Study on the mechanism of anti-cancer action of *rosa roxburghii tratt* based on network pharmacology

Ying Mei¹, Xiang Pu¹, Xiangling Qu², *¹

¹School of Guizhou University of Traditional Chinese Medicine, Guizhou, China
²The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China

*Corresponding author e-mail: 125193321@qq.com, 37979960@qq.com

Abstract. The active chemical components and targets of *rosa roxburghii tratt* were screened by the method of network pharmacology, and the molecular mechanism of its action was discussed. By consulting relevant literature reports, we established drug-disease targets by using databases such as TCMSP, TCMIP, Genecards and OMIM. Using STRING database to construct the protein interaction network between *rosa roxburghii tratt* and cancer target; and Cytoscape software was used to construct the interactive network diagram of "active ingredient-target-disease". The function enrichment analysis of Gene Ontology (GO) and pathway enrichment analysis based on Kyoto Encyclopedia of genes and genomes (KEGG) were carried out by using biological information annotation database (David). We obtained 11 active components and 80 drug-disease targets were obtained, DAVID database was used to carry out GO function enrichment analysis and KEGG pathway enrichment analysis on 80 potential targets, and 303 biological processes and 114 signaling pathways were screened out to participate in the anti-cancer effect of *rosa roxburghii tratt*. The Pathway in cancer has the strongest correlation with cancer, which is related to the regulation of IL6, AR, CASP3 and other key genes. These key genes are related to myricetin, quercetin, kaempferol and other compounds in *rosa roxburghii tratt*. The anti-cancer compounds of *rosa roxburghii tratt* might were myricetin, quercetin, kaempferol and other compounds. The anti-cancer effect of *rosa roxburghii tratt* may regulation of key genes, indirectly affecting the sustained angiogenesis, developing apoptosis and promotion, so as to promote or inhibit the production of cancer.

1. Introduction

Rosa roxburghii tratt is a kind of perennial deciduous bush of Rosaceae, which is mainly distributed in southwest mountainous areas such as Yunnan, Guizhou, Sichuan, and also planting in Hubei, Guangdong and other places, now. It has the functions of relieving food, diarrhea and heatstroke. *Rosa roxburghii tratt* has rich nutritional value and broad prospects in the development of food, health products and medicines. Fresh *rosa roxburghii tratt* fruit is rich in vitamins, polyphenols, flavonoids, organic acids, polysaccharides, amino acids and trace elements [1]. Among them, the content of VC is the highest, ranking the first among many fruits, and a certain amount of VK1, VB2, VP and carotene [2]. Other chemical components are mainly flavonoids, and their aglycones are myricetin, quercetin and
kaempferol their triterpenoids are pentacyclic triterpenoid ester glycoside, Euscaphic acid, rosa roxburghii tratt acid, rosa roxburghii tratt glycoside, etc[3]. These chemical components, such as myricetin, quercetin and kaempferol, have been reported to have anti-cancer activity.

Modern medical research showed that rosa roxburghii tratt has a variety of biological effects such as regulating immune function, detoxification, sedation, delaying senility, anti-atherosclerosis, and anti-cancer. In recent years, rosa roxburghii tratt has been shown to inhibit a variety of cancers, such as bladder [4], prostate [5] and liver cancer [6]. At present, CL1 from rosa roxburghii tratt can inhibit the growth of gastric cancer SGC-7901 cells in vitro, and does not significantly inhibit the proliferation and differentiation of hematopoietic stem/progenitor cells into granulocytes [7]. Although, many studies have shown that rosa roxburghii tratt plays an important role in anti-cancer, most of the studies are based on animal and in vitro cell experiments. However, the type and mechanism of cancer treatment are still unclear, which still needs further research and exploration.

Fortunately, the advent of network pharmacology provides a reference for the study of the mechanism of rosa roxburghii tratt in the treatment of cancer [8]. Due to the multi-component, multi-target and multi-level characteristics of traditional Chinese Medicine, Network pharmacology has the characteristics of wholeness, systematicness and focusing on drug interactions, which are consistent with the basic characteristics of traditional Chinese medicine [4]. Therefore, network pharmacology can be used to predict drug targets on the whole, to comprehensively and systematically study the law and mechanism of drug interaction with the body, and to provide theoretical basis for in depth experimental research on rosa roxburghii tratt and guidance of rational clinical drug use.

