Predictive value of creatine kinase MB for contrast-induced acute kidney injury among myocardial infarction patients

Wen Wei1,2,3†, Lingyu Zhang4†, Yunhan Zhang5†, Ronghui Tang6†, Zhidong Huang1, Jin Liu1, Danyuan Xu1, Yibo He1, Bo Wang1, Haozhang Huang3, Qiang Li1, Mengfei Lin4, Yong Liu1,3,7, Kaihong Chen8* and Shiqun Chen1*

Abstract

Background: Predictive value of creatine kinase MB (CK-MB) for contrast-induced acute kidney injury (CI-AKI) among myocardial infarction (MI) patients has rarely been reported. We aim to evaluate the predictive value of CK-MB for CI-AKI among MI patients.

Methods: Totally, 1131 MI patients were included from the REduction of risk for Contrast-Induced Nephropathy (REICIN) study. The peak CK-MB before coronary angiography (CAG) was chosen. The study population was divided into two groups by log-transformed CK-MB cut-off point. The association between CK-MB and CI-AKI was tested by multivariable logistic regression. CK-MB was integrated with Age, creatinine and ejection fraction (ACEF) score and Mehran risk score (MRS) to evaluate the additive value of CK-MB. The integrated models were validated internally by the bootstrap method and externally by the PREdictive Value of COntrast voluMe to creatinine Clearance Ratio (PRECOMIN) study data set.

Results: Overall, 62 (5.48%) patients developed CI-AKI, patients with CK-MB point > 4.7 displayed a higher incidence of CI-AKI than those without (11.9% vs. 4.0%, p < 0.001). CK-MB point > 4.7 was independently associated with CI-AKI (adjusted OR: 3.40, 95% CI: 1.93–5.98, p < 0.001). The additions of CK-MB to ACEF score, Mehran score A and Mehran score B resulted in increases in C-statistics, which ranged from 0.680 to 0.733 (p = 0.046), 0.694 to 0.727 (p = 0.091), 0.704 to 0.734 (p = 0.102), respectively. Internal validation also showed increases in C-statistics, and external validation performed well in discrimination and calibration.

Conclusions: Preprocedural peak CK-MB was a predictor of CI-AKI among MI patients.

Keywords: Creatine kinase-MB, Contrast-induced acute kidney injury, Predictive, Myocardial infarction

Introduction

Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure, with an incidence of 11% [1], and is associated with poor short- and long-term outcomes [2–5]. As an important and readily available cardiac biomarker, creatine kinase MB (CK-MB) has long been used in the diagnosis of acute myocardial infarction (AMI) because of its good cost-performance ratio and simplicity [6]. CK-MB has
also been indicated to improve clinical risk prediction of postoperative acute kidney injury (AKI) among patients undergoing cardiac surgery [7]. In a study of 257 patients, Katarzyna ZR et al. found that increased CK-MB and Red Cell Distribution Width (RDW) are associated with higher risk of CI-AKI among patients with AMI [8]. However, few studies have investigated the independent predictive value of CK-MB in CI-AKI among myocardial infarction (MI) patients.

Therefore, we aim to evaluate the independent predictive utility of CK-MB to CI-AKI risk and determine whether CK-MB can add predictive information to the traditional risk models for determining CI-AKI among MI patients undergoing coronary angiography (CAG) or percutaneous coronary intervention (PCI).

Methods

Data sources and study population

This study included 1131 MI patients from the multicenter prospective REduction of Risk for Contrast-Induced Nephropathy (REICIN) study from January 2013 to June 2016 (trial registration: ClinicalTrials.gov NCT014012232). Only adult patients (≥ 18 years of age; referred to CAG or PCI) with providing written informed consent were studied. This study was conducted in accordance with the Declaration of Helsinki and was approved by the Research Ethics Committee of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences (No. GDREC2012141H). Follow-up data was monitored and recorded by trained nurses and research assistants through outpatient interviews and telephones.

Variables and study endpoint

Biochemistry data CK-MB was evaluated on admission, at 3-h intervals in the first 24 h, and daily in the first 3 days following admission. The peak CK-MB before CAG or PCI was chosen. Immunosuppressive method was used to determine the activity of CK-MB and was applied to each sub-center. Due to its non-normal distribution, the CK-MB variable was log-transformed. Receiver operating characteristic (ROC) curve was used to determine the cut-off point of optimal prognostic performance. Then the CK-MB was for the next analysis as a categorical variable based on the cut-off point.

