A Case of Hyperparathyroidism due to a Large Intrathyroid Parathyroid Adenoma with Recurrent Episodes of Acute Pancreatitis

Kazunori Kageyama,1,2 Noriko Ishigame,1,2 Aya Sugiyama,1,2 Akiko Igawa,3 Takashi Nishi,3 Satoko Morohashi,4 Hiroshi Kijima,4 and Makoto Daimon1

1Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
2Department of Endocrinology and Metabolism, Odate Municipal General Hospital, 3-1 Yutaka-cho, Odate 017-8550, Japan
3Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
4Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan

Correspondence should be addressed to Kazunori Kageyama; kageyama@hirosaki-u.ac.jp

Received 8 May 2017; Revised 14 June 2017; Accepted 22 June 2017; Published 26 July 2017

1. Introduction

Primary hyperparathyroidism (PHPT) is a common endocrine disorder characterized by hypercalcemia and excessive secretion of parathyroid hormone (PTH) [1]. PHPT is most commonly caused by a single adenoma of the parathyroid gland. Patients with PHPT tend to develop complications such as reduction of bone mineral density, nephrolithiasis, and gastric ulcer, which may impair quality of life [1, 2]. In the management of PHPT, parathyroidectomy of the abnormal gland is the gold standard for effective treatment. Generally, most parathyroid adenomas remain relatively small, measuring under a few centimeters and weighing less than 1 g [3]. Large or giant parathyroid adenomas are seldom seen in patients with PHPT [4], and in such cases differential diagnosis is necessary to rule out malignancy.

Acute pancreatitis may be induced by cholelithiasis and alcohol abuse in adults; however, the incidence of pancreatitis in patients with hyperparathyroidism was reported to be only 1.5% [5]. Here, we report a case of hyperparathyroidism due to a large intrathyroid parathyroid adenoma with episodes of acute pancreatitis. She had been treated for acute pancreatitis twice. However, there was no episode of pancreatitis after the operation.
Table 1: General laboratory data.

	Before operation	After operation	(normal values)
Peripheral blood			
White blood cells (/μL)	5690	6210	(3500–8500)
Red blood cells (/μL)	3.50	3.84	(3.80–4.80 × 10⁶)
Hemoglobin (g/dL)	10.7	10.9	(11.5–15.0)
Hematocrit (%)	31.5	32.7	(34.0–45.0)
Platelets (/μL)	18.1	20.5	(13.0–35.0 × 10⁴)
Blood biochemistry			
Total protein (g/dL)	6.9	7.0	(6.7–8.3)
Albumin (g/dL)	4.0	4.0	(3.9–4.9)
Total bilirubin (mg/dL)	0.8	0.6	(0.2–1.1)
Aspartate aminotransferase (U/L)	28	25	(10–35)
Alanine aminotransferase (U/L)	20	16	(7–38)
ɣ-Glutamyltranspeptidase (U/L)	28	35	(0–65)
Alkaline phosphatase (IU/L)	263	213	(104–340)
Urea nitrogen (mg/dL)	17	14	(8–25)
Creatinine (mg/dL)	0.81	0.89	(0.40–1.10)
Sodium (mmol/L)	145	143	(137–146)
Chloride (mmol/L)	112	107	(99–110)
Potassium (mmol/L)	4.4	4.0	(3.5–4.9)
Calcium (mg/dL)	12.4	9.6	(8.3–10.3)
Phosphorus (mg/dl)	2.4	3.3	(2.4–4.7)
Total cholesterol (mg/dl)	215	182	(115–220)
Triglyceride (mg/dL)	185	215	(20–150)
Plasma glucose (mg/dL)	98	132	(70–110)
Hemoglobin A1c (%)	5.1	5.8	(4.6–6.2)
Intact PTH	253.0	59.3	(8.7–79.5)

Left hemithyroidectomy was performed due to the clearly defined soft tissue mass within the left thyroid. Histopathology showed no signs of invasion, and this is consistent with parathyroid adenoma. The adenoma was composed mainly of chief cells and oxyphil cells, covered with a fibrous capsule (Figure 2(a)). Evaluation of chromogranin A expression showed positive chromogranin A immunostaining (Figure 2(b)). Evaluation for PTH expression showed positive PTH immunostaining (Figure 2(c)). Soon after surgery, the elevated calcium and iPTH were normalized. The patient has had no episodes of pancreatitis for one year after the operation.

