Effect of crocin and naringenin supplementation in cryopreservation medium on post-thawed rooster sperm quality and expression of apoptosis associated genes

Mahdieh Mehdipour¹, Hossein Daghigh Kia¹*, Abouzar Najafi¹

¹ Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran;

* Corresponding author: Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran : Fax: +98 411 3356004.

E-mail addresses: hsz6955@yahoo.com, daghighkia@tabrizu.ac.ir (H.D. Kia).
Abstract

The aim of our research was to examine the effects of crocin (0.5 (C0.5), 1 (C1) and 1.5 (C1.5) mM) and naringenin (50 (N50), 100 (N100) and 150 (N150) µM) in cryopreservation extender for freezing rooster semen. Sperm motility, viability, abnormalities, membrane integrity, mitochondrial activity, apoptosis status, lipid peroxidation (LP), GPX, SOD, TAC, the mRNA expression of pro-apoptotic (CASPASE 3) and anti-apoptotic (Bcl-2) genes, fertility and hatchability rate were investigated following freeze-thawing. C1 and N100 resulted in the higher (P < 0.05) total motility and progressive motility in comparison to the control group. C1 and N100 improved viability, membrane integrity and reduced lipid peroxidation. We found much higher values for mitochondria activity with C1 and N100 respect to the control group. The C1 and N100 showed lower percentages of early apoptosis when compared with control group. Also, C1 and N100 had higher TAC when compared with control group. The mRNA expression of BCL-2 in the C1 and N100 group were significantly higher than that of other treatments. The expression of CASPASES 3 was significantly reduced in C1 and N100 group (P < 0.05) when compared to control group. Significantly higher percentage of fertility and hatching rate were observed in C1 and N100 compared to the control group. In conclusion, crocin at 1 mM and naringenin at 100 µM seem to improve the post-thawing rooster semen quality, fertility and could protect the sperm against excessive ROS generation by reducing the pro-apoptotic (CASPASE 3) and increasing anti-apoptotic (Bcl-2) genes.

Key words: Crocin; Cryopreservation; Naringenin; Rooster semen; Gene
1. Introduction

Despite its utilization over 70 years ago [1], cryopreservation of bird sperm causes low fertility, which limits its applying in genetic stock preservation [2]. Cryopreservation causes harmful effects on sperm that decrease sperm viability and motility [3-5]. Avian sperm are particularly susceptible to oxidative stress [6], though reactive oxygen species (ROS), in physiological quantities, are necessary for important sperm events leading to successful fertilization [7]. In sperm, oxidative stress disturb motility and mitochondrial activity [8]; induces lipid peroxidation of the membrane [9]; and the oxidation and DNA fragmentation [10].

Adding antioxidant compounds to the freezing medium is known as one of the ways to defeat the deleterious effects of ROS on sperm fertility after thawing, because it blocks or inhibits oxidative stress. Antioxidants provide a positive effect on semen, leading to an improvement in some sperm parameters containing motility and membrane integrity [11-13].

Naringenin is known as a natural flavonoid that has been studied for some of the most prominent properties containing antioxidant, antiproliferative, anti-inflammatory, and antimutagenic ones [14]. It was observed in previous experimental studies that naringain protects the cells from lead and arsenic-induced oxidative damage [15, 16].

The other studied antioxidant was crocin, a glycosyl ester of crocetin (one of the carotenoids extracted from saffron) [17]. In an experiment which was performed under in vitro conditions, crocin had an effect on improving deer sperm motility [18]. This antioxidant can influence sperm physiology through its protective effect on sperm cryopreservation media.

To the best of our knowledge, no similar study has been performed to evaluate the potential effect of naringenin and crocin in cryopreservation of rooster sperm. The objective of this investigation was to determine the effect of various levels of naringenin and crocin in the
extender on post-thawed rooster sperm quality and expression of apoptosis associated genes. Quality and fertility analyses of the post-thaw sperm integrated with naringenin and crocin were also performed after the freezing and thawing process.

2. Materials and methods

2.1. Chemicals and ethics

All chemicals used for performing this experiment were purchased from Sigma (St. Louis, MO, USA) and Merck (Darmstadt, Germany) chemical companies. Approval for the present experiment was given by The Research Ethics Committees of the University of Tabriz.

2.2. Rooster and semen collection

This study was performed on ten adult Ross 308 broiler breeder roosters (30 week old) which were kept individually in cages (diet compositions were included: 12% crude protein and 2,750 kcal maintenance energy/kg). Semen was collected twice a week from individual birds in a graduated plastic tube [19]. Semen samples from each rooster were analyzed individually. The samples that had the standard criteria motility of >80% concentration of >3 × 10^9 sperm/mL and volume of >0.2 mL were used in the present study. Next, to remove individual differences, semen samples were pooled and then assigned into 7 equal aliquots.

2.3. Extender preparation and cryopreservation

Seven experimental groups were applied in this study for semen dilution (Table 1): Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 µM naringenin), N100 (Beltsville extender with 100 µM naringenin), N200 (Beltsville extender with 200 µM naringenin), and N400 (Beltsville extender with 400 µM naringenin).
naringenin), N150 (Beltsville extender with 150 µM naringenin). Glycerol was added to the extender at 3.8% (v/v). Next, diluted semen samples were aspirated into 0.25 ml French straws (IMV, L’Aigle, France) to attain the concentration of 100 × 10⁶ sperm/mL. Consequently, via polyvinyl alcohol powder were sealed and equilibrated at 4 °C for 3 h. Then, after equilibration time (3 h), the straws were cryopreserved in liquid nitrogen (LN) vapor (4 cm above the LN for 7 min in a cryobox). Then, the straws were plunged into LN for storage until thawed (37 °C for 30 s) and used for assessment of sperm parameters.

