Jensen’s Inequality for Backward SDEs Driven by \(G \)-Brownian motion

Ze-Chun Hu* and Zhen-Ling Wang
Nanjing University

Abstract In this note, we consider Jensen’s inequality for the nonlinear expectation associated with backward SDEs driven by \(G \)-Brownian motion (\(G \)-BSDEs for short). At first, we give a necessary and sufficient condition for \(G \)-BSDEs under which one-dimensional Jensen inequality holds. Second, we prove that for \(n > 1 \), the \(n \)-dimensional Jensen inequality holds for any nonlinear expectation if and only if the nonlinear expectation is linear, which is essentially due to Jia (Arch. Math. 94 (2010), 489-499). As a consequence, we give a necessary and sufficient condition for \(G \)-BSDEs under which the \(n \)-dimensional Jensen inequality holds.

Keywords \(G \)-BSDE, nonlinear expectation, Jensen’s inequality

MSC(2000): 60H10

1 Introduction

It’s well known that backward stochastic differential equations (BSDEs in short) play a very important role in stochastic analysis, finance and etc. We refer to a survey paper of Peng [20] for more details of the theoretical studies and applications to, e.g., stochastic controls, optimizations, games and finance.

Peng [13]–[19] defined the \(G \)-expectations, \(G \)-Brownian motions and built Itô’s type stochastic calculus. As to the classic setting, it’s important to study BSDEs under \(G \)-expectation, i.e. BSDEs driven by \(G \)-Brownian motions (\(G \)-BSDE for short). By Hu et al. [7], a general \(G \)-BSDE is to find a triple of processes \((Y, Z, K)\), where \(K \) is a decreasing \(G \)-martingale, satisfying

\[
Y_t = \xi + \int_t^T f(s, Y_s, Z_s)ds + \int_t^T g(s, Y_s, Z_s)d\langle B \rangle_s - \int_t^T Z_s dB_s - (K_T - K_t).
\]

(1.1)
When the generator \(f \) in (1.1) is independent of \(z \) and \(g = 0 \), the above problem can be equivalently formulated as

\[
Y_t = \hat{\mathbb{E}}_t [\xi + \int_t^T f(s, Y_s) ds].
\]

The existence and uniqueness of such fully nonlinear BSDE was obtained in Peng \[14, 16, 19\]. Soner, Touzi and Zhang \[22\] have proved the existence and uniqueness for a type of fully nonlinear BSDE, called 2BSDE, whose generator can contain \(Z \)-term.

For the general \(G \)-BSDE (1.1), Hu et al. proved the existence and uniqueness in \[7\], and studied comparison theorem, nonlinear Feynman-Kac formula and Girsanov transformation in \[8\]. He and Hu \[5\] obtained a representation theorem for the generators of \(G \)-BSDEs and used the representation theorem to get a converse comparison theorem for \(G \)-BSDEs and some equivalent results for the nonlinear expectations generated by \(G \)-BSDEs. Peng and Song \[21\] introduced a new notion of \(G \)-expectation-weighted Sobolev spaces (\(G \)-Sobolev space for short), and proved that \(G \)-BSDEs are in fact path dependent PDEs in the corresponding \(G \)-Sobolev spaces.

In this note, we study Jensen’s inequality for \(G \)-BSDEs. For Jensen’s inequality for \(g \)-expectation associated classical BSDEs, we refer to Briand et al. \[1\], Chen et al. \[2\], Jiang and Chen \[12\], Hu \[6\], Jiang \[11\], Fan \[3\], Jia \[9\], Jia and Peng \[10\] and the references therein.

Recently, Guessab and Schmeisser \[4\] considered the \(d \)-dimensional Jensen inequality

\[
T[\psi(f_1, \cdots, f_d)] \geq \psi(T[f_1], \cdots, T[f_d]),
\]

where \(T \) is a functional, \(\psi \) is a convex function defined on a closed convex set \(K \subset \mathbb{R}^d \), and \(f_1, \cdots, f_d \) are from some linear space of functions. Among other things, the authors showed that if we exclude three types of convex sets \(K \), then Jensen’s inequality holds for a sublinear functional \(T \) if and only if \(T \) is linear, positive, and satisfies \(T[1] = 1 \), i.e. \(T \) is a linear expectation.

The rest of this note is organized as follows. In Section 2, we give some preliminaries about \(G \)-expectation and \(G \)-BSDEs. In Section 3, we consider Jensen’s inequality for the nonlinear expectation driven by \(G \)-BSDEs. In Subsection 3.1, we follow the method of Hu \[6\] and apply the comparisson theorem, the converse comparison theorem in He and Hu \[5\] to give a necessary and sufficient condition for \(G \)-BSDEs under which one-dimensional Jensen inequality holds. In Subsection 3.2, we prove that for \(n > 1 \), the \(n \)-dimensional Jensen inequality holds for any nonlinear expectation if and only if the nonlinear expectation is linear, which is essentially due to Jia \[9\], and as a consequence, we give a necessary and sufficient condition for \(G \)-BSDEs under which the \(n \)-dimensional Jensen inequality holds.

