q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials

T. Kim

Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea

Abstract: In this paper, we give new identities involving Phillips q-Bernstein polynomials and we derive some interesting properties of q-Bernstein polynomials associated with q-Stirling numbers and q-Bernoulli polynomials.

2000 Mathematics Subject Classification: 11B68, 11S40, 11S80

Key words: q-Bernoulli polynomials, q-Bernstein polynomials, q-Stirling numbers

1. Introduction

When one talks of q-extension, q is variously considered as an indeterminate, a complex number \(q \in \mathbb{C} \), or \(p \)-adic number \(q \in \mathbb{C}_p \). If \(q \in \mathbb{C} \), then we always assume that \(|q| < 1 \). If \(q \in \mathbb{C}_p \), we usually assume that \(|1 - q|_p < 1 \). Here, the symbol \(| \cdot |_p \) stands for the \(p \)-adic absolute value on \(\mathbb{C}_p \) with \(|p|_p \leq 1/p \).

For each \(x \), the q-basic numbers are defined by

\[
[x]_q = \frac{1 - q^x}{1 - q}, \quad \text{and} \quad [n]_q! = [n]_q[n - 1]_q \cdots [2]_q[1]_q, n \in \mathbb{N}, \quad (\text{see [1-17]}).
\]

Throughout this paper we assume that \(q \in \mathbb{C} \) with \(|q| < 1 \) and we use the notation of Gaussian binomial coefficient in the form

\[
\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!} = \frac{[n]_q[n-1]_q \cdots [n-k+1]_q}{[k]_q!}, n, k \in \mathbb{N}.
\]

Note that

\[
\lim_{q \to 1} \binom{n}{k}_q = \binom{n}{k} = \frac{n(n-1) \cdots (n-k+1)}{k!}, \quad (\text{see [4-12]}).
\]

The Gaussian binomial coefficient satisfies the following recursion formula:

\[
\binom{n+1}{k}_q = \binom{n}{k-1}_q + q^k \binom{n}{k}_q = q^{n-k} \binom{n}{k-1}_q + \binom{n}{k}_q, \quad (\text{see [7, 8]}). \quad (1)
\]

The q-binomial formulae are known as

\[
(1 - b)_q^n = (b : q)_n = \prod_{i=1}^{n} (1 - bq^{i-1}) = \sum_{i=0}^{n} \binom{n}{i}_q q^{\binom{i}{2}} (-1)^i b^i, \quad (2)
\]

and

\[
\frac{1}{(1 - b)_q^n} = \frac{1}{(b : q)_n} = \prod_{i=1}^{n} (1 - bq^{i-1}) = \sum_{i=0}^{\infty} \binom{n + i - 1}{i}_q b^i, \quad (\text{see [7, 8]}).
\]
Now, we define the q-exponential function as follows:

$$
\lim_{n \to \infty} \frac{1}{(x : q)_n} = \lim_{n \to \infty} \sum_{k=0}^{\infty} \binom{n + k - 1}{k} x^k = \sum_{k=0}^{\infty} \frac{x^k (1 - q)^k}{[k]_q!} = e_q(x(1 - q)).
$$

A Bernoulli trial involves performing an experiment once and noting whether a particular event A occurs. The outcome of Bernoulli trial is said to be “success” if A occurs and a “failure” otherwise. Let k be the number of successes in n independent Bernoulli trials, the probabilities of k are given by the binomial probability law:

$$
p_n(k) = \binom{n}{k} p^k (1 - p)^{n-k}, \text{ for } k = 0, 1, \ldots, n,
$$

where $p_n(k)$ is the probability of k successes in n trials. For example, a communication system transmit binary information over channel that introduces random bit errors with probability $\xi = 10^{-3}$. The transmitter transmits each information bit three times, and a decoder takes a majority vote of the received bits to decide on what the transmitted bit was. The receiver can correct a single error, but it will make the wrong decision if the channel introduces two or more errors. If we view each transmission as a Bernoulli trial in which a “success” corresponds to the introduction of an error, then the probability of two or more errors in three Bernoulli trial is

$$
p(k \geq 2) = \binom{3}{2}(0.001)^2(0.999) + \binom{3}{3}(0.001)^3 \approx 3(10^{-6}), \text{ see [18]}.\n$$

