Discovery of novel astrovirus genotype species in small ruminants

Ronja V Kauer, Equal first author, 1, Michel C Koch, Equal first author, 1, 2, Melanie M Hierweger 1, 2, Simea Werder 1, Céline L Boujon 1, 2, Torsten Seuberlich Corresp. 1

1 Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
2 Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland

Corresponding Author: Torsten Seuberlich
Email address: torsten.seuberlich@vetsuisse.unibe.ch

Astroviruses are single-stranded, positive-sense RNA viruses, best known for causing diarrhea in humans and are also found in many other mammals; in those, the relevance in gastroenteritis remains unclear. Recently described neurotropic astroviruses showed associations with encephalitis in humans as well as in other mammals. In Switzerland, two different neurotropic astroviruses were identified in cattle, as well as one in a sheep. The high genetic similarity between the ovine and one of the bovine astroviruses strengthens the hypothesis of an interspecies transmission. In humans, astroviruses associated with encephalitis were found also in human stool samples, suggesting that in these patients the infection spreads from the gastrointestinal tract to the brain under certain conditions, such as immunosuppression. Whether a similar pathogenesis occurs in ruminants remains unknown. The aims of this study were 1) the investigation of the potential occurrence of neurotropic astroviruses in feces samples, 2) the discovery and analysis of so far unknown astroviruses in small ruminants and other ruminant species’ fecal samples and 3) the examination of a potential interspecies transmission of astroviruses. To achieve the aims, RNA extraction out of 164 fecal samples from different ruminant species was performed and all samples were screened for known neurotropic astroviruses occurring in Switzerland, as well as for various astroviruses using RT-PCR. Positive tested samples were submitted to next generation sequencing (NGS). The generated sequences were compared to nucleotide- and amino acid databases, virus properties were identified, and phylogenetic analyses as well as recombination analysis were performed. The excretion of neurotropic astroviruses in small ruminants’ feces could not be demonstrated, but this work suggests the first identification of astroviruses in goats as well as the discovery of multiple and highly diverse new genetic variants in small ruminants, which lead to a classification into novel genotype-species. Additionally, the prediction of multiple recombination events in four of five newly discovered full or almost full-length genome
sequences suggests a plausible interspecies transmission. The findings point out the occurrence and fecal shedding of previously unknown astroviruses in sheep and goats and pave the way towards a better understanding of the diversity and transmission of astroviruses in small ruminants.
Discovery of novel astrovirus genotype species in small ruminants

Ronja Véronique Kauer¹, Michel Christoph Koch¹,², Melanie Michaela Hierweger¹,², Simea Werder¹, Céline Louise Boujon¹,² & Torsten Seuberlich¹#

¹ Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland

² Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland

Corresponding author:

Prof. Dr. Torsten Seuberlich#

Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland

Email: torsten.seuberlich@vetsuisse.unibe.ch
Abstract

Astroviruses are single-stranded, positive-sense RNA viruses, best known for causing diarrhea in humans and are also found in many other mammals; in those, the relevance in gastroenteritis remains unclear. Recently described neurotropic astroviruses showed associations with encephalitis in humans as well as in other mammals. In Switzerland, two different neurotropic astroviruses were identified in cattle, as well as one in a sheep. The high genetic similarity between the ovine and one of the bovine astroviruses strengthens the hypothesis of an interspecies transmission. In humans, astroviruses associated with encephalitis were found also in human stool samples, suggesting that in these patients the infection spreads from the gastrointestinal tract to the brain under certain conditions, such as immunosuppression. Whether a similar pathogenesis occurs in ruminants remains unknown. The aims of this study were 1) the investigation of the potential occurrence of neurotropic astroviruses in feces samples, 2) the discovery and analysis of so far unknown astroviruses in small ruminants and other ruminant species’ fecal samples and 3) the examination of a potential interspecies transmission of astroviruses.

To achieve the aims, RNA extraction out of 164 fecal samples from different ruminant species was performed and all samples were screened for known neurotropic astroviruses occurring in Switzerland, as well as for various astroviruses using RT-PCR. Positive tested samples were submitted to next generation sequencing (NGS). The generated sequences were compared to nucleotide- and amino acid databases, virus properties were identified, and phylogenetic analyses as well as recombination analysis were performed.

The excretion of neurotropic astroviruses in small ruminants’ feces could not be demonstrated, but this work suggests the first identification of astroviruses in goats as well as the discovery of
multiple and highly diverse new genetic variants in small ruminants, which lead to a classification into novel genotype-species. Additionally, the prediction of multiple recombination events in four of five newly discovered full or almost full-length genome sequences suggests a plausible interspecies transmission. The findings point out the occurrence and fecal shedding of previously unknown astroviruses in sheep and goats and pave the way towards a better understanding of the diversity and transmission of astroviruses in small ruminants.

Introduction

Astroviruses (AstV) are non-enveloped, single-stranded positive-sense RNA viruses with an icosahedral virion structure, appearing as a star-like shape in electron microscopy (Caul & Appleton 1982). The AstV genome is 6.2-7.8 kb in size and polyadenylated at the 3’ end. It presents at least three open reading frames (ORF): ORF1a, ORF1ab and ORF2. ORF1a and ORF1ab encode nonstructural precursor proteins, nsp1a and nsp1ab. The latter is translated via a ribosomal frameshift mechanism, where ORF1b is translated together with ORF1a (Marczinke et al. 1994). ORF2 encodes the capsid precursor protein, which is then intra- and extracellularly further processed to mature structural proteins (Willcocks et al. 1994).

According to the affected host class, two astrovirus genera were established: Mamastroviruses (MAstV) representing genotype species affecting mammalian species and Avastroviruses (AAstV) containing those viruses found in avian species. Due to the availability of high-throughput next-generation-sequencing (NGS) technologies and the use of broadly reactive pan-astrovirus RT-PCR protocols, there has been a remarkable increase in the number of astroviruses discovered in diverse species during the last years (Boujon et al. 2017a). Astroviruses were first described in 1975 in a human stool sample (Appleton & Higgins 1975; Madeley & Cosgrove 1975). In humans, AstV are best known as a major source of outbreaks of gastroenteritis,
especially in infants, young children and immunocompromised people (De Benedictis et al. 2011; Fischer et al. 2017). However, intestinal tissue infected with AstV shows only minor histological changes such as a mild intestinal inflammatory response (Sebire et al. 2004) and the knowledge on the pathogenesis of gastroenteric disease associated with astroviruses is still limited (Moser & Schultz-Cherry 2005).

In 2010, astroviruses were found for the first time in association with encephalitis in a child with immunodeficiency (Quan et al. 2010). Thereafter, several novel AstV genotype species were detected in other human encephalitis cases (Brown et al. 2015; Lum et al. 2016). Encephalitis-associated AstV could be detected in stool samples, as well as in other body fluids, such as cerebrospinal fluid and plasma, suggesting that in these patients the infection spreads from the gastrointestinal tract to the brain (Cordey et al. 2016).

