The multifaceted role of profilin-1 in adipose tissue inflammation and glucose homeostasis

Munkyong Pae and Giulio R Romeo*
Joslin Diabetes Center; Department of Medicine; Harvard Medical School; Boston, MA USA

Profilin-1 (PFN) is a small ubiquitous protein that can bind to: (1) G-actin, (2) phosphatidylinositol 4,5-bisphosphate, and (3) a heterogeneous group of proteins harboring poly-L-proline stretches. Through these interactions, PFN integrates signaling from a diverse array of extracellular cues with actin cytoskeleton dynamics. Cumulating evidence indicates that changes in PFN levels are associated and may play a pathogenic role in such inflammatory diseases as atherosclerosis and glomerulonephritis. We recently demonstrated that high fat diet (HFD) increases PFN expression in the white adipose tissue (WAT), but not in the liver or the muscle. PFN heterozygote mice (PFNHet) were protected against HFD-induced glucose intolerance, and WAT and systemic inflammation, when compared to PFN null mice. In addition to blunted accumulation of macrophages and reduced “pro-inflammatory” cytokines, the WAT of PFNHet exhibited preserved frequency of regulatory T cells. These findings suggest that PFN levels in WAT—both adipocytes and hematopoietic-derived cells—can modulate immune homeostasis within the WAT and glucose tolerance systemically. Here, we review the interaction of PFN with his diverse array of binding partners and discuss mechanisms that may underlie the effects of PFN dosage on insulin sensitivity and metabolic inflammation.

Introduction

It is estimated that obesity affects more than one-third of the US adult population with its prevalence steadily increasing also in children and adolescents. The worldwide social and economic burden of obesity has recently led the American Medical Association and other key medical societies to recognize obesity as an independent disease, rather than simply a risk factor for a growing list of ailments. These include, but are not limited to, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease, atherosclerosis, and obstructive sleep apnea.

The hypothesis has been set forth that the low-grade chronic inflammation observed in experimental models of obesity and in obese individuals may represent a common pathophysiological trait of obesity-associated abnormalities. As discussed below, several lines of investigations have helped define a dynamic cross-talk and possibly interdependence between the changes in the immune system and metabolic processes occurring in obesity and insulin resistance (IR), both systemically and at the tissue level (reviewed in ref. 4).

Tremendous progress has been attained in our understanding of the events fueling this “metabolic” inflammation, and the efficacy of therapies targeting candidate inflammatory pathways is being actively investigated in patients with obesity and T2DM. Yet, the molecular mechanisms responsible for immune cell recruitment in the adipose tissue and vascular wall upon high fat diet (HFD) remain largely elusive. In this context, we addressed the effect of profilin-1 in HFD-induced IR and adipose tissue inflammation.

The members of the profilin family (PFN-1, -2, and -3) are well conserved...
through lower and higher eukaryotes and were first characterized as small actin-binding proteins regulating the dynamics of actin polymerization. Profilin-1 (pfn) binds G-actin and stimulates the exchange of ADP to ATP on G-actin, thereby controlling the pool of ATP–actin in the cell. Additionally, pfn can bind to phosphoinositides (PI), including PI(4,5)-bisphosphate (PtdIns[4,5]P₂), and to poly-L-proline (PLP) stretches, which are harbored by a plethora of proteins with such diverse functions as membrane trafficking, GTPase signaling, and possibly transcriptional activity (reviewed in ref. 11). With regard to the latter, a small pool of pfn distributes to the nucleus, is actively shuttled back to the cytosol by exportin 6, and can regulate the activity of the transcription factor p42-36 in cultured cells. Although its significance is poorly understood, pfn nuclear localization is an enticing finding because it could represent a link between cytoskeletal dynamics and transcriptional activity or chromatin remodeling. Another relevant point in pfn cell distribution is that, despite the lack of a signal peptide, pfn can be secreted extracellularly, possibly in the context of small vesicles that originate from the multivesicular endosome called exosomes.

