Influence of Chinese National Centralized Drug Procurement on the price of policy-related drugs: an interrupted time series analysis

Ni Wang1†, Ying Yang1,2*†, Luxinyi Xu1, Zongfu Mao1,2 and Dan Cui1,2*

Abstract

Background: The Chinese government implemented the first round of National Centralized Drug Procurement (NCDP) pilot (so-called “4+7” policy) in mainland China in 2019. This study aims to examine the impact of “4+7” policy on the price of policy-related drugs.

Methods: This study used drug purchasing order data from the Centralized Drug Procurement Survey in Shenzhen 2019, covering 24 months from January 2018 to December 2019. “4+7” policy-related drugs were selected as study samples, including 25 drugs in the “4+7” procurement list and 57 alternative drugs that have an alternative relationship with “4+7” List drugs in clinical use. “4+7” List drugs were then divided into bid-winning and bid-non-winning products according to the bidding results. Single-group Interruption Time Series (ITS) analysis was adopted to examine the change of Drug Price Index (DPI) for policy-related drugs.

Results: The ITS analysis showed that the DPI of winning (−0.183 per month, \(p < 0.0001\)) and non-winning (−0.034 per month, \(p = 0.046\)) products significantly decreased after the implementation of “4+7” policy. No significant difference was found for the immediate change of DPI for alternative drugs (\(p = 0.537\)), while a significant decrease in change trend was detected in the post-“4+7” policy period (−0.003 per month, \(p = 0.014\)). The DPI of the overall policy-related drugs significantly decreased (−0.261 per month, \(p < 0.0001\)) after “4+7” policy.

Conclusions: These findings indicate that the price behavior of pharmaceutical enterprises changed under NCDP policy, while the price linkage effect is still limited. It is necessary to further expand the scope of centralized purchased drugs and strengthen the monitoring of related drugs regarding price change and consumption structure.

Keywords: National Centralized Drug Procurement, “4+7” policy, Drug price, Interrupted time series, Volume-based procurement

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction

Worldwide, many countries are facing the challenge of ever-increasing pharmaceutical expenditures [1, 2], and the global pharmaceutical market reached $955 billion in 2019 [3]. In China, the total health expenditure increased from 145.4 billion yuan in 2008 to 5799.8 billion yuan in 2018, with an average compound annual growth rate of 13.4% [4]. In 2018, the total pharmaceutical expenditure was 1914.89 billion yuan in China, accounting for 32.39% of the total health expenditure [5], which was much higher than the average level of 17% in the Organization for Economic Co-operation and Development (OECD) countries [6].

It is common practice worldwide that lowering drug prices and reducing drug expenditures by volume-based drug procurement [7, 8]. During the past 10 years, centralized drug procurement at the provincial level has been the dominant form of drug procurement of public hospitals in mainland China. Under this procurement environment, the issue of inflated drug prices, drug rebates, drug shortages, etc. has been widespread [9, 10]. Since 2015, several cities (Samming, Shanghai, etc.) started the reform and pilot of volume-based drugs procurement, which accumulated practical experiences [11].

In January 2019, the General Office of the State Council of the People’s Republic of China (PRC) implemented the National Centralized Drug Procurement (NCDP) policy [12]. In the first round of the NCDP pilot, four municipalities and seven sub-provincial cities in mainland China were selected as pilot cities, thus, the first round of NCDP pilot is also known as “4+7” policy. In the policy, original branded drugs, as well as generic drugs that have passed the consistency evaluation of the policy, original branded drugs, as well as generic drugs that have an alternative relationship with bid-winning drugs in clinical use, would inevitably change. A study based on national drug procurement data reported that, after the implementation of “4+7” policy, the daily cost of bid-winning original and generic drugs, as well as non-winning original drugs, significantly decreased by 33.20, 75.74, and 5.35%, while the daily cost of bid-non-winning generic drugs prominently increased by 73.66% [17]. Wang et al.’s study [18] in Shanghai found that the daily cost of branded and generic cardiovascular drugs fell by 66.45 and 24.24% after the implementation of “4+7” policy. Yang et al. [19] indicated that the price of bid-non-winning antipsychotic drugs decreased by more than 10% as the results of “4+7” policy, while the price of other drug substances dropped by less than 5%. Similarly, Chen et al.’s study [20] in Shenzhen, China revealed that the price of alternative drugs (i.e. drug substances that have an alternative relationship with bid-winning drugs) decreased significantly after policy intervention. However, Ye et al. [21] reported opposite results that the daily cost of bid-non-winning products and alternative drugs increased by 17.43 and 7.68%, respectively.

