Separation and Purification of Methyl Isobutyl Ketone from Acetone + Isopropanol + Water + Methyl Isobutyl Ketone + Methyl Isobutyl Carbinol + Diisobutyl Ketone Mixture

Mark Mayevskiy, Anastasia Frolkova,* and Alla Frolkova

ABSTRACT: The paper presents the results of the study of phase equilibrium in the system containing acetone, isopropanol, water, methyl isobutyl ketone, methyl isobutyl carbinol, and diisobutyl ketone. Mathematical modeling in AspenPlus V.10.0 was chosen as a method of studying. Thermodynamic-topological analysis was used to analyze the structure of the VLE diagram. The technique of studying the full composition diagram based only on a two-dimensional scan (determining the presence of a three-dimensional separatric manifold and distillation regions) was presented and demonstrated on the example of five components constituent of the mixture. It is shown that, in some cases, it is sufficient to study the two-dimensional scan of the phase diagram to predict its internal structure. Two separation flowsheets based on the use of direct and sharp distillation were considered, and the operating column parameters corresponding to minimum energy consumption were determined. The sharp distillation was proved to be less energy-intensive.

1. INTRODUCTION

Methyl isobutyl ketone (MIBK) is an important solvent in the chemical industry (cellulose treatment, paint production, solvent in extraction, and dewaxing processes).1-7 There are several ways to obtain this compound: one-step method (liquid-phase or gas-phase process),8-10 two-step method,11 and three-step method,12 differing in the use of raw materials (acetone/hydrogen8-12 or isopropanol11-13), catalysts, process conditions (reactor pressure and temperature), and a set of by-products. Chemical processes are characterized by various parameters: conversion of reagents, selectivity, etc. (depending on the listed factors that determine the reaction unit operation). Thus, a mixture differing in qualitative and quantitative compositions can be obtained at the exit from the reaction block. The next step is to separate MIBK of commercial quality and reagents that should be recycled to the chemical reaction stage. The multicomponent mixture contains MIBK (a target product), acetone (A), isopropanol (IP), water (W), methyl isobutyl carbinol (MIBC), diisobutyl ketone (DIBK), and diacetone alcohol, mesityl oxide, and mesitylene (depending on the method used). The literature analysis shows that the most promising method of separation is distillation. The proposed separation flowsheets12 are based on the use of a direct sequence in the first distillation column (acetone is taken overhead as a distillate final product). The bottom flow is sent to decanter to separate most of water in an aqueous phase (water forms azeotropes with the other components). The remaining water along with isopropanol is removed in the second column. Commercial MIBK is obtained in the third column, the bottom of which contains heavy-boiling by-products. The disadvantage of such flowsheets is the difficulty of acetone separation (a large number of theoretical stages and a high reflux ratio) as well as the loss of MIBK (in the distillate of the second column) due to the presence of the W + MIBK azeotrope. The latter problem was solved in ref 12 by using extractive distillation with ethylene glycol. Other separation variants are not considered in the literature.

Up to 70% of energy consumption is accounted for by the separation unit in the technology of basic organic synthesis since distillation is an energy-intensive process.19 Therefore, the development of an energy-efficient flowsheet for MIBK separation is an important task.

To propose a separation flowsheet, it is necessary to investigate the phase behavior of the system. One of the most effective methods is thermodynamic-topological analysis.20-22 This area of knowledge is constantly expanding and improving: methods for studying phase diagrams of multicomponent mixtures, internal azeotrope prediction, features of the mutual arrangement of separatric manifolds, and simplices of splitting have been developed. The more azeotropes in a system, the
The study of the phase diagram allows identifying the presence of separatric hypersurfaces of the \((n-2)\) dimension, which divides the composition space into several distillation regions. Table 4 lists the types of all the singular points and their Poincaré indexes. Checking the diagram by the azeotropy rule\(^{22-24}\) showed that the latter is constructed correctly (the sum of Poincaré indexes is equal to 2):

