Abstract

Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.

Keywords

Cryptococcus; innate immune response; fungal recognition; host-fungus interactions

1. Introduction

The encapsulated, yeast-like fungi of the genus Cryptococcus are prevalent throughout the environment worldwide. The most common species that cause disease in humans are Cryptococcus neoformans and Cryptococcus gattii. These pathogens can cause a life-threatening meningoencephalitis after acquisition through the respiratory tract and subsequent dissemination to the central nervous system (CNS). While C. gattii can infect apparently immunocompetent hosts, C. neoformans is more often an opportunistic pathogen, affecting immunocompromised patients including those with HIV/AIDS, cancer and solid organ transplantation [1].

Cryptococcal meningitis has been estimated to affect up to 1 million people worldwide each year [2,3]. Despite modern-day combination antifungal therapy, the mortality rate for cryptococcal meningitis is estimated at 15–25% [4,5], and the at-risk population is expanding with the development of new immunosuppressive regimens for autoimmune and cancer [6]. More effective approaches to treating cryptococcosis may necessitate the incorporation of immunomodulatory therapies. Therefore, it is essential to understand the
cellular and molecular mechanisms of immunity to *Cryptococcus* in mammalian hosts. While the adaptive immune response to *Cryptococcus* is an important arm of anti-cryptococcal immunity (reviewed in [1,7,8]), this review will focus on our current knowledge of innate immune responses to the species *C. neoformans* and identify significant questions that remain to be investigated.

2. Animal Models of Cryptococcosis

Different vertebrate and invertebrate animal models have been utilized in the study of cryptococcosis (for more comprehensive reviews see [1,9,10]). Predominantly, murine models have been used to study innate immune responses to *C. neoformans* due to the relative ease of genetic modification, manipulation and maintenance of this mammalian host. Therefore, results from mouse studies will comprise the majority of this review.

The use of mouse models of cryptococcosis does have its challenges. Different mouse strains develop different T helper cell (Th) responses to *C. neoformans*; mice that develop Th type 2 (Th2) responses are more susceptible to cryptococcosis, while those that develop Th type 1 (Th1) responses are more resistant [11–15]. Mouse susceptibility can further vary depending on the virulence of the *C. neoformans* strain, the type and amount of infectious propagule (i.e., spore versus yeast form), and the route of administration [11–14,16–18]. *C. neoformans* has two main variants: var. *grubii* (Serotype A), which is the most common clinical isolate, and var. *neoformans* (Serotype D) [1]. The most physiologic route of infection is through the respiratory tract, either intranasal or intratracheal. However, respiratory infection in mice can result in variable dissemination to the CNS, so systemic infection (intravenous or intraperitoneal) and direct inoculation into the cerebrospinal fluid have been used to study the pathology of *C. neoformans* in the CNS [13,19,20].

As an example of the differences between mouse models of cryptococcosis, respiratory infection of C57BL/6 mice with the highly virulent serotype A strain H99 leads to a Th2-skewed immune response that results in an acute and uniformly fatal infection [21–23]. On the other hand, respiratory infection of BALB/c mice with a less virulent serotype D strain like 52D leads to a Th1-skewed immune response that results in a more chronic infection that can eventually be cleared in a CD4⁺ T-cell-dependent manner [11,12,15,24]. A protective model of pulmonary cryptococcosis has also been established in which mice are infected with a *C. neoformans* strain H99-γ, that has been modified to express murine interferon gamma (IFNγ) [25].

3. Host Recognition of *Cryptococcus*

Fungal pathogens are typically sensed through the detection of fungal antigens, or pathogen-associated molecular patterns (PAMPs), by pattern recognition receptors (PRRs) on host immune cells. Engagement of PRRs induces signal transduction that coordinates innate immune processes like phagocytosis and cytokine production. Common fungal PAMPs include components of the cell wall, such as β-glucans, mannans, and chitin. However, *C. neoformans* provides an interesting challenge due to its polysaccharide capsule that can mask these potential PAMPs. Correspondingly, many PRRs that are known to detect other
fungal pathogens, including members of the C-type lectin receptor (CLR) and Toll-like receptor (TLR) families, do not have similar roles in the recognition of *C. neoformans*. Therefore, the mechanisms by which *C. neoformans* is sensed by the host are still not fully defined.

3.1. C-Type Lectin Receptors

The CLRs are a large family of receptors that can recognize fungal carbohydrate ligands like β-glucans or mannans. An engaged CLR typically initiates downstream signaling pathways either through its own intracellular signaling domain, if present, or else through signaling adapters that contain an immunoreceptor tyrosine-based activation motif (ITAM), such as Fc receptor γ-chain (FcRγ or FcεRIγ chain) or DNAX activation protein of 12 kDa (DAP12). While CLRs have established roles in host innate immune responses to other pathogenic fungi (reviewed in [26]), their ability to mediate immunity to *C. neoformans* is less robust. There is evidence that β-glucans can be accessible on encapsulated yeast [27] and spore [28] forms of *C. neoformans* and that the fungal cell wall can be exposed at daughter bud sites prior to capsule assembly [29], but it is likely that the capsule is interfering with many of these potential interactions in vivo [30,31].

Mannose receptor (MR/CD206) binds to fucose and terminal mannose moieties and is known to have roles in phagocytosis as well as antigen processing and presentation as a receptor of the endocytic pathway (reviewed in [32]). MR does not have any known intracellular signaling motifs and can also exist in a soluble form [32,33], suggesting it may work in concert with other receptors for signal transduction, such as TLR2 [34]. Human MR has been shown to bind cryptococcal mannoproteins in vitro [35]. It is unclear if MR binds whole cryptococcal cells since MR-deficient murine phagocytes had no changes in binding and uptake of spores or yeast cells compared to wild-type (WT) phagocytes by microscopy [36]. Nevertheless, MR^{−/−} mice challenged with *C. neoformans* in an acute respiratory infection model appear to have a moderate increase in fungal burden and susceptibility to infection [37]. Several studies have investigated the ability of MR to facilitate the priming of adaptive T cell responses by dendritic cells (DCs). MR-deficient bone marrow-derived DCs (BMDCs) from mice had no changes in uptake of cryptococcal mannoproteins and no differences in expression of maturation markers like MHCII, CD40 and CD86 [37]. In contrast, studies with human cells indicate that blocking MR can inhibit maturation marker expression by DCs in response to cryptococcal mannoproteins [38] and can inhibit fungal uptake by DCs and subsequent lymphocyte proliferation [39]. Therefore, the mechanisms by which MR mediates innate immune responses to *C. neoformans* warrants continued investigation.

Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN/CD209) binds fucose and mannose residues and is involved in antigen uptake as well as cellular adhesion (reviewed in [40]). Complicating its study, DC-SIGN has eight homologs in mice, designated DC-SIGN-related proteins (SIGNR) 1–8. SIGNR3 (CD209d) is considered the closest homolog to human DC-SIGN [41], and SIGNR3 and SIGNR1 (CD209b) are the only homologs shown to bind fungal ligands [42]. Human DC-SIGN binds cryptococcal mannoproteins in vitro [43], but murine SIGNR1 does not influence the ability...
Collectins are secreted carbohydrate-binding proteins and include the lung surfactant proteins (SPs) SP-A and SP-D and serum mannose binding lectin (MBL), also referred to as mannose binding protein (MBP). Collectins have been shown to engage with various fungal pathogens [45–48] and regulate cytokine responses by binding to cell surface receptors like CD14, TLR2 and TLR4 [49,50]. Interestingly, SP-D appears to be detrimental to the host, as SP-D^{−/−} mice have improved survival after infection with <i>C. neoformans</i> [51]. SP-D binds to and protects <i>C. neoformans</i> from macrophage killing, and its activity has been correlated with increased IL-5 production and pulmonary eosinophilia [29,52]. The cryptococcal PAMP recognized by SP-D in vivo is unclear. In vitro, SP-D can bind to capsular GXM and mannoprotein 1 (MP1), but has higher affinity to pustulan, an analog of β-1,6-glucan found in the cryptococcal cell wall [29]. This higher affinity for a cell wall component correlates with the observation that acapsular <i>C. neoformans</i> mutants are more susceptible to agglutination and phagocytosis in the presence of SP-D compared to encapsulated strains [29,53,54]. Further studies are needed to determine which interactions and signaling mechanisms are essential for the harmful effects of SP-D on the host response. In contrast, SP-A can bind to <i>C. neoformans</i> but does not affect phagocytosis [55] and does not regulate murine susceptibility to infection [56]. MBL is known to bind mannose and N-acetylglucosamine (GlcNAc) and has been shown to act as an opsonin for complement activation [57]. However, soluble human MBL can only bind acapsular <i>C. neoformans</i> and minimally improves phagocytosis of these fungal cells by human polymorphonuclear cells in vitro [30,54,58,59]. Thus, the overall role of collectins in anti-cryptococcal responses appears to be minimal or else harmful to the host.

Other CLRs have been investigated but do not appear to have links to anti-cryptococcal immunity. Dectin-1 (CLEC7A) does not mediate immune responses in vitro or in vivo to either yeast or spore forms of <i>C. neoformans</i> [36,60]. Co-expression of Dectin-1 and TLR2 in vitro also does not facilitate signal transduction in response to the fungus [61]. Dectin-2 (CLEC6A/CLEC4N) is not essential in host defense against <i>C. neoformans</i> yeast or spore forms despite molecular evidence of increased Th2 and decreased Th1 responses in Dectin-2^{−/−} mice [36,62]. Dectin-3 or macrophage C-type lectin (MCL/CLEC4D/CLECSF8) does not regulate murine outcomes after <i>C. neoformans</i> infection or phagocytosis of fungal cells [63,64] and cannot initiate signal transduction in response to <i>C. neoformans</i> spores [36]. Macrophage inducible C-type lectin (Mincle) does not bind <i>C. neoformans</i> or induce signal transduction in response to the fungus in vitro [36]. Langerin (CD207) does not bind to either encapsulated or acapsular <i>C. neoformans</i> [65]. Work remains to determine whether other CLRs, including novel receptors like CD23/FceRII [66], may play a role in host recognition of <i>C. neoformans</i>.

3.2. Toll-Like Receptors

The potential role of TLRs as cryptococcal PRRs has been supported by evidence that myeloid differentiation primary response gene 88 (MyD88), a signaling molecule
downstream of most TLRs, plays a role in murine anti-cryptococcal responses [67–69]. However, direct experimental evidence supporting a role for many of the TLRs in cryptococcosis is limited. Whether TLR signaling is relevant to human disease is unclear, as people with Mendelian defects in MyD88 do not have increased susceptibility to cryptococcosis [70,71].

Studies on TLR2 have had conflicting results regarding the ability of this receptor to influence infectious outcomes and to initiate signal transduction in response to C. neoformans, perhaps related to differences in experimental design. Biondo et al. demonstrated that TLR2−/− mice have increased susceptibility to systemic (intraperitoneal) infection with C. neoformans, as measured by survival, organ fungal burden and cytokine production [67]. Yauch et al. found that TLR2−/− mice have increased susceptibility to respiratory infection but not systemic (intravenous) infection; however, there were no differences in lung fungal burden or cytokine production in the TLR2−/− mice compared to WT mice [68]. Nakamura et al. also found no differences in fungal burden or cytokine production in TLR2−/− mice infected through the respiratory tract, and C. neoformans did not induce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation through TLR2 in an in vitro cell reporter assay, even with co-expression of Dectin-1 [61].

TLR4, in conjunction with its co-receptor CD14, can respond to cryptococcal GXM in vitro by inducing NF-κB but not mitogen activated protein (MAP) kinase pathways or tumor necrosis factor alpha (TNFα) secretion, suggesting incomplete activation [72]. Monoclonal antibodies against TLR4 can inhibit Fas ligand expression [73] and partially block GXM uptake by human peripheral blood mononuclear cell (PBMC)-derived macrophages [74]. However, TLR4 has not been shown to regulate murine susceptibility to infection [67,68].

