Conditional *Myh9* and *Myh10* inactivation in adult mouse renal epithelium results in progressive kidney disease

Karla L. Otterpohl, … , Kameswaran Surendran, Indra Chandrasekar

JCI Insight. 2020. https://doi.org/10.1172/jci.insight.138530.

Graphical abstract

Doxycycline-inducible mouse renal tubule-specific *Myh9*/*10* conditional knockout (chK0) paradigm

Normal protein synthesis, transport, apical membrane localization and turnover of UMOD and NKCC2

Accumulation of UMOD in expanded ER tubules, loss of NKCC2, increased ER stress/UPR, tubular injury, immune cell infiltration and progressive kidney disease

Find the latest version:

https://jci.me/138530/pdf
Conditional \textit{Myh9} and \textit{Myh10} inactivation in adult mouse renal epithelium results in progressive kidney disease.

Karla L Otterpohl1, Brook W Busselman1,2, Ishara Ratnayake3, Ryan G Hart1, Kimberly R Hart4, Claire M Evans5, Carrie L Phillips6, Jordan R Beach7, Phil Ahrenkiel3, Bruce A Molitoris8, Kameswaran Surendran4,9 and Indra Chandrasekar1,4

1 Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104
2 Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, SD 57069
3 Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
4 Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, SD 57103
5 Histology and Imaging Core, Sanford Research, Sioux Falls, SD 57104
6 Department of Pathology & Laboratory Medicine, Indiana University, Indianapolis, IN 46202
7 Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153
8 Department of Medicine, Indiana University, Indianapolis, IN 46202
9 Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104

The authors have declared that no conflict of interest exists.

\textbf{Correspondence to:}
\textbf{Indra Chandrasekar, PhD}
Assistant Scientist - Enabling Technologies Group
Sanford Research
Assistant Professor - Dept of pediatrics
University of South Dakota
Room #2249
2301 E. 60th St. North| Sioux Falls SD 57104
Ph.No: 605.312.6412 email: Indra.Chandrasekar@sanfordhealth.org
Abstract

Actin-associated nonmuscle myosin II (NM2) motor proteins play critical roles in a myriad of cellular functions including endocytosis and organelle transport pathways. Cell type-specific expression and unique subcellular localization of the NM2 proteins, encoded by the *Myh9* and *Myh10* genes, in the mouse kidney tubules led us to hypothesize that these proteins have specialized functional roles within the renal epithelium. Inducible, conditional knockout (cKO) of *Myh9* and *Myh10* in the renal tubules of adult mice resulted in progressive kidney disease. Prior to overt renal tubular injury, we observed intracellular accumulation of the GPI-anchored protein uromodulin and gradual loss of Na⁺ K⁺ 2Cl⁻ cotransporter from the apical membrane of the thick ascending limb (TAL) epithelia. The UMOD accumulation coincided with expansion of endoplasmic reticulum (ER) tubules, activation of ER stress and unfolded protein response pathways in *Myh9&10* cKO kidneys. We conclude that NM2 proteins are required for localization and transport of UMOD and loss of function results in accumulation of UMOD and ER stress mediated progressive renal tubulointerstitial disease. These observations establish cell type-specific role(s) for NM2 proteins in regulation of specialized renal epithelial transport pathways and reveal the possibility that human kidney disease associated with *MYH9* mutations could be of renal epithelial origin.
Introduction

The diverse epithelial cells that populate the tubular segments of the kidney express unique membrane proteins that regulate solute, ion and pH homeostasis (1-3). The transport machinery that facilitate apical versus basolateral sorting of receptors, channels, and cotransporters in these polarized epithelia are complex and involve coordination of signals from hormones and other molecules (2, 4, 5). The actin cytoskeleton and associated myosin motors play essential roles in membrane protein trafficking including endocytosis, anterograde and post-Golgi transport, and transcytosis, in epithelial cells (6-10). For example, in renal proximal tubules, myosin VI drives the sodium hydrogen exchanger (NHE3) and sodium phosphate cotransporter (NaPi2) to the brush borders (11). Additionally, a role for actin cytoskeleton mediated vesicular transport of the aquaporin-2 water channel to the apical membrane of collecting duct principal cells has been described (12-14). Recent studies have shown that nonmuscle myosin II (NM2) proteins are also involved in RAB6 mediated \textit{trans-Golgi} network fission (8) and exocytosis of giant vesicles in the salivary gland (9).

To add to this emerging scientific evidence, our previous work identified critical roles for NM2 proteins, NM2A and NM2B, encoded by the paralogous genes \textit{Myh9} and \textit{Myh10}, respectively, in membrane remodeling events during mammalian endocytosis (6, 7). Our recent work also demonstrated that the NM2 proteins have overlapping as well as cell-type specific expression and membrane localization pattern in murine renal tubular segments (15). Taken together, we hypothesized that the NM2 proteins have unique, cell-type specific role(s) in regulating the renal epithelial transport machinery. In order to determine the role(s) for \textit{Myh9} and \textit{Myh10} in the renal epithelial cell-types, we generated a conditional knockout (cKO) mouse model using \textit{Pax8->rtTA; Tet-O-Cre} to facilitate doxycycline-inducible (16), adult renal epithelium specific loss of MYH9&10 proteins, while leaving their glomerular expression intact. Loss of NM2 proteins from renal epithelial segments resulted in rapidly progressing kidney disease and revealed critical roles for NM2 proteins in regulation of unique, thick ascending limb (TAL) associated proteins uromodulin (UMOD) and Na+ K+ 2Cl- cotransporter (NKCC2). Ultrastructural and immunohistologic analysis of \textit{Myh9&10} cKO kidneys identified an expansion of the endoplasmic
reticulum (ER) tubules associated with UMOD accumulation within the TAL cells. Progressive activation of the ER stress and UPR pathway as well as alterations in ER chaperone localization and expression was also observed in the cKO kidneys. Our results reveal a renal tubule specific role for NM2 proteins and provide insights into the specialized renal epithelial transport mediated by NM2 molecular motors.
Results

Conditional genetic inactivation of *Myh9* (NM2A) and *Myh10* (NM2B) in adult mouse renal epithelia result in progressive kidney disease.

MYH9&10 proteins have a partially overlapping expression pattern in murine tubular epithelial segments (15). In order to uncover redundant functions of NM2 proteins in the kidney epithelial compartments, as well as to model a severe loss of function phenotype, we inactivated both alleles of *Myh9* and *Myh10* only in the adult renal epithelium. Doxycycline treatment of cohorts of *Myh9&10* cKO and control littermate mice was initiated at 4 weeks of age and kidney structure and function was evaluated at 4, 6, 9, and 12-weeks of age. We confirmed the loss of MYH9 and MYH10 protein expression in the renal tubular segments of cKO mice at 6 weeks (Figures S1 and S2).

Histological analysis of kidney tissues from all time points (ages) with Hematoxylin & Eosin (H&E), Periodic-Acid Schiff (PAS) and Masson’s Trichrome staining revealed a progressive increase in tubular injury and interstitial cellular infiltration. At 6 weeks of age, two weeks after initiation of *Myh9&10* inactivation, focal regions of dilated tubules in the cortex were observed in the *Myh9&10* cKO mouse kidneys (Figure 1D, Figure S3) compared to littermate controls (Figure 1A). Regions of dilation were expanded at 9 weeks of age (Figure 1J-L, Figure S3) and became more severe by 12 weeks (Figure 1P-R, Figure S3). At 12 weeks we observe renal atrophy with multiple cysts and increased cellular infiltration (Figure S3). PAS staining confirmed the progressive tubular dilation seen in *Myh9&10* cKO kidneys and showed changes to the brush borders (Figure S4). Masson’s trichrome-stained kidney sections showed a few focal regions of the kidney with mild fibrosis in cKO animals (Figure S5). Progressive tubular dilation was accompanied by focal interstitial hypercellularity at both the 9 and 12-week time points (Figure 1J-L and 1P-R) due to the accumulation of infiltrating cells. We did not observe any significant differences in total protein, pH or osmolality of the urine between control and cKO cohorts at 4 or 6 weeks of age (Figure S6, Supplemental Table 1 and 2). However, *Myh9&10* cKO mice had urinary pH levels significantly more acidic than littermate controls at 9 and 12-week time points (Figure S6). Analysis of serum chemistry demonstrates a progressive decline in kidney function in the
Myh9&10 cKO mice compared to the control littermates. Myh9&10 cKO mice had significantly higher blood urea nitrogen (BUN) and serum creatinine levels than the control littermates at 9 weeks, both were further elevated at 12 weeks (Figure 1S and 1T, Supplemental Table 3). Myh9&10 cKO mice were also smaller and had lower blood glucose levels at 12 weeks (Supplemental Table 1, 2 and 3). Glycosuria was apparent in male Myh9&10 cKO mice starting at 9 weeks of age (Supplemental Table 2).

