New Time Distributions of D^0-\bar{D}^0 or B^0-\bar{B}^0 Mixing and CP Violation

Zhi-zhong Xing
Sektion Physik, Universität München, Theresienstrasse 37A, 80333 München, Germany

Abstract

The formulae for D^0-\bar{D}^0 or B^0-\bar{B}^0 mixing and CP violation at the τ-charm or B-meson factories are derived, for the case that only the decay-time distribution of one D or B meson is to be measured. In particular, we point out a new possibility to determine the D^0-\bar{D}^0 mixing rate in semileptonic D decays at the $\Psi(4.14)$ resonance; and show that both direct and indirect CP asymmetries can be measured at the $\Upsilon(4S)$ resonance without ordering the decay times of two B_d mesons or measuring their difference.

\[1\] E-mail: Xing@hep.physik.uni-muenchen.de
1 It is well known that mixing between a neutral meson and its \(CP \)-conjugate counterpart can arise if both of them couple to a subset of real and (or) virtual intermediate states. Such mixing effects provide a mechanism whereby interference between the decay amplitudes of two mesons may occur, leading to the phenomenon of \(CP \) violation. To date the \(K^0 - \bar{K}^0 \) and \(B_d^0 - \bar{B}_d^0 \) mixing rates have been measured \([1]\), and the \(CP \)-violating signals in neutral \(K \)-meson decays have unambiguously been established \([2]\). A preliminary but encouraging result for the observation of \(CP \) violation in \(B_d^0 \) vs \(\bar{B}_d^0 \rightarrow J/\psi K_S \) decay modes has recently been reported by the CDF Collaboration \([3]\). In contrast, the present experiments have only yielded the upper bound on \(D^0 - \bar{D}^0 \) mixing and the lower bound on \(B^0_s - \bar{B}^0_s \) mixing \([1]\), which are respectively expected to be rather small and large in the standard model. Today the \(B_d^0 - \bar{B}_d^0 \) and \(B^0_s - \bar{B}^0_s \) systems are playing important roles in the study of flavor mixing and \(CP \) violation beyond the neutral kaon system. The \(D^0 - \bar{D}^0 \) system is, on the other hand, of particular interest to probe possible new physics that might give rise to observable \(D^0 - \bar{D}^0 \) mixing and \(CP \) violation in the charm sector.

The most promising place to produce \(B_d^0 \) and \(\bar{B}_d^0 \) events with high statistics and low backgrounds is the \(\Upsilon(4S) \) resonance, on which the asymmetric \(B \)-meson factories at KEK and SLAC as well as the symmetric \(B \)-meson factory at Cornell are based. Similarly \(B_s^0 \) and \(\bar{B}_s^0 \) events may coherently be produced at the \(\Upsilon(5S) \) resonance. At a \(\tau \)-charm factory \(D^0 \) and \(\bar{D}^0 \) events will in huge amounts be produced at the \(\Psi(4.14) \) resonance. To measure \(CP \) violation on any resonance, where the produced meson pair has the odd charge-conjugation parity \((C = -1) \), a determination of the time interval between two meson decays is generally needed. This has led to the idea of asymmetric \(e^+e^- \) collisions at the \(\Upsilon(4S) \) resonance, i.e., asymmetric \(B \)-meson factories, in which the large boost allows to order the decay times of two \(B_d \) mesons and to measure their difference.

Recently a new idea, that \(CP \) violation can be measured on the \(\Upsilon(4S) \) resonance without ordering the decay times of two \(B_d \) mesons or determining their difference, has been pointed out by Foland \([4]\). If this idea is really feasible, it implies that the time-dependent measurement of \(B_d^0 - \bar{B}_d^0 \) mixing and \(CP \) violation may be realized at a symmetric \(e^+e^- \) collider running at the \(\Upsilon(4S) \) resonance, such as the one operated by the CLEO Collaboration at Cornell. It also implies that the time-dependent measurement of \(D^0 - \bar{D}^0 \) mixing and \(CP \) violation may straightforwardly be carried out at the \(\Psi(4.14) \) resonance with no need to build an asymmetric \(\tau \)-charm factory. Therefore a further and more extensive exploration of Foland’s idea and its consequences is desirable.

