Review

The suppression of apoptosis by α-herpesvirus

Yu You1,2,3, An-Chun Cheng*1,2,3, Ming-Shu Wang*1,2,3, Ren-Yong Jia1,2,3, Kun-Feng Sun1,2,3, Qiao Yang1,2,3, Ying Wu1,2,3, Dekang Zhu1,2,3, Shun Chen1,2,3, Ma-Feng Liu1,2,3, Xin-Xin Zhao1,2,3 and Xiao-Yue Chen1,2,3

Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically.

Cell Death and Disease (2017) 8, e2749; doi:10.1038/cddis.2017.139; published online 13 April 2017

Facts

- Apoptosis plays an important and critical role in host defence mechanisms against viral infection.
- Viruses, including α-herpesviruses, encode anti-apoptotic virulence factors to evade elimination via apoptosis and to guarantee viral replication and propagation.
- Multiple signalling pathways, including the intrinsic and extrinsic pathways, form a complicated network to modulate apoptosis.
- Different viral anti-apoptotic genes have distinct mechanisms of mediating apoptosis.

Open Questions

- In other evolving immune pathways, such as the autophagy and NF-kB signalling pathways, what is the role of viral anti-apoptotic genes, and how do they interact with established protein networks?
- Can we properly exploit viral anti-apoptotic proteins as targets for antiviral drugs?

Herpesvirus

α-Herpesviruses are responsible for severe morbidity and mortality, and they are characterized by a severe adenovirus and a double-stranded DNA genome. They typically lyse productively infected cells and establish a reactivatable, latent infection in their hosts. Furthermore, α-herpesviruses have a relatively broad host range.1 The human α-herpesviruses include herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) and varicella zoster virus (VZV). Moreover, there are several veterinary α-herpesviruses, including bovine herpesvirus (BHV), pseudorabies virus (PRV) and duck plague virus.

Structure. The α-herpesvirus genomes range in size from approximately 120 to 180 kb, and their G+C nucleotide content ranges from 32 to 75%.2–4 The herpesvirus genomes are specified as type A, B, C, D or E genotypes (Figure 1).5–7 Morphologically, herpesvirus virions share the similar strategy (Figure 1). The diameter of the virion is approximately 150–200 nm. The capsid consists of 162 capsomeres, containing 150 hexons of one protein species, 11 pentons of another protein and one portal vertex. There are three mature capsid forms A, B and C, which represent empty capsids, scaffold-containing capsids and viral DNA-containing capsids, respectively.6 The lipid envelope is derived from host cellular membranes and contains several viral membrane glycoproteins.5,8 The glycoproteins have roles in adsorption, binding to the cell surface, and promoting fusion between the virion envelope and the cellular membrane.10

Life cycle. The three subfamilies of herpesviruses share many strategies for replication. The two characteristic replication modes include a rapid, productive replication cycle and a life-long quiescent infection.

The lytic replication cycle: Understanding of the lytic replication cycle comes primarily from studies of HSV-1 and PRV.11–13 Consequently, this cycle includes (1) entry into the cell, (2) the transfer of the capsids to the nucleus and viral DNA replication, (3) capsid assembly and egress from the...
nucleus, (4) the maturation and envelopment of viral particles in the cytoplasm and (5) the exocytosis of mature virions (Figure 2).

The α-herpesviruses attach to and then enter the cells of exposed mucosal surfaces to initiate infection. Depending on the cell type, virion entry can occur at either the plasma membrane or via endosomes after endocytosis. In the primary mechanism, viral surface glycoproteins interact with cell-specific receptors to promote membrane fusion. Some of glycoproteins are involved in regulating apoptosis.

Figure 1 Overview of the types of herpesvirus genomes and the structure of virion. (I) The type A genomes (e.g., EHV-2) consist of a unique (U) region that is flanked by a direct terminal repeat (TR). The type B structure (e.g., Kaposi’s sarcoma-associated herpesvirus) also consists of a U region flanked by variable numbers of TRs. The type C genomes (e.g., Epstein-Barr virus) harbour variable numbers of terminal sequences and an internal direct repeat that is unrelated to the TR and splits the U region into two unique regions (U1 and U2). The type D (e.g., PRV) and E (e.g., HSV-1) genomes contain U1 and U2 regions that are each flanked by terminal and internal inverted repeats (TR1/TRs and TR2/TRs). The TR1/TRs regions are very short in some type D genomes (e.g., VZV), whereas they are longer in viruses with class E genomes. In the type E structure, there is also a terminal direct repeat of hundreds of base pairs that is known as the a sequence. Moreover, an inverted copy, known as the a’ sequence, is present internally. (II) The structure consists of four elements: (1) a core containing the viral dsDNA; (2) a T = 16 icosahedral capsid encircling the core; (3) an amorphous protein layer called the tegument that surrounds the capsid; and (4) an outer lipid envelope (some inspiration came from these articles).

