EVOLUTION OF AREA-DECREASING MAPS BETWEEN TWO-DIMENSIONAL EUCLIDEAN SPACES

FELIX LUBBE

Abstract. We consider the mean curvature flow of the graph of a smooth map $f : \mathbb{R}^2 \to \mathbb{R}^2$ between two-dimensional Euclidean spaces. If f satisfies an area-decreasing property, the solution exists for all times and the evolving submanifold stays the graph of an area-decreasing map f_t. Further, we prove uniform decay estimates for the mean curvature vector of the graph and all higher-order derivatives of the corresponding map f_t.

1. Introduction

Let (M, g_M) and (N, g_N) be complete Riemannian manifolds, and consider a smooth map $f : M \to N$. Then f is called strictly length-decreasing, if there is $\delta \in (0, 1]$, such that $\|df(v)\|_{g_N} \leq (1 - \delta)\|v\|_{g_M}$ for all $v \in \Gamma(TM)$. The map f is called strictly area-decreasing if there is $\delta \in (0, 1]$, such that $\|df(v) \wedge df(w)\|_{g_N} \leq (1 - \delta)\|v \wedge w\|_{g_M}$ for all $v, w \in \Gamma(TM)$. In this paper, we deform the map f by deforming its corresponding graph $\Gamma(f) := \{(x, f(x)) \in M \times N : x \in M\}$ via the mean curvature flow in the product space $M \times N308

For a compact domain and arbitrary dimensions, several results for length- and area-decreasing maps are known (see e.g. [9,13–15,17,23–25] and references therein). For example, if $f : M \to N$ is strictly area-decreasing, M and N are space forms with $\dim M \geq 2$, and their sectional curvatures satisfy $\sec_M \geq |\sec_N|$, $\sec_M + \sec_N > 0$. Wang and Tsui proved long-time existence of the graphical mean curvature flow and convergence of f to a constant map [19]. Subsequently, the curvature assumptions

\begin{align*}
\text{2010 Mathematics Subject Classification. Primary 53C44; 53C42, 53A07.}
\end{align*}

\begin{align*}
\text{Key words and phrases. Mean curvature flow, area-decreasing maps, Euclidean space.}
\end{align*}
on the manifolds were relaxed by Lee and Lee [9] and recently by Savas-Halilaj and Smoczyk [15].

In the non-compact setting, Ecker and Huisken considered the flow of entire graphs, that is, graphs generated by maps $f : \mathbb{R}^n \to \mathbb{R}$. The quantity which plays an important role is essentially given by the Jacobian of the projection map from the graph $\Gamma(f)$ to \mathbb{R}^n and it satisfies a nice evolution equation. They provided conditions under which the mean curvature flow of the graph exists for all time and asymptotically approaches self-expanding solutions. [6, 7]. Unfortunately, their methods cannot easily be adapted to the general higher-codimensional setting, since the analysis gets considerably more involved due to the complexity of the normal bundle of the graph.

Nevertheless, several results in the higher-codimensional case were obtained by considering the Gauß map of the immersion (see e.g. [20, 22]). In the case of two-dimensional graphs, Chen, Li and Tian established long-time existence and convergence results by evaluating certain angle functions on the tangent bundle [5]. Another possibility is to impose suitable smallness conditions on the differential of the defining map. In these cases, one can show long-time existence and convergence of the mean curvature flow [2, 3, 13].

Considering maps between Euclidean spaces of the same dimension, Chau, Chen and He obtained results for strictly length-decreasing Lipschitz continuous maps $f : \mathbb{R}^m \to \mathbb{R}^m$ with graphs $\Gamma(f)$ being Lagrangian submanifolds of $\mathbb{R}^m \times \mathbb{R}^m$. In particular, they showed short-time existence of solutions with bounded geometry, as well as decay estimates for the mean curvature vector and all higher-order derivatives of the defining map, which in turn imply the long-time existence of the solution [2]. Recently, the estimates were generalized by the author to Euclidean spaces of arbitrary dimension [10].

The aim of the article at hand is to relax the length-decreasing assumption for maps between some Euclidean spaces. Namely, if both domain and target are of dimension two, we are able to show the following result.

Theorem A. Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a smooth strictly area-decreasing function. Then the mean curvature flow with initial condition $F(x) := (x, f(x))$ has a long-time smooth solution for all $t > 0$ such that the following statements hold.

(i) Along the flow, the evolving surface stays the graph of a strictly area-decreasing map $f_t : \mathbb{R}^2 \to \mathbb{R}^2$ for all $t > 0$.

(ii) The mean curvature vector of the graph satisfies the estimate

$$t\|\mathbf{H}\|^2 \leq C$$

for some constant $C \geq 0$.

(iii) All spatial derivatives of f_t of order $k \geq 2$ satisfy the estimate

$$t^{k-1} \sup_{x \in \mathbb{R}^2} \|D^k f_t(x)\|^2 \leq C_{k,\delta} \quad \text{for all} \quad k \geq 2$$

and for some constants $C_{k,\delta} \geq 0$ depending only on k and δ. Moreover,

$$\sup_{x \in \mathbb{R}^2} \|f_t(x)\|^2 \leq \sup_{x \in \mathbb{R}^2} \|f(x)\|^2$$

for all $t > 0$.

If in addition f satisfies $\|f(x)\| \to 0$ as $\|x\| \to \infty$, then $\|f_t(x)\| \to 0$ smoothly on compact subsets of \mathbb{R}^2 as $t \to \infty$.
Remark 1.1. In terms of the second fundamental form of the graph, Theorem A implies the decay estimate
\[t\|A\|^2 \leq C \]
for some constant \(C \geq 0 \) depending only on \(\delta \).

Remark 1.2. (i) Note that any strictly length-decreasing map is also strictly area-decreasing. Accordingly, for smooth maps between two-dimensional Euclidean spaces the statement of [10, Theorem A] follows from Theorem A.

(ii) In the recent paper [12], the case of area-decreasing maps between complete Riemann surfaces with bounded geometry \(M \) and \(N \) is treated, where \(M \) is compact and the sectional curvatures satisfy \(\min_{x \in M} \sec_M(x) \geq \sup_{x \in N} \sec_N(x) \).

Remark 1.3. If one considers graphs generated by functions \(f : \mathbb{R}^2 \to \mathbb{R} \), the same strategy as in the proof of Theorem A can be applied. To draw the conclusions of the theorem in this case, one only has to assume that the differential \(df \) of \(f \) is bounded, i.e., there is a constant \(C \geq 0 \) with
\[|df(v)| \leq C\|v\| \]
for any \(v \in \Gamma(T\mathbb{R}^2) \). In particular, the function has at most linear growth, so that it belongs to the class of functions studied in [7].

The outline of the paper is as follows. In Section 2, we introduce the main quantities in the graphical case which then will be deformed by the mean curvature flow described in Section 3. To obtain the statements of the following sections, we would like to apply a maximum principle. For this, we follow an idea from [2] to adapt the usual scalar maximum principle to the non-compact case. Then, in Section 4.1 we establish the preservation of the area-decreasing condition. In Section 4.2 we obtain estimates on \(\tilde{H} \) and all derivatives of the map defining the graph by considering functions constructed similar to those in [18]. The main theorem is proven in Section 5 and some applications to self-similar solutions of the mean curvature flow are given in Section 6.

Acknowledgments. The author would like to thank Andreas Savas-Halilaj for stimulating discussions.

2. Maps between two-dimensional Euclidean spaces

2.1. Geometry of graphs. We recall the geometric quantities in a graphical setting adopted to two-dimensional Euclidean spaces. For the setup in generic Euclidean spaces, see e.g. [10, Section 2] and for the general setup, see e.g. [13, Section 2].

