Proof of concept: could snake venoms be a potential source of bioactive compounds for control of mould growth and mycotoxin production

C. Verheecke-Vaessen\(^1\), J. Monte\(^1,2\), E. Garcia-Cela\(^1,3\), N. Magan\(^1\) and A. Medina\(^1\)

1 Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedfordshire, MK430AL, UK
2 LAQV-REQUIMTE, Chemistry Department, FCT, Universidade Nova de Lisboa, Caparica, 2829 516, Portugal
3 Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL109AB, UK

Significance and Impact of this Study: In all, 10 different snake venoms were examined as new sources of natural crop protection compounds. Using a Bioscreen C rapid assay optical density approach, it was possible to screen and identify snake venoms and fractions which could inhibit growth and/or mycotoxin production by five different mycotoxigenic filamentous fungi. This is a promising source of natural bioactive compounds for future agro-industry applications.

Correspondence
Angel Medina, Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Beds. MK43 0AL, UK.
E-mail: a.medinayaya@cranfield.ac.uk

2020/0567: received 1 April 2020, revised 28 May 2020 and accepted 28 May 2020
doi:10.1111/lam.13338

Abstract
The objective was to screen 10 snake venoms for their efficacy to control growth and mycotoxin production by important mycotoxigenic fungi including *Aspergillus flavus*, *Aspergillus westerdijkiae*, *Penicillium verrucosum*, *Fusarium graminearum* and *F. langsethiae*. The Bioscreen C rapid assay system was used. The venoms from the Viperidae snake family delayed growth of some of the test fungi, especially *F. graminearum* and *F. langsethiae* and sometimes *A. flavus*. Some were also able to reduce mycotoxin production. The two most potent crude snake venoms (*Naja nigricollis* and *N. siamensis*; 41 and 43 fractions, respectively) were further fractionated and 83/84 of these fractions were able to reduce mycotoxin production by >90% in two of the mycotoxigenic fungi examined. This study suggests that there may be significant potential for the identification of novel fungistatic/fungicidal bioactive compounds as preservatives of raw and processed food commodities post-harvest from such snake venoms.

Introduction
There is a worldwide trend to reduce the number of anti-fungal chemical compounds which can be used for crop protection uses because of their health and environmental impacts (EPA 2020; European commission 2020). The food and feed industry is thus increasingly seeking alternative sources of natural antifungal compounds with potential for controlling the growth of food-borne pathogens.

For cereals, the key contaminating toxigenic fungal pathogens predominantly come from the *Aspergillus*, *Fusarium* and *Penicillium* genera. They are particularly important as they produce mycotoxins including aflatoxins, trichothecenes and ochratoxin A. The presence of these compounds in food products is strictly regulated worldwide (European Union 2006; Wu and Khlangwiset 2010). Research has been focused on screening alternative sources of naturally produced antimicrobial compounds from extreme environments, micro-organisms and plant extracts, especially essential oils (Aldred et al. 2008; Bluma et al. 2008; Verheecke et al. 2014; El Khoury et al. 2016; Lahoum et al. 2016; Mylona et al. 2019; Mohd Danial et al. 2020; García-Díaz et al. 2020). However, there have been few new lead compounds which have been found for use in food and feed chains to reduce mould growth and mycotoxin contamination, without impacting on the organoleptic properties of the final product.

Snake venoms have recently become an increasing source of antimicrobial compounds (San et al. 2010; De Oliveira Junior et al. 2013). However, such studies of...
their antimicrobial capacity have predominantly focused on controlling bacterial growth.

The aim of this study was to assess the potential of 10 crude snake venoms to control (i) fungal growth and (ii) the mycotoxin production by five major mycotoxigenic fungal species including *Aspergillus flavus* (aflatoxins; AFB1 and AFB2), *Aspergillus westerdijkiae* and *Penicillium verrucosum* (ochratoxin A; OTA), *Fusarium graminearum* (nivalenol; NIV) and *F. langsethiae* (T-2), using the high-throughput screening technique for filamentous fungi using the BioScreen C (Medina et al. 2012). The two most interesting snake venoms were further fractionated, and the efficacy of their fractions also tested.

