Studies in the United States have shown that minority students might face a trade-off between better academic performance and peer acceptance, which has been termed “acting White.” This paper investigates racial differences in the relationship between grades and popularity in five Brazilian schools. Popularity is measured using friendship ties among students, assigning a higher value to students more central in the network. The racial composition of friendship ties is generally diverse, although they tend to favor racial peers, especially among Black students. We find a positive correlation between grades and popularity of non-White students that is driven by their friendships with their White classmates. This contrasts with patterns associated with acting White, where a negative correlation between minorities’ grades and their popularity among racial peers is not compensated by their status among White students. We also investigate how academic performance is associated with racial identity choice conditional on skin color, finding a weak negative relationship between higher grades and the odds of classification as mixed race.

Differences in academic performance between White and Black students are common aspects of school systems in the United States and Brazil (1, 2), the two countries with the largest Black populations in the Americas and a shared history of slavery and racial discrimination. Among several explanations for the racial gap in achievement in the United States, the controversial “acting-White” hypothesis maintains that part of such differences may be explained by the existence of a trade-off between peer acceptance and good academic performance, a dilemma faced only by minority students (3, 4). Empirical research using friendship data in the United States has provided mixed support for this hypothesis (5–7).

Originally, acting White was linked to the “oppositional culture hypothesis,” proposed by Fordham and Ogbu (3). Briefly, proponents of this hypothesis argue that subordinate minorities develop a culture of opposition toward academic success as a response to below-standard educational services and discrimination in the labor market. This hypothesis is structured around five nodes: 1) a monolithic collective identity, 2) inferior school quality for Black students, 3) unequal reward structures for Black individuals, 4) the development of an oppositional culture toward education as a coping mechanism, and 5) a negative relationship between popularity and academic achievement among Black students as the result of this process (4). In this paper, we focus on the fifth point and use it as our narrow working definition of acting White. We make a distinction between the empirical pattern summarized in the fifth point and the theory that explains its emergence, encompassed in the first four nodes. By focusing on this empirical pattern, it is possible to assess this phenomenon in contexts outside of the United States, the country where this hypothesis has received most attention in explaining racial gaps in achievement (4–6, 8–13).

The objective of this paper is to investigate differences in the relationship between popularity and academic performance among Brazilian students of different races. It has been pointed out that Latin America, and Brazil in particular, is a suitable setting to test the acting-White hypothesis, in comparison with the US case (14). This is because, despite the presence of racial inequality and discrimination against Black individuals, important aspects of racial relations contrast with those found in the United States. Compared to the United States, Brazil is characterized by high levels of miscegenation and low levels of segregation (15, 16). Moreover, racial identification is itself more fluid, relying more on appearance than on descent. There are no clear boundaries between White, Black, and mixed-race individuals, and social context can influence how individuals perceive themselves and each other (15, 17, 18). As a consequence, social norms against assimilation would be much harder to enact. Therefore, although we anticipate racial differences in academic performance, we expect to observe a weak acting-White phenomenon in Brazil.
To investigate this hypothesis, we use original data from the “Attitudes and Relationships among Primary and High School Students” survey. This study, conducted by one of the authors in 2015, collected data among all students from 6th to 12th grade in five public schools in a Brazilian town in the state of São Paulo. Students answered questions related to their individual and family characteristics and their friendships with other students, among other topics. Using transcript data, we can assess whether the relationship between popularity and grades differs across racial groups in these schools. Following the same approach utilized in the United States (5), we use eigenvector centrality to measure students’ popularity in the network, so that it depends not only on the number of social interactions they have, but also on the social interactions of students with whom they interact.

We find that there is a positive and significant correlation between the grades of non-White students and their popularity among students of all races, but especially among White students. Our results also show a positive and significant correlation between academic performance and same-race popularity among White students, but this relationship is weaker and not significant when we consider their popularity among non-White students. Therefore, non-White students in our sample do not face a trade-off between social status and academic performance, especially if we account for their friendship ties with White students.

Our data include students’ race self-categorization as White, Black, or Brown/mixed, which we use as an independent variable in our main analysis, as well as the students’ self-assessed skin color. The latter is a variable that ranges from 1 to 15, with 1 representing the lightest skin color and 15 the darkest (see SI Appendix, Figs. S2 and S3 and the discussion in Materials and Methods for more details). This allows us to complement our analysis by testing whether racial classification, now as a dependent variable, is associated with academic performance, while controlling for skin color. Evaluating this possibility is particularly important in the Brazilian context, where racial identification relies on appearance, but is fluid and subject to social influences. We find weak evidence that higher grades are associated with a lower chance of identification as “mixed race” among all students, although the direction and significance of the association vary within narrower subgroups, such as gender, achievement, grade, and classroom racial composition.

