The Primary Structure of the VLA-2/Collagen Receptor
\(\alpha^2\) Subunit (Platelet GPla): Homology to Other Integrins and the Presence of a Possible Collagen-binding Domain

Yoshikazu Takada and Martin E. Hemler
Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115

Abstract. VLA-2 (also called gpla/IIa on platelets) is a collagen receptor with a unique \(\alpha\) subunit and a \(\beta\) subunit common to other adhesion receptors in the VLA/integrin family. Multiple cDNA clones for the human VLA-2 \(\alpha^2\) subunit have been selected from a \(\lambda\)gt11 library by specific antibody screening. The 5,374-bp nucleotide sequence encoded for 1,181 amino acids, including a signal peptide of 29 amino acids followed by a long extracellular domain (1,103 amino acids), a transmembrane domain, and a short cytoplasmic segment (22 amino acids). Direct sequencing of purified \(\alpha^2\) protein confirmed the identity of the 15 NH2-terminal amino acids. Overall, the \(\alpha^2\) amino acid sequence was 18-25% similar to the sequences known for other integrin \(\alpha\) chains. In particular, the \(\alpha^2\) sequence matched other integrin \(\alpha\) chains in (a) the positions of 17 of its 20 cysteine residues; (b) the presence of three metal-binding domains of the general structure DXDXDGXXD; and (c) the transmembrane domain sequence. In addition, the \(\alpha^2\) sequence has a 191-amino acid insert (called the I-domain), previously found only in leukocyte integrins of the \(\beta\) integrin family. The \(\alpha^2\) I-domain was 23-41% similar to domains in cartilage matrix protein and von Willebrand factor, which are perhaps associated with collagen binding. The NH2-terminal sequence reported here for \(\alpha^2\) does not match the previously reported \(\alpha^2\) NH2-terminal sequence (Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. Proc. Natl. Acad. Sci. USA. 84:3239-3243). Resolution of this discrepancy suggests that there may be another VLA heterodimer that resembles VLA-2 in size but has a different amino acid sequence.

VLA-2 is an \(\alpha/\beta\)-subunit cell surface heterodimer strongly implicated as receptor for collagen because (a) VLA-2 has been shown to be identical (61) to a 150,000/110,000-Mr structure recognized by the mAb PIHS, which specifically blocks human fibrosarcoma cell (66) and platelet (31) attachment to collagen; (b) patients deficient in platelet protein Ia (\(\alpha\) subunit of VLA-2) also lacked responsiveness to collagen (27, 41); and (c) the mAb 12F1 was used to identify VLA-2 as a 160,000/130,000-Mr (nonreduced) platelet protein complex that mediates \(\text{Mg}^{2+}\)-dependent adhesion to collagen (51, 52). Also in this regard, antigens that strongly resemble VLA-2 in size have been implicated in hepatocyte cell attachment to type I collagen (14).

The cell surface heterodimer VLA-2 was initially characterized as a "very late antigen" appearing on activated T cells (19, 20). Later the mAb 12F1 was used to identify VLA-2 on platelets and on many other cell types, including most rapidly growing, adherent cell lines (43). Major portions of the platelet gpla and IIa are probably the same as the VLA-2 \(\alpha\) and \(\beta\) subunits, respectively (31, 44). Thus the new platelet-specific alloantigens Br+ and Br−, which reside on the platelet Ia-IIa complex (53), may be variable epitopes on VLA-2.

In other studies, an antibody (called 5E8) that recognizes VLA-2 (Hemler, M., and C. Crouse, unpublished results) has been described on most primary human lung tumors (68), and \(^{125}\text{I}-\text{coupled 5E8 antibody has been used to inhibit the growth of lung tumor cell lines in vitro (57).}

The expression of VLA-2 can be up regulated on lymphocytes in response to mitogen or antigen stimulation (17) and on fibroblasts in response to serum (10). Conversely, VLA-2 expression slowly diminished when those stimuli were withdrawn and/or cells became quiescent (10, 17). Also, VLA-2 expression can be up regulated by TGFβ (15).