Serum creatinine (Scr) concentration was measured at admission and within 24, 48 and 72 h after CAG or PCI. Other biochemical indicators were evaluated on admission. The echocardiography examination was used to evaluate the left ventricular ejection fraction (LVEF).

The primary endpoint was CI-AKI_{0-48h} defined as an increase in the Scr by over 0.3 mg/dL or over 50% from baseline within the first 48 h after the CAG [9]. The secondary endpoint was 3-year all-cause mortality.

ACEF score and Mehran risk score (MRS)

Age, creatinine and ejection fraction (ACEF) score was calculated by evaluating age, Scr and LVEF [10]. MRS was calculated by evaluating the presence of hypertension, congestive heart failure (CHF), anemia, and diabetes mellitus (DM), the use of intra-aortic balloon pump (IABP), age > 75 years, the amount of contrast medium, and the basal renal function. There are two types of MRS: Mehran score A using Scr as a criterion for renal function, and Mehran score B using estimated glomerular filtration rate (eGFR) [11].

Validation cohort

The PREdictive Value of COntrast voluMe to creatine Clearance Ratio (PRECOMIN, trial registration: ClinicalTrials.gov NCT01400295) study [12] was a prospective single-center observational study that reviewed all consecutive patients (n = 3369) undergoing CAG and/or PCI between January 2010 and October 2012 according to the institutional protocol. The PRECOMIN study included 1312 MI patients, of which 511 samples had no data deletion. Among 511 patients, 58 (11.35%) patients fulfilled the diagnostic criteria for CI-AKI_{0-48h}.

Statistical analyses

Continuous variables were expressed as mean (standard deviation [SD]) or medians interquartile range (IQRs), and discrete variables were expressed as frequency counts and percentages. The differences in variables among groups were evaluated by the t-test or chi-square test. The association between CK-MB and CI-AKI was tested by univariable and multivariable logistic regression. And then, CK-MB was integrated with ACEF score and Mehran risk score (MRS).
External validation was furthermore assessed by both discrimination and calibration. All analyses were performed with R software (version 4.0.3; R Foundation for Statistical Computing, Vienna, Austria). A two-sided \(p \)-value < 0.05 indicated significance for all analyses.

Result

Baseline clinical characteristics and outcomes

From January 2013 to June 2016, a total of 1131 consecutive MI patients who underwent CAG or PCI were included. The mean age was 60.87 ± 12.05 years, and 932 patients (82.40%) were males. 62 (5.48%) patients fulfilled...

Table 1

Characteristic	Overall (n = 1131)	log(CK-MB) ≤ 4.70(n = 920)	log(CK-MB) > 4.70(n = 211)	\(p \)-value
Demographic characteristics				
Age (years)	60.87 ± 12.05	60.90 ± 12.00	60.71 ± 12.28	0.834
Male gender	932 (82.40%)	761 (82.72%)	171 (81.04%)	0.634
Weight (kg)	65.74 ± 10.84	65.71 ± 10.96	65.89 ± 10.31	0.842
BMI (kg/m²)	23.91 ± 3.21	23.91 ± 3.24	23.93 ± 3.06	0.958
Medical history and clinical condition				
CI-AKI	62 (5.48%)	37 (4.02%)	25 (11.85%)	<0.001
Smoking history	542 (47.92%)	424 (46.09%)	118 (55.92%)	0.012
DM	295 (26.08%)	243 (26.41%)	52 (24.64%)	0.659
Hypertension	562 (49.69%)	471 (51.20%)	91 (43.13%)	0.042
Hyperlipidemia	139 (12.29%)	106 (11.52%)	33 (15.64%)	0.127
CKD	607 (53.67%)	496 (53.91%)	111 (52.61%)	0.790
CHF	460 (40.67%)	368 (40.00%)	92 (43.60%)	0.377
Anterior infarction	399 (35.28%)	291 (31.63%)	108 (51.18%)	<0.001
Hypotension	86 (7.60%)	59 (6.41%)	27 (12.80%)	0.003
Anemia	321 (28.38%)	275 (29.89%)	46 (21.80%)	0.023
IABP	42 (3.71%)	28 (3.04%)	14 (6.64%)	0.022
LVEF (%)	55.17 ± 11.34	55.91 ± 11.37	52.02 ± 10.69	<0.001
Procedure				
Emergent PCI	976 (86.30%)	782 (85.00%)	194 (91.94%)	0.011
Laboratory examination				
GLU (mmol/L)	8.16 ± 3.89	8.03 ± 3.88	8.71 ± 3.91	0.022
Hb (g/L)	128.05 ± 20.46	128.73 ± 20.21	125.05 ± 21.34	0.020
hct	40.62 ± 5.87	40.59 ± 5.89	41.64 ± 5.68	0.006
Scr (mg/dl)	95.37 ± 40.66	96.20 ± 42.43	91.72 ± 31.62	0.148
CCR (mg/ml)	73.70 ± 28.88	73.36 ± 28.86	75.18 ± 28.98	0.410
eGFR (ml/min/1.73mm²)	80.98 ± 26.73	80.69 ± 26.89	82.26 ± 26.04	0.441
BUN (mmol/L)	5.00 [3.90, 6.50]	4.91 [3.90, 6.48]	5.20 [4.03, 6.58]	0.143
HDL-C (mmol/L)	1.00 ± 0.28	0.98 ± 0.27	1.08 ± 0.33	<0.001
ALB (g/L)	36.10 ± 5.15	36.07 ± 5.12	36.23 ± 5.31	0.712
Treatment during hospitalization				
ACEI/ARB	145 (12.82%)	133 (14.46%)	12 (5.69%)	0.001
Beta-blockers	611 (54.02%)	532 (57.83%)	79 (37.44%)	<0.001
CCB	89 (7.87%)	84 (9.13%)	5 (2.37%)	0.002
Statins	912 (80.64%)	764 (83.04%)	148 (70.14%)	<0.001
Hypoglycemic drugs	125 (11.05%)	115 (12.50%)	10 (4.74%)	0.002
Diuretic	261 (23.08%)	201 (21.85%)	60 (24.84%)	0.050
Contrast dose(ml)	113.80 ± 50.15	112.14 ± 50.05	121.02 ± 50.08	0.021

