HD 97048 : a closer look to the disk *

C. Doucet1,2, E. Habart3, E. Pantin1,2, C. Dullemond4, P. O. Lagage1,2, C. Pinte5, G. Duchène5, and F. Ménard5

1 AIM, Unité Mixte de Recherche CEA - CNRS - Université Paris VII -UMR 7158, France
2 DSM/DAPNIA/service d’Astrophysique, CEA/Saclay, F-91191 Gif-sur-Yvette, France
3 Institut d’Astrophysique Spatiale (IAS), 91405 Orsay cedex, France
4 Max-Planck-Institut fur Astronomie Heidelberg, Konigstuhl 17, Heidelberg, Germany
5 Laboratoire d’Astrophysique de Grenoble, CNRS/UJF UMR 5571, Grenoble, France

Preprint online version: February 1, 2008

ABSTRACT

Aims. Today, large ground-based instruments, like VISIR on the VLT, providing diffraction-limited (~0.3 arcsec) images in the mid-infrared where strong PAH features appear enable us to see the flaring structure of the disks around Herbig Ae stars. Although great progress has been made in modelling the disk with radiative transfer models able to reproduce the spectral energy distribution (SED) of Herbig Ae stars, the constraints brought by images have not been yet fully exploited. Here, we are interested in checking if these new observational imaging constraints can be accounted for by predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the Herbig Ae stars.

Methods. The images taken by VISIR in the 8.6 and 11.3 µm aromatic features reveal a large flaring disk around HD97048 inclined to the line of sight. In order to analyse the spatial distribution of these data, we use a disk model which includes the most up to date understanding of disk structure and physics around Herbig Ae stars with grains in thermal equilibrium in addition to transiently-heated PAHs.

Results. We compare the observed spatial distribution of the PAH emission feature and the adjacent continuum emission with predictions based on existing full disk models. Both SED and spatial distribution are in very good agreement with the model predictions for common disk parameters.

Conclusions. We take the general agreement between observations and predictions as a strong support for the physical pictures underlying our flared disk model.

Key words. Circumstellar matter – Stars : formation – Stars : pre-main-sequence – Stars: individual (HD 97048)

1. Introduction

Herbig Ae/Be stars are thought to be the intermediate mass (~ 2 - 10 M⊙) counterparts of T Tauri stars (Waters & Waalkens1998). They have a strong infrared (IR) excess coming from warm circumstellar dust. Similar to T Tauri stars, this dust is believed, due to the interpretation of spectral energy distributions (SEDs), to reside in a flared/flat circumstellar disk (Meeus et al.2001).

PAHs (Polycyclic Aromatic Hydrocarbons) undergo transient heating: they do not reach thermal equilibrium with the radiation field but absorb individual photons, experiencing a rapid increase in temperature, slowly cool, thus re-radiating the absorbed energy in the infrared (IR). This radiation allows to see much further in the disk since these grains can reach high temperatures far away from the star. As a result, PAHs emission can be used to probe the external region of disks around HAe stars (Lagage et al.2006). Another point of interest is that, if present, PAHs can constitute an important source of opacity and are likely to play a key role in the thermal budget and chemistry of the gas, as they do in the interstellar medium. The thermal coupling between PAHs and gas via the photoelectric effect will, for example, determine the gas temperature in the upper layer of the disk where the gas and dust temperatures are not well coupled (Jonkheid et al. 2004; Kamp & Dullemond 2004). Furthermore, PAHs are also good tracers of the presence of very small particles in the surface layers of disks and their emission can tell if and where very small particles survive settling and coagulation processes that cause the majority of the original grain population to grow to larger sizes in the same objects.

We have started a program of imaging nearby HAe stars with VISIR, the new mid-infrared instrument attached to the third 8-m unit of ESO’s Very Large Telescopes located at Cerro Paranal, Chile. One of the first targets was HD 97048 which has a strong IR excess, characteristic of a flared disk, and strong PAH features.

