TREES PROBE DEEPER THAN STRINGS: AN ARGUMENT FROM ALLOMORPHY

Hossep Dolatian + Shiori Ikawa + Thomas Graf

Stony Brook + Fuji Women’s + Stony Brook

July 14, 2022
Table of Contents

• Introduction

• Representations and allomorphy

• Formalizing Non-local allomorphy
 • Non-local and inward
 • Non-local and outward

• Discussion and conclusion
What the title means

• Title: *Trees probe deeper than strings: an argument from allomorphy*

1. Data: look at how allomorphy patterns can be modeled
2. Precedent: most formal work looks at how allomorphy is regular over string representations
3. Novelty: look at how tree-based representations show finer expressivity

• Disclaimer: String-based representations are more practically useful (FSAs, NNs). We’re exploring tree-based representations to gain a deeper understanding.

4. Finding: Direction of allomorphy affects the complexity of transformation in different ways depending on the representation
Table of Contents

- Introduction
- Representations and allomorphy
 - Formalizing Non-local allomorphy
 - Non-local and inward
 - Non-local and outward
- Discussion and conclusion
Representations in morphology

- Two commonly used representations for morphology: strings and trees
- Strings more commonly used by morphophonologists
- Trees used by some morphosyntacticians (Halle and Marantz, 1993) but not all of them (Stump, 2001)
- Main ‘benefit’ of trees: directly encodes semantics

 | can be undone | cannot be done |
 | un- do -able | un- do -able |

- Strings require just finite-state machines (Beesley and Karttunen, 2003), while trees need tree transducers.

 ⇒ most formal work on morphology just uses the easier strings
What is allomorphy

- As a case study on tree formalizations, we look at morphologically-conditioned allomorphy.
- A morpheme has two or more allomorphs and their distribution is based on morphological context.
- E.g., the English plural: *cat-s* but *ox-en*.
- The plural suffix is the **target** of allomorphy, while the **trigger** is the type of root.
Typology of allomorphy

- **Basic typology**
 The target y of allomorphy can be
 - local/adjacent to the trigger x, or non-local
 - structurally higher than the trigger x, or lower

Adjacency	Direction	Inward	Outward
Local		$x < y$	$y < x$
Non-adjacent		$x < \cdots < y$	$y < \cdots < x$

- Inward (outward) = the trigger x is below (above) the target y
- For the English plural, the trigger x and target y are local and inward

- Local cases are easy and equivalent over strings/trees. We’ll focus on the non-local
Table of Contents

- Introduction
- Representations and Allomorphy
 - Formalizing Non-local Allomorphy
 - Non-local and inward
 - Non-local and outward
- Discussion and Conclusion
Non-local allomorphy is when the trigger and target are non-adjacent.

The trigger can be below/above the target

Below = Inward: Kiowa:

héíb-e-gùù-mòò-tòò	héíb-é-gùù-mòò-t!òò
enter-TRₓ-DISTR-NEG-MODᵧ	enter-INTRₓ-DISTR-NEG-MODᵧ
MOD→-tòò / TR ... _	MOD→-t!òò / INTR ... _

Above = Outward: Slovenian

žanj-e-∅-m	Ž-e-l-a
reapᵧ-ASP-PRES-2P.SG	reapᵧ-ASP-PTCₓ-F.SG
√reap →žanj	√reap →ž / _ PTC

Both are sequential FSTs for strings, but different tree transducers!
Non-local and inward

- Inward Kiowa:

héíb-e-guy-mɔɔ-tɔɔ	héíb-é-guy-mɔɔ-t!ɔɔ
enter-\text{TR}_x-\text{DISTR-NEG-MOD}_y	enter-\text{INTR}_x-\text{DISTR-NEG-MOD}_y
MOD→-tɔɔ / TR ... _	MOD→-t!ɔɔ / INTR ... _

- If we assume a large but finite bound between trigger x and target y, then we need multiple rewrite rules with large contexts.

(1) a.

```
  MOD
   /
  _
     /
  _
  TR
→  -tɔɔ
```

b.

```
  MOD
   /\W
  W
     /\W
  W
→  -t!ɔɔ
```
BOTTOM-UP TREE TRANSDUCERS

- If we want to acknowledge non-locality, then we need a deterministic bottom-up tree transducer.
- In a bottom-up tree transducer, the transduction of a node depends on its label and the states of all its daughters.
- Example: if a node is b and both of its daughter nodes are in q_o
 - transform it into d
 - move to state q_e
If we want to acknowledge non-locality, then we need a deterministic bottom-up tree transducer.