The strongest evidence for direct TLR involvement in anti-cryptococcal responses is for TLR9, an intracellular receptor of the endocytic pathway that typically recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs common in the DNA of bacteria and viruses (reviewed in [75,76]). More recently, the fungus Aspergillus fumigatus was found to contain unmethylated CpG motifs that can stimulate cytokine responses by DCs in vitro in a TLR9-dependent manner [77]. Several groups have also used synthetic CpG-oligodeoxynucleotides to boost the immune response against C. neoformans [78–81]. TLR9−/− mice are more susceptible to cryptococcosis, potentially due to decreased recruitment and maturation of DCs and the development of Th2 immune responses, including alternative activation of macrophages [69,82–84]. Cryptococcal DNA can stimulate in vitro cytokine responses by DCs, which can be partially inhibited by deletion of TLR9 or MyD88 [84]. Subsequently, it has been shown that polymerase chain reaction (PCR) products amplified from cryptococcal genes involved in virulence including URA5, CNLAC1, and CAP59 can induce the same cytokine responses by DCs [85]. Interestingly, these genes do not contain canonical CpG motifs. Thus, cryptococcal DNA can function as a PAMP for TLR9, but the specific nucleic acid motifs involved in its recognition have not been elucidated.
3.3. Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptors

The NOD-like receptors, or nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs), are a family of cytoplasmic receptors that, upon activation, can form an inflammasome complex that cleaves and activates pro-IL-1β and pro-IL-18 generated after initial microbial detection induces NF-κB (reviewed in [86]). NLR family, pyrin domain-containing 3 (NLRP3) is an NLR that has been shown to play a role in immunity against A. fumigatus and the yeast Candida albicans [87–89], although the ligand for NLRP3 remains unidentified. Biofilms of encapsulated C. neoformans, opsonized and encapsulated C. neoformans, and acapsular yeast forms of C. neoformans stimulate formation of the NLRP3 inflammasome, and mice deficient in components of the NLRP3 inflammasome are more susceptible to infection [90–92]. However, additional studies will be needed to further clarify the role of NLRs and inflammasome formation in antifungal responses to C. neoformans.

3.4. Scavenger Receptors

Scavenger receptors are classically known to bind and internalize oxidized low-density lipoproteins. In more recent years, they have been found to have very diverse ligands and can serve as PRRs that detect microbial PAMPs and complex with other receptors like TLRs (reviewed in [93]). In vitro studies indicate that the scavenger receptors CD36 and scavenger receptor class F member 1 (SCARF1), also known as scavenger receptor expressed by endothelial cells 1 (SREC1), can bind to and internalize encapsulated C. neoformans, thereby inducing cytokine responses that can further be enhanced by synergy with TLR2; competition assays suggest that CD36 and SCARF1 may bind to β-glucans and, to a lesser extent, mannan, although they do not contain classic lectin-binding domains [94]. In the same study, neutralizing anti-SCARF1 antibody inhibited binding of C. neoformans to alveolar macrophages in vivo, CD36−/− mice were found to be more susceptible to systemic infection with C. neoformans, and deletion of CD36 and SCARF1 orthologues in the nematode Caenorhabditis elegans resulted in increased susceptibility to fungal challenge.

Macrophage receptor with collagenous structure (MARCO) has been shown to enhance early lung recruitment of monocyte-derived immune cells and protective cytokine responses after murine respiratory infection with C. neoformans that correlate with a transient improvement in fungal clearance [95]. Interestingly, MARCO-deficient macrophages and DCs exhibit no defect in fungicidal activity though they do have decreased interactions with fungal cells [95].

Scavenger receptor A (SRA/SR-AI/II/CD204/SCARA1) has been reported to have detrimental effects on host immunity to C. neoformans. SRA−/− mice have decreases in lung fungal burden likely related to regulation of cytokine responses that influence innate immune cell recruitment and activation [96]. The potential cryptococcal ligands for SRA and MARCO and additional mechanistic details for how all these scavenger receptors influence anti-cryptococcal responses have not yet been determined.
3.5. Natural Antibodies

Natural antibodies, that are predominantly of the immunoglobulin M (IgM) isotype, are constitutively produced in mammalian hosts by an innate subset of B lymphocytes called B-1 cells; opsonization of microbial antigens with natural IgM can result in complement activation, phagocytosis by macrophages, and priming of adaptive immune responses (reviewed in [97,98]). It has been shown that IgM produced by murine B-1 cells in vitro can bind to cell wall laminarin, capsular GXM, and acapsular and heat-killed encapsulated C. neoformans [99]. Secretory IgM-deficient (sIgM−/−) mice have increased susceptibility to respiratory infection with C. neoformans compared to control mice and exhibit defects in Th1 polarization and phagocytosis of fungi by alveolar macrophages; the defect in phagocytosis can be ameliorated by administration of IgM into the lungs [100]. Additionally, depletion of B-1 cells in pulmonary infected mice increases fungal burden and decreases phagocytosis of fungal cells by alveolar macrophages compared to non-depleted controls; adoptive transfer of B-1 cells into depleted mice can restore the phenotype to that of control mice [99]. On the other hand, sIgM−/− mice infected systemically with C. neoformans have improved survival compared to control mice [101]. It was found that these sIgM−/− mice have an increased baseline number of B-1 cells [101], and, interestingly, B-1 cell derivatives may have direct fungicidal effects against C. neoformans [102]. Thus, IgM and B-1 cells may play different roles in the anti-cryptococcal response depending on the tissue compartment. X-linked immunodeficient (XID) mice, that have a defect in B cell development and IgM production due to a mutation in Bruton’s tyrosine kinase (Btk), exhibit increased susceptibility to both respiratory and systemic infection with C. neoformans [6,103]. However, adoptive transfer of B-1 cells into pulmonary infected XID mice could neither reverse this susceptibility to C. neoformans nor fully restore serum IgM levels, suggesting that B-1 cells may not be the only source of protective IgM or that additional immune mechanisms are contributing to the phenotype in this particular model [6].

Human studies support a role for IgM in protective immune responses against C. neoformans. The percentage of IgM-expressing memory B cells inversely correlates with the risk for developing cryptococcosis among HIV-positive patients [104]. In solid organ transplant recipients, pre-transplantation levels of GXM-reactive IgM inversely correlate with the development of post-transplant cryptococcosis [105]. The ability to identify B-1 cells in humans has recently been reported (reviewed in [106]), which may facilitate future studies on the role of these innate immune cells and natural antibodies in human cryptococcosis.

3.6. Complement and Other Soluble Mediators

The complement system is an important mediator for the phagocytosis of C. neoformans by innate immune cells. Opsonization by complement has been shown to improve uptake and killing of C. neoformans by phagocytes [107,108] and to mediate DC responses to C. neoformans [109]. Activation of complement can occur through three pathways: alternative, classical, and lectin (reviewed in [110]). Disruption of the alternative, but not the classical, pathway of complement reduces phagocytosis of C. neoformans in vitro and increases the mortality of guinea pigs after infection [111,112]. The lectin pathway likely does not play a
significant role given minimal interactions between MBL and *C. neoformans*, as discussed earlier in this review. It has been shown that complement component 3 (C3) binds to the capsule of *C. neoformans* and then is degraded to inactivated C3b (iC3b) [113–115]. Phagocytosis can then proceed via the action of complement receptors (CR). Blocking CR1, CR3 and CR4 decreases the interaction between *C. neoformans* and human macrophages in vitro [108]. CR3 has been shown to facilitate complement-mediated phagocytosis of *C. neoformans* by murine macrophages [116], but CR3 and CR4 can also mediate phagocytosis independent of complement [117]. Additionally, signaling by C5a through its receptor C5aR appears to be important for neutrophil uptake and killing of *C. neoformans* in mice [118].

Other potential soluble mediators of anti-cryptococcal immunity have been studied. Pentraxin 3 (PTX3) expression is induced in the brains of mice infected intracerebrally with *C. neoformans* [119], but it is not yet known what function PTX3 may play in anti-cryptococcal responses. Recombinant rat ficolin-A can bind and facilitate uptake of acapsular mutants of *C. neoformans* by lung epithelial cells in vitro but does not bind encapsulated *C. neoformans* [120], so it is unclear if ficolins play any significant role in anti-cryptococcal immunity. Finally, production of antimicrobial peptides is increased in a protective model of cryptococcosis [121], but their specific functions in the response to *C. neoformans* are not understood.

3.7. Other Recognition Pathways

Additional potential cryptococcal PAMPs have been identified, but their receptors remain unclear. Chitin is a long chain polymer of GlcNAc that can also be deacetylated to chitosan; both forms are components of the cryptococcal cell wall [1] and appear to have detrimental effects on the host immune response upon recognition. The chitin content of cryptococcal cells has been shown to correlate with Th2 cell accumulation and increased mortality in the murine host [122], and a chitosan-deficient strain of *C. neoformans* promotes protective Th1 host responses and is avirulent in mice [123]. Cryptococcal chitin has been shown to induce IL-10 secretion from human and murine macrophages [124] and induce Th2 responses through CD11b+ conventional DCs, although this process does not seem to occur through direct sensing of chitin by DCs [122]. The PRRs for chitin and chitosan are still unknown (reviewed in [125]). Studies using *C. albicans*-derived chitin suggest that chitin recognition is dependent on MR, NOD2, and TLR9 [124], and purified chitosan can induce inflammasome activation [126,127]. The hypervirulent rim101Δ *C. neoformans* mutant, that has increased chitosan content and exposure of chito-oligomers on its cell surface, induces TNFα secretion by murine bone marrow-derived macrophages but not IL-1β, suggesting cryptococcal chitosan does not induce the inflammasome; however, the induction of TNFα appears to be dependent on the caspase recruitment domain-containing 9 (CARD9) and MyD88 signaling molecules, indicating a potential role for CLRs and TLRs [128–130].

Another possible source of cryptococcal PAMPs are extracellular vesicles (EVs), also referred to as exosomes, which are bilayer vesicles released by *C. neoformans* [131] and can contain an array of cellular components including polysaccharides, nucleic acids, and proteins (reviewed in [132,133]). Although some EVs may be able to promote the virulence of *C. neoformans* [134,135], cryptococcal EVs have also been shown to be internalized by
macrophages and stimulate cytokine secretion, NO production, and uptake and killing of the fungus in vitro [136]. As we improve our technical capability to isolate extracellular vesicles, it will be interesting to perform further analysis of their contents under different host conditions and determine if there are specific EV-borne PAMP interactions with host PRRs.

4. Intracellular Signaling Molecules

Another approach to defining innate immune responses to *C. neoformans* has been to study the role of molecules that commonly integrate signals from PRRs after fungal recognition. These include CARD9, MyD88, and the signaling adapters DAP12 and FcRγ (reviewed in [137,138]).

CARD9 is best known as a downstream mediator of signaling through CLRs like Dectin-1, but it can also transmit signals from TLRs and NOD2 and can facilitate activation of NF-κB or MAP kinase pathways (reviewed in [139,140]). Respiratory infection of CARD9−/− mice with *C. neoformans* results in increased lung fungal burden and neutrophilia along with defective early IFNγ production by NK cells and memory T cells [141]. CARD9 may not play a direct role in phagocytic pathways, as CARD9-deficient murine phagocytes have no defect in binding or uptake of *C. neoformans* spores or yeast forms as evaluated by microscopy [36], but it may regulate cytokine responses. For example, TNFα production is reduced in CARD9-deficient murine macrophages in response to the chitosan-enriched, acapsular rim101Δ cap59Δ *C. neoformans* mutant [128]. Together, these studies suggest that CARD9 may play a role in the host response to *Cryptococcus*, but the signaling pathway requires further definition.

