Towards understanding deep learning with the natural clustering prior

Simon Carbonnelle

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Dissertation committee:
Prof. Christophe De Vleeschouwer (UCLouvain, co-advisor)
Prof. Marie Van Reybroeck (UCLouvain, co-advisor)
Prof. Tinne Tuytelaars (K.U.Leuven)
Prof. Vincent François-Lavet (VU Amsterdam)
Prof. Benoît Macq (UCLouvain)
Prof. Laurent Jacques (UCLouvain)
Prof. David Bol (UCLouvain, chair)

Contact: simon.carbonnelle.research@gmail.com

January 2022
Abstract

The prior knowledge (a.k.a. priors) integrated into the design of a machine learning system strongly influences its generalization abilities. In the specific context of deep learning, some of these priors are poorly understood as they implicitly emerge from the successful heuristics and tentative approximations of biological brains involved in deep learning design. Through the lens of supervised image classification problems, this thesis investigates the implicit integration of a natural clustering prior composed of three statements: (i) natural images exhibit a rich clustered structure, (ii) image classes are composed of multiple clusters and (iii) each cluster contains examples from a single class. The decomposition of classes into multiple clusters implies that supervised deep learning systems could benefit from unsupervised clustering to define appropriate decision boundaries. Hence, this thesis attempts to identify implicit clustering abilities, mechanisms and hyperparameters in deep learning systems and evaluate their relevance for explaining the generalization abilities of these systems.

Our study of implicit clustering abilities exploits hierarchical class labels to show that the subclasses (e.g., orchids, poppies, roses, sunflowers, tulips) associated to a class (e.g., flowers) are differentiated in deep neural networks that generalize well, even though only class-level supervision is provided. We then look for clustering mechanisms through the study of neuron-level training dynamics in multilayer perceptrons trained on a synthetic dataset with known clusters. Our experiments reveal a winner-take-most mechanism: training progressively increases the average pre-activation of the most activated clusters of a class and decreases the average pre-activation of the least activated clusters of the same class. Remarkably, this implicit mechanism leads neurons to differentiate some clusters from the same class more strongly than clusters from different classes. These studies indicate the emergence of a neuron-level training process that is critical for implicit clustering to occur. We propose to capture the extent by which the neurons of each layer have been effectively “trained” during the global training process through the amount of layer rotation, i.e. the cosine distance between the initial and final flattened weight vectors of each layer. Equipped with tools to monitor and control the amount of layer rotation during training, we demonstrate that this implicit hyperparameter exhibits a consistent relationship with model generalization and training speed. Moreover,
we show that the impact of layer rotation on training seems to explain the effect of several explicit hyperparameters such as the learning rate, weight decay, and the use of adaptive gradient methods.

Overall, our work thus provides a collection of experiments to support the relevance of the natural clustering prior for explaining generalization in deep learning. Additionally, it highlights the potential of using explicit clustering algorithms for training deep neural networks, as this would facilitate the integration of natural clustering-related priors into the design of deep learning systems.
Acknowledgements

My deepest gratitude goes to all the people I’ve had the chance to live with during these six years. I don’t think they know how much they have shaped my life—and still do. Thank you Sam, Ysa, Clarisse, Ol, Denis, Nouch, Oli, Bibou, Sixtine, Math, Ahmad, Faf, Delph, Steph, Radu, Gilles, Nico, Nina, Lucie, Clément, Théo, Hélène, Thomas, Arnould, Leia, Marie, Mathieu, Paloma, Fabrice, Lilas, Gregor and of course Claire, my love.

I also want to thank my family, grandparents and friends for their constant support and loyalty despite my sometimes unconventional and confusing lifestyle.

Thank you Christophe for your trust all along your supervision of my thesis. Thank you for the stimulating discussions and for being one of the first people with whom I dared to have an argument. Thank you for staying supportive albeit my rather unstable relationship to our shared project.

Great thanks to all my colleagues for their precious humour, care, proofreading and support.

Thanks to the reddit r/machinelearning community for helping me dive into the field of deep learning.

Finally, I am grateful to the Université catholique de Louvain and the ICTEAM institute for providing the infrastructure necessary for this thesis. I am also grateful to the Fondation Louvain, the Université catholique de Louvain, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS) of Belgium and the Walloon Region for funding this project.
Contents

1 Introduction and background 1
 1.1 Deep learning basics . 2
 1.1.1 Natural data . 2
 1.1.2 Learning from data . 3
 1.1.3 Generalizing to unseen data 7
 1.2 The generalization puzzles of deep learning 8
 1.2.1 Why do deep neural networks generalize so well? 8
 1.2.2 Why do deep neural networks generalize so poorly? 10
 1.3 Solving the puzzles through the study of priors 10
 1.3.1 On the role of priors in generalization 11
 1.3.2 The difficult case of deep learning priors 12
 1.3.3 The natural clustering prior 13
 1.4 Contributions and thesis outline 14

2 An implicit clustering ability 17
 2.1 Measuring intraclass clustering ability 18
 2.1.1 Terminology and notations 19
 2.1.2 Measures based on label hierarchies 19
 2.1.3 Measures based on variance 21
 2.2 Experimental methodology . 22
 2.2.1 Building a set of models with varying hyperparameters . . 22
 2.2.2 Evaluating correlation with generalization 24
 2.3 Results . 25
 2.3.1 The measures’ relationships with generalization 25
Section	Page
2.3.2 Influence of k on the Kendall coefficients	25
2.3.3 Evolution of the measures across layers	27
2.3.4 Evolution of the measures over the course of training	28
2.3.5 Visualization of subclass extraction in hidden neurons	29
2.4 Related work	31
2.5 Discussion	32
3 An implicit clustering mechanism	33
3.1 Experimental setup	34
3.1.1 Datasets	35
3.1.2 Neural networks	35
3.1.3 Training process	35
3.2 A winner-take-most mechanism	36
3.3 Towards understanding the mechanism	37
3.3.1 An ablation study	40
3.3.2 On the role of difficult training examples	41
3.3.3 On the role of ReLU	41
3.3.4 A divide-and-conquer strategy	43
3.3.5 Why does the mechanism affect a single class?	43
3.4 Connections with standard deep learning settings	43
3.4.1 Training dynamics w.r.t. example difficulty	44
3.4.2 The Coherent Gradient Hypothesis	44
3.4.3 The benefits of data augmentation	45
3.4.4 The benefits of pre-training	45
3.4.5 The benefits of depth	47
3.4.6 The benefits of large learning rates	49
3.4.7 The benefits of implicit clustering abilities	50
4 An implicit clustering hyperparameter	51
4.1 Tools for monitoring and controlling layer rotation	52
4.1.1 Monitoring layer rotation with layer rotation curves	52
4.1.2 Controlling layer rotation with Layca	53
4.2 Experimental setup	54
CONTENTS

4.3 A systematic study of layer rotation configurations 56
4.3.1 Layer rotation rate configurations 56
4.3.2 Layer rotation’s relationship with generalization 57
4.3.3 Layer rotation’s relationship with training speed 57
4.4 A study of layer rotation in standard training settings 59
4.4.1 Analysis of SGD’s learning rate 60
4.4.2 Analysis of SGD and weight decay 60
4.4.3 Analysis of learning rate warmups 62
4.4.4 Analysis of adaptive gradient methods 63
4.5 Related work . 66
4.6 On the interpretation of layer rotations 67

5 Discussion and perspectives 69
5.1 Towards validating our hypothesis 69
5.2 A rebirth of clustering algorithms 71
5.3 The societal impact of deep learning research 71

Conclusion 73

Bibliography 75

Publications 87
Chapter 1

Introduction and background

Deep learning has lead to many technological breakthroughs since the 2010s. It has progressively substituted all other competing techniques for visual object recognition (Krizhevsky, Sutskever, and Hinton, 2012), natural language processing (Young, Hazarika, Poria et al., 2018), speech recognition (Graves, Mohamed, and Hinton, 2013), playing board and video games (Silver, Huang, Maddison et al., 2016), protein structure prediction (Jumper, Evans, Pritzel et al., 2021a) and many others. It is integrated in a myriad of modern applications like social network platforms, e-commerce and smartphone cameras (LeCun, Bengio, and Hinton, 2015).

As the practical applications of deep learning keep flourishing, the realization that we do not really understand why and how deep learning works is growing. Renown researchers associate deep learning to “alchemy”, as current practice depends more on beliefs and intuitions than on well-established scientific facts (Rahimi, 2017). Specialized conference workshops are organized to make sense of an increasingly large body of observations that escape our understanding (e.g., “Identifying and understanding deep learning phenomena” workshop organized during ICML 2019). Developing mathematical theories of deep learning has become an increasingly active area of research (Arora, 2018; Berner, Grohs, Kutyniok et al., 2021).

Making progress on these puzzles has the potential to facilitate the design of deep learning-based systems and widen their range of applications (e.g., safety-critical applications). Moreover, deep learning has always been tightly connected to neuroscience and biological brains (Schmidhuber, 2014; Wang and Raj, 2017; Hassabis, Kumaran, and Summerfield, Christopher Botvinick, 2017). Hence, a better understanding of deep learning has the potential to bring new insights to a long-standing quest in human history: understanding our own
In order to dive into this fascinating field, we will start by introducing the basics of deep learning and machine learning. The following section provides a brief and non-technical introduction to these topics tailored for this specific thesis. Many text books are available for the readers looking for a more exhaustive overview (e.g., Bishop (2006); Murphy (2021); Goodfellow, Bengio, and Courville (2016)).

1.1 Deep learning basics

Deep learning is part of the broader field of machine learning. Machine learning is a class of techniques used to estimate an unknown function f^* mapping inputs x to outputs y. In the context of image classification, which is the main focus of this work, f^* maps an image x to a class y (also called label or category) reflecting the image’s content (e.g., “dog”, “car” or “house”).

In order to estimate the function f^*, the key specificity of machine learning is to make use of knowledge contained in data. This approach reduces the need for knowledge from human experts, which is particularly useful when human expertise is costly or difficult to formalize (e.g., subjective, intuitive or unconscious expertise). Before discovering how machine learning techniques extract knowledge from data in Section 1.1.2, let’s clarify what data means in the context of deep learning.

1.1.1 Natural data

While deep learning could be applied on any type of data in principle, its popularity is mostly due to its performance on natural images, sounds and language. In these cases, deep learning differs from alternative machine learning techniques by working directly on raw data, i.e. with minimal pre-processing (LeCun, Bengio, and Hinton, 2015). As an example, in the context of image classification, the input to a deep learning system are typically images as represented by their pixel values. For an RGB image of size $m \times n$, we have $x \in \mathbb{R}^{m \times n \times 3}$. In comparison, alternative techniques require human engineered pre-processing algorithms such as Histogram of Gradients (Dalal and Triggs, 2005) or Scale Invariant Feature Transforms (Lowe, 1999).

The scenario by which data are available for a deep learning system can also vary. Supervised learning refers to the scenario where inputs x are provided with their associated outputs y. Unsupervised learning refers to the scenario where only inputs are available.\footnote{Reinforcement and self-supervised learning are two other scenarios that require additional formalisms which we do not introduce here.} We also distinguish static data that takes the form of a fixed dataset of S examples (x_i, y_i) for $i \in \{1, 2, ..., S\}$ from a stream.
1.1. DEEP LEARNING BASICS

of data where examples are provided sequentially during the machine learning process. This second scenario is often denoted by continuous learning.

This thesis focuses on supervised learning applied to image classification using static datasets. This problem setting has been extensively used for deep learning research. In particular, four image classification datasets became the de facto standard for studying deep learning techniques: MNIST (LeCun, Bottou, Bengio et al., 1998), CIFAR10, CIFAR100 (Krizhevsky and Hinton, 2009) and ImageNet (Deng, Dong, Socher et al., 2009). Each of them contains more than 50,000 images with their associated class. Visualizations and specifications of these four datasets are presented in Figure 1.1 and Table 1.1 respectively.

![Figure 1.1: Examples from three standard datasets used for deep learning research](image)

The images are not at scale.

Table 1.1: Specifications of four standard datasets used for deep learning research.

Dataset	Image size	# of samples	# of classes
MNIST	28 × 28	70,000	10
CIFAR-10	32 × 32 × 3	60,000	10
CIFAR-100	32 × 32 × 3	60,000	100
ImageNet	e.g., 200 × 200 × 3	> 1,000,000	1000

1.1.2 Learning from data

In order to extract knowledge from data, machine learning techniques need two ingredients: a hypothesis class and a training algorithm. The hypothesis class is

2The three dataset visualizations are taken from https://en.wikipedia.org/wiki/MNIST database, https://www.cs.toronto.edu/~kriz/cifar.html and https://cs.stanford.edu/people/karpathy/cnnembed/ respectively.
the set of functions that are considered as potential estimates of \(f^* \). The \textit{training algorithm} is a data-driven procedure to select one estimate \(\hat{f} \) from the hypothesis class. In the case of deep learning, deep neural networks (DNNs) constitute the hypothesis class and stochastic gradient descent (SGD) the most standard training algorithm. This section briefly describes these two key components.

Deep neural networks

The fundamental building block of deep neural networks are artificial neurons. The standard artificial neuron corresponds to the composition of an affine function and a non-linear function, as represented graphically in Figure 1.2. Mathematically, this corresponds to

\[
 f_{\text{neuron}}(x) = h \left(w_0 + \sum_{i=1}^{n} w_i x_i \right)
\]

where \(x_i \) represents the \(i^{th} \) element of the input \(x \), \(w_0, w_1, ..., w_n \) are the affine function’s parameters and \(h \) represents the non-linear or \textit{activation function}. As of today, the most common activation function is the rectified linear unit or ReLU \cite{nair2010rectified}: \[h(x) = \max(0, x). \]

The parameters \(w_0, w_1, ..., w_n \) (also denoted by \textit{weights}) are unspecified, such that any parameter instantiation produces a function that is part of the hypothesis class. It is the role of the training algorithm to determine the weights to be used to estimate \(f^* \).

Figure 1.2: Graphical representation of an artificial neuron. The weights \(w_0, w_1, ..., w_n \) are to be determined by a training algorithm.

In order to estimate complex functions, neural networks can be built by combining and connecting multiple artificial neurons. The most conceptually
simple neural network is the multilayer perceptron (MLP) represented in Figure 1.3. In this network, the neurons are organized in layers, where the output of one layer becomes the input of the next. Such layered structure is a key aspect of deep neural networks, where deep refers to the relatively many layers they contain.

In a multilayer perceptron, each neuron is connected to all the inputs of its layer (cfr. Figure 1.3). We call such layers fully connected layers. In the context of images, another connectivity pattern has been very successful: the convolutional layer (LeCun, Bottou, Bengio et al., 1998). Here, the affine function becomes a convolution operation, applied on the spatial dimensions of the inputs. Each neuron is thus connected to a local neighbourhood of its layer’s inputs, akin the local receptive fields of visual cortices (Hubel and Wiesel, 1962). In addition, the same affine transformation is applied on each neighbourhood, such that multiple neurons will share the same parameters $w_0, w_1, \ldots w_n$. Neural networks that contain such layers are commonly called convolutional neural networks (CNNs).

Many other types of layers have been proposed besides fully connected and convolutional layers. In the context of this thesis, three other layers are regularly used: batch normalization (Ioffe and Szegedy, 2015), pooling (LeCun, Bottou, Bengio et al., 1998) and softmax layers. Batch normalization layers are typically inserted between the affine and activation functions of a network. They normalize the (pre-)activations of each neuron to have zero mean and unit variance, based on the statistics of a subset of the entire dataset (a batch). Pooling layers are applied between convolutional layers to reduce the spatial dimensions of a signal. They do so by aggregating the values of neighbouring pixels (typically 2×2 patches) through mean or max operations. Finally, softmax layers are applied at the output of the network to identify the predicted class. It is used as
a differentiable alternative to the one-hot argmax operation. For the interested readers, we refer to the original papers and (Goodfellow, Bengio, and Courville, 2016) for a more extensive description of all these layers.

The power of deep neural networks largely comes from their modular structure which enables a flexible and adaptative design from relatively simple components such as layers. With the years, specific design choices or architectures gained popularity, amongst which VGG (Simonyan and Zisserman, 2015), ResNets (He, Zhang, Ren et al., 2016) and Wide ResNet (Zagoruyko and Komodakis, 2016). These three architectures will be regularly used in the context of this thesis.

Stochastic gradient descent

Once a deep neural network has been designed, its parameters or weights still need to be determined by the training algorithm. The optimal parameters are those that minimize the estimation error. But, because we don’t have access to the function \(f^* \) to be estimated, we need to use a proxy of the estimation error instead: the loss function. The information we have about \(f^* \) takes the form of data. Hence, the loss function is data-driven and typically returns large values when an estimate \(\hat{f} \) does not match \(f^* \) on the available data and small values when it does. In the context of image classification, the most common loss function is *categorical cross-entropy* (Goodfellow, Bengio, and Courville, 2016).

The optimization algorithm used by deep learning to minimize a loss function is stochastic gradient descent (Goodfellow, Bengio, and Courville, 2016). This method is especially compelling since (i) deep neural networks and categorical cross-entropy are differentiable almost everywhere w.r.t. the weights, (ii) the backpropagation algorithm provides an efficient way to compute the gradient (Linnainmaa, 1970; Werbos, 1982; Rumelhart, Hinton, and Williams, 1986) and (iii) the loss can be approximated by a random subset (also called *batch*) of data. Let \(\mathcal{L}(\mathbf{x}_{\text{batch}}, \mathbf{y}_{\text{batch}}) \) be the average loss of a random batch of data containing \(N \) samples (\(N \) is also called the *batch size*). Stochastic gradient descent iteratively updates each weight \(w_i \) according to the following rule:

\[
\begin{align*}
 w_i^{t+1} &= w_i^t - \lambda^t \frac{\partial \mathcal{L}(\mathbf{x}_{\text{batch}}, \mathbf{y}_{\text{batch}})}{\partial w_i},
\end{align*}
\]

where \(\lambda \) is the *learning rate*, which is a parameter that typically evolves during training according to a pre-determined schedule. Batches are randomly sampled from the dataset without replacement. We call an *epoch* the number of iterations required for all samples to be considered. A single epoch usually doesn’t suffice for convergence of the algorithm, and the whole dataset is considered again after each epoch.

Despite the non-convexity of the loss function, it is empirically observed that stochastic gradient descent, provided appropriate tuning of its learning
rate parameter, often converges to a global minimum of the loss function (Du, Lee, Li et al., 2019). Hence, we are able to determine the weights of a deep neural network such that it matches the true function \(f^* \) on the data used by the loss function. But what about data that isn’t considered by it?

1.1.3 Generalizing to unseen data

Intuitively, since the optimization of the weights targets performance on a single dataset, there’s a risk that performance decreases when the model is applied on other data. The ultimate goal of machine learning techniques is to provide an estimate of \(f^* \) that is also accurate on data not considered by the training algorithm. This ability is called *generalization*. It is usually measured by computing the loss (or any another measure of error) on a different set of examples (the *test set*) that was created independently using the same data generation process as the data used for training (the *training set*).

In addition to this empirical measurement of generalization ability, providing frameworks to predict or reason about generalization has been an important research endeavour. The most successful frameworks involve a balance between some notion of *capacity* (also denoted by complexity, expressive power, richness, or flexibility) associated to the hypothesis class and the size of the training set. Informally, the capacity of a hypothesis class reflects the diversity of functions it contains. The larger the capacity, the higher the chance that the hypothesis class contains good approximations of \(f^* \). However, it also augments the chance of containing functions that generalize poorly, i.e. that provide good approximations of \(f^* \) on the training set only. This risk gets mitigated by increasing the size of the training set, as the latter then becomes more representative of the data generation process.

These intuitions have lead to the *bias-variance trade-off* (cfr. Figure 1.4). This is a commonly adopted heuristic that, for a given training set size, postulates the existence of an optimal middle ground between too low a capacity (denoted by *underfitting*) and too high a capacity (denoted by *overfitting*) (Geiman, Bienenstock, and Doursat, 1992). A more rigorous formalization of these intuitions is provided by Vapnik–Chervonenkis theory, which balances *VC dimensions* (which is a measure of capacity) with the size of the training set to bound the difference between training and test errors (which reflects generalization ability) (Vapnik and Chervonenkis, 1968; Vapnik, 1989).