In a previous work, we were able for the first time to constrain the geometry of the disk, thanks to PAH emission (Lagage et al.2006). Lagage et al. (2006) found there is a large flaring disk around HD97048 extending at least up to 370 AU, vertically optically thick at the observed wavelength (8.6 µm) and inclined to the line of sight by 42.8° ± 0.5°. Moreover, with a very simple model, we were able to measure the flaring index which was found to be 1.26 ± 0.05. In this model, the PAH-emitting region is only located at the surface of the disk, whose surface scale height Hs varies...
In Sect. 3, we describe the observations and the data results. The different grains population.

calculated with hydrostatic equilibrium and a radiative trans - form the star formation process, which could already account for the global shape of the stars of intermediate mass. To do that, we used the model of our knowledge, few tests like that (Doucet et al. 2006) have been done yet for disks around pre-main sequence stars of intermediate mass. To do that, we used the model of Dullemond et al. (2001); Dullemond & Dominik (2004a) which could already account for the global shape of theSED of a quite large number of Herbig Ae stars. The dust model takes into account grains at thermal equilibrium and stochastically-heated PAH. The structure of the disk is calculated with hydrostatic equilibrium and a radiative transfer in two dimensions is used to calculate the emission of the different grains population.

The paper is organized as follows. In Sect. 2, we present the knowledge on HD 97048 and its circumstellar material. In Sect. 3, we describe the observations and the data results. In Sect. 4, we describe the disk model and in Sect. 5, we compare the observed SED and spatial distribution of the circumstellar material to the model predictions.

2. HD97048

HD97048 is a nearby HAe star of spectral type Be9.5/A0 located in the Chamaeleon I dark cloud, at a distance of 180 pc (van den Ancker et al., 1997). It is surrounded by a large amount of circumstellar material left from the star formation process, which produces a large infrared (IR) excess over the stellar emission (larget IR=0.35-0.40L⋆, Acke & van den Ancker (2004); Van Kerckhoven et al. (2002)). HD 97048 has been classified as a HAe star of group I with evidence of flared disk (Meeks et al. 2001), since its SED is rising in the IR (Acke & van den Ancker 2004). Spectroscopic observations of the IR excess have also revealed the presence of strong PAH features at 3.3, 6.2, 7.7, 8.6, 11.3 microns and nano-diamonds features in the 3.4-3.5 μm region (Siebenmorgen et al. 2000; Van Kerckhoven et al. 2002). No silicate emission band at 10 μm appears in the spectra of HD 97048. Recent mid-IR long slit spectroscopic observations with TIMMI2 show that the aromatic emission features at long wavelength (i.e., 8.6 and 11.3 μm) are extended and come mostly from a region of 200-300 AU, likely a disk (van Boekel et al. 2004). These results have been confirmed recently by imaging data taken in the PAH band at 8.6 μm (Lagage et al. 2006). The large extended part of the mid-IR emission seen on scales of 5 to 10 arcsec by Prusti et al. (1994) and Siebenmorgen et al. (2000) is most likely due to an extended envelope of transiently heated very small grains and PAHs surrounding the star and the disk system. Using Adaptive Optics high angular resolution (~0.1 arcsec) spectroscopic observations, Habart et al. (2004, 2005) were also able to spatially resolve the emission in the aromatic and diamond features around 3 μm and found that the emission must be within 30 AU closely related to the star-disk system. Finally, Weintraub et al. (2005) have recently reported near-IR molecular hydrogen emission for this object.

3. VISIR observations

3.1. Observations

The observations were performed using the ESO mid-infrared instrument VISIR installed on the VLT (Paranal, Chili), equipped with a DRS (former Boeing) 256×256 pixels BIB detector. The object was observed on 2005, January 25th and June 17th. It was observed in the PAH bands at 8.6 and 11.3 μm and in the adjacent continuum. The data at 8.6 μm were already used in Lagage et al. (2006). In this paper, we focus on the data obtained at 11.3 μm. A summary of the observations is given in Table 1. These data were taken with an imaging mode of VISIR which allows diffraction-limited image in the N band: the BURST mode.

