Hypomagnesemia in the Cancer Patient

Biruh T. Workeneh,1 Nupur N. Uppal,2 Kenar D. Jhaveri,2 and Helbert Rondon-Berrios3

Abstract
Hypomagnesemia is a common medical problem that contributes to the morbidity and mortality of patients with cancer. This review summarizes magnesium physiology and highlights the mechanisms underlying magnesium disturbances due to cancer and cancer treatment. The causes of hypomagnesemia can be categorized according to the pathophysiologic mechanism: decreased intake, transcellular shift, gastrointestinal losses, and kidney losses. Patients with cancer are at risk for opportunistic infections, frequently experience cardiovascular complications, and often receive classes of medications that cause or exacerbate hypomagnesemia. Also, cancer-specific therapies are responsible for hypomagnesemia, including platinum-based chemotherapy, anti-EGF receptor mAbs, human EGF receptor-2 target inhibitors (HER2), and calcineurin inhibitors. Urinary indices, such as the fractional excretion of magnesium, can provide useful information about the etiology. The management of hypomagnesemia depends on the magnitude of hypomagnesemia and the underlying cause. We recommended checking serum magnesium at the beginning of treatment and as part of routine monitoring throughout cancer treatment. Opportunities exist for potential research and practice improvement, including further characterization of hypomagnesemia regarding the clinical effect on cancer outcomes, preventing hypomagnesemia in patients receiving high-risk anticancer agents, and developing effective therapeutic strategies.

KIDNEY360 2: 154–166, 2021. doi: https://doi.org/10.34067/KID.0005622020

Introduction
Hypomagnesemia is defined as a serum magnesium (Mg) concentration of <1.8 mg/dl (1). It is essential to anticipate, identify, and treat hypomagnesemia in patients with cancer. This review summarizes the mechanisms underlying the disturbances of Mg deficiency due to cancer and during cancer treatment. Although Mg is frequently referred to as the “forgotten ion,” it is the second most abundant intracellular cation (after potassium [K]), acts as a cofactor for hundreds of enzymatic reactions, and has structural functions for both proteins and nucleic acids (2). The range of symptoms associated with hypomagnesemia is consequently expansive; patients can be asymptomatic and exhibit nonspecific symptoms (such as anorexia, nausea, and fatigue) and severe symptoms (such as tetany, seizures, and lethal arrhythmias) (2). Hypomagnesemia is graded on the basis of serum concentration (Table 1) and the degree of hypomagnesemia is generally correlated with adverse outcomes. However, it is important to note that clinically significant adverse effects and outcomes can occur with any degree of hypomagnesemia. This review will summarize Mg’s physiology and review cancer-related causes of hypomagnesemia.

Epidemiology and Clinical Outcomes
In general, hypomagnesemia frequently develops in patients with cancer, and patients who are hospitalized or critically ill are at enhanced risk for hypomagnesemia, occurring in up to 50%–60% of patients (3). Cancer often results in compromised immunity, predominantly liquid tumors, or those that affect hematopoiesis. Furthermore, most cancer therapies compromise the immune system, and patients are at exceptionally high risk for opportunistic infections. The administration of antibiotics and antiviral drugs contributes to hypomagnesemia (4). Cardiovascular and kidney related complications resulting from cancer and cancer therapy frequently require the use of cardiovascular medications that can contribute to hypomagnesemia. Traditional chemotherapeutic agents cause hypomagnesemia that can persist for months to years after cessation of cancer therapy (5). Patients who survived childhood cancer are at a particular risk of developing adverse effects caused by multimodal treatment for their malignancy (6). Studies that have assessed hypomagnesemia in patients who have survived cancer determined a prevalence ranging between 13% and 29% (7–10).

Hypomagnesemia, in both acute and chronic forms, is associated with poor clinical outcomes. Chronic hypomagnesemia is implicated in developing insulin resistance, diabetes, more rapid progression of diabetic nephropathy, nephrolithiasis, fracture, and increased risk for cancer (11–13). Chronic hypomagnesemia has also been implicated in cancer development, possibly in relation to the induction of chronic inflammation...
Hypomagnesemia of Malignancy, Workeneh et al. 155

Physiology of Mg Homeostasis

The physiology of Mg regulation is complex, and the dysregulation of Mg homeostasis is common in patients with cancer and results in frequent complications. Understanding the physiology discussed in this section will clarify the effect of some of the cancer-specific and targeted therapies we will discuss in this review.

Mg Distribution

Total body Mg is close to 24 g for an average adult, and 99% of total body Mg is located in the intracellular fluid compartment (bone, muscle, and soft tissues), leaving 1% present in the extracellular fluid compartment. Nearly 30% of the total plasma Mg is bound to proteins, mainly albumin. The remaining 70% is available for glomerular filtration, either as the Mg cation complexed to anions—including oxalate (10%), phosphate, and citrate—or as ionized Mg (60%).

Mg Balance

Mg is a micronutrient mostly derived from nuts (almonds), green vegetables, cereal, and milk. The intestines absorb 120 mg/d (30%–50%) of Mg and secrete 20 mg/d in bile and pancreatic and intestinal juices, representing a net absorption of 100 mg/d (18). Under conditions of Mg deficiency, the intestines can absorb up to 80% of dietary Mg (19). The kidneys filter approximately 2400 mg/d of Mg, of which they reabsorb 2300 mg/d (90%–95%) for a net excretion of 100 mg/d. In the setting of Mg deficiency, net kidney Mg excretion is reduced to <12 mg/d (20).

Gastrointestinal Absorption

Mg absorption in the gut occurs via two routes: a saturable, paracellular route and a nonsaturable, transcellular route (21). The paracellular route is a passive mechanism and accounts for the bulk (90%) of total Mg reabsorption. The paracellular route is modulated by tight junction proteins called claudins. Claudins 2, 7, and 12 are expressed in the intestines and might facilitate Mg reabsorption (22). The final segment for Mg reabsorption occurs in the cecum and colon using the transcellular route, which is an active process and accounts for 10% of Mg reabsorption. Transcellular Mg transport requires the activity of transient receptor potential melastatin 6 (TRPM6) and 7 (TRPM7) Mg transporters in the enterocyte apical membrane.

