Diversity and strength of internal outward-oriented promoters in group IIC-attC introns

Grégory Léon1,2, Cecilia Quiroga1,3, Daniela Centrón3 and Paul H. Roy1,2,*

1Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, 2Département de Biochimie, de Microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Canada and 3Departamento de Microbiología, Inmunología y Parasitología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina

ABSTRACT

Integrons are genetic elements that incorporate mobile gene cassettes by site-specific recombination and express them as an operon from a promoter (Pc) located upstream of the cassette insertion site. Most gene cassettes found in integrons contain only one gene followed by an attC recombination site. We have recently shown that a specific lineage of group IIC introns, named group IIC-attC introns, inserts into the bottom strand sequence of attC sites. Here, we show that S. marcescens, impedes transcription from Pc while allowing expression of the following antibiotic resistance cassette using an internal outward-oriented promoter (Pout). Bioinformatic analyses indicate that one or two putative Pout, which have sequence similarities with the Escherichia coli consensus promoters, are conserved in most group IIC-attC intron sequences. We show that Pout with different versions of the −35 and −10 sequences are functionally active in expressing a promoterless chloramphenicol acetyltransferase (cat) reporter gene in E. coli. Pout in group IIC-attC introns may therefore play a role in the expression of one or more gene cassettes whose transcription from Pc would otherwise be impeded by insertion of the intron.

INTRODUCTION

Integrons are genetic elements that capture gene cassettes using a site-specific tyrosine recombinase (called an integron integrase) and promote their co-expression by supplying a unique functional promoter, Pc, divergent to the integrase gene (1–3). Most gene cassettes are composed of a single structural gene followed by a short recombination site designated attC (or 59-base element), that is specifically recognized by integron integrases (4). Integrons are found on chromosomes and on diverse mobile elements, such as plasmids and transposons, and play a major role in lateral gene transfer in gram-negative bacteria (5,6). Distinct classes of mobile integrons, corresponding to their integrase genes, have been reported in the literature (6). Mobile class 1 integrons are the most widespread among multi-drug resistant bacteria and are often associated with transposons from the Tn21 family (7). The class 1 integron platform is composed of two conserved segments, the 5′-conserved (5′-CS) and 3′-conserved (3′-CS) regions, and one variable region (Figure 1A). The 5′-CS segment contains the integrase gene (intI1), two divergent promoter regions (called Pi for the integrase gene and Pc for gene cassettes), and a recombination site (attC1) into which cassettes are integrated. The 3′-CS segment usually contains a partially functional intercalating dyes/quantenary ammonium compound resistance gene (qacEA1) and most also contain a sulfonamide resistance gene (sulI), and an open reading frame (ORF5), whose product has some similarity to puromycin acetyltransferase (8,9). Between the two conserved segments, the variable region usually includes a short array of gene cassettes coding for various antibiotic resistance mechanisms or ORFs whose products have no known function (10–12). Almost all gene cassettes are promoterless structures that depend on the Pc promoter to express their genes. Among class 1 integrons, several Pc variants (the most prevalent being Pcweak, Pchybrid 1, Pcstrong and Pchybrid 2, respectively) and a second cassette promoter region, P2 (almost exclusively associated with the Pcweak variant), have been described in the literature with different versions of the −35 and −10 sequences.

*To whom correspondence should be addressed. Tel: +1 418 654 2705; Fax: +1 418 654 2715; Email: paul.roy@crchul.ulaval.ca

Present address:
Cecilia Quiroga, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
for each promoter (1,3,13–16). Therefore, expression of gene cassettes is potentially influenced by the genomic localization of the integron (i.e. on a multicopy plasmid versus on the chromosome) and mutation of the transcription and translation initiation signals (1,13,14,17). Moreover, if several cassettes are inserted in the variable region, additional factors, such as premature transcription termination within \textit{attC} sites (13), a cassette with its own promoter (18,19), or insertion of mobile genetic elements in \textit{attC} sites (e.g. insertion sequences (IS) or group II introns) (20,21), may also influence expression of gene cassettes.

Group II introns, together with LINEs and SINEs, are mobile elements from among non-LTR retrotransposons (22). They are found in bacteria (23), Archaea (24) and in organelle genes of plants, fungi and yeast (25). Group II intron RNAs are characterized by a conserved secondary structure organized into six domains (DI–DVI) (26). They fold into active ribozymes that catalyze their excision (from precursor RNAs) and invade new genomic locations, aided by the intron-encoded protein (IEP) (27). Eight lineages of group II introns, termed bacterial classes A-F, ML (mitochondrial-like) and CL (chloroplast-like), have been established according to phylogenetic analysis of their IEP sequences (28–30). Group IIC introns are of special interest because they are found in intergenic regions, usually after palindromic sequences (23,31–33), and have unique RNA structure and self-splicing properties (34,35). Phylogenetic analyses of intron IEP sequences has shown that introns found in \textit{attC} sites constitute a monophyletic subset of group IIC, named group IIC-\textit{attC} introns (32,36). Group IIC introns found in integrons are specifically inserted into the bottom strand sequence of gene cassettes and consequently are oriented opposite to the transcription of the adjacent genes. While most introns found in integrons are in the last cassettes of the variable region (37), those found in the \textit{Serratia marcescens} SCH909 (accession no. AF453998), \textit{Escherichia coli} 702 (AY785243), and \textit{Klebsiella pneumoniae} (AJ971342) integrons, are in the first cassette and potentially influence the expression of the following gene cassettes (Figure 1B).

