Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions

Yu Fang1,2*, Angelina Olegovna Zekiy3, Farhoodeh Ghaedrahmati4, Anton Timoshin5, Maryam Farzaneh6, Amir Anbiyaiee7 and Seyed Esmaeil Khoshnam8

Abstract
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions.

Keywords: Pluripotent stem cells, Tribbles homolog 2, Tumorigenesis, Pluripotency, Reprogramming, Stem cell fate, Regenerative medicine

Background
Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase and a member of the Tribbles family that functions as a scaffold or adaptor in signaling pathways in a number of physiological and pathological processes [1–3]. The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways such as mitogen-activated protein kinase (MAPKs), nuclear factor-κB (NF-κB), PI3K/AKT, and activating transcription factor 4 (ATF4) in healthy and pathological processes [4–6]. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors [7]. Trib2 as a mitosis blocker regulates various cellular processes, including germ cell development, apoptosis, proliferation, lineage specification, reproduction, inflammation, innate immunity, and drug resistance [8–11]. It is known that Trib2 has diverse roles in neurological disorders, metabolic diseases, autoimmune and inflammatory diseases, arthritis, and a number of cancers (chronic myeloid leukemia, liver, melanoma, and ovarian) [3, 12, 13]. In human cancer, Trib2 as a cancer-associated pseudokinase and novel oncogene can enhance cell proliferation and stimulate cell cycle arrest [14]. Trib2, recently identified as the cause of cancer drug resistance [15, 16]. There is substantial evidence that Trib2 can be a predictive and valuable biomarker for cancer diagnosis and treatment [6, 17]. Recent studies...
have illustrated that Trib2 plays a major role in cell fate determination of stem cells [2]. Stem cells are undifferentiated cells that have the capacity to self-renew and differentiate into specific cell types [18, 19]. Stem cells are classified into pluripotent (embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)), multipotent (mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)), and unipotent stem cells [20–22]. Human PSCs and MSCs are important sources for cell-based regenerative medicine, tissue engineering, and drug screening [23–25]. Trib2 has been found to increase the self-renewal ability of ESCs, the reprogramming efficiency of somatic cells, and chondrogenesis [2]. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions.

Structure and function of Trib2

Tribbles (Trib) is a critical regulator of embryonic development that for the first time identified in Drosophila [26]. In the human genome, the Trib proteins have three homologs, including TRIB1, TRIB2, and TRIB3, with a single kinase-like and highly conserved domains that encodes pseudo-kinase proteins [9]. TRIB2 contains an N-terminal domain (PEST), a C-terminal E3 ligase-binding domain, and a pseudokinase domain with a Ser/Thr protein kinase-like domain (without a canonical ‘DFG’ (metal-binding) motif) [1, 26].

The C-terminal domain has the HPW [F/L] motif (targets MAPK/MEK family members) and the conserved DQXVP [D/E] peptide motif (binds to COP1 E3 ubiquitin ligases) [27]. The pseudokinase domain has a unique cysteine-rich C-helix that binds with E3 ubiquitin ligases [28] (Fig. 1).

TRIB proteins through E3 ligase-dependent ubiquitination (pseudokinase mechanism) and scaffolding (with the MAPK and AKT pathway) have the potential to control cell proliferation, apoptosis, survival, and differentiation [27]. The family of Tribbles proteins can regulate a wide range of signaling pathways such as mitogen-activated protein kinase (MAPKs), nuclear factor-kB (NF-kB), protein kinase B (PKB or AKT), and activating transcription factor 4 (ATF4) [4–6]. In the Toll-like receptor (TLR) signaling pathway, Trib1 negatively controls the expression of CCAAT/enhancer-binding protein β (C/EBPβ) [29]. Trib1 and Trib2 are able to recruit the E3 ligase and induce C/EBPα and C/EBPβ degradation [30, 31]. Therefore, TRIBs through the degradation of C/EBP transcription factors promote oncogenesis [6]. Trib3 has been shown to regulate serine-threonine kinase AKT (PKB), p65/rel A, and activating ATF4 [32–34]. Trib1 and Trib3 in response to various pro-inflammatory stimuli trigger the MAP kinase pathway and regulate the activator protein 1 (AP-1)-related pathway [35].

