Sub-nK thermometry of an interacting \(d\)-dimensional homogeneous Bose gas

Muhammad Miskeen Khan\(^{1,2,3}\), Mohammad Mehboudi\(^1,4,2\), Hugo Terças\(^{1,3}\), Maciej Lewenstein\(^{2,5}\), and Miguel Angel Garcia-March\(^2,6\)

\(^{1}\)Instituto Superior Técnico, Universidade de Lisboa, Portugal
\(^{2}\)ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain
\(^{3}\)Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal
\(^{4}\)Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
\(^{5}\)ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
\(^{6}\)Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, E-46022 València, Spain

We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions \((d \in \{1,2,3\})\). Our impurity based protocol suggests that the fundamental error bound on thermometry at the sub nano Kelvin domain depends highly on the dimension, in that the higher the dimension the better the precision. Furthermore, sub-optimal thermometry of the condensates by using measurements that are experimentally feasible is explored. We specifically focus on measuring position and momentum of the impurity that belong to the family of Gaussian measurements. We show that, generally, experimentally feasible measurements are far from optimal, except in 1D, where position measurements are indeed optimal. This makes realistic experiments perform very well at few nano Kelvin temperatures for all dimensions, and at sub nano Kelvin temperatures in the one dimensional scenario. These results take a significant step towards experimental realisation of probe-based quantum thermometry of Bose Einstein condensates, as it deals with them in one, two and three dimensions and uses feasible measurements applicable in current experimental setups.

I. INTRODUCTION –

The fundamental and technological importance of temperature of quantum systems has led to the rapid development of the theory of quantum thermometry [1, 2]. Among the fundamental questions of interest in this subject are (i) what are the ultimate limits on thermometry precision? and (ii) what is the best measurement?—which is mainly relevant for quantum systems due to the incompatibility of measurements. Often, quantum thermometry proposals are probe-based, in that, the information about the unknown temperature of a sample is registered on the quantum state of a probe (thermometer) through some sort of sample-probe interaction [3–5]. By performing a suitable measurement on the probe, one aims to infer the temperature with minimal statistical error. This forms a non-destructive thermometry strategy, thanks to the fact that the probe size is significantly smaller than the sample, and that the sample is not directly measured. The theory of probe-based thermometry has been adapted to describe various platforms such as Fermionic or Bosonic samples, and by using different resources like entanglement, criticality and coherence [3–20]. When probes equilibrate with the sample the answer to (i) is given by the heat capacity of the probe, and as for (ii), energy measurements are the most precise ones [6]. Nonetheless, we know from the theory of open quantum systems that probes rarely thermalise with the sample that they interact with [21, 22]. This phenomena is specifically relevant at low temperatures and/or strong probe-sample coupling. Therefore, the impact of non thermalising probes in thermometry, specifically of Bosonic gases, has been considered in several works. For example, it is shown that depending on the temperature regime, strong probe-sample interaction can be beneficial or disadvantageous for thermometry [3, 23].

The extremely determinant role of spectral density at low temperature thermometry was considered in [10], and the impact of bath induced correlations present at low temperatures were addressed in [24]. This work is dedicated to thermometry of homogeneous or uniform ultracold Bosonic gases, in any spatial dimensionality. We provide answers to the fundamental questions (i) and (ii) and address the practical problem of (iii) designing experimentally feasible measurements that perform fairly close to optimal.

Homogeneous ultracold gases represent a unique platform to test fundamental quantum phenomena, and have a high potential for quantum technologies. They can be realized experimentally in very versatile and extremely controlled set-ups. First realizations were obtained in a uniform three-dimensional optical box trap, formed by a tube laser beam and two perpendicular sheet laser beams [25] (forming a dark optical trap, see [26, 27]). This experiment allowed for a thorough characterization of the properties of the gas, such as the condensate interaction energy [28], or the critical point for condensation [29]. A similar technique was used in [30] to realize uniform Bose gases in a two dimensional box-like potential, which is confined in an annular geometry contained between an external ring and an inner disk. Uniform ultracold Bose gases in a variety of two-dimensional configurations (e.g. disc, rectangle, double rectangle), were further explored in [31]. The establishment of this neat experimental tools
paved the way to study a large collection of fundamental phenomena in uniform gases e.g., supercurrents [30], the Kibble-Zurek mechanism [30–33], the power-law scaling of the coherence length [32], the quantum version of the Joule-Thomson effect [29], several aspects of the depletion and quasi-particle excitations [34, 35] or giant vortex clusters recently [36].

Experiments in uniform Bose-Einstein condensates have thus shown that they are outstandingly controllable systems which allow to test many fundamental effects. On top of this, there is a large number of theoretical proposals which take advantage of their properties for which the uniformity of the gas and the associated universality of the long-wave behavior is crucial. Moreover, the uniformity of the gas and the associated universality of its properties for which the coherence length [32], the quantum version of the Kibble-Zurek mechanism [30–33], the power-law scaling phenomena in uniform gases e.g., supercurrents [30], the acceleration produces observable relativistic effects on homogeneous BECs [45–47] or for relativistic quantum metrology, as acceleration produces observable relativistic effects on homogeneous BECs [48]). Particularly, our first-of-its-kind exploration of impurity-based thermometry in one, two and three dimensional homogeneous Bosonic gases suggest that the ultimate precision substantially improves by increasing the spatial dimension, and thus giving more importance to the thermal fluctuations in 3d Bosonic gases. As an example, one can estimate the sub-nK temperature of a 3d Bosonic gas in a homogeneous trap with a relative error below 13% with as few as 100 measurement runs, whereas in the 1d scenario one needs more than 500 measurements for the same precision. We further explore more practical measurements, namely based on the position and momentum of the impurity. Indeed, they can perform good compared to the ultimate bound: For the same target precision they may need twice as many measurements as the optimal (but experimentally complex) measurement. For the 1d scenario and at low enough temperatures the position measurement is de facto optimal.