In this study, we first show that \textit{S.ma}.I2, a group IIC-\textit{attC} intron inserted in an integron cassette array of \textit{S. marcescens}, impedes transcription from \textit{Pcweak}-P2 promoters located within the 5'-CS region, while allowing expression of the following antibiotic resistance cassette using an internal outward-oriented promoter (\textit{Pout}). Then, we performed bioinformatic analyses of all group II-\textit{attC} intron sequences available in databases in order to determine the prevalence of \textit{Pout}. We found that one or two putative \textit{Pout}, which have sequence similarities with

Figure 1. Class 1 integron and cassette arrays. (A) Schematic diagrams of the general structure of a class 1 integron. \textit{P}, promoters; \textit{intI1}, integrase gene; \textit{qacE}A1, antiseptic resistance gene; \textit{sul1}, sulfonamide resistance gene; orf5, gene of unknown function. (B) Schematic diagrams of the variable region (gene cassettes) of class 1 integrons found in \textit{S. marcescens} SCH909, \textit{E. coli} 702, \textit{K. pneumoniae} and \textit{Acinetobacter} genospecies genomes. The gray arrows indicate cassette ORFs; the gray boxes indicate cassette \textit{attC} sites; the white rectangles and arrows indicate group IIC-\textit{attC} introns with their intron encoded proteins (IEP); and \textit{Pout} indicates a putative outward-oriented promoter within the intron.
the E. coli consensus promoters, are conserved in several group IIC-attC introns. We show that P_out with different versions of the −35 and −10 sequences from various group IIC-attC introns are functionally active in expressing a promoterless chloramphenicol acetyltransferase (cat) reporter gene in E. coli.

MATERIALS AND METHODS

Recombinant plasmids, bacterial strains and growth conditions

Plasmids are described in Table 1. The pKK-InΔSma12 clone was obtained from pKK-In by PCR amplification using primer pair Sm909–3497.forward and Sm909–1507.rev to remove the group II intron S.ma.I2. The PCR reaction mixture was digested with DpnI (in order to remove the methylated pKK-In template) and ethanol precipitated. Then, the recovered unmethylated 4396-bp PCR product (i.e. pKK-InΔSma12) was ligated with T4 DNA ligase (400 U; NEB) and transformed into E. coli DH5-α competent cells with ampicillin selection. Serratia marcescens SCH909, Shewanella baltica OS155 and E. coli DH5-α (supE44 ΔlacU169 (q80lacZAM15) hsdR17 recA1 endA1 gyr96 thi-1 relA1) were grown in Luria–Bertani (LB) broth (5 g NaCl, 10 g tryptone, 5 g yeast extract) supplemented with 1.5% glucose at 37°C. When necessary, antibiotics were used at the following concentrations: ampicillin (Ap), 100 µg/ml; and chloramphenicol (Cm), 34 µg/ml. Nitrosonomas europaee was cultured as previously described (38). Geobacter sulfurreducens genomic DNA and the S. baltica OS155 strain were kindly provided by The Institute for Genomic Research and by the DOE Joint Genome Institute, respectively. Isopropyl-β-d-thiogalactopyranoside (IPTG) was added at 1 mM final concentration for induction of the tac promoter in pLQ880. Total DNA was isolated using a phenol–chloroform purification method as described by Sambrook and Russell (39).

Polymerase chain reaction procedures and primers

We used the Phusion DNA polymerase (Finnzymes) for plasmid assembly and the Biotools DNA polymerase (Biotools) for the 5′-RACE, according to the manufacturer's instructions. PCR primers IntI1-Sall (5′-CGCACACCGTGCACACGGACGTAAGG), aadB-HindIII (5′-CTGCAGCTAGAAGCTTGTGTATCAATG), Sm909–3497.forward and Sm909–1507.rev for cloning were obtained from pKK-In by PCR (primer pair Sm909–3497.forward and Sm909–1507.rev) to remove the group II intron S.ma.I2 and the nucleotide sequence up to the initiation codon of the attC/S.ma.I2 gene cassette and cloned into pKK232-8 digested by Sall-HindIII.

Table 1. Plasmids used in this study

Plasmids	Description or relevant characteristics	Reference
pKK232-8	Cloning vector with a promoterless cat used for promoter selection.	(53)
pKK-IntI1	349-bp Sall-HindIII PCR fragment amplified from S. marcescens SCH909 genomic DNA (primer pair IntI1-Sall and aadB-HindIII) containing part of intI1 and the nucleotide sequence up to the initiation codon of the attC/S.ma.I2 gene cassette and cloned into pKK232-8 digested by Sall-HindIII.	This study
pKK-SmaI2	2095-bp Sall-HindIII PCR fragment amplified from S. marcescens SCH909 genomic DNA [primer pair SmaI2-Sall and anti(3′)-III-HindIII] containing the entire group II intron S.ma.I2 (1971 bp) and the nucleotide sequence up to the initiation codon of the anti(3′)-III-aac(6′)-IId gene cassette and cloned into pKK232-8 digested by Sall-HindIII.	This study
pKK-In	[primer pair IntI1-Sall and anti(3′)-III-HindIII] containing part of intI1, the aadB::S.ma.I2 gene cassette and the nucleotide sequence up to the initiation codon of the anti(3′)-III-aac(6′)-IId gene cassette and cloned into pKK232-8 digested by Sall-HindIII.	This study
pKK-InΔSmaI2	Clone derived from pKK-In by PCR (primer pair Sm909–3497.forward and Sm909–1507.rev) to remove the group II intron S.ma.I2. (‘Materials and Methods’ section).	This study
pKK-NeI1-P1out	200-bp PCR fragment amplified from N. europaea genomic DNA (primer pair NeI1-prom.forward and NeI1-prom.rev) containing part of the group II intron N.e.I1 (base positions 1–196) in N.e.I1 and cloned into pKK232-8 digested by SmaI.	This study
pKK-GsI1-P1out	200-bp PCR fragment amplified from G. sulfurreducens genomic DNA (primer pair GsI1-prom.forward and GsI1-prom.rev) containing part of the group II intron G.s.I1 (base positions 1–200 in G.s.I1) and cloned into pKK232-8 digested by SmaI.	This study
pKK-ShbaI2-P1out	200-bp PCR fragment amplified from S. baltica genomic DNA (primer pair ShbaI2-prom.forward and ShbaI2-prom.rev) containing part of the group II intron Sh.ba.I2 (base positions 1–200 in Sh.ba.I2) and cloned into pKK232-8 digested by SmaI.	This study
pKK-SmaI2-P2out	383-bp SpI-BglII restriction fragment digested from the pUCSmaI plasmid (36) containing part of the group IIC intron S.ma.I2 (base positions 288–675 in S.ma.I2) and cloned into pKK232-8 digested by SmaI by the TA-cloning method.	This study
pLQ872	Weak Pc promoter from integron In6 (pYS1) cloned in pKK232-8.	(1)
pLQ876	Strong Pc promoter from integron In4 (Tn986) cloned in pKK232-8.	(1)
pLQ880	96-bp HindIII-BamHI fragment of tac promoter cloned in pKK232-8.	(1)
using an ABI-3900 DNA Synthesizer from Applied Biosystems Inc. (Foster City, CA, USA).