In a bottom-up tree transducer, the transduction of a node depends on its label and the states of all its daughters.

Example: if a node is b and both of its daughter nodes are in q_o

 ▶ transform it into d
 ▶ move to state q_e

```
  b
 /\  \
a b
  \
  \
  \
  \
  qo qo v  a  a
  |   |   |
  qo qo w  w
  a  a
```

```
  b
 /\  \
 a qe qe
  \
  \
  \
  d  qe
  a  qe
   \
   \
   a  a
    \
    \
    a  a  w  w
```
Non-local trees

- **MOD** does not dominate **TR/INTR**
- **We need a waiting strategy**
 - output nothing when reading **MOD**
MOD does not dominate TR/INTR
We need a waiting strategy
- output nothing when reading MOD
Non-local trees

- **MOD** does not dominate **TR/INTR**
- **We need a waiting strategy**
 - output nothing when reading **MOD**
Non-local trees

- **MOD** does not dominate **TR/INTR**
- **We need a waiting strategy**
 - output nothing when reading **MOD**
 - output the blue part when reading x, depending on whether **TR/INTR** occurs below x
Non-local and outward

- Kiowa was non-local and inward.
- Things get a bit more complicated for non-local and outward allomorphy.

Slovenian:

žanj-e-∅-m	Ž-e-l-a
reap$_y$-ASP-PRES-2P.SG	reap$_y$-ASP-PTC$_x$-F.SG

\[\sqrt{reap} \rightarrow Žanj\] \[\sqrt{reap} \rightarrow Ž / _ _ _ _ _ _ _ PTC\]

- If we assume there’s a finite bound between target and trigger, then it’s just a local transduction.

(2) a. \[\Rightarrow Ž\]

b. \[\Rightarrow Žanj\]
• But if we treat this allomorphy as truly non-local, then we get some formalization problems
• We need a deterministic top-down tree transducer.
• But if we treat this allomorphy as truly non-local, then we get some formalization problems
• We need a deterministic top-down tree transducer.
• But if we treat this allomorphy as truly non-local, then we get some formalization problems.
• We need a deterministic top-down tree transducer.
Problems for outward allomorphy

- The labels of y’s siblings are needed in the case of Slovenian.

- The state assigned to a daughter x_i depends only on the label of its mother and the state assigned to the mother.

- Crucially the labels of siblings are not taken into consideration.
The labels of y’s siblings are needed in the case of Slovenian.

The state assigned to a daughter x_i depends only on the label of its mother and the state assigned to the mother.

Crucially the labels of siblings are not taken into consideration.

Look-ahead of depth 1 at x is need (Sensing Tree Transducer, cf. Graf and De Santo 2019)
Table of Contents

- Introduction
- Representations and allomorphy
- Formalizing non-local allomorphy
 - Non-local and inward
 - Non-local and outward
- Discussion and conclusion
Summarize: string vs. tree-based representations don’t make much of a difference for most types of allomorphy

Table: Summary of formal results for directionality and locality of allomorphy types; patterns marked with * are ISL if one does not assume unboundedness

Pattern	String-based computation	Tree-based computation
Inward & local	ISL	ISL
Inward & non-local	Left-to-right sequential*	bottom-up sequential*
Outward & local	ISL	ISL
Outward & non-local	Right-to-left sequential*	top-down sequential*
		or STFTT* (sensing)

But for outward non-local cases, trees disambiguate the effects of different computations
REFERENCES

Beesley, K. and L. Karttunen (2003). *Finite-state morphology: Xerox tools and techniques*. Stanford, CA: CSLI Publications.

Graf, T. and A. De Santo (2019). Sensing tree automata as a model of syntactic dependencies. In *Proceedings of the 16th Meeting on the Mathematics of Language*, Toronto, Canada, pp. 12–26. Association for Computational Linguistics.

Halle, M. and A. Marantz (1993). Distributed morphology and the pieces of inflection. In K. Hale and S. J. Keyser (Eds.), *The view from Building 20: Studies in linguistics in honor of Sylvan Bromberger*, pp. 111–176. Cambridge, MA: MIT Press.

Stump, G. T. (2001). *Inflectional morphology: A theory of paradigm structure*. Number 93 in Cambridge Studies in Linguistics. Cambridge: Cambridge University Press.