Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature

Martin Kolb, Tobias Weich and Lasse L. Wolf

Abstract. The kinetic Brownian motion on the sphere bundle of a Riemannian manifold \(M \) is a stochastic process that models a random perturbation of the geodesic flow. If \(M \) is an orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the \(L^2 \)-spectrum of the infinitesimal generator of a time-rescaled version of the process converges to the Laplace spectrum of the base manifold.

1. Introduction

Kinetic Brownian motion is a stochastic process that describes a stochastic perturbation of the geodesic flow and has the property that the perturbation affects only the direction of the velocity but preserves its absolute value. It has been studied in the past years by several authors in pure mathematics [1, 5, 10, 14, 26] but versions of this diffusion process have been developed independently as surrogate models for certain textile production processes (see, e.g., [18, 19, 23]).

Kinetic Brownian motion \((Y^\gamma_t)_{t \geq 0}\) in the setting of a compact Riemannian manifold \((\overline{M}, g)\) can be informally described in the following way: \((Y^\gamma_t)_{t \geq 0}\) is a stochastic process with continuous paths described by a stochastic perturbation of the geodesic flow on the sphere bundle \(SM = \{\xi \in T\overline{M}, \|\xi\|_g = 1\}\). More precisely, if we denote the geodesic flow vector field by \(X\) and the (nonnegative) Laplace operator on the fibers of \(SM \) by \(\Delta_S\), then the kinetic Brownian motion is generated by the differential operator

\[-X + \frac{1}{2} \gamma \Delta_S : L^2(SM) \to L^2(SM).\]

The connection to the stochastic process \((Y^\gamma_t)_{t \geq 0}\) is given via

\[e^{-t(-X + \frac{1}{2} \gamma \Delta_S)} f(x) = \mathbb{E}_x [f(Y^\gamma_t)] \quad \text{with} \quad f \in L^2(SM), x \in SM,\]
where E_x denotes the expected value if the stochastic process is started at $x \in SM$. Observe that the parameter $\gamma > 0$ controls the strength of the stochastic perturbation and it is a natural question to study the behavior of $-X + \frac{1}{2}\gamma \Delta_S$ and Y^γ in the regimes $\gamma \to 0$ as well as $\gamma \to \infty$. Drouot [10] has studied the convergence of the discrete spectrum of $-X + \frac{1}{2}\gamma \Delta_S$ in the limit $\gamma \to 0$ for negatively curved manifolds and has shown that it converges to the Pollicott–Ruelle resonances of the geodesic flow. These resonances are a replacement of the spectrum of X since its L^2-spectrum is equal to $i\mathbb{R}$ and they can be defined in various generalities of hyperbolic flows as pole of the meromorphically continued resolvent [6,8,9,11,15,27]. A more general framework of semiclassical subelliptic operators that includes the kinetic Brownian motion for $\gamma \to 0$ has been established by Smith [30]. In the limit of large random noise Li [26] and Angst-Bailleul-Tardif [1] proved that $\pi(Y^\gamma_{\gamma t})$ converges weakly to the Brownian motion on M with speed 2 as $\gamma \to \infty$ where $\pi: SM \to M$ is the projection. This rescaled kinetic Brownian motion is generated by $P^\gamma = -\gamma X + \frac{1}{2}\gamma^2 \Delta_S$ whereas the Brownian motion on the base manifold is generated by the Laplace operator $\frac{1}{2}\Delta_M$. Therefore, one may conjecture that the discrete spectrum of P^γ converges to the Laplace spectrum. We will give a proof of this fact in the case of constant curvature surfaces:

Theorem 1. Let (M, g) be an orientable compact surface of constant curvature. For every $\eta \in \sigma(\Delta_M)$ with multiplicity n there is an analytic function $\lambda_\eta: \mathbb{R} \to \mathbb{C}$ such that $\lambda_\eta(\gamma)$ is an eigenvalue of P^γ with multiplicity at least n and $\lambda_\eta(\gamma) \to \eta$ as $\gamma \to \infty$.

Note that this theorem does not imply that in a compact set all eigenvalues of P^γ are close to eigenvalues of the Laplacian (see Remark 3.2 for a discussion of the problems that prevent us from proving this stronger statement).

Another question to ask is whether the kinetic Brownian motion converges to equilibrium, i.e.,

$$E_x[f(Y^\gamma_{\gamma t})] \xrightarrow{t \to \infty} \int_{SM} f.$$

Baudoin–Tardif [5] showed exponential convergence, i.e.

$$\left\|e^{-tP^\gamma}f - \int_{SM} f\right\| \leq Ce^{-C_\gamma t}\left\|f - \int_{SM} f\right\|, \quad f \in L^2(SM).$$

We should point out that the given rate C_γ converges to 0 as $\gamma \to \infty$, but they conjecture that the optimal rate converges to the spectral gap of Δ_M which is the smallest nonzero Laplace eigenvalue η_1 (see [5, Section 3.1]). A direct consequence of Theorem 1 shows that the optimal rate C_γ is less than $\Re \lambda_{\eta_1}(\gamma)$ for surfaces of constant curvature. Hence $\limsup_{\gamma \to \infty} C_\gamma \leq \eta_1$. For a more explicit study of the convergence towards equilibrium, we prove a spectral expansion and explicit error estimates in the case of constant negative curvature in [25].

Note that a problem related to the kinetic Brownian motion in SM is the study of the hypoelliptic Laplacian on TM introduced by Bismut [3]. Like
the kinetic Brownian motion the hypoelliptic Laplacian interpolates between the geodesic flow and the Brownian motion. In [4, Chapter 17], Bismut and Lebeau prove the convergence of the spectrum of the hypoelliptic Laplacian to the spectrum of the Laplacian on M using semiclassical analysis. It seems plausible that their techniques can also be transferred to the setting of kinetic Brownian motion and might give the spectral convergence without any curvature restriction. The purpose of this article is, however, not to attack this general setting but show that the assumption of constant curvature allows to drastically reduce the analytical difficulties. In fact, we are able to reduce the problem to standard perturbation theory. This is also the reason why we are able to obtain explicit error estimates in [25].

