Bound Entanglement of Bell Diagonal Pairs of Qutrits and Ququarts: A Comparison

Christopher Popp\textsuperscript{1,\*} and Beatrix C. Hiesmayr\textsuperscript{1,\**}

\textsuperscript{1}University of Vienna, Faculty of Physics, Währingerstrasse 17, 1090 Vienna, Austria
\textsuperscript{\*}poppchristopher@pm.me
\textsuperscript{\**}Beatrix.Hiesmayr@univie.ac.at

ABSTRACT

We classify Bell diagonal bipartite qudits with positive partial transposition (PPT) as entangled or separable and compare their properties for different dimensions. The separability problem, i.e. distinguishing separable and entangled states, generally lacks an efficient solution due to the existence of bound entangled states. In contrast to free entangled states that can be used for entanglement distillation via local operations and classical communication, these states cannot be detected by the Peres-Horodecki criterion or PPT criterion. Leveraging a geometrical representation of states in Euclidean space, we analyze a family of bipartite Bell diagonal qudits that can be separable, free entangled or bound entangled. Extending and applying analytical and numerical methods that almost completely solve the separability problem for Bell diagonal qutrits ($d = 3$), we successfully classify more than 75\% of representative Bell diagonal PPT states for $d = 4$. Via those representative states we are able to estimate the volumes of separable and free and bound entangled states. We find that at least 75.7\% of all PPT states are separable, while only 1.7\% are found to be bound entangled and for 22.6\% it remains unclear whether they are separable or bound entangled. Comparing the structure of bound entangled states and their detectors, we find considerable differences in the detection capabilities and relate those to differences of the Euclidean geometry for qutrits ($d = 3$) and ququarts ($d = 4$). Finally, using a detailed visual analysis of the set of separable Bell diagonal states, a conjecture relating the group structure of Bell diagonal states of the analyzed family to necessary and sufficient mixing conditions for separable states is motivated.
1 Introduction

Quantum technology leverages quantum phenomena for better performance than classical methods for applications like computing, communication, simulation, metrology and cryptography. Quantum information theory provides the theoretical formalism for processing tasks using quantum mechanical systems\(^1\). One of the characteristic properties of a quantum system that allows realizing information processing with superior performance compared to classical systems is entanglement. It has been shown to exist in physical systems\(^2\), providing one of the main resources to realize applications in various fields ranging from quantum teleportation to medical applications for the detection of cancer cells\(^3\). The simplest system to observe entanglement is the bipartite system of two two-level quantum systems, called qubits. Currently, most applications are based on these quantum systems of dimension \(d = 2\), but recently, interest in higher dimensional systems like “qutrits” for \(d = 3\), “ququarts” for \(d = 4\) or “qudits” for general \(d\) is growing due to potential advantages and new observable phenomena\(^4\). Bell states\(^5\) are special sets of entangled states which can be used as basis for the corresponding Hilbert space. They are highly relevant for applications due to the fact that they are maximally entangled states. Originally introduced for \(d = 2\), they can be generalized for higher dimensions\(^6\).

In this paper we analyze mixtures of maximally entangled bipartite Bell states, with focus on \(d = 3\) and \(d = 4\). Those states are locally maximally mixed, meaning that there is no correlation in the respective subsystems. Depending on the mixing probabilities of the \(d^2\) pure Bell basis states, a general mixed state can be entangled or not, in which case it is separable. The Peres-Horodecki criterion, also known as PPT (positive partial transposition) criterion\(^\text{13,14}\), provides an efficient method to detect a state as entangled, if the partially transposed density matrix of a given quantum state has at least one negative eigenvalue, in which case the state is called “NPT”. Otherwise it is called “PPT”. For \(d = 2\), all entangled states are NPT, but for \(d \geq 3\), also PPT entangled states exist\(^\text{15}\). While NPT entangled states can be “distilled”\(^\text{16}\) to result in fewer strongly entangled states, this process is not possible for PPT entangled ones. For this reason PPT entanglement is also called “bound” entanglement, which has been extensively investigated since its discovery by the Horodecki family, e.g. in Refs.\(^\text{16-20}\). 2014, it has also been observed in experiment, using photons entangled in their orbital angular momentum\(^\text{21}\). Many applications like teleportation or superdense coding\(^1\) require strongly entangled states for reliable performance. However, if a given state is transformed to a bound entangled one, this resource is bound for immediate application, since it cannot be used to distill strongly entangled states. For this reason, it is important to know about structure of bound entanglement in a given system and to be able to detect those states reliably, so that operations that result in binding the resource entanglement in certain states can be avoided. However, the “separability problem” to differentiate separable and PPT entangled states has been proved to be NP-hard\(^\text{22}\) in general and lacks an efficient solution. Existing methods to detect PPT entangled states\(^\text{20-26}\) are often strongly limited in the number of states they can detect and are not efficient in higher dimensions. Likewise, no efficient method to decide whether a PPT state is separable or bound entangled states is known for Bell diagonal qudits, which are known to be highly relevant for practical applications\(^\text{29}\). However, special families of these states have strong symmetries that can be leveraged for the analytical and numerical analysis of its properties regarding the entanglement structure\(^\text{12,27,30}\). In particular, the analytical structure of mixed Bell states generated by Weyl-Heisenberg transformations\(^\text{31}\) allows to derive several criteria to detect separability and entanglement\(^\text{12,30}\). Furthermore, an efficient geometric representation of the states, symmetries and entanglement witnesses\(^\text{31,12}\) makes the system well applicable for numerical methods.

Recently, analytical and numerical methods were combined to solve the separability problem for the system in three dimensions in an “almost complete” way\(^\text{33}\). Given any unknown PPT state, the developed methods allow the classification of this state as separable or bound entangled with a probability of success of 95%. Moreover the classification allows the determination of the relative volumes of separable, PPT and NPT entangled states. It was further shown, that a significant share of the PPT states of bipartite, Bell diagonal qudits are bound entangled (at least 13.9%), making this system exceptionally well suited to study this exotic form of entanglement regarding its detection, use in information processing tasks and implications for nature. It is expected that the dimension of the system has a large influence on the structure and the relative shares of entanglement classes, which is a focus of this contribution. While approximations of the relative volumes of separable states in general systems in dependence on the dimension exist\(^\text{34,35}\), the precise numbers depend on the specific system and are not known.

The aim of this work is to extend and apply those methods, used to successfully characterize the system for qutrits\(^33\) for \(d = 4\), to draw conclusions about the structure of entangled and separable states as well as the effectiveness of their detectors and to compare the results to \(d = 2\) and \(d = 3\). The paper is organized as follows: First, the system to be analyzed is defined and relevant methods to generate states and to investigate its entanglement structure are presented for general dimension. Second, we analyze the set of PPT states for \(d = 4\). We quantify the share of this set in the total system and the relative volumes of separable and (bound) entangled states within and compare to other dimensions. Then, the applied criteria to detect separability and entanglement are compared for their effectiveness in different dimensions. Finally, we leverage the special properties of the system to visualize the set of separable states for \(d = 3\) and \(d = 4\). The visual analysis motivates a conjecture about the structure of separable states among Bell diagonal mixtures, relating separability and the group structure of its symmetries.
2 Methods

