Octylphenol (OP) Alters the Expression of Members of the Amyloid Protein Family in the Hypothalamus of the Snapping Turtle, Chelydra serpentina serpentina

Vance L. Trudeau,1 Suzanne Chiu,1 Sean W. Kennedy,2 and Ronald J. Brooks3

1Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada; 2National Wildlife Research Centre, Hull, Québec, Canada; 3Department of Zoology, University of Guelph, Guelph, Ontario, Canada

The gonadal estrogen estradiol-17β (E2) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E2 in the snapping turtle (Chelydra serpentina serpentina) hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E2 for 17 days. One transcript (421 base pairs (bp)) regulated by OP and E2 was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E2 did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein β-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of β-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles.

Key words: alkylphenol polyethoxylates, Alzheimer disease, brain, estrogen, turtles. Environ Health Perspect 110:269–275 (2002). [Online 12 February 2002] http://ehpnet1.nih.gov/docs/2002/110p269-275trudeau/abstract.html

It is increasingly apparent that several common pollutants have profound effects on embryonic development, reproduction, and growth of aquatic animals because they mimic or suppress the actions of the sex steroid estradiol (E2). Of particular concern are the alkylphenol-polyethoxylates (APEOs), a large group of nonionic surfactants in commercial production (approximately 250,000 tons produced per year) that enter the aquatic environment mainly from sewage treatment and pulp and paper mill effluents (1–4). Upon discharge, APEOs are rapidly degraded to form relatively stable, hydrophobic metabolites, principally the alkylphenols nonylphenol (NP) and octylphenol (OP). These estrogenic metabolites competitively bind to both trout and mouse estrogen receptors, stimulate vitellogenin production in trout hepatocytes, inhibit testicular growth in trout, stimulate prolactin gene expression in rat pituitary cells, and induce growth of MCF-7 and ZR-75 breast cancer cell lines (5,–8). Moreover, Blázquez et al. (8) found that 0.2 µg/mL waterborne OP caused 50% mortality among immature male goldfish 20 days after exposure, but immature females were unaffected. Therefore, there is considerable evidence that indicates that OP over a range of concentrations (0.02–2 µg/mL) is a biologically active contaminant. Indeed, there is reason for concern because OP has been found at significant concentrations in fresh water (<0.2 µg/mL–0.5 ng/mL), sediments (<0.010–1.8 µg/g dry weight), sewage treatment effluent (0.1–2.5 ng/mL), and sludge (<0.005–12.1 µg/g dry weight) in North America (3,4,9). Waterborne OP levels of approximately 12 ng/mL have been reported in UK rivers and estuaries (10).

Despite evidence that OP disrupts vitellogenin production in several fish species, there have been few investigations on higher-level aquatic tetrapods such as frogs and turtles. OP has, however, been shown to stimulate vitellogenin production (11) and cause feminization in Xenopus (12), suggesting that it is also estrogenic in frogs. There have been no reports on the effects of OP in reptiles. Turtles may represent a unique model in which to study the effects of estrogenic pollutants such as OP. We have chosen to use the common snapping turtle. Its life history is predominantly aquatic and it spends a considerable amount of time buried in the muddy bottoms of lakes and streams. The highest levels of NP and OP in Great Lakes regions are found in sediment samples (9). Moreover, it is well established that sexual differentiation in reptiles such as turtles and alligators is labile and extremely sensitive to the effects of estradiol, as determined in extensive laboratory experimentation (13–16) and also in field studies in Florida, where DDT and its metabolites and many other common pollutants have profound effects on reproductive function (17). Developmental abnormalities in embryos and hatchling snapping turtles in polluted areas of the Great Lakes–St. Lawrence River Basin have been reported (18). Demasculinization of adult male snapping turtles was observed in three Lake Ontario sites (19), suggesting that wild turtle populations are being exposed to xenoestrogens.

We set out to identify novel gene targets responding to estrogenic compounds found in the aquatic environment. Extensive research has shown that estrogens have tremendous importance for nervous system function, including hypothalamic development and induction of sexually dimorphic patterns of neurotransmitter synthesis (20–22). In all vertebrates, estrogen receptors are highly expressed in the hypothalamus.