CK-MB creatine kinase isoenzymes/creatine kinase-MB, BMI body mass index, CI-AKI contrast-induced acute kidney injury, DM diabetes mellitus, CKD chronic kidney disease, CHF congestive heart failure, IABP intra-aortic balloon pump, LVEF left ventricular ejection fraction, PCI percutaneous coronary intervention, GLU blood glucose, Hb hemoglobin, hct hematocrit, Scr serum creatinine, CCR Creatinine Clearance Rate, eGFR estimated glomerular filtration rate, BUN blood urea nitrogen, HDL-C high density lipoprotein cholesterol, ALB albumin, ACEI/ARB angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, CCB calcium channel blocker.
The diagnostic criteria for CI-AKI were the cut-off point of log-transformed CK-MB for the best predictive value of CI-AKI was 4.7. Therefore, patients were divided into two groups based on the cut-off point: 920 (81.34%) patients with log-transformed CK-MB \(\leq 4.7 \), and 211 (18.66%) patients with log-transformed CK-MB > 4.7. All of the baseline clinical characteristics of the patients are shown in Table 1. Overall, there were 607 (53.67%) patients with chronic kidney disease (CKD), 295 (26.08%) patients with DM and 562 (49.69%) patients with hypertension.

Compared with patients with log-transformed CK-MB \(\leq 4.7 \), patients with log-transformed CK-MB > 4.7 demonstrated lower LVEF (52 \(\pm \) 11 vs. 56 \(\pm \) 11, \(p < 0.001 \)) and higher random plasma glucose (8.7 \(\pm \) 3.9 vs. 8.0 \(\pm \) 3.9 mmol/l, \(p = 0.022 \)). These patients also showed higher incidences of hypotension on the day of admission (12.8% vs. 6.4%, \(p = 0.003 \)), anterior infarction (51.2% vs. 31.6%, \(p < 0.001 \)) and IABP (6.6% vs. 3.0%, \(p = 0.022 \)). Nonetheless, there were no significant differences in the incidences of CKD, DM and CHF between the two groups (\(p > 0.05 \)) (Table 1).

Predictive value of CK-MB in CI-AKI

Compared with patients with log-transformed CK-MB \(\leq 4.7 \), patients with log-transformed CK-MB > 4.7 displayed a significantly greater incidence of CI-AKI (11.9% vs. 4.0%, \(p < 0.001 \), Table 1). The area under the CK-MB curve in relation to CI-AKI was 0.625 (95% confidence interval [CI]: 0.550 to 0.701), and a Hosmer–Lemeshow \(\chi^2 \) statistic of 11.37 (\(p = 0.182 \)). Univariate logistic regression analysis indicated that log-transformed CK-MB > 4.7 was significantly correlated with the occurrence of CI-AKI.

