Neutron spectra measurement and calculations using data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in iron benchmark assemblies

Bohumil Jansky¹, Jiri Rejchrt¹, Evzen Novak¹, Evzen Losa¹, Anatoly I. Blokhin², and Elena Mitenkova²

¹ Research Centre Rez, Department of Neutron Physics Sciences, Czech Republic
² Nuclear Safety Institute of Russian Academy of Sciences, Moscow, Russia

Abstract. The leakage neutron spectra measurements have been done on benchmark spherical assemblies - iron spheres with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of iron sphere. The proton recoil method was used for neutron spectra measurement using spherical hydrogen proportional counters with diameter of 4 cm and with pressure of 400 and 1000 kPa. The neutron energy range of spectrometer is from 0.1 to 1.3 MeV. This energy interval represents about 85% of all leakage neutrons from Fe sphere of diameter 50 cm and about of 74% for Fe sphere of diameter 100 cm. The adequate MCNP neutron spectra calculations based on data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 were done. Two calculations were done with CIELO library. The first one used data for all Fe-isotopes from CIELO and the second one (CIELO-56) used only Fe56 data from CIELO and data for other Fe isotopes were from ENDF/B-VII.1. The energy structure used for calculations and measurements was 40 gpd (groups per decade) and 200 gpd. Structure 200 gpd represents lethargy step about of 1%. This relatively fine energy structure enables to analyze the Fe resonance neutron energy structure. The evaluated cross section data of Fe were validated on comparisons between the calculated and experimental spectra.

1. Introduction

Neutron and gamma spectra behind iron and water layers are long term measured on mock-up of WWER-1000 reactor at LR-0 research reactor in Research Centre, Rez (Czech Republic). Neutron and gamma fields parameters were studied behind iron (reactor pressure vessel model) and water layers. Also corresponding measurements have been done on benchmark iron spherical assemblies with diameter of 20, 30, 50 and 100 cm. The Cf-252 neutron source was placed into the centre of spheres. The measurement results were always compared with parallel MCNP calculations using different data libraries. Two calculations were done with CIELO library [1]. The first one used data for all Fe isotopes from CIELO and the second one CIELO-56 (laboratory name) used only Fe56 data from CIELO. Data for other Fe isotopes were from ENDF/B-VII.1 [2]. The files used for material description in MCNP were in the CIELO: 26054.77C, 26056.77C, 26057.77C, 26058.77C taken from CIELO and in the CIELO56: 26056.77C from CIELO, 26054.72C, 26057.72C, 26058.72C from ENDF/B.

2. Experimental assemblies

Experimental assemblies are formed by the pure iron sphere with diameter of 20, 30, 50, and 100 cm, see Table 1, with neutron source double encapsulated in stainless steel capsule (th. 2× 0.8 mm) placed in centre (transferred by Flexo Rabbit system), see the Fig. 1. Several neutron sources with different emission Q = 1E7–1E9 n/s were used. The sphere centre and detector centre are always placed at the height of 200 cm above the concrete floor. Shadow (shielding) cone was used for background measurement and subtracting.

Two hydrogen proportional spherical detectors (HPD) K4 and K8 with diameter of 40 mm were used in neutron spectrometer [3]. The detector K4 with pressure 400 kPa was used for measurement in the energy range $E_n = 0.1$–0.4 MeV, the detector K8 with pressure 1000 kPa was used for measurement in the energy range $E_n = 0.4$–1.3 MeV [3].

3. Methodology of measurement and calculation

To get effect the background measured with shielding cone is subtracted of whole measurement. The calculations were performed using Monte-Carlo program MCNP. For input neutron spectrum is used description from Sajo [4].

As for geometry description, a simplified model was used, which substitutes assembly elements with concentric spherical shells around the source. Also, the MCNP detector is represented by a 1 cm thick spherical shell with radius equal to the real detector-source distance R. For each calculation 10^8–10^9 particle histories were computed.
Table 1. Iron (Fe) Benchmark assemblies used for measurements and calculations.

Acronym	Fe sphere diam. (cm)	Detector to sphere distance (cm)	Max. impurities	Impurities
FE20	20	100	0.26	0.26
FE30	30	100	0.26	0.26
FE50	50	100	0.26	0.26
FE100	100	150	0.79	0.79

∗∗ Measurement on the sphere surface ∗∗ mainly Mn.

Table 2. Assembly FE100R150, integral values [1], 40 gpd.

Energy range [MeV]	Nuclear data libraries				
from to	EXP	CIELO	CIELO-56	ENDF	JEFF
0.1 1.3	0.5950	0.6795	0.7081	0.6670	0.6628
0.1 0.2	0.1848	0.2158	0.1872	0.1715	0.2001
0.2 0.4	0.2498	0.3132	0.3444	0.3130	0.2864
0.4 0.8	0.1363	0.1293	0.1548	0.1594	0.1524
0.8 1.3	0.0154	0.0162	0.0155	0.0146	0.0159
1 1.3	0.0087	0.0050	0.0062	0.0086	0.0080

Table 3. Assembly FE100R150, C/E comparison, 40 gpd.

