Non-trivial t-intersecting families for vector spaces

Mengyu Cao1,2, Benjian Lv1, Kaishun Wang1, and Sanming Zhou3

1Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
2Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
3School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

Abstract

Let V be an n-dimensional vector space over a finite field \mathbb{F}_q. In this paper we describe the structure of maximal non-trivial t-intersecting families of k-dimensional subspaces of V with large size. We also determine the non-trivial t-intersecting families with maximum size. In the special case when $t = 1$ our result gives rise to the well-known Hilton-Milner Theorem for vector spaces.

AMS Classification (2020): 05D05, 05A30

Key words: Erdős-Ko-Rado Theorem; Hilton-Milner Theorem; t-intersecting family

1 Introduction

The study of intersecting families has long been an important area of research in combinatorics [6, 14] ever since the birth of the celebrated Erdős-Ko-Rado Theorem [7]. In this paper we give a description of the structure of maximal non-trivial t-intersecting families of k-subspaces of an n-dimensional vector space over a finite field whose size is a bit smaller than the bound in the Erdős-Ko-Rado Theorem for vector spaces. In particular, we extend the Hilton-Milner Theorem for vector spaces [4] by describing the structure of non-trivial t-intersecting families of vector spaces with maximum size.

Let n and k be integers with $1 \leq k \leq n$. Write $[n] = \{1, 2, \ldots, n\}$ and denote by $\binom{[n]}{k}$ the family of all k-subsets of $[n]$. For any positive integer t, a family $\mathcal{F} \subseteq \binom{[n]}{k}$ is said to be t-intersecting if $|A \cap B| \geq t$ for all $A, B \in \mathcal{F}$. A family is called intersecting if it is 1-intersecting. A t-intersecting family is called trivial if all its members contain a common specified t-subset of $[n]$, and non-trivial otherwise.

The Erdős-Ko-Rado Theorem gives the maximum size of a t-intersecting family and shows further that any t-intersecting family with maximum size is a trivial family consisting
of all \(k \)-subsets that contain a fixed \(t \)-subset of \([n]\) for \(n > (t + 1)(k - t + 1) \) \([7, 8, 23]\). In \([2, 10]\), the structure of such extremal families for any positive integers \(t, k \) and \(n \) was described. Determining the structure of non-trivial \(t \)-intersecting families of \(k \)-subsets of \([n]\) with maximum size was a long-standing problem. The first such result is the Hilton-Milner Theorem \([16]\) which describes the structure of such families for \(t = 1 \). A complete solution to this problem for any \(t \) was obtained by Ahlsvede and Khachatrian \([1]\). Recently, other maximal non-trivial intersecting families with large size have been studied. For example, Kostochka and Mubayi \([19]\) described the structure of intersecting families of \(k \)-subsets of \([n]\) whose size is quite a bit smaller than the bound \(\binom{n}{k} - 1 \) given by the Erdős-Ko-Rado Theorem. In \([15]\), Han and Kohayakawa determined the maximum size of an intersecting family which is not a subfamily of any largest or second largest maximal intersecting family, and characterized all families achieving that extremal value.

The Erdős-Ko-Rado Theorem and the Hilton-Milner Theorem for finite sets have natural extensions to vector spaces. Let \(n \) and \(k \) be integers with \(1 \leq k \leq n \), and \(V \) an \(n \)-dimensional vector space over the finite field \(\mathbb{F}_q \), where \(q \) is necessarily a prime power. We use \(\binom{V}{k} \) to denote the family of all \(k \)-dimensional subspaces of \(V \). In the sequel we will abbreviate “\(k \)-dimensional subspace” to “\(k \)-subspace”. Recall that for any positive integers \(a \) and \(b \) the Gaussian binomial coefficient is defined by

\[
\binom{a}{b} = \prod_{0 \leq i < b} q^{a - i} - 1.
\]

In addition, we set \(\binom{a}{0} = 1 \) and \(\binom{a}{-c} = 0 \) if \(c \) is a negative integer. It is well known that the size of \(\binom{V}{k} \) is equal to \(\binom{n}{k} \).

For any positive integer \(t \), a family \(\mathcal{F} \subseteq \binom{V}{k} \) is called \(t \)-intersecting if \(\dim(A \cap B) \geq t \) for all \(A, B \in \mathcal{F} \). A family is called intersecting if it is 1-intersecting. A \(t \)-intersecting family \(\mathcal{F} \subseteq \binom{V}{k} \) is called trivial if all its members contain a common specified \(t \)-subspace of \(V \) and non-trivial otherwise. In general, the triviality of an intersecting family is determined by the following parameter introduced in \([4]\): For any \(\mathcal{F} \subseteq \binom{V}{k} \), the covering number \(\tau(\mathcal{F}) \) of \(\mathcal{F} \) is the minimum dimension of a subspace \(T \) of \(V \) such that \(\dim(T \cap F) \geq 1 \) for every \(F \in \mathcal{F} \). It is clear that an intersecting family \(\mathcal{F} \) is trivial if and only if \(\tau(\mathcal{F}) = 1 \).

Let \(n, k \) and \(t \) be positive integers with \(n \geq 2k \geq 2t \), and \(\mathcal{F} \subseteq \binom{V}{k} \) a \(t \)-intersecting family with maximum size. The Erdős-Ko-Rado Theorem for vector spaces shows that \(\mathcal{F} \) must be a trivial family consisting of all \(k \)-subspaces of \(V \) which contain a fixed \(t \)-subspace of \(V \), or \(n = 2k \) and \(\mathcal{F} \) consists of all \(k \)-subspaces of a fixed \((n-t)\)-subspace of \(V \) \([6, 12, 17, 20]\). Using the covering number, Blokhuis et al. \([4]\) obtained a vector space version of the Hilton-Milner Theorem, which described the structure of any non-trivial intersecting family with maximum size.

In this paper we study maximal non-trivial \(t \)-intersecting families of \(k \)-subspaces of \(V \) for any positive integer \(t \). By \([3, \text{Remark (ii) in Section 9.3}]\) any maximal non-trivial \((k - 1)\)-intersecting family of \(k \)-subspaces of \(V \) is the collection of all \(k \)-subspaces contained in a fixed \((k+1)\)-subspace of \(V \). Henceforth we will only consider the case when \(6 \leq 2k \leq n \) and \(1 \leq t \leq k - 2 \).

To present our results let us first introduce the following three constructions of \(t \)-intersecting families of \(k \)-subspaces of \(V \).

Family 1. Let \(X \) and \(M \) be subspaces of \(V \) such that \(X \subseteq M \), \(\dim(X) = t \) and \(\dim(M) =
Define
\[H_1(X, M) = \left\{ F \in \binom{V}{k} \mid X \subseteq F, \dim(F \cap M) \geq t + 1 \right\} \cup \binom{M}{k}. \]

Family II. Let \(X, M \) and \(C \) be subspaces of \(V \) such that \(X \subseteq M \subseteq C, \) \(\dim(X) = t, \) \(\dim(M) = k \) and \(\dim(C) = c, \) where \(c \in \{k + 1, k + 2, \ldots, 2k - t, n\} \). Define
\[H_2(X, M, C) = A(X, M) \cup B(X, M, C) \cup C(X, M, C), \]
where
\[
A(X, M) = \left\{ F \in \binom{V}{k} \mid X \subseteq F, \dim(F \cap M) \geq t + 1 \right\},
\]
\[
B(X, M, C) = \left\{ F \in \binom{V}{k} \mid F \cap M = X, \dim(F \cap C) = c - k + t \right\},
\]
\[
C(X, M, C) = \left\{ F \in \binom{C}{k} \mid \dim(F \cap X) = t - 1, \dim(F \cap M) = k - 1 \right\}.
\]

Family III. Let \(Z \) be a \((t + 2)\)-subspace of \(V \). Define
\[H_3(Z) = \left\{ F \in \binom{V}{k} \mid \dim(F \cap Z) \geq t + 1 \right\}. \]

It is straightforward to verify that \(H_1(X, M), H_2(X, M, C), H_2(X, M, V) \) and \(H_3(Z) \) are all non-trivial \(t \)-intersecting families of \(k \)-subspaces of \(V \).

Remark 1 In Family II, if \(C \) satisfies \(\dim(C) = k + 1, \) then \(H_2(X, M, C) = H_1(X, C); \) if \(t \) and \(k \) satisfy \(t = k - 2, \) then \(H_2(X, M, V) = H_3(M). \)

Our first main result describes the structure of all maximal non-trivial \(t \)-intersecting families of \(k \)-subspaces of \(V \) with large size.

Theorem 1.1 Let \(n, k \) and \(t \) be positive integers with \(t \leq k - 2 \) and \(2k + t + \min\{4, 2t\} \leq n. \) If \(\mathcal{F} \subseteq \binom{V}{k} \) is a maximal non-trivial \(t \)-intersecting family and
\[
|\mathcal{F}| \geq \binom{k - t}{1} \binom{n - t - 1}{k - t - 1} - q \binom{k - t}{2} \binom{n - t - 2}{k - t - 2},
\]
then one of the following holds:

(i) \(\mathcal{F} = H_2(X, M, C) \) for some \(t \)-subspace \(X, \) \(k \)-subspace \(M \) and \(c \)-subspace \(C \) of \(V \) with \(X \subseteq M \subseteq C \) and \(c \in \{k + 1, k + 2, \ldots, 2k - t, n\}; \)

(ii) \(\mathcal{F} = H_3(Z) \) for some \((t + 2)\)-subspace \(Z \) of \(V, \) and \(\frac{k}{2} - 1 \leq t \leq k - 2. \)

By comparing the size of the families given in Theorem 1.1, we can describe the structure of the non-trivial \(t \)-intersecting families with maximum size. Our second main result is as follows.
Theorem 1.2 Let n, k and t be positive integers with $t \leq k-2$ and $2k+t+\min\{4,2t\} \leq n$. Then, for any non-trivial t-intersecting family $\mathcal{F} \subseteq \binom{V}{k}$, the following hold:

(i) if $1 \leq t \leq \frac{k}{2} - 1$, then

$$|\mathcal{F}| \leq \binom{n-t}{k-t} - q^{(t+1-t)(k-t)} \binom{n-k-1}{k-t} + q^{k+1-t} \binom{t}{1},$$

and equality holds if and only if $\mathcal{F} = \mathcal{H}_1(X,M)$ for some t-subspace X and $(k+1)$-subspace M of V with $X \subset M$;

(ii) if $\frac{k}{2} - 1 < t \leq k-2$, then

$$|\mathcal{F}| \leq \binom{t + 2}{1} \binom{n-t-1}{k-t-1} - q \binom{t + 1}{1} \binom{n-t-2}{k-t-2},$$

and equality holds if and only if $\mathcal{F} = \mathcal{H}_3(Z)$ for some $(t+2)$-subspace Z of V, or $(t,k) = (1,3)$ and $\mathcal{F} = \mathcal{H}_1(X,M)$ for some 1-subspace X and 3-subspace M of V with $X \subset M$.

