Clinical and Para-Clinical Findings of COVID19 in Hemodialysis Patients Compared to Control Group: A Case-Control Study

Elham Shahreki 1, *, AliReza Ansari-Moghaddam 2, Roya Alavi Naini 3, Maryam Keikha 4, Ramin Bazi 5 and Ahmad Reza Shahraki 6

1Department of Internal Medicine, Nephrology, Ali Ibne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
2Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
3Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
4Department of Radiology, Children and Adolescents Health Research Center Zahedan University of Medical Sciences, Zahedan, Iran
5School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
6Department of Surgery, Zahedan University of Medical Sciences, Zahedan, Iran

*Corresponding author: Department of Internal Medicine, Nephrology, Ali Ibne Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran. Email: shahrekie@gmail.com

Received 2021 December 22; Accepted 2022 February 17.

Abstract

Background: Following the global outbreak of severe acute respiratory syndrome coronavirus 2 in different communities, hemodialysis patients have not been spared by this viral infection.

Objectives: This study evaluated the clinical symptoms laboratory and imaging findings in patients undergoing hemodialysis and compared these characteristics with the control group.

Methods: The study was performed on 72 patients with positive COVID-19 polymerase chain reaction test, of whom 36 cases had end-stage renal disease undergoing hemodialysis and the remaining had no history of kidney diseases. After matching the two groups in terms of age, sex, and other underlying diseases, the clinical, laboratory, and chest computed tomography (CT) scan findings were compared between the case and control groups.

Results: The mean age of dialysis patients was 42.52 ± 12.10 years and 48.58 ± 17.35 years in the control group. The study results revealed that hemodialysis patients had less fever, cough, and shortness of breath than the control group (P-value < 0.05). Hemoglobin, lymphocyte, and platelet counts were significantly lower in hemodialysis patients in comparison to the control group (P-value < 0.05). C-reactive protein was significantly higher in patients undergoing hemodialysis (P-value = 0.01), and ground-glass opacification was observed more in patients undergoing hemodialysis compared to controls, but this difference was not statistically significant (P = 0.07).

Conclusions: Hemodialysis patients had fewer initial clinical symptoms but more abnormalities in laboratory findings and ground-glass opacities on chest CT scans and a higher mortality rate.

Keywords: COVID-19, Hemodialysis, Chronic Kidney Disease, SARS-CoV-2

1. Background

Following the increased cases of pneumonia of unknown cause in Wuhan, China, in December 31, 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) was identified as the cause of the disease, which has spread rapidly throughout the world (1). SARS-CoV-2 infection was responsible for the disease that was known and named by World Health Organization (WHO) as COVID-19 (2). Until march 31, 2021, a number of 128,104,216 confirmed COVID-19 cases were reported worldwide (3). The number of confirmed patients and deaths in Iran were 1875234 and 62569, respectively (4). The severity of the disease ranges from mild to moderate in approximately 80% of infected patients, and severe and critical conditions are seen in around 20% of the remaining cases. Patients’ clinical manifestations might vary from asymptomatic to patients with symptoms and signs of fever, cough, fatigue, sore throat, shortness of breath, and even respiratory failure and acute respiratory distress syndrome (ARDS) in severe forms of the disease have been reported (5, 6). Severe cases were mostly patients with shortness of breath, respiratory rate (RR) over 30/min, resting blood oxygen saturation less than 93%, and PaO2/FiO2 less than 300 mmHg. When radiographic findings of pneumonia show progression in more than 50% of chest CT scans during 24 - 28 h, it is also considered a severe form of the
disease. Critical cases had dyspnea with the necessity for mechanical ventilation, shock, multiple organ failure, and they always required ICU care. The most common chest CT scan findings in COVID-19 include patchy ground-glass opacities (GGOs), consolidations, interlobular septal thickening, crazy paving appearance, fibrotic streaks, and strip-like opacities (7). Comorbidities, like chronic kidney disease (CKD), diabetes mellitus, and hypertension are associated with the severe form of the disease, and CKD increases mortality in COVID-19 patients (8). The immune deficiency associated with CKD makes these patients prone to this highly contagious disease (2, 6, 9). Therefore, they are at higher risk of severe disease and higher mortality (9, 10).