3. Discussion

This is an unusual case of hyperparathyroidism due to a large parathyroid adenoma. This present patient had been treated for acute pancreatitis twice. Pooled clinical data suggest an association between PHPT and pancreatitis [6, 7]. Serum calcium levels in PHPT with pancreatitis were found to be higher than those in PHPT without pancreatitis [6, 8]. Acute pancreatitis may be caused by calcium-induced activation of intrapancreatic trypsinogen to trypsin. However, only a
majority of patients with PHPT would develop pancreatitis. Felderbauer et al. found that mutations in the serine protease inhibitor Kazal type I (SPINK1) and cystic fibrosis transmembrane conductance regulator (CFTR) genes increase the risk for pancreatitis, and mutations in the Chymotrypsin C gene (CTRC) modulate susceptibility for pancreatitis [9, 10]. Therefore, markedly elevated serum calcium may contribute to pancreatitis, together with additional genetic or environmental insults [6].

Parathyroid adenomas usually measure less than 2 cm and weigh less than 1 g. In parathyroid lesions larger than 2 cm, the differential diagnosis between giant parathyroid adenomas and parathyroid carcinomas would be considered [11]. Parathyroid cysts or cystic adenomas often show large parathyroid ones [12]. No signs of malignancy, such as presence of capsular invasion, angioinvasion, and invasion of the surrounding structures, were observed by morphological analysis in our case. The weight or size of the adenoma may have been correlated with the functional status of the gland and the severity of biochemical abnormalities. For example, larger adenomas may be associated with a more severe form of primary hyperparathyroidism [13]. Conversely, in some cases of giant adenoma, there was no correlation with clinical symptoms or functional status [14].

The incidence of intrathyroid parathyroid adenoma is rare: true one is 0.7%, and partial one is 1.9% [15]. Imaging may miss the pathologic gland [16]. Generally, different imaging techniques, such as high resolution ultrasonography, CT, arteriography, venous sampling, and magnetic resonance imaging, have been used for detection of the abnormal parathyroid glands [17, 18]. Radionuclide imaging has also been used in the detection and localization of parathyroid adenomas. 99mTc-MIBI has been used for preoperative evaluation of PHPT [19], as demonstrated in our case.

Hypercalcemia may mediate the development of pancreatitis and our patient had earlier been treated for acute pancreatitis twice. However, during short-term follow-up, she had not experienced any episodes of pancreatitis after surgery. In a patient with recurrent episodes of pancreatitis, the possibility of complication with hyperparathyroidism should be considered.
In summary, we report an unusual case of hyperparathyroidism due to a large intrathyroid parathyroid adenoma with episodes of acute pancreatitis.

Consent

Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Conflicts of Interest

None of the authors have any potential conflicts of interest associated with this research.

Authors’ Contributions

All authors contributed to the management of the patient and drafting of the manuscript, and all have approved the final submission.

References

[1] J. P. Bilezikian, J. T. Potts Jr., G. El-Hajj Fuleihan et al., “Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century.” *The Journal of Clinical Endocrinology and Metabolism*, vol. 87, no. 12, pp. 5353–5361, 2002.

[2] F. R. Bringhurst, M. B. Demay, and H. M. Kronenberg, “Hormones and disorders of mineral metabolism,” in *Williams Textbook of Endocrinology*, J. D. Wilson, D. W. Foster, H. M. Kronenberg, and P. R. Larsen, Eds., pp. 1155–1209, W.B. Saunders Company, Philadelphia, USA, 9th edition, 1998.

[3] R. M. Neagoe, D. T. Sala, A. Borda, C. A. Mogoanta, and G. Muhlfay, “Clinicopathologic and therapeutic aspects of giant parathyroid adenomas - three case reports and short review of the literature,” *Romanian Journal of Morphology and Embryology*, vol. 55, pp. 669–674, 2014.

[4] A. Krishnamurthy, G. Raghunandan, and V. Ramshankar, “A rare case of giant parathyroid adenoma presenting with recurrent episodes of pancreatitis,” *Indian Journal of Nuclear Medicine*, vol. 31, no. 1, pp. 36–38, 2016.

[5] M. A. Bess, A. J. Edis, and J. A. van Heerden, “Hyperparathyroidism and pancreatitis. Chance or a causal association?” *The Journal of the American Medical Association*, vol. 243, no. 3, pp. 246–247, 1980.

