ON CONJUGACY CLASSES IN A REDUCTIVE GROUP

G. Lusztig

INTRODUCTION

0.1. Let k be an algebraically closed field of characteristic exponent $p \geq 1$ and let G be a connected reductive algebraic group over k. Let W be the Weyl group of G. Let $cl(G)$ (resp. $cl(W)$) be the set of conjugacy classes of G (resp. W). In this paper we prove the following result.

Theorem 0.2. There exist an equivalence relation \sim on $cl(G)$ and an equivalence relation \sim on $cl(W)$ such that the sets of equivalence classes $cl(G)/\sim$, $cl(W)/\sim$ are in canonical bijection and such that the following hold:

(a) The equivalence relation \sim on $cl(W)$ depends only on W (as a Coxeter group) and not on p or the underlying root datum. Hence $cl(G)/\sim$ is indexed by a finite set which depends only on W (as a Coxeter group) and not on p or the underlying root datum.

(b) Any equivalence class for \sim on $cl(G)$ is a union of conjugacy classes of the same dimension (at most one of which is unipotent) and this dimension depends only on W (as a Coxeter group) and not on p or the underlying root datum.

The proof is given in 1.8. From the theorem we see that G itself is partitioned into finitely many strata (a stratum is the union of all conjugacy classes of G in a fixed equivalence class for \sim hence of constant dimension); one of the strata is the centre of G. We see also that if $n \geq 1$, then for any integer k, the following three conditions are equivalent:

- there exists a conjugacy class of dimension k in $SO_{2n+1}(C)$;
- there exists a conjugacy class of dimension k in $Sp_{2n}(C)$;
- there exists a conjugacy class of dimension k in $Sp_{2n}(\overline{F}_2)$.

The proof shows that the following fourth condition is equivalent to the three conditions above: there exists a unipotent conjugacy class of dimension k in $Sp_{2n}(\overline{F}_2)$.

We will give two approaches to the theorem. The first approach, see §1, is based on Springer’s correspondence (see [Spr] when $p = 1$ or $p \gg 0$ and [L2] for any p) connecting irreducible representations of Weyl groups with unipotent classes and on the results of [L5,L7] connecting $cl(W)$ with unipotent classes in}

Supported in part by National Science Foundation grant DMS-0758262.

Typeset by AMS-TEX
The second approach, see §2, is based on an extension of the ideas in [L5], and Springer’s correspondence does not appear in it.

In §3 we define an equivalence relation analogous to ~ in the case where G is replaced by a loop group.

0.3. Notation. For an algebraic group H over k we denote by H^0 the identity component of H. For a subgroup T of H we denote by N_HT the normalizer of T in H. Let G_{ad} be the adjoint group of G. Let B be the variety of Borel subgroups of G. For $g \in G$ we denote by $Z_G(g)$ the centralizer of g in G and by g_s (resp. g_u) the semisimple (resp. unipotent) part of g. Let $B_g = \{B \in B; g \in B\}$.

For any (finite) Weyl Γ we denote by Irr_Γ a set of representatives for the isomorphism classes of irreducible representations of Γ over \mathbb{Q}. For any $\tau \in \text{Irr}W$ let n_τ be the smallest integer $i \geq 0$ such that τ appears in the i-th symmetric power of the reflection representation of W.

1. **Proof of Theorem 0.2**

1.1. We will view W as an indexing set for the orbits of G acting diagonally on $B \times B$; we denote by O_w the orbit corresponding to $w \in W$. Note that W is naturally a Coxeter group; its length function is denoted by $\ell: W \to \mathbb{N}$.

Let $g \in G$. Let W_g be the Weyl group of the connected reductive group $H := Z_G(g_s)^0$. We can view W_g as a subgroup of W as follows. Let β be a Borel subgroup of H and let T be a maximal torus of β. We define an isomorphism $b_{T,\beta}: N_HT/T \sim W_g$ by $n'T \mapsto H$-orbit of $(\beta, n'n'^{-1})$. Similarly for any $B \in B$ such that $T \subset B$ we define an isomorphism $a_{T,B}: N_GT/T \sim W$ by $n'T \mapsto G$-orbit of $(B, n'Bn'^{-1})$. Now assume that $B \in B$ is such that $B \cap H = \beta$. We define an imbedding $c_{T,\beta,B}: W_g \to W$ as the composition $W_g \xrightarrow{b_{T,\beta}^{-1}} N_HT/T \to N_GT/T \xrightarrow{a_{T,B}} W$ where the middle map is the obvious imbedding. If $B' \in B$ also satisfies $B' \cap H = \beta$ then we have $B' = nBn^{-1}$ for some $n \in N_GT$ and from the definitions we have $c_{T,\beta,B'}(w) = a_{T,B}(nT)c_{T,\beta,B}(w)a_BT(nT)^{-1}$ for any $w \in W_g$. Thus $c_{T,\beta,B}$ depends (up to composition with an inner automorphism of W) only on T, β and we can denote it by $c_{T,\beta}$. Since the set of pairs T, β as above form a homogeneous space for the connected group H we see that $c_{T,\beta}$ is independent of T, β (up to composition with an inner automorphism of W) hence it does not depend on any choice. We see that there is a well defined collection \mathcal{C} of imbeddings $W_g \to W$ so that any two of them differ only by composition by an inner automorphism of W.

Now let ρ be the irreducible representation of W_g which under the Springer correspondence for H corresponds to the H-conjugacy class of g_u and the trivial local system on it. We choose $f \in \mathcal{C}$; then we can view ρ as an irreducible representation of $f(W_g)$, a subgroup of W. Let $\tilde{\rho}$ be the irreducible representation of W obtained from ρ by j-induction [LS, 3.2] from ρ. (Note that the j-induction can be applied to ρ since ρ is good in the sense of [L4, 1.3], see [L4, 1.4].) Since f is well defined up to composition by an inner automorphism of W, we see that $\tilde{\rho}$ is
independent of the choice of f. Thus we have a well defined map $\phi_G : G \to \text{Irr} W$, $g \mapsto \tilde{\rho}$ whose nonempty fibres are called the strata of G. The strata of G are clearly unions of conjugacy classes of G; hence ϕ_G induces a map $\tilde{\phi}_G : \text{cl}(G) \to \text{Irr} W$.