In animals, the state of knowledge about the tissue tropism of AstV is even more limited. Even though the presence of ovine astroviruses (OvAstV) in fecal sheep samples constituted the first report of astroviruses in animals (Snodgrass & Gray 1977), still little is known about astrovirus infections in small ruminants, their transmission within and across species as well as their association with disease. In recent years a wide variety of mammalian domestic animal species were found positive for astroviruses in their feces; e.g. cattle (Woode & Bridger 1978), sheep (Snodgrass & Gray 1977), red deer (Tzipori et al. 1981), takins (Guan et al. 2018) and also domestic carnivores (Hoshino et al. 1981; Williams 1980), mice (Kjeldsberg & Hem 1985) and pigs (Bridger 1980), but their role in the context of disease remained largely unclear.

Remarkably, almost at the same time as the discovery of the first astrovirus-associated encephalitis in humans, the so-called shaking mink syndrome was described, which could be traced back neurovirulent astrovirus infection (Blomstrom et al. 2010). One year later, in 2011, a
neurovirulent porcine astrovirus type 3 could be identified as the cause of disease in outbreaks of meningoencephalomyelitis in piglets (Laurin et al. 2011; Reuter et al. 2012).

Since 2013, different novel AstV genotype species were found as a plausible cause of non-suppurative encephalitis in cattle (Bouzalas et al. 2014; Li et al. 2013; Schlottau et al. 2016) and a few years later also in sheep (Pfaff et al. 2017). In Switzerland, three neurotropic astroviruses were identified in brain-tissue of ruminants; bovine astrovirus CH13 (BoAstV-CH13) and bovine astrovirus CH15 (BoAstV-CH15) in cattle (Bouzalas et al. 2014; Seuberlich et al. 2016), as well as ovine astrovirus CH16 (OvAstV-CH16) in sheep. The capsid protein as well as the non-structural proteins of this encephalitis-associated astrovirus in sheep (OvAstV-CH16) show a high similarity – around 99% on both the nucleotide and the amino acid level – to bovine astrovirus CH15, suggesting interspecies transmission of this genotype species between sheep and cattle (Boujon et al. 2017b).

To date, there are 19 genotype species of Mamastrovirus (MAstV 1-19) recognized by the International Committee on Taxonomy of Viruses (ICTV). In particular, in ovine astroviruses, little is known about their diversity. Ovine astrovirus 1 belongs to Mamastrovirus 13 and is the only enterotropic astrovirus closely related to neurotropic strains, but their exact taxonomy is still pending (Boujon et al. 2017a). Based on phylogenetic analyses of different viral strains of bovine, ovine and porcine origin, further evidence of possible interspecies transmission could be found (Donato & Vijaykrishna 2017). The close clustering of farmed animals' astrovirus strains reinforce the assumption of probable interspecies transmission events.

The aims of the present study included the assessing of a potential shedding of neurotropic astroviruses in fecal samples, the investigation of diverse astroviruses in different ruminant species and the examination of a potential interspecies transmission. Fecal samples of sheep,
goats, deer, alpaca and llamas were tested for BoAstV-CH13 as well as BoAstV-CH15/OvAstV-CH16 and screened for other astroviruses using a pan-astrovirus RT-PCR. NGS and bioinformatics were used to recover viral genome sequences and to perform a phylogenetic comparison as well as a recombination analysis with other known astroviruses.

Materials and Methods

Samples

Fecal samples submitted for parasitological diagnostics were kindly donated by the Institute of Parasitology, Vetsuisse Faculty, University of Bern (Bern, Switzerland). In total 164 fecal samples, derived from 56 sheep, 56 goats, 30 alpacas, 12 deer, 4 llamas, 2 bison, 2 chamois, 1 giraffe and 1 ibex were investigated. Additional information on the animals and their health status was not available. Fecal samples were suspended 1:10 (w/v) in sterile PBS (137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl; pH 7.4) and stored at -80°C until further analysis.

BoAstV-CH13 and OvAstV-CH16 positive and negative brain tissues were used as positive and negative controls for RT-PCRs and were available from the archive of the Division of Neurological Sciences, Vetsuisse Faculty, University of Bern (Bern, Switzerland). The summary of the laboratory workflow is shown in Figure 1.

RNA Extraction

All RNA extractions from fecal suspensions for AstV-screening by RT-PCR were done with the QIAamp Viral RNA Mini Kit (Qiagen) and RNA isolation from brain tissue was performed with TRI Reagent (Sigma-Aldrich) according to the manufacturers' protocols. To prepare samples for NGS, 500µL of feces-suspensions were centrifuged at 16’000 x g for 3min. The supernatants were then centrifuged through Vivaclear MINI Clarifying filters with 0.8µm PES (Sartorius) at 2,000 x g for 5min. Next, 280µL of the filtrates were treated with 2µL Benzonase (1U/µL)
(Merck) for 2 hours at 37°C. The benzonase was inactivated by adding EDTA to a final concentration of 5mM. Finally, RNA extraction was performed with the QIAamp Viral RNA Mini Kit (Qiagen) with the modification that the carrier RNA was omitted. RNA extracts were stored at -80°C until further analysis.

Detection of neurotropic astroviruses BoAstV-CH13 and BoAstV-CH15/OvAstV-CH16 by RT-qPCR
To detect BoAstV-CH13, the RNA extracts were analyzed by either of two different probe based RT-qPCR assays (CH13-A or CH13-B) as described previously. While the CH13-A assay targets the 5' part of the viral genome in ORF1a, the CH13-B assay detects the center of the viral genome in ORF2. Both protocols revealed a very similar excellent accuracy, precision, and analytical sensitivity (Lüthi et al. 2018).

For the detection of BoAstV-CH15 as well as OvAstV-CH16 a primer pair and a probe were designed based on full-genome sequence alignments of the following three strains from Switzerland and Germany; BoAstV-CH15, OvAstV-CH16 and BoAstV-BH89/14, targeting the 3' end of ORF2 using the Geneious software package (Biomatters, version 11.1.4). The RT-qPCR was performed as described previously (Kuchler et al. 2019). After each cycle, the fluorescence was measured with the FAM channel and data was analyzed using the Sequence Detection Software (Applied Biosystems, Version 1.4) with automatic baseline detection and a manual threshold of 0.2. The positive-negative cut-off was set at the cycle threshold (ct) value of 35. Each RT-qPCR run was performed using a positive and negative brain tissue control as well as a water control. All primers and probes are provided in Supplementary Table 1.

Pan-astrovirus RT-PCR
For the detection of other astroviruses, a previously described heminested RT-PCR protocol using five degenerated primers; four forward and one reverse primer, which target a 450nt long
sequence at the 3’end of ORF1b of a broad panel of astroviruses was used (Chu et al. 2008).