Address correspondence to V.L. Trudeau, Department of Biology (CAREG), University of Ottawa, 30 Marie Curie Street, Ottawa, ON KIN 6N5, Canada. Telephone: (613) 562-5800 ext. 6165. Fax: (613) 562-5486; E-mail: vtrudeau@science.uottawa.ca

We acknowledge with appreciation the contributions of S. Jones, M. Jagla, M. MacMillan, and L. MacEachern, who helped during egg incubations, egg hatching, and chemical exposures. G. Thinakaran (University of Chicago) provided the APLP-2 antibody for this work. D. Brown (University of Ottawa) provided the TuJ1 antibody. The fruitful discussions with and encouragement by G. Van Der Kraak (Guelph) and C. Bishop (Canadian Wildlife Services) are also appreciated. Financial support for this project was received from the Canadian Network of Toxicology Centres, the University of Ottawa (FDF/URF), and NSERC.

Received 26 April 2001; accepted 18 July 2001.
The hypothalamus is the feedback control center regulating the release of pituitary hormones such as growth hormone and gonadotropins that respectively regulate growth and reproduction. Although the hypothalamus is the main target for central estrogen action, few attempts have been made to determine whether estrogenic pollutants affect gene expression in this part of the brain. MacLusky et al. (23) have shown that halogenated arylhydrocarbons, some of which have estrogenic or antiestrogenic activity, may disrupt central nervous system development in rats. OP has been shown to induce persistent estrus without disrupting ovulation. The observation that OP did not block ovulation led Blake and Ashiru (24) to conclude that OP had no major effect on neuronal mechanisms controlling ovulation. Moreover, OP stimulates estrogen-dependent uterine growth in prepubertal rats but apparently has no influence on prenatal sexual differentiation of the rat brain (25). Therefore, both research groups have implied that OP is not neuroactive, although they did not thoroughly test this possibility. Here we used a differential display polymerase chain reaction (PCR) strategy to identify genes in the snapping turtle hypothalamus that may be regulated by estrogen or OP. We demonstrate that an environmentally relevant dose of OP alters the expression of members of the amyloid protein family. These proteins have roles in neuronal development in rodents and in the etiology of Alzheimer disease in humans.

Materials and Methods

Animals and in vivo exposures to estradiol (E$_2$) and OP. Common snapping turtle (Chelydra serpentina serpentina) eggs were collected in early June from Algonquin Park, Ontario, and incubated at 26°C throughout development; at this temperature the turtles hatch in mid- to late August. Sexual differentiation in this species is temperature dependent (26). The turtles were housed in 28 × 17 × 13 cm rat cages containing 1 L water. Three turtles were kept in one cage and were separated by moveable partitions and were fed chopped chicken hearts every Tuesday and Thursday. Every Monday and Friday, they did not thoroughly test this possibility. Here we used a differential display polymerase chain reaction (PCR) strategy to identify genes in the snapping turtle hypothalamus that may be regulated by estrogen or OP. We demonstrate that an environmentally relevant dose of OP alters the expression of members of the amyloid protein family. These proteins have roles in neuronal development in rodents and in the etiology of Alzheimer disease in humans.

Materials and Methods

Animals and in vivo exposures to estradiol (E$_2$) and OP. Common snapping turtle (Chelydra serpentina serpentina) eggs were collected in early June from Algonquin Park, Ontario, and incubated at 26°C throughout development; at this temperature the turtles hatch in mid- to late August. Sexual differentiation in this species is temperature dependent, and previous studies have shown that 26°C is the male-producing temperature (26). The turtles were housed in 28 × 17 × 13 cm rat cages containing 1 L water. Three turtles were kept in one cage and were separated by moveable partitions and were fed chopped chicken hearts every Tuesday and Thursday. Every Monday and Friday, they did not thoroughly test this possibility. Here we used a differential display polymerase chain reaction (PCR) strategy to identify genes in the snapping turtle hypothalamus that may be regulated by estrogen or OP. We demonstrate that an environmentally relevant dose of OP alters the expression of members of the amyloid protein family. These proteins have roles in neuronal development in rodents and in the etiology of Alzheimer disease in humans.
into a pCR2.1 vector, cloned, sequenced, and identified as described above.