Genome project database searches for group IIC-attC introns

A protein–protein Basic Local Alignment Search Tool (BLASTP) search was performed on the entire GenBank non-redundant protein sequences (nr) using as a query the IEP peptide sequence of group IIC-attC intron Sma.I2 from S. marcescens (accession no. AF453998).

Multiple sequence alignments and phylogenetic tree

Phylogenetic analysis was based on intron RT subdomains and X domains. Bacterial class C IEP sequences from Azotobacter vinelandii (accession no. CP001157), Bacillus halodurans (BA000004), Bacteroides thetaotaomicron (AE015928), Burkholderia cenocepacia (CP000959), Clostridium acetobutylicum (AE001437), Lactobacillus reuteri (AY911856), Micrococcus sp. (AF339846), Oceanobacillus iheyensis (BA000028), Pseudomonas alcaligenes (U77945), Pseudomonas syringae pv. tomato (AE016853), Streptococcus agalactiae (AJ292930), Streptococcus pneumoniae (AF030367) and Symbio bacterium thermophilum (AP006840) were retrieved from the Mobile group II intron web site (40). The tree was rooted with IEP sequences from the Lactococcus lactis L.LtrB (mitochondrial-like; accession no. U50902) and Sinorhizobium meliloti Rm1021 (bacterial class D; accession no. Y11597) introns. The compiled IEP peptide sequences were aligned using CLUSTAL W (41). The resulting multiple sequence alignments were subjected to analyses using the neighbor-joining algorithm, with the Poisson correction distance method, of the Molecular Evolutionary Genetics Analysis (MEGA) package version 4.0 (42). One thousand bootstrap analyses were performed to estimate the robustness of the phylogenetic inference.

Bioinformatic predictions of internal outward-oriented promoters (P_{out}) in group IIC-attC introns

We searched for P_{out} in intron sequences, ranging from the 5′-end of the intron to the nucleotide opposite the start codon of the ORF encoding the IEP on the bottom strand, using the Neural Network for Promoter Prediction (NNPP) version 2.2 (Berkeley Drosophila Genome Project, http://www.fruitfly.org/index.html) and BPROM (SoftBerry, http://linux1.softberry.com/berry.phtml) programs.

5′-rapid amplification of cDNA end

Transcription initiation sites from the putative P_{out} were determined using the 5′-rapid amplification of cDNA ends (5′-RACE) method as described by Sambrook and Russell (39). Escherichia coli DH5-α competent cells were transformed with the indicated pKK232-8 clone and subjected to Ap selection. One colony of each transformant was cultured in LB medium containing both Ap and Cm at 37°C until the optical density at 600 nm was 0.7. Total RNA was purified using the RNeasy Mini Kit (Qiagen). cDNA synthesis was done using the Superscript III reverse transcriptase (200 U; Invitrogen) according to the manufacturer’s instructions and the PKKL311 primer (10 μM; reverse primer within cat) and incubated for 60 min at 50°C. RNase H (5 U; NEB) was added to the RT reactions and incubated for 30 min at 37°C. cDNA transcripts were purified using the QIAquick PCR Purification Kit (Qiagen). A dG-tail was added to the purified cDNA transcripts using dGTP (100 mM; Amersham Biosciences) and terminal transferase (20 U; NEB) according to the manufacturer’s instructions. The tailed cDNA transcripts were purified using the QIAquick PCR Purification Kit. PCR amplification of the tailed cDNA was conducted with the PKKL311 and POLY(C) primer pair (10 μM each) using Biotools DNA polymerase (2.5 U; Biotools) according to the manufacturer’s instructions. In order to find transcription start sites, the PCR products were purified and sequenced using the PKKL311 primer.

CAT assay

CAT assays were performed as described by Levesque and collaborators (1). CAT activity was assayed on crude cell extracts, from E. coli DH5-α cells carrying one of the pKK232-8 clones, prepared by sonication in Tris–HCl (1 mM [pH 7.6]). For each assay a 150 μl reaction mix containing 9.6 μl of [14C]Cm (0.05 μCi/μl; PerkinElmer), 24 μl of acetyl-coenzyme A (4 mM, resuspended in 20 mM sodium phosphate buffer [pH 7.0]), 39 μl of Tris (1 M [pH 7.5]) and 83.4 μl of deionized water was prepared. The CAT assay was started by adding 20 μl of total protein (1 ng/μl) to 130 μl of the reaction mix. After 60 min incubation at 37°C, the reactions were stopped using 1 ml of ethyl acetate and dried. The samples (resuspended in 20 μl of ethyl acetate) were spotted onto thin-layer chromatography sheets of silica gel H (Analtech) and run in a chromatography chamber with chloroform:methanol (95:5 v/v) for 60 min. Once dry, the silica plate was covered with plastic wrap and processed for phosphorimaging. CAT activity was calculated as the count of acetylated Cm (i.e. the total count of 1-acetoxy-Cm and 3-acetoxy-Cm divided by the sum of acetylated and non-acetylated Cm). We used as negative controls either 20 μl of Tris–HCl (1 mM [pH 7.6]) or 20 μl of crude cell extract of E. coli DH5-α competent cells transformed with the pKK232-8 plasmid.

