Dietary or Supplementary Intake Modulates Inflammatory Response in Asthma

Introduction

Epidemiological study of asthma prevalence with diet

The diet has shifted towards one with less fruit and vegetables that is high in fat, salt and sugar and low in fiber and antioxidants. These changes are one possible explanation for the increase in bronchial asthma [1].

Frequent consumption of hamburgers showed a dose-dependent association with asthma symptoms [2]. Increased intake of saturated fatty acids (SFAs), myristic and palmitic acid, and butter were shown to be related to the risk of asthma in children [3]. Epidemiological studies have examined the association between the intake of fish or LCn3PUFAs, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are abundant in fish, and the risk of asthma [4-7]. LCn3PUFA intake was significantly inversely associated with the incidence of asthma [8-10], but whether this benefit persists as other factors come into play remains to be determined.

A meta-analysis found a significant association between low dietary intake of Vit A and Vit C and asthma [11]. However, several studies indicated that supplementation of vitamins, such as Vit A [12] and Vit E [11] [13], was not associated with decreased risk of asthma. The potential benefits and risks of vitamin supplements might be considered in special situations, such as marked deficiency of dietary antioxidants, poor access to dietary antioxidants, or high exposure to environmental oxidants [14]. In pregnancy, consumption of antioxidant-rich food is a key modifier of clinical asthma status [15]. Maternal Vit E intake during pregnancy was inversely associated with wheeze in the first two years of life [16].

Low serum Vit D levels were observed in children with asthma [17-19]. Vit D deficiency in pregnant women resulted in a higher prevalence of asthma and allergy in their offspring [20]. Cord serum 25-Hydroxyvitamin D level was inversely associated with the risk of transient early wheezing by the age of 5 years, but no association was found with asthma [21]. Recent published data demonstrated that Vit D3 did not reduce the rate of first treatment failure or exacerbation in adults with persistent asthma and Vit D insufficiency, suggesting that therapeutic Vit D3 supplementation in patients with symptomatic asthma was not useful [22].

Bacteria-host interactions may bring about beneficial changes in immune responses. Probiotics, defined as “live micro-organisms that, when administered in adequate amounts, confer a health benefit on the host”, may affect asthmatic condition in children [23]. However, there have been a limited number of clinical studies on the therapeutic potential of probiotics in asthmatics [24,25].

Dietary effects on pulmonary function in asthma

A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. The increase in circulating endotoxin concentration induced by a high-fat diet [26] may induce increased expression of toll-like receptor 4 (TLR4) in sputum cells, which results in airway inflammation [27]. Higher fat and lower fiber intake were associated with lower forced expiratory volume in one second (FEV1) and airway eosinophilia. Leptin levels were increased in asthmatics as compared with healthy controls [28].

Environmental oxidants and airway inflammatory cell-generated reactive oxygen influence asthma symptoms. Supplementation with antioxidants (Vit C and Vit E) ameliorated the decrease in lung function by ozone exposure in children with moderate to severe asthma [29]. α-tocopherol acts as a defense against oxidant-induced membrane injury in human tissue in that it disrupts the chain reaction of lipid peroxidation [30], suggesting anti-inflammatory properties. Maternal plasma α-tocopherol level during pregnancy
was positively associated with post-bronchodilator FEV1 in the child at 5 years of age [31]. γ-tocopherol has inflammatory properties [32]. High human plasma γ-tocopherol levels relate to intake of soybean oil, which is higher in γ-tocopherol than other oils such as sunflower, safflower and olive oil [33-35]. An increased serum concentration of γ-tocopherol is associated with lower FEV1 or forced vital capacity (FVC) [36], and high dietary intake of γ-tocopherol may be associated with the increase in asthma patients in the United States [37].

It has been reported that lower Vit D levels resulted in higher rates of asthma, associated with impaired lung function and increased airway hyperresponsiveness (AHR) [38,39]. However, the effect of vitamin D as sole therapy for airway hyper-reactivity and airway inflammation is still not clear [40].