Figure 2 The lytic replication cycle of herpesviruses: (1) entry into the cell, (2) transfer of the capsids to the nucleus, (3) viral DNA replication, (4) capsid assembly, (5) egress from the nucleus, (6) maturation and envelopment of viral particles in the cytoplasm and (7) exocytosis of mature virions (some inspiration came from these articles).
Upon fusion between the viral envelope and the cytomembrane, unenveloped virions enter the cytoplasm. Subsequently, capsids are transferred via microtubules to nuclear pores; motor proteins associated with microtubules are recruited through the exposure of inner tegument proteins, such as pUS3. Then, the viral genomes enter the nucleus through the nuclear pores and replicate. Herpesvirus gene expression can be divided into three types: immediate-early (IE or α), early (E or β) and late (L or γ). Functionally, IE genes, including ICP0, ICP4, ICP22 and ICP27, are the first genes transcribed; the transcription is stimulated by the viral tegument protein VP16 and uses the host transcriptional apparatus. The E gene-encoded proteins, independently of viral DNA replication, can be activated by IE gene expression. Based on the strictness of the DNA replication requirement, L genes are subdivided into leaky (γ1) late and true late (γ2). Additionally, herpesviruses also produce some non-coding RNAs and microRNAs that regulate the stability of viral and cellular mRNAs.

Subsequently, the DNA circularizes rapidly, and replication proceeds through a rolling circle mechanism. After expressing capsid proteins, herpesviruses assemble capsids and package their genomes into them. Unlike other DNA viruses, herpesviruses cannot obliterate nuclear membranes for their release. The viral capsids are too large (at least 120 nm) to pass through nuclear pores. Therefore, for egress, capsids are wrapped in the inner nuclear membrane (INM) and bud into the perinuclear space where they form primary enveloped capsids. During this process, the α-herpesvirus kinase pUS3 can regulate capsid nuclear egress by phosphorylating lamin A/C, which composes the nuclear lamina. Next, the perinuclear-enveloped capsids fuse with the outer nuclear membrane (ONM), and unenveloped capsids are delivered into the cytoplasm in a process called de-envelopment. Although gD is required for fusion during viral entry and is found in the perinuclear particles at the INM/ONM, gD deletion has no detectable effect on egress.

A few tegument proteins, such as VP16 and VP22, are packaged in the nucleus, and others are added in the cytoplasm. In the cytoplasm, tegument-coated capsids are budded into specialized vesicles derived from the Golgi and endosomes. In this secondary envelopment process, not only are mature viruses produced but also the transport vesicles that later fuse with the plasma membrane to release the viruses. In secondary envelopment, the assembly of tegument and envelope is a complex process that involves numerous protein-protein interactions. Enveloped virions, packaged into transport vesicles, can promote cell-to-cell spread or transport into neuronal axons for transmission to peripheral tissues.

Latency and reactivation: Importantly, all α-herpesviruses establish a latent infection in the neurons of the peripheral nervous system, which establishes a high-density viral reservoir and evades host antiviral defences. After viral replication at the portal of entry, α-herpesviruses concurrently invade the nervous system via fusion with neuronal membranes at axonal termini. Once the viral DNA has entered the nuclei in a ganglion, α-herpesviruses are immediately silenced and assembled into a chromatin structure resembling heterochromatin, which favours virus survival and establishes latent infection. In latently infected neurons, latency-associated transcript (LAT), which can silence lytic gene expression and block apoptosis, is the only gene expressed in high abundance.

However, these mechanisms have been studied primarily with HSV-1. Different stimuli, such as fever, UV light and menstruation, can reactivate α-herpesviruses. Biologically, α-herpesviruses are reactivated by one of the following two conditions: (a) infection with a high viral genome load to overcome repression or (b) the translocation of key tegument proteins, such as VP16, to the nucleus where it derepresses viral DNA. Once reactivation has occurred, viral capsids are transported to the distal axon, where virions are assembled.

Apoptosis

Apoptosis, also called programmed cell death, is a process that is common to all multicellular organisms for eliminating cells via a complex but highly defined programme. Apoptotic cells are characterized by nuclear fragmentation, cell shrinkage and the formation of apoptotic bodies. Virus-induced apoptosis can limit viral replication and transmission. Although apoptosis contributes to the prevention of pathogenesis, it is a potentially costly and even vainly attempted self-sacrifice. Notably, viruses have evolved anti-apoptotic mechanisms to maintain their replication and propagation. To escape elimination via apoptosis, viruses target and regulate key regulatory steps in the apoptotic pathway; they can inhibit death receptor-mediated apoptotic signals, regulate mitochondrial permeability and suppress the caspase cascade. Moreover, viruses can inhibit apoptosis by regulating the pro-apoptotic tumour suppressor p53.

α-Herpesvirus can encode anti-apoptotic viral proteins, such as US3, gJ and LAT, to interfere with the apoptosis pathway. Understanding the mechanisms by which α-herpesvirus regulates apoptosis is useful for future research. In this article, we focus on reviewing the roles played by α-herpesvirus proteins in suppressing apoptosis.