Kidney Handling of Mg

In the kidney, nonprotein-bound Mg is freely filtered across the glomerulus. The proximal tubule (PT) reabsorbs 15% of filtered Mg through a paracellular mechanism (23,24). Water reabsorption along the early parts of the PT increases Mg concentration in the tubular lumen, creating a favorable gradient for Mg reabsorption in the distal section of the PT. Solvent drag also contributes to Mg reabsorption in this segment of the nephron. Extracellular-fluid volume expansion results in decreased Mg reabsorption along with the PT (25).

Unlike most solutes, most Mg reabsorption occurs in the cortical thick ascending limb of the loop of Henle (TAL) rather than the PT. In the TAL, approximately 70% of the filtered Mg is reabsorbed, mainly through the paracellular route (Figure 1). Claudins 16 and 19 are considered the main claudins responsible for Mg permeability through the paracellular route (26). Claudin 14 interacts with claudin 16 in the TAL and decreases the cation selectivity of the claudin 16–19 complexes (27). Claudin 10 has also been identified as a vital constituent in cation selectivity in the TAL, as demonstrated in claudin 10–knockout mice which demonstrated hypermagnesemia, nephrocalcinosis, and impaired paracelllular sodium (Na) permeability (28). In the absence of claudin 10, TAL tight junctions become more permeable to calcium and Mg. The driving force for paracellular Mg reabsorption, along with calcium and Na, is the lumen-positive transepithelial voltage of the TAL determined by the activity of the Na-K-2 chloride (Cl) cotransporter (NKCC2) and the associated K recycling via the renal outer medullary K (ROMK) channel (29). Cl ions leave the TAL cells via CIC-Kb channels on the basolateral membrane. Mutations in the genes encoding for NKCC2, ROMK, CIC-Kb, and Barttin (a subunit of CIC-Kb) lead to Bartter syndromes type 1, 2, 3, and 4, respectively, all of which are associated with various degrees of hypomagnesemia. Compensation for reduced TAL Mg reabsorption may occur in the distal convoluted tubule (DCT), which explains why patients with Bartter syndrome often have normal Mg levels. CIC-Kb and Barttin are also expressed in DCT, and patients with mutations in these genes frequently exhibit hypomagnesemia. Activation of the calcium-sensing receptor (CaSR) in the TAL by calcium or Mg inhibits paracellular Mg transport via inhibition of NKCC2 and ROMK (30). CaSR also regulates claudin 14 expression and calcium

| Table 1. Grades of hypomagnesemia according to common terminology criteria used by cancer societies for adverse events reported, version 4.0 |
|----------------|----------------|----------------|
| Grade | Serum Magnesium (mg/dl) | Clinical Significance |
| 1 | 1.2–1.7 | Mild or no symptoms, fatigue |
| 2 | 0.9–1.2 | Muscle weakness, fasciculations |
| 3 | 0.7–0.9 | Neurologic deficits, atrial fibrillation |
| 4 | <0.7 | Psychosis, seizures, tetany, nystagmus, lethal arrhythmia |

(14). Hypomagnesemia can result in higher viral titers of patients infected with Epstein–Barr virus, which raises the risk for lymphomas and other malignancies (15). Preclinical data support hypomagnesemia as a contributing factor to metastatic disease (16), and studies in patients with cancer show hypomagnesemia is associated with worse outcomes (17).
and Mg reabsorption in the TAL by downregulation of two microRNAs, miR-9 and miR-374 (27).

The site for fine-tuning Mg regulation in the nephron is the DCT (Figure 1), which is responsible for the reabsorption of 10% of filtered Mg. Mg is reabsorbed in this nephron segment via the transcellular route through the TRPM6 Mg channels. EGF regulates TRPM6 by increasing its expression. EGF is synthesized as pro-EGF, which is then secreted by DCT cells to undergo cleavage by extracellular proteases to become EGF. EGF then binds to the EGFR at the basolateral membrane, thereby activating a tyrosine kinase, which stimulates TRPM6. NCC seems to be involved in Mg reabsorption in the DCT. Mg transport via TRPM6 depends almost exclusively on the negative membrane potential in the DCT cells because no significant chemical gradient for Mg exists in this nephron segment. Kiv1.1 is primarily responsible for maintaining the negative transmembrane potential for Mg reabsorption in the DCT by providing an efflux of potassium, resulting in hyperpolarization of the luminal membrane. The activity of the Na-K-ATPase in the basolateral membrane also affects the membrane potential and is the driving force for Mg reabsorption. The FXYD2 gene encodes for the γ-subunit of the Na-K-ATPase. The transcription factor hepatocyte NF 1B (HNF1B) regulates the expression of FXYD2. The PCBD1 gene encodes for pterin-4a-carbinolamine dehydratase, which is a dimerization cofactor for HNF1B. The activity of the Na-K-ATPase is also dependent on potassium recycling via Kir4.1 channels in the basolateral membrane. The elucidation of the mechanism for basolateral Mg extrusion in the DCT has been challenging because there is no chemical gradient for Mg and the electrical gradient favors Mg uptake rather than extrusion. Therefore, it is likely that Mg extrusion is dependent on the sodium gradient set by the Na-K-ATPase. Several proteins in the basolateral membrane of DCT cells have been postulated to mediate Mg transport into the bloodstream. SCL41A3 and CNNM2 have been identified as potential Mg transporters in the basolateral membrane of DCT cells. Calcineurin and mTOR inhibitors affect the TRPM6 channel, and EGF monocalonal antibodies and HER-2 inhibitors inhibit the basolateral EGFR. Cisplatin and pentamidine affect the transport of the Mg within the DCT (not shown in the figure). Ca²⁺, calcium ion; CaSR, calcium-sensing receptor; Cl[−], chloride ion; CiC-Kb, Cl channel Kb; CNNM2, cyclin and CBS domain divalent metal cation transport mediator 2; EGFR, EGF receptor; FXYD2, FXYD domain containing ion transport regulator 2; K⁺, potassium ion; Kir4.1, inwardly rectifying potassium channel subtype 4.1; Kiv1.1, voltage-gated potassium channel; Mg²⁺, Mg ion; mTOR, mammalian target of rapamycin; Na⁺, sodium ion; NCC, Na⁺-Cl[−] cotransporter; NKCC2, Na⁺-K⁺-2Cl[−] cotransporter; PCBD1, pterin-4a-carbinolamine dehydratase; ROMK, renal outer medullary K⁺ channel; SLC41A3, solute carrier family 41 member 3; TRPM6, transient receptor potential cation channel subfamily M member 6.
secreted by DCT cells to undergo cleavage by extracellular proteases to become EGF. EGF then binds to the EGF receptor (EGFR) at the basolateral membrane, thereby activating a tyrosine kinase, which stimulates TRPM6. Mutations in the EGF gene lead to isolated recessive hypomagnesemia due to impaired basolateral sorting of pro-EGF (31), therefore preventing TRPM6 activity. The Na-CI cotransporter (NCC) seems to be involved in Mg reabsorption in the DCT. Mutations in NCC caused Gitelman syndrome, which is characterized by normotensive hypokalemic metabolic alkalosis and hypomagnesemia. NCC-knockout mice express reduced levels of TRPM6, possibly explaining the renal Mg wasting observed in Gitelman syndrome; however, the atrophy of the DCT segment observed in NCC-knockout mice may partially explain this phenomenon (32,33). Mg transport via TRPM6 depends almost exclusively on the negative membrane potential in the DCT cells because no significant chemical gradient for Mg exists in this nephron segment. The voltage-gated K channel Kv1.1 is primarily responsible for maintaining the necessary negative membrane potential for Mg reabsorption in the DCT by providing an efflux of K, resulting in hyperpolarization of the luminal membrane (34).