\[
2(N_{\text{S}} + S_i^+ - S_i^-) + \sum_{i=2}^{4} (N_{\text{S}} + S_i^+ - S_i^-) + N_{\text{S}} = 2
\]

where \(N\) is the number of singular points of the node type, \(S\) is the number of singular points of the saddle type, \(+/-\) is the sign of the Poincaré index, and \(i\) is the boundary singular point. The stable and unstable nodes have a Poincaré index \(+1\) or \(-1\) in five-component systems; for this reason, the sign \(+\) or \(-\) near a point of type \(N\) is not specified. In addition, this equation does not include singular points with a zero index (for example, saddles that are located on the border of the composition simplex constituents glued and characterized by a zero Poincaré index).

In Table 1, the singular points MIBK, IP + W, and W + MIBK are zero-index saddles in the composition pentatope because their type is a saddle node in the two-dimensional scan; azeotrope W + DIBK is a singular point of the saddle (of the first order) type. This point will generate a separatric surface of the third dimension inside the phase diagram.

The pentatope scan contains one-dimensional separatrices (S1). Figure 1a shows that they form a closed line (highlighted in red). S1 is one-dimensional traces of a three-dimensional separatric manifold (S3) (the toned area in Figure 1b). The composition pentatope is divided by S3 into two distillation regions (the two-dimensional borders of the distillation regions are highlighted in white and gray in the Figure 1a). Acetone is a common unstable node for both regions. Water and DIBK are stable nodes that are separated from each other by red borders of S1 on the distillation regions (the two-dimensional borders of the distillation regions are highlighted in white and gray in the Figure 1a).

Determining the types of singular points (azeotropes and pure components) allows identifying the presence of the saddles of the first or \((n-2)\) order in the system (the order of the saddle is determined by the number of negative roots of the linearized system of differential equations describing the distillation process\(^{20,21}\)). The presence of such a point indicates that the system will contain a separatric hypersurface of the \((n-2)\) dimension, which divides the composition space into several distillation regions. The presence of such a point indicates that the system will contain a separatric hypersurface of the \((n-2)\) dimension, which divides the composition space into several distillation regions. The presence of such a point indicates that the system will contain a separatric hypersurface of the \((n-2)\) dimension, which divides the composition space into several distillation regions.
demonstrates that, in some cases, it is sufficient to use a two-dimensional scan to analyze the complete phase diagram.

If we return to the analysis of the diagram of the six-component system, we should add two more singular points to the data in Table 1: the pure MIBC (saddle node with an index of zero) and the azeotrope W + MIBC (saddle node with an index of zero). The index of the singular point corresponding to acetone will change the sign to the opposite (⟨⟨−1⟩⟩: the space of an odd dimension). The azeotropy rule is being executed (the sum of the indices of singular points is zero).

The azeotrope W + DIBK will remain a first-order saddle, and the composition hexatope will be divided by a separatric surface of dimension 4 into two distillation regions.

The initial mixture (100 kmol/h) to be separated contains acetone of 0.4934, isopropanol of 0.1717, water of 0.0847, MIBK of 0.1927, MIBC of 0.0015, and DIBK of 0.0575 mole fractions. This composition belongs to the distillation region with DIBK as a stable node. Theoretically three different types of distillation (direct, indirect, and sharp) can be used for the development of separation flowsheets (it is desirable that there is no component(s) distributed between the bottom and distillate flows). Restrictions on the use of one of the separation modes may be due to the presence of azeotropes or a separatric hypersurface. The direct distillation implies separation of acetone at the column’s top (there are no restrictions here since acetone does not form azeotropes with other components); the bottom flow will contain an IP + W + MIBK + MIBC + DIBK mixture. Sharp distillation leads to the separation of the ternary mixture A + IP + W in a distillate flow, the other components will be presented in the bottom flow (limitation: the column’s material balance line cannot cross S4). Indirect distillation implies separation of DIBK in the bottom of the column (the distillate flow will contain an A + IP + W + MIBK + MIBC + DIBK mixture). The disadvantage of the latter case is the presence of a recycling flow in the separation flowsheet, which will negatively affect energy consumption (it is not possible to separate DIBK completely, and, therefore, an additional column will be required to separate the remaining DIBK, which will lead to an increase in capital and operating costs). The separation flowsheets based on the use of direct and sharp distillation are given in Figure 2.

