Health Effects of Increasing Protein Intake Above the Current Population Reference Intake in Older Adults: A Systematic Review of the Health Council of the Netherlands

Linda M Hengeveld, Janette de Goede, Lydia A Afman, Stephan JL Bakker, Joline WJ Beulens, Ellen E Blaak, Eric Boersma, Johanna M Geleijnse, Johannes (Hans) B van Goudoever, Maria TE Hopman, Jolein A Iestra, Stef PJJ Kremers, Ronald P Mensink, Nicole M de Roos, Coen DA Stehouwer, Janneke Verkaik-Kloosterman, Emely de Vet, and Marjolein Visser

1Health Council of the Netherlands, The Hague, The Netherlands; 2Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands; 3Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; 4Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands; 5Amsterdam Cardiovascular Sciences Research Institute, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands; 6Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands; 7Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; 8Erasmus MC, University Medical Center, Department of Cardiology, Rotterdam, The Netherlands; 9Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children’s Hospital, Department of Pediatrics, Amsterdam, The Netherlands; 10Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; 11Department of Health Promotion, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands; 12Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands; 13CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; 14Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; 15National Institute of Public Health and the Environment, Bilthoven, The Netherlands; 16Department of Social Sciences, Chair group Consumption and Healthy Lifestyles, Wageningen University and Research, Wageningen, The Netherlands; and 17Department of Health Sciences, Faculty of Science, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

ABSTRACT

Whether older adults need more protein than younger adults is debated. The population reference intake for adults set by the European Food Safety Authority is 0.83 g/kg body weight (BW)/d based primarily on nitrogen balance studies, but the underlying data on health outcomes are outdated. An expert committee of the Health Council of the Netherlands conducted a systematic review (SR) of randomized controlled trials (RCTs) examining the effect of increased protein intake on health outcomes in older adults from the general population with an average habitual protein intake ≥0.8 g/(kg BW · d). Exposures were the following: 1) extra protein compared with no protein and 2) extra protein and physical exercise compared with physical exercise. Outcomes included lean body mass, muscle strength, physical performance, bone health, blood pressure, serum glucose and insulin, serum lipids, kidney function, and cognition. Data of >1300 subjects from 18 RCTs were used. Risk of bias was judged as high (n = 9) or “some concerns” (n = 9). In 7 of 18 RCTs, increased protein intake beneficially affected ≥1 of the tested outcome measures of lean body mass. For muscle strength, this applied to 3 of 8 RCTs in the context of physical exercise and in 1 of 7 RCTs without physical exercise. For the other outcomes, <30% (0–29%) of RCTs showed a statistically significant effect. The committee concluded that increased protein intake has a possible beneficial effect on lean body mass and, when combined with physical exercise, muscle strength; likely no effect on muscle strength when not combined with physical exercise, or on physical performance and bone health; an ambiguous effect on serum lipids; and that too few RCTs were available to allow for conclusions on the other outcomes. This SR provides insufficiently convincing data that increasing protein in older adults with a protein intake ≥0.8 g/(kg BW · d) elicits health benefits. Adv Nutr 2022;13:1083–1117.
Introduction

Dietary proteins are essential for healthy structure and functioning of the human body. The population reference intake (PRI) of protein for (healthy) adults was set at 0.83 g/[kg body weight (BW) · d] by the WHO in 2007 (1), and a similar PRI was set by the European Food Safety Authority (EFSA) in 2012 (2). This PRI applies to all healthy adults, regardless of age. However, several international groups of scientific experts advocate a higher PRI for older adults than for younger adults, because older adults need larger amounts of protein to optimally preserve muscle mass and function (3–5). Some countries have already set higher dietary reference values (DRV’s) for older adults; for example, the Nordic countries in 2012 (6) derived a PRI of 1.1 to 1.3 g/[kg BW · d] and the German-speaking DACH countries in 2017 (7, 8) derived a PRI of 1.0 g/[kg BW · d] for older adults (age ≥ 65 y). The Health Council of the Netherlands, commissioned by the Ministry of Health, Welfare, and Sport, periodically evaluates its DRVs for energy, macronutrients, and micronutrients, and recently revised its latest published DRVs for protein from 2001 (9). Because of the ongoing scientific debate about the optimal protein intake for older adults, the evaluation specifically focused on the DRVs for older adults (age ≥60 y).

From the perspective of harmonization of DRVs across the European Union, the Permanent Committee on Nutrition, set by the council, used the EFSA scientific report on protein (2) as a starting point, and evaluated whether it agreed with EFSA’s scientific basis and methodology. EFSA, in accordance with the WHO, based its DRVs for protein primarily on a meta-analysis (MA) of nitrogen-balance studies in healthy adults performed by Rand et al. (10) and derived an average protein requirement of 0.66 g/[kg BW · d] and a PRI of 0.83 g/[kg BW · d]. EFSA also evaluated human observational and intervention studies on health outcomes but concluded that the available data on the effects of protein intake on muscle mass, muscle function, BW control, obesity risk, insulin sensitivity, glucose homeostasis, and bone health could not be used for setting DRVs for protein. The Dutch committee agreed with the approach of EFSA and the conclusions drawn based on the evidence available at that time. However, the committee judged that the literature needed to be updated because many new publications on this topic had been published since the release of the EFSA report in 2012.

The committee searched for recent systematic reviews (SRs) and systematic and transparent reports (i.e., those with a clear description and argumentation of the followed methodology, including weighing of the evidence) on protein intake in relation to health outcomes in older adults, but judged that those available were limited with regard to the degree of detail of the included individual studies required for deriving DRVs. Most importantly, the majority of SRs and reports did not provide information about the total (habitual) protein intake [in g/(kg BW · d)] of the participants. In addition, various types of exposure were often mixed; for example, protein alone compared with protein combined with physical exercise. Those exposures might differentially affect health outcomes (11) and should therefore be separately investigated. Furthermore, several SRs and reports included cross-sectional studies, which have a high risk of recall bias and provide no evidence for a temporal relation (12). The committee judged that none of those SRs or reports provided the information needed to derive DRVs for protein.
or that they did not include the most recent literature. Moreover, none of the SRs specifically addressed the question of whether increasing protein intake in older adults who meet the current PRI of 0.83 g protein/kg BW/d would yield health benefits. Therefore, the committee performed an SR with the aim of determining whether a protein intake higher than the PRI of 0.83 g/(kg BW·d) derived from nitrogen-balance data affects health outcomes in older adults. The SR was focused on randomized controlled trials (RCTs) among older adults in the general population with an average habitual protein intake of ≥0.8 g/(kg BW·d). This SR served as ancillary evidence for the revised DRVs of protein for older adults in the Netherlands.

Methods
The present SR was conducted by the multidisciplinary Permanent Committee on Nutrition, comprising experts in the research fields of nutrition, health, physiology, epidemiology, and statistics. They filled out declarations of interest, which were published (in Dutch) on the website of the Health Council of the Netherlands (www.gezondheidsraad.nl). The committee performed an SR of peer-reviewed RCTs on the effects of increased protein intake on 9 health outcomes in older adults from the general population. The committee had regular meetings to determine the scope and protocol of the SR, discuss the eligibility and content of the scientific literature, and grade the evidence in order to draw final conclusions.

Literature search
The committee initially aimed to base its evaluation on SRs of RCTs and prospective cohort studies. Therefore, a systematic literature search was performed to identify relevant SRs, including MAs and individual participant data analyses, on the relation between protein intake and health outcomes in older adults. PubMed was searched on 23 April 2020 for English language publications with no date limit set. The literature search was performed in PubMed and Scopus (Supplemental Methods 1). This search for English language publications was limited to studies published in 2018, 2019, and 2020 (up until 23 April 2020) as this would cover the studies published after the inclusion date of the most recent SRs. Reference lists from eligible publications were hand-searched for relevant studies not found in the database search. Last, to ensure that no relevant publications had been missed, the committee—which included researchers in the field of protein and aging—was asked to report any additional publications that were considered relevant for this advisory report.

Study selection: inclusion and exclusion criteria
Nine health outcomes were selected for evaluation (based on availability in the literature): lean body mass, muscle strength, physical performance, bone health, blood pressure, serum glucose and insulin, serum lipids, kidney function, and cognition.

The committee included only RCTs, for the following reasons: 1) RCTs can provide more robust evidence for a causal relation than can be provided by prospective cohort studies; and 2) in the majority of prospective cohort studies available, categories of total protein intake specifically informative to the PRI were not used. For example, these studies often did not include a protein category at the level of the current PRI [0.8 g/(kg BW·d)], did not use this category as reference, or did not report protein intake in (or in a way that could be recalculated to) g/(kg BW·d). Because of this, it would be very difficult to specify if any additional protein intake beyond the PRI of 0.83 g/(kg BW·d) would elicit health benefits (or harm), and if so, what the exact optimal amount of protein would be. All RCTs thus retrieved were further assessed for eligibility by using the prespecified inclusion and exclusion criteria (Supplemental Methods 2).

In short, the committee included RCTs with a minimum duration of 4 wk that were performed among older adults with a minimal sampling age of 50 y (or—when sampling age was not reported in the study—an average age of ≥65 y), with an average habitual protein intake of ≥0.8 g/(kg BW·d) and who were living at home (independently), in a care home, or in a nursing home. Studies in which the study population consisted solely of hospitalized or immobilized patients or of individuals with a specific disease, such as chronic heart failure or chronic obstructive pulmonary disease, were excluded. The committee included studies in which the participants were exposed to protein or a mix of (≥4) amino acids, such as protein supplements, amino acid supplements, and protein-rich or protein-enriched foods. The committee excluded studies that were not isocaloric, in which the intervention groups and control groups differed (intentionally) in more ways than protein exposure alone and those that were performed in the context of a weight loss program.
Data extraction
The following study data were extracted by 1 author (LMH): first author, publication year, country, study population [i.e., age, sex, health characteristics, BMI (in kg/m²), race], sample size, (type of) protein intervention and control intervention, total protein intake, habitual protein intake, protein dose, concomitant physical exercise, dietary compliance, study duration, (precalculated) statistical power, funding source, specific outcome measure(s) examined, and results.

Total protein intake, habitual protein intake, and protein dose.
Since the underlying aim of the present SR was to derive a DRV for protein, the committee was particularly interested in the factual total protein intake [preferentially expressed in g/(kg BW · d)] of the study population, rather than the supplemented or prescribed amount of protein only. Total protein intake is the sum of the habitual protein intake and the supplemented or prescribed protein dose. Habitual protein intake is the amount of protein that a person usually consumes on an average day outside the trial context and generally is the baseline protein intake during the trial. Protein dose was defined as the difference in achieved total protein intake (i.e., habitual protein intake plus factually consumed amount of supplemented or prescribed protein), between the intervention group and the control group during follow-up. When not specifically reported in the article, the committee assumed that the total protein intake of the control group was similar to the habitual protein intake, since the control group is generally not provided or prescribed additional protein during the trial. Because the effect of extra protein intake might depend on the habitual protein intake, the RCTs were grouped according to the following 4 domains of habitual protein intake (only if sufficient data were available): ≥0.8 to <0.9, ≥0.9 to <1.0, ≥1.0 to <1.1, or ≥1.1 g/(kg BW · d). Cutoffs were based on currently used PRIs for protein (1, 2, 6–8, 13) and protein recommendations from expert groups (3, 4). Studies in which the habitual protein intake was <0.8 g/(kg BW · d) were not included, because the committee aimed to determine health effects of protein intake above the PRI derived from nitrogen-balance studies.

Concomitant physical exercise.
The 2017 Dutch Physical Activity Guidelines (14) recommend that adults, including older adults, perform muscle- and bone-strengthening activities at ≥2 times/wk. Increasing protein intake in the context of physical exercise is suggested to have an additive or synergistic effect on muscle mass and muscle strength in younger and older adults compared with protein intake alone (11). This finding implies that protein alone might exert health effects different from those exerted by protein in the context of physical exercise. Therefore, the committee defined the following 2 study categories: 1) studies examining the effect of protein intake only (without a physical exercise intervention in both intervention group and control group); and 2) studies examining the effect of protein intake in the context of physical exercise (both intervention group and control group received a physical exercise intervention). Thus, studies were excluded if protein intake was not the only contrast between the intervention group and the control group.

Study quality
The risk of bias of the included studies was assessed using the revised Cochrane risk of bias tool for randomized trials (RoB 2) (15). The RoB 2 tool addresses bias arising from the following sources: 1) the randomization process, 2) deviations from intended interventions, 3) missing outcome data, 4) measurement of the outcome, and 5) selection of the reported result. The risk of bias in each domain was scored as “low risk of bias,” “some concerns,” or “high risk of bias.” Together, these risk scores resulted in an overall judgment of the risk of bias, also in terms of “low risk of bias,” “some concerns,” or “high risk of bias.” The assessment was performed by 1 author (LMH). Any uncertainties were discussed with a second author (JdG) or with the full committee.