Let \((\mathbb{R}^2, g_{\mathbb{R}^2}) \) be the two-dimensional Euclidean space equipped with its usual flat metric. On the product manifold \((\mathbb{R}^2 \times \mathbb{R}^2, \langle \cdot, \cdot \rangle := g_{\mathbb{R}^2} \times g_{\mathbb{R}^2}) \), the projections onto the first and second factor
\[\pi_1, \pi_2 : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \]
are submersions, that is they are smooth and have maximal rank. A smooth map \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defines an embedding \(F : \mathbb{R}^2 \to \mathbb{R}^2 \times \mathbb{R}^2 \) via
\[F(x) := (x, f(x)), \quad x \in \mathbb{R}^2. \]
The graph of \(f \) is defined to be the submanifold
\[\Gamma(f) := F(\mathbb{R}^2) = \{(x, f(x)) : x \in \mathbb{R}^2\} \subset \mathbb{R}^2 \times \mathbb{R}^2. \]
Since \(F \) is an embedding, it induces another Riemannian metric on \(\mathbb{R}^2 \), given by
\[
g := F^*\langle \cdot, \cdot \rangle.
\]
The metrics \(g_{\mathbb{R}^2}, \langle \cdot, \cdot \rangle \) and \(g \) are related by
\[
\langle \cdot, \cdot \rangle = \pi_1^*g_{\mathbb{R}^2} + \pi_2^*g_{\mathbb{R}^2},
\]
\[
g = F^*\langle \cdot, \cdot \rangle = g_{\mathbb{R}^2} + f^*g_{\mathbb{R}^2}.
\]
As in \([14, 15]\), let us introduce the symmetric 2-tensors
\[
s_{\mathbb{R}^2 \times \mathbb{R}^2} := \pi_1^*g_{\mathbb{R}^2} - \pi_2^*g_{\mathbb{R}^2},
\]
\[
s := F^*s_{\mathbb{R}^2 \times \mathbb{R}^2} = g_{\mathbb{R}^2} - f^*g_{\mathbb{R}^2}.
\]
We remark that \(s_{\mathbb{R}^2 \times \mathbb{R}^2} \) is a semi-Riemannian metric of signature \((2, 2)\) on \(\mathbb{R}^2 \times \mathbb{R}^2 \).

The Levi-Civita connection on \(\mathbb{R}^2 \) with respect to the induced metric \(g \) is denoted by \(\nabla \) and the corresponding curvature tensor by \(R \).

2.2. Second fundamental form.

The second fundamental tensor of the graph \(\Gamma(f) \) is the section \(A \in \Gamma(T\mathbb{R}^2 \otimes \text{Sym}(T^*\mathbb{R}^2 \otimes T^*\mathbb{R}^2)) \) defined as
\[
A(v, w) := (\nabla dF)(v, w) := D_{dF(v)}dF(w) - dF(\nabla_v w),
\]
where \(v, w \in \Gamma(T\mathbb{R}^2) \) and where we denote the connection on \(F^*T(\mathbb{R}^2 \times \mathbb{R}^2) \otimes T^*\mathbb{R}^2 \) induced by the Levi-Civita connection also by \(\nabla \). The trace of \(A \) with respect to the metric \(g \) is called the mean curvature vector field of \(\Gamma(f) \) and it will be denoted by
\[
\vec{H} := \text{tr} A.
\]
Let us denote the evaluation of the second fundamental form (resp. mean curvature vector) in the direction of a vector \(\xi \in \Gamma(T^*\mathbb{R}^2 \times \mathbb{R}^2) \) by
\[
A_\xi(v, w) := \langle A(v, w), \xi \rangle \quad \text{resp.} \quad \vec{H}_\xi := \langle \vec{H}, \xi \rangle.
\]
Note that \(\vec{H} \) is a section in the normal bundle of the graph. If \(\vec{H} \) vanishes identically, the graph is said to be minimal. A smooth map \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is called minimal, if its graph \(\Gamma(f) \) is a minimal submanifold of the product space \((\mathbb{R}^2 \times \mathbb{R}^2, \langle \cdot, \cdot \rangle)\).

On the submanifold, the Gauss equation
\[
R(u_1, v_1, u_2, v_2) = \langle A(u_1, u_2), A(v_1, v_2) \rangle - \langle A(u_1, v_2), A(v_1, u_2) \rangle \tag{2.1}
\]
and the Codazzi equation
\[
(\nabla_u A)(v, w) - (\nabla_v A)(u, w) = -dF(R(u, v)w)
\]
hold, where the induced connection on the bundle \(F^*T(\mathbb{R}^2 \times \mathbb{R}^2) \otimes T^*\mathbb{R}^2 \otimes T^*\mathbb{R}^2 \) is defined as
\[
(\nabla_u A)(v, w) := D_{dF(u)}(A(v, w)) - A(\nabla_v u, w) - A(v, \nabla_u w).
\]

2.3. Singular value decomposition.

We recall the singular value decomposition theorem for the two-dimensional case (see e.g. \([14, \text{Section 3.2}]\) for the general setup).

Fix a point \(x \in \mathbb{R}^2 \), and let
\[
\lambda_1^2(x) \leq \lambda_2^2(x)
\]
be the eigenvalues of \(f^*g_{\mathbb{R}^2} \) with respect to \(g_{\mathbb{R}^2} \). The values \(0 \leq \lambda_1(x) \leq \lambda_2(x) \) are called the singular values of the differential \(df \) of \(f \) and give rise to continuous functions on \(\mathbb{R}^2 \). At the point \(x \) consider an orthonormal basis \(\{\alpha_1, \alpha_2\} \) with respect
to $g_{\mathbb{R}^2}$ which diagonalizes $f^*g_{\mathbb{R}^2}$. Moreover, at $f(x)$ consider a basis $\{\beta_1, \beta_2\}$ that is orthogonal with respect to $g_{\mathbb{R}^2}$, such that
\[df(\alpha_1) = \lambda_1(x)\beta_1, \quad df(\alpha_2) = \lambda_2(x)\beta_2 \]
This procedure is called the singular value decomposition of the differential df.

Now let us construct a special basis for the tangent and the normal space of the graph in terms of the singular values. The vectors
\[\tilde{e}_1 := \frac{1}{\sqrt{1 + \lambda_1^2(x)}}(\alpha_1 \oplus \lambda_1(x)\beta_1) \quad \text{and} \quad \tilde{e}_2 := \frac{1}{\sqrt{1 + \lambda_2^2(x)}}(\alpha_2 \oplus \lambda_2(x)\beta_2) \]
form an orthonormal basis with respect to the metric $\langle \cdot, \cdot \rangle$ of the tangent space $dF(T_x\mathbb{R}^2)$ of the graph $\Gamma(f)$ at x. It follows that with respect to the induced metric g, the vectors
\[e_1 := \frac{1}{\sqrt{1 + \lambda_1^2(x)}}\alpha_1 \quad \text{and} \quad e_2 := \frac{1}{\sqrt{1 + \lambda_2^2(x)}}\alpha_2 \]
form an orthonormal basis of $T_x\mathbb{R}^2$. Moreover, the vectors
\[\xi_1 := \frac{1}{\sqrt{1 + \lambda_1^2(x)}}(-\lambda_1(x)\alpha_1 \oplus \beta_1) \quad \text{and} \quad \xi_2 := \frac{1}{\sqrt{1 + \lambda_2^2(x)}}(-\lambda_2(x)\alpha_2 \oplus \beta_2) \]
form an orthonormal basis with respect to $\langle \cdot, \cdot \rangle$ of the normal space $T^+_x\mathbb{R}^2$ of the graph $\Gamma(f)$ at the point x. From the formulae above, we deduce that
\[s_{\mathbb{R}^2 \times \mathbb{R}^2}(\tilde{e}_i, \tilde{e}_j) = s(e_i, e_j) = \frac{1}{1 + \lambda_i^2(x)}\delta_{ij}, \quad 1 \leq i, j \leq 2. \]
Therefore, the eigenvalues of the 2-tensor s with respect to g are given by
\[\frac{1}{1 + \lambda_1^2(x)} \geq \frac{1 - \lambda_2^2(x)}{1 + \lambda_2^2(x)}. \quad (2.2) \]
Moreover,
\[s_{\mathbb{R}^2 \times \mathbb{R}^2}(\xi_i, \xi_j) = \frac{1 - \lambda_i^2(x)}{1 + \lambda_i^2(x)}\delta_{ij}, \quad 1 \leq i, j \leq 2, \quad (2.3) \]
and
\[s_{\mathbb{R}^2 \times \mathbb{R}^2}(\tilde{e}_i, \xi_j) = \frac{2\lambda_i(x)}{1 + \lambda_i^2(x)}\delta_{ij}, \quad 1 \leq i, j \leq 2. \]