2. Materials and methods

2.1. Acquisition of active ingredients of rosa roxburghii tratt

By referring to related literatures, the latest reported compounds of rosa roxburghii tratt were searched, and the active chemical components of rosa roxburghii tratt were screened through the screening of oral bioavailability (OB) ≥ 30% and drug-like property (DL) ≥0.18, or the compounds with the activity reported in literatures.

2.2. Prediction of rosa roxburghii tratt target and cancer target

Using the function of TCMSP, TCMIP, BATMAN and other databases to predict the target of the effective components of rosa roxburghii tratt. In the human gene database Genecards and OMIM of Online Mendelian genetic platform, “cancer” is the key word to retrieve the related target genes of cancer, and map and compare with the target genes of active ingredients to screen the common target, which is the target of rosa roxburghii tratt active ingredients for cancer treatment.

2.3. Key target PPI network construction

By searching the STRING database online, importing 80 common targets, defining species as "humans", and PPI network for cancer treatment of rosa roxburghii tratt was constructed. The results are exported in TSV format, and then the topological parameters of each target point in PPI network are obtained through the Network Analyzer plug-in of the software Cytoscape 3.6.1, such as Degree, Betweenness centrality and Closeness centrality, and the median of the three topological parameters was calculated. Selected the targets whose values of the above three topology parameters are greater than all median values, list them in the form of tables, and visualize the targets.

2.4. Go function enrichment analysis and KEGG pathway enrichment analysis

The selected targets were analyzed by using David (https://david.ncifcrf.gov/) database for KEGG pathway analysis and Go (gene ontology) biological process analysis.
2.5. Labeling of KEGG signaling pathway
Using the function of KEGG mapper in KEGG (https://www.genome.jp/kegg/) signal pathway database to mark the target points on the signal pathway closest to cancer, to verify that *rosa roxburghii tratt* plays an anti-cancer role through multiple targets and multiple channels.

3. Results

3.1. Screening of active ingredients
By referencing to relevant literature, ADME parameters (OB≥ 30% and DL≥0.18) were used as criteria for the selection of compounds. Or refer to the existing literature and report that the compound has activity for screening, and a total of 11 active compounds are screened, the results are shown in Table 1.

Table 1. Active compounds and target numbers of *rosa roxburghii tratt* [9-10]

Mol Id	Chemical compound	OB%	DL	Target number
MOL002008	myricetin	13.75	0.31	16
MOL000098	quercetin	46.43	0.28	76
MOL00422	kaempferol	41.88	0.24	35
MOL001468	MLT	59.62	0.02	8
MOL00131	EIC	41.9	0.14	6
MOL005500	linolenate	45.01	0.15	2
MOL001308	oleic acid	33.13	0.14	8
MOL001002	ellagic acid	43.06	0.43	10
MOL001641	METHYL LINOLEATE	41.93	0.17	2
MOL002850	butylated hydroxytoluene	40.02	0.07	4
MOL000635	vanillin	52	0.03	1

3.2. Prediction results of potential targets of *rosa roxburghii tratt* in the treatment of cancer
In Genecards and OMIM databases, a total of 4862 cancer-related genes were retrieved with "Cancer" as the keyword, and Cancer genes were matched with *rosa roxburghii tratt* related targets and Venn diagram was drawn, as shown in figure 1.

Figure 1. Match of cancer target gene and *rosa roxburghii tratt* target gene
3.3. PPI network analysis

80 intersection targets were imported into the network diagram of the interaction relationship obtained in the STING database, the results were exported in TSV format, and the TSV file was imported into Cytoscape 3.6.1 software. The plug-in Network Analyzer is used to obtain the topological parameters of each target point, such as Degree, Betweenness centrality and Closeness centrality. The median of the three topological parameters is 15, 0.003825445 and 0.541523305, respectively. Degree and Betweenness centrality, Closeness centrality were greater than the median of targets, as shown in Table 2. According to the Degree value of the topological indicator, it is presented in terms of rank 1, 2-11, 12-31, and 32-80, as shown in Figure 2. It is suggested that these targets play an important role in PPI network, indicating that these targets play an important role in the treatment of cancer in *rosa roxburghii tratt*.