Capacity-based reasoning can also be useful to think about the role of training algorithms in generalization. Indeed, even if a hypothesis class has a large capacity (i.e. can represent a lot of different functions), the training algorithm doesn’t necessarily search through all functions uniformly. In particular, the algorithm can be designed to favour certain types of functions, which are expected to generalize better. Aspects of the training algorithm which aim to improve generalization are commonly denoted by *regularization*. The most classical example is \(L_2 \) regularization, which penalizes functions whose parameters have a
large Euclidean norm.

Figure 1.4: Illustration of the bias-variance trade-off, a commonly adopted heuristic that, for a given training set size, postulates the existence of an optimal middle ground between too low a capacity (denoted by underfitting) and too high a capacity (denoted by overfitting).

1.2 The generalization puzzles of deep learning

Even though generalization constitutes the ultimate purpose of machine learning systems, it largely escapes our understanding in the case of deep learning. The mystery is two-fold. First, deep neural networks generalize remarkably well from the perspective of classical theoretical frameworks and conventional wisdom (cfr. Section 1.1.3). Second deep neural networks generalize remarkably poorly compared to us, humans. This section dives deeper into these two open questions.

1.2.1 Why do deep neural networks generalize so well?

A remarkable aspect of modern deep neural networks is their gigantic size. State of the art models can contain hundreds of layers and millions of parameters [He, Zhang, Ren et al. 2016; Zagoruyko and Komodakis 2016]. This implies that the capacity of the hypothesis classes used for deep learning are extremely large. A typical trend in classical theories and heuristics is that large capacity involves the risk of overfitting (cfr. Section 1.1.3). Two pioneering works have shown that deep neural networks mysteriously mitigate this risk.

First, Neyshabur, Tomioka, and Srebro (2015) observed that generalization ability improves when increasing the amount of neurons (and thus the capacity)
of single-hidden-layer neural networks, even beyond what is needed to achieve zero training error (cfr. Figure 1.5). This contradicts the bias-variance trade-off, which states that increasing capacity should ultimately lead to overfitting (cfr. Figure 1.4). Second, Zhang, Bengio, Hardt et al. (2017) observed that state of the art networks reached perfect training error even when the class labels of their training set are randomized. This implies an ability to memorize each example of the training set, and thus an hypothesis class large enough to contain many functions that cannot generalize at all. Both works thus show that the generalization abilities of deep neural network do not seem to be affected by their enormous capacity. On the contrary, increasing the capacity of deep neural networks tends to benefit generalization and is a key component of state of the art models.

The large capacity of deep neural networks’ hypothesis classes must thus be compensated by strong regularization mechanisms that steer the training algorithm towards functions that generalize well. However, both works show that their observations hold even in the absence of classical regularization techniques. In order to make sense of their experimental results, Neyshabur, Tomioka, and Srebro (2015) and Zhang, Bengio, Hardt et al. (2017) thus conjecture the existence of an implicit form of regularization originating from stochastic gradient descent. The characterization of this implicit regularization mechanism has become a very active, yet unsolved area of research (e.g., Zhang, Bengio, Hardt et al. (2021); Wu, Zou, Braverman et al. (2021); Smith, Dherin, Barrett et al. (2021); Barrett and Dherin (2021); Yun, Krishnan, and Mobahi (2021)).
1.2.2 Why do deep neural networks generalize so poorly?

Deep learning is often considered as a potential candidate for human-level artificial intelligence. Hence, it makes sense to compare the performance of deep neural networks to humans. While deep neural networks can achieve superhuman performance on specific datasets (He, Zhang, Ren et al., 2015), their generalization ability appears to be much worse.

A first line of work demonstrated that fooling deep neural networks into wrong and yet confident image classifications was relatively easy in an adversarial setting. Szegedy, Zaremba, Sutskever et al. (2014); Goodfellow, Shlens, and Szegedy (2015) fool networks by adding small perturbations to the inputs that are invisible to the human eye, Su, Vargas, and Konichi (2019) by changing the value of a single pixel and Nguyen, Yosinski, and Clune (2015) by generating images from scratch that are unrecognizable to humans.

While in the adversarial setting data are manipulated artificially, a large body of work has shown that natural changes to the data can also dramatically affect a deep neural network’s performance. Torralba and Efros (2011) showed that deep neural networks do not generalize well from one image classification dataset to the other, and Recht, Roelofs, Schmidt et al. (2019); Shankar, Roelofs, Mania et al. (2020) observed the same behaviour even when extra care is taken to replicate the data generation process. Deep neural networks have also been shown to lack robustness to changes in the background (cfr. Figure 1.6) (Beery, van Horn, and Perona 2018), object pose (Alcorn, Li, Gong et al., 2019) or texture (Geirhos, Rubisch, Michaelis et al., 2018). Their performance also worsens when small rotations and translations are applied to the image (Engstrom, Tran, Tsipras et al. 2019) as well as corruptions and distortions (Dodge and Karam 2017; Geirhos, Medina Temme, Rauber et al. 2018; Hendrycks and Dietterich 2019).

Overall, there is a growing consensus that deep neural networks are very far from human-level understanding of natural data. Spurious correlations only occurring in specific datasets seem to play a crucial role in their decisions, leading to a lack of robustness to adversarial and natural changes to the data. Overcoming this crucial limitation of deep learning has become a very active and yet unsolved area of research (e.g., Arjovsky 2021; Gulrajani and Lopez-Paz 2021; Krueger, Caballero, Jacobsen et al. 2021; Nagarajan, Andreassen, and Neyshabur 2021).

1.3 Solving the puzzles through the study of priors

While machine learning leverages data to be less reliant on human expertise, the latter still plays a crucial role. In particular, machine learning practitioners specify the hypothesis class and the training algorithm, which heavily influence
1.3. SOLVING THE PUZZLES THROUGH THE STUDY OF PRIORS

Figure 1.6: This result taken from Beery, van Horn, and Perona (2018) illustrates the poor generalization abilities of deep neural networks compared to humans. For different images of cows, the top five classes and confidence produced by a deep learning system are shown. We observe that the quality of the predictions heavily depends on the background. In particular, the cow is better recognized in a "common" background (Alpine pastures) than in unusual ones which are probably poorly represented in the training set (e.g., seashore).

a machine learning system’s generalization ability in practice. The practitioners’ choices are typically based on some a priori knowledge they possess about the function \(f^* \) to be estimated (a.k.a. priors). This section explores the role of priors in generalization and in deep learning.

1.3.1 On the role of priors in generalization

The No Free Lunch theorem (NFL) states that all machine learning systems (even a completely random system that does not depend on data) are equivalent in terms of generalization ability in the absence of assumptions or priors on the problem to be solved (Wolpert 1996; Schaffer 1994). This suggests that the priors integrated in a system are key for its performance in a specific problem setting. Intuitively, the more an algorithm integrates relevant knowledge from its designers, the less training data it requires for generalizing well. In particular, priors can lead to hypothesis classes and training algorithms which consider a more restricted set of functions while still including good estimations of the target function \(f^* \).

Including the role of priors in a general learning theory requires a formalism

\[\text{3} \]

The notion of prior is very related to the notion of inductive bias. We use priors as a characteristic of the problem, describing its inherent structure. An inductive bias is a characteristic of the machine learning system, describing the assumptions it makes on the problems it will be applied on. Generally, one wants the inductive biases to correspond to priors that were effectively integrated into the machine learning system’s design. Hence, priors and inductive biases are often two sides of the same coin.
12

CHAPTER 1. INTRODUCTION AND BACKGROUND

to represent priors and their relationship with learning problems and algorithms. The bayesian learning framework goes into this direction by expressing priors through the language of probability theory and making their role in a learning system more explicit through the use of Bayes’ rule. Another more recent effort formalizes the role of priors by incorporating “Teachers” in machine learning systems in addition to data, hypothesis classes and training algorithms (Vapnik and Izmailov [2019]). However, these lines of work did not yet lead to theorems connecting priors and generalization in a useful and practical way. In the absence of a general theory, one can build theories for specific problem settings. In this context, assumptions concerning the relevance of priors can be made (and tested empirically). A growing body of work argues that studying the priors integrated into deep learning systems specifically is key to solve the generalization puzzles we described in Section 1.2 (e.g., Arpit, Jastrzebski, Ballas et al. [2017]; Kawaguchi, Kaelbling, and Bengio [2017]; Dauber, Feder, Koren et al. [2020]). But even then, producing a theory of deep learning remains a challenge. Indeed, the priors involved in deep learning appear to be quite difficult to determine and formalize.

1.3.2 The difficult case of deep learning priors

Modern deep learning is the result of a relatively long and tedious endeavour. Its development started more than 60 years ago and gathered variable amounts of popularity over time (cfr. the AI winters). Throughout the process, biological brains have been an important source of inspiration (Hassabis, Kumaran, and Summerfield, Christopher Botvinick, 2017). From the mathematical formulation of artificial neurons (McCulloch and Pitts, 1943) to their learnability (Hebb, 1949; Rosenblatt, 1958; Widrow and Hoff, 1960), to convolutional connectivity patterns (Fukushima, 1980; LeCun, Bottou, Bengio et al., 1998) and attention mechanisms (Mnih, Heess, Graves et al., 2014), many foundational ideas of deep learning are inspired from biological brains. The origin of deep learning’s most successful training algorithm (SGD) provides an exception. In contrast to many alternative training algorithms (e.g., Hebb (1949); Rosenblatt (1958)), SGD is not inspired from biological brains, but is rather a very general mathematical tool whose use in deep learning stems mostly from a trick that makes it computationally efficient (the backpropagation algorithm, cfr. Linnainmaa (1970); Werbos (1982)). SGD’s popularity greatly increased when empirical work suggested that it was capable of learning important intermediary features automatically (Rumelhart, Hinton, and Williams [1986]). But how this capability emerged from SGD was not explained. Given its empirical successes, several works attempt to discover how biological brains could in fact implement backpropagation-like algorithms after all (Bengio, Lee, Bornschein et al., 2015; Lillicrap, Santoro, Marris et al., 2020).

While the above paragraph summarizes a long history in a few sentences (we refer to Schmidhuber (2014); Wang and Raj (2017); Lecun (2019) for more exhaustive historical perspectives), it reveals that crucial ideas behind deep
1.3. SOLVING THE PUZZLES THROUGH THE STUDY OF PRIORS

Learning originate from studies of biological brains and trial and error. Since they do not stem from an understanding of natural data-related problems, they do not provide insights about the priors deep learning takes advantage of. We have little to no clue as to why deep neural networks and SGD are appropriate choices for natural data problems. Several works provide attempts to characterize the priors of deep learning. Today’s most popular priors are the need for distributed representations with multiple levels of abstraction (e.g., Rumelhart, Hinton, and Williams (1986); Hinton, McClelland, and Rumelhart (1987); Bengio (2009); Bengio, Courville, and Vincent (2012); LeCun, Bengio, and Hinton (2015)). These priors remain intuitive and are difficult to use in practice to solve deep learning’s puzzles. For example, we are not aware of any formal way to measure the extent by which a deep neural network’s representations are distributed or contain abstraction. Overall, the characterization of deep learning priors is thus far from established and complementary/alternative priors could play a critical role.

1.3.3 The natural clustering prior

The natural clustering prior states that natural image datasets exhibit a rich clustered structure. This means that natural images can be partitioned into different groups (or clusters) such that images inside a group are more similar to each other (according to some metric) than to images from other groups. While this remains a very high-level and quite general description, additional statements can be associated to the natural clustering prior which describe the shape of clusters, their relative density, the distance between them or their relationship with class labels. The more precision we can achieve, the more helpful the prior will be. Previous work added the statement that samples from different classes do not belong to the same cluster (Chapelle and Zien 2005; Bengio, Courville, and Vincent 2012). Hence a cluster always contains samples from one unique class. In this thesis, we further state that there are many more clusters than classes in standard image classification datasets. This implies that a single class is divided into multiple distinct clusters, which we denote by intraclass clusters.

Figure 1.7 provides a motivation for this prior by identifying intraclass clusters in standard image classification datasets. Another argument arises from the hierarchical structure of many class labellings. For example, CIFAR100 contains 20 superclasses (e.g., flowers) which are further divided into 100 subclasses (e.g., orchids, poppies, roses, sunflowers, tulips). The ImageNet class labels are also hierarchically organized with up to 6 levels of abstraction (e.g., digital clock → clock → timepiece → measuring instrument → device → artifact). The fact that class labels can be decomposed in multiple subclasses suggests that the associated data can be grouped into multiple intraclass clusters.

The presence of intraclass clusters implies that supervised image classifiers would benefit from unsupervised clustering and appropriate assumptions on the
CHAPTER 1. INTRODUCTION AND BACKGROUND

Figure 1.7: In standard image classification datasets, a single class can often be decomposed in multiple groups of similarly looking images, which we interpret as intraclass clusters. The occurrence of multiple clusters inside a class constitutes one of the statements of the natural clustering prior investigated in this thesis.

clusters’ characteristics. Indeed, whether supervised classifiers interpret a set of data as one unique or two distinct clusters leads to different decision boundaries, and thus different generalization abilities (cfr. illustration in Figure 1.8). The integration of unsupervised clustering in supervised image classifiers was already suggested for non-deep learning approaches (Mansur and Kuno [2008]; Hoai and Zisserman [2013]). Could unsupervised clustering constitute a prior of deep learning systems? Even though no clustering-related components are explicitly programmed into deep neural networks or SGD, these could emerge implicitly. Such a hypothesis is especially compelling since several works conjectured the emergence of implicit forms of regularization during deep neural network training (cfr. Section 1.2.1).

1.4 Contributions and thesis outline

This thesis evaluates the relevance of the natural clustering prior for understanding the generalization abilities of deep learning. It does so by identifying implicit clustering in deep learning and studying its relationship with generalization. More precisely, we provide a collection of experiments suggesting the occurrence of an implicit clustering ability (Chapter 2), an implicit clustering mechanism (Chapter 3) and an implicit clustering hyperparameter (Chapter 4) in deep learning. Additionally, we show that these clustering phenomena exhibit a consistent relationship with generalization ability. Our work opens many paths of investigation. Hence, we present a discussion and future perspectives in Chapter 5.
Figure 1.8: A simplified two-dimensional representation of the natural clustering prior as formulated by this thesis. Points refer to training examples, colors to their associated class. The natural clustering prior states that (i) data is structured into clusters, (ii) clusters contain examples from a single class (like in (a) and (b)) and (iii) classes are composed of multiple clusters (like in (b)). The latter implies that supervised image classifiers would benefit from unsupervised clustering abilities which make appropriate assumptions on the clusters’ characteristics. For example, A, B and C in figure (b) constitute ambiguous data structures which could be interpreted as one unique or two distinct clusters by supervised classifiers. Each interpretation leads to different decision boundaries, and thus different generalization abilities. In this thesis, we examine whether similar phenomena occur in much higher dimensions when deep learning is applied on natural data.
Chapter 2

An implicit clustering ability

The proposed natural clustering prior suggests that unsupervised clustering abilities could benefit the generalization performance of supervised image classifiers (cfr. Section 1.3.3). While no clustering mechanisms are explicitly programmed into deep learning, these could emerge implicitly. We show in Figure 2.1 that deep neural networks of sufficient depth seem to differentiate clusters belonging to the same class (i.e. *intraclass clusters*) in the context of a simple 2D classification problem.

When studying standard problem settings, the main challenge resides in evaluating a model’s clustering abilities without having access to the underlying mechanisms or the clusters’ definitions. Hence, our work designs intraclass clustering measures based on the following three guiding principles:

1. Quantify the extent by which a model differentiates examples or subclasses that belong to the same class, in order to approximately capture intraclass clustering;

2. Identify measures that correlate with generalization, in order to capture phenomena that are fundamental to the learning process;

3. Study multiple measures that offer different perspectives in order to reduce the risk that the correlation with generalization is induced by phenomena independent of intraclass clustering.

Based on these three principles, we provide five tentative measures of intraclass clustering differing in terms of representation level (black-box vs. neuron

1 Subclasses are available in datasets with hierarchical labellings, where classes (e.g., flowers) are further decomposed into multiple subclasses (e.g., orchids, poppies, roses, sunflowers, tulips).
CHAPTER 2. AN IMPLICIT CLUSTERING ABILITY

vs. layer) and the amount of knowledge about the data’s inherent structure (datasets with or without hierarchical labels).

To make the link with generalization, we train more than 500 models with different generalization abilities by varying 8 standard hyperparameters in a principled way. The measures’ relationship with generalization is then evaluated qualitatively through visual inspection and quantitatively through the granulated Kendall rank-correlation coefficient introduced by Jiang, Neyshabur, Mobahi et al. (2020). Both evaluations reveal a tight connection between the five proposed measures and generalization ability, providing important evidence to support the occurrence and crucial role of implicit clustering abilities in deep learning. Finally, we conduct a series of experiments to provide insights on the presumed mechanisms underlying the intraclass clustering abilities which are further studied in Chapter 3.

Figure 2.1: Deep neural networks with different amount of layers are trained on a toy problem containing two classes (blue and orange) and two intraclass clusters associated to the blue class. For each network depth, 50 models are trained with different initializations. The average predictions of these models is represented by the heatmaps. They reveal that the different models exhibit different intraclass clustering abilities. In particular, the linear models do not differentiate the intraclass clusters at all, while the 3-layer networks’ decision boundaries tend to “envelop” the clustered structure. In this chapter, we study the same phenomena in the high dimensions associated to real-world datasets and evaluate their relationship with generalization.

2.1 Measuring intraclass clustering ability

This section introduces the five measures of intraclass clustering ability. The measures differ in terms of representation level (black-box vs. neuron vs. layer) and the amount of knowledge about the data’s inherent structure (datasets with or without hierarchical labels). An implementation of the measures based on Tensorflow (Agarwal, Barham, Brevdo et al., 2016) and Keras (Chollet et al., 2015) is available at https://github.com/Simoncarbo/Intraclass-clustering-measures.
2.1. Terminology and notations

The letter D denotes the training dataset and I the number of classes in D. We denote the set of examples from class i by C_i with $i \in \mathcal{I} = \{1, 2, ..., I\}$. In the case of hierarchical labels, C_i denotes the samples from subclass i and $S_{s(i)}$ the samples from the superclass containing subclass i. We denote by $\mathcal{N} = \{1, 2, ..., N\}$ and $\mathcal{L} = \{1, 2, ..., L\}$ the indexes of the N neurons and L layers of a network respectively. Neurons are considered across all the layers of a network, not a specific layer. The methodology by which indexes are assigned to neurons or layers does not matter. We further denote by $\text{mean}_{j \in \mathcal{J}}$ and $\text{median}_{j \in \mathcal{J}}$ the mean and median operations over the index j respectively. Moreover, $\text{mean}_{j \in \mathcal{J}}^k$ corresponds to the mean of the top-k highest values, over the index j.

We call pre-activations (and activations) the values preceding (respectively following) the application of the ReLU activation function [Nair and Hinton, 2010]. In our experiments, batch normalization [Ioffe and Szegedy, 2015] is applied before the ReLU, and pre-activation values are collected after batch normalization. In convolutional layers, a neuron refers to an entire feature map. The spatial dimensions of such a neuron’s (pre-)activations are reduced through a global max pooling operation before applying our measures.

2.1.2 Measures based on label hierarchies

The first three measures take advantage of datasets that include a hierarchy of labels. For example, CIFAR100 is organized into 20 superclasses (e.g. flowers) each comprising 5 subclasses (e.g. orchids, poppies, roses, sunflowers, tulips). We hypothesize that these hierarchical labels reflect an inherent structure of the data. In particular, we expect the subclasses to approximately correspond to different clusters amongst the samples of a superclass. Hence, measuring the extent by which a network differentiates subclasses when being trained on superclasses should reflect its ability to extract intraclass clusters during training.