Results and discussion

Impact of crude snake venoms on fungal growth

Figure 1 shows three examples of the effect of different concentrations of specific crude venom extracts of *Naja siamensis* on temporal growth of *A. flavus*, *F. graminearum* and *F. langsethiae*. This shows that the effect against different mycotoxigenic fungi varies. Overall, the growth of each test species was impacted by at least 2 out of the 10 crude venoms examined. Depending on the crude venom, the minimum inhibitory concentration observed ranged from the highest concentration (10% crude extract) to the lowest tested (0.04%).

Comparisons between treatments were done using the time to detection (TTD) using the temporal growth datasets. TTD is described as the necessary time for fungal growth to reach a specific OD value. Table 1 shows the effect of the 10 venoms on the TTD of the five mycotoxigenic fungi screened. The TTD data represented include the minimum crude extract concentration showing an increase in TTD >25%. Of the fungi tested, both *F. graminearum* and *F. langsethiae* were the most sensitive species to the venoms screened, with 5 and 7 out of the 10 tested resulting in a significant increase in the TTD (see Table 1). The crude venoms from *Naja nigricollis* and *N. siamensis* were able to completely inhibit fungal growth of the *Fusarium* species at all concentrations examined. *Naja nigricollis* crude venom was also very effective in inhibiting the growth of *A. westerdijkiae*.

The results showed that *Aspergillus* and *Penicillium* had a different sensitivity to the snake venoms screened when compared to *Fusarium* sp. Thus, a higher crude venom concentration was needed to reduce growth of the former species, while much lower concentrations were required for the latter *Fusarium* species. These results are in accordance with Bound et al. (2016) that observed a reduced efficacy of 2,3-dideoxyglucosides of terpenes, phenols and alcohols for the control of fungal growth when comparing *Aspergillus* and *Fusarium* sp. Further analysis of the snake venoms composition is required to confirm the nature of the compounds involved in control of growth and/or mycotoxin production. A potential source of antifungal compounds from snake venoms could be antimicrobial peptides already extracted from snake venom and which have become an increasing source of therapeutical solutions for control of human pathogens including *Candida albicans* (Kang et al. 2017). These peptides have shown encouraging results for inhibiting *A. flavus* growth and aflatoxin production (Huang et al. 1997).

Effect of crude snake venoms on mycotoxin production

The impact of the 10 crude venoms on mycotoxin production by the five mycotoxigenic species is also shown
in Table 1. The production of AFB$_1$ and AFB$_2$ was generally reduced by the application of the crude venoms. The response to exposure varied from 0-18-fold of the control mycotoxin production remaining to complete inhibition by the N. nigricollis crude venom.

Ochotaxin A production was either unaffected or reduced by the exposure to the crude venoms. The exception was the impact of Oxyuranus scutellatus canni venom where OTA production by both A. westerdijkiae and P. verrucosum was actually enhanced by 2-3-fold and 56-1-fold, respectively. Indeed, for A. westerdijkiae, no crude extract was able to reduce OTA production by more than 2-fold. However, for P. verrucosum, the OTA production was reduced by 9 of the 10 crude venoms used. The crude venoms from N. siamensis, Calloselasma rhodostoma and Vipera xanthina were the most effective, completely inhibiting OTA production by P. verrucosum.

Fusarium graminearum only produced NIV under the conditions tested. The production was generally reduced by 7 of the 10 crude snake venoms examined. The most effective venoms were those from N. siamensis and Crotaulus basiliscus with very low non-inhibitory concentrations (NIC; \times 0-03, \times 0-01-fold, respectively).

The production of T-2 toxin by F. langsethiae was similar in the presence of 8 of the 10 tested crude venoms. However, the crude venom of C. basiliscus was the most interesting, as it was able to completely inhibit T-2 production. No HT-2 was produced by this strain in these experiments.

Our results showed that some mycotoxins produced by Fusarium (Trichothecenes A and B) were not produced at all, especially DON, 3-AcDON, 15-AcDON nor HT-2. It is possible that longer incubation times would be needed for production and quantification of these toxins. Previous studies suggest that trichothecene production may be more likely after 6–10 days of incubation in vitro in different media (Hope et al. 2005; Duverger et al. 2011; Ferruz et al. 2016). In the present experiments, NIV was produced by F. graminearum. Usually DON and NIV production parallel each other. The presence of NIV only may be related to the medium composition used and the timeframe of the experiments. Previously, Hope and Magan (2003) showed that under some environmental conditions, NIV was likely to be produced earlier and at higher levels than DON.