Little information is known about the role of Trib2 in mammals [9, 27]. Trib2 has a low affinity for ATP and further structural studies are required for the ATP-binding status of this protein [6, 14]. Trib2 via a ubiquitin- and proteasome-dependent pathway regulates the cell cycle in human cells [31, 36]. It should be noted that both the Trib2 kinase domain and COP1 binding are essential for the ability of Trib2 to degrade C/EBPα [37]. Trib2 has been reported to be a pro-apoptotic molecule that stimulates apoptosis via a caspase-dependent mechanism [38]. Trib2 with the expression of pro- and anti-inflammatory immune modulators appears to be essential for innate immunity [39]. Trib2 as an important regulator of normal hematopoiesis can regulate the differentiation potential of intrathymic precursors and the checkpoints of thymopoiesis [11]. The function of monocytes and macrophages can be modulated by Trib2 [40, 41]. Trib2 has been shown to regulate the development of T-cell and erythrocyte cells [42, 43]. This protein as an anti-inflammatory factor negatively regulates NF-kB (p100) activity in the TLR5 pathway [9, 44]. During follicular development, Trib2 increases the activity of the MAPK/ERK pathway and regulates granulosa cells (GCs) proliferation and function [45].

Different roles of Trib2 in tumorigenesis

Trib2 is a cancer-associated pseudokinase that can be induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic [10, 46] (Table 1). In normal murine hematopoiesis, TRIB2 function is necessary for the thymopoietic reaction to oncogenic stress [47]. In hematological malignancies, Trib2 as a target gene of MEIS1, E2F1, and NOTCH1 participates in acute myeloid leukemia (AML) and T cell acute lymphoblastic leukemia (T-ALL) [42, 48, 49]. In human AML, Trib2 has been reported to be a negative regulator of C/EBPα expression and enhances AML progression [50]. In patient-derived human AML cells, Trib2 enhances the expression of anti-apoptotic B-cell lymphoma 2 (BCL2) [51]. In chronic myelogenous leukemia (CML), Trib2 through the ERK pathway increases cell proliferation and drug resistance [12]. Smad ubiquitination regulatory factor 1 (Smurf1) is a HECT-type E3 ubiquitin ligase that acts as a tumor enhancer or suppressor in various biological processes [52]. Trib2 by regulating the degradation of E3 ubiquitin ligase BTrCP, COP1, and Smurf1 can inhibit the Wnt pathway and reduce cell propagation in myeloid leukemia [53]. In response to stress, TRIB2 as a tumor suppressor stimulates activation of p38 stress signaling in myeloid leukemia [54]. Thus, Trib2 may decrease the ability of leukaemia cells to propagate [54]. In T-ALL, Trib2 as a direct target of Notch1 decreases C/EBPα

Structure and function of Trib2

Tribbles (Trib) is a critical regulator of embryonic development that for the first time identified in Drosophila [26]. In the human genome, the Trib proteins have three homologs, including TRIB1, TRIB2, and TRIB3, with a single kinase-like and highly conserved domain that encodes pseudo-kinase proteins [9]. TRIB2 contains an N-terminal domain (PEST), a C-terminal E3 ligase-binding domain, and a pseudokinase domain with a Ser/Thr protein kinase-like domain (without a canonical ‘DFG’ (metal-binding) motif) [1, 26].

The C-terminal domain has the HPW [F/L] motif (targets MAPK/MEK family members) and the conserved DQXVP [D/E] peptide motif (binds to COP1 E3 ubiquitin ligases) [27]. The pseudokinase domain has a unique cysteine-rich C-helix that binds with E3 ubiquitin ligases [28] (Fig. 1).

TRIB proteins through E3 ligase-dependent ubiquitination (pseudokinase mechanism) and scaffolding (with the MAPK and AKT pathway) have the potential to control cell proliferation, apoptosis, survival, and differentiation [27]. The family of Tribbles proteins can regulate a wide range of signaling pathways such as mitogen-activated protein kinase (MAPKs), nuclear factor-kB (NF-kB), protein kinase B (PKB or AKT), and activating transcription factor 4 (ATF4) [4–6]. In the Toll-like receptor (TLR) signaling pathway, Trib1 negatively controls the expression of CCAAT/enhancer-binding protein β (C/EBPβ) [29]. Trib1 and Trib2 are able to recruit the E3 ligase and induce C/EBPα and C/EBPβ degradation [30, 31]. Therefore, TRIBs through the degradation of C/EBP transcription factors promote oncogenesis [6]. Trib3 has been shown to regulate serine-threonine kinase AKT (PKB), p65/rel A, and activating ATF4 [32–34]. Trib1 and Trib3 in response to various pro-inflammatory stimuli trigger the MAP kinase pathway and regulate the activator protein 1 (AP-1)-related pathway [35].

