A note on the elliptic Kirchhoff equation in \mathbb{R}^N perturbed by a local nonlinearity

A. Azzollini

Abstract

In this note we complete the study made in [1] on a Kirchhoff type equation with a Berestycki-Lions nonlinearity. We also correct Theorem 0.6 inside.

Introduction

In this note we consider the nonlinear Kirchhoff equation

$$-\left(a + b \int_{\mathbb{R}^N} |\nabla u|^2 \right) \Delta u = g(u) \text{ in } \mathbb{R}^N, \quad N \geq 3,$$

where we assume general hypotheses on g. We will investigate the existence of a solution depending on the value of the positive parameter a and b. We will fix an uncorrect sentence contained in [1] and complete that paper with additional results.

We refer to [1] and the references within for a justification of our study and a bibliography on the problem.
1 Existence and characterization of the solutions

Assume that

(g_1) \(g \in C(\mathbb{R}, \mathbb{R}), g(0) = 0; \)

(g_2) \(-\infty < \liminf_{s \to 0^+} g(s)/s \leq \limsup_{s \to 0^+} g(s)/s = -m < 0; \)

(g_3) \(-\infty \leq \limsup_{s \to +\infty} g(s)/s^{2^*-1} \leq 0; \)

(g_4) there exists \(\zeta > 0 \) such that \(G(\zeta) := \int_0^\zeta g(s) \, ds > 0. \)

It is well known that the previous assumptions coincide with that in [2], where the problem

\[- \Delta v = g(v) \text{ in } \mathbb{R}^N, \quad N \geq 3, \]

was studied and solved.

First of all, we present the following general result which provides a characterization of the solutions of (1)

Theorem 1.1. \(u \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N) \) is a solution to (1) if and only if there exists \(v \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N) \) solution to (2) and \(t > 0 \) such that \(t^2a + t^{4-N}b \int_{\mathbb{R}^N} |\nabla v|^2 = 1 \) and \(u(\cdot) = v(t\cdot). \)

Proof We first prove the “if” part. Suppose \(v \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N) \) and \(t > 0 \) are as in the statement of the theorem and set \(u(\cdot) = v(t\cdot) = v_t(\cdot) \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N). \) We compute

\[- \Delta u(x) = -\Delta v_t(x) = -t^2 \Delta v(tx) \]

\[= t^2g(v(tx)) = t^2g(u(x)) = \frac{g(u(x))}{a + bt^{2-N} \int_{\mathbb{R}^N} |\nabla v|^2} \]

\[= \frac{g(u(x))}{a + b \int_{\mathbb{R}^N} |\nabla u|^2}. \]

Now we prove the “only if” part. Suppose \(u \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N) \) is a solution of (1) and set \(h = \sqrt{a + b \int_{\mathbb{R}^N} |\nabla u|^2}, \quad v(\cdot) = u(h\cdot) = u_h(\cdot). \) Of course \(v \in C^2(\mathbb{R}^N) \cap \mathcal{D}^{1,2}(\mathbb{R}^N) \) and \(u(\cdot) = v(\frac{1}{h}\cdot). \) Moreover

\[- \Delta v(x) = -h^2 \Delta u(hx) = h^2 \frac{g(u(hx))}{a + b \int_{\mathbb{R}^N} |\nabla u|^2} = g(u_h(x)) = g(v(x))\]
and, if we set \(t = \frac{1}{\lambda} \),
\[
t^2 = \frac{1}{a + b \int_{\mathbb{R}^N} |\nabla u|^2} = \frac{1}{a + b t^{2-N} \int_{\mathbb{R}^N} |\nabla v|^2}.
\]

\(\blacksquare \)

Remark 1.2. Assume (g1–g4). By the existence result contained in [2], it is evident that for \(N = 3 \) there exists a solution of (1) for any \(a \) and \(b \) positive numbers.

For \(N = 4 \), we should have a solution if and only if there exists \(v \) solution of (2) such that \(b \int_{\mathbb{R}^N} |\nabla v|^2 < 1 \). Taking into account the computations in [2, Section 4.3], we know that the ground state solution of equation (2) has the minimal value of the \(D^{1,2}(\mathbb{R}^N) \) norm among all the solutions of the equation. Then, for \(N = 4 \) we conclude that equation (1) has a solution if and only if the ground state solution \(\bar{v} \) of (2) is such that \(b \int_{\mathbb{R}^N} |\nabla \bar{v}|^2 < 1 \).