MyD88 has well-established roles in signal transduction for most TLRs but can also function downstream of the cytokine receptors IL-1R and IL-18R [142,143]. MyD88−/− mice have increased susceptibility to both systemic and respiratory infection with *C. neoformans* [67–69]. Since the increased susceptibility of TLR2−/− mice to cryptococcosis is not as pronounced as that of MyD88−/− mice [67,68], MyD88 may mediate non-TLR signaling in response to *C. neoformans* as well. Indeed, IL-18R−/− mice, but not IL-1R−/− mice, have increased susceptibility to respiratory infection with *C. neoformans*, and knockout of either receptor causes significant changes in lung cytokine production compared to WT mice [69]. Additionally, mice deficient in IL-18 have increased susceptibility to cryptococcosis [144,145]. Thus, MyD88 may integrate signals from multiple cryptococcal recognition pathways during the host innate immune response.

DAP12 is an ITAM-containing signaling adapter that pairs to a variety of carbohydrate- and protein-binding immunoreceptors on myeloid and NK cells, including CLRs and other tyrosine kinase-signaling receptors (reviewed in [138,146–148]). DAP12 has been shown to have roles in the regulation of macrophage activation and survival [149,150]. Interestingly, DAP12-deficient macrophages have enhanced fungal uptake and killing and TNFα production in response to *C. neoformans*, and DAP12−/− mice are more resistant to respiratory infection with *C. neoformans* than WT mice [21]. Thus, DAP12 appears to inhibit beneficial fungicidal macrophage responses to *C. neoformans*. Further research will
be needed to identify the DAP12-associated PRRs that trigger these immunosuppressive effects and could be potential immunomodulatory targets for the treatment of cryptococcosis.

FcRγ is also an ITAM-containing signaling adapter utilized by receptors on myeloid and NK cells (reviewed in [138]). In contrast to DAP12, there is no current evidence that supports a role for FcRγ in innate immune responses to C. neoformans. Murine phagocytes from FcRγ−/− mice demonstrate no changes in binding or uptake of spores or yeast [36]. Any other potential roles of FcRγ during cryptococcosis are still unknown.

Additional important signaling molecules in fungal sensing pathways, including spleen tyrosine kinase (Syk), have not yet been investigated for their roles in cryptococcosis. As these gaps in our knowledge are filled, we may gain further insight into the signaling network that enables coordination of the innate immune response by effector cells.

5. Effector Functions of Innate Immune Cells

After a fungal pathogen is recognized by the innate immune system, signal transduction coordinates the effector functions of innate immune cells, which may include phagocytosis and the generation of inflammatory response mediators such as cytokines, fungicidal compounds and acute phase reactants. These processes can regulate clearance of the fungus or initiate the development of adaptive immune responses. In the case of C. neoformans, these pathways can also be subverted by the pathogen to suppress the host innate immune response and allow the fungus to proliferate instead.

5.1. Inflammatory Monocytes

Inflammatory monocytes are innate immune cells that are recruited from the bone marrow to sites of infection or inflammation, whereupon they can differentiate into macrophages or DCs [151–153]. Although monocytes from HIV-positive patients have been reported to have impaired chemotaxis and cytotoxicity [154,155], studies using human monocytes and macrophages have had conflicting results about the role of these cells during cryptococcosis. Some researchers have found that human PBMCs can kill C. neoformans in vitro [156–158], and blood monocyte deactivation was associated with early mortality in HIV-associated cryptococcal meningitis [159]. In other studies, human PBMCs and monocyte-derived macrophages were merely fungistatic [160] or even permissive for intracellular cryptococcal proliferation and dissemination [161–163], and there was no difference in antifungal activity of monocyte-derived macrophages from cryptococcosis patients compared to normal controls [161].

In mice, inflammatory monocytes are defined as cells expressing lymphocyte antigen 6 complex, locus C1 (Ly6C) and C-C chemokine receptor type 2 (CCR2) that can migrate in response to the chemokines monocyte chemoattractant protein (MCP1), also known as C-C chemokine ligand 2 (CCL2), and CCL7 (reviewed in [152]). In chronic models of respiratory cryptococcosis, inflammatory monocytes appear to be beneficial to the host because CCR2−/− mice, that have a defect in monocyte recruitment, develop Th2 responses and have increased fungal burden and decreased lung macrophages, CD11b+ DCs and CD8+ T cells.
T cells [164–166]. Further, in response to infection with *C. neoformans*, Ly6C^hi^ CCR2^+^ monocytes differentiate into fungicidal exudative macrophages and CD11b^+^ DCs that promote fungal clearance and Th1 adaptive immune responses, respectively [166,167]. However, it is interesting to note that in an acute model of respiratory cryptococcosis, enhancing Th2 responses worsens survival and correlates with increased recruitment of monocytes to the lungs [122], suggesting that monocytes and their derivatives could play different roles depending on the host environment. This theory could potentially account for the differences observed in studies on human monocyte responses to *C. neoformans*.

5.2. Macrophages

Macrophages are phagocytic cells that include tissue-resident, embryonic-derived cells like lung alveolar macrophages as well as monocyte-derived macrophages that are of hematopoietic cell origin [168]. Since macrophages, in the guise of alveolar macrophages, are present in the lung at the time that *C. neoformans* is inhaled into the lungs, they have long been considered to be the first line innate immune cell in host defense against the fungus. Indeed, fungi are seen within lung macrophages in patients with cryptococcosis [169], and in murine models, alveolar macrophages have been visualized to quickly take up cryptococcal cells after respiratory infection [170,171]. However, there have been differing results regarding the ability of macrophages to clear *C. neoformans* from the host. While some groups have observed that murine macrophages can kill *C. neoformans* in vitro [172,173], others have found that the fungus can actually replicate within these cells, which may lead to dissemination by way of a Trojan Horse mechanism [170,174–176]. Interestingly, clinical *C. neoformans* isolates that exhibit higher rates of uptake by macrophages in vitro predict poor patient outcomes [177]. In murine respiratory infection models, depletion of macrophages using liposomal clodronate reduces fungal burden [176,178]. In contrast, ablation of macrophages, along with DCs, using transgenic CD11c-diphtheria toxin receptor (DTR) mice was found to worsen survival without any differences in lung fungal burden [179]. It is important to note that the ablation protocol for CD11c-DTR mice can induce fatal toxicity, even in the absence of any infection (reviewed in [180]). Thus, it will be necessary to confirm this result using alternative strategies.

It has become apparent that macrophage polarization may be a key determinant of whether macrophages are beneficial or detrimental during cryptococcosis. M1 (classically activated) macrophages produce nitric oxide (NO) through inducible NO synthase (iNOS) expression, secrete TNFα, and are fungicidal against *C. neoformans*, while M2 (alternatively activated) macrophages typically express the markers arginase 1 (Arg1), chitinase-like 4 (Chil4 or Ym2), resistin like alpha (Retnla or Fizz1), and MR (CD206) and are permissive for fungal growth (reviewed in [181]). M2 polarization has been associated with severe cryptococcal disease in non-HIV patients [182], though not in HIV-positive patients [159]. In mice, alternative activation of macrophages worsens cryptococcosis in the brain [183]. In a chronic respiratory infection model in mice, lung macrophages cycle from a resting state to an M2 phenotype, that corresponds with initial proliferation of *C. neoformans* in the lungs, followed by an M1 phenotype, that correlates to a period of fungal clearance, and then back to a resting state; this cycling could be simulated in vitro by modifying the cytokine environment with either IFNγ (M1) or IL-4 (M2) [184,185]. IFNγ−/− mice have increased
lung fungal burden and demonstrate alternative activation of macrophages after pulmonary challenge with *C. neoformans* [185,186]. IL4−/− mice have improved fungal clearance and demonstrate classical activation of macrophages [185,187]. *C. neoformans* cells weakly stimulate expression of iNOS and Arg1 in murine macrophages in vitro, suggesting that direct interaction between fungus and phagocyte is not the only determinant of macrophage polarization [184].

From a therapeutic perspective, it will be helpful to further dissect the signaling mechanisms that can influence the polarization of macrophages during cryptococcosis. Various signaling components have been identified, including DAP12 [21], heat shock protein 70 (Hsp70) [188], and signal transducer and activator of transcription 1 (STAT1) [189,190]. Studies on other intracellular pathogens suggest that TLR signaling can induce Arg1 in macrophages [191]. Understanding these processes will allow testing of the idea that macrophage polarization drives infectious outcomes in mammalian hosts and could lay the foundation for potential new immunomodulatory strategies for the treatment of cryptococcosis.

5.3. Dendritic Cells

The primary function of DCs in antifungal responses is to take up, process and present antigens to prime T cells and trigger adaptive immunity (reviewed in [192–194]). DCs are a heterogeneous group of cells whose classification continues to evolve. Generally, it is recognized that the main subsets of DCs include classical or conventional DCs (cDCs), monocyte-derived DCs (moDCs), plasmacytoid DCs (pDCs), and Langerhans cells (reviewed in [151,195]).

DCs appear to have roles in protective immunity against *C. neoformans*. Ablation of DCs, along with macrophages, using CD11c-DTR mice increases murine mortality after infection [179], although there are limitations to this mouse model as mentioned previously in this review. DCs have been shown to take up and present cryptococcal glycoantigens [43]. Researchers have found that protective adaptive immune responses to cryptococcal antigen can be mediated by CD11b+ DCs and Langerhans cells [196], and moDCs have been shown to enhance Th1 responses after respiratory infection with *C. neoformans* [166]. Cryptococcal cells and cryptococcal antigen have been shown to stimulate IL-12 and IL-23p40 secretion and expression of activation markers by DCs in vitro [38,197]. DCs upregulate the CD80 activation marker in response to pulmonary *C. neoformans* challenge in vivo and can stimulate T cell activation ex vivo [198]. In addition, DCs can phagocytose and kill *C. neoformans* [39,109,198]. However, CD11b+ cDCs can also mediate harmful Th2 immune responses stimulated by chitin, as discussed earlier in this review [122].

The potential role of pDCs during cryptococcosis has not been as closely examined as that of cDCs and moDCs. *C. neoformans* does not appear to activate pDCs in vitro [197]. Other reports suggest that pDCs phagocytose *C. neoformans* and limit fungal growth through a Dectin-3 and ROS-dependent mechanism [63]. However, infectious outcomes are not altered in Dectin-3−/− mice [63,64].
5.4. Neutrophils

Neutrophils are granulocytes that can phagocytose microorganisms, release antimicrobial enzymes, and produce neutrophil extracellular traps (NETs) (reviewed in [137]). Neutrophils have established roles in the innate immune response to fungal pathogens like *A. fumigatus* [199], but their role in anti-cryptococcal immunity remains poorly defined. Human neutrophils can kill *C. neoformans* in vitro [157,200], and treatment of mice with human recombinant granulocyte-colony stimulating factor (G-CSF) in combination with fluconazole improves survival from intracerebral infection [201]. At the same time, *C. neoformans* can inhibit human neutrophil migration [202], and its capsule blocks neutrophil binding of fungal cells [203]. Human neutrophils release NETs in response to acapsular *C. neoformans* mutants and the capsular polysaccharide glucuronoxylomannogalactan (GXMGal) but not in response to encapsulated *C. neoformans* or capsular GXM [204]. However, if already formed, NETs can kill encapsulated *C. neoformans* [204].