Little information is known about the role of Trib2 in mammals [9, 27]. Trib2 has a low affinity for ATP and further structural studies are required for the ATP-binding status of this protein [6, 14]. Trib2 via a ubiquitin- and proteasome-dependent pathway regulates the cell cycle in human cells [31, 36]. It should be noted that both the Trib2 kinase domain and COP1 binding are essential for the ability of Trib2 to degrade C/EBPα [37]. Trib2 has been reported to be a pro-apoptotic molecule that stimulates apoptosis via a caspase-dependent mechanism [38]. Trib2 with the expression of pro- and anti-inflammatory immune modulators appears to be essential for innate immunity [39]. Trib2 as an important regulator of normal hematopoiesis can regulate the differentiation potential of intrathymic precursors and the checkpoints of thymopoiesis [11]. The function of monocytes and macrophages can be modulated by Trib2 [40, 41]. Trib2 has been shown to regulate the development of T-cell and erythrocyte cells [42, 43]. This protein as an anti-inflammatory factor negatively regulates NF-kB (p100) activity in the TLR5 pathway [9, 44]. During follicular development, Trib2 increases the activity of the MAPK/ERK pathway and regulates granulosa cells (GCs) proliferation and function [45].

Different roles of Trib2 in tumorigenesis

Trib2 is a cancer-associated pseudokinase that can be induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic [10, 46] (Table 1). In normal murine hematopoiesis, TRIB2 function is necessary for the thymopoietic reaction to oncogenic stress [47]. In hematological malignancies, Trib2 as a target gene of MEIS1, E2F1, and NOTCH1 participates in acute myeloid leukemia (AML) and T cell acute lymphoblastic leukemia (T-ALL) [42, 48, 49]. In human AML, Trib2 has been reported to be a negative regulator of C/EBPα expression and enhances AML progression [50]. In patient-derived human AML cells, Trib2 enhances the expression of anti-apoptotic B-cell lymphoma 2 (BCL2) [51]. In chronic myelogenous leukemia (CML), Trib2 through the ERK pathway increases cell proliferation and drug resistance [12]. Smad ubiquitination regulatory factor 1 (Smurf1) is a HECT-type E3 ubiquitin ligase that acts as a tumor enhancer or suppressor in various biological processes [52]. Trib2 by regulating the degradation of E3 ubiquitin ligase BTrCP, COP1, and Smurf1 can inhibit the Wnt pathway and reduce cell propagation in myeloid leukemia [53]. In response to stress, TRIB2 as a tumor suppressor stimulates activation of p38 stress signaling in myeloid leukemia [54]. Thus, Trib2 may decrease the ability of leukaemia cells to propagate [54]. In T-ALL, Trib2 as a direct target of Notch1 decreases C/EBPα
expression and promotes the growth and maintenance of T-ALL cells [55]. Afatinib is a small-molecule protein kinase inhibitor that can promote the degradation of Trib2 in human AML cells [28].

Trib2 can be a target for the Wnt/β-catenin pathway downstream and regulates liver cancer cell growth and transformation [7]. In liver cancer, Trib2 shows high stability and interacts with βTrCP to accelerate Yes-associated protein (YAP) stabilization (Hippo pathway) and promote cancer cell proliferation [56]. Trib2 with its associated E3 ligases can reduce ubiquitination of transcription factor 4 (TCF4) and β-catenin and decrease Wnt activity [57]. TRIB2 has been identified that interacts with poly (rC) binding protein 2 (PCBP2) and triggers the Ubiquitin (Ub) proteasome system (UPS) to reduce Ub flux and decrease the oxidative damage. Therefore, UPS by increasing oxidative damage might be a suitable target against liver cancer [58].

In lung cancer, Trib2 binds with TRIM21 E3 ligase and decreases expression levels of C/EBPα, which accelerates
cell proliferation and tumor growth [59]. Recent literature has reported that miR-511 and miR-1297 as tumor suppressor genes decrease Trib2 expression and reduce lung adenocarcinoma cell proliferation [60]. Substantial evidence has shown that miR-206 and miR-140 are Smad3-related miRNAs that inhibit Trib2 expression, induce cell death, and decrease cell proliferation [61].