Our results, thus, do not support the acting-White hypothesis among the students in our sample. This result, combined with evidence from the previous literature, suggests that a trade-off between grades and popularity is hardly a first-order issue in explaining performance gaps between minority and majority students in Brazil and in the United States. Moreover, informed by a model of assimilation in schools (19), we argue that our setting differs from those where acting White has been documented before, due to the higher level of racial integration we find in students’ friendship networks. Therefore, we also contribute to the literature by highlighting the importance of homophily in bringing about group-based oppositional identities in schools.

The next section presents our main findings and is followed by a discussion of the results. Details about the data and our methodology are discussed in Materials and Methods. Data and replication codes are available in the Harvard Dataverse repository.

Results

Table 1 presents information regarding academic performance and popularity for each racial category. Non-White students, composed by the Brown (moreno) and Black (negro) categories, compose the majority of the sample. Only a small share of students classify themselves as Black. These patterns contrast with the United States, where the majority of students are White, with Black and Hispanic students composing only 30% of the total (5). Despite being the majority group, the Brazilian history of racial discrimination against non-Whites places them as a political minority in society (15).

On average, White students perform better than non-White students, with the difference in grades reaching more than 0.2 SDs. For all racial groups, an important share of reported friendships ties is between students of a different race. Based on our measures of popularity, both White and non-White students are popular among students of other races. Nonetheless, there is still a tendency for students to befriend racial peers, particularly among Black students. These facts highlight a contrast between friendship networks in Brazil and in the United States. While race plays an important role in shaping these networks in the latter (5, 20, 21), race is not as relevant in our setting. Our evidence is corroborated by students’ reports that race is not important in determining their friendships, as shown in SI Appendix, Table S4. Answers to these questions are similar among White and non-White students, as shown in SI Appendix, Table S5.

Academic Performance and Popularity. Fig. 1 displays the non-parametric relationship between students’ grades and their popularity among all-races, same-race, and other-race classmates, for Whites and non-Whites. Other-race popularity is defined

Table 1. Descriptive statistics

	White						
	Mean	SD	Mean	SD	Mean	SD	
Grades	0.113	(0.975)	−0.102	(0.948)	−0.111	(1.07)	
Friends	4.467	(3.091)	4.602	(3.335)	4.769	(3.534)	
White friends	1.998	(1.817)	1.928	(1.827)	1.761	(1.725)	
Non-White friends	2.261	(1.928)	2.492	(2.055)	2.744	(2.382)	
Same-race popularity	2.35	(2.34)	3.013	(2.771)	3.379	(3.314)	
Other-race popularity	2.736	(2.59)	2.199	(2.256)	1.937	(2.089)	
All-race popularity	5.766	(4.892)	5.893	(5.181)	6.086	(5.488)	
Observations	1,178		1,275		117		

Data were collected in five public schools from students between 6th and 12th grades. Students with missing values or in classrooms that did not have enough students were excluded. Racial classification of friendship ties is based on a White–non-White dichotomy that places Black and Brown students together.
only with respect to White and non-White students, excluding Asian and indigenous, while the all-races category includes all of these groups. The students’ grades and all popularity variables are standardized to have mean zero and SD one. Fig. 1, Left shows the relationship between grades and all-race popularity. For both racial groups, we observe a positive correlation between grades and popularity. The popularity of Whites displays some volatility when their grades are higher than zero. For non-White students, the relationship between grades and popularity is increasing and less volatile than for White students.

In Fig. 1, Center, we restrict the analysis to same-race friendships. We observe a pattern that resembles that found in the United States (5): a positive correlation between grades and same-race popularity for White students, but a concave relationship for non-White students, suggesting the existence of acting White in Brazil. Fig. 1, Right depicts the same relationships, but between other-race popularity and grades. We observe a positive association between these variables for non-White students throughout the domain. For Whites, however, this relationship is nonmonotonic, reaching a maximum close to zero, and then decreasing up to 1 SD, to increase again thereafter. These numbers suggest that once we account for the role of other-race friendship ties, minority students do not seem to face a trade-off between grades and popularity because their popularity among White students increases with grades.

