Mini-Review

Current insights on haemorrhagic complications in percutaneous nephrolithotomy

Sujeet Poudyal

Department of Urology and Kidney Transplant Surgery, Tribhuvan University Teaching Hospital, Kathmandu, Nepal

Received 2 October 2020; received in revised form 10 November 2020; accepted 11 December 2020
Available online 29 May 2021

Abstract
Objective: Percutaneous nephrolithotomy (PCNL) is the standard procedure for the management of large and complex renal stones. Blood loss during PCNL may occur during puncture, tract dilatation, and stone fragmentation. Therefore, despite recent advances in PCNL, haemorrhagic complication still occurs. This study aims to enlighten on various aspects of haemorrhagic complication in PCNL, mainly focusing on risk factors and management of this dreadful complication.

Methods: Literature search for the study was carried out using advanced search engines like PubMed, Cochrane, and Google Scholar, combining keyword “percutaneous lithotomy” with other keywords like “bleeding”, “haemorrhage”, “complications”, “stone scoring systems”, “mini-PCNL vs. standard”, “dilatation techniques”, “supine vs. prone”, “USG-guided”, “endoscopic combined intra-renal surgery”, “papillary vs. non-papillary puncture”, “bilateral”, and “angioembolization”. The articles published between January 1995 and September 2020 were included for the review.

Results: A total of 3670 articles published from January 1995 to September 2020 were screened for the review. Although not consistent, multiple studies have described various preoperative and intraoperative risk factors related to significant bleeding in PCNL. Identification of these risk factors help urologists to anticipate and promptly manage haemorrhagic complications associated with the procedure. A conservative approach suffices to control bleeding in most cases; nevertheless, bleeding can be life-threatening and few still need surgical intervention in the form of angiographic embolisation or open surgical exploration.

Conclusion: As hemorrhagic complication in PCNL is associated with considerable morbidity and mortality, prudent intraoperative decision and postoperative care are necessary for its timely prevention, detection, and management.

© 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: poudyal.sujeet@gmail.com.

Peer review under responsibility of Tongji University.

https://doi.org/10.1016/j.ajur.2021.05.007

2214-3882/© 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

History of the percutaneous approach to the kidney to drain obstructed renal units dates to 1955 [1]. This approach was later employed for the removal of renal stones in 1976 [2]. Percutaneous nephrolithotomy (PCNL) has now become the standard procedure for the management of large stones and has largely surpassed open surgical techniques for renal stone management [3]. The primary goal of treatment is absolute clearance of the stone with minimal complications. Despite recent advances, complications are still common [4–6]. The Clinical Research Office of the Endourological Society (CROES) PCNL Global Study reported complications in about one-fifth of the patients [5]. PCNL is a controlled Grade IV renal injury, and blood loss may occur during puncture, tract dilatation, and stone disintigration [7]. Therefore, bleeding, in particular, is a concerning sequela that requires prompt control and management of PCNL. There is a wide variation in the rate of blood transfusion for bleeding in PCNL with literature describing up to 53% rate of transfusion [8]. Although a conservative approach suffices to control most bleeding after PCNL, a proportion of patients (0.5%–2.4%) have severe haemorrhage that necessitates surgical intervention [8–12].

This review aims to enlighten on various aspects of haemorrhagic complication in PCNL, mainly focusing on risk factors and management of this dreadful complication. Literature search for this review was carried out using advanced search engines like PubMed, Cochrane, and Google Scholar, combining keywords “percutaneous lithotomy” with other keywords like “bleeding”, “haemorrhage”, “complications”, “stone scoring systems”, “mini-PCNL vs. standard”, “dilatation techniques”, “supine vs. prone”, “USG-guided”, “endoscopic combined intra-renal surgery”, “papillary vs. non-papillary puncture”, “bilateral”, and “angioembolization”. A total of 3670 articles published from January 1995 to September 2020 were screened for the review.

2. Factors affecting bleeding in PCNL

Certain factors related to patients, stones and procedures, are of value in predicting bleeding after PCNL. Many studies (as shown in Table 1) have predicted various factors responsible for bleeding complications and these factors are not consistent in all studies.

2.1. Patient-related factors

The role of body mass index (BMI) in increasing haemorrhagic complications after PCNL has been reported by Lee et al. [11]. However, many studies did not show BMI to be the factor associated with bleeding in PCNL [10,12]. Yesil et al. [13] divided 360 patients into four groups consisting of primary PCNL patients, patients with a history of previous open surgery, those with a history of previous PCNL surgery, and the last group with a history of previous extracorporeal shockwave lithotripsy (ESWL). The study demonstrated that previous ipsilateral open surgery increased the risk of postoperative bleeding. This finding was also supported by the studies conducted by Said et al. [10] and Arora et al. [14]. Conversely, Kukreja and his colleagues [15] reported that past stone surgery was associated with decreased bleeding in PCNL. Thinner renal parenchyma, associated with previous surgery was speculated to be the cause of decreased bleeding. Diabetes mellitus has been studied as one of the factors responsible for bleeding after PCNL [16–18]. It seems that the association between diabetes and arteriosclerosis could explain the higher bleeding incidence during percutaneous access. By contrast, the association between diabetes and post-PCNL bleeding has been refuted by many studies [10,14]. Another factor that has been identified as a risk factor for post-PCNL haemorrhage is preoperative urinary tract infection [19–21]. The presence of an underlying infection may result in inflammation of the renal parenchyma, making parenchyma more friable and delaying the formation of firm blood clots at the vascular puncture site. A retrospective study by Zehri et al. [22] showed a female gender and chronic renal failure to be the trigger factors for blood transfusion. The low preoperative haemoglobin level in the female population, decreasing the threshold for transfusion, and increasing bleeding tendency in patients with chronic renal failure has been speculated to be the reasons for increasing blood transfusion rate after PCNL. However, many studies did not consistently support their findings [10,11,14–17]. Furthermore, advanced age and stone laterality have not been found to be the predictors of bleeding in PCNL [9–11,14–18]. Similarly, the use of anti-coagulant has not been shown to increase bleeding in PCNL [17].

Various kidney-related anatomical factors have been related to bleeding in PCNL. Lee and his colleagues [11] depicted the role of hydronephrosis as one of the predictors of bleeding in PCNL. Similar finding was depicted by the study done by Gok and Cift [12]. Senocak et al. [23] evaluated 105 renal units of pediatric patients and found that the degree of hydronephrosis, number of tracts, and operative time were the determining factors influencing blood loss during pediatric PCNL. A lesser degree of hydronephrosis along with increased parenchymal thickness was associated with a higher blood transfusion rate. A greater degree of hydronephrosis allows easier access to the pelvicalyceal system as well as tract dilatation. Multiple studies have demonstrated that PCNL in the horseshoe kidney was safe with no increased risk of bleeding [24,25]. Similarly, the renal anomaly was not found to be a significant predictor for bleeding in most studies [12,23,26].

