A New Class of Task-Specific Imidazolium Salts and Ionic Liquids and Their Corresponding Transition-Metal Complexes for Immobilization on Electrochemically Active Surfaces

Vera Seidl,[a] Angel H. Romero,[a, e] Frank W. Heinemann,[a] Andreas Scheurer,[a] Carola S. Vogel,[b] Tobias Unruh,[b] Peter Wasserscheid,[c, d] and Karsten Meyer*[a]

Dedicated to Professor Holger Braunschweig on the occasion of his 60th birthday

Abstract: Adding to the versatile class of ionic liquids, we report the detailed structure and property analysis of a new class of asymmetrically substituted imidazolium salts, offering interesting thermal characteristics, such as liquid crystalline behavior, polymorphism or glass transitions. A scalable general synthetic procedure for N-polaryl-N-alkyl-functionalized imidazolium salts with para-substituted linker (L) moieties at the aryl chain, namely [LPh,Im]R+ (L = Br, CN, SMe, CO2Et, OH; m = 2, 3; R = C12, PEG6; n = 2, 3, 4), was developed. These imidazolium salts were studied by single-crystal X-ray diffraction (SC-XRD), NMR spectroscopy and thermochemical methods (DSC, TGA). Furthermore, these imidazolium salts were used as N-heterocyclic carbene (NHC) ligand precursors for mononuclear, first-row transition metal complexes (MnII, FeII, CoII, NiII, ZnII, CuII, AgI, AuI) and for the dinuclear Ti-supported Fe-NHC complex [(OPy)Ti(OPh)ImC12(Fel)] (OPy = pyridin-2-ylmethanolate). The complexes were studied concerning their structural and magnetic behavior via multinuclear NMR spectroscopy, SC-XRD analyses, variable temperature and field-dependent (VT-VF) SQUID magnetization methods, X-band EPR spectroscopy and, where appropriate, zero-field Fe Mössbauer spectroscopy.

Introduction

Ionic liquids (ILs), generally defined as salts with a melting point below 100 °C,[1] have attracted growing interest since the beginning of the 21st century.[2] Due to the variety of bulky, low symmetric organic cations and (in)organic anions,[3] ionic liquids offer swiftly tunable physical and chemical properties. This results in a unique property profile, such as negligible vapor pressure, non-flammability, excellent tribological behavior, high conductivity, and an extraordinary (electro-)chemical stability (e.g. wide electrochemical window). The properties, originating from their liquid state at moderate or even ambient temperatures, make ILs attractive for a variety of applications.[4]

Offering almost limitless possibilities of functionalization, ILs – most commonly imidazolium-based ILs – can be designed with tailor-made properties and reactivity. These so-called task-specific ionic liquids (TSILs) are mainly used for particular applications in catalysis, organic synthesis, material separation as well as for the synthesis of nanostructured or ion conductive materials.[5] For example, the incorporation of a carboxylic acid dissolved metals and metal oxides,[6] whereas imidazolium salts bearing an amine functionality can separate CO2 from gas streams.[7]

Introducing an aryl chain at the imidazolium core simultaneously provides ample space for substitution chemistry and the opportunity for tuneability of electronic communication. This influences the molecules’ electronic and physicochemical properties remarkably. For instance, non-covalent Ï•-Ï• interac-
tions, important for specific industrial applications, such as extraction separation, catalytic reactions, and self-assembled materials, are possible due to the extended aromatic system of the rigid-core aryl-substituted ILs.\[6\]

Towards more hydrophilic side chains for imidazolium salts, methylated poly(ethylene glycol) (mPEG) is a prominent example.\[7\] Possessing polarity and lacking reactive functional groups, PEGylation of an IL changes its physicochemical behavior without significantly changing the reactivity. Hence, a decrease of the melting point but an increase of the thermal stability is induced.\[8\] Owing to moderate electric conductivity (in the order of 0.1 mS cm\(^{-1}\)) combined with a low viscosity, PEG-substituted ILs can be excellently applied as electrolytes in electronic devices.\[9\] Moreover, the possibility of interacting with (in)organic cations and small molecules enables PEG chains to coordinate and conduct protons; and thus, they find application in gas separation membranes\[10\] and in the synthesis and stabilization of nanoparticles.\[11\]

Based on our experience with saturated and unsaturated, imidazolium-based ILs,\[12,13\] we herein report new synthetic strategies as well as characterization and reactivity studies of asymmetrically substituted ILs. Combining advantages of aryl and PEG-substitution, we developed \(N\)-polyaryl and \(N\)-PEG\(_n\) (\(n = 2, 3, 4\)) substituted imidazolium salts (with PEG\(_n\) = (−CH\(_2\)−CH\(_2\)−O\(_n\))−CH\(_2\)). For interaction or adsorption of these salts on a solid support, the attachment of an appropriate linker functionality (L) at the phenyl moiety was required (Figure 1).

This protocol leads to an IL with the general abbreviation \([LPh\text{-Im}^m\text{'-R}^n\text{][A}]\) (\(Ph = 1,4\)-phenylene, \(m = 2, 3\); \(R = \text{PEG}_n\), \(C_{12}H_{25}\); \(n = 2, 3\); \(A = \text{anion}\)). Due to their composition, these types of imidazolium salts can provide the opportunity to link a surface and a catalytically active site via electron transfer along the aryl chain.

Aryl-alkyl substituted ILs, similar to the imidazolium salts presented herein, are also reported in literature, for example as tunable aryl alkyl ionic liquids (TAAILs);\[14\] notably, some biphenyl-functionalized imidazolium salts are also known for ionic liquid crystalline behavior, when substituted with long alkyl chains at the aryl and/or imidazole moiety.\[15\] So-called ionic liquid crystals (ILCs) – combining ionic liquids (see above) and liquid crystals properties (dynamic molecular order, anisotropic physical properties, etc.) – are coveted materials for organized or ion-conductive processes.\[16\]

Providing reactivity for potential (electro)chemical catalysis, transition metal complexes with N-heterocyclic carbene (NHC) ligands are promising and well-known examples.\[17\] The complexes described herein include mainly first-row divalent transition metals (Mn\(^{II}\), Fe\(^{III}\), Co\(^{II}\), Ni\(^{II}\), Zn\(^{II}\)) as well as the monovalent group 11 metals (Cu\(^{I}\), Ag\(^{I}\), Au\(^{I}\)), based on the [BPh\(_4\)Im\(^m\text{PEG}_n\)]\(_2\) and [NCPh\(_3\)Im\(^m\text{PEG}_n\)]\(_2\) ILs as carbene precursors.