To further investigate the relationship between academic performance and popularity, we turn to the regression analysis, as outlined in Eq. 1 in Materials and Methods. Briefly, we regress popularity among all-races, same-race, and other-race students on racial identification (whether students are non-White), grades, their interaction, and a series of control variables. A positive coefficient on the interaction between the non-White indicator and grades suggests that the association between grades and popularity is higher among non-Whites than Whites.

Table 2 summarizes the results for all three dependent variables. Columns 1 and 2 include results for popularity among students of all races, with and without classroom fixed effects (FE). The results show that the correlation between grades and popularity is not statistically different from zero for Whites. For non-White students, however, the total effect of grades (adding the coefficient on grades with its interaction with the racial dummy) is positive and significant across both specifications, especially when we control for classroom FE.

In Table 2, columns 3 and 4 show the results for same-race popularity. The evidence suggests that among White students the relationship between grades and popularity within race is positive and significant, while among non-White students the estimated coefficient is not significantly different from zero. We cannot reject the hypothesis that the sum of the two coefficients is zero, meaning that we find no association between grades and same-race popularity for non-White students. The inclusion of classroom FE (Table 2, column 4) reduces the magnitude of the association between grades and same-race popularity for Whites.

Finally, in Table 2, columns 5 and 6 display the results when the dependent variable is popularity across races. For White students, there is no significant correlation between other-race popularity and grades, irrespective of the specification. For non-White students, however, we find a positive and significant coefficient when we control for classroom FE (Table 2, column 6). Moreover, the sum of the coefficients on grades and its interaction with the racial dummy is highly significant for both specifications. This means that the popularity of non-White students among White students increases with grades.

In SI Appendix, Table S6, we present further information regarding heterogeneity in the results with respect to 1) school level (elementary or high school), 2) gender, 3) racial composition of classrooms (share of White students above or under 50%), and 4) students’ grades (above or below the median). Across all subgroups, there is a positive relationship between other-race popularity and grades for non-White students but a null or negative relationship for White students.

We also perform a series of robustness checks on our main results to examine their sensitivity to the definition of racial groups and to grouping Black and Brown students in the same non-White category. We show that classifying individuals based on self-reported skin color rather than their racial identification as White or non-White (Black or Brown) leads to similar results (SI Appendix, Table S8). Interacting grades with both racial identification and classification based on self-reported skin color does not change the conclusions either (SI Appendix, Table S9). When we split the non-White category between Black and Brown students, we find similar results (SI Appendix, Tables S10 and S11). In particular, when Black students have higher grades, their popularity among Brown and White students also increases, which highlights the importance of skin color vis-a-vis race (22). Other robustness exercises include separate regressions for each racial group (SI Appendix, Table S12), controlling for the supply of “potential friends” (SI Appendix, Table S13), using other dependent variables in the regressions (SI Appendix, Table S14), and changing the criteria for inclusion of students and classrooms in the analytical sample (SI Appendix, Table S15). See SI Appendix, Robustness checks for a more detailed discussion of these analyses.

Academic Performance and Racial Identification. Racial classification in Brazil is more dependent on appearance than descent and there are no clear criteria used to classify individuals, resulting in a racial schema with moderate levels of color elasticity (16).
We now examine whether racial identification is related to grades conditional on self-assessed skin color. Table 3 presents the results of multinomial logit regressions that estimate the odds of students classifying themselves as White, Black, or Brown conditional on skin color (ranging from 1 to 15, with 1 the lightest complexion), individual characteristics, socioeconomic status, and their grades, as described in Eq. 2. We report average marginal effects of grades on the probability of identifying in each of the three racial groups. The results in Table 3, column 4, where all controls are included, point toward a small polarization effect of grades on racial classification, as in ref. 16, increasing the chances of identification as either White or Black and reducing the chances of identification as Brown. However, the coefficients are small and estimates are imprecise.

SI Appendix, Table S7 displays the analyses of the effect of racial identification on subgroups of our sample. We find evidence that among students in high school, females, and students in classrooms with a lower share of White students, good grades are associated with a higher probability of self-identification as White. Among students in elementary school, males, and students in classrooms with a larger share of White students, there is no relationship between grades and racial classification. Finally, among high-achieving students, higher grades are associated with a higher chance of identification with the Black category.

