Forward-backward correlations between intensive observables

Vladimir Kovalenko, Vladimir Vechernin
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
E-mail: v.kovalenko@spbu.ru, v.vechernin@spbu.ru

Abstract. We demonstrate that the investigations of the forward-backward correlations between intensive observables enable to obtain more clear signal about the initial stage of hadronic interaction, e.g. about the process of string fusion, compared to usual forward-backward multiplicity correlations. As an example, the correlation between mean-event transverse momenta of charged particles in separated rapidity intervals is considered. We performed calculations in the framework of dipole-based Monte Carlo string fusion model. We obtained the dependence of the correlation strength on the collision centrality for different initial energies and colliding systems. It is shown that the dependence reveals the decline of the correlation coefficient for most central Pb-Pb collisions at LHC energy. We compare the results both with the ones obtained in alternative models and with the ones obtained by us using various MC generators.

1. Forward-Backward Rapidity Correlations
The study of the correlations between observables in two separated rapidity windows (the so-called long-range forward-backward correlations) has been proposed [1] as a signature of the string fusion and percolation phenomenon [2, 3], which is one of the collectivity effects in ultrarelativistic heavy ion collisions. Later it was realized [4–7] that the investigations of the forward-backward correlations between intensive observables, such e.g. as mean-event transverse momenta, enable to obtain more clear signal about the initial stage of hadronic interaction, including the process of string fusion, compared to usual forward-backward multiplicity correlations. As an example, the correlation between mean-event transverse momenta of charged particles in separated rapidity intervals can be considered.

Numerically, the long-range correlations are studied in terms of correlation functions and correlation coefficients. Correlation function is defined as the mean value of variable B in the backward window as a function of another variable F in the forward rapidity window:

$$\langle B \rangle_F = f(F).$$

The correlation function can be approximated by the linear function: $$\langle B \rangle_F = a + b_{BF}F$$ using the linear regression. Here $$b_{BF}$$ is the correlation coefficient, a slope of correlation function.

Alternative definition of the correlation coefficient is

$$b_{BF} = \frac{\langle FB \rangle - \langle F \rangle \langle B \rangle}{\langle F^2 \rangle - \langle F \rangle^2} = \frac{\text{cov}(F, B)}{D_F}. \tag{1}$$

arXiv:1611.07274v1 [nucl-th] 22 Nov 2016
For a correlation between relative variables, $F/\langle F \rangle$ and $B/\langle B \rangle$:

$$b_{FB}^{rel} = \frac{\langle F \rangle}{\langle B \rangle} b_{FB}.$$ \hspace{1cm} (2)

For the observables, B and F, in backward and forward rapidity windows, multiplicity (n) or mean event transverse momentum ($p_t = \frac{1}{n} \sum_{i=1}^{n} p_{t,i}$) can be taken \[8–10\].

Note that the multiplicities in backward and forward rapidity windows n_B, n_F are extensive variables, which means that they are proportional to the size of the system. In contrast, the transverse momentum of particles in backward and forward rapidity windows p_{tB}, p_{tF} are intensive variables, so they don’t depend on the number of sources which produce particles.

The long-range multiplicity correlation b_{nn} at large rapidity gap is dominated by event-by-event variance in the number of sources (cut pomerons, strings) \[11\]. In particular, in nuclear collisions, it also reflects the fluctuation in the number of participant nucleons. The influence of possible string fusion processes on this type of correlation is rather small \[12\]. It also has been shown, that b_{nn} depend strongly on the method of the centrality determination and the on the width of centrality class \[13–15\].

However, the event-by-event fluctuations in the number of cut pomerons (strings) (the “volume” fluctuations) do not lead to the correlation between the intensive variables, e.g. the p_{tB}-p_{tF} correlation ($b_{p_{tB},p_{tF}}$). This makes p_{tB}-p_{tF} correlations robust against the volume fluctuations and the details of the centrality selection. Rather the long-range p_{tB}-p_{tF} correlation indicates the fluctuations in “quality” of sources.

2. String Fusion Model

Due to the fact that quark-gluon strings have the finite transverse size they can overlap in the impact parameter plane. The interaction of color strings can be performed in the framework of local string fusion model \[12\].

According to this model, mean multiplicity of charged particles and mean p_t originated from the area S_k, where k strings are overlapping are the following:

$$\langle \mu \rangle_k = \mu_0 \sqrt{k} S_k \sigma_0, \quad \langle p_t \rangle_k = p_0 \sqrt{k},$$

where $\sigma_0 = \pi r_{str}^2$ – string transverse area.

