The Ecological Analysis of Meiofauna as a Water Quality Bioindicator in the Coast of Losari Beach, Makassar

M S Yusal1,2, M A Marfai1*, S Hadisusanto4, N Khakim3
1Sekolah Tinggi Keguruan dan Ilmu Pendidikan Pembangunan Indonesia (STKIP-PI)
2Graduate School, Universitas Gadjah Mada
3Faculty of Geography, Universitas Gadjah Mada
4Faculty of Biology, Universitas Gadjah Mada
arismarfai@ugm.ac.id

Abstract. This research aimed to analyze the ecological assessment of meiofauna on the coast of Losari Beach, Makassar. Increased community activity is a trigger of the decline in the water quality surrounding the coast of Losari Beach. Meiofauna is a benthic organism can be used as an indicator of water quality. The purposive sampling is a method in this study. The stations located close to hotels and restaurants showed a high level of abundance because the anthropogenic activities occurring in them generated organic material contaminants that triggered the vast growth of meiofauna in the location. Compared to other phyla included in meiofauna, ostracoda, oligochaeta, and sarcomastigophora existed in higher abundance due to their high adaptability to any contaminating materials entering the waters. The meiofauna species in the coast of Losari Beach were highly diverse with no species prevailing in each observation station. The total meiofauna abundance identified in this study was 40,734 individuals/m2, composed of 10 phyla and 116 species. The range of the evenness index also indicated that the meiofauna species was quite even and affirmed that no species was dominant. This research found the physical and chemical parameters significantly influenced the abundance of meiofauna in the aquatic substrates.

1. Introduction
Types of pollutants that enter the coastal area endanger not only the lives of all biota but also the natural resources of coastal ecosystem both directly and indirectly, for instance, the threats of degrading mangrove, seagrass, coral reef, and benthic fauna [4, 5, 9]. Water biota that can be used as an indicator of water quality is from the groups of invertebrates. These species live most of their lifetimes in aquatic environments, and they are easily identifiable due to their microscopic-to-macroscopic size. Along with physical and chemical parameter measurements, the use of benthic organisms in water quality assessment is more effective and efficient [1, 2, 9, 18-20].

One type of benthos that can indicate water pollution effectively is meiofauna. Meiofauna is defined as a group of organisms larger than microfauna but smaller than macrofauna. This organism is 63-1000 μm in size, which can pass through a 1-mm mesh but is retained by a 45-μm mesh [7, 8, 14, 15, 22, 24]. It is a biological component that reflects changes in water quality.

The coast of Losari Beach is a valuable asset for the government of Makassar City. This zone becomes the center of attention as the local government attempts to develop it into a center for
business and tourism industry that can raise the Net Regional Revenue of the city. The water quality in this coast is, however, deteriorating due to an increase in community activities and development in the surrounding areas, which generates domestic wastes from hotels, tourism activities, aquaculture and agricultural practices, hospitals, industries, and gold crafting. These various activities have made the water quality on the coast of Losari Beach in an alarming stage [11, 13, 21]. The study assessed the ecological value of meiofauna as a bioindicator of water quality on the coast of Losari Beach, Makassar.

2. Methods
2.1. Research time and location
The research was carried out in March-April 2007 on the coast of Losari Beach, which spans from the north to the south of Makassar City. The study area depicts the substantial development activity in Makassar as the provincial capital of South Sulawesi. The sampling point consisted of nine (9) observation stations, which were located nearby the industrial sites, tourism objects, aquaculture areas, hotels, the river upstream of agricultural land, hospitals, ports, and densely populated housing. The identification of meiofauna according to book and binocular microscope [10]. The research location is presented in the following Figure 1.

