Small-Essentially Pseudo-Injective Modules

Zainab Raad Shaker 1, Mahdi Saleh Nayef 2

(1, 2)Department of Mathematics, College of Education, Mustansiriya University, Baghdad, Iraq.
1) Corresponding author: zainabrad1996@uomustansiriyah.edu.iq
2) mahdisaleh773@uomustansiriyah.edu.iq

Abstract: Let R be associative ring with unit element and X be unitary right R-module. In this work, we introduce the definition of the concept small-essentially pseudo injective module (shortly, S-Ess-pseudo injective). Many properties of this concept are introduced and also we are consider some of their characterizations. Furthermore, we are studied the relation between our concept and some known R-modules and give some results on their endomorphism rings.

Keywords: Injective module; pseudo--injective module; essentially --pseudo injective; S-Ess- pseudo injective; small-essential sub module.

1. Introduction

Through this introduction, we will mention some concepts related to our concept as well as some well-known concepts that we need to complete this work.

"Let X and Y be two R-module, Y is called, (pseudo-) X-injective if for every sub module D of X, any R-homomorphism (R-monomorphism) h:D→Y can be extended" "to, an R-homomorphism, α:X→Y . An R-module Y is called, injective, if it is X-injective for each R-module X".

"An R-module X is said to be: quasi-injective (pseudo--injective), if it is (pseudo) X--injective". see[8],[10],[4]. "Let A be a sub module of a right R-module X" . "Then we say that A is essential in X (shortly, A ≤ₚ X) if, for every non-zero sub module H of X, H∩A ≠ {0}" ,see,[9],[6].

In [5],"A non-zero R-module X is called uniform, if every non-zero sub module of X is essential in X". "A sub module, D of a right R-module X is said to be small in X (shortly ,D ≤ₜ X) if for every sub module H of X, D+H = X implies H = X" , [9].

"The idea of small-essential sub modules was given by D. X. Zhou and X. R. Zhang in[12]”. A sub module W of" a R-module X is said to be small-essential or s-essential in X (shortly, W ≤ₜ X), if" W∩A = 0 with A ≤ₜ X implies A = 0 . "It is clear that every essential sub module of X is s-essential in X, but the converse may be not true in general",[12].
Inaam,M.Hadi and H. K.Marhoon in [7]" are presented the concept of small-uniform (shortly S-uniform)" modules. "An R-module E is called S-uniform if every non-zero small sub module of E is essential" in E .It is clear that every uniform R-module is s-uniform R-module ,but in general the converse, is not true",[7].

Al-Ahmadi and N.Er in [2], was introduced the notion of essentially, pseudo-Y-injective . Let X, and Y, be two R--modules. "Then, X is said to be, essentiallypseudo Y-injective, if for any essential sub module W of" Y, any R-monomorphism, h:W→X can be extended to some ∅ ∈ Hom. (Y,X). X is called essentially pseudo-injective if X is essentially pseudo-X-injective. So we have the following implications:

Injective → quasi-injective, → pseudo-injective, → essentiallypseudo-injective.

These information motivate us to give and study in this work the notion of small-essentially pseudo injective modules which is a proper generalization of pseudo injective modules and in this time is weaker than of essentially-pseudo injective.

The following symbols : D, ≤ X, D≤ X; D≤ X, D≤ X, are denotes to that D is sub module, essential sub module, small sub module and s-essential sub module respectively.

2. Small-essentially pseudo-injective

Definition 2.1 : Let X and Y be two R-module . Then Y is called small-essentially pseudo-X-injective .(shortly, S-Ess-pseudo-X-injective), if for any smallessential sub module W of X, any R--

An R-module Y is called small-essentially pseudo-injective if Y is a smallessentially pseudo-Y

Remark and Examples 2.2 :

(1) Every pseudo.injective is S-Ess pseudo.injective, but the converse is not true, in general .For example: The Z-module Z/4Z is not pseudo--(Z ⊕ Z/8Z)-injective since the obvious isomorphism i: 2Z/8Z→Z/4Z can not be extended to any element of Hom(Z ⊕ Z/8Z, Z /4Z), but it is S-Ess-pseudo-

(2) Every S-Ess-pseudo-X.injective module, is essentiallypseudo-X-injective, but the converse, may not true in general.