Like other cell surface receptors for extracellular matrix components, VLA-2 belongs to the integrin superfamily (26, 49). Three subfamilies of that superfamily that are defined for humans are (a) the six (or more) VLA proteins (16, 23); (b) the leukocyte adhesion molecules, LFA-1, Mac-1, and p150,95 (56); and (c) the cytoadhesins, which include the vitronectin receptor and platelet gpIIb/IIIa (13). Within each
family, the member heterodimers are each composed of a unique α subunit associated with a common β subunit. Analyses of human cDNA clones for the β subunits of each subfamily (called β1, β2, and β3, respectively) have revealed that they are 44–47% similar (2, 12, 28, 33, 62), suggesting a common evolutionary origin. The evolutionary conservation of β, is emphasized by the homology (82–86%) maintained between βs from widely diverging species, such as human, chicken, and frog (9), and 45% homology between human βI and a β-like structure from Drosophila (36). Also, complete sequencing of several integral α subunits—including those from a fibronectin receptor (αc) (2, 11), the vitronectin receptor (58), platelet gpIIb/IIIa (11, 45), Mac-1 (3, 8, 46), p50,95 (7), and the Drosophila FS2 antigen (6)—have revealed 20–60% similarity between any pair. Some of these integral structures are receptors for ligands containing the amino acid signal sequence Arg-Gly-Asp (RGD) or a closely related sequence (49). Although NH2-terminal amino acid sequencing has suggested ~40% shared residues among six different VLA α subunits (24, 60), complete sequence information is available for only one VLA α subunit (αc) (2, 11). Thus, to further establish patterns of similarity and differences among VLA/integrin sequences and to gain basic information for future studies of structure, function, and regulation, the complete sequence of the VLA α subunit was obtained. Also, because the αc-subunit NH2-terminal sequence predicted from cDNA did not match the previously published “α” NH2-terminal sequence, experiments were carried out to resolve this discrepancy.

Materials and Methods

Purification of VLA-2 from Platelets and NH2-Terminal Sequencing

VLA-2 protein was purified from outdated platelets (from the Dana-Farber Cancer Institute [Boston, MA] blood bank or from the American Red Cross [Dedham, MA]) by lectin-Sepharose and then by 12F1 or A-IAS immunoadfinity chromatography (60). The anti-αc mAb 12F1 (43) and the anti-βI mAb A-IAS (18) were obtained as described. For NH2-terminal amino acid microsequencing of the αc subunit, the αc subunit was first separated from the β subunit by SDS-gel electrophoresis, transferred to a polyvinylidene difluoride membrane (Immobilon; Millipore Continental Water Systems, Bedford, MA), stained with Coomassie blue, and destained with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate as substrates. Positive clones from the screening were plaque purified, and then phage DNAs were purified by the plate lysis method (37). The insert was excised from the phage by Eco RI restriction enzyme digestion, the inserts were separated on agarose gels, electroeluted, and subcloned into pBluescript plasmid (Stratagene, La Jolla, CA). A cDNA library made in λgt11 from endothelial cells was the kind gift from Dr. Tucker Collins (Brigham and Women's Hospital, Boston, MA).

DNA Sequencing

The DNA sequences were determined by the dideoxynucleotide chain-termination method of Sanger et al. (50) using adenosine 3'5'-[β-thio]ribophosphate. To facilitate complete sequencing of both cDNA strands, a series of overlapping deletion clones were made in both directions as described (25) by using the Erase-a-base system (Promega Biotech). Other Techniques

Southern blot analysis was carried out as described (37). For Northern blot analysis, 5 µg of each RNA sample was electrophoretically separated on 1% agarose gel in electrophoresis buffer containing formaldehyde, transferred to nylon membrane (Nytran; Schleicher & Schuell) (37), and then probed with a nick-translated 3.4-kb αc-subunit cDNA (in pBluescript) using standard hybridization techniques (37). Western blotting (63) and immunoprecipitation (22) were performed as previously described.

