Computing “Small” 1–Homological Models for Commutative Differential Graded Algebras*

CHATA group†
Dept. of Applied Math.,
University of Seville, Spain,
real@us.es

Abstract

We use homological perturbation machinery specific for the algebra category to give an algorithm for computing the differential structure of a small 1–homological model for commutative differential graded algebras (briefly, CDGAs). The complexity of the procedure is studied and a computer package in Mathematica is described for determining such models.

1 Introduction

The description of efficient algorithms for homological computation can be considered to be a very important topic in Homological Algebra. These algorithms can be used mainly in the resolution of problems in Algebraic Topology; but this subject also impinges directly on the development of diverse areas such as Combinatorial Designs, Code Theory, Concurrency Theory or Cohomological Physics.

Starting from a finite CDGA A, we establish an algorithm for obtaining an “economical” 1–homological model hBA, in the sense that the number of algebra generators of hBA is less than that of the reduced bar construction $\tilde{B}(A)$. In order to get the 1–homology of A, we would need to compute the homology groups of the model hBA.

*Proceedings of the 3rd Workshop on Computer Algebra and Scientific Computing CASC’00, Springer–Verlag (2000), 87–100.
†Álvarez V., Armario J.A., Frau M.D., González–Díaz R., Jiménez M.J., Real P. and Silva B. Authors are partially supported by the PAICYT research project FQM–0143 from Junta de Andalucía and the DGES–SEUID research projects PB98–1621–C02–02 from Education and Science Ministry (Spain).
This computation can be reduced to a simple problem of Linear Algebra (see [1] for a complete explanation of this method).

Our main technique is homological perturbation machinery [3, 6, 7]. Homological Perturbation Theory is often used to replace given chain complexes by other smaller, homotopic chain complexes which are more readily computable. An essential notion in this theory is that of contraction. A contraction $c = (f, g, \phi)$ between two differential graded modules (N, d_N) and (M, d_M) is a special homotopy equivalence between both modules such that the corresponding homology groups are isomorphic. The morphisms f, g and ϕ are called projection, inclusion and homotopy of the contraction, respectively.

The Basic Perturbation Lemma is the heart of this theory and states that given a contraction $c = (f, g, \phi)$, and a perturbation δ of d_N (that is, $(d_N + \delta)^2 = 0$), then there exists a new contraction $c_\delta = (f_\delta, g_\delta, \phi_\delta)$ from $(N, d_N + \delta)$ to $(M, d_M + d_\delta)$, satisfying

$$f_\delta = f(1 - \delta \Sigma_c^\delta \phi), \quad g_\delta = \Sigma_c^\delta g, \quad \phi_\delta = \Sigma_c^\delta \phi$$

$$d_\delta = f \delta \Sigma_c^\delta g,$$

(1)

where $\Sigma_c^\delta = \sum_{i \geq 0} (-1)^i (\phi \delta)^i = 1 - \phi \delta + \phi \delta \phi \delta - \cdots + (-1)^i (\phi \delta)^i + \cdots$.

It is necessary to emphasize that a nilpotent condition for the composition $\delta \phi$ is required for guaranteeing the finiteness of the formulas.

The basic idea we use in this paper is the establishment (via composition, tensor product or perturbation of contractions) of an explicit contraction from an initial differential graded module N to a free differential graded module M of finite type, so that the homology of N is computable from that of M.

This “modus operandi” has been used by the authors in previous works [1, 8, 3].

Working in the context of CDGAs, Homological Perturbation Theory immediately supplies a general algorithm computing the 1–homology of these objects at graded module level. Nevertheless, this procedure, already presented by Lambe in [12], bears, in general, high computational charges and actually restricts its application to the low dimensional homological calculus.

This algorithm is refined, taking advantage of the multiplicative structures, in [2]. More precisely, the Semifull Algebra Perturbation Lemma [13, Sec. 4] is used for designing the algorithm AlgL1. The input of this method is a CDGA A given in the form of a “twisted” tensor product of n exterior and polynomial algebras, and the output is a contraction c_δ (produced via perturbation) from the reduced bar construction $\bar{B}(A)$ to a smaller differential graded algebra hBA, which is free and of finite type as a graded module. In this case, we say that the pair $\{c_\delta, hBA\}$ (or, simply, hBA) is a 1–homological
model of A. Taking advantage of the fact that the differential d_{hBA} of hBA is a derivation, that is, a morphism compatible with the product of the 1–homological model, it is only necessary to know the value of this morphism applied to the generators of the model (let us observe that there are n algebra generators). This implies a substantial improvement in the computation of the differential on the small model hBA.

In spite of this improvement, the computational cost for determining the morphism d_{hBA} applied to an algebra generator of hBA is enormous, since the differential d_{hBA} follows the formula (1) and the homotopy ϕ of c has an essentially exponential nature not only in time but also in space.