Data synthesis
Evaluation of the evidence.
The committee evaluated the scientific evidence regarding the effect of increased protein intake on each of the 9 selected health outcomes in older adults. For each outcome, the totality of the evidence was considered, followed by subgroup analyses, sensitivity analyses, and other considerations. With regard to subgroup analyses, the committee evaluated whether effect modification by concomitant physical exercise or domain of habitual protein intake was present. If the committee's judgment of the totality of the evidence was that there was likely no effect, or if there were too few studies (see the next paragraph for the possible categories of conclusions drawn by the committee), no stratification was made. Sensitivity analyses were conducted to examine whether heterogeneity in results across studies could be explained by the following factors: type of protein intervention (categorized as protein or amino acid supplements, 1 or a few protein- (en)rich(ed) foods, or high-protein diets), risk of bias (categorized as low, some concerns, or high), and if the study was statistically powered for the given outcome measure or not. The committee also evaluated, as an exploratory analysis, whether there was an indication for a dose–response relation (Supplemental Methods 3). This relation could only be evaluated by comparing studies, and not by comparing individuals within studies; therefore, this evaluation was considered “exploratory.” Other considerations refer to limitations of the included RCTs regarding, for example, the validity of the outcome measurements or the sample size of the study.

Applying decision rules.
Based on the overall effects observed, subgroup evaluations, sensitivity analyses, and other considerations, and by using
predefined decision rules (Table 1), the committee judged the totality of the evidence for each health outcome. Six predefined categories of conclusions were distinguished: a convincing (beneficial/unfavorable) effect, a likely (beneficial/unfavorable) effect, an ambiguous effect, likely no effect or too few studies.

Many RCTs assessed multiple specific outcome measures reflecting a similar health outcome, such as handgrip strength, knee extensor strength, and leg press as measures of muscle strength. Those specific outcome measures, also known as contrasts, are likely dependent on each other, which would artificially inflate the number of positive results. Therefore, conclusions were primarily based on the total number of RCTs (instead of contrasts), the percentage of RCTs showing an effect and the direction of the effect in any of the investigated outcome measures. Secondarily, the percentage of included RCTs with a statistically significant result was compared with the percentage of tested contrasts with a statistically significant result, across all RCTs with the given health outcome. If the percentage of contrasts with an effect differed substantially from the percentage of RCTs with an effect, this could lead to a modification (downgrading) of the conclusion. In this process, the committee adopted a liberal approach because it considered the RCTs that showed a beneficial effect for ≥1 of the tested contrasts as an RCT with an overall beneficial effect (even though, in some cases, several of the contrasts examined showed no effects).

Results

Study identification

The literature search for SRs in PubMed yielded 609 publications (Figure 1). After excluding publications based on title/abstract screening or full-text assessment, the committee selected 27 SRs for the evaluation. Checking reference lists yielded 1 additional SR. From those 28 SRs (16–43) that were used for identifying individual RCTs, 207 individual studies were retrieved. The additional search for recent individual studies published in 2018, 2019, or 2020 in PubMed (n = 649) and Scopus (n = 559) yielded, after removal of duplicates, 1042 unique publications. Based on title/abstract screening, 974 publications were excluded, leaving 68 publications for full-text assessment. Nine publications were found via SRs as well as the additional literature search and, thus, a total of 266 unique publications remained for full-text assessment. Publications that were unclear with respect to eligibility as well as publications that met the inclusion criteria according to the first assessor were then discussed with the full committee, which judged that a total of 24 publications were eligible for inclusion in the committee’s evaluation (44–67). These 24 publications reported on 18 unique RCTs (Table 2). No additional studies were identified through consultation of the committee members.

Study characteristics

The characteristics and results of the included RCTs are (per outcome) summarized in Tables 3–11 and described in detail in Supplemental Tables 1–9. The 18 RCTs in the present SR included in total >1300 participants, ranging between 12 (47) and 219 (52) participants per RCT. In all but 1 RCT (66) the mean age of the participants was ≥65 y. Most RCTs included both men and women (44, 45, 47, 48, 55, 56, 63–67), 5 RCTs included only women (49–54, 59–62), and 3 RCTs included only men (46, 57, 58). Six RCTs were conducted in the United States (46–49, 56, 67), 1 RCT in Canada (57), 4 RCTs (5 publications) in Europe (44, 45, 55, 63, 65), 2 RCTs (4 publications) in Australia (52–54, 66), 1 RCT in New Zealand (58), 3 RCTs (6 publications) in Brazil (50, 51, 59–62), and 1 RCT in Korea (64). Publication year of the included RCTs ranged from 1995 to 2019, with the majority of studies (n = 17) published since 2015.

Protein intake.

In most RCTs (n = 15), mean habitual protein intake was between 0.8 and 1.1 g/(kg BW · d). More specifically, mean habitual protein intake was ≥0.8 to <0.9 g/(kg BW · d) in

Table 1 Set of possible conclusions, and decision rules for drawing those conclusions for the effect of increased protein intake on health outcomes

Conclusion	Decision rules
A convincing beneficial effect	If a total of ≥3 studies are available, ≥75% of which show a beneficial effect and none of which show an unfavorable effect
A likely beneficial effect	If a total of ≥3 studies are available, 50–74% of which show a beneficial effect and none of which show an unfavorable effect
A possible beneficial effect	If a total of ≥3 studies are available, 25–49% of which show a beneficial effect and none of which show an unfavorable effect
An ambiguous effect	If a total of ≥3 studies are available and studies show conflicting results; this involves a combination of both beneficial effects and unfavorable effects, without the overall picture clearly pointing in 1 direction
Likely no effect	If a total of ≥3 studies are available, <25% of which show a beneficial effect and none of which show an unfavorable effect
Too few studies	A total of <3 studies are available or <3 studies with sufficient statistical power are available

1Wherever reference is made to beneficial effects or unfavorable effects, this concerns statistically significant beneficial or statistically significant unfavorable effects, respectively. All categories may include neutral studies, i.e., studies in which no statistically significant effect was found. Those rules also apply to an unfavorable effect. Unfavorable effects were not expected based on a first judgment of the literature, so in the interest of readability, those rules are not specified here.
5 RCTs (7 publications) (44-47, 50, 51, 67), ≥0.9 to <1.0 g/(kg BW · d) in another 5 RCTs (48, 58, 63-65), and ≥1.0 to <1.1 g/(kg BW · d) in the remaining 5 RCTs (7 publications) (55, 56, 59-62, 66). Mean habitual protein intake was ≥1.1 g/(kg BW · d) in 1 RCT (3 publications) (52-54). In 2 RCTs (49, 57), the habitual protein intake was unclear but judged as not <0.8 g/(kg BW · d) based on the subjects having health characteristics similar to those who participated in the other RCTs. Nine of the 18 RCTs (13 publications) were performed in the context of a concomitant physical exercise intervention (44, 45, 47, 48, 50, 51, 57, 59-62, 65, 66), mostly resistance exercise training. RCTs with and without

FIGURE 1 Flow chart of study selection. RCT, randomized controlled trial; SR, systematic review; tiab, title and abstract. *Published in 2018, 2019, or 2020 (up to 23 April 2020). †No relevant exposure concerns, e.g., no protein or protein-based intervention, a co-intervention (e.g., vitamin D) provided to the intervention group only or the type or distribution of protein rather than its amount was examined; different study design concerned, e.g., prospective cohort studies, no control group, or an intervention period <4 wk; no relevant study population concerns, e.g., people aged <50 y or hospitalized people; and inappropriate trial conditions concern, e.g., interventions conducted during a weight loss program.
TABLE 2 Overview of RCTs and the health outcomes they addressed\(^1,2\)

Author(s) and publication year of RCT (reference no.)	Health outcomes addressed
Arnarson et al. 2013 (44), Ramel et al. (45)	Lean body mass, muscle strength, physical performance, kidney function
Bhasin et al. 2018 (46)	Lean body mass, muscle strength, physical performance, serum lipids, kidney function
Campbell et al. 1995 (47)	Lean body mass
Chalé et al. 2013 (48)	Lean body mass, muscle strength, physical performance
Dillon et al. 2009 (49)	Lean body mass, muscle strength
Fernandes et al. 2018 (50), Sugihara et al. 2018 (51)	Lean body mass, muscle strength, bone health, serum glucose and insulin, serum lipids
Hodgson et al. 2012 (52), Zhu et al. 2011 (53), Zhu et al. 2015 (54)	Lean body mass, muscle strength, physical performance, bone health, blood pressure
Isopoglu et al. 2016 (55)	Lean body mass, bone health, kidney function
Kersetter et al. 2015 (56)	Lean body mass, muscle strength
Mitchell et al. 2015 (57)	Lean body mass, muscle strength, physical performance
Mitchell et al. 2017 (58)	Lean body mass, muscle strength, physical performance, blood pressure, serum glucose and insulin, serum lipids
Nabuco et al. 2018 (59), Nabuco et al. 2019a (60), Nabuco et al. 2019b (61)	Lean body mass, muscle strength, physical performance, blood pressure, serum glucose and insulin, serum lipids
Nabuco et al. 2019c (62)	Lean body mass, muscle strength, physical performance, blood pressure, serum glucose and insulin, serum lipids
Ottestad et al. 2017 (63)	Lean body mass, muscle strength, physical performance, serum glucose and insulin, serum lipids, kidney function
Park et al. 2018 (64)	Lean body mass, muscle strength, physical performance, serum glucose and insulin, serum lipids, kidney function, cognition
Thomson et al. 2016 (66)	Lean body mass, muscle strength, physical performance, kidney function
Wright et al. 2018 (67)	Lean body mass, muscle strength, physical performance

\(^1\) RCT, randomized controlled trial.
\(^2\) Publications listed in the same row report on the same RCT.

concomitant physical exercise were available for all outcomes except cognition. The type of protein intervention was protein supplements or amino acid supplements (powders or pills) in 11 RCTs (17 publications) \(^{44, 45, 48–56, 59–62, 64, 65}\), protein-(en)rich(ed) foods in 4 RCTs \(^{47, 57, 63, 66}\), high-protein diets in 2 RCTs \(^{58, 67}\), and a combination of protein supplements and protein-(en)rich(ed) foods in 1 RCT \(^{46}\).

Risk of bias.

None of the studies had a low risk of bias, for 50% of the studies there were some concerns regarding the risk of bias and 50% of the studies had a high risk of bias (Supplemental Table 10). The most prevalent limitations were the following: 1) lack of information on randomization of allocation sequence and/or blinding of staff and participants; 2) lack of information on blinding of outcome assessors; and 3) missing outcome data, without analyses performed to demonstrate that the result had not been influenced by those missing data.

Statistical power.

Supplemental Table 11 specifies the outcome(s) on which the power analysis was based in each RCT. The power analysis was most often based on lean body mass, followed by muscle strength, physical performance, and bone health. In 8 RCTs (11 publications) information on study power was not reported \(^{47, 49–51, 55, 57}\) or unclear \(^{59–62, 67}\).

Results for the effect of increased protein intake on health outcomes

Lean body mass.

The evaluation of the effect of increased protein intake on lean body mass in older adults included 18 RCTs (21 publications) \(^{44, 46–51, 54–67}\), with a total of 61 statistically tested contrasts. The characteristics and results of those RCTs are summarized in Table 3 and described in detail in Supplemental Table 1. Assessed outcome measures included, among others, appendicular lean soft tissue (LST), total lean body mass, and muscle cross-sectional area. The risk of bias was scored as “some concerns” \((n = 9)\) or “high” \((n = 9)\).

In 7 of the 18 RCTs (39%) a beneficial effect of increased protein intake on lean body mass was found for \(>1\) of the statistically tested contrasts \([21 of 62 contrasts (34%)]\) \(^{50, 51, 56, 58, 59, 61, 62, 64, 67}\). Of the RCTs showing a statistical beneficial effect, 3 RCTs (5 publications) expressed effect sizes as relative change in lean body mass from baseline \((50, 51, 59, 61, 62)\). Those 3 RCTs included a total of 123 participants, all from Brazil, and were performed in the context of physical exercise. Between-group mean differences ranged from 1.2% in total LST \([\text{at a protein dose of } 0.38 \text{ g/(kg BW · d)}]\) \(^{61}\) to 3.7% in appendicular LST \([\text{at a protein dose of } 0.24 \text{ g/(kg BW · d)}]\) \(^{62}\) in favor of the intervention groups after 12 wk. The 2 RCTs that showed a statistical beneficial effect and reported absolute changes in lean body mass after 10 to 12 wk included a total of 51 participants from the United States or New Zealand and were both not performed in the...
Study	Analytic n IG/CG	Habitual protein intake (reference): ≥0.8 to <0.9 g/(kg BW·d)	Total protein intake [g/(kg BW·d)] during intervention	Protein dose [g/(kg BW·d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments	
Arnarson et al. 2013 (44)	75/66	1.06 ± 0.23; CG 0.89 ± 0.23	0.17	A	Ex	H	Total LBM		✓		
Bhasin et al. 2018 (46)	42/39	1.17 ± 0.13; CG 0.81 ± 0.10	0.36	A, B	NoEx	SC	Total LBM		✓	*P = 0.04 for relative total LBM (% of BW), mainly due to greater decrease in total fat mass (kg) in IG than CG (P = 0.02)	
Sugihara Junior et al. 2018 (51), Fernandes et al. 2018 (50)	15/16	1.4 ± 0.1; CG 0.87 ± 0.1	0.53	A	Ex	H	Total LBM		✓		
Wright et al. 2018 (67)	12/10	1.4, CG 0.8 (prescribed)	0.6	C	NoEx	H	Total LBM		✓	*No significant change in total fat mass (P > 0.05)	
Campbell et al. 1995 (47)	6/6	1.62 ± 0.02; CG 0.80 ± 0.02	0.82	B	Ex	SC	Total LBM		✓		
Subtotal (contrasts)									4 14 0 0	Beneficial effect observed for 4 of 18 contrasts	
Subtotal (studies)									2 5 0 0	Beneficial effect observed in 2 of 5 studies	
Habitual protein intake (reference): ≥0.9 to <1.0 g/(kg BW·d)									0.82		
Park et al. 2018 (64)	40/40	1.18 ± 0.23; CG 0.92 ± 0.38	0.28	A	NoEx	SC	aSMM		✓		

