Dynamics of the electron-nuclear and heteronuclear polarization transfers in optically-oriented semi-insulating InP:Fe

Atsushi Goto1,2* Kenjiro Hashi1, Tadashi Shimizu1, and Shinobu Ohki1
1National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan
2PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
(Dated: February 2, 2008)

Dynamics of the electron-nuclear and heteronuclear polarization transfer processes in the optically oriented semi-insulating iron-doped indium phosphide were investigated through the characteristic time scales of the processes. (1) We find in the optical nuclear orientation process that the buildup times for ^{31}P and ^{115}In nuclear polarizations are of the same order. From the analysis of the cross-relaxation process between photo-excited electrons and nuclei, it is concluded that electron-nuclear dipolar-couplings are responsible for the polarization transfer in this case. This example shows that the nuclear-site dependence of the buildup time can be utilized to identify hyperfine couplings responsible for the process. (2) We find in the heteronuclear polarization transfer (cross polarization) process between optically oriented ^{31}P and ^{115}In that the cross-relaxation time is rather short; it is an order of magnitude shorter than that expected for nuclear dipolar couplings when a magnetic field is applied parallel to the crystalline [100] axis. From the cross polarization spectral density analysis, it is concluded that a large J-coupling of the order of 2 kHz exists between these nuclei and that its angular dependence is not of a simple pseudo-dipolar type.

PACS numbers: 78.30.Fs 32.80.Bx 76.70.Fz

I. INTRODUCTION

Dynamic nuclear polarization (DNP) is a method of creating hyperpolarized nuclear spins in solids, liquids or gases in a non-equilibrium fashion. For decades, it has been utilized to enhance sensitivity in the nuclear magnetic resonance (NMR) method. Recently, nuclear-spin-related phenomena in semiconductors have attracted much attention, which has added renewed interests to DNP. Examples include electron spin dynamics in semiconducting nanostructures1 and solid-state NMR quantum computers;2 the hyperpolarized nuclei are utilized as a means to control electron spin states in the former, while they are expected to serve as initialized states for quantum computation in the latter. With the emergence of these new applications, it has become increasingly important to control positions, degrees of polarization and the nuclear species to be polarized, i.e., to manipulate hyperpolarization.

To achieve this purpose, one needs to create, transfer and localize nuclear spin polarizations in desired positions efficiently, which may require a variety of techniques to be integrated.3 Nuclear spin polarizer (NSP) is one of such schemes.4,5 In this scheme, hyperpolarization is created in compound semiconductors such as InP and GaAs by the optical orientation (optical pumping) method,6,7 where nuclear spins are hyperpolarized by polarized electrons photo-excited by circularly polarized light with the band gap energies of the semiconductors. The hyperpolarization thus created is manipulated by means of various polarization transfer techniques in solids, such as the cross polarization, polarization transfer and spin diffusion, which enable us to transfer hyperpolarization between different nuclear species, different portions in the semiconductor, or even different materials through the interfaces. In the last case, the polarization can be localized at the interfaces.2,4,8,9

The polarization transfers in this scheme rely on hyperfine- and heteronuclear-couplings in semiconductors so that it is essential to understand their characteristics. Our understanding on them is still insufficient, however. The characteristics of the hyperfine couplings responsible for the polarization transfer from photo-excited electrons to nuclei in the optical orientation process are still open to debate.10,11,12 On the other hand, the strengths and angular dependences of the heteronuclear couplings in InP have been measured in the thermal equilibrium.13,14 but those between optically oriented nuclei still remain undetermined.

In this paper, we address these issues from the viewpoint of the characteristic time scales of the polarization transfer processes i.e., the cross-relaxation time between hyperpolarized nuclei, T_{1S} and the buildup time for nuclear polarization by photo-excited electrons, T_{0}. The former (T_{1S}) provides us with information on heteronuclear couplings between hyperpolarized nuclei. In III we show in the case of the semi-insulating iron-doped InP (InP:Fe) that the polarization transfer is predominantly mediated by nearest-neighbor indirect J-couplings, and that their angular dependence is not of a simple pseudo-dipolar type. The latter (T_{0}), on the other hand, provides us with information on the hyperfine couplings responsible for the nuclear spin orientation, which are closely related to the states of the photo-excited electrons. In IV we show that the nuclear-site dependence of T_{0} is

\begin{verbatim}
*Electronic address: goto.atsushi@nims.go.jp
\end{verbatim}
a good measure to determine the types of hyperfine couplings and that, in the case of InP:Fe, the polarization transfer from photo-excited electrons to nuclei is primarily brought about by the electron-nuclear dipolar couplings.

