Leishmania infantum DNA detection in Phlebotomus tobbi in a new northern focus of visceral leishmaniasis in Iran

Bahrami A¹, Rassi Y¹*, Maleki N¹, Oshaghi MA¹, Mohebali M², Yagoobi-Ershadi MR¹, Rafizadeh S³

¹Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Iran
²Department of Medical Parasitology, School of Public Health, Tehran University of Medical Sciences, Iran
³Deputy of Health, Ministry of Health and Medical Education, Tehran, Iran

ABSTRACT

Objective: To identify the vector(s), the parasite and the species composition of sand flies in the district during May–October 2012.

Methods: For reaching our objectives we used polymerase chain reaction of kDNA, ITS1–rDNA, followed by restriction fragment length polymorphism.

Results: Two species of Phlebotomus sergenti and Phlebotomus tobbi were the most prevalent among 8 species identified comprising 51.1% and 32.9% respectively. Among the 160 specimen of female sand flies tested by polymerase chain reaction of kDNA, ITS1–rDNA, followed by restriction fragment length polymorphisms, only 1 out of 80 Phlebotomus tobbi (1.25%) were positive to Leishmania infantum parasites.

Conclusions: Our finding showed that Phlebotomus tobbi may play as a vector to circulate the parasite of Leishmania infantum among reservoir(s) and human.

Keywords: Leishmania infantum, Vector(s), Alborz, Iran

1. Introduction

The human leishmaniases are the most diverse and complex of all vector-borne diseases in their ecology and epidemiology. Leishmania infantum (L. infantum), belonging to the Leishmania donovani (L. donovani) complex, is the causative agent of human visceral leishmaniasis (VL), cutaneous and canine visceral leishmaniasis in all Mediterranean countries. The disease is zoonotic and transmitted to humans from its reservoir hosts, mainly dogs by the bite of sand flies of genus Phlebotomus¹,². Because of systemic parasite dissemination, VL is the most severe form of leishmaniasis, which is nearly always fatal if left untreated³.

Phlebotomine sand flies (Diptera: Psychodidae) are the sole vectors of Leishmania, and species of the genus Phlebotomus are the only known vectors in the Old World⁴. Although >700 sand fly species have been described, only a few (~50) have been shown to be able to support the development of Leishmania species and thus are vectors of disease⁵.

There are several reports on sporadically occurrences of
zoonotic VL in Iran, however, the disease is endemic in six provinces including Ardebil, East Azerbaijan (Northwestern), Fars, Bushehr, Kerman (South) and Khorassan Shomali (North eastern) of Iran\cite{5-9}.

Three species of sand flies including Phlebotomus kandelakii, Phlebotomus perfiliewi transcaucasicus and Phlebotomus tobbi (P. tobbi) have been reported to be vectors of the disease in north western and north eastern of Iran\cite{6,9,10-12}. The species of Paraphlebotomus alexandri (Sinton) and Phlebotomus (Larroussius) major (Annandale) have been found naturally infected with L. infantum and are the VL vectors in the south part of the country.

Phlebotomus (Larroussius) keshishianii (Schchurenkova) and Phlebotomus (Paraphlebotomus) caucasicus have been reported infected with promastigotes in southern Islamic Republic of Iran but no parasite identification was carried out\cite{13,14}.

The important aims of this study was to identify the vectors of zoonotic visceral leishmaniasis and species composition of sand flies in the new focus of disease, northern Iran, using dissection and microscopic examination, as well as molecular techniques.

2. Materials and methods

2.1. Study area

This study was carried out from early May to late October 2012 in 4 villages, Kordan, Aghashit, Arab–Abad and Hiv in Savodjbolagh county, Alborz province, north of Iran (Figure 1). The capital of the county is Hashtgerd. At the 2006 census, the county’s population (including those portions later split off to form Taleqan county) was 215,086, in 57,497 families. The county is subdivided into three districts: the Central district, Chaharbagh district, and Chendar district. The county has five cities: Hashtgerd, Chaharbagh, Golsar, Kuhsar, and Shahre–e Jadid–e Hashtgerd. The mean annual precipitation is 290 mm with 53% relative humidity, and the mean annual temperature is 17.2 °C. The maximum and minimum average monthly temperatures were 28.3 °C and 7.4 °C respectively.

