Search for a massive scalar resonance decaying to a light scalar and a Higgs boson in the four b quarks final state with boosted topology

The CMS Collaboration

CERN, Geneva, Switzerland

Abstract

We search for new massive scalar particles X and Y through the resonant process $X \rightarrow YH \rightarrow b\bar{b}b\bar{b}$, where H is the standard model Higgs boson. Data from CERN LHC proton-proton collisions are used, collected at a centre-of-mass energy of 13 TeV in 2016–2018 and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is performed in mass ranges of 0.9–4 TeV for X and 60–600 GeV for Y, where both X and H are reconstructed as Lorentz-boosted single large-area jets. The results are interpreted in the context of the next-to-minimal supersymmetric standard model and also in an extension of the standard model with two additional singlet scalar fields. The 95% confidence level upper limits for the production cross section vary between 0.1 and 150 fb depending on the X and Y masses, and represent a significant improvement over results from previous searches.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of a Higgs boson (H) of mass 125 GeV [1–3] at the CERN LHC validated the Brout–Englert–Higgs mechanism [4–9] of the standard model (SM), yet raised questions of its viability at higher energy scales [10–13]. Besides, empirical observations such as the measurements of the neutrino masses and the baryon asymmetry in the universe are inconsistent with SM expectations. Beyond the standard model (BSM) theories, including those invoking supersymmetry [14] or extra dimensions [15], seek to address many of the shortcomings of the SM. No BSM phenomena have been observed at the LHC. However, there are unexplored BSM parameter spaces, among which are areas of the scalar sector, the topic of this search.

The minimal supersymmetric extension of the SM (MSSM) [16, 17] postulates two complex scalar field doublets with SU(2) gauge symmetry. The next-to-minimal model (NMSSM) [18,19] was proposed to solve the MSSM’s “unnaturalness problem” [20], where the Higgs boson mass parameter is many orders of magnitude smaller than the Planck scale. In the NMSSM, an extra complex scalar field gives a total of seven Higgs bosons: three neutral (one would be associated with H) and two charged scalar particles, as well as two neutral pseudoscalars. Searches for a heavier scalar X decaying to SM particles [21–23] have set a lower limit on its mass at $M_X = 1.5 (1.0)$ TeV for $\tan \beta = 21 (8)$ [21], where $\tan \beta$ is the ratio of the vacuum expectation values (VEVs) of the two Higgs doublets. The NMSSM favours low $\tan \beta$, where the current M_X bounds are the weakest.

In the NMSSM, the neutral scalar production cross sections may be suppressed because of their small couplings to SM fermions [18]. Enhanced “Higgs-to-Higgs” decays are then possible, such as $X \rightarrow YH$ [24,25], Y being the lighter scalar. Within the NMSSM, the largest branching fractions for both H and Y (for Y mass M_Y less than twice that of the top quark t) are to a b quark-antiquark pair, giving the final state $X \rightarrow YH \rightarrow b\bar{b}bb$. For higher M_Y values the $Y \rightarrow b\bar{b}$ branching fraction is $\sim10\%$ [26]. The second dominant process is $X \rightarrow YH \rightarrow \tau \tau b\bar{b}$, which has been excluded [27] for $0.4 < M_X < 0.6$ TeV and $50 < M_Y < 200$ GeV, for specific values of the parameters of the model.

Another interesting model of new physics that motivates this search is the two-real-scalar-singlet extension of the SM (TRSM) [28], which introduces two additional scalar fields. This simplified model, onto which more complicated theories can be mapped, has nine degrees of freedom: the masses and VEVs of the three scalar fields, and three mixing angles. In the scenario where all three VEVs are non-zero, the three fields give rise to three massive scalars, one of which can be associated with the H boson. Depending on their masses and mixing angles, the heaviest scalar can decay to the two lighter scalars. These in turn can decay to SM particles with mass-dependent branching fractions.

* E-mail address: cms-publication-committee-chair@cern.ch.

https://doi.org/10.1016/j.physletb.2022.137392
0370-2693 © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
This Letter describes the search for two new scalar particles, X and Y, the former being more massive and decaying through X → YH. The search uses LHC proton-proton (pp) collision data collected by the CMS experiment in 2016–2018 corresponding to a total integrated luminosity of 138 fb$^{-1}$ [29–31]. The masses of the scalar particles satisfy $M_X > M_Y + M_H$; Y may be lighter or heavier than H and both Y and H decay to bb. The search is generic, and X and Y can be associated with the particles predicted in the NMSSM or the TRSM, which are both mentioned above.

This search focuses on the kinematic region where M_X is sufficiently larger than both M_Y and M_H such that Y and H carry considerable momenta and therefore their decay products, i.e. the bb pairs, are highly collimated. We explore the mass ranges 0.9 < M_X < 4 TeV and 60 < M_Y < 600 GeV, complementing the $X \rightarrow YH \rightarrow \tau\tau bb$ search [27]. In the high-momentum kinematic regime, special techniques are used to reconstruct the final states containing the collimated bb pairs, in order to increase the signal sensitivity well beyond that covered by previous searches [27].

Tabulated results for this analysis are provided in HEPData [32].

2. The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [33]. Events of interest are selected using a two-tiered trigger system. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4 μs [34]. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage [35].

The primary vertex is taken to be the vertex corresponding to the hardest scattering in the event, evaluated using tracking information alone, as described in Section 9.4.1 of Ref. [36].

A particle-flow algorithm (PF) [37] aims to reconstruct and identify each individual particle in an event, with an optimized combination of information from the various elements of the CMS detector. The photon energy is obtained from the ECAL measurements. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Jets are clustered from PF candidates using the anti-k_t algorithm [38,39] with a distance parameter of either 0.4 (AK4 jets) or 0.8 (AK8 jets). The jet momentum is defined as the vectorial sum of all particle momenta in a jet, and is found from simulation to be, on average, within 5–10% of the true momentum over the whole transverse momentum (p_T) spectrum and detector acceptance [40]. Additional pp interactions within the same or nearby bunch crossings (pileup), averaging 23–32 in 2016–2018, can contribute additional tracks and calorimetric energy depositions to the jet momentum. The effect of pileup is mitigated using the charged-hadron subtraction (CHS) algorithm [41], whereby charged particles identified to be originating from pileup vertices are discarded and an offset correction is applied to correct for remaining contributions. Jet energy corrections are derived from simulation and data to bring the measured response of jets to that of particle level jets on average [40].

For AK8 jets, masses are computed after applying grooming [42] techniques, which remove wide-angled soft and collinear radiation from the jets, in order to mitigate the effects of contamination from initial state radiation, the underlying event, and multiple hadron scattering. The trimming algorithm [43] uses a subjet size parameter of 0.3 and a radiation fraction parameter $\zeta = 0.1$, which determines the minimum p_T fraction that the reclustered jet constituents need to have in order not to be removed. The mass of the resultant jet is referred to as its “trimmed mass”. The “soft-drop mass” of the jet is obtained by applying the soft-drop algorithm [44,45]. Here it is obtained using a value $\zeta = 0.1$ for the radiation fraction parameter. The angular exponent parameter is set as $\beta = 0$, so there is no dependence of the p_T fraction threshold on the distance between jet constituents.

In case of the soft-drop algorithm, the pileup per particle identification (PUPPI) [41,46] algorithm is used to mitigate the effect of pileup on AK8 jets. In PUPPI, the treatment of charged particles is similar to that in CHS. A weight between zero and one is assigned to neutral particles, larger values indicating higher probability of originating from the primary interaction vertex. The jet mass is computed from the weighted sum of the constituent momenta.

The missing transverse momentum vector (p_T^{miss}) is computed as the negative vector sum of the transverse momenta of all the PF candidates in an event, and its magnitude is denoted as p_T^{miss} [47]. The p_T^{miss} is modified to account for corrections to the energy scale of the reconstructed jets in the event.

