Cyprinid phylogeny based on Bayesian and maximum likelihood analyses of partitioned data: implications for Cyprinidae systematics

WANG XuZhen¹, GAN XiaoNi¹, LI JunBing¹, MAYDEN Richard L.² & HE ShunPing¹*

¹Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; ²Department of Biology, Saint Louis University, Saint Louis, Missouri 63103-2010, USA

Received April 25, 2012; accepted July 16, 2012

Cyprinidae is the biggest family of freshwater fish, but the phylogenetic relationships among its higher-level taxa are not yet fully resolved. In this study, we used the nuclear recombination activating gene 2 and the mitochondrial 16S ribosomal RNA and cytochrome b genes to reconstruct cyprinid phylogeny. Our aims were to (i) demonstrate the effects of partitioned phylogenetic analyses on phylogeny reconstruction of cyprinid fishes; (ii) provide new insights into the phylogeny of cyprinids. Our study indicated that unpartitioned strategy was optimal for our analyses; partitioned analyses did not provide better-resolved or supported estimates of cyprinid phylogeny. Bayesian analyses support the following relationships among the major monophyletic groups within Cyprinidae: (Cyprininae, Labeoninae), ((Acheilognathinae, ((Leuciscinae, Tincinae), Gobioninae)), Xenocyprininae). The placement of Danioninae was poorly resolved. Estimates of divergence dates within the family showed that radiation of the major cyprinid groups occurred during the Late Oligocene through the Late Miocene. Our phylogenetic analyses improved our understanding of the evolutionary history of this important fish family.

Citation: Wang X Z, Gan X N, Li J B, et al. Cyprinid phylogeny based on Bayesian and maximum likelihood analyses of partitioned data: implications for Cyprinidae systematics. Sci China Life Sci, 2012, 55: 761–773, doi: 10.1007/s11427-012-4366-z

The family Cyprinidae is the largest freshwater fish family and includes an estimated 2420 species in about 220 genera [1]. The large number of species, wide geographic distribution, and considerable morphological diversity make the cyprinid fishes taxonomically difficult [2] and a challenge for cladistic analysis. The history of Cyprinidae classification was well documented by Hensel [3], and numerous efforts have been made to partition cyprinids into subfamilies using morphological or anatomical characteristics [2,4–8]. However, the systematic relationships among many cyprinid subfamilies are poorly understood, because the subfamilies are vaguely defined or supported by few morphological characteristics [2].

Cyprinidae has been conventionally divided into two major lineages, the cyprinine (barbine) and the leuciscine groups. Overall, morphology has provided few insights into cyprinid relationships below the family level and failed to reach agreement on the number and the monophyly of subfamilies within Cyprinidae. Chen et al. [8] published the cladistic evaluation of cyprinid subfamily relationships and the additional morphological studies by Cavender and Coburn [9] and Howes [2] attempted a coherent classification of all cyprinid groups, including the monotypic genus Tinca. In these previous studies, conflicting arrangements of the
subfamilies Tincinæ, Rasborinae, and Gobioninae were proposed.

Recently, molecular phylogenetic analyses have been performed on Cyprinidæ. In general, most of the molecular studies of European cyprinids [10–16] have been phylogenetically congruent. For example, all of these studies supported the nesting of Alburninae [2] within a paraphyletic Leuciscinæ, but not the usual dichotomy between barbelled cyprinines (subfamilies Cyprininae, Gobioninae, and Rasborinae) and leuciscines lacking or sporadically possessing barbels (subfamilies Acheilognathinae, Leuciscinæ, Cultrinae, and Alburninae) [2]. Because cyprinids are most diverse in Asiatic waters [17], phylogenetic studies that include Asian species would greatly advance cyprinid systematics [18–20]. Cunha et al. [18] identified an Asian group consisting of cultrins+acheilognaths+gobionins+xenocyprins within the Cyprinidae using cytochrome b (Cytb) gene sequences. Other molecular phylogenies of East Asian cyprinids indicated two principal lineages within Cyprinidæ and provided phylogenetic evidence for the monophyly of cultrins-xenocyprins and affiliated groups [19,20]. However, these molecular analyses were heavily based on partial mtDNA sequences, and resulted in phylogenetic trees with limited resolution and little discrimination among alternative phylogenetic hypotheses.

The current cyprinid classification developed in the absence of a strong phylogenetic framework and is largely morphology based; few revisions have resulted from recent molecular evidence, due to the limited taxon sampling in those studies. Some critical areas of Cyprinidæ phylogeny and systematics remain unresolved. First, a majority of designated cyprinid subfamilies have not been tested for monophyly with either molecular or morphological data, and molecular data [18–20] has failed to support the monophyly of many morphologically-defined subfamilies, e.g., Rasborinae [8] and Leuciscinæ [2,4]. Second, previous analyses have not agreed on the phylogenetic positions of Rasborinae, Tincinæ, and Acheilognathinæ. In recent molecular phylogenies, relationships among these subgroups remained unclear, because corresponding nodes were generally not statistically supported. Third, although the leuciscine and cyprinine subdivisions of Cyprinidæ are widely accepted, the higher-level taxonomic relationships within these clades remain unresolved.

Molecular phylogenetic analyses of East Asian cyprinid resulted in substantial disagreement on the classification of subfamilies compared with the traditional taxonomy [19,20]. Therefore, extensive sampling of Asian cyprinids would provide further insights into the phylogenetic systematics of this family. The present paper used extensive taxon sampling and concatenated sequence data for the nuclear recombination activating gene 2 (RAG2) and the mitochondrial 16S ribosomal RNA (16S rRNA) and Cytb genes to reconstruct the phylogeny of cyprinids.

To analyze DNA sequence data-sets with multiple genes, partitioned phylogenetic analyses have become increasingly popular in recent years. Partitioned phylogenetic analyses use separate nucleotide substitution models (and associated parameters) for subsets of the data, to better explore partition-specific models of evolution and to reduce systematic error, thus yielding more accurate phylogenies. Generally, partitioned phylogenetic analyses are undertaken in a Bayesian framework [21], but recently, mixed-model search methods using maximum likelihood (ML) have become available [22]. Furthermore, an appropriately-partitioned data-set should be well modeled but not over-partitioned, because the over-parameterization (including over-partitioning) could result in parameter nonidentifiability, increased variance, improper posterior distributions, and undue influence of the priors [23]. Alternatives to Bayes factors for phylogenetic model selection that use explicit parameterization penalties are now available for partitioned analyses [23].

We performed ML and Bayesian analyses of partitioned data to reconstruct the phylogeny of cyprinid fishes, and also used relaxed molecular clock approaches to estimate the dates of cladogenetic events within the family. Our main aims were (i) to demonstrate how partitioning concatenated data affected phylogenetic reconstruction of cyprinid fishes; (ii) to test the monophyly of the currently-recognized subfamilies within Cyprinidæ; and (iii) to discuss the taxonomic implications of the recovered clades.

1 Materials and methods

1.1 Taxon sampling and total DNA isolation

Our samples include 103 cyprinid species representing all major morphological groups and all 12 subfamilies within Cyprinidæ [4]. Outgroup taxa were selected based on the consensus that Cypriniformes is a monophyletic group [24,25]. Therefore, six cypriniform fishes outside Cyprinidæ were included in our analyses (Catostomidae, Balitoriidae, Cobitidae, and Gyrinocheilidae) (Table 1).

