Isoliquiritigenin (ILTG) is a chalcone compound and shows various pharmacological properties, including antioxidant and anti-inflammatory activities. In recent study, we have reported a novel role of ILTG in sleep through a positive allosteric modulation of gamma-aminobutyric acid type A (GABA_\text{A})-benzodiazepine (BZD) receptors. However, the effect of ILTG in GABA_\text{A},R-mediated synaptic response in brain has not been tested yet. Here we report that ILTG significantly prolonged the decay of spontaneous inhibitory postsynaptic currents (sIPSCs) mediated by GABA_\text{A},R in mouse hippocampal CA1 pyramidal neurons without affecting amplitude and frequency of sIPSCs. This enhancement was fully inhibited by flumazenil (FLU), a specific GABA_\text{A},-BZD receptor antagonist. These results suggest a potential role of ILTG as a modulator of GABAergic synaptic transmission.

Key words: Isoliquiritigenin, GABA_\text{A},-BZD receptor, sIPSC

INTRODUCTION

Isoliquiritigenin (ILTG, 2',4',4'-trihydroxylchalcone) is a chalcone compound and found in various flavonoids such as *Glycyrrhiza uralensis* (licorice), *Allium ascalonicum*, *Sinafranchetia chinensis*, *Dalbergia odorifera*, and *Glycine max* L. [1-5]. It has been reported that ILTG has various pharmacological properties including anti-inflammatory, antioxidant, anticancer, anti-angiogenic, and anti-allergic [5-9]. In addition to these properties, it has been demonstrated that ILTG has some neurological functions such as inhibition of cocaine-induced dopamine release and hypnotic effect by modulating gamma-aminobutyric acid receptors (GABARs) [10, 11]. However, the exact effect of ILTG in inhibitory synaptic activity and type of GABA receptor have not been demonstrated yet.

In the present study, we investigated the modulation of GABAergic synaptic response by ILTG in mouse hippocampal CA1 pyramidal cell using whole-cell patch clamp technique. We found that ILTG specifically enhanced the decay tau of sIPSC by modulating GABA_\text{A},-BZD receptor. However, the amplitude and frequency of sIPSC were not affected by ILTG. Therefore, our results suggest a potential role of ILTG as a modulator of GABAergic synaptic transmission.
MATERIALS AND METHODS

Slice preparation

Adult mice (7~9 weeks) were deeply anaesthetized until cessation of breathing and subsequently decapitated. The brain was rapidly removed and submerged in an ice-cold oxygenated artificial cerebrospinal fluid (ACSF) composed of (in mM) 130 NaCl, 24 NaHCO₃, 3.5 KCl, 1.25 NaH₂PO₄, 1 CaCl₂, 3 MgCl₂, 10 glucose at pH 7.4, and was bubbled with 5% CO₂ / 95% O₂. Transverse mouse brain slices (350~400 μm) containing hippocampus were acutely prepared with a Leica vibratome (Leica VT1000S), and incubated in a chamber with oxygenated ACSF at room temperature for 1 hr before use.

Recording of sIPSCs

The standard ACSF recording solution was composed of (mM): 130 NaCl, 24 NaHCO₃, 3.5 KCl, 1.25 NaH₂PO₄, 1 CaCl₂, 1.5 MgCl₂, and 10 glucose saturated with 95% O₂~5% CO₂ at pH 7.4. The internal solution was composed of (mM): 140 CsCl, 10 EGTA, 4 HEPES, 2 QX-314. To block the spontaneous EPSC, APV (50 μM; Tocris) and CNQX (20 μM; Tocris) were added into ACSF. Recordings were obtained using Axopatch 200A (Axon instruments, Union City, CA, USA) and filtered at 2 kHz. In case of sIPSC recording, recordings were digitized at 10 kHz, and analyzed using pCLAMP 9 (Molecular devices) and Mini Analysis Program (Synaptosoft) as previously described [12]. The sEPSCs were automatically detected and grouped as fast (1~5 ms) and slow rise time (5~10 ms). All experimental procedures described were performed in accordance with the institutional guidelines of ILTG does not affect amplitude and frequency of sIPSCs. (A) Schematic showing slice patch clamp. (B) Representative whole trace (upper) and magnified trace (lower) of sIPSC. (C) Representative trace of sIPSC before and after treatment of ILTG. (D and E) Summary bar graphs of the amplitude (D) and frequency (E) of sIPSC after normalization by control response (Students’ tailed t-test). Data are represented as mean ± SEM. ns indicates nonsignificant difference p>0.05, n=6.
The Effect of Isoliquiritigenin in sIPSC of Hippocampal CA1 Pyramidal Neuron

Korea Institute of Science and Technology (KIST, Seoul, Korea).

Statistical analyses
Statistical comparisons were performed using independent t-tests for two groups and one-way ANOVA test for three groups. Data were expressed as the mean±S.E.M. Differences were considered significant at **p<0.01.

