A novel absorption resonance for all-optical atomic clocks

Sergei Zibrov,1,2,3,4 Irina Novikova,4 David F. Phillips,4 Aleksei V. Taichenachev,5 Valeriy I. Yudin,5 Ronald L. Walsworth,1,4 and Alexander S. Zibrov1,3,4

1Department of Physics, Harvard University, Cambridge, Massachusetts, 02138
2Moscow State Engineering Physics Institute, Moscow, 115409, Russia
3Lebedev Institute of Physics, Moscow, 117924, Russia
4Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138
5Institute of Laser Physics SB RAS and Novosibirsk State University, Novosibirsk, 630090, Russia

(Dated: October 12, 2018)

We report an experimental study of an all-optical three-photon-absorption resonance (known as a "N-resonance") and discuss its potential application as an alternative to atomic clocks based on coherent population trapping (CPT). We present measurements of the N-resonance contrast, width and light-shift for the D1 line of 87Rb with varying buffer gases, and find good agreement with an analytical model of this novel resonance. The results suggest that N-resonances are promising for atomic clock applications.

PACS numbers: 42.72.-g, 42.50.Gy

There is great interest in developing compact, robust atomic clocks with low power consumption and fractional frequency stability better than 10^{-12} for a wide variety of applications. In recent years, significant progress toward this goal has been achieved using coherent population trapping (CPT) resonances in atomic vapor. In this paper, we investigate an all-optical three-photon-absorption resonance in Rb vapor, known as an "N-resonance", which combines advantages of CPT and traditional optically-pumped double-resonance. We find that the N-resonance provides high contrast with modest systematic frequency shifts, and thus may be suitable for small, stable atomic clocks.

An N-resonance is a three-photon, two-field resonance, as shown in Fig. 1. An optical probe field, Ω_P, resonant with the transition between the higher-energy hyperfine level of the ground electronic state ($|b\rangle$) and an excited state ($|a\rangle$), optically pumps the atoms into the lower hyperfine level ($|c\rangle$), leading to increased transmission of the probe field through the medium. A second, off-resonant optical drive field, Ω_D, is detuned to lower frequencies than the $|b\rangle \rightarrow |a\rangle$ transition. If the difference frequency between Ω_P and Ω_D is equal to the hyperfine frequency, a two-photon resonance is created, driving atoms coherently from state $|c\rangle$ to $|b\rangle$, followed by a one-photon absorption from field Ω_P which drives the atoms to the excited state $|a\rangle$. Thus, the absorption spectrum of the Ω_P field will have two distinct features (Fig. 1, bottom row): a broad Doppler background due to linear absorption and a narrow resonance because of the three-photon nonlinear process. Importantly for clock applications, the N-resonance is all-optical; also, nearly 100% of the probe field is absorbed on resonance, which greatly reduces the practical effects of both shot noise, as well as phase noise due to frequency/intensity noise conversion in the optical fields.

For comparison, we also plot in Fig. 1 typical level diagrams and schematic spectra of the probe light transmission for CPT and traditional optically-pumped double-resonance schemes. CPT is a two-photon transmission resonance (Fig. 1b) in which a coherence between two hyperfine levels is created by two resonant fields (Ω_P and Ω_D) whose frequency difference is equal to the hyperfine frequency. The absorption for both optical fields decreases due to destructive interference of the absorption amplitudes, and a narrow transmission peak is observed. Several groups have achieved fractional hyperfine frequency stabilities below 10^{-12} with CPT-based clocks, which are also promising for miniaturization. In the traditional optically-pumped double-resonance clock (Fig. 1c), one optical field (from a lamp or laser diode) is resonant with one of the allowed transitions ($|b\rangle \rightarrow |a\rangle$),...
and thus optically pumps atoms to the other hyperfine sublevel \((|c⟩)\). A microwave field resonant with the ground-state hyperfine transition is applied, thereby redistributing the populations between the hyperfine levels and leading to a narrow dip in the transmission spectrum of the optical field. The width of this absorption feature is determined by the intensities of both the optical and microwave fields as well as the atoms’ hyperfine decoherence rate. With careful optimization of operational parameters, short-term fractional stabilities of \(10^{-11}\) may be achieved \([8]\).

In practice, the frequency stability of an atomic clock limited by photon shot noise is given by the Allan deviation, \(σ(τ)\), as \([4]\):

\[
σ(τ) = \frac{1}{4} \left(\frac{ηe}{I_{bg} ν_0} \right) \Delta ν C τ^{-1/2}
\]

where \(ν_0\) is the atomic reference frequency, \(Δν\) is the full width of the resonance, \(e\) is the electron charge, \(η\) is the photodetector sensitivity (measured optical energy per photoelectron) and \(τ\) is the integration time. The resonance contrast \(C ≡ A/I_{bg}\), where \(A\) is the relative intensity of the clock resonance and \(I_{bg}\) is the intensity of the background transmitted light (adopting notation similar to reference \([4]\)). These contrast parameters are shown graphically in Fig. \(\text{H}\) for the \(N\)-resonance, CPT resonance, and optically-pumped double-resonance schemes.