![Figure 1. Map of the study area.](image)

2.2. Sand flies collection and identification

Sand flies were collected using sticky traps (castor oil–coated white papers 15 cm×20 cm) biweekly from indoors (bedrooms, guest room, toilet and stable) and outdoors (rodent burrow). Traps (60 papers per village) were set at dusk and sand flies were collected at dawn. Sample collection began in early May and continued until late October 2012.

The sand fly specimens were washed once in 1% detergent then twice in sterile distilled water. Each specimen was then dissected in a drop of fresh sterile normal saline by cutting off the head and abdominal terminalia with sterilized forceps and disposables. The rest of the body was stored in the sterile micro tubes for DNA extraction. Specimens were mounted on glass slides using Puri’s medium and identified using the identification keys for species within Larroussius group and for species of other groups and subgenus\cite{15-17}.

2.3. DNA extraction

DNA was extracted by using the Bioneer Genomic DNA Extraction Kit. Extraction was carried out by grinding of individual sand flies in a micro tube using glass pestle following the kit protocol and stored at 4 °C. Double distilled water was used as a negative control and DNA from Leishmania major (L. major) MHOM/IR/75/ER, Leishmania tropica (L. tropica) MHOM/ IR/83/Mash–878; L. infantum MHOM/IR/87/LEM1098 provided by the Parasitology Department, School of Public Health, Tehran University of Medical Sciences were used as positive controls. DNA from L. donovani IPER/IR/2007/HIS10 (isolated previously from sand flies) was used as positive control\cite{18}.

2.4. Detection and identification of Leishmania species

Initial screening of sand flies was performed by nested–PCR amplification of kinetoplast DNA (kDNA) using the primers (Table 1) and protocol described by Noyes et al., 1998\cite{19}. This method is highly sensitive and is recommended for initial screening. Amplification was carried out in two steps; both in the same tube. This PCR protocol is able to identify Leishmania parasites by producing a 680 bp for L. infantum/L. donovani, 560 bp for L. major, and a 750 bp for L. tropica. The cycling conditions were 94 °C for 5 min, followed by 30 cycles of 94 °C for 30 seconds, 55 °C for 1 min, and 72 °C for 90 seconds. One micro liter of a 9:1 dilution in water of the first–round product was used as template DNA for the second round in a total volume of 30 mL under the same conditions as those for the first round, except with primers LIR and 13Z. Due to presence of many DNA polymorphisms in kDNA of each Leishmania species, sequencing of kDNA is problematic. Therefore, further identification of the Leishmania parasites was done using the ITS1–PCR followed by Hae III digestion of the resulting amplicons\cite{19,20}. A set of primers (Table 1) LITSR and L5.8S was used to amplify 340 bp of rDNA including parts of 3' end of the 18S rDNA gene, complete ITS1, and part of 5' end of the 5.8S rDNA gene. PCR products (15 μL) were digested with Hae III without prior purification using conditions recommended by the supplier (Cinagen, Iran).

PCR step	Name	Sequences 5'-3'
First	CSB2XF	CGAGTA CGAGAAACTCCGGGGTCA
	CSB1XR	ATTTTTTTGGGATTGTTGGCAGGAGG
Second	LIR	TCGCAGAACGGCCCT
One	LITSR	CGATCATATTTCGCGT
	L5.8S	TGATAGACTATGAGACT

Also, the ITS1 PCR products (340 bp) of the samples that
demonstrated *L. infantum* profile were sequenced (Seqlab, Göttingen, Germany), employing the same primers used for the PCR. The sequences obtained were processed and aligned, using the multiple alignment program Clustal X [21]. Homologies with the available sequence data in GenBank was checked by using basic local alignment search tool (BLAST) analysis software (http://www.ncbi.nlm.nih.gov/BLAST). A PCR protocol of 30 cycles of denaturation 30 seconds at 94 °C, annealing 1 min at 62 °C and elongation 1 min at 72 °C, followed by a final elongation of 10 min at 72 °C was used. All PCR products were analyzed by 1–1.5% agarose gel electrophoresis, followed by ethidium bromide staining and visualization under UV light. Standard DNA fragments (100 bp ladder, Fermentas) were used to permit sizing. PCR products (15 µL) of ITS1 were digested by *Hae* III without prior purification using conditions recommended by the supplier (Cinagen, Iran). The restriction fragments were subjected to electrophoresis in 2% agarose and visualized under ultraviolet light after staining for 15 min in ethidium bromide (0.5 lg/mL). *Hae* III digestion of ITS1 PCR reveals two fragments of 220 and 140 bp for *L. major*, fragments of 200, 80 and 60 bp for *L. infantum/donovani*, and two fragments of 200 and 60 bp for *L. tropica* (Figure 2).

