The ethnobotany of psychoactive plant use: a phylogenetic perspective

Nashmiah Aid Alrashedy ¹, Jeanmaire Molina Correspond. ¹

¹ Department of Biology, Long Island University, Brooklyn, New York, United States

Corresponding Author: Jeanmaire Molina
Email address: jeanmaire.molina@liu.edu

Psychoactive plants contain chemicals that presumably evolved as allelochemicals but target certain neuronal receptors when consumed by humans, altering perception, emotion and cognition. These plants have been used since ancient times as medicines and in the context of religious rituals for their various psychoactive effects (e.g., as hallucinogens, stimulants, sedatives). The ubiquity of psychoactive plants in various cultures motivates investigation of the commonalities among these plants, in which a phylogenetic framework may be insightful. A phylogeny of culturally diverse psychoactive plant taxa was constructed with their psychotropic effects and affected neurotransmitter systems mapped on the phylogeny. The phylogenetic distribution shows multiple evolutionary origins of psychoactive families. The plant families Myristicaceae (e.g. nutmeg), Papaveraceae (opium poppy), Cactaceae (peyote), Convolvulaceae (morning glory), Solanaceae (tobacco), Lamiaceae (mints), Apocynaceae (dogbane) have a disproportionate number of psychoactive genera with various indigenous groups using geographically disparate members of these plant families for the same psychoactive effect, an example of cultural convergence. Pharmacological traits related to hallucinogenic and sedative potential are phylogenetically conserved within families. Unrelated families that exert similar psychoactive effects also modulate similar neurotransmitter systems (i.e. mechanistic convergence). However, pharmacological mechanisms for stimulant effects were varied even within families suggesting that stimulant chemicals may be more evolutionarily labile than those associated with hallucinogenic and sedative effects. Chemically similar psychoactive chemicals may also exist in phylogenetically unrelated lineages, suggesting convergent evolution or differential gene regulation of a common metabolic pathway. Our study has shown that phylogenetic analysis of traditionally used psychoactive plants suggests multiple ethnobotanical origins and widespread human dependence on these plants, motivating pharmacological investigation into their potential as modern therapeutics for various neurological disorders.
The ethnobotany of psychoactive plant use: a phylogenetic perspective

Nashmiah Alrashedy and Jeanmaire Molina*

Department of Biology, Long Island University-Brooklyn, 1 University Plaza, Brooklyn, NY, USA 11201

*corresponding author: jeanmaire.molina@liu.edu

Abstract

Psychoactive plants contain chemicals that presumably evolved as allelochemicals but target certain neuronal receptors when consumed by humans, altering perception, emotion and cognition. These plants have been used since ancient times as medicines and in the context of religious rituals for their various psychoactive effects (e.g., as hallucinogens, stimulants, sedatives). The ubiquity of psychoactive plants in various cultures motivates investigation of the commonalities among these plants, in which a phylogenetic framework may be insightful. A phylogeny of culturally diverse psychoactive plant taxa was constructed with their psychotropic effects and affected neurotransmitter systems mapped on the phylogeny. The phylogenetic distribution shows multiple evolutionary origins of psychoactive families. The plant families Myristicaceae (e.g. nutmeg), Papaveraceae (opium poppy), Cactaceae (peyote), Convolvulaceae (morning glory), Solanaceae (tobacco), Lamiaceae (mints), Apocynaceae (dogbane) have a disproportionate number of psychoactive genera with various indigenous groups using geographically disparate members of these plant families for the same psychoactive effect, an example of cultural convergence. Pharmacological traits related to hallucinogenic and sedative
potential are phylogenetically conserved within families. Unrelated families that exert similar
psychoactive effects also modulate similar neurotransmitter systems (i.e. mechanistic
convergence). However, pharmacological mechanisms for stimulant effects were varied even
within families suggesting that stimulant chemicals may be more evolutionarily labile than those
associated with hallucinogenic and sedative effects. Chemically similar psychoactive chemicals
may also exist in phylogenetically unrelated lineages, suggesting convergent evolution or
differential gene regulation of a common metabolic pathway. Our study has shown that
phylogenetic analysis of traditionally used psychoactive plants suggests multiple ethnobotanical
origins and widespread human dependence on these plants, motivating pharmacological
investigation into their potential as modern therapeutics for various neurological disorders.

Keywords: drug discovery, ethnopharmacology, evolutionary ethnobiology,
neuropsychopharmacology, psychotropic, traditional medicine

Introduction

Plants constantly evolve to produce various defensive secondary metabolites against their
equally adaptive predators (Polya, 2003; Wink, 2003; Wink, 2016). Some well-known
psychoactive compounds such as atropine, caffeine, cocaine, nicotine and morphine are believed
to have been products of this evolutionary arms race (Howe & Jander, 2008; Fürstenberg-Hägg,
Zagrobelny, & Bak, 2013). Psychoactive, alternatively psychotropic, substances act on the
nervous system affecting mental processes and behavior (Spinella, 2001; Rätsch, 2005). They
include hallucinogens that distort reality, sedatives/narcotics that induce sleep, calmative or
anxiolytics, antidepressants, and stimulants that wake the mind (Spinella, 2001; Rätsch, 2005;
van Wyk & Wink, 2014). Interestingly, humans have exploited alternate uses for plants containing psychoactive phytochemicals that have purportedly evolved to ward off plant predators. However, the affinity of these phytochemicals within the hominid nervous system may also indicate some kind of mutualistic co-evolution, with ancient humans seeking and perhaps cultivating plant psychotropics to facilitate survival, by alleviating starvation, fatigue and pain (Sullivan & Hagen, 2002).

Psychoactive compounds have specific molecular targets in the nervous system, and interact in a particular way with neuronal receptors to produce various psychoactive effects (Spinella, 2001; Polya, 2003). For instance, morphine in opium poppy (*Papaver somniferum*, Papaveraceae) eliminates pain by binding to opioid receptors (Polya, 2003), but simultaneously promotes sedation and euphoria, by disinhibiting dopamine-containing neurons in the limbic system (Johnson & North, 1992). Dopamine is ultimately responsible for feelings of elation and satisfaction, which occur after some rewarding act like sex or food satiety. Addiction arises from wanting to re-experience the pleasure due to the drug’s ability to cause dopamine buildup (Lüscher and Ungless, 2006). Compounds that mimic serotonin and act as receptor agonists like mescaline in the peyote cactus (*Lophophora williamsii*, Cactaceae), trigger hallucinations and cognitive breakdown (Polya, 2003). Stimulating substances, such as the alkaloid nicotine in tobacco, *Nicotiana tabacum* (Solanaceae), mimic the endogenous neurotransmitter acetylcholine stimulating muscle contractions and cholinergic areas of the brain involved in arousal and attention (Polya, 2003). And yet, the confamilial *Atropa belladonna*, contains a chemically different alkaloid, atropine, which promotes sedation and incapacitation via its action as muscarinic acetylcholine antagonist, blocking neuromuscular communication (Spinella, 2001).
It is well established that all cultures, ancient or modern, have some kind of drug culture, relying on psychoactives for recreational, ritual and/or medicinal uses (Schultes, 1976; Schultes, Hofmann & Rätsch, 2001; Rätsch, 2005). Shamanistic religions have existed in the Old World of Europe, Asia and Africa, believing that psychoactive plants are capable of healing through divine power. Marijuana (Cannabis spp., Cannabaceae) and opium poppy are among the most popular psychoactive plants used by Old World shamans. Marijuana was used in ancient China for various afflictions like malaria and constipation, and even as a narcotic in surgeries. In India, the plant was considered sacred promoting pleasurable sensations in the user (Clarke & Merlin, 2013). Tetrahydrocannabinol (THC) in marijuana, exerts these actions by binding to cannabinoid receptors, mediating sensory pleasure (Mahler, Smith & Berridge, 2007). Another familiar psychoactive, opium poppy was used for medicinal and recreational purposes. It probably originated in the Mediterranean, but widespread use has confounded its evolutionary origin (Merlin, 2003). It was recorded in the Eber papyrus, an ancient Egyptian scroll, that opium poppy was used to stop the excessive crying of children (Vetulani, 2001). The plant contains morphine and codeine that are responsible for its hypnotic and analgesic properties (Heinrich et al., 2012).

Indigenous people of the New World have also used psychotropic substances, including tobacco, ayahuasca, and coca, even more so than cultures of the Old World (Schultes, 1976). Tobacco from the leaves of N. tabacum has long been used in the Americas, with cultivation in pre-Columbian Mexico or Peru (Rätsch, 2005). American Indians believed in the medicinal power of tobacco, and it was smoked in ceremonial peace pipes to seal covenants. In the Amazon Basin of South America, the hallucinogenic beverage, ayahuasca, is made by healers from the boiled crushed stems of the caapi, Banisteropsis caapi (Malpighiaceae), along with the leaves of
chacruna, Psychotria viridis (Rubiaceae). Chacruna contains serotonergic N,N-dimethyltryptamine (DMT), that is activated by the beta-carbolines in caapi (McKenna, 1996). In the Andes, indigenous peoples chew coca leaves of Erythroxylum coca (Erythroxylaceae) to cope with hard labor, removing symptoms of fatigue and hunger (Nigg & Seigler, 2013). Its cocaine content prevents dopamine reuptake producing increased energy and mood elevation (Spinella, 2001).

The ubiquity of psychoactive plants in various cultures motivates investigation of the commonalities among these plants, in which a phylogenetic framework may be insightful. Information is assigned to nodes of the phylogeny, instead of one species at a time, facilitating the study of trait distributions (Saslis-Lagoudakis et al., 2015). Phylogenetic studies of culturally diverse medicinal plants have repeatedly shown that medicinal uses and phytochemical traits are not randomly distributed on the phylogeny, but are shared by closely related plants, regardless of these plants’ cultural and geographic designations (Saslis-Lagoudakis et al., 2012; Saslis-Lagoudakis et al., 2015; Xavier & Molina, 2016). In this study we aimed to understand if there is a similar pattern of cultural convergence (Xavier & Molina, 2016) in psychoactive plants using phylogenetic analysis—does the phylogeny of culturally important psychoactive plants reveal a preference for certain plant families and for specific psychoactive effects (hallucinogenic, sedative, stimulant, etc.)? Additionally, we sought to understand if there is also a pattern of mechanistic convergence, such that unrelated plants with similar psychoactive effects ultimately affect similar neurotransmitter systems. Our study provides insight into the ethnobotanical origins of psychoactive plant use and suggests new plant sources of psychopharmacological drugs.
Materials and Methods

Psychoactive taxa of seed plants (126 genera) used by various indigenous groups were compiled for this study (Table 1), but plants with psychoactive uses only after alcoholic fermentation were excluded (e.g., wine from grapes, *Vitis vinifera*). Congeneric species were only represented once in the phylogeny, e.g., *Datura* spp. included *D. discolor* Bernh., *D. ferox* L., *D. innoxia* Mill., *D. metel* L., *D. stramonium* L., *D. wrightii* Regel. This is to account for taxonomic uncertainties that are common in species circumscriptions, and also not to visually bias the phylogeny towards a certain family with multi-species genera (e.g., *Datura*). The plants’ names were verified in the Plant List (2013), a working list of all known plant species that is maintained by the Royal Botanic Gardens and the Missouri Botanical Garden. The psychoactive uses of each plant were categorized as follows: hallucinogen, sedative (=narcotic/hynotic), stimulant, anxiolytic (=relaxant), and antidepressant. As psychotropic plants may also exert analgesia and/or aphrodisiac effects, these effects were determined for each plant in addition to their original psychoactive use. Multiple effects based on literature were not uncommon. Thus, plants were assigned multiple psychoactive attributes, if applicable. For congeneric taxa, uses for each species were all noted.