Field-collected fish muscle or fin tissues were fixed in 95% ethanol and kept at -20°C in the laboratory until DNA extraction. Total genomic DNA was isolated from muscle or fin tissues using the phenol/chloroform extraction procedure [26].

1.2 DNA sequences collection and alignment

The nuclear RAG2 gene and mitochondrial genes were amplified from total DNA extracts via polymerase chain reaction (PCR) using published and/or optimized primers [27–29]. Reaction mixtures contained approximately 100 ng of DNA template, 5 µL of 10× reaction buffer, 2 µL dNTPs (each 2.5 mmol L$^{-1}$), 2.0 U Taq polymerase, and 1 µL of each oligonucleotide primer (10 µmol L$^{-1}$ each), in a final volume 50 µL. The PCR amplification profile included an
Subfamily	Taxa	Sampling location	Accession No.		
			RAG2	16S rRNA	Cytb
Barbiniae					
Acrossochilus baijiangensis	Rong'an, Guangxi Zhuang Auto. Region	DQ366960	DQ485869	–	
Acrossochilus elongates	Rong'an, Guangxi Zhuang Auto. Region	DQ366979	DQ406254	–	
Acrossochilus hemsipinus	Rong'an, Guangxi Zhuang Auto. Region	DQ366986	DQ485867	GQ406312	
Balantiochilus melanoperus	Aquarium, Wuhan	DQ366933	DQ406255	–	
Barbodes huangchuchieni	Mengla, Yunnan Prov.	DQ366952	DQ485865	–	
Barbodes vernayi	Mengla, Yunnan Prov.	DQ366987	DQ485870	GQ406313	
Barbunybus schwanenfeldii	Aquarium, Wuhan	DQ366961	DQ485906	AF180823	
Barbodes barbus	France	DQ366990	DQ485879	AB238985	
Barbodes sp.	Africa	DQ366980	DQ485860	AF180842	
Hampala macrolepida	Mengla, Yunnan Prov.	DQ366965	DQ485863	GQ464974	
Onychostoma gerlachi	Jinghong, Yunnan Prov.	DQ366963	DQ485862	GQ406314	
Onychostoma lepida	Xilin, Guangxi Zhuang Auto. Region	DQ366955	DQ485864	–	
Onychostoma macrolepida	Taian, Shandong Prov.	DQ366942	DQ485826	–	
Onychostoma sima	Hejiang, Sichuan Prov.	DQ366991	DQ485861	–	
Percocypris pinni pinni	Hejiang, Sichuan Prov.	DQ366962	DQ485865	–	
Puntius semisalutatus	Jinghong, Yunnan Prov.	DQ366951	DQ486260	AY856116	
Puntius conchonius	Aquarium	GQ406253	DQ485880	AY004751	
Puntius tetrazona varieties	Aquarium	DQ366938	EU287909	EU287909	
Sikakia stejnegeri	Mengla, Yunnan Prov.	DQ366931	DQ485872	GQ406315	
Sinocyclocheilus tingi	Xuxian, Yunnan Prov.	DQ366978	DQ485866	AY854701	
Spinibarbus hollandi	Tunxi, Anhui Prov.	DQ366973	DQ485865	AY195629	
Tor douronensis	Menglan, Yunnan Prov.	DQ366945	DQ485877	GQ464966	
Tor qiaojiensis	Yingjiang, Yunnan Prov.	DQ366970	DQ485873	GQ406316	
Tor sinensis	Mengla, Yunnan Prov.	DQ366936	DQ485876	FJ111641	
Cyprininae					
Carassius auratus	Wuhan, Hubei Prov.	DQ366941	AB006953	AB006953	
Cyprinus carpio	Tian'e, Guangxi Zhuang Auto. Region	DQ366994	X61010	X61010	
Cyprinus multitaeniata	Guiping, Guangxi Zhuang Auto. Region	DQ366939	DQ485845	–	
Procypris rabaudi	Hejiang, Sichuan Prov.	DQ366969	DQ485846	GQ406317	
Labeoninae					
Cichilus molitorella	Tengxian, Guangxi Zhuang Auto. Region	DQ366959	DQ485883	AY463098	
Crossocellias latius	Tengchong, Yunnan Prov.	DQ366982	DQ485882	–	
Crossocellias reticulatus	Menglan, Yunnan Prov.	DQ366937	GQ406261	–	
Discogobio bismargaritus	Liuzhou, Guangxi Zhuang Auto. Region	DQ366947	DQ485890	GQ406318	
Discogobio brachyphylsillidos	Jinxiu, Guangxi Zhuang Auto. Region	DQ366958	DQ485901	GQ406319	
Discogobio laticeps	Tian'e, Guangxi Zhuang Auto. Region	DQ366949	DQ485889	GQ406320	
Epalzeorhynchos frenatus rar	Aquarium, Jinghong	DQ366943	DQ485905	GQ406321	
Garra kempf	Chayu, Tibet Auto. Region	DQ366968	DQ485885	–	
Garra orientalis	Ledong, Hainan Prov.	DQ366957	DQ485884	GQ406322	
Garra taeniata	Jinghong, Yunnan Prov.	DQ366953	GQ406262	–	
Henicocheilus lineatus	Menglan, Yunnan Prov.	DQ366935	GQ406263	GQ406323	
Labeo yunnanensis	Menglan, Yunnan Prov.	DQ366948	DQ485881	GQ406324	
Lobocheilus melanotaenia	Menglan, Yunnan Prov.	DQ366940	DQ485902	GQ464990	
Osteochilus salisburyi	Rong'an, Guangxi Zhuang Auto. Region	DQ366971	DQ485892	GQ406325	
Parasinilabeo assimilis	Rong'an, Guangxi Zhuang Auto. Region	DQ366992	DQ485877	GQ406326	
Pseudocrossochilus bamaensis	Tian'e, Guangxi Zhuang Auto. Region	DQ366993	DQ485895	GQ406327	
Ptychocheilus jordani	Tian'e, Guangxi Zhuang Auto. Region	DQ366974	DQ485893	GQ406328	
Rectoris posehnensis	Dou'an, Guangxi Zhuang Auto. Region	DQ366975	DQ485891	GQ406329	
Semilabeo notabilis	Jinxiu, Guangxi Zhuang Auto. Region	DQ366983	DQ485886	GQ406330	
Sinilabeo rendahli	Yidu, Hubei Prov.	DQ366932	GQ406264	–	
Schizothoracinae					
Gymnocypris eckloni eckloni	Huanghe, Qinghai Prov.	DQ366950	DQ485853	AY463522	
G. przewalskii przewalski	Qinghai Lake, Qinghai Prov.	DQ366954	DQ485851	AY463523	
Gymnocypris dubius	Yili, Xinjiang Uygur Auto. Region	DQ366956	DQ485859	AY463513	
Schizopygopsis youngusbandi youngusbandi	Bomi, Tibet Auto. Region	DQ366976	GQ406265	AY463501	
Schizothorax dalongensis	Guoyang, Yunnan Prov.	DQ366985	DQ485849	AY954284	
Schizothorax meridionalis	Yingjiang, Yunnan Prov.	DQ366989	DQ485847	AY954287	

