Implicit Definitions with Differential Equations for KeYmaera X (System Description)

James Gallicchio Yong Kiam Tan Stefan Mitsch André Platzer

Computer Science Department, Carnegie Mellon University

IJCAR, 10 Aug 2022
Outline

1 Hybrid System Verification

2 Implicit Definitions in Differential Dynamic Logic

3 Implementation in KeYmaera X

4 Conclusion
1 Hybrid System Verification

2 Implicit Definitions in Differential Dynamic Logic

3 Implementation in KeYmaera X

4 Conclusion
Motivation: Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical systems that feature interacting discrete and continuous dynamics?
Motivation: Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical systems that feature interacting discrete and continuous dynamics?

Hybrid system verification tool

Model as hybrid system & specify correctness
Motivation: Cyber-Physical Systems (CPSs)

Challenge: How can we formally ensure correctness for cyber-physical systems that feature interacting discrete and continuous dynamics?

Hybrid system verification tool

Toy Example: safely pushed swing

Challenge: How can we formally ensure correctness for cyber-physical systems that feature interacting discrete and continuous dynamics?
Discrete controlled pushes p

Continuous ODEs:

$$\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal
Safely Pushed Swing

Challenges:
- Hybrid system model + specification

Need adequate modeling of interacting discrete & continuous dynamics

Discrete controlled pushes p

Continuous ODEs:

$$\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal
Safely Pushed Swing

Discrete controlled pushes p

Continuous ODEs:

\[\theta' = \omega, \quad \omega' = -\frac{g}{L} \sin(\theta) - k\omega \]

Safety:
Swing stays below horizontal

Challenges:

- Hybrid system model + specification
- ✔ Differential Dynamic Logic (dL)
Safely Pushed Swing

Discrete controlled pushes p

Continuous ODEs:

$$\theta' = \omega, \quad \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal

Challenges:

- Hybrid system model + specification
- Differential Dynamic Logic (dL)
- Proving safety & correctness

Need sound + (semi-)automated reasoning for hybrid dynamics
Safely Pushed Swing

\[\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega \]

Challenges:
- Hybrid system model + specification
- Differential Dynamic Logic (dL)
- Proving safety & correctness
- KeYmaera X theorem prover

Discrete controlled pushes \(p \)

Continuous ODEs:

Safety:
Swing stays below horizontal
Safely Pushed Swing

Discrete controlled pushes p

Continuous ODEs:

$$\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal

Challenges:

- Hybrid system model + specification
- Differential Dynamic Logic (dL)
- Proving safety & correctness
- KeYmaera X theorem prover

User-defined functions

Need extensible support for new defs.
Safely Pushed Swing

Discrete controlled pushes p
Continuous ODEs:

$$\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal

Challenges:
- Hybrid system model + specification
- Differential Dynamic Logic (dL)
- Proving safety & correctness
- KeYmaera X theorem prover
- User-defined functions

Need extensible support for new defs.

$$\sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \ldots$$

Series defs. in foundational provers

\times Lose hybrid system support & autom.
Safely Pushed Swing

Discrete controlled pushes p

Continuous ODEs:

$$\theta' = \omega, \omega' = -\frac{g}{L} \sin(\theta) - k\omega$$

Safety:
Swing stays below horizontal

Challenges:
- Hybrid system model + specification
- Proving safety & correctness
- KeYmaera X theorem prover

✓ This Work:
Definitions package for user-defined functions in dL and KeYmaera X

Domain-specific support for hybrid systems
 e.g., $\sin(\theta)$ solves $s' = c, c' = -s$
KeYmaera X Package for Implicit Definitions

Modeling Interface:

```plaintext
Definitions

implicit Real sin(Real t), cos(Real t) =
    {{sin:=0; cos:=1}; {sin'=cos, cos'=sin}};
Real g; /* Gravity */
Real L; /* Length of rod */
Real k; /* Coefficient of friction */
End.

Problem

g > 0 & L > 0 & k > 0 &
theta = 0 & w = 0 /* Swing starts at rest */
->

/* Discrete push allowed if it is safe to do so */
{ push :=*;
   if (1/2*(w-push)^2 < g/L *cos(theta))
      { w := w-push; }
}
/* Continuous dynamics */
{ theta' = w, w' = -g/L * sin(theta) - k*w }
/* Swing never crosses horizontal */
{-pi()/2 < theta & theta < pi()/2}
End.
```

