INTRODUCTION

Estimation of invasion depth is one of the most important steps for establishing therapeutic plans for colorectal tumors. Without deep submucosal invasion, lymph node metastasis rarely occurs in colorectal tumors, and those tumors can be treated with local excision such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD). The depth of invasion of colorectal tumors can be estimated by using the gross findings of conventional white light endoscopy (CWE), pit patterns identified by magnifying chromoendoscopy (MCE), and magnifying narrow band imaging endoscopy (MNE).

MATERIALS AND METHODS

Subjects
All of the CWE, MCE, and MNE electronic photos and video clips of the cases were recorded with magnifying colonoscopes (CF-H260AZL, Olympus Co., Tokyo, Japan) by an expert endoscopist (B.I.L) from November 2009 to October 2010.
2010. Thirty-three colorectal tumors were included and all the tumors had more than one of gross features suggesting early colorectal cancer (Tis or T1); which are hardness, surrounding white spots, depression, surface nodularity, full expansion, deformed adjacent wall, mucosal friability, convergence of mucosal folds, erosion, or ulceration. Grossly obvious advanced cancers with luminal obstruction or large ulceration were excluded.

All of the photos and video clips were taken from as many angles as possible after washing the lesions with simethicone-dissolved water. The CWE was recorded first, followed by MNE and MCE. Observation with magnifying endoscopy was performed more carefully for depressed or erosive areas. MCE was performed with 0.4% indigo carmine and 0.05% crystal violet in sequence. When crystal violet was applied, observation was not made until the dye had sufficiently stained the tumor.

Table 1. The Revised Vienna Classification of Gastrointestinal Epithelial Neoplasia

Category	Diagnosis
1	Negative for neoplasia
2	Indefinite for neoplasia
3	Mucosal low grade neoplasia
	Low grade adenoma
	Low grade dysplasia
4	Mucosal high grade neoplasia
	High grade adenoma/dysplasia
	Noninvasive carcinoma (carcinoma in situ)
	Suspicious for invasive carcinoma
	Intramucosal carcinoma
5	Submucosal invasion by carcinoma

Estimation of invasion depth

Three expert endoscopists (S.W.K, H.C, and K.Y.C) independently reviewed the electronic photos and video clips of the cases. The endoscopists had experiences of more than 10,000 colonoscopy cases and had used magnifying endoscopy for several years.

Kudo’s classification was used for pit pattern analysis. Microvascular patterns were categorized according to the Showa Classification. Unlike pit pattern, classifications for microvascular pattern had not been standardized at the time of the study, and the Showa Classification was therefore reviewed by the endoscopists before the estimation of invasion depth.

Only the information on sex and age of the patients was provided to the endoscopists. The endoscopists reviewed the CWE, the MCE, and the MNE images in sequence.

Based on the CWE, the endoscopists evaluated gross findings suggestive of submucosal invasion (depression, full expansion, wall deformity, spontaneous bleeding, mucosal convergence, erosion, or ulcer) and the depth of invasion (mucosa vs. submucosa or beyond). The estimations were made again based on the MCE, and then on the MNE. A “VN pattern” on the MCE and a “sparse pattern” on the MNE were considered suggestive of submucosal invasion (Fig. 1).

The study protocol was approved by the Institutional Review Board (OC11RIMI0011).

Statistical analysis

The SAS system version 9.1 (SAS Institute Inc., Cary, NC, USA) was used for statistical analysis. Differences of diagno-

Fig. 1. Magnifying endoscopy findings suggesting submucosal invasion. (A) The chromoendoscopy VN pattern. (B) The narrow band imaging endoscopy sparse pattern.
Invasion Depth of Colorectal Tumors

Diagnostic accuracy for submucosal invasion among the endoscopists and among the methods of endoscopy were evaluated by Generalized Estimating Equations. The p-values were corrected by Bonferroni’s method. The interobserver agreement among the endoscopists was evaluated by Fleiss’ kappa.

