DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M\text{pro} inhibitors

Srinivas Chamakuria,1, Shuo Lub,1, Melek Nihan Ucisika,1, Kurt M. Bohrena,1, Ying-Chu Chena, Huang-Chi Dua, John C. Favera,5, Ravikumar Jimmidia,4, Feng Lib,4, Jian-Yuan Lia, Pranavanand Nyshadhama, Stephen S. Palmera, Jeroen Polletc,4, Xuan Qina, Shannon E. Roncaa, Banumathi Sankarana, Kiran L. Sharmaa,4, Zhi Tana, Leroy Versteegc,4, Zhifeng Yua,4, Martin M. Matzukb,2,3, Timothy Palzkillb,2,3 and Damian W. Younga,1,2

aCenter for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030; bDepartment of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030; cDepartment of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030; dCenter for Vaccine Development, Texas Children’s Hospital, Houston, TX 77030; eDepartment of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and fVerna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030

Contributed by Martin M. Matzuk, July 21, 2021 (sent for review June 17, 2021; reviewed by Raphael Franzini and Dennis Gillingham)

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 4 million humans globally, but there is no bona fide Food and Drug Administration–approved drug-like molecule to impede the COVID-19 pandemic. The sluggish pace of traditional therapeutic discovery is poorly suited to producing targeted treatments against rapidly evolving viruses. Here, we used an affinity-based screen of 4 billion DNA-encoded molecules en masse to identify a potent class of virus-specific inhibitors of the SARS-CoV-2 main protease (M\text{pro}) without extensive and time-consuming medicinal chemistry. CDD-1714, the initial three-building-block smaller two-building-block analog (MW = 542.5 g/mol), was a potent inhibitor (inhibition constant \(K_i = 20\) nM). CDD-1713, a smaller two-building-block analog (MW = 353.3 g/mol) of CDD-1714, is a reversible covalent inhibitor of M\text{pro} (\(K_i = 45\) nM) that binds in the protease pocket, has specificity over human proteases, and shows in vitro efficacy in a SARS-CoV-2 infectivity model. Subsequently, key regions of CDD-1713 that were necessary for inhibitory activity were identified and a potent (\(K_i = 37\) nM), smaller (MW = 323.4 g/mol), and metabolically more stable analog (CDD-1976) was generated. Thus, screening of DNA-encoded chemical libraries can accelerate the discovery of efficacious drug-like inhibitors of emerging viral disease targets.

antiviral | drug discovery | covalent inhibitors

On March 11, 2020, the World Health Organization recognized the COVID-19 outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a pandemic. Although vaccines are being approved for emergency use to fight COVID-19 (https://www.cdc.gov/vaccines/covid-19/index.html), there is an urgent need for effective new drug treatments to reduce the morbidity and mortality for patients who have already contracted COVID-19, not yet received the vaccine, are infected with SARS-CoV-2 variants that are more resistant to the vaccines, and for future coronavirus pandemics. The conventional process of drug discovery is based on automated high-throughput screening (HTS) or structure-based drug design. HTS requires a complex infrastructure, the development a miniaturized assay tailored to the individual target, and generally the need for extensive medicinal chemistry to optimize modestly potent hits that arise from the screen. The development of such screening methods is therefore sluggish and not well-suited to meet the present public health demands imposed by the COVID-19 pandemic. As an HTS alternative, structure-based approaches are advantageous when available since the rational synthesis of analogs can accelerate the generation of potent compounds. Prior to our work, other investigations have relied on structure-based methods and computational approaches to optimize moderately potent M\text{pro} inhibitors (1, 2). However, the need for a high-resolution X-ray structure to initiate a drug discovery campaign can be extremely rate-limiting, if not altogether prohibitive. Finally, drug repurposing is often utilized as an efficient discovery strategy since it can bypass issues related to safety; however, the application of a compound to a target for which it was not optimized may never achieve maximal therapeutic benefit. A screening process which circumvents these challenges would significantly accelerate the pace for identification of clinical candidate compounds. DNA-encoded chemistry technology (DEC-Tec) is an increasingly attractive strategy to explore chemical space to identify small molecules and high-affinity binders for a multitude of protein targets (3–7). DEC-Tec involves the creation of libraries of drug-like molecules covalently attached to a unique DNA barcode that enables identification of binders for a target in a pool of millions to billions of compounds. DEC-Tec addresses these pitfalls related to HTS by screening of billions of DNA-tagged small molecules as a single mixture using an affinity selection assay (4, 8–13). This expanded number of drug-like small molecules allows for the discovery of polymers and biological replicas.
identification of high-affinity ligands using a technologically practical format. For example, the modest protein requirement and low price of DNA sequencing both contribute to the inexpensive cost of screening small-molecule DNA-encoded chemical libraries. Additionally, the various steps involved in the selection process, which include the affinity selection to the protein, DNA sample preparation, sequencing, and data analysis, can each be performed in several days, providing for a highly expedient screening process. Finally, the large number of compounds employed in DEC-Tec is leveraged to provide binders in the absence of preexisting structural information related to the target or its ligand-binding preferences. We believe that these features of DEC-Tec provided clear advantages for discovering novel small-molecule agents against SARS-CoV-2 targets.