In a systemic model of murine cryptococcosis, anti-Ly6G (1A8) antibody depletion of neutrophils suggests that these cells are needed for fungal clearance in the brain and lungs [205], and neutrophils have been visualized to swarm the fungus for removal from the brain microvasculature [206,207]. In a protective model of cryptococcosis, neutrophils are the primary source of IL-17A that enhances protective immune responses, although they are not essential as γ6 T cells can produce IL-17A in their absence [208]. On the other hand, after pulmonary challenge with *C. neoformans*, depletion of neutrophils and inflammatory monocytes with anti-Gr-1 (RB6-8C5) antibody improves murine survival and causes an overall reduction in inflammatory lung damage, suggesting a detrimental role for neutrophils [209]. In the same study, treatment with anti-Gr-1 had no effect on murine survival after systemic infection. Further supporting a harmful role for neutrophils, mice with genetically-induced neutrophilia appear to have increased susceptibility to cryptococcal disease [210]. Therefore, the role of neutrophils in anti-cryptococcal responses is still not clear and may depend on the specific host and/or tissue environment.

5.5. Natural Killer Cells

NK cells are cytotoxic lymphocytes of the innate immune system. Studies in murine models of systemic cryptococcosis suggest that NK cells may participate in early anti-cryptococcal immune responses through direct fungal interactions [211–216]. Other groups find that instead of direct cytotoxic effects against *C. neoformans*, NK cells may enhance the fungicidal activity of macrophages in mice by producing IFNγ [217,218]. Mice lacking NK cells have increased fungal burden, but they do not have increased susceptibility to infection [211,213].

The role of NK cells in anti-cryptococcal responses has been more closely examined in human cells. NK cells from HIV-positive patients are impaired in their growth inhibition of *C. neoformans* [219]. Human lymphocytes and NK cells have been shown to inhibit cryptococcal growth through direct interaction [220,221]. In studies using human primary NK cells or cell lines, Mody and colleagues have demonstrated that binding of *C. neoformans* by NK cells leads to signaling through the PI3K-ERK1/2 pathway [222] and triggers perforin degranulation to facilitate cryptococcal killing [223].
cytotoxicity receptor NKp30, an immunoglobulin-like protein, has been identified as a human NK cell PRR for *C. neoformans* [224]. In the same study, blocking NKp30 impaired PI3K-ERK1/2 signaling, perforin release and ultimately fungal killing in response to *C. neoformans*. Additionally, it was shown that NK cells from HIV patients have decreased expression of NKp30 and decreased toxicity against *C. neoformans*, both of which can be reversed by IL-12 treatment in vitro. Work remains to identify any additional cryptococcal PRRs on NK cells as well as the cryptococcal ligand for NKp30. Studies on the detection of *Candida glabrata* by the related receptor NKp46 suggest that fungal adhesins could be potential ligands for this class of receptors [225].

5.6. Eosinophils

Eosinophils are granulocytes that are best known for their roles in allergic responses and parasitic infections (reviewed in [226]). Eosinophilia has been associated with cryptococcal disease in humans and mice [11,227–235] and positively correlated to murine susceptibility to cryptococcosis [11,52], but it is not clear if eosinophils have an essential role in the innate immune response to *C. neoformans* or if their recruitment is the byproduct of an ineffectual Th2 response. After infection with *C. neoformans*, eosinophil-deficient ΔdblGATA mice have enhanced Th1 and Th17 responses and decreased lung recruitment of other inflammatory cells, although fungal burden in the lung and brain are not significantly different from WT mice [236]. It is interesting to note that in rats, eosinophils can phagocytose *C. neoformans* and prime T and B cells in order to generate Th1 responses that are protective for the host [233,237,238]. Therefore, the role of eosinophils during cryptococcosis may depend on the particular host setting.

5.7. Other Innate Immune Cells

Innate lymphoid cells (ILCs), other than NK cells, have not been extensively studied in cryptococcosis, but type 2 ILCs may be detrimental to host anti-cryptococcal responses [239]. Derivatives of B-1 cells may have direct antifungal effects against *C. neoformans* [102], as discussed earlier in this review. Epithelial and endothelial cells not only serve as a physical barrier to microbial invasion, but can also participate as effector innate immune cells (reviewed in [240,241]). Lung epithelial cells can bind *C. neoformans* and produce cytokines in response to the fungus [242,243], and endothelial cells may enhance anti-cryptococcal activity of neutrophils [244]. The potential role of γδ T cells is still unclear. Mice deficient in γδ T cells have improved infectious outcomes after *C. neoformans* challenge [245], but studies in a protective model of cryptococcosis suggest that γδ T cells are a source of beneficial IL-17A in the setting of neutropenia [208].

6. Conclusions

By methodically investigating common mammalian antifungal mechanisms, researchers have established important roles for cellular PRRs, in particular MR, TLR9, and NKp30, and for signal transduction through CARD9 and MyD88 in protective immune responses against *C. neoformans*. Other promising PRR candidates include NLRs like NLRP3 and certain scavenger receptors. Furthermore, soluble mediators including natural IgM and complement have key functions in facilitating host recognition and immunity to *C.
Many additional signaling pathways have been studied, but they either require further evaluation as to their specific anti-cryptococcal functions or appear to have limited or even detrimental roles in host responses to *C. neoformans*. Whether the limited findings are due to redundancies in the immune system remains to be determined [246]. Several innate immune cell types appear to have effector functions that facilitate *C. neoformans* clearance and prime adaptive immune responses under certain conditions, but the mechanisms that coordinate these processes require further definition. Much of the work on anti-cryptococcal immunity has been performed in vitro, so it will be important to confirm these pathways in vivo and in human hosts, when possible.

Since *C. neoformans* is equipped with unique virulence factors, like its polysaccharide capsule, that enable it to evade or subvert the host immune response [1], it is not unexpected that the fungus would stimulate distinct innate immune responses compared to other fungal pathogens. Thus, while it is important to study the potential roles of established antifungal pathways in the response to cryptococcosis, it is also critical to work towards identifying immune mechanisms that may be specific to *C. neoformans*. Identification of additional patient populations susceptible to cryptococcosis, such as those with anti-granulocyte macrophage colony-stimulating factor (GM-CSF) autoantibodies [247,248], may reveal previously unknown immune processes important for the host response to *C. neoformans*. Additionally, the rise of new bioinformatics approaches like next-generation sequencing [249] and tools like CRISPR-Cas gene editing [250] and fluorescent probes [251] may enable the discovery of novel pathways in anti-cryptococcal immunity.

Acknowledgments

The author thanks Tobias Hohl and Bing Zhai for helpful comments and regrets that the valuable contributions of many other researchers in the field could not be included due to space constraints. Lena J. Heung is funded by a National Institutes of Health (NIH) grant K08 AI130366, a Stony Wold-Herbert Fund Fellowship, and the Dana Foundation as a Memorial Sloan Kettering Cancer Center Clinical Scholar in Biomedical Research. This work was funded in part through the NIH/National Cancer Institute (NCI) Cancer Center Support Grant P30 CA008748.

References

1. Heitman, J., Kozel, TR., Kwon-Chung, KJ., Perfect, JR., Casadevall, A. Cryptococcus: From Human Pathogen to Model. Yeast. 1. ASM Press; Washington, DC, USA: 2010. p. 1-646.
2. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009; 23:525–530. [PubMed: 19182676]
3. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect Dis. 2017
4. Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong ND, Thai CQ, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013; 368:1291-1302. [PubMed: 23550668]
5. Bratton EW, El Hussein N, Chastain CA, Lee MS, Poole C, Sturmer T, Juliano JJ, Weber DJ, Perfect JR. Comparison and temporal trends of three groups with cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS ONE. 2012; 7:e43582. [PubMed: 22937064]
6. Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. MBio. 2013; 4

J Fungi (Basel). Author manuscript; available in PMC 2017 September 19.
7. Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future Microbiol. 2015; 10:565–581. [PubMed: 25865194]
8. Price MS, Perfect JR. Host defenses against cryptococcosis. Immunol Invest. 2011; 40:786–808. [PubMed: 21985306]
9. Carroll SF, Guilhot L, Qureshi ST. Mammalian model hosts of cryptococcal infection. Comp Med. 2007; 57:9–17. [PubMed: 17348287]
10. Sabiti W, May RC, Pursall ER. Experimental models of cryptococcosis. Int J Microbiol. 2012; 2012:626745. [PubMed: 22007224]
11. Huffnagle GB, Boyd MB, Street NE, Lipscomb MF. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol. 1998; 160:2393–2400. [PubMed: 9498782]
12. Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A. The relative susceptibility of mouse strains to pulmonary Cryptococcus neoformans infection is associated with pleiotropic differences in the immune response. Infect Immun. 2007; 75:2729–2739. [PubMed: 17371865]
13. Rhodes JC, Wicker LS, Urba WJ. Genetic control of susceptibility to Cryptococcus neoformans in mice. Infect Immun. 1980; 29:494–499. [PubMed: 7216421]
14. Carroll SF, Lafferty EI, Flaczyk A, Fujiwara TM, Homer R, Morgan K, Loredo-Osti JC, Qureshi ST. Susceptibility to progressive Cryptococcus neoformans pulmonary infection is regulated by loci on mouse chromosomes 1 and 9. Infect Immun. 2012; 80:4167–4176. [PubMed: 22988020]
15. Chen GH, McNamara DA, Hernandez Y, Huffnagle GB, Toews GB, Olszewski MA. Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect Immun. 2008; 76:2379–2391. [PubMed: 18391002]
16. Sukroongreung S, Kitiniyom K, Nilakul C, Tantimavanich S. Pathogenicity of basidiospores of Filobasiella neoformans var. neoformans. Med Mycol. 1998; 36:419–424. [PubMed: 10206753]
17. Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of Cryptococcus neoformans. Infect Immun. 2009; 77:4345–4355. [PubMed: 19620339]
18. Kwok-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992; 60:602–605. [PubMed: 1730495]
19. Chretien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis. 2002; 186:522–530. [PubMed: 12195380]
20. Blasi E, Baruzzi R, Mazzolla R, Mosci P, Bistoni F. Experimental model of intracerebral infection with Cryptococcus neoformans: Roles of phagocytes and opsonization. Infect Immun. 1992; 60:3682–3688. [PubMed: 1500177]
21. Heung LJ, Hohl TM. DAP12 inhibits pulmonary immune responses to Cryptococcus neoformans. Infect Immun. 2016; 84:1879–1886. [PubMed: 27068093]
22. Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM, Perfect JR, Huffnagle GB. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol. 2004; 164:1761–1771. [PubMed: 1511322]
23. Osterholzer JJ, Surana R, Milam JE, Montano GT, Chen GH, Sonstein J, Curtis JL, Huffnagle GB, Toews GB, Olszewski MA. Cryptococcal urease promotes the accumulation of immature dendritic cells and a non-protective T2 immune response within the lung. Am J Pathol. 2009; 174:932–943. [PubMed: 19218345]
24. Huffnagle GB, Lipscomb MF. Pulmonary cryptococcosis. Am J Pathol. 1992; 141:1517–1520. [PubMed: 1466407]
25. Wormley FL Jr, Perfect JR, Steele C, Cox GM. Protection against cryptococcosis by using a murine interferon-producing Cryptococcus neoformans strain. Infect Immun. 2007; 75:1453–1462. [PubMed: 17210668]
26. Vautier S, MacCallum DM, Brown GD. C-type lectin receptors and cytokines in fungal immunity. Cytokine. 2012; 58:89–99. [PubMed: 21924922]
27. Rachini A, Pietrella D, Lupi P, Torosantucci A, Chiani P, Bromuro C, Prietetti C, Bistoni F, Cassone A, Vecchiarelli A. An anti-β-glucan monoclonal antibody inhibits growth and capsule
formation of *Cryptococcus neoformans* in vitro and exerts therapeutic, anticryptococcal activity in vivo. *Infect Immun.* 2007; 75:5085–5094. [PubMed: 17606600]

