ALTERNATING KNOTS DO NOT ADMIT COSMETIC CROSSINGS

JACOB CAUDELL

ABSTRACT. By examining the homology groups of a 4-manifold associated to an integral surgery on a knot \(K \) in a rational homology 3-sphere \(Y \) yielding a rational homology 3-sphere \(Y^* \) with surgery dual knot \(K^* \), we show that the subgroups generated by \([K]\) and \([K^*]\) in \(H_1(Y) \) and \(H_1(Y^*) \), respectively, have co-prime orders. We obtain an immediate corollary that, in conjunction with an argument of Lidman–Moore, proves the cosmetic crossing conjecture for knots whose branched double covers are Heegaard Floer L-spaces.

1. Introduction

The cosmetic crossing conjecture attributed to X. S. Lin (see [2, Problem 1.58]) asserts an answer to the question of when a crossing \(c \) in a planar diagram \(D \) for a knot \(K \subset S^3 \) may be changed so that the resulting diagram also presents \(K \). Following Lidman–Moore [3], we define a crossing disk at the crossing \(c \) to be a disk \(E \subset S^3 \) whose geometric intersection number with \(K \) is 2 and whose algebraic intersection number with \(K \) is 0 whose projection to the plane of the diagram \(D \) intersects \(D \) only at the crossing \(c \). A crossing \(c \) is said to be nugatory if the boundary of its crossing disk bounds a disk in \(S^3 \) that is disjoint from \(K \). Performing a crossing change at a nugatory crossing in a planar diagram for \(K \) results in a diagram presenting a knot that is isotopic to \(K \). Any non-nugatory crossing in a planar diagram for \(K \) that admits a crossing change to a diagram presenting a knot that is isotopic to \(K \) is said to be cosmetic. Any crossing that is nugatory or cosmetic is conceivably cosmetic

Conjecture 1 (Cosmetic crossing conjecture). Knots in \(S^3 \) do not admit cosmetic crossings.

Our strategy follows a standard argument inspired by the Montesinos trick, which is the same strategy as that taken up by Lidman–Moore. A crossing in a planar diagram for a knot \(K \) that does not change the isotopy class of the knot presented by the diagram gives rise to a knot \(\kappa \) in the double cover of \(S^3 \) branched along \(K, \Sigma(K) \), with a half-integral Dehn surgery to \(\Sigma(K) \). By combining Gainullin’s Dehn surgery characterization of the unknot in an L-space [1, Theorem 8.2] with the equivariant version of Dehn’s lemma of Yau and Meeks [6], Lidman–Moore show that if \(\Sigma(K) \) is an L-space and \(\kappa \) is nullhomologous, then \(K \) satisfies the cosmetic crossing conjecture. Their intended strategy for showing that \(\kappa \) is nullhomologous breaks down when the determinant of \(K \) is divisible by a square. Our strategy is less sensitive to the divisors of \(|H_1(\Sigma(K))| \) and allows us to prove the following.

Theorem 2. The knot \(\kappa \subset \Sigma(K) \) associated to a conceivably cosmetic crossing in a diagram of \(K \) is nullhomologous.

Corollary 3. If \(\Sigma(K) \) is an L-space, then \(K \) does not admit a cosmetic crossing.
Proof. Let \(\kappa \subset \Sigma(K) \) be the knot associated to a conceivably cosmetic crossing \(c \) in a planar diagram for \(K \). As argued in [3] Section 3, since \(\Sigma(K) \) is an L-space by assumption, \(\kappa \) is null-homologous by Theorem 2, and \(1/2 \)-surgery on \(\kappa \) is homeomorphic to \(Y \), which is homeomorphic to \(1/2 \)-surgery on the unknot in \(\Sigma(K) \), it follows from [11] Theorem 8.2 that \(\kappa \) bounds a disk in \(\Sigma(K) \). Furthermore, by an argument known to experts presented in the proof of [3] Proposition 3.3 (cf. [3]), it then follows that the crossing \(c \) is nugatory. \(\square \)

1.1. Acknowledgments. The author would like to thank Josh Greene, Tye Lidman, Maggie Miller, and Allison Moore for helpful conversations.