![Figure 1. The map of the study area](image)

2.2. Statistical analysis
The density of meiofauna in the coast of Losari Beach was identified using the following formula (Eq. 1):

\[
K = \frac{10,000 \times a}{b}
\]

\(K\) : the density of meiofauna (individuals/m²),
\(a\) : the number of meiofauna (individuals),
\(b\) : the opening of Ekman Grab (22.5 cm x 22.5 cm), and
10,000 : conversion factor from cm² to m² [12].
This research employed the Simpson’s dominance index to determine whether at least one of the species dominated the meiofauna in the study area. The equation is as follows (Eq. 2) (Krebs, 1989).

\[D = \frac{\sum n_i (n_i - 1)}{N(N - 1)} \]

(2)

As for the evenness index, the researchers used the Hills Evenness Index with the following formula (Eq. 3) [12].

\[E = \frac{H'}{\ln S} \]

(3)

The evenness index of a population ranges from 0 to 1 with the following criteria:
- E> 0.6 : high evenness,
- 0.4 < E < 0.6 : medium evenness, and
- E< 0.4 : low evenness.

In addition to dominance and evenness indices, the research also relied on the Shannon-Wiener index to assess species diversity (Eq. 4) [16].

\[H' = - \sum_{i=1}^{R} p_i \ln p_i \]

(4)

where \(H' \) is diversity index and \(p_i \) is calculated as (Eq. 5):

\[p_i = \frac{n_i}{N} \]

(5)

where \(N \) : the total number of meiofauna, and \(n_i \) : the number of individuals from the \(i \)-th species.

Diversity index can indicate as to what extent the water has been polluted. In other words, it determines the water quality of an area or region. The basis of water quality assessment is the value of the diversity index, which is presented in the following Table 1.

Diversity Index	Water Quality Criteria
>2.0	High diversity
1.6-2.0	Medium diversity
1.0 - 1.59	Low diversity
<1.0	Very low diversity

The Analysis of Variance (ANOVA) examined the differences in the abundance of meiofauna at each observation station. A significant difference was considered when the significance probability value was less than 0.05 (\(p < 0.05 \)).

3. Result and Discussion

3.1. The Density and Composition of Meiofauna in the Coast of Losari Beach

The total abundance of meiofauna identified during the research was 40,734 individuals/m², which comprised 10 phyla and 116 species and genera. As presented in the lowermost row in Table 2, the abundance of meiofauna identified in the nine stations varies between 2,476 indv/m² and 11,063
indv/m². The meiofauna phyla identified in this research were aelosomatidae (99 indv/m²), ciliophora (3,030 indv/m²), gastrotricha (179 indv/m²), gnathostomulida (140 indv/m²), nematoda (2,036 indv/m²), oligochaeta (12,505 indv/m²), ostracoda (20,010 indv/m²), polychaeta (3,542 indv/m²), sarcomastigophora (6,308 indv/m²), dan turbellaria (2397 indv/m²). The composition of the density of meiofauna from the highest to the lowest was as follows: ostracoda (39.714%), oligochaeta (24.819%), sarcomastigophora (15.520%), polychaeta (7.030%), ciliophora (6.014%), turbellaria (4.757%), nematoda (4.041%), gastrotricha (0.355%), gnathostomulida (0.278%), and aelosomatidae (0.196%) (Figure 2).

Table 2. The abundance of meiofauna in the coast of Losari Beach.

No	Phyla	ST.1	ST.2	ST.3	ST.4	ST.5	ST.6	ST.7	ST.8	ST.9	∑
1	Aelosomatidae		99								99
2	Ciliophora	375	356	119	673	179	218	257	60	793	3030
3	Gastrotricha		99						40	40	179
4	Gnathostomulida							20	40	80	140
5	Nematoda	889	771	218						158	2036
6	Oligochaeta	514	673	2844	1344	593	1560	987	1238	2252	12505
7	Ostracoda	729	2887	40	1425	813	755	4329	849	1643	20010
8	Polychaeta	514	1068	258	198	613	40	692	80	3542	
9	Sarcomastigophora	1383	1384	1147	278	633	178	671	317	317	6308
10	Turbellaria	119	1462	40	40	60	80	178	338	80	2397
	∑	11063	6762	6227	4236	2476	3424	6502	4034	5522	40734