Elevated levels of tubular injury markers and immune cell infiltration highlight disease progression in Myh9&10 cKO mice.

To further understand the disease progression in the Myh9&10 cKO mouse model, we performed immunostaining of kidney sections to identify the infiltrating cells in Myh9&10 cKO kidneys. These cells were determined to be CD3-positive T-cells and F4/80-positive macrophages (Figure 2A-D). Quantification of cell numbers from multiple kidney sections showed statistically significant increases in T-cells and macrophages in Myh9&10 cKO kidneys compared to control sections confirming an inflammatory response surrounding the damaged tubules (Figure 2E and 2F). This prompted us to investigate whether tubular injury markers were also elevated in response to the progressive tubular damage. Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein biomarker that is elevated in both serum and urine during acute kidney injury (AKI) and chronic kidney disease (CKD) (17). NGAL is known to play a protective role in AKI; however, prolonged exposure is considered harmful due to its proinflammatory effects, which promote progression of CKD (18). ELISA analysis of serum and urine samples detected high NGAL levels at both 9-week and 12-week time points in Myh9&10 cKO samples compared to the controls. The NGAL values (µg/ml) also demonstrated an increase from 6-week to 12-weeks of age in the Myh9&10 cKO animals revealing the progressive nature of the tubular damage (Figure 2G and 2H). Since we observed loss of brush borders in the proximal tubules (Figure S4), we probed for the presence of kidney injury molecule 1 (KIM1) (19) in urine samples from 9-week control and Myh9&10 cKO animals. Immunoblot analysis detected KIM1 protein with molecular weight ~ 60-70kDa, in Myh9&10 cKO urine samples while no corresponding protein
bands were detected in the control urine, thereby confirming elevated levels of KIM1 in cKO animals (Figure S7). Next, we carefully analyzed individual tubular segment specific phenotypes in Myh9&10 cKO mice.

Myh9&10 cKO mouse proximal tubular segments show minor changes in brush border morphology but expression of receptor and cotransporters are mostly unaffected. Elevated levels of KIM1 indicated that the proximal convoluted tubules (PCTs) sustained injury from the loss of MYH9 and MYH10 in the cKO mice. PCTs are major sites of low molecular weight protein endocytosis/transcytosis through unique LDLR-family of receptors such as megalin and cubilin (20). Since our previous work demonstrated a crucial role for NM2 isoforms in receptor mediated endocytosis (7), we assessed the localization of the PCT receptor, megalin, in 9-week-old kidney sections from cKO and control mice. No changes were observed in the localization and expression pattern of megalin along the apical membrane of proximal tubules in the cKO kidneys (Figure S8D – F) compared to littermate controls (Figure S8A - C).

Myosin motors also contribute to the regulation of sodium cotransporters in the proximal tubules. Both myosin VI and myosin II play roles in the redistribution of NHE3 (sodium hydrogen exchanger 3) to and from the microvilli in response to angiotensin II (21). Therefore, we evaluated the localization of the two main PCT specific sodium cotransporters, NHE3 and SGLT2 (sodium glucose cotransporter 2) along with an unbiased membrane marker (wheat germ agglutinin, WGA). In 9-week-old kidney sections from control mice, we observe NHE3 localization to the brush borders (Figure 3A-C), whereas Myh9&10 cKO kidney sections show a decrease in NHE3 staining within some PCTs (Figure 3D-F). Co-staining for brush border-associated protein villin along with NHE3 confirmed a loss of brush borders in the PCTs with reduced NHE3 staining in the cKO samples (Figure S9). Expression of SGLT2 in Myh9&10 cKO kidneys varied, with some tubules showing a pronounced loss while other dilated tubules maintained SGLT2 expression (Figure 3J-L) similar to control kidneys (Figure 3G-I). Fluorescence intensity measurements along multiple PCT tubules from at least three different mice showed a small but significant decrease in NHE3 and SGLT2 protein expression along the apical membrane in cKO
mice (Figure 3M-N). However, immunoblots of whole kidney lysates from cKO and control mice did not show an overall change in NHE3 or SGLT2 protein expression levels in cKO kidneys (Figure S10). Although the total SGLT2 protein levels were unchanged in the Myh9&10 cKO kidneys, we observed a small but significant reduction in apically localized SGLT2 and excessive sodium and glucose excretion in the urine of Myh9&10 cKO mice (Figure S6 and Supplemental Tables 1 and 2) indicating a decline in SGLT2 function.

Loss of MYH9&10 proteins in mouse renal tubules results in intracellular accumulation of GPI-anchored protein uromodulin and gradual loss of Na+ K+ Cl2- cotransporter in the thick ascending limb. MYH9 (NM2A) and MYH10 (NM2B) are both expressed in the mouse TAL segment (15) therefore, we assessed the localization and expression pattern of the major TAL-specific membrane associated proteins. Uromodulin (UMOD) is a unique GPI-anchored protein in the TAL segment that undergoes N-glycosylation(s) and as a mature protein has a 16 – 24hr turnover rate on the apical membrane (22). In control kidney sections at all ages, UMOD localized to the apical membrane with WGA (Figure 4A-B, 4E-F and 4I-J). In the cKO kidney sections, we observed cytosolic accumulation of UMOD within some TAL tubules as early as 6 weeks of age (Figure 4C-D, arrowheads). At 9 weeks, we observed progressive intracellular accumulation of UMOD in multiple TAL tubules (Figure 4H, arrowheads), and in the lumens of dilated tubules with thinned out epithelial cells. (Figure 4G, arrows). In 12-week-old cKO kidney sections, tubules were severely dilated and UMOD accumulation was observed within many of the TAL lumens (Figure 4K-L). Immunoblots showed robust expression of UMOD as a double band (Figure 4M-O), one at ~ 85-87kDa (arrow) and another at ~ 100kDa (arrowhead). These bands represent the immature (85-87kDa) and mature (100kDa, N-linked glycan and high mannose-modified) proteins (23, 24). In whole kidney lysates from 6 to 12 weeks of age, we observed an age-dependent progressive increase in UMOD protein levels in the cKO compared to the controls (Figure 4M-O). Analysis of the relative density of the bands from immunoblots confirmed a significant increase in UMOD protein levels in 9-week and 12-week-old kidneys of cKO mice (Figure 4P). Interestingly the cKO lysates showed a range of UMOD bands that were smaller than
the mature ~100kDa protein. To determine if the post-translational modification status of the accumulated UMOD was altered in cKO kidneys, we incubated whole kidney lysates with PNGase F, an amidase that cleaves all the N-linked glycan modifications from UMOD (24). Immunoblotting detected two diffuse bands of UMOD in untreated control and cKO kidney lysates (Figure 4Q). The control kidney lysates treated with PNGase F show ~ 60-70kDa diffuse bands that correspond to the form of UMOD devoid of N-linked glycan modifications. Interestingly, the UMOD in cKO kidney lysates also shows sensitivity to PNGase F treatment, indicating the presence of N-linked glycan modifications. However, the banding pattern is slightly lower than the control samples (~50-60kDa), indicating there may be differences in the post-translational modifications of UMOD in cKO kidneys (Figure 4Q).