RESULTS

Baseline characteristics
The median diameter of the lesions was 24 mm (range, 10 to 61). The lesions included 13 protruded type, one flat type, two depressed type, and 17 laterally spreading tumors. The tumors were treated primarily by EMR (11), ESD (17), and surgery (5). One of the patients who had undergone EMR received additional surgery later due to invasion to the deep submucosal layer. The histopathologic results were as follows: mucosal low-grade neoplasia (low grade adenoma/dysplasia) in nine patients; mucosal high grade neoplasia (high grade adenoma/dysplasia, noninvasive carcinoma, and intramucosal carcinoma) in 16 patients; and submucosal or further invasion by carcinoma in eight patients.

Diagnostic accuracy for submucosal invasion
Among the endoscopists, the diagnostic accuracy for submucosal invasion using gross findings of CWE ranged from 67% to 82%, while those using pit patterns identified by MCE and microvasculature patterns identified by MNE ranged from 85% to 88% and 85% to 88%, respectively (Fig. 2).

There was no significant difference in diagnostic accuracy among the endoscopists (p=0.257). However, the diagnostic accuracy significantly differed among the methods of endoscopy (\(p=0.040 \)). The interaction between the endoscopists and the methods of endoscopy was not significant (\(p=0.086 \)).

The diagnostic accuracy significantly differed between CWE and MCE (\(p=0.034 \), Bonferroni’s correction) and between CWE and MNE (\(p=0.039 \), Bonferroni’s correction). However, the diagnostic accuracy did not significantly differ between MCE and MNE (\(p>0.05 \)).

Interobserver agreement
The kappa value for CWE among the three endoscopists was 0.564. Kappa values for MCE and MNE were 0.673 and 0.673, respectively.

DISCUSSION

“Early colorectal cancer” is defined by Japanese doctors as colorectal cancer limited to the mucosa or invading only the submucosa, regardless of the presence or absence of lymph node metastases. However, in this study, we evaluated the diagnostic accuracy of submucosal invasion for “early colorectal cancer-like lesions” instead of “pathologically confirmed early colorectal cancers.” Only the gross features suggesting early colorectal cancer were used for the selection criteria.

The evaluation of early colorectal cancer-like lesions can be more practical than the evaluation of confirmed early colorectal cancers; this is because, first, it is not always easy to achieve endoscopic differentiate between a carcinoma and an adenoma or even between early cancer and advanced cancer. In other words, when an early colorectal cancer-like tumor is detected during a colonoscopy, we cannot confirm whether the lesion is an early colorectal cancer until the final pathology report of the resected specimen has been obtained. The role of forceps biopsy is also limited since the histopathology of endoscopic forceps biopsy disagrees with that of a resected specimen in 40% of cases.

Second, when establishing therapeutic plans, it may be more important to determine whether the tumor is limited to the mucosal layer rather than whether the tumor is a carcinoma or an adenoma. Most mucosal neoplasms (revised Vienna classification categories 3 and 4: low grade adenoma/dysplasia, high grade adenoma/dysplasia, noninvasive carcinoma, and intramucosal carcinoma) can be treated by local excision (EMR or ESD) because lymph node metastasis is rarely reported without deep submucosal invasion.

The diagnostic accuracy for submucosal invasion was significantly improved by pit pattern analysis with MCE in this study. Moreover, the interobserver agreement of MCE was substantial, while the interobserver agreement of CWE was moderate. As such, MCE can estimate the depth of invasion for early colorectal cancer-like lesions more accurately and more objectively.
The diagnostic accuracy for submucosal invasion also significantly differed between CWE and MNE. However, the diagnostic accuracy did not differ between MCE and MNE. The estimation of submucosal invasion using MNE might be limited since the irregular microvascular pattern by the Showa classification could be interpreted in different ways. We considered an “irregular microvascular pattern” identified using MNE as a mucosal cancer without submucosal invasion. However, according to other studies, more than half of co- ing MNE as a mucosal cancer without submucosal invasion.