Primer sequences are provided in Supplementary Table 1. First-Strand cDNA synthesis was performed using the GoScript reverse transcriptase (Promega) and the gene specific reverse primer. The heminested PCR was done with a GoTaq Green Master Mix System (Promega) in two reaction rounds. For the first round, the PCR was set up in 25µL reactions containing 12.5µL of 2x GoTaq Green Master Mix, 4.5µL of cDNA and a mixture of two forward primers PanAstV_forward 1 and -2 and the PanAstV_reverse primer, each in final concentration of 10µM (Chu et al. 2008). The PCR was carried out with the following setting: 2min, 95°C and 30 cycles each of 30s, 95°C; 30s, 50°C; 30s, 72°C and final elongation 7min, 72°C. For the second round, the same reverse primer PanAstV-reverse was used as well as a mixture of PanAstV_forward_nested 1 and -2 (final concentration of 10µM) and 1µL of the first-round PCR-product as a template. Temperature settings were the same as in the first PCR, but with 40 cycles instead of 30 cycles.

Next Generation Sequencing

Prior to Next Generation Sequencing (NGS), libraries were prepared using TruSeq DNA Nano Kit (Illumina). For cDNA synthesis and polyA-selection the SMARTer Ultra Low Input RNA Kit (Takara Bio Inc.) was applied. NGS was performed on an Illumina HiSeq 3000 or NovaSeq 6000 in paired-end mode (2x150bp).

Bioinformatics analysis

Reads were quality-trimmed with trimmomatic (Ver. 0.36) and mapped to their respective host genomes (alpaca: BioProject PRJNA30567, assembly Vicugna_pacos-2.0.1, deer: BioProject PRJNA324173, assembly CerEla1.0, goat: BioProject PRJNA340281, assembly ARS1, sheep: PRJ
BioProject PRJNA179263, assembly Oar_v4.0) using STAR (Ver. 2.5.3a). Quality-trimmed and unmapped reads were assembled via SPAdes (Ver. 3.11.1).

Resulting scaffolds were then aligned to virus databases (Genbank and RefSeq viral nucleotide sequences downloaded on 12th of April 2018, UniProt viral amino acid sequences downloaded on 12th of March 2018) using BLASTn (Ver. 2.7.1+, default settings) and DIAMOND (Ver. 0.9.10, default settings). In order to exclude false positives, the scaffolds with a virus hit were aligned to an in-house non-viral database consisting of archaeal, bacterial, fungal, mammal and protozoal sequences. Scaffolds were considered false positive if they had a longer hit on a sequence of the in-house database compared to the virus databases or if they had a nucleotide hit of more than 10% of their own length to any sequence of the non-viral database. Scaffolds with hits to astroviruses on nucleotide and/or amino acid level were considered valid astrovirus hits.

For further analysis, scaffolds with a length over 5’550 nt and the three astrovirus-typical open reading frames including the ribosomal frameshift sequence between ORF1a and ORF1b were selected.

Rapid amplification of cDNA ends

In order to complete the inchoate 5' ends of the five almost full-length scaffolds, a rapid amplification of cDNA ends (RACE) was performed. This 5' RACE was carried out with a RACE-System (Invitrogen™) according to the manufacturer's instructions except of the usage of SuperScript™ III Reverse Transcriptase (Invitrogen™) instead of SuperScript™ II Reverse Transcriptase (Invitrogen™). Nested PCR was performed with gene specific primers (Supplementary Table 1) and Taq DNA Polymerase with Standard Taq Buffer (New England BioLabs, Inc.) as described by the manufacturer and an annealing temperature of 55°C.
After visualization on a 1% agarose gel, PCR-products were excised of the gel and purified using NucleoSpin Gel and PCR Clean-up system (Macherey-Nagel) according to the manufacturer's protocol.

Each 3µl of the purified PCR products was Sanger-sequenced using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) in a 3730 DNA Analyzer (Applied Biosystems) according to the manufacturer’s protocol. Sequence data were analyzed using the Geneious software package (Version 10.2.6), trimmed with an error probability limit of 0.05 on both ends and aligned to the respective scaffolds.

Phylogenetic analysis

Capsid precursor sequences of 36 astrovirus strains were used for phylogenetic analysis and included astrovirus strains of various ruminants and our newly discovered sequences. Based on these sequences, a phylogenetic tree was constructed using the Maximum Likelihood method with 1000 bootstrap replicates based on the Le_Gascuel_2008 with Freqs. model (Le & Gascuel 2008) in MEGA 7 (Ver. 7.0.26). The model was chosen using the Find Best DNA/Protein Models option in MEGA 7.

Recombination analysis

Putative recombination events were assessed using the Recombination Detection Program (RDP4, Ver. 4.94) (Martin et al. 2015), following the RDP4 Instruction Manual and with the highest acceptable p-value set to 0.01. Recombination events were considered only when involving at least one of our newly generated sequences and having a highest acceptable p-value of 0.01 with all of the following methods: RDP (Martin & Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan (Martin...
et al. 2005), Maxchi (Smith 1992), Chimaera (Posada & Crandall 2001), SiScan (Gibbs et al. 2000) and 3Seq (Lam et al. 2018).

Confirmation of newly discovered astrovirus sequences
To confirm novel astrovirus sequences, discovered by NGS, a RT-qPCR using specific primer-probe-combinations for each putative virus-candidate was applied. Specific primers and probes were designed for each of the almost full-length scaffolds using the Geneious software package (Biomatters, version 11.1.4). The primer and probe sequences with the respective nucleotide positions of the target are provided in Supplementary Table 1.

All RT-qPCR reactions were performed using the TagMan™ Fast Virus 1-Step Master Mix (Applied Biosystems) in 10µL reactions according to the manufacture's instructions with a final concentration of 500 nM for each primer and 125 nM for each probe. For each reaction 2µL RNA were added to 8µL Master-Mix. The RT-qPCR was performed using a CFX96™ Real Time System on C1000 Touch™ Thermal Cycler (BioRad). With the following cycle settings: 10 min, 45°C; 10 min, 95°C and 40 cycles (15 sec, 95°C; 20 sec, 61°C; 30 sec, 60°C). After each elongation step, fluorescence was measured and analyzed with the CFX Maestro software (BioRad, version 4.1.2433.1219) with an auto calculated baseline threshold. Samples with a ct-value < 35 were defined as positive.

Retrospective screening of samples for newly discovered astrovirus-candidates
After confirmation of all newly discovered astrovirus-candidates, all remaining 159 samples were re-tested using the RT-qPCR as described above. For each run, a non-template control was used as negative control. The respective confirmed samples served as target-specific positive controls.
Results

Detection of neurotropic astroviruses BoAstV-CH13 and OvAstV-CH16 by RT-qPCR

Quantitative RT-PCRs were performed for the detection of neurotropic astroviruses. Positive controls showed ct-values on average of 22.73 (22.62-22.86) for BoAstV-CH13 and 23.22 (21.74-24.61) for OvAstV-CH16, respectively. All negative controls were scored negative. All 164 fecal samples had ct-values > 35 or were reported as "undetectable" and were therefore diagnosed as negative for BoAstV-CH13 and OvAstV-CH16.