The 126 psychoactive plant taxa were categorized according to the ethnic groups they were associated with: Native American (including North, Central and South America, 49 genera), European (15), Temperate Asian (including China, Russia, 10), Middle Eastern and African (19), Indomalayan (including India and Southeast Asia, 10), Australasia (including Australia, New Guinea, New Zealand, Pacific Islands, 4). Taxa with traditional psychoactive uses in at least two of these groups were designated multi-cultural (19). The uses of the plants were based on the originating indigenous cultures. For example, harmal, *Peganum harmala*
(Nitrariaceae), is native in the Mediterranean (Europe), but it was used as a stimulant in the Middle East and in Africa, so harmal was assigned to the latter. Guava, *Psidium guajava* (Myrtaceae), is native to tropical America, but was only used as psychoactive in Africa (Rätsch, 2005). *Argyreia nervosa* (= *A. speciosa*), though of Indian origin, is considered multi-cultural here. It has been used in Ayurvedic medicine as an analgesic and aphrodisiac (Galani, Patel & Patel, 2010), but Hawaiians (Australasia) have been using it as alternative to marijuana (Rätsch, 2005). Cultural designations for each plant were all noted, with overlapping origins, if applicable, indicated.

To construct the phylogeny, the sequence of *rbcL* (the gene that codes for the photosynthetic enzyme rubisco; Clegg, 1993) for each psychoactive plant taxon was obtained from GenBank database http://www.ncbi.nlm.nih.gov/genbank using BLASTN (e-value=0, query coverage >50%; Altschul et al., 1990). If there are multiple species within the genus, only the genus name was indicated. The *rbcL* sequences were not available in GenBank for the following species: *Calea ternifolia*, *Calliandra anomala*, *Crocus sativus*, *Horsfieldia australiana*, *Iochroma fuchsioides*, *Juniperus recurva*, *Justicia pectoralis*, *Lactuca virosa*, *Ledum palustre*, *Lonchocarpus violaceus*, *Nymphaea ampla*, *Pachycerus pectenaboriginum*, *Psychotria viridis*, *Ptychopetalum olacoides*, *Psidium guajava*, *Rhynchosia pyramidalis*, *Sassafras albidum*, *Sceletium tortuosum*, *Tanaecium nocturnum*, *Tilia tomentosa*, *Urtica urens*, *Veratrum album*, and *Virola elongata*. In these cases, the *rbcL* sequence for any species within the corresponding genus was downloaded instead.

The *rbcL* sequences of the psychoactive plants were aligned using default parameters in MAFFT v.7 (Katoh & Standley, 2013). PhyML (Guindon & Gascuel, 2003) was utilized to reconstruct the phylogeny applying the general time reversible (GTR) DNA model (Tavaré,
161 1986) with aLRT (approximate likelihood ratio test) Shimodaira-Hasegawa-like (SH-like)
branch support (Simmons & Norton, 2014) and 100 bootstrap replicates. ITOL (Interactive Tree
of Life, www.itol.embl.de), a web-based tool used for the display and manipulation of
phylogenetic trees (Letunic & Bork, 2006), was used to highlight and map the traits in Table 1
(indigenous culture, psychoactive uses). Affected neurotransmitter (NT) systems (Table 2) for
the main psychoactive families were also added to the phylogeny. Cosmetic editing of the ITOL
results was completed in Adobe Illustrator CS4.

168 Results

The 126 psychoactive seed plant taxa belong to 56 families and 31 orders (Table 1) and
together comprise 1.6% of the total generic diversity for these families. The phylogeny reflects
expected relationships (Angiosperm Phylogeny Group/APG IV, 2016). Within eudicots there
seems to be cultural bias of psychotropic use toward asterid members (61) vs. rosids (31).
Nonetheless, the scattered distribution of psychoactive taxa throughout the angiosperm
phylogeny suggests that psychoactive phytochemicals have evolved multiple times throughout
angiosperm evolution. However, certain families are more diverse with at least 3 or more genera:
Myristicaceae, Papaveraceae, Malvaceae, Fabaceae, Cactaceae, Asteraceae, Convolvulaceae,
Solanaceae, Lamiaceae, Rubiaceae, Apocynaceae. However, psychoactive diversity within these
families may be positively correlated with the family’s generic diversity. To test this, a
Pearson’s product moment correlation coefficient was calculated to test the relationship between
the number of psychoactive genera in our study versus the generic diversity of each family (from
Christenhusz & Byng, 2016). Taxonomically diverse families like Asteraceae and Rubiaceae
(>500 genera each) did not always have proportionally higher number of psychoactive genera
with the correlation coefficient very weakly positive (r = 0.004). However, Myristicaceae (4
psychoactive genera out of 21 total), Papaveraceae (4/42), Cactaceae (5/127), Convolvulaceae (4/53), Solanaceae (16/100), Lamiaceae (8/241), Apocynaceae (7/366) have a disproportionate number (>1.6%) of their family’s generic diversity psychoactive. We focused on the neurotransmitter systems affected by psychotropic members of these families as well as psychoactive members in the inherently diverse families of Fabaceae, Malvaceae, Rubiaceae, and Asteraceae (Fig. 1).

Unrelated families may exert similar psychoactive effects (Fig. 1). Cactaceae, Fabaceae, Myristicaceae, Convolvulaceae, and Solanaceae are mainly hallucinogens, though they are unrelated. Of the five cultural groups, Native Americans have traditionally used the most psychoactives (49/126) with predilection for hallucinogens (Fig. 2) in Cactaceae, Fabaceae, Convolvulaceae. These families mainly work as serotonin receptor agonists (Fig. 1; Table 2), the same mechanism as hallucinogenic Myristicaceae that has been used in Australasia and Indomalaya. Members of Solanaceae have also been used as hallucinogens, predominantly by Native Americans and Europeans, but act via a different mechanism—as acetylcholine antagonists. Hallucinogenic asterids are also often used as aphrodisiacs (16/30=53% vs. 4/18=22% hallucinogenic rosids).

The unrelated Papaveraceae and Lamiaceae similarly show sedative/narcotic qualities, another popular psychoactive effect among different cultural groups (Fig. 2). However, they affect different neurotransmitter systems with Papaveraceae working mainly as opioid receptor agonists. Lamiaceae work as receptor agonists of gamma-amino butyric acid (GABA), which also mediates the family’s anxiolytic effects. Psychoactive members of these families also tend to exhibit analgesic effects.

Plants with anxiolytic and antidepressant properties are relatively sparse (Fig. 1, 2), with
Europeans showing slightly increased use of these plants. Members of Apocynaceae and Rubiaceae that show an antidepressant effect facilitate this effect by increasing synaptic levels of monoamine neurotransmitters (serotonin, dopamine, noradrenaline; Fig. 1; Table 2). In contrast, plants with stimulating effects are numerous and randomly distributed throughout the phylogeny, exhibiting varying mechanisms of action (see Malvaceae and Rubiaceae, Fig. 1; Table 2).

Discussion

The phylogenetic distribution of psychoactive plants shows multiple evolutionary origins and provides evidence for the adaptive benefit of phytochemicals that are psychoactive in animals. It has been hypothesized that mammals may have sought plants with these phytochemicals that were chemically similar to endogenous neurotransmitters to augment their nutrition, as well as to facilitate survival, alleviating pain and hunger (Sullivan & Hagen, 2002). Whether this phylogenetic distribution, showing multiple independent origins of psychoactive plants, is due to co-evolutionary mutualism with animals remains to be tested. However, it is clear that certain psychoactive effects are concentrated in certain groups, which demonstrates that psychoactive phytochemicals are phylogenetically clustered. Phylogenetic clustering of certain secondary metabolites (Wink, 2003; Wink, 2010; Wink, 2013) and of medicinal traits (Saslis-Lagoudakis et al., 2012; Saslis-Lagoudakis et al., 2015; Xavier & Molina, 2016) have also been revealed in other studies.

In the phylogeny, 11 of 56 plant families have more psychoactive genera (three or more) compared to others. Accounting for these families’ total generic diversity shows that Myristicaceae, Papaveraceae, Cactaceae, Convolvulaceae, Solanaceae, Lamiaceae, and Apocynaceae have a disproportionate number of psychoactive genera. The psychoactive
diversity of the other families, Fabaceae, Malvaceae, Asteraceae, and Rubiaceae, may be an artifact of their overall higher generic diversity. Nonetheless, we see a pattern where these plant families are being used for similar psychoactive applications by different cultures, a pattern of cultural convergence (Xavier & Molina, 2016) with bias, interestingly, for plants with hallucinogenic and sedative/narcotic potential.

Pharmacology of hallucinogenic plants. The use of hallucinogens is widespread in cultures which assigned positive meaning to the experienced altered state of consciousness, such as allowing the user access to the spiritual world (Júnior et al., 2015). Hallucinogens used in divination and religious healing (i.e. entheogens) may have played a significant role in human evolution (Schultes, Hofmann & Rätsch, 2001). Native Americans prolifically used hallucinogens, but hallucinogenic use seems to be lower in temperate Asia. Increased hallucinogenic use among indigenous peoples of Brazil (South America) was also reported by Rodrigues & Carlini (2006).

In our study we find hallucinogenic plants in Myristicaceae, Fabaceae, Cactaceae, and Convolvulaceae mainly acting as serotonin receptor agonists, a case of mechanistic convergence where unrelated families exert the same psychoactive effect by affecting identical neurotransmitter systems. Mescaline is the serotonergic chemical in Cactaceae, while DMT (N,N-dimethyltryptamine) and bufotenin (Polya, 2003) have the same effect and evolved independently in hallucinogenic taxa in Fabaceae (Wink, 2013). Serotonin itself occurs in fabaceous *Mucuna pruriens* (Polya, 2003), a hallucinogen and aphrodisiac in Ayurvedic medicine (Lampariello et al., 2012). DMT also exists in *Virola* of the unrelated Myristicaceae (Polya, 2003), and the alkaloid, ele microscopic, in confamilial *Myristica fragrans* transforms into a mescaline-like molecule (Rätsch, 2005).
The unrelated Convolvulaceae exerts hallucinogenic effects possibly through its ergot alkaloids that work also as serotonin receptor agonists (Polya, 2003; Kennedy, 2014). Yet interestingly, these ergot alkaloids originate from ascomycetous symbiotic fungi (Beauliet et al., 2013). Though endophytic fungi can produce some active metabolites originally attributed to plants (Wink 2008; Wink et al., 2010; Nicoletti & Fiorentino, 2015), which may confound interpretation of the phylogeny, this was not the case, so far, for the other main psychoactive families in our study. On the other hand, hallucinogenic taxa in the closely related Solanaceae work on a different mechanism. Its tropane alkaloids such as scopolamine and atropine act as muscarinic receptor antagonists, inhibiting acetylcholine transmission (Spinella, 2001).

Interestingly, in another asterid member, *Salvia divinorum* (Lamiaceae), the diterpene, salvinorin A, possibly works as a hallucinogen through its action on specific opioid receptors (kappa) (Willmore-Fordham et al., 2007), the same receptor modulated by the alkaloid ibogaine in hallucinogenic *Tabernanthe iboga* (Apocynaceae; Spinella, 2001). Various unrelated taxa seemingly achieve their hallucinogenic effects by modulating serotonin, acetylcholine, and/or endogenous opioids.

It is interesting that in many hallucinogenic asterids, aphrodisiac effects are quite common (see Asteraceae, Solanaceae, Apocynaceae). In members of Solanaceae this effect may be due to dopamine increase from cholinergic antagonism (Spinella, 2001). Dopamine is important in sexual arousal and orgasm (Krüger, Hartmann & Schedlowski, 2005). This neurotransmitter is also modulated by ibogaine in *T. iboga* (Wells, Lopez & Tanaka, 1999), which is also traditionally used as an aphrodisiac along with other Apocynaceae members. In another asterid family, Asteraceae, it is not clear which of its phytochemical constituents produce psychoactive effects, except perhaps for wormwood (*Artemisia* spp.) wherein the
monoterpenoid, thujone, antagonizes the main inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), resulting in its stimulant, almost convulsant, effects (Höld et al., 2000). However, the great diversity of sesquiterpene lactones prevalent in the family (Chadwick et al., 2013) are likely implicated in its hallucinogenic and aphrodisiac potential (Fig. 1; Table 2). These findings motivate further research into these asterid families as new therapeutics for sexual dysfunction.