(Continued)
Study	n IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Ten Haaf et al. 2019 (65)	58/56	IG: 0.92 ± 0.27 (without protein supplementation of 31 g/d); CG: 0.97 ± 0.23	0.369	A	Ex	SC	aSMM relative to BW7	✔	*P = 0.046 for relative total LBM (% of BW), mainly due to greater decrease in total fat mass (kg) in IG than in CG (P = 0.013)
Chalé et al. 2013 (48)	42/38	NR (baseline: 0.98)	0.3811	A	Ex	SC	Total LBM7	✔	
Ottestad et al. 2017 (63)	17/19	IG: 1.4 ± 0.5; CG: 0.9 ± 0.4	0.5	B	NoEx	H	Muscle CSA, thigh7	✔	
Mitchell et al. 2017 (58)	14/15	IG: 1.7 ± 0.1; CG: 0.9 ± 0.1	0.8	C	NoEx	H	Trunk LBM	✔	*No significant change in BW (P = 0.174), greater decrease in total and % fat mass in IG than CG (both P < 0.01)
Subtotal (contrasts)								✔	
Subtotal (studies)								✔	

(Continued)
Study	Habitual protein intake (reference):	n IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments	
Ispoglou et al. 2016 (55)	≥1.0 to <1.1 g/(kg BW · d)	8/9	1.02–1.08 (without protein supplementation of ∼0.21 g/(kg BW · d) in IG1)	0.21	A	NoEx	H	Total LTM	✓		
		8/9	1.02–1.08 (without protein supplementation of ∼0.21 g/(kg BW · d) in IG2)	0.21			Total LTM	✓			
Nabuco et al. 2019c (62)	13/13	IG: 1.0 ± 0.23 (without ~35 g whey protein supplementation 3 d/wk); CG: 1.0 ± 0.19	0.24	A	Ex	SC	Total LST	✓			
	105/102	IG: 1.30 ± 0.05; CG: 1.05 ± 0.04	0.25	A	NoEx	SC	Total LBM	✓			
Kerstetter et al. 2015 (56)	26/23	IG: 1.45 ± 0.14; CG: 1.08 ± 0.05	0.37				Total LBM	✓			
	22/23	IG: 1.38 ± 0.26; CG: 1.0 ± 0.25	0.38	A	Ex	SC	Upper-limb LST	✓			
Thomson et al. 2016 (66)	34/23	IG: 1.42 ± 0.14; CG: 1.08 ± 0.05	0.34	B	Ex	H	Total LBM	✓			
Nabuco et al. 2018 (59), 2019a (60), 2019b (61)	21/23	IG: 1.49 ± 0.46; CG: 1.0 ± 0.25	0.49				Total LBM	✓			
	22/23	IG: 1.38 ± 0.26; CG: 1.0 ± 0.25	0.38	A	Ex	SC	Upper-limb LST	✓			
Subtotal (contrasts)									10 9 0 0	Beneficial effect observed for 10 of 19 contrasts	
Subtotal (studies)									3 4 0 0	Beneficial effect observed in 3 of 5 studies	
Zhu et al. 2015 (54)	≥1.1 g/(kg BW · d)	93/88 (2-y follow-up)	IG: 1.4 ± 0.4; CG: 1.1 ± 0.4	0.3	A	NoEx	SC	Arm LBM	✓		
									Leg LBM	✓	

*P = 0.069 (total LBM tended to decrease less in IG than in CG) *No significant change in total fat mass (P > 0.05)
Study	Analytic \(n \) IG/CG	Total protein intake \([\text{g/(kg BW } \cdot \text{d})] \) during intervention\(^1\)	Protein dose\(^3\) \([\text{g/(kg BW } \cdot \text{d})] \)	Protein type\(^4\)	With/without physical exercise	Risk of bias\(^5\)	Outcome measure	Result\(^6\)	Comments	
							+NS−?			
Dillon et al. 2009 (49)	7/7		0.20	A	NoEx	H	Total LBM	✓		
	Subtotal (contrasts)									
	Subtotal (studies)\(^8\)									
Habitual protein intake (reference): Unclear	Mitchell et al. 2015 (57)	16 (total)	NR	NR (15 g/d)	B	Ex	H	Muscle fiber area	✓	
	Subtotal (contrasts)									
	Subtotal (studies)\(^9\)									
	Total (contrasts)									
	Total (studies)\(^9\)									

\(^1\) aLBM, appendicular lean body mass; aLST, appendicular lean soft tissue; aSMM, appendicular skeletal muscle mass; BW, body weight; CG, control group; CSA, cross-sectional area; Ex, with concomitant exercise intervention; H, high risk of bias; IG, intervention group; L, low risk of bias; LBM, lean body mass; LST, lean soft tissue; LTM, lean tissue mass; NoEx, without concomitant exercise intervention; NR, not reported; NS, not significant; RoB2, revised Cochrane risk of bias tool for randomized trials; SC, some concerns (regarding risk of bias); SWM, skeletal muscle mass. *, the result is accompanied by an explanation (see Comments).

\(^2\) Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.

\(^3\) Protein dose indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/prescribed amount of protein).

\(^4\) Protein type indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein-(en)rich(ed) foods (B), or high-protein diets (C).

\(^5\) Risk of bias was assessed using the RoB2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC), or “high” (H).

\(^6\) The results of the studies are indicated as follows: +, statistically significant beneficial effect (\(P < 0.05 \)); −, statistically significant unfavorable effect (\(P < 0.05 \)); NS, no statistically significant effect (\(P \geq 0.05 \)); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.

\(^7\) Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.

\(^8\) Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome “lean body mass,” so 1 study can show both a statistically significant and a non/significant effect.

\(^9\) Protein intake in g/(kg BW \cdot d) was calculated by using protein intake in g/d and mean BW (and compliance, if available).

\(^10\) Actual protein intake may have been different from the prescribed protein intake, due to noncompliance (compliance was 91\% on average).

\(^11\) Achieved protein dose was estimated using prescribed protein dose, compliance rate (72\%), and mean BW.
Study	Analytic n	Habitual protein intake (reference): ≥0.8 to <0.9 g/(kg BW · d)	Total protein intake (g/(kg BW · d)) during intervention	Protein dose^4 (g/(kg BW · d))	Protein type^4	With/without physical exercise	Risk of bias^5	Outcome measure	Result^6	Comments
Harms et al. 2013 (44)	75/66	IG: 1.06 ± 0.23; CG: 0.89 ± 0.23	0.17	A	Ex	H		Quadriceps strength	✓	
Bhasin et al. 2018 (46)	29–317/32–34†	IG: 1.17 ± 0.13; CG: 0.81 ± 0.10	0.36	A,B	NoEx	SC		Leg press strength	✓	
Sugihara Senior et al. 2018 (51)	15/16	IG: 1.4 ± 0.1; CG: 0.87 ± 0.1	0.53	A	Ex	H		Chest press strength	✓	

Subtotal (contrast): 3 8 0 0 Beneficial effect observed for 3 of 11 contrasts

Subtotal (studies)\(^1\): 1 3 0 0 Beneficial effect observed in 1 of 3 studies

Habitual protein intake (reference): ≥0.9 to <1.0 kg BW/d

Park et al. 2018 (64) | 40/40 | IG: 1.18 ± 0.25; CG: 0.90 ± 0.38 | 0.28 | A | NoEx | SC | | Handgrip strength (IG1 vs. CG) | ✓ | |
| Ten Haaf et al. 2019 (65) | 58/56 | IG: 0.92 ± 0.27 (without protein supplementation of 31 g/d); CG: 0.97 ± 0.23 | 0.36\(^{12}\) | A | Ex | SC | | Handgrip strength\(^3\) | ✓ | |

Habitual protein intake (reference): ≥1.0 kg BW/d

Study	Analytic n	Habitual protein intake (reference): ≥1.0 kg BW/d	Total protein intake (g/(kg BW · d)) during intervention	Protein dose^4 (g/(kg BW · d))	Protein type^4	With/without physical exercise	Risk of bias^5	Outcome measure	Result^6	Comments
Harms et al. 2013 (44)	75/66	IG: 1.06 ± 0.23; CG: 0.89 ± 0.23	0.17	A	Ex	H		Quadriceps strength	✓	
Bhasin et al. 2018 (46)	29–317/32–34†	IG: 1.17 ± 0.13; CG: 0.81 ± 0.10	0.36	A,B	NoEx	SC		Leg press strength	✓	
Sugihara Senior et al. 2018 (51)	15/16	IG: 1.4 ± 0.1; CG: 0.87 ± 0.1	0.53	A	Ex	H		Chest press strength	✓	

Subtotal (contrast): 3 8 0 0 Beneficial effect observed for 3 of 11 contrasts

Subtotal (studies)\(^1\): 1 3 0 0 Beneficial effect observed in 1 of 3 studies

Habitual protein intake (reference): ≥1.0 kg BW/d

Park et al. 2018 (64) | 40/40 | IG: 1.18 ± 0.25; CG: 0.90 ± 0.38 | 0.28 | A | NoEx | SC | | Handgrip strength (IG1 vs. CG) | ✓ | |
| Ten Haaf et al. 2019 (65) | 58/56 | IG: 0.92 ± 0.27 (without protein supplementation of 31 g/d); CG: 0.97 ± 0.23 | 0.36\(^{12}\) | A | Ex | SC | | Handgrip strength\(^3\) | ✓ | |

Quadriceps MVC\(^5\) Maximal rate of force rise, quadriceps\(^6\) Early relaxation time, quadriceps\(^5\) Half relaxation time, quadriceps\(^5\) Fatigue\(^5\)

(Continued)
Study	Analytic n	Total protein intake [g/(kg BW - d)] during intervention	Protein dose [g/(kg BW - d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Chalé et al. 2013 (48)	42/58	NR (baseline 0.98)	0.38¹	A	Ex	SC	Double leg press strength, 1 RM¹	✓	
							Knee extension, 1 RM, right¹	✓	
							Knee extension, 1 RM, left¹	✓	
							Double leg press peak power, 40% 1 RM¹	✓	
							Knee extension peak power, 40% 1 RM, right¹	✓	
							Knee extension peak power, 40% 1 RM, left¹	✓	
							Double leg press peak power, 70% 1 RM¹	✓	
							Knee extension peak power, 70% 1 RM, right¹	✓	
							Knee extension peak power, 70% 1 RM, left¹	✓	
Ottstead et al. 2017 (63)	16–17/18–19¹	IG: 1.4 ± 0.5; CG: 0.9 ± 0.4	0.5	B	NdEx	H	Leg press strength	✓	
							Chest press strength	✓	
							Handgrip strength, dominant	✓	
							Handgrip strength, nondominant	✓	
							Knee extension MVC	✓	
							Knee extension peak power	✓	
Mitchell et al. 2017 (58)	14/15	IG: 1.7 ± 0.1; CG: 0.9 ± 0.1	0.8	C	NdEx	H	Hand grip strength	✓	
							Knee extension MVC	✓	
							Knee extension peak power	✓	
Subtotal (contrasts)								5	19 0 0 0 0 Beneficial effect observed for 5 of 24 contrasts
Subtotal (studies)								2 5 0 0 0 Beneficial effect observed in 2 of 5 studies	
Habitual protein intake (reference): ≥1.0 to <1.1 kg BW/d	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg BW - d) in IG1]	0.21	A	NdEx	H	Handgrip strength	✓	
Isopoglou et al. 2016 (55)							30 s arm-curl test	✓	
	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg BW - d) in IG2]	0.21				Handgrip strength	✓	
							30 s arm-curl test	✓	

