Research Article

Genotypic variation of forage maize (Zea mays L.) hybrids to sources of nitrogenous fertilizer under non-saline and saline conditions

Muhammad Ibrahim¹, Muhammad Jan²*, Muhammad Mudassar Maqbool¹, Bushra Tariq¹, Mubashar Nadeem³, Abdul Rauf⁴ and Anam Noreen Abbas⁵

1. Department of Agronomy Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
2. Centre of Excellence for Olive Research and Training (EFFORT), Barani Agricultural Research Institute, Chakwal, Pakistan
3. Departments of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
4. Agriculture Officer (Field) Dera Ghazi Khan, Pakistan
5. Department of Entomology, University of Agriculture, Faisalabad, Pakistan
*Corresponding author’s email: mjanleghari@gmail.com

Citation
Muhammad Ibrahim, Muhammad Jan, Muhammad Mudassar Maqbool, Bushra Tariq, Mubashar Nadeem, Abdul Rauf and Anam Noreen Abbas. Genotypic variation of forage maize (Zea mays L.) hybrids to sources of nitrogenous fertilizer under non-saline and saline conditions. Pure and Applied Biology. Vol. 10, Issue 4, pp1388-1397. http://dx.doi.org/10.19045/bspab.2021.100144

Abstract
Water shortage and good quality irrigation water are the main alarming issues for forage production of maize crop in the area of arid and semiarid which enforcing the farmers to utilize municipal irrigation and recycled underground brackish water. These constraints reducing the forage yield and resulting into low forage production due to imbalance fertilizer, salinity and solicitation. Nitrogen (N) application is beneficial for the crops in the accordance of its role in crop productivity and nutrient use efficiency. The current study was conducted to study nitrogenous fertilizers role on maize growth under saline conditions. Nitrogenous fertilizers application increased the plant growth parameters in the term of physical para meters like fresh and dry biomass, plant height(cm), leaf area per plant(cm), number of leaves per plant and crude protein (%) under saline conditions. Nitrogen sources application increased the concentration of nitrate (NO₃), ammonium (NH₄), potassium(K), K: Na ratio and decreased sodium (Na), under saline condition. A significant difference was observed in all three maize hybrids while comparing the genotypic performance, the maize hybrid FH-949 showed the considerable increase in all observed parameters as compared to FH-922 and Pak-Afgoe which showed a significant reduction in term of all growth parameter under saline conditions.

Keywords: Ammonium; Hybrids; Imbalance fertilizers; K: Na ratio; Nitrate

Introduction
Salinity is becoming one of the alarming issue due to sudden inverse in climate change which reducing the plant yield as well as development [1, 2]. In world the extent of salt affected soil is 20% and in which 50% of irrigated land is deteriorated just only due to salinity [3]. The main contributing factors is shortage of irrigation water in dry as well as irrigated areas which
enforcing the formers to utilize municipal or brackish water for irrigation purpose [4]. Maize crop is mostly sensitive against salinity at early heading stage which ultimately reduces the forage production as well as quality. For fodder and good forage purpose it is important to harvest crop at two to three weeks before grain maturity. It is also considered as an important raw material for multi manufactured goods and food grain for animals [5].

In agriculture, maize crop contributes 0.4 percent to Gross Domestic Product (GDP) but during the previous year’s area maize cultivation decreased 3.30% due to reduction in sown area [6]. It is edible cereal forage which consist of 29.9-31.38% crude fiber, 8.62-10.32% crude protein, 8.45-9.24% total ash and 1.27-1.35% ether extractable fats [7]. In Pakistan, different biotic and abiotic factors are responsible for low production which create problem during lifecycle and genetic material secondly the miss management in balance fertilizer and in irrigation application. So the main constraints for maize yield reduction in Pakistan are imbalance fertilizer application, lack of high yielding genotypes of forage maize, and salinity which influencing the forage productivity of maize crop [8].