In the special case when $t = 1$, Theorem 1.2 gives rise to the Hilton-Milner Theorem for vector spaces with $n \geq 2k+3$ ([4]).

The rest of this paper is organized as follows. In the next section we will prove a number of inequalities for the sizes of the intersecting families in Families I, II and III. In §3 we will prove some upper bounds for the sizes of non-trivial t-intersecting families of subspaces of V using a key notion—t-covering number, which is a generalization of the covering number. After these preparations we will prove Theorems 1.1 and 1.2 in §4.

2 Inequalities for the sizes of the constructed families

2.1 Equalities and formulas involving the Gaussian binomial coefficients

This subsection is a preparation for §2.2 and §3. The following lemma can be easily proved.

Lemma 2.1 Let m and i be positive integers with $i \leq m$. Then the following hold:

(i) $\binom{m}{i} = \binom{m-1}{i-1} + q^{i} \binom{m-1}{i}$ and $\binom{m}{i} = \frac{q^m-1}{q-1} \cdot \frac{m-1}{i-1}$;

(ii) $q^{m-i} < \frac{q^m-1}{q-1} < q^{m-i+1}$ and $q^{i-m-1} < \frac{q^m-1}{q-1} < q^{i-m}$ if $i < m$;

(iii) $q^{i(m-i)} \leq \binom{m}{i} < q^{i(m-i+1)}$, and $q^{i(m-i)} < \binom{m}{i}$ if $i < m$;

(iv) $\frac{q^m-1}{q-1} < 2q^{m-i}$.

Set

$$g_1(t,n) = \binom{t+2}{1} \binom{n-t-1}{t+1} - q \binom{t+1}{1} \binom{n-t-2}{t},$$

$$g_2(t,n) = \binom{n-t}{t+2} - q^{(t+2)^2} \binom{n-2t-2}{t+2}.$$
Lemma 2.2 We have
\[g_1(t, n) - g_2(t, n) = \sum_{j=1}^{t} q^{j(t+2)+1} \left(\begin{array}{c} t+1-j \\ t \end{array} \right) \left(\begin{array}{c} n-t-2-j \\ t \end{array} \right). \]

Proof. By Lemma 2.1(i), we have
\[g_1(t, n) = \left[\begin{array}{c} n-t-1 \\ t+1 \end{array} \right] + q \left[\begin{array}{c} t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-1 \\ t+1 \end{array} \right] - q \left[\begin{array}{c} t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ t \end{array} \right] \]
\[= \left[\begin{array}{c} n-t-1 \\ t+1 \end{array} \right] + q^{t+1} \left[\begin{array}{c} t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ t+1 \end{array} \right]. \]

Using Lemma 2.1(i) repeatedly, we can show that
\[g_2(t, n) = \sum_{i=1}^{t+2} q^{(t+2)(i-1)} \left[\begin{array}{c} n-t-i \\ t+1 \end{array} \right]. \]

Set
\[f(a) = \sum_{j=1}^{a} q^{j(t+2)+1} \left[\begin{array}{c} t+1-j \\ t \end{array} \right] \left[\begin{array}{c} n-t-2-j \\ t \end{array} \right] + q^{(a+1)(t+2)} \left[\begin{array}{c} t+1-a \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2-a \\ t+1 \end{array} \right] \]
\[- \sum_{i=a+2}^{t+2} q^{(t+2)(i-1)} \left[\begin{array}{c} n-t-i \\ t+1 \end{array} \right] \]
for \(a \in \{0, 1, \ldots, t\}. \) Then
\[g_1(t, n) - g_2(t, n) = q^{t+2} \left[\begin{array}{c} t+1 \\ t \end{array} \right] \left[\begin{array}{c} n-t-2 \\ t+1 \end{array} \right] - \sum_{i=2}^{t+2} q^{(t+2)(i-1)} \left[\begin{array}{c} n-t-i \\ t+1 \end{array} \right] = f(0). \]

On the other hand, by Lemma 2.1(i), we have
\[f(a+1) - f(a) = q^{(a+1)(t+2)+1} \left[\begin{array}{c} t-a \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-3-a \\ t \end{array} \right] + q^{(a+2)(t+2)} \left[\begin{array}{c} t-a \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-3-a \\ t+1 \end{array} \right] \]
\[- q^{(a+1)(t+2)} \left[\begin{array}{c} t+1-a \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2-a \\ t+1 \end{array} \right] + q^{(t+2)(a+1)} \left[\begin{array}{c} n-t-a-2 \\ t+1 \end{array} \right] \]
\[= 0. \]

Since this holds for each \(a, \) we obtain \(f(0) = f(1) = \cdots = f(t). \) Therefore,
\[g_1(t, n) - g_2(t, n) = f(0) = f(t) = \sum_{j=1}^{t} q^{j(t+2)+1} \left[\begin{array}{c} t+1-j \\ t \end{array} \right] \left[\begin{array}{c} n-t-2-j \\ t \end{array} \right] \]
as required. \(\square \)

Let \(W \) be an \((e+l)\)-dimensional vector space over \(\mathbb{F}_q, \) where \(l, e \geq 1, \) and let \(L \) be a fixed \(l \)-subspace of \(W. \) We say that an \(m \)-subspace \(U \) is of type \((m, h)\) if \(\dim(U \cap L) = h. \) Define \(\mathcal{M}(m, h; e+l, e) \) to be the set of all subspaces of \(W \) with type \((m, h). \)
Lemma 2.3 ([21, Lemma 2.1]) \(\mathcal{M}(m, k; e + l, e) \) is non-empty if and only if \(0 \leq h \leq l \) and \(0 \leq m - h \leq e \). Moreover, if \(\mathcal{M}(m, h; e + l, e) \) is non-empty, then

\[
|\mathcal{M}(m, h; e + l, e)| = q^{(m-h)(l-h)} \left[\begin{array}{c} e \\ m-h \\ h \end{array} \right].
\]

Define

\[
N'(m_1, h_1; m, h; e + l, e)
\]
to be the number of subspaces of \(W \) with type \((m, h)\) containing a given subspace with type \((m_1, h_1)\). Observe that \(|\mathcal{M}(m, h; e + l, e)| = N'(0,0; m, h; e + l, e)\).

Lemma 2.4 ([22]) \(N'(m_1, h_1; m, h; e + l, e) \neq 0 \) if and only if \(0 \leq h_1 \leq h \leq l \) and \(0 \leq m_1 - h_1 \leq m - h \leq e \). Moreover, if \(N'(m_1, h_1; m, h; e + l, e) \neq 0 \), then

\[
N'(m_1, h_1; m, h; e + l, e) = q^{(l-h)(m-h-m_1+h_1)} \left[\begin{array}{c} e - (m_1 - h_1) \\ (m-h)-(m_1-h_1) \\ h-h_1 \end{array} \right].
\]

Let

\[
h_1(t, k + 1) = |\mathcal{H}_1(X, M)|,
\]

\[
h_2(t, k, c) = |\mathcal{H}_2(X, M, C)|, \text{ for } c \in \{k + 1, k + 2, \ldots, 2k - t, n\},
\]

and

\[
h_3(t + 2) = |\mathcal{H}_3(Z)|.
\]

The following lemma gives the sizes of Families I, II and III.

Lemma 2.5 Suppose \(c \in \{k + 1, k + 2, \ldots, 2k - t, n\} \). Then the following hold:

\[
h_1(t, k + 1) = \left[\begin{array}{c} n-t \\ k-t \end{array} \right] - q^{(k+1-t)(k-t)} \left[\begin{array}{c} n-k-1 \\ k-t \end{array} \right] + q^{k+1-t} \left[\begin{array}{c} t \\ 1 \end{array} \right]; \quad (4)
\]

\[
h_2(t, k, c) = \left[\begin{array}{c} n-t \\ k-t \end{array} \right] - q^{(k-t)^2} \left[\begin{array}{c} n-k \\ k-t \end{array} \right] + q^{(k-t)^2} \left[\begin{array}{c} n-c \\ 2k-c-t \end{array} \right] + q^{k-t+1} \left[\begin{array}{c} c-k \\ 1 \end{array} \right] \left[\begin{array}{c} t \\ 1 \end{array} \right]; \quad (5)
\]

\[
h_3(t + 2) = \left[\begin{array}{c} t + 2 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-1 \\ k-t-1 \end{array} \right] - q^{t+1} \left[\begin{array}{c} t + 1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right]. \quad (6)
\]

Proof. Suppose that \(X, M \) and \(C \) are subspaces of \(V \) with \(X \subseteq M \subseteq C \) such that \(\dim(X) = t \), \(\dim(M) = k \) and \(\dim(C) = c \). Then

\[
\mathcal{A}(X, M) = \left\{ F \in \left[\begin{array}{c} V \\ k \end{array} \right] \mid X \subseteq F \right\} \setminus \left\{ F \in \left[\begin{array}{c} V \\ k \end{array} \right] \mid F \cap M = X \right\},
\]

which implies that \(|\mathcal{A}(X, M)| = \left[\begin{array}{c} n-t \\ k-t \end{array} \right] - q^{(k-t)^2} \left[\begin{array}{c} n-k \\ k-t \end{array} \right]\) by Lemmas 2.3 and 2.4. From Corollary 2.3 and Lemma 2.1 in [13], we have

\[
|\mathcal{B}(X, M, C)| = q^{(k-t)^2} \left[\begin{array}{c} n-c \\ 2k-c-t \end{array} \right] \text{ and } |\mathcal{C}(X, M, C)| = q^{k-t+1} \left[\begin{array}{c} c-k \\ 1 \end{array} \right] \left[\begin{array}{c} t \\ 1 \end{array} \right].
\]

Since \(h_2(t, k, c) = |\mathcal{A}(X, M)| + |\mathcal{B}(X, M, C)| + |\mathcal{C}(X, M, C)| \), we obtain (5) immediately. By Remark 1 and Lemma 2.1(i), we obtain (4).