A black-box measure

The first measure is black-box and is thus not restricted to deep neural networks. Motivated by the toy experiment presented in Figure 2.1, the measure is based on a model’s predictions on the linear interpolation points between two training examples. We assume the model groups examples into convex clusters. If, for two examples of a given superclass, the predicted probability of the superclass stays close to 1 along the interpolation points, the network probably did not associate the examples to different clusters. On the contrary, a drop in the predicted probability might be reminiscent of a separation of the examples into different clusters (like in Figure 2.1). We use these intuitions to quantify the differentiation of subclasses. The measure evaluates whether the drops in predicted superclass probability are smaller when interpolating between exam-
CHAPTER 2. AN IMPLICIT CLUSTERING ABILITY

samples from the same subclass than when interpolating between examples from different subclasses. Let \(\lambda_{S_{s(i)}, E_1 \times E_2} \) be the average drop in the predicted probability of superclass \(S_{s(i)} \) when interpolating between examples from subsets \(E_1 \) and \(E_2 \) belonging to \(S_{s(i)} \). The measure is defined as:

\[
c_0 = \text{median}_{i \in I} \frac{\lambda_{S_{s(i)}, C_i \times C_i}}{\lambda_{S_{s(i)}, C_i \times (S_{s(i)} \setminus C_i)}}
\]

The median operation is used instead of the mean to aggregate over subclasses, as it provided a slightly better correlation with generalization. We suspect this arises from the outlier behaviour of certain subclasses observed in Section 2.3.5.

Neuron-level subclass selectivity

The second measure quantifies how selective individual neurons are for a given subclass \(C_i \) with respect to the other samples of the associated superclass \(S_{s(i)} \). Here, strong selectivity means that the subclass \(C_i \) can be reliably discriminated from the other samples of \(S_{s(i)} \) based on the neuron’s pre-activations. Let \(\mu_{n, E} \) and \(\sigma_{n, E} \) be the mean and standard deviation of a neuron \(n \)’s pre-activation values taken over the samples of set \(E \). The measure is defined as follows:

\[
c_1 = \text{median}_{i \in I} \text{mean}_{n \in N} \frac{\mu_{n, C_i} - \mu_{n, S_{s(i)} \setminus C_i}}{\sigma_{n, C_i} + \sigma_{n, S_{s(i)} \setminus C_i}}
\]

Since we cannot expect all neurons of a network to be selective for a given subclass, we only consider the top-\(k \) most selective neurons. The measure thus relies on \(k \) neurons to capture the overall network’s ability to differentiate each subclass.

Layer-level Silhouette score

The third measure quantifies to what extent the samples of a subclass are close together relative to the other samples from the associated superclass in the space induced by a layer’s activations. In other words, we measure to what degree different subclasses can be associated to different clusters in the intermediate representations of a network. We quantify this by computing the pairwise cosine distances on the samples of a superclass and applying the Silhouette score (Kaufman and Rousseeuw, 2009) to assess the clustered structure of its subclasses. This score captures the extent by which an example is close (in terms of cosine distance) to examples of its subclass compared to examples from other subclasses. Let \(\text{silhouette}(a_i, S_{s(i)}, C_i) \) be the mean silhouette score of subclass

\[\footnote{2}{In other words, we are interested in evaluating whether the linear projection implemented by the neuron has been effective in isolating a given subclass.}\]

\[\footnote{3}{Using cosine distances provided slightly better results than euclidean distances.}\]
2.1. MEASURING INTRACLASS CLUSTERING ABILITY

C_i based on the activations a_l of superclass $S_{s(i)}$ in layer l, the measure is then defined as:

$$c_2 = \text{median}_{i \in I} \text{mean}_{l \in L} \text{silhouette}(a_l, S_{s(i)}, C_i)$$ \hspace{1cm} (2.3)

2.1.3 Measures based on variance

To establish the generality of our results, we also design two measures that can be applied in absence of hierarchical labels. We hypothesize that the discrimination of intraclass clusters should be reflected by a high variance in the representations associated to a class. If all the samples of a class are mapped to close-by points in the neuron- or layer-level representations, it is likely that the neuron/layer did not identify intraclass clusters.

Variance in the neuron-level representations of the data

The first variance measure is based on standard deviations of a neuron’s pre-activations. If the standard deviation computed over the samples of a class is high compared to the standard deviation computed over the entire dataset, we infer that the neuron has learned features that differentiate samples belonging to this class. The measure is defined as:

$$c_3 = \text{mean}_{i \in I} \text{mean}_{n \in N} \frac{\sigma_{n,C_i}}{\sigma_{n,D}}$$ \hspace{1cm} (2.4)

A visual representation of the measure is provided in Figure 2.2.

Variance in the layer-level representations of the data

The fifth measure transfers the neuron-level variance approach to layers by computing the standard deviations over the pairwise cosine distances calculated in the space induced by the layer’s activations. Let $\Sigma_{l,E}$ be the standard deviation of the pairwise cosine distances between the samples of set E in the space induced by layer l. The measure is defined as:

$$c_4 = \text{mean}_{i \in I} \text{mean}_{l \in L} \frac{\Sigma_{l,C_i}}{\Sigma_{l,D}}$$ \hspace{1cm} (2.5)

To improve this measure’s correlation with generalization, we found it helpful to standardize the representations of different neurons. More precisely, we normalize each neuron’s pre-activations to have zero mean and unit variance, then apply a bias and ReLU activation function such that 25% of the samples are activated. This makes the measure invariant to rescaling and translation of each neuron’s preactivations.

4Activating 25% of the samples was an arbitrary choice that we did not seek to optimize.
22

CHAPTER 2. AN IMPLICIT CLUSTERING ABILITY

Figure 2.2: Our simplest measure (denoted c_3) quantifies intraclass clustering through the ratio of standard deviations σ_{n,C_i} and $\sigma_{n,D}$ associated to the class C_i and the entire dataset D respectively. Intuitively, a high ratio means that the neuron relies on features that differentiate samples from C_i although they belong to the same class. Despite its simplicity, our results in Section 2.3 suggest a remarkably strong connection between c_3 and generalization performance. This illustration of measure c_3 is based on a neuron from our experimental study, and the associated ratio is 2.47.

2.2 Experimental methodology

The purpose of our experimental endeavour is to assess the relationship between the proposed intraclass clustering measures and generalization performance. To this end, we reproduce the methodology introduced by Jiang, Neyshabur, Mobahi et al. (2020). First of all, this methodology puts emphasis on the scale of the experiments to improve the generality of the observations. Second, it tries to go beyond standard measures of correlation, and puts extra care to detect causal relationships between the measures and generalization performance. This is achieved through a systematic variation of multiple hyperparameters when building the set of models to be studied, combined with the application of principled correlation measures.

2.2.1 Building a set of models with varying hyperparameters

Our experiments are conducted on three datasets and two network architectures. The datasets are CIFAR10, CIFAR100 and the coarse version of CIFAR100 with 20 superclasses (Krizhevsky and Hinton, 2009). The two network architectures are Wide ResNets (He, Zhang, Ren et al., 2016; Zagoruyko and Komodakis, 2016) (applied on CIFAR100 datasets) and VGG variants (Simonyan and Zisserman, 2015) (applied on CIFAR10 dataset). Both architectures use batch normalization layers (Ioffe and Szegedy, 2015) since they greatly facilitate the
2.2. EXPERIMENTAL METHODOLOGY

In order to build a set of models with a wide range of generalization performances, we vary hyperparameters that are known to be critical. Since varying multiple hyperparameters improves the identification of causal relationships, we vary 8 different hyperparameters: learning rate, batch size, optimizer (SGD or Adam (Kingma and Ba 2015)), weight decay, dropout rate (Srivastava, Hinton, Krizhevsky et al. 2014), data augmentation, network depth and width. A straightforward way to generate hyperparameter configurations is to specify values for each hyperparameter independently and then generate all possible combinations. However, given the amount of hyperparameters, this quickly leads to unrealistic amounts of models to be trained.

To deal with this, we decided to remove co-variations of hyperparameters whose influence on training and generalization is suspected to be related. More precisely, we use weight decay only in combination with the highest learning rate value, as recent works demonstrated a relation between weight decay and learning rate (van Laarhoven 2017; Zhang, Wang, Xu et al. 2019). We also don’t combine dropout and data augmentation, as the effect of dropout is drastically reduced when data augmentation is used. Finally, we do not jointly increase width and depth, to avoid very large models that would slow down our experiments.

The resulting hyperparameter values are as follows:

1. (Learning rate, Weight decay): \{((0.01, 0.), (0.32, 0.), (0.1, 0.), (0.1, 4 \times 10^{-5}))\}
2. Batch size: \{100, 300\}
3. Optimizer: \{SGD, Adam\}
4. (Dropout rate, Data augm.): \{(0., true), (0., false), (0.2, false), (0.4, false)\}
5. (Width factor, Depth factor): \{((\times 1.0, \times 1.0), (\times 1.5, \times 1.0), (\times 1.0, \times 1.5))\}

We generate all possible combinations of these hyperparameter values (or pairs of values), leading to 192 configurations. Since dropout rates of 0.4 lead to poor training performance on VGG variants, only 144 configurations are used in these cases.

We train all the models for 250 epochs, and reduce the learning rate by a factor 0.2 at epochs 150, 230, 240. Training stops prematurely if the training loss gets smaller than 10^{-4}. Since different optimizers may require different learning rates for optimal performance (Wilson, Roelofs, Stern et al. 2017), we divide the learning rate by 100 when using Adam to improve its performance in our experiments (the same approach is used in Jiang, Neyshabur, Mobahi et al. 2020). Overall, all networks reach close to 100% training accuracy, as reported by Figure 2.3.
2.2.2 Evaluating correlation with generalization

Jiang, Neyshabur, Mobahi et al. (2020) provides multiple criteria to evaluate the relationship between a measure and generalization. We opted for the granulated Kendall coefficient for its simplicity and intuitiveness. This coefficient compares two rankings of the models, respectively provided by (i) the measure of interest and (ii) the models’ generalization performances. The Kendall coefficient is computed across variations of each hyperparameter independently. The average over all hyperparameters is then computed for the final score. The goal of this approach is to better capture causal relationships by not overvaluing measures that correlate with generalization only when specific hyperparameters are tuned.

We compare our intraclass clustering-based measures to sharpness-based measures. The latter constituted the most promising measure family from the large-scale study presented in Jiang, Neyshabur, Mobahi et al. (2020). Among the many different sharpness measures, we leverage the magnitude-aware versions that measure sharpness through random and worst-case perturbations of the weights (denoted by $\frac{1}{\sigma}$ and $\frac{1}{\alpha}$, respectively, in Jiang, Neyshabur, Mobahi et al. (2020)). We also include the application of these measures with perturbations applied on kernels only (i.e. not on biases and batch normalization weights) with batch normalization layers in batch statistics mode (i.e. not in inference mode). We observed that these alternate versions often provided better estimations of generalization performance. We denote these measures by $\frac{1}{\sigma''}$ and $\frac{1}{\alpha''}$.
2.3. RESULTS

2.3 Results

This section starts with a thorough evaluation of the relationship between the five proposed measures and generalization performance, using the setup described in Section 2.2. Then, it presents a series of experiments to better characterize intraclass clustering, the phenomenon we expect to be captured by the measures. These experiments include (i) an analysis of the measures’ evolution across layers and training iterations, (ii) a study of the neuron-level measures’ sensitivity to k in the mean over top-k operation, as well as (iii) visualizations of subclass extraction in individual neurons.

2.3.1 The measures’ relationships with generalization

We compute all five measures on the models trained on the CIFAR100 superclasses, and only the two variance-based measures on the models trained on standard CIFAR10 and CIFAR10 -because they don’t provide subclass information. We set $k = 30$ for the neuron-level measures, meaning that 30 neurons per subclass (for c_1) or class (for c_3) are used to capture intraclass clustering. For the layer-level measures, we set $k = 5$ for residual networks and $k = 1$ for VGG networks.

We start our evaluation of the measures by visualizing their relationship with generalization performance in Figure 2.4. We observe a clear correlation across datasets, network architectures and measures. To further support the conclusions of our visualizations, we evaluate the measures through the granulated Kendall coefficient (cfr. Section 2.2.2). Tables 2.1, 2.2 and 2.3 present the granulated Kendall rank-correlation coefficients associated with intraclass clustering and sharpness-based measures, for the three dataset-architecture pairs.

The Kendall coefficients further confirm the observations in Figure 2.4 by revealing strong correlations between intraclass clustering measures and generalization performance across all hyperparameters. In terms of overall score, intraclass clustering measures surpass the sharpness-based measures variants by a large margin across all dataset-architecture pairs. On some specific hyperparameters, sharpness-based measures outperform intraclass clustering measures. In particular, $\frac{1}{\sigma}$ performs remarkably well when the batch size parameter is varied, which is coherent with previous work (Keskar, Mudigere, Nocedal et al., 2017).

2.3.2 Influence of k on the Kendall coefficients

In our evaluation of the measures in Section 2.3.1, the k parameter, which controls the number of highest values considered in the mean over top-k operations, was fixed quite arbitrarily. Figure 2.5 shows how the Kendall coefficient of c_1 and c_3 changes with this parameter. We observe a relatively low sensitivity of
CHAPTER 2. AN IMPLICIT CLUSTERING ABILITY

Figure 2.4: Visualization of the relationship between the five proposed intra-class clustering measures and generalization performance, across datasets and network architectures. The five columns correspond to c_0, c_1, c_2, c_3 and c_4 measures respectively. All measures display a tight connection with generalization performance.

Observing the influence of k also confers insights about the phenomenon captured by the measures. Figure 2.5 reveals that very small k values work remarkably well. Using a single neuron per subclass ($k = 1$ in Equation 2.2) confers a Kendall coefficient of 0.69 to c_1. Using a single neuron per class confers a Kendall coefficient of 0.78 to c_3 in the case of VGGs trained on CIFAR10. These results suggest that individual neurons play a crucial role in the extraction of intraclass clusters during training. The fact that the Kendall coefficients monotonically decrease after some k value suggests that the extraction of a given intraclass cluster takes place in a sub part of the network, indicating some form of specialization.
2.3. RESULTS

Table 2.1: Kendall coefficients for resnets trained on CIFAR100 superclasses. The higher the coefficient, the stronger the correlation with generalization. Correlations are measured across variations of specific hyperparameters (cfr. 8 first columns) or all of them (cfr. last column).

Intraclass clustering	learning rate	batch size	weight decay	optim. dropout rate	data augm.	total score				
c₀	0.57	0.5	0.21	0.27	0.81	1.0	0.85	0.25	0.22	0.48
c₁	0.88	0.31	0.38	0.67	0.96	1.0	0.81	0.69	0.71	
c₂	0.86	0.5	**0.67**	0.58	**0.99**	1.0	0.38	0.62	0.7	
c₃	0.88	0.6	0.46	0.62	0.81	1.0	**0.81**	0.66	**0.73**	
c₄	**0.89**	0.69	0.62	0.65	0.86	1.0	0.44	0.69	**0.73**	

Sharpness

1 / σ′	0.81	0.51	0.31	0.69	0.28	-0.58	0.67	0.61	0.41
1 / σ′′	0.86	0.58	0.17	0.4	-0.05	0.42	0.69	0.72	0.47
1 / α′	0.88	**0.94**	0.29	0.26	0.6	0.08	-0.03	-0.09	0.37
1 / α′′	0.85	0.8	0.48	**0.71**	0.16	-0.08	0.08	0.34	0.42

Table 2.2: Kendall coefficients for resnets trained on CIFAR100.

Intraclass clustering	learning rate	batch size	weight decay	optim. dropout rate	data augm.	total score			
c₃	0.94	0.65	**0.62**	0.58	1.0	1.0	1.0	0.78	0.82
c₄	0.93	0.62	**0.62**	0.21	1.0	1.0	0.91	0.78	0.76

Sharpness

1 / σ′	0.88	0.68	0.17	0.8	0.4	-0.62	0.94	0.61	0.48
1 / σ′′	0.92	0.61	0.12	0.35	-0.06	0.31	0.94	0.53	0.47
1 / α′	**0.96**	**0.96**	0.17	0.25	0.54	0.15	-0.16	-0.23	0.33
1 / α′′	0.96	0.91	0.42	0.64	0.12	-0.25	0.17	0.14	0.39

Table 2.3: Kendall coefficients for VGG networks trained on CIFAR10.

Intraclass clustering	learning rate	batch size	weight decay	optim. dropout rate	data augm.	total score			
c₃	0.92	0.83	**0.67**	0.51	0.92	1.0	1.0	0.88	0.84
c₄	0.86	0.75	0.33	0.29	**0.92**	1.0	0.54	0.92	0.7

Sharpness

1 / σ′	0.86	0.62	-0.25	0.6	-0.04	-0.27	1.0	0.85	0.42
1 / σ′′	0.9	0.67	0.11	**0.69**	**0.92**	0.19	**1.0**	**0.94**	0.68
1 / α′	**0.94**	**0.89**	0.61	0.53	0.67	0.77	0.15	0.06	0.58
1 / α′′	0.93	0.67	0.36	0.54	0.69	-0.02	0.15	-0.15	0.4

2.3.3 Evolution of the measures across layers

We pursue our experimental endeavour with an analysis of the proposed measures’ evolution across layers. For each dataset-architecture pair, we select 64 models which have the same depth hyperparameter value. We then compute the four measures on a layer-level basis (we use the top-5 neurons of each layer for the neuron-level measures) and average the resulting values over the 64 models. Figure 2.6 depicts how the average value of each measure evolves across layers.
Figure 2.5: Plots showing how the Kendall coefficients of c_1 and c_3 change with parameter k (cfr. Equations 2.2 and 2.4). The k parameter associated to c_1 is multiplied by 5 in the plots, to enable comparison with c_3 (there are 5 subclasses in each of CIFAR100’s superclasses). The total number of neurons varies from 1920 to 2880 in Resnets and from 960 to 1440 in VGGs. The plots reveal that generalization performance can be quite accurately estimated using the representations of a surprisingly small set of neurons ($k = 1$, i.e. a single neuron per class, suffices in some cases).

for the three dataset-architecture pairs.

We observe two interesting trends. First, all four measures tend to increase with layer depth. This suggests that intraclass clustering also occurs in the deepest representations of neural networks, and not merely in the first layers, which are commonly assumed to capture generic or class-independent features. Second, the variance based measures (c_3 and c_4) decrease drastically in the penultimate layer. We suspect this reflects the grouping of samples of a class in tight clusters in preparation for the final classification layer (such behaviour has been studied in Kamnitsas, Castro, Le Folgoc et al. (2018); Müller, Kornblith, and Hinton (2019)). The measures c_1 and c_2 are robust to this phenomenon as they rely on relative distances inside a single class, irrespectively of the representations of the rest of the dataset.

2.3.4 Evolution of the measures over the course of training

In this section, we provide a small step towards the understanding of the dynamics of the phenomenon captured by the measures. We visualize in Figure 2.7 the evolution of the measures over the course of training of three Resnet models. The first interesting observation comes from the comparison of models with high and low generalization performances. It appears that their differences in terms of intraclass clustering measures arise essentially during the early phase of training. The second observation is that significant increases in intraclass clustering measures systematically coincide with significant increases of the training accuracy (in the few first epochs and around epoch 150, where the learning rate is reduced). This suggests that supervised training could act as a necessary driver
2.3. RESULTS

Figure 2.6: Evolution of each measure (after averaging over 64 models) across layers for the three dataset-architecture pairs. The overall increase of the measures with layer depth suggests that intraclass clustering occurs even in the deepest representations of neural networks.

for intraclass clustering ability, despite not explicitly targeting such behaviour.

2.3.5 Visualization of subclass extraction in hidden neurons

We have seen in Section 2.3.2 that the measure c_1 reaches a Kendall coefficient of 0.69 when considering a single neuron per subclass ($k = 1$ in Eq. 2.2). Visualizing the training dynamics in this specific neuron should enable us to directly observe the phenomenon captured by c_1. We study a Resnet model trained on CIFAR100 superclasses with high generalization performance (82.31% test accuracy). For each of the 100 subclasses, we compute the selectivity value and the index of the most selective neuron based on the part of Eq. 2.2 to which the median operation is applied. We then rank the subclasses by their selectivity value, and display the training dynamics of the neurons associated to the subclasses with maximum and median selectivity values in Figure 2.8.