Northern blotting. Total RNA and protein was extracted from hypothalami using the Trizol reagent (Gibco/BRL). Total RNA (12 μg) was fractionated on 1% agarose/formaldehyde gels, transferred onto Hybond-N+ nylon membrane (Amerham, Quebec, Canada) by vacuum blotting, and UV-crosslinked for 5 min. Membranes were prehybridized in Rapid-Hyb buffer (Amerham) at 65°C for 30 min and hybridized for 4 hr at 65 °C with APP, APL2, β-actin, or S7 cDNA probes labeled with [α-32P]dCTP using a random priming kit (Amerham). Membranes were washed with 2 × standard sodium citrate (SSC), 0.1% sodium dodecyl sulfate (SDS) at room temperature for 30 min and then with 0.2 × SSC, 0.1% SDS at 65°C for 1 hr before autoradiography. Radioactive signals were detected with the BioRad phosphor-imaging system and quantified using Quantity One software (BioRad Laboratories, Hercules, CA, USA). Initially we normalized the data for APLP-2 expression two ways. One fragment isolated from the differential display coded for ribosomal protein S7 and was not regulated by E

Western blotting. After RNA and protein extraction, the protein pellets were washed with 0.3 M guanidine HCl in 95% ethanol and were redissolved in a solution containing 10 M urea and 50 mM DTT. Protein samples were electrophoretically separated by SDS-PAGE (10% acrylamide/0.35% bis-acrylamide; 100 V for 2 hr). The resolved proteins were transferred at 100 V for 90 min to Immobilon-P membranes (Millipore Corp., Bedford, MA, USA) in transfer buffer (24.8 mM Tris, 192 mM glycine, 20% (V/V) methanol and 0.038% SDS, pH 9.2) using the BioRad Trans-Blot cell apparatus. The membrane was blocked with 5% skim milk in TBS-T (Tris-buffered saline with 0.5% Tween 20) for 1 hr, and then incubated with antimouse APLP2 antibody D211 (31) 1:2,500 dilution in 5% skim milk, TBS-T) or anti-mouse neuron-specific β-tubulin monoclonal antibody TuJ1 (32) (1:25 dilution in 5% skim milk, TBS-T) at room temperature for 3 hr. The blots were washed for 5 × 5 min with TBS-T and then incubated with secondary antibody HRP-linked protein A (Sigma, St. Louis, MO, USA) for 1 hr in 1:3,000 dilution in 5% skim milk TBS-T. After extensive washing, ECL detection reagents (Amerham) were used to detect the immunoreactive protein. The chemiluminescence signals were captured using the Bio-Rad Chemi-Doc system and quantified using Quantity One software. All data were normalized to the β-tubulin signal because its expression did not change with E2 or OP treatments. We also attempted to detect APP proteins in the turtle hypothalamic extracts. Monoclonal antibodies 4G8 and 6E10 against human APP fragments (Senetek PLC, Napa, CA, USA) did not cross-react, so we are not able to determine the levels of APP products in the turtle brain at this time.

Statistical analyses. We analyzed the effects of 17-day exposure to E2 and OP on APLP-2 mRNA and protein levels using the one-way analysis of variance followed by Scheffé’s test. We analyzed the effects of 35-day exposure to OP on APLP-2 and APP levels using a t-test. Both statistical tests were performed using the GB-Stat software for Windows (Dynamic Microsystems, Inc., Silver Spring, MD, USA).

Results

RAP-PCR and gene cloning. We used the RAP-PCR differential display strategy to identify candidate E2 or OP-regulated transcripts in the snapping turtle hypothalamus. We decided to first treat animals by injection to have precise control of the amount of E2 or OP received by each animal. As well, we chose to look for transcripts that may be regulated within 24 hr of exposure. A series of transcripts appeared to be regulated by either E2 or OP. Sequence analysis of the RAP-PCR cDNA fragments revealed that a highly divergent set of genes may be regulated (Table 1). Two novel nonhomologous transcripts, which we have named octylphenol-responsive gene-1 (OPRG-1) and OPRG-2, did not have significant similarities to any Genbank entries and were upregulated by OP injection as determined using RAP-PCR. Cytochrome C oxidase subunit 1 appeared to be upregulated by E2 injection. In contrast, a sequence with low identity to a novel homeobox gene ANF-1 and a second a transcript with similarities to a human brain dynein β chain, the KIAA0944 protein, both appeared to be downregulated by E2. Another transcript was a fragment of the turtle γ-amino-butyric acid (GABA) transporter-3 (GAT-3) homolog, which was downregulated by injection of both E2 and OP. Of particular interest was the observation that an APLP-2-related product, having, respectively, 95% and 93% identity at the amino acid level with rat and human APLP-2, was downregulated by E2 injection. Given the high similarity of turtle APLP-2 to human APLP-2 and that APLP-2 is implicated in neuronal differentiation (31) and the etiology of Alzheimer disease in

Table 1. Genes regulated by 10 ng/g E2 or OP 24 hr after subcutaneous injection in the yearling snapping turtle hypothalamus as determined using the RNA-arbitrarily primed PCR (RAP-PCR) differential display strategy.