3. Mean curvature flow in Euclidean space

Let $I := [0, T)$ for some $T > 0$ and assume $f_0 : \mathbb{R}^2 \to \mathbb{R}^2$ to be a smooth map. We say that a family of maps $F : \mathbb{R}^2 \times I \to \mathbb{R}^2 \times \mathbb{R}^2$ evolves under the mean curvature flow, if for all $x \in \mathbb{R}^2$
\[\begin{cases} \partial_t F(x, t) = \vec{H}(x, t), \\ F(x, 0) = (x, f_0(x)) \end{cases}. \quad (3.1) \]

This system can also be described as follows. As in [2, Section 5], let us consider the non-parametric mean curvature flow equation for $f : \mathbb{R}^2 \times [0, T) \to \mathbb{R}^2$, given by the quasilinear system
\[\begin{cases} \partial_t f(x, t) = \sum_{i,j=1}^2 \tilde{g}^{ij}\partial_i^2 f(x, t), \\ f(x, 0) = f_0(x) \end{cases}. \quad (3.2) \]
where \(\tilde{g}^{ij} \) are the components of the inverse of \(\tilde{g} := g_{\mathbb{R}^2} + f_0^* g_{\mathbb{R}^2} \), where here we have set \(f_0(x) := f(x,t) \). If (3.2) has a smooth solution \(f : \mathbb{R}^2 \times [0,T) \to \mathbb{R}^2 \), then the mean curvature flow (3.1) has a smooth solution \(F : \mathbb{R}^2 \times [0,T) \to \mathbb{R}^2 \times \mathbb{R}^2 \) given by the family of graphs

\[
\Gamma(f(\cdot,t)) = \{(x,f(x,t)) : x \in \mathbb{R}^2\},
\]

up to tangential diffeomorphisms (see e.g. [1, Chapter 3.1]).

In the sequel, if there is no confusion, we will also use the notation \(F_t(x) := F(x,t) \) as well as \(f_t(x) := f(x,t) \).

For (3.2), we have the following short-time existence result.

Theorem 3.1 ([2, Proposition 5.1 for \(m = n = 2 \)]. Suppose \(f_0 : \mathbb{R}^2 \to \mathbb{R}^2 \) is a smooth function, such that for each \(l \geq 1 \) we have \(\sup_{x \in \mathbb{R}^2} \|D^l f_0(x)\| \leq C_l \) for some finite constants \(C_l \). Then (3.2) has a short-time smooth solution \(f \) on \(\mathbb{R}^2 \times [0,T) \) for some \(T > 0 \) with initial condition \(f_0 \), such that \(\sup_{x \in \mathbb{R}^2} \|D^l f_t(x)\| < \infty \) for every \(l \geq 1 \) and \(t \in [0,T) \).

In this paper, we will consider a special kind of solution to (3.1).

Definition 3.2. Let \(F_t(x) \) be a smooth solution to the system (3.1) on \(\mathbb{R}^2 \times [0,T) \) for some \(0 < T \leq \infty \), such that for each \(t \in [0,T) \) and non-negative integer \(k \), the submanifold \(F_t(\mathbb{R}^2) \subset \mathbb{R}^2 \times \mathbb{R}^2 \) satisfies

\[
\sup_{x \in \mathbb{R}^2} \|\nabla^k A(x,t)\| < \infty, \quad (3.3)
\]

\[
C_1(t) g_{\mathbb{R}^2} \leq g \leq C_2(t) g_{\mathbb{R}^2}, \quad (3.4)
\]

where \(C_1(t) \) and \(C_2(t) \) for each \(t \in [0,T) \) are finite, positive constants depending only on \(t \). Then we will say that the family of embeddings \(\{F_t\}_{t \in [0,T]} \) has bounded geometry.

Definition 3.3. Let \(f_t(x) \) be a smooth solution to the system (3.2) on \(\mathbb{R}^2 \times [0,T) \) for some \(0 < T \leq \infty \), such that for each \(t \in [0,T) \) and positive integer \(k \) the estimate

\[
\sup_{x \in \mathbb{R}^2} \|D^k f_t(x)\| < \infty
\]

holds. Then we will say that \(f_t(x) \) has bounded geometry for every \(t \in [0,T) \).

3.1. Graphs.

We recall some important notions in the graphic case, where we follow the presentation in [15, Section 3.1].

Let \(f_0 : \mathbb{R}^2 \to \mathbb{R}^2 \) denote a smooth map, such that \(\sup_{x \in \mathbb{R}^2} \|D^l f_0(x)\| \leq C_l \) for some finite constants \(C_l, l \geq 1 \). Then Theorem 3.1 ensures that the system (3.2) has a short-time solution with initial data \(f_0(x) \) on a time interval \([0,T)\) for some positive maximal time \(T > 0 \). Further, there is a diffeomorphism \(\phi_t : \mathbb{R}^2 \to \mathbb{R}^2 \), such that

\[
F_t \circ \phi_t(x) = (x,f_t(x)), \quad (3.5)
\]

where \(F_t(x) \) is a solution of (3.1).

To obtain the converse of this statement, let \(\Omega_{\mathbb{R}^2} \) be the volume form on \(\mathbb{R}^2 \) and extend it to a parallel 2-form on \(\mathbb{R}^2 \times \mathbb{R}^2 \) by pulling it back via the natural projection onto the first factor \(\pi_1 : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \), that is, consider the 2-form \(\pi_1^* \Omega_{\mathbb{R}^2} \). Define the time-dependent smooth function \(u : \mathbb{R}^2 \times [0,T) \to \mathbb{R} \), given by

\[
u := \ast \Omega_t,
\]

where \(\ast \) is the Hodge star operator with respect to the induced metric \(g \) and

\[
\Omega_t := F_t^* (\pi_1^* \Omega_{\mathbb{R}^2}) = (\pi_1 \circ F_t)^* \Omega_{\mathbb{R}^2}.
\]
The function u is the Jacobian of the projection map from $F_t(\mathbb{R}^2)$ to \mathbb{R}^2. From the implicit mapping theorem it follows that $u > 0$ if and only if there is a diffeomorphism $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ and a map $f_t : \mathbb{R}^2 \to \mathbb{R}^2$, such that (3.5) holds, i.e. u is positive precisely if the solution of the mean curvature flow remains a graph. By Theorem 3.1, the solution will stay a graph at least in a short time interval $[0,T)$.

3.2. Parabolic scaling. For any $\tau > 0$ and $(x_0, t_0) \in \mathbb{R}^2 \times [0, T)$, consider the change of variables

$$ y := \tau(x - x_0), \quad r := \tau^2(t - t_0), \quad \tilde{f}_r(y, r) := \tau(f(x, t) - f(x_0, t_0)),$$

which we call the parabolic scaling by τ with respect to y; so that

$$\tilde{g}_r((y, r)) = \tilde{g}_0((x, t)), \quad \text{and} \quad \tilde{A}_r((y, r)) = \frac{1}{\tau^2} \tilde{A}((x, t)),$$

which implies

$$\tilde{g}_r(y, r) = \tilde{g}_0((x, t)) \quad \text{and} \quad \tilde{A}_r((y, r)) = \frac{1}{\tau^2} \tilde{A}((x, t)),$$

so that $f_\tau(y, r)$ satisfies equation (3.2) in the sense that

$$\frac{\partial \tilde{f}_r}{\partial \tau}((y, r)) = \sum_{i,j=1}^{2} \tilde{g}^{ij}_0 \frac{\partial^2 \tilde{f}_r}{\partial y^i \partial y^j}((y, r)).$$

3.3. Evolution equations. Let us recall the evolution equation of the tensor s in the two-dimensional setting (which is basically calculated in [15, Lemma 3.1]), as well as the evolution equation for its trace.