![Gene association diagram (PPI network diagram)](image)

Table 2. Analysis of gene topological parameters

name	Degree	Betweenness Centrality	Closeness Centrality
IL6	52	0.1275	0.7500
MAPK8	48	0.0794	0.7282
CASP3	47	0.0554	0.7143
VEGFA	47	0.0605	0.7143
EGFR	44	0.0358	0.7009
ESR1	42	0.0413	0.6881
MYC	42	0.0417	0.6881
CCND1	38	0.0193	0.6579
FOS	36	0.0556	0.6522
ERBB2	34	0.0173	0.6410
AR	33	0.0210	0.6356
PPARG	32	0.0455	0.6250
RELA	29	0.0100	0.6098
CASP8	27	0.0123	0.5859
PGR	27	0.0108	0.6000
3.4. Enrichment analysis of Go biological function
80 potential targets were mapped to the DAVID database for GO functional enrichment analysis, and 303 biological processes were obtained. The first 20 biological processes with P<0.01 and FDR<0.05 were screened out, as shown in Table 3. It is shown as a bubble chart, and the result is shown in Figure 3. The results showed that the anti-cancer effect of *rosa roxbughi tratt* was related to the regulation of multiple biological processes, biological processes including positive regulation of transcription from RNA molecular ase II promoter, response to estradiol, negative regulation of apoptotic process, positive regulation of transcription. DNA-templated are involved. Among them, positive regulation of transcription from RNA polymerase II promoter is mainly a process of activating or increasing the frequency, rate or degree of transcription of RNA polymerase II promoter. Response to estradiol is any process by which the stimulation of estradiol (a C18 steroid hormone hydroxylated at C3 and C17 as an effective estrogen) results in a change in the state or activity of a cell or organism. These biological processes reflect the anti-cancer mechanism of *rosa roxbughi tratt*, which involves the abnormality of multiple biological processes in vivo, and also indicate that the active components of *rosa roxbughi tratt* may exert anti-cancer effect by regulating these biological processes.

Figure 3. GO biological function enrichment analysis bubble chart
Table 3. GO biological function enrichment analysis results

ID	Term	Count	Count%	P Value	FDR
GO:00459	positive regulation of transcription from RNA polymerase II promoter	24	30	6.99296E-11	0.07
GO:00323	response to estradiol	10	12.5	4.05895E-10	0.07
GO:00430	negative regulation of apoptotic process	16	20	2.72842E-10	0.06
GO:00458	positive regulation of transcription, DNA-templated	16	20	1.44413E-08	0.05
GO:00454	response to ethanol	9	11.25	3.22447E-08	0.05
GO:00075	aging	10	12.5	7.84009E-08	0.01
GO:00016	response to hypoxia	10	12.5	1.12009E-09	0.29
GO:00424	response to drug	12	15	1.72979E-09	0.07
GO:00106	positive regulation of gene expression	11	13.75	4.02959E-07	0.06
GO:00713	cellular response to tumor necrosis factor	8	10	8.39566E-07	0.19
GO:00420	wound healing	7	8.75	2.03722E-06	0.64
GO:00096	response to toxic substance	7	8.75	2.91027E-06	0.64
GO:00714	cellular response to hypoxia	7	8.75	5.92115E-06	0.02
GO:00703	cellular response to hydrogen peroxide	6	7.5	7.01059E-06	0.17
GO:00714	cellular response to organic cyclic compound	6	7.5	8.32105E-06	0.97
GO:00324	response to lipopolysaccharide	8	10	1.19777E-05	0.42
GO:00069	apoptotic process	13	16.25	1.27132E-05	0.87
GO:00103	response to gamma radiation	5	6.25	1.2962E-05	0.29
GO:00432	response to amino acid	5	6.25	1.2962E-05	0.29
GO:00466	response to antibiotic	5	6.25	1.47609E-05	0.19

3.5. KEGG pathway analysis

80 potential targets were mapped to the DAVID database and KEGG pathway enrichment analysis was performed. A total of 115 signal pathways were obtained. The first 20 signal pathways with P<0.01 and FDR< 0.05 were screened out and displayed in a bubble chart, as shown in Figure 4. These pathways are closely related to the mechanism of anti-cancer of *rosa roxburghii tratt*, including Pathways in cancer,
Hepatitis B, Proteoglycans in cancer, Pancreatic cancer and other signaling pathways, as shown in Table 4. The corresponding diseases include liver cancer, pancreatic cancer, prostate cancer and bladder cancer. Using the KEGG mapper function in the KEGG signaling pathway database, 80 related target proteins were labeled on the most closely related signaling pathway with cancer. The results showed that 27 target proteins were involved in the regulation of pathways in cancer signaling pathway, as shown in Figure 5.