The evolution of the neurons’ preactivation distributions along training reveals that the ‘Rocket’ subclass, which has the highest selectivity value, is progressively distinguished from its corresponding superclass during training. The neuron behaves like it was trained to identify this specific subclass although no
CHAPTER 2. AN IMPLICIT CLUSTERING ABILITY

Figure 2.7: Evolution of the intraclass clustering measures over the course of training for three models with different generalization performances. We observe that the differences between models with high and low generalization performance arise essentially in the early phase of training.

supervision or explicit training mechanisms were implemented to target this behaviour. The same phenomenon occurs to a lesser extent with the 'Ray' subclass, which has the median selectivity value. We observed that very few subclasses reached selectivity values as high as the 'Rocket' subclass (the distribution of selectivity values is provided in Figure 2.9). We suspect that the occurrence of such outliers explain why the median operation outperformed the mean in the definition of c_1 and c_2.

Figure 2.8: Evolution along training of the preactivation distributions associated with the neurons that are the most selective (cfr. Eq. 2.2) for 'Rocket' and 'Ray' subclasses. The neurons behave like they were trained to identify these specific subclasses although no supervision or explicit training mechanisms were implemented to target this behaviour.
2.4. RELATED WORK

Many observations made in this chapter are coherent with previous work. In the context of transfer learning, Huh, Agrawal, and Efros (2016) shows that representations that discriminate ImageNet classes naturally emerge when training on their corresponding superclasses, suggesting the occurrence of intraclass clustering. Sections 2.3.2 and 2.3.5 suggest a key role for individual neurons in the extraction of intraclass clusters. This is coherent with the large body of work that studied the emergence of interpretable features in the hidden neurons (or feature maps) of deep nets (Zeiler and Fergus 2014; Simonyan, Vedaldi, and Zisserman 2014; Yosinski, Clune, Nguyen et al. 2015; Zhou, Khosla, Lapedriza et al. 2015; Bau, Zhou, Khosla et al. 2017). In Section 2.3.4 we notice that intraclass clustering occurs mostly in the early phase of training. Previous works have also highlighted the criticality of this phase of training with respect to regularization (Golatkar, Achille, and Soatto 2019), optimization trajectories (Jastrzbski, Szymczak, Fort et al. 2020; Fort, Dziugaite, Paul et al. 2020), Hessian eigenspectra (Gur-Ari, Roberts, and Dyer 2018), training data perturbations (Achille, Rovere, and Soatto 2019) and weight rewinding (Frankle, Dziugaite, Roy et al. 2020; Frankie, Schwab, and Morcos 2020). Morcos, Barrett, Rabinowitz et al. (2018); Leavitt and Morcos (2020) have shown that class-selective neurons are not necessary and might be detrimental for performance. This is coherent with our observation that neurons that differentiate samples from the same class improve performance.

Figure 2.9: Distribution of neural subclass selectivity values (cfr. measure c_1) over the 100 subclasses of CIFAR100. For each subclass, neural subclass selectivity is computed based on the most selective neuron in the neural network (i.e. $k = 1$). We observe that (i) only a few subclasses reach high selectivity values and (ii) the selectivity values vary much across subclasses. We suspect that the outliers with exceptionally high selectivity values cause the median operation to outperform the mean in the measures c_1 and c_2.
2.5 Discussion

Our results show that the measures proposed in Section 2.1 (i) correlate with generalization, (ii) tend to increase with layer depth and (iii) change mostly in the early phase of training. These similarities suggest that the measures capture one unique phenomenon. Since all measures quantify to what extent a neural network differentiates samples from the same class, the captured phenomenon presumably consists in intraclass clustering. This hypothesis is further supported by the neuron-level visualizations provided in Section 2.3.5. Overall, our results thus provide empirical evidence for this thesis’ hypotheses, i.e. that implicit clustering abilities emerge during standard deep neural network training and improve their generalization abilities.

However, the assessment of the causal nature of the measures’ relationships with clustering and generalization still relies on sophisticated correlation measures and informal arguments. Identifying implicit clustering mechanisms in deep learning would further support our hypotheses by strengthening causality. Interestingly, our results provide some insights on these presumed mechanisms. In particular, the neuron-level measures correlate with generalization performance as strongly as the layer-level measures in our experiments. As suggested by Section 2.3.2, the behaviour of some carefully selected neurons seems to quite accurately predict properties of the entire neural network they belong to. Figure 2.8 further suggests that individual neurons seem to possess a training routine of their own, targeting the classification of a subclass. All these results indicate that individual neurons play a crucial role in the presumed clustering mechanisms of deep learning. The next chapter of this thesis delves into these intriguing phenomena.
Chapter 3

An implicit clustering mechanism

Chapter 2 studies five tentative measures of implicit clustering ability in deep learning that appear to strongly correlate with generalization. In order to strengthen the causal relationship between the proposed measures and clustering, this chapter tries to unveil the clustering mechanisms that presumably underlie these abilities. This requires delving into the inner workings of deep neural network training.

The main difficulty arises from the fact that SGD is a global or end-to-end optimization algorithm. Contrary to biologically inspired alternatives, SGD is not based on the repetition of local, neuron-level mechanisms whose behavior is much simpler to study and understand (e.g. Hebb (1949); Rosenblatt (1958)). However, several works have suggested that individual neurons exhibit localized behavior during SGD-based training, too. Most notably, a large body of work has observed empirically that interpretable features are captured by the hidden neurons (or feature maps) of trained deep neural networks (Zeiler and Fergus, 2014; Simonyan, Vedaldi, and Zisserman, 2014; Yosinski, Clune, Nguyen et al., 2015; Zhou, Khosla, Lapedriza et al., 2015; Bau, Zhou, Khosla et al., 2017; Cammarata, Carter, Goh et al., 2020). Additionally, as discussed in Section 2.5 multiple experiments of Chapter 2 indicate that individual neurons play a crucial role in the presumed clustering mechanisms of deep learning.

This chapter thus initiates the search for implicit clustering mechanisms by studying SGD from the perspective of hidden neurons. More precisely, we monitor both the pre-activations and the partial derivatives of the loss w.r.t the activations in hidden neurons. These two signals are illustrated in Figure 3.1.

We study MLP networks trained on a synthetic dataset with known intraclass clusters and on a two-class version of the MNIST dataset obtained by aggregating the original classes into two superclasses. Our experiments reveal
a behavior similar to the winner-take-most approach of several clustering algorithms (e.g. [Martinetz and Schulten (1991); Fritzke (1997)]). Indeed, we observe that the training process progressively increases the average pre-activation of the most activated clusters of a class and decreases the average pre-activation of the least activated clusters of the same class in each neuron. Remarkably, this sometimes leads neurons to differentiate clusters belonging to the same class more strongly than clusters from different classes (cfr. Section 3.2). In order to solve the classification problem, the network thus seems to apply a divide-and-conquer strategy, where different neurons specialize for the classification of different clusters of a class.

To better understand our observations, we provide an empirical investigation of the phenomenon and an intuitive explanation inspired by the Coherent Gradients Hypothesis introduced by [Chatterjee (2020)] and the training dynamics w.r.t. example difficulty studied by [Arpit, Jastrzebski, Ballas et al. (2017)] (cfr. Section 3.3). In order to support the generality of our observations, we further show in Section 3.4 that despite its simplicity, our setup exhibits and provides insights on many phenomena occurring in state-of-the-art models such as the regularizing effects of depth, pre-training, data augmentation, large learning rates and, importantly, the implicit clustering abilities studied in Chapter 2.

Figure 3.1: Illustration of an artificial hidden neuron inside a network. φ and L denote the activation function and the training loss respectively. The indices i, j, t correspond to neuron, input example and training step indices respectively. The symbols $p_{i,j,t}$ and $a_{i,j}$ stand for the neuron’s pre-activation and activation values respectively. In this paper, we monitor both the neuron’s pre-activation $p_{i,j,t}$ and the partial derivative of the loss w.r.t. the neuron’s activation $\left(\frac{\partial L}{\partial a_{i,j}} \right)_t$.
3.1 Experimental setup

3.1.1 Datasets

Our work is mainly based on a synthetic dataset whose clustered structure is exactly known. We denote this dataset by SynthClust in the rest of the chapter. SynthClust is composed of vectors of 500 elements, such that \(\mathbf{x} \in \mathbb{R}^{500} \). Each cluster’s centroid is a binary pattern with exactly five elements set to 1. 30 centroids with non-overlapping patterns are generated and split into two classes, such that each class contains 15 intraclass clusters. For each cluster, 500 training examples and 200 testing examples are generated by adding Gaussian noise with zero mean and 0.4 standard deviation on each of the 500 components of the cluster’s centroid.

In order to improve the generality of our results, Section 3.2 also studies an MNIST variant where the first and last five digits are grouped into two distinct classes (class 0: 0 → 4, class 1: 5 → 9). As in Chapter 2, the five digits of a class are assumed to approximately correspond to five intraclass clusters. This constitutes an approximation, as Figure 1.7 suggests that single digits are themselves composed of multiple clusters.

3.1.2 Neural networks

We train MLP networks with a single hidden layer on MNIST and SynthClust, with and without batch normalization respectively. The hidden layer is composed of 1000 neurons without additive weights (i.e. biases). The output layer is composed of one sigmoid neuron associated to the binary cross-entropy loss. In the case of SynthClust, the model can be very simply expressed as follows:

\[
 f(\mathbf{x}) = \sigma(W_2 \cdot \text{ReLU}(W_1 \cdot \mathbf{x}) + b_2)
\]

where \(\text{ReLU} \) and \(\sigma \) denote the ReLU and sigmoid functions respectively, and \(W_1 \) and \((W_2, b_2) \) denote the weights of the hidden and output layer respectively. In Section 3.4, an MLP with multiple hidden layers is trained on SynthClust. Compared to the single layer model, this multi-layer network applies batch normalization before each ReLU layer as this stabilizes training. Each hidden layer is also composed of 1000 neurons without biases.

3.1.3 Training process

We use Layca (an SGD variant introduced in Chapter 4) for training, as this greatly facilitated the design and the hyperparameter tuning involved in our experiments. This design choice is more extensively discussed and investigated in Chapter 4. The SynthClust models are trained in full-batch mode whereas the MNIST models use a batch size of 20000. We use large batch sizes in order
to avoid the sampling noise inherent to small-batch training. While small batch sizes have been considered as a determining factor for generalization in the past (Keskar, Mudigere, Nocedal et al., 2017), this view has now been relativized by several works (Hoffer, Hubara, and Soudry, 2017; Goyal, Dollar, Girshick et al., 2017; Ginsburg, Gitman, and You, 2018; Geiping, Goldblum, Pope et al., 2021). In our context, the use of large batch sizes did not prevent our models from exhibiting good generalization performances. We trained the models for 100 and 400 epochs on MNIST and SynthClust respectively, using a learning rate of 3^{-3} which is reduced by a factor of 5 at epochs 85 or 375 respectively. The 5 hidden layer MLP we study in Section 3.4.5 is trained for 1000 epochs, with a reduction of the learning rate by a factor of 5 at epoch 950.

3.2 A winner-take-most mechanism

We trained the one hidden layer MLPs on SynthClust and MNIST. The resulting models reach 96.1% and 98% test accuracy respectively. After each training iteration, we recorded the two neuron-level training signals represented in Figure 3.1 in 50 hidden neurons and for each training example. After training, we selected 10 hidden neurons amongst the 50 monitored ones for our visualizations. This selection targets the neurons with the strongest influence on the model’s predictions. More precisely, we select the neurons associated to the largest weights in the output layer (in absolute value).

Figures 3.2 and 3.3 display our results for both datasets. The first two rows of plots represent the evolution of each cluster’s average pre-activation in the 10 hidden neurons. The curves are colored according to the clusters’ associated class. We observe that each neuron consistently differentiates the clusters of one class during training according to a winner-take-most mechanism. The clusters with larger average pre-activation are pushed towards even larger pre-activations, while the clusters with smaller average pre-activation are pushed towards even smaller pre-activations. Astonishingly, this unsupervised mechanism can be more impactful than the supervised learning process from the perspective of a single neuron. Indeed, neurons sometimes differentiate clusters belonging to the same class more strongly than clusters from different classes.

The third row represents the histogram of the final pre-activations associated to each class. It is coherent with the first two rows: one class consistently exhibits a bimodal distribution, reflecting the differentiation of intraclass clusters. The fourth row visualizes the derivative of the loss with respect to each neuron’s activation. More precisely, for each example, we compute the average sign of the derivative across all steps of the training process. This value tells us whether an increased activation generally benefits (negative average) or penalizes (positive average) the classification of a given example. We observe that the sign is correlated with the example’s class across the whole training process: the examples of one class should always be pushed towards larger activations (be-
cause their average derivative sign is -1), and the other to smaller activations (because their average derivative sign is 1). We further notice that the winner-take-most mechanism always concerns the class with negative derivatives. We explore in the next section why some of the clusters of this class are pushed towards smaller pre-activations despite being associated to negative derivative signs.
CHAPTER 3. AN IMPLICIT CLUSTERING MECHANISM

FIGURE 3.2: We train one hidden layer MLPs on SynthClust and monitor the pre-activations and the derivative of the loss w.r.t. the activations of 10 hidden neurons after each training iteration and for each training example. The first two rows represent the evolution of each cluster's average pre-activation during training. The third row displays the resulting pre-activation distributions at the end of training. The fourth row displays a histogram of the sign of the derivative of the loss w.r.t. the neuron activation, averaged over all training steps. The sign tells us whether an increased activation of the neuron results in a higher loss for class 0, lower loss for class 1, or no change in loss.

This seems contradictory to the observed winner-take-most mechanism. We provide insights on this apparent contradiction in Section 3.3.
3.2. A WINNER-TAKE-MOST MECHANISM

Figure 3.3: The same visualizations as Figure 3.2, but corresponding to training on our two-class version of the MNIST dataset (class 0: 0 → 4, class 1: 5 → 9). We also observe a winner-take-most mechanism that differentiates digits (i.e. the original MNIST classes) which are associated to the same superclass.
3.3 Towards understanding the mechanism

To better understand why a winner-take-most mechanism emerges in our experiments, we start by performing an ablation study that identifies necessary ingredients for the phenomenon to occur. We then provide intuitions to explain the phenomenon based on difficult training examples and gradient coherence in ReLU neurons.

3.3.1 An ablation study

Figure 3.4 shows the average pre-activation of each cluster across training on SynthClust for a model without ReLU activation layer (first row), with a single hidden neuron (second row) and trained on a less noisy dataset\(^1\) (third row). For each scenario, we observe that the winner-take-most mechanism does not occur. Hidden neurons behave like the output neuron: they classify the data according to the two classes, without consideration for intraclass clusters. This results in a decrease in performance: the models achieve test accuracies ranging from 80% to 84%. The necessity of ReLU layers, multiple hidden neurons and sufficient noise on the training examples gives rise to the intuitions we describe in the next sections.

\(1\) We apply Gaussian noise with a 0.1 standard deviation instead of 0.4 when generating the data.

Figure 3.4: We display the average pre-activation of each cluster across training for a model without ReLU activation layer (first row), with a single hidden neuron (second row) or trained on a less noisy dataset (third row). For each scenario, we observe that the winner-take-most mechanism does not occur.
3.3. TOWARDS UNDERSTANDING THE MECHANISM

3.3.2 On the role of difficult training examples

At the neuron level, a mysterious force pushes some clusters in the same direction as clusters of the opposite class. This phenomenon starts around the 6th iteration (cfr. row 2 of Figure 3.2), and concerns the “losing” clusters of the class subject to the winner-take-most mechanism. At first sight, this local behavior seems to be contrary to the global objective, which is to differentiate examples from their opposite class. In particular, the derivatives associated to these clusters are negative (cfr. row 4 of Figure 3.2), aiming for the opposite direction to where they actually go.

To make sense of this apparent contradiction, we suggest considering the role of difficult training examples. Some examples can be difficult to classify because the associated noise (i) decreases their correlation with their associated class and (ii) increases their correlation with the opposite class. Therefore, these examples can lead to gradients that are contradictory with the ones of regular examples. At the beginning of training, such a contradictory force is negligible, since these examples constitute exceptions. However, once the more regular examples start being correctly classified, the share of difficult examples in the total loss increases, potentially surpassing the regular examples’ share. This would lead regular examples to be pushed in a direction opposite to their associated gradient.

We observe these exact dynamics in Figure 3.5. We quantify the correlation between an example and a class as the scalar product between the example and the sum of the 15 cluster centroids associated to the class. We divide training examples into easy and difficult groups depending on whether they correlate more with their own class or with the opposite class. We monitor the total loss associated to each group during training and observe that (i) the loss associated to the difficult group increases during the first iterations, indicating the occurrence of contradictory gradients and (ii) the share associated to the difficult group matches the share of the easy group around the 6th iteration, which corresponds to the appearance of the winner-take-most mechanism (cfr. the 2nd row of Figure 3.2). The role of difficult training examples is further supported by our ablation study (cfr. Section 3.3.1), which shows that reducing the noise during the data generation process, and thus the amount of difficult training examples, prevents the winner-take-most mechanism from occurring.

3.3.3 On the role of ReLU

Since the overall gradient at a given training iteration is the sum of the per-example gradients, the directions that are coherent across multiple training examples are reinforced (as highlighted by Chatterjee (2020)). At the neuron level, the ReLU activation function affects the coherence of gradients in a very

\footnotetext{2}{This can be interpreted as whether the training examples would be (in-)correctly classified by a linear classifier.}
Figure 3.5: Left. We represent each class by the sum of its 15 associated cluster centroids, and define the difficulty of an example by its scalar product with the representation of the opposite class minus its scalar product with its true class’s representation. We divide training examples into easy and difficult categories depending on whether the resulting value is negative or positive. Right. Displays the evolution of the easy and difficult groups’ share in the total loss during training. We notice that (i) the loss associated to the difficult group increases during the first iterations, indicating the occurrence of contradictory gradients and (ii) the share associated to the difficult group matches the share of the easy group around the 6th iteration, which corresponds to the appearance of the winner-take-most mechanism (cfr. the 2nd row of Figure 3.2).

In each neuron of our single hidden layer MLP, the examples associated to each cluster share a common pattern in the input signal (by construction of SynthClust) and a common pattern in the backpropagated error signal (because they belong to the same class, cfr. row 4 of Figure 3.2). Hence, the number of examples that activate the neuron affects the relative share of each cluster in the gradient associated to the weights of the neuron. In particular, the clusters with small average pre-activations will tend to be associated with smaller shares than clusters with large average pre-activations. This could explain why clusters with smaller average pre-activations are the most impacted by the difficult training examples (cfr. Section 3.3.2), and hence “lose” the competition. On the contrary, clusters with larger average pre-activations influence a larger share of the gradient associated to the neuron weights and will be less sensitive to difficult training examples, enabling them to “win” the competition. The idea that ReLU layers are key for differentiating the “winning” clusters from the “losing” ones is also coherent with our ablation study of Section 3.3.1 which shows that the winner-take-most mechanism does not occur in a linear model without ReLU activation layers.
3.3.4 A divide-and-conquer strategy

Finally, our ablation study of Section 3.3.1 demonstrates that a neural network with a single hidden neuron does not exhibit a winner-take-most mechanism. This makes sense intuitively: the winner-take-most mechanism locally leads to misclassification of multiple clusters. This local misclassification is possible only if it is counter-balanced by a correct classification in other neurons. A divide-and-conquer approach, where different neurons focus on the classification of different clusters, is perfectly compatible with the winner-take-most phenomenon. Indeed, the winning clusters are determined by their initial average pre-activation, which varies from one neuron to the other because their weights are randomly initialized.