In the limit $\gamma \to \infty$, one would like to consider the geodesic vector field as a perturbation of the spherical Laplacian. The major difficulties of the proof are that $\frac{1}{\gamma} X$ is not a small perturbation in comparison with Δ_S and that the unperturbed eigenspaces are infinite dimensional. After the spectral decomposition with respect to some operator Ω described below there is a precise way to consider X as small operator in any eigenspace of Ω. Moreover, the eigenspaces of Δ_S become finite dimensional which simplifies the situation drastically. We also want to point out that the eigenvalues of Δ_M appear in the second derivatives of the evolving eigenvalues in the perturbation expansion, not as their limits. This is one reason why we do not obtain that in a compact set all eigenvalues of P_γ are close to eigenvalues of the Laplacian Δ_M.

Let us sketch the spectral decomposition mentioned above: By the assumption of constant curvature we have a three-dimensional Lie algebra $\mathfrak{g} = \langle X, X_\perp, V \rangle_C$ of vector fields on S^M. Denoting the Gaussian curvature by K, the operator $\Omega = -X^2 - X_\perp^2 - KV^2$ commutes with \mathfrak{g} and P_γ and its spectrum is a discrete set, but the multiplicities might be infinite. Because of the commutation the generator P_γ preserves the decomposition of $L^2(S^M)$ in eigenspaces of Ω, and we can study the restriction of P_γ on each occurring eigenspace separately. In each of these eigenspaces, the spectral asymptotics in the limit $\gamma \to \infty$ of P_γ can then be handled by standard perturbation theory of an operator family of type (A) in the sense of Kato. For the calculations, it will be important that each eigenspace of Ω can be further split into the eigenspaces of the vector field V which correspond to the Fourier modes in the fibers of $S^M \to M$ which are just circles as $\dim M = 2$.

The article is organized as follows: We will give a short overview over the kinetic Brownian motion and the connection between constant curvature surfaces and the global analysis of sphere bundles of constant curvature surfaces in Sects. 2.1 and 2.2. After that we will recall a few results of perturbation theory for unbounded linear operators (Sect. 2.3) which are mostly taken from [22]. Afterward, we will give the proof of the convergence of the spectra (Sect. 3).
2. Preliminaries

2.1. Kinetic Brownian Motion

Let \(\mathbb{M} \) be a compact Riemannian manifold of dimension \(d \geq 2 \) with sphere bundle \(\mathbb{SM} = \{(x, v) \in \mathbb{T} \mathbb{M} \mid \|v\| = 1\} \). We introduce the spherical Laplacian \(\Delta_S \) as follows: For every \(x \in \mathbb{M} \) the tangent space \(T_x \mathbb{M} \) is a Euclidean vector space via the Riemannian metric and \(S_x \mathbb{M} = \{v \in T_x \mathbb{M} \mid \|v\| = 1\} \) is a submanifold of \(T_x \mathbb{M} \). The inner product on \(T_x \mathbb{M} \) induces a Riemannian structure on \(S_x \mathbb{M} \). Hence, the (positive) Laplace-Beltrami operator \(\Delta_S := \Delta_{S_x \mathbb{M}} \) of \(S_x \mathbb{M} \) defines an operator \(C^\infty(S_x \mathbb{M}) \to C^\infty(S_x \mathbb{M}) \). We now obtain the spherical Laplace operator \(\Delta_S \) by

\[
\Delta_S : C^\infty(\mathbb{SM}) \to C^\infty(\mathbb{SM}), \quad \Delta_S f(x, v) := (\Delta_S(x)f(x, \cdot))(v).
\]

For \((x, v) \in \mathbb{SM} \) and \(w \in T_{(x,v)} \mathbb{SM} \), we define \(\theta_{(x,v)}(w) = g_x(v, (T_{(x,v)}\pi)w) \) where \(\pi : \mathbb{SM} \to \mathbb{M} \) is the projection, \(T_{(x,v)}\pi \) its tangent map at the point \((x, v) \), and \(g \) is the Riemannian metric on \(\mathbb{M} \). Then \(\theta \) is a 1-form on \(\mathbb{SM} \) and \(\nu = \theta \wedge (d\theta)^{d-1} \) defines the Liouville measure on \(\mathbb{SM} \) which is invariant under the geodesic flow \(\phi_t : \mathbb{SM} \to \mathbb{SM} \). The vector field \(X = \frac{d}{dt}|_{t=0} \phi_t^* \) is called the geodesic vector field.

Let us consider the operator \(P_\gamma = -\gamma X + \frac{1}{2} \gamma^2 \Delta_S \) with domain \(\text{dom}(P_\gamma) = \{u \in L^2(\mathbb{SM}) \mid P_\gamma u \in L^2(\mathbb{SM})\} \) for \(\gamma > 0 \). Note that the action of \(P_\gamma \) has to be interpreted in the sense of distributions. We first want to collect some properties of \(P_\gamma \).

Proposition 2.1. \(P_\gamma \) is a hypoelliptic operator with

\[
\|f\|_{H^{2/3}} \leq C(\|f\|_{L^2} + \|P_\gamma f\|_{L^2}) \quad \text{for} \quad f \in \text{dom}(P_\gamma).
\]

\(P_\gamma \) is accretive (i.e., \(\Re(P_\gamma f, f) \geq 0 \)) and coincides with the closure of \(P_\gamma|_{C^\infty} \).

Therefore, \(P_\gamma \) has compact resolvent on \(L^2(\mathbb{SM}) \), discrete spectrum with eigenspaces of finite dimension, and the spectrum is contained in the right half plane. \(P_\gamma \) generates a positive strongly continuous contraction semigroup \(e^{-tP_\gamma} \).

Proof. See the appendix.

\[\square \]