In order to model the surface behavior of an immobilized IL (e.g. on TiO\(_2\)), we implemented a homogenous model system for structural and chemical studies. For that purpose, we developed imidazolium salts with a linker group supported by titanium in a 2:1 fashion (IL:Ti); i.e., one Ti(IV) center is coordinated by the linker of two imidazolium salts. Using the [HOPh\(_2\text{Im}^m\text{C}_{12}\text{H}_{25}\)]\(_2^+\) salt, the phenolate functionality is coordinated to a titanium precursor resulting in a [[(OPh)\(_2\)Ti(OPh)\(_2\text{Im}^m\text{C}_{12}\text{H}_{25}\)]\(_2]^-1\) complex (21) (OPh = pyridin-2-ylmethanolate). In contrast to surface adsorbed ILs, these complexes can be easily characterized regarding their structural and electronical properties. Moreover, an additional transition metal (e.g. iron) can be introduced via transformation of the imidazolium salt to a NHC ligand (22).

Results and Discussion

\section*{N-Polyaryl \(N\)-alkyl substituted imidazolium salts}

\subsection*{Synthesis}

The synthetic route to all imidazolium salts described herein is based on \(C\text{-}C\text{-}C\text{-}N\) cross-coupling strategies and alkylation reactions (Scheme 1). In order to simplify the reaction scheme, all protecting and deprotecting steps are omitted for clarity (for details, see Supporting Information).

The \(N\)-(bromophenyl)imidazole and \(N\)-(bromo[1,1']biphenyl)imidazole starting materials were synthesized according to slightly modified literature protocols, using a Radziszewski ring closure\[14a,19\] and an Ullmann cross-coupling reaction\[20\] respectively. The desired linker functionality and the elongated aryl chain are introduced by Suzuki-Miyaura cross-coupling reactions of the corresponding para-functionalized phenyl boronic acids.\[21\] Therefore, [Pd(dppf)\(_2\)Cl\(_2\)]\(_2\)-CH\(_2\)Cl\(_2\) (dppf = 1,1'-bis(dipheny1phosphino)ferrocene) or [Pd(PPh\(_3\))\(_2\)]\(_2\) (PPh\(_3\) = triphenylphosphine) were used as catalysts in THF/H\(_2\)O mixtures and potassium carbonate as a base. Alkylation of the \(N\)-
Spectroscopy as well as differential scanning calorimetry (DSC) and characterized by Scheme 1.

As known from other substituted bi- and terphenyl compounds,[20] the molecular structures of all cations exhibit a torsion along the polyaryl chain, independently observable from other substituents of the salt. In some imidazolium salts, the imidazolium entity and the second phenyl ring are arranged almost co-planar with a deviation between 6° (for 2-PF6) and 17° (for 4). Nevertheless, the putative extended, delocalized π system is reduced by a weaker overlap of the π* orbitals. However, a plane can be defined by the imidazolium entity and the in-line located quarternary carbon atoms of the biphenyl chain as well as the linker functionality. The PEG6 substituents of the imidazolium moieties are orientated in a tortuous fashion and, therefore, prevent the common determination of the ILs’ overall shape (rod-, V-, or U-shape).[14,16] This non-linearity of PEG chains is well known in literature, and is explained by repulsive interactions between the oxygen electron lone pairs of neighboring ether groups.[21]

In the solid-state structure of [BrPh,Im6PEGn][A] (Figure 2, left), the PEG substituent is not only twisted within the Im–Ph plane (see above) but also protrudes from it with an angle of 80° (Im, centroid–N–CH2–CH2). The Ph–Ph and Im–Ph torsion angles are determined to ~26° and ~23°. Each imidazolium cation interacts with two surrounding anions via hydrogen bonding (interactions defined as the distance equal or less than the sum of the van-der-Waals radii) with distances of 2.84 Å (C(1)–H–A) and 3.02 Å (C(3)–H–A). The iodide is situated slightly shifted towards the PEG chain and in front of the imidazolium ring. Hence, hydrogen bonding is also possible between one proton of the PEG2–CH3 (next to the imidazolium moiety) and the iodide (3.17 Å).

In the crystal packing diagram (Figure 2, bottom left), the compounds are arranged antiparallel along the crystallographic a and b axis with an inversion center (i) located between two layers. The imidazolium salts of alternating layers are shifted against each other that, exclusively, the non-directly bonded phenyl ring is lying one upon the other. However, π–π stacking of the phenyl rings with a typical distance of 3.3–3.8 Å, as reported in literature, could not be observed.[26]

[BrPh,Im6PEGn][PF6] (2-PF6) crystallizes with two independent ion pairs per unit cell. In these molecular structures (Figure 2, right), the torsion angles of the aromatic part can be determined to 31.6° (Im–Ph) and 38.4° (Ph–Ph), respectively. Similar to compound 1, the PEG substituent of 2-PF6 points out of the Ph–Im plane but interacts with the imidazolium moiety via Im–O interactions due to its enhanced flexibility and chain length.[14,25] This also justifies the larger torsion angles of 2-PF6 by Ph–PPh repulsion compared to imidazolium salt 1, which has a shorter PEG substituent. The "capped" arrangement of the PEG, (polyphenyl)imidazole with the respective alkyl or PEG, iodide, in toluene or acetonitrile, yields the desired ILs 3–6, 8, 9, and 11. Note, the use of alkyl chlorides or bromides leads to unsatisfying reaction yields. All bromide substituted imidazolium salts (1, 2-I, 7, 10) were synthesized via direct alkylation of N-(bromo[1,1′]biphenyl)imidazole. Anion exchange of the iodide salts was carried out in organic media with the corresponding -(bromo[1,1′]biphenyl)imidazole. Anion exchange of the iodide

![Scheme 1. Synthetic routes to all prepared imidazolium salts [LPh,Im6][A].](image)
chain above the imidazolium cation prevents further interaction from this side and additionally affects the position of the anion in the crystal structure by electronic and steric repulsion. Hence, the PF₆⁻ is situated slightly shifted downwards in front of the imidazolium entity. As observed in the crystal packing (Figure 2, bottom right), one cation interacts with two surrounding anions via hydrogen bonding of the C(1)–H (2.31 Å) and various PEG–CH₃ protons (2.40 Å–2.92 Å). Except the position and length of the PEG₃ chain, the crystal packing of 2-PF₆ is similar to 1, also providing an inversion center (i) between alternating layers.

