Analysis of water flow during the drought and flood seasons case study: The Mosul dam, Iraq

Wafa Khudiar Leabi1, Abeer Hassan Wanas2, Taymoor Husham Nussrat3, Lana Muthanna Santiago4, Zinah Ahmed Shukri4, and Wael Shahadha AbdulKareem5,*

1 Assist Lecturer at the Highway and Transportation Department, College of Engineering, Al-Mustansiriyah University.
2 Assist Lecturer at the Civil Engineering Department, College of Engineering. Al-Mustansiriyah University.
3 Assist Lecturer at the Baghdad College of Economic Sciences University.
4 Engineer at the Highway and Transportation Department, College of Engineering, Al-Mustansiriyah University.
5 Lecturer at the Environmental Engineering Department, College of Engineering. Al-Mustansiriyah University.

* waelshahadha@uomustansiriyah.edu.iq

Abstract. Mosul Dam is a structure facilitated to create a reservoir or a human-made lake named Lake Dahuk. Tigris river is the upstream water supply of the Mosul dam. The dam located at the western of Mosul city, the center of the governorate of Nineveh in the north of Iraq. The only drawback of the dam is the position; it is built on unstable karst ground. This worry situation led to take serious efforts and treatment decisions since the occupation of Iraq in 2003. Unfortunately, no concrete news till now whether the dam is safe or not and what is the prudential supervision needed. The data of this research are obtained from the Iraqi ministry of water resources/Mosul dam department. Schedule reports and 442 monthly data values have been monitored using advanced electronic instruments and technical programming, under experience engineers and special supervisors within the period 2000-2016. The objectives of this study are; Analysis the water flow during the drought and flood seasons, also to study the impact of the Ilisu dam on the Mosul dam efficiency. In addition, this analysis gives the answers to the puzzling questions and probably hundreds of researches concerns. It was noticed that within the period 2009 to 2015 the monthly inlet water discharge values are the same values of the outlet discharge. And the highest value observed of the water level achieved by the dam in the year 2002 is 329.55 m above means sea level, while the less value is 287.89 m in 2011. In addition to the continuous operation of foundation concrete grouting, it is highly recommended to increase the depth of the grouting. Finally, the Ilisu dam has no direct impact on Mosul dam efficiency.

Keyword: Mosul Dam, Ilisu Dam, drought and flood seasons, inlet and outlet water quantity

1. Introduction
Mosul dam built to seize the Tigris inlet water through a wide-land of earth named lake Dahuk, then control the water stored in the reservoir to the outlet water flow at the time of low water flow season in
A specific discharge rate. In fact, the water released used for many important demands; irrigation, power supply, industry, and human social implementations. In general, besides these benefits, the ecological and environmental impacts are considered as disadvantages of a dam [1].

A serious study has been investigated the general circumstances of the Mosul dam, and how the serious situation is. A case study selected by Hindreen to conjecture a flood catastrophe scenario caused by a probable dam break caused by the foundation base, using the GE program and digital elevation model at the maximum operation level 330 m above mean sea level. He found that approximately 237 km² of Mosul city will be submerged within 7 hours [2].

A predicted study model was done by Nasrat Adamo and Nadhir Al-Ansari. It is a computer programming simulation model. The authors produce several recommendations in case of dam failure; People rescue procedure and emergency plan details to minimize the life loses downstream of Mosul dam [3]. The same authors have another study issued in the same journal volume. The study showed that the concrete grouting procedure of the foundation cavities cannot be considered as a permanent solution. A serious sought for another solution is highly recommended [4].

Another prediction study of flood disasters by Thair and Anas. The floodplain will cover approximately 250 km² and cause disaster damage to the areas downstream of the dam [5].

While, Younis and Ali, predicted the worst scenario of the possible floodplain caused by Mosul dam failure. Mosul city will be completely submerged within two hours after the dam break. The results are compared with previous prediction scenarios, they found that Badush dam has a perfect option and location to fend off a floodplain wave and to protect the downstream cities of Mosul dam [6].

Researchers from the Lulea University of Technology-Sweden, are interested also in this case. The study result suggested building another dam located at the downstream of the Mosul dam [7]. Meanwhile, other researchers confirm the stability of the dam and they excluded the idea of a dam collapse. They have many of evidence; the two major floods encountered the dam in 1988 and 1994, no significant cracking was noted along the embankment, also no sinkholes detected in the Dahuk lake reservoir upstream the dam using echo-sounding surveys [8].