Results and Discussion

Cloning of cDNA with αc-Subunit–Specific Antibody as Probe

Affinity-purified rabbit anti–αc-antiserum was tested by immunoblotting of whole platelet lysate and found to bind specifically to platelet VLA αc subunit (Fig. 1), thus confirming the suitability of the serum for library screening. The affinity-purified antibody was then used for immunoselection of clones from a phage λgt11 expression cDNA library made from human lung fibroblast (IMR-90) since fibroblasts were known to be good source for αc protein (21). After subcloning into plasmid, a representative positive clone (clone 2.38, ~1.2 kb) was directly sequenced and found to have partial homology to known sequences of other α subunits in the integrin superfamily. Subsequently, clone 2.38 was used to probe a human endothelial cell αgt11 library (another good source for αc expression) since that library had longer inserts. Thus, another clone was selected (clone 2.72, ~5.4 kb), completely sequenced, and found to include all of the coding region and
some of the 3' and 5' untranslated regions (Fig. 2). Notably, the sequence of clone 2.38 (from a fibroblast library) was identical to the corresponding region in clone 2.72 (from an endothelial cell library).

Comparison of Clone 2.72 cDNA Sequence with α2-Subunit NH2-terminal Protein Sequence

Surprisingly, the previously published α2 NH2-terminal sequence (YNVGLPEAKIFS) only partly resembled the α2 NH2-terminal sequence YNVGLPEAKIFSGPS encoded by cDNA (Fig. 3 C), with homology in only 5 of the 14 positions. To resolve this discrepancy, additional NH2-terminal amino acid sequencing was carried out. Using mAb 12F1-Sepharose, VLA-2 material was purified either from platelets or placenta. After preparative SDS-PAGE, highly purified α2 subunit from either source yielded an NH2-terminal sequence YNVGLPEAKIFS... sequence, that protein merits the designation as the authentic α2. It remains to be seen if the recently described multiple forms of platelet gpIa (5) bear any relation to the two distinct NH2-terminal sequences described here.

Northern Blotting Analysis

The distribution of mRNA for the α2 subunit was studied by Northern blotting with cDNA clone 2.72 as the probe. A single band at ~8 kb was detected in fibroblast RNA, whereas little or no signal at the same position was obtained in HSB or Molt-4 T cell lines (Fig. 4). These results are consistent with the known cell surface expression of VLA-2 on these cells (21, 22). Hybridization of the same blot with a cDNA probe for the human actin gene gave comparable signals in all lanes. Since the RNA size (8 kb) was somewhat larger than the cDNA clone (5.4 kb) and since no poly A tail is present (Fig. 2), it is assumed that the 3' untranslated region (and perhaps also the 5' end) is incomplete.

Authenticity of the α2 Clone

Despite the unexpected NH2-terminal sequence results, the α2 clone obtained is authentic because (a) the cDNA was selected using antibodies specific for the α2 subunit; (b) the NH2 terminus of the predicted sequence was identical to that directly determined from purified α2-subunit protein; (c) the mRNA distribution agrees with that of the mature protein; (d) the size of the predicted protein closely agrees with the experimental value (see below); (e) the predicted sequence has several features characteristic of other integrin α subunits (see below); and (f) native α2 protein could be readily immunoprecipitated by antisera prepared against a synthetic COOH-terminal peptide including 21 amino acids deduced from the α2 cDNA sequence (Fig. 5).

As shown in Fig. 5 A, rabbit serum directed against an α2 COOH-terminal synthetic peptide (predicted from cDNA sequence) recognized an αβ complex (lane c) from the colon carcinoma cell line CCL-228 that closely resembled VLA-2 (lane b). Prior removal of all material seen by the rabbit serum (lane f) resulted in the simultaneous removal of VLA-2 (lane e), but only partially diminished total VLA as seen by mAb A-1A5 (cf. lanes a and d). Also, anti-α2 COOH-terminal peptide sera specifically immunoblotted α2 purified from platelets using either the mAb A-1A5 (Fig. 5 B, lane a) or 12F1 (lane b). In comparison, serum from a rabbit immunized with isolated α2 protein (before anti-α2 antibodies were purified) recognized mostly α2 (but also β1) in preparations obtained from platelets using A-1A5 (lane c) or 12F1 (lane d), whereas a negative control serum did not blot any detectable purified platelet protein (lanes e and f).