Table 1

Composition of the Beltsville extender.

| Ingredients                                      | Quantity |
|--------------------------------------------------|----------|
| Potassium citrate tribasic monohydrate (g)       | 0.64     |
| Sodium-L-glutamate (g)                           | 8.67     |
| Magnesium chloride anhydrous (g)                 | 0.34     |
| D(-)-Fructose (g)                                | 5        |
| Potassium phosphate dibasic trihydrate (g)       | 7.59     |
| Potassium phosphate monobasic (g)                | 0.7      |
| N-[Tris (hydroxymethyl) methyl]-2 (g)            | 2.7      |
| Sodium acetate trihydrate (g)                    | 3.1      |
| Purified water (mL)                              | 100      |
| pH                                               | 7.1      |
| Osmolality (mOsm/kg)                             | 310      |

2.4. Motility characteristics

Sperm motility and velocity parameters were determined using a computer-assisted sperm analyzer (CASA). To perform this, semen were diluted (1:10) by PBS buffer. Next, 10 µl of sperm sample was dropped onto a pre-warmed chamber slide (37 °C, Leja 4; Leja Products, Luzenestaat B.V., Holland). At least five fields containing a minimum of 200 sperm, were assessed by CASA. Sperm total motility (TM, %), progressive motility (PM, %), average path velocity (VAP, µm/s), straight linear velocity (VSL, µm/s), curvilinear velocity (VCL, µm/s), and amplitude of lateral head displacement (ALH, µm) were evaluated [3].
2.5. Viability

Sperm viability was evaluated by the eosin-nigrosine method described by Amini, Kohram (20). A 5 µl of sperm and 10 µl eosin-nigrosine stains was spread on a slide. To detect sperm viability, 200 sperm were assessed under a bright-field microscope at 400 ×.

2.6. Membrane integrity

Evaluating sperm membrane functionality was performed by Hypoosmotic swelling test (HOST) [21]. The assay was performed by adding 10 µL of diluted semen into eppendorf tubes containing 100 mL hypoosmotic solution (1.9 mM sodium citrate and 5 mM fructose, 100 mOsm/kg). After incubation at 37 °C for 30 min, total of 10 µL of the sample was poured on a microscope slide, and 200 sperm instantly was calculated under phase-contrast microscope at ×400 to detect sperm membrane integrity.

2.7. Morphology

For the assessment of morphology after thawing, 10 µL of sperm were pipetted into tubes including 1 ml of Hancock solution [22] (150 ml sodium saline solution, 150 ml PBS buffer solution and 62.5 ml formalin (37%)). To detect sperm total abnormality, about 200 sperm were counted by phase-contrast microscope at×1000.

2.8. Malondialdehyde (MDA) levels

MDA levels were assessed by thiobarbituric acid reaction [23]. In brief, 1 mL of sperm was mixed with 1 ml of cold trichloroacetic acid (20%) to precipitate protein. subsequently, the samples were centrifuged (963×g for 15 min), and 1 ml of the supernatant was incubated with tubes containing 1 ml of thiobarbituric acid (0.67%) in a boiling water bath at 100 °C for 10 min.
After cooling, the absorbance was assessed by a spectrophotometer (T80 UV/VIS PG Instruments Ltd, UK) at 532 nm.

2.9. TAC, GPx and SOD assessment

The antioxidant system was examined by assessment of GPx, TAC, and SOD levels [24]. This variable was assessed spectrophotometrically by Randox™ kits (RANDOX Laboratories Ltd.) and an Olympus AU 400 automatic biochemistry analyzer (Olympus, Tokyo, Japan).

2.10. Flow cytometry

Mitochondria activity and apoptosis status were analyzed by FACSCalibur flow cytometer (Becton Dickinson System, San Jose, CA, USA). The excitation wavelength was 488 nm supplied by an argon laser. The sperm population was gated using forward and side scatter. The volume of green (Annexin-V and Rhodamine-123) and red fluorescence were detected respectively with a FL1 photodetector (530 nm) and FL3 photodetector (610 nm). Next, $10 \times 10^3$ events were examined for each assay.

2.10.1. Apoptosis status

For detection of sperm apoptosis status [25], the sperm samples were washed in calcium buffer and in next step, adding 10 µL Annexin V FITC (AV) was performed. Following incubating for a minimum of 20 min, 10 µL of propidium iodide (PI) was added to sperm suspension, then incubated for 10 min before flow cytometry. Following flow cytometry, sperm subpopulations process were classified into four various groups including: (1) viable non-apoptotic (AV-/PI-); (2) early apoptotic (AV+/PI-); (3) late apoptotic (AV+/PI-); and (4) necrotic (AV-/PI-) cells (Fig. 1). The late apoptotic and necrotic sperm were classified as dead sperm.

2.10.2. Mitochondrial activity
Mitochondrial activity was assessed by Rhodamine 123 (R123) and PI staining [26]. In brief, 5 microliters of R123 solution (0.01 mg/ml) and PI were added to 250 µl of diluted semen sample and, then incubated in dark place for 20 min. At last, the percentage of sperm mitochondrial activity (positive signal for Rh123 and negative signal for PI) was assessed by flow cytometer (Fig. 2).

2.11. RNA extraction and real-time polymerase chain reaction

Primers were designed using Primer3Plus online software on the basis of GenBank sequence of target genes and are presented in Table 2. The specificity of the primers was checked by a BLAST analysis of the National Center for Biotechnology information’s database. At the meantime, GAPDH was amplified as an endogenous control gene.