Table 4. Enrichment analysis results of KEGG pathway

hsa ID	Term	Count	Count%	PValue	FDR
hsa05200	Pathways in cancer	27	33.75	1.62E-14	2.01E-11
hsa05161	Hepatitis B	17	21.25	1.95E-12	2.42E-09
hsa05205	Proteoglycans in cancer	15	18.75	2.30E-08	2.86E-05
hsa05212	Pancreatic cancer	10	12.5	2.61E-08	3.23E-05
hsa05215	Prostate cancer	11	13.75	2.93E-08	3.63E-05
hsa05223	Non-small cell lung cancer	9	11.25	1.27E-07	1.58E-04
hsa04668	TNF signaling pathway	11	13.75	1.93E-07	2.40E-04
hsa05219	Bladder cancer	8	10	2.30E-07	2.85E-04
hsa05210	Colorectal cancer	9	11.25	2.88E-07	3.57E-04
hsa04066	HIF-1 signaling pathway	10	12.5	8.08E-07	0.001001554
hsa05206	MicroRNAs in cancer	15	18.75	1.91E-06	0.00236837
hsa05222	Small cell lung cancer	9	11.25	3.53E-06	0.00415496
hsa04917	Prolactin signaling pathway	8	10	1.05E-05	0.013010193
hsa05213	Endometrial cancer	7	8.75	1.88E-05	0.023262588
hsa05145	Toxoplasmosis	9	11.25	2.29E-05	0.02844756
hsa05134	Legionellosis	7	8.75	2.34E-05	0.02906305
hsa04919	Thyroid hormone signaling pathway	9	11.25	3.17E-05	0.039312309
hsa04012	ErbB signaling pathway	8	10	4.01E-05	0.049741114
hsa04210	Apoptosis	7	8.75	5.20E-05	0.064433604
hsa04510	Focal adhesion	11	13.75	7.07E-05	0.087548194

![Figure 4. KEGG pathway enrichment analysis of bubble chart](image)
Figure 5. Labeling of potential targets on Pathways in cancer

By using the software of Cytoscape 3.6.1, the network visualization analysis of 80 common genes, diseases and chemical components were carried out, and the interaction network of anti-cancer of *rosa roxburghii tratt* was constructed. After selecting the corresponding interactive proteins and visualizing them with different colors and shapes, we can directly see the network relationship between the active chemical components and the target. 80 purple targets represent common targets, and the common targets in the purple inner circle are the top 20 with strong correlation. The red represent diseases, there are 11 triangles representing active ingredients of compounds, and the inverted triangles represent drugs. The larger the connectivity, the larger the shape, as shown in Figure 6.

Figure 6. "component-target-disease" interaction network of *rosa roxburghii tratt* anti-cancer effect
4. Discussion

Rosa roxburghii tratt has a long history of medicine and food in China, as well as rich resources. At present, *rosa roxburghii tratt* has been developed into Chinese medicine preparation, such as compound Cili agent, in clinical treatment of gastric ulcer, insomnia and other diseases. It has been reported that *rosa roxburghii tratt* can inhibit or kill liver cancer cells, bladder cancer cells and pancreatic cancer cells in cell experiment or pharmacological experiment, but the mechanism of anti-cancer of *rosa roxburghii tratt* is still unclear. Through network pharmacology prediction, the main chemical components of *rosa roxburghii tratt* were myricetin, quercetin, kaempferol, etc., which all had anti-cancer effects. For example, myricetin can inhibit cancer by up-regulating the apoptosis pathway, and can also up-regulate the expression of proapoptotic gene BAX, so as to prompt mitochondria to produce cytochrome C and activate the cytochrome c-mediated apoptosis pathway [11]. Quercetin can significantly inhibit TGF-β1 induced EMT in HCC cells by increasing E-cadherin protein expression and decreasing the expression of N-cadherin and Vimentin proteins [12]. Kaempferol can inhibit SKOV-3 cell proliferation in vitro [13]. These anti-cancer Pathways are mainly related to Pathways in cancer, Hepatitis B, Proteoglycans in cancer and Pancreatic cancer, and their regulation is related to IL6, MAPK8, CASP3, VEGFA and EGFR.

