Abstracts

Efficiently Combining Pseudo Marginal and Particle Gibbs Sampling 2
On some Stability and Uniform Fluctuation Estimates of Ensemble Kalman-Bucy Filters 3
Extending Simulation-Based Bayesian Inference to Higher Dimensions 4
Particle Filters in High Dimensions 5
Langevin MCMC: theory and methods 6

Approximate Bayesian Forecasting 7
Particle Rolling MCMC with Double Block Sampling: conditional SMC Update Approach 8
Spectral Embedding of Networks 9
Unbiased Hamiltonian Monte Carlo with Couplings 10
Bayesian Nonparametric Autoregressive Models via Latent Variable Representation 11
Approximate Bayesian Computation with the Wasserstein Distance 12

Histogram-Free Multicanonical Monte Carlo Sampling Method for Statistical Physics of Systems with Continous Phase Space 13
High-dimensional Inferencing for Multi-object Dynamical Systems 15
Delayed Sampling and Automatic Rao–Blackwellization of Probabilistic Programs 16
Particle Filtering for Stochastic Navier-Stokes Signal Observed with Additive Noise 17
The Coupled Conditional Backward Sampling Particle Filter 18

Optimisation-based Sampling Approaches for Hierarchical Bayesian Inference 19
Variance Estimation in the Particle Filter 20
Filtering and Smoothing through Lagrangian Interacting Particle Representations 21
A Duality Formula and a particle Gibbs Sampler for Continuous Time Feynman-Kac Measures on Path Spaces 22

High-dimensional Bayesian Semiparametric Quantile Models 23
Importance Sampling Type Estimators based on Approximate Marginal MCMC 24
The Viterbi Process and Parallelized Estimation in High-Dimensions 25
Efficiently Combining Pseudo Marginal and Particle Gibbs Sampling

DAVID GUNAWANa, CHRISTOPHER K. CARTERa, AND ROBERT KOHNa

aUniversity of New South Wales, Australia

ABSTRACT

Particle Markov Chain Monte Carlo methods are used to carry out inference in non-linear and non-Gaussian state space models, where the posterior density of the states is approximated using particles. Deligiannidis et al. \cite{1} introduce the correlated pseudo marginal sampler and show that it can be much more efficient than the standard pseudo marginal approach. Mendes et al. \cite{2} propose a particle MCMC sampler that generates parameters that are highly correlated with the states using a pseudo marginal method that integrates out the states, while all other parameters are generated using particle Gibbs. Our article shows how to combine these two approaches to particle MCMC to obtain a flexible sampler with a superior performance to each of these two approaches. We illustrate the new sampler using a multivariate factor stochastic volatility model with leverage.

References

\cite{1} Deligiannidis, G., Doucet, A., and Pitt, M. (2017). The correlated pseudo-marginal method. \textit{arXiv preprint: 1511.04992v4}. Technical Report.

\cite{2} Mendes, E. F., Carter, C. K., Gunawan, D., and Kohn, R. (2018). Flexible particle markov chain monte carlo methods with an application to a factor stochastic volatility model. \textit{arXiv preprint arXiv:1401.1667}.
On some Stability and Uniform Fluctuation Estimates of Ensemble Kalman-Bucy Filters

ADRIAN BISHOPa AND PIERRE DEL MORALb

aData61/CSIRO and University of Technology Sydney, Australia
bInstitut National de Recherche en Informatique et en Automatique, France

ABSTRACT

The ensemble Kalman filter is a data assimilation method for filtering in high dimensional state-space models arising in, e.g., fluid mechanics, weather forecasting, and geophysical sciences. In the linear case, this Monte Carlo method can be interpreted as a mean-field McKean-Vlasov type particle interpretation of a particular nonlinear Kalman-Bucy diffusion (related to the classical Kalman-Bucy filter). This talk presents a series of new fluctuation and stability results on these nonlinear diffusion processes; and importantly on their mean-field approximations. Results focused on the behaviour of the flow of the relevant sample covariance arising in the mean-field approximation are central. This latter idea amounts to the study of particular matrix-valued Riccati diffusions. Results under weak signal/observation model assumptions are sought; in particular, unstable signals and classical observability conditions are accommodated.
Extending Simulation-Based Bayesian Inference to Higher Dimensions