Amino Acid Sequence of the α2 Subunit

Translation of the cDNA sequence of clone 2.72 (Fig. 2) yielded coding sequences of 3,543 bp (encoding 1,181 amino acids) between the 3' and 5' untranslated portions of ~50 bp and 1,800 bp, respectively. Preceding the NH2-terminal sequence of the mature protein (YNVGLPE... is a translational start site (30) that codes for a methionine followed by 29 amino acids, fulfilling the requirements for a signal peptide (64). Thus, the open reading frame shown in Fig. 2 encodes a mature protein of 1,152 amino acids predicted to be...
Figure 2. Complete nucleotide sequence of an α2-subunit cDNA clone and deduced amino acid sequence. The deduced NH2-terminal amino acid sequence (YNVGL...), which matches the NH2-terminal amino acid sequence from purified α2 protein, is underlined; the probable transmembrane domain is also underlined. The 191-amino acid I-domain, which is not found in other β or β3 integrins, is contained in the large box. Three potential divalent cation-binding domains are indicated by small boxes, and possible N-glycosylation sites are marked with asterisks.
126,000 M. The addition of 10 potential N-glycosylation sequences (Asn-Xaa-Ser/Thr, average 2,500 M) to the core protein would result in an estimated molecular mass of 151,000 D. That value is close to the 155,000-160,000 M, estimated from α2-subunit migration on SDS-polyacrylamide gels.

Analysis of the NH2-terminal portion of the sequence revealed the presence of seven homologous repeating domains (Fig. 6). These domains contain 28-41 amino acids and are 20-30% similar to each other. Also, these domains are spaced 23-32 amino acids apart, except that there is a large additionally inserted "I-domain" of 191 amino acids (see below) between repeating domains II and III.

The repeated domains V, VI, and VII each contain sequences of DxD(N)/DxDGxxD (Fig. 2, small boxes, and Fig. 6, underline) that are somewhat similar to the EF-hand consensus metal-binding domains of a number of calcium- and magnesium-binding proteins, including calmodulin, troponin C, parvalbumin (59), thrombospondin (34), myosin light chain (47), and galactose-binding protein (65). These potential divalent cation-binding sites in α2 are located in a region (between amino acids 470 and 627) devoid of cysteine residues and N-glycosylation sites. The presence of divalent cation-binding sites in the α2 subunit is consistent with divalent cation requirements for the function of VLA-2 as a human collagen receptor (51, 52).

Comparison of α2-Subunit Sequence with Other Integrin α Chains

The alignment of the α2-subunit sequence with the α-chain sequences of human fibronectin receptor (VLA-5), vitronectin receptor, gpIIb/IIIa, Mac-1, and p150,95 shows that several structural characteristics are shared (Fig. 7). For example, of the 20 α2-cysteine residues, 17 are conserved in at least three of the other sequences and 14 are conserved in all six α-subunit sequences. Also, there is 32-45% conservation in the 22-amino acid transmembrane region and 100% conservation of the GFPKR sequence on the cytoplasmic side of transmembrane domain. Additional striking similarities are evident in the region of the α2 homologous repeats in the NH2-terminal half of the molecule. Like α2, each of the other integrin α subunits has also been noted to have seven homologous repeats, with three or four potential divalent cation sites within repeats IV-VII (2, 3, 7, 8, 11, 45, 46, 58). In these repeat regions, the average similarity between α2 and the other α subunits ranged from 30-38% (repeats I, II, III, and VII) to 46-52% (repeats IV, V, and VI). The overall similarity between α2 and the other integrin α subunits is 18-25%, or 22-24% if the I-domain (see below) is excluded. This is in contrast to the higher degree of identity (~45%) between different human integrin β chains (2, 12, 28, 33, 62).