Consider the Hilbert space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ for the bipartite system of two qudits of dimension $d$. In this work we analyze mixtures of maximally entangled orthonormal Bell states $|\Omega_{k,l}\rangle \in \mathcal{H}$ with $k, l = 0, 1, \ldots, (d - 1)$ generated by applying the Weyl operators $W_{k,l}$ to one qudit of the shared maximally entangled state $|\Omega_{00}\rangle \equiv \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |ii\rangle$:

$$|\Omega_{k,l}\rangle \equiv W_{k,l} \otimes 1_d |\Omega_{00}\rangle$$

(1)

where $W_{k,l} \equiv \sum_{j=0}^{d-1} w^{j/k} |j\rangle \langle j + l \pmod d|$, $w = e^{2\pi i/d}$. Mixing the density matrices, or “Bell projectors”, $P_d \equiv |\Omega_{k,l}\rangle \langle \Omega_{k,l}|$ with mixing probability $c_{k,l}$ defines Bell diagonal states with respect to the above defined Weyl operators and the system of interest for this work:

$$\mathcal{M}_d \equiv \{ \rho = \sum_{k,l=0}^{d-1} c_{k,l} P_{k,l} \mid \sum_{k,l=0}^{d-1} c_{k,l} = 1, c_{k,l} \geq 0 \}$$

(2)

By taking the partial trace with respect to one of the subsystems, the reduced state of any state in $\mathcal{M}_d$ is maximally mixed, so all information is in the correlation of the combined state and not in the subsystems themselves. States with this property are called “locally maximally mixed”. Any state of $\mathcal{M}_d$ is equivalent to a point in $d^2$ dimensional Euclidean space by identifying the mixing probabilities $c_{k,l}$ with coordinates in real space. Due to the normalization of the $c_{k,l}$, the set of these points forms a standard simplex. Referring to the “magic Bell basis” of Wootters and Hill, $\mathcal{M}_d$ is also known as “magic simplex”\(^{12,30,37}\). The properties of the Weyl operators $W_{k,l}$ imply a linear ring structure or “discrete phase space” for operators indexed by the tuples $(k, l)$ based on succeeding application of these operators\(^{12}\). This can be seen via the Weyl relations\(^{11}\) (addition defined modulo $d$):

$$W_{k_1,l_1} W_{k_2,l_2} = w^{l_1 k_2} W_{k_1+k_2,l_1+l_2}$$

$$W_{k,l}^\dagger = w^{kl} W_{-k,-l} = W_{k,l}^{-1}$$

(3)

(4)

In Fig.1 and Fig.2 we visualize this phase space as simple lattice of $d \times d$ vertices, each corresponding to the Weyl operator with according indices $(k, l)$. Depending on the dimension $d$, several subgroups exist and for this work subgroups containing $d$ elements are of special relevancy, as they can be related to the structure of the sets of separable and entangled states. In general, a subgroup is defined by its generating elements. In case $d$ is prime, all subgroups of $d$ elements are generated by one of the Weyl operators. Highlighting the vertices corresponding to a subgroup generated by $W_{k,l}$ induces “lines” in the discrete phase space (see Figure 1). This is different for non-prime dimensions, where subgroups of $d$ elements can additionally be generated by two Weyl operators whose indices contain proper divisors of $d$ in which case “sublattices” are formed in the phase space (see e.g. Figure 2). For more details, consult Ref.\(^{12}\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.png}
\caption{Phase space and exemplary induced subgroups called “lines” for $d = 3$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure2.png}
\caption{Phase space and exemplary induced subgroups called “lines” and “sublattices” for $d = 4$.}
\end{figure}
2.1 Relevant subsets

The properties of $\mathcal{M}_d$ allow the definition of special subsets related to the entanglement properties of contained states, which have been investigated with respect to separability and (bound) entanglement.\textsuperscript{37,38}

Enclosure polytope

The enclosure polytope is a superset of all states with positive partial transposition. It was shown\textsuperscript{12} that all states that have at least one mixing probability $c_{k,l}$ exceeding $1/d$ are necessarily entangled and can be detected by the Peres-Horodecki criterion (PPT criterion). As NPT entangled states they can be distilled by local operation and classical communication (LOCC), and are therefore called “free” and not “bound” entangled\textsuperscript{15}. The enclosure polytope is defined as:

$$\delta_d \equiv \{ \rho = \sum_{k,l=0}^{d-1} c_{k,l} P_{k,l} \mid \sum_{k,l=0}^{d-1} c_{k,l} = 1, c_{k,l} \in [0,1/d] \} \quad (5)$$

Using the representation of $\mathcal{M}_d$ in Euclidean space, $\delta_d$ forms a bounded polytope.

Kernel polytope

For each of the subgroups of $d$ elements induced by the Weyl operators (indexed by $\alpha$), a special “subgroup” or “sublattice state” $\rho_{\alpha}$ can be defined, which is known to be a separable state\textsuperscript{12}. In general, these subgroup states are equal mixtures of Bell states corresponding to a subgroup with probability $1/d$, e.g. the line state $\rho_{\alpha_1} = \frac{1}{d} \sum_{k=0}^{d-1} P_{k,0}$. This gives rise to a kernel polytope $\mathcal{K}_d$, which is defined as convex mixture of these separable line or sublattice states:

$$\mathcal{K}_d \equiv \{ \rho = \sum_{\alpha} \lambda_{\alpha} \rho_{\alpha} \mid \lambda_{\alpha} \geq 0, \sum_{\alpha} \lambda_{\alpha} = 1 \} \quad (6)$$

All states in the kernel polytope are convex combinations of separable states, consequently each state in $\mathcal{K}_d$ is by construction separable and the center corresponds to the maximally mixed state.

2.2 Bell diagonal state generation in arbitrary dimension

Using the geometric representation of $\mathcal{M}_d$ in Euclidean space, any state can be generated by specifying its $d^2$ coordinates $c_{k,l}$. Random sampling as well as deterministic procedures can be used to generate states. It was shown\textsuperscript{33} that via random sampling, uniformly distributed states in $\mathcal{M}_d$ can be generated and used to estimate the relative volumes of the entanglement classes of separable, bound entangled and free entangled states in $\mathcal{M}_d$. The same method can be used for $d > 3$ to generate states in $\mathcal{M}_d$ and $\delta_d$ by drawing the first $d^2 - 1$ coordinates from a uniform distribution in the range $[0,1]$ for $\mathcal{M}_d$ or $[0,1/d]$ for $\delta_d$ respectively. The remaining coordinate is then chosen according to the normalization condition. If this is not possible with a non-negative probability, the coordinates do not represent a normalized physical state and is therefore rejected. This form of rejection sampling becomes less effective with growing dimension $d$ because the probability of a random state being rejected increases rapidly for $d \geq 5$. However, several methods exist to sample uniformly distributed points on the standard simplex and thus in $\mathcal{M}_d$ in any dimension (see Ref.\textsuperscript{39} and the references therein), but these methods are not accessible for sampling of states located only in the polytopes $\delta_d$ or $\mathcal{K}_d$.

2.3 Symmetries and their generation

The ring structure of the Weyl operators $W_{k,l}$ can be used to define linear symmetry transformations\textsuperscript{12,30} acting on states in $\mathcal{M}_d$. These transformations act as permutations on the Bell basis projectors $P_{k,l}$ or equivalently as permutations of the coordinates $c_{k,l}$ of a state in $\mathcal{M}_d$. These symmetry transformations form a group and are known to conserve both the PPT property and entanglement. Together these properties imply the conservation of the entanglement class\textsuperscript{33}, meaning that the subsets of separable, bound entangled and free entangled states are mapped to themselves. For numerical implementations as well as for understanding their action on a given state, any linear symmetry $s$ can be characterized by their action on the basis projectors $s : P_{k,l} \to P_{k',l'}$. All elements of this symmetry group can be generated by combined application of the following group generators (all mathematical operations on the indices are defined as (mod $d$)):

- Momentum inversion: $m : P_{k,l} \to P_{-k,l}$
- Quarter rotation: $r : P_{k,l} \to P_{k,-l}$
- Vertical sheer: $v : P_{k,l} \to P_{k+l,l}$
- Translation: $t_{p,q} : P_{k,l} \to P_{k+p,l+q}$ for $p,q \in (0,\cdots,d-1)$
Due to the finite number of elements \( \{k, l\} \) in the phase space induced by the Weyl operators \( W_{k,l} \), the number of distinct symmetries generated by the generators above is finite as well and can be generated numerically. The number of existing symmetries grows quickly with the dimension. For \( d = 2 \), 24 distinct symmetries can be generated, for \( d = 3 \), 432 and for \( d = 4 \) already 1536 symmetries of this group exist. Taking these symmetries into account is essential for the numerical methods to be effective in the \( d^2 \) dimensional space.

