Geodetic precession and strong gravitational lensing in dynamical Chern–Simons-modified gravity

Songbai Chen¹,² and Jiliang Jing¹,²

¹ Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
² Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Hunan Normal University, Ministry of Education, People’s Republic of China

E-mail: csb3752@163.com and jijing@hunnu.edu.cn

Received 10 June 2010, in final form 11 September 2010
Published 14 October 2010
Online at stacks.iop.org/CQG/27/225006

Abstract
We have investigated the geodetic precession and the strong gravitational lensing in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity theory. We present the formulas of the orbital period \mathcal{T} and the geodetic precession angle $\Delta \Theta_1$ for the timelike particles in the circular orbits around the black hole, which shows that the change of the geodetic precession angle with the Chern–Simons coupling parameter ξ is converse to the change of the orbital period with ξ for fixed a. We also discuss the effects of the Chern–Simons coupling parameter on the strong gravitational lensing when the light rays pass close to the black hole and obtain that for the stronger Chern–Simons coupling the prograde photons may be captured more easily, and conversely, the retrograde photons are harder to capture in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. Supposing that the gravitational field of the supermassive central object of the Galaxy can be described by this metric, we estimated the numerical values of the main observables for gravitational lensing in the strong field limit.

PACS numbers: 04.70.Dy, 95.30.Sf, 97.60.Lf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since Einstein’s general relativity was set forth in the last century, there has been interest in the study of possible modifications of his theory. One of the most promising extensions of general relativity is the Chern–Simons-modified gravity [1–3], in which the Einstein–Hilbert action is modified by adding a parity-violating Chern–Simons term, which couples to gravity via a scalar field. The parity-violating Chern–Simons term is a combination of the second
order in the curvature tensor and a Chern–Simons scalar field. Thus, the Chern–Simons-modified gravity is a high-energy extension of Einstein’s general relativity. Actually, Chern–Simons correction is necessary in string theory as an anomaly canceling term to conserve unitarity [4–7]. In loop quantum gravity, it is required to ensure gauge invariance of the Ashtekar variables [8]. Moreover, the Chern–Simons-modified gravity could help us to explain several problems in cosmology, such as dark energy and dark matter [9], baryon asymmetry [4, 10, 11], and so on.

It is well know that there exist two formulations of Chern–Simons-modified gravity. In the non-dynamical formulation, the Chern–Simons scalar field is an \textit{a priori} prescribed function so that its effective evolution equation can be reduced to a differential constraint on the space of allowed solutions [12–14]. While in the dynamical formulation, the Chern–Simons scalar field is treated as a dynamical field possessing its own stress–energy tensor and an evolution equation [15–17]. It must be pointed that although the non-dynamical Chern–Simons gravity action can be obtained as a certain limit of the dynamical Chern–Simons gravity action, the non-dynamical Chern–Simons gravity and dynamical Chern–Simons gravity are inequivalent and independent theories. In general, the solutions of the non-dynamical Chern–Simons gravity cannot be obtained from the solutions of the dynamical Chern–Simons gravity [16].

The characteristic observational signature of the Chern–Simons-modified gravity could allow us to discriminate an effect of this theory from other phenomena. Since the Schwarzschild solution is unaffected by Chern–Simons-modified gravity, the solar system tests of general relativity do not put strict bounds on the magnitude of this correction. Recently, Cardoso et al [18] studied the evolution of the dynamical Chern–Simons perturbations in the background of a Schwarzschild black hole and found that the quasinormal modes could offer a way to detect the correction from dynamical Chern–Simons terms. For a rotating black hole, it is allowed to possess a non-vanishing Chern–Simons scalar field, which makes it convenient for us to probe the observational signature of the Chern–Simons-modified gravity. Thus, a lot of attention has been focused on the studies of rotating black holes in the Chern–Simons-modified gravity [9, 13, 14, 16, 17, 19–25]. In the non-dynamical formulation, Alexander and Yunes [13, 14] adopted a far-field approximation and obtained a rotating black hole solution in the Chern–Simons-modified gravity. In the non-dynamical framework, it was found that the Chern–Simons-modified theory predicts an anomalous precession effect [14], which was tested with LAGEOS [15, 19, 20]. Using double binary pulsar data, Yunes and Spergel [21] obtained a bound on the non-dynamical model with a canonical Chern–Simons scalar field. In the dynamical Chern–Simons-modified gravity, Yunes and Pretorius [16] found a rotating black hole solution by using the small-coupling and slow-rotation limit. This rotating black hole solution was also obtained by Konno et al in [17]. Harko [22] studied the properties of the thin accretion disk around this black hole and probed the effect of the Chern–Simons coupling parameter on the flux and the emission spectrum of the accretion disks. Amarilla \textit{et al} [23] studied the null geodesics corresponding to a slowly rotating black hole in the dynamical Chern–Simons gravity and discussed the effect of the Chern–Simons term on the shadows cast by a black hole. These results are very useful for us to understand the properties of black holes in the Chern–Simons-modified gravity. The main purpose of this paper is to study geodetic precession and the strong gravitational lensing in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity theory and to see the effects of the Chern–Simons coupling parameter on the geodetic precession angle for the timelike particles and the coefficients of gravitational lensing in the strong field limit.

The plan of our paper is organized as follows. In section 2 we introduce briefly the dynamical formulation of the Chern–Simons-modified gravity and present a slowly rotating
black hole solution found in [16, 17]. In section 3, we calculate the effects of the Chern–Simons term on the geodetic precession in the circular orbits around this black hole. In section 4, we adopt Bozza’s method [26, 27] and obtain the deflection angles for light rays passing close to the slowly rotating black hole in the dynamical Chern–Simons-modified gravity, and then probe the effects of the Chern–Simons coupling parameter on the deflection angle and on the coefficients in the strong field limit. At last, we present a summary.