Effects of Pfn Dosage in Vascular and Adipose Tissue Inflammation

The extensive information regarding pfn’s function in cell physiology is not matched by a clear understanding of its role in disease. Initially, we became interested in pfn in the setting of a peptide-phage display library screening aimed at identifying proteins that were differentially expressed on the luminal surface of the aorta of diabetic rats, as compared with nondiabetic age-matched animals. We found that pfn expression was increased in the aortic...
endothelium of streptozotocin-diabetic rats, in endothelial cells (EC) exposed to oxidized cholesterol or oxidized LDL—but not to high glucose concentrations—and in atherosclerotic lesions. Of note, the lack of regulation by high glucose concentration was in apparent contrast with prior findings in mesangial cells. Also, pfn heterozygote mice (PfnHet) showed a marked reduction in atherosclerotic burden and macrophage accumulation in the vascular wall, when compared with pfn wild-type mice (PfnWT), and macrophages isolated from PfnHet displayed blunting of inflammatory pathways. Finally, we demonstrated that oxidized cholesterol was able to upregulate pfn expression in a STAT3-dependent manner in cultured EC and possibly in the aorta of diabetic rats.

The upregulation of pfn in response to oxidized lipids and the decreased accumulation of macrophages in PfnHet suggested that pfn haploinsufficiency exerted its anti-atherogenic phenotype, at least in part, by reducing vascular inflammation, which is triggered by macrophage recruitment into the nascent plaque due to unregulated lipid accumulation.

This low-grade inflammation in the vascular wall exhibits similarities with the chronic inflammation occurring in the expanding white adipose tissue (WAT) that may contribute to the pathogenesis of IR and T2DM. In addition to mature adipocytes, the WAT comprises other cell types, including preadipocytes, fibroblasts, vascular EC, and smooth muscle cells, and immune cells such as adipose tissue macrophages (ATMs) and T cells, which together constitute the stromal vascular fraction (SVF). Specifically, WAT expansion is accompanied by accumulation of ATMs with tremendous phenotypic heterogeneity and often displaying mixed M1/M2 features (reviewed in ref. 20). With regard to T cells, increased ratio of CD8+ to CD4+ T cells and decreased frequency of regulatory T cells (Treg) were observed in HFD-fed mice. Mounting evidence indicates that WAT-specific Treg provide cues that influence immune homeostasis in WAT, possibly by keeping inflammation in check upon HFD or in genetic models of obesity.

As mentioned above, PfnHet mice were protected against atherosclerosis. Because of the common underpinnings between vascular wall and WAT inflammation, we asked whether pfn could play a role in obesity-induced WAT inflammation. We found that HFD increased pfn expression in both adipocytes and SVF of epididymal WAT, but not in the liver or the muscle, and that pfn expression in WAT correlated with F4/80, an established marker for mature macrophages. PfnHet mice fed HFD were protected from glucose intolerance, and exhibited reduced ATM accumulation and serum proinflammatory cytokines, when compared with PfnWT mice. Of note, ATMs from PfnHet mice were biased toward a M2-like phenotype, which correlated with preserved Treg frequency (Fig. 2). No significant change in adipocyte size or number was noted in PfnHet mice. In humans, proteomic analysis of the subcutaneous adipose tissue of “old” (52.2 ± 4.7, mean age ± SD) vs. BMI-matched “young” (26.2 ± 4.3) obese individuals revealed that pfn was more abundant in adipocytes isolated from the older group.

So, how do pfn levels affect glucose tolerance and HFD-induced inflammation? Our findings suggest that pfn haploinsufficiency maintains WAT immune homeostasis by “skewing” ATM toward an anti-inflammatory M2-like phenotype, possibly as a result of an intact pool of Treg in the face of HFD. However, we are cognizant of the limitations of such interpretation in the setting of this model of whole-body pfn haploinsufficiency. Here, we discuss hypotheses that expand the results presented in our recent paper and that may contribute to the protective effects observed in PfnHet mice.