Detection of various astroviruses using Pan-astrovirus RT-PCR

To ensure the effective implementation and to establish positive controls, the protocol was first applied to brain-extracts of BoAstV-CH13 and OvAstV-CH16 astrovirus-positive animals. These samples showed a strong and clear band with the expected size of 450 bp. Nineteen of the 164 tested fecal samples derived from sheep (n= 6: S1 - S6), goats (n= 8: G1 - G8), alpaca (n= 3: A1, A3, A4) and deer (n= 2: D2, D5) showed a band at 450 bp and were therefore defined as Pan-astrovirus RT-PCR-positive.

All nineteen samples, which were positive tested in Pan-astrovirus RT-PCR were further processed for NGS. Therefore, RNA was *de novo* extracted, capsid-bound viral genomes were relatively enriched and free nucleic acids were depleted using benzonase treatment.

NGS and bioinformatics analysis

Sequencing in paired-end mode (2x150bp) generated 45’455’879 to 233’701’511 reads per sample and raw reads were deposited in the European Nucleotide Archive (Accessions ERR3143214 - ERR3143223). In 12 samples, a total of 29 scaffolds ranging from 521 to 6255 bp in size, showed astrovirus hits in the bioinformatics analysis on amino acid level, with
sequence identity to known astrovirus sequences ranging from 39.3% to 96.4% (Supplementary Table 2). The vast majority of these hits was to astrovirus strains identified in bovine fecal samples. Strikingly, in one sample of a sheep (sample S3), a 967 nt scaffold had a hit on the neurotropic bovine astrovirus CH13, isolate 42799 (Bouzalas et al. 2016) on nucleotide (identity 83.4%, hit length 296 nucleotides) as well as on amino acid (identity 57.2%, hit length 306 amino acids) level. The k-mer coverage of this scaffold was < x4, which indicates relatively low RNA concentrations. The sequence mapped to the 3’ half of ORF2, which encodes the hypervariable part of the capsid precursor protein (Babkin et al. 2012).

For the remaining astrovirus hits, we further analyzed scaffolds with a minimum length of 5500nt and covering parts of all three astrovirus-typical ORFs. One such scaffold was identified in two sheep and in three goats (Supplementary Table 2). These tentative astrovirus scaffolds were designated CapAstV-G2.1, -G3.1 and -G5.1 and OvAstV-S5.1 and -S6.1. Each of these scaffolds showed the ribosomal slippery sequence (5’-AAAAAAC-3’) at the ORF1a/1b junction and an overlap between ORF1b and ORF2. The translated nsp1ab sequences had an identity between 71.7% and 75.4% to the next best hit while the capsid protein precursor ranged from 57.5% to 73.7% (Table 1). Best hits were astrovirus strains previously described in cattle (Nagai et al. 2015; Tse et al. 2011), deer (Smits et al. 2010) and takin (Guan et al. 2018). Taken together, these findings clearly support the notion that these five scaffolds represent complete or almost complete viral genomes of novel MAstV strains.

Rapid amplification of cDNA ends

In four of the five samples analyzed, the 5’ RACE did work and Sanger sequencing added to the 5’ end of the respective almost full Astrovirus scaffolds (G3.1, G5.1, S5.1, S6.1). This resulted in the completion of these four scaffolds, which, together with CapAstV-G2.1, were deposited on
GenBank (Accessions: CapAstV-G2.1 [MK404645.1], CapAstV-G3.1 [MK404646.1], CapAstV-G5.1 [MK404647.1], OvAstV-S5.1 [MK404648.1] and OvAstV-S6.1 [MK404649.1]).

Phylogenetic analysis

To assess the genetic relationship of the newly discovered strains and partial sequences to other known MAstV, a phylogenetic comparison of all generated putative genomes to representative MAstV genotype species and so far unclassified strains with high sequence similarity based on the capsid precursor protein sequences (Figure 2) was conducted. For the goats, all three novel CapAstV strains clustered in different branches of the phylogenetic tree. CapAstV-G2.1 and CapAstV-G3.1 are both related to two different BoAstV strains: BoAstV/JPN/Hokkaido 11-55/2009 (p-dist. 0.293) and BoAstV-B170/HK (p-dist. 0.361), respectively. CapAstV-G5.1 is very similar to the new OvAstV strains S5.1 (p-dist. 0.236) and S6.1 (p-dist. 0.027), clustering together in one clade of the phylogenetic tree. They cluster with a p-distance of 0.419 to the closest related astrovirus strain CcAstV-1/DNK/2010, which has been detected in feces from deer (Smits et al. 2010) (Table 1 and Figure 2). Partial sequences generated from goat feces cluster together with the here described CapAstV/OvAstV or with enterotropic strains from other ruminants. In the partial sequences generated from sheep and deer feces, the situation is similar to the one described in goats. As previously indicated, one partial sequence, S3.1, is not clustering close to other enterotropic astroviruses but rather near the neurotropic BoAstV-CH13/NeuroS1 cluster. In samples with multiple astrovirus hits, partial sequences cluster at different positions of the phylogenetic tree. OvAstV-S5.1 clusters together with CapAstV-G5.1/OvAstV-S6.1 and S4.1, while scaffold S5.2, detected in the same sample, clusters together with sequences from sample G8 (G8.3/G8.5).
Recombination analysis

Knowing about the high tendency toward recombination in RNA viruses (Matsui et al. 1998) and previous reported indications of interspecies transmission of astroviruses based on recombination analysis (De Battisti et al. 2012; Lan et al. 2011), it was decided to determine whether such recombination events may have occurred in the newly discovered strains. Subsequent to the phylogenetic analysis, the five new astrovirus sequences were analyzed together with selected astrovirus strains for plausible recombination events. Three putative recombination events were reported (Supplementary Table 4). Between the three strains OvAstV-S6.1, CapAstV-G5.1 and OvAstV-S5.1, two recombination events were reported, one starting at position 4062 and ending at position 6114 (recombination event 1) and the other starting at position 1737 and ending at position 2443 (recombination event 3) (Figure 3A) in OvAstV-S6.1. All three sequences may be the recombinant. Recombination event 3 was predicted to the overlap between ORF1a and ORF1b, whereas recombination event 1 was predicted for almost the entire ORF2. Another putative recombination event (2) was identified between BoAstV-GX27/CHN/2014 and BoAstV/JPN/Hokkaido11-55/2009 or closely related sequences as potential parental sequences, with the 5’ breakpoint at position 36 and the 3’ breakpoint at position 1154 resulting in CapAstV-G2.1 as the recombinant (Figure 3B). Identities on nucleotide and amino acid level of the strains involved in the recombination events can be found in Supplementary Table 3.