[BrPh₂Im⁺PEG₃]⁺ (2-I) and [EtO₂CPh₂Im⁺PEG₃]⁺ (4) have comparable molecular structures (Figure 3, top) and, therefore, are discussed jointly. The molecular structures of both salts show similar Ph–Ph torsion angles of 21.8° (for 2-I) and 21.5° (for 4) and Im–Ph torsion angles of 16.9° (for 2-I) and 16.9° (for 4), respectively. The PEG₃ chain in both compounds lies in-plane with the imidazolium moiety and partially shields the cation from the backside due to Im−O interactions. The 1⁻ counter-anion of 2-I and 4 is in-plane with the imidazolium cation situated slightly shifted towards the PEG₃ chain. Thus, each anion lays amidst two surrounding cations and interacts via hydrogen bonding with the C(1)–H and C(3)–H protons as well as with adjacent PEG₃ protons (2.92 Å–3.18 Å).

The crystal packing diagrams of 2-I and 4 (Figure 3, bottom) distinguish in orientation of the compounds but are similar in the arrangement. The ion pairs of two successive layers (exemplified for 2-I) are arranged parallel along the crystallographic a axis and rotated by 35° (41° for 4) within the bc plane; thus, the PEG₃ chains point in the same but twist in different directions. The ion pair in the second layer is slightly shifted resulting in a visual stack of the IL’s first phenyl ring.

In conclusion, the molecular structures and the crystal packing of the biphenyl and PEG₃-substituted imidazolium salts (1, 2-I, 2-PF₆, 4) are less affected by the biphenyl-linker moiety. Unexpectedly, the length of the PEG₃ chain has a significant impact on the molecular structure due to possible Im−O attractive interactions as well as O−O and O−anion repulsion. The anion, however, has only a minor influence.

Thermochemical properties

The thermochemical properties, such as melting temperature (T_m), heat capacity (∆C_p) as well as enthalpy (∆H) and entropy of fusion (∆S) were determined by DSC, and the decomposition temperature (T_d) was established by TGA. The thermochemical data of all compounds are summarized in Table 1.

The imidazolium salts 1–4 and 6–8, as well as 10 and 11 exhibit melting temperatures in the range of 51.1–176.4°C. However, only compounds 2-BF₆, 2-PF₆, 6, 7, and 11-PF₆ are genuine ILs and melt below 100°C. The melting temperature cannot be determined for [MeSPh₂Im⁺PEG₃]⁺ (9), which decomposes before melting. In addition, polymorphism[20] can be observed for compounds 2-I and 10 with solid-solid transitions between 54.2 and 111.8°C. In contrast, for some imidazolium salts the crystallization process is suppressed, which often results in a supercooled liquid and, finally, in a glass transition. Notably, in [BrPh₂Im⁺PEG₃][BF₄] (2-BF₄) and [HOPh₂Im⁺PEG₃] (5), this glassy state is stable over all successive cycles. For other imidazolium salts (for instance 2-PF₆ and 7) a cold crystallization process is observed upon heating preceding the melting.

Remarkably, both C₁₂-substituted imidazolium salts [HOPh₂Im⁺C₁₂][A] (11-I, 11-PF₆) exhibit liquid crystalline behav-

Figure 2. Solid-state molecular structures (top) and crystal packing diagrams (bottom) of [BrPh₂Im⁺PEG₃]⁺ (1) and [BrPh₂Im⁺PEG₃][PF₆] (2-PF₆) (right), with crystal packing diagrams viewed along the crystallographic b axis (for 1) and a axis (for 2-PF₆); color code: C – grey, H – white, N – dark blue, O – dark red, Br – red, P – dark magenta, F – green, I – cyan.
Figure 3. Solid-state molecular structures (top) and crystal packing diagrams (bottom) of [BrPhImHPEG]I (2-I) (left) and [EtO2CPhImHPEG]I (4) (right) with crystal packing diagrams viewed along the crystallographic b axis (for 2-I) and c axis (for 4); color code: C – grey, H – white, N – dark blue, O – dark red; Br – red, I – cyan.

Table 1. Transition temperatures, enthalpies of fusion, entropies of fusion, and decomposition temperatures determined by DSC and TGA measurements of all asymmetrically substituted ILs 1–13. Temperatures given below were obtained by recording the onset temperatures of the 2nd heating cycle; Cr = crystalline phase, I = isotropic phase, glass = glass transition, LC = liquid crystalline phase, cold cryst. = cold crystallization.

IL	Phase Transition[a]	T_transition/°C	ΔH/kJ mol⁻¹	ΔS/J mol⁻¹ K⁻¹	ΔCp/J g⁻¹ K⁻¹	Td/°C [b]
1	Cr–I	136.7	27.3	66.6		290.7
2-I	Cr–Cr	111.8	0.877	2.28		291.3
	Cr–I	133.1	9.91	24.4		
2-BF₄	glass – I(a)	– 10.5			0.308	293.0
2-PF₆	glass – I	0.3			0.375	271.1
	cold cryst.	27.2	– 17.1	– 90.6		
	Cr–I	61.5	13.1	39.1		
3	glass – I	7.8			0.514	266.3
	cold cryst.	72.7	– 33.0	– 95.4		
	Cr–I	140.0	32.4	78.4		
4	cold cryst.	57.3	– 22.4	– 67.8		
	Cr–I	107.3	27.3	71.8		
5	glass – I	9.4			0.307	271.3
6	glass – I	– 21.7			0.294	293.6
	Cr–I	75.9	5.59	16.0	0.504	278.2
7	glass – I	– 5.4				
	cold cryst.	30.8	– 11.5	– 37.8		
	Cr–I	51.5	8.84	27.2		
8	Cr–LC	111.5	16.6	43.1		273.6
	LC–I	127.8	1.91	4.77		
9	–	–	–	–		281.7
10	Cr–Cr	54.2	8.29	25.3		279.3
11-I	Cr–LC	176.4	32.8	72.9		
	LC–LC	114.8	15.8	40.6		294.4
	LC–I’	165.9	5.61	12.8		
	LC–I	187.7	3.05	6.63		
11-PF₆	Cr–LC	98.9	15.8	42.5		
	LC–LC	149.9	4.39	10.2		
	LC–I	174.6	2.12	4.73		

