Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus

Nur Suhanawati Ashaari1, Mohd Hairul Ab. Rahim1,2, Suriana Sabri3,4, Kok Song Lai5, Adelene Ai-Lian Song4, Raha Abdul Rahim1 & Janna Ong Abdullah1*

Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed.

PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis–Menten constant (K>m) and catalytic efficiency (kcat/K>m) values of 16.72 ± 1.32 µM and 9.57 × 10⁻³ µM⁻¹ s⁻¹, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.

Terpenoids are structurally diverse and are the most abundant natural products among the myriad of compounds produced by plants, with biological roles ranging from growth and development to intracellular signaling and defense against predatory species1. Applications of these valuable compounds in the industries include as pharmaceuticals, flavors, fragrances and biofuels. In higher plants, terpenoids are synthesized via either the cytosolic mevalonate (MVA) pathway or the plastidial methylerythritol phosphate (MEP) pathway, where the precursors are converted into structurally diverse terpenoids by the family of terpene synthases (TPSs). Sesquiterpene synthases responsible for sesquiterpenes (C15) production are localized in the cytosol, whereas monoterpene synthases that catalyze the production of monoterpenes (C10) are present in the plastids. Monoterpene synthases (600–650 amino acids) are longer than sesquiterpene synthases (550–580 amino acids) due to their N-terminal

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. 2Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia. 3Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. 4Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. 5Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates. *email: janna@upm.edu.my
signal peptides that target the initial translation products towards the plastid. A number of plant monoterpene and sesquiterpene synthases of molecular masses ranging from 50 to 100 kDa (monomers or homodimers) have been isolated and characterized with similar properties such as requirement for a divalent metal ion, having pH values near 5.0 and pH optimum within a unit of neutrality.

Despite the lack of significant sequence similarities, terpene synthases share highly conserved tertiary and quaternary structural features dominated by α-helical folds known as class I terpene synthase fold. These proteins consist entirely of α-helices and short connecting loops and turns that are organized into two structural domains of a non-functional N-terminus and a catalytically active C-terminus. The class I terpene synthases which include monoterpene and sesquiterpene synthases utilize a trinuclear magnesium cluster coordinated by two conserved metal-binding motifs (DDxD and NSE/DTE) to initiate catalysis. The trinuclear magnesium cluster facilitates orientation of the substrate diphosphate moiety in the active site and triggers substrate ionization that generates reactive carbocation intermediates which undergo a series of cyclization, hydride shifts or other arrangements until the reactions are terminated by protons loss or by the addition of water. The ligand binding causes conformational changes that cap and sequester the active site, thereby protecting the reactive carbocation intermediates from premature quenching by bulk solvents.

One of the most fascinating features of the terpene synthases group is its ability to form a single product or multiple products from a sole substrate. Furthermore, some terpene synthases exhibit multi-substrate abilities by synthesizing terpenes of different chain lengths depending on the corresponding substrate availability. The structural basis of fidelity and promiscuity of the terpene synthases is related to the contour of the active site that serves as a template for catalysis by ensuring substrates and intermediates bind in the proper conformation, thereby controlling the formation of final catalysis product(s). Accordingly, the active site contours are product-like especially for high fidelity synthases to ensure the generation of specific product(s).

In our previous study, a putative monoterpene synthase gene (PamTps1) was isolated from P. amboinicus and introduced into the E. coli Rosetta 2 (DE3), which resulted in the production of linalool and nerolidol. Functional characterization demonstrated that this multi-substrate enzyme predominantly catalyzed formation of linalool and nerolidol from GPP and FPP, respectively, and was designated as a linalool/nerolidol synthase.

The optimal pH for terpene synthases is within a unit of neutrality as reviewed and the position of both GPP and the FPP substrates in the active site were also preserved in this bifunctional enzyme. The identification of the key residues involved in the active site architecture and catalysis reaction were also conducted. This model will serve as a basis for protein engineering to improve this bifunctional synthase with regard to product specificity or catalytic efficiency, and as a guide to future exploitations of this enzyme in terpenoids production.

Results and discussion

Effects of pH and temperature on PamTps1 activity. The PamTps1 activity was investigated using GPP as a substrate over a pH range of 5.5 to 9.0. At pH 6.5, the maximum catalytic activity was observed but was reduced to less than 10% of the maximum activity at pH 5.5 and pH 9 (Fig. 1A). This result was similar to the 3R-linalool synthase of Mentha citrate which exhibited an optimum pH close to pH 6.5 and a half maximum velocity at pH 7.5. Typically, the optimal pH for terpene synthases is within a unit of neutrality as reviewed by Bohlmann et al. Previous characterization plant linalool synthases showed an optimal pH range of 6.0–8.0. Nevertheless, it was also noted that monoterpene synthases had a pH optima of 6–7 that correlated with the pH of the chloroplast in plants, which corroborated the findings of PamTps1. Solvolytic decomposition of GPP to linalool in the presence of divalent cation was reported to occur under acidic condition. As a result, the effect of pH below 5.5 could not be determined accurately due to an increase of substrate decomposition to linalool, which was also observed by Crowell et al.

The enzymatic activity of PamTps1 was conducted at temperatures ranging from 25 to 50 °C. Optimal catalytic activity was observed at 30 °C, with only half of the maximal activity noted at 25 °C and 37 °C (Fig. 1B). The observed result was similar to the temperature range (30–40 °C) reported for plant terpene synthases such as ocimene synthase of Liliun, linalool synthase of coriander and Hedychium coronarium, cineole synthase of lavender and β-sesquiphellandranne synthase of Persicaria minor. The catalytic activity of PamTps1 dropped drastically beyond the optimum temperature, with only less than 10% of the full velocity retained at 50 °C. This could probably be linked to the destabilization of the three-dimensional structure of the enzyme at higher temperatures and ultimately contributed to denaturation and irreversible loss of activity.
Figure 1. Biochemical characterization of PamTps1. (A) pH; (B) Temperature; (C) Mg$^{2+}$ concentrations; (D) Mn$^{2+}$ concentrations. Michaelis–Menten plot of PamTps1 at different concentrations of (E) Mn$^{2+}$; (F) Mg$^{2+}$; (G) GPP and (H) FPP. The saturation curve was constructed using Michaelis–Menten equation by hyperbolic regression. Values were reported as the mean of relative activity ± SD of triplicate analysis.
Effects of divalent metals on PamTps1 activity. Terpene synthases have an absolute requirement for a divalent metal ion such as Mg$^{2+}$ or Mn$^{2+}$ as a cofactor. The role of divalent metal ion in terpene synthases catalysis has been widely discussed and presumably involved in both substrate binding and catalysis\(^{36-37}\). Chelation of metal ion such as Mg$^{2+}$, neutralizes two of the three negative charges of the diphosphate moiety of the substrate, thereby assisting the ionization of the allylic substrate into highly reactive carbocation intermediates\(^{38}\). Thus, divalent metal ions preferences of PamTps1 and their influence on the catalytic activity were evaluated at different concentrations of Mg$^{2+}$ (0–250 mM) and Mn$^{2+}$ (0–10 mM).