3. Signal and background processes

Monte Carlo simulations of the signal process $X \rightarrow YH \rightarrow b\bar{b}b\bar{b}$, with a width of 1 MeV for all the three scalars, are generated at leading order (LO) using the MadGraph5_aMC@NLO2.6.5 [48] event generator. The NMSSM model [49,50] is used to produce the simulated samples. However, the kinematic parameters are model-independent, enabling the results to be interpreted using other BSM scenarios.

The two main backgrounds are $t\bar{t}$+jets events, where the top quarks decay hadronically, and events with jets arising purely from SM quantum chromodynamics (QCD) interactions (multijet events). Other sources of background like single top quark production, and Higgs boson production in association with a top quark pair or a W or Z boson are found to have negligible contributions.

The $t\bar{t}$+jets events with hadronic top quark decays are modelled using POWHEG2.0 [51–54], at next-to-leading order (NLO). A sample of semileptonic $t\bar{t}$ decays, with one of the top quarks decaying via $t \rightarrow Wb \rightarrow \ell b\bar{b}$, ℓ being a lepton (electron or muon), is also simulated using the same configuration. These events are used in dedicated $t\bar{t}$ enriched control regions to derive additional data-to-simulation correction factors. The simulated $t\bar{t}$+jets event yields are scaled using a cross section of 832$^{+46}_{-52}$ pb, calculated at next-to-next-to-leading order (NNLO) in QCD with soft gluon resummation at next-to-next-to-leading logarithmic precision [55]. The QCD multijet event samples, containing two to four jets, are
simulated at LO using the MadGraph5_aMC@NLO event generator and are used to develop the tools for the analysis. However, this background is estimated using data-driven techniques.

The signal and semileptonic tt+jets samples are generated using the NNPDF3.1 [56] NNLO parton distribution functions (PDFs) from the LHAPDF5 PDF library [57]. The hadronic tt+jets samples are generated using NNPDF3.0 [58] NLO for 2016 and NNPDF3.1 NNLO for 2017 and 2018 simulation. The multijet background samples are generated using NNPDF3.0 LO for the 2016 and NNPDF3.1 NNLO for the 2017 and 2018 simulation.

The showering and hadronization of partons are simulated with PYTHIA8.226 [59] for 2016 and PYTHIA8.240 for 2017 and 2018 samples. The jet-to-parton matching for all LO samples, i.e. the signal and the multijets background, use the MLM [60] scheme. The CP5 tune [61] is used for all samples, except for the 2016 tt and multijet samples, which use CTEQ8M [62] and CTEQ8M1 [63] tunes, respectively.

All generated events are processed through a simulation of the CMS detector based on GEANT4 [64]. The effects of pileup are modelled assuming a total inelastic pp cross section of 60.2 mb [65]. All simulated event samples are weighted to match the distribution of the expected pileup profile of the data.

4. Event selection

The events are selected in two mutually-exclusive categories: an “all-jets” event sample containing only jets, and a “jets+lepton” sample, containing a lepton (electron or muon). The latter serves to derive corrections to the simulated tt+jets background, in order to match the expectations in the data.

4.1. All-jets event selection

A set of triggers based on requirements on jet properties are used for online event selection in the all-jets category.

One trigger criterion required a single AK8 jet with $p_T > 450$ or 500 GeV in 2016 and in 2017–2018, respectively. A second trigger required that the scalar sum (H_T) of the p_T of all AK4 jets with $p_T > 30$ GeV and $|\eta| < 2.5$ should be greater than 800 or 900 GeV in 2016, depending on the LHC beam instantaneous luminosity. In 2017–2018, $H_T > 1050$ GeV was required.

The third trigger algorithm used required an AK8 jet with a trimmed mass >30 GeV along with $p_T > 360$ GeV (in 2016). In 2017–2018, the AK8 jet H_T threshold in this trigger was raised to 400 or 420 GeV, depending on the LHC beam instantaneous luminosity, keeping the same trimmed mass criterion. The fourth trigger required $H_T > 650$ or 700 GeV (in 2016) and $H_T > 800$ GeV (in 2017–2018), together with an AK8 jet having a trimmed mass >50 GeV.

In addition to the above, three trigger algorithms were used in 2016 only, with the following criteria: (1) two AK8 jets with $p_T > 280$ and >200 GeV with one of them having a trimmed mass >30 GeV; (2) having the same requirements as (1) and with one of the AK8 jets passing a loose b tagging criterion using the “combined secondary vertex” algorithm [66] (with efficiency $\approx 81\%$); (3) $H_T \geq 650$ GeV with a pair of AK4 jets having an invariant mass >900 GeV with their pseudorapidity separation $|\Delta \eta| < 1.5$.

The combined logical OR of all the triggers improves the overall trigger efficiency, particularly for signals with low values of M_{bb}.

Events in the offline all-jets selection are required to have at least two AK8 jets with $p_T > 350(450)$ GeV and $|\eta| < 2.4(2.5)$ for 2016 (2017–2018). The higher p_T requirement in 2017–2018 reflects the higher trigger thresholds and ensures a trigger efficiency close to 100%. The AK8 jet pairs in multijet backgrounds tend to have a larger separation in pseudorapidity than the signal, for a given M_{bb} range, and therefore a selection $|\Delta \eta| < 1.3$ is used to reduce such backgrounds.

The two leading-p_T jets are considered for $H \rightarrow b\bar{b}$ and $Y \rightarrow b\bar{b}$ candidates. An $H \rightarrow b\bar{b}$ candidate or an “H jet” is a jet whose soft-drop mass is $110 < M_{bb} < 140$ GeV. The second jet is designated as the $Y \rightarrow b\bar{b}$ candidate or the “Y jet” if its soft-drop mass satisfies $M_{bb} > 60$ GeV. When both AK8 jets satisfy the first mass requirement, the Y jet is chosen at random. Events without either an H or a Y jet are rejected. The mass of the Y jet and the invariant mass of the H and Y jets are used to isolate the signal with approximately 15% and 9% resolution in M_H and M_Y, respectively.

The all-jets event category trigger efficiency is measured in the data requiring a single AK4 jet with $p_T > 260$ GeV by applying the above offline selection, and counting the number of events passing the trigger selection. It is found to be between 94 and 100%. Simulated events are weighted by this efficiency as a function of the invariant mass of the two leading-p_T AK8 jets in the event, M_{bb}.

A graph convolutional neural network algorithm, ParticleNet [67], is employed to discriminate the decays of a boosted massive particle R, which could be an H boson or a Y resonance, to a pair of b quarks against a background of other jets, using the properties of the jet PF constituents as features. As with all heavy-flavour jet classifiers, displaced tracks and vertices are the most important features. The multiclassifier ParticleNet algorithm outputs several variables, each in the range 0–1, and each of which can be interpreted as the probability of a jet having originated from a certain decay, such as from a massive resonance $R \rightarrow b\bar{b}$ ($P(R \rightarrow b\bar{b})$) or from a light-flavoured quark or a gluon ($P(QCD)$). In this analysis, the ParticleNet score is defined as $P(R \rightarrow b\bar{b})/(P(R \rightarrow b\bar{b}) + P(QCD))$, where $P(R \rightarrow b\bar{b})$ is a unified score for jets originating from H or Y decays.

The ParticleNet algorithm is trained [68] on AK8 jets using as the signal simulated Lorentz-boosted spin-0 particles decaying to a pair of b quarks, with a wide range of masses. The QCD multijet samples are used for the background. The wide signal mass range in the training sample ensures that the background rejection rate is decorrelated from the mass of the jet [68]. As a consequence, background enriched regions can be defined using low ParticleNet scores on jets that have the same mass spectra as that of the background in the signal region. An accurate background model can therefore be developed.

The ParticleNet scores used for selecting the $H \rightarrow b\bar{b}$ and the $Y \rightarrow b\bar{b}$ candidates (“signal jets”) are either >0.98 (tight requirement) or >0.94 (loose requirement). Depending on the jet p_T, the former has an efficiency of 62–72% and a misidentification rate of 0.45%, while the latter has an efficiency of 80-85% and a misidentification rate of 1%.

