Frailty in CKD and Transplantation

Elizabeth C. Lorenz1,2, Cassie C. Kennedy2,3, Andrew D. Rule1, Nathan K. LeBrasseur4, James L. Kirkland4 and LaTonya J. Hickson5

1Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; 2William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA; 3Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA; 4Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA; and 5Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA

The population is aging. Although older adults have higher rates of comorbidities and adverse health events, they represent a heterogeneous group with different health trajectories. Frailty, a clinical syndrome of decreased physiological reserve and increased susceptibility to illness and death, has emerged as a potential risk stratification tool in older patients with chronic kidney disease (CKD). Frailty is commonly observed in patients with CKD and associated with numerous adverse outcomes, including falls, decreased quality of life, hospitalizations, and death. Multiple pathologic factors contribute to the development of frailty in patients with CKD, including biological mechanisms of aging and physiological dysregulation. Current interventions to reduce frailty are promising, but additional investigations are needed to determine whether optimizing frailty measures improves renal and overall health outcomes. This review of frailty in CKD examines frailty definitions, the impact of frailty on health outcomes across the CKD spectrum, mechanisms of frailty, and antifrailty interventions (e.g., exercise or senescent cell clearance) tested in CKD patients. In addition, existing knowledge gaps, limitations of current frailty definitions in CKD, and challenges surrounding effective antifrailty strategies in CKD are considered.

Kidney Int Rep (2021) 6, 2270–2280; https://doi.org/10.1016/j.ekir.2021.05.025
KEYWORDS: aging; cellular senescence; chronic kidney disease; frailty; kidney transplantation; physical activity
© 2021 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

By 2050, nearly 1.6 billion individuals worldwide will be older than 65 years of age.1 Population aging has altered the landscape of nephrology given the interplay between renal aging and age-related comorbidities (e.g., cardiovascular disease and diabetes mellitus) that contribute to acute kidney injury and CKD in older adults. In the United States, 50% of all incident dialysis patients2–4 and more than 20% of kidney transplant (KT) recipients5 are older than age 65. The high death rate and perioperative morbidity and mortality in older adults with CKD underscore an unmet need to better understand and optimize their health trajectories.

Frailty, a syndrome of decreased physiological reserve and increased vulnerability to illness and death, is a robust predictor of adverse health outcomes in older adults, including falls, decreased quality of life, increased health care use, and death.5,7 Correspondingly, frailty has emerged as a potential risk stratification and prognostication tool in older adults with CKD, including KT candidates. In this article, current definitions of frailty, associations of frailty with health outcomes, mechanisms of frailty, and potential interventions for frailty in the context of CKD are reviewed. We also highlight critical knowledge gaps in these domains that need further investigation.

How to Measure Frailty in Patients With CKD

The study of frailty is complicated by a lack of consensus regarding how best to measure it.6,9 A recent systematic review highlighted the existence of over 67 different frailty measures.10 Many of these measures incorporate different constructs, such as physical function, comorbidities, psychosocial factors, and patient-reported outcomes.10,11 Collectively, the multitude and diversity of measures pose challenges to assessing frailty quantitatively across studies.

One of the most widely used measures of frailty in both the geriatric and nephrology literature is the Fried frailty phenotype, or physical frailty phenotype (PFP), which was initially studied by Linda Fried and colleagues in community-dwelling older adults enrolled in the Cardiovascular Health Study.7,10,12 The PFP represents a syndrome of decreased physiologic reserve and
potential loss of resilience. The PFP has been found to be overlapping but distinct from comorbidities and disabilities. The PFP includes 5 criteria: decreased grip strength, slow walking speed, unintentional weight loss, low self-reported physical activity, and self-reported exhaustion. Patients who meet 1 to 2 of these criteria are classified as prefrail, whereas patients who meet 3 or more of these criteria are classified as frail. The PFP has been shown to predict falls, hospitalizations, and death in community-dwelling older adults.

Another commonly used method of measuring frailty is the cumulative deficit model. In the cumulative deficit model, frailty is directly related to the number of patient comorbidities, disabilities, and symptoms. One of the most commonly used measures that utilizes this approach is the Frailty Index developed by Rockwood et al. in community-dwelling elderly adults. Measures of physical function that have been used as measures of frailty include the Short Physical Performance Battery, a composite measure of lower extremity function (e.g., tests of balance, gait speed, and chair stand time), the 6-minute walk test; the Timed Up and Go Test; and the sit-to-stand test. Lastly, a patient-reported measure often used to assess frailty in patients with CKD is the 36-Item Short Form Health Survey (SF-36). The SF-36 includes a physical component subscale that assesses physical function, along with subscales assessing exhaustion, fatigue, and somatic pain. Although tests of physical function and patient-reported measures are commonly used to measure frailty, it is important to note that they are different from the multidimensional PFP.

Frailty and Non–Dialysis-Dependent CKD

Among patients with stages 1 through 4 CKD, the prevalence of frailty as measured by the PFP is approximately 14%, more than twice as high as community-dwelling older adults. Multiple studies have shown that the risk of being classified as frail increases as the glomerular filtration rate (GFR) decreases. Specifically, patients with early-stage CKD have twice the risk of being classified frail, whereas patients with CKD stage 3b or higher have nearly 6 times the risk, even after adjusting for age, race, sex, and comorbidities. In addition to decreased GFR, other risk factors for frailty in patients with nondialysis CKD include older age, female sex, and diabetes. The most common frailty parameters in patients with nondialysis CKD are physical inactivity and exhaustion.

