Pancreatic Pathology

ROBERT T. JENSEN, M.D.

This section, entitled “Pancreatic Pathology,” includes a spectrum of topics on normal and abnormal pancreatic tissue. Specifically, two presentations deal with characterization of cholecystokinin (CCK) receptors on normal tissues. Wank has recently reported the purification, cloning, and expression of the CCKα receptor from rat pancreas, and the article by Miller deals with the biochemical characterization of the CCKα receptor, primarily in gallbladder and pancreatic membranes. The article by Logsdon et al. deals with the effects of CCK on activating immediate early gene expression in normal pancreas, and the other with pancreatic cancer, including recent results of studies in animal models of pancreatic carcinoma (by Longnecker et al.) and the relationship between pancreatic cancer and diabetes mellitus (by Pour and colleagues).

Before considering a few concluding remarks on each paper and points that arose in the questions, because a significant proportion of the papers deal with CCK receptors, Table 1 is included, which summarizes a number of points about the classification of CCK receptors that should be kept in mind in assessing these presentations. CCK and gastrin share the same COOH terminal pentapeptide, and they cause changes in biologic activity or interaction with receptors in binding experiments examining different relative affinities with a number of tissues [1,2]. It is generally agreed, from numerous pharmacological studies, that there are at least two classes of CCK/gastrin receptors [2,3]; one is a CCKα subtype, which interacts with high affinity only with CCK/gastrin analogs sulfated in the seventh position from the COOH terminus. Because gastrin, even when sulfated (gastrin-17-II) is sulfated in the sixth position from the COOH terminus, this receptor has a low affinity for all forms of gastrin [3,4]. This receptor is thought to be the physiologically important receptor mediating the action of CCK on gallbladder contraction, pancreatic secretion, and satiety [1,2,5,6]. Both selective agonists and antagonists now exist for the CCKα subtype; this subtype is found on a number of other tissues, as shown in Table 1, and in the central nervous system (CNS) is present in only a few specific locations, such as the area postrema, certain intrapenduncular nuclei, and the nucleus tractus solitarius [6,7]. Extensive studies have demonstrated that occupation of this receptor causes activation of phospholipase C with changes in cellular calcium and phosphoinositides [2,8]. It is unclear at present whether one subtype, a CCKβ/gastrin, or two subtypes, a CCKβ and a gastrin receptor, or more, mediate the high-affinity interactions with gastrin and non-sulfated CCK analogs seen in the CNS and various tissues (Table 1) [2,3]. The CCKβ receptor was characterized primarily in the CNS by binding studies, where it is widely distributed, especially in the cerebral cortex, and is distinguished by having a high affinity for CCK, gastrin, and various antagonists.

Abbreviations: CCK: cholecystokinin CNS: central nervous system ECL: enterochromaffin-like (cells)
TABLE 1
Classification of Receptors for Cholecystokinin/Gastrin-Related Peptides

Agonists:	CCK_A	CCK_B	? Gastrin
General	CCK-8 ⇒ Gastrin (1,000×)	CCK-8 > Gastrin (3–10×)	CCK = Gastrin
Selective	A71387	SNF8702	Gastrin
Antagonists	L-364,718, Lorglumide	L-365,260, PD134,308	Parietal
Location	Pancreas	Cerebral cortex	GI smooth muscle
	Gallbladder	GI smooth muscle	Pancreas
	Anterior pituitary	Cell lines AR42J and human	GI smooth muscle
	Gastric smooth muscle	Cell lines AR42J	small-cell Cushion
	LES inhibit neurons		
	Area postrema—CNS		
	Pyloric sphincter		
	Cell lines—AR42J		
Cellular Mediator	IP₃	IP₃	IP₃
	Ca²⁺	?	CA²⁺

(Modified from [1,3])

(Table 1) [6,7,9]. At present, the cellular basis of action of this receptor in the cerebral cortex is unclear, although a pharmacologically similar receptor exists on human small-cell lung cancer cells and occupation of this receptor activates phospholipase C (refer to Table 1) [10,11]. The action of gastrin was originally described on gastric acid secretion [1]; subsequent studies demonstrated that parietal cells possessed a receptor with equal high affinity for CCK and gastrin, and later studies demonstrated that the cellular basis of action of these peptides was by activating phospholipase C [12,13]. A particularly important point to remember is that CCK or its COOH terminal octapeptide (CCK-8) has high affinity for all classes of CCK receptors and, therefore, any given physiological or pharmacologic action by these peptides described in the various papers can be through any or all of these receptors [2,4,14].