The methodology and data inquired in this study from the Iraqi Ministry of Water Resources of Mosul dam to improve the performance and solve future problems. It is noteworthy to mention that no surveys focused on the water inlet and outlet discharge in detail to make a comparison image during the drought and flood seasons through the years 2000-2016 and the latitude water elevations of the dam, also the impact of Ilisu dam on upstream of Mosul dam.

2. Mosul dam

2.1. Location of Mosul dam

Satellite image figure 1 taken from Quick Bird satellite 2015 with resolution 0.6 m and figure 2 indicate the location of the dam 60 km (45 mi) north of Mosul, Nineveh Governorate, Iraq, where the location in Tigris river forms a lake and surface area about 420 km².

Figure 1. Satellite image from quick bird

Mosul dam built on a karst foundation which is formed from gypsum dissolved of soluble gypsum rocks [9]. The topographic characteristic feature of the dam lets a water sinking stream enters through the soil
fissures and sinking holes to reach the underground cavities, this caused probably an internal potential erosion, figure 3.

![Figure 3. The features of a karst dam system.](image)

In September 2006, according to the United States Army Corps of Engineers report, considered Mosul dam as a dangerous dam in the world. This report gives further concerns over the possibility of a dam collapsed scenario, and the flood that might be happened in Mosul city [10], also to calculate the time period needed before the flood water reach Baghdad the capital of Iraq after the sudden failure of the dam. This could consider a worse situation happened ever, declaring a state of emergency is urgently required to eliminate the total estimated death and keep the person's health, security, property, or environment safe. This report confirmed by US SIGIR on October 30, 2007 [11], deems the dam's foundations to be unsafe [12]. In fact, this report has become binding on the UN coalition to maintain the integrity of the dam.

2.2. Characteristics of the Mosul dam

The construction of the Mosul dam began on January 25, 1981, collect the water in the lake Dahuk started in June 1984, and keep filling till the spring of 1985, while the dam started actual operation on July 7, 1986, with construction an approximation cost of 1.5 billion dollars. The specification of the Mosul dam detailed in table 1 [13]. The spillway service located on the east side of the Mosul Dam, five gates control the maximum capacity flow of 13x10^3 m^3s^{-1}. Also, the emergency spillway capacity fuse 4x10^3 m^3s^{-1}[14]. Four turbine power supply generators type Francis functioned to produce eco-friendly electrical sources for multiple purposes uses [15].

Specifications	Details
Height of dam	113 m
Length of the top dam	3600 m
Width of the top dam	10 m
Total Level of the top dam	341 m M.S.L
Operation level	330 m M.S.L
Store volume	11.11 billion m³
The area in Operation level	380 km²
Highest level	338 m up M.S.L
Store volume highest level	14.53 billion m³
Maximum of operation level	335 m
Living store in maximum operation level	8.16 billion m³
Dead store in maximum operation level	2.95 billion m³

Investigation study by Issa et al. in 2013 to record the maximum and minimum average flow of Mosul reservoir within the years 1986-2012, it is obvious that September considered a dry month, while April month reach the highest flow, figure 4.
A previous records of the Tigris river within the years 1930-2012 of the maximum and minimum flow of 3500 m3s$^{-1}$ and 90 m3s$^{-1}$ in April 1954 and September 1986, respectively, figure 5 [13].

![Figure 4. Average monthly inlet and outlet flow of Mosul Reservoir. [13]](image)

![Figure 5. Tigris river inlet flow per month [13]](image)

2.3. Impact of Ilisu dam
The Ilisu dam is a rock dam covered by a reinforced concrete face, located at the Tigris river south Turkey, functioned to provide electrical power of 1.2×10^3 Mega Watt and control 10.0 billion m3 of floodwater [16]. The construction of the dam began in 2006 [17], and the order to the supervisors to start filling the reservoir of the Ilisu dam in July 2019 [18].

The earth excavations started in May 2011 [19]. A ceremony celebration held in August 2012 announced the Tigris River conversion [20]. The prospective date of the project complete in 2015 [21], in fact, 96% of the works finished in June 2017 [22] and the complete construction project in 2018 [23].

Due to the water shortages in Iraq, the reservoir impoundment date postponed until the end of 2019 [18]. Meanwhile, Mosul dam witnessed a water shortage [24] of 5 billion m3 in comparison with its levels in the same period of the last year [25], shuttle connections between both Iraqi and Turkish government. The warrior includes Mosul dam, but not limited, as the Tigris river had the lowest water level in the south of Iraq. The flow discharge decreased by approximately 50% than the total Tigris water share [26]. As a result, the marshes have been dehydrated, affecting the environment and the ecological system [27]. To make matters worse, the emergence of desertification signs in other parts of Iraq [28] due to the lack of rainfall in the winter season [29] that would reduce the agricultural areas [30]. By logic, the Ilisu dam has a direct impact on the Mosul dam reservoir intake and the downstream flow especially the distance of the Tigris River between the Ilisu dam and Mosul dam is approximately 200 km, table 2 and figure 6.

