16-vertex graphs with automorphism groups A_4 and A_5 from the icosahedron

Peteris Daugulis

Institute of Life Sciences and Technologies, Daugavpils University, Parades 1, Daugavpils, Latvia

peteris.daugulis@du.lv

Abstract

The article deals with the problem of finding vertex-minimal graphs with a given automorphism group. We exhibit two undirected 16-vertex graphs having automorphism groups A_4 and A_5. It improves Babai’s bound for A_4 and the graphical regular representation bound for A_5. The graphs are constructed using projectivisation of the vertex-face graph of the icosahedron.

Keywords: graph, icosahedron, hemi-icosahedron, automorphism group, alternating group

Mathematics Subject Classification : 05C25, 05E18, 05C35.

This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given automorphism group and minimal number of vertices. Denote by $\mu(G)$ the minimal number of vertices of undirected graphs having automorphism group isomorphic to G, $\mu(G) = \min_{\Gamma: \text{Aut}(\Gamma) \cong G} |V(\Gamma)|$. It is known [1] that $\mu(G) \leq 2|G|$, for any finite group G which is not cyclic of order 3, 4 or 5. See Babai [2] for an exposition of this area. There are groups which admit a graphical regular representation, for such groups $\mu(G) \leq |G|$. For some recent work see [4].

For alternating groups A_n, $\mu(A_n)$ is known for $n \geq 13$, see Liebeck [6]. If $n \equiv 0$ or 1$(mod$ 4), then $\mu(A_n) = 2^n - n - 2$. Additionally, for $n \geq 5$ A_n admits a graphical regular representation, see [8]. Thus for A_5 the best published estimate until now seemed to be $\mu(A_5) \leq 60$.

In this paper we exhibit graphs $\Gamma_i = (V, E_i), i \in \{4, 5\}$, such that $|V| = 16$ and $\text{Aut}(\Gamma_i) \cong A_i$.

Received: 13 February 2019, Revised: 17 February 2020, Accepted: 1 March 2020.
\(\Gamma_4\) (also denoted \(\Xi_I\)) improves Babai’s bound for \(A_4\). \(\Gamma_5\) (also denoted \(\Pi_I\)) has fewer vertices than the graphical regular representation of \(A_5\). \(\Gamma_5\) is listed in [3] together with the order of its automorphism group. The new graphs are based on projectivisation of the vertex-face incidence relation of the regular icosahedron.

We use standard notation for undirected graphs, see Diestel [5]. A bipartite graph \(\Gamma\) with vertex partition sets \(V_1\) and \(V_2\) is denoted as \(\Gamma = (V_1, V_2, E)\). Given a polyhedron \(P\), we denote its vertex, edge and face sets as \(V = V(P), E = E(P)\) and \(F = F(P)\), respectively. We can think of \(P\) as the triple \((V, E, F)\). If \(S\) is a subset of \(\mathbb{R}^3\) not containing the origin, then its image under the projectivisation map to \(P(\mathbb{R}^3)\) is denoted by \(\pi(S)\) or \([S]\), \([S]\) = \(\bigcup_{x \in S}[x]\).

1. Main results

In this section we define objects used for our construction - projective vertex-face graphs. We prove that the automorphism group of the projective vertex-face graph of the regular icosahedron is \(A_5\). We further show that after adding three extra edges we get a graph with the automorphism group \(A_4\).

1.1. Vertex-face graphs of polyhedra

Definition 1.1. Let \(P = (V, E, F)\) be a polyhedron. An undirected bipartite graph \(\Gamma_P = (V, F, I)\) is the **vertex-face graph of** \(P\) if \(v \sim f\) iff \(v \in V, f \in F\) and \(v \in f\). In other words, \(\Gamma_P\) corresponds to the vertex-face incidence relation in \(V \times F\).

Definition 1.2. Let \(S = (V, E, F)\) be a centrally symmetric polyhedron. Let \(S\) be positioned in \(\mathbb{R}^3\) so that its center is at \((0, 0, 0)\). We call the undirected bipartite graph \(\Pi_S = ([V], [F], I_p)\) **projective vertex-face graph** if for any \(v_p \in [V], f_p \in [F]\) we have \(v_p \sim f_p\) iff \(v \in f\) for some \(v \in \pi^{-1}(v_p)\) and \(f \in \pi^{-1}(f_p)\).

1.2. Projective vertex-face graph of the icosahedron and \(A_5\)

Let \(I = (V, E, F)\) be the regular icosahedron. Define \(\Gamma_5 = \Pi_I\), it is shown in Fig.1, an adjacency matrix of \(\Pi_I\) is given in Appendix A. \(\Pi_I\) can be interpreted in terms of the hemi-icosahedron, see [7].

![Fig.1. - \(\Pi_I\).](image-url)
Proposition 1.1. Let \(I \) be the regular icosahedron. Then \(\text{Aut}(\Pi_I) \simeq A_5 \).