3.3.5 Why does the mechanism affect a single class?

Jointly considering the role of difficult training examples, gradient coherence and divide-and-conquer strategies also shines light on the fact that the winner-take-most mechanism only applies to the class associated to negative derivatives, i.e., whose activations should increase during training. Indeed, for this class, pushing a cluster in its “opposite” direction simultaneously leads to a deactivation of some of its examples. The cluster’s share in this neuron’s gradients is thus diminished, further promoting the correct classification of the associated difficult training examples in this specific neuron. On the contrary, pushing clusters of the class associated to positive derivatives in their opposite direction increases the amount of their examples that activate the neuron, promoting the correct classification of these clusters in this specific neuron.

3.4 Connections with standard deep learning settings

Our study discloses the emergence of a winner-take-most mechanism and provides intuitions and experiments to understand it. But these contributions are limited to relatively simple and shallow neural network architectures trained on a synthetic dataset. It is not clear whether our empirical observations and intuitions still hold in standard deep learning settings. In order to support the generality of our results, we first discuss several works that studied difficult training examples and gradient coherence in standard deep learning settings, highlighting the connections with the intuitions described in Sections 3.3.2 and 3.3.3. Second, we demonstrate that our simple setup exhibits many phenomena occurring in standard settings and provide empirical evidence that these phenomena are reminiscent of winner-take-most mechanisms.
3.4.1 Training dynamics w.r.t. example difficulty

Multiple works have studied how different notions of example difficulty related to the speed at which examples are learned. Arpit, Jastrzebski, Ballas et al. (2017) showed across 100 different initializations and permutations of the training data that many examples are consistently classified (in)correctly after a single epoch of training. This observation leads them to conjecture that “deep learning learns simple patterns first, before memorizing”. Mangalam and Prabhu (2019) provides empirical evidence that deep neural networks learn shallow-learnable examples first, where shallow-learnable refers to being correctly classified by non-deep learning approaches. Jiang, Zhang, Talwar et al. (2021a) characterizes examples by their consistency score, defined by their expected accuracy as a held-out example given training sets of varying size. Figure 10 of this paper displays the training curves associated to the training examples grouped by consistency score. It reveals that examples with higher scores are learned before those with lower scores. While this aspect is not discussed in the original paper, Figure 10 also reveals that the accuracy of examples with a low consistency score decreases in the first epochs of training. This suggests that the gradients of low-scoring examples are “contradictory” to the ones of high-scoring examples.

In Section 3.3.2, we define the difficulty of training examples by their correlation with the opposite class relative to their correlation with their true class. In accordance with the observations conducted in standard settings, we observe in Figure 3.3.2 that in our simple setup, (i) easy examples are learned before the difficult ones and (ii) the loss of difficult examples increases in the first training iterations, suggesting the presence of contradictory gradients.

3.4.2 The Coherent Gradient Hypothesis

Chatterjee (2020) recently introduced the Coherent Gradient Hypothesis, which states that gradient coherence plays a crucial role in the generalization abilities of deep neural networks. Zielinski, Krishnan, and Chatterjee (2020) provides multiple experiments to support this hypothesis in the context of standard deep learning settings involving the ImageNet dataset and ResNet models with 18 layers. These works justify the role of gradient coherence with the following intuition: because gradients are the sum of per-example gradients, it is stronger in the directions where the per-example gradients are more similar. Hence, the changes to the network during training are biased towards those that simultaneously benefit multiple examples. They further argue that such bias is beneficial for generalization based on algorithmic stability theory.

However, the previous intuition only holds at the very beginning of training, when most examples are misclassified by the model. As we’ve seen in Section 3.3.2 a small set of difficult training examples strongly influence the overall gradient once regular examples are correctly classified. Chatterjee and Zielinski
3.4. \textbf{CONNECTIONS WITH STANDARD DEEP LEARNING SETTINGS}

(2020) provide a more extensive analysis of the evolution of gradient coherence during training. They conclude the following: “our experiments provide additional evidence for the connection between the alignment of per-example gradients and generalization. But as our data shows this connection is complicated.” We believe that the winner-take-most mechanisms disclosed by our work and the intuitions described in Section 3.3.3 offer a promising path towards a better understanding the relationship between gradient coherence and generalization.

3.4.3 \textbf{The benefits of data augmentation}

Observations in standard settings. Data augmentation is a key component of state-of-the-art models (Cubuk, Zoph, Mane et al., 2019). These techniques are motivated by the fact that applying \textit{plausible} transformations on the training data virtually increases the amount of data available for learning. Surprisingly, data augmentation techniques that apply \textit{unrealistic} transformations, such as Cutout (DeVries and Taylor, 2017) and Mixup (Zhang, Cisse, Dauphin et al., 2018) appear to be quite effective for regularizing deep neural networks as well.

Observation in our simple setup and connection with the winner-take-most mechanisms. We trained the single layer MLP on a reduced SynthClust dataset: 1500 examples are randomly selected for training (instead of 15000). As expected, training on less data resulted in a decreased test accuracy: the model reaches 80.98\% accuracy instead of the 96.1\% obtained when training on the complete dataset. We applied Dropout (Srivastava, Hinton, Krizhevsky et al., 2014) on the inputs of the network to augment the training data. More precisely, we randomly set input components to 0 with a 50\% probability. While this transformation is fundamentally different from the Gaussian noise inherent to the data generation process, Dropout provided a huge gain in terms of test accuracy, reaching 88.57\%.

The first row of Figure 3.6 displays the average pre-activation curves of each cluster for the model trained without Dropout. The visualization reveals that training on a reduced training dataset decreases the strength of the winner-take-most mechanism: clusters from the same class are less differentiated compared to clusters from different classes. Interestingly, this issue gets mitigated by the application of Dropout, as revealed by the second row of Figure 3.6. This observation suggests that data augmentation techniques improve generalization by generating difficult training examples, promoting the occurrence of winner-take-most mechanisms (cfr. Section 3.3.2) and improving the model’s clustering abilities (cfr. Chapter 2).

3.4.4 \textbf{The benefits of pre-training}

Observations in standard settings. Pre-training is a long-standing technique in deep learning (Hinton, Osindero, and Teh, 2006; Oquab, Bottou, Laptev et al., 2014; Donahue, Jia, Vinyals et al., 2014). It consists in training a network
CHAPTER 3. AN IMPLICIT CLUSTERING MECHANISM

Figure 3.6: The first row displays the average pre-activation curves of each cluster (cfr. 1st line of Figure 3.2) when training the single hidden layer MLP on a reduced SynthClust dataset (1500 training examples instead of 15000). We observe that the strength of the winner-take-most mechanism decreases: clusters from the same class are less differentiated compared to clusters from different classes. Rows 2 and 3 provide the same visualization when applying Dropout to the inputs of the network (row 2) or when pre-training the network on a different dataset exhibiting the same clusters and dataset size as the original SynthClust dataset but different cluster-class associations (row 3). Both lead to stronger differentiation of intraclass clusters and improved test accuracies.

Observation in our simple setup and connection with the winner-take-most mechanisms. We pre-trained the single layer MLP on a dataset containing the same input data as the original SynthClust dataset—and hence the same clusters and number of training examples—, but different, randomly generated cluster-class associations. We then fine-tuned the model on the reduced SynthClust dataset introduced in Section 3.4.3. Despite both classification tasks being different, we observe an improvement in test accuracy compared to no pre-training: the model reaches an accuracy of 88.13% instead of 80.98%. The study of the cluster’s average pre-activation curves in Figure 3.6 reveals that because both pre-training and target datasets share the same clustered
structure, the fine-tuning process benefits from the winner-take-most mechanisms that occurred during pre-training. Indeed, clusters from the same class are already strongly differentiated at initialization.

3.4.5 The benefits of depth

Observations in standard settings. State-of-the-art deep learning models contain many hidden layers. In the context of image classification, the amount of layers typically ranges from 16 to more than a hundred (Simonyan and Zisserman, 2015; He, Zhang, Ren et al., 2016). Many works provide results concerning the benefits of depth in terms of expressivity (e.g., Telgarsky (2016); Eldan and Shamir (2016); Lin, Tegmark, and Rolnick (2017); Liang and Srikant (2017)). Its benefits in terms of generalization ability, however, remain unexplained.

Observation in our simple setup and connection with the winner-take-most mechanisms. We trained an MLP with 5 hidden layers on SynthClust. Despite the simplicity of the SynthClust dataset, using a deeper neural network improved the test accuracy (97.68% test accuracy compared to 96.1%). In order to study the impact of depth on the emergence of winner-take-most mechanisms, Figure 3.7 displays the average pre-activation curves of each cluster and the histograms of the average derivative signs (cfr. rows 1 and 4 of Figure 3.2) in 5 neurons of each hidden layer.

The visualizations reveal that winner-take-most mechanisms occur in the first three layers of the network as well as in some neurons of the 4th layer. Interestingly, the mechanism leads a single cluster to be differentiated from the other examples of the dataset in multiple neurons (e.g., neurons 3 and 4 of layer 2). This change in behavior compared to the single layer MLP studied in Figure 3.2 could be induced by the fact that derivative signs correlate less with the examples’ class as they propagate through layers (cfr. the histograms of average derivative signs in Figure 3.7). The differentiation of single clusters by hidden neurons could improve the network’s clustering abilities, offering an interesting research direction for explaining the benefits of depth in terms of generalization.

3The 5 neurons are selected based on the norm of the neurons’ associated weight vector in the next layer (the larger the norm, the better).
Figure 3.7: Discussed in section 3.4.5
3.4. CONNECTIONS WITH STANDARD DEEP LEARNING SETTINGS

3.4.6 The benefits of large learning rates

Observations in standard settings. The influence of SGD’s learning rate on generalization has been highlighted by many works (Jastrzebski, Kenton, Arpit et al., 2017; Smith and Le, 2017; Smith and Topin, 2017; Hoffer, Hubara, and Soudry, 2017; Masters and Luschi, 2018). Empirically, we observe that using larger learning rates benefits generalization -as long as convergence remains possible.

Observation in our simple setup and connection with the winner-take-most mechanisms. We trained the 5-hidden-layers MLP on SynthClust with a learning rate reduced by a factor 27. The test accuracy strongly decreased: the model reaches an accuracy of 84.07\% instead of 97.68\%. We display the average pre-activation curves corresponding to training with large and small learning rates in Figure 3.8 for 1 neuron in each layer. As usual, the neuron is selected based on the norm of the associated weights in the next layer. We observe that when using small learning rates, the cluster’s average pre-activations do not change much at all in the first layers, leading to the absence of winner-take-most mechanisms. On the contrary, training with large learning rates leads to significant changes in the cluster’s average pre-activations, enabling the emergence of winner-take-most mechanisms.
3.4.7 The benefits of implicit clustering abilities

Observations in standard settings. In Chapter 2, we show that five tentative measures of intraclass clustering correlate with generalization in standard deep learning settings. These correlations occur across variations of 8 standard hyperparameters, amongst which data augmentation, depth and the learning rate. Two measures (c_1 and c_3 defined in Section 2.1) are applied at the neuron-level, capturing the extent by which examples or subclasses from the same class are differentiated in a neuron’s pre-activations.

Observation in our simple setup and connection with the winner-take-most mechanisms. The winner-take-most mechanism studied in our simple setup leads to the differentiation of clusters from the same class in a neuron’s pre-activations, and is thus closely related to measures c_1 and c_3. We further show that data augmentation, depth and learning rate influence the winner-take-most mechanism and the test accuracies of the studied MLP networks in Sections 3.4.3, 3.4.5 and 3.4.6. The observations are consistent with our experiments of Chapter 2: the better the clusters of a class are differentiated, the better the performance on the test set. Hence, our studies of both implicit clustering abilities and mechanisms constitute a coherent framework supporting the crucial role of implicit clustering in deep learning systems.
Chapter 4

An implicit clustering hyperparameter

Designing and training deep learning systems requires manual tuning of many hyperparameters (network depth, width, learning rate, weight decay, optimizer, etc.). Hyperparameter tuning is usually based on successful heuristics and intuitions that practitioners gain with experience. In practice, this still translates into a lot of trial and error, greatly increasing the time and energy consumption associated to the development of deep learning systems.

The opaque behaviour of standard hyperparameters becomes less surprising when one presumes that implicit mechanisms play a role in deep learning. Indeed, these mechanisms could be indirectly affected by the explicit hyperparameters in potentially complex and coupled ways. Chapter 2 suggests that standard hyperparameters indirectly influence the implicit clustering abilities of deep learning. Hence, the following chapter looks for implicit hyperparameters that control clustering more directly.

Chapters 2 and 3 suggest the emergence of a neuron-level training process that is critical for implicit clustering to occur. However, the training process of the entire network might succeed without fully accomplishing each individual neuron’s training, as suggested by our observations in Section 3.4.6. Hence, the extent by which each neuron has been “trained” potentially constitutes an implicit clustering hyperparameter which we propose to capture through layer rotation, i.e., the evolution across training of the cosine distance between each layer’s flattened weight vector and its initialization. Monitoring the rotation of weight vectors is motivated by the fact that batch normalization renders the scale of a layer’s transformation obsolete. Monitoring training on a per-layer basis is motivated by the works on vanishing and exploding gradients, which suggest that the training dynamics can vary drastically across the layers of a network (Bengio, Simard, and Frasconi 1994; Hochreiter 1998; Glorot and...
We design tools to monitor and control layer rotations and show across a diverse set of experiments that larger layer rotations (and thus presumably more accomplished neuron-level training routines) consistently translate into better generalization. Moreover, we show that the impact of learning rates, weight decay, learning rate warmups and adaptive gradient methods on generalization and training speed seems to result from their indirect influence on layer rotations. Finally, we illustrate on a single hidden layer MLP trained on MNIST that layer rotation correlates with the degree to which the features of individual neurons have been learned, connecting our results with our initial hypothesis. An implementation of this chapter’s tools and experiments based on Tensorflow (Agarwal, Barham, Brevdo et al., 2016) and Keras (Chollet et al., 2015) is available at https://github.com/ispgroupucl/layer-rotation-tools and https://github.com/ispgroupucl/layer-rotation-paper-experiments respectively.

4.1 Tools for monitoring and controlling layer rotation

This section describes the tools for monitoring and controlling layer rotation during training, such that its relationship with generalization, training speed and explicit hyperparameters can be studied in Sections 4.3 and 4.4.

4.1.1 Monitoring layer rotation with layer rotation curves

Layer rotation is defined as the evolution of the cosine distance between each layer’s weight vector and its initialization during training. The cosine distance is defined as:

\[
d(u, v) = 1 - \frac{u \cdot v}{\|u\|_2 \|v\|_2}.
\]

(4.1)

Let \(w^l_t\) be the flattened weight tensor of the \(l^{th}\) layer at optimization step \(t\) (\(t_0\) corresponding to initialization), then the rotation of layer \(l\) at training step \(t\) is defined as \(d(w^l_0, w^l_t)\). In order to visualize the evolution of layer rotation during training, we plot how the cosine distance between each layer’s current weight vector and its initialization evolves across training steps. We denote this visualization tool by layer rotation curves hereafter.

\footnote{It is worth noting that our study focuses on weights that multiply the inputs of a layer (e.g. kernels of fully connected and convolutional layers). Studying the training of additive weights (biases) is left as future work.}
4.1. TOOLS FOR MONITORING AND CONTROLLING LAYER ROTATION

4.1.2 Controlling layer rotation with Layca

The ability to control layer rotations during training would enable a systematic study of their relationship with generalization and training speed. Therefore, we present Layca (LAYer-level Controlled Amount of weight rotation), an algorithm where the layer-wise learning rates directly determine the amount of rotation performed by each layer’s weight vector during each training step (the layer rotation rates), in a direction specified by an optimizer (SGD being the default choice). Inspired by techniques for optimization on manifolds (Absil, Mahony, and Sepulchre 2010), and on spheres in particular, Layca applies layer-wise orthogonal projection and normalization operations on SGD’s updates, as detailed in Algorithm 1. These operations induce the following simple relationship between the learning rate $\rho_l(t)$ of layer l at training step t and the angle $\theta_l(t)$ between w^t_l and w^{t-1}_l: $\rho_l(t) = \tan(\theta_l(t))$.

Our controlling tool is based on a strong assumption: that controlling the amount of rotation performed during each individual training step (i.e. the layer rotation rate) enables control of the cumulative amount of rotation performed since the start of training (i.e. layer rotation). This assumption is not trivial since the aggregated rotation is a priori very dependent on the shape of the loss landscape. For example, for an identical layer rotation rate, the layer rotation will be much smaller if iterates oscillate around a minimum instead of following a stable downward slope. Our assumption however appeared to be sufficiently valid, and the control of layer rotation was effective in our experiments.
Algorithm 1 Layca, an algorithm that enables control over the amount of weight rotation per step for each layer through its learning rate parameter (cfr. Section 4.1.2).

Require: o, an optimizer (SGD is the default choice)
Require: T, the number of training steps
L is the number of layers in the network
for $l = 0$ to $L - 1$ do
 Require: $\rho_l(t)$, a layer’s learning rate schedule
 Require: w^0_l, the initial multiplicative weights of layer l
end for
for $t = 0$ to T do
 $s^0_t, ..., s^{L-1}_t = \text{getStep}(o, w^0_0, ..., w^{L-1}_t)$ (get the updates of the selected optimizer)
 for $l = 0$ to $L - 1$ do
 $s^l_t \leftarrow s^l_t - \frac{(s^l_t \cdot w^l_t)w^l_t}{\|w^l_t\|^2}$ (project step on space orthogonal to w^l_t)
 $s^l_t \leftarrow \frac{s^l_t \|w^l_t\|^2}{\|s^l_t\|^2}$ (rotation-based normalization)
 $w^{l+1}_t \leftarrow w^l_t + \rho_l(t)s^l_t$ (perform update)
 $w^{l+1}_t \leftarrow w^{l+1}_t \frac{\|w^l_0\|^2}{\|w^{l+1}_t\|^2}$ (project weights back on sphere)
 end for
end for

4.2 Experimental setup

The experiments are conducted on five different tasks which vary in network architecture and dataset complexity, and are further described in Table 4.1.

Table 4.1: Summary of the tasks used for our experiments

Name	Architecture	Dataset
C10-CNN1	VGG-style 25 layers deep CNN	CIFAR-10
C100-resnet	ResNet-32	CIFAR-100
tiny-CNN	VGG-style 11 layers deep CNN	Tiny ImageNet
C10-CNN2	deep CNN from torch blog	CIFAR-10 + data augm.
C100-WRN	Wide ResNet 28-10 with 0.3 dropout	CIFAR-100 + data augm.

We use the same amount of training epochs and the same learning rate decay scheme across layer rotation and explicit hyperparameter configurations:

References: VGG [Simonyan and Zisserman, 2015], ResNet [He, Zhang, Ren et al., 2016], torch blog [Zagoruyko, 2015], Wide ResNet [Zagoruyko and Komodakis, 2016], CIFAR-10 [Krizhevsky and Hinton, 2009], Tiny ImageNet [Deng, Dong, Socher et al., 2009; CS231N, 2016]. Dropout layers were removed from the torch blog CNN to enable perfect classification on the training set (100% accuracy).
4.2. EXPERIMENTAL SETUP

- C10-CNN1: 100 epochs and a reduction of the learning rate by a factor 5 at epochs 80, 90 and 97
- C100-resnet: 100 epochs and a reduction of the learning rate by a factor 10 at epochs 70, 90 and 97
- tiny-CNN: 80 epochs and a reduction of the learning rate by a factor 5 at epoch 70
- C10-CNN2: 250 epochs and a reduction of the learning rate by a factor 5 at epochs 100, 170, 220
- C100-WRN: 250 epochs and a reduction of the learning rate by a factor 5 at epochs 100, 170, 220

The only exceptions are C10-CNN2 and C100-WRN trained with SGD+weight decay and with adaptive methods (cfr. Sections 4.4.2 and 4.4.4), where the learning rate decay schemes are the ones used in their original implementation or in [Wilson, Roelofs, Stern et al., 2017] respectively. Training accuracy is close to optimal in most cases, as revealed by the Tables 4.2, 4.3, 4.4, 4.5 and 4.6.

