The Effect of Energy Density and Nb Content on the Microstructure and Mechanical Properties of Selective Laser Melted Ti-(10-30 wt.%) Nb

James M. Borgman, Jing Wang, Lorenzo Zani, Paul P. Conway, and Carmen Torres-Sanchez

Submitted: 1 December 2020 / Revised: 22 July 2021 / Accepted: 3 September 2021 / Published online: 20 September 2021

In this study, Ti-(0-30 wt.%Nb) alloys developed from elemental powders were fabricated by the Selective Laser Melting (SLM) process. Compositional homogeneity, microstructure and mechanical performance were investigated as a function of energy density. The proportion of un-melted Nb particles and isolated pore count reduced with increasing energy density, while Ti allotropic content (i.e. α, α'' and β) varied with energy density due to in-situ alloying. Increasing the Nb content led to the stabilisation of the α'' and β phases. The mechanical properties were similar to those compositions manufactured using casting methods, without further post processing. The addition of 20Nb (wt.%) and using an energy density of 230 J/mm3 resulted in a Young’s Modulus of 65.2 ± 1.8 GPa, a yield strength of 769 ± 36 MPa and a microstructure of predominantly α'' martensite. This strength to stiffness ratio (33% higher than Ti-10Nb and 22% higher than Ti-30Nb), is attributed to in-situ alloying that promotes solid solution strengthening and homogenisation. These alloys are strong contenders as materials suitable for implantable load-bearing orthopaedic applications.

Keywords: additive manufacturing, biomedical, Titanium, mechanical testing

1. Introduction

Titanium and its alloys have characteristics, such as low density, corrosion resistance and non-toxicity for in vivo applications, making them ideal materials for use in orthopaedics and tissue engineering. However, titanium has a larger density, corrosion resistance and non-toxicity for in vivo applications, making them ideal materials for use in orthopaedics and tissue engineering. However, titanium has a larger Young’s Modulus (100 GPa) compared to cortical bone (10-30 GPa) (Ref 1). A mismatch that can lead to stress-shielding and osteopenia (Ref 2). It is desirable to lower the Young’s Modulus of the implant material, close to that of the host tissue, i.e., bone. A proposed approach is to alloy titanium (Ti) with elements, such as niobium (Nb), molybdenum (Mo) or tantalum (Ta). These alloying elements, known as isomorphous β stabilisers, prevent the formation upon cooling of the hexagonal α phase, allowing the retention of the high temperature β phase. The presence of the β phase at room temperature has been found to lower Young’s Modulus, in comparison to the α phase present in pure titanium (Ref 3,4). The addition of these β stabilisers can also lead to the presence of additional phases, including the orthorhombic α'' martensitic phase and the interstitial ω phase. These phases alter the mechanical properties, with α'' leading to a reduction of the Modulus compared with the α phase, and the ω phase leading to an increase (Ref 5). Nb is a β stabilising element with lower cyto-toxicity, in comparison with other β stabilisers, such Mo and Fe (Ref 4,6). Ti-Nb alloys have been found to contain high strength and low Young’s Modulus, making them promising for orthopaedic implant applications (Ref 4,7,8).

Selective Laser Melting (SLM), which uses a laser to melt powder in layers to build the required part, can manufacture customised orthopaedic implants of complex geometries, with lowered investment cost and reduced machine time compared to traditional processes such as casting (Ref 9,10). The application of this process has been dominated by industrially attractive alloys, such as Ti-6Al-4V, a $\alpha+\beta$ phase alloy, with few investigating β stabilised titanium alloys, such as Ti-Nb alloys (Ref 11-13).

The limited adoption of Ti-Nb alloys is in part due to the high cost of the pre-alloyed powders, and the difficulty in achieving “in-situ alloying”, i.e., when the laser beam not only melts but also homogenises elemental powders in the melt pool (Ref 14,15). Attempts have been made to use in-situ alloying to improve the mechanical properties, including adding yttria-stabilised zirconia to Ti-6Al-4V to increase hardness, rhenium to titanium to improve the corrosive properties and Mo to Ti-6Al-4V to improve strength (Ref 16-18). Owing to the complex nature of the SLM thermal profile, as well as differences in fusion temperature of added alloying elements, achieving compositional homogenisation remains largely unresolved. Several studies have investigated the in-situ alloying of Ti with β-stabilising elements (Ref 14,16,19-21). Fischer et al. showed that increments in energy density improved homogenisation of in-situ alloyed Ti-26Nb (at.%) (Ref 22). Similar
results have been reported by Chen et al. using a mixture of Ti-37Nb-6Sn (wt.%) from elemental powders (Ref 23). In terms of Nb content, Wang et al. suggests that the quantity of Nb within the alloy affects its homogenisation, with increased Nb content leading to an increased fraction of un-melted Nb (Ref 24). However, as shown in Fig. 1, little work has focused on Ti-Nb alloys, especially at compositions, where \(\alpha’ \) and \(\alpha'' \) are expected (Ref 7,22-29).

To the best of the author’s knowledge, no study has systematically compared the effect of Nb content with energy density. Therefore, this present work focuses on the influence of energy density and Nb content to produce Ti-Nb alloys. These compositions were chosen as exemplars of different allotropic phases; i.e., Ti-10Nb is expected to display a predominant \(\alpha’ \) phase, Ti-20Nb containing the \(\alpha'' \) phase and Ti-30Nb expected to contain \(\alpha'' + \beta \) phases. The chosen compositions are yet to be explored, as shown in Fig. 1. The phases, microstructural evolution, homogeneity, and mechanical properties of these alloys were investigated with respect to those produced using conventional methods, such as vacuum cast re-melting.