2. The Trace of Surgery on a Homologically Essential Knot

Let \(Y \) be a rational homology 3-sphere, and let \(K \subset Y \) be a knot. Furthermore, let \(\lambda \) be a framing of the normal bundle of \(K \subset Y \). We say that \(\lambda \)-framed Dehn surgery on \(K \) is integral, for the intersection of \(\lambda \) with a meridian of \(K \) consists of a single point. Let \(Y^* \) be the result of \(\lambda \)-framed Dehn surgery on \(K \) and let \(K^* \) be the core of the surgery solid torus in \(Y^* \), or the surgery dual to \(K \). Recall that since \(\lambda \) is integral, there is some framing \(\lambda^* \) on \(K^* \) so that \(Y \) is obtained by integral \(\lambda^* \)-surgery on \(K^* \subset Y^* \). All homology groups are taken with integer coefficients unless explicitly stated otherwise. For \(K \subset Y \), denote by \(|K| \) the order of the subgroup \(\langle [K] \rangle \subset H_1(Y) \).

As in the standard treatment of framed knots in \(S^3 \), we may form the trace of \(\lambda \)-surgery on \(K \), \(W_\lambda(K) \), by gluing a 4-dimensional 2-handle \(H \) to \(Y \times [0,1] \) along \(K \times \{1\} \) with framing \(\lambda \times \{1\} \), giving us a cobordism \(Y \to Y^* \). In fact, turning this cobordism upside down gives the trace of \(\lambda^* \)-surgery on \(K^* \subset Y^* \). A straightforward computation using the Mayer-Vietoris sequence shows that \(H_2(W_\lambda(K)) \cong \mathbb{Z} \). If \([K] = 0 \in H_1(Y) \), then we may readily furnish a generator of \(H_2(W_\lambda(K)) \). Since \(K \) is nullhomologous, there is a surface \(\Sigma_K \subset Y \) with \(\partial \Sigma_K = K \); cap this surface off with the core of \(H \), denoted \(c(H) \), to form the closed surface \(\hat{\Sigma}_K \). That \([\hat{\Sigma}_K] \) generates \(H_2(W_\lambda(K)) \) follows from the long exact of the pair \((Y \cup c(H), Y) \), which we delineate below:

\[
\ldots \to H_2(Y) \to H_2(Y \cup c(H)) \overset{i}{\to} H_2(Y \cup c(H), Y) \overset{j}{\to} H_1(Y) \to \ldots
\]

The cobordism \(W_\lambda(K) \) admits a deformation retraction onto \(Y \cup c(H) \) obtained by composing the obvious deformation retractions of \(Y \times [0,1] \) onto \(Y \times \{1\} \) and of \(H \) onto \(c(H) \). Since \(Y \) is a rational homology sphere, it follows that \(H_2(Y) \cong \{0\} \), and so \(i \) is an injection from \(H_2(Y \cup c(H)) \cong \mathbb{Z} \), which is generated by some class \([S]\), to \(H_2(Y \cup c(H), Y) \cong H_2(Y \cup c(H)/Y) \cong H_2(S^2) \cong \mathbb{Z} \), generated by \([c(H), \partial c(H)]\). The map \(j \) sends \([c(H), \partial c(H)]\) to \([\partial c(H)] = [K] = 0 \). It follows that \([\hat{\Sigma}_K] \) generates \(H_2(Y \cup c(H)) \) since \(i([\hat{\Sigma}_K]) \) generates \(\text{ker}(j) \), and therefore it generates \(H_2(W_\lambda(K)) \).