(Continued)
Study	Analytic n IG/CG	Total protein intake [g/(kg BW - d)] during intervention	Protein dose [g/(kg BW - d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments			
Nabuco et al. 2019c (62)	13/13	IG: 1.0 ± 0.23 (without ~ 35 g whey protein supplementation on 3 d/ wk); CG: 1.0 ± 0.19	0.24¹²	A	Ex	SC	Knee extension	✓				
Thomson et al. 2016 (66)	34/23	IG1: 1.42 ± 0.14; CG: 1.08 ± 0.05	0.34	B	Ex	H	Knee extension strength	✓				
							Handgrip strength	✓				
							Leg press	✓				
							Knee extension strength	✓				
							Lat pull-down	✓				
							Leg curl	✓				
							Total 8RM	✓				
Nabuco et al. 2018 (59)	22/23	IG1: 1.38 ± 0.26; CG: 1.0 ± 0.25	0.38	A	Ex	SC	Knee extension	✓				
							Preacher curl	✓				
							Total strength⁸	✓				
							Chest press	✓				
							Knee extension	✓				
							Preacher curl	✓				
							Total strength⁸	✓				
							Chest press	✓				
Subtotal (contrasts)								6	23	2	1	Beneficial effect observed for 6 of 32 contrasts; unfavorable effect observed for 2 of 32 contrasts
Subtotal (studies)¹¹								1	4	1	1	Beneficial effect observed in 1 of 4 studies; unfavorable effect observed in 1 of 4 studies
Study	Habitual protein intake (reference)	IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments		
-------	-----------------------------------	-------	---	-----------------------------	----------------	-----------------------------	-------------	----------------	--------	----------		
Zhu et al. 2015 (54)	≥1.1 kg BW/d	IG: 1.4 ± 0.4; CG: 1.1 ± 0.4	0.3	A	NoEx	SC	Handgrip strength	✅				
								Ankle dorsiflexion strength	✅			
							Knee flexor strength	✅				
							Knee extensor strength	✅				
							Hip extensor strength	✅				
							Hip abductor strength	✅				
							Hip flexor strength	✅				
							Hip adductor strength	✅				
Subtotal (contrasts)								0	8	0	0	No effect observed for any of 8 contrasts
Subtotal (studies)								0	1	0	0	No effect observed in the single study
Dillon et al. 2009 (49)	Unclear	NR	0.20	A	NoEx	H	Biceps curl	✅				
							Triceps extension	✅				
							Leg extension	✅				
							Leg curl	✅				
Mitchell et al. 2015 (57)	16 (total)	NR	NR (15 g/d)	B	Ex	H	Knee extension isometric MVC	✅				
							Leg press	✅				
							Leg extension	✅				
							Chest press	✅				

(Continued)
Study	Analytic IG/CG	Total protein intake [g/(kg BW · d)] during intervention²	Protein dose³ [g/(kg BW · d)]	Protein type⁴	With/without physical exercise	Risk of bias⁵	Outcome measure	Result⁶	Comments
Subtotal (contrasts)	0	8	0	0	No effect observed for any of 8 contrasts				
Subtotal (studies)⁷	0	2	0	0	No effect observed in either study				
Total (contrasts)	14	66	2	1	Beneficial effect observed for 14 of 83 contrasts; unfavorable effect observed for 2 of 83 contrasts				
Total (studies)⁷	4	15	1	1	Beneficial effect observed in 4 of 15 studies; unfavorable effect observed in 1 of 15 studies				

1 Depending on specific outcome measure.
2 Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.
3 BW, body weight; CG, control group; Ex, with concomitant exercise intervention; H, high risk of bias; IG, intervention group; L, low risk of bias; MVC, maximal voluntary contraction; NoEx, without concomitant exercise intervention; NR, not reported; NS, not significant; RM, repetition maximum; SC, some concerns (regarding risk of bias). The result is accompanied by an explanation (see Comments).
4 Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.
5 “Protein dose” indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/prescribed amount of protein).
6 “Protein type” indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein- (en)riched foods (B), or high-protein diets (C).
7 Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC) or “high” (H).
8 The results of the studies are indicated as follows: +, statistically significant beneficial effect \((P < 0.05) \); −, statistically significant unfavorable effect \((P < 0.05) \); NS, no statistically significant effect \((P \geq 0.05) \); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.
9 Total strength was calculated as the sum of chest press, knee extension and preacher curl strength (kg).
10 Lower-limb muscle quality index was calculated as knee extension strength divided by lower-limb lean soft tissue.
11 Upper-limb muscle quality index was calculated as preacher curl strength divided by upper-limb lean soft tissue.
12 Total muscle quality index was calculated as total strength divided by skeletal muscle mass.
13 Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome “muscle strength,” so 1 study can show both a significant and a nonsignificant effect.
14 Protein intake in g/(kg BW · d) was calculated by using protein intake in g/d and mean BW (and compliance, if available).
15 Achieved protein dose was calculated using prescribed protein dose, compliance rate (72%), and mean BW.
TABLE 5 Overview of the results of the 12 evaluated RCTs on the effect of increased protein intake on physical performance in older adults, categorized according to habitual protein intake and ordered by protein dose

Study	Analytic n	IG/CG	Total protein intake [g/(kg BW - d)] during intervention	Protein dose [g/(kg BW - d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Arnason et al. 2013 (44)	75/66	IG: 1.06 ± 0.23; CG: 0.89 ± 0.23	0.17	A	Ex	H	Gaitspeed, 6-min	✓		
Bhasin et al. 2018 (46)	33–42†/32–40†	IG: 1.17 ± 0.13; CG: 0.81 ± 0.10	0.36	A,B	NoEx	SC	Gaitspeed, 6-min	✓		
Park et al. 2018 (64)	40/40	IG1: 1.18 ± 0.23; CG: 0.90 ± 0.31	0.28	A	NoEx	SC	SPPB	✓		
		IG2: 1.37 ± 0.26; CG: 0.90 ± 0.38	0.47							
Ten Haaf et al. 2019 (65)	58/56 (except chair rise time; total n = 111)	IG: 0.92 ± 0.27 (without protein supplementation of 31 g/d); CG: 0.97 ± 0.23	0.36	A	Ex	SC	SPPB§	✓		

Subtotal (contrasts): 0 7 0 0 0

Subtotal (studies): 0 2 0 0 0

Habitual protein intake (reference): ≥0.9 to <1.0 kg BW/d

- Gait speed, 50-meter
- Stair climb power, unloaded
- Stair climb power, loaded
- Perceived physical function

*P = 0.08 (power tended to increase less in IG than in CG)

No effect observed for any of 7 contrasts
No effect observed for either study

(Continued)
Study	Analytic n IG/CG	Total protein intake [g/(kg BW · d)] during intervention[^1]	Protein dose[^3] [g/(kg BW · d)]	Protein type[^4]	With/without physical exercise	Risk of bias[^5]	Outcome measure	Result[^6]	Comments
Chalé et al. 2013 (48)	42/38	NR (baseline: 0.98)	0.38[^1]	A	Ex	SC	Gait speed, 400-meter[^6]	✓	
							Star climb time[^2]	✓	
							Chair rise time[^3]	✓	
							SPPB[^4]	✓	
Ottestad et al. 2017 (63)	16/15–17[^1]	IG: 1.4 ± 0.5, CG: 0.9 ± 0.4	0.5	B	NoEx	H	Star climb time[^5]	✓	
							Star climb time, unloaded	✓	
							Star climb time, loaded	✓	
Mitchell et al. 2017 (58)	14/15	IG: 1.7 ± 0.1, CG: 0.9 ± 0.1	0.8	C	NoEx	H	TUG	✓	
Subtotal (contrasts)								✓	
Subtotal (studies)								✓	
Habitual protein intake (reference): ≥1.0 to <1.1 kg BW/d								✓	
Ispoglou et al. 2016 (55)	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg BW · d) in IG1]	0.21	A	NoEx	H	Gait speed, 6-min	✓	
	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg BW · d) in IG2]	0.21				30-s chair-stand test	✓	
							Gait speed, 6-min	✓	
Nabuco et al. 2019c (62)	13/13	IG: 1.0 ± 0.23 (without ~35 g whey protein supplementation on 3 d/wk); CG: 1.0 ± 0.19	0.24[^7]	A	Ex	SC	30-s chair-stand test	✓	
							Gait speed, 10-meter	✓	
Thomson et al. 2016 (66)	34/23	IG1: 1.42 ± 0.14; CG: 1.08 ± 0.05	0.34	B	Ex	H	Chair rise time	✓	
	26/23	IG2: 1.45 ± 0.14; CG: 1.08 ± 0.05	0.37				Gait speed, 6-min	✓	
Nabuco et al. 2018 (59)	22/23	IG1: 1.38 ± 0.26; CG: 1.0 ± 0.25	0.38	A	Ex	SC	Gait speed, 10-meter	✓	
	21/23	IG2: 1.49 ± 0.46; CG: 1.0 ± 0.25	0.49				at fast pace	✓	
							Chair rise time	✓	
							Gait speed, 10-meter	✓	
							at fast pace	✓	
							Chair rise time	✓	

[^1]: Baseline: 0.98; Baseline: 0.98; Baseline: 0.98
[^2]: 400-meter; 400-meter; 400-meter
[^3]: 0.21; 0.21; 0.21
[^4]: A; A; A
[^5]: Ex; Ex; Ex
[^6]: SC; SC; SC
[^7]: 0.24; 0.24; 0.24

(Continued)
Study	Analytic n IG/CG	Total protein intake during intervention	Protein dose	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Subtotal (contrasts)	2 10 0 0	Beneficial effect observed for 2 of 12 contrasts							
Subtotal (studies) 2	7	2 12 0 0	Beneficial effect observed in 2 of 12 studies						

Habitual protein intake (reference): ≥ 1.1 kg BW/d
Zhu et al. 2015 (54) 93/88 (2-y follow-up)
IG: 1.4 ± 0.4; CG: 1.1 ± 0.4

0.3 A NoEx SC TUG

Subtotal (contrasts) 0 1 0 0 | No effect observed for the single contrast
Subtotal (studies) 0 | No effect observed in the single study

Total (contrasts) 3 41 0 0 | Beneficial effect observed for 3 of 44 contrasts
Total (studies) 2 | Beneficial effect observed in 2 of 12 studies

† Depending on specific outcome measure.
§ Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.
1 ADL, activities of daily living; BW, body weight; CG, control group; Ex, with concomitant exercise intervention; H, high risk of bias; IG, intervention group; L, low risk of bias; NoEx, without concomitant exercise intervention; NR, not reported; NS, not significant; SC, some concerns (regarding risk of bias); SPPB, short physical performance battery; TUG, Timed Up and Go. * The result is accompanied by an explanation (see Comments).
2 Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.
3 Protein dose indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/d prescribed amount of protein).
4 “Protein type” indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein- (en)rich(ed) foods (B), or high-protein diets (C).
5 Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and is scored as “low” (L), “some concerns” (SC) or “high” (H).
6 The results of the studies are indicated as follows: +, statistically significant beneficial effect (P < 0.05); −, statistically significant unfavorable effect (P < 0.05); NS, no statistically significant effect (P ≥ 0.05); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.
7 Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome “physical performance,” so 1 study can show both a significant and a nonsignificant effect.
8 Protein intake in g/(kg BW · d) was calculated by using protein intake in g/d and mean BW (and compliance, if available).
9 (Achieved) protein dose was estimated using prescribed protein dose, compliance rate (72%), and mean BW.
Study	Analytic n CS/CG	Total protein intake [g/(kg · d)] during intervention	Protein dose [g/(kg · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Habitual protein intake (reference): ≥ 0.8 to <0.9 kg BW/d	16/16	IG: 1.4 ± 0.1; CG: 0.87 ± 0.1	0.53	A	Ex	H	Total BMC	✓	
Subtotal/(contrasts)									
Subtotal/(studies)									
Habitual protein intake (reference): ≥ 1.0 to <1.1 kg BW/d	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg · d) in IG1]	0.21	A	NoEx	H	Total BMC	✓	No effect observed for the single contrast
	8/9	1.02–1.08 [without protein supplementation of ~0.21 g/(kg BW · d) in IG2]	0.21				Total BMD	✓	No effect observed in the single study
Kerstetter et al. 2015 (56)	105/105/106/102	IG: 1.30 ± 0.05; CG: 1.05 ± 0.04	0.25	A	NoEx	SC	Total BMD, lumbar spine (DXA)*	✓	

BMD total hip (DXA)*
BMD femoral neck (DXA)*
BMD lumbar spine (QCT)*
BMD femoral neck, cortical (QCT)*
BMD femoral neck, trabecular (QCT)*
BMD femoral total, cortical (QCT)*
BMD femoral total, trabecular (QCT)*
Serum P1NP

*No difference at 18 mo, but at 9 mo serum P1NP increased more in IG than in CG (P = 0.0007); P1NP should be evaluated together with CTX to determine whether an effect is beneficial or unfavorable.
TABLE 6 (Continued)

Study	Analytic n IG/GG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
							Serum CTX		
							Serum OC		
							Total hip aBMD (DXA)		
							Femoral neck aBMD (DXA)		
							Total hip volumetric BMD (QCT)		
							Femoral neck vBMD (QCT)		
							Femoral neck bone CSA (QCT)		
							Femoral neck buckling ratio (QCT)		
							Femoral neck polar CSMI (QCT)		

Subtotal (contrasts)	0	7	0	0		No effect observed for any of 7 contrasts
Subtotal (studies)²	0	1	0	0		No effect observed in the single study
Total (contrasts)	0	22	0	2		An effect observed for 2 of 23 contrasts
Total (studies)²	0	4	0	1		An effect observed in 1 of 4 studies

1. Depending on specific outcome measure.
2. Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.
3. Protein dose indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/prescribed amount of protein).
4. Protein type indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein-rich foods (B), or high-protein diets (C).
5. Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC) or “high” (H).
6. The results of the studies are indicated as follows: +, statistically significant beneficial effect (P < 0.05); −, statistically significant unfavorable effect (P < 0.05); NS, no statistically significant effect (P ≥ 0.05); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.
7. Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome “bone health,” so 1 study can show both a significant and a nonsignificant effect.
TABLE 7 Overview of the results of the 4 evaluated RCTs on the effect of increased protein intake on blood pressure in older adults, categorized according to habitual protein intake and ordered by protein dose