II. IMPURITY DYNAMICS IN A BEC

Our proposal is therefore of large interest in studies of uniform BECs due to its non-destructive feature, rigorous modeling, and high precision with experimentally realisable measurements. Such temperature estimation will boost e.g., characterisation of phase diagrams [38–44], or help to account for thermal fluctuations and separate them from the quantum ones. Furthermore, this thermometer keeps its accuracy at very low temperatures, a regime in which the uniform gases promise a large number of interesting effects and applications (e.g. this system has been proposed as a quantum simulator of the early universe [45–47] or for relativistic quantum metrology, as acceleration produces observable relativistic effects on homogeneous BECs [48]). Particularly, our first-of-its-kind exploration of impurity-based thermometry in one, two and three dimensional homogeneous Bosonic gases suggest that the ultimate precision substantially improves by increasing the spatial dimension, and thus giving more importance to the thermal fluctuations in 3d Bosonic gases. As an example, one can estimate the sub-nK temperature of a 3d Bosonic gas in a homogeneous trap with a relative error below 13% with as few as 100 measurement runs, whereas in the 1d scenario one needs more than 500 measurements for the same precision. We further explore more practical measurements, namely based on the position and momentum of the impurity. Indeed, they can perform good compared to the ultimate bound: For the same target precision they may need twice as many measurements as the optimal (but experimentally complex) measurement. For the 1d scenario and at low enough temperatures the position measurement is de facto optimal.

Figure 1. Schematic of our proposed thermometry protocol. The sample is a collection of BEC atoms (represented by the blue balls) trapped in a uniform potential/box with arbitrary dimension, $d \in \{1, 2, 3\}$. An impurity atom (represented by the green ball) plays the role of our thermometer. The impurity is trapped in a harmonic potential (not shown here). After allowing for sufficiently long interaction, the quantum state of the impurity atom acquires information about the temperature T of the sample. By measuring some property of the impurity e.g., its position fluctuations, one can infer T with minimally disturbing the BEC sample.

The four terms represent the non-interacting Hamiltonians of the impurity and of the Bosons, and the Hamiltonians of the Boson-Boson atomic interaction and the impurity-Boson atomic interaction, respectively. Within the second quantization formalism, their explicit forms are [49]

$$H = H_1 + H_B + H_{BB} + H_{IB}. \quad (1)$$

Here, the four terms represent the non-interacting Hamiltonians of the impurity and of the Bosons, and the Hamiltonians of the Boson-Boson atomic interaction and the impurity-Boson atomic interaction, respectively. Within the second quantization formalism, their explicit forms are [49]

$$H_1 = \frac{\mathbf{p}^2}{2m_1} + U_{\text{ext}}(\mathbf{r}), \quad H_B = \sum_k \epsilon_k a_k^\dagger a_k, \quad (2)$$

$$H_{BB} = \frac{1}{2V} \sum_{k,k',q} V_B(q)a_k^\dagger q a_{k'+q}^\dagger a_k a_{k'}, \quad (3)$$

$$H_{IB} = \frac{1}{V} \sum_{k,q} V_{IB}(q)a_k^\dagger a_{k-q}. \quad (4)$$

In $d < 3$, the external potential experienced by the Bosons, $V_{\text{ext}}(\mathbf{r})$, and that of the impurity, $U_{\text{ext}}(\mathbf{r})$, are tightly parabolic in the directions in which the degrees
of freedom of the BEC and the impurity are frozen, so to realize the reduction of dimensionality. In \(d = 3 \), and for \(d < 3 \) in all directions where dimensionality is not reduced, the external potential for the Bosons is zero and the potential for the impurity \(U_{\text{ext}}(r) \) is parabolic with trapping frequency \(\Omega \). Then, in these directions, the BEC is homogeneous and contained in spatial domain of size \(V \), say a uniform box in \(d = 3 \) [32], a quasi-2D uniform potential [31], or even an annulus geometry [30].

The Bosonic operators \(a_k(a_k^\dagger) \) destroy (create) a Boson of mass \(m_B \) having wave vector \(k \) and energy \(\epsilon_k \). The quantities \(V_B \) and \(V_{IB} \) represent the Fourier transforms of the impulsive (contact) Boson-Boson and impurity-Boson interactions respectively. In addition, the impurity density in the momentum space is \(\rho_f(q) \). The Hamiltonian can be recast in the form of a Fröhlich Hamiltonian, with some constraints over the values of the parameters of the system (like the temperature, trapping frequency \(\Omega \) for the impurity, or strength of interactions, see Appendix C in [49] and for the trapped case and higher dimensions see [30, 51]). We call the regime in which all these conditions are fulfilled the Fröhlich regime, and we check in all calculations presented in this paper that indeed these conditions are fulfilled. Then, in this regime, the Hamiltonian can be written as

\[
H = \frac{p^2}{2m_1} + U_{\text{ext}}(r) + \sum_{k \neq 0} E_k b_k^\dagger b_k + \sum_{k \neq 0} \hbar g_k \cdot r \pi_k.
\]
(5)

In Eq. (5), the first term represents the free kinetic energy of the impurity. The last term is the interaction between the position coordinate \(r \) of the impurity atom and the Bogoliubov Bosonic modes of BEC. This interaction part is linear when the constraints over the parameters mentioned above are fulfilled [49, 51]. This part of the Hamiltonian is written in terms of its canonical dimensionless momenta \(\pi_k = (b_k - b_k^\dagger) \), with \(b_k (b_k^\dagger) \) representing the Bogoliubov annihilation (creation) operator for the mode with momentum \(k \). It thus has the form of the quantum Brownian motion (QBM) model, in which the impurity plays the role of a Brownian particle, while the Bogoliubov modes of BEC act as an effective Bosonic environment. Such an environment forms the multimode thermal states due to the finite temperature of the gas. The coupling constant is given by

\[
g_k = \frac{kV_k}{\hbar}, \quad V_k = g_B \sqrt{\frac{n_0}{V}} \left(\frac{(\xi k)^2}{(\xi k)^2 + 2} \right)^{\frac{1}{2}}.
\]
(6)

In the above expressions, the coherence length and the speed of sound are respectively given as

\[
\xi = \frac{\hbar}{\sqrt{2g_B m_B n_0}}, \quad c = \frac{\hbar}{\sqrt{2m_B \xi}}.
\]
(7)