[a] DSC and TGA traces of all compounds can be found in the Supporting Information (Figure S7–16). [b] [BrPhImHPEG][BF₄] (2-BF₄) melts at 58.8 °C (ΔH = 14.9 kJ mol⁻¹) during the first heating period and remains in the glassy state during the successive cycles. [c] because of HF formation and subsequent damage to the thermocouple, thermal stability was not determined for fluorine containing compounds.
imidazolium salts show tendency to decompose at lower temperatures compared to the biphenyl-substituted salts. The decomposition temperature in this series of imidazolium salts is mainly depending on the aromatic substituent at para-position, and increases as follows: HO− < NC− < EtO2C− < Br− < MeS−.

N-Diaryl N’-alkyl substituted N-heterocyclic carbene complexes of mono- and divalent transition metals

Synthesis

The NHC complexes reported herein comprise the transition metals MnI (12), FeI (13), CoI (14, 15), NiI (16), ZnI (17), CuI (18), AgI (19), AuI (20), and were synthesized starting from [LPh3]2I (L = Br, CN; R = PEG3, C2H5; n = 2, 3) (1–3, 10) (Scheme 2).

The imidazolium C(1)–H position of the respective salt was deprotonated by potassium hexamethyldisilazide, KN(SiMe3)2, in THF; the resulting precipitate was filtered off and added to a suspension of the respective metal halide in THF. Alternatively, all divalent metal complexes 12–17 can be synthesized via transmetallation of the AgNHC complex with the desired metal(II) halide in dichloromethane. Complexes 12–20 were characterized by CHN elemental combustion analysis, 1H and 13C NMR spectroscopy. The paramagnetic complexes 12–15 were further studied by SQUID magnetometry as well as X-band EPR and 59Fe Mössbauer spectroscopy, where appropriate.

Solid-state molecular structures

Crystals of 12–17 and 19, suitable for SC-XRD analysis, were obtained via vapor diffusion of either tetrahydrofuran/n-pentane or dichloromethane/diethyl ether. All complexes crystallize in the triclinic space group P1̅ (for details see Supporting Information).

For this type of complex, three coordination geometries are obtained: linear, square planar, and tetrahedral. The solid-state molecular structure of 19 (Figure 4, left) shows the coordination of two BrPh3ImPEG3 carbene ligands to a AgI center, resulting in the linear, coordinatively saturated, catonic bis-NHC complex 19; a complex [AgCl2]+ entity forms the counteranion. This type of molecular structure is well-known in the literature.29 Unexpectedly, both carbene ligands are arranged in a bent

[Scheme 2. General synthetic pathway of mono- and divalent transition metal-NHC complexes.]
iodido ligands are bound mutually coordinated in a square planar geometry. Both carbene and fashion with an angle χ of 170.9(2)$^\circ$. This might be due to electronic and steric repulsive interactions between the ary1 substituent. The imidazolylidene moieties are close to coplanar with a deviation of 10$^\circ$. The additional repulsion of each PEG, and ary1 substituents might also explain the slightly elongated Ag–C$_{\text{carbene}}$ distances of 2.100(4) Å and 2.104(4) Å compared to literature-reported values (d_{av}(Ag–C$_{\text{carbene}}$) = 2.081 Å).$^{[110]}$ The close-to-linear [AgCl$_2$] anion (χ = 174.03(4)$^\circ$) is associated through Ag–Ag interaction with a Ag–Ag distance of 3.1364(5) Å. $^{[31]}$ The average Ag–Cl bond length is 2.336(2) Å.

As often reported for bis-NHC Ni11 dihalide complexes, the Ni11 center in主人公(C$_{\text{imPEG}}$)Ni12 (Figure 4, middle) is coordinated in a distorted tetrahedral fashion; the PEG$_{\text{sym}}$ chains point in opposite directions, likely due to steric and electronic repulsion. In order to study the influence of the NHC's side chains, an exchange of the PEG$_{\text{sym}}$ moieties in the Co$_{\text{sym}}$ complex 14 by dodecyl substituents was implemented. In contrast to the PEG$_{\text{sym}}$-substituted NHC complexes – with almost equal χ-$\text{C}_{\text{carbene}}$–$M$–$\text{C}_{\text{carbene}}$ and χ–M–X angles (max. difference of 5$^\circ$) – the Co$_{\text{sym}}$-substituted one shows a significant distortion of the tetrahedron (χ-$\text{C}_{\text{carbene}}$–$\text{Co}$–$\text{C}_{\text{carbene}}$ = 121.2(2)$^\circ$, χ–Br–Co–Br = 110.42(2)$^\circ$). Selected values of structural parameters are summarized in Table 2. For complexes 12–15 and 17 bond lengths and angles are in good agreement with reported literature values.$^{[35a,36]}$ However, in the molecular structure of 13, the observed Fe–C$_{\text{carbene}}$ bond (2.128(3) Å) is slightly shorter compared to other known bis-NHC iron(II) halide complexes (d_{av}(Fe–C$_{\text{carbene}}$) = 2.149 Å)$^{[37]}$.

NMR spectroscopy of the diamagnetic bis-NHC complexes 16–20

Because of the complexes' C$_2$ symmetry, the 1H NMR spectra of complexes 16–20 (Figure S2–S6) show a set of signals for one carbene ligand. In the aromatic region, the biphenyl substituents give rise to 4 doublets between 7.88 and 7.37 ppm, whereas 2 doublets between 7.55 and 7.11 ppm can be assigned to the backbone protons of the imidazolylidene moiety. Additionally, a characteristic signal pattern for the PEG$_{\text{sym}}$ substituents can be observed in the aliphatic region, consisting of 2 pseudo-triplets, 1 singlet and various multiplets. The lack of a signal for C(1)–H as well as signals between 170–185 ppm for

Table 2. Selected structural parameters, bond lengths (Å) and angles ($^\circ$) for complexes 12–15 and 17.