Figure 2. The phylum composition of meiofauna in the coast of Losari Beach

The highest abundance was found in Station 1, while the lowest one was in Stations 5, 6, and 8. Among the phyla identified in this research, ostracoda, oligochaeta, sarcomastigophora, dan ciliophora had the highest density, whereas aelosomatidae had the lowest one. There was a significant difference in the abundance of meiofauna in several observation stations, as evidenced by F-value= 7.584 (p=0.00<0.05). These results showed that the abundance of each meiofauna phylum in every station had no similarity and that they were significantly different. Furthermore, the Tukey’s test revealed that three groups of meiofauna inhabited the coast of Losari Beach (Table 3). The ANOVA results were also supported by the different densities of the meiofauna phyla existing in each observation station.

Located nearby the hotels in Losari Beach, Station 1 had a high level of meiofauna abundance. The organic waste generated by the surrounding hotels and restaurants induced the vast growth of
meiofauna at this station. Station 5 had very low abundance. It was located close to the Soekarno-Hatta Port, the largest port in eastern Indonesia. This site was surrounded by intensive development activities, busy traffic in the harbor, and the intensive port renovation to welcome the Indonesian government’s Sea Toll Road program.

Table 3. The results of the Analysis of Variance (ANOVA) on the abundance of meiofauna in the coast of Losari Beach

Phyla	N	Subset for alpha = 0.05		
		1	2	3
Tukey HSD				
Aeolosomatidae	9	11.00		
Gnathostomulida	9	15.56		
Gastrotricha	9	19.89		
Nematoda	9	226.22	226.22	
Turbellaria	9	266.33	266.33	
Ciliophora	9	336.67	336.67	
Polychaeta	9	393.56	393.56	
Sarcomastigophora	9	700.89	700.89	
Oligochaeta	9	1389.44	1389.44	
Ostracoda	9	2223.33		
Sig.		.699	.056	.433

Station 6 also showed a low abundance of meiofauna. It was located at the mouth of Jeneberang River that flanked the coast of Makassar City on the south. This river flows directly out to the coast of Losari Beach. The low abundance at the station was caused by Jeneberang River and rainwater that carried organic and inorganic pollutants in the downstream area to the river mouth. This finding is in line with [23], which state that anthropogenic activity is also a contributor to the hazardous pollutants in the northern and southern parts of Makassar City because it can create bioavailable fractions in the bottom sediment, i.e., the habitat of various marine organisms. The contaminants may come in the forms of household wastes, detergents, pesticide residues, livestock manure, the refuse from the upstream agriculture and fishery practices, and metal content that are harmful to aquatic organisms [11, 13, 21].

3.2. The Dominance, Shannon-Wiener (diversity) and Uniformity Indices

The Simpson’s Dominance Index of the observation stations was averagely 0.0663 with a standard deviation of 0.0168 (Figure 3). The range of this index in all stations was between 0.0416 and 0.0952 (Figure 4). Its mean value was close to 0, which indicated that none of the meiofauna species dominated the stations. As for the Shannon-Wiener (Diversity) Index, it was averagely 3.0248 with a standard deviation of 0.2337 (Figure 3). The nine observation stations had a diversity index ranging from 2.6183 to 3.3641 (Figure 4). This finding showed that the meiofauna inhabiting the observation stations had high levels of diversity [16]. Meiofauna can adapt to disturbed and polluted environments caused by the introduction of contaminants from the surrounding lands to the waters [3]. The evenness index was in the range of 0.8238-0.9316 (Figure 4) with an average of 0.8813±0.0393 (Figure 3). These figures showed that the meiofauna species among the observation stations were dissimilar and very even and that no meiofauna dominated each station because the range of the evenness index was close to 1 [12].
3.3. The Influence of Environmental Parameters on The Abundance of Meiofauna in the Coast of Losari Beach

