Product cones in dense pairs

Pantelis E. Eleftheriou

School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

Received 7 June 2021, revised 16 December 2021, accepted 7 January 2022
Published online 22 January 2022

Let $M = \langle M, <, +, \ldots \rangle$ be an o-minimal expansion of an ordered group, and $P \subseteq M$ a dense set such that certain tameness conditions hold. We introduce the notion of a product cone in $\tilde{M} = \langle M, P \rangle$, and prove: if M expands a real closed field, then \tilde{M} admits a product cone decomposition. If M is linear, then it does not. In particular, we settle a question from [10].

1 Introduction

Tame expansions $\tilde{M} = \langle M, P \rangle$ of an o-minimal structure M by a set $P \subseteq M$ have received lots of attention in recent literature (cf. [1–4, 6, 7, 12, 14]). One important category is when every definable open set is already definable in M. Dense pairs and expansions of M by a dense independent set or by a dense multiplicative group with the Mann Property are of this sort. In [10], all these examples were put under a common perspective and a cone decomposition theorem was proved for their definable sets and functions. This theorem provided an analogue of the cell decomposition theorem for o-minimal structures in this context, and was inspired by the cone decomposition theorem established for semi-bounded o-minimal structures (cf. [8, 9, 15]). The central notion is that of a cone, and, as its definition in [10] appeared to be quite technical, in [10, Question 5.14], we asked whether it can be simplified in two specific ways. In this paper we refute both ways in general, showing that the definition in [10] is optimal, but prove that if M expands a real closed field, then a product cone decomposition theorem does hold.

In § 2, we provide all necessary background and definitions. For now, let us only point out the difference between product cones and cones, and state our main theorem. Let $M = \langle M, <, +, \ldots \rangle$ be an o-minimal expansion of an ordered group in the language L, and $\tilde{M} = \langle M, P \rangle$ an expansion of M by a set $P \subseteq M$ such that certain tameness conditions hold (these are listed in § 2). For example, \tilde{M} can be a dense pair (cf. [6]), or P can be a dense independent set (cf. [5]) or a multiplicative group with the Mann Property (cf. [7]). By ‘definable’ we mean ‘definable in \tilde{M}’, and by L-definable we mean ‘definable in M’. The notion of a small set is given in Definition 2.1 below, and it is equivalent to the classical notion of being P-internal from geometric stability theory ([10, Lemma 3.11 & Corollary 3.12]). A supercone generalizes the notion of being co-small in an interval (Definition 2.2). Now, and roughly speaking, a cone is then defined as a set of the form

$$h\left(\bigcup_{g \in S} \{g\} \times J_g\right),$$

where h is an L-definable continuous map with each $h(g, -)$ injective, $S \subseteq M^m$ is a small set, and $\{J_g\}_{g \in S}$ is a definable family of supercones. In Definition 2.4 below, we call a cone a product cone if we can replace the above family $\{J_g\}_{g \in S}$ by a product $S \times J$. That is, C has the form

$$h(S \times J),$$

with h and S as above and J a supercone. Let us say that \tilde{M} admits a product cone decomposition if every definable set is a finite union of product cones. Our main theorem below asserts whether \tilde{M} admits a product cone decomposition or not based solely on assumptions on M. Recall that M is linear if it is an expansion of an ordered group and every definable function is piecewise affine (Definition 3.1).

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.
The methods in §§ 3.1 & 3.2 do not seem to apply and a new approach is needed.

The presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones, a bounded interval but not on the whole of \mathbb{R}. In the ‘intermediate’, semi-bounded case (cf. [9]), where \mathcal{M} defines a field on a bounded interval but not on the whole of \mathcal{M}, the answer to [10, Question 5.14] is rather unclear. Indeed, in the presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones, the methods in §§ 3.1 & 3.2 do not seem to apply and a new approach is needed.

Remark 1.2 Theorem 1.1 deals with the two main categories of o-minimal structures; namely, \mathcal{M} is linear or it expands a real closed field. In the ‘intermediate’, semi-bounded case (cf. [9]), where \mathcal{M} defines a field on a bounded interval but not on the whole of \mathcal{M}, the answer to [10, Question 5.14] is rather unclear. Indeed, in the presence of two different notions of cones in this setting, the semi-bounded cones (from [9]) and the current ones, the methods in §§ 3.1 & 3.2 do not seem to apply and a new approach is needed.