In this study, IL6 gene in the key target screening, Degree, Closeness centrality and Betweenness centrality are all large, ranking the first in comprehensive ranking, which is one of the key targets of *rosa roxburghii tratt*. IL6 protein is produced primarily at the site of acute and chronic inflammation, where it is secreted into the serum and induces transcriptional inflammatory responses through the interleukin-6 receptor A. It plays an important role in the final differentiation of B cells into immunoglobulin secreting cells, and is also involved in the differentiation of lymphocytes and monocytes, acting on T cells, liver cells, hematopoietic progenitor cells and cells of the central nervous system. According to KEGG map, Pathways in cancer are composed of VEGF signaling pathway, PPAR signaling pathway and P53 signaling pathway, etc. By activating or inhibiting IL6, MAPK8, CASP3 and VEGFA gene expression, and indirectly Sustained angiogenesis, Evading apoptosis and effort, promote or inhibit the occurrence of cancer. This article provides relevant evidence for the research of anti-cancer mechanism of *rosa roxburghii tratt*, but the specific mechanism of anti-cancer of *rosa roxburghii tratt* needs further research and verification.

Acknowledgements

This work was financially supported by the Guizhou Domestic First-Class Construction Project [(Chinese Materia Medica) (GNYL [2017] 008)]. The authors thank the government of China for their financial support.

Reference:

[1] C.N. Zhang, Y. Zhou, J.J. Wang. Progress in the studies of pharmacology of *rosa roxburghii tratt*[J]. J Med Postgrad, 2005,18(11):1049-1051.
[2] X.L. Zhang. Investegation on flavonoid from rose roxbughii tratt and its biological activity[D]. Shanghai:East China Normal University, 2005.
[3] G.Y. Liang. The isolation and structures of kaji-ichigoside and rosamultin[J]. Acta Botanica Sinica, 1988,30(4):409-413.
[4] Y.Q. Qing, X.Y. You, W. Zhao. Clinical observation on the preventive effect of "Rosa rose roxbghii tratt mixture" on bladder cancer and recurrence after operation[J]. J Labour Med, 1997,14(4):222-223.
[5] Z.Z. Chen, W.B. Cheng. Pharmacodynamic study and clinical application of Rosa roxburghii Tratt and its preparation[J]. Chin J Ethnomedicine Ethnopharmacy, 1994,03:20-23.
[6] J.E. Huang, J.Y. Jiang, Y. Luo, et al. Effect of Rosa roxburghii Tratt Triterpene on Proliferation of Human Hepatoma SMMC-7721 Cells[J]. Food Sci, 2013,13:275-279.
[7] Effects of Rosa roxburghii Tratt extract-CL1 on gastric carcinoma SGC-7901 cells growth and human umbilical cord CD34+ cells proliferation and differentiation[J]. Chin J Clin Pharma
Therapeut, 2006(07):829-832.

[8] J. Xie, S. Gao, L. Li, et al. Research progress and application strategy on network pharmacology in Chinese materia medica[J]. Chin Trad Herbal Drugs, 2019,50(10):2257-2265.

[9] T.T. Dai, X.S. Yang. Research progress in chemical constituents and pharmacological activities of Rosa roxburghii Tratt[J]. J Guiyang College of Trad Chin Med, 2015,37(04):93-97.

[10] Y.N. Shi, D.P. Wang, L. Ma, et al. Constituents and Antioxidant Activity of Fatty Acids in Seed Oil of Rosa roxburghii[J]. J Mountain Agric Biology, 2013,32(1):24-28.

[11] Boehning D, Patterson R L, Sedaghat L, et al.Cytochrome c binds to inositol (1, 4, 5) trisphosphate receptors, amplifying calciumdependent apoptosis[J].Nat Cell Biol, 2003, 5(12):1051-1061.

[12] Y, S, Zheng, W.D. Lei, M.L. Chen, et al. Effect of quercetin on the induction of EMT by TGF-β1 in SMMC-7721 human hepatoma cells[J]. J Toxicol, 2019,33(06):465-468.

[13] L.X. Yu, Y.H. Deng, B. Deng, et al. Effect of kaempferol on proliferation and apoptosis of ovarian cancer cells and its mechanism[J]. Chin J Hospital Pharma, 2019,20:2040-2043.