Streptococcus iniae ISNO is an attenuated novobiocin-resistant vaccine strain. Its full genome is 2,070,182 bp in length. The availability of this genome will allow comparative genomics to identify potential virulence genes important for pathogenesis of S. iniae and potential mechanisms associated with novobiocin resistance in this strain.

ACKNOWLEDGMENTS

This study was supported by the USDA/ARS CRIS project no. 6420-32000-024-00D. The use of trade, firm, or corporate names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

We thank James Becnel (USDA-ARS) and Laura Silo-Suh (Mercer University) for critical reviews of the manuscript. We thank Beth Petersen (USDA-ARS) for her technical support.

REFERENCES

1. Sun JR, Yan JC, Yeh CY, Lee SY, Lu JJ. 2007. Invasive infection with Streptococcus iniae in Taiwan. J. Med. Microbiol. 56:1246–1249. http://dx.doi.org/10.1099/jmm.0.47180-0.
2. Lau SK, Woo PC, Luk WK, Fung AM, Hui WT, Fong AH, Chow CW, Wong SS, Yuen KY. 2006. Clinical isolates of Streptococcus iniae from Asia are more mucoid and beta-hemolytic than those from North America. Diagn. Microbiol. Infect. Dis. 54:177–181. http://dx.doi.org/10.1016/j.diagmicrobio.2005.09.012.
3. Miller JD, Neely MN. 2005. Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect. Immun. 73:921–934. http://dx.doi.org/10.1128/IAI.73.2.921-934.2005.
4. Agnew W, Barnes AC. 2007. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vac-
cination. Vet. Microbiol. 122:1–15. http://dx.doi.org/10.1016/j.vetmic.2007.03.002.

5. El Aamri F, Caballero MJ, Real F, Acosta F, Déniz S, Román L, Padilla D. 4 February 2014. Streptococcus iniae in gilthead seabream (Sparus aurata, L.) and red porgy (Pagrus pagrus, L.): ultrastructural analysis. Vet. Pathol. http://dx.doi.org/10.1177/0300985814520638.

6. Pier GB, Madin SH. 1976. Streptococcus iniae sp. nov., a beta-hemolytic Streptococcus isolated from an Amazon freshwater dolphin, Inia geoffrensis. Int. J. Syst. Bacteriol. 26:545–553. http://dx.doi.org/10.1099/00207713-26-4-545.

7. Eyngor M, Tekoah Y, Shapira R, Hurvitz A, Zlotkin A, Lublin A, Eldar A. 2008. Emergence of novel Streptococcus iniae exopolysaccharide-producing strains following vaccination with nonproducing strains. Appl. Environ. Microbiol. 74:6892–6868. http://dx.doi.org/10.1128/AEM.00853-08.

8. Bromage ES, Thomas A, Owens L. 1999. Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Organ 36:177–181. http://dx.doi.org/10.3354/dao036177.

9. Eldar A, Perl S, Frelier PF, Bercovier H. 2008. Red drum Sciaenops ocellatus mortalities associated with Streptococcus iniae infection. Dis. Aquat. Organ 36:121–127. http://dx.doi.org/10.3354/dao036121.

10. Nho SW, Shin GW, Park SB, Jang HB, Cha IS, Ha MA, Kim YR, Park YK, Dalvi RS, Kang BJ, Joh SJ, Jung TS. 2009. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol. Lett. 293:20–27. http://dx.doi.org/10.1111/j.1574-6968.2009.01491.x.

11. Nguyen HT, Kanai K. 1999. Selective agars for the isolation of Streptococcus iniae from Japanese flounder, Paralichthys olivaceus, and its cultural environment. J. Appl. Microbiol. 86:769–776. http://dx.doi.org/10.1046/j.1365-2672.1999.00724.x.

12. Zhou SM, Xie MQ, Zhu XQ, Ma Y, Tan ZL, Li AX. 2008. Identification and genetic characterization of Streptococcus iniae strains isolated from diseased fish in China. J. Fish Dis. 31:869–875. http://dx.doi.org/10.1111/j.1365-2761.2008.00954.x.

13. Pridgeon JW, Klesius PH. 2011. Development and efficacy of a novobiocin-resistant Streptococcus iniae as a novel vaccine in Nile tilapia (Oreochromis niloticus). Vaccine 29:5986–5993. http://dx.doi.org/10.1016/j.vaccine.2011.06.036.

14. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

15. Zhang BC, Zhang J, Sun L. 2014. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 9:e91324. http://dx.doi.org/10.1371/journal.pone.0091324.

16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formisna K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.