Under good seeing (≤0.5 arcsec in the visible), the images in the mid-IR are diffraction-limited even on a 8 meter class telescope. Unfortunately, the median seeing experienced at Paranal is rather of 0.8 arcsec, which degrades the angular resolution. Indeed, for a seeing of 0.8 arcsec in the visible, assuming that the wavelength dependence of the seeing follows a L−1/5 law, the seeing value at 10 μm is 0.4 arcsec, which is larger than the diffraction limit of 0.3 arcsec. This represents a 5 pixels movement on the detector with the smallest field of view of VISIR (0.075”/pixel). In order to reach the best spatial resolution with VISIR, we implemented a new imaging mode on bright objects, the BURST mode. The principle is to take short enough exposure images (≤50 ms) to freeze the turbulence; the coherence time of the atmosphere at 10 μm is around 300 ms at Paranal for a good seeing. In order to correct for the turbulence by offline processing, the data are stored every 1000 elementary images in one nodding position for a chopping frequency of 0.25 Hz in the direction north/south. The nodding direction is perpendicular to the chopping direction with an amplitude of 8″. After classical data reduction in mid-IR, a cube of 50 images chopped and nodded (4 beams/image) is obtained. Because of the turbulence, each source on an image moves independently and as a result, we have to extract individually the 4 sources in each image (4 quarters) of the cube and shift and add the image with the ones corresponding to the same quarter. Finally, we shift and add the four final images of the four quarters.

3.2. Results

In this section, we present the images of HD 97048 obtained in the PAH emission filter, as well as in the adjacent continuum emission, and compare it with the standard star in the same filters.

Fig. 1 shows the image of HD 97048 in the PAH filter centered at 11.3 μm and compared with the standard

1 1000 divided by 2 because of the 2 chopper positions
Table 1. Observations of HD 97048 in the different VISIR filters in imaging BURST mode. The sensitivity were calculated for each night in the BURST mode. The filter are free of any strong atmospheric line contribution.

Filter	Central wavelength (µm)	Half band width (µm)	Sensitivity (mJy/10σ/1h)	Total time on source (s)	Date	Seeing (arcsec)	Airmass	Standard star
SIV	10.49	0.16	5.6	25	600	17/06/2005	0.80	HD91056
PAH2	11.26	0.59	4.5	50	800	25/01/2005	0.55	HD85503
NeII	12.27	0.18	7.7	16	320	17/06/2005	0.80	HD91056

Fig. 1. On the left, HD 97048 in the PAH2 filter (centered at 11.3 µm) with VISIR camera. On the right, PSF reference (HD85503) with the same filter. The two object are normalized in order to see the extension. The object is more extended than the reference with an asymmetry east/west in the emission.

Fig. 2. HD 97048 in the PAH2 filter (image in the middle), and in the adjacent continuum (SIV on the left, NeII on the right). The images have the same signal-to-noise so that it is possible to compare the extension.

4. Disk model

In order to analyse the observations, we use the disk model described in Dullemond et al. (2001); Dominik et al. (2003); Dullemond & Dominik (2004a), including the most up to date understanding of disk structure and physics around Herbig Ae/Be stars. In the following, we describe the disk structure and the radiation transfer used and give the details of the adopted dust model.