Within the linear Bogoliubov dispersion relation, it has been shown that the bath is conveniently described by the super-ohmic spectral density tensor \(J_d(\omega) = d^{-1} [J_d(\omega)]_{d \times d} \) for the dimension \(d \) of the hosting BEC [51]. In this expression, the spectral function \(J_d \) is shown to take the super-ohmic form

\[
J_d(\omega) = m_1 (\tau_d) d \omega^{d+2} K(\omega, \Lambda_d),
\]
(8)

while we introduce the sharp ultraviolet cut-off \(K \) with a cut-off frequency \(\Lambda_d \). This is customary to avoid divergences due to the the rising behaviour of the spectral density at high frequencies. Here the \(d \)-parametrised characteristic time \(\tau_d \) is given by

\[
(\tau_d)^d = \frac{S_d (\eta d)^2}{2(2\pi)^d m_1 \left[\frac{g_{B,d}}{[\frac{2\pi}{\eta_d}]^{1/2}} \right] n_0,d}.
\]
(9)

For \(d = 1, 2 \) and \(3 \) we have \(S_1 = 2, S_2 = 2\pi \) and \(S_3 = 4\pi \) respectively, while the \(d \)-parametrised bath characteristic frequency is \(\Lambda_d = (g_{B,d}/n_0,d)/\hbar \). We have additionally written the impurity-Boson coupling in the units of the Boson-Boson coupling as \(\eta_d = (g_{B,d}/g_B) \). In addition, the \(d \)-dimensional density is \(n_{0,d} = (n_{0,1})^d \). The external potential for the BEC atoms, which contains the transverse harmonic confinement of BEC for \(d < 3 \) that realizes the reduction of dimensionality is explicitly given by

\[
V_{\text{ext}}(r) = \begin{cases} \frac{(1/2)m_B \omega^2_1 (y^2 + z^2)}, & \text{for } d = 1 \\ \frac{(1/2)m_B \omega^2_2 (z^2)}, & \text{for } d = 2 \\ 0, & \text{for } d = 3. \end{cases}
\]
(10)

The Boson-Boson coupling \(g_{B,d} \) is written in terms of the external trap frequency \(\omega_d = (\omega_1 = \omega_3, \omega_2 = \omega_3) \) for the dimension involved, and it has the expression [52, 53]

\[
g_{B,d} = \frac{S_d \hbar^2 a_3}{m_B \left(\sqrt{\hbar/m_B a_0} \right)^{3-d}}.
\]
(11)

This makes the cases \(d = 1 \) and \(d = 2 \) to be quasi-1-d and quasi-2-d respectively. In Ref. [51], the above bath characterisation has been employed to derive the equations of motion (EOM) of the impurity position coordinates, while taking into account the bath memory effects. This is accounted by the time-non-local form of the damping kernel \(\Gamma_\tau^{\text{ex}} \), with \(x \) in one of the relevant directions (in \(d = 2 \) and \(d = 3 \) similar expressions are found in the other directions). The harmonically bond impurity motion is driven by the effective Brownian stochastic force \(B^x(t) \), which is further formed by the Bogoliubov modes of the BEC. The corresponding EOM reads

\[
\ddot{x}(t) + \Omega^2 x(t) + \partial_t \int_0^t \Gamma_\tau^{\text{ex}}(t-s)x(s)ds = \left(\frac{1}{m_1} \right) B^x(t),
\]
(12)

with \(x \) representing the position of the impurity in one of the relevant directions. The solution of this equation
is shown to take form
\[x(t) = G_{1,d}(t)x(0) + G_{2,d}(t)\dot{x}(0) + (1/m_1) \int_0^t ds G_{2,d}(t-s)B^2(s), \] (13)

where we formulate the Green’s functions \(G_{1,d} \) and \(G_{2,d} \) through their Laplace transforms
\[\mathcal{L}_{S,d}[G_{1,d}(t)] = \frac{S}{S^2 + \Omega^2 + \Sigma \mathcal{L}_{S,d}[\Gamma_{d}^x(t)]}, \] (14)
\[\mathcal{L}_{S,d}[G_{2,d}(t)] = \frac{1}{S^2 + \Omega^2 + \Sigma \mathcal{L}_{S,d}[\Gamma_{d}^x(t)]}. \] (15)

By introducing the sharp cut-off given by \(\mathcal{K} = \Theta(\Lambda_d - \omega) \), with \(\Theta \) is the Heaviside step function, the \(d \)-parametrised damping kernel reads
\[\mathcal{L}_{S,d}[\Gamma_{d}^x(t)] = \left(\frac{(\Lambda_d)^{d+2} (\tau_d)^d}{2 F_1 \left(\frac{1}{2}, \frac{d+2}{2}, \frac{d+4}{2}, \frac{(\Lambda_d)^2}{\sigma_x^2} \right) \right), \] (16)

with \(2 F_1 \) denoting the hypergeometric function.

In the following we aim to use the impurity motion statistical properties to estimate the temperature of the BEC, generalizing to any dimension and homogeneous gases the proposal introduced in [3] for one-dimensional and trapped gases. The quadratures of interest are the steady state position and momentum variances of the impurity. It is important to note that the steady state covariance matrix is diagonal taking the form \(\sigma \equiv \text{diag} \left(\Delta x^2, \Delta p^2 \right) \). Here \(\Delta x^2 \) and \(\Delta p^2 \) are the steady state position and momentum variances of the impurity mechanical mode, which are appropriately scaled such that the uncertainty relation reads \(\Delta x \Delta p \geq 1 \) [54].

The fundamental expressions of the position and momentum variances in the unscaled coordinates has explicit connectivity to the imaginary part of the susceptibility, \(\chi_d''(\omega) \) (fluctuation-dissipation theorem), that is,
\[\langle x^2 \rangle_d = \frac{\hbar}{\pi} \int_0^\infty d\omega \coth \left(\frac{\hbar \omega}{2k_B T} \right) \chi_d''(\omega), \] (17)
\[\langle p^2 \rangle_d = \frac{\hbar m_1}{\pi} \int_0^\infty d\omega \omega^2 \coth \left(\frac{\hbar \omega}{2k_B T} \right) \chi_d''(\omega), \] (18)

where
\[\chi_d''(\omega) = \frac{1}{m_1} \left[\omega \xi_{d}^{xx}(\omega)^2 + [\Omega^2 - \omega^2 + \omega \theta_{d}^{xx}(\omega)^2] \right]. \] (19)

We point out that any kind of super-Ohmicity (and also the dimensional information) is captured here by the functions \(\xi_{d}^{xx}(\omega) \) and \(\theta_{d}^{xx}(\omega) \) which are respectively the Fourier domain real and imaginary part of the damping kernel (cf. Eq. (16)).