Let $C[0,1]$ denote the set of continuous function on $[0,1]$. For $f \in C[0,1]$, Bernstein introduced the following well known linear operator in [2]:

$$
B_n(f|x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1 - x)^{n-k} = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k,n}(x).
$$

Here $B_n(f|x)$ is called the Bernstein operator of order n for f. For $k, n \in \mathbb{Z}_+$, the Bernstein polynomials of degree n is defined by

$$
B_{k,n}(x) = \binom{n}{k} x^k (1 - x)^{n-k}.
$$

By the definition of Bernstein polynomials, we can see that Bernstein basis is the probability mass function of binomial distribution. Based on the q-integers Phillips introduced the q-analogue of well known Bernstein polynomials (see [15, 16]). For $f \in C[0,1]$, Phillips introduced the q-extension of $B_n(f|x)$ as follows:

$$
B_{n,q}(f | x) = \sum_{k=0}^{n} B_{k,n}(x, q) f\left(\frac{[k]_q}{[n]_q}\right) = \sum_{k=0}^{n} f\left(\frac{[k]_q}{[n]_q}\right) \binom{n}{k}_q x^k (1 - x)^{n-k}_q.
$$

Here $B_{n,q}(f | x)$ is called the q-Bernstein operator of order n for f. For $k, n \in \mathbb{Z}_+$, the q-Bernstein polynomial of degree n is defined by

$$
B_{k,n}(x, q) = \binom{n}{k}_q x^k (1 - x)^{n-k}_q, x \in [0,1].
$$
For example, $B_{0,1}(x, q) = 1 - x$, $B_{1,1}(x, q) = x$, and $B_{0,2}(x, q) = 1 - [2]_q x + qx^2, \cdots$. Also $B_{k,n}(x, q) = 0$ for $k > n$, because $\binom{n}{k}_q = 0$. The q-binomial distribution associated with the q-boson oscillator are introduced in [19, 20]. For $n, k \in \mathbb{Z}_+$, its probabilities are given by

$$p(X = k) = \binom{n}{k}_q x^k (1 - x)^{n-k}, \text{ where } x \in [0, 1].$$

This distributions are studied by several authors and has applications in physics as well as in approximation theory due to the q-Bernstein polynomials and the q-Bernstein operators (see [16, 19, 20]). From the definition of q-Bernstein polynomials, we note that the q-Bernstein basis is the probability mass function of q-binomial distribution. Recently, several authors have studied the analogs of Bernstein polynomials (see [1, 2, 5, 8, 9, 10, 15, 16, 17]). In [5], Gupta-Kim-Choi-Kim gave the generating function of Phillips q-Bernstein polynomials as follows:

$$\frac{x^k t^k}{[k]_q!} e_q((1 - x)_q t) = \sum_{n=0}^{\infty} \frac{(1 - x)_q^n t^n}{[n]_q!} = \sum_{n=k}^{\infty} \binom{n}{k}_q x^k (1 - x)^{n-k} \frac{t^n}{[n]_q!}.$$

Because $B_{k,0}(x, q) = B_{k,1}(x, q) = B_{k,2}(x, q) = \cdots = B_{k,k-1}(x, q) = 0$, we obtain the generating function for $B_{k,n}(x, q)$ as follows:

$$F_q^{(k)}(t, x) = \frac{x^k t^k}{[k]_q!} e_q((1 - x)_q t) = \sum_{n=0}^{\infty} B_{k,n}(x, q) \frac{t^n}{[n]_q!}, \text{ see [5]},$$

where $n, k \in \mathbb{Z}_+$ and $x \in [0, 1]$.