If \(K \) is allowed to be homologically essential, we first appeal to the account given in [5] Section 3 to identify the generator of \(H_2(W_\lambda(K)) \), which we reproduce here. Let \(M \) be the exterior of \(K \), and note that \(H_1(M, \mathbb{Q}) \cong \mathbb{Q} \). Let \(\lambda_M \), called the rational longitude of \(K \), be a simple closed curve on \(\partial M \) whose homology class generates the kernel of the map \(H_1(\partial M, \mathbb{Q}) \to H_1(M, \mathbb{Q}) \) induced by inclusion. Then \([\lambda_M] \) is torsion in \(H_1(M) \), and so there
is a properly embedded surface \((\Sigma_K, \partial \Sigma_K) \subset (M, \partial M)\) whose boundary is the union of \(|\lambda_M|\) copies of \(\lambda_M\). The surface \(\Sigma_K\) is called a \textit{rational Seifert surface} for \(K\).

The homology classes of the framing curve \(\lambda\) and the meridian of \(K\), \(\mu\), form a basis for \(H_1(\partial M)\), and so we may write \([\lambda_M]\) uniquely as \(a \cdot [\lambda] + b \cdot [\mu]\). Observe now that \(|K| = a \cdot |\lambda_M| = a \cdot \#(\partial \Sigma_K)\). Furthermore, we may cap off each boundary component of \(\Sigma_K\) with a surface obtained from banding together \(a\) copies of \(c(H)\) and \(b\) copies of the meridional disk bounded by \(\mu\) and contained in a regular neighborhood of \(K\) to form the closed surface \(\hat{\Sigma}_K\).

Proposition 4. The class \([\hat{\Sigma}_K]\) generates \(H_2(W_\lambda(K))\).

Proof. As before, noting that \(Y \cup c(H)\) is a deformation retraction of \(W_\lambda(K)\), we analyze the long exact sequence of the pair \((Y \cup c(H), Y)\):

\[
0 \to H_2(Y \cup c(H)) \xrightarrow{i} H_2(Y \cup c(H), Y) \xrightarrow{j} H_1(Y) \to \ldots
\]

Also as before, \(H_2(Y \cup c(H)) \cong \mathbb{Z} \cong H_2(Y \cup c(H), Y)\), and \(i\) is an injection \(\mathbb{Z} \to \mathbb{Z}\). Since \(j\) sends \([c(H), \partial c(H)]\) to \([K], \ker(j) = (\langle K | [c(H), \partial c(H)]\rangle)\). Notice that \(i([\hat{\Sigma}_K]) = (a|\lambda_M|)[c(H), \partial c(H)]\). Since \(|K| = a|\lambda_M|\), it follows that \([\hat{\Sigma}_K]\) generates \(H_2(W_\lambda(K))\). \(\Box\)

Remark 5. By the symmetry of the construction of \(W_\lambda(K)\), we may deduce that \([\hat{\Sigma}_K^*]\) also generates \(H_2(W_\lambda(K))\), and so there are orientations on \(\hat{\Sigma}_K\) and \(\hat{\Sigma}_K^*\) such that \([\hat{\Sigma}_K] = [\hat{\Sigma}_K^*]\).

Henceforth, we suppress notation and refer to \(W_\lambda(K)\) simply as \(W\).

In order to get a handle on the 3-dimensional surgery picture, we now seek to compute \(\iota(\hat{\Sigma}_K, \hat{\Sigma}_K)\), the oriented intersection number of \(\hat{\Sigma}_K\) and a transverse pushoff of itself. To this end, recall that \(\partial W = -Y \bigsqcup Y^*\), so the long exact sequences of the pair \((W, \partial W)\) in homology and cohomology read:

\[
\begin{align*}
(1) & \quad 0 \to H_2(W) \xrightarrow{A} H_2(W, \partial W) \xrightarrow{B} H_1(-Y) \oplus H_1(Y^*) \xrightarrow{C} H_1(W) \xrightarrow{D} H_1(W, \partial W), \\
(2) & \quad 0 \to H^2(W, \partial W) \xrightarrow{A^*} H^2(W) \xrightarrow{B^*} H^2(-Y) \oplus H^2(Y^*) \xrightarrow{C^*} H^3(W, \partial W) \xrightarrow{D^*} H^3(W).
\end{align*}
\]