2. Slowly rotating black hole in the dynamical Chern–Simons-modified gravity

In this section, we introduce briefly the slowly rotating black hole in the dynamical Chern–Simons-modified gravity [16, 17]. The action in the dynamical Chern–Simons-modified gravity theory can be expressed as

\[S = \int d^4 x \sqrt{-g} \left[\kappa R + \frac{\alpha}{4} \rho^* RR - \frac{\beta}{2} \left(g^{\mu \nu} \nabla_\mu \rho \nabla_\nu \rho + V(\rho)\right) + \mathcal{L}_{\text{matt}} \right]. \]

The first term on the right-hand side of equation (1) is the standard Einstein–Hilbert term with \(\kappa^{-1} = 16\pi G \). The second term denotes the Chern–Simons correction, which consists of the product of a Chern–Simons scalar field \(\rho \) and the Pontryagin density \(*RR \), defined via \(*RR = *R_{abc}^d \epsilon^{def} R_{bef} \). The parameters \(\alpha \) and \(\beta \) are dimensional coupling constants. The coupling constant \(\beta \) is allowed to be arbitrary in the dynamical formulation of the Chern–Simons-modified gravity, but it is set to zero in the non-dynamical framework [16].

Varying the action \(S \) with respect to the metric and the Chern–Simons coupling field, one can find that the modified gravitational field equation and the motion equation of the scalar field \(\rho \) obey

\[G_{\mu \nu} + \frac{\alpha}{\kappa} C_{\mu \nu} = \frac{1}{2\kappa} \left(T^{\mu \nu}_{\text{matt}} + T_{\rho}^\rho \right), \]

and

\[\beta \nabla_\mu \nabla^\mu \rho = \beta \frac{dV(\rho)}{d\rho} - \frac{\alpha}{4} *RR, \]

respectively. Here \(G_{\mu \nu} \) is the Einstein tensor and \(C_{\mu \nu} \) is the Cotton tensor. Obviously, the evolution of the scalar field \(\rho \) depends not only on its stress–energy tensor, but also on the curvature of spacetime.

Employing the small-coupling and slowly rotating approximation, one can obtain a black-hole solution with non-zero coupling constants in the dynamical Chern–Simons-modified gravity, which can be expressed as [16, 17]

\[ds^2 = -g_{tt} \, dt^2 + g_{rr} \, dr^2 + g_{\theta \theta} \, d\theta^2 + g_{\phi \phi} \, d\phi^2 - 2g_{t \phi} \, dr \, d\phi, \]

\[\rho = \frac{5}{8} \frac{\alpha}{\beta} \frac{a}{M} \cos \theta \left(1 + \frac{2M}{r} + \frac{18M^2}{5r^2} \right), \]
with
\[g_{tt} = 1 - \frac{2M}{r} + \frac{2a^2M}{r^3} \cos^2 \theta, \]
\[g_{rr} = \left(1 - \frac{2M}{r}\right)^{-1} \left[1 + \frac{a^2}{r} \left(\cos^2 \theta - \left(1 - \frac{2M}{r}\right)^{-1}\right)\right], \]
\[g_{\theta\theta} = r^2 + a^2 \cos^2 \theta, \]
\[g_{\phi\phi} = \frac{2M}{r^2} \frac{\sin^2 \theta}{\sin^2 \theta} \left(1 + 2M \frac{\sin^2 \theta}{r^2}\right) \]
\[g_{\theta\phi} = \frac{2Ma}{r^2} \sin^2 \theta - \frac{5\xi a}{8r^4} \left(1 + \frac{12M}{7r} + \frac{27M^2}{10r^2}\right) \sin^2 \theta, \]
\[g_{tt} = r^2 \sin^2 \theta + a^2 \sin^2 \theta \left(1 + \frac{2M}{r} \sin^2 \theta\right). \]

Here the parameter ξ is related to the coupling constants α and β by $\xi = \alpha^2/(\beta \kappa)$, which has an exact dimension $[L]^4$. As in [16], we can define a dimensionless parameter ζ by re-scaling by a factor $(2M)^4$, i.e. $\zeta = \xi/(2M)^4$. If α tends to zero, one can find that the Chern–Simons scalar field ϑ disappears and the metric (5) returns to that of the slowly rotating Kerr black hole in the general relativity. Since the Chern–Simons scalar field ϑ has positive energy [16], it is natural that the parameter ξ is non-negative. Here we limit ourselves to the case where $\xi \geq 0$ and study the effect of ξ on the geodetic precession and the strong gravitational lensing in the background (5).

3. Geodetic precession in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity

The timelike geodesics in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity were considered in [22, 25]. Harko [22] studied the properties of the thin accretion disk around the black hole (5). Sopuerta et al [25] considered the timelike geodesic equations for the massive particles and found that the location of the innermost stable circular orbit (ISCO) and the three physical fundamental frequencies associated with the time τ for the particles are modified in the Chern–Simons-modified gravity. However, in [25] the geodesic precession of orbits around Chern–Simons black holes is only illustrated numerically for a few examples, while an analytic expression for this physical quantity is still missing. In this paper, we present a clear expression of T and study the effects of the Chern–Simons term on Kepler’s third law, and then study the geodetic precession of the massive particles around the black hole (5).