Proof : Suppose that Y is S-Ess-pseudo-X-injective. Let W ≤ X ,and α:W→Y be R-monomorphism. Since every essential sub module of X is small-essential in X then W ≤ X and by S-Ess-pseudo-X-injectivity of Y, there exists ∅:X→Y be R-homomorphism such that α = ∅ o i. Hence Y is essentially pseudo-X-injective.

(3) Q and Zn as Z-module is S-Ess-pseudo-injective module,(in fact, Q and Zn are pseudo injective ,where Q is injective and Zn is quasi injective).

(4) Z as Z-module is not essentially pseudo-injective, and hence by remark (2). Z as Z-module is not S-Ess-pseudo-

jective.
Proof: Let \(i:2\mathbb{Z} \rightarrow \mathbb{Z} \) be inclusion map (it is clearly \(2\mathbb{Z} \) is essential sub module of \(\mathbb{Z} \)). Define the \(\mathbb{Z} \)-isomorphism \(h:2\mathbb{Z} \rightarrow \mathbb{Z} \) such that \(h(2u) = u \), \(u \in \mathbb{Z} \). Suppose that \(\mathbb{Z} \) is essentially pseudo-injective, then there exists an \(\mathbb{R} \)-homomorphism \(\emptyset: \mathbb{Z} \rightarrow \mathbb{Z} \) such that \(\emptyset \) is an extension of \(h \). For each \(u \in \mathbb{Z} \), we get, \(u = h(2u) = \emptyset(2u) = \emptyset(1).2u \), and hence \(\emptyset(1) = \frac{1}{2} \) which is a contradiction. Therefore \(\mathbb{Z} \) is not essentially pseudo-injective and hence \(\mathbb{Z} \) as \(\mathbb{Z} \)-module is not \(S \)-Ess-pseudo-injective.

So we obtain from above the following, implications for \(R \)-modules:

\[\text{pseudo--injective} \rightarrow \text{small-essentially \ pseudo-injective} \rightarrow \text{essentially-pseudo-injective}. \]

Proposition 2.3: Let \(X \) be auniform \(R \)-module. Then the following, statements are equivalent:

(i) \(Y \) is \(S \)-Ess-pseudo-\(X \)-injective .
(ii) \(Y \) is essentially pseudo-\(X \)-injective.

Proof: \(i \Rightarrow ii \): It is clear by Remark (2.2,2).

\(ii \Rightarrow i \): Let \(H \leq_{se} X \) and \(\beta:H \rightarrow Y \) be a monomorphism. Since \(X \) is uniform \(R \)-module, then \(H \leq X \).

Thus by essentially pseudo-\(X \)-injectivity of \(Y \), there exists \(\psi:X \rightarrow Y \) such that \(\psi \circ i = \beta \). Therefore, \(Y \) is \(S \)-Ess-pseudo-\(X \)-injective.

Proposition 2.4: Let \(X \) be \(s \)-uniform \(R \)-module. Then the following statements are equivalent:

(i) \(Y \) is pseudo-\(X \)-injective .
(ii) \(Y \) is \(S \)-Ess-pseudo-\(X \)-injective.

Proof: \(i \Rightarrow ii \): It is clear .

\(ii \Rightarrow i \): Let \(K \leq X \) and \(\beta:K \rightarrow Y \) be a monomorphism. Since \(X \) is \(s \)-uniform \(R \)-module, then \(K \leq_{se} X \).

And by \(S \)-Ess-pseudo-\(X \)-injectivity of \(Y \) there exists \(h:X \rightarrow Y \) such that \(h \circ i = \beta \). Therefore \(Y \) is pseudo-\(X \)-injective.

According to [7], every uniform \(R \)-module is \(s \)-uniform. Then by proposition (2.4) directly, we get
the proof of the following corollary.

