Internal Flow Field Uniformity Study of Dust Collector for A Street Vacuum Sweeper Based on CFD

Yuan Xi1,2, Yan Dai1, Yonghou Xiao1, Kai Cheng2,*, Tao Xiao3, Shixiang Zhao4.

1 Panjin Industrial Technology Institute of DUT, NO.2 Dagong Road, Panjin, China.
2 School of Mechanical Science and Engineering, Jilin University, NO.5988 Renmin Street, Changchun, China.
3 FAW Jiefang Automotive Co., Ltd., NO.3082 Jincheng Street, Changchun, China.
4 Jilin Zijin Copper Industry Co., Ltd, NO.18 Village, Hunchun, China.

* E-mail: 2932532935@qq.com

Abstract. Internal flow field of dust collector for a street vacuum is studied by Computational Fluid Dynamics (CFD). The causes of uneven distribution of flow field were diagnosed by simulation, and an improvement measure was put forward. The result shows that flow rate distribution of dust collector is uneven, the reason for which is the higher wind velocity at the Inlet. A baffle plate was added at the Inlet to improve the uniformity of internal flow field. The main technical parameters, maximum flow rate uneven amplitude and overall flow rate uneven amplitude, are decreased in this way. \(\Delta \tilde{k} \) is reduced from 0.3429 to 0.1308. While \(\Delta \tilde{\lambda} \) is reduced from 0.1012 to 0.0402.

1. Introduction

City sanitation attracts more attention for the past few years. Sweeper is typically practiced to remove the dust accumulation from road surface \[1\]. Li-Ming Lo found higher pleat ratios is effective for particle collection efficiency \[2\]. Some studies used fabric filter bags \[3\] and ceramic filters \[4\] to improve operating conditions of regenerable filtering systems, but fewer studies focus on sweeper dust collector \[5\]. The sweeper dust collector is modeled and simulated by using CFD technology. The simulation results were analyzed and discussed, and the distribution regularities of internal flow field were finally summarized, which provides theoretical support for the design and development for sweeper dust collector.

2. Numerical simulation

2.1. Model and grid generation

Fig1 shows the actual picture of dust collector, geometric model and mesh model. Dusty gas enters from Inlet (the purple in Fig 1 (b)). The cartridges, the green in Fig 1 (b), make dusty gas flow from outside to inside to collect the dust. The filtered air is finally discharged to atmosphere at the Outlet (the red in Fig 1 (b)). Cartridge model was established as cylinder because of complicated pleated structure \[5-6\]. The main size parameters are listed in Table1. Fig1(c) shows the mesh model.
Table 1. The main size parameters.

Parameter	Dimensions (mm)
Geometric Model	800×800×1500 (length×width×height)
Inlet	300×230 (length×width)
Outlet	600×250 (length×width)
Cartridge length	660
Cartridge diameter	325

2.2. Boundary conditions
The flow field can be simplified as a single-phase flow because of particle low concentration [7-9]. SIMPLE method, and second-order upwind interpolation scheme were chosen for pressure–velocity coupling. Inlet surface was treated as the velocity inlet, and its velocity was set as 5.95 m/s based on the KASDA-KV621 hot-wire anemometer measured values. Outlet surface was treated as the pressure out, and its pressure was set as the atmosphere based on connecting to the atmosphere. Porous jump model was used to simulate porous medium of cartridge. The one-dimensional model provides the advantages of robustness and better convergence [10-11], and the static wall was applied to the rest of the dust collector shells. The main Face Permeability is 1.95×10^{-9} m2 and Medium Thickness is 1 mm.

3. Parameters of flow field distribution

3.1. Unevenness
Uniformity is evaluated with American RMS standard, and the formula can be expressed as follows:

$$\delta = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{v_i - v_p}{v_p} \right)^2 \right)^{1/2}$$ (1)

Where v_i is the each point velocity, v_p is the cross section average velocity, and n is the amount of points. The uniformity of flow field is qualified when δ is not more than 0.25 [12].

3.2. Flow rate distribution coefficient
K_i is flow rate distribution coefficient of each cartridge, and the formulas can be expressed as follows:

$$K_i = \frac{Q_i}{Q} \quad (i = 1, 2, 3, \ldots, n)$$ (2)

Where Q_i is the flow rate through a single cartridge, Q is the average flow rate.

3.3. Maximum and overall flow rate uneven amplitude
Δk_i is the maximum flow rate uneven amplitude, and Δk_{\bigcirc} is overall flow rate uneven amplitude. The formulas can be expressed as follows:
\[\Delta k_i = k_{i_{\text{max}}} - k_{i_{\text{min}}} = Q^+ - Q^- \]
\[\Delta k_s = \frac{1}{N} \sum (|K_i - 1.0|) \]

Where \(k_{i_{\text{max}}} \) is the maximum flow rate distribution coefficient, \(k_{i_{\text{min}}} \) is the minimum flow rate distribution coefficient, \(Q^+ \) and \(Q^- \) are the maximum positive and negative deviation of flow rate distribution, respectively. \(N \) is the amount of cartridges. The smaller the \(\Delta k_i \) is, the better the uniformity of flow field is [7].

4. Modeling verification and analysis

4.1. Numerical modeling verification

Fig 2 shows cartridge number and location of the monitoring points (Row 1 & 3). Cross section \(Z=400 \) and \(Z=600 \) mm were selected. Numerical and experimental results, velocities of 16 monitoring points on Row 1 and Row 3, were compared.

