Optical Stochastic Cooling in Tevatron

Valeri Lebedev
Fermilab

Accelerator Physics seminar
Fermilab
June 1, 2010
Objectives

- Extension of Tevatron operation to 2014
- Are there luminosity upgrades?
- Can the Optical Stochastic Cooling (OSC) help?

Outline

- Tevatron luminosity and its evolution
- Requirements to the cooling
- Optical stochastic cooling principles
- Damping rates computation and optimization
- Optimization and efficiency of laser kick
- Requirements to the laser power
- Conclusions
Tevatron Luminosity

- All planned luminosity upgrades are completed in the spring of 2009
- From Run II start to 2009 the luminosity integral was doubling every 17 months
- Since 2009 average luminosity stays the same ~51 pb⁻¹/week
- The average luminosity is limited by the IBS
 - Larger beam brightness results in faster luminosity decay
- It is impossible to make significant (~2 times) average luminosity increase with one exception - The beam cooling in Tevatron
 - 10-20% is still possible (new tunes, larger intensity beams)

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Luminosity Evolution for Present Stores (Store 6950)

- About 10% of luminosity integral is lost due to beam-beam
- IBS is the main mechanism causing fast luminosity decrease
 - Presently, there are no means to reduce IBS in Tevatron
- About 40% of pbars are burned in luminosity
 - It is the second leading reason of luminosity decrease
Luminosity Evolution with Moderate Cooling

- Cooling rate is limited by ζ_{BB} of 0.02
- 1.58 times increase of luminosity integral
- 63% of pbars are burned in luminosity
- Much smaller luminosity variations
Luminosity Evolution with Aggressive Cooling

- Cooling rate is limited by peak luminosity of $4 \cdot 10^{32}$ and by $\xi_{BB} = 0.03$ for pbars
 - Requires tunes closer to half-integer (0.58 → 0.52)
- 1.96 times increase in average luminosity
 - 78% of pbars are burned in luminosity
Requirements to the Beam Cooling

- Cooling time has to be varied during the store independently for protons and pbar, and for transverse and longitudinal planes.
 - Beam overcooling results in:
 - Particle loss due to beam-beam (transverse overcooling).
 - Longitudinal instability (longitudinal overcooling).

- Simple estimate of required bandwidth based on \(\lambda = 2W/N \) results in ~200 GHz.
 - Well above bandwidth of normal stochastic cooling.
 - Only optical stochastic cooling has sufficient bandwidth.

- Cooling times (in amplitude):
 - Protons: \(L \) - 4.5 hour; \(\perp \) - 8 hour.
 - Antiprotons: \(L \) - 4.5 hour; \(\perp \) - 1.2 hour.

- Tevatron has considerable coupling and all transverse cooling can be applied in one plane.
 - It requires doubling the horizontal cooling decrement:
 - I.e. for protons \(\lambda_s = \lambda_x = 4.5 \) hour.
Optical Stochastic Cooling

- Suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- Never tested experimentally
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers $\sim 10^{14}$ Hz
- Undulator can be used as pickup & kicker
- Pick-up and Kicker should be installed at locations with nonzero dispersion to have both \perp and L cooling.

$\delta E \sim \sin(k \delta z)$

δz is particle delay
MIT-Bates Proposal for Tevatron (2007)

OSC and Tevatron Luminosity

How to increase luminosity (peak and integrated) ?

- Peak luminosity increased 62% (180 → 292 µb⁻¹/s)
 \[1 \text{ µb}^{-1}/\text{s} = 10^{30} \text{ cm}^2 \text{ s}^{-1} \]
- Weekly integrated luminosity increased ~75% (25 pb⁻¹ → 45 pb⁻¹)
- Monthly integrated luminosity increased ~95% (85 pb⁻¹ → 167 pb⁻¹)
- One hour antiproton stacking record -- 2.3×10^{10}/hr
- Antiproton accumulation for one week -- 2800×10^{10}

\[
L = \frac{fN_p N_a}{2\pi (\epsilon_p + \alpha_p) \beta^*} H\left(\frac{\sigma_z}{\beta^*}\right)
\]

- N = bunch intensity, f = collision frequency
- $\epsilon = \text{transverse emittance (size)}, \sigma_z = \text{bunch length}$
- $H = \text{“hour glass” factor} \approx 1, \text{accounts for beam size over finite bunch length}$

OSC provides possible “damping” to the 1 TeV p & $p\bar{p}$ beams.

Damping on:

$\epsilon_p, \epsilon_a, \sigma_z$

Could reduce

N_p, N_a losses

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Bending angle and drift space set to get:
Path delay: $\Delta L = 10\text{mm} = 30\ \text{ps}$
$\Delta x = 55.7\ \text{cm}$
Ease magnet tolerances
MIT-Bates Proposal (continue)

Cooling p and pbar Beams: Cooling Separately

- One cooling insertion for both p and pbar.
- Special circumstance: two beams in one ring.

Timing two pump lasers to cool p and pbar separately. For equal cooling time, cooling rate of each beam will be reduced to half.

Two Pump lasers

P & Pbar beam orbit (bypass center)

50.4 cm

0.24 nJ/pulse
0.41 mW (Avg.)

250 cm

Optical amplifier offset from bypass center

F. Wang
Fermilab. November 14, 2007

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Cooling Estimates

	Tevatron	Bates
Gamma	1045 (980 GeV)	587 (0.3 GeV)
Bunch length (m)	0.57	0.025
Particle/bunch	2.5E11	1.0E8
Bunch number	36	12
Laser λ (\(\mu\)m)	1.98	2.06
Undulator period (m) / length (m)	2.7/27	0.2/2
Undulator parameter K	1.1	3.5
Undulator radiation/pulse (pJ)	222	0.13
Average radiation power (\(\mu\)W)	381	2.5
Optical power limit (W)	20/200	5 (Not a limit)
Optical power gain	4.84E4 / 5.25E5	1750
Laser output/pulse (\(\mu\)J)	11.6 / 116	0.23 nJ
Damping time (hours)\(\times\)2	2\(\times\)2 / 0.6\(\times\)2	0.14 second
Questions to be Answered

- Do we have a fast way (2-3 years) of OSC implementation in Tevatron?
- What is the optimal optics and how to get to it?
- What is the optimal wiggler?
- What is the laser power?
Damping Rates