4.1. Disk structure

We consider disks heated by irradiation from the central star, in hydrostatic equilibrium in the vertical direction, with dust and gas well mixed (flared disks, Chiang & Goldreich 1997). In this model, the stellar flux impinging with flaring angle α upon the disk is absorbed in the upper layers of the disk, which will reradiate half of the flux away from the disk and half down into its deeper layers. The inner boundary (rim) is directly exposed to the stellar flux and is puffed up since it is hotter than the rest of the disk. The model computes how much the inner rim puffs up, and how much of the disk behind it will be shadowed by this puffed-up rim (Dullemond et al. 2001). Once the star is given, the disk structure (i.e pressure scale height and flaring angle) is completely defined after specifying the inner and outer radii, the surface density distri-
Table 2. Comparaison of the FWHM for the object and the reference star (PSF) in the different filters. We also mention the theoretical value of the FWHM in order to show that the diffraction-limit is obtained with the BURST mode. In order to see the spatial extension, we note in the third and fourth columns the distance from the star at 10σ above the noise in the east/west direction.

Filter	Central wavelength (µm)	Flux measured (10σ) (Jy)	East (10σ) (arcsec)	West (10σ) (arcsec)	FWHM (north/south) (mas)	FWHM (east/west) (mas)	PSF (north/south) FWHM (mas)	PSF (east/west) FWHM (mas)	FWHM (diffraction) (mas)
SIV	10.49	4.2 ± 0.1	0.67	0.60	322 ± 15	337 ± 15	277 ± 15	262 ± 15	262 ± 15
PAH2	11.26	7.7 ± 0.1	1.60	0.90	337 ± 15	360 ± 15	300 ± 15	285 ± 15	285 ± 15
NeII	12.27	6.7 ± 0.2	0.67	0.60	390 ± 15	412 ± 15	300 ± 15	307 ± 15	307 ± 15

Fig. 3. Normalized intensity profiles along a cut through the VISIR images of HD 97048 in the PAH band (full line) and in the continuum SIV (dashed line) superimposed on a reference star (dashed-dot line) in SIV band. Direction East/West is in the upper panel and above, it represents the direction South-North. Comparing the PAH band and the adjacent continuum (for a same signal-to-noise), HD 97048 is much more extended in the PAH band. Comparing the PSF and the object in SIV, we see that HD 97048 is also extended in the continuum.

4.2. Radiative transfer

We use the 3-dimensional Monte Carlo radiative transfer code RADMC (Dullemond & Dominik 2004a), for which a module to treat the emission from quantum-heated PAH molecules has been included. This module will be described in detail in Dullemond et al. (in prep.), but a rough description has been given by Pontoppidan et al. (2006). The code RADMC (Dullemond & Dominik 2004a; Pontoppidan & Dullemond 2005) solves the temperature structure of the disk in a Monte-Carlo way using a variant of the algorithm of Bjorkman & Wood (1997). This Monte-Carlo code also produces the source terms for scattering, in the isotropic-scattering approximation.

4.3. Dust model and PAH properties

The dust is a mixture of grains in thermal equilibrium and transiently heated PAHs.

- **Thermal grains**: The grains are composed of graphite and silicate with optical constants from Draine (1985). They have a MRN (Mathis et al. 1977) size distribution \(n(a) \propto a^{-3.5} \) with a size between 0.01 µm and 0.3 µm. Since no silicate emission features have been detected in HD97048 (see Sect. 2), we have considered the hypothesis of thermally decoupling the carbon and silicate grains (See Sect. 5.3). The optical to mid-IR opacity ratio of silicate is much smaller than that of carbon. When the grains are thermally decoupled, the low temperature of the silicates produces very weak features and the emergent flux will be dominated by emission from the carbon grains. But the absence of the silicate feature could also be due to a geometrical effect, to a lower silicate abundance, and/or larger silicate grains in the inner regions.