This note aims at reformulating the phenomenology of meson-antimeson mixing and \(CP \) violation at the \(\Upsilon(4S) \), \(\Upsilon(5S) \) or \(\Psi(4.14) \) resonance, for the case that only the decay-time distribution of one meson is to be measured. We take both \(C = -1 \) and \(C = +1 \) cases of the produced meson pair into account, and make no special assumption in deriving the generic formulae. In particular, we point out a new possibility to determine the \(D^0 - \bar{D}^0 \) mixing rate in
semileptonic D decays at the $\Psi(4S)$ resonance; and show that both direct and indirect CP asymmetries can be measured at the $\Upsilon(4S)$ resonance without ordering the decay times of two B_d mesons or measuring their difference.

Let us make use of P to symbolically denote D, B_d or B_s meson. In the assumption of CPT invariance, the mass eigenstates of P^0 and \bar{P}^0 mesons can be written as

$$|P_L\rangle = p|P^0\rangle + q|\bar{P}^0\rangle,$$
$$|P_H\rangle = p|P^0\rangle - q|\bar{P}^0\rangle,$$

(1)
in which the subscripts “L” and “H” stand for Light and Heavy respectively, and (p, q) are complex mixing parameters. The proper-time evolution of an initially $(t = 0)$ pure P^0 or \bar{P}^0 meson is given as

$$|P^0(t)\rangle = g_+(t)|P^0\rangle + \frac{q}{p}g_-(t)|\bar{P}^0\rangle,$$
$$|\bar{P}^0(t)\rangle = g_+(t)|P^0\rangle + \frac{p}{q}g_-(t)|\bar{P}^0\rangle,$$

(2)

where

$$g_+(t) = \exp\left[-\left(im + \frac{\Gamma}{2}\right)t\right] \cosh\left[(i\Delta m - \frac{\Delta\Gamma}{2})\frac{t}{2}\right],$$
$$g_-(t) = \exp\left[-\left(im + \frac{\Gamma}{2}\right)t\right] \sinh\left[(i\Delta m - \frac{\Delta\Gamma}{2})\frac{t}{2}\right],$$

(3)

with the definitions $m = (m_L + m_H)/2$, $\Delta m = m_H - m_L$, $\Gamma = (\Gamma_L + \Gamma_H)/2$, and $\Delta\Gamma = \Gamma_L - \Gamma_H$. Here $m_{L(H)}$ and $\Gamma_{L(H)}$ are the mass and width of $P_{L(H)}$, respectively. In practice it is more popular to use two dimensionless parameters for the description of P^0-\bar{P}^0 mixing: $x = \Delta m/\Gamma$ and $y = \Delta\Gamma/(2\Gamma)$.

For a coherent $P^0\bar{P}^0$ pair at rest, its time-dependent wave function can be written as

$$\frac{1}{\sqrt{2}} \left[|P^0(K, t)\rangle \otimes |\bar{P}^0(-K, t)\rangle + C|P^0(-K, t)\rangle \otimes |\bar{P}^0(K, t)\rangle \right],$$

(4)

where K is the three-momentum vector of the P mesons, and $C = \pm 1$ denotes the charge-conjugation parity of this coherent system. The formulae for the time evolution of P^0 and \bar{P}^0 mesons have been given in Eq. (2). Here we consider the case that one of the two P mesons (with momentum K) decays to a final state f_1 at proper time t_1 and the other (with $-K$) to f_2 at t_2. f_1 and f_2 may be either hadronic or semileptonic states. The amplitude of such a joint decay mode is given by

$$A(f_1, t_1; f_2, t_2)_C = \frac{1}{\sqrt{2}} A_{f_1} A_{f_2} \xi C \left[g_+(t_1)g_-(t_2) + C g_-(t_1)g_+(t_2) \right] + \frac{1}{\sqrt{2}} A_{f_1} A_{f_2} \xi C \left[g_+(t_1)g_+(t_2) + C g_-(t_1)g_-(t_2) \right],$$

(5)
where \(A_{fi} = \langle f_i | \mathcal{H} | P^0 \rangle \), \(\lambda_i = (q/p)(\langle f_i | \mathcal{H} | \bar{P}^0 \rangle / \langle f_i | \mathcal{H} | P^0 \rangle) \) (for \(i = 1, 2 \)), and

\[
\zeta_C = \frac{p}{q} \left(1 + C \lambda_{f_1} \lambda_{f_2} \right),
\]

\[
\zeta_C = \frac{p}{q} \left(\lambda_{f_2} + C \lambda_{f_1} \right). \tag{6}
\]