Table 2 Univariate and multivariate logistic regression analysis of CI-AKI

Variable	Univariate OR (95%CI) p-value	Multivariate OR (95%CI) p-value
Age (years)	1.05 (1.02,1.07) < 0.001	1.04 (1.02,1.07) 0.001
Scr	1.01 (1.01,1.01) < 0.001	1.01 (1.00,1.01) < 0.001
Contrast dose(ml)	1.00 (1.00,1.01) 0.419	1.00 (1.00,1.01) 0.384
DM	1.37 (0.79,2.38) 0.256	1.28 (0.72,2.28) 0.404
LVEF (%)	0.96 (0.94,0.98) < 0.001	0.98 (0.96,1.00) 0.036
CK-MB	3.21 (1.89,5.46) < 0.001	3.40 (1.93,5.98) < 0.001

Fig. 1 The performance of CK-MB before and after adding ACEF score and MRS in REICIN study data set. a The ROC curves of ACEF score and ACEF score + CK-MB for CI-AKI. b The ROC curves of Mehran score A and Mehran score A + CK-MB for CI-AKI. c The ROC curves of Mehran score B and Mehran score B + CK-MB for CI-AKI. d The bootstrap curve of ACEF score + CK-MB integrated model for CI-AKI. e The bootstrap curve of Mehran score A + CK-MB integrated model for CI-AKI. f The bootstrap curve of Mehran score B + CK-MB integrated model for CI-AKI. AUC area under the receiver operating characteristic curve, ROC receiver operator characteristic, CK-MB creatine kinase isoenzymes/creatine kinase-MB, MRS Mehran risk score, ACEF Age, creatinine and ejection fraction, REICIN REDuction of risk for Contrast-Induced Nephropathy.
with CI-AKI (odds ratio [OR]: 3.21, 95% CI: 1.89–5.46,
\(p < 0.001\), Table 2). In multivariable logistic regression,
log-transformed CK-MB > 4.7 had an independent asso -
ciation with CI-AKI (adjusted OR: 3.40, 95% CI: 1.93–
5.98, \(p < 0.001\), Table 2). Other variables associated with
CI-AKI included age, Scr and LVEF. Table 2 depicts the
performance of each covariate in logistic regression
analysis.

Discrimination and calibration analysis of CK-MB added
to models

The addition of the categorical variable log-transformed
CK-MB to ACEF score, Mehran score A and Mehran
score B did contribute to increase in C-statistics, which
ranged from 0.680 to 0.733 \(p = 0.046\), 0.694 to 0.727
\(p = 0.091\), 0.674 to 0.734 \(p = 0.102\), respectively (Fig. 1,
Table 3). And the CK-MB added significant discrimina -
tive value to the traditional models when evaluated by
NRI and IDI (Table 3). These models embodied a good
calibration for CI-AKI based on the Hosmer–Lemeshow
test (Table 3). By internal bootstrap validation, the boot -
strap-corrected C-statistics ranged from 0.680 to 0.731,
0.695 to 0.725, 0.702 to 0.731, respectively (Table 3).
Additionally, the external validation data set had similar
good performance in discrimination and calibration
(Table 4, Fig. 2). The external validation showed the addi-
tion of CK-MB to ACEF score, Mehran score A and Meh-
ran score B did result in increasing CI-AKI risk demon-
strated by C-statistics, which ranged from 0.700 to 0.724
\(p = 0.059\), 0.716 to 0.742 \(p = 0.024\), 0.680 to 0.718 \(p = 0.002\), respectively

Discussion

In this multicenter, prospective study of MI patients who
underwent CAG or PCI, we found that preprocedural
peak CK-MB was an independent predictor of CI-AKI.
The risk of CI-AKI was over 3.4-fold among patients with
log-transformed CK-MB > 4.7 than those without. The
addition of the variable CK-MB to either ACEF score or
MRS did result in increasing CI-AKI risk demonstrated
by C-statistics. And the CK-MB added significant dis -
criminative value to the traditional models when assessed
by NRI and IDI. All the results suggested CK-MB plays a
key role in the clinical predictive value for CI-AKI among
MI patients undergoing CAG or PCI.