- **Transiently heated grains** (PAH): We can explain the observed PAH spectra, at least of the isolated HAe stars, with PAH abundances and qualitative properties similar to those of PAHs in the ISM (Habart et al. 2004a). In the ISM, PAHs are made up of a few tens to a few hundreds of carbon atoms; for reasons of simplicity, we take only one PAH size in our model, \(N_C = 100 \). The hydrogen to carbon ratio is \(H/C = f_H \times (6/N_C)^{0.5} \) (case of compact symmetric PAHs, see Omont (1980)) with \(f_H \) - the hydrogenation fraction of the molecule. Here, we consider \(f_H \) equal to 1 (i.e., essentially fully hydrogenated PAHs) or 0.5 (partially hydrogenated PAHs). We take the absorption cross section from Li & Draine (2001) based on both laboratory data and astrophysical spectra. Those authors consider the bands at 3.3, 8.6, 11.3, 11.9 and 12.7 µm from vibrational modes of the aromatic C-H bond; the strong bands at 6.2 and 7.7 µm due to vibrations of the aromatic C-C bonds; and a few weak features probably caused by C-C bending modes at 16.4, 18.3, 21.2 and 23.1 µm. With respect to the charge, in order to keep
the model simple, we assume that all PAHs are neutral. Simple determination of the ratio between the photoionisation rate of the grain to the electron-grain recombination rate suggests that this is probably the case in the outer regions \(R \geq 150 \) AU of a disk heated by a typical HAe star (see Habart et al. (2004) for more details). Finally, we do not take into account photo-destruction of PAHs in a strong FUV radiation field.

In summary, we adopt a dust model with large thermal grains of graphite and silicate and small transiently heated aromatic particles. The silicate abundance in dust is \([Si/H] = 3 \times 10^{-5}\), and the total carbon abundance in dust is \([C/H] = 2.2 \times 10^{-4}\). Of this 10% are in PAH and 90% in large grains.

5. Comparison between model and observations

In this section, we compare the model’s predictions to the observations. In the following, we first describe the adopted stellar and disk parameters for HD 97048 and then discuss the results of the calculation and the confrontation to the observations.

5.1. Stellar and disk parameters

A Kurucz model spectrum is taken for the central star with \(T_{\text{eff}} = 10000 \) K. The stellar parameters \((L_\star = 32L_\odot, M_\star = 2.5M_\odot) \) were chosen from stellar evolutionary tracks by Siess et al. (2000) for an age of 3 Myr (Lagage et al. 2006). Once the stellar flux has been reddened, the resulting SED is in agreement with the photometry extracted from Hillenbrand et al. (1992) in the UV and near-IR. To correct for extinction, we used the method of Cardelli et al. (1989) where we adopt \(A_V = 1.24 \) (van den Ancker et al. 1998) and \(E(B-V) = 0.36 \) (Davies et al. 1991; The et al. 1986).

Concerning the disk’s parameters, the surface density is taken equal to \(\Sigma = \Sigma_0 \left(r/R_{\text{in}}\right)^{-q} \) with \(q \) the power law index equal to 3/2 inferred for the solar nebula (Weidenschilling 1977) and \(\Sigma_0 = 444 \) g cm\(^{-2}\) a minimum value deduced from VISIR observations (Lagage et al. 2006). The inner radius \(R_{\text{in}} \) is at 370 AU as deduced from observations (Lagage et al. 2006). Finally, as the disk is vertically optically thick at the wavelength of observation, a minimum mass of 0.01 \(M_\odot \) \((\text{gaz + dust})\) can be derived (Lagage et al. 2006). We take this minimum disk mass as a first guess.

5.2. Disk’s structure

Figure 4 shows the run with radius of the pressure \((P_H) \) and photospheric \((P_H) \) scale height. The disk is flaring with \(P_H \) increasing with \(R_{\text{in}} \) increasing with radius as \(R^{0.7} \) (Chiang & Goldreich 1997). At a radius of 135 AU, \(H_\star = 51 \) AU.

In a previous work, we used the VISIR PAH band image to constrain the parameters of the disk structure around HD 97048 (Lagage et al. 2006). Using a very simple model, Lagage et al. (2006) measured a flaring index of \(1.26^{+0.05}_{-0.03} \) and \(H_\star = 51.3^{+6.3}_{-3.3} \) AU at 135 AU. Both values are very close to those expected from our hydrostatic, radiative equilibrium models of passive flared disks (Chiang & Goldreich 1997; Dullemond et al. 2001).