The Na-K-ATPase activity in the basolateral membrane also affects the membrane potential and is the driving force for Mg reabsorption. For example, mutations in the FXED2 gene, encoding for the γ-subunit of the Na-K-ATPase (35), cause a defective routing of the protein and results in isolated dominant hypomagnesemia. Na-K-ATPase activity is also dependent on K recycling via Kir4.1 K channels in the basolateral membrane.

Etiology of Hypomagnesemia in Cancer

The causes of hypomagnesemia in cancer are diverse, and their pathophysiologic mechanisms can be categorized as follows: decreased intake, transcellular shift, gastrointestinal (GI) losses, and kidney losses (Table 2).

Decreased Intake

The recommended daily Mg allowance prescribed by the Food and Drug Administration (FDA) is 300–400 mg/d. Unfortunately, appetite loss and involuntary weight loss are part and parcel of progressive cancer and cancer treatment, occurring in >80% of diagnosed patients (36). Micronutrient deficiency is common and, early in the course of cancer, serum Mg levels may mask deficiency because they can be drawn from intracellular and skeletal stores (37). Therefore, this condition demands vigilance on the part of providers.

Transcellular Shift

Patients with cancer frequently have periods of low or no caloric intake and can be at risk for refeeding syndrome, which, in addition to other solutes, causes the shift of Mg from plasma into red blood cells (RBCs) and platelets (38). Pamidronate is often used to treat hypercalcemia of malignancy and has been found to cause significant hypomagnesemia, which is attributed to the transcellular shift of Mg into cells (39). Catecholamines also shift Mg into cells due to the stimulation of β-adrenergic receptors, which is commonly observed in patients critically ill with cancer and who also have other risk factors for hypomagnesemia. Additionally, massive blood transfusions (typically ten or more units of packed RBCs) may cause low ionized Mg due to the chelation of Mg by citrate (40). Lastly, acute pancreatitis can cause hypomagnesemia, presumably from the saponification of Mg in necrotic fat (41,42).

GI Losses

GI secretions contain a significant concentration of Mg, and losses via the GI tract are frequently observed in patients with cancer. Although nausea and vomiting are frequently conflated as causes, Mg depletion is primarily related to diarrhea (43). This is because the Mg content of lower GI tract secretions is significantly higher (up to 15 mEq/L versus approximately 1 mEq/L for the upper GI tract), and the loss of volume is typically greater, than in the upper GI tract. Cancer and cancer therapies can potentiate chronic diarrhea by one or more mechanisms that can be characterized as secretory, osmotic, inflammatory, and relating to dysmotility.

Neuroendocrine tumors can cause diarrhea that is secretory (no osmotic gap between serum and stool), typically causing large-volume stools (43). A classic example of tumor-induced secretory diarrhea is a carcinoid tumor, which is associated with serotonin syndrome. Other paraneoplastic syndromes can cause secretory diarrhea and subsequent hypomagnesemia (44,45). Traditional chemotherapy drugs, such as 5-fluorouracil and irinotecan, affect cells with rapid turnover, like those typically found in the GI tract, and the epithelial damage results in secretory diarrhea.

Frequently, the treatment plan for cancer involves cytoreductive surgery involving partial resection of the GI tract. This can result in short-gut or dumping syndrome, giving rise to osmotic diarrhea caused by the premature introduction of the undigested nutrients into sections of the small bowel that are not prepared to handle them. Patients after surgery or tumor obstruction may require total parenteral nutrition (TPN). Balance studies in patients on TPN indicate that about 0.5 mEq of Mg is retained for each gram of nitrogen. These values indicate that Mg requirements are substantial in such patients and, in most cases, explain the development of hypomagnesemia during a course of TPN. Patients with solid tumor malignancy who are receiving TPN are more likely to develop hypomagnesemia, possibly because of the increased requirements for Mg in lymphocytolysis of tumor cells, and they must be carefully monitored to prevent this complication (46).

Patients with cancer may suffer from severe GI disease and chronic pancreatitis from complications of therapy. In the setting of steatorrhea, Mg deficiency often develops (47). There are several agents, mainly traditional chemotherapeutics, that cause pancreatitis, and pancreatic insufficiency can be a cause of chronic hypomagnesemia. A number of agents, such as 5-fluorouracil, are associated with autonomic neuropathy and GI dysmotility, resulting in chronic diarrhea (48). Peripheral autonomic neuropathy is a common feature of bortezomib. The GI damage is time dependent and diarrhea is reported in >30% of patients who receive the drug (49,50).

Inflammatory diarrhea has been reported with specific chemotherapeutic agents, such as pemetrexed, carboplatin, and
include pamidronate, denosumab, and—Tables 3 and 4). Other drugs causing hypomagnesemia—therapies result in hypomagnesemia (these are outlined in complication of cancer and cancer therapy, and several respectively (45,52). Infectious disease is also a common cause of chronic diarrhea. Lastly, the availability and rate of allogeneic stem cell transplantation has expanded, and diarrhea is a frequent complication as a result of opportunistic infections and in cases of acute graft-versus-host disease (53).