2 Preliminaries

In this section, we review some basic notions and results of \(G \)-expectation, the related spaces of random variables, and \(G \)-BSDE. The readers may refer to \[19, 7, 8\] for more details.

Definition 2.1 Let \(\Omega \) be a given set and let \(\mathcal{H} \) be a linear space of real valued function defined on \(\Omega \), and satisfy: (i) for each constant \(c, c \in \mathcal{H} \); (ii) if \(X \in \mathcal{H} \), then \(|X| \in \mathcal{H} \). The space \(\mathcal{H} \) can be
where $S \in \phi$ that considered as the space of random variables. A sublinear expectation \hat{E} is a functional $\hat{E}: \mathcal{H} \to \mathbb{R}$ satisfying
(i) Monotonicity: $\hat{E}[X] \geq \hat{E}[Y]$, if $X \geq Y$;
(ii) Constant preserving: $\hat{E}[c] = c$, for $c \in \mathbb{R}$;
(iii) Sub-additivity: $\hat{E}[X + Y] \leq \hat{E}[X] + \hat{E}[Y]$, for each $X, Y \in \mathcal{H}$;
(iv) Positive homogeneity: $\hat{E}[\lambda X] = \lambda \hat{E}[X]$, for $\lambda \geq 0$.
The triple $(\Omega, \mathcal{H}, \hat{E})$ is called a sublinear expectation space. If (i) and (ii) are satisfied, \hat{E} is called a nonlinear expectation and the triple $(\Omega, \mathcal{H}, \hat{E})$ is called a nonlinear expectation space.

Definition 2.2 Let X_1 and X_2 be two n-dimensional random vectors defined in sublinear expectation spaces $(\Omega, \mathcal{H}, \hat{E}_1)$ and $(\Omega, \mathcal{H}, \hat{E}_2)$ respectively. They are called identically distributed, denoted by $X_1 \overset{d}{=} X_2$, if $\hat{E}_1[\varphi(X_1)] = \hat{E}_2[\varphi(X_2)]$, for all $\varphi \in C_{b,Lip}(\mathbb{R}^n)$, where $C_{b,Lip}(\mathbb{R}^n)$ denotes the space of all bounded and Lipschitz functions on \mathbb{R}^n.

Definition 2.3 In a sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$, a random vector $Y \in \mathcal{H}^n$ is said to be independent of another random vector $X \in \mathcal{H}^m$ under $\hat{E}[:]$, denoted by $Y \perp X$, if for all $\varphi \in C_{b,Lip}(\mathbb{R}^{n+m})$ one has $\hat{E}[\varphi(X,Y)] = \hat{E}[\hat{E}[\varphi(x,y)]|y=x]$.

Definition 2.4 (G-normal distribution) A d-dimensional random vector $X = (X_1, \cdots, X_d)$ in sublinear expectation space $(\Omega, \mathcal{H}, \hat{E})$ is called G-normally distributed if for each a, $b \geq 0$, one has $aX + b\bar{X} \overset{d}{=} \sqrt{a^2 + b^2}X$, where \bar{X} is an independent copy of X, i.e. $\bar{X} \overset{d}{=} X$ and $\bar{X} \perp X$. Here, the letter G denotes the function

$$G(A) := \hat{E}[\frac{1}{2}(AX, X)] : \mathcal{S}_d \to \mathbb{R},$$
where $\mathcal{S}_d = \{A|A \text{ is } d \times d \text{ symmetric matrix}\}$.

Peng [18] proved that $X = (X_1, \cdots, X_d)$ is G-normally distributed if and only if for each $\varphi \in C_{b,Lip}(\mathbb{R}^d)$, $u(t, x) := \hat{E}[\varphi(x + \sqrt{t}X)]$, $(t, x) \in [0, \infty) \times \mathbb{R}^d$, is the solution of the following G-heat equation:

$$\partial_t u - G(D_x^2 u) = 0, \quad u(0, x) = \varphi.$$

$$\partial_t u - G(D_x^2 u) = 0, \quad u(0, x) = \varphi.$$

The function $G(\cdot) : \mathcal{S}_d \to \mathbb{R}$ is a monotonic, sublinear mapping on \mathcal{S}_d and $G(A) := \hat{E}[\frac{1}{2}(AX, X)] \leq \frac{1}{2}[A][E[|X|^2]]$, which implies that there exists a bounded, convex, and closed subset $\Gamma \subset \mathcal{S}_d^+$ such that

$$G(A) = \frac{1}{2} \sup_{\gamma \in \Gamma} tr[\gamma A],$$
where \mathcal{S}_d^+ denotes the collection of nonnegative elements in \mathcal{S}_d. In this note, we only consider nondegenerate G-normal distribution; that is, there exists some $\sigma^2 > 0$ such that $G(A) - G(B) \geq \sigma^2 tr[A - B]$ for any $A \geq B$.