Let us start with the condition $\theta = \pi/2$, which sets the orbits on the equatorial plane. In this case, one can find that the timelike geodesics take the form
\[u^t = \frac{dt}{d\tau} = \frac{E g_{\phi\phi} - L g_{t\phi}}{g_{t\phi} + g_{tt} g_{\phi\phi}}, \]
\[u^\phi = \frac{d\phi}{d\tau} = \frac{E g_{t\phi} + L g_{tt}}{g_{t\phi} + g_{tt} g_{\phi\phi}}, \]
\[\left(\frac{dr}{d\tau}\right)^2 + V_{\text{eff}}(r) = E^2, \]
with the effective potential
\[V_{\text{eff}}(r) = \frac{1}{g_{rr}} \left(1 + \frac{E^2}{g_{tt}} \left[g_{rr} \left(g_{t\phi}^2 + g_{tt} g_{\phi\phi}\right) - g_{\phi\phi}\right] + 2EL g_{t\phi} + L^2 g_{tt}\right). \]
where E and L are the specific energy and the specific angular momentum of particles moving in the orbits, respectively. For the stable circular orbit in the equatorial plane, the effective potential $V(r)$ must obey

$$V_{\text{eff}}(r) = E^2, \quad \frac{dV_{\text{eff}}(r)}{dr} = 0.$$ \hspace{1cm} (12)

Solving the above equations, one can obtain

$$E = \frac{g_{tt} + g_{t\phi} \Omega}{\sqrt{g_{tt} + 2g_{t\phi} \Omega - g_{\phi\phi} \Omega^2}},$$

$$L = \frac{-g_{t\phi} + g_{\phi\phi} \Omega}{\sqrt{g_{tt} + 2g_{t\phi} \Omega - g_{\phi\phi} \Omega^2}},$$

$$\Omega = \frac{d\phi}{dt} = \frac{g_{\phi,r} + \sqrt{(g_{t\phi,r})^2 + g_{tt,r} g_{\phi\phi,r}}}{g_{\phi,r}}.$$ \hspace{1cm} (13)

where Ω is the angular velocity of the particle moving in the orbits. From equation (13), one can obtain Kepler’s third law in the slowly rotating black-hole spacetime in the dynamical Chern–Simons-modified gravity

$$T^2 = \frac{4\pi^2}{M} R^3 \left[1 + a \frac{112MR^5}{56M^{12/2}R^{13/2}} - \xi \left(\frac{567M^2 + 300MR + 140R^2}{28M^2R^3} \right) + \frac{a^2 M}{R^3} \right. \times \left. \left(1 - \xi \frac{567M^2 + 300MR + 140R^2}{28M^2R^3} + \frac{\xi^2 (567M^2 + 300MR + 140R^2)^2}{6272M^2R^{10}} \right) \right] + O(a^3),$$ \hspace{1cm} (14)

where T is the orbital period and R is the radius of the circular orbit. The later terms on the right-hand side are the correction by a and the Chern–Simons term. Obviously, the correction term disappears as a approaches zero. It is reasonable because as a vanishes the metric (5) reduces to that of the Schwarzschild black hole in the general relativity. Since the black hole is slowly rotating, the correction is dominated by the first-order terms in a. Thus, when the black hole rotates in the same direction as the particle, i.e. $a > 0$, the orbital period T decreases with the Chern–Simons coupling parameter ξ. But when the black hole rotates in the converse direction as the particle, i.e. $a < 0$, the orbital period T increases with the Chern–Simons coupling parameter ξ.

Now, we are in the position to study the geodetic precession of a timelike particle in the circular orbits around the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. As in [28], we regard the rotating axis of the gyroscope carried by a satellite as a spacelike spin vector S^μ, which parallely transported along a timelike geodesic with the four-velocity u^μ. Thus, the parallel transporting equation of S^μ in the direction of u^μ can be expressed as

$$u^\mu \nabla_\mu S^\nu = 0.$$ \hspace{1cm} (15)

From the orthogonality and normalization conditions, one can find

$$u^\mu S_\mu = 0, \quad S^\mu S_\mu = 1.$$ \hspace{1cm} (16)

In the slowly rotating black hole in the dynamical Chern–Simons-modified gravity, the parallel transporting equation (15) along the circular orbits in the equatorial plane reads

$$\frac{dS^\nu}{dr} + A S^\nu = 0,$$ \hspace{1cm} (17)

$$\frac{dS^\nu}{dr} + B S^\nu + C S^\phi = 0.$$ \hspace{1cm} (18)
\[
\frac{dS^\theta}{d\tau} + \mathcal{D}S^\theta = 0,
\]
(20)

with

\[
\mathcal{A} = \frac{1}{2} \left[\left(g_{t,r} \frac{g_{\phi \phi}}{g_{t^2}} + g_{\phi r} \frac{g_{t \phi}}{g_{t^2}} \right) u^t + \left(\frac{g_{t \phi, r} g_{t \phi} - g_{t \phi, r} g_{t \phi}}{g_{t^2}} + g_{t \phi} g_{t \phi} \right) u^\phi \right]_{r=R},
\]
(21)

\[
\mathcal{B} = \frac{1}{2} \left[\left(g_{r, r} \frac{g_{\phi \phi}}{g_{t^2}} \right) u^t + \left(\frac{g_{\phi, r} g_{\phi}}{g_{t^2}} \right) u^\phi \right]_{r=R},
\]
(22)

\[
\mathcal{C} = \frac{1}{2} \left[\left(g_{\phi, r} \frac{g_{\phi}}{g_{t^2}} \right) u^t - \left(\frac{g_{\phi, r} g_{\phi}}{g_{t^2}} \right) u^\phi \right]_{r=R},
\]
(23)

\[
\mathcal{D} = \frac{1}{2} \left[\left(g_{t, r} \frac{g_{\phi \phi} - g_{t \phi, r} g_{t \phi}}{g_{t^2}} + g_{t \phi} g_{t \phi} \right) u^t + \left(\frac{g_{t \phi, r} g_{t \phi} + g_{t \phi, r} g_{t \phi}}{g_{t^2}} + g_{t \phi} g_{t \phi} \right) u^\phi \right]_{r=R}.
\]
(24)

Combining above equations with equations (8) and (9), we can obtain the spin vector \(S^\mu \)

\[
S^t = c' \sin(\sigma \tau),
\]
(25)

\[
S^r = c' \cos(\sigma \tau),
\]
(26)

\[
S^\phi = c^\phi,
\]
(27)

\[
S^\theta = c^\theta \sin(\sigma \tau),
\]
(28)

with

\[
\sigma = \sqrt{-(AB + CD)}.
\]
(29)

Here we have imposed the initial condition \(S^t = S^\phi = 0 \) at \(\tau = 0 \). The coefficients \(C', c', c^\phi \) and \(c^\theta \) can be constrained by the orthogonality and normalization conditions (16).