Table 2. History of Ilisu dam construction date details
Details
The construction of the dam began
3. Iraq climate
Drought is a random natural phenomenon that emerges from a large deficiency in precipitation. It is the costliest natural disaster in the world and affects a very large number of people every year [31]. However, the summer is the hot season with a dry dusty wind of 80 km/hr. with two types of winds; southern winds blowing within April-June and the south-east wind blowing within September-November. The temperature degree almost 47 ºC in June-August. While the flooding is the overflow of the stream at the river edges than the normal circumstances water level. The flooding almost caused by continues and/or frequent rainfall approximately 40 cm/year to reach 100 cm/year in some places near the mountainous lands. Habitual rainfall and fully saturated soil increase the probability of floodplain. In winter season months (December- April), precisely in January, the temperature degree drops below 0 ºC.

4. Results and discussions
The water inlet (inflow) is the water that stems from the source of the Tigris river acquired from Turkey. While the water outlet (outflow) means the water drainage out from the dam used for irrigation and also used for electricity generation.

The data of this research are obtained from the Iraqi ministry of water resources/Mosul dam department. Schedule reports and 442 monthly data values have been monitored using advanced electronic
Instruments and technical programming, under experience engineers and special supervisors within the period 2000-2016. The authors will use this data to analyze the monthly inlet and outlet flow. In April 2003, the maximum inlet and outlet flow values are 2436 m3s$^{-1}$ and 1949 m3s$^{-1}$. Also, in August 2014, the minimum inlet and outlet flow value is 75 m3s$^{-1}$. Inequality in values between the flood and drought season almost 32 times, see table 3.

Table 3. Max. and min. monthly inlet and outlet flow through the years 2000-2016 [32]

Months	Discharge m3s$^{-1}$	Minimum	In year	Maximum	In year
January	inlet flow	215	2001	1115	2006
	released flow	157	2000	1020	2013
February	inlet flow	194	2011	1115	2006
	released flow	157	2000	1020	2013
March	inlet flow	530	2000	1490	2004
	released flow	140	2001	1185	2013
April	inlet flow	502	2014	2436	2003
	released flow	115	2001	1949	2003
May	inlet flow	400	2014	1465	2011
	released flow	150	2000	1360	2007
June	inlet flow	175	2014	620	2002
	released flow	175	2014	745	2003
July	inlet flow	110	2001	330	2013
	released flow	120	2014	605	2004
August	inlet flow	75	2014	298	2013
	released flow	75	2014	648	2002
September	inlet flow	78	2009	190	2006
	released flow	78	2009	597	2002
October	inlet flow	78	2010	235	2007
	released flow	78	2010	524	2003
November	inlet flow	95	2000	690	2007
	released flow	105	2011	555	2007
December	inlet flow	122	2000	502	2013
	released flow	130	2011	502	2013

The monthly values within the years 2009-2015, the inlet water flow are the same as the values of the outlet water flow. The scientific explanation of this analysis means that all the water quantity comes from the Tigris river upstream the Mosul dam go through the dam spillway directly to the downstream without any obstruction.

Both the inlet and outlet flow reached the maximum value of 1330 m3s$^{-1}$ in January 2010. While the minimum inlet and outlet water flow values are 157 and 142 m3s$^{-1}$ in 2011 and 2000, respectively. Except for the monthly values in the years 2001, 2005 and 2007, the inlet flow values are more than the outlet flow values.

