Molecular mechanism of light-driven sodium pumping

Kirill Kovalev1,2,3,4,5, Roman Astashkin1,4, Ivan Gushchin1,4, Philipp Orekhov4,4, Dmytro Volkov2,3, Egor Zinovev2,3,4, Egor Marin4,4, Maksim Rulev2,3,6, Alexey Alekseev2,3,4,5, Antoine Royant1,6, Philippe Carpentier6,7, Svetlana Vaganova2,3, Dmitrii Zabelskii2,3,4, Christian Baeken2,3, Ilya Sergeev4, Taras Balandin2,3, Gleb Bourenkov8, Xavier Carpena9, Roeland Boer9, Nina Maliar4,4, Valentin Borshchevskiy2,3,4, Georg Büldt4, Ernst Bamberg10, & Valentin Gordeliy1,2,3,4*

The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools.

https://doi.org/10.1038/s41467-020-16032-y

*email: valentin.gordeliy@ibs.fr
Microbial rhodopsins (MRs) are transmembrane light-sensitive proteins, found in Archaea, Bacteria, Eukaryota, and also viruses. They possess diverse biological functions and are the core of breakthrough biotechnological applications, such as optogenetics. MRs are composed of seven transmembrane α-helices (A–G) with the cofactor retinal covalently bound to the lysine residue of helix G via the Schiff base (RSB). Due to a conflict of a presence of a cation close to the RSB proton, it was believed that Na⁺-pumping rhodopsins could not exist in nature. Despite this paradigm, the first light-driven Na⁺ pump KR2 was identified in *Krokobacter eikastus* in 2013. Its functional and structural properties were extensively studied. KR2 contains a characteristic for all known Na⁺-pumping rhodopsins (NaRs) set of N112, D116, Q123 residues in the helix C (NDQ motif). It was shown that the protein pumps Na⁺ when its concentration is much higher than that of H⁺, which is characteristic for physiological conditions, otherwise it acts as a H⁺ pump. An extensive mutational analysis of KR2 indicated key functional residues, such as N112, D116, Q123, but also H30, S70, R109, R243, D251, S254, G263,23,7,8. Moreover, potassium-pumping and potassium-channeling variants of KR2 were designed, making the protein a potential tool for optogenetics.3–5

A key question remains to be answered: what is the mechanism of pumping. Indeed, principles of Na⁺ transport by KR2 and other NaRs remain unclear. After light excitation the photocycle starts with the retinal isomerization from *all-trans* to *13-cis* configuration. In the Na⁺-pumping mode the protein is characterized by the K, L/M, and O intermediates (Fig. 1a). It is known that upon retinal isomerization the proton is translocated from the RSB to the D116 during M-state formation. Uptake of sodium occurs in the M-O transition. It was hypothesized that Na⁺ may pass the cytoplasmic gate comprised by Q123 and the neutralized RSB, and binds in the central region near D116, N112, and presumably D251 transiently in the O-state. It was also suggested that with the decay of the O-state, Na⁺ is released via R109 and the cluster of E111, E160, and R243 to the extracellular space. Therefore, the O-state is considered to be the key for elucidation of the Na⁺-pumping mechanism.

It is important that the protein always forms pentamers being reconstituted into lipid membrane. KR2 pentamers appear also under physiological conditions in crystals and detergent micelles. Hence, KR2 is considered to be a pentamer in the native membrane (Fig. 1a). Pentamerization is important for Na⁺ pumping by KR2. Particularly, all previous functional investigations of KR2 were performed on the pentameric form of the protein. Moreover, it was recently reported that in the ground state under physiological conditions the crystallographic data at 2.6 Å resolution by merging of three complete datasets obtained from three single crystals (see “Methods” section and Supplementary material). We have also collected more than 1.2M diffraction patterns using the stream of mesophase containing KR2 microcrystals injected to the X-ray beam, which were processed to 2.5 Å resolution (see “Methods” section and Supplementary material). Structure refinement identified nearly 1/1 ratio of the ground/O-states populations in crystals in both cases (see Supplementary material).

To verify that flash-cooling does not affect the conformation of the O-state, we solved X-ray structures of the illuminated KR2 at room temperature (RT) during continuous 332-nm laser illumination using both single-crystal and serial millisecond crystallography. These approaches allow to detect the dominant conformational changes of the photocycle. We collected RT crystallographic data at 2.6 Å resolution by merging of three complete datasets obtained from three single crystals (see “Methods” section and Supplementary material). We have also collected more than 1.2M diffraction patterns using the stream of mesophase containing KR2 microcrystals injected to the X-ray beam, which were processed to 2.5 Å resolution (see “Methods” section and Supplementary material). Structure refinement identified nearly 1/1 ratio of the ground/O-states populations in crystals in both cases (see Supplementary material).

The structures of the O-state at RT are identical to each other and also to that at 100 K, which indicates that cryo-cooling does not affect the O-state of KR2 (Supplementary Fig. 9). Hence, we describe further only the structure of cryo-trapped intermediate.
since it has higher resolution (2.1 Å) and occupancy of the O-state (100%).