Effects on inflammatory cells and cytokines

Airway inflammation in asthma is heterogeneous and is characterized by activation of Th2 cells, Th17 cells, eosinophils and neutrophils. DHA reduced eosinophil infiltration into the lung and improved lung function in a methacholine challenge asthma model [41]. DHA affects several types of lung cells to reduce the airway inflammatory response to organic dust extract (ODE) challenge in bronchial epithelial cells via reduced interleukin (IL)-6 and IL-8 release [42] [43]. The *fat-1* transgenic mouse model has demonstrated that balancing the ω-6/ω-3 ratio can protect against chronic inflammatory diseases, and displayed increased endogenous LCn3PUFAs. When allergen-sensitized and aerosol-challenged, these animals had decreased airway inflammation with decreased leukocyte accumulation in bronchoalveolar lavage fluid and lung parenchyma [44]. The n3PUFA-derived lipid mediators, protectin D1 and resolvin E1 (RvE1; SS, 12R, 18R-trihydroxyeicosapentaenoic acid), may act as potent resolution agents in airway inflammation. Intraperitoneal administration of RvE1 in mice was observed to decrease airway eosinophil and lymphocyte recruitment, a specific Th2 cytokine, IL-13, ovalbumin-specific IgE, and AHR to inhaled methacholine [45]. RvE1 promoted the resolution of inflammatory airway responses in part by directly suppressing the production of IL-23 and IL-6, which promote the survival and differentiation of IL-17-producing T helper cells in the lung [46].

Oxidative stress is involved in activation of various inflammatory cells, such as mast cells, lymphocytes, eosinophils, and neutrophils. Asthmatic subjects with AHR, uncontrolled asthma or a severe asthma pattern have impaired antioxidant defenses and are susceptible to the damaging effects of oxidative stress [47]. Fat-soluble vitamins have multiple modulatory effects on immune cells and exert their effects through their antioxidant and anti-inflammatory properties [48].

All-trans retinoic acid (ATRA), the most biologically active metabolite of Vit A, attenuated airway inflammation by inhibiting Th2 and Th17 differentiation and/or functions in a mouse model of allergic airway inflammation [49]. Vit A inhibits Th 17 cells [49] [50] and promotes differentiation of Treg cells [51,52]. The protective effect of fenretinide against ovalbumin-induced airway hyperresponsiveness and inflammation in the lungs was illustrated by complete block of infiltration of inflammatory cells to the airways and markedly diminished goblet cell proliferation, even though IgE remained high [53]. High dietary Vit A can promote a Th2 bias, whereas Vit A deficiency (VAD) can produce a Th1 bias. High dietary Vit A enhanced and VAD diminished the development of experimental asthma in a mouse model, suggesting that excessive intake of Vit A may increase the risk or severity of asthma in industrialized countries [54].

The role of Vit D as an immunoregulatory agent has gained wide recognition in recent years. Vit D reduced human airway smooth muscle (ASM) expression of chemokines, including fractalkine and CX3C chemokine [55,56]. Vit D could affect epithelial growth and differentiation [57]. Vit D has effects on immune cells, including Th1 and Th2 responses, promotes Treg cells, inhibits the development of pathogenic effector Th17 cells, and regulates maturation of dendritic cells [58,59]. 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3) potentiates the efficacy of immunotherapy, and the regulatory cytokines IL-10 and TGF-beta play a crucial role in the effector phase of this mouse model [60]. Impaired induction of IL-10 by GC in T cells from GC-R asthmatics can be reversed by Vit D3 and IL-10 [61].