This research found that the environmental parameters controlled the abundance of meiofauna in the coast of Losari Beach, Makassar. Based on Figure 5 and Table 4, temperature, current velocity, depth, salinity, brightness, and pH are the environmental parameters that have a considerable influence on the abundance of meiofauna. Some of them significantly affect the growth and development of meiofauna at the bottom of the waters, including how meiofauna find food, adapt, and breed [6, 17].
Table 4. The contributions of the research variables

F1	F2	F3	F4	
Abundance	9.3351	0.3204	11.0283	0.5926
Dominance	15.5018	1.2818	0.2574	2.2129
Uniformity	12.9428	2.4495	0.7741	6.7369
Diversity	10.8347	0.9757	6.8906	6.1825
Phosphate*	0.1568	25.1152	1.6087	0.2906
Phosphate**	0.0429	6.1403	1.7934	12.2964
Nitrate*	1.4470	21.5619	0.0239	4.6404
Nitrate**	0.0551	0.3321	0.0091	58.1719
Salinity	7.4806	3.8605	11.0559	2.1631
pH	4.3253	6.5400	6.0891	0.5108
Temperature	11.7814	2.1903	6.5276	1.9727
Depth	8.2246	0.0313	25.6541	0.0261
Brightness	6.4216	0.0115	17.9144	2.8752
DO	0.5742	25.2823	0.1408	0.8765
Current velocity	10.8760	3.9073	10.2326	0.4512

Notes: *presence in seawater; ** presence in sediment

4. Conclusions

Ostracoda, oligochaeta, sarcomastigophora, and ciliophora were the meiofauna phyla with a high level of abundance in the coast of Losari Beach. These true meiofaunas are highly adaptable to waters containing organic and inorganic contaminants generated by the anthropogenic activities in the surrounding land.

The observation stations situated nearby the hotels and restaurants along the edge of Losari Beach had a high abundance of meiofauna because the activities taking place in these buildings supplied both organic and inorganic materials, i.e., the primary food of meiofauna, to the surrounding waters. Meanwhile, the stations located close to the Soekarno-Hatta International Port, Paotere Harbor, and the mouth of Jeneberang River had a low abundance of meiofauna on account of the direct physical disturbances from the diverse anthropogenic activities to the habitat of meiofauna.

The meiofauna in the coast of Losari Beach was highly diverse with no species dominating the stations, as evidenced by the Shannon-Wiener Index (>2) and the Simpson’s Index (approximately 0). The evenness index was close to 1, indicating that the meiofauna in the coast of Losari Beach was very even or that no species were dominant in each station. The physical and chemical environmental parameters, such as temperature, current velocity, depth, salinity, brightness, and pH, significantly influenced the abundance of meiofauna on the bottom substrate of aquatic environments.

