Comparison between two portal laparoscopy and open surgery for ovariectomy in dogs

Elnaz Shariati1, Jalal Bakhtiari1*, Alireza Khalaj2, Amir Niasari-Naslaji1

1 Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; 2 Department of Surgery, Faculty of Medicine, Shahed University, Tehran, Iran.

Abstract

Ovariectomy (OVE) is a routine surgical procedure for neutering in small animal practice. Laparoscopy is a new surgical technique which contains advantages such as less trauma, smaller incision and excellent visualization than traditional open surgery. The present study was conducted to examine the feasibility and safety of laparoscopic procedure through two portal comparing with the conventional open surgery for OVE in healthy female bitches (n=16).

Dogs were divided in two equal groups. In laparoscopic group, two 5 and 10 mm portals were inserted; First in the umbilicus for introducing the camera and the second, caudal to the umbilicus for inserting the forceps. Laparoscopic procedure involved grasping and tacking the ovary to the abdominal wall, followed by electrocautery, resection and removal of the ovary. In open surgery, routine OVE was conducted through an incision from umbilicus to caudal midline.

Mean operative time, total length of scar, blood loss, clinical and blood parameters and all intra and post-operative complications were recorded in both groups. Mean operative time, total length of scar, blood loss and post-operative adhesions were significantly less in laparoscopic group compared with open surgery.

In conclusion, laparoscopic OVE is an acceptable procedure due to more advantages in comparison with traditional OVE.

© 2014 Urmia University. All rights reserved.

Keywords:
Dog
Laparoscopy
Ovariectomy
Two Portal
Introduction

Sterilization, also called neutering, is a surgical technique used to control sexual behavior and conception aiming at the prevention of ureter diseases such as pyometra and mammary gland tumor in small animals. This is achieved by either ovariohysterectomy (OHE) or ovariection (OVE).1 OVE has been accepted as a standard procedure and an alternative to OHE in Europe.2 Many advantages including reduced surgical time, smaller incision and fewer traumas have been reported for OVE.3 Laparoscopic approach for OVE has several advantages including prompt recovery, shorter anesthetic period, fewer trauma, less hemorrhage, and excellent visualization than traditional open surgery.4 The first laparoscopic sterilization of dogs was reported in 1985 by Wildt and Leowier.5 Since then laparoscopic surgery has become wide-spread as an alternative to open surgery due to its less invasiveness and better visualization.6,7 The objective of this study was to examine the feasibility and safety of two portal laparoscopic OVE and to compare this technique with the conventional OVE via midline open surgery in dog.

Materials and Methods

The present study was approved by the Animal Ethics Committee of the Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. The experiment was conducted at Small Animal Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Tehran on 16 adult female mixed breed dogs, weighting 14.0 ± 4.0 kg, with 12 to 16 months age. The dogs were divided into two equal groups, randomly. Food was restricted for 8 hr prior to surgery, and cefazolin (20 mg kg⁻¹, IV; Jaber Ebne Hayyan, Tehran, Iran) was administrated as a preoperative prophylaxis at the time of inducing anesthesia. Dogs were sedated with acepromazine (0.05 mg kg⁻¹, IM; Alfasan, Woerden, The Netherlands) and ketamine (10 mg kg⁻¹, IM; Alfasan, Woerden, The Netherlands) and general anesthesia was induced by combination of ketamine (5 mg kg⁻¹, IV) and diazepam (0.2 mg kg⁻¹, IV; Chemi Darou Industrial Co., Tehran, Iran) and maintained under inhalation of iso-flurane (Baxter, Deerfield, USA) in 1.5% oxygen through anesthetic machine.

Laparoscopic ovariection. Dogs were placed in dorsal recumbency and reverse Trendelenburg position and the area from xiphoid to pubis was prepared under aseptic conditions. For laparoscopy, a 10 mm incision was made 1 to 2 cm caudal to umbilicus through the skin and subcutaneous tissue down to the linea alba. The linea alba was cut precisely for inserting the trocar into the abdomen under direct vision. Then the primary trocar was inserted, while ventral abdominal wall was pulled up to avoid trauma to visceral organs. The surgical time was started at this point. Then pneumoperitoneum was established by connecting the trocar to the high flow insufflators (Richard Wolf, Knittlingen, Germany) using carbon dioxide until the pressure of 12 mm Hg was achieved. The 10 mm 0 degree rigid camera (Karl Storz, Tuttingen, Germany) connected to a light source was inserted into the abdomen and a 360 degree scan was performed to check for any existing abnormalities. A 5 mm skin incision was made midway between the umbilicus and pubis and the second 5 mm portal was inserted under direct visualization to prevent injury to abdominal organs. Then, the dogs were tilted 30 degrees either to the right or left lateral recumbency to perform left or right OVE, respectively.