2.2. Stone related factors

Kessaris et al. [9] in their study of 17 patients, observed that eight patients who needed angiembolization had staghorn stones. Similarly, studies by Srivastava et al. [27] and Arora et al. [14] showed that the size of stones and stone complexity were important factors for severe vessel injury. Turna et al. [16] reported that staghorn stones and stone size served as predictive factors of intraoperative bleeding in 193 patients who underwent PCNL. With an increase in the stone size, there is an obvious increase in the maneuvering performed within the pelvicalyceal system,
Study	Type	Patients, n	Factors affecting bleeding in PCNL	Factors not affecting bleeding in PCNL	Bleeding (%)
Lee et al. [11]	Retrospective study	370	Staghorn stones, high BMI, large stones, prolonged operation time, and absence of hydronephrosis	Age, sex, stone position, operative time, underlying disease, history of anticoagulant medication, presence of previous nephrostomy catheter, stone composition, and thickness of the renal cortex	Blood transfusion (11.6%)
				- Blood transfusion (11.6%)	- Severe bleeding requiring intervention (2.4%)
Said et al. [10]	Prospective study	200	Stone complexity (Guy’s stone score Grades 3 and 4), history of ipsilateral renal stone surgery, and occurrence of intraoperative pelvicalyceal perforation	Age, sex, BMI, diabetes mellitus, hypertension, renal failure, absence of hydronephrosis, larger stone size, operative time (>83 min), more than one puncture, and size of the Amplatz sheath (26–30 Fr)	Blood transfusion (8.5%)
				- Age, sex, BMI, diabetes mellitus, hypertension, renal failure, absence of hydronephrosis, larger stone size, operative time (>83 min), more than one puncture, and size of the Amplatz sheath (26–30 Fr)	- Severe bleeding requiring intervention (0.5%)
Gok and Cift [12]	Retrospective study	341	HU value, operation time, thickness of renal parenchyma, degree of hydronephrosis, and stone size	Age, sex, stone side, BMI, diabetes mellitus, hypertension, chronic renal failure, renal abnormality, anticoagulant use, history of urinary tract infection, and previous renal surgery and ESWL	Blood transfusion (0.5%)
				- Age, sex, stone side, BMI, diabetes mellitus, hypertension, chronic renal failure, renal abnormality, anticoagulant use, history of urinary tract infection, and previous renal surgery and ESWL	- Severe bleeding requiring intervention (1.7%)
Arora et al. [14]	Retrospective study	583	History of ipsilateral renal surgery, increased stone complexity, multiple access tracts, and injury to the pelvicalyceal system	Age, sex, diabetes mellitus, hypertension, serum creatinine level, urine culture, degree of pelvicalyceal dilatation, cortical thickness, presence of narrow infundibulum, and injury to pelvicalyceal system	Severe bleeding requiring intervention (0.51%)
				- Age, sex, diabetes mellitus, hypertension, serum creatinine level, urine culture, degree of pelvicalyceal dilatation, cortical thickness, presence of narrow infundibulum, and injury to pelvicalyceal system	- Severe bleeding requiring intervention (0.51%)
Kukreja et al. [15]	Prospective study	301	Diabetes, multiple tract procedures, prolonged operative time, occurrence of intraoperative complications, method of access guidance (fluoroscopy vs. ultrasound), method of tract dilatation, size of the tract, and renal parenchymal thickness	Age, hypertension, renal insufficiency, urinary infection, degree of hydronephrosis, stone bulk, function of the ipsilateral renal unit, past stone intervention, operating surgeon, and calyx of entry	Blood transfusion (7.9%)
				- Age, hypertension, renal insufficiency, urinary infection, degree of hydronephrosis, stone bulk, function of the ipsilateral renal unit, past stone intervention, operating surgeon, and calyx of entry	- Severe bleeding requiring intervention (1.5%)
Turna et al. [16]	Retrospective study	193	Staghorn stones, multiple tracts, diabetes, large stones, and balloon dilatation (decreased bleeding)	Age, sex, hypertension, preoperative urinary tract infection, serum creatinine level, past ipsilateral stone intervention, stone side,	Blood transfusion (23.8%)
				- Age, sex, hypertension, preoperative urinary tract infection, serum creatinine level, past ipsilateral stone intervention, stone side,	- Severe bleeding requiring intervention (1.5%)

(continued on next page)
Table 1 (continued)

Study	Type	Patients, n	Factors affecting bleeding in PCNL	Factors not affecting bleeding in PCNL	Bleeding (%)
Du et al.	Retrospective study	812	- Diabetes mellitus	- Age, sex, stone side, stone size, stone type, urinary tract infection, puncture site, history of antiplatelet therapy, and anticoagulation therapy	Severe bleeding requiring intervention (3.9%)
Akman et al.	Retrospective study	649	- Multiple access tracts, staghorn calculi, presence of diabetes, and prolonged operative time	- Age, sex, hypertension, serum creatinine level, history of ipsilateral renal procedures, degree of hydronephrosis, preoperative hemoglobin level, calix of puncture, and pelvicalyceal system perforation	Blood transfusion (10.8%)
Kumar et al.	Retrospective study	242	- Preoperative positive urine culture, diabetes, and stone burden	- Age, sex, hypertension, renal insufficiency, history of previous renal surgery, and stone side	Severe bleeding requiring intervention (18.6%)
Jinga et al.	Retrospective study	2095	- Multiple/staghorn calculi, upper calyx puncture, and history of pyelonephritis	- Sex, side, number of tracts, renal failure, site of puncture (subcostal vs. supracostal), and solitary kidney	Severe bleeding (1.05%)
Zehri et al.	Retrospective study	326	- Chronic renal failure, female gender, presence of staghorn calculi, and stone fragmentation using ultrasonic device	- Age, hypertension, presence of urinary infection, diabetes mellitus, calix of puncture, tract size, size of Amplatz, multiple puncture, serum creatinine, ischemic heart disease, experience of the operating endourologist, calyx of access, and number of attempts for a successful puncture return of haemorrhagic urine	Blood transfusion (14.2%)
Srivastava et al.	Retrospective study	1854	- Stone size	- Number of punctures, bilateral PCNL, chronic renal failure, and intraoperative pelvic perforation	Blood transfusion (12.23%)

S. Poudyal 84
which could, in turn, lead to an increased incidence of injury of the renal parenchyma. Increased stone burden is likely to increase the number of tracts to clear the stones and prolong the surgery as well. The association between stone density and bleeding was explained by Gok and Cift [12] in their study which showed that the risk of bleeding increased with increasing Hounsfield units of stone. The likely reasons for increased bleeding are prolonged operative time and increased trauma during stone fragmentation associated with increased density of the stone.