2.4 Criteria for the detection of entanglement and separability

The NP-hard\(^{38} \) separability problem to decide whether a given quantum state in separable or entangled lacks an efficient general solution by polynomial in time algorithms, which is also the case for states in \( \mathcal{M}_d \) for general dimension \( d \). It is currently unclear, whether an efficient general solution exists for the separability problem in \( \mathcal{M}_d \). For \( d = 2 \), however, all entangled states can be detected by the PPT criterion\(^{13,14} \) and recently, an almost complete solution was presented\(^{33} \) for \( d = 3 \), in the sense that any random unknown PPT state in \( \mathcal{M}_3 \) can be classified numerically with a probability of success of 95%. The methods used in this work can be equivalently used or extended to be applicable for \( d > 3 \). In the following we introduce those methods shortly. For more detailed information, the reader is referred to Ref.\(^{13} \) and the references therein.

**E1: PPT criterion**

The “Positive Partial Transpose (PPT)” or “Peres-Horodecki” criterion\(^{13} \) detects entanglement for a bipartite state if it has at least one negative eigenvalue (in which case it is said to be “NPT”). For \( d = 2 \) it detects all entangled states, but for \( d > 3 \) it is only sufficient due to the existence of PPT- or bound entangled states. The partial transpose \( \Gamma \) acts on the basis states of a bipartite state as \( \langle i | j \otimes | k \rangle | l \rangle = \langle i | j \otimes | l \rangle | k \rangle \).

**E2: Realignment criterion**

The realignment operation \( R \) is defined as \( \langle i | j \otimes | k \rangle | l \rangle_R = \langle i | k \otimes | j \rangle | l \rangle \). The realignment criterion\(^{40} \) states that if the sum of singular values of the realigned state \( \sigma_R \) are larger than 1, then \( \sigma \) is entangled. Like the PPT criterion it is only sufficient for entanglement. Bound entangled states can be detected by this criterion, but it does not detect all NPT states in general.

**E3: Quasi-pure concurrence criterion**

The quasi-pure approximation\(^{38} \) \( C_{qp} \) of the concurrence\(^{41} \) allows the efficient detection of entanglement including its bound form. The approximation takes an explicit form for states in \( \mathcal{M}_d \): A state \( \rho = \sum_{k,l=0}^{d-1} c_{k,l} P_{k,l} \in \mathcal{M}_d \) is entangled if \( C_{qp}(\rho) = \max(0, S_{am} - \sum_{(k,l) \neq (n,m)} S_{k,l}) > 0 \) where the \( S_{k,l} \) are explicitly given by\(^{38} \)

\[
S_{k,l} = \sqrt{\frac{d}{2(d-1)} c_{k,l} \left[ \left(1 - \frac{2}{d}\right) c_{n,m} \delta_{k,n} \delta_{l,m} + \frac{1}{d^2} c_{(2n-k) \bmod d,(2n-l) \bmod d} \right]} \tag{7}
\]

and \( (n, m) \) is a multi-index of the coordinate of the largest mixing probability \( \{c_{k,l}\} \).

**E4: MUB criterion**

A set of orthonormal bases \( \{B_k\} \) and \( B_k = \{|i_k| \mid i = 0, \ldots, (d-1)\} \) is called “mutually unbiased bases (MUB)” if \( \forall k \neq l: |\langle i_k | j_l \rangle|^2 = \frac{1}{d} \forall i, j = 0, \ldots, (d-1) \). At most \( d + 1 \) MUBs exist\(^{42,43} \), in which case it was shown\(^{27,44,45} \) that the sum of “mutual predictabilities” obeys

\[
I_{d+1}(\rho_s) = \sum_{k=1}^{d+1} C_k(\rho_s) \leq 2 \tag{8}
\]

for all separable states \( \rho_s \), when defining

\[
C_1(\rho_s) = \sum_{i=0}^{d-1} \langle i_1 | \otimes \langle (i_1 + s \mod d)^* | \rho_s | i_1 \rangle \otimes | i_1 + s \mod d \rangle^* , \tag{9}
\]

\[
C_k(\rho_s) = \sum_{i=0}^{d-1} \langle i_{k+1} | \otimes \langle i_k^* | \rho_s | i_k \rangle \otimes | i_k^* \rangle, \quad k = 2, \ldots, d+1. \tag{10}
\]

Here, \( s = 0, 1, \ldots, (d-1) \) and \( i_k^* \) denotes the complex conjugate vector element. The MUB criterion thus indicates that if any state violates \( (8) \), it is entangled. If \( s > 0 \) and \( s \neq d/2 \) the MUB criterion allows the detection of PPT entangled states\(^{44} \), which was also experimentally demonstrated for entangled photons\(^{27} \) in the case \( d = 3 \). Note, that other, inequivalent MUBs exist, including extendible or unextendible sets of bases that contain less than \( d+1 \) elements\(^{46} \). The set of entangled states that are
detected by the MUB criterion generally depends on the used MUB. For this work, we use MUBs of \( d + 1 \) elements as given in the Appendix A1 and set \( s = 2 \) for \( d = 3 \) and \( s = 3 \) for \( d = 4 \).

**E5: Numerically generated entanglement witnesses**

An entanglement witness \( ^{11} \) ("EW") \( W \) is an observable which implies an upper bound \( U \) and also a lower bound \( ^{32} \) \( L (U, L \in \mathbb{R}) \), for separable states \( \rho_s \):

\[
L \leq \text{tr}[\rho_s W] \leq U
\]

A state \( \rho \) is “detected by \( W \)” to be entangled, if \( \text{tr}[\rho W] \notin [L, U] \). For the system \( \mathcal{M}_d \), EWs of the form \( W = \sum_{k,l=0}^{d-1} \kappa_{k,l} P_{k,l} \) with \( \kappa_{k,l} \in [-1, 1] \) can detect all entangled states \( ^{12} \). In this case \( \rho = \sum_{k,l=0}^{d-1} c_{k,l} P_{k,l} \in \mathcal{M}_d \) and \( \text{tr}[\rho W] = \sum_{k,l=0}^{d-1} c_{k,l} \kappa_{k,l} \equiv c \cdot \kappa \) using the standard scalar product of the \( d^2 \)-dimensional vectors \( c \) and \( \kappa \) with coefficients \( c_{k,l} \) and \( \kappa_{k,l} \). Using the geometric representation of \( \mathcal{M}_d \), an EW defines two \( (d^2 - 1) \)-dimensional hyper-planes via \( c_L \cdot \kappa = L \) and \( c_U \cdot \kappa = U \) and induced halfspaces. Any point in the simplex but outside of the intersection of these halfspaces is entangled. An parameterization of unitaries \( ^{47} \) can be used to numerically determine the bounds for any EW defined by its coefficients \( \kappa_{k,l} \) to create EWs for states in \( \mathcal{M}_d \) numerically.