The efficiency of the ParticleNet classifier is calibrated in data using a sample of jets originating from fragmentation of a gluon to $b\bar{b}$ ($g \rightarrow b\bar{b}$), which are similar to $H \rightarrow b\bar{b}$ and $Y \rightarrow b\bar{b}$ jets. Such jets are selected from the data using a boosted decision tree (BDT) classifier, such that their ensemble ParticleNet score resembles that of Y and H jets. Using simulated multijet events, the BDT is trained to separate $g \rightarrow b\bar{b}$ jets from jets of other flavours. A systematic uncertainty is assigned to account for different possible choices of such jets. The measurements give a data-to-simulation correction factor of 0.9–1.4 for the ParticleNet selection efficiencies, depending on the jet p_T and data-taking year.

The ParticleNet scores of the H and Y jets are used to classify events into either signal, sideband, or validation categories. A layout of the different regions is shown in Fig. 1.

Two signal regions are defined using the tight and the loose ParticleNet scores (Fig. 1). The “signal region 1” (SR1) and the “signal region 2” (SR2) are statistically exclusive. SR1 has a higher signal-to-background ratio and is thus more sensitive to the pres-
Fig. 1. Simulated ParticleNet score distributions of the H and the Y candidate jets for a signal with \(M_H = 1600 \text{ GeV} \) and \(M_Y = 90 \text{ GeV} \) (filled squares) and the multijets background (open circles). The grid lines show the different event categories defined using the ParticleNet scores of the two jets. A description of the regions is given in the text.

dence of signal. However, the SR2 improves the sensitivity for signal mass points with low background by increasing the signal efficiency.

Corresponding to the two signal regions, two “sideband regions” are defined for estimating the multijet background from data. They are labelled as “Sideband 1” (SB1) and “Sideband 2” (SB2) in Fig. 1. The SB2 region includes SB1 in order to provide better sideband region characteristics for estimating the multijets background in their respective signal regions.

In addition, six “validation regions” are used to validate the background estimation method. They are grouped into two sets of three regions: VS1, VS2, VB1, and VS3, VS4, VB2 as shown in Fig. 1. The labels VS and VB stand for “signal-like” and “background-like” validation regions, respectively. All these regions are enriched in QCD multijets events, and have much smaller signal-to-background ratios than the signal regions.

The signal selection efficiencies range from 1.7% to 12.6% in SR1 and 1.3% to 5.6% in SR2. Based on simulation, the background composition is about an equal proportion of t\(\bar{t}\)+jets and QCD multijets in the signal regions and in the corresponding validation regions, VS1–VS4. However, the sideband and validation sideband regions are composed \(\approx 90\% \) of multijet events.

4.2. Jets+lepton event selection

The triggers in the jets+lepton category required events to have either an isolated muon of \(p_T > 24 \) or 27 GeV; an isolated electron having \(p_T > 27, 32, \) or 35 GeV, or a photon with \(p_T > 175 \) or 200 GeV. The thresholds changed between data-taking years. The jets+lepton event trigger efficiencies are measured in a sample of \(Z \to \ell \ell \) events and are found to be close to 100%.

Offline selection requires the events to have a lepton with \(p_T > 40 \text{ GeV} \) and \(|\eta| < 2.4 \). Tight identification and isolation criteria are used for electrons [69] and muons [70]. An AK4 jet, corrected for pileup using charged hadron subtraction [41] and tagged as originating from a bottom quark (b-tagged) using the DeepJet algorithm [71], is required to be close to the lepton. The criterion is \(\Delta R(\text{lepton, jet}) < 1.5 \), where \(\Delta R(1, 2) = \sqrt{(\eta_1 - \eta_2)^2 + (\phi_1 - \phi_2)^2} \) is the distance between two objects in the pseudorapidity–azimuthal angle plane.

The loose DeepJet working point, with a mistag rate of 10% and approximately 90% efficiency, is used. The DeepJet score distribution of the AK4 jets are corrected using a weight extracted from measurements in the data [66]. Requirements of \(p_T^{\text{miss}} > 60 \text{ GeV} \) and \(H_T > 500 \text{ GeV} \) are imposed. The lepton, \(p_T^{\text{miss}} \), and the b-tagged jet provide the signature of the lepton decay of a top quark. A hadronically decaying top quark candidate is reconstructed from an AK8 jet with \(p_T > 350/450 \text{ GeV} \) and \(|\eta| < 2.4/2.5 \) for 2016 (2017–2018), a soft-drop mass >60 GeV, and satisfying \(\Delta R(\text{lepton, AK8 jet}) > 2 \). Events in the jets+lepton category, which has a purity of >90%, are split into two regions based on whether the AK8 jet passes the tight or loose ParticleNet scores. Two separate correction factors are derived, one each for SR1 and SR2.

5. Background estimation

The analysis searches for a narrow signal in the 2-dimensional plane spanned by \(M_H \) and \(M_{1}^{Y} \). The two-dimensional (\(M_{1}^{H}, M_{1}^{Y} \)) distributions of the multijets events are estimated using a pass-to-fail ratio method, described in the following paragraphs. The simulated t\(\bar{t}\)+jets event distributions are corrected by fitting the top quark jet mass \(M_{1}^{t} \) distributions to the data in the jets+lepton regions.

The multijet background is estimated for the three data-taking years combined. First, transfer functions, \(R_{P/F} \), are defined as the ratio of event distributions in the \((M_{1}^{H}, M_{1}^{Y}) \) plane in the signal regions to those in the sidebands, SR1-to-SB1 and SR2-to-SB2. These are a priori unknown, and are determined from the fit of signal and background distributions to the data.

An initial estimate \(R_{P/F}^{\text{int}} \) is made using the first set of validation regions, using the data and correcting for the simulated t\(\bar{t}\)+jets component: VS1-to-VB1 and VS2-to-VB1. With the definition \(R_{P/F} = R_{P/F}^{\text{int}} R_{\text{ratio}} \), only the correction function \(R_{\text{ratio}} \) needs to be determined directly from the fit to the data. The validation regions provide a good estimate of \(R_{P/F} \), by the pass-to-fail event ratios SR1-to-SB1 and SR2-to-SB2 are close to VS1-to-VB1 and VS2-to-VB1, as borne out in simulations. The values of \(R_{\text{ratio}} \) are therefore of order unity and lead to stability of the fit of signal and background models to the data.

The values of \(R_{P/F}^{\text{int}} \), closely related to the loose and tight misidentification rates of the ParticleNet tagger, are determined as functions of \(M_{1}^{Y} \) only. The 1-dimensional modelling reduces the statistical uncertainties in the \(R_{P/F}^{\text{int}} \). A quadratic function is found to be the best model. Furthermore, the \(R_{F/P} \) dependence on \(M_{1}^{Y} \) is weaker and is modelled through the \(R_{\text{ratio}} \), determined directly from the fit to the data in the signal regions.

The form of the \(R_{\text{ratio}} \) is chosen to be a product of two polynomials in \(M_{1}^{H} \) and \(M_{1}^{Y} \), whose parameters are determined from a simultaneous fit of the binned signal and background distributions to the data in SR1, SR2, SB1, and SB2. A variable bin width over the \((M_{1}^{H}, M_{1}^{Y}) \) plane was chosen to correspond to the signal resolution while ensuring that there were no zero-event bins in the sideband regions.

A Fisher’s F-test [72] is used to determine the minimum polynomial order necessary and sufficient for the model. Starting from polynomials of order one in both \(M_{1}^{H} \) and \(M_{1}^{Y} \), terms are added until no significant improvement is observed. The F-test shows that linear functions in both \(M_{1}^{H} \) and \(M_{1}^{Y} \) are favoured at 95% confidence level (CL). The two \(R_{\text{ratio}} \) values range from 0.4 to 2.9 over the whole \((M_{1}^{H}, M_{1}^{Y}) \) plane.