We next asked whether loss of NM2 isoforms leads to accumulation and/or mislocalization of other membrane associated proteins in the TAL tubules. The localization of the basolateral sodium pump, Na⁺ K⁺ ATPase, and the apical inward rectifying potassium channel, ROMK1, were normal in kidney sections from 9-week-old control and cKO mice (Figure S11). Interestingly, in Myh9&10 cKO kidneys, we observed significant changes in the expression of sodium, potassium and chloride cotransporter (NKCC2), that facilitates 20-25% of total sodium reabsorption by the kidneys (25). NKCC2 localizes to the apical membrane in control kidney sections (at 6-, 9- and 12-weeks) co-stained for the membrane marker, WGA (Figure. 5A-B, 5E-F, 5I-J). In 6-week old Myh9&10 cKO kidneys, no major changes in apical membrane localization of NKCC2 were apparent (Figure 5C-D). However, we observed significant loss of NKCC2 localization to the apical membrane in TAL tubules at 9 weeks and 12 weeks of age (Figure 5G-H and 5K-L, respectively). Imaging of control kidney sections stained for UMOD and NKCC2 using the zeiss- airy scan microscope detected both proteins at the apical membrane with partial co-localization in some regions (Supplemental movie 1). In Myh9&10 cKO tubules that had accumulated UMOD in the tubular lumen, we observed significant loss of NKCC2 from the apical membrane (Supplemental movie 2). Immunoblot analysis of whole kidney lysates confirmed the gradual loss of NKCC2 protein levels (~ 160kDa) in the cKO kidneys compared to control kidneys at 6 weeks, 9 weeks and 12 weeks of age (Figure 5M, 5N, and 5O, respectively). Analysis of the relative density of
NKCC2 bands from immunoblots showed a statistically significant decrease in NKCC2 protein levels in the Myh9&10 cKO kidneys (Figure 5P). This loss of NKCC2 protein levels, may explain the increased excretion of sodium and potassium in Myh9&10 cKO urine compared to the control. However, this salt wasting phenomenon differed between the male and female cohorts (Figure S6 and Supplemental Tables 1 and 2).

ER tubule expansion is observed in Myh9&10 cKO mouse kidneys.

Mutations in the UMOD gene in humans result in autosomal dominant tubular kidney disease (ADTKD) due to accumulation of the mutant protein within the ER, which result in activation of ER stress mediated injury (26, 27). In order to identify whether the excessive UMOD in Myh9&10 cKO resulted in changes to ER, we costained kidney sections using an ER tubule-associated structural protein, reticulon-4 (RTN4), and UMOD antibodies. In control kidneys, UMOD localized predominately to the apical membrane, while RTN4 protein localized as very thin intracellular filaments in the cytosol (Figure 6A-B). In cKO kidney sections, we observed increased RTN4-positive ER tubules along the membranes and in the cytosol that colocalized with UMOD (Figure 6C-D and 6E-F). Imaging using the zeiss-airy scan microscope further confirmed increased expression and intracellular accumulation of UMOD and RTN4 positive ER tubules in Myh9&10 cKO kidneys compared to the control (Supplemental movies 4 and 3 respectively). We also used transmission electron microscopy (TEM) to assess changes in ER structure in Myh9&10 cKO and control kidneys. TEM analysis of TAL tubules and cells from 9-week old cKO kidneys show cells filled with expanded ER tubules that have increased length and diameter (Figure 7D-F) compared to control sections (Figure 7A-C). Some ER tubules no longer maintain normal structure and appear to be disintegrating (Figure 7E-F, arrow). Quantitative analysis of ER structures within multiple TAL tubules show significant increase in both area and perimeter of ER tubules in the cKO TAL cells (Figure 7G-I).

ER stress and unfolded protein responses is activated in Myh9&10 cKO kidneys. To evaluate whether ER stress and unfolded protein response (UPR) are activated, we assessed both the ATF6 and IRE1α-XBP1 ER stress pathway components in control and Myh9&10 cKO kidneys. Immunoblot
analysis of control and cKO kidney lysates show a statistically significant increase in levels of the ER stress protein ATF6 in the cKO kidneys, at 9 and 12-weeks of age (Figure 8A-B, E), indicating activation of the UPR pathway and ER stress. The IRE1α-XBP1 pathway is active during adaptive phase and attenuated during apoptotic phase of ER stress response (28). The immunoblot analysis shows progressive decline in XBP1 protein levels in cKO kidneys from 6-week to 12-weeks of age compared to the control littermates (Figure 8C-D, F), confirming the activation of the ER stress response in Myh9&10 cKO mouse kidneys.

Localization and expression of ER chaperone proteins is altered in Myh9&10 cKO kidneys.

Deregulation of biosynthetic pathways and activation of ER stress can result in changes to ER quality control proteins that handle the overload of misfolded proteins. In mammalian cells, GPI-anchored and N-glycosylated protein quality control is regulated by the ER chaperone proteins calnexin and calreticulin (29, 30). Typically, GPI-anchored proteins prefer to associate with the membrane bound calnexin, however, interactions with the soluble calreticulin are also observed (31). Due to the accumulation of UMOD, which is both a GPI-anchored and N-glycosylated protein, we analyzed the expression and association of calnexin and calreticulin in Myh9&10 cKO and control mouse kidneys using immunostaining and immunoblotting methods. In 9-week old control kidney sections, calreticulin localized to small punctate structures within the cells, while UMOD predominantly localized to the apical membrane (Figure 9A, B). In cKO kidneys, dilated TAL tubules had increased expression of calreticulin positive vesicular structures, some of which colocalized with the excess UMOD (Figure 9C, D). Imaging using the zeiss- airy scan microscope confirmed colocalization between calreticulin and UMOD in Myh9&10 cKO kidneys (Supplemental movies 5 and 6). Immunoblot analysis of whole kidney lysates shows a statistically significant increase in calreticulin protein levels at 12-weeks of age (Figure 9E and 9F).

Calnexin localized along the nuclear membrane and in intracellular punctate structures in the 9-week old control kidneys (Figure 10A-B). In Myh9&10 cKO kidneys we observed intracellular and subapical localization of calnexin, which did not colocalize with the excess UMOD (Figure 10C-D). Immunoblot
analysis of 9-week and 12-week old whole kidney lysates from control and cKO mice did not show an increase in calnexin protein expression (Figure 10E-F). Taken together these results suggests alterations in ER chaperone localization and expression in Myh9&10 cKO kidneys.
Discussion

Nonmuscle myosin II (NM2) belongs to the class II family of conventional myosins that self-organize into non-sarcomeric, force-generating filaments of varying sizes, number and polarity, making it a versatile system for regional and cell type-specific control of molecular pathways (32-34). Based on our previous identification of novel roles for MYH9&10 proteins in membrane remodeling during clathrin mediated endocytosis (6, 7), we hypothesized that NM2 proteins might play a critical role in renal epithelial transport pathways. Consistent with this idea, we identified distinct expression and membrane localization pattern for NM2 proteins in murine renal tubules (15). While our primary motivation was to test the role for Myh9&10 genes in renal epithelia and to utilize kidney as a model organ to study NM2 mediated specialized cellular transport pathways, we were also influenced by the fact that mutations in the MYH9 gene are associated with end stage renal disease in human patients (35-37). Approximately one-third of patients with MYH9-related disorder (MYH9-RD) have kidney dysfunction (35-37) characterized by progressive proteinuria, glomerulosclerosis with foot process effacement, and kidney failure (36-38). Therefore, prior MYH9 studies in the kidney concentrated on podocyte biology and the glomerular filtration barrier to elucidate the underlying mechanism of disease in these patients (39, 40). Genetic inactivation of Myh9 in podocytes of mice indicated strain dependent variations in which mild podocyte injury and foot process effacement was observed; however, none of the models developed severe chronic kidney disease (CKD) (41, 42). Recently, increased proteinuria, podocyte injury, and focal segmental glomerulosclerosis (FSGS) have been observed in a mouse model harboring MYH9 E1841K mutation in response to a high salt diet (43). Furthermore, localization pattern of MYH9 in podocytes using EM and other super resolution microscopy methods showed MYH9 expression limited to the cell body of podocytes and not in the foot process and that podocyte injury causes redistribution of MYH9 protein to the foot processes (44). This report also proposed a novel model of concerted action between MYH9 positive contractile filaments in the cell body and the MYH9-negative non-contractile filaments in the foot process for maintenance of podocyte structure and function (44). Taken together,
it is possible that while MYH9 plays a role in podocyte function, depletion of MYH9 in podocytes may not have a serious effect on kidney function unless combined with an additional hit/stress to the podocytes and this second hit could in theory originate from tubular injury and tubulointerstitial disease.