Notation The topological closure of a set $X \subseteq \mathbb{M}$ is denoted by $cl(X)$. Given any subset $X \subseteq \mathbb{M}^n \times \mathbb{M}^n$ and $a \in \mathbb{M}^n$, we write X_a for

$$\{b \in \mathbb{M}^n : (b, a) \in X\}.$$

If $m \leq n$, then $\pi_m : \mathbb{M}^n \to \mathbb{M}^m$ denotes the projection onto the first m coordinates. We write π for π_{n-1}, unless stated otherwise. A family $\mathcal{J} = \{J_g\}_{g \in S}$ of sets is called definable if $\bigcup_{g \in S} \{g\} \times J_g$ is definable. We often identify \mathcal{J} with $\bigcup_{g \in S} \{g\} \times J_g$.

2 Preliminaries

In this section we lay out all necessary background and terminology. Most of it is extracted from [10, § 2], where the reader is referred to for an extensive account. We fix an o-minimal theory T expanding the theory of ordered abelian groups with a distinguished positive element 1. We denote by L the language of T and by $L(P)$ the language L augmented by a unary predicate symbol P. Let \tilde{T} be an $L(P)$-theory extending T. If $\mathcal{M} = \langle M, <, +, \ldots \rangle \models \tilde{T}$, then $\tilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle$ denotes an expansion of \mathcal{M} that models \tilde{T}. By ‘A-definable’ we mean ‘definable in $\tilde{\mathcal{M}}$ with parameters from A’. By ‘L_A-definable’ we mean ‘definable in $\tilde{\mathcal{M}}$ with parameters from A’. We omit the index A if we do not want to specify the parameters. For a subset $A \subseteq \mathcal{M}$, we write $dcl(A)$ for the definable closure of A in \mathcal{M}, and for an L-definable set $X \subseteq \mathbb{M}$, we write $dcl(X)$ for the corresponding pregeometric dimension.

The following definition is taken essentially from [7].

Definition 2.1 Let $X \subseteq \mathbb{M}^n$ be a definable set. We call X large if there is some m and an L-definable function $f : \mathbb{M}^m \to \mathcal{M}$ such that $f(X^m)$ contains an open interval in \mathcal{M}. We call X small if it is not large. We call X co-small in a definable set Y, if $Y \mathcal{M} \mathcal{N}$ is small.

Consider the following Tameness Conditions (cf. [10]):

(I) P is small.

(II) Every A-definable set $X \subseteq \mathbb{M}^n$ is a boolean combination of sets of the form

$$\{x \in \mathbb{M}^n : \exists z \in \mathbb{P}^m \varphi(x, z)\},$$

where $\varphi(x, z)$ is an L_A-formula.

(III) (Open definable sets are L-definable) For every parameter set A such that $A \setminus P$ is dcl-independent over P, and for every A-definable set $V \subseteq \mathbb{M}$, its topological closure $cl(V) \subseteq \mathbb{M}$ is L_A-definable.

From now on, we assume that every model $\tilde{\mathcal{M}} \models \tilde{T}$ satisfies Conditions (I)-(III) above. We fix a sufficiently saturated model $\tilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle \models \tilde{T}$.

We next turn to define the central notions of this paper. As mentioned in the introduction, the notion of a cone is based on that of a supercone, which in turn generalizes the notion of being co-small in an interval. Both notions,
supercones and cones, are unions of specific families of sets, which not only are definable, but they are so in a very uniform way.

Definition 2.2 ([10]) A supercone $J \subseteq M^k$, $k \geq 0$, and its shell $sh(J)$ are defined recursively as follows:

1. $M^0 = \{0\}$ is a supercone, and $sh(M^0) = M^0$.
2. A definable set $J \subseteq M^{n+1}$ is a supercone if $\pi(J) \subseteq M^n$ is a supercone and there are L-definable continuous maps $h_1, h_2 : sh(\pi(J)) \to M \cup \{\pm \infty\}$ with $h_1 < h_2$, such that for every $a \in \pi(J)$, J_a is contained in $(h_1(a), h_2(a))$ and it is co-small in it. We let $sh(J) = (h_1, h_2)_{sh(\pi(J))}$.

Abusing terminology, we call a supercone A-definable if it is an A-definable set and its closure is L_A-definable.

Note that, for $k > 0$, $sh(J)$ is the unique open cell in M^k such that $cl(sh(J)) = cl(J)$. That is, $sh(J)$ is the interior of $cl(J)$. In particular, if J is A-definable, then all defining maps h_1, h_2 used in its recursive definition are L_A-definable.