Concerning the structure of the inner region, VISIR has clearly not enough spatial resolution to constrain it. The puffed inner rim and the shadow region lie within the central pixel of VISIR (1 pixel is equivalent to 13.5 AU for a distance of 180 pc) and the two effects compensate each other in terms of resulting mid-IR emission. Finally, we would like to underline that as soon as the disk is vertically optically thick in the mid-IR, the change of the slope of the surface density in the model does not have any influence on the structure of the disk or its mid-IR emission and cannot be constrained here.

5.3. Photospheric and disk mid-IR SED

Figure 5 shows the SED calculated with the template model (dashed line). The disk is inclined by 43 degrees and the system is situated at a distance of 180 pc. A Kurucz model spectrum is taken for the central star with \(T_{\text{eff}} = 10000 \) K. The luminosity is \(L_\star = 32L_\odot \) and the mass \(M_\star = 2.5M_\odot \). The disk is flared with a total mass of 0.01 \(M_\odot \), \(R_{\text{in}} = 0.41 \) AU and \(R_{\text{out}} = 370 \) AU. Full red line shows ISO SWS spectrum of HD 97048. Points of photometry are taken from Hillenbrand et al. (1992) (open diamond black), IRAS (open diamond blue) Prusti et al. (1994) (blue crosses) and VISIR measurement (black triangle).

Increasing the height of the inner rim augments the shadow region.
duces the rise observed in the spectrum around 20-30 radii, the flaring disk reappears from the shadow, and provides sight of the star itself, but it receives flux from the inner rim, which corresponds to the shadow region. In this part, the disk is not in the near-IR emission (around 3 \(\mu m \)) is induced by the puffed inner rim. The region which emits between 5 and 8 \(\mu m \) are very strong. Strong ratio between 46 showing that the absence of the silicate features in the HD 97048 spectra could appear intriguing since they are the most abundant dust species in interstellar space. However, in ISO spectra, Acke & van den Ancker (2004) reported non detection of silicate feature for 16 objects out of 46 showing that the absence of the silicate feature is a common phenomenon among HAeBe stars. The silicate emission at 10 \(\mu m \) is arising from grains with a size of 0.1 \(\mu m \) thermally heated in the inner region (1 < r < 10 AU) from direct and/or indirect irradiation by the central star. The absence of this emission could probably result from various effects concerning either the dust properties or the disk geometry in the inner region. Here, we have considered the thermal decoupling hypothesis but it could also be to less silicate abundance in the inner disk part. Decreasing globally the silicate abundance could not be a solution since the 20 microns feature shows the presence of silicates in the 50 AU < R < 100 AU parts of the disk. We have also tested different structures of disk "made by hand" and we have shown that it is possible to explain the absence of the silicate emission at 10 \(\mu m \) with a geometrical effect. But at the moment, the structure is calculated SELF-CONSISTENTLY and the aim of the paper is not to construct a structure by hand that could fit all the data of HD97048 but won’t be physical. Furthermore, this issue could not be investigated with the resolution of VISIR observations.

Finally, concerning the longer wavelength, we find that the submm flux is too low by a factor 70 compared to observations (Henning & Launhardt 1998). This shows that a large reservoir of large grains (around a millimeter size) must exist in the outer regions of the disk. These grains would naturally reside close to the midplane and therefore do not affect the shape of the disk. They are therefore not within the focus of this paper, and for this reason we do not include them in our model. If we would have included them, they would only affect these long-wavelength fluxes, because the disk has a flaring geometry (see e.g. Dullemond & Dominik 2004a, Figs. 6 and 7).
5.4. Imaging