Maize crop have a significant forage importance, in earlier duration many of genotypes were introduced and to maximize the production use of these high yielding are best to fulfill the increasing demand of livestock food [7, 9]. The production as well as quality of these genotypes mostly affected due to the ecological factors. It is important to select such type of cultivars by adopting short gun approaches like the suitable nutrient source application under salt stress conditions [10].

Among the essential nutrients, Nitrogen (N) is one of the important nutrient which increase the crop quality and yield, protein contents and seed quality. Nitrogen application also increase the photosynthetic rate and improve the leaf area and enhance the vegetative growth [11, 12]. The higher dose of N results into ecological contamination so its proper source, its form and doses are needed to consider to prevent the risks from human and soil health [13]. Plants absorb N in the form of anion (NO$_3^-$) and cation (NH$_4^+$) which also affected by pH of the root zone (Cheema et al. 2010). The ammonium(NH$_4^+$) uptake in plants reduced pH of root zone through releasing proton (H$^+$) which enhance the concentration of (NH$_4^+$) in vacuole of cell [14].

Nitrate form is less harmful can be accumulated into shoot and other parts. The absorption of N sources effects the N type given to plants also depends on the chemical composition of plants to control the relative ions uptake [15, 16]. The plants which uptake more NO3 that will reduce the uptake of metals as compared to those provided with NH$_4^+$ [17-19].

The applied form of N a key role on plant vegetative and reproductive growth which also dependent on growing site, fertilizer dose and crop specie. Keeping in view the N role in plant growth under saline condition, the current study conducted with the objectives to evaluate the comparative effects of NO$_3$-N and NH$_4$-N and to study the comparative performance of maize hybrids under saline condition.

Material and Methods

Experimental conditions and plant material

The experiment was conducted in the research area of Agronomy department. Soil samples were analyzed in the laboratory for physico chemical analysis. Soils samples ECe and pH were measured by using EC meter (DDS -307A) and pH meter and cation exchange capacity (CE C) was measured by using ammonium acetate method wet oxidation method used for the measurement of organic matter contents. The soil analysis before the experiment conducting are given inn (Table 1). Salinity was artificially developed into pots by using the method of U.S. Salinity Lab Staff [18]. The levels of nitrogenous fertilizers...
were applied by using ammonium sulphate (as a source of NH₄) and calcium nitrate (as a source of NO₃).

There were six treatment i-e T₁: controlT₂: EC=10.00 dS m⁻¹, T₃: ammonium sulphate (75 mg kg⁻¹ soil), T₄: calcium nitrate (75.00 mg per kg soil), T₅: ammonium sulphate + EC = 10.00 dSm⁻¹, T₆: calcium nitrate + EC= 10.00 dS m⁻¹ with triplicates. All the treatments arranged factorial with three replications. Three maize hybrids i-e. FH-949, FH-922, and Pak Afgoe sown for this experiment. Seed of all maize hybrids imported from AARI, Faisalabad. After sieving of soil 20 kg pots were filled with sieved soil. The recommended dose of NP K was thoroughly mixed into the soil. The first dose of N, all P and K were applied at the pot filling Maize seeds were soaked distill water, five seeds were sown in each pot. Plants were thinned to maintain two plants in each pot. For maintain the field capacity, pots were irrigated with distilled water to for more fifty days.

Plant parameters

After the duration of 45 days, plants were harvested, and left for sun drying. Samples were oven dried to constant weight and weighed with a spring balance and yield per plant was recorded. After harvesting, shoots samples were oven dried at 70°C to obtain a constant weight. A homogenous portion of finely ground shoots samples were passed through 40-mesh sieve and samples were digested in a di-acid mixture which was prepared by mixing the ratio of HNO₃: HClO₄ (2:1) respectively [20].