II. EXPERIMENTAL METHODS

The optical-nuclear-orientation and cross-polarization experiments were performed at 10 K with the optical pumping double resonance system. The system includes a two-channel (XY) NMR spectrometer (Apollo, Tecmag Inc.), a Ti:Sapphire tunable laser (3900S) pumped by a diode-pumped Nd:YVO₄ cw green laser (Millenia Vs, Spectra-Physics Inc.), and a home-built top-loading XY double-resonance probe with an optical fiber attachment. The probe is installed in a dynamic gas-flow cryostat (Spectrostat 86/62, Oxford Instruments Inc.), which is mounted on a 270 MHz (6.346 T) wide-bore superconducting magnet (Oxford Instruments Inc.). The Ti:Sapphire laser provides linearly polarized light with the wavelength ranging between 600 and 1000 nm, which is transmitted to the sample space at the probe end by a polarization maintaining optical fiber (PANDA, Fujikura Co. Ltd.), then converted to circularly polarized light with a quarter waveplate before being applied to a sample. The sample used in this study was a wafer of the semi-insulating iron-doped InP with the crystal orientation of (100) and the carrier density at room temperature of 3 × 10¹⁷ cm⁻³ (Showa Denko, lot 20044202). It was set inside a pickup coil at the probe end with the surface normal to the magnetic field and the light beam.

The pulse sequence for I (primary nuclei, ³¹P), S (secondary nuclei, ¹¹⁵In) and IR (infrared light with the photon energy of E₀ = 1.386 eV) measured at 10 K and 6.346 T, respectively, and IR represents the infrared light with the photon energy of Eᵣ and the helicity of σᵣ. For other notations, refer to the text.

FIG. 1: Pulse sequence for the cross polarization experiments under the infrared light irradiation. I and S correspond to ³¹P and ¹¹⁵In, respectively, and IR represents the infrared light with the photon energy of Eᵣ and the helicity of σᵣ.

III. CROSS-RELAXATION IN HYPERPOLARIZED NUCLEAR SPINS

In general, the contact time (τₑp) dependence of the S-spin magnetization in the cross polarization process is given by,

\[M_S(\tau_{ep}) \propto [1 - \exp\left\{-\left(1 - \frac{T_{IS}}{T_{I\rho}}\frac{\tau_{ep}}{T_{IS}}\right)\right\} \exp\left(-\frac{\tau_{cp}}{T_{I\rho}}\right)] \]

(1)

which results from the competition between the polarization transfer process from the I-spins with the characteristic time T₁S, and the decay process of the I-spins.

FIG. 2: The τₑp dependence of the ¹¹⁵In magnetization in the ³¹P → ¹¹⁵In cross polarization experiment under the IR irradiation (Eᵣ=1.386 eV) measured at 10 K and 6.346 T. ω₀ᵣ/2π = 109.316 MHz, ω₀ᵣ/2π = 59.23 MHz and ω₁ᵣ/2π = 18 kHz. The solid line is a result of the least-squares-fitting to Eq. (1).
TABLE I: Photon-energy (E_p) and IR-irradiation-time (τ_L) dependences of the cross-relaxation rates (T_{JS}^{-1}) measured at 10 K and 6.346 T.

E_p (eV)	τ_L (s)	T_{JS}^{-1} (104 s$^{-1}$)
1.386	60	8.8 ± 0.8
1.407	60	9.4 ± 0.8
2.40	10.8 ± 2.0	

in the rotating flame characterized by T_{1p}^I.

The τ_{cp} dependence of the 115In magnetization under the IR irradiation is shown in Fig. 2. One may find that the decay process is negligible ($T_{1p}^I \rightarrow \infty$). In fact, T_{1p}^{31P} was reported to be as long as 80 ms,[13] which is much longer than T_{1S}. Setting $T_{1p}^I \rightarrow \infty$, Eq. (1) can be reduced to,

$$M_S(\tau_{cp}) = M_S(\infty) \{1 - \exp(-\tau_{cp}/T_{1S})\}. \quad (2)$$

By fitting the data in Fig. 2 to Eq. (2), one can obtain the cross relaxation rate $T_{JS}^{-1} = (8.8 \pm 0.8) \times 10^4$ s$^{-1}$.