The recent report by Wank and colleagues represents a particularly important advance: this study reports for the first time the cloning of the CCK_A receptor through which CCK alters pancreatic acinar cellular function. That study [5], coupled with the recent cloning of the gastrin receptor from dog parietal cells [15], unequivocally establishes that the CCK_A and gastrin receptors are distinct receptors. What remains not as yet established is whether there is a distinct CCK_B receptor or how many additional subclasses of CCK receptors mediate the actions of CCK/gastrin peptides. Within the next year, it is likely that this question will be answered. It is also likely, with the availability of cells transfected with these receptors, that the pharmaceutical companies will rapidly develop increasingly selective compounds, which should prove useful in exploring the actions of CCK in mediating various physiological processes. The cloning of this family of receptors not only allows the cell biology of the CCK receptor to be studied in detail, it also opens the possibility that disease states may be found with alterations in this receptor, such as in some neoplasias, obesity, or possibly gastric secretory or intestinal motility disorders.
The article by Miller summarizes his extensive studies, using various cross-linking techniques to characterize CCK receptors on a number of tissues as well as recent research on possible regulation of the CCK receptor by phosphorylation. These studies have provided important findings, which can now be confirmed and extended more easily because of the recent cloning of the CCK\textsubscript{A} receptor. For example, cross-linking studies suggest that gallbladder and pancreatic CCK\textsubscript{A} receptors are probably the same, even though some previous pharmacological studies\cite{16}, usually performed in different species, have raised the possibility they may be pharmacologically distinct. This question will presumably be unequivocally answered in the next year with the recent cloning of the CCK\textsubscript{A} receptor. Another important area highlighted by this study is that CCK and a number of secretagogues, which act via a similar intracellular cascade to CCK (i.e., carbachol, TPA) that cause activation of phospholipase C, mobilization of cellular calcium, or protein kinase C activation, can cause specific phosphorylation of the CCK receptor, suggesting that protein kinase C may be involved as well as a kinase analogous to the \(\beta\)-adrenergic receptor kinase. A number of studies have shown that CCK can induce desensitization\cite{17,18} and whether this phosphorylation relates to this phenomenon or contributes to the unusual biphasic dose-response curve caused by CCK with enzyme secretion will probably be answered in the future by extensions of these researches. Furthermore, the availability of possible antibodies generated against specific CCK\textsubscript{A} receptor areas will likely allow these studies of the regulation of the CCK\textsubscript{A} receptor by phosphorylation and phosphatases to be investigated in detail more easily in the future.

The article by Logsdon et al. presents their recent important studies involving non-secretory effects of CCK. It is known that long-term CCK administration causes pancreatic growth effects and adaptative changes in the pancreatic acinar cell with changes in digestive enzyme genes. These researches clearly demonstrate that CCK in normal pancreas has effects on activation of the immediate early genes c-fos, c-myc, and c-Jun, and that probably cAMP, protein kinase C, and calcium-sensitive response elements are important in mediating these effects. This paper has important implications for the action, not only of CCK/gastrin-related peptides in the pancreas, but also in other tissues. CCK-related peptides are known to affect the growth of a number of normal tissues as well as to affect growth of a number of tumors\cite{19-21}. Various different experimental protocols demonstrate that CCK can promote the development of pancreatic neoplasms such as those in animals treated long-term with trypsin inhibitors, which result in elevated CCK levels\cite{22,23}. Furthermore, administration of CCK analogs promote azaserine-induced carcinogenesis\cite{24,25}. These studies, as well as the results reported by Logsdon et al., clearly emphasize the importance of understanding the molecular basis for long-term cellular changes induced by CCK in the pancreas and other tissues. Other reports suggest that similar studies will be equally important with respect to gastrin. Recent researches show that chronic hypergastrinemia induces hyperplasia of enterochromaf-fin-like cells (ECL cells) in the gastric mucosa and, in some cases, malignant carcinoid tumors develop\cite{26,27}. Because of the widespread increased long-term use of potent gastric anti-secretory agents such as the gastric H+/K+-ATPase inhibitor omeprazole, which can cause achlorhydric and chronic hypergastrinemia\cite{26,27}, the molecular basis for the long-term growth effects of gastrin on the stomach have important clinical implications.

The article by Longnecker et al. discusses recent results in animal models of
pancreatic cancer, reviews the differences that are being found with these diverse models, and also points out the difficulty in establishing the cell of origin of the various histologic types of pancreatic tumors found in these models. It is important to remember that pancreatic cancer is the fifth most common cause of cancer death, with an average survival of only three months. Therefore, current therapeutics are clearly unsatisfactory. One of the main difficulties in studying the biology of pancreatic cancer is the relative inaccessibility of tissue until late in the course of the disease. These tumors almost all present late in their course, and, because of the inaccessibility of the gland, detection of asymptomatic early lesions almost never occurs. Therefore, in contrast to such tumors as gastric or colon adenocarcinoma, where various early stages of the tumor can be easily approached endoscopically, this procedure is not possible in pancreatic cancer and thus, only by developing adequate animal models of this tumor, will unique features of its cell biology and pathogenesis be resolved. The development of appropriate animal models of this tumor would probably prove to be extremely helpful in better understanding the cellular origin of these tumors and studying their cell biology.

