Sleep Duration, Vegetable Consumption and All-Cause Mortality Among Older Adults in China: A 6-Year Prospective Study

Chen Bai
Renmin University of China

Muqi Guo
Harvard University

Yao Yao
Peking University

John S. Ji
Duke Kunshan University

Danan Gu
Independent Researcher

Yi Zeng
zengyi@nsd.pku.edu.cn
Peking University

Research Article

Keywords: sleep duration, vegetables consumption, mortality, interaction, older adults, oldest-old, CLHLS

Posted Date: February 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-156196/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Sleep duration and vegetable consumption are associated with mortality at old age (termed as sleep-mortality linkage and vegetable-mortality linkage, respectively). Yet, little is known about the interplay of sleep duration and vegetable consumption on mortality.

Methods

A dataset of nationwide longitudinal survey with 13,441 participants aged 65 years or older recruited in 2008 and followed up till 2014 was used. Sleep duration was classified into five groups (≤ 5, 6, 7-8, 9, and ≥ 10 hours/day). Vegetable consumption was classified as either high frequency (eating vegetables almost daily) or low frequency. We used parametric Weibull hazard regression models to estimate associations of sleep duration and frequency of vegetable consumption with mortality, adjusting for demographics, socioeconomic factors, family/social support, health practice, and health conditions.

Results

Over the six-year study period, when only demographics were present, participants sleeping ≤ 5, 6, 9, and ≥ 10 hours/day had hazard ratios (HR) of mortality 1.18 (p<0.001), 1.14(p<0.01), 1.06 (p>0.1), and 1.30 (p<0.001), respectively, compared to those sleeping 7-8 hours/day. The HRs were attenuated to 1.08 (p<0.05), 1.08 (p<0.05), 1.09 (p<0.1), 1.18(p<0.001), respectively, when all other covariates were additionally adjusted for. High frequency of eating vegetables was associated with 22% lower risk of mortality (HR=0.78, p<0.001) compared to low frequency in the demographic model, and with 9% lower risk (HR=0.91, p<0.05) in the full model. Subpopulation and interaction analyses show that the sleeping-mortality linkage was stronger in female, urban, oldest-old (aged ≥80), and illiterate participants compared to their respective male, rural, young-old, and literate counterparts. High frequency of vegetable intakes could offset the higher mortality risk in participants with short-sleeping duration, but low frequency of eating vegetables could exacerbate mortality risk for participants with either short or long sleep duration; and except for few cases, these findings held in subpopulations.

Conclusions

Too short and too long sleep durations were associated with higher mortality risk, and infrequent vegetable consumption could exacerbate the risk, although frequent vegetable intake could offset the risk for short sleep duration. The relationship between these two lifestyles and mortality was complex and varied among subpopulations.

Background

Sleep has been recommended as a crucial component to maintain a high quality of life and good health [1]. A growing body of epidemiological studies demonstrate that both long and short sleep durations are significant predictors for all-cause mortality among older adults [2, 3, 4, 5]. There is plenty of evidence showing that the association of sleep duration with mortality might be partially modified by changes of dietary intakes [6]. Vegetable consumption has been verified as a strong predictor of both survival and healthy sleep patterns in older adults [7, 8]. For example, many studies have shown that a high frequency of vegetable consumption was linked to lower risk of mortality among older adults in Spain [9], Australia [10], and Japan [11]. Additionally, vegetable consumption also
plays an important role in affecting sleep duration. Evidence shows that adherence to a Mediterranean diet, featured
by daily consumption of vegetables and fruit, is associated with lower risk of changes in sleep duration and better
sleep quality in older adults [12]. Some studies have further shown that low intakes of vegetables were associated
with both longer and shorter sleep durations than recommended, and that lower fiber/carotenoids would lead to poor
sleep quality and even increased risks of incident insomnia [13, 14].

Although associations between sleep duration, vegetable consumption and mortality among older adults have been
well documented in Western countries, it is still unknown how the interrelationship between sleep duration and
vegetable consumption is linked with subsequent mortality risk among older adults in China, a country with the
largest aging population in the world. As for the linkage between sleep duration and mortality, in addition to several
regional studies [15, 16], there are only handful studies using national representative samples which found that both
short or long sleep durations were associated with higher mortality risk among older adults in China [17, 18].
Considering the previous findings that vegetable consumption is either associated with a lower mortality risk [19, 20]
or with good quality of sleep among older adults [21], there might be a possible interplay between vegetable intake
and sleep duration on mortality among older populations.

In the present study, we aim to explore the associations of sleep duration and vegetable consumption with mortality
by using the data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS), a nationally representative
prospective cohort study of older adults in China. We also aim to investigate the moderating effect of vegetable
consumption in association of sleep duration with mortality, to help draw proper prevention and intervention
implications on healthy aging and longevity.

Methods

Sample

We used a nationally representative sample of 13,441 respondents from the 2008 wave of the Chinese Longitudinal
Healthy Longevity Survey (CLHLS) and their follow-up waves in 2011 and 2014. The CLHLS began in 1998 focusing
on the oldest-old aged 80 years or older and was carried out in a randomly selected half of the counties/cities from
22 out of 31 provinces in Mainland China, aiming to interview all centenarians in the sampled counties/cities.
Comparable numbers of nonagenarians and octogenarians were recruited with predesignated age and sex based on
the month of birth of local centenarians in the survey. Starting from 2002, the CLHLS recruited older adults aged 65-
79 to reflect the entire older adult population of Mainland China with roughly every five individuals aged 65-79 per
four centenarians in each local county/city. The sample was further expanded to include a county in Hainan
Province in 2008, making a total of 23 provinces as its coverage. The sampled provinces covered nearly 90% of the
total population according to the 2010 census. The CLHLS has the largest sample of centenarians, nonagenarians,
and octogenarians in the contemporary world [22]. Well-trained professionals conducted face-to-face interviews with
structured questionnaires containing comprehensive measurements of demographic and socioeconomic status,
health behaviors [23]. Detailed protocols and study design of the CLHLS have been documented elsewhere [24]. The
CLHLS interviewed 16,360 respondents aged 65 or older in 2008, of which 5,597 survived to the 2014 wave, 7,844
died before the 2014 wave, and 2,919 were lost to follow-up. Those lost to follow-up were excluded in the present
study, leaving 13,441 participants in the final sample for analyses. Alternative analyses including those who were
lost to follow-up by imputing their survival information only slightly altered the results. The imputed survival status
was based on a multiple imputation method by assuming that the survival status and length of survival would be the
same if they had the same characteristics in demographics, SES, social connection, health practice, and health
conditions at baseline as the respondents who were followed-up (see Appendix Tables A2 and A3).
Measurements