As \(\phi \) goes from 0 to \(2\pi \), one can obtain that the proper time \(\tau \) goes from 0 to \(\tau_p = 2\pi / u^\phi \). Thus, the geodetic precession angle \(\Delta \Theta \) during one orbital period can be expressed as

\[
\Delta \Theta = |\sigma \tau_p - 2\pi| = \left| 2\pi \left(\frac{\sigma}{u^\phi} - 1 \right) \right|.
\]
(30)

Substituting (9) and (29) into (30), one can expand equation (30) as a power series in \(M/R \) up to \(O(M^5/R^5) \) and obtain the geodetic precession angle \(\Delta \Theta \) in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity:

\[
\Delta \Theta = \frac{3 \pi M}{R} \left[\left(1 + \frac{3 M}{4 R} + \frac{9 M^2}{8 R^2} + \frac{135 M^3}{64 R^3} \right) - \frac{a}{\sqrt{M R}} \times \left(\frac{2}{3} + \frac{M}{R} + \frac{9 M^2}{4 R^2} + \frac{45 M^3}{8 R^3} - \frac{5\xi}{6 M R^3} \right) + \frac{a^2}{R} \left(\frac{1}{3} + \frac{3 M}{2 R} + \frac{45 M^2}{8 R^2} \right) + O(a^3) \right].
\]
(31)

From equation (31), it is easy to find that the geodetic precession angle \(\Delta \Theta \) increases with the Chern–Simons coupling parameter \(\xi \) if \(a > 0 \) and it decreases with \(\xi \) if \(a < 0 \). Comparing with equation (14), we find that the dependent of the geodetic precession angle on \(\xi \) is converse to the dependent of the orbital period on \(\xi \). It is understood from the fact that the increase of the orbital period \(T \) leads to the decrease of the angular velocity \(\omega \) of particle and then it results in the decrease of the precession angle \(\Delta \Theta \).
4. Deflection angle in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity

The null geodesics was considered to study the properties of the shadows cast by a slowly rotating black hole in the dynamical Chern–Simons gravity \[23\]. In this section, we study deflection angles of the light rays when they pass close to the slowly rotating black hole in the dynamical Chern–Simons-modified gravity, and then probe the effects of the Chern–Simons coupling parameter ξ on the deflection angle and the coefficients in the strong field limit.

4.1. Formulas in the strong gravitational lensing

As in the former, we also consider only the case where the light ray is limited in the equatorial plane. With this condition, the reduced metric for the slowly rotating black hole in the dynamical Chern–Simons-modified gravity can be expressed as

$$
\mathrm{d}s^2 = -A(x) \, \mathrm{d}t^2 + B(x) \, \mathrm{d}x^2 + C(x) \, \mathrm{d}\phi^2 - 2D(x) \, \mathrm{d}t \, \mathrm{d}\phi, \quad (32)
$$

where we adopt a new radial coordinate $x = r/2M$ and the metric coefficients have the form

$$
A(x) = 1 - \frac{1}{x}, \quad (33)
$$

$$
B(x) = \frac{x^2 - x - \hat{a}^2}{(x - 1)^2}, \quad (34)
$$

$$
C(x) = x^2 + \frac{\hat{a}^2(x+1)}{x}, \quad (35)
$$

$$
D(x) = \frac{\hat{a}}{x} - \frac{\hat{a} \zeta (280x^2 + 189x + 240)}{448x^6}. \quad (36)
$$

Here the quantities $\zeta = \frac{\xi}{4M^4}$ and $\hat{a} = \frac{a}{2M}$ are the re-scaled Chern–Simons coupling parameter and the re-scaled rotation parameter of black hole, respectively. Obviously, the parameters ζ and \hat{a} are dimensionless. For simplicity, we set $2M = 1$ in the following calculations.

As in [27], the null geodesics take the form

$$
\frac{\mathrm{d}t}{\mathrm{d}\lambda} = \frac{C(x) - JD(x)}{D(x)^2 + A(x)C(x)}, \quad (37)
$$

$$
\frac{\mathrm{d}\phi}{\mathrm{d}\lambda} = \frac{D(x) + JA(x)}{D(x)^2 + A(x)C(x)}, \quad (38)
$$

where λ is an affine parameter along the geodesics and J is the angular momentum of the photon.

For the null geodesics, the Lagrangian $\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu$ vanishes. This implies that

$$
\dot{x} = \pm \sqrt{\frac{C(x) - J[2D(x) + JA(x)]}{B(x)[D(x)^2 + A(x)C(x)]}}, \quad (39)
$$

Clearly, \dot{x} is equal to zero at the minimum distance of approach of the light ray. Combining with equations (37) and (38), one can obtain that [27]

$$
J = u = \frac{-D(x_0) + \sqrt{A(x_0)C(x_0) + D^2(x_0)}}{A(x_0)}, \quad (40)
$$

7
where x_0 is the closest approach distance and u is the impact parameter. In the slowly rotating black hole spacetime in the dynamical Chern–Simons-modified gravity, the photon-sphere equation is given by

$$A(x)C'(x) - A'(x)C(x) + 2J[A'(x)D(x) - A(x)D'(x)] = 0. \tag{41}$$

Obviously, this equation is more complex than that in the background of a static and spherical black hole [29]. It is difficult to obtain an analytical form for the photon-sphere radius in this case. However, we can expand equation (41) as a power series in \hat{a} and find that the photon-sphere radius in the slowly rotating approximation can be expressed as

$$x_{ps} = \frac{3}{2} - \hat{a} \left(\frac{2\sqrt{3}}{3} - \frac{62\sqrt{3}}{243} \xi \right) - \hat{a}^2 \left(\frac{4}{9} - \frac{17924}{5103} \xi + \frac{896024}{413343} \xi^2 \right) + O(\hat{a}^3). \tag{42}$$