The use of proton-pump inhibitors (PPIs) in patients with cancer is pervasive and deserves consideration as a potential cause of hypomagnesemia (41). PPIs have been demonstrated to reduce the expression of claudins 7 and 12 in the gut (49). PPIs decrease the negative electric-field strength within the claudin-7 and -12 channels required to strip the Mg ions’ hydration shell before passing through the claudin channel. In a study of 366 patients hospitalized with hypomagnesemia and matched controls (50), current PPI use was associated with a 43% higher relative risk (RR) for hypomagnesemia (adjusted odds ratio, 1.43; 95% CI, 1.06 to 1.93), and the risk was significantly increased among patients receiving diuretics (odds ratio, 1.73; 95% CI, 1.11 to 2.70). The sum of experimental and clinical investigations appear to suggest that PPI use may contribute to hypomagnesemia, primarily in patients who have other risk factors for hypomagnesemia, and this applies to most patients with cancer.

Kidney Related Losses

Supportive drugs commonly used in cancer cause hypomagnesemia (Table 3). Thiazide and loop diuretics, which are used in patients with cancer, can cause hypomagnesemia due to reduced paracellular Mg absorption via claudins 16 and 19 (44,52) and downregulation of TRPM6 in the DCT, respectively (45,52). Infectious disease is also a common complication of cancer and cancer therapy, and several therapies result in hypomagnesemia (these are outlined in Tables 3 and 4). Other drugs causing hypomagnesemia include pamidronate, denosumab, and—rarely—nonsteroidal anti-inflammatory drugs (44,47,49,53).

Cancer-Specific Therapies

Anti-EGF Receptor mAbs

Both incidence and severity of hypomagnesemia are high in patients receiving mAbs targeting the EGFR, particularly cetuximab and panitumumab. Urine Mg wasting is the causative etiology of hypomagnesemia at the DCT (Figure 1) (46). Studies show the incidence of hypomagnesemia related to anti-EGFR mAbs was 34% compared with 10% in controls (95% CI, 28% to 41%; P<0.001) (54). Patients with colorectal cancer had the highest risk of grade 3/4 hypomagnesemia events among patients with cancer: compared with chemotherapy alone, the addition of cetuximab increased the risk of grade-3/4 hypomagnesemia with RRs of 7.14 (95% CI, 3.13 to 16.27; P<0.001), whereas patients receiving panitumumab were even more vulnerable to grade-3/4 hypomagnesemia with RRs of 18.29 (95% CI, 7.29 to 48.41; P<0.001) (54). The most important risk factor for hypomagnesemia in patients receiving anti-EGFR mAbs is treatment duration. Other risk factors that have been reported include a patient’s age (greater incidence in the elderly) and the baseline serum Mg level (31,55–58). Hypomagnesemia is seen less frequently with zalutumumab, with an incidence reported to be only 4% (59). Hypomagnesemia has been reported with all three EGFR-related tyrosine kinase inhibitors—such as afatinib, erlotinib, and gefitinib—to treat non–small cell lung cancer; the overall incidence of hypomagnesemia with these drugs seems to be less than that with anti-EGFR mAbs (60).

Platinum-Based Chemotherapy

Cisplatin and, to a much lesser extent, carboplatin therapy, is associated with hypomagnesemia, more so than any other electrolyte deficiency (5,61,62). Hypomagnesemia affects 40%–90% of patients on cisplatin; in contrast, 10% of patients treated with carboplatin or oxaliplatin experience hypomagnesemia (63). Platinum-induced hypomagnesemia can persist for up to 6 years after cessation of treatment and is primarily attributed to renal Mg wasting (62,64). Cisplatin causes direct injury to tubular cells in the TAL and DCT and is the likely mechanism by which cisplatin induces hypomagnesemia. Also, cisplatin can lead to Mg loss from the gut because vomiting, diarrhea, and anorexia are common complications of platinum therapy. Importantly, hypomagnesemia can potentiate cisplatin-induced AKI (65), and preclinical studies have shown a protective effect of normal

Table 2. Etiology of hypomagnesemia

Etiology	Causes and Consequences
Dietary deficiency of magnesium	Starvation, protein-calorie malnutrition, total parenteral nutrition, enteral feeding with inadequate magnesium
Magnesium redistribution	Blood transfusions, acute pancreatitis, refeeding syndrome
Gastrointestinal losses	Diarrhea, vomiting, nasogastric suction, malabsorption, gastrointestinal fistulae, bowel resection, drug related (e.g., PPIs, laxative abuse)
Kidney losses	Ketoacidosis, hypercalcemia, hyperparathyroidism, hyperaldosteronism, hypervitaminosis D, chemotherapeutic agents (e.g., cisplatin, cetuximab), nonchemotherapy drugs (e.g., diuretics)
Transdermal losses	Burns, excess sweating

PPI, proton-pump inhibitor.
serum Mg levels in models of cisplatin-induced nephrotoxicity (66–68).

Human EGFR-2 Target Inhibitors

Human EGFR-2 (HER-2) is a member of the EGFR family of transmembrane receptors and is overexpressed in approximately 20% of breast cancers. A recent review of the FDA adverse-events reporting for trastuzumab and pertuzumab has uncovered significant hypomagnesemia rates with HER-2 inhibitors (61,69,70). It is hypothesized that kidney related Mg loss is due to decreased reabsorption from the DCT (71).

Calcineurin Inhibitors

Calcineurin inhibitors (CNIs) are also used in patients for several hematologic cancers and post–hematopoietic stem cell transplantation to prevent graft-versus-host disease (72). Hypomagnesemia is a well-recognized and common complication of CNI treatment (73). It has been linked with post–kidney transplant diabetes mellitus (hazard ratio, 1.78; 95% CI, 1.29 to 2.45; \(P<0.001\)) (74). Treatment with two chemically distinct CNIs, cyclosporine or tacrolimus, was found to reduce the abundance of calbindin-D28K, an effect postulated to account for calcium wasting (75,76). Tacrolimus treatment increases the fractional Mg and calcium excretion and reduces the expression of TRPV5 and calbindin-D28K (77). The transcription for TRPM6 is also reduced by tacrolimus treatment (78). These actions were suggested to account for the hypomagnesemia and hypercalcioria that result from CNI treatment (78). Table 4 summarizes the antineoplastic agents that have been associated with hypomagnesemia.

Clinical Manifestations of Hypomagnesemia

Mg is an essential electrolyte that plays a significant role as a cofactor for nearly every major biochemical pathway. Its deficiency can cause a wide array of acute and chronic clinical manifestations, either solely due to lack of Mg or in association with other electrolyte abnormalities, including hypocalcemia and hypokalemia (79). Neuromuscular manifestations have been well characterized, but there is emerging evidence that Mg influences BP, specifically low Mg leading to elevated BP, although studies are mixed (80,81).

