Non-crossing geometric spanning trees with bounded degree and monochromatic leaves on bicolored point sets

Mikio Kano*, Kenta Noguchi†, and David Orden‡

*Ibaraki University, Hitachi, Ibaraki, Japan, e-mail: mikio.kano.math@vc.ibaraki.ac.jp
†Tokyo University of Science, Noda, Chiba, Japan, e-mail: noguchi@rs.tus.ac.jp
‡Universidad de Alcalá, Alcalá de Henares, Madrid, Spain, e-mail: david.orden@uah.es

Abstract

Let R and B be a set of red points and a set of blue points in the plane, respectively, such that $R \cup B$ is in general position, and let $f : R \rightarrow \{2, 3, 4, \ldots\}$ be a function. We show that if $2 \leq |B| \leq \sum_{x \in R} (f(x) - 2) + 2$, then there exists a non-crossing geometric spanning tree T on $R \cup B$ such that $2 \leq \deg_T(x) \leq f(x)$ for every $x \in R$ and the set of leaves of T is B, where every edge of T is a straight-line segment.

1 Introduction and related work

Let R be a set of red points and B be a set of blue points in the plane. We always assume that R and B are disjoint and $R \cup B$ is in general position (i.e,
no three points of $R \cup B$ are collinear). Several works \cite{1,8} have considered problems on non-crossing geometric spanning trees and geometric graphs (where edges are straight-line segments) on $R \cup B$. See also the survey \cite{7}.

1.1 Contributions of this work

For a tree T and a vertex v of T, let us denote by $\deg_T(v)$ the degree of v in T. A vertex of T with degree one is called a leaf of T, and the set of leaves of T will be denoted by $\text{Leaf}(T)$. Further, let us denote by $|T|$ the order of a tree T (i.e., its number of vertices) and by $|X|$ the cardinality of a set X.

In this paper, given R and B in the plane as above, we aim for non-crossing geometric spanning trees T on $R \cup B$ such that $\text{Leaf}(T) = B$. We prove the following theorem:

Theorem 1 Assume that R and B are given in the plane and a function $f : R \to \{2, 3, 4, \ldots\}$ is given. If $2 \leq |B| \leq \sum_{x \in R} (f(x) - 2) + 2$, then there exists a non-crossing geometric spanning tree T on $R \cup B$ such that $\text{Leaf}(T) = B$ and $2 \leq \deg_T(x) \leq f(x)$ for every $x \in R$. Moreover, if $|B| = \sum_{x \in R} (f(x) - 2) + 2$, then T satisfies that $\deg_T(x) = f(x)$ for every $x \in R$ (see (2) and (3) of Figure 1).

![Figure 1](image_url)

Figure 1: (1) A non-crossing geometric alternating spanning tree on 7 red points and 7 blue points with maximum degree 3; (2) A red point set R with labels $f(x)$ and a blue point set B; (3) A non-crossing geometric spanning tree T on $R \cup B$ such that $\text{Leaf}(T) = B$ and $\deg_T(x) = f(x)$ for every $x \in R$.

By setting $f(x) = k$ for every $x \in R$ in the above theorem, we obtain the following corollary:

Corollary 2 Let $k \geq 2$ be an integer. Assume that R and B are given in the plane. If $2 \leq |B| \leq (k-2)|R| + 2$, then there exists a non-crossing geometric spanning tree T on $R \cup B$ such that $\text{Leaf}(T) = B$ and the maximum degree
of T is at most k. Moreover, if $|B| = (k - 2)|R| + 2$, then T satisfies that $\deg_T(x) = k$ for every $x \in R$.

Observation 3 For $k = 2$, the above corollary says that if $|B| = 2$ and $|R| \geq 1$, then there exists a non-crossing geometric path which passes through all the points of $R \cup B$ and whose endvertices are the two blue points.