With our collection of over 55 DEC-Tec libraries (4 billion unique molecules) including protease-biased libraries (6) and various libraries utilizing DNA-compatible reactions developed in-house (14–22), the Center for Drug Discovery at Baylor College of Medicine has the operational capacity to support emergent action at the onset of pandemics. The genome of SARS-CoV-2 comprises six major open reading frames including two polyproteins that undergo extensive proteolytic processing to create functional proteins that perform tasks essential for viral propagation (23). This processing is largely achieved by SARS-CoV-2 main protease (Mpro or 3CLpro) (24), a cysteine protease enzyme indispensable for the virus lifecycle and a key therapeutic target. Our hypothesis is that SARS-CoV-2 Mpro screening of billions of DNA-encoded molecules, generation of small-molecule Mpro cocrystals, and minimal medicinal chemistry follow-up would generate drug-like inhibitors of Mpro for emergent use in patients infected with SARS-CoV-2, related variants, and related coronaviruses.

To screen our DEC-Tec collection, we first constructed the pSUMO-SARS-CoV-2-Mpro plasmid carrying the SUMO-Mpro, His6 tag (SI Appendix, Fig. S1). The Mpro open reading frame sequence was flanked on the N terminus by its endogenous cleavage site (SAVLQSGFRK) and on its C terminus by a PreScission cleavage site (SGVTFQGP). The SUMO-Mpro-His6 recombinant fusion protein was expressed from Escherichia coli BL21(DE3), and the Mpro enzyme with its authentic N terminus and the His6 tag was purified as described in Methods and SI Appendix, Fig. S2. Because our method for assay development requires a His tag, the Mpro-His6 protein was used for DEC-Tec library screening. For crystallography and enzymatic assays, the Mpro-His6 protein was treated with PreScission enzyme to remove the C-terminal 6-His tag, and the Mpro was further purified by gel filtration chromatography. Using a fluorescent peptide, Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2, as a reporter substrate, filtration chromatography. Using a fluorescent peptide, Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2, as a reporter substrate, we first confirmed that the purified recombinant Mpro-His6 and the Mpro ("native") lacking the His6 tag were very active and demonstrated nearly identical bioactivity in vitro.

Forty unique DNA-encoded chemical libraries (DECLs) cumulatively containing 3.987 billion drug-like compounds were pooled together for the screening of Mpro-His6 binding compounds. Each library was prequantitated by qPCR, and library pooling was conducted to have 1 million copies of each compound present in the pool. Our selection for Mpro-His6 binders comprised a three-round affinity selection with an Mpro-His6 protein concentration of 1 μM. An independent affinity selection was performed in parallel without protein to serve as a no-target control to identify any nonprotein specific enrichment. Our Illumina next-generation sequencing identified a chemical series consistently enriched with excellent structure–enrichment relationships (SER) from qDOS28.1, one of our DEC-Tec libraries (Fig. 1 and SI Appendix, Scheme S1). The process of modern HTS screening has the capability to interrogate the activity of ∼100,000 small molecules per day in a specialized well-based assay (25, 26). Here, DEC-Tec was used to evaluate 4 billion small molecules as a single mixture in 1 d against Mpro. Thus DEC-Tec, through its breakneck rate of screening, offers a tremendous advantage to infectious disease targets of pathogens that pose both present and imminent public health threats.