RESULTS

Insertion of Sma.I2 into integron #2 of Serratia marcescens SCH909 affects the expression of the following gene cassette

The integron #2 of S. marcescens SCH909 (AF453998) is one of three class 1 multiresistance integrons located on a 60-kb conjugative plasmid (20). The first cassette contains the aadA [also called ant(2′)-Ia] aminoglycoside resistance gene, separated from its attC site by Sma.I2 which inserted into the bottom strand sequence (Figure 1B). The attC site is followed by the ant(3′)-Ii-aac(6′)-IId aminoglycoside resistance gene cassette. This cassette is...
followed by an unknown ORF with an attC site and a partial gene composed of the beginning of the \(\text{bla}_{\text{OXA-10}} \) cassette interrupted by IS1. The sequence downstream of IS1 revealed that the \(\text{bla}_{\text{OXA-10}} \) gene cassette is incomplete and that the 3′-CS segment of this integron is absent. Sequencing of the 5′-CS region showed that integron #2 harbors the \(\text{P}_{\text{weak-P2}} \) combination of promoters (data not shown). Previous studies showed that in the \(\text{P}_{\text{weak-P2}} \) combination, \(\text{P}_{\text{weak}} \) does not contribute significantly to the expression of gene cassettes, which is mainly driven by P2 (13,14). In order to estimate whether insertion of \(S.\text{ma} \text{I2} \) affects the expression of the following \(\text{ant}(3′)-\text{Ii-aac}(6′)\text{-IId} \) gene cassette, we cloned various DNA fragments from integron #2 into the pKK232-8 plasmid upstream of a \(\text{cat} \) reporter gene. The resulting plasmids pKK-IntI1, pKK-SmaI2, pKK-In and pKK-In\(\Delta \)SmaI2 (see Table 1 for plasmid descriptions) were used in a quantitative CAT assay to examine expression of \(\text{cat} \) in \(E.\text{coli} \) DH5\(\alpha \) (‘Materials and Methods’ section). Figure 2 shows the separation by thin-layer-chromatography of \(\text{Cm} \) from its derivatives, 1-acetoxy-Cm and 3-acetoxy-Cm, in a 60 min assay at 37°C (1,3-diaceetoxy-Cm was not detected). In our experimental conditions, we found that expression of \(\text{cat} \) from the clone pKK-In\(\Delta \)SmaI2 (i.e. in absence of \(S.\text{ma} \text{I2} \)) was about 3.5-fold higher than with the clone pKK-In (27.3 ± 1.6% and 7.5 ± 0.5%, respectively) (Table 2). We also found that expression of \(\text{cat} \) from the clone pKK-SmaI2 (i.e. cloned \(S.\text{ma} \text{I2} \) sequence only) was slightly lower than with the clone pKK-In (6.7 ± 1.7% and 7.5 ± 0.5%, respectively). Therefore, our data suggest that insertion of \(S.\text{ma} \text{I2} \) in integron #2 of \(S.\text{marcescens} \) potentially results in a 72% decrease of expression of the following \(\text{ant}(3′)-\text{Ii-aac}(6′)\text{-IId} \) gene cassette. Moreover, a 0.89 relative ratio of acetylated Cm between the pKK-SmaI2 and pKK-In clones suggests that most of \(\text{ant}(3′)-\text{Ii-aac}(6′)\text{-IId} \) transcripts comes from a putative outward-oriented promoter (\(\text{P}_{\text{out}} \)) within \(S.\text{ma} \text{I2} \), and that \(S.\text{ma} \text{I2} \) disrupts transcripts from the \(\text{P}_{\text{weak-P2}} \) promoters. Nevertheless, a reverse transcriptase-(RT) assay showed that a small amount of transcription of \(\text{cat} \) from the \(\text{P}_{\text{weak-P2}} \) promoters occurs in the presence of \(S.\text{ma} \text{I2} \) (data not shown). On the other hand, a similar \(\text{cat} \) activity of the pKK-IntI1 and pKK-In\(\Delta \)SmaI2 clones (28.1 ± 5.2% and 27.3 ± 1.6%, respectively) suggests that, unlike \(S.\text{ma} \text{I2} \), the \(\text{aadB} \) gene cassette does not impede transcription from \(\text{P}_{\text{weak-P2}} \).

Bioinformatic analyses indicate that putative outward-oriented promoters (\(\text{P}_{\text{out}} \)) are found in several group IIC-attC introns

