What Do You Have in Mind? Measures to Assess Mental State Reasoning in Neuropsychiatric Populations

Clare M. Eddy

Social interaction is closely associated with both functional capacity and well-being. Previous research has not only revealed evidence of social dysfunction in individuals with a wide range of psychiatric and neurological disorders but also generated an abundance of potential measures for assessing social cognition. This review explores the most popular measures used within neuropsychiatric populations to investigate the ability to recognize or reason about the mental states of others. Measures are also critically analyzed in terms of strengths and limitations to aid task selection in future clinical studies. The most frequently applied assessment tools use verbal, visual or audiovisual forms of presentation and assess recognition of mental states from facial features, self-rated empathy, the understanding of other's cognitive mental states such as beliefs and intentions, or the ability to combine knowledge of other's thoughts and emotions in order to understand subtle communications or socially inappropriate behavior. Key weaknesses of previous research include limited investigation of relationships with clinical symptoms, and underutilization of measures of everyday social functioning that offer a useful counterpart to traditional "lab" tasks. Future studies should aim to carefully select measures not only based on the range of skills to be assessed but also taking into account potential difficulties with interpretation and the need to gain insight into the application of social cognitive skills as well as ability perse. Some of the best measures include those with well-matched control trials (e.g., Yoni Task) or those that restrict the influence of verbal deficits (e.g., intentions comic strip task), elicit spontaneous mentalizing (e.g., Animations Task), and possess greater ecological validity (e.g., Movie for the Assessment of Social Cognition). Social cognitive research within psychiatric populations will be further enhanced through the development of more closely matched control tasks, and the exploration of relationships between task performance, medication, strategy use, and broader emotional and motor functions.

Keywords: assessment, empathy, measures, psychiatry, social cognition, theory of mind
INTRODUCTION

Over the last few decades, a rich body of research has developed into the social cognitive abilities of patients with neuropsychiatric disorders. A scoping search in PubMed (October 2018) using the terms social cognition or theory of mind or empathy plus measure or task or assessment plus psychiatrist; including only reviews/clinical trials/full articles, in humans, in English, date range 1990–2018, generated 123,755 results. There is recognition that social interaction is a central part of life, related to functional capacity and individual well-being, and social skills will therefore have a fundamental role to play in the assessment of ill health, resilience, and recovery. We are now aware that social functioning may be atypical in individuals presenting with a wide range of clinical disorders, far beyond those characteristically associated with frontal lobe deficits. Extending from the earliest conditions to be recognized as involving deficits in theory of mind (ToM), such as autistic spectrum disorder (ASD) and schizophrenia, we now believe that some of the most common psychiatric disorders with a primary diagnosis involving affect dysregulation, and patient groups most widely recognized for their movement disorder, can experience difficulties with social cognition. Studying these clinical groups is an invaluable complementary approach to research throughout the lifespan within the typically developing population.

This relatively rapid expansion in research has led to a proliferation of development in assessments and measures for social cognition, some of which were originally used in typically developing populations (e.g., children). The range of aspects of social cognition that can be assessed include recognition of facial expressions and vocal emotion, empathy and emotion contagion, more abstract reasoning about one's own and other people's cognitive (e.g., beliefs, intentions) or affective (e.g., emotions) mental states, understanding of humor and non-literal communicative intent, identification of deception, cooperative decision making, moral judgment, and more. As the field has evolved, our conceptualization of the limits of what can be classified as social cognitive skills will continue to develop. For example, we may now consider emotion identification (1), insight (2), mind reading motivation (3), social anxiety (4), and imitation ability (5) to be important factors relevant to the assessment of social cognition.

Now is the time to further our understanding of social cognition and its intricate relationship with mental health through wider application of instruments in the most carefully designed and rigorously controlled studies. However, when faced with such an abundance of potential measures, it is important for studies to be well considered in terms of selected tasks and method of assessment. The format of different tasks and assessments vary considerably and what is most appropriate for one patient group may lead to difficulties in interpretation or reliability (due to, e.g., incidental effects or confounding variables) when administered within another. In addition, certain measures may be more favorable in relation to selection for use in longitudinal studies or randomized controlled trials. The aim of this review paper is to first identify the most frequently used social cognitive measures within neuropsychiatric populations (spanning disorders that may be considered psychiatric and/or neurological) in order to highlight the range of options available to researchers. Practical issues relating to task administration and interpretation will be presented. To further assist researchers in their utilization of the most appropriate tools for investigating social cognition within neuropsychiatry, the advantages and limitations of the most popular existing measures will then be explored. Finally, key areas for development will be discussed, including the gaps in knowledge ready to be filled by future innovative studies.

METHOD

To focus on the use of social cognitive measures in psychiatric populations, the phase one search (Web of Science; October 2018) sought to identify relevant review papers to cover as much of the published literature as possible. The search required the study title to contain “social cognition” or “theory of mind” or “empathy”, and for the topic to include “psychiatr*”. This generated 1,733 records in Web of Science and Medline. After selecting the topic of Psychiatry, and restricting date start to 1998 and English language only, 157 articles were identified (Table 1). The abstracts of these papers were manually checked to ensure relevance. A total of 109 papers were excluded from further review due to either not discussing a psychiatric group (these were often studies involving healthy populations such as students that applied clinical measures or discussed potential clinical implications), not reviewing relevant tasks or assessments (i.e., hypothesis/theory/model papers or single studies), or not listing specific tasks/assessments (note that categories are not mutually exclusive). Disorders that may be considered neuropsychiatric (spanning both neurological and psychiatric disciplines) were included in order to cover as much relevant literature as possible.

The 48 review and/or meta-analytic papers identified in phase one were examined to extract a list of social cognitive assessments to perform more specific searches for the most popular measures in phase two. Many measures were only referred to by just a few individual review papers (Results, Table 2). A list of 12 of the most commonly used measures to assess social cognition was constructed, based on a specific measure being explicitly referred to by more than 10% of the reviewed papers. To confirm that these were frequently used measures, individual searches were conducted using each of the 12 tasks in the short-list. Searches were carried out in Web of Science using a combination of the task name where possible (e.g., “sally anne task,” “strange stories,” “animations task,” etc.) or clear task descriptors (“intention task” and “comic” or “cartoon”) plus “social cognition.” The numbers of papers retrieved per task ranged from 8 to 88. Papers that were not original studies or reviews were excluded, as were papers not in English, duplicates, and those that did not discuss data pertaining to/or evaluation points related to the task in question. Where they were not directly yielded within a search, relevant original papers from the developers of the measure were used to supplement the data. Information was sought in relation to the task source and description, administration, psychometric properties, key findings in psychiatric populations, and strengths or limitations.
TABLE 1 | Reviews and meta-analyses exploring social cognition in neuropsychiatric populations.

Authors	Year	Journal	Disorders included
Di Martino and Castellanos (6)	2003	Ann. N. Y. Acad. Sci.	Pervasive developmental disorders
Couture et al. (7)	2006	Schizophr. Bull.	Schizophrenia
Brüne and Brüne-Cohns (8)	2006	Neurosci. Biobehav. Rev.	Multiple
Sprong et al. (9)	2007	Br. J. Psychiatr.	Schizophrenia
Pickup (10)	2008	Psychopathol.	Schizophrenia
Uekermann and Daum (11)	2008	Addiction	Substance misuse
Bora et al. (12)	2009	Acta Psychiatr. Scand.	Schizophrenia bipolar disorder
Freedman and Stuss (13)	2011	J. Neurol. Sci.	Parkinson’s disease
Uekermann et al. (14)	2010	Neurosci. Biobehav. Rev.	Attention deficit hyperactivity disorder
Adenzo et al. (15)	2010	Neuropsychologia	Frontotemporal dementia
Korkmiz et al. (16)	2011	Pediatr. Res.	Neurodevelopmental disorders
Bragado Jimenez and Taylor (17)	2012	Schizophr. Res.	Schizophrenia
Kemp et al. (18)	2012	Ageing Res. Rev.	Neurodegenerational disorders
Samame et al. (19)	2012	Acta Psychiatr. Scand.	Bipolar disorder
Peletti et al. (20)	2012	Neurosci. Biobehav. Rev.	Neurodegenerative disorders
Samame (21)	2013	Psychiatry Res.	Bipolar disorder
Kucharska-Pietura and Mortimer (22)	2013	CNS Drugs	Schizophrenia
Schreiter et al. (23)	2013	J. Affect. Dis.	Depression
Roepke et al. (24)	2013	Front. Neurosci.	Borderline personality disorder
Thoma et al. (25, 26)	2013	Neurosci. Biobehav. Rev.	Multiple
Bora and Pantelis (27)	2013	Schizophr. Res.	Schizophrenia
De Jong et al. (28)	2013	Eur. Psychiatry	Bulimia nervosa
Cerami and Cappa (29)	2013	Neuroi. Sci.	Frontotemporal dementia
Giovagnoli (30)	2014	Epilepsy Behav.	Epilepsy
Martin et al. (31)	2014	Genes Brain Behav.	Schizophrenia
Weightmann et al. (32)	2014	Front. Psychiatr.	Depression
Henry et al. (33)	2014	Neuropsychologia	Frontotemporal dementia
Schurz et al. (34)	2014	Neurosci. Biobehav. Rev.	Multiple
Mercedes Perez-Rorriques (35)	2015	Neuropsychopharmacol.	Mood disorders, schizophrenia
Bora et al. (36)	2015	Behav. Brain Res.	Parkinson’s disease
Bora et al. (37)	2015	J. Neurol. Neurosurg. Psychiatry	Frontotemporal dementia, Alzheimer’s disease
Bora and Pantelis (38)	2016	Schizophr. Res.	Schizophrenia bipolar disorder
Bora et al. (39)	2016	Psychol. Med.	Bipolar disorder
Bora and Berk (40)	2016	J. Affect. Dis.	Depression
Bora and Kose (41)	2016	Int. J. Eat. Disord.	Anorexia nervosa, bulimia nervosa
Cotter et al. (42)	2016	Neurology	Multiple sclerosis
Bora et al. (43)	2016	Behav. Brain Res.	Huntington’s disease
Bonifils et al. (44)	2016	Schizophr. Res.	Substance misuse
Happé and Conway (45)	2016	Curr. Op. Pediatri.	Autistic spectrum disorders
Bora et al. (46)	2016	Neuropsychol Rev.	Multiple sclerosis
Bora (47)	2017	Schizophr. Res.	Schizophrenia
Bora and Zorlu (48)	2017	Addiction	Substance misuse
Eddy (49)	2018	Prog. Neuropsychopharmacol. Biol. Psychiatry	Schizophrenia, Tourette syndrome
Keech et al. (50)	2018	Psychoneuroendocrinol.	Neurodevelopmental disorders
Wang et al. (51)	2018	Neurosci. Biobehav. Rev.	Multiple
Fortier et al. (52)	2018	Revue Neurol.	Neurodegenerative disorders
Rokita et al. (53)	2018	Eur. Psychiatr.	Multiple
Eddy and Cook (54)	2018	Prog. Neuropsychopharmacol. Biol. Psychiatry	Multiple

RESULTS

Identified Measures

Table 2 lists the assessments identified from the phase one search. The most frequently applied measures used either verbal (usually written) or visual (image) forms of presentation, and were typically used to assess recognition of emotions/mental states from facial features (Ekman Pictures of Facial Affect, Reading the Mind in the Eyes task), self-rated empathy (Interpersonal Reactivity Index), understanding of other’s cognitive mental states including communicative intentions (Strange Stories, Sally Anne Task, Intentions Comic Strip Task, Hinting Task), or both other’s cognitive and affective mental states including understanding of sarcasm and socially inappropriate or socially competitive emotions [Faux Pas Task, Yoni Task, Animations Task, Movie for the Assessment of Social Cognition (MASC), The Assessment of Social Inference Test (TASIT)]. Measures of everyday social functioning are also included in Table 2. A few emotion regulation questionnaires, attention tasks involving emotional stimuli (e.g., face in the crowd task), and socially competitive games (e.g., prisoner’s dilemma, ultimatum game) were mentioned in the reviewed papers, but have not been considered here as they are less pure assessments of social cognition.
TABLE 2 | Measures used to assess social cognition including scales for social functioning.

Measure name/description	Link/Reference	Task format	Skills assessed
Referenced in over 20% of search papers			
Pictures of Facial Affect	Ekman and Friesen (55)	Visual	A
Reading the Mind in the Eyes Test	Baron-Cohen et al. (56)	Visual	
Faux Pas Task	Stone et al. (57)	Verbal	C A
Interpersonal Reactivity Index	Davis (58)	Scale	
Referenced in at least 10% of search papers			
Hinting Task	Corcoran et al. (59)	Verbal	C
Strange Stories	Happe (60)	Verbal	C A
Intention inference comic strip	Sartari et al. (61, 62)	Visual	C
Sally Anne Task (or similar first- and second-order belief tasks)	Wimmer and Perner (63) e.g., Baron-Cohen et al. (64); Baron Cohen (65)	Visual	
Animations Task	Abell et al. (66)	Visual	C A
Yoni Task	Shamay-Tsoory and Aharon-Peretz (67)	Visual	
The Assessment of Social Inference Test	McDonald et al. (68)	Audiovisual	
Movie for the Assessment of Social Cognition	Dziobek et al. (69)	Audiovisual	
Referenced in 5 to 10% of search papers			
Emotion Quotient [Cambridge Behaviour Scales]	Baron-Cohen et al. (70)	Scale	A
Levels of Emotional Awareness Scale	Lane et al. (71)	Scale	
Facial Emotion Recognition Test	Anderson et al. (72)	Visual	
Facial Emotion and Perception test	Langenecker et al. (73)	Visual	
Facial Expressions of Emotion FEEST	Surguladze et al. (74)	Visual	
Spy test	Hala et al. (75)	Visual	
Referenced in up to 5% of search papers			
False belief and deception task	Frith and Corcoran (76)	Verbal	C
Pragmatic Story Comprehension Task	Langdon and Coltheart (77)	Verbal	
False belief and false photo vignettes	Saxe and Kanwisher (78)	Verbal	
False photo task	Zaitchik (79)	Verbal	
Conflicting beliefs and emotions	Shaw et al. (80)	Verbal	
Violation of social norms task	Berthoz et al. (81)	Verbal	
Joke stories	Uekermann et al. (82)	Verbal	
Friend–foe judgment	Watanabe et al. (83)	Audiovisual	C A
Interpersonal perception task	Costanzo and Archer (84)	Audiovisual	
Social Cue Recognition Test and Situational features recognition task	Corrigan et al. (85)	Audiovisual	
Interpersonal perception task	Sergi et al. (86)	Audiovisual	
Facial emotion identification task, Facial emotion discrimination test, Vocal emotion identification task	Kerr and Neale (87)	Audiovisual	A
Bell–Lysaker emotion recognition test	Bell et al. (88)	Audiovisual	
Videotape affect perception test	Bellack et al. (89)	Audiovisual	
Aprosodia battery	Blonder et al. (90)	Audiovisual	
Florida Affect Battery	Bowers et al. (91)	Audiovisual	
Comprehensive affect testing system	Froming et al. (92)	Audiovisual	
Emotional communication	Schneider et al. (93, 94)	Audiovisual	
Mayer–Salovey–Caruso emotional intelligence test	Mayer et al. (95)	Visual (and verbal)	C A
Heider and Simmell animations	Heider and Simmell (96)	Visual	
Picture sequencing	Langdon and Coltheart (97)	Visual	
Visual jokes	Thompson et al. (98)	Visual	
Cartoons	Snowden et al. (99)	Visual	
Humorous cartoons	Eddy et al. (100)	Visual	

(See key)
Description of the Most Popular Measures

The 12 most popular tasks referred to in at least 10% of the review papers are now each described in turn (with the Sally Anne Task selected to represent the false belief task paradigm). Key findings in neuropsychiatric populations are also discussed. It was beyond the scope of this review to give a detailed account of the social cognitive profiles of such a range of neuropsychiatric disorders, although Table 1 provides a list of publications to provide the reader with relevant review papers.