Consider the functional of the action related with equation (1)
\[
I(u) = \frac{1}{2} \left(a + b \int_{\mathbb{R}^N} |\nabla u|^2 \right) \int_{\mathbb{R}^N} |\nabla u|^2 - \int_{\mathbb{R}^N} G(u),
\]
where \(G(s) = \int_0^s g(z) \, dz \), being \(g \) possibly modified as in [2] in order to make \(I \) a \(C^1 \) functional on \(H^1(\mathbb{R}^N) \). We observe that, for small dimensions, the value of the action computed in the solutions increases as the \(D^{1,2}(\mathbb{R}^N) \) norm increases according to the following

Proposition 1.3. Assume \(N = 3 \) or \(N = 4 \). If \(v_1 \) and \(v_2 \) are solutions of (2) and \(\int_{\mathbb{R}^N} |\nabla v_1|^2 < \int_{\mathbb{R}^N} |\nabla v_2|^2 \) and, for \(N = 4 \), we also have \(b \int_{\mathbb{R}^N} |\nabla v_2|^2 < 1 \), then, calling \(t_1 \) and \(t_2 \) the positive numbers such that respectively \(v_1(t_1) \) and \(v_2(t_2) \) are solutions of (1), we have \(t_2 < t_1 \) and \(I(v_1(t_1)) < I(v_2(t_2)) \).

Proof By Theorem 1.1, it is immediate to see that \(t_2 < t_1 \). Now observe that any solution of (1) satisfies the Pohozaev identity
\[
a \frac{N-2}{2N} \int_{\mathbb{R}^N} |\nabla u|^2 + b \frac{N-2}{2N} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2 - \int_{\mathbb{R}^N} G(u) = 0. \tag{3}
\]
As a consequence the action computed in any solution of (1) is
\[
I(u) = a \frac{1}{N} \int_{\mathbb{R}^N} |\nabla u|^2 + b \frac{4 - N}{4N} \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^2
\]
and then, if \(v \) and \(t > 0 \) are related with \(u \) as in Theorem 1.1, we have that

\[
I(u) = a \frac{t^{2-N}}{N} \int_{\mathbb{R}^N} |\nabla v|^2 + b \frac{4-N}{4N} t^{4-2N} \left(\int_{\mathbb{R}^N} |\nabla v|^2 \right)^2.
\]

Since \(t^2 a + t^{4-N} b \int_{\mathbb{R}^N} |\nabla v|^2 = 1 \), we can cancel the dependence of \(I \) from \(b \)

\[
I(u) = \frac{a}{4} \int_{\mathbb{R}^N} |\nabla v|^2 + \frac{4 - N}{4N} \frac{\int_{\mathbb{R}^N} |\nabla v|^2}{t^N}.
\]

(4)

The conclusion easy follows from (4). \(\square \)

In the following Corollary we establish the conditions which guarantee the existence of a ground state solution for \(N \geq 3 \). In particular we correct Theorem 0.6 in [1] for what concerns the dimension \(N = 4 \).

Corollary 1.4. Assume (g1 \ldots g4).

If \(N = 3 \) then equation (1) has a ground state solution. If \(N = 4 \) then equation (1) has a ground state solution if and only if \(b \int_{\mathbb{R}^N} |\nabla v|^2 < 1 \), being \(\bar{v} \) a ground state solution of (2). If \(N \geq 5 \) then equation (1) has a solution if and only if

\[
a \leq \left(\frac{N-4}{N-2} \right)^{\frac{N-2}{N-4}} \left(\frac{2}{(N-4)b \int_{\mathbb{R}^N} |\nabla \bar{v}|^2} \right)^{\frac{N-2}{N-4}},
\]

(5)

being \(\bar{v} \) a ground state solution of (2). Moreover the functional attains the infimum.