2. Materials and Methodology

2.1 Material Preparation

Gas atomised CP-Ti powder (Carpenter Additive Ltd, USA, 99.5%, D50 = 34 \(\mu \)m), and mechanically crushed Nb powder (Alfa Aesar, UK, 99.8%, <45 \(\mu \)m), were mixed to the required composition (i.e. 0 (referred to as CP-Ti), 10, 20 and 30 wt.% Nb). All compositions are provided in wt.%, unless otherwise stated. Mixing was performed on a PM100 (Retsch, Germany), using a ball to powder mass ratio of 2:1 at 100 RPM for 1 hour. The morphology and size of the powder after mixing, was observed using a Scanning Electron Microscope (7800, JEOL, Japan). As shown in Fig. 2, morphology and powder characteristics are consistent with the pre-mixed powder, and no variation was observed as a result of the mixing process. In addition, the Nb particles were found to be evenly distributed in the Ti powder. The average powder size was 34.0, 32.3, 30.1, 29.6 \(\mu \)m for CP Ti, Ti-10Nb, Ti-20Nb and Ti-30Nb, respectively. All compositions had good flowability and printing characteristics, with Ti-30Nb (containing the highest fraction of non-spherical Nb particles), having a powder density 45% and high circularity (0.87), suitable for the SLM process.

2.2 In-situ Alloying of Ti-Nb Alloy by SLM

The SLM process was conducted using a TruPrint 1000 LMF (Trumpf, Germany), equipped with a 200 W Nd:YAG solid-state laser with a spot size of 55 \(\mu \)m. Processing was completed within an argon atmosphere to an oxygen content below 100 ppm to prevent oxidation.

The laser scanning parameters were chosen to control the volumetric energy density supplied to the fabricated part. The Volumetric Energy Density (VED) was calculated using Eq. 1.

\[
VED (J/mm^3) = \frac{P}{V \times h \times t}
\]

(Eq 1)

Where \(P \) = laser power (W), \(V \) = scanning speed (mm/s), \(h \) = hatch distance (mm), \(t \) = layer thickness (mm).

Based on initial evaluation of potential parameters available, three different values of energy density were chosen (50 J/mm\(^3\), 110 J/mm\(^3\) and 230 J/mm\(^3\)). These energy densities were chosen based on the maximum energy densities achievable within the limits of the machine (i.e. 230 J/mm\(^3\)), and the lowest energy densities were selected to ensure the flowability of the powder.
density able to successfully fabricate the required part (i.e. 50 J/mm³). 110 J/mm³ was chosen as it is recommended manufacturers value for CP-Ti, being 60 J/mm³ higher than the lowest value and 120 J/mm³ lower than the higher energy density achievable. Scanning speed was chosen as the parameter of interest, as it allowed greater flexibility compared to the other parameters in the energy density equation. The scanning speed was altered to achieve the required energy density, while other parameters were maintained as shown in Table 1. For each composition and energy density, two cubic samples (7x7x7mm) were fabricated for microstructural analysis, and three cylindrical samples (6 mm diameter x 12 mm height) were fabricated for mechanical testing. After fabrication, the samples were cut from a build plate along the x-y plane with the use of a high-speed saw (IsoMet High Speed Pro, Buehler, Germany) fitted with a diamond-coated blade (IsoMet Blade, 15HC - 4in, Buehler, Germany). For metallurgical examination, samples were ground with P400 grit SiC abrasive paper, followed by polishing with 9 µm diamond suspension, and 0.02-0.6 µm colloidal silica. Grinding and polishing processes were performed using an automated polishing machine (Automet 250, Buehler, USA).

Table 1 Chosen laser scanning parameters

Volumetric Energy Density, J/mm³	Laser power, W	Hatch distance, µm	Layer thickness, µm	Scanning speed, mm/s	Scanning strategy
50	140	110	30	848	bi-directional raster with 90° offset between layers
110	140	110	30	386	bi-directional raster with 90° offset between layers
230	140	110	30	186	bi-directional raster with 90° offset between layers

2.3 Microstructural and Homogeneity Analysis

Homogeneity characterisation was ascertained by calculating the area fraction of un-melted Nb particles within the entire cross-section, obtained from a Scanning Electron Microscope (SEM, 7800, JEOL, Japan). Further SEM micrographs were on chemically etched surfaces (Kroll’s reagent, vol. 91% H₂O 6% HNO₃, 3% HF, exposed for 15 seconds) to reveal microstructural features. Optical micrographs (Zeiss Primotech Materials Microscope, USA) were used to measure void content. The area fraction of the voids was calculated from optical micrographs, using MATLAB software (MATLAB ver. R2018b, The MathWorks, inc., USA). The plane of analysis for optical and SEM imaging was offset by 3 mm from the top surface in the build.
direction, to avoid transitional effects present in the outermost top layers.

2.4 X-Ray Diffraction

The phase identification was performed using an x-ray Diffractometer (D2, Bruker, USA) with a Cu source, operating with a voltage of 30 kV, and an electron current of 10 mA. The peaks were measured from a 20 angle of 30° to 80°, with a step of 0.2°.

2.5 Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) was performed to assess the phases present in the sample and measure the transformation temperature to give an understanding of the β stabilisation of the fabricated alloy. The DSC measurements were performed on a Shimadzu DSC60 (Kyoto, Japan), with a cooling/heating rate of 10 °C, from an initial temperature of 40 °C up to a maximum temperature of 570 °C. The second heating/cooling cycle was performed to assess the decomposition of metastable phases within the alloy. The machine was continuously purged with Argon gas, at a rate of 100 ml/min. A baseline scan was performed without any samples present, and used to remove any noise from the scan. The samples used were cut to a mass between 60-80 mg, and cleaned in isopropyl alcohol to remove any noise from the scan.