RAP-PCR results	Transcript obtained (accession no.)	Fragment length (bp)	Percent amino acid identity (species, accession no.)
Upregulated by OP	Octylphenol-responsive gene-1 (AF469178)	560	Novel, no known similarities
	OPRG-2 (AF469179)	560	Novel, no known similarities
Upregulated by E2	Cytochrome C oxidase subunit-1 (AF469183)	348	72% (goldfish, D1032194)
	Putative dynein chain	422	84% (CAC21651)
	APLP-2 (AF469181)	422	95% (rat, P159490)
Downregulated by E2 and OP	GABA Transporter-3 (AF469182)	321	91% (human, P48066)
Not affected by E2 or OP	Ribosomal protein S7 (AF469180)	482	98% (human, NP001002)
	H+-ATPase subunit (VATB) (AF469184)	366	81% (chicken, V61724.1*)
	PEX11-alfa (AF469186)	368	55% (human, NP003883.1)

Figure 1. Northern blot showing sizes (kilobases) of APLP-2, β-APP, β-actin, and S7 transcripts. Twelve micrograms total hypothalamic RNA was loaded and membranes probed separately for the four transcripts.
subsequently studied. We compared the expression of APLP-2 relative to both S7 and β-actin. This was necessary to confirm that S7 was not regulated and that β-actin was an appropriate control for RNA loading on Northern blot gels. Using RT-PCR, we also cloned cDNA fragments of the turtle homologs of APP (474 bp) and β-actin (514 bp). The turtle β-APP fragment was 88% identical to human APP, whereas the turtle β-actin fragment was 100% identical to human β-actin at the predicted amino acid level.

The effects of 17-day exposures to waterborne E2 and OP. Yearling turtles were exposed for 17 days to 10 ng/mL waterborne E2 or OP. Single transcripts for APLP-2 (~3.75 kb), APP (~3.5 kb), β-actin (~2.1 kb), and S7 (~0.75 bp) were visualized using Northern blots (Figure 1). S7 and β-actin levels did not change relative to each other following exposures (data not shown). This was important to establish because it confirmed our RAP-PCR results for S7 and validated the use of β-actin as a control for RNA loading. We then expressed APLP-2 levels relative to both control transcripts. Regardless of whether APLP-2 levels were expressed relative to the S7 or β-actin, both E2 and OP increased APLP-2 expression approximately 2-fold (Figure 2A). The effect of the 17-day exposure to waterborne E2 to increase APLP-2 mRNA levels is in contrast to the original RAP-PCR experiment, where a single intraperitoneal injection of E2 decreased APLP-2 gene expression after 24 hr (Table 1). Western blot analysis for the APLP-2 protein in the yearling hypothalamus indicated the presence of a single band of about 55 kD was detected with the TuJ1 antibody. We measured the levels of APLP-2 protein in two independent hypothalamic samples of yearling male turtles exposed to E2 or OP. In the hypothalamus of yearling turtles, E2 increased APLP-2 protein levels by an average of about 28% compared to control values. Similarly, APLP-2 protein levels were about 46% higher in OP-treated animals compared to control values.

In a separate experiment, month-old hatching male turtles were also exposed to 10 ng/mL E2 and OP. In contrast to the results in the older males, the month-old animals did not respond to E2 with an increase in hypothalamic APLP-2 mRNA. However, OP again effectively increased hypothalamic APLP-2 mRNA levels approximately 2-fold (Figure 3A). As with the yearling turtles, identical results were obtained regardless of whether we expressed APLP-2 mRNA levels relative to S7 or β-actin. Western blot analysis for the APLP-2 protein in the hypothalamus of month-old turtles indicated the presence of a single 120-kD band, as in the yearling hypothalamus (Figure 3B). In the hypothalamus of month-old turtles, E2 increased (p < 0.05) APLP-2 protein levels by about 30% compared to control values. In contrast, APLP-2 protein levels were similar (p > 0.05) in OP-exposed and control animals (Figure 3C).