Overall, crude extracts of the venoms of N. nigricollis and N. siamensis had the widest range of efficacy against the mycotoxigenic fungi examined. Consequently, these two crude extracts were further investigated in more detail.

Efficacy of Naja nigricollis and N. siamensis venom fractions for controlling fungal growth

Table 2 summarizes the number of fractions extracted from N. nigricollis and N. siamensis (total of 41 and 43 fractions, respectively) which led to a reduction of fungal growth. Fusarium langsethiae was the most affected mycotoxigenic species with more than half of all the fractions (47/84) extracted from both venoms leading to a reduction in fungal growth. For the Aspergillus and Penicillium species examined, 1–3 fractions were found to be very effective. Overall, 13 fractions (8 from N. nigricollis and 5 from N. siamensis) reduced growth of two or more tested mycotoxigenic species, especially the Fusarium sp. examined.
Impact of *Naja nigricollis* and *N. siamensis* fractions on mycotoxin production

The impact of the numbers of fractions which resulted in control of mycotoxin production is summarized in Fig. 2. Overall, 41–93% of the fractions were able to reduce mycotoxins production by >95% when compared to the control production, depending on the species examined.

Species which produced OTA, *P. verrucosum* and *A. westerdijkiae*, appeared to be the most sensitive, with 93 and 69% of the fractions leading to >95% inhibition of OTA production.

The control of AFB1/B2 production by *A. flavus* was variable. Thus, 55% reduced AFBs production by >95, 13-75% between 90 and 95%, 30% between 90 and 0%. Interestingly, 1-25% enhanced production by up to 160%. A similar profile was observed for the two trichotheccenes producers with slightly (41-46%) lesser proportion inhibiting mycotoxin production by >95%, when compared to AFBs production.

Table 2 summarizes the impact of the tested fractions on both TTD and mycotoxins production independently and when pooled together. *Fusarium langsethiae* was the most sensitive fungus based on both TTD and T-2 production by the fractions of snake venoms (*N. nigricollis* and *N. siamensis*) with 32 fractions inhibiting growth and toxin production.

The two crude snake venoms with the best efficacy (*N. nigricollis* and *N. siamensis*) were examined in more detail by screening the different fractions. This showed that only 13/84 fractions inhibited fungal growth by two or more fungi. However, 83/84 fractions were able to reduce mycotoxins production by >90%. Regarding fungal growth, a number of studies have shown a low percentage of extract fractions, especially from natural antifungal sources such as plant extracts or actinobacteria, were effective at controlling growth of fungal pathogens (Lahoum et al. 2016; Nalubega et al. 2016; Dikhoba et al. 2019). However, many of these studies did not examine impacts on mycotoxin production. For mycotoxigenic fungi, it is important to consider efficacy in controlling mycotoxin production. It may be that the fractions are able to interfere with the gene clusters involved in the biosynthesis of these mycotoxins, resulting in inhibition. More studies are needed at the physiological and molecular level to understand these effects on the control of mycotoxin biosynthesis.

For the first time, snake venoms were screened as a source of natural compounds for control of growth and toxin production by key mycotoxigenic species. This has shown that the venom extracts of Elapidae and Viperidae family either delayed growth or reduced mycotoxin production >95% by *A. flavus*, *A. westerdijkiae*, *P. verrucosum*, *F. graminearum* and *F. langsethiae*. Further fractionation of two snake venoms (*N. nigricollis* and *N. siamensis*) showed very good efficacy with 83/84 fractions having >90% reduction of mycotoxin synthesis by these fungal species. Potential thus exists for exploiting such extracts for the development of lead bioactive compounds for crop protection applications in food and feed chains.

Materials and methods

Fungal strains

Strains of five mycotoxigenic fungal species were used in this study. These were *A. flavus* (NRRL 3357, an AFB1/B2 producer), *P. verrucosum* (OTA 11, a OTA producer), *A.
westerdijkiae (IBT 23971, OTA producer), F. langsethiae (UK oats, 2004/54, a T-2 producer) and F. graminearum (FgB (L1-2/2D), NIV producer) (Medina and Magan 2010; Nierman et al. 2016; Mohd Danial et al. 2020).