	Complex 12 (Mn)	Complex 13 (Co)	Complex 14 (Co)	Complex 15 (Zn)	Complex 17 (Zn)
d_{av}(M–C$_{\text{carbene}}$)	2.206(3) Å	2.126(3) Å	2.061(6) Å	2.062(3) Å	2.064(2) Å
d_{av}(M–X)	2.366(2) Å	2.307(2) Å	2.425(2) Å	2.423(2) Å	2.316(0) Å
χ(C$_{\text{carbene}}$–M–C$_{\text{carbene}}$)	111.6(2)$^\circ$	108.7(2)$^\circ$	111.2(2)$^\circ$	121.1(2)$^\circ$	113.5(1)$^\circ$
χ(C$_{\text{carbene}}$–M–X)	109.7(1)$^\circ$	108.7(4)$^\circ$	110.6(2)$^\circ$	106.3(2)$^\circ$	109.8(4)$^\circ$
χ(X–M–X)	106.28(4)$^\circ$	107.66(3)$^\circ$	104.92(4)$^\circ$	110.42(2)$^\circ$	103.39(2)$^\circ$

X is defined as halide.
the C(1) atom in the 13C NMR spectra indicates a successful coordination to the metal center. Signals in the 1H NMR spectra for both protons of the imidazolylidene backbone and the biphenyl moiety are upfield-shifted compared to the 1H NMR spectra of the related imidazolium salt due to the omission of the positive charge and the increased electron density in the imidazolylidene entity. In case of the monovalent NHC complexes, this phenomenon is also observed for the protons of the directly bonded CH$_2$ groups in the PEG chain.

Magnetism of the bis-NHC Mn$^\text{II}$ 12

As expected, the Mn$^\text{II}$ complex 12 possesses an $S=5/2$ ground state for a tetrahedrally coordinated high-spin d5 metal center, experimentally confirmed by EPR spectroscopy at low temperature and SQUID magnetization measurements. The X-band EPR spectrum at 96 K (Figure 6, left) shows a broad, rhombic signal, simulated to $g_1=2.11$, $g_2=2.01$, and $g_3=1.88$. Hyperfine coupling to the 55Mn nucleus ($I=5/2$, 100%) is well resolved, with a coupling constant simulated to $A_1=233$ K. Temperature-dependent SQUID magnetometry of 12 (Figure 5, right, blue trace) exhibits an effective magnetic moment of 5.80 μ_B at room temperature ($\mu_{\text{eff}}=5.92$ μ_B). Upon cooling, the moment remains constant until 55 K. Simulation of the temperature-dependent VTWF susceptibility data reveals a zero-field splitting parameter, $|D|$, of 0.8 cm$^{-1}$, rhombicity, E/D, of 0.16 and an average g-value of 2.0, as expected for a d5, $S=5/2$ spin system.

Magnetism of the bis-NHC Fe$^\text{II}$ 13

The zero-field 57Fe Mössbauer spectrum of complex 13 (Figure 5, left), recorded at 77 K on a solid sample, features a quadrupole doublet with a quadrupole splitting, ΔE_Q, of 3.59 mm s$^{-1}$, and an isomer shift, δ, of 0.80 mm s$^{-1}$, characteristic for a high-spin Fe$^\text{II}$ complex with an $S=2$ ground state. This is confirmed by susceptibility measurements of 13 (Figure 5, right, red trace) with an effective magnetic moment of 4.97 μ_B at room temperature ($\mu_{\text{eff}}=4.90$ μ_B). The average g-value of 2.03 as well as the zero-field splitting parameter, $|D|$, of 7.24 cm$^{-1}$ and the remarkable high rhombicity, E/D, of 0.33 can be determined by global simulation of the data.

Magnetism of the bis-NHC Co$^\text{II}$ 14

The EPR spectrum of 14 (Figure 6, right) exhibits a rhombic signal with effective g-values of $g_1=4.65$, $g_2=2.80$, and $g_3=2.70$ at 7 K, which indicates an $S=3/2$ ground state for a high-spin d7 metal center. Hyperfine-coupling to the 59Co metal center (100%, $I=7/2$) is well resolved as an octet pattern with a coupling constant of $A_1=704$ MHz observed on the central g-value. The quartet ground state of 14 is also verified by susceptibility measurements (Figure 5, right, green trace) that exhibit an effective magnetic moment, μ_{eff}, of 4.29 μ_B at room temperature. Because of spin-orbit coupling, this moment deviates significantly from the spin-only value calculated for an $S=3/2$ spin system ($\mu_{\text{eff}}=3.87$ μ_B), which is often observed in divalent cobalt complexes.$^{[36a,38]}$ Simulations of the magnetization data give an average g-value of 2.21, a zero-field splitting parameter, $|D|$, of 7.26 cm$^{-1}$ as well as a rhombic contribution of electron density ($E/D \approx 0.23$).

Molecular titanium-phenololate complexes as models for Ti-supported imidazolium salts and their corresponding NHC complexes

In order to improve the possibilities of chemical and structural analysis of surface-immobilized ILs and their corresponding transition metal complexes, a structural motif was developed. This model system, consisting of a Ti(IV) center and [HOPh$\text{Im}^\text{3+}$$\text{C}_{2+}$]$^+$ (11) and its respective bis-NHC Fe complex, coordinated via its linker moiety, provides both a molecular example for ease of characterization and a mimic of a potential electro-active surface (e.g. TiO$_2$).