Recall that in our notation we identify a family $\mathcal{J} = \{ J_g \}_{g \in S}$ with $\bigcup_{g \in S} \{ g \} \times J_g$. In particular, $cl(\mathcal{J})$ and $\pi_n(\mathcal{J})$ denote the closure and a projection of that set, respectively.

Definition 2.3 (Uniform families of supercones [10]) Let $\mathcal{J} = \bigcup_{g \in S} \{ g \} \times J_g \subseteq M^{m+k}$ be a definable family of supercones (so $S \subseteq M^m$, and $J_g \subseteq M^k$, $g \in S$, are supercones). We call \mathcal{J} uniform if there is a cell $V \subseteq M^{m+k}$ containing \mathcal{J}, such that for every $g \in S$ and $0 < j \leq k$,

$$cl(\pi_{m+j}(\mathcal{J})_g) = cl(\pi_{m+j}(V)_g).$$

We call such a V a shell for \mathcal{J}. Abusing terminology, we call \mathcal{J} A-definable, if it is an A-definable family of sets and has an L_A-definable shell.

In case S is a singleton, \mathcal{J} can be identified with a supercone, and its shell with the shell from Definition 2.2 (after projecting on the last k coordinates).

In particular, if \mathcal{J} is uniform, then so is each projection $\pi_{m+j}(\mathcal{J})$. Moreover, if V is a shell for \mathcal{J}, then $\pi_{m+j}(V)$ is a shell for $\pi_{m+j}(\mathcal{J})$. Observe also that if V is a shell for \mathcal{J}, then for every $x \in \pi_{m+k-1}(\mathcal{J})$, \mathcal{J}_x is co-small in V_x.

A shell for \mathcal{J} need not be unique. Whenever we say that \mathcal{J} is a uniform family of supercones with shell V, we just mean that V is a shell for \mathcal{J}.

Definition 2.4 (Cones [10] and product cones) A set $C \subseteq M^n$ is a k-cone, $k \geq 0$, if there are a definable small $S \subseteq M^m$, a uniform family $\mathcal{J} = \{ J_g \}_{g \in S}$ of supercones in M^k, and an L-definable continuous function $h : V \subseteq M^{m+k} \to M^n$, where V is a shell for \mathcal{J}, such that

1. $C = h(\mathcal{J})$, and
2. for every $g \in S$, $h(g, -) : V_g \subseteq M^k \to M^n$ is injective.

We call C a k-product cone if, moreover, $\mathcal{J} = S \times J$, for some supercone $J \subseteq M^k$. A (product) cone is a k-(product) cone for some k. Abusing terminology, we call a (product) cone $h(\mathcal{J})$ A-definable if h is L_A-definable and \mathcal{J} is A-definable.

The cone decomposition theorem below (Fact 2.6) is a statement about definable sets and functions. The notion of a ‘well-behaved’ function in this setting is given next.

Definition 2.5 (Fiber L-definable maps [10]) Let $C = h(\mathcal{J}) \subseteq M^n$ be a k-cone with $\mathcal{J} \subseteq M^{m+k}$, and $f : D \to M$ a definable function with $C \subseteq D$. We say that f is fiber L-definable with respect to C if there is an L-definable continuous function $F : V \subseteq M^{m+k} \to M$, where V is a shell for \mathcal{J}, such that

$$(f \circ h)(x) = F(x), \text{ for all } x \in \mathcal{J}.$$

We call f fiber L_A-definable with respect to C if F is L_A-definable.

As remarked in [10, Remark 4.5(4)], the terminology is justified by the fact that, if f is fiber L_A-definable with respect to $C = h(\mathcal{J})$, then for every $g \in \pi(\mathcal{J})$, f agrees on $h(g, J_g)$ with an L_{A_g}-definable map; namely $F \circ h(g, -)^{-1}$. Moreover, the notion of being fiber L-definable with respect to a cone $C = h(\mathcal{J})$, depends on h and \mathcal{J} ([10, Example 4.6]). However, it is immediate from the definition that if f is fiber L_A-definable with respect
to a cone $C = h(J)$, and $h(J') \subseteq h(J)$ is another cone (but with the same h), then f is also fiber L_A-definable with respect to it.

We are now ready to state the cone decomposition theorem from [10].

Fact 2.6 (Cone decomposition theorem [10, Theorem 5.1])

1. Let $X \subseteq M^n$ be an A-definable set. Then X is a finite union of A-definable cones.
2. Let $f : X \to M$ be an A-definable function. Then there is a finite collection C of A-definable cones, whose union is X and such that f is fiber L_A-definable with respect to each cone in C.