- The optics design will be significantly simplified if the damping rates can be expressed through beta-functions, dispersions and their derivatives
- The sequence is
 - Express transfer matrices (6x6) through Twiss-parameters at kicker and pickup
 - Find eigen-values and eigen-vectors of the ring without cooling
 - Using perturbation theory find damping decrements
 - Determine the cooling range in amplitudes
 - Correction factors for the finite amplitude particles
Transfer Matrix Parameterization

-
 Vertical plane is uncoupled and we omit it in further equations

- Matrix from point 1 to point 2

\[M = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad x = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix} \]

- \(M_{16} \) & \(M_{26} \) can be expressed through dispersion

\[\begin{bmatrix} M_{11} & M_{12} & M_{16} \\ M_{21} & M_{22} & M_{26} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} D_1 \\ D'_1 \end{bmatrix} = \begin{bmatrix} D_2 \\ D'_2 \end{bmatrix} \Rightarrow \]

- Symplecticity (\(M^T \mathbf{U} M = \mathbf{U} \)) binds up \(M_{51}, M_{52} \) and \(M_{16}, M_{26} \) =>

- \(M_{56} \) is related to the partial slip factor, \(\eta_{1 \rightarrow 2} \)

\[\Rightarrow \text{All matrix elements can be expressed through } \beta, \alpha, D, D', \eta_{1 \rightarrow 2} \]
Transfer Matrix Parameterization (continue)

- Partial momentum compaction and slip factor (from point 1 to point 2) are related to M_{56}

$$\Delta s_{1\to2} = 2\pi R \eta_1 \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

- Further we assume that $v = c$, i.e. $1/\gamma^2 = 0$ and $\eta_1 = -\alpha_{1\to2}$.

- That results in

$$\eta_1 = \frac{M_{51} D_1 + M_{52} D_1' + M_{56}}{2\pi R}$$

- Note that M_{56} sign is positive if a particle with positive Δp moves faster than the reference particle.
Damping Rates of Optical Stochastic Cooling

Longitudinal kick

\[
\frac{\delta p}{p} = \kappa \Delta s = \kappa \left(M_{151} x_1 + M_{152} \theta x_1 + M_{156} \frac{\Delta p}{p} \right)
\]

Or in the matrix form: \(\delta x_2 = M_c x_1 \)

\[
M_c = \kappa \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
M_{151} & M_{152} & 0 & M_{156}
\end{bmatrix}
\]

Find the total ring matrix related to kicker

\[
M_{tot} x_2 = M_1 M_2 x_2 + \delta x_2 = M_1 M_2 x_2 + M_c x_1 = (M_1 M_2 + M_c M_2) x_2
\]

\[
M_{tot} = M + \Delta M_c
\]

where

\[
M = M_1 M_2 , \quad \Delta M = M_c M_2
\]

Perturbation theory yields that the tune shifts are:

\[
\delta Q_k = \frac{1}{4\pi} v_k^+ U M_c U M_1^T U v_k = \kappa \frac{1}{4\pi} v_k^+ \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
M_{126} & -M_{116} & 0 & M_{156} \end{bmatrix} v_k
\]

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Damping Rates of Optical Stochastic Cooling (continue)

Expressing matrix elements and eigen-vectors through Twiss parameters one obtains the cooling rates

\[
\lambda_1 = -\frac{\kappa}{2} \left[D_1 D_2 \frac{(1 + \alpha_1 \alpha_2) \sin \mu_1 + (\alpha_2 - \alpha_1) \cos \mu_1}{\sqrt{\beta_1 \beta_2}} - D'_1 D'_2 \sqrt{\frac{\beta_1}{\beta_2}} \left(\cos \mu_1 - \alpha_2 \cos \mu_1 \right) \right.
\]

\[
\left. + D_1 D'_2 \sqrt{\frac{\beta_2}{\beta_1}} \left(\cos \mu_1 + \alpha_1 \sin \mu_1 \right) + D'_1 D'_2 \sqrt{\frac{\beta_1 \beta_2}{\beta_1 \beta_2}} \sin \mu_1 \right]
\]

\[
\lambda_2 = -\frac{\kappa}{2} M_{156} - \lambda_1 = -\pi \kappa R \eta_1
\]

The bottom equation can be directly obtained from the definition of the partial slip factor.

The above equations yield that the sum of the decrements is

\[
\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{156}
\]
Sample Lengthening on Pickup-to-Kicker Travel

- Zero length sample lengthens on its way from pickup-to-kicker

\[\sigma_{\Delta s}^2 = \int \left(M_{151} x + M_{152} \theta_x + M_{156} \tilde{p} \right)^2 f(x, \theta_x, \tilde{p}) dx d\theta_x d\tilde{p}, \quad \tilde{p} = \frac{\Delta p}{p} \]

- Performing integration one obtains for Gaussian distribution

\[\sigma_{\Delta s}^2 = \sigma_{\Delta s \varepsilon}^2 + \sigma_{\Delta s p}^2 \]

\[\sigma_{\Delta s \varepsilon}^2 = \varepsilon \left(\beta_p M_{151}^2 - 2 \alpha_p M_{151} M_{152} + \gamma_p M_{152}^2 \right) \]

\[\sigma_{\Delta s p}^2 = \sigma_p^2 \left(M_{151} D_p + M_{152} D'_p + M_{156} \right)^2 \]

- Both \(\Delta p/p \) and \(\varepsilon \) contribute to the lengthening

- Expressing matrix elements through Twiss parameters and assuming all derivatives (D & \(\beta \)) equal to zero\(^\dagger\) one obtains

\[\sigma_{\Delta s}^2 = \varepsilon \left(\frac{D_k^2}{\beta_k} + \frac{D_p^2}{\beta_p} - \frac{2 D_k D_p}{\beta_k \beta_p} \cos \mu_1 \right) + \sigma_p^2 \left(M_{156} - \frac{D_k D_p}{\sqrt{\beta_k \beta_p}} \sin \mu_1 \right) \]

\(^\dagger\) See complete expression in backup viewgraphs

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Cooling Range

- The cooling force depends on Δs nonlinearly

$$\frac{\delta p}{p} = \frac{\Delta E_{\text{max}}}{E} \sin(k \delta s) = \frac{\Delta E_{\text{max}}}{E} \sin(a_x \sin(\psi_x) + a_p \sin(\psi_p))$$

where a_x & a_p are the lengthening amplitudes due to \perp and L motions measured in units of laser phase ($a = k \delta s$)