1.2 Related work

Ikebe et al. [4] proved that, given one red point $R = \{r\}$ and a set B of blue points in the plane, any rooted tree T with root w of order $|B| + 1$ can be straight-line embedded on $\{r\} \cup B$ in such a way that w is mapped to r and no crossings arise. Kaneko and Kano [6] proved that, given two red points $R = \{r_1, r_2\}$ and a set B of blue points in the plane, together with two rooted trees T_1 with root w_1 and T_2 with root w_2, if $|T_1| + |T_2| = |B| + 2$, then $T_1 \cup T_2$ can be straight-line embedded on $\{r_1, r_2\} \cup B$, without crossings, in such a way that w_1 and w_2 are mapped to r_1 and r_2, respectively.

Kaneko [5] considered sets R and B in the plane with $|R| = |B|$ and proved that, then, there exists a non-crossing geometric spanning tree T on $R \cup B$ such that every edge of T joins a red point to a blue point and the maximum degree of T is at most 3 (see (1) of Figure 1). Finally, Biniaz et al. [2] considered sets R and B in the plane with $|B| \leq |R|$ and proved that, then, there exists a non-crossing geometric spanning tree T on $R \cup B$ such that every edge of T joins a red point to a blue point and the maximum degree of T is at most $\max\{3, \lceil(|R| - 1)/|B|\rceil + 1\}$.

2 Proof of Theorem 1

In this section we prove Theorem 1. We first state the following proposition, which is a special case of Theorem 1.

Proposition 4 Assume that R and B are given in the plane and a function $f : R \to \{2, 3, 4, \ldots\}$ is given. If $|B| = \sum_{x \in R}(f(x) - 2) + 2$, then there exists a non-crossing geometric spanning tree T on $R \cup B$ such that Leaf$(T) = B$ and $\deg_T(x) = f(x)$ for every $x \in R$ (see (2) and (3) of Figure 1).

In order to prove Proposition 4 we will use the following lemma:

Lemma 5 (Theorem 3.6 of [3], and Exercises 2.1.12 of [9]) Let $n \geq 2$ be an integer, and let d_1, d_2, \ldots, d_n be positive integers. If $d_1 + d_2 + \cdots + d_n = 2n - 2$, then there exists a tree T with vertex set $\{v_1, v_2, \ldots, v_n\}$ that satisfies $\deg_T(v_i) = d_i$ for every $1 \leq i \leq n$.

Proof of Proposition 4. We first show that there exists a geometric spanning tree Q on $R \cup B$ that might have crossings but satisfies
\[
\deg_Q(x) = f(x) \quad \text{for all } x \in R, \quad \text{and} \quad \deg_Q(y) = 1 \quad \text{for all } y \in B. \tag{1}
\]
It follows from the condition of Proposition 4 that
\[
\sum_{x \in R} f(x) + \sum_{y \in B} 1 = \sum_{x \in R} (f(x) - 2) + 2|R| + |B|
\]
\[
= |B| - 2 + 2|R| + |B| = 2(|R \cup B| - 2).
\]
Hence by Lemma 5 there exists a geometric spanning tree Q that satisfies the condition (1) but might have some crossings. Among all geometric spanning trees Q satisfying (1), choose a geometric spanning tree T on $R \cup B$ such that the sum $\sum_{xy \in E(T)} |xy|$ is minimum, where $|xy|$ denotes the length of the straight-line edge x to y. We shall show that T has no crossings.

The following three possible types of crossings could arise. First, that two edges st and uv of T intersect, where s, t, u, v are red points (see (1) of Figure 2). Since $T - st - uv$ consists of three components, by symmetry, we may assume that u and t are contained in the same component of $T - st - uv$, that is, u and t are connected by a path in $T - st - uv$. Then $T - st - uv + su + vt$ is another geometric spanning tree on $R \cup B$ satisfying the degree condition (1) and its total sum of edge lengths is smaller than that of T. This contradicts the choice of T. Hence this case does not occur.