We wished to determine whether \(\text{P}_{\text{out}} \) also occurs in the \(E.\text{coli} \) (99.8% sequence identity with \(S.\text{ma} \text{I2} \)) and \(K.\text{pn} \text{I1} \) introns that are inserted into the first \(\text{attC} \) site of integron cassette arrays (i.e. between the first cassette and the following cassettes, potentially affecting the expression of the latter) from \(E.\text{coli} \) (accession no. AY785243) and \(K.\text{pneumoniae} \) (AJ971342), respectively (Figure 1B). We were also interested in knowing whether or not \(\text{P}_{\text{out}} \) is a conserved feature within the group IIC-attC intron lineage (32). Therefore, we first identified and analyzed several full length group IIC-attC introns distributed among 25 distinct bacterial genomes and two marine metagenome projects (‘Materials and Methods’ section and Table 3). Phylogenetic analysis of intron IEPs confirmed that the introns belonged to bacterial class IIC (Figure 3). Nodes of 100% bootstrap support define the bases of both bacterial IIC and IIC-attC lineages. Then, we used the BPROM and NNPP prediction programs for bacterial promoters in order to find putative \(\text{P}_{\text{out}} \) (‘Materials and Methods’ section). Table 3 shows a compilation of putative \(\text{P}_{\text{out}} \) (−35 region, −10 region and the spacing between these regions) that obtained the highest scores from both programs. One or two putative promoters, designated \(\text{P1}_{\text{out}} \) and \(\text{P2}_{\text{out}} \), were predicted for most introns, except for the \(\text{Desulfurivibrio} \ \text{alkalophilus} \) (accession no. ACYL01000013) and \(\text{Allochromatium} \ \text{vinosum} \) (CP001896) introns, for which no promoter was predicted. The putative promoter sequences are generally similar to the \(E.\text{coli} \) consensus promoter, TTGACA-N\(_{16–18}\)-TATAAT (43). Table 3 also shows the positions of \(\text{P1}_{\text{out}} \) and \(\text{P2}_{\text{out}} \) among the introns. Interestingly, the putative \(\text{P1}_{\text{out}} \) and \(\text{P2}_{\text{out}} \) are precisely positioned within the ribozyme portion of the introns corresponding to domain I (DI) and domain II (DII), respectively. One exception was observed for the putative \(\text{P2}_{\text{out}} \) from the \(\text{Candidatus} \ \text{Accumulibacter} \ \text{phosphatis} \) (accession no. CP001715) intron, which is positioned within domain III (DIII). These results suggest that outward-oriented promoters are general features of group IIC-attC introns, rather than being present only in \(S.\text{ma} \text{I2} \).

In order to see whether putative \(\text{P}_{\text{out}} \) with different versions of the −35 and −10 sequences are functionally active in vivo, the \(\text{P1}_{\text{out}} \) sequences from the \(\text{Nitrosomonas} \ \text{europaea} \) intron \(N.e.II \) (accession no. AL954747), the

![Figure 2](https://academic.oup.com/nar/article-abstract/38/22/8196/1044888)
In this study, we show that S. marcescens, a group IIIC-attC intron inserted in an integron cassette array of
Table 3. Bioinformatic analysis for putative outward-oriented promoters (P_{out}) in group IIC-attC introns

Host organism	Accession no. - nucleotide	Inb Accession no. - protein (IEP)	Putative P_{out}	Name -35 region	Spacing -10 region	Positions
Pseudomonas putida	AY065966 Y AAL47550 qacE1		P1_{out} TTGCCA 17 nt	TCTAAT 81–109 (DI)		
Serratia marcescens	AY030343 Y AAK40354 qacE1		P2_{out} TTGCCC 17 nt	TTGCA 387–415 (DII)		
Pseudomonas aeruginosa	AY029772 Y AAK50439 qacE1					
Acinetobacter genomospecies	AF369871 Y AAK54203 qacE1					
Serratia marcescens	AY884051 DQ153218 Y AAX16009 ND qacE1					
Klebsiella pneumoniae	AY884051 DQ153218 Y AAX16009 ND qacE1					
Pseudomonas aeruginosa	EF207718 Y ABN10344 qacE1					
Salmonella enterica	AM932669 Y CAP69662 qacE1		P1_{out} TTGCCA 17 nt	TCTAAT 81–109 (DI)		
Marine metagenome	EU686596 Y ND orf (hypothetical prot.)		P2_{out} TTGCC 17 nt	TCTAAT 80–108 (DI)		
Klebsiella pneumoniae	AJ971342 Y CA129542 arr2		P1_{out} TTGCCA 17 nt	TCTC 384–412 (DII)		
Enterobacter cloacae	GU944727 Y ADF59072 ND		P2_{out} TTGCC 17 nt	TCTAAT 76–104 (DI)		
Klebsiella pneumoniae	FJ384365 Y ACI76645 qacE1					
Pseudomonas aeruginosa	FJ817422 Y ACO53361 ND					
Marine metagenome	AACY020561240 N ND orf (hypothetical prot.)		P1_{out} TTGCCA 17 nt	TTTAAT 76–104 (DI)		
Salmonella enterica	AY204504 Y AAO46869 ND		P2_{out} TTGCC 17 nt	TTTAAT 382–410 (DII)		
Vibrio cholerae	EU116440 Y ABV21790 ND		P1_{out} TTGCCA 17 nt	TTTAAT 91–119 (DI)		
Shewanella baltica	CP000563 N YP_001050216 Transcriptional regulator					
Shewanella putrefaciens	AAWY01000044 Y ZP_01070545 Second group II intron					
Escherichia coli	AY785243 Y AAP46869 ndaA1					
Serratia marcescens	AF453998 Y AAL51020 ant(3')-Ii- aac(6')-IId					
Geobacter sulfurreducens	AE017180 Y NP_953517 vapC (NA)					
Geobacter sp.	CP001390 Y YP_002536457 orf (hypothetical prot.)		P1_{out} TTGCCCT 17 nt	TTAAT 76–104 (DI)		
Desulfurivibrio alkaliphilus	ACYI01000013 Y ZP_05710592 NADH:flavin oxidoreductase/NADH oxidase					
Nitrosomonas europaea	AL954747 Y NP_842195 ampG (NA)		P1_{out} TTGCCA 17 nt	TTAAT 77–105 (DI)		
Candidatus Methyloirubilis oxyfera	FP565575 N CBE67152 orf (hypothetical prot.)		P2_{out} TTGAC 17 nt	TTAAT 322–330 (DI)		
Allochromatium vinosum	CP001896 N YP_003442808 orf (hypothetical prot.)					
Candidatus Accumulibacter phosphatis	CP001715 Y ACV35120 orf (hypothetical prot.)					