- The form-factor for damping rate of longitudinal cooling for particle with amplitudes a_x & a_p

$$F_2(a_x, a_p) = \frac{2}{a_p} \int \sin(a_x \sin \psi_x + a_p \sin \psi_p) \sin \psi_p \frac{d\psi_x}{2\pi} \frac{d\psi_p}{2\pi}$$

$$F_2(a_x, a_p) = \frac{2}{a_p} J_0(a_x) J_1(a_p)$$

- Similar for transverse motion

$$F_1(a_x, a_p) = \frac{2}{a_x} J_0(a_p) J_1(a_x)$$

- Damping requires both lengthening amplitudes be smaller $\mu_0 \approx 2.405$

Cooling of the Gaussian beam

- Averaging the cooling form-factors for Gaussian distribution can be presented in the following form

 \[F_{1G}(k\sigma_{\Delta\varepsilon}, k\sigma_{\Delta p}) = \frac{1}{2k^2\sigma_{\Delta\varepsilon}^2} \int_{-\infty}^{\infty} a_x^2 F_1(a_x, a_p) \exp \left(-\frac{a_x^2}{2k^2\sigma_{\Delta\varepsilon}^2} - \frac{a_p^2}{2k^2\sigma_{\Delta p}^2} \right) a_x da_x a_p da_p \]

 - Integration yields

 \[F_{1G}(k\sigma_{\Delta\varepsilon}, k\sigma_{\Delta p}) = F_{2G}(k\sigma_{\Delta\varepsilon}, k\sigma_{\Delta p}) = \exp \left(-\frac{k^2\sigma_{\Delta p}^2}{2} \right) \exp \left(-\frac{k^2\sigma_{\Delta\varepsilon}^2}{2} \right) \]

- Good beam lifetime requires the cooling force to be positive for large amplitude particles

- Assuming that cooling becomes zero at 4\(\sigma\) for both planes

 \[k\sigma_{\Delta p} = k\sigma_{\Delta\varepsilon} = \frac{\mu_0}{4} \approx 0.6 \]

 \[\Rightarrow \text{Nonlinearity of cooling force results in the cooling force reduction by factor } F_{1G}(\mu_0/4, \mu_0/4) = F_{2G}(\mu_0/4, \mu_0/4) \approx 0.697 \]
Cooling Parameters Optimization

- Eqs. for the damping rates and the sample lengthening at pickup-to-kicker travel are simplified if \(\alpha_p = \alpha_k = D'_p = D'_k = 0 \)

\[
\lambda_1 = -\frac{\kappa}{2} \frac{D_1D_2}{\sqrt{\beta_1\beta_2}} \sin \mu_1 \\
\lambda_2 = -\frac{\kappa}{2} \left(M_{156} - \frac{D_1D_2}{\sqrt{\beta_1\beta_2}} \sin \mu_1 \right)
\]

\[
\sigma_{\Delta s}^2 = \varepsilon \left(\frac{D_k^2}{\beta_k} + \frac{D_p^2}{\beta_p} - \frac{2D_kD_p}{\sqrt{\beta_k\beta_p}} \cos \mu_1 \right) + \sigma_p^2 \left(M_{156} - \frac{D_kD_p}{\sqrt{\beta_k\beta_p}} \sin \mu_1 \right)
\]

- One can see that for fixed decrements a minimization of sample lengthening requires \(\frac{D_k^2}{\beta_k} = \frac{D_p^2}{\beta_p} \)

\[\Rightarrow \quad \text{Ratio of cooling decrements bounds up } \frac{D^2}{\beta} \text{ and } M_{156} : \]

\[
\frac{D^2}{\beta} \sin \mu_1 = \frac{\lambda_1}{\lambda_1 + \lambda_2} M_{156}
\]

\[
\sigma_{\Delta s}^2 = 2\varepsilon M_{156} \frac{\lambda_1}{\lambda_1 + \lambda_2} \tan \frac{\mu_1}{2} + \sigma_p^2 M_{156}^2 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^2
\]
\textbf{Requirements} \[k \sigma_{\Delta \varepsilon} = k \sigma_{\Delta \phi} = \mu_0 / n_\sigma \xrightarrow{n_\sigma = 4} 0.601 \] yields

\[2 \varepsilon M_{156} \frac{\lambda_1}{\lambda_1 + \lambda_2} \tan \frac{\mu_1}{2} = \sigma_p^2 M_{156}^2 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^2 = \left(\frac{\lambda_w \mu_0}{2\pi n_\sigma} \right)^2, \quad \lambda_w = \frac{2\pi}{k} \]

The solution is

\[
\tan \frac{\mu_1}{2} = \frac{\mu_0}{n_\sigma} \frac{\sigma_p \lambda_w \lambda_2}{4\pi \varepsilon \lambda_1} \\
M_{156} = \frac{\mu_0}{n_\sigma} \frac{\lambda_w}{2\pi \sigma_p} \frac{\lambda_1 + \lambda_2}{\lambda_2} \\
D^2 / \beta = \frac{\varepsilon}{\sigma_p^2} \left[\frac{\lambda_1^2}{\lambda_2^2} + \frac{\sigma_p^2}{4\varepsilon^2 n_\sigma^2 2\pi} \left(\frac{\mu_0 \lambda_w}{n_\sigma 2\pi} \right)^2 \right]
\]

\textbf{For} \(\lambda_w = 12 \ \mu m, \ v_{n95} = 20 \ \text{mm mrad}, \ \sigma_p = 1.2 \cdot 10^{-4}, \ n_\sigma = 4 \) and \(\lambda_1 = \lambda_2 \)

one obtains the optimal parameters

- \(\mu_{1,\text{opt}} / 2\pi = 6.88 \cdot 10^{-3} \)
- \(M_{156} = 1.91 \ \text{cm} \)
- \(D^2 / \beta = 22.1 \ \text{cm} \)
- \((\beta = 50 \ \text{m}, \ D = 3.3 \ \text{m}) \)

\textbf{Tough requirements on the betatron phase advance} \((\Delta \nu_1 \sim 10^{-3}) \)

- \textbf{Hardly possible for} \(\lambda_w = 2 \ \mu m \) \((\Delta \nu_1 \sim 2 \cdot 10^{-4}) \)
Combinations of Optics Parameters for Optimal Cooling