(To be continued on the next page)
Subfamily	Taxa	Sampling location	Accession No.	RAG2	16S rRNA	Cytb
Schizothoracinia	Schizothorus molesworthi	Chayu, Tibet Auto. Region	DQ366946	DQ385484	DQ126130	
Schizothorax mycostomus	Guyong, Yunnan Prov.		DQ366960	DQ385580	GQ406331	
Schizothorax wallonti	Chayu, Tibet Auto. Region		DQ366981	GQ406266	AY463518	
Leuciscinae	Cyprinella latrensis	GN531	DQ367019	GQ406267	AB070206	
Lenciscus leniscus	France		DQ367007	GQ406268	AY509823	
Phoxinus phoxinus	Europe		DQ367022	GQ406269	Y10448	
Phoxinus lugowskii	Hengren, Liaoning Prov.		DQ367035	GQ406270	AB162650	
Rutulus rutulus	France		DQ367003	GQ406271	AF095610	
Pimephales promelas	GN530		DQ367000	GQ406272	AF117203	
Rhinichthys atralalus	GN529		DQ367018	GQ406273	AF452078	
Elopichthys bambusa	Taoyuan, Hunan Prov.		DQ367016	GQ406274	GQ406332	
Ochotobius elongates	Taoyuan, Hunan Prov.		DQ367012	GQ406275	AF309506	
Luciobrama macrocephalus	Tengxian, Guangxi Zhiu Auto. Region		DQ367013	GQ406276	–	
Ctenopharyngodon idella	Hengxian, Guangxi Zhiu Auto. Region		DQ366996	GQ406277	AF051860	
Mylopharyngodon piceus	Taoyuan, Hunan Prov.		DQ367011	GQ406278	AF051870	
Squaliobarbus curriculus	Wuhan, Hubei Prov.		DQ367021	GQ406279	AF051877	
Tinca tinca	Europe		DQ367029	GQ406280	Y10451	
Hypophthalmichthyinae	Aristichthys nobilis	Wuhan, Hubei Prov.	DQ367038	GQ406281	AF051855	
Hypophthalmichthys molitrix	Chexi, Huan Prov.		DQ367002	GQ406282	AF051866	
Xenocyprinae	Distoechodon tumirostris	Wuhan, Hubei Prov.	DQ366998	GQ406283	AF336308	
Pseudobrama simony	Taoyuan, Hunan Prov.		DQ367028	GQ406284	AF036194	
Xenocypris argentea	Taoyuan, Hunan Prov.		DQ367024	GQ406285	AP009059	
Danioninae	Danio apogon	Mengla, Yunnan Prov.	DQ367039	GQ406286	–	
Danio rerio	U71094		AC024175	AC024175	–	
Niclosicypris normalis	Tengxian, Guangxi Zhiu Auto. Region		DQ367014	GQ406289	–	
Opsiarchichthys bidens	Taoyuan, Huan Prov.		DQ366966	GQ406290	AY051875	
Raianus guttatus	Mengla, Yunnan Prov.		DQ367023	GQ406291	EF151121	
Tanichthys albonubes	Aquarium, Wuhan		DQ367010	GQ406292	AY245048	
Zacco platypus	Jinxu, Guangxi Zhiu Auto. Region		DQ367004	GQ406293	AP009060	
Cultrinae	Culter alburnus	Taoyuan, Huan Prov.	DQ367001	GQ406299	AF051859	
Callichthys erythrophthalmus	Lingshan, Guangxi Zhiu Auto. Region		DQ367037	GQ406299	AF051867	
Megalobrama amblicephala	Wuhan, Hubei Prov.		DQ367025	GQ406294	AF051867	
Pseudohemichthys dispar	Rong’an, Guangxi Zhiu Auto. Region		DQ367001	GQ406296	–	
Pseudolabua sinensis	Taoyuan, Huan Prov.		DQ367017	GQ406297	–	
Rasborinus lineatus	Hengxian, Guangxi Zhiu Auto. Region		DQ367036	GQ406298	–	
Sinibrama macrops	Rong’an, Guangxi Zhiu Auto. Region		DQ367006	GQ406295	–	
Toxabramis swinhonis	Bobai, Guangxi Zhiu Auto. Region		DQ367027	GQ406300	DQ464972	
Gobiobotinae	Gobiobotia abbreviate	Tian’e, Guangxi Zhiu Auto. Region	DQ367033	GQ406301	–	
Gobiobotia filiger	Wuhan, Hubei Prov.		DQ367032	GQ406302	AY953002	
Gobioninae	Abbottina rivalans	Nanchong, Sichuan Prov.	DQ366995	GQ406303	AF051856	
Coreias heterodon	Wuhan, Hubei Prov.		DQ367005	GQ406304	AY953001	
Gobio gobiob	France		DQ367015	GQ406305	AY425692	
Pseudogobio vaillanti	Tian’e, Guangxi Zhiu Auto. Region		DQ366999	GQ406306	AY953019	
Pseudorasbora parva	Jinxu, Guangxi Zhiu Auto. Region		DQ366997	GQ406307	AF051873	
Sarcochetlichthys sinensis sinensis	Hejiang, Sichuan Prov.		DQ367026	GQ406308	AY952983	
Saurogobio dasyri	Changyang, Hubei Prov.		DQ367020	GQ406309	AY245091	
Acheilognathinae	Paracheilognathus meridians	Hengxian, Guangxi Zhiu Auto. Region	DQ367009	GQ406310	–	
Rhodes sp	Xilin, Guangxi Zhiu Auto. Region		DQ367031	GQ406311	DQ082430	
Outgroup	Micronemachilus palcher	Rong’an, Guangxi Zhiu Auto. Region	DQ367041	GQ45921	DQ105199	
Myoxocyprinus asiaticus	Wuhan, Hubei Prov.		DQ367043	GQ458596	AY896503	
Paramisgurnus dabryanus	Rong’an, Guangxi Zhiu Auto. Region		DQ367040	GQ45922	AY625701	
Misgurnus sp			AY804120	AB242171	AB242171	
Pseudogastromyzon fangii	Hengxian, Guangxi Zhiu Auto. Region		DQ367042	GQ45920	DQ105221	
Gyronichthys sp			AY804074	AB242164	AB242164	

a) The cyprinid subfamilies follow those proposed by Chen [4]. * indicates sequences downloaded from GenBank, and – indicates missing data.
initial denaturation step at 94°C for 3 min, followed by 35 cycles of 30 s at 94°C, annealing for 30 s at 45–56°C (depending on the gene amplified), extension for 90 s at 72°C, and a final extension for 8 min at 72°C. Amplified DNA was fractionated by electrophoresis through 0.8% low-melting agarose gels, recovered, and purified using BioStar Glassmilk DNA purification Kit (Biostar International, Toronto, ON, Canada) according to the manufacturer’s instructions. Nucleotide sequences were determined using purified PCR product. We generated most of the sequences used in this study, and some sequences for the 16S rRNA and Cytb genes were obtained from GenBank (Table 1).

For the two protein-coding genes, RAG2 and Cytb, multiple sequence alignments were performed using CLUSTAL X [30]. For the 16S rRNA gene, sequences were initially aligned using CLUSTAL X, then manually aligned based on secondary structural elements and conserved motifs by comparing to existing models of 16S rRNA secondary structure for cyprinid fishes [31–33]. All data-sets analyzed for this study are available on request from the first author.