The apoptotic pathway. Apoptosis is modulated by two signalling pathways – the intrinsic and the extrinsic pathways. The extrinsic pathway, also called the death receptor pathway, is regulated by membrane death receptors, which are activated by binding between a ligand and its receptor. Conversely, the intrinsic pathway is modulated by intracellular stimuli, such as oxidative stress, hypoxia and nutrient deprivation, which lead to mitochondrial outer membrane permeabilization (MOMP). Subsequently, cytochrome C is released into the cytoplasm. Both pathways can activate the enzymatic cysteine-specific aspartate protease (caspase) cascade, triggering numerous proteolytic events that mediate the apoptotic cell death programme. The underlying mechanisms of apoptosis are now being unravelled. We will review the intrinsic and extrinsic signalling pathways to better understand the mechanisms by which α-herpesvirus perturbs apoptosis.
The extrinsic apoptotic pathway is a process in which specific ligands or apoptotic signals bind to membrane death receptors (DRs) to initiate apoptosis (Figure 3). These DRs belong to the TNF superfamily. To date, the eight TNF superfamily receptors CD120a (p55/TNFR1), CD120b (TNFR2), CD95 (Fas/Apo1), DR3, DR4 (TRAILR1), DR5 (TRAILR2), NGFR and EDAR have been identified in this process. Fas and TNFR1, the representative receptors, can bind with Fas ligand (FasL) and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), respectively, to form a death-inducing signalling complex (DISC) and activate a caspase cascade.

Mediated by FADD. Fas-associated protein with death domain (FADD), an apoptosis-related adaptor protein, is composed of a death domain (DD) and a death effector domain (DED). Fas, DR4 and DR5 are activated by specific ligands and bind to FADD through the DD domain. Then, the DED of FADD binds to procaspase-8/10 to construct the DISC. The DISC promotes the autoproteolytic cleavage of procaspase-8/10. The activation of caspase-8/10, which have enzymatic activity, can hydrolyse caspase-3/6/7 to induce apoptotic conditions, including cell shrinkage, nuclear fragmentation, apoptotic DNA fragmentation and ultimate cell death.

Mediated by TRADD. TNFR1-associated death domain protein (TRADD), an adaptor molecule, transduces the signal downstream of TNFR1, and TRADD contains a DD. Other death receptors, including TNFR1, DR3, DR6 and EDAR, recruit TRADD, which links to TRAF2 (TNF receptor-associated factor 2), RIP (receptor-interacting protein kinase) and cIAPs (cellular inhibitor of apoptosis), forming a signalling complex named complex I. TRADD interacts with TRAF2 via its N-terminal TRAF2-binding domain and with RIP via the DD. The initial formation of the membrane pro-survival TRADD–RIP1–TRAF2 complex I is followed by the assembly of a cytoplasmic apoptotic complex (complex II). There are two types of cytosolic complex II. FADD and caspase-8 are recruited by TRADD to form TRADD-dependent complex IIA, and RIP1 recruits FADD and caspase-8 into complex IIB, which can be negatively regulated by cIAPs. Both complex IIA and IIB can initiate apoptosis by activating caspase-8.

Additionally, complex I stimulates the mitogen-activated protein kinase/c-Jun N-terminal kinase (MAPK/JNK) pathway to induce cell survival, proliferation or apoptosis, and it modulates the nuclear factor kappa B.
(NF-κB) pathway, which facilitates cell survival, inflammatory signalling and apoptosis.

The intrinsic pathway. The intrinsic pathway, or the mitochondria-mediated apoptotic pathway (Figure 4), is initiated by intracellular stimuli that trigger MOMP, which allows the release of cytochrome C from mitochondria and is closely regulated by the Bcl-2 family. Bcl-2 family proteins are divided into pro-apoptotic proteins (Bax, Bid, Bak, Bad) and anti-apoptotic proteins (Bcl-2, Bcl-xl, Mcl-1, A1). A slight change in the dynamic balance of these proteins leads to apoptosis or apoptosis inhibition.

Pro-apoptotic Bcl-2 family members respond to a variety of intracellular apoptotic stimuli and then form pores in the outer mitochondrial membrane through which cytochrome C, which is normally bound to the inner mitochondrial membrane, is released into the cytoplasm. The released cytochrome C binds to Apaf-1 via β-propellers, and it then triggers nucleotide exchange and the gradual assembly of the apoptosome. The Apaf-1 apoptosome catalyses the cleavage and activation of procaspase-9, which triggers the caspase cascade, and the activation of caspase-3 and caspase-7 leads to eventual apoptosis. Under ER stress, three upstream signalling proteins – IRE1, PERK and ATF6 – are activated, thus leading to a cascade of activity that induces apoptosis. The ER releases Ca²⁺ from the ER lumen into the cytoplasm, which triggers apoptosis by activating the calcium-sensing kinase CaMKII. Then, CaMKII activates procaspase, which in turn triggers caspase cascade activation.

The Anti-apoptotic Genes of α-herpesvirus

To evade elimination, α-herpesviruses have gradually evolved various host immune modulation strategies to promote their fitness and pathogenesis. Although cells infected with viruses can be eliminated by cellular apoptosis, viruses can also suppress this apoptosis by encoding anti-apoptotic virulence factors. Here, we review the current understanding of the apoptosis-inhibiting mechanisms of the α-herpesvirus anti-apoptotic genes and their expression products (Table 1).
LAT and its mechanism of apoptosis regulation. During the latent stage, LAT is the only highly transcribed viral gene. LAT enhances the establishment of latency, reactivates the virus from latency and protects the host cells from apoptosis.62,63 Moreover, HSV-1 LAT can inhibit caspase-8/9-mediated apoptosis stimulated through either the intrinsic or extrinsic pathway.64–67 The anti-apoptotic mechanisms of LAT are being unravelled (Figure 5). Stable cell lines expressing LAT can block caspase-3 activation, thus confirming that LAT can suppress apoptosis even in the absence of other HSV-1 genes.28 HSV-1 LAT can stabilize the levels of total and phosphorylated AKT protein, which phosphorylates and inactivates the pro-apoptotic proteins Bad, Bax and caspase-9 to ultimately regulate caspase-3 activation and block apoptosis; (b) LAT cooperates with RIG-1 to promote NF-κB-dependent transcription to interfere with apoptosis and benefit cell survival; and (c) LAT substitutes for the function of c-FLIP, which is an inhibitor of caspase-8-mediated apoptosis.

