drug and others drug-induced EN or both. In patients without previous LE/SS and no clinical sign of LE, especially those with a trigger drug, the pathophysiology of the LE autoantibodies remains unknown (possibly epitope spreading). In our series, histology revealed mucin in seven patients, five with previous LE or clinical signs of LE, and only one with a positive lupus band test.

Published series describing EN in LE are rare. The largest (n = 17) separated patients with TEN-like LE and those with a history of LE with drug-induced EN. Histologically, mucin and junctional vacuolar alteration evoked LE associated with EN. Diagnosis of TEN-like lupus is challenging, because LE may not be previously known, skin detachment may be over 30% and mucous membrane may be involved, but lesions are often photodistributed. Treatment relies on systemic steroids with or without immunosuppressant agents. Prognosis is usually favourable. Our series is limited by a small number of patients but the disease is very rare. Our study illustrates the difficulty of interpreting the link between lupus and EN. The major concern is the decision relating to systemic steroids, which depends on the history, presence of a trigger drug or not, and clinical and histological features.

Acknowledgments: we thank Professor Nicolas Dupin, Dr Flore Kurihara, and Dr Benoit Bensaid for the care of three of these patients.

References

1. Duong TA, Valeiry-Allanore L, Wolkenstein P, Chosidow O. Severe cutaneous adverse reactions to drugs. Lanet 2017; 390: 1996–2011.

2. Ziemer M, Kardaun SH, Liss Y, Mockenhaupt M. Stevens-Johnson syndrome and toxic epidermal necrolysis in patients with lupus erythematosus: a descriptive study of 17 cases from a national registry and review of the literature. Br J Dermatol 2012; 166: 575–600.

3. Ting W, Stone MS, Racila D et al. Toxic epidermal necrolysis-like acute cutaneous lupus erythematosus and the spectrum of the acute syndrome of apoptotic pan-epidermolysis (ASAP): a case report, concept review and proposal for new classification of lupus erythematosus vesiculobullous skin lesions. Lupus 2004; 13:941–50.

4. Kushnir-Grinbaum D, Cohen-Barak E, Bieber A et al. Toxic epidermal necrolysis-like dermatomyositis associated with antimelanoma differentiation antigen S. JADDis 2018; 5:91–3.

5. Dumas M, Hua C, Hotz C et al. Epidermal necrolysis and autoimmune diseases: two more observations supporting the concept that ‘toxic’ epidermal necrolysis can be ‘non-toxic’. J Eur Acad Dermatol Venereol 2018; 32:e360–1.

6. Sassolas B, Haddad C, Mockenhaupt M et al. ALDEN, an algorithm for assessment of drug causality in Stevens-Johnson syndrome and toxic epidermal necrolysis: comparison with case-control analysis. Clin Pharmacol Ther 2010; 88:60–8.

7. Abdelmontalib A, Meziane M, Senouci K. Toxic epidermal necrolysis-like acute cutaneous lupus erythematosus: two cases report. Pan Afr Med J 2021; 38:236.
positive inpatients. This means 6.2% of all HCWs used our services. Questionnaires were completed for each consultation (summarized in Table 1). In total, 805 HCWs were assessed: 677 female and 127 male (one with sex not documented), mean (SD) age 35.3 (11.1) years. This reflects the workforce demographic, as 72% of the workforce are female. The most frequently seen occupation was nurses, followed by doctors.

The most common diagnosis made in the 805 HCWs seen in the clinics was ICD of the hands (48.6%), followed by acne (45.1%). Facial eczema (13.9%) and facial pressure injury (6.2%) were less common. Diagnoses were made after history taking and examination by the dermatologists running the clinic. In particular, ICD of the hands was diagnosed when the pattern of the disease was consistent, namely inflammation involving web spaces and predilection for the dorsum of hands. ICD was distinguished from dry skin by the presence of erythema and inflammation. Overall, 392 HCWs had more than one skin problem. Three HCWs had suspected allergic contact dermatitis clinically to rubber accelerators, but due to COVID restrictions patch testing was unavailable during this time. Fourteen HCWs required formal referral to dermatology. Twelve HCWs required time off work, with a total of 114 lost working days. Of these 12, none had prior dermatology input and all experienced improvement after their consultation. The educational material created, including leaflets and videos, was available on the trust intranet and was accessed 6352 times.