For OVE, the left or right kidney was identified as a land mark. Then proper ligament of the ovary was grasped by the 5 mm grasping forceps and then elevated and tucked to the body wall by passing a 5 cm, 3/8 circle curved cutting needle and sutured percutaneously through the body wall (Fig. 1). Then, the 5 mm bipolar electrocautery forceps was introduced via the caudal portal and the ovarian pedicle, proper ligament and mesovarium were cauterized (Fig. 2). Following ensuring hemostasis of the ovarian pedicle, the 5 mm laparoscopic scissors was inserted into abdomen from the caudal portal to resect the ovary. At the end of the procedure, the grasping forceps holding the resected ovary, was brought directly towards the camera while the camera was simultaneously pulled backwards until the forceps entered inside the cannula and was observed from the outside. Then, the cannula was pulled out and the ovary was removed from the abdomen. The cannula was re-inserted and the patient was tilted 30° to the other side to perform OVE on the contralateral side. The same procedure was repeated. After removing the ovaries, the abdomen was scanned for ensuring hemostasis or any other complications. The portal sites were sutured in 2 simple interrupted layers using 0 polygycolic acid (Teb Keyhan, Eshtehard, Iran) for inner layers and 2/0 nylon (Teb Keyhan, Eshtehard, Iran) for skin.

Open ovariection. In the conventional open OVE, a 4 to 6 cm ventral midline skin incision was performed starting from the umbilicus and extended caudally. The ovaries were identified following either the left or right uterine horn proximally. Simple and transfixating ligatures were used both over the ovarian pedicle and at the location of proper ligament of ovary to close the uterine horn with the 0 polygycolic acid. Ovaries were resected and the pedicle was checked for hemorrhage. The uterine horn was released into the abdomen. The procedure was repeated for the second ovary and finally the abdominal incision was closed in a routine three layers manner using the 0 polygycolic acid for inner layers in simple continuous pattern and the 2/0 nylon for skin in simple interrupted pattern. The surgical time was consisted the duration between skin incision and end of closure.

Mean operative time, estimated blood loss, incision length, intra and post-operative complications were recorded
in both groups. Blood loss was estimated by the collected blood volume using suction in laparoscopy and saturated gauze sponges in open surgery. Complete blood count (CBC) and clinical signs including heart rate, respiratory rate and body temperature were also measured on days 0, 1, 3 and 7 after surgery in both groups. The surgical wounds were evaluated for any complications every day (3 to 5 days). Two weeks following the surgery, sutures were removed under general anesthesia and dorsal recumbency position, and the skin was incised at the umbilicus and the 10 mm trocar inserted. Pneumo-peritonuem was achieved and the camera inserted for evaluation of intra-abdominal adhesions in both groups.

Fig. 1. The ovary was tacked to the body wall by passing a 5 cm, 3/8 circle curved cutting needle.

Fig. 2. The ovarian pedicle, proper ligament and mesovarium was cauterized with bipolar electrocautery.

Statistical Analysis. Data with continuous nature such as operative time and length of surgical scar were analyzed using Student t-test if assumptions of parametric tests were fulfilled otherwise they were analyzed using Kruskal-Wallis test. Data with frequency nature such as heart rate and respiratory rate were analyzed using Chi-Square test in SAS (Version 8.2; SAS Institute, Carry, USA). Data were presented as mean ± SEM.

Results

All dogs in both groups were recovered uneventfully and there was no need to convert the surgeries to open in laparoscopic group. All clinical findings include heart rate, respiratory rate, body temperature and blood parameters were within normal ranges ($p > 0.05$), (Tables 1 and 2).

Table 1. Vital signs in days 0, 1, 3, and 7 after ovariectomy in laparoscopic and open surgery.