Table 1

Virus gene or protein	Location in virus, expression	Cellular target for viral protein	Effect of modulating apoptotic pathway
LAT	Caspase-3, AKT, c-FLIP, Nf-κB	Caspase-3, AKT, c-FLIP, Nf-κB	(a) LAT stabilizes the levels of total and phosphorylated AKT protein, which phosphorylates and inactivates the pro-apoptotic proteins Bad, Bax and caspase-9 to ultimately regulate caspase-3 activation and block apoptosis; (b) LAT cooperates with RIG-1 to promote NF-κB-dependent transcription to interfere with apoptosis and benefit cell survival; and (c) LAT substitutes for the function of c-FLIP, which is an inhibitor of caspase-8-mediated apoptosis.

Figure 5 The anti-apoptotic pathway of LAT. The main domain of the LAT gene is contained in the first 1.5 kb. LAT can inhibit apoptosis by interacting with the following pathways: (a) LAT stabilizes the levels of total and phosphorylated AKT protein, which phosphorylates and inactivates the pro-apoptotic proteins Bad, Bax and caspase-9 to ultimately regulate caspase-3 activation and block apoptosis; (b) LAT cooperates with RIG-1 to promote NF-κB-dependent transcription to interfere with apoptosis and benefit cell survival; and (c) LAT substitutes for the function of c-FLIP, which is an inhibitor of caspase-8-mediated apoptosis.
ICP22 and its mechanism of apoptosis regulation. Infection cell protein 22 (ICP22), an IE protein, is required for efficient replication in restrictive cells and the conventional expression of viral late proteins. HSV-1 US1 encodes the 420-amino-acid protein ICP22 and produces an in-frame, N-terminally truncated form of ICP22 called US1.5, which contains 273 amino acids. US1.5 becomes detectable and accumulates only at a later time point after infection. It is generally believed that ICP22 not only promotes apoptosis but also inhibits apoptosis. The pro-apoptotic function is thought to be regulated by US1.5, which activates caspase-3.

The ICP22-deleted HSV-1 induces more apoptotic cells, demonstrating that ICP22 can block apoptosis. Moreover, AcTδ-induced apoptosis can be blocked by transfecting a pEGFP-ICP22 plasmid. Nevertheless, the anti-apoptotic activity of ICP22 is not strong. Thus, ICP22-mediated anti-apoptosis is not likely acting directly on apoptotic signalling but instead precisely regulates the expression of viral early and late genes, including anti-apoptotic genes. For example, in the absence of ICP22, the expression of US5 is delayed. Additionally, cells infected with HSV-1 d120 (an apoptosis inducer), which blocks the ICP4 and US3 genes, show an additional product known as Mr 37 500, which results from the proteolytic cleavage of ICP22 by caspase-3. Furthermore, this process is suppressed by over-expressing Bcl-2, transfecting US3 or adding caspase-3 inhibitor. During viral infection, viral protein cleavage by caspases leads to a variety of consequences, such as the counteraction of apoptosis, the enhancement or weakening of replication and the spread of the virus. Furthermore, ICP22 can antagonize p53. p53 is a master factor in the cell that modulates various cellular pathways and controls apoptosis by activating Bax or inhibiting Bcl-2. p53 has dual effects on HSV-1 replication; it plays a positive role by enhancing ICP22 expression and a negative role by inhibiting ICP0 expression. The negative effect of p53 is suppressed through interaction with ICP22, which promotes cell survival and efficient replication.

However, it remains unclear whether ICP22 can directly regulate apoptosis by interacting with p53.

VZV causes diseases of the skin or mucosa in a similar fashion as HSV-1. Moreover, VZV ORF63, which encodes the immediate-early protein 63 (IE63) and shares homology with HSV-1 ICP22, can also block apoptosis. VZV ORF63-deleted VZV-infected human neurons demonstrate significantly increased apoptosis compared with neurons infected with the parental VZV. Furthermore, expressing ORF63 alone can inhibit apoptosis, showing that VZV can encode an anti-apoptotic gene. Compared with parental virus, ORF63-deleted VZV has higher levels of phosphorylated eIF-2α to promote apoptosis. Meanwhile, the expression of IE63 alone can be sufficient to block eIF-2α phosphorylation. Thus, like its homologue HSV-1 ICP22, VZV ORF63 can inhibit apoptosis, but it acts through exceedingly different mechanisms.

ICP27 and its mechanism of apoptosis regulation. Infection cell protein 27 (ICP27) is an IE protein that is indispensable for viral replication. Interestingly, ICP27 is the only IE protein that has homologues in all of the herpesviruses. ICP27 is a multifunctional protein that performs various activities during the viral life cycle, such as shutting down host protein synthesis, promoting viral DNA synthesis and expression, orchestrating all stages of viral mRNA biogenesis, activating stress signalling pathways and blocking apoptosis.