Leveraging the geometric characterization of \( \mathcal{M}_d \), also sufficient criteria to detect separable states have been developed and used to analyze \( \mathcal{M}_3 ^{33} \). They can be applied for \( d > 3 \) as well and are shortly stated here:

**S1: Extended kernel criterion**

The convexity of the set of separable states can be used to check if an unknown state is contained in the separable hull of known separable states via linear programming. For this work, the implementation of Ref.\(^ {48} \) was used to check an unknown state for separability based on the convex hull of a given set of separable states. Using known separable states in \( \mathcal{M}_d \) as vertices, they form a polytope which approximates the convex set of all separable states in \( \mathcal{M}_d \). The effectiveness of this criterion depends on the quality of this approximation. More separable vertices for the polytope to improve the approximation increase the probability to detect new separable states, but on the other hand the complexity of the linear program also increases. It is therefore important to use vertices that are spatially uniformly distributed and as close to the surface of the set of separable states as possible. The sublattice states \( \rho_{s_k} \) of the kernel polytope \( \mathcal{X}_d \) meet those requirements \( ^{12} \) and by using the entanglement-class-conserving symmetries, more vertices to extend the separable kernel can be generated.

**S2: Weyl/Spin representation criterion**

Based on the Weyl relations \( ^{11} \)

\[
W_{k_1,l_1} W_{k_2,l_2} = w^{k_1 k_2} w^{l_1 + k_2, l_1 + l_2} \\
W_{k,l}^\dagger = w^{k l} W_{-k,-l} = W_{k,l}^{-1}
\]

one can see that the Weyl operators form an orthogonal basis in the space of \( d \times d \) matrices with respect to the trace norm \( \langle A, B \rangle \equiv \text{tr}[A^\dagger B] \). Representing a density matrix \( \sigma \) as \( \sigma = \frac{1}{2} \sum_{k,l=0}^{d-1} s_{k,l} W_{k,l} \) defines the coefficients of this “Weyl representation” as \( s_{k,l} = \text{tr}[W_{k,l}^\dagger \sigma] \). For bipartite states, \( W_{\mu,v} \equiv W_{\mu_1,v_1} \otimes W_{\mu_2,v_2} \) the coefficients are indexed as \( s_{\mu,v} \). It was shown \( ^{49} \) that if \( \sum_{\mu,v} |s_{\mu,v}| \leq 2 \), then \( \rho \) is separable. This criterion for separability is named “Weyl” or “spin representation criterion”.

### 2.5 Symmetry classification

The entanglement class conserving symmetries (see section 2.3) provide further methods to determine the entanglement class of a given unknown state in \( \mathcal{M}_d \). First, all symmetric states are generated by application of the according transformation for all generated symmetries. Then, this set is analyzed with respect to the available criteria. If the entanglement class is determined for one of the symmetric states, then all symmetric states are certainly of the same class. This method can additionally be used to generate more states of a certain class for further investigations.
3 Results

3.1 Volume of PPT states

A first application leveraging the presented methods is to determine the relative volume of states with positive partial transposition in $\mathcal{M}_d$. It was shown\textsuperscript{34,35} that the volume of general separable and bound entangled quantum states decreases exponentially with the dimension of the system. Here, we determine the relative volumes for Bell diagonal states. As described in section 2.1, all states with positive partial transposition are necessarily located in the enclosure polytope $\mathcal{E}_d$ (5) when represented in Euclidean space. This property of $\mathcal{M}_d$ yields an upper bound of the relative share of PPT states in the simplex by comparing the total volume of $\mathcal{M}_d$ to the volume of $\mathcal{E}_d$. The enclosure polytope generally contains both PPT and NPT states, but the ratio depends on the dimension $d$. For $d = 2$, all states of $\mathcal{E}_2$ are known to be separable and thus PPT\textsuperscript{50}, no PPT/bound entangled states exist. For $d = 3$ it was numerically shown\textsuperscript{33} that approximately 60.0% of the states in $\mathcal{E}_3$ (39% of all states in $\mathcal{M}_3$) are PPT. In order to determine the relative volumes of PPT, we generate a large number of uniformly distributed states for dimensions $d = 2,\ldots,10$ and check if they are in the enclosure polytope and if they are PPT. The results are summarized in Figure 3.

![Figure 3. Relative volumes of the enclosure polytope $\mathcal{E}_d$ and PPT states in $\mathcal{M}_d$ for different dimensions $d$](image)

The analysis demonstrates that despite of the fact that the relative volume of the enclosure polytope grows with increasing dimension, the relative number of PPT states quickly decreases. For $d = 4$, 11.6% are PPT and the enclosure polytope $\mathcal{E}_4$ makes up 79.0% of $\mathcal{M}_4$. For $d = 5$, the relative PPT volume reduces to 7.3% and already for $d = 6$, less than 1% are PPT, although 97.1% of states in $\mathcal{M}_6$ are located in $\mathcal{E}_6$.

3.2 Entanglement classification of PPT states in $\mathcal{E}_d$

In order to compare the entanglement properties of mixed Bell diagonal states for the dimension $d = 2,3,4$, we use uniformly generated random states in $\mathcal{E}_d$ and classify them with the criteria for separability and entanglement presented in section 2.4 in order to estimate the share of each entanglement class. As mentioned above in Section 3.1, the classification of bipartite qubits can be completely characterized by the PPT criterion (E1): all states in $\mathcal{E}_2$ are PPT and separable, no PPT entangled states exist. For $d = 3$, we take the results of the previous investigation\textsuperscript{33}, in which 96.1% of generated states in $\mathcal{E}_3$ have been successfully classified. To determine the relative volumes of entanglement classes among the PPT states for $d = 4$ with comparable precision, 40000 random states are generated in $\mathcal{E}_4$ out of which 96.7% can be successfully classified. The 60% of states in $\mathcal{E}_3$ and 14.6% of $\mathcal{E}_4$ that have positive partial transposition are labeled as “SEP” or “BOUND” if they are detected as separable or entangled by the criteria E2-E5 or S1-S2. If none of the criteria allows classification, the state is labeled “PPT-UNKNOWN”. Table 1 summarizes the results:
Comparing the numerical classifications for $d = 3$ and $d = 4$, three noteworthy differences can be seen: First, the relative number of PPT-UNKNOWN states is significantly higher for $d = 4$ (22.6\%) than for $d = 3$ (5.1\%), although the success rates (96.7\% and 96.1\%) for the classification with respect to the total number of generated states in $d_3$ and $d_4$ are similar. Second, the share of separable states in $d = 4$ (75.7\%) among the PPT states is quite high, in spite of the large number of yet to be classified PPT states. Third, the number of detected bound entangled states in $d = 4$ (1.7\%) is significantly lower than for $d = 3$ (13.9\%). Although it is possible that a large part of the PPT-UNKNOWN states are in fact BOUND and thus could potentially be detected by criterion E5, this shows that the detection capability of the analytical criteria (E2-E4) is more limited for $d = 4$ than for $d = 3$.

### 3.3 Detection capabilities and relations of applied criteria

The detection and thus differentiation between bound entangled and separable states is the core of the separability problem. Hence, the detection capabilities of the presented detectors for the classes SEP and BOUND are of special interest. Table 2 shows for each relevant criterion and dimension $d$ the share of detected states among all SEP, respectively BOUND, classified states.

| Entanglement Class | Share of PPT for $d = 2$ | Share of PPT for $d = 3$ | Share of PPT for $d = 4$ |
|-------------------|--------------------------|--------------------------|--------------------------|
| SEP               | 100\%                    | 81.0\%                   | 75.7\%                   |
| BOUND             | 0\%                      | 13.9\%                   | 1.7\%                    |
| PPT-UNKNOWN       | 0\%                      | 5.1\%                    | 22.6\%                   |

Table 1. Relative volumes of entanglement classes among the PPT states for $d = 2, 3, 4$

Table 2. BOUND and SEP detectors and their detection shares for $d = 3$ and $d = 4$

On the one hand, one notices that the strongest detectors for bound entangled Bell diagonal qutrits are also the most successful detectors in $d = 4$, namely E2 and E5. Relative to the total amount of detected bound entangled states, E2 seems to perform equally well in both dimensions. However, due to the large amount of PPT-UNKNOWN states, the relative detection power could be much worse. Still, E2 is clearly the strongest applied analytical criterion for $d = 3$ and $d = 4$. The criterion based on combining many numerically generated witnesses, E5, detects a large share of the identified BOUND states for both analyzed dimensions, however, the share is lower for $d = 4$ (86.6\% for $d = 3$, 68.7\% for $d = 4$). Considering the PPT-UNKNOWN states, the true detection capability of this criterion might be even below the determined share of 68.7\% for $d = 4$, even though more EWs were used for $d = 4$ (approximately 22700 compared to 16700 for $d = 3$). This indicates that a single randomly generated numerical EW most likely is a weaker detector for the higher dimension.