Notice that

$$B_{k,n}(x, q) = \begin{cases} \binom{n}{k}_q x^k (1 - x)^{n-k}, & \text{if } n \geq k \\ 0, & \text{if } n < k, \end{cases}$$

for $n, k \in \mathbb{Z}_+$ (see [5, 15, 16]).

In this paper we study the generating function of Phillips q-Bernstein polynomial and give some identities on the Phillips q-Bernstein polynomials. From the generating function of q-Bernstein polynomial, we derive recurrence relation and derivative of the Phillips q-Bernstein polynomials. Finally, we investigate some interesting properties of q-Bernstein polynomials related to q-Stirling numbers and q-Bernoulli polynomials.

2. q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials

Let

$$F_q^{(k)}(t, x) = \sum_{n=0}^{\infty} B_{k,n}(x, q) \frac{t^n}{[n]_q!}.$$

From (5) and (3), we note that
\[F_q^{(k)}(t, x) = \sum_{n=0}^{\infty} \binom{n}{k} x^n (1-x)^{n-k} t^n \frac{t^n}{[n]_q!}, \]
\[= \sum_{n=0}^{\infty} \binom{n+k}{k} x^n (1-x)^{n-k} t^n \frac{t^n}{[n+k]_q!}, \]
\[= \frac{x^k t^k}{[k]_q!} \sum_{n=0}^{\infty} \frac{(1-x)^n t^n}{[n]_q!}, \]
\[= \frac{x^k t^k}{[k]_q!} e_q((1-x)_q), \]
where \(n, k \in \mathbb{Z}_+ \) and \(x \in [0, 1] \).

Note that
\[\lim_{q \to 1} F_q^{(k)}(t, x) = \frac{x^k t^k}{k!} e^{(1-x)t} = \sum_{n=0}^{\infty} B_{k,n}(x) \frac{t^n}{n!}, \]
where \(B_{k,n}(x) \) are the Bernstein polynomial of degree \(n \).

The \(q \)-derivative \(D_q f \) of function \(f \) is defined by
\[(D_q f)(x) = \frac{df(x)}{d_q x} = \frac{f(x) - f(qx)}{(1-q)x}, \quad \text{(see [6]).} \tag{7} \]

From (7), we note that
\[D_q(fg)(x) = g(x) D_q f(x) + f(qx) D_q g(x), \quad \text{(see [6]).} \tag{8} \]

The \(q \)-Bernstein operator is given by
\[B_{n,q}(f \mid x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} q^n \frac{t^n}{n!}, \]
\[= \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} \frac{t^n}{n!}, \]
\[= \frac{x^k t^k}{[k]_q!} e_q((1-x)_q), \]
where \(x \in [0, 1] \) and \(n, k \in \mathbb{Z}_+ \).

For \(f \in C[0, 1] \), we have
\[B_{n,q}(f \mid x) = \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \right) B_{k,n}(x, q) \]
\[= \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \right) \binom{n}{k} x^k (1-x)^{n-k} q^n \frac{t^n}{n!}, \]
\[= \sum_{k=0}^{n} f \left(\frac{[k]_q}{[n]_q} \right) x^k \binom{n}{k} \sum_{j=0}^{n-k} \binom{n-k}{j} (-1)^j q^j (1)_q^j x^j. \]
It is easy to show that
\[
\binom{n}{k}_q \binom{n-k}{j}_q = \binom{n}{k+j}_q \binom{k+j}{k}_q.
\]

Let \(k + j = m \). Then we have
\[
\binom{n}{k}_q \binom{n-k}{j}_q = \binom{n}{m}_q \binom{m}{k}_q.
\]
(10)

By (9) and (10), we easily get
\[
B_{n,q}(f | x) = \sum_{m=0}^{n} \binom{n}{m}_q x^m \sum_{k=0}^{m} \binom{m}{k}_q q^{m-k} (-1)^{m-k} f \left(\frac{\lfloor k \rfloor}{\lfloor m \rfloor} \right).
\]
(11)

Therefore, we obtain the following proposition.