3. Results

Altogether 7,930 sticky traps were installed and 1,034 specimens comprising 8 species of sand flies were collected and identified. They included *Phlebotomus sergenti* (51.06%), *P. tobbi* (32.97%), *Phlebotomus major* (1.74%), *Phlebotomus papatasi* (2.14%), *Phlebotomus kandelakii* (1.26%), *Phlebotomus caucasicus* (6.96%), *Phlebotomus perfiliewi* transcaucasicus (3.19%) and *Paraphlebotomus alexandri* (0.68%). *Phlebotomus sergenti* and *P. tobbi* were the dominant *Phlebotomus* species respectively (Table 2). The activity of sand flies started in May and ended in October with one peak in early August. Sex ratio (male to female) of the sand flies captured in the region were 164/100 in indoor and outdoors.

Overall a total of 160 dominant female sand flies including *P. tobbi* (50%) and *Phlebotomus sergenti* (50%) were tested for *Leishmania* parasite genome. Only 1 out of 80 specimens of *P. tobbi* (1.25%) were positive for *L. infantum/donovani* using the nested PCR against kinetoplast DNA. This was observed in the kDNA nested–PCR amplification assays where a 680 bp PCR band was produced. This length of PCR in the system is assigned to *L. infantum/L. donovani*. Examination of the one infected specimens showed that its abdomen was empty. Further analysis showed that it was positive against ITS1 locus and produced a band of approximately 340 bp. RFLP analysis by *Hae* III revealed the fragments of 200, 80 and 60 bp for *L. infantum* which are characteristic of *L. infantum/donovani*. The diagnostic fragments were 220 and 140 bp for *L. major* and 2 fragments of 200 and 60 bp are for *L. tropica* (Figure 2).

![Figure 2. ITS1–rDNA PCR–RFLP analysis of selected strains of *Leishmania* species using *Hae* III restriction enzyme.](image-url)

Of 80 females of *P. tobbi*, only 1 (1.25%) were found naturally infected with *L. infantum*. This is the first *L. infantum* DNA detection in *P. tobbi* in new focus Alborz province, northern Iran.

The ITS1 DNA sequences of this specimen were submitted to Genbank database with accession number (KC477100). Sequence comparison with other available data confirmed it as *L. infantum*. The specimen was identical (100%) or very similar to several *L. infantum* sequences deposited in Genbank, including isolates from Uzbekistan (Accession No. FN398341), Brazil (Accession No. FN398343) and France (Accession No. AJ634339). Also they were found to be 100% similar to *Leishmania chagasi* from Brazil (Accession No.AJ000304) and 99% similar to *L. donovani* from Bangladesh (Accession No. AB725909).

Table 2

Species composition frequency of sand flies in Savojhodagh County, Alborz Province, Northern Iran, 2012.

Species	Villages	P. sergenti	P. tobbi	P. caucasicus	P. papatasi	P. perfiliewi	P. kandelakii	P. major	P. alexandri	Total
Arab Abad	229 (48.2%)	200 (42.1%)	15 (3.2%)	5 (1.1%)	9 (1.9%)	4 (0.8%)	11 (2.3%)	2 (0.4%)	475 (100%)	
Hiv	132 (56.6%)	54 (23.2%)	25 (10.7%)	8 (3.4%)	12 (5.2%)	0 (0.0%)	2 (0.9%)	0 (0.0%)	233 (100%)	
Aghasht	122 (61.3%)	46 (23.2%)	16 (8.0%)	3 (1.5%)	4 (2.0%)	7 (3.5%)	0 (0.0%)	1 (0.5%)	199 (100%)	
Kordan	45 (35.4%)	41 (32.3%)	16 (12.6%)	6 (4.8%)	8 (6.3%)	2 (1.5%)	5 (3.9%)	4 (3.2%)	127 (100%)	
Total	528 (51.1%)	341 (32.9%)	72 (7.0%)	22 (2.1%)	33 (3.2%)	13 (1.3%)	18 (1.7%)	7 (0.7%)	1,034 (100%)	
4. Discussion