2.6 Mechanical Testing

The samples were prepared, according to the ASTM E9 standard, having a length-diameter ratio equal to 2 (Ref 30). Top and bottom faces were ground with P800 grit SiC paper to ensure they were flat and parallel. All compression specimens were fabricated with dimensions 12 mm in length and 6 mm in diameter. Compression testing was performed on an Instron universal testing machine (3369, Instron, UK, 20 kN), with a constant strain rate of 0.005 s⁻¹. The Young’s Modulus was obtained from the slope of the elastic region formed, when plotting stress vs strain. An extensometer (2601, Instron, UK) was attached to a mechanical testing rig to accurately assess the strain and calibrated before use to the manufacturer’s recommendation. Three test samples of each parameter set were assessed, with each sample being loaded in the elastic region 5 times to ensure repeatability. Finally, samples were loaded to plastic deformation to obtain the yield strength. The yield strength was calculated using the 0.2% strain-offset method.

3. Results and Discussion

3.1 Phase Analysis

Figures 3, 4, 5 and 6 exhibits the XRD scans of the as-fabricated alloy composition at the chosen energy densities. The CP-Ti (Fig. 3) and Ti-10Nb (Fig. 4) alloys all displayed peaks associated with the hcp α (or hcp α′, given that both display the same lattice parameters) phase. When the Nb content was increased to 20% and above, martensitic orthorhombic α″ was the predominant phase present in the alloy (Fig. 5). This phase is developed from the distortions of the Ti lattice, due to the introduction of Nb atoms, and is often found in Ti-Nb alloys with > 13 Nb (Ref 31). In addition to the α″ phase, other peaks present are associated with the cubic β phase as indicated. This phase is unexpected in a fully homogenised alloy at Ti-20Nb, with the only phase expected being α″ (Ref 31). Therefore, the suspected β phase peaks can be linked to locally enriched Nb regions or unmelted Nb particles in the Ti-Nb matrix. The presence of both phases (β and α″), is an indication that the alloy has not been fully homogenised by the SLM process. However, with increments in the energy density, the intensity of the peaks associated with the β-Nb phase decrease. This highlights the impact of energy density in increasing the homogenisation of the alloy, and reducing the presence of un-melted Nb particles. Ti-30Nb (Fig. 6) also exhibited peaks linked to α″ phase and β phases. However, the increased Nb content led to an increased peak intensity of the β phase, and therefore an indication of a further β stabilised alloy.

All compositions displayed a growth in the preferred crystallographic texture with increasing energy density. The CP-Ti and Ti-10Nb alloys showed increased intensities in peaks, associated with the α(102) and α(110), and a corresponding decrease in α(101) peak. On the contrary, Ti-20Nb and Ti-30Nb alloys exhibited growth in the α”(022) and β(200) orientations, as the energy density increased. It is hypothesised that this trend is a result of the re-melting of applied layers with the subsequent laser scans during the SLM process, resulting in elongated grain growth along the thermal gradient. With higher energy density the heat penetration increased, creating a large thermal gradient in the build direction, and increasing crystallographic alignment in this direction. This can be corroborated by the enlarged β(200) peak in the Ti-20Nb and Ti-30Nb alloys, suggesting the β prior grains are orientated in the {001} <100> direction, corresponding to the build direction (Ref 23). The increase in the α”(022) peak in the Ti-20Nb alloy can be explained by the orthorhombic transformation, undergone during rapid cooling from the β(200) textured prior β grains to α”(022) orientation, using the lattice correspondence {001}β → 1/2{011}α” (Ref 32). A comparison between the relative intensities of the peaks of Ti-20Nb and Ti-30Nb alloys manufactured at 230 J/mm³ showed increased Nb content led to a reduction in the α”(022) peak, and an increase in the β(200) peak. This change in relative intensity indicates a link between increased Nb concentration and increased β stabilisation, which leads to the suppression of the martensitic (β → α″) transformation.

3.2 Void Content

The formation of voids was found to be correlated to the Nb content and the energy density used (Fig. 7). At 50 J/mm³ increasing the Nb content was found to lead to an increase in the area fraction of voids, from 0.045% in Ti-10Nb through 0.6% in Ti-20Nb to 1.67% in Ti-30Nb. This suggests that at the low energy density, the presence of isolated pores is dependent on the Nb content. However, at 230 J/mm³ all alloys displayed similar levels of porosity, rendering the phenomenon independent of Nb content with sufficient energy density. The increase in the area fraction of void with the increasing Nb content can be correlated to the higher melting temperature of Nb (2447 °C), compared with Ti (1668 °C). Therefore, at the lower energy density, the energy supplied to the powder appeared insufficient for the complete melting of Nb, resulting in a lack of fusion between the Ti and Nb particles and the presence of isolated pores. There were no pores or cracks linked to
Fig. 3 XRD patterns of CP-Ti, as-fabricated as a function of energy densities

Fig. 4 XRD patterns of Ti-10Nb alloys, as-fabricated as a function of energy densities

Fig. 5 XRD patterns of Ti-20Nb alloys, as-fabricated as a function of energy densities
excessive energy and gas entrapment found in any of the samples.