aHost organisms with identical introns were grouped together according to phylogenetic analysis (Figure 3).

bThis column indicates which introns are inserted (Y) or not inserted (N) into an integron cassette array.

cGene or gene cassette divergent with the intron IEP, and downstream of putative P_{out}. NA, (not applicable) was indicated when the 5'-exon ORF is convergent with the intron sequence.

dOutward-oriented promoters predicted using the BPROM and NNPP programs. Positions of promoter extremities (beginning of the –35 hexamer sequence—end of the –10 hexamer sequence) are indicated for the complementary strand. Domain I (DI), domain II (DII), or domain III (DIII) was indicated based on secondary structure analysis of intron RNA (data not shown) using the MFOLD program (54) and the consensus RNA secondary structure for group IIC introns (35).

eND, not defined in databases.
Figure 3. Phylogenetic tree for group IIC-attC intron IEP amino acid sequences from various organisms. Evolutionary distances were computed using the neighbor-joining algorithm of the MEGA4 software ('Materials and Methods' section).
in order to find the transcription initiation site of cat in the indicated pKK232 clones (see Table 1 for description).

S. marcescens, impedes transcription from the Pc_weak-P2 promoters located within the 5′-CS region, while allowing expression of the following antibiotic resistance cassette using two internal outward-oriented promoters (P_out). Despite these promoters, insertion of S.ma.I2 into integron #2 of S. marcescens potentially results in a 72% decrease of expression of the following ant(3′)-Ii-aac(6′)-IId gene cassette. Bioinformatic analyses of group IIC-attC introns from 25 distinct bacterial genomes and two marine metagenome projects indicate that one or two putative P_out are also found in other introns. These promoters, designated P1_out and P2_out, are located at similar distances from their exon 1 in RNA domain I and domain II, respectively. Comparison of promoter sequences with the consensus RNA structure/sequence for group IIC introns (35) showed that P_out are located within the region of variable sequences (data not shown). Our data suggest that P_out are conserved features of the group IIC-attC lineage. A distinct inward-directed internal promoter within the Lactococcus lactis intron, Ll.ltrB, was identified upstream of the gene for the IEP (LtrA) (44). Mutation of this promoter reduced the steady-state level of LtrA mRNA, LtrA, intron splicing and conjugation in L. lactis. A functional inward-directed promoter (tested in E. coli) was also found in S.ma.I2, CCTACA-N16-TA AACA (positions 375–402 in S.ma.I2), upstream of the gene for the IEP (Smtr) (data not shown). We show that P_out with different versions of the −35 and −10 sequences are functionally active in expressing a promoterless cat reporter gene in E. coli. These results are consistent considering that a consensus sequence of all the putative P_out has a strong similarity with the E. coli consensus promoter (43). The quantitative data obtained for the tested P_out sequences indicate that, despite their heterologous origins, these promoters work well in E. coli. On the other hand, GsI1-P1out and ShbaI2-P1out, which showed weak activity in E. coli, may have greater activities in their respective hosts, i.e. G. sulfurreducens (Delta-proteobacteria) and S. baltica (Gamma-proteobacteria), respectively.

Integrons can express multiple gene cassettes via read-through transcription from Pc to at least some extent (13,45). While the aadB gene cassette does not block transcription from Pc_weak-P2, we showed that S.ma.I2 impedes transcription, most probably due to secondary structure within the intron. P_out may therefore confer a selective advantage to inserted group IIC-attC introns by ensuring transcription of following gene cassettes. For instance, P_out in the S.ma.I2 and E.c.17 introns may play a role in the expression of the following ant(3′)-Ii-aac(6′)-IId and aadA1 resistance genes whose transcription from Pc would be reduced by insertion of the intron (Figure 1B). A P_out in group IIC-attC introns may also ensure maintenance of the introns in integrons and their dissemination to other organisms.

Despite the potential selective advantages conferred by P_out and specificity for attC site motifs, it is perplexing that only a few introns are found in either mobile or chromosomal integrons (32). We have previously demonstrated that the S.ma.I2 intron is not transcribed in the S. marcescens strain (36), suggesting that the insertion of group IIC-attC introns into the antisense strand relative to cassette transcription limits mobility of the intron to other attC sites.

The 3′-CS segment of class 1 integrons usually contains a partially functional intercalating dyes/quinernary ammonium compound resistance gene (qacEAl) and most also contain a sulfonamide resistance gene (sulI) (Figure 1A). Although transcription of both genes, from either the Pc promoter or a promoter of their own, was shown (46,47), we suggest that bacteria with class 1 integrons may use an additional source of transcription for the qacEAl and sulI genes as a selective advantage in order to survive in the presence of intercalating dyes, low levels of quaternary ammonium compounds or sulfonamide. In this regard, the P_out of group IIC-attC introns that are inserted into the last attC site of cassette arrays may contribute to the survival of the strain by potentially ensuring an enhanced transcription to qacEAl and sulI genes. It has been shown that selection by quaternary ammonium compounds and sulfonamide in natural or clinical environments has the potential to coselect for multidrug resistance (9,48–51).

Mobile IS from the ISI1111 family, named ISPa21 and ISpst6, also target the attC sites of integron cassette arrays (21,52). Phylogenetic analyses of transposase sequences has revealed that ISPa21, ISpst6 and ISpst6-related sequences constitute a monophyletic subset within the ISI1111 family, which is associated with attC sites (i.e. the ISI1111-attC subgroup) (52). Interestingly, as with group IIC-attC introns, IS
elements found in integrons are inserted near the 5′-end of distinct attC site motifs and into the antisense strand with respect to the gene cassette array transcription. A putative Pout was also suggested in both ISPa21 and ISPst6 elements. However, activity of such a promoter was either not reported (for ISPa21) or negative (for ISPst6) (21,52). Therefore, unlike IS elements, insertion of group IIC-attC into gene cassettes is more likely advantageous.