In summary, previous findings regarding the impact of “4+7” policy on drug prices have been controversial. In the present study, following a quasi-natural experiment design, we examine the impact of “4+7” policy on the change of policy-related drug prices.

Methods

Data sources

This study used data from the Centralized Drug Procurement Survey in Shenzhen 2019 (CDPS-SZ, 2019) [20]. In China, the CDPS-SZ 2019 was organized and conducted by the Global Health Institute of Wuhan University between December 2019 and January 2020. The survey aimed to evaluate the effect of drug-related policies in Shenzhen, China, and collected monthly drug purchase order data between 2018 and 2019. In the CDPS-SZ 2019 database, each purchase order record included purchase date, generic name, dosage form, specification, pharmaceutical manufacturer, price per unit, purchase volume, purchase expenditures, etc. A general database containing 963,127 monthly aggregated purchase order records was established, involving 1079 drug substances (by generic name), 346 medical institutions, 857 pharmaceutical manufacturers. The total purchase expenditures reached 20.87 billion Chinese Yuan.

The purpose of this study is to examine the impact of “4+7” policy on prices of policy-related drugs. Thus, we included samples with the following criteria: (a) the drug

...
scope was “4 + 7” policy-related drugs [14, 17], including 25 drugs involved in the “4 + 7” procurement list (called “4 + 7” List drugs) and their alternative drugs (supplementary Table 1). The alternative drug refers to drug substances that have an alternative relationship with “4 + 7” List drugs in clinical use, which was determined according to the Monitoring Plan Work of National Centralized Drug Procurement and Use issued by the NHSA of the PRC [22]. The document provided a list of alternative drugs for each of the 25 drugs. “4 + 7” List drugs were divided into bid-winning and bid-non-winning products according to the bidding results. Bid-winning products referred to products that won the tender in “4 + 7” policy, otherwise they were deemed to be non-winning products. (b) the time period between January 2018 and December 2019; and (c) the medical institution covered all the public medical institutions in Shenzhen, China. Finally, 47,163 purchase order records of 82 drug substances (by generic name) were included in the analysis. Figure 1 presents the flow chart of sample screening.

Outcome variables

Drug Price Index was used as outcome variable in this study, which is a common indicator reflecting the trend of drug price change over different periods [23, 24]. This study applied three commonly used DPI: Laspeyres Price Index (L_P), Paasche Price Index (P_P), and Fisher Price Index (F_P).

L_P is calculated as the ratio of price in reporting period and the price in baseline period, weighted by the quantity in baseline period. This method assumes that the consumption structure of drugs remains unchanged in

Fig. 1 Flow chart of sample screening
Different periods, and is applicable to reflect the pure
price change of drugs. \(L_P \) is calculated as follows:

\[
L_P = \frac{\sum P_1 Q_0}{\sum P_0 Q_0}
\]

(1)

\(P_P \) is calculated as the ratio of price in reporting period
and the price in base-period, weighted by the quantity in
reporting period. The index reflects the increase or decrease in drug costs due to the price change when the quantity and consumption structure has changed. \(P_P \) is calculated as follows:

\[
P_P = \frac{\sum P_1 Q_1}{\sum P_0 Q_1}
\]

(2)

\(F_P \) is calculated as the geometric mean of \(L_P \) and \(P_P \),
which was weighted by the quantity in both baseline
period and reporting period. Thus, \(F_P \) can equalize and
average the biases of \(L_P \) and \(P_P \). Theoretical researches
showed that \(F_P \) is an optimal form of price index, and is
called “the ideal index” [24]. \(F_P \) is calculated as follows:

\[
F_P = \sqrt[L_P]{I_P}
\]