Proposition 1. For \(f \in C[0,1] \) and \(n \in \mathbb{Z}_+ \), we have
\[
B_{n,q}(f | x) = \sum_{m=0}^{n} \binom{n}{m}_q x^m \sum_{k=0}^{m} \binom{m}{k}_q q^{m-k} (-1)^{m-k} f \left(\frac{\lfloor k \rfloor}{\lfloor m \rfloor} \right).
\]
(11)

It is well known that the second kind Stirling numbers are defined by
\[
\frac{(e^t - 1)^k}{k!} = \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} e^{lt} = \sum_{n=0}^{\infty} S(n,k) \frac{t^n}{n!},
\]
(12)

where \(k \in \mathbb{N} \) (see [7, 8, 9, 10, 17]).

Let \(\Delta \) be the shift difference operator with \(\Delta f(x) = f(x + 1) - f(x) \). By iterative process, we see that
\[
\Delta^n f(0) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} f(k), \text{ for } n \in \mathbb{N}.
\]
(13)

From (12) and (13), we have
\[
\sum_{n=0}^{\infty} S(n,k) \frac{t^n}{n!} = \frac{1}{k!} \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} e^{lt} = \sum_{n=0}^{\infty} \Delta^k \frac{t^n}{k!} \frac{n}{n!}, \text{ (see [7, 8, 9]).}
\]
(14)

By comparing the coefficients on the both sides of (14), we get
\[
S(n,k) = \Delta^k \frac{n^m}{k!}, \text{ for } n, k \in \mathbb{Z}_+.
\]
(15)
Now, we consider the \(q \)-extension of (13). Let \((Eh)(x) = h(x + 1)\) be the shift operator. Then the \(q \)-difference operator is defined by

\[
\Delta_n^q := (E - I)_q^n = \prod_{i=1}^{n}(E - Iq^{-i}) \quad \text{(see [7])},
\]

where \(I \) is an identity operator.

For \(f \in C[0, 1] \) and \(n \in \mathbb{N} \), we have

\[
\Delta_n^q f(0) = \sum_{k=0}^{n} \binom{n}{k}_q q^{k^2/2} \binom{k}{j}_q \sum_{j=0}^{\infty} S(n,k : q) \frac{t^n}{n!} = \sum_{n=0}^{\infty} S(n,k : q) \frac{t^n}{n!} \quad \text{(see [7, 8])}. \quad \text{(16)}
\]

By (16), we obtain the following theorem.

Theorem 2. For \(f \in C[0, 1] \) and \(n \in \mathbb{Z}_+ \), we have

\[
[|n|_q]^m \mathbb{B}_{n,q}(f \mid x) = \sum_{k=0}^{n} \binom{n}{k}_q x^k \Delta_k^q f \left(\frac{0}{|n|_q} \right).
\]

In the special case, \(f(x) = x^m \) \((m \in \mathbb{Z}_+)\), we obtain the following corollary.

Corollary 3. For \(x \in [0, 1] \) and \(m,n \in \mathbb{Z}_+ \), we have

\[
[n]_q^m \mathbb{B}_{n,q}(x^m \mid x) = \sum_{k=0}^{n} \binom{n}{k}_q x^k \Delta_k^q 0^m.
\]

By (17), we easily get

\[
S(n,k : q) = \frac{q^{-k^2}}{|k|_q!} \sum_{j=0}^{k} (-1)^j q^\binom{j}{2} \binom{k}{j}_q \binom{k-j}{n}_q = \frac{q^{-k^2}}{|k|_q!} \sum_{j=0}^{k} (-1)^{k-j} q^\binom{k-j}{2} \binom{k}{j}_q \binom{j}{n}_q = \frac{q^{-k^2}}{|k|_q!} \Delta_k^q 0^m. \quad \text{(18)}
\]

The equation (18) seems to be the \(q \)-extension of the equation (15). That is, \(\lim_{q \to 1} S(n,k : q) = S(n,k) \).