Pharmacology of plants with sedative and analgesic effects. Dr. W. E. Dixon, well-known British pharmacologist of his time, once commented that narcotic indulgences reflect the sad paradox that humans seemed to get their “chief pleasures in life by escaping out of life” (Narcotic plants, 1928: 252). There may be truth to this as narcotic/sedative effects were commonly sought for by various cultures, second to hallucinogens, with members of Papaveraceae and Lamiaceae traditionally used for this purpose. Opium poppy of Papaveraceae has long been known to ancient Greeks and Sumerians and is considered one of the most important medicinal plants in history. Its opium latex is the source of >30 alkaloids including morphine and codeine, which bind to opioid receptors, promoting sedation and analgesia (Heinrich et al., 2012). Though there are other members of Papaveraceae that have been used by Asians and Native Americans for sedation and pain relief (Rolland et al., 1991; Brahmachari, Gorai & Roy, 2013; Shang et al., 2015), the substances responsible for their effects are not well characterized as in opium poppy, but it is possible that their effects are also mediated via opioid receptors (Shang et al., 2015) and at least in *Eschscholzia californica* (California poppy) via the GABAergic system (Fedurco et al. 2015).

In asterids, sedation is produced by members of Solanaceae and Lamiaceae possibly via different pathways. Tropane alkaloids in Solanaceae (Wink, 2003), particularly scopolamine, promote sedation through depression of the central nervous system resulting from anticholinergic
activity (Renner, Oertel, & Kirch 2005). In Lamiaceae, this effect is mainly facilitated via the
GABAergic pathway (Shi et al., 2014), with leonurine (Rauwald et al., 2015) and essential oil
components (Lis-Balchin & Hart, 1999; Wink, 2003; Awad et al., 2009; Shi et al., 2014; Ferlemi
et al. 2015) as the primary chemicals that increase GABA. Coincidentally, Lamiaceae members
also possess analgesic effects, but the pharmacology is unclear (Hajhashemi, Ghannadi & Sharif,
2003; Dobetsberger & Buchbauer, 2011) and may reflect the antinociceptive properties of
activation of GABA receptors (Enna & McCarson, 2006). Salvia divinorum, however, does not
contain essential oils (Rätsch, 2005), but has been pharmacologically shown to exert analgesic
quality through activation of the same opioid receptors (kappa) implicated in its hallucinogenic
effect (Willmore-Fordham et al., 2007), a mechanism different from the other Lamiaceae species
here. Some members of the distantly related Rubiaceae, including Psychotria colorata
(Elisabetsky et al., 1995) and Mitragyna speciosa (Suhaimi et al., 2016), have also shown similar
opiate-like antinociceptive properties, confirming their traditional uses. Repeated evolution of
phytochemicals with affinity for animal opioid receptors may imply some adaptive benefit to
plants.

Pharmacology of plants with anxiolytic and antidepressant effects. The relatively sparse
distribution of anxiolytic and antidepressant plants in the phylogeny compared to hallucinogens
and sedatives, suggests that there is less cultural utility for plants with these psychoactive
properties. In the US there is a cultural aspect to the pathogenesis of anxiety and depression with
minority groups reporting lower incidence compared to whites (Hofmann, Asnaani & Hinton,
2010). The definition itself of depression is wrought with Western assumptions of individual
happiness, which is in contrast to other cultures’ view of happiness arising from social
interdependence (Chentsova-Dutton, Ryder & Tsai, 2014). This may explain why these
psychoactive uses were less prevalent compared to hallucinogenic, stimulant and sedative applications.

Sedative members of Lamiaceae often possess anxiolytic qualities (Fig. 1), and this is probably due to overlapping effects on GABA (Tallman et al., 2002). Phytol, an alcohol in essential oils (Costa et al., 2014) has been shown to increase GABA. Rosmarinic acid in rosemary (*R. officinalis*) and lemon balm (*M. officinalis*), both Lamiaceae, also works as GABA transaminase inhibitor preventing GABA catabolism (Awad et al., 2009).

In members of Apocynaceae and Rubiaceae (Gentianales) that show anxiolytic and antidepressant effects, another mechanism may be involved. *Rauvolfia serpentina* (Apocynaceae) is used in Ayurvedic medicine to treat depression (Mamedov, 2005). In Africa, the confamilial *T. iboga* is used as a stimulant to combat fatigue and hunger, but may have potential in easing depressive symptoms (Nigg and Seigler, 2013). *Pausinystalia yohimbe* (Rubiaceae) has stimulating effects on the nervous system and has been used to increase libido by men in central Africa (Rätsch, 2005). The confamilial *M. speciosa* has also been used as stimulant to counteract fatigue and increase endurance for work in Southeast Asia (Idayu et al., 2011). The main chemical constituents of these closely related families are indole alkaloids that generally increase synaptic levels of the monoamine neurotransmitters, serotonin, dopamine and noradrenaline by various mechanisms including inhibition of transport and reuptake (Wells, Lopez & and Tanaka, 1999; Zheng, Fan & Liu, 2013; Kennedy, 2014). The unrelated but popular herbal antidepressant, St. John’s wort (*Hypericum perforatum*, Hypericaceae; Spinella, 2001), as well as pharmaceutical antidepressants, produces its effects (Feighner, 1999) via the same mechanism of reuptake inhibition.
Monoamine transport inhibitors may be rife in Apocynaceae (or Gentianales). In their ethnopharmacological studies of plants from South Africa, Heinrich & Jäger (2015) also discovered two other Apocynaceae species that exhibited high affinity to the serotonin transporter. Interestingly, these plants were also being used by traditional healers to treat those who were “being put down by the spirits”. A primary side effect of many conventional antidepressants is sexual dysfunction (Higgins, Nash, & Lynch, 2010), which seems to contradict the aphrodisiac effect exhibited by *T. iboga* and *P. yohimbe*, in addition to their antidepressant effects. This suggests that members of Gentianales may be exploited as novel pharmaceuticals for depression without the known side effects of sexual dysfunction.

Pharmacology of plants with stimulating effects. Plants traditionally used as stimulants are numerous and scattered throughout the phylogeny, indicating that stimulant phytochemicals have evolved multiple times independently in different lineages and may confer some evolutionary benefit. A few display paradoxical effects as both stimulating and sedating, such as marijuana (Block et al., 1998) and *M. speciosa* (Rätsch, 2005), which may be attributed to dosage, idiosyncrasies, or antagonistic phytochemicals.

Albeit belonging to diverse families, coffee (*Coffea arabica*, Rubiaceae), yerba mate (*Ilex paraguariensis*, Aquifoliaceae), kola (*Cola* spp., Malvaceae), tea (*Camellia sinensis*, Theaceae), and guarana (*Paullinia cupana*, Sapindaceae), all contain caffeine, a xanthine alkaloid, which acts as a stimulant through antagonism of adenosine receptors, interfering with the binding of the inhibitory endogenous adenosine (Rätsch, 2005). Yohimbe (*P. yohimbe*), though confamilial with coffee, contains the indole alkaloid, yohimbine, which binds to adrenergic and serotonin receptors (Polya, 2003), and is structurally and mechanistically similar to other stimulant alkaloids found in diverse plant groups such as ergot alkaloids in Convolvulaceae, ibogaine in *T.*
iboga and Voacanga sp. (Apocynaceae), and harmaline in Peganum harmala (Nitrariaceae) (Polya, 2003).

Within the same family, particularly Solanaceae, contrasting effects and mechanisms may also be observed. Though many solanaceous members contain tropane alkaloids that work as anticholinergic hallucinogens with incapacitating effects, tobacco exerts stimulant activity through an opposite mechanism, with nicotine, a pyrrolidine alkaloid, promoting acetylcholine transmission. However, tropane alkaloids are not unique to Solanaceae. Cocaine, found in the unrelated E. coca (Erythroxylaceae), suggests that chemically similar alkaloids may evolve in divergent lineages (i.e. convergent evolution) or alternatively, certain metabolic pathways have been evolutionarily conserved throughout plant evolution and differential gene regulation is responsible for the expression of this pathway (Wink, 2003; Wink, 2008; Wink et al., 2010; Weng, 2014). These may account for the presence of ephedrine in the gymnosperm Ephedra spp. (Ephedraceae; Polya, 2003) and the unrelated angiosperms Sida acuta (Malvaceae; Prakash, Varma & Gosal, 1981) and Catha edulis (Celastraceae; Polya, 2003). Ephedrine, a phenethylamine that mimics noradrenaline, stimulates the adrenergic receptor system, and thus the sympathetic nervous system responsible for the “fight-and-flight” response (Polya, 2003; Rätsch, 2005).

It is notable that, even within the same family, the stimulant phytochemicals are chemically diverse. This phylogenetic pattern may indicate that stimulant chemicals may be more evolutionarily labile than hallucinogenic and sedative phytochemicals that seem to be more phylogenetically conserved within the family. As to why this is begs further inquiry, but hints at the evolutionary benefits of these chemically diverse plant psychoactive compounds that have
evolved multiple times among seed plants, possibly with multifarious roles other than to function solely as allelochemicals.

Conclusion

Phylogenetic analysis has demonstrated multiple evolutionary origins of traditionally used psychoactive plant groups. Whether this pattern is due to repeated co-evolutionary mutualism with animals remains to be tested. Psychoactive diversity of some highlighted families is probably due to the inherent elevated diversity in these families. However, other plant families have a disproportionate number of psychoactive genera, and their phytochemical and psychoactive traits show phylogenetic clustering, with different cultures converging on geographically-disparate members of these families for similar uses: Myristicaceae, Cactaceae, Convolvulaceae, and Solanaceae as hallucinogens; Papaveraceae, Lamiaceae for analgesia and sedation; Apocynaceae for antidepressant effects. In certain unrelated families with the same psychoactive effect, the same neurotransmitter systems were also affected, i.e., mechanistic convergence. However, this was not the case for plants with stimulant effects, where confamilial taxa possess chemically diverse stimulant alkaloids, and chemically similar stimulant alkaloids exist in diverse lineages. Endophytic fungi can also produce some active metabolites originally attributed to plants (Wink, 2008; Wink et al., 2010; Nicoletti & Fiorentino, 2015), and this should be considered when interpreting the phylogeny.

Though we may have missed other psychotropic taxa, our study still provides insight into the ethnobotanical origins of psychoactive plant use. The addition of these missing taxa may only serve to corroborate our conclusion of widespread human dependence on psychoactive plants and highlight other important psychoactive families and their pharmacology. The brain is
perhaps the most complex domain of the human body (Singer 2007), and therefore brain disorders are complex pathologies themselves (Margineanu, 2016). Ethnobotanical research on how various human cultures have exploited herbal therapy through time to treat neurological afflictions will continue to provide insight into the etiology of these diseases and the success of folkloric treatments. Yet, the astounding diversity of plant-based medicines may be better appreciated within an evolutionary context that can reveal phylogenetic patterns that may guide future drug discovery (Saslis-Lagoudakis et al., 2012; Xavier & Molina, 2016). Though chemically similar psychoactive chemicals may exist in phylogenetically unrelated lineages, suggesting convergent evolution or differential gene regulation of common metabolic pathways (Wink, 2003; Wink, 2008; Wink et al., 2010), the majority of traditionally used psychoactive plants generally display phylogenetic conservatism in phytochemistry and pharmacology, and may be explored as novel therapeutics for neurological disorders such as depression, anxiety, pain, insomnia and sexual dysfunction, reinforcing the potential of plant psychoactives as “springboards for psychotherapeutic drug discovery” (McKenna, 1996).

