Supplementary Information

Tracking Pyrolysis Process of a 3-MeOsalophen-ligand based Co₂ Complex for Oxygen Evolution Reaction

Bingxin Pan,¹ Xu Peng,*¹ Yifan Wang,¹ Qi An,¹ Xu Zhang,¹ Yuexing Zhang,¹ Thomas S. Teets³ and Ming-Hua Zeng *¹,²

¹ Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.
² Department of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guilin, 541004, P. R. China.
³ Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States.

E-mail: pengxu@hubu.edu.cn; zmh@mailbox.gxnu.edu.cn
## Contents

| Table S1 | Crystallographic data for compound Co$_2$. |
|----------|-----------------------------------------------|
| Table S2 | Selected Bond lengths (Å) and angles (°) for compound Co$_2$. |
| Table S3 | The specific phase changes and facets information for Co/CoO$_x$@NCs. |
| Table S4 | Elemental quantification determined by XPS for Co/CoO$_x$@NCs. |
| Table S5 | Fitting results for C 1s spectra of various catalysts with different pyrolysis temperatures. |
| Table S6 | Fitting results for O 1s spectra of various catalysts with different pyrolysis temperatures. |
| Table S7 | Fitting results for N 1s spectra of various catalysts with different pyrolysis temperatures. |
| Table S8 | The Co content in Co/CoO$_x$@NCs was determined by inductively coupled plasma optical emission spectroscopy. |
| Table S9 | Representative Co-based OER electrocatalyst using pyrolysis treatment from different kinds of Co precursors. |
| Figure S1 | The IR spectrum for compound for Co$_2$. |
| Figure S2 | Experimental and simulated PXRD patterns for Co$_2$. |
| Figure S3 | View of the Co$_2$ Complex showing the intramolecular. |
| Figure S4 | TEM images of the Co/CoO$_x$@NCs at different pyrolysis temperatures. |
| Figure S5 | High resolution XPS spectra of C 1s peak of Co/CoO$_x$@NCs at different pyrolysis temperatures. |
| Figure S6 | High resolution XPS spectra of O 1s peak of Co/CoO$_x$@NCs at different pyrolysis temperatures. |
| Figure S7 | Composition of Co/CoO$_x$@NCs materials as a function of their pyrolysis temperatures: percentages of the different: (a) C and (b) O species present in Co/CoO$_x$@NCs. |
| Figure S8 | High resolution XPS spectra of Co 2p peak of Co/CoO$_x$@NCs at different pyrolysis temperatures. |
| Figure S9 | High resolution XPS spectra of N 1s peak of Co/CoO$_x$@NCs at different pyrolysis temperatures and N species present in Co/CoO$_x$@NCs. |
| Figure S10 | N$_2$ sorption isotherms of the Co/CoO$_x$@NCs at 77 K. |
| Figure S11 | Related pore size distribution of the Co/CoO$_x$@NCs by the QSDFT method. |
| Figure S12 | TG profile of 3-MeOsalophen-ligand (Bis[3-Methoxysalicylydene]-1,2 Iminophenylenediamine). |
| Figure S13 | TG-MS curves of corresponding 3-MeOsalophen-ligand pyrolysis tracking process. |
| Figure S14 | Cyclic voltammograms (CVs) measured over Co/CoO$_x$@NCs modified electrodes in the double layer capacitance charging region. |
| Figure S15 | Powder XRD patterns of Co/CoO$_x$@NC-800 before and after the catalysis, as well as the carbon paper. |
Experimental Section

Characterization

Elemental analysis of C, H, and N microanalyses were carried out using an Elementar Vario-EL CHNS elemental analyzer. FT-IR spectra were recorded from KBr pellets containing 1 % of the compound in the range of 400-4000 cm\(^{-1}\) on a Bio-Rad FTS-7 spectrometer (Figure S1). The thermogravimetric analysis (TGA) were performed using a Pyris Diamond TG/DTA under a constant flow of dry nitrogen gas at a heating rate of 2 °C·min\(^{-1}\). Powder X-ray diffraction (PXRD) spectra were recorded on either a D8 Advance (Bruker) or a Rigaku D/max-IIIA diffractometer (Cu K\(\alpha\), \(\lambda = 1.54056 \text{ Å}\) at 293 K (Figure S2). Transmission electron microscopy (TEM) and High-resolution TEM (HR-TEM) images of the samples were obtained using a FEI Talos F200X transmission electron microscope (200 kV). X-ray photoelectron spectroscopy (XPS) was conducted on VG Microtech ESCA 2000 using a monochromic Al X-ray source, and the binding energies (BE) were calibrated by setting the measured BE of C 1s to 284.8 eV. The N\(_2\) adsorption-desorption isotherms were collected using a Quantachrome Instruments Autosorb-iQ2-MP at 77 K. Prior to the measurement, the samples were degassed at 200 °C. Raman spectra were collected by a Renishaw System 1000 micro-Raman spectroscope. Inductively coupled plasma optical emission spectroscopy was conducted on Agilent 720.