In malignant melanomas, Trib2 is overexpressed and inhibited FOXO (forkhead box protein O) tumor suppressor activity [62]. Thus, Trib2 is important in cell proliferation, colony formation, maintenance, and progression of melanoma cells [63]. Recent data revealed that circular RNAs (circRNA)-0084043 can interact with miR-429 and positively regulate TRIB2 expression. Trib2, circRNA-0084043, and miR-429 are the leading causes of migration and invasion in human melanoma tissues and cell lines [64]. Members from the thiazolidinediones (TZDs) family was reported to overcome cell drug resistance in Trib2-positive cancer cells [15].

Trib2 has been found to enhance the malignant capacity of osteosarcoma (OS) cell line (malignant bone tumors). miR-509-5p as a tumor suppressor can target Trib2 and suppress cell propagation and migration in OS cell lines [10].

Table 1 Pro-tumor and anti-tumor roles of TRIB2

Disease	Mechanism of action	Result	References
Pro-tumor			
AML	Suppresses C/EBPα expression	Enhances AML progression	[50]
CML	Enhances the expression of anti-apoptotic BCL2	Increases cell proliferation and drug resistance	[12]
T-ALL	Decreases C/EBPα expression	Promotes the growth and maintenance of T-ALL cells	[55]
Liver cancer	Increases YAP stabilization	Promotes cancer cell proliferation	[56]
Lung cancer	Interacts with PCBP2 and triggers the UPS	Reduces Ub flux and decrease the oxidative damage	[58]
Malignant melanomas	Suppresses FOXO	Promotes cell proliferation, colony formation, maintenance, and progression	[63]
Human melanoma tissues and cell line		Migration and invasion	[64]
OS cell line	Suppresses p21 expression	Improves cell growth and progression, and block cellular senescence	[10]
CRC	Interacts with MAP3K1	Enhances resistance to chemotherapy and radiotherapy	[8]
Pancreatic cancer tissue	Suppresses the p53/MDM2 complex	Promotes resistance to anti-cancer therapy	[66]
LSCC	Interacts with XIST	Enhances proliferation and migration	[69]
OSCC	Interacts with TRIM	Facilitates the development of OSCC	[71]
Anti-tumor	Suppresses the Wnt pathway, stimulates activation of p38 stress signaling	Reduces cell propagation	[53]

AML acute myeloid leukemia, BCL2 B-cell lymphoma 2, CML chronic myelogenous leukemia, T-ALL T cell acute lymphoblastic leukemia, YAP yes-associated protein, FOXO Forkhead box protein O, OS osteosarcoma, CRC colorectal cancer, GBM glioblastoma; MAP3K1, MAP kinase kinase kinase 1, LSCC squamous cell carcinoma cells, XIST X inactivate-specific transcript, OSCC oral squamous cell carcinoma, TRIM tripartite motif, PCBP2 Poly (rC) binding protein 2, UPS Ubiquitin (Ub) proteasome system

The p53/p21 pathway is thought to be a critical regulator of the cell cycle and cellular senescence [65]. In colorectal cancer (CRC), Trib2 binds with activating enhancer-binding protein 4 (AP4) to suppress p21 expression, improve cell growth and progression, and block cellular senescence [14].

In Glioblastoma (GBM), Trib2 interacts with MAP kinase kinase kinase 1 (MAP3K1) and enhances resistance to temozolomide (TMZ) chemotherapy and radiotherapy [8].

In primary pancreatic cancer tissue, Trib2 protein has been shown to block FOXO activation, disrupt the p53/MDM2 complex (a negative feedback loop for cancer therapy), stimulate the serine/threonine protein kinase AKT, reduce cell death induced by PI3K inhibitors, and promote resistance to anti-cancer therapy [66, 67]. Recent evidence suggests that ZEB1-AS1 as a long non-coding RNA (IncRNA) by regulating miR-505-3p/TRIB2 axis enhances the growth, viability, and invasion of pancreatic cancer cells [68].

X inactivate-specific transcript (XIST) is a lncRNA, which was recently proposed to interact with miR-125b-5p, promote Trib2 expression, and enhance
Fig. 2 The function of Trib2 in stem cell fate decisions. Human ESCs are derived from donated pre-implantation embryos and the inner cell mass (ICM) of the blastocyst. Human iPSCs are ESC-equivalent cells that can be derived by introducing core reprogramming factors (Oct4, Sox2, Nanog, and Klf4 or OSKM) into embryonic fibroblasts. Trib2 is necessary for colony formation, alkaline phosphatase (AP) activity, and self-renewal ability of ESCs and iPSCs. MEG3 can downregulate Trib2 expression and suppress the chondrogenic differentiation of synovium-derived MSCs.
proliferation and migration of laryngeal squamous cell carcinoma (LSCC) cells [69].