In patients with nondialysis CKD, frailty is associated with adverse outcomes. A prospective study of 336 patients with nondialysis CKD, frailty as defined by the PFP was associated with a 2.5-fold higher risk of death or dialysis therapy. Delgado et al. found that self-reported frailty was associated with death among participants in the Modification of Diet in Renal Disease study, whereas Pugh et al. found that a higher Rockwood Frailty Index was associated with worse survival in patients referred for predialysis education. Other studies have demonstrated that gait speed itself is associated with increased all-cause mortality in these patients. For every 0.1 m/s decrease in gait speed, patients with nondialysis CKD experience a 26% higher risk of death. It should be noted that estimating GFR in frail patients with CKD is not always straightforward. Equations that estimate GFR based on serum creatinine may overestimate GFR in frail patients with sarcopenia given that serum creatinine reflects underlying muscle mass. Thus, cystatin C-based estimated GFR equations may be better markers of kidney function in this vulnerable population.

Frailty, End-Stage Kidney Disease, and Transplantation

Frailty prevalence is highest in patients with ESD who are dialysis dependent compared with patients with nondialysis CKD or without CKD. Specifically, 71% of dialysis patients ≥65 years are classified as frail, whereas 47% of dialysis patients aged 65 or less are classified as frail by the PFP, a prevalence more than 5 times as high as the general population. Studies using the Short Physical Performance Battery have shown that patients on dialysis have significantly lower scores compared with patients with other comorbidities, such as chronic obstructive lung disease and congestive heart failure. In dialysis-dependent patients, frailty is associated with peripheral vascular disease, diabetes, and body composition parameters, including fat mass and extracellular water, but not with body mass index.
Frailty in dialysis patients is associated with numerous adverse outcomes, including worse cognitive function, increased falls, deteriorating quality of life, hospitalization, and death (Figure 1). Slow gait speed has also been shown to predict mortality, hospitalization, difficulty with activities of daily living, and worse quality of life in patients on dialysis. Unfortunately, despite the self-selection of home dialysis, frail patients maintained on home dialysis are more likely to experience technique failure and death. Finally, we found that the second most common reason for medical record–abstracted dialysis withdrawal in a maintenance hemodialysis patient cohort at our center was frailty (n = 1226).

A growing body of evidence describing the importance of measuring frailty in KT candidates is emerging and has previously been reviewed. At the time of KT, 20% of patients are defined as frail according to the PFP. Frailty has been associated with adverse outcomes before and after KT (Figure 1). We and others demonstrated that wait-listed candidates who are defined as frail or have decreased physical function are more likely to experience waitlist removal or death. Frailty at the time of KT is associated with complications after KT, including delayed graft function, longer hospital length of stay, rehospitalizations, immunosuppression intolerance, and death. Several studies have characterized changes in physical function and frailty after KT. We found that 35% of patients experienced a clinically meaningful improvement in gait speed of ≥ 0.1 m/s during the first 4 months after living donor KT at our center. Applying the PFP, McAdams-DeMarco et al. showed that patients initially become more frail during the first month after KT. However, by 3 months posttransplant, frailty status improves compared with pretransplant levels. In conclusion, a robust body of evidence has emerged illustrating the detrimental impact of pretransplant frailty on KT outcomes, as well as the potential reversibility of frailty after KT.

Mechanisms of Frailty
Frailty is associated with impairment in many physiologic systems, including alterations in endocrine functions, the immune system, the autonomic nervous system, and skeletal muscle. Multiple derangements of endocrine functions have been associated with frailty including elevated cortisol, decreased vitamin D, altered glucose metabolism, and decreased androgens. In patients on dialysis, low testosterone levels have been associated with an increased prevalence and onset of frailty. These endocrine abnormalities could contribute to the development of frailty by exacerbating muscle weakness, sarcopenia, comorbidities, and loss of appetite.

Dysregulation of the immune system and maladaptive inflammation are also associated with frailty. Frail community-dwelling older adults exhibit elevated inflammatory markers, including serum interleukin-6 and C-reactive protein. Likewise, patients with kidney failure classified as frail have higher levels of interleukin-6, C-reactive protein, and tumor necrosis factor-α receptor 1 compared with nonfrail patients with ESKD. Chronic inflammation is hypothesized to contribute to frailty by inducing sarcopenia, anemia, adipose tissue dysfunction, and cardiovascular disease. Because of altered cellular and humoral immunity, frail patients are less likely to mount a response to vaccinations such as influenza or hepatitis B among those who are dialysis dependent. Dysregulation of the autonomic nervous system, manifested by reduced heart rate variability, has also been described in patients classified as frail. Finally, frailty effects on the musculoskeletal system are associated with lower muscle mass, loss of type II fibers, and higher fat mass.

Impairment in these physiologic systems is driven by multiple mechanisms. Behavioral factors (e.g., poor nutrition and decreased physical activity), social factors (e.g., low income and low educational level), and genetics contribute to frailty. Furthermore, metabolic factors that accompany kidney dysfunction and uremia may contribute to frailty in patients with CKD (Figure 2). CKD is a catabolic state associated with protein wasting, inflammation, fluid overload, and malnutrition. Patients with CKD have increased muscle catabolism, reduced synthesis...
of muscle contractile proteins, and impaired muscle regeneration leading to sarcopenia, decreased physical function, and frailty compared with similarly aged individuals without CKD.83–85 In advanced CKD, chronic metabolic acidosis decreases muscle mass and strength while also diminishing bone mineral density.86–88 Sarcopenia, as assessed through dual-energy X-ray absorptiometry, is more common in patients with CKD.89 Anemia, hyperparathyroidism, and cognitive impairment may also contribute to frailty in patients in these individuals.82,90 In KT, commonly used regimens incorporating corticosteroids and calcineurin inhibitors alter muscle metabolism and induce sarcopenia.91–94