(3)

In the above Formula (1)–(3), \(P \) means the price, \(P_0 \)
and \(P_1 \) refer to price per Defined Daily Doses (DDDs)
of each product in baseline- and reporting period. \(Q \) means
purchasing quantity, \(Q_0 \) and \(Q_1 \) refer to DDDs of each
product in baseline- and reporting period. DDDs is the
ratio of the quantity of drug utilization and Defined
Daily Dose (DDD) [25]. If the drug price index > 1, it indi-
cates the increase of drug price in the reporting period
when compared with the base-period; If the drug price index =1, it means that drug prices remain unchanged
over the two periods; If the drug price index < 1, it means
that drug prices in the reporting period decrease
compared with the base period.

\(L_P \) and \(P_P \) assume that consumption structure of the
“basket” of drugs remains unchanged in baseline or
reporting period, while in reality, the consumption struc-
ture of medicines always changes. Therefore, the price
levels measured by \(L_P \) and \(P_P \) are always biased against
the reality. \(F_P \) averages the different biases between \(L_P \)
and \(P_P \) and the calculation result lies between the above
two. Previous studies pointed out that \(F_P \) is a better form
of price index, also known as the Fisher ideal index [26].
Thus, we applied \(F_P \) as the outcome indicator when con-
ducted segmented linear regression.

In this study, January to June 2018 was assigned as the
baseline period, and July 2018 to December 2019 was
assigned as the reporting periods to calculate drug price
indexes of each month (18 months).

Statistical analysis
Firstly, descriptive statistics were applied to describe the
change of DPI of policy-related drugs under “4 + 7” pol-
icy. In Shenzhen, “4 + 7” policy was implemented on
March 25, 2019, thus 8 months (July 2018 to February
2019) was assigned as the pre-“4 + 7” policy period and
10 months (March to December 2019) as post-“4 + 7”
policy period.

Secondly, a single group-interrupted time-series analysis
was designed to quantity the impact of “4 + 7” pol-
cy on \(F_P \) [27, 28]. The monthly time series of \(F_P \) was
constructed involving 18 time points between July 2018
and December 2019, including 8 points pre-intervention
and 10 points post-intervention. Segmented linear re-
gression model with two interruption points were for-
mulated to detect the effect on \(F_P \), as follows [29]:

\[
Y_t = \beta_0 + \beta_1 T_t + \beta_2 X_t + \beta_3 T_t X_t + \epsilon_t
\]

(4)

In the Formula (4), \(Y_t \) is the \(F_P \) in month \(t. T_t \) indi-
cates time in months at time \(t \) from the start of the obser-
vation period, which values from 1 to 18. \(X_t \) is an indicator
for time \(t \) in the pre-“4 + 7” policy period (coded 0) and
post-“4 + 7” policy period (coded 1). \(T_t X_t \) indicates
months in the post-“4 + 7” policy period (time in the pre-
“4 + 7” policy period is coded 0).

In the above model, \(\beta_0 \) estimates the baseline level of
the \(F_P \). \(\beta_1 \) estimates the linear trend of \(F_P \) in the pre-
“4 + 7” policy period. \(\beta_2 \) estimates the change in level
after the “4 + 7” policy. \(\beta_3 \) estimates the change in trend
in the post-“4 + 7” policy period compared with the pre-
“4 + 7” policy period. \(\epsilon_t \) is an estimate of the random
error at time \(t \). Durbin-Watson test was performed to
test the presence of first-order auto-correlation (a value
around 2 indicates no sign of auto-correlation). Stata
version 16.0 was used to perform the ITS analysis. A \(p-
value < 0.05 \) was considered statistically significant.