Confirmation of newly discovered astrovirus sequences

Using specific RT-qPCRs, all five newly discovered astrovirus-candidates could be confirmed with the following ct-values: G2, 27.65; G3, 25.26; G5, 26.99; S5, 25.77; S6, 25.28. The non-template control remained negative for all targets. Sample G5 showed a positive signal (ct-value 27.09) for the primer-probe-pair S6.1, which is not surprising, considering the fact that these two
samples share highly similar sequences. In all other samples, no cross-reactivity could be detected between the individual targets.

Retrospective screening of samples for newly discovered astrovirus-candidates

All 159 remained negative for the primer-probe combinations G3.1, G5.1, S5.1 and S6.1. Surprisingly one sample originating from a goat, scored positive for G2.1 (ct-value 29). Based on information from the original submission site (Parasitology, Vetsuisse Bern), it could be found that this sample originated from the same holding as the sample G2.

Discussion

This study presents the discovery and molecular characterization of putatively new astrovirus genotype species in sheep as well as in goats. These novel astroviruses show a broad genetic diversity compared to astroviruses affecting other species. The present results support interspecies transmission of astroviruses between goats and sheep, as well as recombination events between astroviruses affecting sheep, goats and cattle.

The aims of the study were to investigate the potential shedding of neurotropic astroviruses in small ruminants' feces, to discover and to analyze unknown astroviruses, and examine a putative interspecies transmission. Therefore, all available samples first were screened for the neurotropic astroviruses BoAstV-CH13 as well as OvAstV-CH16. Three different methods were then applied, first, highly specific RT-qPCR, second, a wide-spectrum RT-PCR, and third, Next-Generation-Sequencing of all samples interpreted as positive after RT-PCR. None of these samples could be defined as positive for BoAstV-CH13 or OvAstV-CH16. Thus, there is no evidence that neurotropic astroviruses are part of the intestinal virome of small ruminants. Noteworthy, limitations of this study are the relative small number of samples investigated, the unknown disease status of the animals and the focus mainly on sheep and goats due to a lack of
available samples from other ruminant species. A related study targeting feces and brain of cattle was reported previously (Oem & An 2014).

Screening for various and potentially unknown astroviruses was done with a heminested RT-PCR that targets a conserved sequence at the 3'end of ORF1b. However, RNA viruses, and in particular astroviruses, are predicted to undergo 3.4×10^{-3} mutations per nucleotide per genomic replication (Duffy et al. 2008) and are genetically relatively diverse. Therefore, this RT-PCR uses highly degenerated primers, which has the limitations that (i) it may lack sensitivity; due to absence or inefficiency of primer binding to divergent astrovirus sequences and that (ii) unspecific primer binding may result in amplification of non-astrovirus sequences. On the one hand, as only RT-PCR positive samples were submitted to NGS, fecal samples containing divergent astrovirus strains may have been classified as false negative and therefore might have been excluded from further analysis. On the other hand, false positive samples may have been further analyzed by NGS. Indeed, seven RT-PCR positive samples did not reveal any astrovirus hit in the bioinformatics pipeline. This discrepancy may also be related to the sample pretreatment procedure prior to NGS-submission.

Beside the discovery and investigation of four full-length and one almost full-length astrovirus sequence, NGS and bioinformatics analysis resulted in the detection of 24 additional scaffolds, which covered only parts of the astroviral genome (Supplementary Table 2).

One scaffold that was identified in a sheep sample (S3.1) had its best hit on the ORF2 region of BoAstV-CH13 (Supplementary Table 2) and clustered near the BoAstV-CH13/NeuroS1 cluster in the phylogenetic tree. Attempts to confirm the sequence of this scaffold by RT-PCR, cloning and further sequencing approaches remained unsuccessful. This may be due to the low viral load or PCR inhibitors in small ruminants' feces that interfere with amplification. The importance of
this finding is so far unclear. With an identity of 57% on the amino acid level to BoAstV-CH13, this putative astrovirus would be part of the so-called human-mink-ovine-like (HMO) clade, which also comprises the fecal Ovine astrovirus 1 (OvAstV-1) strain as well as the vast majority of encephalitis-associated strains in humans and animals (Kapoor et al. 2009; Reuter et al. 2018). Given the fact that only a part of the sequence (967nt) could be determined, it is still possible that this virus shows varying identities depending on the genome section compared to other viral sequences. However, the importance of a potential occurrence of a novel and divergent neurotropic astrovirus in this fecal sample could not be definitively elucidated.

For the remaining 23 scaffolds, best hits were consistently to bovine strains and, unexpectedly, not to previously described ovine (OvAstV-1 and OvAstV-2) (Reuter et al. 2012; Snodgrass & Gray 1977) and deer astrovirus strains (Smits et al. 2010), respectively. Indeed, sequence similarities compared to best hits in the database entries on protein-level were between 39.3% and 96.4% (median 72.7%). 15 scaffolds covered at least a part of the ORF2 and therefore underwent phylogenetic analysis based on the capsid protein precursor sequence together with the 5 newly identified full-length or almost full-length astrovirus genomes (Figure 2). This analysis clearly points out the broad diversity of putative astroviruses detected in this study. Novel sequences were not only discovered in sheep and goat, but also in deer (D2.1, D5.1), interestingly showing a low similarity to known astroviruses in deer (CcAstV-1/DNK/2010, CcAstV-2/DNK/2010). In addition, several sequences found in sheep show a clearly higher identity to bovine astroviruses than to ovine astroviruses (e.g. S6.3* to BoAstV/JPN/Hokkaido12-25/2009). Taken together these results clearly suggest a much larger diversity of astroviruses in small ruminants and deer than known until to date. Moreover, the
occurrence of multiple phylogenetically different astrovirus-like scaffolds in the same sample in
most of these animals (e.g. in G1, G8 and S6) supports that astrovirus coinfections are frequent.
Five novel, including four full-length and one almost full-length astrovirus sequences were
discovered: two in sheep and three in goats. Noteworthy, this study reports for the first time an
astrovirus infection in goats. Based on the genetic distances of the capsid protein precursor
sequences to the closest related strains, these caprine and ovine astroviruses are grouped into
three different genotype species. According to the International Committee on Taxonomy of
Viruses ICTV 9th report 2011 (Bosch 2011), amino acid differences between astrovirus
genotype species are > 0.338. Based on this criterion, the strains described in this study belong to
three astrovirus genotype species: (i) CapAstV-G2.1 together with BoAstV/JPN/Hokkaido 11-55/2009, (ii) CapAstV-G3.1 on its own and (iii) CapAstV-G5.1 together with OvAstV-S5.1 as
well as OvAstV-S6.1. While CapAstV-G2.1 belongs to the same genotype species as
BoAstV/JPN/Hokkaido 11-55/2009, CapAstV-G3.1 is sufficiently diverse to build a new
genotype species on its own. In particular, CapAstV-G5.1 and OvAstV-S6.1 were very similar to
each other, not only in the capsid protein sequence (97.3%), but also in the predicted non-
structural proteins (90.3%) and on nucleotide level (87.6%) (Supplementary Table 3). The high
similarity between these viruses raises the question of transmission events between sheep and
goats and is reminiscent of the situation observed for BoAstV-CH15 and OvAstV-CH16 in
astrovirus-associated encephalitis (Boujon et al. 2017b).
A retrospective screening of the whole sample panel targeting the five newly discovered
astrovirus candidates resulted in only one additional positive sample for target G2.1. This sample
originated from the same holding as animal G2 and was collected at the same day. While this
screening indicated an overall low prevalence of the newly discovered astrovirus candidates, it
appears plausible that these viruses transmit between animals and that the in herd prevalence of
may be much higher.