Corollary 2.5: Let \(X \) be uniform \(R \)-module. Then, the following statements are equivalent

(i) \(Y \) is pseudo-\(X \)-injective .
(ii) \(Y \) is \(S \)-Ess-pseudo-\(X \)-injective.

Theorem 2.6: Let \(X \) be a uniform \(R \)-module. Then, the following statements are equivalent:

(i) \(Y \) is pseudo-\(X \)-injective .
(ii) \(Y \) is \(S \)-Ess-pseudo-\(X \)-injective .
(iii) \(Y \) is essentially pseudo-\(X \)-injective.

Proof: \(i \Rightarrow ii \Rightarrow iii \): It is clear .

\(ii \Rightarrow i \) directly by (corollary 2.6).

\(iii \Rightarrow ii \) directly by (proposition 2.3).
iii ⇒ i

Let $D \leq X$ and $\beta: W \to Y$ be a monomorphism. Now, by uniformity we get $D \leq X$ and since Y is essentially --pseudo--X-injective, then exists. $f:X \to Y$ such that $f \circ i = \beta$. Therefore Y is pseudo--X-injective.

Following [12], let X and Y be modules. A monomorphism $f:X \to Y$ is small-essential in case $\text{Im} f \leq s.e X$.

Now, we can introduce a characterization of S-Ess pseudo--X-injective.

Proposition 2.7 :-

Let X and Y be two an R-module. Then the following statements are equivalent:

(i) Y is S-Ess pseudo--X-injective.

(ii) For any R-module B, any small-essential R-monomorphism $\beta:B \to X$ and any R-monomorphism $h:B \to Y$ there exists an R-homomorphism $\psi:X \to Y$ such that $h = \beta \psi$.

Proof :-

i ⇒ ii

Let B be an R-module, $\alpha:B \to Y$ be an monomorphism and let $\beta:B \to X$ be a s-essential monomorphism, then $\beta(B) \leq s.e X$. Define $h_1: \beta(B) \to Y$ suchthat, $h_1(\beta(b)) = h(b)$ for each $b \in B$. Clearly, h_1 is a monomorphism. Now, since Y is S-Ess pseudo--X-injective then there exists, an R-homomorphism, $\lambda:X \to Y$ such that; $\lambda |_{\beta(B)} = h$. Thus $\lambda \circ \beta(b) = \lambda(b) = h(h(b))$ for each $b \in B$. Thus $\lambda = \lambda \circ \beta$.

ii ⇒ i

It is directly from the definition (2.1).

Following [12]. The properties of the s-essential sub module was gave as in the following results, but without prove and here we present the proofs for them.

Proposition 2.8:

Let X, be a module.

(1) Assume that; Y, D, A are sub modules of X with $D \leq Y$.

(a) If $D \leq s.e X$, then $D \leq s.e Y$ and $Y \leq s.e X$.

(b) $Y \cap A \leq s.e X$ if and, only if, $Y \leq s.e X$ and $A \leq s.e X$.

(2) If $D \leq s.e Y$ and $h:X \to Y$ is a homomorphism, then $h^{-1}(D) \leq s.e X$.

(3) Assume that $D_1 \leq X_1 \leq X$, $D_2 \leq X_2 \leq X$ and $X = X_1 \oplus X_2$, then $D_1 \oplus D_2 \leq s.e X_1 \oplus X_2$ if and only if $D_1 \leq s.e X_1$ and $D_2 \leq s.e X_2$.

Proof :-

(a) Let $D \leq Y \leq X$ and $A \leq Y$ such that $D \cap A = 0$. To prove that $A = 0$. Since $A \leq s.e Y$, then $A \leq s.e X$ by [9; proposition (5.1.3)], but by hypothesis $D \leq s.e X$. Hence $A = 0$.

Now, let $Y \leq X$ and $A \leq X$ such that $Y \cap A = 0$. To prove that $A = 0$. Since, $D \leq Y$ then $D \cap A = 0$.