Pfn and WAT endothelial function

It has been proposed that IR contributes to the reduced production of nitric oxide (NO) in EC and to the endothelial dysfunction observed in patients with metabolic syndrome and T2DM. Reduced NO signaling, and overexpression of adhesion molecules and chemotactic factors are hallmarks of endothelial dysfunction that may accelerate inflammatory processes within the vascular wall. Pfn overexpression in cultured EC upregulated ICAM-1 expression and decreased NO signaling and increased EC adhesion to fibronectin receptor by increasing the recruitment of fibronectin to the plasma membrane. Also, the pro-atherogenic factor homocysteine increased pfn expression in human umbilical vein EC treated under laminar flow conditions. On the other hand, PfnHet mice (backcrossed on the atherosclerosis prone LDL-receptor deficient background) were protected against atherosclerosis and the decrease in NO signaling observed in PfnWT mice. In the vasculature, pfn can control NO signaling via at least 2 mechanisms: (1) the activation of eNOS and NO production in EC, and (2) the phosphorylation of VASP, which is a well-established downstream target of NO signaling in vascular smooth muscle cells but also a binding partner of pfn by virtue of its PLP stretches. The consequences of HFD or obesity on WAT capillary EC are poorly understood. Immune cell recruitment through extravasation at sites of inflammation requires a fine-tuned rearrangement of EC cytoskeleton. The role of excess pfn in the pathophysiology of endothelial dysfunction in vitro or in the aorta of atherosclerosis-prone mice suggests that pfn may exert similar effects in the WAT vasculature upon HFD. However, isolation and ex vivo analysis of WAT capillary EC free of contaminating adhering blood elements has proven a daunting task (unpublished observation). Alternatively, studies in EC-specific pfn knockout would be informative but would not allow distinguish the effects of pfn in WAT capillaries vs. other vasculature beds.

In summary, the role of pfn in WAT endothelial dysfunction remains unproven; more broadly, the development of novel approaches to study freshly isolated WAT capillary EC is a priority in the field as it would provide insight in the mechanisms for immune cell recruitment and possibly new therapeutic targets for IR and T2DM.

Pfn and PI3K/AKT signaling

Phosphatidylinositol 3-kinase (PI3K), which is essential for many cellular responses to insulin (reviewed in ref. 38), phosphorylates membrane bound PtdIns(4,5)P_2 to generate
phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P$_3$), which propagates the metabolic signals of insulin in part through the Akt pathway. The downstream targets of Akt include glucose transporters (GLUT), glycogen synthase kinase-3, the forkhead transcription factors, cAMP response element-binding protein, and under certain conditions eNOS. Of interest, pfn interacts with PtdIns(4,5)P$_2$, the substrate for PI3K. Thus, one could speculate that pfn overexpression in cells (e.g., adipocytes) would impede insulin signaling by sequestering PtdIns(4,5)P$_2$ and that, conversely, the protective phenotype of PfnHet could be due to enhanced insulin action in insulin-dependent tissues. GLUT4 translocation is another downstream target of insulin signaling that may be affected by pfn levels as the actin cytoskeleton is known to be crucial for insulin-simulated GLUT4 translocation (reviewed in ref. 40). However, a modest pfn overexpression in 3T3-L1, as a model for the 2- to 3-fold HFD-induced upregulation, did not modify GLUT4 quantity or cell distribution under both basal and insulin-stimulated conditions (unpublished observations, G.R.R.). These studies do not support the hypothesis that pfn overexpression would per se impair glucose tolerance by affecting GLUT4 translocation, although they do not definitively rule out a more indirect role for pfn in insulin signaling.

Pfn and transcription factors

In addition to pfn nuclear localization, the interaction between pfn and nuclear proteins supports a possible role of pfn in transcriptional regulation. For example, pfn binds to the survival of motor neuron SMN protein, which is a nuclear factor that is essential for splicing. Additionally, pfn can regulate the activity of the transcription factor p4230P in cultured cells. These interactions appear to be mediated by the PLP binding domain of pfn. Our laboratory is currently investigating the hypothesis that pfn overexpression could enhance or suppress the transcriptional activity of nuclear factors with key functions in inflammation.
Extracellular pfn