$D_1 = D_2 = D$, $D^2/\beta = 22.1$ cm, $\delta v_1 = 6.88 \cdot 10^{-3}$

$\nu_1 = \mu_1 / 2\pi$	M_{156} [cm]
$n- \delta v_1$	-1.91
$n+ \delta v_1$	1.91

$D_1 = -D_2 = D$, $D^2/\beta = 22$ cm, $\delta v_1 = 6.88 \cdot 10^{-3}$

$\nu_1 = \mu_1 / 2\pi$	M_{156} [cm]
$n+1/2 - \delta v_1$	-1.91
$n+1/2 + \delta v_1$	1.91
Requirements to the System Stability

The major limitations on system stability come from:

- Relative change path length for the beam and the light

 - Cooling force: \(F(a, \delta a) \approx \frac{2}{a} J_1(a) \cos(\delta a), \quad \delta a = k \delta L \)

 - Reduces the force but does not change cooling acceptance

 \(\Rightarrow k \delta L < 0.5 \), i.e. \(\delta L \sim 1 \, \mu m \) (\(\lambda_w=12 \, \mu m \), 10% force reduction)

- No additional requirements for high frequency jitter

- Changes of cooling rates due to optics variations

 \[
 \lambda_1 = -\frac{\kappa}{2} \left(D_2 M_{1,6} - D'_2 M'_{1,6} \right) \\
 \lambda_2 = -\frac{\kappa}{2} \left(-D_2 M_{12,6} + D'_2 M'_{1,6} + M_{15,6} \right)
 \]

- External (changes in kicker dispersion)

 - \(\Delta D/D < 5-10\% \) - Is not expected to be a problem

- Internal (pickup-to-kicker transport matrix)

 - Looks extremely sensitive: \(\Delta v_1 \sim 10^{-3} \) is required

 - Additional insight is needed
Longitudinal Kick by E.-M. Wave

- Electric field of e.-m. wave focused at \(z=0 \) to the rms size \(\sigma_\perp \)

\[
E_x(x, y, z, t) = \text{Re} \left(E_0 e^{i(\omega t - k_z z)} \frac{\sigma_\perp^2}{\sigma^2(z)} \exp \left(-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2(z)} \right) \right)
\]

\[
E_y(x, y, z, t) = 0
\]

\[
E_z(x, y, z, t) = \text{Re} \left(iE_0 e^{i(\omega t - k_z z)} \frac{\sigma_\perp^2 x}{k\sigma^4(z)} \exp \left(-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2(z)} \right) \right)
\]

\[
E_0 = \sqrt{\frac{8P}{c\sigma_\perp^2}}, \quad \sigma^2(z) = \sigma_\perp^2 - i \frac{z}{k}, \quad k = \frac{2\pi}{\lambda_w}
\]

- The beam is deflected in the x-plane by wiggler magnetic field

 - That results in the beam energy change \(\Delta E = e \int (E \cdot v) dt \)

\[
\Delta E = eE_0 \int \text{Re} \left[\left(\frac{dx}{dz} \frac{\sigma_\perp^2}{\sigma^2(z)} + i \frac{\sigma_\perp^2 x}{k\sigma^4(z)} \right) \exp \left(-\frac{1}{2} \frac{x^2 + y^2}{\sigma^2(z)} + ik \left(\frac{z}{2\gamma^2} + \frac{1}{2} \int_0^z \left(\frac{dx}{dz'} \right)^2 dz' \right) + i\psi \right) \right] dz
\]

where \(\psi \) is the accelerating phase (\(\Delta E = 0 \) for \(\psi = 0 \))

and \(\frac{1}{2} \int_0^z \left(\frac{dx}{dz'} \right)^2 dz' \) represents the path length difference between light and beam introduced by wiggler (relative to wiggler center)
Energy Kick in Dipole Wiggler

- Wiggler consists of positive and negative dipoles which are immediately followed by dipole of the same field for further separation of beams
 - Dipole length, σ_{\perp} and the beam centroid offset are adjusted to maximize the kick
 - σ_{\perp} is much larger than the beam transverse size
- Because of tighter light focusing the kick in a dipole is only marginally lower than in the 3 dipole wiggler
Energy Kick in Dipole Wiggler

- Both E_x and E_z fields contribute to the kick
 - That allows one to get additional kick in the case of single dipole
- Kick in 4 T dipole is 64% of the 5 dipole 2T wiggler
 - Length of 5 dipoles is 27.5 m
 - The total length of 5 dipole system determined by beam separation is ~40 m
- Taking into account available space and comparatively high kick efficiency in a dipole as well as other limitations it looks possible to use a standard Tevatron dipole instead of wiggler
Energy Kick in Helical Wiggler

- Helical dipole suggest $\sqrt{2}$ times better kicker efficiency
 - Circular polarized light
- For large number of periods ($n_{wgl} \gg 1$) the kicker strength is:
 \[
 \frac{\Delta E_{\text{max}}}{e} \approx \sqrt{8.837 n_{wgl} P Z_0 \frac{K_u^2}{1 + K_u^2}}
 \]
 where $K_u = \frac{2\pi}{\lambda_{wgl}} \frac{eB}{mc^2}$, $Z_0=377 \ \Omega$

- The waist size is growing with kicker length $-\sigma_\perp \approx \sqrt{0.946 L \lambda_w}$
- The kicker is less effective than formula prediction for small n_{wgl}
 - $\rho_{wgl} \sim \sigma_\perp$
 - Negative contribution of E_z

M. Zolotorev

Optical stochastic cooling in Tevatron, Valeri Lebedev, June 1, 2010
Comparison of Different Wiggler Types

- For large wiggler period the wiggler consisting of dipoles is easier to make than a usual harmonic wiggler
 - Little loss in efficiency is compensated by shorter length
- Helical dipole wiggler is $\sim \sqrt{2}$ time more efficient

Comparison of wiggler parameters for $\lambda_w = 12 \, \mu$m and different wigglers (2.5 wiggles each)
Longitudinal Damping Rate