Proof Since the functional of the action related with equation (2), when computed in the solutions of the equation, is directly proportional to the \(\mathcal{D}^{1,2}(\mathbb{R}^N) \) norm of the solutions (see Remark 1.2), the conclusion for cases \(N = 3 \) and \(N = 4 \) follows immediately by Proposition 1.3 and [2]. If \(N \geq 5 \), by Theorem 1.1 we have to show that there exists a solution \(v \) of equation (2) and \(t > 0 \) such that \(t^2 a + t^{4-N} b \int_{\mathbb{R}^N} |\nabla v|^2 = 1 \). Of course such a couple \((v, t)\) exists if only if there exists \(t_0 > 0 \) such that

\[
t_0^2 a + t_0^{4-N} b \int_{\mathbb{R}^N} |\nabla \bar{v}|^2 = 1
\]

(6)

for \(\bar{v} \) ground state solution of (2). By studying the function \(f(t) = at^2 + b_0 t^{4-N} \) for \(t > 0 \), being \(b_0 = b \int_{\mathbb{R}^N} |\nabla \bar{v}|^2 \), we observe that (6) holds for some \(t_0 \) if and only if

\[
\min_{t>0} f(t) \leq 1.
\]

(7)
An easy computation leads to (5). As a remark we point out that if (7) holds with the strict inequality, then we can find two values \(t_1 < t_2 \) which solve (6) and two corresponding distinct solutions \(\tilde{v}_{t_1} \) and \(\tilde{v}_{t_2} \) to equation (1).

Now we prove that the functional \(I \) attains the minimum. For \(i = 1, 2 \), define \(g_i \) and \(G_i \) as in [2]. Observe that, by (3.4) and (3.5) in [2],

\[
I(u) = \frac{1}{2} \left(a + \frac{b}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \right) \int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} G_2(u) - \int_{\mathbb{R}^N} G_1(u)
\]

\[
\geq \frac{1}{2} \left(a + \frac{b}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \right) \int_{\mathbb{R}^N} |\nabla u|^2 + (1 - \varepsilon) \int_{\mathbb{R}^N} G_2(u) - C_\varepsilon \int_{\mathbb{R}^N} |u|^{2N/N-2},
\]

where \(\varepsilon < 1 \) and \(C_\varepsilon > 0 \) are suitable constants.

Since \(D^{1,2}(\mathbb{R}^N) \hookrightarrow L^{2N/N-2}(\mathbb{R}^N) \), for a suitable positive constant \(C \) we have

\[
I(u) \geq \frac{1}{2} \left(a + \frac{b}{2} \int_{\mathbb{R}^N} |\nabla u|^2 \right) \int_{\mathbb{R}^N} |\nabla u|^2
\]

\[
+ \frac{1 - \varepsilon}{2} m \int_{\mathbb{R}^N} |u|^2 - C \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^{\frac{N}{N-2}},
\]

and, since for \(N \geq 5 \) we have \(1 < \frac{N}{N-2} < 2 \), we deduce that the functional is bounded below and coercive with respect to \(H^1(\mathbb{R}^N) \) norm.

Now, since for every \(u \in H^1(\mathbb{R}^N) \) and its corresponding Schwarz symmetrization \(u^* \) we have

\[
\int_{\mathbb{R}^N} |\nabla u^*|^2 \leq \int_{\mathbb{R}^N} |\nabla u|^2, \quad \int_{\mathbb{R}^N} G(u^*) = \int_{\mathbb{R}^N} G(u),
\]

we can look for a minimizer of \(I \) in \(H^1_1(\mathbb{R}^N) \), the set of radial functions in \(H^1(\mathbb{R}^N) \). As in [2], we can prove that the functional

\[
u \in H^1_1(\mathbb{R}^N) \mapsto \int_{\mathbb{R}^N} G_1(u) \in \mathbb{R}
\]

is compact, so, by standard arguments based on Weierstrass Theorem, \(I \) attains the infimum. \(\Box \)

Remark 1.5. Suppose \(N \geq 5 \). By previous Corollary we have that if (5) does not hold, then \(I \) is nonnegative in \(H^1(\mathbb{R}^N) \).
References

[1] Azzollini, A.: The elliptic Kirchhoff equation in \mathbb{R}^N perturbed by a local nonlinearity. *Differential and Integral equations*, 25: 543–554 (2012).

[2] Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. *Arch. Rational Mech. Anal.*, 82: 313–345 (1983).