Lemma 3.4. Under the mean curvature flow, the evolution of the tensor s for $t \in [0, T)$ is given by the formula

$$(\nabla_0 s - \Delta s)(v, w) = -s(\text{Ric} v, w) - s(v, \text{Ric} w)$$

$$- 2 \sum_{k=1}^{2} s_{\mathbb{R}^2 \times \mathbb{R}^2}(A(e_k, v), A(e_k, w)),$$

where $\{e_1, e_2\}$ is any orthonormal frame with respect to g and where the Ricci operator is given by

$$\text{Ric} v := -\sum_{k=1}^{2} R(e_k, v)e_k.$$

Corollary 3.5. Under the mean curvature flow, the evolution equation of the trace of the tensor s is given by

$$(\partial_t - \Delta) \text{tr}(s) = -2 \sum_{k,l=1}^{2} \left(s_{\mathbb{R}^2 \times \mathbb{R}^2} - \frac{1 - \lambda_k^2}{1 + \lambda_k^2} s_{\mathbb{R}^2 \times \mathbb{R}^2} \right)(A(e_k, e_l), A(e_k, e_l)),$$

where $\{e_1, e_2\}$ denotes the orthonormal frame field with respect to g constructed in Section 2.3.

Proof. From the Gauß Equation (2.1) we obtain

$$s(\text{Ric} e_k, e_k) = -s(e_k, e_k) \sum_{l=1}^{2} s_{\mathbb{R}^2 \times \mathbb{R}^2}(A(e_k, e_l), A(e_k, e_l))$$

$$+ s(e_k, e_k) s_{\mathbb{R}^2 \times \mathbb{R}^2}(H, A(e_k, e_k)).$$
Further, since
\[
\partial_t \text{tr}(s) = 2 \sum_{k=1}^{2} g_{\mathbb{R}^2 \times \mathbb{R}^2}(H, A(e_k, e_k)) s(e_k, e_k) + \sum_{k=1}^{2} (\nabla \partial_t s)(e_k, e_k),
\]
the claim follows from Lemma 3.4. □

In the two-dimensional setting at hand, we can rewrite the evolution equation for the trace.

Lemma 3.6. Under the mean curvature flow, the trace of the tensor s satisfies
\[
(\partial_t - \Delta) \text{tr}(s) = 2\|A\|^2 \text{tr}(s) - \frac{1}{2} \frac{\|\nabla \text{tr}(s)\|^2}{\text{tr}(s)}
+ \frac{2}{\text{tr}(s)} \sum_{k=1}^{2} \left(\frac{2\lambda_2}{1 + \lambda_2^2} A_{1k} + \frac{2\lambda_1}{1 + \lambda_1^2} A_{2k} \right)^2.
\]

Proof. This is [18, Eqs. (3.17) and (3.18)]. □

4. Evolution of submanifold geometry

4.1. Preserved quantities.

Consider a smooth map $f : \mathbb{R}^2 \to \mathbb{R}^2$. The property of f being strictly area-decreasing can be expressed in terms of the singular values λ_1, λ_2 of the differential df as
\[
\lambda_1^2 \lambda_2^2 \leq 1 - \delta.
\]
for some $\delta \in (0, 1]$. Consequently, by Equation (2.2), this can also be rephrased in terms of the tensor s as follows. If f is strictly area-decreasing, there is $\varepsilon > 0$, such that the inequality
\[
\text{tr}(s) = \frac{2(1 - \lambda_1^2 \lambda_2^2)}{(1 + \lambda_1^2)(1 + \lambda_2^2)} \geq \varepsilon
\]
holds. We will now modify $\text{tr}(s) - \varepsilon$ using the function
\[
\phi_R(x) := 1 + \frac{\|x\|^2_{\mathbb{R}^2}}{R^2},
\]
where $\| \cdot \|_{\mathbb{R}^2}$ is the Euclidean norm on \mathbb{R}^2 and $R > 0$ is a constant which will be chosen later.

Lemma 4.1. Let $F(x, t)$ be a smooth solution to (3.1) with bounded geometry and assume there is $\varepsilon > 0$, such that $\text{tr}(s) \geq \varepsilon$ for any $t \in [0, T)$. Fix any $T'' \in [0, T)$ and $(x_0, t_0) \in \mathbb{R}^2 \times [0, T'')$. Then the following estimates hold,
\[
-c(T') \frac{\|x_0\|^2_{\mathbb{R}^2}}{R^2} \text{tr}(s) \leq (\nabla \phi_R, \nabla \text{tr}(s)) \leq c(T') \frac{\|x_0\|^2_{\mathbb{R}^2}}{R^2} \text{tr}(s),
\]
\[
|\Delta \phi_R| \leq c(T') \left(\frac{1}{R^2} + \frac{\|x_0\|^2_{\mathbb{R}^2}}{R^2} \right),
\]
where $c(T') \geq 0$ is a constant depending only on T'.

Proof. Note that
\[
\nabla \text{tr}(s) = \sum_{k=1}^{2} (\nabla \text{tr}(s))(e_k, e_k) = 2 \sum_{k=1}^{2} s_{\mathbb{R}^2 \times \mathbb{R}^2}(A(u, e_k), dF(e_k)).
\]
The bounded geometry assumptions (3.3) and (3.4) imply that $s, \nabla s$ and therefore $\nabla \text{tr}(s)$ are uniformly bounded on $\mathbb{R}^2 \times [0, T')$ by a constant $c(T')$ depending only on T'. Thus, also using $\text{tr}(s) \geq \varepsilon$, at (x_0, t_0) we have
\[
-c(T') \frac{\|x_0\|_{\mathbb{R}^2}}{R^2} \text{tr}(s) \leq \langle \nabla \phi_R, \nabla \text{tr}(s) \rangle \leq c(T') \frac{\|x_0\|_{\mathbb{R}^2}}{R^2} \text{tr}(s).
\]

The statement for $|\Delta \phi_R|$ is given in [2, Eq. 3.4]. □

Let us define
\[
\psi(x, t) := e^{\sigma t} \phi_R(x) \text{tr}(s)_{(x(t) - \varepsilon}.
\]

Lemma 4.2. Let $F(x, t)$ be a smooth solution to (3.1) with bounded geometry. Assume there is $\varepsilon > 0$ with $\text{tr}(s) \geq \varepsilon$ at $t = 0$, and $\text{tr}(s) \geq \frac{\varepsilon}{2}$ for all $t \in [0, T)$. Then it is $\text{tr}(s) \geq \varepsilon$ for all $t \in [0, T)$.

Proof. The proof closely follows the strategy in [2, 10]. We will show that for any fixed $T' \in [0, T')$ and $\sigma > 0$, there is $R_0 > 0$ depending only on σ and T', such that $\psi > 0$ on $\mathbb{R}^2 \times [0, T')$ for all $R \geq R_0$.

On the contrary, suppose ψ is not positive on $\mathbb{R}^2 \times [0, T')$ for some $R \geq R_0$. Then as $\psi > 0$ on $\mathbb{R}^2 \times \{0\}$, $\text{tr}(s) \geq \frac{\varepsilon}{2}$ on $\mathbb{R}^2 \times [0, T')$ and $\phi_R(x) \rightarrow \infty$ as $|x| \rightarrow \infty$, it follows that $\psi > 0$ outside some compact set $K \subset \mathbb{R}^2$ for all $t \in [0, T)$. We conclude that there is $(x_0, t_0) \in K \times [0, T')$ such that $\psi(x_0, t_0) = 0$ at (x_0, t_0) and that t_0 is the first such time. According to the second derivative criterion, at the point (x_0, t_0) we have
\[
\partial_t \psi \leq 0, \quad \nabla \psi = 0 \quad \text{and} \quad \Delta \psi \geq 0. \tag{4.2}
\]

On the other hand, using Lemma 3.6, we estimate the terms in the evolution equation for ψ, as given by
\[
(\partial_t - \Delta) \psi = e^{\sigma t} \phi_R \left\{ 2 \|A\|^2 \text{tr}(s) - \frac{1}{2} \frac{\|\nabla \text{tr}(s)\|^2}{\text{tr}(s)} \right. \nonumber
\]
\[
\left. + \frac{2}{\text{tr}(s)} \sum_{k=1}^{2} \left(\frac{2\lambda_2}{1 + \lambda_2^2} A_{1k}^1 + \frac{2\lambda_1}{1 + \lambda_1^2} A_{2k}^2 \right)^2 \right\}
\]
\[
- e^{\sigma t} \{ (\Delta \phi_R) \text{tr}(s) + 2 \langle \nabla \phi_R, \nabla \text{tr}(s) \rangle - \sigma \phi_R \text{tr}(s) \}
\]
\[
=: A + B,
\]

where we collect all terms coming from the evolution equation of $\text{tr}(s)$ (i.e. the first two lines) in A and the remaining terms (i.e. the third line) in B. To estimate the terms in A at (x_0, t_0), note that the vanishing of the first derivative in (4.2) implies the equality
\[
\langle \nabla \phi_R \rangle \text{tr}(s) = -\phi_R \nabla \text{tr}(s).
\]