(b) By definition of small-essential sub module. For, $H \leq s.e X$, we have $Y \cap A \leq s.e X$ if and, only if, $(Y \cap A) \cap H = 0$ implies $H = 0$ if and, only if, $(Y \cap H) = 0$ and $(A \cap H) = 0$ implies $H = 0$ if and, only if, $Y \leq s.e X$ and $A \leq s.e X$.
(2) Assume that, \(A \leq s X \), such that \(h^{-1}(D) \cap A = 0 \). We must show that \(A = 0 \). Clearly, \(D \cap h(A) = 0 \) and by [9 : (5.1.3)], \(h(A) \leq s Y \). But \(D \leq s Y \), thus \(h(A) = 0 \) implies \(A \leq \ker(h) = h^{-1}(0) \). But \(h^{-1}(0) \leq h^{-1}(D) \) implies \(A \leq h^{-1}(D) \), so we get \(A = h^{-1}(D) \cap A \). Hence by assumption we get \(A = h^{-1}(D) \cap A = 0 \) implies \(A = 0 \). Therefore \(h^{-1}(D) \leq s_e X \).

(3) Assume that \(D_1 \leq s X_1 \leq X, D_2 \leq s X_2 \leq X \) and \(X = X_1 \oplus X_2 \).

First direct: Let \(H_1 \leq s X_1 \) and \(H_2 \leq s X_2 \) such that \(D_1 \cap H_1 = 0 \) and \(D_2 \cap H_2 = 0 \) implies \((D_1 \cap H_1) \oplus (D_2 \cap H_2) = 0 \) implies \((D_1 \oplus D_2) \cap (H_1 \oplus H_2) = 0 \). But, according to [9], we have, \(H_1 \oplus H_2 \leq s X_1 \oplus X_2 \) and by hypothesis \(D_1 \oplus D_2 \leq s_e X_1 \oplus X_2 \) thus \(H_1 \oplus H_2 = 0 \) implies \(H_1 = 0 \) and \(H_2 = 0 \).

Therefore, \(D_1 \leq s_e X_1 \) and \(D_2 \leq s_e X_2 \).

Second direct: Assume that \(D_1 \leq s_e X_1 \) and \(D_2 \leq s_e X_2 \). Now let \(H_1 \oplus H_2 \leq s X_1 \oplus X_2 \) such that \((D_1 \oplus D_2) \cap (H_1 \oplus H_2) = 0 \). Now, by [9], we have \(H_1 \leq s X_1 \) and \(H_2 \leq s X_2 \) then by assumption, \(H_1 = 0 \) and \(H_2 = 0 \) implies \(H_1 \oplus H_2 = 0 \). Therefore, \(D_1 \oplus D_2 \leq s_e X_1 \oplus X_2 \).

In analogous the proposition (2.1) in [4], we can introduce the following proposition.

Proposition 2.9: Let \(X \) be an \(R \)-module and \(Y \leq s X \). If \(Y \) is \(S \)-\(\text{Ess-pseudo-} X \)-injective then any \(R \)-monomorphism \(f : Y \to X \) splits.

Proof: Let \(h : Y \to X \) be monomorphism and \(h^{-1} : h(Y) \to Y \) be the inverse of \(h \). By proposition [2.8(2)], \(h(Y) \leq s_e X \)

Now, consider the following diagram:-

where \(i : h(Y) \to X \) is the inclusion map. From the \(S \)-\(\text{Ess-pseudo-} X \)-injectivity of \(Y \), certainly there exists; an \(R \)-homomorphism \(\phi : X \to Y \) such that \(\phi \circ i = h \) put \(\mu = \phi \circ h \), it is obvious \(\mu \) is an identity map of \(Y \). Thus by [9; corollary (3.4.11)], \(h \) splits.

Proposition 2.10: \(Y \) is injective if and only if \(Y \) is \(S \)-\(\text{Ess-pseudo-} X \)-injective, for all \(X \).