We develop some techniques, which comprise what we call Inversion Theory and which first appears in [13]. In consequence, we refine the formula for ϕ, which is involved in the description of d_{hBA}. This study is based on the observation that the the projection f applied to certain elements (those “with inversions”) is always null. It follows that a not insignificant number of terms in the formula of the morphism ϕ can be eliminated in the composition $f\delta(\phi\delta)g$, which appears in the formula (1) of d_δ. In such a way, we derive an upgraded algorithm Alg2.

The article is organized as follows: Notation and terminology are introduced in Section 2. In Section 3 the algorithm Alg1, which was described in [3] is recalled. Our contribution starts in Section 4 which is devoted to explaining Inversion Theory and describing the algorithm Alg2. An analysis of the complexity of Alg1 and Alg2 for computing the differential structure of the small 1–homological model hBA is carried out in Section 5 and a comparison between both algorithms is given. Finally, in Section 6 we also give several examples illustrating the implementation of Alg2 carried out using Mathematica 3.0.

2 Preliminaries

Although relevant notions of Homological Algebra are explained through the exposition of this paper, most common concepts are not explicitly given (they can be found, for instance, in [10] or [15]).

Let Λ be a commutative ring with the non zero unit, which will be considered to be the ground ring. A DGA–module (M, d_M, ξ_M, η_M) is a module endowed with:

- A graduation, that is, $M = \oplus_{n \in \mathbb{N}} M_n$.
- A differential, $d_M : M \rightarrow M$, which decreases the degree by one and satisfies $d_M^2 = 0$.
- An augmentation, $\xi_M : M \rightarrow \Lambda$, with $\xi_M d_1 = 0$.
• A coaugmentation, \(\eta : \Lambda \to M \), with \(\xi_M \eta_M = 1_\Lambda \).

We will respect Koszul conventions. The homology of a differential graded module \(M \), is a graded module \(H_*(M) = \text{Ker} \ d_n/\text{Im} \ d_{n+1} \). We are specially interested on CDGAs, \((A, d_A, *, A, \xi_A, \eta_A)\) which are differential graded modules endowed with a product, \(*_A\), that is commutative in a graded sense. A morphism \(\delta : A \to A \) which decreases the degree by one, is a derivation if \(\delta * A = *_A(1 \otimes \delta + \delta \otimes 1) \).

Three particular algebras are of special interest in the development of this paper: exterior, polynomial and divided power algebras. Let \(n \) be a fixed non-negative integer.

• The exterior algebra \(E(x, 2n+1) \) is the graded algebra with generators 1 and \(x \) of degrees 0 and \(2n+1 \), respectively, and the trivial product, that is, \(x \cdot x = 0 \) and \(x \cdot 1 = x \).

• The polynomial algebra \(P(y, 2n) \) consists in the graded algebra with generators 1 of degree 0 and \(y \) of degree \(2n \). The product is the usual one in polynomials, i.e.: \(y^i \cdot y^j = y^{i+j} \), for non-negative integers \(i \) and \(j \).

• Finally, the divided power algebra \(\Gamma(y, 2n) \) is the graded algebra with generators 1 and \(y \) of degree \(2n \). The product is defined by the rules \(y^{(i)} \cdot y^{(j)} = \left(\begin{array}{c} i+j \\ i \end{array} \right) y^{(i+j)} \), \(i \) and \(j \) being non-negative integers.

Each one of these three types of algebras can be considered as a CDGA with the trivial differential.

Now, we shall recall a standard algebraic tool which allows us to preserve the product structure of the initial CDGA through the procedure of homological computation. The reduced bar construction \([10]\) associated to a CDGA \(A \) is defined as the differential graded module \(\bar{B}(A) := \Lambda \oplus \text{Ker} \ \xi_A \oplus (\text{Ker} \ \xi_A \otimes \text{Ker} \ \xi_A) \oplus \cdots \oplus (\text{Ker} \ \xi_A \otimes \cdots \otimes \text{Ker} \ \xi_A) \oplus \cdots \).

An element from \(\bar{B}(A) \) is denoted by \(\bar{a} = [a_1] \cdots [a_n] \). There is a tensor graduation \(| |_t \) given by \(|[a_1] \cdots [a_n]|_t = \sum_{i=1}^n |a_i| \), as well as a simplicial graduation \(| |_s \), which is defined by \(|\bar{a}|_s = |[a_1] \cdots [a_n]|_s = n \). The total degree of \(\bar{a} \) is given by \(|\bar{a}| = |\bar{a}|_t + |\bar{a}|_s \).

The total differential is given by the sum of the tensor and simplicial differentials. The tensor differential is defined by:

\[
d_t[a_1] \cdots [a_n] = - \sum_{i=1}^n (-1)^{|a_1| \cdots |a_{i-1}|} |a_1| \cdots |d_A a_i| \cdots |a_n|.
\]
The simplicial differential acts by cutting down the simplicial degree by using the product given in A.

When the algebra A is commutative, it is possible to define a multiplicative structure on $\bar{B}(A)$ (via an operator called the shuffle product), so that the reduced bar construction also becomes a CDGA.