3
Definition 2.5 (i) Let $\Omega = C^d_0(\mathbb{R}^+)$ denote the space of \mathbb{R}^d-valued continuous functions on $[0, \infty)$ with $\omega_0 = 0$ and $B_t(\omega) = \omega$ be the canonical process. For each fixed $T \in [0, \infty)$, we set

$$L_{ip}(\Omega_T) := \{\varphi(B_{t_1 \wedge T}, \ldots, B_{t_n \wedge T}) : n \in \mathbb{N}, t_1, \ldots, t_n \in [0, \infty), \varphi \in C_b.Lip(\mathbb{R}^{d \times n})\}.$$

It is clear that $L_{ip}(\Omega_T) \subseteq L_{ip}(\Omega_{T'})$ for $t \leq T$. We also set $L_{ip}(\Omega) := \bigcup_{n=1}^\infty L_{ip}(\Omega_n)$. Let $G : \mathcal{S}_d \to \mathbb{R}$ be a given monotonic and sublinear function. G-expectation is a sublinear expectation defined by

$$\mathbb{E}[X] = \mathbb{E}[\varphi(\sqrt{t_1-t_0}\xi_1, \ldots, \sqrt{t_m-t_{m-1}}\xi_m)]$$

for all $X \in L_{ip}(\Omega)$ with $X = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}})$, where ξ_1, \ldots, ξ_m is identically distributed d-dimensional G-normally distributed random vectors in a sublinear expectation space $(\bar{\Omega}, \mathcal{H}, \mathbb{E})$ such that ξ_{i+1} is independent of (ξ_1, \ldots, ξ_i) for every $i = 1, \ldots, m - 1$. The corresponding canonical process $B_t = (B_t^i)_{t=1}^m$ is called a G-Brownian motion.

(ii) For each fixed $t \in [0, \infty)$, the conditional G-expectation $\mathbb{E}_t[\cdot]$ for $X = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}}) \in L_{ip}(\Omega)$, where without loss of generality we suppose $t = t_i$, $1 \leq i \leq m$, is defined by

$$\mathbb{E}_t[\varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}})] = \psi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_i} - B_{t_{i-1}}),$$

where $\psi(x_1, \ldots, x_i) = \mathbb{E}[\varphi(x_1, \ldots, x_i, B_{t_{i+1}} - B_{t_i}, \ldots, B_{t_m} - B_{t_{m-1}})].$

We denote by $L_G^p(\Omega)$, $p \geq 1$, the completion of $L_{ip}(\Omega)$ under the norm $\|X\|_{p,G} = (\mathbb{E}[|X|^p])^{1/p}$. Similarly, we can define $L_{ip}^q(\Omega_T)$. It is clear that $L_G^q(\Omega) \subseteq L_G^p(\Omega)$ for $1 \leq p \leq q$ and $\mathbb{E}[\cdot]$ can be extended continuously to $L_G^1(\Omega)$.

For each fixed $a = (a_1, \ldots, a_d) \in \mathbb{R}^d$, $B_t^a = \langle a, B_t \rangle$ is a 1-dimensional G_a-Brownian motion on $(\Omega, \mathcal{H}, \mathbb{E})$, where $G_a(\alpha) = \frac{1}{2}(\sigma_{a\alpha}^2\alpha^+ - \sigma_{-a\alpha}^2\alpha^-)$, $\sigma_{a\alpha}^2 = 2G(aa^T) = \mathbb{E}[\langle a, B_1 \rangle^2]$, $\sigma_{-a\alpha}^2 = -2G(-aa^T) = -\mathbb{E}[-\langle a, B_1 \rangle^2]$. In particular, for each $t, s \geq 0$, $B_{t+s}^a - B_t^a \overset{d}{=} N(0 \times [s\sigma_{a\alpha}^2, s\sigma_{-a\alpha}^2]).$

Let $\pi_T^N = \{t_0^N, t_1^N, \ldots, t_N^N\}$, $N = 1, 2, \ldots$, be a sequence of partitions of $[0, t]$ such that $\mu(\pi_T^N) = \max\{|t_{i+1} - t_i| : i = 0, 1, \ldots, N - 1\} \to 0$. The quadratic variation process of $\langle B^a \rangle$ is defined by

$$\langle B^a \rangle_t := \lim_{\mu(\pi_T^N) \to 0} \sum_{k=0}^{N-1} (B_{t_{k+1}}^a - B_{t_k}^a)^2 = (B^a_t)^2 - 2\int_0^t B^a_s dB^a_s.$$

For each fixed $a, \bar{a} \in \mathbb{R}^d$, the mutual variation process of B^a and $B^{\bar{a}}$ is defined by

$$\langle B^a, B^{\bar{a}} \rangle_t := \frac{1}{4}(\langle B^a + B^{\bar{a}} \rangle_t - \langle B^a - B^{\bar{a}} \rangle_t) = \frac{1}{4}(\langle B^{a+\bar{a}} \rangle_t - \langle B^{a-\bar{a}} \rangle_t).$$