III. THERMOMETRY OF BEC IN DIFFERENT DIMENSIONS

Estimation theory, in part, deals with inference of a parameter \(\mathcal{P} \) from a set of measurement outcomes with the aim of minimising the estimation error. This set is collected through performing a positive operator-valued measurement (POVM) on the quantum system, with a density matrix \(\hat{\rho}(\mathcal{P}) \) that depends on the parameter.

Let \(\{\hat{\Pi}_k^x\} \) represent the POVM elements of the measurement. Here, \(k \) denotes the choice of measurement while \(x \) labels different outcomes. Then \(\hat{\Pi}_k^x \geq 0 \) and we have \(\int dx \hat{\Pi}_k^x = 1, \forall k \). The uncertainty (randomness) in the POVM outcomes allows only to infer the parameter with limited precision. According to the Cr´amer-Rao bound for an unbiased estimator the estimation error— as quantified by the mean squared error and denoted by \(\text{Var}(\mathcal{P},k) \)—is lower bounded by the inverse of the Fisher information, that is \(\text{Var}(\mathcal{P},k) \geq \left[N F(\mathcal{P},k) \right]^{-1} \). Here, \(N \) is the number of (independent) measurement runs and appears as a result of the central limit theorem. The Fisher information \(F(\mathcal{P},k) \) is given by
\[F(\mathcal{P},k) = \int [\partial_\mathcal{P} \ln p(x|\mathcal{P},k)]^2 p(x|\mathcal{P},k) dx, \] (20)

with \(p(x|\mathcal{P},k) = \text{Tr}[\hat{\rho}(\mathcal{P}) \hat{\Pi}_k^x] \) being the distribution of the measurement outcomes, conditioned on the true value of the parameter to be \(\mathcal{P} \) and the measurement \(k \) being performed. Note that the Cram´er-Rao bound can be saturated using the maximum likelihood estimator.

The Fisher information clearly depends on the specific measurement performed, hence the argument \(k \). One may optimise it over all possible measurements to get the so called quantum Fisher information (QFI) that quantifies yet another fundamental lower bound on the estimation error regardless of the measurement. The QFI can be written as [55, 56]
\[F^Q(\mathcal{P}) := \max_k F(\mathcal{P},k) = \text{Tr} \left[\hat{\rho}(\mathcal{P}) \hat{\Lambda}^2(\mathcal{P}) \right], \] (21)

where the Hermitian operator \(\hat{\Lambda}(\mathcal{P}) \) is the symmetric logarithmic derivative (SLD) defined as
\[\partial_\mathcal{P} \hat{\rho}(\mathcal{P}) \equiv \left\{ \hat{\Lambda}(\mathcal{P}), \hat{\rho}(\mathcal{P}) \right\}/2. \] (22)

In fact, a measurement performed in the basis of SLD is optimum.

Generally speaking, finding the optimal measurement and/or the ultimate error bound is a challenging task. Nonetheless, as we proved in the previous section, here we are dealing with a Bosonic Gaussian system, which is fully characterised by its displacement vector and covariance matrix. It has been shown that the QFI of Gaussian systems can be written in terms of the covariance matrix \(\sigma \), as follows [57–60]
\[F^Q(\mathcal{P}) = \frac{1}{2} \text{Tr} \left[\left(\sigma^{-1} [\partial_\mathcal{P} \sigma] \right)^2 \right] + 2 \frac{(\partial_\mathcal{P} \mu)^2}{1 - \mu^2}. \] (23)
A. The optimal thermometry and the fundamental bounds

In Fig. 2 we fix the temperature, and show the relative temperature error, $\delta T_{\text{min}}/T$, versus the dimensionless system-bath coupling, η. The error peaks at some coupling $\eta_{p.d}$ that depends on the temperature and the dimensionality. For the regime where $\eta < \eta_{p.d}$, the error increases as we strengthen the system bath coupling. On the other hand, for $\eta > \eta_{p.d}$, the opposite is observed. For the latter case, however, the enhancement of the coupling is limited by the maximum allowed system bath coupling $\eta_{c,d}$ in order to keep the calculations within the Fröhlich regime (see caption of the Fig. 2). As shown in Appendix A, for all the dimensions, the thermal statistics of the impurity is mostly contributed by the ground state for $\eta < \eta_{p.d}$. Such regime would then reflect a state with high purity. For the case of $\eta > \eta_{p.d}$ higher order Fock states significantly contribute in the construction of such statistics and the state becomes more mixed. This leads to the results that smaller values of the coupling – as characterised by $\eta < \eta_{p,d}$ – are suitable for thermometry only as long as system closely follows the ground state with high purity. Yet, for a strongly coupled bath with the system ($\eta > \eta_{p,d}$) – where bath induced thermalisation occurs – the large coupling values give better thermometric performance. However the latter regime is always bounded above by some critical coupling in the present physical setup. Finally from Fig. 2, the peak error is relatively reduced as we move to higher dimensions reflecting that higher dimensions are better for thermometry. In order to further analyse the performance of the thermometer, we plot the relative temperature error versus the true temperature of the hosting BEC for different dimensions in Fig. 3. For temperature range of interest – 0.2nK $\leq T \leq$ 10nK – higher d always leads to smaller error. This is an evidence that for high enough temperatures larger non-ohmicity (which is related to higher dimension) leads to better thermometry precision. In [23], a similar behaviour is reported. There, it is also shown that at extremely low temperatures, the opposite behaviour is observed i.e., lower non-ohmicity leads to higher precision. Nonetheless, for our BEC setup such extreme lows are irrelevant as they fall even below the pico Kelvin regime. For $d = 3$ scenario, we observe that the $\delta T_{\text{min}}/T \simeq 1.25$ at $T = 0.2nK$ for a single shot. Thus with $N = 100$ measurements one gets a relative error of $\simeq 12.5\%$. In $d = 1$ the same precision requires about $N = 400$ measurements. For temperatures $T \gtrsim 1nK$
Figure 4. Upper panels: Relative error as a function of coupling based on quadrature measurements (\hat{x}, and \hat{p}) as well as the optimal measurement $\hat{\Lambda}$. (a), (b) and (c) represent the 1d, 2d and 3d cases, respectively. For all plots we set $\eta = 0.6$ and $N = 1$. Lower panels: corresponding to each case above, the Wigner function of the impurity state is plotted for $T = 0.2nK$. In the 1d case, an enhanced position squeezing is obtained, while as we move to higher dimensions, we obtain lesser position squeezing effect.

relative error in two and three dimensions saturate to $\delta T_{\text{min}}/T \simeq 1$ i.e., one can have 10% error with $N = 100$ measurements. This is in fact a result that one expects when the impurity is thermalised and the ratio $T/\Omega \gg 1$.