We hypothesized that in MYH9- associated kidney disease the underlying defect might be a deregulated epithelial transport pathway that triggers tubular injury associated disease, which in turn can lead to glomerular defects in the latter stages. To test this, we generated mice homozygous for Myh9 and Myh10 floxed alleles that also harbored the Pax8->rtTA driver and a tetracycline responsive cre (Tet-o-cre). This strategy allowed for spatial and temporal control of gene knockout selectively in renal epithelial cells, which was important due to critical role(s) for MYH9&10 in brain and heart development, platelet biogenesis, and myriad of other cell-type specific functions (45-51). Moreover, in MYH9- related disorder patients with kidney disease, autosomal dominant mutations are located in the motor domain or the coiled-coil rod domain of the protein and result in loss of motor activity or disruption of filament formation producing a dominant negative effect by interfering with wild type NM2 protein function (52). We decided to inactivate both Myh9 and Myh10 to model the most severe loss of NM2 renal epithelial phenotype by uncovering the redundant roles for MYH9 and MYH10 in renal epithelial segments. Our results demonstrate that the loss of MYH9 and MYH10 in adult mouse renal epithelium results in progressive kidney disease of tubular origin, as evidenced by an increase in tubular injury markers, NGAL and KIM1, along with dilation of tubules, increased immune cell infiltration, and increased BUN and serum creatinine. Myh9 inactivation by itself resulted in a later onset progressive kidney disease in mice but with decreased severity and mortality (data not shown; unpublished observations).

One of the earliest defects we observe following Myh9&10 inactivation is the accumulation of UMOD inside the TAL epithelium, which led us to compare the observed phenotype with the previously described autosomal dominant tubular kidney disease caused by mutations in UMOD (ADTKD-UMOD)(26, 27, 53). Human, transgenic mouse and cell culture-based studies show that the underlying mechanism of ADTKD-UMOD is ER retention of mutant protein that causes ER stress and tubular injury
In Myh9&10 cKO mouse kidneys, we observe expansion of reticulon-4 (RTN4) positive ER tubules, along with activation of ER stress and UPR pathways. Interestingly, our experiments also demonstrate a gradual loss of the sodium, potassium, chloride cotransporter NKCC2 in the TAL segment, along with increased urinary sodium and potassium in Myh9&10 cKO mice. We observe colocalization of NKCC2 with calnexin in Myh9&10 cKO kidneys (Figure S12), and this association might target NKCC2 to the ERAD pathway leading to loss of NKCC2 seen in Myh9&10 cKO mice (57).

Previous reports have shown that loss of UMOD has direct effects on the concentration of NKCC2 and ROMK1 on the apical membrane (56, 58, 59). It is possible that MYH9&10 are directly involved in regulating apical membrane localization, endocytosis and exocytosis of NKCC2, or indirectly due to UMOD accumulation and deregulated biosynthetic pathway. Further studies are necessary to identify the molecular link between MYH9&10, UMOD and NKCC2 proteins.

We observe minor changes in the expression of sodium transporters in the proximal tubular segments; both NHE3 and SGLT2 staining was reduced in individual tubules in Myh9&10 cKO kidneys. It is possible that the proximal tubule phenotype is mitigated by the expression of a third NM2 gene, Myh14 that may compensate for the loss of Myh10. Similarly, in the murine distal convoluted tubules (DCT) and collecting duct segments of the renal tubules, MYH9 is not expressed and MYH10 is predominantly expressed and localized to cell- cell adhesions and tight-junctions (15), where it might perform more traditional roles of NM2 proteins. Analysis of DCT specific sodium chloride cotransporter, phosphorylated NCC (pNCC) and CNT/collection duct associated water channel Aqp-2 did not demonstrate any changes in localization pattern but subtle changes in expression levels (Figure S13). TAL-, PCT- and distal nephron specific conditional inactivation of NM2 proteins in mice will further address the tubular segment-specific transport defects in the kidney.

We attribute the TAL-specific cellular phenotype in Myh9&10 cKO mice to the loss of both NM2 proteins expressed in the TAL segment, leaving it unable to rescue the UMOD transport defect. Our data suggests that UMOD delivery to the plasma membrane is dependent on NM2 activity. We speculate that NM2 proteins play unique role(s) along the plasma membrane as well as ER transport
pathway to coordinate anterograde transport of UMOD. Whether this NM2-mediated transport is unique to UMOD, or if it is a common pathway for all GPI-anchored proteins in specific cell-types needs to be tested in future experiments. However, the severity of UMOD accumulation within the TAL epithelium, may be attributed to: 1) the 24hr turnover rate that demands continuous biosynthesis and delivery to the membrane (22), 2) differences in protein quality control pathways such as ERAD (60) vs RESET (30) in efficiently handling the accumulated cargo, and 3) sustained activation of hormonal or salt induced signals that regulate the biosynthesis of UMOD. Future work will need to address molecular mechanisms by which NM2 proteins regulate GPI anchored protein (eg: UMOD) versus transmembrane protein (eg: NKCC2) transport, including the identification of the sub-cellular site(s) of action along the vesicular transport pathway and NM2 interacting protein partners.

In order to relate our findings back to human renal epithelium, we assessed the expression pattern of NM2 proteins in the renal tubules of the human donor kidneys using immunostaining methods (Figure S14). Our results show distinct as well as overlapping, cell type-specific expression and localization of MYH9 and MYH10 proteins in apical and basolateral membranes of the renal tubular segments of the human kidney (Figure S14); MYH14 is not expressed in the tubular segments of human kidneys (Figure S14). This raises the possibility of copolymerization of MYH9 and MYH10 proteins (61, 62) and perhaps motor dead MYO18A (63) in human renal epithelial cells that might dictate the novel and unconventional functions of these myosin’s in human and other mammalian kidneys. In conclusion, our work demonstrates that loss of NM2 proteins in adult mouse renal epithelium results in an overloaded biosynthetic pathway followed by ER stress and UPR activation that causes tubular injury and progressive kidney disease.
Methods

Mice

Mice were generated for a renal tubule specific inducible conditional knockout of *Myh9* and *Myh10* using the transgenes *Pax8->rtTA* and *Tet-O-Cre* (16). Control mice were littermates that carried either *Pax8->rtTA* or the *Tet-O-Cre*, as well as mice that carried neither transgene. Mice containing the conditional alleles for *Myh9Flox* and *Myh10Flox* were obtained from Dr. Robert Adelstein (50, 64). *Myh9* and *Myh10* conditional knockout characterization was on a mixed C57BL/6 and 129 genetic background. Both female and male mice were analyzed; if not explicitly stated, both female and male data is included in the analysis. All data presented is from mice between the ages of 4 and 12 weeks of age; exact ages of data collection is listed in the figures and tables.

Doxycycline (1mg/ml, Sigma) was administrated within drinking water supplemented with 5% sucrose from 4 to 8 weeks of age. Urine was collected using metabolic cages for 24hrs supplemented with 1% sucrose water at 4, 6, 9 and 12-weeks of age.

Serum and tissue collection

Serum and kidneys were collected from mice at 6, 9 and 12 weeks of age. Mice were anesthetized with isoflurane prior to the cardiac puncture for blood collection. Kidneys were harvested post-exsanguination and where either flash frozen in liquid nitrogen or fixed in Bouin’s fixative or 4% paraformaldehyde.

Urine and serum analysis

Urine osmolality was determined using a VAPRO Vapor Pressure Osmometer (WESCOR). The ADVIA 1800 chemistry system (Siemens) was used to analyze serum samples for glucose (GLUH_3 kit), albumin (ALB, B01412101), creatinine (03039070), and blood urea nitrogen (03040257) as well as urinary total protein (05000171), urine glucose hexokinase (05001429), urinary sodium (electrode) and potassium (electrode) concentrations.
Determination of NGAL levels

NGAL was measured utilizing the Mouse Lipocalin-2/NGAL ELISA kit (MLCN20) from R&D Systems. The assay was performed following the protocol and reagents provided with the kit. Serum samples were diluted 100-fold as suggested. Urine samples were diluted 40-fold. Standards were plotted linearly by plotting log of the Lipocalin-2 concentrations and log of the optical density. Three female and 3 male control samples and 3 female and 3 male cKO samples were analyzed for each of the time points.