Culture media and inoculation

The strains were subcultured on malt extract agar at 25°C for 7 days in the dark to allow sporulation. The spores were harvested using a surface-sterilized loop in a safety cabinet and placed in 9 ml of sterile water containing 0.01% Tween 80 solution. This was mixed well and the spore concentration determined with a haemocytometer. This was then diluted as required to obtain a final spore concentration of 10⁵ spores per ml for subsequent use in the Bioscreen C wells.

Semisolid yeast extract sucrose (YES) medium containing 20 g l⁻¹ of yeast extract (Sigma Aldrich, Steinheim, Germany), 150 g l⁻¹ of sucrose (Fisher Scientific, Basingstoke, UK), 0.5 g l⁻¹ of magnesium sulphate (Fisher Scientific) and 0-125% w/v of agar (n° 3, Oxoid, Fisher Scientific) was used as the medium in the Bioscreen C 100 well titre plate assays.

Snake venoms and snake venom fractions

The crude snake venoms used in these experiments are listed in Table 1 and were provided by Venomtech Ltd (Kent, UK). First, 10 crude venoms belonging to two different snake families: Elipidae and Viperidae and with origins in different continents were tested. In a second stage, the crude venoms from N. nigricollis and N. siamensis were fractioned by Venomtech using RP-HPLC (McCullough et al. 2018) and 41 and 43 fractions, were obtained, respectively.

Screening of efficacy for growth inhibition and mycotoxin control using the Bioscreen C

The Bioscreen C uses 2 × 100 well microtitre plates (Bioscreen C Microbiological Growth Analyser; Labsystems, Helsinki, Finland). A stock of YES medium was inoculated with the previously prepared spore suspensions to obtain a final concentration of 10⁵ spores per ml. 150 μl of these media was then loaded into the entire 100-well plate. For inoculation, another 150 μl of YES medium and 10% of each crude venom or each venom fraction

![Figure 2](image-url)
were loaded into the wells corresponding to the first column. Then half-dilutions of the crude venoms or the fractions were performed using a multi-channel pipette until a dilution of 1/128 was achieved for each row. The plates were sealed and incubated for 10 days at 25°C. The Bioscreen C automatically controls the temperature.

This system, as previously described by Medina et al. (2012), allows the optical density (OD; 600 nm) to be measured automatically every 30 min and compiled and stored via the Easy Bioscreen Experiment software (EZExperiment) provided. The raw datasets obtained from the Bioscreen C were subjected to two further steps before analysis to correct the different background signals. The determination of the TTD at an OD of 0.5 was calculated using a Microsoft® Excel® template that uses linear interpolation between successive OD readings to do the calculations and was kindly provided by Dr R.J.W Lambert (Bidlas et al. 2008). An increase in the TTD can be correlated with a reduction in fungal growth (Medina et al. 2012).

Mycotoxin analyses

After the 10-day experimental period, the samples were harvested and placed in 2 ml Eppendorfs, labelled and stored at –20°C until analysis. AFB1/B2 (AFBs) quantification was done using a method described by Medina and Magan (2012) with some modifications. 500 µl of chloroform was used as the extraction solvent. For the extractions of OTA and NIV and T-2 toxins, the first step of extraction consisted of the addition of an equal volume (150 µl) of warm distilled water containing 4% agar. Each sample was mixed and left to rest until the agar had solidified. For P. verrucosum and A. westerdijkiae, OTA was extracted by the addition of 500 µl of methanol and shaking for 2 h at 150 rev min⁻¹. The solution was filtered (PTFE, 0-22 µm) prior to analysis by HPLC-FLD using the method of Medina et al. (2004). For type B Trichotheccenes (15-Acetyldeoxynivalenol; 15-AcDON, 3-Acetyldeoxynivalenol; 3-AcDON, Deoxynivalenol; DON and Nivalenol; NIV), 500 µl of methanol : water (80 : 20 v/v) was added to each Eppendorf tube. For T-2 and HT-2 analyses, 500 µl of acetonitrile : water (84 : 16 v/v) was added, then left 2 h under agitation at 150 rev min⁻¹. The samples were then analysed by HPLC-DAD using the method described by Medina et al. (2010).