The calculations are simplified in a cellular variant of the string fusion model by the introduction of the lattice in the impact parameter plane \[6–8,10,16\]. In the discrete model, the transverse plane is considered as a grid with the cell area equals to string transverse area, and strings are fused if their centers occupy the same cell. The cellular variant of string fusion has been shown to provide the results very close to the ones in the original string fusion model \[17\].

3. Dipole-based MC SFM model

The Monte Carlo model \[13,16,18\] used in this paper is based on dipole picture of elementary partonic interactions. The model preserves energy and angular momentum conservation in the initial state of a nucleon \[18,19\]. The probability of dipoles interaction depends on their transverse coordinates $\vec{r}_1, \vec{r}_2, \vec{r}_1', \vec{r}_2'$ with effective coupling:

$$f = \frac{\alpha_s^2}{2} \ln^2 \frac{|\vec{r}_1 - \vec{r}_2|}{|\vec{r}_1' - \vec{r}_2'|},$$ \hspace{1cm} (3)
where \((\vec{r}_1, \vec{r}_2), (\vec{r}_1', \vec{r}_2')\) are transverse coordinates of the projectile and target dipoles. With confinement effects taking into account, \([20,21]\), the probability amplitude is:

\[
f = \frac{\alpha^2}{2} \left[K_0 \left(\frac{|\vec{r}_1 - \vec{r}_1'|}{r_{\text{max}}} \right) + K_0 \left(\frac{|\vec{r}_2 - \vec{r}_2'|}{r_{\text{max}}} \right) - K_0 \left(\frac{|\vec{r}_1 - \vec{r}_2'|}{r_{\text{max}}} \right) - K_0 \left(\frac{|\vec{r}_2 - \vec{r}_1'|}{r_{\text{max}}} \right) \right]^2.
\]

Here \(r_{\text{max}}\) is characteristic confinement scale.

Multiplicity and transverse momentum in the model are calculated in the approach of color strings, stretched between projectile and target partons, taking into account their finite rapidity width and local cellular string fusion. Strings are assumed to emit particles independently according to Poisson distribution (no short-range effects are included). Parameters of the model are constrained from the p-p, p-Pb and Pb-Pb data on total inelastic cross section and multiplicity \([22]\).

4. Results in dipole-based MC SFM model

In dipole-based Monte Carlo string fusion model, we calculated the mean transverse momentum correlation coefficient \((b_{pT-pT})\) for Au-Au collisions RHIC energy and p-Pb and Pb-Pb collisions at the LHC energies. The results are shown in figure [1]

![Image of plots showing centrality dependence of \(b_{pT-pT}\) for Au-Au collisions at \(\sqrt{s_{NN}}=200\) GeV (top left), p-Pb collisions at \(\sqrt{s_{NN}}=5.02\) TeV (top right) and Pb-Pb collisions at \(\sqrt{s_{NN}}=2.76\) TeV (bottom). MC simulations at \(r_{\text{str}}=0.2\) fm.](image)

The results show a general growth of \(b_{pT-pT}\) with centrality reflecting the increase of string density and, hence, the role of string fusion from peripheral to central collisions. We note that
in Pb-Pb collisions at the LHC energy the correlation coefficient has a maximum in mid-central collisions and further decreases with centrality. This regime reflects the attenuation of color field fluctuations due to the string fusion at large string density.

We note that the non-monotonic behavior of b_{pt-p_t} with centrality is achieved only in heavy ion collisions at the LHC, while in Au-Au collisions at RHIC and p-Pb at LHC the maximal string density is not enough to provide a decline of the correlation coefficient for most central collisions.

5. Mean p_t-p_t correlations in different models

We studied the mean p_t-p_t correlations LHC energy in different Monte Carlo generators. The following Monte Carlo model were considered:

- MC model with string fusion [13,18] (see above).
- THERMINATOR 2 (THERMal heavy IoN generATOR 2) [23]. Based on parametrized freeze-out hypersurface, Cooper-Frye particalization and decays.
- HIJING (Heavy Ion Jet INteraction Generator) [24]. It includes gluon shadowing effects and jet quenching.
- DPMJET, two-component Dual Parton Model, based on the Gribov-Glauber approach [25]. It models soft and hard components and performs fragmentation of partons by the Lund model.
- AMPT (A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions) [26]. It includes gluon shadowing, Zhang’s Parton Cascade, string melting, relativistic transport.

The results for p_t-p_t correlations in Pb-Pb collisions at LHC energy are shown in figure 2.

Figure 2. Centrality dependence of b_{pt-p_t} for Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV in different Monte Carlo models.

The results demonstrate that the model with parameterized initial states shows zero correlation coefficient. In the models, which include only initial state shadowing and include
soft-hard components, the forward-backward p_t-p_t correlation is small and independent on centrality.