Histology, immunohistochemistry and image Analysis

Tissues fixed in PFA were stained for hematoxylin and eosin while tissues fixed in Bouin’s fixative were stained for periodic acid Schiff (PAS) and Maason’s trichrome. Immunofluorescence analysis was performed following the protocol from Otterpohl et al. 2017(15). Tissues fixed in Bouin’s were used to visualize membrane-associated proteins and structures; the central lumen is closed in Bouin’s-fixed kidneys with overlapping apical membranes in the cross-section. PFA-fixed tissues were used to visualize intracellular and ER proteins, and the central lumen is open and distinct. A list of primary antibodies used in this study can be found in Supplemental Table 4. Secondary antibodies conjugated to CY3, Alexa-Flour488, CY5, DyLight 549 or Alexa-Fluor 647 were procured from Jackson Immuno Research, Life technologies or Vector labs. Coverslips were mounted using either fluorescence mounting media with DAPI (Vector labs), homemade Mowiol mounting media or ProLong Gold (ThermoFisher).

Sections were imaged using Nikon A1 confocal microscopes. Immunofluorescent images were quantified using ImageJ software. Regions of interest (ROI) were selected marking the tubular area and measurements of each ROI included area, mean intensity, and integrated density. Several ROIs per image were used to correct for background fluorescence. Total fluorescence for each tubule was calculated as Integrated density – (Area * Average background mean intensity). Airyscan imaging was performed in Super resolution mode on a Zeiss LSM 880 Airyscan microscope equipped with a 63× 1.4
NA objective. Raw data was processed using Airyscan processing in “auto strength” mode with Zen Black software version 2.3.

Quantification of CD3-positive T-cells and F4/80-positive macrophages.

PFA-fixed kidney sections were stained for WGA and CD3 or F4/80 following the above protocol. Sections were imaged on the Nikon A1 utilizing the 40x objective (images are 318.2x318.2 microns). At the minimum, ten images were taken from the cortical region and ten from the medullary region of each stained kidney section. In total 4 control kidneys (81 fields) and 4 cKO kidneys (82 fields) were analyzed for CD3-positive T-cell counts and 3 control (64 fields) and 3 cKO (60 fields) analyzed for F4/80-positive macrophages. Counts were performed manually using Image J.

Protein lysate preparation and immunoblotting methods

Kidney lysates were made from flash-frozen whole kidneys according to previously published protocols (56). Lysates were quantified using the BCA assay kit (Pierce) and 20µg were loaded on 10% pre-cast gels (Bio-Rad). Membranes were cut into strips and probed for protein of interest and loading control with antibodies listed in Supplemental Table 4. PNGase F (P0704, New England Biolabs) treatment of whole kidney lysates (20µg) was performed according to manufacturer protocol and incubated at 37°C for 2 hours. For relative density analysis, immunoblots were first analyzed for any areas of overexposure using the LiCor Odyssey software. Exported .tiff images were then converted to 32 bit in ImageJ and the Gel analysis tool in Image J was used to determine the relative density of the bands.

KIM1 detection in urine samples

The presence of KIM1 in urine of 9-week old cohorts was determined by loading equal volumes of urine and 2x Laemmli buffer (30ul loaded) into 10% pre-cast acrylamide gels (BioRAD). Three control and 3 cKO male urine samples were analyzed.
Transmission electron microscopy

The kidneys were perfusion fixed in 2% paraformaldehyde, 2.5% glutaraldehyde in 100mM cacodylate buffer, pH 7.4. The kidney tissues were post-fixed and processed using standard procedures. Sections of 70 nm thickness were cut with an ultramicrotome (RMC Powertome XL) and images were taken on a JEOL JEM-2100 LaB₆ transmission electron microscope. The ER area, ER perimeter, and total TAL tubular area were measured precisely with the help of a freehand drawing tool in ImageJ (Fiji).

Statistics

SAS, a software suite developed for multivariate analysis, was used to perform two-tailed unpaired t-tests for the urine and serum analyses. For mean fluorescence intensity (MFI) analyses and western blot quantification, we performed standard or multiple t-test using GraphPad software. The resulting p values are indicated in the text and tables. A p value ≤ 0.05 was considered significant.

Study approval

Sanford Institutional Review Board (IRB) approved that our study protocol of using de-identified human kidney samples of deceased organ donors received from the South Dakota Lions Eye and Tissue Bank as NOT HUMAN RESEARCH. All experiments involving mice were approved by the Sanford Research Institutional Animal Care and Use Committee (IACUC).
References

1. Welling PA, and Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. *Physiology*. 2010;25(5):280-92.

2. Weisz OA, and Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. *Journal of cell science*. 2009;122(Pt 23):4253-66.

3. Brown D, Bouley R, Paunescu TG, Breton S, and Lu HA. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. *American journal of physiology Cell physiology*. 2012;302(10):C1421-33.

4. Caceres PS, Benedicto I, Lehmann GL, and Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. *Cold Spring Harbor perspectives in biology*. 2017;9(3).

5. Rodriguez-Boulan E, Musch A, and Le Bivic A. Epithelial trafficking: new routes to familiar places. *Current opinion in cell biology*. 2004;16(4):436-42.

6. Chandrasekar I, Huettner JE, Turney SG, and Bridgman PC. Myosin II regulates activity dependent compensatory endocytosis at central synapses. The *Journal of neuroscience : the official journal of the Society for Neuroscience*. 2013;33(41):16131-45.

7. Sellers JR. Myosins: a diverse superfamily. *Biochimica et biophysica acta*. 2000;1496(1):3-22.

8. Moeller HB, and Fenton RA. Cell biology of vasopressin-regulated aquaporin-2 trafficking. *Pflugers Archiv : European journal of physiology*. 2012;464(2):133-44.

9. Noda Y, and Sasaki S. The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. *Pflugers Archiv : European journal of physiology*. 2008;456(4):737-45.

10. Otterpohl KL, Hart RG, Evans C, Surendran K, and Chandrasekar I. Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney. *Physiol Rep*. 2017;5(23).

11. Buonafine M, Martinez-Martinez E, and Jaisser F. More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. *Clinical science*. 2018;132(9):909-23.

12. Viala A, El Karoui K, Lauauri D, Burtin M, Nguyen C, Mori K, Pinelabout E, Berger T, Mak TW, Knebelmann B, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. *The Journal of clinical investigation*. 2010;120(11):4065-76.

13. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association*. 2009;24(11):3265-8.

14. Eshbach ML, and Weisz OA. Receptor-Mediated Endocytosis in the Proximal Tubule. *Annual review of physiology*. 2017;79(425-48).

15. Riquier-Brison AD, Leong PK, Pihakaski-Maunsbach K, and McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. *American journal of physiology Renal physiology*. 2010;298(1):F177-86.
22. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, Schaeffer C, Olinger E, Peng J, Santambrogio S, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. *eLife*. 2015;4(e08887.

23. Rindler MJ, Naik SS, Li N, Hoops TC, and Peraldi MN. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositol-linked membrane protein. *The Journal of biological chemistry*. 1990;265(34):20784-9.

24. Devuyst O, Olinger E, and Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. *Nature reviews Nephrology*. 2017;13(9):525-44.

25. Castrop H, and Schiessl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). *American journal of physiology Renal physiology*. 2014;307(9):F991-F1002.

26. Bleyer AJ, Trachtman H, Sandhu J, Gorry MC, and Hart TC. Renal manifestations of a mutation in the uromodulin (Tamm Horsfall protein) gene. *American journal of kidney diseases : the official journal of the National Kidney Foundation*. 2003;42(2):E20-6.

27. Rampoldi L, Scolari F, Amoroso A, Ghiggeri G, and Devuyst O. The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. *Kidney international*. 2011;80(4):338-47.

28. Chen Y, and Brandizzi F. IRE1: ER stress sensor and cell fate executor. *Trends in cell biology*. 2013;23(11):547-55.

29. Helenius A, and Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. *Annual review of biochemistry*. 2004;73(1019-49.

30. Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, and Lippincott-Schwartz J. ER stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. *Cell*. 2014;158(3):522-33.

31. Ghiran I, Klickstein LB, and Nicholson-Weller A. Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. *The Journal of biological chemistry*. 2003;278(23):21024-31.

32. Conti MA, and Adelstein RS. Nonmuscle myosin II moves in new directions. *Journal of cell science*. 2008;121(Pt 1):11-8.

33. Vicente-Manzanares M, Ma X, Adelstein RS, and Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. *Nature reviews Molecular cell biology*. 2009;10(11):778-90.