- Long. cooling decrement is proportional to the kick amplitude (ΔE_{max}) excited by a single particle
 - Requirement to have the cooling range of σn_σ times yields

$$\lambda_2 = \frac{1}{2} \int_0^\infty \frac{\Delta E_{\text{max}}}{c \sigma_p n_\sigma} F_{2G} \left(\frac{\mu_0}{n_\sigma}, \frac{\mu_0}{n_\sigma} \right)$$

- In optimum the long. damping rate does not depend on details of beam optics

- For Gaussian dependence of laser gain on f the energy in a single particle pulse is related to the peak power and the FWHM bandwidth (power) as:

$$\int P(t)dt = \sqrt{\frac{\ln(2)}{\pi}} \frac{P_{\text{peak}}}{\Delta f_{\text{FWHM}}}$$

- RHIC proposal (2004), $\lambda_w=12$ μm, $((\Delta f/f)_{\text{FWHM}}=6\%$
Longitudinal Damping Rate (2)

- For beam with n_b bunches and N_p particles/bunch the average laser power is

\[
P_{\text{laser}} = n_b N_p f_0 \sqrt{\frac{\ln(2)}{\pi}} \frac{P_{\text{peak}}}{\Delta f_{\text{FWHM}}} = \frac{n_b N_p f_0}{\Delta f_{\text{FWHM}}} \sqrt{\frac{\ln(2)}{\pi}} \left(\frac{\Delta E_{\text{max}}}{G_{\text{kick}}} \right)^2
\]

where G_{kick} is the kicker efficiency determined by the equation for monochromatic wave $\Delta E_{\text{max}} = G_{\text{kick}} \sqrt{P}$

⇒ For helical dipole with large number of wiggles

\[
P_{\text{laser}} = 1.26 \left(\frac{1}{n_{\text{wgl}} \left(\frac{\Delta f}{f} \right)_{\text{FWHM}}} \right) \frac{1 + K_u^2}{K_u^2} \frac{n_b N_p \lambda_w^2 \lambda_w \left(cp\sigma_p / e \right)^2}{cf_0 Z_0}
\]

\[
K_u \gg 1, n_{\text{wgl}} \left(\frac{\Delta f}{f} \right)_{\text{FWHM}} \approx \frac{n_b N_p \lambda_w^2 \lambda_w \left(cp\sigma_p / e \right)^2}{cf_0 Z_0}
\]

- Number of wiggles is limited by bandwidth: $n_{\text{wgl}} \leq 1 / (\Delta f / f)$
- For efficient kick the undulator parameter $K_u \geq 2$
 - For larger magnetic field the kicker is shorter for same n_{wgl}
- In optimal setup \perp cooling does not require additional power
 - but requires an optimized optics
Possible Choice of OSC Parameters

Damping time 4.5 hour, $N_p=3\cdot10^{11}$, $n_b=36$, $\sigma_p=1.2\cdot10^{-4}$, $\lambda_2^{-1}=4.5$ hour

⇒ Amplitude of single particle kick, $\Delta E_{\text{max}}=0.66$ eV

Wave length [μm]	Wiggler type/n_{wgl}	B [T]	Total length [m]	G_{kicker} [eV/√W]	$\Delta f/f_{\text{FWHM}}$ %	P [W]
12	Tevatron dipole/(N/A)	4	N/A	26	6	125
6				18	6	133
2				14		71
12	Helical dipole/2.5	2	40	56	6	28
	Helical dipole/8	8	44	132	6	5
6	Helical dipole/7	6	38	110	6	3.5
2	Helical dipole/12	6	36	116	6	1.05

♦ Peak optical amplifier power is ~100 times larger than the average one
♦ Bandwidth is limited by optical amplifier
Discussion

- **OSC would double the average Tevatron luminosity**
- **Cooling installation requires a modification of beam optics**
 - CO straight is available
 - New optics implies
 - new quad circuits
 - may be new quads
 - shuffling existing and/or installation of new dipoles
 - Installation of wigglers?
 - Considerable work
 - Fractional tunes should stay the same
 - Helices should not be affected
- **Antiproton beam has less particles but requires faster cooling**
 - That results in approximately the same power requirements for optics amplifier but its larger gain
2 \(\mu \)m wavelength

- 2 \(\mu \)m parametric optical amplifier is feasible (MIT-Bates)
 - 20-100 W (pumped by Nd:YAG laser)
- Can be used with Tevatron dipoles being pickups and kickers (no wigglers), 70 W amplifier per beam
 - 2T helical wiggler (~20 m) requires ~12 W amplifier per beam
- Optics stability and path length control are questionable
 - We will continue to look into optics issues

12 \(\mu \)m wavelength

- Looks good for control of optics and the path length
- Parametric optical amplifier pumped by 2-nd harmonic of \(CO_2 \) laser
 - Was not demonstrated yet
 - Attempt for RHIC was not quite successful
 - 5-10 W looks reasonable request
 - But R&D is required to prove feasibility
- Requires ~6-8 T helical wiggler (>4 years)

There is no fast way (2-3 years) to introduce OSC in Tevatron
- looks possible for 5-6 years
This Work Results and Plans for Further Studies

Done
- Better understanding of beam optics issues for OSC
 - Formulation of requirements for optimal beam optics
 - Understanding of cooling range
- Better understanding of kicker efficiency
 - Helical undulator allows to reduce its length and/or laser power

Future work
- Look into realistic Tevatron optics
- Study its sensitivity
 - Is the 2 μm wavelength possible?
 ⇒ If yes then the fast scenario can work with 60 W amplifier (No wigglers, pickup and kicker are in dipoles)
- Making experiment in Bates would be extremely helpful but ?
Backup Viewgraphs
Damping Rates of Optical Stochastic Cooling

Transfer Matrix Parameterization

- Vertical degree of freedom is uncoupled and we will omit it in further consideration

\[
\mathbf{M} = \begin{bmatrix}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix}
x \\
\theta_x \\
s \\
\Delta p / p
\end{bmatrix}
\]

- \(M_{16} \) & \(M_{26} \) can be expressed through dispersion

\[
\begin{bmatrix}
M_{11} & M_{12} & M_{16} \\
M_{21} & M_{22} & M_{26} \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
D_1 \\
D'_1 \\
1
\end{bmatrix} = \begin{bmatrix}
D_2 \\
D'_2 \\
1
\end{bmatrix}
\]