Another aging process implicated in the pathogenesis of frailty is cellular senescence.46,95 Cellular senescence is a state of essentially irreversible growth arrest that occurs in response to perturbations such as DNA damage and oxidative stress. Senescent cells can secrete a combination of cytokines, chemokines, growth factors, and other proteins. Collectively, these factors are called the senescence-associated secretory phenotype and have been shown to promote inflammation, tissue damage, and senescence in neighboring and distant cells.96 Senescent cells form in tissues throughout the body, leading to tissue dysfunction, particularly in those with diabetes and CKD.97–102 Elevated plasma levels of senescence-associated secretory phenotype proteins, including growth differentiation factor 15, activin A, and interleukin-15, are associated with age, frailty, and adverse health outcomes in patients with chronic disease.103,104 Furthermore, sterile inflammation in surrounding adipose tissue both propagates and is influenced by cellular senescence, contributing to morbidity.97,105 The accumulation of senescent cells in muscle may result in atrophy and decreased contractility.106 In support of the pathogenic nature of senescence, recent studies demonstrated that transplanting senescent cells into healthy mice results in decreased physical function.106 Both KT recipients and allografts have been shown to experience accelerated aging and the accumulation of senescent cells.107,108

Furthermore, transplanting organs (hearts) from old mice into young mice causes spread of senescence from the old transplanted organ to the recipient’s own cells, even in distant organs.109 Hence, individuals with successful KT avoid chronic dialysis but carry the burden of prior CKD, are at risk of the spread of senescence from the transplanted organ, and are given immunosuppressive drugs that may further contribute to frailty.

Interventions to Improve Frailty Parameters in CKD

Numerous studies have examined the impact of exercise on frailty in CKD. Comparing them can be challenging because they often use different outcome measures (e.g., PFP, SF-36, or 6-minute walk test).110–121 Certain outcome measures may be more challenging to study than others. The PFP includes a 12-month wasting parameter that cannot be improved during short-term interventions.117 Furthermore, 1 of the criteria of the PFP is low physical activity, which can be impacted by exercise interventions. Self-reported measures, such as the SF-36, can introduce bias given that interventions are often associated with overreporting of the desired behavior.122 Thus, using performance-based measures like the Short Physical Performance Battery or the 6-minute walk test as benchmarks in exercise interventions or examining how change in physical activity impacts other PFP parameters may be preferable.8,9

Numerous studies have examined the impact of exercise on performance-based measures of frailty in patients with CKD. Many have demonstrated that exercise is beneficial (Table 1). However, the implementation of exercise regimens in clinical practice has been limited by a lack of consensus regarding the preferred “best option,” a lack of resources,123,124 and a lack of evidence related to outcomes such as cardiovascular events and death.125 In addition, the optimal location of exercise (e.g., intradialytic, home based, or center based) is unknown. Studies involving non-CKD populations suggest that supervised interventions may be more efficacious than unsupervised interventions.126–129 Supervised interventions may also be safer and more feasible for extremely frail or debilitated patients. However, patients on dialysis may find it challenging to attend supervised sessions outside of dialysis. Combining exercise with dialysis sounds promising, but intradialytic interventions may be limited by low-intensity exercise and poor adherence.130 How to sustain exercise and its associated antifrailty effects after study discontinuation is also unclear. Sheshadi et al.121 found that participants returned to baseline levels of physical activity within 3 months of completing their home-based walking intervention. Lastly, although exercise interventions may improve frailty, few data on the impact of exercise on death and cardiovascular events in patients with CKD exist.118 In 1 retrospective study examining patients with CKD, it was found that patients able to complete a supervised, outpatient exercise program had a lower risk of cardiovascular morbidity and mortality.113
Exercising in preparation for surgery, also known as prehabilitation, represents an exciting intervention that may be beneficial in KT candidates. The overall goal of prehabilitation is to improve patients’ response to physiologic stress. Prehabilitation is associated with fewer postoperative pulmonary complications, lower hospital cost, improved postoperative physical function, and decreased length of stay after non-transplant surgery. Given the strong relationship between pretransplant frailty and adverse outcomes, the American Society of Transplantation developed a Frailty Consensus Statement that emphasizes the importance of developing effective frailty interventions in transplant candidates. To our knowledge, the impact of prehabilitation in KT candidates has been examined in only 2 studies. McAdams et al. studied the impact of an 8-week supervised exercise intervention in a cohort of 24 KT candidates within 3 to 6 months of transplantation. The authors found that prehabilitation was associated with a 64% improvement in physical activity based on accelerometry and decreased posttransplant length of stay compared with matched controls. Similarly, we conducted a single-center pilot study (N = 21) examining the preliminary efficacy of an 8-week supervised exercise intervention in participants with advanced CKD, including KT candidates, and found that prehabilitation was associated with improvement in PFP parameters (e.g., physical activity, walking time, and grip strength), self-reported exhaustion, and Short Physical Performance Battery scores.

Exercise interventions for frailty after KT have been associated with improved aerobic capacity, strength, and quality of life, although this has been less studied than interventions in the pretransplant and dialysis settings. In a systematic review involving 654 KT recipients, posttransplant exercise interventions were associated with improved aerobic capacity and quality of life. The impact of walking programs after KT has been examined in several studies. The LIFT study found that an intervention using accelerometers combined with financial incentives and text messages resulted in increased step counts in a cohort of patients within 24 months of either kidney or liver transplantation. We found that a 90-day pedometer-based physical activity intervention was associated with lower blood pressure and less impaired fasting glucose 4 months post-KT compared with a cohort of KT recipients who received usual care. Unfortunately, clinical implementation of exercise programs after KT is limited due to a lack of evidence-based exercise guidelines, insufficient understanding of patient attitudes, and poor clinician engagement.

Although exercise is 1 of the most effective anti-frailty interventions, other therapeutic targets for frailty are being actively investigated (Figure 3). Given the senescent cell burden in CKD, the use of senolytics, drugs that selectively induce senescent cell removal, hold promise. Preclinical studies applying senolytics in mice both prevented and reduced physical dysfunction.