After a lengthy calculation \[5\, 6\], we obtain the time-dependent decay rate as follows:

\[
R(f_1, t_1; f_2, t_2) \propto |A_{f_1}|^2 |A_{f_2}|^2 \exp(-\Gamma t_+) \times \left[\left(|\xi_C|^2 + |\zeta_C|^2 \right) \cosh(y \Gamma t_C) - 2 \text{Re}(\xi_C^* \zeta_C) \sinh(y \Gamma t_C) \right.
\]

\[
- \left(|\xi_C|^2 - |\zeta_C|^2 \right) \cos(x \Gamma t_C) + 2 \text{Im}(\xi_C^* \zeta_C) \sin(x \Gamma t_C) \right] , \tag{7}
\]

where \(t_C = t_2 + Ct_1 \) has been defined.

Now we integrate the decay rate \(R(f_1, t_1; f_2, t_2) \) over \(t_1 \in [0, \infty) \), i.e., only the time distribution of \(P \)-meson decays into the final state \(f_2 \) is kept \[3\]. The result, with the notation \(t_2 = t \), is given as

\[
R(f_1, f_2; t) \propto |A_{f_1}|^2 |A_{f_2}|^2 \exp(-\Gamma t) \times \left[\left(|\xi_C|^2 + |\zeta_C|^2 \right) \cosh(y \Gamma t + C \phi_y) - 2 \text{Re}(\xi_C^* \zeta_C) \sinh(y \Gamma t + C \phi_y) \right.
\]

\[
- \left(|\xi_C|^2 - |\zeta_C|^2 \right) \cos(x \Gamma t + C \phi_x) + 2 \text{Im}(\xi_C^* \zeta_C) \sin(x \Gamma t + C \phi_x) \right] , \tag{8}
\]

where the phase shifts \(\phi_x \) and \(\phi_y \) are defined by \(\tan \phi_x = x \) and \(\tanh \phi_y = y \), respectively.

The joint decay rate obtained above is a new result and serves as the master formula of this paper. In the following we shall specifically investigate meson-antimeson mixing and \(CP \) violation in \(D \)- and \(B \)-meson decays into the semileptonic final states, the hadronic \(CP \) eigenstates, and the hadronic non-\(CP \) eigenstates.

3 Let us first consider the joint decays of \((P^0 \bar{P}^0)_C \) pairs into two semileptonic states \((l^\pm X^\pm_a) \) and \((l^\pm X^\pm_b) \), i.e., the dilepton events in the final states. Keeping the validity of the \(\Delta Q = \Delta P \) rule and \(CPT \) invariance, we have \(\langle l^- X^+_a | \mathcal{H} | P^0 \rangle = \langle l^+ X^-_b | \mathcal{H} | \bar{P}^0 \rangle = 0 \) and \(\langle l^+ X^-_a | \mathcal{H} | P^0 \rangle = \langle l^- X^+_b | \mathcal{H} | \bar{P}^0 \rangle \neq 0 \). The latter is denoted later by \(A_{ai} \) for \(i = a \) or \(b \). With the help of Eq. (8), we arrive at the same-sign and opposite-sign dilepton rates as follows:

\[
N_{C^+}^+(t) \propto \left| \frac{p}{q} \right|^2 |A_{ta}|^2 |A_{tb}|^2 \exp(-\Gamma t) \left[\frac{\cosh(y \Gamma t + C \phi_y)}{\sqrt{1-y^2}} - \frac{\cos(x \Gamma t + C \phi_x)}{\sqrt{1+x^2}} \right] , \tag{9}
\]

\[
N_{C^-}^-(t) \propto \left| \frac{q}{p} \right|^2 |A_{ta}|^2 |A_{tb}|^2 \exp(-\Gamma t) \left[\frac{\cosh(y \Gamma t + C \phi_y)}{\sqrt{1-y^2}} - \frac{\cos(x \Gamma t + C \phi_x)}{\sqrt{1+x^2}} \right] ; \tag{9}
\]

and

\[
N_{C^-}^+(t) \propto 2 |A_{ta}|^2 |A_{tb}|^2 \exp(-\Gamma t) \left[\frac{\cosh(y \Gamma t + C \phi_y)}{\sqrt{1-y^2}} + \frac{\cos(x \Gamma t + C \phi_x)}{\sqrt{1+x^2}} \right] . \tag{10}
\]
Obviously the relationship \(N_{i+1}^+(t)N_{i-1}^-(t) = N_{i-1}^+(t)N_{i+1}^- \) holds.