ACKNOWLEDGMENTS

This research was conceived as part of NA’s MSc thesis, and we are grateful to the King Abdullah scholarship program (of Saudi Arabia) and to NA’s family for various forms of support. We also thank Joseph Morin and Timothy Leslie for reviewing earlier drafts of this manuscript. We are equally grateful to the reviewers for their constructive comments.
REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology* 215:403-410. Doi:10.1016/S0022-2836(05)80360-2.

Arulmozhi, S., Mazumder, P. M., Sathiya, N. P., Thakurdesai, A. (2012). Antianxiety and antidepressant activity of leaves of *Alstonia scholaris* Linn R.Br. *Pharmacologia* 3:239-48.

Awad, R., Arnason, J. T., Trudeau, V., Bergeron, C., Budzinski, J. W., Foster, B. C., Merali, Z. (2003). Phytochemical and biological analysis of skullcap (*Scutellaria lateriflora* L.): a medicinal plant with anxiolytic properties. *Phytotherapy* 10:640-649. Doi: 10.1078/0944-7113-00374

Awad, R., Muhammad, A., Durst, T., Trudeau, V. L., Arnason, J. T. (2009). Bioassay-guided fractionation of lemon balm (*Melissa officinalis* L.) using an in vitro measure of GABA transaminase activity. *Phytotherapy Research* 23:1075-1081. Doi:10.1002/ptr.2712.

Beaulieu, W. T., Panaccione, D. G., Hazekamp, C. S., Mckee M. C., Ryan, K. L., Clay, K. (2013). Differential allocation of seed-borne ergot alkaloids during early ontogeny of morning glories (Convulvulaceae). *Journal of Chemical Ecology* 39:919-930. Doi: 10.1007/s10886-013-0314-z.
Block, R. I., Erwin, W. J., Farinpour, R., & Braverman, K. (1998). Sedative, stimulant, and other subjective effects of marijuana: relationships to smoking techniques. *Pharmacology Biochemistry and Behavior* 59:405-412. Doi: 10.1016/S0091-3057(97)00453-X.

Brahmachari, G., Gorai, D., Roy, R. (2013). *Argemone mexicana*: chemical and pharmacological aspects. *Revista Brasileira de Farmacognosia*, 23:559-567.

Cardoso, F. A. G., Uliano, V. G., Bohatch Júnior, M. S., Matkovski, P. D., Alberton, M. D., Albuquerque, C. A., Magro, D., Delwing, D., Barauna, S. C. (2015). Antidepressant-like effect of *Tabernaemontana catharinensis* hydroalcoholic extract in mice: Evidence of the involvement of 5-HT 1A receptors. *Psychology & Neuroscience*, 8:280. Doi: http://dx.doi.org/10.1037/h0101055.

Feighner, J. P. (1999). Mechanism of action of antidepressant medications. *The Journal of Clinical Psychiatry* 60(4):4-11; discussion 12-3.

Chadwick, M., Trewin, H., Gawthrop, F., Wagstaff, C. (2013). Sesquiterpenoids lactones: benefits to plants and people. *International Journal of Molecular Sciences* 14:12780-12805. Doi: doi:10.3390/ijms140612780

Chaudhary, S., Chandrashekar, K. S., Pai, K. S. R., Setty, M. M., Devkar, R. A., Reddy, N. D., Shoja, M. H. (2015). Evaluation of antioxidant and anticancer activity of extract and fractions of
Nardostachys jatamansi DC in breast carcinoma. *BMC Complementary and Alternative Medicine* 15:1. Doi:10.1186/s12906-015-0563-1.

Chentsova-Dutton, Y., Ryder, A., Tsai, J.L. (2014). Understanding depression across cultural contexts. In I. Gotlib & C. Hammen, eds. *Handbook of Depression*, 3rd edition, New York, NY: Guilford Press.

Christenhusz, M. J., Byng, J. W. (2016). The number of known plants species in the world and its annual increase. *Phytotaxa* 261:201-217. Doi: http://dx.doi.org/10.11646/phytotaxa.261.3.1

Clarke, R., Merlin, M. (2013). *Cannabis: evolution and ethnobotany*. Los Angeles, California: University of California Press.

Clegg, M. T. (1993). Chloroplast gene sequences and the study of plant evolution. *Proceedings of the National Academy of Sciences* 90:363-367.

Costa, J. P., de Oliveira, G. A. L., de Almeida, A. A. C., Islam, M. T., de Sousa, D. P., de Freitas, R. M. (2014). Anxiolytic-like effects of phytol: possible involvement of GABAergic transmission. *Brain research* 1547:34-42. Doi: 10.1016/j.brainres.2013.12.003.
Danjuma, N. M., Chindo, B. A., Abdu-Aguye, I., Anuka, J. A., Hussaini, I. M. (2014). Psychopharmacological properties of saponins from *Randia nilotica* stem bark. *Pharmaceutical Biology* 52:1-7. Doi: 10.3109/13880209.2013.784343.

Dobetsberger, C., Buchbauer, G. (2011). Actions of essential oils on the central nervous system: An updated review. *Flavour and Fragrance Journal* 26:300-316. Doi: 10.1002/ffj.2045.

Doukkali, Z., Taghzouti, K., Bouidida, E. H., Nadjmouiddine, M., Cherrah, Y., Alaoui, K. (2015). Evaluation of anxiolytic activity of methanolic extract of *Urtica urens* in a mice model. *Behavioral and Brain Functions* 11:1. Doi: 10.1186/s12993-015-0063-y.

Elisabetsky, E., Amador, T. A., Albuquerque, R. R., Nunes, D. S., Carvalho, A. (1995). Analgesic activity of *Psychotria colorata* (Willd. ex R. & S.) Muell. Arg. alkaloids. *Journal of Ethnopharmacology* 48:77-83. Doi: 10.1016/0378-8741(95)01287-N.

Enna, S. J., McCarson, K. E. (2006). The role of GABA in the mediation and perception of pain. *Advances in Pharmacology* 54:1-27. Doi: 10.1016/S1054-3589(06)54001-3.

Fan, J., Wang, Y., Wang, X., Wang, P., Tang, W., Yuan, W., Kong, L., Liu, Q. (2015). The antitumor activity of *Meconopsis horridula* Hook, a traditional Tibetan Medical Plant, in murine leukemia L1210 cells. *Cellular Physiology and Biochemistry* 37:1055-1065. Doi: 10.1159/000430231.
Farouk, L., Laroubi, A., Aboufatima, R., Benharref, A., Chait, A. (2008). Evaluation of the analgesic effect of alkaloid extract of *Peganum harmala* L.: Possible mechanisms involved. *Journal of Ethnopharmacology* 115:449-454. Doi: 10.1016/j.jep.2007.10.014.

Fedurco, M., Gregorová, J., Šebrlová, K., Kantorová, J., Peš, O., Baur, R., Sigel, E., Táborská, E. (2015). Modulatory effects of *Eschscholzia californica* alkaloids on recombinant GABAA receptors. *Biochemistry Research International* 2015:9. Doi:http://dx.doi.org/10.1155/2015/617620.

Ferlemi, A. V., Katsikoudi, A., Kontogianni, V. G., Kellici, T. F., Iatrou, G., Lamari, F. N., Tzakos, A. G., Margarity, M. (2015). Rosemary tea consumption results to anxiolytic-and anti-depressant-like behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies. *Chemico-biological Interactions* 237:47-57. Doi: 10.1016/j.cbi.2015.04.013.

Foster, S., Duke, J. A. (2000). *A Field Guide to Medicinal Plants and Herbs of Eastern and Central North America*. Boston: Houghton Mifflin Harcourt.

Fürstenberg-Hägg, J., Zagrobelny, M., Bak, S. (2013). Plant defense against insect herbivores. *International Journal of Molecular Sciences* 14:10242-10297. Doi: 10.3390/ijms140510242.
Galani, V. J., Patel, B. G., Patel, N. B. (2010). Argyreia speciosa (Linn. f.) sweet: A comprehensive review. *Pharmacognosy Reviews* 4:172. Doi: 10.4103/0973-7847.70913.

Gericke, N., Viljoen A. M. (2008). Sceletium--a review update. *Journal of Ethnopharmacology* 119:653-63. Doi: 10.1016/j.jep.2008.07.043.

Grundmann, O., Nakajima, J., Seob, S., Butterwecka, V. (2007). Anti-anxiety effects of *Apocynum venetum* L. in the elevated plus maze test. *Journal of Ethnopharmacology* 110:406-411. Doi:0.1016/j.jep.2006.09.035.

Guindon, S., Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic Biology* 52:696-704.

Hajhashemi, V., Ghannadi, A., Sharif, B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of *Lavandula angustifolia* Mill. *Journal of Ethnopharmacology* 89:67-71. Doi: 10.1016/S0378-8741(03)00234-4.

Halpern, J. (2004). Hallucinogens and dissociative agents naturally growing in the United States. *Pharmacology & Therapeutics* 102:131-138. Doi: 10.1016/j.pharmthera.2004.03.003.

Heinrich, M., Barnes, J., Gibbons, S., Williamson, E. M. (2012). *Fundamentals of Pharmacognosy and Phytotherapy*. Elsevier Churchill Livingstone.

Heinrich, M., Jäger, A. K. (Eds.). (2015). *Ethnopharmacology*. UK: John Wiley & Sons.
Higgins, A., Nash, M., Lynch, A. M. (2010). Antidepressant-associated sexual dysfunction: impact, effects, and treatment. *Drug, Healthcare and Patient Safety* 2: 141–150. Doi: 10.2147/DHPS.S7634.

Hofmann, S. G., Asnaani, A., Hinton, D. E. (2010). Cultural aspects in social anxiety and social anxiety disorder. *Depression and Anxiety* 27:1117-1127. Doi: 10.1002/da.20759.

Höld, K. M., Sirisoma, N.S., Ikeda, T., Narahashi, T., Casida, J. E. (2000). Alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. *Proceedings of the National Academy of Sciences* 97:3826-3831.

Hosseinzadeh, H., Noraei, N. B. (2009). Anxiolytic and hypnotic effect of *Crocus sativus* aqueous extract and its constituents, crocin and safranal, in mice. *Phytotherapy Research* 23:768-774. Doi: 10.1002/ptr.2597.

Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. *Annual Review of Plant Biology* 59:41-66. Doi: 10.1146/annurev.arplant.59.032607.092825.

Idayu, N. F., Hidayat, M. T., Moklas, M. A., Sharida, F., Raudzah, A. R., Shamima, A. R., Apryani, E. (2011). Antidepressant-like effect of mitragynine isolated from *Mitragyna speciosa* Korth in mice model of depression. *Phytomedicine* 18:402-407. Doi: 10.1016/j.phymed.2010.08.011.
Johnson, S. W., North, R. A. (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. *The Journal of Neuroscience* 12:483-488.

Júnior, W. S. F., Cruz, M. P., Vieira, F. J., Albuquerque, U. P. (2015). An Evolutionary Perspective on the Use of Hallucinogens. In: *Evolutionary Ethnobiology* (Albuquerque, U. P., De Medeiros, P. M., Casas, A., eds.). Switzerland: Springer International Publishing.

Katoh, K., Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30:772-780.

Kennedy, D. O. (2014). *Plants and the Human Brain*. New York: Oxford University Press.

Knab, T. (1977). Notes concerning use of *Solandra* among the Huichol. *Economic Botany* 31:80-86.

Krüger, T. H., Hartmann, U., Schedlowski, M. (2005). Prolactinergic and dopaminergic mechanisms underlying sexual arousal and orgasm in humans. *World Journal of Urology* 23:130-138. Doi:10.1007/s00345-004-0496-7

Lampariello, L. R., Cortelazzo, A., Guerranti, R., Sticozzi, C., Valacchi, G. (2012). The magic velvet bean of *Mucuna pruriens*. *Journal of Traditional and Complementary Medicine* 2:331-339.
Letunic, I., Bork, P., (2006). Interactive Tree of Life. (iTOL): an online tool for phylogenetic tree display annotation. *Bioinformatics* 23:127-128.