In the absence of a divalent metal ion, the PamTps1 activity was negligible. However, the activity was restored by the provision of either Mg$^{2+}$ or Mn$^{2+}$, which suggested an absolute requirement for a metal ion cofactor for catalytic activity (Fig. 1C,D). A maximal activity was obtained with Mn$^{2+}$ at 0.5 mM, but was inhibited as Mn$^{2+}$ concentration increased to 10 mM (Fig. 1D). Other characterized plant terpene synthases demonstrated maximum activity with manganese concentrations at less than 1 mM\(^{28,39,40}\). On the other hand, in the presence of Mg$^{2+}$, the catalytic activity of PamTps1 increased steadily from 2 mM to a maximum activity at 20 mM, but was inhibited at 250 mM (Fig. 1C). This optimal concentration of Mg$^{2+}$ finding was also observed in *C. citrata* linalool synthase\(^{38}\) and Japanese pepper terpene synthases\(^{90}\). In this study, PamTps1 showed a preference for Mg$^{2+}$ for catalysis with 2.1 folds increase in activity compared to Mn$^{2+}$. Likewise, other characterized plant terpene synthases that favored Mg$^{2+}$ over Mn$^{2+}$ included linalool/nerolidol synthase 1 and *Artemisia annua* monoterpen synthases\(^{39,41}\), *Lilium‘Siberia’ terpene synthase\(^{39,42}\) and *Santalum album* terpene synthases\(^{41}\). In contrast, linalool synthase of *lavender*\(^{28}\) and *C. sinensis* limonene synthase\(^{39}\) showed preferences for Mn$^{2+}$ as a cofactor with high terpene yields when 1–5 mM of Mn$^{2+}$ were used.

Kinetic parameters of PamTps1. In this study, PamTps1 activity was inhibited when Mg$^{2+}$ and Mn$^{2+}$ concentrations beyond 50 mM and 5 mM, respectively, were used. Therefore, the *K_m* value was estimated by a non-linear Michaelis–Menten curve using lower concentrations of Mg$^{2+}$ and Mn$^{2+}$ (Fig. 1E,F) which gave 1.74 ± 0.35 mM and 0.05 ± 0.001 mM, respectively (Table 1). These values were comparable to those obtained with kiwi terpene synthases\(^{38}\), snapdragon linalool/nerolidol synthase\(^{38}\) and sweet basil geraniol synthase\(^{38}\). Nevertheless, in some reported metal ions studies, there are other terpene synthases that recorded *K_m* values of less than 1 mM\(^{23,27,45}\) while higher *K_m* values were also noted in some terpene synthases including *A. annua* linalool synthase\(^{39}\) and *y*-terpene synthases\(^{10,47}\). Although *K_m* value for PamTps1 was substantially lower when using Mn$^{2+}$, its *V_max* value was only 43% of that with Mn$^{2+}$. It is presumed that PamTps1 is more likely to operate with Mg$^{2+}$ cofactor in planta due to the higher concentration of Mg$^{2+}$ in plant cells as compared to the Mn$^{2+}$\(^{48,49}\).

PamTps1 is a plastid-targeted enzyme, where the GPP pool was located. Parallel observations were seen in lavender\(^{28}\) and *Freesia*\(^{55}\).

Metal/substrate	*V_max* (µmol mg$^{-1}$)	*K_m* (mM)	*k_cat* (s$^{-1}$)	*k_cat/K_m* (mM$^{-1}$ s$^{-1}$)
Mg$^{2+}$	14.84 ± 1.40	1.74 ± 0.35	0.10	0.058
Mn$^{2+}$	6.46 ± 0.35	0.05 ± 0.00	0.04	0.800
GPP**	24.16 ± 3.75	16.72 ± 1.32	0.16	9.57 × 10$^{-3}$
FPP**	14.85 ± 2.80	40.47 ± 3.83	0.10	2.47 × 10$^{-3}$

Table 1. Kinetic properties of PamTps1. *Values when Mg$^{2+}$ and Mn$^{2+}$ were used in the presence of 27 µM GPP. **Values for GPP and FPP were measured in the presence of 20 mM Mg$^{2+}$. *V_max* = Maximal velocity; *K_m* = Michaelis–Menten constant; *k_cat* = Turnover number; *k_cat/K_m* = Catalytic efficiency. Values were reported as the mean of relative activity ± SD of triplicate analysis.

\(k_{cat}/K_m\) = Turnover number; values were reported as the mean of relative activity ± SD of triplicate analysis.
Secondary structure prediction. The secondary structure of PamTps1 was predicted using PSIPRED server\(^6\) followed by identification and annotation of the protein domain using MOTIF and SMART\(^7\). The PSIPRED tool predicted that the secondary structure of PamTps1 would consist entirely of α-helices (24 α-helices) connected by coils, with no strands or β-sheets observed except for the two extended strands located at the N-terminal signal peptide region (Fig. S1). Through domain analysis, it was revealed that these α-helices were organized into two structural domains of N-terminal (residues: 66–245) (Plam: PF01397) and C-terminal metal binding domain (residues: 277–540) (Pram: PF03936) with domain boundary located at residue M271 as determined by DomPRED. These predictions are in agreement with general features of most plant terpene synthases that adopt an α-helical architecture, which are organized into two domains of N-terminal region that has structural similarity to glycosylhydrolases\(^8\) and the C-terminal domain containing the catalytic site\(^2\).

Protein homology modelling of the PamTps1. The PamTps1 was modeled on the crystal structure of *Salvia officinalis* (+)-bornyl diphosphate synthase (BPPS) (1N24)\(^9\) using residues that correspond to the complete amino acid sequence in accordance to the RRxW motif. The chosen BPPS template featured a closed active site conformation with Mg\(^{2+}\) and its product, and shared 67.04% sequence identity. The residue numbers described hereafter corresponded to the numbering of amino acids immediately following the RRxW motif (Fig. S2). The predicted PamTps1 structure as shown in Fig. 2, revealed that the enzyme comprised of two structural domains of N- and C-terminal, connecting with short loops and turns. The N-terminal domain (residues 1–214) of PamTps1 consisted of 14 α-helices arranged in an α-barrel with minor structural differences to that of BPPS\(^5\). Although there was no established catalytic function for this N-terminal domain, it was reported that this domain was involved in capping the active site pocket upon substrate binding, and presumably shielded the reactive carbocation intermediates from water as observed in the crystal structure of BPPS, *Taxus brevifolia* taxadiene synthase (PDB ID: 3PSR) and *Gossypium arboretum* δ-cadinene synthase (PDB ID: 3G4F)\(^5,9\). The presence of this apparently non-functional N-terminal domain in terpene synthases may have been due to an evolutionary vestige from copalyl diphosphate synthase–kaurene synthase, which was the ancestor of all modern terpene synthases that possess both functional catalytic domains\(^9\).