2.2. Surfaces of Constant Curvature

Let \(\mathbb{M} \) be an orientable compact Riemannian manifold of dimension \(2 \) and constant curvature and let \(K \) be the Gaussian curvature. Since \(\mathbb{M} \) has finitely many connected components, let us assume without loss of generality that \(\mathbb{M} \) is connected. We follow the notation of [28]. Let \(X \) be the geodesic vector field on \(\mathbb{SM} \), and let \(V \) be a vertical vector field such that \(\Delta_S = -V^2 \). We define \(X_\perp = [X, V] \). We then have the commutator relations \(X = [V, X_\perp] \) and \([X, X_\perp] = -KV \). In particular, \(\mathfrak{g} := \mathbb{C}X \oplus \mathbb{C}X_\perp \oplus \mathbb{C}V \) is a Lie algebra. The Casimir operator \(\Omega \) is defined as \(\Omega = -X^2 - X_\perp^2 - KV^2 \), and it is routine to check that

\[
[\Omega, X] = [\Omega, X_\perp] = [\Omega, V] = 0
\]
using the above commutator relations. The Laplace operator $\Delta_{\mathbb{M}}$ of \mathbb{M} for the metric which is declared by the requirement that the frame $\{X, X_\perp, V\}$ is an orthonormal basis (i.e. $\Delta_{\mathbb{M}} = -X^2 - X_\perp^2 - V^2$) is an elliptic operator on the compact manifold \mathbb{M} and hence it admits a discrete spectrum. Since $\Delta_{\mathbb{M}}$ is symmetric the eigenspaces are orthogonal and since $\Delta_{\mathbb{M}}$ is nonnegative each eigenvalue is nonnegative. Both operators Ω and V leave these eigenspaces invariant. Thus we have the following decomposition:

$$L^2(\mathbb{M}) = \bigoplus_{k \in \mathbb{Z}, \eta \in \sigma(\Omega)} V_{\eta,k}$$

where $V_{\eta,k} = \{u \in C^\infty(\mathbb{M}) \mid Vu = iku, \quad \Omega u = \eta u\}$ is finite-dimensional and the sum is countable. Notice that $V_{\eta,k}$ is a joint eigenspace of $\Delta_{\mathbb{M}}$ and V, which we choose to label with the eigenvalue η of Ω, instead of using the eigenvalue $\eta + (1 - K)k^2$ of $\Delta_{\mathbb{M}}$. Since V is skew-symmetric, the decomposition is orthogonal. The subspace $V_\eta = \bigoplus_{k \in \mathbb{Z}} V_{\eta,k}$ is an eigenspace of Ω which is invariant under all three vector fields X, X_\perp, V and in particular invariant under $\Delta_{\mathbb{M}}$.

Remark 2.2. Note that \mathfrak{g} is isomorphic to the complexification of $\mathfrak{so}(3) \times \mathfrak{so}(2)$ if $K > 1$, $K = 0$, $K < 0$, respectively. We are essentially decomposing the representation of \mathfrak{g} on $L^2(\mathbb{M})$ into irreducible ones. In fact in all three cases \mathbb{M} can be written as $\Gamma \backslash G$ for some torsion free, discrete, cocompact subgroup $\Gamma \subseteq G$ with $G \in \{SO(3), \mathbb{R}^2 \rtimes SO(2), PSL_2(\mathbb{R})\}$. The decomposition $L^2(\mathbb{M}) = \bigoplus V_\eta$ can be seen as a Plancherel decomposition of this space and $V_\eta = \bigoplus V_{\eta,k}$ as the decomposition into K-types or weights, respectively. In all three cases the irreducible representations have explicit realizations on certain L^2-spaces (see, e.g., [31, Ch. 8] for \mathfrak{sl}_2), and one could go on by analyzing those but they do not contain more information than the abstract decomposition we provided here for all three cases at once. We would like to note that this harmonic analysis point of view was our original approach motivated by previous works that used similar techniques for geodesic flows [7,13,16,17,24].

Let us furthermore define $X_\pm := \frac{1}{2}(X \pm iX_\perp)$. We then have the commutator relations

$$[V, X_\pm] = \pm iX_\pm \quad \text{and} \quad [X_+, X_-] = \frac{1}{2}iKV.$$

Hence, $X_{\pm} : V_{\eta,k} \to V_{\eta,k \pm 1}$. Moreover, $X^\pm_{\mp} = -X^\pm$ and $\Omega = -2X_+X_- - 2X_\perp^2 - KV^2 = -4X_+X_- + iKV - KV^2$.

The next lemma is crucial for our main result as it connects the eigenvalues η of Ω to the spectrum of the Laplace operator of the base manifold \mathbb{M}.

Lemma 2.3. Let $\Delta_{\mathbb{M}}$ be the Laplace–Beltrami operator of \mathbb{M}. Then

$$\sigma(\Delta_{\mathbb{M}}) = \{\eta \in \sigma(\Omega) \mid V_{\eta,0} \neq 0\} = \sigma(\Omega) \cap \mathbb{R}_{\geq 0}.$$

Moreover, \mathfrak{g} acts trivially on $V_{0,0}$ and for $\eta \in \sigma(\Delta_{\mathbb{M}})$, $\eta > 0$, there is a closed \mathfrak{g}-invariant subspace V'_η of V_η such that $V'_{\eta,k} := V_{\eta,k} \cap V'_\eta$ satisfies $\dim V'_{\eta,k} \leq 1$.
and dim $V'_{η,0} = 1$ and $V_η$ is isomorphic to $m_η$ orthogonal copies of $V'_η$ as a g-space where $m_η$ is the multiplicity of the eigenvalue $η$ of $Δ_M$. Different choices for $V'_η$ are isomorphic as g-spaces.

Proof. Let $η ∈ σ(Ω)$ with $V_{η,0} ≠ 0$. On $V_{η,0} ≠ 0$ the operator $Ω$ equals the nonnegative operator $Δ_{S^S}$ and acts through multiplication by $η$. Therefore, $η ≥ 0$. Conversely, pick $η ≥ 0$ in $σ(Ω)$, i.e., $V_{η,k_0} ≠ 0$ for some $k_0 ∈ ℤ$. If $k_0 = 0$ we are done. For $η = 0$, the space $V_{0,0}$ consists of constant functions and therefore $V_{0,0}$ is nonzero. Equation (1) shows that $X_±$ vanish on $V_{0,0}$ and therefore $V_{0,0}$ is a trivial g-space. For $η > 0$ consider the operators $X_±$: On $V_{η,k}$ they act as a multiple of the identity with the multiple given by

$$X_±|_{V_{η,k}} = -\frac{1}{4}(η + Kk - Kk^2)$$

$$X_-|_{V_{η,k}} = -\frac{1}{4}(η - Kk - Kk^2).$$

Since $X_± = -X_∼$ we have

$$∥X_±u∥^2 = \frac{1}{4}(η - Kk - Kk^2)∥u∥^2$$

and

$$∥X_-u∥^2 = \frac{1}{4}(η + Kk - Kk^2)∥u∥^2$$

for $u ∈ V_{η,k}$. In particular, if $V_{η,k} ≠ 0$, then $η = Kk - Kk^2 ≥ 0$ and if $η = Kk - Kk^2 > 0$ then $X_±: V_{η,k} → V_{η,k±1}$ is injective. More specifically, $X_±$ are both injective for all $k ∈ ℤ$ in the case of $η ≤ 0$. This implies that $V_{η,0} ≠ 0$ in this case.