Sleep Duration

Self-reported sleep duration (including both nighttime and daytime naps) was collected using the following question in the CLHLS 2008 questionnaire: “how many hours on average do you sleep every day, including daytime naps?” For some respondents who were not able to report the duration, the next-of-kin answered it as a proxy response. A validation study of CLHLS data showed that there was no substantial bias by using the next-of-kin as proxies for objective and factual questions, such as sleep duration [25]. For the purpose of capturing a possible non-linear association between sleep duration and mortality, we followed previous studies and classified sleep hours into five categories (≤5, 6, 7-8, 9, and ≥10 hours/ per day) [3,26]. We used the category of 7-8 hours as the reference category which was recommended as preferable sleep time by previous studies [3,26].

Vegetable consumption

Vegetable consumption at baseline was measured by self-reported frequency of consuming fresh vegetables via structured questionnaires, which is a common method for assessing older adult dietary habit [27]. To facilitate the interpretation of the findings, we coded those who answered having such food “every day or almost every day” or “often” as “high frequency”, and coded those who answered “occasionally” or “rarely or never” as “low frequency”. Original ordinal categories were also tested, and results are more or less similar.

Mortality risk

Our primary outcome was all-cause mortality in the study period 2008-2014 with both survival status and the length of exposure to death as dependent variables in survival analysis. Survival status was identified as whether a respondent was dead or alive in each of two follow-up waves in 2011 and 2014. Death information was collected from death certificates and confirmed by the next-of-kind. If death certificate was not available, a confirmation was obtained from local Residential Committee, Village Committee, or a community doctor. Data quality on mortality is relatively high [24].

Covariates

Our analyses controlled for a variety of confounders that were previously evidenced to link to sleep, vegetable consumption and mortality [9-11, 18]. The factors included demographic, socioeconomic status (SES), family/social supports, health practices, and health conditions. Demographic variables included chronological age, sex, and urban/rural residence (urban vs. rural). SES were measured with four indicators including education (literate with at least 1 year formal education vs. illiterate with no years of schooling), economic independence (having a retirement wage/pension and/or own earnings vs.no), primary lifetime occupation (white collar occupation vs. other) , and health care accessibility when in need (yes vs. no). Family/social supports were measured by current marital status (married vs. no), proximity to children (close vs. not close; defined as either having a co-resident child or having a child living in the same neighborhood). Health practices included smoking status (currently smoking yes vs. no), and physical exercise (currently participating regularly vs. not participating). Health conditions included physical functioning, cognitive functioning and self-reported health. Specifically, Physical functioning was measured by disability in activities of daily living (ADL). The CLHLS assessed disability in ADL according to the Katz Index, including self-reported six tasks performed by individuals in daily life: eating, dressing, bathing, indoor transfer, toileting, and incontinence [28]. We defined a participant as ADL disabled if he or she needed assistance in performing any of those six items, and not disabled otherwise. Self-reported health was evaluated by the question “In
general, would you say your health is: very good, good, fair, poor, or very poor?”. The responses were dichotomized into poor (fair/bad/very bad) health vs. good (very good/good) health. Cognitive function was assessed using a culturally adapted Chinese version of the Mini-Mental State Examination (MMSE) [25, 29]. We used the score of ≥ 24 out of total 30 as the cutoff value to distinguish normal cognition from impaired cognition [29].

Statistical analysis

We first described the baseline characteristics of the study population classified by sleep duration categories (≤ 5 hours, 6 hours, 7-8 hours, 9 hours, ≥ 10 hours). We then employed the Weibull hazard regression models to estimate the association between sleep duration, vegetable consumption and mortality [18, 30]. Five sequential models of Weibull hazard regressions were designed. Models I and II calculated hazard ratios (HR) of mortality for sleep duration and vegetable consumption, respectively, controlling for demographics. Model III pooled Models I and II with additional controls for socioeconomic factors. Model IV further controlled for family/social supports, and health practices in Model III. Model V (i.e., full model) additionally controlled for health conditions. Whether the association between sleep duration and mortality varied by vegetable consumption, was also examined by using an interaction term of sleep duration and vegetable consumption. Finally, the non-interaction models and the interaction models were further stratified by gender, age, urban-rural residence, and education level group [31]. Except for sex, education, and primary lifetime occupation, all other variables were considered as time-varying covariates given their dynamic information in the 2011 wave. The sampling weight was applied in the descriptive table only as an Appendix. For modeling, the sampling weight was not applied as it would introduce biases when the variables used for constructing the sample weight were already in analyses [32,33]. This practice is consistent with many previous studies [18,20, 21]. All analyses were performed using STATA version 15.0 (Stata Corp LLC, College Station TX, USA).