Because recombination between viruses requires infection of the same host cell, the existence of
interspecies transmission events are further supported by predicted recombination events (Wolfaardt et al. 2011). In the present study, recombination events were forecast between ovine and caprine strains as well as between caprine and bovine strains. Not only was recombination predicted for OvAstV-S6.1, OvAstV-S5.1 and CapAstV-G5.1, but also for CapAstV-G2.1 and two divergent bovine astroviruses (BoAstV/JPN/Hokkaido11-55/2009, BAstV-GX27/CHN/2014), suggesting that these viruses shared the same host at some time point during evolution (Figure 3 and Supplementary Table 4). Similar recombination events have been proposed between a porcine astrovirus and HAstV-3 (Ulloa & Gutierrez 2010). In addition, the transmission of fecal AstV between cattle and roe deer has been suggested (Smits et al. 2010; Tse et al. 2011). Taken together, all these data challenge the assumption that mammalian astroviruses are strictly host specific. The host-specificity of Astroviridae was already challenged in previous studies (Chu et al. 2010; Karlsson et al. 2015; Rivera et al. 2010).

Conclusion

The question whether enterotropic astroviruses can cause disease in small ruminants remains so far unresolved. Due to the mainly unknown health status of the tested animals, the importance of astroviruses occurring in small ruminants' feces remains so far unclear and needs to be further investigated. Still, this study describes five novel astroviruses discovered in small ruminants, including the first description of an astrovirus in goats and gives new insights into the frequency and diversity of astroviruses in ruminant species.
Acknowledgements

The authors thank the Institute of Parasitology Vetsuisse Faculty, University of Bern (Bern, Switzerland), especially W. Basso, for providing the fecal samples and S. Schenk as well as M. Fragnière of the Next Generation Sequencing Platform of the University of Bern for performing the high-throughput sequencing experiments.

References

Appleton H, and Higgins PG. 1975. Letter: Viruses and gastroenteritis in infants. Lancet 1:1297.

Babkin IV, Tikunov AY, Zhirakovskaia EV, Netesov SV, and Tikunova NV. 2012. High evolutionary rate of human astrovirus. Infect Genet Evol 12:435-442. 10.1016/j.meegid.2012.01.019

Blomstrom AL, Widen F, Hammer AS, Belak S, and Berg M. 2010. Detection of a novel astrovirus in brain tissue of mink suffering from shaking mink syndrome by use of viral metagenomics. J Clin Microbiol 48:4392-4396. 10.1128/jcm.01040-10

Bosch A, Guix, S., Krishna, N.K., Méndez, E., Monroe, S.S., Pantin-Jackwood, M. and Schultz-Cherry, S. 2011. ICTV 9th Report (2011): Astroviridae. Available at https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011).

Boujon CL, Koch MC, and Seuberlich T. 2017a. The Expanding Field of Mammalian Astroviruses: Opportunities and Challenges in Clinical Virology. Adv Virus Res 99:109-137.

Boujon CL, Koch MC, Wuthrich D, Werder S, Jakupovic D, Bruggmann R, and Seuberlich T. 2017b. Indication of Cross-Species Transmission of Astrovirus Associated with Encephalitis in Sheep and Cattle. Emerg Infect Dis 23:1604-1608. 10.3201/eid2309.170168

Bouzalas IG, Wuthrich D, Selimovic-Hamza S, Droegemuller C, Bruggmann R, and Seuberlich T. 2016. Full-genome based molecular characterization of encephalitis-associated bovine astroviruses. Infect Genet Evol 44:162-168. 10.1016/j.meegid.2016.06.052

Bouzalas IG, Wuthrich D, Walland J, Droegemuller C, Zurbriggen A, Vandevelde M, Oevermann A, Bruggmann R, and Seuberlich T. 2014. Neurotropic astrovirus in cattle with nonsuppurative encephalitis in Europe. J Clin Microbiol 52:3318-3324. 10.1128/JCM.01195-14

Bridger JC. 1980. Detection by electron microscopy of caliciviruses, astroviruses and rotavirus-like particles in the faeces of piglets with diarrhoea. Vet Rec 107:532-533.

Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W, Shah D, Brooks T, Paine SM, Anderson G, Virasami A, Tong CY, Clark DA, Plagoll V, Jacques TS, Qasim W, Hubank M, and Breuer J. 2015. Astrovirus VA1/HMO-C: an increasingly recognized neurotropic pathogen in immunocompromised patients. Clin Infect Dis 60:881-888. 10.1093/cid/ciu940

Caul EO, and Appleton H. 1982. The electron microscopical and physical characteristics of small round human fecal viruses: an interim scheme for classification. J Med Virol 9:257-256.

Chu DK, Chin AW, Smith GJ, Chan KH, Guan Y, Peiris JS, and Poon LL. 2010. Detection of novel astroviruses in urban brown rats and previously known astroviruses in humans. J Gen Virol 91:2457-2462. 10.1099/vir.0.022764-0
Chu DK, Poon LL, Guan Y, and Peiris JS. 2008. Novel astroviruses in insectivorous bats. *J Virol* 82:9107-9114. 10.1128/jvi.00857-08

Cordey S, Vu DL, Schibler M, L’Huillier AG, Brito F, Docquier M, Posfay-Barbe KM, Petty TJ, Turin L, Zdobnov EM, and Kaiser L. 2016. Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection. *Emerg Infect Dis* 22:846-853. 10.3201/eid2205.151807

De Battisti C, Salvato A, Jonassen CM, Toffan A, Capua I, and Cattoli G. 2012. Genetic characterization of astroviruses detected in guinea fowl (Numida meleagris) reveals a distinct genotype and suggests cross-species transmission between turkey and guinea fowl. *Arch Virol* 157:1329-1337. 10.1007/s00705-012-1311-1

De Benedictis P, Schultz-Cherry S, Burnham A, and Cattoli G. 2011. Astrovirus infections in humans and animals - molecular biology, genetic diversity, and interspecies transmissions. *Infect Genet Evol* 11:1529-1544. 10.1016/j.meegid.2011.07.024

Donato C, and Vijaykrishna D. 2017. The Broad Host Range and Genetic Diversity of Mammalian and Avian Astroviruses. *Viruses* 9. 10.3390/v9050102

Duffy S, Shackelton LA, and Holmes EC. 2008. Rates of evolutionary change in viruses: patterns and determinants. *Nat Rev Genet* 9:267-276. 10.1038/nrg2323

Fischer K, Pinho Dos Reis V, and Balkema-Buschmann A. 2017. Bat Astroviruses: Towards Understanding the Transmission Dynamics of a Neglected Virus Family. *Viruses* 9. 10.3390/v9020034

Gibbs MJ, Armstrong JS, and Gibbs AJ. 2000. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. *Bioinformatics* 16:573-582.