Study	Habitual protein intake (reference):	Total protein intake during intervention \[g/(kg BW · d)]	Protein dose \[g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments			
Wright et al. 2018 (67)	≥0.8 to <0.9 kg BW/d	IG: 1.4; CG: 0.8 (prescribed)	0.6	C	NoEx	H	SBP	✓				
Subtotal (contrasts)								0	2	0	0	No effect observed for any of 2 contrasts
Subtotal (studies)								0	1	0	0	No effect observed in the single study
Nabuco et al. 2019 (62)	≥1.0 to 1.1 kg BW/d	IG: 1.0 ± 0.23 (without ~35 g whey protein supplementation on 3 d/wk); CG: 1.0 ± 0.19	0.2	A	Ex	SC	SBP	✓				
Nabuco et al. 2019a (60)								21/23 IG2: 1.49 ± 0.46; CG: 1.0 ± 0.25	0.49	DBP	✓	
Subtotal (contrasts)								0	6	0	0	No effect observed for any of 6 contrasts
Subtotal (studies)								0	2	0	0	No effect observed in either study
Hodgson et al. 2012 (52)	≥1.1 kg BW/d	IG: 1.4 ± 0.4; CG: 1.1 ± 0.4	0.3	A	NoEx	SC	SBP	✓				
Subtotal (contrasts)								0	2	0	0	No effect observed for any of 2 contrasts (1 study)
Subtotal (studies)								0	1	0	0	No effect observed in the single study
Total (contrasts)								0	10	0	0	No effect observed for any of 10 contrasts
Total (studies)								0	4	0	0	No effect observed in any of 4 studies

1. BW, body weight; CG, control group; DBP, diastolic blood pressure; Ex, with concomitant exercise intervention; H, high risk of bias; IG, intervention group; L, low risk of bias; NoEx, without concomitant exercise intervention; NR, not reported; NS, not significant; SBP, systolic blood pressure; SC, some concerns (regarding risk of bias).
2. Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.
3. Protein dose indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/prescribed amount of protein).
4. Protein type indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein- (en)riched foods (B), or high-protein diets (C).
5. Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC), or “high” (H).
6. The results of the studies are indicated as follows: +, statistically significant beneficial effect \((P < 0.05)\); −, statistically significant unfavorable effect \((P < 0.05)\); NS, no statistically significant effect \((P ≥ 0.05)\); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.
7. Protein intake in \[g/(kg BW · d)\] was calculated by using protein intake in \[g/d\] and mean BW.
8. Actual protein intake may have been different from the prescribed protein intake, due to noncompliance (compliance was 91% on average).
9. Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome “blood pressure,” so 1 study can show both a significant and a nonsignificant effect.
| Study | Habitual protein intake (reference): | Total protein intake [g/(kg BW - d)] during intervention² | Protein dose³ [g/(kg BW - d)] | Protein type⁴ | With/without physical exercise | Risk of bias⁵ | Outcome measure | Result⁶ | Comments |
|--|--------------------------------------|--|-------------------------------|---------------|-------------------------------|---------------|----------------|---------|-------------------------------|
| Fernandes et al. 2018 (50) | ≥0.8 to <0.9 g/(kg BW - d) | IG: 1.4 ± 0.1; CG: 0.87 ± 0.1 | 0.53 | A | Ex | H | Fasting blood glucose | + | |
| Wright et al. 2018 (67) | ≥0.8 to <0.9 g/(kg BW - d) | IG: 1.4; CG: 0.8 (prescribed) | 0.6¹ | C | NoEx | H | Fasting blood glucose | + | |
| Subtotal (contrasts) | | | | | | | | 0 4 0 0 | No effect observed for any of 4 contrasts |
| Subtotal (studies) | | | | | | | | 0 2 0 0 | No effect observed in either study |
| Park et al. 2018 (64) | ≥0.9 to <1.0 g/(kg BW - d) | IG1: 1.18 ± 0.23; CG: 0.90 ± 0.38 | 0.28 | A | NoEx | SC | Fasting blood glucose | ✓ | |
| | | | | | | | | | |
| Ottestad et al. 2017 (63) | ≥0.9 to <1.0 g/(kg BW - d) | IG1: 1.4 ± 0.5; CG: 0.9 ± 0.4 | 0.5 | B | NoEx | H | Fasting blood glucose | ✓ | |
| Subtotal (contrasts) | | | | | | | | 0 3 0 0 | No effect observed for any of 3 contrasts |
| Subtotal (studies) | | | | | | | | 0 2 0 0 | No effect observed in either study |
| Nabuco et al. 2019c (62) | ≥1.0 to <1.1 g/(kg BW - d) | IG1: 1.0 ± 0.23 (without ∼35 g whey protein supplementation on 3 d/wk); CG: 1.0 ± 0.19 | 0.24² | A | Ex | SC | Fasting blood glucose | ✓ | |
| | | | | | | | | | |
| Nabuco et al. 2019a (60) | ≥1.0 to <1.1 g/(kg BW - d) | IG1: 1.38 ± 0.26; CG: 1.0 ± 0.23 | 0.38 | A | Ex | SC | Fasting blood glucose | ✓ | |
| | | | | | | | | | |
| Subtotal (contrasts) | | | | | | | | 0 9 0 0 | No effect observed for any of 9 contrasts |
| Subtotal (studies) | | | | | | | | 0 2 0 0 | No effect observed in either study |

(Continued)
TABLE 8 (Continued)

Study	Total protein intake during follow-up	Protein dose	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
	Total (contrasts) 0 16 0 0 No effect observed for any of 16 contrasts	< 0.05	+	T	Low risk of bias	Physical exercise	+	+
	Total (studies) 0 6 0 0 No effect observed in any of 6 studies	< 0.05	+	T	Low risk of bias	Physical exercise	+	+

§ Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.
5 Protein type indicates the way in which a higher protein intake was achieved, e.g., by increasing protein intake in meals (A), or by increasing protein-enriched foods (B) or high-protein diets (C).
6 The results of the studies are indicated as follows: +, statistically tested contrasts [14 of 83 contrasts (17%)] (48, 51, 58, 59), 0, no statistically significant effect; −, statistically significant unfavorable effect (P < 0.05); NS, not reported; SC, some concerns (regarding risk of bias).
7 Risk of bias was assessed using the RoB2 Cochrane Collaboration tool and scored as “low” (L), “some concerns” (SC), or “high” (H).
8 The results of the studies are indicated as follows: +, statistically tested contrasts [14 of 83 contrasts (17%)] (48, 51, 58, 59), 0, no statistically significant effect; −, statistically significant unfavorable effect (P < 0.05); NS, not reported; SC, some concerns (regarding risk of bias).
9 Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome serum glucose and insulin. In some cases, it can show both a significant and a nonsignificant effect.

context of physical exercise (58, 67). Mean differences ranged from 0.8 kg in trunk lean body mass [at a protein dose of 0.6 g/(kg BW · d)] (67) to 2.0 kg in total lean body mass [at a protein dose of 0.8 g/(kg BW · d)] (58). No unfavorable effects on lean body mass were observed. The changes in lean body mass did not involve any statistically significant change in BW (Supplemental Table 12). In some cases, it was shown that the greater increase in (relative) lean body mass was a result of a significantly greater decrease in fat mass.

Muscle strength.

The evaluation of the effect of increased protein intake on muscle strength in older adults included 15 RCTs (44, 46, 48, 49, 51, 54, 55, 57–59, 62–66), with a total of 83 statistically tested contrasts (Table 4; Supplemental Table 2). Assessed outcome measures included, among others, handgrip strength, chest press strength, and knee extension peak power. The risk of bias was scored as “some concerns” (n = 7) or “high” (n = 8).

In 4 of the 15 RCTs (27%) a beneficial effect of increased protein intake on muscle strength was found for ≥1 of the statistically tested contrasts [14 of 83 contrasts (17%)] (48, 51, 58, 59). Of the RCTs showing a statistical beneficial effect, 2 RCTs expressed effect sizes as relative change in muscle strength from baseline (51, 59). Those 2 RCTs included 97 participants, all from Brazil, and were performed in the context of physical exercise. Between-group mean differences ranged from 1.1% in chest press strength [1 RM; at a protein dose of 0.38 g/(kg BW · d)] (57) to 4.1% in knee extension strength [1 RM; at a protein dose of 0.53 g/(kg BW · d)] (54) after 12 wk. The 2 RCTs that showed a statistically significant beneficial effect and reported absolute changes in muscle strength (48, 58) included 109 participants from the United States or New Zealand. Reported between-group mean differences in, for example, knee extension peak power were 38 W after 10 wk [at a protein dose of 0.8 g/(kg BW · d); not in the context of physical exercise] (58) and 15 W after 6 mo (at a protein dose of 0.38 g/(kg BW · d); in the context of physical exercise) (48).

An unfavorable effect on muscle strength was observed in 1 RCT (66), which was performed in the context of physical exercise [1 of 8 RCTs (13%); 2 of 55 contrasts (4%)]. This unfavorable effect was observed for 2 specific outcome measurements [i.e., leg press strength and total strength (8 RM)], and only for the group receiving soy protein (n = 26) and not for the group receiving a comparable amount of dairy protein (n = 34), as compared with the control group (n = 23). The reported mean difference in change in leg press strength (8 RM) from baseline was 18.9 kg (70.2%) in favor of the control group compared with the soy protein group after 12 wk. The unfavorable effect of soy protein observed in this RCT was, according to the authors of the original study, most likely attributable to the isolavones in soy foods that might attenuate the anabolic muscle response through reducing testosterone concentrations. Since the unfavorable effect is likely due to the type of protein and not to the amount of protein, the committee gave less weight to this result.
Study	Analytic n IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Habitual protein intake (reference): ≥0.8 to <1.0 g/(kg BW · d)	83 hassin et al. 2018 (46)	IG: 1.17 ± 0.13; CG: 0.81 ± 0.10	0.36	A,B	NoEx SC	TC	✓		
Fernandes et al. 2018 (50)	16/16	IG: 1.4 ± 0.1; CG: 0.87 ± 0.1	0.53	A	Ex H	TC	✓		
Wright et al. 2018 (67)	12/10	IG: 1.4; CG: 0.8 (prescribed)	0.67	C	NoEx H	TC	✓		
Park et al. 2018 (64)	40/40	IG1: 1.18 ± 0.23; CG: 0.90 ± 0.38	0.28	A	SC	TC	✓		
Ottestad et al. 2017 (63)	16–17/18	IG: 1.4 ± 0.5; CG: 0.9 ± 0.4	0.5	B	NoEx H	TC	✓		

Subtotal (contrasts) | 1 | B | 1 | 0 | Beneficial effect observed for 1 of 5 contrasts; unfavorable effect observed for 1 of 15 contrasts |

Subtotal (studies) | 1 | 3 | 1 | 0 | Beneficial effect observed in 1 of 3 studies; unfavorable effect observed in 1 of 3 studies |

*P = 0.055 (triglyceride levels tended to decrease more in IG than in CG)
Study	Habitual protein intake (reference): ≥1.0 to <1.1 g/(kg BW · d)	IG: 1.0 ± 0.23 (without ~35 g whey protein supplementation on 3 d/wk); CG: 1.0 ± 0.19	0.24	A	Ex	SC	LDL-C	HDL-C	Triglycerides	0.247	AE	x	SCTC
Nabuco et al. 2019c (62)	13/13	IG: 1.38 ± 0.26; CG: 1.0 ± 0.25	0.38	A	Ex	SC	LDL-C	HDL-C	Triglycerides	0.38	A	Ex	SC
Nabuco et al. 2019a (60)	22/23	IG: 1.49 ± 0.46; CG: 1.0 ± 0.25	0.49				LDL/HDL-C ratio	TC					
21/23							LDL/HDL-C ratio	TC					

| Subtotal (contrasts) | | | | | | | LDL-C | HDL-C | Triglycerides | 0.49 | | | |
| Subtotal (studies) | 9 | 1 | 2 | 0 | 0 | Beneficial effect observed in 1 of 2 studies |

Comments

- LDL-C
- HDL-C
- Triglycerides
- TC

TABLE 9 (Continued)

Study	Analytic n IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	+	NS	–	?	
Subtotal (contrasts)							LDL-C	HDL-C	Triglycerides	0.247	AE	x	SCTC
Subtotal (studies)							LDL-C	HDL-C	Triglycerides	0.38	A	Ex	SC

- Habitual protein intake (reference): ≥1.0 to <1.1 g/(kg BW · d)

Nabuco et al. 2019c (62)

- **Study:** Nabuco et al. 2019c (62)
- **Habitual protein intake (reference):** ≥1.0 to <1.1 g/(kg BW · d)
- **Total protein intake during intervention:** IG: 1.0 ± 0.23 (without ~35 g whey protein supplementation on 3 d/wk); CG: 1.0 ± 0.19
- **Protein dose:** 0.24
- **Protein type:** A
- **With/without physical exercise:** Ex
- **Risk of bias:** SC
- **Outcome measure:** TC
- **Result:** +

P = 0.081 (TC/HDL-C ratio tended to increase more in IG1 than in CG)
Study	Analytic n IG/CG	Total protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result	Comments
Total (contrasts)		2 40 1 0							Beneficial effect observed for 2 of 43 contrasts; unfavorable effect observed for 1 of 43 contrasts
1	Total (studies)	2 7 1 0							Beneficial effect observed in 2 of 7 studies; unfavorable effect observed in 1 of 7 studies