For the one dimensional scenario, the saturation of error only appears for $T \gtrsim 10nK$. We also show the relative error down to 50pK in appendix B, serving as a guide to the eye about the error enhancement at low temperature.

B. Sub-Optimal thermometry and practical measurements

Now that we have found the ultimate precision bounds on estimating the temperature of the BEC, we move forward to examine the estimation error by measuring more practical observables, namely an individual measurements of either on position or momentum of the impurity [61].

We note that both position and momentum belong to the family of Gaussian measurements, and can be fully characterised by an associated covariance matrix σ^k, with $k \in \{\hat{x}, \hat{p}\}$ labeling the measurement. In particular, we have $\sigma^2 = \lim_{R \to \infty} \text{diag}(1/R, R)$, and $\sigma^2 = \lim_{R \to \infty} \text{diag}(R, 1/R)$, with R being some squeezing parameter. When performed on a system with covariance matrix σ, the corresponding Fisher information of these measurements is given by [62]

$$F(T, k) = \frac{1}{2} \text{Tr} \left[(\sigma^k + \sigma)^{-1} \partial_T (\sigma^k + \sigma) \right].$$

By doing some algebra we find

$$F(T, \hat{x}) = \frac{\partial_T \langle \hat{x}^2 \rangle}{2 \langle \hat{x}^2 \rangle^2} = \frac{\text{Var}(\hat{x})}{\text{Var}(\hat{x})},$$

which is nothing but the (inverse) of error propagation for the observable \hat{x}^2. A similar relation connecting the Fisher information of measuring \hat{p} and the error propagation of the observable \hat{p}^2 holds by changing $\hat{x} \to \hat{p}$.

In Fig. 4 (a-c) we depict, for all dimensions, the relative temperature error by measuring position and momentum and compare them to the optimal – yet challenging – measurement. Quite notably, in the quasi-1d setting, the position based measurement reaches the optimal profile in the low temperature regime i.e. below $T \lesssim 1nK$. This is because of the notable position squeezed states of the impurity motion in the 1d case. As such, the Fisher information scales as $F_{\text{Q},x}(T) \sim 1/\Delta x^2$. Therefore the small amount of noise in the position would lead to an enhanced value of the Fisher information and hence a smaller value of the relative error. However, this is obtained in the expense of the error enhancement in the momentum based measurement. The squeezing effects are shown through the plotted Wigner function (for its
expression, see Appendix A) of the impurity state in Fig. 4. For higher dimensions, there is less position squeezing effect and either of the measurements would result in the equivalent amount of error. For the 2d case, the separation of the error between position and momentum becomes lesser and both of them are always away from optimality, but within the same order of magnitude as the optimal measurement. For the 3d case the relative error for position and momentum measurements is equal, which is a reflection of the fact that both quadratures have the same temperature dependence. In this dimension, the sub-optimal measurements are not quite effective in extreme lows, but for $T \gtrsim 1$nK they are within the same order of magnitude as the optimal measurement. Lastly, let us comment that as a result of thermalisation at high enough temperatures ($T \gtrsim 10$K for 1d, $T \gtrsim 5$K for 2d, and $T \gtrsim 1$K for 3d) one has $\delta T(k)/T \approx \sqrt{2\delta T_{\text{min}}}/T = \sqrt{2}$ for $k \in \{\hat{x}, \hat{p}\}$. This means with measuring position/momentum twice as many times as the optimal measurement one can achieve the same target precision.

Perhaps the easiest way of performing the measurement of mean square displacement or momentum fluctuations could be done in the following scenario: Instead of looking at a single impurity, we can consider, say, 1000 to few thousands of non-interacting impurities being polarized cold Fermionic atoms. This idea contradicts in a sense the principal idea of the sample-probe interactions, where the probe size is significantly smaller than the sample, and that the sample is not directly measured. Still, with a condensate, say, 10^7 Bosons, few thousands probing, non-interacting Fermions will not make much difference. On the other hand, both their spatial and momentum density distributions are easily accessible experimentally; the former either through non-destructive light (refractive index) imaging or, more sophisticated, atomic microscopy, the latter through opening the trap for Fermions and looking at the momentum distribution in the time-of-flight measurement [63, 64].

IV. CONCLUSION –

Using an individual impurity as a temperature probe is crucial in non-demolition thermometry of cold gases; it has been studied theoretically in abstract models as well as more comprehensive ones in both Fermionic and Bosonic gases [3, 7, 23, 24, 65]. Recently, the idea was even put into experimental examination in the milli Kelvin thermometry of Fermionic gases [37]. The results of the current work pave the path towards implementation of impurity based thermometry in more versatile experimental setups of Bosonic gases in different spacial dimensions $d = 1, 2$, and $d = 3$, for example [66–75].

Our results show that, for the temperature range $0.2nK \leq T \leq 10nK$, as one decreases the spatial dimension d the relative error reduces. Specifically, in the 3d scenario and for temperatures as small as $T \approx 0.2nK$ one can achieve the minimum relative error of 12.5% by $N = 100$ measurements. To achieve the same precision in the 1d case, one should perform more than $N = 400$ measurements. It must be noted that these are the fundamental bounds characterised by the quantum Cramér-Rao bound, they are in principle achievable i.e., there exist physical measurements that can achieve such precisions. Nonetheless, experimental limitations will not allow for their realisation. What is more doable, are sub-optimal Gaussian measurements, namely measuring position and momentum of the impurity.

In the 3d case and for $T \lesssim 0.5nK$ these measurements should be repeated an order of magnitude more than the optimal measurement in order to reach the same precision. For the 2d scenario one only requires few times more repetitions, while for the 1d scenario the position measurement is optimal. At higher temperatures, both position and momentum measurements perform very good, and their relative error can be as good as the minimum error with twice as many measurements.