Another important notion from [10] is that of ‘large dimension’, which we recall next. The proof of Theorem 1.1(2) runs by induction on large dimension.

Definition 2.7 (Large dimension [10]) Let $X \subseteq M^n$ be definable. If $X \neq \emptyset$, the large dimension of X is the maximum $k \in \mathbb{N}$ such that X contains a k-cone. The large dimension of the empty set is defined to be $-\infty$. We denote the large dimension of X by $\operatorname{ldim}(X)$.

Remark 2.8 The tameness conditions that we assume in this paper guarantee that the notion of large dimension is well-defined; namely, the above maximum k always exists ([10, § 4.3]).

3 Product cone decompositions

In this section we prove Theorem 1.1.

3.1 The linear case

The following definition is taken from [13].

Definition 3.1 ([13]) Let $\mathcal{N} = \langle N, +, <, 0, \ldots \rangle$ be an o-minimal expansion of an ordered group. A function $f : A \subseteq N^n \to N$ is called affine, if for every $x, y, x + t, y + t \in A$,

$$f(x + t) - f(x) = f(y + t) - f(y).$$

We call \mathcal{N} linear if every definable $f : A \subseteq N^n \to N$ is piecewise affine, namely if there is a partition of A into finitely many definable sets B, such that each f_B is affine.

The typical example of a linear o-minimal structure is an ordered vector space $\mathcal{V} = \langle V, <, +, 0, \{d\}_{d \in D} \rangle$ over an ordered division ring D. In general, if \mathcal{N} is linear, then there exists a reduct \mathcal{S} of such \mathcal{V}, such that $\mathcal{S} \equiv \mathcal{N}$ (cf. [13] for details). Using this description, it is not hard to see that every affine function has a continuous extension to the closure of its domain.

Assume now that our fixed structure \mathcal{M} is linear.

Lemma 3.2 Let $h : [a, b] \times [c, d] \to M$ be an L-definable continuous function, such that for every $t \in (a, b)$, $h(t, \cdot) : [c, d] \to M$ is strictly increasing. Then

$$h(b, d) - h(b, c) > 0.$$

Proof. Let \mathcal{W} be a cell decomposition of $[a, b] \times [c, d]$ such that for every $W \in \mathcal{W}$, $h|_W$ is affine. Since $d - c > 0$, there must be some $W = (f, g) \in \mathcal{W}$, where I is an interval with $\sup I = b$, and $r \in I$, such that the map $\delta(t) := g(t) - f(t)$ is increasing on $[r, b)$. We claim that for every $t \in (r, b)$,

$$h(t, g(t)) - h(t, f(t)) \geq h(r, g(r)) - h(r, f(r)).$$

Indeed, there is $k \geq 0$, such that

$$h(t, f(t) + \delta(t)) - h(t, f(t)) = h(t, f(t) + \delta(r) + k) - h(t, f(t))$$

$$= h(t, f(t) + \delta(r) + k) + h(t, f(t) + \delta(r))$$

$$- h(t, f(t) + \delta(r)) + h(t, f(t))$$
Since the origin is in the closure of \(H \), the origin is in its closure. Since \(4.27 \). Now let \(t \) may assume that the latter is always strictly increasing. By \([10, Lemma 5.10]\) applied to \(\lim \)

where the inequality holds because \(h(t, -) \) is increasing, and the last equality holds because \(h \) is affine on \(W \). We conclude that

\[
 h(b, d) - h(b, c) = \lim_{t \to b} (h(t, d) - h(t, c)) \geq \lim_{t \to b} (h(t, g(t)) - h(t, f(t))) \geq h(r, g(r)) - h(r, f(r)) \leq 0,
\]

where the first and last inequalities hold because \(h(t, -) \) and \(h(r, -) \) are strictly increasing. \(\Box \)

Counterexample to product cone decomposition Let \(S \subseteq M \) be a small set such that 0 is in the interior of its closure (by translating \(P \) to the origin, such an \(S \) exists). Let

\[X = \bigcup_{a \in S^0} \{a\} \times (0, a). \]

Claim 3.3 \(X \) is not a finite union of product cones.

Proof. First of all, \(X \) cannot contain any \(k \)-cones for \(k > 1 \), since \(\text{ldim}(X) = 1 \), by [10, Lemmas 4.24 & 4.27]. Now let \(H(T \times J) \) be an 1-product cone contained in \(X \), with \(H = (H_1, H_2) : Z \subseteq M^{l^1 + 1} \to M^2 \), such that the origin is in its closure. Since \(H \) is \(L \)-definable and continuous, and for each \(g \in T \), \(H_2(g, -) \) is injective, we may assume that the latter is always strictly increasing. By [10, Lemma 5.10] applied to \(J \), \(f(-) = \pi_1 H(g, -) \) and \(S \), we have

for every \(g \in T \), there is \(a \in S \), such that \(H(g, J) \subseteq \{a\} \times (0, a) \).