To find the columns’ operating parameters, sensitivity analysis was used. The requirement for the purity of the target product is at least 0.998. Tables 2 and 3 present the parameters of column work, energy consumption, and the compositions of distillate and bottom flows. All the parameters correspond to the minimum energy consumption allowing minimizing impurities in the distillate and bottom flows. The efficiency of the column was chosen based on plotting the energy consumption dependence on the number of stages in the column. The reduced pressure in some columns is explained by the difficulty of separating acetone from water (these components form a tangential azeotrope) and methyl isobutyl ketone from methyl isobutyl carbinol (the relative volatility of components is close to 1).

3. CONCLUSIONS

Knowing the structure of the vapor–liquid equilibrium diagram allows predicting possible sets of products in the distillation process. The phase diagram of an n-component system can be divided into distillation regions by a separatric manifold of an (n − 2) dimension (S_{n−1}). If there are no S_{n−1}’s in the system, there are no restrictions on using direct, indirect, or sharp distillation in the first column. If the phase diagram contains S_{n−1}, then, depending on the number of stable and unstable nodes, it is possible to recommend one or another mode.

The possibility of using a boundary space of the second dimension for a complete analysis of the phase diagram (information about the number of distillation regions about the presence of a separatric manifold of the (n − 2) dimension) was shown on the example of five- and six-component systems.

Based on the thermodynamic-topological analysis of the phase diagram, two separation flowsheets based on the direct and sharp distillation were considered (indirect distillation was not recommended). It is more difficult to separate pure acetone from the initial mixture than the ternary mixture acetone + isopropanol + water (the higher reflux ratio is needed). This is due to the presence of a tangential azeotrope in the binary constituent acetone–water (water and acetone have similar volatilities near the singular point of pure acetone despite the large difference in boiling points). The volatility of acetone relative to water is higher in the ternary system acetone + isopropanol + water mixture compared to the binary one.

The separation flowsheet based on the use of sharp separation can compete with the flowsheet previously proposed in the literature.
4. COMPUTATIONAL METHODS

Thermodynamic modeling of phase equilibrium of the systems was based on the NRTL \[\text{equation}\] using Aspen Plus.

\[
\ln y_i = \sum x_i r_i G_i + \sum_j x_j G_j \left(r_j = \frac{\sum_m x_m G_{mj}}{\sum_k x_k G_{kj}} \right)
\]

where \(G_j = \exp \left(-\alpha_j \tau_{ij} \right)\), \(r_j = a_{ij} + \frac{b_j}{T} + c_j \ln T + f_j T\), \(\alpha = c_i d_{ij} \left(T - 273.15 \text{ K} \right)\); \(\tau_{ii} = 0\), \(G_{ii} = 1\); and \(\tau_{ij} = a_{ij} + \frac{b_i}{T} + c_i \ln T + f_i T\).

The parameters of the NRTL model were taken from the AspenPlus V.10.0 database for systems A + IP, A + W, A + MIBK, IP + W, W + MIBK, and W + DIBK and were regressed using experimental data or a UNIFAC model for systems IP + MIBK, A + DIBK, IP + DIBK, and MIBK+DIBK (Table 4).

The comparison between the evaluated and experimental parameters, boiling temperature of pure components, azeotrope characteristics (composition and boiling temperature) (Table 5), and compositions of liquid phases corresponding to liquid–liquid equilibrium (LLE) (Table 6), was made. If the relative standard uncertainty \((u_r)\) of the description of VLE and LLE was less than 0.05, the set of parameters was used for further calculations (phase equilibrium studies and simulation of the distillation process):

\[
u_a = \frac{u_a}{a_{exp}} = \frac{|a^{exp} - a^{cal}|}{a^{exp}}
\]

where \(a\) can be presented as the temperature \((T)\) or concentration \((X)\).