From equation (42), one can obtain that the photon-sphere radius x_{ps} increases with the parameter ξ if the photons are winding in the same direction of the black hole rotation (i.e. $\hat{a} > 0$), while the radius x_{ps} decreases with the parameter ξ if the photons rotate in converse direction to the black hole (i.e. $\hat{a} < 0$). This is also shown in figure 1 in which we plotted the variety of the photon-sphere radius x_{ps} with the Chern–Simons coupling parameter ξ and the rotating parameter \hat{a} by solving equation (41) numerically. Moreover, we find that as $\xi \to 0$, the photon-sphere radius x_{ps} reduces to that in the Kerr black hole. As the rotation parameter \hat{a} tends to zero, x_{ps} is independent of the Chern–Simons coupling parameter ξ.

Following [30], we can obtain the deflection angle for the photon coming from infinity in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity:

$$\alpha(x_0) = I(x_0) - \pi, \tag{43}$$
and \(I(x_0) \) is
\[
I(x_0) = \frac{\sqrt{B(x_0)}|A(x_0)|[D(x) + JA(x)]}{\sqrt{D^2(x) + A(x)C(x)\sqrt{A(x_0)C(x) - A(x)C(x_0) + 2J[A(x)D(x_0) - A(x_0)D(x)]]}}.
\]
(44)

As in the Schwarzschild black hole spacetime, the deflection angle increases when the parameter \(x_0 \) decreases. For a certain value of \(x_0 \) the deflection angle becomes \(2\pi \), so that the light ray makes a complete loop around the black hole before reaching the observer. If \(x_0 \) is equal to the radius of the photon sphere \(x_{ps} \), one can find that the deflection angle diverges and the photon is captured on a circular orbit. From the above discussion about the variety of the photon-sphere radius \(r_{ps} \), with the Chern–Simons parameter \(\zeta \), it is easy to obtain that for the larger \(\zeta \) the prograde photons may be captured more easily, and conversely, the retrograde photons is harder to be captured.

In order to find the behavior of the deflection angle very close to the photon sphere, we adopt to the evaluation method for the integral (44) proposed by Bozza [26], which has been widely used in studying the strong gravitational lensing of various black holes [29, 31–45]. Let us now define a variable
\[
z = 1 - \frac{x_0}{x},
\]
and rewrite equation (44) as
\[
I(x_0) = \int_0^1 R(z, x_0) f(z, x_0) \, dz,
\]
(46)
with
\[
R(z, x_0) = 2 \frac{1 - A(x_0)}{A(z)} \frac{\sqrt{B(z)}|A(x_0)|[D(z) + JA(z)]}{\sqrt{D^2(z) + A(z)C(z)}}.
\]
(47)
\[
f(z, x_0) = \frac{1}{\sqrt{A(x_0) - A(z) - \frac{2J}{C(z)}[A(z)D(x_0) - A(x_0)D(z)]}}.
\]
(48)
The function \(R(z, x_0) \) is regular for all values of \(z \) and \(x_0 \). However, the function \(f(z, x_0) \) diverges as \(z \) tends to zero, i.e. as the photon approaches the photon sphere. Thus, we can split the integral (46) into the divergent part \(I_D(x_0) \) and the regular one \(I_R(x_0) \):
\[
I_D(x_0) = \int_0^1 R(0, x_{ps}) f_0(z, x_0) \, dz,
\]
\[
I_R(x_0) = \int_0^1 [R(z, x_0) f(z, x_0) - R(0, x_{ps}) f_0(z, x_0)] \, dz.
\]
(49)
Expanding the argument of the square root in \(f(z, x_0) \) to the second order in \(z \), we have
\[
\frac{1}{\sqrt{p(x_0)z + q(x_0)z^2}}.
\]
(50)
where
\[
p(x_0) = \frac{1 - A(x_0)}{A'(x_0)C(x_0)}[A(x_0)C'(x_0) - A'(x_0)C(x_0) + 2J[A'(x_0)D(x_0) - A(x_0)D(x_0)]],
\]
\[
q(x_0) = \frac{(1 - A(x_0))^2}{2A''(x_0)C(x_0)}[2C(x_0)C'(x_0)A''(x_0) + [C'(x_0)A''(x_0) - 2C'^2(x_0)]A(x_0)A'(x_0) - C(x_0)C'(x_0)A(x_0)A''(x_0) + 2J[A(x_0)C(x_0)[A'(x_0)D'(x_0) - A'(x_0)D'(x_0)] + 2A'(x_0)C'(x_0)[A(x_0)D'(x_0) - A'(x_0)D'(x_0)]].
\]
(51)
Comparing equation (41) with equation (51), one can find that if \(x_0 \) approaches to the radius of the photon sphere \(x_{ps} \), the coefficient \(p(x_0) \) vanishes and the leading term of the divergence in \(f_0(z, x_0) \) is \(z^{-1} \). This means that the integral (46) diverges logarithmically. The coefficient \(q(x_0) \) takes the form

\[
q(x_{ps}) = \left(\frac{1 - A(x_{ps})}{2A^2(x_{ps})C(x_{ps})} \right) \left[A(x_{ps})C''(x_{ps}) - A''(x_{ps})C(x_{ps}) \right].
\]

(52)

Therefore the deflection angle in the strong field region can be expanded in the form [26]

\[
\alpha(\theta) = -\bar{a} \log \left(\frac{u}{u_{ps}} - 1 \right) + \bar{b} + O(u - u_{ps}),
\]