For γ, γ' in $\text{cl}(G)$ we write $\gamma \sim \gamma'$ if $\tilde{\phi}_G(\gamma) = \tilde{\phi}_G(\gamma')$. This is an equivalence relation on $\text{cl}(G)$. Let $\text{cl}(G)/\sim$ be the set of equivalence classes.

Let $\mathcal{R}_G(W)$ be the image of $\tilde{\phi}_G$ (or of $\tilde{\phi}_G$). Then $\tilde{\phi}_G$ induces a bijection $\text{cl}(G)/\sim \leftrightarrow \mathcal{R}_G(W)$.

1.2. Clearly, we have $\phi_G = \phi_{G_{ad}} \pi$, $\tilde{\phi}_G = \tilde{\phi}_{G_{ad}} \tilde{\pi}$, where $\pi : G \to G_{ad}$, $\tilde{\pi} : \text{cl}(G) \to \text{cl}(G_{ad})$ are the obvious (surjective) maps. Hence $\mathcal{R}_G(W) = \mathcal{R}_{G_{ad}}(W)$. If we assume that G is adjoint, we have $G = \prod_{k \in K} G_k$, $W = \prod_{k \in K} W_k$, where G_k is adjoint simple and W_k is the Weyl group of G_k. From the definition we can identify $\mathcal{R}_G(W)$ with $\prod_{k \in K} \mathcal{R}_{G_k}(W_k)$ (via external tensor product).

1.3. Returning to the general case, we show:

(a) Let $\gamma \in \text{cl}(G)$ and let $n = n_{\tilde{\phi}(\gamma)}$, see 0.3; then $\dim \gamma = 2 \dim \mathcal{B} - 2n$. In particular, each stratum of G is a union of conjugacy classes of the same dimension. Let $g \in \gamma$. Let ρ (resp. $\tilde{\rho}$) be the irreducible representation of W_g (resp. W) defined by g_u as in 1.1. Let n_ρ be the smallest integer $i \geq 0$ such that ρ appears in the i-th symmetric power of the reflection representation of W_g. Let $n_{\tilde{\rho}}$ be as in 0.3. By the definition of j-induction we have $n_\rho = n_{\tilde{\rho}}$. By assumption we have $n_{\tilde{\rho}} = n$ hence $n_\rho = n$. By a known property of Springer’s representations, n_ρ is equal to the dimension of the variety of Borel subgroups of $Z_G(g_s)^0$ that contain g_u; hence by a result of Steinberg (for $p = 1$) and Spaltenstein [Spa, 10.15] (for any p), n_ρ is equal to

$$\frac{(\dim(Z_{G(G_s)^0}(g_u)^0 - \text{rk}(Z_G(g_s)^0))/2 = (\dim(Z_G(g)^0) - \text{rk}(G))/2.$$

It follows that $(\dim(Z_G(g)^0) - \text{rk}(G))/2 = n$ and (a) follows.

1.3. Let r be either 1 or a prime number. Let G_r be a connected reductive group of the same type as G over an algebraically closed field of characteristic exponent r, whose Weyl group is identified with W. Let \mathcal{U}_r be the set of unipotent classes of G_r. Let $\mathcal{X}^r(W)$ be the set of irreducible representations of W associated by Springer correspondence to a unipotent class in \mathcal{U}_r and the trivial local system on it. We have the following result.

Proposition 1.4. We have $\mathcal{R}_G(W) = \bigcup_{r \text{ prime}} \mathcal{X}^r(W)$. Moreover, $\mathcal{R}_G(W)$ depends only on W (as a Coxeter group) and not on p or the underlying root datum.

By the arguments in 1.2 we can assume that G is adjoint simple. Now the sets $\mathcal{X}^r(W)$ are explicitly known for any reductive group; they are described in [L4, 1.4] in terms of j-induction of representations in $\mathcal{X}^1(W')$ for certain Weyl subgroups W' of the Weyl group. Hence the set $\mathcal{R}_G(W)$ can be explicitly determined. It can be described as follows.

If G is of type $A_n(n \geq 1)$ or E_6 we have $\mathcal{R}_G(W) = \mathcal{X}^1(W)$.
If G is of type $B_n(n \geq 2), C_n(n \geq 3), D_n(n \geq 4), F_4$ or E_7, we have $\mathcal{R}_G(W) = \mathcal{X}^2(W)$.

If G is of type G_2 we have $\mathcal{R}_G(W) = \mathcal{X}^3(W)$.

If G is of type E_8 we have $\mathcal{R}_G(W) = \mathcal{X}^2(W) \cup \mathcal{X}^3(W)$.

Now to get the first assertion of the proposition we use the following known results.

$\mathcal{X}^1(W) \subset \mathcal{X}^r(W)$ for any $r \geq 2$;

$\mathcal{X}^r(W) = \mathcal{X}^1(W)$ if G is of type A_n or E_6 ($r \geq 2$), or if G is of type B_n, C_n, D_n, F_4 or E_7, ($r \geq 3$), or if G is of type G_2, ($r = 2$ or $r \geq 5$) or if G is of type E_8, $r \geq 5$.

In particular we see that $\mathcal{R}_G(W)$ does not depend on p. The last assertion of the proposition follows from the fact that the sets $\mathcal{X}^2(W)$ (resp. $\mathcal{X}^3(W)$) are compatible with the exceptional isogeny between groups of type B_n, C_n with $p = 2$ and that between F_4, F_4 with $p = 2$ (resp. between G_2, G_2 with $p = 3$). This completes the proof.

1.5. In view of the proposition we can denote $\mathcal{R}_G(W)$ simply by $\mathcal{R}(W)$. In the case where G is of type E_8 we have $|\mathcal{X}^1(W)| = 70, |\mathcal{X}^2(W)| = 74, |\mathcal{X}^3(W)| = 71, \mathcal{X}^2(W) \cap \mathcal{X}^3(W) = \mathcal{X}^1(W)$, hence $|\mathcal{R}(W)| = 74 + 71 - 70 = 75$.