It is intriguing to see whether or not T_{JS}^{-1} is affected by the difference in the photon energy E_p. We measured T_{JS}^{-1} at two photon energies, $E_p = 1.386$ and 1.407 eV, at both of which the 31P polarization is strongly enhanced by the optical orientation effect. The result is summarized in Table II which shows that T_{JS}^{-1} is independent of E_p within the experimental error. One of the possible explanations for this result may be relaxation of the photo-excited electrons, which occurs with a time scale much greater than T_{JS}, so that the electrons excited with different E_p would result in the same metastable state. We also measured T_{JS}^{-1} at two different IR-irradiation times $\tau_L = 60$ s and 240 s, which is intended to investigate the effect of nuclear spin diffusion process.

It is expected that for greater τ_L, nuclear polarizations may spread out farther from the positions where polarizations are originally created. Provided the spin diffusion constant $D \approx 10^{-13}$cm2/sec[17] the expected diffusion lengths $\tau_D \approx \sqrt{D\tau_L}$ = 24 and 49 nm for $\tau_L = 60$ s and 240 s, respectively.[13] The result is shown in Table II which indicates that T_{JS}^{-1} is almost independent of τ_L, i.e., T_{JS}^{-1} is not very sensitive to the distance from the photo-excited electrons, at least, up to about 50 nm.

The cross relaxation rate T_{JS}^{-1} can be calculated provided that all the internuclear couplings are given. In the following, we calculate T_{JS}^{-1} using the formalism by Demco et al.[18] and compare the results with the experimental values. We show that the contribution of nuclear dipolar couplings to T_{JS}^{-1} is too small to account for the experimental values, and that indirect J-couplings are inevitable to account for it.

The cross polarization process with spin-locking can be expressed in terms of the x-component of the cross polarization spectrum density $J_x(\omega)$. Assuming a Gaussian form for $J_x(\omega)$, T_{JS}^{-1} is approximated by,[18] [19]

$$\frac{1}{T_{JS}} = \frac{\sqrt{3}}{4} \sin^2 \theta_S \sin^2 \theta_I M^{IS}_2 \tau_c \exp(-\Delta \omega_e^2 \tau_c^2 / 4). \quad (3)$$

Here, τ_c is the correlation time for $J_x(\omega)$ given by,

$$\frac{1}{\tau_c^2} = \frac{1}{6} P_2(\cos \theta_I)^2 I(I+1) \frac{5S_4 + 18S_3}{S_1}, \quad (4)$$

where $P_2(x)$ is the second Legendre polynomial, and three S_i values are given by the following lattice-sums[20]

$$S_1 = \sum B_i^2 \quad \quad S_3 = \sum_{i \neq j} A_{ij}^2 B_i B_j \quad \quad S_4 = \sum_{i \neq j} A_{ij}(B_i - B_j)^2. \quad (5)$$

A_{ij} and B_i are the coefficients of the secular terms in the homo ($I_i - I_j$) and hetero ($S-I_i$) nuclear couplings, respectively. If only the nuclear dipolar couplings are responsible for them, they are given by,

$$A_{ij} \equiv -\gamma_I^2 h P_2(\cos \theta_{ij})/r_i^3 = \gamma_I^2 h \frac{1 - 3 \cos^2 \theta_{ij}}{2r_i \tau_c^2},$$

$$B_i \equiv -2\gamma_I \gamma_S h P_2(\cos \theta_i)/r_i^3 = \gamma_I \gamma_S h \frac{1 - 3 \cos^2 \theta_i}{r_i^2}. \quad (6)$$

Here, γ_I and γ_S are the respective gyromagnetic ratios. r_{ij} and r_i are the vectors corresponding to the $I_i - I_j$ and $S - I_j$ bondings, and θ_i and θ_{ij} are the angles between \mathbf{H}_0 and the corresponding vectors, respectively (see Fig. 3). M^{IS}_2 is the second moment for the heteronuclear couplings, which is given in the case of the dipolar couplings by,

$$M^{IS,d}_2 = \frac{1}{3} I(I+1)S_1. \quad (7)$$

The off-resonance factors $\Delta \omega_e$, θ_I and θ_S are schematically shown in Fig. 4. They are defined as,

$$\Delta \omega_e \equiv \omega_e - \omega_{IL}, \quad \theta_I \equiv \tan^{-1}(\omega_{IL}/\Delta \omega_I), \quad \theta_S \equiv \tan^{-1}(\omega_{IS}/\Delta \omega_S). \quad (8)$$