Group	Day	Body temp. ($^\circ$C)	Respiratory rate (bpm*)	Heart rate (bpm)
Laparoscopic	0	39.12 ± 0.17	26.37 ± 0.61	96.25 ± 1.94
	1	39.50 ± 0.12	28.12 ± 1.00	86.87 ± 2.21
	3	39.06 ± 0.18	28.37 ± 1.02	108.12 ± 4.14
	7	38.93 ± 0.22	29.12 ± 0.94	98.25 ± 2.03
Open surgery	0	39.50 ± 0.12	27.25 ± 1.14	100.50 ± 2.37
	1	38.80 ± 0.26	24.12 ± 1.02	94.50 ± 1.47
	3	39.00 ± 0.19	26.50 ± 0.63	90.00 ± 1.87
	7	38.62 ± 0.26	28.00 ± 1.19	94.75 ± 1.37

* bpm: breath/beat per min.

Operative times were 17.7 ± 1.2 and 36.6 ± 1.6 min in laparoscopy and conventional methods, respectively ($p < 0.05$). Blood loss was less in laparoscopy (< 2 mL) than in conventional approach (< 8 mL; $p < 0.05$). Total length of surgical scar was longer in conventional group (54.0 ± 10.0 mm) compared to laparoscopy group (17.0 ± 2.0 mm; $p < 0.05$). No intra-operative complications were occurred in both groups. Visualization of the ovarian tissue was excellent in laparoscopy. Wound complications including hernia formation, hematoma or infection did not occur in any dog in both groups. More post-operative adhesions were occurred in conventional method compared to laparoscopy, with higher incidence around the ovarian pedicle (Table 2, Figs. 3 and 4).

Table 2. Blood parameters in days 0, 1, 3, and 7 after ovariectomy in laparoscopic and open surgery.

Group	Day	PCV* (%)	Hemoglobin (g dL$^{-1}$)	WBC* (10^3 µL$^{-1}$)	Neutrophil (%)	Band cell (%)	Lymphocyte (%)	Eosinophil (%)	Monocyte (%)
Laparoscopic	0	39.30 ± 3.06	14.70 ± 0.78	14.20 ± 0.85	78.00 ± 1.78	1.00 ± 0.25	18.75 ± 1.16	-	2.00 ± 0.35
	1	47.20 ± 3.47	11.90 ± 3.42	17.10 ± 3.12	76.00 ± 1.10	2.00 ± 0.50	19.62 ± 1.19	1.00 ± 0.30	4.00 ± 0.43
	3	44.60 ± 2.53	10.30 ± 2.53	15.90 ± 1.56	69.00 ± 0.98	1.00 ± 0.25	28.00 ± 1.17	2.00 ± 0.35	2.00 ± 0.39
	7	51.20 ± 3.03	14.40 ± 2.97	15.20 ± 2.97	66.00 ± 1.17	-	30.00 ± 1.14	1.00 ± 0.35	3.00 ± 0.43
Open surgery	0	41.60 ± 5.11	15.60 ± 3.61	15.50 ± 1.23	71.00 ± 0.79	2.00 ± 0.35	16.62 ± 1.31	1.00 ± 0.25	2.00 ± 0.50
	1	37.50 ± 2.48	13.20 ± 1.77	20.80 ± 1.03	80.00 ± 1.48	3.00 ± 0.39	10.75 ± 0.57	3.00 ± 0.25	3.00 ± 0.30
	3	45.90 ± 3.07	10.50 ± 0.95	19.70 ± 3.36	77.00 ± 1.56	3.00 ± 0.46	12.87 ± 0.67	1.00 ± 0.30	2.00 ± 0.43
	7	53.70 ± 2.88	11.70 ± 1.98	17.10 ± 0.78	69.00 ± 1.02	2.00 ± 0.50	16.50 ± 1.40	1.00 ± 0.35	2.00 ± 0.50

* PCV: Packed cell volume, WBC: White blood cells.
In conclusion, laparoscopic OVE is an easy, safe and acceptable procedure due to its various advantages which is recommended instead of traditional open surgery OVE from midline laparotomy.
Acknowledgments

The authors wish to thank the Deputy of Research of the Faculty of Veterinary Medicine, University of Tehran and Center of Excellence for Veterinary Research on Iranian Indigenous Animals for approval and providing financial assistance to complete this research.