Consider the family \(\mathcal{H}_3(Z) \), where \(Z \) is a \((t + 2)\)-subspace of \(V \). By Lemma 2.3, the number of \(k \)-subspaces \(F \) of \(V \) satisfying \(\dim(F \cap Z) = t + 1 \) is \(q^{k-t-1} \left[\begin{array}{c} n-t-2 \\ k-t-1 \end{array} \right] \left[\begin{array}{c} t+2 \\ 1 \end{array} \right] \), and the number of \(k \)-subspaces \(F \) of \(V \) satisfying \(\dim(F \cap Z) = t + 2 \) is \(\left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right] \). Combining these with Lemma 2.2(i), we obtain (6) immediately. \(\square \)
2.2 Inequalities for \(h_1(t, k + 1), h_2(t, k, c) \) and \(h_3(t + 2) \)

Lemma 2.6 Let \(n, k \) and \(t \) be positive integers with \(6 \leq 2k \leq n \) and \(1 \leq t \leq k - 2 \).

(i) We have

\[h_1(t, k + 1) = h_2(t, k, k + 1), \]

and

\[h_2(t, k, c) > h_2(t, k, c + 1) \]

for \(c \in \{k + 1, k + 2, \ldots, 2k - t - 1\} \).

(ii) Assume that \(1 \leq t \leq k - 3 \). If \(2k \leq n \leq (k - t)^2 - 1 \), or \(n = (k - t)^2 \) and \(q \geq 3 \), or \((n, q, t) = ((k - t)^2, 2, 1) \), then

\[h_2(t, k, 2k - t) > h_2(t, k, n). \]

If \(n \geq (k - t)^2 + 1 \), or \((n, q) = ((k - t)^2, 2) \) and \(t \geq 2 \), then

\[h_2(t, k, k + 1) > h_2(t, k, n) > h_2(t, k, 2k - t). \]

(iii) Assume that \(t = k - 2 \). If \(t = 1 \), then

\[h_2(t, k, n) = h_2(t, k, k + 1); \]

and if \(t \geq 2 \), then

\[h_2(t, t + 2, n) > h_2(t, t + 2, t + 3). \]

Proof. (i) As seen in Remark 1 we have \(h_1(t, k + 1) = h_2(t, k, k + 1) \) for \(1 \leq t \leq k - 2 \). For \(c \in \{k + 1, k + 2, \ldots, 2k - t - 1\} \), by Lemma 2.1(i), we have

\[h_2(t, k, c) - h_2(t, k, c + 1) = q^{(k-t)^2+2k-c-t} \left[\frac{n-c-1}{2k-c-t} \right] - q^{c-t+1} \left[t \right]. \]

Since \(\left[\frac{n-c-1}{2k-c-t} \right] \geq q^{(2k-c-t)(n-2k+t-1)} \) and \(\left[t \right] < q^t \) by Lemma 2.1(iii), and since

\[
\begin{align*}
(k-t)^2 + 2k - c - t + (2k - c - t)(n - 2k + t - 1) - c - 1 \\
= (k-t-1)^2 + (2k - c - t - 1)(n - 2k + t + 1) + (n - 2k) - 1 \\
\geq 0,
\end{align*}
\]

we obtain \(h_2(t, k, c) - h_2(t, k, c + 1) > 0 \) for \(c \in \{k + 1, k + 2, \ldots, 2k - t - 1\} \).

(ii) Note that

\[h_2(t, k, n) - h_2(t, k, c) = q^{c-t+1} \left[t \right] \left[\frac{n-c}{1} \right] - q^{(k-t)^2} \left[\frac{n-c}{2k-c-t} \right] \] (7)
for any $c \in \{k + 1, k + 2, \ldots, 2k - t\}$. When $c = k + 1$, by (7) and Lemma 2.1(iii), and noting that $t \leq k - 3$ and $2k \leq n$, we obtain
\[
h_2(t, k, n) - h_2(t, k, k + 1) = q^{k-t+2} \left[t \left[\begin{array}{c} n-k-1 \\ 1 \end{array} \right] - q^{(k-t)^2} \left[n-k-1 \right] _{k-t-1} \right] < q^{n+1} - q^{(n-k+1)(k-t-1)+1} < 0.
\]

When $c = 2k - t$, by (7) again, we have
\[
h_2(t, k, n) - h_2(t, k, 2k - t) = q^{2k-2t+1} \left[t \left[\begin{array}{c} n-2k+t \\ 1 \end{array} \right] - q^{(k-t)^2} \right].
\]
By Lemma 2.1(iii), if $2k \leq n \leq (k-t)^2 - 1$, then
\[
h_2(t, k, n) - h_2(t, k, 2k - t) < q^{n+1} - q^{(k-t)^2} \leq 0;
\]
and if $n \geq (k-t)^2 + 1$, then
\[
h_2(t, k, n) - h_2(t, k, 2k - t) > q^{n-1} - q^{(k-t)^2} \geq 0.
\]

Now assume that $n = (k-t)^2$. Then
\[
h_2(t, k, n) - h_2(t, k, 2k - t) = \frac{1}{(q-1)^2} \left((q^t - 1)(q^{n-t+1} - q^{2k-2t+1}) - q^{(k-t)^2}(q-1)^2 \right) = \frac{1}{(q-1)^2} \left(q^{(k-t)^2}(-q^2 + 3q - 1 - q^{-t+1}) - q^{2k-2t+1}(q^t - 1) \right).
\]
If $q \geq 3$, then $-q^2 + 3q \leq 0$, and $h_2(t, k, n) - h_2(t, k, 2k - t) < 0$. If $q = 2$ and $t = 1$, then $h_2(t, k, n) - h_2(t, k, 2k - t) = -2^{2k-1} < 0$. If $q = 2$ and $t \geq 2$, then
\[
h_2(t, k, n) - h_2(t, k, 2k - t) = 2^{(k-t)^2} (1 - 2^{-t+1}) - 2^{2k-2t+1}(2^t - 1) \geq 2^{(k-t)^2-1} (2^{2k-2t+1} + 2^{2k-2t+1}) > 0
\]
as $(k-t)^2 = n \geq 2k$.

(iii) If $t = k - 2$, then by (7) we have
\[
h_2(t, k, n) - h_2(t, k, k + 1) = q^{k-2t} \left[n-k-1 \right] _{k-t-1} - q^{(n-k-1)(n-t-2)}.
\]
It is clear that $h_2(t, k, n) - h_2(t, k, k + 1) = 0$ if $t = 1$ and $h_2(t, k, n) - h_2(t, k, k + 1) > 0$ if $t \geq 2$.

Define
\[
f(n, k, t) = \left[n-t-1 \right] _{k-t-1} - q \left[n-t-2 \right] _{k-t-2}.
\]

Lemma 2.7 Let n, k and t be positive integers with $6 \leq 2k \leq n$ and $1 \leq t \leq k - 2$.

(i) $\min\{h_2(t, k, 2k - t), h_2(t, k, n)\} \geq f(n, k, t)$.

8
If $1 \leq t \leq k - 3$, then
\[
h_1(t, k + 1) \leq \left[\begin{array}{c} k - t + 1 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ k - t - 1 \end{array} \right]. \tag{9}
\]

If $1 \leq t \leq k - 4$, then
\[
h_1(t, k + 1) \leq \left[\begin{array}{c} k - t + 1 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ k - t - 1 \end{array} \right] - q^{(k-t-1)(k-t-2)+1} \left[\begin{array}{c} n - k - 1 \\ k - t - 2 \end{array} \right] \left[\begin{array}{c} k + 1 - t \\ 2 \end{array} \right]. \tag{10}
\]

Proof. Let X and M be subspaces of V with $\dim(X) = t$ and $X \subseteq M$. For each $i \in \{t, t + 1, \ldots, k\}$, set
\[
A_i(X, M) = \left\{ F \in \left[V \atop k \right] \mid X \subseteq F, \dim(F \cap M) = i \right\}
\]
and
\[
\mathcal{L}_i(X, M) = \left\{ (I, F) \in \left[V \atop i \right] \times \left[V \atop k \right] \mid X \subseteq I \subseteq M, I \subseteq F \right\}.
\]
Using Lemma 2.1 and double counting $|\mathcal{L}_i(X, M)|$, we obtain
\[
|\mathcal{L}_i(X, M)| = \sum_{j=i}^{k} |A_j(X, M)| \cdot \left[\begin{array}{c} j - t \\ i - t \end{array} \right] = \left[\begin{array}{c} \dim(M) - t \\ i - t \end{array} \right] \left[\begin{array}{c} n - i \\ k - i \end{array} \right]. \tag{11}
\]
In particular, we have
\[
|\mathcal{L}_{t+1}(X, M)| = \sum_{j=t+1}^{k} |A_j(X, M)| + \sum_{j=t+2}^{k} |A_j(X, M)| \cdot \left(\left[\begin{array}{c} j - t \\ 1 \end{array} \right] - 1 \right). \tag{12}
\]

(i) Let M be a k-subspace of V and $A(X, M)$ the family constructed in Family II. Observe that $A(X, M) = \bigcup_{j=t+1}^{k} A_j(X, M)$. By (11) and (12), we obtain
\[
|\mathcal{L}_{t+1}(X, M)| = \left[\begin{array}{c} k - t \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ k - t - 1 \end{array} \right]
\leq |A(X, M)| + \sum_{j=t+2}^{k} |A_j(X, M)| \cdot q^{\left[\begin{array}{c} j - t \\ 2 \end{array} \right]}
= |A(X, M)| + q |\mathcal{L}_{t+2}(X, M)|
= |A(X, M)| + q \left[\begin{array}{c} k - t \\ 2 \end{array} \right] \left[\begin{array}{c} n - t - 2 \\ k - t - 2 \end{array} \right].
\]
That is,
\[
|A(X, M)| \geq \left[\begin{array}{c} k - t \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ k - t - 1 \end{array} \right] - q \left[\begin{array}{c} k - t \\ 2 \end{array} \right] \left[\begin{array}{c} n - t - 2 \\ k - t - 2 \end{array} \right].
\]
We then obtain (i) by the definitions of $\mathcal{H}_2(X, M, C)$ and $\mathcal{H}_2(X, M, V)$ and the proof of Lemma 2.5.
(ii) Let M be a $(k + 1)$-subspace of V and $\mathcal{A}'(X, M) = \cup_{j=t+1}^{k} \mathcal{A}_j(X, M)$. By (11) and (12) again, we have

$$|L_{t+1}(X, M)| = \left[k - t + 1 \right] \left[n - t - 1 \right] \left[1 \right]$$

$$= |A'(X, M)| + \sum_{j=t+2}^{k} |A_j(X, M)| \left(\left[j - t \right] - 1 \right).$$

Since $1 \leq t \leq k - 3$ and $|A_{k-1}(X, M)| = N'(t; t; k, k-1; n, n-k-1)$, by Lemma 2.1(iii) and the assumption $n \geq 2k$, we have

$$|A_{k-1}(X, M)| \left(\left[k - 1 - t \right] - 1 \right) = q^2 \left[n - k - 1 \right] \left[k + 1 - t \right] \left[1 \right] \cdot q \left[k - t - 2 \right]$$

$$> q^{n+2k-3t-4} > q^{k+1} \geq q^{k+1-t} \left[t \right].$$

Observe that, for any $F \in [M]_k$, $F \in A'(X, M)$ if and only if $X \subseteq F$. Thus, by Lemma 2.3, we have

$$\left| [M]_k \setminus A'(X, M) \right| = \left[k + 1 \right] \left[k - t \right] - \left[k + 1 - t \right] = q^{k+1-t} \left[t \right].$$

So by the construction of $H_1(X, M)$ we then obtain

$$h_1(t, k+1) = |A'(X, M)| + q^{k+1-t} \left[t \right]$$

$$\leq |L_{t+1}(X, M)|$$

$$= \left[k - t + 1 \right] \left[n - t - 1 \right] \left[1 \right]$$

as required.