FIG. 3: (Color online) Crystal structure of InP.
where \(\omega_{I} \) and \(\omega_{S} \) are the pulse intensities \((H_1) \) in units of angular frequency, and \(\Delta \omega_{\alpha} \) and \(\omega_{\alpha} \) (\(\alpha = I, S \)) are the offsets and the effective \(H_1 \) fields defined by,

\[
\Delta \omega_{\alpha} = \omega_{\alpha 0} - \omega_{\alpha},
\]

\[
\omega_{\alpha}^2 = \Delta \omega_{\alpha}^2 + \omega_{1\alpha}^2,
\]

where \(\omega_{\alpha 0} \) and \(\omega_{\alpha} \) are the resonance and the transmitter angular frequencies, respectively. If both \(I \) and \(S \) are on-resonances \((\Delta \omega_{\alpha} = 0) \) and the Hartmann-Hahn condition is fulfilled \((\omega_{I} = \omega_{S}) \),

\[
\Delta \omega_{c} = 0,
\]

\[
\theta_I, \theta_S = \pi/2,
\]

so that Eq. (3) is reduced to,

\[
\frac{1}{T_{IS}} = \frac{\sqrt{\pi}}{4} M_{IS}^2 \tau_c. \tag{11}
\]

Now, let us calculate the dipolar contributions to \(T_{IS}^{-1} \) in our case. The off-resonance effect is negligible in our experiments because,

\[
\Delta \omega_I/2\pi = -1.2 \text{ [kHz]},
\]

\[
\Delta \omega_S/2\pi = 1.0 \text{ [kHz]},
\]

\[
\omega_I/2\pi = 16.7 \text{ [kHz]}
\]

so that, \(\omega_{c, I} \approx \omega_{c, S} \), and \(\sin \theta_I = \sin \theta_S = 0.998 \), i.e., the conditions in Eq. (10) are nearly fulfilled.

The estimation of \(\tau_c \) requires the calculation of lattice sums in Eq. (5). In the present case, all the nearest neighbor \(I_i \) spins are at the magic angle positions \((\theta_i = 54.74^\circ) \) as seen in Fig. 3 so that the summations in Eq. (5) start with the second nearest neighbor sites. Using the lattice constant \(a = 5.87 \text{Å} \) [23], the \(S \)-values in Eq. (5) are calculated as,

\[
S_1 = 5.50 \times 10^6 \text{ [rad}^2/\text{s}^2],
\]

\[
S_3 = 4.67 \times 10^{12} \text{ [rad}^4/\text{s}^4],
\]

\[
S_4 = 2.59 \times 10^{13} \text{ [rad}^6/\text{s}^6].
\tag{13}
\]

Equations (11) and (17) along with \(S_1 (i=1, 2, 4) \) in Eq. (13) yield \(\tau_c = 9.08 \times 10^{-4} \text{ s and } M_{IS,d}^2 = 1.37 \times 10^6 \text{ rad}^2/\text{s}^2 \). Inserting these values into Eq. (11), one finally obtains,

\[
1/T_{IS}^2 = 5.5 \times 10^2 \text{ [s}^{-1}]. \tag{14}
\]

This value is by one order of magnitude smaller than the experimental values shown in Table [1]. This difference is presumably due to the \(J \)-couplings with the nearest-neighbor \(^{31}\text{P} \) nuclei, \(J_{IS} \).

The inclusion of \(J_{IS} \) into the calculation causes changes in both \(\tau_c \) and \(M_{IS}^2 \). The correlation time \(\tau_c \) in the presence of \(J_{IS} \) is given by Eqs. (14) and (17), but \(2\pi J_{IS} \) should be added to \(B_i \) for the four nearest neighbor \(^{31}\text{P} \).

\[
B_i = -2\gamma_i \gamma_S \hbar P_2(\cos \theta_i)/\nu_i^3 + 2\pi J_{IS}. \tag{15}
\]

Here, we neglect the small next-nearest-neighbor homonuclear \(J \)-couplings \(J_i^{(31}\text{P}-^{31}\text{P} \) of the order of 10 Hz [14]. On the other hand, \(M_{IS}^2 \) is given by,

\[
M_{IS}^2 = M_{IS,d}^2 + M_{IS,J}^2, \tag{16}
\]

\[
M_{IS,J}^2 = \frac{1}{3} (I + 1) \sum_{i=nn}^4 (2\pi J_{IS})^2, \tag{17}
\]

where \(M_{IS,d} \) is the contribution from the \(J \)-couplings. Note that no cross-terms between the dipolar and \(J \)-couplings exist in Eq. (16) because of the absence of the dipolar couplings between the nearest-neighbor sites [12].