Different scoring systems and nomograms have been developed to stratify and standardize the complexity of renal stone. They have been found to predict not only the stone clearance but also the complications in PCNL. Bozkurt and his colleagues [28] in their study of 437 PCNL reported that Guy’s stone score (GSS) and CROES nomogram had comparable accuracy in predicting post-PCNL complications including bleeding. Another study by Yarimoglu et al. [29] in 262 patients reiterated that GSS and CROES nomograms were significantly associated with post-PCNL bleeding. Other studies done by Labadie et al. [30] and Okhunov et al. [31] showed that the S.T.O.N.E (stone size [S], tract length [T], obstruction [O], number of involved calyces [N], and essence or stone density [E]) nephrolithometry score correlated with PCNL complications including bleeding. Similarly, Rathee et al. [32] reported both GSS and

Study	Type	Patients, \(n \)	Factors affecting bleeding in PCNL	Factors not affecting bleeding in PCNL	Bleeding (%)
Senocak et al. [23]	Retrospective study	105	- Degree of hydronephrosis, number of tracts, and operative time	- Age, sex, stone side, BMI, stone surgery, stone burden and number, calyx entry, renal anomaly, and surgeon experience	Blood transfusion (5.7%)
El-Nahas et al. [26]	Retrospective study	2909	- Upper calyceal puncture, solitary kidney, staghorn stone, multiple punctures, and inexperienced surgeon	- Sex, side, renal morphology (degree of hydronephrosis), congenital anomalies, and site of puncture (subcostal vs. supracostal)	Blood transfusion (5.5%) Severe bleeding requiring intervention (1.0%)
Tan et al. [46]	Retrospective study	982	- Inferior calyx puncture, multiple renal stones, and solitary kidney stones	- Multiple tracts and punctures, prior ESWL, operative time, and chronic renal failure	Severe bleeding requiring intervention (1.01%)
Kim et al. [48]	Retrospective study	1554	- Correct puncture through fornix of posterior calyx	- Age, sex, stone laterality, stone location, stone size, presence of staghorn stone, Guy’s stone score, HU, degree of hydronephrosis, preoperative PCN, BMI or ASA classification, operation time, location of access, number of tracts, and stone free rate	Blood transfusion (3.4%) Severe bleeding requiring intervention (1.4%)
Stoller and Wolf [87]	Retrospective study	127	- Multiple punctures and renal pelvic perforation	- Calculus morphology, location, composition, and length	Blood transfusion (23%)
Syahputra et al. [94]	Prospective study	85	- Stone burden	- Age, BMI, stone number, preoperative hemoglobin, and creatinine	Blood transfusion (13.5%)

ASA, American Society of Anaesthesiologists; BMI, body mass index; ESWL, extracorporeal shockwave lithotripsy; HU, Hounsfield unit; PCN, percutaneous nephrostomy; PCNL, percutaneous nephrolithotomy.
S.T.O.N.E score predicted PCNL bleeding. Biswas et al. [33] compared GSS, S.T.O.N.E scores, and CROES nomograms, and concluded that all three scoring systems were significantly associated with estimated blood loss in PCNL.

2.3. Intraoperative factors

2.3.1. Number of punctures

Turna et al. [16] reported that the number of calyceal punctures was one of the predictive factors of intraoperative bleeding in PCNL. In several series, the number of percutaneous tracts was related to higher bleeding and transfusion rates [16,26,34,35]. It is a logical consequence of the number of vascular injuries caused by each tract. A greater number of percutaneous tracts are needed for larger, complex, and multiple stones. Currently, the use of flexible nephroscope together with endoscopic combined intrarenal surgery (ECIRS) allows the management of large volume stones and access to all renal cavities through only one percutaneous tract.

2.3.2. Size of the tract

Hamamoto et al. [36] demonstrated that the decrease in hemoglobin during mini-ECIRS and mini-PCNL was significantly lower than that during conventional PCNL. Yamaguchi et al. [37] also reported that as the tract size increased, bleeding complications increased. In his study, blood transfusion rates were 1.1%, 4.8%, 5.9%, and 12.1% for tract sizes of less than 18 Fr, 24–26 Fr, 27–30 Fr, and 32–34 Fr, respectively. A study from PCNL CROES database has reported that when larger sheaths were used, bleeding complications increased. In his study, blood transfusion rates were 1.1%, 4.8%, 5.9%, and 12.1% for tract sizes of less than 18 Fr, 24–26 Fr, 27–30 Fr, and 32–34 Fr, respectively. A study from PCNL CROES database has reported that when larger sheaths were compared with an access sheath ≤18 Fr, larger access sheaths of 24–26 Fr were associated with 3.04 times increased odds of bleeding, and access sheaths of 27–30 Fr were associated with 4.91 times increased odds of bleeding [38]. Similarly, multiple studies have found that standard PCNL was associated with a higher rate of blood transfusion compared to mini-PCNL as shown in Table 2 [39–44].

2.3.3. Operative time

Lee et al. [11] and Huang et al. [19] pointed out the impact of prolonged intraoperative time in augmenting bleeding complications of PCNL. Kukreja et al. [15] in their prospective study found that multiple tracts, prolonged surgical time, and intraoperative complications were significantly associated with increased renal hemorrhage during PCNL procedure. It is obvious that as the operative time increases, it prolongs trauma to the renal parenchyma and bleeding continues through the tract. Furthermore, the ongoing instrument manipulation also aggravates the injury of the pelvicalyceal system leading to increased blood loss.

2.3.4. Selection of calyx for puncture

El-Nahas et al. [26] reported that the factors significantly associated with bleeding requiring superselective angioembolization were multiple tracts, upper calyceal puncture, staghorn stone, solitary kidney, and the experience of the operating surgeon. The long and oblique trajectory during upper calyceal puncture and the thick parenchyma of the hypertrophied solitary kidney may be the possible reasons for significant bleeding. Upper calyceal access was also a predictor for angioembolization in PCNL in the study conducted by Jinga and his colleagues [21]. In the study carried out by de Fata et al. [45], the variables significantly associated with bleeding in supine PCNL were multiple punctures and the approach through the middle renal calyx, which was carried out in 20% of patients. In subcostal punctures during supine PCNL, an oblique and long tract to the middle calyx was the likely cause for a high possibility of parenchymal and vascular injury. In contrast to the study by El-Nahas et al. [26], El-Sheemy et al. [40] stated that inferior calyceal access was associated with severe postoperative bleeding and they speculated the reason to be the oblique and long tract required for inferior calyceal access. Studies by El-Nahas et al. [26] and Jinga et al. [21] did not show the significance of supracostal puncture in bleeding complications when compared to subcostal.

