern India. *Arch Dis Child* 2006; 91(2):139–41. https://doi.org/10.1136/adc.2005.077887 PMID: 16403947

31. Diallo MO, Hopkins DR, Kane MS, Niandou S, Amadou A, Kadi B, et al. Household latrine use, maintenance and acceptability in rural Zinder, Niger. *Int J Environ Health Res* 2007; 17(6):443–52. https://doi.org/10.1080/09603120701633529 PMID: 18027197

32. Hulland KRS, Leontsini E, Dreibelbis R, Unicom L, Afroz A, Dutta NC, et al. Designing a handwashing station for infrastructure-restricted communities in Bangladesh using the integrated behavioural model for water, sanitation and hygiene interventions (IBM-WASH). *BMC Public Health*. 2013; 13:877. https://doi.org/10.1186/1471-2458-13-877 PMID: 24060247

33. Francis MR, Nagarajan G, Sarkar R, Mohan VR, Kang G, Balraj V. Perception of drinking water safety and factors influencing acceptance and sustainability of a water quality intervention in rural southern India. *BMC Public Health* 2015; 15(1):731. https://doi.org/10.1186/s12889-015-1974-0 PMID: 26223687

34. Hogarth JN, Sowummi FA, Oluwafemi AP, Antwi-Agyei P, Nukpezah D, Atewamba CT. Biosand filter as a household water treatment technology in ghana and its ecobusiness potential: An assessment using a lifecycle approach. *J Environ Account Manag* 2015; 3(4):343–53.

35. Ashraf S, Nizame FA, Islam M, Dutta NC, Yeasmin D, Akhter S, et al. Nonrandomized Trial of Feasibility and Acceptability of Strategies for Promotion of Soapy Water as a Handwashing Agent in Rural Bangladesh. *Am J Trop Med Hyg* 2017; 96(2):421–9. https://doi.org/10.4269/ajtmh.16-0304 PMID: 28025233

36. Yeasmin F, Lubby SP, Saxton RE, Nizame FA, Alam M-U, Dutta NC, et al. Piloting a low-cost hardware intervention to reduce improper disposal of solid waste in communal toilets in low-income settlements in Dhaka, Bangladesh. *BMC Public Health*. 2017; 17(1):682. https://doi.org/10.1186/s12889-017-4693-x PMID: 28851334
37. Crider Y, Sultana S, Unicom L, Davis J, Luby SP, Pickering AJ. Can you taste it? Taste detection and acceptability thresholds for chlorine residual in drinking water in Dhaka, Bangladesh. Sci Total Environ 2018; 613:840–6. https://doi.org/10.1016/j.scitotenv.2017.09.035 PMID: 28942317

38. Sultana F, Unicom LE, Nizame FA, Dutta NC, Ram PK, Luby SP, et al. Acceptability and Feasibility of Sharing a Soapy Water System for Handwashing in a Low-Income Urban Community in Dhaka, Bangladesh: A Qualitative Study. Am J Trop Med Hyg. 2018; 99(2):502–12. https://doi.org/10.4269/ajtmh.17-0672 PMID: 29893204

39. Alam MU, Unicom L, Ahasan SMM, Amin N, Biswas D, Ferdous S, et al. Barriers and Enabling Factors for Central and Household Level Water Treatment in a Mixed-Methods Study among Rohingya in Cox’s Bazar, Bangladesh. Water. 2020; 12(11).

40. Bitew BD, Gete YK, Biks GA, Addafrie TT. Barriers and Enabling Factors Associated with the Implementation of Household Solar Water Disinfection: A Qualitative Study in Northwest Ethiopia. Am J Trop Med Hyg. 2020; 102(2):458–67. https://doi.org/10.4269/ajtmh.18-0412 PMID: 31837131

41. Guo S, Zhou X, Simha P, Mercado LFP, Lv Y, Li Z. Poor awareness and attitudes to sanitation servicing can impede China’s Rural Toilet Revolution: Evidence from Western China. Sci Total Environ. 2021; 794:148660. https://doi.org/10.1016/j.scitotenv.2021.148660 PMID: 34218147

42. Sutherland C, Reynaert E, Sindall RC, Riechmann ME, Magwaza F, Lienert J, et al. Innovation for improved hand hygiene: Field testing the Autarky handwashing station in collaboration with informal settler residents in Durban, South Africa. Sci Total Environ. 2021; 796:149024. https://doi.org/10.1016/j.scitotenv.2021.149024 PMID: 34328886

43. Thorseth AH, Heath T, Simha P, Mercado LFP, Lv Y, Li Z. Poor awareness and attitudes to sanitation servicing can impede China’s Rural Toilet Revolution: Evidence from Western China. Sci Total Environ. 2021; 794:148660. https://doi.org/10.1016/j.scitotenv.2021.148660 PMID: 34218147

44. Firth J, Balraj V, Muliyil J, Roy S, Rani LM, Chandrasekar R, et al. Point-of-use interventions to decrease contamination of drinking water: a randomized, controlled pilot study on efficacy, effectiveness, and acceptability of closed containers, Moringa oleifera, and in-home chlorination in rural South India. Am J Trop Med Hyg 2020; 82(5):759–65. https://doi.org/10.4269/ajtmh.20-0206 PMID: 20439952