Guan TP, Teng JLL, Yeong KY, You ZQ, Liu H, Wong SSY, Lau SKP, and Woo PCY. 2018. Metagenomic analysis of Sichuan takin fecal sample viromes reveals novel enterovirus and astrovirus. *Virology* 521:77-91. 10.1016/j.virol.2018.05.027

Hoshino Y, Zimmer JF, Moise NS, and Scott FW. 1981. Detection of astroviruses in feces of a cat with diarrhea. Brief report. *Arch Virol* 70:373-376.

Kapoor A, Li L, Victoria J, Oderinde B, Mason C, Pandey P, Zaidi SZ, and Delwart E. 2009. Multiple novel astrovirus species in human stool. *J Gen Virol* 90:2965-2972. 10.1099/vir.0.014449-0

Karlsson EA, Small CT, Freiden P, Feeroz MM, Matsen FAt, San S, Hasan MK, Wang D, Jones-Engel L, and Schultz-Cherry S. 2015. Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections. *PLoS Pathog* 11:e1005225. 10.1371/journal.ppat.1005225

Kjeldsberg E, and Hem A. 1985. Detection of astroviruses in gut contents of nude and normal mice. Brief report. *Arch Virol* 84:135-140.

Kuchler L, Koch MC, Seuberlich T, and Boujon CL. 2019. Archive Mining Brings to Light a 25-Year Old Astrovirus Encephalitis Case in a Sheep. *Front Vet Sci* 6:51. 10.3389/fvets.2019.00051

Lam HM, Ratmann O, and Boni MF. 2018. Improved Algorithmic Complexity for the 3SEQ Recombination Detection Algorithm. *Mol Biol Evol* 35:247-251. 10.1093/molbev/msx263

Lan D, Ji W, Shan T, Cui L, Yang Z, Yuan C, and Hua X. 2011. Molecular characterization of a porcine astrovirus strain in China. *Arch Virol* 156:1869-1875. 10.1007/s00705-011-1050-8

Laurin MA, Dastor M, and L’Homme Y. 2011. Detection and genetic characterization of a novel pig astrovirus: relationship to other astroviruses. *Arch Virol* 156:2095-2099. 10.1007/s00705-011-1088-7

Le SQ, and Gascuel O. 2008. An improved general amino acid replacement matrix. *Mol Biol Evol* 25:1307-1320. 10.1093/molbev/msn067

Li L, Diab S, McGraw S, Barr B, Traslavina R, Higgins R, Talbot T, Blanchard P, Rimoldi G, Fahsmbender E, Page B, Phan TG, Wang C, Deng X, Pesavento P, and Delwart E. 2013. Divergent astrovirus associated with neurologic disease in cattle. *Emerg Infect Dis* 19:1385-1392. 10.3201/eid1909.130682
Lum SH, Turner A, Guiver M, Bonney D, Martland T, Davies E, Newbould M, Brown J, Morfopoulou S, Breuer J, and Wynn R. 2016. An emerging opportunistic infection: fatal astrovirus (VA1/HMO-C) encephalitis in a pediatric stem cell transplant recipient. Transpl Infect Dis 18:960-964.

Lüthi R, Boujon CL, Kauer R, Koch MC, Bouzalas IG, and Seuberlich T. 2018. Accurate and precise real-time RT-PCR assays for the identification of astrovirus associated encephalitis in cattle. Scientific Reports 8:9215. 10.1038/s41598-018-27533-8

Madeley CR, and Cosgrove BP. 1975. Letter: 28 nm particles in faeces in infantile gastroenteritis. Lancet 2:451-452.

Marczinke B, Bloys AJ, Brown TD, Willcocks MM, Carter MJ, and Brierley I. 1994. The human astrovirus RNA-dependent RNA polymerase coding region is expressed by ribosomal frameshifting. J Virol 68:5588-5595.

Martin D, and Rybicki E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562-563.

Martin DP, Murrell B, Golden M, Khoosal A, and Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution 1:vev003. 10.1093/ve/vev003

Martin DP, Posada D, Crandall KA, and Williamson C. 2005. A modified bootstrap algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98-102. 10.1089/aid.2005.21.98

Matsui M, Ushijima H, Hachiya M, Kakizawa J, Wen L, Oseto M, Morooka K, and Kurtz JB. 1998. Determination of serotypes of astroviruses by reverse transcription-polymerase chain reaction and homologies of the types by the sequencing of Japanese isolates. Microbiol Immunol 42:539-547.

Moser LA, and Schultz-Cherry S. 2005. Pathogenesis of astrovirus infection. Viral Immunol 18:4-10. 10.1089/vim.2005.18.4

Nagai M, Omatsu T, Aoki H, Otomaru K, Uto T, Koizumi M, Minami-Fukuda F, Takai H, Murakami T, Masuda T, Yamasato H, Shiokawa M, Tsuchiaka S, Naoi Y, Sano K, Katayama Y, Oba M, Furuya T, Shirai J, and Mizutani T. 2015. Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch Virol 160:2491-2501. 10.1007/s00705-015-2543-7

Oem JK, and An DJ. 2014. Phylogenetic analysis of bovine astrovirus in Korean cattle. Virus Genes 48:372-375. 10.1007/s11262-013-1013-0

Padidam M, Sawyer S, and Fauquet CM. 1999. Possible emergence of new gemiviruses by frequent recombination. Virology 265:218-225. 10.1006/viro.1999.0056

Pfaff F, Schlottau K, Scholes S, Courtenay A, Hoffmann B, Hoper D, and Beer M. 2017. A novel astrovirus associated with encephalitis and ganglionitis in domestic sheep. 64:677-682. 10.1111/tbed.12623

Posada D, and Crandall KA. 2001. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757-13762. 10.1073/pnas.241370698

Reuter G, Pankovics P, and Boros A. 2018. Non suppurative (Aseptic) Meningoencephalomyelitis Associated with Neurovirulent Astrovirus Infections in Humans and Animals. Clin Microbiol Rev 31. 10.1128/cmr.00040-18

Reuter G, Pankovics P, Delwart E, and Boros A. 2012. Identification of a novel astrovirus in domestic sheep in Hungary. Arch Virol 157:323-327. 10.1007/s00705-011-1151-4