In a study conducted in Spain, mortality was higher than 30% of the general population, and the patients had less fever, weakness, lethargy, and cough (10). Imaging and symptoms of these patients might be different from the general population. Due to the fact that hemodialysis patients are older and they almost always have an underlying disease, they are more likely to be infected, and subsequently, they could be a source for spreading the virus in the community (5).

2. Objectives

This study aimed to determine the clinical and paraclinical findings in hemodialysis patients and compare these characteristics to patients without a history of kidney disease.

3. Methods

3.1. Study Population and Design

This was a case-control, internal multicenter study conducted on 72 COVID-19 patients confirmed by oropharyngeal and nasopharyngeal polymerase chain reaction testing. We collected data from three hospitals affiliated with the Zaheden University of Medical Sciences (ZUMS), southeastern Iran (Boo Ali Hospital, Ali ibne Abitaleb Hospital, and Khatam Hospital) from February 2020 to December 2020. The study was approved by the ZUMS ethics committee (IR.ZAUMS.REC.1399.145). During this period, 36 end-stage renal disease (ESRD) patients had the inclusion criteria. During the same period, patients without renal insufficiency who were matched in age and sex and had the underlying disease were included in the study as a control group.

Thirty-six ESRD patients older than 18 years with COVID-19 under hemodialysis (HD) were compared to 36 patients without any history of renal diseases. Patients in the case group were on HD for at least three months prior to admission. Patients in the control group had no history of kidney disease with a glomerular filtration rate of more than 90 percent. The cases and controls were matched according to age, sex, and other underlying diseases. To confirm COVID-19, nasopharyngeal/oropharyngeal swab testing was performed for all patients using SARS-COV-2 real-time reverse transcriptase PCR. Data, including demographic findings, history of comorbidity diseases, vital signs, and oxygen saturation, as well as laboratory tests, such as hemoglobin and white blood cell, lymphocyte, and platelet counts, were collected from the patients’ medical files.

3.2. Statistical Analysis

Descriptive statistics were used to summarize the data, and results were reported as means and standard deviations. The categorical variables were summarized as numbers and percentages. We conducted comparisons of baseline characteristics, symptoms, laboratory findings, and CT findings between the two groups using a t-test for continuous variables and a Chi-square test or Fisher’s exact test for binary and categorical variables. Statistical analyses were conducted using SPSS v.16 software, and p-values smaller than 0.05 were considered statistically significant.

4. Results

The results of the study showed that the mean age of HD patients and the control group was 42.52 ± 12.10 and 48.58 ± 17.35 years, respectively. In both the case and control groups, 25 (69.4%) patients were male, and the remaining were female. The number and percentage of underlying diseases, including diabetes mellitus, hypertension, ischemic heart disease, pulmonary and rheumatologic diseases, as well as the number of patients using statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in both the case and control groups are demonstrated in Table 1. Charlson’s comorbidity index in HD patients and controls was 6. As shown in Table 1, there was not a significant difference between the control and HD groups regarding the mentioned factors (Table 1).

Fever was detected in 32 patients in the control group and only 19 cases on HD. Cough and dyspnea were observed in 23 and 24 HD patients and in 36 and 34 patients in the
control group, respectively (P < 0.05) (Table 2). There was no statistical difference for other clinical findings, like sore throat, myalgia, anosmia, and vomiting. Respiratory rate and oxygen saturation were approximately the same in both groups at the time of admission. Hemoglobin, lymphocyte count, platelets count were significantly lower in HD patients, and CRP was significantly higher in this group compared to controls (P = ??) (Table 2).

In lung HRCT scan, dilated vessel and emphysema were found only in the two cases, and there was a significant difference between the groups in ground-glass opacification, and although it was more in HD patients, this difference was not statistically significant. Consolidation, diffuse pattern, pleural and pericardial effusion, and airway dilation were more observed in lung HRCT scans of HD patients. Central pattern and emphysema were more frequent in the control group than in HD patients (Table 3).

During the course of the disease, out of 36 HD patients, four patients were intubated, and these four patients died (11.1 %). Out of 36 patients in the control group, three required intubation, and two died (5.5%).