Synthesis of 3-MeOsalophen-ligand ligand

In a typical experiment, 1, 2-diaminobenzene (2.16 g, 20 mmol) and 3-methoxysalicylaldehyde (1.24 g, 10 mmol) was added to a round bottomed flask using ethanol as a solvent, and then stirred in a constant temperature oil bath at 80 °C for 3 h. After above reaction, the orange powder of 3-MeOsalophen ligand were washed with ethanol and collected by filtration, and finally dried in air.

Synthesis of Co\(_2\) complex

CoCl\(_2\)·6H\(_2\)O (0.5 mol, 0.118 g) was added to a solution of the 3-MeOsalophen ligand (0.5 mol, 0.188 g) in CH\(_3\)OH (10 mL). The mixture was stirred for 10 min before being added to a 25 mL Teflon-lined autoclave and then heated at 80 °C for 1 day. The autoclave was then cooled down to room temperature at a rate of 10 °C·h\(^{-1}\), and brown crystals of Co\(_2\) complex were collected by filtration, washed with CH\(_3\)OH, and dried in air. Yield (based on Co): approx. 40 %. Anal. calcd. for Co\(_2\)C\(_{25}\)H\(_{31}\)Cl\(_3\)N\(_2\)O\(_8\): C, 42.15; H, 4.35; N, 3.93 %. Found: C, 42.21; H, 4.32; N, 3.95 %. FT-IR (KBr, cm\(^{-1}\)): 3388 (m), 1614 (s), 1468(s), 1380 (s), 1320 (s), 1249 (s), 1200(s), 1108 (m), 981 (m), 736 (m), 535(w).

Synthesis of Co/CoO\(_x\)@NCs from Co\(_2\) complex with different pyrolysis condition

The aforementioned of Co\(_2\) complex was transferred into a quartz boat in the center of a tube furnace and annealed at under an Ar flow. The measurements were conducted from room temperature to target temperature with 5 K·min\(^{-1}\) gradient. The samples were cooled down to room temperature for other tests.
Synthesis of Co/CoO\textsubscript{x}@NCs from Co\textsubscript{2} complex with different pyrolysis condition

The aforementioned of Co\textsubscript{2} complex was transferred into a quartz boat in the center of a tube furnace and annealed at under an Ar flow. The measurements were conducted from room temperature to target temperature with 5 K·min\textsuperscript{-1} gradient. The samples finally cooled down to room temperature for other tests.

X-ray Crystallography

Single crystals of compound were collected on a XtaLAB Synergy with graphite monochromated Mo-K\textsubscript{\alpha} radiation (\(\lambda = 0.71073 \text{\AA}\)) at 100(2) K. The intensity data were corrected for Lorentz and polarization effects (SAINT), and empirical absorption corrections based on equivalent reflections were applied (SADABS). The structures were solved by direct method and refined on \(F^2\) by full-matrix least-squares method with SHELXTL program package. All non-hydrogen atoms were refined with anisotropic thermal parameters, and the hydrogen atoms of organic cations were generated theoretically onto the specific carbon atoms and refined isotropically with fixed thermal factors. The crystallographic details are provided in Table S1, and selected bond lengths and angles are given in Table S2. CCDC reference numbers 1882936.

Thermogravimetric Analysis Combined with Mass Spectrometry (TG-MS)

The thermogravimetric analysis was performed on a Rigaku Thermo Mass Photo (TG-MS) with a Skimmer type mass spectrometer (MS/EI). The measurements were conducted from 20-800 °C with 5 K·min\textsuperscript{-1} gradient, after which the samples were cooled down to room temperature. The weight of initial samples was about 3.0 mg, and the pyrolysis process was conducted under a helium gas flow of 300 mL·min\textsuperscript{-1}.

