ON μ-SCALE INVARIANT OPERATORS

K. A. MAKAROV AND E. TSEKANOVSKII

Dedicated to the memory of M. Krein on the occasion of his one hundredth birthday anniversary

ABSTRACT. We introduce the concept of a μ-scale invariant operator with respect to a unitary transformation in a separable complex Hilbert space. We show that if a nonnegative densely defined symmetric operator is μ-scale invariant for some $\mu > 0$, then both the Friedrichs and the Krein-von Neumann extensions of this operator are also μ-scale invariant.

1. INTRODUCTION

Given a unitary operator U in a separable complex Hilbert space H and a (complex) number $\mu \in \mathbb{C} \setminus \{0\}$, we introduce the concept of a μ-scale invariant operator T (with respect to the transformation U) as a (bounded) “solution” of the following equation

$$UTU^* = \mu T.$$ \hspace{1cm} (1.1)

Note, that in this case U and T commute up to a factor, that is,

$$UT = \mu TU,$$ \hspace{1cm} (1.2)

and then necessarily $|\mu| = 1$ (see [6]), provided that T is a bounded operator and $\text{spec}(UT) \neq \{0\}$.

The search for pairs of unitaries U and T satisfying the canonical (Heisenberg) commutation relations (1.2) with $|\mu| = 1$ leads to realizations of the rotation algebra, the C^*-algebra generated by the monomials T^mU^n, $m, n \in \mathbb{Z}$ (see, e.g., [15]). The irreducible representations of this algebra play a crucial role in the study of the Hofstadter type models. For instance, the Hofstadter Hamiltonian $H = T + T^* + U + U^*$ typically has fractal spectrum that is rather sensitive to the algebraic properties of the “magnetic flux” θ, $\mu = e^{i\theta}$, which is captured in the beauty of the famous Hofstadter butterfly (see [15] and references therein). We also note that self-adjoint realizations U and T of commutation relations (1.1) or (1.2) for $|\mu| = 1$ are obtained in [6] while the case of contractive (not necessarily self-adjoint) solutions T, and unitary U, has been discussed in [14].

To incorporate the case of $|\mu| \neq 1$, where unbounded solutions to (1.1) are of necessity considered, we extend the concept of the μ-scale invariance to the case of unbounded operators T by the requirement that $\text{Dom}(T)$ is invariant, that is,

$$U^*\text{Dom}(T) \subseteq \text{Dom}(T),$$ \hspace{1cm} (1.3)

and

$$UTU^* f = \mu T f \quad \text{for all } f \in \text{Dom}(T).$$ \hspace{1cm} (1.4)

1991 Mathematics Subject Classification. Primary: 47A63, 47B25, Secondary: 47B65.

Key words and phrases. Canonical commutation relations, nonnegative self-adjoint extensions, unitary representations.
In this short Note we restrict ourselves to the case \(\mu > 0 \) and focus on the study of symmetric as well as self-adjoint unbounded solutions \(T \) of (1.3) and (1.4). Our main result (see Theorem 2.2) states that if a densely defined nonnegative (symmetric) operator \(T \) is \(\mu \)-scale invariant with respect to a unitary transformation \(U \), then the two classical extremal nonnegative self-adjoint extensions, the Friedrichs and the Krein-von Neumann extensions, are \(\mu \)-scale invariant as well.

The paper is organized as follows: In Section 2, based on a result by Ando and Nishio [3], we provide the proof of Theorem 2.2. Section 3 is devoted to further generalizations and a discussion of the \(\mu \)-scale invariance concept from the standpoint of group representation theory.

2. MAIN RESULT

Recall that if \(\dot{A} \) is a densely defined (closed) nonnegative operator, then the set of all nonnegative self-adjoint extensions of \(\dot{A} \) has the minimal element \(A_K \), the Krein-von Neumann extension (different authors refer to the minimal extension \(A_K \) by using different names, see, e.g., [2], [3], [4], [5]), and the maximal one \(A_F \), the Friedrichs extension. This means, in particular, that for any nonnegative self-adjoint extension \(\tilde{A} \) of \(\dot{A} \) the following operator inequality holds [11]

\[
(A_F + \lambda I)^{-1} \leq (\tilde{A} + \lambda I)^{-1} \leq (A_K + \lambda I)^{-1},
\]

for all \(\lambda > 0 \).