5. Discussion
Since the beginning of the COVID-19 outbreak, several studies have been conducted on the prevalence and severity of the disease and the causes that exacerbate the disease. Comorbidities, such as diabetes mellitus, hypertension, and chronic kidney disease, lead to more severe disease (11). Due to the immune system dysfunction in patients with ESRD and using the same place to perform HD, these patients are at higher risk of the severe form of the disease (12). In our study, which was done in Zahedan, Sistan, and Baluchestan province, located in southeastern Iran, both the control and hemodialysis groups were matched based on their age, sex, and comorbidity (Charlson comorbidity index). Both groups were similar in terms of diabetes mellitus, ischemic heart disease (IHD), lung disease, malignancy, rheumatologic diseases, hypertension, and statin use. Similar to other studies, the common presenting symptoms in our study were cough, fever, and dyspnea in all the patients (9, 13). However, fever, cough, and dyspnea were more prominent in patients without a history of renal impairment than HD patients, which is similar to Collado et al.’s findings (14). This can be due to the immunodeficiency of these patients (15). Compared to the general population, the number of T cells was lower in HD patients. Likewise, serum levels of inflammatory cytokines in these patients with COVID-19 infection were relatively low compared to non-HD patients (12). This causes fewer symptoms, such as fever and cytokine storm in these patients (12, 15). In our study, HD patients had lower hemoglobin, platelets, and lymphocytes and higher CRP than the control group. This can be due to underlying

| Table 1. Baseline Characteristics of the Patients with COVID-19 in the Case and Control Groups d |
|---|---|---|
| Variables | HD Group (n = 36) | Control Group (n = 36) |
| Age | 42.52 ± 12.10 | 48.58 ± 17.35 |
| Male | 25 (69.4) | 25 (69.4) |
| Charlson comorbidity index | 6 (2-9) | 6 (0-9) |
| Diabetes mellitus | 17 (47.2) | 19 (52.7) |
| HTN | 28 (77.8) | 26 (72.2) |
| IHD | 29 (80.5) | 24 (66.6) |
| Lung disease | 2 (5.5) | 5 (13.8) |
| Malignancy | 0 | 3 (8.3) |
| Rheumatologic disease | 1 (2.8) | 2 (5.5) |
| Statin use | 15 (41.6) | 17 (47.2) |
| ACEis or ARBs use | 28 (77.8) | 24 (66.6) |

Abbreviations: WBC, white blood cell; CRP, C-reactive protein
d Values are expressed as mean ± SD or No. (%).

Table 2. Baseline Clinical Presentation and Laboratory Data of Patients with COVID-19 in the Case and Control Groups
Clinical Presentation

Cough
Fever
Dyspnea
Sore throat
Vomiting
Myalgia
Anosmia
Respiratory rate (in min)
Oxygen saturation (%)
Hemoglobin (g/L)
WBC count
Lymphocyte
CRP
Platelets count

Abbreviations: WBC, white blood cell; CRP, C-reactive protein
Table 3. Radiologic Findings of the Patients

Radiologic Finding	HD Group	Control Group	P-Value
Ground glass opacification	21 (58.3)	14 (38.8)	0.07
Consolidation	9 (25)	7 (19.4)	0.38
Reticular pattern	6 (16.6)	6 (16.6)	0.62
Mixed pattern	14 (38.8)	18 (50)	0.23
Anterior	2 (5.5)	2 (5.5)	0.31
Posterior	5 (13.8)	9 (25)	0.25
Diffuse	29 (80)	25 (69.4)	0.15
Bilateral	32 (88.8)	34 (94.4)	0.30
Unilateral	4 (11.1)	2 (5.5)	0.40
Central	11 (29.4)	12 (33.3)	0.07
Peripheral	29 (80)	24 (66.6)	0.31
Pleural effusion	16 (44.4)	9 (25)	0.065
Pericardial effusion	11 (36.1)	6 (16.6)	0.052
Emphysema	0	9 (25)	0.001
Bronchiectasis	1 (2.7)	0	0.50
Bronchowall thickening	1 (2.7)	1 (2.7)	0.75
Crazy paving pattern	9 (25)	10 (27.7)	0.50
Reversed halo sign	4 (11.1)	1 (2.7)	0.17
Dilated vessel	28 (77.7)	18 (50)	0.009
Airway dilation	15 (41.7)	7 (19.4)	0.20
Air bronchogram	1 (2.7)	0	0.24
Cavitation	2 (13.8)	0	0.24
Interseptal Thickening	23 (63.8)	23 (63.8)	0.60
Cyst	1 (2.7)	0	0.50
Lymphadenopathy	3 (8.3)	0	0.11
Cardiomegaly	29 (80.5)	28 (77.7)	0.50
Nodule	17 (47.2)	11 (30.5)	0.10
Subpeltural band	24 (66.6)	25 (69.4)	0.50
Upper zone score	2.0 ± 1.5	2.9 ± 1.1	0.44
Middle zone score	72 ± 3.4	6.1 ± 3.6	0.43
Lower zone score	12.4 ± 5.1	9.4 ± 4.1	0.28
Total score	15.58 ± 11.1	13.46 ± 10.8	0.18

anemia and low platelets in these patients. Also, an inflammatory condition due to dialysis technique causes a high level of baseline CRP in HD patients (16).

