OBJECTIVE

Displacement of disc material beyond the limits of the intervertebral disc space is termed as a disc herniation. Such lumbar disc herniations (LDHs) are supposedly classified according to the long-established anatomical classification system. This system incorporates all varieties of herniations and classifies them into protrusion, extrusion and sequestration. The generality of this classification makes it difficult to imagine or picture the exact shape of the disc herniation by knowing just the type, without looking at the magnetic resonance (MR) image. This disadvantage can be overcome by using more precise systems as that of Wiltse et al or the Michigan State University (MSU) classification system. We believe that the MSU classification is simple and clearly defines the shape, location and extent of the disc herniation particularly in the lumbar spine. The Michigan State University (MSU) classification is periodically used by various authors to classify disc herniation. We assessed the reliability of this classification system among orthopedic residents at our institute.

METHODS

Fifty T2 axial-cut magnetic resonance images (MRI) corresponding to the level of maximal disc herniation from patients diagnosed with a single LDH were selected and distributed to six orthopedic residents. All six residents gave a specific rating for each image based on the MSU classification; in addition, three residents gave ratings on two different occasions. The degree of agreement among residents was analyzed by calculating inter-observer and intra-observer reliability using the Kappa statistic. Results: The inter-observer reliability among the six residents calculated as the Fleiss’ Kappa was 0.422, which indicates moderate reliability. The intra-observer reliability of three selected residents calculated by Cohen’s Kappa was 0.750, 0.772, and 0.859, which indicates substantial to almost perfect reliability. Variations in ratings were frequent in images portraying a broad-based disc herniation with spinal canal stenosis. Conclusion: Our findings demonstrate moderate homogeneity of ratings given by residents; however, test-retest results proved the ratings to be consistent.

Level of Evidence II, Diagnostic studies - investigating a diagnostic examination.

Keywords: Inter-observer variability. Intervertebral disc. Intervertebral Disc Displacement. Reliability. Spondylosis.

INTRODUCTION

Displacement of disc material beyond the limits of the intervertebral disc space is termed as a disc herniation. Such lumbar disc herniations (LDHs) are supposedly classified according to the long-established anatomical classification system. This system incorporates all varieties of herniations and classifies them into protrusion, extrusion and sequestration. The generality of this classification makes it difficult to imagine or picture the exact shape of the disc herniation by knowing just the type, without looking at the magnetic resonance (MR) image. This disadvantage can be overcome by using more precise systems as that of Wiltse et al or the Michigan State University (MSU) classification system. We believe that the MSU classification is simple and clearly defines the shape, location and extent of the disc herniation particularly in the lumbar spine.

All authors declare no potential conflict of interest related to this article.
the lumbar spine. It only requires a single T2 axial cut MRI image that corresponds to the level of maximal herniation, considering the upward or downward migration in case of a sequestrated disc. Based on this classification, the size of the disc herniation is described as Grade 1, 2 and 3; the location of the disc herniation is described as Zone 1, 2 and 3 (Figure 1). On combining the size of the disc herniation with its location, ten distinct types can be obtained. Our residents were comfortable with this classification; hence, we decided to quantify the reliability of this objective system, among orthopaedic residents at our institute.

MATERIALS AND METHODS

Retrospectively, we selected 50 T2 axial cut MR images at the level of maximal herniation that belonged to patients who were diagnosed with a single LDH that required intervention. This selection included patients with varied severities of disc induced lumbar radiculopathy, who underwent conservative management, selective nerve root block and/or mini open discectomy as a definite management. Our selection included patients with degenerative spondylosis or ligamentum flavum thickening at the chosen level; however, none of the patients had a concomitant inflammation, infection or neoplasia affecting the disc level.

A single appropriate T2 axial cut MR image corresponding to the level of maximal herniation in each patient was chosen by a single experienced surgeon. These images were given to six orthopaedic residents for categorising the disc herniation based on the MSU classification system. The residents were previously aware of this classification system; however, they did not use it as a routine. They were initially briefed about the system in a calibrating teaching session using the original work published by Mysliwiec LW et al. All queries were addressed, following which a copy of the original work and the 50 selected MR images were provided to the residents. Residents were advised to take adequate time to analyse each image before giving a response. They were not put under an obligation to submit their responses at a certain time, as to when their responses need to be submitted. This was to determine the intra-observer (test-retest) reliability by calculating the Fleiss’ Kappa (statistical measure for assessing the reliability of agreement between multiple raters). The same MRI images were shuffled and provided to three of the residents (Resident 1, 2 and 6) for reassessment after a month. Their response was collected and compared with their previous ratings. This data was used to determine the inter-observer (test-retest) reliability by calculating the Cohen’s Kappa (statistical measure for assessing the reliability of agreement between two raters) for each resident. The inferred results were tabulated. Statistical analyses were done using IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Implied consent was obtained from the study participants when they agreed to participate in this research. This study was approved by the institutional review board of Chang Gung Memorial Hospital (IRB No – 201700227B0) and was performed in compliance with the 1964 declaration of Helsinki, its later amendments or comparable ethical standards.