The value of \(J_{IS} \) is determined so that the observed \(T_{IS}^{-1} = (0.9 \pm 0.3) \times 10^4 \text{ s}^{-1} \) in Table I is reproduced. As a result, we found that it falls within the range \(|J_{IS}| = 2.3 \pm 0.5 \text{ kHz} \). We assume rather large error in \(T_{IS}^{-1} \) taking into account the fact that \(J_{e}(\omega) \) is approximated by Gaussian for simplicity [18, 19].

The presence of \(J_{IS} \) is consistent with the line width obtained experimentally. Assuming the Gaussian form of the spectrum, the line width \(\Delta \nu_{1/2} \) is given with the second moment \(M_2 \) by [19]

\[
\Delta \nu_{1/2} = \frac{2\sqrt{2\ln 2} \cdot M_2}{2\pi}. \tag{18}
\]

Provided that \(J_{IS} = 0 \), \(M_2 \) is given by the lattice sums of the homo- and heteronuclear dipolar couplings. In the present case, it is calculated as [17, 22]

\[
M_2^d = M_{SS,d}^2 + M_{IS,d}^2 = 4.1 \times 10^7 \text{[rad}^2/\text{s}^2], \tag{19}
\]

which yields \(\Delta \nu_{1/2}^d = 2.4 \text{ kHz} \). In reality, it is found that the \(^{115}\text{In} \) spectrum is rather close to Lorentzian with the full width at half of the maximum intensity (FWHM) of \(4.0 \pm 0.2 \text{ kHz} \) [1]. The observed FWHM is 1.7 times as large as \(\Delta \nu_{1/2}^d \). Assuming that \(J_{IS} = 1.4 \text{ kHz} \), \(M_2 \) is calculated as,

\[
M_2 = M_{SS,d}^2 + M_{IS,d}^2 + M_{IS,J}^2 = 1.2 \times 10^8 \text{[rad}^2/\text{s}^2], \tag{20}
\]
which yields $\Delta \nu_{1/2} = 4.1$ kHz, reproducing the experimentally observed FWHM. The assumed $J_{IS} = 1.4$ kHz is rather small compared to that estimated from T_{1S}^{-1}, $|J_{IS}| \approx 2.3 \pm 0.5$ kHz. This is probably due to the ambiguities in the estimation of T_{1S}^{-1} as well as the determination of the FWHM in the spectrum whose shape is not a Gaussian.

Tomaselli et al. discussed the J-couplings in InP in the cross polarization/magic angle spinning (CP/MAS) experiments.\cite{15} Assuming J_{aniso} of the pseudo-dipolar type,

$$J(\theta) = J_{iso} + 2J_{aniso}\cos(\theta),$$

with θ being the angle between the nearest-neighbor 31P,115In bond and the magnetic field, they determined the isotropic and anisotropic parts of the J-coupling as $|J_{iso}| = 225 \pm 10$ Hz and $|J_{aniso}| = (813 \pm 50)$ or (1733 ± 50) Hz. A similar conclusion has been reported by Iijima et al.\cite{14} In the present case where $\theta = 54.74^\circ$, the anisotropic part of Eq. (21) is zero, so that $J_{IS} = J_{iso}$, whereas the value $|J_{IS}| \approx 2.3$ kHz obtained in the present study is much greater than $|J_{iso}| \approx 0.23$ kHz.