In our study, the common finding in HRCT was interseptal thickening, GGO, and mixed pattern with diffuse involvement, and the other findings were cardiomegaly and dilated vessel, in line with other studies (9, 11). GGO was the most common finding in both groups and was more common in HD groups, but this difference was not statistically significant. Dilation of vessels was more common in HD patients. Pleural effusion was significantly (P < 0.05) higher in the HD group. In addition to the dilated vessel, it may be caused by cardiac involvement and congestive heart disease in HD patients with COVID-19 (17, 18).

The causes of death in HD patients were cardiac arrest, septic shock, and hyperkalemia, and in the control group, it was cardiac arrest and respiratory failure. Mortality in the HD group (11.1%) was higher than in the control group (5.5%); however, they had fewer initial symptoms. HD mortality in this study was lower than that reported by Kazmi et al. in Pakistan (25.6%) (19) and also Turgutalp et al. in Turkey (16.3%). (18). This could result in the faster diagnosis of patients as well as faster treatment; however, fewer samples can be effective.

Other studies have reported similar results (7). We selected two similar groups for other comorbidities to better determine the effect of dialysis and renal disease and showed that despite the presence of other underlying diseases, except kidney disease in patients, mortality is still higher in HD patients. In another study, Li et al. reported that higher creatinine was associated with higher mortality (20).

In line with another study (18), higher pulmonary and diffuse, and bilateral involvements were associated with higher mortality.

5.1. Conclusions

The results of this study showed that ESRD is an independent risk factor for severe COVID-19. Mortality due to COVID-19 is higher in HD patients.

Footnotes

Authors’ Contribution: Study concept and design: Dr. Elham Shahraki; acquisition of data: Dr. Ramin Bazi, Dr. Maryam Keikha, Ahmad Reza Shahraki; analysis and interpretation of data: Dr. Elham Shahraki, Dr. Roya Alavi Naini, Dr. Alireza Ansari Moghadam; drafting of the manuscript: Dr. Elham Shahraki; critical revision of the manuscript for important intellectual content: Dr. Roya Alavi-Naini; statistical analysis: Dr. Alireza Ansari Moghadam.

Conflict of Interests: The authors have no conflicts of interests to declare.

Data Reproducibility: The data presented in this study are openly available in one of the repositories or will be available on request from the corresponding author by this journal representative at any time during submission or after publication. Otherwise, all consequences of possible withdrawal or future retraction will be with the corresponding author.
Ethical Approval: The study was approved by the ZUMS ethic committee, with ethic code: IR.ZAUMS.REC.1399.145.

Funding/Support: There is no funding/support.

Informed Consent: It was not declared by the authors.

References

1. Ahmadpour D, Ahmadpoor P, Rostaing L. Impact of Circulating SARS-CoV-2 Mutant G614 on the COVID-19 Pandemic. Iran J Kidney Dis. 2020;14(5):338-4. [PubMed: 32943587].

2. Ossareh S, Bagheri M, Abbasi M, Abolfathi S, Bohlooli A. Role of Screening for COVID-19 in Hemodialysis Wards, Results of a Single Center Study. Iran J Kidney Dis. 2020;14(5):389-98. [PubMed: 32943594].

3. Hopkins J. COVID-19 Map - Johns Hopkins Coronavirus Resource Center. Baltimore, MD, USA: Johns Hopkins Coronavirus Resource Center; 2020. [cited 2021 Jul 15]. Available from: https://coronavirus.jhu.edu/map.html.

4. Ismailic Republic News Agency. COVID-19 claims 91 lives in past 24 hours in Iran: Official. Tehran, Iran: Ismailic Republic News Agency; 2021, [cited 2021 Jul 15]. Available from: https://en.irna.ir/news/84241008/COVID-19-claims-91-lives-in-past-24-hours-In-Iran-Official.

