Synthesis and Anti-inflammatory Study of Novel N-substituted Hydroacridine-1,8-diones and Bis-hexahydroacridine-1,8-dione Derivatives

Omyma A Abd-Allah1*, Antar A Abdelhamid1 and Shaaban K Mohamed2,3

1Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
2Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England
3Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt

Abstract

We report in this study the synthesis of some new N-substituted hexahydroacridine-1,8-dione compounds including some new N-/2-hydroxypropylhexahydroacridine-1,8-diones and their tosylatedoctahydroacridine-1,8-dione derivatives in addition to some bis-hexahydroacridine-1,8-diones via a one pot reaction technique. Moreover, in vivo anti-inflammatory evaluation for some newly synthesized compounds has been investigated. The highly alkylated bis-hydroacridine-1,8-dione 5f showed a higher anti-inflammatory potency more than the non-alkylated and the standard employed indomethacin. The structure of all new products has been characterized by IR, 1H-NMR and 13C-NMR.

Keywords: Acridines; Bis-acridine; Hexahydroacridinones; Anti-inflammatory agents

Introduction

Large number of natural and synthetic acridine scaffold compounds exhibit broad spectrum of biological and physical properties [1-5]. Although many researchers have devoted their studies on synthesis of acridine compounds and their pharmaceutical applications as anti-tumor [6-9], anti-bacterial [10], anti-malarial [11] and anti-inflammatory agents [12]. Acridinediones, in particular, have been identified as anti-malarial and anti-tumor agents [13-15]. Hexahydroacridine-1,8-dione derivatives are also reported to possess important properties such as high fluorescence efficiency [16]. As a consequence, the interest of organic chemists in the synthesis or structure modifications of hydroacridinone derivatives remains high. It has also been discovered that the introduction of a substituted group to the nitrogen atom of hexahydroacridine-1,8-diones leads to enhance the fluorescence activity [17,18]. Recently, Hubscherlen et al. found that the introduction of a cyclopropyl group to the nitrogen atom of the pyridine ring results in a wide spectrum of anti-bacterial activities [19]. However, the introduction of a 2-hydroxypropyl or tosylated propyl groups to the nitrogen atom has not been reported yet.

On other hand, many studies showed that dimerization of acridine compounds enhance their biological activities. They were first developed as tumorostatic agents compared to those of the respective mono acridines [20-22]. Synthesis of such dimeric ligands, have been employed to improve the local concentration of the bioactive species and to avoid the cellular efflux mechanisms associated with multi drug resistance to the respective monomeric counter parts [23,24]. Bis-acridines have also demonstrated bioactivity in mice infected with drug resistance to the respective monomeric counter parts [23,24]. Synthesis of such dimeric ligands, have been developed as tumorostatic agents compared to those of the respective acridine compounds enhance their biological activities. They were first identified as anti-malarial and anti-tumor agents [13-15].

Experimental

All melting points are uncorrected and were determined by Kofeler melting point apparatus. IR (cm⁻¹) spectra were recorded (KBr disc) on a Shimadzu DR-8001 spectrophotometer. 1H-NMR and 13C-NMR (DMSO-d₆, or CDCl₃) spectra were recorded at 400 MHz on a Varian Mercury- 300 BB at Sohag University, the chemical shift is expressed in δ value (ppm) using TMS as an internal reference Evaluation of Anti-inflammatory effect was carried out by Faculty of Medicine, Assante University.

