Genome Sequences of Five Clinical Isolates of Klebsiella pneumoniae

L. Letti Lopez, Brigida Rusconi, Heidi Gildersleeve, Chao Qi, Milena McLaughlin, Marc H. Scheetz, J. Seshu, Mark Eppinger

South Texas Center for Emerging Infectious Diseases, Center for Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA; Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA; Department of Pharmacy Practice, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois, USA; Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA.

Klebsiella pneumoniae is a nosocomial pathogen of emerging importance and displays resistance to broad-spectrum antibiotics, such as carbapenems. Here, we report the genome sequences of five clinical *K. pneumoniae* isolates, four of which are carbapenem resistant. Carbapenem resistance is conferred by hydrolyzing class A β-lactamas found adjacent to transposases.

Whole-genome sequence analysis enables the identification of the molecular basis of antibiotic resistance and facilitates a survey for virulence determinants that can be targeted to reduce the pathogenic effects of the clinical isolates in different models of infection (9–11). To this end, we sequenced the genomes of five clinical isolates of *K. pneumoniae* isolated from patients in a Chicago area hospital.

Total genomic DNA was extracted with the QiAamp DNA minikit, according to the manufacturer’s protocol, and the genomic library was prepared with the TruSeq PCR-free kit with single indexing (12–14). The genomes were sequenced on the Illumina MiSeq platform using a paired-end library with 250-bp read length and assembled into draft genomes with SPAdes 3.5.0 (15). The average G+C content was 57.3%, and the total genome length varied between 5.3 and 5.9 Mbp, which is in accordance with reports for other *K. pneumoniae* genomes and is indicative of the varied moblome of this species (9).

Contigs were annotated using Prokka genome annotation version 1.0.0 (16), predicting on average 5,451 coding sequences, 77 tRNAs, and 7 rRNAs. Annotation revealed the presence of genes associated with a type VI secretion in all genomes (17, 18), while none of the isolates featured virulence factors related to the mucoid phenotype, *rmpA* (19) or *magA* (20), when queried against the UniProt database (>99% identity) to various plasmids previously described in *K. pneumoniae* (24). Understanding the evolutionary origin of the acquisition of the *K. pneumoniae* resistance gene complement will help track the spread of antibiotic resistance among clinical isolates. Future genome-wide association studies utilizing the cataloged genomic plasticity and antibiotic resistance phenotypes will assist in better defining the pathogenic potential of individual isolates in different models of infection (25, 26).

Nucleotide sequence accession numbers. The annotated draft genome sequences for *K. pneumoniae* strains K1, OC217, OC511, OC648, and Z3209 have been deposited in GenBank under accession numbers LOEJ0000000, LOEF0000000, LOEJ0000000, LOEH0000000, and LOEG0000000, respectively.

FUNDING INFORMATION

The project was supported partly by a CONNECT program grant award from UTSA (J.S.). This work received computational support from the Computational System Biology Core and sequencing support from the Genomics Core, funded by the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. The study was further supported in part by the U.S. Department of Homeland Security under contract 2014-ST-062-000058, the Department of Biology, and South Texas Center for Emerging Infectious Diseases (STCEID) at the University of Texas at San Antonio. B.R. is supported in part by the Swiss National Science Foundation Early Postdoc Mobility Fellowship (P2LAP3-151770).
REFERENCES

1. Nordmann P, Cuzon G, Naas T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. http://dx.doi.org/10.1016/S1473-3099(09)70054-4.

2. Gootz TD. 2010. The global problem of antibiotic resistance. Crit Rev Immunol 30:79–93. http://dx.doi.org/10.1089/critrevimmunol.30.1.60.

3. Rice LB. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081. http://dx.doi.org/10.1086/533452.

4. Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS, Engelthaler DM, Andersen PS, Dribe EM, Keim P, Krogfelt KA. 2015. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio 6(4):e00630-15. http://dx.doi.org/10.1128/mBio.00630-15.

5. Hirsch EB, Tam VH. 2010. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother 65:1119–1125. http://dx.doi.org/10.1093/jac/dkq108.

6. Struve C, Krogfelt KA. 2004. Pathogenic potential of environmental Klebsiella pneumoniae isolates. Environ Microbiol 6:584–590. http://dx.doi.org/10.1111/j.1462-2920.2004.00590.x.

7. Stahlhut SG, Tchesnokova V, Struve C, Weissman SJ, Chattopadhyay S, Yakovenko O, Aprikian P, Sokurenko EV, Krogfelt KA. 2009. Comparative structure-function analysis of mannose-specific FimH adhesins from Klebsiella pneumoniae and Escherichia coli. J Bacteriol 191:6592–6601. http://dx.doi.org/10.1128/JB.00786-09.