Energy range [MeV]	Nuclear data libraries				
from to	EXP	CIELO	CIELO-56	ENDF	JEFF
0.1 1.3	1.000	1.1442	1.190	1.121	1.114
0.1 0.2	1.000	1.1682	1.013	0.928	1.083
0.2 0.4	1.000	1.2542	1.379	1.253	1.147
0.4 0.8	1.000	0.9498	1.136	1.169	1.118
0.8 1.3	1.000	1.0532	1.006	0.948	1.032
1 1.3	1.000	0.5713	0.713	0.989	0.920

Table 4. Fe assemblies – MCNP calculation with CIELO library, integral values [1], 40 gpd.

Energy range [MeV]	Fe assemblies				
from to	EXP	CIELO	CIELO-56	ENDF	JEFF
0.1 1.3	0.6568	0.7603	0.8442	0.6795	
0.1 0.2	0.0602	0.0874	0.1411	0.2158	
0.2 0.4	0.1525	0.2102	0.3037	0.3132	
0.4 0.8	0.2481	0.2849	0.2852	0.1293	
0.8 1.3	0.0928	0.0916	0.0681	0.0162	
1 1.3	0.1032	0.0862	0.0462	0.0050	

5. Uncertainties

Uncertainty of single measurement is composed of uncertainty of the “A-type” that include statistical uncertainty of single measurement and consequent calculation of each energy group and uncertainty of “B-type” that include influence of instability in benchmark geometry and detector position, n-source orientation, setting of electronics, detector discharges, energy calibration during time remote repeated measurements. Integral values are presented in Tables 2 and 5 with combined uncertainty in interval 3–7%, where the statistical uncertainty of “A-type” is about 1–3% (for 40 gpd and large energy interval) and the uncertainty of “B-type” is about 3–6%. The statistical uncertainty for 200 gpd (Table 7) is 1–6%. Each measurement was repeated 2–9 times. Uncertainties of MCNP calculations for each group are better than 1% in energy interval 0.1–1.3 MeV.

6. Results

Results are presented at Tables 2–8 and Figs. 2–5. The proper norms (dividing coefficients): 1, 3, 10 and 30 are used in Fig. 2 and Fig. 4 for spectra FE20, FE30, FE50 and FE100 for the better clarity of graphs. More results were presented in 40 gpd structure in [5].
Table 5. Fe assemblies - Experimental values (HPD spectrometer), integral values [1], 40 gpd.

Energy range [MeV]	Fe assemblies
from to	FE20 FE30 FE50 FE100
0.1 1.3	0.5830 0.6843 0.7679 0.5950
0.1 0.2	0.0559 0.0790 0.1265 0.1848
0.2 0.4	0.1269 0.1723 0.2489 0.2498
0.4 0.8	0.2148 0.2587 0.2746 0.1363
0.8 1	0.0820 0.0806 0.0609 0.0154
1 1.3	0.1054 0.0937 0.0570 0.0087

Table 6. Fe assemblies – C/E comparison of integral values (Tables 4 and 5), MCNP calculation with CIELO.

Energy range [MeV]	Fe assemblies
from to	EXP FE20 FE30 FE50 FE100
0.1 1.3	1.000 1.123 1.111 1.099 1.142
0.1 0.2	1.000 1.077 1.107 1.115 1.168
0.2 0.4	1.000 1.202 1.220 1.220 1.254
0.4 0.8	1.000 1.155 1.101 1.039 0.948
0.8 1	1.000 1.132 1.135 1.120 1.054
1 1.3	1.000 0.979 0.920 0.810 0.572

Table 7. FE100R53 assembly, fine structure 200 gpd.

Energy range [MeV]	Integral values [1]
from to	EXP ENDF CIELO JEFF
0.013 1.290	1.0442 1.0914 1.1124 1.1131
0.013 0.033	1.547 1.403 1.0445 1.0526
0.033 0.060	0.0299 0.0265 0.0249 0.0292
0.060 0.090	0.0813 0.0770 0.0776 0.0795
0.090 0.150	0.1576 0.1318 0.1662 0.1589
0.150 0.200	0.1047 0.0959 0.1189 0.1069
0.200 0.250	0.0649 0.0663 0.0656 0.0663
0.250 0.290	0.0794 0.0870 0.0835 0.0812
0.290 0.330	0.0905 0.1351 0.1276 0.1165
0.330 0.400	0.0816 0.1081 0.1160 0.1040
0.400 0.520	0.0537 0.0570 0.0511 0.0595
0.520 0.780	0.1146 0.1364 0.1100 0.1263
0.780 1.060	0.0238 0.0231 0.0224 0.0256
1.060 1.290	0.0074 0.0070 0.0042 0.0066

Table 8. 1-C/E, FE100R53 assembly, fine structure 200 gpd.