(53)

with

\[
\bar{a} = \frac{R(0, x_{ps})}{\sqrt{q(x_{ps})}},
\]

\[
\bar{b} = -\pi + b_R + \bar{a} \log \left\{ \frac{2q(x_{ps})C(x_{ps})}{u_{ps}A(x_{ps})[D(x_{ps}) + JA(x_{ps})]} \right\},
\]

(54)

\[
b_R = \log \frac{6}{\sqrt{3}} + \frac{\sqrt{3} \hat{a}(1134 - 2003\zeta)}{5103} + \hat{a}^2 \left(\frac{10}{9} - \frac{133,288\zeta}{15,309} + \frac{57,184,906\zeta^2}{8680,203} \right) + O(\hat{a}^3),
\]

\[
\bar{b} = -0.40023 - (0.190505 - 2.06119\zeta)\hat{a} - \hat{a}^2 (14.903\zeta^2 - 13.9387\zeta + 0.541007) + O(\hat{a}^3),
\]

\[
b_R = \log 6 + \frac{\sqrt{3}\hat{a}}{3} \left[\frac{4(1 + \log 6)}{3} + \frac{\zeta(3754 - 4006\log 6)}{1701} \right]
\]

\[
+ \hat{a}^2 \left[\frac{4}{3} + \frac{10}{9} \log 6 + \zeta \left(\frac{7528}{1701} - \frac{133,288\log 6}{15,309} \right) \right]
\]

\[
- \zeta^2 \left(\frac{67,484,654}{8680,203} - \frac{57,184,906\log 6}{8680,203} \right) + O(\hat{a}^3),
\]

(55)

\[
u_{ps} = \frac{3\sqrt{3}}{2} - \hat{a} \left(2 - \frac{131\zeta}{189} \right) - \sqrt{3}\hat{a}^2 \left(1 - \frac{2948\zeta}{567} + \frac{701,941\zeta^2}{321,489} \right) + O(\hat{a}^3).
\]

In figures (2) and (3), we plotted numerically the changes of the minimum impact parameter \(u_{ps} \) and the coefficients (\(\bar{a} \) and \(\bar{b} \)) with \(\hat{a} \) and \(\zeta \) in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. From equations (55) and figures (2) and (3), we find that the minimum impact parameter \(u_{ps} \) and the coefficients (\(\bar{a} \) and \(\bar{b} \)) in the strong field limit are functions of the rotation parameter \(\hat{a} \) and the Chern–Simons coupling parameter \(\zeta \). The minimum impact parameter has similar behavior as the radius of the photon sphere \(x_{ps} \). The coefficient \(\bar{a} \) increases with \(\hat{a} \) for fixed \(\zeta \). For fixed \(\hat{a} \), the coefficient \(\bar{a} \) decreases with the Chern–Simons coupling parameter \(\zeta \) if \(\hat{a} > 0 \) and it increases if \(\hat{a} < 0 \). The coefficient
Figure 2. The minimum impact parameter b_{\min} changes with the Chern–Simons coupling parameter ζ in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. The solid, dashed, dash-dotted and dotted curves are for $\zeta = 0$, 0.1, 0.2 and 0.3, respectively. Here we set $2M = 1$.

\bar{b} decreases with \hat{a} for the smaller ζ, but it increases with \hat{a} for the larger ζ. For fixed \hat{a}, the variety of \bar{b} with ζ is converse to the variety of \bar{a} with ζ. In figure (4), we plotted the change of the deflection angles evaluated at $u = u_{\mu\nu} + 0.003$ with ζ. It is shown that in the strong field limit the deflection angles have the similar properties of the coefficient \bar{a}. This means that the deflection angles of the light rays are dominated by the logarithmic term in the strong gravitational lensing. Moreover, we also find that for larger ζ the deflection angle
Deflection angles evaluated at \(u = u_{\text{ret}} + 0.003 \) is a function of the Chern–Simons coupling parameter \(\zeta \) in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. The solid, dashed, dash-dotted and dotted curves are for \(\zeta = 0, 0.1, 0.2 \) and 0.3, respectively. Here we set \(2M = 1 \).

is larger for the retrograde photon, while it is smaller for the prograde photon. These imply that for the larger \(\zeta \) the prograde photons may be captured more easily, and conversely, the retrograde photons is harder to be captured in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity.

4.2. Observables in the strong deflection limit

Let us now study the effect of the Chern–Simons parameter \(\zeta \) on the observational gravitational lensing parameters. We start by assuming that the gravitational field of the supermassive black hole at the galactic center of Milky Way can be described by the slowly rotating black hole in the dynamical Chern–Simons-modified gravity, and then estimate the numerical values for the main observables of gravitational lensing in the strong field limit.

In the strong deflection limit, from the lensing geometry we can rewrite the lens equation as [27]

\[
\gamma = \frac{D_{\text{OL}} + D_{\text{LS}}}{D_{\text{LS}}} \theta - \alpha(\theta) \mod 2\pi, \tag{56}
\]

where \(D_{\text{LS}} \) is the lens-source distance and \(D_{\text{OL}} \) is the observer-lens distance. \(\gamma \) is the angle between the direction of the source and the optical axis. \(\theta = u/D_{\text{OL}} \) is the angular separation between the lens and the image.

Following [27], one can find that the angular separation between the lens and the \(n \)th relativistic image is

\[
\theta_n \simeq \theta_0 \left(1 - \frac{u_{\text{ret}} \epsilon_n (D_{\text{OL}} + D_{\text{LS}})}{\hat{a} D_{\text{OL}} D_{\text{LS}}} \right), \tag{57}
\]

\[
\]
Table 1. Numerical estimation for main observables in the strong field limit for the black hole at the center of our Galaxy, which is supposed to be described in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity.

