Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation

Agata Cieslak1,*, Guillaume Charbonnier2,3,*, Melania Tesio1, Eve-Lyne Mathieu2,3, Mohamed Belhocine2,3,*, Aurore Touzart1,4, Charlotte Smith1, Guillaume Hypolite1, Guillaume P. Andrieu1, Joost H.A. Martens5, Eva Janssen-Megens5, Marta Gut6,7, Ivo Gut6,7, Nicolas Boissel8, Arnaud Petit9, Denis Puthier2,3,*, Elizabeth Macintyre1, Hendrik G. Stunnenberg6,*, Salvatore Spicuglia2,3,**, and Vahid Asnafi1,**

Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXAS-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αβ T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.

Introduction

T lymphocytes develop from a stepwise process of cell fate choices whereby distinct signaling pathways in the thymus cause hematopoietic precursors to commit to the T cell fate, while mobilizing a T cell gene expression program that prepares the cells for TCR expression, TCR-based repertoire selection, and long, versatile careers as immune effectors (Dik et al., 2005b; Rothenberg, 2019; Spits, 2002). However, major questions remain as the molecular mechanisms involved in this process and the stage-specific regulation of T cell genes are not well defined yet. Despite numerous reports on the dynamics of epigenetic modifications during murine T cell differentiation (Pekowska et al., 2011; Zhang et al., 2012; Hu et al., 2018; Wei et al., 2011), we still have a limited understanding of the epigenetic mechanisms controlling human T cell differentiation. Thus, describing these mechanisms is of crucial importance, given the potential relevance for immune-related diseases (Clave et al., 2018; Kernfeld et al., 2018) as well as for the oncogenic transformation of T cell precursors (Aifantis et al., 2008).

Human T lymphocyte ontogeny in the thymus requires the ordered somatic recombination of V, D, and J gene segments at the TCR loci to determine the development into either γδ or αβ T cell lineages (Dik et al., 2005b; Spits, 2002). While the TCRD, TCRG, and TCRB loci rearrange at the early double negative (DN) tCD34 (CD34+/CD3−/CD4−/CD8+) stage (Fig. S1 A), the TCRA locus germline expression and rearrangements start at the early cortical (EC) stage and reach high levels of mature TCRA expression by late cortical (LC) and subsequent single positive (SP) stages (Dik et al., 2005b). It has been previously shown that the

*Université de Paris (Descartes), institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1131, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France; 2Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale, Theories and Approaches of Genomic Complexity, UM1090, Marseille, France; 3Equipe Labellisée Ligue Contre le Cancer, Marseille, France; 4Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany; 5Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, Netherlands; 6Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; 7Universitat Pompeu Fabra, Barcelona, Spain; 8Université Paris Diderot, Institut Universitaire d’Hémato logie, EA-3518, Assistance Publique-Hôpitaux de Paris, University Hospital Saint-Louis, Paris, France; 9Department of Pediatric Hematology and Oncology, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France.

*A. Cieslak and G. Charbonnier contributed equally to this paper; **S. Spicuglia and V. Asnafi contributed equally to this paper; Correspondence to Vahid Asnafi: vahid.asnafi@aphp.fr; Salvatore Spicuglia: salvatore.spicuglia@inserm.fr.

© 2020 Cieslak et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.nupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
TCRA gene enhancer (Eα enhancer) is essential for the tight regulation of TCRA rearrangements and expression during αβ T cell differentiation (Bassing et al., 2003; Sleckman et al., 1997). The Eα enhancer is the only known enhancer associated with the TCRA locus and is both necessary and sufficient to provide lineage- and stage-specific TCRA rearrangements and expression. The Eα activates transcription originating from the T early α (TEA) promoter, located upstream to the Jα gene segments (100 kb upstream to Eα), thus preparing the S’Ja chromatine state for the initial recombination events (Abarrategui and Krangel, 2009; Hawwari and Krangel, 2005; Villey et al., 1996). As such, the Eα enhancer represents a paradigm of gene regulation whereby a nucleoprotein complex is assembled during T cell differentiation in order to drive timely and stage-specific rearrangements of the TCRA locus (Carico and Krangel, 2015; Giese et al., 1992, 1995; Hernández-Munain et al., 1999; Roberts et al., 1997; Spicuñgía et al., 2000). However, the factor, either activators or repressors, governing the stage-specific activation of Eα remains elusive.

To investigate the epigenetic mechanisms guiding the T cell identity, we generated epigenomic and transcriptomic data within the BLUEPRINT Epigenome Project (Stunnenberg and Hirst, 2016), including whole-genome bisulfite sequencing (WGBS) DNA methylation maps, genome-wide maps of six histone modifications, and RNA expression of key thymic subpopulations of human T cell precursors. The integration of other epigenomic dataset from BLUEPRINT and Roadmap, covering the development of the major branches of the hematopoietic system, provided a comprehensive view of the epigenomic dynamics at play at crucial transitions of T cell commitment and development. We observed that most of the distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. This was best exemplified by the Eα enhancer that was found to be in an open and unmethylated chromatine structure well before the activation of the TCRA gene.

Our thorough gene expression analysis revealed that the HOX A5-9 transcription factors are down-regulated concomitantly to Eα activation and repress its activity. These findings highlight the key role of HOXA proteins in the epigenetic control of TCRA rearrangements and illustrate a general mechanism of “setting the stage” for orchestrated developmental progression as soon as the inhibition is removed.

Results
A reference epigenome of human early T cell differentiation
As part of the BLUEPRINT project, we generated reference epigenomes of sorted human thymocytes encompassing the main differentiation stages (Fig. S1, A and B), including immature DN (CD34+ (tCD34: CD34+/CD3−/CD4−/CD8−), EC (TCRaβ+/CD3+ CD4−/CD8−), LC (TCRaβ−/CD3+CD4+/CD8−), SP CD4 (SP4: TCRaβ+/CD3+CD4+/CD8−), and SP CD8 (SP8: TCRaβ+/CD3−/CD4+/CD8−)). Reference epigenomes comprise chromatim immunoprecipitation sequencing (ChiP-seq) for four histone marks positively associated with gene expression (H3K36me3, H3K4me1, H3K4me3, and H3K27ac) and two with silent chromatin (H3K27me3 and H3K9me3), WGBS, and RNA sequencing (RNA-seq; details in Table S2). Replicates from different individuals were merged and normalized to provide a consistent set of reference epigenome tracks for each differentiation stage.

To obtain a global view of the epigenomic landscape of human hematopoiesis, we integrated the ChiP-seq data of each thymic subpopulation into 11 chromatin states derived from the six histone modifications (Fig. S1 C) and compared them with chromatin states for other hematopoietic populations generated by the BLUEPRINT and Roadmap consortia. Multiple correspondence analysis (MCA) based on reduced chromatin states (Carrillo-de-Santa-Pau et al., 2017) allowed us to create a multidimensional space, where the different hematopoietic samples were placed depending on their chromatine state vectors across the genome. Clustering based on the first two components grouped samples from the same cell type while the main hematopoietic populations were clearly separated from each other, in agreement with previous results (Carrillo-de-Santa-Pau et al., 2017; Fig. 1 A). The first component revealed two main differentiation branches, representing the myeloid and lymphoid cell lineages, while the hematopoietic stem cells (HSCs) localized in a central position. The second component reflected the differentiation stage and the environmental context of each cell type with respect to the HSCs. Interestingly, the thymocyte subpopulations clustered tightly to the peripheral T cells, except for the most immature T cell precursors (tCD34), which clustered close to HSCs and complied with an incomplete commitment to the T cell lineage (Dik et al., 2005b; Fig. 1 A).

To assess whether the epigenomic states were consistent with the known biological functions of each cell type, we analyzed the enrichment in biological processes of genes associated with active enhancer states (Fig. S1 C). The enhancer regions found in each population were significantly enriched in pathways associated with the corresponding lineage (Fig. 1 B). For instance, thymic and peripheral T cells were associated with TCR signaling, B cells with B cell antigen receptor signaling, and myeloid lineages with phagocytosis and innate immunity.

Lineage-specific genes displayed the expected chromatin dynamics across the hematopoietic populations (Fig. 1 C). The stem cell marker CD34 was associated with open chromatin states in HSC and tCD34 early T cell precursors; the CD3 cluster of T cell receptors was open in T cell samples; the B cell master transcription factor PAX5 was associated with open chromatin in B cells; the myeloid marker CD33 was associated with open chromatin in HSCs, monocytes, and neutrophils but only transcribed in the myeloid lineage. Thus, the epigenomic states, including those from the newly generated thymocyte populations, were able to capture the main biological differences between cell types and were consistent with their known underlying biological processes.