The sample of 0.5 g dry plant material added into a 100-mL digestion tube. The plant material was digested in the mixture of sulfuric acid and hydrogen per oxide. Leaf NO₃-N concentration was determined by the method as suggested by [21]. For the determination of NH₄-N, plant samples were digested in the mixture of K₂SO₄ and HgO as a catalyst and it was determined by the colorimetric method using auto-analyser system. Ammonium in the digested plant samples was determined by spectro photo meter (Shimadzu, UV - 1201, Kyoto, Japan). The absorbance was read in spectro photo meter at 650 nm. The concentration of K and Na were determined by using flame photo meter (Model 410, Thermo Electron Limited, Cambridge, UK) respectively.

Statistical analysis

The mean data regarding shoot dry matter and mineral content were analyzed statistically by using Statistix 9®. Least significance difference (LSD) test used for mean separation. The variations of the data were expressed as standard deviation and significance of the data was calculated at the p < 0.05 [22].

Table 1. Soil analysis used for experiment

Soil Characteristics	Values	Units
Nitrogen	10	mg kg⁻¹
Organic matter	0.90	%
SAR	3.45	(mmol L⁻¹)¹/²
Soil Texture	Clayey soil	
Saturation percentage	60.00	%
pH	7.50	
EC_e	1.90	dS m⁻¹

Results and Discussion

Plant height (cm²) and number of leaves per plant

According to forage importance point of plant height and number of leaves per plant are considered one of the important parameter. Maize hybrid FH-949 produced maximum numbers of leaves per plant (9.49) and plant height (144.00 cm) while minimum leaves (7.30) and plant height
(92.33 cm) was observed in Pak-Afgo under non-saline conditions (Fig. 1). Plant height and number of leaves per plant reduced adversely under saline conditions. Maximum plant height (67.33 cm) was observed in FH-949 in the treatment where ammonical form of N while minimum plant height (55.60 cm) was observed in Pak-Afgo where no N was applied. So the genotype FH-949 performed best under both of the conditions as compared to FH-922 and Pak-Afgo.

Application of N increased the plan height and number of leaves under non saline conditions which results due to higher fertilizer levels which ultimately facilitate the diffusion and increased nutrient availability. This increase in plant height also observed by some other researchers [23-26]. Some other researchers [27-29] also reported that it might be due to genetic variations and easily facilitation of nutrient in root zone which ultimately improve plant growth in term of an increase in number of leaves and plant height.

Figure 1. Effect of NO$_3$-N and NH$_4$-Non A) leaves per plant and B) plant height of maize hybrids

Leaf Area (cm) and Crude protein (%)
The application of nitrogenous fertilizers increased the leaf area of all maize hybrids under non-saline conditions. Among the maize genotype maximum leaf area (80.86 cm) and crude protein (9.02%) was observed in FH-949 followed by FH-922 while in Pak-Afgo minimum leaf area (70.00 cm) and crude protein (6.76%) was observed (Fig. 2). Application of NO$_3$–N increased the leaf area and crude protein as compared to applied NH$_4$-Nform.

To estimate the quality of forage contents of crude protein are very important. The quality of forage is considered best when crude protein contents existing in higher quantity in forage composition. Salinity stress adversely reduced the plant growth as a result of physiological dehydration which thick the chlorophyll contents and decreased leaf area. In case of saline environment, maximum leaf area (67.33 cm) was observed in FH-949 through the application of NH$_4$-N and minimum leaf area (55.60 cm) was observed in Pak-Afgo in the treatment where no N was applied. The response of maize hybrids against nitrogenous fertilizers was different as a result of variation in genetic potential. Difference in crude protein of maize hybrids also reported by [29, 30] reported contradict as they found non-significant differences between hybrids of sorghum. Plants which were fertilized with NH$_4$-N under non-saline condition might be due to the uptake of more nitrogen resulting in more nitrogen in plants. Similar findings as observed in current study as observed by [31] in maize. In case of leaf area similar observation were also observed by [32, 33].
they reported that the leaf area increased in maize and millet as a result of nitrogenous fertilizer application.