3.3 Un-Melted Nb Particles

Figure 8 shows the measured un-melted Nb area fraction, normalised against the added Nb content, of the Ti-Nb alloys fabricated in this study, and the values are provided in Table 2. The inset micrographs show the chemical inhomogeneity present, depicting colour contrast as a result of the elemental atomic contrast, i.e. lighter areas linked to increased Nb content, and darker areas having a higher Ti content, and the white particles visible being the un-melted Nb particles. The presence of the un-melted Nb particles in the melt pool suggest that the temperature in the melt-pool is insufficient to melt some of the larger Nb particles, which is exacerbated at lower energy densities. As shown, the area fraction of un-melted Nb particles is linked to the energy density used, as with increasing energy density, the fraction of un-melted Nb particles decreases at all Nb contents. Increasing the added Nb content also increased in the un-melted fraction, with Ti-30Nb displaying the highest ratio, compared with Ti-20Nb and Ti-10Nb. It is likely due to the increased added Nb content, and therefore, the increased heat of fusion in the melt pool (Ref 33).

3.4 Microstructural Analysis

For the Ti-(10-30)Nb alloys, the samples fabricated at 50 and 110 J/mm³ displayed large variation in composition due to the elemental inhomogeneity, resulting in no clear and pre-
dominate microstructure. However, at the highest energy density (230 J/mm³) a more homogenous microstructure was present. SEM (backscatter) micrographs of the etched microstructure of the alloys fabricated at this energy density are displayed in Fig. 9. At the highest energy density, the Ti-10Nb alloy (Figs. 9a-b) predominantly displayed a Widmanstätten α′/C\textsubscript{213} microstructure, similar to cast alloys of the same composition (Ref 31). The Ti-20Nb alloy displayed a martensite α′ microstructure with evident un-melted Nb particles. Melt pool boundaries and cellular structures were also present. Within the bulk sample (Figs. 9c-d), away from un-melted Nb particles, the α′ martensite is present, and propagating from the edges of the prior β grains. In addition to the primary martensite needles, in the range of 10 µm in length (Fig. 9d), small needles are present orientated perpendicular to the primary needles. This morphology was described previously by Yang et al. (Ref 34) in the α phase of Ti-6Al-4V, who classified the martensitic needles into size categories (i.e. primary, secondary, tertiary etc) with decreasing size. This microstructure, not present in traditional manufactured alloys, is the result of the rapid heating and cooling of previously deposited layers. It is proposed that primary needles were formed in the initial heating cycles, with the subsequent heating cycles, forming the secondary, tertiary needles and the growth of the subsequent needles, being constrained by the presence of previous needles. This microstructure results in an increased density of dislocations, which impedes movements of the dislocations, and is the most plausible reason to explain the increased strength and reduced ductility present in the Ti-20Nb alloy, fabricated at 230 J/mm³.

The Ti-30Nb alloy (Fig. 9e-f) showed a primarily cellular β microstructure, with the presence of martensitic α″ phase also

![Graph showing comparison in area fraction of un-melted Nb particles to added Nb content with energy density and niobium (Nb) content.](image)

Table 2 Area fraction of un-melted Nb particles to added Nb content with energy density and niobium (Nb) content

Energy Density (J/mm\(^3\))	Ti-10Nb	Ti-20Nb	Ti-30Nb
50 J/mm\(^3\)	13.9 ± 5.8	29.6 ± 5.1	46.5 ± 4.8
110 J/mm\(^3\)	5.5 ± 2.8	12.9 ± 3.3	30.5 ± 2.7
230 J/mm\(^3\)	1.7 ± 1.6	2.0 ± 1.1	4.1 ± 1.2

![Image of SEM micrographs of cross-sectional surface of the Ti-30Nb alloy at indicated energy densities](image)
detected. Although the cooling rate was not directly measured, the presence of the martensite phase gives an indication of the high cooling rate of the SLM process. This assumption can be made, as this phase has been reported elsewhere, when a high cooling rate occurs (Ref7,31). Other studies have measured the cooling rate of the SLM process, with P.A. Hooper (Ref35) measuring the cooling rate in the range of 1E5-1E6 °C/s. A similar cooling rate would give rise to a martensitic microstructure similar to the one obtained in this study. The increased Nb content led to increased β stabilisation and β phase fraction, compared against the Ti-20Nb alloy. The dendritic formations are a result of the presence of large Nb (solute) content, and the rapid cooling of the SLM process. These two factors contribute to constitutional undercooling, destabilisation of the solidification front and the formation of dendritic structures within the larger prior β grains. As shown by Dargusch et al. (Ref36) these dendritic needles form in the build direction, which when viewed from the normal direction, as in Fig. 9f, are visible as a cellular structure. A result of the concentration of Nb within the initially solidifying dendritic structures, leaves the surroundings with a reduced Nb content. This leads to the dual α” and β phase composition, with inner dendrites forming the β phase, while the surrounding regions forming the α” phase due to the depleted Nb content and reduced β stabilisation (Ref19,22,37-39). The reduced solute content in the Ti-10Nb and Ti-20Nb alloys meant the solidification front was stable and planar, with no dendritic structures visible within the bulk of the alloys. However, some dendritic solidification was present in the Ti-

![Figure 9](https://example.com/figure9.png)

Fig. 9 SEM (Backscatter) micrographs (X-Y cross-sectional plane) of Ti-10Nb (a,b), Ti-20Nb (c,d) and Ti-30Nb (e,f) alloys, as-fabricated at an energy density of 230 J/mm³.
20Nb alloys in the areas of elevated Nb content surrounding un-alloyed Nb particles.