Acknowledgements

This research was funded by a 7th Framework Program, SP3 Support for training and career development of researchers Marie Curie Actions (Project: PIEF-GA-2009-253014) and received support from a BBSRC-SFI research grant (BB/P001432/1) between the Applied Mycology Group at Cranfield University and the School of Biology and Environmental Science, University College Dublin, Ireland.

Authors’ contribution

CV-V: HPLC and BioScreen C full data analysis and interpretation, writing original, supervision and submission; JM: Lab experiments; EG-C: Practical data analysis and writing review; NM: Writing, reviewing and editing, supervision and AM: Experimental design, concept, supervision, writing, reviewing and funding acquisition.

Conflict of Interest

The authors have no conflict of interest to declare.

References

Aldred, D., Cairns-Fuller, V. and Magan, N. (2008) Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. J Stored Prod Res 44, 341–346.
Bidlas, E., Du, T. and Lambert, R.J.W. (2008) An explanation for the effect of inoculum size on MIC and the growth/no growth interface. Int J Food Microbiol 126, 140–152.
Bluma, R., Amaiden, M.R. and Etcheverry, M. (2008) Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi. Int J Food Microbiol 122, 114–125.
Bound, D., Murthy, P.S. and Srinivas, P. (2016) 2,3-Dideoxyglucosides of selected terpene phenols and alcohols as potent antifungal compounds. Food Chem 210, 371–380.
De Oliveira Junior, N.G., Silva Cardoso, M.H. and Franco, O.L. (2013) Snake venoms: attractive antimicrobial proteinaceous compounds for therapeutic purposes. Cell Mol Life Sci 70, 4645–4658.
Dikhoba, P.M., Mongalo, N.I., Elgorashi, E.E. and Makhafola, T.J. (2019) Antifungal and anti-mycotoxigenic activity of selected South African medicinal plants species. Heliyon 5, e02668.
Duverger, F., Bailly, S., Querin, A., Pinson-Gadais, L., Guerre, P. and Bailly, J.D. (2011) Influence of culture medium and incubation time on the simultaneous synthesis of deoxynivalenol and zearalenone by Fusarium graminearum. Revue Med Vet 162, 93–97.
EPA, United State Environmental Protection Agency (2020) Antimicrobial Pesticides[website]. Available at: https://www.epa.gov/pesticides/antimicrobial-pesticides accessed on 2020-03-27.
European Commission (2020) EU Pesticides Database. Available at: https://ec.europa.eu/food/plant/pesticides/eu-
pesticides-database/public/?event=activesubstance.

European Union (2006) Commission Regulation EC 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur U 364/5.

Ferruz, E., Atanasova-Pélic, V., Bonnin-Verdal, M.-N., Marchegay, G., Pinson-Gadais, L., Ducos, C., Lorán, S., Ariño, A. et al. (2016) Effects of phenolic acids on the growth and production of T-2 and HT-2 toxins by

Fusarium

langsethiae

and

F.

sporotrichioides.

Molecules 21, 449.

García-Díaz, M., Gil-Serna, J., Patiño, B., García-Cela, E., Magan, N. and Medina, A. (2020) Assessment of the effect of

Satureja

montana

and

Origanum

virres

essential oils on

Aspergillus

flavus

growth and aflatoxin production at different water activities.

Toxins 12, 142.

Hope, R., Aldred, D. and Magan, N. (2005) Comparison of environmental profiles for growth and deoxynivalenol production by

Fusarium

colurnarum

and

F.

graminearum

on

wheat

grain.

Lett Appl Microbiol 40, 295–300.

Hope, R. and Magan, N. (2003) Two-dimensional environmental profiles of growth, deoxynivalenol and nivalenol production by

Fusarium

colurnarum

on a wheat-based substrate.

Lett Appl Microbiol 37, 70–74.

Huang, Z., White, D.G. and Payne, G.A. (1997) Corn seed proteins inhibitory to

Aspergillus

flavus

and

aflatoxin biosynthesis.

Phytopathology 87, 622–627.

Kang, H.K., Kim, C., Seo, C.H. and Park, Y. (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review.