On the other hand, the other detectors are clearly weaker in $d = 4$ compared to $d = 3$. The second strongest criterion in $d = 3$, E3, detects 19.1\% of the BOUND qutrits in, while only 2.2\% in $d = 4$. Again, the true detection capability is likely even below that due to the large number of unclassified PPT states. E4 detects a significant share (13.5\%) of bound entangled qutrits while no PPT entangled qudits for $d = 4$. Likewise, S2 detects no states as separable for $d = 4$.

These differences are also clearly reflected when comparing the criteria E2-E5 pairwise as shown in Figures 4 and 5. The only criteria that have a significant number of jointly detected states in $d = 4$ are the detectors E2 and E5 (44.4\% of combined detected states), although the share is smaller than for $d = 3$ (67.7\%), confirming the reduced effectiveness of numerical EWs in the higher dimension. For $d = 4$, the other pairs are rather trivial, because of the very low number of detected states by E3 and E4. It should be noted, however that E3 detects one bound state that is neither detected by E2 nor by E5. Interestingly, this criterion also detects significant shares of bound entanglement that are not detected jointly by E2 or E5 in $d = 3$.

A final remark can be made related to the purity $\text{tr}\rho^2$ of detected bound entangled states $\rho$. For $d = 3$, the least pure states were detected by the criterion E3 but not E2 or E4. The few detected states for $d = 4$ do not allow to confirm this observation, although it can be noted that the least pure bound state is also uniquely detected by E3.

8/19
3.4 Visual analysis of separable states in $\mathcal{M}_3$ and $\mathcal{M}_4$

The set of separable states in $\mathcal{M}_d$ forms a convex geometric body when represented as set of points in $d^2$ dimensional Euclidean space via their coordinates $c_{k,l}$. Analyzing the geometric properties of this set is required to improve geometric methods of entanglement detection or to provide new insights about the geometry of such quantum states in general (see e.g. Ref.\textsuperscript{51}). For $d = 2$, the geometric properties have been analyzed\textsuperscript{50} in detail before. Here we present visualizations based on generated or classified separable states in $\mathcal{M}_d$ for dimensions 3 and 4, in order to observe first properties that can be used as starting points for future investigations. Naturally, not all coordinates of the $d^2$ dimensional space can be visualized at once, however, the symmetries (see section 2.3) allow to capture some essential geometric properties, even if only $d$ coordinates are shown. The reason for this are $d$-element subgroups that are induced by the underlying ring structure (see Fig. 1 and 2). These subgroups can be mapped onto each other with a corresponding symmetry transformation. Since these transformations conserve the entanglement class and act as permutations on the coordinates $c_{k,l}$, different sets of $d$ coordinates will show the same geometric properties if they are symmetric. Here, we consider the special subgroups represented by lines\textsuperscript{12,30} in the discrete phase space that are induced by the consecutive application of simple translations $t_{1,0}$ or $t_{0,1}$. For example in $d = 3$, the indices $(k,l)$ of the first three coordinates $(c_{0,0}, c_{1,0}, c_{2,0})$ form a line, because they are related by the translation $t_{1,0}$. The geometric properties of these coordinates are then equivalent to e.g. those of $(c_{0,2}, c_{1,2}, c_{2,2})$, as the symmetry transformation $t_{0,2}$ relates the collections. Two sets of separable states are used for visualizations in each dimension. First, the uniformly distributed SEP-classified states, used for the results in 3.2 and second, the set of separable states that are used for the kernel extension (see S1 in section 2.4), which are specifically optimized to be close to the surface of the set of separable states. We use three coordinates for a 3D-visualization and encode a fourth coordinate by the color ranging from dark blue for small coordinate values close to 0 to bright yellow for high values close to $1/d$.

Figures 6 and 7 show the first four coordinates of the classified SEP states in both dimensions. The states have the highest density close to the center representing the maximally mixed state and no dominant correlation between the three “spatial coordinates” and the “color coordinate” can be seen.
Using separable states that maximize the distance to the kernel center and are therefore located close to the surface of the separable area of $\mathcal{M}_d$, a sharper picture of the shape of the separable set of states can be obtained, although these states are not uniformly distributed.

Figure 8 shows the geometric distribution of the first three coordinates on a line and a fourth coordinate encoded by the color for $d = 3$ from two point of views. A structure, similar to a cone spanned by the corners of the enclosing polytope $E_3 \{(1/3,0,0),(0,1/3,0),(0,0,1/3)\}$ and the vertex of the kernel polytope $K_3 \{(1/3,1/3,1/3)\}$ is visible, while no correlation with the off-line coordinate $c_{0,1}$ can be identified. Note that there are no separable states for which two coordinates of the line, e.g. $c_{0,0}(x)$ and $c_{1,0}(y)$, are large while the remaining line coordinate, e.g. $c_{2,0}(z)$, is small.

The following Figure 9 shows the four coordinates of the same line for $d = 4$. Several observations can be made. First, two cones can be seen. One pointing to the corner of $K_4$ corresponding to the visualized line, the second to the point $(1/4,0,1/4)$
corresponding to a sublattice which exist only for non-prime dimensions $d$. Second, the two cones show an opposing correlation to the fourth coordinate. While all separable states close the point $(1/4, 1/4, 1/4)$ have a high value for the fourth coordinate (yellow), all points close to the point $(1/4, 0, 1/4)$ have a very small value (blue). Third, there is no symmetric cone and thus no separable states in the vicinity of $(0, 1/4, 1/4)$. Instead, there is an accumulation of high values of the fourth coordinate close to $(0, 1/4, 0)$.

**Figure 9.** $c_{0,0}, c_{1,0}, c_{2,0}, c_{3,0}$ for optimized separable states for $d = 4$, demonstrating exclusive strong correlations of on-line and additionally on-sublattice coordinates.

Below, we visualize projections to coordinates, which do not all relate to the same line and choose each remaining coordinate to be part of different lines. Considering $d - 1$ coordinates on a line for $d = 3$, the geometric shape and color indicating correlations of these coordinates (Fig.10) look very different compared to completed lines (Fig.8). No separable states are present for large values in all three spacial coordinates, which is the case if these coordinates form a line. Instead, there are only correlations for two out of the three coordinates. However, the color-encoded variable $c_{2,2}$ indicates correlations of this coordinate when combining large coordinate values of $c_{0,1}(z)$ and $c_{1,0}(y)$ with small values of $c_{0,0}(x)$ or when combining high values of $c_{0,0}(x)$ with small values of both $c_{0,1}(z)$ and $c_{1,0}(y)$. 
Choosing the last coordinate to not be on a line with the first three spatial coordinates for $d = 4$ in Fig. 11 demonstrates the different correlation to the fourth color coordinate depending on whether it forms a line with the spatial coordinates or not. Here, all states of the peak directed to the point $(1/4, 1/4, 1/4)$ have low values of the off-line color coordinate, while the values are high, if the color coordinate is part of the same line as the spatial coordinates (Fig. 9). Additionally, many yellow-marked states can be seen for high values of $c_{2,0}(z)$ if the other coordinates are small, whereas this is not the case in Fig. 9. This shows that if two coordinates on a line are small, the correlation between a third line coordinate and an off-line coordinate differs from the correlation of this third line coordinate with a fourth on-line coordinate.