![Figure 2. Effect of NO$_3$-N and NH$_4$-Non A) leaf area(cm) and B) crude protein (%) of maize hybrids](image)

Fresh and dry biomass per plant (g)
Production of green forage is also dependent on the fresh biomass production. The highest (199.05g) fresh biomass and dry biomass (84.59g) was observed in FH-949 through NH$_4$ form of N application while “Pak-Afgoe” maize genotype produced minimum fresh (143g) and dry biomass (81.00 g) under non-saline condition (Fig. 3). The highest fresh and dry biomass were (140.79 g) and (60.45 g) respectively while lowest fresh and dry weight were (108.28 g) and (43.40 g) which was observed in Pak-Afgoe under saline conditions. So the application of NH$_4$ enhance the fresh and dry biomass as compared to NO$_3$-N form.

The increase in plant fresh and dry biomass through the NH$_4$-N application results actually due to net photosynthesis, plant water potential and improvement in plant water use efficiency. Similar findings were also reported by some other researchers [26, 27, 36] as they reported that application of N in the form of ammonium fertilizer increased the plant growth as it has key role in soil medium acidification and other nutrient availability which ultimately results into more forage production.

Ionic contents (m mol g$^{-1}$ dry wt)
Salt stress causes osmotic effect which limits the nutrients and water uptake because of higher concentration of Na in soil solution. The highest content of Na under saline condition (Fig. 4). Maximum sodium content (396.50 mM) was observed in Pak afgoee genotype and while maximum K content (179.78 mM) was observed in FH-922 maize genotype through the application of NH$_4$-N. In contrast, lowest sodium contents (325.55 mM) and maximum K (198.56 mM) was observed in FH-949. Comparing the N sources impact it was observed that the application of NH$_4$–N application increased the K concentration and reduced the Na concentration as compared to NO$_3$-N form.
Nitrogenous fertilizer application increases the stomatal conductance and ultimately net photosynthetic process. An increase in K⁺ concentration and suppressing of Na⁺ also argued by other researchers [37, 38]. In case of salt stressed conditions, the excess amount of toxic Na having osmotic effect as well as oxidative damage of maize causing stunted growth and development. Similar findings were also reported by some other researchers [26, 39-43].

A similar trend as observed in case of K:Na ratio as observed for K concentration under non-saline conditions but in the saline conditions, K:Na ratio and K concentration decreased as a result of higher concentration of Na under saline condition. Application of NH₄-N increased K: Na ratio in FH-949 while minimum K: Na ratio was observed in Pak-Afgoee under salt stressed conditions (Fig. 5). The application of NH₄-N increased the K:Na ratio and reduced

Figure 3. Effect of NO₃-N and NH₄-N on A) fresh biomass (g) B) dry biomass (g) of maize hybrids

Figure 4. Effect of NO₃-N and NH₄-N on A) sodium concentration B) potassium concentration of maize hybrids
the Na concentration as compared to NO₃-N form. Similar observation was also observed by researchers [41, 42] they observed that variable response of K: Na ratio of different fertilizers applications in maize crop under saline exist due to antagonistic effect of K and Na. The application of N in the form of NH₄-N fertilizers increased the K and K: Na ratio which was also reported by other researchers [43-45] in case of maize crop.

Leaf NH₄ and NO₃ concentration

The NO₃ concentration increased through Nitrate-N application while application of NH₄-N increased NH₄ contents in non-saline and saline conditions. The highest NO₃ (455.67%) and NH₄ concentration (56.66%) was observed in FH-949 through the N sources application respectively while minimum NO₃ (319.33 %) and NH₄ concentration (23.33%) was observed in Pak-Afgoee under salt stressed conditions (Fig. 6). Comparing the genotypic performance, FH-949 uptake maximum NO₃ and NH₄ concentration followed by FH-922 while minimum NO₃ and NH₄ concentration was observed in Pak-Afgoee maize hybrids.