Figure 5. Zero-field 57Fe Mössbauer spectrum of 13 (left) and SQUID magnetization measurements of microcrystalline solid samples (right) of 12 (blue trace), 13 (red trace), and 14 (green trace). The solid lines represent the best global fits for $S=5/2$ (12, $\mu_{\text{ext}}=5.80$ μ_B, $S=2$ (13, $\mu_{\text{ext}}=4.90$ μ_B), and $S=3/2$ (14, $\mu_{\text{ext}}=4.29$ μ_B) spin systems (right) and 57Fe Mössbauer simulation parameters for 13 of $\delta=0.80$ mm s$^{-1}$, $\Delta E_Q=3.59$ mm s$^{-1}$, and $F_{\text{Isom}}=0.28$ mm s$^{-1}$ (left).
Synthesis

Starting from the [HOPh₂Im⁺C₁₂H₂₅]⁺ salt (11-I), the hydroxy linkers of two IL cations can be coordinated to the precursor complex [(OPy₂)₂Ti(OiPr)₂]⁻ (OPy = pyridin-2-ylmethanolate); thereby, exchanging both iso-propoxides by the imidazolium salt’s pheno- late moieties (Scheme 3). Subsequently, the resulting complex [(OPy₂)₂Ti(OPh₂Im⁺C₁₂H₂₅)]₂⁻ (21-I) can be coordinated to FeCl₂ via deprotonation of the imidazolium unit with lithium hexameth- yldisilazide, LiN(SiMe₃)₂, in tetrahydrofuran. Finally, the addition of the Fe precursor yields the heterodinuclear target complex [(OPy₂)₂Ti(OPh₂Im⁺C₁₂H₂₅)(FeI₂)]⁻ (22). In 22, the Ti ion is situated in an octahedral N₄O₂ coordination environment, whereas the tetrahedral Fe ion is bound to two NHCs and the remaining two halides. Anion exchange of 21-I is proceeded by either using different anions of the starting compound 11 or an anion metathesis of 21-I using the corresponding silver salt in dichloromethane.

The complexes 21 and 22 were characterized by CHN elemental combustion analysis and NMR spectroscopy. The paramagnetic Fe²⁺ complex 22 was further studied by SQUID magnetometry as well as ⁵⁷Fe Mössbauer spectroscopy.

Spectroscopic characterization of [(OPy₂)₂Ti(OPh₂Im⁺C₁₂H₂₅)(PF₆)₂]⁻ (21-PF₆)

The ¹H NMR spectrum of 21-PF₆ (Figure 7) features signals exclusively in the diamagnetic region that confirms the expected non-magnetic (S=0) ground state for Ti(IV) in complex 21 in solution. Because of the C₂ symmetry of 21, only 1 set of signals for each pyridin-2-ylmethanolate and imidazolium ligand can be observed. Each proton can be unambigu-
Spectroscopic and magnetic characterization of [(OPy)_2Ti(OPPhImC_6H_4)(FeL)] (22)

Upon coordination to iron, the UV/Vis electronic absorption spectrum of 22 (Figure S18, right) retains the bands at 228 nm (81980 M\(^{-1}\) cm\(^{-1}\)) and 297 nm (51990 M\(^{-1}\) cm\(^{-1}\)). This similarity to complex 21 indicates the preserved coordination of the phenolate linker to the titanium center, also confirmed by the lack of an OH stretching vibration around 3200 cm\(^{-1}\) in the IR vibrational spectrum of 22 (Figure S19, right).

The solid-state \(^{57}\)Fe Mössbauer spectrum of 22 (Figure 8, left), recorded at 77 K, exhibits a single quadrupole doublet with an isomer shift, \(\delta\), of 0.77 mm s\(^{-1}\) and quadrupole splitting, \(\Delta E_Q\), of 3.08 mm s\(^{-1}\). Susceptibility measurements of complex 22 feature an effective magnetic moment of 5.1 \(\mu_B\) at 300 K, which is slightly higher than the spin-only value (0.77 mm s\(^{-1}\)) due to spin-orbit coupling. Simulation of the SQUID data (Figure 8, right) revealed the zero-field splitting parameter \(|D| = 9.7\) cm\(^{-1}\), a remarkable rhombicity \((E/D = 0.28)\) as well as an average g-value of 2.09. Both methods show characteristic parameters for a well-isolated high-spin Fe\(^{II}\) complex \((S = 2)\) that suggested an electronic and structural similarity to the bis-NHC Fe\(^{II}\) complex 13 \((\delta = 0.80\) mm s\(^{-1}\), \(\Delta E_Q = 3.59\) mm s\(^{-1}\)).

Electrochemical studies

Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) (Figure 9, Figure S26) of complex 21-I were conducted in order to investigate possible redox processes of the complex. The CV, measured in acetonitrile with [Fe(Cp)]\(^{+}\) as internal standard, shows three quasi-reversible redox events at \(-1.85\) V, \(-0.18\) V, and \(0.25\) V. At \(-0.18\) V, and \(0.25\) V, both iodide counter anions of the complex are oxidized in a four- and two-electron step,
The redox event at \(-1.85\) V occurs as a one-electron reduction and can be assigned to a \(\text{Ti}^{2+} \rightarrow \text{Ti}^{3+}\) redox pair.

The CV of 22 show multiple redox transitions of complex nature. Hence, their assignment is challenging and needs to be further studied.

Conclusion

Herein, we present a scalable synthetic route to asymmetric \(N\)-polyaryl and \(N\)-alkyl substituted imidazolium salts that is independent from the polyaryl chain length and suitable for most types of aryl substituents. These imidazolium salts, namely \([L\text{Ph}_2\text{Im}^\text{R}[\text{A}]] (m = 2, 3; R = \text{PEG}_n\text{C}_6\text{H}_{12}^–; n = 2, 3; \text{A} = \text{anion}) (1-11)\), with a linker moiety for potential surface adsorption, show characteristic thermal properties, such as polymorphism and glass transitions. Additionally, some imidazolium salts (8, 11-4, 11-\text{PF}_6) show liquid crystalline behavior suitable for application for example in dye-sensitized solar cells or as templates for the synthesis of nanomaterials or mesoporous materials.\(^{17,24}\) However, the transition to the mesophase occurs at relatively high temperatures, which may limit their application. The decomposition temperatures of the imidazolium salts 1–11 can be observed between 266 and 294 °C, mainly depending on the \(\text{para}\)-substituent of the aryl chain. Contrasting, the molecular structure of these types of imidazolium salts, studied by 1, 2-I, 2-\text{PF}_6, and 4, is mainly influenced by the length of the \(\text{PEG}_n\) substituent. Due to electronic \(O \rightarrow O\) repulsive and \(\text{Im} \rightarrow O\) attractive interactions, for example the twisted \(\text{PEG}_n\) chain can arrange protectively above or behind the imidazolium entity and influence the position of the anion, the torsion angle of the biphenyl moiety as well as the arrangement within the crystal packing.