1.3 Data partitions and model selection

We performed partitioned analyses using different nucleotide substitution models and associated parameter for each data subsets. We evaluated ten distinct partitioning strategies ranging from unpartitioned to a maximum of eight partitions (Table 2). Each partitioning strategies were denoted with the letter P followed by the number of data partitions. The unpartitioned (P1) analyses applied a single model of sequence evolution to all the data. The eight-partition (P8) analyses included separated substitution models for the stems and loops of 16S rRNA gene and for each codon position of Cytb and of RAG2.

Model selection was undertaken using PAUP [34] and ModelTest 3.7 [35]. The Akaike information criterion (AIC) weighting [36] determined the best-fit nucleotide model for each data partition running simultaneously with a cold chain and three incrementally heated chains. The default setting for the heating parameter (T=0.2) in our preliminary analyses resulted in no or infrequent state exchanges between chains. When an alternative temperature regime (T=0.02) was used, successful state exchanges between chains improved in proportion to 40–80%.

MCMC analyses of each data partition were run for 2×10⁷ generations, with sampling every 1000 generations. We employed two strategies to confirm stationarity. First, we plotted log-likelihood scores, tree lengths, and all model parameter values against generation number using Tracer v. 1.4 (http://tree.bio.ed.ac.uk/software/tracer/) to graphically evaluate “burn-in”. Second, MCMC convergence was assessed graphically using the cumulative function of AWTY [39]. The cumulative function was used to analyze the posterior probability (PP) support values for each clade to verify that these values were stable across all post-burn-in generations within each analysis. The PPs should stabilize once the Markov chain reaches stationarity, and substantial deviation of PPs from equilibrium values over time would indi-

Table 2 Partitioning strategies used in the Bayesian and maximum likelihood (ML) phylogenetic analyses, with their HMLi and –lnL scores

Partition strategy	Partition identity	HMLi (Bayesian)	–lnL (ML)
P1	All data combined	73918.6	73819.135
P2	mtDNA; RAG2	73252.4	73241.452
P3	16S; Cytb; RAG2	72874.8	72985.832
P4	16S stems; 16S loops; Cytb; RAG2	72510.5	72648.3
P5a	16S; Cytbpos1; Cytbpos2; Cytbpos3; RAG2	72177.9	72061.933
P5b	16S; Cytb; RAG2pos1; RAG2pos2; RAG2pos3	72496.1	72628.226
P6a	16S stems; 16S loops; Cytbpos1; Cytbpos2; Cytbpos3; RAG2	71806.61	71717.441
P6b	16S stems; 16S loops; Cytb; RAG2pos1; RAG2pos2; RAG2pos3	72130.61	72291.174
P7	16S; Cytbpos1; Cytbpos2; Cytbpos3; RAG2pos1; RAG2pos2; RAG2pos3	71790.49	71704.833
P8	16S stems; 16S loops; Cytbpos1; Cytbpos2; Cytbpos3; RAG2pos1; RAG2pos2; RAG2pos3	71419.06	71360.693

1.4 Phylogenetic analyses of the Cyprinidae

Bayesian phylogenetic analyses were performed using the software MrBayes 3.1.2 [21]. A Metropolis-coupled Markov chain Monte Carlo (MCMC) process was undertaken for each data partition running simultaneously with a cold chain and three incrementally heated chains. The default setting for the heating parameter (T=0.2) in our preliminary analyses resulted in no or infrequent state exchanges between chains. When an alternative temperature regime (T=0.02) was used, successful state exchanges between chains improved in proportion to 40–80%.

MCMC analyses of each data partition were run for 2×10⁷ generations, with sampling every 1000 generations. We employed two strategies to confirm stationarity. First, we plotted log-likelihood scores, tree lengths, and all model parameter values against generation number using Tracer v. 1.4 (http://tree.bio.ed.ac.uk/software/tracer/) to graphically evaluate “burn-in”. Second, MCMC convergence was assessed graphically using the cumulative function of AWTY [39]. The cumulative function was used to analyze the posterior probability (PP) support values for each clade to verify that these values were stable across all post-burn-in generations within each analysis. The PPs should stabilize once the Markov chain reaches stationarity, and substantial deviation of PPs from equilibrium values over time would indi-
cate a lack of chain convergence. Our diagnoses suggested that chain convergence generally occurred within the first two million generations of each analysis. We followed a conservative approach by discarding the first 10 million generations as burn-in and using the remaining 10 million generations (10000 sampled trees) in all subsequent analyses. The 50% majority-rule consensus trees were generated with mean branch-length estimates, PP values for each node, credible sets of trees, and parameter estimates.

Trees resulting from our partitioned analyses that explicitly accommodated among-partition rate variation (APRV) had greater harmonic mean log likelihoods (HMLi) than those from equivalent analyses that did not accommodate APRV. Therefore, we employed the “prset ratepr=variable” option in MrBayes in all partitioned analyses. In all MCMC runs, we assigned uniform priors to trees and parameters of models of sequence evolution, and an exponential prior to branch lengths.

Partitioned and unpartitioned ML analyses were performed in RAxML [22]. Following the recommendation of McGuire et al. [23], we performed two sets of analyses for each partitioning strategy. In the first set of analyses, we estimated the ML values, which were used in the ML strategy-selection procedure, of the P8 Bayesian topology under each partitioning strategy. In the second set of analyses, we searched for the ML topology with the highest likelihood during 200 runs on distinct starting trees, then used 500 bootstrap replicates to measure support for the recovered clades. We employed the GTRGAMMAI substitution model in both sets of analyses.

1.5 Evaluation of alternative partitioning strategies

Alternative partitioning strategies were evaluated using four different criteria [23]: standard Bayes factors [40,41], a modified AICc [23], the Bayes information criterion (BIC) [42], and a decision-theoretic (DT) approach [43–45]. The Bayes factor for any pair of partitioned models was the ratio of their marginal likelihoods. Marginal likelihoods are difficult to calculate, but can be approximated by the HMLi [46]. Using In-transformed Bayes factors, we accepted Bayes factors greater than 10 (2ln Bayes factors>10) as strong support for the more partitioned model. Because the relationships of HMLi’s under alternative partitioning strategies are similar to the relationships of ML values [23,47,48], we substituted the HMLis for ML values in the AICc, BIC, and DT tests of partition strategies under Bayesian framework. The partitioning strategy preferred by AICc, BIC, or DT had the minimum observed value. To estimate branch-length on a fixed-topology in MrBayes, the program’s branch-swapping functionality was disabled and node-slider was enabled (by resetting props).

We compared the optimal partitioning strategies selected by Bayes factors, AICc, BIC, and DT tests in Bayesian analyses with those preferred by hierarchical LRT (hLRT), AICc, BIC, and DT in ML analyses. To better compare ML and Bayesian strategy-selection procedures, RAxML and Bayesian analyses employed only the GTR+Γ substitution model. All ML comparisons were based on likelihoods calculated for the eight-partition Bayesian consensus tree, whereas Bayesian model criteria were computed in the context of optimized trees for each partitioning strategy (except DT). To apply these partition selection criteria to our ML and Bayesian analyses, we calculated the number of parameters in each data partition following the recommendation of McGuire et al. [23].