By Corollary 3 and (18), we obtain the following corollary.
Corollary 4. For $x \in [0, 1]$ and $m, n \in \mathbb{Z}_+$, we have

$$[n]_q^m B_{n,q}(x^m | x) = \sum_{k=0}^{n} \binom{n}{k} x^k [k]_q! q^{(k)} S(m, k : q).$$

From (1) and (5), for $0 \leq k \leq n$, we have

$$q^k (1 - q^{n-k-1} x) B_{k,n-1}(x, q) + x B_{k-1,n-1}(x, q)$$

$$= q^k (1 - q^{n-k-1} x) \binom{n-1}{k} x^k (1-x)^{n-1-k} + x \binom{n-1}{k-1} x^k (1-x)^{n-k}$$

$$= \binom{n}{k} x^k (1-x)^{n-k}.$$ \hspace{1cm} (19)

By (2), (7) and (8), we get

$$d B_{k,n}(x, q) \frac{d}{d_q x} = \binom{n}{k} x^k [n-k]_q (1-qx)^{n-k-1} + \binom{n}{k} [k]_q x^k (1-qx)^{n-k}.$$ \hspace{1cm} (20)

From the definition of Gaussian binomial coefficient (= q-binomials coefficient) and (2), we note that

$$\binom{n}{k} \frac{d}{d_q x} = [n]_q q^{-k} B_{k,n-1}(qx, q),$$ \hspace{1cm} (21)

and

$$\binom{n}{k} x^k [n-k]_q (1-qx)^{n-k-1} = [n]_q q^{-k} B_{k,n-1}(qx, q).$$

By (20) and (21), we see that

$$d B_{k,n}(x, q) \frac{d}{d_q x} = [n]_q q^{-k} (qB_{k-1,n-1}(qx, q) - B_{k,n-1}(qx, q)).$$ \hspace{1cm} (22)

Thus, we note that the q-derivative of the q- Bernstein polynomials of degree n are also polynomial of degree $n - 1$. Therefore, by (19) and (22), we obtain the following recurrence formulae:

Theorem 5 (Recurrence formulae for $B_{k,n}(x, q)$). For $k, n \in \mathbb{Z}_+$ and $x \in [0, 1]$, we have

$$q^k (1 - q^{n-k-1} x) B_{k,n-1}(x, q) + x B_{k-1,n-1}(x, q) = B_{k,n}(x, q),$$

and

$$d B_{k,n}(x, q) \frac{d}{d_q x} = [n]_q q^{-k} (qB_{k-1,n-1}(qx, q) - B_{k,n-1}(qx, q)).$$

We also get from (5) and (6) that
\[
\frac{[n-k]_q}{[n]_q} B_{k,n}(x, q) + \frac{[k+1]_q}{[n]_q} B_{k+1,n}(x, q) \\
= (1 - x q^{n-k-1}) \binom{n-1}{k}_q x^k (1-x)^{n-k} + x \binom{n-1}{k}_q x^k (1-x)^{n-k-1} \\
= (1 - x q^{n-k-1}) B_{k,n-1}(x, q) + x B_{k,n-1}(x, q) \\
= B_{k,n-1}(x, q) + x [n-k-1]_q (1-q) B_{k,n-1}(x, q).
\] (23)

By (23), we obtain the following theorem.

Theorem 6. For \(k, n \in \mathbb{Z}_+ \) and \(x \in [0,1] \), we have

\[
\frac{[n-k]_q}{[n]_q} B_{k,n}(x, q) + \frac{[k+1]_q}{[n]_q} B_{k+1,n}(x, q) = B_{k,n-1}(x, q) + x [n-k-1]_q (1-q) B_{k,n-1}(x, q).
\]

From Theorem 6 we note that \(q \)-Bernstein polynomials can be written as a linear combination of polynomials of higher order.