Sally Anne Task

False belief tasks assess the ability to understand that a character holds an incorrect belief, typically about the location of an object (unexpected transfer type task) or the nature of an object (deceptive box type task). One of the earliest tasks to be developed within the false belief paradigm was the Sally Anne Task (63). This task was traditionally used in cognitive developmental research, in the form of a puppet show. The character Sally puts a ball in one of two locations and then leaves the scene. In her absence, another character (Anne) moves the ball to the other location and also leaves the scene, before Sally returns. Participants are asked where Sally will look for the ball, with a control question about the ball's actual location. Do they appreciate her lack of knowledge or do they perhaps mistakenly confuse their own knowledge or do they perhaps mistakenly confuse their own knowledge for hers and expect her to access the current location?

The task has been presented as videos during, e.g., fMRI studies (135, 136), and cultural adaptions have been created [e.g., Ref. (137)]. An important update was a version without “referential pull”, which was used to explore children’s ability when the real location of the ball was not salient (137, 138). Studies in psychiatry...
have used spoken, written, and line drawing versions (139). Deficits have been reported in disorders such as Alzheimer's disease (140) as well as ASD (101, 141).

Strange Stories
The Strange Stories (142) were designed to provide a sensitive measure of mental state reasoning that may circumvent the use of compensation strategies in populations with ASD (143). Happé's original instrument contained 24 test stories plus 6 control stories. Test stories contain statements involving pretense, sarcasm, persuasion, double bluff, deception, misunderstanding, and forgetting. For example, in one story depicting sarcasm, a story character is unappreciative when her mother brings her favorite meal: The mother states “Well that's very nice, isn't it! That's what I call politeness!” Stories are followed by two test questions to assess comprehension (e.g., Was what X said true?) and reasoning/justification (e.g., Why did X say that?). During questioning, participants are expected to explain the thoughts and feelings of characters in the stories, i.e., consider aspects of both cognitive and affective ToM, although the major focus is cognitive ToM. Although some studies simply awarded one point for the correct responses to each story, scoring can be graded in terms of a score of 0 (incorrect; no mention of cognitive or affective ToM), 1 (partially correct answer with some mention of cognitive or affective ToM), or 2 (complete correct response including reference to both cognitive and affective ToM) for each story [e.g., Ref. (144)].

Coding provided by Happé defines mental state references as, e.g., including reference to thoughts, feelings, desires, traits, or dispositions (142). Control stories describe events (e.g., the loss of a pair of glasses) and environmental conditions such as weather or a character's movements, asking the participant to make a judgment based on comprehending physical events (e.g., Where is the best place to look for the glasses)?: Total score is used.

A shorter set of 12 stories is sometimes used with children [e.g., Ref. (144)]. Film versions of the task have also been created (145, 146), and a few cultural adoptions and translations exist (147, 148). Many studies have reported impairment in psychiatric populations, such as ASD (149–153), high functioning autism or pervasive developmental disorder (154–156), epilepsy (157–160), bipolar disorder (161), children with social communication disorder (162), psychosis/schizophrenia (163, 164), and Alzheimer's disease (165). However, other studies report no impairment in samples with ASD (166), borderline personality disorder (167), and medial prefrontal damage (168).

The Yoni Task
This task is a visual computerized cartoon-type task that tests the ability to judge first-order and second-order affective and cognitive mental state attributions based on simple verbal instructions and eye-gaze cues (67). It was designed to make minimal language and executive functioning demands and was first used in patients with brain lesions (67), followed by those with schizophrenia (169), and then forensic samples (170). There are a total of 98 trials (32 first-order and 66 second-order). The central character “Yoni” (“Gianni” in the Italian version) is always surrounded by four color images in each corner of the screen, which take the form of items from semantic categories such as fruit or animals, or faces. Participants are asked to choose the image that Yoni is referring to based on a sentence appearing on the screen and cues such as direction of gaze and facial expression. Trials assess affective ToM (“Yoni likes…”), cognitive ToM (“Yoni is thinking of…”), or physical states for the control condition (“Yoni is close to…”).

First-order trials focus on Yoni's mental state, while second-order trials also involve taking into account the mental state of another on-screen face (e.g., “Yoni is thinking of the chair that … wants”). Each item is scored 1 if the answer was correct and 0 if the answer was wrong. Many studies use a subset of trials (e.g., 24 affective, 24 cognitive, and 16 physical). Another version of this task (171) includes trials where characters hold socially competitive emotions, such that participants are asked to identify the character that Yoni is jealous of or gloating over. A combination of facial expressions of Yoni and the other character can be used to make this judgment.

A wide range of patient groups have already been found to report impairment on at least some aspect of the Yoni Task, suggesting that this is a versatile and sensitive measure. They include samples with Parkinson's disease (172, 173), mild cognitive impairment (173), schizophrenia (174, 175), first-episode psychosis (176), bipolar disorder (174), depression (177), obsessive–compulsive disorder (177), epilepsy (178), Huntington's disease (179), and Tourette syndrome (100). The task has revealed selective deficits in some patient groups on ToM trials only with performance on control trials being spared [e.g., in Parkinson's disease: Ref. (172); schizophrenia: Ref. (175)].

Animations Task
Sometimes referred to as the “Frith–Happé Animations Task”, this measure can be used to assess the attribution of cognitive mental states and emotions, and was originally developed for use in ASD (66, 180). The task comprises 12 short (35–45 s) video-clips (plus a few practice clips) that feature pairs of animated geometric stimuli (i.e., red and blue triangle shapes). There are four trials within each of three conditions: random (e.g., drifting movement of the triangles), simple goal-directed movement (e.g., the triangles bounce off each other as if fighting), complex interaction, or ToM type (e.g., one triangle appears to push and coax another repeatedly out of a central box, each triangle reacting in a varied way to the other's movements). Participants are asked to watch the animation and describe what they see, with the experimenter avoiding any specific cues or questions that may lead the response, allowing the assessment of implicit mental state reasoning (181). However, when adapted for use in fMRI studies, a forced-choice response set will be used, whereby participants have to categorize each video-clip as containing (a) no interaction/random, (b) simple interaction/goal-directed movement, or (c) mental-state-related/complex social interaction.

Behavioral scoring is fairly complex, and each response is rated for length, appropriateness, and intentionality. Coding is provided by the developers and will ideally be carried out by multiple blinded raters. Deficits have already been uncovered in Tourette syndrome (182), Huntington's disease (183, 184), somatoform disorder (185), Asperger's syndrome, and...
schizophrenia (186, 187). Hypermentalizing has been revealed in some disorders based on responses to the random movement component of this task (e.g., Tourette syndrome: 182).

Intention Comic Strip Task

The intention inference comic strip task developed by Sarfati et al. (61) provides a useful non-verbal measure of the ability to understand cognitive mental states in the form of intentions in order to predict character behavior. This validated task (188) originally contained 30 short stories depicting a character engaged in an intentional behavior (e.g., preparing a bath for a baby) in the form of a short sequence of line drawings. Participants are asked to choose the correct ending of the story from among three pictures. The stories were designed to depict simple first-order intentional behavior, with effort made to avoid emotional situations or expressions, social interaction between figures, behavior underpinned by beliefs, and higher-order mental states. This can therefore be considered a relatively pure measure of intention understanding.

The task has been modified in order to be used successfully in psychophysiological studies (189, 190) and fMRI experiments (191), and the stories can be categorized into attribution of intention, physical causality with characters, and physical causality with objects only. As yet, it does not appear to have been used far beyond populations with schizophrenia (61, 62, 188, 189, 192), and studies indicate that disorganized symptoms may be most predictive of impairment in these patients [e.g., Ref. (192)].

Pictures of Facial Affect

The Pictures of Facial Affect (55) comprise a classic test of human facial emotion recognition. The six core basic emotions (happiness, sadness, anger, surprise, fear, and disgust) are depicted across the 60 monochrome photograph stimuli (10 of each). Standard presentation is that stimuli are presented for 5s, after which the subject has to choose which emotion label best describes the emotion shown. The total score ranges from 0 to 60, with subscores for each emotion. This task forms a subtest within The Facial Expressions of Emotion-Stimuli and Tests (FEEST) (193). Other related tests are the emotional hexagon and caricatures task, which contain variations in emotional intensity, and neutral expressions can be included in the stimulus set (see Ref. 194 for a review). The pictures of facial affect have been used frequently in fMRI studies [e.g., Refs. (195, 196)] and as an outcome measure in clinical trials (197).

Some studies have attempted to develop control tasks (150, 151), modified the original stimuli set to add additional emotions (198), or employed a forced-choice yes/no format [e.g., Ref. (199)]. The Ekman faces have been used in a wide range of studies including as an imitation task [e.g., Ref. (200)], as a control task (e.g., Ref. 201), and in psychophysiological investigations (202). Deficits can be apparent in patients with multiple sclerosis (203), frontotemporal dementia (204–206), schizophrenia (207–210), ASD [Refs. (150, 151, 211) and forensic: Ref. (212)], amyotrophic lateral sclerosis (195, 213), epilepsy (214–216), brain tumor (217), Parkinson’s disease (218), Prader–Willi syndrome (219), substance use disorder (220), bipolar disorder, and depression (221, 222). Clinical groups may show selective impairment on individual emotions, including patients with Parkinson’s disease [e.g., Ref. (218)] and epilepsy [e.g., Ref. (214)].

The Assessment of Social Inference Test

TASIT (223) was created in order to provide an ecologically valid measure of both emotion recognition and ToM. It takes the form of a set of video-clips featuring characters involved in everyday social situations, providing cues such as facial expression, vocal intonation and prosody, other non-verbal gestures, and context, in addition to the verbal script. There are three parts. Part 1 focuses on detecting the emotions portrayed from the six basic emotions plus neutral (scored 0–28). Part 2, Social Inference Minimal, contains 15 vignettes where speakers make sincere and sarcastic remarks. Four forced-choice questions are asked to investigate understanding of character intentions, beliefs/emotions, and intended meanings (scored 0–60). This includes making inferences based on second-order beliefs and recognizing simple and paradoxical sarcasm. Part 3, Social Inference Maximum, is similar to Part 2 but contains 16 vignettes with additional cues to help interpret speaker meaning, such as an additional spoken exchange between the characters implying a character’s belief.

Both forms [Form A: Ref. (224); Form B: Ref. (225)] possess favorable psychometric properties, with moderate to high test–retest and other forms of reliability (estimates range from 0.74 to 0.88) (223). In relation to its potential use in clinical trials, it appears relatively insensitive to practice effects (223). The two forms are useful for counterbalancing in trials [e.g., Refs. (226, 227)] and the TASIT has been utilized in fMRI experiments (228, 229). Shorter versions are also sometimes used [e.g., Ref. (230)]. It has been used to demonstrate social cognitive impairment in Alzheimer’s disease (231, 232), frontotemporal dementia (206, 233, 234), semantic dementia (235), schizophrenia (236–238), first-episode psychosis (239), attention deficit-hyperactivity disorder (240), depression (241), ASD (242), bipolar disorder (209), Huntington’s disease (243), traumatic brain injury (68, 244), multiple sclerosis (245), neurofibromatosis (246), agenesia of the corpus callosum (247), and groups featuring substance misuse (248, 249).

Movie for the Assessment of Social Cognition

The MASC (150, 151) centers on a 15-min-long film showing a group of people having a dinner party. As the film progresses, it pauses regularly, and participants answer multiple-choice questions (total = 46) that relate to characters’ thoughts, feelings, and intention, in certain scenes. The film contains examples of irony, sarcasm, social norms, inappropriate behavior, insinuations, and ambiguous non-verbal exchanges. Forced-choice answers can be categorized as correct attribution of ToM, overmentalizing errors (excessive or unnecessary use of mental state attribution), and undermentalizing errors (lack of mental state attribution when it would be appropriate), or a total absence of mental state inference, i.e., inappropriate physical causality attributions. There are also six control questions. Sometimes, focus is on verbal items (e.g., understanding of figurative speech),
and sometimes, it is on non-verbal items (e.g., interpretation of body language).

