Etching of Si₃N₄ by SF₆/H₂ and SF₆/D₂ plasmas

P A Pankratiev¹, Yu V Barsukov¹, A A Kobelev¹, A Ya Vinogradov², I V Miroshnikov² and A S Smirnov¹

¹Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, 195251 Russia
²Ioffe Institute, Saint-Petersburg, 194021, Russia

e-mail: pavel-pankratiev@yandex.ru

Abstract. Selective plasma etching of silicon nitride (Si₃N₄) over silicon oxide (SiO₂) is one of critical steps in the nanofabrication processes, where a direct plasma etching of Si₃N₄ is required for some applications. It was reported recently that Si₃N₄ etching by remote plasma source can be initiated by the vibrationally excited HF(v) molecules at the low concentration of atomic fluorine. Generally, the main source of HF(v) in plasma is reaction of atomic fluorine with H₂ molecule. Due to this fact, the kinetic isotope effect should be observed during Si₃N₄ etching if replace the H₂ source gas on deuterium gas (D₂). The data presented here are the Si₃N₄ and SiO₂ etching by the SF₆/H₂ and SF₆/D₂ plasmas. A different amount of H₂ and D₂ have been added to the SF₆ discharge during the Si₃N₄ and SiO₂ etching. It was shown that at low H₂/D₂ flow rate the Si₃N₄ etch rate is lower in the SF₆/D₂ discharge. This one confirms the hypothesis about Si₃N₄ etching by HF(v) and indicates on the fact that HF(v) gives contribution to Si₃N₄ etching by the direct plasma (not only by the remote plasma) at relatively high concentration of atomic fluorine.

1. Introduction

Plasma etching is widely used in semiconductor industry where the selective Si₃N₄/SiO₂ etching is one of the critical steps. The precision isotropic Si₃N₄ etching is required during the production of 3D-NAND memory devices [1], where the remote plasma source is used for such kind of processes [2,3,4,5]. On the other hand, the anisotropic etching of Si₃N₄ spacer is used during the production of FRAM memory where the selectivity relative to SiO₂ is also required [6]. It was reported that in the afterglow the Si₃N₄ etching can be initiated by vibrationally excited HF(v) molecules at low concentration of atomic fluorine, while not etching of SiO₂ [4,5]. Therefore, it is important to understand the contribution of HF(v) to the Si₃N₄ etching in a plasma zone. The etching by the vibrationally excited molecules should be suppressed or decreased if replace HF(v) on deuterium fluoride DF(v). Indeed, the vibrational quantum of HF is 0.31 eV which is lower than vibrational quantum of HF (0.49 eV). This difference should be essential for chemical reactions which proceed according to Arrhenius law. HF molecule at the ground state needs to overcome a significant barrier to etch both Si₃N₄ and SiO₂. For example, the SiO₂ can be etched by the dry HF gas only at T > 1000 K [7]. The vibrational energy of HF(v) molecule can be utilized for overcoming the barrier in the reactions with Si₃N₄ surface resulting in etching [4,5]. Thus, this catalytic effect coming from internal energy of HF(v) molecule should be lower in the case of DF(v) molecule.
2. Experiment details

Here we use SF₆/H₂ and SF₆/D₂ plasmas for the Si₃N₄ and SiO₂ etching in the plasma zone, where the HF(v) and DF(v) molecules are produced according to the following reactions:

\[\text{SF}_6 + e \rightarrow \text{SF}_{6-x} + x\text{F}, \quad (1) \]

\[\text{F} + \text{H}_2 \text{ (or D}_2) \rightarrow \text{H} \text{ (or D)} + \text{HF(v) (or DF(v))}. \quad (2) \]

It has been shown that initially the Si₃N₄ etching increases at small addition of H₂ to the SF₆ discharge, while the Si₃N₄ etching monotonically decreases in the SF₆/D₂ discharge at the similar conditions. The density of atomic fluorine measured by actinometry decreases at H₂/D₂ flow rate rise, therefore it cannot explain the different Si₃N₄ etch rate in SF₆/H₂ and SF₆/D₂ discharges. Also, in OES spectrum we observe the bands coming from S₂dimer. It was reported that reaction probability of F- atoms with Si is unusually high in SF₆ discharge, and it was assumed that this effect occurs due to a surface activation by S, S₂, SF_x etc. \[8\]. Therefore, we consider here how S₂ production depends on the H₂/D₂ flow rate assuming that S₂ can affect the Si₃N₄ and SiO₂ etching also.

We used direct capacitively coupled plasma etcher operating at 40.68 MHz. Two parallel plate electrodes are positioned vertically inside the chamber. The etcher is equipped with spectrometer (AvaSpec-2048 from Avantes) for optical emission spectroscopy (OES) diagnostic in the wavelength range of 200-1100 nm. Spectrometer is collecting emission from plasma bulk at the center of the discharge near the sample film (figure 1). OES was calibrated using known H₂ spectrum. Ar (1 sccm) was added to the reaction mixture for actinometry measurements. H₂ and D₂ flow rates are varied between 0 and 10 sccm while other process conditions kept the same: 3 sccm SF₆; power 300 W; pressure 60 mTorr.