1.6 Testing alternative cyprinid phylogenetic hypotheses

Bayesian hypothesis testing [49] was used to test whether alternative hypotheses of higher-level cyprinid relationships recovered in our partitioned Bayesian analyses could be rejected by the combined data. Because Bayesian analysis infers the distribution of trees proportional to their PPs, commonly used statistical methods to compare alternative topologies, such as the approximately unbiased test [50], are not plausible under the Bayesian framework. The 95% credible sets of tree (sampled at stationarity) was built by using the “sumt” command in MrBayes. All trees were imported into PAUP and filtered by the phylogenetic hypothesis of interest; that hypothesis could not be rejected statistically when one or more trees in the 95% credible set compatible with the hypothesis.

1.7 Molecular dating of cyprinids

Rate heterogeneity among lineages in the concatenated dataset was evaluated using LRTs comparing log likelihoods of both constrained and unconstrained trees. We used the GTR+Γ substitution model. A strict molecular clock was rejected (P<0.005, degrees of freedom=107). Therefore, the relaxed molecular clock model of Sanderson’s nonparametric rate smoothing (NPRS) method [51] was used to estimate divergence dates.

The NPRS implemented in the program r8s [52] was used to produce ultrametric trees. Divergence date estimates were based on the topology resulting from the unpartitioned Bayesian analysis. Powell’s algorithm for optimizing the objective function and the additive penalty function were used. The 95% confidence intervals for the estimated ages were determined using 100 bootstrap pseudoreplicates of the combined data matrix using SEQBOOT in PHYLIP 3.5c [53]. While keeping the tree fixed, nodal depth (hence age estimates) of each pseudoreplicate was estimated by ML with the preferred model of molecular evolution [51]. For each node, the mean age was calculated from 100 bootstrap ages.

To estimate divergence times, we applied multiple fossil calibration points including (i) the root node of Cyprinidae.
was constrained to a maximum of 55.8 million years ago (Mya) because the oldest reliable known fossils of Cyprinidae are from the Eocene [54]; (ii) the split between \textit{Tinca} and the modern leuciscins was constrained to be a maximum of 18.0 Mya, because \textit{Tinca} was described from the Middle Miocene [55,56] and a prominent turnover of European freshwater fish faunas represented by the appearance of modern \textit{Palaeoleuciscus} sp. and \textit{Palaeocarassius} sp. (=aff. \textit{Abramis} sp. vel aff. \textit{Alburnus} sp.) happened about 17–18 Mya (the late early Miocene) [57]; (iii) a minimum of 1.81 Mya was assigned to the node subtending silver (Mya (the late early Miocene) [57]; (iii) a minimum of 1.81 Mya was assigned to the node subtending silver (\textit{Hypophthalmichthys molitrix}) and bighhead (\textit{Aristichthys nobilis}) carp, and to the node subtending grass carp (\textit{Ctenopharyngodon idella}) [58]; (iv) a minimum age of 3 Mya was used to define the origin of \textit{Pseudorasbora} [58]; (v) a fixed date of 13 Mya was used to define the lineage leading to modern European \textit{Barbus barbus} according to the fossil records of \textit{Barbus} [10].

2 Results

We generated 4257 aligned base pairs (bp) of DNA sequence data representing three genes, the nuclear RAG2, 1287 aligned bp and the 16S rRNA 1830 bp and Cytb 1140 bp. Of those sites, 2209 were variable and 1797 were parsimony informative. In the 16S rRNA gene, 190 sites were variable and 106 parsimony informative. The Cytb gene had 160 variable and 140 parsimony informative sites. The remaining 290 variable sites, 270 of which were parsimony informative, occurred in the RAG2 gene.

2.1 Effects of alternative partitioning strategies

The HMLi and –lnL were used to evaluate partitioning strategies in the Bayesian and ML analyses, respectively. In the present study, adding partitions substantially improved the HMLi and –lnL scores (Table 2), suggesting that simpler partitioning strategies were poorer fits to the data than more complicated partitioning strategies. For example, partitioning Cytb and RAG2 by codon positions dramatically improved HMLi and –lnL. Partitioning the 16S rRNA gene by stems and loops improved HMLi and –lnL by about 360 and 330 log-units respectively (P4 vs. P3). Comparing the strategies with the same numbers of partitions (P5a vs. P5b, P6a vs. P6b) indicated that partitioning Cytb alone by codon was better than partitioning only RAG2 by codon. The P8 strategy, which partitioned the rRNA gene by stems and loops and the coding genes by codon position proved best in both Bayesian and ML analyses.

Despite differences in model fit, tree topologies inferred by Bayesian and ML methods using the ten partition strategies were almost identical to one other; the differences involved alternative placements of weakly supported nodes (PP<0.90 and bootstrap support<70%). The most dramatic difference in topology occurred in the position of \textit{Danio} within Cyprinidae; the Bayesian P7 analysis weakly supported a basal position for \textit{Danio}, unlike the other analyses. Tree length estimates varied only slightly across partitioning strategies, and no notable differences in PPs (Bayesian analyses) or bootstrap supports (ML analyses) were found among strategies. The number of strongly-supported ingroup nodes (PP values≥0.95) decreased between the unpartitioned (73 of 95 ingroup nodes with PP values≥0.95) and the maximally partitioned (63 of 93). Our analyses suggested that highly-partitioned Bayesian analyses had relatively poor performance in recovering well-supported cyprinid nodes.

2.2 Selecting the optimal partitioning strategy

Two extreme partitioning strategies were selected by DT and Bayes factors (hLRT, AICc, and BIC. The DT selected the unpartitioned P1 strategy; in contrast, the other criteria preferred the most partitioned (P8) strategy. The more-partitioned strategies considered in this study did not provide better-resolved or -supported estimates of cyprinid phylogeny, because all strategies resulted in similar topologies and node support values. The partitioning strategy employed in this analysis was not as critical as expected. However, the phylogenetic analysis based on P1 (preferred by DT in both Bayesian and ML frameworks) required fewer parameters to be estimated, and we inferred that P1 strategy was optimal for our Bayesian and ML analyses. Although adding partitions improved likelihood scores, partitioning had little effect on topology or node support. Much of the improvement in likelihood scores obtained with more extensive partitioning was probably associated with substitution model and base frequency parameter estimates (nucleotide parameters in this context) rather than with more critical topology and branch-length estimates [23].

2.3 Phylogeny of the Cyprinidae

Bayesian analyses of a combined molecular dataset resulted in informative phylogenetic estimates for cyprinids (Figure 1). The monophyly of Cyprinidae was strongly supported with a \textit{PP} of 1.0 in all analyses. The unpartitioned Bayesian analysis resulted in a well-resolved and -supported cyprinid phylogeny, with 73 of 95 ingroup nodes receiving \textit{PP} values≥0.95 and two additional nodes with \textit{PP} values of 0.90–0.95.

The unpartitioned Bayesian analysis strongly supported several important clades within Cyprinidae. However, the position of \textit{Danio} at the base of the leuciscins was poorly supported (\textit{PP}=0.61), and the genus was basal to the entire family in the P7 analyses. Within the cyprinine lineage (Clade I) (\textit{senso} Howes [2]), the monophyly of laboeine fishes (Clade B) and sister relationship between laboeine and non-laboeine cyprinine clades (except \textit{Procypris}, Clade A) were both strongly supported (\textit{PP}=1.0), whereas the relationships within non-laboeine cyprinine clade
Figure 1 Phylogenetic tree of cyprinid fishes resulting from unpartitioned (P1) Bayesian analysis of three genes. Posterior probabilities values are shown at each node. Two recognized lineages within the family Cyprinidae are indicated by Roman numerals on the right side of the figure: (I) cyprinine lineage; (II) leuciscine lineage. Nodes for the recognized clades are marked with black dots and bold capital letters: A, cyprinine clade; B, labeonine clade; C, xeno-cyprinine clade; D, gobionine clade; E, leuciscine clade; F, achenoglanthine (including Tanichthys) clade; G, tincine clade; H, danionine clade.
(Clade A) were less well supported, with several unresolved relationships.