The N-terminal domain contained two conserved motifs that were present in typical plant terpene synthases, namely the RRxW and LQLYEASFLL motifs. The tandem arginine motif was found in many plant monoterpen synthases and was thought to mark the approximate cleavage site of the plastid-targeting sequence\(^6\). A previous truncation study of this motif from a limonene synthase suggested that the RR motif was required for initial isomerization of GPP to linalyl diphosphate (LPP), owing to the inability of the truncated limonene synthase to accept GPP as a substrate, while still functioning with LPP as a substrate for the cyclization step\(^6,1\). These arginine residues may also contribute to the stabilization of the closed active site while still allowing flexibility that was necessary for the binding of two structurally different prenyl diphosphates (GPP and LPP) as observed in limonene synthase\(^6\). Since PamTps1 did not undergo a cyclisation reaction, it was likely that the RRxW motif might only be involved in the capturing of the PamTps1 active site and not in the catalysis reaction. The InterProScan analysis also predicted that the RRxW region acted as an active site lid in the PamTps1. Besides that, the LQLYEASFLL motif that was assumed to be part of the active site\(^6,2,1\) occurred as LQLYEASFLE in PamTps1, and there were no observable differences in the overall structure of the enzyme for amino acid substitution from leucine to glutamic acid.

The larger C-terminal domain (residues 215–542) adopted an α-helical architecture known as class I terpene synthase fold which consisted of 16 α-helices, where the hydrophobic pocket of the active site cavity was formed by six α-helices (C, D, F, G, H and J) (Fig. 2). This domain was well conserved with an RMSD value of 0.190 Å by six α-helices (C, D, F, G, H and J) (Fig. 2). This domain was well conserved with an RMSD value of 0.190 Å synthase fold which consisted of 16 α-helices, where the hydrophobic pocket of the active site cavity was formed by six α-helices (C, D, F, G, H and J) (Fig. 2). This domain was well conserved with an RMSD value of 0.190 Å synthase fold which consisted of 16 α-helices, where the hydrophobic pocket of the active site cavity was formed by six α-helices (C, D, F, G, H and J) (Fig. 2). This domain was well conserved with an RMSD value of 0.190 Å synthase fold which consisted of 16 α-helices, where the hydrophobic pocket of the active site cavity was formed by six α-helices (C, D, F, G, H and J) (Fig. 2).

Validation of the PamTps1 model. The reliability of the model was first evaluated by the GMQE and Qualitative Model Energy Analysis (QMEAN) scores provided by the SWISS-MODEL tool. The GMQE score is expressed as a number between 0 and 1, where higher numbers indicate higher reliability of the model\(^6\). The QMEAN Z-score provides an estimate degree of structural features similarity observed in the model with scores around 0 indicate good agreement between model structure and template\(^6\). The PamTps1 model scores of 0.82 and –1.32 for respective GMQE and QMEAN showed that the built model was reliable and satisfactory. Further validation by PROCHECK to assess the stereochemical quality of generated model showed that 92.8% of PamTps1 residues fall in most favored regions, 6.6% residues in additional allowed regions, 0.2% residues in generously allowed regions and only 0.4% residues in the disallowed regions suggesting the acceptability of the modeled structure (Fig. S2, Table S3). PROVE analysis revealed that the quality of the predicted 3D structure of PamTps1 model was good and reliable with the respective Z-score mean and Z-score RMS for the entire structure of 0.487 and 1.421, respectively. The ERRAT analysis statistics of non-bonded interactions between different
Figure 2. Protein homology modelling of PamTps1 using SWISS-MODEL server showed the structural domains and the active site of the enzyme. (A) model structure of PamTps1 made up of α-helices with N-terminal domain (green) and C-terminal domain (blue). (B) Ribbon view of PamTps1 model. The helical segment was designated according to Tarshis et al. All conserved motifs were labelled in the figure and Mg$^{2+}$ was illustrated as green spheres.
atom types based on characteristic atomic interactions. The overall ERRAT quality factor value is expressed as the percentage of the protein for which the calculated value is less than the 95% rejection limit. A good high-resolution structure typically yields values of 95% or higher, and the PamTps1 model yielded an overall quality factor of 95.88%, which was very satisfactory. Another program used for validation of protein structure was the Verify3D, which determines compatibility of an atomic model (3D) with its own amino acid sequence (1D) by assigning structural class based on its location and environment. The Verify3D analysis of PamTps1 model revealed that 95.73% of the residues had an average 3D–1D score ≥ 0.2. As the cut-off score ≥ 0, this implies that the predicted model was valid. ProSA was used to check the 3D model of PamTps1 for potential errors where positive value of the z-score corresponded to problematic or erroneous region of a model. The Z-score of −12 for PamTps1 model was within the acceptable range of X-ray studies and this value was close to the value of the template (−10.92) suggesting that the predicted model was reliable and close enough to experimentally determine structure (Fig. S2, Table S3).

Molecular docking of PamTps1 with prenyl diphosphate substrates. To gain further insight into the active site of the enzyme investigated here, the model structure of PamTps1 was carried out with molecular docking using GPP (C_{10}) and FPP (C_{15}) substrates. Docking of the prenyl diphosphate substrates yielded multiple docking positions. The criteria for choosing the best docking position were based on the lowest docking score and the number of hydrogen bonds between the substrate and the amino acid residues. A docking position with the least docking score has the highest affinity towards the ligand, and hence is the best docked conformation. Hydrogen bonds contribute to the stability of proteins and specificity of protein–ligand interactions, which is also an important consideration for selection of the docking position. The docking results were further analyzed using Chimera and LigPlot + to generate 2D and 3D ligand–protein interaction diagrams, respectively.