Proof Interface:

```
Provide tactic input

Loop

\[ \Gamma \vdash J, \Delta \quad J \vdash P \quad J \vdash [a]J \]

\[ \Gamma \vdash [a]P, \Delta \]

Select formula (hover and click to select typical formulas, press option/alt key and click to select any term or formula).
```

```
-1: g > 0
-2: L > 0
-3: k > 0
-4: theta = 0
-5: w = 0

{ push :=*;
  { 1 / 2 * (w - push)^2 < g / L * cos(theta) ; w := w - push ;
      u
  }
  \[ \Gamma \vdash J, \Delta \quad J \vdash P \quad J \vdash [a]J \]
}
{ theta' = w, w' = -g / L * sin(theta) - k * w
```

6 / 16
KeYmaera X Package for Implicit Definitions

Users define their desired functions using sugared syntax in KeYmaera X.

Proof Interface:

```
Definitions

implicit Real sin(Real t), cos(Real t) =
  {{sin:=0;cos:=1}}; {sin'=cos,cos'=sin}};

Real g; /* Gravity */
Real L; /* Length of rod */
Real k; /* Coefficient of friction */

End.

if (1/2*(w-push)^2 < g/L * cos(theta))
  { w := w-push; }
/* Continuous dynamics */
{ theta' = w, w' = -g/L * sin(theta) - k*w }
/* Swing never crosses horizontal */
{-pi()/2 < theta & theta < pi()/2}

End.
```
KeYmaera X Package for Implicit Definitions

Users define their desired functions using sugared syntax in KeYmaera X.

```
Definitions

implicit Real sin(Real t), cos(Real t) =
{sin:=0;cos:=1}; {sin/-cos;cos/-sin}
Real g; /* Gravity */
Real L; /* Length of rod */
Real k; /* Coefficient */
End.

Problem

g > 0 & L > 0 & k > 0 &
theta = 0 & w = 0 /* Swing */
->
{
    /* Discrete push allowed */
    push ::=;
    if (1/2*(w-push)^2 < g/L*cos(theta))
    { w := w-push; }
}
/* Continuous dynamics */
{ theta' = w, w' = -g/L* sin(theta) - k*w }
} /* Swing never crosses horizontal */
{-pi()/2 < theta & theta < pi()/2}
End.
```

Seamlessly use functions throughout existing specifications and proof methods.
KeYmaera X Package for Implicit Definitions

Users define their desired functions using sugared syntax in KeYmaera X.

Seamlessly use functions throughout existing specifications and proof methods.

Proof: ✔ All goals closed

Provable (==> g() > 0 & L() > 0 & k() > 0 & theta = 0 & w = 0 -> ... proved)
Outline

1. Hybrid System Verification

2. Implicit Definitions in Differential Dynamic Logic

3. Implementation in KeYmaera X

4. Conclusion
Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

\[
\alpha, \beta ::= x' = f(x) \& Q \mid x := e \mid \text{?}Q \mid \alpha; \beta \mid \alpha \cup \beta \mid \alpha^*
\]
Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

\[
\alpha, \beta ::= x' = f(x) & Q \mid x := e \mid ?Q \mid \alpha; \beta \mid \alpha \cup \beta \mid \alpha^*
\]

Properties of hybrid program \(\alpha\) are specified in dL’s **formula** language.

\[
\phi, \psi ::= e \sim \tilde{e} \mid \phi \land \psi \mid \cdots \mid \forall x \phi \mid \exists x \phi \mid [\alpha]\phi \mid \langle \alpha \rangle \phi
\]

For all, Exists, \(\phi\) true after all \(\alpha\) runs, \(\phi\) true after some \(\alpha\) run
Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

\[
\alpha, \beta ::= x' = f(x) \& Q \mid x := e \mid ?Q \mid \alpha; \beta \mid \alpha \cup \beta \mid \alpha^*
\]

ODE Assign Test Compose Choice Loop

Properties of hybrid program \(\alpha\) are specified in dL’s formula language.

\[
\phi, \psi ::= e \sim \tilde{e} \mid \phi \land \psi \mid \cdots \mid \forall x \phi \mid \exists x \phi \mid [\alpha] \phi \mid \langle \alpha \rangle \phi
\]

Compare \(\geq, >, =\) And, Or, etc. For all, Exists \(\phi\) true after all \(\alpha\) runs \(\phi\) true after some \(\alpha\) run

This Work: Expand term language with implicitly defined functions

\[f_{\llbracket \phi \rrbracket}(t) = x \leftrightarrow \phi(x, t)\]

Function \(f_{\llbracket \phi \rrbracket}\) is interpreted using its graph characterized by \(\phi\).
Background: Differential Dynamic Logic (dL)