That yields

\[
M_{16} = D_2 - M_{11}D_1 - M_{12}D'_1
\]

\[
M_{26} = D'_2 - M_{21}D_1 - M_{22}D'_1
\]

\[
M_{11} = \sqrt{\frac{\beta_2}{\beta_1}} (\cos \mu + \alpha_1 \sin \mu)
\]

\[
M_{22} = \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu - \alpha_2 \sin \mu)
\]

\[
M_{12} = \sqrt{\beta_1 \beta_2} \sin \mu
\]

\[
M_{21} = \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1 \beta_2}} \cos \mu - \frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu
\]
Transfer Matrix Parameterization (continue)

- **Symplecticity** \(\mathbf{M}^T \mathbf{U} \mathbf{M} = \mathbf{U} \) binds up \(M_{51}, M_{52} \) and \(M_{16}, M_{26} \)

- That yields
 \[
 M_{51} = M_{21}M_{16} - M_{11}M_{26}
 \]
 \[
 M_{52} = M_{22}M_{16} - M_{12}M_{26}
 \]

- Finally one can write
 \[
 M_{16} = D_2 - D_1 \sqrt{\frac{\beta_2}{\beta_1}} \left(\cos \mu + \alpha_1 \sin \mu \right) - D'_1 \sqrt{\beta_1 \beta_2} \sin \mu
 \]
 \[
 M_{26} = D_1 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D'_1 \sqrt{\frac{\beta_1}{\beta_2}} \left(\cos \mu - \alpha_2 \sin \mu \right)
 \]
 \[
 M_{51} = -D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D'_2 \sqrt{\frac{\beta_2}{\beta_1}} \left(\cos \mu + \alpha_1 \sin \mu \right)
 \]
 \[
 M_{52} = -D_1 + D_2 \sqrt{\frac{\beta_1}{\beta_2}} \left(\cos \mu - \alpha_2 \sin \mu \right) - D'_2 \sqrt{\beta_1 \beta_2} \sin \mu
 \]

- In the first order the orbit lengthening due to betatron motion is equal to zero if \(D_1 = D'_1 = D_2 = D'_2 = 0 \)
Transfer Matrix Parameterization (continue)

- Partial momentum compaction and slip factor (from point 1 to point 2) are related to M_{56}

$$\Delta s_{1\rightarrow 2} \equiv 2\pi R \eta_1 \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p} + \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

- Further we assume that $v = c$, $v = c$, i.e. $1/\gamma^2 = 0$ and $\eta_1 = \alpha_{1\rightarrow 2}$.

- That results in $\eta_1 = \frac{M_{51} D_1 + M_{52} D_1' + M_{56}}{2\pi R}$ or

$$M_{56} = 2\pi R \eta_1 + D_1 D_2 \left(\frac{1 + \alpha_1 \alpha_2}{\sqrt{\beta_1 \beta_2}} \sin \mu + \frac{\alpha_2 - \alpha_1}{\sqrt{\beta_1 \beta_2}} \cos \mu \right) + D_1 D_2' \sqrt{\frac{\beta_2}{\beta_1}} \left(\cos \mu + \alpha_1 \sin \mu \right)$$

$$- D_1' D_2 \sqrt{\frac{\beta_1}{\beta_2}} \left(\cos \mu - \alpha_2 \sin \mu \right) + D_1' D_2' \sqrt{\beta_1 \beta_2} \sin \mu$$

- Thus, the entire transfer matrix from a point 1 to a point 2 can be expressed through the β-functions, dispersions and their derivatives at these points and the partial slip factor.
Parameterization of the Entire Ring Transfer Matrix

Formulas for the entire ring look more compact

\[
\begin{align*}
M_{11} &= \cos \mu + \alpha \sin \mu \\
M_{21} &= -\frac{1 + \alpha^2}{\beta} \sin \mu \\
M_{12} &= \beta \sin \mu \\
M_{22} &= \cos \mu - \alpha \sin \mu \\
M_{16} &= D(1 - \cos \mu - \alpha \sin \mu) - D'\beta \sin \mu \\
M_{26} &= D \frac{1 + \alpha^2}{\beta} \sin \mu + D'(1 - \cos \mu + \alpha \sin \mu) \\
M_{51} &= -D \frac{1 + \alpha^2}{\beta} \sin \mu + D'(1 - \cos \mu - \alpha \sin \mu) \\
M_{52} &= -D(1 - \cos \mu + \alpha \sin \mu) - D'\beta \sin \mu \\
M_{56} &= 2\pi R\alpha_{1\to2} + D^2 \frac{1 + \alpha^2}{\beta} \sin \mu + 2DD'\alpha \sin \mu + D'^2 \beta \sin \mu
\end{align*}
\]

\[
\begin{bmatrix}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
x \\
\theta_s \\
\Delta p / p
\end{bmatrix}
\]
Damping Rates of Optical Stochastic Cooling

Longitudinal kick

\[
\frac{\delta p}{p} = \kappa \Delta L = \kappa \left(M_{151} x_1 + M_{152} \theta x_1 + M_{156} \frac{\Delta p}{p} \right)
\]

Or in the matrix form: \(\delta X = M_c X_1 \)

\[
M_c = \kappa \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
M_{151} & M_{152} & 0 & M_{156}
\end{bmatrix}
\]

Total ring matrix related to kicker (Ring&RF&damper)

\[
M_{tot} X_2 = M_1 M_2 X_2 + \delta X_2 = M_1 M_2 X_2 + M_c X_1 = (M_1 M_2 + M_c M_2) X_2
\]

\[\Rightarrow \quad M_{tot} = M + \Delta M_c \]

where

\[
M = M_1 M_2 , \quad \Delta M = M_c M_2
\]
Damping Rates of Optical Stochastic Cooling (continue)

Perturbation theory yields that the eigen-value correction is \([HB2008]\):

\[
\delta\lambda_k = \frac{i}{2} v_k^+ U \Delta M v_k = \frac{i}{2} v_k^+ U M_c M_1^{-1} (M_1 M_2) v_k = \frac{i}{2} \lambda_k v_k^+ U M_c M_1^{-1} v_k
\]

Corresponding tune shift is:

\[
\delta Q_k = \frac{i}{2\pi} \frac{\delta \lambda_k}{\lambda_k} = -\frac{1}{4\pi} v_k^+ U M_c M_1^{-1} v_k
\]