One possible explanation for the large J_{IS} at $\theta = 54.74^\circ$ is that the angular dependence of J is not of a simple pseudo-dipolar type, but of the anisotropic pseudexchange type,\cite{22}

$$J(\theta) = J_{\parallel}\cos^2 \theta + J_{\perp}\sin^2 \theta,$$

which is a generic form of the angular dependent J-coupling including the pseudo-dipolar one as a special case. In this case, $J(54.74^\circ) = (J_{\parallel} + 2J_{\perp})/3$, which yields non-zero value except for $J_{\parallel} = -2J_{\perp}$ corresponding to the pseudo-dipolar case. The present data are still insufficient to determine the angular dependence of the anisotropic J. Nevertheless, they show that the J-coupling is not of a simple pseudo-dipolar type. Since the dipolar type angular dependence is averaged out in the MAS experiments, the determination of the angular dependence of J may require measurements of cross relaxation times in static cross polarization experiments.

IV. BUILDUP TIME IN THE OPTICAL PUMPING PROCESS

In the previous section, we have shown that the characteristic time for the cross polarization process provides us with information on the heteronuclear couplings responsible for the polarization transfer. A similar argument is possible for the characteristic time in the nuclear polarization process by the optical pumping, i.e., the buildup time T_b. It provides us with information on the hyperfine couplings responsible for the nuclear spin orientation.

There are two types of possible hyperfine interactions in semiconductors, i.e., Fermi contact and dipolar interactions. In the former case, photo-excited electrons are captured at shallow donor levels whose wave functions have the diameter of the order of 100 Å. The nuclear spins inside the wave functions are directly polarized through the flip-flop terms in the Fermi contact interaction ($I^+S^- + I^-S^+$).\cite{23} In the latter case, on the one hand, photo-excited electrons are localized at donor sites such as deep centers. Since little Fermi interactions exist with the surrounding nuclei, the nuclear spins near the donor sites are polarized through the non-secular terms of the dipole interaction ($I^+S^2 + I^-S^2$). That is, the type of hyperfine coupling is closely related to the state of the polarized electrons, so that its elucidation is essential to understand the mechanism of the optical nuclear orientation.

Many authors have addressed this issues so far. In the 1970’s, Bagraev et al. examined the buildup time of 29Si in the presence of deep centers in compensated silicon and argued the types of hyperfine couplings responsible for the optical orientation in this material.\cite{25} More recently, Patel et al. addressed this issue in InP.\cite{10} He proposed that the two mechanisms can be distinguished from the difference in the sign of the nuclear polarization relative to that at thermal equilibrium, and concluded that it is the dipolar coupling that causes nuclear polarization in undoped n-type InP. Paravastu et al. suggested in the case of semi-insulating GaAs, that the photo-excited electrons localized at donor sites cannot be solely responsible for macroscopic nuclear polarization.\cite{11} A factor that brings complications into the arguments is the presence of nuclear spin diffusion, which is believed to convey polarization farther away from the photo-excited electrons to achieve bulk nuclear polarization. Goehring et al. pointed out in InP nanoparticles that the nuclear spin diffusion process is rather slow,\cite{8} suggesting that the spin diffusion might be rather insufficient to convey nuclear polarization in bulk materials.

Here, we show that the nuclear-site dependence of T_b provides a clue to identify hyperfine couplings responsible for the buildup. We previously reported the nuclear-site dependence of T_b^{-1} in InP:Fe,\cite{16} which is summarized in Table 1, together with that of the spin-lattice relaxation rate T_1^{-1} at 300 K.\cite{24} At first sight, it seems rather peculiar that the values of T_b^{-1} at 115In and 31P are of the same order, although those of T_1^{-1} are different by four orders of magnitude between them. If the Fermi contact were responsible for both T_b^{-1} and T_1^{-1}, T_b^{-1} at 115In would be forty five times as long as that at 31P.\cite{16} This result indicates that T_b^{-1} and T_1^{-1} are subject to different mechanisms from each other. In fact, we show in the following that T_1^{-1} is primarily caused by the Fermi contact interaction with conduction electrons, while T_b^{-1} is mainly caused by the dipolar interactions with localized electrons. The nuclear-site dependence of T_1^{-1} stems from the difference in the probability of electrons at the nuclear sites, while that of T_b^{-1} stems from the difference in the distance from the localized electrons.

For the Fermi contact interaction with thermally ex-
TABLE II: The nuclear-site dependences of the buildup rate (T_b^{-1}) with the photons of $E_p = 1.420$ eV and σ^+ at 4.2 K and the spin-lattice relaxation rate (T_1^{-1}) at 300 K.