We next investigated more deeply the epigenetic dynamics during human T cell differentiation. Chromatin states clearly separated the main stages of thymic T cell differentiation from HSC and peripheral T cells (Fig. 1 D), suggesting a specific chromatin signature of thymic T cell precursors. While the first dimension (separating T cells from HSC and tCD34 precursors)
Figure 1. Reference epigenomes of human hematopoietic and T cell precursors. (A) MCA of human hematopoietic samples based on chromatin states. Ovals highlight the major subtypes of hematopoietic lineages. (B) Top enriched MSigDB pathways associated with active enhancers found in each hematopoietic population of A. Vertical lines delineate the main hematopoietic lineages. (C) Chromatin state profiles at representative genes of the different hematopoietic lineages. The color code is indicated at the right of the panel. (D) MCA of HSC and human T cell populations based on chromatin states. (E) Sankey diagram depicting the main epigenomic transitions between the HSC and the human T cell populations. The width of the arrows is proportional to the number of regions associated with the indicated chromatin state. The color code represents the merged chromatin states as indicated at the right of the panel. (F) Chromatin state profiles at representative genes specifically expressed at different stages of T cell differentiation. The color code is as in C. BH, Benjamini–Hochberg. Mac, macrophages; Neu, neutrophils; Mono, monocytes.
was enriched with cell homeostasis and activation functions, the second dimension (separating the thymocyte populations from peripheral T cells and HSC) was specifically enriched with V(D)J recombination (Fig. S1 D). To get a global view of the main epigenetic changes occurring during T cell differentiation, we represented the chromatin state transitions among HSCs, thymic subpopulations, and peripheral T cells using a Sankey diagram (Fig. 1 E). We observed a progressive increase of heterochromatin regions along with a decrease of active enhancers and transcribed regions. This suggests a gradual loss of chromatin state transitions among the thymocyte populations. Distal ATAC peaks showed a preferential association of hematopoietic factors in proximity to genes associated with T cell differentiation and function, while tCD34-specific peaks were associated with more general functions (Fig. 2 C). Consistent with this, analysis of conserved transcription factor binding sites in tCD34-associated peaks showed a preferential association of hematopoietic factors such as TAL1 and AML1 (RUNX1), while transcription factors involved in T cell differentiation and activation such as E47 (TCF3), STAT, and ETS were preferentially found in EC-associated regions. These observations strongly indicate that DNA hypomethylation marks distal regulatory elements independently of their activation status, both preceding to and persisting after enhancer activation.

Chromatin opening precedes enhancer activation

The above analyses suggested that the activation onset of distal regulatory elements might be preceded by DNA demethylation. This raised the question of whether premarked enhancers (DNA hypomethylated) are already in an open chromatin configuration (nucleosome free). To address this issue, we performed assay for transposase-accessible chromatin (ATAC) experiments in tCD34 and EC stages, as these stages reflected the major epigenetic transitions (Fig. 1 and Fig. 2). We identified 2,084 and 2,905 distal ATAC peaks in tCD34 and EC, respectively (Fig. 3, A and B). About one-third of the distal ATAC peaks (1,108) were shared between the two thymic populations. Distal ATAC peaks present in both tCD34 and EC stages and specific to EC were in proximity to genes associated with T cell differentiation and function, while tCD34-specific peaks were associated with more general functions (Fig. 3 C). Consistent with this, analysis of conserved transcription factor binding sites in tCD34-associated peaks showed a preferential association of hematopoietic factors such as TAL1 and AML1 (RUNX1), while transcription factors involved in T cell differentiation and activation such as E47 (TCF3), STAT, and ETS were preferentially found in EC-associated peaks (Fig. 3 D). As predicted, ATAC peak regions were constitutively demethylated in tCD34 and EC stages, independently of whether the regions were specifically open in tCD34 or EC thymocytes (Fig. 3 E). This suggests that DNA demethylation may both precede enhancer opening and hold after enhancer closing. Thus, DNA demethylation seems to represent a primary marking of distal regulatory regions, independently of the actual enhancer activity or chromatin accessibility.

Next, we asked whether constitutively open and demethylated regions could be associated with changes in enhancer activity or chromatina c c e s s i b i l i t y .
Figure 2. DNA demethylation is a hallmark of distal regulatory elements irrespective of their activation status in T cells. (A) Heatmap displaying DNA methylation scores of distal hypomethylated regions in the indicated thymocyte populations, based on WGBS. Regions are clustered into eight groups using k-means. The scale of DNA methylation is indicated at the bottom of the panel. (B) H3K27ac profiles in the indicated thymocyte populations, centered on the hypomethylated clusters defined in A. (C) Median of the RNA-seq signal of genes associated with the hypomethylated clusters defined in A, in the indicated thymocyte populations. (D) Fraction of thymus-specific genes associated with each hypomethylated cluster defined in A, and in all genes (AG). The Human Protein Atlas version 19.2 (Uhlen et al., 2015) was used to assess tissue specificity. Inset shows the percentage of thymus-specific genes that is associated with a distal hypomethylated region. (E) Top GO biological processes enriched at genes associated with the hypomethylated clusters defined in A. Relevant hematopoietic and T cell related terms are highlighted. Labels are abbreviated as follows: neg, negative; pos, positive; reg, regulation; pol, polymerase.
(F) K-means clustering of DNA hypomethylated regions with dynamics H3K27ac levels among thymocyte subpopulation. The heatmap of H3K27ac levels in the indicated thymocytes subpopulation is shown. (G) H3K27ac, H3K4me1, and WGBS profiles in the indicated thymocyte populations centered on the clusters defined in E. Same color code as in B. (H) Z-scores of the median H3K27ac signal of the regions defined in E and RNA-seq signal of associated genes in the indicated thymocyte populations of genes associated with clusters defined in E. (I) Chromatin states, H3K27ac, and WGBS profiles of representative loci displaying constant hypomethylation, but dynamic H3K27ac enrichments in the indicated thymocyte populations (red rectangles). The regulation of the associated gene, specifically expressed at different stages of T cell differentiation, is indicated at the top of each panel. The normalized signal range is indicated by brackets. For WGBS track, red and blue colors indicate methylated and unmethylated CpGs, respectively. The color code for the ChromHMM track is as in E.

Our findings are consistent with murine data showing that Eα is occupied by transcription factors from the early CD4−/CD8−/CD8+ double negative (DN) thymocytes (Fig. 4 A). In contrast to the TCRA locus, the Eα enhancer was found to be in an open chromatin configuration since the very immature stages of thymic maturation (ATAC), when it was fully demethylated (WGBS) and enriched in H3K4me1 (a mark of poised enhancers; Fig. 4, A and B). By the EC and LC stages on, the Eα region had gained substantial levels of H3K27ac and, in particular, H3K4me3, previously shown to be associated with highly active enhancers (Pekowska et al., 2011).

The findings are consistent with murine data showing that Eα is occupied by transcription factors from the early CD4+ / CD8− DN stage of thymocyte development, thus preceding the transcriptional activation of TCRA locus, which takes place after the β-selection (Hernández-Munain et al., 1999; Spicuglia et al., 2000). We have previously suggested that the Eα enhancer activation occurs via a conformational change of a preassembled nucleo-protein complex (Cauchy et al., 2016; Spicuglia et al., 2000). Analysis of published ChIP-seq experiments for ETS1, RUNX1, E47/TCF3, GATA3, and Ikaros lymphoid transcription factors (Zacarias-Cabeza et al., 2015; Koch et al., 2011; Lepoirre et al., 2013; Wei et al., 2011; Vanhille et al., 2015; Oravez et al., 2015) confirmed that Eα is already occupied by these activating transcription factors in murine DN thymocytes (Fig. S4 A). Importantly, transcription of short noncoding enhancer RNAs, a hallmark of active enhancers, was only observed in murine late CD4+ /CD8− double positive (DP) thymocytes (Fig. S4 B). Furthermore, as shown by ChIP-quantitative PCR (ChIP-qPCR) assays (Fig. 4, C and D), Eα is already bound by its activating ETS1 and RUNX1 transcription factors in human immature tCD34 thymocytes. This was also confirmed for RUNX1 by ChIP-seq experiment (Fig. 4 E).

Overall, these data suggest that Eα is in an open chromatin state and is already bound by its activating transcription factors from the very immature stages of human and murine thymic maturation. As Eα remains inactive until the cortical stages, this suggests that a repressive mechanism prevents its activity during the early stages of thymic maturation in mice and humans. While the functions of Eα have been intensively studied (Carey, 1998; Hawwari and Krangel, 2005; Ho et al., 1989; Winoto and Baltimore, 1989; Fig. 4 A).

The HOXA locus is progressively repressed during early T cell differentiation

Given that Eα is already bound by key transcription factors required for its activation, we hypothesized that the loss of a transcriptional repressor might explain the stage-specific activation of Eα. To explore this possibility, we analyzed RNA-seq of the main human thymic subpopulations to identify transcripts that were down-regulated at the TCR β-selection. Unsupervised gene expression analysis identified 19 clusters, each corresponding to transcripts with different gene expression kinetics during thymic maturation (Fig. 5 A). Cluster C13, containing 893 different transcripts, presented the expected profile of gene expression modulation, with high expression at the early stages and gradual reduction during maturation up to the extinction of expression after the β-selection stage (immature single positive [ISP] > EC > LC; Fig. 5 A). Interestingly, this cluster
Figure 3. Chromatin opening precedes enhancer activation. (A) Overlap between ATAC peaks identified in tCD34 and EC thymocytes. (B) Clustered heatmap of ATAC signal in tCD34 and EC thymocytes (left panels). Scores associated with the color code is on the right. (C) Top GO biological processes enriched in genes associated with distal ATAC peaks specific to either tCD34 or EC thymocytes, or common to both. (D) Conserved TFBS enriched at distal ATAC peaks specific to either tCD34 or EC thymocytes, or common to both. (E) Average profiles of WGBS signals corresponding to the ATAC peaks defined in A. (F) Heatmap of H3K27ac signals based on common ATAC peaks ordered by the H3K27ac ratio between tCD34 and EC. (G) Average H3K27ac profiles centered on ATAC peaks with relative high H3K27ac signal in either tCD34 or EC thymocytes or remained unchanged, as defined in E. (H) Violin plots of the RNA-seq signal of genes associated with distal ATAC peaks (as defined in E) in the indicated thymocyte populations. Right panels represent RNA-seq data from Casero et al. (2015). Statistical significance was assessed by a Wilcoxon rank-sum test. **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 1e-04. (I) Percentage of significantly regulated genes associated with distal ATAC peaks defined in E. (J) Top significantly induced genes associated with ATAC peaks and H3K27ac gain. The expression fold change between Thy3 (tCD34) and Thy4 (EC/LC) thymocytes is indicated.
contained several members of the HOX-like (HOXL) subclass of homeodomain (Hox) transcription factors (Fig. 5 B and Fig. S5, A and B). Of note, ectopic expression (i.e., oncogenic deregulation by chromosomal translocations) of the HOX family of transcription factors (i.e., TLX1 and TLX3 from the NKL subclass) was reported to exert repressive activity on Eα in T cell acute lymphoblastic leukemia (T-ALL), an aggressive cancer developed from thymic precursors (Dadi et al., 2012). We then...
Figure 5. HOXAS-9 proteins are progressively repressed during human thymopoiesis, bind to Eα, and repress its activity. (A) An unsupervised RNA-seq gene expression classification identified 19 clusters with different profiles of gene expression modulations. (B) Cluster 13 identifies 85 transcription factors in...
focused on HOXL genes pattern expression during human thymopoiesis. A TaqMan Low-Density Array (TLDA) was designed to evaluate the expression of all HOXL members in an independent set of human thymic subpopulations (Table S1). Unsupervised TLDA clustering showed that HOXA5, HOXAX6, HOXAX7, and HOXAX9 genes best fitted the relevant expression profiles (Fig. 5 A and Fig. S5, C–E). In particular, HOXAX9 appeared to be a good candidate, as its down-regulation perfectly coincides with the Ca up-regulation, the presence of TEA-Ca germline transcripts, and the beginning of TCRA rearrangements (Fig. 5, D–H).