Table 4.2: Train accuracies of models used in Figure 4.1

Model	$\alpha = 0.6$	$\alpha = -0.6$	$\rho(0) = 3^{-5}$	$\rho(0) = 3^{-4}$	Best
C10-CNN1	100%	99.99%	100%	100%	99.99%
C100-resnet	82.09%	99.54%	99.87%	99.99%	99.75%
tiny-CNN	99.98%	99.95%	99.97%	99.97%	98.91%
C10-CNN2	100%	99.94%	99.99%	99.99%	99.97%
C100-WRN	99.88%	99.91%	99.97%	99.99%	99.96%

Table 4.3: Train accuracies of models used in Figure 4.3

Model	$lr = 3^{-4}$	$lr = 3^{-3}$	$lr = 3^{-2}$	$lr = 3^{-1}$	$lr = 3^{0}$
C10-CNN1	100%	100%	100%	100%	100%
C100-resnet	87.8%	100%	100%	100%	99.7%
tiny-CNN	100%	100%	100%	100%	100%
C10-CNN2	99.8%	99.9%	100%	100%	83.7%
C100-WRN	100%	100%	100%	100%	57.4%
Table 4.4: Train accuracies of models used in Figure 4.5

SGD + L_2	C10-CNN1	C100-resnet	tiny-CNN	C10-CNN2	C100-WRN
100%	100%	100%	100%	100%	100%

Table 4.5: Train accuracies of models used in Figure 4.6

No warmup	5 epochs	10 epochs	15 epochs	Layca-No warmup
96.67%	99.76%	99.85%	99.68%	99.85%

Table 4.6: Train accuracies of models used in Figure 4.8

Adaptive methods	C10-CNN1	C100-resnet	tiny-CNN	C10-CNN2	C100-WRN
100%	100%	100%	100%	100%	99.9%
Adaptive + Layca	100%	99.7%	99.2%	100%	100%

4.3 A systematic study of layer rotation configurations

Section 4.1 provides tools to monitor and control layer rotation. The purpose of this section is to use these tools to conduct a systematic experimental study of layer rotation configurations. We adopt SGD as default optimizer, but use Layca (cfr. Algorithm 1) to vary the relative rotation rates (faster rotation for first layers, last layers, or no prioritization) and the global rotation rate value (high or low rate, for all layers).

4.3.1 Layer rotation rate configurations

Layca enables us to specify layer rotation rate configurations, i.e. the amount of rotation performed by each layer’s weight vector during one optimization step, by setting the layer-wise learning rates. To explore the large space of possible layer rotation rate configurations, our study restricts itself to two directions of variation. First, we vary the initial global learning rate $\rho(0)$, which affects the layer rotation rate of all the layers. During training, the global learning rate $\rho(t)$ drops following a fixed decay scheme, hence the dependence on t. The second direction of variation tunes the relative rotation rates between different layers. More precisely, we apply static, layer-wise learning rate multipliers that exponentially increase/decrease with layer depth (which is typically encountered with exploding/vanishing gradients, cfr. Bengio, Simard, and Frasconi (1994); Hochreiter (1998); Glorot and Bengio (2010)). The multipliers are parametrized by the layer index l (in forward pass ordering) and a parameter $\alpha \in [-1,1]$ such
4.3. A SYSTEMATIC STUDY OF LAYER ROTATION CONFIGURATIONS

that the learning rate of layer l becomes:

$$
\rho_l(t) = \begin{cases}
(1 - \alpha)^{\frac{(L-1-l)}{L-1}} \rho(t) & \text{if } \alpha > 0 \\
(1 + \alpha)^{\frac{l}{L-1}} \rho(t) & \text{if } \alpha \leq 0
\end{cases}
$$

Values of α close to -1 correspond to faster rotation of first layers, 0 corresponds to uniform rotation rates, and values close to 1 to faster rotation of last layers.

4.3.2 Layer rotation’s relationship with generalization

Figure 4.1 depicts the layer rotation curves (cfr. Section 4.1.1) and the corresponding test accuracies obtained with different layer rotation rate configurations. While each configuration achieves $\approx 100\%$ training accuracy (cfr. Section 4.2), we observe huge differences in generalization ability (differences of up to 30% test accuracy). These differences seem to be tightly connected to differences in layer rotations. In particular, we extract the following rule of thumb that is applicable across the five considered tasks: the larger the layer rotations, the better the generalization performance. The best performance is consistently obtained when nearly all layers reach a cosine distance of 1, which corresponds to final weights that are orthogonal to their initialization (cfr. fifth column of Figure 4.1). This observation would have limited value if many configurations (amongst which the best one) lead to cosine distances of 1. However, we notice that most configurations do not. In particular, rotating the layers weights very slightly is sufficient for the network to achieve 100% training accuracy (cfr. third column of Figure 4.1).

We also observe that layer rotation rates (rotation with respect to the previous iterate) translate remarkably well into layer rotations (rotation with respect to the initialization). For example, the $\alpha = 0$ setting used in the fifth column indeed leads all layers to rotate quasi synchronously. As discussed in Section 4.1.2, this is not self-evident. Understanding why this happens (and why the first and last layers seem to be less tameable) is an interesting direction of research resulting from our work.

4.3.3 Layer rotation’s relationship with training speed

While generalization is the main focus of our work, we observed through our experiments that layer rotation rates also influenced the training speed of our models in a remarkable way. Figure 4.2 depicts the loss curves obtained for different values of α and $\rho(0)$ on the first three tasks of Table 4.1. It appears that the larger or the more uniform the layer rotation rates are, the higher the plateaus in which loss curves get stuck into. The plateaus might be due to a form of interference between the different neurons’ training processes. The precision with which the height of plateaus can be controlled through the α and $\rho(0)$ parameters is striking and further supports the idea that layer rotation
CHAPTER 4. AN IMPLICIT CLUSTERING HYPERPARAMETER

Figure 4.1: Analysis of the layer rotation curves (cfr. Section 4.1.1) and test accuracies (η) induced by different layer rotation rate configurations (using Layca for training) on the five tasks of Table 4.1. The configurations are parametrized by α, that controls which layers have the highest rotation rates (first layers for $\alpha < 0$, last layers for $\alpha > 0$, or no prioritization for $\alpha = 0$), and $\rho(0)$, the initial global rotation rate value shared by all layers. $\Delta \eta$ is computed with respect to the best configuration (last column), which corresponds to $\alpha = 0$ and $\rho(0) = 3^{-3}$ for the five tasks. This visualization unveils large differences in generalization ability across configurations which seem to follow a simple yet consistent rule of thumb: the larger the layer rotation for each layer, the better the generalization performance. Training accuracies are provided in Section 4.2 ($\approx 100\%$ in all configurations).

controls a fundamental yet implicit mechanism in deep learning. Following our rule of thumb, this result also suggests that high plateaus are additional indicators of good generalization performance. This is consistent with the systematic occurrence of high plateaus in the loss curves of state of the art networks (e.g., He, Zhang, Ren et al. (2016); Zagoruyko and Komodakis (2016)).
Figure 4.2: Loss curves obtained for different α and $\rho(0)$ values on the first three tasks of Table 4.1, using Layca for training. The α and $\rho(0)$ configurations are specified for each column in the associated legend. The visualizations unveil a remarkable phenomenon: the more uniform or the larger the layer rotation rates, the higher the plateaus in which the loss gets stuck into. The sudden drops correspond to a reduction of the global learning rate as specified in 4.2.

4.4 A study of layer rotation in standard training settings

Section 4.3 uses Layca to study the relation between layer rotations and generalization or training speed in a controlled setting. This section investigates the layer rotation configurations that naturally emerge when using SGD, weight decay or adaptive gradient methods for training. First of all, these experiments will provide supplementary evidence for the rule of thumb proposed in Section 4.3. Second, we’ll see that studying training methods from the perspective of layer rotation can provide useful insights to explain their behaviour.

The experiments are performed on the five tasks of Table 4.1. The learning rate parameter is tuned independently for each training setting through grid search over 10 logarithmically spaced values ($3^{-7}, 3^{-6}, ..., 3^2$), except for C10-CNN2 and C100-WRN where learning rates are taken from their original implementations when using SGD + weight decay, and from Wilson, Roelofs, Stern et al. [2017] when using adaptive gradient methods for training. The test accuracies obtained in standard settings will often be compared to the best results obtained with Layca, which are provided in the 5th column of Figure 4.1.
4.4.1 Analysis of SGD’s learning rate

The influence of SGD’s learning rate on generalization has been highlighted by several works (Jastrzebski, Kenton, Arpit et al., 2017; Smith and Le, 2017; Smith and Topin, 2017; Hoffer, Hubara, and Soudry, 2017; Masters and Luschi, 2018). The learning rate parameter directly affects layer rotation rates, since it changes the size of the updates. In this section, we verify if the learning rate’s impact on generalization is coherent with our rules of thumb.

Figure 4.3 displays the layer rotation curves and test accuracies generated by different learning rate configurations during vanilla SGD training on the five tasks of table 4.1. We observe that test accuracy increases for larger layer rotations (consistent with our rule of thumb) until a tipping point where it starts to decrease (inconsistent with our rule of thumb). We show in Figure 4.4 that these problematic cases involve extremely abrupt layer rotations that do not translate in improvements of the training loss. These observations thus highlight an important condition for our rules of thumb to hold true: the monitored layer rotations should coincide with actual training (i.e. improvements on the loss function).

A second interesting observation is that the layer rotation curves obtained with vanilla SGD are far from the ideal scenario disclosed in Section 4.3, where the majority of the layers’ weights reached a cosine distance of 1 from their initialization. In accordance with our rules of thumb, SGD also reaches considerably lower test performances than Layca. A more extensive tuning of the learning rate (over 10 logarithmically spaced values) did not help SGD to solve its two systematic problems: 1) layer rotations are not uniform and 2) the layers’ weights stop rotating before reaching a cosine distance of 1.

4.4.2 Analysis of SGD and weight decay

Several papers have recently shown that, in batch normalized networks, the regularization effect of weight decay was caused by an increase of the effective learning rate (van Laarhoven, 2017; Hoffer, Banner, Golan et al., 2018; Zhang, Wang, Xu et al., 2019). More generally, reducing the norm of weights increases the amount of rotation induced by a given training step. It is thus interesting to see how weight decay affects layer rotations, and if its impact on generalization is coherent with our rule of thumb. Figure 4.5 displays, for the 5 tasks, the layer rotation curves generated by SGD when combined with weight decay (in this case, equivalent to L_2-regularization). We observe that weight decay solves SGD’s problems (cfr. Section 4.4.1): all layers’ weights reach a cosine distance of 1 from their initialization, and the resulting test performances are on par with the ones obtained with Layca.

This experiment not only provides important supplementary evidence for our rules of thumb, but also novel insights around weight decay’s regularization ability in deep nets: weight decay seems to be key for enabling large layer
4.4. A STUDY OF LAYER ROTATION IN STANDARD TRAINING SETTINGS

Figure 4.3: Layer rotation curves and the corresponding test accuracies generated by vanilla SGD with different learning rates. Colour code, axes and $\Delta \eta$ computation are the same as in Figure 4.1. The influence of the learning rate parameter on generalization is consistent with our rule of thumb (larger layer rotations \rightarrow better generalization), except for cases with abrupt layer rotations. We further show in Figure 4.4 that these abrupt layer rotations do not translate in improvements of the loss. Moreover, despite extensive learning rate tuning, SGD induces test performances that are significantly below Layca’s optimal configuration (cfr. 5th column of Figure 4.1). This is also in accordance with our rules of thumb, since SGD does not seem to be able to generate layer rotations that reach a cosine distance of 1.

Rotations (weights reaching a cosine distance of 1 from their initialization) during SGD training. Since the same behaviour can be achieved with tools that control layer rotation rates (cfr. Layca), without an extra parameter to tune, our results could potentially lead weight decay to disappear from the standard deep learning toolkit.
CHAPTER 4. AN IMPLICIT CLUSTERING HYPERPARAMETER

Figure 4.4: Layer rotation and training curves during the first epoch of SGD training with high learning rates (cfr. Figure 4.3). The visualization reveals large layer rotations that are sometimes performed in a single iteration. Importantly, these iterations do not induce improvements in training accuracy, which probably explains why these configurations escape the scope of our rule of thumb.

Figure 4.5: Layer rotation curves and the corresponding test accuracies generated by SGD with weight decay. Colour code, axes and $\Delta\eta$ computation are the same as in Figure 4.1. The application of weight decay during SGD training enables layer rotations that reach a cosine distance of 1 and leads to test performances comparable to Layca’s optimal configuration (cfr. 5th column of Figure 4.1). These results thus provide supplementary evidence for our rule of thumb and a new perspective on weight decay regularization.

4.4.3 Analysis of learning rate warmups

We’ve seen in Section 4.4.1 that during SGD training, high learning rates could generate abrupt layer rotations at the very beginning of training that do not improve the training loss. In this section, we investigate if these unstable layer rotations could be the reason why learning rate warmups are sometimes necessary when using high learning rates [He, Zhang, Ren et al. (2016); Goyal, Dollar, Girshick et al. (2018)]. For this experiment, we use a deeper network that noto-
4.4. A STUDY OF LAYER ROTATION IN STANDARD TRAINING SETTINGS

Previously requires warmups for training: ResNet-110 \cite{HeZhangRen2016}. The network is trained on the CIFAR-10 dataset with standard data augmentation techniques. We use a warmup strategy that starts at a 10 times smaller learning rate and linearly increases to reach the final learning rate in a specified number of epochs.

Figure 4.6 displays the layer rotation and training curves when training with a high learning rate (3^{-1}) and different warmup durations (0, 5, 10 or 15 epochs of warmup). We observe that without warmup, SGD generates unstable layer rotations and training accuracy doesn’t improve before the 25th epoch. Using warmups brings significant improvements: a 75% training accuracy is reached after 25 epochs, with only some instabilities in the training curves - that again are synchronized with abrupt layer rotations. Finally, we also use Layca for training (with a 3^{-3} learning rate). We observe that it doesn’t suffer from SGD’s instabilities in terms of layer rotation. Hence, Layca achieves large layer rotations and good generalization performance without the need for warmups.

Figure 4.6: Layer rotation and training curves obtained when using different warmup durations (0, 5, 10 or 15 epochs) during the training of ResNet-110 on CIFAR-10 with high learning rates (3^{-1}). The curves are shown for the 25 first epochs only - out of 200. η is the final test accuracy. We observe that SGD generates unstable layer rotations that translate into a stagnation or a decrease of the training accuracy. Using warmups drastically reduces these instabilities. Layca doesn’t generate instabilities and reaches high generalization performance (and large layer rotations) without the need for warmups.

4.4.4 Analysis of adaptive gradient methods

The recent years have seen the rise of adaptive gradient methods in the context of machine learning (e.g. RMSProp \cite{RMSprop}, Adagrad
CHAPTER 4. AN IMPLICIT CLUSTERING HYPERPARAMETER

The key element distinguishing adaptive gradient methods from their non-adaptative equivalents is a parameter-level tuning of the learning rate based on the statistics of each parameter’s partial derivative. Initially introduced for improving training speed, ([Wilson, Roelofs, Stern et al. 2017]) observed that these methods also had a considerable impact on generalization. Since these methods affect the rate at which individual parameters change, they might also influence the rate at which layers change (and thus layer rotations).

We first observe to what extent the parameter-level learning rates of Adam vary across layers. We monitor Adam’s estimate of the second raw moment, which is used for determining the parameter-level learning rates, when training on the C10-CNN1 task. The estimate is computed by:

\[v_t = \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \]

where \(g_t \) and \(v_t \) are vectors containing respectively the gradient and the estimates of the second raw moment at training step \(t \), and \(\beta_2 \) is a parameter specifying the decay rate of the moment estimate. While our experiment focuses on Adam, the other adaptive methods (RMSprop, Adagrad) also use statistics of the squared gradients to compute parameter-level learning rates. Figure 4.7 displays the 10\(^{th}\), 50\(^{th}\) and 90\(^{th}\) percentiles of the moment estimations, for each layer separately, as measured at the end of epochs 1, 10 and 50. The conclusion is clear: the estimates vary much more across layers than inside layers. This suggests that adaptive gradient methods might have a drastic impact on layer rotations.

Figure 4.7: Adam’s parameter-wise estimates of the second raw moment (uncentered variance) of the gradient during training on C10-CNN1, represented for each layer separately through their 10\(^{th}\), 50\(^{th}\) and 90\(^{th}\) percentiles. The results provide evidence that the parameter-level statistics used by adaptive gradient methods vary mostly between layers and negligibly inside layers.

Adaptive gradient methods can reach SGD’s generalization ability with Layca

Since adaptive gradient methods probably affect layer rotations, we will verify if their influence on generalization is coherent with our rule of thumb. Figure...
4.4. A STUDY OF LAYER ROTATION IN STANDARD TRAINING SETTINGS

Section 4.4 provides the layer rotation curves and test accuracies obtained when using adaptive gradient methods to train the 5 tasks described in Table 4.1. We observe an overall worse generalization ability compared to Layca’s optimal configuration and small and/or non-uniform layer rotations. We also observe that the layer rotations of adaptive gradient methods are considerably different from the ones induced by SGD (cfr. Figure 4.3). For example, adaptive gradient methods seem to induce larger rotations of the last layers’ weights, while SGD usually favors rotation of the first layers’ weights. Could these differences explain the impact of parameter-level adaptivity on generalization? In Figure 4.8 (2nd line), we show that when Layca is used on top of adaptive methods (to control layer rotation), adaptive methods can reach test accuracies on par with SGD + weight decay. Our observations thus suggest that adaptive gradient methods’ poor generalization properties are due to their impact on layer rotations. Moreover, the results again provide supplementary evidence for our rule of thumb.

Figure 4.8: Layer rotation curves and the corresponding test accuracies generated by adaptive gradient methods (RMSProp, Adam, Adagrad, RMSProp+L_2 and Adam+L_2 respectively for each task/column) without (1st line) and with (2nd line) control of layer rotation with Layca. Colour code, axes and $\Delta \eta$ computation are the same as in Figure 4.1. In the first line, we observe an overall worse generalization ability compared to Layca’s optimal configuration (cfr. 5th column of Figure 4.1) - despite extensive learning rate tuning, together with small and/or non-uniform layer rotations (in accordance with our rule of thumb). When Layca is used on top of adaptive methods to control layer rotation (second line), adaptive methods can reach test accuracies on par with SGD + weight decay.
CHAPTER 4. AN IMPLICIT CLUSTERING HYPERPARAMETER

SGD can achieve adaptive gradient methods’ training speed with Layca

We’ve seen that the negative impact of adaptive gradient methods on generalization was largely due to their influence on layer rotations. Could layer rotations also explain their positive impact on training speed? To test this hypothesis, we recorded the layer rotation rates emerging from training with adaptive gradient methods, and reproduced them during SGD training with the help of Layca. We then observe if this SGD-Layca optimization procedure (that doesn’t perform parameter-level adaptivity) could achieve the improved training speed of adaptive gradient methods. Figure 4.9 shows the training curves during training of the 5 tasks of Table 4.1 with adaptive gradient methods, SGD+weight decay and SGD-Layca-AdaptCopy (which copies the layer rotation rates of adaptive gradient methods). While adaptive gradient methods train significantly faster than SGD+weight decay, we observe that their training curves are nearly indistinguishable from SGD-Layca-AdaptCopy. Our study thus suggests that adaptive gradient methods impact on both generalization and training speed is due to their influence on layer rotations.

Figure 4.9: Training curves for the 5 tasks of Table 4.1 with adaptive gradient methods (RMSProp, Adam, Adagrad, RMSProp+L^2 and Adam+L^2 respectively for each task/column), SGD+weight decay and SGD-Layca-AdaptCopy. During training with SGD-Layca-AdaptCopy, Layca is used to reproduce the layer rotations generated by an adaptive gradient method on the same task.3 We observe that this training procedure (which doesn’t perform parameter-level adaptivity) achieves the same improvements in training speed as adaptive gradient methods.