Comparison of the α2-Subunit I-Domain with Similar Domains in Other Proteins

In studies of Mac-1 (3, 8, 46), p150,95 (7), and LFA-1 (32), an inserted domain of ~200 amino acids was found that is not present in the α2, α3, or IIb chains. In those studies, the inserted I-domain (32) (formerly called the L-domain) was noted to resemble the von Willebrand factor (vWF) A1, A2, and A3 domains, cartilage matrix protein (CMP)-l and CMP-2 domains, and domains in complement factors B and C2. Now an I-domain has also been discovered in the α2 sequence. The sequence of the α2 I-domain is aligned with other related domains as shown in Fig. 8, and percent similarity calculations from those data were used in the construction of the linkage tree shown in Fig. 9. The α2 I-domain sequence (allowing for conservative amino acid substitutions) most resembled I-domains from p150 (48%) and Mac-1 (45%) and also resembled the CMP-1 (46%) and CMP-2 (44%) domains. Less similarity was seen with vWF domains.

1. Abbreviations used in this paper: CMP, cartilage matrix protein; vWF, von Willebrand factor.
Figure 6. Alignment of seven homologous repeated domains in the α2 subunit. Residues that are the same in adjacent sequences (including conservative substitutions) are marked with vertical connecting lines. Conservative substitutions are I, V, L; Y, W, F; A, G; S, T; R, K; D, E; N, Q.

Putative α2 divalent cation site: DxDxDGxxD
Consensus divalent cation site from the literature (59)

Grouping of Integrin α Subunits into Subsets

From sequence analysis, together with earlier data, it is clear that there are several structural features that distinguish integrin α subunits containing I-domains from those that do not (Table I). It has previously been noted that the mature forms of integrin α subunits α5, αv, and lib each contain a cleaved peptide fragment (the COOH-terminal 15% of the protein) that is attached to the rest of the subunit by a disulfide linkage. Consistent with this, dibasic protease cleavage sites have been noted in the appropriate locations in each of those sequences (2, 35, 58). Notably (Table I), the subunits with I-domains (α2, αM, and p150) do not undergo protease cleavage, whereas the cleaved subunits do not have I-domains. In this regard, in the region where protease cleavage occurs for α5, αv, and lib, the three I-domain subunits have gaps of 20 or more amino acids and no dibasic amino acids (see Fig. 7, α2 position 1,018).

mAbs 12F1 and A-IA5 were used to purify either VLA-2 or total VLA protein from platelets (see Materials and Methods). Then aliquots of purified proteins were separated by SDS-PAGE, blotted onto nitrocellulose, and probed as described (63) using rabbit anti-intact α2 plus β1 (lanes a and b), anti-COOH-terminal synthetic peptide (lanes c and d), or control rabbit serum (lanes e and f).
Figure 7. Alignment of the α-chain protein sequences of VLA-2 with other integrin α subunits. The α2 sequence is compared to human integrin α-subunit sequences from fibronectin receptor (2, 11), gpIIb (43), vitronectin receptor (38), Mac-1 (3, 8), and p50 (7). The 191-amino acid I-domain present in α2 (residues 159-349), as well as corresponding regions in p50 and Mac-1, have been omitted from this figure (see Fig. 2). Residues in other sequences identical to those in α2 are boxed. In four places, short gaps appear in all six sequences. These gaps allow for maximized future alignment with VLA α2 sequence (61a).
Comparison of the α2 I-domain with similar domains in other proteins. CMP-1 and CMP-2 domains (I), I-domains from the α subunits of Mac-1 and p150,95 (3, 7, 8), vWF domains A1, A2, and A3 (54), and domains in complement factors B (40) and C2 (4) are compared to the I-domain from α2 (amino acid residues 140–349). Although the actual inserted I-domain sequence in α2 is 191 amino acids (residues 159–349), additional α2 amino acids (residues 140–158 and 350–351) are included to accommodate similarities with other protein domains that extend beyond the 191-amino acid insert. Residues that are identical in both the α2 sequence and other sequences are boxed.

Another feature that differentiates between these sets of α subunits is the number of potential divalent cation sites. The cleaved subunits have four such sites (located in repeat regions IV, V, VI, and VII), whereas the I-domain subunits have only three sites (located in repeats V, VI, and VII).