Study	Subjects	Intervention	Frailty Assessment Instrument	
≤ 3 mo interventions	Rossi et al (2014)	CKD stages 3-4 (N = 119)	3 months of guided exercise versus usual care	SPPB, 6MWT, STS, TUG, Other
	McAdams-DeMarco et al (2019)	CKD stage 5 (N = 24)	2 months of supervised physical therapy sessions and home-based exercises	NA, NA, NA, NA, + accelerometry
	Lorenz et al (2019)	CKD stages 4-5 (N = 21)	2 months of supervised pulmonary rehabilitation sessions	+, NA, NA, NA, + PFP parameters
	Sheshadri et al (2020)	Dialysis (N = 60)	3 months of pedometer-based intervention versus usual care	–, NA, NA, NA, + weekly step counts
≥ 6 mo interventions	Koh et al (2010)	Dialysis (N = 70)	6 months of intradialytic cycle ergometry versus home walking program versus usual care	NA, –, NA, NA, NA
	Chen et al (2010)	Dialysis (N = 50)	6 months of intradialytic strength training versus stretching exercises	+, NA, NA, NA, NA
	Anding et al (2015)	Dialysis (N = 46)	5 years of intradialytic cycle ergometry and resistance training	NA, –, –, –, +6 months
	Bennett et al (2016)	Dialysis (N = 171)	Up to 9 months of intradialytic resistance bands	–, +, –, +, +
	Marforini et al (2017)	Dialysis (n = 286)	6 months of a home walking program versus usual care	NA, NA, NA, NA, NA
	Halberg et al (2019)	CKD stages 3–5 (N = 151)	12 months of home endurance/balance training versus home endurance/strength training	NA, –, –, NA, + 6MWT within groups

–, improved; –, no difference; 6MWT, 6-minute walk test; CKD, chronic kidney disease; PFP, physical frailty phenotype (e.g., Fried frailty phenotype); SPPB, Short Physical Performance Battery; STS, sit-to-stand test; TUG, Timed Up and Go Test.
used to treat leukemias and other conditions, whereas quercetin is a plant flavonoid with anti-inflammatory and antioxidant properties. In an open-label pilot trial in frail patients with idiopathic pulmonary fibrosis, a brief course of dasatanib plus quercetin was followed by an improved 6-minute walk distance, 4-m gait speed, chair stands, and Short Physical Performance Battery scores. Larger-scale, randomized studies confirming the benefit of senolytics on frailty in patients with CKD are needed. Other promising anti-frailty interventions in CKD include the use of oral nutritional supplements, which were associated with significant improvements in the Timed Up and Go test, the 6-minute walk test, and handgrip strength in patients on dialysis, and better management of anemia. Although metabolic acidosis is a potential contributor to frailty in CKD, in an interventional study, sodium bicarbonate tablets had no impact on Short Physical Performance Battery scores in CKD patients with metabolic acidosis. Others have suggested a potential role of androgens, growth hormone, and anti-inflammatory agents such as curcumin and resveratrol in improving body composition and handgrip strength in patients with CKD. Finally, in KT recipients, steroid minimization may reduce frailty. It has been suggested that patients who undergo rapid steroid withdrawal after KT exhibit fewer changes in skeletal muscle structure and better self-reported physical function on the SF-36 compared with recipients maintained on prednisone.

Conclusions
Frailty, a syndrome of decreased physiological reserve, has emerged as a potential risk stratification tool in the nephrology literature. Multiple frailty measurements have been used in patients with CKD. Frailty is common among patients with nondialysis CKD, ESKD, and KT and is associated with adverse outcomes, including decreased quality of life, increased health care use, and death. Frailty in CKD is associated with aging, physiological dysregulation, kidney function, and cellular senescence. Senescent cells contribute to inflammation and tissue dysfunction throughout the body. Exercise interventions, including short-term interventions, have been shown to improve frailty in patients regardless of CKD stage and may be an effective component of prehabilitation before KT. Promising new therapies for frailty include senolytics, which have been associated with improved frailty measures and senescent cell burden in pilot studies.

DISCLOSURE
JLK. has a financial interest related to this research. Patents on senolytic drugs are held by Mayo Clinic. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic Conflict of Interest policies. ECL and LJH are supported in part by the National Institute of Diabetes and Digestive and Kidney Diseases (DK 123313, DK 109134, DK123492). CCK is supported in part by the National Heart, Lung, and Blood Institute (HL 128859). JLK is supported in part by the National Institute on Aging (AG 013925 and 062413), Robert and Arlene Kogod, the Connor Group, Robert J. and Theresa W. Ryan, and the Noaber Foundation.

ACKNOWLEDGMENTS
The manuscript reflects the authors’ views and does not necessarily reflect the views of the National Institutes of Health.

AUTHOR CONTRIBUTIONS
ECL researched data for the article. All authors contributed to the content of the manuscript and reviewed the manuscript before submission.

REFERENCES
1. He WG, Goodkind D, Kowal P. An Aging World: 2015, International Population Reports, P95/16-1. Washington, DC: U.S. Government Publishing Office; 2016.
2. Berger JR, Hedayati SS. Renal replacement therapy in the elderly population. Clin J Am Soc Nephrol. 2012;7:1039–1046.
3. Vandecasteele SJ, Kurella Tamura M. A patient-centered vision of care for ESRD: dialysis as a bridging treatment or as a final destination? J Am Soc Nephrol. 2014;25:1647–1651.
4. Walton LS, Shumer GD, Thorsteinsdottir B, Suh T, Swetz KM. Palliation versus dialysis for end-stage renal disease in the oldest old: what are the considerations? Palliat Care. 2017;10:1178224217735083.
22. Walker SR, Brar R, Eng F, et al. Frailty and physical function in chronic kidney disease: the CanFIT study. *Can J Kidney Health Dis.* 2015;2:32.

23. Walker SR, Gill K, Macdonald K, et al. Association of frailty and physical function in patients with non-dialysis CKD: a systematic review. *BMC Nephrol.* 2013;14:228.

24. Delgado C, Grimes BA, Glidden DV, et al. Association of frailty based on self-reported physical function with directly measured kidney function and mortality. *BMC Nephrol.* 2015;16:203.