Proof: By (proposition 2.9), if \(Y \) is \(X \)-pseudo-injective, for all \(X \), then each monomorphism \(Y \to X \) splits, hence, \(Y \) is injective. Thus \(Y \) is injective, if and only if \(Y \) is \(X \)-injective, for all \(X \), if and only if \(Y \) is \(X \)-pseudo-injective for all \(X \) and only if \(Y \) is \(X \)-\(\text{Ess-pseudo-} \)-injective for all \(X \).

Proposition 2.11: Let \(X \) be small-uniform. If \(Y \) is \(S \)-\(\text{Ess-pseudo--} X \)-injective then \(Y \) is \(S \)-\(\text{Ess-pseudo-} W \)-injective for every sub-module \(W \) of \(X \).

Proof:
Let $B \leq W$ and $h: B \rightarrow Y$ any R-monomorphism, $i_B: B \rightarrow W$ and $i_w: W \rightarrow M$ be the inclusion map of B in W and W in X respectively. Consider the following diagram:

Since X is small-uniform then $B \leq X$ and hence by S-Ess-pseudo-X-injectivity of Y, surely there exists; an homomorphism $\phi: X \rightarrow Y$ such that $\phi(i_w \circ i_B) = h$. Define $\phi_1 = \phi \circ i_w$, then ϕ_1 is a homomorphism of W into Y. Note that ϕ_1 extends h, that is, for $a \in X$, $(g_1 \circ i_B)(a) = \phi_1(i_B(a)) = \phi_1(a) = (\phi \circ i_w)(a) = \phi(i_w(a)) = (\phi \circ i_w(i_B(a))) = (\phi \circ i_w \circ i_B)(a) = h(a).

Proposition 2.12: Every direct summand of, S-Ess-pseudoX-injective module is S--Ess-pseudo-X-injective.

Proof: Let Y be S-Ess-pseudoX-injective and $Y = W \oplus V$.

Consider the following diagram:

Where $B \leq X$, $i: B \rightarrow X$ is the inclusion map, $h: B \rightarrow Y$ is any $-monomorphism. Let $j: W \rightarrow Y$ and $p: Y \rightarrow W$ be the injection and projection homomorphism. Obviously, $j \circ h$ is an R-monomorphism. Now since Y is S-Ess pseudo-X-injective, $\exists \phi: X \rightarrow Y$ such that $j \circ h = \phi \circ i$. Define $q: X \rightarrow W$ by $q = p \circ \phi$. Now $q \circ i = p \circ \phi \circ i = p \circ j \circ h = I \circ h = h$. Hence W is S-Ess-pseudo-X-injective.

Following [4], R-module W and V are called; relatively injective if W is V-injective and V is W-injective.

Definition 2.13: Let W and V be an R-module. W and V are called relatively S-Ess-pseudo injective, if W is S-Ess-pseudo V-injective and V is S-Ess-pseudoW-injective.

Theorem 2.14: If $X_1 \oplus X_2$ is S-Ess-pseudo injective, then X_1 and X_2 relatively S-Ess-pseudo injective.
Proof: Suppose that $X_1 \oplus X_2$ is S-Ess-pseudo injective module. To show that X_1 is S-Ess-pseudo X_2-injective. Let $W \leq X_2$, $h: W \to X_1$ be any $-\text{monomorphism}$ and the injection and projection homomorphism are define respectively as follows $j: X_1 \to X_1 \oplus X_2$, $p: X_1 \oplus X_2 \to X_1$ be. Define $T: W \to X_1 \oplus X_2$ by $T(w) = (h(w), (w))$ for all $w \in W$. It is easy, to show that T is R-monomorphism.

Consider the following diagram:

Since $X_1 \oplus X_2$ is small-essentially pseudo($X_1 \oplus X_2$) -injective and $X_2 \leq X_1 \oplus X_2$, then by (proposition 2.11). $X_1 \oplus X_2$ is small-essentially X_2-pseudo-injective. Then there exists $\phi: X_2 \to X_1 \oplus X_2$ such that $\phi \circ i = T$, put $q = p \circ \phi \circ i = p \circ T$. Hence $(p \circ \phi \circ i)(w) = (p \circ T)(w) = p(T(w)) = p(h(w), (w)) = h(w)$.