Second, that two edges st and ux of T intersect, where s, t, u are red points and x is a blue point (see (2) of Figure 2). Since $T - st - ux$ consists of three components and $\{x\}$ forms one component, u and t are connected by a path in $T - st - ux$ or u and s are connected by a path in $T - st - ux$. By symmetry, we may assume that u and t are connected by a path in $T - st - ux$. Then $T - st - ux + su + tx$ is another geometric spanning tree on $R \cup B$ satisfying the degree condition (1) and its total sum of edge lengths is smaller than that of T. This is a contradiction.

Third, that two edges sy and ux of T intersect, where s, u are red points and x, y are blue points (see (3) of Figure 2). Since $T - sy - ux$ consists of three components and $\{x\}$ and $\{y\}$ form two components, s and u are connected by a path in $T - sy - ux$. Then $T - sy - ux + sx + uy$ is another geometric spanning tree on $R \cup B$ satisfying the degree condition (1) and its total sum of edge lengths is smaller than that of T. This is a contradiction.

Note that blue points being leaves implies that these three were the only possible cases for crossings and, therefore, T has no crossings. Consequently, T is the desired non-crossing geometric spanning tree on $R \cup B$, and Proposition 4 is proved. \(\square\)
Figure 2: (1) Two intersecting edges st and uv and two new edges su and vt, which satisfy $|st| + |uv| > |su| + |vt|$; (2) Two crossing edges st and ux and two new edges su and tx, where x is a blue point and a leaf of T; (3) Two crossing edges sy and ux and two new edges sx and uy, where x and y are blue points and leaves of T.

We next prove Theorem 1 by making use of Proposition 3.

Proof of Theorem 1. We may assume that $2 \leq |B| < \sum_{x \in R} (f(x) - 2) + 2$ since if $|B| = \sum_{x \in R} (f(x) - 2) + 2$, then the theorem holds by Proposition 3. It is easy to see that there exists a mapping $f' : R \to \{2, 3, 4, \ldots\}$ that satisfies $f'(x) \leq f(x)$ for all $x \in R$ and $|B| = \sum_{x \in R} (f'(x) - 2) + 2$. By Proposition 3, there exists a non-crossing geometric spanning tree T such that $Leaf(T) = B$ and $\deg_T(x) = f'(x)$ for all $x \in R$. Hence, T is the desired geometric spanning tree on $R \cup B$. Consequently Theorem 1 is proved.

References

[1] M. Abellanas, J. García, G. Hernández, M. Noy, and P. Ramos, Bipartite embeddings of trees in the plane, Discrete Applied Math., 93 (1999) 141–148.

[2] A. Biniaz, P. Bose, A. Maheshwari, and M. Smid, Plane bichromatic trees of low degree, Discrete Comput. Geom., 59:4, (2018) 864–885.

[3] C. Chartrand, and L. Lesniak, Graphs and Digraphs, third edition, Chapman & Hall, (1996).

[4] Y. Ikebe, M. Perles, A. Tamura, and S. Tokunaga, The rooted tree embedding problem into points in the plane, Discrete Comput. Geom., 11 (1994) 51–63.
[5] A. Kaneko, On the maximum degree of bipartite embeddings of trees in the plane, *Discrete and Computational Geometry* (Proceeding of JCDCG 1998), **LNCS 1763**, (2000) 166–171.

[6] A. Kaneko and M. Kano, A straight-line embedding of two rooted trees in the plane, *Discrete Comput. Geom.*, **21** (1999) 603–613.

[7] A. Kaneko and M. Kano, Discrete geometry on red and blue points in the plane — A survey —. *Discrete and Computational Geometry, Algorithms and Combinatorics* B. Aronov, S. Basu, J. Pach, M. Sharir (eds.), **25**, (2003) 551–570, Springer Berlin Heidelberg.

[8] M. Kano, M, K. Suzuki, and M. Uno, Properly colored geometric matchings and 3-trees without crossings on multicolored points in the plane, *Discrete and Computational Geometry and Graphs* (Proceedings of JCD-CGG 2013), **LNCS 8845**, (2014) 96–111.

[9] D. B. West, *Introduction to Graph Theory*, Prentice Hall (1996)