Figure 11. $c_{0,0}, c_{1,0}, c_{0,1}, c_{2,2}$ for optimized separable states for $d = 4$, demonstrating necessity of full-line mixing for separability.

Exchanging another on-line coordinate with an off-line coordinate for $d = 4$ (compare Fig. 12, 13) demonstrates a similar
structure as for two line-related coordinates in $d = 3$ in Fig.10: If the two on-line coordinates are large, then there are no separable states that have large off-line coordinate values. If one on-line coordinate is large while the other is low, there are separable states with large off-line coordinates and the correlations depend on which variables are considered (compare e.g. the left graphics of Fig.12 and Fig.13: For large values of $c_{0,0}(x)$ and small values of $c_{1,0}(y)$, the correlations of $c_{2,2}(color)$ with $c_{2,1}(z)$ or $c_{3,1}(z)$ have opposing sign).

Figure 12. $c_{0,0}, c_{1,0}, c_{2,1}, c_{2,2}$ for optimizing separable states for $d = 4$.

Figure 13. $c_{0,0}, c_{1,0}, c_{3,1}, c_{2,2}$ for optimizing separable states for $d = 4$, demonstrating dependence of correlations on subgroup affiliation.

The visual analysis allows first qualitative conclusions about the geometric structure of separable, Bell diagonal states of $\mathcal{M}_d$ in dimensions $d = 3$ and $d = 4$.

First, the dominant shape of the convex body of separable states represented in Euclidean space is approximately similar to the Kernel polytope for both $\mathcal{K}_d$. For all presented projections of optimized separable states to four coordinates (Fig.8-Fig.13), the
vertices of the kernel polytope, namely the subgroup states (see 2.1), are also characteristic points in the total set of separable Bell diagonal states. Close to the vertices, the sets of separable states resemble linear cones, but in the space between the vertices, separable states form a more curved body.

Second, the subgroups induced by the Weyl operators clearly play a crucial role in the formation of separable states. This is seen by comparing the visualized structures for varying number of coordinates of the same subgroup (line). For qutrits, Fig.8 shows that if two Bell states are mixed with probability close to $1/d$, the only Bell state that allows to obtain a separable state is the one belonging to the same line as the first Bell states. Moreover, the closer the mixing probabilities of the first two Bell states is to $1/d$, the larger is the probability of the third for separable states. On the contrary, there is no correlation of the three on-line Bell states with a fourth, off-line coordinate visible.

Similar conclusions can be drawn for $d = 4$, although the geometric structure looks different at first sight (see Fig.9). The main difference compared to $d = 3$ is the existence of subgroups corresponding to sublattice in addition to lines. These create more correlations in the set of separable states, since some pairs of coordinates can be affiliated with several subgroups (e.g. $c_{0,0}$ and $c_{2,2}$ are both part of the line $(c_{0,0}, c_{1,1}, c_{2,2}, c_{3,3})$ and the sublattice $(c_{0,0}, c_{2,0}, c_{0,2}, c_{2,2})$). Nonetheless, the observed correlations are very similar. If three Bell states on a line or a sublattice are mixed each with probability close to $1/d$, then the fourth on-line/on-sublattice Bell state is necessarily approximately equally probable if the resulting state is separable. There are no separable states, if the fourth on-line/sublattice Bell state is not sufficiently mixed in. Furthermore, if the probability of the third on-line/sublattice Bell state is close to 0, while it is high for the first two, then the probability of the fourth on-line/sublattice state is also close to 0, if the mixed state is separable (compare the dark blue color of the right cone of Fig.9).

Figures 10 and 11 allow the conclusion that even less on-line/sublattice states with high mixing probability are required to determine geometrical properties of separable Bell diagonal states. If, for $d = 3$, two Bell states are mixed with probability close to $1/3$, there is no third off-line coordinate that can be added to the mixture with high probability, so that the state is separable. In case of $d = 4$, considering three of four Bell states are on a line, while the fourth is off-line, shows similar behavior. The peak representing high probabilities close to $1/d$ for the on-line states now contains only separable states with low probability of the off-line state. This confirms that the fourth state has to be on-line as well in order to produce a separable mixed state. With two on-line/sublattice Bell states of high probability, there cannot be a separable state that has Bell states of similar probability mixed in that are not part of a common line or sublattice (compare Fig.13).
4 Discussion and Conclusion

In this work we analyzed states of the bipartite system of mixed Bell states, which are related by Weyl transformations, with focus on subsystems with dimension 2, 3 and 4. The entanglement class of these locally maximally mixed states depends on the mixing probabilities and can be separable, NPT/free entangled or for $d > 2$ also PPT/bound entangled.

In order to investigate the properties for $d = 4$, i.e. bipartite ququarts, we extended the applied methods recently used to analyze the system of bipartite qudits. Leveraging a geometric representation, a random sampling of uniformly distributed states can be used to estimate the relative sizes of the entanglement classes via various criteria to detect separability and entanglement, including its bound version. Using this representation together with a group of entanglement class preserving symmetries, related analytical properties and an efficient parameterization of states allows us to draw several conclusions about the entanglement properties of bipartite qudits and their dependence on the dimension for $d = 2, 3$ and 4.

A first observation is that the relative number of states with positive partial transposition, so either separable or bound entangled, decreases very quickly with growing dimension, despite of increasing relative volume of the enclosure polytope $\mathcal{P}_d$, known to contain all PPT states. The share of PPT states in the full “magic simplex” $M_d$ decreases from 50% for $d = 2$ to 39% for $d=3$ to 12% for $d = 4$. For $d > 5$, less than 1% of states are PPT.

The second observation is that significantly less bound entangled states can be detected, while the number of states that cannot be classified is considerably higher for $d = 4$ than for $d = 3$. To determine the relative volumes of entanglement classes for the enclosure polytope in $d = 4$ and compare them to $d = 3$, 40000 states in $\mathcal{Q}_4$ have been created and classified with a probability of success of 96.7%. In principle, the probability of success could further be improved by extension of the numerical analyses and more states could easily be classified.

In order to compare to $d = 3$, however, the extend of the numerical analysis and the number of states are chosen to result in a similar probability of success and number of PPT states. Limited to the set of PPT states, 77.4% of states could be successfully differentiated between separable and bound entangled states. The developed methods can be efficiently and repeatedly applied to new unknown states to solve the NP-hard “separability problem” with a probability of success of 77.4% for Bell diagonal ququarts in the magic simplex. Out of all PPT states in the system $M_d$, at least 75.7% are determined to be separable and 1.7% are classified as bound entangled. The share of detected bound entangled states is clearly smaller than for $d = 3$ (13.9%), however, compared to the results of $d = 3$, a higher share (22.6 % vs 5.1%) of PPT states could not be classified and it remains unclear whether they are separable or bound entangled.