The simulated t\(\bar{t}\)+jets event distributions in \((M_{1}^{H}, M_{1}^{Y}) \) for the signal regions are corrected for their shape and yield using the jets+lepton event category, which is highly enriched in this background. The AK8 jets from top quark decays fall into three categories, depending on the top quark boost. A high enough boost
may result in a fully merged $t \rightarrow Wb \rightarrow qq^*b$ decay, labelled as a bqq jet. At moderate boosts, the $W \rightarrow qq^*$ may be merged to form a W jet with the b quark forming its own jet. However, such events are nearly all eliminated in the event selection. Finally, one of the quarks from the W boson decay can merge with the b quark to form a bqq jet. Unmerged jets and other combinatorial backgrounds constitute a small fraction outside these three categories.

The masses of the bqq and bqq jet components in the jets+lepton event category are fit to the data simultaneously with the all-jets event categories. These two mass distributions are scaled independently, with each being tied to the corresponding jet component from the tt+jets in SR1 and SR2. They are independent for the three years, giving six scales in total ranging from 0.79 to 1.35.

Two sets of cross-checks are performed for the background estimation method. The first is to predict the background in the validation regions VS1 and VS2 using the validation region VB1 as a sideband. The $R_{\text{TTF}}^\text{VSS}$ are estimated from the ratios of events in the regions VS3 to VB2 and VS4 to VB2. The jets+lepton regions are treated as they would be for the true background estimation in the signal regions. Similar to the actual background estimation process, a Fisher’s test is used to decide the polynomial order of the R_{ratio} function. Again, the most favoured form for R_{ratio} is found to be the product of linear functions along both M_T and $M_{T'}$. A goodness-of-fit test confirmed the agreement between the data and the estimated background, with the p-value greater than 0.05.

The second check uses generated toy data sets for SR1 and SR2. A toy QCD multijets background is first obtained for these regions by applying the R_{TTF} of VS1 and VS2, obtained in the first validation exercise, to SB1 and SB2, respectively. The toy multijets background is then combined with the tt+jets sample and different signal strengths to get the toy data sets. The test consists of comparing the estimated and true signal strengths after the full background estimation and signal extraction procedure. The test shows no bias in the estimated signal yields for a wide range of M_X and M_Y.

6. Systematic uncertainties

Several sources of systematic uncertainty affect the (M_0, M_1') shapes and the yields of the signals and backgrounds. The impact of the systematic uncertainties is reported for a signal with $M_X = 1.6$ TeV and $M_Y = 150$ GeV.

- **ParticleNet scale factor**: the uncertainty is 7–37%, depending on the AK8 jet p_T, and affects the signal by 15%.
- **Jet energy scale and resolution**: the uncertainties are applied to both AK4 and AK8 jets, and are fully correlated between the two sets of jets. The signal is affected by 5%.
- **Jet mass scale**: this is modelled as a ±5% shift in the AK8 jet soft-drop mass. It is uncorrelated between the bqq and the signal jets. It affects the signal by 13%. The jet mass uncertainty in the tt+jets background is reduced by including the jets+lepton control region.
- **Jet mass resolution**: simulated AK8 jet masses are smeared to match their distributions in the data, based on studies using Lorentz-boosted $W \rightarrow qq^*$ (W boson jets). The nominal simulated smeared jet mass resolution is taken as the downward uncertainty while applying a 20% larger smear [41] is used to estimate the upward uncertainty in the AK8 jet mass resolution. The resultant impact on the signal yield is an uncertainty of 4%.

The following uncertainties affect only the backgrounds.

- **tt normalization**: the uncertainties in the bqq and bqq jet scale factors range from 6% to 16%.
- **Top quark p_T modelling in Monte Carlo simulations**: an uncertainty is assigned to the tt+jets simulation process [73], resulting in a 2% uncertainty in this background.
- **Multijets background uncertainty**: the uncertainty derives mainly from the uncertainty in the $R_{\text{TTF}}^\text{VSS}(M_{T'})$, which is driven by the sample sizes in the sideband regions VS1, VS2, and VB1. It corresponds to a 7–11% change in the multijet background yields.

Other systematic uncertainties with minor impact are the following.

- **Trigger efficiency**: the difference between the jet energy scale at the HLT and in the offline reconstruction [74] is appreciable for $M_0 < 1100$ GeV, resulting in the trigger efficiency dropping below 100%. An uncertainty equal to half of the difference between unity and the measured trigger efficiency is assigned. It is larger than the statistical uncertainty and is expected to cover jet energy scale uncertainties in the trigger efficiencies. Its maximum value is 3%.
- **Trigger timing correction**: during the 2016–2017 data taking, a gradual shift in the timing of the inputs of the ECAL hardware level trigger in the region of $|\eta| > 2$ caused a specific trigger inefficiency. To take this effect into account, a 2% normalization uncertainty is applied to tt events and signal for these years.
- **Integrated luminosity**: the uncertainty in the total Run 2 (2016–2018) integrated luminosity [30,31] is 1.6%.
- **Pileup**: the value of the pp total inelastic cross section that is used in the simulation of pileup events is varied upwards and downwards from its assumed value of 69.2 mb by its uncertainty of 4.6% [65].
- **PDF and scale uncertainties**: the impact of the PDF and the QCD factorization μ_F and renormalization μ_R scale uncertainties in the signal acceptance and selection is estimated to be 1%. The former is derived using the PDF4LHC procedure [75] and the NNPDF3.1 PDF sets. The latter is evaluated by separately changing μ_R and μ_F in simulation by factors of 0.5 and 2.
- **Sample size of sideband regions**: the effects of the limited sizes of the SB1 and SB2 samples are included as statistical uncertainties in the multijets background predicted in SR1 and SR2, using the Barlow–Beeston Lite prescription [76,77]. These uncertainties are small compared to the uncertainties in $R_{\text{TTF}}^\text{VSS}$.
- **Lepton ID and isolation efficiencies**: the data-to-simulation correction factors for the efficiencies have uncertainties that affect the event yields by 1–2% in the jets+lepton selection.
- **AK4 jet b-tagging data-to-simulation scale factor uncertainty**: this uncertainty amounts to about 2% and affects the semileptonic tt+jets event yields.

All uncertainties affecting the signal and the tt+jets samples are uncorrelated among years, except those associated with the PDF choice, the renormalization and factorization scales, the pileup correction, the integrated luminosity, and the top quark p_T modelling.

7. Results

The joint likelihood of the signal + background (M_0, M_1') distributions in the all-jets regions (SR1 and SR2; SB1 and SB2), along with the M_1' distributions in the jets+lepton tight and loose regions is constructed. The binned signal (M_0, M_1') distributions are extracted from 260 signal hypothesis simulations. A combined three-year multijets background component is used in the likelihood distribution to reduce the statistical uncertainty. However, the likelihood has three separate tt+jets and signal components, one for each data-taking year. For the three years, 2016–2018, the data
The CMS Collaboration

Fig. 2. The M^2_J (upper) and M_Y (lower) distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) and their uncertainties (hatched areas) in SR1. The distributions expected from the signal under three M_X and M_Y hypotheses and assuming a cross section of 1 fb are also shown. The lower panels show the “Pulls” defined as (observed events−expected events)/$\sqrt{\sigma_{\text{obs}}^2+\sigma_{\text{exp}}^2}$, where σ_{obs} and σ_{exp} are the statistical and total uncertainties in the observation and the background estimation, respectively. The minus sign accounts for the correlation between data and the data-driven estimation.