Figure 6 shows the modelled disk image in the PAH band at 11.3 µm and the adjacent continuum. These emissions both originate from the optically thin surface of the disk but the PAH emission is much more extended than the adjacent continuum. The continuum reaches 50% of its integrated intensity at a very small radius (about 2 AU), while the PAH feature does so at large radii (about 100 AU). This behaviour basically reflects the different excitation mechanisms of grains in thermal equilibrium and PAHs transiently heated. Only grains very near the star are warm enough to emit at 11 µm whereas PAHs farther away can be excited and emit in the 11.3 µm feature. The emission at 11.3 µm (band + continuum), in the central part of the disk (< 2 AU) is dominated by the thermal emission from silicate and carbon grains, whereas in the outer regions of the disk, the emission is dominated by the PAH feature. Moreover, among the PAH features, the 11.3 µm is one of the most extended spatially. Indeed, as discussed in Habart et al. (2004b), the features at shorter wavelengths are in fact stronger in the inner part of the disk (where PAHs are hotter because multiphoton events occur where the radiation field is most intense), decreasing rapidly in the outer cold part. On the other hand, the features at longer wavelengths are more extended.

Fig. 7 shows the brightness emission profiles of the PAH feature and the adjacent continuum obtained by convolving the model with the corresponding PSF observed by VISIR. The model predicts a spatial distribution of the PAH emission very similar to that observed. The predicted FWHM and wings extension are in fact very closed to the observed ones (differences ≤ 20%). Moreover, our disk model predicts, as in the observations, an asymmetry east/west, which only results from the inclination of a flared disk optically thick at the observed wavelength. This acceptable agreement gives a strong support for the physics underlying in our flared disk model. The disk parameter that most affects the PAH emission is in fact the disk flaring angle, which determines at each radius the fraction of FUV intercepted by the disk surface. Lower values of the flaring could be caused by a variety of reasons, for example if the dust settles toward the disk midplane (Dullemond & Dominik 2004a,b). If the disk is less flared, the PAH emission which directly tracks the illumination of the disk surface will strongly reduce in the outer disk region. Less flared disks will have less extended PAH emission features and weaker. This will be particularly true for the features at long wavelength, such as the 11.3 µm one, which have a large contribution from the outer disk. In the extreme case of a fully self-shadowed disks, the PAH feature strengths should decrease by orders of magnitude and the spatial distribution should be similar to one of the adjacent continuum.

In addition, it is remarkable to note that, as predicted by the model, the observed spatial extension of the 11.3 µm feature is much larger than that observed for PAH feature at the 3.3 µm, which are extended on a scale of (several) 10 AU (Habart et al. 2004a,b). This has the interesting implication that PAHs appears to be present over a large range of radius; in other words, PAHs can survive over a wide range of physical conditions. Finally, concerning the spatial extent of the 10 µm adjacent continuum emission, the model predicts that it is slightly broader than the PSF but still agrees with the observations.

It must be emphasized here that there are several complications which we have neglected. The most obvious is that we have assumed that PAHs can be characterized by a single size, hydrogenation and charge state. This is unlikely to be the case, and one can expect variations as a function of radius and depth in the disk. For example, PAHs are likely to be more positively ionized in the inner disk regions. Moreover, processes such as photo-evaporation or coagulation could affect the abundance and size of PAHs. In order to get some insight into the specific PAH properties, one needs spatial information of several band strength ratios. We are developing this study in a forthcoming paper.

6. Summary and conclusions

In a former paper (Lagage et al. 2006), we were able to constrain for the first time the flaring geometry of a disk.
around an intermediate-mass young star HD97048. These results were based on a very simple model making several assumptions such as a surfacic PAH emission, an optically thick disk, and a power-law function for the surface height and the intensity. In the present paper, using a full radiative transfer model based on predicted disk geometries assuming hydrostatic equilibrium [Dullemond et al. 2001; Dominik et al. 2003; Dullemond & Dominik 2004a], we could:

– justify the hypothesis made in the previous paper [Lagage et al. 2004], and therefore confirm the results, e.g., the images calculated with a different code [Pinte et al. 2004].
– show that both SED and spatial distribution of the PAH emission and the adjacent continuum are in very good agreement with the model predictions for common disk parameters.
– take the general agreement between observations and predictions as a strong support for the physical pictures underlying our flared disk model.