The MASC has been translated into languages including Italian (250, 251). It has been employed in a few previous clinical trials [e.g., Refs. (252, 253)]. Significant impairments have been reported in individuals with schizophrenia (254, 255) [also first-degree relatives: Refs. (256, 257)], depression (258), ASD (69, 150, 151, 231, 259–261), high social anxiety (262), borderline personality disorder (250, 263, 264), bipolar disorder (265, 266), anorexia nervosa (267), and substance misuse (268, 269). However, no such difficulties were revealed in other studies that involved patients with remitted bipolar disorder (270), obsessive–compulsive disorder (271), borderline personality disorder (272), or depression (273). Different aspects of the tasks can be associated with particular kinds of clinical symptoms in disorders such as schizophrenia [e.g., Ref. (255)].

The Hinting Task
The Hinting Task (59) assesses the understanding of indirect speech requests through the presentation of 10 vignettes depicting everyday social interactions that could be read by or read out loud to the participant. Each vignette ends with a remark that can be interpreted as a hint. For example, “Rebecca’s birthday is approaching. She says to her Dad, ‘I love animals, especially dogs.’ What does Rebecca really mean when she says this? What does Rebecca want her dad to do?” Participants have to identify the intended meaning of the remark and understand the character’s true desire. If the answer to the initial question is correct, the participant is given a score of 2. If a correct answer is given after additional questioning, a score of 1 can be given. The task has been found to have strong psychometric properties [e.g., Ref. (274)]; however, many participants get a perfect score (275).

A North American version of The Hinting Task has been developed (276) and the task has been translated into many languages including Dutch (277), Brazilian Portuguese (278), Spanish (279), and Korean (280). An auditory version has been created containing trials with and without prosody (276), and multiple versions have been created to help overcome any risk of practice effect (281, 282), which has enabled utilization as an outcome measure in many clinical trials (197, 283–285). Some patient groups exhibit difficulty with the Hinting Task including those with schizophrenia/psychosis (104, 274, 285–296) including ultra high-risk (98) and first-episode (297) samples, groups exhibiting substance misuse (298, 299), and patients with bipolar disorder (264, 300, 301). However, other clinical studies involving patients with first-episode psychosis (302), bipolar disorder (293), or Tourette syndrome (303) revealed no differences to healthy controls.

Reading the Mind in the Eyes Task
Baron-Cohen et al. (304) developed the Reading the Mind in the Eyes Test (RMET: https://www.autismresearchcentre.com/arc_tests), which measures the ability to discriminate mental states from photographs of pairs of human eyes. A revised version was produced slightly later (56) aiming to ensure that the target words and foils possessed comparable emotional qualities. There is one practice item plus 36 grayscale edited photographs featuring males (19) and females (17), each image surrounded by four mental state terms (e.g., bored, arrogant, flustered, and preoccupied). The participant must choose the word that best describes what the individual in the picture is thinking or feeling. Correct responses based on expert consensus are provided by Baron-Cohen et al. (56) and scores can range from 0 to 36. A glossary of the mental state terms is provided for participants during testing. Baron-Cohen et al. suggest the task involves an unconscious, automatic, and rapid matching process between stored memories of similar expressions with a lexicon of mental state terms.

Although the revised version has been shown to have good validity and test–retest reliability (305, 306), perhaps up to 10 items from the original test can have ceiling or floor effects (307, 308). Similarly, a separate control task using the same stimuli but for which subjects are asked to judge the sex of the person leads to responses approaching ceiling (56). More recent studies have therefore attempted to develop alternative control tasks, usually involving selecting age for the same set of stimuli [e.g., Refs. (308, 309)], although few studies have matched the tasks for difficulty [e.g., Refs. (310, 311)]. There is also a child version with 28 items (56). Many versions of the task have been developed for use with speakers of Chinese, Turkish (312), German (313), Italian [Ref. (314); also for children: Ref. (315)], Spanish (305), Brazilian Portuguese (316), French (317), and Persian (318). This task has been utilized very widely in many fMRI studies (310, 311, 319–324) and as an outcome measure in clinical experimental trials (227, 325–334). Atypical performance can be detected in association with childhood adverse experiences (335, 336) and patient groups with schizophrenia (210, 337–342), Parkinson’s disease (343), bipolar disorder and depression (344, 345), methamphetamine users with psychosis (346), frontotemporal dementia (347), ASD (348, 349), epilepsy (350), Huntington’s disease (183, 184, 351, 352), Tourette syndrome (100), attention deficit–hyperactivity disorder (353), and cerebellar tumor (354). However, some clinical samples demonstrate no impairment [bipolar disorder: Ref. (355); high functioning autism: Ref. (356); depression: Ref. (258); cocaine use: Ref. (253); schizotypy: Refs. (357, 358)] or potentially enhanced performance in comparison to healthy controls [depression: Ref. (359); borderline personality disorder: Ref. (360); neglected children: Ref. (361)]. Efforts have been made to identify selective impairments on the task in relation to the valence of items and considering neutral items may lead to further insight into conditions such as borderline personality disorder [e.g., Ref. (360)] and social anxiety (262), but individual items aren’t well matched for difficulty.

Faux Pas Task
This story-based task was developed as a measure of more advanced ToM in children (57, 362), but there is also a version typically used with adults. There are 10 faux pas (test) stories and 10 non-faux-pas-containing (control) stories. Test stories describe one of the characters making an unintentional statement that is likely to negatively affect another character’s feelings (e.g., Kim has made an apple pie for her uncle, and as she carries out the pie to him, he remarks that he loves pies, except apple
ones). The participant must recognize the lack of awareness or mistaken belief of the speaker (cognitive mental state: it’s not an apple pie) and the upset of the other character (affective ToM: disappointment or offense). The task therefore assesses understanding of both cognitive and affective mental states. Older participants are first asked “Did anyone say something they shouldn’t have said, or something awkward?” If a faux pas is indicated, this is followed by questions relating to who, and why. After this, there is the question tapping into understanding of emotional mental state (“Why shouldn’t he/she have said it or why was it awkward?”) and the check for understanding of the unintentional aspect of the faux pas (“Why do you think he/she said it?”). In addition to the comprehension questions, there is a final more explicit check of the understanding of the speaker’s false belief (“Did Uncle Tom know the pie was an apple pie?”). For control stories, questioning follows the same pattern, but only one comprehension question is asked and the more explicit false belief question is not present. Scores for test stories range from 0 to 2 based on complete or partial understanding, but control stories are scored from 0 to 1, resulting in a maximum possible score of 60.

The popularity of this task is such that versions have been produced in languages such as German (363), Hebrew (364), Japanese (365), Chinese (366), and Italian (367). It has been employed in clinical trials [e.g., Refs. (197, 368)] and neurophysiological studies (369), and has been presented with illustrations to help control for working memory demand (370). Deficits in understanding faux pas can be found in epilepsy (especially temporal lobe epilepsy) (157, 159, 338, 371–376), substance misuse (377), Parkinson’s disease (378, 379), multiple sclerosis (380, 381), schizophrenia (175, 176, 382–388), bipolar disorder (389, 390), ASD (391), attention deficit–hyperactivity disorder (392, 393), Tourette syndrome (100, 303, 394), Huntington’s disease (351, 352), depression (174, 395), frontotemporal dementia (36, 396, 397), personality disorder (398), anorexia nervosa (399), temporal lobe damage (400), caudate lesion (401), brain tumor (402), mytonic dystonia (403), and frontal lobe damage ([168, 404, 405]; but see Ref. (406)]. Patients with Turner syndrome (407), borderline PD (408), obsessive–compulsive disorder (409), or autobiographical memory deficit (410) appear less likely to demonstrate impairments. Some neuropsychiatric groups show atypical responses to control trials [e.g., Tourette syndrome: Eddy et al. (303) and ASD: Ref. (391)].

Interpersonal Reactivity Index

The Interpersonal Reactivity Index is a 28-item multidimensional scale typically thought to assess both cognitive and affective aspects of empathy (IRI) (58). The cognitive aspects assessed include Perspective Taking (PT) and Fantasy (F) subscales. PT involves imagining other people’s perspectives, whereas the F subscale taps into tendencies towards empathizing with fictional characters (e.g., in films or books). Emotional aspects of empathy are measured via the subscales Personal Distress (PD), which asks about the respondent’s reactions when witnessing another person’s distress, and Empathic Concern (EC), a measure of concern towards others’ emotions and experiences (58). Each item is rated using a five-point Likert scale from “does not describe me well” to “describes me very well.” Internal consistency is high, Cronbach’s α = 0.85 (58), with good test–retest reliability as well as convergent validity with other measures of empathy (411). Although many previous studies combine subscales to provide two separate measures of cognitive and affective empathy, some factor structure studies question the validity of the PD subscale (412, 413) and the F subscale (414) as valid measures of empathy. Other studies support validity (415, 416) and test–retest reliability (417).

There is a child version of the task (418) and versions have been developed in Dutch (419), Italian (420), Chinese (421), French (422), Japanese (423), Spanish (424), and German (425). There is also a proxy version [e.g., Ref. (426)]. The IRI has been used in many trials related to social cognition (427) [e.g., 329, 427–429] and neurophysiological studies (430, 431), in combination with MRI data (432–437), and appears to be predictive of performance on other tasks of social cognition (438–440). Atypical scores may arise in association with schizotypy (441), schizophrenia (256, 442–448), epilepsy (449, 450), ASD (156), Huntington’s disease (183, 184), Tourette syndrome (183), Alzheimer’s disease and mild cognitive impairment (451), frontotemporal dementia (452–454), post-traumatic stress disorder (455, 456), attention deficit–hyperactivity disorder (393), anorexia nervosa (457), Parkinson’s disease (458, 459), depression (273), traumatic brain injury (460), aphasia (461), multiple sclerosis (462), complex regional pain (463), and substance misuse (464). No significant difference to controls have also been found in other samples of patients with substance misuse (25, 26, 465), schizophrenia (466), first-episode psychosis (467), and first-degree relatives of patients with schizophrenia (468, 469).

Strengths and Limitations of the Most Popular Measures

Identified strengths and limitations of these more popular tasks are shown in **Table 3**.

DISCUSSION

Evaluation of Existing Measures

Task Characteristics and Applications

Overall, it is almost difficult to identify a psychiatric (or neurological) disorder that has not been associated with abnormalities on at least one of the four most popular measures (Rimet, IRI, Faux Pas Task, and Pictures of Facial Affect). However, the more popular measures have been applied most frequently in populations with schizophrenia or ASD, and there have been markedly fewer studies in conditions such as obsessive–compulsive disorder, attention deficit–hyperactivity disorder, eating disorders, or specific anxiety disorders. A scattering of studies in this review employed the measures in borderline personality disorder [but see Ref. (571)], substance use populations, and rarer genetic and neurological syndromes. Few previous studies have explored these tasks in younger populations with psychiatric diagnoses, although this area may now be receiving greater interest [see Ref. (572)]. Furthermore, while studies in a few disorders (e.g., schizophrenia) have attempted to explore the relationship between social
TABLE 3 | Strengths and limitations of more popular social cognitive assessments used in neuropsychiatric populations.

Measure	Strengths	Limitations
Sally Anne Task	• Can be used with children • Tests understanding of both first- and second-order belief • False belief tasks in general are established tests of ToM available in a variety of forms • Relatively pure measure of cognitive ToM • Validity, e.g., correlated with measures of relational perspective taking (156, 471) and the Faux Pas Task (157) • Associated with social competence in epilepsy (157) • Includes control-type “physical” stories • Insight offered by multiple scoring techniques including number of mental states attributed, appropriateness and quality (149) • Naturalistic style task (149)	• Not originally designed for adults • Executive functions affect performance (93, 94, 139) • Format of presentation will also influence performance (139, 473)
Strange Stories	• Tests both cognitive and affective mental states, and first- and second-order belief • Visual task which could reduce working memory demand • Ease of presentation and can be used well with children (175) • Validity supported by correlations with, e.g., false belief tasks (67) • Affective trials can be related to quality of life measure in Parkinson’s disease (172) • The authors also developed a related task to assess understanding of socially competitive emotions • Can be used to reveal both hypo- and hyper-mentalizing • Can assess spontaneous mental state reasoning, therefore has good ecological validity, and may be more challenging and sensitive than some other tasks • Non-facial as well as non-verbal stimuli • Multiple scores meaning complex patterns of performance and selective deficits can be identified • Can be related to social, school, and occupational functioning in schizophrenia (476) • Responses can be scored for length as a control	• Performance is affected by reading comprehension (155), IQ (153, 163, 471–473), and executive function (145, 161, 163) • General inferential ability, social norms, and autobiographical memory may influence performance (474) • Typical children don’t reach ceiling (474) • Different studies use different length versions • Lack of vocal cues limits ecological validity (146) • Physical (control) stories are not well matched (152) • Age effects (145, 479) • Executive functions (175, 176, 454) and IQ can affect performance (176, 454) • It is not clear if these factors differentially influence the cognitive and affective aspects, i.e., that the demands of all trials are comparable • Simply relying on eye gaze direction may help answer some trials, although there are some control trials with eye gaze straight ahead
Animations Task	• Tests both cognitive and affective mental states, and first- and second-order belief • Can be used to reveal both hypo- and hyper-mentalizing • Can assess spontaneous mental state reasoning, therefore has good ecological validity, and may be more challenging and sensitive than some other tasks • Non-facial as well as non-verbal stimuli • Multiple scores meaning complex patterns of performance and selective deficits can be identified • Can be related to social, school, and occupational functioning in schizophrenia (476) • Responses can be scored for length as a control	• Complex scoring and transcription required, a need for multiple raters • The clips are short: standardized instructions are required in relation to the number of viewings to permit • Experimenter must avoid providing cues as to the nature of the task • Verbal abilities from speech to vocabulary will influence response quality (e.g., 186) and visual attention may affect performance • Possible gender effect (186) • The video clips are not matched across condition in terms of length or complexity • Possible ceiling effect in controls (478) • Used in few clinical groups overall • Studies have yet to explore the contribution of, e.g., executive functions to task performance
Intentions Comic Strip Task	• Avoids verbal demands, which makes it accessible across cultures and enhances the purity of the measure • Useful for fMRI experiments (e.g., 191) • Contains useful control conditions • Factor analysis supports the validity of the three conditions (477) • Taps implicit reasoning • Fairly pure measure of cognitive ToM • Can be used to reveal emotion specific deficits • Suitable for use with children (479) • May be a sensitive measure in terms of tracking disorder state (e.g., 210) • Performance can indicate carer burden (480) • Includes neutral trials can offer particular insight (481) • Validity supported by associations with other social cognitive tasks (223)	• Only assesses recognition of basic emotions and mainly negative emotions • Motor contribution unknown • Associated with global cognition or education (238, 482) and IQ (211, 216) • Interpretation is complex as performance could be impaired by self-awareness (483), problems with motor simulation, or memory • Possible gender (484) and age effects (479, 485, 486) • Time-limited format may lead to guessing (222) • Little ethnic variation in stimuli, grayscale, old fashioned (479) • Ecologically validity is limited by the use of static images • Possible effects of field of presentation (487)
TABLE 3 | Continued