Based on studies comparing an HSV-1 ICP27-deletion virus with a wild-type virus, ICP27 was shown to block apoptosis. Moreover, ICP27-null virus-induced apoptosis in HEP-2 cells is closely associated with the activation of caspase-3. A succession of viral ICP27 mutants revealed that encompassing 20–65 amino acids near the N-terminus are required for p38 and modest JNK signalling activation. However, the C-terminus can indirectly inhibit apoptosis by increasing the expression of anti-apoptotic genes, such as, gJ and gB.

Moreover, expressing ICP27 can directly activate p38 signalling and partially activate JNK signalling. Additionally, ICP27-mediated JNK signalling during HSV-1 infection induces the activation of NF-κB, which is associated with the inhibition of apoptosis. Interestingly, the region from amino acids 21 to 63 is also required for IκBα stabilization. ICP27 suppresses the phosphorylation and ubiquitination of IκBα, thus stabilizing IκBα and inhibiting NF-κB activity, which progressively blocks apoptosis.

Furthermore, as a multifunctional protein, ICP27 is not only an inhibitor of apoptosis but is also capable of triggering cell death. Using chemical inhibitors, it was shown that the ICP27-mediated activation of p38 signalling can stimulate the apoptotic pathways. However, during a viral infection, p38 also mediates the destabilization of Bcl-2 to prevent apoptosis; this process also requires ICP27 expression. ICP27 might alternate between pro- and anti-apoptotic activity by changing the Bax/Bcl-2 ratio in the course of reactivation from a latent state. To summarize, ICP27 is an important regulator of host cell fate. It promotes maximum viral replication in the early phase of infection and greatly enhances viral release in the late stage.
US3 and its mechanism of apoptosis regulation. US3 is represented by ORF3 in the US region of the herpesvirus genome, and it encodes a serine/threonine protein kinase that is highly conserved throughout the α-herpesvirus subfamily. US3-encoded proteins have an ATP binding domain and a catalytic active site in the kinase domain. Although the US3 protein kinase (PK) is not required for viral replication, it can regulate the biological functions of the virus and the host cells. For example, US3 PK is involved in the egress of nucleocapsids, the maturation of virions, enhancing viral spread, rearranging the actin cytoskeleton and evading antiviral responses. US3 PK can block apoptosis induced by viral infection, the overexpression of Bcl-2 family proteins, cytochrome C release and Fas/UV-mediated apoptosis.

US3 regulation of the intrinsic pathway: Expressing US3 suppresses the release of cytochrome C and the activation of procaspase-3 in HEP-2 cells infected with HSV-1 d120 mutant, thus blocking apoptosis at the pre-mitochondrial stage. Furthermore, active US3 PK also phosphorylates procaspase-3 to enhance apoptosis resistance. These studies indicate that US3 PK may target specific molecules in the cellular pro-apoptotic pathway to block apoptosis and promote viral replication.

US3 PK also inhibits apoptosis induced by the overexpression of Bad and Bid, which are parallel signalling proteins in the mitochondria-mediated apoptotic pathway. Thus, US3 also prevents apoptosis by affecting downstream effectors of the mitochondria-mediated pathway. Specifically, US3 blocks apoptosis by phosphorylating Bad and inactivating caspases that cleave Bad to render the protein more pro-apoptotic. PRV US3 prevents apoptosis with the same efficiency as HSV-1 US3. Point mutation in the putative ATP binding site of the PRV US3 gene removes its ability to resist apoptosis, and it does not phosphorylate pre-apoptotic Bad. Furthermore, transiently transfected PRV US3 can induce Bad serine-112 and serine-136 phosphorylation, the downregulation of pro-apoptotic Bax, and the upregulation of anti-apoptotic Bcl-2 to regulate apoptosis. Both HSV-1 US3 and PRV US3 can prevent apoptosis induced by Bcl-2 family proteins, demonstrating the conserved anti-apoptotic role of US3.

US3 regulation of the extrinsic pathway: Accordingly, α-herpesvirus-encoded proteins such as US3 PK and ICP27 can modulate the NF-κB signalling pathway, which can mediate cytokine production and virus-driven apoptosis. Furthermore, the kinase activity of US3 can inhibit NF-κB activation and NF-κB-mediated cytokine production. The NF-κB signalling pathway can be activated by TLR-dependent signalling. Additionally, US3 can block TLR2 signalling by interacting with proteins downstream of MyD88 and upstream of p65, and it can reduce TRAF6 polyubiquitination. Moreover, US3 interacts with endogenous p65 to lead to the hyperphosphorylation of p65 at serine 75, which sufficiently prevents the translocation of p65 and blocks the nuclear accumulation of NF-κB.

Likewise, PRV US3 PK also regulates the NF-κB pathway to suppress apoptosis. US3a and US3b, two isoforms of PRV US3, both upregulate anti-apoptotic signalling through transient overexpression, but the anti-apoptosis effect of US3a is greater than that of US3b. Similar to HSV-1 US3, the kinase activity of PRV US3 is indispensable for its anti-apoptotic activity. In the presence of US3, phosphorylated IκBα increases in the early stage of infection to suppress apoptosis. In addition, transiently transfecting US3a or US3b can produce more phosphorylated AKT, an anti-apoptotic protein, and its activator molecule PDK-1, which is responsible for the PI3K-dependent phosphorylation of AKT serine 473. Comparatively, HSV-1 US3 can activate AKT substrates phosphorylation by targeting the downstream AKT signalling molecules. HSV-1 US3 masquerades as AKT, even though it does not look like AKT, and it phosphorylates tuberous sclerosis complex 2 (TSC2) on the same residues phosphorylated by AKT (T1462/S939), indicating that phylogenetically related viruses have different mechanisms of modulating the same signalling pathways.