Given two non-negative integers p and q, a (p, q)–shuffle is defined as a permutation π of the set $\{0, \ldots, p + q - 1\}$, such that $\pi(i) < \pi(j)$ when $0 \leq i < j \leq p - 1$ or $p \leq i < j \leq p + q - 1$ is the case.

Let us observe that there are $\left(\begin{array}{c} p + q \\ p \end{array} \right)$ different (p, q)–shuffles.

So, given a CDGA A, the shuffle product $\star : \bar{B}(A) \otimes \bar{B}(A) \longrightarrow \bar{B}(A)$, is defined by:

$$[a_1| \cdots |a_p] \star [b_1| \cdots |b_q] = \sum_{\pi \in \{(p, q) - \text{shuffles}\}} (-1)^{\varepsilon(\pi, a, b)} [c_{\pi(0)}| \cdots |c_{\pi(p+q-1)}];$$

where $(c_0, \ldots, c_{p-1}, c_p, \ldots, c_{p+q-1}) = (a_1, \ldots, a_p, b_1, \ldots, b_q)$ and

$$\varepsilon(\pi, a, b) = \sum_{\pi(i) > \pi(p+j)} ||a_i||||b_j||.$$

Let n be a non–negative integer. The n–homology of a CDGA A (see [10]) consists in the homology groups of the iterated reduced bar construction $\bar{B}^n(A) = \bar{B}(\bar{B}^{n-1}(A))$, being $\bar{B}^0(A) = A$.

Let $\{A_i\}_{i \in I}$ be a set of CDGAs. A twisted tensor product $\tilde{\otimes}_i A_i$ is a CDGA satisfying the following conditions:

i) $\tilde{\otimes}_i A_i$ coincides with the tensor product $\otimes_i A_i$ as a graded algebra.

ii) The differential operator consists in the sum of the differential of the banal tensor product and a derivation ρ.

A contraction $c : \{N, M, f, g, \phi\}$, also denoted by $(f, g, \phi) : N \xrightarrow{\cong} M$, from a differential graded module (N, d_N) to a differential graded module (M, d_M) consists in a homotopy equivalence determined by three morphisms f, g and ϕ; $f : N_* \rightarrow M_*$ (projection) and $g : M_* \rightarrow N_*$ (inclusion) being two differential graded module morphisms and $\phi : N_* \rightarrow N_{*+1}$ a homotopy operator. Moreover, these data are required to satisfy the following rules:

$$fg = 1_M, \quad \phi d_N + d_N \phi + gf = 1_N, \quad f \phi = 0, \quad \phi g = 0, \quad \phi \phi = 0.$$
There are two basic operations between contractions which give place to new contractions: tensor product and composition of contractions.

In this paper we use a particular type of contraction between CDGAs. Given two CDGAs A and A', a semifull algebra contraction $(f, g, \phi) : A \Rightarrow A'$ consists of an inclusion g that is a morphism of CDGAs, a quasi–algebra projection f and a quasi–algebra homotopy ϕ. We recall that

1. The projection f is said to be a quasi–algebra projection whenever the following conditions hold:

 \[
 f(\phi \ast_A \phi) = 0, \quad f(\phi \ast_A g) = 0, \quad f(g \ast_A \phi) = 0.
 \]

2. The homotopy operator ϕ is said to be a quasi–algebra homotopy if

 \[
 \phi(\phi \ast_A \phi) = 0, \quad \phi(\phi \ast_A g) = 0, \quad \phi(g \ast_A \phi) = 0.
 \]

The class of all semifull algebra contractions is closed under composition and tensor product of contractions. Moreover, this class is closed under perturbation.

Theorem 2.1 [13]

Let $c : \{N, M, f, g, \phi\}$ be a semifull algebra contraction and $\delta : N \rightarrow N$ be a perturbation–derivation of d_N. Then, the perturbed contraction c_δ, is a new semifull algebra contraction.

3 Computability of the 1–Homology of CDGAs. First Algorithm

Here we recall the algorithm described in [3] for the computation of a 1–homological model of a CDGA.

It is commonly known that every CDGA A “factors”, up to homotopy equivalence, into a tensor product of exterior and polynomial algebras endowed with a differential–derivation; in the sense that there exists a homomorphism connecting both structures, which induces an isomorphism in homology.

In fact, our input is a twisted tensor product of algebras $A = \bigotimes_{i \in I} A_i$ where I denotes a finite set of indices, ρ is a differential–derivation and A_i an exterior or a polynomial algebra, for every i. In our algorithmic approach, we encode A by
1. a sequence of non-negative integers \(n_1 \leq n_2 \leq \cdots \leq n_k \), such that \(n_i \) represents the degree of the algebra generator \(x_i \) of \(A_i \);

2. a \(k \)-vector \(\tilde{v} = (v_1, v_2, \ldots, v_k) \), such that \(v_i \) is \(\rho(x_i) \) for all \(i \).

The principal goal is to obtain a “chain” of semifull algebra contractions starting at the reduced bar construction \(\bar{B}(A) \) and ending up at a smaller free (as a module) CDGA. In that way, we determine a 1–homological model for \(A \).