Respiratory effects of probiotics in animal models have included attenuating allergic airway responses and protecting against respiratory pathogens. Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice [62]. Perinatal Lactobacillus rhamnosus GG (LGG) supplementation has beneficial effects on the development of allergic asthma in offspring [63]. Oral treatment with LGG prior to sensitization attenuated airway inflammation and hyperreactivity in a mouse model of allergic airway inflammation [64]. Oral treatment with live Lactobacillus reuteri (L. reuteri) significantly attenuated influx of eosinophils into the airway lumen and parenchyma and reduced the levels of tumor necrosis factor, monocyte chemotactrant protein-1, IL-5, and IL-13 in bronchoalveolar lavage fluid of antigen-challenged animals [65]. Oral administration of L. gasseri attenuated allergen-induced airway inflammation and IL-17 pro-inflammatory immune response in a mouse model of allergic asthma [66]. LGG [67] [68], L. reuteri [69] and Bifidobacterium longum (B. longum) [70,71] have been reported to attenuate allergic airway response by induction of Treg cells. These protective effects may be associated with microbe-induced changes in dendritic cell phenotype and function [72]. Dietary fermentable fiber and short-chain fatty acids (SCFAs), which are metabolized by the gut microbiota, can shape the immunological environment in the lung and influence the severity of allergic inflammation [73].

Effects on intracellular inflammatory pathways and nuclear factors

Excessive fat intake stimulates NF-κB and increases IL-6 and CRP, suggesting that a high-fat diet augments neutrophilic airway inflammation [27]. High dietary intake of saturated fat can activate the innate immune response, as saturated fatty acids can directly activate TLR4, which also leads to an NF-κB-driven inflammatory cascade [74]. LCn3PUFAs are known to decrease inflammation by inhibiting arachidonic acid (AA) metabolism to eicosanoids, decreasing the production of pro-inflammatory cytokines and reducing immune cell function. A recent study revealed that ω-3 fatty acids are involved in altered pro- and anti-inflammatory transcription factor activation. EPA and DHA might suppress inflammatory signaling via NF-κB and
G-protein-coupled receptor 120 (GPR120), which initiates an anti-inflammatory signaling cascade that inhibits signaling leading to NF-kB activation [75].

Low antioxidant intake impairs the host’s ability to scavenge reactive oxygen species (ROS), thereby promoting an NF-kB-mediated innate immune response, resulting in oxidative damage. Vit E has been shown to inhibit NF-kB pathways. Vit E blocks binding of transcription factors to two important IL-4 promoter binding sites for NF-kB and AP-1, and interferes with promoter activity upon T cell activation [76]. Vit E prevented the suppression of nuclear factor (erythroid-derived-2)-like 2 (NRF2), which has been found to be a critical regulator of antioxidant and defense genes with antioxidant response elements in their promoters [77].

Zinc is known to modulate the immune system via the NF-kB pathway [78]. Zinc supplementation alters NF-kB activity via the alteration of A20 activity [79].

Effects of diet on epigenetic regulation in bronchial asthma

The influence of epigenetic variations on asthma pathophysiology has been discussed [80]. Epigenetic mechanisms, including DNA methylation [81,82], histone modifications, and noncoding RNAs, can affect gene transcription [83].

Recent evidence has shown that dynamic changes in DNA methylation can provide a possible mechanistic explanation for the link between exposure to allergens and airway hyperresponsiveness [84,85]. Changes in DNA methylation can affect asthma pathogenesis [86] by modulating the expression of disease-related genes [87]. Altered DNA methylation in the STAT3A gene, which might be intrinsic to asthma phenotypes, could have implications in allergic airway disease [81]. Methyl donors for DNA methylation are mostly derived from the diet, and a diet high in methyl donors, such as folic acid, Vit B12, and L-methionine, could contribute to asthma risk. Methyl donor exposure promoted the development of allergy in an animal model [88]. Excessive methylated Runt-related transcription factor 3 (Runx3), a gene known to negatively regulate allergic airway disease, has been advocated as one of the mechanisms [89].