Rivera R, Nollens HH, Venn-Watson S, Gulland FM, and Wellehan JF, Jr. 2010. Characterization of phylogenetically diverse astroviruses of marine mammals. J Gen Virol 91:166-173. 10.1099/vir.0.015222-0
Schlottau K, Schulze C, Bilk S, Hanke D, Hoper D, Beer M, and Hoffmann B. 2016. Detection of a Novel Bovine Astrovirus in a Cow with Encephalitis. *Transbound Emerg Dis* 63:253-259. 10.1111/tbed.12493

Sebire NJ, Malone M, Shah N, Anderson G, Gaspar HB, and Cubitt WD. 2004. Pathology of astrovirus associated diarrhoea in a paediatric bone marrow transplant recipient. *J Clin Pathol* 57:1001-1003. 10.1136/jcp.2004.017178

Seuberlich T, Wuthrich D, Selimovic-Hamza S, Drogemuller C, Oevermann A, Bruggmann R, and Bouzalas I. 2016. Identification of a second encephalitis-associated astrovirus in cattle. *Emerg Microbes Infect* 5:e71. 10.1038/emi.2017.56

Smith JM. 1992. Analyzing the mosaic structure of genes. *Journal of Molecular Evolution* 34:126-129. 10.1007/BF00182389

Smits SL, van Leeuwen M, Kuiken T, Hammer AS, Simon JH, and Osterhaus AD. 2010. Identification and characterization of deer astroviruses. *J Gen Virol* 91:2719-2722. 10.1099/vir.0.024067-0

Snodgrass DR, and Gray EW. 1977. Detection and transmission of 30 nm virus particles (astroviruses) in faeces of lambs with diarrhoea. *Arch Virol* 55:287-291.

Tse H, Chan WM, Tsoi HW, Fan RY, Lau CC, Lau SK, Woo PC, and Yuen KY. 2011. Rediscovery and genomic characterization of bovine astroviruses. *J Gen Virol* 92:1888-1898. 10.1099/vir.0.030817-0

Tzipori S, Menzies JD, and Gray EW. 1981. Detection of astrovirus in the faeces of red deer. *Vet Rec* 108:286.

Ulloa JC, and Gutierrez MF. 2010. Genomic analysis of two ORF2 segments of new porcine astrovirus isolates and their close relationship with human astroviruses. *Can J Microbiol* 56:569-577. 10.1139/w10-042

Willcocks MM, Ashton N, Kurtz JB, Cubitt WD, and Carter MJ. 1994. Cell culture adaptation of astrovirus involves a deletion. *J Virol* 68:6057-6058.

Williams FP, Jr. 1980. Astrovirus-like, coronavirus-like, and parvovirus-like particles detected in the diarrheal stools of beagle pups. *Arch Virol* 66:215-226.

Wolfaardt M, Kiulia NM, Mwenda JM, and Taylor MB. 2011. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. *J Clin Microbiol* 49:728-731. 10.1128/jcm.01093-10

Woode GN, and Bridger JC. 1978. Isolation of small viruses resembling astroviruses and caliciviruses from acute enteritis of calves. *J Med Microbiol* 11:441-452. 10.1099/00222615-11-4-441
Table 1 (on next page)

Discovery of five novel full-length astrovirus genomes in sheep and goats.

Best hits of the bioinformatics pipeline on nucleotide (full-genome) and amino acid (ORF 1ab, ORF2) level are presented separately. Genbank accession number are provided in brackets. BoAstV, bovine astrovirus; CapAstV, caprine astrovirus; OvAstV, ovine astrovirus.
CapAstV-G2.1 (MK404645.1)	Bovine astrovirus JPN/Hokkaido11-55/2009 (LC047790.1)	76.6	BoAstV/JPN/Hokkaido11-55/2009 (BAS29607.1)	75.4	BoAstV/JPN/Hokkaido11-55/2009 (BAS29609.1)	73.7
CapAstV-G3.1 (MK404646.1)	Bovine astrovirus B170/HK (HQ916314.1)	69	Sichuan takin astrovirus (YP_009480536.1)	71.7	Bovine astrovirus B170/HK (YP_009010954.1)	63.9
CapAstV-G5.1 (MK404647.1)	Sichuan takin astrovirus (NC_037655.1)	70.9	Bovine astrovirus B76-2/HK (YP_009010946.1)	75.1	Astrovirus deer/CcAstV-1/DNK/2010 (ADO67579.1)	57.7
OvAstV-S5.1 (MK404648.1)	Bovine astrovirus B76-2/HK (HQ916317.1)	70.5	Bovine astrovirus B76-2/HK (YP_009010946.1)	73.8	Astrovirus deer/CcAstV-1/DNK/2010 (ADO67579.1)	59.0
OvAstV-S6.1 (MK404649.1)	Sichuan takin astrovirus (NC_037655.1)	70.8	BoAstV/JPN/Ishikawa24-6/2013 (BAS29598.1)	74.6	Astrovirus deer/CcAstV-1/DNK/2010 (ADO67579.1)	57.5
Figure 1 (on next page)

Virus discovery workflow in small ruminants’ feces samples.
Figure 2 (on next page)

Phylogenetic analysis of novel small ruminant astroviruses.

Phylogenetic analysis using the Maximum Likelihood method, based on 76 amino acid sequences of the capsid precursor protein of selected astrovirus strains together with the ones generated by the bioinformatics pipeline, with the sheep (blue), goat (green), and deer sequences (purple) from this study marked. GenBank accession numbers are provided in brackets. Filled rhombi indicate encephalitis-associated strains described in animals. Capsid protein precursor sequences translated from scaffolds with less than three identified ORFs are marked with an asterisk. AvAstV, avian astrovirus; BoAstV, bovine astrovirus; CcAstV, deer astrovirus; DromAstV, dromedary astrovirus; HuAstV, human astrovirus; MiAstV, mink astrovirus; PoAstV, porcine astrovirus; StAstV, sichuan takin astrovirus; WBufAstV, water buffalo astrovirus; YakAstV, yak astrovirus.
Figure 3

Recombination analysis of newly discovered full-length astrovirus genomes.

(A) Predicted recombination events 1 and 3 between CapAstV-G5.1, OvAstV-S5.1 and OvAstV-S6.1, where all three sequences may be the resulting recombinant. (B) Predicted recombination event 2 with CapAstV-G2.1 as the recombinant, BoAstV/GX27 as the minor parent and BoAstV/JPN/HK as the major parent. Plots were constructed using the RDP Method graphical output in RDP4. Nucleotide positions within the astrovirus genome are depicted on the axis of abscissas in kb. Red bars schematically indicate the parts of the genomes involved in the recombination events. For comparison, the astrovirus genome organization is presented at the bottom. BoAstV/JPN/HK, Bovine astrovirus genomic RNA, nearly complete genome, strain: BoAstV/JPN/Hokkaido11-55/2009 (LC047790.1) BoAstV/GX27, Bovine astrovirus strain BAstV-GX27/CHN/2014, complete genome (KJ620980.1) CapAstV, Caprine Astrovirus OvAstV, Ovine Astrovirus