The relativistic transport model and string fusion model demonstrate significant non-trivial centrality dependence of b_{p_t} as well as its non-monotonic behavior.

The comparison clearly shows that p_t-p_t forward-backward correlation and its centrality dependence is sensitive to the initial stages of heavy ion collisions.

6. Summary and conclusions

The dependence of the correlation strength between mean-event transverse momenta on the collision centrality is obtained for different collision energies. It is shown that above RHIC energy the dependence reveals the decline of the correlation coefficient for most central collisions, reflecting the attenuation of color field fluctuations due to the string fusion at large string density.

The long-range correlation between intensive observables, being robust against the volume fluctuations and the details of the centrality determination, enables to obtain the signatures of string fusion at the initial stage of hadronic interaction in relativistic heavy ion collisions at LHC energy.

The sensitivity of the long-range p_t-p_t correlations to the properties of the initial stages of heavy ion collisions can be further studied in fully event-by-event hydrodynamical models, such as iEBE-VISHNU [27] or EKRT [28].

The authors acknowledge Saint-Petersburg State University for the research grant 11.38.242.2015.

References

[1] Amelin N et al. 1994 Phys. Rev. Lett. 73 2813–2816
[2] Braun M and Pajares C 1992 Phys. Lett. B 287 154–158
[3] Braun M and Pajares C 1993 Nucl. Phys. B 390 542–558
[4] Braun M A and Pajares C 2000 Phys. Rev. Lett. 85 4864–4867 (arXiv: hep-ph/0007201)
[5] Alessandro B et al. (ALICE Collaboration) 2006 J. Phys. G 32 1295–2040
[6] Vechernin V and Kolevatov R 2007 Phys. Atom. Nucl. 70 1797–1808
[7] Vechernin V and Kolevatov R 2007 Phys. Atom. Nucl. 70 1809–1818
[8] Braun M, Kolevatov R, Pajares C and Vechernin V 2004 Eur. Phys. J. C 32 535–546 (arXiv: hep-ph/0307056)
[9] V V Vechernin and R S Kolevatov 2004 Vestn. SPbU. Ser. 4. Fiz. Khim (4) 11–27 (arXiv: hep-ph/0305136)
[10] V V Vechernin and R S Kolevatov 2004 Vestn. SPbU. Ser. 4. Fiz. Khim (2) 12–23 (arXiv: hep-ph/0304295)
[11] Capella A and Krzywicki A 1978 Phys. Rev. D 18 3357
[12] Braun M and Pajares C 2000 Eur. Phys. J. C 16 349–359 (arXiv: hep-ph/9907332)
[13] Kovalenko V and Vechernin V 2014 EPJ Web Conf. 66 04015 (arXiv: 1308.6618 [nucl-th])
[14] Sputowska I and Rybicki A 2016 Correlations in Particle Production in Nuclear Collisions at LHC Energies

Ph.D. thesis Cracow, INP presented 10 Oct 2016 URL http://cds.cern.ch/record/2223886
[15] Drozhzhova T A et al. 2016 Phys. Atom. Nucl. 79 737–748 (original Russian text: 2016 Yad. Fiz. 79(5) 508)
[16] Kovalenko V and Vechernin V 2012 PoS Baldin ISHEPP XXI 077 (arXiv: 1212.2590 [nucl-th])
[17] Vechernin V and Lakomov I 2012 PoS Baldin ISHEPP XXI 072
[18] Kovalenko V 2013 Phys. Atom. Nucl. 76 1189–1195 (arXiv: 1211.6209 [hep-ph])
[19] Kovalenko V 2013 arXiv: 1308.1932 [hep-ph]
[20] Gustafson G 2009 Acta Phys. Polon. B 40 1981–1996 (arXiv: 0905.2492 [hep-ph])
[21] Flensburg C, Gustafson G and Lonnblad L 2011 JHEP 1108 103 (arXiv: 1103.4321 [hep-ph])
[22] Kovalenko V 2013 PoS QFTHEP2013 052
[23] Chojnacki M et al. 2012 Comput. Phys. Commun. 183 746–773 (arXiv: 1102.0273 [nucl-th])
[24] Wang X N and Gyulassy M 1991 Phys. Rev. D 44 3501–3516
[25] Roesler S, Engel R and Ranft J Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23–26 October 2000
[26] Lin Z W, Ko C M, Li B A, Zhang B and Pal S 2005 Phys. Rev. C 72 064901 (arXiv: nucl-th/0411110)
[27] Shen C et al. 2016 Comput. Phys. Commun. 199 61–85 (arXiv: 1409.8164 [nucl-th])
[28] Niemi H, Eskola K J and Pastelainen R 2016 Phys. Rev. C 93 024907 (arXiv: 1505.02677 [hep-ph])