Data on folic acid supplementation in humans and associated allergic disease have been mixed. While some studies found that prenatal folic acid supplementation was associated with more asthma, wheeze, and other respiratory problems in early childhood [90,91], others did not find an association [92-94]. Whether folate status affects disease severity or control in people who already suffer from asthma is also unclear [95]. Given its protective effects against neural tube and cardiac defects, there is no reason to alter current neural tube defect (NTD)-preventing interventions to that for SFAs or announcement that conventional foods that contain antioxidants, probiotics, choline, and ω-3 fatty acids may reduce the risk of asthma could contribute to reduction of asthma prevalence and symptoms. To do so, further high quality research on asthma and diet is required.

References

1. Scott HA, Jensen ME, Wood LG (2014) Dietary interventions in asthma. Curr Pharm Des 20: 1003-1010.
2. Wickenks K, Barry D, Friezerna A, Rhodius R, Bone N, et al. (2005) Fast foods - are they a risk factor for asthma? Allergy 60: 1537-1541.
3. Rodríguez-Rodríguez E, Perea JM, Jiménez AM, Rodríguez-Rodríguez P, López-Sobaler AM, et al. (2010) Fat intake and asthma in Spanish schoolchildren. Eur J Clin Nutr 64: 1065-1071.
4. Troisi RJ, Willett WC, Weis ST, Trichopoulos D, Rosner B, et al. (1995) A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med 151: 1401-1408.
5. Kull I, Bergström A, Lilja G, Pershagen G, Wickman M (2006) Fish consumption during the first year of life and development of allergic diseases during childhood. Allergy 61: 1009-1015.
6. Chippa BE, Zeiger RS, Borish L, Wenzel SE, Yegin A, et al. (2012) Key findings and clinical implications from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. J Allergy Clin Immunol 130: 332-342.
7. Lumia M, Luukkainen P, Kaila M, Tapanainen H, Takkinen HM, et al. (2012) Maternal dietary fat and fatty acid intake during lactation and the risk of asthma in the offspring. Acta Paediatr 101: e337-343.
8. Li J, Xun P, Zamora D, Sood A, Liu K, et al. (2013) Intakes of long-chain omega-3 (n-3) PUFAs and fish in relation to incidence of asthma among American young adults: the CARDIA study. Am J Clin Nutr 97: 173-178.
9. Calder PC, Kremmyda LS, Vlachova M, Noakes PS, Miles EA (2010) Is there a role for fatty acids in early life programming of the immune system? Proc Nutr Soc 69: 373-380.
10. Yang H, Xun P, He K (2013) Fish and fish oil intake in relation to risk of asthma: a systematic review and meta-analysis. PLoS One 8: e60048.

11. Allen S, Britton JR, Leonardi-Bee JA (2009) Association between antioxidant vitamins and asthma outcome measures: systematic review and meta-analysis. Thorax 64: 610-619.

12. Checkley W, West KP Jr, Wise RA, Wu L, LeClerq SC, et al. (2011) Supplementation with vitamin A early in life and subsequent risk of asthma. Eur Respir J 38: 1310-1319.

13. Pearson PJ, Lewis SA, Britton J, Fogarty A (2004) Vitamin E supplements in asthma: a parallel group randomised placebo controlled trial. Thorax 59: 652-656.

14. Moreno-Macias H, Romieu I (2014) Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J Allergy Clin Immunol 133: 1237-1244.

15. Grieger JA, Wood LG, Clifton VL (2014) Antioxidant-rich dietary intervention for improving asthma control in pregnancies complicated by asthma: study protocol for a randomized controlled trial. Trials 15: 108.

16. Martindale S, McNellis G, Devereux G, Campbell D, Russell G, et al. (2005) Antioxidant intake in pregnancy in relation to wheeze and eczema in the first two years of life. Am J Respir Crit Care Med 171: 121-128.

17. Brehm JM, Celedón JC, Soto-Quiros ME, Avila L, Hunninghake GM, et al. (2009) Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica. Am J Respir Crit Care Med 179: 765-771.

18. Majak P, Olszowiec-Chlebna M, Smejda K, Stelmach I (2011) Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol 127: 1294-1296.