8. Ramirez MS, Traglia GM, Lin DL, Tran T, Tolmasky ME. 2014. Plasmid-mediated antibiotic resistance and virulence in Gram-negative: the paradigm. Microbiol Spectr 2:1–15. http://dx.doi.org/10.1128/microbiolspec.PLAS-00108-13.

9. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, Jenney A, Connor TR, Hsu LY, Severin J, Brisse S, Cao H, Wilksch J, Gorrie C, Schultz MB, Edwards DJ, Nguyen K, Nguyen TV, Dao TT, Mensink M, Minh VL, Nhu NT, Schultsz C, Kuntaman K, Newton PN, Moore CE, Strugnell RA, Thomson NR. 2015. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112:E3574–E3581. http://dx.doi.org/10.1073/pnas.1501049112.

10. Wyres KL, Gorrie C, Edwards DJ, Wertheim HF, Hsu LY, Van Kinh N, Zadoks R, Baker S, Holt KE. 2015. Extensive capsule locus variation and large-scale genomic recombination within the Klebsiella pneumoniae clonal group 258. Genome Biol Evol 7:1267–1279. http://dx.doi.org/10.1093/gbe/evv062.

11. Stahlhut SG, Struve C, Krogfelt KA, Reisner A. 2012. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol Med Microbiol 65:350–359. http://dx.doi.org/10.1111/j.1574-695X.2012.00965.x.

12. Ramirez MS, Xie G, Johnson S, Davenport K, van Duin D, Perez F, Bonomo RA, Chain P, Tolmasky ME. 2014. Genome sequences of two carbapenemase-resistant Klebsiella pneumoniae ST258 isolates. Genome Announc 2(3):e00558-14. http://dx.doi.org/10.1128/genomea.00558-14.

13. Yin S, Rusconi B, Sanjar F, Gossawi K, Xiaoai L, Eppinger M, Dudley EG. 2015. Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 16:733. http://dx.doi.org/10.1186/s12864-015-1934-1.

14. Sanjar F, Rusconi B, Hazen TH, Koenig SS, Mammel MK, Feng PC, Rasko DA, Eppinger M. 2015. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes. Pathog Dis 73:e00533-14. http://dx.doi.org/10.1093/femsdp/fdv033.

15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1007/s00692-2012-7623-x.

16. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2686–2689. http://dx.doi.org/10.1093/bioinformatics/btu133.

17. Lery LM, Frangeul L, Tomas A, Passet V, Almeida AS, Bialek-Davenet S, Barbe V, Bengoechea JA, Sansonetti P, Brisse S, Tournebize R. 2014. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospohilipase D family protein as a novel virulence factor. BMC Biol 12:44. http://dx.doi.org/10.1186/1741-7007-12-41.

18. Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. 2015. Functional genomic screen identifies Klebsiella pneumoniae factors implicated in blocking nuclear factor kappa B (NF-kappaB) signaling. J Biol Chem 290:16678–16697. http://dx.doi.org/10.1074/jbc.M114.621292.

19. Nassif X, Honoré N, Vasselon T, Cole ST, Sansonetti PJ. 1989. Positive control of colanic acid synthesis in Escherichia coli by rmpA and rmpB, two virulence-plasmid genes of Klebsiella pneumoniae. Mol Microbiol 3:1349–1359. http://dx.doi.org/10.1111/j.1365-2958.1989.tb00116.x.

20. Struve C, Bojer M, Nielsen EM, Hansen DS, Krogfelt KA. 2005. Investigation of the putative virulence gene magA in a worldwide collection of 495 Klebsiella isolates: magA is restricted to the gene cluster of Klebsiella pneumoniae capsule serotype K1. J Med Microbiol 54:1111–1113. http://dx.doi.org/10.1099/imm.0.46165-0.

21. UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. http://dx.doi.org/10.1093/nar/gku989.

22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. http://dx.doi.org/10.1016/0022-2836(90)90360-2.

23. Kleineheinz KA, Joensen KG, Larsen MV. 2014. Applying the ResFinder and VirulenceFinder Web-services for easy identification of acquired antibiotic resistance and virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage 4:27943. http://dx.doi.org/10.1146/acta.bacteriophage.2014.01.11.007943.

24. Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2015. GenBank. Nucleic Acids Res 43:D30–D35. http://dx.doi.org/10.1093/nar/gku1216.

25. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM, Farrington M, Holden MTG, Dougan G, Bentley SD, Parkhill J, Peacock SJ. 2012. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8:e1002824. http://dx.doi.org/10.1371/journal.ppat.1002824.

26. Köser CU, Ellington MJ, Peacock SJ. 2014. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30:401–407. http://dx.doi.org/10.1016/j.tig.2014.07.003.