Nitrate form of nutrition is not so much effective as compared to NH₄ and mixing of NO₃ and NH₄ form of fertilizer under saline conditions while comparing the individual application NH₄-N form is most beneficial for maize crop [46, 47] also reported similar arguments while working on maize under normal and salt application. Similar findings were also reported by [25, 48, 49].

![Figure 5. Effect of NO₃-N and NH₄-N on maize hybrids potassium to sodium ratio](image)

![Figure 6. Effect of NO₃-N and NH₄-Non A) NH₄ concentration B) NO₃ concentration of maize hybrids](image)
Conclusion
In Current study, it was observed that NH$_4^+$-N increased the maize hybrids growth in the term of fresh and dry biomass, plant height, leaf area, crude protein, K concentration and K: Na ratio. Furthermore, salt stress either without application of any N source adversely affected the growth of forage maize. The maize plants fertilized with nitrogen application as NH$_4$ form produced significantly higher forage yields as it has a key role in acidification of root zone which reduced the alkaline conditions and increased the nutrient availability. Comparing the genotypic performance of maize hybrids, FH-949 proved to be the best genotype for fodder production. The adaptation of such approaches in future under saline conditions are helpful for getting good forage yield in saline agriculture especially in calcareous and arid and semi-arid regions.

Authors’ contributions
Conceived and designed the experiments: M Ibrahim & M Jan, Performed the experiments: MM Maqbool & B Tariq, Analyzed the data: M Nadeem & A Rauf, Contributed reagents/ materials/ analysis tools and wrote the paper: AN Abbas.

Acknowledgement
The author wish to thanks Higher Education Commission (HEC) Islamabad, Pakistan for the provisions of funds from HEC funded SRGP Project.

References
1. Irshad M, Yamamoto S, Eneji AE, Endo T & Honna T (2002). Urea and manure effect on growth and mineral contents of under saline conditions. J Plant Nutr 25(1): 189-200.
2. Barbary SM (2017). On- farm soil management practices for improving soil properties and productivity of rice and wheat under salt affected soil at North Delta, Egypt. J Soil Sci 57(4): 445-453.
3. FAO (2010). FAO Land and plant nutrition management service. http://www.fao.org.
4. Qadir M & Oster J (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Tot Environ 323: 1-19.
5. Alla MMN & Hassan NM (2020). Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS homeostasis. Acta Physiol Planta 42(6): 1-10.
6. GOP (Govt. of Pakistan) (2016). Pakistan Bureau of statistics. Natural Resources Division, Pakistan Agricultural Research Council, Islamabad.
7. Ibrahim M, Ayub M, Tanveer A & Yaseen M (2012). Forage quality of maize and legumes asmonocultures and mixtures at different seed ratios. J Anim Plant Sci 22(4): 987-992.
8. Ibrahim M, Tahir M, Noorka IR, Maqbool M, Hussain M, Bashir SMA, Qaisrani TB, Safde E, Lauriault LM (2016). Effect of seed properties on growth and forage yield of maize sown alone and in mixture with three legumes. Inter J Agric Appl Sci 8(1).
9. Ayub M, Nadeem MA, Sharar MS & Mahmood N (2002). Response of maize (Zea mays L.) fodder to different levels of nitrogen and phosphorus. Asian J Plant Sci 1(4): 352-354.
10. Iptas S & Acar AA (2006). Effects of hybrid and row spacing on maize forage yield and quality. Plant Soil Environ 52(11): 515-522.
11. Ullah MA, Anwar M & Rana S (2010). Effect of nitrogen fertilization and harvesting intervals on the yield and forage quality of elephant grass (Pennisetum purpureum) under mesic climate of pothowar plateau. Pak J Agric Sci 47: 231-234.
12. Arif M, Jan MT, Khan NU, Akbar HA, Khan SA, Khan MJ & Iqbal A (2010). Impact of plant populations and nitrogen levels on maize. Pak J Bot 42(6): 3907-3913.
13. Cheema MA, Farhad W, Saleem MF, Khan HZ, Munir A, Wahid MA & Hammad HM (2010). Nitrogen management strategies for sustainable maize production. Crop Environ 1(1): 49-52.
14. Sabir M, Hanafi MM, Malik M and Aziz T, Zia-ur-Rehman T, Ahmad M & Shahid M (2013). Differential effect of nitrogen forms on physiological parameters and micronutrient concentration in maize (Zea mays’ L.). Aust J Crop Sci 7(12): 1836.
15. Zhou Y, Zhang Y, Wang X, Cui J, Xia X, Shi K & Yu J (2011). Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plant. Biomed Biotechnol 12: 126–134.