Definition 2.6 For fixed $T \geq 0$, let $M^0_G(0, T)$ be the collection of process in the following form: for a given partition $\pi_T = \{t_0, t_1, \ldots, t_N\}$ of $[0, T]$,

$$\eta_t(\omega) = \sum_{k=0}^{N-1} \xi_k(\omega)I_{[t_k, t_{k+1})}(t),$$

where $\xi_k(\omega) = \mathbb{E}[\varphi(\sqrt{t_1-t_0}\xi_1, \ldots, \sqrt{t_m-t_{m-1}}\xi_m)]$ for all $X \in L_{ip}(\Omega)$ with $X = \varphi(B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, \ldots, B_{t_m} - B_{t_{m-1}})$, where ξ_1, \ldots, ξ_m is identically distributed d-dimensional G-normally distributed random vectors in a sublinear expectation space $(\bar{\Omega}, \mathcal{H}, \mathbb{E})$ such that ξ_{i+1} is independent of (ξ_1, \ldots, ξ_i) for every $i = 1, \ldots, m - 1$. The corresponding canonical process $B_t = (B_t^i)_{t=1}^m$ is called a G-Brownian motion.
There exists some $L > \omega, y, z$ denote by S satisfy the following properties: where $\xi \in L_{G}^{p}(\Omega_{t_{k}})$, $k = 0, 1, 2, \cdots, N - 1$. For $p \geq 1$, we denote by $H_{G}^{p}(0, T)$, $M_{G}^{p}(0, T)$ the completion of $M_{G}^{0}(0, T)$ under the norms $\|\eta\|_{H_{G}^{p}} = \{E[(\int_{0}^{T} |\eta_{t}|^{2})^{p/2}]\}^{1/p}$, $\|\eta\|_{M_{G}^{p}} = \{E[\int_{0}^{T} |\eta|^{p}dt]\}^{1/p}$, respectively.

Let $S_{G}^{0}(0, T) = \{h(t, B_{t_{1}}\cap, \cdots, B_{t_{n}}\cap) : t_{1}, \cdots, t_{n} \in [0, T], h \in C_{b,\text{Lip}}(\mathbb{R}^{n+1})\}$. For $p \geq 1$, denote by $S_{G}^{p}(0, T)$ the completion of $S_{G}^{0}(0, T)$ under the norm $\|\eta\|_{S_{G}^{p}} = \{E[\sup_{t \in [0, T]} |\eta_{t}|^{p}]\}^{1/p}$.

We consider the following type of G-BSDEs (in this note we always use Einstein convention):

$$
Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s})ds + \int_{t}^{T} g_{ij}(s, Y_{s}, Z_{s})d\langle B^{i}, B^{j}\rangle_{s} - \int_{t}^{T} Z_{s}dB_{s} - (K_{T} - K_{t}),
$$

where

$$
f(t, \omega, y, z), g_{ij}(t, \omega, y, z) : [0, T] \times \Omega_{T} \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R},
$$
satisfy the following properties:

(H1) There exists some $\beta > 1$ such that for any $y, z, f(\cdot, \cdot, y, z), g_{ij}(\cdot, \cdot, y, z) \in M_{G}^{\beta}(0, T)$;

(H2) There exists some $L > 0$ such that

$$
|f(t, y, z) - f(t, y', z')| + \sum_{i,j=1}^{d} |g_{ij}(t, y, z) - g_{ij}(t, y', z')| \leq L(|y - y'| + |z - z'|).
$$

Denote by $\mathcal{G}_{G}^{0}(0, T)$ the completion of processes (Y, Z, K) such that $Y \in S_{G}^{0}(0, T)$, $Z \in H_{G}^{0}(0, T; \mathbb{R}^{d})$, K is a decreasing G-martingale with $K_{0} = 0$ and $K_{T} \in L_{G}^{2}(\Omega_{T})$.

Definition 2.7 Let $\xi \in L_{G}^{\beta}(\Omega_{T})$ and f and g_{ij} satisfy (H1) and (H2) for some $\beta > 1$. A triplet of processes (Y, Z, K) is called a solution of (2.2) if for some $1 < \alpha \leq \beta$ the following properties hold:

(a) $(Y, Z, K) \in \mathcal{G}_{G}^{\alpha}(0, T)$;

(b) $Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s})ds + \int_{t}^{T} g_{ij}(s, Y_{s}, Z_{s})d\langle B^{i}, B^{j}\rangle_{s} - \int_{t}^{T} Z_{s}dB_{s} - (K_{T} - K_{t})$.

Theorem 2.8 ([7]) Assume that $\xi \in L_{G}^{\beta}(\Omega_{T})$ and f and g_{ij} satisfy (H1) and (H2) for some $\beta > 1$. Then, equation (2.2) has a unique solution (Y, Z, K). Moreover, for any $1 < \alpha < \beta$, one has $Y \in S_{G}^{\alpha}(0, T)$, $Z \in H_{G}^{\alpha}(0, T; \mathbb{R}^{d})$ and $K_{T} \in L_{G}^{2}(\Omega_{T})$.