Effects of 35-day exposures to waterborne OP. A preliminary study (data not shown) suggested that hypothalamic APP mRNA levels may also be increased by 17-day exposures to waterborne OP. This increase, however, was not statistically significant. We reasoned that perhaps a longer exposure may be needed to alter APP mRNA expression. Therefore, animals were exposed for 35 days to 10 ng/mL OP and APLP-2 and β-APP
mRNA levels determined by Northern blot. In contrast to the 17-day exposure, hypothalamic APLP-2 mRNA levels were not statistically different ($p > 0.05$) in control animals compared to those exposed to OP for 35 days (Figure 4A). APLP-2 protein levels were also similar in the two groups. However, 35 days of exposure to OP increased APP mRNA levels by 42% ($p < 0.05$), confirming our hypothesis that a longer period of exposure was needed to alter APP expression (Figure 4B).

Discussion

We demonstrated for the first time that E2 and OP affect gene expression in the snapping turtle hypothalamus. OP exposure for 17–35 days upregulated the expression of APLP-2 and APP genes in the amyloid precursor protein molecular family having important roles in brain development. While it has been shown in several systems that OP at a range of environmental and pharmacologic dose is biologically active, previous studies have examined effects only on peripheral organ systems. For example, it is well known that OP and related alkylphenolic metabolites induced an abnormal production of vitellogenin in male fish. This hepatic phosphoprotein is normally secreted into egg yolk in the ovaries of female fish and subsequently incorporated into yolk in the oocytes of female fish and other nonmammalian vertebrates (2). By using a differential display strategy, the study presented here showed that OP can affect the central nervous system as well. Because the hypothalamus is a major site for estrogen action in the brain and because it is the integrative control center of reproduction, growth, metabolism, and osmoregulation, a pollutant affecting hypothalamic function may disrupt one or several of these physiologic processes.

The major goal of our strategy was to identify novel candidate targets for OP or E2 action, and our focus has been on one of the RAP-PCR products, APLP-2, which is a member of a family of highly homologous amyloid precursor-like proteins, including APP and APLP-1. We cloned APP from the turtle hypothalamus using a degenerate PCR primer strategy. We focused on APLP-2 and APP because they are integral membrane glycoproteins that have important roles in neuronal development. APLPs undergo unusual post-translational processing to produce secretable bioactive fragments. In the case of APP, the C-terminal fragment Aβ, of approximately 4 kDa, can have both neurotropic or neurodegenerative properties, depending on α- and β-secretase-mediated post-translational processing and the resultant peptide fragment length. Whereas the 40 amino acid Aβ fragment is not neurotropic, C-terminal extension of the peptide by two or three amino acids produces the amyloidogenic peptides Aβ-42 and Aβ-43, which form neurodegenerative plaques in the brains of Alzheimer disease and Down syndrome patients (34,35). Although processing of the C-terminal of APLP-2 does not yield the Aβ peptide, the expression of APLP-2 in brains of Alzheimer disease patients is nevertheless increased in a subset of neuritic plaques in the neocortex and hippocampal formation that do not contain Aβ peptides (33). The predicted amino acid sequence of the turtle Aβ fragment is 100% identical with human and other mammalian forms. It is 89% identical to *Xenopus Aβ* and 80–85% identical with known fish Aβ fragments. This high similarity of the Aβ region of APP in the major vertebrate classes emphasizes the importance of this bioactive peptide for nervous system function.

As demonstrated mainly by *in vitro* cell culture experiments, APP modulates neuronal excitability, synaptic plasticity, neurite outgrowth, synaptogenesis, and cell survival (36). It has been suggested that APLP-2 may also be involved in similar processes—for example, axogenesis, neuronal pathfinding, or synaptogenesis (37). To examine whether APLP-2 and APP serve similar roles in vivo, single and double gene knockout (KO) mice have been generated. Mice with targeted disruption of the APP gene have 15–20% reduced body weight, decreased locomotor activity, and some degree of hippocampal gliosis (37). The APLP-2 KO mouse has a very mild phenotype, suggesting that highly homologous members of the APLP family can functionally substitute for each other. Results from more recent experiments where combined gene knockouts for APP, APLP-1, and APLP-2 were generated confirm a high level of functional redundancy in the amyloid family (30). Double KO mice that do not express either APP or APLP-2 exhibit significantly impaired development (29). Approximately 80% of these animals die in the first week after birth, suggesting important roles for these proteins in early postnatal development. Despite normal testicular and ovarian development, these animals mate poorly. Moreover, given that recombinant human APP and APLP-2 have similar neurotrophic actions on chick sympathetic neurons (38), it was important for us to evaluate the effects of OP on both APP and APLP-2.