(iii) Continuing our discussion in (ii), if $t \leq k - 4$, then $t + 2 \neq k - 1$ and hence

$$h_1(t, k+1) = |A'(X, M)| + q^{k+1-t} \left[t \right]$$

$$\leq |L_{t+1}(X, M)| - |A_{t+2}(X, M)| \left(\left[2 \right] - 1 \right).$$

This together with $|A_{t+2}(X, M)| = N'(t; t; k, t+2; n, n-k-1)$ and Lemma 2.4 yields (10).

\[\square \]

Lemma 2.8 Let n, k and t be positive integers with $6 \leq 2k \leq n$ and $1 \leq t \leq k - 2$. Let $f(n, k, t)$ be the function defined in (8).

(i) If $1 \leq t < \frac{k}{2} - 1$, then $h_3(t + 2) < f(n, k, t)$.

(ii) If $\frac{k}{2} - 1 \leq t \leq k - 2$, then $h_3(t + 2) \geq f(n, k, t)$.
Proof. Let
\[f_1(n, k, t) = \frac{f(n, k, t) - h_3(t + 2)}{[\frac{n-t-2}{k-t-2}]} . \]

By (6), we have
\[f_1(n, k, t) = \frac{(q^{k-t} - q^{t+2})(q^{n-t-1} - 1)}{(q-1)(q^{k-t-1} - 1)} + q \left[\frac{t + 1}{1} \right] - q \left[\frac{k-t}{2} \right] . \]

(i) Suppose that \(1 \leq t < \frac{k}{2} - 1 \). Since \(k > 2t + 2 \) and \(n \geq 2k \), by Lemma 2.1(ii)(iii), we have \(f_1(n, k, t) > q^{n-t-1} + q^{t+1} - q^{2k-2t-1} > 0 \), which implies \(f(n, k, t) > h_3(t + 2) \) as required.

(ii) If \(t = \frac{k}{2} - 1 \), then
\[f_1(n, k, t) = q \left[\frac{t + 1}{1} \right] - q \left[\frac{k-t}{2} \right] < 0 . \]

If \(\frac{k}{2} - 1 < t \leq k - 2 \), then by Lemma 2.1(ii)(iii) and the assumption \(n \geq 2k \), we have \(f_1(n, k, t) < -q^{n-k+t+1} + q^{t+2} - q^{2k-2t-3} < 0 \). In either case we obtain \(f(n, k, t) < h_3(t + 2) \) as required.

Combining Lemmas 2.6(i), 2.7(i) and 2.8(i), we obtain that if \(1 \leq t < \frac{k}{2} - 1 \) then \(\min\{h_2(t, k, c), h_2(t, k, n)\} > h_3(t + 2) \) for any \(c \in \{k + 1, k + 2, \ldots, 2k - t\} \). The next lemma gives several inequalities involving \(h_2(t, k, c) \), \(h_2(t, k, n) \) and \(h_3(t + 2) \) in the case when \(\frac{k}{2} - 1 \leq t \leq k - 2 \).

Lemma 2.9 Let \(n, k \) and \(t \) be positive integers with \(6 \leq 2k \leq n \) and \(\frac{k}{2} - 1 \leq t \leq k - 2 \).

(i) Assume that \(t = \frac{k}{2} - 1 \). If \(t = 1 \) and \(8 \leq n \leq 9 \), then \(h_2(t, k, 2k - t) > h_3(t + 2) \); if \(t = 1 \) and \(n \geq 10 \), or \(t \geq 2 \), then \(h_2(t, k, k + 1) > h_3(t + 2) > h_2(t, k, 2k - t) \); if \(t = 1 \), then \(h_2(t, k, n) = h_3(t + 2) \); if \(t \geq 2 \), then \(h_2(t, k, k + 1) > h_3(t + 2) > h_2(t, k, n) \).

(ii) Assume that \(\frac{k}{2} - \frac{1}{2} \leq t \leq k - 3 \). Then \(h_3(t + 2) > h_2(t, k, k + 1) \).

(iii) Assume that \(t = k - 2 \). If \(t = 1 \), then \(h_2(t, k, n) = h_3(t + 2) = h_2(t, k, k + 1) \); if \(t \geq 2 \), then \(h_2(t, k, n) = h_3(t + 2) > h_2(t, k, k + 1) \).

Proof. (i) Assume that \(t = \frac{k}{2} - 1 \). By (5), (6) and Lemma 2.2, we have
\[h_3(t + 2) - h_2(t, k, 2k - t) \]
\[= \sum_{j=1}^{t} q^{j(t+2)+1} \left[\left[t + 1 - j \right] \left[n - t - 2 - j \right] \right] - q^{(t+2)} - q^{t+2} \left[\left[t + 2 \right] \left[1 \right] \right] . \]
It is routine to verify that \(h_2(t, k, 2k - t) > h_3(t + 2) \) when \(t = 1 \) and \(8 \leq n \leq 9 \) and \(h_2(t, k, 2k - t) < h_3(t + 2) \) when \(t = 1 \) and \(n = 10 \). If \(t = 1 \) and \(n \geq 11 \), or \(t \geq 2 \), then
\[h_3(t + 2) - h_2(t, k, 2k - t) > q^{(t+2)+1} \left[\left[n - 2t - 2 \right] \left[t \right] \right] - q^{(t+2)} - q^{t+2} \left[\left[t + 2 \right] \left[1 \right] \right] \]
\[> q^{(n-2)+1} - q^{(t+2)} - q^{3t+5} \]
\[> 0 . \]
By (5), (6) and Lemma 2.2 again, we have
\[h_3(t + 2) - h_2(t, k, n) = \sum_{j=1}^{t} q^{j(t+2)+1}\left[\frac{t + 1 - j}{t}\right]^{n - t - 2 - j} - q^{t+3}\left[\frac{n - 2t - 2}{t}\right]^{1}. \]

It is straightforward to verify that \(h_3(t, k, n) = h_4(t + 2) \) when \(t = 1 \). If \(t \geq 2 \), then
\[
\begin{align*}
 h_3(t + 2) - h_2(t, k, n) &> q^{j(t+2)+1}\left[\frac{n - 2t - 2}{t}\right]^{1} - q^{t+3}\left[\frac{n - 2t - 2}{t}\right]^{1} \\
 &> q^{t(n-2t)+1} - q^{n+1} \\
 &> 0.
\end{align*}
\]

By (5), (6) and Lemma 2.2 again, we have
\[h_2(t, k, k+1) - h_4(t+2) = q^{(t+2)^2}\left[\frac{n - 2t - 3}{t+1}\right] - \sum_{j=1}^{t} q^{j(t+2)+1}\left[\frac{t + 1 - j}{t}\right]^{n - t - 2 - j} + q^{t+3}\left[\frac{1}{1}\right]. \]

Since by Lemma 2.1(ii),
\[q^{j(t+2)+1}\left[\frac{t + 1 - j}{t}\right]^{n - t - 2 - j} < q^{nt-2t^2+j+2} \]
for \(j \in \{1, 2, \ldots, t\} \), we have
\[\sum_{j=1}^{t} q^{j(t+2)+1}\left[\frac{t + 1 - j}{t}\right]^{n - t - 2 - j} < q^{nt-2t^2+2t} \sum_{j=1}^{t} q^{j} < 2q^{nt-2t^2+2t}. \]

Since \(q \geq 2 \), by Lemma 2.1(iii), we have
\[q^{(t+2)^2}\left[\frac{n - 2t - 3}{t+1}\right] > 2 \cdot q^{2t+3} \cdot q^{(t+1)(n-3t-4)} = 2q^{nt-2t^2+n-3t-1}. \]

Thus \(h_2(t, k, k+1) > h_3(t+2) \) as \(n \geq 2k = 4t + 4 \).

(ii) Assume that \(\frac{k}{2} < t \leq k - 3 \). By (6) and (9), we have
\[h_3(t + 2) = q^{n-t-1} - 1\left[\frac{t + 1}{1}\right] - q^{t+1}. \]

and
\[h_1(t, k + 1) = q^{n-t-1} - 1\left[\frac{k - t + 1}{1}\right]. \]

Since by Lemma 2.1(ii),
\[
\begin{align*}
 &\frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} \cdot \left[\frac{t + 2}{1}\right] - q^{t+1} - \frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} \cdot \left[\frac{k - t + 1}{1}\right] \\
 &> \frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} \cdot \left(\frac{q^{2t-k+1} - 1}{q^{t-1}} - q^{q^t - 1}\right) \\
 &> q^{n-k-t+1} - q^{t+1} \\
 &> 0,
\end{align*}
\]
we obtain $h_3(t + 2) > h_1(t, k + 1)$.