19. Bener A, Ehlelayl MS, Tülik MC, Hamid Q (2012) Vitamin D deficiency as a strong predictor of asthma in children. Int Arch Allergy Immunol 157: 168-175.

20. Litonjua AA, Weiss ST (2007) Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol 120: 1031-1035.

21. Baiz N, Dargent-Molina P, Wark JD, Soubhielle JC, Annesi-Maesano I (2014) Cord serum 25-hydroxyvitamin D and risk of early childhood transient wheezing and atopic dermatitis. J Allergy Clin Immunol 133: 147-153.

22. Castro-M, King TS, Kuselmann SJ, Cabana MD, Dentlinger L, et al. (2014) Effect of vitamin D3 on asthma treatment failures in adults with symptomatic asthma and lower vitamin D levels: the VIDA randomized clinical trial. JAMA 311: 2083-2091.

23. Miraglia Del Giudice M, Maiello N, Decimo F, Fusco N, D’Agostino B, et al. (2012) Airways allergic inflammation and Leu/riedit treatment in asthmatic children. J Biol Regul Homeost Agents 26: S35-40.

24. Vlagoftis H, Kouranos ND, Betsi GI, Falagas ME (2008) Probiotics for the treatment of allergic rhinitis and asthma: systematic review of randomized controlled trials. Ann Allergy Asthma Immunol 101: 570-579.

25. Reid G (2005) The importance of guidelines in the development and application of probiotics. Curr Pharm Des 11: 11-16.

26. Pendyala S, Walker JM, Holt PR (2012) A high-fat diet is associated with endotoxaemia that originates from the gut. Gastroenterology 142: 1130-1140.

27. Wood LG, Garg ML, Gibson PG (2011) A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol 127: 1133-1140.

28. Berthon BS, Macdonald-Wicks LK, Gibson PG, Wood LG (2013) Investigation of the association between dietary intake, disease severity and airway inflammation in asthma. Respir Physiol 18: 447-454.

29. Romieu I, Sienra-Monge JJ, Ramírez-Aguilar M, Téllez-Rojo MM, Moreno-Macias H, et al. (2002) Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med 166: 703-709.

30. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4: 118-126.

31. Devereux G, Turner SW, Craig LC, McNeill G, Martindale S, et al. (2006) Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am J Respir Crit Care Med 174: 499-507.

32. Cook-Mills JM (2013) Isomers of vitamin E differentially regulate PKC ? and inflammation: a review. J Cell Immunol 4: pii: 1000137.

33. Jiang Q, Christen S, Shigenaga MK, Ames BN (2001) Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 74: 714-722.

34. Talegawkar SA, Johnson EJ, Carlthers T, Taylor HA Jr, Bogle ML, et al. (2007) Total alpha-tocopherol intakes are associated with serum alpha-tocopherol concentrations in African American adults. J Nutr 137: 2297-2303.

35. Berdnikovs S, Abdalá-Velarica H, McCary C, Somand M, Cole R, et al. (2009) Isomers of vitamin E have opposite immunoregulatory functions during inflammation by regulating leukocyte recruitment. J Immunol 182: 4395-4405.

36. Marchese ME, Kumar R, Colangelo LA, Avila PC, Jacobs DR Jr, et al. (2014) The vitamin E isoforms ?-tocopherol and ?-tocopherol have opposite associations with spirometric parameters: the CARDIA study. Respir Res 15: 31.

37. Cook-Mills JM, Avila PC (2014) Vitamin E and D regulation of allergic asthma immunopathogenesis. Int Immunopharmacol 23: 364-372.

38. Camargo CA Jr, Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, et al. (2007) Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 85: 788-795.

39. Alyasín S, Momèn T, Kashfel S, Alipour A, Amin R (2011) The relationship between serum 25 hydroxy vitamin D levels and asthma in children. Allergy Asthma Immunol Res 3: 251-255.