Corollary 2.15 : Let $\{X_i\}_{i \in I}$ be a family of R-modules, where I is an index set. If $\bigoplus_{i \in I} X_i$ is S-Ess-pseudo injective, then X_j is s-essentially X_k -pseudo injective for all distinct $j, k \in I$.

Proof : By (Theorem 2.14)

Corollary 2.16 : Y is quasiinjective R-module if and only if Y^2 is S-Ess-pseudo-Y-injective.

Proof : (\Rightarrow) It is clear.

(\Leftarrow) If Y^2 is S-Ess-pseudo-Y-injective, thus by (Theorem 2.14), Y is Y-injective, this mean Y is quasi-injective.

Proposition 2.17 : Let $Y \leq X$. If Y is S-Ess-pseudo-X-injective, then Y is a direct-summand of X.

Proof : Let $I_Y : Y \to Y$ be the identity $-\text{homomorphism}$. Since Y is S-Ess--pseudo-X-injective R-module, thus $\exists \alpha: X \to Y$ such that $\alpha(y) = I_Y(y)$, for all $y \in Y$. Hence $(\alpha \circ i)(y) = y$, $\forall a \in Y$. Where i is the inclusion $-\text{homomorphism}$ of Y in X. Thus by [9; corollary (3.4.11)] $i: Y \to X$ is split R-homomorphism and hence, by [9; corollary (3.4.8)] Y is directsummand, of X.

3. **Endomorphism of s-essentially pseudo injective modules**

Theorem 3.1 : Let X and Y be two R-modules and $S = \text{End}_R(X)$. For let X small-uniform module Y. Then the following statements are equivalent :

(i) X is S-Ess-pseudo-Y-injective.

(ii) For each $x \in X$ and $y \in Y$, such that $\text{ann}_R(y) = \text{ann}_R(x)$, there exists an R-homomorphism $g: X \to Y$ such that $g(y) = x$.

7
(iii) For each $x \in X$, $y \in Y$ such that $\text{ann}(y) = \text{ann}(x)$, we have $Sx \subseteq \text{Hom}_R(Y,X)_y$.

(iv) For each R-monomorphism $f:W \to X$ (where W be sub module of Y) and each $w \in W$, there exists an R-homomorphism $g:Y \to X$ such that $g(w) = f(w)$.

Proof:

i \Rightarrow ii Spouse that, X be a S-Ess-pseudo-Y-injective R-module. Now, let $x \in X$, $y \in Y$ such that $\text{ann}(y) = \text{ann}(x)$. Define $f:yR \to X$ by $f(yr) = xr$, for all $r \in R$. Clearly, f is a well-defined R-monomorphism. Since X is S-Ess-pseudo-Y-injective R-module, thus $\exists g:Y \to X$ be R-homomorphism, such that $g(y) = f(y)$ for all $y \in yR$. Therefore $g(y) = f(y) = x$.

ii \Rightarrow iii Let $x \in X$, $y \in Y$ such that $\text{ann}_R(y) = \text{ann}_R(x)$. By hypothesis, $\exists g:Y \to X$ be R-homomorphism such that $g(y) = m$. Let $\alpha \in S$, thus $\alpha(x) = \alpha(g(y)) = (\alpha \circ g)(y)$. Since $\alpha \circ g \in \text{Hom}_R(Y,X)$, therefore $\alpha(x) \in \text{Hom}_R(Y,X)_y$. Therefore $Sx \subseteq \text{Hom}_R(Y,X)_y$.

iii \Rightarrow iv Let $f:W \to X$ be any R-monomorphism where W be sub module of Y, and let $w \in W$. Put $x = f(w)$, since $x \in X$ and $\text{ann}_R(x) = \text{ann}_R(w)$, thus by hypothesis we have $Sx \subseteq \text{Hom}_R(Y,X)_x$. Let $I_x:X \to X$ be the identity R-homomorphism. Since $I_x \in S$, thus there exists an R-homomorphism $g \in \text{Hom}_R(Y,X)$ such that $I_x(x) = g(w)$. Thus $g(w) = x = f(w)$.

iv \Rightarrow i Let $W = wR \subseteq Y$ and $f:W \to X$ be any R-monomorphism. Since $w \in W$, thus by hypothesis, $\exists g:Y \to X$ be R-homomorphism; such that $g(w) = f(w)$. For each $v \in A$, $v = wr$ for some $r \in R$, we have that $g(v) = g(wr) = g(w)r = f(w)r = f(wr) = f(v)$. Therefore X is S-Ess-pseudo-Y-injective R-module.