PFN is commonly recognized as an intracellular protein since it primarily resides inside the cell and lacks a signal peptide. However, there is emerging evidence that pfn may have extracellular functions. Pfn can be detected in the human serum under normal conditions; also, pfn serum levels positively correlate with the degree of aortic atherosclerosis. In patients with coronary artery disease, also detected in an experimental model.43 With the degree of aortic atherosclerosis, also, pfn serum levels positively correlate with human serum under normal conditions; intracellular protein since it primarily resides inside the cell and lacks a signal peptide. However, there is emerging evidence that pfn may have extracellular functions. Pfn can be secreted in the extracellular space via exosomes,14 which are small (50–100 nm) membrane vesicles of endocytic origin secreted by most cells including T cells, B cells, and dendritic cells. Exosomes are signaling payloads found to contain adhesion molecules, “danger signals” originating from apoptotic cells, mRNA, and microRNA (reviewed in refs. 45 and 46) that can exert various effects on target immune cells (reviewed in ref. 47).

To date, there is no evidence that pfn specifically recognizes any cell membrane receptor(s). This scientific gap has limited our understanding of the putative functions of extracellular pfn and its role in disease.

In summary, it is now recognized that pfn function extends beyond its key role in the actin cytoskeleton. Studies from many laboratories highlighted the heterogeneity of pfn binding partners and implicated pfn in basic cellular processes. Our recent findings demonstrated that PfnHet provides meaningful information in the pathogenesis of IR and T2DM, and will pave the way for novel targeted therapeutic approaches to these conditions.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by the following grants to G.R.R.: JDRF Career Development Award 2-2004-609; Pilot and Feasibility Program-Joslin Diabetes Center; and Pilot and Feasibility Program-Boston Obesity Nutrition Research Center.