The following result characterizes the Friedrichs and the Krein-von Neumann extensions a form convenient for our considerations.

Theorem 2.1 ([1], [3]). Let \(\dot{A} \) be a (closed) densely defined nonnegative symmetric operator. Denote by \(a \) the closure\(^1\) of the quadratic form

\[
\dot{a}[f] = (\dot{A}f, f), \quad \text{Dom}(\dot{a}) = \text{Dom}(\dot{A}).
\]

Then,

(i) the Friedrichs extension \(A_F \) of \(\dot{A} \) coincides with the restriction of the adjoint operator \(\dot{A}^* \) on the domain

\[
\text{Dom}(A_F) = \text{Dom}(\dot{A}^*) \cap \text{Dom}(\dot{a});
\]

(ii) the Krein-von Neumann extension \(A_K \) of \(\dot{A} \) coincides with the restriction of the adjoint operator \(\dot{A}^* \) on the domain \(\text{Dom}(A_K) \) which consists of the set of elements \(f \) for which there exists a sequence \(\{f_n\}_{n \in \mathbb{N}}, f_n \in \text{Dom}(\dot{A}) \), such that

\[
\lim_{n,m \to \infty} \dot{a}[f_n - f_m] = 0 \quad \text{and} \quad \lim_{n \to \infty} \dot{A}f_n = \dot{A}^* f.
\]

We now state the main result of this Note:

Theorem 2.2. Assume that \(\mu > 0 \) and that a densely defined (closed) nonnegative symmetric operator \(\dot{A} \) is \(\mu \)-scale invariant with respect to a unitary transformation \(U \); that is,

\[
U^* \text{Dom}(\dot{A}) \subseteq \text{Dom}(\dot{A})
\]

and that

\[
U \dot{A} U^* = \mu \dot{A} \quad \text{on Dom}(\dot{A}).
\]

Then

(i) the adjoint operator \(\dot{A}^* \),
(ii) the Friedrichs extension A_F of \dot{A}, and
(iii) the Krein-von Neumann extension A_K of \dot{A}
are μ-scale invariant with respect to the unitary transformation U.

Proof. Clearly, it is sufficient to prove (i) followed by the proof of the fact that the domains of both the Friedrichs and the Krein-von Neumann extensions are invariant with respect to the operator U^*.

(i). Given $f \in \text{Dom}(\dot{A})$ and $h \in \text{Dom}(\dot{A}^*)$, one obtains
\[
(\dot{A}f, U^*h) = (U\dot{A}f, h) = (U\dot{A}U^*Uf, h) = (\mu\dot{A}Uf, h) = (f, U^*\mu\dot{A}^*h),
\]
thereby proving the inclusion $U^*\text{Dom}(\dot{A}^*) \subseteq \text{Dom}(\dot{A}^*)$ as well as the equality
\[
(2.2)\quad \dot{A}^*U^*h = \mu U^*\dot{A}^*h, \quad h \in \text{Dom}(\dot{A}).
\]
The proof of (i) is complete.

(ii). First we show that the domain of the closure of the quadratic form (2.1) is invariant with respect to the operator U^*.

Recall that $f \in \text{Dom}[a]$ if and only if there exists a sequence $\{f_n\}_{n \in \mathbb{N}}, f_n \in \text{Dom}(\dot{A})$, such that
\[
\lim_{n,m \to \infty} a[f_n - f_m] = 0 \quad \text{and} \quad \lim_{n \to \infty} f_n = f.
\]
Take an $f \in \text{Dom}[a]$ and a sequence $\{f_n\}_{n \in \mathbb{N}}$ satisfying the properties above. Clearly
\[
(2.3)\quad \lim_{n \to \infty} U^*f_n = U^*f,
\]
with $U^*f_n \in \text{Dom}(\dot{A})$. Moreover,
\[
a[U^*f_n - U^*f_m] = (\dot{A}U^*f_n - U^*f_m) = (\dot{A}A^*U^*)U(f_n - f_m) = (\mu \dot{A}U^*)U(f_n - f_m) = a[f_n - f_m].
\]
Since $\lim_{n,m \to \infty} a[f_n - f_m] = 0$, one proves that
\[
\lim_{n,m \to \infty} a[U^*f_n - U^*f_m] = 0
\]
which together with (2.3) implies that $U^*f \in \text{Dom}[a]$. Hence, we have proven the inclusion
\[
(2.4)\quad U^*\text{Dom}[a] \subseteq \text{Dom}[a].
\]