Figure 3. Superimposition of PamTps1 model (purple) with BPPS template (brown) using Chimera. The α-carbon RMSD value of 0.203 Å indicated the two structures were exceptionally similar. The aspartate-rich motif was red, the DTE motif was orange and the green spheres were magnesium ions.
Docking of GPP and FPP substrates confirmed that the active site of PamTps1 was located at the C-terminal domain, proximate to the location of the Mg\(^{2+}\) cofactor (Fig. 4). A two-dimensional representation of Mg\(^{2+}\) interaction with the amino acid residues and substrate (ligand) was displayed in Fig. 4C,D. This concurred with earlier observations using SWISS-MODEL and InterProscan that the diphosphate (PPi) moiety of the prenyl substrates interacted with the highly conserved aspartate-rich (D296DVYD300) and NSE/DTE (LA\(\text{D}440\text{DLG}\)T444APFE448) motifs via complexed Mg\(^{2+}\), in which the boldface residues were coordinated to the metal ions. The first and third aspartate residues in the aspartate-rich motif, D296 and D300, were coordinated to Mg\(^{2+}\) and Mg\(^{2+}\), which were identical to the BPPS, avian FPP synthase, taxadiene synthase, and M. spicata limonene synthase. The second metal-binding region comprised of D440, T444 and E448 of the helix H coordinated to the Mg\(^{2+}\). Similar metal ion coordination by the corresponding residues was also observed in trichodiene
phenylalanine or tyrosine as mutation of these residues resulted in catalytically impaired catalyst6,8,79,83. According to Brandt et al.76, the nature and position of these aromatic amino acid residues at the active site of terpene synthases determined the docking orientation of the intermediate prenyl cation and therefore product specificity. The active site of terpene synthases was also characterized by the presence of several aromatic residues crucial for the stabilization of the carbocation intermediates5,8,9,79. The docking results revealed that the non-polar hydrocarbon groups of GPP and FPP were buried in the hydrophobic area of the active site surrounded by aromatic and aliphatic residues (Fig. 4C,D). The C10 tail of the GPP formed hydrophobic interactions with W268, hydrocarbon groups of GPP and FPP were buried in the hydrophobic area surrounded by aromatic residues Y523 of the J-K loop and W268 of the helix C at the bottom of the active site. The corresponding residues were summarized in Table S1. The ideal distance for metal ion coordination was between 2.0 and 2.2 Å, which was more typically observed in higher-resolution structures73. It was revealed that the coordination distance with the metal ion for PamTps1 was within the range of 2.0–2.75 Å, which was longer than what was expected for Mg2+ coordination. Shorter metal–ligand distances resulted in tighter first coordination sphere ligands, resulting in less wiggle room in the first coordination sphere, and therefore less deviation from the ideal octahedral geometry74. Magnesium has the tightest initial coordination sphere closest to ideal octahedral geometry, with a typical Mg—O distance of around 2.1 Å74. Validation of metal-binding sites of PamTps1 revealed that two of the three metal ions exhibited octahedral geometry, while the third had an outlier geometry (Table 2). The gRMSD measures overall deviation of the observed geometry angle from the ideal geometry angle75, and PamTps1 model showed acceptable gRMSD values for the trinuclear magnesium cluster binding sites. The vacancy calculates percentage of vacant coordination sites for a given geometry75. This analysis, however, revealed borderline and outlier vacancy values, which probably explained the longer metal coordination distances between magnesium ion and binding sites as discussed previously (Table S1).

In addition to metal coordination interactions, the PPi moiety of GPP and FPP were also predicted to accept hydrogen bonds from R259, R437 and K456 residues (Fig. 4; Table S2). Similarly, this finding was observed in other reported plant terpene synthases where PPi binding was accommodated by hydrogen bonds donated from two arginine and one lysine residues5,8,72. The R259 of PamTps1 derived from the R259DR motif may serve as a proton donor to thermodynamically support the PPI cleavage by protonation after the first reaction step76–78. Mutational analysis of this residue showed a loss of catalytic activity suggesting the important role of this arginine residue in restricting the PPi79. The R437 derived from the extended second metal binding motif (LR437LADDL-GTAPFE) in PamTps1 was also reported to donate hydrogen bond to the PPi of the substrate as observed with the bornyl diphosphate synthase8. The K456 residue of the PamTps1 that was a part of the conserved lysine residue amongst Tpsb terpene synthases was located at the H-a1 loop and hydrogen bonded with the PPi of the substrate. The H-a1 loop lysine residue was also observed to donate hydrogen bond to the PPi in the BPPs crystal structure5 and limonene synthase6. The substrate coordination and distance with

Metal	Ligand	Geometry	gRMSD	Vacancy
Mg2+	O	Octahedral	Acceptable	Borderline
Mg3+	O	Square planar	Acceptable	Borderline
Mg2+	O	Octahedral	Acceptable	Outlier

Table 2. Metal-binding site geometry analysis.

Insights into the PamTps1 active site pocket. Not all terpene synthases have the ability to use multistrain substrate. Steric limitations and configuration of the active site center and the overall protein stability contrib-
The tertiary protein structure might rule out the use of multi-substrate. The ability of terpene synthases to catalyze multiple substrates has been reported to be contributed by both size and residues of the active site pockets. In general, the active site pocket is slightly larger than the corresponding substrate and product, and size of the cavity is increasingly deeper and wider for increasingly longer chain products. The active site of *Streptomyces clavuligenes* linalool/nerolidol synthase (bLinS) has been shown to be large enough to accommodate sesquiterpene, which explained the fact that this enzyme recognized FPP as a substrate. It was predicted that the active site pocket of PamTps1 was also large enough and unconstrained to accommodate FPP, resulting in nerolidol formation.

Using CASTp server and InterProScan analysis, the topographic features of the PamTps1 active site pocket containing the docked substrate was illustrated in Fig. 5 and amino acids that lined the pocket cavity were also identified (Table 3). Both substrates were appropriately docked in the PamTps1 active site cavity, thus enlightened.

Figure 5. The PamTps1 active site pocket. The overview of PamTps1 active site pocket from (A) top and (B) side views. Docking positions of (C) GPP and (D) FPP in PamTps1 active site cavity. The PamTps1 active site is a deep hydrophobic pocket consisting of C, D, F, G, H and J helices. The red–orange ball and stick chains represent the PPi of substrate, green spheres are the Mg²⁺, the orange side chains are the DTE motifs, the blue side chains are the hydrogen bond donor residues and the magenta side chains represent the aromatic residues.
the multi-substrate use ability of PamTps1. The active site cavity of PamTps1 was a deep hydrophobic pocket with a contour defined by numerous aliphatic and aromatic side chains made of six helices of C, D, F, G, H and J (Table 3; Fig. 5) similarly as described for the BPPS structure. Nine aromatic residues (W268, Y272, Y289, Y293, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity. This result was also supported by structural studies of other plant terpene synthases. It was reported that arginine, phenylalanine, tyrosine, valine, tryptophan and isoleucine were the commonly observed amino acid residues at the active site lid. The presence of aromatic residue pairs (Y523 and W268) at the bottom of the active site did not appear to restrict the size of the active site, and the hydrocarbon group of FPP appeared to fit perfectly into the catalytic pocket, which may shed light on the possibility of PamTps1 accepting FPP as a substrate (Fig. 5). By analogy with the previous characterized enzymes, it was believed that the active site of PamTps1 was reasonably large and deep enough to accommodate both the GPP and FPP, resulting in the formation of linalool and nerolidol, respectively.