Hybrid programs model hybrid systems; terms in red (polynomials, etc.)

\[\alpha, \beta ::= x' = f(x) \land Q \mid x := e \mid ?Q \mid \alpha; \beta \mid \alpha \cup \beta \mid \alpha^* \]

Properties of hybrid program \(\alpha \) are specified in dL’s formula language.

\[\phi, \psi ::= e \sim \tilde{e} \mid \phi \land \psi \mid \cdots \mid \forall x \phi \mid \exists x \phi \mid [\alpha] \phi \mid \langle \alpha \rangle \phi \]

This Work: Expand term language with implicitly defined functions

\[f_{\llcorner \phi \lrcorner}(t) = \]

Function \(f_{\llcorner \phi \lrcorner} \) is interpreted using its graph characterized by \(\phi \).

n.b. Not all dL formulas characterize graphs of (suitable) functions (see paper for restrictions).
Example: Implicitly defined trigonometric sine function $\sin(t) = s$

$$\phi(s, t) \equiv \exists c \left(s' = -c, c' = s, t' = -1 \cup s' = c, c' = -s, t' = 1 \right)$$

Intuition: Initial point is reachable by following ODE forward or backward. \(\Rightarrow \phi(s, t) \) characterizes graph of \(\sin(t) \); similar characterization for \(\cos(t) \).
Differentially-Defined Functions

Example: Implicitly defined trigonometric sine function \(\sin(t) = s \)

\[
\phi(s, t) \equiv \exists c \left\langle \begin{array}{l}
s' = -c, c' = s, t' = -1 \\
s' = c, c' = -s, t' = 1
\end{array} \right. \bigcup
\begin{aligned}
& s = 0 \land \\
& c = 1 \land \\
& t = 0
\end{aligned}
\]

Intuition: Initial point is reachable by following ODE forward or backward. \(\Rightarrow \phi(s, t) \) characterizes graph of \(\sin(t) \); similar characterization for \(\cos(t) \).

General Case: Any projection of an ODE system solution is implicitly characterizable in dL (soundness proof in paper).

Thm. [JACM’20]: dL extended with Noetherian functions (incl. solutions of polynomial ODEs) has sound and complete ODE invariance reasoning.
Outline

1. Hybrid System Verification
2. Implicit Definitions in Differential Dynamic Logic
3. Implementation in KeYmaera X
4. Conclusion
KeYmaera X Package for Implicit Definitions

Modeling Interface:

```plaintext
Definitions
implicit Real sin(Real t), cos(Real t) =
  {sin:=0;cos:=1}; {sin'=cos,cos'=sin};
Real g; /* Gravity */
Real L; /* Length of rod */
Real k; /* Coefficient of friction */
End.

Problem
{ g > 0 & L > 0 & k > 0 &
  theta = 0 & w = 0 /* Swing starts at rest */
  ->
  /* Discrete push allowed if it is safe to do so */
  { push :=*;
    if (1/2*(w-push)^2 < g/L *cos(theta))
      { w := w-push; }
  }
  /* Continuous dynamics */
  { theta' = w, w' = -g/L * sin(theta) - k*w }
  /* Swing never crosses horizontal */
  {-pi()/2 < theta & theta < pi()/2}
End.
```

Proof Interface:
Soundness-critical changes: Syntax & axiom schema for implicit defs. Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension
Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs. Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and UI pretty-printing of user-defined functions
Implementation Details

Soundness-critical changes: Syntax & axiom schema for implicit defs. Follows KeYmaera X’s small trusted kernel design, ≈170 lines extension

Non-critical (core-adjacent): Syntactic sugar for parsing and UI pretty-printing of user-defined functions

Non-critical (user automation):

- Auto. derive base properties of functions from underlying ODEs:
 - Initial value: \(\sin(0) = 0 \)
 - Derivative: \(\sin(e)' = \cos(e)(e)' \)

- Prove additional arithmetic properties with ODE analysis (next slide)
Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

\[x(\tanh(\lambda x) - \tanh(\lambda y)) + y(\tanh(\lambda x) + \tanh(\lambda y)) \leq 2\sqrt{x^2 + y^2} \]
Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis + arithmetic export to external real arithmetic solvers

ODE analysis

\[\tanh(\lambda x)^2 < 1 \land \tanh(\lambda y)^2 < 1 \rightarrow \]
\[x(\tanh(\lambda x) - \tanh(\lambda y)) + y(\tanh(\lambda x) + \tanh(\lambda y)) \leq 2\sqrt{x^2 + y^2} \]

Claim: \(\tanh(t)^2 < 1 \) for all \(t \).