Results
Descriptive analysis
Descriptive analysis was conducted to compare the
change of \(L_P, P_P, \) and \(F_P \) in the pre- and post-“4 + 7” pol-
icy periods. Table 1 lists the results of winning and non-
winning products. After the implementation of “4 + 7”
policy, the \(L_P, P_P, \) and \(F_P \) of bid-winning drugs decreased
by 56.37, 57.45, and 81.35%, respectively. The \(F_P \) of bid-
winning products declined from 0.50 (SD = 0.01) in pre-
“4 + 7” policy period to 0.09 (SD = 0.01) in post-“4 + 7”
policy period. The \(L_P, P_P, \) and \(F_P \) of non-winning prod-
ucts decreased by 2.32, 9.91, and 11.96%, respectively.
The \(F_P \) of non-winning products declined from 0.49
(SD = 0.01) in pre-“4 + 7” policy period to 0.43 (SD =
0.03) in post-“4 + 7” policy period.
Table 2 summarizes the results of “4+7” List drugs and alternative drugs. After the implementation of “4+7” policy, the L_P, P_P, and F_P of “4+7” List drugs decreased by 58.95, 60.68, and 83.38%, respectively. The F_P of “4+7” List drugs dropped from 0.48 ($SD=0.02$) in pre-“4+7” policy period to 0.08 ($SD=0.03$) in post-“4+7” policy period. The L_P, P_P, and F_P of alternative drugs decreased by 2.30, 2.11, and 4.34%, respectively. The F_P of alternative drugs dropped from 0.49 ($SD=0.01$) in pre-“4+7” policy period to 0.47 ($SD=0.02$) in post-“4+7” policy period. For the overall of “4+7” List drugs and alternative drugs, the L_P, P_P, and F_P decreased by 35.83, 41.49, and 62.21%, respectively. The F_P of the overall drugs dropped from 0.48 ($SD=0.01$) in pre-“4+7” policy period to 0.18 ($SD=0.03$) in post-“4+7” policy period.

ITS analysis

Bid-winning and non-winning drugs

The results of ITS analysis for bid-winning and non-winning products are presented in Table 3 and Fig. 2. The F_P of winning products significantly declined ($−0.0.391 per month, 95% CI = −0.411 to −0.370, p-value < 0.001) in the start of the “4+7” policy implementation.

Table 2 The change of drug price index for centralized purchased drugs and alternative drugs pre- and post-“4+7” policy

	L_P			P_P			F_P		
	Pre-	Post-	GR (%)	Pre-	Post-	GR (%)	Pre-	Post-	GR (%)
Bid-winning products									
Mean	1.00	0.44	−56.37	1.00	0.42	−57.45	0.50	0.09	−81.35
SD	0.01	0.03	−	0.01	0.03	−	0.01	0.01	−
Min	0.99	0.42	−	0.99	0.41	−	0.49	0.09	−
Max	1.00	0.53	−	1.00	0.51	−	0.50	0.13	−
Non-winning products									
Mean	0.99	0.96	−2.32	0.99	0.89	−9.91	0.49	0.43	−11.96
SD	0.01	0.02	−	0.01	0.04	−	0.01	0.03	−
Min	0.97	0.94	−	0.97	0.85	−	0.47	0.41	−
Max	1.00	1.00	−	1.00	1.00	−	0.50	0.50	−

L_P: Laspeyres Price Index; P_P: Paasche Price Index; F_P: Fisher Price Index; Pre-: pre-“4+7” policy, i.e. July 2018 to February 2019; Post-: post-“4+7” policy, i.e. March 2019 to December 2019

GR growth rate, SD standard deviation
while no significant difference was found in the slope between pre- and post-“4+7” policy periods (p-value = 0.280). In the start of the “4+7” policy implementation, significant decrease (−0.034 per month, 95% CI = −0.067 to −0.001, p-value = 0.046) was found in F_P of non-winning products. However, the change in the pre- and post-“4+7” policy slopes had no significant difference (p-value = 0.262).