28. Giles SS, Dagenais TR, Botts MR, Keller NP, Hull CM. Elucidating the pathogenesis of spores from the human fungal pathogen *Cryptococcus neoformans*. *Infect Immun.* 2009; 77:3491–3500. [PubMed: 19451235]

29. Geunes-Boyer S, Oliver TN, Janbon G, Lodge JK, Heitman J, Perfect JR, Wright JR. Surfactant protein D increases phagocytosis of hypcapsular *Cryptococcus neoformans* by murine macrophages and enhances fungal survival. *Infect Immun.* 2009; 77:2783–2794. [PubMed: 19451250]

30. Cross CE, Bancroft GJ. Ingestion of acapsular *Cryptococcus neoformans* occurs via mannose and β-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. *Infect Immun.* 1995; 63:2604–2611. [PubMed: 7790075]

31. Fromtling RA, Shadomy HJ, Jacobson ES. Decreased virulence in stable, acapsular mutants of *Cryptococcus neoformans*. *Mycopathologia.* 1982; 79:23–29. [PubMed: 6750405]

32. Gazi U, Martinez-Pomares L. Influence of the mannose receptor in host immune responses. *Immunobiology.* 2009; 214:554–561. [PubMed: 19162368]

33. Taylor PR, Gordon S, Martinez-Pomares L. The mannose receptor: Linking homeostasis and immunity through sugar recognition. *Trends Immunol.* 2005; 26:104–110. [PubMed: 15668126]

34. Tachado SD, Zhang J, Zhu J, Patel N, Cushion M, Koziel H. *Pneumocystis*-mediated IL-8 release by macrophages requires coexpression of mannose receptors and TLR2. *J Leukoc Biol.* 2007; 81:205–211. [PubMed: 17020928]

35. Mansour MK, Schlesinger LS, Levitz SM. Optimal T cell responses to *Cryptococcus neoformans* mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. *J Immunol.* 2002; 168:2872–2879. [PubMed: 11844457]

36. Walsh NM, Wuthrich M, Wang H, Klein B, Hull CM. Characterization of C-type lectins reveals an unexpectedly limited interaction between *Cryptococcus neoformans* spores and Dectin-1. *PLoS ONE.* 2017; 12:e0173866. [PubMed: 28282442]

37. Dan JM, Kelly RM, Lee CK, Levitz SM. Role of the mannose receptor in a murine model of *Cryptococcus neoformans* infection. *Infect Immun.* 2008; 76:2362–2367. [PubMed: 18391001]

38. Pietrella D, Corbucci C, Perito S, Bistoni G, Vecchiarelli A. Mannoproteins from *Cryptococcus neoformans* promote dendritic cell maturation and activation. *Infect Immun.* 2005; 73:820–827. [PubMed: 15664921]

39. Syme RM, Spurrell JC, Amankwah EK, Green FH, Mody CH. Primary dendritic cells phagocytose *Cryptococcus neoformans* via mannose receptors and Fcy receptor II for presentation to T lymphocytes. *Infect Immun.* 2002; 70:5972–5981. [PubMed: 12379672]

40. Garcia-Vallejo JJ, van Kooyk Y. The physiological role of DC-SIGN: A tale of mice and men. *Trends Immunol.* 2013; 34:482–486. [PubMed: 23608151]

41. Powlesland AS, Ward EM, Sadhu SK, Guo Y, Taylor ME, Drickamer K. Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. *J Biol Chem.* 2006; 281:20440–20449. [PubMed: 16682406]

42. Takahara K, Yashima Y, Omatsu Y, Yoshida H, Kimura Y, Kang YS, Steinman RM, Park CG, Inaba K. Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and langerin, C-type lectins. *Int Immunol.* 2004; 16:819–829. [PubMed: 15096474]

43. Mansour MK, Latz E, Levitz SM. *Cryptococcus neoformans* glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. *J Immunol.* 2006; 176:3053–3061. [PubMed: 16493064]

44. De Jesus M, Park CG, Su Y, Goldman DL, Steinman RM, Casadevall A. Spleen deposition of *Cryptococcus neoformans* capsular glucuronoxylomannan in rodents occurs in red pulp macrophages and not marginal zone macrophages expressing the C-type lectin SIGN-R1. *Med Mycol.* 2008; 46:153–162. [PubMed: 18324494]

45. Madan T, Eggleton P, Kishore U, Strong P, Aggrawal SS, Sarma PU, Reid KB. Binding of pulmonary surfactant proteins A and D to *Aspergillus fumigatus* conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. *Infect Immun.* 1997; 65:3171–3179. [PubMed: 9234771]
46. Lekkala M, LeVine AM, Linke MJ, Crouch EC, Linders B, Brummer E, Stevens DA. Effect of lung surfactant collectins on bronchoalveolar macrophage interaction with Blastomyces dermatitidis: Inhibition of tumor necrosis factor α production by surfactant protein D. Infect Immun. 2006; 74:4549–4556. [PubMed: 16861641]

47. van Rozendaal BA, van Spriel AB, van de Winkel JG, Haagsman HP. Role of pulmonary surfactant protein D in innate defense against Candida albicans. J Infect Dis. 2000; 182:917–922. [PubMed: 10950789]

48. Choteau L, Parny M, Bertin B, Fumery M, Dubuquoy L, Takahashi K, Colombel JF, Jouault T, Poulaing D, et al. Role of mannose-binding lectin in intestinal homeostasis and fungal elimination. Mucosal Immunol. 2016; 9:767–776. [PubMed: 26442658]

49. Sano H, Chiba H, Iwaki D, Solma H, Voelker DR, Kuroki Y. Surfactant proteins A and D bind CD14 by different mechanisms. J Biol Chem. 2000; 275:22442–22451. [PubMed: 10801802]

50. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T, Saito T, Smith K, Crouch E, Kuroki Y. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry. 2006; 45:8657–8664. [PubMed: 16834340]

51. Geunes-Boyer S, Beers MF, Perfect JR, Heitman J, Wright JR. Surfactant protein D facilitates Cryptococcus neoformans infection. Infect Immun. 2012; 80:2444–2453. [PubMed: 22547543]

52. Holmer SM, Evans KS, Asfaw YG, Saini D, Schell WA, Ledford JG, Frothingham R, Wright JR, Sempowski GD, Perfect JR. Impact of surfactant protein D, interleukin-5, and eosinophilia on cryptococcosis. Infect Immun. 2014; 82:683–693. [PubMed: 24478083]

53. van de Wetering JK, Coenjaerts FE, Vaandrager AB, van Golde LM, Batenburg JJ. Aggregation of Cryptococcus neoformans by surfactant protein D is inhibited by its capsular component glucuronoxylomannan. Infect Immun. 2004; 72:145–153. [PubMed: 14688091]

54. Schelenz S, Malhotra R, Sim RB, Holmskov U, Bancroft GJ. Binding of host collectins to the pathogenic yeast Cryptococcus neoformans: Human surfactant protein D acts as an agglutinin for acapsular yeast cells. Infect Immun. 1995; 63:3360–3366. [PubMed: 7642623]

55. Walenkamp AM, Verheul AF, Scharringa J, Hoepelman IM. Pulmonary surfactant protein A binds to Cryptococcus neoformans without promoting phagocytosis. Eur J Clin Investig. 1999; 29:83–92. [PubMed: 10092994]

56. Giles SS, Zaas AK, Reidy MF, Perfect JR, Wright JR. Cryptococcus neoformans is resistant to surfactant protein A mediated host defense mechanisms. PLoS ONE. 2007; 2:e1370. [PubMed: 18159253]

57. Garred P, Genster N, Pilley K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016; 274:74–97. [PubMed: 27782323]

58. Levitz SM, Tabuni A, Treseler C. Effect of mannose-binding protein on binding of Cryptococcus neoformans to human phagocytes. Infect Immun. 1993; 61:4891–4893. [PubMed: 8406891]

59. van Asbeck EC, Hoepelman AI, Scharringa J, Herpers BL, Verheul J. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 2008; 8:229. [PubMed: 19094203]

60. Nakamura K, Kinjo T, Saijo S, Miyazato A, Adachi Y, Ohno N, Fujita J, Kaku M, Iwakura Y, Kawakami K. Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol Immunol. 2007; 51:1115–1119. [PubMed: 18037789]

61. Nakamura K, Miyagi K, Koguchi Y, Kinjo Y, Uezu K, Kinjo T, Akamine M, Fujita J, Kawamura I, Mitsuyama M, et al. Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans. FEMS Immunol Med Microbiol. 2006; 47:148–154. [PubMed: 16706798]

62. Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T, Miyasaka T, Ishii K, Kanno E, Tachi M, et al. Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun. 2015; 83:671–681. [PubMed: 25422263]
63. Hole CR, Leopold Wager CM, Mendiola AS, Wozniak KL, Campuzano A, Lin X, Wormley FL Jr. Antifungal activity of plasmacytoid dendritic cells against *Cryptococcus neoformans* in vitro requires expression of Dectin-3 (CLEC4D) and reactive oxygen species. Infect Immun. 2016; 84:2493–2504. [PubMed: 27324480]

64. Campuzano A, Castro-Lopez N, Wozniak KL, Leopold Wager CM, Wormley FL Jr. Dectin-3 is not required for protection against *Cryptococcus neoformans* infection. PLoS ONE. 2017; 12:e0169347. [PubMed: 28107361]

65. De Jong MA, Vriend LE, Theelen B, Taylor ME, Fluitsma D, Boekhout T, Geijtenbeek TB. C-type lectin langerin is a β-glucan receptor on human langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol. 2010; 47:1216–1225. [PubMed: 20097424]

66. Zhao X, Guo Y, Jiang C, Chang Q, Zhang S, Luo T, Zhang B, Jia X, Hung MC, Dong C, et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med. 2017; 23:337–346. [PubMed: 28112734]

67. Biondo C, Midiri A, Messina L, Tomasello F, Garufi G, Catania MR, Bombaci M, Beninati C, Teti G, Mancuso G. MyD88 and TLR2, but not TLR4, are required for host defense against *Cryptococcus neoformans*. Eur J Immunol. 2005; 35:870–878. [PubMed: 15714580]

68. Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen *Cryptococcus neoformans* in vivo. Infect Immun. 2004; 72:5373–5382. [PubMed: 15322035]

69. Wang JP, Lee CK, Akalin A, Finberg RW, Levitz SM. Contributions of the MyD88-dependent receptors IL-18R, IL-1R, and TLR9 to host defenses following pulmonary challenge with *Cryptococcus neoformans*. PLoS ONE. 2011; 6:e26232. [PubMed: 22039448]

70. Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or *IκB*α deficiency. Clin Microbiol Rev. 2011; 24:490–497. [PubMed: 21734245]

71. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL, Puel A. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013; 25:736–747. [PubMed: 24240293]

72. Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-α release in response to *Cryptococcus neoformans* polysaccharide capsule. J Immunol. 2001; 166:4620–4626. [PubMed: 11254720]

73. Monari C, Bistoni F, Casadevall A, Kozel TR, Vecchiarelli A. *Cryptococcus neoformans* capsular glucuronoxylomannan induces expression of Fas ligand in macrophages. J Immunol. 2005; 174:3461–3468. [PubMed: 15749881]

74. Monari C, Bistoni F, Casadevall A, Pericolini E, Pietrella D, Kozel TR, Vecchiarelli A. Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J Infect Dis. 2005; 191:127–137. [PubMed: 15593014]

75. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002; 20:709–760. [PubMed: 11861616]

76. Barber GN. Cytoplasmic DNA innate immune pathways. Immunol Rev. 2011; 243:99–108. [PubMed: 21884170]

77. Ramirez-Ortiz ZG, Specht CA, Wang JP, Lee CK, Bartholomeu DC, Gazzinelli RT, Levitz SM. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in *Aspergillus fumigatus* DNA. Infect Immun. 2008; 76:2123–2129. [PubMed: 18332208]