1. The exact number of participants included in the analyses is not reported. The number must be between the number of participants who were randomized and the number of participants who completed the study.
2. Depending on the specific outcome measure.
3. Sufficient statistical power to detect an effect is to be expected, based on the sample size calculation.
4. BW: body weight; C: cholesterol; CG: control group; Ex: with concomitant exercise intervention; H: high risk of bias; IG: intervention group; L: low risk of bias; NoEx: without concomitant exercise intervention; NR: not reported; NS: not significant; SC: some concerns (regarding risk of bias); TC: total cholesterol. *: the result is accompanied by an explanation (see Comments).
5. Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.
6. "Protein dose" indicates the difference in achieved total protein intake between the intervention group and the control group during follow-up (which is not necessarily equal to supplemented/prescribed amount of protein).
7. "Protein type" indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), 1 or a few protein-(en)rich(ed) foods (B), or high-protein diets (C).
8. Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC) or “high” (H).
9. The results of the studies are indicated as follows: +, statistically significant beneficial effect ($P < 0.05$); −, statistically significant unfavorable effect ($P < 0.05$); NS, no statistically significant effect ($P \geq 0.05$); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.
10. Protein intake in g/(kg BW · d) was calculated by using protein intake in g/d and mean BW.
11. Actual protein intake may have been different from the prescribed protein intake, due to noncompliance (compliance was 91% on average).
12. Some studies assessed multiple specific outcomes (i.e., multiple contrasts) for the health outcome "serum lipids," so 1 study can show both a significant and a nonsignificant effect.
TABLE 10 Overview of the results of the 6 evaluated RCTs on the effect of increased protein intake on kidney function in older adults, categorized according to habitual protein intake and ordered by protein dose

Study	Analytic n IG/G	Total protein intake [g/(kg BW·d)] during intervention^1	Protein dose^3 [g/(kg BW·d)]	Protein type^4	With/without physical exercise	Risk of bias^5	Outcome measure	Result^6	Comments
Habitual protein intake (reference) ≥0.8 to <0.9 g/(kg BW·d)	237 (total)	IG: 1.06 ± 0.23; CG: 0.89 ± 0.23	0.17	A	Ex	H	eGFR	+	<p> Study</p> Hengeveld et al. 2013 (45)
Bhasin et al. 2018 (46)	40–46^1/36–46^1	IG: 1.17 ± 0.15; CG: 0.81 ± 0.10	0.36	A,B	NoEx	SC	Serum creatinine	√	<p></br>Subtotal (contrasts) 0 2 0 0 No effect observed for any of 2 contrasts</p> Subtotal (studies)^7 0 2 0 0 No effect observed in either study
Habitual protein intake (reference) ≥0.9 to <1.0 g/(kg BW·d)	109–114^1 (total)	IG: 0.92 ± 0.27 (without protein supplementation of 31 g/d); CG: 0.97 ± 0.23	0.36^9	A	Ex	SC	Serum creatinine	√	<p> Park et al. 2018 (64) IG1: 1.18 ± 0.23; CG: 0.90 ± 0.38</p> Park et al. 2018 (64) IG2: 1.37 ± 0.26; CG: 0.90 ± 0.38
Ten Haaf et al. 2019 (65)	17/18	IG: 1.4 ± 0.5; CG: 0.9 ± 0.4	0.5	B	NoEx	H	eGFR	√	<p> Ottestad et al. 2017 (63) IG: 1.30 ± 0.05; CG: 1.05 ± 0.04</p> Ottestad et al. 2017 (63) IG: 1.4 ± 0.5; CG: 0.9 ± 0.4
Kerstetter et al. 2015 (56)	61/60 (18-mo follow-up)	IG: 1.30 ± 0.05; CG: 1.05 ± 0.04	0.25	A	NoEx	SC	eGFR	√	<p> Kerstetter et al. 2015 (56) IG: 1.30 ± 0.05; CG: 1.05 ± 0.04</p> Kerstetter et al. 2015 (56) IG: 1.30 ± 0.05; CG: 1.05 ± 0.04

Subtotal (contrasts) 1 8 0 0 Beneficial effect observed for 1 of 9 contrasts

Subtotal (studies)^7 1 3 0 0 Beneficial effect observed in 1 of 3 studies

Habitual protein intake (reference) ≥1.0 to <1.1 g/(kg BW·d)

Subtotal (contrasts) 0 1 0 0 No effect observed for the single contrast

Subtotal (studies)^7 0 1 0 0 No effect observed in the single study

Continued
Physical performance.

The evaluation of the effect of increased protein intake on physical performance in older adults included 12 RCTs (44, 46, 48, 54, 55, 58, 59, 62–66), with a total of 44 statistically tested contrasts (Table 5; Supplemental Table 3). Almost all RCTs used an objective measure of physical performance, such as gait speed, the Short Physical Performance Battery (SPPB), or the Timed Up and Go (TUG) test. The risk of bias was scored as “some concerns” \((n = 7)\) or “high” \((n = 5)\).

In 2 of the 12 RCTs (17%) a beneficial effect of increased protein intake on physical performance was found for \(\geq 1\) of the statistically tested contrasts [3 of 44 contrasts (7%)], both concerning gait speed \((59, 64)\). One of those RCTs included 65 participants from Brazil and was performed in the context of physical exercise \((59)\). The other RCT included 80 participants and was not performed in the context of physical exercise \((64)\). No unfavorable effects on physical performance were observed.

Bone health.

Evaluation of the effect of increased protein intake on bone health was included in 4 RCTs \((50, 53, 55, 56)\), with a total of 23 statistically tested contrasts (Table 6; Supplemental Table 4). Bone health was assessed as bone mineral density, as measured with DXA or CT, in the majority of the RCTs. One RCT assessed bone turnover markers. The risk of bias was scored as “some concerns” \((n = 2)\) or “high” \((n = 2)\).

In 1 of the 4 RCTs (25%), an effect of increased protein intake on bone health was found for \(\geq 1\) of the statistically tested contrasts [2 of 23 contrasts (8%)] \((56)\). In this RCT of US participants, the bone formation biomarker P1NP and the bone resorption biomarker CTX increased in the protein group \((n = 61)\) compared with the control group \((n = 60)\). No other effects on bone health were observed.

The committee noted that the percentage of effects based on contrasts (8%) was much lower than the percentage of effects based on studies (25%). The only effects observed were for surrogate outcomes, i.e., bone turnover markers. Furthermore, the effect estimates for the majority of tested contrasts were close to zero (Supplemental Table 4), suggesting no effect of increased protein intake on parameters of bone health. The committee judged that the totality of the evidence is too weak to conclude that there might be an effect on bone health.

Blood pressure.

The evaluation of the effect of increased protein intake on (systolic or diastolic) blood pressure included in 4 RCTs \((52, 60, 62, 67)\), with a total of 10 statistically tested contrasts (Table 7; Supplemental Table 5). The risk of bias was scored as “some concerns” \((n = 3)\) or “high” \((n = 1)\). None of those 4 RCTs showed an effect of increased protein intake on blood pressure.

The committee noted that the sample size \((n = 219)\) of the only RCT in which the power analysis was based on blood pressure \((52)\) was substantially larger than the respective sample sizes of the other 3 RCTs \((n = 22–45)\). Also,
TABLE 11
Overview of the results of the evaluated RCT on the effect of increased protein intake on cognition in older adults, ordered by protein dose

Study	Analytic protein intake [g/(kg BW · d)] during intervention	Protein dose [g/(kg BW · d)]	Protein type	With/without physical exercise	Risk of bias	Outcome measure	Result*	Comments	
	Total protein intake					Study			
						Park et al. 2018 (64)	40/40	+ NS − ?	
Habitual protein intake (reference): ≥0.9 to <1.0 g/(kg BW · d)	Park et al. 2018 (64)	40/40	IG1: 1.18 ± 0.23;	0.28	A	NoEx	SC Korean MMSE	✓	
	40/40	IG2: 1.37 ± 0.26;	0.47	CG: 0.90 ± 0.38			Korean MMSE	✓	
Total (contrasts)	0	2	0	0	No effect observed for any of 2 contrasts				
Total (studies)	0	1	0	0	No effect observed in the single study				

1 BW: body weight; CG, control group; IG, intervention group; MMSE, Mini-Mental State Examination; NoEx, without concomitant exercise intervention; NS, not significant; SC, some concerns (regarding risk of bias).

2 Total protein intake during follow-up. If protein intake was assessed at multiple time points, the intake assessed at the final time point was considered.

3 “Protein type” indicates the way in which a higher protein intake was achieved and is categorized into protein or amino acid supplements (A), or a few protein- (en)rich(ed) foods (B), or high-protein diets (C).

4 Risk of bias was assessed using the RoB 2 Cochrane collaboration tool and scored as “low” (L), “some concerns” (SC) or “high” (H).

5 The results of the studies are indicated as follows: +, statistically significant beneficial effect (P < 0.05); −, statistically significant unfavorable effect (P < 0.05); NS, no statistically significant effect (P ≥ 0.05); ?, result unclear. In cases where results were reported for multiple time points, only the result for the final time point is reported.

6 This study assessed multiple contrasts for the health outcome “cognition,” so could show both a significant and a nonsignificant effect.

The evaluation of the effect of increased protein intake on serum lipids. Supplemental Table 7. Assessed outcome measures include total/HDL cholesterol ratio and triglycerides. A reducing effect on the total/HDL cholesterol ratio was observed in an RCT with 32 Brazilian participants that was performed in the context of physical exercise (51). A reducing effect on triglycerides was observed in an RCT of 22 US participants, where a 0.4-mmol/L greater decrease in LDL cholesterol was observed in the intervention group than in the control group after 12 wk (67). The RCT was not performed in the context of physical exercise (67). This RCT was not performed in the context of physical exercise. In the 3 RCTs, showing an effect (either beneficial or unfavorable), the risk of bias was scored as “high” (n = 3). In the context of physical exercise, the risk of bias was scored as “some concerns” (SC), or “high” (H). The committee did not have sufficient evidence to be able to draw conclusions on the effect of increased protein intake on serum lipids, because the evidence shows a high degree of ambiguity because of the evidence that shows a high proportion of beneficial effects based on the number of contrasts. The committee was not able to draw conclusions on the effect of increased protein intake on serum lipids because the evidence shows a high proportion of beneficial effects based on the number of contrasts. The committee was not able to draw conclusions on the effect of increased protein intake on serum lipids because the evidence shows a high proportion of beneficial effects based on the number of contrasts.
Kidney function.

The evaluation of the effect of increased protein intake on kidney function included 6 RCTs (45, 46, 56, 63–65), with a total of 12 statistically tested contrasts (Table 10; Supplemental Table 8). Assessed outcome measures include serum creatinine, estimated glomerular filtration rate (eGFR; estimated from serum creatinine), and albumin/creatinine ratio. The risk of bias was scored as “some concerns” (n = 4) or “high” (n = 2).

In 1 of the 6 RCTs (17%) an effect of increased protein intake on kidney function was found for 1 of the statistically tested contrasts [1 of 12 contrasts (8%)], concerning serum creatinine (63). In this RCT including 35 participants from Norway, a greater increase in serum creatinine level was observed in the protein group compared with the control group after 12 wk. The risk of bias in this RCT was scored as “high.” No other effects on kidney function were observed.

Of note, a number of RCTs into the effect of increased protein intake assessed (parameters of) kidney function, but not as primary outcome. Kidney function was predominantly evaluated to identify a possible adverse effect of increased protein intake. Whether the study samples in those studies were large enough to detect any (adverse) effect is uncertain. The committee furthermore noted that high-risk groups for deteriorating kidney function (e.g., those with diabetes, hypertension, or pre-existing impaired kidney function) were often excluded from RCTs. Protein may have a different effect in people in those high-risk groups compared with people with good kidney function. Hence, the generalizability of the findings reported here to those in high-risk groups might be limited.

The committee noted serious limitations when using serum creatinine or eGFR based on serum creatinine (68) as an indicator of kidney function in the context of protein RCTs, which most evaluated RCTs did. Many factors, including the amount of protein, the protein source (animal- or plant-based), and any change in muscle mass, can affect the level of serum creatinine (69). These effects may occur simultaneously and in opposing or similar directions, thereby respectively potentially neutralizing the effects of one another or leading to a seemingly changing eGFR without actually changing the true GFR. Because of this complexity, the committee believes that serum creatinine and the creatinine-based eGFR are inappropriate measures to determine the isolated effect of dietary protein intake on kidney function. Hence, the available data are insufficient to exclude an adverse effect of a long-term increase of protein intake on kidney function in older adults.

Cognition.

The evaluation of the effect of increased protein intake on cognition included 1 RCT (64), in which 2 contrasts were statistically tested (Table 11; Supplemental Table 9). Cognition was assessed using the Mini-Mental State Examination (MMSE). The risk of bias was scored as “some concerns.” This RCT showed no effect of increased protein intake on cognition.

Subgroup analysis according to concomitant physical exercise.