Discussion

Taken together, results in Fig. 1 and Tables 1 and 2 suggest that racial relations in Brazil do not follow the patterns associated with acting White. Although we find that the relationship between grades and same-race popularity differs between White and non-White students, the results change when we account for friendships among students of all racial groups. In this case, minority students in Brazil do not face a trade-off between grades and popularity. This result is largely driven by other-race friendships ties, as we observe a large and significant correlation between non-White students’ performance and their popularity among White students.

Our result is strengthened by a series of robustness checks. There are some limitations, however. First, the use of the moreno term to refer to the mixed-race group instead of pardo may limit the comparability of our results with those that use the official Brazilian classification. Additionally, increase ambiguity in racial classification, and decrease the share of Whites in our sample (18). Nonetheless, because our results also hold when we group students based on skin color rather than racial identity (SI Appendix, Table S8) and our estimated model of race choice shows little evidence that students strategically choose their race based on academic performance (Table 3), we believe that this ambiguity and its effect on our results are not significant. Another limitation is our reliance on racial and skin color self-assessment. Our coefficients in Table 3 would be biased toward zero if students’ grades influenced self-report of these variables in the same direction, while the effects on our results in Table 2 and SI Appendix, Table S8 are harder to assess, as they depend on how self-assessments in race and skin color are related to popularity and grades. Future research should...

Table 2. Academic performance and popularity across racial groups

	All races	Same race	Other race			
	1	2	3	4	5	6
Non-White	0.040	0.049	0.279***	0.278***	−0.221***	−0.206***
Grades	0.054	0.037	0.082**	0.058*	0.024	0.007
Non-White*grades	0.016	0.071**	−0.077	−0.016	0.053	0.105***
Classroom FE	No	Yes	No	Yes	No	Yes
Observation	2,570	2,570	2,570	2,570	2,570	2,570
Adjusted R2	0.027	0.201	0.027	0.205	0.029	0.2

Linear hypothesis test: Grades + non-White × grades = 0

- F statistic: 6.237
- P value: 0.013
- Classroom FE: No
- Observation: 2,570
- Adjusted R2: 0.027

All results are from linear regression models, as specified in Eq. 1. The dependent variables are individuals’ popularity measured across students of all races (columns 1 and 2), same race (columns 3 and 4), and other race (columns 5 and 6). Popularity and grades are standardized to have mean of zero and SD of one. Linear hypothesis test whether Grades + Nonwhite*grades = 0. All regressions control for gender; age; whether children were Catholic, Evangelical, or other religion; indexes of self-esteem, study effort, and parents’ support; and SES variables that include indexes of poverty level, neighborhood quality, and mother’s and father’s occupation. Robust SEs are clustered at the classroom level. *P < 0.1; **P < 0.05; ***P < 0.01.

Table 3. Average marginal effects of grades on racial classification

	1	2	3	4
White	0.007	0.006	0.013	0.013
Black	0.003	0.002	0.002	0.004
Brown	−0.010	−0.009	−0.015	−0.017*
Skin color	Yes	Yes	Yes	Yes
SES	No	Yes	Yes	Yes
Individual characteristics	No	No	Yes	Yes
Classroom FE	No	No	No	Yes
Observations	2,526	2,526	2,526	2,526

Shown is the average marginal effect (AME) of grades on the chances of classifying as each of the three racial groups. AMEs are estimated as ∂E[y = j|X]/∂Grades, based on logit specification as in Eq. 2. Skin color is introduced as a continuous variable. Individual characteristics include gender; age; whether children were Catholic, Evangelical, or other religion; indexes of self-esteem, study effort, and parents’ support. SES variables include indexes of poverty level, neighborhood quality, and mother’s and father’s occupation. SEs are clustered at the classroom level. *P < 0.1.
be able to complement self-categorization with interviewer and peer classification to assess the robustness of our results. Finally, our sample of students and schools is limited to a single town. Therefore, it is not possible to generalize our results to the whole of Brazil, a highly heterogeneous country.