HOXAX9-9 proteins repress Ea activity via their homeodomain
To test the possibility that HOXAX9-9 proteins interfere with Ea transcriptional activity, we used a gene reporter assay in which the expression of chloramphenicol acetyltransferase (CAT) is under the control of Ea (Ea-CAT) (Giese et al., 1995). The ectopic expression of HOXAX5-9, -6, -7, and -9 repressed Ea-regulated CAT expression by three- to fivefold (Fig. 5 I). Next, we evaluated the level of Ea-CAT repression of the truncated forms of HOXAX proteins, lacking their homeodomains (ΔHD). As shown in Fig. 5 I, all truncated HOXAX forms (ΔHD) exerted significantly reduced repressive activity compared with their respective full-length (FL) proteins. The reduced activity of HOXAX-ΔHD proteins was not due to their lack of nuclear localization because they were mainly localized in the nucleus as their FL counterpart (Fig. S5 F). Using the same expression vectors, we tested whether HOXAX-9 proteins can repress TCRA activity in the HOXAX-negative and TCRAβ-positive T-ALL cell line Jurkat. As shown in Fig. 5 J, HOXAX overexpression resulted in the strongest repression of the TCRA gene expression. Additionnally, we found that H3K27ac signal, a hallmark of active enhancers, is significantly lower in Ea in HOX-overexpressing T-ALLs, compared with T-ALLs without deregulation of homeodomain genes (Fig. 5 K). We concluded that HOXAX-9 proteins repress Ea transcriptional activity in a homeodomain-dependent manner.

ChIP assays using Loucy (HOXA overexpressing) or HeLa (HOXA-negative) cell lines nucleotransfected with Flag-tagged expressing vectors for FL HOXAX5, -6, -7, or -9, showed significantly enriched Ea DNA (Fig. 5 L and Fig. S5 G). Importantly, HOXAX proteins without their homeodomain (ΔHD) displayed reduced binding to Ea. As Ea lacks the AT-rich DNA motif TAATNA characteristic of the HOX homeodomain binding, we hypothesized that HOXAX proteins exert their Ea repressive activity by interacting with ETSI, as we showed for TLX proteins, members of the NK1 subclass of homeodomain proteins (Dadi et al., 2012). Co-immunoprecipitation (IP) assays with anti-HOXAX antibody in human thymocytes recovered both ETSI and HOXAX9 antibodies in Loucy cell line and tCD3+/CD3− and tCD3+/CD3+ thymocytes. Scale bars, 10 μm. On the right, the quantification of the number of PL A dots per cell is presented with the mean values and SD.
found more TCRγδ-expressing cells when HOXA9 was overexpressed (22.0 ± 11.6%) compared with control cells (10.8 ± 4.6%; Fig. 6, A–C). The difference was significantly pronounced after 8 wk of co-culture (HOXA9-GFP 26.8 ± 15.3% vs. control GFP 6.8 ± 3.1%; Fig. 6, A–C). TCRγδ cells in HOXA9-overexpressing conditions were mostly CD4+/CD8+ DP compared with the TCRγδ cells in controls (Fig. 6 D). We then analyzed the TCRα rearrangements and observed fewer TCRA rearrangements under HOXA9-overexpressing conditions, with a clear difference by the fifth week of culture (Fig. 6 E). Additionally, using the CRISPR-Cas9 system, we performed knock-out of HOXA9 and deletion of HOXA5-9 genes in CD34+ UCB cells, which were differentiated on OP9-DL1 stroma cells. TCRA gene rearrangements were analyzed at day 28 of co-culture, demonstrating a substantial increase in HOXA9 knock-out and HOXA5-9 deletion conditions as compared with controls (Fig. 6 F).

To confirm the role of the HOXA9 protein in TCRA rearrangements and T cell development, we performed in vitro and in vivo experiments in mice. Murine DN thymocytes were transduced with either a control vector (GFP) or a HOXA9 overexpressing vector (HOXA9-GFP) and differentiated in vitro on OP9-DL1 stroma cells (Fig. 7 A). In control conditions and following 9 d of co-cultures, 44.4 ± 6.8% of the immature thymocytes developed into TCRαβ-expressing cells. When HOXA9 was overexpressed, however, few thymocytes (14 ± 7%) differentiated into TCRαβ cells, developing instead into CD4+CD8+ DP TCRγδ cells (Fig. 7, B–E). To confirm these in vivo data, we transplanted HOXA9-overexpressing DN thymocytes and their control counterparts into sub-letally irradiated Rag2−/−γc−/− mice (Fig. 7 F). At 3 wk after transplant, control cells became virtually exclusively TCRαβ-positive, whereas HOXA9-overexpressing thymocytes repressed TCRαβ expression and expressed TCRγδ in a significant proportion of T cells (Fig. 7, G–I).

Taken together, these results indicated that the enforced expression of HOXA9 blocks TCRA rearrangements, thus affecting αβ T cell development.

Discussion

We took advantage of our comprehensive epigenomic resource encompassing the main thymic populations of human T cell precursors to shed light on the epigenomic dynamics of a well-defined developmental program. First, we found that the epigenetic landscape positions thymocyte populations between HSC and mature T cells within the lymphoid lineage. T cell differentiation was accompanied by major remodeling of histone modifications involving a progressive closing of the chromatin landscape, clearly reflecting the Waddington model of cellular differentiation (Waddington, 1957). Second, our analysis revealed an unexpected persistence of DNA demethylation at distal regulatory regions. Interestingly, distal hypomethylated regions were associated with >64% of tissue-specific genes (Fig. 2 D, inset). A high proportion of distal regulatory regions were found to be constitutively hypomethylated irrespectively of their activation status throughout T lymphoid development, thus suggesting that DNA hypomethylation might work as a major epigenetic hallmark of enhancer preassembly and memory. Finally, we disentangled the regulatory mechanisms leading to stage-specific activation of the Ea TCRA enhancer, a paradigm of enhancer organization and function (Carey, 1998). Ea is found in a hypomethylated and open chromatin configuration at the very early stages of T cell differentiation, well before the activation of the TCRA locus, where the HOXA proteins function as developmentally regulated repressors of Ea.

During T cell thymopoiesis, Ea regulates the chromatin structure of TCRA gene segments by its ability to recruit a unique combination of transcription factors and induce modification of histone marks (McMurry and Krangel, 2000). We here demonstrated that Ea is already bound by its activating transcription factors, but stays nonfunctional at the earliest stages of the thymic maturation. Indeed, at these stages, Ea is found in an open chromatin state, fully demethylated and associated with histone marks characteristics of poised enhancer defined by enrichment of H3K4me1 and reduced levels of H3K27ac. Additionally, Ea is surrounded by the presence of H3K27me3, indicating a repressive mechanism acting on its
HOXA9 overexpression biases T cell development in humans. (A) Representative FACS plots representing TCRγδ expressing cells during T cell differentiation of human CD34+ UCB cells transduced with a HOXA9-GFP expressing vector or a control GFP vector. Presented cells are gated on the CD45+CD7+CD1a+ population. (B) Quantification of TCRγδ positive cells (as in A). Data are presented as means of three independent experiments with error bars as SEM. (C) Cell number of TCRγδ-positive cells (as in A and B). Data are presented as means of three independent experiments with error bars as SEM. (D) CD4 and CD8 expression of TCRγδ-positive cells at day 56 of human CD34+ UCB differentiation. Data are presented as means of two experiments with error bars as SEM. (E) Fluorescent PCR Genescan analysis of TCRA rearrangements detected in differentiated CD34+ UCB cells in HOXA9-overexpressing experiments. Representative of two different experiments. (F) Fluorescent PCR Genescan analysis of TCRA rearrangements detected in differentiated CD34+ UCB cells in CRISPR-Cas9 mediated HOXA9 knock-out and HOXA5-9 deletion experiments. Representative of two different experiments. P values were calculated by Student’s test. *, P < 0.05. SSC-A, side scatter area. ko, knockout; ctr, control.
activity, as suggested for developmentally regulated enhancers (Cruz-Molina et al., 2017; Rada-Iglesias et al., 2011; Zentner et al., 2011). Our results are also reminiscent of previous findings showing that cell type–restricted enhancers are premarked by DNA hypomethylation and binding of embryonic stem cell transcription factors, although they do not exhibit traditional enhancer epigenetic marks in embryonic stem cells (Kim et al., 2018; Xu et al., 2007).