The measure of CP violation in \(P^0 - \bar{P}^0 \) mixing turns out to be

\[
A_{C}^+(t) = \frac{N_{C}^{++}(t) - N_{C}^{--}(t)}{N_{C}^{++}(t) + N_{C}^{--}(t)} = \frac{|p|^4 - |q|^4}{|p|^4 + |q|^4},
\]

independent of both the decay time \(t \) and the charge-conjugation parity \(C \). Within the standard model the magnitude of \(A_{C}^+(t) \) is estimated to be of \(\mathcal{O}(10^{-3}) \) or smaller, for either the \(D^0 - \bar{D}^0 \) system \([3]\) or the \(B^0 - \bar{B}^0 \) system \([1, 2]\). But it might significantly be enhanced if there were new physics contributions to \(P^0 - \bar{P}^0 \) mixing \([6-9]\).

On the other hand, the rate of \(P^0 - \bar{P}^0 \) mixing can be determined from

\[
S_{C}^{+-}(t) = \frac{N_{C}^{++}(t) + N_{C}^{--}(t)}{N_{C}^{++}(t)} = \frac{1}{2} \left(\frac{|p|^2}{|q|^2} + \frac{|q|^2}{|p|^2} \right) \cosh(y \Gamma t + C \phi_y) - z \cos(x \Gamma t + C \phi_x) \cosh(y \Gamma t + C \phi_y) + z \cos(x \Gamma t + C \phi_x),
\]

where \(z = \sqrt{(1 - y^2)/(1 + x^2)} \). As for \(S_{C}^{+-}(t) \), the approximation \((|p/q|^2 + |q/p|^2)/2 \approx 1\) is rather safe in the standard model.

For the \(B^0_d - \bar{B}^0_d \) system we show the dependence of \(S_{C}^{+-}(t) \) on the decay time \(t \) in Fig. 1, where \(x \approx 0.723 \) and \(y \approx 0 \) \([4]\) (accordingly, \(\phi_x \approx 0.626 \) and \(\phi_y \approx 0 \)) have been taken. We find that \(S_{C}^{+-}(t) \) and \(S_{C}^{++}(t) \) become maximal at the positions \(\Gamma t = (\pi + \phi_x)/x \approx 5.2 \) and \(\Gamma t = (\pi - \phi_x)/x \approx 3.5 \), respectively. The phase interval between these two line shapes, amounting to \(2\phi_x/x \), also measures the rate of \(B^0_d - \bar{B}^0_d \) mixing \([4]\).

For the \(D^0 - \bar{D}^0 \) system one has the following conservative bound on the mixing rate: \(x < 0.1 \) and \(y < 0.1 \) (satisfying \(x^2 + y^2 < 0.01 \)), which were obtained from the wrong-sign semileptonic decays of neutral \(D \) mesons at the 90\% confidence level \([1, 11]\). The relative magnitude of \(x \) and \(y \) remains unclear, as the theoretical estimates involve too large uncertainty due to the long-distance effects \([12]\). In Fig. 2 we illustrate the time-dependent behavior of \(S_{C}^{+-}(t) \) with three types of inputs: (a) \(x \approx y \approx 0.06 \); (b) \(x \approx 0.08 \) and \(y \approx 0 \); and (c) \(x \approx 0 \) and \(y \approx 0.08 \). We see that the line shape of \(S_{C}^{+-}(t) \) for the \(x \ll y \) case is clearly distinguishable, when \(\Gamma t \geq 5 \), from that for the \(x \gg y \) case. A delicate analysis even allows to discern the relative magnitude of \(x \) and \(y \). This provides us a new possibility, different from those proposed previously in the literature \([13]\), to measure the rate of \(D^0 - \bar{D}^0 \) mixing \([1]\).
Figure 1: Ratios of the same-sign to opposite-sign dilepton events changing with the decay time t at the $\Upsilon(4S)$ resonance, where $x \approx 0.723$ and $y \approx 0$ have been taken.