34. Murrell M, Oakes PW, Lenz M, and Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. *Nature reviews Molecular cell biology*. 2015;16(8):486-98.

35. Sekine T, Konno M, Sasaki S, Moritani S, Miura T, Wong WS, Nishio H, Nishiguchi T, Ohuchi MY, Tsuchiya S, et al. Patients with Epstein-Fechtner syndromes owing to MYH9 R702 mutations develop progressive proteinuric renal disease. *Kidney international*. 2010;78(2):207-14.

36. Miura K, Kurihara H, Horita S, Chikamoto H, Hattori M, Harita Y, Tsurumi H, Kajih Y, Sawada Y, Sasaki S, et al. Podocyte expression of nonmuscle myosin heavy chain-IIA decreases in idiopathic nephrotic syndrome, especially in focal segmental glomerulosclerosis. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association*. 2013;28(12):2993-3003.

37. Cechova S, Dong F, Chan F, Kelley MJ, Ruiz P, and Le TH. MYH9 E1841K Mutation Augments Proteinuria and Podocyte Injury and Migration. *Journal of the American Society of Nephrology : JASN*. 2018;29(1):155-67.
44. Suleiman HY, Roth R, Jain S, Heuser JE, Shaw AS, and Miner JH. Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI insight. 2017;2(16).

45. Zhang Y, Conti MA, Malide D, Dong F, Wang A, Shmist YA, Liu C, Zerfas P, Daniels MP, Chan CC, et al. Mouse models of MYH9-related disease: mutations in nonmuscle myosin II-A. Blood. 2012;119(1):238-50.

46. Bao J, Ma X, Liu C, and Adelstein RS. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. The Journal of biological chemistry. 2007;282(30):22102-11.

47. Tullio AN, Accili D, Ferrans VJ, Yu ZX, Takeda K, Grinberg A, Westphal H, Preston YA, and Adelstein RS. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(23):12407-12.

48. Tullio AN, Bridgman PC, Tresser NJ, Chan CC, Conti MA, Adelstein RS, and Hara Y. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. The Journal of comparative neurology. 2001;433(1):62-74.

49. Conti MA, Even-Ram S, Liu C, Yamada KM, and Adelstein RS. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. The Journal of biological chemistry. 2004;279(40):41263-6.

50. Ma X, Takeda K, Singh A, Yu ZX, Zerfas P, Blount A, Liu C, Towbin JA, Schneider MD, Adelstein RS, et al. Conditional ablation of nonmuscle myosin II-B delineates heart defects in adult mice. Circulation research. 2009;105(11):1102-9.

51. Yamamoto N, Okano T, Ma X, Adelstein RS, and Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development. 2009;136(12):1977-86.

52. Franke JD, Dong F, Rickoll WL, Kelley MJ, and Kiehart DP. Rod mutations associated with MYH9-related disorders disrupt nonmuscle myosin-IIA assembly. Blood. 2005;105(1):161-9.

53. Scolari F, Izzi C, and Ghiggeri GM. Uromodulin: from monogenic to multifactorial diseases. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2015;30(8):1250-6.

54. Bleyer AJ, Woodard AS, Shihabi Z, Sandhu J, Zhu H, Satko SG, Weller N, Deterding E, McBride D, Gorry MC, et al. Clinical characterization of a family with a mutation in the uromodulin (Tamm-Horsfall glycoprotein) gene. Kidney international. 2003;64(1):36-42.

55. Bernascone I, Vavassori S, Di Pentima A, Santambrogio S, Lamorte G, Amoroso A, Scolari F, Ghiggeri GM, Casari G, Polishchuk R, et al. Defective intracellular trafficking of uromodulin mutant isoforms. Traffic. 2006;7(11):1567-79.

56. Bernascone I, Janas S, Ikehata M, Trudu M, Corbelli A, Schaeffer C, Rastaldi MP, Devuyst O, and Rampoldi L. A transgenic mouse model for uromodulin-associated kidney diseases shows specific tubulo-interstitial damage, urinary concentrating defect and renal failure. Human molecular genetics. 2010;19(15):2998-3010.

57. Ares GR. cGMP induces degradation of NKCC2 in the thick ascending limb via the ubiquitin-proteasomal system. American journal of physiology Renal physiology. 2019;316(5):F838-F46.

58. Mutig K, Kahl T, Saritas T, Godes M, Persson P, Bates J, Raffi H, Rampoldi L, Uchida S, Hille C, et al. Activation of the bumetanide-sensitive Na+,K+,2Cl- cotransporter (NKCC2) is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner. The Journal of biological chemistry. 2011;286(34):30200-10.

59. Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, and Waldegger S. Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function. The Journal of biological chemistry. 2011;286(3):2224-35.

60. Hwang J, and Qi L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends in biochemical sciences. 2018;43(8):593-605.

61. Beach JR, and hammer JA, 3rd. Myosin II isoform co-assembly and differential regulation in mammalian systems. Experimental cell research. 2015;334(1):2-9.

62. Shutova MS, Spessott WA, Giraudo CG, and Svitkina T. Endogenous species of mammalian nonmuscle myosin IIA and IIB include activated monomers and heteropolymers. Current biology : CB. 2014;24(17):1958-68.

63. Billington N, Beach JR, Heissler SM, Remmert K, Guzik-Lendrum S, Nagy A, Takagi Y, Shao L, Li D, Yang Y, et al. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments. Current biology : CB. 2015;25(7):942-8.
64. Jacobelli J, Friedman RS, Conti MA, Lennon-Dumenil AM, Piel M, Sorensen CM, Adelstein RS, and Krummel MF. Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA-regulated adhesions. *Nature immunology.* 2010;11(10):953-61.
Author Contributions:
KLO performed most of the experiments presented in the manuscript, prepared figures and assisted in writing the manuscript. BWB performed immunoblots and other biochemical analysis. IR performed TEM experiments, supervised by PA. RGH provided technical support for the work. KRH performed immunostaining of human kidneys. CME performed tissue paraffin embedding and sectioning for all the kidney tissues. CLP was the consultant Nephropathologist and along with BAM analyzed the histopathology slides. BAM also provided advisory help. JRB assisted with super resolution imaging of stained kidney sections and performed image analysis. KS assisted with design of the experimental strategy and manuscript preparation. IC designed the study, performed some microscopy experiments, analyzed results and wrote the manuscript.

Acknowledgements:
We thank Dr. Robert Adelstein and his laboratory for sharing the mouse models harboring the *Myh9* and *Myh10* floxed alleles for this work. We thank Dr. Alicia McDonough and her laboratory for sharing the NHE3 antibody. We thank Dr. Jeff Sands for critical reading of the manuscript and for his advisory support. We thank Ms. Kelly Graber with maintenance of the microscopes and running urine and serum chemistry experiments. IC, KLO, and the Sanford Histology and Imaging Core were partly supported by NIGMS grants P20GM103620, NIH P20GM10358 and Sanford Program Funds. KS is supported by NIDDK grant R01DK1605.
Figures:

Figure 1. Conditional genetic inactivation of *Myh9* and *Myh10* in adult mouse renal tubular segments results in progressive kidney disease. **A-R:** Kidney sections from *Myh9&10* cKO mice and control littermates stained with H&E (n > 3 for controls and cKO at each time point). Normal histology is observed in control kidneys at all time points (6 weeks: A-C, 9 weeks: G-I, and 12 weeks: M-O). **D-F:** Minor tubular dilation is observed in the *Myh9&10* cKO mice at 6 weeks in the cortical region (D), while the corticomedullary (E) and medullary (F) regions appear normal. **J-L:** Tubular dilation is observed in the cortical, corticomedullary and medullary regions at 9 weeks in the cKO mice along with focal cellular infiltration in the interstitium (J, K, L). **P-R:** At 12 weeks of age, tubular dilation is increased and interstitial hypercellularity is detected in all regions. **S-T:** Measurement of blood urea nitrogen (S) and serum creatinine (T) indicate decline in kidney function starting at 9 weeks of age. Sample numbers for blood urea nitrogen and serum creatinine for 6 weeks n=13 and 10; 9 weeks n=16 and 12; 12 weeks n=12 and 16 for controls and cKO animals respectfully. Scale bars = 50µm. *denotes a p-value ≤ 0.05, ** a p-value ≤ 0.001, and *** a p-value ≤ 0.0008. The exact p-values are listed in supplemental table 3. SAS software suite developed for multivariate analysis was used for statistics.
Figure 2. Tubular injury markers indicate tubulointerstitial disease in Myh9&10 cKO kidneys. A-D: Images from control and cKO kidney sections of 9-week old cohorts stained for T-cell marker CD3 or mouse macrophage marker F4/80. A-B: The representative control section shows two CD3 positive (red) cells (A, arrowheads) while the cKO section shows several CD3 positive cells (B). C-D: The section from control kidney shows F4/80 (red) positive macrophages (C, arrowheads); cKO kidney section shows several F4/80 positive macrophages (D). Scale=10µm. E-F: Graphs show cell counts for CD3 and F4/80 positive cells in 9-week old control and cKO kidneys. E. cKO kidneys had increased number of CD3 positive T-cells compared to control kidneys (p<0.0001, n= 81 images from 4 control kidneys and 82 images from 4 cKO kidneys). F. F4/80 positive macrophages were more abundant in the cKO kidneys compared to control kidneys (p<0.0001, n=64 images from 3 control kidneys and 60 images from 3 cKO kidneys). Statistics were done using the unpaired 2-tailed t-test. G-H: NGAL concentrations in the serum and urine of control and cKO mice were determined for the 6, 9 and 12-week time points. G. NGAL was significantly elevated in the serum of 9 and 12-week old cKO mice compared to controls (p=0.0094 and p=0.0046, respectively). H. Urinary NGAL was also significantly elevated in the 9 and 12-week old cKO mice (p=0.000034 and p<0.000001, respectively). Dotted lines indicate the highest value on the standard curve relative to sample dilution. n= 6 controls and 6 cKO samples per time point. Statistics were done using the multiple t-test, 2-tailed.
Figure 3. Loss of MYH9 and MYH10 does not affect the localization of proximal tubule associated sodium cotransporters NHE3 and SGLT2.

A-F: Bouin’s fixed kidney sections from 9-week old cKO mice and control littermates were stained using NHE3 antibody along with Oregon green-488-wheat germ agglutinin (WGA) and DAPI. A-C: NHE3 (red) localizes to the PCT brush borders and does not colocalize with WGA (A, B); intracellular NHE3 staining was also observed. D-F: NHE3 staining was reduced in cKO mouse kidney sections and partial loss of expression along the apical membrane was observed in some tubules with loss of brush border (F, white arrowhead). Adjacent tubular segments that are severely dilated are denoted with an asterisks (*, D-F).

G-L: Kidney sections from 9-week old cKO mice and control littermates were stained using a SGLT2 antibody and WGA. G-I: Control kidney sections show positive staining for SGLT2 (red) along the brush borders (G,H). J-L: In the cKO kidneys, SGLT2 expression varied between tubules. Some tubules showed decreased expression (white arrowhead), while other tubules maintained SGLT2 expression (white arrows). Asterisks (*) mark adjacent tubular segments that are severely dilated (J, K). The white dotted squares (B, E, H & K) denote regions enlarged in C, F, I & L. Scale bar = 10µm. Images are representative of n ≥ 3 kidneys for control and cKO samples.

M-N: Graphs represent mean fluorescence intensity (MFI) for NHE3 (M) and SGLT2 (N) that show statistically significant reduction in staining intensity in cKO mice. Control tubules (n=96 for NHE3 and n=69 for SGLT2), cKO tubules (n=108 for NHE3 and n=102 for SGLT2). Error bars show standard deviation of samples. P value <0.0001 was calculated by unpaired 2-tailed t-test.
Figure 4. Inactivation of *Myh*9&10 results in progressive mislocalization and intracellular accumulation of uromodulin in the thick ascending limb.

A-L: Representative images from Bouin’s-fixed kidney sections from 6-week, 9-week and 12-week-old mice stained for UMOD and WGA. Images from control kidney sections at 6 weeks (A-B), 9 weeks (E-F), and 12 weeks (I-J) show UMOD (red) localization to the apical membrane. **C-D:** 6-week-old cKO kidney cells (D, white arrowhead) containing UMOD-positive intracellular puncta and loss of localization to the apical membrane. **G-H:**
Kidney sections from 9-week-old cKO mice show accumulation of UMOD in the intracellular and subapical regions (H, white arrowhead), as well as the lumen (G, white arrows). **K-L:** 12-week-old kidney sections show tubular dilation and excessive accumulation of UMOD in the luminal space. The white boxes mark the enlarged regions represented in the adjacent images. Scale=10µm. Images are representative of n ≥ 3 kidneys for control and cKO samples. **M-O:** Whole kidney lysate immunoblots detected both the ~100kDa (mature, black arrowhead) and ~85-87kDa (immature, black arrow) UMOD proteins. Tubulin (TUB) was used as loading control. **M:** 6-week-old cKO kidney lysates show a slight increase in intensity of UMOD compared to controls. **N-O:** 9-week-old cKO (N) and 12-week-old cKO (O) kidney lysates show a pronounced increase in UMOD intensity compared to controls. **P:** Quantification of the relative density of UMOD bands observed in control and cKO kidney samples. 9 and 12-week-old cKO samples show a statistically significant increase of UMOD compared to controls (p values = 0.000017 and 0.00078 respectively). n=6 control and 6 cKO samples at each time point. P-values were calculated using a multiple t-test, 2-tailed. Error bars represent standard deviation. **Q:** Immunoblot of PNGase F-treated 12-week-old kidney lysates indicating that UMOD in both control and cKO samples is post-translationally modified. In treated control samples (lanes 2-4, n = 3), diffuse bands at ~60-70kDa are present, which correspond to the form of UMOD devoid of all N-linked oligosaccharides. In treated cKO kidney lysates (lanes 6-8, n = 3), PNGase F treatment also deglycosylated UMOD, however, the banding pattern is slightly lower than control samples (~50-60kDa). One control and one cKO sample (lanes 1 and 5, respectively) underwent the same experimental treatment but without PNGase F enzyme and show two diffuse UMOD bands (black arrowhead and arrow). ‘L’ marks the ladder lanes and molecular weight labels indicate the corresponding bands on the ladders.
Figure 5. Loss of MYH9 and MYH10 in renal tubules result in gradual loss of Na+ K+ 2Cl− cotransporter from the TAL tubules.

A-L: Representative images from Bouin’s fixed, cKO mice and control littermate kidney sections from 6-week, 9-week and 12-week cohorts were stained with NKCC2 antibody and WGA. Images from control kidney sections at 6-weeks (A-B), 9-weeks (E-F), and 12-weeks (I-J) time points show normal morphology of the TAL tubules with NKCC2 (red) localizing to the apical membranes. C-D: 6-week old cKO kidneys show TAL tubules with minimal changes in NKCC2 localization to the apical membrane. G-H: Kidney sections from 9-week old cKO
mice show TAL tubules with partial to near complete loss (G, white arrow) of NKCC2 from the apical membrane.
K-L: 12-week kidney sections show loss of NKCC2 protein from the apical membrane of TAL tubules (K, white arrows); however some tubules have accumulation of NKCC2 in the luminal space (K, white arrowheads) or visible intracellular NKCC2 puncta (L, yellow arrow). The white boxes mark the enlarged regions represented in the adjacent images. Scale=10µm. Images are representative of n ≥ 3 kidneys for control and cKO samples.
M-O: Whole kidney lysates from 6-week, 9-week and 12-week cohorts were subjected to immunoblot analysis to detect NKCC2 (~160kDa) protein. Tubulin was used as a loading control. **M:** The 6-week old cKO samples show a decrease in NKCC2 protein levels compared to controls. **N:** At 9-weeks of age, NKCC2 levels are variable in the cKO samples compared to the control kidney lysates. **O:** 12-week old cKO lysates show loss of NKCC2 protein compared to control kidney lysates. ‘L’ marks the ladder lanes, molecular weight labels indicate the corresponding bands on the ladder. **P:** The graph shows quantification of the relative density of the NKCC2 bands observed in the control and cKO kidney samples. 6-week old cKO samples show statistically significant decrease in NKCC2 protein levels compared to control (p value = 0.049; n=3 for control and cKO). 9-week and 12-week cKO samples show decreased relative density of NKCC2 compared to controls and were statistically significant (p value = 0.0041 and 0.0059 respectively; n=6 for control and cKO). P-values were calculated using multiple t-test, 2-tailed. Error bars represent standard deviation of samples.
Figure 6. Expansion of reticulin-4 positive ER tubules is observed in the *Myh9&10* cKO mouse kidneys.