Tripartite motif (TRIM) protein has an important role in the pathogenesis of oral squamous cell carcinoma (OSCC) [70]. TRIM via modulating the TRIB2-MAPK signal axis can promote abnormal expression of interleukin-6 (IL-6) and disrupt TH1/TH2 balance (interferon-gamma (IFN-γ) and IL-4) in T cells [71].

Therefore, Trib2 may be a suitable biomarker for the cancer diagnosis, because it shows high expression in malignant cells [27].

The function of Trib2 in stem cell fate decisions

Human ESCs are derived from donated pre-implantation embryos and the inner cell mass (ICM) of the blastocyst [72, 73]. A recent study has reported that Trib2 may be necessary for colony formation, alkaline phosphatase (AP) activity, and self-renewal ability of ESCs [2]. Trib2 interacts with Oct4 and regulates the expression of the pluripotency marker genes. Thus, loss of Trib2 expression is associated with differentiation of ESCs [2]. Human iPSCs are ESC-equivalent cells that can be derived by introducing core reprogramming factors (Oct4, Sox2, Nanog, and Klf4 or OSKM) into embryonic fibroblasts [74, 75]. Trib2 plays an important role in the reprogramming of somatic cells [2]. It has been shown that Trib2 knockdown reduces the reprogramming efficiency and the expression of OSKM in the generated cells. While colony formation and AP activity in OSKM/Trib2 transduced cells were higher than cells transduced with the OSKM factors. Trib2 through the Trib2-Oct4 complex can facilitate the generation of iPSCs from somatic cells [2].

It has been reported that Trib2 through a proteasome-dependent mechanism induces the degradation of C/EBPβ and suppresses adipocyte differentiation at an early stage [76, 77]. The differentiation of myeloid progenitor cells can be suppressed with the MLL-TET1 (MT1) fusion protein. This protein induces Trib2 mRNA and protein expression and decreases C/EBPα expression. Thus, Trib2 is important to keep leukemic cells in an undifferentiated state [78]. Trib2 has been found to increase chondrogenesis from MSCs. MEG3 as a lncRNA has been reported to upregulate enhancer zeste homolog 2 (EZH2) methyltransferase and downregulate Trib2 expression to suppress the chondrogenic differentiation of synovium-derived MSCs [79] (Fig. 2).

Challenges and prospective

The expression of TRIB2 in tumor tissues and cell lines is significantly increased [66]. High TRIB2 expression was shown to be essential in melanoma progression, lung tumorigenesis, liver and colon tumors [3, 26, 58, 80]. Hence, TRIB2 can be a novel targeted therapeutic and strong candidate against chemoresistant cancers [81]. However, the exact mechanism of TRIB2 as an adapter protein in cancer is still controversial and remains unclear [82]. Therefore, multiple genetic and epigenetic mutations should be assessed to identify the specific interaction of TRIB2 with partner proteins [83].

Conclusion

We have highlighted various studies, which provide evidence of Trib2 protein as an attractive target for cancer therapy. Although Trib2 has a key role in multiple physiological and pathological processes, much effort will be required to find its relevance to stem cell fate decisions. It can be concluded that Trib2 may represent a potential target in basic research and cancer treatment.

Abbreviations

AP: Alkaline phosphatase; AP-1: Activator protein 1; AML: Acute myeloid leukemia; ATF4: Activating transcription factor 4; BCL2: B-cell lymphoma 2; C/EBPβ: CCAAT/enhancer-binding protein β; CML: Chronic myelogenous leukemia; ESCs: Embryonic stem cells; EZH2: Enhancer zeste homolog 2; FOXO: Forkhead box protein O; GCs: Granulosa cells; HSCs: Hematopoietic stem cells; iPSCs: Induced pluripotent stem cells; MAPKs: Mitogen-activated protein kinase; MT1: MLL-TET1; MSCs: Mesenchymal stem cells; NF-kB: Nuclear factor-kB; Smurf1: Smad ubiquitination regulatory factor 1; TCF4: Transcription factor 4; TLR: Toll-like receptor; T-ALL: T cell acute lymphoblastic leukemia; Trib2: Tribbles homolog 2; TZDs: Thiazolidinediones; XIST: X inactivate-specific transcript; YAP: Yes-associated protein.