Figure 2: Illustrative plot for ratios of the same-sign to opposite-sign dilepton events changing with the decay time at the $\Psi(4.14)$ resonance.
For the B_s^0-\bar{B}_s^0 system we have $x > 14$ from current experimental data at the 95% confidence level [1], and $y \sim 0.03$ from the latest theoretical calculation [17]. Hence the behavior of $S_{C}^{+}(t)$ depends mainly upon the value of x. Taking $x \approx 20$ and $y \approx 0$ typically, one finds that the oscillation term of $S_{C}^{+}(t)$ is suppressed by a factor $z \approx 1/x$. As a consequence $S_{C}^{+}(t) \approx 1$ holds for variable values of x, i.e., the magnitude of $S_{C}^{+}(t)$ deviates little from unity. This property makes it somehow difficult to determine the precise value of x by measuring the time distribution of $S_{C}^{+}(t)$ at the $\Upsilon(5S)$ resonance [17].

4 Now let us consider CP violation in neutral B- or D-meson decays into hadronic CP eigenstates at the $\Upsilon(4S)$ or $\Psi(4S)$ resonance. In this case the semileptonic decay of one P meson serves to tag the flavor of the other P meson decaying into a nonleptonic CP eigenstate. There are generally three different types of CP asymmetries, arising from $P^0-\bar{P}^0$ mixing itself, from the interference between two decay amplitudes ($direct CP$ violation), and from the interplay of decay and $P^0-\bar{P}^0$ mixing ($indirect CP$ violation). For the $B^0_d-\bar{B}^0_d$ system the typical magnitudes of these three kinds of CP-violating effects are respectively expected to be of $\mathcal{O}(10^{-3})$, $\mathcal{O}(10^{-2})$ to $\mathcal{O}(10^{-1})$, and $\mathcal{O}(1)$ in the standard model. It is more difficult to classify the magnitudes of direct and indirect CP asymmetries in different decay channels of neutral D or B_s mesons, but CP violation in either $B^0_s-\bar{B}^0_s$ or $D^0-\bar{D}^0$ mixing is anticipated to be below $\mathcal{O}(10^{-3})$ within the standard model. Therefore the neglect of tiny mixing-induced CP violation, equivalent to taking $|q/p| \approx 1$ (as well as $y \approx 0$), is a good approximation when we calculate the direct and indirect CP asymmetries in most B_d, B_s and D decays. We obtain the time-dependent decay rates as

$$R(l^\pm, f; t)_C \propto |A_f|^2|A_i|^2\exp(-\Gamma t) \left[1 + |\lambda_f|^2 \right] \pm \frac{1 - |\lambda_f|^2}{\sqrt{1 + x^2}} \cos(x\Gamma t + C\phi_x)$$

$$\mp \frac{2\text{Im}\lambda_f}{\sqrt{1 + x^2}} \sin(x\Gamma t + C\phi_x) \right], \quad (13)$$

where f is the CP eigenstate, and $\lambda_f = (q/p)\langle f|\mathcal{H}|\bar{P}^0\rangle/\langle f|\mathcal{H}|P^0\rangle$ as defined before. The CP asymmetry is then given by

$$A_f^C(t) = \frac{R(l^-, f; t) - R(l^+, f; t)}{R(l^-, f; t) + R(l^+, f; t)}$$

$$= \frac{1}{\sqrt{1 + x^2}} \left[\frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} \cos(x\Gamma t + C\phi_x) - \frac{2\text{Im}\lambda_f}{1 + |\lambda_f|^2} \sin(x\Gamma t + C\phi_x) \right]. \quad (14)$$

Clearly $A_f^C(t)$ consists of both the direct CP asymmetry ($|\lambda_f| \neq 1$) and the indirect one ($\text{Im}\lambda_f \neq 0$). Measuring the time distribution of $A_f^C(t)$ can distinguish between these two sources of CP violation.