In our preliminary RAP-PCR assay, we found that APLP-2 gene expression was altered 24 hr after injection of E2. We therefore considered that APLP-2 was a likely estrogen-responsive transcript that may also respond to OP. We designed experiments to determine the effects of waterborne OP on APLP-2 and APP mRNA levels in the snapping turtle hypothalamus. We chose an environmentally relevant nominal concentration of 10 ng/mL OP. This represents an intermediate dose between the range of concentrations found in water and contaminated sediments in the Great Lakes–St. Lawrence basin and is similar to levels found in some UK water systems. In yearling males, both E2 and OP increased the expression of APLP-2, suggesting that OP has estrogenlike effects. On the other hand, in month-old animals, E2 was without effect, yet OP exposure for 17 days consistently increased hypothalamic APLP-2 mRNA levels approximately 2-fold. Thus, E2 and OP had similar effects on APLP-2 mRNA levels in yearlings, whereas E2 was less active in the younger animals. This suggests that there may be developmental differences in the APLP-2 mRNA response to E2. Studies on the sex-reversing effects of estrogens in turtles (13,39) and in other animals where steroid treatments modify sex determination (8) also
likely represent novel sequences. We also iso-

homoLOGies to any GenBank entries and

were cDNA fragments without significant

hypothalamus (Table 1). We isolated two

expressed cDNAs from the snapping turtle

transcription versus translation of the APLP-2 gene. For example, OP increased APLP-2 mRNA levels but did not affect protein levels, suggesting different sensitivities of the transcription and translation processes to OP. Differential effectiveness of OP to mimic the effects of E2 and OP have effects on several uncharacterized sys-
tems, metabolic pathways, structural pro-
teins, and GABAergic neurotransmission. There may also be important differences in the effects of E2 and OP. This was evident in the results for both APLP-2 mRNA and protein. Moreover, the transcripts isolated from hypothalamus of the E2- and OP-treated ani-
mals in the initial RAP-PCR screening were

neuroendocrine function given the impor-
tance of GABA in the control of the release of all the major pituitary hormones (41,43). When using the differential display strategy, it is essential to demonstrate that not all transcripts are altered by a particular treat-
ment. Indeed, not all transcripts we isolated were affected by injection of E2 and OP. As mentioned previously, ribosomal protein S7 was not regulated, nor was peroxisomal bio-
genesis factor 11A (PEX11α), which is important for peroxisome abundance.

In addition to the results on amyloid proteins, it appears that E2 and OP may have effects on several uncharacterized sys-
tems, metabolic pathways, structural pro-
teins, and GABAergic neurotransmission. There may also be important differences in the effects of E2 and OP. This was evident in the results for both APLP-2 mRNA and protein. Furthermore, the transcripts isolated from hypothalamus of the snapping turtle demonstrate that OP is bioactive in reptiles. We hypothesize that upsets in early posthatching development of the hypothala-
mus in turtles or other vertebrates after chronic, low-level exposure to OP or related xenobiotics may have longer-lasting effects.

A major question not addressed by our study concerns the consequences of OP exposure to the health and survival of young turtles. It is tempting to speculate that long-
term exposure to OP or other estrogenic compounds may disrupt the normal expres-
sion of amyloid proteins, leading to upsets in the functioning of hypothalamic neurons, possibly neurodegeneration. However, we have not yet assessed such possibilities, nor is the role of amyloid proteins in the control hypothalamic function well established. Such experiments will require longer-term studies and the development of antibodies that recognize turtle APP, in addition to that which we have shown for APLP-2 expres-
sion. Nevertheless, overexpression of human APP in transgenic mice leads to many of the neuropathologic hallmarks of Alzheimer disease (44). In the case of hatching snapping turtles, treatments for up to 35 days did not affect body weights or food consumption (data not shown). Given that turtles grow very slowly, we hypothesized that a longer period of observation may reveal effects on growth. In a preliminary study by Brooks et al. (45), animals exposed for 17 days were allowed to grow for 6 months. OP-exposed animals were approximately 25% larger (p < 0.05) than control animals. We do not know how alterations in hypothalamic APLP-2 and APP gene expression relate to changes in growth; however, recent work with double APP/APLP-2 KO mice demonstrate that a lack of amyloid proteins reduces postnatal growth (29). Together, these data suggest that amyloid proteins may have a role in the hypothalamic control of growth.