By continuity of \(H \), it follows that

for every \(g \in \text{cl}(T) \cap \pi(Z) \), there is \(a \in M \), such that \(H(g, \text{cl}(J)) \subseteq \{a\} \times [0, a] \).

Let \(F : \pi(Z) \to M \) be the \(L \)-definable map given by

\[F(g) = \pi_1(H(g, \text{cl}(J))). \]

Since the origin is in the closure of \(H(T \times J) \), there must be an affine \(\gamma : (a, b) \to \text{cl}(T) \cap \pi(Z) \) with \(\lim_{t \to b} F(\gamma(t)) = 0 \). Fix any \([c, d] \subseteq \text{cl}(J) \). Now the map

\[H_2(\gamma(-), -) : (a, b) \times (c, d) \to M \]

is piecewise affine and hence has a continuous extension \(h \) to \([a, b] \times [c, d] \). By definition of \(X \),

\[h(b, c) = h(b, d) = 0. \]

But, by Lemma 3.2,

\[h(b, d) - h(b, c) > 0, \]

a contradiction. Since \(X \) contains no product cone whose closure contains the origin, \(X \) cannot be a finite union of product cones. \(\Box \)

3.2 The field case

We now assume that \(\mathcal{M} \) expands an ordered field. The main idea behind the proof in this case is as follows. By Fact 2.6, it suffices to write every cone as a finite union of product cones. We illustrate the case of a 1-cone \(C = h(J) \), for some \(J = \{J_k\}_{k \in S} \).
Step I (Lemma 3.4). Replace \mathcal{J} by a cone $\mathcal{J}' = \{J'_g\}_{g \in S}$, such that for some fixed interval I, each J'_g is contained in I and it is co-small in it. Here we use the field structure of \mathcal{M}, so this step would fail in the linear case.

Step II (Lemma 3.5). By [10, Lemma 4.25], the intersection $J = \bigcap_{g \in S} J'_g$ is co-small in I. Moreover, if we let $L = S \times J$, then, by [10, Lemma 4.29], we obtain that the large dimension of $\mathcal{J} \setminus L$ is 0.

Step III (Theorem 3.6). Use Steps I and II and induction on large dimension. Here, the inductive hypothesis is only applied to sets of large dimension 0. In general, $\text{ldim}(\mathcal{J} \setminus L) < \text{ldim}(\mathcal{J})$.

To achieve Step I, we first need to make an observation and fix some notation. Using the field operations, one can define an L_0-definable continuous $f : M^2 \to M$, such that for every $b, c \in M$,

$$f(b, c, -) : (b, c) \to (0, 1)$$

is a bijection. Similarly, there are L_0-definable continuous maps $f_1, f_2 : M^2 \to M$, such that for every $b, c \in M$, the maps

$$f_1(b, -) : (b, +\infty) \to (0, 1)$$

and

$$f_2(c, -) : (-\infty, c) \to (0, 1)$$

are bijections. To give all these maps a uniform notation, we write $f(b, +\infty, x)$ for $f_1(b, x)$, and $f(-\infty, c, x)$ for $f_2(c, x)$. We fix this f for the next proof. Observe that if $J \subseteq (b, c)$ is co-small in (b, c), for $b, c \in M \cup \{\pm \infty\}$, then $f(b, c, J)$ is co-small in $(0, 1)$.

Lemma 3.4 Let $\mathcal{J} = \bigcup_{g \in S} \{J_g\} \subseteq M^{m+k}$ be an A-definable uniform family of supercones, with shell $Z \subseteq M^{m+k}$. Then there are

1. an A-definable uniform family $\mathcal{J}' = \{J'_g\}_{g \in S}$ of supercones $J'_g \subseteq M^k$, with shell $\pi(Z) \times (0, 1)^k$,
2. an L_A-definable continuous and injective map $F : Z \to M^{m+k}$, such that $F(\mathcal{J}) = \mathcal{J}'$.