If K is positive, we may assume $k_0 > 0$. The case $k_0 < 0$ is handled similarly. As mentioned above it holds that $η - Kk_0 - Kk_0^2 ≥ 0$. Analyzing the quadratic equations, we observe $η + Kk - Kk^2 > 0$ for $k = 1, \ldots, k_0$. Hence

$$V_{η,k_0} \xrightarrow{X_-} V_{η,k_0-1} \xrightarrow{X_-} \cdots \xrightarrow{X_-} V_{η,1} \xrightarrow{X_-} V_{η,0}$$

are all injective. We infer $V_{η,0} ≠ 0$.

Pick $f ∈ V_{η,0}$ and define H_f as closure of the g-invariant subspace generated by f. Since $X_± X_±$ are scalar on $V_{η,k}$, we see that $H_f = \text{span}\{X_k^+ f, X_k^- f | k ∈ N_0\}$ and it follows that $H_f ∩ V_{η,k}$ is at most one-dimensional. Moreover, H_f for different $f ∈ V_{η,0}$ are isomorphic as g-spaces and we claim $H_f ⊥ H_f$ for $g ∨ f$. Since $V_{η,k}$ are orthogonal for different k, we only have to verify $(H_f ∩ V_{η,k}) ⊥ (H_g ∩ V_{η,k})$. But as this subspace is given by $\mathbb{C}X_{sign,k}^k f$ and $\mathbb{C}X_{sign,k}^k g$ respectively we need to show $\langle X_{±k}^l f, X_{±k}^l g \rangle = 0$ for $l ≥ 0$. As $\langle X_{±k}^l f, X_{±k}^l g \rangle = (-1)^l \langle X_{±}^k X_{±k}^l f, g \rangle$ and $X_{±} X_{±}$ is scalar on $V_{η,k}$ the claim follows by induction on l.

If we pick an orthonormal basis f_1, \ldots, f_n of $V_{η,0}$, then $\bigoplus H_{f_i} ⊂ V_η$ and the above argument showing the injectivity $V_{η,k} → V_{η,0}$ shows that equality holds. Hence, we can choose $V'_η = H_{f_1}$. If we choose a different closed g-invariant subspace $V'_η$ of $V_η$ such that $V''_η := V_{η,k} ∩ V'_η$ satisfies $\dim V''_η ≤ 1$ and $\dim V''_η,0 = 1$, then $V'_η$ equals H_f for $f ∈ V''_η,0$ again by injectivity of $V''_η,0 → V''_η,0$. Therefore, all choices are isomorphic as g-spaces.
It remains to verify that $\Omega = \Delta_M$ on $V_{\eta,0} \subseteq L^2(\mathbb{M})$. Since $V = 0$ on this space, we need to calculate $-4X_+X_-$. We use isothermal coordinates, i.e., coordinates (x, y) such that the metric on \mathbb{M} is given by $ds^2 = e^{2\lambda}(dx^2 + dy^2)$ where λ is a smooth real-valued function of (x, y). Then $\Delta_M = -e^{-2\lambda}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$.

Furthermore, we have (see [28]):

\[X_+(u) = e^{(k-1)\lambda}\partial(h e^{-k\lambda})e^{i(k+1)\theta}\quad\text{and}\quad X_-(u) = e^{(-k-1)\lambda}\overline{\partial}(h e^{k\lambda})e^{i(k-1)\theta}\]

where $u(x, y, \theta) = h(x, y)e^{ik\theta} \in V_{\eta,k}$ and θ is the angle between a unit vector in $T\mathbb{M}$ and $\frac{\partial}{\partial x}$ so that (x, y, θ) are local coordinates on SM. Furthermore, $\partial = \frac{1}{2}(\partial/\partial x - i\partial/\partial y)$ and $\overline{\partial} = \frac{1}{2}(\partial/\partial x + i\partial/\partial y)$. With this notation we have for $h \in V_{\eta,0}$

\[X_+X_-h = X_+(e^{-\lambda}\overline{\partial}(h)e^{-i\theta}) = e^{-2\lambda}\overline{\partial}(e^{-\lambda}he^{\lambda}) = e^{-2\lambda}\overline{\partial}h = -\frac{1}{4}\Delta_M h.\]

This completes the proof. \(\square\)

2.3. Perturbation Theory

We want to collect some basic results from perturbation theory for linear operators that can be found in [22]. First, we introduce families of operators we want to deal with.

Definition 2.4 (see [22, Ch. VII §2.1]). A family $T(z)$ of closed operators on a Banach space X where z is an element in a domain $D \subseteq \mathbb{C}$ is called **holomorphic of type (A)** if the domain of $T(z)$ is independent of z and $T(z)u$ is holomorphic for every $u \in \text{dom}(T(z))$.

Without loss of generality let us assume that 0 is contained in the domain D. We call $T = T(0)$ the unperturbed operator and $A(z) = T(z) - T$ the perturbation. Furthermore, let $R(\zeta, z) = (T(z) - \zeta)^{-1}$ be the resolvent of $T(z)$ and $R(\zeta) = R(\zeta, 0)$. If $\zeta \notin \sigma(T)$ and $1 + A(z)R(\zeta)$ is invertible, then $\zeta \notin \sigma(T(z))$ and the following identity holds:

\[R(\zeta, z) = R(\zeta)(1 + A(z)R(\zeta))^{-1}.\]

(2)

Let us assume that $\sigma(T)$ splits into two parts by a closed simple C^1-curve Γ. Then there is $r > 0$ such that $R(\zeta, z)$ exists for $\zeta \in \Gamma$ and $|z| < r$ (see [22, Ch. VII Thm. 1.7]). If the perturbation is linear (i.e., $T(z) = T + zA$), then a possible choice for r is given by $\min_{\zeta \in \Gamma} \|AR(\zeta)\|^{-1}$. Note that $AR(\zeta)$ is automatically bounded by the closed graph theorem. In particular, we obtain that $\Gamma \subseteq \mathbb{C}\setminus\sigma(T(z))$ for $|z| < r$, i.e. the spectrum of $T(z)$ still splits into two parts by Γ. Let us define $\sigma_{\text{int}}(z)$ as the part of $\sigma(T(z))$ lying inside Γ and $\sigma_{\text{ext}}(z) = \sigma(T(z))\setminus\sigma_{\text{int}}(z)$. The decomposition of the spectrum gives a $T(z)$-invariant decomposition of the space $X = M_{\text{int}}(z) \oplus M_{\text{ext}}(z)$ where $M_{\text{int}}(z) = P(z)X$ and $M_{\text{ext}}(z) = \ker P(z)$ with the bounded-holomorphic projection

\[P(z) = -\frac{1}{2\pi i} \int_{\Gamma} R(\zeta, z)d\zeta.\]
Furthermore, \(\sigma(T(z)|_{M_{\text{int}}(z)}) = \sigma_{\text{int}}(z) \) and \(\sigma(T(z)|_{M_{\text{ext}}(z)}) = \sigma_{\text{ext}}(z) \). To get rid of the dependence of \(z \) in the space \(M_{\text{int}}(z) \), we will use the following proposition.

