A NOTE ON GEOMETRY OF κ-MINKOWSKI SPACE

Stefan Giller*, Cezary Gonera*, Piotr Kosinski*, Paweł Maślanka*

Department of Theoretical Physics
University of Łódź
ul. Pomorska 149/153, 90–236 Łódź, Poland

Abstract. The infinitesimal action of κ-Poincaré group on κ-Minkowski space is computed both for generators of κ-Poincaré algebra and those of Woronowicz generalized Lie algebra. The notion of invariant operators is introduced and generalized Klein-Gordon equation is written out.

I. Introduction

In this short note we consider some simple properties of differential operators on κ-Minkowski space \mathcal{M}_κ — a noncommutative deformation of Minkowski space-time which depends on dimensionful parameter κ ([1]). We calculate the infinitesimal action of κ-Poincaré group \mathcal{P}_κ ([1]) on \mathcal{M}_κ both for the generators of κ-Poincaré algebra $\tilde{\mathcal{P}}_\kappa$ ([2]) (this is done using the duality $\tilde{\mathcal{P}}_\kappa \leftrightarrow \mathcal{P}_\kappa$ described in [3]) and for the elements of Woronowicz generalized Lie algebra ([4]) of κ-Poincaré group ([5]). The result supports the relation between both algebras found in [5]. We introduce also the notion of invariant differential operators on \mathcal{M}_κ and write out the generalized Klein-Gordon equation.

Let us conclude this section by introducing the notions of κ-Poincaré group \mathcal{P}_κ and algebra $\tilde{\mathcal{P}}_\kappa$. \mathcal{P}_κ is defined by the following relations ([1])

\begin{align}
[x^\mu, x^\nu] &= \frac{i}{\kappa}(\delta^\mu_0 x^\nu - \delta^\nu_0 x^\mu), \\
[A^\mu, A^\alpha_\beta] &= 0, \\
[A^\mu, x^\nu] &= -\frac{i}{\kappa}((A^\mu_0 - \delta^\mu_0)A^\nu + (A^0_\nu - \delta^0_\nu)g^{\mu\rho}), \\
\Delta(A^\mu_\nu) &= A^\mu_\alpha \otimes A^\alpha_\nu, \\
\Delta(x^\mu) &= A^\mu_\alpha \otimes x^\alpha + x^\mu \otimes I, \\
S(A^\mu_\nu) &= A^\mu_\alpha, \\
S(x^\mu) &= -A^\mu_\nu x^\nu, \\
\varepsilon(A^\mu_\nu) &= \delta^\mu_\nu, \\
\varepsilon(x^\mu) &= 0.
\end{align}

(1)

* Supported by Łódź University grant No 458

Typeset by AMSS-TeX
The dual structure, the κ-Poincaré algebra $\tilde{\mathcal{P}}_\kappa$, is, in turn, defined as follows ([6])

\[[P_\mu, P_\nu] = 0, \]
\[[M_i, M_j] = i\varepsilon_{ijk} M_k, \]
\[[M_i, N_j] = i\varepsilon_{ijk} N_k, \]
\[[N_i, N_j] = -i\varepsilon_{ijk} M_k, \]
\[[M_i, P_0] = 0, \]
\[[M_i, P_j] = i\varepsilon_{ijk} P_k, \]
\[[N_i, P_0] = i P_i, \]
\[[N_i, P_j] = i\delta_{ij} \left(\kappa^2 \left(1 - e^{-2P_0/\kappa} \right) + \frac{1}{2\kappa} \vec{P}^2 \right) - \frac{i}{\kappa} P_i P_j, \]
\[\Delta(M_i) = M_i \otimes I + I \otimes M_i, \]
\[\Delta(N_i) = N_i \otimes e^{-P_0/\kappa} + I \otimes N_i - \frac{1}{\kappa} \varepsilon_{ijk} M_j \otimes P_k, \]
\[\Delta(P_0) = P_0 \otimes I + I \otimes P_0, \]
\[\Delta(P_i) = P_i \otimes e^{-P_0/\kappa} + I \otimes P_i, \]
\[S(M_i) = -M_i, \]
\[S(N_i) = -N_i + \frac{3i}{2\kappa} P_i, \]
\[S(P_\mu) = -P_\mu, \]
\[\varepsilon(P_\mu, M_i, N_i) = 0. \]

Structures (1), (2) are dual to each other, the duality being fully described in [3].