Proof. We prove that \(\text{Rot}(I) \simeq \text{Aut}(\Pi_I) \) in two steps. First we show that there is a subgroup in \(\text{Aut}(\Pi_I) \) isomorphic to \(\text{Rot}(I) \) - the group of rotational symmetries of \(I \), rotations of \(\mathbb{R}^3 \) preserving \(V \) and \(E \). It is known that \(\text{Rot}(I) \simeq A_5 \). There is an injective group morphism \(f : \text{Rot}(I) \xrightarrow{\text{bij}} \text{Aut}(\Pi_I) \). \(f_1 : \text{Rot}(I) \to \text{Aut}(\Gamma_I) \) maps every \(\rho \in \text{Rot}(I) \) to \(f_1(\rho) \in \text{Aut}(\Gamma_I) \) which is the permutation of \(V \cup F \) induced by \(\rho \): \(f_1(\rho)(x) = \rho(x) \) for any \(x \in V \cup F \). Rotations of \(I \) preserve the vertex-face incidence relation and \(f_1 \) is a group morphism. \(f_2 : \text{Aut}(\Gamma_I) \to \text{Aut}(\Pi_I) \) maps every \(\varphi \in \text{Aut}(\Gamma_I) \) to \(\varphi \circ \rho \in \text{Aut}(\Pi_I) \) defined by the rule \(\varphi([x]) = [\varphi(x)] \) for any \(x \in V(\Gamma_I) \). Projectivization and composition commute therefore \(f_2 \) is a group morphism. \(f \) is injective since there is no nontrivial rotation of \(I \) sending each vertex to another vertex in the same projective class.

In the second step we prove that \(|\text{Aut}(\Pi_I)| \leq 60 \) by a counting argument. Every vertex \(v \in [V] \) is contained in a subgraph \(\sigma(v) \) shown in Fig.2.

![Fig.2. - \(\sigma(v) \).](image)

All \(\Pi_I \)-vertices in \([V]\) have degree 5, all \(\Pi_I \)-vertices in \([F]\) have degree 3. It follows that \([V]\) and \([F]\) both are unions of \(\text{Aut}(\Pi_I) \)-orbits. \(v \) can be mapped by a \(\Pi_I \)-automorphism in at most 6 possible ways. After fixing the image of \(v \) it follows by \(\text{Aut}(\Pi_I) \)-invariance of \([V]\) that the subgraph \(\sigma(v) \) can be mapped in at most 10 ways. Any permutation of \([V]\) by an automorphism determines a unique permutation of \([F]\). Thus \(|\text{Aut}(\Pi_I)| \leq 60 \). We have proved that \(\text{Aut}(\Pi_I) = f(\text{Rot}(I)) \simeq A_5 \). \(\square \)

Remark 1.1. A graph isomorphic to \(\Pi_I \) is listed without discussion of its construction and automorphism group in [3] as ET16.5.

1.3. A modification of the projective vertex-face graph of the icosahedron and \(A_4 \)

Since \(A_5 \) has subgroups isomorphic to \(A_4 \), we can try to modify \(\Pi_I \) so that the automorphism group of the modified graph is isomorphic to \(A_4 \). We find generators for a subgroup \(H \leq \text{Rot}(I) \), such that \(H \simeq A_4 \), and add three extra edges to \(\Pi_I \) which are permuted only by elements of \(H \).

Denote by \(I_1 \) the polyhedral (1-skeleton) graph of \(I \), \(\text{Aut}(I_1) \simeq \text{Sym}(I) \simeq A_5 \times \mathbb{Z}_2 \).

Proposition 1.2. Choose a 6-subset of vertices \(W = \{O, A, B, C, D, E\} \subseteq V(I) \) such that \(I_1[W] \) is isomorphic to the 5-wheel, see Fig.3.
Define an undirected graph \(\Gamma_4 = \Xi_I = ([V] \cup [F], I_p \cup J) \) by adding three edges to \(\Pi_I \):
\[
J = \{ [A] \sim [C], [B] \sim [O], [D] \sim [E] \},
\]
see Fig.4, Fig.5 and Appendix B. Then \(\text{Aut}(\Xi_I) \cong A_4 \).

Proof. Consider the subgroup \(H = \langle a, b \rangle \leq \text{Rot}(I) \) generated by two rotations: \(a \) - a rotation of order 2 around the line passing through the center of the edge \(OB \) and the center of \(I \), \(b \) - a rotation of order 3 around the line passing through the center of the face \(OCD \) and the center of \(I \). We prove that \(H \cong A_4 \) and \(f(H) = \text{Aut}(\Xi_I) \) where \(f \) is as in Proposition 1.1.