Synthesis of hexahydroacridine-1,8-diones (3a-f)

General procedure: (1 mmol, 0.08 mL) of 1-aminopropan-2-ol and a catalytic amount of triethylamine were added to each of the following mixture: a mixture of (2 mmol) of the 1,3-cyclohexanedione (2a), (1 mmol) of salicylaldehyde or 5-bromosalicylaldehyde (1a,b); a mixture of (2 mmol) of the 5,5-dimethyl-1,3-cyclohexanedione (2b), (1 mmol) of salicylaldehyde or 5-bromosalicylaldehyde (1a,b) or a mixture of (2 mmol) 5-diphenyl-1,3-cyclohexane-dione (2c), (1 mmol) of 5-bromosalicylaldehyde or 3-bromo-5-chlorosalicylaldehyde (1bc). Then each of these mixtures was refluxed in (20 mL) ethanol and monitored by TLC till completion after 5 hrs. The excess of solvent was evaporated under reduced pressure, and the obtained solid was collected by filtration and crystallized from ethanol to afford the corresponding products of hexahydroacridine-1,8-diones 3a-f respectively (Scheme 1).

9-(2-hydroxyphenyl)-10-(2-hydroxypropyl)-3, 4, 6, 7, 9, 10-hexahydroacridine-1,8-(2H,5H)-dione (3a): Yellow crystals, mp 228°C. IR: (KBr,υ max, cm⁻¹), 3397(OH), 3062(CH aromatic), 2935-2874(CH aliphatic), 1627(C=O):H-NMR (DMSO-d₆):(δH), 10(s),1H(2H-phenolic), 9.0-6.7(m, J=4.5,6.8, aromatic), 5.3-5.0 (m, J=7.2, 1H, -CH(CH)): 5.1(s, 1H, OH alcoh olic), 4.2(s,1H, ArCH), 3.8, 3.6(t, J=8.0, 4H, 2CH₂C=O cyclic),2.30–2.0(d,1H, N-CH₂- alcoh olic), 2.2(t, J=8.0, 4H, 2=CH₃, cyclic), 2.0-1.9(m, J=8.0, 4H, 4CH₂, CH₂-H₂), 1.3(d, J=7.2, 3H, CH₃).13C-NMR(DMSO-d₆): (δC), 187(2C=O), 158(2C=C hydropyridine ring), 137(C=OH phenolic), 129.6, 129.3 (2C-CH₃), 128.1, 127.9, 126.7, 126.1, 125.5, 123,118.9(C=Ar),109(CH=Ar), 65.9 (C-OH al c), 58(CH₃-N), 51, 36.5,30, 27.6, 25.9, 21.6, 21.1, 20.3 (6 CH₂ + CH₃).

Received October 20, 2015; Accepted November 05, 2015; Published November 10, 2015

Citation: Abd-Allah OA, Abdelhamid AA, Mohamed SK (2015) Synthesis and Anti-inflammatory Study of Novel N-substituted Hydro-acridine-1,8-diones and Bis-hexahydroacridine-1,8-dione Derivatives. Med chem 2015, S2:004. doi: 10.4172/2161-0444.S2-004

Copyright: © 2015 Abd-Allah OA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Ref: Abd-Allah OA, Abdelhamid AA, Mohamed SK (2015) Synthesis and Anti-inflammatory Study of Novel N-substituted Hydro-acridine-1,8-diones and Bis-hexahydroacridine-1,8-dione Derivatives. Med chem S2-004. doi: 10.4172/2161-0444.1000004

9-(5-bromo-2-hydroxyphenyl)-10-(2-hydroxyproyl)-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione (3b): Yellow crystal, m.p 218°C. IR: (KBr, v max, cm⁻¹): 3419(OH), 3005(CH aromatic), 2966-2947(CH aliphatic), 1630(C=C), 616(C=Br); 1H-NMR(DMSO-d₆): (δ), 10(s, 1H, OH phenolic), 7.12-7.17(d, J=4.0, 2H, aromatic),6.66(s, 1H, aromatic), 4.97-4.93(d, J=4.5, 2H, NCH₃), 3.83-3.81 (m, J=4.5, 1H, CH₂CH₂), 3.35(s,1H, ArCH₃),3.10-3.08(t, J=7.2, 2H, CH₂C=O cyclic),2.93-2.89(m, J=7.2, 2H, CH₂-CH₂-CH₂), 2.5(s, CH of alcohol), 2.63-2.62 (m, J=7.2, 2H, CH₂CH₃C=O), 2.01-1.99 (t, J=7.2, 4H, CH₂=CHCH₃), 1.15-1.16(d, J=4.5, 3H, CH₃); 13C-NMR(DMSO-d₆): (δ), 198, 197.3(C=O), 156, 153 (2C=CH pyridazine ring), 153(Br),153.3 (OH phenolic), 131, 130,111.4,114.3,114,111(6CH Ar), 66.8(CH-OL acyl), 51(CH₂N), 36.18, 36.05(2CH₂-CH₂), 26, 21 (4CH, cyclic), 19(CH₃).