Results

Table 1 presents unweighted frequency distribution of characteristics of survey participants classified by sleep duration at the 2008 wave. About 36% of the interviewed participants used to sleep 7–8 hours per day, the highest frequency of sleep duration, followed by those with sleeping 10+ hours (nearly 30%), 6 hours (13.6%), less than 5 hours (11.8%), and 9 hours (8.4%). Nearly 88% of the participants often eating vegetable. About 60% of the participants died 6 years later after interview in 2008. The weighted distributions were mildly different and presented in Appendix (see Table A1).
| Characteristics of study participants, classified by sleep duration (unweighted) |
|---|---|---|---|---|---|---|---|
| | Total | Hours of sleep per day | \(\leq 5 \) | 6 | 7–8 | 9 | \(\geq 10 \) | p-value |
| # of participants | 13,441 | | 1,588 | 1,826 | 4,877 | 1,133 | 4,017 | NA |
| % participant across sleep hours | 100.0 | | 11.81 | 13.59 | 36.28 | 8.43 | 29.89 | NA |
| % Death in 2008–2014 | 58.4 | | 57.0 | 52.8 | 51.2 | 56.0 | 70.8 | \(< 0.001\) |
| Frequency of vegetable consumption | | | | | | | | |
| % High | 87.6 | | 83.6 | 88.5 | 89.4 | 89.8 | 86.4 | \(< 0.001\) |
| Demographics | | | | | | | | |
| Age (mean, years) | 87.0 | | 86.2 | 85.0 | 85.0 | 86.0 | 91.1 | \(< 0.001\) |
| % Aged over 80 years | 73.1 | | 72.7 | 67.1 | 65.8 | 70.8 | 85.7 | \(< 0.001\) |
| % Male | 42.9 | | 37.8 | 42.5 | 44.7 | 49.8 | 41.1 | \(< 0.001\) |
| % Urban | 36.7 | | 34.8 | 39.3 | 37.4 | 35.7 | 35.8 | 0.027 |
| Socioeconomic factors | | | | | | | | |
| % 0 years of schooling | 63.5 | | 66.9 | 59.2 | 59.6 | 60.8 | 70.0 | \(< 0.001\) |
| % Economic independence | 25.8 | | 25.1 | 31.1 | 30.7 | 26.0 | 17.8 | \(< 0.001\) |
| % Professional occupation | 9.4 | | 8.2 | 10.5 | 10.9 | 7.9 | 8.0 | \(< 0.001\) |
| % Access to healthcare | 92.4 | | 86.7 | 90.4 | 92.8 | 95.0 | 94.5 | \(< 0.001\) |
| Family/Social support | | | | | | | | |
| % Married | 32.7 | | 32.0 | 37.0 | 38.2 | 36.8 | 23.3 | \(< 0.001\) |
| % Close proximity to children | 87.3 | | 84.3 | 86.9 | 87.1 | 88.1 | 88.7 | \(< 0.001\) |
| Health practice | | | | | | | | |
| % Doing regular exercise | 27.3 | | 28.1 | 30.2 | 30.7 | 28.9 | 28.3 | \(< 0.001\) |
| % Currently smoking | 17.9 | | 16.9 | 19.4 | 18.6 | 18.8 | 16.5 | 0.016 |
| Health condition | | | | | | | | |
| % ADL disabled | 20.6 | | 21.5 | 18.4 | 14.3 | 13.0 | 31.2 | \(< 0.001\) |
| % Cognitively impaired | 44.3 | | 42.2 | 39.9 | 36.5 | 36.9 | 58.6 | \(< 0.001\) |
| % Self-reported poor health | 51.1 | | 67.9 | 59.1 | 47.9 | 44.2 | 46.6 | \(< 0.001\) |

Note: (1) NA: not applicable. (2) Age was measured in mean, whereas all other variables were measured in percentage. (3) Except for the total sample whose unweighted proportion was calculated across sleep hours, unweighted percentages for all other variables were calculated within each sleep hours. (4) Except for the variable death, all other variables were measured at baseline wave in 2008. (5) p values were based on chi-square tests (for categorical variables) except for mean age that was derived from analysis of variance.
Table 2 presents the associations of vegetable consumption and sleep duration with mortality in terms of hazard ratios (HRs) under different models controlling for different covariates. Model I shows that compared to normal sleep duration hours (7–8 hours/day), sleeping ≤ 5 hours/day, sleeping 6 hours/day, and sleeping ≥ 10 hours/day were associated with 18% (HR = 1.18, p < 0.001), 14%, and 30% (HR = 1.30, p < 0.001) higher risk of mortality, respectively when only demographics were adjusted for. Model II shows that older adults who reported a high frequency of vegetable consumption had a 22% lower risk of mortality (HR = 0.78, p < 0.001) than those reporting a low frequency when only demographic factors were controlled for. Models III and IV reveal that the associations were only slightly altered when these two variables simultaneously present in modeling in addition to controlling for socioeconomic factors, family/social support, and health practice. When health conditions were further controlled for in Model V, the associations of sleep duration and vegetable consumption with mortality were mildly or moderately attenuated, yet they were still statistically significant. For example, HRs were reduced to 1.08 (p < 0.05) and 1.18 (p < 0.001) for sleep durations of ≤ 5 hours/day and ≥ 10 hours/day, respectively; and HR was reduced 0.91 (p < 0.05) for high frequency of vegetable.
Table 2
Hazard ratios of subsequent mortality by sleep duration (day) and vegetable consumption, CLHLS, the 2008–2014 panel

Sleeping hours/day	Model I	Model II	Model III	Model IV	Model V
≤ 5 hours (7–8)	1.18***	1.15***	1.15***	1.08*	
6 hours (7–8)	1.14***	1.13**	1.12**	1.08*	
9 hours (7–8)	1.06	1.07	1.08	1.09+	
≥ 10 hours (7–8)	1.30***	1.29***	1.27***	1.18***	

Frequency of vegetable consumption					
High (low)	0.78***	0.80***	0.82***	0.91*	

Covariates					

Demographics					
Age (mean, years)	1.08***	1.08***	1.07***	1.07***	1.06***
Men(women)	1.24***	1.25***	1.34***	1.44***	1.52***
Urban (rural)	0.88***	0.89***	0.94*	0.97	0.93**

Socioeconomic factors					
1+ years of schooling (0)	0.95	0.97	1.02		
Economic independence (no)	0.71***	0.77***	0.78***		
Professional occupation (no)	1.09+	1.11*	1.07		
Access to healthcare (no)	0.90**	0.91*	0.95		

Family/Social support					
Currently married (no)	0.80***	0.81***			
Close proximity to children (no)	1.09*	1.07*			

Health practice					
Doing regular exercise (no)	0.92*	0.96			
Currently smoking (no)	0.69***	0.78***			

Health condition					
ADL disabled (no)			1.60***		
Cognitively impaired (no)			1.47***		
Self-reported good health (no)			1.16***		
N	20,774	20,774	20,774	20,774	20,774

Note: Hazard ratios were obtained from parametric survival analyses. The category of each variable in the parentheses is the reference group of that variable. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1.
Table 3

	Model I	Model II	Model III	Model IV	Model V
-log likelihood	15763.3***	15997.0***	15681.2***	15566.0***	15209.9***

Note: Hazard ratios were obtained from parametric survival analyses. The category of each variable in the parentheses is the reference group of that variable. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1.