Not only are there differences in the number of divalent cation sites, but evidence also suggests that the two groups of integrin α subunits may each have their own characteristic intrachain disulfide loops. Analysis of cysteines (Fig. 7) reveals that the majority (14 cysteines) are conserved throughout all six integrin α-subunit sequences. However (Table I),

Figure 9. Linkages between α2-subunit I-domains and similar domains in other proteins. Based on the analysis in Fig. 8, percent similarities were calculated (allowing for conserved amino acids as defined in Fig. 6), and then linkage trees were determined by standard procedures using the average linkage values (55). Similar determinations, not allowing for conserved amino acids (based on percent identical amino acids only), yielded similar results except that α2 clustered with CMP-1 and CMP-2 instead of α2 and p150.
cysteines at positions 110 and 467 in the α2 sequence are conserved only among α2, αM, and p150. Conversely, at α2 positions 350 and 645, cysteines are absent from α2, αM, and p150, but present in all of the cleaved subunits. Thus, it might be predicted that each group of subunits (cleaved or with I-domains) may have a characteristic intrachain disulfide loop that distinguishes one group from the other. Although the newly derived sequence for the α2 chain of LFA-1 (32) is not shown here, that sequence has an I-domain and fits the pattern shown in Table I with respect to potential divalent cation sites and conserved cysteine residues. Structural information for the Drosophila PS2 α subunit (6) is also included in Table I. Although the source is phylogenically far removed from humans, the properties of that α subunit are fully consistent with the properties of the other cleaved α subunits.

In addition to the "group-specific" cysteine residues mentioned in Table I, there are many other amino acids at positions throughout the aligned sequences that distinguish I-domain integrins from cleaved integrins. In fact, when the aligned sequences (Fig. 7) were searched by computer to find all positions in which exactly three sequences had identical amino acids, this was found to occur most often (at 93 positions) among the set α2, IIB, and αv and also occurred often (at 64 positions) among the set α2, p50, and αM (Table II, part A). Thus, the I-domain subunits could again be distinguished from the cleaved subunits, this time based on exclusively shared amino acids distributed throughout the coding region. Other sets of three subunits shared amino acids less frequently (at ≤ 24 positions) and had no obvious structural similarities. Thus the results from the data in Table II, part A, support the conclusions drawn from Table I.

Because the α2 and αv subunits both associate with the same β subunit (βi), it might be assumed that these two sequences would show exclusive amino acid identity at several positions. However, when a computer search was performed (Table II, part B), positions with amino acid identity between only α2 and αv were not very prevalent (seventh in the list of subunit pairs). In fact, α2 was more likely to share residues with IIB or αv than with αv, and αv was more likely to share residues with αv or IIB than with αv. Thus, despite their common β-subunit association, the α2 and αv subunits have relatively few amino acids common to only those sequences, making it difficult to predict potential α-subunit sites that may be specific for βi interaction.

Summary

Cloning and sequencing of the α2 subunit of VLA-2 has revealed its complete primary structure, and confirmed its relatedness to other integrin α subunits. The presence of an α2 I-domain, which possibly participates in VLA-2 adhesion to collagen has been established, and comparative studies of the α2 sequence have revealed that subunits containing I-domains have a number of additional structural features that distinguish them from cleaved integrin α subunits. Also, it is clear that β-subunit use does not accurately predict the relative degree of similarity between integrin α subunits. For future studies, the results shown here will provide the basic information and materials needed for (a) additional structural comparisons with other integrins; (b) analysis of VLA-2 function through expression and mutagenesis; and (c) analysis of patient samples to measure deficient or mutated α2.

We thank Carol Crouse for assistance with immunoprecipitations and immunoblotting and Donald Faulkner and Temple Smith (Molecular Biology Computer Research Resource, Dana-Farber Cancer Institute, Boston, MA) for assistance with sequence comparisons and alignments.

This work was supported by National Institutes of Health grant GM 38903.

Received for publication 14 December 1988 and in revised form 6 March 1989.