In concordance with our results, one previous study
recognized increased CK-MB and RDW levels were

Table 3	Discrimination and calibration analysis of CK-MB added to models in REICIN study data set								
C-statistics	p-value	NRI	p-value	IDI	p-value	Hosmer and Lemeshow test	AIC	Bootstrap-corrected C-statistics	
ACEF + CK-MB	0.733	0.046	0.459	<0.001	0.018	0.017	\(\chi^2 = 8.75, p = 0.364\)	440.24	0.731
ACEF	0.680						\(\chi^2 = 3.39, p = 0.907\)	452.91	0.680
Mehran A + CK-MB	0.727	0.091	0.459	<0.001	0.017	0.021	\(\chi^2 = 7.02, p = 0.534\)	440.33	0.725
Mehran score A	0.694						\(\chi^2 = 5.09, p = 0.748\)	451.33	0.695
Mehran B + CK-MB	0.734	0.102	0.459	<0.001	0.018	0.020	\(\chi^2 = 9.31, p = 0.317\)	436.60	0.731
Mehran score B	0.704						\(\chi^2 = 7.07, p = 0.529\)	447.95	0.702

Table 4	Discrimination and calibration analysis of CK-MB added to models in PRECOMIN study data set								
C-statistics	p-value	NRI	p-value	IDI	p-value	Hosmer and Lemeshow test	AIC	Bootstrap-corrected C-statistics	
ACEF + CK-MB	0.724	0.059	0.236	<0.001	0.015	0.001	\(\chi^2 = 8.93, p = 0.348\)	440.24	0.723
ACEF	0.700						\(\chi^2 = 5.62, p = 0.690\)	340.16	0.699
Mehran A + CK-MB	0.742	0.024	0.236	<0.001	0.011	0.027	\(\chi^2 = 3.90, p = 0.866\)	329.31	0.737
Mehran score A	0.716						\(\chi^2 = 6.40, p = 0.602\)	334.14	0.714
Mehran B + CK-MB	0.718	0.002	0.236	<0.001	0.012	0.026	\(\chi^2 = 4.00, p = 0.395\)	336.98	0.714
Mehran score B	0.680						\(\chi^2 = 5.31, p = 0.725\)	342.46	0.680

CK-MB creatine kinase isoenzymes/creatine kinase-MB, ACEF Age, creatinine and ejection fraction, REICIN REduction of risk for Contrast-Induced Nephropathy

CK-MB creatine kinase isoenzymes/creatine kinase-MB, ACEF Age, creatinine and ejection fraction, PRECOMIN PREdictive Value of COntраст voluMe to creatinine Clearance Ratio
significantly associated with CI-AKI among AMI patients. AMI patients with CK-MB > 55 U/L were 1.2-fold more likely to develop CI-AKI than those without [8]. However, that single-center retrospective study, with a relatively small amount of AMI patients, did not research the independent predictive value of CK-MB for CI-AKI and the correlation between CK-MB and long-term prognosis. Our multicenter prospective study, including 1131 nonselective MI population, described both the independent predictive value of CK-MB for CI-AKI and the association of CK-MB with long-term prognosis.

Luis et al. indicated that an independent association was not enough to establish the usefulness of a biomarker. They suggested inserting a new variable into a traditional risk scoring tool, and then comparing the performance of the traditional predictive model with that of an alternative model [14]. The ACEF score, a traditional risk model, has already been considered as a risk scoring of CI-AKI among patients undergoing primary PCI for a user-friendly clinical parameter by a quick preprocedural prediction of CI-AKI [10, 15, 16]. The MRS was another forecasting tool widely used to stratify the probability of developing CI-AKI after PCI [11]. After integrating variable CK-MB with the traditional risk models, we found the C-statistics significantly increased.

The mechanisms underlying the prediction of CI-AKI by CK-MB may be related to hemodynamic instability. The elevation of preprocedural CK-MB, indicating the extent of myocardial necrosis, was closely related to the occurrence of cardiogenic shock and heart failure [17–19]. A consequent decrease in cardiac output led to a decline of renal perfusion as well as renal ischemia, resulting in AKI ultimately. Although troponin T and troponin I were more sensitive than CK-MB in detecting minor myocardial damage, measurement of CK-MB may be used to provide a facile clinical estimation of the infarct size [20]. Furthermore, troponin T and troponin I have not been uniformly used in low- and middle-income countries in the past clinical practice, which may result in bias due to different detection quality. Moreover, there are defects in Roche’s high quality tests, which are more expensive than tests of CK-MB.

Our study also found that patients with log-transformed CK-MB > 4.7 had lower LVEF than those without.