The analysis given below was suggested to two of the authors (P. Kosiński and P. Maślanka) by J. Lukierski.

II. κ-MINKOWSKI SPACE

The κ-Minkowski space \mathcal{M}_κ ([1]) is a universal $*$-algebra with unity generated by four selfadjoint elements x^μ subject to the following conditions

\[[x^\mu, x^\nu] = \frac{i}{\kappa} \left(\delta_\mu^\nu x^\sigma - \delta_\nu^\mu x^\sigma \right). \] (3a)

Equipped with the standard coproduct

\[\Delta x^\mu = x^\mu \otimes I + I \otimes x^\mu, \] (3b)

antipode $S(x^\mu) = -x^\mu$ and counit $\varepsilon(x^\mu) = 0$ it becomes a quantum group.

On \mathcal{M}_κ one can construct a bicovariant five-dimensional calculus which is defined
by the following relations ([5])

\[\tau^\mu \equiv dx^\mu, \quad \tau \equiv d \left(x^2 + \frac{3i}{\kappa}x^0 \right) - 2x_\mu dx^\mu, \]

\[[\tau^\mu, x^\nu] = \frac{i}{\kappa} g^{0\mu} \tau^\nu - \frac{i}{\kappa} g^{\mu\nu} x^0 + \frac{1}{4} g^{\mu\nu} \tau, \]

\[[\tau, x^\mu] = -\frac{4}{\kappa^2} \tau^\mu, \quad \tau^\mu \wedge \tau^\nu = -\tau^\nu \wedge \tau^\mu, \quad \tau \wedge \tau^\mu = -\tau^\mu \wedge \tau, \]

\[(\tau^\mu)^* = \tau^\mu, \quad \tau^* = -\tau, \]

\[d\tau^\mu = 0, \quad d\tau = -2\tau_\mu \wedge \tau^\mu. \]

The \(\kappa \)-Minkowski space carries a left-covariant action of \(\kappa \)-Poincaré group \(P_\kappa ([1]) \), \(\rho_L : M_\kappa \rightarrow P_\kappa \otimes M_\kappa \), given by

\[\rho_L(x^\mu) = \Lambda^\mu_\nu \otimes x^\nu + a^\mu \otimes I. \]

The calculus defined by (4) is covariant under the action of \(P_\kappa \) which reads

\[\tilde{\rho}_L(\tau^\mu) = \Lambda^\mu_\nu \otimes \tau^\nu, \quad \tilde{\rho}_L(\tau) = I \otimes \tau. \]

III. Derivatives, infinitesimal actions and invariant operators

The product of generators \(x^\mu \) will be called normally ordered if all \(x^0 \) factors stand leftmost. This definition can be used to ascribe a unique element : \(f(x) : \) of \(M_\kappa \) to any polynomial function of four variables \(f \). Formally, it can be extended to any analytic function \(f \).

Let us now one define the (left) partial derivatives: for any \(f \in M_\kappa \) we write

\[df = \partial_\mu f \tau^\mu + \partial f \tau. \]

It is a matter of some boring calculations (using the commutation rules (3a)) to find the following formula

\[d : f : =: \left(\kappa \sin \left(\frac{\partial_0}{\kappa} \right) + \frac{i}{2\kappa} e^{i \frac{\partial_0}{\kappa} \Delta} \right) f : \tau^0 + e^{i \frac{\partial_0}{\kappa} \Delta} \frac{\partial f}{\partial x^i} : \tau^i \]

\[+ : \left(\frac{\kappa^2}{4} \left(1 - \cos \left(\frac{\partial_0}{\kappa} \right) \right) - \frac{1}{8} e^{i \frac{\partial_0}{\kappa} \Delta} \right) f : \tau \]

or

\[\partial_0 : f : =: \left(\kappa \sin \left(\frac{\partial_0}{\kappa} \right) + \frac{i}{2\kappa} e^{i \frac{\partial_0}{\kappa} \Delta} \right) f : \]