The effects of hypomagnesemia on chemotherapy-induced peripheral neuropathy also vary (82,83). In addition, a systematic review of Mg infusions to prevent oxaliplatin-induced chronic peripheral neuropathy concluded that there was no benefit to supplemental Mg in this setting (84). Nevertheless, there are data showing that hypomagnesemia can contribute to atherosclerotic cardiovascular disease and congestive heart failure, which is common in patients who have survived cancer (85).

The contribution of hypomagnesemia to endocrinopathies and derangements in mineral metabolism is also increasingly recognized. Hypomagnesemia has been linked to impaired glucose homeostasis and may be a risk factor for the development of diabetes (11). Mild to moderate hypomagnesemia can interfere with mineral metabolism, increasing the secretion of parathyroid hormone, which can, in turn, inhibit the CaSR in the kidneys and promote Mg reabsorption (86). Paradoxically, severe hypomagnesemia can also cause hypoparathyroidism and secondary hypocalcemia (87). This is because severe hypomagnesemia interferes with the activation of \(\alpha\)-subunits of heterotrimeric G-proteins of the CaSR, mimicking its activation (86). Chronic hypomagnesemia can cause demineralization of bone and osteoporosis (88). Chronic hypomagnesemia can also result in hypercalciuria, which can contribute to nephrolithiasis (89).

It has been recognized for some time that hypomagnesemia has a critical influence on K homeostasis. It is estimated that >50% of clinically significant hypokalemia has concomitant Mg deficiency (90). Hypomagnesemia results in the release of inhibition of ROMK channels, increasing the secretion of K into the tubular lumen. Correction of K alone will not resolve hypokalemia in these cases, the correction of hypomagnesemia is also required.

Diagnosis

Hypomagnesemia may become evident from the medical history or symptoms listed in Table 1. RBC Mg levels may better reflect total body stores than serum levels. A typical RBC Mg level ranges from 4.2 to 6.8 mg/dl (91). There are other Mg measurement methods, including the ratio of ionized calcium and Mg and the Mg content of hair, muscle, and bone. These alternative measures are not readily accessible to most laboratories, and the normal values are not firmly established.

The distinction between GI and kidney losses can be made by measuring the 24-hour urinary Mg excretion. One can calculate the fractional excretion of Mg (FEMg) on a random urine specimen using the following formula:

\[
\text{FEMg} = \frac{(U \times P)}{(0.77 \times P \times U)} \times 100
\]

\(U\) and \(P\) refer to urine and plasma concentrations of Mg, respectively. If the FEMg is >2% in someone with normal renal function, then renal Mg wasting is likely. If the FEMg is <2%, it suggests GI losses.

Management

Mg Replacement

The management of hypomagnesemia is guided by the magnitude of hypomagnesemia and its etiology. There is a strong rationale for Mg replacement in symptomatic cases; however, the utility of Mg replacement in milder forms has been extrapolated from associative data that we have reviewed, showing adverse outcomes. Hypomagnesemia without acute symptomatology can be treated with oral Mg replacement and by eliminating medications that may be contributing to the hypomagnesemia. Table 5 summarizes the various available oral Mg supplementations and their advantages and disadvantages (92). In severe or symptomatic hypomagnesemia, parenteral administration is required. Intramuscular replacement is also an option, but there is delayed absorption, of a few hours, from muscle stores. In the absence of seizures or lethal arrhythmia, the parenteral replacement rate should not exceed 1 g/h (93). Mg is cleared renally, therefore, parenteral or intramuscular replacement should be monitored in patients with advanced
Drug Class or Name	Incidence	Mechanism	Reference
PPIs	19% of PPI users	Intestinal loss, malabsorption of magnesium. PPIs interfere with TRPM6 and TRPM7 genes, leading to intestinal malabsorption and possible renal Mg loss	(105–107)
Thiazide diuretics	Unknown	TRPM6 inhibition, leading to increase in renal Mg loss, increase in potassium excretion causes hypokalemia, leading to decrease in passive Mg reabsorption	(45,52)
Loop diuretics	Unknown	Decrease in paracellular reabsorption in thick ascending	(44,52)
Pamidronate	Case reports	Renal impairment, increased Mg excretion, and cellular shifting	(44)
RANKL mAb (denosumab)	Isolated case report	Unknown	(53)
Ibuprofen	Isolated case report	Unknown	(47)
Aminoglycosides (amikacin, gentamicin, tobramycin, neomycin, streptomycin)	Isolated case report	Unknown	(108–110)
Antituberculous agents (viomycin, capreomycin)	Unknown	Proximal tubular dysfunction, secondary hyperaldosteronism with consequent renal Mg loss	(111–113)
Amphotericin B	Unknown	This drug is a polynye antibiotic, and Mg participates in the polyene-sterol binding process, leading to a functional Mg deficiency	(114)
Theophylline	Unknown	Renal Mg wasting	(115)
Pentamidine	Unknown	Renal Tubular injury	(116–118)
Foscarnet	Up to 70%	Chelates divalent ions, thereby leading to acute reduction in ionized magnesium	(119,120)

PPI, proton-pump inhibitor; TRPM, transient receptor potential melastatin; Mg, magnesium; LOH, loop of Henle; RANKL, receptor activator of NF-κB ligand; DCT, distal convoluted tubule; PTH, parathyroid hormone.
Drug Class	Drugs Reported to Cause Hypomagnesemia	Incidence	Mechanism	Reference
Anti-EGFR mAbs	Cetuximab, panitumumab, zalutumumab	34% for cetuximab; 4% for zalutumumab	Decrease stimulation of TRPM6 in DCT leading to renal Mg wasting (1), inhibition of TRPM6 channels in gut, causing decrease in Mg absorption from gut (2)	(31,54,59,60,69,121)
EGFR tyrosine kinase inhibitors	Afatinib, erlotinib, gefitinib	None reported	Postulated similar mechanism as EGFR antibodies	(60)
Platinum-based agents	Cisplatin, carboplatin, oxaliplatin	Cisplatin, 40%–90%; carboplatin and oxaliplatin, 10%	Downregulation of TRPM6/EGF pathway, may lead to persistent distal tubular dysfunction with a Gitelman-like syndrome, can also cause Mg loss from gut due to anorexia, vomiting, diarrhea	(63,122,123)
HER-2 inhibitors	Trastuzumab, pertuzumab	Patients on pertuzumab: 14% with HypoMg (≥G1), 9% with HypoMg (≥G1) in neoadjuvant setting	Inhibition of Mg reabsorption in DCT due to EGF blockade, secretory diarrhea	(71)
Calcineurin inhibitors	Cyclosporine, tacrolimus	Case series and reports	EGF production is downregulated, which in turn inhibits TRPM6 activation. Reduce mRNA expression of NCC, reduce transcript for TRPM6 in DCT	(124)
Immunotherapy mTOR inhibitors	IL-2	Case reports	Unknown	(125)
	Rapamycin	Case report	Reduction in mRNA expression of TRPM6 at the DCT via inhibition of EGF-induced increase in TRPM6 expression, likely by reducing the stability of TRPM6 mRNA	(126)
Topoisomerase inhibitors	Amsacrine	Case reports only	Unknown	(127)
Anthracyclines-Alkylating agents	Pegylated liposomal doxorubicin	Case reports only	Unknown	(128)
	Ifosfamide	1%	Unknown	(129,130)