Figure 7 shows the monthly inlet and outlet flow water for the twelve months between the period 2000-2016. The horizontal axis represents the years 2000 to 2016 and the vertical axis represents the flow discharge in m3s$^{-1}$.
Figure 7. The monthly inlet and outlet water flow within 2000-2016
February considered a winter month season. Almost, the annual rainfall occurs between November and April, but the heavy rainfall that happened in February makes the flow irregular. The turbulence flow starts from this month till the end of May. In this month the minimum inlet and outlet values records are 194 m³s⁻¹ and 157 m³s⁻¹ in the years 2011 and 2000, respectively. On March 20, the winter season ends, also the ends of rainfall and the start of a pleasant spring season on March 21, the date of capturing snowmelt from Turkey. The maximum inlet flow is 1490 m³s⁻¹ in 2000 which is more than the flow inlet of January by 12%. And the maximum outlet flow is 1185 m³s⁻¹ in 2013. While the minimum inlet flow is 530 m³s⁻¹ in 2000 and the minimum outlet flow is 140 m³s⁻¹ in 2001. The highest mean monthly discharge occurs during April, it is a spring season come with a start of melting snow and the ground earth is fully saturated with rainfall water, the probability of flooding threaten is expected to happen in this month. The inlet flow reached the maximum value ever through the years 2000-2016, 2436 m³s⁻¹ this value monitored by the Mosul dam supervisions in April 2003. A comparison between the recent data with the data acquired since 1931, this value is less than the value 3514 m³s⁻¹ recorded in April 1954 [33]. While the minimum value recorded since 1931 is 75 m³s⁻¹ in August 2014.

May is the spring season month, the maximum inlet and outlet flow discharge values are 1465 m³s⁻¹ in 2011, while the minimum inlet and outlet values are 400 m³s⁻¹ and 150 m³s⁻¹ in 2014 and 2000, respectively.

June located between two seasons the spring and the summer. The drought starts from this month till the end of December. The inlet and outlet curves of these months are semi steady and no sudden jump or turbulence monitored through the years 2000-2016.

The maximum design flood limit above the mean sea level of the Mosul dam is 335 m, while the ultimate latitude value above m.s.l is 338 m. In case the water level reaches the ultimate latitude value then the water inside the reservoir should be evacuated immediately through the spillway downstream gates, otherwise, the dam could be threatening by collapse fears. The maximum water level reached during the period 2000-2016 is 329.5 m in 2002, while the minimum level is 297.89 m in 2011, figure 8. Within the years 2006-2016 a constant water level of 319 m above mean sea level. This constant level was decided at the beginning of 2006 by the authority of the Ministry of Water Resources to limit the maximum operation water level to elevation 319 m above m.s.l instead of elevation 330 m. This operation is a precautionary measure in order to limit the dangers facing the dam to reduce the risk about the seepage under the dam and the possibility of the formation of new sinkholes [32].
5. Conclusions and recommendations

- Mosul Dam is still considered unstable due to the nature of geological soil foundation.
- The recent media fuss gave a positive reaction than the real situation of the dam is, to push authorities and government to ensure the prudent operation and keep it safe.
- Periodic investigations and studies are recommended.
- In addition to the continuous operation of foundation concrete grouting, it is highly recommended to increase the depth of the grouting.
- Also, an alternative plan is urgently needed to match the feasibility studies.
- Finally, the Ilisu dam has no direct impact on Mosul dam efficiency.

6. References

[1] M. Sait Tahmiscioglu, Nermin Anul, Fatih Ekmekci, and Nurcan Durmus, “Positive and Negative Impacts of Dams on the Environment”, International Congress on River Basin Management, Pp 760-769
[2] Hindreen Mohammed Nazif, Department of Drilling Oil Wells, Ararat Private Technical Institute, Kurdistan, Duhok, Iraq, “Advance Mosul Dam Break Analysis by Integrated Hydrologic Modeling and Gene-Expression Programming”, SU-ICEIT 2019, pp 1-9.
[3] Nasrat Adamo and Nadhir Al-Ansari, “Mosul Dam Full Story: Safety Evaluations of Mosul Dam”, Journal of Earth Sciences and Geotechnical Engineering, vol.6, no. 3, 2016, 185-212, ISSN: 1792-9040 (print version), 1792-9660 (online) Scienpress Ltd, 2016.
[4] Nasrat Adamo and Nadhir Al-Ansari, “Mosul Dam Full Story: What If The Dam Fails?”, Journal of Earth Sciences and Geotechnical Engineering, vol.6, no. 3, 2016, 245-269, ISSN:1792-9040 (print version), 1792-9660 (online), Scienpress Ltd, 2016
[5] Thair Mahmood Al-Taiee and Anas Mahmood Al-Juboori, “Simulation Tigris River Flood Wave in Mosul City Due to a Hypothetical Mosul Dam Break I”, Damascus University Journal Vol. (25) - No. (2) 2009.
[6] Younis Saida and Ali C. Benim, “Geo-Morphometric Analysis and Flood Simulation of the Tigris River Due to a Predicted Failure of the Mosul Dam, Mosul, Iraq”, Environmental Remote Sensing and GIS in Iraq, August 2019, pp 397-414.
[7] Nadhir Al-Ansari1, Nasrat Adamo, Varoujan Sissakian, Sven Knutsson, Jan Laue, “Is Mosul Dam the Most Dangerous Dam in the World? Review of Previous Work and Possible Solutions”, Scientific Research Publishing Inc., Engineering, 2017, 9, 801-823, http://www.scirp.org/journal/eng, ISSN Online: 1947-394X, ISSN Print: 1947-3931.