Study	Type	Standard PCNL vs. mini-PCNL		
	Number of cases, n	Drop in haemoglobin (g/dL); p-Value	Blood transfusion (%); p-Value	
Li et al. [39]	Prospective	72 vs. 93	16.3 vs. 8.8; 0.002	6.9 vs. 1.1; <0.001
Cheng et al. [42]	Randomised controlled trial	115 vs. 72	0.97 vs. 0.53; <0.05	10.4 vs. 1.4; <0.05
Zhong et al. [44]	Randomised controlled trial	25 vs. 29	3.5 vs. 3.2; 0.094	12.0 vs. 3.4; 0.326
Mishra et al. [43]	Prospective	28 vs. 27	1.3 vs. 0.8; 0.0098	3.6 vs. 0
ElSheemy et al. [40]	Retrospective	151 vs. 378	–	7.9 vs. 3.7; 0.041
Kukreja [41]	Prospective	62 vs. 61	1.48 vs. 0.87; <0.001	0 vs. 0

PCNL, percutaneous nephrolithotomy; –, not available.

86
punctures. Thus, it is not the calyx or site of puncture, but the trajectory of the access, which determines the haemorrhagic complications in PCNL. The longer and more oblique the tract are, the more it traverses the renal parenchyma and blood vessels leading to increased bleeding.

2.3.5. Papillary vs. non-papillary puncture

The fornix of the papilla is the preferred site for puncture to make access to the pelvicalyceal system in PCNL. Sampao and his colleagues [47] studied the impact of puncture through the fornix and infundibulum in the superior, middle, and inferior regions of the kidney using three-dimensional kidney models from 62 cadaveric kidneys and demonstrated 67.6%, 38.4%, and 68.2% vascular lesions in the upper, mid, and lower infundibular punctures, respectively compared to 7.7%, 7.1%, and 8.3% vascular lesions in upper, mid, and lower fornical punctures, respectively [47]. When puncture is done through the infundibulum, there is a risk of injury and significant bleeding from the infundibular vessels which surround the infundibulum. The risk of injury is again aggravated by dilatation and manipulation of the access sheath during PCNL. Kim et al. [48] demonstrated that incorrect renal puncture was related to severe bleeding requiring angiembolization after PCNL. The puncture was defined as being correct if the fornix or papilla of the posterior calyx was punctured and the trajectory of the tract was within 20° posterior to the frontal plane of the kidney (i.e., within Brödel’s line). Puncture correctness was assessed using postoperative computerised tomogram (CT) scans. Conversely, Kallidonis and his colleagues [49] in their randomized controlled study consisting of 55 patients reported similar blood loss and transfusion rates when the infundibular approach was compared with the papillary approach for the posterior middle renal calyces.

2.3.6. Methods of tract dilatation

The study conducted by Turna et al. [16] observed decreased bleeding with balloon dilatation when compared to Amplatz dilatation. By contrast, Pakmanesh and his colleagues [50] in their randomised controlled trial of 66 patients reported that both Amplatz and balloon dilatation decreased bleeding in PCNL. The puncture was defined as being correct if the fornix or papilla of the posterior calyx was punctured and the trajectory of the tract was within 20° posterior to the frontal plane of the kidney (i.e., within Brödel’s line). Puncture correctness was assessed using postoperative computerised tomogram (CT) scans. Conversely, Kallidonis and his colleagues [49] in their randomized controlled study consisting of 55 patients reported similar blood loss and transfusion rates when the infundibular approach was compared with the papillary approach for the posterior middle renal calyces.

2.3.7. Drainage procedures (standard vs. tubeless vs. totally tubeless)

A randomised controlled study conducted by Mishra et al. [52], comparing standard and tubeless PCNL, reported equivalent bleeding complications in both drainage procedures. Another study by Istanbulluoglu et al. [53] comparing standard, tubeless, and totally tubeless PCNL showed no difference in haemoglobin level change and blood transfusion. Tubeless percutaneous nephrolithotomy has been found to be safe and efficacious in uneventful procedures, regardless of particular circumstances like obese and paediatric patients, simultaneous bilateral procedures, supracostal access, and in renal units with coexisting anatomical anomalies [54]. In patients with no major intraoperative bleeding and pelvicalyceal perforation, tubeless and totally tubeless procedures have been found to be safe [55]. Multiple randomised controlled trials showed no significant difference in blood loss with the use of hemostatic agents (fibrin sealant, gelatin sponge, or oxidized cellulose) in tubeless PCNL [56–58]. A randomised controlled study carried out by He et al. [59] compared standard nephrostomy tube placement with a modified nephrostomy tube covered in absorbable haemostatic gauze. The modified nephrostomy resulted in a significant decrease in blood loss; although not significant, it was associated with fewer blood transfusion rates and angiembolization.

2.3.8. Fluoroscopy vs. ultrasound-guided (USG) renal access

A matched case analysis from the international CROES database comprising 453 procedures in each group of fluoroscopy and USG-guided renal access for PCNL showed that postoperative haemorrhage and transfusions were significantly higher in the fluoroscopy group. When adjusted for access sheath size and multiple tracts, the difference in bleeding rate did not turn out to be significant [38]. Multiple studies did not observe a significant difference in post-PCNL bleeding when either fluoroscopic or USG-guided access was used [60–65]. A systematic review and meta-analysis done by Yang et al. [66] reported a comparable drop in haemoglobin and transfusion rate in both fluoroscopic and USG-guided access. Contradictorily, the study done by Kukreja et al. [15] showed that USG-guided access was significantly associated with decreased blood loss than fluoroscopy-guided access. During puncture, Doppler USG can confirm the path of blood vessels in the renal parenchyma and prevent injury to these blood vessels leading to decreased bleeding in PCNL.