Acknowledgements

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that there is no competing interests.
Author details

1. Anyang Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 2. Key Laboratory of New Opto-Electronic Functional Materials of Henan Province; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 3. Department of Prosthetic Dentistry, Tehran University of Medical Sciences, Tehran, Iran. 4. Institute of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. 5. Independent researcher, Moscow, Russia. 6. Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 7. Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 8. Department of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 9. Department of Prosthetic Dentistry, Tehran University of Medical Sciences, Tehran, Iran. 10. Independent researcher, Moscow, Russia. 11. Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 12. Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 13. Department of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 14. Independent researcher, Moscow, Russia. 15. Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 16. Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 17. Department of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 18. Independent researcher, Moscow, Russia. 19. Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 20. Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 21. Department of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 22. Independent researcher, Moscow, Russia. 23. Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 24. Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 25. Department of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, People’s Republic of China. 26. Department of Prosthetic Dentistry, Tehran University of Medical Sciences, Tehran, Iran. 27. Independent researcher, Moscow, Russia. 28. Independent researcher, Moscow, Russia. 29. Independent researcher, Moscow, Russia. 30. Independent researcher, Moscow, Russia. 31. Independent researcher, Moscow, Russia. 32. Independent researcher, Moscow, Russia. 33. Independent researcher, Moscow, Russia. 34. Independent researcher, Moscow, Russia. 35. Independent researcher, Moscow, Russia. 36. Independent researcher, Moscow, Russia. 37. Independent researcher, Moscow, Russia. 38. Independent researcher, Moscow, Russia. 39. Independent researcher, Moscow, Russia. 40. Independent researcher, Moscow, Russia.

Received: 23 December 2020 Accepted: 16 February 2021

Published online: 01 April 2021

References

1. Bailey FP, Byrne DP, Oruganty K, Evers CE, Novotny CJ, Shokat KM, Kannan N, Evers PA. The Tribbles 2 (TRIB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J. 2015;467:47–62.
2. Do EK, Park JK, Cheon HC, Kwon YW, Heo SC, Choi EJ, Seo JK, Jang IH, Lee SC, Kim JH. Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Exp Mol Med. 2017;49:e401–e401.
3. Yokoyama T, Nakamura T. Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci. 2011;102:1115–22.
4. Yokoyama T, Kanno Y, Yamazaki Y, Takahara T, Miyata S, Nakamura T. Trib1 links the MEK1/ERK pathway in myeloid leukemiaogenesis. Blood J Am Soc Hematol. 2010;116:2786–75.
5. Hong B, Zhou J, Ma K, Zhang J, Xie H, Zhang K, Li L, Cai L, Cao H, Zhang N, Zhang Z. TRIB3 promotes the proliferation and invasion of renal cell carcinoma via activating MAPK signaling pathway. Int J Biol Sci. 2019;15:587.
6. Richmond L, Keeshan K. Pseudokinases: a tribble-edged sword. FEBS J. 2019;287(19):4170–82.
7. Wang J, Zhang Y, Weng W, Qiao Y, Ma L, Xiao W, Yu Y, Pan Q, Sun F. Impaired phosphorylation and ubiquitination by p70 S6 kinase (p70S6K) and Smad ubiquitination regulatory factor 1 (Smurf1) promote tribbles homolog 2 (TRIB2) stability and carcinogenic property in liver cancer. J Biol Chem. 2013;288:33667–81.
8. Wang J, Luo J, Wafua A, Wang MD, Li RC, Xie WF. Combined elevation of TRIB2 and MAP3K1 indicates poor prognosis and chemoresistance to BCR/ABL tyrosine kinase inhibitors in chronic myeloid leukemia. Oncol Rep. 2018;39:2079–85.
9. Wei S-C, Rosenberg IM, Cao Z, Huett AS, Xavier RJ, Podolsky DK. Tribbles 2 (Trib2) is a novel regulator of toll-like receptor 5 signaling. Inflamm Bowel Dis. 2011;17:1051–61.
10. Guo J, Wu Q, Peng X, Yu B. mTORC509-Sp inhibits the proliferation and invasion of osteosarcoma by targeting TRIB2. BioMed Res Int. 2020;2020:647298.
11. Chen Y, Xu L, Lin RY, Mochsen K, Koeffer HP. Core transcriptional regulatory circuits in cancer. Oncogene. 2013;32:6533–46.
12. Xia H, Li X, Gao W, Xu F, Fang RH, Zhang RL, Zhang K. Tissue repair and regeneration with endogenous stem cells. Nat Rev Mater. 2018;3:174–93.
13. Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39–53.
14. Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejtabadoust A, Khoshnam S. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances, and limitations. Curr Stem Cell Res Ther. 2019;15:102–10.
15. Sousa-Coelho D, Machado S, Silva A, Sousa-Celho D, Luisa A, Duarte L, Gennho I, Santos B, Mayoral-Varo V, Megias D, Sanchez-Cabo F. Harpine and pinoperlongine revert TRIB2-mediated drug resistance. Cancers. 2020;12:3689.
16. Machado S, Silva A, Sousa-Celho D, Luisa A, Duarte L, Gennho I, Santos B, Mayoral-Varo V, Megias D, Sanchez-Cabo F. Harpine and pinoperlongine revert TRIB2-mediated drug resistance. Cancers. 2020;12:3689.
41. Eker K, Guan H, Sung HY, Ward J, Angyal A, Janas M, Sarmay G, Duda E, Turner M, Dower SK. Tribbles-2 is a novel regulator of inflammatory activation of monocytes. Int Immunol. 2008;20:1543–50.