Next, by (i) the domain $\text{Dom}(\dot{A}^*)$ is invariant with respect to U^*. This combined with (2.4) and Theorem 2.1(i) proves that the domain of the Friedrichs extension A_F of \dot{A} is invariant with respect to the operator U^*. Therefore, A_F is μ-scale invariant as a restriction of the μ-scale invariant operator \dot{A}^* onto a U^*-invariant domain.

(iii). Analogously, in order to show that the Krein-von Neumann extension A_K is μ-scale invariant with respect to the transformation U, it is sufficient to show that its domain is invariant with respect to U^*.

Take $f \in \text{Dom}(A_K)$. By Theorem 2.1(ii) there exists an a-Cauchy sequence $\{f_n\}_{n \in \mathbb{N}}$, $f_n \in \text{Dom}(\dot{A})$, such that
\[
(2.5)\quad \lim_{n \to \infty} \dot{A}f_n = \dot{A}^*f.
\]
\footnote{in the “metric” generated by the form a}
From (2.2) it follows that
\[(2.6) \quad \hat{A}U^* f_n = \hat{A}^* U^* f_n = \mu U^* \hat{A} f_n = \mu U^* \hat{A} f_n \quad \text{and} \quad \hat{A}^* U^* f = \mu U^* \hat{A}^* f.\]
Combining (2.5) and (2.6), for the \(T\) is the maximal operator on the Sobolev space there-fore, the Krein-von Neumann extension \(S\) is the maximal operator on the Sobolev space extension of a semi-bounded relation, applying Theorem 2.2(ii) proves the existence of \(\mu\)-scale invariant operators can immediately be extended to the case of linear relations: we say that a linear relation \(S\) is \(\mu\)-scale invariant with respect to the unitary transformation \(U\) if its domain is \(U^*\)-invariant and \((f, g) \in S\) implies \((U^* f, \mu U^* g) \in S\).

Remark 2.3. We remark that the concept of \(\mu\)-scale invariant operators can immediately be extended to the case of linear relations: we say that a linear relation \(S\) is \(\mu\)-scale invariant with respect to the unitary transformation \(U\) if its domain is \(U^*\)-invariant and \((f, g) \in S\) implies \((U^* f, \mu U^* g) \in S\).

Recall that the Friedrichs extension \(S_F\) of a semi-bounded from below relation \(S\) is defined as the restriction of \(S^*\) onto the domain of the closure of the quadratic form associated with the operator part of \(S\) and the Krein-von Neumann extension \(S_K\) is defined by
\[(2.7) \quad S_K = ((S^{-1})_F)^{-1},\]
provided that \(S\) is, in addition, nonnegative (no care should be taken about inverses, for they always exist).

Assume that a nonnegative linear relation \(S\) is \(\mu\)-scale invariant. Almost literally repeating the arguments of the proof of Theorem 2.2(i) one concludes that the adjoint relation \(S^*\) is also \(\mu\)-scale invariant. Given the above characterization of the Friedrichs extension of a semi-bounded relation, applying Theorem 2.2(ii) proves the \(\mu\)-scale invariance of \(S_F\). As it follows from (2.7), a simple observation that \(S\) is \(\mu\)-scale invariant if and only if the inverse relation \(S^{-1}\) is \(\mu^{-1}\)-scale invariant ensures that the Krein-von Neumann extension \(S_K\) of \(S\) is also \(\mu\)-scale invariant. Thus, Part (iii) of Theorem 2.2 is a direct consequence of Parts (i) and (ii) up to the representation theorem that states that Krein-von Neumann extension \(A_K\) of a nonnegative densely defined symmetric operator \(\hat{A}\) can be “evaluated” as
\[(2.8) \quad A_K = \left((\hat{A}^{-1} F)^{-1},\right]\]
with \(\hat{A}^{-1}\) being understood as a linear relation (for the proof of (2.8) we refer to [8], also see [3] and [4]).