Proposition 2.5 (see [22, Ch. II §4.2]). Let \(P(z) \) be a bounded-holomorphic family of projections on a Banach space \(X \) defined in a neighborhood of 0. Then there is a bounded-holomorphic family of operators \(U(z) : X \to X \) such that \(U(z) \) is an isomorphism of Banach spaces for every \(z \) and \(U(z)P(0) = P(z)U(z) \). In particular, \(U(z)P(0)X = P(z)X \) and \(U(z)\ker P(0) = \ker P(z) \).

Denoting \(U(z)^{-1}T(z)U(z) \) as \(\tilde{T}(z) \) we observe
\[
\sigma(\tilde{T}(z)|_{M_{\text{int}}(0)}) = \sigma(\tilde{T}(z)) \cap \text{int}(\Gamma) = \sigma(T(z)) \cap \text{int}(\Gamma)
\]

since \(U(z) \) is an isomorphism. Here we denote the interior of \(\text{G} \) by \(\text{int}(\Gamma) \).

Let us from now on suppose that \(\Gamma \) encloses an eigenvalue \(\mu \) of \(T \) with finite multiplicity and no other eigenvalues of \(T \). Then \(\sigma_{\text{int}}(0) = \{\mu\} \) and \(M_{\text{int}}(0) \) is finite dimensional. Hence, \(\tilde{T}(z)|_{M_{\text{int}}(0)} \) is a holomorphic family of operators on a finite-dimensional vector space. It follows that the eigenvalues of \(\tilde{T}(z) \) are continuous as a function in \(z \). In addition to the previous assumptions, let us suppose that the eigenvalue \(\mu \) is simple. Then \(M_{\text{int}}(0) \) is one-dimensional and \(\tilde{T}(z)|_{M_{\text{int}}(0)} \) is a scalar operator. We obtain that there is a holomorphic function \(\mu : B_r \to \mathbb{C} \) (with \(r = \min_{\zeta \in \Gamma} |\text{AR}(\zeta)|^{-1} \) as above) such that \(\mu(z) \) is an eigenvalue of \(\tilde{T}(z) \), \(\mu(z) \) is inside \(\Gamma \) and \(\mu(z) \) is the only part of \(\sigma(\tilde{T}(z)) \) inside \(\Gamma \) since \(\sigma_{\text{int}}(z) = \sigma(\tilde{T}(z)|_{M_{\text{int}}(0)}) \).

We now want to calculate the Taylor coefficients of \(\mu(z) \) in order to get an approximation of \(\mu(z) \) in the case where \(X = H \) is a Hilbert space and \(T(z) \) is a holomorphic family of type (A) with symmetric \(T \) but not necessarily symmetric \(T(z) \) for \(z \neq 0 \). To this end let \(\varphi^{(0)} \in M_{\text{int}}(0) \), \(\varphi^{(0)} \neq 0 \), i.e., \(\varphi^{(0)} \) is an eigenvector of \(T \), and define \(\varphi(z) = U(z)\varphi^{(0)} \). Then \(\varphi(z) \) is an eigenvector of \(T(z) \) with eigenvalue \(\mu(z) \) and it is holomorphic in \(z \). Consider the Taylor series \(\mu(z) = \sum z^n \mu^{(n)} \), \(\varphi(z) = \sum z^n \varphi^{(n)} \). The holomorphy of \(T(z) \) produces a sequence of linear operators \(T^{(n)} \) such that \(T(z)u = \sum z^n T^{(n)}u \) for every \(u \in \text{dom}(T) \) which converges on a disc of positive radius independent of \(u \). This is due to the fact that Taylor series of holomorphic functions converge on every disc that is contained in the domain.

We compare the Taylor coefficients in
\[
(T(z) - \mu(z))\varphi(z) = 0 \quad \text{and} \quad \langle (T(z) - \mu(z))\varphi(z), \varphi(z) \rangle = 0
\]

and obtain
\[
(T - \mu^{(0)})\varphi^{(k)} = -\sum_{n=1}^{k} (T^{(n)} - \mu^{(n)})\varphi^{(k-n)} \quad \text{for} \quad k \geq 1
\]

and
\[
\mu^{(k)} = \langle T^{(k)}\varphi^{(0)}, \varphi^{(0)} \rangle + \sum_{n=1}^{k-1} \langle (T^{(n)} - \mu^{(n)})\varphi^{(k-n)}, \varphi^{(0)} \rangle \quad \text{for} \quad k \geq 1.
\]
In particular,
\[
\begin{align*}
\mu^{(1)} &= \langle T^{(1)} \varphi^{(0)}, \varphi^{(0)} \rangle \\
\mu^{(2)} &= \langle T^{(2)} \varphi^{(0)}, \varphi^{(0)} \rangle + \langle (T^{(1)} - \mu^{(1)}) \varphi^{(1)}, \varphi^{(0)} \rangle,
\end{align*}
\]
where \(\varphi^{(1)} \) fulfills
\[
(T - \mu)\varphi^{(1)} = -(T^{(1)} - \mu^{(1)})\varphi^{(0)}.
\]
Although \(\varphi^{(1)} \) is not uniquely determined by Eq. (5), \(\mu^{(2)} \) can be calculated in our setting. Indeed, \(\varphi^{(1)} = v + c\varphi^{(0)} \) with \(v \in (\varphi^{(0)})^\perp \) and \(c \in \mathbb{C} \). By Eq. (3) the right hand side of Eq. (5) is an element of \((\varphi^{(0)})^\perp\) which is a \((T - \mu)\)-invariant subspace since \(T \) is symmetric and \(\mathbb{C}\varphi^{(0)} = \ker(T - \mu) \) is \((T - \mu)\)-invariant. Since the \(\mu \) is a simple eigenvalue and an isolated point of \(\sigma(T) \), we infer that \(T - \mu \) is invertible on \((\varphi^{(0)})^\perp\) and
\[
v = -(T - \mu)|_{(\varphi^{(0)})^\perp}^{-1}(T^{(1)} - \mu^{(1)})\varphi^{(0)}.
\]