Proof. For every $g \in \pi_m(\mathcal{J})$, since J_g is a supercone, it follows that Z_g is an open cell. Hence, for every $0 < j \leq k$, there are L_A-definable continuous maps $h^1_j, h^2_j : \pi_{m+j-1}(Z) \to M$ such that

$$\pi_{m+j}(Z) = (h^1_j, h^2_j)_{\pi_{m+j-1}(Z)}.$$

We define

$$F = (F_1, \ldots, F_{m+k}) : Z \to M^{m+k},$$

as follows. Let $I = (0, 1)$ and f be the map fixed above. Let $(g, t) \in Z \subseteq M^{m+k}$. If $1 \leq i \leq m$,

$$F_i(g, t) = g_i$$

(the ith coordinate of g). If $i = m + j$, with $0 < j \leq k$,

$$F_{m+j}(g, t) = f(h^1_j(g, t_1, \ldots, t_{j-1}), h^2_j(g, t_1, \ldots, t_{j-1}, t_j)).$$

Clearly, F is injective, L_A-definable and continuous. Let

$$\mathcal{J}' = F(\mathcal{J}).$$

That is, $\mathcal{J}' = \{J'_g\}_{g \in S}$, where for every $g \in S$, $J'_g = F(g, J_g)$. It is not hard to check, by induction on m, that for every $0 < m \leq k$, $\pi_{m+j}(\mathcal{J}')$ is an A-definable uniform family of supercones with shell $F(Z) = \pi(Z) \times I^m$. □

Lemma 3.5 Let $\mathcal{J} = \bigcup_{g \in S} \{J_g\} \subseteq M^{m+k}$ be an A-definable uniform family of supercones in M^k with shell Z, and assume $S \subseteq M^m$ is small. Suppose that $Z = \pi(Z) \times I^j$, where $I = (0, 1)$. Then \mathcal{J} is a disjoint union

$$(S \times J) \cup Y,$$

where $S \times J$ is an A-definable uniform family of supercones with shell Z, and Y is an A-definable set of large dimension $< k$.

© 2022 The Authors. Mathematical Logic Quarterly published by Wiley-VCH GmbH.
Proof. By induction on \(k \). For \(k = 0 \), the statement is trivial. We assume the statement holds for \(k \), and prove it for \(k + 1 \). Let \(\pi : M^{m+k+1} \to M^{m+k} \) be the projection onto the first \(m + k \) coordinates. Since \(\pi(J) \) is also an \(A \)-definable uniform family of supercones with shell \(\pi(Z) \), by inductive hypothesis we can write \(\pi(J) \) as a disjoint union

\[
\pi(J) = (S \times T) \cup Y,
\]

where \(T \subseteq M^{k} \) is an \(A \)-definable supercone with \(cl(T) = cl(I^{k}) \), and \(Y \) is an \(A \)-definable set of large dimension \(< k \). By [10, Corollary 5.5], the set \(\bigcup_{t \in T} \{ t \} \times J_t \subseteq J \) has large dimension \(< k + 1 \), and hence we only need to bring its complement \(X \) in \(J \) into the desired form. We have

\[
X = \bigcup_{t \in S \times T} \{ t \} \times J_t.
\]

Define, for every \(a \in T \),

\[
K_{a} = \bigcap_{g \in S} J_{g,a}.
\]

Since each \(J_{g,a} \) is co-small in \(I \), by [10, Lemma 4.25] \(K_{a} \) is co-small in \(I \). Hence, the set

\[
L = \bigcup_{a \in T} \{ a \} \times K_{a}
\]

is a supercone in \(M^{k+1} \). Since \(cl(T) = cl(I^{k}) \) and for each \(a \in T \), \(cl(K_{a}) = cl(I) \), it follows that \(cl(L) = cl(I^{k+1}) \). In particular, \(Z \) is a shell for \(S \times L \). Since \(S \times L \subseteq X \), it remains to prove that \(ldim(X \setminus (S \times L)) < k + 1 \). We have

\[
X \setminus (S \times L) = \bigcup_{(g,a) \in S \times T} \{ (g,a) \} \times (J_{g,a} \setminus K_{a}).
\]

But \(J_{g,a} \setminus K_{a} \) is small, and hence, by [10, Lemma 4.29], the above set has large dimension \(= ldim(S \times T) = k \). \qed

We can now conclude the main theorem of the paper.

Theorem 3.6 (Product cone decomposition in the field case) Let \(X \subseteq M^{n} \) be an \(A \)-definable set. Then

1. \(X \) is a finite union of \(A \)-definable product cones.

2. If \(f : X \to M \) is an \(A \)-definable function, then there is a finite collection \(C \) of \(A \)-definable product cones, whose union is \(X \) and such that \(f \) is fiber \(L_{A} \)-definable with respect to each cone in \(C \).