Electrochemical tests

The electrochemical and electrocatalytic properties of the materials toward OER were comprehensively evaluated with a traditional three-electrode configuration using an electrochemical station (CHI 760E) in 1 M KOH solutions at room temperature. In our case, carbon paper uniformly coated with the electrocatalysts was used as the working electrode, an HgHg\textsubscript{2}Cl\textsubscript{2} (saturated KCl solution) electrode was used as reference electrode, while the counter electrode was a graphite rod electrode. The geometric area of the carbon paper was used to normalize the current density. The working electrode was prepared using the following procedure. Typically, 3.0 mg as-obtained Co@CoO\textsubscript{x}-NCs material was first dispersed in 300 \(\mu\)L of 2-propanol and 200 \(\mu\)L CH\textsubscript{3}OH mixture under sonication for 30 minutes to form a homogeneous suspension or ink. Then, 70 \(\mu\)L of the resulting dispersion was pipetted using a micropipette and drop-casted onto the surface of a carbon paper with the area of 0.25 cm\textsuperscript{2}, leading a catalyst loading of 1.68 mg·cm\textsuperscript{-2}. After letting the catalyst-coated electrode surface dry under atmospheric conditions, 2 \(\mu\)L of Nafion (5 % in 2-propanol) solution was drop-casted on the top of the electrode to protect the catalyst. The electrode was then allowed to completely dry under ambient conditions. The working electrodes underwent 20 cycles of cycle voltammetry until stabilization of current before data collection. Electrochemical
impedance spectroscopy (EIS) measurements of the catalysts were conducted at a potential of 1.6 V vs RHE in a frequency range from 10 kHz to 100 mHz by using an AC voltage with 5 mV amplitude. Double layer capacitance ($C_{dl}$) of all the as-obtained samples was measured in 1 M KOH solution. Then, five CVs with different scan rates (2, 4, 6, 8, 10 and 12 mV·s$^{-1}$) were obtained in a potential window of 0.1 to 0.2 V, in which no Faradaic process occurs and the current emerges mainly from the double layer capacitance.
Table S1. Crystallographic data for compound Co₂.

| Compounds          | Co₂                  |
|--------------------|----------------------|
| Formula            | C23 H23 Cl3 Co2 N2 O6 |
| Formula weight     | 647.63               |
| T (K)              | 293                  |
| Crystal system     | monoclinic           |
| Space group        | P2₁/c.               |
| a (Å)              | 14.9719(4)           |
| b (Å)              | 7.6746(3)            |
| c (Å)              | 24.3948(6)           |
| α (°)              | 90                   |
| β (°)              | 91.371(3)            |
| γ (°)              | 90                   |
| V (Å³)             | 2802.24(15)          |
| Z                  | 4                    |
| Dc (g cm⁻³)        | 1.530                |
| μ (mm⁻¹)           | 12.243               |
| Reflns coll.       | 15871                |
| Unique reflns      | 6093                 |
| Rint               | 0.0483               |
| R₁[I ≥ 2σ(I)]      | 0.0854               |
| wR₂̂(all data)      | 0.2561               |
| GOF                | 1.041                |

aR₁ = \sum |F_o| - |F_c| / \sum |F_o|.  
bwR₂ = \{ \sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2) \}^{1/2}.  


Table S2. Selected Bond lengths (Å) and angles (°) for compound Co2.