1.6. In [L5] we have defined a surjective map $cl(W) \rightarrow \mathcal{U}_r$; we denote this map by Φ_r. We can identify $\mathcal{U}_r = \mathcal{X}^r(W)$ (see 1.3) in an obvious way. Then Φ_r becomes a map $cl(W) \rightarrow \mathcal{X}^r(W)$. For $C \in cl(W)$ we define $\tilde{\Phi}(C) = \cup_{r \text{ prime}} \mathcal{X}^r(W)$ as follows. If $\Phi_r(C) \in \mathcal{X}^1(W)$ for all $r > 1$ (recall that $\mathcal{X}^1(W) \subset \mathcal{X}^r(W)$) then $\Phi_r(C)$ is independent of r (see [L7, 0.4]) and we set $\tilde{\Phi}(C) = \Phi_r(C)$ for any $r > 1$. If $\Phi_r(C) \notin \mathcal{X}^1(W)$ for some $r > 1$ then r is unique. (To prove this we can assume that G is almost simple, simply connected; then the only case where there is an issue is in type E_8 in which case we use the tables in [L7, 2.6].) We then set $\tilde{\Phi}(C) = \Phi_r(C)$.

Thus we have defined a surjective map $\tilde{\Phi} : cl(W) \rightarrow \cup_{r \text{ prime}} \mathcal{X}^r(W)$ that is, $\tilde{\Phi} : cl(W) \rightarrow \mathcal{R}(W)$ (see 1.4, 1.5). For C, C' in $cl(W)$ we write $C \sim C'$ if $\tilde{\Phi}(C) = \tilde{\Phi}(C')$; this is an equivalence relation on $cl(W)$. Let $cl(W)/ \sim$ be the set of equivalence classes. The equivalence classes are described explicitly in [L7]. Note that $\tilde{\Phi}$ induces a bijection $cl(W)/ \sim \leftrightarrow \mathcal{R}(W)$.

Proposition 1.7. The equivalence relation \sim on $cl(W)$ and the bijection $cl(W)/ \sim \leftrightarrow \mathcal{R}(W)$ in 1.6 depend only on W (as a Coxeter group) and not on p or the underlying root datum.

We can assume that G is almost simple. We then use the fact that the maps Φ_2 (resp. Φ_3) are compatible with the exceptional isogeny between groups of type B_n, C_n with $p = 2$ and that between F_4, F_4 with $p = 2$ (resp. between G_2, G_2 with $p = 3$). This implies the result.

1.8. We prove Theorem 0.2. We define the bijection $cl(G)/ \sim \leftrightarrow cl(W)/ \sim$ as the composition of the bijection $cl(G)/ \sim \leftrightarrow \mathcal{R}(W)$ in 1.1 with the inverse of the
bijection \(cl(W) / \sim \leftrightarrow R(W) \) in 1.6. Then 0.2(a) follows from 1.7. Now 0.2(b) follows from 1.3(a) and 1.4. This completes the proof of Theorem 0.2.

1.9. Assume that \(G \) has type \(E_8 \). Using 1.5 we see that \(G \) has exactly 75 strata. If \(p \neq 2, 3 \) then exactly 70 strata contain unipotent elements. If \(p = 2 \) (resp. \(p = 3 \) then exactly 74 (resp. 71) strata contain unipotent elements. The unipotent class of dimension 58 is a stratum. If \(p \neq 2 \), there is a stratum which is a union of a semisimple class and a unipotent class (both of dimension 128); in particular this stratum is disconnected. The corresponding equivalence class in \(cl(W) \) consists of 5 conjugacy classes of involutions, one of which contains the longest element of \(W \).

1.10. One can show that any stratum of \(G \) is a union of pieces in the partition of \(G \) defined in [L2, 3.1]; in particular it is a constructible subset of \(G \).

1.11. Assume that \(G = GL(V) \) where \(V \) is a \(k \)-vector space of dimension \(n \geq 1 \). We choose a sufficiently large \(m \in \mathbb{N} \). Let \(g \in G \). For any \(x \in k^* \) let \(V_x \) be the generalized \(x \)-eigenspace of \(g : V \to V \) and let \(\lambda_1^x \geq \lambda_2^x \geq \cdots \geq \lambda_m^x \) be the sequence in \(\mathbb{N} \) whose terms are the sizes of the Jordan blocks of \(x^{-1}g : V_x \to V_x \). Let \(\lambda(g) \) be the sequence \(\lambda(g)_1 \geq \lambda(g)_2 \geq \cdots \geq \lambda(g)_m \) given by \(\lambda(g)_j = \sum_{x \in k^*} \lambda_j^x \). Now \(g \mapsto \lambda(g) \) defines a map from \(G \) onto the set of partitions of \(n \). From the definitions we see that the fibres of this map are exactly the strata of \(G \). If \(g \in G \) and \(\lambda(g) = (\lambda_1, \lambda_2, \ldots, \lambda_m) \) then \(\dim(Bg) = (m-1)n - \sum_{k \in \{1, m-1\}} (\lambda_1 + \lambda_2 + \cdots + \lambda_k) \) (with \(B_g \) as in 0.3).

1.12. Assume that \(G = Sp(V) \) where \(V \) is a \(k \)-vector space of dimension \(2n \geq 2 \) with a fixed nondegenerate symplectic form. We choose a sufficiently large \(m \in \mathbb{N} \). We say that a bipartition \((\lambda_1 \geq \lambda_3 \geq \cdots \geq \lambda_{2m+1}), (\lambda_2 \geq \lambda_4 \geq \cdots \geq \lambda_{2m})\) (with entries in \(\mathbb{N} \)) is of type \((e, e')\) if \(\lambda_i \geq \lambda_{i+1} - e \) for \(i = 1, 2, \ldots, 2m-1 \) and \(\lambda_i \geq \lambda_i+1 - e' \) for \(i = 2, 4, \ldots, 2m \).