Apart from the experimental realisation of our analysis, a possible future direction is the theoretical development of thermometry of Bosonic gases by means of dynamical probes, i.e., measuring the probe before it reaches the steady state. This can be of more use in scenarios with long thermalisation time. Another interesting problem is to take the temperature of pure Bosonic gases, aligned with the recently proposed framework of [76].

ACKNOWLEDGMENTS

M.M.K. and H.T. acknowledge support from Fundação para a Ciência e a Tecnologia (FCT-Portugal) through Grant No PD/BD/114345/2016 and through Contract No IF/00433/2015 respectively. M.A.G.M. acknowledges funding from the Spanish Ministry of Education and Vocational Training (MEFP) through the Beatriz Galindo program 2018 (BEAGAL18/00203). We (M.L. group) acknowledge the Spanish Ministry MINECO (National Plan 15 Grant: FISICATEAMO No. FIS2016-79508-P, SEVERO OCHOA No. SEV-2015-0522, FPI), European Social Fund,Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya (AGAUR Grant No. 2017 SGR 1341, CERCA program, QuantumCAT_U16-011424, co-funded by ERDF Operational Program of Catalonia 2014-2020), MINECO-EU QUANTERA MAQS (funded by The State Research Agency (AEP) PCI2019-111828-2 / 10.13039/501100011033), and the National Science Centre, Poland-Symfonia Grant No. 2016/20/W/ST4/00314. M.M. acknowledges financial support from the Swiss National Science Foundation (NCCR SwissMAP).
[1] Mohammad Mehboudi, Anna Sanpera, and Luis A Correa, “Thermometry in the quantum regime: recent theoretical progress,” Journal of Physics A: Mathematical and Theoretical 52, 303001 (2019).

[2] Antonella De Pasquale and Thomas M Stace, “Quantum thermometry,” in Thermodynamics in the Quantum Regime (Springer, 2018) pp. 503–527.

[3] Mohammad Mehboudi, Aniello Lampo, Christos Charalambous, Luis A. Correa, Miguel Angel Garcia-March, and Maciej Lewenstein, “Using polarons for sub-nK quantum nondeomlination thermometry in a bose-einstein condensate,” Phys. Rev. Lett. 122, 030403 (2019).

[4] Sholeh Razavian, Claudia Benedetti, Matteo Bina, Yahya Akbari-Kourbolagh, and Matteo GA Paris, “Quantum thermometry by single-qubit dephasing,” The European Physical Journal Plus 134, 284 (2019).

[5] Stella Seah, Stefan Nimmrichter, Daniel Grimmer, Antonella De Pasquale, Davide Rossini, Rosario Fazio, Luis A. Correa, Mohammad Mehboudi, Gerardo Adesso, Matteo G A Paris, “Achieving the landau bound to preci-

[6] Luis A. Correa, Mohammad Mehboudi, Gerardo Adesso, and Anna Sanpera, “Individual quantum probes for optimal thermometry,” Phys. Rev. Lett. 114, 220405 (2015).

[7] Mark T. Mitchell, Thomas Fogarty, Giacomo Guarnieri, Steve Campbell, Thomas Busch, and John Goold, “In situ thermometry of a cold fermi gas via dephasing impurities,” Phys. Rev. Lett. 125, 080402 (2020).

[8] Antonella De Pasquale, Davide Rossini, Rosario Fazio, and Vittorio Giovannetti, “Local quantum thermal susceptibility,” Nature communications 7, 1–8 (2016).

[9] Matteo GA Paris, “Achieving the landau bound to precision of quantum thermometry in systems with vanishing gap,” Journal of Physics A: Mathematical and Theoretical 49, 03LT02 (2015).

[10] Karen V. Hovhannisyan and Luis A. Correa, “Measuring the temperature of cold many-body quantum systems,” Phys. Rev. B 98, 045101 (2018).

[11] M Mehboudi, M Moreno-Cardoner, G De Chiara, and A Sanpera, “Thermometry precision in strongly correlated ultracold lattice gases,” New Journal of Physics 17, 055020 (2015).

[12] Safoura S. Mirkhalaf, Daniel Beneditco Orenes, Morgan W. Mitchell, and Emilia Witkowska, “Criticality-enhanced quantum sensing in ferromagnetic bose-einstein condensates: Role of readout measurement and detection noise,” Phys. Rev. A 103, 023317 (2021).

[13] Patrick P. Hofer, Jonatan Bohr Brask, Martí Perarnau-Llobet, and Nicolas Brunner, “Quantum thermal machine as a thermometer,” Phys. Rev. Lett. 119, 090603 (2017).

[14] Gerard A. Paz-Silva, Leigh M. Norris, and Lorenza Viola, “Multiquit spectroscopy of gaussian quantum noise,” Phys. Rev. A 95, 022121 (2017).

[15] Steve Campbell, Mohammad Mehboudi, Gabriele De Chiara, and Mauro Paternostro, “Global and local thermometry schemes in coupled quantum systems,” New Journal of Physics 19, 103003 (2017).

[16] Wai-Keong Mok, Kishor Bharti, Leong-Chuan Kwek, and Abolfazl Bayat, “Optimal probes for global quantum thermometry,” Communications Physics 4, 1–8 (2021).

[17] C L Latune, I Sinayskiy, and F Petruccione, “Collective heat capacity for quantum thermometry and quantum engine enhancements,” New Journal of Physics 22, 083049 (2020).

[18] Jesús Rubio, Janet Anders, and Luis A Correa, “Global quantum thermometry,” arXiv preprint arXiv:2011.13018 (2020).

[19] Patrick P. Potts, Jonatan Bohr Brask, and Nicolas Brunner, “Fundamental limits on low-temperature quantum thermometry with finite resolution,” Quantum 3, 161 (2019).

[20] Mathias R. Jørgensen, Patrick P. Potts, Matteo G. A Paris, and Jonatan B. Brask, “Tight bound on finite-resolution quantum thermometry at low temperatures,” Phys. Rev. Research 2, 033394 (2020).

[21] Heinz-Peter Breuer and Francesco Petruccione, “The theory of open quantum systems,” (Oxford University Press on Demand, 2002).