Remark 2.4. Note without proof that if the symmetric nonnegative operator \(\hat{A}\) referred to in Theorem 2.2 has deficiency indices \((1, 1)\) the Friedrichs and the Krein-von Neumann extensions of \(\hat{A}\) are the only ones \(\mu\)-scale invariant self-adjoint extensions.

The following simple example illustrates the statement of Theorem 2.2

Example 2.5. Assume that \(\mu > 0, \mu \neq 1\), and that \(U\) is the unitary scaling transformation on the Hilbert space \(\mathcal{H} = L^2(0, \infty)\) defined by
\[(U f)(x) = \mu^{-\frac{1}{2}} f(\mu^{-\frac{1}{2}} x), \quad f \in L^2(0, \infty).\]
\(T\) is the maximal operator on the Sobolev space \(H^{2,2}(0, \infty)\) defined by
\[T = -\frac{d^2}{dx^2}, \quad \text{Dom}(T) = H^{2,2}(0, \infty).\]
Let A_F and A_K be the restrictions of T onto the domains
\[
\text{Dom}(A_F) = \{ f \in \text{Dom}(T) \mid f(0) = 0 \}
\]
and
\[
\text{Dom}(A_K) = \{ f \in \text{Dom}(T) \mid f'(0) = 0 \}
\]
respectively. Denote by \dot{A} the restriction of T onto the domain
\[
\text{Dom}(\dot{A}) = \text{Dom}(A_F) \cap \text{Dom}(A_K).
\]
It is well known that \dot{A} is a closed nonnegative symmetric operator with deficiency indices $(1, 1)$ and that A_F and A_K are the Friedrichs and the Krein-von Neumann extensions of \dot{A} respectively and $T = \dot{A}^*$. A straightforward computation shows that all the operators \dot{A}, A_F, A_K and T are μ-scale invariant with respect to the transformation U. Moreover, note that any other nonnegative self-adjoint extensions of \dot{A} different from the extremal ones, A_F and A_K, can be obtained by the restriction of T onto the domain (see, e.g., [13], also see [9] and [10])
\[
\text{Dom}(\tilde{A}_s) = \{ f \in \text{Dom}(T) \mid f'(0) = sf(0) \}, \quad \text{for some } s > 0,
\]
which is obviously not U^*-invariant. Thus, the operator \dot{A} admits the only two μ-scale invariant extensions, the Friedrichs and the Krein-von Neumann extensions (cf. Remark 2.4).

3. Concluding remarks

We remark that any μ-scale invariant operator T with respect to a unitary transformation U is also μ^n-scale invariant with respect to the (unitary) transformations U^n, $n = 0, 1, \ldots$. That is,
\[
U^nTU^{-n} = \mu^nT, \quad \text{for all } n \in \{0\} \cup \mathbb{N}.
\]
If, in addition,
\[
U^*\text{Dom}(T) = \text{Dom}(T),
\]
then relation (3.1) holds for all $n \in \mathbb{Z}$. Thus, we naturally arrive at a slightly more general concept of scale invariance with respect to a one-parameter unitary representation of the additive group \mathbb{G} ($\mathbb{G} = \mathbb{N}$ or $\mathbb{G} = \mathbb{R}$): *Given a character μ, $\mu : \mathbb{G} \to \mathbb{C}$, of the group \mathbb{G} and its one-parameter unitary representation $g \mapsto U_g$, a densely defined operator T is said to be μ-character-scale invariant with respect to the representation U_g if*
\[
U_g\text{Dom}(T) = \text{Dom}(T), \quad g \in \mathbb{G},
\]
and
\[
U_gTU_{-g} = \mu(g)T, \quad \text{on } \text{Dom}(T), \quad g \in \mathbb{G}.
\]
Clearly, an appropriate version of Theorem 2.2 can almost literally be restated in this more general setting. It is also worth mentioning that upon introducing the representation $V_g = \mu^gU_g$, $g \in \mathbb{G}$, one can rewrite (3.2) in the form
\[
U_gT = TV_g, \quad g \in \mathbb{G},
\]
and we refer the interested reader to the papers [12] and [14] where commutation relations (3.3) for general groups \mathbb{G} with not necessarily unitary representations U_g and V_g, $g \in \mathbb{G}$, of the group \mathbb{G} are discussed.