25. Pugh J, Aggett J, Goodland A, et al. Frailty and comorbidity are independent predictors of outcome in patients referred for pre-dialysis education. *Clin Kidney J.* 2016;9:324–329.

26. Roshanravan B, Robinson-Cohen C, Patel KV, et al. Association between physical performance and all-cause mortality in CKD. *J Am Soc Nephrol.* 2013;24:822–830.

27. Dalrymple LS, Katz R, Rifkin DE, et al. Kidney function and prevalent and incident frailty. *Clin J Am Soc Nephrol.* 2013;8:2091–2099.

28. McAdams-DeMarco MA, Law A, Salter ML, et al. Frailty as a novel predictor of mortality and hospitalization in individuals of all ages undergoing hemodialysis. *J Am Geriatr Soc.* 2013;61:896–901.

29. Chu NM, Chen X, Norman SP, et al. Frailty prevalence in younger end-stage kidney disease patients undergoing dialysis and transplantation. *Am J Nephrol.* 2020;51:501–510.

30. Hartmann EL, Kitzman D, Rocco M, et al. Physical function in older candidates for renal transplantation: an impaired population. *Clin J Am Soc Nephrol.* 2009;4:588–594.

31. Painter P, Krasnoff JB, Kuskowski M, Frassetto L, Johansen KL. Effects of modality change and transplant on peak oxygen uptake in patients with kidney failure. *Am J Kidney Dis.* 2011;57:113–122.

32. Iyasere OU, Brown EA, Johansson L, et al. Quality of life and physical function in older patients on dialysis: a comparison of assisted peritoneal dialysis with hemodialysis. *Clin J Am Soc Nephrol.* 2016;11:423–430.

33. Johansen KL, Dalrymple LS, Delgado C, et al. Association between body composition and frailty among prevalent hemodialysis patients: a US Renal Data System special study. *J Am Soc Nephrol.* 2014;25:381–389.

34. Lee SY, Yang DH, Hwang E, et al. The prevalence, association, and clinical outcomes of frailty in maintenance dialysis patients. *J Ren Nutr.* 2017;27:106–112.

35. Johansen KL, Dalrymple LS, Delgado C, et al. Factors associated with frailty and its trajectory among patients on hemodialysis. *Clin J Am Soc Nephrol.* 2017;12:1100–1108.

36. McAdams-DeMarco MA, Tan J, Salter ML, et al. Frailty and cognitive function in incident hemodialysis patients. *Clin J Am Soc Nephrol.* 2015;10:2181–2189.

37. McAdams-DeMarco MA, Suresh S, Law A, et al. Frailty and falls among adult patients undergoing chronic hemodialysis: a prospective cohort study. *BMC Nephrol.* 2013;14:224.

38. McAdams-DeMarco MA, Ying H, Olorundare I, et al. Frailty and health-related quality of life in end stage renal disease patients of all ages. *J Frailty Aging.* 2016;5:174–179.

39. Hickson LJ, Thorsteinsdottir B, Ramarin P, et al. Hospital readmission among new dialysis patients associated with young age and poor functional status. *Nephron.* 2018;139:1–12.
40. Alfaadhel TA, Soroka SD, Kiberd BA, et al. Frailty and mortality in dialysis: evaluation of a clinical frailty scale. Clin J Am Soc Nephrol. 2015;10:832–840.

41. Johansen KL, Dalrymple LS, Glidden D, et al. Association of performance-based and self-reported function-based definitions of frailty with mortality among patients receiving hemodialysis. Clin J Am Soc Nephrol. 2016;11:626–632.

42. Kutner NG, Zhang R, Huang Y, Painter P. Gait speed and mortality, hospitalization, and functional status change among hemodialysis patients: a US Renal Data System special study. Am J Kidney Dis. 2015;66:297–304.

43. Brar R, Whitlock R, Komenda P, et al. The impact of frailty on technique failure and mortality in patients on home dialysis. Perit Dial Int. 2019;39:532–538.

44. Chen JC, Thorsteinsdottir B, Vaughan LE, et al. End of life, withdrawal, and palliative care utilization among patients receiving maintenance hemodialysis therapy. Clin J Am Soc Nephrol. 2018;13:1172–1179.

45. Harhay MN, Rao MK, Woodside KJ, et al. An overview of frailty in kidney transplantation: measurement, management and future considerations. Nephrol Dial Transplant. 2020;35:1099–1112.

46. McAdams-DeMarco MA, Chu NM, Segev DL. Frailty and long-term post-kidney transplant outcomes. Curr Transplant Rep. 2019;6:45–51.

47. McAdams-DeMarco MA, Ying H, Olorundare I, et al. Individual frailty components and mortality in kidney transplant recipients. Transplantation. 2017;101:2126–2132.

48. Haugen CE, Agoons D, Chu NM, et al. Physical impairment and access to kidney transplantation. Transplantation. 2020;104:367–373.

49. Lorenz EC, Cosio FG, Bernard SL, et al. The relationship between frailty and decreased physical performance with death on the kidney transplant waiting list. Prog Transplant. 2019;29:108–114.

50. Cheng XS, Myers J, Han J, et al. Physical performance testing in kidney transplant candidates at the top of the waitlist. Am J Kidney Dis. 2020;76:815–825.

51. Lorenz EC, Cheville AL, Amer H, et al. Relationship between pre-transplant physical function and outcomes after kidney transplant. Clin Transplant. 2017;31. https://doi.org/10.1111/ctr.12952.

52. Watford DJ, Cheng XS, Han J, et al. Toward telemedicine-compatible physical functioning assessments in kidney transplant candidates. Clin Transplant. 2021;35:e14173.

53. Garonzik-Wang JM, Govindan P, Grinnan JW, et al. Frailty and delayed graft function in kidney transplant recipients. Arch Surg. 2012;147:190–193.