Panel A of Table 3 presents HRs of mortality for sleep duration and frequency of vegetable when they were simultaneously included in the full model as independent variables for the total sample and for different subgroups by sex (men and women), age (young older adults and oldest-old adults), urban/rural residence, and educational level (illiterate and literate). Panels B and C of Table 3 present the interaction between sleep duration and vegetable consumption in associating with subsequent mortality risk in the same full model and subpopulations as those in Panel A. Several findings care be summarized as follows.
Table 3
Hazard ratios of mortality for the interaction between sleeping hours (day) and vegetable consumption, CLHLS, the 2008–2014 panel

	Total	Women	Men	Young old	Oldest old	Rural	Urban	Illiterate	Literate
Panel A									
≤ 5 hours and not often eating vegetables	1.08*	1.09+	1.08	0.89	1.09*	1.07	1.11	1.08+	1.07
6 hours and not often eating vegetables	1.08*	1.11*	1.05	1.03	1.08*	1.06	1.14*	1.08	1.10
7–8 hours and not often eating vegetables	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
9 hours and not often eating vegetables	1.09+	1.19**	0.96	0.79	1.11*	1.10	1.06	1.13*	0.98
≥ 10 hours and not often eating vegetables	1.18***	1.21***	1.13**	1.16	1.18***	1.15***	1.21***	1.19***	1.13*
High frequent intake of vegetables(low)	0.91**	0.96	0.82***	0.95	0.90**	0.96	0.83***	0.92*	0.85*
Panel B									
≤ 5 hours and not often eating vegetables	1.33***	1.44**	1.19	1.00	1.33**	1.33**	1.32+	1.37**	1.15
6 hours and not often eating vegetables	1.08	1.09	1.05	1.52	1.04	1.00	1.20	1.10	1.03
7–8 hours and not often eating vegetables	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
9 hours and not often eating vegetables	0.90	0.91	0.85	0.75	0.90	0.88	0.96	1.04	0.60+
≥ 10 hours and not often eating vegetables	1.33***	1.42***	1.20	1.27	1.34***	1.23*	1.46**	1.32**	1.30+
≤ 5 hours and often eating vegetables	1.02	1.10	0.89	0.94	1.02	1.02	1.02	1.03	0.95

Note: Hazard ratios were obtained from parametric survival analyses. The reference group in Panel B is "7–8 hours and not often eating vegetables", whereas the reference group in Panel C is "7–8 hours and often eating vegetables." All models controlled for all covariates in Table 1. Relative hazards for all covariates were not presented. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1.
	Total	Women	Men	Young old	Oldest old	Rural	Urban	Illiterate	Literate
6 hours and often eating vegetables	1.07	1.21*	0.89	1.05	1.08	1.07	1.07	1.09	1.00
7–8 hours and often eating vegetables	0.99	1.09	0.85+	1.07	0.98	1.01	0.95	1.01	0.90
9 hours and not eating vegetables	1.09	1.33**	0.83+	0.85	1.12	1.14	1.02	1.15+	0.93
≥ 10 hours and often eating vegetables	1.13*	1.27**	0.95	1.24	1.13*	1.16+	1.11	1.18*	0.98

Panel C

	Total	Women	Men	Young old	Oldest old	Rural	Urban	Illiterate	Literate
≤ 5 hours and not often eating vegetables	1.34***	1.32**	1.40**	0.94	1.35**	1.31**	1.38**	1.36**	1.29+
6 hours and not often eating vegetables	1.10	1.02	1.24	1.42	1.06	0.99	1.27+	1.09	1.15
7–8 hours and not often eating vegetables	1.01	0.92	1.18+	0.93	1.02	1.00	1.05	0.99	1.12
9 hours and not often eating vegetables	0.91	0.84	1.00	0.70	0.92	0.87	1.00	1.02	0.66
≥ 10 hours and not often eating vegetables	1.35***	1.30***	1.42***	1.18	1.36***	1.22*	1.53***	1.29***	1.45*
≤ 5 hours and often eating vegetables	1.03	1.01	1.06	0.88	1.03	1.00	1.07	1.02	1.06
6 hours and often eating vegetables	1.08+	1.11+	1.05	0.98	1.09*	1.06	1.13+	1.07	1.11
7–8 hours and often eating vegetables	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
9 hours and not eating vegetables	1.11*	1.22**	0.98	0.79	1.14*	1.13+	1.07	1.13*	1.04

Note: Hazard ratios were obtained from parametric survival analyses. The reference group in Panel B is "7–8 hours and not often eating vegetables", whereas the reference group in Panel C is "7–8 hours and often eating vegetables." All models controlled for all covariates in Table 1. Relative hazards for all covariates were not presented. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1.
First, the results without interaction (Panel A) indicate that the association between sleep duration and mortality was stronger in women, oldest-old adults, urban older adults, and illiterate older adults than their respective counterpart men, young older adults, rural older adults, and illiterate older adults.

Second, there is a double jeopardy for too short and too long sleep durations if they were combined with infrequent intake of vegetables. For example, among the participants with low frequency of vegetable consumption, those with \(\leq 5 \) hours/day or with \(\geq 10 \) hours/day had 33–35% more risk of mortality compared to those who used to sleep 7–8 hours/day with either frequent or infrequent intake of vegetables. The increased HRs were 1.08 for too short sleep (\(\leq 5 \) hours/day) and 1.18 for too long sleep (\(\geq 10 \) hours/day) when the interaction of these two factors was considered. Such double jeopardy was also valid to subpopulations except among young older adults.

Third, among those with short sleep duration (\(\leq 5 \) hours/day), their higher mortality risk could be diminished by frequent intake of vegetables. This is universal across subpopulations except among young older adults. However, among those with long sleep duration (\(\geq 10 \) hours/day), the higher mortality risk persisted if they used to frequently eat vegetables, although the higher mortality risk seemed slightly lower compared to the case when the interaction term was not taken into account. These findings imply that eating more vegetables could benefit more for those with short sleep hours.

Fourth, among those sleeping 7–8 hours/day, the frequency of intake of vegetables was not associated with mortality. This indicates that whether often having vegetables or not-often having vegetables had no impact on mortality risk of older adults as long as they used to sleep 7–8 hours daily. In other words, eating more vegetables or eating less vegetables would not reduce or increase mortality risk among older adults with sleeping 7–8 hours per day.