Using the crystals with the trapped intermediate, we solved the structure of the O-state at 2.1 Å (Supplementary Table 1). The crystal symmetry and lattice parameters are the same as described previously for the ground state of the protein, with one KR2 pentamer in the asymmetric unit\(^3,4\). The structure demonstrates notable rearrangements compared to the ground state of KR2 (Fig. 2 and Supplementary Fig. 1). The root mean square deviation (RMSD) between the backbone atoms of the pentamers and protomers of the ground (PDB ID: 6REW\(^4\)) and the O-states (present work) are 0.55 and 0.53 Å, respectively. The main changes occur in the extracellular parts of the helices B and C, which are shifted by 1.0 and 1.8 Å, respectively (Supplementary Fig. 1). Helices A, D and G are also displaced by 0.7 Å in the extracellular regions (Supplementary Fig. 1).

Retinal-binding pocket of KR2 in the O-state. The polder\(^20\) electron density maps built around the retinal cofactor strongly suggest its all-trans configuration in the O-state, distorted around C_14 atom (Supplementary Figs. 2 and 3). Indeed, the fitting of the electron density maps with either 13-cis or the mixture of all-trans/13-cis retinal results in the appearing of strong negative peaks of the F_o–F_c difference electron maps at the level higher than 3\(\sigma\). Moreover, our data shows that 13-cis configuration would result in the steric conflict between C_15 and C_20 atoms of the retinal and W113 and W215 residues, respectively. Therefore, all-trans retinal was modeled into final structure of the O-state.
The positions of the residues comprising the retinal pocket, particularly W113, D251, D116, I150, Y218, and W215 are correspondingly shifted relative to those in the ground state (Supplementary Fig. 3). Surprisingly, all-trans configuration of the retinal in the O-state is in contrast to the recently published time- resolved Fourier-transform infrared spectroscopy (FTIR) data, where authors suggested 13-cis configuration in the O-state of NaRs21, but in line with the data on another light-driven Na+ pump from *Gillisia limnaea* (GLR), published in 2014, where the authors report a distorted all-trans configuration of retinal in the O-state22. In ref. 21 authors found a broad peak at 940 cm\(^{-1}\) in the FTIR spectrum of the O-state of KR2 containing 12, 14-D\(_2\) retinal, which was interpreted as 13-cis configuration of the retinal. Our data demonstrate that although retinal is all-trans in both the ground and the O-state, it is kinked notably around C\(_{14}\) atom only in the intermediate, but not in the ground state (Supplementary Figs. 2 and 3). This distortion may result in the appearing of the peak at 940 cm\(^{-1}\) described in ref. 21. We also cannot exclude that the inconsistency of the results on the retinal configuration in the O-state may originate from the different conditions and protein environment during the experiments.

The all-trans retinal configuration in the O-state of KR2 obtained in the present work means that relative location of the RSBH\(^{+}\) and D116 side chain is similar to that in the ground state (PDB ID: 6REW\(^{4}\)). RSBH\(^{+}\) is hydrogen bonded to D116 and the distance between them is 2.9 Å in the O-state (Fig. 2f). The
existence of this hydrogen bond is supported by time-resolved resonance Raman spectroscopy. Indeed, authors reported that C=N stretching frequencies of the RSB are very similar between the ground state (1640 cm$^{-1}$) and the O-state (1642 cm$^{-1}$). The C=N stretching frequency is a sensitive marker for the hydrogen bond strength of the protonated RSB. The similar frequencies of the C=N stretching mode support that relative locations of the RSBH$^+$ and D116 side chain are similar to those in the ground state.

Sodium-binding site inside the protein. The crystal structure of the O-state of KR2 clearly reveals the Na$^+$-binding site near the RSB, comprised of S70, N112, and D116 side chains and main chain oxygen of V67 (Fig. 2f and Supplementary Figs. 2 and 4). Previous mutational analysis confirms the importance of these residues for KR2 pumping activity. Indeed, D116 is crucial for KR2 functioning4, and N112 determines ion selectivity4. Substitution of S70 with threonine or alanine dramatically decreases Na$^+$-pumping activity of KR23,5. The mean distance between Na$^+$ and the coordinating oxygen atoms is 2.3 Å (Fig. 2f and Supplementary Fig. 2).

While in the ground state KR2 is in the ‘expanded’ conformation, in the O-state N112 is flipped towards S70 and D116, therefore the overall configuration is similar to that of the ‘compact’ conformation of KR24,12 (Fig. 2). This is also evidenced by disappearance of the big polar cavity near the RSB (SBC1) and enlargement and elongation of the cavity near R109–D251 pair (SBC2) in the O-state (Fig. 2 and Supplementary Fig. 6). Four water molecules, filling the SBC1 in the ‘expanded’ ground state (Fig. 2c), are displaced as follows: two of them are found in the small cavity formed in the intermediate near S70 at the pentamerization interface, one remains at the same place and is coordinated by N112 and D251, and the last one is moved to the SBC2 near L75 and R109 at the inner extracellular part of the protein (Fig. 2f). Upon sodium binding and formation of the ‘compact’ state L74 side chain also flips simultaneously with the N112 in order to avoid the steric conflict of these two residues. Our mutational analysis indicated that L74A substitution dramatically decreases pumping activity of the protein (Supplementary Fig. 7). Hence, this additionally supports the importance of the ‘compact’ conformation for Na$^+$ pumping by KR2.