2.3.9. Use of endoscopic combined intra-renal surgery (ECIRS)

Hamamoto et al. [36] retrospectively compared ECIRS, mini-PCNL, and conventional PCNL, and found out a significant decrease in haemoglobin drop in ECIRS and mini-PCNL group. A randomised controlled trial comparing minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with a flexible ureteroscope for partial staghorn calculi did not show a significant difference in blood loss [67]. Another retrospective study by Leng et al. [68] comparing 87 patients grouped into mini-PCNL and mini-PCNL combined with flexible ureterorenoscopy in the oblique supine lithotomy position showed a significantly higher haemoglobin drop in the mini-PCNL group. In complex and large renal stones, ECIRS decreases bleeding by preventing the need for multiple tracts and by reducing the manipulation of the Amplatz sheath and the nephrostomy during stone clearance.
2.3.10. Supine vs. prone PCNL
Multiple randomised controlled trials and meta-analyses comparing supine and prone PCNL reported non-significant differences in bleeding complications [69–72]. A meta-analysis done by Falahatkar et al. [73] included 13 studies, out of which five were retrospective in nature, and it depicted a lower blood transfusion rate in the supine group compared to the prone group (5.0% vs. 6.3%; p=0.01). A recent meta-analysis of 12 randomised controlled trials, comprising 583 and 585 cases in supine and prone group, respectively, reiterated the similar transfusion rates between supine and prone PCNL (6.0% vs. 5.3%; p=0.58) [70].

2.3.11. Experience of surgeons
It is obvious that increased experience in any surgery increases the success rate and diminishes the complications related to surgery. It applies well in PCNL, as PCNL is said to have a steep learning curve [74–76]. El-Nahas et al. [26] highlighted the importance of the experience of the endourologist in their study, and concluded that an experienced endourologist should perform PCNL in patients who are at risk for severe bleeding, such as those with a solitary kidney or staghorn stone. Conversely, multiple studies did not find a significant correlation of the experience of the surgeon with bleeding in PCNL [15,22,23].

2.3.12. Bilateral synchronous vs. staged approach
In the retrospective evaluation conducted by Srivastava et al. [27], comprising 1854 patients undergoing PCNL, 86 bilateral simultaneous PCNL procedures were performed, and the study showed that the bilateral simultaneous procedure was not a parameter predicting vascular complications of PCNL. A systematic review by Jones et al. [77] comparing bilateral synchronous PCNL and staged PCNL reported a non-inferior safety profile of bilateral procedures. Bilateral simultaneous PCNL was found to be technically demanding, requiring careful patient selection, counselling, and centers with large case volumes. After completing a unilateral procedure in the patient, the criteria considered for deferring contralateral surgery were: More than two tracts on the initial side, severe haemorrhage, haemoglobin drop >30 g/L or level <11 g/L, arterial oxygen saturation <95%, pH <7.35, serum sodium <128 mg/mL, systolic pressure <100 mmHg (1 mmHg=0.133 kPa), operative time >180 min, or any other unforeseen complication.

3. Management
Haemorrhagic complications of PCNL may occur intraoperatively, early postoperatively within hours and days, or late postoperatively in weeks and months. Intraoperative bleeding can occur during puncture, tract dilatation, instrument manipulation, or stone fragmentation. Intraoperative bleeding may result from traumatised renal parenchyma or injury to the perinephric vessels. It mostly occurs in interlobar and segmental renal vessels. Injury to the main renal vessels and great vessels may lead to acute massive haemorrhage, but they are relatively uncommon, occurring in 0.5% of cases [78]. Injury to the adjacent organs like liver and spleen and haemothorax from a supracostal puncture, although uncommon, should be ruled out as potential sources of bleeding in PCNL [79,80]. Overall, transfusion rates in PCNL have declined from 53% to less than 10% in recent series, with most managed conservatively and only a few requiring surgical interventions as shown in Table 1 [15]. Late postoperative bleeding with its incidence of 0.8–2.6% is mostly due to arterial pseudoaneurysm and arteriovenous fistula (AVF) [81]. The renal collecting system should be accessed along a line that passes through the fornix and the infundibulum of a posteriorly oriented calyx. This short and straight path traverses less parenchyma compared to an anterior puncture and leads the tract through the avascular Brodel’s line avoiding infundibular vessels.

Bleeding can be covert, concealed as retroperitoneal haematoma or ovoid, seen through the tract, or in the form of haematuria. Bleeding can be arterial or venous. Venous bleeding is usually mild and most of the time can be managed conservatively. It is wise to stage the procedure with a nephrostomy tube if intraoperative bleeding is severe enough to blind the vision. Intraoperatively, bleeding can be controlled by the use of a large-bore nephrostomy tube which should be clamped for 4–8 h. If the urine from Foley’s catheter clears out, a trial of declamping can be attempted, otherwise, it should be clamped for 24–48 h for persistent bleeding [20,82–84]. Other options that have been used instead of the nephrostomy tube are balloon dilator, Kaye nephrostomy tamponade catheter, or a nephrostomy tube covered with absorbable haemostatic gauze [59,85,86]. A Kaye tamponade catheter can also be applied later if clamping the large bore nephrostomy tube does not sufficiently control bleeding. Intravenous hydration along with administration of mannitol in a hemodynamically stable patient also leads to swelling of the kidney with tamponade of the tract [9,82,87]. The use of tranexamic acid was found to be associated with decreased blood transfusion rate in PCNL [88,89].

Postoperatively, the patient should be stringently monitored including their vitals, urine output, serial haemoglobin, and arterial blood analysis as needed. Haematuria and pallor should be looked for, and the abdomen should be examined for retroperitoneal/intraabdominal collection or the presence of urinary retention due to clot. Furthermore, chest examination should also be performed to rule out haemothorax in those with supracostal access [79]. If easily available, it is better to incorporate USG in clinical examination. Shock accompanied by oliguria/anuria with metabolic acidosis and significant drop in haemoglobin needs resuscitation with fluid and blood transfusion, and should prompt the urologist to be vigilant for urgent surgical intervention [87,90]. The algorithm shown in Fig. 1 outlines the management of significant haemorrhage associated with PCNL.