References

1. Howe, LM. Surgical methods of contraception and sterilization. Theriogenology 2006; 66: 500-509.
2. Goethem BV, Rosenveldt KW, Kirpensteijn J. Monopolar versus bipolar electrocoagulation in canine laparoscopic ovariohysterectomy: A non-randomized, prospective, clinical trial. Vet Surg 2003; 32: 464-470.
3. Goethem BV, Okkens AS, Kirpensteijn J. Making a rational choice between ovariectomy and ovariohysterectomy in the dog: A discussion of the benefit of either technique. Vet Surg 2006; 35: 136-143.
4. Gower S, Meyhew P. Canine laparoscopic and laparoscopic assisted ovariohysterectomy and ovariectomy. Compend Contin Educ Vet 2008; 30(8): 430-440.
5. Wildt DE, Leowier DF. Laparoscopic sterilization of the bitches and queens by the uterine horn occlusion. Am J Vet Res 1985; 146: 864-871.
6. Austin B, Lanz OJ, Hamilton SM, et al. Laparoscopic ovariohysterectomy in nine dogs. J Am Anim Hosp Assoc 2003; 39: 391-396.
7. Nimwegen SA, Van Swol CFP, Kirpensteijn J. Neodymium: Yttrium aluminium garnet surgical laser versus bipolar electrocoagulation for laparoscopic ovariectomy in dogs. Vet Surg 2007; 34: 353-357.
8. Amodeo A, Linares Quevedo A, Joseph J, et al. Robotic laparoscopic surgery: Cost and training. Minerva Urol Nefrol. 2009; 61(2): 121-128.
9. Nimwegen SA, Kirpensteijn J. Laparoscopic ovariectomy in cats: comparison of laser and bipolar electrocoagulation. J Feline Med Surg 2005; 9: 397-403.
10. Collins BS. A spaying dilemma: Laparoscopic ovariectomy as an alternative to a traditional ovariohysterectomy. Senior Seminar paper Cornell University, College of Veterinary Medicine SF610.1 2008 C65.
11. Bakhtiari J, Mokaram S, Khalaj A, et al. Clinical evaluation of effective laparoscopic ovariohysterectomy in dogs. Iranian J Vet Surg 2006; 1: 15-22.
12. Dutta A, Swapan KM, Parameswaran A, et al. Evaluation of different laparoscopic sterilization techniques in a canine birth control program. Turk J Vet Anim Sci 2010; 34(3): 393.
13. Mayhew PD, Brown DC. Comparison of three techniques for ovarian pedicle hemostasis during laparoscopic-assisted ovariohysterectomy. Vet Surg 2007; 36:541-547.
14. Proot J. Laparoscopic ovariectomy in the dog. UK Vet 2008; 13(2): 18-22.
15. Sturtzbecher N. Recovery and quality of life after laparoscopic ovariectomy compared with traditional ovariectomy in dogs. Danish Vet J 2006; 1(9):92, 22-27.
16. Dupre G, Fiorbianco V, Skalicky M, et al. Laparoscopic ovariectomy in dogs: comparison between single portal and two-portal access. Vet Surg 2009; 38(7):818-824.
17. Van Goethem BE, Rosenveldt KW, Kirpensteijn J. Monopolar versus bipolar electrocoagulation in canine laparoscopic ovariohysterectomy: A non-randomized, prospective, clinical trial. Vet Surg 2003; 32: 464-470.
18. Van Nimwegen SA, Van Swol CFP, Kirpensteijn J. Neodymium: Yttrium aluminium garnet surgical laser versus bipolar electrocoagulation for laparoscopic ovariectomy in dogs. Vet Surg 2005; 34: 353-357.
19. Fröhlich C. Laparoscopic ovariectomy in female dogs: A cooperation between VUW and the University of Samsun. Diploma Thesis. University of Veterinary Medicine, Vienna, Austria. 2008; 47.
20. Culp WT, Mayhew PD, Brown DC. The effect of laparoscopic versus open ovariectomy on postsurgical activity in small dogs. Vet Surg 2009; 38(7): 811-817.
21. Hand RB, Rakestraw P, Taylor T. Evaluation of a vessel-sealing device for using in laparoscopic ovariectomy in mares. Vet Surg 2002; 31(3): 240-244.
22. Schippers E, Tittel A, Ottinger A, et al. Laparoscopy versus laparotomy: Comparison of adhesion-formation after bowel resection in canine model. Dig Surg 1998; 15(2): 145-147.