3.5 Thermal Analysis

Figure 10 shows the heating curves of Ti-(10-30)Nb compositions fabricated using 230 J/mm³. The cooling curves of the sample composition are shown in Fig. 11. The dotted line is the 2nd run of the same sample performed to assess the presence of metastable phases in the first thermal cycle. The Ti-10Nb alloys expressed no peaks related to the martensitic phase transformation in the temperature range, assessed during the heating run nor the cooling run. The low Nb content of this alloy results in an expected transformation temperature above the maximum temperature of the DSC equipment used. The martensitic transformation of Ti-10Nb is expected at around 713 °C, above the scanned range (Ref 25). The Ti-20Nb alloy expressed an exothermic peak at the top of the heating curve from 470 °C. This transformation matches exothermic peaks, linked to the martensitic \(\alpha'' \) phase transformations in similar compositions at similar temperatures seen elsewhere (Ref 31, 40). However, it is unclear, if this transformation is related to \(\alpha'' \) to \(\alpha + \beta \) or \(\alpha'' \) to \(\beta \) dissolutions. During the second heating run this peak is not present, suggesting the metastable nature of the transformation, and confirming it is most likely associated with the \(\alpha'' \) dissolution. No peaks were identified in the cooling curve that could be linked to phase transformations. The Ti-30Nb alloy, fabricated at 230 J/mm³, exhibited large variations in the heat flow during the heating run. An exothermic peak is present between 300 and 450 °C, followed by the endothermic peak between 460 and 530 °C, and finally an exothermic peak at 540 °C. Bonisch et al. and Kent et al. linked this transformation to an isothermal \(\omega \) phase transformation in similar compositions (Ref 41, 42). The first exothermic peak is linked to the \(\beta \) to \(\omega \) transformation, the endothermic peak linked to the \(\omega \) to \(\alpha + \beta \) transformation, and the final exothermic peak being \(\beta \) to \(\alpha \) transformation. In addition, the heat flow moves to an endothermic peak above the max temperature of the DSC scan. This is likely the \(\beta \) transus, matching the expected temperature based on the composition. In this composition, no \(\alpha'' \) to \(\beta \) transformation can be detected, despite the \(\alpha'' \) phase being detected in the XRD patterns (Fig. 5) of the as-fabricated part. It is likely as the \(\beta \) to \(\omega \) transformation and \(\alpha'' \) to \(\beta \) transformation occur at concurrent temperatures, therefore it is hard to distinguish these transformations and this peak contains both transformations. The cooling curve shows part of an exothermic transformation at the start, and is most likely linked to the \(\beta \) to \(\alpha \) transformations.

3.6 Mechanical Properties

3.6.1 Young’s Modulus. Figure 12 shows the compressive stress-strain curves of the alloys loaded until yield. These compression tests were performed on samples with dimensions 12 mm in length and 6 mm in diameter. With increasing Nb content there is a change in yield behaviour, with a reduction in the sharpness of the yield points. This change corresponds with an increasing martensitic structure present within the alloy, \(\alpha' \) in Ti-10Nb and \(\alpha'' \) in Ti-20Nb. This yield behaviour could be the result of micro-yielding caused by high local internal stress that resulted from the martensitic phase transformation (Ref 43). In addition, there is an increase in strain at yield with the addition of Nb. A more defined yield point can be seen in Ti-30Nb alloys, as the \(\alpha'' \) phase fraction decreased with increasing Nb content.

The Young’s Modulus (Fig. 13) decreased with increasing Nb content, reaching its lowest values of 61-65 GPa with the addition of 20Nb, before increasing to 70-84 GPa, when the Nb content increases to 30Nb. Young’s Modulus values of the developed alloys follow a similar pattern to those fabricated using casting techniques, with the addition of Nb leading to an initial decrease in the Young’s Modulus. A decrease with the addition of 20Nb fraction in SLM samples measured between 34 and 36 GPa. This trend follows those described in literature for cast samples, e.g. Lee et al. found that the modulus decreased by 30 GPa with the formation of \(\alpha'' \) (Ref 7). A minimum has been suggested to be around Ti-15Nb, linked to the point, where the \(\alpha \) phase loses its hexagonality, and starts to form the orthorhombic phase (Ref 5, 44). Similar conclusions have been drawn by Wang et al. (Ref 24). The increased modulus of the Ti-30Nb samples is unexpected due the lower modulus of the \(\beta \) phase, compared to the \(\alpha'' \) phase (Ref 45).
However, the increase has been linked to the presence of the brittle \(\alpha \) phase, with similar increases in Moduli being found in cast samples and linked to the \(\alpha \) phase in literature (Ref 42,46). Therefore, the increase in the Young’s Modulus cannot be associated with the increased \(\beta \) phase fraction, and must be linked to the precipitation of the \(\alpha \) phase (Ref 7). However, its small size makes it hard to detect using x-ray diffraction (Ref 47). The \(\omega \) phase can be formed either from rapid cooling (athermal), or upon ageing (isothermal), with both occurring at similar Nb contents (Ref 31). Therefore, the isothermal \(\omega \) transformations detected in the DSC scans (Fig. 10) suggests the addition of 30Nb has the potential for athermal \(\omega \) phase formation during the rapid cooling of the SLM process. This is also suggested by the increase in the Young’s Modulus seen. However, the presence of the athermal \(\omega \) phase in the as-fabricated samples is not confirmed, and further investigations are needed.

The variation with energy density was also found to influence the Young’s Modulus. In CP-Ti samples, the Young’s Modulus increased from 99 to 102 GPa with increasing energy density. This can be linked to the increased densification and reduction in porosity at higher energy densities. In the Ti-Nb alloys, as well as the reduced porosity, the variations in the Moduli can be the result from variations such in phases present, homogeneity, as well as the fraction of un-melted Nb particles. As all of these phenomena are influenced by the energy density and occur concurrently, the exact mechanism behind the variation with energy density, is yet to be isolated.