40. Bar Yoseph R, Livanit G, Schnapp Z, Hakim F, Dabbah H, et al. (2015) The effect of vitamin D on airway reactivity and inflammation in asthmatic children: A double-blind placebo-controlled trial. Pediatr Pulmonol 50: 747-753.

41. Yokoyama A, Hamazaki T, Ohshita A, Kohno N, Sakai K, et al. (2000) Effect of aerosolized docosahexaenoic acid in a mouse model of atopic asthma. Int Arch Allergy Immunol 123: 327-332.

42. Nordgren TM, Heires AJ, Wyatt TA, Poole JA, LeVand TD, et al. (2013) Maresin-1 reduces the pro-inflammatory response of bronchial epithelial cells to organic dust. Respir Res 14: 51.

43. Nordgren TM, Frielom TD, Heires AJ, Poole JA, Wyatt TA, et al. (2014) The omega-3 fatty acid docosahexaenoic acid attenuates organic dust-induced airway inflammation. Nutrients 6: 5434-5452.

44. Bilal S, Haworth Q, Wu L, Weylandt KH, Levy BD, et al. (2011) Fat-1 transgenic mice with omega-3 fatty acids are protected from allergic airway responses. Biochem Biophys Acta 1812: 1164-1169.

45. Aoki H, Hisada T, Ishizuka T, Utsugi T, Kohno K, et al. (2008) Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun 367: 509-515.

46. Haworth O, Cernadas M, Yang R, Serhan CN, Lipscomb A, et al. (2002) Antioxidant-rich dietary intervention for airway inflammation: a review. J Clin Cell Immunol 4: pii: 1000137.

47. Wood LG, Gibson PG (2010) Reduced circulating antioxidant defences are associated with airway hyper-responsiveness, poor control and severe disease pattern in asthma. Br J Nutr 103: 735-741.

48. Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8: 685-698.

49. Wu J, Zhang Y, Liu Q, Zhong W, Xia Z (2013) All-trans retinoic acid attenuates airway inflammation by inhibiting Th2 and Th17 response in experimental allergic asthma. BMC Immunol 14: 28.
Matsumura (2015)
supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol 170: 1486-1493.

91. Håberg SE, London SJ, Nafstad P, Nilsen RM, Ueland PM, et al. (2011) Maternal folate levels in pregnancy and asthma in children at age 3 years. J Allergy Clin Immunol 127: 262-264.

92. Matsui EC, Matsui W (2009) Higher serum folate levels are associated with a lower risk of atopy and wheeze. J Allergy Clin Immunol 123: 1253-1258.

93. Magdelijs FJ, Mommers M, Penders J, Smits L, Thijs C (2011) Folic acid use in pregnancy and the development of atopy, asthma, and lung function in childhood. Pediatrics 128: e135-144.

94. Brown SB, Reeves KW, Bertone-Johnson ER (2014) Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review. Nutr Rev 72: 55-64.

95. Lin JH, Matsui W, Aloe C, Peng RD, Diette GB, et al. (2013) Relationships between folic acid and inflammatory features of asthma. J Allergy Clin Immunol 131: 918-920.

96. Blatter J, Han YY, Forno E, Brehm J, Bodnar L, et al. (2013) Folate and asthma. Am J Respir Crit Care Med 188: 12-17.

97. Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C (2008) Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr 87: 424-430.

98. Mehta AK, Arora N, Gaur SN, Singh BP (2009) Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. Eur J Clin Invest 39: 934-941.

99. Mehta AK, Singh BP, Arora N, Gaur SN (2010) Choline attenuates immune inflammation and suppresses oxidative stress in patients with asthma. Immunobiology 215: 527-534.

100. Sundar IK, Rahman I (2011) Vitamin D and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol 2: 50.

101. Brand S, Teich R, Dicke T, Harb H, Yildirim AO, et al. (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128: 618-625.

102. Fu G, Zhong Y, Li C, Li Y, Lin X, et al. (2010) Epigenetic regulation of peanut allergen gene Ara h 3 in developing embryos. Planta 231: 1049-1060.