In this note, we also need the following assumptions for G-BSDE (2.2) (see He and Hu [5]).

(H3) For each fixed $(\omega, y, z) \in \Omega_{T} \times \mathbb{R} \times \mathbb{R}^{d}$, $t \rightarrow f(t, \omega, y, z)$ and $t \rightarrow g_{ij}(t, \omega, y, z)$ are continuous.
(H4) For each fixed \((t, y, z) \in [0, T) \times \mathbb{R} \times \mathbb{R}^d\), \(f(t, y, z)\), \(g_{ij}(t, y, z) \in L^\beta_G(\Omega_t)\), and
\[
\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \mathbb{E} \left[\int_t^{t+\varepsilon} \left(|f(u, y, z) - f(t, y, z)|^\beta + \sum_{i,j=1}^d |g_{ij}(u, y, z) - g_{ij}(t, y, z)|^\beta \right) du \right] = 0. \quad (2.3)
\]

(H5) For each fixed \((t, \omega, y) \in [0, T] \times \Omega_T \times \mathbb{R}\), \(f(t, \omega, y, 0) = g_{ij}(t, \omega, y, 0) = 0\).

3 Jensen’s inequality for \(G\)-BSDEs

We consider the following \(G\)-BSDE:
\[
Y_t = \xi + \int_t^T f(s, Y_s, Z_s)ds + \int_t^T g_{ij}(s, Y_s, Z_s)d\langle B^i, B^j \rangle_s - \int_t^T Z_s d\langle B \rangle_s - (K_T - K_t), \quad (3.1)
\]
where \(g_{ij} = g_{ji}\), and \(f\) and \(g_{ij}\) satisfy the conditions (H1)-(H5). Define \(\tilde{E}_t[\xi] = Y_t\).

3.1 One-dimensional Jensen inequality

Theorem 3.1 The following two statements are equivalent:

(i) Jensen’s inequality holds, i.e., for each \(\xi \in L^2_G(\Omega_T)\), and any convex function \(h: \mathbb{R} \to \mathbb{R}\), if \(h(\xi) \in L^2_G(\Omega_T)\), then
\[
\tilde{E}_t[h(\xi)] \geq h(\tilde{E}_t[\xi]), \quad \forall t \in [0, T]. \quad (3.2)
\]

(ii) \(\forall \lambda, \mu \in \mathbb{R}, \lambda \neq 0, \forall (t, y, z) \in [0, T) \times \mathbb{R} \times \mathbb{R}^d,\)
\[
\lambda f(t, y, z) - f(t, \lambda y + \mu, \lambda z) + 2G((\lambda g_{ij}(t, y, z) - g_{ij}(t, \lambda y + \mu, \lambda z))_{i,j=1}^d) \leq 0, \quad \text{q.s.} \quad (3.3)
\]

Proof. The idea of the proof comes from Theorem 3.1 of [6].

\((i) \Rightarrow (ii):\) For fixed \(\lambda \neq 0\) and \(\mu\), we define a convex function \(h(x) = \lambda x + \mu\). Let \((Y_t, Z_t, K_t)\) be the unique solution of the \(G\)-BSDE (3.1). Define \(Y_t' = \lambda Y_t + \mu, Z_t' = \lambda Z_t, K_t' = \lambda K_t\). Then \((Y_t', Z_t', K_t')\) is the unique solution of the following \(G\)-BSDE:
\[
Y_t' = h(\xi) + \int_t^T f'(s, Y_s', Z_s')ds + \int_t^T g_{ij}'(s, Y_s', Z_s')d\langle B^i, B^j \rangle_s - \int_t^T Z_s' dB_s - (K_T' - K_t'), \quad (3.4)
\]
where \(f'(t, y, z) = \lambda f(t, \frac{y-\mu}{\lambda}, \frac{z}{\lambda}), g_{ij}'(t, y, z) = \lambda g_{ij}(t, \frac{y-\mu}{\lambda}, \frac{z}{\lambda})\).
Denote $\tilde{E}_t[h(\xi)] = Y'_t$. By (3.2), we get
\[
\tilde{E}_t[h(\xi)] \geq h(\tilde{E}_t[\xi]) = \lambda Y_t + \mu = Y'_t = \tilde{E}'_t[h(\xi)].
\] (3.5)
For any $\eta \in L^2_G(\Omega_T)$, put $\xi = h^{-1}(\eta)$. Then we have by (3.5)
\[
\tilde{E}_t[\eta] \geq \tilde{E}'_t[\eta].
\]
By the converse comparison theorem [5, Theorem 15], we obtain that
\[
(f' - f)(t, y', z') + 2G((g_{ij} - g_{ij})_{i,j=1})^d(t, y', z') \leq 0 \text{ q.s.},
\]
which implies
\[
f'(t, y', z') - f(t, y', z') + 2G((g_{ij} - g_{ij})_{i,j=1})(t, y', z') = \lambda f(t, \frac{y' - \mu}{\lambda}, \frac{z'}{\lambda}) - f(t, y', z') + 2G((\lambda g_{ij} - g_{ij})(t, \frac{y' - \mu}{\lambda}, \frac{z'}{\lambda}) - g_{ij}(t, y', z'))_{i,j=1}
\]
\[
= \lambda f(t, y, z) - f(t, \lambda y + \mu, \lambda z) + 2G((\lambda g_{ij} - g_{ij})(t, y, z))_{i,j=1}
\]
\[
\leq 0, \quad \text{q.s.}
\]
Hence (ii) holds.