Using Eq. (4) we infer that
\[
\mu^{(2)} = \langle T^{(2)} \varphi^{(0)}, \varphi^{(0)} \rangle - \langle (T^{(1)} - \mu^{(1)})(T - \mu)|_{(\varphi^{(0)})^\perp}^{-1}(T^{(1)} - \mu^{(1)})\varphi^{(0)}, \varphi^{(0)} \rangle,
\]
since \((T^{(1)} - \mu^{(1)})\varphi^{(0)}\) is orthogonal to \(\varphi^{(0)} \) as before.

3. Perturbation Theory of the Kinetic Brownian Motion

We want to establish the limit \(\gamma \to \infty \) of the spectrum of \(P_\gamma \). To do so we write
\[
P_\gamma = \gamma^2 (\Delta_\mathcal{B} - 2\gamma^{-1}X) = \gamma^2 T(-2\gamma^{-1}) \quad \text{where} \quad T(z) = \Delta_\mathcal{B} + zX \quad \text{and} \quad \text{we want to use the methods established in Chapter 2.3.}
\]

In order to have finite-dimensional eigenspaces and holomorphic families of type (A), we will use the orthogonal eigenspace decomposition of \(L^2(SM) \) derived in Sect. 2.2:
\[
L^2(SM) = \bigoplus_{\eta,k} V_{\eta,k}
\]
where \(V_{\eta,k} = \{ u \in C^\infty(SM) \mid \Omega u = \eta u, Vu = iKu \} \).

Proposition 3.1. The family of operators \(T(z), z \in \mathbb{C}, \) restricted to \(V_{\eta} \) defines a holomorphic family of type (A) with domain \(H^2(SM) \cap V_{\eta} \). The same is true for \(V'_{\eta} \).

Proof. Since \(\Delta_{SM} \) is a second-order elliptic differential operator, we have \(H^2(SM) = \{ u \in L^2(SM) \mid (\Delta_{SM} + zX)u \in L^2(SM) \} \) for each \(z \in \mathbb{C} \). The space \(V_{\eta} \) is invariant under \(\Delta_{SM} \) so that \(H^2(SM) \cap V_{\eta} = \{ u \in V_{\eta} \mid (\Delta_{SM} + zX)u \in V_{\eta} \} \). We now use that \(\Delta_{SM} = \Omega + (1 - K)\Delta_\mathcal{B} \) and \(\Omega = \eta \) on \(V_{\eta} \). Therefore, \(H^2(SM) \cap V_{\eta} = \{ u \in V_{\eta} \mid ((1 - K)\Delta_\mathcal{B} + zX)u \in V_{\eta} \} = \text{dom} \ (T(z/(1 - K))|_{V_{\eta}}) \) for \(K \neq 1 \). For \(K = 1 \) the same argument works if we replace \(\Delta_{SM} \) by \(\Delta_{SM} + \Delta_\mathcal{B} \).

Since \(T(z)|_{V_{\eta}} \) is closed as a restriction of a closed operator the proposition is proven. The proof for \(V'_{\eta} \) is identical. \(\square \)
We denote the restriction of $T(z)$ to V_η by $T_\eta(z)$. The eigenspaces of the unperturbed operator $\Delta_{\gamma}|_{V_\eta}$ are $V_{\eta,0}$ and $V_{\eta,k} \oplus V_{\eta,-k}$ which are finite dimensional. As we have seen in Sect. 2.3 the eigenvalues of a holomorphic family of type (A) are continuous as a function of z in this case. We deduce that for the eigenvalues $\mu(z)$ of $T_\eta(z)$ that arise from nonzero eigenvalues $\mu = \mu(0)$ of $\Delta_{\gamma}|_{V_\eta}$ the limit $\gamma \to \infty$ of $\frac{2^2}{2^2} \mu(-2\gamma^{-1})$, which is an eigenvalue of P_γ, is ∞. Therefore, we are only interested in eigenvalues of $T_\eta(z)$ which arise from the unperturbed eigenvalue 0. In order to have that 0 is an eigenvalue of $T_\eta(0)$, we must have $V_{\eta,0} \neq 0$, i.e., $\eta \in \sigma(T_{\eta})$ by Lemma 2.3. Let us first deal with $\eta = 0$. Here g acts trivially on $V_{0,0}$ by Lemma 2.3 and therefore the eigenvalue of $T_\eta(0)$ that arises from the eigenvalue 0 is 0. If $\eta > 0$ we restrict $T_\eta(z)$ to V'_{η}. We observe that the eigenvalues of $T_\eta(z)|_{V'_{\eta}}$ are independent from the choice of V'_{η} since all choices are isomorphic g-spaces (see Lemma 2.3). The restriction of $T_\eta(z)$ to V'_{η} is a holomorphic family of type (A) and the eigenspace of the unperturbed eigenvalue is $V'_{\eta,0}$ which is one-dimensional. Hence, we are in the precise setting of Sect. 2.3. We obtain that there is a holomorphic function μ defined on a neighborhood of 0 (depending on η) such that $\mu(z)$ is an eigenvalue of $T(z)|_{V'_{\eta}}$ with $\mu(0) = 0$.

Let $\varphi(z)$ be a corresponding holomorphic eigenvector, in particular $\varphi(0) \in V'_{\eta,0}$. We can use Eq. (3) from Sect. 2.3:

$$\mu'(0) = \langle X\varphi(0), \varphi(0) \rangle = \frac{1}{2} \langle (X_+ + X_-)\varphi(0), \varphi(0) \rangle.$$

Due to the fact that X_\pm are raising respectively lowering operators, i.e. $X_\pm V_{\eta,k} \subseteq V_{\eta,k \pm 1}$, we conclude that $\mu'(0) = 0$.