REFERENCES AND NOTES

1. Jobling S, Sumpter JP. Detergent components in sewage effluent are weakly estrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepa-
tocytes. Aquat Toxicol 27:361–372 (1993).

2. Sumpter JP, Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 105(suppl 7):173–178 (1995).

3. Lee HB, Pearl TE. Determination of 4-nonylphenol in effluent and sludge from sewage treatment plants. Anal Chem 67:1976–1980 (1995).

4. Bennie DT. Review of the environmental occurrence of alkylphenols and alkylphenol ethoxylates. Water Qual Res J Can 34:79–122 (1999).

5. Abraham EJ, Frawley S. Octylphenol (OP), an environmental estrogen, stimulates prolactin (PRL) gene expres-
sion. Life Sci 60:1467–1472 (1997).

6. Jobling S, Sheehan D, Osborne JA, Matthiessen P, Sumpter, JP. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202 (1996).

7. White R, Jobling S, Hoare SA, Sumpter JP, Parker MG. Environmetally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182 (1994).

8. Blázquez M, Bosma PT, Fraser EJ, Van Look KJJ, Trudeau VL. Fish as models for the neuroendocrine regu-
lation of reproduction and growth. Comp Biochem Physiol 119:345–364 (1998).

9. Bennie, DT, Sullivan CA, Lee H-B, Maguire RJ. Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of Laurentian Great Lakes basin and the upper St. Lawrence River. Sci Total Environ 193/194:275–277 (1995).

10. Blackburn MA, Waldock MJ. Concentrations of alkylphenolic chemicals. Environ Health Perspect 103(suppl 7):173–178 (1995).

11. Kloss W, Lutz I, Einspanier R. Amphibians as models to study endocrine disruptors. II. Estrogenic activity of envi-
ronmental chemicals in vitro and in vivo. Sci Total Environ 225/226:59–68 (1999).

12. Nishimura F, Fukazawa U, Uchiyama H, Iuchi T. Effects of estrogenic hormones on an early development of Xenopus laevis. J Exp Zool 270:221–233 (1997).

13. Crews D. Temperature-dependent sex determination: the interplay of steroid hormones and temperature. Zool Sci 13:1–13 (1996).

14. Sheehan DM, Willingham E, Gaylor D, Bergeron JM, Crews D. No threshold dose for estradiol-induced sex reversal of turtle embryos: how little is too much? Environ Health Perspect 107:155–159 (1999).

15. Willingham E, Crews D. Sex reversal effects of environ-
mentally relevant xenobiotic concentrations on the red-
eared slider turtle, a species with temperature-dependent sex determination. Gen Comp Endocrinol 113:429–435 (1999).

16. Willingham E, Rhem T, Sakata JT, Crews D. Embryonic treatment with xenobiotics disrupts steroid hormone pro-
files in hatching red-eared slider turtles (Trachemys scripta elegans). Environ Health Perspect 108:329–332 (2000).

17. Guillote LJ Jr, Crain DA, Rooney AA, Pickford DB. Organization versus activation: the role of endocrine-dis-
rupting contaminants (EDCs) during embryonic develop-
ment in wildlife. Environ Health Perspect 103(suppl 7):157–164 (1995).

18. Bishop CA, Ng A, Pettit KE, Kennedy S, Stegeman JJ, Norstrom RJ, Brooks RJ. Environmental contamination
and developmental abnormalities in eggs and hatchlings of the common snapping turtle (Chelydra serpentina serpentina) from the Great Lakes-St. Lawrence River basin (1989–1991). Environ Pollut 98:1–14 (1998).

19. de Solla SR, Bishop CA, Van Der Kruik G, Brooks RJ. Impact of organochlorine contamination on levels of sex hormones and external morphology of common snapping turtles (Chelydra serpentina serpentina) in Ontario, Canada. Environ Health Perspect 106:252–260 (1998).

20. MacLusky NJ, Bowlby DA, Brown TJ, Peterson RE, Hochberg RB. Sex and the developing brain: suppression of neuronal estrogen sensitivity by developmental androgen exposure. Neurochem Res 22:1304–1314 (1997).

21. Cooke B, Hestrom CD, Villeneuve LS, Breedlove SM. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19:323–362 (1998).

22. Davis AM, Ward SC, Selmanoff M, Herbison AE, McCarthy MM. Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain. Neuroscience 90:1471–1482 (1999).