5. Naicker S, Yang CW, Hwang SJ, Liu BC, Chen JH, Jha V. The Novel COVID-19 Map - Johns Hopkins Coronavirus Resource Center. Baltimore, MD, USA: Johns Hopkins Coronavirus Resource Center; 2020. [cited 2021 Jul 15]. Available from: https://en.irna.ir/news/84241008/COVID-19-claims-91-lives-in-past-24-hours-In-Iran-Official.

6. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in COVID-19 patients. J Am Soc Nephrol. 2020;31(7):1387-97. doi: 10.1681/ASN.2020030354. [PubMed: 32385130]. [PubMed Central: PMC7350995].

7. Faghihi Langroudi T, Khazaei M. Common imaging patterns of COVID-19 on spiral chest CT scan: a diagnostic approach for pulmonary involvement in ICU patients. J. Cell. Mol. Anesth. 2020;5(1):6-15.

8. Singh AK, Gillies CL, Singh R, Singh A, Chudasama Y, Coles B, et al. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes Metab. 2020;22(10):1935-44. doi: 10.1111/dobm.14124. [PubMed: 32573903]. [PubMed Central: PMC7525232].

9. Abrishami A, Khalili N, Dalili N, Khaleghnejad Tabari R, Farjad R, Samavat S, et al. Clinical and Radiologic Characteristics of COVID-19 in Patients With CKD. Iran J Kidney Dis. 2020;14(4):267-77. [PubMed: 32655021].

10. Goicoechea M, Sanchez Camara LA, Macias N, Munoz de Morales A, Rojas AG, Bascunana A, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. Kidney Int. 2020;98(1):27-34. doi: 10.1016/j.kint.2020.04.031. [PubMed: 32437770]. [PubMed Central: PMC721728].

11. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032. [PubMed: 32109001]. [PubMed Central: PMC7092819].

12. Ma Y, Diao B, Lv X, Liang WN, Zhu J, Liu L, et al. COVID-19 in hemodialysis (HD) patients: Report from one HD center in Wuhan, China. medRxiv. 2020. doi: 10.1101/2020.02.24.20027201.

13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. [PubMed: 39846264]. [PubMed Central: PMC7592999].

14. Collado S, Arenas MD, Barbosa F, Cao H, Montero MM, Villar-Garcia J, et al. COVID-19 in Grade 4-5 Chronic Kidney Disease Patients. Kidney Blood Press Res. 2020;45(5):768-74. doi: 10.1595/000510882. [PubMed: 32898845]. [PubMed Central: PMC7573888].

15. Xiong F, Tang H, Liu L, Tu C, Tian JB, Lei CT, et al. Clinical Characteristics and Medical Interventions for COVID-19 in Hemodialysis Patients in Wuhan, China. J Am Soc Nephrol. 2020;31(7):1387-97. doi: 10.1681/ASN.2020030354. [PubMed: 32385130]. [PubMed Central: PMC7350995].

16. Banichi V, Migliori M, De Pietro S, Taccola D, Bianchi AM, Norworth P, et al. C-Reactive protein as a marker of chronic inflammation in uremic patients. Blood Purif. 2000;18(3):183-90. doi: 10.1159/000014417. [PubMed: 10859421].

17. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):3302-5. doi: 10.1111/jocs.14538. [PubMed: 32306490]. [PubMed Central: PMC7264604].

18. Turgutalp K, Ozturk S, Arici M, Eren N, Gorgulu N, Islam M, et al. Determinants of mortality in a large group of hemodialysis patients hospitalized for COVID-19. BMC Nephrol. 2021;22(1):29. doi: 10.1186/s12882-021-02233-0. [PubMed: 33446135]. [PubMed Central: PMC7808398].

19. Kazmi S, Alam A, Salman B, Saeed F, Memon S, Chughtai J, et al. Clinical Course and Outcome of ESRD Patients on Maintenance Hemodialysis Infected with COVID-19: A Single-Center Study. Int J Nephrol Renovasc Med. 2021;14(4):193-9. doi: 10.2147/IJNRD.S310035. [PubMed: 34234514]. [PubMed Central: PMC8256095].

20. Li Z, Wu M, Yao J, Guo J, Liao X, Song S, et al. Caution on kidney dysfunctions of COVID-19 patients. Preprints with The Lancet. 2020.