Measure	Strengths	Limitations
The Assessment of Social Inference Test	• No ceiling effect (488)	• Age effect (228, 238, 492–494)
	• Linked to functional outcome/social skills in schizophrenia (238, 274) and in traumatic brain injury (489), as well as caregiver burden (231, 232)	• Performance is influenced by vocabulary (494, 495), IQ (249, 489), education (238), and executive functions (228–230, 245, 496) including processing speed and working memory (223)
	• Comprehensive and naturalistic, as taps ability to use a range of skills in combination, including facial expression and other non-verbal cues (490)	• Motor component is unclear (497)
	• Good construct and convergent validity as related to other perspective taking measures (230) and IRI (242)	• Lengthy task for impaired patients, although a short version is now available (496)
	• More challenging and less contrived than facial expressions	• Surprise items are poor (230)
	• Lots of norms available for scoring	• Forced-choice response format limits ecological validity (242)
	• Dynamic, not static, so better predictive value (491)	• Impairments could simply reflect poor face emotion recognition as this is correlated (209, 249, 489)
	• Indexes frontal lobe volume loss in fronto-temporal dementia (234)	
	Movie for the Assessment of Social Cognition	
	• Good psychometrics (223)	
	• Can detect both hypo- and hyper-mentalizing	
	• Tests understanding of both cognitive and affective mental state reasoning and fine-grained assessment that can reveal selective deficits (69, 259)	
	• Reliable in adolescents (260, 498)	
	• Good psychometrics (230) including internal consistency and reliability (263, 273)	
	• Ecologically valid (267)	
	• Not related to verbal IQ (69)	
	• Validity supported by correlations with other social cognitive tasks (150, 151, 260, 499) but not always correlated with other social cognitive tasks (273)	
	• Not affected by culture or social desirability (150, 151)	
	• Takes less than 10 min to administer (278)	
	• Strong test–retest reliability and good internal consistency (500)	
	• Not associated with IQ (294, 503)	
	• Validity supported by correlation with spoken prosody (504) and correlates with other social cognitive tasks, e.g., emotion recognition (505)	
	• Related to social functioning in schizophrenia (274, 506)	
	• Not associated with referential thinking in general (507, 508)	
	• Validity supported by strong association with other social cognitive measures, e.g., Hinting task (508), IRI-PT (515) but perhaps only a weak correlation with autism spectrum quotient (516)	
	• No ceiling in controls, can examine positive, negative, and neutral trials separately (e.g., 382–384) and use RT to offer insight (382–384, 517)	
	• Scores remain stable over time (518)	
	• Short administration time (typically 10–15 min)	
	• Can use across cultures (349) and many existing translations	
	• Not just basic emotion recognition (519)	
	• Associated with social factors such as maternal functioning (520), social isolation (506), and clinical change in psychosis (521)	
	• Test–retest reliability is fairly good for the child version of RMET and one study demonstrated no learning effects (522).	
	Reading the Mind in the Eyes Test	
	• Used to test cognitive and affective ToM, with multiple layers of difficulty, and fine-grained analysis possible	
	• Control stories are included and can indicate hyper-mentalizing as well as hypo-mentalizing	
	• Mimics real life	
	• Associated with other social cognitive tasks and quality of life in epilepsy (373)	
	• Can adapt to other cultures (137)	
	• Associated with prosody deficit/indirect speech understanding (540, 541) and RMET performance in some studies (542) but not others (543, 544)	
	• Associated with carer behavior ratings (645) and mixed findings for social functioning in schizophrenia (386, 546)	
	• Depression, IQ, and executive functions can affect performance (255, 265, 501)	
	• Age effects (265, 270, 499)	
	• Uses only second-person perspective and participant is observer (499), should add self-referent aspect (271)	
	• Long time to administer and score—45–70 min (150, 151)	
	• Use of contextual cues could mask a deficit (468)	
	• Stress can affect performance (502)	
	• Need trained raters (69, 259)	
	• Doesn’t tap implicit social cognition (250)	
	• Further psychometric analysis would be helpful	
	Hinting Task	
	• Associates with education (378) and correlates with visuospatial skills (523), autobiographical memory (527), IQ (528–533), and executive function (530; my papers; 296, 534)	
	• Vague language and semantic features (531)	
	• Requires interpretation (258, 538)	
	• Performance is influenced by vocabulary (494, 495), IQ (249, 489), education (238), and executive functions (228–230, 245, 496) including processing speed and working memory (223)	
	• Motor component is unclear (497)	
	• Lengthy task for impaired patients, although a short version is now available (496)	
	• Surprise items are poor (230)	
	• Forced-choice response format limits ecological validity (242)	
	• Impairments could simply reflect poor face emotion recognition as this is correlated (209, 249, 489)	
	Faux Pas Task	
	• Tests understanding of both cognitive and affective mental state reasoning and fine-grained analysis possible	
	• Control stories are included and can indicate hyper-mentalizing as well as hypo-mentalizing	
	• Mimics real life	
	• Associated with other social cognitive tasks and quality of life in epilepsy (373)	
	• Can adapt to other cultures (137)	
	• Associated with prosody deficit/indirect speech understanding (540, 541) and RMET performance in some studies (542) but not others (543, 544)	
	• Associated with carer behavior ratings (645) and mixed findings for social functioning in schizophrenia (386, 546)	
	• Depression, IQ, and executive functions can affect performance (255, 265, 501)	
	• Age effects (265, 270, 499)	
	• Uses only second-person perspective and participant is observer (499), should add self-referent aspect (271)	
	• Long time to administer and score—45–70 min (150, 151)	
	• Use of contextual cues could mask a deficit (468)	
	• Stress can affect performance (502)	
	• Need trained raters (69, 259)	
	• Doesn’t tap implicit social cognition (250)	
	• Further psychometric analysis would be helpful	
	• Potential ceiling effect (274, 275, 300)	
	• Only assesses cognitive ToM	
	• Poor test–retest reliability and practice effect (274)	
	• Highly dependent on verbal comprehension (293) and associated with IQ (509)	
	• Executive function may affect performance (504, 510–514), especially processing speed and memory (297)	
	• Age effect (301)	
	• Gender effects are debated (561, 515, 518, 523–525)	
	• Performance is associated with visuospatial skills (512), reading (526), autobiographical memory (527), IQ (528–533), and executive function (530; my papers; 296, 534)	
	• Debate as to whether stress affects performance (502, 535)	
	• Age effects (160, 523, 536)	
	• Cronbach’s alpha can be low (312, 537)	
	• The stimuli were restricted to only Caucasians in the original task, and a gender confound as the males are older, less attractive, and more negative (538)	
	• Ecological validity is also weakened by static images, specificity of cues and forced-choice response format	
	• Better control tasks are needed (539)	
	• Debate over whether the task measures cognitive or affective ToM, or empathy, or emotion recognition (261)	
	• Some items have floor or ceiling effects	
	• A verbal task that makes cognitive demands beyond mental state reasoning (474)	
	• Accuracy may reflect use social norms and scripts, not just online reasoning about mental states, making this a “top-down” task (547)	
	• Associated with education (548) and IQ (549), and executive function can affect performance (339, 378, 382–385, 546, 550, 551)	
	• Scoring differences across studies (160) and some responses are difficult to score	
	• The cognitive and affective questions may not be of comparable difficulty	
	• Controls don’t always perform at ceiling	
	• Antipsychotic medications may affect performance (552)	
	• Little psychometric data	
TABLE 3 | Continued

Measure	Strengths	Limitations
Interpersonal Reactivity Index	• A multidimensional measure that can be used to assess cognitive and affective empathy; multidimensional	• Not associated with other empathy measures (559)
	• Fast to administer—15 min (447)	• Self-report means potential for bias and difficulties due to insight or anosognosia (541)
	• High convergent and discriminant validity (553)	• Social desirability can be a problem, e.g., in forensic populations (563), so more objective measures are needed (561)
	• Often associated with other social cognitive tasks (e.g., 341)	• Cognitive and affective subscales and combinations have questionable validity (562) and the factor structure can be challenged (563); the scale be less valid for affective empathy (564)
	• Psychophysiological data support the difference between cognitive and affective aspects (430)	• The PD subscale has weakest internal consistency (565), plus this subscale is self-oriented and neither it nor the F subscale measures true empathy (566)
	• Stable over time in schizophrenia (554)	• Gender effect (567–569)
	• Predicts functional capacity/psychosocial functioning in schizophrenia (555, 556) and psychosocial function in bipolar disorder (557) as well as being associated with carer burden (231, 232, 481)	• Scores can be associated with executive function (450)
	• Proxy version available and scores can be correlated, e.g., between parents and their adolescent children (558).	• Age effect (570)

Limitations are raised by the author where no reference is given. Factors such as ceiling effects and the specificity of the measure could be considered both strengths and limitations. A ceiling effect in controls could mean a task can highlight a profound deficit in patients, but no ceiling effect may mean greater sensitivity, whereas task specificity can help to reveal a precise deficit to target with intervention, although a more global perspective on social cognitive performance may also be needed.

cognitive performance and core symptoms of disorders (e.g., signs of depression or psychosis, tics, etc.), this is infrequent and results can be equivocal.

In relation to task format, studies assessing facial emotion recognition are perhaps the most widespread. However, video-based tasks assessing the understanding of dynamic social exchanges and inappropriate behavior have recently become prevalent (e.g., MASC, TASIT), presumably given the advantages of dynamic over static stimuli in terms of ecological validity. Audiovisual tasks are rich and comprehensive in the form of assessment provided, but studies do acknowledge that they are more lengthy to administer and more complex to score and interpret. Many studies note the importance of including measures to assess understanding of both cognitive and affective mental states, but only a few of the more popular measures have the advantage of being able to reveal hyper- in addition to hypo-mentalizing (e.g., Faux Pas Task, Animations Task).

Task selection also demonstrates a tendency towards explicit assessment of social cognition. That is, questioning tends to imply the need to pay attention to mental states, although this may mean we fail to detect subtle impairments in application of ToM, which can be distinguished from ability per se. Of the 12 more popular tasks, the Animations Task is probably the only measure that can explore spontaneous attribution of mental states due to the ambiguous nature of questioning. Relationships between this task and functioning remain to be explored, and it has yet to be used widely in clinical samples. One potential drawback is that it is rather complex to score and verbal ability will impact performance; thus, groups with speech or language impairment need to be carefully examined.

Many of the most popular social cognitive tasks have been adapted for use in MRI experiments, especially those that involve visual stimuli (e.g., RMET, Pictures of Facial Affect, and Intentions Comic Strip Task). However, in this case, behavioral responses are not always collected, or the method of questioning may differ when participants can only be assessed within a scanner. Combining behavioral and brain imaging data may have much to add when working with patient groups who have, e.g., communication limitations, and when attempting to determine the primary difficulties driving task performance differences to healthy controls.

Common Limitations of Measures

There are limitations in relation to interpretation of performance on the more popular measures in terms of seeking evidence of a social cognitive deficit per se. For example, while gender is one potential confound, age effects have been reported in relation to the majority of social cognitive tasks, and it will therefore be imperative to have a control group matched for this. Furthermore, interpretation requires an understanding of what typical performance should be, and not all tasks display ceiling effects in the typical population. Some tasks already have the advantage of established norms, including in a range of different clinical groups (e.g., TASIT). However, what is a typical response may still change over time, especially in relation to those tasks most influenced by cultural norms.

Other difficulties include potential confounds such as IQ, education, vocabulary, etc., and while many studies attempt to explore such characteristics in the samples they test, relationships are frequently unreliable and hard to interpret (e.g., should we expect some measures of IQ to be intrinsically related to social cognitive ability)? In addition, although most popular social cognitive tasks include some control trials or questions to assess, e.g., memory or comprehension (e.g., Faux Pas Task, Strange Stories, TASIT, etc.), this is not the case for all, and it can be difficult to develop control conditions or tasks well matched for complexity or difficulty. For example, a few recent studies have aimed to address this problem with the RMET, developing age judgment versions of the task (309–311), and most recently, comparison tasks featuring non-human animal eyes (573). However, strategy may also influence performance, e.g., stored knowledge may be an alternative way of answering certain tasks rather than
While the Yoni Task is one of the very few measures known to have revealed impairment in obsessive compulsive disorder (177) and first-episode psychosis (176). A flurry of attention has focused on the possibility that some measures of social cognition may track with disease state or identify early conversion in disorders such as psychosis [e.g., Ref. (297)], frontotemporal dementia (234), or Huntington’s disease (183,184), but further research is required.

The compromise in assessment selection is likely to rest in the balance between the comprehensiveness of the measure and ease of interpretation of performance. The Hinting Task, Intention Comic Strip Task, and Sally Anne-type false belief tasks are rather pure measures of cognitive ToM and perhaps easier to interpret than some other measures. On the other hand, measures such as the TASIT and MASC are more comprehensive and the involvement of dynamic visual cues and context means superior ecological validity. If a task can also detect a difference in the tendency to spontaneously attribute mental states (e.g., Animations Task) or detect hyper-mentalizing as well as hypo-mentalizing (e.g., Faux Pas Task), this could also be seen as a significant advantage.