4.5 Related work

The idea that neurons from different layers potentially train at different rates was motivated by the works on vanishing and exploding gradients (Bengio,4When copying the layer rotations of Adam with SGD-Layca-AdaptCopy we also integrate Adam’s momentum scheme.)
4.6 On the interpretation of layer rotations

The previous sections of this chapter demonstrate the remarkable consistency and explanatory power of layer rotation’s relationship with generalization. This suggests that layer rotation controls fundamental aspects of deep neural network training. Whether these aspects relate to the clustering abilities and mechanisms studied in Chapters 2 and 3 relies on the hypothesis that layer rotation captures the extent by which hidden neurons have been able to “train” during the network’s training process. In this section, we provide an additional experiment to support the link between all these concepts.

We use a toy experiment to visualize how layer rotation affects the features learned by hidden neurons. We train a single hidden layer MLP (with 784 hidden neurons) on a reduced MNIST dataset (1000 samples per class, to increase overparameterization). This toy network has the advantage of having intermediate features that are easily visualized: the weights associated to hidden neurons live in the same space as the input images. Starting from an identical initialization, we train the network with four different learning rates using Layca, leading to four different layer rotation configurations that all reach 100% training accuracy but different generalization abilities (in accordance with our rule of thumb).

Figure 4.10 displays the features obtained by the different layer rotation configurations (for 5 randomly selected hidden neurons). This visualization unveils an important phenomenon: layer rotation does not seem to affect which features are learned, but rather to what extent they are learned during the training process. The larger the layer rotation, the more prominent the features -and the less retrievable the initialization. Ultimately, for a layer rotation close to 1, the final weights of the network got rid of all remnants of the initialization. This experiment thus supports our initial hypothesis: fully accom-
plishing emergent neuron-level training processes is not necessary for reaching 100% training accuracy, but doing so anyway leads to better clustering and generalization abilities.

Figure 4.10: A single hidden layer MLP is trained on a reduced MNIST dataset (1000 examples per class). Starting from an identical initialization, the network is trained with four different learning rates using Layca, leading to four different layer rotation configurations that all reach 100% training accuracy but different generalization abilities (in accordance with our rule of thumb). The learned intermediate features (associated to 5 randomly selected neurons) are visualized for the different layer rotation configurations. The results suggest that layer rotation does not affect which features are learned, but rather to what extent they are learned during the training process.
Chapter 5

Discussion and perspectives

Our work argues that the natural clustering prior plays a key role in deep learning and generalization. Empirical evidence supporting this hypothesis has been presented in Chapters 2, 3, and 4. This chapter takes a step back and attempts to see the bigger picture behind our work. More precisely, we (i) discuss to what extent this work effectively validates our hypothesis (Section 5.1), (ii) predict a rebirth of clustering algorithms for training deep neural networks (Section 5.2) and (iii) discuss the societal impact of deep learning research (Section 5.3).

5.1 Towards validating our hypothesis

In order to validate our hypothesis, this work provides a collection of intuitions and experiments. In this section, we detail how future work could improve the generality of our experiments, provide complementary empirical evidence for our hypothesis and incorporate mathematical formalisms.

Generalizing our experiments

We ask machine learning models to be able to generalize to a large variety of contexts. So should the empirical claims that support a theory. The experiments presented in this work involve a restricted set of deep learning setups. Using other datasets, architectures, training algorithms and hyperparameters could lead to different or contradicting conclusions. This limitation is particularly strong in Chapter 3, which studies implicit clustering mechanisms in a setup involving synthetic data and simple neural network architectures. Additionally, the study of large-scale datasets (e.g. ImageNet [Deng, Dong, Socher et al., 2009]) and different modalities (natural language and sounds) would also greatly improve our work.
CHAPTER 5. DISCUSSION AND PERSPECTIVES

Providing complementary empirical evidence

Identifying and studying implicit phenomena is a difficult endeavour. Conducting many complementary experimental studies are key to (i) offer different perspectives that will help better characterize the phenomenon and (ii) mitigate the risk of misinterpretation due to unrelated confounding factors.

In order to complement our work, a first path worth investigating is the study of densely annotated datasets such as Broden introduced by [Bau, Zhou, Khosla et al. (2017)]. Our work makes already use of datasets with two levels of class labels for studying implicit clustering. We interpret the subclasses of such datasets as single clusters, but these could in fact be composed of multiple clusters themselves. Moreover, class labels are attributed to the whole image, while the associated objects/concepts are relevant to only a part of it. Datasets like Broden mitigate these two drawbacks by providing many levels of class labels as well as pixel-wise annotations. This holds the potential for improved measures of clustering abilities and more precise studies of clustering mechanisms in natural image datasets.

Another path of investigation consists in further evaluating the explanatory power of our hypothesis. How well does it explain a variety of phenomena? Our work demonstrates the potential of implicit clustering to explain the benefits of pre-training, the coherent gradients hypothesis, neuron interpretability, the benefits of large learning rates, weight decay and others. However, all these explanations remain partial, and many other phenomena are not addressed (e.g. “double descent” curves [Belkin, Hsu, Ma et al. (2019)], the lottery ticket hypothesis [Frankle and Carbin (2018)] or the benefits of skip connections [Balduzzi, Frean, Leary et al. (2017)]). Conducting in depth studies of all these phenomena under the light of implicit clustering could further evaluate our hypothesis.

Formalizing intuitions

The amount of equations and mathematical symbols is remarkably low in this thesis. Our work is indeed mainly composed of informal arguments and intuitions. Being able to translate our claims into mathematical language would help increase their precision and falsifiability. Moreover, mathematics greatly facilitate the exploration of ideas through deductive reasoning ([Wigner 1960]). Formalizing the intuitions and results presented in Chapter 3 might be a good place to start, given the simplicity of the associated experimental setup. Additionally, [Berner, Grohs, Kutyniok et al. (2021)] provides a nice overview of several mathematical studies of deep learning, which could provide inspiration for this difficult endeavour.
5.2 A rebirth of clustering algorithms

Backpropagation, the algorithm behind SGD, has been the most popular algorithm for training deep neural networks for at least two decades. And for a good reason: it outperforms all other alternatives by a large margin on standard datasets. And yet, there is still a long way to go to reach human-level generalization abilities (cfr. Section 1.2.2). This begs the question: should we continue building on backpropagation and SGD, or explore novel algorithms? If natural data exhibit a clustered structure, as the natural clustering prior states, aren't clustering algorithms a more natural choice for training deep neural networks? Coates and Ng (2012) trains deep neural networks with K-means clustering, but their method did not match SGD’s performance. Isn’t this contradictory with our hypothesis?

While they clearly lack SGD’s capabilities on standard classification datasets, clustering algorithms have achieved some successes on natural image-related tasks in the past (Zoran and Weiss 2011; Coates, Ng, and Lee 2011). Moreover, identifying the right priors appears to be especially crucial for clustering algorithms (Estivill-Castro 2002). We believe that a better characterization of the natural clustering prior in terms of the shape of clusters, their relative density, the distance between them or their relationship with class labels could lead to improved clustering algorithms. For example, many clustering algorithms assume that all clusters contain approximately the same amount of training examples. However, recent works suggest that the ability of deep neural networks to “memorize” atypical and poorly represented sub-populations is key for their performance on natural image classification tasks (Feldman 2020; Jiang, Zhang, Talwar et al. 2021b). Additionally, many clustering algorithms assume spherical cluster shapes while many aspects of natural images vary in specific, anisotropic ways (e.g. scaling, rotation, translation of objects and object parts).

Hence, the current supremacy of SGD over clustering algorithms might not be the final picture. Because natural clustering-related priors would be more easily integrated into their design, our work predicts a rebirth of clustering algorithms in the coming years, bringing us one step closer to human-level generalization abilities.

5.3 The societal impact of deep learning research

Human societies are complex systems. Understanding how they will react to new technologies is a daunting task. Yet, the well-being of billions of individuals can be at stake. The growing integration of deep learning technologies in the industry raises these difficult questions. Because these were an integral part of my own research experience, and encouraged by the NeurIPS conference’s
call for a “Broader impact” section. I shortly discuss my personal take on the societal impact of deep learning research.

The ethical concerns around deep learning are numerous. Deep learning technology can be used for autonomous military drones (Shane, Metz, and Wakabayashi, 2018), generating misinformation automatically (Radford, Wu, Amodei et al., 2019), racial discrimination (Kickchiyo, 2019), mass manipulation on social networks (Coombe, Curtis, and Orlowski, 2020) and many others. Moreover, deep learning confers power to the data owners. The centralization of data in big tech companies leads to rising social, economic and political inequalities (Harari, 2018). Of course, many positive opportunities also emerge from deep learning such as healthcare applications (Panesar, 2019), scientific progress (Jumper, Evans, Pritzel et al., 2021b) and tackling climate change (Rolnick, Doni, Kaack et al., 2019)). But from my very limited perspective, I feel that the negative outcomes largely outnumber the positive ones in terms of practical impact.

As researchers and engineers, it might be appealing to leave these ethical considerations to political institutions. They possess the power to regulate technologies, and are expected to preserve common good. But reality doesn’t necessarily match expectations. The technological progress could be too fast for ankylosed political systems. Big tech companies could heavily limit a government’s room for manoeuvre when profit is at stake. As Professor Harari claims, many political decisions could in fact be in the hands of the scientists and engineers that develop today’s technologies (Harari, 2016).

What are scientists and engineers expected to do then? This remains an open question. Several brave individuals decide to quit the field entirely (e.g., Amadeo (2018); Yuan (2020)). Conferences decide to educate workshops around the topic (e.g., Chowdhury (2021); Li, Isupova, Haghtalab et al. (2021)). Partnerships with civil society and media organizations are built (e.g. Partnership On AI). In my humble opinion, throwing deep learning technology into a competitive ecosystem is bound to raise inequalities and harm common good. Hence, I believe that designing tools to facilitate cooperation of citizens around shared goals, at small and large scale, has a big potential for positive change. These tools could for example take the form of web applications that facilitate knowledge sharing and collective decision making or that connect people with similar goals. I believe there is a lot of room for improvement around collaborative software design, and that this endeavour constitutes a promising path towards a society where deep learning researchers can pursue their quest with a peace of mind.

1 NeurIPS’ call for a “Broader impact” section: In order to provide a balanced perspective, authors are required to include a statement of the potential broader impact of their work, including its ethical aspects and future societal consequences. Authors should take care to discuss both positive and negative outcomes.

2 https://partnershiponai.org/
Conclusion

Deep learning gained a lot of popularity for the plethora of applications it enables. But the open questions and mysteries behind these successes are at least as fascinating. They challenge our understanding of generalization, which constitutes the most fundamental aspect of machine learning. Moreover, they exhibit connections with the human brain, one of the universe’s greatest mysteries. In this thesis, we propose a novel path towards a better understanding of deep learning.

Our work builds on the idea that generalization is strongly influenced by the priors integrated into a learning system’s design. We propose a natural clustering prior for supervised image classification problems, and study (i) to what extent this prior is integrated into deep learning systems and (ii) if its integration influences generalization.

We provide a collection of experiments supporting the occurrence of an implicit clustering ability, mechanism and hyperparameter in deep learning. Moreover, we demonstrate empirically that these components consistently influence the generalization abilities of deep neural networks. We further highlight many connections between our observations and previous work on neuron interpretability, the early phase of training, pre-training, the coherent gradients hypothesis and others.

Overall, our work reveals that the natural clustering prior offers a promising path towards understanding the generalization abilities of deep learning systems. Additionally, it unveils a path towards new clustering-based training algorithms that could push the generalization abilities of such learning systems even further. With these exciting perspectives in mind, we look forward to the future developments of the fascinating field of deep learning.
Absil, PA, Mahony, R, and Sepulchre, R (2010). Optimization On Manifolds: Methods And Applications. In Recent Advances in Optimization and its Applications in Engineering, pages 125—-144. Springer. ISBN 9783642125973.

Achille, A, Rovere, M, and Soatto, S (2019). Critical Learning Periods in Deep Neural Networks. In ICLR, pages 1–14. arXiv:arXiv:1711.08856v3.

Agarwal, A, Barham, P, Brevdo, E, Chen, Z, Citro, C, et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv preprint arXiv:1603.04467.

Chollet et al., F (2015). Keras.

Alcorn, MA, Li, Q, Gong, Z, Wang, C, Mai, L, et al. (2019). Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects. In CVPR, pages 4845–4854.

Amadeo, R (2018). A dozen Google employees quit over military drone project. Ars Technica.

Arjovsky, M (2021). Out of Distribution Generalization in Machine Learning. Ph.D. thesis. arXiv:2103.02667.

Arora, S (2018). Toward theoretical understanding of deep learning. In ICML tutorial.

Arpit, D, Jastrzebski, S, Ballas, N, Krueger, D, Bengio, E, et al. (2017). A Closer Look at Memorization in Deep Networks. In ICML. arXiv:arXiv:1706.05394v1.

Balduzzi, D, Frean, M, Leary, L, Lewis, J, and Ma, Kurt Wan-Duo McWilliams, B (2017). The Shattered Gradients Problem: If resnets are the answer, then what is the question? In ICML. arXiv:arXiv:1702.08591v1.

Barrett, D and Dherin, B (2021). Implicit Gradient Regularization. In ICLR.

Bau, D, Zhou, B, Khosla, A, Oliva, A, and Torralba, A (2017). Network Dissection: Quantifying Interpretability of Deep Visual Representations. In CVPR.
Beery, S, van Horn, G, and Perona, P (2018). Recognition in Terra Incognita. In *ECCV*. Springer Verlag. [arXiv:1807.04975](https://arxiv.org/abs/1807.04975)

Belkin, M, Hsu, D, Ma, S, and Mandal, S (2019). Reconciling modern machine-learning practice and the classical bias-variance trade-off. In *Proceedings of the National Academy of Sciences*. doi: [10.1073/pnas.1903070116](https://doi.org/10.1073/pnas.1903070116)

Bengio, Y (2009). Learning Deep Architectures for AI. *Foundations and trends in Machine Learning*, 2(1):1–127.

Bengio, Y, Courville, A, and Vincent, P (2012). Representation Learning: A Review and New Perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):1798–1828. doi: [10.1109/TPAMI.2013.50](https://doi.org/10.1109/TPAMI.2013.50). [arXiv:1206.5538](https://arxiv.org/abs/1206.5538)

Bengio, Y, Lee, DH, Bornschein, J, Mesnard, T, and Lin, Z (2015). Towards Biologically Plausible Deep Learning. *arXiv:1502.04156*. [arXiv:1502.04156](https://arxiv.org/abs/1502.04156)

Bengio, Y, Simard, P, and Frasconi, P (1994). Learning long-term dependencies with gradient descent is difficult. *IEEE transactions on neural networks*, 5(2):157–166.

Berner, J, Grohs, P, Kutyniok, G, and Petersen, P (2021). The Modern Mathematics of Deep Learning. *arXiv:2105.04026*. [arXiv:2105.04026v1](https://arxiv.org/abs/2105.04026v1)

Bernstein, J, Vahdat, A, Yue, Y, and Liu, MY (2020). On the distance between two neural networks and the stability of learning. In *NeurIPS*, volume 2020-Decem. Neural information processing systems foundation. [arXiv:2002.03432](https://arxiv.org/abs/2002.03432v1)

Bishop, CM (2006). *Pattern recognition and machine learning*. Springer.

Cammarata, N, Carter, S, Goh, G, Olah, C, Petrov, M, et al. (2020). Thread: Circuits. *Distill*.

Chapelle, O and Zien, A (2005). Semi-supervised classification by low density separation. In *International workshop on artificial intelligence and statistics*, pages 57–64.

Chatterjee, S (2020). Coherent gradients: an approach to understanding generalization in gradient-based optimization. In *ICLR*. [arXiv:arXiv:2002.10657v1](https://arxiv.org/abs/2002.10657v1)

Chatterjee, S and Zielinski, P (2020). Making coherence out of nothing at all: measuring the evolution of gradient alignment. *arXiv:2008.01217*. [arXiv:arXiv:2008.01217v1](https://arxiv.org/abs/2008.01217v1)

Chowdhury, T (2021). The moral (and morale) compass: A search for meaning in AI research.
Coates, A, Ng, A, and Lee, H (2011). An Analysis of Single-Layer Networks in Unsupervised Feature Learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15, pages 215–223.

Coates, A and Ng, AY (2012). Learning Feature Representations with K-means. In Neural Networks: Tricks of the Trade, 2nd edn. Springer.

Coombe, D, Curtis, V, and Orlowski, J (2020). The Social Dilemma.

CS231N, S (2016). Tiny ImageNet Visual Recognition Challenge. https://tiny-imagenet.herokuapp.com/.

Cubuk, ED, Zoph, B, Mane, D, Vasudevan, V, and Le, QV (2019). AutoAugment: Learning Augmentation Policies from Data. In CVPR, Section 3, pages 113–123. arXiv:1805.09501

Dalal, N and Triggs, B (2005). Histograms of oriented gradients for human detection. In CVPR, pages 886–893. doi: 10.1109/CVPR.2005.1771

Dauber, A, Feder, M, Koren, T, and Livni, R (2020). Can implicit bias explain generalization? Stochastic convex optimization as a case study. In NeurIPS. Neural information processing systems foundation. arXiv:2003.06152

Deng, J, Dong, W, Socher, R, Li, LJ, Li, K, et al. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, pages 248–255.

DeVries, T and Taylor, GW (2017). Improved Regularization of Convolutional Neural Networks with Cutout. arXiv:1708.04552 arXiv:1708.04552

Dodge, S and Karam, L (2017). A Study and Comparison of Human and Deep Learning Recognition Performance Under Visual Distortions. 2017 26th International Conference on Computer Communications and Networks, ICCCN 2017. arXiv:1705.02498

Donahue, J, Jia, Y, Vinyals, O, Hoffman, J, Zhang, N, et al. (2014). DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. In ICML, pages 647–655.

Du, S, Lee, J, Li, H, Wang, L, and Zhai, X (2019). Gradient Descent Finds Global Minima of Deep Neural Networks. In ICML, pages 1675–1685. PMLR.

Duchi, J, Hazan, E, and Singer, Y (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12(Jul):2121–2159.

Eldan, R and Shamir, O (2016). The Power of Depth for Feedforward Neural Networks. In Annual Conference on Learning Theory, volume 49, pages 907–940. PMLR.
Engstrom, L, Tran, B, Tsipras, D, Schmidt, L, and Madry, A (2019). Exploring the Landscape of Spatial Robustness. *ICML*. arXiv:1712.02779

Estivill-Castro, V (2002). Why so many clustering algorithms: a position paper. *ACM SIGKDD Explorations Newsletter*, 4(1):65–75. doi: 10.1145/568574.568575

Feldman, V (2020). Does Learning Require Memorization? A Short Tale about a Long Tail. In *Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing*. ACM, New York, NY, USA. doi: 10.1145/3357713

Fort, S, Dziugaite, GK, Paul, M, Kharaghani, S, Roy, DM, et al. (2020). Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time evolution of the Neural Tangent Kernel. In *NeurIPS*.

Frankle, J and Carbin, M (2018). The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In *ICLR*. International Conference on Learning Representations, ICLR. arXiv:1803.03635

Frankle, J, Dziugaite, GK, Roy, DM, and Carbin, M (2020). Linear Mode Connectivity and the Lottery Ticket Hypothesis. In *ICML*. arXiv:arXiv:1912.05571v4

Frankle, J, Schwab, DJ, and Morcos, AS (2020). The Early Phase of Neural Network Training. In *ICLR*. arXiv:arXiv:2002.10365v1

Fritzke, B (1997). Some competitive learning methods.

Fukushima, K (1980). Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. *Biological cybernetics*, 202(36):193–202.