For \(k, n \in \mathbb{N} \), we easily get from (5) that \(q \)-Bernstein polynomials can be expressed in the form

\[
\frac{[n-k+1]_q}{[k]_q} \left(\frac{x}{1-x q^{n-k}} \right) x^{k-1} (1-x)^{n-k+1} \binom{n}{k-1}_q \\
= \frac{[n]_q!}{[k]_q! [n-k]_q!} x^k (1-x)^{n-k} \\
= \binom{n}{k}_q x^k (1-x)^{n-k} \\
= B_{k,n}(x, q).
\] (24)

By (24), we obtain the following proposition.

Proposition 7. For \(n, k \in \mathbb{N} \) and \(x \in [0,1] \), we have

\[
B_{k,n}(x, q) = \frac{[n-k+1]_q}{[k]_q} \left(\frac{x}{1-x q^{n-k}} \right) B_{k-1,n}(x, q).
\]

The \(q \)-Bernstein polynomials of degree \(n \) can be written in terms of power basis \(\{1, x, x^2, \cdots, x^n\} \). By using the definition of \(q \)-Bernstein polynomial and \(q \)-binomial theorem, we get

\[
B_{k,n}(x, q) = \binom{n}{k}_q x^k (1-x)^{n-k} = \binom{n}{k}_q x^k \sum_{i=0}^{n-k} \binom{n-k}{i}_q (-1)^i q^{i(i+1)/2} x^i \\
= \sum_{i=0}^{n-k} \binom{n-k}{i}_q \binom{n}{k}_q (-1)^i q^{i(i+1)/2} x^i \\
= \sum_{i=k}^{n} \binom{n-k}{i-k}_q \binom{n}{k}_q (-1)^{i-k} q^{(i-k)(i-k+1)/2} x^i.
\] (25)
By simple calculation, we easily see that
\[
\binom{n}{k}_q \binom{n-k}{i-k}_q = \binom{n}{i}_q \binom{i}{k}_q.
\] (26)

Therefore, by (25) and (26), we obtain the following theorem.

Theorem 8. For \(k, n \in \mathbb{Z}_+\) and \(x \in [0,1]\), we have
\[
B_{k,n}(x, q) = \sum_{i=k}^{n} \binom{n}{i}_q \binom{i}{k}_q (-1)^{i-k} q^{(i-k)} x^i.
\]

We get from the properties of \(q\)-Bernstein polynomials that
\[
\sum_{k=1}^{n} \frac{k}{(1)_q} B_{k,n}(x, q) = \sum_{k=1}^{n} \frac{k}{[n]_q} \binom{n}{k}_q x^k (1-x)^{n-k}
\]
\[
= \sum_{k=1}^{n} \binom{n-1}{k-1}_q x^k (1-x)^{n-k}
\]
\[
= x \sum_{k=0}^{n-1} \binom{n-1}{k}_q x^k (1-x)^{n-k-1} = x,
\]
and that
\[
\sum_{k=2}^{n} \frac{k}{(2)_q} B_{k,n}(x, q) = \sum_{k=2}^{n} \frac{n-2}{(k-2)_q} x^k (1-x)^{n-k}
\]
\[
= x^2 \sum_{k=0}^{n-2} \binom{n-2}{k}_q x^k (1-x)^{n-k-2} = x^2.
\]

Continuing this process, we obtain
\[
\sum_{k=1}^{n} \frac{k}{(1)_q} B_{k,n}(x, q) = x^i.
\]

Therefore, we obtain the following theorem.

Theorem 9. For \(k, i \in \mathbb{Z}_+\) and \(x \in [0,1]\), we have
\[
\sum_{k=1}^{n} \frac{k}{(1)_q} B_{k,n}(x, q) = x^i.
\]

Now we define \(q\)-Bernoulli polynomials of order \(k\) as follows:
\[
\left(\frac{z}{e^z-1} \right)^k e_q(zx) = \sum_{n=0}^{\infty} \beta^{(k)}_n(x, q) z^n [n]_q, \quad k \in \mathbb{N}.
\] (27)

From the generating function (27) of \(q\)-Bernoulli polynomials and (3), we derive
Therefore, by (6) and (30), we obtain the following theorem.