Discussion

To our knowledge, this is the first study to explore associations of sleep duration, vegetable consumption, and their interactions on all-cause mortality in a large population-based perspective cohort study of Chinese older adults. The results revealed that both short (\(\leq 5 \) hours/day) and long (\(\geq 10 \) hours/day) sleep durations were associated with increased risks of mortality, compared to 7–8 hours/day. We also found that the high frequency of vegetable consumption was associated with a substantially lower mortality risk. These associations were stronger in female, oldest-old, urban, and illiterate participants. Moreover, a significant multiplicative interaction between vegetable consumption and sleep duration on mortality risk was detected. A low frequency of vegetable consumption combined with short or long sleep hours could have a double jeopardy of mortality, although a high frequency of vegetable intake could reduce mortality risk among participants with short sleep duration. The findings are valid in
all subgroups except for young-old aged 65–79 in which both the sleeping duration and the frequency of vegetable consumptions were not statistically associated with mortality.

Our finding is consistent to the existing literature [34–39]. For instance, a meta-analysis found globally adverse effects of a long sleep duration on mortality and moderately adverse effects of a short sleep duration only on mortality in North American populations [2]. Several other studies on Chinese middle-aged or older adults in Hong Kong [37] and, Shanghai [4] found that a prolonged rather than short sleep duration was more significant associated with increased mortality even controlling for participants' health status. One study using the 2005 and 2008 waves of the CLHLS confirmed such pattern in older women and at oldest-old ages [18]. Besides, several meta-analyses provided solid evidence that higher consumption of vegetables is associated with a lower risk of all-cause mortality [40, 41]. Some empirical studies also confirmed that vegetable consumption was inversely associated with risk of all-cause mortality among the older adults in China [42, 43]. Although the interaction effect of vegetable consumption with sleep hours revealed by our study on mortality has not been empirically verified in the existing literature, it partially coincided with many prior studies on the directional associations of vegetable consumption to sleep duration or to mortality respectively [9–14, 40–43]. The existing literature has also documented that higher prevalence of mortality risk linked to sleep disorder or low vegetable consumption was more likely to be found among disadvantaged older adults, such as women, the oldest-old, the less educated and so on due to their low socioeconomic status and poor health status [44].

Several mechanisms have been suggested to explain the associations among sleep durations, vegetable consumption, and mortality. An adequate sleep duration is a basic guarantee for normal immune function. However, as for long sleep, some studies demonstrated that long sleep has been associated with fatigue, lower immune function, changing in cytokine levels, depression, underlying disease process or physiological reduction of the photoperiod, which could lead to increased mortality [4, 45]. As for short sleep, insufficient sleep hours could damage the immune system, which is more likely to cause body dysfunctions [46] and increase risk for chronic health conditions [47, 48], such as hypertension [49], cardiovascular disease [50], type 2 diabetes [51], and obesity [52]. Besides, limited sleep hours may also gradually change certain neuroendocrine systems and sensitize individuals to stress-related disorders, like depression [53]. All these adverse health outcomes are main risk factors for mortality among older adults. Vegetable is an important source of micro-nutrients with antioxidant, polyphenols, carotenoids, vitamin C, fiber, potassium, flavonoids and other and other biologically active properties [42, 43], which are proved to act synergistically through numerous biological mechanisms to prevent against a wide range of chronic diseases and premature mortality [13, 14]. For instance, vegetable intakes have been shown to reduce blood pressure, cholesterol levels, inflammation and to stimulate vascular and immune functioning [54]. Vegetables may also have a beneficial effect on modulating steroid hormone metabolism and concentrations. Additionally, antioxidants in vegetables may help to neutralize reactive oxygen species [55].

Though mechanism underlying the association between interaction effect of sleep duration and vegetable consumption on mortality risk remains unclear, some potential pathways can be suggested. First, since both an extreme sleep duration and a low frequency of vegetable consumption would increase risk of mortality respectively, it is reasonable to infer that interaction of an extreme sleep duration and a low frequency of vegetable could trigger a double jeopardy of mortality. Second, some mechanisms have been proposed of the reciprocal association between sleep disruption and vegetable intake that may subsequently lead to reverse health outcomes or even mortality. On one hand, laboratory studies suggested that disrupted sleep would change appetite-related hormones ghrelin and leptin, which may increase the preference for energy-dense foods probably leading to lower consumption of vegetable [56]. Some experimental studies also found that both short and long sleep duration may impair energy
homeostasis through unhealthy dietary patterns, causing lower vegetable intake [57, 58]. On the other hand, sleep serves as an important role in protecting the human body against the harmful impacts of free radicals caused by a high metabolic rate during waking times [55]. It was previously suggested that metabolic rate during sleeping time appears much lower than awake time, when providing an opportunity to re-generate the enzymes influenced by free radical [59]. In this regard, vegetables with antioxidant components are expected to maintain the regular sleep-wake cycles by improving mitochondrial function and energy metabolism through decreasing protein content, which may lead to a reduction in the synthesis of brain sleep inductors and sleep parameters [60].

Third, mortality protective benefits of frequent vegetable intake may mitigate mortality risk brought by short sleep duration. As noted in the literature, short sleepers are more likely to take energy- and fat-dense food [61]. Saturated fat intake is associated with risk of increased all-cause mortality and risk of mortality from atherosclerotic vascular disease [62]. Frequent vegetable intake among short sleepers may reduce their fat intake and mitigate the burden of fat on mortality risk. Some studies found that a combination of high fruit and vegetable and low saturated fat intakes is protective against mortality, while consuming either low saturated fat or high fruit and vegetables alone is not associated with lower mortality risk, compared to those having neither saturated fat nor fruit and vegetables [63]. Adherence to frequent vegetable intake or greater vegetable intake may help adjust extreme sleep durations to the recommended level [64] and improve sleep quality without changing sleep duration [65, 66]. Our study used only baseline vegetable intake and sleep duration to predict mortality risks in the six-year follow-up period. It is possible that participants’ short sleep duration prolonged to the recommended level or improved in sleep quality in the follow-up time with an adherence to frequent vegetable intake diet. Improved sleep duration in turn leads to fewer risk of death.