CHRISTOPHER DROVANDI
Queensland University of Technology Brisbane, Australia

ABSTRACT

Approximate Bayesian computation (ABC) is now a well-known method for performing approximate Bayesian inference for models with intractable likelihoods. Likelihood evaluations are avoided by repeated model simulation for various parameter values and keeping those that generate simulated data “close” to the observed data. ABC bases this comparison on a summary statistic believed to be informative about the model parameter, and its choice involves a trade-off between dimensionality and information loss. Standard ABC methods are known to scale poorly with summary statistic and model parameter dimension. In this talk I will describe how likelihood-free methods can be extended to handle a higher dimensional summary statistic and/or model parameter. The methodologies involve some combination of the synthetic likelihood (multivariate normal approximation of the intractable summary statistic likelihood), shrinkage estimation of covariance matrices and variational Bayes methods. I will also explore the robustness of the methods when the multivariate normal synthetic likelihood assumption is violated. This is joint work with Leah South, Ziwen An, Victor Ong, David Nott, Scott Sisson and Minh-Ngoc Tran.
Particle Filters in High Dimensions

Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, and Igor Shevchenko

Imperial College London, UK

ABSTRACT

Particle filters are a set of probabilistic algorithms used to solve filtering problems arising in signal processing and Bayesian statistical inference. Their area of applicability is currently being extended to solve high dimensional problems such as those encountered in data assimilation problems for numerical weather prediction. The talk will contain a recent application of particle filters a partially observed solution of a damped and driven incompressible 2D Euler equation with stochastic advection by Lie transport (further details of the model can be found in https://arxiv.org/abs/1801.09729). I will discuss the specific difficulties encountered when applying particle filters to high dimensional problems as well as procedures required for their successful implementation.
Langevin MCMC: theory and methods

Nicolas Brosse^a, Alain Durmus^a, and Eric Moulines^b

^bEcole Polytechnique, France
^aEcole Normale Supérieure Paris-Saclay, France

ABSTRACT

We consider in this talk the problem of sampling a high-dimensional probability distribution π having a density with respect to the Lebesgue measure on \mathbb{R}^d, known up to a normalization constant $x \mapsto \pi(x) = e^{-U(x)} / \int_{\mathbb{R}^d} e^{-U(y)} dy$. Such problem naturally occurs for example in Bayesian inference and machine learning. Under the assumption that U is continuously differentiable, ∇U is globally Lipschitz and U is strongly convex, we obtain non-asymptotic bounds for the convergence to stationarity in Wasserstein distance of order 2 and total variation distance of the sampling method based on the Euler discretization of the Langevin stochastic differential equation, for both constant and decreasing step sizes. The dependence on the dimension of the state space of these bounds is explicit. The convergence of an appropriately weighted empirical measure is also investigated and bounds for the mean square error and exponential deviation inequality are reported for functions which are measurable and bounded.

References

[1] A. Durmus and É. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. *Ann. Appl. Probab.*, 27(3):1551–1587, 2017.

[2] A. Durmus and É. Moulines. High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm *Bernoulli*, major revision

[3] A. Durmus and É. Moulines. Supplement to “high-dimensional bayesian inference via the unadjusted langevin algorithm”, 2015. https://hal.inria.fr/hal-01176084/.

[4] A. S. Dalalyan. Further and stronger analogy between sampling and optimization: Langevin monte carlo and gradient descent. In *Proceedings of the 30ths Annual Conference on Learning Theory*.

[5] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. *J. R. Stat. Soc. Ser. B. Stat. Methodol.*, 79(3):651–676, 2017.
Approximate Bayesian Forecasting

DAVID T. FRAZIERa, WORAPREE MANEESOONTHORNb,
GAEL M. MARTINa, AND BRENDAN P.M. MCCABEc

aMonash University, Australia
bUniversity of Melbourne, Australia
cUniversity of Liverpool, UK

ABSTRACT

Approximate Bayesian Computation (ABC) has become increasingly prominent as a method for conducting parameter inference in a range of challenging statistical problems, most notably those characterized by an intractable likelihood function. In this paper, we focus on the use of ABC not as a tool for parametric inference, but as a means of generating probabilistic forecasts; or for conducting what we refer to as ‘approximate Bayesian forecasting’. The four key issues explored are: i) the link between the theoretical behavior of the ABC posterior and that of the ABC-based predictive; ii) the use of proper scoring rules to measure the (potential) loss of forecast accuracy when using an approximate rather than an exact predictive; iii) the performance of approximate Bayesian forecasting in state space models; and iv) the use of forecasting criteria to inform the selection of ABC summaries in empirical settings. The primary finding of the paper is that ABC can provide a computationally efficient means of generating probabilistic forecasts that are nearly identical to those produced by the exact predictive, and in a fraction of the time required to produce predictions via an exact method.