Symplecticity relates the transfer matrix and its inverse:

\[
M_1^{-1} = -UM_1^T U
\]

\[\Rightarrow \]

\[
\delta Q_k = \frac{1}{4\pi} v_k^+ U M_c U M_1^T U v_k
\]

Performing matrix multiplication and taking into account that symplecticity binds up \(M_{51}, M_{52}\) and \(M_{16}, M_{26}\) one finally obtains:

\[
\delta Q_k = \frac{\kappa}{4\pi} v_k^+ \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
M_{126} & -M_{116} & 0 & M_{156} \\
0 & 0 & 0 & 0
\end{bmatrix} v_k
\]
Eigen-vectors and Damping Decrement (Mode 1)

- There are two eigen-vectors
 - One related to the betatron motion v_1
 - And one related to the synchrotron motion v_2

- They are normalized as: $v_k^+ U v_k = -2i$

- If the synchrotron tune and dispersion in RF cavities are small, the effect of RF can be neglected in the computation of v_1
 - In this case $\lambda_1 = e^{-i\mu}$ and
 the eigen-vector related to the kicker position is

\[
\begin{bmatrix}
\sqrt{\beta_2} \\
-(i + \alpha_2) / \sqrt{\beta_2} \\
v_{13} \\
0
\end{bmatrix}, \quad Mv_k = \lambda_k v_k, \quad M = \\
\begin{bmatrix}
M_{11} & M_{12} & 0 & M_{16} \\
M_{21} & M_{22} & 0 & M_{26} \\
M_{51} & M_{52} & 1 & M_{56} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

The first 2 components are the same as for uncoupled case. The third component has to be found from the third equation

\[
=> v_{13} = -\frac{iD_2 (1 - i\alpha_2) + D'_2 \beta_2}{\sqrt{\beta_2}}
\]
Corresponding damping rate is

\[\lambda_1 = -2\pi \text{Im} \delta Q_1 \]

\[\lambda_1 = -\frac{\kappa}{2} \text{Im} \left(\begin{pmatrix} \sqrt{\beta_2} \\ -(i + \alpha_2)/\sqrt{\beta_2} \\ v_{13} \\ 0 \end{pmatrix}^+ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{126} & -M_{116} & 0 & M_{156} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} \sqrt{\beta_2} \\ -(i + \alpha_2)/\sqrt{\beta_2} \\ v_{13} \\ 0 \end{pmatrix} \right) \]

\[\lambda_1 = -\frac{\kappa}{2} \left(D_2 M_{12,6} - D_2' M_{1,6} \right) \]

That yields

\[\lambda_1 = -\frac{\kappa}{2} \left[D_1 D_2 \frac{(1 + \alpha_1 \alpha_2) \sin \mu_1 + (\alpha_2 - \alpha_1) \cos \mu_1}{\sqrt{\beta_1 \beta_2}} - D_1' D_2 \sqrt{\frac{\beta_1}{\beta_2}} (\cos \mu_1 - \alpha_2 \cos \mu_1) \right. \]

\[+ D_1 D_2' \sqrt{\beta_2 \beta_1} (\cos \mu_1 + \alpha_1 \sin \mu_1) + D_1' D_2' \sqrt{\beta_1 \beta_2} \sin \mu_1 \left] \right. \]

Expressing it through the partial slip factor one gets

\[\lambda_1 = -\frac{\kappa}{2} (M_{56} - 2\pi R \eta_1) \]
Eigen-vectors and Damping Decrement (Mode 2)

To find the second eigen-vector we will ignore the second order effects of betatron motion on the longitudinal dynamics.

- The linearized RF kick is
 \[\frac{\delta p}{p} = -\Phi_s s \]

- Simple calculations yield for the eigen value \(\lambda_1 = e^{-i\mu_s} \)

 where the synchrotron tune \(\mu_s = \sqrt{2\pi R \eta \Phi_s} \)

- Corresponding eigen-vector related to the kicker position is
 \[
 v_1 = \begin{pmatrix}
 -iD_2 / \sqrt{\beta_s} \\
 -iD'_2 / \sqrt{\beta_s} \\
 \sqrt{\beta_s} \\
 -i / \sqrt{\beta_s}
 \end{pmatrix}
 \]

 where the longitudinal beta-function \(\beta_s = 2\pi R \eta / \mu_s \)
Corresponding damping rate is

\[\lambda_2 = -2\pi \text{Im} \delta Q_2 \]

\[
\begin{align*}
\lambda_2 &= -\frac{\kappa}{2} \text{Im} \\
&= -\frac{\kappa}{2}
\begin{pmatrix}
-iD_2 / \sqrt{\beta_s} \\
-iD'_2 / \sqrt{\beta_s} \\
\sqrt{\beta_s} \\
-i / \sqrt{\beta_s}
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
M_{126} & -M_{116} & 0 & M_{156} \\
0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
-iD_2 / \sqrt{\beta_s} \\
-iD'_2 / \sqrt{\beta_s} \\
\sqrt{\beta_s} \\
-i / \sqrt{\beta_s}
\end{pmatrix}
\end{align*}
\]

\[
= -\frac{\kappa}{2} \left(M_{156} - D_2 M_{126} + D'_2 M_{116} \right)
\]

Expressing the matrix elements through Twiss parameters one obtains

\[\lambda_2 = -\frac{\kappa}{2} M_{156} - \lambda_1 = -\pi \kappa R \eta_1 \]

The last expression can be directly obtained from the definition of the partial slip factor

The above equation yields the sum of the decrements is

\[\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{156} \]
Damping Rates for Smooth Lattice Approximation

- For zero derivatives of beta-function and dispersion at pickup and kicker one obtains

\[
\lambda_1 = -\frac{\kappa}{2} \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1
\]

\[
\lambda_2 = -\frac{\kappa}{2} \left[M_{156} - \frac{D_1 D_2}{\sqrt{\beta_1 \beta_2}} \sin \mu_1 \right]
\]

- Smooth lattice approximation additionally yields

\[
\beta = \frac{R}{v}, \quad D = \frac{R}{v^2}, \quad \mu_1 = \nu \frac{L_{pk}}{R}, \quad \eta_1 = -\frac{L_{pk}}{2\pi v^2 R}, \quad M_{156} = -\frac{L_{pk}}{v^2} + \frac{R}{v^3} \sin \left(\nu \frac{L_{pk}}{R} \right),
\]

where \(L_{pk} \) is the pickup-to-kicker path length, and \(\nu \) is the betatron tune

\[
\lambda_1 = -\frac{\kappa}{2} \frac{R}{v^3} \sin \left(\nu \frac{L_{pk}}{R} \right)
\]

\[
\lambda_2 = \frac{\kappa}{2} \frac{L_{pk}}{v^2}
\]
Comparison to Zholents-Zolotorev result