Now, we consider the following three semifull algebra contractions which are used, firstly, to find the structure of a graded module of a 1–homological model for a CDGA:

- The contraction defined in [4, 5] from \(\bar{B}(A \otimes A') \) to \(\bar{B}(A) \otimes \bar{B}(A') \), where \(A \) and \(A' \) are two CDGAs.

\[
C_{\bar{B}\otimes} : \{ \bar{B}(A \otimes A'), \bar{B}(A) \otimes \bar{B}(A'), f_{\bar{B}\otimes}, g_{\bar{B}\otimes}, \phi_{\bar{B}\otimes} \};
\]

\[
- f_{\bar{B}\otimes}[a_1 \otimes a_1'] \cdots [a_n \otimes a_n']
= \sum_{i=0}^{n} \xi_A(a_{i+1} * A \cdots a_n) \xi_A'(a_1' * A' \cdots a_n') [a_1] \cdots [a_i] \otimes [a_i' \cdots [a_n']
\]

\[
- g_{\bar{B}\otimes}([a_1] \cdots [a_n] \otimes [a_1'] \cdots [a_m])
= [a_1 \otimes \theta'] \cdots [a_n \otimes \theta'] \ast [\theta \otimes a_1'] \cdots [\theta \otimes a_n'],
\]

where \(\theta \) and \(\theta' \) are the units in \(A \) and \(A' \) respectively.

- up to sign, \(\phi_{\bar{B}\otimes}([a_1 \otimes a_1'] \cdots [a_n \otimes a_n']) \)

\[
= \sum \pm \xi_A(a_{n-q+1} * A \cdots a_n) [a_1 \otimes a_1'] \cdots [a_{n-1} \otimes a_{n-1}']
\]

\[
\quad [a_n' * A' \cdots a_n' * A'] \cdots [c_{p+q}],
\]

where \(\bar{n} = n - p - q \), \((c_0, \ldots, c_{p+q}) = (a_n, \ldots, a_{n-q}, a_n', \ldots, a_n') \) and the sum is taken over all the \((p + 1, q)\)-shuffles \(\pi \) and \(0 \leq p \leq n - q - 1 \leq n - 1 \).

Let us note that the complexity of \(g_{\bar{B}\otimes} \) and \(\phi_{\bar{B}\otimes} \) is exponential since shuffles are involved in both formulas.

Given a tensor product \(\otimes_{i \in I} A_i \) of CDGAs, a contraction from \(\bar{B}(\otimes_{i \in I} A_i) \) to \(\otimes_{i \in I} \bar{B}(A_i) \) is easily determined by applying \(C_{\bar{B}\otimes} \) several times in a suitable way. This new contraction is also denoted by \(C_{\bar{B}\otimes} \).
• The isomorphism of differential graded algebras (therefore, a contraction)

$$C_{BE} : \{ \tilde{B}(E(u, 2n + 1)), \Gamma(u, 2n + 2), f_{BE}, g_{BE}, 0 \}$$

described in [5], where

$$f_{BE}([u] \cdot \cdots \cdot [u]) = u^{(m)}; \quad g_{BE}([u]^{(m)}) = [u] \cdot \cdots \cdot [u].$$

• The contraction

$$C_{BP} : \{ \tilde{B}(P(v, 2n)), E(v, 2n + 1), f_{BP}, g_{BP}, \phi_{BP} \}$$

stated in [5], where

$$f_{BP}(v^r) = \begin{cases} 0 & \text{if } r \neq 1 \\ v & \text{if } r = 1 \end{cases}, \quad f_{BP}([v^r] \cdots [v^m]) = 0;$$

$$g_{BP}(v) = [v] \quad \text{and} \quad \phi_{BP}([v^r] \cdots [v^m]) = [v|v^{r-1}| \cdots |v^m].$$

Thanks to these three contractions, it is possible to establish, by composition and tensor product of contractions, the following semifull algebra contraction $C = (f, g, \phi)$:

$$\tilde{B}(\otimes_{i \in I} A_i) \Rightarrow \otimes_{i \in I} \tilde{B}(A_i) \Rightarrow \otimes_{i \in I} hBA_i,$$

where hBA_i represents an exterior or a divided power algebra with a generator x_i, depending on whether A_i is a polynomial or an exterior algebra with a generator x_i.

In order to obtain the differential structure of the 1–homological model for the twisted tensor product $\tilde{\otimes}_{i \in I} A_i$, the next step is to perturb C. The perturbation ρ produces a perturbation–derivation δ on the tensor differential of $\tilde{B}(\otimes_{i \in I} A_i)$:

$$\delta([a_1] \cdots [a_n]) = \sum_{i=1}^{n} (-1)^{|a_1| \cdots |a_{i-1}|} [a_1] \cdots [a_{i-1}] [\rho(a_i)] \cdots [a_n].$$

Now, by applying Theorem 2.1, a new semifull algebra contraction $(f_\delta, g_\delta, \phi_\delta)$ is constructed:

$$\tilde{B}(\tilde{\otimes}_{i \in I} A_i) \Rightarrow (\otimes_{i \in I} hBA_i, d_\delta),$$

where the differential d_δ is determined by the perturbation procedure (Basic Perturbation Lemma). That means that $hBA = \otimes_{i \in I} (hBA_i, d_\delta)$ is a 1–homological model of $A = \tilde{\otimes}_{i \in I} A_i$. Let us emphasize that the Basic Perturbation Lemma provides finite formulas. Indeed, this is a consequence of two facts: the perturbation δ does not change the simplicial degree and ϕ increases this degree.
Procedure 1 Algorithm Alg1.