78. Kinjo T, Miyagi K, Nakamura K, Higa F, Gang X, Miyazato A, Kaku M, Fujita J, Kawakami K. Adjuvant effect of CpG-oligodeoxynucleotide in anti-fungal chemotherapy against fatal infection with *Cryptococcus neoformans* in mice. Microbiol Immunol. 2007; 51:741–746. [PubMed: 17704636]

79. Miyagi K, Kawakami K, Kinjo Y, Uezu K, Kinjo T, Nakamura K, Saito A. CpG oligodeoxynucleotides promote the host protective response against infection with *Cryptococcus neoformans* through induction of interferon-γ production by CD4+ T cells. Clin Exp Immunol. 2005; 140:220–229. [PubMed: 15807845]
80. Dan JM, Wang JP, Lee CK, Levitz SM. Cooperative stimulation of dendritic cells by *Cryptococcus neoformans* mannoproteins and CpG oligodeoxynucleotides. PLoS ONE. 2008; 3:e2046. [PubMed: 18446192]

81. Edwards L, Williams AE, Krieg AM, Rae AJ, Snelgrove RJ, Hussell T. Stimulation via Toll-like receptor 9 reduces *Cryptococcus neoformans*-induced pulmonary inflammation in an IL-12-dependent manner. Eur J Immunol. 2005; 35:273–281. [PubMed: 15597328]

82. Qiu Y, Zeltzer S, Zhang Y, Wang F, Chen GH, Dayrit J, Murdock BJ, Bhan U, Toews GB, Osterholzer JJ, Standiford TJ, et al. Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection. J Immunol. 2012; 188:3940–3948. [PubMed: 22428833]

83. Zhang Y, Wang F, Bhan U, Hufnagle GB, Toews GB, Standiford TJ, Olszewski MA. TLR9 signaling is required for generation of the adaptive immune protection in *Cryptococcus neoformans*-infected lungs. Am J Pathol. 2010; 177:754–765. [PubMed: 20581058]

84. Nakamura K, Miyazato A, Xiao G, Hatta M, Inden K, Aoyagi T, Shiratori K, Takeda K, Akira S, Sajo S, et al. Deoxynucleic acids from *Cryptococcus neoformans* activate myeloid dendritic cells via a TLR9-dependent pathway. J Immunol. 2008; 180:4067–4074. [PubMed: 18322162]

85. Tanaka M, Ishii K, Nakamura Y, Miyazato A, Maki A, Abe Y, Miyasaka T, Yamamoto H, Akahori Y, Fue M, et al. Toll-like receptor 9-dependent activation of bone marrow-derived dendritic cells by URAS DNA from *Cryptococcus neoformans*. Infect Immun. 2012; 80:778–786. [PubMed: 22104112]

86. Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015; 37:97–106. [PubMed: 25420452]

87. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighofer E, Tybulewicz VL, et al. Syk kinase signalling couples to the NLRP3 inflammasome for anti-fungal host defence. Nature. 2009; 459:433–436. [PubMed: 19339971]

88. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, Fitzgerald KA. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen *Candida albicans*. Cell Host Microbe. 2009; 5:487–497. [PubMed: 19454352]

89. Said-Sadier N, Padilla E, Langsley G, Ojcius DM. *Aspergillus fumigatus* stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE. 2010; 5:e10008. [PubMed: 20368800]

90. Lei G, Chen M, Li H, Niu JL, Wu S, Mao L, Lu A, Wang H, Chen W, Xu B, et al. Biofilm from a clinical strain of *Cryptococcus neoformans* activates the NLRP3 inflammasome. Cell Res. 2013; 23:965–968. [PubMed: 23567555]

91. Guo C, Chen M, Fa Z, Lu A, Fang W, Sun B, Chen C, Liao W, Meng G. Acapsular *Cryptococcus neoformans* activates the NLRP3 inflammasome. Microbes Infect. 2014; 16:845–854. [PubMed: 25193031]

92. Chen M, Xing Y, Lu A, Fang W, Sun B, Chen C, Liao W, Meng G. Internalized *Cryptococcus neoformans* activates the canonical caspase-1 and the noncanonical caspase-8 inflammasomes. J Immunol. 2015; 195:4962–4972. [PubMed: 26466953]

93. Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol. 2013; 13:621–634. [PubMed: 23928573]

94. Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, Tai MF, Stewart CR, Pukkila-Worley R, Hickman SE, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009; 206:637–653. [PubMed: 19237602]

95. Xu J, Flaczek A, Neal LM, Fa Z, Eastman AJ, Malachowski AN, Cheng D, Moore BB, Curtis JL, Osterholzer JJ, et al. Scavenger receptor MARCO orchestrates early defenses and contributes to fungal containment during cryptococcal infection. J Immunol. 2017; 198:3548–3557. [PubMed: 28298522]

96. Qiu Y, Dayrit JK, Davis MJ, Carolan JF, Osterholzer JJ, Curtis JL, Olszewski MA. Scavenger receptor A modulates the immune response to pulmonary *Cryptococcus neoformans* infection. J Immunol. 2013; 191:238–248. [PubMed: 23733871]
97. Baumgarth N. B-1 cell heterogeneity and the regulation of natural and antigen-induced IgM production. Front Immunol. 2016; 7:324. [PubMed: 27667991]
98. Panda S, Ding JL. Natural antibodies bridge innate and adaptive immunity. J Immunol. 2015; 194:13–20. [PubMed: 25527792]
99. Rohatgi S, Pirofski LA. Molecular characterization of the early B cell response to pulmonary *Cryptococcus neoformans* infection. J Immunol. 2012; 189:5820–5830. [PubMed: 23175699]
100. Subramaniam KS, Datta K, Quintero E, Manix C, Marks MS, Pirofski LA. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with *Cryptococcus neoformans*. J Immunol. 2010; 184:5755–5767. [PubMed: 20404271]
101. Subramaniam KS, Datta K, Marks MS, Pirofski LA. Improved survival of mice deficient in secretory immunoglobulin M following systemic infection with *Cryptococcus neoformans*. Infect Immun. 2010; 78:441–452. [PubMed: 19901068]
102. Ghosn EE, Russo M, Almeida SR. Nitric oxide-dependent killing of *Cryptococcus neoformans* by B-1-derived mononuclear phagocyte. J Leukoc Biol. 2006; 80:36–44. [PubMed: 16670124]
103. Marquis G, Montplaisir S, Pelletier M, Mousseau S, Auger P. Genetic resistance to murine cryptococcosis: Increased susceptibility in the CBA/N X ID mutant strain of mice. Infect Immun. 1985; 47:282–287. [PubMed: 380724]
104. Subramaniam K, Metzger B, Hanau LH, Guh A, Rucker L, Badri S, Pirofski LA. IgM(+) memory B cell expression predicts HIV-associated cryptococcosis status. J Infect Dis. 2009; 200:244–251. [PubMed: 19527168]
105. Jalali Z, Ng L, Singh N, Pirofski LA. Antibody response to *Cryptococcus neoformans* capsular polysaccharide glucuronoxylomannan in patients after solid-organ transplantation. Clin Vaccine Immunol. 2006; 13:740–746. [PubMed: 16829610]
106. Rothstein TL, Griffin DO, Holodick NE, Quach TD, Kaku H. Human B-1 cells take the stage. Ann N Y Acad Sci. 2013; 1285:97–114. [PubMed: 23692567]
107. Kozel TR, Gotschlich EC. The capsule of *Cryptococcus neoformans* passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982; 129:1675–1680. [PubMed: 7050244]
108. Levitz SM, Tabuni A. Binding of *Cryptococcus neoformans* by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Investig. 1991; 87:528–535. [PubMed: 1991837]
109. Kelly RM, Chen J, Yauch LE, Levitz SM. Opsonic requirements for dendritic cell-mediated responses to *Cryptococcus neoformans*. Infect Immun. 2005; 73:592–598. [PubMed: 15618199]
110. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009; 9:729–740. [PubMed: 19730437]
111. Diamond RD, May JE, Kane MA, Frank MM, Bennett JE. The role of the classical and alternate complement pathways in host defenses against *Cryptococcus neoformans* infection. J Immunol. 1974; 112:2260–2270. [PubMed: 4596700]
112. Diamond RD, May JE, Kane M, Frank MM, Bennett JE. The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc Soc Exp Biol Med. 1973; 144:312–315. [PubMed: 4129497]
113. Kozel TR, Wilson MA, Pfrommer GS, Schlager AM. Activation and binding of opsonic fragments of C3 on encapsulated *Cryptococcus neoformans* by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun. 1989; 57:1922–1927. [PubMed: 2525113]
114. Kozel TR, Pfrommer GS. Activation of the complement system by *Cryptococcus neoformans* leads to binding of iC3b to the yeast. Infect Immun. 1986; 52:1–5. [PubMed: 3514450]
115. Pfrommer GS, Dickens SM, Wilson MA, Young BJ, Kozel TR. Accelerated decay of C3b to iC3b when C3b is bound to the *Cryptococcus neoformans* capsule. Infect Immun. 1993; 61:4360–4366. [PubMed: 8406826]
116. Zaragoza O, Taborda CP, Casadevall A. The efficacy of complement-mediated phagocytosis of *Cryptococcus neoformans* is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol. 2003; 33:1957–1967. [PubMed: 12884862]
117. Taborda CP, Casadevall A. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity. 2002; 16:791–802. [PubMed: 12121661]

118. Sun D, Zhang M, Liu G, Wu H, Zhu X, Zhou H, Shi M. Real-time imaging of interactions of neutrophils with Cryptococcus neoformans demonstrates a crucial role of complement C5a-C5aR signaling. Infect Immun. 2015; 84:216–229. [PubMed: 26502909]

119. Polentarutti N, Bottazzi B, di Santo E, Blasi E, Agnello D, Ghezzi P, Introna M, Bartfai T, Richards G, Mantovani A. Inducible expression of the long pentraxin PTX3 in the central nervous system. J Neuroimmunol. 2000; 106:87–94. [PubMed: 10814786]

120. Schelenz S, Kirchhof N, Bidula S, Wallis R, Sexton DW. Opsonization properties of rat ficolin-A in the defence against Cryptococcus neoformans. Immunobiology. 2013; 218:477–483. [PubMed: 22789560]

121. Wozniak KL, Hole CR, Yano J, Fidel PL Jr, Wormley FL Jr. Characterization of IL-22 and antimicrobial peptide production in mice protected against pulmonary Cryptococcus neoformans infection. Microbiology. 2014; 160:1440–1452. [PubMed: 24760968]

122. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, Lee CG, Elias JA, Nielsen JN, Boulware DR, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015; 11:e1004701. [PubMed: 25764512]

123. Upadhyya R, Lam WC, Maybruck B, Specht CA, Levitz SM, Lodge JK. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio. 2016; 7

124. Wagener J, Malireddi RK, Lenardon MD, Koberle M, Vautier S, MacCallum DM, Biedermann T, Schaller M, Netea MG, Kanneganti TD, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014; 10:e1004050. [PubMed: 24722226]

125. Bueter CL, Specht CA, Levitz SM. Innate sensing of chitin and chitosan. PLoS Pathog. 2013; 9:e1003080. [PubMed: 23326227]

126. Bueter CL, Lee CK, Rathinam VA, Healy GJ, Taron CH, Specht CA, Levitz SM. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J Biol Chem. 2011; 286:35447–35455. [PubMed: 21862582]

127. Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM. Spectrum and mechanisms of inflammasome activation by chitosan. J Immunol. 2014; 192:5943–5951. [PubMed: 24829412]