As an immediate consequence of Theorem (3.1) we have the following corollary in which we get many characterizations of S-Ess-pseudo-injective modules.

Corollary 3.2: The following statements are equivalent for an R-module X:

(i) X is S-Ess-pseudo-injective.

(ii) For each $n,m \in X$ such that $\text{ann}_R(n) = \text{ann}_R(m)$, there exists an R-homomorphism $h:X \to Y$ such that $h(n) = m$.

(iii) For each $n,m \in X$ such that $\text{ann}_R(n) = \text{ann}_R(m)$, we have $Sn \subseteq Sm$ where $S = \text{End}(X)$.

(iv) For each R-monomorphism $q:W \to X$ (where $W \subseteq Y$) and each $w \in W$, there exists an R-homomorphism: $J:X \to X$ such that $J(w) = q(w)$.

Proposition 3.3: If X is S-Ess-pseudo-injective R-module and $S = \text{End}_R(X)$, then $SW = SV$, for any isomorphic R-sub modules W,V of X.

Proof: Since W isomorphic to V, then there exists. an R-isomorphism $\alpha:W \to V$. Let $v \in V$, since α is R-epimorphism, thus there exists; an element $w \in W$ such that $\alpha(w) = v$.

It is clear that $\text{ann}_R(w) = \text{ann}_R(v)$ Since X is S-Ess-pseudo-injective R-module, then by (corollary 3.2) $Sw \subseteq Sw$ and so $Sw \subseteq SV$ for all $v \in V$. Then $SV \subseteq SW$. Similarly we can prove that $SW \subseteq SV$. Therefore $SW = SV$.

Acknowledgement:

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad- Iraq for its support in the present work.
References

[1] M. S. Abbas and Mahdi saleh Nayef. (2015), "Rationally Pseudo-Injective Modules," vol. 35, no. 2, pp. 1785-1793.

[2] Al-Ahmadi, A., Er, N. and Jain, S.K. (2005), “Modules which are invariant under monomorphisms of their injective hulls”, Aust. Math. Soc. 79, 349-360.

[3] M. J. M. Ali. (2006), “Some Classes of Injective And Projectivity,” Ph. D. Thesis, College of Science, University of Baghdad.

[4] H. Q. Dinh. (2005), “A note on pseudo-injective modules,” Commun. Algebra, Vol. 33, no. 2, pp. 361-369.

[5] Goodearl, K.R. (1976), “Ring theory, Nonsingular rings and module,” Marcel Dekker Inc. New York.

[6] A. Facchini. (1998), “Module Theory,” doi:10.1007/978-3-0348-0303-8.

[7] Inaam, M. A. Hadi, Hussan K. Marhoon. (2014), “S-Mon form Modules,” vol. 10, pp. 26-31.

[8] Jain, S. K. and Singh, S. (1975), “Quasi-injective and pseudo-injective module,” Jor. of Canad. Math. Bull. 18, 359-366.

[9] F. Kasch et al., “Module and Rings. (1982),” Academic press Inc. London (English Translation).

[10] Lam, T. Y. (1999), “Lectures on Modules and Rings.” GTN 189, Springer verlag, New York.

[11] A. R. Mehdi. (2017), “Principally pseudo-Injective Modules,” no. March.

[12] D. X. Zhou and X. R. Zhang. (2011), “Small-Essential submodules and Morita Duality,” Southeast Asian Bull. Math., Vol. 35, pp. 1051-1062.