Let \(g \in G \). For any \(x \in k^* \) let \(V_x \) be the generalized \(x \)-eigenspace of \(g : V \to V \). For any \(x \in k^* \) such that \(x^2 \neq 1 \) let \(\lambda_1^x \geq \lambda_2^x \geq \cdots \geq \lambda_{2m+1}^x \) be the sequence in \(\mathbb{N} \) whose terms are the sizes of the Jordan blocks of \(x^{-1}g : V_x \to V_x \) (a partition of \(\dim V_x \)). For \(x \in k^* \) such that \(x^2 = 1 \) let \(\lambda_1^x, \lambda_2^x, \ldots, \lambda_{2m+1}^x \) be the sequence in \(\mathbb{N} \) such that \((\lambda_1^x \geq \lambda_3^x \geq \cdots \geq \lambda_{2m+1}^x), (\lambda_2^x \geq \lambda_4^x \geq \cdots \geq \lambda_{2m}^x)\) is the bipartition of \(\dim(V_x)/2 \) such that the corresponding irreducible representation of the Weyl group of type \(B_{\dim V_x/2} \) is the Springer representation attached to the unipotent element \(x^{-1}g \in Sp(V_x) \). (This bipartition is of type 1,1 if \(p \neq 2 \) and of type 2,2 if \(p = 2 \). Let \(\lambda(g) \) be the sequence \(\lambda(g)_1, \lambda(g)_2, \ldots, \lambda(g)_{2m+1} \) in \(\mathbb{N} \) given by \(\lambda(g)_j = \sum_x \lambda_j^x \) where \(x \) runs over a set of representatives for the orbits of the involution \(a \mapsto a^{-1} \) of \(k^* \). Note that \((\lambda(g)_1 \geq \lambda(g)_3 \geq \cdots \geq \lambda(g)_{2m+1}), (\lambda(g)_2 \geq \lambda(g)_4 \geq \cdots \geq \lambda(g)_{2m})\) is a bipartition of \(n \) of type 2,2. Now \(g \mapsto \lambda(g) \) defines a map from \(G \) onto the set of bipartitions of \(n \) of type 2,2. From the definitions we see that the fibres of this map are exactly the strata of \(G \).

If \(g \in G \) and \(\lambda(g) = (\lambda_1, \lambda_2, \ldots, \lambda_{2m+1}) \) then \(\dim(B_g) = 2mn - \sum_{k \in \{1, 2m\}} (\lambda_1 + \lambda_2 + \cdots + \lambda_k) \) (with \(B_g \) as in 0.3).
1.13. Assume that $G = SO(V)$ where V is a k-vector space of dimension $2n+1 \geq 1$ with a fixed nondegenerate quadratic form. (When $p = 2$ this means that the associated bilinear form has 1-dimensional radical on which the quadratic form is nonzero.) We choose a sufficiently large $m \in \mathbb{N}$. Let $g \in G$. For any $x \in k^*$ let V_x be the generalized x-eigenspace of $g : V \to V$. For any $x \in k^*$ such that $x^2 \neq 1$ let $\lambda_1^x \geq \lambda_2^x \geq \cdots \geq \lambda_{2m+1}^x$ be the sequence in \mathbb{N} whose terms are the sizes of the Jordan blocks of $x^{-1}g : V_x \to V_x$ (a partition of dim V_x). For $x \in k^*$ such that $x^2 = 1$ let $\lambda_1^x, \lambda_2^x, \ldots, \lambda_{2m+1}^x$ be the sequence in \mathbb{N} such that $((\lambda_1^x \geq \lambda_3^x \geq \cdots \geq \lambda_{2m+1}^x), (\lambda_2^x \geq \lambda_4^x \geq \cdots \geq \lambda_{2m}^x))$ is the bipartition of $(\dim(V_x) - 1)/2$ (if $x \neq -1$ or $p = 2$) or of $\dim(V_x)/2$ (if $x = -1$ and $p \neq 2$) such that the corresponding irreducible representation of the Weyl group of type $B_{(\dim(V_x) - 1)/2}$ (if $x \neq -1$ or $p = 2$) or of type $D_{\dim(V_x)/2}$ (if $x = -1$ and $p \neq 2$) is the Springer representation associated with the unipotent element $x^{-1}g \in SO(V_x)$.

Assume that $\lambda_1^x, \ldots, \lambda_{2m+1}^x$ runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of k^*. Note that $((\lambda_1^x \geq \lambda_3^x \geq \cdots \geq \lambda_{2m+1}^x), (\lambda_2^x \geq \lambda_4^x \geq \cdots \geq \lambda_{2m}^x))$ is a bipartition of n of type 2, 2.

Now $g \mapsto \lambda(g)$ defines a map from G onto the set of bipartitions of n of type 2, 2. From the definitions we see that the fibres of this map are exactly the strata of G.

If $g \in G$ and $\lambda(g) = (\lambda_1, \lambda_2, \ldots, \lambda_{2m+1})$ then $\dim(B_g) = 2mn - \sum_{k \in [1, 2m]} (\lambda_1 + \lambda_2 + \cdots + \lambda_k)$ (with B_g as in 0.3).

1.14. Assume that $G = SO(V)$ where V is a k-vector space of dimension $2n \geq 2$ with a fixed nondegenerate quadratic form. We choose a sufficiently large $m \in \mathbb{N}$. We say that a bipartition $((\lambda_1 \geq \lambda_3 \geq \cdots \geq \lambda_{2m-1}), (\lambda_2 \geq \lambda_4 \geq \cdots \geq \lambda_{2m}))$ (with entries in \mathbb{N}) is of type (e, e') if $\lambda_i \geq \lambda_{i+1} - e$ for $i = 1, 3, \ldots, 2m - 1$ and $\lambda_i \geq \lambda_{i+1} - e'$ for $i = 2, 4, \ldots, 2m - 2$.

Let $g \in G$. For any $x \in k^*$ let V_x be the generalized x-eigenspace of $g : V \to V$. For any $x \in k^*$ such that $x^2 \neq 1$ let $\lambda_1^x \geq \lambda_2^x \geq \cdots \geq \lambda_{2m}^x$ be the sequence in \mathbb{N} whose terms are the sizes of the Jordan blocks of $x^{-1}g : V_x \to V_x$ (a partition of dim V_x). For $x \in k^*$ such that $x^2 = 1$ let $\lambda_1^x, \lambda_2^x, \ldots, \lambda_{2m}^x$ be the sequence in \mathbb{N} such that $((\lambda_1^x \geq \lambda_3^x \geq \cdots \geq \lambda_{2m-1}^x), (\lambda_2^x \geq \lambda_4^x \geq \cdots \geq \lambda_{2m}^x))$ is the bipartition of $\dim(V_x)/2$ such that the corresponding irreducible representation of the Weyl group of type $D_{\dim(V_x)/2}$ is the Springer representation attached to the unipotent element $x^{-1}g \in SO(V_x)$. This bipartition is of type 0, 2 if $x = 1$, $p \neq 2$, of type 2, 0 if $x = -1$, $p \neq 2$ and of type 2, 2 if $x = 1$, $p = 2$. Let $\lambda(g)$ be the sequence $\lambda(g)_1, \lambda(g)_2, \ldots, \lambda(g)_{2m+1}$ in \mathbb{N} given by $\lambda(g)_j = \sum x^j \lambda_j^x$ where x runs over a set of representatives for the orbits of the involution $a \mapsto a^{-1}$ of k^*.