Another interesting finding is that young-old adults appear to be escapers from risk or double jeopardy of mortality by extreme sleep hours and/or a low frequency of vegetable intake. The lack of association between sleep duration or frequency of vegetable consumption among young-old adults is somewhat consistent with previous studies. For example, a prior Chinese study showed short sleep was not associated with mortality among young-old adults aged 65–79 [18]. It is possible that dramatic amplitude reduction and increase in frequency of delta waves, which are closely linked to sleep duration and its subsequent reverse health outcomes, are more likely among the oldest-old, rather among young-old adults [18]. Another Swedish study found that the sleep duration was not associated with 13-year mortality among adults aged 65 and over [67]. One recent meta-analysis further showed that shorter sleepers (groups with less than 7 hours/day) were not associated with mortality compared to those with 7 hours/day in 40 studies [68]. One Japanese study revealed that mortality risk was not statistically different among young-old adults aged less than 75 years between those who had a healthy diet (mainly composed of vegetables, seaweed, fish) and those who had a greasy diet (mainly composed of meat and fat) [54]. Young-old adults may still maintain some biological advantage compared to oldest-old that enable them to be immune from threats of short sleep and low frequency vegetables intake. Nevertheless, the reasons of lack of association among young-old adults are unclear, and more research is warranted to shed light on it.

This study bears the following limitations. First, it relied on self-reported sleep duration, which may have measurement errors. However, it is challenging and expensive to assess sleep duration by using actigraphy for thousands of participants from large epidemiological survey. Similarly, our assessment of vegetable consumption was mainly based on the self-reported information on frequency intake of vegetables. No detailed dietary consumption information was collected including the amount/type of vegetables, which may limit the generalizability of our results. Second, sleep quality was not modeled. There is plenty of evidence showing that sleep quality is strongly linked with mortality [18], which may moderate the linkage between mortality with sleep duration.
and dietary pattern. Thus, the present study examined very basic sleeping and dietary patterns among Chinese older adults. Tea- or coffee- drinking behaviors and their timing could affect sleep patterns. Future research should conduct standard methods to capture more informative patterns of dietary and sleeping behaviors. Third, the study has several unmeasured confounders including sleep related disorders (e.g. insomnia), sleep medication use, and other underlying diseases may also affect both sleep duration and mortality. However, prior studies found that even after controlling for insomnia, daily napping, sleep apnea, use of sleep medications and many other confounders, an extreme sleep duration was still associated with increased all-cause mortality [58]. Thus, the biases of our present study would not be substantial.

Despite limitations, our study made contribution to the existing literature. Our study extended the findings of sleep duration effect on mortality to older adults at very old groups aged over 80 years with a focus on the interaction between vegetable intakes and sleep durations, while most of relevant studies focused on younger age groups. We examined the interactions among various subpopulations and found that the effects differ across the subpopulations and more pronounced among more vulnerable populations such as women, the oldest-old, and the illiterate. These findings could have important implications for implementing person-centered intervention programs and policies among Chinese older adults for achieving healthy aging. The difference in the interactions among subpopulations also suggests a stratification of the analysis is recommended.

Conclusion

This 6-year follow-up prospective cohort study showed that associations between sleep duration and all-cause mortality among Chinese older adults turned out to be independent, net of a wide set of major covariates, and that the magnitude of the association was stronger for longer sleep durations than the shorter ones. Additionally, a significant moderating role of a high frequency of vegetable consumption in buffering negative effects of excessive sleep durations were found among women, the oldest-old, or the illiterate. These findings suggest that vegetable consumption can be a protective factor helping to alleviate the adverse effect of abnormal sleep durations on early mortality risk.

Abbreviations

ADL
Activities of daily living
CLHLS
Chinese Longitudinal Healthy Longevity Survey
MMSE
Mini-Mental State Examination

Declarations

Ethics approval and consent to participate

The CLHLS was carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans and was approved by the Research Ethics Board at Baycrest. The CLHLS study was approved by the Biomedical Ethics Committee of Peking University (IRB00001052-13074). An informed consent was obtained from each of all study participants.
Consent for publication

Not applicable

Availability of data and materials

The datasets generated and analyzed during the current study are available in the Peking University Open Research Data repository (https://opendata.pku.edu.cn/dataverse/CHADS). The datasets are also available at https://www.icpsr.umich.edu/web/NACDA/series/487.

Competing interests

DG is a Senior Editorial Board Member of BMC Geriatrics. YY is an Editorial Board Member of BMC Geriatrics. BC, MG, JSJ, and YZ have no competing interests.

Funding

The work of BC, YY and YZ was supported by grants from the National Key R&D Program of China (2018YFC2000400) and National Natural Sciences Foundation of China (71490732, 81903392, 81941021).

Authors' contributions

CB designed, drafted the literature review, discussion and some parts of methods and interpreted results. MG prepared the data, performed the analyses, and drafted parts of methods and interpreted results. CB and MG contributed to the text equally. DG was involved in research design, revised the text and supervised the data analysis. YZ, YY, JSJ was involved in revising the paper. All authors read and approved the final version of the manuscript.

References

1. Reid KJ, Martinovich Z, Finkel S, et al. Sleep: a marker of physical and mental health in the elderly. Am J Geriatric Psychiatry. 2006; 14:860–
2. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep. 2010;33(5):585-92
3. Silva AA, Mello, Renato Gorga Bandeira de, Schaan CW, Fuchs FD, Redline S, Fuchs SC. Sleep duration and mortality in the older adults: a systematic review with meta-analysis. BMJ Open. 2016;6(2):e008119.
4. Cai H, Shu X, Xiang Y, Yang G, Li H, Ji B, et al. Sleep duration and mortality: a prospective study of 113,138 middle-aged and older adults Chinese men and women. Sleep. 2015;38(4):529-36.
5. Kurina LM, PhD, McClintock MK, PhD, Chen J, PhD, Waite LJ, PhD, Thisted RA, PhD, Lauderdale DS, PhD. Sleep duration and all-cause mortality: a critical review of measurement and associations. Annals of Epidemiology. 2013;23(6):361-70.
6. Huang Y, Wahlqvist ML, Lee M. Sleep Quality in the Survival of Elderly Taiwanese: Roles for Dietary Diversity and Pyridoxine in Men and Women. Journal of the American College of Nutrition. 2013;32(6):417-27.
7. Kim S, DeRoo LA, Sandler DP. Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutrition. 2011;14(5):889-95.
8. Trichopoulou A, Kouris-Blazos A, Wahlqvist ML, Gnardellis C, Lagiou P, Polychronopoulos E, et al. Diet and overall survival in older adults people. BMJ. 1995;311(7018):1457-60.
9. Olaya B, Moneta MV, Lara E, Miret M, Martín-María N, Moreno-Agostino D, et al. Fruit and Vegetable Consumption and Potential Moderators Associated with All-Cause Mortality in a Representative Sample of Spanish Older Adults. Nutrients. 2019;11(8):1794.