If few measures can be included within a study (e.g., due to time constraints) but both cognitive and affective ToM should be assessed, the Yoni Task seems to be a very sensitive visual “all-around” task, whereas the Faux Pas Task is a good “verbal only” all-around task. In terms of ease of administration, previous studies have suggested that the Hinting Task, RMET, Strange Stories, and the Yoni Task are all fairly easy to administer and score. Those tasks that make fewer verbal demands may be particularly useful in clinical populations with more general cognitive problems such as people with dementia. This could include the Intention Comic Strip Task and the Yoni Task. Those tasks involving more abstract reasoning (e.g., second-order belief questions) will involve more working memory demand. Standardized recorded materials or visual stimuli to accompany verbal tasks would also be helpful. Studies could even explore variation in performance of patients across multiple task formats [e.g., Ref. (574)]. It seems to be a sensible approach to develop visual accompaniments for verbal tasks that can help remove confounds with, e.g., working memory. However, development of these additional materials will have to be carefully considered in terms of what additional cues are being provided (e.g., emotional facial expressions).

Ultimately, there will be a trade-off between empirical control and ecological validity. Controlling for the many confounds likely to influence patient studies is important, but we should not lose sight of the point that we rarely interpret social stimuli in isolation or outside of sociocultural context. Some tasks are clearly influenced by social norms and convention (e.g., Hinting task, Faux Pas Task, and tasks involving non-literal language and humor), whereas others seem to tap into more basic abilities (e.g., visual emotion recognition). This is certainly worth bearing in mind. Sometimes, multiple strategies can be used and testing cannot always control for this. Therefore, more extensive questioning around how participants have approached a task, and related factors such as motivation and metacognition, should be the norm.
Routine inclusion of dimensional clinical assessments is the way forward, and this should be extended to include measures of emotional reactivity. When answering a task question about how a given character would react in a given situation, and using oneself as a simulation piece to try and generate a mental state that would be felt in that situation, this would only give an accurate answer if one would indeed respond the same way. For the Faux Pas Task, it may be important to ask how the patients themselves would feel in that situation, as well as asking them to explain how someone else is likely to feel. Few studies ask the respondent to explicitly imagine being in the perspective of another, and this may offer insight into performance on tasks such as the Faux Pas Task, where incorrect responses could reflect a general emotional insensitivity rather than a specific perspective-taking deficit. Sometimes, the difficulty may lie in holding conflicting perspectives in mind rather than simply matching another’s emotion, or the distinction between self and other versus self–other blending (49). While emotion recognition measures assess blending, false belief tasks are a good example of a measure that involves self–other distinction due to the need to hold in mind conflicting perspectives. Furthermore, it can be helpful to have other kinds of cognitive perspective-taking measures included in an experiment as control tasks. For example, it has been shown that in Huntington’s disease (HD), performance on a basic object spatial PT task was related to performance on the RMET (352). Task deficits can reflect egocentric tendencies in general (e.g., 575) rather than just simply difficulties in understanding other people’s mental states, and experimental design should take this into consideration.

A few studies [e.g., in schizophrenia: Refs. (382–384)] have highlighted the importance of insight and a potential relationship between this and social cognition. Self-ratings (or proxy ratings of, e.g., empathy) are rarely explored in terms of a relationship with scores on these social cognitive popular tasks, but the pattern of performance on a scale such as the IRI could aid interpretation of other social cognitive tasks, e.g., high PD scores could be associated with an aversive reaction to emotional stimuli, affecting attention focus and impairing performance (49). However, self-rated measures may be of limited use when working with groups with potential insight issues or who may exhibit social desirability effects [e.g., Ref. (560)].

In summary, researchers should consider the range of skills they want to assess when selecting a task, in addition to any likely administration limitations, and the potential confounds that may affect interpretation within the patient group in question. They should consider multiple presentation formats and tasks that can tap application as well as ability per se, and consider assessment of general cognitive and emotional status as well as seeking a combination of objective and subjective data around everyday social function. Clinical samples should be well characterized. An additional consideration for clinical trials is potential practice effect, and some popular tasks are already available in multiple forms (e.g., TASIT and Hinting Task) to help avoid this difficulty.

Conclusions and Future Directions
Despite the wealth of previous research, some factors that could significantly impact performance on social cognitive tasks have received little attention. These include those that will influence the majority of patient studies, such as potential medication effects, and those that may interact with affective or motor factors such as ease of eye contact and visual attention more generally. We rarely ask patients how they felt about a task, or their performance, and this in itself may prove informative. We also need to improve the detail and clarity in data reporting to support greater synthesis across study findings and help to clarify the precise underpinnings of deficits in those more complex and heterogeneous patient groups as research evidence mounts. Cross-disorder comparison studies are rare, but comparing multiple patient groups within the same study using the same social cognitive tasks could offer useful insight into etiology and neurodevelopmental relationships between disorders (49).

Another important aim for future research will be to develop more well-matched control tasks to allow the identification of selective deficits where possible, as well as identify ecologically valid measures of real-world social functioning. New measures should aim to help differentiate between problems with ability versus differences in application as in some cases there may be subtle deficits that simply cannot be detected by the more contrived and explicit measures. More measures are always needed in the form of cultural adaptions, as well as counterpart measures to address proxy perspective when possible: the aim is to assess social factors after all, and studies rarely consider social cognition as a two-way process in their approach to assessment. There are currently few role-play-type assessments available, and further development in this area could be advantageous.

Longitudinal studies will help disentangle developmental effects and identify those measures that remain stable over time and those that may track with disease. This will, in turn, inform the creation of additional tasks for use in clinical and rehabilitative trials. But before we even begin to design interventional studies and assess outcome, we need to have a clear picture about what we mean when we refer to dysfunctional social cognition. This may, in turn, necessitate the development of more disease-specific measures that can account for what can reasonably be expected for individuals living with varied patterns of neuropsychiatric symptoms. Ultimately, the best approaches to the assessment of social cognition will be seeking to match the depth, complexity, and dynamicity of the human experience that we endeavor to explain.

AUTHOR CONTRIBUTIONS
CME is the sole author of this manuscript.
64. Baron-Cohen KA, Lysaker PH, Minor KS, Salyers MP. Affective empathy in schizophrenia: a meta-analysis. Schizophr Res (2016) 175:109–17. doi: 10.1016/j.schres.2016.03.037
65. Happé F, Conway JR. Recent progress in understanding skills and impairments in social cognition. Curr Opin Pediatr (2016) 28(6):736–42. doi: 10.1097/MOP.0000000000000417
66. Bora E, Ozakbas S, Velakoulis D, Walterfang M. Social cognition in multiple sclerosis: a meta-analysis. Neuropsychol Rev (2016b) 26(2):160–72. doi: 10.1016/j.nprv.2017.03.029
67. Bora E, Zorlu N. Social cognition in alcohol use disorder: a meta-analysis. Addict (2017) 112(1):40–8. doi: 10.1111/add.13486
68. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition (1985) 21(1):37–46. doi: 10.1016/0010-0277(85)90022-8
69. Baron-Cohen S. The autistic child’s theory of mind: a case of specific developmental delay. J Child Psychol Psychiatry (1989) 30(2):285–97. doi: 10.1111/j.1469-7610.1989.tb00411.0
70. Abell E, Happé F, Frith U. Do triangles play tricks? Attribution of mental states to animated shapes in normal and abnormal development. Cogn Dev (2000) 15:1–16. doi: 10.1016/S0885-2014(00)00014-9
71. Shamay-Tsoory SG, Aharon-Peretz J. Dissociable prefrontal networks for cognitive and affective theory of mind: a lesson study. Neuropsychologia (2007) 45:3054–67. doi: 10.1016/neuropsychologia.2007.05.021
72. McDonald S, Flanagan S, Rollins J, Kinch J. TASIT: a new clinical tool for assessing social perception after traumatic brain injury. J Head Trauma Rehabil (2003) 18:219–38. doi: 10.1097/00001999-200305000-00001
73. Dziosek I, Fleck S, Kalbe E, Rogers K, Hassenstab J, Brand M, et al. Introducing MASC: a movie for the assessment of social cognition. J Autism Dev Disord (2006a) 36:623–63. doi: 10.1007/s10803-006-0107-0
74. Baron-Cohen S, Richler J, Bisarya D, Gurunathan N, wheelwright S. The systemizing quotient: an investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philos Trans R Soc Lond B Biol Sci (2003) 358(1430):361–74. doi: 10.1098/rstb.2002.2126
75. Lane RD, Quinlan DM, Schwartz GE, Walker PA, Zetlin SB. The Levels of Emotional Awareness Scale: a cognitive–developmental measure of emotion. J Pers Assess (1990) 55(1–2):124–34. doi: 10.1177/002238919055000150
76. Anderson IM, Shippen C, Juhasz G, Chase D, Thomas E,Downey D, et al. State-dependent alteration in face emotion recognition in depression. Br J Psychiatry (2011) 198(4):302–8. doi: 10.1192/bjp.bp.108.078139
77. Langenecker SA, Bielaukas LA, Rapport LJ, Zubiena JK, Wilde EA, Berent S. Face emotion perception and executive functioning deficits in depression. J Clin Exp Neuropsychol (2005) 27(3):320–33. doi: 10.1080/13803390490515720
78. Surget-Labatse SA, Young AW, Senior C, Brebon G, Travis MJ, Phillips ML. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology (2004) 18:212–8. doi: 10.1037/0894-4105.18.2.212
79. Hala S, Chandler M, Fritz AS. Fleeting theories of mind: deception as a marker of three-year-olds’ understanding of false belief. Child Dev (1991) 62(1):83–97. doi: 10.1111/1467-8624.1991.tb01516.x
80. Frith CD, Corcoran R. Exploring ‘theory of mind’ in people with schizophrenia. Psychol Med (1996) 26(3):521–30. doi: 10.1017/S0033294096003560
81. Langdon R, Coltheart M. Recognition of metaphor and irony in young adults: the impact of schizotypal personality traits. Psychiatry Res (2004) 125(1):9–20. doi: 10.1016/j.psychres.2003.10.005
82. Saxe R, Kanwisher N. People thinking about thinking people. The role of the temporal-parietal junction in “theory of mind”. Neuroimage (2003) 19(4):1835–42. doi: 10.1016/S1053-8119(03)00230-1
83. Zaitchik D. When representations conflict with reality: the preschooler’s problem with false beliefs and “false” photographs. Cognition (1990) 35(1):41–68. doi: 10.1016/0010-0277(90)90036-J
84. Shaw P, Lawrence EJ, Radbourne C. The impact of early and late damage to the human amygdala on ‘Theory of Mind’ reasoning. Neuropsychologia (2006) 45:1116–38. doi: 10.1016/j.neuropsychologia.2005.10.007
85. Berent S, Krumhuber E. Face emotion perception and executive functioning deficits in depression. J Clin Exp Neuropsychol (2005) 27(3):320–33. doi: 10.1080/13803390490515720
86. Surget-Labatse SA, Young AW, Senior C, Brebon G, Travis MJ, Phillips ML. Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression. Neuropsychology (2004) 18(2):212–8. doi: 10.1037/0894-4105.18.2.212
87. Kerr SL, Neale JM. Emotion perception in schizophrenia: specific deficit or more widespread impairment? J Autism Dev Disord (2001) 31(1):1–13. doi: 10.1023/A:1011045523937
88. Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsumobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain (2015) 138(11):3400–12. doi: 10.1093/brain/awv224
89. Berthoz S, Armony JL, Blair RJ, Dolan RJ. An fMRI study of intentional humour processing and executive functioning deficits in alcoholism. Addiction (2007) 102(2):322–40. doi: 10.1111/j.1360-0443.2006.01656.x
90. Costanzo M, Archer D. Interpreting the expressive behavior of others: the Interpersonal Perception Task. J Nomerbal Behav (1989) 13(4):225–45. doi: 10.1007/BF00990295
91. Corrigan PW, Buican B, Tookey R. Construct validity of two tests of social cognition in schizophrenia. Psychiatry Res (1996) 63(1):77–82. doi: 10.1016/0165-1781(95)02897-1
92. Seger M, Green M, Widmark C, Reist C, Erhart S, Braff D, et al. Social cognition and neurocognition: effects of risperidone, olanzapine, and clozapine in patients with major depression. Am J Psychiatry (2004) 161(10):1835–48. doi: 10.1176/appi.ajp.161.1005
93. Kerr SL, Neale JM. Emotion perception in schizophrenia: specific deficit or further evidence of generalized poor performance? J Abnorm Psychol (1993) 102(2):312–8. doi: 10.1037/0021-843X.102.2.312
Montag C, Ehrlich A, Neuhaus K, Dziobek I, Heekeren HR, Heinz A, et al. Theory of mind impairments in euthymic bipolar patients. *J Affect Behav Neurosci* (2016) 16(3):902–10. doi: 10.3758/s13415-016-0441-4

Wingenfeld K, Kuehl LK, Dziobek I, Roepeck S, Otte C, Hinkelmann K. Effects of mineralocorticoid receptor blockade on empathy in patients with major depressive disorder. *Cogn Affect Behav Neurosci* (2018) 18(5):1–7. doi: 10.1016/j.ijnm.2018.05.002

Fretland RA, Andersson S, Sundet K, Andreasen OA, Melle I, Vaskinn A. Theory of mind in schizophrenia: error types and associations with symptoms. *Schizophr Res* (2015) 162:42–6. doi: 10.1016/j.schres.2015.01.024

Montag C, Brockmann EM, Lehmann A, Müller D, Rujescu D, Gallinat J. Association between oxytocin receptor gene polymorphisms and self-rated ‘empathic concern’ in schizophrenia. *PLoS One* (2012a) 7(12):e51882. doi: 10.1371/journal.pone.0051882

Montag C, Neuhaus K, Lehmann A, Krüger K, Dziobek I, Heekeren HR, et al. Subtle deficits of cognitive theory of mind in unaffected first-degree relatives of schizophrenia patients. *Eur Arch Psychiatry Clin Neurobiol* (2018) 262(3):217–26. doi: 10.1007/s00406-011-0250-2

Wolkenstein L, Schönberger M, Schirm E, Hautzinger M. I can see what you feel, but I can’t deal with it: impaired theory of mind in depression. *J Affect Disord* (2011) 132(1–2):104–11. doi: 10.1016/j.jad.2011.02.010

Dziobek I, Fleck S, Dziobek I, Banaschewski T, Rueck A, Fydrich T, et al. Lack of empathy in patients with narcissistic personality disorder. *Psychiatry Res* (2011) 187(1–2):241–7. doi: 10.1016/j.psychres.2010.09.013

Greig TC, Byrson GJ, Bell MD. Theory of mind performance in schizophrenia: diagnostic, symptom, and neuropsychological correlates. *J Nerv Ment Dis* (2004) 192:12–8. doi: 10.1097/00005152.1997.000000000000002

Janssen I, Krabbendam L, Jolles J, van Os J. Alterations in theory of mind and long-lasting disease: focus on affective and cognitive theory of mind ability in high socially anxious individuals. *J Anxiety Disord* (2011) 15(9):883–900. doi: 10.1016/j.janxdis.2011.06.002

Davison CA, Lesser R, Parente LT, Fiszdon JM. Psychometrics of social cognition tasks for psychosis treatment research. *Schizophr Res* (2018) 193:51–7. doi: 10.1016/j.schres.2017.06.018

Greig TC, Byrson GJ, Bell MD. Theory of mind performance in schizophrenia: diagnostic, symptom, and neuropsychological correlates. *J Nerv Ment Dis* (2004) 192:12–8. doi: 10.1097/00005152.1997.000000000000002

Preller S, Dziobek I, Rössler A, Vater A, Fydrich T, et al. Lack of empathy in patients with narcissistic personality disorder. *Psychiatry Res* (2011) 187(1–2):241–7. doi: 10.1016/j.psychres.2010.09.013

Hurst DH, Park JH, Kwon SM, Kim YT, Kwon DH, Cho SN, et al. An investigation into theory of mind in schizophrenia using hinting task and eyes task. *Korean Biol Ther Psychiatry* (2006) 12:215–23.