Assume that $t = \frac{k}{2} - \frac{1}{2} \leq k - 3$ and $k \geq 7$. Then $t \leq k - 4$. By (6) and (10), we have

$$h_3(t + 2) = \left[\begin{array}{c} t + 2 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ t \end{array} \right] - q \left[\begin{array}{c} t + 1 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 2 \\ t - 1 \end{array} \right]$$

and

$$h_1(t, k + 1) \leq \left[\begin{array}{c} t + 2 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 1 \\ t \end{array} \right] - q^{t(t-1)+1} \left[\begin{array}{c} n - 2t - 2 \\ t - 1 \end{array} \right] \left[\begin{array}{c} t + 2 \\ 2 \end{array} \right].$$

So by Lemma 2.1 (iii) we have

$$h_3(t + 2) - h_1(t, k + 1) \geq q^{t(t-1)+1} \left[\begin{array}{c} n - 2t - 2 \\ t - 1 \end{array} \right] \left[\begin{array}{c} t + 2 \\ 2 \end{array} \right] - q \left[\begin{array}{c} t + 1 \\ 1 \end{array} \right] \left[\begin{array}{c} n - t - 2 \\ t - 1 \end{array} \right]$$

$$\geq q^{t(t-1)(n-2t+1)} - q^{t(t-1)(n-2)+t+2} = 0.$$

Finally, assume that $t = \frac{k}{2} - \frac{1}{2} \leq k - 3$ and $k = 5$. By (6) and (4), we have

$$\left[\begin{array}{c} n - 3 \\ 2 \end{array} \right] = \left[\begin{array}{c} n - 4 \\ 1 \end{array} \right] + q^{2} \left[\begin{array}{c} n - 4 \\ 2 \end{array} \right]$$

and

$$\left[\begin{array}{c} n - 2 \\ 3 \end{array} \right] = \sum_{i=1}^{4} q^{3(i-1)} \left[\begin{array}{c} n - 2 - i \\ 2 \end{array} \right] + q^{12} \left[\begin{array}{c} n - 6 \\ 3 \end{array} \right].$$

It follows that

$$h_3(t + 2) - h_1(t, k + 1) = q^{3} \left[\begin{array}{c} n - 4 \\ 2 \end{array} \right] - \sum_{i=2}^{4} q^{3(i-1)} \left[\begin{array}{c} n - 2 - i \\ 2 \end{array} \right] - q^{4} \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$$

$$= q^{4} \left[\begin{array}{c} 2 \\ 1 \end{array} \right] \left[\begin{array}{c} n - 4 \\ 2 \end{array} \right] - q^{6} \left[\begin{array}{c} n - 5 \\ 2 \end{array} \right] - q^{8} \left[\begin{array}{c} n - 6 \\ 2 \end{array} \right] - q^{4} \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$$

$$= q^{4} \left[\begin{array}{c} 2 \\ 1 \end{array} \right] \left[\begin{array}{c} n - 5 \\ 2 \end{array} \right] + q^{7} \left[\begin{array}{c} n - 6 \\ 1 \end{array} \right] - q^{4} \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$$

$$> 0.$$

(iii) This follows from the definitions of $\mathcal{H}_2(X, M, V)$ and $\mathcal{H}_3(Z)$ and the assumption that $\dim(M) = \dim(Z) = k = t + 2$. \hfill \Box

3 Upper bounds for non-trivial t-intersecting families

In this section we prove a number of upper bounds on the size of a maximal non-trivial t-intersecting family of k-subspaces of V. For any family $\mathcal{F} \subseteq \binom{V}{k}$ and any subspace S of V, define

$$\mathcal{F}_S = \{ F \in \mathcal{F} \mid S \subseteq F \}.$$

Lemma 3.1 Let $\mathcal{F} \subseteq \binom{V}{k}$ be a t-intersecting family and S an s-subspace of V, where $t - 1 \leq s \leq k - 1$. If there exists $F' \in \mathcal{F}$ such that $\dim(S \cap F') = r < t$, then for each $i \in \{1, 2, \ldots, t-r\}$ there exists an $(s+i)$-subspace T_i with $S \subseteq T_i$ such that $|\mathcal{F}_S| \leq \binom{k-r}{i} |\mathcal{F}_{T_i}|$.

13
Proof. For each \(i \in \{1, 2, \ldots, t - r\} \), let
\[
\mathcal{H}_i = \left\{ H \in \left[S + F' \atop s + i \right] \mid S \subseteq H \right\}.
\]
Observe that \(|\mathcal{H}_i| = \left[\binom{k - i}{r} \right] \) by Lemma 2.3. Since \(\mathcal{F} \) is a \(t \)-intersecting family, for any \(F \in \mathcal{F}_S \), we have \(\dim(F \cap F') \geq t \), which implies that \(\dim(F \cap (F' + S)) \geq s + t - r \) and there exists \(H \in \mathcal{H}_i \) such that \(H \subseteq F \). Therefore, \(\mathcal{F}_S = \bigcup_{H \in \mathcal{H}_i} \mathcal{F}_H \). Let \(T_i \) be a subspace in \(\mathcal{H}_i \) such that \(|\mathcal{F}_H| \leq |\mathcal{F}_{T_i}| \) for all \(H \in \mathcal{H}_i \). Then \(|\mathcal{F}_S| \leq \left[\binom{k - i}{r} \right] |\mathcal{F}_{T_i}| \) as desired. \(\Box \)

Lemma 2.3 implies that \(|\mathcal{F}_T| \leq \left[\frac{n - \dim(T)}{k - \dim(T)} \right] \) for any subspace \(T \) of \(V \). So we have the following lemma.

Lemma 3.2 Let \(\mathcal{F} \subseteq \binom{V}{k} \) be a \(t \)-intersecting family and \(S \) an \(s \)-subspace of \(V \), where \(t - 1 \leq s \leq k - 1 \). If there exists \(F' \in \mathcal{F} \) such that \(\dim(S \cap F') = r < t \), then \(|\mathcal{F}_S| \leq \left[\binom{k - r}{t - r} \right] \left[\frac{n - s - t + r}{k - s - t + r} \right] \).

For a \(t \)-intersecting family \(\mathcal{F} \subseteq \binom{V}{k} \), we define the \(t \)-covering number \(\tau_t(\mathcal{F}) \) of \(\mathcal{F} \) to be the minimum dimension of a subspace \(T \) of \(V \) such that \(\dim(T \cap F) \geq t \) for any \(F \in \mathcal{F} \). Note that for any non-trivial \(t \)-intersecting family \(\mathcal{F} \subseteq \binom{V}{k} \) we have \(t + 1 \leq \tau_t(\mathcal{F}) \leq k \).

Remark 2 In [5], Cao also respectively described the structure of maximal non-trivial \(t \)-intersecting families with large size for finite sets and distance-regular graphs of bilinear forms by defining their \(t \)-covering number. It is shown that \(t \)-covering number is a useful notion to describe the structure of maximal non-trivial \(t \)-intersecting families.

3.1 The case \(\tau_t(\mathcal{F}) = t + 1 \)

Assumption 1 Let \(n, k \) and \(t \) be positive integers with \(6 \leq 2k \leq n \) and \(1 \leq t \leq k - 2 \). Let \(\mathcal{F} \subseteq \binom{V}{k} \) be a maximal non-trivial \(t \)-intersecting family with \(\tau_t(\mathcal{F}) = t + 1 \). Define
\[
\mathcal{T} = \left\{ T \in \left[\begin{array}{c} V \\ t+1 \end{array} \right] \mid \dim(T \cap F) \geq t \quad \text{for any} \quad F \in \mathcal{F} \right\}.
\]

Lemma 3.3 Let \(n, k, t, \mathcal{F} \) and \(\mathcal{T} \) be as in Assumption 1. Then \(\mathcal{T} \) is a \(t \)-intersecting family with \(t \leq \tau_t(\mathcal{T}) \leq t + 1 \). Moreover, the following hold:

(i) if \(\tau_t(\mathcal{T}) = t \), then there exist a \(t \)-subspace \(X \) and an \(l \)-subspace \(M \) of \(V \) with \(X \subseteq M \) and \(t + 1 \leq l \leq k + 1 \) such that
\[
\mathcal{T} = \left\{ T \in \left[\begin{array}{c} M \\ t+1 \end{array} \right] \mid X \subseteq T \right\}; \quad (13)
\]

(ii) if \(\tau_t(\mathcal{T}) = t + 1 \), then there exists a \((t + 2) \)-subspace \(Z \) of \(V \) such that \(\mathcal{T} = \left[\begin{array}{c} Z \\ t+1 \end{array} \right] \).

Proof. The maximality of \(\mathcal{F} \) implies that, for any \(T \in \mathcal{T} \), \(\mathcal{F} \) contains all \(k \)-subspaces of \(V \) containing \(T \). Since \(2k \leq n \), for any \(T_1, T_2 \in \mathcal{T} \), if \(\dim(T_1 \cap T_2) < t \), then there must exist \(F_1, F_2 \in \mathcal{F} \) such that \(T_1 \subseteq F_1, T_2 \subseteq F_2 \) and \(\dim(F_1 \cap F_2) < t \). However, this is impossible as
\mathcal{F} is maximal t-intersecting. Hence $\dim(T_1 \cap T_2) \geq t$ and $\mathcal{T} \subseteq \left[\frac{V}{t+1} \right]$ is a t-intersecting family with $t \leq \tau_t(\mathcal{T}) \leq t + 1$.

(i) Suppose that $\tau_t(\mathcal{T}) = t$. Then there exists a t-subspace X of V such that X is contained in every $(t + 1)$-subspace in \mathcal{T}. Assume that $M = \sum_{T \in \mathcal{T}} T$ and $\dim(M) = l$. It suffices to prove (13) and $t + 1 \leq \dim(M) \leq k + 1$. Since $\tau_t(\mathcal{F}) = t + 1$, we have $\mathcal{F} \setminus \mathcal{F}_X \neq \emptyset$.

Let F' be any member of $\mathcal{F} \setminus \mathcal{F}_X$. Observe that $\dim(X \cap F') \leq t - 1$. For any $T \in \mathcal{T}$, since $X \subseteq T$ and $\dim(T \cap F') \geq t$, we have $\dim(X \cap F') = t - 1$ and $\dim(T \cap (X + F')) \geq t + 1$, which together imply that $\dim(X + F') = k + 1$ and $T \subseteq X + F'$. Hence $M = \sum_{T \in \mathcal{T}} T \subseteq X + F'$ and $t + 1 \leq l \leq k + 1$. It is clear that $\mathcal{T} \subseteq \left\{ T \in \left[\frac{M}{l+1} \right] \mid X \subseteq T \right\}$. Let T' be any $(t + 1)$-subspace of M with $X \subseteq T'$. For any $F \in \mathcal{F}$, if $X \subseteq F$, then $\dim(T' \cap F) \geq t$; if $X \nsubseteq F$, then $T' \subseteq X + F$ from the above discussion, which implies $\dim(T' \cap F) \geq t$ by $\dim(X + F) = k + 1$. Hence $T' \in \mathcal{T}$ and (13) is proved.

(ii) Suppose that $\tau_t(\mathcal{T}) = t + 1$. Let $A, B, C \in \mathcal{T}$ be distinct subspaces such that $A \cap B$, $A \cap C$ and $B \cap C$ are pairwise distinct. Since \mathcal{T} is t-intersecting, we have $\dim(A \cap B) = \dim(A \cap C) = \dim(B \cap C) = t$, which together with $\dim(C) = t + 1$ implies that $C = (A \cap C) + (B \cap C) \subseteq A + B$. Hence, $A + C \subseteq A + B$ and $B + C \subseteq A + B$, which imply that $A + B = A + C = B + C$.