Keywords: Bayesian prediction, Likelihood-free methods, Predictive merging, Proper scoring rules, Particle filtering, Jump-diffusion models.

MSC2010 Subject Classification: 62E17, 62F15, 62F12

JEL Classifications: C11, C53, C58.
Particle rolling MCMC with double block sampling: conditional SMC update approach

NAOKI AWAYA AND YASUHIRO OMORI

University of Tokyo, Japan

ABSTRACT

An efficient simulation-based methodology is proposed for the rolling window estimation of state space models. Using the framework of the conditional sequential Monte Carlo update in the particle Markov chain Monte Carlo estimation, weighted particles are updated to learn and forget the information of new and old observations by the forward and backward block sampling with the particle simulation smoother. These particles are also propagated by the MCMC update step. Theoretical justifications are provided for the proposed estimation methodology. The computational performance is evaluated in illustrative examples, showing that the posterior distributions of model parameters and marginal likelihoods are estimated with accuracy. Finally, as a special case, our proposed method can be used as a new sequential MCMC based on Particle Gibbs, which is shown to outperform SMC2 that is the promising alternative method based on Particle MH in the simulation experiments.
Spectral embedding of networks

Patrick Rubin-Delanchy

University of Bristol, UK

ABSTRACT

Finding a statistical framework under which to perform inference about graph-valued data has proved to be surprisingly challenging, considering the wealth of prior work in the fields of (broader) Mathematics and Computer Science. In this talk, a probabilistic model is presented that allows more refined analysis of spectral embedding and clustering as statistical estimation procedures, and which has several other advantages including generality (e.g. the mixed membership and standard stochastic block models are special cases), scalability (e.g. by some arguments requiring computation of only the first few singular vectors of the adjacency matrix), and interpretability (e.g. mixtures of connectivity behaviours are represented as convex combinations in latent space). Corresponding to this canonical statistical interpretation of spectral embedding is an indefinite orthogonal group that describes the identifiability limitations on the latent positions defined by the model. This group, which is most famously relevant to the theory of special relativity, can consist of transformations that affect inter-point distances, with worrying implications for spectral clustering. All such issues are resolved by simple statistical insights on the effect of linear transformations on volumes and Gaussian mixture models, confirming a more generally emerging guideline in data science: Gaussian clustering should be preferred over K-means. Methodology and ideas are illustrated with cyber-security applications.
Unbiased Hamiltonian Monte Carlo with couplings

JEREMY HENG

Harvard University, USA

ABSTRACT

As with any Markov chain Monte Carlo method, estimators based on Hamiltonian Monte Carlo (HMC) are justified in the limit of the number of iterations. Algorithms which rely on such asymptotics face the risk of becoming obsolete if computational power keeps increasing through the number of available processors and not through clock speed. To address this issue, we propose to run pairs of HMC chains, for a random but finite number of iterations, and combine them in such a way that the resulting estimators are unbiased. One can then produce independent replicates in parallel and average them to obtain estimators that are valid in the limit of the number of replicates.
Bayesian Nonparametric Autoregressive Models via Latent Variable Representation

MARIA DE IORIOa, ALESSANDRA GUGLIELMIb, STEFANO FAVAROc, AND LIFENG YEa

aUniversity College London, UK
bPolitecnico di Milano, Italy
cUniversità degli Studi di Torino, Italy

ABSTRACT

We propose a probability model for a collection of random distribution indexed by time. The model is based on the dependent Dirichlet process prior and dependence among the random measures is introduced via latent variables. We impose an autoregressive structure on the distribution of the latent variables which allows to introduce time dependence among the random distribution. We propose a Sequential Monte Carlo algorithm to perform posterior inference. Typical applications involve multiple time series. Advantages of the proposed approach include wide applicability, ease of computations, interpretability and time dependent clustering of the observation. K-step nonparametric predictive density functions can be derived. The model retains desirable statistical properties for inference, while achieving substantial flexibility. We illustrate the approach through simulations and medical applications.
Approximate Bayesian computation with the Wasserstein distance

Epstein Berntona, Pierre Jacobb, Mathieu Gerberc, and Christian P. Robertd

a,b Harvard University, USA
c University of Bristol, UK
d CEREMADE, Université Paris-Dauphine, PSL Research University, France
d University of Warwick, UK