The DNA sequences resulting from the Mpro selection were analyzed (27) to determine structural features that were enriched to prioritize compounds to be synthesized without the DNA barcode (off DNA). Compounds within DECLs are generally constructed from the union of three building blocks (trisynths). Compounds enriched from the selection can be analyzed for those sharing one or two building blocks (monosynths vs. disynths) in common, leading to the identification of critical structure–enrichment relationships. The consideration of these SER leads to potent compounds in an efficient manner, supplanting the need for many rounds of laborious medicinal chemistry. Based on the Mpro selection analysis, the trisynth CDD-1714 ("hit" molecule) and its smaller disynths CDD-1712 and CDD-1713 (Fig. 2) were synthesized off DNA in two to four steps from commercially available materials (SI Appendix). To characterize the potency of selected compounds toward Mpro, we utilized the above described fluorescent peptide reporter assay. For initial compound screening, 25 μM of compound was incubated with Mpro and only compounds which inhibited Mpro proteolytic activity >90% were considered as candidates. The inhibition constant (K) values of these compounds were determined with concentrations ranging from 4 nM to 4,000 nM (SI Appendix, Fig. S3 and Table S1). Since Mpro-His6 was used in library screening, we performed parallel enzyme inhibition assays using either Mpro-His6 or Mpro to evaluate the potency of compounds toward Mpro proteolytic activity in the presence and absence of His tag. Using this protease inhibition assay, we found that CDD-1713 and CDD-1714 inhibited Mpro with K values of 45 nM and 20 nM, respectively (Fig. 2 and SI Appendix, Fig. S3). These results indicated that building block 1 (BB1), closest to the DNA attachment site, was less critical for binding and inhibition; CDD-1713 was chosen for optimization efforts based on its low molecular weight (353.3 g/mol) and good cLogP (2.01). CDD-1713 contains a reactive aldehyde functional group capable of forming covalent bonds with proteins, and thus we initially turned our attention toward examining the importance of the aldehyde moiety. Deleting the aldehyde (CDD-1793) or replacing with hydroxymethyl (CDD-1776) completely abolished activity while replacing the aldehyde with the des-methoxy analog (CDD-1976) showed better inhibition compared to CDD-1713. Aldehydes have the propensity to react nonselectively; however, CDD-1712 did not show any activity, and additionally we synthesized CDD-1847 which incorporates an N-methylindazole and found that it completely lost activity. Given this remote substitution to the aldehyde, it is likely that the Mpro inhibitory activity of CDD-1713 and related analogs results from a specific binding interaction with Mpro. While aldehydes may pose a liability in drugs, compounds that contain aldehydes have been evaluated in humans, demonstrating good selectivity and other drug-like properties (28–33). To confirm that the potent inhibitors bound tightly to Mpro, we performed a protein thermal shift stability assay (thermofluor assay). CDD-1713, CDD-1714, and CDD-1976 cause a concentration-dependent stabilization of Mpro, with CDD-1976 showing the most pronounced temperature shift at all three protein concentrations (SI Appendix, Fig. S4). Taken altogether, the DEC-Tec process involving affinity selection of 4 billion DNA-encoded compounds against Mpro, analysis of SER, and synthesis of the exemplary compounds (including with different electrophiles) off DNA (SI Appendix, Fig. S5 and Table S1) yielded potent and selective inhibitors of Mpro. We note that CDD-1713, which was inferred directly from the selection, was
synthesized and validated in rapid fashion (less than 10 wk from start to finish; SI Appendix, Table S2), highlighting DEC-Tec’s ability to produce potent compounds without extensive synthetic optimization.

Using the M^pro sequence, BLAST search analysis of the reference proteins encoded by the human genome shows no significant similarity. To confirm that our M^pro inhibitors do not show any potential off-target inhibition of major proteases in humans, we tested their effects on four important proteases representing four classes of human protease enzymes. As might be expected from our BLAST search, none of our inhibitors block the enzymatic activity of cathepsin B (a cysteine protease like M^pro), thrombin (a serine protease), renin (an aspartic protease), or matrix metalloproteinase-1 (MMP-1; SI Appendix, Fig. S6). Thus, our potent molecules are anticipated to have specific effects on human cellular activity.

To understand the interactions of CDD-1713 with M^pro we determined the X-ray crystal structure of the enzyme in complex with the inhibitor. For this purpose, the purified enzyme was crystallized in space group C121 at 1.8-Å resolution with a single monomer in the asymmetric unit (Fig. 3 and SI Appendix, Table S3). The biological dimer is formed by the monomer and its symmetry-related monomer across the crystallographic two-fold axis, as seen previously in M^pro structures (1, 34).

Examination of the structure reveals CDD-1713 is positioned in the active site of M^pro with electron density clearly showing a 1.7-Å covalent bond from the aldehyde of CDD-1713 to γS of the catalytic residue Cys145 (Fig. 3 B and C). The carbonyl oxygen of the aldehyde forms hydrogen bonds with the main chain nitrogens of Gly143 and Cys145 that form the oxyanion hole of the enzyme. Similar interactions have been reported for bicyclopropane-containing inhibitors of M^pro with an aldehyde warhead (1). The active site of M^pro contains four subsites (S1', S1, S2, and S3) that accommodate the amino acids of the peptide substrate or peptidomimetic inhibitors (P1', P1, P2, and P3) (35, 36). M^pro has a stringent requirement for a P1 glutamine occupying the S1 subsite (35). The indazole ring of CDD-1713 inserts into the S1 pocket (Fig. 3). The NH of the indazole group forms hydrogen bonds with the side-chain αe of Glu166 and the main-chain α of Phe140, while the N of the indazole forms a hydrogen bond with the Nε2 of His163 (Fig. 3). In addition, the indazole group makes hydrophobic interactions with Phe140, Leu141, Asn142, and Glu166 (Fig. 3). The extensive interactions of the indazole with residues in the S1 pocket is of note in that the residues in the S1 pocket are largely conserved among coronavirus M^pro enzymes, suggesting CDD-1713 may exhibit broad M^pro specificity (37). The central phenyl ring of CDD-1713 makes hydrophobic interactions with Asn142 and positions the aldehyde group for interaction with Cys143. The O-alkyl chain on the central phenyl ring occupies a region between the S2 and S1' subsites. The terminal methyl groups of the dimethylamide make hydrophobic interactions with His41, Cys44, Thr45, Ser46, and Met49 (Fig. 3D). Note that the dimethylamide is partially buried in the structure, suggesting the BB1 group in CDD-1714 and the DNA-attachment site may sterically clash with the Thr45-Met49 region. However, the rotatable bonds in the O-alkyl chain may allow positioning consistent with binding of the BB1 group and solvent exposure of the DNA-attachment point (Fig. 3B). Further, the methoxy group attached to the central phenyl ring is solvent-exposed and does not interact with M^pro. The design of M^pro inhibitors has mostly centered on templates having multiple amide bonds to mimic the enzyme’s natural peptide substrates (1, 34, 38-41). CDD-1713 differs significantly from the amide-based inhibitors, allowing it to forge different interactions within the same M^pro active site (SI Appendix, Fig. S3E). Thus, the DEC-Tec approach supports the
The viral inhibitory capacity of compounds CDD-1713 and CDD-1976 was demonstrated using a real-time cell analysis assay. Both compounds were able to prevent cell death by the SARS-CoV-2 virus, with CDD-1976 being more effective, as indicated by a decrease in the normalized cell index and the growth kinetics of the cells. In the presence of CDD-1976, cell death was abolished, and virus replication was stopped (Fig. 4).