45. McGuigan KG, Samaiyar P, du Preez M, Conroy RM. High Compliance Randomized Controlled Field Trial of Solar Disinfection of Drinking Water and Its Impact on Childhood Diarrhea in Rural Cambodia. Environ Sci Technol 2011; 45(18):7862–7. https://doi.org/10.1021/es201313x PMID: 21827166

46. Habib MA, Soofi S, Sadiq K, Samejo T, Hussain M, Mirani M, et al. A study to evaluate the acceptability, feasibility and impact of packaged interventions ("Diarrhea Pack") for prevention and treatment of childhood diarrhoea in rural Pakistan. BMC Public Health. 2013; 13:922. https://doi.org/10.1186/1471-2458-13-922 PMID: 24090125

47. Biswas D, Nizame FA, Sanghvi T, Roy S, Luby SP, Unicom LE. Provision versus promotion to develop a handwashing station: the effect on desired handwashing behavior. BMC Public Health. 2017; 17:390. https://doi.org/10.1186/s12889-017-4316-6 PMID: 28476170

48. Biran A, Danquah L, Chunga J, Schmidt WP, Holm R, Itimu-Phiri A, et al. A Cluster-Randomized Trial to Evaluate the Impact of an Inclusive, Community-Led Total Sanitation Intervention on Sanitation Access for People with Disabilities in Malawi. Am J Trop Med Hyg 2018; 98(4):984–9. https://doi.org/10.4269/ajtmh.17-0435 PMID: 29405106

49. DitaI J, Mudoola M, Gladstone M, Abeso J, Dusabe-Richards J, Adengo M, et al. Preventing neonatal sepsis in rural Uganda: a cross-over study comparing the tolerance and acceptability of three alcohol-based hand rub formulations. BMC Public Health 2018; 18(1):1279. https://doi.org/10.1186/s12889-018-6201-3 PMID: 30458740

50. Stone MA, Nadgijimana H. Educational intervention to reduce disease related to sub-optimal basic hygiene in Rwanda: initial evaluation and feasibility study. Pilot Feasibility Stud. 2018; 4:4.

51. Harrison BL, Ogara C, Gladstone M, Carrol ED, Dusabe-Richards J, Medina-Lara A, et al. "We have to clean ourselves to ensure that our children are healthy and beautiful": findings from a qualitative assessment of a hand hygiene poster in rural Uganda. BMC Public Health 2019; 19:1. https://doi.org/10.1186/s12889-018-6343-3 PMID: 30605151

52. Rajasingham A, Hardy C, Kamwaga S, Sebunya K, Massa K, Mulungu J, et al. Evaluation of an Emergency Bulk Chlorination Project Targeting Drinking Water Vendors in Cholera-Affected Wards of Dar es Salaam and Morogoro, Tanzania. Am J Trop Med Hyg 2019; 100(6):1335–41. https://doi.org/10.4269/ajtmh.18-0734 PMID: 31017078
54. Ngasaala TM, Masten SJ, Cohen C, Ravitz D, Mwita EJ. Implementation of point-of-use water treatment methods in a rural Tanzanian community: A case study. J Water Sanit Hyg Dev 2020; 10(4):1012–8.

55. Budge S, Parker A, Hutchings P, Garbutt C, Rosenbaum J, Tulu T, et al. Multi-Sectoral Participatory Design of a BabyWASH Playspace for Rural Ethiopian Households. Am J Trop Med Hyg 2021; 104(3):884–97. https://doi.org/10.4269/ajtmh.20-0945 PMID: 33534743

56. Casella D, McIntyre P, Fonseca C, Burr P. The cost of failure and origins of WASHCost. In: Priceless! Uncovering the Real Costs of Water and Sanitation. 2014. P. 9–23. The Hague: IRC.

57. Hutton G. Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply. J Water Health 2013; 11(1):1–12. https://doi.org/10.2166/wh.2012.105 PMID: 23428544

58. World Health Organization (WHO) and the United Nations Children’s Fund. WASH in health care facilities: Global Baseline Report 2019. Geneva; 2019.

59. McMichael C. Water, Sanitation and Hygiene (WASH) in Schools in Low-Income Countries: A Review of Evidence of Impact. Int J Environ Res Pub Health 2019; 16(3):359. https://doi.org/10.3390/ijerph16030359 PMID: 30696023

60. De Buck E, Van Remoortel H, Hannes K, Govender T, Naidoo S, Avau B, et al. Approaches to promote handwashing and sanitation behaviour change in low- and middle-income countries: a mixed method systematic review. Campbell Syst Rev 2017; 13(1):1–447.

61. Donde OO, Atoni E, Muia AW, Yillia PT. COVID-19 pandemic: Water, sanitation and hygiene (WASH) as a critical control measure remains a major challenge in low-income countries. Water Research 2021; 191:116793. https://doi.org/10.1016/j.watres.2020.116793 PMID: 33388470

62. Venkataramanan V, Crocker J, Karan A, Bartram J. Community-led total sanitation: a mixed-methods systematic review of evidence and its quality. Environ Health Perspect 2018; 126(2):026001. https://doi.org/10.1289/EHP1965 PMID: 29398655

63. International Telecommunication Union Development Sector. Measuring Digital Development: Facts and Figures 2021. Geneva: ITU Publications. 31p. 2021. Available at: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2021.pdf [accessed 22 Jan 2022].