Can our results shed some light on how racial relations work in schools in the United States? First, the changing nature of demographics in the United States highlights the importance of understanding racial dynamics in other countries, particularly in Latin America (23, 24). Second, we argue that cases characterized as acting White and ours can both be viewed as variations of the same assimilation process in schools (19), but under two different specifications. The main distinction comes from the degree of homophily found in each country and how this parameter affects assimilation—the positive relationship between minorities' grades and other-race social status—and social sanctions—the negative relationship between minorities' grades and same-race social status. Acting White will emerge only where friendship networks are highly segregated (the result of high levels of homophily), assimilation is low, and social sanctions within racial peers are more easily applied. In Brazil, however, friendship networks are more integrated because of lower homophily, making social sanctions on racial peers more difficult to impose and assimilation more frequent. In SI Appendix, we further detail this model of assimilation in schools and argue as to how these two contexts could be modeled.

Therefore, we believe that future research should not only focus on understanding what circumstances favor or hinder the emergence of social sanctions against high-achieving minority individuals, in line with what has been done in Germany for gender and ethnicity (25), but also investigate the role of majorities in bringing about these circumstances through the way they treat and socialize with minorities in their communities. However, it is unlikely that acting White is the major determinant of racial gaps in achievement, with discrimination, early-life disadvantages, and previous performance being the leading candidates (11–13).

Concerning the literature on determinants of racial identification, our findings suggest that some attention should be paid to how socioeconomic status affects the racial composition of individuals' social networks, rather than focusing solely on their racial classification. In general, the Brazilian case has focused on "money whitens" or "whitening," when higher socioeconomic status increases the chances of identification as White (16, 17, 26, 27). More recently, some studies have shown a change in racial perception among Brazilians, with an increase in the share of individuals self-classifying as Black or Brown (28). Although causal research on this topic is scant, some research has shown that public policy and media representation can affect how individuals classify themselves (29, 30).

In our sample of Brazilian schools, the relationship between grades and racial identification is weak and possibly restricted to a few subgroups. However, positive associations between non-Whites' academic performance and popularity among White students are clear and found across all subgroups. This means that whitening might be more salient with respect to one's position in society rather than racial identification, as has been argued by early scholarship on racial relations in Brazil (31, 32). Whitening should thus not be viewed exclusively with respect to racial classification, but extended to include an analysis of individuals' social networks. Assimilation into majority groups can then be interpreted as a form of "partial passing," when "full passing" (changing one's racial identity) is not possible or is too costly (33).

Materials and Methods

Data. Data come from the survey "Attitudes and Relationships among Primary and High School Students" conducted by us in 2015 in five public schools in a Brazilian town nearly 100 km from the city of São Paulo. The study is a census of a population that comprises a total of 4,409 students from 6th to 12th grade that were enrolled in these schools at the beginning of the academic year, although only 3,431 students were successfully interviewed. Students answered questions related to their individual and family characteristics; their positions on sensitive topics such as racism, sexism, and inequality; and their friendship ties with other students, among other topics.

This study was approved by the Inspé Institute of Education and Research's Institutional Review Board. Students and their parents were notified about the study before the interview. Participation was voluntary and parents could refuse their children's participation. Children were informed about the scope of the study prior to answering the questionnaire; it was made clear that participation would not have any consequences on their grades. Data and replication codes are available in the Harvard Dataverse repository.

Students had to indicate their race by choosing one among the following options to the question, "What would you say you are?" (você dina que é?): White (branco), Brown or mixed race (moreno), Black (negro), Asian, or indigenous, apart from an "other race" category for those that did not identify with any of these options. Throughout most of our analysis, we combine negro and negro in a non-White group, excluding students identified as Asian, indigenous, or other race, since they compose less than 4% of the total sample. This racial identification question is the one used in our main analysis.

After students identify their race, they are asked to choose among 15 different complexion categories, "What is your skin color?" (qual a sua cor de pele?), with 1 being the lightest color in the spectrum and 15 the darkest. SI Appendix, Fig. S2 displays the skin color distribution of those that identified as White, Brown, and Black students, while SI Appendix, Fig. S3 shows the possible skin colors available for students to pick from. Identification and skin color are highly correlated, but they are not identical, as there is some overlap in the distribution of skin color for Whites and Blacks, but not for Whites and Browns. The two variables allow us to better understand the actual racial classification of students and adapt the analysis to the Brazilian case, where skin color is the predominant factor in determining racial classification, even though it is still subject to ambiguity (15, 16, 35).

Students were also asked to name their best friends within their classroom. No restriction was placed on the number maximum number of students or their gender. They are therefore distinct from Add Health data commonly used in studies in the United States in two dimensions. First, there is no limit on the number of friends students could list. Second, their friendships were restricted to their classrooms, not their schools. As a result, we have 118 friendship networks available for the analysis, one for each classroom in our sample.