The ecology and epidemiology of Leishmaniasis are important measures for management and planning of disease control. Entomological surveys accompanied by epidemiological data provide essential information for the design of control programs of the disease.

Finding naturally infected wild-caught specimens that are anthropophilic fulfills two essential requirements for incriminating a sand fly vector[22]. In endemic areas where more than one \textit{Leishmania} species is present, diagnostic tools are required for the detection of parasites directly in samples and distinguish all relevant \textit{Leishmania} species[23]. Characterization of \textit{Leishmania} species is important, because different species may require special remedial method. On the other hand, such information is also valuable in epidemiologic studies where the distribution of \textit{Leishmania} species in hosts and insect vectors is an urgent item in the controlling program[20,23].

In many areas, however, despite considerable research on these diseases, the main ‘reservoir’ hosts and the species of sand fly responsible for transmission have yet to be identified. In many foci of VL, there is at least one species of sand fly that is common and anthropophilic to be considered as a probable vector, although good evidence to support this belief is lacking, such as the detection in wild caught females of this species and the parasites causing the VL. The prevalence of infection even in the primary vector may be quite low, making the detection of sand fly infection difficult and particularly the detection of any temporal trend in the prevalence of sand fly infection, especially, if dissection and microscopy constitute the detection method. Isoenzyme detection methods provide the gold-standard for identifying species and reference strains of \textit{Leishmania}, but this method has disadvantage as it requires the culture of a large number of parasites and primary isolates can easily become contaminated, or a mixed infection can yield only the strain that grows fast in laboratory conditions[24].

The highly sensitive technique of PCR has been used before to detect \textit{Leishmania} in New and Old World sand flies[25,26]. Some species of sand flies belong to subgenus \textit{Larroussius} are potential vectors of VL in the Mediterranean basin. Aransay \textit{et al}. in 2000 used this method in Greece for detection of \textit{Leishmania} infection in \textit{Phlebotomus (Larroussius) neglectus}, \textit{Phlebotomus (Larroussius) tobbi}, \textit{Phlebotomus (Larroussius) simici}, and \textit{Paraphlebotomus alexandri} using a semi–nested PCR technique[9,10].

The main objectives of this study were to identify the sand fly vector(s) and the etiologic agents responsible for the recent cases of VL in rural areas of Savodjbolagh, which is a classic focus of L. infantum. In this study, only the species of \textit{P. tobbi}, was infected with \textit{L. infantum}. Previous studies in the country have revealed natural infection of \textit{P. tobbi} with \textit{L. infantum} in Ardebil province northeastern Iran[11].

The vectorial competence of \textit{P. tobbi} has been described previously in Cyprus, Greece, Turkey, Yugoslavia and Albania[27]. It has also been shown experimentally that, this species can support \textit{L. infantum}. This species is distributed mainly in countries of the eastern and mid–northern Mediterranean basin[27,28]. It is also one of the most important sand fly species in terms of public health in Greece and the proven vector of \textit{L. infantum} in Cyprus[29,30]. As a final conclusion, \textit{P. tobbi} was the only species found infected with \textit{L. infantum}, so, it seems this species is playing the principal role in circulating of \textit{L. infantum} between canine reservoirs and human in rural areas of Savodjbolagh district, Alborz province, north of Iran.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors would like to appreciate very much the Health Center staff of Savodjbolagh district for their kind help. This study was financially supported by the School of Public Health, Tehran University of Medical Sciences (Project No. 17284).

Comments

Background

VL is zoonotic and transmitted to humans by sand flies. Although three species of sand flies have been reported as the vector in north western and north eastern of Iran, no information has been reported on the vector of VL in the new focus of disease, northern Iran.