The committee evaluated whether the effect of increased protein intake on health outcomes differed according to whether or not the protein intervention took place in the context of a (concomitant) physical exercise intervention for the following health outcomes: lean body mass, muscle strength, physical function, and serum lipids (Tables 3–5 and 9; Supplemental Tables 1–3 and 7; Supplemental Results 1). For the outcomes of lean body mass, physical function, and serum lipids, there were no notable differences between results obtained by RCTs on the effect of increased protein intake alone (compared with placebo) and those obtained by RCTs on the effect of increased protein intake with concomitant physical exercise (compared with physical exercise only). For muscle strength, RCTs on the effect of increased protein intake in the context of physical exercise more often showed a beneficial effect on muscle strength (38% of 8 RCTs evaluated; 24% of 55 contrasts tested) than RCTs on the effect of increased protein intake alone (14% of 7 RCTs evaluated; 4% of 28 contrasts tested). Physical exercise usually concerned resistance training. For the outcomes of blood pressure, serum glucose and insulin, and kidney function, RCTs with and without concomitant physical exercise were available, but results were not stratified since (nearly) all RCTs for the given health outcome showed the same result (i.e., likely no effect). For the outcomes of bone health and cognition, results could not be stratified since an insufficient number of studies was represented in each group.

Subgroup analysis according to habitual protein intake.

The committee evaluated whether the effect of increased protein intake on health outcomes differed according to domain of habitual protein intake for 4 health outcomes: lean body mass, muscle strength, physical function, and serum lipids. For those 4 outcomes, the percentage of RCTs showing an effect compared with the percentage of RCTs showing no effect was not notably different across domains of habitual protein intake (Tables 3–5 and 9; Supplemental Results 2). For the outcomes of bone health, blood pressure, serum glucose and insulin, and kidney function, RCTs in multiple domains of habitual protein intake were available, but results were not stratified since (nearly) all RCTs for the given health outcome showed the same result (i.e., likely no effect). For cognition, results could not be stratified since only 1 RCT was available.

Sensitivity analyses.

For none of the health outcomes evaluated did the committee find evidence of a dose–response relation (Tables 3–11; Supplemental Results 2). The committee also found no indications that the observed results differed according to the type of protein intervention or the level of risk of bias. The lack of information concerning the power calculations in more than one-third of the selected RCTs made it difficult to determine the extent to which statistical power influenced the results obtained.
Applying decision rules
Based on the overall effects observed in the 18 RCTs included in this SR, as well as subgroup evaluations, sensitivity analyses, and other considerations, the committee drew final conclusions regarding the effect on health outcomes of increasing protein intake in older adults with a habitual protein intake ≥ 0.8 g/(kg BW \cdot d). The committee thereby used the prespecified decision rules (Table 1) as a starting point. The final conclusions are as follows. There is a possible beneficial effect of increased protein intake on lean body mass in older adults, which does not involve any change in BW. There is also a possible beneficial effect on muscle strength, but only for the combination of increased protein intake and concomitant physical exercise (mainly resistance exercise training) compared with physical exercise alone. Increased protein intake alone (not in the context of physical exercise) has likely no effect on muscle strength. There is also likely no effect of increased protein intake on physical performance and bone health. Effects of increased protein intake on blood pressure, serum glucose and insulin, kidney function, and cognition are unclear because too few studies were available (cognition), or too few studies with sufficient statistical power (blood pressure, serum glucose, and insulin) or appropriate outcome measures (kidney function) were available to draw conclusions. There is an ambiguous effect of increased protein intake on serum lipids. Based on the data available, the committee judged that there were no indications that the results obtained would differ between older adults who engage in physical exercise and those who do not (except for muscle strength), or would depend on the habitual protein intake. In addition, the type of protein intervention, risk of bias, or statistical power did not seem to influence the results obtained. Last, there were no indications for a dose–response relation (exploratory analysis).

Discussion
The present SR provides a comprehensive, transparent, and up-to-date overview of peer-reviewed human RCTs that investigated the effects of increased protein intake on health outcomes in older adults from the general population with an average habitual protein intake of at least 0.8 g/(kg BW \cdot d). The study showed that increasing protein intake above 0.8 g/(kg BW \cdot d) has a possible beneficial effect on lean body mass and, only for the combination with physical exercise, muscle strength. However, an effect of protein intake when not accompanied by physical exercise on muscle strength, or on physical function and bone health was unlikely. For 5 other health outcomes assessed, effects of extra protein intake are unclear. Taken together, those RCTs did not provide convincing evidence that a protein intake beyond 0.8 g/(kg BW \cdot d) affects health outcomes in older adults.

The present SR of RCTs has been used by the Committee on Nutrition of the Health Council of the Netherlands to set the PRI for protein for older adults, in addition to an MA of nitrogen-balance studies, which was used as the starting point for this derivation. The MA, performed by Rand et al. (10), showed that the average requirement of high-quality protein for adults aged >18 y was 0.66 g/(kg BW \cdot d), which resulted in a PRI of 0.83 g/(kg BW \cdot d). The average nitrogen requirement was higher in a small subgroup of older adults (>67 y; $n = 14$ from 1 RCT) compared with a subgroup of younger adults (<60 y; $n = 221$), but the difference was not statistically significant. This was confirmed by a nitrogen-balance study comparing adults younger with those older than 60 y published thereafter (70). No other, more recent, nitrogen-balance studies were found. Alternative methods such as stable isotope studies do not yet provide enough robust data to base PRI for proteins on. The committee secondarily considered the results of the present SR. The data suggest that increasing protein intake in older adults with a habitual protein intake of at least 0.8 g/(kg BW \cdot d) has a possible beneficial effect on lean body mass and muscle strength (for the combination with physical exercise only), which may be of importance for metabolic and physical health. Still, the majority (over 60%) of the RCTs evaluated showed no effect on (≥ 1 measure of) those outcomes, nor did it seem to translate into better physical function or to affect bone health. Moreover, effects of extra protein intake on the 5 other health outcomes assessed are unclear (due to an insufficient number of studies available, an assumed lack of statistical power, inappropriateness of outcome measures used, or ambiguous findings). Altogether, the committee judged that the currently available RCTs do not provide sufficiently convincing evidence that a protein intake beyond 0.8 g/(kg BW \cdot d), compared with ≥ 0.8 g/(kg BW \cdot d), affects health outcomes in older adults. Hence, the committee concluded that no higher PRI for (high-quality) protein was needed for (healthy) older adults than for (healthy) younger adults (71).

DRVs are applicable to the general (healthy) population. The committee, therefore, disregarded studies performed among hospitalized patients or specific (older) patient groups such as those with chronic heart failure or chronic obstructive pulmonary disease. The committee does not rule out the possibility that certain subgroups of older adults, such as frail or malnourished older adults, may indeed benefit from more protein than the PRI for older adults in general (5). This question fell outside the scope of this SR and could not be answered based on the literature available in this SR.

For the outcomes of lean body mass and muscle strength (only for the effect of protein in the context of physical exercise) the committee concluded that a beneficial effect of increased protein intake was possible. Evidence was too limited to allow a conclusion of likely or convincing due to inconsistency in study findings. As stated before, the inconsistency was likely not explained by the protein dose, the presence of concomitant physical exercise (except for muscle strength), the type of protein intervention, and the risk of bias. Also, the discrepancy in findings for lean body mass was unlikely due to differences in age, gender, or BMI. The committee noted that among the 9 RCTs in the context of physical exercise, (beneficial) effects were observed in 3 RCTs, which had a few things in common that differed from the other 6 RCTs: participants were all female, were all from
Brazil, the (high) dose of protein was ingested directly after the training session (instead of during a meal and/or spread over the day), and participants received training 8 wk before the start of the trial. It could not be determined which of those factor(s) explained the positive findings. For muscle strength, the disparity in results could be partially explained by the presence of concomitant physical exercise. However, inconsistency was still present among the RCTs that were performed in the context of physical exercise. Differences in age, gender, BMI, nationality, race, timing of protein intake, or baseline mobility status did likely not explain the inconsistent findings.

The fact that the literature selection and risk of bias assessment in this SR were not (formally) performed in duplicate can be considered a limitation. However, those tasks were performed by 1 researcher in close collaboration with and (quality) control by the full committee, among whom were multiple experts active in the field of protein and aging research. Therefore, we are confident that no (influential) studies were missed and that the likelihood of (substantial) errors in the risk of bias assessment is small. A second limitation is that the literature search was performed in April 2020, and thus, it cannot be ruled out that any very recently published studies regarding the effect of protein intake on health outcomes in older adults have not been included in the present SR.

An important limitation to many published (SRs of) RCTs into increasing protein intake in older adults in general is the lack of information on the participants’ habitual protein intake. Particularly when such studies serve to derive DRVs the interest lies in the total protein intake rather than the protein dose only. In addition, the effect of extra protein may depend on the habitual protein intake and this may also be an explanation for the heterogeneity observed among previous studies. The present SR addressed this issue; it is unique in that it specifically focused on RCTs in which the participants’ habitual protein intake was at least 0.8 g/(kg BW · d). It is recommended that future studies showing beneficial effects stratify their results by habitual protein intake, in order to provide better insight into the intake domain in which health benefits occur. All available RCTs except 1 (66) used a dairy-based protein intervention (either dairy-based milk, milk protein concentrate, or whey protein concentrate) or a supplement of essential amino acids. Therefore, the committee could not evaluate whether effects of protein on health outcomes depend on the dietary protein source (animal- compared with plant-based). Future research on this topic is important, particularly given the environmental challenges the world is facing today. More RCTs with sufficient statistical power for detecting effects are also needed, especially with regard to cardiometabolic outcomes such as blood pressure and serum glucose and insulin. Furthermore, the protein requirement might be different (higher) in the oldest old (≥85 y), but the committee found no studies that were conducted in this age group. Therefore, studies performed in the oldest old are required. Regarding prospective cohort studies, the committee noted the importance of studies addressing more, and more specifically for the DRV relevant, categories of protein intake in relation to health outcomes. This would contribute to better specifying the optimal protein intake level. Lastly, there is a need for more nitrogen-balance studies in which both younger adults and older adults are represented in order to better study any age differences in protein metabolism.

Conclusion

The results from the present SR of RCTs indicate that increasing protein intake beyond 0.8 g/(kg BW · d) has a possible beneficial effect on lean body mass in older adults and, when combined with physical exercise, muscle strength, but that an effect on physical performance and bone health is unlikely. Limitations with regard to sample size, statistical power, and appropriateness of outcome measures did not allow for conclusions regarding other health outcomes, such as blood pressure, or to rule out potential harmful effects of extra protein, for example on kidney function. The committee judged that the available evidence from human RCTs is not sufficiently convincing to state that increasing protein intake in older adults from the general population with a habitual protein intake of at least 0.8 g/(kg BW · d) would elicit health benefits.

Acknowledgments

We thank WY Lee for assisting with the literature search.

The authors’ responsibilities were as follows—LMH, JdG, LAA, SJLB, JWJB, EEB, EB, JBvG, MTEH, JAI, SPJK, RPM, NMDR, CDAS, JV-K, EdV, MV: designed the study; LMH, JBvG: conducted the literature search, study selection, and data extraction; LMH, JdG, LAA, SJLB, JWJB, EEB, EB, JBvG, AWH, MTEH, JAI, SPJK, RPM, NMDR, CDAS, JV-K, EdV, MV: analyzed and interpreted the data; LMH: drafted the manuscript and prepared tables and figures; JdG, MV: critically revised the manuscript for important intellectual content; all authors: reviewed and commented on versions of the manuscript; and all authors: read and approved the final manuscript.

References

1. World Health Organization. Protein and amino acid requirements in human nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. Geneva, Switzerland; 2007.
2. European Food Safety Authority. Scientific opinion on dietary reference values for protein. 2012. Report No.: 2557.
3. Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 2013;14(8):542–59.
4. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krzmaric Z, Nair KS, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 2014;33(6):929–36.
5. Volkert D, Beck AM, Cederholm T, Cruz-Jentoft A, Goisser S, Hooper L, Kiesswetter E, Maggio M, Raynaud-Simon A, Sieber CC, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2019;38(1):10–47.
6. Nordic Council of Ministers (NCM). Nordic Nutrition Recommendations 2012. Integrating nutrition and physical activity 2012.

7. Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährung. Referenzwerte für die Nährstoffzufuhr. Bonn; 2017.

8. Richter M, Baerlocher K, Bauer JM, Elmadfa I, Heseker H, Leschik-Bonnet E, Stangl G, Volkert D, Stehle P. Revised reference values for the intake of protein. Ann Nutr Metab 2019;74(3):242–50.

9. Gezondheidsraad. Voedingsnormen: energie, eiwitten, vetten en vertereerbare koolhydraten. Den Haag: Gezondheidsraad; 2001. Report No.: publicatienr. 2001/19.

10. Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr 2003;77(1):109–27.

11. Shad BJ, Thompson JL, Breen L. Does the muscle protein synthetic response to exercise and amino acid-based nutrition diminish with advancing age? A systematic review. Am J Physiol Endocrinol Metab 2016;311(5):E803–E817.

12. Grobbee DE, Hoes AW. Chapter 8: Cohort and cross-sectional studies. Clinical epidemiology principles, methods and applications for clinical research. 2nd ed. Burlington, MA; 2015.

13. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press; 2005.

14. Health Council of the Netherlands. Physical activity guidelines 2017. The Hague: Health Council of the Netherlands; 2017. Report No: 2017/08e.

15. Sterne JAC, Savovic J, Page MJ, Elbers RL, D'Arcy CL, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898.

16. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Regnier JY, Chapurlat R, Chan DC, Bruyère O, et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017;28(6):1817–33.