Fig. 3. The soft-drop mass distributions of the top quark candidate jets in the 2018 jets+lepton category, in the tight ParticleNet region, after the joint fit in the all-jets and jets+lepton categories. The observed data (black markers) and the post-fit estimate (filled histograms) are shown for the three jet categories. The lower panels show the “Pulls” defined as (observed events−expected events)/$\sqrt{\sigma_{\text{obs}}^2+\sigma_{\text{exp}}^2}$, where σ_{obs} and σ_{exp} are the statistical and total uncertainties in the observation and the background estimation, respectively.

The signal hypothesis with $M_X = 1.6$ TeV and $M_Y = 90$ GeV gives the highest observed local significance of 3.1σ, which becomes 0.7σ after accounting for the look-elsewhere effect [78]. However, the excess is not apparent in Fig. 2, which shows the separate 1-dimensional distributions of M_Y and M^2_J, integrated over the other variable. The estimated background is otherwise in agreement with the observed data. Upper limits on the signal cross section are calculated for various hypothesized values of M_X and M_Y.

Fig. 4. The 95% confidence level expected (upper) and observed (lower) upper limits on $\sigma(pp -> X -> YH \rightarrow bb\bar{b})$ for different values of M_X and M_Y. The areas within the red and black contours represent the regions where the cross sections predicted by NMSSM and TRSM, respectively, are larger than the experimental limits. The areas within the dashed and dotted contours on the upper plot show the excluded masses at -1 standard deviation from the expected limits.

The upper limits are computed with a modified frequentist approach, using the CL$_s$ criterion [79,80] with the profile likelihood ratio used as the test-statistic and with the asymptotic approximation [81]. As the signal distributions only assume that they originate from spin-0 particle decays, the limits are model-
independent. The expected and observed limits at 95% CL as a function of M_X and M_Y are shown in Fig. 4, and range from 0.1 to 150 fb.

The cross section limits are compared with the maximally allowed cross sections in the NMSSM and TRSM. In the NMSSM, no mass range is excluded by the median expected limits. However, the observed limits exclude an area with M_X range of 100–1.15 TeV and M_Y range of 101–145 GeV. For TRSM, an expected exclusion area with the bounds 0.90 < M_X < 1.26 TeV and 100 < M_Y < 126 GeV is found while the observed exclusion range spans 0.95 < M_X < 1.33 TeV and 110 < M_Y < 132 GeV.

8. Summary

A search for massive scalar resonances X and Y, where X decays to Y and the standard model Higgs boson H, has been performed using proton-proton collision data collected at the LHC by the CMS detector between 2016 and 2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$. Events are selected using jet substructure and neural network based boosted $H/Y \rightarrow b\bar{b}$ identification algorithms. Upper limits at 95% confidence level are set on the cross section of the process $pp \rightarrow X \rightarrow Y \rightarrow b\bar{b}b\bar{b}$ for assumed masses of X in the range 0.9–4 TeV and Y between 60–600 GeV. The expected and observed cross section limits for the considered process, set between 0.1 and 150 fb, are the most stringent to date over much of the explored mass range. These limits are interpreted as exclusion of possible M_X and M_Y within the frameworks of the next-to-minimal supersymmetric model and the two-real-scalar-singlet extension of the standard model.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in “CMS data preservation, re-use and open access policy”.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid and other centres for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MOST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); IRF (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); MEC (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MoST (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NORDITA (Thailand); TUBITAK and TEMA (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 884104, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” be.h-project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Hellenic Foundation for Research and Innovation (HFR), Project Number 2288 (Greece); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 – GRK2497, the Hungarian Academy of Sciences, the New National Excellence Program – ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020.2.21.ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “A way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant BOS5650021 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welsh Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 01, https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.214.
[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.235.
[3] CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV, J. High Energy Phys. 06 (2013) 081, https://doi.org/10.1007/JHEP06(2013)081, arXiv:1303.4571.
[4] F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321, https://doi.org/10.1103/PhysRevLett.13.321.
[5] P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132, https://doi.org/10.1016/0031-9163(64)91136-9.
[6] P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508, https://doi.org/10.1103/PhysRevLett.13.508.
[7] G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585, https://doi.org/10.1103/PhysRevLett.13.585.
[8] P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156, https://doi.org/10.1103/PhysRev.145.1156.
[9] T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554, https://doi.org/10.1103/PhysRev.155.1554.
[10] D. Buttazzo, G. Degrassi, P.P. Giardino, G.C. Giudice, F. Sala, A. Salvio, A. Strumia, Investigating the near-criticality of the Higgs boson, J. High Energy Phys. 12 (2013) 089, https://doi.org/10.1007/JHEP12(2013)089, arXiv:1307.3536.
[11] Y. Hamada, H. Kawai, K.-y. Oda, Bare Higgs mass at Planck scale, Phys. Rev. D 87 (2013) 053009, https://doi.org/10.1103/PhysRevD.87.053009, arXiv:1210.2538.

[12] D.R. Jones, Comment on “Bare Higgs mass at Planck scale”, Phys. Rev. D 88 (2013) 098301, https://doi.org/10.1103/PhysRevD.88.098301, arXiv:1309.7335.

[13] A.V. Bednyakov, R.A. Knecht, A.F. Pikelner, O.L. Veretin, Stability of the electroweak vacuum: gauge independence and advanced precision, Phys. Rev. Lett. 115 (2015) 201802, https://doi.org/10.1103/PhysRevLett.115.201802, arXiv:1507.08833.

[14] J. Weiss, B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70 (1974) 390, https://doi.org/10.1016/0550-3213(74)90355-1.

[15] L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370, https://doi.org/10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.

[16] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489, https://doi.org/10.1016/0370-2693(77)90825-8.

[17] U. Ellwanger, C. Hugonie, A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rep. 496 (2010) 1, https://doi.org/10.1016/j.physrep.2010.07.001, arXiv:0910.1785.

[18] M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505, https://doi.org/10.1142/S0217751X10049827, arXiv:0906.0777.

[19] J.E. Kim, H.P.Nilles, The μ-problem and the strong CP problem, Phys. Lett. B 138 (1984) 150, https://doi.org/10.1016/0370-2693(84)91080-2.

[20] C. Bejar, A.R. Conley, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √s = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801, https://doi.org/10.1103/PhysRevLett.125.051801, arXiv:2002.12223.

[21] CMS Collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at √s = 13 TeV, J. High Energ. Phys. 09 (2018) 007, https://doi.org/10.1007/JHEP09(2018)007, arXiv:1803.05533.

[22] CMS Collaboration, Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at √s = 13 TeV, J. High Energ. Phys. 04 (2020) 171, https://doi.org/10.1007/JHEP04(2020)171, arXiv:1908.01115.

[23] A. Djouadi, M. Drees, U. Ellwanger, R. Godbole, C. Hugonie, S. King, S. Lehti, S. Moretti, A. Nikitenko, I. Rottländer, M. Schumacher, A. Teixeira, Benchmark scenarios for the NMSSM, J. High Energ. Phys. 07 (2008) 002, https://doi.org/10.1088/1126-6708/2008/07/002, arXiv:0801.4321.

[24] U. Ellwanger, M. Rodríguez-Vazquez, Simultaneous search for extra light and heavy Higgs bosons via cascade decays, J. High Energ. Phys. 11 (2017) 008, https://doi.org/10.1007/JHEP11(2017)008, arXiv:1707.08522.

[25] U. Ellwanger, C. Hugonie, Benchmark planes for higgs-to-higgs decays in the NMSSM, Eur. Phys. J. C 82 (2022), https://doi.org/10.1140/epjc/s10052-022-10354-3, arXiv:2202.00385.

[26] CMS Collaboration, Search for a heavy Higgs boson decaying into two light Higgs bosons in the t¯t final state at 13 TeV, J. High Energ. Phys. 11 (2021) 057, https://doi.org/10.1007/JHEP11(2021)057, arXiv:2106.10361.

[27] T. Robens, T. Stelzer, F. Wolf, Three-body Higgs boson decays and the exact SM: UH phenomenology and benchmark scenarios, Eur. Phys. J. C 80 (2020) 2051, https://doi.org/10.1140/epjc/s10052-020-7655-x, arXiv:1908.08554.