Intuition: Property is always preserved along ODE, forward and backward from initial point.
Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis
+ arithmetic export to external real arithmetic solvers

ODE analysis

\[
\tanh(\lambda x)^2 < 1 \land \tanh(\lambda y)^2 < 1 \rightarrow \\
\quad x(\tanh(\lambda x) - \tanh(\lambda y)) + y(\tanh(\lambda x) + \tanh(\lambda y)) \leq 2\sqrt{x^2 + y^2} \\
\downarrow \\
\text{Abstraction} \text{ (replace tanh with fresh variables)}: \\
\quad t_x^2 < 1 \land t_y^2 < 1 \rightarrow x(t_x - t_y) + y(t_x + t_y) \leq 2\sqrt{x^2 + y^2}
\]
Specialized Arithmetic Support

Adapt existing KeYmaera X sound abstraction & ODE analysis + arithmetic export to external real arithmetic solvers

ODE analysis

\[
\tanh(\lambda x)^2 < 1 \land \tanh(\lambda y)^2 < 1 \rightarrow \\
x(\tanh(\lambda x) - \tanh(\lambda y)) + y(\tanh(\lambda x) + \tanh(\lambda y)) \leq 2 \sqrt{x^2 + y^2}
\]

\[\downarrow\]

Abstraction (replace \(\tanh\) with fresh variables):

\[
t_x^2 < 1 \land t_y^2 < 1 \rightarrow x(t_x - t_y) + y(t_x + t_y) \leq 2 \sqrt{x^2 + y^2}
\]

\[\downarrow\]

Provable by solvers without native support for \(\tanh\)

Proof: ✔ All goals closed

```
Provable(  ==>  
   x*(tanh<< ... >>)(lambda)*x)-tanh<< ... >>)(lambda)*y) + 
   y*(tanh<< ... >>)(lambda)*x)+tanh<< ... >>)(lambda)*y) <= 
   2*(x^2+y^2)^{(1/2) proved}
```
Examples (see paper [IJCAR'22])

2 neuron interaction, asymptotic norm bound

Problem
\[
\text{tau} > 0 \rightarrow \forall \text{eps} \ (\text{eps} > 0 \rightarrow \\
\begin{align*}
\langle &x' = -x/\text{tau} + \tanh(\lambda x^2) \\
&y' = -y/\text{tau} + \tanh(\lambda y^2) \\
&x'^2 + y'^2)^{1/2} \leq (2*\text{tau} + \text{eps}) \rangle
\end{align*}
\]

End.

Definitions
\[
\begin{align*}
\text{Real inv1} &: \text{Real z, Real u, Real w, Real theta, Real q) =} \\
&\quad M*z/Iyy + g*theta \\
&\quad + (X/m-q*w)*\cos(\theta) \\
&\quad + (Z/m+q*u)*\sin(\theta);
\end{align*}
\]

Invariants of longitudinal flight dynamics

Robot collision avoid., trajectory & vision limits

Takeaway: Package enables succinct models and powerful reasoning support for user-defined functions in KeYmaera X.
Outline

1. Hybrid System Verification
2. Implicit Definitions in Differential Dynamic Logic
3. Implementation in KeYmaera X
4. Conclusion
Summary

Theory: Implicit defs. in dL

\[f_{\ll \phi \gg}(t) = x \leftrightarrow \phi(x, t) \]

\[\phi(s, t) \]

Practice: KeYmaera X package

```
Definitions
implicit Real sin(Real t), cos(Real t) =
    {{sin:=0;cos:=1}; {sin'=cos,cos'=sin}};
Real g; /* Gravity */
Real L; /* Length of rod */
Real k; /* Coefficient of friction */
End.
...]
```

Check it out: http://keymaerax.org/keymaeraXfunc/
Summary

Theory: Implicit defs. in dL

\[f_{\ll \phi \gg}(t) = x \leftrightarrow \phi(x, t) \]

\[\phi(s, t) \]

Practice: KeYmaera X package

Future Work: Defining and reasoning about multivariate & non-smooth functions in dL

Check it out: http://keymaerax.org/keymaeraXfunc/
[1] Gallicchio, J., Tan, Y. K., Mitsch, S., and Platzer, A. (2022). Implicit definitions with differential equations for KeYmaera X (system description). In Blanchette, J., Kovacs, L., and Pattinson, D., editors, IJCAR, volume 13385 of LNCS, pages 723–733. Springer.

[2] Platzer, A. and Tan, Y. K. (2020). Differential equation invariance axiomatization. J. ACM, 67(1):6:1–6:66.