Discreet monitoring is warranted in major bleeding, which is indicated by a drop in haemoglobin by 2 g/dL and/or in need of a transfusion of two or more packed red blood cells [91,92]. Likewise, massive haemorrhage, defined by transfusion of four or more packed red blood cells within 6 h, requires urgent surgical intervention [20,91,92]. Moreover, recurrent or continuous bleeding with a drop in haemoglobin by 3 g/dL and/or fall of
with arterial blood analysis should not be overlooked. Therefore, proper clinical examination, regular monitoring of vitals and urine output, along with measuring haematocrit less than 30% may be an early indicator of the need for surgical intervention [16,91,93,94]. Metabolic acidosis, hypothermia, and coagulopathy form the lethal triad of massive haemorrhage, and utmost caution should be taken to prevent and treat this vicious cycle [95]. Haemodynamic instability after resuscitation requires either urgent renal conventional angiography with superselective embolisation of the bleeding vessel or urgent open surgical exploration if an angiogram is not available [82,101]. A study by Aminsharifi et al. [102] described eight cases who underwent urgent renal surgical exploration for massive haemorrhage after PCNL. Two cases underwent partial nephrectomy, whereas renorrhaphy sufficed in all others. With the same principles followed during surgical exploration in patients with high-grade renal trauma, renal pedicle control should be the first approach during exploration such that the operation could be done in a bloodless field and the kidney could be salvaged. Nephrectomy may be inevitable as a part of damage control surgery in an exsanguinating and haemodynamically unstable patient in whom kidney salvage is not possible [26]. Those having gross haematuria should be managed with continuous bladder irrigation to prevent clot formation and once clot retention occurs, if bladder washouts fail, cystoscopy with clot evacuation is needed.

CT/magnetic resonance (CT/MR) renal angiography is indicated in haemodynamically stable patients if there is a need for repeated transfusions due to ongoing bleed, repeated clot evacuation, continuing fall in haemacrit, and persistent haematuria. As CT renal angiography is non-invasive and 86%–100% sensitive compared to renal conventional/digital subtraction angiography (DSA), it helps in planning the intervention in haemodynamically stable patients [103]. Renal DSA remains the gold standard for the diagnosis and treatment of renal artery lesions and should not be delayed in cases of massive or persistent haemorrhage. In the presence of renal insufficiency, Doppler ultrasonography and renal DSA should be performed avoiding a contrast CT scan. The findings of vascular lesions in CT angiography and/or significant ongoing bleeding should prompt early DSA with superselective angioembolization [82]. Delayed postoperative bleeding, which mostly presents with abrupt, brisk and intermittent bleeding, has been found to have vascular lesions in most cases; thus, benefits from prompt superselective angioembolization [93]. The need for renal artery embolisation to control renal bleeding has been found to be 0.3%–3.9% and its success rate has been reported to be 82.7%–100% [11,14,17,26,47,81,101,104–107]. Advancement in technology along with the experience of interventional radiologists has increased the success rate of renal angioembolization over time [107]. The lesions in renal angiography are pseudoaneurysm, arteriovenous fistula, arteriocalyceal fistula, and active extravasation of contrast suggesting active renal haemorrhage [108]. Embolisation can be performed with materials such as ethanol, metal coils, gel foam particles, and N-butyl-2-cyanoacrylate [101,109]. Site and accessibility of the vessel feeding the pseudoaneurysm or AVF as well as the availability of the material determine the choice of embolic material. The choice of embolic material for large aneurysms and AVF was N-butyl-2-cyanoacrylate and coils, respectively, whereas gel foam was used for smaller fistula and aneurysms [110].

In the study done by Richstone et al. [107], 17% of post-PCNL haemorrhages requiring superselective angioembolization demonstrated multiple angiographic findings. Conversely, 5.3% did not show demonstrable angiographic findings resulting in haemorrhage. El-Nahas et al. [26] studied 39 patients undergoing superselective renal artery embolisation. In their study, eight showed multiple angiographic lesions and 10 required a second session of angioembolization. In those requiring second session of angioembolization, two cases did not demonstrate vascular injuries during the first session whereas eight had recurrent haemorrhage. Similarly, three cases needed urgent surgical exploration due to failure of renal angiography, out of which one required nephrectomy and one succumbed to death. Similarly, Jain et al. [111] reported failure in six out of
of 41 patients, out of which two required nephrectomy. A retrospective analysis by Mao et al. [106] showed that large tract size, multiple bleeding sites, and renal vascular aberration/tortuosity were significant predictors for increased risk of initial treatment failure of superselective renal angioembolization. Therefore, interventional radiologists should be aware of multiple vascular lesions during angiography, mostly in those requiring a large size tract and multiple punctures [111,112]. Moreover, as renal angioembolization may sometimes fail, one should prepare for another session of renal angiography and anticipate urgent surgical intervention for persistent or recurrent bleeding. Renal angioembolization procedure in itself is not only lifesaving but also renoprotective, preserving most of the normal parenchyma. In most cases, it avoids open surgical exploration, which may even end up with nephrectomy [20,26,111].

The most common complication of renal angioembolization is postembolization syndrome that affects over 90% of patients [113]. Treatment is supportive with analgesics, antipyretics, and antiemetics if required. Other serious but uncommon complications are arterial dissection and coil migration, which may result in renal infarction, infarction of distant organs, and may sometimes erode into the renal collecting system [114–116]. Renal dysfunction after renal angioembolization is more marked in the solitary kidney and may be likely due to contrast-induced nephropathy and/or loss of parenchymal tissue after infarction. Superselective renal angioembolization has been found to result in 0%–30% of the parenchymal deficit in immediate follow-up and this deficit has been found to decrease with time [117]. Long-term effect of renal superselective angioembolization appears to be safe without postinfarction deterioration of renal function and renal hypertension in most cases [118–120].

4. Conclusion

Perioperative bleeding is a worrisome complication of PCNL. With technical advancements, its incidence has decreased; nevertheless, the importance of perioperative vigilance for bleeding and its optimal management should not be underestimated.

Conflicts of interest

The author declares no conflict of interest.

Acknowledgements

The author would like to thank Dr. Bidur Adhikari, Tribhuvan University Teaching Hospital, Nepal and Mr. Ben Lloyd, Lumary, Australia for reviewing and revising the manuscript for grammar and syntax.