For illustration let us take the gold-plated channels B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_S$, which are dominated by the tree-level quark transitions [17], for example. It is well known that $|\lambda_{\psi K_S}| \approx 1$ and $\text{Im}\lambda_{\psi K_S} = \sin(2\beta)$ hold, where $\beta = \arg[-(V^*_{cb}V_{cd})/(V^*_{tb}V_{td})]$ is an inner angle of the quark
mixing unitarity triangle. We are left with

$$A_{\psi K_S}^C(t) = -\frac{\sin 2\beta}{\sqrt{1 + x^2}} \sin(x\Gamma t + C\phi_x),$$ (15)

to a high degree of accuracy. The behavior of this CP asymmetry changing with the decay time t is illustrated in Fig. 3. Certainly the weak phase β can well be determined from such a time-dependent measurement at the $\Upsilon(4S)$ resonance.5

5 Finally we consider the case that both P^0 and \bar{P}^0 mesons decay into a common non-CP eigenstates. For neutral D-meson decays, most of such decay modes occur through the quark transitions $c \rightarrow s(u\bar{d})$ and $c \rightarrow d(u\bar{s})$ or their flavor-conjugate processes. For B_d and B_s decays, most of such decay channels take place through the quark transitions $b \rightarrow q(u\bar{c})$ and $b \rightarrow q(c\bar{u})$ or their flavor-conjugate processes (for $q = d$ or s). The typical examples of such decay channels include $D^0 \rightarrow \bar{D}^0 \rightarrow K^\pm \pi^\mp$, $B_d^0 \rightarrow D^\pm \pi^\mp$, and $B_s^0 \rightarrow \bar{D}_s^0 \rightarrow D_s^\pm K^\mp$ decays.6

For simplicity we concentrate only on the decay modes in which no direct CP violation exists, i.e., the decay amplitudes of $P^0 \rightarrow f$ and $\bar{P}^0 \rightarrow \bar{f}$ are governed by a single weak phase. We also take $y \approx 0$, as indirect CP violation is primarily associated with the mixing parameter x. For coherent $P^0\bar{P}^0$ decays at the resonance, we make use of the semileptonic decay of one P.

4The result for the $C = -1$ case has been presented in Ref. [4], where the definition of CP asymmetries is different from ours in Eq. (14).

5To extract the weak phase β and β' a study of B_d and B_s decays into the non-CP eigenstates $D_s^\pm D^\mp$ and $D_s^\pm D_s^\mp$, in which the penguin effects are negligibly small, is also of particular interest [18].
meson to tag the flavor of the other P meson decaying into f or \bar{f}. The time-dependent rates of such joint decay modes, with the help of Eq. (8), are given as follows:

$$R(l^-, f; t)_C \propto |A_l|^2 |A_f|^2 \exp(-\Gamma t) \left[(1 + |\lambda_f|^2) + \frac{1 - |\lambda_f|^2}{\sqrt{1 + x^2}} \cos(x\Gamma t + C\phi_x) \right.$$
$$- \frac{2\text{Im}\lambda_f}{\sqrt{1 + x^2}} \sin(x\Gamma t + C\phi_x) \right],$$

$$R(l^+, \bar{f}; t)_C \propto |A_l|^2 |A_f|^2 \exp(-\Gamma t) \left[(1 + |\bar{\lambda}_f|^2) + \frac{1 - |\bar{\lambda}_f|^2}{\sqrt{1 + x^2}} \cos(x\Gamma t + C\phi_x) \right.$$
$$- \frac{2\text{Im}\bar{\lambda}_f}{\sqrt{1 + x^2}} \sin(x\Gamma t + C\phi_x) \right],$$

where $\bar{\lambda}_f = (p/q)\langle \bar{f}|H|P^0\rangle/\langle \bar{f}|\bar{H}|\bar{P}^0\rangle$, and the relationship $|\bar{\lambda}_f| = |\lambda_f|$ holds. The time-dependent CP asymmetry turns out to be

$$A_{ff}^C(t) = \frac{R(l^-, f; t) - R(l^+, \bar{f}; t)}{R(l^-, f; t) + R(l^+, \bar{f}; t)} = \frac{\text{Im}(\bar{\lambda}_f - \lambda_f)\sin(x\Gamma t + C\phi_x)}{\sqrt{1 + x^2} (1 + |\lambda_f|^2) + F(\lambda_f, \bar{\lambda}_f, x\Gamma t + C\phi_x)},$$

in which F is a function defined by $F(z_1, z_2, z_3) = (1 - |z_1|^2) \cos z_3 - \text{Im}(z_1 + z_2) \sin z_3$. Note that only the difference between $\text{Im}\bar{\lambda}_f$ and $\text{Im}\lambda_f$, which would vanish if the relevant weak phase were zero, measures the CP violation.