(ii) \Rightarrow (i) : First, take a linear function $h(x) = \lambda x + \mu$ where $\lambda \neq 0$. Let (Y_t, Z_t, K_t) be the unique solution of G-BSDE (3.1), and denote $Y'_t = \lambda Y_t + \mu$, $Z'_t = \lambda Z_t$, $K'_t = \lambda K_t$. Then (Y'_t, Z'_t, K'_t) is the unique solution of G-BSDE (3.4). Let f', g'_{ij} be defined as in (3.4). Then by (ii), we have
\[
(f' - f)(t, y, z) + 2G((g_{ij} - g_{ij})_{i,j=1})(t, y, z) \leq 0 \text{ q.s.},
\]
which together with the comparison theorem [5, Proposition 13] implies that
\[
\tilde{E}_t[h(\xi)] \geq \tilde{E}'_t[h(\xi)] = Y'_t = \lambda Y_t + \mu = \lambda \tilde{E}_t[\xi] + \mu = h(\tilde{E}_t[\xi]).
\] (3.6)
For any convex function h, there exists a countable set D in \mathbb{R}^2, such that
\[
h(x) = \sup_{(\lambda, \mu) \in D} (\lambda x + \mu).
\] (3.7)
By (3.6) and (3.7), we have
\[
\tilde{E}_t[h(\xi)] = \tilde{E}_t[\sup_{(\lambda, \mu) \in D} (\lambda x + \mu)] \geq \sup_{(\lambda, \mu) \in D} (\lambda \tilde{E}_t[\xi] + \mu) = h(\tilde{E}_t[\xi]),
\]
i.e. (i) holds.

\[
\begin{align*}
(\text{Remark 3.2})
\text{(i) If } f \text{ and } g_{ij} \text{ are independent of } y, \text{ then the condition of (3.3) becomes}
\lambda f(t, z) - f(t, \lambda z) + 2G((\lambda g_{ij} - g_{ij})(t, \lambda z))_{i,j=1} \leq 0, \text{ q.s.}
\end{align*}
\]
\[
(\text{(ii) If } g_{ij} \equiv 0, \text{ then the condition of (3.3) becomes}
f(t, \lambda y + \mu, \lambda z) \geq \lambda f(t, y, z), \text{ q.s.}
\] (3.8)
Taking $\lambda = 1$, then $f(t, y + \mu, z) \geq f(t, y, z)$, q.s., which implies that f is independent of y. Thus (3.8) becomes $f(t, \lambda z) \geq \lambda f(t, z)$, q.s. This is just the condition in Hu [6, Theorem 3.1].

7
3.2 Multi-dimensional Jensen inequality

At first, we prove a result for any nonlinear expectation, which is essentially due to Jia (see [9, Theorem 3.3]).

Theorem 3.3 Assume that \(n > 1 \) and \((\Omega, \mathcal{H}, \hat{\mathbb{E}})\) is a nonlinear expectation space defined by Definition 2.1. Then the following two claims are equivalent:

(a) \(\hat{\mathbb{E}} \) is linear, i.e., for any \(\lambda, \gamma \in \mathbb{R} \), \(X, Y \in \mathcal{H} \),

\[
\hat{\mathbb{E}}[\lambda X + \gamma Y] = \lambda \hat{\mathbb{E}}[X] + \gamma \hat{\mathbb{E}}[Y];
\]

(3.9)

(b) the \(n \)-dimensional Jensen inequality for nonlinear expectation \(\hat{\mathbb{E}} \) holds, i.e. for each \(X_i \in \mathcal{H}(i = 1, \cdots, n) \) and convex function \(h : \mathbb{R}^n \to \mathbb{R} \), if \(h(X_1, \cdots, X_n) \in \mathcal{H} \), then

\[
\hat{\mathbb{E}}[h(X_1, \cdots, X_n)] \geq h(\hat{\mathbb{E}}[X_1], \cdots, \hat{\mathbb{E}}[X_n]).
\]

Proof. The proof of [9, Theorem 3.3] can be moved to this case. For the reader’s convenience, we spell out the details.