HOXA proteins belong to a family of genes that shares a characteristic homeodomain protein fold, consisting of a 60-amino acid helix-turn-helix structure responsible for DNA binding and interactions with other proteins. HOXA functions are well established in the antero-posterior axis definition of body segment identity specification during embryogenesis (Carroll, 1995; Goodman, 2002; Lewis, 1978). Importantly, they also play a key role in controlling cell identity and differentiation of HSCs and progenitors (Lawrence et al., 1996; Magli et al., 1997). HOX genes are highly expressed in HSCs and progenitors, and their expression is silenced as cells become fully mature. Progressive down-modulation of HOXA transcripts was also reported during thymic cell maturation (Taghon et al., 2003). We now report that HOXA proteins repress the Eα activity in a homeodomain-dependent manner. All HOX homeodomains bind highly similar AT-rich DNA motifs (Berger et al., 1999).
The TAATNA recognition sequence seems to be critically important for DNA binding, as >98% of genome-wide HOXA9 binding sites in transformed myeloblasts contain a HOX motif (Huang et al., 2012). Additional specificity of HOXA proteins is achieved through a combination of motif affinity, interaction with cofactors, and context-specific chromatin accessibility (Choo et al., 2011; Slattery et al., 2011). The TAATNA HOX recognition sequence is, however, absent in the core HOX recognition sequence and may thus be involved in physiological repression of E proteins role in the maturation of thymocytes. Inversely, our HOXA9 overexpression experiments suggest a shift in lineage choice toward TCRδ-expressing cells in both in vitro and in vivo experiments. This hints at an important role for physiological repression of Ea activity by HOXA proteins on thymocyte development. These data also pave the way for further investigation of the HOXA proteins roles in the αβ versus γδ T cell lineage choice.

The blockage of Ea activity and subsequent lack of TCRα rearrangements during thymic differentiation can have severe implications. The cortical thymic maturation arrest observed in T-ALLs overexpressing Tlx1 or Tlx3 proteins is caused by the recruitment of Tlx1/Tlx3 to Ea by interacting with ETS1, leading to reduced enhancer activity and consequent inhibition of TCRα gene expression and thymocyte maturation arrest (Dadi et al., 2012). This maturation block can be overcome by Tlx1/3 abrogation or by downstream TCRα β expression, which leads to TCRα rearrangement and apoptosis. The deregulation of HOX genes has also been reported in acute leukemias (Alharbi et al., 2013), especially those with mixed-lineage leukemia/KMT2A translocations. Mixed-lineage leukemia fusion proteins constitutively up-regulate HOXA9 expression (Ferrando et al., 2003). HOX genes are also overexpressed in T-ALLs with PICALM-MLLT10 or SET-NUP214 translocations or rearrangement of HOXA into a TCR locus (HOXA-TCR; Dik et al., 2005a; Soulier et al., 2005; Speleman et al., 2005; Van Vlierbergh et al., 2008). These T-ALLs are predominantly immature or express a TCRγδ, suggesting a role for HOXA gene overexpression and Ea inhibition in the development of these leukemias. Taken together, we propose that the endogenous HOXAS-9 transcription factors restrain the activity of a fully assembled Ea enhanceosome and prevent premature TCRα rearrangement in early thymocyte precursors, thereby providing the tight epigenetic control of Ea activation.

Overall, these epigenomic resources provide a detailed molecular framework to guide future studies on early T cell differentiation in human and their potential implications in leukemogenesis as well as thymic origins of immune-related disorders (Clave et al., 2018; Kernfeld et al., 2018).

Table 1. TCRβ rearrangement analysis in the TCRγδ T-ALLs according to their deregulation of homeodomain genes

TCRγδ T-ALL patients (n = 95) No. (%)	TCRβ rearrangements	VDJ	DJ	GL
HD-overexpressing	71 (75)	45	23	3
HOXA	39 (41)	16	20	3
Tlx1/3	32 (34)	29	3	0
HD-negative	24 (25)	3	10	11

Abbreviations: DJ, incomplete TCRβ rearrangements; GL, germline (TCRβ not rearranged); HD, homeodomain gene (i.e., HOXA, Tlx1, Tlx3).
Materials and methods

Cell lines

HeLa cells were maintained in DMEM, high glucose (Thermo Fisher Scientific, 41965-062) supplemented with 10% FBS (Thermo Fisher Scientific, 10270-106) and 1% penicillin/streptomycin.

Loucy (ACC-394) and Jurkat cell lines (ACC-282) were cultured in RPMI-1640 medium (Thermo Fisher Scientific, 21875-091) supplemented with 20% and 10% FBS, respectively, 1% penicillin/streptomycin, and 1× sodium pyruvate.

Primary cells preparation

Primary cells preparation

Human CD34+ UCB cells were isolated from cord blood using lymphocyte separation medium (Eurobio, CMSMSL01-01). Next, immature CD34+ UCB cells were positively selected with direct CD34+ progenitor cell isolation kit (Miltenyi Biotec, 130-046-070) using the LS separation columns (Miltenyi Biotec, 130-042-401). The CD34+-positive cell population was further purified by sorting with FACS ARIA III to obtain 98–99% purity of CD34+ UCB cells.

Human thymic subpopulations were obtained from children undergoing heart surgery. Informed consent was obtained from the parents. Thymi were dissociated until the single-cell suspension. Specific subpopulations were purified by sorting using FACS ARIA III (BD Biosciences). For the immature subpopulation, thymocytes were prepurified by depletion of CD3- and CD8-positive fractions by magnetic-activated cell sorting using CD3 MicroBeads (Miltenyi Biotec, 130-050-101) and CD8 MicroBeads (Miltenyi Biotec, 130-045-201) respectively. Antibodies used for cell labeling of the CD3+CD8- thymic fraction were as follows: CD1a FITC, clone NA1/34 (Dako, F7141), CD34 APC (BD Biosciences, 345804), CD8 PC7 (Beckman, 737661), CD3 Alexa 700 (BD Biosciences, 557943), CD4 V450, clone RPA-T4 (BD Biosciences, 560345), and CD45 V500, clone H130 (BD Biosciences, 560777). Final purity after sorting was over 95%.

Mouse thymic cells from 6- to 8-wk-old C57Bl/6Rj mice were extracted and mechanically disrupted on a 75-µm nylon cell strainer. Cells were washed twice with cold PBS supplemented with 2% of FBS. DN thymocytes were isolated by depletion of CD4- and CD8-positive fractions using magnetic beads (Miltenyi Biotec, 130-117-043 and 130-117-044, respectively). For maximum purity, the sorting of DN cells was performed using a FACS ARIA III.

Rodents

C57Bl/6 (CD45.2) mice were purchased from Janvier Labs. Rag2^{−/−}γc^{−/−} (CD45.1) mice used in the in vivo experiments were purchased from The Jackson Laboratory. All experiments were performed according to procedures approved by the Committee of Paris Descartes University.

T-ALL patients

150 adult and pediatric TCRβ- and TCRγδ-expressing T-ALLs were selected from the Necker-Enfants Malades Bio-bank collection (http://www.biobanques.eu/fr/nous-connaître/membres/item/prb-necker-paris) based on their DNA/cDNA availability. Studies were conducted in accordance with the Declaration of Helsinki and approved by local and multicenter research ethical committees (Group for Research in Adult Acute Lymphoblastic Leukemia—GRAALL NCT00222027 and NCT00327678). Informed consent was obtained from all patients. Leukemic blasts were isolated from peripheral blood of T-ALL patients using Ficoll gradient separation.

Reference epigenomes of human thymopoiesis

Five sorted human thymic subpopulations (tCD34, EC, LC, SP4, and SP8) were used for ChIP-seq (H3K4me3, H4K4me1, H3K27ac, H3K27me3, H3K36me3, and H3K9me3) and WGBS following the BLUEPRINT protocol (http://dcc.blueprint-epigenome.eu/s/md/methods). Briefly, for ChIP-seq of histone marks, sorted thymic samples were incubated with 1% formaldehyde (Merck, F8775) in PBS for 10 min at room temperature. Next, 1/10 volumes of quenching solution of 1.25 M glycine (Merck, GE17-1323-01) were added to the medium and were shaken for 5 min at room temperature. Cells were collected by centrifugation and washed once with PBS-BSA 0.5%. For WGBS sequencing, DNA was extracted from sorted thymic subpopulations using the Nucleon BACC2 extraction kit (Merck, GERPN8502) according to the supplier’s instructions.

Processed data were retrieved from the BLUEPRINT project. To complement the reference epigenomes, additional ChIP samples were sequenced in house in single-end 75 nt mode using the NextSeq 500/550 (Illumina) according to the manufacturer’s instructions, and processed following the BLUEPRINT protocol. Aligned ChIP-Seq reads from multiple donors were merged for each thymic subpopulation (details in Table S2 and Table S6).

RNA-seq of human thymopoiesis

Six sorted human thymic subpopulations (tCD34, ISP, EC, LC, SP4, and SP8) were used for poly(A)-enriched RNA-Seq. Fragments were sequenced in stranded paired-end mode (2 × 50 bp) using the SOLiD HQ5500XL platform (Life Technologies; Table S2 and Table S6). SOLiD RNA-seq data were processed using LifeScope (Life Technologies) and TopHat using default parameters. Thy3 and Thy4 RNA-seq samples from Casero et al. (2015) were retrieved and aligned using STAR and Ensembl GRCh38 release 93 annotation track. Quantification in genes for both experiments was done with Subread FeatureCounts. GeTTMM count normalization (Table S3; Smid et al., 2018), and differential expression analysis were done using EdgeR (Table S4).