Within the leuciscine lineage (Clade II), the cutrins were not supported as monophyletic. However, the East Asian endemic xenocyprinine taxa (including Hypophthalmichthys, Aristichthys, Ctenopharyngodon, Mylopharyngodon, Ochotobius, Squilobarbus, Elpichthys, Luciobrama, Culter, Cultrichthys, Sinibrama, Megalobrama, Pseudohemibelutis, Toxabramis, Pseudolaubuca, Distoechodon, Xenocypris, and Pseudobrama), formed a strongly-supported clade (Clade C, PP = 1.0) in which the genera Nicholsicypris, Rasborinus, Hemigrammocypris, Zacco, and Opsariichthys were well resolved as the basal members. The North American and Eurasian leuciscins formed a strongly supported clade (Clade E, PP = 1.0), but its sister relationship to the genus Tinca was weakly supported (PP = 0.80). Clade D (PP = 1.0), containing gobionins and gobiobotins, was weakly supported (PP = 0.60) as sister to clade E + Tinca. Clade F, containing Tanichthys, Rhodesus, and Paraacheilognathus, was well supported (PP = 1.0), as was the sister relationship between Tanichthys and the Rhodesus + Paraacheilognathus clade (PP = 1.0). Furthermore, clade D, E, and F and Tinca formed a strongly supported clade (PP = 0.98) sister to the strongly-supported East Asian endemic xenocyprinine clade (Clade C) (PP = 1.0). The other nine partitioning strategies yielded Bayesian topologies largely in agreement with this tree.

The unpartitioned ML analysis (the strategy preferred by DT in an ML framework) and the more complex partitioning strategies resulted in phylogenetic trees highly similar to Figure 1, with the following exceptions: (i) the phylogenetic position of Danio; (ii) the deep branching pattern within Clade A; and (iii) support for the node subtending clade D, E, and F and Tinca. All of the important cyprinid clades recovered in Figure 1 were also well supported (bootstrap>70%) in the ML analysis, except that the strongly-supported (PP = 0.95) node for Clade A in the Bayesian analysis had relatively low bootstrap support (66%) in the ML analysis.

2.4 Divergence dates of cyprinid clades

Table 3 lists the divergence times (with 95% confidence intervals) estimated in r8s for the main nodes marked in Figure 2. As estimated by our combined data, Cyprinidae appeared in East Asia around 42.38 (43.13–41.64) Mya. The cyprinine and leuciscine lineages separated an estimate of 27.36 (27.84–26.89) Mya. Our dating results suggested that the cyprinine and leuciscine lineages began to diversify simultaneously (CYN node, 20.45 Mya; LEU node, 20.51 Mya). Within the cyprinine lineage, radiation of Labeoninae (node LAB) occurred 14.98 Mya, while the Cyprininae (node CYT) diverged earlier (18.46 Mya). Radiation of the clades Acheilognathinae (node ACH), Gobioninae (node GOB), Leuciscinae (node LES), and Xenocyprini (node XEN) occurred from 18.80–12.02 Mya.

3 Discussion

3.1 Performance of alternative partitioning strategies

For the datasets composed of multiple genes and/or gene regions, partitioned phylogenetic analyses may greatly reduce mismodeling and systematic errors relative to analyses specifying a single model. Comparison of the 95% credible intervals of parameters sampled from the posterior distributions of the P1 and P8 analyses found significant heterogeneity, indicating that including more partitions greatly improved the Bayesian and ML likelihoods in this study. Numerous instances of non-overlap could be found in the credible intervals for different partitioning schemes. Based on the parameter estimates, partitioning the Cytb codon positions improved the HMLi and −LnL scores more substantially than partitioning the RAG2 or 16S rRNA genes.

Although partitioning substantially improved likelihood scores, its effect on topology and node support was minimal. In our Bayesian analyses, increased partitioning decreased the estimated PPs of some nodes relative to the P1 strategy. For example, several of the ingroup nodes that had PP values

Clade	Node	Age estimates (Mya)	Mean±SD	95% interval
Cyprinidae, except outgroup	CYD	42.38±3.74	41.64–43.13	
Cyprinine lineage	CYN	20.45±1.41	20.17–20.73	
Cyprinine clade	CYT	18.46±1.04	18.25–18.67	
Labeonine clade	LAB	14.98±0.95	14.79–15.17	
Leuciscine lineage	LEU	20.51±1.22	20.27–20.76	
Clades acheilognathine, gobionine, leuciscine, and the genus Tinca	NOR	19.41±0.88	19.23–19.58	
Leuciscine clade	LES	12.02±0.63	11.90–12.15	
Gobionine clade	GOB	14.13±0.88	13.95–14.30	
Acheilognathine clade	ACH	17.11±0.97	16.92–17.30	
Leuciscine clade and the genus Tinca	TIN	17.90±0.40	17.82–17.98	
Xenocyprinine clade (East Asian endemic clade)	XEN	18.80±1.12	18.58–19.02	
Figure 2 Phylogeny of cyprinid fishes with divergence time estimates. The chronogram is the tree from the unpartitioned Bayesian analysis with dates estimated using nonparametric rate smoothing in the program R8s. Node labels are defined in Table 3, where mean divergence dates and 95% confidence intervals for key nodes are listed.
of 1.0 in the P1 tree had lower support values under the most partitioned (P8) strategy. Phylogeneticists are concerned about appropriate partitioning in their analyses, because poor topology and confidence estimates can result from poorly- or overly-partitioned models. Although improved modeling could decrease the amount of systematic error under a given partitioning strategy, random error could significantly impact phylogeny and confidence estimates. The ideal partition size for optimal phylogenetic estimates is still unclear. For our cyprinid dataset, we concluded that most of the improvement in HMLi and $-\ln L$ estimates with greater partitioning was associated with better estimation of nuisance parameters, such as base frequencies and substitution rates.

We compared ten partitioning strategies in both Bayesian and ML frameworks, and four alternative model-selection criteria were employed to screen the best-fitting strategy. The standard Bayes factor/hLRT and AICc imposed relatively weak penalties for additional parameterization and consequently selected the most complex partitioning strategy, whereas the more stringent BIC and DT criteria preferred the most- and least-partitioned models, respectively. The DT method incorporates relative branch-length error as a performance measure. Therefore, under the DT framework, if a less-partitioned model returned nearly identical branch length estimates to those of a model with more partitions, there would be little difference in phylogenetic estimates between the models. The performance-based DT criterion selected the unpartitioned strategy in our analyses, indicating that there were probably no improvements in branch length estimates in our partitioned (P2–P8, Table 2) analyses compared with unpartitioned analyses.

3.2 Phylogenetic framework for systematics of the Cyprinidae

As expected, the monophyly of the family Cyprinidae was recovered with strong Bayesian PP and ML bootstrap support. Our phylogeny established a higher-level framework for Cyprinidae and revealed several well-supported groupings.