Interestingly, the location of the sodium-binding site in the O-state of KR2 is similar to that of the chloride ion-binding sites in the ground state of light-driven chloride pumps (Supplementary Fig. 8). Namely, in a chloride-pumping rhodopsin from *Nonlabens marina* S1-08 (CIR)21,24, the anion is coordinated by the N98 and T102 of the NTQ motif, which are analogous to the N112 and D116 of the NDQ motif of light-driven sodium pumps (Supplementary Fig. 8).

Conformational switches guide Na$^+$ uptake and release. The similarity of protein conformation in the O-state to the ‘compact’ is intriguing, however, could easily be explained. Instead, relative location of the RSBH$^+$ and Na$^+$-D116$^-$ pair makes the distribution of the charges in the central part of the protein nearly identical to that of the KR2 with protonated D116 at acidic pH2,4. The structures of KR2 in the ‘compact’ conformation are also observed only at low pH1,3. It was thus suggested that the ‘compact’ conformation may appear in response to the D116 neutralization4. To understand better the nature of conformational switches in KR2 and the influence of D116 protonation on the protein conformation, we produced and crystallized KR2-D116N at pH 8.0, which mimics the WT protein with fully protonated D116 and solved its structure in the pentameric form at 2.35 Å.

Confirming our hypothesis, the structure shows that introduction of asparagine at the position of D116 led to the flip of the side chains of N112 and L74 in comparison to the ground state of the wild type (WT) protein and disappearance of the SBC1, characteristic for the ‘expanded’ conformation (Supplementary Fig. 6). Overall, the structure of D116N is very similar to that of the O-state (RMSD 0.2 Å) and also to the ‘compact’ conformation (RMSD 0.3 Å) of the KR2-WT (Supplementary Fig. 6). However, Na$^+$ is absent inside the protomers and the relative orientation of the RSBH$^+$ and N116 is altered (Supplementary Fig. 6). Particularly, the RSBH$^+$ forms two alternative conformations, and hydrogen bond between the RSBH$^+$ and N116 is absent (see Supplementary material). We also observed that D116 protonation destabilizes the pentameric assembly of KR2 (see Supplementary material). Thus, we suggest that neutralization of D116 is the key determinant of the formation of the ‘compact’ conformation, which explains their structural similarity.

The structures of KR2 O-state and D116N mutant, together with previously described pH dependence of the KR2 organization4, allow us to conclude that the ‘compact’ conformation and, particularly, N112 flip towards D116, stabilizes neutralized RSB counterion and correspondingly neutral transiently formed Na$^+$–D116$^-$ pair during the photocycle.

It was suggested previously that the SBC1 in the ‘expanded’ conformation surrounded by R109, N112, W113, D116, and D251 might be a transient Na$^+$-binding site in an intermediate state of the protein photocycle4,12. However, the present work shows that Na$^+$ binds far from R109 and D251 (Fig. 2d). Since the release of Na$^+$ occurs upon the O-to-ground state transition, which structurally corresponds to ‘compact’-to-‘expanded’ switch, we suggest that the ‘expanded’ conformation is also important for the ion release to the extracellular space. Importantly, Na$^+$ uptake and release are guided by the switches from the ‘expanded’ to the ‘compact’ and then again back to the ‘expanded’ conformations, respectively.

Sodium translocation pathway. Although the structure of the KR2 protomer near the RSB is altered in the O-state, the organization of both putative ion uptake and ion release regions remains the same to those in the ground state (Fig. 3). It is not surprising when we consider the cytoplasmic part of the protein. In the ground state Na$^+$ does not penetrate to the inside of KR2. At the same time, in the O-state Na$^+$ should not have a way to return back to the cytoplasm. Therefore, the pathway, formed upon transition from the ground to the O-state, connecting the ion uptake cavity (IUC) with the RSB region should be blocked in both ground and the O-states. Consequently, the restoration in the O-state of the initial conformation of S64–Q123 pair, separating the IUC from the RSB environment, is expected. On the other hand, the same organization of the E11–E160–R243 cluster and putative ion release cavity (pIRC1) in the ground and O-states may seem quite surprising. Previously, these residues were suggested to line the pathway of Na$^+$ release to the extracellular bulk during the direct O-to-ground transition3. The absence of the disturbance in this region means either that the energy stored in the distorted all-trans retinal in the O-state is enough to relocate Na$^+$ directly from the core of the protein to the bulk without any transient-binding sites or/and that there might be another ion release pathway in KR2. Indeed, the second hypothesis is supported by the mutational analysis, which showed that substitution of E11, E160, or R243 to alanines or polar non-charged residues does not abolish Na$^+$-pumping activity, however, affects the stability of the proteins2,3,5. The other
(alternative) putative way for Na^+ release goes from the inner extracellular part of the protein through the elongated in the O-state SBC2 to the bulk near the Na^+ bound at the surface of KR2 in both the ground and O-states. These channel-like pathway is constricted with the only side chain of Q78 residue (Figs. 2, 3d). The pathway propagates from the inner region between Q78, N106, and R109 to the relatively large cavity (pIRC2) between helices B and C, BC loop and helix A’ of adjacent protomer at the extracellular side (Figs. 2, 3 and Supplementary Fig. 9). The cavity proceeds further to a concave aqueous basin facing the extracellular solution, formed in the central pore of the KR2 pentamer at the extracellular side and is surrounded by Q78, N81, S85, D102, Y108, and Q26’ residues and filled with water molecules in both the ground and O-states (Fig. 3). Notable displacements of these residues and waters occur in the O-state, such as the flip of N81 towards H30’ of the adjacent protomer (Supplementary Fig. 10). Consequently, in the O-state additional water molecule appears in the pIRC2, which is coordinated by hydrogen bonds with E26’, H30’, and N81 (Supplementary Fig. 10). The positions of Q78 and Y108 are also altered in the O-state (Supplementary Fig. 10).