Recall first that \(H_2(W) \cong \mathbb{Z}\) by Proposition 4. Note that \(H_1(Y)/\langle[K]\rangle \cong H_1(W) \cong H_1(Y^*)/\langle[K^*]\rangle\). Poincaré-Lefschetz duality gives isomorphisms \(H_k(\partial W) \cong H^{3-k}(\partial W), H_k(W) \cong H^{4-k}(W, \partial W),\) and \(H_k(W, \partial W) \cong H^{4-k}(W)\), where, by abuse of notation, in each case we denote the isomorphism by \(PD\), so that \(PD \circ A = A^* \circ PD, PD \circ B = B^* \circ PD, PD \circ C = C^* \circ PD,\) and \(PD \circ D = D^* \circ PD\). Additionally, the universal coefficient theorem allows us to identify \(H_2(W, \partial W) \cong H^2(W)\) with \(H_2(W) \oplus H_1(W)\), since in this case \(H_2(W)\) is free and \(H_1(W)\) is torsion.

Now, the map \(A^*\) sends \(PD[\hat{\Sigma}_K]\), which generates \(H^2(W, \partial W)\), to some element \((p, \alpha) \in \mathbb{Z} \oplus H_1(W)\) where \(p = A^*(PD[\hat{\Sigma}])/\langle[S]\rangle = \iota(\hat{\Sigma}, \hat{\Sigma})\). In turn, there is an identification \(H_2(W, \partial W) \cong \mathbb{Z} \oplus H_1(W)\) such that the map \(A\) is given by \([\hat{\Sigma}_K] \mapsto (p, \alpha)\).

Proposition 6. Let \(Y\) be a rational homology sphere, and let \(K \subset Y\) be a knot with an integral surgery slope \(\lambda\) to the rational homology sphere \(Y^*\) and whose surgery dual is \(K^*\), with surgery dual slope \(\lambda^*\). Then \(\iota(\hat{\Sigma}_K, \hat{\Sigma}_K) = |K||K^*|\). Moreover, \(|K|\) and \(|K^*|\) are co-prime.
Proof. Working backward from the right end of the sequence in (1), we will use the exactness of the sequence at each step to show that \(|p| = |K||K^*|\).

Notice first that since every homology class in \(H_1(W) \cong H_1(Y)/\langle[K]\rangle\) is represented by a 1-cycle in \(Y \subset \partial W\), the map \(D\) is identically 0. It follows from exactness that \(C\) is a surjection from \(H_1(-Y) \oplus H_1(Y^*)\) to \(H_1(W)\), and so \(\ker(C) = |K||H_1(Y^*)|\).

Now, since \(\ima(A) = \ker(B)\) and \(\ima(B) = \ker(C)\), we must have \(p \neq 0\), or else \(\ima(B)\) is not finite. Furthermore, it follows that \(B|\text{Tors}(W, \partial W)\) is injective, and moreover that \(|p| = |K||H_1(Y^*)|/|H_1(W)| = |K||K^*|\), as desired.

To see that \(|K|\) and \(|K^*|\) are co-prime, let us first recall that the symmetry of the construction of \(W_\lambda(K) \cong W \cong W_\lambda(K^*)\) yields the equality \([\hat{\Sigma}_K] = [\hat{\Sigma}_{K^*}]\).