**Table 2**

| Gene   | Primer sequence (5’–3’)                      | Product size (bp) | Accession no. |
|--------|----------------------------------------------|-------------------|---------------|
| GAPDH  | F: ATCACAGCCACACAGAGACG                       | 120               | NM_204305.1   |
|        | R: GACTTTCCCCACAGCCTAGC                        |                   |               |
| CASPASE 3 | F: AACCAGGCTTTTCAGAGGTGAC                     | 119               | NM_204725.1   |
|        | R: CTGGTCACGTGCTGTGCAAGTA                      |                   |               |
| BCL-2  | F: AACATTGCCACCTGGATGAC                       | 118               | NM_205339.2   |

Total RNA was extracted from sperm samples using Trizol reagent (Invitrogen, Carlsbad, CA, USA) following the method provided by the manufacturer and quantified using ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). RNA was transcribed into complementary DNA with the reverse transcription reagent kit (REVERTA-L RT reagents kit; code: K3-4-100-CE) and a thermal cycler according to manufacturer’s instructions. The RT
reaction was conducted in 20 mL of reaction mixture at 37 ºC for 15 minutes and then stored at ≤ –20 ºC.

All polymerase chain reactions (PCRs) were carried out in ABI StepOnePlus Real-Time PCR Systems (Applied Biosystems, USA) using the RealQ Plus 2x Master Mix Green Kit (Ampliqon, code: A325402) following manufacturer’s instructions. As a whole, the reaction was performed at 95 ºC for 15 min, followed by 40 cycles of denaturing, and annealing and elongating (95 ºC for 15 seconds, 61 ºC for 20 seconds and 72 ºC for 30 seconds, respectively). The dissociation curves of PCR products were achieved by a following cycle of 95 ºC for 15 seconds, 60 ºC for 1 min and 95 ºC for 15 seconds, and reaction specificity was defined when there was only one specific peak in the dissociation curve. The $R^2$ values for all standard curves generated ranged 0.999, and PCR efficiencies was ≥95%. The quantitative PCR data were analysed using the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen 2001).

2.12. Artificial insemination

Reproductive performance of post-thawed sperm was assessed by artificial insemination [3]. A total of 30 Ross broiler breeder hens were caged (10 hens in each group) and fed a standard diet. The straws from each treatment were thawed and inseminated with a dose of $100 \times 10^6$ sperm. Eggs were collected for five days after the last artificial insemination. The eggs were incubated in a commercial incubator. On day 7 of incubation, fertility (by candling the eggs) and hatchability (the percentage of hatched eggs per fertile eggs) were evaluated for each treatment.

2.13. Statistical analysis

Data obtained from post-thawing quality were analyzed by PROC GLM SAS 9.1 (version 9.1, 2002, USA). Effects of supplemented antioxidant on fertility and hatchability were analyzed
using GENMOD procedure. The results are expressed as the mean±SEM. The Turkey’s test was performed to compare treatments. Significance level was adjusted to p < 0.05.

3. Results

Motility and velocity variables of frozen-thawed rooster sperm supplemented with different levels of crocin and naringenin are depicted in Table 3. C1 and N100 resulted in higher (P < 0.05) total motility and progressive motility compared to the control group. The analysis did not reveal any significant differences among different concentrations of crocin and naringenin on the VCL, VAP, VSL, ALH, LIN, BCF and STR parameters.

Table 3

| Antioxidant | TM (%) | PM (%) | VSL (µm/s) | VAP (µm/s) | VCL (µm/s) | LIN (%) | STR (%) | ALH (µm) | BCF (Hz) |
|-------------|--------|--------|------------|------------|------------|---------|---------|----------|---------|
| Control     | 61.06c | 22.03b | 16.37      | 29.94      | 52.47      | 32.88   | 54.65   | 5.25     | 15.33   |
| C0.5        | 65.19bc| 26.66ab| 17.42      | 31.74      | 56.22      | 31.32   | 54.80   | 4.94     | 15.72   |
| C1          | 74.43a | 30.88a | 18.78      | 33.13      | 57.72      | 33.03   | 57.88   | 4.58     | 16.10   |
| C1.5        | 61.34c | 25.10ab| 16.76      | 30.42      | 54.08      | 31.28   | 55.86   | 4.90     | 15.17   |
| N50         | 64.13bc| 24.58ab| 17.30      | 31.24      | 53.23      | 32.14   | 56.51   | 5.28     | 15.59   |
| N100        | 71.21bc| 28.46a | 18.68      | 32.01      | 57.13      | 33.02   | 59.25   | 4.78     | 16.06   |
| N150        | 60.94c | 21.61b | 16.54      | 30.33      | 51.08      | 31.26   | 55.59   | 5.04     | 15.49   |
| SEM         | 1.78   | 1.79   | 1.63       | 1.96       | 2.55       | 3.68    | 6.07    | 0.26     | 1.77    |

MOT: Total motility (MOT, %); PROG: Progressive motility; VSL: straight-line velocity; VAP: Average path velocity; VCL: curvilinear velocity; LIN: Linearity; STR: Straightness; ALH: Mean amplitude of the lateral head displacement; BCF: Mean of the beat cross frequency. Different superscripts within the same column indicate significant differences among groups (p < 0.05).

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 µM naringenin), N100 (Beltsville extender with 100 µM naringenin), N150 (Beltsville extender with 150 µM naringenin).

The findings of the current research revealed that plasma membrane integrity in C1 and N100 were significantly higher compared to control group (Fig. 3). Fig. 4 summarizes the data on
mitochondrial activity. The findings of this test revealed that the percentage of mitochondria activity was higher in the C1 and N100 groups. The results show that different levels of crocin and naringenin does not seem to impact the abnormal forms after freeze-thawing (Fig. 5). Superior results were observed for viable sperm in C1 and N100 compared with control group (Fig. 6).

Table 4 details the data on apoptosis status analysis. The most remarkable result is that the percentage of live sperm was emerged to be higher in 1 mM crocin and 100 µM naringenin in comparison with the control. Apoptotic spermatozoa were significantly reduced in the C1 and N100 levels when compared to control group.