Eqs. (A9) and (A11) in the paper Appendix can be rewritten in the following simplified form

$$\lambda_1 = \frac{\kappa}{2} \left(D_2 M_{151}^{-1} + D'_{2} M_{152}^{-1} \right)$$

$$\lambda_2 = -\frac{\kappa}{2} \left(D_2 M_{151}^{-1} + D'_{2} M_{152}^{-1} + M_{156}^{-1} \right)$$

The inverse of the matrix is

$$M_1^{-1} = -U M_1^T U = \begin{bmatrix} M_{122} & -M_{112} & 0 & M_{152} \\ -M_{121} & M_{111} & 0 & M_{151} \\ M_{126} & M_{116} & 1 & -M_{156} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Substituting expressions for matrix elements into above Eqs. for decrements one arrives to the same results
Sample Lengthening on Pickup-to-Kicker Travel

- Zero length sample lengthens on its way from pickup-to-kicker

\[\sigma_{\Delta L}^2 = \int \left(M_{151} x + M_{152} \theta_x + M_{156} \tilde{\eta} \right)^2 f(x, \theta_x, \tilde{\eta}) dx d\theta_x d\tilde{\eta}, \quad \tilde{\eta} = \frac{\Delta p}{p} \]

where for Gaussian distribution

\[f(x, \theta_x, \tilde{\eta}) = \frac{1}{\sqrt{2\pi} 2\pi \sigma_p} \exp \left(-\gamma_p (x - D_p \tilde{\eta})^2 + 2\alpha_p (\theta_x - D'_p \tilde{\eta})(x - D_p \tilde{\eta}) + \beta_p (x - D_p \tilde{\eta}) - \frac{\tilde{\eta}^2}{2\sigma_p^2} \right), \quad \gamma_p = \frac{1 + \alpha_p^2}{\beta_p} \]

- Performing integration one obtains

\[\sigma_{\Delta L}^2 = \varepsilon \left(\beta_p M_{151}^2 - 2\alpha_p M_{151} M_{152} + \gamma_p M_{152}^2 \right) + \sigma_p^2 \left(M_{151} D_p + M_{152} D'_p + M_{156} \right)^2 \]

- Expressing matrix elements through Twiss parameters yields

\[\sigma_{\Delta L}^2 = \varepsilon F_\varepsilon + \sigma_p^2 \left(2\pi R \alpha_{1\rightarrow 2} \right)^2 \]

\[F_\varepsilon = D_p^2 \gamma_p + D_k^2 \gamma_k - \frac{2D_p D_k}{\sqrt{\beta_p \beta_k}} \left((1 + \alpha_p \alpha_k) \cos \mu_1 + (\alpha_p - \alpha_k) \sin \mu_1 \right) + D'_p^2 \beta_p + D'_k^2 \beta_k + 2D_p D'_p \alpha_p + \]

\[2D_p D'_p \alpha_p + 2D_p D'_k \sqrt{\beta_k \beta_p} (\sin \mu_1 - \alpha_p \cos \mu_1) - 2D_k D'_p \sqrt{\beta_p \beta_k} (\sin \mu_1 + \alpha_k \cos \mu_1) - 2D'_k D'_p \sqrt{\beta_p \beta_k} \cos \mu_1 \]
For zero derivatives it yields

$$\sigma_{\Delta L}^2 = \varepsilon \left(\frac{D_k^2}{\beta_k} + \frac{D_p^2}{\beta_p} - \frac{2D_k D_p}{\sqrt{\beta_k \beta_p}} \cos \mu_1 \right) + \sigma_p^2 \left(M_{156} - \frac{D_k D_p}{\sqrt{\beta_k \beta_p}} \sin \mu_1 \right)$$
Estimate of Energy Kick in Helical Wiggler

- Assuming that $\rho_\perp \ll \sigma_\perp$ the kick amplitude is
 \[
 \frac{\Delta E}{e} = \sqrt{\frac{4P}{c\sigma_\perp^2}} \theta_0 2 \int_0^{L/2} \frac{\sigma_\perp^2 dz}{\sigma_\perp^2 - iz/k} = 4\sqrt{\frac{P}{c}} \theta_0 k \sigma_\perp \sinh\left(\frac{L}{2k \sigma_\perp^2} \right)
 \]

- The function $x\sinh\left(\frac{1}{x^2}\right)$ achieves its maximum at $x = c_0 \approx 0.54884$

 \Rightarrow Maximum kick of
 \[
 \frac{\Delta E}{e} \bigg|_{opt} = 4c_0 \sqrt{2} \sinh\left(\frac{1}{c_0^2} \right) \sqrt{\frac{P}{c}} \theta_0 \sqrt{kL} \]
 is achieved at $\sigma_\perp = \sqrt{\frac{c_0^2 \ L}{2k}}$

- Taking into account that $4\pi / c = Z_0$ and $kL = 2\pi n_{wgl}$ we obtain
 \[
 \frac{\Delta E}{e} \bigg|_{opt} = 2c_0 \sinh\left(\frac{1}{c_0^2} \right) \theta_0 \sqrt{PZ_0 n_{wgl}}
 \]

- The condition of resonance is: $k\left(1/(2\gamma^2) + \theta_0^2/2\right) = k_{wgl}$, where the particle angle (relative to wave direction) is $\theta_0 = \frac{1}{k_{wgl} R_L}$, $R_L = \frac{pc}{eB_0}$

- That yields
 \[
 \frac{\Delta E}{e} \bigg|_{opt} = c_0 \sinh\left(\frac{1}{c_0^2} \right) \sqrt{\frac{8PZ_0 n_{wgl} K_u^2}{1 + K_u^2}} \approx \sqrt{\frac{8.837 PZ_0 n_{wgl} K_u^2}{1 + K_u^2}} \quad , \quad K_u = \frac{eB_0}{pck_{wgl}}
 \]
References
HB2008 - V. Lebedev, A. Burov, “Coupling and its Effects on Beam Dynamics”, HB-2008