References

[1] Goodwin WE, Casey WC, Woolf W. Percutaneous trocar (needle) nephrostomy in hydronephrosis. J Am Med Assoc 1955;157:891–4.
[2] Fernstrom I, Johansson B. Percutaneous pyelolithotomy: A new extraction technique. Scand J Urol Nephrol 1976;10:257–9.
[3] Karakoyunlu N, Goktug G, Sener NC, Zengin K, Nalbant I, Ozturk U, et al. A comparison of standard PCNL and staged retrograde FURS in pelvis stones over 2 cm in diameter: A prospective randomized study. Urolithiasis 2015;43:283–7.
[4] Jessen JP, Honeck P, Knoll T, Wende-Nordahl G. Percutaneous nephrolithotomy under combined sonographic/radiologic guided puncture: Results of a learning curve using the modified Clavien grading system. World J Urol 2013;31:1599–603.
[5] Labate G, Modi P, Timoney A, Cermio L, Zhang X, Louie M, et al. The percutaneous nephrolithotomy global study: Classification of complications. J Endourol 2011;25:1275–80.
[6] Taylor E, Miller J, Chi T, Stoller ML. Complications associated with percutaneous nephrolithotomy. Trans Androl Urol 2012;1:223–8.
[7] Hosein M, Paskar D, Kodama R, Diktosky N. Coming together: A review of the American Association for the Surgery of Trauma’s updated kidney injury scale to facilitate multidisciplinary management. Am J Roentgenol 2019;213:1091–9.
[8] Snyder JA, Smith AD. Staghorn calculi: Percutaneous extraction versus anatrophic nephrolithotomy. J Urol 1986;136:351–3.
[9] Kessaris DN, Bellman GC, Pardalidis NP, Smith AG. Management of hemorrhage after percutaneous renal surgery. J Urol 1995;153:604–8.
[10] Said SHA, Al Kadum Hassan MA, Ali RHG, Aghaways I, Kakmad FH, Mohammad KQ. Percutaneous nephrolithotomy; alarming variables for postoperative bleeding. Arab J Urol 2017;15:24–9.
[11] Lee JK, Kim BS, Park YK. Predictive factors for bleeding during percutaneous nephrolithotomy. Korean J Urol 2013;54:448–53.
[12] Gok A, Cift A. Predictive factors for bleeding that require a blood transfusion after percutaneous nephrolithotomy. Int J Clin Exp Med 2017;10:13772–7.
[13] Yesil S, Ozturk U, Goktug HNG, Tugun C, Nalbant I, Imamoglu MA. Previous open renal surgery increased vascular complications in percutaneous nephrolithotomy (PCNL) compared with primary and secondary PCNL and extracorporeal shock wave lithotripsy patients: A retrospective study. Urol Int 2013;91:331–4.
[14] Arora AM, Pawar PW, Tamhankar AS, Savant AS, Mundhe ST, Patil SR. Predictors for severe hemorrhage requiring angiembolization post percutaneous nephrolithotomy: A single-center experience over 3 years. Urol Ann 2019;11:180–6.
[15] Kukreja R, Desai M, Patel S, Bapat S, Desai M. Factors affecting blood loss during percutaneous nephrolithotomy: Prospective study. J Endourol 2004;18:715–22.
[16] Turba B, Nazli O, Demirgiyuran S, Mammadov R, Cal C. Percutaneous nephrolithotomy: Variables that influence hemorrhage. Urology 2007;69:603.
[17] Du N, Ma J, Luo J, Liu Q, Zhang Z, Yang M-J, et al. The efficacy and safety of transcathether arterial embolization to treat renal hemorrhage after percutaneous nephrolithotomy. Biol Med Res Int 2019;2019:6265183. https://doi.org/10.1155/2019/6265183.
[18] Akman T, Binbay M, Sari E, Yuruk E, Tepeler A, Akcay M, et al. Factors affecting bleeding during percutaneous nephrolithotomy: Single surgeon experience. J Endourol 2011;25:327–33.
[19] Huang W, Jiann B, Lee Y, Wu TT, Yu C, Tsai J, et al. Risk factors of massive bleeding after percutaneous
nephrolithotomy and its management. J Taiwan Urol Assoc 2003;14:65–71.

[20] Kumar NA, Chaitanya SV, Bezwada SG. Post percutaneous nephrolithotomy massive hematuria: Our Experience. Int J Contemp Med Res 2016;3:1499–502.

[21] Jinga V, Dorobat B, Youssef S, Radavoi GD, Braticevici B, Filipoiu F, et al. Transarterial embolization of renal vascular lesions after percutaneous nephrolithotomy. Chirurgia (Bucur) 2013;108:521–9.

[22] Zehri AA, Biyabani SR, Siddiqui KM, Memon A. Triggers of blood transfusion in percutaneous nephrolithotomy. J Coll Phys Surg Pakistan 2011;21:138–41.

[23] Senocak C, Ozbek R, Bozkurt OF, Unsal A. Predictive factors of bleeding among pediatric patients undergoing percutaneous nephrolithotomy. Urolithiasis 2018;46:383–9.

[24] Razvi S, Zaidi Z. Percutaneous nephrolithotomy (PCNL) in horseshoe kidneys. J Pakistan Med Assoc 2007;57:222–5.

[25] El-Nahas AR, Shokeir Ahmed A, El-Assmy AM, Mohsen T, El Ghoneimy MN, Kodera AS, Emran AM, Orban TZ, Aydogdu O, Yonguc T, Yarimoglu S, Sen V, Bozkurt IH. Does a smaller access of bleeding among pediatric patients undergoing percutaneous nephrolithotomy massive hematuria: Our Experience. Int J Urol 2012;61:146–50.

[26] El-Nahas AR, El-Assmy AM, Mohsen T, El-Ghoneimy MN, Kodera AS, Emran AM, Orban TZ, Aydogdu O, Yonguc T, Yarimoglu S, Sen V, Bozkurt IH. Does a smaller access of bleeding among pediatric patients undergoing percutaneous nephrolithotomy massive hematuria: Our Experience. Int J Urol 2012;61:146–50.

[27] Srivastava A, Singh KJ, Suri A, Dubey D, Kumar A, Kapoor R, et al. Vascular complications after percutaneous nephrolithotomy: Are there any predictive factors? Urology 2005;66:38–40.

[28] Bozkurt IH, Aydogdu O, Yonguc T, Yarimoglu S, Sen V, Gunlusoy B, et al. Comparison of guy and clinical research office of the endourological society nephrolithometry scoring systems for predicting stone-free status and complication rates after percutaneous nephrolithotomy: A single center study with 437 cases. J Endourol 2015;29:1006–10.

[29] Yarimoglu S, Polat S, Bozkurt IH, Yonguc T, Aydogdu O, Aydin E, et al. Comparison of STONE and CROES nephrolithometry scoring systems for predicting stone-free status and complication rates after percutaneous nephrolithotomy: A single center study with 262 cases. Urolithiasis 2017;45:489–94.

[30] Labadie K, Okhunov Z, Akhavein A, Moreira DM, Moreno-Palacios J, del Junco M, et al. Evaluation and comparison of urology scoring systems used in percutaneous kidney stone surgery. J Urol 2015;193:154–9.

[31] Okhunov Z, Friedlander JJ, George AK, Duty BD, Moreira DM, Srinivasan AK, et al. STONE nephrolithometry: Novel surgical classification system for kidney calculi. Urology 2013;81:1154–60.

[32] Rathee VS, HC V, Khan SW, Singh AK, Shukla PK, Verma A, et al. Comparison of Guy’s vs. STONE nephrolithometry scoring systems in predicting the success rate of PCNL. J Clin Urol 2017;10:423–9.