![Figure 1. Scheme of experimental setup from two perspectives.](image)

3. Results and discussions

3.1. OES measurements

The typical spectrum of SF₆/H₂/Ar discharge observing in our experiments is shown in figure 2a. The emission corresponding to B¹ Σ_u(v) → X³ Σ_u(v) transitions of S₂ dimer (figure 2b) was identified using the data from \[9\].

The size of etched samples (around 1 cm²) was significantly smaller than the size of electrodes, and by-products of the etching (O, OH, NH etc.) are not detected in the OES spectra, therefore we assume that volatile by-products has no influence on the OES spectra. Only emission from N₂ (see figure 2b) has been detected which is one of the by-products of Si₃N₄ etching. But this emission is detected in the SF₆ discharge without etched samples, and the intensity of this emission was not changed when the
Si₃N₄ samples were etched in the chamber. Molecule nitrogen is the admixture of SF₆ gas, therefore the small amount of N₂ is injected into the etcher from the SF₆ balloon, the same was observed in the [10].

Actinometry was used to measure the density of F-atoms in the plasma zone (figure 3a). We used 685 nm (3p ⁴D⁰ → 3s ⁴P) line of F and 750 nm (4p'[1/2] → 4s'[1/2]o) line of Ar. Actinometry coefficient \(C_{Ar}^F = 4.6 \pm 0.9 \) corresponding to these lines has been measured in [11]. Fluorine density \(n_F \) was obtained using the following equation:

\[
 n_F = C_{Ar}^F \cdot \frac{I(F)}{I(Ar)} \cdot n_{Ar},
\]

where \(I(F) \) and \(I(Ar) \) are intensities of fluorine and argon lines and \(n_{Ar} \) is a density of argon species. In both H₂ and D₂ containing plasmas dilution causes the similar drop of fluorine concentration. It seems that D₂ doesn’t provide additional production or loss mechanism for F-atoms compared to H₂.

The S₂ density cannot be measured by actinometry because the excitation threshold energies for S₂ and Ar are quite different. Therefore, the intensity of the \(\text{B}^3 \Sigma_u^-(v0) \rightarrow \text{X}^3 \Sigma_u^-(v9) \) S₂ (283 nm) transition was normalized on the intensity of Ar (750 nm), assuming that this \(\frac{I_{S2}}{I_{Ar}} \) value correlates with the production rate of S₂. \(\frac{I_{S2}}{I_{Ar}} \) ratio similarly increases in both SF₆/H₂ and SF₆/D₂ discharges achieving a plateau at H₂/D₂ flow rate at 5 sccm (figure 3b).

![Figure 2](image-url)

Figure 2. Typical OES spectrum of SF₆/H₂/Ar discharge observed in our experiments (a). And S₂ spectrum (b) where \(\text{B}^3 \Sigma_u^-(v) \rightarrow \text{X}^3 \Sigma_u^-(v) \) transitions are shown (the first ‘v’ number corresponds to the excited state, the second is to ground state), the dotted lines mark the emission coming from N₂ admixture.
Figure 3. Dependence of fluorine density (a) and normalized I_{52}/I_{Ar} intensity (b) on H_2/D_2 flow rate.

3.2. Etching data

The total thicknesses of the samples were 2000 Å and they are fully etched. The etch rate values are calculated as a thickness of film (2000 Å) divided by time of the etching. The time of etch stop was determined by optical interferometer.

The etch rate data are shown in figure 4, according to these data the etch rate of Si_3N_4 is higher than SiO_2 even in the SF_6 discharge without H_2 and D_2. The small addition of H_2 increases the Si_3N_4 etch rate which has a peak at 2 sccm H_2. On the other hand, there is no peak in SF_6/D_2 discharge, moreover Si_3N_4 etch rate monotonically decreases at D_2 flow rate rise. The difference in the Si_3N_4 etch rates by SF_6/H_2 and SF_6/D_2 plasmas cannot be explained by the production rates of F-atoms or S_2 dimers. Note, the F density monotonically drops at H_2 and D_2 flow rate rise therefore the Si_3N_4 etching cannot be increases by the F-atoms at 2 sccm H_2. The production of S_2 increases with the addition of 2 sccm H_2 or D_2 to the reaction mixture. If we assume that S_2 can enhance the Si_3N_4 etching then the etching must be enhanced in the both discharges with H_2 and D_2. Thus, the higher etch rate of Si_3N_4 in the SF_6/H_2 plasma can be explained by the fact that HF(v) gives the contribution to the etch rate. On the other hand, the Si_3N_4 etch rate monotonically drops in the SF_6/D_2 plasma as D_2 flow rate rise because F-atom density decreases and DF(v) molecules are not able to initiate the etching. The kinetic isotope effect is not as high as it can be expected, because F density is still quite high and they give the main contribution to the etch rate. Moreover, the etching occurs in the plasma zone, where the Si_3N_4 etching initiated by HF(v) molecules should be suppressed, because ions remove HF molecules from the surface. According to the proposed mechanism in [4,5] the HF(v) initiates Si_3N_4 etching in the afterglow zone paired with the adsorbed HF molecule.