In summary, using a DEC-Tec-based strategy, we identified CDD-1713 and CDD-1976 as a class of potent and selective inhibitors of SARS-CoV-2 Mpro that block viral reproduction in a short span of time. X-ray crystallography was further deployed to elucidate the structural details of Mpro inhibition by CDD-1713, and this information should enable further development of drug-like Mpro inhibitors. These studies support DEC-Tec as an expedient and effective paradigm for generating therapeutics against critical targets within the SARS-CoV-2 genome.

Methods

Plasmid Construction. The E. coli strain XL1-Blue (recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac, [F9 proAB lacIq lacZΔM15, Tn10 (tetR)]) (Stratagene, Inc.) was used as the host for the plasmid construction. The E. coli strain BL21(DE3) (FhuA2 [lon]omp Tgal ([DE3]) [dcm] 100 nM, sBamHio ΔEcoRI-8 int::(lacUV5::T7gene1) i21, Δnin5) was used as the host for protein expression.

The gene encoding SARS-CoV-2 Mpro (ORF1ab polyprotein residues 3264 to 3569, GenBank code: MN908947.3) was codon-optimized for E. coli expression and synthesized by GenScript Biotech. The synthesized gene was amplified by PCR using the forward primer 5′-GGTGGCTTATGTCGCCCGAGT-GCTGCAAATCCGGTTCCGCAAATGCC-3′ and reverse primer 5′-GCCACCTGGG-ATCCCTAATGATGATGATGATGGGGACCTCGGAAAGTTACACCAGAG-3′ to introduce the N-terminal Mpro cleavage site (SALKV/SGFPR; arrow indicates the cleavage site) and the C-terminal PreScission cleavage site (GYTFQPQGP) followed by a 6xHis tag as previously described (24). The PCR fragment was then inserted into the pSumo plasmid using Ndel and BamHI restriction sites to generate an N-terminal Sumo-Mpro fusion construct pSUMO-SARS-CoV-2-Mpro. The DNA sequences of the plasmids with the corresponding gene insertion were confirmed by Sanger sequencing (Eurofins).
Fig. 3. Crystal structure of Mpro in complex with CDD-1713. (A) Structure of Mpro (tan) with CDD-1713 (cyan). The Fom–Fo density map is shown for the inhibitor with contouring level at 3σ. The catalytic site is located within the square. (B) Magnified view of the catalytic center. Carbon atoms of the inhibitor are cyan, nitrogen atoms are blue, and oxygen atoms are red. The Mpro amino acid residues involved in CDD-1713 binding are shown as stick models and labeled. Mpro residues that form hydrogen bonds (dashed black lines) and van der Waals interactions with CDD-1713 are colored in orange and green, respectively. Electron density is present between C13 on the aldehyde group of CDD-1713 and thiol on the side chain of Cys145. (C) Fo–Fo omit maps showing electron density of the covalent bond formed between Cys145 and CDD-1713 contoured at 3σ. Continuous electron density is present between C13 on the aldehyde group of CDD-1713 and thiol on the side chain of Cys145. (D) Two-diagonal view of the Mpro interaction with CDD-1713 generated by Ligplo*. Carbon atoms are shown in black, nitrogen atoms are blue, and oxygen atoms are red. Ligands are colored cyan and hydrogen bonds are represented as black dashed lines, hydrogen bond contacts are colored orange, and hydrophobic contacts are represented as green spoke arcs. Water molecule was presented as red sphere. The length of each hydrogen bond is labeled.