On the basis of these imidazolium salts, a series of first-row transition metal and thermal 11 metal \(\text{bis-NHC}\) complexes were presented. These complexes are based on \([\text{BrPh}_2\text{Im}^\text{PEG}_n]\) and \([\text{NCPh}_2\text{Im}^\text{PEG}_n]\) salts as carbene precursors and include the divalent transition metals Mn\(^{II}\), Fe\(^{III}\), Co\(^{III}\), Ni\(^{II}\), and Zn\(^{II}\) (complexes 12–17) as well as the monovalent group 11 metals Cu\(^{I}\), Ag\(^{I}\), and Au\(^{I}\) (complexes 18–20). These complexes coordinate in 3 different geometries: linear (Ag\(^{I}\)), square planar (Ni\(^{II}\)) and distorted tetrahedral (Mn\(^{II}\), Fe\(^{III}\), Co\(^{III}\), Zn\(^{II}\)).

The arrangement of the ligands and the degree of distortion is mainly affected by the nature of the aliphatic carbene substituents. The transition metal complexes 12–20 show typical parameters regarding their magnetic and spectroscopic characterization.

In addition, the complexes \([\text{OPy}_2\text{Ti(OPh)_2\text{Im}^\text{C}_6\text{H}_{12}}]^\text{I} \text{A}_2\) (21, A = \(\text{I}, \text{PF}_6\)) and \([\text{OPy}_2\text{Ti(OPh)_2\text{Im}^\text{C}_6\text{H}_{12}}]\text{Fe}_{1/3}\) (22) were developed as a homogeneous model system for surface adsorbed ILs. Despite the lack of an X-ray crystal structure determination, complexes 21 could be clearly identified by the assignment of signals in the NMR spectroscopic characterization. The titanium-bridged Fe\(^{III}\) \(\text{bis-NHC}\) complex 22, however, shows characteristic parameters in \(^{57}\text{Fe}\) Mössbauer spectroscopy and SQUID magnetization data.

Deposition Numbers CCDC-2122936 (for 1), CCDC-2122937 (for 2-I), CCDC-2122938 (for 2-\text{PF}_6), CCDC-2122939 (for 4), CCDC-2122940 (for 12), CCDC-2122941 (for 13), CCDC-2122942 (for 14) CCDC-2122943 (for 15), CCDC-2122944 (for 16), CCDC-2122945 (for 17), and CCDC-2122946 (for 19) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Acknowledgements

V.S. would like to thank Alexander Bergen for the preparation of \([\text{MeSPh}_2\text{Im}^\text{PEG}_n]\) according to the herein reported procedure. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431791331 – SFB 1452, the Cluster of Excellence Initiative “Engineering of Advanced Materials” (https://www.eam.uni-erlangen.de) at FAU, the Bundesministerium für Bildung und Forschung (BMBF; MANGAN and PromethH2eus, BMBF support codes 03SF0502 and 03HY1051, respectively), and the FAU. Open Access funding enabled and organized by Projekt DEAL.
The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: carbene ligands · electronic structure · ionic liquids · solid-state structure · thermal properties