References

1. Arnaout, M. A., S. K. Gupta, M. W. Pierce, and D. G. Tenen. 1988. Structural features of cartilage matrix protein deduced from cDNA. Proc. Natl. Acad. Sci. USA. 84:464-468.
2. Argraves, W. S., S. Suzuki, H. Arai, K. Thompson, M. D. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the human fibronectin receptor. J. Cell Biol. 105:1183-1190.
3. Arnaout, M. A., S. K. Gupta, M. W. Pierce, and D. G. Tenen. 1988. Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mol (complement receptor type 3). J. Cell Biol. 106:2153-2158.
27. Kehrel, B., L. Balleisen, R. Kokott, R. Mesters, W. Stenzinger, K. J. Hynes, R. O. 1987. Integrins: a family of cell surface receptors.
26. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates target and membrane glycoprotein Ia in platelets with defective collagen-
25. Hemler, M. E. 1988. Adhesive protein receptors on hematopoietic cells.
24. Hemler, M. E., L. T. Kishimoto, L. J. Miller, and T. A. Springer. 1987. cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150,95. EMBO (Eur. Mol. Biol. Organ.) J. 6:4023-4028.
23. Hemler, M. E., L. T. Kishimoto, L. J. Miller, and T. A. Springer. 1988. The human leukocyte adhesion glycoprotein Mac-1 (Complement receptor type 3, CD11b) subunit: cloning, primary structure, and relationship to the integrins, with Villebrand factor and factor B. J. Biol. Chem. 263:481-500.
22. DeSimone, D. W., and R. O. Hynes. 1988. Xenopus laevis integrins. J. Biol. Chem. 263:5333-5340.
21. Fingereman, G. E. and M. E. Hemler. 1988. Regulation of proteins in the VLA cell surface adhesion family: influence of cell growth conditions on VLA-1, VLA-2 and VLA-3 expression. Exp. Cell Res. 177:132-142.
20. Fitzgerald, L. A., M. Ponzc, B. Steiner, S. C. Rall, Jr., S. B. Bennett, and D. R. Phillips. 1987. Comparison of cDNA-derived protein sequences of human VLA-1 and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochemistry. 26:813-816.
19. Fitzgerald, L. A., B. Steiner, S. C. Rall, Jr., S. Lo, and D. R. Phillips. 1987. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone: identity with platelet glycoprotein IIIa and similarity to the VLA integrin. J. Biol. Chem. 262:3926-3934.
18. Ginsberg, M. H., J. C. Loftus, and E. F. Plow. 1988. Cytoadhesins, integrins and platelets. Thromb. Hemostasia. 59:1-6.
17. Gullberg, D., L. Terracio, and K. Rubin. 1988. Membrane glycoproteins involved in hematocyte adhesion to collagen type I. Exp. Cell Res. 175:388-395.
16. Heino, J., R. A. Ignatz, M. E. Hemler, C. Crouse, and J. Massagué. 1987. Regulation of cell adhesion receptors by TGF-beta: concomitant regulation of integrins that share a common B1 subunit. J. Biol. Chem. 262:380-388.
15. Hemler, M. E. 1986. Adhesive protein receptors on hematopoietic cells. Immunol. Today. 41:109-113.
14. Hemler, M. E., J. M. Heino, and J. G. Jacobson. 1987. Cell matrix adhesion-related proteins VLA-1 and VLA-2: regulation of expression on T cells. J. Immunol. 138:2941-2948.
13. Hemler, M. E., C. F. Ware, and J. L. Strominger. 1983. Characterization of a novel differentiation antigen complex recognized by a monoclonal antibody (A-1A5): unique activation-specific molecular forms on stimulated T cells. J. Immunol. 131:334-340.
12. Hemler, M. E., J. G. Jacobson, and J. L. Strominger. 1985. Biochemical characterization of the VLA-1 and VLA-2 cell surface heterodimers on activated T cells. J. Biol. Chem. 260:15246-15252.
11. Hemler, M. E., J. G. Jacobson, M. B. Brenner, D. Mann, and J. L. Strominger. 1985. VLA-1: a T cell surface antigen which defines a novel integrin-related family of cell adhesion molecules. Eur. J. Immunol. 15:502-509.
10. Hemler, M. E., C. Huang, T. Takada, L. Schwarz, J. L. Strominger, and M. L. Clabcy. 1987. Characterization of the cell surface heterodimer VLA-4 and related peptides. J. Biol. Chem. 262:11478-11485.
9. Hemler, M. E., C. Huang, and L. L. Schwartz. 1987. VLA protein family: characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J. Biol. Chem. 262:3300-3309.
8. Hemler, M. E., C. Crouse, Y. Takada, and A. Sonnenberg. 1988. Multiple very late antigen (VLA) heterodimers on platelets: evidence for distinct VLA-2, VLA-5 (fibronectin receptor) and VLA-6 structures. J. Biol. Chem. 263:7660-7665.
7. Hemler, M. E., C. Crouse, and A. Sonnenberg. 1989. Association of the VLA alpha-6 subunit with a novel protein: a possible alternative to the common VLA beta-1 subunit on certain cell lines. J. Biol. Chem. 264:6529-6535.
6. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates target and membrane glycoprotein Ia in platelets with defective collagen-induced aggregation and spontaneous loss of disorder. Blood. 71:1074-1078.
5. Kishimoto, T. K., K. O'Connor, A. Lee, T. M. Roberts, and T. A. Springer. 1987. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel superfamily of proteins. Cell. 48:549-554.
4. Kishimoto, T., K. O'Connor, A. Lee, T. M. Roberts, and T. A. Springer. 1987. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel superfamily of proteins. Cell. 48:681-690.
3. Kogawa, T., and T. Aika. 1976. Enzyme coupled immunoassay of insulin using a novel coupling reagent. J. Biochem. (Tokyo). 79:233-236.
2. Kogawa, T., and N. Brown, and M. Wilcox. 1988. The Drosophila PS2 antigen is an invertebrate integrin which like the fibronectin receptor becomes localized to muscle attachments. Cell. 51:929-940.
1. Bentley, D. R. 1986. Primary structure of human complement component C2: homology to two unrelated protein families. Biochem. J. 239:339-345.