Table 2. Column Operating Parameters of Separation Flowsheet Presented in Figure 2a

Column (pressure, kPa)	Stage number	Feed stage	Reflux ratio	Comp.	Distillate composition (mole frac)	Bottom composition (mole frac)	Energy consumption (kW)
1 (81.06)	38	33	3.5	A	0.9951	0.0048	2117.4
				IP	0.0000	0.3389	
				W	0.0049	0.1624	
				MIBK	0.0000	0.3804	
				MIBC	0.0000	0.0030	
				DIBK	0.0000	0.1105	
2 (101.32)	37	31	2.7	A	0.0092	0.0000	1245.3
				IP	0.6768	0.0000	
				W	0.3208	0.0000	
				MIBK	0.0027	0.7595	
				MIBC	0.0000	0.0060	
				DIBK	0.0000	0.2245	
3 (70.93)	32	10	0.9	A	0.0000	0.0000	362.8
				IP	0.0000	0.0000	
				W	0.0000	0.0000	
				MIBK	0.9983	0.0058	
				MIBC	0.0016	0.0207	
				DIBK	0.0001	0.9735	

\(\Sigma = 3725.5\)

Table 3. Column Operating Parameters of Separation Flowsheets Presented in Figure 2b

Column (pressure, kPa)	Stage number	Feed stage	Reflux ratio	Comp.	Distillate composition (mole frac)	Bottom composition (mole frac)	Energy consumption (kW)
1 (101.32)	35	30	1.3	A	0.6580	0.0000	1902.4
				IP	0.2290	0.0000	
				W	0.1130	0.0000	
				MIBK	0.0000	0.7701	
				MIBC	0.0000	0.0060	
				DIBK	0.0000	0.2239	
2 (70.93)	36	31	2.1	A	0.9950	0.0096	1277.4
				IP	0.0001	0.6695	
				W	0.0049	0.3208	
				MIBK	0.0000	0.0001	
				MIBC	0.0000	0.0000	
				DIBK	0.0000	0.0000	
3 (70.93)	32	10	0.9	A	0.0000	0.0000	353.8
				IP	0.0000	0.0000	
				W	0.0000	0.0000	
				MIBK	0.9983	0.0060	
				MIBC	0.0016	0.0208	
				DIBK	0.0001	0.9732	

\(\Sigma = 3533.6\)

\(\Sigma = 3725.5\)
Table 4. NRTL Parameters for Binary Systems

binary system	a_{ij}	b_{ij}	c_{ij}		
A + IP	−2.4106	2.4494	822.489	−583.345	0.3
A + W	6.3981	0.0544	−1808.99	419.972	0.3
A + MIBK	−5.4452	5.3013	1833.52	−1735.91	0.3
A + MIBC	0	0	222.198	7.94313	0.3
IP + W	−1.3115	6.8284	426.398	−1483.46	0.3
IP + MIBK	0	0	160.644	28.1164	0.3
IP + MIBC	0	0	159.305	−122.935	0.3
W + MIBK	9.16294	−3.23048	−1248.74	1208.88	0.2
W + DIBK	11.6082	−0.3283	−969.938	730.523	0.2
W + MIBC	7.18523	−1.15534	−547.79	496.857	0.264
A + DIBK	0	0	335.049	−164.928	0.3
IP + DIBK	0	0	263.227	125.6	0.3
MIBK + MIBC	−15.2238	9.49025	6102.93	−3717.53	3.3
W + DIBK	0	0	172.857	89.2098	0.3
MIBK + DIBK	0	0	123.919	−77.498	0.3