One large clade within Cyprinidae was the well-supported cyprinine lineage (Clade I, Figure 1). All taxa in this clade were members of the previously-recognized subfamilies, Barbininae, Cypriniinae, Labeoninae, and Schizothoracinae [4]. Although the basal relationships within this clade have been contentious due to disagreement between molecular and morphological phylogenetic studies, our data consistently supported the monophyly of the cyprinine clade. Within the cyprinines, our analyses provided robust evidence for the monophyly of Labeoninae as the currently recognized. However, in all of our analyses, the cyprinine, barbine, and schizothoracine fishes (except Procypris) were nested within one clade (Clade A) sister to the labeonine clade. In another analysis with more cyprinine samples (unpublished data), two clades were strongly recovered: the Labeoninae and the Cyprininae, containing the barbins, cyprianins (including Procypris), and schizothoracinids.

Another well-supported primary clade of Cyprinidae resolved in all analyses was the leuciscine lineage (Clade II, Figure 1). Within this clade, all of our analyses provided substantial resolution and support for the monophyly of Gobioninae (including Gobiobota), Acheilognathinae, Leuciscinae, and Xenocyprininae, the latter is endemic to East Asia. Although Gobioninae, Acheilognathinae, and Leuciscinae were each strongly supported, the relationships among them were weakly resolved and differed among analyses. These three clades, together with Tinca, formed a clade sister to the Xenocyprininae. The placement of Tinca within Cyprinidae has proved to be taxonomically problematic in previous studies [2]. In contrast to studies based on morphological [8,9] and molecular [10–12,20] data, our analyses strongly supported a clade comprised of Tinca, leuciscini, Gobionini, and Acheilognathini, within which Tinca was weakly supported as sister to leuciscini.

Not surprisingly, the monophyly of the danionine (rasborine sensu Howes [2]) fishes was rejected by the present analyses. Morphologically, “Danioninae” contains a large assemblage of taxa, most of which cannot be accommodated by other subfamilies [2]. Furthermore, a recent molecular phylogeny indicated that Danioninae was not monophyletic; putative members were scattered throughout Cyprinidae [59]. Thus, we suggest that the East Asia endemics, such as Zacco, Opsarichthys, and Nicholsicypris should be excluded from a redefined Danioninae.

In the recent taxonomic revision of cyprinid (or cyprinoid) fishes by Chen and Mayden [60], the recognition of 10 families (including the Psilorhynchidae) was recommended. Of these groups, six (i.e., Acheilognathinae, Leuciscinae, Gobioninae, Cultrinae, Tincinae, and Rasborinae) were also included in the present analyses (Figure 1). The Psilorhynchidae and Leptobarbiidae were not included in our analyses, and the Cultrinae and Rasborinae referred to Xenocyprininae and Danioninae, respectively, in our study. Our data suggested that the Cyprinae recognized by Chen and Mayden [60] could be further divided into two clades, Cyprininae and Labeonine, and that the Tanichthyidae should be included in the Acheilognathinae. Unlike Chen and Mayden, we do not recommend that these groups be elevated from subfamily to family level, but prefer to retain these clades within Cyprinidae.

Previous morphological studies consistently supported two major lineages within Cyprinidae, i.e., barbeled cyprinines and (usually) non-barbeled leuciscines, although the subgroups included in each lineage and the relationships among subgroups have differed among studies [2,8,9]. However, recent molecular studies have disagreed with the morphological placement of Danionine (Rasborinae). The placement of Danioninae to the leuciscine clade was indicated in some prior morphological and molecular phylogeny
[8,9,60], and was weakly supported in our cyprinid phylogeny (Figure 1). Another study placed Danioninae within the cyprinid [2], while other molecular phylogenetic analyses placed it at the base of the cyprinids [12,13,61]. The disputed phylogenetic placement of Danioninae may be mainly due to different taxon sampling in these previous molecular phylogenies. Our data indicated that Danioninae represents a lineage within Cyprinidae, that is distinct from the well-accepted cyprinid and leuciscine lineages. A basal position for Danioninae within Cyprinidae (as recovered in the P7 Bayesian analysis) could not be rejected by Bayesian hypothesis testing of alternatives phylogenies generated from our combined data. A total of 6414 of 18710 trees in the 95% credible set were congruent with the hypothesis that Danioninae was basal within cyprinids.

3.3 Phylogenetic history of cyprinid clades

Based on the distribution of fossil cyprinids, an Eocene origin for cyprinids was proposed [54]. Consistent with this hypothesis, our molecular dating analyses also indicated that cyprinids originated in the Middle Eocene (around 42 Mya). Within the family, the cyprinid lineage appeared in the early Late Oligocene (around 27 Mya) and the leuciscine lineage in the Late Oligocene (about 26–25 Mya).

The radiation of Laboeinae, the major cyprinid clade, occurred in the early Middle Miocene, and Cyprininae was estimated to have diversified in the early Late Miocene. Within the leuciscine lineage, the divergence between Xenocyprininae and the lineage comprising Leuciscinae, Tin-cinae, Gobioninae, and Acheilognathinae, occurred in the Early Miocene (about 20 Mya). According to our age estimates, the Acheilognathini, Gobionini, and Leuciscini radiated during the Middle Miocene (around 18–12 Mya).

We thank Dr. Wang JiangXin for his assistance in improving the presentation of our manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 30770300) and Chinese Academy of Sciences (Grant No. KSCX2-EW-Q-12), and the Cypriniformes Tree of Science Foundation of China (Grant No. 30770300) and Chinese Academy of Sciences, respectively.