\hat{a}	$\hat{a} = 0$	$\hat{a} = 0.1$	$\hat{a} = 0.2$	$\hat{a} = 0.3$	$\hat{a} = 0$	$\hat{a} = 0.1$	$\hat{a} = 0.2$	$\hat{a} = 0.3$
$\zeta = 0$	28.497	28.449	28.400	28.350	0.0226	0.0233	0.0242	0.0253
$\zeta = 0.05$	27.516	27.487	27.458	27.428	0.0271	0.0278	0.0286	0.0294
$\zeta = 0$	26.510	26.510	26.510	26.510	0.0332	0.0332	0.0332	0.0332
$\zeta = 0.05$	25.474	25.518	25.561	25.603	0.0411	0.0395	0.0380	0.0365

with

$$\theta_n^0 = \frac{u_{ps}}{D_{OL}}(1 + e_n), \quad e_n = e^{\frac{\ln|\zeta - 2n\pi|}{\bar{a}}}. \quad (58)$$

The quantity θ_n^0 is the image positions corresponding to $\alpha = 2n\pi$, and n is an integer. According to the past oriented light ray which starts from the observer and finishes at the source the resulting images stand on the eastern side of the black hole for direct photons ($\hat{a} > 0$) and are described by positive γ. Retrograde photons ($\hat{a} < 0$) have images on the western side of the black hole and are described by negative values of γ.

In the limit $n \to \infty$, we find that $e_n \to 0$, and then the relation between the minimum impact parameter u_{ps} and the asymptotic position of a set of images θ_{∞} can be simplified as

$$u_{ps} = D_{OL}\theta_{\infty}. \quad (59)$$

In order to obtain the coefficients \bar{a} and \bar{b}, one needs to separate at least the outermost image from all the others. As in [26, 27], we consider here the simplest case in which only the outermost image θ_1 is resolved as a single image and all the remaining ones are packed together at θ_{∞}. Thus the angular separation between the first image and other ones can be expressed as [26, 27, 32]

$$s = \theta_1 - \theta_{\infty} = \theta_{\infty} e^{\frac{\ln|\zeta - 2n\pi|}{\bar{a}}}. \quad (60)$$

Through measuring s and θ_{∞}, we can obtain the strong deflection limit coefficients \bar{a}, \bar{b} and the minimum impact parameter u_{ps}. Comparing their values with those predicted by the theoretical models, we can obtain information about the parameters of the lens object stored in them.

The mass of the central object of our Galaxy is estimated recently to be $4.4 \times 10^6 M_\odot$ [46] and its distance is around 8.5 kpc, so that the ratio of the mass to the distance $M/D_{OL} \approx 2.4734 \times 10^{-11}$. Making use of equations (55), (59) and (60) we can estimate the values of the coefficients and observables for gravitational lensing in the strong field limit. For the different ζ and \hat{a}, the numerical values for the angular position of the relativistic images θ_{∞} and the angular separation s are listed in the table 1. The dependence of these observables on the parameters ζ and \hat{a} is also shown in figure (5). Obviously, the observables θ_{∞} and s are independent of the parameter ζ as the rotation parameter $\hat{a} = 0$. From table 1 and figure (5), we find that with the increase of ζ, the angular position of the relativistic images θ_{∞} increases for the direct photons ($\hat{a} > 0$) and decreases for the retrograde photons ($\hat{a} < 0$). The change of the angular separation s with ζ is converse to that of θ_{∞}.

Theoretically, we could detect the effects of the parameter ζ on the strong gravitational lensing through the astronomical observations and then make a constraint on the parameter ξ. From table 1, we find that the values for θ_{∞} are very small, which makes constraining the
Figure 5. Gravitational lensing by the galactic center black hole. Variation of the values of the angular position θ_{∞}, the angular separation s with the parameter \hat{a} in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. The solid, dashed, dash-dotted and dotted curves are for $\zeta = 0, 0.1, 0.2$ and 0.3, respectively.

parameter ξ more difficult. If one can constrain $\zeta < 0.1$ with lensing observations, it is easy to obtain that the bound of the Chern–Simons coupling parameter is

$$\xi^{1/4} = \zeta^{1/4}/2M < 8.70 \times 10^6 \text{ km},$$

which is not stronger than that from the binary pulsar PSR J0737-3039 A/B [47] obtained by Yunes et al [16]:

$$\xi^{1/4} < 1.5 \times 10^4 \text{ km}.$$

In order that the strong gravitational lensing bound can beat the binary pulsar one, we would have to constrain $\zeta \sim 8.44 \times 10^{-13}$, which seems impossible in the near future.

5. Summary

In this paper we have extensively studied the geodetic precession and the strong gravitational lensing in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity theory. We present the formulas of the orbital period T and the geodetic precession angle $\Delta \theta$ for the timelike particles in the circular orbits around the black hole. When the black hole rotates in the same direction as the particle ($a > 0$), the orbital period T decreases with the Chern–Simons coupling parameter ξ. While the black hole rotates in the converse direction as the particle ($a < 0$), the orbital period T increases with the parameter ξ. Moreover, it is shown that the change of the geodetic precession angle with ξ is converse to the change of the orbital period with ξ. We also discuss the effects of the Chern–Simons coupling parameter on the strong gravitational lensing when the light rays pass close to the black hole. We find that the photon-sphere radius, the minimum impact parameter and the coefficients in the strong field limit depend on the Chern–Simons coupling parameter. With the increase of ζ (i.e. the re-scaling Chern–Simons coupling parameter $\zeta = \xi/(2M)^4$) the deflection angle increases for the prograde photon, while it decreases for the retrograde photon. It means that for the larger ζ the prograde photons may be captured more easily, and conversely, the retrograde photons are...
harder to capture in the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. The model was applied to the supermassive black hole in the galactic center. Our results show that with the increase of the parameter ζ the angular position of the relativistic images θ_∞ increases for the direct photons ($a > 0$) and decreases for the retrograde photons ($a < 0$). The change of the angular separation s with ζ is converse to that of θ_∞. Our result also shows that the bound of ξ from the strong gravitational lensing is not stronger than that from the binary pulsar PSR J0737-3039 A/B [47]. In particular, for the case $\zeta = 0.1$, we can get the Chern–Simons coupling parameter $\xi \sim 8.70 \times 10^6$ km, which is ruled out by binary pulsar constraints. If one were to choose the parameter ξ small enough not to be ruled out by these constraints, the effect would be much smaller than microarcseconds. Perhaps with the development of technology, the effects of the parameter ζ on gravitational lensing may be detected in the future. It would be of interest to study the Hawking radiation and quasinormal modes of the slowly rotating black hole in the dynamical Chern–Simons-modified gravity. Work in this direction will be reported in the future.