Lis-Balchin, M., Hart, S. (1999). Studies on the mode of action of the essential oil of Lavender *Lavandula angustifolia P. Miller). Phytotherapy Research* 13:540-542. Doi: 10.1002/(SICI)1099-1573(199909)13:6<540::AID-PTR523>3.0.CO;2-I

Lüscher, C., Ungless, M. A. (2006). The mechanistic classification of addictive drugs. *PLoS Medicine* 3:437. Doi: 10.1371/journal.pmed.0030437.

Mahler, S. V., Smith, K. S., Berridge, K. C. (2007). Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. *Neuropsychopharmacology* 32:2267-2278. Doi: 10.1038/sj.npp.1301376

Mamedov, N. (2005). Adaptogenic, geriatric, stimulant and antidepressant plants of Russian Far East. *Journal of Cell and Molecular Biology* 4:71-75.

Margineanu, D. G. (2016). Neuropharmacology beyond reductionism - A likely prospect. *Biosystems* 141:1-9. Doi: 10.1016/j.biosystems.2015.11.010.

McClatchey, W. C., Mahady, G. B., Bennett, B. C., Shiels, L., Savo, V. (2009). Ethnobotany as a pharmacological research tool and recent developments in CNS-active natural products from
ethnobotanical sources. *Pharmacology & Therapeutics* 123:239-254. Doi: 10.1016/j.pharmthera.2009.04.002.

McKenna, D. (1996). Plant hallucinogens: Springboards for psychotherapeutic drug discovery. *Behavioural Brain Research* 73:109-116. Doi:10.1016/0166-4328(96)00079-4.

Meira, M., Silva, E. P. D., David, J. M., & David, J. P. (2012). Review of the genus *Ipomoea*: traditional uses, chemistry and biological activities. *Revista Brasileira de Farmacognosia* 22:682-713.

Merlin, M. D. (2003). Archaeological evidence for the tradition of psychoactive plant use in the old world. *Economic Botany* 57:295-323.

Narcotic Plants. (1928). Canadian Medical Association Journal, 19(2), 251–252.

Nicoletti, R., Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. *Agriculture* 5:918-970. Doi:10.3390/agriculture5040918.

Nigg, H. N., Seigler, D. (Eds.). (1992). *Phytochemical Resources for Medicine and Agriculture*. New York: Springer Science & Business Media.
O’Mahony, C. S. (2010). *Psychoactive substances: a guide to ethnombotanical plants and herbs, synthetic chemicals, compounds and products*. Available from: http://www.thehealthwell.info/node/69579 (Accessed: 12th June 2016).

Piato, A., Rizon, L., Martins, B., Nunes, D., Elisabetsky, E. (2008). Antidepressant profile of *Ptychopetalum olacoides* Bentham (Marapuama) in mice. *Phytotherapy Research* 23:519-524. Doi: 10.1002/ptr.2664

Polya, G. (2003). *Biochemical Targets of Plant Bioactive Compounds: A Pharmacological Reference Guide to Sites of Action and Biological Effects*. Boca Raton, Florida: CRC Press.

Prakash, A., Varma, R. K., & Ghosal, S. (1981). Alkaloid constituents of *Sida acuta, S. humilis, S. rhombifolia* and *S. spinosa*. *Planta Medica* 43:384-388.

Pratchayasakul, W., Pongchaidecha, A., Chattipakorn, N., Chattipakorn, S. (2008). Ethnobotany & ethnopharmacology of *Tabernaemontana divaricata*. *Indian Journal of Medical Research* 127:317.

Rätsch, C. (2005). *The Encyclopedia of Psychoactive Plants: Ethnopharmacology and its Applications*. Rochester: Rochester, Vermont: Park Street Press.

Rauwald, H. W., Savtschenko, A., Merten, A., Rusch, C., Appel, K., Kuchta, K. (2015). GABAA receptor binding assays of standardized *Leonurus cardiaca* and *Leonurus japonicus*
extracts as well as their isolated constituents. *Planta Medica* 81:1103-1110. Doi: 10.1055/s-0035-1546234.

Renner, U. D., Oertel, R., Kirch, W. (2005). Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. *Therapeutic Drug Monitoring* 27:655-665.

Rodrigues, E., Carlini, E. A. (2006). A comparison of plants utilized in ritual healing by two Brazilian cultures: Quilombolas and Kraho Indians. *Journal of Psychoactive Drugs* 38:285-295. Doi: 10.1080/02791072.2006.10399854.

Rolland, A., Fleurentin, J., Lanhers, M. C., Younos, C., Misslin, R., Mortier, F., Pelt, J. M. (1991). Behavioural effects of the American traditional plant *Eschscholzia californica*: sedative and anxiolytic properties. *Planta Medica* 57:212-216. Doi: 10.1055/s-2006-960076.

Saslis-Lagoudakis, C. H., Savolainen, V., Williamson, E. M., Forest, F., Wagstaff, S. J., Baral, S. R., Watson, M. F., Pendry, C. A., Hawkins, J. A. (2012). Phylogenies reveal predictive power of traditional medicine in bioprospecting. *Proceedings of the National Academy of Sciences* 109:15835-15840. Doi:10.1073/pnas.1202242109.

Saslis-Lagoudakis, C. H., Rønsted, N., Clarke, A. C., Hawkins, J. A. (2015). Evolutionary Approaches to Ethnobiology. In: *Evolutionary Ethnobiology* (Albuquerque, U. P., De Medeiros, P. M., Casas, A., eds.). Switzerland: Springer International Publishing.
Sayin, H. U. (2014). The consumption of psychoactive plants during religious rituals: the root of common symbols and figures in religions and myths. *NeuroQuantology* 12:726-296.

Schultes, R. E. (1976). *Hallucinogenic plants*. New York: Golden Press.

Schultes, R. E., Hofmann, A., Rätsch, C. (2001). *Plants of the Gods - Their Sacred, Healing, and Hallucinogenic Powers* (2ed.). Rochester, Vermont: Healing Arts Press.

Shang, X., Wang, D., Miao, X., Wang, Y., Zhang, J., Wang, X., Zhang, Y., Pan, H. (2015). Antinociceptive and anti-tussive activities of the ethanol extract of the flowers of *Meconopsis punicea* Maxim. *BMC Complementary and Alternative Medicine* 15:154. Doi: 10.1186/s12906-015-0671-y.

Shi, Y., Dong, J. W., Zhao, J. H., Tang, L. N., Zhang, J. J. (2014). Herbal insomnia medications that target GABAergic systems: a review of the psychopharmacological evidence. *Current Neuropharmacology* 12:289-302.

Shinomol, G.K., Muralidhara., Bharath, M.M. (2011). Exploring the role of “Brahmi” (*Bocopa monnieri* and *Centella asiatica*) in brain function and therapy. *Recent Patents on Endocrine, Metabolic & Immune Drug Discovery* 5:33-49.
Simmons, M. P., Norton, A. P. (2014). Divergent maximum-likelihood-branch-support values for polytomies. *Molecular Phylogenetics & Evolution* 73:87-96. Doi: 10.1016/j.ympev.2014.01.018.

Singer, W. (2007). Understanding the brain. *EMBO Reports* 8: S16–S19.

Spinella, M. (2001). *The psychopharmacology of herbal medicine: plant drugs that alter mind, brain, and behavior*. London: MIT Press.

Suhaimi, F. W., Yusoff, N. H., Hassan, R., Mansor, S. M., Navaratnam, V., Müller, C. P., Hassan, Z. (2016). Neurobiology of Kratom and its main alkaloid mitragynine. *Brain Research Bulletin*. Doi: 10.1016/j.brainresbull.2016.03.015.

Sullivan, R. J., Hagen, E. H. (2002). Psychotropic substance-seeking: evolutionary pathology or adaptation? *Addiction*, 97:389-400. Doi: 10.1046/j.1360-0443.2002.00024.x.

Tallman, J. F., Cassella, J., Kehne, J., Corpora, N. (2002). Mechanism of action of anxiolytics. In: Davis, K. L., Charney, D., Coyle, J. T. Nemeroft, C., (eds.) *Neuropsychopharmacology*. Philadelphia, Pennsylvania: Lippincott, Williams, & Wilkins.

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura, R.M. (ed.). *Some Mathematical Questions in Biology—DNA Sequence Analysis*. Providence, Rhode Island: American Mathematical Society.
The Angiosperm Phylogeny Group. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181:1-20.

The Plant List (2013). Version 1.1. Available at http://www.theplantlist.org/ (accessed 16 June 2016)

Van Wyk, B.-E., Wink, M. (2014). Phytomedicines, Herbal drugs and Poisons. The University of Chicago Press, Chicago and London Kew Publishing Royal Botanic Gardens, Kew.

Vetulani, J. (2001). Drug addiction: Part I. Psychoactive substances in the past and presence. *Polish Journal of Pharmacology*, 53:201-214.

Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A. G., Heiss, E. H., Wawrosch, C., Reznicek, G., Dirsch, V.M., Saukel, J, Kopp, B. (2013). Ethnopharmacological in vitro studies on Austria's folk medicine—an unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. *Journal of Ethnopharmacology* 149:750-771. Doi: 10.1016/j.jep.2013.06.007.
Wang, T., Zhang, X., Xie, W. (2012). *Cistanche deserticola* YC Ma, Desert ginseng: a review. *The American journal of Chinese medicine* 40:1123-1141. Doi: http://dx.doi.org/10.1142/S0192415X12500838.

Wells, G. B., Lopez, M. C., Tanaka, J. C. (1999). The effects of ibogaine on dopamine and serotonin transport in rat brain synaptosomes. *Brain research bulletin* 48:641-647. Doi: 10.1016/S0361-9230(99)00053-2.

Weng, J.K. (2014). The evolutionary paths towards complexity: a metabolic perspective. *New Phytologist* 201:1141-1149.

Willmore-Fordham, C. B., Krall, D. M., McCurdy, C. R., Kinder, D. H. (2007). The hallucinogen derived from *Salvia divinorum*, salvinorin A, has κ-opioid agonist discriminative stimulus effects in rats. *Neuropharmacology* 53:481-486. Doi: 10.1016/j.neuropharm.2007.06.008.

Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. *Phytochemistry* 64:3-19. Doi: 10.1016/S0031-9422(03)00300-5.

Wink, M. (2008). Plant secondary metabolism: diversity, function and its evolution. *Natural Product Communications* 3:1205-1216.
Wink, M., Botschen, F., Gosmann, C., Schäfer, H., Waterman, P.G. (2010). Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In M. Wink, ed. *Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism*, 2nd edition Wiley-Blackwell, Oxford, UK. Doi: 10.1002/9781444320503.ch7

Wink, M. (2013) Evolution of secondary metabolites in legumes (Fabaceae). *South African Journal of Botany* 89:164-175.

Wink, M. (2016) Evolution of secondary plant metabolism. In: eLS. John Wiley & Sons, Ltd: Chichester. DOI: 10.1002/9780470015902.a0001922.pub3.

Xavier, C., Molina, J. (2016). Phylogeny of medicinal plants depicts cultural convergence among immigrant groups in New York City. *Journal of Herbal Medicine* 6:1-11. Doi: 10.1016/j.hermed.2015.12.002.