A third result can be stated regarding the detection capabilities of the applied criteria. The applied detectors for separability (S1, S2) or bound entanglement (E2-E5) are either based on deterministic, analytical conditions (S2, E2, E3, E4) or on a combined collection of numerically generated objects, i.e., vertices for the extension of the kernel polytope for S1 or EW-defining hyperplanes for E5. It can be seen from the large share of unclassified PPT states, as well as from the relative shares of detected states by the criteria in each class, that both types of detectors are less powerful for classification in $d = 4$. Out of the analytical criteria for entanglement detection (E2-E4), for $d = 4$, only E2 detects a significant amount of bound entangled states, while E3 detects very few and E4 none at all, though it is known that E4 can detect bound entangled Bell diagonal states in $d = 4$. This is in strong contrast to $d = 3$, where the later two criteria allow the detection of 19.1% and 13.5% of all BOUND classified states. Interestingly, E3 still detects bound entanglement in $d = 4$ that cannot be detected with E2. This can also be observed for $d = 3$, where E3 can detect more strongly mixed entangled states than E2. The numerical criteria S1 and E5 also show reduced detection capability. Although S1 detects more than 75% of the PPT states as separable, the large number of unclassified states suggests that many separable states might not be detected by the used kernel extension. In addition to the share of classified states, the reduced number of states that are both detected by the analytical criterion E2 and the numerical E5 is also an indication of lower detection power of a single randomly generated EW for $d = 4$. another striking difference between $d = 3$ and $d = 4$ is that S2 does not detect or is very unlikely to detect any separability for $d = 4$.

Many BOUND states that are detected by E2 are thus not confirmed by the criterion E5, which clearly shows that the number of generated EWs is not high enough, although more EWs were used than for $d = 3$. Two main reasons are likely responsible for the weaker performance in $d = 4$: First, the higher dimension of the Euclidean space and second, the different geometric properties of the set of separable states in $M_d$ related to the properties of the Weyl operators and their induced phase space in non-prime dimensions. Both criteria represent approximations of this convex set: S1 represents an polytope approximation from within by identifying separable vertices close to the surface of separable states, while E5 represents an enclosing approximation with the hyperplanes defined by the upper and lower bounds of the EWs. The higher the dimension of the Euclidean space, the more objects (vertices/hyperplanes) are needed for a sufficient approximation and a generated set of objects may not be sufficient to achieve a comparable probability of success. The geometric properties of the (unknown) convex body formed by separable states are also relevant, as they determine the results of optimization procedures over the set of separable states in the whole Hilbert space, on which the generation of EWs and separable vertices rely.

Finally, we used states close to the surface of the set of separable states to enable visual analyses concerning the structure of separable states in $M_d$. We argued that relevant information can be extracted by considering projections to $d$ coordinates, which can be visualized by 3D-charts including a color encoding, due to the special symmetries in $M_d$ for $d = 3$ and $d = 4$. 

15/19
Several visualizations were presented and it was shown that the states defined by the induced subgroup structure of the Weyl operators, which are used to define the kernel polytope $\mathcal{K}_d$, also determine the dominant shape of the body of separable states. The observed shape and color of different projections to coordinates revealed correlations for the mixing probabilities of separable states. Considering a varying number of coordinates belonging to special subgroups called lines or sublattices, it was demonstrated for both $d = 3$ and $d = 4$ that if a separable state has a large share of probability concentrated on some Bell states belonging to the same subgroup, then the remaining Bell states of that subgroup have a large probability, as well. On the contrary, if at least two Bell states of the same subgroup have high probability close to $1/d$, while also a Bell state of a different subgroup has a high probability, then the mixed state is not separable. These insights motivate the following conjecture: A state in $\mathcal{M}_d$ is separable, if and only if it is either sufficiently close to the maximally mixed state, i.e. has sufficiently uniformly distributed mixing probabilities, or if the mixing probabilities are sufficiently concentrated on Bell states belonging only to the same subgroup of the ring structure induced by the Weyl operators.

In conclusion, the methods for state generation and entanglement analysis applied to the system of $d = 3$ can also be successfully applied to $d = 4$ (with extensions), although with reduced effectiveness. Nonetheless, the presented methods solve the separability problem for $\mathcal{M}_d$ to a large extend, since any unknown state in $\mathcal{M}_d$ can efficiently be classified as separable or (bound) entangled with high probability of success. Significant differences in the relative volumes of the entanglement classes and in the detection capabilities of criteria for separability and entanglement are observed for $\mathcal{M}_3$ and $\mathcal{M}_4$. Based on its geometric properties, a conjecture for the structure of separable states in $\mathcal{M}_d$ can be stated.

These contributions can serve as starting point to further improve the methods for classification and the general understanding of the entanglement structure of Bell diagonal qudits or general quantum states. On the one hand, further numerical investigations, extending the current results in terms of higher dimensions $d \geq 5$ or the structure of bound entangled quantum states, are possible. The applied sampling methods remain efficient for Bell diagonal states and thus allow the confirmation of results concerning the exponential decrease of volume for separable general quantum states with growing dimension as reported in Ref.\cite{34,35} or the observation of special properties for Bell diagonal states. Recently, a sequentially constrained Monte Carlo sampler (SCMCS) for quantum states was proposed\cite{52}, which allows efficient sampling of quantum states subject to constraints like PPT or detection properties for specific entanglement criteria. This method could be used to generate general bound entangled quantum states and compare their properties to those of Bell diagonal states or for the detailed investigation of detection capabilities of certain entanglement witnesses. On the other hand, the reported structure of separable Bell diagonal states in $\mathcal{M}_d$ indicate properties that can be related to those of the Weyl operators and their induced phase space structure. The presented methods help to create, confirm or refute hypothesis about the structure of separable or entangled Bell diagonal states for different dimensions. Thus, they could provide a new accesses to the separability problem, the detection of bound entanglement or application relevant properties of quantum systems using entangled qudits.
References