ATAC-seq of human thymopoiesis

Four sorted human thymic subpopulations (CD34+1a+, CD34+1a−, EC, and LC) from two donors were used for ATAC-seq. 5 × 10⁴
thymocytes were washed with cold PBS and lysed in 50 μl of cold lysis buffer (10 mM Tris-HCL, pH 7.4; 10 mM NaCl; 3 mM MgCl2; and 0.1% Igepal CA-630). Transposition reaction was performed in 50 μl of 1× Tagment DNA reaction buffer supplemented with 2.5 μl of TDE1 Tn5 Transposase from Nextera DNA Library Prep Kit (Illumina, FC-121-1030) at 37°C for 30 min. Directly after transposition, purification using MinElute PCR Purification kit (Qiagen, 28004) was performed, followed by sequencing. Samples were sequenced in house in single-end 75 nt mode using the NextSeq 500/550 (Illumina) according to the manufacturer’s instructions. Reads were trimmed with sickle and aligned with bowtie2 using default settings. Aligned reads from tCD34+1a− and tCD34+1a+ populations from the two donors were merged to generate the tCD34 ATAC sample (Table S2 and Table S6).

Chromatin segmentation and space generation

Merged ChIP-seq for each thymic subpopulation were segmented with ChromHMM (Ernst and Kellis, 2017) using the 11-state chromatin model from Carrillo-de-Santa-Pau et al., 2017 to complement their published chromatin states from other hematopoietic regions. With variable chromatin states across hematopoietic cell types were extracted using Chromdet and the five-state collapse model from Carrillo-de-Santa-Pau et al., 2017. MCA was done using FactoMineR R package, and cell-type delimitation ellipses were manually added afterward. The Sankey plot was generated using the riverplot R package. Genome browser views were produced with IGV, then compacted with Inkscape.

Functional enrichment analysis

Functional enrichment analyses were produced using a custom pipeline to automate multi-sample queries to the Genomic Regions Enrichment of Annotations Tool (GREAT) web service. In summary, features were converted to hg19 assembly using crossmap and queried with rGREAT R package, and cell-type delimitation ellipses were manually added afterward. The Sankey plot was generated using the riverplot R package. Genome browser views were produced with IGV, then compacted with Inkscape.

Definition of distal regulatory elements and association to genes

Hypomethylated CpG regions were defined from WGBS following the BLUEPRINT protocol (http://dcc.blueprint-epigenome.eu/ #/md/bs_seq_grch38). Distal regulatory regions were defined as hypomethylated regions in at least one thymic subpopulation falling between 2 and 2,000 kb from the closest gene, based on the subset of Ensembl release 93 annotation track containing only protein-coding as well as TCR and immunoglobulin loci. Regions overlapping repeats from repeatMasker, mitochondrial, and sexual chromosomes or exhibiting standard deviation >0.05 between donor samples from the same thymic subpopulation were filtered out. Constitutive hypomethylated distal regulatory elements were defined as those with CpG mean methylation signal <0.25 for all thymic subpopulation samples. Distal cis-regulatory regions from WGBS and ATAC peaks were associated with both their nearest upstream and downstream genes as long as they were within 2,000 kb range.

Clustering

Clustering was done by k-means using Lloyd algorithm and Pearson distance on mean CpG signal in hypomethylated regions (Fig. 2 A), on qualitative H3K27ac peak presence (Fig. 2 F), and on qualitative ATAC peak presence (Fig. 3).

Normalization and peak-calling

ChIP-seq coverage tracks were computed using DANPOS and quantile-normalized against SP8 samples, as an arbitrary reference. ATAC-seq coverage tracks were computed using deepTools bamCoverage with RPKM normalization. Peaks for both ChIP-seq and ATAC-seq were called using Macs2. Profiles and heatmaps were generated using deepTools plotProfile and plotHeatmap, respectively.

Tissue specificity

Consensus RNA-seq signals from 61 tissues were retrieved from the Human Protein Atlas version 19.2 (http://www.proteinatlas.org/download/proteinatlas.tsv.zip; Uhlén et al., 2015). Preferential expression measure (Huminiecki et al., 2003) was used to score differential expression of genes in thymus versus all other tissues with the exception of mature T cells, total peripheral blood mononuclear cells, and spleen. Genes with a preferential expression measure >0.1 were classified as thymus specific.

Motif enrichment

Conserved transcription factor binding sites were retrieved from the University of California, Santa Cruz genome browser. Binding motifs for the same transcription factor were merged. Clustered distal ATAC peaks were queried for enrichment against the merged set of motifs using the OLOGRAM tool (Ferré et al., 2019) from the Pygtftk package (Lopez et al., 2019).

Gene expression analysis

RNA was extracted using the RNeasy Mini Kit (Qiagen, 74104) and converted into cDNA using SuperScript III Reverse transcription (Thermo Fisher Scientific, 18080093). Real-time PCR reactions were performed using Taqman Universal PCR Master Mix (Thermo Fisher Scientific, 4304437) or SYBR Green PCR Master Mix (Thermo Fisher Scientific, 4309155). Real-time qPCR (RQ-PCR) was performed on an Applied Biosystems 7900HT Fast Real-Time PCR system. Primer sequences are in Table S5.
Multiplex TCRA RT-PCR analysis

TCRA cDNA was amplified from Ca (6-fluorescein amidite fluorophore-labeled) and various Va in five multiplex RT-PCRs (Villarrese et al., 2018). Briefly, 20 ng of CDNA was amplified per PCR tube with Taq HotStar Taq DNA Polymerase (Qiagen, 203203), 2 mM of MgCl2, 20% Q solution, 10 mM deoxynucleoside triphosphate final concentration, and 10 pmol of each primer. The Taq polymerase was activated for 15 min at 95°C. Then the DNA was amplified with 37 cycles at 94°C for 30 s, at 63°C for 45 s, and at 72°C for 1 min 30 s. The final elongation was 72°C for 10 min. Primer sequences are in Table S5. The analysis of rearrangements by multiplex fluorescent PCR was performed by separation of single-stand (denatured) PCR products in a capillary sequencing polymer and detected via automated laser scanning (3130 Genetic Analyzer, Applied Biosystems).

CAT reporter assay

HeLa cell lines were transfectioned using Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, 11668019) in the Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific, S1985026) according to the manufacturer’s instructions. Cells at 70% confluency were cotransfected with the Ea-CAT reporter construct together with expression vectors for ETS1-HA-His, LEF1-HA, and RUNX1-T7. To test the CAT repression, cells were additionally transfected with expressing vectors for FL forms of HOXA5-9 or homeodomain deleted forms: HOXA5-9ΔHD (aa 1-187), HOXAA-ΔHD (aa 1-147), HOXA7-ΔHD (aa 1-126), and HOXA9-ΔHD (aa 1-193). All HOXA proteins were cloned into the pEGFP-C1 vector (Clontech, 6084–1), where their N terminus were fused with GFP. After 24 h of incubation, expression of CAT activity was determined using the CAT ELISA kit (Merck, II36372/001) according to the manufacturer’s recommendations.

TCRA enhancer repression in Jurkat cell line

Jurkat cells were transected with FL and homeodomain depleted forms (ΔHD) of HOXA5-9 proteins (same as in CAT-ELISA experience). Electroporation transfection was performed using the Neon Transfection System according to the manufacturer’s instructions. At 48 h after transfection, the expression of the constant region of the TCRA gene (Ca transcript) was evaluated by quantitative RT-PCRs.

Quantification of H3K27ac level at Ea enhancer in T-ALL patients

H3K27ac ChIP-seq for mature T-ALL samples was quantile-normalized against an SP8 sample using DANPOS. Then H3K27ac coverage around Ea (chr14:22554500-22558500 in hg38 assembly) was quantified using DeepTools multibigwigSummary. T-ALL were divided into three groups according to homeodomain gene expression and classified as homeodomain-negative, HOXA5-9–positive, or TLX1/LX3-positive.

ChIPs

tCD34+, EC, and LC thymocytes were cross-linked for 10 min with 1% formaldehyde at 20°C and sonicated using a Branson 450 Sonifier Cell Disruptor to obtain DNA fragments of ~500 bp. ChIP was conducted with anti-RUNX1 (Abcam, ab23980), anti-ETSI (C20X; Santa Cruz, sc-350) or anti-IgG antibody (Abcam, ab37415) using Dynabeads Protein G for Immunoprecipitation (Thermo Fisher Scientific, 10003D). Extracted ChIP DNA was purified by QIAquick PCR Purification Kit (Qiagen, 28104). ChIPed DNA was quantified in RQ-PCR assay using primers presented in Table S5.