Zheng, M., Fan, Y., Liu, C. (2013). Antidepressant-like effect of flavonoids extracted from *Apocynum venetum* leaves on brain monoamine levels and dopaminergic system. *Journal of Ethnopharmacology* 147:108-13. Doi: 10.1016/j.jep.2013.02.015.
Figure 1. The phylogeny (cladogram) of traditionally used psychoactive plant taxa. The phylogeny conforms to expected groupings (APG IV, 2016). The 11 main plant families are highlighted (top to bottom): Myristicaceae, Papaveraceae, Malvaceae, Fabaceae, Cactaceae, Asteraceae, Convolvulaceae, Solanaceae, Lamiaceae, Rubiaceae, Apocynaceae. Grey circles next to their family names are proportional to total generic diversity within the family with lowest count for Myristicaceae (21 genera), and highest with 1623 genera for Asteraceae (Christenhusz and Byng 2016). Branches are coded according to the different cultures (Native American: red solid line; Middle Eastern and African: orange dashed line; European: blue solid line; Indomalayan: green dotted line; Temperate Asia: pink solid line, Australasia: yellow solid line; Multi-cultural: grey solid line). Branches in bold represent bootstrap node support >50% and SH-like branch support >0.9. Psychoactive uses were overlain next to taxon names in columns (Ha=hallucinogen, Sm=stimulant, Ax=anxiolytic, Ad=antidepressant, Sd=sedative, Ag=analgesic, Ap=aphrodisiac along with the primary neurotransmitters affected by the phytochemical/s exerting the dominant psychoactive effect (delineated with boxes; cf. Table 2). Shaded plant families with phytochemicals that activate certain neurotransmitter systems (e.g. receptor agonists) show the neurotransmitter/s involved with green (bright) background; phytochemicals with inhibitory effects to the NT have red (dark) background. In Asteraceae, neuropharmacology is unclear (????).
Figure 2. Cultural distribution of psychoactive applications. Psychoactive plants were categorized according to cultural affiliation and psychoactive uses. Each row shows the distribution of psychoactive uses for plants within a cultural group. Of the 126 psychoactive plant genera, more than half of the plants are used as hallucinogens mostly by Native Americans. Plants with sedative/narcotic qualities are also commonly sought after. Plants with anxiolytic and antidepressant effects are the least popular among different cultures.
Table 1. Psychoactive plant taxa in this study. Culturally diverse psychoactive plant taxa, their uses, indigenous psychoactive cultural origin, and corresponding Genbank numbers.

Family (Order)	Accepted binomial name	Common Name	Indigenous psychoactive culture	Mechanism of Action	Genbank Numbers
Acanthaceae (Lamiales)	Justicia pectoralis Jacq.	justicia	Native American (Rätsch, 2005)	Hallucinogen, antidepressant, sedative, aphrodisiac (Rätsch, 2005)	AJ879453
Acoraceae (Acorales)	Acorus calamus L.	sweet flag	Indomalayan, Temperate Asian (Rätsch, 2005)	Stimulant, antidepressant, sedative	AJ879453
Aizoaceae (Caryophyllales)	Sceletium spp.	kougoed	African and Middle Eastern (Gericke & Viljoen, 2008)	Sedative, analgesic (Gericke & Viljoen, 2008)	HM850175
Family	Species	Common Name	Geographic Distribution	Medicinal Uses	Accession Number
-----------------	----------------------	--------------	-------------------------	---	------------------
Apiaceae	Angelica sinensis	dong quai	Temperate Asian	Stimulant, sedative (O’Mahony, 2010)	GQ436632
	(Oliv.) Diels		(Rätsch, 2005)		
Apiaceae	Centella asiatica	gotu kola	Indomalayan, Temperate Asian	Antianxiety, antidepressant (Mamedov, 2005)	GQ436635
	(L) Urb.		(Rätsch, 2005)		
Apocynaceae	Alstonia scholaris	dita	African and Middle Eastern, Indomalayan, Australasian,	Stimulant, antianxiety, antidepressant, sedative, analgesic, aphrodisiac (Rätsch, 2005; Arulmozhi et al., 2012)	EU916739
	(L.) R. Br.		(Rätsch, 2005; Arulmozhi et al., 2012)		
Apocynaceae	Apocynum venetum L	luobuma	Temperate Asian	Antianxiety, antidepressant (Grundmann et al. 2007; Grundmann et al. 2007; Zheng, Fan & Liu, 2013)	KP088474
			(Grundmann et al. 2007)		
Apocynaceae	Carissa edulis	Arabian	African and Arabian	Hallucinogen, aphrodisiac (Rätsch, 2005)	JF265327
Apocynaceae *Rauvolfia* snakeroot Indomalayan Antianxiety, antidepressant, KJ667614
(Gentianales) *serpentina* (L.) Benth. ex Kurz (Mamedov, 2005) sedative, analgesic (Spinella 2001; Mamedov, 2005; Rätsch, 2005)

Apocynaceae *Tabernaemontana* milkweed Indomalayan, Hallucinogen, stimulant, EU916740
(Gentianales) spp. African, Native antidepressant, sedative, analgesic
African American (Rätsch, 2005; Pratchayasakul et al., 2008; Cardoso et al. 2015)

Apocynaceae *Tabernanthe iboga* iboga African and Hallucinogen, stimulant, AJ419763
(Gentianales) Baill. Middle Eastern antianxiety, antidepressant,
African and Middle Eastern analgesic, aphrodisiac (Nigg and Seigler, 2013; Sayin, 2014)
Family	Genus	Common Name	Origin	Use(s)	Accession Number	
Apocynaceae	Voacanga spp.	Voacango bush	African and Middle Eastern	Hallucinogen, stimulant, aphrodisiac	KC628529	
(Gentianales)			(Rätsch, 2005)			
Aquifoliaceae	Ilex spp.	Yerba mate	Native American	Stimulant (Rätsch, 2005)	FJ394625	
(Aquifoliales)			(Rätsch, 2005)			
Araliaceae	Panax ginseng	Ginseng	Temperate Asian	Stimulant, antidepressant, aphrodisiac	KM088019	
(Apiales)	C.A.Mey.		(Rätsch, 2005)	aphrodisiac (Rätsch, 2005)		
Arecaceae	Areca catechu L.	Betel nut	Indomalayan	Stimulant, sedative, aphrodisiac	JX571781	
(Arecales)			(Rätsch, 2005)			
Asteraceae	Artemisia spp.	Wormwood	European; Temperate Asian	Hallucinogen, stimulant, analgesic	KM360653	
(Asterales)			(Rätsch, 2005; Sayin, 2014)	aphrodisiac (Rätsch, 2005; Sayin, 2014)		
Asteraceae	Calea ternifolia	Dream herb	Native American	Hallucinogen, sedative (Rätsch, 2005)	AY215089	
(Asterales)	Oliv		(Rätsch, 2005)			
Family	Species	Common Name	Region	Uses	Accession Number	
---------------	------------------	-------------------	---------------------	--	------------------	
Asteraceae	Lactuca virosa	wild lettuce	African and Middle Eastern	Sedative, aphrodisiac (Rätsch, 2005)	KM360888	
(Asterales)	Habl.			(Rätsch, 2005)		
Asteraceae	Tagetes spp.	Mexican marigold	Native American	Hallucinogen, stimulant, antianxiety, antidepressant, aphrodisiac	AY215184	
(Asterales)				(Rätsch, 2005)		
Bignoniaceae	Bignonia nocturna	koribo	Native American	Sedative, analgesic and aphrodisiac	KR534325	
(Lamiales)	(Barb.Rodr.)			(Rätsch, 2005).		
	L.G.Lohmann			(Rätsch, 2005).		
	[=Tanaecium					
	nocturnum	koribo				
	(Barb.Rodr.)					
Burseraceae	Boswellia sacra	olibanum tree	African and Middle Eastern	Hallucinogen (Rätsch, 2005)	KT934315	
(Sapindales)	Flueck.			(Rätsch, 2005).		
Family	Genus	Species	Common Name	Origin	Use	Accession Number
-----------------	-----------------	---------------	-------------	----------------	--	------------------
Cactaceae	Ariocarpus	fissuratus	chautle	Native American	Hallucinogen, analgesic	KC777009
(Caryophyllales)		(Engelm.) K.Schum.			(Rätsch, 2005) 2005; Voogelbreinder 2009	
Cactaceae	Echinopsis spp.	San Pedro	Native American	Hallucinogen, stimulant	(Rätsch, 2005) 2005	FR853367
(Caryophyllales)	(incl. Trichocereus pachanoi Britton & Rose)	cactus	(Rätsch, 2005)			
Cactaceae	Lophophora	williamsii (Lem. Ex Salm-Dyck) J.M. Coult.	peyote	Native American	Hallucinogen (Vetulani, 2001)	KC777011
(Caryophyllales)					(Vetulani, 2001)	
Cactaceae	Mammillaria spp.	false peyote	Native America	Hallucinogen	(Rätsch, 2005)	KC777008
(Caryophyllales)					(Rätsch, 2005)	
Family	Genus	Species	Origin/Region	Use(s)	Accession	
-----------------	------------------	---------------	------------------------------------	--	-----------	
Cactaceae	*Pachycereus*	*pecten-aboriginum*	Native American (Engelm. ex S. Watson) Britton & Rose	Hallucinogen (Schultes, 1976)	JN191499	
(Caryophyllales)			(Schultes, 1976)			
Campanulaceae	*Lobelia*	*tupa*	Native American (Schultes, 1976)	Hallucinogen, sedative (Schultes, 1976; Rätsch, 2005)	EF174606	
(Asterales)			(Schultes, 1976)			
Cannabaceae	*Cannabis*	*marijuana*	Indomalayan, Temperate Asian (Rätsch, 2005)	Hallucinogen, stimulant, antianxiety, antidepressant, sedative, analgesic, aphrodisiac	AF500344	
(Rosales)			(Rätsch, 2005)			
Cannabaceae	*Humulus*	*hops*	European (Rätsch, 2005)	Antianxiety, sedative (Heinrich et al. 2012; McCall et al., 2013)	KT266264	
(Rosales)	*Lupulus*		(Rätsch, 2005)			
Caprifoliaceae	*Nardostachys*	*jatamansi*	Indomalaya (Chaudhary et al. 2015)	Antidepressant, sedative	AF446950	
(Dipsacales)			(Chaudhary et al. 2015)			
Family	Species	Common Name	Origin	Use	Accession Number	
-------------------	--------------------------	-------------	-----------------	-----------------------------------	------------------	
Caprifoliaceae	Valeriana officinalis L.	valerian	European	Antianxiety and sedative (Heinrich et al., 2012)	AY362490	
			(Heinrich et al., 2012)			
Celastraceae	Catha edulis	khat	African and Middle Eastern (Rätsch, 2005)	Stimulant, antidepressant, aphrodisiac (Rätsch, 2005)	JQ412336	
	(Vahl) Endl.		(Rätsch, 2005)			
Columelliaceae	Desfontainia spinosa	taique	Native American (Rätsch, 2005)	Hallucinogen	Z29670	
(Bruniales)	Ruiz & Pav.		(Rätsch, 2005)			
Combretaceae	Terminalia bellirica	bellerian	Indomalaya	Hallucinogen, sedative (Rätsch, 2005)	KT279740	
(Myrtales)	(Gaertn.) myrobalan	myrobalan	(Rätsch, 2005).	2005.		
	Roxb.					
Convolvulaceae	Argyreia nervosa	Hawaiian	Native American	Hallucinogen, analgesic,	KF242477	
(Solanales)	(Burm. F.) Bojer	baby	(Rätsch, 2005)	aphrodisiac (Rätsch, 2005; Galani, Patel & Patel 2010)		
	(=Argyreia speciosa (L. f.)					
Family	Genus	Type	Origin	Uses	Accession	
-------------------	------------------	------------	-------------------------	-----------------------------	-----------	
Convolvulaceae	*Convolvulus*	dwarf	European	Sedative, analgesic	L11683	
(Solanales)	*tricolor* L.	morning glory	(Rätsch, 2005)			
Convolvulaceae	*Ipomoea* spp.	morning glory	Native American	Hallucinogen, stimulant,	KF242478	
(Solanales)				aphrodisiac (Rätsch, 2005;		
				Meira et al. 2012)		
Convolvulaceae	*Turbina*	ololiuqui vine	Native American	Hallucinogen, analgesic	AY100966	
(Solanales)	*corymbosa* (L.)					
Cupressaceae	*Juniperus* recurva	Himalayan	Indomalayan,	Hallucinogen (Rätsch, 2005)	JQ512552	
(Pinales)	Buch.-Ham. ex D. Don	weeping	Temperate Asian			
Ephedraceae	*Ephedra* spp.	ephedra	Temperate Asian	Stimulant (Rätsch, 2005)	AY056562	
(Ephedrales)						
Family	Genus	Common Name	Origin	Uses	Accession	
--------------	----------------------	-------------------	-------------------------	---	-----------	
Ericaceae	*Ledum palustre* L.	wild rosemary	Temperate Asian	Hallucinogen, sedative, analgesic	AF419831	
(Ericales)				(Rätsch, 2005)		
Ericaceae	*Rhododendron* molle G.Don.	yang zhi zhu	Temperate Asian	Antidepressant (Mamedov, 2005)	AF421101	
(Ericales)				(Mamedov, 2005)		
Erythroxylaceae	*Erythroxyllum* spp.	Coca	Native American	Stimulant, antianxiety, analgesic and aphrodisiac (Rätsch, 2005)	AB925614	
(Malpighiales)						
Fabaceae	*Acacia* spp.	wattle	African/Middle Eastern	Hallucinogen, aphrodisiac (Rätsch, 2005)	HM849736	
(Fabales)			Australasian, Indomalayan, Native American,			
				(Rätsch, 2005)		
Fabaceae	*Anadenanthera* spp.	vilca, yopo	Native American	Hallucinogen and analgesic	KJ082119	
(Fabales)				(Rätsch, 2005)		
				(Schultes, 1976)		
Fabaceae	*Astragalus* spp.	milk vetch	Native America	Hallucinogen (Rätsch, 2005)	KU666554	
Family	Genus	Common Name	Indigenous Region	Use	Accession Number	
-----------------	------------------	-------------	-------------------	--	------------------	
Fabaceae	Calliandra	cabellito	Native American	Hallucinogen and analgesic	AM234255	
(Fabales)	anomal (Kunth)		(Rätsch, 2005)	(Rätsch, 2005)		
	J.F. Macbr.					
Fabaceae	Desmanthus	prairie bundle	Native American	Hallucinogen (Halpern, 2004)	KP126868	
(Fabales)	illinoensis	flower	(Halpern, 2004)			
	(Michx.) MacMill.					
Fabaceae	Erythrina spp.	coral trees	Native American,	Hallucinogen and sedative (Rätsch, 2005)	AB045801	
(Fabales)			Indomalaya			
			(Rätsch, 2005).			
Fabaceae	Lonchocarpus	balche' tree	Native American	Hallucinogen (Rätsch, 2005)	JQ626245	
(Fabales)	violaceus Benth.		(Rätsch, 2005)			
Fabaceae	Mimosa spp.	mimoa	Native American,	Hallucinogenic, sedative,	KJ773686	
(Fabales)			Indomalayan	aphrodisiac (Rätsch, 2005)		
			(Rätsch, 2005)			
Family	Genus	Common Name	Origin	Use	Accession Number	
-------------------	------------------	-------------------	-------------------	----------------------	------------------	
Fabaceae	Mucuna pruriens	velvet bean	Indomalayan	Hallucinogen, aphrodisiac	EU128734	
(Fabales)	(L.) DC.		(Lampariello,	(O’Mahony, 2010; (Lampariello, Cortelazzo & Cortelazzo & Guerranti, 2012)		
			Guerranti, 2012)			
Fabaceae	Rhynchosia	bird's eyes	Native American	Sedative (Rätsch, 2005)	KJ594450	
(Fabales)	pyramidalis		(Rätsch, 2005)			
(Lam.) Urb.						
Fabaceae	Sophora	mescal bean	Native American	Hallucinogen (Schultes, 1976)	Z70141	
(Fabales)	secundiflora		(Schultes, 1976)			
(Ortega) DC.						
Hypericaceae	Hypericum	St. John’s	European	Antianxiety, antidepressant	AF206779	
(Malpighiales)	perforatum L.	wort	(Spinella 2001)	(Spinella 2001; Heinrich et al., 2012)		
Iridaceae	Crocus sativus L.	saffron	European	Antianxiety, sedative, aphrodisiac	KF886671	
(Asparagales)			(Rätsch, 2005)	(Rätsch, 2005; Hosseinzadeh, Noraei 2009)		
Family	Genus	Species	Region	Uses	Accession	
--------------	------------------------	--------------------------------	-------------------	--	-----------	
Lamiaceae	Lavandula	angustifolia Mill. (=Lavandula officinalis Chaix)	European	Antianxiety, sedative, analgesic (Lis-Balchin & Hart, 1999; Hajhashemi, Ghannadi & Sharif, 2003)	KT948988	
Lamiaceae	Leonotis leonurus	(L.) R. Br.	African and Middle Eastern	Hallucinogen, sedative, analgesic (Rätsch, 2005)	AM234998	
Lamiaceae	Leonurus cardiaca	L.	European	Antianxiety, antidepressant, sedative (Rauwald et al., 2015)	KM360848	
Lamiaceae	Melissa officinalis	L.	European	Antianxiety, sedative (Heinrich et al. 2012)	KM360879	
Lamiaceae	Plectranthus	coleus (L.)	Indomalayan	Hallucinogen, analgesic (Rätsch, 2005)	JQ933273	
Lamiaceae	Plectranthus	scutellarioides (L.) R.Br. (=Coleus blumei Benth.)				
Family	Genus	Species	Origin	Uses	Accession Numbers	
--------------	------------------------	---------	-------------------------------	--	-------------------	
Lamiaceae	*Rosmarinus*	officinalis L.	European	Antianxiety, antidepressant	KR232566	
(Lamiales)				analgesic		
Lamiaceae	*Salvia divinorum*	yerba de la	Native American	Hallucinogen, analgesic	AY570410	
(Lamiales)						
Lamiaceae	*Scutellaria*	skullcap	Native American	Antianxiety, sedative	HQ590266	
(Lamiales)						
Lauraceae	*Cinnamomum*	camphor	Indomalayan, Temperate Asian	Stimulant, sedative	L12641	
(Laurales)						
Lauraceae	*Sassafras albidum*	sassafras	Native American	Stimulant	AF206819	
(Laurales)						
Loganiaceae	*Strychnos nux-vomica*	strychnine	Indomalaya	Stimulant, antianxiety	L14410	
(Gentianales)						