Following the approach of refs. 5 and 36, we proxy popularity with a measure of social connections in networks, including same-race, other-race, and all-race popularity. For a detailed description on how these measures were constructed, we refer readers to SI Appendix, Measuring popularity. We consider two students to socially interact only if both name each other as friends. This is in contrast to the study that uses Add Health data (5), which assumes they interact if at least one of them does so. We make this choice because there is no limit on the number of friendship ties students could report in our data. The choice for a “union” approach could lead to students inflating their own popularity by naming several students as friends in fact they are not. Our “intersection” approach takes a more conservative stance.

Finally, we also had access to students’ transcripts at the end of the academic year. These transcripts provide information on their grades (ranging from 0 to 10) and absences for every subject taught during the academic year, 8 subjects for students in elementary school and 12 for students in high school. In the analysis, we focused on grades only. We reduce the dimension of the data using

1https://www.insper.edu.br/en/faculty-and-research/research-ethics-committee/.

5The PERLA project (16, 34) uses a similar system, with 11 colors to obtain information about Latin Americans' skin color, including Brazilians. However, different from the Project on Ethnicity and Race in Latin America (PERLA) project, here, skin color is self-reported by children. It can suffer from nonrandom measurement error, although its observed distribution conditional on racial identification follows the expected pattern (SI Appendix, Fig. S2) and is similar to the one observed in PERLA.
exploratory factor analysis, by extracting the first factor from all grades and using it as a proxy for students’ performance, thus creating a “grades score.” This variable correlates strongly with grades of all subjects and their average. Variables at the individual level are used as controls in the remainder of the analysis. We include proxies for socioeconomic status (SES): poverty level, quality of the neighborhood where the student lives, and father’s and mother’s occupations (classified based on ref. 37). Other individual-level characteristics are gender, religion, and age and indexes of self-esteem, parents’ support, and academic effort. For a detailed description on the construction of these variables, as well as criteria for sample selection, we refer readers to SI Appendix, Variables construction.

Methodology. Our approach to the association between popularity and grades follows closely that of Fryer and Torelli (5). The main linear regressions we estimate are

\[
P_{\text{Race}} = \beta_0 + \beta_1 \cdot \text{Grades} + \beta_2 \cdot \text{Skin Color} + \epsilon,
\]

where \(k \) may represent same-race (S), other-race (O), and all-races (A) popularity. Grades consists of a variable that summarizes information on grades of all assignments, as described above. Nonwhite is a dummy variable indicating the racial identification of students, that is, whether they are Black or Brown (negro or moreno), as opposed to being White (branco). The vector \(X_i \) includes all individual control variables related to SES and other individual characteristics, \(\eta_i \) are classroom FE, and \(\epsilon_i \) are idiosyncratic shocks to individual \(i \) in classroom \(c \) on social status measure \(k \). This is our preferred specification, as classroom FE are likely to also capture network unobserved effects, since networks were constructed at the classroom level and most classrooms have only one connected component that comprises all students. Moreover, recent research has shown that Brazilian classrooms can have considerable levels of segregation, even when this happens by chance (38). Therefore, controlling for classroom FE helps to avoid problems generated by different racial composition across classrooms.

The coefficient \(\beta_2 \) is interpreted as the acting-White coefficient, that is, the extent to which the relationship between same-race popularity and grades differs between White and Black students. In the United States, this coefficient is negative and of similar size as \(\beta_2 \) in the overall sample, but increases in magnitude in particular settings (39). This means that in some contexts, Black students face a trade-off between grades and popularity among their racial peers, while such a trade-off does not exist for White students, since \(\beta_2 \) is always positive. Here, we are also concerned with the relationship between grades and popularity among other-race and all-race peers. A positive sign for \(\beta_2 \) would mean that, for non-White students, higher popularity among other-race students is more associated with higher grades than for Whites. The sum of coefficients \(\beta_2 \) and \(\beta_3 \) should also be positive if we expect non-Whites with higher grades to have higher popularity among all their classmates, being they White or non-White.

There are two main identification challenges in our analysis. First, the relationship between grades and popularity might be biased by omitted variables associated with unobserved SES. Unfortunately, we do not have access to more traditional measures of SES, such as parents’ education and family income/wellbeing. Nonetheless, we address this concern by including four proxy variables for SES as controls: an index of poverty level, an index of neighborhood quality, and a set of dummy variables for fathers’ and mothers’ occupations.