RESULTS

ILTG does not affect amplitude and frequency of sIPSCs
To examine the role of ILTG in the inhibitory synaptic response, we performed the whole-cell patch clamp in hippocampal CA1 pyramidal neurons (Fig. 1A) and measured the sIPSCs at -60mV in the presence of APV and CNQX to block the EPSCs (Fig. 1B). However, the amplitude and frequency of sIPSC were not changed before and after treatment of ILTG (1 μM) by bath application (Fig. 1C–E). This indicates that ILTG does not affect the presynaptic release of GABA and postsynaptic receptor number.

ILTG significantly prolonged the sIPSC decay
Although ILTG had little effect on sIPSC amplitude and frequency, we analyzed the sIPSC in more detail by measuring the decay tau value after single-exponential decay fitting. Interestingly, ILTG significantly increased the decay time (Fig. 2 control: 18.3±1.9 ms; ILTG: 23.5±2.1 ms). In a recent study, it has been reported that ILTG enhanced the GABA-induced current in dorsal raphe neurons by modulating GABAₐR [11]. To test this, we applied flumazenil (FLU, 5 μM), a specific GABAₐR antagonist, into ILTG-treated slice. The enhancement of decay time of sIPSC by ILTG was fully restored to control (Fig. 2B, control: 18.3±1.9 ms; ILTG: 23.5±2.1 ms; ILTG+FLU: 19.1±1.7 ms).

We have reported that ILTG functions as a positive allosteric modulator of GABAₐ–BZP receptor [11]. To confirm this, we measured the decay time of sIPSC using well known modulator for GABAₐ–BZP receptor, diazepam (DZP, 1 μM). Just as ILTG, DZP significantly enhanced the decay time of sIPSC (Fig. 2A and B, control: 19.2±1.3 ms; ILTG: 24.9±2.1.6 ms), but did not affect the amplitude and frequency of sIPSC (Fig. 2C and D). These results suggest that ILTG prolonged the sIPSC decay effectively by modulating the GABAₐ–BZP receptor via a mechanism similar to that of DZP.

DISCUSSION

Here we reported that ILTG significantly enhanced the decay time of sIPSC but had little effect on sIPSC amplitude and frequency. These results is consistent with other modulator for GABAₐ–BZP receptor, flunitrazepam [13] and DZP (Fig. 3). These results suggest that a similar number of GABA channels

Fig. 2. ILTG significantly prolonged the sIPSC decay. (A) Averaged sIPSCs after normalization by peak. Decay was fitted to one-exponential functions. Upper: individual traces of each conditions. Lower: Superimposed traces. (B) Summary bar graph of sIPSC decay time. Symbols represent individual neurons. Data are represented as mean +/- SEM. **p<0.01, one-way ANOVA, n=6.

http://dx.doi.org/10.5607/en.2014.23.2.163
are activated initially during the brief synaptic release of GABA generating IPSC. However, the channel opening frequency is increased by modulators for GABA_A–BZP receptor producing longer decays after channel activation [14, 15]. In a previous study, we showed that ILTG enhanced the GABA-induced current in a dose-dependent manner in dorsal raphe neurons [11]. The enhancement was 266% by DZP and 151% by ILTG at 1 μM concentration. We predicted that ILTG can enhance the decay time of sIPSCs in a concentration dependent manner, however, in the present study we used 1 μM ILTG to obtain maximal enhancement. Contrary to the GABA-induced current, the enhancement of sIPSC decay time was similar between DZP and ILTG at 1 μM concentration.

GABA_ARs activity can be modulated by various drugs including benzodiazepines, barbiturates, ethanol, neurosteroids, anesthetics, and ionic zinc with separate binding sites [16-18]. This modulation was measured in various brain regions such as thalamus, hippocampus, suprachiasmatic nucleus [13, 19, 20] and had many critical role in brain activity not only in physiological condition but in pathophysiological condition including various diseases such as depression, seizure, schizophrenia, and etc [21-23].

Here we have investigated that ILTG modulates the sIPSC by enhancing response time as a positive allosteric modulator of GABA_A –BZP receptor in hippocampal CA1 pyramidal neurons. It has been reported that ILTG inhibits the mitogen-activated protein kinase (MAPK) pathway and chronic benzodiazepine administration reduced the NMDAR activation in hippocampus [8, 19]. Both MAPK pathway and NMDAR are critically involved in hippocampal synaptic plasticity and spatial memory [24-27]. We can postulate that ILTG could be a negative regulator for NMDAR-dependent synaptic plasticity and relating behavior, which has not been studied yet. Future studies are needed to study the function of ILTG in hippocampal brain function such as synaptic plasticity and memory.

DZP is widely used to treat various diseases including anxiety, seizures and insomnia by modulating GABA_A Rs through the binding to the GABA_A –BZP receptor. However, DZP has some adverse effects including anterograde amnesia, sedation and depression [28-30]. ILTG shows hypnotic effects, having 65 fold higher binding affinity than that of DZP [11], suggesting that ILTG could be a potential drug for the treatment of sleep as a natural compound from flavonoids. Therefore, this study suggests that ILTG is a potential drug to treat various diseases of sleep and seizures related to GABAergic synaptic transmission.