“4+7” list drugs and alternative drugs
The ITS results of “4+7” List drugs and alternative drugs are presented in Table 4 and Fig. 3. The F_P of “4+7” List drugs significantly declined (−0.347 per month, 95% CI = −0.395 to −0.299, p-value < 0.001) in the start of the “4+7” policy implementation. However, no statistically significant difference was found in the trend change between the pre- and post-“4+7” policy periods (p-value = 0.761). Significant decline (−0.003 per month, 95% CI = −0.006 to −0.001, p-value = 0.014) in F_P of alternative drugs was found between the pre- and post-“4+7” policy slopes. For the overall of “4+7” List drugs and alternative drugs, the F_P significantly decreased (−0.261 per month, 95% CI = −0.298 to −0.223, p-value < 0.001) at the start of the “4+7” policy implementation, while the change in the pre- and post-“4+7” policy slopes had no significant difference (p-value = 0.268).

Discussion
This study aims to analyze the impact of NCDP on the prices of policy-related drugs. Overall, we found that the price of winning products decreased markedly and the prices of non-winning products dropped slightly after the implementation of “4+7” policy, while the price change of alternative products had no statistical difference. For the overall drugs of “4+7” List and alternative, the comprehensive effect of “4+7” policy on price reduction was significant, but the long-term effect of the policy was not obvious.

In the NCDP policy, 60–70% of the market in pilot cities was assigned to conduct volume-based procurement, so as to relieve the artificially high drug prices by “group purchase” [30]. In this study, a notably direct effect of price reduction for winning products was observed, the F_P decreased by 79.02% and showed significant difference between the pre- and post-“4+7” policy periods.

Table 3 ITS results of Fisher Price Index for winning and non-winning products

Item	Coef.	S.E	t	p-value	95% CI Lower	95% CI Upper	DW
Baseline level, β_0	0.500	0.006	79.930	0.000	0.486	0.513	1.983
Baseline trend, β_1	−0.001	0.001	−0.360	0.725	−0.004	0.003	
Level change, β_2	−0.391	0.010	−41.020	0.000	−0.041	−0.370	
Trend change, β_3	−0.002	0.002	−1.120	0.280	−0.006	0.002	
Baseline level, β_0	0.491	0.010	49.150	0.000	0.470	0.513	2.172
Baseline trend, β_1	−0.001	0.002	−0.500	0.628	−0.006	0.004	
Level change, β_2	−0.034	0.015	−2.190	0.046	−0.067	−0.001	
Trend change, β_3	−0.003	0.003	−1.170	0.262	−0.010	0.003	

Fig. 2 Influence of “4+7” policy on the Fisher price index of bid-winning and non-winning drugs: a bid-winning drugs; b non-winning drugs
In the present study, we found that the winning products lowered the prices consciously to save "model". It is reported that enterprises of non-products made adjustments in pricing strategy and sales pharmaceutical enterprises related to bid-winning products covered original branded drugs and generic drugs that had passed consistency evaluation of quality and efficacy, which had large clinical demand and quality assurance. Thus, the decline in drug prices might effectively alleviate the medication burden of patients.

With the announcement of "4 + 7" bid-winning results, pharmaceutical enterprises related to bid-winning products made adjustments in pricing strategy and sales model. It is reported that enterprises of non-winning products lowered the prices consciously to save the market. In the present study, we found that the F_P of non-winning products dropped by 11.96% after "4 + 7" policy in Shenzhen and showed statistically significant. Previous studies reported similar findings. Zhang & Wang found that the price of non-winning antihypertensive drugs showed a gradient decline, with the fall ranging from 1 to 52%. Yang et al. reported that the prices of three non-winning antidepressant drugs dropped by 12.67% on average. These findings indicated that the implementation of NCDP policy was conducive to improve market competitiveness and reshaping the competitive pattern of the pharmaceutical industry. However, ITS results of this study showed that there was no statistical difference in the changes of DPI slope of non-winning products between the pre- and post-"4 + 7" policy periods, indicating that the price reduction of non-winning products might just be a temporary response of pharmaceutical enterprises during the implementation of policy.