1. Nielsen, M. A. & Chuang, I. L. *Quantum Computation and Quantum Information* (Cambridge University Press, 2000).
2. Hensen, B. *et al.* Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. *Nature* **526** (2015).
3. Moskal, P. *et al.* Time resolution of the plastic scintillator strips with matrix photomultiplier readout for j-PET tomograph. *Physics in Medicine and Biology* **61**, 2025–2047 (2016). URL https://doi.org/10.1088/0031-9155/61/5/2025.
4. Moskal, P. & Stepień, E. Prospects and clinical perspectives of total-body pet imaging using plastic scintillators. *PET Clinics* **15** (2020). URL https://doi.org/10.1016/j.jcpet.2020.06.009.
5. Hiesmayr, B. C. & Moskal, P. Genuine multipartite entanglement in the 3-photon decay of positronium. *Scientific Reports* **7**, 15349 (2017). URL https://doi.org/10.1038/s41598-017-15356-y.
6. Hiesmayr, B. C. & Moskal, P. Witnessing entanglement in compton scattering processes via mutually unbiased bases. *Scientific Reports* **9**, 8166 (2019). URL https://doi.org/10.1038/s41598-019-44570-z.
7. Cozzolino, D., Da Lio, B., Bacco, D. & Oxenløwe, L. K. High-dimensional quantum communication: Benefits, progress, and future challenges. *Advanced Quantum Technologies* **2**, 1900038 (2019). URL https://doi.org/10.1002/qute.201900038.
8. Wang, Y., Hu, Z., Sanders, B. C. & Kais, S. Qudits and high-dimensional quantum computing. *Frontiers in Physics* **8**, 479 (2020). URL https://www.frontiersin.org/article/10.3389/fphy.2020.589504.
9. Braunstein, S. L., Mann, A. & Revzen, M. Maximal violation of bell inequalities for mixed states. *Phys. Rev. Lett.* **68**, 3259–3261 (1992). URL https://link.aps.org/doi/10.1103/PhysRevLett.68.3259.
10. Sych, D. & Leuchs, G. A complete basis of generalized bell states. *New Journal of Physics* **11**, 013006 (2009). URL https://doi.org/10.1088/1367-2630/11/1/013006.
11. Bennett, C. H. *et al.* Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. *Phys. Rev. Lett.* **70**, 1895–1899 (1993). URL https://link.aps.org/doi/10.1103/PhysRevLett.70.1895.
12. Baumgartner, B., Hiesmayr, B. C. & Narnhofer, H. A special simplex in the state space for entangled qudits. *J. Phys. A: Math. Theor.* **40**, 7919 (2007). URL https://doi.org/10.1088/1751-8113/40/28/S03.
13. Peres, A. Separability criterion for density matrices. *Phys. Rev. Lett.* **77**, 1413–1415 (1996). URL https://link.aps.org/doi/10.1103/PhysRevLett.77.1413.
14. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. *Physics Letters A* **223**, 1–8 (1996). URL https://www.sciencedirect.com/science/article/pii/0375960196007062.
15. Horodecki, M., Horodecki, P. & Horodecki, R. Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature? *Phys. Rev. Lett.* **80**, 5239–5242 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5239.
16. Bej, P. & Halder, S. Unextendible product bases, bound entangled states, and the range criterion. *Physics Letters A* **386**, 126992 (2021). URL https://www.sciencedirect.com/science/article/pii/S0375960120308598.
17. Lockhart, J., Gühlne, O. & Severini, S. Entanglement properties of quantum grid states. *Phys. Rev. A* **97**, 062340 (2018). URL https://link.aps.org/doi/10.1103/PhysRevA.97.062340.
18. Bruß, D. & Peres, A. Construction of quantum states with bound entanglement. *Phys. Rev. A* **61**, 030301 (2000). URL https://link.aps.org/doi/10.1103/PhysRevA.61.030301.
19. Slater, P. B. Jagged islands of bound entanglement and witness-parameterized probabilities. *arXiv: Quantum Physics* (2019). URL https://doi.org/10.48550/arXiv.1905.09228.
20. Choi, M.-D. Some assorted inequalities for positive linear maps on C*-algebras. *Journal of Operator Theory* **4** (1980).
21. Chruściński, D. & Sarbicki, G. Entanglement witnesses: construction, analysis and classification. *J. Phys. A: Math. Theor.* **47**, 483001 (2014). URL https://doi.org/10.1088/1751-8113/47/48/483001.
22. Klev, A. & Bae, J. Optimal approximate transpose map via quantum designs and its applications to entanglement detection. *Phys. Rev. A* **87**, 062314 (2013). URL https://link.aps.org/doi/10.1103/PhysRevA.87.062314.
23. Bae, J. Designing quantum information processing via structural physical approximation. *Reports on Progress in Physics* **80**, 104001 (2017). URL https://doi.org/10.1088/1361-6633/aa7d45.

24. Korbicz, J. K., Almeida, M. L., Bae, J., Lewenstein, M. & Acín, A. Structural approximations to positive maps and entanglement-breaking channels. *Phys. Rev. A* **78**, 062105 (2008). URL https://link.aps.org/doi/10.1103/PhysRevA.78.062105.

25. Huber, M., Mintert, F., Gabriel, A. & Hiesmayr, B. C. Detection of high-dimensional genuine multipartite entanglement of mixed states. *Phys. Rev. Lett.* **104**, 210501 (2010). URL https://link.aps.org/doi/10.1103/PhysRevLett.104.210501.

26. Augusiak, R., Bae, J., Tura Brugués, J. & Lewenstein, M. Checking the optimality of entanglement witnesses: An application to structural physical approximations. *J. Phys. A: Math. Theor.* **47** (2014). URL https://iopscience.iop.org/article/10.1088/1751-8113/47/6/065301.

27. Hiesmayr, B. C. & Löffler, W. Complementarity reveals bound entanglement of two twisted photons. *New J. Phys.* **15**, 083036 (2013). URL https://doi.org/10.1088/1367-2630/15/8/083036.

28. Gurvits, L. Classical deterministic complexity of edmonds’ problem and quantum entanglement. In *Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing*, STOC ’03, 10–19 (Association for Computing Machinery, New York, NY, USA, 2003). URL https://doi.org/10.1145/780542.780545.

29. Werner, R. F. All teleportation and dense coding schemes. *Journal of Physics A: Mathematical and General* **34**, 7081–7094 (2001). URL https://doi.org/10.1088/0305-4470/34/35/332.

30. Zyczkowski, K., Horodecki, P., Sanpera, A. & Lewenstein, M. Volume of the set of separable states. *Phys. Rev. A* **58**, 883–892 (1998). URL https://link.aps.org/doi/10.1103/PhysRevA.58.883.

31. Zyczkowski, K. Volume of the set of separable states. ii. *Phys. Rev. A* **60**, 3496–3507 (1999). URL https://link.aps.org/doi/10.1103/PhysRevA.60.3496.
44. Bae, J., Bera, A., Chruściński, D., Hiesmayr, B. C. & McNulty, D. How many measurements are needed to detect bound entangled states? (2021). 2108.01109.

45. Spengler, C., Huber, M., Brierley, S., Adaktylos, T. & Hiesmayr, B. C. Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012). URL https://link.aps.org/doi/10.1103/PhysRevA.86.022311.

46. Hiesmayr, B. C. et al. Detecting entanglement can be more effective with inequivalent mutually unbiased bases. New Journal of Physics 23, 093018 (2021). URL https://doi.org/10.1088/1367-2630/ac20ea.

47. Spengler, C., Huber, M. & Hiesmayr, B. C. A composite parameterization of unitary groups, density matrices and subspaces. J. Phys. A: Math. Theor. 43, 385306 (2010). URL https://doi.org/10.1088/1751-8113/43/38/385306.

48. Forets, M. & Schilling, C. Lazysets.jl: Scalable symbolic-numeric set computations ∗. Proceedings of the JuliaCon Conferences 1, 97 (2021). URL https://doi.org/10.21105/jcon.00097.

49. Chruściński, D. & Pittenger, A. O. Generalized circulant densities and a sufficient condition for separability. J. Phys. A: Math. Theor. 41, 385301 (2008). URL https://doi.org/10.1088/1751-8113/41/38/385301.

50. Bertlmann, R. A., Narnhofer, H. & Thirring, W. Geometric picture of entanglement and bell inequalities. Phys. Rev. A 66, 032319 (2002). URL https://link.aps.org/doi/10.1103/PhysRevA.66.032319.

51. Bengtsson, I. & ˙Zyczkowski, K. Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006).

52. Li, W., Han, R., Shang, J., Ng, H. K. & Englert, B.-G. Sequentially constrained monte carlo sampler for quantum states (2021). URL https://arxiv.org/abs/2109.14215.

5 Appendix

A1: MUB sets for \( d = 3 \) and \( d = 4 \)

The following sets of bases are known to be mutually unbiased\(^{45} \) and non-decomposable, i.e. able to detect bound entanglement\(^{44} \). Note, that other MUBs exist, which generally detect different sets of entangled states\(^{44,46} \). For \( d = 3 \) and \( d = 4 \) and \( w = \exp\left(\frac{2\pi i}{d}\right) \), the used bases with basis vectors combined to matrix columns and represented in the computational basis read as follows:

\( d = 3 \):

\[
B_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ w & 1 & w^2 \end{pmatrix}, \quad B_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ w & 1 & w^2 \\ w^2 & w & 1 \end{pmatrix}, \quad B_4 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ w & 1 & w \\ w^2 & w & 1 \end{pmatrix}
\]

\( d = 4 \):

\[
B_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}, \quad B_3 = \frac{1}{2} \begin{pmatrix} -i & -i & i & i \\ -i & i & i & -i \\ -i & i & -i & i \\ -i & i & i & -i \end{pmatrix}, \quad B_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -i & -1 & 1 & 1 \\ -i & i & i & -i \\ -i & i & -i & i \end{pmatrix}, \quad B_5 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -i & -i & i & i \\ -1 & 1 & 1 & -1 \\ -i & i & -i & i \end{pmatrix}
\]