### Table 4

Effect of different levels of crocin and naringenin on viable, apoptotic and dead sperm in rooster thawed semen, as assessed by flow cytometry ($n = 5$).

| Antioxidant | Live (%)  | Early apoptosis (%) | Dead (%) |
|-----------|-----------|---------------------|---------|
| Control   | 56.95<sup>b</sup> | 25.28<sup>a</sup>   | 17.76   |
| C0.5      | 60.88<sup>b</sup> | 21.88<sup>b</sup>   | 17.23   |
| C1        | 71.46<sup>a</sup> | 15.30<sup>b</sup>   | 13.23   |
| C1.5      | 57.31<sup>b</sup> | 24.47<sup>a</sup>   | 18.20   |
| N50       | 59.73<sup>b</sup> | 22.81<sup>ab</sup>  | 17.45   |
| N100      | 70.86<sup>a</sup> | 15.40<sup>b</sup>   | 13.72   |
| N150      | 57.24<sup>b</sup> | 24.78<sup>a</sup>   | 17.97   |
| SEM       | 1.39      | 1.81                | 1.87    |

Different superscripts within the same column indicate significant differences among groups ($p < 0.05$). Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 µM naringenin), N100 (Beltsville extender with 100 µM naringenin), N150 (Beltsville extender with 150 µM naringenin).

Table 5 reports the data on effects of various levels of crocin and naringenin on the oxidative parameters status of rooster sperm following freeze-thawing. We can note from the table that the highest values for TAC activity were achieved in the C1 and N100 groups compared with control
group. Also, malondialdehyde was significantly (P < 0.05) lower in C1 and N100 than the control. The analysis did not reveal any significant differences for SOD and GPx parameters.

**Table 5**

Effect of different levels of crocin and naringenin on malondialdehyde concentration (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities and total antioxidant capacity (TAC) of rooster thawed semen (n = 5).

| Antioxidant | MDA (nmol/mL) | GPx (U/mg protein) | SOD (U/mg) | TAC (mmol/l) |
|-------------|---------------|--------------------|------------|-------------|
| Control     | 4.26<sup>a</sup> | 54.00              | 107.70     | 1.13<sup>bc</sup> |
| C0.5        | 2.91<sup>c</sup> | 60.70              | 118.25     | 1.70<sup>b</sup>  |
| C1          | 1.83<sup>d</sup> | 63.20              | 124.65     | 1.85<sup>a</sup>  |
| C1.5        | 3.81<sup>ab</sup> | 55.20              | 109.38     | 1.26<sup>c</sup>  |
| N50         | 3.12<sup>bc</sup> | 57.85              | 117.87     | 1.66<sup>abc</sup>|
| N100        | 1.90<sup>d</sup> | 62.71              | 123.92     | 1.88<sup>a</sup>  |
| N150        | 4.01<sup>a</sup> | 53.61              | 108.37     | 1.18<sup>c</sup>  |
| SEM         | 0.19           | 2.14               | 6.33       | 0.13         |

Different superscripts within the same column indicate significant differences among groups (P < 0.05). Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 µM naringenin), N100 (Beltsville extender with 100 µM naringenin), N150 (Beltsville extender with 150 µM naringenin).

The results of mRNA expressions of BCL-2 and CASPASE 3 are showed in Fig.7 and Fig. 8.

The mRNA expressions of BCL-2 in the C1 and N100 group were significantly higher than that in other treatments. The expression of CASPASES 3 was significantly reduced in C1 and N100 group (P < 0.05) when compared to control group.

The findings of the fertility trial (Table 6) revealed a significantly higher (P < 0.05) percentage of fertility and hatching rate in C1 and N100 compared to the control group.
Table 6

Effect of crocin and naringenin on fertility and hatchability rates of rooster semen after freeze-thawing

| Antioxidant       | Fertility (%) | Hatchability of fertile egg (%) |
|-------------------|---------------|---------------------------------|
| Control           | 36<sup>b</sup> | 47.37<sup>a</sup>              |
| Naringenin 100 µM | 54<sup>a</sup> | 74.07<sup>a</sup>              |
| Crocin 1 mM       | 52<sup>a</sup> | 73.08<sup>a</sup>              |

Different superscripts letters within column are significantly different (P < 0.05).

4. Discussion

Studies evaluating the efficacy of antioxidants to prevent damage during sperm cryopreservation usually cause contradictory results. Some experiments have reported a protective effect against cryo-related oxidative damages [27]. However, other studies could not show significant effects; some even led to impaired sperm function [10, 28, 29]. In this context, some points must be taken into consideration when performing an antioxidant treatment. An important point is that each ROS is deactivated by a specific antioxidant system [30, 31]; therefore, if antioxidant therapy is chosen at random, this treatment will not be effective if it is not directed to ROS, which is the main cause of oxidative damage [32]. The protective effect of natural antioxidants on oxidative stress in avian species has been considered in various studies. However, such antioxidants are generally present in little amounts in semen for neutralizing the oxidative stress which occurs during in vitro sperm conservation [33]. It is demonstrated that defeating oxidative stress can be supplied by adding a variety of antioxidants to the bird sperm [21, 23, 34]. Some characteristics of crocin and naringenin make them highly effective supplements to be utilized as additives for rooster sperm cryopreservation medium. The hypothesis in the present study was that crocin and naringenin, as a supplement in freezing extenders, could be effective in eliminating oxidative damage caused by freezing.
It was observed in our study that the addition of 1 mM of crocin and 100 µM naringenin during preparation of the sperm had a beneficial effect on the total and progressive motility of sperm in comparison with the control group, while no effect was observed on the other motility parameters. The favorable effect of saffron and its bioactive component, crocin, on some parameters such as motility and viability has been demonstrated in deer, mice and humans [35-37]. It is demonstrated that in stressful conditions, naringenin has the ability to chelate irons and decrease ROS production. Interestingly, it is related to the fact that naringenin has 5-hydroxy and 4-carbonyl groups in the C-ring which plays a role in ROS scavenging, Cu, and Fe ions interaction [38, 39]. Therefore, adding naringenin to the cryopreservation medium can decrease the stress caused by freezing, consequently can increase motility which was observed in our study.

