The genus *Weissella* consists of Gram-positive, catalase-negative, non-spore-forming, nonmotile bacteria with irregular or cocoid heterofermentative rod morphologies (1). *Weissella* species are common in diverse nutrient-rich environments, including fermented foods, soil, and the intestines of many animals, including humans (2). *Weissella confusa* strains have infrequently been reported to cause infections in both humans (3–5) and non-human primates (6); however, members of the genus are not typically associated with disease. Novel *Weissella* sp. bacteria have recently been associated with disease outbreaks in rainbow trout (*Oncorhynchus mykiss*) at commercial farms in China, Brazil, and the United States. Each of these outbreaks occurred at commercial rainbow trout farms and caused high levels of morbidity and mortality. The origin of the bacteria associated with these outbreaks is unknown, but 16S rRNA sequences from the Brazilian, Chinese, and U.S. isolates are >99% identical, suggesting a high level of genetic similarity among strains (Welch and Good, submitted). The trout isolates also show >99% 16S sequence similarity to *W. ceti* sp. nov., which was recently isolated from beaked whales (9), and therefore, the whale and fish isolates may constitute a single species. The occurrence of this pathogen on three continents over a relatively short period (5 years) suggests that weissellosis is a rapidly emerging disease of farmed rainbow trout. Comparison of the genome sequences of the U.S., Brazilian, and Chinese strains will therefore, the whale and fish isolates may constitute a single species, isolated from the southeastern United States.

Results of comparative analysis highlighted several putative virulence factors, which do not have homologs encoded in any of the other sequenced *Weissella* genomes. These include five collagen adhesins (WCNC_00912, WCNC_00917, WCNC_00922, WCNC_05547, and WCNC_06207), a platelet-associated adhesin (WCNC_01820), and a mucus-binding protein (WCNC_01840).

Nucleotide sequence accession numbers. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number ANCA00000000. The version described in this paper is the first version, ANCA01000000.

ACKNOWLEDGMENTS

We thank G. Koroleva and M. Gestole for preparing the Illumina and PacBio sequencing libraries. This work was funded by the Defense Threat Reduction Agency Project no. 1881290.

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.
REFERENCES

1. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75:595–603.
2. Björkroth KJ, Schilling U, Geisen R, Weiss N, Hoste B, Holzapfel WH, Korkeala HJ, Vandamme P. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52:141–148.
3. Olano A, Chua J, Schroeder S, Minari A, La Salvia M, Hall G. 2001. Weissella confusa (basonym: Lactobacillus confusus) bacteremia: a case report. J. Clin. Microbiol. 39:1604–1607.
4. Flaherty JD, Levett PN, Dewhirst FE, Troe TE, Warren JR, Johnson S. 2003. Fatal case of endocarditis due to Weissella confusa. J. Clin. Microbiol. 41:2237–2239.
5. Lee MR, Huang YT, Liao CH, Lai CC, Lee PI, Hsueh PR. 2011. Bacteremia caused by Weissella confusa at a university hospital in Taiwan, 1997–2007. Clin. Microbiol. Infect. 17:1226–1231.
6. Vela AI, Porrero C, Goyache J, Nieto A, Sánchez B, Briones V, Moreno MA, Domínguez L, Fernández-Garayzábal JF. 2003. Weissella confusa infection in primate (Cercopithecus mona). Emerg. Infect. Dis. 9:1307–1309.
7. Liu JY, Li AH, Ji C, Yang WM. 2009. First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Vet. Microbiol. 136:314–320.
8. Figueiredo HC, Costa FA, Leal CA, Carvalho-Castro GA, Leite RC. 2012. Weissella sp. outbreaks in commercial rainbow trout (Oncorhynchus mykiss) farms in Brazil. Vet. Microbiol. 156:359–366.
9. Vela AI, Fernandez A, de Quiros YB, Herrera P, Domínguez L, Fernandez-Garayzábal JF. 2011. Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). Int. J. Syst. Evol. Microbiol. 61:2758–2762.
10. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a parallel assembler for short read sequence data. Genome Res. 19:1117–1123.
11. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nat. Methods 9:357–359.
12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:32078–2079.