From (27) and (28), we easily get

\[\beta^{(k)}_n(x, q) = \sum_{m=0}^{n} \left(\frac{m}{m} \right) q^{m} x^{n-m} B^{(k)}_m, \]

where \(B^{(k)}_m \) are the \(m \)-th ordinary Bernoulli numbers of order \(k \).

From (26) and (27), we note that

\[\beta^{(k)}_n(x, q) = \sum_{m=0}^{n} \left(\frac{m}{m} \right) q^{m} x^{n-m} B^{(k)}_m, \]

where \(B^{(k)}_m \) are the \(m \)-th Bernoulli numbers of order \(k \).

From (26) and (27), we note that

\[\frac{(t x)^k}{[k]_q!} e_q((1 - x)_q t) = \frac{x^k(e^t - 1)^k}{[k]_q!} \left(\frac{t}{e^t - 1} \right)^k e_q((1 - x)_q t) \]
\[= \frac{k!}{[k]_q!} x^k \left(\sum_{m=0}^{\infty} S(m, k) \frac{t^m}{m!} \right) \left(\sum_{n=0}^{\infty} \beta^{(k)}_n((1 - x)_q, q) \frac{t^n}{[n]_q!} \right) \]
\[= \frac{k!}{[k]_q!} x^k \sum_{m=0}^{\infty} \left(\sum_{l=m}^{\infty} \frac{[m]_q!}{m!} S(m, k) \left(\frac{l}{m} \right) \beta^{(k)}_{l-m}((1 - x)_q, q) \right) \frac{t^l}{[l]_q!}. \]

Therefore, by (6) and (30), we obtain the following theorem.

Theorem 10. For \(k, l \in \mathbb{Z}_+ \) and \(x \in [0, 1] \), we have

\[B_{k,l}(x, q) = \frac{k!}{[k]_q!} x^k \sum_{m=0}^{l} \frac{[m]_q!}{m!} S(m, k) \beta^{(k)}_{l-m}((1 - x)_q, q) \left(\frac{l}{m} \right)_q, \]

where \(\beta^{(k)}_{l}((1 - x)_q, q) \) are called the \(l \)-th \(q \)-Bernoulli polynomials.

From (15) and Theorem 10, we have the following corollary.

Corollary 11. For \(k, l \in \mathbb{Z}_+ \) and \(x \in [0, 1] \), we have

\[B_{k,l}(x, q) = \frac{x^k}{[k]_q!} \sum_{m=0}^{l} \frac{[m]_q!}{m!} \left(\frac{l}{m} \right)_q \beta^{(k)}_{l-m}((1 - x)_q, q) \Delta^{k}_0. \]

It is well known that

\[x^n = \sum_{k=0}^{n} \binom{x}{k} k! S(n, k), \text{ (see [7])}. \]

(31)
By (31) and Theorem 9, we easily see that

\[\sum_{k=0}^{i} \binom{k}{i} \frac{x^k}{k!} S(i, k) = \sum_{k=i}^{n} \binom{n}{i} q^k B_{k,n}(x, q). \]

3. A matrix representation for q-Bernstein polynomials

Given a polynomial is written as a linear combination of q-Bernstein basis functions:

\[B_q(x) = C_0^q B_{0,n}(x, q) + C_1^q B_{1,n}(x, q) + \cdots + C_n^q B_{n,n}(x, q). \]

(32)

It is easy to write (32) as a dot product of two vectors:

\[B_q(x) = \left(B_{0,n}(x, q), B_{1,n}(x, q), \ldots, B_{n,n}(x, q) \right) \cdot \left(\begin{array}{c} C_0^q \\ C_1^q \\ \vdots \\ C_n^q \end{array} \right). \]

(33)

Now, we can convert (33) to

\[B_q(x) = \left(1, x, \ldots, x^n \right) \cdot \left(\begin{array}{cccc} b_{0,0}^q & 0 & \cdots & 0 \\ b_{1,0}^q & b_{1,1}^q & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,0}^q & b_{n,1}^q & \cdots & b_{n,n}^q \end{array} \right) \cdot \left(\begin{array}{c} C_0^q \\ C_1^q \\ \vdots \\ C_n^q \end{array} \right), \]

where $b_{i,j}^q$ are the coefficients of the power basis that are used to determine the respective q-Bernstein polynomials.