Additionally, US3 can bind and phosphorylate group A p21-activated kinases (PAKs), thus regulating Cdc42/Rac GTPase signalling, which is involved in US3-mediated cytoskeletal rearrangements. Interestingly, activated PAK1 phosphorylates the pro-apoptotic protein Bad, and activated PAK2 also regulates the activity of Bad. Investigating the involvement between PAKs and US3 showed that PAK2 has no effect on US3-mediated anti-apoptosis, whereas PAK1 has a significant, yet limited, effect. Interestingly, human immunodeficiency virus (HIV)-associated anti-apoptotic protein targets PAKs to induce anti-apoptotic signalling. This mechanism is similar to that of the US3 PK of α-herpesvirus, indicating that viruses of different genera share some common strategies to evade host immunity.

cAMP-dependent protein kinase (PKA) is similar to the substrate specificity of US3 PK, which can regulate apoptosis. US3 can phosphorylate the regulatory subunit of PKA, such as the autophosphorylation site of RIIα, to promote a redundancy of anti-apoptotic events. In addition, programmed cell death protein 4 (PDCD4), a tumour suppressor, interacts with HSV-1 US3 PK to regulate apoptosis.

Viral glycoproteins and their apoptosis regulation mechanisms. Herpesvirus glycoproteins are critical for viral entry and for transmission between host cells, and they can undermine host defences, including apoptosis, thus helping viruses persist for a lifetime. Some viral glycoproteins, such as gD, gE and gJ, have been shown to play roles in the suppression of apoptosis.

US5, a poorly conserved gene, is represented by ORF5 in the US region; it is a late gene that encodes glycoprotein J and is unnecessary for viral replication. Thus, the US5 gene of herpesvirus has been much less carefully studied, except with respect to its function of blocking apoptosis. The deletion of US5 from HSV-1 markedly abrogated protection from Fas-mediated apoptosis and partially reduced the protection from UV radiation by suppressing the activation of caspase-3/8. Transfecting US5 inhibits Fas/UV-induced apoptosis and weakens the activation of caspases. In sum, gJ is sufficient to establish an anti-apoptotic phenotype. US5-deleted HSV-1 shows weakened protection from cytotoxic
T lymphocyte-induced apoptosis, and gJ is sufficient to inhibit F2F2, ATP synthase activity and reactive oxygen species creation to suppress apoptosis.145,146 However, the mechanism by which gJ blocks apoptosis remains elusive.

US6, encoding glycoprotein D, is represented by ORF6 in the US region. **US6** is the main component of the envelope and is essential for virus dissemination. gD of HSV-1 and BHV-1 can inhibit apoptosis.146–148 Compared with gJ, gD blocks apoptosis at different stages of the viral life cycle.146 The binding of HSV-1 gD to herpesvirus entry mediators, such as mannose-6-phosphate receptor, can suppress premature apoptosis, distinguishing gD from other anti-apoptotic genes.146,148 Additionally, gD can inhibit Fas-mediated apoptosis, which involves the activation of NFκB.150 Furthermore, with the inactivation of NFκB, HSV-1-driven apoptosis increases and is accompanied by high gD expression.151 However, the molecular signalling involved in the anti-apoptotic activity of gD remains poorly understood.

US8 is represented by ORF8 in the US region and encodes glycoprotein E, which is also a late gene (y) and an important α-herpesvirus virulence factor. PRV gE activated ERK1/2 in T lymphocytes and epithelial cells, and this was associated with the degradation of the pro-apoptotic protein Bim.152 Notably, this is the first time that gE was associated with the apoptosis signalling pathway.

Future Perspective

Viruses must evade host defence mechanisms to proliferate and be transmitted. Apoptosis, a critically important host defence mechanism, contributes to the elimination of pathogen-infected cells. To oppose the immune and inflammatory responses induced by infection, many viral proteins interact with apoptotic signals to regulate apoptosis. Apoptosis inhibition is essential for the maintenance of latent infection by herpesvirus. Understanding the anti-apoptotic mechanisms of herpesvirus will greatly improve the ability to develop new drugs and vaccines for treatment and prevention; these drugs could inhibit virus release, adjust latency to reduce viral infection or promote the death of infected cells in the early stage of infection.