Figure \(\text{G}\) shows a schematic of our \(N\)-resonance experimental set-up. We derived the probe and drive optical fields (\(Ω_P\) and \(Ω_D\)) by phase modulating the output of an external cavity diode laser (\(≈ 12\) mW total power) tuned in the vicinity of the \(D_1\) line of Rb \((5^2S_{1/2} → 5^2P_{1/2}, \ λ ≈ 795\) nm). An electro-optic modulator (EOM) produced the phase modulation of the optical field at a frequency near the ground electronic state hyperfine frequency of \(^{87}\)Rb \((ν_0 \approx 6.835\) GHz). Approximately 2% of the incident laser power was transferred to each first-order sideband, with the remainder residing in the carrier. The laser beam was then circularly polarized using a quarter wave plate and weakly focused to a diameter of \(0.8\) mm before entering the Rb vapor cell.

We employed Pyrex cylindrical cells containing isotopically enriched \(^{87}\)Rb and either \(40\) Torr Ne buffer gas or a \(10\) Torr Ne + \(15\) Torr Ar mixture. During experiments, the vapor cell under study was heated to \(55\)°C using a blown-air oven. The cell was isolated from external magnetic fields with three layers of high permeability shielding. A small (\(≈ 10\) mG) longitudinal magnetic field was applied to lift the degeneracy of the Zeeman sublevels and separate the desired \(F = 1, m_F = 0\) to \(F = 2, m_F = 0\) clock transition (no first-order magnetic field dependence) from the \(m_F = ±1\) transitions (first-order Zeeman splitting).

To produce the \(N\)-resonance we tuned the high frequency optical sideband (serving as the probe field \(Ω_P\)) near resonance with the \(5S_{1/2} F = 2 → 5P_{1/2} F' = 1, 2\) transitions. The strong laser carrier field at a frequency \(6.835\) GHz below this transition was used as the drive field \(Ω_D\) (see Fig. \(\text{H}\)). Note that we operate in the regime of relatively low laser power and atomic density, which is different from \([8]\). In the present case all four-wave mixing processes are insignificant, and the far-off-resonance lower frequency sideband had negligible effect on the atoms. The strong drive field and the lower sideband were filtered from the light transmitted through the cell using a quartz, narrow-band Fabry-Perot etalon (FSR = \(20\) GHz, finesse = 30), tuned to the frequency of the probe field and placed before the photodetector. Such selective detection reduces the light background \((I_{bg})\) by eliminating nonresonant leakage from the drive field; and also increases the absorption amplitude \((A)\) by eliminating the stimulated Raman drive field created at two-photon resonance \([8]\). Our analytical modelling of the \(N\)-resonance – based on the method developed in \([9, 10]\) for CPT resonances – indicates that the absorption amplitude \(A\) increases by \(≈ 1.7\) when only the probe field transmission is detected. (Details of this analytical model will be described in a future publication).

Fig. \(\text{I}\) shows measured \(N\)-resonance linewidths for two
differing buffer gases. At lower laser power, linewidths < 1 kHz are observed: e.g., $\Delta \nu \approx 300 \text{ Hz}$ at 50 μW total laser power for the 40 Torr Ne cell. At larger laser powers the linewidth increases approximately linearly with laser power. As also shown in Fig. 3 our calculations are in good agreement with the measured variation of linewidth with laser power.

Fig. 4 shows measurements of the N-resonance contrast $C = A/I_{bg}$ for two buffer gas cells. For both cells the contrast increases rapidly with laser power, and then saturates at $C > 15\%$ for total incident laser power $\sim 1 \text{ mW}$. This saturated N-resonance contrast exceeds the contrast that has been achieved with CPT resonances, $C < 4\%$ [2]. However, the relatively large laser power required to saturate the N-resonance contrast leads to an increased linewidth (see Fig. 3). To account for these competing effects of laser power, we follow Vanier et al. [1] and employ a resonance quality factor $q \equiv C/\Delta \nu$ as a figure of merit for N-resonance clocks. For example, for 120 μW of laser power for the 40 Torr Ne cell, we find $\Delta \nu \approx 1 \text{ kHz}$ and $C \approx 0.1$ for the ^{87}Rb N-resonance (see Figs. 3 and 4), implying $q \approx 10^4$ and an estimated frequency stability from Eq. (1) of $\sigma(\tau) \sim 10^{-14}\tau^{1/2}$.

Importantly, Fig. 4 also shows that the N-resonance contrast reaches its maximum at lower laser powers for the higher-pressure 40 Torr Ne vapor cell than for the cell with the 25 Torr Ne-Ar mixture. We attribute this difference to slower Rb diffusion out of the laser fields at higher buffer gas pressure, and hence reduced ground-state coherence loss and more efficient optical pumping. In addition, we did not observe a deterioration of the N-resonance contrast with increased buffer gas pressure, as has been observed for CPT resonances [4]. This observation suggests that the N-resonance may be a good candidate for miniature atomic clocks, where high buffer gas pressure is required to prevent rapid atomic decoherence due to collisions with the walls of a small vapor cell.