Table 3. Amino acid residues involved in the establishment of PamTps1 active site pocket and catalysis activity predicted using CASTp and InterProScan.
Conclusion

PamTps1 was classified as a linalool/nerolidol synthase with the ability to convert GPP and FPP into acyclic linalool and nerolidol, respectively. The catalytic activity of this recombinant synthase was optimal at pH 6.5 and 30 °C in the presence of 20 mM Mg^{2+} as a cofactor, which was within the range of most reported terpene synthases. PamTps1 catalysis was still stimulated by Mn^{2+} at the optimal concentration of 0.5 mM in place of Mg^{2+}, however the catalytic activity was decreased by 2.1 folds. The kinetic properties of PamTps1 were analyzed using Michaelis–Menten equation, which revealed that it had a higher binding affinity and catalytic efficiency for GPP rather than FPP, as anticipated for a monoterpen synthase located in the plastid where the GPP pool was accessible. The PamTps1 model structure was successfully constructed from its amino acid sequences using BPPS as a template, and this model will serve as a first glimpse into the structural insights of PamTps1 catalytic site as a linalool/nerolidol synthase. The P. amboinicus linalool/nerolidol synthase exhibited features of a class I terpene synthase fold made up of α-helices architecture that contain the N-terminal domain and a catalytic C-terminal domain. Based on the prior knowledge of the reaction mechanisms of other monoterpenes/ sesquiterpene synthases, it is hypothesized that a PamTps1 reaction mechanism begins with the metal-dependent ionization of the PPi moiety of respective GPP or FPP to form a geranyl cation or farnesyl cation. Assisting the metal ions in Ppi complexation are the basic residues of R259, R437 and K456 that direct the Ppi away from the active site after ionization. The addition of water to the cationic intermediate, followed by deprotonation, resulted in the formation of acyclic terpenoids linalool and nerolidol. The ability of PamTps1 to use multiple substrates was believed to be due to the enzyme’s active site that was large enough to accommodate larger substrate such as FPP, allowing water capture that caused premature termination and subsequent nerolidol formation. This model will serve as a framework for exploring the roles of active site residues in rational design to exchange the enzyme function between monoterpenes and sesquiterpene synthase.

Materials and methods

Plant material. The leaves of P. amboinicus were collected from purchased plants which were maintained at the Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia in Selangor, Malaysia (3° 00’26.4” N 101°42’ 19.3” E). Plant authentication was performed by a botanist, Dr. Shamsul Khamis, from the School of Environmental Science and Natural Resources, Universiti Kebangsaan Malaysia, Selangor, Malaysia.

Functional characterization of recombinant PamTps1. The P. amboinicus linalool/nerolidol synthase (designated as PamTps1) (GenBank accession no: MK050501) was previously isolated and functionally characterized by Ashaari et al. Enzyme assay was conducted in a 100 µl reaction containing assay buffer (10 mM Tris–HCl, pH 7.5, 10% (v/v) glycerol, 1 mM DTT, 0.1 mM NaWO4, 0.05 mM NaF), 10 mM MgCl2 and 3–5 µg of purified protein. The enzymatic reaction was initiated by addition of 27 µM of GPP or FPP (Sigma Aldrich, USA) and incubated at 30 °C for 30 min. The terpene products released into the headspace of the assay mixture were collected by solid phase micro extraction (SPME) with a 100 µm polydimethylsiloxane (PDMS) coated fiber (Supelco, USA) at 60 °C for 30 min. The adsorbed products were separated through Agilent HP-5MS column (30 m × 250 µm inner diameter × 0.25 µm film thickness) and analyzed using Agilent 7890A gas chromatograph equipped with Agilent 5975C quadrupole mass spectrometer (Agilent Technologies, Santa Clara, USA). The SPME fiber containing the volatile compounds was inserted into GC injection port and thermally desorbed at 250 °C for 15 min using splitless mode with helium as carrier gas at a flow rate of 1 ml/min. The oven temperature was initially maintained at 50 °C and gradually increased to 280 °C at a rate of 10 °C/min for 3 min. The temperature of the ion source and transfer line was set at 220 °C and 280 °C, respectively, and electron impact mass spectra was recorded at 70 eV ionization energy. All assay products were identified by comparison of the mass spectra to the NIST14 library database and by comparing the retention times and mass spectra to the authentic standards of (+)-linalool and nerolidol (Sigma Aldrich, USA). Standard calibration curves were constructed using the pure standards with concentrations ranging from 10 to 1000 µg/ml in the same conditions as the assay reactions.

Optimum temperature and pH of PamTps1 were determined by assaying at various temperatures ranging from 25 to 37 °C and seven pH levels, respectively. The buffer systems used in this study were 2-(N-Morpholino)ethanesulfonic acid (MES) buffer (pH 5.5–6.5) and Tris–HCl buffer (pH 7.0–9.0). Divalent cation preferences and optimum concentrations were determined by assaying at different MgCl2 (0.0, 2.0, 4.0, 10.0, 20.0, 50.0, 100, 250 mM) and MnCl2 (0.0, 0.1, 0.2, 1.0, 5.0, 10.0 mM) concentrations. The substrate dependence of PamTps1 was studied by adding GPP or FPP with different concentrations ranging from 0 to 200 µM to the reaction mixture. The kinetic parameters K_{cat}, V_{max}, k_{cat}/V_{max} and k_{cat}/K_{m} values were determined by fitting the data to the Michaelis–Menten equation analyzed using GraphPad Prism8. Extracted total crude proteins from Rosetta 2 (DE3) E. coli cells carrying empty pET-32b(+) vector were used as a negative control in place of PamTps1. One unit (U) of activity was defined as the amount of enzyme required to produce 1 μmole enzymatic product per min per ml under standard conditions. Specific activity was defined as enzyme activity (U) per mg of protein.

Secondary structure and 3D structure prediction. The motifs and domains were identified using MOTIFinder Search (https://www.genome.jp/tools/motiff/), SMART (Simple Modular Architecture Research Tool) (http://smart.embl-heidelberg.de/) and InterProScan. Secondary structure and domain boundary were predicted using PSIPRED Protein Structure Prediction (PSIPRED v3.3) (http://bioinf.cs.ucl.ac.uk/psipred/) and Protein Domain Prediction (DomPred) (http://bioinf.cs.ucl.ac.uk/psipred/?dompred), respectively. The three-dimensional protein structure of PamTps1 model was constructed from the amino acid sequence using automated comparative protein modelling server SWISS-MODEL (https://swissmodel.expasy.org/) and visualized using UCSF Chimera v 1.13rc. The template for building the 3D structure of PamTps1 was obtained from the M. cat and M. cat/
from the SWISS-MODEL Template Library and the most homologous sequence was considered as a potential template for the homology modeling\(^9\). The structural superimposition and calculation of the root-mean-square deviations (RMSD) between the model and template were conducted via Chimera using the carbon alpha (Ca) fitting method.