[28] CMS Collaboration, Precision luminosity measurement in proton-proton collisions at √s = 13 TeV in 2015 and 2016 at CMS, Eur. Phys. J. C 81 (2021) 800, https://doi.org/10.1140/epjc/s10052-021-09518-2, arXiv:2104.01927.

[29] CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at √s = 13 TeV, CMS Physics Analysis Summary CMS-PAS-LUM-17-004 https://cds.cern.ch/record/2621960, 2018.

[30] CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at √s = 13 TeV, CMS Physics Analysis Summary CMS-PAS-LUM-18-002 https://cds.cern.ch/record/2676164, 2019.

[31] HEPdata record for this analysis, https://doi.org/10.17182/hepdata.data115995, 2022.

[32] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, https://doi.org/10.1088/1748-0221/3/08/S08004.

[33] CMS Collaboration, Performance of the CMS level-1 trigger in proton-proton collisions at √s = 13 TeV, J. Instrum. 15 (2020) P01017, https://doi.org/10.1088/1748-0221/15/01/P01017, arXiv:2006.10165.

[34] CMS Collaboration, The CMS trigger system, J. Instrum. 12 (2017) P01020, https://doi.org/10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[35] CMS Collaboration, Technical proposal for the phase-II upgrade of the compact muon solenoid, CMS Technical Proposal CERN-LHC-2015-010, CMS-TDR-15-02, https://cds.cern.ch/record/256886, 2015.

[36] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12 (2017) P01003, https://doi.org/10.1088/1748-0221/12/01/P01003, arXiv:1706.04965.

[37] M. Cacciari, G.P. Salam, G. Soyez, The anti-k t jet clustering algorithm, J. High Energ. Phys. 04 (2008) 063, https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
The CMS Collaboration

A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic,
A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec,
P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Templ, W. Waltenberger, C.-E. Wulz

Institut für Hochenergiephysik, Vienna, Austria

M.R. Darwish, E.A. De Wolf, T. Janssen, T. Kello, A. Lelek, H. Rejeb Sfar, P. Van Mechelen, S. Van Putte,
N. Van Remortel

Universiteit Antwerpen, Antwerpen, Belgium

E.S. Bols, J. D’Hondt, A. De Moor, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller,
A.R. Sahasransu, S. Tavernier, W. Van Doninck, D. Vannerom

Vrije Universiteit Brussel, Brussels, Belgium

D. Beghin, B. Clerbaux, G. De Lentdecker, L. Favart, K. Lee, M. Mahdavikhorrami, I. Makarenko, S. Paredes,
L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer

Université Libre de Bruxelles, Bruxelles, Belgium

D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Rendón, C. Roskas, A. Samalan,
K. Skovpen, M. Tytgat, N. Van Den Bossche, B. Vermassen, L. Wezenbeek

Ghent University, Ghent, Belgium

A. Benecke, A. Bethani, G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, I.S. Donertas, A. Giammanco,
K. Jaffel, S. Jain, V. Lemaître, K. Mondal, J. Prisciandaro, A. Taliercio, T.T. Tran, P. Vischia, S. Wertz

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

G.A. Alves, C. Hensel, A. Moraes, P. Rebello Teles
The CMS Collaboration

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandao Malbouisson, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, V. Dos Santos Sousa, S. Fonseca De Souza, J. Martins, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nogima, A. Santoro, S.M. Silva Do Amaral, A. Sznejder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

University of Sofia, Sofia, Bulgaria

T. Cheng, T. Javaid, M. Mittal, L. Yuan

Beihang University, Beijing, China

M. Ahmad, G. Bauer, C. Dozen, Z. Hu, Y. Wang, K. Yi

Department of Physics, Tsinghua University, Beijing, China

E. Chapon, G.M. Chen, H.S. Chen, M. Chen, W. Fang, F. Iemmi, A. Kapoor, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

Institute of High Energy Physics, Beijing, China

A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, Q. Li, X. Lyu, Y. Mao, S.J. Qian, D. Wang, J. Xiao, H. Yang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

M. Lu, Z. You

Sun Yat-Sen University, Guangzhou, China

X. Gao, D. Leggat, H. Okawa, Y. Zhang

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China

Z. Lin, M. Xiao

Zhejiang University, Hangzhou, Zhejiang, China

C. Avila, A. Cabrera, C. Florez, J. Fraga

Universidad de Los Andes, Bogota, Colombia

J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez

 Universidad de Antioquia, Medellin, Colombia

D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac, T. Sculac

University of Split, Faculty of Science, Split, Croatia
S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, I.B. Laktineh, M. Lethuillier, L. Mirabito, S. Perries, K. Shchablo, V. Sordini, L. Torretotot, M. Vander Donckt, S. Viret

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France

D. Chokheli, I. Lomidze, Z. Tsamalaidze

Georgian Technical University, Tbilisi, Georgia

V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, J. Schulz, M. Teroerde

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

A. Dodonova, N. Eich, D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, T. Hebbeker, K. Hoepfner, F. Ivone, M.Y. Lee, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, S. Mondal, S. Mukherjee, D. Noll, A. Novak, A. Pozdnyakov, Y. Rath, H. Reithler, A. Schmidt, S.C. Schuler, A. Sharma, L. Vigilante, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad, O. Hlushchenko, T. Kress, A. Nowack, O. Pooth, D. Roy, A. Stahl, T. Ziemons, A. Zotz

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, S. Baxter, M. Bayatmakou, O. Behnke, A. Bermúdez Martínez, S. Bhattacharya, A.A. Bin Anuar, F. Blekman, K. Borras, D. Brunner, A. Campbell, A. Cardini, C. Cheng, F. Colombina, S. Consuegra Rodriguez, G. Correa Silva, M. De Silva, L. Didukh, G. Eckerlin, D. Eckstein, L.I. Estevez Banos, O. Filatov, E. Gallo, A. Geiser, A. Giraldi, G. Greau, A. Grohsjean, V. Guglielmi, M. Guthoff, A. Jafari, N.Z. Jomhari, B. Kaech, A. Kasem, M. Kasemann, H. Kaveh, C. Kleinwort, R. Kogler, D. Krücker, W. Lange, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, M. Mendizabal Morentin, J. Metwally, A.B. Meyer, M. Meyer, G. Milella, M. Mormile, A. Mussgiller, A. Nürnberg, Y. Otárid, D. Pérez Adán, D. Pitzl, A. Raspereza, B. Ribeiro Lopes, J. Rübenach, A. Saggio, A. Saibel, M. Savitskyi, M. Scham, V. Scheurer, S. Schnake, P. Schütze, C. Schwanenberger, M. Shchedrolosiev, R.E. Sosa Ricardo, D. Stafford, N. Tonon, M. Van De Klundert, F. Vazzoler, R. Walsh, D. Walter, Q. Wang, Y. Wen, K. Wichmann, L. Wiens, C. Wissing, S. Wuchterl, A. Zimermmane Castro Santos

Deutsches Elektronen-Synchrotron, Hamburg, Germany

R. Aggleton, S. Albrecht, S. Bein, L. Benato, P. Connor, K. De Leo, M. Eich, K. El Morabiti, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, M. Hajheidari, J. Haller, A. Hinzmann, G. Kasieczka, R. Klanner, T. Kramer, V. Kutzner, J. Lange, T. Lange, A. Lobanov, A. Malara, C. Matthies, A. Mehta, L. Moureaux, A. Nigamova, K.J. Pena Rodriguez, M. Rieger, O. Rieger, P. Schleper, M. Schröder, J. Schwandt, H. Stadie, G. Steinbrück, A. Tews