[33] Biswas K, Gupta SK, Tak GR, Ganpule AP, Sabnis RB, Desai MR. Comparison of STONE score vs. Guy’s stone score vs. Clinical Research Office of the Endourological Society (CROES) score as predictive tools of percutaneous nephrolithotomy outcome: A prospective study. BJU Int 2020;126:494–501.

[34] Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol 2007;51:899–906.

[35] Seitz C, Desai M, Härker A, Hakenberg OW, Liatsikos E, Buczko J. One-shot versus serial dilatation technique for access in percutaneous nephrolithotomy: A systematic review and meta-
[98] Schulman S, Angeràs U, Bergqvist D, Eriksson B, Lassen MR, Fisher W, et al. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in surgical patients. J Thromb Haemostasis 2010;8:202–4.

[99] Syahputra FA, Birowo P, Rasyid N, Matondang FA, Noviandrini E, Huseini MH. Blood loss predictive factors and transfusion practice during percutaneous nephrolithotomy of kidney stones: A prospective study. F1000Research 2016;5:1550. https://doi.org/10.12688/f1000research.8993.1.

[100] El Sayad M, Noureddine H. Recent advances of hemorrhage management in severe trauma. Emerg Med Int 2014;2014:638956. https://doi.org/10.1155/2014/638956.

[101] Ranjan R, Malviya D, Misra S, Nath SS, Rastogi S. To compare the changes in hemodynamic parameters and blood loss during percutaneous nephrolithotomy—general anesthesia versus subarachnoid block. Anesth Essays Res 2020;14:72–4.

[102] Parish M, Abedini N, Mahmoodpoor A, Gojazadeh M, Farzin H, Sadigl S. The association between hemoglobin value and estimation of amount of intraoperative blood loss. Open J Intern Med 2017;7:144. https://doi.org/10.4236/ojim.2017.74015.

[103] Giraldo MZ. Management of perioperative bleeding in children. Step by step review. Colomb J Anesthesiol 2013;41:50–6.

[104] Opreanu RC, Arrangoiz R, Stevens P, Morrison CA, Mosher BD, Opreanu RC, Arrangoiz R, Stevens P, Morrison CA, Mosher BD, et al. Hemorrhage after percutaneous nephrolithotomy. ISRN Urol 2012;2012:32109-7. https://doi.org/10.1016/S1569-9056(17)32109-7.

[105] Seitz C, Desai M, HÄcker A, Hakenberg OW, Liatsikos E, Nagele UTD. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol 2012;61:146–58.

[106] Mao Q, Wang C, Chen G, Tan FSB. Failure of initial selective renal arterial embolization in the treatment of renal hemorrhage after percutaneous nephrolithotomy: A retrospective analysis of risk factors. Exp Ther Med 2019;18:4151–6.

[107] Richstone L, Reggio E, Ost MC, Seideman C, Fossett LK, Okeke Z, et al. Hemorrhage following percutaneous renal surgery: Characterization of angiographic findings. J Endourol 2008;22:1129–36.

[108] Ginat DT, Saad WEA, Turba UC. Transcatheter renal artery embolization: Clinical applications and techniques. Tech Vasc Intervent Radiol 2009;12:224–39.

[109] Lee KL, Stoller ML. Minimizing and managing bleeding after percutaneous nephrolithotomy. Curr Opin Urol 2007;17:420–4.

[110] Venkateswarlu J, Sarvan Kumar M, Babu RP, Abkari A. Endovascular management of iatrogenic renal vascular injuries complicating percutaneous nephrolithotomy: Role of renal angiography and embolization; an analysis of 159 cases. Indian J Radiol Imag 2017;27:293–7.

[111] Jain V, Ganpule A, Vyas J, Muthu V, Sabnis RB, Rajapurkar MM, et al. Management of non-neoplastic renal hemorrhage by transarterial embolization. Urology 2009;74:522–6.

[112] Zeng G, Zhao Z, Wang S, Khadgi S, Long Y, Zhang Y, et al. Failure of initial renal arterial embolization for severe post-percutaneous nephrolithotomy hemorrhage: A multicenter study of risk factors. J Urol 2013;190:2133–8.

[113] Ginat DT, Saad WE, Turba UC. Transcatheter renal artery embolization: Clinical applications and techniques. Tech Vasc Intervent Radiol 2009;12:224–39.

[114] Woodside J, Schwarz H, Bergreen P. Peripheral embolization complicating bilateral renal infarction with gelfoam. Am J Roentgenol 1976;126:1033–4.

[115] Gang DL, Dole KB, Adelman LS. Spinal cord infarction following therapeutic renal artery embolization. JAMA 1977;237:2841–2.

[116] Giusti G, DeLisa A. Massive migration of embolization coils inside the renal pelvis: A rare complication that can be approached through percutaneous surgery. Cent Eur J Urol 2018;71:467–9.

[117] Chatzioannou A, Broutzos E, Primetis E, Malagari K, Chatzioannou A, Broutzos E, Primetis E, Malagari K, et al. Effects of superselective embolization for renal vascular injuries on renal parenchyma and function. Eur J Vasc Endovasc Surg 2004;28:201–6.

[118] Pouliakos V, Ferakis N, Becht E, Deliveliotis C, Duex M. Treatment of renal-vascular injury by transcatheter embolization: Immediate and long-term effects on renal function. J Endourol 2006;20:405–9.

[119] El-Nahas AR, Shokeir AA, Moshen T, Gad H, El-Assmy AM, El-Nahas AR, Shokeir AA, Moshen T, Gad H, El-Assmy AM, et al. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in surgical patients. J Thromb Haemostasis 2010;8:202–4.

[120] Gang DL, Dole KB, Adelman LS. Spinal cord infarction following therapeutic renal artery embolization. JAMA 1977;237:2841–2.

[121] Giusti G, DeLisa A. Massive migration of embolization coils inside the renal pelvis: A rare complication that can be approached through percutaneous surgery. Cent Eur J Urol 2018;71:467–9.

[122] Chatzioannou A, Broutzos E, Primetis E, Malagari K, Chatzioannou A, Broutzos E, Primetis E, Malagari K, et al. Effects of superselective embolization for renal vascular injuries on renal parenchyma and function. Eur J Vasc Endovasc Surg 2004;28:201–6.

[123] Pouliakos V, Ferakis N, Becht E, Deliveliotis C, Duex M. Treatment of renal-vascular injury by transcatheter embolization: Immediate and long-term effects on renal function. J Endourol 2006;20:405–9.