9-(2-hydroxyphenyl)-10-(2-hydroxyproyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione (3e): Yellow crystals, m.p 170°C. IR: (KBr, v max, cm⁻¹): 3420(OH), 3055(CH aromatic), 2952, 2870(CH aliphatic), 1635(C=C), 1601(C=C),620(C=Br); 1H-NMR(DMSO-d₆): (δ), 10.5(s, 1H, OH phenolic, D,O exchangeable), 8.5-8.64(m, 3H, aromatic), 5.2(s, 1H, OH-alcoholic D,O exchangeable),5.06(s,1H, Ar-CH₃),3.6(m, J=4.0, 1H, HO-CH-CH₂-N), 3.37(s,1H, OH D,O exchangeable), 2.56-2.51(d, J=8.0, 2H, N-CH₂-CH(OH)), 2.36(s,2H, 2CH₂C=O), 2.32(2H, 2CH₂), 2.26(s, 2H=CH₂-CH₂), 2.22(s, 2H-CH₂), 1.05(s, 3H, CH₃),0.99(s, 6H, 2CH₃), 0.89(s,6H,2CH₃); 13C-NMR(DMSO-d₆): (J), 196.2(C=O), 164.5(2C=CH pyridazine ring), 149.5(OH phenolic), 135, 133,9,171,130,6,129,2,120.7(6CH Ar),119.6, 117.6(2C=CH pyridazine ring), 66.01, 65.6(CH₂CO), 51.2(CH-OL acyl), 40.62(2CH₂-N), 32.3, 31.9(2CH₂ cyclic), 29.68, 28.2, 26.5, 25.5, 18.7(CH₃).

9-(5-bromo-2-hydroxyphenyl)-10-(2-hydroxyproyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-acridine-1,8(2H,5H)-dione (3e): Yellow crystal, m.p 144°C. IR: (KBr, v max, cm⁻¹): 3420(OH), 3055(CH aromatic),2965(CH aliphatic), 1630(C=C), 1601(C=C),620(C=Br); 1H-NMR(DMSO-d₆): (δ),10.94(s,1H, OH phenolic, D,O exchangeable),7.1-7.06(m, 4H, aromatic),5.2(s,1H,CH-Br), 5.06 (m, J=8.0, 1H, HO-CH₂-CH₂-N), 3.37(s,1H, OH D,O exchangeable), 2.56-2.51(d, J=8.0, 2H, N-CH₂-CH(OH)), 2.36(s,2H, 2CH₂C=O), 2.32(2H, 2CH₂), 2.26(s, 2H=CH₂-CH₂), 2.22(s, 2H-CH₂), 1.05(s, 3H, CH₃),0.99(s, 6H, 2CH₃), 0.89(s,6H,2CH₃); 13C-NMR(DMSO-d₆): (J), 196.2(C=O), 165.19(OH aromatic), 150, 128.8, 127.3,126.09, 124.62(CH aromatic + 2CH₂), 115.7(2NC=C), 111.24 (2NC=O),102(1CH=AR), 50(2CH for 2CH₂C=O), 40(CH₂ for CH₂N),32.5(CH-OL), 32(2C=CH₂), 29.6, 28.4, 26.6 (CH₃).
Med chem ISSN: 2161-0444 Med chem, an open access journal

H -1

J=

2

6

2

2

2

2

3

H

J=

2

2

6

6.4, 4H, CH = C-CH = C=O), 2.81-2.53 (t, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.89-1.83 (m, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.76-1.70 (m, J = 7.4, 8H, 4CH = C(CH = C=O)).