REFERENCES

1. Jorpes JE, Mutt V: Secretin, cholecystokinin, pancreozymin and gastrin. Handbook of Experimental Pharmacology XXXIV:1–376, 1973
2. Jensen RT, Wank SA, Rowley WH, Sato S, Gardner JD: Interactions of cholecystokinin with pancreatic acinar cells: A well studied model of a peripheral action of CCK. Trends in Pharmacol Sci 10:418–423, 1989
3. Jensen RT, Gardner JD: Cholecystokinin receptor antagonists in vitro. In Cholecystokinin Antagonists in Gastroenterology: Basic and Clinical Studies. Edited by G Adler, C Beglinger. Heidelberg, Germany, Springer-Verlag GmbH and Co, 1991, pp 93–111
4. Huang SC, Yu D-H, Wank SA, Mantey S, Gardner JD, Jensen RT: Importance of sulfation of gastrin or cholecystokinin (CCK) in determining affinity for gastrin and CCK receptors. Peptides 10(4):785–789, 1989
5. Wank SA, Harkins R, Jensen RT, Shapira H, deWeerth AD, Slattery TS: Purification, molecular cloning and functional expression of the CCK receptor from rat pancreas. Proc Natl Acad Sci USA 89(7):3125–3129, 1992
6. Moran TH, Robinson PH, Goldrich MS, McHugh PR: Two brain cholecystokinin receptors: Implications for behavior actions. Brain Res 362:175–179, 1986
7. Hill DR, Campbell NJ, Shaw TM, Woodruff GN: Autoradiographic localization and biochemical characterization of peripheral type CCK receptors in rat CNS using highly selective nonpeptide CCK antagonists. J Neurosci 7:2967–2976, 1987
8. Matozaki T, Goke B, Tsunoda Y, Rodriguez M, Martinez J, Williams JA: Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV-180. J Biol Chem 265(11):6247–6254, 1990
9. Lotti VJ, Chang RSL: A new potent and selective non-peptide gastrin antagonist and brain CCK receptor (CCK-B) ligand: L-365,260. Eur J Pharm 162:273–280, 1989
10. Staley J, Jensen RT, Moody TW: CCK antagonists interact with CCK-B receptors on human small cell lung cancer cells. Peptides 11(5):1033–1036, 1990
11. Yoder DG, Moody TW: High affinity binding of cholecystokinin to small cell lung cancer cells. Peptides 8:103–107, 1987
12. Soll AH, Amirian DA, Thoma LP, Deedy TJ, Elashoff J: Gastrin receptors on isolated canine parietal cells. J Clin Invest 73:1434–1447, 1984
13. Chew CS, Brown MR: Release of intracellular Ca and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta 888:116–125, 1986
14. Yu D-H, Huang S-C, Wank SA, Mantey S, Gardner JD, Jensen RT: Pancreatic receptors for
cholecystokinin: Evidence for interaction with 3 receptor classes. Am J Physiol 258 (Gastrointest Liver Physiol 21):G86-G95, 1990
15. Kopin AS, Lee YM, McBride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF Jr, Beinborn M: Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA 89(8):3605-3609, 1992
16. Yanaihara C, Sugiura N, Kashimoto K, Kondo M, Kawamura M, Naruse S, Yasui A, Yanaihara N: Dissociation of pancreozymin (PZ) activity from cholecystokinin (CCK) activity by Nα-carboxyacyl CCK-7 and CCK-8 analogues with a substituted glycine. Biomed Res 6:111-115, 1985
17. Abdelmouene S, Gardner JD: Cholecystokinin-induced desensitization in dispersed acini from guinea pig pancreas. Am J Physiol 239:G272-G279, 1980
18. Menozzi D, Stark HA, Martinez J, Jensen RT, Gardner JD: Cholecystokinin-induced desensitization of pancreatic enzyme secretion is mediated by low affinity CCK receptors. Peptides 10(2):337-341, 1989
19. Lhoste EF, Longnecker DS: Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas. Cancer Res 47:3273-3277, 1987
20. Douglas BR, Woutersen RA, Jansen JGJM, DeJong AJL, Rovati LC, Lamers CBHW: Influence of cholecystokinin antagonist on the effects of cholecystokinin and bombesin on azaserine-induced lesions in the rat pancreas. Gastroenterology 96:462-469, 1989
21. Ekman L, Hansson E, Havu N: Toxicological studies on omeprazole. Scand J Gastroenterol 20(Supplement 108):53-69, 1985
22. Frucht H, Maton PN, Jensen RT: The use of omeprazole in patients with the Zollinger-Ellison syndrome. Dig Dis Sci 36(4):405-408, 1991