In this study, the F_P of alternative products fell slightly by 4.34% in Shenzhen, while ITS analysis showed no statistical difference. Chen et al. and Yang et al. reported consistent results as this study. On the one hand, the price of alternative drugs did not change significantly (such as price increase) during the implementation of "4 + 7" policy, indicating that the national monitoring did play an important role. On the other hand, this study indicated that the effect of price reduction triggered by 25 "4 + 7" List drugs was limited, and could not make a further impact on the market pattern. Furthermore, this study also found that the DPI slope of alternative products dropped markedly after the implementation of "4 + 7" policy, indicating that the policy might help slow the growth of alternative drug prices and reduce the burden of patients.

Several potential limitations should be mentioned regarding the present study. Firstly, when it comes to policy effect evaluation, difference-in-difference (DID) or a multiple-group ITS are of superiority than single-group ITS design, for they involved a control group and could effectively identify the net effect of a certain intervention. However, due to the accessibility of data, we are unable to obtain additional data to assign a suitable control group so as to conduct DID analysis or multiple-group ITS, leading to certain defect in this study. Secondly, only one of the 11 pilot cities was included in the study (i.e. Shenzhen City), the results of this study may

Item	Coef.	S.E	t	p-value	95% CI Lower	Lower	DW
"4 + 7" List drugs							
Baseline level, β_0	0.498	0.015	33.670	0.000	0.466	0.530	1.991
Baseline trend, β_1	-0.005	0.004	-1.470	0.164	-0.013	0.002	
Level change, β_2	-0.347	0.022	-15.480	0.000	-0.395	-0.299	
Trend change, β_3	-0.001	0.004	-0.310	0.761	-0.011	0.008	
Alternatives							
Baseline level, β_0	0.494	0.004	113.580	0.000	0.485	0.503	2.223
Baseline trend, β_1	-0.001	0.001	-1.270	0.225	-0.004	0.001	
Level change, β_2	0.004	0.007	0.630	0.537	-0.010	0.018	
Trend change, β_3	-0.003	0.001	-2.790	0.014	-0.006	-0.001	
Overall							
Baseline level, β_0	0.495	0.011	44.240	0.000	0.471	0.519	2.106
Baseline trend, β_1	-0.003	0.003	-1.070	0.303	-0.009	0.003	
Level change, β_2	-0.261	0.017	-15.020	0.000	-0.298	-0.223	
Trend change, β_3	-0.004	0.003	-1.150	0.268	-0.011	0.003	

Coef. coefficient, S.E standard error, CI confidence interval, DW Durbin-Watson statistic.
not fully represent the overall implementation effect of “4 + 7” policy in China, caution should be exercised in generalizing the findings. In spite of this, single-group ITS is also a widely recognized and commonly applied method in drug utilization research [27, 34]. Following a quasi-natural experiment design, single-group ITS study can identify policy effects through self pre-and post-intervention comparison. Furthermore, the present study is the first one to comprehensively examine the price change of policy-related drugs under the implementation of “4 + 7” volume-based procurement policy in China. The findings of this study might have reference value for subsequent policy practice.

Conclusion
This study analyzed the impact of NCDP on the price of policy-related drugs in Shenzhen. The F_p of 25 winning products notably decreased by 79.02%. Under the NCDP policy, the market behavior of pharmaceutical enterprises of policy-related drugs changed. The F_p of non-winning products dropped by 11.96% after the implementation of the policy, while the long-term trend of price reduction was not observed. In terms of alternative drugs, the price reduction at the start of the implementation of “4 + 7” policy had no statistical difference. However, a trend of price growth slowing down for alternative drugs was observed in the post-“4 + 7” policy period. In the future, on the one hand, it is necessary to expand the scope of “4 + 7” List drugs, so as to trigger the linkage effect of price reduction in a larger scope and to a greater extent. On the other hand, it is essential to strengthen the continuous monitoring of changes in the price and consumption structure of policy-related drugs, ensuring the accessibility and rationality of medications for patients.