13C-NMR (DMSO-d6): (δC), 200.08, 195.01(4C=O), 163 (4C = CH-C), 153 (2C=O glycophen), 126, 125.9, 124.4, 123.5, 122.2, 121.4, 119.1(C= Ar), 113(4C-N, C= Ar), 100 (2CH cyclic), 59.2 (2 CH3, CH3=CH=CH=CH=CH=O), 51, 39, 37, 35(4CH=O), 29.2, 28.3, 26.7, 25.2(4CH3, CH2=CH=CH=CH=C-O cyclic), 19, 18.5, 17.2, 16.8(4CH3, CH3=CH=CH=O cyclic).

Med chem ISSN: 2161-0444 Med chem, an open access journal

H -1

J=

2

6

2

2

2

2

3

H

J=

2

2

6

6.4, 4H, CH = C-CH = C=O), 2.81-2.53 (t, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.89-1.83 (m, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.76-1.70 (m, J = 7.4, 8H, 4CH = C(CH = C=O)).

13C-NMR (DMSO-d6): (δC), 200.08, 195.01(4C=O), 163 (4C = CH-C), 153 (2C=O glycophen), 126, 125.9, 124.4, 123.5, 122.2, 121.4, 119.1(C= Ar), 113(4C-N, C= Ar), 100 (2CH cyclic), 59.2 (2 CH3, CH3=CH=CH=CH=CH=O), 51, 39, 37, 35(4CH=O), 29.2, 28.3, 26.7, 25.2(4CH3, CH2=CH=CH=CH=C-O cyclic), 19, 18.5, 17.2, 16.8(4CH3, CH3=CH=CH=O cyclic).

Med chem ISSN: 2161-0444 Med chem, an open access journal

H -1

J=

2

6

2

2

2

2

3

H

J=

2

2

6

6.4, 4H, CH = C-CH = C=O), 2.81-2.53 (t, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.89-1.83 (m, J = 7.4, 8H, 4CH = C(CH = C=O)), 1.76-1.70 (m, J = 7.4, 8H, 4CH = C(CH = C=O)).

13C-NMR (DMSO-d6): (δC), 200.08, 195.01(4C=O), 163 (4C = CH-C), 153 (2C=O glycophen), 126, 125.9, 124.4, 123.5, 122.2, 121.4, 119.1(C= Ar), 113(4C-N, C= Ar), 100 (2CH cyclic), 59.2 (2 CH3, CH3=CH=CH=CH=CH=O), 51, 39, 37, 35(4CH=O), 29.2, 28.3, 26.7, 25.2(4CH3, CH2=CH=CH=CH=C-O cyclic), 19, 18.5, 17.2, 16.8(4CH3, CH3=CH=CH=O cyclic).

Med chem ISSN: 2161-0444 Med chem, an open access journal

H -1

J=

2

6

2
been also observed at 2874-2965 Cm\(^{-1}\). The \(^1\)H-NMR spectrum of 3a-f showed clearly the presence of phenolic OH at \(\delta=10-10.9\) ppm and alcoholic OH at \(\delta=3.2-3.5\) ppm. Singlet sharp peaks at \(\delta=1.05, 0.99, 0.89\) ppm were attributed to the alcoholic CH and the four methyl groups of dimeredone scaffold respectively in 3d. The other two clear singlet peaks were observed at \(\delta=3.6\) and 5.06 ppm assigned for the CH of the hydro pyridine ring and the CH of the isopropanol group respectively. The \(^{13}\)C-NMR spectrum of 3a-f supported the presence of carbonyl at the range \(\delta=199-196\) ppm, and aliphatic carbon signals appeared in the regular region (see experimental). Moreover, compound 3a has been further confirmed by refluxing the corresponding xanthenone 7 [26] with amino-isopropanol (Scheme 2). The spectral data of the authentic product was identical with 3a.