The variation with energy density was also found to influence the Young’s Modulus. In CP-Ti samples, the Young’s Modulus increased from 99 to 102 GPa with increasing energy density. This can be linked to the increased densification and reduction in porosity at higher energy densities. In the Ti-Nb alloys, as well as the reduced porosity, the variations in the Moduli can be the result from variations such in phases present, homogeneity, as well as the fraction of un-melted Nb particles. As all of these phenomena are influenced by the energy density and occur concurrently, the exact mechanism behind the variation with energy density, is yet to be isolated.

Table 3 shows a comparison between cast and SLM titanium alloys for biomedical applications extracted from literature against the alloys reporting the lowest Young’s Modulus developed in this study. The Young’s Modulus of the alloys developed in this study compare favourably to the un-alloyed
titanium (reduction of 34-36 GPa), and are comparable to the properties found in cast and SLM β-stabilised Ti alloys of similar compositions.

3.6.2 Yield Strength. The yield strength (Fig. 14) was found to increase with the addition of Nb and energy density. Increasing Nb content between 0 and 20Nb, increased the yield strength, resulting from solid solution strengthening with the addition of Nb into the Ti matrix. Although studies on SLM manufactured Ti alloys are scarce, a similar effect has been reported with the introduction of β stabilisers, using other fabrication techniques (Ref7,48). Increasing the energy density in the Ti-10Nb and Ti-20Nb also led to an increased yield strength, due to increased homogenisation, and therefore, increased solid solution strengthening effect. In addition, the extended β stabilisation led to the stabilisation of the orthorhombic α” phase. Due to the increased dislocation density and small crystal spacing of the martensitic phase, which hinders the motion of dislocations, increasing the fraction of this phase led to an increase in the yield strength. However, as indicated by the increase in yield strength in the un-alloyed Ti, from 548 to 618 MPa, the reduction in void content and preferred orientation in the build direction (corresponding to the direction of loading during the test) also causes an increase in the yield strength. At Ti-30Nb there is a reduction in the yield strength from samples manufactured with 230 J/mm³ compared to samples manufactured with 110 J/mm³, from 800 to 760 MPa. This is likely the result of increased homogenisation at the higher energy density, increasing the stabilisation of the β phase. This leads to a reduction in the α” phase fraction, and a corresponding increase of the β phase fraction. Therefore, the strengthening effect of the martensite phase is reduced and yield strength decreases. Similar findings are reported by Vrancken et al., with the introduction of 10Mo (wt.%) into Ti-6Al-4V, resulting in the change from α’ to β phases, and a corresponding reduction in yield strength (Ref16).

4. Conclusions

The effect of energy density and Nb content on Ti-Nb alloys manufactured using SLM was investigated by studying their mechanical and microstructural properties. The results are summarised as follows:

(1) It was possible to achieve exemplars of Ti allotropes by increasing the amount of Nb in the alloy; Ti-10Nb processed at any of the energy densities displayed an α’/β β stabilisers, using other fabrication techniques (Ref7,48). Increasing the energy density in the Ti-10Nb and Ti-20Nb also led to an increased yield strength, due to increased homogenisation, and therefore, increased solid solution strengthening effect. In addition, the extended β stabilisation led to the stabilisation of the orthorhombic α” phase. Due to the increased dislocation density and small crystal spacing of the martensitic phase, which hinders the motion of dislocations, increasing the fraction of this phase led to an increase in the yield strength. However, as indicated by the increase in yield strength in the un-alloyed Ti, from 548 to 618 MPa, the reduction in void content and preferred orientation in the build direction (corresponding to the direction of loading during the test) also causes an increase in the yield strength. At Ti-30Nb there is a reduction in the yield strength from samples manufactured with 230 J/mm³ compared to samples manufactured with 110 J/mm³, from 800 to 760 MPa. This is likely the result of increased homogenisation at the higher energy density, increasing the stabilisation of the β phase. This leads to a reduction in the α” phase fraction, and a corresponding increase of the β phase fraction. Therefore, the strengthening effect of the martensite phase is reduced and yield strength decreases. Similar findings are reported by Vrancken et al., with the introduction of 10Mo (wt.%) into Ti-6Al-4V, resulting in the change from α’ to β phases, and a corresponding reduction in yield strength (Ref16).

(2) Across all Nb content, increasing the energy density, reduced the presence of voids, and increased the homogenisation in the sample. The energy density of 230 J/mm³ created a homogenised microstructure, showing a small number of un-melted Nb particles, and presenting low void content.

(3) The Ti-20Nb samples produced using 230 J/mm³ displayed the largest strength-to-stiffness ratio amongst the entire set, with a Young’s Modulus of 65.2 ± 1.8 GPa and a Yield Strength of 769 ± 36 MPa, ascribed to the stabilisation of the fine-grained α” martensite, sufficient solid solution strengthening and adequate chemical homogenisation.

(4) This study demonstrates that the SLM process promotes in-situ alloying for the fabrication of Ti-Nb alloys, which display a low Young’s modulus, comparable to properties of samples manufactured via conventional
methods, such as casting, and without the requirement for pre-alloyed powders. This represents a great advantage in the manufacture of low stiffness, high strength Ti alloys in a more simplified process.

Acknowledgments

The authors are grateful to the Wolfson School Doctoral Scholarship and the Engineering and Physical Sciences Research Council (grant No. EP/P027482/1) for financial support. The authors acknowledge use of the facilities and the assistance of Dr. Keith Yendall in the Loughborough Materials Characterisation Centre (Loughborough University).