Research frontiers

Field studies were performed in order to determine sand fly vector of \textit{Leishmania} parasites by using molecular biological techniques in Alborz, Iran. The authors found that \textit{Phlebotomus tobbi} was the principal vector of \textit{L. infantum} in rural areas of Savodjbolagh district, Alborz province, north of Iran.

Related reports

Previous studies in the country have revealed natural infection of \textit{P. tobbi} with \textit{L. infantum} in Ardebil province northeastern Iran. It is also one of the most important sand fly species in terms of public health in Greece and the proven vector of \textit{L. infantum} in Cyprus.

Innovations & breakthroughs

This research was to identify the vector(s) of VL and species composition of sand flies were identified in the new focus of disease, northern Iran, using dissection and microscopic examination, as well as molecular techniques, including PCR of kDNA, ITS1–rDNA, followed by RFLP.

Applications

Combination techniques using nested–PCR amplification of kinetoplast DNA (kDNA), ITS1–rDNA, followed by \textit{Hae} III digested RFLP are applicable for epidemiological field
research on identification of Leishmania parasites in sandflies.

Peer review

The authors could identify a sand fly vector of VL in the new focus of disease, northern Iran, using microscopic examination, as well as molecular techniques, including PCR of kDNA, ITS1-rDNA, followed by RFLP. The results may help the control of P. tobbi as a target vector in the area.

References

[1] Matlashewski G, Arana B, Kroeger A, Battacharya S, Shyma S, Pradeep D, et al. LeishVet guidelines for the practical management of canine leishmaniosis. Parasit Vectors 2011; 4: 86.

[2] Sobrino R, Ferroglio E, Oleaga A, Romano A, Millan J, Revilla M, et al. Characterization of widespread canine leishmaniasis among wild carnivores from Spain. Vet Parasitol 2008; 155: 198–203.

[3] Shyma S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Vaccine Immunol 2002; 9: 951–958.

[4] Warburg A, Faiman R. Research priorities for the control of leishmaniasis and other phlebotomine sand flies. J Vector Ecol 2011; 36(1): S10–S16.

[5] Mahmoudvand H, Mohebali M, Sharifi I, Keshavarz H, Hajjaran H, Akhoundi B, et al. Epidemiological aspects of visceral leishmaniasis in Baft District, Kerman Province, Southeast of Iran. Iranian J Parasitol 2011; 6(1): 11–11.

[6] Rassi Y, Javadian E, Namad A, Rafizadeh S, Zahrain A, Azizi K, et al. Phlebotomus perfiliewi transcaucasicus, a vector of Leishmania infantum in northern Iran. J Med Entomol 2009; 46(5): 1094–1098.

[7] Azizi K, Rassi Y, Javadian E, Motazedian MH, Rafizadeh S, Yaghoobi-Ershadi MR, et al. Phlebotomus (Paraphlebotomus) alexandri: a probable vector of Leishmania infantum in Iran. Ann Trop Med Parasitol 2006; 100: 63–68.

[8] Azizi K, Rassi Y, Javadian E, Motazedian MH, Asgari Q, Yaghoobi-Ershadi MR, et al. First detection of Leishmania infantum in Phlebotomus (Larroussius) major (Diptera: Psychodidae) from Iran. J Med Entomol 2008; 45(4): 726–731.

[9] Rassi Y, Abai MR, Oshaghi MA, Javadian E, Salimi S, Rafizadeh S, et al. First detection of Leishmania infantum in Phlebotomus kandenakli using molecular methods in north–eastern Islamic Republic of Iran. East Mediterr Health J 2012; 18(4): 387–392.

[10] Rassi Y, Javadian E, Namad A, Zahrain A, Varandashto M, Motazedian H, et al. Phlebotomus (Larroussius) kandenakli the principal and proven vector of visceral leishmaniasis in north west of Iran. Pakistan J Biol Sci 2005; 8: 1802–1806.

[11] Rassi Y, Saini Ddikkordi A, Oshaghi MA, Abai MR, Motlardami F, Enayati A, et al. First report on natural infection of the Phlebotomus tobbi by Leishmania infantum in northwestern Iran. Exp Parasitol 2012; 131: 344–349.