We also characterized the light-shift of the ^{87}Rb N-resonance. A light-shift is a relative AC Stark shift of atomic levels that depends on both the optical field frequency and intensity [11]. Light-shifts are a primary systematic effect limiting the frequency stability of optically-pumped atomic clocks and should be present for N-resonances at some level. To leading order in a simple two-level picture, the light-shift, Δ_{ls}, of the clock frequency is given by

$$\Delta_{ls} = -\frac{\Delta}{\gamma_{ab}^2 + 4\Delta^2|\Omega_P|^2},$$

where Δ is the detuning of the probe field from the atomic transition. For small Δ, the light-shift is linear in the laser frequency (Δ) and intensity ($\propto |\Omega_P|^2$). Fluctuations in these parameters are thus directly transferred to the clock frequency. For example, light-shifts limit the fractional frequency stability of optically-pumped double-resonance clocks at the level of 10^{-11} [12, 13, 14].

In CPT clocks, light-shifts may be eliminated, in principle. In practice, however, the diode laser typically used in a CPT clock is driven with strong current-modulation to produce the two strong, resonant optical fields Ω_P and Ω_D. This modulation scheme necessarily leads to: (i) higher-order sidebands, which, even when optimally adjusted, can induce non-trivial second-order light-shifts [15]; and (ii) unwanted amplitude modulation of the optical fields, resulting in an imbalance between sideband intensities as large as 10% [2]. These imperfections lead to residual light-shifts of $\sim 0.2 \text{ Hz}/(\mu\text{W/cm}^2)$ (for shifts induced by changes in the carrier field intensity) and 1 Hz/MHz (for shifts induced by changes in the carrier field frequency) [2, 2, 9]. In practice, the short- and medium-term frequency stability of CPT clocks is limited by such light-shifts [2, 11].
As shown in Fig. 5, we measured two extrema in the N-resonance light-shift as a function of probe field frequency. We find a linear dependence, with a similar variation of 25 mHz/(μW/cm2) for different buffer gases. These N-resonance light-shifts are about an order of magnitude smaller than for existing CPT clocks.

In summary, we measured the properties of an N-resonance on the D_1 line in Rb vapor cells with varying buffer gases. We found that this N-resonance has greater contrast than the corresponding CPT resonance and order-of-magnitude smaller light-shifts. These results suggest that an all-optical atomic clock locked to an N-resonance may provide improved short and medium term frequency stability compared to CPT clocks. In addition, we found that the N-resonance contrast does not degrade, nor the light-shifts worsen, with increased buffer gas pressure. Hence, N-resonances may be good candidates for miniature atomic clocks.

The authors are grateful to M.D. Lukin, and V.L. Velichansky for useful discussions. This work was supported by DARPA. Work at the Center for Astrophysics was supported by ONR and the Smithsonian Institution. A. V. T. and V. I. Y. acknowledge support from RFBR (grants no. 05-02-17086 and 04-02-16488).

[1] N. Cyr, M. Tétu, and M. Breton, IEEE Trans. Instrum. Meas. 42, 640 (1993).
[2] S. Knappe, R. Wynands, J. Kitching, H. G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).
[3] M. Merimaa, T. Lindwall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).
[4] J. Vanier, M. W. Levine, D. Jannsen, M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[5] A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[6] W. Happer and B. S. Mathur [Phys. Rev. Lett. 18, 727 (1967)] observed such coherent population transfer with a modulated incoherent light source. Thus practical N-resonances may be possible using a Rb lamp as the light source.
[7] J. C. Camparo, and W. F. Buell, in Proc. Intrl. Freq. Control. Sym. (IEEE, New York, 1997) pp. 253-258.
[8] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards. (Hilger, New York, 1989).
[9] A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, and L. Hollberg, Phys. Rev. A 67, 033810 (2003).
[10] S. Knappe, M. Stahler, C. Affolderbach, A. V. Taichenachev, V. I. Yudin, and R. Wynands, Appl. Phys. B 76, 57 (2003).
[11] B. S. Mathur, H. Tang, and W. Happer, Phys. Rev. 171, 11 (1968).
[12] L. A. Budkin, V. L. Velichanskii, A. S. Zibrov, A. A. Lyalyaskin, M. N. Penenkiov and A. I. Pikhitelev, Sov. J. Quant. Electron. 20, 301 (1990).
[13] J. C. Camparo, and S. B. Delcamp Opt. Commun. 120, 257 (1995).
[14] G. Mileti, J. Deng, F. L. Walls, D. A. Jennings and R. E. Drullinger. IEEE J. Quant. Electron. 34, 233 (1998).
[15] J. Vanier, A. Godone, and F. Levi, Phys. Rev. A 58, 2345 (1998).
[16] M. Erhard and H. Helm, Phys. Rev. A 63, 043813 (2001).
[17] Ch. Ottinger, R. Scheps, G. W. York, and A. Gallagher Phys. Rev. A 11, 1815 (1975).
[18] M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, V. Yudin, Opt. Lett. 27, 1472 (2002).