Fig. 2 The performance of CK-MB before and after adding ACEF score and MRS in PRECOMIN study data set. a The ROC curves of ACEF score and ACEF score + CK-MB for CI-AKI. b The ROC curves of Mehran score A and Mehran score A + CK-MB for CI-AKI. c The ROC curves of Mehran score B and Mehran score B + CK-MB for CI-AKI. d The bootstrap curve of ACEF score + CK-MB integrated model for CI-AKI. e The bootstrap curve of Mehran score A + CK-MB integrated model for CI-AKI. f The bootstrap curve of Mehran score B + CK-MB integrated model for CI-AKI. AUC area under the receiver operating characteristic curve, ROC receiver operator characteristic, CK-MB creatine kinase isoenzymes/creatine kinase-MB, MRS Mehran risk score, ACEF Age, creatinine and ejection fraction, PRECOMIN PREDictive Value of COntast voluMe to creatinine Clearance Ratio
A decrease of LVEF indicated the loss of contractility due to acute ischemia or myocardial necrosis [21, 22]. Several studies have indicated that worsened LVEF was a predictor of CI-AKI [23–26]. In accordance with the previous study [23, 27, 28], our study demonstrated that the age and basal creatinine were independently correlated with CI-AKI. Cinar T et al. also indicated that the age, creatinine and ejection fraction score correlated with ST-elevation myocardial infarction-related cardiogenic shock [29]. CK-MB might be a promising and timely tool for predicting CI-AKI among such MI patients. Therefore, regular monitoring, preventive strategies, and even priority treatment should be given to patients with log-transformed CK-MB > 4.7 for a well renal outcome in MI patients.

Limitation
First, the definition of CI-AKI was diverse. We adopted a definition of CI-AKI_{4030} based on the increase in Scr, and used both baseline and postprocedural values, which only gave a moderately accurate evaluation of renal function. However, the definition of CI-AKI in our research was commonly cited in previous studies. Second, the log-transformed CK-MB may be complex in clinical applications. This defect will limit to generalize our results. Third, since there were 855 missing data of troponin T and 822 missing data of troponin I in our study, it is hard to detect the predictive value of troponin for CI-AKI. Fourth, the single center in PRECOMIN study is one of the centers in REICIN study, but the subjects in the two studies were enrolled at different periods.

Conclusion
The present study might be the first to report that the preprocedural peak CK-MB is a powerful indicator of CI-AKI among MI patients. The application of such a readily available biomarker may help clinicians to make a judgment on the CI-AKI risk of the MI patients. Log-transformed CK-MB > 4.7 may be an optimal target for patients to receive therapeutic measures to prevent CI-AKI.

Abbreviations
CK-MB: Creatine kinase MB; CI-AKI: Contrast-induced acute kidney injury; AKI: Acute kidney injury; MI: Myocardial infarction; AMI: Acute myocardial infarction; CAG: Coronary angiography; PCI: Percutaneous coronary intervention; RDW: Red Cell Distribution Width; ACEF: Age, creatinine and ejection fraction; MRS: Mehran risk score; LVEF: Left ventricular ejection fraction; CHF: Congestive heart failure; DM: Diabetes mellitus; IABP: Intra-aortic balloon pump; CKD: Chronic kidney disease; GLU: Blood glucose; Hb: Hemoglobin; hct: Hematocrit; Scr: Serum creatinine; CCR: Creatinine Clearance Rate; eGFR: Estimated glomerular filtration rate; BUN: Blood urea nitrogen; HDL-C: High density lipoprotein cholesterol; ALB: Albumin; ACEI: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin receptor blocker; CCB: Calcium channel blocker; ROC: Receiver operating characteristic; NRI: Net reclassification index; IDI: Integrated discrimination and improvement; REICIN: Reduction of risk for Contrast-Induced Nephropathy; PRECOMIN: Predictive Value of Contrast volume to creatinine Clearance Ratio.

Acknowledgements
None.

Authors’ contributions
Substantial contributions to the conception and design of the study (SQC, KHC, YL, JL); data collection (YBH, BW, HZH, QL, MFL); data analysis and/or interpretation of data for the work (LYZ, DYX, ZDH); drafting of the work or revising it critically for important intellectual content (WW, YHZ, RHT, MZ); final approval of the version to be published (all the authors). All authors read and approved the final manuscript.

Funding
This study was supported by grants from Beijing Lisheng Cardiovascular Health Foundation and Guangdong Provincial People’s Hospital Foundation (LHJ/20141751), National Science Foundation of China (81970311), Guangdong Provincial Science and Technology Plan Project (2017B030314041) and Guangdong Provincial Fund for Clinical Medications (2019ZH01). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript; the work was not funded by any industry sponsors.