16. Xin Z, Mei G, Shiqing L, Shengxiu L & Zongsuo L (2011). Growth, water status and photosynthesis in two maize (Zea mays L.) Cultivars as affected by supplied nitrogen form and drought stress. Pak J Bot 43: 1995–2001.

17. Lugert I, Gerendas J, Bruech H & Sattelmacher B (2001). Influence of N form on growth and water status of tomato plants. In: Horst WJ (ed) Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems. Kluwer Academic Publishers, Dordrecht.

18. US Salinity Laboratory Staff (1954). Handbook 60, US Government printing office. Washington, DC. Van Gencuhen MTh 1987 Res. Report.

19. Hu Y, Burucs Z & Schmidhalter U, (2008). Effect of foliar fertilization application on the growth and mineral nutrient content of maize seedlings under drought and salinity. Soil Sci Plant Nutri 54: 133-141.

20. Jones JRJ & Case VW (1990). Sampling, handling, and analyzing plant tissue samples. In: Soil Testing and Plant Analysis, RL Westerman (ed.). SSSA. Madison, WI, USA. pp. 389-428.

21. McGill W & Figueiredo C (1993). Total nitrogen. Soil sampling and methods of analysis. Lewis Publ, Boca Raton, FL, 201-211.

22. Steel RGD, Torrie JH & Dickey GH, (1997). Principles and Procedures of Statistics. A Bio-Matrical Approach, 3rd edition, McGraw Hill Book Co, Inc New York. pp. 400-428.

23. Hessini K, Ben Hamed K, Gandour M, Mejri M, Abdelly C & Cruz C (2013). Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium. Plant Soil 370: 163–173.

24. Hessini K, Kronzucker HJ, Abdelly C & Cruz C (2017). Drought stress obliterates the preference for ammonium as an N source in the C3 plant Spartina alterniflora. J Plant Physiol 213: 98–107.

25. Hessini K, Lachaal, Cruz MC & Soltani A (2009). Role of ammonium to limit nitrate accumulation and to increase water economy in Wild Swiss chard. J Plant Nutr 32: 821-836.

26. Ashraf M, Shahzad S, Imtiaz M, Rizwan M, Arif MS & Kausa R (2018). Nitrogen nutrition and adaptation of glycophytes to saline environment: a review. Archives Agron Soil Sci 64(9): 1181-1206.

27. Collado MB, Arturi MJ, Aulicino MB & Molina MC (2010). Identification of salt tolerance in seedling of maize (Zea mays L.) with the cell membrane stability trait. Inter Res J Plant Sci 1(5): 126-132.

28. Kaya C, Demir S, Sonmez O & Ashraf M (2013). Regulation of growth and some key physiological processes in salt-stressed maize (Zea mays L.) plants by exogenous application of asparagine and glycerol. Acta Bot Croat 72(1): 157-168.

29. Ibrahim M, Ayub M, Maqbool MM, Nadeem SM, Haq TU, Hussain S, Ali A & Lauriault LM, (2014). Forage yield components of irrigated maize–legume mixtures at varied seed ratios. Field Crops Res 169: 140–144.

30. Asim M, Zamir S, Hussain M, Hassan N, Mohi-Ud-Din MS & Nasir M (2017). Performance of sorghum cultivar in terms of forage yield and quality under varying planting patterns. Inter J Sci Eng Res 8(5): 435-436.