Consequently, since $\text{tr}(s) \geq \frac{\varepsilon}{2}$ by assumption, at (x_0, t_0) we derive the estimate
\[
A = e^{\sigma t_0} \phi_R \left\{ 2 \|A\|^2 \text{tr}(s) - \frac{1}{2} \frac{\|\nabla \text{tr}(s)\|^2}{\text{tr}(s)} \right. \nonumber
\]
\[
\left. + \frac{2}{\text{tr}(s)} \sum_{k=1}^{2} \left(\frac{2\lambda_2}{1 + \lambda_2^2} A_{1k}^1 + \frac{2\lambda_1}{1 + \lambda_1^2} A_{2k}^2 \right)^2 \right\}_{\geq 0} \nonumber
\]
\[
\geq - \frac{e^{\sigma t_0}}{2} \frac{\|\nabla \text{tr}(s)\|^2}{\text{tr}(s)} = \frac{e^{\sigma t_0}}{2} \langle \nabla \phi_R, \nabla \text{tr}(s) \rangle
\]

Lemma 4.1 and further evaluation yields
\[A + B \geq -e^{\sigma t_0} \frac{\|x_0\|^2}{R^2} c(T') \operatorname{tr}(s). \]

Note that by choosing \(R_0 > 0 \) (depending on \(\sigma \) and \(T' \)) large enough, the term
\[\frac{\sigma}{2} + \sigma \frac{\|x_0\|^2}{R^2} - \frac{7}{2} c(T') \frac{\|x_0\|^2}{R^2} + \frac{c(T')}{R^2} \]
is strictly positive for any \(R \geq R_0 \) and any \(\|x_0\|^2 \).
Continuing with the above calculation, we obtain
\[(\partial_t + \Delta) \Psi_{(x_0,t_0)} \geq e^{\sigma t_0} \frac{\sigma}{2} \operatorname{tr}(s) \geq e^{\sigma t_0} \frac{\sigma \varepsilon}{2} > 0. \]
But this is a contradiction to (4.2), which shows the claim.

The statement of the Lemma follows by first letting \(R \to \infty \), then \(\sigma \to 0 \) and finally \(T' \to T \). \(\square \)

Lemma 4.3. Let \(F(x,t) \) be a smooth solution to (3.1) for \(t \in [0,T) \) with bounded geometry. If there is \(\varepsilon > 0 \) with \(\operatorname{tr}(s) \geq \varepsilon \) at \(t = 0 \), then \(\operatorname{tr}(s) \geq \varepsilon \) for all \(t \in [0,T) \).

Proof. By Lemma 4.2, we only need to remove the assumption \(\operatorname{tr}(s) \geq \frac{\varepsilon}{2} \) in \([0,T) \). By the bounded geometry assumption on \(F(x,t) \), the right hand side of the evolution equation of \(\operatorname{tr}(s) \) is bounded, so that
\[\|\partial_t \operatorname{tr}(s)\| \leq C(t), \]
where \(C(t) \) is a constant only depending on \(t \). Since \(\operatorname{tr}(s) \geq \varepsilon \) at \(t = 0 \), it follows that there is a maximal time \(T_0 > 0 \), such that \(\operatorname{tr}(s) > \frac{\varepsilon}{2} \) holds in \([0,T_0) \). From Lemma 4.2 we know that \(\operatorname{tr}(s) \geq \varepsilon \) on \(\mathbb{R}^2 \times [0,T_0) \). If \(T_0 \neq T \), by continuity, we also know that \(\operatorname{tr}(s) \geq \varepsilon \) on \(\mathbb{R}^2 \times [T_0,T) \). By the same argument for finding \(T_0 \) above, we can find some positive \(T'_0 \), such that \(\operatorname{tr}(s) \geq \frac{\varepsilon}{2} \) in \(\mathbb{R}^2 \times [T_0,T_0 + T'_0) \), where \([T_0,T_0 + T'_0) \subset [T_0,T) \). But this contradicts the choice of \(T_0 \), so that \(T_0 = T \). \(\square \)

Lemma 4.4. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be a smooth strictly area-decreasing map and evolve it by the mean curvature flow. Then each \(F_t(\mathbb{R}^2) \) is the graph of a strictly area-decreasing map for \(t \in [0,T) \).

Proof. The proof is the same as [15, Proof of Proposition 3.3]. \(\square \)

4.2. A priori estimates

To obtain estimates for the mean curvature vector, let us define the function
\[\chi(x,t) := e^{\sigma t} \phi_R(x) \operatorname{tr}(s)|_{(x,t)} - \varepsilon_2 \left(t \| \nabla \chi \|_{(x,t)}^2 + 1 \right). \]

Lemma 4.5. The evolution equation for \(\chi \) under the mean curvature flow is given by
\[(\partial_t + \Delta) \chi = e^{\sigma t} \phi_R \left\{ 2 \|A\|^2 \operatorname{tr}(s) + \frac{2}{\operatorname{tr}(s)} \sum_{k=1}^{2} \left(\frac{2\lambda_2}{1 + \lambda_2^2} A_{1k}^1 + \frac{2\lambda_1}{1 + \lambda_1^2} A_{2k}^2 \right)^2 \right\} \]
\[
- \frac{1}{2} e^{\sigma t} \phi_R \frac{\|\nabla \tr(s)\|^2}{\tr(s)}
\]

\[
- \varepsilon_2 t \left\{ -2\|\nabla H\|^2 + 2 \sum_{i,j=1}^{2} \Lambda_H^2(e_i, e_j) \right\}
+ e^{\sigma t} \left\{ \sigma \phi_R \tr(s) - (\Delta \phi_R) \tr(s) - 2(\nabla \phi_R, \nabla \tr(s)) \right\}.
\]

Proof. We calculate
\[
(\partial_t - \Delta) \chi = e^{\sigma t} \phi_R (\partial_t - \Delta) \tr(s) - \varepsilon_2 t (\partial_t - \Delta)\|\overrightarrow{H}\|^2
\]

\[
- \varepsilon_2 \|\overrightarrow{H}\|^2
+ e^{\sigma t} \left\{ \sigma \phi_R \tr(s) - (\Delta \phi_R) \tr(s) - 2(\nabla \phi_R, \nabla \tr(s)) \right\}.
\]

Now, recall (see e.g. [16, Corollary 3.8]) that the square norm of the mean curvature vector evolves by
\[
(\partial_t - \Delta)\|\overrightarrow{H}\|^2 = -2\|\nabla \overrightarrow{H}\|^2 + 2 \sum_{i,j=1}^{2} \Lambda_H^2(e_i, e_j),
\]

which together with Lemma 4.6 implies the claim. □

Lemma 4.6. Let \(F(x, t)\) be a smooth, graphic solution to (3.1) with bounded geometry and suppose \(\tr(s) \geq \varepsilon_1\) on \([0, T)\) for some \(\varepsilon_1 > 0\). Then there is a constant \(C \geq 0\) depending only on \(\varepsilon_1\), such that
\[
t\|\overrightarrow{H}\|^2 \leq C
\]
on \(\mathbb{R}^2 \times [0, T)\).

Proof. Fix \(0 < \varepsilon_2 < \varepsilon_1\), so that \(\chi\) is positive on \(\mathbb{R}^2 \times \{0\}\). Further, fix any \(T' \in [0, T)\). We will first show that we can choose \(R_0 > 0\), such that \(\chi \geq 0\) on \(\mathbb{R}^2 \times [0, T')\) for all \(R \geq R_0\).