The etch rate of SiO_2 weakly depends on H_2 and D_2 flow rate despite the fact that density of F atoms, which is well known etchant of SiO_2 [12], drops at H_2/D_2 flow rate rise (figure 3a). It can be explained by the passivation mechanism of SiO_2 surface, for example, by S_2 dimer. The production of S_2 increases and density of F atoms decreases at 10 H_2/D_2 (figure 3b) resulting in the lower etch rate.
5

Figure 4. The dependence of Si$_3$N$_4$ and SiO$_2$ etch rate on H$_2$ and D$_2$ flow rate.

4. Conclusions
The direct plasma etching of Si$_3$N$_4$ and SiO$_2$ in the SF$_6$/H$_2$ and SF$_6$/D$_2$ discharges have been studied. It was shown that the Si$_3$N$_4$ etch rate is slightly lower in the SF$_6$/D$_2$ discharge than in the SF$_6$/H$_2$. Moreover, the Si$_3$N$_4$ etch rate monotonically decreases at the D$_2$ flow rate rise, at the same time the etch rate in the SF$_6$/H$_2$ discharge has a peak at 2 sccm H$_2$. It can be explained by the fact that in the discharge with H$_2$ the HF(v) gives the contribution to the Si$_3$N$_4$ etch rate as it was reported early. This contribution is not observed from the DF(v) molecule because vibrational quantum of DF(v) is lower than the one of HF(v). The experiments were performed in the plasma zone, where the Si$_3$N$_4$ etching initiated by HF(v) is suppressed due to ion bombardment. Therefore, the atomic fluorine gives the main contribution to the Si$_3$N$_4$ etch rate. These facts explain the relatively weak kinetic isotope effect on the Si$_3$N$_4$ etching. Anyway, this effect is visible and should be taken into account in the plasma direct etching of silicon nitride.

References
[1] Bassett D W and Rotondaro A L P 2016 Silica formation during Etching of Silicon Nitride in phosphoric acid Solid State Phenom. 255 285–90
[2] Barsukov Yu, Volynets V, Lee S, Kim G, Lee B, Nam S K and Han K 2017 Role of NO in highly selective SiN/SiO$_2$ and SiN/Si etching with NF$_3$ /O$_2$ remote plasma: Experiment and simulation J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 061310
[3] Huang S, Volynets V, Hamilton J R, Nam S K, Song I-C, Lu S, Tennyson J and Kushner M J 2018 Downstream etching of silicon nitride using continuous-wave and pulsed remote plasma sources sustained in Ar/NF$_3$ /O$_2$ mixtures J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 36 021305
[4] Volynets V, Barsukov Yu, Kim G, Jung J-E, Nam S K, Han K, Huang S and Kushner M J 2020 Highly selective Si 3 N 4 /SiO$_2$ etching using an NF$_3$ /N$_2$ /O$_2$ /H$_2$ remote plasma. I. Plasma source and critical fluxes J. Vac. Sci. Technol. A 38 023007
[5] Jung J-E, Barsukov Yu, Volynets V, Kim G, Nam S K, Han K, Huang S and Kushner M J 2020 Highly selective Si3N4/SiO2 etching using an NF3/N2/O2/H2 remote plasma. II. Surface reaction mechanism J. Vac. Sci. Technol. A 38 23008

[6] Kim G, Barsukov Yu, Volynets V, Liu D, An S, Yoo B, Lee S and Patel S 2018 Etching method using remote plasma source, and method of fabricating semiconductor device including the etching method US patent No 2018/0374709 A1

[7] Habuka H and Otsuka T 1998 Reaction of hydrogen fluoride gas at high temperatures with silicon oxide film and silicon surface Japanese J. Appl. Physics, Part I Regul. Pap. Short Notes Rev. Pap. 37 6123–7

[8] Arora P, Nguyen T, Chawla A, Nam S-K and Donnelly V M 2019 Role of sulfur in catalyzing fluorine atom fast etching of silicon with smooth surface morphology J. Vac. Sci. Technol. A 37 061303

[9] Peterson D A and Schlie L A 1980 Stable pure sulfur discharges and associated spectra J. Chem. Phys. 73 1551–66

[10] Resnik M, Zaplotnik R, Mozetic M and Vesel A 2018 Comparison of SF6 and CF4 plasma treatment for surface hydrophobization of PET polymer Materials (Basel). 11

[11] Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I and Rakhimov A T 2017 Actinometry of O, N and F atoms J. Phys. D. Appl. Phys. 50 75202

[12] Flamm D L, Mogab C J and Sklaver E R 1979 Reaction of fluorine atoms with SiO2 J. Appl. Phys. 50 6211–3