[22] Ulrich Weiss, Quantum dissipative systems, Vol. 13 (World scientific, 2012).

[23] Luis A. Correa, Martí Perarnau-Llobet, Karen V. Hovhannisyan, Senaïd Hernández-Santana, Mohammad Mehboudi, and Anna Sanpera, “Enhancement of low-temperature thermometry by strong coupling,” Phys. Rev. A 96, 062103 (2017).

[24] Guim Planella, B. Cenni Marina, F. Antonio Acín, and Mohammad Mehboudi, “Bath-induced correlations lead to sub-shot-noise thermometry precision,” arXiv preprint arXiv:2001.11812 (2020).

[25] Alexander L. Gaunt, Tobias F. Schmidutz, Igor Goltibovych, Robert P. Smith, and Zoran Hadzibabic, “Bose-einstein condensation of atoms in a uniform potential,” Phys. Rev. Lett. 110, 200406 (2013).

[26] A. Jaouadi, N. Gaaloul, B. Viaris de Lesegno, M. Telmini, L. Pruvost, and E. Charron, “Bose-einstein condensation in dark power-law laser traps,” Phys. Rev. A 82, 023613 (2010).

[27] Ariel Kaplan, Nir Friedman, and Nir Davidson, “Optimized single-beam dark optical trap,” J. Opt. Soc. Am. B 19, 1233–1238 (2002).

[28] Igor Goltibovych, Tobias F. Schmidutz, Alexander L. Gaunt, Nir Navon, Robert P. Smith, and Zoran Hadzibabic, “Observing properties of an interacting homogeneous bose-einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics,” Phys. Rev. A 89, 061604 (2014).

[29] Tobias F. Schmidutz, Igor Goltibovych, Alexander L. Gaunt, Robert P. Smith, Nir Navon, and Zoran Hadzibabic, “Quantum joule-thomson effect in a saturated homogeneous bose gas,” Phys. Rev. Lett. 112, 040403 (2014).

[30] L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbène, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annulus bose gas,” Phys. Rev. Lett. 113, 135302 (2014).

[31] Lauriane Chomaz, Laura Corman, Tom Bienaimé, Rémi Desbuquois, Christof Weitenberg, Sylvain Nascimbène, Jérome Beugnon, and Jean Dalibard, “Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional bose gas,” Nature Communications 6, 6162 (2015).
[32] Nir Navon, Alexander L. Gaunt, Robert P. Smith, and Zoran Hadzibabic, “Critical dynamics of spontaneous symmetry breaking in a homogeneous bose gas,” Science 347, 167–170 (2015).

[33] Jérémy Beugnon and Nir Navon, “Exploring the kibble-zurek mechanism with homogeneous bose gases,” Journal of Physics B: Atomic, Molecular and Optical Physics 50, 022002 (2017).

[34] Raphael Lopes, Christoph Eigen, Nir Navon, David Clénent, Robert P. Smith, and Zoran Hadzibabic, “Quantum depletion of a homogeneous bose-einstein condensate,” Phys. Rev. Lett. 119, 190404 (2017).

[35] Raphael Lopes, Christoph Eigen, Adam Barker, Konrad G. H. Viebahn, Martin Robert-de Saint-Vincent, Nir Navon, Zoran Hadzibabic, and Robert P. Smith, “Quasiparticle energy in a strongly interacting homogeneous bose-einstein condensate,” Phys. Rev. Lett. 118, 210401 (2017).

[36] Guillaume Gauthier, Matthew T. Reeves, Xiaoquan Yu, Ashton S. Bradley, Mark A. Baker, Thomas A. Bell, Halina Rubinsztein-Dunlop, Matthew J. Davis, and Tyler W. Need, “Giant vortex clusters in a two-dimensional quantum fluid,” Science 364, 1264–1267 (2019).

[37] Quentin Bouton, Jens Nettersheim, Daniel Adam, Felix Schmidt, Daniel Mayer, Tobias Lausch, Eberhard Tiemann, and Artur Widera, “Quantum depletion of a homogeneous bose-einstein condensate,” Phys. Rev. Lett. 118, 210401 (2017).

[38] J. D. Reppy, B. C. Crooker, B. Hebral, A. D. Corwin, Jérome Beugnon and Nir Navon, “Exploring the kibble-zurek mechanism with homogeneous bose gases,” Laser Physics Letters 2, 506–511 (2005).

[39] O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond, and J. Brand, “Fate of the false vacuum: Towards realization with ultra-cold atoms,” EPL (Europhysics Letters) 110, 56001 (2015).

[40] King Lun Ng, Bogdan Opanchuk, Manushan Thenabadu, Margaret Reid, and Peter D. Drummond, “Fate of the false vacuum: Finite temperature, entropy, and topological phase in quantum simulations of the early universe,” PRX Quantum 2, 010350 (2021).

[41] Mehdi Ahmadi, David Edward Bruschi, Carlos Sabin, Gerardo Adesso, and Nivette Fuentes, “Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies,” Scientific Reports 4, 4996 (2014).

[42] Aniello Lampo, Soon Hoe Lim, Miguel Angel Garcia-March, and Maciej Lewenstein, “Bose polaron as an instance of quantum Brownian motion,” Quantum 1, 30 (2017).

[43] Aniello Lampo, Christos Charalambous, Miguel Angel Garcia-March, and Maciej Lewenstein, “Non-markovian polaron dynamics in a trapped bose-einstein condensate,” Phys. Rev. A 98, 063630 (2018).

[44] M. Miskeen Khan, H. Terças, J. T. Mendonça, J. Wehr, C. Charalambous, M. Lewenstein, and M. A. Garcia-March, “Quantum dynamics of a bose polaron in a d-dimensional bose-einstein condensate,” Phys. Rev. A 103, 023303 (2021).

[45] G. E. Astrakharchik and L. P. Pitaevskii, “Motion of a heavy impurity through a bose-einstein condensate,” Phys. Rev. A 70, 013608 (2004).

[46] Dmitry K. Efimkin, Johannes Hofmann, and Victor Galitski, “Non-markovian quantum friction of bright solitons in superfluids,” Phys. Rev. Lett. 116, 225301 (2016).

[47] J. Eisert, S. Scheel, and M. B. Plenio, “Distilling gaussian states with gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002).