10. Nguyen B, Bauman A, Gale J, Banks E, Kritharides L, Ding D. Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. The international journal of behavioral nutrition and physical activity. 2016;13(1):9.

11. Nagura J, Iso H, Watanabe Y, Maruyama K, Date C, Toyoshima H, et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. British Journal of Nutrition. 2009;102(2):285-92.

12. Campanini MZ, Guallar-Castillón P, Rodríguez-Artalejo F, Lopez-Garcia E. Mediterranean Diet and Changes in Sleep Duration and Indicators of Sleep Quality in Older Adults. Sleep. 2017;40(3).

13. Noorwali EA, Cade JE, Burley VJ, Hardie LJ. The relationship between sleep duration and fruit/vegetable intakes in UK adults: a cross-sectional study from the National Diet and Nutrition Survey. BMJ Open. 2018;8(4):e020810.

14. Noorwali E, Hardie L, Cade J. Fruit and Vegetable Consumption and Their Polyphenol Content Are Inversely Associated with Sleep Duration: Prospective Associations from the UK Women's Cohort Study. Nutrients. 2018;10(11).

15. Liu X, Liu L. Sleep habits and insomnia in a sample of elderly persons in China. Sleep. 2005;224.

16. Sun X, Ma T, Yao S, Chen Z, Xu W, Jiang X, et al. Associations of sleep quality and sleep duration with frailty and pre-fraility in an elderly population Rugao longevity and ageing study. BMC Geriatrics. 2020;20(1):9.

17. Lan T, Lan T, Wen C, Lin Y, Chuang Y. Nighttime Sleep, Chinese Afternoon Nap, and Mortality in the Elderly. Sleep. 2007;30(9):1105-10.

18. Qiu L, Sautter J, Liu Y, Gu D. Age and gender differences in linkages of sleep with subsequent mortality and health among very old Chinese. Sleep Medicine. 2011;12(10):1008-17.

19. Lo Y, Chang Y, Wahlqvist ML, Huang H, Lee M. Spending on vegetable and fruit consumption could reduce all-cause mortality among older adults. Nutrition journal. 2012;11(1):113-.

20. Shi Z, Zhang T, Byles J, Martin S, Avery JC, Taylor AW. Food Habits, Lifestyle Factors and Mortality among Oldest Old Chinese: The Chinese Longitudinal Healthy Longevity Survey (CLHLS). Nutrients. 2015;7(9):7562-79.

21. Lee Y, Chang Y, Lee Y, Shelley M, Liu C. Dietary patterns with fresh fruits and vegetables consumption and quality of sleep among older adults in mainland China. Sleep and Biological Rhythms. 2018;16(3):293-305.

22. Zeng Y, Feng Q, Gu D, Vaupel JW. Demographics, phenotypic health characteristics and genetic analysis of centenarians in China. Mechanisms of Ageing and Development. 2017;165(Pt B):86-97.

23. Gu D. General Data Quality Assessment of the CLHLS. In: Yi Z, Poston DL, Vlosky DA, Gu D, editors. Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions. Dordrecht: Springer Netherlands; 2008. p. 39–60.

24. Gu D, Feng Q, Chen H, Zeng Y (2020). Chinese Longitudinal Healthy Longevity Survey. In D Gum Dupre ME. (eds.) Encyclopedia of Gerontology and Population Aging. Cham, Switzerland: Springer.

25. Zeng Y, Poston DL, Jr, Vlosky DA, Gu D, editors. Healthy Longevity in China: Demographic, Socioeconomic, and Psychological Dimensions. Springer Netherlands; 2008.

26. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Katz ES, Kheirandish-Gozal L, Neubauer DN, O'Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware
JC, Adams Hillard PJ. National sleep foundation's sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–3.

27. Wolfe WS, Frongillo EA, Cassano PA. Evaluating Brief Measures of Fruit and Vegetable Consumption Frequency and Variety: Cognition, Interpretation, and Other Measurement Issues. Journal of the American Dietetic Association. 2001;101(3):311-8.

28. Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914.

29. An R, Liu GG. Cognitive impairment and mortality among the oldest-old Chinese. International Journal of Geriatric Psychiatry. 2016;31(12):1345-53.

30. Luo Y, Zhang Z, Gu D. Education and mortality among older adults in China. Social Science & Medicine. 2015;127:134-42.

31. Stata Bookstore: An Introduction to Survival Analysis Using Stata, Revised Third Edition. https://www.stata.com/bookstore/survival-analysis-stata-introduction/. Accessed 11 Apr 2020.

32. Solon G, Haider SJ, Wooldridge JM. What Are We Weighting For? The Journal of human resources. 2015;50(2):301-16.

33. Winship C, Radbill L. Sampling Weights and Regression Analysis. Sociological methods & research. 1994;23(2):230-57.

34. Castro-Costa É, Dewey Me, Ferri Cp, Uchôa E, Firmo Joa, Rocha Fl, et al. Association between sleep duration and all-cause mortality in old age: 9-year follow-up of the Bambuí Cohort Study, Brazil. Journal of Sleep Research. 2011;20(2):303-10.

35. Cohen-Mansfield J, Perach R. Sleep duration, nap habits, and mortality in older persons. Sleep. 2012;35(7):1003-9.

36. Mesas AE, López-García E, León-Muñoz LM, Guallar-Castillón P, Rodríguez-Artalejo F. Sleep Duration and Mortality According to Health Status in Older Adults. Journal of the American Geriatrics Society. 2010;58(10):1870-7.

37. Lee, Jenny S.W., MB, ChB, FRCP, Auyeung, T.W., MB, ChB, MPH, Leung J, MSc, Chan D, MSc, Kwok T, MD, Woo J, MD, et al. Long Sleep Duration Is Associated With Higher Mortality in Older People Independent of Frailty: A 5-Year Cohort Study. Journal of the American Medical Directors Association. 2014;15(9):649-54.

38. Ikehara S, Iso H, Date C, Kikuchi S, Watanabe Y, Wada Y, et al. Association of Sleep Duration with Mortality from Cardiovascular Disease and Other Causes for Japanese Men and Women: the JACC Study. Sleep. 2009;32(3):295-301.