ABSTRACT

A growing range of generative statistical models prohibit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, simulating synthetic data given parameters and comparing summaries of these simulations with the corresponding observed values. We propose to avoid these summaries and the ensuing loss of information through the use of Wasserstein distances between empirical distributions of observed and synthetic data. We describe how the approach can be used in the setting of dependent data such as time series, and how approximations of the Wasserstein distance allow in practice the method to scale to large data sets. In particular, we propose a new approximation to the optimal assignment problem using the Hilbert space-filling curve. We provide an in-depth theoretical study, including consistency in the number of simulated data sets for a fixed number of observations and posterior concentration rates. The approach is illustrated on various examples, including a multivariate g-and-k distribution, a toggle switch model from systems biology, a queueing model, and a Lévy-driven stochastic volatility model.
Histogram-Free Multicanonical Monte Carlo Sampling Method for Statistical Physics of Systems with Continuous Phase Space

MARKUS EISENBACh, YING WAI LId, AND ALFRED C. K. FARRISb

aOak Ridge National Laboratory, USA
bUniversity of Georgia, Athens, USA

ABSTRACT

We present a new efficient algorithm for Monte Carlo calculations in statistical physics [1] that is particularly well suited for systems with continuous phase space variables. The state of a physical system is given by $\xi \in \Omega$, where the phase space Ω has typically very high dimensionality. The finite temperature behaviour of a system is determined by its energy landscape: $H : \Omega \rightarrow \mathbb{R}$. The probability for the system to be in a state ξ at temperature T is proportional to $p(\xi) \sim e^{H(\xi)/T}$. This distribution can be sampled using the traditional Metropolis Monte Carlo method [2]. Since its inception, multiple improved Monte Carlo algorithms have been proposed and implemented to overcome its shortcomings in sampling physical systems at low temperatures and near phase transitions. Our approach has been inspired by multi-canonical sampling methods [3] and the Wang-Landau Monte-Carlo algorithms.[4] In contrast to these previous methods, we construct an expansion of the density of states $g(E)$ (i.e. the phase space volume with energy E) of the system as an expansion in an orthonormal basis. Our algorithm iteratively finds a sequence of refinements of $g(E)$ based on an initial guess and using a sequence of samples generated using multi-canonical acceptance probabilities. We demonstrate, that for test cases in numerical integration this new algorithm can be an order of magnitude more efficient than traditional Wang-Landau or multi-canonical approaches that record $g(E)$ in discrete bins, which makes our algorithm especially well suited for systems with continuous $H(\xi)$.

Acknowledgement

This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC05-00OR22725.
References

[1] Li, Y. W. and Eisenbach M., *A Histogram-Free Multicanonical Monte Carlo Algorithm for the Basis Expansion of Density of States*, Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’17, ACM, New York, pp. 10:1–10:7, 2017.

[2] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller E., *Equation of State Calculations by Fast Computing Machines*, Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[3] Berg, B. A., and Neuhaus, T., *Multicanonical algorithms for first order phase transitions*, Physica Letters B, vol. 267, pp. 249–253, 1991.

[4] Wang, F. and Landau, D. P., *Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States*, Physical Review Letters, vol. 86, pp.2050–2053, 2001.
High-dimensional Inferencing for Multi-object Dynamical Systems

BA-NGU VO

Curtin University, Australia

ABSTRACT

In a multi-object state space model, the hidden state is a finite set. Such a state space model describes a system in which the number of objects and their states are unknown and vary randomly with time. Multi-object systems arise in many research disciplines including surveillance, computer vision, robotics, biomedical research and machine learning. Indeed, most systems in nature can be regarded as multi-object systems. This talk presents numerical techniques for high-dimensional problems in smoothing and large-scale filtering for finite-set-valued state space models. Illustrations of these solutions via applications in multiple object tracking, especially large-scale problems, and sensor scheduling, will be presented.
Delayed Sampling and Automatic Rao–Blackwellization of Probabilistic Programs

LAWRENCE MURRAY

Uppsala University, Sweden

ABSTRACT

Firstly, I will give a brief introduction to probabilistic programming, and in particular the class of programmatic models, an extension of graphical models, where structure is not known a priori, but rather depends on random choices made during program execution. Secondly, I will introduce a dynamic mechanism for the solution of analytically-tractable substructure in such models, using conjugate priors and affine transformations to reduce variance in Monte Carlo estimators. For inference with Sequential Monte Carlo, this automatically yields improvements such as locally-optimal proposals and Rao–Blackwellization. I will demonstrate with examples from a new probabilistic programming language called Birch (www.birch-lang.org), an overhaul of the LibBi software.
Particle Filtering for Stochastic Navier-Stokes Signal Observed with Additive Noise