Fig 3 shows the comparison between numerical and experimental values. 4 points are selected because sensors’ position effect the flow field. And maximum relative error of the comparison is 12.8%. The result shows that the simulation precision is high and reliable. The reasons which cause experiment errors are as follows: (1) Porous jump model was used; therefore the flow was treated as isotropic [11]. (2) The sensors position have effects on the internal flow field.

Figures and graphs are not included in thenatural text representation.
4.2. Analysis of the velocity field
As is shown in Fig 4 (a) (b) (c), the “climbing” phenomenon appears because airflow rises along the side walls gradually. This can be explained by the fact that the resistance is smaller between the cartridges and the side walls, and dusty air flows along the direction of smaller resistance. The velocities of filtered air reduce significantly because of the existence of cartridges.

4.3. Analysis of parameters of flow field distribution
According to the equation (1), the unevenness of cross section Z=200, Z=400, and Z=600mm can be obtained. The unevenness of Z-axis Section is shown in Table 2.

Unevenness Z-axis Section (mm)	Z=200	Z=400	Z=600
δ	0.59	0.65	0.76

The distribution of internal flow field is uneven because of δ > 0.25. The reasons for this phenomenon may lie in the fact that the big change of section area when dusty air enters from the Inlet, and dynamic - static pressure converts drastically, which leads to the disorder of local airflow. In order to improve the uniformity of the internal flow field, and service life of the cartridge; therefore the orifice or baffle plate should be added at the Inlet to achieve dynamic - static pressure conversion.

Flow distribution coefficient is shown in Table 3. Flow rate through cartridge 1 and cartridge 2 is larger, while flow rate through cartridge 3 and cartridge 4 is smaller. According to the formulas (3), (4) and (5), the maximum flow uneven amplitude Δk_i is 0.3429, and overall flow uneven amplitude Δk = 0.1012. Neither Q^+ =17.45% nor Q^- =16.84% is in the error range of -15% to 15%. The results show that uniformity of flow field is poor and flow distribution is uneven.

Flow distribution coefficient of the original model	Cartridge number
iK_i	1.0278 1.1745 0.9660 0.8316

4.4. An improvement measure
Considering interference between the sweeper and the dust collector, the structure of the dust collector should not be changed drastically. In order to reduce the velocities of Inlet, a baffle plate is employed at the Inlet. The final program is determined after several repeated simulations and optimizations. Actual picture of the improvement measure is shown in Fig 5 (a), and Fig 5 (b) shows the partial enlargement of baffle plate.
Flow distribution coefficient of the improved model is shown in Table 4. The maximum flow rate uneven amplitude is 0.1308, and overall flow rate uneven amplitude is 0.0402. Both $Q^+ = 6.63\%$ and $Q^- = -6.45\%$ are in the error range of -15\% to 15\%. The results show that flow rate distribution is even. The intensity of jet flow becomes weaken because of the existence of the baffle plate, the distribution of internal flow field is even, and the erosion of cartridges is prevented.

Table 4. Flow distribution coefficient of the improvement model.

Cartridge number	1	2	3	4
K_i	0.9841	1.0663	0.9355	1.0141

5. Conclusion

(1) The maximum flow rate uneven amplitude Δk_i is 0.3429, and overall flow rate uneven amplitude is $\Delta k_z = 0.1012$. Neither $Q^+ = 17.45\%$ nor $Q^- = -16.84\%$ is in the error range of -15\% to 15\%. So the uniformity of flow field is poor and flow rate distribution is uneven.

(2) The main technical parameters are $\Delta k_i = 0.1308$, $\Delta k_z = 0.0402$, $Q^+ = 6.63\%$, and $Q^- = -6.45\%$ after adding a baffle plate at the Inlet. The improvement measure makes the flow filed more uniform without changing the structure drastically, which is economical and practical.
6. Acknowledgments

This work is supported by Natural Science Foundation of Liaoning Province of China (No.20170520354, 20170520148) and the Special Fund Project of Panjin Industrial Technology Institute of DUT (NO.YJYZXJ2017004).

7. References

[1] Khanal R, Furumai H, Nakajima F. 2014 Journal of hazardous materials 264 53
[2] Li-Ming Lo, Shih-cheng Hu, Da-Ren Chen, David Y.H. Pui. 2010 Powder Technology 198 75
[3] H.C. Lu, C.J. Tsai. 2017 APPLIED SURFACE SCIENCE 416 639.
[4] HLF Magalhães, AGBD Lima, SRDF Neto, HG Alves, JSD Souza. 2017 Advances in Mechanical Engineering 9 1.
[5] ZHENG Juan 2013 Journal of Zhejiang Ocean University (Natural Science) 32 16
[6] Qing Zhang, Yun-lou Qian, Yuan-xia Bi 2014 Chinese Journal of Environmental Engineering 8 2975
[7] Hai-ming Fu, You-jun Zhao 2010 Journal of Central South University (Science and Technology) 41 799
[8] Le Cloirec P, Bellettre J, Subrenat A 2003 Chemical engineering science 58 4965
[9] Chun-Wan Chen, Sheng-Hsiu Huang, Che-Ming Chiang, Ta-Chih Hsiao, Chih-Chieh Chen 2008 Annals of Occupational Hygiene 52 207.
[10] Li-Ming Lo, Shih-Cheng Hu, Da-Ren Chen, David Y.H. Pui 2010 Powder Technology 198 75
[11] Zhou R, Shen H, Zhao M 2012 Energy Procedia 16 426
[12] Wang Chun, Wang dian-yin 2009 Dust removal equipment manual (Beijing: Chemical Industry Press), p 211