128. Ost KS, Esher SK, Leopold Wager CM, Walker L, Wagener J, Munro C, Wormley FL Jr, Alspaugh JA. Rim pathway-mediated alterations in the fungal cell wall influence immune recognition and inflammation. MBio. 2017; 8

129. O’Meara TR, Holmer SM, Selvig K, Dietrich F, Alspaugh JA. Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. MBio. 2013; 4

130. O’Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, Alspaugh JA. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog. 2010; 6:e1000776. [PubMed: 20174553]

131. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007; 6:48–59. [PubMed: 17114598]

132. Brown L, Wolf JM, Prados-Rosas R, Casadevall A. Through the wall: Extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015; 13:620–630. [PubMed: 26324094]

133. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 2015; 16:24–43. [PubMed: 25488940]

134. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell. 2008; 7:58–67. [PubMed: 18039940]
135. Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol. 2009; 71:1165–1176. [PubMed: 19210702]

136. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun. 2010; 78:1601–1609. [PubMed: 20145096]

137. Drummond RA, Gaffen SL, Hise AG, Brown GD. Innate defense against fungal pathogens. Cold Spring Harb Perspect Med. 2014; 5

138. Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA. The expanding roles of ITAM adapters FcRγ and DAP12 in myeloid cells. Immunol Rev. 2009; 232:42–58. [PubMed: 19909355]

139. Colonna M. All roads lead to CARD9. Nat Immunol. 2007; 8:554–555. [PubMed: 17514206]

140. Ruland J. CARD9 signaling in the innate immune response. Ann N Y Acad Sci. 2008; 1134:35–44. [PubMed: 19076343]

141. Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, Ishii K, Hara H, Yamamoto N, Kanno E, et al. Defect of CARD9 leads to impaired accumulation of γ interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans. Infect Immun. 2014; 82:1606–1615. [PubMed: 24470469]

142. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakashima K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 1998; 9:143–150. [PubMed: 9697844]

143. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, di Marco F, French L, Tschopp J. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem. 1998; 273:12203–12209. [PubMed: 9571568]

144. Kawakami K, Koguchi Y, Qureshi MH, Miyazato A, Yara S, Kinjo Y, Iwakura Y, Takeda K, Akira S, Kurimoto M, et al. IL-18 contributes to host resistance against infection with Cryptococcus neoformans in mice with defective IL-12 synthesis through induction of IFN-γ production by NK cells. J Immunol. 2000; 165:941–947. [PubMed: 10878369]

145. Kawakami K, Koguchi Y, Qureshi MH, Kinjo Y, Yara S, Miyazato A, Kurimoto M, Takeda K, Akira S, Saito A. Reduced host resistance and Th1 response to Cryptococcus neoformans in interleukin-18 deficient mice. FEBS Microbiol Lett. 2000; 186:121–126. [PubMed: 10779723]

146. Takaki R, Watson SR, Lanier LL. DAP12: An adapter protein with dual functionality. Immunol Rev. 2006; 214:118–129. [PubMed: 17100880]

147. Turnbull IR, Colonna M. Activating and inhibitory functions of DAP12. Nat Rev Immunol. 2007; 7:155–161. [PubMed: 17220916]

148. Lanier LL. DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev. 2009; 227:150–160. [PubMed: 19120482]

149. Otero K, Turnbull IR, Poliani PL, Verri W, Cerutti E, Aoshi T, Tassi I, Takai T, Stanley SL, Miller M, et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nat Immunol. 2009; 10:734–743. [PubMed: 19503107]

150. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol. 2006; 177:3520–3524. [PubMed: 16951310]

151. Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin Cell Dev Biol. 2015; 41:9–22. [PubMed: 25957517]

152. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011; 11:762–774. [PubMed: 21984070]

153. Serbina NV, Ja T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008; 26:421–452. [PubMed: 18303997]

154. Smith PD, Ohura K, Masur H, Lane HC, Fauci AS, Wahl SM. Monocyte function in the acquired immune deficiency syndrome. J Clin Investig. 1984; 74:2121–2128. [PubMed: 6511917]

J Fungi (Basel). Author manuscript; available in PMC 2017 September 19.
155. Szelc CM, Mitcheltree C, Roberts RL, Stiehm ER. Deficient polymorphonuclear cell and mononuclear cell antibody-dependent cellular cytotoxicity in pediatric and adult human immunodeficiency virus infection. J Infect Dis. 1992; 166:486–493. [PubMed: 1500735]

156. Diamond RD, Root RK, Bennett JE. Factors influencing killing of Cryptococcus neoformans by human leucocytes in vitro. J Infect Dis. 1972; 125:367–376. [PubMed: 4553080]

157. Miller MF, Mitchell TG. Killing of Cryptococcus neoformans strains by human neutrophils and monocytes. Infect Immun. 1991; 59:24–28. [PubMed: 1987038]

158. Levitz SM, Farrell TP, Maziarz RT. Killing of Cryptococcus neoformans by human peripheral blood mononuclear cells stimulated in culture. J Infect Dis. 1991; 163:1108–1113. [PubMed: 2019758]

159. Scriven JE, Graham LM, Schutz C, Scriba TJ, Wilkinson KA, Wilkinson RJ, Boulware DR, Urban BC, Meintjes G, Laloo DG. The CSF immune response in HIV-1-associated cryptococcal meningitis: Macrophage activation, correlates of disease severity and effect of antiretroviral therapy. J Acquir Immune Defic Syndr. 2017; 75:299–307. [PubMed: 28346317]

160. Levitz SM, Farrell TP. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: Role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun. 1990; 58:1201–1209. [PubMed: 2182538]

161. Diamond RD, Bennett JE. Growth of Cryptococcus neoformans within human macrophages in vitro. Infect Immun. 1973; 7:231–236. [PubMed: 4697791]

162. Alvarez M, Burn T, Luo Y, Pirofski LA, Casadevall A. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol. 2009; 9:51. [PubMed: 19265539]

163. Sorrell TC, Juillard PG, Djordjevic JT, Kaufman-Francis K, Dietmann A, Milonig A, Combes V, Grau GE. Cryptococcal transmigration across a model brain blood-barrier: Evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes Infect. 2016; 18:57–67. [PubMed: 26369713]

164. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol. 2000; 164:2021–2027. [PubMed: 10657654]

165. Osterholzer JJ, Curtis JL, Polak T, Ames T, Chen GH, McDonald R, Huffnagle GB, Toews GB. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J Immunol. 2008; 181:610–620. [PubMed: 18566428]

166. Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. J Immunol. 2009; 183:8044–8053. [PubMed: 19933856]

167. Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, Toews GB. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol. 2011; 178:198–211. [PubMed: 21224057]

168. Ginhoux F, Jung S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014; 14:392–404. [PubMed: 24854589]

169. Gal AA, Koss MN, Hawkins J, Evans S, Einstein H. The pathology of pulmonary cryptococcal infections in the acquired immunodeficiency syndrome. Arch Pathol Lab Med. 1986; 110:502–507. [PubMed: 3754723]

170. Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000; 68:4225–4237. [PubMed: 10858240]

171. Goldman D, Lee SC, Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun. 1994; 62:4755–4761. [PubMed: 7927751]

172. Levitz SM, DiBenedetto DJ. Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. J Immunol. 1989; 142:659–665. [PubMed: 2521352]
173. Bolanos B, Mitchell TG. Killing of *Cryptococcus neoformans* by rat alveolar macrophages. J Med Vet Mycol. 1989; 27:219–228. [PubMed: 2677299]

174. Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after *Cryptococcus neoformans* phagocytosis by macrophages. Curr Biol. 2006; 16:2161–2165. [PubMed: 17084702]

175. Ma H, Croudace JE, Lammas DA, May RC. Expulsion of live pathogenic yeast by macrophages. Curr Biol. 2006; 16:2156–2160. [PubMed: 17084701]

176. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by *Cryptococcus neoformans*. Infect Immun. 2009; 77:120–127. [PubMed: 18936186]

177. Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, Jarvis JN, Gilbert AS, Fisher MC, Harrison TS, et al. Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Investig. 2014; 124:2000–2008. [PubMed: 24743149]

178. Shao XP, Mednick A, Alvarez M, van Rooijen N, Casadevall A, Goldman DL. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol. 2005; 175:3244–3251. [PubMed: 16116215]

179. Osterholzer JJ, Milam JE, Chen GH, Toews GB, Huffnagle GB, Olszewski MA. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with *Cryptococcus neoformans*. Infect Immun. 2009; 77:3749–3758. [PubMed: 19564388]

180. Van Blijswijk J, Schraml BU, Reis e Sousa C. Advantages and limitations of mouse models to deplete dendritic cells. Eur J Immunol. 2013; 43:22–26. [PubMed: 23322690]

181. Leopold Wager CM, Wormley FL Jr. Classical versus alternative macrophage activation: The Ying and the Yang in host defense against pulmonary fungal infections. Mucosal Immunol. 2014; 7:1023–1035. [PubMed: 25073676]

182. Panackal AA, Wuest SC, Lin YC, Wu T, Zhang N, Kosa P, Komori M, Blake A, Browne SK, Rosen LB, et al. Paradoxical immune responses in non-HIV cryptococcal meningitis. PLoS Pathog. 2015; 11:e1004884. [PubMed: 26020932]

183. Stenzel W, Muller U, Kohler G, Heppner FL, Blessing M, McKenzie AN, Brumbacher F, Alber G. IL-4/IL-13-dependent alternative activation of macrophages but not microglial cells is associated with uncontrolled cerebral cryptococcosis. Am J Pathol. 2009; 174:486–496. [PubMed: 19147811]

184. Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, Olszewski MA. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in *Cryptococcus neoformans* infection. MBio. 2013; 4

185. Arora S, Olszewski MA, Tsang TM, McDonald RA, Toews GB, Huffnagle GB. Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with *Cryptococcus neoformans*. Infect Immun. 2011; 79:1915–1926. [PubMed: 2138052]

186. Arora S, Hernandez Y, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Role of IFN-γ in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J Immunol. 2005; 174:6346–6356. [PubMed: 15879135]

187. Hernandez Y, Arora S, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. J Immunol. 2005; 174:1027–1036. [PubMed: 15634927]

188. Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, et al. Cryptococcal heat shock protein 70 homolog SSA1 contributes to pulmonary expansion of *Cryptococcus neoformans* during the afferent phase of the immune response by promoting macrophage M2 polarization. J Immunol. 2015; 194:5999–6010. [PubMed: 25972480]

189. Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Mueller M, Wormley FL Jr. STAT1 signaling within macrophages is required for antifungal activity against *Cryptococcus neoformans*. Infect Immun. 2015; 83:4513–4527. [PubMed: 26351277]
190. Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr. STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice. J Immunol. 2014; 193:4060–4071. [PubMed: 25200956]

191. El Kasmi KC, Qualis JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M, Basaraba RJ, Konig T, Schleicher U, Koo MS, et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol. 2008; 9:1399–1406. [PubMed: 18978793]

192. Ramirez-Ortiz ZG, Means TK. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence. 2012; 3:635–646. [PubMed: 23076328]

193. Eastman AJ, Osterholzer JJ, Olszewski MA. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol. 2015; 10:1837–1857. [PubMed: 26597428]

194. Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL Jr. Cryptococcus and phagocytes: Complex interactions that influence disease outcome. Front Microbiol. 2016; 7:105. [PubMed: 26903984]

195. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013; 31:563–604. [PubMed: 23516985]

196. Bauman SK, Nichols KL, Murphy JW. Dendritic cells in the induction of protective and nonprotective anticytotoxiccell-mediated immune responses. J Immunol. 2000; 165:158–167. [PubMed: 10861048]

197. Siegemund S, Alber G. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages. FEMS Immunol Med Microbiol. 2008; 52:417–427. [PubMed: 18336384]