EGFR, EGF receptor; TRPM, transient receptor potential melastatin; DCT, distal convoluted tubule; Mg, magnesium; HER-2, human EGF receptor 2; HypoMg, hypomagnesemia; ≥G1, grade 1 or higher; NCC, renal sodium-chloride cotransporter; mTOR, mammalian target of rapamycin.
Amiloride

Amiloride is widely used in clinical medicine as a K-sparing diuretic. In addition to blocking the Na reabsorption in the distal tubule and collecting duct, amiloride has an additional property of enhancing renal Mg conservation (98). This property has been used to treat patients with renal Mg wasting of various etiologies, including nephrotoxicity after amphotericin therapy and other refractory hypomagnesemia (99,100). Amiloride can be considered in patients with cancer who have refractory hypomagnesemia and in whom it can be used safely.

Na-glucose cotransporter 2 Inhibitors

Na-glucose cotransporter 2 (SGLT2) inhibitors inhibit glucose reabsorption at the PT, increase urinary glucose excretion, and have been proven to be effective at controlling hyperglycemia in patients with type 2 diabetes. A meta-analysis of data collected from >15,000 patients showed significantly higher serum Mg levels in patients treated with SGLT2 inhibitors than in patients who were untreated (101). On average, serum Mg levels increased by 0.15–0.24 mg/dl, depending on the formulation. The authors hypothesize that elevated serum Mg levels might result from osmotic diuresis caused by SGLT2 inhibitors, but the exact mechanism is unknown. A more recent analysis investigated a similar treatment effect with dapagliflozin on serum Mg in patients with type 2 diabetes (102). The observation that SGLT2 inhibitors can improve serum Mg might be useful in refractory cases in those patients with cancer who meet the indication for, and who can safely use, SGLT2 inhibitors (103).

Other Therapies

The limitations of oral Mg supplementation are often reached without achieving goal concentrations because Mg itself can induce diarrhea. Alternatives have been proposed—such as Epsom salt baths (Mg sulfate), Mg oils, and creams—which the patient can absorb transdermally (37,104), but the magnitude of their effects and applications

Table 5. Common oral magnesium formulations and doses

Supplement	Elemental Magnesium Content	Advantages/Disadvantages
Magnesium oxide	61% elemental magnesium	Requires higher dosages to meet repletion, diarrhea is limiting complication
Magnesium hydroxide (milk of magnesia)	242 mg in 400-mg tablet	Over the counter, avoid in patients with creatinine clearance <30 cc/min
Magnesium citrate	16% elemental magnesium	Diarrhea is a concern, used as a laxative, avoid in patients with creatinine clearance <30 cc/min
Magnesium gluconate	5% elemental magnesium	Over the counter, excessive dosages lead to diarrhea
Magnesium chloride	12% elemental magnesium	Slowly absorbed, less renal excretion, Less diarrhea
Magnesium sulfate (Epsom salts)	10% elemental magnesium	Slowly absorbed, less renal excretion, less diarrhea
Magnesium lactate	12% elemental magnesium	Sustained release
Magnesium aspartate hydrochloride	10% elemental magnesium	Diarrhea is a side effect
Magnesium-protein complex	133 mg elemental magnesium bound to 26 mg soy protein	Less diarrhea, mostly used in pediatric patients

This data was obtained from Lexicomp Online and Ref. 92.
at higher concentrations have not been well studied (Table 5).

Areas of Potential Research Opportunities

On a fundamental level, we need more comprehensive, descriptive analyses of patients with cancer to provide information about the incidence, prevalence, and cancer-related risk factors for hypomagnesemia. Opportunities exist to examine the relationship between Mg and carcinogenesis, survival, and response to therapy. Preventive strategies in patients receiving high-risk drugs, such as cisplatin and cetuximab, need further corroboration. Finally, the pace of drug development in oncology is unprecedented, and onconephrologists will need to maintain vigilance to identify therapies that induce or exacerbate hypomagnesemia and develop effective preventive and therapeutic strategies.

Disclosures

K.D. Jhaveri is a consultant for Astex Pharmaceuticals and Natera; is a paid contributor to Uptodate.com; and reports receiving a speakers bureau for AstraZeneca. All remaining authors have nothing to disclose.

Funding

H. Rondon-Berrios is funded by National Institute of Diabetes and Digestive and Kidney Diseases exploratory/developmental research grant R21DK122023.

Author Contributions

K.D. Jhaveri and H. Rondon-Berrios conceptualized the study; K.D. Jhaveri, N.N. Uppal, H. Rondon-Berrios, and B.T. Workeneh wrote the original draft and were responsible for visualization; K.D. Jhaveri, H. Rondon-Berrios, N.N. Uppal, and B.T. Workeneh reviewed and edited the manuscript; H. Rondon-Berrios was responsible for methodology; and B.T. Workeneh was responsible for validation.