To probe the possible ion release pathways, we conducted 10 short metadynamics simulations starting from the sodium-bound conformation (Supplementary Fig. 11 and Supplementary Movie 1). The simulations revealed that the R109 sidechain forms a barrier for sodium exiting SCB1, and changes its position to allow sodium passage. Upon passing R109, Na^+ either exits the protein via pIRC2 (8 simulations out of 10), or proceeds towards pIRC1 (two simulations). In the first scenario, the ion is quickly released towards the concave basin in the middle of KR2 pentamer in the vicinity of another ion found at the interface between the protomers, and is sometimes observed to replace it (Supplementary Movie 1). In the second scenario, the ion samples different locations around the E11–E160–R243 triad and is later released via N106 and Q157 on the outer side of the pentamer.

Importantly, the organization of the pIRC2 region is identical in the O-state and KR2-D116N (Supplementary Fig. 12A). It means that the rearrangements on the surface of the KR2 occur not directly in response to the retinal isomerization upon photon absorption, but rather due to the redistribution of charges in the central inner part of the protein protomer. Such long-distance interactions between the RSB-counterion and pentamer surface were already studied for the WT and H30A variant of KR2. Recently, it was also shown that there is an allosteric communication between the interprotomer Na^+-binding site and the RSB hydrogen bond already in the ground state. Thus, structural rearrangements of the RSB-counterion pair upon Na^+ release and corresponding ‘compact’-to-‘expanded’ conformational switch may allosterically affect the interprotomer Na^+-binding site, promoting Na^+ unbinding from the site, observed in metadynamics simulations.

To gather more details about long-distance interactions between the protein core and surface, we solved the structure of pentameric form of KR2-H30A at pH 8.0 at 2.2 Å.

Overall, the structure of this mutant is nearly the same as that of the ground state of WT protein (RMSD 0.15 Å) (Supplementary Figs. 5, 13). The organization of their inner cytoplasmic, central, and extracellular parts is identical. Surprisingly, in contradiction to the earlier FTIR experiments, Na^+ bound at the oligomerization interface of the WT protein is also present in H30A. However, the region of H30 is altered (Supplementary Fig. 12). Particularly, H30 side chain is replaced by two additional water molecules (w_{H30} and w_{H30}') (Supplementary Fig. 12). Moreover, the H30A mutation leads to appearance of second alternative conformation of Y108, not identified in other structures of KR2 or its variants (Supplementary Fig. 12). It was shown that H30A is more selective to sodium and almost does not pump protons. As the only existing differences in the structures of the WT and the mutant occur near Q78, N81, Y108, H30’ and pIRC2, we suggest that this region is important for...
cation selectivity, which additionally supports the hypothesis that this region is a part of ion translocation pathway.

To verify the suggested ion-release pathway, we performed functional studies of KR2 mutants in E. coli cells suspension, similar to previous works3, 27 (Supplementary Fig. 7). The results showed that Q78 is the key residue, which is likely to act as a gate for sodium, flipping upon sodium passage (Q78L mutant remains almost fully functional). The blocking of Q78 motion (Q78Y, W mutations) resulted in dramatic decrease of the pumping activity. In Q78A mutant, similar to Q123A, the sodium pumping activity is retained, however decreased notably in comparison to the WT protein. Another interesting finding was that Y108A mutant almost fully lost its pumping ability.

Hence, we suggest that Na\(^+\) translocation pathway propagates from IUC to pIRC2 via a chain of polar inner cavities, which are modified during photocycle. IUC and pIRC2 are separated from the inside of KR2 by two weak gates near Q123 and Q78, respectively. This makes the KR2 ion pathway similar to that of the channelrhodopsin 228 (ChR2) (Supplementary Fig. 14). However, unlike in CrChR2, KR2 has the Na\(^+\)-binding site in the central region near the RSB.

Mechanism of sodium pumping. Crystal structures of the O-state and D116N and H30A mutants of KR2 together with available literature data allow us to suggest a mechanism of protein functioning (Fig. 4).

1. **Step 1:** In the ground state KR2 is in the ‘expanded’ conformation with the SBC1 filled with four water molecules. The RSBH\(^+\) is hydrogen bonded to its counterion D116\(^-\). The Q123-S64 gate separates the IUC and the RSB. With the absorption of the light photon the retinal isomerizes from all-trans to 13-cis configuration and the red-shifted K-state appears in nanoseconds, followed by the formation of the L/M intermediate in about 30 \(\mu\)s. The proton is translocated from the RSBH\(^+\) to the D116\(^-\) with the formation of the M-state and the hydrogen bond between them is absent in this intermediate. The Q123-S64 gate also opens in this step.