Taking the decay modes $B_d^0 \rightarrow D^\pm \pi^\mp$ for example, one finds that measuring the CP violating quantity $\text{Im}(\bar{\lambda}_{D^\pm \pi^\mp} - \lambda_{D^\mp \pi^\pm})$ allows the determination of the weak phase $(2\beta + \gamma)$, where $\gamma = \text{arg}[-(V_{ub}^* V_{ud})/(V_{cb}^* V_{cd})]$ is another angle of the quark mixing unitarity triangle $[19]$. This illustrates that some attention is worth being paid to CP violation in neutral B- and D-meson decays into hadronic non-CP eigenstates.

6 In summary, we have derived the generic formulae for $P^0 - \bar{P}^0$ mixing and CP violation at the resonance where $P^0 \bar{P}^0$ pairs can coherently be produced, for the case that only the decay-time distribution of one P meson is to be measured. Examples for the $D^0 - \bar{D}^0$, $B^0_d - \bar{B}^0_d$ and $B^0_s - \bar{B}^0_s$ systems are discussed. In particular, we point out a new possibility to measure $D^0 - \bar{D}^0$ mixing in semileptonic D-meson decays at the $\Psi(4.14)$ resonance, and show that both direct and indirect CP asymmetries can be determined at the $\Upsilon(4S)$ resonance with no need to order the decay times of two B_d mesons or to measure their difference.

We expect that the formulae and examples presented here will be useful for the physics being or to be studied at the B-meson and τ-charm factories.
References

[1] Particle Data Group, C. Caso et al., Eur. Phys. J. C 3 (1998) 1.

[2] NA31 Collaboration, G.D. Barr et al., Phys. Lett. B 317 (1993) 233; KTeV Collaboration, A. Alavi-Harati et al., [hep-ex/9905060].

[3] M.P. Schmidt, [hep-ex/9906023], and references therein.

[4] A.D. Foland, [hep-ph/9907277] (to be published).

[5] Z.Z. Xing, Phys. Rev. D 53 (1996) 204; Phys. Rev. D 50 (1994) 2957.

[6] Z.Z. Xing, Phys. Rev. D 55 (1997) 196; and references therein.

[7] M. Lusignoli, Z. Phys. C 41 (1989) 645; A. Acuto and D. Cocolicchio, Phys. Rev. D 47 (1993) 3945.

[8] A.I. Sanda and Z.Z. Xing, Phys. Rev. D 56 (1997) 6866; Z.Z. Xing, Eur. Phys. J. C 4 (1998) 283.

[9] See, e.g., G. Barenboim, Phys. Lett. B 443 (1998) 317; L. Randall and S. Su, Nucl. Phys. B 540 (1999) 37; R.N. Cahn and M.P. Worah, [hep-ph/9904480].

[10] The BABAR Physics Book, edited by P.F. Harrison and H.R. Quinn, Report No. SLAC-R-504 (1998); and references therein.

[11] For an overview of the latest experimental constraints on D^0-\bar{D}^0 mixing, see: D.M. Asner, [hep-ph/9905223], and references therein.

[12] For a brief review, see: G. Burdman, Report No. Fermilab/Conf-95/281-T (1995).

[13] See, e.g., T. Liu, Report No. Princeton/HEP/95-6 (1995); Z.Z. Xing, Phys. Lett. B 372 (1996) 317; Phys. Lett. B 379 (1996) 257; and Ref. [3].

[14] J.R. Fry and T. Ruf, Report No. CERN-PPE/94-20 (1994); H.S. Chen, Nucl. Phys. B (Proc. Suppl.) 59 (1997) 316.

[15] M. Beneke et al., [hep-ph/9808385].

[16] P. Krawczyk, D. London, and H. Steger, Nucl. Phys. B 321 (1989) 1.

[17] An estimate of the penguin effect on B_d^0 vs $\bar{B}_d^0 \rightarrow J/\psi K_S$ decays can be found in: D. Du and Z.Z. Xing, Phys. Lett. B 312 (1993) 199.

[18] Z.Z. Xing, Phys. Lett. B 443 (1998) 365; X.Y. Pham and Z.Z. Xing, Phys. Lett. B 458 (1999) 375.

[19] Z.Z. Xing, Phys. Lett. B 364 (1995) 55; I. Dunietz, Phys. Lett. B 427 (1998) 179.