[12] Oshaghi MA, Maleki Ravasan N, Hid M, Javadian E, Rassi Y, Sadraei J, et al. Phlebotomus perfiliewi transcaucasicus is circulating both Leishmania donovani and L. infantum in northwest Iran. Exp Parasitol 2009; 123: 218–225.

[13] Seyyedi-Rashiti MA, Sahabi Z, Kananinotash A. Phlebotomus (Larroussius) keshishianii Shchurenkova, another vector of visceral leishmaniasis in Iran. Iran J Public Health 1995; 24: 23–30.

[14] Rassi Y, Kaverizadeh F, Javadian E, Mohebali M. First report on natural promastigote infection of Phlebotomus caucasicus in a new focus of visceral leishmaniasis in north–west of Iran. Iran J Public Health 2004; 33: 470–472.

[15] Theodor O, Mesghali A. On the Phlebotominae of Iran. J Med Entomol 1964; 1: 285–300.

[16] Absavarlan A, Rassi Y, Parvizi P, Oshaghi M, Abaei M, Rafizadeh S, et al. Identification of sand flies of the subgenus Larroussius based on molecular and morphological characters in North Western Iran. Iran J Arthropod–Borne Dis 2009; 3(2): 22–35.

[17] Lewis DJ. A taxonomic review of the genus Phlebotomus. Bull Br Entomol Soc 1982; 45: 121–209.

[18] Oshaghi MA, Maleki RN, Hid M, Javadian EA, Rassi Y, Sedaghat MM, et al. Development of species-specific PCR and PCR–restriction fragment length polymorphism assays for L. infantum donovani discrimination. Exp Parasitol 2009; 122(1): 61–65.

[19] Noyes HA, Reyburn H, Bailey JW, Smith D. A nested–PCR–based schizodeme method for identifying Leishmania kinetoplast minicircle classes directly from clinical samples and its application to the study of the epidemiology of Leishmania tropica in Pakistan. J Clin Microbiol 1998; 36: 2877–2881.

[20] el Tai NO, Osman OF, el Fari M, Presher W, Schénian G. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single–strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 2000; 94(5): 575–579.

[21] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 1997; 25(24): 4876–4882.

[22] Sharma U, Singh S. Insect vectors of Leishmania: distribution, physiology and their control. J Vector Borne Dis 2008; 45: 255–272.

[23] Nasereddin A, Jaffe CL. Rapid diagnosis of old world leishmaniasis by high–resolution melting analysis of the 7SL RNA gene. J Clin Microbiol 2010; 48(6): 2240–2242.

[24] Alvar J, Barker JR. Molecular tools for epidemiological studies and diagnosis of leishmaniasis and selected other parasitic disease. Trans R Soc Trop Med Hyg 2002; 96(5): S1–S250.

[25] Campino L, Cortes S, Dionisio L, Neto L, Afonso MO, Maia C. The first detection of Leishmania major in naturally infected Sergentomyia minuta in Portugal. Mem Inst Oswaldo Cruz 2013; 108(4): 516–518.

[26] de Bruijn MH, Barker DC. Diagnosis of New World leishmaniasis: specific detection of species of the leishmania braziliensis complex by amplification of kinetoplast DNA. Acta Trop 1992; 52: 45–58.

[27] Ready PD. Leishmaniasis emergence in Europe. Euro Surveill 2010; 15(10): 1905.

[28] Claborn DM. The biology and control of leishmaniasis vectors. J Glob Infect Dis 2010; 2(2): 127–134.

[29] Mazarie A, Soteriadou K, Dedet JP, Haralambous C, Tsatsaris A, Moschandreas J, et al. Leishmaniases and the Cyprus paradox. Euro Surveill 2010; 15(3): 441–448.

[30] Léger N, Depauj J, Ferté H, Rioue JA, Gantier JC, Gramiccia M, et al. [Phlebotomine sand flies (Diptera: Psychodidae) of the isle of Cyprus. II. isolation and typing of leishmania leishmania infantum] Nicolle, 1908 (zymodeme MÔN 1) from Phlebotomus (larroussius) tobbi Adler and Theodor,1930]. Parasite 2000; 7(2): 143–146. French.