It is shown that crocin can reduce the levels of superoxide anion and hydrogen peroxide. The supplementation of crocin in the cryopreservation medium showed to be advantageous for the sperm in terms of viability at the C1 group. Carotenoids show stabilizing effect on sperm conservation by interaction with the superoxide anion [40]. Furthermore, crocin enhances the activity of particular intracellular detoxifying enzymes or effects the fluidity of the membrane, which influences its permeability to oxygen and further molecules [41].

Our previous studies has adopted an approach in the study of the associations between sperm variables and MDA levels [42]. The correlation between MDA content of the sperm and the fertilization capacity is worth mentioning [43]. Malondialdehyde levels in semen are inversely proportional to the function of sperm [32, 44]. These data were again confirmed in the present investigation, in which the MDA level was evaluated because it is known as a gold marker for oxidative stress, a phenomenon extremely associated to the antioxidant system. In line with our
study, Sapanidou, Taitzoglou (17), showed that MDA production decreased while supplementing 1 mM crocin in sperm. According to our results, naringenin 100 µM reduced the MDA level. A satisfactory explanation for this may be related to its structure-activity. Naringenin can give hydrogen to ROS that allows the acquisition of a stable composition, allowing the elimination of these free radicals. Another interesting reason is the existence of phenolic rings in naringenin which act as electron barriers to remove superoxide anions characteristic known as free radicals [45].

In the light of the data, it is clearly essential to comprehend what cellular factors normally serve as causes for free radical production by mitochondria of sperm. It is demonstrated that the generation of mitochondrial ROS raises when the membrane potential collapses pharmacologically [46]. Carotenoids have a recognized protective effect in the mitochondria and the crocin itself has been reported a mitochondrial protector [47]. Therefore, it was predictable that C1 and N100 increased mitochondrial activity after thawing. The axosomas and dense fibers associated with the central part of the sperm cells are covered by mitochondria, the organs which produce energy from ATP that are involved in sperm motility [48]. It is obvious that cryopreservation results in a reduction in sperm motility, morphological functional integrity and mitochondrial membrane potential by inducing axonemal damage [49-51]. Sperm motility is the main key for the substantial penetration of cumulus cells and the zona pellucida of the ovum [48]. A conspicuous correlation is confirmed between sperm motility and mitochondrial activity [3]. Therefore, in the present study, supplementation of sperm extender with crocin 1mM and 100 µM naringenin before cryopreservation increased membrane integrity and mitochondrial activity leading to improving sperm motility.
Mitochondrial dysfunction is shown to be a critical modulator of ROS production and consequently onset of apoptosis. An interesting result was found for crocin 1mM and 100 µM naringenin in reducing early apoptosis. This is in complete agreement with Sapanidou et al. who reported that PS externalization decreased in the group containing 1mM crocin [17]. Our results do not support the observations by Mata-Campuzano, Alvarez-Rodriguez (52), who noted that crocin did not affect apoptotic ratio in ram sperm following cryopreservation. It is indicated that various apoptogenic proteins containing Cyt-c, AIF and Endo-G are released through pores generated by the mitochondrial membrane potential and consequently inhibiting the release of different types of apoptogenic factors from mitochondria. Thereby, the expressions of caspase-3 and bcl-2 which were regulated in sperm cells owing to the release of apoptogenic factors from mitochondrial pores was inhibited in naringenin 100 and crocin 1. As explained above, naringenin is effective in conserving the mitochondrial membrane by preventing the excessive production of ROS, consequently, inhibiting the release of several apoptogenic factors from the mitochondria [53]. Also it is shown that naringenin restricts translocation of AIF and Endo-G to the nucleus by restoring mitochondrial membrane potential that prevents DNA damage and, finally inhibits cell damage [54]. It is an appreciable reason for preventing apoptosis by naringenin after freeze thawing. Naringenin can initiate the mitochondrial-mediated apoptosis pathway as revealed by an enhanced ratio of (pro-apoptotic) Bax/(anti-apoptotic) Bcl2 genes, therefore results in release of cytochrome C and consequent activation of Caspase-3 [55]. Caspase-3 is known as the critical effector caspase responsible for the execution of apoptotic cell death by cleaving numerous cellular substrates [56].

The results of this study show that the enhancement in fertility result using thawed sperm stored in C1 and N100 was consistent with the other sperm functional parameters. The freezing
and thawing process dramatically reduces the fertilization capacity of the rooster sperm. Likewise, a relatively large number of live sperm is required inside the sperm storage tubes (SST) to determine fertilization after inseminations [57]. The semen parameters related to fertility such as sperm motility, vitality and progressive motility can influence the penetration of cervical mucus. So, the strategies that enhance the sperm viability and motility will ensure sperm journey in the hen reproductive tract to attain SST and then the fertilization position. Also, enhancement of cellular variables by improving sperm antioxidant system and mitochondria activity will increase sperm function during passage in the reproductive tract [25]. Therefore, it appears that higher sperm quality in a group of C1 and N100 showed greater hatching among treatment groups by preserving more alive sperm in SST and influencing fertility in the current trial.

The present study showed that 1 mM crocin and 100 µM naringenin could beneficially affect a variety of semen quality in Ross 308 breeder roosters. Particularly, 1 mM crocin and 100 µM naringenin could protect the sperm against excessive ROS generation by reducing the pro-apoptotic (CASPASE 3) and increasing anti-apoptotic (Bcl-2) apoptosis genes. Also, enrichment of semen extender with 1 mM crocin and 100 µM naringenin improved fertilizing capacity of rooster sperm.