By Poincaré-Lefschetz duality, the \(\mathbb{Z}\) summand of \(H^2(W)\) is generated by the dual of the relative homology class of a properly embedded surface \([S, \partial S] \in H_2(W, \partial W)\) such that \(\iota(S, \hat{\Sigma}_K) = 1\). Toward the end of identifying such a surface \(S\), let \(\chi\) be the properly embedded surface obtained as the union of \(K \times [0,1]\) and the core of the 2-handle \(H\) and let \(\chi^*\) be the co-core of \(H\), and note that \(\partial \chi = -K \subset Y\) and \(\partial \chi^* = K^* \subset Y^*\). Note that \(B\) sends the subgroup \(\langle[\chi, -K], [\chi^*, K^*]\rangle \subset H_2(W, \partial W)\) to \(\langle[-K]\rangle \oplus \langle[K^*]\rangle \subset H_1(-Y) \oplus H_1(Y^*)\). It follows then that \(B|\text{Tors}(H_2(W, \partial W))\) is injective, and moreover that \(|p| = |K||H_1(Y^*)|/|H_1(W)| = |K||K^*|\), as desired.

With Proposition 6 established, we are ready to prove the main theorem in support of Theorem 2.

Theorem 7. Let \(Y\) be a rational homology sphere, and let \(K \subset Y\) be a knot with \(|K| \equiv 1 \mod 2\). If there is some framing \(\lambda\) of \(K\) such that \(Y^*\), the result of \((\mu+2\lambda)\)-surgery on \(K\), satisfies \(|H_1(Y^*)| = |H_1(Y)|\), then \(|K| = 1\).

Proof. We may realize \((\mu+2\lambda)\)-surgery on \(K\) as integer surgery on the link \(L = K \cup m\), where \(m\) is a meridian of \(K\), the surgery slope on \(K\) is the framing curve \(\lambda\), and the surgery slope on \(m\) is the canonical \(-2\)-framing with respect to the Seifert framing on \(m\) induced by the disk \(m\) bounds in \(Y\). By performing \(-2\)-surgery on \(m\) first, we obtain a knot \(K' \subset Y \# \mathbb{RP}^3\) with \(|K'| = 2|K|\), since \(|K| \equiv 1 \mod 2\), that admits an integer framed surgery \(\lambda'\) to \(Y\). Let \(W\) be the trace of \(\lambda'\)-surgery on \(K'\) and let \(K^*\) denote the surgery dual of \(K'\). Note that \(|H_1(Y \# \mathbb{RP}^3)/\langle 2K \rangle\rangle = |H_1(W)| = |H_1(Y^*)/|K^*|\rangle\), and so \(|K^*| = |K|\) by the assumption that \(|H_1(Y)| = |H_1(Y^*)|\). It then follows from Proposition 6 that \(|K| = 1\).

Proof of Theorem 2. The Montesinos trick gives a framing \(\lambda\) on \(\kappa \subset \Sigma(K)\) such that \((\mu+2\lambda)\)-surgery on \(\kappa\) yields \(\Sigma(K)\). Since \(|H_1(\Sigma(K))|\) is equal to the determinant of \(K\), and the determinant of a knot in \(S^3\) is odd, it follows that \(|\kappa| \equiv 1 \mod 2\). By Theorem 7, it follows that \(|\kappa| = 1\).
References

[1] F. Gainullin: *Heegaard Floer homology and knots determined by their complements*, Algebr. Geom. Topol. **18** (2018), no. 1, 69–109.

[2] R. Kirby: *Problems in low dimensional manifold theory*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312.

[3] T. Lidman and A. H. Moore: *Cosmetic surgery in L-spaces and nugatory crossings*, Trans. Amer. Math. Soc. **369** (2017), no. 5, 3639–3654.

[4] I. Torisu: *On nugatory crossings for knots*, Topology Appl. **92** (1999), no. 2, 119–129.

[5] L. Watson: *Surgery obstructions from Khovanov homology*, Selecta Math. (N.S.) **18** (2012), no. 2, 417–472.

[6] S.-T. Yau and W. H. Meeks III: The equivariant loop theorem for three-dimensional manifolds and a review of the existence theorems for minimal surfaces. In *The Smith conjecture* (New York, 1979), volume 112 of Pure Appl. Math., pages 153–163. Academic Press, Orlando, FL, 1984.

Department of Mathematics, Boston College, Chestnut Hill, MA 02467

Email address: caudell@bc.edu