References

1. Elin RJ: Assessment of magnesium status. Clin Chem 33: 1965–1970, 1987 https://doi.org/10.1093/clinchem/33.11.1965

2. Elin RJ: Magnesium metabolism in health and disease. Dis Man 34: 161–218, 1988 https://doi.org/10.1016/0011-5029(88)90013-2

3. Hansen-B, Bruserud O: Hypomagnesemia in critically ill patients. J Intensive Care 6: 21, 2018 https://doi.org/10.1186/s40560-018-0291-y

4. Chernow B, Bamberger S, Stoiko M, Vdnais M, Mills S, Hoellerich V, Warshaw AL: Hypomagnesemia in patients in postoperative intensive care. Chest 95: 391–397, 1989 https://doi.org/10.1378/chest.95.2.391

5. Lajer H, Daugaard G: Cisplatin and hypomagnesemia. Cancer Treat Rev 25: 47–58, 1999 https://doi.org/10.1053/ctr.v19.1999.0097

6. Kooijmans EC, Boikenkamp A, Tjahjadi NS, Tettero JM, van Poujeol P, Chabardes D, Roinel N, De Rouffignac C: Influence of magnesium on the control of type 2 diabetes. Diabetes Care 21: 682–686, 1998 https://doi.org/10.2337/diacare.21.5.682

7. Nasulewicz A, Wietrzyk J, Wolf FI, Dzimira S, Madej J, Maier JAM, Rayssiguier Y, Mazur A, Opolski A: Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim Biophys Acta 1739: 26–32, 2004 https://doi.org/10.1016/j.bbadis.2004.08.003

8. Quemeneur REJ, Skillen AW, Skinner R: Nephrotoxicity in survivors of postoperative intensive care. Br J Cancer 95: 391–397, 2002 https://doi.org/10.1038/sj.bjc.6600608

9. Othman F, Guo C-Y, Webber C, Atkinson SA, Barr RD: Osteopenia in survivors of Wilms tumor. Int J Oncol 20: 827–833, 2002
164 KIDNEY360

Cano F, Enriquez R, Jupner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhaus SCF, Nürnberg P, Weber S: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949–957, 2006 https://doi.org/10.1086/508617

27. Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J: Claudin-14 regulates renal Ca2+ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31: 1999–2012, 2012 https://doi.org/10.1038/emboj.2012.49

28. Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C, Meij IC, Bachmann S, Bleich M, Willnow TE, Müller D: Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis [published correction appears in Proc Natl Acad Sci U S A 109: 15072, 2012]. Proc Natl Acad Sci U S A 109: 14241–14246, 2012 https://doi.org/10.1073/pnas.1203834109

29. Mandon B, Siga E, Roinel N, de Rouffignac C: Ca2+, Mg2+ and K+ transport in the cortical and medullary thick ascending limb of the rat nephron: Influence of transepithelial voltage. Pflugers Arch 424: 558–560, 1993 https://doi.org/10.1007/BF00374924

30. Hebert SC: Extracellular calcium-sensing receptor: Implications for calcium and magnesium handling in the kidney. Kidney Int 50: 2129–2139, 1996 https://doi.org/10.1016/kint.1996.539

31. Groenestege WMT, Thibault S, van der Wijst J, van den Berg D, Janssen R, Teijpar S, van den Heuil LP, van Cutsen E, Hoenderop JGJ, Niermeijer FMV, Bindels RJ: Sorting of Ca2+ channels in the rat kidney: Identification of pro-EGR causes isolated recessive renal hypomagnesemia. J Clin Invest 117: 2260–2267, 2006 https://doi.org/10.1172/JCI31680

32. Nijenhuis T, Vallon V, van der Kemp AWCM, Lofing J, Hoenderop JGJ, Bindels RJ: Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115: 1644–1651, 2005 https://doi.org/10.1172/JCI24134

33. Lofing J, Vallon V, Lofing-Cuvel D, Areegger F, Richter K, Pietri L, Bloch-Faure M, Hoenderop JG, Shull GE, Meneton P, Kaissling B: Altered renal distal tubule structure and renal Na(+) and Mg2+ handling in a mouse model for Gitelman’s syndrome. J Am Soc Nephrol 26: 265–273, 2015 https://doi.org/10.1681/ASN.2014060577

34. Tapoambo LMP, Knoers NV: Dominant isolated renal magnesium loss is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 81543 10.1038/ng889

35. Cui L, Yang P, Bi C, Liu H, Li W, Zhi H, Yang J, Wang D: Enhanced passive Ca2+ transport in renal distal convoluted tubules of rats with chronic hypomagnesemia is due to metabolic alkalosis and respiratory acidosis. J Renal Nutr 20: 1126–1133, 2010 https://doi.org/10.1111/j.1459-3164.2010.01174.x

36. Cano F, Enriquez R, Jupner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhaus SCF, Nürnberg P, Weber S: Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79: 949–957, 2006 https://doi.org/10.1086/508617

37. Razzaque MS: Magnesium: Are we consuming enough? J Natl Cancer Inst 97: 1221–1224, 2005 https://doi.org/10.1093/jnci/dji242

38. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Knauf B: Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: A prospective study. Lancet Oncol 13: 837–394, 2007 https://doi.org/10.1016/S1470-4255(07)70108-0

39. Thongon N, Krishnamra N: Apical acidity decreases inhibitory effect of omeprazole on Mg2+ absorption and claudin-7 and -12 expression in Caco-2 monolayers. Exp Mol Med 44: 684–693, 2012 https://doi.org/10.3785/emm.2012.44.11.077

40. Wang Q, Qi Y, Zhang D, Yang J, Zhou F, Brandt RS, Madsen OB, Fagard R, Verpoort R: Cetuximab-induced hypermagnesemia in patients with colorectal cancer treated with cetuximab. World J Gastroenterol 20: 25936–48, 2018

41. Nakaev BG, Halland M, Halperin DM, Purvis AJ, O’Dorisio TM, Halldalanson TR: Management of diarrhea in patients with carcinoid syndrome. Pancreas 48: 961–972, 2019 https://doi.org/10.1097/MPA.0000000000001384

42. Gröber U: Magnesium and drugs. Int J Mol Sci 20: 2094, 2019 https://doi.org/10.3390/ijms20092094

43. Kieboom BCT, Zietse R, Ikram MA, Hoorn EJ, Stricker BH: Thiopental but not loop diuretics is associated with hypo- magnesiumemia in the general population. Pharmacoepidemiol Drug Saf 27: 1166–1173, 2018 https://doi.org/10.1002/pds.4636

44. Grobner U: Magnesium and drugs. Int J Mol Sci 20: 2094, 2019 https://doi.org/10.3390/ijms20092094
60. Jhaveri KD, Sakhiya V, Wanchoo R, Ross D, Fishbane S: Renal effects of novel anticancer targeted therapies: A review of the food and drug administration adverse event reporting system. Kidney Int 90: 706–707, 2016. doi:10.1016/j.kint.2016.06.027