From (5) and (6), we note that

\begin{align*}
B_{0,2}(x, q) &= (1 - x)_q^2 = \sum_{l=0}^{2} \binom{2}{l} (-1)^l q^{(l)} = 1 - [2]_q x + q x^2 \\
B_{1,2}(x, q) &= \binom{2}{1}_q x(1 - x)_q = [2]_q x(1 - x) = [2]_q x - [2]_q x^2 \\
B_{2,2}(x, q) &= x^2.
\end{align*}

In the quadratic case ($n = 2$), the matrix can be represented by

\[B_q(x) = \left(1, x, x^2 \right) \cdot \left(\begin{array}{ccc} 1 & 0 & 0 \\ -[2]_q & [2]_q & 0 \\ q & -[2]_q & 1 \end{array} \right) \cdot \left(\begin{array}{c} C_0^q \\ C_1^q \\ C_2^q \end{array} \right). \]

ACKNOWLEDGEMENTS. The present research has been conducted by the Research Grant of Kwangwoon University in 2010.
REFERENCES

1. M. Acikgoz, S. Araci, A study on the integral of the product of several type Bernstein polynomials, IST Transaction of Applied Mathematics-Modelling and Simulation, 2010.

2. S. Bernstein, Démonstration du théorème de Weierstrass, fondué sur le Calcul des probablilites, Commun. Soc. Math, Kharkow (2), 13 (1912-1913), 1-2.

3. I. N. Cangul, V. Kurt, H. Ozden, Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math., 19 (2009), 39-57.

4. N. K. Govil, V. Gupta, Convergence of q-Meyer-König-Zeller-Durrmeyer operators, Adv. Stud. Contemp. Math., 19 (2009), 97-108.

5. V. Gupta, T. Kim, J, Choi, Y.-H. Kim, Generating function for q-Bernstein, q-Meyer-König-Zeller and q-Beta basis, Automation Computers Applied Mathematics, 19 (2010), 7-11.

6. T. Kim, q-extension of the Euler formulae and trigonometric functions, Russ. J. Math. Phys., 14 (2007), 275-278.

7. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9 (2002), 288-299.

8. T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys., 15 (2008), 51-57.

9. T. Kim, L.C. Jang, H. Yi, Note on the modified q-Bernstein polynomials, Discrete Dynamics in Nature and Society (in press), 2010.

10. T. Kim, J. Choi, Y.-H. Kim, Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers, Adv. Stud. Contemp. Math., 20 (2010), 335-341.

11. T. Kim, Note on the Euler q-zeta functions, J. Number Theory, 129 (2009), 1798-1804.

12. T. Kim, Barnes type multiple q-zeta function and q-Euler polynomials, J. Phys. A: Math. Theor., 43 (2010) 255201, 11pp.

13. V. Kurt, A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials, Appl. Math. Sci., 3 (2009), 53-56.

14. B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys., 12 (2005), 412-422.

15. G. M. Phillips, Bernstein polynomials based on the q-integers, Annals of Numerical Analysis, 4 (1997), 511-514.
16. G. M. Phillips, On generalized Bernstein polynomials, Griffiths, D. F., Watson, G. A.(eds): Numerical Analysis, Singapore: World Scientific, 263-269, 1996.

17. Y. Simsek, M. Acikgoz, A new generating function of q-Bernstein-type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095 (2010), 12 pp.

18. L. C. Alberto, Probability and Random Processes for Electrical Engineering, Addison Wesley Longman, 1994.

19. L. C. Biedenharn, The quantum group $SU_q(2)$ and a q-analogue of the boson operator, J. Phys. A, 22(1989), L873-L878.

20. S. C. Jing, The q-deformed binomial distribution and its asymptotic behaviour, J. Phys. A, 17(1994), 493-499.