42. Liang KL, O’Connor C, Veiga JP, McCarthy TV, Keeshan K. TRIB2 regulates normal and stress-induced thymocyte proliferation. Cell Discov. 2016;2:15050–15050.

43. Lin K-R, Yang-Yen H-F, Lien H-W, Huang C-J, Lin L-I, Li C-L, Yen J-YI. Murine tribbles homolog 2 deficiency affects erythroid progenitor development and confers macrocytic anemia on mice. Sci Rep. 2016;6:11444–11444.

44. Johnston J, Basatavit S, Ilaya Z, Francis S, Kiss-Toth E. Tribbles in inflammation. Biochem Soc Trans. 2015;43:1069–74.

45. Warma A, Naidae K. Functional effects of Tribbles homolog 2 in bovine ovarian granulosa cells. Biol Reprod. 2020;102:1177–90.

46. Colaco LG. Investigating the role and function of Tribbles 2 (TRIB2) in drug resistance within cancer. 2014.

47. Liang KL, O’Connor C, Veiga JP, McCarthy TV, Keeshan K. TRIB2 regulates normal and stress-induced thymocyte proliferation. Cell Discov. 2016;2:15050.

48. Argopoulos B, Palmqvist L, Yung E, Kuchenbauer F, Heuser M, Sly LM, Wan A, Kristall G, Humphries RK. Linkage of Meis1 leukemogenic activity to multiple downstream effectors including Trib2 and Cdc3. Exp Hematol. 2008;36:845–59.

49. Rishi L, Hannon M, Salomé M, Hasemann M, Frank AK, Campos J, Timoney J, O’Connor C, Cahliri MR, Porstein B, Keeshan K. Regulation of Trib2 by an E2F1/CEBPb feedback loop in AML cell proliferation. Blood. 2014;123:2389–400.

50. Keeshan K, He Y, Wouters BJ, Shestova O, Xu L, Sai H, Rodriguez CG, Maillard I, Valk P, Carroll M. Tribbles homolog 2 (TRIB2) inactivates CEBPa/Pha and causes acute myelogenous leukemia. American Society of Hematology; 2006.

51. O’Connor C, Yalla K, Salomé M, Moka HA, Castañeda EG, Eyers PA, Keeshan K. TRib2 expression in granulocyte-monocyte progenitors drives a highly drug resistant acute myeloid leukaemia linked to elevated Bcl2. Oncotarget. 2018;9:14977–92.

52. Fu L, Cui CR, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Seminars in Cancer Biology. 2019.

53. Salomé M, Maga Z, Yalla K, Chaudhury S, Sarreau E, Carmody R, Keeshan K. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:1–17.

54. Salomé M, Maga Z, Yalla K, Chaudhury S, Sarreau E, Carmody R, Keeshan K. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:4443.

55. Stein SJ, Mack EA, Rome KS, Caginni KV, Ohtani T, Li Y, Meijerink JP, Faryabi RB, Pear WS. Trib2 suppresses tumors initiation in Notch-driven T-ALL. PLoS ONE. 2011;6:e215504.

56. Wang J, Park J-S, Wei Y, Rajurkar M, Cotton JL, Fan Q, Lewis BC, Ji H, Mao J. TRIB2 modulates differentiation and miR-1297 inhibit human lung adenocarcinoma cell proliferation by targeting oncogene TRIB2. PLoS ONE. 2012;7:e46090.