Table 5. Boiling Temperatures (T) of Pure Components and Azeotropic Data (X_1 and T) (Experimental$^{31-35}$ and Calculated) for the System A + IP + W + MIBK + MIBC + DIBK at 101.3 kPa

pure component/azeotrope	X_1^{exp} (mole frac.)	X_1^{exp} (mole frac.)	u_1 (mole frac.)	T_{cal} (K)	T_{exp} (K)	u_1 (K)	u_2 (K)
A	1.0000	1.0000	0.0000	329.29	329.35	0.06	0.0002
IP	1.0000	1.0000	0.0000	355.20	354.75	0.45	0.0013
W	1.0000	1.0000	0.0000	373.17	373.15	0.02	0.0001
MIBK	1.0000	1.0000	0.0000	389.29	389.15	0.14	0.0004
MIBC	1.0000	1.0000	0.0000	404.83	404.95	0.12	0.0003
DIBK	1.0000	1.0000	0.0000	410.44	412.55	1.45	0.0033
IP + W	0.6728	0.6816	0.0088	353.33	353.25	0.08	0.0002
W + MIBK	0.6489	0.6420	0.0069	361.54	361.00	0.54	0.0015
W + MIBC	0.8105	0.805	0.0055	367.44	367.50	0.06	0.0002
W + DIBK	0.9036	0.8641	0.0395	370.35	370.15	0.20	0.0005

Table 6. Experimental$^{36-38}$ and Calculated LLE Data ($X_1′$ and $X_2′$) for Systems W + MIBK, W + MIBC, and W + DIBK at 101.3 kPa and 298.15 K (303.15 K for W + MIBC)

binary system	$X_1′$ (cal) (mole frac.)	$X_2′$ (calc) (mole frac.)	$X_1′$ (exp) (mole frac.)	$X_2′$ (exp) (mole frac.)	u_1 (mole frac.)	u_2 (mole frac.)	u_1 (K)	u_2 (K)
W + MIBK	0.9059	0.9965	0.9505	0.9984	0.0009	0.0010	0.0019	0.0019
W + MIBC	0.7427	0.9973	0.7342	0.9973	0.0085	0.0115	0.0000	0.0000
W + DIBK	0.9693	0.9999	0.9937	0.9997	0.0244	0.0246	0.0002	0.0002

The relative standard uncertainty of description of phase equilibrium is less than 0.05. Thus, the conclusion can be drawn that the VLE and LLE data can be properly correlated by the NRTL model.

■ AUTHOR INFORMATION

Corresponding Author

Anastasia Frolkova — Department of Chemistry and Technology of Basic Organic Synthesis, MIREA — Russian Technological University, Moscow 119571, Russia; orcid.org/0000-0001-5675-5777; Phone: +7 916 6658397; Email: frolkova_nastya@mail.ru

Authors

Mark Mayevskiy — Department of Chemistry and Technology of Basic Organic Synthesis, MIREA — Russian Technological University, Moscow 119571, Russia

Alla Frolkova — Department of Chemistry and Technology of Basic Organic Synthesis, MIREA — Russian Technological University, Moscow 119571, Russia; orcid.org/0000-0002-9763-4717

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c03718

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The work was carried out under the support of the Ministry of Education and Science in the framework of the State task on the topic no. 0706-2020-0020.

■ REFERENCES

(1) Shavaliev, I. O.; Belousova, O. Y.; Kutepov, B. I.; Yapaev, R. S. Improving the process of dewaxing of raffinates in the oil industry. Bashkir Chemical Journal 2016, 23, 66–70.

(2) Kurbatova, M. V.; Cherentsova, M. I.; Raskulova, T. V.; Fereferov, M. Y.; Ryabtsov, A. Y. Low-temperature dewaxing of oils in the presence of an individual solvent. Vestnik ANSTU 2018, 12, 69–72.

(3) Roy, B. C.; Aweal, M. R.; Goto, M. Liquid-liquid Equilibrium Data for the Ternary Systems of Propionic Acid-Water-Solvents. J. Appl. Sci. 2006, 6, 411–415.
(4) Smirnova, A. A.; Grigoriev, L. S.; Ostroukhov, N. N. Extraction of water-soluble phenols from water of shale production. *Chemistry of solid fuels* 2016, 6, 40–44.