Analysis of the unique mobility pathway and distribution of group IIC-attC introns has shown that several factors potentially influence their presence and dissemination in bacterial genomes. The exact role of group IIC-attC introns in bacteria and especially in integrons remains undetermined. However, the unique features of integron cassettes suggest that these introns may play a

Table 4. Relative strengths of group IIC-attC intron promoters (Pout) compared with the tac and the weak and strong versions of integron Pc promoters

Clone	Promoter	Cm acetylated (%)	Ratio relative to tac
pKK232-8	NA^d	0.22 ± 0.06	0.01
pKK-SmaI2-P2out	none	0.26 ± 0.07	0.02
pKK-NeI1-P1out	P₁^{out}	6.65 ± 0.68	0.43
pKK-ShbaI2-P1out	P₁^{out}	6.15 ± 0.88	0.40
pKK-ShbaI2-P1out	P₁^{out}	2.99 ± 0.51	0.19
pKK-NeI1-P1out	P₁^{out}	0.58 ± 0.06	0.04
pLQ872	P_{weak}	1.10 ± 0.09	0.07
pLQ876	P_{strong}	36.83 ± 4.42	2.40
pLQ880	tac	15.41 ± 1.74	1.00

^aFor detailed information about these clones see Table 1.

^bMeans ± SD of 3 independent experiments.

^cTris–HCl (1 mM [pH 7.6]) was added to the reaction mix instead of crude cell extracts.

^dNA, not applicable.

^eP_{out} shown in Table 3.
role in cassette formation by recruiting and then joining genes and attC sites (20,37).

ACKNOWLEDGEMENTS

D.C. is a member of the Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (C.O.N.I.C.E.T.), Argentina.

FUNDING

Fellowship from Canadian Institutes of Health Research (CIHR); Strategic Training Initiatives in Health Research (STIHR) grant STP-59324 (to C.Q.); Canadian Institutes of Health Research grant MT-13564 (to P.H.R.). Funding for open access charges: Personal Funds.

Conflict of interest statement. None declared.

REFERENCES

1. Lévesque,C., Brassard,S., Lapointe,J. and Roy,P.H. (1994) Diversity and relative strength of tandem promoters for the antibiotic resistance genes of several integrons. Gene, 142, 49–54.
2. Ouellette,M., Bissonnette,L. and Roy,P.H. (1987) Precise insertion of antibiotic resistance determinants into Tn2-type transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc. Natl Acad. Sci. USA, 84, 7378–7382.
3. Stokes,H.W. and Hall,R.M. (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol., 3, 1669–1683.
4. Hall,R.M., Brookes,D.E. and Stokes,H.W. (1991) Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol. Microbiol., 5, 1941–1959.
5. Boucher,Y., Labbate,M., Koenig,J.E. and Stokes,H.W. (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol., 15, 301–309.
6. Mazel,D. (2006) Integrons: agents of bacterial evolution. Nat. Rev. Microbiol., 4, 608–620.
7. Hall,R.M. (1997) Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found. Symp., 207, 192–202.
8. Bissonnette,L. and Roy,P.H. (1992) Characterization of In0 of Pseudomonas aeruginosa plasmid PVS1, an ancestor of integrons of multiresistance plasmids and transposons of gram-negative bacteria. J. Bacteriol., 174, 1248–1257.
9. Paulsen,I.T., Littlejohn,T.G., Ra˚dstro¨ m,P., Sundstro¨ m,L., Sköld,O., Wedberg,G. and Skurray,R.A. (1993) The 3′ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob. Agents Chemother., 37, 761–768.
10. Fluit,A.C. and Schmitz,F.J. (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis., 18, 761–770.
11. Fluit,A.C. and Schmitz,F.J. (2004) Resistance integrons and super-integrons. Clin. Microbiol. Infect., 10, 272–288.
12. Partridge,S.R., Tsafnat,G., Coiera,E. and Iredell,J.R. (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev., 33, 757–784.
13. Collins,C.M. and Hall,R.M. (1995) Expression of antibiotic resistance genes in the integrated cassette of integrons. Antimicrob. Agents Chemother., 39, 155–162.
14. Jovic,T., Da Re,S., Denis,F., Mazel,D. and Ploy,M.C. (2010) Inverse correlation between promoter strength and exusion activity in class 1 integrons. PLoS Genet., 6, e1000793.
15. Schmidt,F.R., Nüchner,F. and Henselke,R.B. (1988) Nucleotide sequence analysis of 2′-aminoglycoside nucleotidyl-transferase ANT(2′) from Tn4000: its relationship with AAD(3′) and impact on Tn27 evolution. Mol. Microbiol., 2, 709–717.
16. Tenover,F.C., Filippula,D., Phillips,K.L. and Plorde,J.J. (1988) Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor of Citrobacter diversus. J Bacteriol., 170, 471–473.
17. Papagiannitsis,C.C., Tzouvelekis,L.S. and Miriagou,V. (2009) Relative strengths of the class 1 integron promoter hybrid 2 and the combinations of strong and hybrid 1 with an active P2 promoter. Antimicrob Agents Chemother., 53, 277–280.
18. Bissonnette,L., Champetier,S., Buisson,J.P. and Roy,P.H. (1991) Characterization of the nonenzymatic chloramphenicol resistance (cmA) gene of the In4 integron of Tn696: similarity of the product to transmembrane transport proteins. J. Bacteriol., 173, 4493–4502.
19. Stokes,H.W. and Hall,R.M. (1991) Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn696 integron suggests regulation by translational attenuation. Plasmid, 26, 10–19.
20. Centrón,D. and Roy,P.H. (2002) Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob. Agents Chemother., 46, 1402–1409.
21. Poirel,L., Brinas,L., Fortineau,N. and Nordmann,P. (2005) Integron-encoded GES-type extended-spectrum beta-lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 49, 3593–3597.
22. Bearegard,A., Curcio,M.J. and Belfort,M. (2008) The take and give between retrotransposable elements and their hosts. Ann. Rev. Genet., 42, 587–617.
23. Dai,L. and Zimmerly,S. (2002) Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retron evolution behavior. Nucleic Acids Res., 30, 1091–1102.
24. Toro,N. (2003) Bacteria and Archaea group II introns: additional mobile genetic elements in the environment. Environ. Microbiol., 5, 143–155.
25. Bonen,L. and Vogel,J. (2001) The ins and outs of group II introns. Trends Genet., 17, 322–331.
26. Michel,F. and Ferat,J.L. (1995) Structure and activities of group II introns. Annu. Rev. Biochem., 64, 435–461.
27. Pyle,A.M. and Lambowitz,A.M. (2006) Group II introns: ribozymes that splice RNA and invade DNA. In Gesteland,R.F., Cech,T.R. and Atkins,J.F. (eds), RNA: An Evolutionary Movie, pp. 469–505.
28. Simon,D.M., Clarke,N.A., McNeil,B.A., Johnson,L., Pantuso,D., Dai,L., Chai,D. and Zimmerly,S. (2008) Group II introns in Eu-bacteria and Archaea: ORF-less introns and new varieties. RNA, 14, 1704–1713.
29. Simon,D.M., Kelchner,S.A. and Zimmerly,S. (2009) A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases. Mol. Biol. Evol., 26, 2795–2808.
30. Zimmerly,S., Hausner,G. and Wu,X. (2001) Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res., 29, 1238–1250.
31. Granlund,M., Michel,F. and Norgren,M. (2001) Mutually exclusive distribution of IS1548 and GBS1, an active group II intron identified in human isolates of group B streptococci. J. Bacteriol., 183, 2560–2569.
32. Quiroga,C. and Centrón,D. (2009) Using genomic data to determine the diversity and distribution of target site motifs recognized by class C-attC group II introns. J. Mol. Evol., 68, 539–549.
33. Robart,A.R., Sec,W. and Zimmerly,S. (2007) Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc. Natl Acad. Sci. USA, 104, 6620–6625.
34. Podar,M., Chu,V.T., Pyle,A.M. and Perlman,P.S. (1998) Group II intron splicing in vivo by first-step hydrolysis. Nature, 391, 915–918.
35. Toor,N., Hausner,G. and Zimmerly,S. (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA, 7, 1142–1152.
36. Quiroga, C., Roy, P.H. and Centrón, D. (2008) The SmaI2 class C group II intron inserts at integron attC sites. *Microbiology*, 154, 1341–1353.