\[\partial_i : f : =: e^{i \frac{\partial_0}{\kappa} \Delta} \frac{\partial f}{\partial x^i} : \]

\[\partial : f : =: \left(\frac{\kappa^2}{4} \left(1 - \cos \left(\frac{\partial_0}{\kappa} \right) \right) - \frac{1}{8} e^{i \frac{\partial_0}{\kappa} \Delta} \right) f : \]
Let us now define the infinitesimal action of P_{κ} on M_{κ}. Let X be any element of the Hopf algebra dual to P_{κ} — the κ-Poincaré algebra \tilde{P}_{κ} (cf. [3] for the proof of duality). The corresponding infinitesimal action

$$\hat{X} : M_{\kappa} \to M_{\kappa}$$

is defined as follows: for any $f \in M_{\kappa}$,

$$\hat{X}f = (X \otimes \text{id}) \circ \rho_{L}(f).$$

(10)

Using the standard duality rules ([3]), we conclude that

$$\hat{P}_\mu : x^\alpha = i\delta^\alpha_\mu;$$

$$\hat{P}_\mu : x^\alpha x^\beta = i\delta^\beta_\mu x^\alpha + i\delta^\alpha_\mu x^\beta$$

(11)

etc. One can show that, in general,

$$\hat{P}_\mu : f := i \frac{\partial f}{\partial x^\mu};$$

(12)

Also, using the fact that $\tilde{\rho}_{L}$ is a left action of P_{κ} on M_{κ} together with the duality $P_{\kappa} \to \tilde{P}_{\kappa}$, we conclude that

$$F(\hat{P}_\mu) : f := F \left(i \frac{\partial f}{\partial x^\mu} \right) f :$$

(13)

Formulae (11)–(13) have the following interpretation. In [5] the fifteen-dimensional bicovariant calculus on P_{κ} has been constructed using the methods developed by Woronowicz ([4]). The resulting generalized Lie algebra is also fifteen-dimensional, the additional generators being the generalized mass square operator and the components of generalized Pauli-Lubanski fourvector. All generators of this Lie algebra can be expresses in terms of the generators $P_\mu, M_{\alpha\beta}$ of \tilde{P}_{κ} ([5]). In particular, the translation generators χ_μ as well as the mass squared operator χ are expressible in terms of P_μ only. The relevant expressions are given by formulae (20) of [5]. Comparing them with (9), (13) above, we conclude that

$$\hat{\chi}_\mu = \partial_\mu;$$

$$\hat{\chi} = \partial.$$

(14)

These relations, obtained here by explicit computations, follow also from (7) if one takes into account that M_{κ} is a quantum subgroup of P_{κ}.

It is also not difficult to obtain the action of Lorentz generators. Combining (1) and (3a) with the duality $P_{\kappa} \to \tilde{P}_{\kappa}$ described in detail in [5], we conclude first that the action of M_i and N_i coincides with the proposal of Majid and Ruegg ([6]); the actual computation is then easy and gives

$$\hat{M}_i : f(x^\mu) := -i\varepsilon_{ijl}x^j \frac{\partial f(x^\mu)}{\partial x^l};$$

$$\hat{N}_i : f(x^\mu) := \left(i x^0 \frac{\partial}{\partial x^i} + x^i \frac{\kappa}{2} \left(1 - e^{-\frac{\kappa}{2}} \frac{\partial}{\partial x^0} \right) - \frac{1}{2\kappa} \Delta \right)$$

$$+ \frac{1}{\kappa} x^k \frac{\partial^2}{\partial x^k \partial x^i} \right) f(x^\mu);$$

(15)
Let us now pass to the notion of invariant operator; \(\hat{C} \) is an invariant operator on \(\mathcal{M}_\kappa \) if
\[
\rho_L \circ \hat{C} = (\text{id} \otimes \hat{C}) \circ \rho_L. \tag{16}
\]