406
57. Sugiyama, Y., F. A. Chen, H. Takita, and R. B. Bankert. 1988. Selective growth inhibition of human lung cancer cell lines bearing a surface glycoprotein gp160 by 125I-labeled anti-gp160 monoclonal antibody 1. *Cancer Res.* 48:2768-2773.

58. Suzuki, S., W. S. Argarves, H. Arai, L. R. Languino, M. Pierschbacher, and E. Ruoslahti. 1987. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. *J. Biol. Chem.* 262:14080-14085.

59. Szébenyi, D. M. E., S. K. Obendorf, and K. Moffat. 1981. Structure of vitamin D-dependent calcium-binding protein from bovine intestine. *Nature (Lond.)*. 294:327-332.

60. Takada, Y., J. L. Strominger, and M. E. Hemler. 1987. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. *Proc. Natl. Acad. Sci. USA.* 84:3239-3243.

61. Takada, Y., E. A. Wayner, W. G. Carter, and M. E. Hemler. 1988. The extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. *J. Cell. Biochem.* 37:385-393.

61a. Takada, Y., M. J. Elices, C. Crouse, and M. E. Hemler. 1989. The primary structure of the α4 subunit of VLA-4: homology to the other integrins and a possible cell–cell adhesion function. *EMBO (Eur. Mol. Biol. Organ.) J.* In press.

62. Tamkun, J. W., D. W. DeSimone, D. Fonda, R. S. Patel, C. Buck, A. F. Horwitz, and R. O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. *Cell.* 46:271-282.

63. Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc. Natl. Acad. Sci. USA.* 76:4350-4351.

64. von Heijne, G. 1984. How signal sequences maintain cleavage specificity. *J. Mol. Biol.* 173:243-251.

65. Vyas, N. K., M. N. Vyas, and F. A. Quiocho. 1987. A novel calcium bonding site in the galactose-binding protein of bacterial transport and chemotaxis. *Nature (Lond.)*. 327:635-640.

66. Wayner, E. A., and W. G. Carter. 1987. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. *J. Cell Biol.* 105:1873-1884.

67. Young, R. A., and R. W. Davis. 1983. Yeast RNA Polymerase II Genes: isolation with antibody probes. *Science (Wash. DC)*. 222:778-782.

68. Zylstra, S., F. A. Chen, S. K. Ghosh, E. A. Repasky, U. Rao, H. Takita, and R. B. Bankert. 1986. Membrane-associated glycoprotein (gp160) identified on human lung tumor by a monoclonal antibody. *Cancer Res.* 46:6446-6451.