Reference

[1] Assy D Widyorini N and Ruswahyuni, 2013, Hubungan Kelimpahan Meiofauna Pada Kerapatan Lamun Yang Berbeda Di Pulau Panjang, Jepara, Journal of Management of Aquatic Resources 2(3): 226-232
[2] Anwari M S 2015 Pengaruh Faktor Lingkungan Terhadap Kelestarian Kerang Bakau (Polymesoda erosa Lightfoot 1786) di Kawasan Mangrove Segaranakan, Dissertation (Program Studi Ilmu Lingkungan, Universitas Gadjah Mada, Yogyakarta).
[3] Coull B C E L Creed R A Esktn P A Montagna M A Palmer and J B J Wells 1999 Phylal meiofauna from the rocky intertidal at Murrell's inlet, South Carolina, Trans. Am. Microsc. Soc., 102: 380-389.
[4] Dahuri H R J Rais S P Ginting and H J Sitepu 2008 Pengelolaan Sumberdaya Wilayah Pesisir dan Lautan SecaraTerpadu (Jakarta: PT. Pradnya Paramita).
[5] Elyazar N M S Mahendra and I N Wardi 2007 Dampak aktivitas masyarakat terhadap tingkat pencemaran air laut di Pantai Kuta Kabupaten Badung serta upaya pelestarian lingkungan Ecotrophic 2(1): 1-18.
[6] Giere O and C Pfannkuche 1982 Biology and ecology of marine oligochaeta. A Review. Oceanography and marine biology Annual Review 20: 173-308
[7] Giere O 2009 Meiofaunology The Microscopic Motile Fauna of Aquatic Sediment. 2nd edition (Berlin: Springer-Verlag).
[8] Gwyther J and Fairweather P G 2002 Colonization by Epibionts and Meiofauna of Real and Mimic Pneumatophors in a Coll Temperate Mangrove Habitat, Mar. Ecol. Progr. Ser 229: 137-149
[9] Hariyati R 2007 Distribusi dan Kemelimpahan Meiofaun di Hulu Sungai Code Yogyakarta Bioma 9(2): 34-37
[10] Higgins R P and H Thiel 1988 Introduction to the Study of Meiofauna. (Washington, D.C.: Smithsonian Institution Press).
[11] Jaya A M A Tuwo and Mahatma 2012 The assessment of environmental conditions and social economic change reclamation Losari Beach and Tanjung Bunga, Fak. Ilmu Kel. Per. Univ. Has.
[12] Krebs C J 1989 Ecological Methodology (New York: University of British Colombia Press).
[13] Monoarfa W 2002 Dampak pembangunan bagi kualitas air di kawasan pesir Pantai Losari Makassar Science dan Tech 3(3): 37-44.
[14] Moreno M Vezzulli L Marin V Laconi P Albertelli G and Fabiano M 2008 The Use of Meiofauna Diversity as An Indicator of Pollution in Harbours ICES Journal of Marine Science Advance Acc., pp. 1-8.
[15] Montagna P A J E Bauer D Hardin R B Spies 2002 Vertical Distribution Of Microbial And Meiofaunal Populations In Sediments Of Natural Coastal Hydrocarbon Seep, Journal Of Marine Sci.
[16] Odum E P 1994 Fundamentals Of Ecology (Yogyakarta: Gadjah Mada University Press).
[17] Pheleger F B Benthic Foraminiferids as Indicators of Organic Production in Marginal Marine Areas. Page 107-117 in C.T. Schafer and B.R. Pellietier, editors, First International Symposium on Benthic Foraminifera of Continental Margins. Maritim Sediments Special Publication no. 1.
[18] Pratomo A Abdillah D and Agustinus Y 2013 Struktur Komunitas Makrozoobentos Sebagai Indikator Kualitas Perairan Di Pulau Lengkang Kecamatan Belakang Padang Kota Batam Provinsi Kepulauan Riau, Jurnal Kelautan Universitas Maritim Raja Ali Haji.
[19] Riena N N Putri WA E and Agustriani F 2012 Analisis Kualitas Perairan Muara Sungai Way Belau Bandar Lampung Maspari Jurnal 4(1): 116-121
[20] Septiani E S Setyawati T R and Yanti A H 2013 Kualitas Perairan Sungai Kapuas Kota Sintang Ditinjau dari Keanekaragaman Makrozoobentos, Protobiont, 2(2): 70-74
[21] Setiawan H 2014 Pencemaran Logam Berat Perairan Kota Makassar dan Upaya Penanggulangannya, Eboni, 11(1): 1-13.
[22] Vezzulli L Ingrid B Elisabetta P and Philip C R 2013 Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios, The ISME Journal : 21–30
[23] Werorilangi S A Tahir A Noor M F Samawi and A Faizal A 2011 Spatial distribution of total metal and its fractions in coastal sediment of Makassar, Proc. National Conference of Indonesia Oceanologist Association, at Balikpapan, Indonesia. November 2014.
[24] Zulkifli D 2008 Dinamika Komunitas Meiofauna Interstisial di Perairan Selat Dompak Kepulauan Riau Dissertation (Program Studi Ilmu Kelautan, Institut Pertanian Bogor, Bogor).