23. MacLusky NJ, Brown TJ, Schantz S, Seo BW, Peterson RE. Hormonal interactions in the effects of halogenated aromatic hydrocarbons on the developing brain. Toxicol Ind Health 15:259–268 (1999).

24. Blake CA, Ashiru OA. Disruption of rat estrous cyclicity by the environmental estrogen 4-tert-octylphenol. Proc Soc Exp Biol Med 216:446–451 (1997).

25. Bicknell RJ, Herbison AE, Sumpter JP. Oestrogenic activity of an environmentally persistent alkylphenol in the reproductive tract but not the brain of rodents. J Steroid Biochem Mol Biol 54:7–9 (1995).

26. Crews D, Wibbels T, Gutzke WH. Action of sex steroid hormones and mechanical stimulation on the amyloid protein of the common snapping turtle (Chelydra serpentina). J Comp Endocrinol 76:159–166 (1989).

27. Blázquez M, Bosma PT, Chang JP, Docherty K, Trudeau VL. γ-Aminobutyric acid up-regulates the expression of a novel secretogranin-II messenger ribonucleic acid in the goldfish pituitary. Endocrinology 138:4879–4886 (1998).

28. National Center for Biotechnology Information. Bethesda, MD:National Institutes of Health. Available: http://www.ncbi.nlm.nih.gov/ (cited 19 November 1998).

29. von Koch CS, Zheng H, Chen H, Trumbauer M, Thinakaran G, van der Ploeg LH, Price DL, Sisodia SS. Generation of APLP2 KO mice and early postnatal lethality in APLF2/APP double KO mice. Neurobiol Aging 18:661–668 (1997).

30. Heber S, Hemms J, Gajic V, Haefeliwer J, Aguzzi A, Rulicke T, Kretzschmar H, von Koch C, Sisodia S, Tremml P, et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20:7951–7963 (2000).

31. Thinakaran G, Kitt CA, Rossaks AJ, Slunt HH, Masliah E, von Koch C, Ginsberg SD, Runnett GV, Reed RR, Price DL, et al. Distribution of an APP homolog, APLP2, in the mouse olfactory system: a potential role for APLP2 in axogenesis. J Neurosci 15:6314–6326 (1995).

32. Lee MK, Rehuhn LJ, Frankfurter A. Posttranslational modification of class II β-tubulin. Proc Natl Acad Sci USA 87:7195–7199 (1990).

33. Crain BJ, Hu W, Sze C, Slunt HH, Koo EH, Price DL, Thinakaran G, Sisodia SS. Expression and distribution of amyloid precursor protein-like protein-2 in Alzheimer’s disease and in normal brain. Am J Pathol 149:1087–1095 (1996).

34. Seilcke DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738 Suppl):A23–31 (1999).

35. Small DH, McLean CA. Alzheimer’s disease and the amyloid beta protein: What is the role of amyloid? J Neurochem 73:443–449 (1999).

36. Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77:1081–1132 (1997).

37. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW, Heavens RP, Dawson GR, Boyce S, Conner MW, et al. Beta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531 (1995).

38. Cappai R, Mok SS, Galatis D, Tucker DF, Henry A, Beyreuther K, Small DH, Masters CL. Recombinant human amyloid precursor-like protein 2 (APLP2) expressed in the yeast Pichia pastoris can stimulate neurite outgrowth. FEBS Lett 442:95–98 (1999).

39. Wibbels T, Bull JJ, Crews D. Synergism between temperature and estradiol: a common pathway in turtle sex determination? J Exp Zool 268:130–134 (1991).

40. Bless ET, Westaway WA, Schwarting GA, Tobet SA. Effects of gamma-aminobutyric acid(GABA) receptor manipulation on migrating gonadotropin-releasing hormone neurons through the entire migratory route in vivo and in vitro. Endocrinology 141:1254–1262 (2000).

41. Trudeau VL, Spannwick D, Fraser EJ, Lariviere K, Crump D, Chiu S, MacMillan M, Schulz RW. The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochem Cell Biol 78:241–259 (2000).

42. Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356 (1996).

43. McCann SM, Rettori V. The role of gamma amino butyric acid (GABA) in the control of anterior pituitary hormone secretion. In: GABA and Benzodiazepine Receptors (Squires RF, ed). Boca Raton, FL:CRC Press, Inc., 1988:127–130.

44. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, et al. Related immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177 (1999).

45. Brooks RJ. Unpublished data.