We now want to find the second derivative $\mu''(0)$ of μ. Notice that $X\varphi(0) \in V'_{\eta,-1} \oplus V'_{\eta,1} = \{u \mid \Delta_{\gamma}u = u\}$. Therefore, $(\Delta_{\gamma}|_{\varphi(0)})^{-1}X\varphi(0) = X\varphi(0)$. Consequently by Eq. (6),

$$\mu''(0) = -2\langle X(X\varphi(0)), \varphi(0) \rangle = -\frac{1}{2} \langle (X_+ + X_-)^2\varphi(0), \varphi(0) \rangle = -\frac{1}{2} \langle (X_+^2 + X_+X_- + X_-X_+ + X_-^2)\varphi(0), \varphi(0) \rangle.$$

Again, X_\pm are raising/lowering operators. Therefore,

$$\mu''(0) = -\frac{1}{2} \langle (X_+X_- + X_-X_+)\varphi(0), \varphi(0) \rangle = \langle \Omega\varphi(0), \varphi(0) \rangle = \eta$$

as the Casimir operator Ω equals $-2X_+X_- - 2X_-X_+ - KV^2$ and $V\varphi(0) = 0$.

If we now substitute $z = -2\gamma^{-1}$ we obtain that $\lambda_{\eta}(\gamma) = \frac{2^2}{2^2} \mu(-2\gamma^{-1})$ is an eigenvalue of P_γ with uniform multiplicity $m_{\eta} = \dim\ker(\Delta_{\eta} - \eta)$ which is analytic in γ^{-1} and converges to η as $\gamma \to \infty$. This proves Theorem 1.

Remark 3.2. In order to obtain uniform convergence of the eigenvalues in compact sets, i.e. for each compact set K there is γ_K such that $K \cap \sigma(P_\gamma) \subseteq \{\lambda_{\eta}(\gamma) \mid \eta \in K \cap \sigma(\Delta_{\eta})\}$ for all $\gamma > \gamma_K$, we would like to deal with all $\eta \in \sigma(\Delta_{\eta})$ simultaneously in a uniform way since the eigenvalues of Δ_{η} appear in the
second derivatives of the evolving eigenvalues in the perturbation expansion, not as their limits. More precisely, we want to separate converging eigenvalues (which arise from 0 as an element of \(\sigma(\Delta_S) \)) from non-converging eigenvalues. For this to happen, we must have that \(1 + zX(\Delta_S - \zeta)^{-1} \) is invertible for small \(|z| \) and for \(\zeta \) in some closed curve enclosing 0 but no other element of \(\sigma(\Delta_S) = \{ k^2 \mid k \in \mathbb{Z} \} \). In particular, \(1 + zX(\Delta_S - \zeta)^{-1} \) has to be invertible for some \(\zeta \in (0, 1) \) but we can only ensure this for \(|z| < \|X(\Delta_S - \zeta)^{-1}_{V_\zeta'}\|^{-1} \).

As

\[
\|X(\Delta_S - \zeta)^{-1}_{V_\zeta'}\| \geq \|X(\Delta_S - \zeta)^{-1}_{V_{\zeta,0}}\| = |\zeta|^{-1}\|X|_{V_{\zeta,0}}\|
\]

\[
= |\zeta|^{-1}\sqrt{\|X_+|_{V_{\zeta,0}}\|^2 + \|X_-|_{V_{\zeta,0}}\|^2}
\]

\[
= |\zeta|^{-1}\sqrt{\frac{1}{2}\eta} \geq \sqrt{\frac{1}{2}\eta}
\]

this is impossible for all \(\eta \in \sigma(\Delta_M) \) at once.

Acknowledgements

We want to thank the anonymous referee for helpful comments that led to a much clearer form of the article. T. Weich acknowledges the support by the Deutsche Forschungsgemeinschaft (DFG) through the Emmy Noether group “Microlocal Methods for Hyperbolic Dynamics” (Grant No. WE 6173/1-1).

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Proposition 2.1

The proof that \(P_\gamma \) is hypoelliptic with the subelliptic estimate can be found in [10, Section 2.2]. There exist vector fields \(X_j \) on \(S\mathbb{M} \) such that \(\Delta_S = -\sum_{j=1}^{d} X_j^2 \) and \(\text{div} X_j = 0 \) (see [10, §2.2.6]). Hence, the \(X_j \) as well as \(X \) are skew-symmetric with respect to the inner product of \(L^2(S\mathbb{M}) \). It follows
that $\Re \langle P_\gamma f, f \rangle = \sum \frac{1}{2} \gamma^2 \langle X_j f, X_j f \rangle - \gamma \Re \langle X f, f \rangle \geq 0$ since $\langle X f, f \rangle \in i\mathbb{R}$, i.e. $P_\gamma |_{C^\infty}$ is accretive.

We show that $\text{Ran}(P_\gamma |_{C^\infty} + I)$ is dense in $L^2(S\mathcal{M})$ following the proof of [21, Prop. 5.5]. Let $f \in \text{Ran}(P_\gamma |_{C^\infty} + I)^\perp$. Then we have $\langle f, (P_\gamma + I)u \rangle = 0$ for all $u \in C^\infty$, hence $(P_\gamma - I)f = 0$ in \mathcal{D}'. Since P_γ is hypoelliptic, it follows that $f \in C^\infty$ and with $u = f$ in the above formula we have $\langle f, (P_\gamma + I)f \rangle = 0$. Therefore, $\|f\|^2 = -\Re \langle f, P_\gamma f \rangle \leq 0$. Thus $f = 0$.

We obtain that the closure $P_\gamma |_{C^\infty}$ is maximal-accretive (see e.g. [21, Thm. 5.4]). In the same way, $P_{-\gamma} |_{C^\infty}$ is maximal-accretive. An operator A on a Hilbert space is maximal-accretive iff it generates a contraction semigroup e^{-tA} (see [29, p. 241]). Hence, $P_{-\gamma} |_{C^\infty}$ generates a contraction semigroup $e^{-tP_{-\gamma} |_{C^\infty}}$. The adjoint semigroup $(e^{-tP_{-\gamma}})^*$ is generated by $(P_{-\gamma} |_{C^\infty})^*$ that is $\frac{1}{2} \gamma^2 \Delta_S - \gamma X$ with domain $\{ f \in L^2 \mid (\frac{1}{2} \gamma^2 \Delta_S - \gamma X)f \in L^2 \}$ (see [12, I.5.14 and II.2.5]), i.e. $P_{-\gamma} |_{C^\infty})^* = P_\gamma$. In particular, the operator P_γ is maximal-accretive as it generates a contraction semigroup. Since both operators $P_\gamma |_{C^\infty}$ and P_γ are maximal-accretive and we conclude that they coincide. Similar arguments can be found in [20].