2. **Step 2:** With the rise of the O-state Na\(^+\) passes the gate and deprotonated RSB, and binds between S70, N112, and D116 belonging to helices B and C. Na\(^+\) uptake results in the proton translocation from D116 back to the RSB with the restoration of the RSB-counterion hydrogen bond, thus preventing the Na\(^+\) backflow to the cytoplasmic side. It also causes the flip of N112 side chain for the stabilization of Na\(^+\)–D116\(^-\) pair, therefore, the ‘compact’ state appear at this step. Retinal is still in the distorted all-trans configuration in the O-state.

3. **Step 3:** With the decay of the O-state retinal returns completely to its ground configuration and the ‘expanded’ conformation of KR2 occurs with the N112 flip back to the pentamerization interface, thus opening the way for Na\(^+\) release. In the O-state the release pathway is prepared as it is evidenced from the O-state structure. We suggest that the release preferentially involves Q78 and proceeds towards the cavity, formed by N81, Y108, and H30 of adjacent protomer (pIRC2). We also suggest that four water molecules, filling the SBC1 in the dark state are involved in the Na\(^+\) hydration during its transitions inside the protein. The Na\(^+\) release might proceed using the relay mechanism, when the ion, released from the KR2 protomer, replaces the ion, bound at the protein oligomerization interface. The proposed relay mechanism allows lowering the energy barriers for facilitation of the Na\(^+\) uptake, “expanded”-to-“compact” switch, final retinal relaxation.

Fig. 4 Proposed Na\(^+\) pumping mechanism. Schematic side section view of the KR2 pentamer is shown. Membrane core boundaries are shown with black lines. Cavities are demonstrated as white ellipses. Enlarged view of the RSB region is shown at the left part of the pentamer. The 13-cis configuration of the retinal cofactor is modeled manually for schematic representation. Na\(^+\) is shown with violet spheres. Black arrows indicate proposed Na\(^+\) uptake and release pathways. Violet arrows indicate rearrangement of N112 side chain during “expanded”-to-“compact” and back “compact”-to-“expanded” switches. Small gray arrows indicate the translocation of the hydrogen from the Schiff base to D116 during the formation of the M-state and following reprotonation of the Schiff base from the D116 in the M-to-O transition. Retinal cofactor is colored teal. Waters are shown with red spheres. Hydrogen bonds in the RSB region are shown with black dashed lines.
release. The E11–E160–R243 cluster and the cavity near it (pR1C1), suggested earlier to be involved in Na+ release, thus may be involved mainly in protein stabilization, rather than in ion translocation pathway.

Last but not least, in the absence of Na+ KR2 acts as a proton pump with the significantly altered photocycle and the absence of the pronounced O-state. The long living L/M/O-like state decays slowly in the proton-pumping mode2. We note that this is in the pronounced O-state. The long living L/M/O-like state decays for the Na+ that the formation of the K-, L- and M-states is the same pump with the signiﬁcant agreement with the suggested mechanism of Na+ uptake from that side in the M-state, as well as in evidence by a recent analysis, as well as the absence of any intermediate states during the NT8 robotic system (Formulatrix, USA). The crystals were grown at 22 °C and in the growing bacterial culture dropped below 10 mg/L, 10 µM all-

Methods

Protein expression and purification. E. coli cells of strain C41 (DE3) (Lucigen, USA) were transformed with the KR2 expression plasmid. Transformed cells were grown at 37 °C in shaking baf-ﬂask ﬂasks in an autoinducing medium, ZYP-505229 containing 100 mg/L ampicillin, and were induced at optical density OD\textsubscript{600} of 0.7–0.9 with 1 µM isopropr β-d-thiogalactopyranoside (IPTG) and 10 µM all-trans-retinal. 3 h after induction, the cells were collected by centrifugation at 4000 × g for 10 min and were washed three times with unbuffered salt solution (100 mM NaCl, and 10 mM MgCl\textsubscript{2}) with 30-min intervals between the washes to allow the exchange of the ions inside the cells with the bulk. After that, the cells were resuspended in 100 mM NaCl solution and adjusted to an OD\textsubscript{600} of 8.0. Time-resolved absorption measurements were performed on 3 ml of stirred cell suspensions kept at 1 °C. The cells were illuminated for 5 min with a halogen lamp (Infralux 5000–1, VOLIP) and the light-induced pH changes were measured with a pH meter (LAB 850, Schott Instruments). Measurements were performed with the addition of 30 µM of proteinophore carbonyl cyanide 3-chorophenyl hydrazone (C83).
outgoing objectives. Ground states spectra (100 ms acquisition time averaged 20x) were collected on crystals flash-cooled in liquid nitrogen and kept under a cold nitrogen stream at 100 K. To maximize the population of the O-state, a crystal was put under constant laser illumination at 100 K, the nitrogen stream was then blocked for 2 s, then the laser was switched off once the crystal is back at 100 K. For the accumulation of the O-state laser power density of 7.5 mW/cm² at the position of the sample was used. The mean size of the crystals was 200 × 100 × 30 µm³ (Supplementary Fig. 22). The plate-like crystals were rotating so that the largest plane (200 × 100 µm²) was as perpendicular to the laser beam. The laser beam was focused to the size of 500 × 500 µm² (1/e²). A UV–visible absorption spectrum was then recorded to show the red-shifted absorption maximum characterizing the O-state of KR2. The crystals with accumulated intermediate state were then stored in liquid nitrogen and transported to the PETRAIII, Hamburg, Germany for the X-ray experiments and showed the same structure as that obtained using crystals with the O-state, accumulated directly at the P14 beamline of PETRAIII.