\textbf{Input:} A finite CDGA $A: ((n_1, \ldots, n_k), (v_1, \ldots, v_k))$.

\textbf{Output:} $((n_1 + 1, \ldots, n_k + 1), (w_1, \ldots, w_k))$

a 1–homological model of the CDGA $\otimes_{i=1}^{k} A_i$, A_i being the exterior algebra $E(x_i, n_i)$, if n_i is odd and $P(x_i, n_i)$ if n_i is even.

\[w_1 = 0, \]

\textbf{for} $i = 2$ \textbf{to} k
\[w_i = d_\delta(x_i), \text{ where } x_i \text{ is the algebra generator of degree } n_i \]
\textbf{endfor}

Naturally, the first components of the vector \vec{v} must be zero, because they correspond to the image of the algebra generators with the lowest degree under ρ.

Moreover, a general algorithm for computing the 1–homology of CDGAs can be described. Clearly, the homology of the 1–homological model obtained can be computed using an algorithm based on the establishment of Smith’s normal form of the matrices representing the differentials at each degree \cite{14, 11}.

The computational cost of constructing the contraction $(C)_\delta$ is high. Let us note that both the inclusion and homotopy operators of the contraction $C_{\delta \circ}$ give an answer in exponential time. In fact, the formula of the differential operator d_δ produced by the homological perturbation machinery is given by:

\[d_\delta = f \delta (1 - \phi \delta + \phi \delta \phi \delta - \cdots) g. \]

With regard to the previous remarks, a first impression is that obtaining d_δ generally becomes a procedure of exponential nature.

It is possible to take advantage of d_δ being a derivation. Indeed, the fact that d_δ is a derivation implies that it is only necessary to know this morphism applied to the generators of the model (let us observe that there are as many generators as the cardinal of the set of indices I indicated). This is an enormous improvement in the computation of the differential on the small model. In spite of this, computing d_δ on an algebra generator is extremely time–consuming.
4 Inversion Theory

In this section, we go further in the simplification of the computation of the differential d_δ. For clarity, we begin this work considering only two algebras.

As we have seen before, obtaining d_δ is an extremely expensive procedure. The morphism responsible for this is the homotopy operator, ϕ, due, essentially, to the shuffles that are involved in the formulas of $\phi_{B\otimes}$ and $g_{B\otimes}$. We intend to eliminate these shuffles, and, with this aim in mind, we define the concept of inversion.

Definition 4.1 Let A and A' be CDGAs and let us consider a homogeneous element $[a_1 \otimes a'_1 | a_2 \otimes a'_2 | \cdots | a_n \otimes a'_n]$ from $\bar{B}(A \otimes A')$. We say that a component $\theta \otimes a'_i$ from that element, is responsible for an inversion, if there exists an index $j > i$ with $a_j \neq \theta$ (where θ is the unit of A). In this sense, such an element presents k inversions if there exist k components responsible for an inversion.

We will say that an element from $\bar{B}(A \otimes A')$ has k inversions, if it is a sum of elements which each have, as a minimum, k inversions.

Let us consider the contraction

$$(f_{B\otimes}, g_{B\otimes}, \phi_{B\otimes}) : \bar{B}(A \otimes A') \Rightarrow \bar{B}(A) \otimes \bar{B}(A')$$

described in the previous section. We analyze the behaviour of the component morphisms of this contraction with respect to inversions. For this purpose, we do not take into account the signs in the formulas referred to.

- The image of an element with at least one inversion under $f_{B\otimes}$, is null.
- The injection $g_{B\otimes}$, applied to $[a_1 | \cdots | a_n] \otimes [a'_1 | \cdots | a'_m]$, produces:
 - a unique term with no inversions (that one which comes from juxtaposition),
 - n terms with one inversion,
 - $\left(\frac{n + m}{n} \right) - n - 1$ terms with more than one inversion.
- As for the homotopy operator $\phi_{B\otimes}$, we can state that the image of a homogenous element under $\phi_{B\otimes}$ gives rise to a sum of elements which, if non null, have at least one more inversion than the original one. Let us note that an inversion is produced by the component $a'_n \ast_{\lambda'} \cdots \ast_{\lambda'_{n-q}}$, which is always on the left side of those components a_n, \ldots, a_{n-q} of each summand in the formula of $\phi_{B\otimes}$.