ACKNOWLEDGMENTS

This work was supported by the World Class Institute (WCI 2009-003) programs of the National Research Foundation (NRF) funded by the Korean Ministry of Science, Education and
The Effect of Isoliquiritigenin in sIPSC of Hippocampal CA1 Pyramidal Neuron

Technology (MEST), and also supported by National Agenda Project (NAP) of the Korea Research Council of Fundamental Science and Technology (NAP-09-04).

REFERENCES

1. Cao Y, Wang Y, Ji C, Ye J (2004) Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A 1042:203-209.

2. Hsu YL, Chia CC, Chen PJ, Huang SE, Huang SC, Kuo PL (2009) Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol Nutr Food Res 53:826-835.

3. Kong LD, Zhang Y, Pan X, Tan RX, Cheng CH (2000) Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Cell Mol Life Sci 57:500-505.

4. Lee SH, Kim JY, Seo GS, Kim YC, Sohn DH (2009) Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm Res 58:257-262.

5. Kape R, Parniske M, Brandt S, Werner D (1992) Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate. Appl Environ Microbiol 58:1705-1710.

6. Chin YW, Jung HA, Liu Y, Su BN, Castoro JA, Keller WJ, Pereira MA, Kinghorn AD (2007) Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J Agric Food Chem 55:4691-4697.

7. Ii T, Satomi Y, Katoh D, Shimada J, Baba M, Okuyama T, Nishino H, Kitamura N (2004) Induction of cell cycle arrest and p21(CIP1/WAF1) expression in human lung cancer cells by isoliquiritigenin. Cancer Lett 207:27-35.

8. Kang SW, Choi JS, Choi YJ, Bae JY, Li J, Kim DS, Kim JL, Shin SY, Lee YJ, Kwun IS, Kang YH (2010) Licorice isoliquiritigenin damps angiogenic activity via inhibition of MAPK-responsive signaling pathways leading to induction of matrix metalloproteinases. J Nutr Biochem 21:55-65.

9. Kakegawa H, Matsumoto H, Satoh T (1992) Inhibitory effects of some natural products on the activation of hyaluronidase and their anti-allergic actions. Chem Pharm Bull (Tokyo) 40:1439-1442.

10. Jang EY, Choe ES, Hwang M, Kim SC, Lee JR, Kim SG, Jeon JP, Buono RJ, Yang CH (2008) Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol 587:124-128.

11. Cho S, Kim S, Jin Z, Yang H, Han D, Baek NI, Jo J, Cho CW, Park JH, Shimizu M, Jin YH (2011) Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 413:637-642.

12. Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057-1081.

13. Strecker GJ, Park WK, Dudek FE (1999) Zinc and flunitrazepam modulation of GABA-mediated currents in rat supra-chiasmatic neurons. J Neurophysiol 81:184-191.

14. Rogers CJ, Twyman RE, Macdonald RL (1994) Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J Physiol 475:69-82.

15. Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49:13-32.

16. Davies M, Bateson AN, Dunn SM (1996) Molecular biology of the GABA(A) receptor: functional domains implicated by mutational analysis. Front Biosci 1:d214-d233.

17. Christiansen GA (1996) GABAA receptor pharmacology. Pharmacol Ther 69:173-198.

18. Dunn SM, Bateson AN, Martin IL (1994) Molecular neurobiology of the GABAA receptor. Int Rev Neurobiol 36:51-96.

19. Van Sickle BJ, Cox AS, Schak K, Greenfield LJ Jr, Tietz EI (2002) Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression(I). Neuropharmacology 43:595-606.

20. Christian CA, Herbert AG, Holt RL, Peng K, Sherwood KD, Pangratz-Fuehrer S, Rudolph U, Huguenard JR (2013) Endogenous positive allosteric modulation of GABA(A) receptors by diazepam binding inhibitor. Neuron 78:1063-1074.

21. Gallagher DW, Mallorga P, Thomas JW, Tallman JF (1980) GABA-benzodiazepine interactions: physiological, pharmacological and developmental aspects. Fed Proc 39:3043-3049.

22. Moura D, Soares-da-Silva P (1985) Drug activation of GABAergic transmission in the central nervous system: benzodiazepines and GABAergic agonists. Acta Med Port 6:57-64.

23. Fritzschy JM, Brüning I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and
pathophysiological implications. Pharmacol Ther 98:299-323.
24. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1:602-609.
25. Wu SP, Lu KT, Chang WC, Gean PW (1999) Involvement of mitogen-activated protein kinase in hippocampal long-term potentiation. J Biomed Sci 6:409-417.
26. English JD, Sweatt JD (1996) Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem 271:24329-24332.
27. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021-1024.
28. Möhler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60:1042-1049.
29. Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111:231-239.
30. Riss J, Cloyd J, Gates J, Collins S (2008) Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand 118:69-86.