[6] H. X. Bai, M. Giefer, M. Patel, A. I. Orabi, and S. Z. Husain, “The association of primary hyperparathyroidism with pancreatitis,” *Journal of Clinical Gastroenterology*, vol. 46, no. 8, pp. 656–661, 2012.

[7] S. K. Bhadada, H. P. Udawat, A. Bhansali, S. S. Rana, S. K. Sinha, and D. K. Bhasin, “Chronic pancreatitis in primary...
hyperparathyroidism: comparison with alcoholic and idiopathic chronic pancreatitis,” *Journal of Gastroenterology and Hepatology*, vol. 23, no. 6, pp. 959–964, 2008.

[8] V. N. Shah, S. K. Bhadada, A. Bhansali et al., "Effect of gender, biochemical parameters and parathyroid surgery on gastrointestinal manifestations of symptomatic primary hyperparathyroidism,” *Indian Journal of Medical Research*, vol. 139, pp. 279–284, 2014.

[9] P. Felderbauer, E. Karakas, V. Fendrich et al., "Pancreatitis risk in primary hyperparathyroidism: relation to mutations in the SPINK1 trypsin inhibitor (N34S) and the cystic fibrosis gene," *The American Journal of Gastroenterology*, vol. 103, no. 2, pp. 368–374, 2008.

[10] P. Felderbauer, E. Karakas, V. Fendrich, R. Lebert, D. K. Bartsch, and K. Bulut, "Multifactorial genesis of pancreatitis in primary hyperparathyroidism: Evidence for protective (PRSS2) and destructive (CTRC) genetic factors,” *Experimental and Clinical Endocrinology and Diabetes*, vol. 119, no. 1, pp. 26–29, 2011.

[11] M. Araujo Castro, A. A. López, L. M. Fragueiro, and N. P. García, "Giant parathyroid adenoma: differential aspects compared to parathyroid carcinoma,” *Endocrinology, Diabetes & Metabolism Case Reports*, 2017.

[12] M. Ahmad, M. Almohaya, N. Al Johani, and M. Almalki, “Intrathyroidal Parathyroid Cyst: An Unusual Neck Mass,” *Clinical Medicine Insights: Endocrinology and Diabetes*, vol. 10, no. 0, 2017.

[13] W. A. Zamboni and R. Folse, "Adenoma weight: A predictor of transient hypocalcemia after parathyroidectomy," *The American Journal of Surgery*, vol. 152, no. 6, pp. 611–615, 1986.

[14] C. Power, D. Kavanagh, A. D. K. Hill, N. O’Higgins, and E. McDermott, "Unusual presentation of a giant parathyroid adenoma: Report of a case,” *Surgery Today*, vol. 35, no. 3, pp. 235–237, 2005.

[15] A. Goodman, D. Politz, J. Lopez, and J. Norman, "Intrathyroid parathyroid adenoma: Incidence and location - The case against thyroid lobectomy,” *Otolaryngology - Head and Neck Surgery*, vol. 144, no. 6, pp. 867–871, 2011.

[16] G. Bahar, R. Feinmesser, B.-Z. Joshua et al., "Hyperfunctioning intrathyroid parathyroid gland: A potential cause of failure in parathyroidectomy,” *Surgery*, vol. 139, no. 6, pp. 821–826, 2006.

[17] A. J. Krubsack, S. D. Wilson, T. L. Lawson et al., "Prospective comparison of radionuclide, computed tomographic, sonographic, and magnetic resonance localization of parathyroid tumors,” *Surgery*, vol. 106, no. 4, pp. 639–644, 1989.

[18] A. Bhansali, S. R. Masoodi, S. Bhadada, B. R. Mittal, A. Behra, and P. Singh, "Ultrasonography in detection of single and multiple abnormal parathyroid glands in primary hyperparathyroidism: Comparison with radionuclide scintigraphy and surgery,” *Clinical Endocrinology*, vol. 65, no. 3, pp. 340–345, 2006.

[19] M. J. O’Doherty, A. G. Kettle, P. Wells, R. E. C. Collins, and A. J. Coakley, "Parathyroid imaging with technetium-99m-sestamibi: Preoperative localization and tissue uptake studies,” *Journal of Nuclear Medicine*, vol. 33, no. 3, pp. 313–318, 1992.