10
Let us consider the contraction which provides us with a 1–homologic al model for the tensor product of two CDGAs, A and A':

$$(f, g, \phi) : \tilde{B}(A \otimes A') \Rightarrow \tilde{B}(A) \otimes \tilde{B}(A') \Rightarrow hBA \otimes hBA'$$

(4)

where

\[
\begin{align*}
 f &= (f_{BA} \otimes f_{BA'})f_{B \otimes}, \\
 g &= g_{B \otimes}(g_{BA} \otimes g_{BA'}) \\
 \phi &= \phi_{B \otimes} + g_{B \otimes}(\phi_{BA} \otimes g_{BA'}f_{BA'} + 1_{BA} \otimes \phi_{BA'})f_{B \otimes}
\end{align*}
\]

Let us note that the image of an element with an inversion under f is also null, since the first morphism applied is $f_{B \otimes}$.

Now we assume that there is a perturbation ρ of the tensor product of the algebras A and A'. This perturbation induces, in a natural way, a perturbation δ on $\tilde{B}(A \otimes A')$. Let us analyze the behaviour of such a morphism with respect to inversions.

Lemma 4.2 Let us consider a perturbation δ for $\tilde{B}(A \otimes A')$ induced by a perturbation–derivation ρ for $A \otimes A'$ such that $\rho(A) \subset A$. The image of a homogeneous element with k inversions under δ, is a sum of elements with at least $k - 1$ inversions.

Proof.

Let us point out that a component of a homogeneous element from $\tilde{B}(A \otimes A')$ is responsible for, at most, one inversion and that δ acts only on a component of the element at each term of the resultant sum.

\[\square\]

Attending to the Basic Perturbation Lemma, one can obtain from the contraction (4), a new contraction:

$$(f_{\delta}, g_{\delta}, \phi_{\delta}) : \tilde{B}(A \otimes' A') \Rightarrow (hBA \otimes hBA', d_{\delta}).$$

We recall the formula for d_{δ}:

\[
d_{\delta} = f \delta (1 - \phi \delta + \phi \delta \phi \delta - \cdots) g.
\]
We can observe that \(f \) is the last morphism applied in the formula. If at any stage, an element \(y \) obtained by applying \(\phi \), has more than one inversion, then \(\delta(y) \) will have at least one inversion. In this way, each time we apply \(\delta \phi \), we obtain a sum of homogeneous elements with at least one inversion, and, therefore, the image of these elements under \(f \) is null. This means that we only have to consider the summands of \(\phi \) having, at most, one inversion.

In consequence, we can establish the following theorem where we considerably reduce the complexity of the computation of \(d_\delta \).

Theorem 4.3 The formula for \(\phi \), that is involved in the definition of \(d_\delta \), is the following:

\[
\phi = \bar{\phi}_{\bar{B} \otimes} + \bar{g}_{\bar{B} \otimes}(\phi_{\bar{B} A} \otimes \bar{g}_{\bar{B} A'} f_{\bar{B} A'} + 1 \otimes \phi_{\bar{B} A'}) f_{\bar{B} \otimes},
\]

where

1. \(\bar{\phi}_{\bar{B} \otimes}([a_1 \otimes a'_1] \cdots [a_n \otimes a'_n]) \)

\[
= \sum_{0 \leq p \leq n-q-1 \leq n-1} (-1)^{\varphi(n,p,q)} \xi_A(a_{n-q+1} \star \cdots \star a_n | a_1 \otimes a'_1 | \cdots | a_{n-1} \otimes a'_{n-1}) |a'_n \star \cdots \star a'_{n-q}|a_\bar{n} \cdots |a_{n-q}|a'_{n-q+1}| \cdots |a'_{\bar{n}}|
\]

being \(\bar{n} = n - p - q \) and

\[
\varphi(n, p, q) = \bar{n} - 1 + ||a_1| \cdots |a_{n-1}||t + ||a'_1| \cdots |a'_{n-1}||t \\
+ \sum_{k=0}^{p} \sum_{\ell=0}^{\bar{n}-q-k} |a_{n-q-k}| |a'_{\bar{n}-q-\ell}|.
\]

2. \(\bar{g}_{\bar{B} \otimes}([a_1] \cdots [a_n] \otimes [a'_1] \cdots [a'_{\bar{n}}]) \)

\[
= [a_1] \cdots [a_n] |a'_1| \cdots |a'_{\bar{n}}|
\]

\[
+ \sum_{i=1}^{n-1} (-1)^{|a_{i+1}| \cdots |a_n||a'_i|} [a_1] \cdots [a_i |a'_i| |a_{i+1}|] \cdots [a_n |a'_2| \cdots |a'_{\bar{n}}]
\]

\[
+ (-1)^{|a'_1||a_1| \cdots |a_n|} [a'_1 |a_1| \cdots [a_n |a'_2| \cdots |a'_{\bar{n}}].
\]

Let us note that now the number of summands in the formula above for \(\phi_{\bar{B} \otimes} \) is

\[
\sum_{q=0}^{n-1} \sum_{p=0}^{n-q-1} 1 = \frac{n^2 + n}{2},
\]

12
in contrast to the original number of summands:
\[
\sum_{q=0}^{n-1} \sum_{p=0}^{n-q-1} \binom{p+q+1}{q} = 2^{n+1} - n - 2.
\]

On the other hand, the formula for \(g_{a\otimes b} \) is reduced to \(n \) summands, instead of \(\binom{m+n}{n} \).