The alcoholic group in 3a-d has been tosylated by tosyl chloride in TEA to afford the corresponding tosylated octahydro-acridine-1,8-diones 4a-d via elimination of HCl. IR spectra showed a clear characteristic peak at 1177 (in 4c), 1178 (in 4d), 1180 (in 4b) and 1183 Cm\(^{-1}\) (in 4a) for (O=S=O) group. The \(^1\)H-NMR supported the presence of a multiplet peaks at \(\delta=5-5.06\) ppm assigned for the CH-O tosylate and a singlet peak for the CH\(_2\) tosyl has been observed at the range \(\delta=2.5-2.9\) ppm. Furthermore, \(^{13}\)C-NMR confirmed the existence carbonyl at average \(\delta=197\) ppm. Two clear peaks have been also observed at \(\delta=19\) and 22 ppm attributed to the CH, tosyl and CH, propyl groups respectively.

Gratifyingly, the symmetry function in the structures of the new products 5a,b,c,f (Scheme 1) has been unambiguously confirmed by both \(^1\)H-NMR and \(^{13}\)C-NMR spectra. The \(^{13}\)C resonance of the two carbon atoms of the ethyl linkage have been observed in all compounds 5a,b,c,f at the average \(\delta=50-56\) ppm and the \(^1\)H-NMR confirmed the four proton resonance of the ethyl linkage as a symmetrical triplet peak between \(\delta=2.0-2.5\) ppm. Moreover, \(^{13}\)C-NMR confirmed the existence of the peaks of four carbonyl groups between \(\delta=204-196\) ppm for all compounds 5a,b,c,f.

\[\text{Scheme 1: Synthesis of a new series of hydroacridinediones 3a-f and 4a-d and new bis-hexahydroacridinediones 5a,b,e,f.} \]
The formation of N-hydroxypropyl-hexahydroacridine-1,8-diones 3a-f and the bis-hexahydroacridine-1,8-dione derivatives 5a,b,e,f can be rationalized as depicted in Scheme 3. An initial nucleophilic attack by the unstable imine 9 on the electrophilic C=C of the arylidene 8, where the two electron withdrawing carbonyl groups facilitate this reaction to form the intermediate 10 which undergoes an intramolecular arrangement to form the corresponding hydroxyl-octahydroacridinediones 10. Elimination a molecule of water from 10 affords the formation of 3a-f. As a result, this synthesis allows much wider substrate scope and provides a general and practical access to 3a-j. Similarly bis-hexahydroacridine-1,8-diones 5a,b,e,f can be justified by formation of the stable bis-imines 6 which we have succeeded to isolate two of these isomers 6a,b and characterized their structures (see experimental). The two nucelophilic centers labeled by the pair of electrons of the bis-imine nitrogen atoms could attack two folds of the arylidenes 8 to form the intermediate 12 which in turn could be stabilized to give the corresponding bis-hydroxy-octahydroacridinedine 1,8-diones 13. Elimination of two water molecules from 13 gives ultimately the corresponding bis-hexahydroacridine-1,8-diones 5a,b,e,f (Scheme 3).

Anti-inflammatory activity

Carrageenan-induced paw oedema standard method in rats: Anti-inflammatory activity screening for the chosen compounds 3c, 5a, 5b and 5f was determined in vivo by the acute carrageenan-induced paw oedema standard method in rats [27]. Adult albino rats of either sex (pregnant female animals were excluded) weighing 160-190 g were divided into 6 groups of 6 animals each. To reduce the variability of oedema response, rats were fasted overnight, then on the next day (day of experiment), animals were uniformly hydrated by giving 3 ml of water per rat orally. Indomethacin (reference standard) and the tested compounds (20 mg/kg body weight) were suspended in saline solution by the aid of few drops of Tween 80 (to improve wettability of particles) and given orally one hour before induction of inflammation. The control group was given saline solution containing few drops of Tween 80.