39. Patel SR, Ayas NT, Malhotra MR, White DP, Schernhammer ES, Speizer FE, et al. A prospective study of sleep duration and mortality risk in women. Sleep. 2004;27(3):440-4.39.

40. Aune D, Giovannucci E, Boffetta P, Fadnes LT, Keum N, Norat T, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-A systematic review and dose-response meta-analysis of prospective studies. International journal of epidemiology. 2017;46(3):1029-56.

41. Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014;349:g4490.

42. Shi Z, Zhang T, Byes J, Martin S, Avery JC, Taylor AW. Food habits, lifestyle factors and mortality among oldest old Chinese: The Chinese longitudinal healthy longevity survey (CLHLS). Nutrients. 2015;7(9):7562-79.
43. Lo Y, Chang Y, Wahlqvist ML, Huang H, Lee M. Spending on vegetable and fruit consumption could reduce all-cause mortality among older adults. Nutrition journal. 2012;11(1):113.

44. Gu D, Sautter J, Pipkin R, Zeng Y. Sociodemographic and health correlates of sleep quality and duration among very old Chinese. Sleep. 2010;33(5):601-10.

45. Grandner MA, Drummond SPA. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Medicine Reviews. 2007;11(5):341-60.

46. Besedovsky L, Lange T, Born J. Sleep and immune function. Pügers Archiv. 2011;463(1):121-37.

47. Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR. Mortality Associated with Sleep Duration and Insomnia. Archives of General Psychiatry. 2002;59(2):131-6.

48. Magee CA, Holliday EG, Attia J, Kritharides L, Banks E. Investigation of the relationship between sleep duration, all-cause mortality, and preexisting disease. Sleep Medicine. 2013;14(7):591-6.

49. Guo J, Fei Y, Li J, Zhang L, Luo Q, Chen G. Gender- and age-specific associations between sleep duration and prevalent hypertension in middle-aged and elderly Chinese: a cross-sectional study from CHARLS 2011–2012. BMJ Open. 2016;6(9):e011770.

50. Suzuki E, Yorifuji T, Ueshima K, Takao S, Sugiyama M, Ohta T, et al. Sleep duration, sleep quality and cardiovascular disease mortality among the elderly: A population-based cohort study. Preventive Medicine. 2009;49(2):135-41.

51. Zhang S, Xie L, Yu H, Zhang W, Qian B. Association between nighttime-daytime sleep patterns and chronic diseases in Chinese elderly population: a community-based cross-sectional study. BMC Geriatrics. 2019;19(1):124-10.

52. Lee PMY, Tse LA. Association between sleep duration, bed time and obesity in community-dwelling hong kong chinese elderly: a population-based study. Sleep Medicine. 2019;64:S219-.

53. Meerlo P, Sgoifo A, Suchcki D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Medicine Reviews. 2007;2008;12(3):197-210.

54. Iimuro S, Yoshimura Y, Umegaki H, Sakurai T, Araki A, Ohashi Y, et al. Dietary pattern and mortality in Japanese elderly patients with type 2 diabetes mellitus: Does a vegetable- and fish-rich diet improve mortality? An explanatory study. Geriatrics & Gerontology International. 2012;12:59-67.

55. Anderson JW, Baird P, Davis RH et al. Health benefits of dietary fibre. Nutr Rev2009;67:188–205.

56. Noorwali E, Hardie L, Cade J. Bridging the Reciprocal Gap between Sleep and Fruit and Vegetable Consumption: A Review of the Evidence, Potential Mechanisms, Implications, and Directions for Future Work. Nutrients. 2019;11(6):1382.

57. Tan, X.; Chapman, C.D.; Cedernaes, J.; Benedict, C. Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. Sleep Med. Rev. 2018, 40, 127-134.

58. Chapman, C.D.; Nilsson, E.K.; Nilsson, V.C.; Cedernaes, J.; Rangtell, F.H.; Vogel, H.; Dickson, S.L.; Broman, J.E.; Hogenkamp, P.S.; Schioth, H.B.; et al. Acute sleep deprivation increases food purchasing in men. Obesity 2013, 21, E555–E560.

59. Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, Breu JJ. Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. American Journal of Clinical Nutrition. 2003;77(1):128-32.

60. Lana A, Struijk EA, Arias-Fernandez L, Graciani A, Mesas AE, Rodriguez-Artalejo F, et al. Habitual Meat Consumption and Changes in Sleep Duration and Quality in Older Adults. Aging and disease. 2019;10(2):267.
61. Dashti HS, Scheer FAJL, Jacques PF, et al. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv Nutr. 2015; 6(6): 648–659.

62. Kromhout D, Bloemberg B, Feskens E, Menotti A, Nissinen A. Saturated fat, vitamin C and smoking predict long-term population all-cause mortality rates in the Seven Countries Study. International journal of epidemiology. 2000;29(2):260-5.

63. Tucker KL, Hallfrisch J, Qiao N, Muller D, Andres R, Fleg JL, et al. The combination of high fruit and vegetable and low saturated fat intakes is more protective against mortality in aging men than is either alone: The Baltimore longitudinal study of aging. The Journal of nutrition. 2005;135(3):556-61.

64. Barker, M., St-Onge, M., Seixas, A., Killgore, W. D., Wills, C. C., & Grandner, M. A. (2020). Dietary Macronutrients and Sleep Duration, Sleep Disturbance, and Daytime Fatigue. Sleep, 43(Supplement_1), A55-A56.

65. St-Onge, M. P., Roberts, A., Shechter, A., & Choudhury, A. R. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. Journal of Clinical Sleep Medicine, 2016; 12(1), 19-24.

66. St-Onge, M. P., Crawford, A., & Aggarwal, B. Plant-based diets: Reducing cardiovascular risk by improving sleep quality?. Current sleep medicine reports, 2018; 4(1), 74-78.

67. Åkerstedt T, Ghilotti F, Grotta A, Bellavia A, Lagerros YT, Bellocco R. (2017). Sleep duration, mortality and the influence of age. European Journal of Epidemiology, 32(10), 881–891. doi:10.1007/s10654-017-0297-0

68. Liu TZ, Xu C, Rota M et al. Sleep duration and risk of all-cause mortality: a flexible, non-linear, meta-regression of 40 prospective cohort studies. Sleep Med Rev 2017. 32, 28–36.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AppendixR0submission.doc