Proof. (1) By induction on the large dimension of \(X \). Suppose \(ldim(X) = k \). By Fact 2.6, we may assume that \(X \) is a \(k \)-cone. Every 0-cone is clearly a product cone. Now let \(k > 0 \). By induction, it suffices to write \(X \) as a union of an \(A \)-definable product cone and an \(A \)-definable set of large dimension \(< k \). Let \(X = h(J) \) be as in Definition 2.4, and \(Z \subseteq M^{m+k} \) a shell for \(J \).

Claim We can write \(X \) as a \(k \)-cone \(h'(J') \), such that for every \(g \in \pi(J') \), \(cl(J') \cap (0,1)^{k} = (0,1)^{k} \).

Proof of Claim. Let \(J' \) and \(F : Z \to M^{m+k} \) be as in Lemma 3.4, and define \(h' = h \circ F^{-1} : F(Z) \to M^{n} \). Then

\[
h(J) = hF^{-1}(F(J)) = h'(J')
\]

is as required. \qed

By the claim, we may assume that for every \(g \in S \), \(cl(J') \cap (0,1)^{k} = (0,1)^{k} \). By Lemma 3.5, we have \(J = (S \times J) \cup Y \), where \(J \subseteq M^{k} \) is an \(A \)-definable supercone, and \(ldim Y < k \). Thus \(h(J) = h(S \times J) \cup h(Y) \) has been written in the desired form.

(2) By Fact 2.6, we may assume that \(X \) is a \(k \)-cone and that \(f \) is fiber \(L_{A} \)-definable with respect to it. So let again \(X = h(J) \) with shell \(Z \subseteq M^{m+k} \), and in addition, \(\tau : Z \subseteq M^{m+k} \to M \) with \(J \subseteq Z \), be \(L_{A} \)-definable so that for every \(x \in J \),

\[
(f \circ h)(x) = \tau(x).
\]
By induction on large dimension, it suffices to show that X is the union of a product cone C and a set of large dimension $< k$, such that f is fiber L_{A^a}-definable with respect to C. Let $X = h'(\mathcal{J}')$ be as in Claim of (1) and $F : Z \to M^{m+k}$ as in its proof. So $h' = h \circ F^{-1} : F(Z) \to M^n$. Define $\tau' : F(Z) \to M^n$ as $\tau' = \tau \circ F^{-1}$. We then have, for every $x' \in \mathcal{J}'$,

$$\tau'(x') = f h'(x') = f h(x) = \tau(x) = \tau F^{-1}(x) = \tau(x),$$

witnessing that f is fiber L_{A^a}-definable with respect to $h'(\mathcal{J}')$.

Therefore, we may replace h by h and \mathcal{J} by \mathcal{J}'. Now, as in the proof of (1), we can write $h(\mathcal{J})$ as the union of a product cone $h(S \times J)$ and a set of large dimension $< k$. By the remarks following Definition 2.5, f is also fiber L-definable with respect to $h(S \times J)$. \hfill \Box

Remark 3.7 From the above proof it follows that in cases where we have disjoint unions in Fact 2.6 (as in [10, Theorem 5.12]), this is also the case in Theorem 3.6.

4 Refined supercones

In this section we answer [10, Question 5.14(1)] negatively. The question asked whether the Structure Theorem holds if we strengthen the notion of a supercone as follows.

Definition 4.1 A supercone \mathcal{J} in M^k is called refined if it is of the form

$$\mathcal{J} = J_1 \times \cdots \times J_k,$$

where each J_i is a supercone in M. Let us call a (k)-cone $C = h(\mathcal{J})$ a (k)-refined cone if \mathcal{J} is refined.

Our result is the following.\footnote{The proof is based on an idea suggested by Hieronymi.}

Proposition 4.2 Assume \mathcal{M} expands a real closed field. Then there is a supercone in M^2 which contains no 2-refined cone. In particular, it is not a finite union of refined cones.

Proof. The ‘in particular’ clause follows from [10, Corollaries 4.26 & 4.27]. Now, for every $a \in M$, let

$$J_a = M \setminus (P + aP)$$

and define $\mathcal{J} = \bigcup_{a \in M} \{a\} \times J_a$. Towards a contradiction, assume that \mathcal{J} contains a 2-refined cone. That is, there are supercones $J_1, J_2 \subseteq M$, an open cell $U \subseteq M^2$ with $cl(J_1 \times J_2) = cl(U)$, and an L-definable continuous and injective map $f : U \to M^2$, such that $C = f(J_1 \times J_2) \subseteq \mathcal{J}$. We write $X = f(U)$, and for each $a \in M$, $X_a \subseteq M$ for the fiber of X above a. Suppose C is A-definable.