A-F: Images represent PFA fixed, 9-week old control and cKO kidney sections stained to visualize ER tubule associated protein, reticulin 4 (RTN4) along with UMOD and DAPI in the TAL tubules. **A**: Control kidney section stained for RTN4 and UMOD show discrete RTN4 staining (red) in the TAL tubules that also express UMOD (green) along the apical membrane. **B**: Region of interest (ROI) images from a control TAL tubule in A (white box) indicate that UMOD localizes to the apical membrane (white arrowhead), while RTN4 appears as very thin filaments that run from the apical membrane to the basolateral membrane. **C and E**: cKO kidney sections show increased intensity of RTN4 staining in the cKO TAL cells that partially colocalized with UMOD in several regions of the cell. UMOD accumulation within the cells is apparent. **D and F**: ROI images of cKO TAL tubules represented in C and E (white box) show changes in RTN4 and UMOD expression and localization. Gray scale and merged images show the increase in RTN4 and UMOD intracellular staining in the cKO TAL tubule, as well as regions of colocalization along the membrane and inside the cell. Asterisks (*) in all images denotes the lumen and white arrowhead marks the apical membrane. Scale =10µm. Images are representative of analysis of sections from three control and cKO kidneys (n=3).
Figure 7. Transmission electron microscopy confirms endoplasmic reticulum expansion in Myh9&10 cKO mouse TAL tubules.

A-F: 9-week old control and cKO mouse kidneys were subjected to transmission electron microscopy to analyze the ultrastructure of the TAL tubules. A-C: Representative TEM image from the control mouse kidney showing the ultrastructure of the TAL epithelial cells. Black boxes represent the selective regions of the TAL epithelium in A for visualization of ER tubules shown in B, C (arrowheads). The representative ER tubules in the control kidney have ribosomes, are short in length and have a small ER lumen (black arrowheads). D-F: Representative TEM images showing a TAL tubule from the cKO mouse kidney. Black boxes represent the selective regions of the TAL epithelium in D for visualization of ER tubules shown in E, F. ER tubules have increased length and lumen diameter (luminal space) in the cKO TAL tubules (black arrowheads). Some ER tubules appear to be disintegrating and no longer maintain normal structure (black arrows). Scale= 2µm (A, D) and 1µm (B, C, E, F).

G-I: Graphs show the relationship between ER perimeter, ER area and total TAL tubule area from 3 tubules (17 TAL cells, 181 ER tubules) from the control kidney and 4 tubules (28 TAL cells, 358 ER tubules) from the cKO kidney. G: cKO kidneys have a statistically significant (*) increase in the ratio of ER perimeter to the total area of the TAL tubules compared to the controls (p value = 0.003). H: The ratio of total ER area to TAL tubule area varied between the cKO tubules ranging from 5-20 fold increase in the ratio compared to the control tubules, but was significantly (*) different (p value = 0.031). I: A scatter plot showing the relationship between ER perimeter and ER area in the TAL tubules of control and cKO kidneys show a linear relationship between perimeter size and ER area. Statistics were done using unpaired t-test, 2-tailed. Error bars depict standard deviation.
Figure 8. ER stress and unfolded protein response pathway is activated in Myh9&10 cKO kidneys.

A-B: Whole kidney lysates from 9-week and 12-week cohorts were subjected to immunoblot analysis to detect protein levels of the ER stress protein ATF6 and tubulin (loading control). Immunoblot analysis detected a ~109kDa band for ATF6 in control and cKO kidneys. Intensity of the ATF6 bands was increased in both 9-week and 12-week old cKO samples.

E: The graph shows relative density of ATF6 bands indicating a statistically significant increase in ATF6 expression in cKO kidneys at both the 9-week and 12-week time points (n=6, p value=0.000028 and 0.0019 respectively, using the multiple t-test, 2-tailed). Error bars depict standard deviation.

C-D: Whole kidney lysates from 6-week and 12-week cohorts were subjected to immunoblot analysis to detect protein levels of the UPR pathway protein XBP1 and TFRC (loading control). Immunoblot analysis detected a ~40kDa band for XBP1 in control and cKO kidneys. Intensity of the XBP1 bands is decreased in both 6-week and 12-week old cKO samples compared to the controls.

F: The graph shows relative density measurements indicating a decrease in XBP1 protein expression in cKO kidneys, which is progressive and statistically significant at 6-week and 12-week (*) time points (n=6, p value=0.008 and 0.003 respectively using multiple t-test, 2-tailed). ‘L’ marks the ladder lanes, molecular weight labels indicate the corresponding bands. Error bars depict standard deviation.
Figure 9. Expression of ER chaperone calreticulin is increased in Myh9\&10 cKO mouse kidneys and partially colocalizes with UMOD positive vesicles.

A-D: Images represent PFA-fixed, 9-week old control and cKO kidney sections stained to visualize ER chaperone protein, calreticulin (CALR) along with UMOD and DAPI in the TAL tubules. A: Cross section of tubules from control kidney shows expression and localization pattern of CALR (red) along with UMOD (green). B: Enlarged region from A (white box) reveals that in control kidneys, UMOD localizes to the apical membrane of the TAL tubule, CALR localizes to the nuclear membrane as well as intracellular punctate structures. C: Dilated tubules from the cKO kidney sections show excessive UMOD accumulated within the cells, colocalization of vesicular structures positive for CALR along with UMOD is apparent in some areas inside the cell. D: Enlarged region from C (white box) depicts the partial colocalization between CALR and UMOD positive vesicles around the nucleus in the TAL cells. Asterisks (*) in all images denotes the lumen which is dilated in the cKO kidneys, scale=10µm. Images are representative of n ≥ 3 kidneys for control and cKO samples. E: Whole kidney lysates from cKO and control mice from 9-week and 12-week cohorts were subjected to immunoblot analysis to detect protein levels of calreticulin (CALR) and TFRC (loading control). Immunoblot analysis detected a ~50kDa band for CALR in control and cKO kidneys. Intensity of the CALR bands was increased in the 12-week old cKO samples, but not in 9-week samples. ‘L’ marks the ladder lanes, molecular weight labels indicate the corresponding bands. F: The bar graph shows that calreticulin expression is increased in cKO kidneys and is statistically significant at the 12-week (*) time point (p value=0.002 by multiple t-test, 2-tailed; n=3 samples per group at each timepoint). Error bars represent standard deviation.
Figure 10. ER chaperone protein calnexin localization is altered in Myh9&10 cKO kidneys. A-D: Images represent 9-week old, PFA-fixed, control and cKO kidney sections stained to visualize ER chaperone protein, calnexin (CANX) along with UMOD and DAPI in the TAL tubules. A: Tubules from control kidney show expression and localization pattern of CANX (red) along with UMOD (green). B: Enlarged regions from A (white box) show that UMOD localizes to the apical membrane of the TAL tubule and CANX localizes to the nuclear membrane and as intracellular punctate structures. C: Dilated tubules from the cKO kidney sections show UMOD accumulation and CANX localizes within the cytosol instead of along the nuclear membrane in TAL cells. D: Enlarged region from C (white box) and individual channel insets depict the altered localization of calnexin and accumulation of UMOD in the TAL cells; no colocalization is detected. Asterisks (*) in all images denotes the lumen. Scale=10µm. Images are representative of n ≥ 3 kidneys for control and cKO samples. E: Whole kidney lysates from cKO and control mice from 9-week and 12-week cohorts were subjected to immunoblot analysis to detect protein levels of calnexin (~75kDa) and tubulin. No significant changes in calnexin expression levels were observed. ‘L’ marks the ladder lanes, molecular weight labels indicate the corresponding bands. F: The bar graph shows quantification of the relative density of the calnexin bands detected from 9-week and 12-week old cohorts and does not show any significant changes between control and cKO sample (p value: 0.16 and 0.10 respectively, n=3 samples each). P values were calculated using multiple t-test, 2-tailed. Error bars depict standard deviation.