Nikolas Kantas

Imperial College London, UK

ABSTRACT

Traditional particle filtering methodology has been extremely successful in low dimensional non-linear non-Gaussian applications (e.g. Doucet et. al), but their application in high dimensional settings has been very challenging partly due to the difficulty to perform importance sampling efficiently in high dimensions (Snyder et. al., Bengtsson et. al., Bui Quang et. al). Despite this challenge a few successful high dimensional particle filtering implementations have appeared recently for data assimilation applications when the hidden signal obeys discrete time dynamics (Chorin et. al., Papadakis et. al., Reich, Van Leeuwen, Weare). In this talk we present our work for addressing problems where the signal of interest obeys continuous time dynamics and in particular is modelled by the stochastic Navier Stokes in 2D that is observed at discrete times with additive noise. The setup is relevant to data assimilation for numerical weather prediction and climate modelling, where similar models are used for unknown ocean or wind velocities. We will present a particle filter that uses adaptive tempering (like Jasra et. al.), likelihood informed importance proposals (similar to Golightly and Wilkinson), and pre-conditioned Crank Nicholson MCMC steps (similar to Hoang et al., Cotter et al). We will show some numerical results that demonstrate the necessity of each step in terms of achieving good performance and efficiency. This is joint work with Francesc Pons-Llopis (Imperial), Alex Beskos (UCL), Ajay Jasra (NUS).
The Coupled Conditional Backward Sampling Particle Filter

Anthony Leea, Sumeetpal Singhb, and Matti Viholac

aUniversity of Bristol, UK
bUniversity of Cambridge, UK
cUniversity of Jyv"askyl"a, Finland

ABSTRACT

We consider the coupled conditional backward sampling particle filter (CCBPF) algorithm, which is a practically implementable coupling of two conditional backward sampling particle filter (CBPF) updates with different reference trajectories. We find that the algorithm is stable, in the sense that with fixed number of particles, the coupling time in terms of iterations increases only linearly with respect to the time horizon under a general (strong mixing) condition. This result implies a convergence bound for the iterated CBPF, without requiring the number of particles to grow as a function of time horizon. This complements the earlier findings in the literature for conditional particle filters, which assume the number of particles to grow (super)linearly in terms of the time horizon. We then consider unbiased estimators of smoothing functionals using CCBPF, and also the coupled conditional particle filter without backward sampling (CCPF) as suggested by Jacob, Lindsten and Schon [arXiv:1701.02002]. In addition to our results on the CCBPF, we provide quantitative bounds on the (one-shot) coupling of CCPF, which is shown to be well-behaved with a finite time horizon and bounded potentials, when the number of particles is increased.
Optimisation-based Sampling Approaches for Hierarchical Bayesian Inference

TIANGANG CUI

Monash University, Australia

ABSTRACT

Markov chain Monte Carlo (MCMC) relies on efficient proposals to sample from a target distribution of interest. Recent optimization-based MCMC algorithms for Bayesian inference, e.g. randomize-then-optimize (RTO), repeatedly solve optimization problems to obtain proposal samples. We interpret RTO as an invertible map between two random functions and find that this mapping preserves the random functions along many directions. This leads to a dimension independent formulation of the RTO algorithm for sampling the posterior of large-scale Bayesian inverse problems. We applied our new methods on Hierarchical Bayesian inverse problems.
Variance Estimation in the Particle Filter

ANTHONY LEE
University of Bristol, UK

ABSTRACT
Particle filters, or sequential Monte Carlo methods, are random algorithms for approximating certain types of integrals that arise in the analysis of data. I will present new variance estimators for the resulting approximations that can be computed using a single run of the algorithm. This builds upon advances on the one hand by Chan and Lai, who proposed the first variance estimator with this feature, and by Cérou, Del Moral and Guyader, who derived non-asymptotic second moment expressions for particle filter approximations. As the number of particles grows, the variance estimators we propose are weakly consistent for asymptotic variances of the Monte Carlo approximations and some of them are also non-asymptotically unbiased. The asymptotic variances can be decomposed into terms corresponding to each time step of the algorithm, and we show how to estimate each of these terms consistently.
Filtering and smoothing through Lagrangian interacting particle representations

SEBASTIAN REICHa,b

a University of Potsdam, Germany
b University of Reading, UK

ABSTRACT

The ensemble Kalman filter (see, for example, [1]) has become a very popular method for approximating the nonlinear filtering and smoothing problem of partially observed stochastic processes [2]. At its core it leads to a very robust approximations of the associated marginal distributions by equally weighted interacting particles. In this talk, the EnKF will be put into the more general framework of Lagrangian formulations of the filtering and smoothing problem – in the same spirit as one can distinguish between Eulerian and Lagrangian formulations of fluid dynamics – which allows for non-Gaussian extensions of the EnKF [1, 3]. We will also discuss the stability and accuracy of the EnKF for finite number of particles [4].