ChIP analysis of HOXA binding

ChIP analysis of HOXA binding was performed in two cell line models: Loucy and HeLa. Loucy cells were electroporated using Neon Transfection System (1 pulse of 1,700 V, 20 ms) with expressing vectors for HOXA5-9 (FL and HD-deleted forms) tagged with streptavidin-binding peptide (SBP)–Flag epitope or empty vector NTAP as control (vectors are listed in Table S6). After 48 h incubation, cells were cross-linked with 1% formaldehyde for 10 min. ChIP was performed as described above using anti-Flag antibody (Merck, F1804). Samples were analyzed by RQ-PCR using Elalpha-F/Elalpha-R for enhancer binding and actin-F/actin-R for control. Primers are listed in Table S5. HeLa cells were transiently transfected using Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, 11668019) in the Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific, 51985026) with expressing vectors for ETS1-HA-His, LEF1-HA, RUNX1-T7, and Ea-CAT reporter constructs together with individual expressing vectors for HOXA5-9 (FL or HD-deleted forms) tagged with SBP-Flag or the empty vector SBP-Flag (NTAP) as control. After 24 h of incubation, cells were cross-linked with 1% formaldehyde for 10 min. ChIPs were performed with anti-Flag antibody (Merck, F1804). Samples were analyzed by RQ-PCR with the following primers: vect-Ealpha-F/vect-Ealpha-R for enhancer binding and vect-ctr-F/vect-ctr-R for control. Primers are listed in Table S5.

IP

2 × 10^6 of Loucy cells or total thymocytes were lysed for 30 min with 8 ml of 1× radioimmunoprecipitation assay buffer (Cell Signaling, 9806) complemented with Complete EDTA-free Protease Inhibitor Cocktail (Merck, 11873580001). The lysates were incubated overnight at 4°C with 10 µg of anti-ETSI (C20X; Santa Cruz, sc-350) or anti-HOX9 antibody (13C11, noncommercial production), followed by 2 h of incubation at 4°C with 20 µl of Protein G Agarose, Fast Flow (Merck, 16–266). After four washes with washing buffer (100 mM NaCl and 15 mM Tris-HCL, pH 7.8), bound proteins were eluted and detected by Western blot with anti-HOX9 (13C11) or anti-ETSI (C20X) antibodies.

Immunofluorescence analyses

Cells were fixed on poly-L-lysine (0.01%) precoated slides with PBS-BSA 1%/3.5% formaldehyde solution for 20 min at room temperature, and then permeabilized in PBS supplemented with 10% FBS and 1% Triton X-100 for 5 min (cell lines) or 10 min (thymocytes). Cells were incubated at 4°C overnight with anti-HOX9 (13C11; dilution 1/20) or anti-ETSI (C20X; dilution 1/250) antibodies, and then labeled with secondary antibodies goat anti-mouse IgG Alexa Fluor A555 (Thermo Fisher, A-21422) and goat anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher, A-11008) in a dilution of 1/200. For PLA, cells were fixed, permeabilized, and incubated with primary antibodies as described above. The
following Duolink Probes were used for protein detection: Duolink In Situ PLA Probe Anti-Mouse MINUS (Merck, DUO92004) for HOXA9 and Duolink In Situ PLA Probe Anti-Rabbit PLUS (Merck, DUO92002) for ETSI. The interactions between proteins were detected with Duolink In Situ Detection Reagents Red (Merck, DUO92008) following the manufacturer’s instructions. For EGFP fluorescence analysis, HeLa cells were transfected with expressing vectors for FL or HD-deleted forms of HOXA5-9 genes fused to eGFP in their N terminus (pEGFP-C1 vector, same as for CAT-ELISA experiments). After 24 h, cells were fixed as described above. Images were collected on a confocal microscope (Carl Zeiss LSM 700) with Zen 2011 software using 63× objectives at room temperature. Images were processed using ImageJ software. The colocalization coefficients were monitored with the JACoP plugin of ImageJ (Bolte and Cordellieres, 2006). Quantification of PLA dots was performed using Icy Image Processing Software (de Chaumont et al., 2012).

Human T cell differentiation

CD34+ UCB cells were stimulated for 16 h before transduction in the CellGenix GMP SGM Stem Cell Growth Medium (CellGenix, 20802–500) supplemented with cytokines: 20 ng/ml human thrombopoietin, 100 ng/ml human stem cell factor, and 100 ng/ml hFLT3-L (Miltenyi Biotec). Stimulated CD34+ UCB cells were transduced with HOXA9-GFP or control GFP VSV-G lentiviral vectors. 48 h after transduction, GFP-expressing cells were sorted using FACs ARIA III. CD34+ UCB cells were also electroporated with Cas9-gRNA ribonucleoprotein complexes for HOXA9 knock-out and HOXA5-9 deletion. gRNAs were synthesized from Integrated DNA Technologies as Alt-R CRISPR-Cas9 crRNA. The functional gRNA was created after annealing with Alt-R tracrRNA (Integrated DNA Technologies). Editing efficiency evaluated with TIDE algorithm (https://tide.nki.nl) was around 40%. Next, the cells were cultured on OP9-DL1 stroma cells in homemade MEMα (Thermo Fisher Scientific, I2000063) supplemented with 20% FBS HyClone SH30070.03H (Thermo Fisher Scientific, 10772634) and cytokines: 5 ng/ml rFLT3-L, 10 ng/ml human stem cell factor, and 2 ng/ml hIL7 (Miltenyi Biotec; Six et al., 2011). Stromal OP9-DL1 cells were changed every week. At different time points of culture, cells were collected and analyzed by FACS for surface expression of TCRγδ and TCRαβ, and TCR rearrangements by multiplex RT-PCR analysis.

Production of retrovirus particles and transduction of DN thymocytes

The retroviral vectors pMSCV-GFP and pMSCV-HOXA9-GFP were purchased from Addgene. For the production of retroviral vector supernatants, Platinum-E packaging cells (3 × 10⁵ cells/well) were cultured in six-well plates and transiently transfected with pMSCV-GFP or pMSCV-HOXA9-GFP vectors (3.3 µg/well) using FuGENE HD Transfection Reagent (Thermo Fisher Scientific, PRE2311) and Opti-MEM Reduced Serum Media. Medium was changed 24 h after transfection. Vector supernatants were collected 48 h after transfection and were freshly used for thymocyte transduction. Sorted DN thymocytes were resuspended in vector supernatants with 10 µg/ml polybrene and spinoculated for 3 h at 3,500 rpm at room temperature. Next, the sorted cells were cultured in vitro on OP9-DL1 or injected into Rag2<−/−>γc<−/−> Ly5.1 mice.

Mouse T cell differentiation

DN thymocytes were FACS-sorted from C57/Bl6 mice Ly5.2. During in vitro studies, transduced DN cells were cultured for 9 d on an OP9-DL1 stroma layer in homemade MEMα (Thermo Fisher Scientific, I2000063) supplemented with 20% FBS HyClone SH30070.03H (Thermo Fisher Scientific, 10772634) and recombinant murine cytokines: 5 ng/ml rFLT3-L (R&D Systems, 427-FL), and 5 ng/ml rIL7 (407-ML). During in vivo studies, transduced DN cells were retro-orbitally injected into Rag2<−/−>γc<−/−> Ly5.1 mice that had been previously irradiated (2 Gy). 3 wk after transplantation, recipient mice were euthanized and the donor-derived cells analyzed.

Accession numbers

The high-throughput sequencing data produced were deposited in the Gene Expression Omnibus (Edgar et al., 2002) under accession no. GSE137718.

Online supplemental material

Fig. S1 shows a schematic representation of the major of human thymopoiesis, gating strategy for cell sorting, and chromatin states derived from six histone modifications. Fig. S2 shows methylation profiles around the eight clustered classes based on hypomethylation dynamics during T cell differentiation and H3K27-acetylation dynamics at constitutively hypomethylated regions. Fig. S2 also shows GREAT gene enrichment analysis. Fig. S3 shows the epigenomic profile of the RASSF6 gene. Fig. S4 shows transcription factor binding to TCRA enhancer and short RNA-seq profiles of the TCRA locus in the mouse thymocytes. Fig. S5 shows chromatin state profiles of the human HOXA locus, HOXA5-9 gene expression evaluated by TLDA, and RQ-PCR. Fig. S5 also shows HOXA5-9 nuclear localization and Eα binding. Table S1 presents the design of the TLDA array. Table S2 shows the list of samples from high-throughput sequencing. Table S3 shows normalized counts for RNA-seq samples. Table S4 presents differential expression analysis. Table S5 presents a list of oligonucleotides and Table S6 lists key resources used in the study.

Acknowledgments

We thank the Cell Imaging Platform of Institut des Maladies Génétiques Imagine and the Transcriptomics and Genomics Marseille-Luminy sequencing platform. We thank the Pediatric Cardiac Surgery of Hôpital-Necker-Enfants-Malades for the human thymic samples. We thank the Cell Therapy Unit of Hôpital Saint-Louis for UCB samples. We thank Erika Brunet from the Institut des Maladies Génétiques Imagine for providing Cas9 protein. We thank Christoph Plass from the German Cancer Research Center in Heidelberg for reading and constructive criticism.

A. Cieslak was supported by grants from the Association pour la Recherche sur le Cancer, the Fondation pour la Recherche Epigenomic blueprint of human T-cell precursors

Cieslak et al.