(5) Extraction of phenol-containing wastewater streams. Pat. RF 2,377,185. 2009.

(6) Zhou, Z.; Qin, W.; Fei, W.; Li, Y. A Study on Stoichiometry of Complexes of Tributyl Phosphate and Methyl Isobutyl Ketone with Lithium in the Presence of FeCl₃. *Chin. J. Chem. Eng.* 2012, 20, 36–39.

(7) Xiang, W.; Liang, S.; Zhou, Z.; Qin, W.; Fei, W. Lithium recovery from salt lake brine by counter-current extraction using tributyl phosphate/FeCl₃ in methyl isobutyl ketone. *Hydrometallurgy* 2017, 171, 27–32.

(8) Hetterley, R. D.; Mackey, R.; Jones, J. T. A.; Khimyak, Y. Z.; Fogg, A. M.; Kozhevnikov, I. V. One-step conversion of acetone to methyl isobutyl ketone over Pd-mixed oxide catalysts prepared from novel layered double hydroxides. *J. Catal.* 2008, 258, 250–255.

(9) Winter, F.; van Dillen, A. J.; de Jong, K. P. Single-stage liquid-phase synthesis of methyl isobutyl ketone under mild conditions. *J. Mol. Catal. A: Chem.* 2004, 219, 273–281.

(10) Low pressure one-step gas-phase process for production of methyl isobutyl ketone. Pat. EP 2,532,642 B1 Paris (FR). 2017.

(11) Torres, G.; Apesteguia, C. R.; Di Cosimo, J. I. One-step methyl isobutyl ketone (MIBK) synthesis from 2-propanol: Catalyst and reaction condition optimization. *Appl. Catal., A* 2007, 317, 161–170.

(12) Lei, Z.; Li, J.; Li, C.; Chen, B. Improvement of separation process of synthesizing MIBK by the isopropanol one-step method. *Korean J. Chem. Eng.* 2006, 23, 264–270.

(13) Di Cosimo, J. I.; Torres, G.; Apesteguia, C. R. One-step MIBK synthesis: a new process from 2-propanol. *J. Catal.* 2002, 208, 114–123.

(14) Mattos, L. V.; Noronha, F. B.; Monteiro, J. L. F. Bifunctional metal/base catalysts (Pt/X) for the direct synthesis of MIBK from acetone. *J. Catal.* 2002, 209, 166.

(15) Wang, F.; Xu, L.; Huang, J.; Wu, S.; Yu, L.; Xu, Q.; Fan, Y. Practical preparation of methyl isobutyl ketone by stepwise isopropylation reaction of acetone. *Mol. Catal.* 2017, 432, 99–103.

(16) Cheikhi, N.; Kacimi, M.; Rouimi, M.; Ziyad, M.; Liotta, L. F.; Pantaleo, L. G.; Deganello, G. Direct synthesis of methyl isobutyl ketone in gas-phase reaction over palladium-loaded hydroxyapatite. *J. Catal.* 2005, 232, 257–267.

(17) Two-step system and method for the production of methyl isobutyl ketone. Pat. US 0,025,277 A1. 2015.

(18) Weissermel, K.; Arpe, H.-J. *Industrial Organic Chemistry*; 3rd ed.; VCH Verlagsgesellschaft mbH: Weinheim, 1997.

(19) Timofeev, V. S.; Sarafimov, L. A.; Tyomshenko, A. V. *Principles of the technology of basic organic and petrochemical synthesis*; Textbook for universities. Higher School: Moscow 2010.

(20) Sarafimov, L. A. State of the art in the thermodynamic and topological analysis of phase diagrams. *Theor. Found. Chem. Eng.* 2009, 43, 268–278.

(21) Sarafimov, L. A. Thermodynamic and topological analysis of heterogeneous equilibrium diagrams of multicomponent mixtures. *Russ. J. Phys. Chem.* 2002, 76, 1211–1224.