We shall show that if \(C \) is a central element of \(\tilde{\mathcal{P}}_\kappa \), then
\[
\hat{C}f = (C \otimes \text{id}) \circ \rho_L(f) \tag{17}
\]
is an invariant operator. To prove this let us take any \(Y \in \tilde{\mathcal{P}}_\kappa \), then
\[
YC = CY \tag{18}
\]
or, in other words, for any \(a \in \mathcal{P}_\kappa \),
\[
Y(a(1))C(a(2)) = C(a(1))Y(a(2)) \tag{19}
\]
where \(\Delta a = a(1) \otimes a(2) \). Let us fix \(a \) and write (19) as
\[
Y(a(1))C(a(2)) = C(a(1))Y(a(2)) \tag{20}
\]
As (20) holds for any \(Y \in \tilde{\mathcal{P}}_\kappa \) we conclude that for any \(a \in \mathcal{P}_\kappa \)
\[
C(a(1))a(1)(2) = C(a(2))a(1) \tag{21}
\]
Now let
\[
\rho_L(x) = a(1) \otimes x(1), \quad \rho_L(x(1)) = a(1) \otimes x(2), \quad \Delta a(1) = a(1) \otimes a(1). \tag{22}
\]
The identity
\[
(id \otimes \rho_L) \circ \rho_L = (\Delta \otimes \text{id}) \circ \rho_L \tag{23}
\]
implies
\[
a(1) \otimes a(1)(2) \otimes x(2) = a(1) \otimes a(1) \otimes x(1). \tag{24}
\]
Applying to both sides \(id \otimes C \otimes \text{id} \) and \(C \otimes \text{id} \otimes \text{id} \), we get
\[
C(a(1))a(1) \otimes x(2) = C(a(1))a(1) \otimes x(1), \tag{25}
\]
\[
C(a(1))a(1) \otimes x(2) = C(a(1))a(1) \otimes x(1).
\]
It follows from (21) applied to \(a(1) \) that the right-hand sides of (25) are equal. So,
\[
C(a(1))a(1) \otimes x(2) = C(a(1))a(1)(2) \otimes x(2) \tag{26}
\]
i.e.
\[
(id \otimes \hat{C}) \circ \rho_L(x) = \rho_L \circ \hat{C}(x). \tag{27}
\]
Using the above result we can easily construct the deformed Klein-Gordon equation. Namely, we take as a central element the counterpart of mass squared Casimir operator \(\chi \) ([5]). Due to (14) the generalized Klein-Gordon equation reads
\[
\left(\theta + \frac{m^2}{8} \right)f = 0; \tag{28}
\]
the coefficient \(\frac{1}{8} \) is dictated by the correspondence with standard Klein-Gordon equation in the limit \(\kappa \to \infty \). Let us note that (28) can be written, due to (9), in the form
\[
\left[\partial_0^2 - \partial_i^2 + m^2 \left(1 + \frac{m^2}{4 \kappa^2} \right) \right]f = 0; \tag{29}
\]
here \(\partial_0, \partial_i \) are the operators given by (9). It seems therefore that the Woronowicz operators \(\chi_\mu \) are better candidates for translation generators than \(P_\mu \)'s. Note that the operators \(\chi_\mu \) already appeared in [7], [8].
References

[1] S. Zakrzewski, J. Phys. A 27 (1994), 2075.
[2] J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293 (1992), 344.
[3] P. Kosiński, P. Maślanka, The duality between κ-Poincaré algebra and κ-Poincaré group, hep-th.
[4] S.L. Woronowicz, Comm. Math. Phys. 122 (1989), 125.
[5] P. Kosiński, P. Maślanka, J. Sobczyk, in: Proc. of IV Coll. on Quantum Groups and Integrable Systems, Prague 1995, to be published.
[6] S. Majid, H. Ruegg, Phys. Lett. B 334 (1994), 348.
[7] H. Ruegg, V. Tolstoy, Lett. Math. Phys. 32 (1994), 85.
[8] J. Lukierski, H. Ruegg, V. Tolstoy, in: Quantum Groups. Formalism and Applications. Proc. of XXX Karpacz Winter School of Theoretical Physics, ed. J. Lukierski, Z. Popowicz, J. Sobczyk, PWN 1995.