Now $g \mapsto \lambda(g)$ defines a map from G onto the set of bipartitions of n of type 0, 4, 0, 4. From the definitions we see that the fibres of this map are exactly the strata
of G (except for the fibre over a bipartition $((\lambda_1 \geq \lambda_3 \geq \cdots \geq \lambda_{2m-1}), (\lambda_2 \geq \lambda_4 \geq \cdots \geq \lambda_{2m}))$ with $\lambda_1 = \lambda_2, \lambda_3 = \lambda_4, \ldots, \lambda_{2m-1} = \lambda_{2m}$ in which case the fibre is a union of two strata).

If $g \in G$ and $\lambda(g) = (\lambda_1, \lambda_2, \ldots, \lambda_2m)$ then $\dim(B_g) = (2m-1)n - \sum_{k \in [1,2m-1]}(\lambda_1 + \lambda_2 + \cdots + \lambda_k)$ (with B_g as in 0.3).

1.15. Assume that $G = SO_5(k)$. Then $cl(W) = \{C_4, C_4^2, C', C'', \{1\}\}$ where C_4 consists of the elements of order 4 and C', C'' are the two conjugacy classes of reflections. The obvious map $cl(W) \rightarrow cl(W)/\sim$ is a bijection. One stratum is the union of all conjugacy classes of dimension 8 (it corresponds to C_4); one stratum is the union of all conjugacy classes of dimension 6 (it corresponds to C_4^2); each of the two conjugacy classes of dimension 4 is a stratum (these two strata correspond to C', C''). The unit element is a stratum (it corresponds to $\{1\}$). If $p \neq 2$ then one stratum is a semisimple class, the other strata contain unipotent elements; if $p = 2$ all strata contain unipotent elements.

1.16. Repeating the definition of sheets in a semisimple Lie algebra over C (see [Bo]) one can define the sheets of G as the maximal irreducible subsets of G which are unions of conjugacy classes of fixed dimension. One can show that if $G = GL_n(k)$, the sheets of G are the same as the strata of G, as described in 1.11. (In this case, the sheets of G, or rather their Lie algebra analogue, are described in [Pe]. They are smooth varieties.) This is not true for a general G (the sheets of G do not usually form a partition of G; the strata of G are not always irreducible).

1.17. Let $ce(W)$ be the set of two-sided cells of W. For two conjugacy classes γ, γ' of G we write $\gamma \approx \gamma'$ if $\tilde{\phi}(g), \tilde{\phi}(\gamma')$ belong to the same two-sided cell of W. This is an equivalence relation on $cl(G)$. Let $cl(G)/\approx$ be the set of equivalence classes. Note that $\tilde{\phi}$ induces a bijection $cl(G)/\approx \leftrightarrow ce(W)$. (We use that for any two-sided cell of W there exists $\rho \in R(W)$ which belongs to that two-sided cell, namely the special representation attached to the cell.) Similarly, for two conjugacy classes C, C' of W we write $C \approx C'$ if $\tilde{\Phi}(C), \tilde{\Phi}(C')$ belong to the same two-sided cell of W. This is an equivalence relation on $cl(W)$. Let $cl(W)/\approx$ be the set of equivalence classes. Note that $\tilde{\Phi}$ induces a bijection $cl(W)/\approx \leftrightarrow ce(W)$.

We define the bijection

\[(a) \quad cl(G)/\approx \leftrightarrow cl(W)/\approx\]

as the composition of the bijection $cl(G)/\approx \leftrightarrow ce(W)$ above with the inverse of the bijection $cl(W)/\approx \leftrightarrow ce(W)$ above. We see that G is partitioned into finitely many subsets said to be special strata: a special stratum is the union of all conjugacy classes of G in a fixed equivalence class for \approx; it is also a union of strata of G. Note that the set of special strata of G is canonically in bijection with $ce(W)$. The intersection of a special stratum with the unipotent variety is exactly one special piece (in the sense of [L3]) of that unipotent variety.
2. A second approach

2.1. In this section we sketch another approach to defining the strata of G in which the theory of Springer representations does not appear.

For $w \in W$ let

$$G_w = \{ g \in G; (B, gBg^{-1}) \in O_w \text{ for some $B \in B$} \}.$$

For $C \in cl(W)$ let

$$C_{\min} = \{ w \in C; \downarrow: C \to N \text{ reaches minimum at w} \}$$

and let $G_C = G_w$ where $w \in C_{\min}$. As pointed out in [L5, 0.2], from [L5, 1.2(a)] and [GP, 8.2.6(b)] it follows that G_C is independent of the choice of w in C_{\min}.

From [L5] it is known that G_C contains unipotent elements; in particular, $G_C \neq \emptyset$. Clearly, G_C is a union of conjugacy classes. Let

$$\gamma \in cl(G); \gamma \subseteq G_C \dim \gamma \gamma_C = \bigcup_{\gamma \in cl(G); \gamma \subseteq G_C, \dim \gamma = \delta_C \gamma} \gamma,$$

Then G_C is $\neq \emptyset$, a union of conjugacy classes of fixed dimension, δ_C. We have the following result.

Theorem 2.2. Assume that p is not a bad prime for G.

(a) A subset of G is a stratum if and only if it is of the form G_C for some $C \in cl(W)$. In particular, we have $\cup_{C \in cl(W)} G_C = G$; moreover, if $C, C' \in cl(W)$ then $G_C = G_{C'}$ if $C \sim C'$ and $G_C \cap G_{C'} = \emptyset$ if $C \not\sim C'$.

(b) Let $\gamma \in cl(G), C \in cl(W)$. The equivalence class of γ under \sim corresponds under the bijection 0.2 to the equivalence class of C under \sim if and only if $\gamma \subseteq G_C$.