Our data are consistent with existing literature, with the most common diagnosis in the current study being ICD (48.6% – almost half of our cohort). There was significantly increased incidence of acne (45.1%) compared with the first wave, where the reported incidence was 17% in a multicentre study.3 In contrast to other groups, we found acne was the most common facial skin problem – more than facial eczema and facial pressure injury from PPE.2 Hyperpigmentation was an issue in at least 2.9% of our cohort and this may be under-recognized. Postinflammatory dyspigmentation is a major concern in people with more pigmented skin, who often are unable to tolerate benzoyl peroxide and topical retinoids due to irritation. This is important as 56% of our trust workforce are from black, Asian or minority ethnic backgrounds.

We saw significant numbers of facial pressure injury (6.2%) and facial eczema (13.9%), which were higher than in previous UK studies.2,3 Atopy was seen in 26.5% of HCWs, compared with an estimated prevalence in the UK adult population of 8.3%. This supports previous studies showing that atopic eczema is more likely to present with healthcare-related occupational dermatoses.4

Limitations of this study include it being a single-centre study and descriptive. Diagnoses were made clinically without tests, and the absence of patch testing was a significant drawback. The clinics were staffed by 10 dermatologists and within this there may be interexaminer variability. The majority of HCWs presenting to the clinic were not formally followed up.

Our data confirm there was a large unmet need in HCWs with skin problems during the second wave of the COVID-19 pandemic. We highlight the sheer scale of the issue with 805 HCWs presenting for dermatological assessment in only 10 weeks in one trust, making this the largest cohort reported in the world. We describe the success of an outreach occupational dermatology clinic, which was convenient for HCWs. Compared with experience during the first wave, acne exacerbated or precipitated by masks is increasingly common.

Acknowledgments: thank you to all the dermatologists who participated in the staff clinics and all the staff who worked during the pandemic.
Eruptive keratoacanthomas associated with dupilumab therapy

DOI: 10.1111/bjd.20781

Dear Editor, We would like to present the case of eruptive keratoacanthomas associated with dupilumab therapy, which occurred in an 85-year-old woman receiving biologic therapy for the treatment of atopic dermatitis. With the increasing prevalence of dupilumab usage, this is an important potential complication of which clinicians should be aware.

An 85-year-old woman was referred to secondary care for the management of severe atopic dermatitis. At the age of 51 years, having never previously experienced skin issues, she developed dry, itchy skin and was diagnosed with atopic dermatitis. She underwent multiple separate cycles of psoralen plus ultraviolet A (PUVA) and TL-01 therapy in her 50s and 60s, and more recently had been trialled on methotrexate and ciclosporin, to limited effect. Her medical history was significant for two well-differentiated cutaneous squamous cell carcinomas (cSCCs) that developed on her right lower leg in 2008 and 2010, which had been surgically removed.

On assessment, her Eczema Area and Severity Index and Dermatology Life Quality Index scores were measured as over 20, and she was commenced on dupilumab, with an initial subcutaneous injection of 600 mg followed by 300 mg on alternate weeks. One month after starting therapy, she reported developing roughly 10 smooth nodules over her arms and legs. Over the following weeks, several large nodules developed, which raised the clinical concern of possible cSCCs. As a result, two lesions on the patient’s legs were surgically removed. On detailed review of the histology, a diagnosis of keratoacanthoma was made for both lesions. The hallmark features of keratoacanthoma were present, namely crateriform architecture, minimal atypia, large glassy keratinization patterns within the cell cytoplasm, and a dense inflammatory infiltrate (Figure 1). Gene mutation analysis revealed no evidence of mutations associated with Lynch syndrome.

The unexcised nodules spontaneously regressed over the following 6 months. The patient’s atopic dermatitis is currently well controlled and, following a discussion with the patient regarding the risks and benefits, the dupilumab therapy has been continued. Three-monthly skin checks continue to be undertaken during her usual biologic therapy reviews. This adverse event has been reported to the manufacturer Sanofi.

Keratoacanthomas are rapidly growing, benign skin tumours. They follow a typical time course of rapid growth, stabilization and spontaneous regression. Numerous risk factors are documented, including ultraviolet radiation exposure, immunosuppression, trauma and carcinogens. There are well-documented cases of drug-induced keratoacanthomas in the literature. Typical causative agents include BRAF inhibitors such as sorafenib, and checkpoint inhibitors such as nivolumab.1–3

![Figure 1](image-url)

Figure 1 (a) Macroscopic appearance of the clinically worrying eruptive lesion on the patient’s leg that underwent excision. (b) Characteristic crateriform architecture (highlighted by red arrows). (c) Large, glassy keratinization patterns within the cell cytoplasm (highlighted by the black arrow) on haematoxylin and eosin histological staining.