University of Hamburg, Hamburg, Germany

J. Bechtel, S. Brommer, M. Burkart, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, N. Faltermann, M. Giffels, J.O. Gosewisch, A. Gottmann, F. Hartmann, C. Heidecker, M. Horzela, U. Husemann, P. Keicher, R. Koppenhöfer, S. Maier, S. Mitra, Th. Müller, M. Neukum, G. Quast, K. Rabbertz, J. Rauser, D. Savoiu, M. Schnepf, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, J. van der Linden, R.F. Von Cube, M. Wassmer, M. Weber, S. Wieland, R. Wolf, S. Wozniewski, S. Wunsch

Karlsruher Institut für Technologie, Karlsruhe, Germany

G. Anagnostou, P. Assiouras, G. Daskalakis, A. Kyriakis, A. Stakia
The CMS Collaboration

Physics Letters B 842 (2023) 137392

Tata Institute of Fundamental Research-B, Mumbai, India

S. Bahinipati39, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu40, A. Nayak40, P. Saha, N. Sur, S.K. Swain, D. Vats40

National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, Odisha, India

A. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rastogi, S. Sharma

Indian Institute for Science Education and Research (IISER), Pune, India

H. Bakhshiansohi41, E. Khazaie, M. Zeinali42

Isfahan University of Technology, Isfahan, Iran

S. Chenarani43, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Grunewald

University College Dublin, Dublin, Ireland

M. Abbresciaa,b, R. Alya,c,44, C. Arutaa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, W. Elmetenawea,b, F. Erricoa,b, L. Fiorea, G. Iasellia,c, M. Inceaa,b, S. Lezki,a,b, G. Maggia,a,c, M. Maggiaa, L. Margjekaa,b, V. Mastrapasquaab, S. Mya,b, S. Nuzzoa,b, A. Pellecchiaa,b, A. Pomplia,a,b, G. Pugliesea,c, D. Ramosa,a, A. Rastogia, S. Mya,b, S. Nuzzoa,b, A. Pellecchiaa,b, A. Pompilia,b, G. Pugliesea,c, D. Ramosa,a, A. Ranieriia,b, G. Selvaggiaa,b, L. Silvestrisa,b, F.M. Simonea,b

14
M. Montenoa, M.M. Obertinoa, b, G. Ortonaa, L. Pachera, b, N. Pastronea, M. Pelliccionia, M. Ruspaa, c, K. Shchelinaa, F. Sivieroa, b, V. Solaa, A. Solanoa, b, D. Soldia, b, A. Staianoa, M. Tornagoa, b, D. Trocinoa, G. Umoreta, b, A. Vagnerinia, b
a INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale, Novara, Italy

S. Belfortea, V. Candelisea, b, M. Casarsaa, F. Cossuttia, A. Da Rolda, b, G. Della Riccaa, b, G. Sorrentinoa, b
a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, Y.C. Yang
Kyungpook National University, Daegu, Korea

H. Kim, D.H. Moon
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

E. Asilar, B. Francois, T.J. Kim, J. Park
Hanyang University, Seoul, Korea

S. Cho, S. Choi, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo
Korea University, Seoul, Korea

J. Goh, A. Gurtu
Kyung Hee University, Department of Physics, Seoul, Korea

H.S. Kim, Y. Kim, G.B. Yu
Sejong University, Seoul, Korea

J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon
Seoul National University, Seoul, Korea

W. Jang, D.Y. Kang, Y. Kang, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, M.S. Ryu, D. Song, I.J. Watson, S. Yang
University of Seoul, Seoul, Korea

S. Ha, H.D. Yoo
Yonsei University, Department of Physics, Seoul, Korea

M. Choi, H. Lee, Y. Lee, I. Yu
Sungkyunkwan University, Suwon, Korea

T. Beyrouthy, Y. Maghrbi
College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait

K. Dreimanis, V. Veckalns
Riga Technical University, Riga, Latvia

M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis
Vilnius University, Vilnius, Lithuania
N. Bin Norjoharuddeen, S.Y. Hoh, Z. Zolkapli

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J.F. Benitez, A. Castaneda Hernandez, H.A. Encinas Acosta, L.G. Gallegos Marín, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Universidad de Sonora (UNISON), Hermosillo, Mexico

G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, C.A. Mondragon Herrera, D.A. Perez Navarro, R. Reyes-Almanza, A. Sánchez Hernández

Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico

C. Oropeza Barrera, F. Vázquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemerita Universidad Autónoma de Puebla, Puebla, Mexico

I. Bubanja, J. Mijuskovic, N. Raicevic

University of Montenegro, Podgorica, Montenegro

D. Krofcheck

University of Auckland, Auckland, New Zealand

P.H. Butler

University of Canterbury, Christchurch, New Zealand

A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, M. Gul, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

V. Avati, L. Grzanka, M. Malawski

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland

H. Białkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski

National Centre for Nuclear Research, Swierk, Poland

K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, M. Pisano, J. Seixas, O. Toldaiev, J. Varela

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, Á. Navarro Tobar, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, L. Urda Gómez, C. Willmott
J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

B. Alvarez Gonzalez, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, A. Soto Rodríguez, A. Trapote, N. Trevisani, C. Vico Villalba

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazo, P.J. Fernández Manteca, A. Garcia Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Prieels, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnada, D.D.C. Wickramarathna

University of Colombo, Colombo, Sri Lanka

W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

University of Ruhuna, Department of Physics, Matura, Sri Lanka

T.K. Aarrestad, D. Abbaneo, J. Alimena, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, D. Barney, J. Bendavid, M. Bianco, B. Bilin, A. Bocci, C. Caillol, T. Camporesi, M. Capeans Garrido, G. Cerminara, N. Chernyavskaya, S.S. Chhibra, S. Choudhury, M. Cipriani, L. Cristella, D. d’Enterria, A. Dabrowski, A. David, A. De Roeck, M.M. Defranchis, M. Deile, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, F. Fallavollita, A. Florent, L. Forthomme, G. Franzoni, W. Funk, S. Ghosh, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, E. Govorkova, M. Haranko, J. Hegeman, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kiesel, M. Komm, N. Kratochwil, C. Lange, S. Laurila, P. Lecoq, A. Lintuluoto, C. Lourenço, B. Maier, L. Malgeri, S. Mallios, M. Mannelli, A.C. Marini, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, S. Orfaneli, L. Orsini, F. Pantaleo, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Piparo, M. Pitt, H. Qu, T. Quast, D. Rabady, A. Racz, G. Reales Gutiérrez, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Spighas, A.G. Stahl Leiton, S. Summers, K. Tatar, V.R. Tavolaro, D. Treille, P. Tropea, A. Tsirou, J. Wanczyk, K.A. Wozniak, W.D. Zeuner

CERN, European Organization for Nuclear Research, Geneva, Switzerland

L. Caminada, A. Ebrahimi, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Koltinski, M. Missiroli, L. Noehte, T. Rohe

Paul Scherrer Institut, Villigen, Switzerland

K. Androsov, M. Backhaus, P. Berger, A. Calandri, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, F. Eble, K. Gedia, F. Glessgen, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, L. Marchese, C. Martin Perez, A. Mascellani, M.T. Meinhard, F. Nesiti-Tedaldi, J. Niedziela, F. Pauss, V. Perovic, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, J. Steggemann, D. Valsecchi, R. Wallny

ETH Zurich - Institute for Particle Physics and Astrophysics (IPhP), Zurich, Switzerland

C. Amsler, P. Bärtschi, C. Botta, D. Brzhechko, M.F. Canelli, K. Cormier, A. De Wit, R. Del Burgo, J.K. Heikikäi, M. Huwiler, W. Jin, A. Jofrehei, B. Kilminster, S. Leontsinis, S.P. Liechti, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, A. Reimers, P. Robmann, S. Sanchez Cruz, K. Schweiger, M. Senger, Y. Takahashi
The CMS Collaboration

S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, K. Nam

Kansas State University, Manhattan, KS, USA

F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, CA, USA

E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Koeth, Y. Lai, S. Lascio, A.C. Mignerey, S. Nabili, C. Palmer, M. Seidel, A. Skuja, L. Wang, K. Wong