Suppose \(\chi\) is not positive on \(\mathbb{R}^2 \times [0, T']\) for some \(R \geq R_0\). Then, as \(\chi > 0\) on \(\mathbb{R}^2 \times \{0\}\), \(\tr(s) \geq \varepsilon_1\) on \([0, T), \phi_R(x) \to \infty\) as \(\|x\| \to \infty\) and by the bounded geometry condition (3.3), it follows that \(\chi > 0\) outside some compact set \(K \subset \mathbb{R}^2\) for all \(t \in [0, T')\). We conclude that there is \((x_0, t_0) \in K \times [0, T')\), such that \(\chi(x_0, t_0) = 0\) and that \(t_0\) is the first such time. By the second derivative criterion, at \((x_0, t_0)\) we have
\[
\chi = 0, \quad \nabla \chi = 0, \quad \partial_t \chi \leq 0 \quad \text{and} \quad \Delta \chi \geq 0.
\]

(4.3)

On the other hand, we estimate the terms in the evolution equation for \(\chi\) from Lemma 4.5 at \((x_0, t_0)\). Using
\[
\sum_{i,j=1}^{2} \Lambda_H^2(e_i, e_j) \leq \|A\|^2 \|\overrightarrow{H}\|^2
\]
and \(\phi_R \geq 1\) yields the estimate
\[
(\partial_t - \Delta)\chi \geq e^{\sigma t_0} \phi_R \left\{ 2\|A\|^2 \tr(s) + \frac{2}{\tr(s)} \sum_{k=1}^{2} \left(\frac{2\lambda_2}{1 + \lambda_2^2} A_1^k + \frac{2\lambda_1}{1 + \lambda_1^2} A_2^k \right)^2 \right\} \geq 0
\]

\[
- \frac{1}{2} e^{\sigma t_0} \phi_R \frac{\|\nabla \tr(s)\|^2}{\tr(s)}
+ 2\varepsilon_2 t_0 \|\nabla \overrightarrow{H}\|^2 - 2\varepsilon_2 t_0 \|A\|^2 \|\overrightarrow{H}\|^2 - \varepsilon_2 \|\overrightarrow{H}\|^2
\]
\[+ e^{\sigma t_0} \left\{ \sigma \phi_R \operatorname{tr}(s) - (\Delta \phi_R) \operatorname{tr}(s) - 2(\nabla \phi_R, \nabla \operatorname{tr}(s)) \right\} \]
\[\geq 2\|A\|^2 \left(e^{\sigma t_0} \phi_R \operatorname{tr}(s) - x_2(t_0) \|H\|^2 + 1 \right) + 2x_2 \|A\|^2 - x_2 \|H\|^2 \]
\[- \frac{1}{2} e^{\sigma t_0} \phi_R \frac{\|\nabla \operatorname{tr}(s)\|^2}{\operatorname{tr}(s)} + 2x_2 t_0 \| \nabla H \|^2 \]
\[+ e^{\sigma t_0} \left\{ \sigma \phi_R \operatorname{tr}(s) - (\Delta \phi_R) \operatorname{tr}(s) - 2(\nabla \phi_R, \nabla \operatorname{tr}(s)) \right\} \]
\[=: 2\|A\|^2 \chi + A + G \]
\[+ e^{\sigma t_0} \left\{ \sigma \phi_R \operatorname{tr}(s) - (\Delta \phi_R) \operatorname{tr}(s) - 2(\nabla \phi_R, \nabla \operatorname{tr}(s)) \right\}, \]

where

\[A := 2x_2 \|A\|^2 - x_2 \|H\|, \]
\[G := -\frac{1}{2} e^{\sigma t_0} \phi_R \frac{\|\nabla \operatorname{tr}(s)\|^2}{\operatorname{tr}(s)} + 2x_2 t_0 \| \nabla H \|^2. \]

Since \(\|H\|^2 \leq 2\|A\|^2 \), we derive

\[A \geq 0. \tag{4.4} \]

To estimate the terms in \(G \), we want to exploit \(\nabla \chi = 0 \) at \((x_0, t_0)\). This yields

\[e^{\sigma t_0} \left\{ (\nabla \phi_R) \operatorname{tr}(s) + \phi_R (\nabla \operatorname{tr}(s)) \right\} = x_2 t_0 \| \nabla H \|^2 \]

and consequently

\[e^{2\sigma t_0} \left\{ (\nabla \phi_R) \operatorname{tr}(s) + \phi_R (\nabla \operatorname{tr}(s)) \right\}^2 = x_2^2 t_0^2 \| \nabla H \|^2 \nu \]
\[\leq 4x_2^2 t_0^2 \| \nabla H \|^2 \| \nabla H \|^2 \]
\[\leq 4x_2^2 t_0^2 \| \nabla H \|^2 \| \nabla H \|^2 + 1. \]

From \(\chi(x_0, t_0) = 0 \) we get \(e^{\sigma t_0} \phi_R \operatorname{tr}(s) = x_2 t_0 (\|H\|^2 + 1) \), so that

\[e^{\sigma t_0} \left\{ (\nabla \phi_R) \operatorname{tr}(s) + \phi_R (\nabla \operatorname{tr}(s)) \right\}^2 \leq 4x_2 t_0 \phi_R \| \nabla H \|^2 \operatorname{tr}(s). \]

Noting \(\phi_R \geq 1 \) and sorting the expression, we obtain

\[e^{\sigma t_0} \phi_R \| \nabla \operatorname{tr}(s) \|^2 \leq 4x_2 t_0 \| \nabla H \|^2 \operatorname{tr}(s) \]
\[- e^{\sigma t_0} \left\{ \frac{\| \nabla \phi_R \|^2}{\phi_R} (\operatorname{tr}(s))^2 + 2 \operatorname{tr}(s) (\nabla \phi_R, \nabla \operatorname{tr}(s)) \right\} \]
\[\leq 4x_2 t_0 \| \nabla H \|^2 \operatorname{tr}(s) - 2e^{\sigma t_0} \operatorname{tr}(s) (\nabla \phi_R, \nabla \operatorname{tr}(s)). \]

Thus, the gradient terms satisfy

\[G = -\frac{1}{2} e^{\sigma t_0} \phi_R \frac{\|\nabla \operatorname{tr}(s)\|^2}{\operatorname{tr}(s)} + 2x_2 t_0 \| \nabla H \|^2 \geq e^{\sigma t_0} \langle \nabla \phi_R, \nabla \operatorname{tr}(s) \rangle. \tag{4.5} \]

Collecting the previous calculations and using \(\operatorname{tr}(s) \geq \epsilon_1 > 0 \) as well as \(\chi(x_0, t_0) = 0 \), we estimate the evolution equation of \(\chi \) at \((x_0, t_0)\) by

\[(\partial_t - \Delta) \chi \leq e^{\sigma t_0} \left\{ \sigma \phi_R \operatorname{tr}(s) - (\Delta \phi_R) \operatorname{tr}(s) - \langle \nabla \phi_R, \nabla \operatorname{tr}(s) \rangle \right\} \]
\[\geq e^{\sigma t_0} \left\{ \sigma \left(1 + \frac{\|x_0\|^2}{R^2} \right) - c(T') \left(\frac{1}{R^2} + \frac{\|x_0\|^2}{R^2} \right) \right\} \operatorname{tr}(s) \]
By Lemma for all t

The proof is essentially the same as [Proof. for all t]

$$\|x_0\|_{\mathbb{R}^2}^2 - 2c(T') \frac{\|x_0\|_{\mathbb{R}^2}}{R^2} - \frac{c(T')}{R^2}$$

is strictly positive for any $R \geq R_0$ and any $\|x_0\|_{\mathbb{R}^2}$. Continuing with the above calculation, we obtain

$$\langle \partial_t - \Delta \rangle \chi_t(x_0,t_0) \geq e^{\sigma t_0} \frac{\sigma}{2} \operatorname{tr}(s) \geq e^{\sigma t_0} \frac{\sigma}{2} e > 0.$$ But this is a contradiction to (4.3), which shows the claim.

By first letting $R \to \infty$, then $\sigma \to 0$ and finally $T' \to T$, we have shown that

$$\operatorname{tr}(s) - \varepsilon_2 (t\|\widetilde{H}\|^2 + 1) \geq 0$$

holds for all $t \in [0,T)$. The statement of the Lemma follows by noting $\operatorname{tr}(s) \leq 2$, setting $C := \frac{2}{\varepsilon_2} - 1$ and recalling that ε_2 only depends on ε_1. \qed

As in [2,10], we go on by analyzing the non-parametric version of the mean curvature flow to obtain estimates on all higher derivatives of the map which defines the graph. Note that most proofs are very similar to the ones in the articles cited, but nevertheless need to be slightly modified to account for the weaker assumptions in the two-dimensional case.