Acknowledgments

We thank the referees for their constructive comments and suggestions, which make the meaning expressed in our manuscript more clear. This work was partially supported by the National Natural Science Foundation of China under grant no 10875041, the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, no IRT0964) and the construct program of key disciplines in Hunan Province. J J’s work was partially supported by the National Natural Science Foundation of China under grant nos 10875040 and 10935013, 973 Program grant no 2010CB833004 and the Hunan Provincial Natural Science Foundation of China under grant no 08JJ3010.

References

[1] Lue A, Wang L M and Kamionkowski M 1999 Phys. Rev. Lett. 83 1506
[2] Jackiw R and Pi S Y 2003 Phys. Rev. D 68 104012
[3] Alexander S and Yunes N 2009 Phys. Rep. 480 1
[4] Alexander S H S, Gates J and James S 2006 J. Cosmol. Astropart. Phys. JCAP06(2006)018
[5] Svrcek P and Witten E 2006 J. High Energy Phys. JHEP06(2006)051
[6] Alvarez-Gaume L and Witten E 1984 Nucl. Phys. B 234 269
[7] Campbell B A, Kaloper N, Madden R and Olive K A 1993 Nucl. Phys. B 399 137
[8] Ashtekar A, Balachandran A P and Jo S 1989 Int. J. Mod. Phys. A 4 1493
[9] Konno K, Matsuyama T, Asano Y and Tanda S 2008 Phys. Rev. D 78 024037
[10] Alexander S, Peskin M E and Sheikh-Jabbari M M 2006 Phys. Rev. Lett. 96 081301
[11] Garcia-Bellido J, Garcia-Perez M and Gonzalez-Arroyo A 2004 Phys. Rev. D 69 023504
[12] Alexander S, Finn L S and Yunes N 2008 Phys. Rev. D 78 066005
[13] Alexander S and Yunes N 2007 Phys. Rev. Lett. 99 241101
[14] Alexander S and Yunes N 2007 Phys. Rev. D 75 124022
[15] Smith T L, Erickcek A L, Caldwell R R and Kamionkowski M 2008 Phys. Rev. D 77 024015
[16] Yunes N and Pretorius F 2009 Phys. Rev. D 79 084043
[17] Konno K, Matsuyama T and Tanda S 2009 Prog. Theor. Phys. 122 561
[18] Cardoso V and Gualtieri L 2009 Phys. Rev. D 80 064008
[19] Molina C, Pani P, Cardoso V and Gualtieri L 2010 arXiv:1004.4007
[20] Cardoso V and Pavlov E C 2009 Nature 431 958
[21] Yunes N and Spergel D N 2009 Phys. Rev. D 80 042004
[22] Harko T, Kovács Z and Lobo F S N 2010 Class. Quantum Grav. 27 105010
[23] Amarilla L, Eiroa E F and Giribet G 2010 Phys. Rev. D 81 124045
[24] Ahmedov H and Aliev A N 2010 Phys. Lett. B 690 196
Ahmedov H and Aliev A N 2010 Phys. Rev. D 82 024043
[25] Sopuerta C F and Yunes N 2009 Phys. Rev. D 80 064006
[26] Bozza V 2002 Phys. Rev. D 66 103001
[27] Bozza V 2003 Phys. Rev. D 67 103006
Bozza V, De Luca F, Scarpetta G and Sereno M 2005 Phys. Rev. D 72 083001
Bozza V, De Luca F and Scarpetta G 2006 Phys. Rev. D 74 063001
[28] Matsuno K and Ishihara H 2009 Phys. Rev. D 80 104037
[29] Claudel C M, Virbhadra K S and Ellis G F R 2001 J. Math. Phys. 42 818
[30] Einstein A 1936 Science 84 506
[31] Gyulchev G N and Yazadjiev S S 2007 Phys. Rev. D 75 023006
[32] Gyulchev G N and Yazadjiev S S 2008 Phys. Rev. D 78 083004
[33] Darwin C 1959 Proc. R. Soc. London 249 180
[34] Virbhadra K S, Narasimha D and Chitre S M 1998 Astron. Astrophys. 337 1
[35] Virbhadra K S and Ellis G F R 2000 Phys. Rev. D 62 084003
[36] Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65 103004
[37] Frittelly S, Kling T P and Newman E T 2000 Phys. Rev. D 61 064021
[38] Bozza V, Capozziello S, Iovane G and Scarpetta G 2001 Gen. Rel. Grav. 33 1535
[39] Eiroa E F, Romero G E and Torres D F 2002 Phys. Rev. D 66 024010
Eiroa E F 2005 Phys. Rev. D 71 083010
Eiroa E F 2006 Phys. Rev. D 73 043002
[40] Whisker R 2005 Phys. Rev. D 71 064004
[41] Bhadra A 2003 Phys. Rev. D 67 103009
[42] Chen S and Jing J 2009 Phys. Rev. D 80 024036
[43] Liu Y, Chen S and Jing J 2010 Phys. Rev. D 81 124017
[44] Ghosh T and Sengupta S 2010 Phys. Rev. D 81 044013
[45] Aliev A N and Talazan P 2009 Phys. Rev. D 80 044023
[46] Genzel R, Eisenhauer F and Gillessen S 2010 arXiv:1006.0064
[47] Burgay M et al 2003 Nature 426 531