Abbreviations
CDPS-SZ 2019: Centralized Drug Procurement Survey in Shenzhen 2019; DDD: Defined Daily Dose; DDDc: Defined daily dose cost; DPI: Drug price index; ITS: Interruption time series; LP: Laspeyres Price Index; PP: Paasche Price Index; FP: Fisher Price Index; NCDP: National Centralized Drug Procurement; OECD: Organization for Economic Co-operation and Development

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12889-021-11882-7.

Additional file 1: Supplementary Table 1. The list of included drugs in this study. Supplementary Figure 1. Monthly change trends of fisher price index of policy-related drugs between July 2019 and December 2019.

Acknowledgements
Not applicable.

Authors’ contributions
Conceptualization, Y.Y. and D.C.; methodology, N.W. and Y.Y.; software, Y.Y.; formal analysis, N.W. and Y.Y.; investigation, N.W., Y.Y., L.X. and Z.M.; resources, Z.M. and D.C.; data curation, Y.Y. and Z.M.; writing—original draft preparation, N.W., Y.Y. and L.X.; writing—review and editing, N.W., Y.Y., L.X., Z.M. and D.C.; supervision, Z.M. and D.C.; project administration, D.C.; funding acquisition, Z.M. and D.C. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported by the Global Health Institute, Wuhan University, China. The role of the funding body included designing the study, the analysis and interpretation of data, and writing the manuscript.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki. The study protocol was reviewed and approved by the Institutional Review Board of School of Health Sciences, Wuhan University. In this research, we only included the medication procurement information and all the information was anonymous. Neither patients nor the public were involved in this research. Thus, according to the Institutional Review Board of School of Health Sciences, Wuhan University, the requirement for patient consent was waived.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China. 2Global Health Institute, Wuhan University, 115# Donghu Road, Wuhan 430071, China.

Received: 9 April 2021 Accepted: 28 September 2021
Published online: 19 October 2021

References
1. Parkinson B, Sermet C, Clermont F, Crusas S, Godman B, Garner S, et al. Disinvestment and value-based purchasing strategies for pharmaceuticals: an international review. Pharmacoeconomics. 2015;33(9):905–24. https://doi.org/10.1007/s40273-015-0293-8.
2. Smith C. Retail prescription drug spending in the national health accounts. Health Aff. 2004;23(1):160–7. https://doi.org/10.1377/hlthaff.23.1.160.
3. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
4. The Central People’s Government of the People’s Republic of China. 2019 statistical bulletin of China’s health development. 2020. http://www.gov.cn/zhengce/2021-04/09/content_5598657.htm. Accessed 25 Apr 2021.
5. Zhai T, Zhang Y, Wan Q, Chai P, Guo F, Li Y, et al. The results and analysis of national health accounts in China in 2018. Chin Health Econ. 2020;39(6):5-8. https://doi.org/10.7664/CHE20200601.
6. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
7. Zhai T, Zhang Y, Wan Q, Chai P, Guo F, Li Y, et al. The results and analysis of national health accounts in China in 2018. Chin Health Econ. 2020;39(6):5-8. https://doi.org/10.7664/CHE20200601.
8. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
9. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
10. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
11. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
12. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
13. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
14. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
15. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
16. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
17. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
18. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
19. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
20. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
21. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
22. The IQVIA Institute. Global medicine spending and usage trends outlook to 2024. 2020. https://www.iqvia.com/insights/the-iqvia-institute/reports/global-medicine-spending-and-usage-trends. Accessed 25 Apr 2021.
32. Tan Z, Fan S. Challenges and countermeasures of pharmaceutical enterprises under the background of centralized purchasing of drugs “4+7”. Health Econ Res. 2019;36(08):13–5. https://doi.org/10.14055/j.cnki.33-1056/f.2019.08.004.

33. Zhang Y, Wang M. Analysis of the influence of “4 + 7” on the use of ACEI antihypertensive drugs. J Hunan Norm Univ (Med Sci). 2021;18(01):189–92.

34. Ariel L. Conducting interrupted time-series analysis for single- and multiple-group comparisons. Stata J. 2015;15(2):480–500. https://doi.org/10.1177/1536867X1501500208.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.