Note that an infinitesimal analog of the commutation relation in (3.2) is also available provided that $\mathbb{G} = \mathbb{R}$ and the unitary representation U_t, $t \in \mathbb{R}$, is strongly continuous. In
this case infinitesimal version of (3.2) can heuristically be written down as the following commutation relation

\[(3.4) \quad [B, T] = i\hbar T,\]

with \([\cdot, \cdot]\) the usual commutator and

\[(3.5) \quad \hbar = -\log \mu,\]

the structure constant of the simplest noncommutative two-dimesional Lie algebra (3.4) and (3.5). Here \(B\) is the infinitesimal generator of the group \(U_t\), so that \(U_t = e^{iBT}\), \(t \in \mathbb{R}\). And in conclusion, note that Theorem 2.2 paves the way for realizations of the Lie algebra by self-adjoint operators, provided that some “trial” symmetric realizations of the Lie algebra are available.

Acknowledgments. We would like to thank Steve Clark and Fritz Gesztesy for useful discussions.

REFERENCES

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space. Dover, New York, 1993.

[2] S. Alonso and B. Simon, The Birman–Krein–Vishik theory of self-adjoint extensions of semibounded operators. J. Operator Theory, 4 (1980), 251–270.

[3] T. Ando, K. Nishio, Positive Selfadjoint Extensions of Positive Symmetric Operators. Tôhoku Math. Journ., 22 (1970), 65–75.

[4] Yu. Arlinskii and E. Tsekanovskii, The von Neumann problem for nonnegative symmetric operators. Int. Eq. Oper. Theory, 51 (2005), 319–356.

[5] M. Sh. Birman, On the theory of self-adjoint extensions of positive definite operators. (Russian) Mat. Sb. N. S., 38(80) (1956), 431–450.

[6] J. A. Brooke, P. Busch, D. B. Pearson, Commutativity up to a factor of bounded operators in complex Hilbert space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458 (2002), no. 2017, 109–118.

[7] E. A. Coddington, Extension theory of formally normal and symmetric subspaces. Mem. AMS 134, 1973.

[8] E. A. Coddington, H. S. V. de Snoo, Positive selfadjoint extensions of positive symmetric subspaces. Math. Z., 159 (1978), 203–214.

[9] V. A. Derkach, M. M. Malamud and E. R. Tsekanovskii, Sectorial extension of a positive operator and the characteristic function. Soviet Math. Dokl. , 37 1 (1988), 106–110.

[10] V. A. Derkach, M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. , 95 (1991), 1–95.

[11] M. G. Krein, The Theory of Self-Adjoint Extensions of Semibounded Hermitian Transformations and its Applications. (Russian) I. Mat. Sb., 20 (1947), 431-495.

[12] M. Livsic and A. Jantsevich, Theory of operator colligations in Hilbert spaces. (Russian) Kharkov University Press, 1971.

[13] M. A. Naimark, Linear differential operators. Part I: Elementary theory of linear differential operators. Frederick Ungar Publishing Co., New York, 1967.

[14] A. P. Filimonov and E. R. Tsekanovskii, Automorphically invariant operator colligations and factorization of their characteristic operator-valued functions. (Russian) Funktsional. Anal. i Prilozhen., 21, 4 (1987), 94–95.

[15] Ch. Kreft and R. Seiler, Models of the Hofstadter-type. J. Math. Phys. 37 (1996), no. 10, 5207–5243.