We can assume that G is almost simple and that k is an algebraic closure of a finite field. The proof in the case of exceptional groups is reduced in 2.3 to a computer calculation. The proof for classical groups, which is based on combining the techniques of [L5], [L6] and [L8], will be given elsewhere. It is likely that the assumption on p can be removed.

2.3. In this subsection we assume that k is an algebraic closure of a finite field F_q and that G is simply connected, defined and split over F_q with Frobenius map $F : G \to G$. Let γ be an F-stable conjugacy class of G. Let $\gamma' = \{ g_s; g \in \gamma \}$, an F-stable semisimple conjugacy class in G. For every $s \in \gamma'$ let $\gamma(s) = \{ u \in Z_G(s); u \text{ unipotent, } us \in \gamma \}$, a unipotent conjugacy class of $Z_G(s)$. We fix $s_0 \in \gamma'^F$ and we set $H = Z_G(s_0)$, $\gamma_0 = \gamma(s_0)$. Let W_H be the Weyl group of H. As in
1.1 we can regard W_H as a subgroup of W (the imbedding of W_H into W is canonical up to composition with an inner automorphism of W). By replacing if necessary F by a power of F, we can assume that H contains a maximal torus which is defined and split over F_q. For any F-stable maximal torus T of G, R^1_T is the virtual representation of G^F defined as in [DL, 1.20] (with $\theta = 1$ and with B omitted from notation). Replacing T, G by T', H where T' is an F-stable maximal torus of H, we obtain a virtual representation $R^1_{T', H}$ of H^F. For any $z \in W$ we denote by R^1_z the virtual representation R^1_T of G^F where T is an F-stable maximal torus of G of type given by the conjugacy class of z in W. For any $z' \in W_H$ we denote by $R^1_{z', H}$ the virtual representation $R^1_{T', H}$ of H^F where T' is an F-stable maximal torus of H of type given by the conjugacy class of z' in W_H. For $E' \in \mathrm{Irr} W$ we set $R_{E'} = |W|^{-1} \sum_{y \in W} \mathrm{tr}(y, E') R^1_y$. Then for any $z \in W$ we have $R^1_z = \sum_{E' \in \mathrm{Irr} W} \mathrm{tr}(z, E') R_{E'}$.

Let $w \in W$. We show:

$$ |\{(g, B) \in \gamma^F \times B^F; (B, gBg^{-1}) \in O_w\}| = |G^F||H^F|^{-1} \sum_{E \in \mathrm{Irr} W, E' \in \mathrm{Irr} W, E'' \in \mathrm{Irr} W_H, y} \mathrm{tr}(T_w, E_q)(\rho_E, R_{E'}) $$

$$ \times (E'|_{W_H} : E'')|Z_{W_H}(y)|^{-1} \mathrm{tr}(y, E'') \sum_{u \in \gamma_0^F} \mathrm{tr}(u, R^1_{y, H}) $$

where y runs over a set of representatives for the conjugacy classes in W_H and T_w, E_q, ρ_E are as in [L5, 1.2]. Let N be the left hand side of (a). As in [L5, 1.2(c)] we see that

$$ N = \sum_{E \in \mathrm{Irr} W} \mathrm{tr}(T_w, E_q) A_E $$

with

$$ A_E = |G^F|^{-1} \sum_{g \in \gamma^F} \sum_{\mathcal{T}} |\mathcal{T}^F|(\rho_E, R^1_{\mathcal{T}}) \mathrm{tr}(g, R^1_{\mathcal{T}}) $$

where \mathcal{T} runs over all maximal tori of G defined over F_q. We have

$$ A_E = |G^F|^{-1} \sum_{s \in \gamma^F, u \in \gamma(s)^F} \sum_{\mathcal{T}} |\mathcal{T}^F|(\rho_E, R^1_{\mathcal{T}}) \mathrm{tr}(su, R^1_{\mathcal{T}}) $$

$$ = |H^F|^{-1} \sum_{u \in \gamma_0^F} \sum_{\mathcal{T}} |\mathcal{T}^F|(\rho_E, R^1_{\mathcal{T}}) \mathrm{tr}(su, R^1_{\mathcal{T}}). $$

By [DL, 4.2] we have

$$ \mathrm{tr}(s_0 u, R^1_{\mathcal{T}}) = |H^F|^{-1} \sum_{x \in G^F : x^{-1} \mathcal{T} x \subset H} \mathrm{tr}(u, R^1_{x^{-1} \mathcal{T} x, H}) $$
hence

\[A_E = |H^F|^{-2} \sum_{u \in \gamma_0} \sum_{\mathcal{T}} |T^F| \left(\rho_E, R_{T^F}^1 \right) \sum_{x \in H^F : x^{-1} T x \subset H} \text{tr}(u, R_{x^{-1} T x, H}^1) \]

\[= |G^F| |H^F|^{-2} \sum_{T' \subset H} |T'^F| \left(\rho_E, R_{T'^F}^1 \right) \sum_{u \in \gamma_0} \text{tr}(u, R_{T', H}^1) \]

where \(T' \) runs over the maximal tori of \(H \) defined over \(F_q \). Using the classification of maximal tori of \(H \) defined over \(F_q \) we obtain

\[A_E = |G^F| |H^F|^{-1} |W_H|^{-1} \sum_{z \in W_H} \left(\rho_E, R_z^1 \right) \sum_{u \in \gamma_0} \text{tr}(u, R_{z, H}^1) \]

\[= |G^F| |H^F|^{-1} |W_H|^{-1} \sum_{z \in W_H} \sum_{E' \in \text{Irr} W} \text{tr}(z, E')(\rho_E, R_{E'}) \sum_{u \in \gamma_0} \text{tr}(u, R_{z, H}^1). \]

This clearly implies (a).

Now assume that \(G \) is almost simple of exceptional type and that \(w \) has minimal length in its conjugacy class in \(W \). We can also assume that \(q - 1 \) is sufficiently divisible. Then the right hand side of (a) can be explicitly determined using a computer. Indeed it is an entry of the product of several large matrices whose entries are explicitly known. In particular the quantities \(\text{tr}(T_w, E_q) \) (known from the works of Geck and Geck-Michel, see [GP, 11.5.11]) are available through the CHEVIE package [CH]. The quantities \((\rho_E, R_{E'}) \) are coefficients of the nonabelian Fourier transform in [L1, 4.15]. The quantities \((E'|_{W_H} : E'') \) are available from the induction tables in the CHEVIE package. The quantities \(\text{tr}(y, E'') \) are available through the CHEVIE package. The quantities \(\text{tr}(u, R_{y, H}^1) \) are Green functions; I thank Frank Lübeck for providing to me tables of Green functions for groups of rank \(\leq 8 \) in GAP format. I also thank Gongqin Li for her help with programming in GAP to perform the actual computation using these data.