54. Kutner NG, Zhang R, Bowles T, Painter P. Pretransplant physical functioning and kidney patients’ risk for post-transplantation hospitalization/death: evidence from a national cohort. Clin J Am Soc Nephrol. 2006;1:837–843.

55. Lorenz EC. Relationship between pre-transplant physical function and outcomes after kidney transplant. Clin Transplant. 2017;31. https://doi.org/10.1111/ctr.12952.

56. McAdams-DeMarco MA, King EA, Luo X, et al. Frailty, length of stay, and mortality in kidney transplant recipients: a national registry and prospective cohort study. Ann Surg. 2017;266:1084–1090.

57. McAdams-DeMarco MA, Law A, King E, et al. Frailty and mortality in kidney transplant recipients. Am J Transplant. 2015;15:149–154.

58. McAdams-DeMarco MA, Law A, Salter ML, et al. Frailty and early hospital readmission after kidney transplantation. Am J Transplant. 2013;13:2091–2096.

59. McAdams-DeMarco MA, Law A, Tan J, et al. Frailty, mycophenolate reduction, and graft loss in kidney transplant recipients. Transplantation. 2015;99:805–810.

60. Reed PP, Bloom RD, Shults J, et al. Functional status and survival after kidney transplantation. Transplantation. 2014;97:189–195.

61. McAdams-DeMarco MA, Isaacs K, Darko L, et al. Changes in frailty after kidney transplantation. J Am Geriatr Soc. 2015;63:2152–2157.

62. Singh S, Atkinson EJ, Achenbach SJ, LeBrassere N, Bancos I. Frailty in patients with mild autonomous cortisol secretion is higher than in patients with nonfunctioning adrenal tumors. J Clin Endocrinol Metab. 2020;105:e3307–e3315.

63. Varadhan R, Walston J, Cappola AR, et al. Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol A Biol Sci Med Sci. 2008;63:190–195.

64. Puts MT, Visser M, Twisk JW, Deeg DJ, Lips P. Endocrine and inflammatory markers as predictors of frailty. Clin Endocrinol (Oxf). 2005;63:403–411.

65. Kalyani RR, Varadhan R, Weiss CO, Fried LP, Cappola AR. Frailty status and altered dynamics of circulating energy metabolism hormones after oral glucose in older women. J Nutr Health Aging. 2012;16:679–686.

66. Chiang JM, Kayser GA, Segal M, et al. Low testosterone is associated with frailty, muscle wasting and physical dysfunction among men receiving hemodialysis: a longitudinal analysis. Nephrol Dial Transplant. 2019;34:802–810.

67. Travison TG, Nguyen AH, Naganathan V, et al. Changes in reproductive hormone concentrations predict the prevalence and progression of the frailty syndrome in older men: the concord health and ageing in men project. J Clin Endocrinol Metab. 2011;96:2464–2474.

68. Yao X, Li H, Leng SX. Inflammation and immune system alterations in frailty. Clin Geriatr Med. 2011;27:79–87.

69. McAdams-DeMarco MA, Ying H, Thomas AG, et al. Frailty, inflammatory markers, and waitlist mortality among patients with end-stage renal disease in a prospective cohort study. Transplantation. 2018;102:1740–1746.

70. Ferrucci L, Fabbri E. Inflammaging: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–522.

71. Yao X, Hamilton RG, Weng NP, et al. Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine. 2011;29:5015–5021.

72. Mast EE, Weinbaum CM, Fiore AE, et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP)
Part II: immunization of adults. MMWR Recomm Rep. 2006;55:1–33; quiz CE1–4.

73. Soi V, Soman S. Preventing hepatitis B in the dialysis unit. Adv Chronic Kidney Dis. 2019;26:179–184.

74. Parvaneh S, Howe CL, Toosizadeh N, et al. Regulation of cardiac autonomic nervous system control across frailty statuses: a systematic review. Gerontology. 2015;62:3–15.

75. Varadhan R, Chaves PH, Lipsitz LA, et al. Frailty and impaired cardiac autonomic control: new insights from principal components aggregation of traditional heart rate variability indices. J Gerontol A Biol Sci Med Sci. 2009;64:682–687.

76. Cesari M, Leeuwenburgh C, Lauretani F, et al. Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am J Clin Nutr. 2006;83:1142–1148.

77. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10.

78. Bollwein J, Diekmann R, Kaiser MJ, et al. Dietary quality is related to frailty in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2013;68:483–489.

79. Peterson MJ, Giuliani C, Morey MC, et al. Physical activity as a preventative factor for frailty: the health, aging, and body composition study. J Gerontol A Biol Sci Med Sci. 2009;64:61–68.

80. Woo J, Goggin W, Sham A, Ho SC. Social determinants of frailty. Gerontology. 2005;51:402–408.

81. Hoogendijk EO, van Hout HP, Heymans MW, et al. Explaining the association between educational level and frailty in older adults: results from a 13-year longitudinal study in the Netherlands. Ann Epidemiol. 2014;24:538–544.e2.

82. Nixon AC, Bampouras TM, Pendleton N, et al. Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clin Kidney J. 2018;11:236–245.

83. Wang XH, Mitch WE. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol. 2014;10:504–516.

84. Roshanravan B, Gamboa J, Wilund K. Exercise and CKD: skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. Am J Kidney Dis. 2017;69:837–852.

85. Adey D, Kumar R, McCarthy JT, Nair KS. Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab. 2000;278:E219–E225.

86. Abramowitz MK, Hostetter TH, Melamed ML. Association of serum bicarbonate levels with gait speed and quadriceps strength in older adults. Am J Kidney Dis. 2011;58:29–38.

87. Kraut JA, Madias NE. Adverse effects of the metabolic acidosis of chronic kidney disease. Adv Chronic Kidney Dis. 2017;24:289–297.