[8] Khayyun Rahi, “is Mosul dam the most dangerous dam in the world?”, DOI: 10.13140/RG.2.2.15394.53448, Seminar, Boone Pickens School of Geology Oklahoma State University, DOI:10.13140/RG.2.2.15394.53448, August 2017.

[9] Palmer, A.N., 1991, Origin and morphology of limestone caves, Geological Society of America Bulletin, v. 103, p 1-21.

[10] Amit R. Paley, "Iraqi Dam Seen In Danger of Deadly Collapse", The Washington Post, October 30, 2007.

[11] SIGIR PA-07-105, 2007. Relief and reconstruction funded work at Mosul dam, Iraq.

[12] BBC News, "Iraq dismisses Mosul Dam warnings", October 31, 2007.

[13] Isa, E.I., Al-Ansari, N., and Knutsson, S., 2013. Sedimentation and new operational curves for Mosul Dam, Iraq. Hydrological Sciences Journal, 58 (7), 1456–1466.

[14] Corps of Engineers, "Iraqi Dam Assessments". Iraq: United States Army, 6 June 2003. Archived from the original on 24 September 2015. Retrieved 27 February 2012.

[15] Wright, Andrew G. (5 May 2003). "Iraqi Dam Has Experts On Edge Until Inspection Eases Fears". Engineering News-Record. Archived from the original on 8 August 2003.

[16] Haberler. 17 October 2012. "İlĩsu Project Target 2014". Retrieved 9 May 2013.

[17] Gusten, Susanne (30 March 2011). "Court Case Could Slow Turkish Dam Project". New York Times. Retrieved 15 December 2015.

[18] Reuters, "Turkey starts filling huge Tigris river dam, activists say", 2 August 2019. Retrieved 20 August 2019.

[19] State Hydraulic Works, "İlũsu Project Status Report", 26 April 2013. Retrieved 20 May 2013.

[20] State Hydraulic Works, "İlũsu Dam Diversion was initiated", 28 August 2012. Retrieved 9 May 2013.

[21] State Hydraulic Works, "İlũsu Projesi İš İlerleme Durum Raporu", State Hydraulic Works. 4 April 2014. Archived from the original on 8 August 2014. Retrieved 12 May 2014.

[22] Haberler, Güneydoğu (14 June 2017). "İlũsu Baraji gün sayiyor!". Türkiye Gazetesi. Retrieved 18 June 2017.

[23] Shepperson, Mary (2018-02-07), "How archaeologists discovered an ancient Assyrian city – and lost it again", the Guardian. Retrieved 2018-02-15.

[24] Reuters, "Turkey halts filling Tigris dam after Iraq complains of water shortages", 7 June 2018.

[25] The National, "Turkey dam sparks renewed water shortage panic in Iraq", 3 June 2018.

[26] Yale School of Forestry & Environmental Studies, "Turkey's Dam-Building Spree Continues, At Steep Ecological Cost", 3 October 2019.

[27] Anna Bachmann; Virginia Tice; Laith Ali Al-Obeidi; Dicle Tuba Kilç (2019). "Tigris-Euphrates River Ecosystem: A Status Report (PDF). Mesopotamia Water Forum.

[28] Bloomberg, "Iraq Wheat Farmers May Slash Plantings as Turks Fill New Dam", 25 June 2018.

[29] Reuters, "Exclusive - Water shortages to cut Iraq's irrigated wheat area by half", 11 September 2018.

[30] scidev.net, "Wheat and barley shortage devastates Iraq", 11 October 2018.

[31] Wilhite, D. A. 2000. Drought as a Natural Hazard: Concepts and Definitions, Wilhite D. A, Inc., Routledge, London: pp. 3-18.

[32] Ministry of Water Resources, 2006, “Board of Expert Report No.1, On Mosul Dam Project”. Feb 2006, Baghdad, Iraq.

[33] Engineering Consulting Bureau, 2010. Sedimentation study at the intake of North Al-Jazira Irrigation Project. Mosul: Mosul University, College of Engineering, Contract No. 20, Final Report. Google Scholar.
Acknowledgments
Deep gratitude to the Iraqi Ministry of Water Resources, Mosul dam, and University of Mustansiriyyah/College of Engineering for the assistance given to the authors to conduct the survey.