Geiping, J, Goldblum, M, Pope, PE, Moeller, M, and Goldstein, T (2021). Stochastic Training is Not Necessary for Generalization. *arXiv:2109.14119*. arXiv:2109.14119

Geirhos, R, Medina Temme, CR, Rauber, J, Schütt, HH, Bethge, M, et al. (2018). Generalisation in humans and deep neural networks. In *NeurIPS*. arXiv:1808.08750v3

Geirhos, R, Rubisch, P, Michaelis, C, Bethge, M, Wichmann, FA, et al. (2018). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In *ICLR 2019*. International Conference on Learning Representations, ICLR. arXiv:1811.12231

Geman, S, Bienenstock, E, and Doursat, R (1992). Neural networks and the bias/variance dilemma. *Neural computation*, 4(1):1–58.

Ginsburg, B, Gitman, I, and You, Y (2018). Large Batch Training of Convolutional Networks with Layer-wise Adaptive Rate Scaling.
Glorot, X and Bengio, Y (2010). Understanding the difficulty of training deep feedforward neural networks. In *AISTATS*, pages 249–256.

Golatkar, A, Achille, A, and Soatto, S (2019). Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning. In *NeurIPS*.

Goodfellow, I, Bengio, Y, and Courville, A (2016). *Deep Learning*. Book in preparation for MIT Press.

Goodfellow, IJ, Shlens, J, and Szegedy, C (2015). Explaining and Harnessing Adversarial Examples. In *ICLR*. [arXiv:arXiv:1412.6572v3]

Goyal, P, Dollar, P, Girshick, R, Noordhuis, P, Wesolowski, L, et al. (2017). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. [arXiv:1706.02677]

Goyal, P, Dollar, P, Girshick, R, Noordhuis, P, Wesolowski, L, et al. (2018). Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. [arXiv:1706.02677v2]

Graves, A, Mohamed, Ar, and Hinton, G (2013). Speech recognition with deep recurrent neural networks. *IEEE international conference on acoustics, speech and signal processing*, pages 6645–6649. [arXiv:1303.5778v1]

Gulrajani, I and Lopez-Paz, D (2021). In search of lost domain generalization. In *ICLR*.

Gur-Ari, G, Roberts, DA, and Dyer, E (2018). Gradient Descent Happens in a Tiny Subspace. [arXiv:1812.04754v1]

Harari, YN (2016). *Homo Deus: A brief history of tomorrow*. Harvill Secker. ISBN 978-5-906837-92-9

Harari, YN (2018). Why Technology Favors Tyranny.

Hassabis, D, Kumaran, D, and Summerfield, Christopher Botvinick, M (2017). Neuroscience-inspired artificial intelligence. *Neuron*, 95(2):245–258.

He, K, Fan, H, Wu, Y, Xie, S, and Girshick, R (2020). Momentum Contrast for Unsupervised Visual Representation Learning. In *CVPR*, pages 9729–9738.

He, K, Zhang, X, Ren, S, and Sun, J (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In *ICCV*. [arXiv:1502.01852v1]

He, K, Zhang, X, Ren, S, and Sun, J (2016). Deep Residual Learning for Image Recognition. In *CVPR*, pages 770–778. [arXiv:1512.03385v1]

Hebb, DO (1949). *The organization of behavior*.
Hendrycks, D and Dietterich, T (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. In ICLR. International Conference on Learning Representations, ICLR. arXiv:1903.12261

Hinton, GE, McClelland, JL, and Rumelhart, DE (1987). Distributed Representations. In Parallel Distributed Processing: Explorations in the microstructure of cognition.

Hinton, GE, Osindero, S, and Teh, YW (2006). A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527–1554. doi: 10.1162/NECO.2006.18.7.1527

Hoai, M and Zisserman, A (2013). Discriminative sub-categorization. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1666–1673. doi: 10.1109/CVPR.2013.218

Hochreiter, S (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. IJUFKS, 6(2):1–10.

Hoffer, E, Banner, R, Golan, I, and Soudry, D (2018). Norm matters: efficient and accurate normalization schemes in deep networks. arXiv:1803.01814.

Hoffer, E, Hubara, I, and Soudry, D (2017). Train longer, generalize better: closing the generalization gap in large batch training of neural networks. In NIPS, pages 1729—-1739. arXiv:arXiv:1705.08741v1

Hubel, DH and Wiesel, TN (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106–154. doi: 10.1113/JPHYSIOL.1962.SP006837

Huh, M, Agrawal, P, and Efros, AA (2016). What makes ImageNet good for transfer learning? arXiv:1608.08614. arXiv:arXiv:1608.08614v2

Ioffe, S and Szegedy, C (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML, pages 448–456. doi: 10.1007/s13398-014-0173-7 arXiv:arXiv:1502.03167

Jastrzebski, S, Kenton, Z, Arpit, D, Ballas, N, Fischer, A, et al. (2017). Three Factors Influencing Minima in SGD. arXiv:1711.04623. arXiv:arXiv:1711.04623v1

Jastrzebski, S, Szymczak, M, Fort, S, Arpit, D, Tabor, J, et al. (2020). The Break-Even Point on Optimization Trajectories of Deep Neural Networks. In ICLR.

Jiang, Y, Neyshabur, B, Mobahi, H, Krishnan, D, and Bengio, S (2020). Fantastic Generalization Measures and Where to Find Them. In ICLR. arXiv:arXiv:1912.02178v1
Jiang, Z, Zhang, C, Talwar, K, and Mozer, MC (2021a). Characterizing Structural Regularities of Labeled Data in Overparameterized Models. In *ICML*, pages 5034–5044. PMLR.

Jiang, Z, Zhang, C, Talwar, K, and Mozer, MC (2021b). Characterizing Structural Regularities of Labeled Data in Overparameterized Models. In *ICML*, pages 5034–5044. PMLR.

Jumper, J, Evans, R, Pritzel, A, Green, T, Figurnov, M, et al. (2021a). Highly accurate protein structure prediction with AlphaFold. *Nature*.

Jumper, J, Evans, R, Pritzel, A, Green, T, Figurnov, M, et al. (2021b). Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873):583–589. doi: [10.1038/s41586-021-03819-2](https://doi.org/10.1038/s41586-021-03819-2).

Kamnitsas, K, Castro, DC, Le Folgoc, L, Ian, W, Ryutaro, T, et al. (2018). Semi-Supervised Learning via Compact Latent Space Clustering. In *ICML*. arXiv:arXiv:1806.02679v2.

Kaufman, L and Rousseeuw, PJ (2009). *Finding groups in data: an introduction to cluster analysis*. John Wiley & Sons.

Kawaguchi, K, Kaelbling, LP, and Bengio, Y (2017). Generalization in Deep Learning. *arXiv:1710.05468*, arXiv:arXiv:1710.05468v6.

Keskar, NS, Mudigere, D, Nocedal, J, Smelyanskiy, M, and Tang, PTP (2017). On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In *ICLR*.

Kickuchiyo (2019). [D] Has anyone noticed a lot of ML research into facial recognition of Uyghur people lately?

Kingma, DP and Ba, JL (2015). Adam: A method for stochastic optimization. In *ICLR*. arXiv:arXiv:1412.6980v9.

Krizhevsky, A and Hinton, G (2009). Learning Multiple Layers of Features from Tiny Images. Technical report, University of Toronto.

Krizhevsky, A, Sutskever, I, and Hinton, GE (2012). ImageNet Classification with Deep Convolutional Neural Networks. In *NIPS*.

Krueger, D, Caballero, E, Jacobsen, JH, Zhang, A, Binas, J, et al. (2021). Out-of-Distribution Generalization via Risk Extrapolation. In *ICML*.

van Laarhoven, T (2017). L2 Regularization versus Batch and Weight Normalization. *arXiv:1706.05350*, arXiv:1706.05350.

Leavitt, ML and Morcos, A (2020). Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNs. *arXiv:2003.01262*, arXiv:arXiv:2003.01262v3.
Lecun, Y (2019). The Epistemology of Deep Learning. In Talk at the Institute for Advanced Study.

LeCun, Y, Bengio, Y, and Hinton, G (2015). Deep learning. Nature, 521(7553):436–444. doi:10.1038/nature14539 [arXiv:arXiv:1312.6184v5].

LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2323. doi:10.1109/5.726791 [arXiv:1102.0183].

Li, Y, Isupova, O, Haghtalab, N, White, A, and Granziol, D (2021). The ICML Debate: Should AI Research and Development Be Controlled by a Regulatory Body or Government Oversight?

Liang, S and Srikant, R (2017). Why Deep Neural Networks for Function Approximation? In ICLR. [arXiv:1610.04161]

Lillicrap, TP, Santoro, A, Marris, L, Akerman, CJ, and Hinton, G (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346. doi:10.1038/S41583-020-0277-3.

Lin, HW, Tegmark, M, and Rolnick, D (2017). Why does deep and cheap learning work so well? Journal of Statistical Physics, 168:1223–1247. [arXiv:arXiv:1608.08225v2].

Linnainmaa, S (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Ph.D. thesis, Univ. Helsinki.

Liu, Y, Bernstein, J, Meister, M, and Yue, Y (2021). Learning by Turning: Neural Architecture Aware Optimisation. In ICML, pages 6748–6758. PMLR.

Lowe, DG (1999). Object recognition from local scale-invariant features. In ICCV, pages 1150–1157.

Mangalam, K and Prabhu, VU (2019). Do deep neural networks learn shallow learnable examples first? In Workshop Deep Phenomena, ICML.

Mansur, A and Kuno, Y (2008). Improving Recognition through Object Subcategorization. In Advances in Visual Computing, pages 851–859. Springer.

Martinetz, T and Schulten, K (1991). A "neural-gas" network learns topologies. Artificial Neural Networks.

Masters, D and Luschi, C (2018). Revisiting Small Batch Training for Deep Neural Networks. arXiv:1804.07612 [arXiv:arXiv:1804.07612v1].

McCulloch, WS and Pitts, W (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1-2):99–115. doi:10.1007/BF02459570.
Mnih, V, Heess, N, Graves, A, and Kavukcuoglu, K (2014). Recurrent Models of Visual Attention. In NIPS.

Morcos, AS, Barrett, DGT, Rabinowitz, NC, and Botvinick, M (2018). On the importance of single directions for generalization. In ICLR. arXiv:arXiv:1803.06959v4

Müller, R, Kornblith, S, and Hinton, G (2019). When Does Label Smoothing Help? In NeurIPS. arXiv:arXiv:1906.02629v3

Murphy, KP (2021). Probabilistic Machine Learning: An introduction. MIT Press.

Nagarajan, V, Andreassen, A, and Neyshabur, B (2021). Understanding the failure modes of out-of-distribution generalization. In ICLR.

Nair, V and Hinton, GE (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In ICML, pages 807—-814.

Neyshabur, B, Tomioka, R, and Srebro, N (2015). In search of the real inductive bias: On the role of implicit regularization in deep learning. In ICLR. arXiv:arXiv:1412.6514v4

Nguyen, A, Yosinski, J, and Clune, J (2015). Deep Neural Networks are Easily Fooled : High Confidence Predictions for Unrecognizable Images. In CVPR, pages 427–436. arXiv:arXiv:1412.1897v4

Oquab, M, Bottou, L, Laptev, I, and Sivic, J (2014). Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In CVPR, pages 1717–1724.

Panesar, A (2019). Machine learning and AI for healthcare. Apress Media. ISBN 9781484265369 doi: 10.1007/978-1-4842-6537-6

Radford, A, Wu, J, Amodei, D, Amodei, D, Clark, J, et al. (2019). Better Language Models and Their Implications.

Rahimi, A (2017). Test of Time Award reception. In NIPS.

Recht, B, Roelofs, R, Schmidt, L, and Shankar, V (2019). Do ImageNet Classifiers Generalize to ImageNet? In ICML, pages 5389–5400.

Rolnick, D, Donti, PL, Kaack, LH, Kochanski, K, Lacoste, A, et al. (2019). Tackling Climate Change with Machine Learning. arXiv:1906.05433. arXiv:1906.05433

Rosenblatt, F (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6):386–408.

Rumelhart, DE, Hinton, GE, and Williams, RJ (1986). Learning representations by back-propagating errors. Nature, 323(6088):533–536. doi: 10.1038/323533a0
Schaffer, C (1994). A Conservation Law for Generalization Performance. In International Conference on Machine Learning, pages 259–265. Morgan Kaufmann. doi: 10.1016/B978-1-55860-335-6.50039-8

Schmidhuber, J (2014). Deep Learning in Neural Networks: An Overview. arXiv preprint arXiv:1404.7828, pages 1–66. doi: 10.1016/j.neunet.2014.09.003 arXiv:arXiv:1404.7828v1

Shane, S, Metz, C, and Wakabayashi, D (2018). How a Pentagon Contract Became an Identity Crisis for Google.

Shankar, V, Roelofs, R, Mania, H, Fang, A, Recht, B, et al. (2020). Evaluating Machine Accuracy on ImageNet. In ICML, pages 8634–8644. PMLR.

Silver, D, Huang, A, Maddison, CJ, Guez, A, Sifre, L, et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7585):484–489. doi: 10.1038/nature16961

Simonyan, K, Vedaldi, A, and Zisserman, A (2014). Deep Inside Convolutional Networks : Visualising Image Classification Models and Saliency Maps. ICLR. arXiv:arXiv:1312.6034v2

Simonyan, K and Zisserman, A (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR. arXiv:arXiv:1409.1556v6

Smith, LN and Topin, N (2017). Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates. arXiv:1708.07120. arXiv:arXiv:1708.07120v2

Smith, SL, Dherin, B, Barrett, D, and De, S (2021). On the Origin of Implicit Regularization in Stochastic Gradient Descent. In ICLR.

Smith, SL and Le, QV (2017). A bayesian perspective on generalization and stochastic gradient descent. In Proceedings of Second workshop on Bayesian Deep Learning (NIPS 2017). arXiv:arXiv:1710.06451v3

Srivastava, N, Hinton, GE, Krizhevsky, A, Sutskever, I, and Salakhutdinov, R (2014). Dropout : A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1):1929–1958.

Su, J, Vargas, DV, and Kouichi, S (2019). One pixel attack for fooling deep neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841. doi: 10.1109/tevc.2019.2890858 arXiv:1710.08864

Szegedy, C, Zaremba, W, Sutskeveer, I, Bruna, J, Erhan, D, et al. (2014). Intriguing properties of neural networks. In ICLR. arXiv:arXiv:1312.6199v4.

Telgarsky, M (2016). benefits of depth in neural networks. In Annual Conference on Learning Theory, volume 49, pages 1517–1539. PMLR.
Tieleman, T and Hinton, G (2012). Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.

Torralba, A and Efros, AA (2011). Unbiased look at dataset bias. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1521–1528. IEEE Computer Society. doi: 10.1109/CVPR.2011.5995347

Vapnik, V (1989). Statistical learning theory. Wiley New York.

Vapnik, V and Izmailov, R (2019). Rethinking statistical learning theory: learning using statistical invariants. Machine Learning, 108(3):381–423. doi: 10.1007/s10994-018-5742-0

Vapnik, VN and Chervonenkis, AY (1968). On the uniform convergence of relative frequencies of events to their probabilities. Dokl. Akad. Nauk., 181(4):781.

Wang, H and Raj, B (2017). On the Origin of Deep Learning. arXiv:1702.07800, pages 1–72. arXiv:arXiv:1702.07800v4.

Werbos, PJ (1982). Applications of advances in nonlinear sensitivity analysis. In System Modeling and Optimization, pages 762–770. Springer-Verlag. doi: 10.1007/BFB0006203

Widrow, B and Hoff, ME (1960). Adaptive switching circuits. IRE WESCON Convention Record, 4:96–104.

Wigner, E (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13:1–14.

Wilson, AC, Roelofs, R, Stern, M, Srebro, N, and Recht, B (2017). The Marginal Value of Adaptive Gradient Methods in Machine Learning. In NIPS, pages 4151–4161.

Wolpert, DH (1996). The lack of a prior distinctions between learning algorithms and the existence of a priori distinctions between learning algorithms. Neural Computation, 8:1341–1421.

Wu, J, Zou, D, Braverman, V, and Quanquan Gu (2021). Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate. In ICLR.

Yosinski, J, Clune, J, Nguyen, A, Fuchs, T, and Lipson, H (2015). Understanding Neural Networks Through Deep Visualization. In Deep Learning Workshop at ICML. arXiv:arXiv:1506.06579v1.

Young, T, Hazarika, D, Poria, S, and Cambria, E (2018). Recent trends in deep learning based natural language processing. ieee Computational intelligence magazine, 13(3):55–75. doi: 10.1038/nature14539.
Yu, AW, Lin, Q, Salakhutdinov, R, and Carbonell, J (2017). Normalized gradient with adaptive stepsize method for deep neural network training.
arXiv:1707.04822.

Yuan, Y (2020). YOLO Creator Joseph Redmon Stopped CV Research Due to Ethical Concerns. *Medium*.

Yun, C, Krishnan, S, and Mobahi, H (2021). A unifying view on implicit bias in training linear neural networks. In *ICLR*.

Zagoruyko, S (2015). 92.45% on CIFAR-10 in Torch.
http://torch.ch/blog/2015/07/30/cifar.html.

Zagoruyko, S and Komodakis, N (2016). Wide Residual Networks. In *BMVC*.
arXiv:arXiv:1605.07146v2

Zeiler, MD and Fergus, R (2014). Visualizing and Understanding Convolutional Networks. *ECCV*, pages 818–833.
arXiv:arXiv:1311.2901v3

Zhang, C, Bengio, S, Hardt, M, Recht, B, and Vinyals, O (2017). Understanding deep learning requires re-thinking generalization. In *ICLR*.
arXiv:arXiv:1611.03530v1

Zhang, C, Bengio, S, Hardt, M, Recht, B, and Vinyals, O (2021). Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM, 64*(3):107–115. doi: *10.1145/3446776*.

Zhang, G, Wang, C, Xu, B, and Grosse, R (2019). Three mechanisms of weight decay regularization. In *ICLR*.

Zhang, H, Cisse, M, Dauphin, YN, and Lopez-Paz, D (2018). mixup: Beyond Empirical Risk Minimization. In *ICLR*. International Conference on Learning Representations, ICLR.
arXiv:1710.09412

Zhao, N, Wu, Z, Lau, RWH, and Lin, S (2021). What makes instance discrimination good for transfer learning? In *ICLR*.
arXiv:2006.06606

Zhou, B, Khosla, A, Lapedriza, A, Oliva, A, and Torralba, A (2015). Object detectors emerge in Deep Scene CNNs. In *ICLR*.
arXiv:arXiv:1412.6856v2.

Zielinski, P, Krishnan, S, and Chatterjee, S (2020). Weak and Strong Gradient Directions: Explaining Memorization, Generalization, and Hardness of Examples at Scale.
arXiv:2003.07422.
arXiv:2003.07422

Zoran, D and Weiss, Y (2011). From learning models of natural image patches to whole image restoration. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 479–486. doi: *10.1109/ICCV.2011.6126278*.
Publications

This thesis wraps up a series of works that have been previously published in several conference venues:

- Simon Carbonnelle, C. De Vleeschouwer. Intraclass clustering: an implicit learning ability that regularizes DNNs, *ICLR* 2021.

- Simon Carbonnelle, C. De Vleeschouwer. Experimental study of the neuron-level mechanisms emerging from backpropagation, *ESANN* 2019.

- Simon Carbonnelle, C. De Vleeschouwer. Layer rotation: a surprisingly simple indicator of generalization in deep networks, *Workshop Deep Phenomena, ICML* 2019.

My journey as a PhD student started with a collaboration with Claire Gosse and Marie Van Reybroeck, two researchers in speech and language pathology. This collaboration initiated an ongoing research project that studies the interactions between handwriting, spelling and dyslexia through the use of digital tablets and signal processing tools. My work in this context also contributed to the following two publications:

- C. Gosse, S. Carbonnelle, C. De Vleeschouwer, M. Van Reybroeck. Specifying the graphic characteristics of words that influence children’s handwriting, *Reading and Writing*, 31 (5), 1181-1207, 2018.

- C. Gosse, S. Carbonnelle, C. De Vleeschouwer, M. Van Reybroeck. The influence of graphic complexities of words on the handwriting of children of 2nd grade, *SIG WRITING, 16th international conference of the EARLI special interest group on writing*, Liverpool, 2016.