Second, racial differences in the relationship between grades and popularity may arise by a combination of homophily in grades with racial inequality in academic performance. If students tend to befriend those with similar outcomes, then high-achieving non-White students are likely to have more White than non-White friends simply because there are more of the first group among students with higher academic achievement. Following ref. 5, we address this issue by adding measures of potential supply of same-race friends when performing robustness checks (SI Appendix, Table S12).

We also investigate how racial identification is influenced by academic performance conditional on skin color. In so doing, we estimate multinomial logit models. We follow ref. 16 and use as a dependent variable the choice between White, Brown, and Black racial identification, setting Brown as reference category. The estimated equation is given by

\[
P_{\text{Race}} = j(W_{i}) = \exp(W_{i} \alpha_{j}) / \sum_{h=1}^{3} \exp(W_{i} \alpha_{h}),
\]

where \(j \) is White, Brown, or Black and

\[
W_{i} \alpha_{j} = \alpha_{0j} + \alpha_{1j} \cdot \text{Grades} + \alpha_{2j} \cdot \text{Skin Color} + \alpha_{3j} \cdot \text{X}_{i} + \epsilon_i
\]

where \(W \) represents all covariates, including students’ skin color, and other covariates. Students’ self-reported skin color comprises 15 possible categories. We again follow ref. 16 and include skin color as a continuous variable. Finally, covariates in \(X \) include the same SES and individual characteristics as in Eq. 1 and \(\epsilon_i \) are classroom fixed effects.

Data Availability. Questionnaire e and friendship networks data have been deposited in Harvard Dataverse (https://doi.org/10.7910/DVN/ZHTC67K) (39).

ACKNOWLEDGMENTS. We thank participants in seminars at Insper, Columbia University, United Nations University, World Institute for Development Economics Research (UNU-WIDER), and Centro de Estudos da Metrópole (CEM) Sao Paulo and two anonymous reviewers for helpful comments. We thank Anne Frank House, Instituto Plataforma Brasil for supporting our research. A.P benefited from funding from the UNU-WIDER visiting PhD fellowship. We also greatly appreciate funding from Fundação de Amparo à Pesquisa do Estado de São Paulo, Grants 2013/07616-7 (to C.K.) and 2019/12553-0 (N.M.-F.).
30. M. T. R. de França, “Fecundidade, Identificação Racial e Desigualdade,” PhD thesis, Universidade de São Paulo, São Paulo, Brazil (2020).
31. C. Wagley, “Race relations in an Amazon community” in Race and Class in Rural Brazil, C. Wagley, Ed. (Unesco, Paris, France, 1952), pp. 116–141.
32. O. Ianni, Parte Dois in Cor e Mobilidade Social em Florianópolis: Aspectos das Relações Entre Negros e Brancos Numá Comunidade do Brasil Meridional, F. H. Cardoso, O. Ianni, Eds. (Companhia Editora Nacional, São Paulo, Brazil, 1960).
33. Y. C. Kim, G. C. Loury, To be, or not to be: Stereotypes, identity choice and group inequality. J. Public Econ. 174, 36-52 (2019).
34. E. Telles, R. Flores, Not just color: Whiteness, nation, and status in Latin America. Hisp. Am. Hist. Rev. 93, 411-449 (2013).
35. E. Telles, S. Bailey, Understanding Latin American beliefs about racial inequality. Am. J. Sociol. 118, 1559-1595 (2013).
36. F. Echenique, R. G. Fryer, A measure of segregation based on social interactions. Q. J. Econ. 122, 441-485 (2007).
37. R. Erikson, J. H. Goldthorpe, J. H. Goldthorpe, The Constant Flux: A Study of Class Mobility in Industrial Societies (Oxford University Press, 1992).
38. J. Gagne, Classroom segregation without tracking: Chance, legitimacy, and myth in “racial paradise”. (CEPA Working Paper, Stanford Center for Education Policy Analysis), No. No. 21-04, (2021).
39. A. Portella, C. Kirschbaum, Replication Data for “Racial Social Norms among Brazilian Students: Academic Performance, Social Status and Racial Identification.” Harvard Dataverse. https://doi.org/10.7910/DVN/ZHCTCK, Harvard Dataverse. Deposited 4 January 2022.