Availability of data and materials
Data relevant to this study are available from the corresponding authors upon reasonable request.

Declarations
Ethics approval and consent to participate
The study was approved by the Research Ethics Committee of Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences (No. GDREC2012141H). All the patients enrolled in the study signed written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts of interest to disclose.

Author details
1Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China. 2Department of Endocrinology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China. 3The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China. 4Department of Cardiology, Maoming People’s Hospital, Maoming 525000, China. 5Kuming Medical University, Kuming 650500, China. 6Department of Ultrasound Imaging, Yunnan Fuwai Cardiovascular Hospital, Kuming 650500, China. 7Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510100, China. 8Department of Cardiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China.

Received: 25 March 2021 Accepted: 17 June 2021
Published online: 13 July 2021

References
1. Bae E, Kim JH, Jung MH, Jang SJ, Lee TW, Jung S, et al. Paricalcitol attenuates contrast-induced acute kidney injury by regulating mitophagy and senescence. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/7627934.
2. Giacoppo D, Madhavan MV, Baber U, Warren J, Bansilal S, Witzenbichler B, et al. Impact of contrast-induced acute kidney injury after percutaneous
coronary intervention on short- and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ Cardiovasc Interv. 2015;8(6): e002475. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002475.

3. Nakahashi K, Kosuge M, Sakamaki K, Kiyokuni M, Ebina T, Hibi K, et al. Combined impact of chronic kidney disease and contrast-induced nephropathy on long-term outcomes in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. Heart Vessels. 2017;32(1):22–9. https://doi.org/10.1007/s00380-016-0836-8.

4. Weisbord SD, Palevsky PM, Kaufman JS, Wu H, Andresen M, Ferguson RE, et al. Contrast-associated acute kidney injury and serious adverse outcomes following angiography. J Am Coll Cardiol. 2020;75(11):1311–20. https://doi.org/10.1016/j.jacc.2020.01.023.

5. Mehran R, Danas G, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55. https://doi.org/10.1056/NEJMra1805256.

6. Saito T, Matsumoto H, Matsuyama H, Sakai Y, Yamashita K, Kishi K, et al. Clinical evaluation of the new creatine kinase MB reagent kit “L-System CK-MB MtO” Rinsho Byori. 2011;59(3):236–42.

7. Bucholz EM, Whitlock RP, Zappitelli M, Devarajan P, Eikelboom J, Garg AX, et al. Cardiac biomarkers and acute kidney injury after cardiac surgery. Pediatrics. 2015;136(4):e945–956. https://doi.org/10.1542/peds.2014-2949.

8. Zbierska-Rubinkiewicz K, Trębacz O, Tomala M, Rubinkiewicz M, Chrzan I, Gackowska A. Creatine kinase-MB and red cell distribution width as predictors of contrast-induced nephropathy after percutaneous coronary intervention in acute myocardial infarction. Folia Med Cracov. 2017;57(3):87–99.

9. Moriyama N, Ishihara M, Noguchi T, Nakanishi M, Arakawa T, Asaumi K, et al. Admission hyperglycemia is an independent predictor of acute kidney injury in patients with acute myocardial infarction. Circ J. 2014;78(6):1475–80. https://doi.org/10.1253/circj.cj-14-0117.

10. Ando G, Morabito G, de Gregorio C, Trio O, Saporito F, Oreto G. The ACEF score as predictor of acute kidney injury in patients undergoing primary percutaneous coronary intervention. Int J Cardiol. 2013;168(4):4386–7. https://doi.org/10.1016/j.ijcard.2013.05.049.

11. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. Simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9. https://doi.org/10.1016/j.jacc.2004.06.068.

12. Liu Y, Chen JY, Tan N, Zhou YL, Yu DQ, Chen ZJ, et al. Safe limits of contrast vary with hydration volume for prevention of contrast-induced nephropathy after coronary angiography among patients with a relatively low risk of contrast-induced nephropathy. Circ Cardiovasc Interv. 2015. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001859.

13. Riley RD, Ensr J, Snell K, Harrell FE Jr, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020. https://doi.org/10.1136/bmj.m441.

14. Correia LC, Vasconcelos J, Garcia G, Kallf I, Ferreira F, Silva A, et al. Does C-reactive protein add prognostic value to GRACE score in acute coronary syndromes. Arq Bras Cardiol. 2014;102(5):449–55. https://doi.org/10.5935/abc.20140056.