Protein Expression and Purification. SARS-CoV-2 Mpro with a C-terminal 6xHis-tag was expressed and purified from the E. coli BL21(DE3) strain. E. coli cells were cultured in lysogeny broth medium at 37 °C to an optical density at 600 nm absorbance of 0.8 and protein overexpression was induced by with 0.4 mM isopropyl β-D-thiogalactopyranoside for 20 h at 20 °C. The N-terminal Sumo-fusion was auto-cleaved while active Mpro was expressed, generating authentic N termini of Mpro. The next day cells were harvested by low-speed centrifugation and resuspended in binding buffer (25 mM Tris·HCl, pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol, 20 mM imidazole, and Xpert protease inhibitor mixture [GenDEPOT]). Sonication was used to disrupt cells and cell debris were removed by centrifugation at 10,000 × g for 10 min at 4 °C. The supernatant was mixed with binding buffer preequilibrated Ni2+ Sepharose 6 Fast Flow resin (GE Healthcare) for 30 min at 4 °C and then loaded onto the column. After washing, protein was eluted by adding buffer A (25 mM Tris·HCl, pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol, and Xpert protease inhibitor mixture) supplemented with 40, 60, 80, and 100 mM imidazole, respectively. The purity of Mpro in each fraction was visualized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) followed by Coomassie Brilliant Blue (CBB) staining. Protein fractions containing >95% pure Mpro were pooled and buffer-exchanged with buffer B (20 mM Tris·HCl, pH 7.3, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid [EDTA], and 1 mM dithiothreitol [DTT]) using a Amicon Ultra-15 Centrifugal Filter Unit (MilliporeSigma). Purified Mpro was then mixed with PreScission protease (GenScript Biotech) at a ratio of 1 mg protein to 10 units protease based on manufacturer recommendations and incubated for 20 h at 4 °C, resulting in Mpro with authentic N and C termini. GST Bind Resin (Novagen) and Ni2+ Sepharose 6 Fast Flow resin were applied sequentially to remove GST-tagged PreScission protease and remaining Mpro-His. To further eliminate protein contamination from the PreScission protease, uncleaved Mpro-His and 6xHis-tag. Mpro was concentrated and loaded on to a Superdex 75 increase 10/300GL size-exclusion column (GE Healthcare) preequilibrated with buffer B. The elution profile of Mpro protein was visualized by SDS/PAGE followed by CBB staining and pure Mpro protein was combined for further use.

DEc-Tec Affinity Selection with Mpro. To identify Mpro binding compounds we screened our DEc-Tec library pool in two tubes: 1) absence of Mpro protein (bead binding no-target control, NTC) and 2) presence of His-Mpro at 1 μM. Before the screen was initiated, our DEc-Tec libraries were quantitated using qPCR and pooled together such that 1 million copies of each compound were present. Three rounds of DEc-Tec selection were performed to improve ligand enrichment. The DNA barcode from the last round of selection was PCR-amplified and sequenced to identify the linked drug-like binders. In brief, DEc-Tec screen and sequencing were performed as follows: 1) His-Mpro at 1 μM was incubated with DEc-Tec libraries in 50 mM Tris·HCl buffer, pH 8.0, containing 150 mM NaCl, 10 mM imidazole, 1 mM TCEP, 1 mM CHAPS, and 0.1 mg/mL sheared salmon sperm DNA for 45 min at 4 °C. Disrupted cells and cell debris were removed by centrifugation at 10,000 × g for 10 min at 4 °C. The supernatant was mixed with binding buffer preequilibrated Ni2+ Sepharose 6 Fast Flow resin (GE Healthcare) for 30 min at 4 °C and then loaded onto the column. After washing, protein was eluted by adding buffer A (25 mM Tris·HCl, pH 8.0, 150 mM NaCl, 5 mM β-mercaptoethanol, and Xpert protease inhibitor mixture) supplemented with 40, 60, 80, and 100 mM imidazole, respectively. The purity of Mpro in each fraction was visualized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) followed by Coomassie Brilliant Blue (CBB) staining. Protein fractions containing >95% pure Mpro were pooled and buffer-exchanged with buffer B (20 mM Tris·HCl, pH 7.3, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid [EDTA], and 1 mM dithiothreitol [DTT]) using a Amicon Ultra-15 Centrifugal Filter Unit (MilliporeSigma). Purified Mpro was then mixed with PreScission protease (GenScript Biotech) at a ratio of 1 mg protein to 10 units protease based on manufacturer recommendations and incubated for 20 h at 4 °C, resulting in Mpro with authentic N and C termini. GST Bind Resin (Novagen) and Ni2+ Sepharose 6 Fast Flow resin were applied sequentially to remove GST-tagged PreScission protease and remaining Mpro-His. To further eliminate protein contamination from the PreScission protease, uncleaved Mpro-His and 6xHis-tag. Mpro was concentrated and loaded on to a Superdex 75 increase 10/300GL size-exclusion column (GE Healthcare) preequilibrated with buffer B. The elution profile of Mpro protein was visualized by SDS/PAGE followed by CBB staining and pure Mpro protein was combined for further use.

Fig. 4. Normalized cell index plotted versus concentration (log) of Mpro drug compounds measured using the xCELLigence RTCA. Average data points from duplicate measurements. A sigmoidal dose–response curve was fitted to determine IC50 values for each Mpro drug compound (lines).
Compounds were incubated with Mpro for 20 min at RT in reaction buffer. Michealis...tion of 1.5 μM was incubated with the test compound at various concen...

To determine the K_i values of active compounds, 25 nM Mpro was mixed with increasing concentrations of compounds (from 4 nM to 4,000 nM with twofold dilutions) and hydrolysis of 15 μM fluorescent peptide was monitored. Initial hydrolysis rates of fluorescent peptide were plotted as a function of compound concentrations and K_i values were obtained by fitting the data into the Morrison equation (42) with SE from triplicates. The Michealis–Menten constant of enzyme (K_m) value used for K_i calculations is 17 μM (43).