Journal of Experimental Medicine

https://doi.org/10.1084/jem.20192360
Epigenomic blueprint of human T-cell precursors

Bolte, S., and F.P. Cordellières. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224:213–232. https://doi.org/10.1111/j.1365-2818.2006.01706.x

Carey, M. 1998. The enhancosome and transcriptional synergy. Cell. 92:5–8. https://doi.org/10.1016/S0092-8674(00)80893-4

Carico, Z., and M.S. Krangel. 2015. Chromatin Dynamics and the Development of the TCRa and TCRδ Repertoires. Adv. Immunol. 128:307–361. https://doi.org/10.1016/bs.ai.2015.07.005

Carrillo-de-Santa-Pau, É., D. Juan, V. Fancaldi, F. Were, J. Martin-Subero, D. Riccardi, and A. Valencia; BLUEPRINT Consortium. 2017. Automatic identification of informative regions with epigenomic changes associated to hematopoiesis. Nucleic Acids Res. 45:9244–9259. https://doi.org/10.1093/nar/gkx618

Carroll, S.B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature. 376:479–485. https://doi.org/10.1038/376497a0

Casero, D., S. Sandoval, C.S. Seet, J. Scholes, Y. Zhu, V.L. Ha, A. Luong, C. Parekh, and G.M. Crooks. 2015. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B-cell and T-cell lineages. Nat. Immunol. 16:1282–1291. https://doi.org/10.1038/ni.3299

Cauchy, P., M.A. Maqbool, J. Zacarias-Cabeza, L. Vanhille, K. Koch, R. Fenouil, M. Gut, I. Gut, M.A. Santana, A. Griffon, et al. 2016. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res. 44:3567–3585. https://doi.org/10.1093/nar/gkv1475

Choo, S.W., R. White, and S. Russell. 2011. Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor Homeodomain in Drosophila. PLoS One. 6. e14178. https://doi.org/10.1371/journal.pone.0014778

Clave, E., I.L. Aranujo, C. Alano, E. Patin, J. Bergstedt, A. Urrutia, S. Lopez-Lazstra, Y. Li, B. Charbit, C.R. MacPherson, et al; Milieu Intérieur Consortium. 2018. Human thymopoiesis is influenced by a common genetic variability within the TCRA-TCRD locus. Sci. Transl. Med. 10. eaaq2966. https://doi.org/10.1126/scitranslmed.aaa2966

Cruz Molina, S., P. Respuela, C. Tebartz, P. Koloves, M. Nikolic, R. Fuego, W.F.J. van Ijcken, F. Grosvold, P. Frommolt, H. Bazzi, et al. 2017. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell. 20:689–705.e9. https://doi.org/10.1016/j.stem.2017.02.004

Dadi, H., M. Belhocine, D. Puthier, and S. Spicuglia. 2015. Chromatin Dynamics and the Development of Homeodomain DNA Binding Revealed by Hic-12. Blood. 125:2598–2603. https://doi.org/10.1182/blood-2015-12-603572

Dadi, H., M. Belhocine, D. Puthier, and S. Spicuglia. 2015. Chromatin Dynamics and the Development of Homeodomain DNA Binding Revealed by Hic-12. Blood. 125:2598–2603. https://doi.org/10.1182/blood-2015-12-603572

Dik, W.A., W. Ibrahim, C. Braun, V. Asnafi, N. Dastugue, O.A. Bernard, J.J. van Dongen, A.W. Langerak, E.A. Macintyre, and E. Delabesse. 2005a. CALM-AF10+ T-ALL expression profiles are characterized by over-expression of HOXA and MLL1 oncogenes. Leukemia. 19:1948–1957. https://doi.org/10.1038/sj.leu.2403891

Dik, W.A., K. Pike-Overzet, F. Weekamp, K. de Ridder, E.F. de Haas, M.R. Baert, P. van der Spek, E.E. Koster, M.J. Reinders, J.J. van Dongen, et al. 2005b. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J. Exp. Med. 201:1715–1723. https://doi.org/10.1084/jem.20042524

Edgar, R., M. Domrachev, and A.E. Lash. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. https://doi.org/10.1093/nar/30.1.207

Ernst, J., and M. Kellis. 2017. Chromatin-state discovery and genome annotation with ChromHMM. Nat. Protoc. 12:2478–2492. https://doi.org/10.1038/nprot.2017.124

Ferrando, A.A., D.S. Neuberg, J. Staunton, M.L. Loh, C. Huard, S.C. Raimondi, F.G. Rehm, C.H. Pol, J.R. Downing, D.C. Gilliland, et al. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 1:75–87. https://doi.org/10.1016/S1538-4116(02)00188-1

Ferrando, A.A., S.A. Armstrong, D.S. Neuberg, S.E. Salian, L.B. Silverman, S.J. Korsmeyer, and A.T. Look. 2003. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of...
Hox dysregulation. Blood. 102:262–268. https://doi.org/10.1182/blood -2002-10-2231
Ferri, R.E., Chabannes, N., Sadouni, F. Lopez, Y., Keremzeli, S. Spicuglia, C. Capponi, B. Ghattach, and D. Puthier. 2019. OLOGRAM: Determining significance of total overlap length between genomic regions sets. Bioinformatics. btz810. https://doi.org/10.1093/bioinformatics/btz810
Giese, K., J. Cox, and R. Grosschedl. 1992. The HMG domain of lymphoid enhancer factor 1 binds DNA and facilitates assembly of functional nucleoprotein structures. Cell. 69:195–195. https://doi.org/10.1016/0092 -6867(92)90229-2
Giese, K., C. Kingsley, J.R. Kirshner, and R. Grosschedl. 1995. Assembly and function of a TCF alpha enhancer complex is dependent on LEF-1-induced DNA binding and multiple protein-protein interactions. Genes Dev. 9:995–1008. https://doi.org/10.1101/gad.9.8.995
Goodman, F.R., 2002. Limb malformations and the human HOX genes. Am. J. Med. Genet. 113A:235–247. https://doi.org/10.1002/ajmg.10776
Hawwari, A., and M.S. Krangel. 2005. Regulation of TCR delta and alpha switching is associated with promoters of transcriptional regulators. BMC Genomics. 14:914. https://doi.org/10.1186/1471-2164-14-914
Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature. 276:565–570. https://doi.org/10.1038/276565a0
Lopez, F., G. Charbonnier, Y. Keremzeli, M. Belhocine, Q. Ferre, N. Zweig, M. Aribi, A. Gonzalez, S. Spicuglia, and D. Puthier. 2019. Explore, edit and leverage genomic annotations using Python GTF toolkit. Bioinformatics. bzt576. https://doi.org/10.1093/bioinformatics/bzt576
Magli, M.C., C. Largman, and H.J. Lawrence. 1997. Effects of HOX homeobox genes in cell blood differentiation. J. Cell. Physiol. 173:168–177. https://doi.org/10.1002/jcp.10804-2
Mann, R.S., K.M. Lelli, and R. Joshi. 2009. Hox specificity unique roles for cofactors and collaborators. Curr. Top. Dev. Biol. 88:63–101. https://doi.org/10.1016/S0070-2153(09)88004-9
McMurray, M.T., and M.S. Krangel. 2000. A role for histone acetylation in the developmental regulation of VDJ recombination. Science. 287:495–498. https://doi.org/10.1126/science.287.5452.495
Melicard, H.J., K. Narayan, S.D. Der, Y. Hiraoka, N. Gardiol, J. Jeannet, W. Held, C.A. Chambers, and J. Kang. 2007. Regulation of gammmadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science. 315:230–233. https://doi.org/10.1126/science.1135344
Noyes, M.B., R.G. Cristensen, A. Wakabayashi, G.D. Stermo, M.H. Brodsky, and S.A. Wolfe. 2008. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell. 133:1277–1289. https://doi.org/10.1016/j.cell.2008.05.023
Oravecz, A., A. Apostolov, K. Polak, B. Jost, S. Le Gras, S. Chan, and P. Kastner. 2015. Ikars mediate gene silencing in T cells through Polycomb repressive complex 2. Mol. Commun. 6:8823. https://doi.org/10.1038/ncomms9823
Pekowska, A., T. Benoukraf, J. Zacarias-Cabeza, M. Belhocine, F. Koch, H. Holota, J. Imbert, J.C. Andrau, P. Ferrier, and S. Spicuglia. 2011. Hox4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30:4198–4210. https://doi.org/10.1038/emboj.2011.295
Rada-Iglesias, A., R. Bajpai, T. Swigt, S.A. Bruggman, R.A. Flynn, and J. Wysocka. 2011. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 470:279–283. https://doi.org/10.1038/nature09692
Roberts, J.L., P. Lauzurica, and M.S. Krangel. 1997. Developmental regulation latent differences in DNA binding specificity between Hox proteins. Immunol. Rev. 157:119–135. https://doi.org/10.1111/j.0105 -2832.1997.tb02200.x
Rohs, B. Honig, H.J. Bussemaker, et al. 2011. Cofactor binding evokes divergent transcription is associated with promoters of transcriptional regulators. EMBO J. 30:4198–4210. https://doi.org/10.1038/emboj.2011.295
Slattery, M.L. Toribio, and F. Sigaux. 2005. HOXA genes of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 89:1922–1930. https://doi.org/10.1182/blood .v89.6.1922
Lawrence, H.J., C.D. Helgason, G. Sauvageau, S. Fong, D.J. Iyon, R.K. Humphries, and C. Largman. 1997. Mice bearing a targeted interruption of the homeobox gene HOX4A have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 89:1922–1930. https://doi.org/10.1182/blood .v89.6.1922
Vermeullen, A. Gonzalez, S. Spicuglia, and D. Puthier. 2019. Explore, edit and leverage genomic annotations using Python GTF toolkit. Bioinformatics. bzt576. https://doi.org/10.1093/bioinformatics/bzt576
Dombret, A. Baruchel, M.L. Toribio, and F. Sigaux. 2005. HOXA genes of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis.
T-cell leukemia (T-ALL). Blood. 106:274–286. https://doi.org/10.1182/blood-2004-10-3900

Speleman, F., B. Cauwelier, N. Dartigue, J. Cools, B. Verhasselt, B. Poppe, N. Van Roy, J. Vandesompele, C. Graux, A. Uyttewael, et al. 2005. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXAI0 and HOXAI1 in a subset of T-cell acute lymphoblastic leukemia. Leukemia. 19:358–366. https://doi.org/10.1038/sj.leu.2403657