(\(b \Rightarrow a \): For any \((\lambda_1, \cdots, \lambda_n) \in \mathbb{R}^n \), by \(b \) we have that

\[
\hat{\mathbb{E}} \left[\sum_{i=1}^{n} \lambda_i X_i \right] \geq \sum_{i=1}^{N} \lambda_i \hat{\mathbb{E}}[X_i].
\]

(3.10)

Taking \(\lambda_1 > 0, \lambda_j = 0, j = 2, \cdots, n \), we get that

\[
\hat{\mathbb{E}} [\lambda_1 X_1] \geq \lambda_1 \hat{\mathbb{E}}[X_1] \geq \lambda_1 \cdot \frac{1}{n} \hat{\mathbb{E}}[\lambda X_1] = \hat{\mathbb{E}} [\lambda X_1],
\]

which together with \(\hat{\mathbb{E}}[0] = 0 \) (by (ii) in Definition 2.1) implies that \(\hat{\mathbb{E}} \) is positively homogeneous. Put \(\lambda_1 = 1, \lambda_2 = -1 \) and \(\lambda_1 = \lambda_2 = 1 \) respectively, and put \(\lambda_j = 0 \) for \(j > 2 \) in (3.10), we get

\[
\hat{\mathbb{E}}[X_1 - X_2] \geq \hat{\mathbb{E}}[X_1] - \hat{\mathbb{E}}[X_2], \quad \hat{\mathbb{E}}[X_1 + X_2] \geq \hat{\mathbb{E}}[X_1] + \hat{\mathbb{E}}[X_2].
\]

It follows that \(\hat{\mathbb{E}}[X_1] \leq \hat{\mathbb{E}}[X_2] + \hat{\mathbb{E}}[X_1 - X_2] \leq \hat{\mathbb{E}}[X_2 + (X_1 - X_2)] = \hat{\mathbb{E}}[X_1] \). Thus we have \(\hat{\mathbb{E}}[X_1 - X_2] = \hat{\mathbb{E}}[X_1] - \hat{\mathbb{E}}[X_2] \) and \(\hat{\mathbb{E}}[X_1 + X_2] = \hat{\mathbb{E}}[(X_1 + X_2) - X_2] + \hat{\mathbb{E}}[X_2] = \hat{\mathbb{E}}[X_1] + \hat{\mathbb{E}}[X_2] \). Hence \(\hat{\mathbb{E}} \) is homogeneous and thus it’s linear.

(\(a \Rightarrow b \): For any \((\lambda_1, \cdots, \lambda_n, \mu) \in \mathbb{R}^{n+1} \), by \(a \) and (ii) in Definition 2.1, we have

\[
\hat{\mathbb{E}} \left[\sum_{i=1}^{n} \lambda_i X_i + \mu \right] = \hat{\mathbb{E}} \left[\sum_{i=1}^{n} \lambda_i X_i \right] + \mu = \sum_{i=1}^{n} \lambda_i \hat{\mathbb{E}}[X_i] + \mu.
\]

(3.11)

For any convex function \(h : \mathbb{R}^n \to \mathbb{R} \), there exists a countable set \(D \subset \mathbb{R}^{n+1} \) such that

\[
h(x) = \sup_{(\lambda_1, \cdots, \lambda_n, \mu) \in D} \left(\sum_{i=1}^{n} \lambda_i x_i + \mu \right).
\]

(3.12)
By (3.11) and (i) in Definition 2.1, for any \((\lambda_1, \ldots, \lambda_n, \mu) \in D\), we have
\[
\hat{E}[h(X_1, \ldots, X_n)] \geq \hat{E}\left[\sum_{i=1}^{n} \lambda_i X_i + \mu\right] = \sum_{i=1}^{n} \lambda_i \hat{E}[X_i] + \mu,
\]
which together with (3.12) implies (b).

Proposition 3.4 Assume that \(n > 1\) and \(t \in [0, T]\). Then the following two claims are equivalent:
(i) \(\hat{E}_t\) is linear, i.e., for any \(\lambda, \gamma \in \mathbb{R}, X, Y \in \mathcal{H}\),
\[
\hat{E}_t[\lambda X + \gamma Y] = \lambda \hat{E}_t[X] + \gamma \hat{E}_t[Y];
\]
(ii) the \(n\)-dimensional Jensen inequality for \(\hat{E}_t\) holds, i.e. for each \(X_i \in \mathcal{H}(i = 1, \ldots, n)\) and convex function \(h : \mathbb{R}^n \to \mathbb{R}\), if \(h(X_1, \ldots, X_n) \in \mathcal{H}\), then
\[
\hat{E}_t[h(X_1, \ldots, X_n)] \geq h(\hat{E}_t[X_1], \ldots, \hat{E}_t[X_n]).
\]

Proof. By \(\mathfrak{N}\) Theorem 5.1 (1)(2)], we know that \(\hat{E}_t\) satisfies monotonicity and constant preserving. Then all the proof of the above theorem can be moved to this case.