References

1. Polge C. Functional survival of fowl spermatozoa after freezing at −79°C. Nature. 1951;167(4258):949.

2. Zhandi M, Ansari M, Roknabadi P, Zare Shahneh A, Sharafi M. Orally administered Chrysin improves post-thawed sperm quality and fertility of rooster. Reproduction in domestic
animals = Zuchthygiene. 2017;52(6):1004-10. Epub 2017/07/12. doi: 10.1111/rda.13014. PubMed PMID: 28695606.

3. Mehdipour M, Daghigh Kia H, Moghaddam G, Hamishehkar H. Effect of egg yolk plasma and soybean lecithin on rooster frozen-thawed sperm quality and fertility. Theriogenology. 2018;116:89-94. Epub 2018/05/23. doi: 10.1016/j.theriogenology.2018.05.013. PubMed PMID: 29787941.

4. Masoudi R, Sharafi M, Zare Shahneh A, Kohram H, Nejati-Amiri E, Karimi H, et al. Supplementation of extender with coenzyme Q10 improves the function and fertility potential of rooster spermatozoa after cryopreservation. Animal reproduction science. 2018;198:193-201. Epub 2018/10/10. doi: 10.1016/j.anireprosci.2018.09.019. PubMed PMID: 30297204.

5. Askarianzadeh Z, Sharafi M, Karimi Torshizi MA. Sperm quality characteristics and fertilization capacity after cryopreservation of rooster semen in extender exposed to a magnetic field. Animal reproduction science. 2018. Epub 2018/09/18. doi: 10.1016/j.anireprosci.2018.08.043. PubMed PMID: 30220606.

6. Partyka A, Nizanski W, Bajzert J, Lukaszewicz E, Ochota M. The effect of cysteine and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology. 2013. doi: 10.1016/j.cryobiol.2013.06.002. PubMed PMID: 23770516.

7. Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reproductive biology and endocrinology : RB&E. 2004;2(12):1-7.

8. Lotfi S, Mehri M, Sharafi M, Masoudi R. Hyaluronic acid improves frozen-thawed sperm quality and fertility potential in rooster. Animal reproduction science. 2017;184:204-10. Epub 2017/08/07. doi: 10.1016/j.anireprosci.2017.07.018. PubMed PMID: 28781155.
9. Nandi S, Whyte J, Taylor L, Sherman A, Nair V, Kaiser P, et al. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poultry science. 2016. doi: 10.3382/ps/pew133. PubMed PMID: 27099306.

10. Shojaeian K, Nouri H, Kohram H. Does MnTBAP ameliorate DNA fragmentation and in vivo fertility of frozen-thawed Arabian stallion sperm? Theriogenology. 2018;108:16-21. Epub 2017/11/29. doi: 10.1016/j.theriogenology.2017.11.019. PubMed PMID: 29182942.

11. Akain PP, Bucak MN, Gungor Ş, Baspinar N, Çoyan K, Dursun Ş, et al. Influence of lycopene and cysteamine on sperm and oxidative stress parameters during liquid storage of ram semen at 5° C. Small Ruminant Research. 2016;137:117-23.

12. Sariozkan S, Tuncer PB, Buyukleblebici S, Bucak MN, Canturk F, Eken A. Antioxidative effects of cysteamine, hyaluronan and fetuin on post-thaw semen quality, DNA integrity and oxidative stress parameters in the Brown Swiss bull. Andrologia. 2015;47(2):138-47. doi: 10.1111/and.12236. PubMed PMID: 24499020.

13. Bucak MN, Keskin N, Taspinar M, Coyan K, Baspinar N, Cenariu MC, et al. Raffinose and hypotaurine improve the post-thawed Merino ram sperm parameters. Cryobiology. 2013;67(1):34-9. doi: 10.1016/j.cryobiol.2013.04.007. PubMed PMID: 23644017.

14. Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem. 2005;53(6):2009-14.

15. Mershiba SD, Dassprakash MV, Saraswathy SD. Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep. 2013;40(5):3681-91.

16. Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res. 2012;146(3):354-9.
17. Sapanidou V, Taitzoglou I, Tsakmakidis I, Kourtzelis I, Fletouris D, Theodoridis A, et al. Antioxidant effect of crocin on bovine sperm quality and in vitro fertilization. Theriogenology. 2015;84(8):1273-82. doi: 10.1016/j.theriogenology.2015.07.005. PubMed PMID: 26253435.

18. Domínguez-Rebolledo ÁE, Fernández-Santos MR, Bisbal A, Ros-Santaella JL, Ramón M, Carmona M, et al. Improving the effect of incubation and oxidative stress on thawed spermatozoa from red deer by using different antioxidant treatments. Reproduction, Fertility and Development. 2010;22(5):856-70.

19. Burrows W, Quinn JJPS. The collection of spermatozoa from the domestic fowl and turkey. 1937;16(1):19-24.

20. Amini MR, Kohram H, Zare Shahaneh A, Zhandi M, Sharideh H, Nabi MM. The effects of different levels of vitamin E and vitamin C in modified Beltsville extender on rooster post-thawed sperm quality. Cell and tissue banking. 2015;16(4):587-92. Epub 2015/03/18. doi: 10.1007/s10561-015-9506-9. PubMed PMID: 25779925.

21. Fattah A, Sharafi M, Masoudi R, Shahverdi A, Esmaeili V, Najafi A. L-Carnitine in rooster semen cryopreservation: Flow cytometric, biochemical and motion findings for frozen-thawed sperm. Cryobiology. 2017;74:148-53. doi: 10.1016/j.cryobiol.2016.10.009. PubMed PMID: 27983947.