The Morrison equation used was

\[Y = \frac{V_0 \times \left(1 - \left(\frac{E_i + X + (1 + \frac{S}{K_m})}{E_i + X + (K_i + \frac{S}{K_m})}\right)^2\right)}{4 \times E_i \times X^0 \left(\frac{S}{K_m}\right) / (2 \times E_i)} \]

where Y is enzyme activity, X is concentration of inhibitor, E_i is enzyme concentration, and S is substrate concentration.

Thermal Shift Assay. The dye SYPRO Orange (Thermo Fisher Scientific) was used to perform the protein thermal shift assay. The assay was set up on a 384-well Roche plate where the SARS-CoV-2 main protease at a concentration of 1.5 μM was incubated with the test compound at various concentrations and SYPRO Orange dye at 5X in a 10 μL reaction. The melting curve experiment and data analysis were run on a Roche Lightcycler 480 real-time PCR instrument.

Human Protease Assays. Cathepsin B assay: A kit from BPS Bioscience (79590) was used with adjustments to the manufacturer’s protocol as follows. The activated enzyme was diluted 250-fold just before use, and the reaction was run at RT in black 96 half-area plates in a total reaction volume of 50 μL containing 0.01% Tween-20. Instead of measuring endpoints at 60 min the increase in fluorescence (excitation [Ex] 360 nm, emission [Em] 460 nm) per second (RFU) was obtained from linear progress curves over 10 min. Fractional activities were calculated from reactions with no inhibitors. E-64 was used as a positive control.

Thrombin assay: A kit from Sigma-Aldrich (MAK243) was used with adjustments to the manufacturer’s protocol as follows. Thrombin was reconstituted according to protocol and then diluted 10-fold with assay buffer just before use. The unknown AMC-peptide substrate was further diluted threefold with the provided buffer. The reaction was run at RT in kinetic mode for 10 min in white 96 half-area plates in a total reaction volume of 100 μL containing 0.01% Tween-20. The increase in fluorescence (Ex 350 nm, Em 450 nm) per second (RFU) was obtained from linear progress curves. Fractional activities were calculated from reactions with no inhibitors.

CDD-1472, a potent thrombin inhibitor identified by our group using DEC-Tec (6), was used as a positive control.

Renin assay: A kit from BPS Bioscience (80211) was used with adjustments to the manufacturer’s protocol as follows. The reaction was run at RT in black 96 half-area plates in a total reaction volume of 50 μL containing 0.01% Tween-20. Instead of measuring endpoints at 30 min the increase in fluorescence (Ex 490 nm, Em 520 nm) per second (RFU) was obtained from linear progress curves over 10 min. Fractional activities were calculated from reactions with no inhibitors. Aliskiren was used as a positive control.

MMP-1 assay: a kit from Biovision (K794-100) was used with adjustments to the manufacturer’s protocol as follows. The enzyme was reconstituted according to protocol and then diluted fivefold with assay buffer just before use. The unknown fluorogenic substrate was further diluted 10-fold with the provided assay buffer. The reaction was run at 37 °C in black 96 half-area plates in a total reaction volume of 50 μL containing 0.01% Tween-20. The increase in fluorescence (Ex 490 nm, Em 520 nm) per second (RFU) was obtained from linear progress curves over 10 min. Fractional activities were calculated from reactions with no inhibitors. GM 6001 was used as a positive control (44).

Crystallography and Data Collection. To obtain the structure of Mpro in complex with CDD-1713, Mpro*- and CDD-1713 were mixed at a 1:2 molar ratio and incubated at 4 °C overnight to facilitate complex formation. Crystal growth was performed using commercially available precipitating solutions PEGs, PEGIL, PACT, and JCSGl from Qiagen in 96-well format. Hanging drops were set up by an in-house TTP LabTech Mosquito instrument and crystals were obtained through the vapor diffusion method. Crystals were obtained in a condition of 20% (w/vol) PEG3350 and 0.2 M sodium acetate at RT and 25% glycerol was used as the cryoprotectant.

X-ray diffraction data were collected at the Berkeley Center for Structural Biology using the Advanced Light Source synchrotron beam line. Reflection data were indexed, integrated, and scaled using the IMOSfim and the CCP4i Suite (45). Molecular replacement was performed using the Mpro*- structure (Protein Data Bank ID code 7K3T) as the search model. Structures were further refined several rounds using PHENIX.refine and Crystallography Object-Oriented Toolkit (Coot) (46). The data collection and refinement statistics are listed in SI Appendix, Table S3. The UCSF Chimera program was used to generate Fig. 2. The electron densities of CDD-1713 and the covalent bond between residue Mpro*- Cys145 and CDD-1713 in the crystal structure were further examined by creating a polder mFo-Fc OMIT map using the PHENIX software.