To prove that \(H \cong A_4 \) we investigate subgroups of \(A_5 \) generated by two elements of order 2 and 3. If \(H' = \langle a', b' \rangle \leq A_5, \text{ord}(a') = 2, \text{ord}(b') = 3 \), then there are 3 possibilities for the isomorphism type of the functional graph ("cycle type") of the pair \((a', b') \): \((a_1, b_1) = ((12)(34), (345)) \), \((a_2, b_2) = ((12)(34), (134)) \) or \((a_3, b_3) = ((12)(34), (135)) \). It can be checked that \(\langle a_1, b_1 \rangle \cong \Sigma_3 \), \(\langle a_2, b_2 \rangle \cong A_4 \), \(\langle a_3, b_3 \rangle \cong A_5 \). Additionally, \(\text{ord}(a_1b_1) = 2, \text{ord}(a_2b_2) = 3, \text{ord}(a_3b_3) = 5 \). Now, in our case \(\text{ord}(ab) = 3 \), thus \(H = \langle a, b \rangle \cong \langle a_2, b_2 \rangle \cong A_4 \).

Next we prove that \(\text{Aut}(\Xi_I) = f(H) \). Note that \(O, A, B, C, D, E \) in Fig.3 and Fig.4 represent \([V]\).

First we prove that \(f(H) \leq \text{Aut}(\Xi_I) \). \(\Xi_I \) differs from \(\Pi_I \) by three extra edges. Elements of \(f(H) \) permute \(\Pi_I \)-edges so we only need to check that they permute the new edges. The restrictions
of \(f(a) \) and \(f(b) \) to \([V]\) are, respectively, \(([O][B])\) and \((([O][C][D])([A][E][B]))\) (in cycle notation). It follows that \(f(b) \) cyclically permutes the three extra edges and \(f(a) \) fixes them.

To prove that \(\text{Aut}(\Xi_I) \leq f(H) \) we observe that only \([F]\)-type vertices have degree 3 in both \(\Pi_I \) and \(\Xi_I \), only \(V\)-type vertices have degree 5 in \(\Pi_I \). Thus any \(\text{Aut}(\Xi_I)\)-element as a permutation of \([V] \cup [F]\) belongs to \(\text{Aut}(\Pi_I) \) and thus is the \(f\)-image of a \(\text{Rot}(I)\)-element. We show that for any rotation \(r' \in \text{Rot}(I) \right\} H \), \(f(r') \) does not permute the three extra edges and thus \(f(r') \notin \text{Aut}(\Xi_I) \).

We have that \(\text{Rot}(I) = \langle a, b, c \rangle \) where \(c \) is any rotation of order 5. Since \(|\text{Rot}(I) : H| = 5 \) it follows that any element of \(\text{Rot}(I) \) is in form \(c^nh \) where \(h \in \langle a, b \rangle = H \). Let \(c \) be the rotation around the line passing through the center of \(I \) and \(O \) corresponding to the vertex permutation \((ABCDE)\). The edge \([O] \sim [B]\) is the only extra edge having \([O]\) as a vertex, all edges from \([O]\) are rotationally permuted by \(f(c^n) \), see Fig.4. It follows that nontrivial elements \(f(c^n) \) do not permute the three extra edges in \(\Xi_I \).

\[\text{Remark 1.2.} \] If \(D \) is the dodecahedron then \(\Pi_D \cong \Pi_I \cong A_5 \).

\section{Appendices}

\subsection{A - An adjacency matrix of \(\Pi_I \)}

\textbf{Remark 2.1.} In the standard ordering vertices \(\{1, \ldots, 10\} \) correspond to \([F]\) and vertices \(\{11, \ldots, 16\} \) correspond to \([V]\).
16-vertex graphs with automorphism groups A_4 and A_5 from the icosahedron | P. Daugulis

B - An adjacency matrix of Ξ_I

\[
\begin{array}{cccccccccccccccccccc}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
\]

References

[1] L. Babai, On the minimum order of graphs with given group, *Canad. Math. Bull.* 17 (1974), 467–470.

[2] L. Babai, Automorphism groups, isomorphism, reconstruction, In Graham, Ronald L.; Grotschel, Martin; Lovasz, Laszlo, *Handbook of Combinatorics I*, North-Holland (1995), 1447–1540.

[3] M. Conder, Complete list of all connected edge-transitive bipartite graphs on up to 63 vertices, retrieved February 13, 2019, from https://www.math.auckland.ac.nz/conder/AllSmallETBgraphs-upto63-full.txt.

[4] P. Daugulis, A note on another construction of graphs with $4n + 6$ vertices and cyclic automorphism group of order $4n$ *Archivum Mathematicum* 53 (1) (2017), 13–18.

[5] R. Diestel, *Graph Theory*. Graduate Texts in Mathematics, Vol.173 (2010), Springer-Verlag, Heidelberg.

[6] M. Liebeck, On graphs whose full automorphism group is an alternating group or a finite classical group, *Proc. London Math. Soc.* 3 (47) (1983), 337–362.

[7] P. McMullen and E. Schulte, 6C. Projective Regular Polytopes. Abstract Regular Polytopes (1st ed.) Cambridge University Press (2002), pp. 162-165, ISBN 0-521-81496-0.

[8] M. E. Watkins, Graphical regular representations of alternating, symmetric, and miscellaneous small groups, *Aequationes Mathematicae* 11 (1) (1974), 40–50.