Since $\tau_t(\mathcal{T}) = t + 1$, there exist three distinct subspaces $T_1, T_2, T_3 \in \mathcal{T}$ such that $T_1 \cap T_2$, $T_1 \cap T_3$ and $T_2 \cap T_3$ are pairwise distinct. For any $T \in \mathcal{T} \setminus \{T_1, T_2, T_3\}$, if $T \cap T_1 = T \cap T_2 = T \cap T_3$, then $\dim(T \cap T_1) = t_1$, $T \cap T_1 \subseteq T_2$ and $T \cap T_1 \subseteq T_3$, which imply that $T \cap T_1 \cap T_2 = T_1 \cap T_3$, a contradiction. Hence there exist $T_1, T_3 \in \{T_1, T_2, T_3\}$ such that $T \cap T_1 \neq T \cap T_3$ and

$$T = (T \cap T_1) + (T \cap T_3) \subseteq T_1 + T_2 = T_1 + T_3 + T_2 = T_3 + T_3.$$

Let $Z = T_1 + T_2$. Then $\mathcal{T} \subseteq \left[\frac{Z}{t+1} \right]$. We now prove that $\left[\frac{Z}{t+1} \right] \subseteq \mathcal{T}$. In fact, for any $F \in \mathcal{F}$, if $F \cap T_1 = F \cap T_2 = F \cap T_3$, then $F \cap T_1 \subseteq T_1$ for each $i \in \{1, 2, 3\}$. But this is impossible because $T_1 \cap T_2, T_1 \cap T_3$ and $T_2 \cap T_3$ are pairwise distinct and $\dim(F \cap T_1) \geq t$. Hence there exist $T_i, T_j \in \{T_1, T_2, T_3\}$ such that $F \cap T_i \neq F \cap T_j$, which implies $\dim(F \cap Z) \geq t + 1$. So for any $F \in \mathcal{F}$ and $F' \in \left[\frac{Z}{t+1} \right]$ we have $\dim(F \cap F') \geq t$. Therefore, $\mathcal{T} = \left[\frac{Z}{t+1} \right]$ as desired.

Lemma 3.4 Let n, k, t, \mathcal{F} and \mathcal{T} be as in Assumption 1, and set $M = \sum_{T \in \mathcal{T}} T$. Suppose that $\tau_t(\mathcal{T}) = t$, $\dim(M) = k + 1$ and X is a t-subspace of V which is contained in each $T \in \mathcal{T}$. Then

$$\mathcal{F} = \left\{ F \in \left[\frac{V}{k} \right] \mid X \subseteq F, \dim(F \cap M) \geq t + 1 \right\} \cup \left[\frac{M}{k} \right].$$

Proof. It follows from the proof of Lemma 3.3 that, for any $F \in \mathcal{F} \setminus \mathcal{F}_X$, we have $M = F + X$ and hence $F \in \left[\frac{M}{k} \right]$. Let $\mathcal{A}' = \left\{ F \in \left[\frac{V}{k} \right] \mid X \subseteq F, \dim(F \cap M) \geq t + 1 \right\}$ and \mathcal{F}' be a fixed member of $\mathcal{F} \setminus \mathcal{F}_X$. For any $F \in \mathcal{F}_X$, we have $\dim(F \cap F') \geq t$, $\dim(F' \cap X) \leq t - 1$ and $M = F' + X$. Thus $\dim(F \cap M) \geq t + 1$ and so $\mathcal{F}_X \subseteq \mathcal{A}'$. Note that $\mathcal{A}' \cup \left[\frac{M}{k} \right]$ is a t-intersecting family. Therefore, $\mathcal{F} = \mathcal{A}' \cup \left[\frac{M}{k} \right]$ by the maximality of \mathcal{F}.

Lemma 3.5 Let n, k, t, \mathcal{F} and \mathcal{T} be as in Assumption 1, and set $M = \sum_{T \in \mathcal{T}} T$. Suppose that $\tau_t(\mathcal{T}) = t$, $\dim(M) = k$ and X is a t-subspace of V which is contained in each $T \in \mathcal{T}$. Set
\[C = M + \sum_{F \in F \setminus F_X} F \] and \(c = \dim(C) \). Then either \(k + 2 \leq c \leq 2k - t \) or \(c = n \). Moreover, the following hold:

(i) if \(k + 2 \leq c \leq 2k - t \), then \(F = H_2(X, M, C) \); and

(ii) if \(c = n \), then \(t \neq k - 2 \) and \(F = H_2(X, M, V) \).

Proof. It follows from the proof of Lemma 3.3 that, for any \(F \in F \setminus F_X \), we have \(\dim(F \cap X) = t - 1 \) and \(M \subseteq X + F \). Since \(X \subseteq M \), we then have \(\dim(F \cap M) = k - 1 \). Note that \(c \geq k + 1 \) by the definition of \(c \).

Choose \(F_1 \in F \setminus F_X \). Then \(\dim(F_1 + M) = k + 1 \). If \(c > k + 1 \), then there exists \(F_2 \in F \setminus F_X \) such that \(F_2 \nsubseteq F_1 + M \), which implies \(F_2 \cap (F_1 + M) = F_2 \cap M \). Similarly, if \(c > k + 2 \), then there exists \(F_3 \in F \setminus F_X \) such that \(F_3 \nsubseteq F_1 + F_2 + M \), which implies \(F_3 \cap (F_1 + F_2 + M) = F_3 \cap M \). Continuing, by mathematical induction we can prove that there exist \(F_1, F_2, \ldots, F_{c-k} \in F \setminus F_X \) such that

\[F_i \cap \left(M + \sum_{j=1}^{i-1} F_j \right) = F_i \cap M \tag{14} \]

for \(i \in \{1, 2, \ldots, c-k\} \). If there exists \(F' \in F \) such that \(F' \cap M = X \), then for any \(i \in \{1, 2, \ldots, c-k\} \), there exists \(y_i \in F_i \setminus M \) such that \(y_i \in F' \) as \(\dim(F' \cap F_i) \geq t \) and \(\dim(F' \cap F_i \cap M) = t - 1 \). Let \(x_1, x_2, \ldots, x_t \) be a basis of \(X \). By (14) and the choice of \(F_1, F_2, \ldots, F_{c-k} \), one can easily show that \(x_1, x_2, y_1, \ldots, y_{c-k} \) are linearly independent in \(F' \).

Suppose that \(c \geq 2k - t + 1 \). If there exists \(F' \in F \) such that \(F' \cap M = X \), then by the above discussion we can obtain \(c - k + t \) vectors in \(F' \) which are linearly independent, but this is impossible. Thus \(\dim(A_1 \cap M) \geq t + 1 \) for any \(A_1 \in F_X \). By the maximality of \(F \), it is readily seen that any \(k \)-subspace \(A_2 \) of \(V \) satisfying \(\dim(A_2 \cap X) = t - 1 \) and \(\dim(A_2 \cap M) = k - 1 \) must be in \(F \). Hence \(C = V \) and \(c = n \).

On the other hand, we have \(c \geq k + 2 \), for otherwise we would have \(c = k + 1 \) and \(\dim(T \cap F) \geq t \) for any \(T \in \binom{C}{t+1} \) with \(X \subseteq T \) and any \(F \in F \), which imply \(T \subseteq M \), a contradiction.

So far we have proved that either \(k + 2 \leq c \leq 2k - t \) or \(c = n \). It remains to prove (i) and (ii). Denote \(A = A(X, M), B = B(X, M, C) \) and \(C = C(X, M, C) \).

(i) Suppose that \(k + 2 \leq c \leq 2k - t \). Since \(\dim(F \cap X) = t - 1 \) and \(\dim(F \cap M) = k - 1 \) for any \(F \in F \setminus F_X \), we have \(F \setminus F_X \subseteq C \). For any \(F' \in F_X \), if \(\dim(F' \cap M) \geq t + 1 \), then \(F' \in A \); if \(F' \cap M = X \), then \(\dim(F' \cap C) = c-k+t \) and so \(F' \in B \) by the discussion above. Thus \(F \subseteq A \cup B \cup C \). It is routine to verify that \(A \cup B \cup C \) is a \(t \)-intersecting family. Thus, by the maximality of \(F \), we obtain \(F = A \cup B \cup C \).

(ii) Suppose that \(c = n \). Then \(F = A \cup C \) by the discussion in (i) and the maximality of \(F \). If \(t = k - 2 \), then \(F = H_2(X, M, V) = H_3(M) \), which implies that \(\tau_1(F) = k \), a contradiction. \(\square \)

Lemma 3.6 Let \(n, k, t, F \) and \(T \) be as in Assumption 1. Suppose that \(\tau_1(T) = t + 1 \) and \(T = \binom{Z}{t+1} \) for some \((t+2)\)-subspace \(Z \) of \(V \). Then \(F = H_3(Z) \).
Proof. Since $\mathcal{T} = \left[\begin{array}{c} Z \\ {t+1} \end{array} \right]$, we have $\dim(F \cap Z) \geq t$ for any $F \in \mathcal{F}$. If there exists $F' \in \mathcal{F}$ such that $\dim(F' \cap Z) = t$, then there exists $T' \in \mathcal{T}$ such that $\dim(F' \cap T') = t-1$, a contradiction. Hence $\mathcal{F} \subseteq \mathcal{H}_3(Z)$. Since $\mathcal{H}_3(Z)$ is t-intersecting and \mathcal{F} is maximal t-intersecting, we obtain $\mathcal{F} = \mathcal{H}_3(Z)$ as desired. \hfill \square

Lemma 3.7 Let n, k, t, \mathcal{F} and \mathcal{T} be as in Assumption 1.

(i) If $|\mathcal{T}| = 1$, then

$$|\mathcal{F}| \leq \left[\begin{array}{c} n-t-1 \\ k-t-1 \end{array} \right] + q \left[\begin{array}{c} t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right].$$

(ii) Suppose that $|\mathcal{T}| \geq 2$ and for some t-subspace X and l-subspace M of V with $X \subseteq M$, \mathcal{T} is a collection of $(t+1)$-subspaces of V containing X and contained in M. Then

$$|\mathcal{F}| \leq \left[\begin{array}{c} l-t \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-1 \\ k-t-1 \end{array} \right] + q^{l-t} \left[\begin{array}{c} k-l+1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right]$$

$$+ q^{k+1-t} \left[\begin{array}{c} t \\ 1 \end{array} \right] \left[\begin{array}{c} n-l \\ k-l+1 \end{array} \right].$$

(15)

Moreover, if $l = t+2$, then

$$|\mathcal{F}| \leq \left[\begin{array}{c} l-t \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-1 \\ k-t-1 \end{array} \right] + q^{l-t} \left[\begin{array}{c} k-l+1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right]$$

$$+ q^{t} \left[\begin{array}{c} t \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] \left[\begin{array}{c} n-t-2 \\ k-t-2 \end{array} \right].$$

(16)

(iii) If $|\mathcal{T}| \geq 2$ and $\mathcal{T} = \left[\begin{array}{c} Z \\ {t+1} \end{array} \right]$ for some $(t+2)$-subspace Z of V, then $|\mathcal{F}| = h_3(t+2)$.