[1] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 2000, 39, 3772–3789; Angew. Chem. 2000, 112, 3926–3945.
[2] J. S. Wilkes, P. Wasserscheid, T. Welton, in Ionic Liquids in Synthesis, (Eds.: P. Wasserscheid, T. Welton), Wiley-VCH, Weinheim, 2008.
[3] a) X. Wang, M. Sternberg, F. T. U. Kohler, B. U. Melcher, P. Wasserscheid, K. Meyer, RSC Adv. 2014, 4, 12476–12481; b) C. M. Gordon, J. D. Holbrey, A. R. Kennedya, K. R. Seddonna, J. Mater. Chem. 1998, 8, 2627–2636; c) C. J. Bradaric, A. Downard, C. Kennedy, A. J. Robertson, Y. Zhou, Green Chem. 2003, 5, 143–152; d) K. Lava, K. Binnewm, T. Cardinaels, T. Cardinaels, J. Phys. Chem. B 2009, 113, 9506–9511; e) K. Goossens, K. Lava, P. Nockemann, K. Rupp, I. Krossing, T. Strassner, T. Strassner), Wiley-VCH, Weinheim, 2008.
[4] N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2007, 37, 123–150.
[5] S. Lee, Chem. Commun. 2006, 1049–1063.
[6] P. Nockemann, B. Thijis, S. Pittos, J. Thoen, C. Germaine, K. Van Hecke, L. Van Meervelt, K. Driesen, C. Gorlier-Walrand, K. Binnewn, T. Cardinaels, Chem. Eur. J. 2009, 15, 656–674.
[7] a) M. Jansen, a) C. A. Hunter, J. K. M. Sanders, Adv. Synth. Catal. 2008, 350, 422–425; b) M. Döbbelin, I. Osswald, Angew. Chem. 2007, 50, 19506–19511; e) K. Goossens, K. Lava, P. Nockemann, K. Rupp, I. Krossing, T. Strassner, T. Strassner), Wiley-VCH, Weinheim, 2008.
[8] T. Sato, G. Masuda, K. Takagi, Electrochim. Acta 2004, 49, 3603–3611.
[9] a) W. Xu, C. A. Angell, Science 2003, 302, 422–425; b) M. Döbbelin, I. Aazebou, M. Beda, A. R. de Luzuriaga, A. Genua, V. Jovanovski, G. Cabanero, I. Odirozola, Chem. Mater. 2012, 24, 1583–1590; c) L. N. V. R. Nanapathibhata, J. Zheng, D. Roy, S. Krishnan, Phys. Chem. Chem. Phys. 2008, 10, 6301–6312; e) B. Winther-Jensen, K. Fraser, C. Ons, M. Forsyth, D. R. MacFarlane, Adv. Mater. 2010, 22, 1727–1730.
[10] a) H. S. Schrekker, M. A. Geleksy, M. P. Stacke, C. M. Schrekker, R. S. Gonçalves, J. Dupont, J. Braz. Chem. Soc. 2019, 18, 426–433; c) Y. Zhao, J. Wang, H. Jiang, Y. Hu, J. Mol. Liq. 2014, 196, 314–318.
[11] a) W. XU, C. A. Angell, Science 2003, 302, 422–425; b) M. Döbbelin, I. Aazebou, M. Beda, A. R. de Luzuriaga, A. Genua, V. Jovanovski, G. Cabanero, I. Odirozola, Chem. Mater. 2012, 24, 1583–1590; c) L. N. V. R. Nanapathibhata, J. Zheng, D. Roy, S. Krishnan, Chem. Mater. 2010, 22, 6347–6360; d) L. C. Branco, J. N. Rosa, J. M. Ramos, C. A. M. Alfonsa, Chem. Eur. J. 2002, 8, 3671–3677; e) Z. B. Zhou, H. Matsumoto, K. Tatsunami, Chem. Eur. J. 2006, 12, 2196–2212.
[12] a) J. E. Bara, C. J. Gabriel, S. Lessmann, T. K. Carlisle, A. Finotello, D. L. Rin, G. Noble, Ind. Eng. Chem. Res. 2007, 46, 5380–5386; b) G. D. Smith, D. Borudin, L. Li, K. Kim, Q. Liu, E. J. Bara, D. L. Rin, G. Noble, Phys. Chem. Chem. Phys. 2008, 10, 6301–6312; d) E. F. Stahl, J. Dupont, J. Braz. Chem. Soc. 2019, 18, 426–433; c) Y. Zhao, J. Wang, H. Jiang, Y. Hu, J. Mol. Liq. 2014, 196, 314–318.
[13] a) H. S. Schrekker, M. A. Geleksy, M. P. Stacke, C. M. Schrekker, R. S. Gonçalves, J. Dupont, J. Braz. Chem. Soc. 2019, 18, 426–433; c) Y. Zhao, J. Wang, H. Jiang, Y. Hu, J. Mol. Liq. 2014, 196, 314–318.
[14] a) X. Wang, F. W. Heinemann, M. Yang, B. U. Melcher, M. Fekete, A. V. Mudring, P. Wasserscheid, K. Meyer, Chem. Commun. 2009, 7405–7407; b) X. Wang, C. S. Vogel, F. W. Heinemann, P. Wasserscheid, K. Meyer, Cryst. Growth Des. 2011, 11, 1974–1984; c) O. Seelinger, T. Schulz, S. Ahrens, D. Meyer, T. Strassner, Chem. Asian J. 2011, 6, 863–867; b) S. Stolte, T. Schulz, C.-W. Cho, J. Arning, T. Strassner, ACS Sustainable Chem. Eng. 2013, 1, 410–418; c) M. Kaliner, A. Rupp, I. Krossing, T. Strassner, Chem. Eur. J. 2016, 22, 10044–10049; d) D. H. Zaisu, M. Kaliner, S. Lerch, T. Strassner, V. N. Emelyanenko, S. P. Verevkin, Z. Anorg. Allg. Chem. 2017, 643, 114–119; e) S. Lerch, T. Strassner, Chem. Eur. J. 2019, 25, 16251–16256; f) F. Schroeter, J.
[35] a) M. H. Al-Afyouni, V. M. Krishnan, H. D. Arman, Z. J. Tonzetich, Organometallics 2015, 34, 5088–5094; b) K. Matsubara, T. Sueyoshi, M. Esaki, A. Kumamoto, S. Nagao, H. Yamamoto, Y. Koga, S. Kawata, T. Matsumoto, Eur. J. Inorg. Chem. 2012, 3079–3086; c) K. Matsubara, A. Kumamoto, H. Yamamoto, Y. Koga, S. Kawata, J. Organomet. Chem. 2013, 727, 44–49.

[36] a) J. A. Przyojski, H. D. Arman, Z. J. Tonzetich, Organometallics 2013, 32, 723–732; b) T. E. Iannuzzi, Y. Gao, T. M. Baker, L. Deng, M. L. Neidig, Dalton Trans. 2017, 46, 13290–13299; c) K. A. Smart, A. Vanbergen, J. Lednik, C. Y. Tang, H. B. Mansaray, I. Siewert, S. Aldridge, J. Organomet. Chem. 2013, 741–742, 33–39; d) J. Chai, H. Zhu, Y. Peng, H. W. Roesky, S. Singh, H.-G. Schmidt, M. Noltemeyer, Eur. J. Inorg. Chem. 2004, 2673–2677.

[37] a) K. L. Fillman, J. A. Przyojski, M. H. Al-Afyouni, Z. J. Tonzetich, M. L. Neidig, Chem. Sci. 2015, 6, 1178–1188; b) J. Louie, R. H. Grubbs, Chem. Commun. 2000, 1479–1480; c) J. J. Dunsford, I. A. Cade, K. L. Fillman, M. L. Neidig, M. J. Ingleson, Organometallics 2013, 33, 370–377; d) J. A. Przyojski, H. D. Arman, Z. J. Tonzetich, Organometallics 2012, 37, 3264–3271; e) T. Hashimoto, S. Urban, R. Hoshino, Y. Ohki, K. Tatsumi, F. Glorius, Organometallics 2012, 31, 4474–4479.

[38] a) E. M. Zolnhofer, M. Käß, M. M. Khusniyarov, F. W. Heinemann, L. Maron, M. van Gastel, E. Bill, K. Meyer, J. Am. Chem. Soc. 2014, 136, 15072–15078; b) M. Käß, J. Hohenberger, M. Adelhardt, E. M. Zolnhofer, S. Mossin, F. W. Heinemann, J. Sutter, K. Meyer, Inorg. Chem. 2014, 53, 2460–2470.

[39] a) T. J. Boyle, R. M. Sewell, L. A. M. Ottley, H. D. Pratt III, C. J. Quintana, S. D. Bunge, Inorg. Chem. 2007, 46, 1825–1835.

[40] a) A. I. Popov, D. H. Geske, J. Am. Chem. Soc. 1958, 80, 1340–1352; b) R. T. Iwamoto, Anal. Chem. 1959, 31, 955; c) I. S. El-Hallag, J. Chil. Chem. Soc. 2010, 55, 67–73.

[41] G. Bousrez, O. Renier, B. Adrianno, V. Smetana, A.-V. Mudring, ACS Sustainable Chem. Eng. 2021, 9, 8107–8114.