Metabolic Stability Assay in Liver Microsomes. Compounds CDD-1713 and CDD-1976 (2.0 μM) were incubated in mouse or human liver microsomes (0.5 mg protein/mL) at 37 °C. The samples were collected at specific time points, 0, 30, and 60 min, in duplicate. The reactions were terminated by adding an equivalent volume of ice-cold methanol and vortexed. The reaction mixtures were centrifuged at rcf 15,000 for 15 min. Three microliters of the supernatant was analyzed by UHPLC-Q Exactive Orbitrap MS (Thermo Fisher Scientific) equipped with 50-mm x 4.6-mm column DCD-18; Agilent Technologies. The column temperature was maintained at 45 °C. The flow rate was at 0.3 mL/min with a 30% mobile phase (acetonitrile containing 0.1% formic acid). Q Exactive MS was operated in positive mode with electrospray ionization. Ultrapure nitrogen was applied as the sheath (45 arbitrary units), auxiliary (10 arbitrary units), sweep (1.0 arbitrary unit), and the collision gas. The capillary gas temperature was set at 275 °C and the capillary voltage was set at 3.7 kV. Mass Spectrometry (MS) data were acquired from 80 to 1,200 Da in profile mode. JO1 and alprazolam were used as the short and long half-life control, respectively.

Cell Uptake Assay and Cytotoxicity Assay in HepG2. The HepG2 cells maintained in DMEM containing 1 g/L glucose, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin were seeded in a 12-well plate (a final density of 5 × 10^4 per well) for cell uptake assay and 96-well plate for cytotoxicity assay (a final density of 5 × 10^4 per well). The plate was incubated at 37 °C for 24 h.

Cell Uptake. The cells in 12-well plate were treated with CDD-1713 or CDD-1976 (final concentration: 10 μM). The plate was incubated at 37 °C for another 2 h. The medium in the plate was decanted and the cells were rinsed with 1 mL of 1x DPBS three times, then 0.5 mL of 0.25% trypsin was added to each well and incubated for 3.5 min (at 37 °C). One milliliter of complete medium was added to each well to quench the reaction. After spinning at 350 × g for 5 min, the cell pellet was reconstituted in MeOH/H2O (vol/vol 1/1) and CDD-1713 or CDD-1976 was extracted from 100 μL of the resulting mixture with 100 μL of ice-cold methanol. The mixtures were centrifuged at
rcf 15,000 for 15 min. Three microliters of the supernatant was analyzed by UHPLC-Q Exactive Orbitrap MS (Thermo Fisher Scientific) equipped with a 55-mm × 4.6-mm column (XDB C-18; Agilent Technologies). The column temperature was set at 40 °C. Ultrapure nitrogen was applied as the sheath (45 arbitrary units), auxiliary (10 arbitrary units), sweep (1.0 arbitrary unit), and the collision gas. The capillary temperature was 275 °C, and the auxiliary gas was 38 °C. The electrospray ionization (ESI) was operated in the positive mode, with a spray voltage of 2.5 kV. The gradient elution program was as follows: 0 to 0.25 min, 40% B; 0.25 to 1.5 min, 40 to 98% B; 1.5 to 3.5 min, 98% B; 3.5 to 3.8 min, 98 to 40% B; 3.8 to 5 min, 40% B. Dioxidurbin and dabcarnavir were used as positive and negative controls, respectively. The experiments were performed in triplicate.

Cytotoxicity Assay. The cells in 96-well plate were treated by CDD-1713 or CDD-1976 at the final concentrations of 0, 10, 20, 50, or 100 μM (n = 3 replicates per concentration level per drug). After 24-h incubation at 37 °C, the medium in the plate was decanted and 100 μL of Dulbecco’s modified Eagle’s medium (DMEM) (without phenol red) was added into each well. The cell variability was measured using XTT method. The absorbance at 475 nm was read with a Tecan M1000 pro machine, with a reference wavelength of 660 nm. The reading was normalized by vehicle with final 0.5% dimethylox sulfide (DMSO) for each drug.

Plasma Stability Assay. Compound CDD-1713 and CDD-1976 were incubated in human and mouse plasma, respectively, at a concentration of 10 μM in duplicate (n = 2) at 37 °C. At time points of 0, 30, 60, and 120 min, 15 μL of sample were taken out and the reactions terminated by adding 75 μL of ice-cold methanol. The reaction mixtures were then vortexed for 30 s and centrifuged at rcf 15,000 for 15 min. Following centrifugation, 3 μL of the supernatant was analyzed using UHPLC-Q Exactive Orbitrap MS 5. The percentage of test compound remaining at the individual time points relative to the 0-min sample was then determined.