17. Beaudart C, Rabenda V, Simmons M, Greirick A, Araujo De Carvalho I, Regnier JY, Amuthavalli Thiyagarajan J, Bruyere O. Effects of protein, essential amino acids, B-hydroxy B-methylbutyrate, creatine, dehydroepiandrosterone and fatty acid supplementation on muscle mass, muscle strength and physical performance in older people aged 60 years and over. A systematic review on the literature. J Nutr Health Aging 2018;22(1):117–30.

18. Cheng H, Kong J, Underwood C, Petocz P, Hirani V, Dawson B, O'Leary F. Systematic review and meta-analysis of the effect of protein and amino acid supplements in older adults with acute or chronic conditions. Br J Nutr 2018;119(5):527–42.

19. Colonetti T, Grande AJ, Milton K, Foster C, Alexandre MC, Uggioni V, De Carvalho AR, Araujo De Carvalho I. Effects of whey protein supplement in the elderly submitted to resistance training: systematic review and meta-analysis. Int J Food Sci Nutr 2017;68(3):257–64.

20. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arri H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43(6):748–59.

21. Dewansingh P, Melse-Boonstra A, Krijnen WP, van der Schans CP, Jager-Wittenaar H, van den Heuvel EGHM. Growth hormone and IGF-I in healthy adults from dairy products increases body weight and vitamin D improves physical performance in older adults: a systematic review and meta-analysis. Nutr Res 2018;49:1–22.

22. Finger D, Goltz FR, Umpierre D, Meyer E, Rosa LH, Schneider CD. Effects of protein supplementation in older adults undergoing resistance training: a systematic review and meta-analysis. Sports Med 2015;45(2):245–55.

23. Groenendijk I, den Boef L, van Loo LJC, de Groot LCPGM. High versus low dietary protein intake and bone health in older adults: a systematic review and meta-analysis. Comput Struct Biotechnol J 2019;17:1101–12.

24. Hanach N, McCullogh F, Avery A, the impact of dairy protein intake on muscle mass, muscle strength, and physical performance in middle-aged to older adults with or without existing sarcopenia: a systematic review and meta-analysis. Adv Nutr 2019;10(1):59–69.

25. Hidayat K, Chen GC, Wang Y, Zhang Z, Dai X, Szeto IMY, Qin L-Q. Effects of milk proteins supplementation in older adults undergoing resistance training: a meta-analysis of randomized control trials. J Nutr Health Aging 2018;22(2):237–45.

26. Hou L, Lei Y, Li X, Hua C, Jia X, Yang J, Xu R, Wang X. Effect of protein supplementation combined with resistance training on muscle mass, strength and function in the elderly: a systematic review and meta-analysis. J Nutr Health Aging 2019;23(5):451–8.

27. Komar B, Schwingshackl L, Hoffmann G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging 2015;19(4):437–46.

28. Liao CD, Chen HC, Huang SW, Liou TH. The role of muscle mass gain following protein supplementation plus exercise therapy in older adults with sarcopenia and frailty risks: a systematic review and meta-regression analysis of randomized trials. Nutrients 2019;11(8):1713.

29. Liao CD, Lee PH, Hsiao DJ, Huang SW, Tsaou JY, Chen HC, Liou TH. Effects of protein supplementation combined with exercise intervention on frailty indices, body composition, and physical function in frail older adults. Nutrients 2018;10(12):1916.

30. Liao CD, Tsaou JY, Wu Y, Cheng CP, Chen HC, Huang YC, Chen HC, Liou TH. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr 2017;106(4):1078–91.

31. Martinez-Arnau FM, Fonfría-Vivas R, Caloi O. Beneficial effects of leucine supplementation on criteria for sarcopenia: a systematic review. Nutrients 2019;11(10):946.

32. Nowson CA, Service C, Appleton J, Gregor JA. The impact of dietary factors on indices of chronic disease in older people: a systematic review. J Nutr Health Aging 2018;22(2):292–96.

33. Oktaviana J, Zanker J, Vogrin S, Duque G. The effect of protein supplements on functional frailty in older persons: a systematic review and meta-analysis. Arch Gerontol Geriatr 2020;86:103938.

34. Pedersen AN, Cederholm T. Health effects of protein intake in healthy elderly populations: a systematic literature review. Food Nutr Res 2014;58:10.3402/fnr.v88.23364.

35. Ten Haaf DSM, Nuijten MAH, Maessen MFP, Horstman AMH, Eijsvogels TMH, Hopman MTE. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: a systematic review and meta-analysis. Am J Clin Nutr 2018;108(3):1043–59.

36. Theodorakopoulos C, Jones J, Bannerman E, Greig CA. Effectiveness of nutritional and exercise interventions to improve body composition and muscle strength or function in sarcopenic obese older adults: a systematic review. Nutr Res 2017;43:3–15.

37. Thomas DK, Quinn MA, Saunders DH, Greig CA. Protein supplementation does not significantly augment the effects of resistance exercise training in older adults: a systematic review. J Am Med Dir Assoc 2016;17(10):959.e1–959.e9.

38. Tieland M, Franssen R, Léloilé ME, van Driessche B, van Dijk AJ, Bruyère O. The effect of leucine-rich protein supplements on muscle mass and strength in elderly people: individual participant data and meta-analysis of RCTs. J Nutr Health Aging 2017;21(9):994–1001.

39. Tsobo M, Mamosaki R, Vakili M, Abo M. Nutritional supplementation for activities of daily living and functional ability of older people in residential facilities: a systematic review. Geriatr Gerontol Int 2018;18(2):197–210.

40. van de Rest O, van der Zwaluw NL, de Groot LCPGM. Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids 2013;45(5):1035–45.
muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res Rev 2019;51:48–54.

42. Wirth J, Hillesheim E, Brennan L. The role of protein intake and its timing on body composition and muscle function in healthy adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr 2020;150(6):1443–60.

43. Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. Clinical effectiveness of protein and amino acid supplementation on building muscle mass in elderly people: a meta-analysis. PLoS One 2014;9(9):e109141.

44. Arnarson A, Gudny Geirsdottir O, Ramel A, Briem K, Jonsson PV, Thorsdottir I. Effects of whey proteins and carbohydrates on the efficacy of resistance training in elderly people: double blind, randomised controlled trial. Eur J Clin Nutr 2013;67(8):821–6.

45. Ramel A, Arnarson A, Geirsdottir OG, Jonsson PV, Thorsdottir I. Glomerular filtration rate after a 12-wk resistance exercise program with post-exercise protein ingestion in community dwelling elderly. Nutrition 2013;29(5):719–23.

46. Bhask S, Apovian CM, Travison TG, Pencina K, Moore LL, Huang G, Campbell WW, Li Z, Howland AS, Chen R, et al. Effect of protein intake on lean body mass in functionally limited older men: a randomized clinical trial. JAMA Intern Med 2018;178(4):530–41.

47. Campbell WW, Crim MC, Young VR, Joseph LJ, Evans WJ. Effects of resistance training and dietary protein intake on protein metabolism in older adults. Am J Physiol 1995;268(6 Pt 1):E1143–53.

48. Chale A, Cloutier GJ, Hau C, Phillips EM, Dallal GE, Fielding RA. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J Gerontol A Biol Sci Med Sci 2013;68(6):682–90.

49. Dillon EL, Sheffield-Moore M, Paddon-Jones D, Gilkison C, Sanford AP, Casperson SL, Jiang J, Chinkes DL, Urban RJ. Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women. J Clin Endocrinol Metab 2009;94(5):1630–7.

50. Fernandes RR, Nabuco HCG, Sugihara Junior P, Cavalcante EF, Fabro PMC, Tomeleri CM, Ribeiro AS, Barbosa DS, Venturini D, Schoenfeld BJ, et al. Effect of protein intake beyond habitual intakes following resistance training on cardiometabolic risk disease parameters in pre-conditioned older women. Exp Gerontol 2018;110:9–14.

51. Sugihara Junior P, Ribeiro AS, Nabuco HCG, Fernandes RR, Tomeleri CM, Cunha PM, Venturini D, Barbosa DS, Schoenfeld BJ, Cynro ES. Effects of whey protein supplementation associated with resistance training on muscular strength, hypertrophy, and muscle quality in preconditioned older women. Int J Sport Nutr Exerc Metab 2018;28(5):528–35.

52. Hodgson JM, Zhu K, Lewis JR, Kerr D, Meng X, Solah V, Devine A, Binnis CW, Woodman RJ, Prince RL. Long-term effects of a protein-enriched diet on blood pressure in older women. Br J Nutr 2012;107(11):1664–72.

53. Zhu K, Meng X, Kerr DA, Devine A, Solah V, Binnis CW, Prince RL. The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res 2011;26(9):2298–306.

54. Zhu K, Kerr DA, Meng X, Devine A, Solah V, Binnis CW, Prince RL. Two-year whey protein supplementation did not enhance muscle mass and physical function in well-nourished healthy older postmenopausal women. J Nutr 2015;145(11):2520–6.

55. Isoglou T, White H, Preston T, McElhone S, McKenna J, Hind K. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65–75 yrs. Eur J Clin Nutr 2016;70(2):182–8.

56. Kesterrer JE, Bihuniak JD, Brindisi J, Sullivan RR, Mangano KM, Larocque S, Kotler BM, Simpson CA, Cusano AM, Gaffney-Stomberg E, et al. The effect of a whey protein supplement on bone mass in older Caucasian adults. J Clin Endocrinol Metab 2015;100(6):2214–22.

57. Mitchell CJ, Okawa SY, Ogborn DJ, Nates NJ, MacNeill LG, Tarnopolsky M, Phillips SM. Daily chocolate milk consumption does not enhance the effect of resistance training in young and old men: a randomized controlled trial. Appl Physiol Nutr Metab 2015;40(2):199–202.

58. Mitchell CJ, Milan AM, Mitchell SM, Zeng N, Ramzan F, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am J Clin Nutr 2017;106(6):1375–83.

59. Nabuco HCG, Tomeleri CM, Sugihara Junior P, Fernandes RR, Cavalcante EF, Antunes M, Ribeiro AS, Teixeira DC, Silva AM, Sardinha LB, et al. Effects of whey protein supplementation pre- or post-resistance training on muscle mass, muscular strength, and functional capacity in pre-conditioned older women: a randomized clinical trial. Nutrients 2018;10(5):563.

60. Nabuco HCG, Tomeleri CM, Sugihara Junior P, Fernandes RR, Cavalcante EF, Venturini D, Barbosa DS, Silva AM, Sardinha LB, Cynro ES. Effects of pre- or post-exercise whey protein supplementation on body fat and metabolic and inflammatory profile in pre-conditioned older women: a randomized, double-blind, placebo-controlled trial. Nutr Metab Cardiovasc Dis 2019;29(3):290–300.

61. Nabuco HCG, Tomeleri CM, Sugihara PJ, Fernandes RR, Cavalcante EF, Dos Santos L, Silva AM, Sardinha LB, Cynro ES. Effect of whey protein supplementation combined with resistance training on cellular health in pre-conditioned older women: a randomized, double-blind, placebo-controlled trial. Arch Gerontol Geriatr 2019;82:232–7.

62. Nabuco HCG, Tomeleri CM, Fernandes RR, Sugihara Junior P, Cavalcante EF, Cunha PM, Antunes M, Nunes JP, Venturini D, Barbosa DS, et al. Effect of whey protein supplementation combined with resistance training on body composition, muscular strength, functional capacity, and plasma-metabolism biomarkers in older women with sarcopenic obesity: a randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2019;32:88–95.

63. Ottestad I, Lovstad AT, Gjevestad GO, Hamarsland H, Saltyte Benth J, Andersen LF, Bye A, Biong AS, Retterstol K, Iversen PO, et al. Intake of a protein-enriched milk and effects on muscle mass and strength. A 12-week randomized placebo controlled trial among community-dwelling older adults. J Nutr Health Aging 2017;21(10):1160–9.

64. Park Y, Choi JE, Hwang HS. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2018;108(5):1026–33.

65. Ten Haaf DSM, Eijssvogels TMH, Bongers C, Horstman AMH, Timmers S, de Groot LCPGM, Hopman MTE. Protein supplementation improves lean body mass in physically active older adults: a randomized placebo-controlled trial. J Cachexia Sarcopenia Muscle 2019;10(2):298–310.

66. Thomson RL, Brinkworth GD, Noakes M, Buckley JD. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: a randomized controlled trial. Clin Nutr 2016;35(1):27–33.

67. Wright CS, Zhou J, Sayer RD, Kim JE, Campbell WW. Effects of a high-protein diet including whole eggs on muscle composition and indices of cardiometabolic health and systemic inflammation in older adults with overweight or obesity: a randomized controlled trial. Nutrients 2018;10(7):946.

68. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130(6):461–70.

69. Stenhower CDA, Koopmans RP (editors). Hoofdstuk 14: Nierziekten. Interne Geneeskunde (15e druk). Houten: Bohn Stafleu Van Loghum; 2021.

70. Mitchell CJ, Milan AM, Mitchell SM, Zeng N, Ramzan F, Sharma P, Knowles SO, Roy NC, Sjödin A, Wagner KH, et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: a 10-wk randomized controlled trial. Am J Clin Nutr 2017;106(6):1375–83.