88. Pickering WP, Price SR, Bircher G, et al. Nutrition in CAPD: serum bicarbonate and the ubiquitin-proteasome system in muscle. Kidney Int. 2002;61:1286–1292.

89. Moon SJ, Kim TH, Yoon SY, Chung JH, Hwang HJ. Relationship between stage of chronic kidney disease and sarcopenia in Korean aged 40 years and older using the Korea National Health and Nutrition Examination Surveys (KNHANES IV-2, 3, and V-1, 2), 2008-2011. PLoS One. 2015;10:e0130740.

90. Wang CJ, Johansen KL. Are dialysis patients too frail to exercise? Semin Dial. 2019;32:291–296.

91. Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci. 2013;58:3103–3111.

92. Ma K, Mallidis C, Bhasin S, et al. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab. 2003;285:E363–E371.

93. Sakuma K, Nakao R, Aoi W, et al. Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropathol. 2005;110:269–280.

94. Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol. 2010;2010:721219.

95. Walston JD. Connecting age-related biological decline to frailty and late-life vulnerability. Nestle Nutr Inst Workshop Ser. 2015;83:1–10.

96. Tchkonia T, Palmer AK, Kirkland JL. New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J Clin Endocrinol Metab. 2021;106:e1481–e1487.

97. Hickson LJ, Langhi Prata LG, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EbioMedicine. 2019;47:446–456.

98. LeBrasseur NK, Tchkonia T, Kirkland JL. Cellular senescence and the biology of aging, disease, and frailty. Nestle Nutr Inst Workshop Ser. 2015;83:11–18.

99. Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15:1082–1087.

100. Schafer MJ, Haak AJ, Tschumperlin DJ, LeBrasseur NK. Targeting senescent cells in fibrosis: pathology, paradox, and practical considerations. Curr Rheumatol Rep. 2018;20:3.

101. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13:77–89.

102. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123:966–972.

103. Bian X, Griffin TP, Zhu X, et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open Diabetes Res Care. 2019;7:e000720.

104. Schafer MJ, Zhang X, Kumar A, et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight. 2020;5:e133668.

105. Xu M, Palmer AK, Ding H, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.

106. Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–1256.

107. Joosten SA, van Kooten C, Sijpkins YW, de Fijter JW, Paul LC. The pathobiology of chronic allograft nephropathy: immune-mediated damage and accelerated aging. Kidney Int. 2004;65:1556–1559.
108. Kooman JP, Kotanko P, Schols AM, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. *Nat Rev Nephrol*. 2014;10:732–742.

109. Iske J, Seyda M, Heinbokel T, et al. Senolytics prevent mtDNA-induced inflammation and promote the survival of aged organs following transplantation. *Nat Commun*. 2020;11:4289.

110. Anding K, Bar T, Trojniak-Hennig J, et al. A structured exercise programme during haemodialysis for patients with chronic kidney disease: clinical benefit and long-term adherence. *BMJ Open*. 2015;5:e008709.

111. Bennett PN, Fraser S, Barnard R, et al. Effects of an intradialytic resistance training programme on physical function: a prospective stepped-wedge randomized controlled trial. *Nephrol Dial Transplant*. 2016;31:1302–1309.

112. Chen JL, Godfrey S, Ng TT, et al. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: a randomized pilot trial. *Nephrol Dial Transplant*. 2010;25:1936–1943.

113. Greenwood SA, Castle E, Lindup H, et al. Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: the effect of programme completion and change in exercise capacity. *Nephrol Dial Transplant*. 2019;34:618–625.

114. Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. *Am J Kidney Dis*. 2014;64:383–393.

115. Hellberg M, Hoglund P, Svensson P, Clyne N. Randomized controlled trial of exercise in CKD-The RENEXC Study. *Kidney Int Rep*. 2019;4:963–976.

116. Koh KP, Fassett RG, Sharman JE, Coombs JS, Williams AD. Effect of intradialytic versus home-based aerobic exercise training on physical function and vascular parameters in hemodialysis patients: a randomized pilot study. *Am J Kidney Dis*. 2010;55:88–99.

117. Lorenz EC, Hickson LJ, Weatherly RM, et al. Protocolized exercise improves frailty parameters and lower extremity impairment: a promising prehabilitation strategy for kidney transplant candidates. *Clin Transplant*. 2020;34:e14017.

118. Mallamaci F, Pisano A, Tripepi G. Physical activity in chronic kidney disease and the EXeRcise Introduction To Enhance trial. *Nephrol Dial Transplant*. 2020;35:i118–i122.

119. Manfredini F, Mallamaci F, D’Arrigo G, et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. *J Am Soc Nephrol*. 2017;28:1259–1268.

120. Rossi AP, Burris DD, Lucas FL, Crocker GA, Wasserman JC. Effects of a renal rehabilitation exercise program in patients with CKD: a randomized, controlled trial. *Clin J Am Soc Nephrol*. 2014;9:2052–2058.

121. Sheshadri A, Kittuskulnam P, Lazar AA, Johansen KL. A walking intervention to increase weekly steps in dialysis patients: a pilot randomized controlled trial. *Am J Kidney Dis*. 2020;75:488–496.

122. Taber DR, Stevens J, Murray DM, et al. The effect of a physical activity intervention on bias in self-reported activity. *Ann Epidemiol*. 2009;19:316–322.

123. Johansen KL. The promise and challenge of aerobic exercise in people undergoing long-term hemodialysis. *Clin J Am Soc Nephrol*. 2021;16:505–507.

124. Taryana AA, Krishnasamy R, Bohm C, et al. Physical activity for people with chronic kidney disease: an international survey of nephrologist practice patterns and research priorities. *BMJ Open*. 2019;9:e02322.

125. Johansen KL. Time to rehabilitate the idea of exercise for patients with chronic kidney disease? *Nephrol Dial Transplant*. 2019;34:551–554.

126. Fokkenrood HJ, Bendermacher BL, Lauret GJ, et al. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. *Cochrane Database Syst Rev*. 2013;8:CD005263.