Lemma 4.7. Let $F : \mathbb{R}^2 \times [0,T) \to \mathbb{R}^2 \times \mathbb{R}^2$ be a smooth, graphic solution to (3.1) with bounded geometry. Suppose the corresponding maps $f_t : \mathbb{R}^2 \to \mathbb{R}^2$ satisfy $\|Df_t\| \leq C_1$ and $\|D^2f_t\| \leq C_2$ on $\mathbb{R}^2 \times [0,T)$ for some constants $C_1,C_2 \geq 0$. Then for every $l \geq 3$, there is a constant C_l, such that

$$\sup_{x \in \mathbb{R}^2} \|D^l f_t(x)\|^2 \leq C_l$$

for all $t \in [0,T)$.

Proof. The proof is essentially the same as [2, Proof of Lemma 4.2] (see also [10, Lemma 5.4] with $m = n = 2$). \qed

Lemma 4.8. Let $F : \mathbb{R}^2 \times [0,T) \to \mathbb{R}^2 \times \mathbb{R}^2$ be a smooth, graphic solution to (3.1) with bounded geometry and denote by $f_t : \mathbb{R}^2 \to \mathbb{R}^2$ the corresponding maps. Assume the condition $\operatorname{tr}(s) \geq \varepsilon$ holds for a fixed $\varepsilon > 0$ at time $t = 0$. Further assume that $\|H\| \leq C$ on $\mathbb{R}^2 \times [0,T)$ for some constant $C \geq 0$. Then for every $l \geq 1$, there is a constant $C_l \geq 0$, such that

$$\sup_{x \in \mathbb{R}^2} \|D^l f_t(x)\|^2 \leq C_l$$

for all $t \in [0,T)$.

Proof. By Lemma 4.3, the area-decreasing condition is preserved in $[0,T)$, so that the relation $\operatorname{tr}(s) \geq \varepsilon$ holds in $[0,T)$. Since ε is strictly positive, from

$$\operatorname{tr}(s) = \frac{2(1 - \lambda_1^2 \lambda_2^2)}{(1 + \lambda_1^2)(1 + \lambda_2^2)} \geq \varepsilon > 0$$

we infer

$$\varepsilon (1 + \lambda_2^2) \leq \frac{2(1 - \lambda_1^2 \lambda_2^2)}{1 + \lambda_2^2} \leq 2, \quad (i,j) \in \{(1,2),(2,1)\},$$

(4.6)
so that the singular values λ_1, λ_2 of Df_t are bounded. This also means that Df_t itself is bounded, thus showing the claim for $l = 1$.

By Lemma 4.7, we now only need to prove the case $l = 2$. Suppose the claim was false for $l = 2$. Let
\[
\eta(t) := \sup_{x \in \mathbb{R}^2} \|D^2 f(x, t')\|.
\]
Then there is a sequence (x_k, t_k) along which we have $\|D^2 f(x_k, t_k)\| \geq \eta(t_k)/2$ while $\eta(t_k) \to \infty$ as $t_k \to T$. Let $\tau_k := \eta(t_k)$. For each k, let $(y, \tilde{f}_{\tau_k}(y, r))$ be the parabolic scaling of the graph $(x, f(x, t))$ by τ_k at (x_k, t_k). Then $\tilde{f}_{\tau_k}(y, r)$ is a smooth solution to (3.2) on $\mathbb{R}^2 \times [-\tau_k^2 t_k, 0]$. Note that by the definition $\tau_k = \eta(t_k)$, it is
\[
\|\tilde{D} \tilde{f}_{\tau_k}\| = \|Df\| \leq C_1,
\]
\[
\|\tilde{D}^2 \tilde{f}_{\tau_k}\| = \tau_k^{-1}\|D^2 f\| \leq 1
\]
on $\mathbb{R}^2 \times [-\tau_k^2 t_k, 0]$. Moreover, by the definition of the sequence (x_k, t_k), the estimate
\[
\|\tilde{D}^2 \tilde{f}_{\tau_k}(0, 0)\| = \|\frac{D^2 f(x_k, t_k)}{\tau_k}\| = \|\frac{D^2 f(x_k, t_k)}{\eta(t_k)}\| \geq \frac{1}{2}
\]
holds. By Lemma 4.7, we conclude that all the higher derivatives of \tilde{f}_{τ_k} are uniformly bounded on $\mathbb{R}^2 \times (-\tau_k^2 t_k, 0]$. Thus, the theorem of Arzelà-Ascoli implies the existence of a subsequence of \tilde{f}_{τ_k} converging smoothly and uniformly on compact subsets of $\mathbb{R}^2 \times (-\infty, 0]$. Moreover, by Equation (4.6), this implies bounds for the singular values $\tilde{\lambda}_1, \tilde{\lambda}_2$ of the limiting graph,
\[
1 + \tilde{\lambda}_k^2 \leq \frac{2}{\varepsilon}, \quad k = 1, 2.
\]
It follows that we can estimate the Jacobian of the projection π_1 from the graph $(y, \tilde{f}_\infty(y, r))$ to \mathbb{R}^2,
\[
0 < \frac{\varepsilon}{2} \leq \Omega_\infty = \frac{1}{\sqrt{(1 + \tilde{\lambda}_1^2)(1 + \tilde{\lambda}_2^2)}} \leq 1.
\]
Thus, we can apply a Bernstein-type theorem of Wang [21, Theorem 1.1] to conclude that the graph $(y, \tilde{f}_\infty(y, r))$ is an affine subspace of $\mathbb{R}^2 \times \mathbb{R}^2$. Therefore, $\tilde{f}_\infty(y, r)$ has to be a linear map, but this contradicts (4.7), which (taking the limit $k \to \infty$) implies the estimate $\|\tilde{D}^2 \tilde{f}_\infty(y, r)(0, 0)\| \geq 1/2$. \qed

Lemma 4.9. Suppose $f(x, t)$ is a smooth solution to (3.2) on $[0, T)$ that satisfies the bounded geometry condition. Then
\[
\sup_{x \in \mathbb{R}^2} \|f(x, t)\|^2 \leq \sup_{x \in \mathbb{R}^2} \|f(x, 0)\|^2
\]
holds for all $t \in [0, T']$, where $T' \in [0, T)$ is arbitrary.

Proof. This is [10, Lemma 5.6] with $m = n = 2$. \qed
5. Proof of Theorem A

Using Lemma 4.3 and the estimates from the Lemmas 4.6, 4.7 and 4.8, the proof of the long-time existence of the solution is the same as in [2, Lemma 5.2]. By Lemma 4.4, the evolving surface stays a graph of an area-decreasing map $f_t : \mathbb{R}^2 \to \mathbb{R}^2$. The decay estimate for \overline{H} is given in Lemma 4.6.

Employing the Lemmas 4.3, the bounds on the singular values from Equation (4.6) and the decay estimates from Lemmas 4.6, 4.7 and 4.8, the proof of the decay estimates for the higher-order derivatives of f_t follows in the same way as in [10, Lemma 6.3]. The height estimate is provided by Lemma 4.9.

If we assume $\|f_0\| \to 0$ for $\|x\| \to \infty$, we know by Lemma 4.9 that $\sup_{x \in \mathbb{R}^2} \|f(x, t)\|$ stays bounded. As the singular values $\lambda_1, \lambda_2 \geq 0$ are uniformly bounded, so is \tilde{g}, which means the equation

$$\frac{\partial f}{\partial t}(x, t) = \sum_{i,j=1}^{2} \tilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}(x, t)$$

is uniformly parabolic. Then, by the theorem in [8], $f(x, t) \to 0$ as $t \to \infty$, uniformly with respect to x. This shows the convergence part of Theorem A and concludes the proof. □

6. Applications

We demonstrate how to apply Theorem A to the examples considered in [10, Section 9]. Note that both proofs are formally the same as [10, Proofs of Examples 9.3 and 9.4], and we state them here for completeness.