References

[1] Reich, S., Cotter, C. Probabilistic forecasting and Bayesian data assimilation, Cambridge University Press, 2015

[2] Jazwinski, A.H. Stochastic processes and filtering theory, Academic Press, 1970.

[3] Taghvaei A., de Wiljes, J., Mehta, P.G., Reich, S. Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem, J. Dyn. Sys. Meas. Control, 140, 030904, 2017.

[4] de Wiljes, J., Reich, S., Stannat, W. Long-time stability and accuracy of the ensemble Kalman-Bucy filter for fully observed processes and small measurement noise, arXiv:1612.06065, 2017
A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces

Marc Arnaudona and Pierre Del Moralb

aInstitut de Mathématiques de Bordeaux, France
bInstitut National de Recherche en Informatique et en Automatique, France

ABSTRACT

Continuous time Feynman-Kac measures on path spaces are central in applied probability, partial differential equation theory, as well as in quantum physics. This article presents a new duality formula between normalized Feynman-Kac distribution and their mean field particle interpretations. Among others, this formula allows us to design a reversible particle Gibbs-Glauber sampler for continuous time Feynman-Kac integration on path spaces. We present new propagation of chaos estimates for continuous time genealogical tree based particle models with respect to the time horizon and the size of the systems. These results allow to obtain sharp quantitative estimates of the convergence rate to equilibrium of particle Gibbs-Glauber samplers.
High-dimensional Bayesian Semiparametric Quantile Models

TAERYON CHOI

Korea University, Korea

ABSTRACT

Model misspecification can compromise valid inference in conventional parametric quantile regression models. To address this issue, we propose a flexible Bayesian model structure for high-dimensional quantile semiparametric regression. The proposed model structure robustifies conventional parametric quantile regression methods by the use of a sparse signal shrinkage prior and combines a parametric quantile regression and a nonparametric regression model using a Gaussian process prior. Computational complexity is alleviated by the use of fast mean field variational Bayes methods, and we compare results obtained by variational methods with those obtained using Markov chain Monte Carlo (MCMC). In addition, the propose model structure is extended to deal with a generalized asymmetric Laplace distribution and shape-restricted functions. This talk is based on the joint work of Lim et al. [1] and Kobayashi et al. [2].

References

[1] Lim, D., Park, B., Nott, D., Wang, X., and Choi, T. (2018). High-dimensional Quantile Models with Variational Bayes, preprint.

[2] Kobayashi, G., Roh, T., and Choi, T. (2018). Flexible Bayesian quantile curve fitting with shape restrictions under a generalized asymmetric Laplace distribution, preprint.
Importance sampling type estimators based on approximate marginal MCMC

MATTI VIHOLAa, JOUNI HELSKELb, AND JORDAN FRANKSa

aUniversity of Jyväskylä, Finland
bLinköping University, Sweden

ABSTRACT

We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation. We discuss briefly general theory, including consistency, central limit theorems, and guarantees against DA alternative. We then discuss several applications of the (related) methodology, and our experimental results, which are promising. They show that the IS type approach can provide substantial gains relative to an analogous DA scheme, and is often competitive even without parallelisation.

References

[1] J. Franks and M. Vihola Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance, 2017. arXiv:1706.09873

[2] M. Vihola, J. Helske and J. Franks Importance sampling type estimators based on approximate marginal MCMC, 2016. arXiv:1609.02541
The Viterbi process and parallelized estimation in high-dimensions

NICK WHITELEY

University of Bristol, UK

ABSTRACT

The Viterbi process is the limiting maximum a-posteriori estimate of the unobserved path in a hidden Markov model as the length of the time-horizon grows. The existence of such a process suggests that approximate inference algorithms which process data segments in parallel may be accurate. It is shown that for models on state-space \mathbb{R}^d satisfying a type of field-dissipative condition related to convexity, such approximations are indeed accurate and moreover scaleable to high dimensional problems because the rate of convergence to the Viterbi process does not necessarily depend on d.