15. Liu YH, Liu Y, Zhou YL, He PC, Yu DQ, Li LW, et al. Comparison of different risk scores for predicting contrast induced nephropathy and outcomes after primary percutaneous coronary intervention in patients with ST elevation myocardial infarction. Am J Cardiol. 2016;117(12):1896–903. https://doi.org/10.1016/j.amjcard.2016.03.033.

16. Capodanno D, Minietti M, Dipasqua F, Dalesandro V, Cumbo S, Gargiulo G, et al. Risk prediction of contrast-induced nephropathy by ACEF score in patients undergoing coronary catheterization. J Cardiovasc Med (Hagerstown). 2016;17(7):524–9. https://doi.org/10.1097/JCM.0000000000000215.

17. Thiele H, Ohman EM, de Waha-Thiele S, Zeymer U, Desch S. Management of cardiogenic shock complicating myocardial infarction: an update 2019. Eur Heart J. 2019;40(32):2671–83. https://doi.org/10.1093/eurheartj/ehz363.

18. Mathieu A, Tolppanen H, Mueller C, Lassus J, DiSomma S, Baksyte G, et al. Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance. Intensive Care Med. 2016;42(2):147–63. https://doi.org/10.1007/s00135-014-4041-5.

19. Babit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail. 2018;6(3):179–86. https://doi.org/10.1016/j.jchf.2017.09.015.

20. Hoskino T, Sakai Y, Yamashita K, Kishi K, Tanjoh K, Hayama Y, et al. Clinical evaluation of a new creatine kinase MB activity reagent abrogating the effect of mitochondrial creatine kinase. Clin Lab. 2013;59(3–4):307–16. https://doi.org/10.7754/clinlab.2012.120516.

21. Mello BH, Oliveira GB, Ramos RF, Lopes BB, Barros CB, Carvalho Ede O, et al. Validation of the Killip-Kimball classification and late mortality after acute myocardial infarction. Arq Bras Cardiol. 2014;103(2):107–17. https://doi.org/10.5935/abc.20140091.

22. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77. https://doi.org/10.1093/eurheartj/ehx393.

23. Yao ZF, Shen H, Tang MN, Yan Y, Ge JB. A novel risk assessment model of contrast-induced nephropathy after percutaneous coronary intervention in patients with diabetes. Basic Clin Pharmacol Toxicol. 2021;128(2):305–14. https://doi.org/10.1111/bcpt.13501.

24. Khoury S, Steinvil A, Gal-Oz A, Margolis G, Hochstad A, Topilsky Y, et al. Association between central venous pressure as assessed by echocardiography, left ventricular function and acute cardio-renal syndrome in patients with ST segment elevation myocardial infarction. Clin Res Cardiol. 2018;107(10):937–44. https://doi.org/10.1007/s00392-018-1266-7.

25. Chrychel M, Halabiec P, Lazarczyk A, Druhevic O, Okarsi M, Gębska M, et al. Low ejection fraction predisposes to contrast-induced nephropathy after the second step of staged coronary revascularization for acute myocardial infarction: a retrospective observational study. J Clin Med. 2020. https://doi.org/10.3390/jcm9061812.

26. Santos PR, Carneiro Neto JD, Ancarjo FP, Carneiro JK, Carneiro RC, do Amaral CL. Contrast-induced nephropathy after primary angioplasty for acute myocardial infarction. J Bras Nefrol. 2015;37(4):439–45. https://doi.org/10.7754/clin. lab.2012.120516.

27. Çınar T, Karabağ Y, Ozan Tanık V, Çağdaş M, Rencüzoğulları İ, Öz A. The predictive value of age, creatinine, ejection fraction score for in-hospital mortality and adverse events. J Cardiol. 2020;75(1):77–84. https://doi.org/10.1080/00015385.2018.155120.

28. Efe SC, Keskin M, Toprak E, Arslan K, Öz A, Güven S, et al. Admission hyperglycemia is an independent predictor of acute kidney injury after coronary angiography, left ventricular function and acute cardio-renal syndrome in patients with ST segment elevation myocardial infarction. Clin Res Cardiol. 2020;107(10):937–44. https://doi.org/10.1007/s00392-018-1266-7.

29. Çinar T, Hayiroğlu Mİ, Şeker M, Doğan S, Çiçek V, Öz A, et al. The predictive value of age, creatinine, ejection fraction score for in-hospital mortality and adverse events. J Cardiol. 2020;75(1):77–84. https://doi.org/10.1080/00015385.2018.155120.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.