Validation of the PamTps1 model. The 3D model was evaluated by SWISS-MODEL's Global Model Quality Estimation (GEME) and Qualitative Model Energy Analysis (QMEAN) function. Structural evaluation and stereochemical analysis was conducted with Ramachandran plot using RAMPAGE server\(^{94}\) (http://mordred.bioc.cam.ac.uk/r-rapper/rampage.php). The model was further subjected to the Structural Analysis and Verification Server v. 5.0 (SAVES) (http://services.nbi.ucl.ac.uk/SAVES/) which included PROCHECK\(^95\), PROVE (PROtein Volume Evaluation)\(^96\), ERRAT\(^97\) and Verify3D analysis\(^96,99\) to evaluate the reliability of the predicted protein structure. Problematic region of the model was identified using Protein Structure Analysis (ProSA) server (https://prosa.services.came.sbg.ac.at), a tool commonly used to check 3D model protein structures for potential errors\(^100\).

Molecular docking. Protein–ligand docking simulation was conducted using the SwissDock server\(^101\) with the ligand selected from the ZINC database\(^102\). The docking assays were run using default parameters and the results were viewed via the Chimera software. Hydrogen bond network and distance between ligand and active site residues were also analyzed using Chimera. Distances of the amino acid residues which interacted with Mg\(^{2+}\) were also calculated. Identification of amino acids surrounding the active site was conducted by searching for atoms within < 5 Å of the docked ligand. Validation of metal-binding site was conducted using CheckMyMetal server\(^98\) (https://cmm.minorlab.org/) to assess the geometry of the metal-binding site and the vacancy of the metal.

Active site pocket analysis. Predictions of the active site pocket and of the amino acid(s) that contributed to the pocket were conducted by applying the CASTP 3.0 server (Computed Atlas of Surface Topography of Proteins)\(^103\).

Ethical statement of research involving plants. The *P. amboinicus* that was used in this study was purchased from Petani Kota Nursery located at Dengkil, Selangor, Malaysia (2° 53′ 38.7″ N 101° 45′ 9.0″ E), and it is from cultivated origin. All the methodology and data collection comply with relevant institutional, national and international guidelines and legislation.

Data availability

Data deposition: the sequences reported in this paper have been deposited in the GenBank database (GenBank Accession No. MK050501).