Acquisition and treatment of diffraction data. X-ray diffraction data of D116N and H30A mutants were collected at the beamlines ID23-1 and ID29 of the ESRF, Grenoble, France using a PILATUS 6M and EIGER 16M detectors, respectively. The data collection was performed using MxCube2 software. X-ray diffraction data of the KR2 O-state at 100 and 293 K (room temperature, RT) was collected at the P14 beamline of the PETRAIII, Hamburg, Germany, using EIGER 16M detector. For the collection of the X-ray diffraction data at RT the crystals in the cryoprotectant were mounted on a cryoloop and maintained frozen in the beam of the humid air (85% humidity). The beam of humid air was provided by the HC humidity controller (ARINAX, France). For activation of the proteins in crystals and obtaining the structure of the O-state at RT the laser flash was synchronized with the X-ray detector. The laser was illuminating the crystal only during X-ray data collection, thus preventing drying and bleaching. The crystals were rotating during the data collection and laser illumination. Diffraction images were processed using XDS. The reflection intensities of the monomeric form of D116N mutant were scaled using the AIMLESS software from the CCP4 program suite. The reflection intensities of all the pentameric forms were scaled using the Staraniso server. There was no possibility to obtain the SAD of KR2 for both structures at RT diffraction data from three crystals was used (Supplementary Table 1). In all other cases, diffraction data from one crystal was used. The data statistics are presented in Table S1.

Serial crystallography data collection and processing. Serial micosndec serial crystallography data of the O-state of KR2 was obtained at RT at BL13-XALOC beamline of ALBA (Barcelona, Catalunya) using a PILATUS 6M detector working at 12.5 Hz and a 60 × 40 µm FWHM (HxV) sized beam at 12.6 keV (1.4 × 10¹² ph/beam). For that purpose, an LCP stream of protein microcrystals was injected into the focus region using a LCP injector, placed at 45° of the diffractometer table, with the help of an ÄKTA pump. A source with a single wavelength at 12.5 Hz and a 60 × 40 µm FWHM (HxV) sized beam at 12.6 keV (1.4 × 10¹² ph/beam) was focused to the size of 500 × 500 µm. The hit rate of 29%. The overall time of data collection from a sample with a total deposition rate for hills was 0.5 ps; the width and height of deposited microcrystals was 0.5 ps and 30 nl/min, respectively. The simulation continued until the exit of ion from the protein interior was observed (typically, during 5–20 ns). We have carried out 10 MD simulations in total, 2 replicates for each of the 5 protomers of the KR2 pentamer.

Reporting summary. Further information on research data is available in the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding author upon reasonable request. A reporting summary for this Article is available as a Supplementary Information File. The source data underlying Fig. 1b, c, e and Supplementary Figs. 7 and 21 are provided as a Source Data file. Crystallographic data that support the findings of this study have been deposited in the Protein Data Bank (PDB) with the accession codes: PDB: 6X7T (the O-state of KR2 at 100K), PDB: 6TBY (D16N mutant in monomeric form), PDB: 6YRZ (D116N mutant in pentameric form), PDB: 6YC0 (steady-state-SMX activated state of KR2 at RT), PDB: 6YCI (H30A mutant in pentameric form), PDB: 6YCO (dark-state of KR2 at RT), PDB: 6YCT (dark-state of KR2 at 100K) PDB: 6YCU (steady-state activated state of KR2 at RT). Serial crystallography data corresponding to the 6YCO model have been deposited to the Coherent X-ray Imaging Data Bank with CXYDB ID 141. These include detector .cbf files without any additional treatment for images with more than 30 diffraction peaks, as described in "Methods" section.

Received: 31 January 2020; Accepted: 3 April 2020; Published online: 01 May 2020

Structure determination and refinement. Initial phases for the pentameric structure were successfully obtained in the C2221 space group by molecular replacement (MR) using MOLREP45 using the 6REW structure as a search model. Initial phases for monomeric KR2-D116N were successfully obtained in the I222 space group by MR using the 4XTL structure as a search model. The initial MR models were iteratively refined using REFMACS46, PHENIX47, and Coot48.

Molecular dynamics simulations. The simulation system consisted of a KR2 pentamer in the O-state with sodium ions in SBC2 and cocrystallized water molecules. The proteins was embedded in a POPC bilayer (52% lipid) and then solvated with TIP3P water with a Na+/-Cl− concentration of 150 mM using the CHARMM-GUI web-service. The simulation box contained 94,817 atoms in total. All ionizable amino acids were modeled in their standard ionization state at pH 8, including D116 and D251 which were modeled charged. The CHARMM-GUI recommended protocols were followed for the initial energy minimization and equilibration of the system. The atoms of protein and lipids in the system were subjected to a harmonic positional restraint and 5000 steps of steepest descent minimization followed by two 25 ps equilibration steps in the NVT ensemble using Berendsen thermostat and 1 ps 25 ps equilibration steps in the NVT ensemble using Nose–Hoover thermostat and barostat. During all equilibration steps, the force constants of the harmonic positional restraints were gradually reduced to zero. The system was further equilibrated for 10 ns in the NPT ensemble with Nose–Hoover thermostat and Parrinello–Rahman barostat, which were also used for the further production simulations. The temperature and pressure were set to 303.5 K and 1 bar with temperature and pressure coupling time constants τT = 1.0 ps⁻¹ and τp = 0.5 ps⁻¹, respectively. All MD simulations were performed with GROMACS version 2018.19. The time step of 2 fs was used for all the simulations except for the early steps of equilibration. The CHARMM36 force field37 was used for the lipids, and ions. Parameters for retinal bond to lysine were adapted from ref. 52.