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. J. Helsen and H. Jurgen (1998) Metals As Biomaterials
2. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants - A Review, Prog. Mater. Sci., 2009, 54(3), p 397–425
3. Y.-H. Hon, J.-Y. Wang and Y.-N. Pan, Composition/Phase Structure and Properties of Titanium-Niobium Alloys, Mater. Trans., 2003, 44(11), p 2384–2390
4. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669
5. M. Bönisch, M. Calin, J. Van Humbeeck, W. Skrotzki and J. Eckert, Factors Influencing the Elastic Moduli, Reversible Strains and Hysteresis Loops in Martensitic Ti-Nb Alloys, Mater. Sci. Eng. C, 2015, 48, p 511–520
6. H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki, Biocompatibility and Osteogenesis of Refractory Metal Implants Titanium, Hafnium, Niobium, Tantalum and Rheinum, Biomaterials, 2001, 22(11), p 1253–1262
7. C.M. Lee, C.P. Ju and J.H. Chen Lin, Structure-Property Relationship of Cast Ti-Nb Alloys, J. Oral Rehabil., 2002, 29, p 314–322
8. D.C. Zhang, Y.F. Mao, Y.L. Li, J.J. Li, M. Yuan and J.G. Lin, Effect of Ternary Alloying Elements on Microstructure and Superelasticity of Ti-Nb Alloys, Mater. Sci. Eng. A, 2013, 559, p 706–710
9. W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad and Z. Mohamed, A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials, Powder Technol., 2018, 327, p 128–151
10. F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Bianino, D. Ugues and J. Eckert, Additive Manufacturing of Titanium Alloys in the Biomedical Field: Processes, Properties and Applications, J. Appl. Biomater. Funct. Mater., 2017, 16(2), p 57–67
11. M. Simonelli, Y.Y. Tse and C. Tuck, The Formation of α + β Microstructure in As-Fabricated Selective Laser Melting of Ti-6Al-4V, J. Mater. Res., 2014, 29(17), p 2028–2035
12. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution during Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3363–3370
13. J.Y. Cho, W. Xu, M. Brandt and M. Qian, Selective Laser Melting- Fabricated Ti-6Al-4V Alloy: Microstructural Inhomogeneity, Consequent Variations in Elastic Modulus and Implications, Opt. Laser Technol., 2018, 111, p 664–670
14. I. Yadroitsev, P. Krakhmalev and I. Yadroitseva, Titanium Alloys Manufactured by In Situ Alloying During Laser Powder Bed Fusion, J. Mater. Eng. Perform., 2017, 26(12), p 7268–7279
15. M. Simonelli, N.T. Aboulkaih, P. Cohen, J.W. Murray, A.T. Clare, C. Tuck and R.J.M. Hague, A Comparison of Ti-6Al-4V in-Situ Alloying in Selective Laser Melting Using Simply-Mixed and Satellited Powder Blend Feedstocks, Mater. Charact., 2018, 143, p 118–126
16. B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158
17. A. Hattal, T. Chauveau, M. Djemai, I.J. Fouchet, B. Bacroix and G. Dirras, Effect of Nano-Yttria Stabilized Zirconia Addition on the Microstructure and Mechanical Properties of Ti6Al4V Parts Manufactured by Selective Laser Melting, Mater. Des., 2019, 180, p 1–9
18. E. Chlebus, B. Kuźnicka, R. Dziedzie and T. Kurzykowski, Titanium Aligned with Rheinum by Selective Laser Melting, Sci. Eng. A, 2015, 620, p 155–165
19. F.L. Wira, S.L. Sing, and W.Y. Yeong, Selective Laser Melting of a Novel Titanium-Tantalum Alloy As Orthopedic Biomaterial, Solid Free. Fabr. 2017 Proc. 28th Annu. Int., p 2389–2397 (2017)
20. S.L. Sing, W.Y. Yeong and F.E. Wira, Selective Laser Melting of Titanium Alloy with 50 Wt% Tantalum: Microstructure and Mechanical Properties, J. Alloys Compd., 2016, 660, p 461–470
21. N. Kang, Y. Li, X. Lin, E. Feng and W. Huang, Microstructure and Tensile Properties of Ti-Mo Alloys Manufactured via Using Laser Powder Bed Fusion, J. Alloys Compd., 2019, 771, p 877–884
22. M. Fischer, D. Jouglet, G. Robin, L. Peltier and P. Lalheure, In Situ Elaboration of a Binary Ti-26Nb Alloy by Selective Laser Melting of Elemental Titanium and Niobium Mixed Powders, Mater. Sci. Eng. C, 2016, 62, p 852–859
23. W. Chen, C. Chen, X. Zi, X. Cheng, X. Zhang, Y.C. Lin and K. Zhou, Controlling the Microstructure and Mechanical Properties of a Meltcastable β Titanium Alloy by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 726, p 240–250
24. Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan, B. Song and Y. Shi, Effect of Nb Content on Microstructure, Property and in Vitro Apatite-Forming Capability of Ti-Nb Alloys Fabricated via Selective Laser Melting, Mater. Des., 2017, 126, p 268–277
25. S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo and S. van der Zwaag, Prediction of the Martensite Start Temperature for β Ti Alloys as a Function of Composition, Scr. Mater., 2009, 60(8), p 611–614
26. G. Lutjering and J.C. Williams, “Titanium,” 2nd ed., Springer, 2007
27. D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164
28. H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu and M.S. Dargusch, Comparative Study of Commercially Pure Titanium Produced by Laser Engineered Net Shaping, Selective Laser Melting and Casting Processes, Mater. Sci. Eng. A, 2017, 705, p 385–393
29. C. Schulze, M. Weinnmann, C. Schweigel, O. Köfler and R. Bader, Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb, Materials (Basel), 2018, 11(1), p 13–16
30. “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, E9,” Annual Book of ASTM Standards, 2018
31. M. Bönisch, M. Calin, T. Wäinth, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki and J. Eckert, Thermal Stability and Phase Transformations of Martensitic Ti-Nb Alloys, Sci. Technol. Adv. Mater., 2013, 14(5), p 055004
32. H.Y. Kim, Y. Ikeha, J.I. Kim, H. Hosoda and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys, Acta Mater., 2006, 54(9), p 2419–2429
33. M.S. Dargusch, G. Wang, D. Kent, M. Bermingham, J. Veneurela, J.E. Frith, Z. Yu, S. Yu and Z. Shi, Comparison of the Microstructure and Biocorrosion Properties of Additively Manufactured and Conventionally Fabricated Near β Ti-25Nb-3Zr-3Mo-2Sn Alloy, ACS Biomater. Sci. Eng., 2019, 5(11), p 5844–5856
34. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, *Mater. Des.*, 2016, **108**, p 308–318