Disrupting apoptosis is an effective strategy for virus replication and dissemination, but the apoptotic signalling pathway of the host cells is not isolated; interplay exists with other cellular defence mechanisms. Because of the co-evolution of the virus and the host, viral anti-apoptotic factors have evolved to exploit multiple immune pathways, including the autophagy, IFN and NFκB signalling pathways.153,154 Interestingly, target diversity does not depend on the anti-apoptotic properties of the virus.155 Therefore, studies that specifically clarify how viruses inhibit apoptosis or interact with other signalling networks to promote replication will potentially lead to improved herpesvirus treatment.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. This work was supported by grants from National Natural Science Foundation of China (31272545), National Science and Technology Support Program (No. 2015BAD12B05), and Special Fund for Key Laboratory of Animal Disease and Human Health of Sichuan Province (2016JPT0004).
33. Mossman KL, Weiler SK. HSV cheats the executioner. Cell Host Microbe 2015; 17: 148–151.
34. Ashkenazi A, Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 2014; 30: 337–356.
35. Passaro D, A. W. M. The vacinia virus-encoded Bcl-2 homologues do not act as direct Bax inhibitors. J Virol 2002; 76: 203–213.
36. Papapetrou E, E. M. El Maaddi S, Schettman A, Neumann S, Maurer U, Marino-Mero F et al. Phlyogenetically distant viruses use the same BH3-only protein Puma to trigger Bax/Bak-dependent apoptosis of infected mouse and human cells. PLoS ONE 2010; 15: e00128645.
37. Giorgi C, Bonora M, Sorrentino G, Missiroli S, Polleti F, Susi JM et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 2015; 112: 1779–1784.
38. Lamark F, Festjens N, Declercq W, Bergehe TV, Vandeneballe P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 2007; 14: 44–55.
39. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.
40. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signals. Nat Rev Mol Cell Biol 2013; 14: 760–785.
41. Bakiri L, Golkar A, Krammer PH. Death receptor signaling. J Cell Sci 2005; 118: 265–267.
42. Bodmer J-L, Schienhuber P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Cell Biol 2002; 12: 19–26.
43. Mathew SJ, Haubert D, Krönke M, Leptin M. Looking beyond death: a morphogenetic role for the endoplasmic reticulum in immune signaling networks. Cell 2009; 138: 1299–1306.
44. Lee EW, Jeong MH, Song JW. The roles of FADD in extrinsic apoptosis and necroptosis. Exp Cell Res 2008; 323: 45–56.
45. Pennanen B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: that drive apoptosome assembly. J Cell Sci 2009: 122: 3939–1946.
46. Lewis EW, Jong MH, Song JW. The roles of FADD in extrinsic apoptosis and necroptosis. Biochem Mol Biol Rep 2008; 45: 496–508.
47. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 2008; 19: 325–331.
48. Carter KL, Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha 22 gene. J Virol 1990; 64: 172–178.
49. Mahmood Z, Shukla Y. Death receptors: targets for cancer therapy. Exp Cell Res 2010; 316: 887–899.
50. Pobezinskaya YL, Liu Z. The role of TRADD in death receptor signaling. Cell Cycle 2012; 11: 871–878.
51. Declercq W, Bergehe TV, Vandeneballe P. RIP kinases at the crossroads of cell death and survival. J Virol 2009; 83: 229–232.
52. Wilson NS, Dixit V. Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10: 348–355.
53. Jiang X. The intrinsic apoptotic pathway. In: Wu H (ed). Cell Death. Springer: New York, 2014, pp 14–50.
54. Borker C, Andrews D. The apoptotic pore on mitochondria: are we breaking through or still stuck in the middle? Cell Death Differ 2014; 21: 187–191.
55. Wong W, Putrahahak H, Bcl-2 family proteins: the sentinel of the mitochondrial apoptosis pathway. JBMW Life Sci 2008; 60: 380–397.
56. Kibridze S, Prehn J. Central roles of apoptotic proteins in mitochondrial function. Oncogene 2015; 34: 2703–2711.
57. Tail SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621–632.
58. Hengartner MO. Apoptosome structure, assembly, and procaspase activation. Cell Death 2013; 151: 501–515.
59. Yuan S, Topf M, Rubold TF, Eschenburg S, Akey CW. Changes in Apaf-1-1 conformation that drive caspase assembly. Biochemistry 2013; 52: 2319–2327.
60. Shore SC, Papa FR, Oakes DA. Signaling cell death from the endoplasmic reticulum stress response. J Cell Sci 2009; 223: 143–148.
61. Verma G, Datta M. The critical role of JNK in the ER endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. J Neurovirol 2015; 21: 568–575.
62. Jones C. Bovine herpesvirus 1 (BHV-1) and herpesvirus simplex type 1 latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (Akt). J Neurovirol 2015; 21: 568–575.
63. Bloom DC, Kwiatkowski DL. HSV-1 latency and the roles of LA Ts. In: Weller SK. (ed.). Herpes Simplex Virus and Varicella-zoster virus ORF63 inhibits apoptosis of primary human cells. J Virol 2006; 80: 1025–1031.
93. Ambagula AP, Cohen JI. Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 2007; 81: 7844–7851.

94. Sandh-Gödin MR. The many roles of the highly interactive HSV protein IC27, a key regulator of infection. Future Microbiol 2011; 6: 1261–1277.

95. Sandh-Gödin RM. The many roles of the regulatory protein IC27 during herpes simplex virus infection. Front Biosci 2008; 13: 5241–5256.

96. Amor S, Strasser S, Dambine G, Remy S, Rasschaert D, Laurent S. IC27 protein of Marek's disease virus interacts with SR proteins and inhibits the splicing of cellular telomerase cTERT and viral vIL6 transcripts. J Gen Virol 2011; 92: 1273–1278.

97. Sedlacekova L, Perkins KD, Lengyel J, Strain AV, van Santen VL, Rice SA. Herpes simplex virus type 1 IC27 regulates expression of a variant, secreted form of glycoprotein C by an intron retention mechanism. J Virol 2008; 82: 7443–7455.