In order to investigate the putative sodium translocation pathways, metadynamics approach (metaMD) was employed53. This method is based on biasing of the potential surface via addition of repulsive functionalities ("hills", typically Gaussians) which force the investigated molecular system to explore its configurational space broader and faster than in a regular unbiased MD simulation. Since the correct sampling of protein degrees of freedom relevant to the ion release at the late states of the photocycle appears problematic, the performed metadynamics simulations allowed us to reveal possible sodium unbinding pathways rather than quantitatively assess the free energies changes associated with them. We used the PLUMED plugin for GROMACS to perform metaMD simulations.44 The projections of the vector connecting the sodium ion and its original position onto x, y, and z directions were used as the collective variables (i.e., 3 CVs were used). In order to prevent sodium passage back to the cytoplasmic side we applied a flat-bottom potential (k = 1000 kJ/mol/nm²) in the normal to the membrane direction, which discouraged ion moving towards the cytoplasmic side. Also, harmonic restraints were applied to all protein Ca atoms above the Ca atom of K255 (in the direction of CP) to prevent the overall motion of the protein complex. The deposition rate for hills was 0.5 ps; the width and height of deposited hills were equal to 0.05 nm and 1 kJ/mol, respectively. The simulations were continued until the exit of ion from the protein interior was observed (typically, during 5–20 ns). We have carried out 10 metaMD runs in total, 2 replicates for each of the 5 protomers of the KR2 pentamer.

References
1. Gushchin, I. & Gordeliy, V. Microbial rhodopsins. 19–56, https://doi.org/10.1007/978-981-10-7757-9_2 (2018).
2. Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).
3. Gushchin, I. et al. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22, 390–398 (2015).
4. Kovalev, K. et al. Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci. Adv. 5, eaa2671 (2019).
5. Kato, H. E. et al. Structural basis for Na⁺ transport mechanism by a light-driven Na⁺ pump. Nature 521, 48–53 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16032-y | www.nature.com/naturecommunications

NATURE COMMUNICATIONS | ARTICLE | (2020) 11:2137 | https://doi.org/10.1038/s41467-020-16032-y | www.nature.com/naturecommunications
6. Kato, Y., Inoue, K. & Kandori, H. Kinetic analysis of H+–Na+ selectivity in a light-driven Na+–pumping rhodopsin. J. Phys. Chem. Lett. https://doi.org/10.1021/acs.jpclett.1c00237 (2015).

7. Abe-Yoshizumi, R., Inoue, K., Kato, H. E., Nureki, O. & Kandori, H. Role of Asn112 in a light-driven sodium ion-pumping rhodopsin. Biochemistry 55, 5790–5797 (2016).

8. Shevchenko, V. et al. 6 Sodium and Engineered Potassium Light-Driven Pumps. Optogenetics: From Neuronal Function to Mapping and Disease Biology (ed Krishnarao Appasani) 79–92 (Cambridge University Press, 2017).

9. Vogt, A. et al. Engineered passive potassium conductance in the KR2 sodium pump. Bioophys. J. https://doi.org/10.1016/j.bpj.2019.04.001 (2019).

10. Kandori, H., Inoue, K. & Tsunoda, S. P. Light-driven sodium-pumping rhodopsin: a new concept of active transport. Chem. Rev. https://doi.org/10.1021/acs.chemrev.8b00548 (2018).

11. Nishimura, N., Mizuno, M., Kandori, H. & Mizutani, Y. Distortion and a strong hydrogen bond in the retinal chromophore enable sodium-ion transport by the sodium-ion pump KR2. J. Phys. Chem. B https://doi.org/10.1021/acs.jpcb.9b00928 (2019).

12. Gushchin, I. et al. Structure of the light-driven sodium pump KR2 and its implications for optogenetics. FEBS J. 283, 1232–1238 (2016).

13. Shibata, M. et al. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8, 8626 (2018).

14. Kaur, J. et al. Solid-state NMR analysis of the sodium pump Krokinobacter rhodopsin 2 and its ΔuctA mutant. J. Struct. Biol. https://doi.org/10.1016/j.jsb.2018.03.001 (2018).

15. Gerwert, K., Freier, E. & Wolf, S. The role of protein-bound water molecules in microbial rhodopsins. Biochim. Biophys. Acta—Bioenerg. https://doi.org/10.1016/j.bbabio.2013.09.001 (2014).

16. Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat. New Biol. 233, 149–152 (1971).

17. Gordeliy, V. L. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II–transducere complex. Nature 419, 484–487 (2002).

18. Moukhmetzianov, R. et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440, 115–119 (2006).

19. Weinert, T. et al. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science https://doi.org/10.1126/science.aaw6634 (2017).

20. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. Sect. D https://doi.org/10.1107/S0907444910052890 (2010).

21. Chen, H. F. et al. Time-resolved FTIR study of light-driven sodium pump rhodopsins. Phys. Chem. Chem. Phys. https://doi.org/10.1039/c8cp02599a (2018).

22. Balashov, S. P. et al. Light-driven Na+ pump from Gillisia limnaea: a high-affinity Na+–binding site is formed transiently in the photocycle. Biochemistry http://dx.doi.org/10.1021/acs.biochem.1c00464 (2014).

23. Yoshizawa, S. et al. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1403051111 (2014).

24. Yun, J. H. et al. Non-cryogenic structure of a chloride pump provides crucial implications for optogenetics. Acta Crystallogr. Sect. D https://doi.org/10.1107/S0907444919042850 (2019).

25. Vagin, A. & Teplyakov, A. Molecule replacement with MOLREP. Acta Crystallogr. Sect. D https://doi.org/10.1107/S0907444909065295 (2010).

26. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D 60, 2126–2132 (2004).

27. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

28. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

29. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

30. Zhu, S., Brown, M. F. & Feller, S. E. Retinal conformation governs pH6 of protonated Schiff base in rhodopsin activation. J. Am. Chem. Soc. 135, 9391–9398 (2013).

31. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

32. Tribello, G. A., Bonomi, M., Branduardi, D., Camilli, C. & Bussi, G. PLumed 2: new feathers for an old bird. Comput. Phys. Commun. 185, 504–613 (2014).

33. Maia, F. R. N. C. The coherent X-ray imaging data bank. Nat. Methods https://doi.org/10.1038/nmeth.2110 (2012).

34. Lomize, M. A., Pogozheva, I. D., Joo, H., Hob, M., Lomize, H. I. & Lomize, A. L. POM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

35. Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

Acknowledgements
We acknowledge the Structural Biology Group of the European Synchrotron Radiation Facility (ESRF) and The European Molecular Biology Laboratory (EMBL) unit in Hamburg at Deutsche Elektronen-Synchrotron (DESY) for granting access to the synchrotron beamlines. Special thanks are given to BL13-XALOC technician, ALBA floor coordinator, M. Most, most special, to J.M. Martin-Garcia (Centre for Applied Structural Discovery-ASYU), for their contribution to adapt the injector to XALOC Beamsline specifications. This work was supported by the common program of Agence Nationale de la Recherche (ANR), France and Deutsche Forschungsgemeinschaft, Germany (ANR-15-CB11-0029-02), Ministry of Science and Higher Education of the Russian Federation (075-0033-20-03/FSMG-2020-0003) and by funding from Frankfurt: Cluster of Excellence RESEARCH Facility (ESRF) and The European Molecular Biology Laboratory (EMBL) unit in Hamburg at Deutsche Elektronen-Synchrotron (DESY) for granting access to the synchrotron beamlines. Special thanks are given to BL13-XALOC technician, ALBA floor coordinator, M. Most, most special, to J.M. Martin-Garcia (Centre for Applied Structural Discovery-ASYU), for their contribution to adapt the injector to XALOC Beamsline specifications. This work was supported by the common program of Agence Nationale de la Recherche (ANR), France and Deutsche Forschungsgemeinschaft, Germany (ANR-15-CB11-0029-02), Ministry of Science and Higher Education of the Russian Federation (075-0033-20-03/FSMG-2020-0003) and by funding from Frankfurt: Cluster of Excellence RESEARCH Facility (ESRF) and The European Molecular Biology Laboratory (EMBL) unit in Hamburg at Deutsche Elektronen-Synchrotron (DESY) for granting access to the synchrotron beamlines. Special thanks are given to BL13-XALOC technician, ALBA floor coordinator, M. Most, most special, to J.M. Martin-Garcia (Centre for Applied Structural Discovery-ASYU), for their contribution to adapt the injector to XALOC Beamsline specifications.
Recherche CBH-EUR-GS (ANR-17-EURE-0003). Data collection, data treatment and structure solution were supported by RFBR (19-29-12022).

Author contributions

C.B., S.V., and D.Z. expressed and purified the proteins; T.B. supervised the expression and purification; R.A. and K.K. crystalized the proteins; D.Z. helped with crystallization; K.K. collected absorption spectra from crystals and performed cryo-trapping of the intermediate; A.R. and P.C. supervised the absorption spectra collection; D.V. performed flash photolysis experiments on KR2 crystals and processed the data; K.K. helped with the flash photolysis experiments; K.K. collected the diffraction data with the help of R.A., D.Z., and solved the structures; X.C. and R.B. performed serial crystallography data acquisition at XALOC; E.Z. and E.M. processed the serial crystallography data; I.G. supervised structure refinement and analysis; G.B. helped with data collection; P.O. performed the molecular dynamics simulations; I.S. prepared the systems for simulations; M.R. performed oligomerization analysis of the proteins; A.A., N.M., V.B., E.B., and G.B. helped with data analysis, V.G. supervised the project; K.K. and V.G. analyzed the results and prepared the manuscript with input from all the other authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-16032-y.

Correspondence and requests for materials should be addressed to V.G.

Peer review information Nature Communications thanks Steffen Wolf and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020