22. Najafi A, Zhandi M, Towhidi A, Sharafi M, Akbari Sharif A, Khodaei Motlagh M, et al. Trehalose and glycerol have a dose-dependent synergistic effect on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. Cryobiology. 2013;66(3):275-82. doi: 10.1016/j.cryobiol.2013.03.002. PubMed PMID: 23500077.
23. Najafi A, Kia HD, Hamishehkar H, Moghaddam G, Alijani S. Effect of resveratrol-loaded nanostructured lipid carriers supplementation in cryopreservation medium on post-thawed sperm quality and fertility of roosters. Animal reproduction science. 2019;201:32-40.

24. Najafi A, Taheri RA, Mehdipour M, Martínez-Pastor F, Rouhollahi AA, Nourani MR. Improvement of post-thawed sperm quality in broiler breeder roosters by ellagic acid-loaded liposomes. Poultry science. 2018.

25. Feyzi S, Sharafi M, Rahimi S. Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm. Poultry science. 2018;97(7):2582-90. Epub 2018/03/28. doi: 10.3382/ps/pey067. PubMed PMID: 29584912.

26. Najafi A, Taheri RA, Mehdipour M, Farnoosh G, Martinez-Pastor F. Lycopene-loaded nanoliposomes improve the performance of a modified Beltsville extender broiler breeder roosters. Animal reproduction science. 2018. Epub 2018/06/09. doi: 10.1016/j.anireprosci.2018.05.021. PubMed PMID: 29880233.

27. Carneiro JAM, Canisso IF, Bandeira RS, Scheeren VFC, Freitas-Dell'Aqua CP, Alvarenga MA, et al. Effects of coenzyme Q10 on semen cryopreservation of stallions classified as having good or bad semen freezing ability. Animal reproduction science. 2018;192:107-18. Epub 2018/03/06. doi: 10.1016/j.anireprosci.2018.02.020. PubMed PMID: 29502896.

28. Masoudi R, Sharafi M, Shahneh AZ, Khodaei-Motlagh M. Effects of reduced glutathione on the quality of rooster sperm during cryopreservation. Theriogenology. 2019.

29. Masoudi R, Sharafi M, Azadi LP. Improvement of rooster semen quality using coenzyme Q10 during cooling storage in the Lake extender. Cryobiology. 2019. Epub 2019/03/13. doi: 10.1016/j.cryobiol.2019.03.003. PubMed PMID: 30857955.
30. Homa ST, Vessey W, Perez-Miranda A, Riyait T, Agarwal A. Reactive Oxygen Species (ROS) in human semen: determination of a reference range. Journal of assisted reproduction and genetics. 2015;32(5):757-64. doi: 10.1007/s10815-015-0454-x. PubMed PMID: 25749739; PubMed Central PMCID: PMCPMC4429439.

31. Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma R, et al. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reproductive biology and endocrinology: RB&E. 2014;12:126. doi: 10.1186/1477-7827-12-126. PubMed PMID: 25527074; PubMed Central PMCID: PMCPMC4292986.

32. Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function—in sickness and in health. Journal of andrology. 2012;33(6):1096-106. doi: 10.2164/jandrol.112.016535. PubMed PMID: 22879525.

33. Partyka A, Strojecki M, Nizanski W. Cyclodextrins or cholesterol-loaded-cyclodextrins? A better choice for improved cryosurvival of chicken spermatozoa. Animal reproduction science. 2018;193:235-44. Epub 2018/04/28. doi: 10.1016/j.anireprosci.2018.04.076. PubMed PMID: 29699918.

34. Najafi D, Taheri RA, Najafi A, Rouhollahi AA, Alvarez-Rodriguez M. Effect of Achillea millefolium-loaded nanophytosome in the post-thawing sperm quality and oxidative status of rooster semen. Cryobiology. 2018;82:37-42. Epub 2018/04/22. doi: 10.1016/j.cryobiol.2018.04.011. PubMed PMID: 29678467.

35. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med. 2002;227(1):20-5.
36. Tsantarliotou MP, Poutahidis T, Markala D, Kazakos G, Sapanidou V, Lavrentiadou S, et al. Crocetin administration ameliorates endotoxin-induced disseminated intravascular coagulation in rabbits. Blood Coagul Fibrinolysis. 2013;24(3):305-10.

37. Mardani M, Vaez A, Razavi S. Effect of saffron on rat sperm chromatin integrity. Iranian journal of reproductive medicine. 2014;12(5):343.

38. Mostafa HE, Abd El-Baset SA, Kattaia AA, Zidan RA, Al Sadek MM. Efficacy of naringenin against permethrin-induced testicular toxicity in rats. Int J Exp Pathol. 2016. doi: 10.1111/iep.12168. PubMed PMID: 26867500.

39. Adana MY, Akang EN, Peter AI, Jegede AI, Naidu ECS, Tiloke C, et al. Naringenin attenuates highly active antiretroviral therapy-induced sperm DNA fragmentations and testicular toxicity in Sprague-Dawley rats. Andrology. 2018;6(1):166-75. Epub 2017/11/28. doi: 10.1111/andr.12439. PubMed PMID: 29179260.

40. Heidary M, Vahhabi S, Nejadi JR, Delfan B, Birjandi M, Kaviani H, et al. Effect of saffron on semen parameters of infertile men. Urology Journal. 2008;5(4):255-9.

41. Assimopoulou A, Sinakos Z, Papageorgiou V. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2005;19(11):997-1000.

42. Najafi A, Daghgh Kia H, Mehdiipour M, Shamsollahi M, Miller DJ. Does fennel extract ameliorate oxidative stress frozen-thawed ram sperm? Cryobiology. 2019;87:47-51. Epub 2019/03/05. doi: 10.1016/j.cryobiol.2019.02.006. PubMed PMID: 30831077.

43. Tuncer PB, Buyukleblebici S, Eken A, Tasdemir U, Durmaz E, Buyukleblebici O, et al. Comparison of cryoprotective effects of lycopene and cysteamine in different cryoprotectants on
bull semen and fertility results. Reproduction in domestic animals = Zuchthygiene. 2014;49(5):746-52. doi: 10.1111/rda.12359. PubMed PMID: 24942070.

44. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Human reproduction. 2011;26(7):1628-40. doi: 10.1093/humrep/der132. PubMed PMID: 21546386.

45. Yen F-L, Wu T-H, Lin L-T, Cham T-M, Lin C-C. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl4-induced acute liver failure. Pharm Res. 2009;26(4):893-902.

46. Koppers AJ, De Iuliis GN, Finnie JM, McLaughlin EA, Aitken RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. The Journal of Clinical Endocrinology & Metabolism. 2008;93(8):3199-207.

47. Venkatraman M, Konga D, Peramaiyan R, Ganapathy E, Dhanapal S. Reduction of mitochondrial oxidative damage and improved mitochondrial efficiency by administration of crocetin against benzo [a] pyrene induced experimental animals. Biol Pharm Bull. 2008;31(9):1639-45.

48. Garner D, Hafez E. Spermatozoa and seminal plasma. Reproduction in farm animals. 2000:96-109.

49. Sariozkan S, Bucak MN, Tuncer PB, Buyukleblebici S, Eken A, Akay C. Influence of fetuin and hyaluronan on the post-thaw quality and fertilizing ability of Holstein bull semen. Cryobiology. 2015;71(1):119-24. doi: 10.1016/j.cryobiol.2015.04.011. PubMed PMID: 25962321.

50. Buyukleblebici S, Tuncer PB, Bucak MN, Eken A, Sariozkan S, Tasdemir U, et al. Cryopreservation of bull sperm: effects of extender supplemented with different cryoprotectants
and antioxidants on sperm motility, antioxidant capacity and fertility results. Animal reproduction science. 2014;150(3-4):77-83. doi: 10.1016/j.anireprosci.2014.09.006. PubMed PMID: 25278438.

51. Tuncer PB, Sariozkan S, Bucak MN, Ulutas PA, Akalin PP, Buyukleblebici S, et al. Effect of glutamine and sugars after bull spermatozoa cryopreservation. Theriogenology. 2011;75(8):1459-65. Epub 2011/03/01. doi: 10.1016/j.theriogenology.2010.12.006. PubMed PMID: 21354604.

52. Mata-Campuzano M, Alvarez-Rodriguez M, Alvarez M, Tamayo-Canul J, Anel L, de Paz P, et al. Post-thawing quality and incubation resilience of cryopreserved ram spermatozoa are affected by antioxidant supplementation and choice of extender. Theriogenology. 2015;83(4):520-8. doi: 10.1016/j.theriogenology.2014.10.018. PubMed PMID: 25499089.

53. Kapoor R, Rizvi F, Kakkar P. Naringenin prevents high glucose-induced mitochondria-mediated apoptosis involving AIF, Endo-G and caspases. Apoptosis. 2013;18(1):9-27.

54. Kapoor R, Kakkar P. Naringenin accords hepatoprotection from streptozotocin induced diabetes in vivo by modulating mitochondrial dysfunction and apoptotic signaling cascade. Toxicology reports. 2014;1:569-81.

55. Arul D, Subramanian P. Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathology & Oncology Research. 2013;19(4):763-70.

56. Bakar MFA, Mohamad M, Rahmat A, Burr SA, Fry JR. Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol. 2010;48(6):1688-97.
Ansari M, Zhandi M, Kohram H, Zaghari M, Sadeghi M, Sharafi M. Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid. Theriogenology. 2017;92:69-74. doi: 10.1016/j.theriogenology.2017.01.014. PubMed PMID: 28237346.
Fig. 1. Annexin V and propidium iodide staining were used to determine the different cell populations.
Fig. 2. Flow cytometric detection of rooster sperm stained with Rhodamine123 and PI after freeze-thaw process.
Fig. 3. Effect of crocin and naringenin supplementation in cryopreservation medium on post-thawed membrane functionality of rooster sperm.

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 μM naringenin), N100 (Beltsville extender with 100 μM naringenin), N150 (Beltsville extender with 150 μM naringenin).
Fig. 4. Effect of crocin and naringenin supplementation in cryopreservation medium on post-thawed mitochondrial activity of rooster sperm.

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 μM naringenin), N100 (Beltsville extender with 100 μM naringenin), N150 (Beltsville extender with 150 μM naringenin).
Fig. 5. Effect of crocin and naringenin supplementation in cryopreservation medium on post-thawed abnormal forms of rooster sperm.

Beltswile extender without antioxidant (control), C0.5 (Beltswile extender with 0.5 mM crocin), C1 (Beltswile extender with 1 mM crocin), C1.5 (Beltswile extender with 1.5 mM crocin), N50 (Beltswile extender with 50 μM naringenin), N100 (Beltswile extender with 100 μM naringenin), N150 (Beltswile extender with 150 μM naringenin).
Fig. 6. Effect of crocin and naringenin supplementation in cryopreservation medium on post-thawed viability of rooster sperm.

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 μM naringenin), N100 (Beltsville extender with 100 μM naringenin), N150 (Beltsville extender with 150 μM naringenin).
Fig. 7. Relative mRNA expression of BCL-2 gene in the rooster sperm cryopreservation.

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 μM naringenin), N100 (Beltsville extender with 100 μM naringenin), N150 (Beltsville extender with 150 μM naringenin).
Fig. 8. Relative mRNA expression of CASPASE 3 gene in the rooster sperm cryopreservation.

Beltsville extender without antioxidant (control), C0.5 (Beltsville extender with 0.5 mM crocin), C1 (Beltsville extender with 1 mM crocin), C1.5 (Beltsville extender with 1.5 mM crocin), N50 (Beltsville extender with 50 μM naringenin), N100 (Beltsville extender with 100 μM naringenin), N150 (Beltsville extender with 150 μM naringenin).