Proof. (i) Let T be the unique $(t+1)$-subspace of V in \mathcal{T}. Since $\dim(T \cap F) \geq t$ for any $F \in \mathcal{F}$, we have

$$\mathcal{F} = \mathcal{F}_T \cup \left(\bigcup_{S \in \left[\begin{array}{c} T \\ {t+1} \end{array} \right]} (\mathcal{F}_S \setminus \mathcal{F}_T) \right).$$

(17)

We now give an upper bound on $|\mathcal{F}_S \setminus \mathcal{F}_T|$ for any fixed $S \in \left[\begin{array}{c} T \\ {t+1} \end{array} \right]$. Since $\tau_1(\mathcal{F}) = t+1$, there exists $F' \in \mathcal{F} \setminus \mathcal{F}_S$ such that $\dim(S \cap F') = t-1$ as $\dim(F' \cap T) \geq t$. So $T = (F' \cap T) + S$ and $T \subseteq F' + S$. For any $F \in \mathcal{F}_S \setminus \mathcal{F}_T$, we have $(F \cap F') + S \subseteq F \cap (F' + S)$. Since $\dim(F \cap F') \geq t$ and $\dim(F \cap F' \cap S) \leq t-1$, we have $\dim(F \cap (F' + S)) \geq t + 1$. Hence there exists a $(t+1)$-subspace H such that $H \neq T$, $S \subseteq H \subseteq S + F'$ and $H \subseteq F$. Therefore,

$$\mathcal{F}_S \setminus \mathcal{F}_T = \bigcup_{S \in \left[\begin{array}{c} T \\ {t+1} \end{array} \right], H \neq T, \dim H = t+1} \mathcal{F}_H.$$

(18)

Consider an arbitrary $(t+1)$-subspace H of V satisfying $H \neq T$ and $S \subseteq H \subseteq S + F'$. Since T is the unique $(t+1)$-subspace of V such that $\dim(T \cap F) \geq t$ for $F \in \mathcal{F}$, there exists $A \in \mathcal{F}$ such that $\dim(H \cap A) < t$. Hence $\dim(H \cap A) = t-1$ as $\dim(H \cap T) = \dim(S) = t$.
and \(\dim(T \cap A) \geq t \). By Lemma 3.2, we have \(|\mathcal{F}_H| \leq \left[\frac{k-t+1}{1} \right]_{[n-t]}^{[n-t-2]} \). By Lemma 2.3, we obtain \(|\mathcal{F}| \leq \left[\frac{n-t-1}{k-t-1} \right] \) and
\[
\left\{ H \in \left[\frac{S+F'}{t+1} \right] | S \subseteq H, H \neq T \right\} = \left[\frac{k-t+1}{1} \right] - 1 = q^{\frac{k-t}{1}}.
\]
It follows from (17) and (18) that
\[
|\mathcal{F}| \leq \left[\frac{n-t-1}{k-t-1} \right] + \left[\frac{t+1}{1} \right] \cdot q^{\frac{k-t}{1}} \left[\frac{k-t+1}{1} \right] \left[\frac{n-t-1}{k-t-1} \right].
\]

(ii) We will prove the desired upper bound on \(|\mathcal{F}| \) by establishing upper bounds on \(|\mathcal{F}_X| \) and \(|\mathcal{F} \setminus \mathcal{F}_X| \). Since \(\tau_i(\mathcal{F}) = t+1 \), we have \(\dim(F \cap X) \geq t+1 \) for any \(F \in \mathcal{F} \), and there exists \(F' \in \mathcal{F} \) such that \(\dim(X \cap F') = t+1 \). It follows from the proof of Lemma 3.3 that \(X \subseteq M \subseteq X + F' \).

For any \(F \in \mathcal{F}_X \), we have \(\dim(F \cap (X + F')) \geq t+1 \) as \(X \subseteq F \) and \(\dim(F \cap F') \geq t \). So
\[
\mathcal{F}_X = \bigcup_{X \subseteq H_1, H_1 \in [\frac{M}{t+1}]} \mathcal{F}_H_1 \bigcup_{X \subseteq H_2, H_2 \in [\frac{M}{t+1}]} \mathcal{F}_{H_2}.
\]
Since by Lemma 2.3, \(|\mathcal{F}_{H_1}| \leq \left[\frac{n-(t+1)}{k-(t+1)} \right] \) for any \(H_1 \in [\frac{M}{t+1}] \), we have \(\bigcup_{X \subseteq H_1, H_1 \in [\frac{M}{t+1}]} \mathcal{F}_H_1 \leq \left[\frac{n-(t+1)}{k-(t+1)} \right] \). For any \(H_2 \in [\frac{X+F'}{t+1}] \) with \(X \subseteq H_2 \), we have \(H_2 \notin \mathcal{T} \) and so there exists \(A \in \mathcal{F} \) such that \(\dim(H_2 \cap A) < t \). Hence \(\dim(H_2 \cap A) = t-1 \) as \(\dim(A \cap X) \geq t-1 \). It follows from Lemma 3.2 that \(|\mathcal{F}_H_2| \leq \left[\frac{k-l-1}{1} \right]_{[n]}^{[n-(t+1)-1]} \). Note from Lemma 2.3 that
\[
\left\{ H_2 \in \left[\frac{X+F'}{t+1} \right] \mid X \subseteq H_2 \right\} = \left[\frac{k+1-t}{1} \right] - \left[\frac{k-t}{1} \right] = q^{k-t} \left[\frac{k-l+1}{1} \right].
\]
Therefore,
\[
|\mathcal{F}_X| \leq \left[\frac{l-t}{1} \right] \left[\frac{n-t-1}{k-t-1} \right] + q^{k-t} \left[\frac{k-l+1}{1} \right] \left[\frac{k-t+1}{1} \right] \left[\frac{n-t-2}{k-t-2} \right].
\]

For any \(F \in \mathcal{F} \setminus \mathcal{F}_X \) and any \(T \in \mathcal{T} \), since \(\dim(F \cap X) = t-1 \) and \(X \not\subseteq F \cap T \), we have \(T = (F \cap T) + X \subseteq F + X \). Thus, for any \(F \in \mathcal{F} \setminus \mathcal{F}_X \), we have \(M = \sum_{T \subseteq T} T \subseteq F + X \), which implies \(\dim(M \cap F) = l-1 \). Hence \(\mathcal{F} \setminus \mathcal{F}_X \subseteq \left\{ F \in [\frac{M}{k}] \mid \dim(F \cap M) = l-1, X \not\subseteq F \right\} \). Observe from Lemma 2.3 that the number of \(k \)-subspaces \(F \) of \(V \) satisfying \(\dim(F \cap M) = l-1 \) is \(q^{k-l+1} \left[\frac{n-t}{k+l+1} \right]_{[l]} \), and the number of \(k \)-subspaces \(F \) of \(V \) satisfying \(\dim(F \cap M) = l-1 \) and \(X \subseteq F \) is \(N'(t; t; k, l-1; n, n-l) \). By Lemma 2.4, we then have
\[
|\mathcal{F} \setminus \mathcal{F}_X| \leq q^{k-l+1} \left[\frac{n-l}{k-l+1} \right]_{[l]} - N'(t; t; k, l-1; n, n-l)
\]
\[
= q^{k-l+1} \left[\frac{n-l}{k-l+1} \right]_{[l]} - q^{k-l+1} \left[\frac{n-l}{k-l+1} \right]_{[l-t]} - q^{k-t+1} \left[\frac{n-l}{k-l+1} \right]_{[1]}
\]
\[
= q^{k-l+1} \left[\frac{l}{k-l+1} \right]_{[n-l]}
\]
Combining (20) and (21), we obtain (15).
Now let us consider the case when \(l = t + 2 \). From the discussion above, we have \(\dim(M \cap F) = l - 1 = t + 1 \) for any \(F \in \mathcal{F} \setminus \mathcal{F}_X \), which implies

\[
\mathcal{F} \setminus \mathcal{F}_X \subseteq \bigcup_{X \not\subseteq L, \, L \in [t+1]^{M}} \mathcal{F}_L.
\]

For any \(L \in [t+1]^{M} \) with \(X \not\subseteq L \), since \(L \not\in \mathcal{T} \) and \(\dim(F \cap M) \geq t \) for any \(F \in \mathcal{F} \), there exists \(F' \in \mathcal{F} \) such that \(\dim(F' \cap L) = t \). So \(|\mathcal{F}_L| \leq \binom{k-t+1}{1} \binom{n-t-2}{k-t-2} \) by Lemma 3.2. Since by Lemma 2.3 the number of \((t+1)\)-subspaces \(L \) of \(M \) with \(X \not\subseteq L \) is equal to \(\binom{t+2}{t+1} - \binom{t}{t+1} \), we have

\[
|\mathcal{F} \setminus \mathcal{F}_X| \leq q^{\binom{t}{1}} \binom{k-t+1}{1} \binom{n-t-2}{k-t-2}.
\]

Combining (20) and (22), we obtain (15).

(iii) The desired equality follows from Lemma 3.6 and (6).

\[\square\]

3.2 The case \(\tau_t(\mathcal{F}) \geq t + 2 \)

In [4], Blokhuis et al. proved the following upper bound for \(|\mathcal{F}| \) in the case when \(t = 1 \).

Lemma 3.8 ([4]) Let \(n \) and \(k \) be positive integers with \(6 \leq 2k \leq n \), and let \(\mathcal{F} \subseteq \binom{V}{k} \) be a maximal intersecting family with \(3 \leq \tau_1(\mathcal{F}) = m \leq k \). Let \(\mathcal{T} \) be the set of all \(m \)-subspaces \(T \) of \(V \) which satisfy \(\dim(T \cap F) \geq 1 \) for any \(F \in \mathcal{F} \). Then the following hold:

(i) if \(m = k \), then \(|\mathcal{F}| \leq \binom{k}{1}^k \);

(ii) if \(m < k \) and \(|\mathcal{T}| \geq 2 \), then

\[
|\mathcal{F}| \leq \binom{m-1}{1} \binom{k}{1}^{m-1} \binom{n-m}{k-m} + q^{2(m-1)} \binom{k-1}{1}^{m-2} \binom{n-m}{k-m};
\]

(iii) if \(m < k \) and \(|\mathcal{T}| = 1 \), then

\[
|\mathcal{F}| \leq \binom{m-1}{1} \binom{k-1}{1}^{m-2} \binom{n-m}{k-m} + q^{m-1} \binom{k-m+1}{1} \binom{m}{1} \binom{k-1}{1}^{m-1} \binom{n-m-1}{k-m-1}.
\]

Using this lemma, we now prove the following bound for \(\mathcal{F} \) with \(\tau_1(\mathcal{F}) < k \).