Marjoram D, Gardner C, Burns J, Miller P, Lawrie SM, Johnstone EC. Symptomatology and social inference: a theory of mind study of schizophrenia and psychotic affective disorder. *Cogn Neuropsychiatry* (2005a) 10:347–59. doi: 10.1080/13546800444000009

Marjoram D, Tansley H, Miller P, MacIntrye D, Owens DG, Johnstone EC, et al. A theory of mind study into the appreciation of visual jokes in schizophrenia. *BMC Psychiatry* (2005b) 5:12. doi: 10.1186/1471-244X-5-12

Lahera G, Benito A, Montes JM, Fernández-Liria A, Olbert CM, Penn DL. Social cognition and interaction training (SCIT) for outpatients with bipolar disorder. *J Affect Disord* (2013) 146(1):132–6. doi: 10.1016/j.jad.2012.06.032

Mizrahi R, Korostil M, Starkstein SE, Zipursky RB, Kapur S. The effect of antipsychotic treatment on Theory of Mind. *Psychol Med* (2007) 37(4):595–601. doi: 10.1017/S0033291706009342

Gil-Sanz D, Fernández-Modamio M, Bengochea R, Arrieta M. Adaptation of the hinting task measure of the theory of mind test to Spanish. *Rev Psiquiatr Salud Ment* (2012) 5:79–88. doi: 10.1016/j.rpsmen.2011.11.002

Moore T, Boddar M, Bertrand M-C, Malla AK, Joober R, Lepage M. Measuring cognitive markers of short-term clinical outcome in first-episode psychosis. *Clin Schizophr Relat Psychoses* (2010) 4(2):105–14.

Kanie A, Hagiya K, Ashida S, Su S, Kaneko K, Mogami T, et al. New instrument for measuring multiple domains of social cognition: construct validation.
validity of the Social Cognition Screening Questionnaire (Japanese version). *Psychiatry Clin Neurosci* (2014) 68(9):701–11. doi: 10.1111/pcn.12181

288. Hagiy A, Sumiyoshi T, Kanie A, Pu S, Kaneko K, Mogami T, et al. Facial expression perception correlates with verbal working memory function in schizophrenia. *Psychiatry Clin Neurosci* (2015) 69(12):773–81. doi: 10.1111/pcn.12329

289. Popolo R, Dimaggio G, Luther L, Vinci G, Salvatore G, Lysaker PH. Theory of mind in schizophrenia: associations with clinical and cognitive insight controlling for levels of psychopathology. *J Nerv Ment Dis* (2016) 204(3):240–3. doi: 10.1097/NMD.0000000000000545

290. Ng R, Fish S, Granholm E. Insight and theory of mind in schizophrenia. *Psychiatry Res* (2015) 225(1–2):169–74. doi: 10.1016/j.psychres.2014.11.010

291. Fisaid J, Richardson R, Greig T, Bell MD. A comparison of basic and social cognition between schizophrenia and schizoaffective disorders. *Schizophr Res* (2007) 91(1–3):117–21. doi: 10.1016/j.schres.2006.12.012

292. Smeets-Jansen MM, Meesters PD, Comis HC, Elkemade P, Smit JH, de Haan L, et al. Theory of Mind differences in older patients with early-onset and late-onset paranoid schizophrenia. *Int J Geriatr Psychiatry* (2013) 28(11):1141–6. doi: 10.1002/gps.3933

293. Lahera G, Herrera S, Reinares M, Benito A, Rullas M, González-Cases J, et al. Hostile attributions in bipolar disorder and schizophrenia contribute to poor social functioning. *Acta Psychiatr Scand* (2015) 131(6):472–82. doi: 10.1111/aps.12359

294. Park S. A study on the theory of mind deficits and delusions in schizophrenic patients. *Issues Ment Health Nurs* (2018) 39(3):269–74. doi: 10.1080/10481881.2017.1378872

295. Weijers J, Fonagy P, Eurelings-Bontekoe E, Termorshuizen F, Viechtlbauer W, Selten JP. Mentalizing impairment as a mediator between reported childhood abuse and outcome in nonaffective psychotic disorder. *Psychiatry Res* (2018) 259:463–9. doi: 10.1016/j.psychres.2017.11.010

296. Bertone MS, Diaz-Granados EA, Vallejos M, Muniello J. Differences in social cognition between male prisoners with antisocial personality or psychotic disorder. *Int J Psychol Res* (2017) 78(2):258–67. doi: 10.15288/ijpr.2017.78.258

297. Liangra L, Tornini-Holm M, Heiskanen I, Voutilainen G, Pulkinen U, Mehtälä T, et al. Theory of mind in a first-episode psychosis population using the Hinting Task. *Psychiatry Res* (2018) 263:185–92. doi: 10.1016/j.psychres.2018.03.014

298. Sanvicente-Vieira B, Kluwe-Schiavon B, Wearick-Silva LE, Piccoli GL, Scherer I, Tonelli HA, et al. Revised Reading the Mind in the Eyes Test (RMET)—Brazilian version. *Braz J Psychiatry* (2014) 36(1):60–7. doi: 10.1590/1516-4446-2013-1162

299. Prevost M, Carrier M-E, Choume G, Zelkowitz P, Joseph L, Gold I. The “Reading the Mind in the Eyes” test: validation of a French version and exploration of cultural variations in a multi-ethnic city. *Cog NeuroPsych* (2014) 19:184–204. doi: 10.1016/j.psyneuen.2013.12.028

300. Khorashad BS, Baron-Cohen S, Roshan GM, Kazemian M, Khazai I, Aghili Z, et al. “The Reading the Mind in the Eyes” Test: investigation of psychometric properties and test–retest reliability of the Persian version. *J Autism Dev Disord* (2015) 45:2651–66. doi: 10.1007/s10803-015-2427-4

301. Bos PA, Hofman D, Hermans EL, Montoya ER, Baron-Cohen S, van Honk J. Testosterone reduces functional connectivity during the ’Reading the Mind in the Eyes’ test. *Psychoneuroendocrinology* (2016) 68:194–201. doi: 10.1016/j.psyneuen.2016.03.005

302. Baglio F, Castelli I, Alberoni M, Blasi V, Griffanti L, Falini A, et al. Theory of mind in amnestic mild cognitive impairment: an FMRI study. *J Alzheimers Dis* (2012) 29(1):25–37. doi: 10.3233/JAD-2011-111526

303. Castelli I, Baglio F, Blasi V, Alberoni M, Falini A, Liverta-Sempio O, et al. Effects of aging on mindreading ability through the eyes: an fMRI study. *Neuropsychologia* (2010) 48(9):2586–94. doi: 10.1016/j.neuropsychologia.2010.05.005

304. Yin S, Fu C, Chen A. The structural and functional correlates underlying individual heterogeneity of reading the mind in the eyes. *Biol Psychol* (2018) 138:179–84. doi: 10.1016/j.biopsych.2018.09.009

305. Chalab MA, Kaur P, Lefaucheur JP, Hodd J, Créange A, Ayache SS. Theory of mind in multiple sclerosis: a neuropsychological and MRI study. *Neurosci Lett* (2017) 658:108–13. doi: 10.1016/j.neulet.2017.08.055

306. Mascallo JS, Rilling JK, Tenzin Negi L, Raison CL. Compassion meditation enhances empathic accuracy and related neural activity. *Soc Cogn Affect Neurosci* (2013) 8(1):48–55. doi: 10.1093/socan/sos095

307. Martin AK, Huang J, Hunold A, Meinzer M. Sex mediates the effects of testosterone on the 'Mind-Reading' Test. *Neuroscience* (2017) 366:84–94. doi: 10.1016/j.neuroscience.2017.10.005

308. Berlim MT, McGirr A, Beaurelia MM, Turecki G. Theory of mind in subjects with major depressive disorder: is it influenced by repetitive transcranial magnetic stimulation? *World J Biol Psychol* (2012) 13(6):474–8. doi: 10.3109/15622975.2011.615861

309. Balilecki K, Aydin O, Tas C, Danaci AE. Oxytocin and social cognition in patients with schizophrenia: comparison with healthy siblings and healthy
controls. Psychiatry Clin Psychopharmacol (2018) 28(2):123–30. doi: 10.1098/rspb.2017.1387405

328. Woolley Behav 2010;47:116–25. doi: 10.1016/j.psychneuene.2014.04.024

329. Radke S, de Brujin ER. Does oxytocin affect mind-reading? A replication study. Psychiatry Clin Psychopharmacol (2015) 66:75–81. doi: 10.1016/j. psycneuene.2015.06.006

330. MacDonald K, MacDonald TM, Brüne M, Lamb K, Wilson MP, Golshan S, et al. Oxytocin administration enhances controlled social cognition in persons with schizophrenia. Psychoneuroendocrinology (2014) 47:116–25. doi: 10.1016/j.psychneuene.2014.04.024

331. Kovács B, Kéri S. Off-label intranasal oxytocin use in adults is associated with increased amygdala–cingulate resting-state connectivity. Eur Psychiatry (2015) 30(4):542–7. doi: 10.1016/j.eurpsy.2015.02.010

332. MacDonald K, MacDonald TM, Brüne M, Lamb K, Wilson MP, Golshan S, et al. Oxytocin and psychotherapy: a pilot study of its physiological, behavioral and subjective effects in males with depression. Psychoneuroendocrinology (2013) 38(12):2831–43. doi: 10.1016/j.psychneuene.2013.05.014

333. Lucht MJ, Barnow S, Sonnенfeld C, Ulrich I, Grabe HJ, Schroeder W, et al. Associations between the oxytocin receptor gene (OXTR) and "mind-reading" in humans—an exploratory study. Nord J Psychiatry (2013) 67(1):15–21. doi: 10.3109/08039488.2012.700731

334. Domes G, Heinrichs M, Michel A, Berger C, Herpertz SC. Oxytocin improves "mind-reading" in humans. Biol Psychiatry (2007) 61(6):731–3. doi: 10.1016/j.biopsych.2006.07.015

335. Koizumi M, Takagishi H. The relationship between childhood maltreatment and emotion recognition. PLoS One (2014) 9(1):e86093. doi: 10.1371/journal. pone.0086093

336. Seward M, Heinrichs M, Kumsta R. Oxytocin administration and emotion recognition abilities in adults with a history of childhood adversity. Psychoneuroendocrinology (2019) 99:66–71. doi: 10.1016/j.psychneuene.2018.08.025

337. Navarra-Ventura G, Fernandez-Gonzalo S, Turon M, Poussa E, Palao D, Cardoner N, et al. Gender differences in social cognition: a cross-sectional pilot study of recently diagnosed patients with schizophrenia and healthy subjects. Can J Psychiatry (2018) 63(8):538–46. doi: 10.1177/0706743717746661

338. Zhang T, Chen L, Wang Y, Zhang M, Wang L, Xu X, et al. Impaired theory of mind in Chinese children and adolescents with idiopathic generalized epilepsy: association with behavioral manifestations of executive dysfunction. Behav Neurol (2014) 79:205–12. doi: 10.1159/000363697

339. Zhang T, Cui H, Wei Y, Tang Y, Xu L, Tang X, et al. Progressive decline of cognition during the conversion from prodrome to psychosis with a characteristic pattern of the theory of mind compensated by neurocognition. Schizophr Res (2018b) 195:554–9. doi: 10.1016/j.schres.2017.08.020

340. Zhang T, Xu L, Cui H, Tang Y, Wei Y, Tang X, et al. Changes in correlation characteristics of time consumption and mind-reading performance in pre-onset and post-onset psychosis. Psychiatry Res (2018) 262:168–14. doi: 10.1016/j.psychres.2018.02.008

341. Schiffer B, Pawlikczek C, Müller BW, Wiltfang J, Brüne M, Forsting M, et al. Neural mechanisms underlying affective theory of mind in violent antisocial personality disorder and/or schizophrenia. Schizophr Bull (2017) 43(6):1229–39. doi: 10.1093/schbul/sbx012

342. Akgül O, Kucukcakoban O, Binbay T, Bora E, Alptekin K, Akdede BB. Do clinical features relate to theory of mind, empathy and 2D:4D in schizophrenia? Psychiatry Clin Psychopharmacol (2017) 27(4):380–5. doi: 10.1080/20580573.2017.1373725

343. TsuRyu N, Kobayakawa M, Kawamura M. Is "reading mind in the eyes" impaired in Parkinson's disease? Parkinsonism Relat Disord (2011) 17(4):246–8. doi: 10.1016/j.parkreldis.2010.09.001

344. Espinoso U, Fernández-Abascal EG, Ovejero M. What your eyes tell me: theory of mind in bipolar disorder. Psychiatry Res (2018) 262:536–41. doi: 10.1016/j.psychres.2017.09.039