RESULTS

The selected MRI images (n = 50) included all types of LDHs described in the MSU classification taken from 50 different patients (Age = 46.9 ± 8.7; Male = 31; Female = 29). The residents who rated the MRI images were in their third year of residency training and they took approximately a week to classify all 50 axial cut MRI images. Data received from the residents were in the form of classifications which majority of the residents had an agreement. Accordingly, the total number of images belonging to each classification type was tabulated; this represents the range and severity of disc herniations among the selected images (Table 1). The classifications provided by the Residents were later numerically rated from 1 to 10 for computation purposes. There was agreement among three or more raters for 48 (96%) of the selected MRI images which reduced to 37 (74%) when calculated from the responses received from the residents. This data was used to determine the inter-observer reliability by calculating the Fleiss’ Kappa (statistical measure for assessing the reliability of agreement between multiple raters). The same MRI images were shuffled and provided to three of the residents (Resident 1, 2 and 6) for reassessment after a month. Their response was collected and compared with their previous ratings. This data was used to determine the intra-observer (test-retest) reliability by calculating the Cohen’s Kappa (statistical measure for assessing the reliability of agreement between two raters) for each resident. The inferred results were tabulated. Statistical analyses were done using IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. Implied consent was obtained from the study participants when they agreed to participate in this research. This study was approved by the institutional review board of Chang Gung Memorial Hospital (IRB No – 201700227B0) and was performed in compliance with the 1964 declaration of Helsinki, its later amendments or comparable ethical standards.

Table 1. Cases in each classification type and their agreement percentages.

Type	1A	1B	1C	2A	2B	2AB	2C	3A	3B	3AB
No. of Cases	5	5	1	6	10	8	3	5	5	2
Percentage of agreement	70.02	73.34	100	80.57	65	60.44	55.57	70	63.34	75

Figure 1. Grading and Zoning as per the MSU classification system. A) Lines representing grading of disc prolapse are drawn in the horizontal axis. B) Lines representing zoning of disc prolapse are drawn in the vertical axis.
for agreement among four or more raters. Only six (12%) of the MRI images had 100% agreement among raters; these images were of types 1A, 1B, 1C, 3B and two of 2A. However, this data does not depict the reliability of the classification system.

The agreement percentage for each MRI image was calculated, based on which the mean agreement percentage for each classification type was calculated to check if there was a relation between herniation severity and resident agreement (Table 1). We noticed the types 1A, 1B, 1C, 2A, 3A and 3AB to have a mean agreement percentage of 70% or above. However, 2B, 2A, 2C and 3B had mean agreement percentages ranging between 55 and 65, with 2C having the least mean agreement percentage of 55.57. These relatively low mean agreement percentages among Residents could be due to the herniations being broad based in an already stenosed canal (Figure 2).

The tabulated ratings of all residents were used to calculate the pair wise Cohen’s Kappa and a matrix was generated (Table 2). The inter-rater or inter-observer reliability was determined by calculating the Fleiss' Kappa which was found to be 0.422 (Table 3). According to Cohen, our measure of Kappa falls under moderate agreement (0.41-0.60). This can be accepted considering that reliability is expected to be low when multiple data collectors are required to make finer discriminations as in MSU classification; however, a measure above 0.60 could have been adequate.

After a month’s interval, the MRI images were shuffled and provided to three Residents for reassessment, independent of their previous measures. Their previous and latest rating for each MRI image was tabulated. We found that 39 (78%), 40 (80%) and 44 (88%) of the recent ratings by Resident 1, 2 and 6 respectively, were consistent with their previous measures. This data was used to determine the Intra-rater or intra-observer (test-retest) reliability by calculating the Cohen’s Kappa for each resident. A Kappa measure of 0.750 (Substantial agreement), 0.772 (Substantial agreement) and 0.859 (almost perfect agreement) was obtained for resident 1, 2 and 6 respectively. Hence, the intra-observer reliability can be interpreted as substantial to almost perfect.

DISCUSSION

Classifying lumbar disc herniation can provide vital assistance for clinical management of the condition. MRI is considered the ideal tool for analysis of such lumbar disc herniations. Both sagittal and axial cut images can provide valuable information of the underlying pathology. However, axial cut image at the pathological level is given sole priority by the MSU classification system which is periodically practiced by authors around the world to optimize management strategies for patients with lumbar disc herniations. The concept of considering a single axial cut image at the level of maximal herniation may be unlike the “Lumbar disc nomenclature: version 2.0” where sagittal images are taken into consideration; even so, the MSU classification clearly defines the shape, location and extent of the disc herniation.