Note: The Accession Numbers correspond to the respective research papers or databases.
Family	Genus	Common Name	Origin	Use	Accession Number
Lythraceae	*Heimia salicifolia*	sinicuiche	Native American	Hallucinogen, sedative (Rätsch, 2005)	AY905410
(Myrtales)			(Rätsch, 2005)		
Malpighiaceae	*Banisteriopsis* spp.	ayahuasca	Native American	Hallucinogen (Sayin, 2014)	HQ247440
(Malpighiales)			(Sayin, 2014)		
Malpighiaceae	*Diplopterys* cabrerana	chaliponga	Native American	Hallucinogen (O’Mahony, 2010)	HQ247482
(Malpighiales)			(Sayin, 2014)		
Malvaceae	*Cola* spp.	kola nut	Africa and Middle Eastern	Stimulant (McClatchey et al., 2009)	AY082353
(Malvales)			(McClatchey et al., 2009)		
Malvaceae	*Sida acuta* Burm.f.	broomweed	Native America	Stimulant (Rätsch, 2005)	KJ773888
(Malvales)			(Rätsch, 2005)		
Malvaceae	*Theobroma* spp.	cacao	Native American	Stimulant (Rätsch, 2005)	JQ228389
(Malvales)			(Rätsch, 2005)		
Malvaceae	*Tilia* spp.	linden	European	Antianxiety, sedative (Rätsch, 2005)	KT894775
Family	Genus	Species	Geography	Use	Accession No.
--------------	-----------------	---------------	-----------------	------------------------------	---------------
Melanthiaceae	*Veratrum album*	L.	white	European	KM242984
Liliales				Hallucinogen (Rätsch, 2005)	
Myristicaceae	*Horsfieldia*		hellebore	(Rätsch, 2005)	
Magnoliales	*Veratrum album*	L.	white	European	KM242984
Myristicaceae				Hallucinogen (Rätsch, 2005)	
Magnoliales	*Horsfieldia*		nutmeg	Australasian,	KM242984
Myristicaceae	*Myristica fragrans*		nutmeg	Australasian,	KM242984
Magnoliales	*Myristica fragrans*		nutmeg	Hallucinogen, stimulant, sedative	KM242984
Myristicaceae				(Rätsch, 2005)	KM242984
Myristicaceae	*Osteophloeum*		huapa	Native American	JQ625884
Magnoliales	*Osteophloeum*			Hallucinogen (Rätsch, 2005)	JQ625884
Myristicaceae				(Rätsch, 2005)	JQ625884
Myristicaceae	*Virola elongata*		epena	Native American	JQ626043
Magnoliales	*Virola elongata*			Hallucinogen, stimulant	JQ626043
	(Benth.) Warb.			(Rätsch, 2005)	JQ626043
Family	Genus	Species	Distribution	Uses	Accession
-------------------	---------------------	---------------	-----------------------	---	------------
Myrtaceae	*Psidium guajava*	guava	African and Middl eastern	Sedative, analgesic (Rätsch, 2005)	JQ025077
(Myrtales)	L.			(Rätsch, 2005)	
Nitrariaceae	*Peganum harmala*	harmal	African and Middle Eastern	Hallucinogen, stimulant, analgesic	DQ267164
(Sapindales)	L.			(Vetulani, 2001; Farouk et al., 2008)	
Nymphaeaceae	*Nuphar lutea* (L.)	yellow water	European	Sedative (Rätsch, 2005)	DQ182338
(Nymphaeales)	Sm.	lily		(Rätsch, 2005)	
Nymphaeaceae	*Nymphaea* spp.	water lily	African and Middle eastern	Sedative (Rätsch, 2005)	GQ468660
(Nymphaeales)					
Olacaceae	*Ptychopetalum*	marapuama	Native American	Stimulant, Antidepressant (Piato et al., 2008)	FJ038139
(Santalales)	*olacoides* Benth.				
Orchidaceae	*Vanilla planifolia*	vanilla	Native America	Stimulant, sedative, aphrodisiac	KJ566306
(Asparagales)	Jacks. ex Andrews			(Rätsch, 2005; O’Mahony, 2010)	
Family	Genus	Species	Origin	Use(s)	Accession Code
-------------------	-------------	--------------------	-------------------	--	----------------
Orobanchaceae	*Cistanche*	*deserticola*	Temperate Asian	Stimulant, aphrodisiac (O’Mahony, 2010)	KC128846
				(Wang, Zhang & Xie, 2012)	
Pandanaceae	*Pandanus*	*spp.*	Australasian	Hallucinogen, analgesic ((Rätsch, 2005)	JX903247
				(Rätsch, 2005)	
Papaveraceae	*Argemone*	*mexicana* L.	Native American	Hallucinogen, sedative, analgesic, aphrodisiac (Rätsch, 2005; Brahmachari, Gorai & Roy, 2013)	U86621
				(Rätsch, 2005)	
Papaveraceae	*Eschscholzia*	*californica* Cham.	California	Antianxiety, sedative, analgesic	KM360775
			Native American	(Rolland et al., 1991)	
				(Rolland et al., 1991)	
Papaveraceae	*Meconopsis*	*horridula* Hook. f. & Thomson	Temperate Asian	Sedative, analgesic (Fan et al., 2015)	JX087717
				(Fan et al., 2015)	