Energy range [MeV]	1-C/E [%]
from to	EXP ENDF CIELO JEFF
0.013 1.290	0.00 4.52 8.54 6.60
0.013 0.033	0.00 −9.30 −6.61 −1.33
0.033 0.060	0.00 −11.49 −16.87 −2.43
0.060 0.090	0.00 −5.36 −4.58 −2.19
0.090 0.150	0.00 −16.36 5.44 0.80
0.150 0.200	0.00 −8.37 13.54 2.12
0.200 0.250	0.00 2.18 1.19 2.16
0.250 0.290	0.00 9.61 5.23 2.32
0.290 0.330	0.00 49.15 40.88 28.66
0.330 0.400	0.00 32.41 42.08 27.37
0.400 0.520	0.00 6.12 −4.93 10.84
0.520 0.780	0.00 19.02 10.40 7.63
0.780 1.060	0.00 −2.78 −5.70 7.63
1.060 1.290	0.00 −6.34 −42.95 −10.88
7. Conclusions

Based on data presented in tables and pictures it is possible to conclude:

1) Table 3: For assembly FE100, R150 and all libraries in interval 0.1–1.3 MeV is the $C/E = 1.11–1.19$.

2) Table 6: For FE20, 30, 50, 100 and library CIELO in interval 0.1–1.3 MeV is the $C/E = 1.10–1.14$.

3) Items 1) and 2) indicate systematic calculation overestimation of 10–14% in this region (of course, it could be measurement underestimation). The identical assembly FE50R100 was measured in past years at Rez by colleagues from Skoda Plzen (M.Holman) and from FEI Obninsk (L.Trykov) using independent (but also proton recoil) spectrometers. Their results are not more different than about 1–5% in region 0.1–1.3 MeV in comparison with our results.

4) Tables 2 and 3 represent comparison of CIELO and CIELO-56 libraries. Regarding our experimental experiences with Iron filtered beams from past years, when using older versions of Data Libraries (ENDF, BROND, JENDL) two general rules were observed: $C/E < 1$ for 0.1–0.2 MeV and $C/E > 1$ for 0.2–0.4 and 0.4–0.8 MeV (two characteristic wide Iron peaks around 0.3 MeV and 0.6 MeV). When we compare CIELO/CIELO-56, we can observe the “proper improving trend” in above mentioned regions when new Fe-54 (and Fe-57 and Fe-58, of course) new cross section (CS) in CIELO is used. It indicates the important role of Fe-54 CS for Iron neutron transport calculations although the content of Fe-54 in natural Fe is only 5.8%. Also, influence of other two isotopes in natural iron should be taken into account (the content of Fe-57 is 2.2% and content of Fe-58 is 0.28%).

5) When analysing the influence of Fe-54 in whole energy interval it seems that the significant differences between calculations using CIELO and CIELO-56 are observed for $En < 1$ MeV. Analyse of results indicates that the role of Fe-54 increases with Fe slab thickness, see Fig. 2. For $En>1$ MeV is the influence of Fe-54 minimal.

6) Figure 4 indicates that peak on 0.6 MeV is shifted (relating to experiment) for CIELO. The probably reason is the relation between heights of the 0.610, 0.641 and 0.702 MeV peaks that at are visible only in fine neutron energy structure 200 gpd, see Fig 5. The peak 0.702 MeV is probably unrealistic dominant for CIELO.

7) Figure 4 and Tables 3 and 6 indicate that in energy interval 1–1.3 MeV the ratio C/E for CIELO (not for ENDF and JEFF) decreases rapidly with Fe thickness from the value 0.98 (Fe20) to the 0.57 (Fe100). Neutron absorption cross section is unrealistic high in the region 1–1.3 MeV.

We can conclude that CIELO brings not a great improvement of C/E ratio in the region 0.1–1.3 MeV in comparison with ENDF and JEFF. It is necessary to emphasize the great role of Fe-54 cross section in natural Fe.

The presented work was financially supported by the Ministry of Education, Youth and Sport Czech Republic Project LQ1603 (Research for SUSEN).

References

[1] https://www-nds.iaea.org/CIELO
[2] http://www.nndc.bnl.gov/endf/b7.1/acefiles.html
[3] B. Jansky, E. Novak, Neutron Spectrometry with Spherical Hydrogen Proportional Detectors, Nuclear Instruments and Methods in Physics Research A735, 390–398 (2014)
[4] E. Sajo, M.L. Williams, M. Asgari, Comparison of measured and calculated neutron transmission through steel for a 252Cf source, Ann. Nucl. Energy 20(9), 285–604 (1993)
[5] B. Jansky et al., Neutron spectra measurement and calculations using data libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in spherical Iron benchmark assemblies, ISINN-24, Dubna, Russia, May 23–27, 2016, will be published.