| Bond/Angle | Value       |
|------------|-------------|
| Co1-Cl1    | 2.271(17)   |
| Co1-Cl2    | 2.274(17)   |
| Co1-O1     | 1.900(4)    |
| Co1-O2     | 2.235(4)    |
| Co1-N1     | 1.878(4)    |
| Co1-N2     | 1.882(4)    |
| Co2-O5     | 2.089(5)    |
| Co2-O6     | 2.058(5)    |
| Co2-Cl3    | 2.326(19)   |
| O1-Co1-Cl1 | 90.680(13)  |
| O1-Co1-Cl2 | 90.590(13)  |
| N1-Co1-Cl1 | 89.960(15)  |
| N1-Co1-Cl2 | 89.620(15)  |
| O2-Co1-Cl1 | 81.060(16)  |
| O2-Co1-Cl2 | 90.410(13)  |
| N2-Co1-Cl1 | 89.040(14)  |
| N2-Co1-Cl2 | 89.730(14)  |
| O2-Co2-Cl3 | 150.870(12) |
| O6-Co2-O1  | 87.200(2)   |
| O6-Co2-O2  | 85.880(18)  |
| O6-Co2-Cl3 | 94.460(16)  |
| N1-Co1-O1  | 86.830(19)  |
| N1-Co1-O2  | 85.860(19)  |
| O2-Co1-O1  | 90.410(13)  |
| O2-Co1-O2  | 90.410(13)  |
| N2-Co1-O1  | 89.300(18)  |
| O2-Co2-O1  | 68.780(14)  |
| O2-Co2-O2  | 87.230(18)  |
| O6-Co2-O3  | 93.930(15)  |
| O6-Co2-O5  | 171.600(2)  |
Figure S1. The IR spectrum for compound for Co$_2$.

Figure S2. Experimental and simulated PXRD patterns for Co$_2$. 
Figure S3. View of the Co$_2$ Complex showing the intramolecular.
Table S3. The specific phase changes and facets information for Co/CoOₓ@NCs.

| Phases | Samples         | Cubic Co JCPDS 15-0806 | Hexagonal Co JCPDS 05-0727 | CoO JCPDS 43-1004 | CoₓO₄ JCPDS 43-1003 |
|--------|-----------------|------------------------|----------------------------|------------------|------------------|
|        | Co/CoOₓ@NC-500  | (111) (200) (220)      | (100) (002)                | /                | /                |
|        | Co/CoOₓ@NC-600  | (111) (200) (220)      | /                          | (111) (200) (220) | /                |
|        | Co/CoOₓ@NC-700  | (111) (200) (220)      | /                          | (111) (200) (220) (311) (222) | (220) (311) (511) (440) |
|        | Co/CoOₓ@NC-800  | (111) (200) (220)      | /                          | (111) (200) (220) (311) (222) | /                |
|        | Co/CoOₓ@NC-900  | (111) (200) (220)      | /                          | (111) (200) (220) (311) (222) | (111)(220)(311)(222)(400)(422)(511)(440) |
In this manuscript, pyrolysis temperature indeed plays a key role on the final catalytic performance. In order to further make clearer our results, we have made systematically explanations as below.

1. **TG-MS along with TEM confirms the study range of pyrolysis temperature is 600-900 °C**

   According to the TG-MS analysis (Figure 3b), when the temperature rises to a temperature of about 600 °C, no new fragments are detected, thus the violent decomposition and recombination process has basically stopped. Meanwhile, it can be seen from the TEM (Figure S4) images that the core-shell structure which is favorable for electrocatalysis has been formed. Therefore, we further systematically study the pyrolysis temperature range from 600-900 °C to explore the best pyrolysis temperature for superior catalytic performance.

2. **Further characterization confirms the differences of nanostructures among 600-900 °C on catalytic performance**

   We conducted XPS (Figure 2a-d), Raman spectroscopy (Figure 2e) and BET surface area (Figure 2f), showing

---

**Figure S4.** TEM images of the Co/CoOₓ@NCs at different pyrolysis temperatures: (a) Co/CoOₓ@NC-600, (b) Co/CoOₓ@NC-700, (c) Co/CoOₓ@NC-800, (d) Co/CoOₓ@NC-900.
that pyrolysis temperature could influence the ratio of \( \text{Co}^{2+}/\text{Co}^{3+} \), ratio of \( I_D/I_G \) and BET surface areas in different \( \text{Co/CoO}_x@\text{NC} \) samples, leading to effect on catalytic performance. In our case, \( \text{Co/CoO}_x@\text{NC-800} \) sample has higher \( \text{Co}^{2+}/\text{Co}^{3+} \) and reasonable \( I_D/I_G \) ratios as well as relatively higher BET surface areas compared with other \( \text{Co/CoO}_x@\text{NCs} \). And above merits are all beneficial for realizing superior catalytic performance. Interestingly, we combined the results of TG-MS and found that a reductive atmosphere was detected when pyrolysis temperature between 520-700 °C, further answering for the higher \( \text{Co}^{2+}/\text{Co}^{3+} \) ratios and relatively higher BET surface areas.
Table S4. Elemental quantification determined by XPS for Co/CoO₉@NCs.