Let $F_t : \mathbb{R}^2 \to \mathbb{R}^2 \times \mathbb{R}^2$ be a graphical self-shrinking solution to the mean curvature flow, and denote by $f_t : \mathbb{R}^2 \to \mathbb{R}^2$ the corresponding map. Then f_1 satisfies the equation

$$\sum_{i,j=1}^{2} \tilde{g}^{ij} \frac{\partial^2 f_k}{\partial x^i \partial x^j}(x) = -\frac{1}{2} f_k^2(x) + \frac{1}{2} \langle D f_k(x), x \rangle, \quad k = 1, 2. \quad (6.1)$$

If F_t is a translating solution to the mean curvature flow, then there is $\xi \in \mathbb{R}^2 \times \mathbb{R}^2$, such that $\bar{H} = pr^\perp(\xi)$. If the initial data is given by $F_0(x) = (x, f(x))$, then for F_t to be a translating solution the function f has to satisfy

$$\sum_{i,j=1}^{2} \tilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j} = d\pi_2(\xi) - \langle D f(x), d\pi_1(\xi) \rangle. \quad (6.2)$$

Example 6.1 (A Bernstein Theorem for Self-Shrinking Solutions). Let $v : \mathbb{R}^2 \to \mathbb{R}^2$ be a strictly area-decreasing map with bounded second fundamental form and satisfying (6.1). Then v is a linear function.

Proof. Since v is a smooth solution to (6.1), the function

$$f_t(x) := \sqrt{-t} v \left(\frac{x}{\sqrt{-t}} \right)$$

is a solution to (3.2) for $t \in (-\infty, 0]$ and $f_{-1}(x) = v(x)$. Since this solution is unique by [4, Theorem 1.1], we can apply Theorem A. In particular, $\|D^2 f_t(x)\| \leq C$ for some constant C for $t \geq -1$ and any x. Since also

$$D^2 f_t(x) = \frac{1}{\sqrt{-t}} D^2 v \left(\frac{x}{\sqrt{-t}} \right),$$

no further steps are needed to prove the claim.
we obtain the estimate
\[\|D^2v(x)\| \leq C\sqrt{t}\]
for any \(x\). Letting \(t \to 0\), this implies \(D^2v(x) = 0\), so that \(v\) is a linear function. \(\square\)

Example 6.2 (A Bernstein Theorem for Translating Solutions). Let \(v : \mathbb{R}^2 \to \mathbb{R}^2\) be a strictly area-decreasing map with bounded second fundamental form and satisfying (6.2). Then \(v\) is a linear function.

Proof. If \(v\) solves (6.2), then there is a constant vector \(\xi \in \mathbb{R}^2 \times \mathbb{R}^2\), such that
\[f_t(x) := v(x - d\pi_1(\xi)t) + d\pi_2(\xi)t\]
solves (3.2) with initial condition \(f_0(x) = v(x)\).

On the other hand, by Theorem A there is a long-time solution \(f_t(x)\) to (3.2) with initial condition \(f_0(x)\) which satisfies \(\sup_{x \in \mathbb{R}^2} \|D^2f_t(x)\| \to 0\) as \(t \to \infty\). By the uniqueness result [4, Theorem 1.1],
\[\sup_{x \in \mathbb{R}^2} \|D^2v(x - d\pi_1(\xi)t)\| = \sup_{x \in \mathbb{R}^2} \|D^2f_t(x)\| \to 0\]
as \(t \to \infty\). We conclude that \(\sup_{x \in \mathbb{R}^2} \|D^2v(x)\| = 0\), so \(v\) must be linear. \(\square\)

References

[1] Kenneth A. Brakke, *The motion of a surface by its mean curvature*, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J. 1978.
[2] Albert Chau, Jingyi Chen, and Weiyong He, *Lagrangian mean curvature flow for entire Lipschitz graphs*, Calc. Var. Partial Differential Equations 44 (2012), no. 1-2, 199–220, DOI 10.1007/s00526-011-0403-x.
[3] Albert Chau, Jingyi Chen, and Yu Yuan, *Lagrangian mean curvature flow for entire Lipschitz graphs II*, Math. Ann. 357 (2013), no. 1, 165–183, DOI 10.1007/s00208-013-0897-2.
[4] Bing-Long Chen and Le Yin, *Mean curvature evolution of entire graphs*, Comm. Anal. Geom. 18 (2010), no. 3, 435–490.
[5] Jing Yi Chen, Jia Yu Li, and Gang Tian, *Two-dimensional graphs moving by mean curvature flow*, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 3, 457–506, DOI 10.1007/s10114-007-5193-8.
[6] Klaus Ecker and Gerhard Huisken, *Interior estimates for hypersurfaces moving by mean curvature*, Invent. Math. 105 (1991), no. 3, 547–569, DOI 10.1007/BF01232278.
[7] , *Mean curvature evolution of entire graphs*, Ann. of Math. (2) 130 (1989), no. 3, 453–471, DOI 10.2307/1971452.
[8] A. M. Il’in, *On the behavior of the solution of the Cauchy problem for a parabolic equation under unrestricted growth of time*, Uspehi Mat. Nauk 16 (1961), no. 2 (98), 115–121.
[9] Kuo-Wei Lee and Yng-Ing Lee, *Mean curvature flow of the graphs of maps between compact manifolds*, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5745–5759, DOI 10.1090/S0002-9947-2011-05204-9.
[10] Felix Lubbe, *Mean curvature flow of contractions between Euclidean spaces*, Calculus of Variations and Partial Differential Equations 55 (2016), no. 4, 1–28, DOI 10.1007/s00526-016-1043-2.
[11] Richard M. Schoen, *The role of harmonic mappings in rigidity and deformation problems*, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math. vol. 143, Dekker, New York, 1993, pp. 179–200.
[12] Andreas Savas-Halilaj and Knut Smoczyk, *Mean curvature flow of area decreasing maps between Riemann surfaces*. arXiv:1602.07595.
[13] , *Evolution of contractions by mean curvature flow*, Math. Ann. 361 (2015), no. 3–4, 725–740, DOI 10.1007/s00208-014-1090-y.
[14] , *Bernstein theorems for length and area decreasing minimal maps*, Calc. Var. Partial Differential Equations 50 (2014), no. 3–4, 549–577, DOI 10.1007/s00526-013-0646-0.
[15] , *Homotopy of area decreasing maps by mean curvature flow*, Adv. Math. 255 (2014), 455–473, DOI 10.1016/j.aim.2014.01.014.
[16] Knut Smoczyk, *Mean curvature flow in higher codimension: introduction and survey*, Global differential geometry, 2012, pp. 231–274, DOI 10.1007/978-3-642-22842-1_9.
[17] , *Longtime existence of the Lagrangian mean curvature flow*, Calc. Var. Partial Differential Equations 20 (2004), no. 1, 25–46, DOI 10.1007/s00526-003-0226-9.
[18] Knut Smoczyk, Mao-Pei Tsui, and Mu-Tao Wang, *Curvature decay estimates of graphical mean curvature flow in higher codimensions*, Trans. Amer. Math. Soc., posted on 2016, DOI 10.1090/tran/6624, (to appear in print).

[19] Mao-Pei Tsui and Mu-Tao Wang, *Mean curvature flows and isotopy of maps between spheres*, Comm. Pure Appl. Math. 57 (2004), no. 8, 1110–1126, DOI 10.1002/cpa.20022.

[20] Mu-Tao Wang, *Subsets of Grassmannians preserved by mean curvature flows*, Comm. Anal. Geom. 13 (2005), no. 5, 981–998.

[21], *On graphic Bernstein type results in higher codimension*, Trans. Amer. Math. Soc. 355 (2003), no. 1, 265–271, DOI 10.1090/S0002-9947-02-03108-2.

[22], *Gauss maps of the mean curvature flow*, Math. Res. Lett. 10 (2003), no. 2-3, 287–299, DOI 10.4310/MRL.2003.v10.n3.a2.

[23], *Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension*, Invent. Math. 148 (2002), no. 3, 525–543, DOI 10.1007/s002220100201.

[24], *Deforming area preserving diffeomorphism of surfaces by mean curvature flow*, Math. Res. Lett. 8 (2001), no. 5-6, 651–661, DOI 10.4310/MRL.2001.v8.n5.a7.

[25], *Mean Curvature Flow of Surfaces in Einstein Four-Manifolds*, J. Differential Geom. 57 (2001), no. 2, 301–338.

FELIX LUBBE
MATHEMATISCHES INSTITUT
GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN
BUNSENSTRASSE 3–5
37073 GÖTTINGEN, GERMANY
E-mail address: Felix.Lubbe@mathematik.uni-goettingen.de