Thus the number \(\{|(g, B) \in \gamma^F \times B^F ; (B, gBg^{-1}) \in O_w \} | \) is explicitly computable. It turns out that it is a polynomial in \(q \). Note that \(\{|(g, B) \in \gamma \times B ; (B, gBg^{-1}) \in O_w \} \) is nonempty if and only if this polynomial is non zero. Thus the condition that \(\gamma \subset G_w \) can be tested. This can be used to check that Theorem 2.2 holds for exceptional groups.

2.4. If \(C \) is the conjugacy class containing the Coxeter elements of \(W \) then \(G_C = \bigcup_{\gamma \in \mathcal{C}} \mathcal{C}_\gamma \) is the union of all conjugacy classes of dimension \(\dim G - \text{rk}(G) \), see [St].

2.5. Let us replace \(G \) by a possibly disconnected reductive group \(G' \) over \(k \) with identity component \(G \). Let \(D \) be a connected component of \(G' \). The definitions in 2.1 can be extended to the present case as follows. Let \(cl(D) \) be the set of \(G \)-conjugacy classes in \(D \). Let \(cl_D W \) be the set of twisted conjugacy classes in \(W \) (as in [L8,0.1]; the twisting depends on \(D \)). For \(w \in W \) let

\[D_w = \{ g \in D ; (B, gBg^{-1}) \in O_w \text{ for some } B \in \mathcal{B} \}. \]
For \(C \in \text{cl}_D(W) \) let
\[
C_{\text{min}} = \{ w \in C; \underline{\lambda} : C \to \mathbb{N} \text{ reaches minimum at } w \}.
\]
and let \(D_C = D_w \) where \(w \in C_{\text{min}} \). This is again independent of the choice of \(w \) in \(C_{\text{min}} \). One can show that \(D_C \neq \emptyset \). Clearly, \(D_C \) is a union of \(G \)-conjugacy classes. Let
\[
\delta_C = \min_{\gamma \in \text{cl}(D)} \dim \gamma,
\]
\[
\square D_C = \bigcup_{\gamma \in \text{cl}(D); \gamma \subseteq D_C, \dim \gamma = \delta_C} \gamma.
\]
Then \(\square D_C \neq \emptyset \), a union of \(G \)-conjugacy classes of fixed dimension, \(\delta_C \). The following variant of Theorem 2.2 will be proved elsewhere (some partial results in this direction are contained in [L8]).

(a) Assume that \(p \) is either 1 or a good prime for \(G \), not dividing \(|G'/G| \). We have \(\cup_{C \in \text{cl}_D(W)} \square D_C = D \). If \(C, C' \in \text{cl}_D(W) \), then \(\square D_C \cap \square D_{C'} \) are either equal or disjoint. If \(\gamma, \gamma' \in \text{cl}(D) \) we say that \(\gamma \sim \gamma' \) if for some \(C \in \text{cl}_D(W) \) we have \(\gamma \subseteq \square D_C \) and \(\gamma' \subseteq \square D_{C'} \); this is an equivalence relation on \(\text{cl}(D) \) (the set of equivalence classes is denoted by \(\text{cl}(D)/\sim \)). If \(C, C' \in \text{cl}_D(W) \) we say that \(C \sim C' \) if \(\square D_C = \square D_{C'} \); this is an equivalence relation on \(\text{cl}_D(W) \) (the set of equivalence classes is denoted by \(\text{cl}_D(W)/\sim \)). The correspondence \(\gamma \in \square D_C \) induces a bijection \(\text{cl}(D)/\sim \leftrightarrow \text{cl}_D(W)/\sim \).

Again, it is likely that the assumption on \(p \) can be removed.

3. Variants

3.1. In this section we fix a prime number \(l \) invertible in \(k \). For any algebraic variety \(X \) over \(k \) and \(i \in \mathbb{Z} \) we set \(H_i(X, \mathbb{Q}_l) = \text{Hom}(H^i_c(X, \mathbb{Q}_l), \mathbb{Q}_l) \) where \(H^i_c(X, \mathbb{Q}_l) \) is the \(l \)-adic cohomology with compact support of \(X \).

Let \(g \in G \). Let \(d = \dim B_g \). The imbedding \(h_g : B_g \to B \) induces a linear map \(h_{g*} : H_{2d}(B_g, \mathbb{Q}_l) \to H_{2d}(B, \mathbb{Q}_l) \). Now \(H^2_{c}(B_g, \mathbb{Q}_l), H^2_{c}(B, \mathbb{Q}_l) \) carry natural \(W \)-actions, see [L2], and this induces natural \(W \)-actions on \(H_{2d}(B_g, \mathbb{Q}_l), H_{2d}(B, \mathbb{Q}_l) \) which are compatible with \(h_* \). Hence \(W \) acts naturally on the subspace \(h_{g*}(H_{2d}(B_g, \mathbb{Q}_l)) \) of \(H_{2d}(B, \mathbb{Q}_l) \).

The following result gives an alternative description of the map \(g \mapsto \tilde{\rho} \) (in 1.1) from \(G \) to \(\text{Irr}W \).

Proposition 3.2. The \(W \)-module \(h_{g*}(H_{2d}(B_g, \mathbb{Q}_l)) \) of \(H_{2d}(B, \mathbb{Q}_l) \) (see 3.1) is irreducible and is isomorphic (after extension of scalars) to the \(W \)-module \(\tilde{\rho} \) associated to \(g \) in 1.1.