	T_b^{-1} (10^{-11} s^{-1})	T_1^{-1} (s^{-1})
115In	6.3 ± 0.2	(1.0 ± 0.1) × 10^3
31P	3.4 ± 0.2	(2.0 ± 0.1) × 10^{-3}

cited electrons, T_1^{-1} is given by,

$$\frac{1}{T_1} = \frac{64}{9} \pi N \eta^2 \gamma_2^2 \gamma_3^2 (m^* k_B T)^{1/2},$$ (23)

with η being the probability of electrons/holes at the nuclear site, and N being the carrier density. Hence, the large difference in T_1^{-1} between 31P and 115In originates from that in η. At indium sites, the conduction band consists mainly of s-orbitals and has large η, while it is small at phosphor sites where the wave function mainly consists of p-orbitals of the valence band.

The Fermi contact interaction, however, is less effective for non-degenerated trapped electrons because of the following reason. To conserve energy in the flip-flop process ($I^+S^- + I^-S^+$), the electrons should be excited to the state with the small excitation energy of $h\omega_{11}$ corresponding to the nuclear Zeeman energy, while no such excited states are available at Fermi level in the non-degenerated electrons. The dipolar interaction, on the other hand, contains non-secular terms such as ($I^+S^- + I^-S^+$), which flip nuclear spins I without flipping electron spins S. In this case, T_b^{-1} is given by,

$$\frac{1}{T_b} = \frac{3}{2} S(S + 1) \tau_I J_1(\omega_I) = \frac{2}{5} S^2 \gamma_I^2 \hbar^2 (r^{-6}) S(S + 1) \tau_s \frac{1 + \omega_s^2 \tau_s^2}{1 + \omega_I^2 \tau_I^2},$$ (24)

which contains no η. Hence, contrary to the case of the Fermi contact interactions where η is the origin of the nuclear-site dependence, the dipole dependence in this case stems from the differences in the gyromagnetic ratio (γ_I) and the lattice-averaged r^{-6}, i.e., $\langle r^{-6} \rangle$.

The nuclear-site dependence of T_b^{-1} allows us to estimate the ratio of $\langle r^{-6} \rangle$ between 31P and 115In. Taking into account the fact that $\omega_I^2 \tau_I^2 \ll 1$, Eq. (24) yields,

$$\langle r^{-6} \rangle \propto \frac{T_b^{-1}}{\gamma_I^2}. $$ (25)

Using the relation $(31\gamma/115\gamma)^2 = 3.41$ and T_b^{-1} listed in Table II, one obtains,

$$\frac{115\langle r^{-6} \rangle}{31\langle r^{-6} \rangle} \approx \left(\frac{31\gamma}{115\gamma} \right)^2 \times \frac{(115T_b)^{-1}}{(31T_b)^{-1}} = 6.3, $$ (26)

as shown below. The calculation of the lattice sums of r^{-6} can be performed with the same calculation scheme as that used in Eq. (13) in [11]. Assuming that the polarized electrons are localized at phosphor sites, the calculation yields,

$$\frac{115\langle r^{-6} \rangle}{31\langle r^{-6} \rangle} = \frac{\sum_i (r_i - r_0)^{-6}}{\sum_j (r_j - r_0)^{-6}} = 6.16, $$ (27)

where $i = 115$In and $j = 31$P and r_0 is the position of the phosphor site at which the polarized electron is localized. The agreement between Eq. (26) (experiment) and Eq. (27) (calculation) is quite satisfactory.

To summarize, the experimental finding that $^{31}T_b^{-1}$ and $^{115}T_b^{-1}$ in InP:Fe are of the same order indicates that the dipolar coupling is mainly responsible for T_b^{-1} in this material. This is consistent with the conclusion by Patel et al. deduced from the sign of the nuclear polarizations [10]. The present data also indicate that the photo-excited electrons may be located at phosphor sites, which may be related to antisites or iron trapping centers. This example shows that the nuclear-site dependence of T_b^{-1} provides us with information on the types of hyperfine couplings responsible for the nuclear spin orientation in the optical pumping process.