Carrageenan paw oedema was induced according to a modified method of Winter et al. [27,28] by subcutaneous injection of 1% solution of carrageenan in saline (0.1 ml/rat) into the subplanter region of the right hind paw of rats. The thickness of rat paw was measured by mercury digital micrometer at different time intervals, at zero time and after one, two, three, four and five hours of carrageenan injection. The oedema was determined from the difference between the thickness of injected and non-injected paws.

Data were collected, checked, revised and analyzed. Quantitative variables from normal distribution were expressed as means ± SE "standard error". The significant difference between groups was tested by using one-way ANOVA followed by post hoc test [29] at p<0.05 and p<0.01.

The results of the anti-inflammatory activity were expressed as percentage inhibition of oedema thickness in treated animals in comparison with the control group according to the following equation (Table 1, Figure 1).

\[
\frac{V_{L_{control}} - V_{L_{treated}}}{V_{L_{control}}} \times 100
\]

Where \(V_{L_{control}} \) represents the mean right paw thickness, \(V_{L_{treated}} \) represents the mean left paw thickness, \(\left(V_{L_{treated}} - V_{L_{control}} \right) \) represents the mean increase in paw thickness in the control group of rats and \(\left(V_{L_{treated}} - V_{L_{control}} \right) \) represents the mean increase in paw thickness in rats treated with the tested compounds [30,31].

Discussion

The anti-inflammatory activity of four representative synthesized compounds (5a,b,f and 3c) was determined by the carrageenan induced paw oedema standard method in rats [27,28]. Generally, it has been observed from the obtained results, (Table 1, Figure 1), that all the tested compounds show considerable anti-inflammatory activity. In addition, compounds 5f exhibit better anti-inflammatory properties (57.53 % inhibition of oedema) than that of the used reference standard indomethacin (54.9 % inhibition of oedema).

The effect of substituents on the anti-inflammatory potency has been considered by comparing the activity of the bis-hydroacridine derivatives 5a,b and 5f. The compound 5f showed higher anti-inflammatory potency (39.72) compared to 5.47 for 5a. This might attributed to the existence of the halogen atom. On other hand, we found the bis-hydroacridinedione 5f bearing 8 alkyl groups exhibits even better anti-inflammatory potency than 5b. The N-substituted...
Scheme 3: Reaction mechanism of formation of the hydroacridinediones 3a-f, 4a-f and the bis-hydroacridenediones 5a-f.
alcohol of the mono-hydroacridinedione3c showed more effectiveness as an anti-inflammatory agent compared to the bis-hydroacridinedione5a.

In general, we concluded that bis-hydroacridinediones bearing more electron donating alkyl groups showed high anti-inflammatory effect than the standard indomethacin. This means that the electron donating alkyl groups in hydroacridines could enhance their anti-inflammatory activity.

Conclusion

Synthesis of 9-(2-hydroxyphenyl)-10-(2-hydroxypropyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones 3a-f and 10,10'-ethane-1,2-diylbis-(9-(2-hydroxy phenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-diones 5a,b,e,f are performed efficiently in a one pot reaction technique and described as a new class of anti-inflammatory agents. These agents showed (particularly 5f) an anti-inflammatory potency higher than the standard drug indomethacin.

Acknowledgements

The authors would like to express their gratitude to Sohage University and Manchester Metropolitan University for supporting and facilitating this study. The authors have declared no conflict of interest.