61. Ariceta G, Rodriguez-Soriano J, Vallo A, Navajas A: Acute and chronic effects of cisplatin therapy on renal magnesium homeostasis. Med Pediatr Oncol 28: 35–40, 1997. doi:10.1002/(SICI)1096-9031(19970128):1-35<35::AID-MPOJ>3.0.CO;2-U

62. Schilsky RL, Anderson T: Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 99: 929–931, 1979. doi:10.7326/0003-4819-90-6-929

63. Foster BJ, Claggett-Carr K, Leyland-Jones B, Hoth D: Results of NC1-sponsored phase I trials with carboplatin. Cancer Treat Rev 12[Suppl A]: 43–49, 1985. doi:10.1016/0305-7372(85)90017-9

64. Sutton RA, Walker VR, Halabe A, Swenerton K, Coppin CM: Chronic hypomagnesemia caused by cisplatin: Effect of calcium. J Lab Clin Med 117: 40–43, 1991

65. Lator J, Kristensen M, Hansen HH, Nielsen S, Frokjaer J, Ostergaard LF, Christensen S, Daugaard G, Jonassen T: Magnesium deficiency enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56: 535–542, 2005. doi:10.1007/s00280-005-1010-7

66. Kumar G, Solanki MH, Xue X, Mintz R, Madankumar S, Foster BJ, Claggett-Carr K, Leyland-Jones B, Hoth D: Results of NC1-sponsored phase I trials with carboplatin. Cancer Treat Rev 12[Suppl A]: 43–49, 1985. doi:10.1016/0305-7372(85)90017-9

67. Saito Y, Kobayashi M, Yamada T, Kasashi K, Honma R, Takeuchi I, Saito Y, Kobayashi M, Yamada T, Kasashi K, Honma R, Takeuchi I: Premedication with intravenous magnesium has a protective effect on the chronic effects of cisplatin therapy on renal magnesium homeostasis. Biochem Pharmacol 81: 615–621, 2011. doi:10.1016/j.bcp.2010.09.024

68. Hoorn EJ, Zietse R: Disorders of calcium and magnesium balance. J Am Soc Nephrol 25: 481–487, 2014. doi:10.1681/ASN.2013120138

69. Jordan K, John F, Beckmann J, Unverzagt S, Müller-Tidow C, Jordan K: Calcium and magnesium intusions for the prevention of oxaliplatin-induced peripheral neuropathy: A systematic review. Oncology 90: 299–306, 2016. doi:10.1159/000445977

70. Kostov K, Halacheva L: Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 19: 1724, 2018. doi:10.3390/ijms19061724

71. Krstic M, Vukotic N, Markovic S, Vukotic M, Abaza T: Role of magnesium deficiency in prednisolone-induced alterations in Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalculia and hypomagnesemia. J Am Soc Nephrol 15: 549–557, 2004. doi:10.1097/01.ASN.0000131388.56023.B6

72. Naesens M, Kuypers DRJ, Sarwal M: Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4: 481–508, 2009. doi:10.2215/CINJ.04800908

73. Pham-P-TT, Pham-P-AT, Pham-P-TT, Pham-P-MT, Pham-P-AT, Pham-P-MT: Hypomagnesemia: A clinical perspective. Int J Nephrol Renovasc Dis 7: 219–230, 2014. doi:10.2147/INRD.42054

74. Estafatidis G, Sarigianni M, Gougourelas I: Hypomagnesemia and cardiovascular system. Hippokratia 10: 147–152, 2006

75. McCarron DA: Calcium, magnesium, and phosphorus balance as a possible mechanism mediating cyclosporine A- and FK-506-induced hypercalciuria and tubular mineralization. Biochem Pharmacol 53: 723–731, 1997. doi:10.1016/S0006-2952(96)00772-1

76. Nijenhuis T, Hoenderop JGJ, Bindels RJM: Downregulation of Cal(2+) and Mg(2+) transport proteins in the kidney explains magnesium depletion enhances cisplatin-induced nephrotoxicity. Cancer Chemother Pharmacol 56: 535–542, 2005. doi:10.1007/s00280-005-1010-7

77. Kurzto F, Halacheva L: Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 19: 1724, 2018. doi:10.3390/ijms19061724

78. Krstic M, Vukotic N, Markovic S, Vukotic M, Abaza T: Role of magnesium deficiency in prednisolone-induced alterations in Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalculia and hypomagnesemia. J Am Soc Nephrol 15: 549–557, 2004. doi:10.1097/01.ASN.0000131388.56023.B6

79. Kostov K, Halacheva L: Role of magnesium deficiency in promoting atherosclerosis, endothelial dysfunction, and arterial stiffening as risk factors for hypertension. Int J Mol Sci 19: 1724, 2018. doi:10.3390/ijms19061724

80. Hoorn EJ, Zietse R: Disorders of calcium and magnesium balance: A physiology-based approach. Pediatr Nephrol 28: 1195–1206, 2013. doi:10.1007/s00467-012-2350-2

81. Coulter R, Hoefman M, Freichel M, Lohse MJ: Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem 276: 6763–6769, 2001. doi:10.1074/jbc.M007727200

82. Hanna S, North KA, MacIntyre I, Fraser R: Magnesium metabolism in parathyroid disease. BJM 2: 1253–1256, 1961. doi:10.1136/bmj.2.5262.1253

83. Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM: Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 5: 3022–3033, 2013. doi:10.3390/nu5080322

84. Huang L, Kuo E: Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol 18: 2649–2652, 2007. doi:10.1681/ASN.2007070792

85. Workinger JL, Doyle RP, Bortz J: Challenges in the diagnosis of magnesium status. Nutrients 10: 1202, 2018. doi:10.3390/nu10091202

86. Guerra MP, Volpe SL, Mao J: Therapeutic uses of magnesium. Am Fam Physician 80: 157–162, 2009

87. Kraft MD, Biaieff I, Sacks GS, Kudsk KA: Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm 62: 1663–1682, 2005. doi:10.2146/hjp040300

88. Fourman P, Morgan DB: Chronic magnesium deficiency. Proc Nutr Soc 71: 34–41, 1962. doi:10.1079/PNS19620008

89. Oster JR, Epstein M: Management of magnesium depletion. Am J Nephrol 8: 349–354, 1988. doi:10.1159/000167616

90. Fakih MG, Wilding G, Lombardo J: Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6: 152–156, 2006. doi:10.3816/CCC.2006.n.033

91. Fakih M: Anti-EGFR monoclonal antibody-induced hypomagnesemia. Lancet Oncol 8: 366–367, 2007. doi:10.1016/S1470-2045(07)70111-0