(22) Sarafimov, L. A. Thermodynamical and topological analysis of liquid-vapor phase equilibrium diagrams and problems rectification of multicomponent mixtures. *Mathematical Method in Contemporary Chemistry, Chapter 10*; Gordon and Breach: New York, 1996.

(23) Sarafimov, L.; Frolkova, A. Determination of vapor–liquid equilibrium diagrams of multicomponent systems. *Chem. Pap.* 2016, 70, 1578–1589.

(24) Frolkova, A. V.; Mayevskiy, M. A.; Smirnov, A. Y. Phase Equilibrium of Systems Cyclohexene + Water + Cyclohexanone + N-Methyl-2-pyrrolidone (+Acetonitrile). *J. Chem. Eng. Data* 2019, 64, 2888–2893.

(25) Frolkova, A. V.; Mayevskiy, M. A.; Frolkova, A. K. Analysis of Phase Equilibrium Diagrams of Cyclohexene + Water + Cyclohexanone + Solvent System. *J. Chem. Eng. Data* 2018, 63, 679–683.

(26) Samarov, A.; Trofimova, M.; Toikka, M.; Toikka, A. Experimental Data on Chemical Equilibrium in the System with Ethyl Formate Synthesis Reaction at 298.15 K. *J. Ch. Eng. Data* 2020, 65, 2578–2582.

(27) Toikka, M. A.; Samarov, A. A.; Sadaev, A. A.; Senina, A. A.; Lobacheva, O. L. Chemical equilibrium in the propionic acid - ethanol - ethyl propionate - water system and extraction processes with participation of deep eutectic solvents. *Fine Chem. Technol.* 2019, 14, 47–58.

(28) Martinez, A. F.; Sanchez, C. A.; Orjuela, A.; Rodriguez, G. Isobutyl acetate by reactive distillation. Non-reactive phase equilibrium and topological analysis. *Fluid Phase Equilib.* 2020, 516, 1–9.

(29) Zhuchkov, V.; Malyugin, A.; Frolkova, A.; Alla, F. Double Ternary Azeotrope in the Benzene + Perfluorobenzene + Water System at 101 kPa. *J. Chem. Eng. Data* 2020, 65, 2002–2007.

(30) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. *AIChE J.* 1968, 14, 135–144.

(31) Ogorodnikov, S. K.; Lesteva, T. M.; Kogan, V. B. Azeotropic mixtures; Khimiya: Leningrad, 1971.

(32) Tochigi, K.; Inoue, H.; Kojima, K. Determination of azeotropes in binary systems at reduced pressures. *Fluid Phase Equilib.* 1985, 22, 343–352.

(33) Cho, J.; Jeon, J.-K. Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration. *Korean J. Chem. Eng.* 2006, 23, 1–7.

(34) Cho, T.-W.; Ochi, K.; Kojima, K. Measurement of vapor-liquid equilibrium for systems with limited miscibility. *Fluid Phase Equilib.* 1983, 11, 137–152.

(35) Rawat, B. S.; Krishna, S. Isobaric Vapor-Liquid Equilibria for the Partially Miscible System of Water-Methyl Isobutyl Ketone. *J. Chem. Eng. Data* 1984, 29, 403–406.

(36) Yang, C.; Qian, Y.; Guo, J.; Chen, J.; Peng, J. Liquid–Liquid Equilibria for the Ternary System Methyl Isobutyl Ketone + m-Benzenediol + Water. *J. Chem. Eng. Data* 2014, 59, 3324–3328.

(37) Yang, C.; Qian, Y.; Jiang, Y.; Zhang, L. Liquid–liquid equilibria for the quaternary system methyl isobutyl ketone–water–phenol–hydquinone. *Fluid Phase Equilib.* 2007, 258, 73–77.

(38) Stephenson, R.; Stuart, J.; Tabak, M. Mutual Solubility of Water and Aliphatic Alcohols. *J. Chem. Eng. Data* 1984, 29, 287–290.