Abstract

Wireless sensor network consists of large number of inexpensive tiny sensors which are connected with low power wireless communications. Most of the routing and data dissemination protocols of WSN assume a homogeneous network architecture, in which all sensors have the same capabilities in terms of battery power, communication, sensing, storage, and processing. However the continued advances in miniaturization of processors and low-power communications have enabled the development of a wide variety of nodes. When more than one type of node is integrated into a WSN, it is called heterogeneous. Multihop short distance communication is an important scheme to reduce the energy consumption in a sensor network because nodes are densely deployed in a WSN. In this paper M-EECDA (Multihop Energy Efficient Clustering & Data Aggregation Protocol for
Heterogeneous WSN) is proposed and analyzed. The protocol combines the idea of multihop communications and clustering for achieving the best performance in terms of network life and energy consumption. M-ECCDA introduces a sleep state and three tier architecture for some cluster heads to save energy of the network. M-ECCDA consists of three types of sensor nodes: normal, advance and super. To become cluster head in a round normal nodes use residual energy based scheme. Advance and super nodes further act as relay node to reduce the transmission load of a normal node cluster head when they are not cluster heads in a round.

References

- I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, 38(4) pp. 393–422, March 2002
- K. Sohrabi and J. Pottie, “Protocols for self-organization of a wireless sensor network,” IEEE Personal Commun. 7(5), 2000, pp 16-27.
- Kemal Akkaya and Mohamed Younis, “A Survey on Routing Protocols for Wireless Sensor Networks,” Ad Hoc Networks, Vol. 3, No. 3 , pp 325-349, May 2005
- J. Al-Karaki, and A. Kamal, “Routing Techniques in Wireless Sensor Networks: A Survey,” IEEE Communications Magazine, vol 11, no. 6, Dec. 2004, pp. 6-28.
- W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An application specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications , vol. 1, no. 4 , pp. 660 – 670, Oct. 2002
- Jun Zheng and Abbas Jamalipour, “Wireless Sensor Networks: A Networking Perspective,” a book published by A John & Sons, Inc, and IEEE, 2009.
- S. Lindsey and C. Raghavendra, “PEGASIS: Power-Efficient Gathering in Sensor Information Systems,” IEEE Aerospace Conf. Proc. , 2002, vol. 3, 9–16, pp. 1125–30
- Younis, Ossama, and Sonia Fahmy. “HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks.” Mobile Computing, IEEE Transactions on 3, no. 4 (2004), pp. 366-379.
- A. Manjeshwar and D. P. Agrawal, “TEEN: A routing protocol for enhanced efficiency in wireless sensor networks,” Proceedings IPDPS '01, San Francisco, CA, Apr. 2001 , pp. 2009 – 2015
- A. Manjeshwar and D. P. Agrawal, “APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks,” Proceedings IPDPS'apos;01, San Francisco, CA, Apr. 2001 , pp. 2009 – 2015
- S. Bandyopadhyay and E. Coyle, “An energy efficient hierarchical clustering algorithm for wireless sensor networks,” in Proceeding of INFOCOM 2003, vol. 3, San Francisco, CA, Apr. 2003, pp. 1713 – 1723
- G. Smaragdakis, I. Matta, A. Bestavros, “SEP: A Stable Election Protocol For Clustered Heterogeneous Wireless Sensor Networks,” in proceedings of 2nd International Workshop on Sensor and Actor Network Protocols and Applications (SANPA'apos;04), Boston, MA, 2004, pp. 660-670
- Qing, Li, Qingxin Zhu, and Mingwen Wang. “Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks.”
MEECDA: Multihop Energy Efficient Clustering and Data Aggregation Protocol for HWSN

ELSEVIER Computer communications 29, no. 12, 2006, pp. 2230-2237.
 - Su, Xun. "A combinatorial algorithmic approach to energy efficient information
collection in wireless sensor networks," ACM Transactions on Sensor Networks (TOSN) 3,
no. 1 (2007), 6.
 - S. Kumar, M. Prateek, B. Bhushan, "Distance based cluster protocol for
heterogeneous wireless sensor network," IJCA, Vol 76 , No 9, pp. 42-47, August 2013
 - A. S. Zahmati, B. Abolhassani, A. A. B. Shirazi, A. S. Bakhtiari, "An
Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks," IEEHCA: An Energy-Efficient clustering
Algorithm for Wireless Sensor Networks," Information Technology Journal, 7(2), pp.
245-252, 2008
 - D. Kumar, T. C. Asri,R. B. Patel, "EECDA: energy efficient clustering and data
aggregation protocol for heterogeneous wireless sensor networks," International Journal
of Computers Communications & Control, 6(1), 113-124, 2011.
 - M. Yarvis, N. Kushalnagar, H. Singh "Exploiting heterogeneity in sensor
networks," IEEE INFOCOM, 2005.

Index Terms

Computer Science Wireless

Keywords

Cluster Energy Efficiency Multihop Initial Energy Residual Energy Wireless
Sensor Network