Spicuglia, S., D. Payet, R.K. Tripathi, P. Rameil, C. Verthuy, J. Imbert, P. Van Vlierberghe, et al. 2000. TCRalpha enhancer activation occurs via a conformational change of a pre-assembled nucleo-protein complex. EMBO J. 19:2034–2045. https://doi.org/10.1093/emboj/19.9.2034

Spits, H., 2002. Development of alpha beta T cells in the human thymus. Nat. Rev. Immunol. 2:760–772. https://doi.org/10.1038/nri919

Stadler, M.B., R. Murr, L. Burger, R. Ivanek, F. Lienert, A. Scholer, E. van Nimwegen, C. Wirbelauer, E.J. Oakley, D. Gaidatzis, et al. 2011. DNA-binding factors shape the mouse methylyde at distal regulatory regions. Nature. 480:490–495. https://doi.org/10.1038/nature10716

Stunnenberg, H.G., and M. Hirst; International Human Epigenome Consortium. 2016. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell. 167:1897. https://doi.org/10.1016/j.cell.2016.12.002

Taghon, T., K. Thys, M. De Smedt, F. Weerkamp, F.J. Staal, J. Plum, and G. Leclercq. 2003. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia. 17:1157–1163. https://doi.org/10.1038/sj.leu.2402947

Trinquand, A., N.R. Dos Santos, C. Tran Quang, F. Rocchetti, B. Zaniboni, M. Belhocine, C. Da Costa de Jesus, L. Lhermitte, M. Tesio, M. Dussiot, et al. 2016. Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell leukemia. Cancer Discov. 6:972–985. https://doi.org/10.1158/2159-8290.CD-15-0675

Uhlén, M., L. Fagerberg, B.M. Hallström, C. Lindskog, P. Oksvold, A. Mardinoglu, Å. Sivertsson, C. Kampf, E. Šostak, et al. 2015. Proteomics. Tissue-based map of the human proteome. Science. 347. 1260419. https://doi.org/10.1126/science.1260419

Van Vlierberghe, P., M. van Grotel, J. Tchinda, C. Lee, H.B. Beverloo, P.J. van der Spek, A. Stubbs, J. Cools, K. Nagata, M. Fornerod, et al. 2008. The recurrent SET-NUP214 fusion as a new HOX activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood. 111:4668–4680. https://doi.org/10.1182/blood-2007-09-111872

VanHille, L., A. Griffon, M.A. Maqbool, J. Zacarias-Cabeza, L.T. Dao, N. Fernandez, B. Ballester, J.C. Andraud, and S. Spicuglia. 2015. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nat. Commun. 6:6905. https://doi.org/10.1038/ncomms7905

Villarese, P., C. Lours, A. Trinquand, S. Le Noir, M. Belhocine, L. Lhermitte, A. Cieslak, M. Tesio, A. Petit, M. LeLorch, et al. 2018. TCRα rearrangements identify a subgroup of NKL-deregulated adult T-ALLs associated with favorable outcome. Leukemia. 32:61–71. https://doi.org/10.1038/leu.2017.176

Villey, I., D. Caillon, F. Selz, P. Ferrier, and J.P. de Villartay. 1996. Defect in rearrangement of the most 5’ TCR-Jα following targeted deletion of T early alpha (TEA) downstream for TCR α locus accessibility. Immunity. 5:331–342. https://doi.org/10.1016/S1074-7613(00)80259-9

Waddington, C.H., 1957. The Strategy of the Genes; A Discussion of Some Aspects of Theoretical Biology. Allen & Unwin, London.

Wei, G., B.J. Abraham, R. Yagi, R. Jothi, K. Cui, S. Sharma, L. Narlikar, D.L. Northrup, Q. Tang, W.E. Paul, et al. 2011. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity. 35:299–311. https://doi.org/10.1016/j.immuni.2011.08.007

Winoto, A., and D. Baltimore. 1989. A novel, inducible and T cell-specific enhancer located at the 3’ end of the T cell receptor alpha locus. EMBO J. 8:729–733. https://doi.org/10.1002/j.1460-2075.1989.tb03432.x

Xu, J., S.D. Pope, A.R. Jazirehi, J.L. Attema, P. Papathanasiou, J.A. Watts, K.S. Zaret, I.L. Weissman, and S.T. Smale. 2007. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl. Acad. Sci. USA. 104:12377–12382. https://doi.org/10.1073/pnas.0704597104

Zacarias-Cabeza, J., M. Belhocine, L. VanHille, P. Cauchi, F. Koch, A. Pekowska, F. Fenuoli, A. Bergon, M. Gut, I. Gut, et al. 2015. Transcription-dependent generation of a specialized chromatin structure at the TCRβ locus. J. Immunol. 194:3432–3443. https://doi.org/10.4049/jimmunol.1400789

Zentner, G.E., P.J. Tesar, and P.C. Scacheri. 2011. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21:1273–1283. https://doi.org/10.1101/gr.122382.111

Zhang, J., L. Ding, L. Holmfeldt, G. Wu, S.L. Heatley, D. Payne-Turner, J. Easton, X. Chen, J. Wang, M. Rusch, et al. 2012. The genetic basis of early T-cell precursor acute lymphoblastic leukemia. Nature. 481:157–163. https://doi.org/10.1038/nature10725

Cieslak et al. Epigenomic blueprint of human T-cell precursors Journal of Experimental Medicine https://doi.org/10.1084/jem.20192360

Downloaded from https://rupress.org/jem/article-pdf/217/9/e20192360/1047361/jem_20192360.pdf by guest on 21 July 2020
Figure S1. **Major human T cell differentiation stages.** (A) Schematic representation of the major stages of human thymopoiesis (orange). The thymic subpopulations used to prepare the BLUEPRINT reference epigenomes are presented in a blue color. (B) Plots showing the gating strategy used to sort the human thymic subpopulations. Purity after sorting was between 95–99%. tCD34, immature DN CD34+ (CD34+/CD3−/CD4−/CD8−); EC (TCRαβ−/CD3−/CD4+/CD8+); LC (TCRαβ+/CD3+/low/CD4+/CD8+); SP4, SP CD4+ (TCRαβ+/CD3+/CD4+/CD8−); SP8, SP CD8+ (TCRαβ−/CD3−/CD4−/CD8+). (C) State emissions for the used chromatin segmentation model and their biological description. (D) GREAT gene enrichment analysis for the genomic regions highly correlating with the first (C1, 21,523 regions with correlation > 0.9) and second (C2, 1,787 regions with correlation > 0.8) dimensions of the MCA from Fig. 1D. Only the top 10 GO biological process terms passing a 0.5 Wang similarity threshold are shown.
Figure S2. Integration of DNA methylation and histone modifications. (A) t-SNE on WGBS from all BLUEPRINT healthy hematopoietic samples. (B) Histone modifications and methylation profiles around the eight clustered classes based on hypomethylation dynamics during T cell differentiation (Fig. 2A). (C) Histone modifications and methylation profiles around the eight clustered classes based on the H3K27-acetylation dynamics during T cell differentiation at constitutively hypomethylated regions. (D) GREAT gene enrichment analysis for the 8 clustered classes based on H3K27-acetylation dynamics during T cell differentiation at constitutively hypomethylated regions. Only GO biological process terms passing a 0.2 Wang similarity threshold are shown.
Figure S3. **Epigenomic profile of the induced gene RASSF6.** The normalized signal range is indicated by brackets.
Figure S4. ChIP-seq and short-RNA-seq profiles of the TCRA locus in the mouse thymocytes. (A) DNaseI-seq and ChIP-seq analysis for ETS1, RUNX1, E47, GATA3, and Ikaros binding to Eα in the ΔRag and DP mouse thymocytes. (B) Short-RNA-seq analysis of the enhancer RNA at the Eα enhancer in the ΔRag and DP murine thymocytes. Data sources are detailed in Table S6.
Figure S5. Expression of HOXA5-9 genes in human thymic subpopulations, their nuclear localization, and binding to Eα. (A) Chromatin state profiles of the human HOXA locus. The color code is as in Fig. 1C. (B) Heatmap representation of the cluster C13. (C) Unsupervised RNA-seq gene expression clustering of the HOXL gene family. (D) Histogram of the HOXA5-9 gene expression analyzed by TLDA. Results are normalized to the GAPDH housekeeping gene expression. (E) RQ-PCR of the HOXA5-9 gene expression in human thymic subpopulations. Results are relative to the ABL1 housekeeping gene expression. (F) Examples of fluorescence microscopic analysis of the HOXA5-9 expression in HeLa cells transfected with expression vectors for FL or HD-deleted forms (ΔHD) of HOXA5-9. The white scale bar is 10 mm. In the table below the colocalization coefficients, Pearson’s and Mandel’s (M1 and M2) are presented for each condition. Values range from 0 (no colocalization) to 1 (perfect colocalization). (G) Anti-Flag ChIP-qPCR analysis of HOXA5-9 binding to Eα in HeLa cells transfected with ETS1, RUNX1, LEF1, TCRA-CAT, and Flagged HOXA5-9 (FL or ΔHD forms) expressing vectors. Enrichment at Eα at the substrate TCRA-CAT vector is shown relative to input and normalized to empty vector control. Results represent means and SEM of triplicate reactions.
Tables S1–S6 are provided online. Table S1 shows the design of HOXL assay in TLDA. Table S2 lists samples and meta-samples from high-throughput sequencing approaches. Table S3 shows normalized counts for RNA-seq samples. Table S4 shows differential expression analysis. Table S5 lists the oligonucleotides and gRNAs used in the study. Table S6 lists key resources.