This theorem is easy to generalize, by induction, to the general case of a twisted tensor product of CDGAs \(\otimes_{i \in I} A_i \) with \(I = \{1, \ldots, n\} \), where \(A_i \) is an exterior or a polynomial algebra with generator \(x_i \) and \(|x_i| \leq |x_{i+1}| \). Therefore, as we saw in Section 3, the following semifull algebra contraction can be established:

\[
\tilde{B}(\otimes_{i=1}^{n} A_i) \Rightarrow \otimes_{i=1}^{n} \tilde{B}(A_i) \Rightarrow \otimes_{i=1}^{n} hBA_i
\]

where \(hBA_i \) is a polynomial or a divided power algebra.

The key to understanding the generalization is the fact that the inversions in \(\tilde{B}(\otimes_{i=1}^{n} A_i) \) are those of the last tensor product (as they were defined at the beginning of the Section, with \(A = \otimes_{i=1}^{n-1} A_i \) and \(A' = A_n \)) along with those of \(\otimes_{i=1}^{n-1} A_i = (\otimes_{i=1}^{n-2} A_i) \otimes A_{n-1} \) with respect to the last tensor product, and so on.

Summing up, we obtain an algorithm \(\text{Alg2} \) having the same input and output as the Algorithm \(\text{Alg1} \) of the last section, but speeding up the steps concerning the image of the algebra generators under \(d_\delta \).

Procedure 2 Algorithm \(\text{Alg2} \).

Input and Output: the same as in \(\text{Alg1} \).

\[
\begin{align*}
w_1 = 0, \\
\text{for } i = 2 \text{ to } k \\
\quad w_i = d_\delta(x_i), \text{ where } x_i \text{ is the algebra generator of degree } n_i \\
\quad \text{(using Theorem 4)}
\end{align*}
\]

endfor

5 Complexity

In this section we give a comparison of the algorithms \(\text{Alg1} \) and \(\text{Alg2} \) from the point of view of their complexity. We are mainly interested in measuring the efficiency of the cor-
Table 1: Required time

	in Alg1	in Alg2
s = 3; r = 2	0.1 sec.	0.002 sec.
s = 3; r = 3	0.5 sec.	0.009 sec.
s = 4; r = 2	31.29 sec.	0.04 sec.
s = 5; r = 3	3.19 days	17.6 sec.
s = 6; r = 2	1.45 years	1.17 min
s = 6; r = 3	24.75 years	19.56 min

responding steps concerning the obtention of the differential d_δ. We consider the degree of the algebra generator as the size of an instance. We take as elementary operations those ones generating each homogeneous term produced by the different morphisms and a worst–case analysis of the algorithms is carried out.

We calculate the total number of elementary operations needed for computing d_δ on a generator x_k of degree k, for both Alg1 and Alg2. We hold that this number for Alg1 is

$$
\sum_{i=0}^{[k/k_0+1]} (i! r^i + ((i + 1)! + (i + 2)!)r^{i+1}) \left(\prod_{j=1}^{i} 2^{j+1} - j - 2 \right),
$$

and for Alg2 is

$$
\sum_{i=0}^{[k/k_0+1]} (r^i + (i + 3)r^{i+1}) \left(\prod_{j=1}^{i} \frac{j^2 + j}{2} \right),
$$

where $k_0 = \min_{1 \leq i \leq n} |x_i|$ and r is the maximum number of summands given by $\rho(x_i)$, where x_i ranges over all the algebra generators of A.

In the following table, the required time for computing $d_\delta(x_k)$ is showed, supposing that our computer carries out 10^6 elementary operations per second. Let us denote $s = [k/k_0 + 1]$. Note that, for example, that $s = 5$ means that if $k_0 = 10$, the degrees of the algebra generators range over the set $\{10, 11, \ldots, 54, 55\}$.

Implementation Performance

The algorithm Alg2 has been implemented. The user supplies an encoding of a finite CDGA in the form of a twisted tensor product of exterior and polynomial algebras to the program, which computes an encoding of a small 1–homological model of this algebra.

This program is written in Mathematica 3.0, consisting in 300 lines of code and 10 basic functions.
In order to give some indication of the implementation, we report on the time taken to compute 1–homological models for certain CDGAs:

1. \(E(x_1, x_2, x_3; 1) \otimes P(x_4, x_5; 2) \otimes E(x_6; 3) \otimes P(x_7; 4) \otimes P(x_8; 6). \)

 Input: \(((1, 1, 1, 2, 2, 3, 4, 6),\)
 \((0, 0, 0, x_1 - x_2, x_1 x_2, x_1 x_4 + x_1 x_5 + x_1 x_2 x_3, x_1 x_2 x_6)).\)

 Output: \(((2, 2, 2, 3, 4, 5, 7), (0, 0, 0, x_1 - x_2, x_3, 0, x_1 x_2 - 2x_2^2, 0))\)

 Time: \(d_\delta(x_1)\) in 0.55 sec.
 \(d_\delta(x_4)\) in 0.27 sec.
 \(d_\delta(x_5)\) in 0.33 sec.
 \(d_\delta(x_6)\) in 2.14 sec.
 \(d_\delta(x_8)\) in 0.28 sec.