For the positivity of the generated contraction semigroup we have to check if

$$\langle (\text{sign } f)P_\gamma f, u \rangle \geq \|f\| \langle (P_\gamma)^* u \rangle$$

for all real $f \in C^\infty$ and a strictly positive subeigenvector u of $(P_\gamma)^*$ (see [2, C-II Cor. 3.9]). Note that 1 is a strictly positive eigenvector of $(P_\gamma)^*$ and $\frac{1}{2} \Delta_S(x)$ as well as $-X$ generate stochastic Feller processes on $S_x \mathbb{M}$ and $S\mathbb{M}$ respectively (namely the Brownian motion on $S_x \mathbb{M}$ and the geodesic flow). Hence, $e^{-t\Delta_S(x)}$ and e^{tX} define positive semigroups so that $\langle (\text{sign } f)\Delta_S(x)f, 1 \rangle_{S_x \mathbb{M}} \geq 0$ for $f \in C^\infty(S_x \mathbb{M})$ and $\langle (\text{sign } f)(-X)f, 1 \rangle \geq 0$ for $f \in C^\infty(S\mathbb{M})$ (see [2, C-II Thm.2.4]). Combining both statements completes the proof.

References

[1] Angst, J., Bailleul, I., Tardif, C.: Kinetic Brownian motion on Riemannian manifolds. Electron. J. Probab. 20, 1–40 (2015)
[2] Arendt, W., Grabosch, A., Greiner, G., Moustakas, U., Nagel, R., Schlotterbeck, U., Groh, U., Lotz, H.P., Neubrander, F.: One-parameter semigroups of positive operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)
[3] Bismut, J.-M.: The hypoelliptic Laplacian on the cotangent bundle. J. Am. Math. Soc. 18(2), 379–476 (2005)
[4] Bismut, J.-M., Lebeau, G.: The hypoelliptic Laplacian and Ray-Singer metrics. AMS, vol. 167. Princeton University Press, Princeton, NJ (2008)
[5] Baudoin, F., Tardif, C.: Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinet. Relat. Models 11(1), 1–23 (2018)
[6] Bonthonneau, Y., Weich, T.: Ruelle resonances for manifolds with hyperbolic cusps. J. Eur. Math. Soc. (2021). https://doi.org/10.4171/JEMS/1103
[7] Dyatlov, S., Faure, F., Guillarmou, C.: Power spectrum of the geodesic flow on hyperbolic manifolds. Anal. PDE 8(4), 923–1000 (2015)
[8] Dyatlov, S., Guillarmou, C.: Pollicott–Ruelle resonances for open systems. Ann. Henri Poincaré 17(11), 3089–3146 (2016)
[9] Dang, N.V., Riviere, G.: Spectral analysis of morse-smale gradient flows. Ann. Sci. Éc. Norm. Supér. 52(6), 1403–1458 (2016)
[10] Drouot, A.: Stochastic stability of Pollicott-Ruelle resonances. Commun. Math. Phys. 356(2), 357–396 (2017)
[11] Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Ann. Sci. Éc. Norm. Supér. 49(3), 543–577 (2016)
[12] Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics. Springer, New York (2006)
[13] Flaminio, L., Forni, G.: Invariant distributions and time averages for horocycle flows. Duke Math. J. 119(3), 465–526 (2003)
[14] Franchi, J., Le Jan, Y.: Relativistic diffusions and Schwarzschild geometry. Commun. Pure Appl. Math. 60(2), 187–251 (2007)
[15] Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308(2), 325–364 (2011)
[16] Guillarmou, C., Hilgert, J., Weich, T.: Classical and quantum resonances for hyperbolic surfaces. Math. Ann. 370(3), 1231–1275 (2018)
[17] Guillarmou, C., Hilgert, J., Weich, T.: High frequency limits for invariant Ruelle densities. Ann. Henri Lebesgue 4, 81–119 (2021)
[18] Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)
[19] Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013)
[20] Grothaus, M., Stilgenbauer, P.: Hypocoercivity for Kolmogorov backward evolution equations and applications. J. Funct. Anal. 267(10), 3515–3556 (2014)
[21] Helffer, B., Nier, F.: Hypoelliptic estimates and spectral theory for Fokker–Planck operators and Witten laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, New York (2005)
[22] Kato, T.: Perturbation theory for linear operators. Grundlehren der mathematischen Wissenschaften, 2 edn. Springer, Berlin (1976)
[23] Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013)
[24] Küster, B., Weich, T.: Quantum-classical correspondence on associated vector bundles over locally symmetric spaces. Int. Math. Res. Notices 2021(11), 8225–8296 (2019)
[25] Kolb, M., Weich, T., Wolf, L.L.: Spectral asymptotics for kinetic brownian motion on hyperbolic surfaces. arXiv:1909.06183 (2019)
[26] Li, X.-M.: Random perturbation to the geodesic equation. Ann. Probab. 44(1), 544–566 (2016)
[27] Liverani, C.: On contact Anosov flows. Ann. Math. 159(3), 1275–1312 (2004)
[28] Paternain, G.P., Salo, M., Uhlmann, G.: Spectral rigidity and invariant distributions on anosov surfaces. J. Differ. Geom. 98(1), 147–181 (2014)
[29] Reed, M., Simon, B.: Methods of modern mathematical physics II: Fourier analysis, self-adjointness. Academic Press, Methods of modern mathematical physics, New York (1975)

[30] Smith, H.: Parametrix for a semiclassical subelliptic operator. Anal. PDE 13(8), 2375–2398 (2020)

[31] Taylor, M.E.: Noncommutative Harmonic Analysis, Mathematical surveys and monographs, Providence. American Math. Soc, RI (1986)

Martin Kolb, Tobias Weich and Lasse L. Wolf
Universität Paderborn
Paderborn
Germany
e-mail: llwolf@math.uni-paderborn.de

Martin Kolb
e-mail: kolb@math.uni-paderborn.de

Tobias Weich
e-mail: weich@math.uni-paderborn.de

Communicated by Stéphane Nonnenmacher.
Received: September 16, 2019.
Accepted: October 2, 2021.