Even though, our residents were comfortable with this classification system, a calibrating session was held to refine their understanding of this system. In this session, we discuss the MRI of several patients and ask residents to classify them according to the MSU classification system. They were then asked to justify why they chose a particular type for each discussed MRI. If there were disagreements, rules were framed to give the most appropriate rating for a specific MRI. By this way, we believe that the understanding of the classification system was refined.

We used the Kappa statistic to determine the reliability of the MSU classification system. This is because the ratings given by the six residents were considered as nominal variables. Hence we determined the inter-observer reliability by calculating the Fleiss’ Kappa for more than two raters which is an extension of Cohen’s Kappa that is used for calculating agreement among two raters. Besides that, the intra-observer (test-retest) reliability was determined using the measure of Cohen’s Kappa as it involves one previous and one recent rating by each resident. Our results were finalized based on

Table 2. Pair wise Kappa matrix.

Resident 1	Resident 2	Resident 3	Resident 4	Resident 5	Resident 6	
Resident 1	1.000	0.461	0.365	0.357	0.502	0.656
Resident 2	0.461	1.000	0.394	0.330	0.546	0.508
Resident 3	0.365	0.394	1.000	0.292	0.383	0.451
Resident 4	0.357	0.330	0.292	1.000	0.235	0.458
Resident 5	0.502	0.546	0.363	0.235	1.000	0.456
Resident 6	0.656	0.508	0.451	0.458	0.456	1.000

Table 3. Inter-observer and intra-observer reliability assessment using Kappa Statistic.

Reliability	Statistical Measure	Kappa	Interpretation
Intra-observer (Resident 1)	Fleiss’ Kappa	0.750	Substantial
Intra-observer (Resident 2)	Cohen’s Kappa	0.772	Substantial
Intra-observer (Resident 6)	Cohen’s Kappa	0.859	Almost perfect

Figure 2. Examples of deceptive MRI that had least agreement among residents. A) Frequently rated as type 2a or 2ab. B) Frequently rated as type 2b or 2ab. C) Frequently rated as type 2ab or 2c.
accepted interpretations of the Kappa statistic.4,14 We inferred a moderate inter-observer reliability and substantial to almost perfect intra-observer reliability.

The reason for obtaining a moderate inter-observer reliability needs to be discussed. Firstly, this could be because we chose multiple raters who had to rate multiple categories.14 It is an accepted fact that when multiple data collectors are required to make finer discriminations, reliability is difficult to be obtained.4 Besides that, this could be because the types 2B, 2AB, 2C and 3B had mean agreement percentages ranging between 55 and 65 only. On analysing the reason for less agreement among Residents for these types, we found that this was mainly due to the herniations being broad based in an already stenosed canal due to degeneration. Apart from these factors, the learning curve to get familiarized to this classification system may also be considered; however, if appropriate rules are framed to interpret such deceptive MRI, better inter-observer reliability can be achieved and findings can be correlated with clinical presentations to guide management.

It should be noted that this classification system does not take into account a bulging disc, either symmetrical or asymmetrical as described in the Lumbar Disc Nomenclature 2.0.1,13,15 however, the system holds good for herniated discs. Clinical presentation of patients does not depend on the anatomy of the disc prolapse alone but rather depends on many other factors that can cause symptoms.13,16 These include disc degeneration, reactive vertebral body marrow changes, ligamentum flavum hypertrophy, facet hypertrophy or associated segmental instabilities.17,18 In spite of a significant MRI finding of a disc herniation, asymptomatic clinical presentations are also a possibility.16,19-20

Hence, even though MSU classification can describe the exact anatomic appearance of a herniated disc, management protocols cannot be formulated with its sole guidance. Other concomitant parameters should be given equal importance along with MSU classification type to optimize management protocols; yet, it is vital to know the anatomic appearance of the disc by an objective system like MSU classification to plan the approach and procedure if intervention is considered.

Limitation

Our results and interpretation could be influenced by each resident’s understanding and experience with this classification system. This could have biased our results of reliability.

CONCLUSION

The inter-observer and intra-observer reliability of the MSU classification for lumbar disc herniations was calculated among orthopaedic residents. Our findings demonstrate moderate homogeneity of the ratings given by the residents; however, test-retest proved the ratings to be consistent. This observation implies that the MSU classification could be of clinical importance; however, appropriate rules need to be framed to interpret deceptive MRI which is highly essential to delineate optimal management protocols.

ACKNOWLEDGEMENTS

The authors sincerely thank Dr. Winson Min-Teng Low, Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan for his contributions to this research.