37. Léon, G. and Roy, P.H. (2009) Potential role of group IIC-attC introns in integron cassette formation. *J Bacteriol.*, 191, 6040–6051.

38. Léon, G. and Roy, P.H. (2003) Excision and integration of cassettes by an integron integrase of *Nitrosomonas europaea*. *J. Bacteriol.*, 185, 2036–2041.

39. Sambrook, J. and Russell, D.W. (2001) *Molecular Cloning: A Laboratory Manual*, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

40. Dai, L., Toor, N., Olson, R., Keeping, A. and Zimmerly, S. (2003) Database for mobile group II introns. *Nucleic Acids Res.*, 31, 424–426.

41. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.*, 22, 4673–4680.

42. Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Mol. Biol. Evol.*, 24, 1596–1599.

43. Harley, C.B. and Reynolds, R.P. (1987) Analysis of *E. coli* promoter sequences. *Nucleic Acids Res.*, 15, 2343–2361.

44. Zhou, L., Manias, D.A. and Dunny, G.M. (2000) Regulation of intron function: efficient splicing *in vivo* of a bacterial group II intron requires a functional promoter within the intron. *Mol. Microbiol.*, 37, 639–651.

45. Jacquier, H., Zou, C., Sanson-le Pors, M.J., Mazel, D. and Bercot, B. (2009) Translation regulation of integrase gene cassette expression by the attC sites. *Mol. Microbiol.*, 72, 1475–1486.

46. Sundström, L., Räåström, P., Wedberg, G. and Sköld, O. (1988) Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of *dhfrV* and *sulI* and a recombination active locus of Tn21. *Mol Gen Genet.*, 213, 191–201.

47. Guerineau, F., Brooks, L. and Mullineaux, P. (1990) Expression of the sulfonamide resistance gene from plasmid R46. *Plasmid*, 23, 35–41.

48. Antunes, P., Machado, J., Sousa, J.C. and Peixe, L. (2005) Dissemination of sulfonamide resistance genes (*sul1*, *sul2*, and *sul3*) in Portuguese *Salmonella enterica* strains and relation with integrons. *Antimicrob. Agents Chemother.*, 49, 836–839.

49. Gaze, W.H., Abdouslam, N., Hawkey, P.M. and Wellington, E.M. (2005) Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. *Antimicrob. Agents Chemother.*, 49, 1802–1807.

50. Kazama, H., Hamashima, H., Sasatsu, M. and Arai, T. (1998) Distribution of the antiseptic-resistance genes *qacE* and *qacEΔ1* in gram-negative bacteria. *FEMS Microbiol. Lett.*, 159, 173–178.

51. Räåström, P., Wedberg, G. and Sköld, O. (1991) Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. *Antimicrob. Agents Chemother.*, 35, 1840–1848.

52. Tetu, S.G. and Holmes, A.J. (2008) A family of insertion sequences that impacts integrons by specific targeting of gene cassette recombination sites, the IS1111-attC group. *J. Bacteriol.*, 190, 4959–4970.

53. Brosius, J. (1984) Plasmid vectors for the selection of promoters. *Gene*, 27, 151–160.

54. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Res.*, 31, 3406–3415.