345. Tay SA, Hulbert CA, Jackson HI, Chanen AM. Affective and cognitive theory of mind abilities in youth with borderline personality disorder or major depressive disorder. Psychiatry Res (2017) 255:405–11. doi: 10.1016/j. psychres.2017.08.016

346. Uhmann A, Isper JC, Wilson D, Stein DJ. Social cognition and aggression in methamphetamine dependence with and without a history of psychosis. Metab Brain Dis (2018) 33(2):559–68. doi: 10.1007/s11011-017-0157-3

347. Schroeder ML, Pawelke S, Bisenius S, Knaust I, Schuemberg K, Polaykova M, et al. A modified Reading the Mind in the Eyes Test predicts behavioral variant frontotemporal dementia better than executive function tests. Front Aging Neurosci (2018) 10:11. doi: 10.3389/fnagi.2018.00011

348. Saghiri H, Dupuis A, Chau T, Kuskhi A. Atypical autonomic nervous system complexity accompanies social cognition task performance in ASD. Res Autism Spectrum Disord (2017) 39:54–62. doi: 10.1016/j.rasd.2017.04.004

349. Rudra A, Ram JR, Loucas T, Belmonte MK, Chakrabarti B, Bengalii translation and characterisation of four cognitive and trait measures for autism spectrum conditions in India. Mol Autism (2016) 7:50. doi: 10.1186/s13229-016-0111-y

350. Okruszek L, Bala A, Wordecha M, Jarkiewski M, Szczepański E, et al. Social cognition in neuropsychiatric populations: a comparison of theory of mind in schizophrenia and mesial temporal lobe epilepsy. Sci Rep (2017) 7(1):484. doi: 10.1038/s41598-017-00565-2

351. Eddy CM, Sira Mahalingappa S, Rickards H, Feldman R, Lu Y, Chong A, et al. Put things into perspective: A comparison study between children with typical and high-functioning autism and typically developed adults. Front Psychol (2015) 6:111. doi: 10.3389/fpsyg.2015.00111-y

352. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum (2016) 15(6):732–43. doi: 10.1007/s12311-015-0746-9

353. Eddy CM, Sira Mahalingappa S, Rickards H. Is Huntington’s disease associated with deficits in Theory of Mind? Acta Neurol Scand (2012) 126(6):737–9.
365. Kawamura M, Koyama S. Social cognitive impairment in Parkinson's disease. *J Neurol* (2007) 254(5):149–53. doi: 10.1007/s00415-007-4008-8

366. Zhu CY, Lee TM, Li XS, Jing SC, Wang YG, Wang K. Impairments of social cues recognition and social functioning in Chinese people with schizophrenia. *Psychiatry Clin Neurosci* (2007) 61(2):149–58. doi: 10.1111/j.1440-1819.2007.01630.x

367. Liverta Sempio O, Marchetti A, Lecciso F. Faux pas: traduzione italiana. Milan: Theory of Mind Research Unit, Department of Psychology, Catholic University of the Sacred Heart (2005).

368. Guastella AJ, Ward PB, Hickie IB, Shahrestani S, Hodge MA, Scott EM, et al. Single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia. *Schizophr Res* (2015) 168(3):628–33. doi: 10.1016/j.schres.2015.09.005

369. Petroni A, Canales-Johnson A, Urquina H, Guez R, Hurtado E, Blenkmann A, et al. The cortical processing of facial emotional expression is associated with social cognition skills and executive functioning: a preliminary study. *Neurosci Lett* (2011) 505(1):41–6. doi: 10.1016/j.neulet.2011.09.062

370. Henry A, Tourbah A, Chaunu MP, Rumbach L, Montreuil M, et al. Caudate nucleus and social cognition: neuropsychological and SPECT evidence from a patient with focal caudate lesion. *Neuropsychologia* (2011) 50(5):1299–309. doi: 10.1016/j.neuropsychologia.2011.03.004

371. Hasson-Ohayon I, Avidan-Msika M, Mashiach-Eizenberg M, Kravetz S, Rozencwajg S, Shahel H, et al. Metacognitive and social cognition approaches to understanding the impact of schizophrenia on social quality of life. *Schizophr Res* (2015) 161(2–3):386–91. doi: 10.1016/j.schres.2014.11.008

372. Hennion S, Delbeuck X, Duhamel A, Lopes R, Semah F, Tyvaert L, et al. The relationship between affective decision-making and theory of mind deficit in the early phase of schizophrenia: a voxel-based morphometric study. *Acta Psychiatr Scand* (2009) 119(3):199–208. doi: 10.1111/j.1600-0447.2008.01297.x

373. Calletti E, Paoli RA, Fiorentini A, Cicchetti B, Zugaio E, Serati M, et al. Neuropsychology, social cognition and global functioning among bipolar, schizophrenic patients and healthy controls: preliminary data. *Front Hum Neurosci* (2013) 7:661. doi: 10.3389/fnhum.2013.00661

374. Samamé C, Martino DJ, Streijlevich SA. An individual task meta-analysis of social cognition in euthymic bipolar disorders. *J Affect Disord* (2015) 173:146–53. doi: 10.1016/j.jad.2014.10.055

375. Zalla T, Sav A-M, Stopps A, Ahade S, Lebherz M. Faux pas detection and intentional action in Asperger syndrome. A replication on a French sample. *J Autism Dev Disord* (2009) 39:373–82. doi: 10.1007/s10803-008-0634-y

376. Mary A, Slama H, Mousty P, Massat I, Capiau T, Drabs V, et al. Executive and attentional contributions to Theory of Mind deficit in attention deficit/hyperactivity disorder (ADHD). *Child Neuropsychiol* (2012) 18(3):345–65. doi: 10.1080/14602258.2011.593489

377. Miao H, Tsibvian L, Gvirts HZ, Shamay-Tsoory SG, Levkovitz Y, Watemberg N, et al. Stimulants improve cognitive aspects of theory of mind in children with attention deficit/hyperactivity disorder. *J Psychopharmacol* (2014) 28(3):212–9. doi: 10.1177/0269881113492030

378. Channon S, Drury H, Gafson L, Stern J, Robertson MM. Judgements of social inappropriateness in adults with Tourette's syndrome. *Cogn Neuropsychiatry* (2012) 17(3):246–61. doi: 10.1080/13546805.2011.590689

379. Cao Y, Zhao QD, Hu LJ, Sun QZ, Sun SP, Yun WW, et al. Theory of mind deficits in patients with esophageal cancer combined with depression. *World J Gastroenterol* (2013) 19(19):2969–73. doi: 10.3748/wjg.v19.i19.2969

380. Torralva T, Roca M, Gleichgerrcht E, Bekinschtein T, Manes F. A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. *Brain* (2009) 132(3):1299–309. doi: 10.1093/brain/avp099

381. Torralva T, Kipps CM, Clark L, Bekinschtein T, Roca M, et al. The relationship between affective decision-making and theory of mind in the frontal variant of frontotemporal dementia. *Neuropsychologia* (2007) 45(2):342–9. doi: 10.1016/j.neuropsychologia.2006.05.031

382. Ruiz-Tagle A, Costanze E, De Achával D, Guinjoan S. Social cognition in a clinical sample of personality disorder patients. *Front Psychol* (2015) 6:75. doi: 10.3389/fpsyt.2015.00075

383. Tapajoz Pereira de Sampaio F, Soneira S, Allegri RF. Theory of mind and epilepsy: what clinical implications? *Eur Arch Psychiatry Clin Neurosci* (2013) 213(5):401. doi: 10.1007/s00406-015-0615-z

384. Huepe D, Riveros R, Manes F, Couto B, Hurtado E, Cetkovich M, et al. The relationship of clinical, cognitive and social measures in schizophrenia: a preliminary finding combining measures in prohabs and relatives. *Behav Neurosci* (2012) 25(2):137–50. doi: 10.1037/21100-018-3004

385. Kobayakawa M, Tsuura Y, Kawamura M. Theory of mind impairment in adult-onset myotonic dystrophy type 1. *Neurosci Res* (2012) 72(4):341–6. doi: 10.1016/j.neures.2012.01.005
404. Xi C, Zhu Y, Niu C, Zhu C, Lee TM, Tian Y, et al. Contributions of subregions of the prefrontal cortex to the theory of mind and decision making. *Behav Brain Res* (2011) 222(2):587–93. doi: 10.1016/j.bbr.2010.09.031

405. Lee TM, Iy AK, Wang K, Xi CH, Hu PP, Mak HK, et al. Faux pas deficits in people with medial frontal lesions as related to impaired understanding of a speaker’s mental state. *Neuropsychologia* (2010) 48(6):1670–76. doi: 10.1016/j.neuropsychologia.2010.02.012

406. Jonker FA, Jonker C, Scheltes P, Scherder EJ. The role of the orbitofrontal cortex in cognition and behavior. *Rev Neurosci* (2015) 26(1):1–11. doi: 10.1515/rneuro-2014-0043

407. Anaki D, Zadikov-Mor T, Gepstein V, Hochberg Z. Normal performance in neurotypical and autistic individuals on the Empathy Quotient (EQ) within a different cultural context. *Psychiatry Investig* (2011) 8(4):265–70. doi: 10.4306/pi.2011.8.4.265

408. Mavrogiorgou P, Bethge M, Luksat S, Nalato F, Juckel G, Brüne M. Social cognition and metacognition in obsessive–compulsive disorder: an exploratory pilot study. *Eur Arch Psychiatry Clin Neurosci* (2016) 266(3):209–16. doi: 10.1007/s00406-016-0669-6

409. Caramelli E, Bernardi F, Moscovitch M. Individualized Theory of Mind (iToM): when memory modulates empathy. *Front Psychol* (2013) 4. doi: 10.3389/fpsyg.2013.00041

410. Davis MH. A multidimensional approach to individual differences in empathy. *Pers Soc Psychol Rev* (2000) 4(1):51–76. doi: 10.1207/S15327951PSPR0401_05

411. Pulos S, Elison J, Lennon R. The hierarchical structure of the Interpersonal Reactivity Index (IRI) al español [Spanish adaptation of the Interpersonal Reactivity Index]. *Psicothema* (2010) 22:19–31.

412. Cliffordson C. The hierarchical structure of empathy: dimensional organization and relations to social functioning. *Scand J Psychol* (2002) 43:49–59. doi: 10.1111/1467-9450.00268

413. Eddy (2000) 39(3):345–58. doi: 10.1037/1015-5759/a000065

414. Parkinson C, Wheately T. Relating anatomical and social connectivity: White matter microstructure predicts emotional empathy. *Cereb Cortex* (2014) 24(3):614–25. doi: 10.1093/cercor/bhs347

415. Johnson MH. Executive function and developmental disorders: the flip side of the coin. *Trends Cogn Sci* (2012) 16(9):454–7. doi: 10.1016/j.tics.2012.07.001

416. Garton A, Gringart E. The development of a scale to measure empathy in 8- and 9-year old children. *Australian J Education Dev Psychol* (2005) 5:17–25.

417. De Corte K, Buysse A, Verhofstadt L, Roeyers H, Ponnet K. Measuring empathy in families of women with borderline personality disorder, anorexia nervosa, and a control group. *Fam Process* (2000) 39(3):345–58. doi: 10.1111/1545-5300.2000.39306.x

418. Garaigordobil M. Cooperative conflict-solving during adolescence: evidence from a new self-report measure of cognitive and affective empathy. *Soc Neurosci* (2018) 13:107–25. doi: 10.1007/s12038-015-9509-5

419. Aghvinian M, Sergi MJ. Social functioning impairments in schizotypy when it! Egoistic rather than altruistic empathy modulates neural and behavioral responses in moral dilemmas. *Physiol Behav* (2014) 130:127–34. doi: 10.1016/j.physbeh.2014.04.002

420. Michaels TM, Horan WP, Ginger EL, Martinovich Z, Pinkham AE, Smith MJ. Cognitive empathy contributes to poor social functioning in schizophrenia: evidence from a new self-report measure of cognitive and affective empathy. *Psychiatry Res* (2014) 220(3):803–10. doi: 10.1016/j.psychres.2014.08.054

421. Wu N, Li Z, Su Y. The association between oxytocin receptor gene polymorphism (OXTR) and trait empathy. *J Affect Disord* (2012) 138(3):468–72. doi: 10.1016/j.jad.2012.01.009

422. Niitsu T, Jarskog LF, Pedersen C, Penn D. Effects of oxytocin on empathy, introspective accuracy, and social symptoms in schizophrenia: a 12-week twice-daily randomized controlled trial. *Schizophr Res* (2019) 204:174–82. doi: 10.1016/j.schres.2018.09.013

423. Halverson T, Jarskog LF, Pedersen C, Penn D. Effects of oxytocin on empathy, introspective accuracy, and social symptoms in schizophrenia: a 12-week twice-daily randomized controlled trial. *Schizophr Res* (2019) 204:174–82. doi: 10.1016/j.schres.2018.09.013

424. Li X, Kashino M, Ohta H, Yamada T, Tani M, Watanabe H, et al. The effect of intranasal oxytocin versus placebo treatment on the autonomic responses to human sounds in autism: a single-blinded, randomized, placebo-controlled, crossover design study. *MoJ Autism* (2014) 5(1):20. doi: 10.1186/2040-2392-5-20

425. Paulus C. Der Saarbrücker Persönlichkeitsfragebogen SPF (IRI) zur messung von empathie: Psychometrische Evaluation der deutschen Version des Interpersonal Reactivity Index. (2009). http://psydok.psycharchives.de/jspui/handle/20.500.11780/3343

426. Carr AR, Mendez MF. Affective empathy in behavioral variant frontotemporal dementia: a meta-analysis. *Front Neurol* (2018) 9:417. doi: 10.3389/fneur.2018.00417