References

Acke, B. & van den Ancker, M. E. 2004, A&A, 426, 151
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chiang, E. I. & Goldreich, P. 1997, ApJ, 490, 368
Davies, J. K., Evans, A., Bode, M. F., Whittet, D. C. B., & Kilkenny, D. 1991, MNRAS, 252, 271
Dominik, C., Dullemond, C. P., Waters, L. B. F. M., & Walsh, S. 2003, A&A, 398, 607
Doucet, C., Pantin, E., Lagage, P.-O., & Dullemond, C. P. 2006, A&A, in press
Dullemond, C. P. & Dominik, C. 2004a, A&A, 417, 159
Dullemond, C. P. & Dominik, C. 2004b, A&A, 421, 1075
Dullemond, C. P., Dominik, C., & Natta, A. 2001, ApJ, 560, 957
Guillois, O., Ledoux, G., & Reynaud, C. 1999, ApJL, 521, L133
Habart, E., Natta, A., & Krügel, E. 2004a, A&A, 427, 179
Habart, E., Testi, L., Natta, A., & Caribbi, M. 2004b, ApJL, 614, L129
Henning, T. & Launhardt, R. 1998, A&A, 338, 223
Hillenbrand, L. A., Strom, S. E., Vrba, F. J., & Keene, J. 1992, ApJ, 397, 613
Jones, A. P., d’Hendecourt, L. B., Sheu, S.-Y., et al. 2004, A&A, 416, 235
Lagage, P.-O., Doucet, C., Pantin, E., et al. 2006, Science, 314, 621
Li, A. & Draine, B. T. 2001, ApJL, 550, L213
Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Meeus, G., Waters, L. B. F. M., Bouwman, J., et al. 2001, A&A, 365, 476
Omont, A. 1986, A&A, 164, 159
Perrin, M. D., Duchêne, G., Kalas, P., & Graham, J. R. 2006, ApJ, 645, 1272
Pinte, C., Ménard, F., Duchêne, G., & Bastien, P. 2006, A&A, 459, 797
Pontoppidan, K. M. & Dullemond, C. P. 2005, A&A, 435, 595
Prusti, T., Natta, A., & Pallà, F. 1994, A&A, 292, 593
Sheu, S.-Y., Lee, I.-P., Lee, Y. T., & Chang, H.-C. 2002, ApJL, 581, L55
Siebenmorgen, R., Prusti, T., Natta, A., & Müller, T. G. 2000, A&A, 361, 258
The, P. S., Tjin, H. R. E., Steenman, H., & Wesselius, P. R. 1986, A&A, 155, 347
van Boekel, R., Waters, L. B. F. M., Dominik, C., et al. 2004, A&A, 418, 177
van den Ancker, M. E., de Winter, D., & Tjin A Djie, H. R. E. 1998, A&A, 330, 145
van den Ancker, M. E., The, P. S., Tjin A Djie, H. R. E., et al. 1997, A&A, 324, L33
Van Kerckhoven, C., Tielens, A. G. G. M., & Waelkens, C. 2002, A&A, 384, 568
Waters, L. B. F. M. & Waelkens, C. 1998, Annual Review of Astron and Astrophys, 36, 233

Wiedenschilling, S. J. 1977, Astrophysics and Space Science, 51, 153
Weintraub, D. A., Bary, J. S., Kastner, J. H., Shukla, S. J., & Chynoweth, K. 2005, in Protostars and Planets V, 8197–8204
Whittet, D. C. B., Prusti, T., Franco, G. A. P., et al. 1997, A&A, 327, 1194