Corollary 3.5 Assume that \(n > 1\). Then the following two claims are equivalent:
(i) for any \(t \in [0, T]\), the \(n\)-dimensional Jensen inequality for \(\hat{E}_t\) holds, i.e. for each \(X_i \in \mathcal{H}(i = 1, \ldots, n)\) and convex function \(h : \mathbb{R}^n \to \mathbb{R}\), if \(h(X_1, \ldots, X_n) \in \mathcal{H}\), then
\[
\hat{E}_t[h(X_1, \ldots, X_n)] \geq h(\hat{E}_t[X_1], \ldots, \hat{E}_t[X_n]);
\]
(ii) for any \(t \in [0, T], y, y' \in \mathbb{R}, z, z' \in \mathbb{R}^d, \lambda \geq 0,\)
\[
f(t, y + y', z + z') - f(t, y, z) - f(t, y', z')
= -2G (\{g_{ij}(t, y + y', z + z') - g_{ij}(t, y, z) - g_{ij}(t, y', z')\})_{i,j=1}^d,
\]
and
\[
f(t, \lambda y, \lambda z) - \lambda f(t, y, z) = 2G (\{\lambda g_{ij}(t, y, z) - g_{ij}(t, y, \lambda z)\})_{i,j=1}^d
= -2G (\{g_{ij}(t, \lambda y, \lambda z) - \lambda g_{ij}(t, y, z)\})_{i,j=1}^d.
\]

Proof. By Proposition 3.4 we know that (i) holds if and only if for any \(t \in [0, T], \hat{E}_t\) is linear. Then by \(\mathfrak{M}\) Proposition 17 (2)(4)], we obtain that (i) and (ii) are equivalent.

Acknowledgments

We are grateful to the support of NNSFC and Jiangsu Province Basic Research Program (Natural Science Foundation) (Grant No. BK2012720).
References

[1] P. Briand, F. Coquet, Y. Hu, J. Mémin, S. Peng, A converse comparison theorem for BSDEs and related properties of g-expectation, Elect. Comm. Probab. 5 (2000), 101-117.

[2] Z. Chen, R. Kulperger, L. Jiang, Jensen’s inequality for g-expectation: part 1 and part 2, C. R. Acad. Sci. Paris, Ser. I Math. 337 (2003), 725-730 and 797-800.

[3] S. Fan, A note on Jensen’s inequality for BSDEs, Acta Math. Sinica, English Series 25 (2009), 1681-1692.

[4] A. Guessab, G. Schmeisser, Necessary and sufficient conditions for the validity of Jensen’s inequality, Arch. Math. 100 (2013), 561-570.

[5] K. He, M. Hu, Representation theorem for generators of BSDEs driven by G-Brownian Motion and its applications, Abstract and Applied Analysis, 2013 (2013), Article ID 342038, 10 pages.

[6] Y. Hu, On Jensen’s inequality for g-expectation and for nonlinear expectation, Arch. Math. 85 (2005), 572-580.

[7] M. Hu, S. Ji, S. Peng, Y. Song, Backward stochastic differential equations driven by G-Brownian Motion, arXiv: 1206.5889v1 (2012).

[8] M. Hu, S. Ji, S. Peng, Y. Song, Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian Motion, arXiv: 1212.5403v1 (2012).

[9] G. Jia, On Jensen’s inequality and Hölder’s inequality for g-expectation, Arch. Math. 94 (2010), 489-499.

[10] G. Jia, S. Peng, Jensen’s Inequality for g-convex function under g-expectation, Probab. Theory Relat. Fields 147 (2010), 217-239.

[11] L. Jiang, Jensen’s inequality for backward stochastic differential equations, Chinese Ann. Math. Ser. B 27 (2006), 553-564.

[12] L. Jiang, Z. Chen, On Jensen’s inequality for g-expectation, Chinese Ann. Math. Ser. B 25 (2004), 401-412.

[13] S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sinica 20 (2004), 191-214.

[14] S. Peng, Nonlinear expectations and nonlinear Markov chains, Chinese Ann. Math. Ser. B 26 (2005), 159-184.

[15] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic Analysis and Applications, Vol. 2 of The Abel Symposium, Springer, Berlin, Germany (2007), 541-567.
[16] S. Peng, G-Brownian motion and dynamic risk measure under solatility uncertainty, arXiv: 0711.2834v1 (2007).

[17] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochas. Proc. Appl. 118 (2008), 2223-2253.

[18] S. Peng, A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1 (2008).

[19] S. Peng, Nonlinear Expectations and Stochastic Calculus under Uncertainty, arXiv: 1002.4546v1 (2010).

[20] S. Peng, Backward Stochastic Differential Equation, Nonlinear Expectation and Their Applications, In: Proceedings of the International Congress of Mathematicians Hyderabad, India (2010), 393-432.

[21] S. Peng, Y. Song, G-expectation weighted Sobolev spaces, backward SDE and path dependent PDE, arXiv:1305.4722v1 (2013).

[22] M. Soner, N. Touzi, J. Zhang, Wellposedness of second order backward SDEs, Probab. Theory Relat. Fields 153 (2012), 149-190.