427. Fujino J, Takahashi H, Miyata K, Sugahara G, Kubota M, Sasamoto A, et al. Impaired empathic abilities and reduced white matter integrity in schizophrenia. *Prog Neuropsychopharmacol Biol Psychiatry* (2014) 48:117–23. doi: 10.1016/j.pnpbp.2013.09.018
Mandel A, Helokunnas S, Pihko E, Hari R. Brain responds to another
Gleichgerrcht E, Tomashitis B, Sinay V. The relationship between alexithymia,
Hazelton JL, Irish M, Hodges JR, Piguet O, Kumfor F. Cognitive and affective
Tousignant B, Jackson PL, Massicotte E, Beauchamp MH, Achim AM, Vera-
Schmidt N, Paschen L, Deuschl G, Witt K. Reduced empathy scores in
Nietlisbach G, Maercker A, Rössler W, Haker H. Are empathic abilities
Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin
Jiang Y, Hu Y, Wang Y, Zhou N, Zhu L, Wang K. Empathy and emotion
Fujiwara H, Shimizu M, Hirao K, Miyata J, Namiki C, Sawamoto N, et al.
McCormick LM, Brumm MC, Beadle JN, Paradiso S, Yamada T, Andreasen N. Mirror neuron function, psychosis, and empathy in schizophrenia. Psychiatry Res (2012) 2013(3):233–9. doi: 10.1016/j.psychres.2012.01.004
Haker H, Rössler W. Empathy in schizophrenia: impaired resonance. Eur Arch Psychiatry Clin Neurosci (2009) 259(6):352–61. doi: 10.1007/s00406-009-0007-3
Fujitawa H, Shimizu M, Hirao K, Miyata J, Namiki C, Sawamoto N, et al. Female specific anterior cingulate abnormality and its association with empathetic disability in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry (2008) 32(7):1728–34. doi: 10.1016/j.pnpb.2008.07.013
Gul A, Ahmad H. The relationship between dispositional empathy and prefrontal cortical functioning in patients with frontal lobe epilepsy. Pakistan J Med Sci (2017) 33(1):200–4.
Jiang Y, Hu Y, Wang Y, Zhou N, Zhu L, Wang K. Empathy and emotion disorder in patients with idiopathic generalized epilepsy. Epilepsy Behav (2014) 37:139–44. doi: 10.1016/j.yebeh.2014.06.005
Sturm VE, Yokoyama JS, Seeley WW, Kramer JH, Miller BL, Rankin KP. Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proc Natl Acad Sci U S A (2013) 110(24):9944–9. doi: 10.1073/pnas.1311191110.
Oliver LD, Mitchell DG, Dziobek I, MacKinley J, Coleman K, Rankin KP, et al. Parsing cognitive and emotional empathy deficits for negative and positive stimuli in frontotemporal dementia. Neuropsychologia (2015) 67:14–26. doi: 10.1016/j.neuropsychologia.2014.11.022
Söllberger M, Rosen HJ, Shany-Ur T, Ullah J, Stanley CM, Laluz V, et al. Neural substrates of socioemotional self-awareness in neurodegenerative disease. Brain Behav (2014) 4(2):201–14. doi: 10.1002/brb3.211
Hisch S, Irish M, Davesson N, Hodges JR, Piguet O. When one loses empathy: its effect on carers of patients with dementia. J Geriatr Psychiatry Neurol (2015) 28(2):107–20.
Narme P, Mouras H, Roussel M, Duru C, Krystkowiak P, Godefoy O. Emotional and cognitive social processes are impaired in Parkinson’s disease and are related to behavioral disorders. Neurology (2013) 72(2):182–92. doi: 10.1007/s0031522
Schmidt N, Paschen I, Deuschl G, Witt K. Reduced empathy scores in patients with Parkinson’s disease: a non-motor symptom associated with advanced disease stages. J Parkinsons Dis (2017) 7(4):713–8. doi: 10.3233/JPD-171083
Toussignant B, Jackson PL, Massicotte E, Beauchamp MH, Achim AM, Vera-Estay E, et al. Impact of traumatic brain injury on social cognition in adolescents and are related to behavioral disorders. Psychiatry Res (2010) 172(2):174–84. doi: 10.1016/j.pscychresns.2009.10.034
Parfar M, Frewen P, Navaroz A, Oremus C, MacQueen G, Lanius R, et al. Alterations in empathic responding among women with posttraumatic stress disorder associated with childhood trauma. Brain Behav (2014) 4(3):381–9. doi: 10.1002/brb3.215
Nietlisbach G, Maercker A, Rössler W, Haker H. Are empathic abilities impaired in post-traumatic stress disorder? Psychol Rep (2010) 106(3):832–44. doi: 10.2466/pr0.106.3.832-844
Beadle JN, Paradiso S, Salerno A, McCormick LM. Alexithymia, emotional empathy, and self-regulation in anorexia nervosa. Ann Clin Psychiatry (2013) 25(3):157–60. doi: 10.1177/1048123613501574.
Narme P, Mouras H, Roussel M, Duru C, Krystkowiak P, Godefoy O. Emotional and cognitive social processes are impaired in Parkinson’s disease and are related to behavioral disorders. Neurology (2013) 72(2):182–92. doi: 10.1007/s0031522
Schmidt N, Paschen I, Deuschl G, Witt K. Reduced empathy scores in patients with Parkinson’s disease: a non-motor symptom associated with advanced disease stages. J Parkinsons Dis (2017) 7(4):713–8. doi: 10.3233/JPD-171083
Toussignant B, Jackson PL, Massicotte E, Beauchamp MH, Achim AM, Vera-Estay E, et al. Impact of traumatic brain injury on social cognition in adolescents and are related to behavioral disorders. Psychiatry Res (2010) 172(2):174–84. doi: 10.1016/j.pscychresns.2009.10.034
Parfar M, Frewen P, Navaroz A, Oremus C, MacQueen G, Lanius R, et al. Alterations in empathic responding among women with posttraumatic stress disorder associated with childhood trauma. Brain Behav (2014) 4(3):381–9. doi: 10.1002/brb3.215
Nietlisbach G, Maercker A, Rössler W, Haker H. Are empathic abilities impaired in post-traumatic stress disorder? Psychol Rep (2010) 106(3):832–44. doi: 10.2466/pr0.106.3.832-844
Beadle JN, Paradiso S, Salerno A, McCormick LM. Alexithymia, emotional empathy, and self-regulation in anorexia nervosa. Ann Clin Psychiatry (2013) 25(3):157–60. doi: 10.1177/1048123613501574.
Narme P, Mouras H, Roussel M, Duru C, Krystkowiak P, Godefoy O. Emotional and cognitive social processes are impaired in Parkinson’s disease and are related to behavioral disorders. Neurology (2013) 72(2):182–92. doi: 10.1007/s0031522
Schmidt N, Paschen I, Deuschl G, Witt K. Reduced empathy scores in patients with Parkinson’s disease: a non-motor symptom associated with advanced disease stages. J Parkinsons Dis (2017) 7(4):713–8. doi: 10.3233/JPD-171083
Toussignant B, Jackson PL, Massicotte E, Beauchamp MH, Achim AM, Vera-Estay E, et al. Impact of traumatic brain injury on social cognition in adolescents and are related to behavioral disorders. Psychiatry Res (2010) 172(2):174–84. doi: 10.1016/j.pscychresns.2009.10.034
Parfar M, Frewen P, Navaroz A, Oremus C, MacQueen G, Lanius R, et al. Alterations in empathic responding among women with posttraumatic stress disorder associated with childhood trauma. Brain Behav (2014) 4(3):381–9. doi: 10.1002/brb3.215
Nietlisbach G, Maercker A, Rössler W, Haker H. Are empathic abilities impaired in post-traumatic stress disorder? Psychol Rep (2010) 106(3):832–44. doi: 10.2466/pr0.106.3.832-844
Beadle JN, Paradiso S, Salerno A, McCormick LM. Alexithymia, emotional empathy, and self-regulation in anorexia nervosa. Ann Clin Psychiatry (2013) 25(3):157–60. doi: 10.1177/1048123613501574.
483. Lamberts KF, Fosset L, Boelen DHE, Spikman JM. Self-awareness after brain injury: relation with emotion recognition and effects of treatment. *Brain Inj* (2017) 31(1):130–7. doi: 10.1080/02699052.2016.1288310

484. Larkin KT, Martin RR, McClain SE. Cynical hostility and the accuracy of decoding facial expressions of emotions. *J Behav Med* (2002) 25(3):285–92. doi: 10.1023/A:1015384182283

485. Heitz C, Noblet V, Phillipp C, Cretin B, Vogt N, Philippi N, et al. Cognitive and affective theory of mind in dementia with Lewy bodies and Alzheimer’s disease. *Alzheimer’s Res Ther* (2016) 8(1):10. doi: 10.1186/s13195-016-0179-9

486. Dimitrovsky L, Spector H, Levy-Chiff R, Vakil E. Interpretation of facial expressions of affect in children with learning disabilities with verbal or nonverbal deficits. *J Learning Disabilities* (1998) 31(3):286–312.

487. Crawford JW, Harrison DW, Kapelis L. Visual-field asymmetry in facial affect perception – moderating effects of hypnosis, hypnotic-susceptibility level, absorption, and sustained attentional abilities. *Int J Neurosci* (1995) 82(1–2):11–23.

488. Sutterby SR, Bedwell JS, Passler JS, Depta IA, Mesa F. Social anxiety and social cognition: the influence of sex. *Psychiatry Res* (2012) 197(3):242–5. doi: 10.1016/j.psychres.2012.02.014

489. McDonald S, English T, Randall R, Longman T, Togher L, Tate RL. Assessing social cognition and pragmatic language in adolescents with traumatic brain injuries. *J Int Neuropsychol Soc* (2013b) 19(5):528–38. doi: 10.1016/j.jin.2013.04.001

490. Duval J, Ensink K, Normandin L, Carla S, Fonagy P. Measuring reflective functioning in first-episode-psychosis. *Psychiatry Res* (2018) 269:56–63. doi: 10.1016/j.psychres.2018.08.008

491. van der Gaag M, Schütz C, Ten Napel A, Landa Y, Delespaul P, Bak M, et al. Development of the Davos Assessment of Cognitive Biases Scale (DACOBS). *Schizophr Res* (2013) 144(1–3):63–71. doi: 10.1016/j.schres.2012.10.010

492. Westerhof-Evers HJ, Visser-Keizer AC, McDonald S, Spikman JM. Evidence for theory of mind deficits in euthymic patients with bipolar disorder. *Acta Psychiatr Scand* (2005) 112(2):110–6. doi: 10.1038/sj.nim.4300570.x

493. Fernandez-Gonzalo S, Jodar M, Pousa E, Tiron M, Garcia R, Rambla CH, et al. Selective effect of neurocognition on different theory of mind domains in first-episode psychosis. *J Neuropsychiatr Clin Neurosci* (2012) 24(2):353–62. doi: 10.1176/jnpcl.2012.24.2.353

494. Robertson DA, Hargreaves A, Kelleher EB, Morris D, Gill M, Corvin A, et al. Theory of mind as a link between oxytocin and maternal bonding. *Psychoneuroendocrinology* (2011) 36(10):1031–41. doi: 10.1016/j.psyneuen.2011.06.008

495. Redondo I, Herrero-Fernández D. Validation of the Reading the Mind in the Eyes Test (TASIT). *Clin Neuropsychol* (2015) 29(4):201–17. doi: 10.1016/j.clinph.2015.06.014

496. Bora E, Vinodh G, Font P, Akdeniz F, Alkan M, Omer M, et al. Theory of mind in healthy young men and women. *Horm Behav* (2009) 55(4):502. doi: 10.1016/j.yhbeh.2009.04.011
562. Baron-Cohen S, Wheelwright S. The Empathy Quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. J Autism Dev Disord (2004) 34(2):163–75. doi: 10.1023/B:JADD.0000022607.19833.00

563. Mumper ML, Gerrig RJ. Leisure reading and social cognition: a meta-analysis. Psychol Aesthet Creat Arts (2017) 11(1):109–20. doi: 10.1037/aca000089

564. Chrysikou EG, Thompson WJ. Assessing cognitive and affective empathy through the interpersonal reactivity index: an argument against a two-factor model. Assessment (2016) 23(6):769–77.

565. Meert G, Wang J, Samson D. Efficient belief tracking in adults: the role of task instruction, low-level associative processes and dispositional social functioning. Cognition (2017) 168:91–8. doi: 10.1016/j.cognition.2017.06.012

566. Melchers M, Montag C, Markett S, Reuter M. Assessment of empathy via self-report and behavioural paradigms: data on convergent and discriminant validity. Cogn Neuropsychiatry (2015) 20(2):157–71. doi: 10.1080/13546805.2014.991781

567. Ru W, Fang P, Wang B, Yang X, Zhu X, Xue M, et al. The impacts of Val158Met in Catechol-O-methyltransferase (COMT) gene on moral permissibility and empathic concern. Personal Individ Differ (2017) 106:52–6. doi: 10.1016/j.paid.2016.10.041

568. Sohn HS, Lee DH, Lee KJ, Noh EC, Choi SH, Jang JH, et al. Impaired empathic abilities among patients with complex regional pain syndrome (type I). Psychiatry Investig (2016) 13(1):34–42. doi: 10.4306/pi.2016.13.1.34

569. Zupan B, Neumann D, Babbage D, Willer B. Sex-based differences in affective and cognitive empathy following severe traumatic brain injury. Neuropsychology (2018) 32(5):554–63. doi: 10.1037/neu0000462

570. Chen YC, Chen CC, Decety J, Cheng Y. Aging is associated with changes in the neural circuits underlying empathy. Neurobiol Aging (2014) 35(4):827–36. doi: 10.1016/j.neurobiolaging.2013.10.080

571. Fonagy P, Bateman AW. Adversity, attachment, and mentalizing. Compr Psychiatry (2016) 64:59–66. doi: 10.1016/j.comppsych.2015.11.006

572. Midgley N, Vrouva I eds. Minding the child: Mentalization-based interventions with children, young people and their families. New York, US: Routledge/Taylor & Francis Group (2012). doi: 10.4324/9780203123003

573. Eddy CM, Hansen PC. Predictors of performance on the Reading the Mind in the Eyes Test. Submitted for publication.

574. Eddy CM, Beck SR, Mitchell JJ, Praamstra P, Pall HS. Theory of mind deficits in Parkinson’s disease: a product of executive dysfunction? Neuropsychology (2013) 27(1):37–47. doi: 10.1037/a0031302

575. Samson D, Apperly IA, Kathirgamanathan U, Humphreys GW. Seeing it my way: a case of a selective deficit in inhibiting self-perspective. Brain (2005) 128(5):1102–11.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Eddy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.