References

1. Nelson J S, ed. Fishes of the World. New York: John Wiley and Sons Inc., 2006
2. Howes G J. Systematics and biogeography: an overview. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes: Systematics, Biology, and Exploitation. London: Chapman and Hall, 1991, 1–33
3. Hensel K. Review of the classification and of the opinions on the evolution of Cyprinoidei (Eventognathi) with an annotated list of genera and subgenera described since 1921. Amni Zool Bot, 1970, 57: 1–45
4. Chen Y Y, ed. Fauna Sinica, Osteichthys: Cypriniformes (Part II). Beijing: Science Press, 1998
5. Gosline W A. Unbranched dorsal-fin rays and subfamily classification in the fish family Cyprinidae. Occas Pap Mus Zool Univ Mich, 1978, 684: 1–21
6. Chu Y T. Comparative studies on the scales and on the pharyngeals and their teeth in Chinese Cyprinids, with particular reference to taxonomy and evolution. Biol Bull St John’s Univ (Shanghai), 1935, 2: 1–225
7. Wu X, ed. The Cyprinid Fishes of China (in Chinese). Shanghai: Shanghai Science and Technology Press, 1964
8. Chen X L, Yue P Q, Lin R D. Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxon Sin, 1984, 9: 424–440
9. Cavender T M, Coburn M M. Phylogenetic relationships of North American Cyprinidae. In: Mayden R L, ed. Systematics, Historical Ecology and North American Freshwater Fishes, Stanford, California: Stanford University Press, 1992, 293–327
10. Zarda R, Doadrio I. Molecular evidence on the evolutionary and biogeographical patterns of European Cyprinids. J Mol Evol, 1999, 48: 227–237
11. Briolat J, Galntier N, Brito R M, et al. Molecular phylogeny of Cyprinids inferred from cytochrome b DNA sequences. Mol Phylogenet Evol, 1998, 9: 100–108
12. Gilles A, Lecointre G, Faure E, et al. Mitochondrial phylogeny of the European Cyprinids: implications for their systematics, reticulate evolution, and colonization time. Mol Phylogenet Evol, 1998, 10: 130–143
13. Gilles A, Lecointre G, Miquelis A, et al. Partial combination applied to phylogeny of European Cyprinids using the mitochondrial control region. Mol Phylogenet Evol, 2001, 19: 22–33
14. Zarda R, Doadrio I. Phylogenetic relationships of Iberian Cyprinids: systematic and biogeographical implications. Proc R Soc B Biol Sci, 1998, 265: 1365–1372
15. Durand J D, Tsiagenopoulos C S, Unlu E, et al. Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA: evolutionary significance of this region. Mol Phylogenet Evol, 2002, 22: 91–100
16. Hanfling B, Brandl R. Phylogenetics of European Cyprinids: insights from allozymes. J Fish Biol, 2000, 57: 265–276
17. Fu C Z, Wu J H, Chen J K, et al. Freshwater fish biodiversity in the Yangtze River Basin of China: patterns, threats and conservation. Biodivers Conserv, 2003, 12: 1649–1658
18. Cunha C, Mesquita N, Dowling T E, et al. Phylogenetic relationships of Eurasian and American Cyprinids using cytochrome b sequences. J Fish Biol, 2002, 61: 929–944
19. He S, Liu H, Chen Y, et al. Molecular phylogenetic relationships of Eastern Asian Cyprinidae (Pisces: Cypriniformes) inferred from cytochrome b sequences. Sci China Ser C-Life Sci, 2004, 47: 130–138
20. Liu H, Chen Y. Phylogeny of the East Asian Cyprinids inferred from sequences of the mitochondrial DNA control region. Can J Zool, 2003, 81: 1938–1946
21. Ronquist F, Huesgenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574
22. Stamatakis A. Raxml-Vi-Hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformaticas, 2006, 22: 2688–2690
23. McGuire J A, Witt C C, Alshuler D L, et al. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst Biol, 2007, 56: 837–856
24. Fink S V, Fink W L. Interrelationships of the ostariophysan fishes (Teleostei). Zool J Linn Soc, 1981, 72: 297–353
25. Wang X, Wang J, He S, et al. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate. Gene, 2007, 399: 11–19
26. Sambrook J, Fritsch E, Maniatis T, ed. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989
27. Xiao W H, Zhang Y P, Liu H Z. Molecular systematics of Xenocyprinae (Teleostei : Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogenet Evol, 2001, 18: 163–173
28. Li J, Wang X, Kong X, et al. Variation patterns of the mitochondrial
Wang X Z, et al. Sci China Life Sci September (2012) Vol.55 No.9

16s rRNA gene with secondary structure constraints and their application to phylogeny of Cyprinid fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol, 2008, 47: 472–487

29 Lovejoy N R, Collette B B. Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia, 2001, 2: 323–338

30 Thompson J D, Gibson T J, Plewniak F, et al. The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882

31 De Rijk P, Wyuts J, Van de Peer Y, et al. The European large subunit ribosomal RNA database. Nucleic Acids Res, 2000, 28: 177–178

32 Gutell R R, Gray M W, Schnare M N. A compilation of large subunit (23s and 23s-like) ribosomal RNA structures. Nucleic Acids Res, 1993, 21: 3055–3074

33 Gutell R R, Fox G E. A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res, 1988, 16: r175–269

34 Swoford D L, Paugøe. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. 2003

35 Posada D, Crandall K A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818

36 Posada D, Buckley T R. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol, 2004, 53: 793–808

37 Lemmon A R, Moriarty E C. The importance of proper model assumption in Bayesian phylogenetics. Syst Biol, 2004, 53: 265–277

38 Hueslenbeck J, Rannala B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol, 2004, 53: 904–913

39 Wilgenbusch J, Warren D, Swoford D, Awtrey: A System for Graphical Exploration of Mcmc Convergence in Bayesian Phylogenetic Inference. 2004

40 Kass R E, Raftery A E. Bayes factors. J Am Stat Assoc, 1995, 90: 773–795

41 Nylander J A A, Ronquist F, Huelsenbeck J P, et al. Bayesian phylogenetic analysis of combined data. Syst Biol, 2004, 53: 47–67

42 Schwarz G. Estimating the dimension of a model. Ann Stat, 1978, 6: 461–464

43 Minin V, Abdo Z, Joyce P, et al. Performance-based selection of likelihood models for phylogeny estimation. Syst Biol, 2003, 52: 674–683

44 Abdo Z, Minin V N, Joyce P, et al. Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation. Mol Biol Evol, 2005, 22: 691–703

45 Sullivan J, Abdo Z, Joyce P, et al. Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation. Mol Biol Evol, 2005, 22: 1386–1392

46 Raftery A. Hypothesis testing and model selection. In: Gilks W R, Spiegelhalter D J, Richardson S, eds. Markov Chain Monte Carlo in Practice. London: Chapman and Hall, 1996. 163–187

47 Castoe T A, Sasa M M, Parkinson C L. Modeling nucleotide evolution at the mesoscale: the phylogeny of the neotropical pitvipers of the Bothriechis group (Viperidae: Crotalinae). Mol Phylogenet Evol, 2005, 37: 881–898

48 Castoe T A, Parkinson C L. Bayesian mixed models and the phylogeny of pitvipers (Viperidae: Serpentes). Mol Phylogenet Evol, 2006, 39: 91–110

49 Brandley M C, Schmitz A, Reeder T W. Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol, 2005, 54: 373–390

50 Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol, 2002, 51: 492–508

51 Sanderson M J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol, 1997, 14: 1218–1231

52 Sanderson M J. R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 2003, 19: 301–302

53 Felsenstein J. Phylop (Phylogeny Inference Package) Version 3.5 C. 1993

54 Cavender T M. The fossil record of the Cypriniidae. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes: Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 34–54

55 Hierholzer E, Mörs T. Cypriniden-Schlundzähne (Osteichthyes: Teleostei) aus dem Tertiär von Hambach (Niederrheinishe Bucht, Nw-Deutschland), Palaeontographica, Abteilung A, 2003, 269: 1–38

56 Sychtievskaya E. Freshwater Ichthyofauna of the Neogene of Mongolia. Tr Sovm Sovets-Mongol Paleontol Eksped, 1989, 39: 1–144

57 Schulz-Mirbach T, Reichenbacher B. Reconstruction of oligocene and neogene freshwater fish faunas—an actualistic study on cypriniform otoliths. Acta Palaeontol Pol, 2006, 51: 283–304

58 Liu H, Su T. Pliocene fishes from the Yushe Basin, Shanxi. Vertebr Palasiat, 1962, 6: 1–25

59 Tang K L, Agnew M K, Hirt M V, et al. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Mol Phylogenet Evol, 2010, 57: 189–214

60 Chen W J, Mayden R L. Molecular systematics of the Cyprinoidae (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: further evidence from six nuclear genes. Mol Phylogenet Evol, 2009, 52: 544–549

61 Wang X, Li J, He S. Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Mol Phylogenet Evol, 2007, 42: 157–170

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.