References

1. Wysocka-Skrzela B, Ledochowski A (1976) Roccz Chem 50: 127-131.
2. Nakano T, Takahashi M, Arai T, Seki S, Matsumoto H, et al. (1983) Conversion of Disilanes to Functional Monosilanes. XIII. The Palladium Catalyzed Reductive Coupling of Halides containing sdimichlorotetramethylenesilane as a reducing agent. Chem Lett 11: 613-616.
3. Shanmugasundaram P, Amurugan P, Ramakrishnam VT, Srividya N, Bhuvaneshwaran K, Murugesan M, et al. (2006) Synthetic and antitumor activity of N-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 14: 334-343.
4. Nakano T, Takahashi M, Arai T, Seki S, Matsumoto H, et al. (1983) Palladium(II)-catalyzed reductive coupling of halides containing sdimichlorotetramethylenesilane as a reducing agent. Chem Lett 11: 613-616.
5. Anderson MO, Sherrill J, Madrid PB, Liou AP, Weisman JL, et al. (2006) Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 15: 3009-3014.
6. Nakano T, Takahashi M, Arai T, Seki S, Matsumoto H, et al. (1983) Palladium(II)-catalyzed reductive coupling of halides containing sdimichlorotetramethylenesilane as a reducing agent. Chem Lett 11: 613-616.
7. Shanmugasundaram P, Amurugan P, Ramakrishnam VT, Srividya N, Ramamurthy P (1996) Synthesis of acridinedione derivatives as laser dyes. Heteroatom Chem 7: 17-22.
8. Nakano T, Takahashi M, Arai T, Seki S, Matsumoto H, et al. (1983) Palladium(II)-catalyzed reductive coupling of halides containing sdimichlorotetramethylenesilane as a reducing agent. Chem Lett 11: 613-616.
9. Anderson MO, Sherrill J, Madrid PB, Liou AP, Weisman JL, et al. (2006) Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 15: 3009-3014.
10. Nakano T, Takahashi M, Arai T, Seki S, Matsumoto H, et al. (1983) Palladium(II)-catalyzed reductive coupling of halides containing sdimichlorotetramethylenesilane as a reducing agent. Chem Lett 11: 613-616.
11. Anderson MO, Sherrill J, Madrid PB, Liou AP, Weisman JL, et al. (2006) Synthesis and antitumor activity of 5-(9-acridinylamino)anisidine derivatives. Bioorg Med Chem 15: 3009-3014.
23. Girault S, Grellier P, Berecibar A, Maes L, Mouray E, et al. (2000) Antimalarial, Antitypanosomal, and Antileishmanial Activities and Cytotoxicity of Bis (9-amino-6-chloro-2-methoxyacridines)? Influence of the Linker. J Med Chem 43: 2646-2654.

24. Vennerstrom JL, Ellis WY, Ager AL Jr, Andersen SL, Gerena L, et al. (1992) Bisquinolines. 1. N,N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J Med Chem 35: 2129-2134.

25. Girault S, Delaune S, Grellier P, Berecibar A, Maes L, et al. (2001) Antimalarial in-vivo activity of bis(9-amino-6-chloro-2-methoxyacridines). J Pharm Pharmacol 53: 935-938.

26. Mohamed SK, Akkurt M, Abdelhamid AA, Saeed A, Florke U (2013) 9-(2-Hydroxy-6-oxocyclo-hex-1-en-1-yl)-2,3,4,9-tetra-hydro-1H-xanthen-1-one. Acta Crystallogr Sect E Struct Rep Online 69: 616-617.

27. WINTER CA, PORTER CC (1957) Effect of alterations in side chain upon anti-inflammatory and liver glycogen activities of hydrocortisone esters. J Am Pharm Assoc Am Pharm Assoc 46: 515-519.

28. WINTER CA, RISLEY EA, NUSS GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111: 544-547.

29. Zar J (1999) Biostatistical Analysis. Upper Saddle River, NJ. 4thed. Prentice Hall.

30. Joseph SM, George MC, Nair JR (2005) Effect of feeding cuttlefish liver oil on immune function, inflammatory response and platelet aggregation in rats. Curr Sci 88: 505-510.

31. Duffy JC, Dearden JC, Rostron C (2001) Design, synthesis and biological testing of a novel series of anti-inflammatory drugs. J Pharm Pharmacol 53: 1505-1514.

This article was originally published in a special issue, Green Chemistry handled by Editor(s). Dr. Michael Shapiro, University of Maryland Baltimore USA