It is possible that the results would have been different if the endoscopists viewed the MNE images before the MCE images. In practice, MNE is performed before MCE because the applied dye used for chromoscopy interferes with MNE. However, in this study, estimation was performed earlier by MCE than by MNE because we set out to identify any additional effects of MNE on MCE for predicting submucosal invasion. After the depth of invasion was estimated, we examined the cases in which the results of MCE and MNE did not agree among the endoscopists. The reasons for disagreement were mixed pit/microvascular patterns and bad images due to bleeding, exudation, or insufficient staining.

In conclusion, the estimation of submucosal invasion based on MCE or MNE is more accurate and more helpful for establishing a treatment strategy for colorectal tumors than the estimation based on CWE. MCE and MNE were demonstrated to have substantial agreement for estimating the depth of invasion.

Conflicts of Interest

The authors have no financial conflicts of interest.

Acknowledgments

The study consultation with Catholic Research Coordinating center was supported by the Korea Health 21 R&D Project (A070001), Ministry of Health & Welfare, Republic of Korea.

REFERENCES

1. Kitajima K, Fujimori T, Fujii S, et al. Correlations between lymph node metastasis and depth of submucosal invasion in submucosal invasive colorectal carcinoma: a Japanese collaborative study. J Gastroenterol 2004;39:534-543.
2. Ueno H, Mochizuki H, Hashiguchi Y, et al. Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology 2004;127:385-394.
3. Okabe S, Shi J, Nasg G, et al. Lymph node metastasis in T1 adenocarcinoma of the colon and rectum. J Gastrointest Surg 2004;8:1032-1039.
4. Kudo S, Rube CA, Teixeira CR, Kashida H, Kogure E. Pit pattern in colorectal neoplasia: endoscopic magnifying view. Endoscopy 2001;33:367-373.
5. Ikehara H, Saito Y, Matsuda T, Uraoka T, Murakami Y. Diagnosis of depth of invasion for early colorectal cancer using magnifying colonoscopy. J Gastroenterol Hepatol 2010;25:905-912.
6. Kanao H, Tanaka S, Oku S, Hirata M, Yoshida S, Chayama K. Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors. Gastrointest Endosc 2009;69(3 Pt 2):631-636.
7. Wada Y, Kudo SE, Kashida H, et al. Diagnosis of colorectal lesions with the magnifying narrow-band imaging system. Gastrointest Endosc 2009;70:522-531.
8. Ikematsu H, Matsuda T, Emera F, et al. Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms. BMC Gastroenterol 2010;10:33.
9. Mainprize KS, Mortensen NJ, Warren BE. Early colorectal cancer: recognition, classification and treatment. Br J Surg 1998;85:469-476.
10. Kudo S, Kashida H, Nakajima T, Tamura S, Nakao K. Endoscopic diagnosis and treatment of early colorectal cancer. World J Surg 1997;21:694-701.
11. Dixon MF. Gastrointestinal epithelial neoplasia: Vienna revisited. Gut 2002;51:130-131.
12. Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gas trointest Endosc 1996;44:8-14.
13. Wada Y, Kudo SE, Minave M, Ikebaka H, Hamatani S. Vascular pattern classification of colorectal lesions with narrow band imaging magnifying endoscopy. Dig Endosc 2011;23 Suppl 1:106-111.
14. Tanaka S, Sano Y. Aim to unify the narrow band imaging (NBI) magnifying classification for colorectal cancers: current status in Japan from a summary of the consensus symposium in the 79th Annual Meeting of the Japan Gastroenterological Endoscopy Society. Dig Endosc 2011;23 Suppl 1:131-139.
15. Ji JS, Choi H, Choi KY, et al. Interobserver agreement among experts in determining the depth of invasion of early colorectal carcinoma. Korean J Gastrointest Endosc 2005;31:39-43.
16. Kashida H, Kudo SE. Early colorectal cancer: concept, diagnosis, and management. Int J Clin Oncol 2006;11:1-8.
17. Sung HY, Cheung DY, Cho SH, et al. Polyps in the gastrointestinal tract: discrepancy between endoscopic forceps biopsies and resected specimens. Eur J Gastroenterol Hepatol 2009;21:190-195.