By saturation, there is $a \in M$ which is dcl-independent over $A \cup P$, and further $g, h \in P$ which are dcl-independent over a.

So

$$\dim(g, h, a) = 3.$$

By assumption, there are $(p, q) \in U \setminus (J_1 \times J_2)$, such that

$$f(p, q) = (a, g + ha).$$

Observe that $a \in dcl(p, q)$. Also, one of p, q must be in $dcl(AP)$. Indeed, we have $p \not\in J_1$ or $q \not\in J_2$. If, say, the former holds, then $p \in \pi(U) \setminus J_1$. Since the last set is A-definable and small, we obtain by [10, Lemma 3.11], that $p \in dcl(AP)$.

We may now assume that $p \in dcl(AP)$. If we write $f = (f_1, f_2)$, we obtain

$$f_2(p, q) = g + hf_1(p, q). \tag{2}$$

Since a is dcl-independent over $A \cup P$, there must be an open interval $I \subseteq M$ of p, such that for every $x \in I$,

$$f_2(x, q) = g + hf_1(x, q).$$
Viewing both sides of the equation as functions in the variable $f_1(x, q)$, and taking their derivatives with respect to it, we obtain:

$$\frac{\partial f_2(x, q)}{\partial f_1(x, q)} = f_1(x, q) + h.$$

Evaluated at p, the last equality gives $h \in \text{dcl}(p, q)$. By (2), also $g \in \text{dcl}(p, q)$. All together, we have proved that $g, h, a \in \text{dcl}(p, q)$. It follows that

$$\dim(g, h, a) \leq \dim(p, q) \leq 2,$$

a contradiction. \hfill \Box

Acknowledgements I thank Philipp Hieronymi for several discussions on this topic, and the referee for a very careful reading of the paper. This research was partially supported by an EPSRC Early Career Fellowship (EP/V003291/1) and a Zukunftskolleg Research Fellowship (Konstanz).

References

[1] O. Belegradek and B. Zilber, The model theory of the field of reals with a subgroup of the unit circle, J. Lond. Math. Soc. 78, 563–579 (2008).

[2] A. Berenstein, C. Ealy, and A. Günaydin, Thorn independence in the field of real numbers with a small multiplicative group, Ann. Pure Appl. Log. 150, 1–18 (2007).

[3] G. Boxall, P. Hieronymi, Expansions which introduce no new open sets, J. Symb. Log. 77, 111–121 (2012).

[4] A. Dolich, C. Miller, and C. Steinhorn, Structures having o-minimal open core, Trans. Amer. Math. Soc. 362, 1371–1411 (2010).

[5] A. Dolich, C. Miller, and C. Steinhorn, Expansions of o-minimal structures by dense independent sets, Ann. Pure Appl. Log. 167, 684–706 (2016).

[6] L. van den Dries, Dense pairs of o-minimal structures, Fund. Math. 157, 61–78 (1988).

[7] L. van den Dries and A. Günaydin, The fields of real and complex numbers with a small multiplicative group, Proc. Lond. Math. Soc. 93, 43–81 (2006).

[8] M. Edmundo, Structure theorems for o-minimal expansions of groups, Ann. Pure Appl. Log. 102, 159–181 (2000).

[9] P. Eleftheriou, Local analysis for semi-bounded groups, Fund. Math. 216, 223–258 (2012).

[10] P. Eleftheriou, A. Günaydin, and P. Hieronymi, Structure theorems in tame expansions of o-minimal structures by dense sets, Israel J. Math. 239, 435–500 (2020).

[11] P. Eleftheriou and S. Starchenko, Groups definable in ordered vector spaces over ordered division rings, J. Symb. Log. 72, 1108–1140 (2007).

[12] A. Günaydin and P. Hieronymi, The real field with the rational points of an elliptic curve, Fund. Math. 215, 167–175 (2011).

[13] J. Loveys and Y. Peterzil, Linear o-minimal structures, Israel J. Math. 81, 1–30 (1993).

[14] C. Miller and P. Speissegger, Expansions of the real line by open sets: o-minimality and open cores, Fund. Math. 162, 193–208 (1999).

[15] Y. Peterzil, A structure theorem for semibounded sets in the reals, J. Symb. Log. 57, 779–794 (1992).