198. Wozniak KL, Vyas JM, Levitz SM. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect Immun. 2006; 74:3817–3824. [PubMed: 16790753]

199. Espinosa V, Rivera A. First line of defense: Innate cell-mediated control of pulmonary aspergillosis. Front Microbiol. 2016; 7:272. [PubMed: 26973640]

200. Qureshi A, Subathra M, Grey A, Schey K, del Poeta M, Luberio C. Role of sphingomyelin synthase in controlling the antimicrobial activity of neutrophils against Cryptococcus neoformans. PLoS ONE. 2010; 5:e15587. [PubMed: 21203393]

201. Graybill JR, Bocanegra R, Lambros C, Luther MF. Granulocyte colony stimulating factor therapy of experimental cryptococcal meningitis. J Med Vet Mycol. 1997; 35:243–247. [PubMed: 9292420]

202. Walenkamp AM, Ellerbroek P, Scharringa J, Rijkers E, Hoepelman AI, Coenjaerts FE. Interference of Cryptococcus neoformans with human neutrophil migration. Adv Exp Med Biol. 2003; 531:315–339. [PubMed: 12916803]

203. Richardson MD, White LJ, McKay IC, Shankland GS. Differential binding of acapsulate and encapsulated strains of Cryptococcus neoformans to human neutrophils. J Med Vet Mycol. 1993; 31:189–199. [PubMed: 8360810]

204. Rocha JD, Nascimento MT, Decote-Ricardo D, Corte-Real S, Morrot A, Heise N, Nunes MP, Previato JO, Mendonca-Previato L, DosReis GA, Saraiva EM, Freire de-Lima CG. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Sci Rep. 2015; 5:8008. [PubMed: 25620354]

205. Sun D, Zhang M, Liu G, Wu H, Li C, Zhou H, Zhang X, Shi M. Intravascular clearance of disseminating Cryptococcus neoformans in the brain can be improved by enhancing neutrophil recruitment in mice. Eur J Immunol. 2016; 46:1704–1714. [PubMed: 27109176]

206. Sun D, Shi M. Neutrophil swarming toward Cryptococcus neoformans is mediated by complement and leukotriene B4. Biochem Biophys Res Commun. 2016; 477:945–951. [PubMed: 27402276]

207. Zhang M, Sun D, Liu G, Wu H, Zhou H, Shi M. Real-time in vivo imaging reveals the ability of neutrophils to remove Cryptococcus neoformans directly from the brain vasculature. J Leukoc Biol. 2016; 99:467–473. [PubMed: 26428677]
208. Wozniak KL, Kolls JK, Wormley FL Jr. Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by γΔ T cells. BMC Immunol. 2012; 13:65. [PubMed: 23216912]

209. Mednick AJ, Feldmesser M, Rivera J, Casadevall A. Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur J Immunol. 2003; 33:1744–1753. [PubMed: 12778493]

210. Wiesner DL, Smith KD, Kashem SW, Bohjanen PR, Nielsen K. Different lymphocyte populations direct dichotomous eosinophil or neutrophil responses to pulmonary Cryptococcus infection. J Immunol. 2017; 198:1627–1637. [PubMed: 28069805]

211. Lipscomb MF, Alvarellos T, Toews GB, Tompkins R, Evans Z, Koo G, Kumar V. Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice. Am J Pathol. 1987; 128:354–361. [PubMed: 3618730]

212. Salkowski CA, Balish E. Role of natural killer cells in resistance to systemic cryptococcosis. J Leukoc Biol. 1991; 50:151–159. [PubMed: 2072032]

213. Hidore MR, Murphy JW. Natural cellular resistance of beige mice against Cryptococcus neoformans. J Immunol. 1986; 137:3624–3631. [PubMed: 3537121]

214. Hidore MR, Murphy JW. Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans. Infect Immun. 1989; 57:1990–1997. [PubMed: 2659531]

215. Murphy JW, Hidore MR, Nabavi N. Binding interactions of murine natural killer cells with the fungal target Cryptococcus neoformans. Infect Immun. 1991; 59:1476–1488. [PubMed: 2004826]

216. Nabavi N, Murphy JW. In vitro binding of natural killer cells to Cryptococcus neoformans targets. Infect Immun. 1985; 50:50–57. [PubMed: 3899938]

217. Kawakami K, Koguchi Y, Qureshi MH, Yara S, Kinjo Y, Uezu K, Saito A. NK cells eliminate Cryptococcus neoformans by potentiating the fungicidal activity of macrophages rather than by directly killing them upon stimulation with IL-12 and IL-18. Microbiol Immunol, 2000; 44:1043–1050. [PubMed: 11220678]

218. Zhang T, Kawakami K, Qureshi MH, Okamura H, Kurimoto M, Saito A. Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of γ interferon by natural killer cells. Infect Immun. 1997; 65:3594–3599. [PubMed: 9284124]

219. Horn CA, Washburn RG. Anticytotoxic activity of NK cell-enriched peripheral blood lymphocytes from human immunodeficiency virus-infected subjects: Responses to interleukin-2, interferon-γ, and interleukin-12. J Infect Dis. 1995; 172:1023–1027. [PubMed: 7561175]

220. Levitz SM, Dupont MP, Smail EH. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect Immun. 1994; 62:194–202. [PubMed: 8262627]

221. Murphy JW, Hidore MR, Wong SC. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Investig. 1993; 91:1553–1566. [PubMed: 8473499]

222. Wiseman JC, Ma LL, Marr KJ, Jones GI, Mody CH. Perforin-dependent cryptococcal microbicidal activity in NK cells requires PI3K-dependent ERK1/2 signaling. J Immunol. 2007; 178:6456–6464. [PubMed: 17475875]

223. Ma LL, Wang CL, Neely GG, Egelman S, Krensky AM, Mody CH. NK cells use perforin rather than granulysin for anticytotoxic activity. J Immunol. 2004; 173:3357–3365. [PubMed: 15322199]

224. Li SS, Kyei SK, Timm-McCann M, Ogbono H, Jones GI, Shi M, Xiang RF, Oykham P, Huston SM, Islam A, et al. The NK receptor Nkp30 mediates direct fungal recognition and killing and is diminished in NK cells from HIV-infected patients. Cell Host Microbe. 2013; 14:387–397. [PubMed: 24139398]

225. Vithreusain A, Chappak-Amikam Y, Yamin R, Bauman Y, Isaacson B, Stein N, Berhani O, Dassa L, Gamiel M, Gur C, et al. NK cell recognition of Candida glabrata through binding of NKP46 and NCR1 to fungal ligands Epa1, Epa6, and Epa7. Cell Host Microbe. 2016; 20:527–534. [PubMed: 27736647]

226. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: Changing perspectives in health and disease. Nat Rev Immunol. 2013; 13:9–22. [PubMed: 23154224]
227. Marwaha RK, Trehan A, Jayashree K, Vasishta RK. Hypereosinophilia in disseminated cryptococcal disease. Pediatr Infect Dis J. 1995; 14:1102–1103. [PubMed: 8745027]

228. Pfeffer PE, Sen A, Das S, Sheaff M, Sivaramakrishnan A, Simcock DE, Turner B. Eosinophilia, meningitis and pulmonary nodules in a young woman. Thorax. 2010; 65:1066–1085. [PubMed: 20889522]

229. Yamaguchi H, Komase Y, Ikehara M, Yamamoto T, Shinagawa T. Disseminated cryptococcal infection with eosinophilia in a healthy person. J Infect Chemother. 2008; 14:319–324. [PubMed: 18709538]

230. Epstein R, Cole R, Hunt KK Jr. Pleural effusion secondary to pulmonary cryptococcosis. Chest. 1972; 61:296–298. [PubMed: 4553672]

231. Jensen WA, Rose RM, Hammer SM, Karchmer AW. Serologic diagnosis of focal pneumonia caused by Cryptococcus neoformans. Am Rev Respir Dis. 1985; 132:189–191. [PubMed: 3893246]

232. Brewer GE, Wood FCXII. Blastomycosis of the spine: Double lesion: Two operations: Recovery. Ann Surg. 1908; 48:889–896. [PubMed: 17862277]

233. Feldmesser M, Casadevall A, Kress Y, Spira G, Orlofsky A. Eosinophil-Cryptococcus neoformans interactions in vivo and in vitro. Infect Immun. 1997; 65:1899–1907. [PubMed: 9125578]

234. Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH, Erb-Downward J, Osterholzer J, Toews GB, Huffnagle GB, et al. Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect Immun. 2009; 77:5389–5399. [PubMed: 19752036]

235. Rivera J, Casadevall A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol. 2005; 174:8017–8026. [PubMed: 15944309]

236. Ptehler D, Stenzel W, Grahnt A, Held J, Richter L, Kohler G, Richter T, Eschke M, Alber G, Muller U. Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. Am J Pathol. 2011; 179:733–744. [PubMed: 21699881]

237. Garro AP, Chiapello LS, Baronetti JL, Masih DT. Eosinophils elicit proliferation of naive and fungal-specific cells in vivo so enhancing a T helper type 1 cytokine profile in favour of a protective immune response against Cryptococcus neoformans. J Immunol. 2011; 134:198–213. [PubMed: 21896014]

238. Garro AP, Chiapello LS, Baronetti JL, Masih DT. Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4(+) and CD8(+) T cells with a T-helper 1 profile. Immunology. 2011; 132:174–187. [PubMed: 21039463]

239. Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST. IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J Immunol. 2013; 191:2503–2513. [PubMed: 23894196]

240. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015; 16:27–35. [PubMed: 25521682]

241. Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: Endothelial cells—Conditional innate immune cells. J Hematol Oncol. 2013; 6:61. [PubMed: 23965413]

242. Guillot L, Carroll SF, Badawy M, Qureshi ST. Cryptococcus neoformans induces IL-8 secretion and CXCL1 expression by human bronchial epithelial cells. Respir Res. 2008; 9:9. [PubMed: 18211687]

243. Teixeira PA, Penha LL, Mendonca-Prevatio L, Previato JO. Mannoprotein MP84 mediates the adhesion of Cryptococcus neoformans to epithelial lung cells. Front Cell Infect Microbiol. 2014; 4:106. [PubMed: 25191644]

244. Roseff SA, Levitz SM. Effect of endothelial cells on phagocyte-mediated anticycrococcal activity. Infect Immun. 1993; 61:3818–3824. [PubMed: 8359903]

245. Uezu K, Kawakami K, Miyagi K, Kinjo Y, Kinjo T, Ishikawa H, Saito A. Accumulation of γΔ T cells in the lungs and their regulatory roles in TH1 response and host defense against pulmonary
infection with Cryptococcus neoformans. J Immunol. 2004; 172:7629–7634. [PubMed: 15187143]

246. Nish S, Medzhitov R. Host defense pathways: Role of redundancy and compensation in infectious disease phenotypes. Immunity. 2011; 34:629–636. [PubMed: 21616433]

247. Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, Suputtamongkol Y, Bennett JE, Pyrgos V, Williamson PR, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013; 190:3959–3966. [PubMed: 23509356]

248. Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, Bennett JE, Holland SM, Browne SK, Kwon-Chung KJ. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014; 5

249. Chen S, Yan H, Zhang L, Kong W, Sun Y, Zhang W, Chen Y, Deng A. Cryptococcus neoformans infection and immune cell regulation in human monocytes. Cell Physiol Biochem. 2015; 37:537–547. [PubMed: 26328591]

250. Pelletier S, Gingras S, Green DR. Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity. 2015; 42:18–27. [PubMed: 25607456]

251. Heung LJ, Jhingran A, Hohl TM. Deploying FLAREs to visualize functional outcomes of host-pathogen encounters. PLoS Pathog. 2015; 11:e1004912. [PubMed: 26158781]