RTCA Assay for Evaluating In Vitro Inhibition of SARS-CoV-2 Replication by Mpro Inhibitors. Inhibition of SARS-CoV-2 replication in VERO E6 and HEK hACE2 cells was measured using an xCELLigence RTCA HT Analyzer (Agilent Technologies), tracking the virus-induced cytotoxic effect (CPE) on the cellular growth kinetics. Applied methods were similar to those recently described elsewhere (47). After a background reading of the 96-well E-plate using 50 μL of media only - cells were seeded in each well, using 100 μL of culture media (VERO E6 cells: DMEM + 1% penicillin/streptomycin + 10% FBS or HEK-HACE2 cells: DMEM + 1X penicillin/streptomycin + 10% FBS + 10 mM Hepes). The E-plate was incubated for 30 min at RT to minimize edging effects. After the cells settled, the E-plate was transferred to an xCELLigence instrument for real-time analysis of cell proliferation for 24 h. Drug candidates dissolved in DMSO were twofold serially diluted in cell culture media in a 96-deep-well plate. Drug samples were prepared in duplicate and DMSO was included as buffer control. An equal volume of cell culture media containing SARS-CoV-2 (USA_WA1/2020 isolate) was added to the drugs. Final concentrations of small drug tested ranged from 0.2 μM to 50 μM, and wells containing virus only or cell culture media only were added as controls. The plate was incubated for 1 h at 37 °C in 5% CO2. After the incubation, the E-plate was removed from the xCELLigence instrument and the cell culture media of the E-plate was replaced by 250 μL of the drugs candidature virus mixture from the deep-well plate. The E-plate was then transferred back to the xCELLigence instrument and real-time analysis of the CPE was continued for an additional 75 h.

Data were analyzed using the RTCA software (Agilent Technologies). Duplicate wells were averaged, and the cell index was normalized to the last measured time point before the addition of the drugs/virus mixture Using Prism9 software (GraphPad) the normalized cell index data were plotted versus time, and the IC50 of each drug candidate was calculated.

Data Availability. All study data are included in the article and/or SI Appendix. The Mpro structure in complex with CDD-1713 has been deposited to the Protein Data Bank with PDB ID 7L7N.

ACKNOWLEDGMENTS. This work is supported by the National Cancer Institute (Grant R01CA227129), a Core Facility Support Award from the Cancer Prevention and Research Institute of Texas, (Grant RP160805), the Welch Foundation (Grant H-Q-0042), and an internal pilot grant from Baylor College of Medicine. We thank Dr. Errol L. Samuel from the Department of Pharmacology and Chemical Biology at Baylor College of Medicine for help in refining the figures. We thank Dr. Liya Hu from the Department of Biochemistry and Molecular Biology at Baylor College of Medicine for assistance with X-ray structure refinement. The Advanced Light Source, Berkeley Center for Structural Biology, Lawrence Livermore National Laboratory is supported in part by the Howard Hughes Medical Institute. The Advanced Light Source is a Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231. The Pilatus detector on 5.0.1 was funded under NIH Grant S10OD021832. The ALS-ENABLE (Advanced Light Source Efficiently Networking Advanced Beamline Experiments) beamlines are supported in part by the NIH, National Institute of General Medical Sciences, Grant P30 GM124169.
30. P. M. Cal et al., Iminoboronates: A new strategy for reversible protein modification. *J. Am. Chem. Soc.* 134, 10299–10305 (2012).
31. G. Akçay et al., Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. *Nat. Chem. Biol.* 12, 931–936 (2016).
32. M. Gehringer, S. A. Laufer, Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. *J. Med. Chem.* 62, 5673–5724 (2019).
33. C. Gampe, V. A. Verma, Curse or cure? A perspective on the developability of aldehydes as active pharmaceutical ingredients. *J. Med. Chem.* 63, 14357–14381 (2020).
34. L. Fu et al., Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. *Nat. Commun.* 11, 4417 (2020).
35. R. Hilgenfeld, From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. *FEBS J.* 281, 4085–4096 (2014).
36. Z. Jin et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. *Nature* 582, 289–293 (2020).
37. H. Yang et al., Design of wide-spectrum inhibitors targeting coronavirus main proteases. *PLoS Biol.* 3, e324 (2005).
38. S. Iketani et al., Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. *Nat. Commun.* 12, 2016 (2021).
39. A. Douangamath et al., Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. *Nat. Commun.* 11, 5047 (2020).
40. R. L. Hoffman et al., Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. *J. Med. Chem.* 63, 12725–12747 (2020).
41. J. Breidenbach et al., Targeting the main protease of SARS-CoV-2: From the establishment of high throughput screening to the design of tailored inhibitors. *Angew. Chem. Int. Ed. Engl.* 60, 10423–10429 (2021).
42. J. F. Morrison, Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. *Biochim. Biophys. Acta* 185, 269–286 (1969).
43. C. J. Kuo, Y. H. Chi, J. T. Hsu, P. H. Liang, Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. *Biochem. Biophys. Res. Commun.* 318, 862–867 (2004).
44. P. Kuzmic et al., High-throughput screening of enzyme inhibitors: Automatic determination of tight-binding inhibition constants. *Anal. Biochem.* 281, 62–67 (2000).
45. A. J. McCoy et al., Phaser crystallographic software. *J. Appl. Cryst.* 40, 658–674 (2007).
46. P. Emsley, K. Cowtan, Coot: Model-building tools for molecular graphics. *Acta Crystallogr. D* 60(Pt 12 Pt 1), 2126–2132 (2004).
47. S. J. Zost et al., Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. *Nat. Med.* 26, 1422–1427 (2020).
48. B. K. Lundholt, K. M. Scudder, L. Pagliaro, A simple technique for reducing edge effect in cell-based assays. *J. Biomol. Screen.* 8, 566–570 (2003).