35. P.A. Hooper, Melt Pool Temperature and Cooling Rates in Laser Powder Bed Fusion, *Addit. Manuf.*, 2018, **2**(May), p 548–559

36. H. Attar, S. Ehtemam-Haghighi, D. Kent and M.S. Dargusch, Recent Developments and Opportunities in Additive Manufacturing of Titanium-Based Matrix Composites: A Review, *Int. J. Mach. Tools Manuf.*, 2018, **133**, p 85–102

37. D. Zhao, C. Han, Y. Li, J. Li, K. Zhou, Q. Wei, J. Liu and Y. Shi, Improvement of Mechanical Properties and Corrosion Resistance of Titanium-Tantalum Alloys in-Situ Fabricated via Selective Laser Melting, *J. Alloys Compd.*, 2019, **804**, p 288–298

38. K. Zhuravleva, M. Bönisch, K.G. Prashanth, U. Hempel, A. Helth, T. Gemming, M. Calin, S. Scudino, L. Schultz, J. Eckert and A. Gebert, Production of Porous β-Type Ti-40Nb Alloy for Biomedical Applications: Comparison of Selective Laser Melting and Hot Pressing, *Materials (Basel)*, 2013, **6**(12), p 5700–5712

39. L. Thijs, K. Kempen, J.P. Kruth and J. Van Humbeeck, Fine-Structured Aluminium Products with Controllable Texture by Selective Laser Melting of Pre-Alloyed AlSi10Mg Powder, *Acta Mater.*, 2013, **61**(5), p 1809–1819

40. A. Josephine Prabha, S. Raju, B. Jeyaganesh, A.K. Rai, M. Behera, M. Vijayalakshmi, G. Panesarvelam and I. Johnson, Thermodynamics of α’’ → β Transformation and Heat Capacity Measurements in Ti-15 at% Nb Alloy, *Phys. B Condens. Matter.*, 2011, **406**(22), p 4200–4209

41. D. Kent, S. Pas, S. Zhu, G. Wang and M.S. Dargusch, Thermal Analysis of Precipitation Reactions in a Ti-25Nb-3Mo-3Zr-2Sn Alloy, *Appl. Phys. A Mater. Sci. Process.*, 2012, **107**(4), p 835–841

42. M. Bönisch, A. Panigrahi, M. Calin, T. Waizt, M. Zehetbauer, W. Skrotzki and J. Eckert, Thermal Stability and Latent Heat of Nb-rich Martensitic Ti-Nb Alloys, *J. Alloys Compd.*, 2017, **697**, p 300–309

43. B. Hutchinson, D. Lindell and M. Barnett, Yielding Behaviour of Martensite in Steel, *ISIJ Int.*, 2015, **55**(5), p 1114–1122

44. Y. Mantani and M. Tajima, Effect of Ageing on Internal Friction and Elastic Modulus of Ti-Nb Alloys, *Mater. Sci. Eng. A*, 2006, **442**, p 409–413

45. J. Sun, Q. Yao, H. Xing and W.Y. Guo, Elastic Properties of β, α” and ω Metastable Phases in Ti-Nb Alloy from First-Principles, *J. Phys. Condens. Matter.*, 2007, **19**(48), p 486215

46. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin and R. Caram, Effects of Sn Addition on the Microstructure, Mechanical Properties and Corrosion Behavior of Ti-Nb-Sn Alloys, *Mater. Charact.*, 2014, **96**, p 273–281

47. E.L. Pang, E.J. Pickering, S.I. Baik, D.N. Seidman and N.G. Jones, The Effect of Zirconium on the Omega Phase in Ti-24Nb-[0–8]Zr (at.%) Alloys, *Acta Mater.*, 2018, **153**, p 62–70

48. M.K. Han, J.Y. Kim, M.J. Hwang, H.J. Song and Y.J. Park, Effect of Nb on the Microstructure, Mechanical Properties, Corrosion Behavior, and Cytotoxicity of Ti-Nb Alloys, *Materials (Basel)*, 2015, **8**(9), p 5986–6003

49. M. Niinomi, Y. Liu, M. Nakai, H. Liu and H. Li, Biomedical Titanium Alloys with Young’s Moduli Close to that of Cortical Bone, *Regen. Biomater.*, 2016, **3**(3), p 173–185

50. S. Guo, J. Zhang, X. Cheng and X. Zhao, A Metastable β-Type Ti-Nb Binary Alloy with Low Modulus and High Strength, *J. Alloys Compd.*, 2015, **644**, p 411–415

51. L. Zhou, T. Yuan, R. Li, J. Tang, M. Wang and F. Mei, Anisotropic Mechanical Behavior of Biomedical Ti-13Nb-13Zr Alloy Manufactured by Selective Laser Melting, *J. Alloys Compd.*, 2018, **762**, p 289–300

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.