University of Kansas, Lawrence, KS, USA

D. Abercrombie, G. Andreassi, R. Bi, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, J. Eysermans, C. Freer, G. Gomez-Ceballos, M. Goncharov, P. Harris, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, K. Long, C. Mironov, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, J. Wang, Z. Wang, B. Wyslouch

Massachusetts Institute of Technology, Cambridge, MA, USA

R.M. Chatterjee, A. Evans, J. Hiltbrand, Sh. Jain, B.M. Joshi, M. Krohn, Y. Kubota, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Minnesota, Minneapolis, MN, USA

K. Bloom, M. Bryson, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, C. Joo, I. Kravchenko, I. Reed, J.E. Siado, G.R. Snow, W. Tabb, A. Wightman, F. Yan, A.G. Zecchinelli

University of Nebraska-Lincoln, Lincoln, NE, USA

G. Agarwal, H. Bandyopadhyay, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, A. Williams

State University of New York at Buffalo, Buffalo, NY, USA

G. Alverson, E. Barberis, Y. Haddad, Y. Han, A. Hortiangtham, A. Krishna, J. Li, J. Lidrych, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northeastern University, Boston, MA, USA

S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, Y. Liu, N. Odell, M.H. Schmitt, M. Velasco

Northwestern University, Evanston, IL, USA

R. Band, R. Bucci, M. Cremonesi, A. Das, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, K. Lannon, J. Lawrence, N. Loukas, L. Lutton, J. Mariano, N. Marinelli, I. Mcalister, T. McCauley, C. Mcgrady, K. Mohrman, C. Moore, Y. Musienko, R. Ruchti, A. Townsend, M. Wayne, M. Zarucki, L. Zygała

University of Notre Dame, Notre Dame, IN, USA

B. Bylsma, L.S. Durkin, B. Francis, C. Hill, A. Lesauvage, M. Nunez Ornelas, K. Wei, B.L. Winer, B.R. Yates

The Ohio State University, Columbus, OH, USA

F.M. Addesa, B. Bonham, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, D. Stickland, C. Tully

Princeton University, Princeton, NJ, USA
S. Malik, S. Norberg
University of Puerto Rico, Mayaguez, PR, USA

A.S. Bakshi, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, D. Kondratyev, A.M. Koshy, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie
Purdue University, West Lafayette, IN, USA

J. Dolen, N. Parashar
Purdue University Northwest, Hammond, IN, USA

D. Acosta, A. Baty, T. Carnahan, M. Decaro, S. Dildick, K.M. Ecklund, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Rotter, W. Shi, S. Yang, L. Zhang, Y. Zhang
Rice University, Houston, TX, USA

A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus, G.P. Van Onsem
University of Rochester, Rochester, NY, USA

K. Goulianos
The Rockefeller University, New York, NY, USA

B. Chiarito, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, O. Karacheban, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang
Rutgers, The State University of New Jersey, Piscataway, NJ, USA

H. Acharya, A.G. Delannoy, S. Fiorendi, T. Holmes, S. Spanier
University of Tennessee, Knoxville, TN, USA

O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Saфонов
Texas A&M University, College Station, TX, USA

N. Akchurin, J. Damgov, V. Hegde, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck
Texas Tech University, Lubbock, TX, USA

E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska
Vanderbilt University, Nashville, TN, USA

M.W. Arenton, B. Cardwell, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, C.E. Perez Lara, B. Tannenwald, S. White
University of Virginia, Charlottesville, VA, USA

N. Poudyal
Wayne State University, Detroit, MI, USA

S. Banerjee, K. Black, T. Bose, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Herve, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, A. Mohammadi, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens
University of Wisconsin - Madison, Madison, WI, USA
S. Afanasyev, V. Andreev, Yu. Andreev, T. Aushev, M. Azarkin, A. Babaev, A. Belyaev, V. Blinov, E. Boos, V. Borshch, D. Budkouskii, V. Bunichev, O. Bychkova, V. Chekhovsky, R. Chistov, M. Danilov, A. Dermenev, T. Dimova, I. Dremin, M. Dubinin, L. Dudko, V. Epshteyn, G. Gavrilov, V. Gavrilov, S. Gninenko, V. Golovtsov, N. Golubev, I. Golutvin, I. Gorbunov, A. Gribushin, V. Ivanchenko, Y. Ivanov, V. Kachanov, L. Kardapoltsev, V. Karjavine, A. Karneyeu, V. Kim, M. Kirakosyan, D. Kirpichnikov, M. Kirsanov, V. Klyukhin, O. Kodolova, D. Konstantinov, V. Korenkov, A. Kozyrev, N. Krasnikov, E. Kuznetsova, A. Lanev, A. Litomin, N. Lychkovskaya, V. Makarenko, A. Malakhov, V. Matveev, V. Murzin, A. Nikitenko, S. Obraztsov, V. Okhotnikov, V. Oreshkin, A. Oskin, I. Ovtin, V. Palichik, P. Parygin, A. Pashenkov, V. Perelygin, M. Perfilov, S. Petrushanko, G. Pivovarov, S. Polikarpov, V. Popov, O. Radchenko, M. Savina, V. Savrin, V. Shalaev, S. Shmatov, S. Shulha, Y. Skovpen, S. Slabospitskii, I. Smirnov, V. Smirnov, D. Soknov, A. Steppnov, V. Sulimov, E. Tcherniaev, A. Terkulov, O. Teryaev, M. Toms, A. Toropin, L. Uvarov, A. Uzunian, E. Vlasov, S. Volkov, A. Vorobyev, N. Volytishin, B.S. Yuldashev, A. Zarubin, I. Zhizhin, A. Zhokin

Authors affiliated with an institute or an international laboratory covered by a cooperation agreement with CERN

1 Deceased.
2 Also at Yerevan State University, Yerevan, Armenia.
3 Also at TU Wien, Vienna, Austria.
4 Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
5 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
6 Also at Universidade Estadual de Campinas, Campinas, Brazil.
7 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
8 Also at UFMS, Nova Andradina, Brazil.
9 Also at The University of the State of Amazonas, Manaus, Brazil.
10 Also at University of Chinese Academy of Sciences, Beijing, China.
11 Also at Nanjing Normal University Department of Physics, Nanjing, China.
12 Also at The University of Iowa, Iowa City, Iowa, USA.
13 Also at University of Chinese Academy of Sciences, Beijing, China.
14 Also at an institute or an international laboratory covered by a cooperation agreement with CERN.
15 Also at Cairo University, Cairo, Egypt.
16 Also at Zewail City of Science and Technology, Zewail, Egypt.
17 Also at Purdue University, West Lafayette, Indiana, USA.
18 Also at Université de Haute Alsace, Mulhouse, France.
19 Also at Erzincan Binali Yıldırım University, Erzincan, Turkey.
20 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
21 Also at University of Hamburg, Hamburg, Germany.
22 Also at RWTH Aachen University, Institute of Particle Physics, Aachen, Germany.
23 Also at Isfahan University of Technology, Isfahan, Iran.
24 Also at Brandenburg University of Technology, Cottbus, Germany.
25 Also at Forschungszentrum Jülich, Juelich, Germany.
26 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt.
27 Also at Karoly Robert Campus, MATE Institute of Technology, Gyöngyös, Hungary.
28 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
29 Also at Institute of Nuclear ResearchATOMKI, Debrecen, Hungary.
30 Also at University of Petroleum and Energy Studies, Dehradun, India.
31 Also at University of Hyderabad, Hyderabad, India.
32 Also at University of Visva-Bharati, Santiniketan, India.
33 Also at Indian Institute of Science (IISc), Bangalore, India.
34 Also at Indian Institute of Technology (IIT), Mumbai, India.
35 Also at IIT Bhubaneswar, Bhubaneswar, India.
36 Also at Sharif University of Technology, Tehran, Iran.