98. Olesen M, McNamee EE, Zhou C, Taylor TJ, Knipe DM. Evidence for a direct interaction between HSV-1 IC27 and IC28 proteins. Virology 2005; 331: 94–105.

99. Majerciak V, Yamanegi K, Allemand E, Kruhlak M, Krainer AR, Zheng ZM. Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in splicing-mediating RNA splicing. J Virol 2008; 82: 2792–2801.

100. Tunicliffe RB, Hautbergue GM, Kalra P, Jackson BR, Whitehouse A, Wilson SA et al. Herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice. J Virol 2000; 74: 4080–4087.

101. Zachos G, Koffa M, Preston CM, Clements JB, Conner J. Herpes simplex virus type 1 US3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Virology 2005; 338: 276–282.

102. Aubert M, Blaho JA. The herpes simplex virus type 1 ICP27-dependent spread of virus infection. J Virol 2006; 80: 1171–1177.

103. Aubert M, O'Toole J, Blaho JA. Induction and prevention of apoptosis in human HeLa cells by herpes simplex virus type 1. J Virol 1999; 73: 10395–10370.

104. Aubert M, Rice SA, Blaho JA. Accumulation of herpes simplex virus type 1 early and late proteins correlates with apoptosis prevention in infected human HeLa cells. J Virol 2001; 75: 1013–1030.

105. Hargett D, McLean T, Bachenheimer SL. Herpes simplex virus type 2 IC27 activation of stress kinases JNK and p38. J Virol 2003; 79: 6348–6349.

106. Fontaine-Rodriguez EC, Knipe DM. Herpes simplex virus IC27 increases translation of a subset of viral late mRNAs. J Virol 2008; 82: 3538–3545.

107. Gillis PA, Okagaki LH, Rice SA. Herpes simplex virus type 1 IC27 induces p83 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol 2009; 83: 1877–1877.

108. Hargett D, Rice S, Bachenheimer SL. Herpes simplex virus type 1 IC27-dependent activation of NF-κB. J Virol 2006; 80: 10565–10579.

109. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene 2006; 25: 6685–6684.

110. Zachos G, Koffa M, Preston CM, Clements JB, Conner J. Herpes simplex virus type 1 blocks the apoptotic host cell defense mechanisms that target Bcl-2 and manipulates activation of p38 mitogen-activated protein kinase to improve viral replication. J Virol 2001; 75: 2710–2728.

111. Benetti L, Roizman B. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis induced by overexpression of a variety of Bcl-2 family members. Virology 2004; 319: 212–224.

112. Roizman B, Taddeo B. The strategy of herpes simplex virus replication and takeover of the host cell in immunobiology. Cell Res 2011; 21: 223–244.

113. Sen J, Liu X, Roller R, Knipe DM. Herpes simplex virus US3 tegument protein inhibits Toll-like receptor 2 signaling at or before TRAF6 ubiquitination. J Virol 2013; 87: 65–73.

114. Deruelle M, Geenen K, Nauwynck HJ. HSV-1: A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction. Virus Res 2007; 128: 65–70.

115. Benetti L, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 2001; 98: 10415–10415.

116. Geenen K, Favaoreo HW, Olsen L, Enquist LW, Nauwynck HJ. The pseudorabies virus US3 protein kinase possesses anti-apoptotic activity that protects cells from apoptosis during infection and after treatment with sorbitol or staurosporine. Virology 2005; 331: 144–150.

117. Deruelle M, Geenen K, Nauwynck HJ, Favaoreo HW. HSV-1: A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction. Virus Res 2007; 128: 65–70.

118. Benetti L, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 2001; 98: 10415–10415.

119. Roizman B, Taddeo B. The strategy of herpes simplex virus replication and takeover of the host cell in immunobiology. Cell Res 2011; 21: 223–244.

120. Benetti L, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 2001; 98: 10415–10415.

121. Benetti L, Roizman B. The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proc Natl Acad Sci USA 2001; 98: 10415–10415.
147. Hanon E, Kel G, Griebel P, Vanderplasschen A, Rijswijk FA, Babliuk L et al. Bovine herpesvirus 1-induced apoptotic cell death: role of glycoprotein D. Virology 1999; 257: 191–197.

148. Zhou G, Galvan V, Campadelli-Fiume G, Roizman B. Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J Virol 2000; 74: 11782–11791.

149. Sciortino MT, Medici MA, Marino-Merlo F, Zaccaria D, Giulitre-Cuculietto M, Venuti A et al. Involvement of gD/HVEM interaction in NF-κB-dependent inhibition of apoptosis by HSV-1 gD. Biochem Pharmacol 2008; 76: 1522–1532.

150. Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M et al. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappa B. J Biol Chem 2003; 278: 36069–36077.

151. Marino-Merlo F, Papaianu E, Medici MA, Macchi B, Grell S, Mosca C et al. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis. Cell Death Dis 2016; 7: e2354.

152. Pontes MS, Van Waesberghe C, Nauwysen H, Verhasselt B, Favreel HW. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells. Virus Res 2016; 213: 214–218.

153. Liang C, Oh H-H, Jung J. Novel functions of viral anti-apoptotic factors. Nat Rev Microbiol 2015; 13: 7–12.

154. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15: 81–94.

155. Seo J-Y, Yaneva R, Hinson ER, Cresswell P. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 2011; 332: 1093–1097.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/