127. Lacroix A, Kressig RW, Muehlbauer T, et al. Effects of a supervised versus an unsupervised combined balance and strength training program on balance and muscle power in healthy older adults: a randomized controlled trial. *Gerontology*. 2016;62:275–288.

128. Stout NL, Baima J, Swisher AK, Winters-Stone KM, Welsh J. A systematic review of exercise systematic reviews in the cancer literature (2005-2017). *PM R*. 2017;9:S347–S384.

129. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. *Cochrane Database Syst Rev*. 2008;4:CD000990.

130. Wilkinson TJ, McAdams-DeMarco M, Bennett PN, Wulind K, Global Renal Exercise Network. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. *Curr Opin Nephrol Hypertens*. 2020;29:471–479.

131. Heger P, Probst P, Wiskemann J, et al. A systematic review and meta-analysis of physical exercise prehabilitation in major abdominal surgery (PROSPERO 2017 CRD42017080366). *J Gastrointest Surg*. 2020;24:1375–1385.

132. Howard R, Yin YS, McCandless L, et al. Taking control of your surgery: impact of a rehabilitation program on major abdominal surgery. *J Am Coll Surg*. 2019;228:72–80.

133. Mayo NE, Feldman L, Scott S, et al. Impact of preoperative change in physical function on postoperative recovery: argument supporting prehabilitation for colorectal surgery. *Surgery*. 2011;150:505–514.

134. Arthur HM, Daniels C, McKelvie R, Hirsh J, Rush B. Effect of a preoperative intervention on preoperative and postoperative outcomes in low-risk patients awaiting elective coronary artery bypass graft surgery. A randomized, controlled trial. *Ann Intern Med*. 2000;133:253–262.

135. Beaupre LA, Lier D, Davies DM, Johnston DB. The effect of a preoperative exercise and education program on functional recovery, health related quality of life, and health service utilization following primary total knee arthroplasty. *J Rheumatol*. 2004;31:1166–1173.

136. Kobashigawa J, Dadhania D, Bhorade S, et al. Report from the American Society of Transplantation on frailty in solid organ transplantation. *Am J Transplant*. 2019;19:984–994.

137. McAdams-DeMarco MA, Ying H, Van Pilsum Rasmussen S, et al. Prehabilitation prior to kidney transplantation: results from a pilot study. *Clin Transplant*. 2019;33:e13450.

138. Takahashi A, Hu SL, Bostom A. Physical activity in kidney transplant recipients: a review. *Am J Kidney Dis*. 2018;72:433–443.
139. Calella P, Hernandez-Sanchez S, Garofalo C, et al. Exercise training in kidney transplant recipients: a systematic review. *J Nephrol*. 2019;32:567–579.

140. Serper M, Barankay I, Chadha S, et al. A randomized, controlled, behavioral intervention to promote walking after abdominal organ transplantation: results from the LIFT study. *Transpl Int*. 2020;33:632–643.

141. Lorenz EC, Amer H, Dean PG, et al. Adherence to a pedometer-based physical activity intervention following kidney transplant and impact on metabolic parameters. *Clin Transplant*. 2015;29:560–568.

142. Gordon EJ, Prohaska T, Siminoff LA, Minich PJ, Sehgal AR. Needed: tailored exercise regimens for kidney transplant recipients. *Am J Kidney Dis*. 2005;45:769–774.

143. Schroth J, Thiemermann C, Henson SM. Senescence and the aging immune system as major drivers of chronic kidney disease. *Front Cell Dev Biol*. 2020;8:564461.

144. Verzola D, Gandolfo MT, Gaetani G, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. *Am J Physiol Renal Physiol*. 2008;295:F1563–F1573.

145. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. *J Intern Med*. 2020;288:518–536.

146. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. *Eur J Pharmacol*. 2008;585:325–337.

147. Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. *EBioMedicine*. 2019;40:554–563.

148. Martin-Alemany G, Espinosa-Cuevas ML, Perez-Navarro M, et al. Effect of oral nutritional supplementation with and without exercise on nutritional status and physical function of adult hemodialysis patients: a parallel controlled clinical trial (AVANTE-HEMO study). *J Ren Nutr*. 2020;30:126–136.

149. McMahon LP, McKenna MJ, Sangkabutra T, et al. Physical performance and associated electrolyte changes after haemoglobin normalization: a comparative study in haemodialysis patients. *Nephrol Dial Transplant*. 1999;14:1182–1187.

150. Witham MD, Band M, Chong H, et al. Sodium bicarbonate to improve physical function in patients over 60 years with advanced chronic kidney disease: the BiCARB RCT. *Health Technol Assess*. 2020;24:1–90.

151. Eiam-Ong S, Buranaosot S, Eiam-Ong S, Wathanavaha A, Pansin P. Nutritional effect of nandrolone decanoate in predialysis patients with chronic kidney disease. *J Ren Nutr*. 2007;17:173–178.

152. Johannsson G, Bengtsson BA, Ahlmen J. Double-blind, placebo-controlled study of growth hormone treatment in elderly patients undergoing chronic hemodialysis: anabolic effect and functional improvement. *Am J Kidney Dis*. 1999;33:709–717.

153. Murillo Ortiz BO, Fuentes Preciado AR, Ramirez Emiliano J, et al. Recovery of bone and muscle mass in patients with chronic kidney disease and iron overload on hemodialysis and taking combined supplementation with curcumin and resveratrol. *Clin Interv Aging*. 2019;14:2055–2062.

154. Painter PL, Topp KS, Krasnoff JB, et al. Health-related fitness and quality of life following steroid withdrawal in renal transplant recipients. *Kidney Int*. 2003;63:2309–2316.

155. Topp KS, Painter PL, Walcott S, et al. Alterations in skeletal muscle structure are minimized with steroid withdrawal after renal transplantation. *Transplantation*. 2003;76:667–673.