Received: 22 March 2021; Accepted: 11 August 2021

Published online: 24 August 2021

References

1. Tholl, D. Biosynthesis and biological functions of terpenoids in plants in *Biotechnology of isoprenoids* (eds. Schrader, J. & Bohlmann, J.) 63–106 (Springer, 2015).
2. George, K. W., Alonso-Gutierrez, J., Keasling, J. D. & Lee, T. S. Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond in *Biotechnology of isoprenoids* (eds. Schrader, J. & Bohlmann, J.) 355–389 (Springer, 2015).
3. Turner, G., Gershenzon, J., Nielson, E. E., Froehlich, J. E. & Croteau, R. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. *Plant Physiol.* 120, 879–886 (1999).
4. Bohlmann, J., Meyer-Gauen, G. & Croteau, R. Plant terpenoid synthases: Molecular biology and phylogenetic analysis. *Proc. Natl. Acad. Sci.* 95, 4126–4133 (1998).
5. Whittington, D. A. *et al.* Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase. *Proc. Natl. Acad. Sci.* 99, 15375–15380 (2002).
6. Hyatt, D. C. *et al.* Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. *Proc. Natl. Acad. Sci.* 104, 5360–5365 (2007).
7. Degenhardt, J., Kollner, T. G. & Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. *Phytochemistry* 70, 1621–1637 (2009).
8. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. *Chem. Rev.* 117, 11570–11648 (2017).
9. Koksal, M., Jin, Y., Coates, R. M., Croteau, R. & Christianson, D. W. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. *Nature* 469, 116–120 (2011).
10. Crocoll, C., Asbach, J., Novak, J., Gershenzon, J. & Degenhardt, J. Terpene synthases of oregano (*Origanum vulgare* L.) and their roles in the pathway and regulation of terpene biosynthesis. *Plant Mol. Biol.* 73, 587–603 (2010).
11. Lima, A. S. *et al.* Genomic characterization, molecular cloning and expression analysis of two terpene synthases from *Thymus caespititius* (Lamiaceae). *Planta* 238, 191–204 (2013).
12. Pazouki, L. & Niinemets, Ü. Multi-substrate terpene synthases: Their occurrence and physiological significance. *Front. Plant Sci.* 7, 1019 (2016).
13. Nagegowda, D. A., Gutenson, M., Willerson, C. G. & Dudareva, N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. *Plant J.* 55, 224–239 (2008).
14. Magard, J.-L. *et al.* Linalool and linalool nerolidol synthases in roses, several genes for little scent. *Plant Physiol. Biochem.* 127, 74–87 (2018).
15. Ashaari, N. S. *et al.* Functional characterization of a new terpene synthase from *Plectranthus amboinicus*. *PLoS ONE* 15, e0235416 (2020).
16. Li, R. *et al.* Reprogramming the chemodiversity of terpenoid cyclization by remodeling the active site contour of epi-isoziszaene synthase. *Biochemistry* 53, 1155–1168 (2014).
17. Aaron, J. A. & Christianson, D. W. Trinuclear metal clusters in catalysis by terpenoid synthases. Pure Appl. Chem. 82, 1585–1597 (2010).
18. Christianson, D. W. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 12, 141–150 (2008).
19. Raguso, R. A. More lessons from linalool: Insights gained from a ubiquitous floral volatile. Curr. Opin. Plant Biol. 32, 31–36 (2016).
20. Kamatou, G. P. P. & Viljoen, A. M. Linalool—A review of a biologically active compound of commercial importance. Nat. Prod. Commun. 3, 1183–1192 (2018).
21. Chen, S. et al. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic. Res. 7, 52 (2020).
22. Chan, W.-K., Tan, L., Chan, K.-G., Lee, L.-H. & Goh, B.-H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21, 529 (2016).
23. Yue, Y., Yu, R. & Fan, Y. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium. Planta 240, 745–762 (2014).
24. Martin, D. M. et al. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 226 (2010).
25. Crowell, A. L., Williams, D. C., Davis, E. M., Wildung, M. R. & Croteau, R. Molecular cloning and characterization of a new linalool synthase. Arch. Biochem. Biophys. 405, 112–121 (2002).
26. Abbas, F., Ke, Y., Yu, R. & Fan, Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’. Planta 249, 71–93 (2019).
27. Chen, X. et al. Characterization of an (S)-linalool synthase from kiwifruit (Actinidia arguta) that catalyses the first committed step in the production of floral lilac compounds. Funct. Plant Biol. 37, 232 (2010).
28. Landmann, C. et al. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch. Biochem. Biophys. 465, 417–429 (2007).
29. Pichersky, E., Levinsohn, E. & Croteau, R. Purification and characterization of S-linalool synthase and enzyme involved in the production of floral scent in Clarkia breweri. Arch. Biochem. Biophys. 316, 803–807 (1995).
30. Yeom, S.-J. et al. Molecular and biochemical characterization of a novel isoprene synthase from Metrosideros polymorpha. BMC Plant Biol. 18, 118 (2018).
31. Niinemets, Ü., Seufert, G., Steinbrecher, R. & Tenhunen, J. D. A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol. 153, 257–275 (2002).
32. Fischbach, R. J., Zimmer, I., Steinbrecher, R., Pichner, A. & Schnitzler, J. P. Monoterpene synthase activities in leaves of Picea abies (L.) Karst. and Quercus ilex L. Phytochemistry 54, 257–265 (2000).
33. Davis, E. M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpene synthases, sesquiterpenes, and diterpenes in Biosynthesis. Topics in current chemistry (eds. Leeper, F. J. & Vederas, J. C.) 53–95 (Springer, 2000).
34. Galata, M., Sarker, L. S. & Mahmoud, S. S. Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry 102, 64–73 (2014).
35. Demissie, Z. A. et al. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula Plant Mol. Biol. 79, 393–412 (2012).
36. Ker, D.-S. et al. Purification and biochemical characterization of recombinant Persicaria minor β-sesquiphellandrene synthase. PeerJ 5, e2961 (2017).
37. Bisswanger, H. Enzyme assays. Perspect. Sci. 1, 41–55 (2014).
38. Cané, D. E., Xue, Q. & Fitzsimons, B. C. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis. Biochemistry 35, 12269–12276 (1996).
39. Fujita, Y. et al. Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of Japanese pepper (Zanthoxylum piperitum): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes. Plant Biotechnol. 34, 17–28 (2017).
40. Morehouse, B. R. et al. Functional and structural characterization of a (+)-limonene synthase from Citrus sinensis. Biochemistry 56, 1706–1715 (2017).
41. Ruan, J.-X. et al. Isolation and characterization of three new monoterpene synthases from Artemisia annua. Front. Plant Sci. 7, 1–10 (2016).
42. Zhang, X. et al. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. BMC Plant Biol. 19, 1–18 (2019).
43. Nieuwenhuizen, N. J. et al. Natural variation in monoterpene synthesis in kiwifruit. Transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol. 167, 1243–1258 (2015).
44. Iijima, Y., Gang, D. R., Fridman, E., Levinsohn, E. & Pichersky, E. Characterization of geraniol synthase from the pellate glands of sweet basil. Plant Physiol. 134, 370–379 (2004).
45. Schnee, C., Kollner, T. G., Gershenzon, J. & Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-ß-farnesene, (E)-nerolidol, and (E)-ß-farnesol after herbivore damage. Plant Physiol. 130, 2049–2060 (2002).
46. Jia, J. W., Crock, J., Lu, S., Croteau, R. & Chen, X. Y. (3R)-Linalool synthase from Artemisia annua L.: cDNA isolation, characterization, and wound induction. Arch. Biochem. Biophys. 372, 143–149 (1999).
47. Alonso, W. R. & Croteau, R. Purification and characterization of the monoterpene cyclase γ-terpinene synthase from Thymus vulgaris. Arch. Biochem. Biophys. 286, 511–517 (1991).
48. Kollner, T. G., Schnee, C., Gershenzon, J. & Degenhardt, J. The variability of sesquiterpene emitters from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16, 1115–1131 (2004).
49. Marschner, H. Functions of mineral nutrients: Micronutrients in Mineral nutrition of higher plants (ed. Marschner, H.) 313–404 (Elsevier, 1995).
50. Lin, Y. L., Lee, Y. R., Huang, W. K., Chang, S. T. & Chu, F. H. Characterization of 5(Ç)-linalool synthase from several provenances of Cinnamomum osmophloeum. Tree Genet. Genomes 10, 75–86 (2014).
51. Green, S. A. et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). J. Exp. Bot. 63, 1951–1967 (2012).
52. Cane, D. E. Isoprenoid biosynthesis: Overview in Comprehensive natural products chemistry (eds. Barton, D., Nakanishi, K. & Meth-Cohn, O.) 1–13 (Elsevier, 1999).
53. Wise, M. L. & Croteau, R. Monoterpene biosynthesis in Comprehensive natural products chemistry (eds. Barton, D., Nakanishi, K. & Meth-Cohn, O.) 97–153 (Elsevier, 1999).
54. Bar-Eván, A. et al. The moderately efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).
55. Gao, F. et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Fresneda x hybridia. J. Exp. Bot. 69, 4249–4265 (2018).
56. Buchan, D. W. A., Minneci, F., Nugent, T. C. O., Bryson, K. & Jones, D. T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349–W357 (2013).
57. Letunic, I. & Bork, P. 20 years of the SMART protein domain annotation resource. *Nucleic Acids Res.* **46**, D493–D496 (2018).

58. Dudareva, N., Ceoka, L., Blanc, V. M. & Pichersky, E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the *C. breweri* flower. *Plant Cell* **8**, 1137–1148 (1996).

59. González, V., Grundy, D. J., Faraldos, J. A. & Alleman, R. R. The amino-terminal segment in the β-domain of 6-cadinene synthase is essential for catalysis. *Org. Biomol. Chem.* **14**, 7451–7454 (2016).

60. Zhou, K. et al. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from *Abies grandis*. *J. Biol. Chem.* **287**, 6840–6850 (2012).

61. Williams, D. C., McGarvey, D. J., Katahira, E. J. & Croteau, R. Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. *Biochemistry* **37**, 12213–12220 (1998).

62. Mcgeady, P. & Croteau, R. Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. *Arch. Biochem. Biophys.* **317**, 149–155 (1995).

63. Wise, M. L., Savage, T. J., Katahira, E. & Croteau, R. Monoterpene synthases from common sage (*Salvia officinalis*): cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphasphate synthase. *J. Biol. Chem.* **273**, 14891–14899 (1998).

64. Karuppiah, V. et al. Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole synthase. *ACS Catal.* **7**, 6268–6282 (2017).

65. Kampranis, S. C. et al. Rational conversion of substrate and product specificity in a *Salvia* monoterpene synthase: Structural insights into the evolution of terpene synthase function. *Plant Cell* **19**, 1994–2005 (2007).

66. Li, R. & Fan, Y. Molecular cloning and expression analysis of a terpene synthase gene, HcTPS2, in *Hedychium coronarium*. *Plant Mol. Biol. Rep.* **29**, 35–42 (2011).