[48] Samuel L. Braunstein and Carlton M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994).

[49] MATTEO G. A. PARIS, “Quantum estimation for quantum technology,” International Journal of Quantum Information 07, 125–137 (2009).

[50] Alex Monras, “Phase space formalism for quantum estimation of Gaussian states,” arXiv:1303.3682 (2013).

[51] Zhang Jiang, “Quantum fisher information for states in exponential form,” Phys. Rev. A 89, 032128 (2014).

[52] O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, “Quantum parameter estimation using general single-mode gaussian states,” Phys. Rev. A 88, 040102 (2013).

[53] Marco G Genoni, O S Duarte, and Alessio Serafini, “Unravelling the noise: the discrimination of wave function collapse models under time-continuous measurements,” New Journal of Physics 18, 103040 (2016).

[54] O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects,” Phys. Rev. Lett. 107, 020405 (2011).

[55] Maria F. B. Cenni, Ludovico Lami, Antonio Acín, and Mohammad Mehr Boulder, “On thermometry of gaussian quantum systems,” In preparation (2021).

[56] Jessica E Lye, Brett D Cuthbertson, Hans-Albert Bachor, and John D Close, “Phase modulation spectroscopy: a non-destructive probe of bose-einstein condensates,” Journal of Optics B: Quantum and Semiclassical Optics 1, 402–407 (1999).

[57] M. R. Andrews, M.-O. Mewes, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, “Direct, nondestructive observation of a bose condensate,” Science 273, 84–87 (1996).
Appendix A: Thermal statistic of the impurity

In order to calculate the thermal statistics of the impurity we formally write the density operator of the impurity \(\hat{\rho}_i \). Any physical state being represented by the density operator is bounded since its Hilbert Schmidt norm is finite. It is then possible to expand a Boson mode state in the basis \(\{ \hat{D}^\dagger(\lambda) \forall \lambda \in \mathbb{C}, \lambda = \lambda_r + i\lambda_i \} \). Hence one can write the state of the impurity as [77]

\[
\hat{\rho}_i = \frac{1}{\pi^2} \int d^2 \lambda \chi(\lambda, \lambda^*) \hat{D}^\dagger(\lambda).
\] (A1)

Here \(\hat{D}^\dagger(\lambda) \) is the conjugate transpose of the coherent displacement operator \(\hat{D}(\lambda) = e^{\lambda a^\dagger - \lambda^* a} \) and \(d^2 \lambda = d\lambda_r d\lambda_i \) is the measure for two-dimensional integral corresponding to real part \(\lambda_r \) and imaginary part \(\lambda_i \) of the complex variable \(\lambda \). For a canonical position \(\hat{x} \) and momentum \(\hat{p} \) variables associated to the harmonic oscillator, they can be expressed in terms of the quadrature \(\hat{x} = (a + a^\dagger) / \sqrt{2} \) and \(\hat{p} = i(\hat{a}^\dagger - \hat{a}) / \sqrt{2} \) respectively. The commutation relation therefore reads \([\hat{x}, \hat{p}] = i \). Here \(\hat{a}(\hat{a}^\dagger) \) is the annihilation (creation) operator for the Bosonic mode. In such coordinates \(\alpha = (1/\sqrt{2}) ((\hat{x}) + i(\hat{p})) \). This reflects that the \(\alpha_r \) and \(\alpha_i \) are simply the scaled position and momentum expectation value and therefore a valid representation of the phase space. The symmetric ordered characteristic function \(\chi(\beta, \beta^*) \) is the expectation value of the Weyl operator, given by \(\chi(\beta, \beta^*) = \text{Tr} [\hat{\rho}_i \hat{D}(\beta)] \). If the dynamics is Gaussian, the quantum characteristic function is fully captured by the covariance matrix by the expression \(\chi(\beta, \beta^*) = e^{-|\sigma|^2} \). Here \(\sigma \) is the covariance matrix associated to the mode and \(\mathbf{x} = (\beta_r, \beta_i) \) are the phase space variables [78]. The Wigner quasi probability distribution function \(W(\alpha, \alpha^*) \) is the two dimensional complex Fourier transform of the characteristic function such that

\[
W(\alpha, \alpha^*) = \frac{1}{\pi^2} \int d^2 \beta \chi(\beta, \beta^*) e^{-(\beta \alpha^* - \beta^* \alpha)}.
\] (A2)

In addition, the phonon number statistics, that is, the probability of finding \(n \) phonon in the mode, is connected to the density operator by the expression \(\mathbf{P}(n) = \langle n | \hat{\rho}_i | n \rangle \). This can be calculated via the matrix elements of the displacement operator being evaluated in the Fock basis and given by the expression [79]

\[
\langle n | \hat{D}(\alpha) | m \rangle = \sqrt{\frac{m!}{n!}} e^{-|\alpha|^2/2} (\alpha)^{n-m} L_{m}^{n-m} [|\alpha|^2], \quad n \geq m,
\] (A3)

where \(L_{m}^{n-m} [.] \) are the generalized Laguerre polynomials. In the present case, we are mainly interested in the diagonal entries therefore we have \(m = n \). We plot the impurity phonon number distribution both for \(\eta < \eta_{p,d} \) and \(\eta > \eta_{p,d} \) for each dimension in Fig. 5. For the \(\eta < \eta_{p,d} \) thermal statistics of the impurity are almost
fully contributed by the ground state while for $\eta > \eta_{p,d}$, higher order Fock states contribute significantly in the construction of the thermal phonon statistics.

Appendix B: Relative error for extended temperature range down to 50 pK–

In this appendix, we show the relative error for the low temperature domain down to 50pK. This reflects how much the relative error enhances as we move to lower values of the temperature. As such, the cases based on optimal measurements are shown in Fig. 6. Here the relative error of the 3d case starts deviating from the thermal profile at temperature below $T \approx 60$ pK. Moreover, the relative errors based on the suboptimal measurements are shown in Figs. 7 (a-c).

Figure 6. Same as in Fig. 3, only the temperature domain has been extended within the interval 0.05 nK $\leq T \leq 10$ nK.
Figure 7. Same as in the upper panel of Fig. 4 of the main text, however temperature domain has been extended within the interval $0.05\text{nK} \leq T \leq 10\text{nK}$.