| Elements Samples         | C (at %) | N (at %) | O (at %) | Co (at %) |
|--------------------------|----------|----------|----------|-----------|
| Co/CoO₉@NC-600           | 79.49    | 6.54     | 10.77    | 3.2       |
| Co/CoO₉@NC-700           | 89.61    | 3.39     | 5.63     | 1.37      |
| Co/CoO₉@NC-800           | 91.08    | 2.2      | 5.29     | 1.42      |
| Co/CoO₉@NC-900           | 83.32    | 3.35     | 11.47    | 1.87      |
Figure S5. High resolution XPS spectra of C 1s peak of Co/CoO$_x$@NCs at different pyrolysis temperatures: (a) Co/CoO$_x$@NC-600, (b) Co/CoO$_x$@NC-700, (c) Co/CoO$_x$@NC-800, (d) Co/CoO$_x$@NC-900.
**Figure S6.** High resolution XPS spectra of O 1s peak of Co/CoOₓ@NCs at different pyrolysis temperatures: (a) Co/CoOₓ@NC-600, (b) Co/CoOₓ@NC-700, (c) Co/CoOₓ@NC-800, (d) Co/CoOₓ@NC-900.
**Figure S7.** Composition of Co/CoO₆@NCs as a function of their pyrolysis temperatures: percentages of the different: (a) C and (b) O species present in Co/CoO₆@NCs.

**Table S5.** Fitting results for C 1s spectra of various catalysts with different pyrolysis temperatures.

| Species Samples | sp²C (%) | C-N or C-O (%) | C=N or C=O (%) |
|-----------------|----------|----------------|---------------|
|                 | 284.6 eV | 285.6 eV       | 287.5 eV       |
| Co/CoO₆@NC-600  | 57.5     | 27.9           | 14.6           |
| Co/CoO₆@NC-700  | 54.1     | 30.9           | 15.0           |
| Co/CoO₆@NC-800  | 54.7     | 28.3           | 17.1           |
| Co/CoO₆@NC-900  | 55.9     | 27.6           | 16.5           |
Table S6. Fitting results for O 1s spectra of various catalysts with different pyrolysis temperatures.

| Species Samples       | Oxygen defect (%) | Co-O (%) | C-O (%) |
|-----------------------|-------------------|----------|---------|
|                       | 531.6 eV          | 529.8 eV | 533.5 eV|
| Co/CoOₓ@NC-600        | 49.9              | 21.1     | 29.0    |
| Co/CoOₓ@NC-700        | 58.4              | 11.8     | 29.8    |
| Co/CoOₓ@NC-800        | 40.8              | 14.2     | 45.0    |
| Co/CoOₓ@NC-900        | 42.0              | 25.0     | 32.0    |
Figure S8. High resolution XPS spectra of Co 2p peak of Co/CoO$_x$@NCs at different pyrolysis temperatures: (a) Co/CoO$_x$@NC-600, (b) Co/CoO$_x$@NC-700, (c) Co/CoO$_x$@NC-900.
Figure S9. High resolution XPS spectra of N 1s peak of Co/CoOₓ@NCs at different pyrolysis temperatures: (a) Co/CoOₓ@NC-600, (b) Co/CoOₓ@NC-700, (c) Co/CoOₓ@NC-900 and (d) N species present in Co/CoOₓ@NCs.
**Table S7.** Fitting results for N 1s spectra of various catalysts with different pyrolysis temperatures.

| Species                  | Graphitic-N (%) | Co-Nₓ (%) | Pyridine-N (%) | Pyrrolic-N (%) |
|--------------------------|-----------------|-----------|----------------|----------------|
|                          | 401.2 eV        | 398.5 eV  | 399.4 eV       | 400.6 eV       |
| Co@CoOₓ/NC-600           | 18.2            | 19.8      | 36.2           | 25.8           |
| Co@CoOₓ/NC-700           | 25.4            | 17.8      | 19.1           | 37.7           |
| Co@CoOₓ/NC-800           | 26.9            | 17.3      | 16.1           | 39.7           |
| Co@CoOₓ/NC-900           | 31.8            | 15.3      | 9.1            | 43.8           |
Table S8. The Co content in Co/CoOₓ@NCs was determined by inductively coupled plasma optical emission spectroscopy.