Family	Genus	Common Name	Origin	Uses	Accession Number	
Papaveraceae	*Papaver*	opium poppy	African and Middle Eastern	Hallucinogen, sedative, analgesic	KU204905	
(Ranunculales)	*somniferum* L.			(Rätsch, 2005)		
			(Vetulani, 2001)			
Passifloraceae	*Passiflora*	passion	Native American	Antianxiety, sedative (Heinrich et al. 2012)	HQ900864	
(Malpighiales)	spp.	flower	(Rätsch, 2005)			
Passifloraceae	*Turnera*	damiana	Native American	Stimulant, antianxiety, aphrodisiac	JQ593109	
(Malpighiales)	*diffusa*		(Rätsch, 2005)			
Phytolaccaceae	*Phytolacca*	pokeweed	Temperate Asian	Hallucinogen (Rätsch, 2005)	HM850257	
(Caryophyllales)	*acinosa*		(Rätsch, 2005)			
	Roxb.					
Piperaceae	*Arundo*	giant reed	African and Middle Eastern	Hallucinogen (Rätsch, 2005)	U13226	
(Piperales)	*donax* L.		Native American			
				(Rätsch, 2005)		
Piperaceae	*Piper*	pepper, kava	Native American, Indomalayan,	Stimulant, antianxiety, sedative, analgesic, aphrodisiac (Rätsch, 2005)	AY032642	
(Piperales)	spp.		Australasian			
Family	Genus	Species	Common Name	Subregion	Uses	Accession
------------------	--------------	------------------	-------------------	--------------------	---	-----------
Plantaginaceae	*Bacopa*	*monnieri*	brahmi	Indomalayan	Antianxiety, aphrodisiac	KJ773301
(Lamiales)		(L.) Wettst.		(Shinomol, Muralidhara, Bharath) 2011		
Poaceae (Poales)	*Lolium*	*temulentum*	bearded	African and Middle Eastern	Hallucinogen (Rätsch, 2005)	KM538829
		L.	barnel			
				(Rätsch, 2005)		
Ranunculaceae	*Aconitum*	spp.	monkshood	European, Indomalayan	Hallucinogen, analgesic, aphrodisiac (Rätsch, 2005)	EU053898
(Ranunculales)				Temperate Asian		
Ranunculaceae	*Hydrastis*	*canadensis*	goldenseal	Native American	Stimulant, sedative, analgesic (O’Mahony, 2010)	L75849
(Ranunculales)		L.				
Family	Genus	Species	Distribution	Secondary Metabolites	Accession	
------------	-------------------	---------------	-----------------------------------	---	-----------	
Rubiaceae	Catunaregam	chibra	Africa and Middle eastern	Antianxiety, antidepressant	AJ286700	
	nilotica (Stapf)			(Danjuma et al. 2014)		
	Tirveng. (=Randia	nilotica Stapf				
Rubiaceae	Coffea arabica	coffee	African and Middle Eastern	Stimulant (Rätsch, 2005)	EF044213	
	L.					
Rubiaceae	Corynanthe	pamprama	African and Middle Eastern	Stimulant and aphrodisiac (Rätsch, 2005)	AJ346977	
	spp.					
Rubiaceae	Mitragyna	kratom	Indomalaya	Stimulant, analgesic, sedative,	AJ346988	
	speciosa (Korth.)					
	Havil			(Idayu et al, 2011; Rätsch, 2005; Suhaimi et al. 2016)		
Rubiaceae	Pausinystalia	yohimbe	African and Middle Eastern	Hallucinogen, stimulant,	AJ346998	
	johimbe					
Family	Genus	Species	Native Origin	Characteristics	Accession	
-------------------	-----------------	---------------	------------------------	---	-----------	
Rubiaceae	Psychotria spp.	chacruna	Native American	Hallucinogen, sedative, analgesic	KJ805654	
(Gentianales)						
Santalaceae	Santalum	sandalwood	Australasian	Sedative (Rätsch, 2005)	L26077	
(Santalales)	murrayanum C.A					
Sapindaceae	Paullinia spp.	guarana	Native American	Stimulant (McClatchey et al., 2009)	AY724365	
(Sapindales)						
Solanaceae	Atropa belladonna	belladonna	European	Hallucinogen, stimulant, sedative, aphrodisiac	AJ316582	
(Solanales)	L.			(Schultes, 1976)		
Solanaceae	Brugmansia spp.	angel's	Native American	Hallucinogen, sedative, aphrodisiac	HM849829	
(Solanales)		trumpet		(Rätsch, 2005)		
Family	Genus	Common Name	Origins	Use	Accession	
------------	---------------	-------------	-------------------	------------------------------	-----------	
Solanaceae	*Brunfelsia*	raintree	Native American	Hallucinogen, analgesic	AY206720	
	(Solanales)		(Rätsch, 2005)		2005	
Solanaceae	*Cestrum*	flowering	Native American	Hallucinogen, sedative, analgesic	JX572398	
	(Solanales)	jessamine	(Rätsch, 2005)			
Solanaceae	*Datura*	toloache	Native American,	Hallucinogen, sedative, analgesic	JX996059	
	(Solanales)		Indomalayan,	aphrodisiac (Rätsch, 2005)		
			European			
			(Rätsch, 2005)			
Solanaceae	*Duboisia*	pituri	Australasian	Hallucinogen, stimulant	KM895868	
	(Solanales)		(Rätsch, 2005)	aphrodisiac (Rätsch, 2005)		
Solanaceae	*Hyoscyamus*	Henbane	European	Hallucinogen. sedative	KF248009	
	(Solanales)		(Rätsch, 2005)	(Rätsch, 2005)	2005	
Solanaceae	*Iochroma*	yas	Native American	Sedative (Rätsch, 2005)	KU310432	
	(Solanales)	fuschioides	(Rätsch, 2005)			
		(Bonpl.) Miers				
Family	Genus	Common Name	Region	Use	Accession No.	
-------------	----------------	-------------	-------------------------	--	---------------	
Solanaceae	Mandragora spp.	mandrake	European, African and Middle Eastern (Rätsch, 2005; Sayin, 2014)	Hallucinogen, sedative, analgesic	U08614	
(Solanales)						
Solanaceae	Nicotiana spp.	tobacco	Native American, Australasian (Vetulani, 2001; Rätsch, 2005)	Stimulant, antianxiety	KU199713	
(Solanales)						
Solanaceae	Petunia violacea	shanin	Native American (Schultes, 1976)	Hallucinogen	HQ384915	
(Solanales)	Lindl.					
Solanaceae	Physalis spp.	groundcherry	Native American (Rätsch, 2005)	Sedative, analgesic	KP295964	
(Solanales)						
Solanaceae	Scopolia	scopolia	European (Rätsch, 2005)	Hallucinogen, sedative, aphrodisiac	HQ216145	
(Solanales)	carniolica Jacq.					
Solanaceae	Solandra spp.	arbol del	Native American (Rätsch, 2005)	Hallucinogen, aphrodisiac (Knab)	U08620	
(Solanales)	Solanaceae	Solanum spp.	nightshade	European, Native	Sedative, analgesic (Rätsch, 2005)	KC535803
(Solanales)	Solanaceae	Withania somnifera (L.) Dunal	ashwagandha	Indomalayan	Sedative, aphrodisiac (Rätsch, 2005)	FJ914179
(Solanales)	Solanaceae	Withania somnifera (L.) Dunal	ashwagandha	Indomalayan	Sedative, aphrodisiac (Rätsch, 2005)	FJ914179
(Ericales)	Theaceae	Camellia sinensis (L.) Kuntze	tea	Temperate Asian	Stimulant, aphrodisiac (Rätsch, 2005)	EU053898
(Rosales)	Urticaceae	Urtica urens L.	nettle	African and Middle Eastern	Hallucinogen, antianxiety, sedative (O’Mahony, 2010; Doukkali et al., 2015)	KM361027
Table 2. Main psychoactive families (cf. Fig. 1), their primary psychoactive effect, suspected phytochemical constituents producing the effect, and the primary neurotransmitter (NT) systems potentially affected. “+/−” refers to the activation (receptor agonist) and inhibition (receptor antagonist), respectively, of certain NT receptors by the psychoactive substance.

Family	Main psychoactive effect	Active phytochemicals	Neurotransmitter systems affected
Apocynaceae	Antidepressant	Indole alkaloids, e.g. ibogaine, rauwolscine, reserpine, yohimbine	Serotonin (+), dopamine (+), noradrenaline (+)
		(Spinella 2001; Polya, 2003; Rätsch, 2005; Pratchayasakul et al. 2008; Sayin, 2014; Cardoso et al. 2015)	(Wells, Lopez & Tanaka, 1999; Spinella, 2001; Polya, 2003; Grundmann et al. 2007; Arulmozhi et al., 2012; Zheng, Fan & Liu, 2013; Sayin, 2014; Cardoso et al. 2015) [except reserpine but other indole alkaloids may counteract its effects (Polya, 2003)]
Asteraceae	Hallucinogen, aphrodisiac	Sesquiterpene lactones (Rätsch, 2005; Sayin, 2014)	Unknown mechanisms for various sesquiterpene lactones (Chadwick et al. 2013)
Cactaceae	hallucinogen	Phenethylamine alkaloids, e.g.	Serotonin (+) (Polya, 2003)
Family	Type	Substances	Actions
--------------	----------------	---	-----------------------
Convolvulaceae	hallucinogen	Hordenine, mescaline, pectenine	Serotonin (+)
		(Rätsch, 2005; Sayin, 2014)	(Polya, 2003; Kennedy, 2014)
Fabaceae	Hallucinogen	Ergot indole alkaloids (Rätsch, 2005; McClatchey et al., 2009)	Serotonin (+)
		Indole alkaloids, e.g. bufotenin, DMT; tryptamines (Polya, 2003; Wink, 2003; Halpern, 2004; Rätsch, 2005)	
Lamiaceae	Anxiolytic, sedative, analgesic	Terpenoids e.g. baicalin, linalool, labdane, rosmarinic acid, salvinorin	GABA (+) (Awad et al., 2003; 2009; Hajhashemi, Ghannadi & Sharif, 2003; Shi et al. 2014; Rauwald et al., 2015)
		A, wogonin, etc. (Lis-Balchin & Hart, 1999; Awad et al, 2003, 2009; Polya, 2003; Wink, 2003; Heinrich et al. 2012); leonurine alkaloid (Rauwald et al., 2015)	
Family	Effect	Compounds	References
--------------	------------	---	--
Malvaceae	Stimulant	Xanthine alkaloids, e.g. caffeine, theobromine (in *Cola, Theobroma*; Rätsch, 2005; McClatchey et al., 2009); phenethylamine ephedrine in *Sida*; Prakash, Varma, & Ghosal, 1981)	Adenosine (-) by xanthine alkaloids (Polya, 2003; McCatchey et al., 2009); adrenaline (+) by ephedrine (Polya, 2003)
Myristicaceae	Hallucinogen	DMT (indole alkaloid in *Virola*; phenylpropene e.g. myristicin, elemicine, safrole (Polya, 2003; Rätsch, 2005)	Serotonin (+) (Spinella 2001; Polya, 2003)
Papaveraceae	Hallucinogen	Isoquinoline alkaloids, e.g. codeine, morphine, reticuline, thebaine (Polya, 2003; Heinrich et al. 2012; Fedurco et al. 2015; Shang et al., 2015)	Opioid (+) (Rolland et al, 1991; Polya, 2003; Shang et al., 2015)
Family	Function	Examples	
--------	----------	----------	
Rubiaceae	Stimulant	Caffeine (xanthine alkaloid in *Coffea*; Polya, 2003); indole alkaloids in others, e.g. corynanthine, mitragynine, yohimbine (indole alkaloid; Polya, 2003; Rätsch, 2005; Suhaimi et al. 2016)	
Solanaceae	Hallucinogen, sedative	Tropane alkaloids, e.g. atropine, hyoscyamine, scopolamine (Polya, 2003; Wink, 2003; Rätsch, 2005)	
		Adenosine (-) by xanthine alkaloids (Polya, 2003; McClatchey et al., 2009); adrenaline (+) and serotonin (+) by indole alkaloids (Polya, 2003)	
		Acetylcholine (-) (Polya, 2003)	