67. Tarshis, L. C., Yan, M., Poullier, C. D. & Sacchetti, I. C. Crystal structure of recombinant farnesyl diphasphate synthase at 2.6 Å resolution. *Biochemistry* **33**, 10871–10877 (1994).

68. Biasini, M. et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Res.* **42**, 252–258 (2014).

69. Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. *Bioinformatics* **27**, 343–350 (2011).

70. Wang, J. & Eck, M. J. Protein architecture: Relationship of form and function in *Hematology* (eds. Hoffman, R. et al) 59–67 (Elsevier, 2018).

71. Rynkiewicz, M. J., Cane, D. E. & Christianson, D. W. Structure of terchodiene synthase from *Fusarium sporotrichiodes* provides mechanistic inferences on the terpene cyclization cascade. *Proc. Natl. Acad. Sci.* **98**, 13543–13548 (2001).

72. Starks, C. M. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. *Science* **277**, 1815–1820 (1997).

73. Köskal, M., Zimmer, I., Schnitzler, J. P. & Christianson, D. W. Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. *J. Mol. Biol.* **402**, 363–373 (2010).

74. Zheng, H. et al. CheckMyMetal: A macromolecular metal-binding validation tool. *Acta Crystallogr. Sect. D Struct. Biol.* **73**, 223–233 (2017).

75. Zheng, H. et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. *Nat. Protoc.* **9**, 156–170 (2014).

76. Brandt, W. et al. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. *Phytochemistry* **70**, 1758–1775 (2009).

77. Yahyaa, M. et al. Identification, functional characterization, and evolution of terpene synthases from a basal dicot. *Plant Physiol.* **169**, 1683–1697 (2015).

78. Abdallah, I. I. & Quax, W. J. A glimpse into the biosynthesis of terpenoids. *KNe Life Sci.* **3**, 81–98 (2017).

79. Abdallah, I. I., Van Merkerk, R., Klumpenaar, E. & Quax, W. J. Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering. *Sci. Rep.* **8**, 1–11 (2018).

80. Hosfield, D. J. et al. Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. *J. Biol. Chem.* **279**, 8526–8529 (2004).

81. Huang, H. et al. Structure of a membrane-embedded prenyltransferase homologous to URIAD1. *PLoS Biol.* **12**, 1–11 (2014).

82. McAndrew, R. P. et al. Structure of a three-domain sesquiterpene synthase: A prospective target for advanced biofuels production. *Structure* **19**, 1876–1884 (2011).

83. Srivistava, N., Davis, E. M., Croteau, R. B. & Lange, R. M. Functional analysis of (4S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpen synthase. *Proc. Natl. Acad. Sci.* **112**, 3332–3337 (2015).

84. Abdallah, I. I., Czepnik, M., van Merkerk, R., Quax, W. J. Insights into the three-dimensional structure of amorpha-4,11-diene synthase and probing of plasticity residues. *J. Nat. Prod.* **79**, 2455–2463 (2016).

85. Zhang, F., Chen, N. & Wu, R. Molecular dynamics simulations elucidate conformational dynamics responsible for the cyclization reaction in *TEAS*. *J. Chem. Inf. Model.* **56**, 877–885 (2016).

86. Chang, T. H., Guo, R. T., Ko, T. P., Wang, A. H. J. & Liang, P. H. Crystal structure of type-III geranylgeranyl pyrophosphate synthase from *Saccharomyces cerevisiae* and the mechanism of product chain length determination. *J. Biol. Chem.* **281**, 14991–15000 (2006).

87. Kumari, I., Ahmed, M. & Akhter, Y. Evolution of catalytic microenvironment governs substrate and product diversity in trichodiene synthase and other terpene fold enzymes. *Biochimie* **114**, 9–20 (2018).

88. Suqura, M. et al. Molecular cloning and characterization of a linalool synthase from lemon myrtle. *Biosci. Biotechnol. Biochem.* **75**, 1245–1248 (2011).

89. van Schie, C. C. N., Haring, M. A. & Schuurink, R. C. Tomato linalool synthase is induced in trichomes by jasmonic acid. *Plant Mol. Biol.* **64**, 251–263 (2007).

90. Mitchell, A. L. et al. *InterPro* in 2019: Improving coverage, classification and access to protein sequence annotations. *Nucleic Acids Res.* **47**, D351–D360 (2019).

91. Bryson, K., Czozzotto, D. & Jones, D. T. Computer-assisted protein domain boundary prediction using the DomPred server. *Curr. Protein Pept. Sci.* **8**, 181–188 (2007).

92. Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. *Nucleic Acids Res.* **46**, 2966–2983 (2018).

93. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

94. Lovell, S. C. et al. Structure validation by Ca geometry: ϕ, ψ and Cβ deviation. *Proteins Struct. Funct. Genet.* **50**, 437–450 (2003).

95. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. *J. Appl. Crystallogr.* **26**, 283–291 (1993).

96. Pontius, J., Bichelle, J. & Wodak, S. J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. *J. Mol. Biol.* **264**, 121–136 (1996).

97. Colovos, C. & Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. *Protein Sci.* **2**, 1511–1519 (1993).
98. Lüthy, R., Bowie, J. U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. *Nature* **356**, 83–85 (1992).
99. Eisenberg, D., Lüthy, R. & Bowie, J. U. VERIFY3D: Assessment of protein models with three-dimensional profiles. *Methods Enzymol.* **277**, 396–404 (1997).
100. Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. *Nucleic Acids Res.* **35**, 407–410 (2007).
101. Grosdidier, A., Zoete, V. & Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. *Nucleic Acids Res.* **39**, 270–277 (2011).
102. Sterling, T. & Irwin, J. J. ZINC 15—Ligand discovery for everyone. *J. Chem. Inf. Model.* **55**, 2324–2337 (2015).
103. Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. *Nucleic Acids Res.* **46**, 363–367 (2018).

Acknowledgements

We thank Professor Jacqueline Batley from University of Western Australia, Dr. Tan Soon Guan (Professor of Genetics, Universiti Putra Malaysia) and Dr. Adam Leow Thean Chor (Department of Cell & Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia) for their critical comments on our manuscript.

Author contributions

N.S.A. participated in designing and carrying out the experiments, analyzing the data and writing the manuscript; M.H.A.R., S.S., K.S.L., A.A.L.S., R.A.R. and J.O.A. involved in funding acquisition and supervision. All authors reviewed the manuscript.

Funding

This research work was supported by the MOSTI Fundamental Research Grant Scheme FRGS/2/2014/STWN10/UPM/02/1 and by the UPM Putra Grant GP-IPS/2015/9463800.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-96524-z.

Correspondence and requests for materials should be addressed to J.O.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021