57. Zhang Y, Yan YF, Liu Y-L, Li JZ, Zhang H-H, Pang M, Hu J-Y, Zhao W, Xie N, Zhou L, et al. Smad3-related miRNAs regulated oncogenic Trib2 promoter activity to effectively suppress lung adenocarcinoma growth. Cell Death Dis. 2016;7:e2528–e2528.

58. Link W. Tribbles breaking bad. TRIB2 suppresses FOXO and acts as an oncoprotein in melanoma. Biochem Soc Trans. 2015;43:1085–8.

59. Zanella C, Renner O, Garcia B, Callegas S, Dopazo A, Peregina S, Carnero A, Link W. Human TRIB2 is a repressor of FOXO that contributes to the malignant phenotype of melanoma cells. Oncogene. 2010;29:2973–82.

60. Chen Z, Chen J, Wa Q, He M, Wang X, Zhou J, Cen Y. Knockdown of circ_0084043 suppresses the development of human melanoma cells through miR-429/tribbles homolog 2 axis and Wnt/β-catenin pathway. Life Sci. 2020;243:117323.

61. Xu S, Wu W, Huang H, Huang R, Xie L, Su A, Liu S, Zheng R, Yuan Y, Zheng H. The p53/miRNAs/Ccn2a pathway serves as a novel regulator of cellular senescence: complement of the canonical p53/p21 pathway. Aging Cell. 2019;18:e12918.

62. Hill R, Madureira PA, Ferreira B, Baptista I, Machado S, Colaco L, Dos Santos M, Liu N, Dopazo A, Liguori S. TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat Commun. 2017;8:1–9.

63. Naq S, Zhang X, Srivinupong KS, Wang MH, Wang W, Zhang R. Targeting MDM2-p53 interaction for cancer therapy: are we there yet? Curr Med Chem. 2014;21:553–74.

64. Wei G, Lu T, Shen J, Wang J. LncRNA ZEB1-AS1 promotes pancreatic cancer progression by regulating miR-505-3p/TRIB2 axis. Biochem Biophys Res Commun. 2020;528:664–9.

65. Liu C, Lu Z, Liu H, Zhangu S, Guo P. LncRNA NIST promotes the progression of laryngeal squamous cell carcinoma via sponging miR-125b-5p to modulate TRIB2. Biosci Rep. 2020;40:BSR2019172.

66. Javorska AM, Modarczyk NA, Mackiewicz A, Czerwińska P. The role of TRIM family proteins in the regulation of cancer stem cell self-renewal. Stem Cells. 2018;36:1686–73.

67. Jiang C, Wei W, Wang Y, Song C, Pan L, Sun K, Du G, Deng Y, Tang G. TRIB2 causes abnormal expression of IL-6 in oral lichen planus via the TRIB2-MAPK axis signal. Am J Transl Res. 2020;12:4648–58.

68. Hassani S-N, Moradi S, Takeahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci. 2019;76:973–92.

69. Eloc F, Brivanlou A. A boost towards totipotency for stem cells. Nat Cell Biol. 2019;21:671–3.

70. Zhou Y, Liu H, Zhao C, Ding P, Li H, Farzaneh M. Paracrine interactions involved in human induced pluripotent stem cells differentiation into chordocytes. Curr Stem Cell Res Ther. 2020;15:233–42.

71. Zhao N, Sheng M, Wang X, Li Y, Farzaneh M. Differentiation of human induced pluripotent stem cells into male germ cells. Curr Stem Cell Res Therapy. 2020. https://doi.org/10.2174/1574888X15666200705214223.

72. Nakti T, Sajjou E, Miyakawa Y, Sekine K, Miyazima A. TRIB2, a mouse Tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBPbeta. J Biol Chem. 2007;282:24075–82.

73. Nakayama K, Iwamoto S. An adaptive variant of TRIB2, n1057001, is associated with higher expression levels of thermogenic genes in human subcutaneous and visceral adipose tissues. J Physiol Anthropol. 2017;36:16.

74. Kim H-S, Oh SH, Kim J-H, Sohn-WJ, Kim J-Y, Kim D-H, Choi S-U, Park KM, Ryoo ZY, Park TS. TRIB2 regulates the differentiation of MILL-TE1 transduced myeloid progenitor cells. J Mol Med. 2018;96:1267–77.

75. You D, Yang C, Huang J, Gong H, Yan M, Ni J. Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell Signal. 2019;63:109379.

76. Richmond L, Keeshan K. Pseudokinases: a tribble-edged sword. FEBS J. 2020;287:4170–82.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.