| Samples     | Elements | Co (wt%) |
|-------------|----------|----------|
| Co/CoOₓ@NC-600 |          | 35.75    |
| Co/CoOₓ@NC-700 |          | 50.42    |
| Co/CoOₓ@NC-800 |          | 40.49    |
| Co/CoOₓ@NC-900 |          | 68.42    |
Figure S10. $N_2$ sorption isotherms of the Co/CoO$_x$@NCs at 77 K: (a) Co/CoO$_x$@NC-600, (b) Co/CoO$_x$@NC-700, (c) Co/CoO$_x$@NC-800, (d) Co/CoO$_x$@NC-900.
Figure S11. Related pore size distribution of the Co/CoO$_x$@NCs by the QSDFT method: (a) Co/CoO$_x$@NC-600, (b) Co/CoO$_x$@NC-700, (c) Co/CoO$_x$@NC-800, (d) Co/CoO$_x$@NC-900.
Figure S12. TG profile of 3-MeOsalophen-ligand (Bis[3-Methoxysalicylydene]-1,2 Iminophenylenediamine).
Figure S13. TG-MS curves of corresponding 3-MeOsalophen-ligand pyrolysis tracking process. The fragments m/z = 15 (CH$_3$), m/z = 31 (CH$_3$O), m/z=78 (C$_6$H$_6$) and m/z=39, 46, 55, 67, 92, 95, 110, 124, 138 (Fragments produced by the decomposition of 3-MeOsalophen-ligand frameworks).
Table S9. Representative Co-based OER electrocatalyst using pyrolysis treatment forming Co/CoOₙ@NC nanostructures from different kinds of Co precursors.

| Materials                      | Precursors                                      | Methods        | $\eta_{10 \text{ mA cm}^{-2}}$ (mV) | Tafel slope (mV decade⁻¹) | References                  |
|--------------------------------|-------------------------------------------------|----------------|-------------------------------------|---------------------------|-----------------------------|
| Co₉S₈@NOSC                    | (NH₄)₂S₂O₈, S-PPY, HCl                         | Pyrolysis      | 340                                 | 68                        | Adv. Funct. Mater. 2017, 27, 1606585. |
| Core–shell Co@NC              | Co₃[Co(CN)₆]₂·nH₂O-PB                         | Pyrolysis      | 280                                 | 62.5                      | Adv. Energy Mater. 2018, 1702838. |
| Core–shell Co@Co₃O₄ nanoparticles | ZIF 67                                        | Pyrolysis      | 1.64 V (RHE) 0.1 M KOH              | 54.3                      | Angew. Chem. Int. Ed. 2016, 55, 4087. |
| MOF-Derived Co@N-C            | Co-based MOF                                    | Pyrolysis      | 350                                 | 79                        | Adv. Mater. 2018, 30, 1705431. |
| Mononuclear CoII Coordination Complex | Co-based MOF                                 | /              | 390 mV at 1 mA·cm⁻² (vs. NHE) 0.1 M KOH | 128                      | Angew. Chem. Int. Ed. 2016, 55, 2425. |
| Co/CoO@Co–N-C                 | shrimp-shell, Co salt                          | Pyrolysis      | 0.63 V (vs. Ag/AgCl) 0.1 M KOH      | /                         | Chem. Commun. 2016, 52, 5946. |
| Complex derived Co/CoOₙ@NC    | 3-MeOsalophen-ligand-ligand based Co₂          | Pyrolysis      | 288                                 | 98                        | Our work                   |

Note: $\eta_{10 \text{ mA cm}^{-2}}$ is the overpotential at 10 mA·cm⁻², RHE is the reversible hydrogen electrode, and Tafel slope is a measure of the reaction kinetics.
Figure S14. Cyclic voltammograms (CVs) measured over Co/CoO_x@NCs modified electrodes in the double layer capacitance charging region at scan rates of 2, 4, 6, 8, 10 and 12 mV·s^{-1} in 1.0 M aqueous KOH electrolyte. The materials include: (a) Co/CoO_x@NC-600, (b) Co/CoO_x@NC-700, (c) Co/CoO_x@NC-800, (d) Co/CoO_x@NC-900.
Figure S15. Powder XRD patterns of Co/CoO$_x$@NC-800 before and after the catalysis, as well as the carbon paper.