References
1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 2012; 307:49-57; PMID: 22253363; http://dx.doi.org/10.1001/jama.2012.39
2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012; 307:443-50; PMID: 22253364; http://dx.doi.org/10.1001/jama.2012.40
3. Odegaard JL, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 2013; 339:172-7; PMID: 23507735; http://dx.doi.org/10.1126/science.1230721
4. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol 2011; 11:81; PMID: 21469396; http://dx.doi.org/10.1038/nri2922
5. Goldfine AB, Fonseca V, Jacobson KA, Chen YD, Tippon L, Stassen MA, Shoelson SE. Targeting Inflammation Using Salutase in Type 2 Diabetes Study Team. Salicylate (salasale) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2013; 159:1-12; PMID: 23817699; http://dx.doi.org/10.1059/jbc.M710092200
6. Larsen CM, Faubelbach M, Vaag A, Eihes JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 2009; 32:1663-8; PMID:19542207; http://dx.doi.org/10.2337/dc09-0533
7. Carlsson L, Nyström LE, Sundkvist I, Markey F, Goldfine AB, Grondin-K, Sugiura S, et al. CD8+ effector T cells contribute to the pathogenesis of insulin resistance and type 1 diabetes. Diabetes 2009; 58:524-31; PMID:19542207; http://dx.doi.org/10.2337/dc09-0533
8. Kang F, Purich DL, Southwick FS. Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J Biol Chem 1999; 274:36963-72; PMID:10062151; http://dx.doi.org/10.1074/jbc.274.52.36963
9. Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilin. Nature 1985; 314:472-4; PMID:2984579; http://dx.doi.org/10.1038/s38472a0
10. Lambrecht A, Verschelde JL, Jannekehe V, Goerhals M, Vandeckerhouwe J, Ampe C. The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. EMBO J 1997; 16:484-94; PMID:9304331; http://dx.doi.org/10.1093/emboj/16.3.484
11. Witte W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 2004; 14:461-9; PMID:15308213; http://dx.doi.org/10.1016/j.tcb.2004.07.003
12. Stuven T, Hartmann E, Görläch D, Exportin 6: a novel nuclear export receptor that is specific for profilin-actin complexes. EMBO J 2003; 22:5928-40; PMID:14592989; http://dx.doi.org/10.1093/emboj/cdg565
13. Lederer M, Jockusch BM, Rorth Kegel M. Profilin regulates the activity of p42/44MAPK: a novel Myb-related transcription factor. J Cell Sci 2005; 118:331-41; PMID:15615774; http://dx.doi.org/10.1242/jcs.01612
14. Théri C, Bourcier M, Véron P, Ricciardi-Castagnoli P, Sapet G, Garejot A. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166:7305-19; PMID:1190481
15. Romeos, G, Flortigio J, Kuzuskas A. Profilin acts downstream of LDL to mediate diabetic endothelial cell dysfunction. FASEB J 2004; 18:725-7; PMID:14977885
16. Clarkson MR, Stollso JL, Kuzuskas A. Attenuated expression of profilin-I confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 2007; 101:357-67; PMID:17187418; http://dx.doi.org/10.1161/CIRCRESAHA.107.115399
17. Romeos, G, Flortigio J, Kuzuskas A. Attenuated expression of profilin-I confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 2007; 101:357-67; PMID:17187418; http://dx.doi.org/10.1161/CIRCRESAHA.107.115399
18. Romeos, G, Flortigio J, Kuzuskas A. Attenuated expression of profilin-I confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 2007; 101:357-67; PMID:17187418; http://dx.doi.org/10.1161/CIRCRESAHA.107.115399
19. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2009; 9:508-19; PMID:19678850; http://dx.doi.org/10.1038/nri2882
20. Romeos, G, Flortigio J, Kuzuskas A. Attenuated expression of profilin-I confers protection from atherosclerosis in the LDL receptor null mouse. Circ Res 2007; 101:357-67; PMID:17187418; http://dx.doi.org/10.1161/CIRCRESAHA.107.115399
21. Parsons D, Li FP, Thapar D, Chapman J, OlejekYM, Neels JG. Ablation of CD1c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 2008; 8:301-9; PMID:18840360; http://dx.doi.org/10.1016/j.cmet.2008.08.015
22. Lumeng CN, Deyoung SM, Bodzin JL, Salier AH. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007; 56:16-23; PMID:17924660; http://dx.doi.org/10.23736/DB06-1076
23. Lumeng CN, Bodzin JL, Salier AH. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117:175-84; PMID:17200717; http://dx.doi.org/10.1172/JCI29881
24. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Ueki K, Ueki K, Ueki K. M1 macrophages contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15:914-20; PMID:19633658; http://dx.doi.org/10.1038/nn.9646
26. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15:930-9; PMID:1963656; http://dx.doi.org/10.1038/mm.2009.84

27. Lumeng CN, Maillard I, Saltiel AR. T-ing up inflammation in fat. Nat Med 2009; 15:846-7; PMID:19665987; http://dx.doi.org/10.1038/nm.2009.84

28. Romeo GR, Pae M, Eberlé D, Lee J, Shoelson SE. Profilin-1 haplosufficiency protects against obesity-associated glucose intolerance and preserves adipose tissue immune homeostasis. Diabetes 2013; 62:3718-26; PMID:23884883; http://dx.doi.org/10.2337/db13-0050

29. Alfadda AA, Benabdelkamel H, Masood A, Moustafa A, Dandona P, Aljada A, Chaudhuri A, Bandyopadhyay D, Moldovan NI, Milliken EE, Irani K, Chen J, Sohn J. Analysis of mature adipocytes from obese patients in relation to aging. Exp Gerontol 2013; 48:1196-203; PMID:23886751; http://dx.doi.org/10.1016/j.exger.2013.07.008

30. Hsueh WA, Quiñones MJ. Role of endothelial dys-
function in obesity. J Clin Endocrinol Metab 2003; 88:2422-9; PMID:12788837; http://dx.doi.org/10.1210/jc.2003-030178

31. Romeo GR, Pae M, Eberlé D, Lee J, Shoelson SE. Profilin-1 haplosufficiency protects against obesity-associated glucose intolerance and preserves adipose tissue immune homeostasis. Diabetes 2013; 62:3718-26; PMID:23884883; http://dx.doi.org/10.2337/db13-0050

32. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414:799-806; PMID:11742412; http://dx.doi.org/10.1038/414799a

33. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414:799-806; PMID:11742412; http://dx.doi.org/10.1038/414799a

34. Smolencki A, Bachmann C, Reinhard K, Honig-Liebl P, Jarchau T, Hoschuetzky H, Walter U. Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 1998; 273:20209-35; PMID:9685341; http://dx.doi.org/10.1074/jbc.273.32.20029

35. Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschutz M, Smolenski A, Walter U, Skatchkov M, Meiermeister T, Münnzel T. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sen-
sitive monitor of defective nitric oxide/cGMP sig-
alling and endothelial dysfunction. Circ Res 2000; 87:999-1005; PMID:11090544; http://dx.doi.
org/10.1161/01.RES.87.11.999

36. Reinhart M, Giehl K, Abel K, Haffner C, Jarchau T, Hoppe V, Jockusch BM, Walter U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J 1995; 14:1583-9; PMID:7737110

37. Carman CV, Sage PT, Scuito TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA. Transcellular diapedesis is initiated by invasive podosomes. Immunity 2007; 26:784-97; PMID:17570692; http://dx.doi.org/10.1016/j.immuni.2007.04.015

38. Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschutz M, Smolenski A, Walter U, Skatchkov M, Meiermeister T, Münnzel T. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sen-
sitive monitor of defective nitric oxide/cGMP sig-
alling and endothelial dysfunction. Circ Res 2000; 87:999-1005; PMID:11090544; http://dx.doi.
org/10.1161/01.RES.87.11.999

39. Das T, Bae YH, Wells A, Roy P. Profilin-1 overex-
expression upregulates PTEN and suppresses AKT activation in breast cancer cells. J Cell Physiol 2009; 218:436-43; PMID:18932784; http://dx.doi.
org/10.1002/jcp.21618

40. Bromnick JT Jr., Berkemeier BA, Elmendorf JS. 'Actin'g on GLUT4: membrane & cytoskeletal components of insulin action. Curr Diabetes Rev 2007; 3:111-22; PMID:18220662; http://dx.doi.org/10.2174/157339907780598199

41. Giesemann T, Rathyke-Hartlieb S, Rothkugel M, Barsch JW, Buchmeier S, Jockusch BM, Jockusch H. A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocal-
ize with smn in nuclear gems. J Biol Chem 1999; 274:37908-14; PMID:10608857; http://dx.doi.
org/10.1074/jbc.274.53.37908

42. Pellizzi R, Littler A, Dreyfuss G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 1998; 95:615-24; PMID:9845364; http://dx.doi.org/10.1016/S0002-9440(98)90163-2

43. Caglayan E, Romeo GR, Kappert K, Odenthal M, Südkamp M, Body SC, Sherman SK, Hackbusch D, Valetier M, Kazauckas A, et al. Profilin-1 is expressed in human atherosclerotic plaques and induces athero-
genetic effects on vascular smooth muscle cells. PlaS One 2010; 5:e13608; PMID:20349052; http://dx.
doi.org/10.1371/journal.pone.0013608

44. Tamura M, Tanaka H, Yashiro A, Ojajima A, Okazaki M, Kudo H, Doi Y, Fujimoto S, Higashi K, Nakashima Y, et al. Expression of profilin, an actin-binding protein, in rat experimental glomeru-
loonephritis and its upregulation by basic fibroblast growth factor in cultured rat mesangial cells. J Am Soc Nephrol 2000; 11:423-33; PMID:10703666

45. Théry C. Exosomes: secreted vesicles and intercel-
lular communications. F1000 Biol Rep 2011; 3:15; PMID:21876726; http://dx.doi.org/10.3410/B3-15

46. Théry C, Ostromski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9:581-93; PMID:19498381; http://dx.doi.org/10.1038/nri2567

47. Chaput N, Théry C. Exosomes: immune propri-
ties and potential clinical implementations. Semin Immunopathol 2011; 33:419-40; PMID:2174094; http://dx.doi.org/10.1007/s00281-010-0233-9