2. \(E(x_1; 1) \otimes P(x_2; 2) \otimes P(x_3; 6) \otimes P(x_4; 10) \otimes P(x_5; 26). \)

 Input: \(((1, 2, 6, 10, 26), (0, -2x_1, x_1 x_2, 3x_1 x_2 x_3, 8x_1 x_2 x_3^2 x_4)).\)

 Output: \(((2, 3, 7, 11, 27), (0, -2x_1, -8x_1^3, -192x_1^5, 21799895040x_1^{13}))\)

 Time: \(d_\delta(x_2)\) in 0.16 sec.
 \(d_\delta(x_3)\) in 0.60 sec.
 \(d_\delta(x_4)\) in 2.36 sec.
 \(d_\delta(x_5)\) in 1571.47 sec.

3. \(E(x_1; 1) \otimes P(x_2; 2) \otimes P(x_3; 4) \otimes E(x_4; 5) \otimes E(x_5; 7) \otimes P(x_6; 14). \)

 Input: \(((1, 2, 4, 5, 7, 14), (0, -x_1, x_1 x_2, 0, 2x_1 x_4, -x_1 x_4 x_5)).\)

 Output: \(((2, 3, 5, 6, 8, 15), (0, -x_1, -x_2^2, 0, 0))\)

 Time: \(d_\delta(x_2)\) in 0.17 sec.
 \(d_\delta(x_3)\) in 0.33 sec.
 \(d_\delta(x_4)\) in 0.26 sec.
 \(d_\delta(x_5)\) in 0.17 sec.
For each algebra, we summarize the results and the time taken to compute a description of the model. All CPU times are in seconds and calculations were carried out on a Pentium III, 128Mb RAM, 7.2Gb Hard disk space.

This program produces as output an encoding of a certain differential graded algebra which could be introduced into another program in order to calculate the homology of such objects. We intend to tackle this task in the near future.

References

[1] Álvarez V., Armario J.A., González–Díaz R., Real P.: *Algorithms in Algebraic Topology and Homological Algebra. The Problem of the Complexity*. Extended Abstracts of the First Workshop on Computer Algebra and Scientific Computing, CASC’98 (1998) Saint Petersburg.

[2] Álvarez V., Armario J.A., Real P., Silva B.: *HPT and Computability of the Homology of CDGAs*. Conference on Secondary Calculus and Cohomological Physics (1997) Moscow. Electronic Proceedings of the EMS http://www.emis.de/proceedings.

[3] Armario J.A., Real P., Silva B.: *On p–Minimal Homological Models of Twisted Tensor Products of Elementary Complexes Localized over a Prime*. Contemporary Mathematics **227** (1999) 303–314.

[4] Eilenberg S., Mac Lane S.: *On the Groups H*(π, n)*, I. Annals of Math. **58** (1953) 55–139.

[5] Eilenberg S., MacLane S.: *On the Groups H*(π, n)*, II. Annals of Math. **60** (1954) 49–139.

[6] Gugenheim V.K.A.M., Lambe L.A.: *Perturbation Theory in Differential Homological Algebra, I*. Illinois J. Math. **33** (1989) 556–582.

[7] Gugenheim V.K.A.M., Lambe L.A., Stasheff J.D.: *Perturbation Theory in Differential Homological Algebra, II*. Illinois J. Math. **35** n. 3 (1991) 357–373.

[8] González–Díaz R., Real P.: *Computing Cocycles on Simplicial Complexes*. Proceedings of the Second Workshop on Computer Algebra and Scientific Computing, CASC’99 (1999) Springer–Verlag, 177–190.

[9] Huebschmann J., Kadeishvili T.: *Small Models for Chain Algebras*. Math. Zeit. **207** (1991) 245–280.

[10] MacLane S.: *Homology*. Classics in Mathematics (1995) Springer.

[11] Munkres, J.R.: *Elements of Algebraic Topology*. Addison-Wesley Publishing Company (1984).
[12] Lambe L.A.: **Homological Perturbation Theory, Hochschild Homology and Formal Groups**. Contemp. Math. **134** (1992) 183–218.

[13] Real P.: **Homological Perturbation Theory and Associativity**. To appear in Homology, Homotopy and Applications.

[14] Veblen O.: **Analysis Situs**. A.M.S. Publications **5** (1931).

[15] Weibel C.A.: **An Introduction to Homological Algebra**. Cambridge Studies in Advanced Mathematics **38**, Cambridge University Press (1994).