J Microbiol 55, 1–12.

El Khoury, R., Atoui, A., Verheecke, C., Maroun, R., El Khoury, A. and Mathieu, F. (2016) Essential oils modulate gene expression and ochratoxin A production in

Aspergillus

carbonarius.

Toxins 8, 242–256.

Lahoum, A., Aouiche, A., Bouras, N., Verheecke, C., Klenk, H.-P., Sabaou, N. and Mathieu, F. (2016) Antifungal activity of a Saharan strain of

Actinomadura

sp.

ACD1 against toxigenic fungi and other pathogenic microorganisms.

J Med Microbiol 26, 193–200.

McCullough, D., Trim, S. and Trim, C. (2018) Investigation of a panel of snake venoms for EGFR phosphorylation reducing capabilities in EGFR over-expressing cancers. In

The European Laboratory and Research Group Conference 2018. https://venomtech.co.uk/wp-content/uploads/2018/11/ELRIG-poster-2018.pdf

Medina, A., González, G., Sáez, J.M., Mateo, R. and Jiménez, M. (2004) Bee Pollen, a substrate that stimulates ochratoxin A production by

Aspergillus

ochraceus

Willh.

Syst Appl Microbiol 27, 261–267.

Medina, A., Lambert, R.J.W. and Magan, N. (2012) Rapid throughput analysis of filamentous fungal growth using turbidimetric measurements with the Bioscreen C: a tool for screening antifungal compounds.

Fungal Biol 116, 161–169.

Medina, A. and Magan, N. (2010) Comparisons of water activity and temperature impacts on growth of

Fusarium

langsethiae

strains from northern Europe on oat-based media.

Int J Food Microbiol 142, 365–369.

Medina, A. and Magan, N. (2012) Comparison of three different C18 HPLC columns with different particle sizes for the optimization of aflatoxins analysis.

J Chromatogr B Anal Technol Biomed Life Sci 889–890, 138–143.

Medina, A., Valle-Algarra, F.M., Jiménez, M. and Magan, N. (2010) Different sample treatment approaches for the analysis of T-2 and HT-2 toxins from oats-based media.

J Chromatogr B 878, 2145–2149.

Mohd Danial, A.M., Medina, A., Sulyok, M. and Magan, N. (2020) Efficacy of metabolites of a

Streptomyces

strain (AS1) to control growth and mycotoxin production by

Penicillium

verrucosum,

Fusarium

verticillioides

and

Aspergillus

fumigatus

in culture.

Myctoxin Res 36, 225–234.

Mylona, K., García-Cela, E., Sulyok, M., Medina, A. and Magan, N. (2019) Influence of two garlic-derived compounds, propyl propane thiosulfonate (PTSO) and propyl propane thiosulfinate (PTSO), on growth and mycotoxin production by

Fusarium

species in vitro and in stored cereals.

Toxins 11, 495–507.

Nalubega, F., Meklat, A., Mellouk, I., Chaabane Chaouch, F., Verheecke, C., Bouras, N., Sokrante, S., Mathieu, F. et al. (2016) Taxonomy and antagonistic activity of A12, a new

Streptomyces

strain isolated from Ugandan soil.

ElWatapour les Rech les Etudes 9, 1–11.

Nierman, W.C., Yu, J., Fedorova-Abrams, N.D., Losada, L., Cleveland, T.E., Bhatnagar, D., Bennett, J.W., Dean, R. et al. (2016) Genome sequence of

Aspergillus

flavus

NRRL 3357, a strain that causes aflatoxin contamination of food and feed.

Genome Announc 3. https://doi.org/10.1128/genomeA.00168-15

San, T.M., Vejayan, J., Shannugan, K. and Ibrahim, H. (2010) Screening antimicrobial activity of venoms from snakes commonly found in Malaysia.

J Appl Sci 10, 2328–2332.

Verheecke, C., Liboz, T., Darriet, M., Sabaou, N. and Mathieu, F. (2014) In vitro interaction of actinomycetes isolates with

Aspergillus

flavus: impact on aflatoxins B1 and B2 production.

Lett Appl Microbiol 58, 597–603.

Wu, F. and Khlangwiset, P. (2010) Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions.

Food Addit Contam Part A 27, 496–509.