V. CONCLUSION

In conclusion, we have investigated the characteristics of heteronuclear and hyperfine couplings in optically oriented semiconductors using the semi-insulating InP:Fe. We have focused on the time scales in the polarization transfer processes, i.e., the cross-relaxation time T_{1S} in the cross polarization and the buildup time T_b in the optical nuclear orientation. We find that T_{1S}^2 is greater than that expected from the nuclear dipolar couplings by one order of magnitude. This discrepancy can be accounted for by assuming the J-couplings of the order of 2 kHz between nearest-neighbor 115In-31P. The angular dependence of the J-coupling is inconsistent with that of a simple pseudo-dipolar type previously assumed, suggesting different anisotropy of the J-coupling. On the other hand, we show that the nuclear-site dependence of T_b^{-1} provides a clue to identify the hyperfine coupling responsible for the optical nuclear orientation. We find in the case of InP:Fe that $^{31}T_b^{-1}$ and $^{115}T_b^{-1}$ are of the same order, indicating that the electron-nuclear dipolar coupling is primarily responsible for the nuclear spin orientation. It is also suggested that the photo-excited electrons are likely to be located at phosphor sites.

ACKNOWLEDGMENTS

This work was partially supported by Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and
Technology (MEXT) of Japan, Industrial Technology Research Grant Program from New Energy and Industrial Technology Development Organization (NEDO) of Japan, and Grant-in-Aid for Basic Research from Japan Society for Promotion of Science (JSPS).

[1] J. Schliemann, A. Khatskeii and D. Loss, J. Phys.: Condens. Matter 15, R1809 (2003).
[2] T. Shimizu, A. Goto, K. Hashi, Superlattices Microstr. 32, 313 (2002).
[3] R. Tycko, Solid State Nucl. Magn. Reson. 11, 1 (1998).
[4] A. Goto, T. Shimizu, K. Hashi, H. Kitazawa and S. Ohki, Phys. Rev. A 67, 022312 (2003).
[5] A. Goto, T. Shimizu, K. Hashi, S. Ohki, T. Iijima and G. Kido, IEEE T. Appl. Supercond. 14, 1635 (2004).
[6] Optical Orientation, eds., F. Meier and B.P. Zakharchenya (North Holland, Amsterdam, 1984).
[7] R. Tycko and J. A. Reimer, J. Phys. Chem. 100, 13240 (1996).
[8] L. Goehring and C. A. Michal, J. Chem. Phys. 119, 10325 (2003).
[9] A. Goto, T. Shimizu, K. Hashi and H. Ohki, in preparation.
[10] A. Patel, O. Pasquet, J. Bharatam, E. Hughes and C. R. Bowers, Phys. Rev. B 60, R5105 (1999).
[11] A. K. Paravastu, S. E. Hayes, B. E. Schwickert, L. N. Dinh, M. Balooch and J. A. Reimer, Phys. Rev. B 69, 075203 (2004).
[12] A. K. Paravastu and J. A. Reimer, Phys. Rev. B 71, 045215 (2005).
[13] M. Tomaselli, D. deGraw, J. L. Yarger, M. P. Augustine and A. Pines, Phys. Rev. B 58, 8627 (1998).
[14] T. Iijima, K. Hashi, A. Goto, T. Shimizu and S. Ohki, Jpn. J. Appl. Phys. 2 42, L1411 (2003).
[15] A. Goto, S. Ohki, K. Hashi and T. Shimizu, Rev. Sci. Instrum. 77, 093904 (2006).
[16] A. Goto, K. Hashi, T. Shimizu, R. Miyabe, X. Wen, S. Ohki, S. Machida, T. Iijima and G. Kido, Phys. Rev. B 69, 075215 (2004).
[17] A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
[18] D. E. Demco, J. Tegenfeldt and J. S. Waugh, Phys. Rev. B 11, 4133 (1975).
[19] M. Mehring, Principles of high resolution NMR in solids, 2nd ed. (Springer Verlag, Berlin-Heidelberg, 1983).
[20] The second S-value S_2, also defined in Refs. [18, 19], is not shown here because it is irrelevant to the present calculations.
[21] O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Springer-Verlag, Berlin-Heidelberg, 2004).
[22] K. Hashi, H. Kitazawa, T. Shimizu, A. Goto, S. Eguchi and S. Ohki, Superlattices Microstr. 32 309 (2002).
[23] N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 (1955).
[24] Note that S in this case represents electron spins and not the secondary nuclear spins in [11].
[25] N. T. Bagraev, L. S. Vlasenko and R. A. Zhiltikov, Piz’ma Zh. Eksp. Teor. Fiz. 25, 207 (1977) [JETP Lett. 25, 190 (1977)].
[26] It was confirmed that T_{b}^{-1} is almost independent of E_p and σ^{\pm}. [10]