First we note that \(h_{g*}(H_{2d}(B_g, \mathbb{Q}_l)) \neq 0 \); indeed it is clear that for any irreducible component \(E \) of \(B_g \) (necessarily of dimension \(d \)) the image of the fundamental class of \(E \) under \(h_{g*} \) is nonzero (we ignore Tate twists). Let \(B' \) be the variety
of Borel subgroups of $Z_G(g_u)$. Let $B_{g_u}' = \{ \beta \in B'; g_u \in \beta \}$. Then $\dim B' = d$ and W_{g} (see 1.1) acts naturally on $H_{2d}(B_{g_u}', Q_{l})$; from the definitions, the W-module $H_{2d}(B_{g}, Q_{l})$ is isomorphic to $\text{Ind}_{W_{g}}^{W} H_{2d}(B_{g_u}', Q_{l})$. Let $\tilde{\rho}'$ be the W-module obtained from $\tilde{\rho}$ by extension of scalars from Q to Q_{l}. From the definitions, we have $n_{\tilde{\rho}'} = d$ and $\text{Ind}_{W_{g}}^{W} H_{2d}(B_{g_u}', Q_{l}) \cong \tilde{\rho}' \oplus \mathcal{T}$ where \mathcal{T} is a W-module such that any irreducible constituent τ of \mathcal{T} satisfies $n_{\tau} > d$. We can identify $\tilde{\rho}'$, \mathcal{T} with complementary W-submodules of $H_{2d}(B_{g}, Q_{l})$. From the definition of \mathcal{T} we see that $h_{g*}(\mathcal{T}) = 0$. Hence $h_{g*}(H_{2d}(B_{g}, Q_{l})) = h_{g*}(\tilde{\rho}') \neq 0$. Hence $h_{g*}(\tilde{\rho}')$ is an irreducible W-module. The proposition follows.

3.3. In this subsection we assume that G is semisimple simply connected. Let K be the field of formal power series $k((\epsilon))$ and let $\hat{G} = G(K)$. Let \hat{B} be the set of Iwahori subgroups of \hat{G} viewed as an increasing union of projective algebraic varieties over k. Let \hat{W} be the affine Weyl group associated to \hat{G} viewed as an infinite Coxeter group. Let $G(K)_{rsc}$ be the set of all $g \in G(K)$ which are compact (that is such that $\hat{B}_{g} = \{ B \in \hat{B}; g \in B \}$ is nonempty) and regular semisimple. If $g \in G(K)_{rsc}$ then \hat{B}_{g} a union of projective algebraic varieties of fixed dimension $d = d_{g}$ (see [KL] for a closely related result) hence the homology space $H_{2d}(\hat{B}_{g}, Q_{l})$ is well defined and it carries a natural \hat{W}-action (see [L9]). Similarly the homology space $H_{2d}(\hat{B}, Q_{l})$ is well defined and it carries a natural \hat{W}-action. The imbedding $h_{g} : \hat{B}_{g} \to \hat{B}$ induces a linear map $h_{g*} : H_{2d}(\hat{B}_{g}, Q_{l}) \to H_{2d}(\hat{B}, Q_{l})$ which is compatible with the \hat{W}-actions. Hence \hat{W} acts naturally on the (finite dimensional) subspace $E_{g} := h_{g*}(H_{2d}(\hat{B}_{g}, Q_{l}))$ of $H_{2d}(\hat{B}, Q_{l})$, but this action is not irreducible in general. Note that E_{g} is the subspace of $H_{2d}(\hat{B}, Q_{l})$ spanned by the images of the fundamental classes of the irreducible components of \hat{B}_{g}, Q_{l} (we ignore Tate twists) hence is $\neq 0$. For $g, g' \in G(K)_{rsc}$ we say that $g \sim g'$ if $d_{g} = d_{g'}$ and $E_{g} = E_{g'}$. This is an equivalence relation on $G(K)_{rsc}$. The equivalence classes for \sim are called the strata of $G(K)_{rsc}$. Note that $G(K)_{rsc}$ is a union of countably many strata and each stratum is a union of conjugacy classes of $G(K)$ contained in $G(K)_{rsc}$.

3.4. In this subsection we assume that $k = C$. Let \mathfrak{g} be the Lie algebra of G. We identify B with the variety of Borel subalgebras of \mathfrak{g}. For any $\xi \in \mathfrak{g}$ let $B_{\xi} = \{ b \in B; \xi \in b \}$ and let $d = \dim B_{\xi}$. The subspace of $H_{2d}(B, Q_{l})$ spanned by the images of the fundamental classes of the irreducible components of B_{ξ} is an irreducible W-module denoted by τ_{ξ}. We also denote by τ_x the corresponding W-module over Q. Thus we have a well defined map $\mathfrak{g} \to \text{Irr} W$, $\xi \mapsto \tau_{\xi}$. The nonempty fibres of this map are called the strata of \mathfrak{g}. Each stratum of \mathfrak{g} are unions of adjoint orbits of fixed dimension; exactly one of these orbits is nilpotent. The image of the map $\xi \mapsto \tau_{\xi}$ is exactly $\mathcal{X}^{1}(W)$ (see 1.3).

References

[Bo] W. Borho, Über Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283-317.
ON CONJUGACY CLASSES IN A REDUCTIVE GROUP

[DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. 103 (1976), 103-161.

[CH] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Eng. Comm. Comput. 7 (1996), 1175-210.

[GP] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Clarendon Press Oxford, 2000.

[KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math. 62 (1988), 129-168.

[L1] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton U. Press, 1984.

[L2] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), 205-272.

[L3] G. Lusztig, Notes on unipotent classes, Asian J. Math. 1 (1997), 194-207.

[L4] G. Lusztig, Unipotent elements in small characteristic, Transform. Groups 10 (2005), 449-487.

[L5] G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Th. 15 (2011), 494-530.

[L6] G. Lusztig, On C-small conjugacy classes in a reductive group, Transform. Groups 16 (2011), 807-825.

[L7] G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes II, Represent. Th. 16 (2012), 189-211.

[L8] G. Lusztig, Distinguished conjugacy classes and elliptic Weyl group elements, arXiv:1304.4463.

[L9] G. Lusztig, Unipotent almost characters of simple p-adic groups, arXiv:1212.6540.

[LS] G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. Lond. Math. Soc. 19 (1979), 41-52.

[Pe] D. Peterson, Geometry of the adjoint representation of a complex semisimple Lie algebra, Ph.D. Thesis, Harvard Univ. (1978).

[Spa] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer Verlag, 1982.

[Spr] T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173-207.

[St] R. Steinberg, Regular elements of semisimple algebraic groups, Publications Math. 25 (1965), 49-80.

Department of Mathematics, M.I.T., Cambridge, MA 02139