31. Karasu A, Oz M, Bayram G & Turgut I (2009). The effect of nitrogen levels on forage yield and some attributes in some hybrid corn (Zea mays indentata Sturt.) cultivars sown as second crop for silage corn. Afr J Agric Res 4: 166-170.

32. Ahmad W, Ahmad A, Zamir M, Afzal M, Mohsin A, Khalid F & Gillani S (2012). Qualitative and quantitative response of forage maize cultivars to sowing methods under subtropical conditions. J Ani Plant Sci 22: 318-323.

33. Verma NK, Pandey BK, Singh UP & Lodhi MD (2012). Effect of sowing dates in relation to integrated nitrogen management on growth, yield and quality of rabi maize. J Ani Plant Sci 22: 324-329.34.

34. Ashraf M & Harris PJC (2013). Photosynthesis under stressful environments: An overview. Photosynthetica 2: 163–190.
35. Ahmad M, Zahir ZA, Jamil M, Nazli F, Latif M, Akhtar MF (2014). Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions. Pak J Bot 46(1): 375-382.

36. O’Neill, BF, Zangerl AR, DeLucia EH, Casteel C, Zavala JA & Berenbaum MR (2011). Leaf temperature of soybean grown under elevated CO₂ increases Aphis glycines (Hemiptera: Aphididae) population growth. Insect Sci 00: 1–7.

37. Slama I, Abdelly C, Bouchereau A, Flowers T & Savouré A (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3): 433–447.

38. Rahneshan Z, Nasibi F & Moghadam AA (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13(1): 73–82.

39. Bybordi A (2012). Effect of different ratios of nitrate and ammonium on photosynthesis, and fatty acid composition of canola under saline conditions. Inter J Agric Crop Sci 4(10): 622–626.

40. Flowers TJ, Munns R & Colmer TD (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115: 419–431.

41. Abid M, Qayyum A, Dasti A & Wajid RR (2001). Effect of salinity and SAR of irrigation water on yield physiological growth parameters of maize and properties of soil. J Res (Sci) Bahaud din Zakarya Uni Mul Pak 12(1): 26-33.

42. Demidchik V & Maathuis FJM (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol175: 387–404.

43. Genc Y, Oldach K, Taylor J & Lyons GH (2016). Uncoupling of sodium and chloride to assist breeding for salinity in crops. New Phytol 210: 145–156.

44. Alvarez-Aragon R, Haro R, Benito B & Rodriguez-Navarro A (2016). Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium plus-potassium over accumulation. Planta 243: 97–114.

45. Ferchichi S, Hessini K, Dell’Aversana E, Amelia L, Woodrow P, Ciarmiello F, Fuggi A & Carillo P (2018). Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Funct. Plant Biol.

46. Ali A, Basra SMA, Iqbal J, Hussain S, Subhani MN, Sarwar M & Ahmad M (2012). Augmenting the salt tolerance in wheat (Triticum aestivum) through exogenously applied silicon. Afric J Biotech 11(3): 642-649.

47. Azooz MM, Ismail AM & Abou Elhamd FM (2009) Growth, lipid peroxidation antioxidant enzyme activities as a selection criterion for the salt tolerance of maize cultivars grown under salinity stress. Inter J Agric Biol 11(1): 21-26.

48. Ehlting B, Dluznieks P, Dietrich H, Selle A, Teuber M, Hänsch R, Nehls U, Polle A, Schnitzler JP, Rennenberg H & Gessler A (2007). Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremula × alba). Plant Cell Environ 30: 796–811.

49. Gok M, Dogan K & Coskan A (2006). Effects of divers organic substrate application on denitrification and soil respiration under different plant vegetation in Çukurova region. International Symposium on Water and Land Management for Sustainable Irrigated Agriculture. April 4-8, 2006, Adana-Turkey.