Lemma 3.9 Let \(n \) and \(k \) be positive integers with \(9 \leq 2k + 3 \leq n \), and let \(\mathcal{F} \subseteq \binom{V}{k} \) be a maximal intersecting family with \(3 \leq \tau_1(\mathcal{F}) < k \). Then

\[
|\mathcal{F}| \leq (q+1) \binom{k}{1}^2 \binom{n-3}{k-3} + q^4 \binom{k}{1} \binom{n-3}{k-3}.
\]
Proof. Let $u_1(n, k, m)$ and $u_2(n, k, m)$ be the upper bounds in (23) and (24), respectively. By Lemma 2.1(iii) and the assumption $n \geq 2k + 3$, for $3 \leq m < k$, we have

$$\frac{u_1(n, k, m) - u_2(n, k, m)}{\binom{n}{k}^{m-2}} = \frac{q^{n-m} - 1}{q^{k-m} - 1} \left(q^m \binom{m-1}{1} \binom{k-m}{1} + q^{2(m-1)} \right) - q^{m-1} \binom{k-m+1}{1} \binom{m}{1} \binom{k}{1} > q^{n-k} \binom{q^{m+k-3} + q^{2(m-1)}} - q^{2(k+m)} > 0.$$

Thus, for $m \in \{3, 4, \ldots, k - 1\}$, we have

$$u_1(n, k, m) > u_2(n, k, m).$$ \hspace{1cm} (26)

For any $m \in \{3, 4, \ldots, k - 2\}$, by Lemma 2.1(iii), (23) and $n \geq 2k + 3$, we have

$$\frac{u_1(n, k, m) - u_1(n, k, m + 1)}{\binom{n}{k}^{m-2}} = \frac{q^{n-m} - 1}{q^{k-m} - 1} \left(q^m \binom{m-1}{1} \binom{k-m}{1} + q^{2(m-1)} \right) - q^{m-1} \binom{k-m+1}{1} \binom{m}{1} \binom{k}{1} > q^{n-k} \binom{q^{m+k-3} + q^{2(m-1)}} - q^{2(k+m)} > 0.$$

So $u_1(n, k, m)$ is decreasing as $m \in \{3, 4, \ldots, k - 1\}$ increases. Combining this with (26) and Lemma 3.8, we obtain $|\mathcal{F}| \leq u_1(n, 3, m)$ for $m = \tau_1(\mathcal{F})$, which yields (25) as $u_1(n, 3, m)$ is exactly the right-hand side of (25). \hfill \Box

Lemma 3.10 Let n, k and t be positive integers with $8 \leq 2k \leq n$ and $2 \leq t \leq k - 2$, and let $\mathcal{F} \subseteq \binom{[V]}{k}$ be a maximal t-intersecting family with $t + 2 \leq \tau_1(\mathcal{F}) = m \leq k$. Then

$$|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1}^{m-t-2} \binom{k-t+1}{1} \binom{n-m}{k-m}.$$

Moreover, if $n \geq 2k + t + 1$, then

$$|\mathcal{F}| \leq \binom{t+2}{2} \binom{k-t+1}{1} \binom{n-t-2}{k-t-2}.$$

Proof. Let T be an m-subspace of V which satisfies $\dim(T \cap F) \geq t$ for any $F \in \mathcal{F}$. Then $\mathcal{F} = \bigcup_{H \subseteq [V]} \mathcal{F}_H$ and hence there exists $H_1 \subseteq [V]$ such that $|\mathcal{F}| \leq \binom{m}{t} |\mathcal{F}_{H_1}|$. If $m \geq t + 3$, using Lemma 3.1 repeatedly, then there exist $H_2 \subseteq [V_{t+1}], H_3 \subseteq [V_{t+2}], \ldots, H_{m-t-1} \subseteq [V_{m-2}]$ such that $H_i \subseteq H_{i-1}$ and $|\mathcal{F}_{H_i}| \leq \binom{k}{1} |\mathcal{F}_{H_{i+1}}|$ for each $i \in \{1, 2, \ldots, m - t - 2\}$. Thus there exists $H' \subseteq [V_{m-2}]$ such that

$$|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1}^{m-t-2} |\mathcal{F}_{H'}|.$$

Since $\tau_t(\mathcal{F}) > m - 2$, we have $\mathcal{F} \setminus \mathcal{F}_{H'} \neq \emptyset$ and $\dim(F \cap H') \leq t - 1$ for any $F \in \mathcal{F} \setminus \mathcal{F}_{H'}$.

20
Case 1. \(\dim(F \cap H') \leq t - 2 \) for all \(F \in \mathcal{F} \setminus \mathcal{F}_{H'} \).

Let \(F_1 \) be a fixed \(k \)-subspace in \(\mathcal{F} \setminus \mathcal{F}_{H'} \). Let \(s_1 = \dim(F_1 \cap H') \) so that \(0 \leq s_1 \leq t - 2 \). By Lemma 3.2, we have

\[
|\mathcal{F}_{H'}| \leq \binom{k - s_1}{t - s_1} \binom{n - m + 2 - t + s_1}{k - m + 2 - t + s_1},
\]

which implies that

\[
|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1} \binom{m - t - 2}{1} \binom{k - s_1}{t - s_1} \binom{n - m + 2 - t + s_1}{k - m + 2 - t + s_1}.
\] (27)

Let

\[
g(s) = \binom{k - s}{t - s} \binom{n - m + 2 - t + s}{k - m + 2 - t + s}
\]

for \(s \in \{0, 1, \ldots, t - 2\} \). By \(n \geq 2k \) and Lemma 2.1(ii), we have

\[
\frac{g(s + 1)}{g(s)} = \frac{\left(q^{t-s} - 1\right)(q^{n-m+3-t+s} - 1)}{(q^{k-s} - 1)(q^{k-m+3-t+s} - 1)} > q^{n-2k+t-1} > 1
\]

for \(s \in \{0, 1, \ldots, t - 3\} \). That is, the function \(g(s) \) is increasing as \(s \in \{0, 1, \ldots, t - 2\} \) increases. This together with (27) yields

\[
|\mathcal{F}| \leq \binom{m}{t} g(s_1) \leq \binom{m}{t} g(t - 2) = \binom{m}{t} \binom{k}{1} \binom{m - t - 2}{2} \binom{k - t + 2}{k - t - 2}.
\] (28)

Case 2. There exists \(F_2 \in \mathcal{F} \setminus \mathcal{F}_{H'} \) such that \(\dim(F_2 \cap H') = t - 1 \).

By Lemma 3.1, there exists an \((m-1) \)-subspace \(H'' \) such that \(|\mathcal{F}_{H''}| \leq \binom{k-t+1}{1} |\mathcal{F}_{H'''}| \).

Hence \(|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1} \binom{m - t - 2}{1} \binom{k - t + 1}{1} |\mathcal{F}_{H'''}| \). Since \(\tau_1(\mathcal{F}) > m - 1 \), there exists \(F_3 \in \mathcal{F} \) such that \(\dim(F_3 \cap H'') \leq t - 1 \).

If \(\dim(F_3 \cap H'') = t - 1 \), then there exists an \(m \)-subspace \(H''' \) with \(H'' \subseteq H''' \) such that \(|\mathcal{F}_{H'''}| \leq \binom{k-t+1}{1} |\mathcal{F}_{H'''}| \). Since \(|\mathcal{F}_{H'''}| \leq \binom{n-m}{k-m} \) by Lemma 2.3, we have

\[
|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1} \binom{m - t - 2}{1} \binom{k - t + 1}{1} \binom{n - m}{k - m}.
\] (29)

Suppose that \(\dim(F_3 \cap H'') = s_2 \leq t - 2 \). By Lemma 3.2, we have

\[
|\mathcal{F}_{H''}| \leq \binom{k - s_2}{t - s_2} \binom{n - m + 1 - t + s_2}{k - m + 1 - t + s_2}.
\]

Similar to Case 1, it is straightforward to verify that the function \(\binom{k-s}{t-s} \binom{n-m+1-t+s}{k-m+1-t+s} \) is increasing as \(s \in \{0, 1, \ldots, t - 2\} \) increases. Hence

\[
|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1} \binom{m - t - 2}{1} \binom{k - t + 1}{1} \binom{n - m - 1}{k - m - 1}.
\] (30)

By Lemma 2.1 (ii) and \(n \geq 2k \), it is straightforward to verify that

\[
\binom{k - t + 1}{1}^2 \binom{n - m}{k - m} \geq \max \left\{ \binom{k - t + 2}{1} \binom{n - m}{k - m}, \binom{k - t + 1}{1} \binom{k - t + 2}{1} \binom{n - m - 1}{k - m - 1} \right\}.
\]
This together with (28), (29) and (30) yields
\[|\mathcal{F}| \leq \binom{m}{t} \binom{k}{1}^{m-t-2} \binom{k-t+1}{1}^{2} \binom{n-m}{k-m}. \]
(31)

Let
\[p(m') = \binom{m'}{t} \binom{k}{1}^{m'-t-2} \binom{n-m'}{k-m'} \]
for \(m' \in \{t + 2, t + 3, \ldots, k\} \). By \(n \geq 2k \) and Lemma 2.1 (ii), we have
\[\frac{p(m')}{p(m' + 1)} = \frac{(q^{m'-t+1} - 1)(q - 1)(q^{n-m'} - 1)}{(q^{m'+1} - 1)(q^k - 1)(q^{k-m'} - 1)} > q^{n-2k-t-1} \geq 1 \]
for \(m' \in \{t + 2, t + 3, \ldots, k - 1\} \). That is, the function \(q(m') \) is decreasing as \(m' \in \{t + 2, t + 3, \ldots, k\} \) increases. This together with (31) yields
\[|\mathcal{F}| \leq \binom{k-t+1}{1}^2 p(t+2) \leq \binom{t+2}{2} \binom{k-t+1}{1}^2 \binom{n-t-2}{k-t-2}. \]
Therefore, the desired upper bounds follow.

\[\square \]

4 Proofs of Theorems 1.1 and 1.2

\textit{Proof of Theorem 1.1.} Let \(n, k \) and \(t \) be positive integers with \(k \geq 3 \). Suppose that \(n \geq 2k + t + \min\{4, 2t\} \). That is, if \(t = 1 \), then \(n \geq 2k + 3 \), and if \(t \geq 2 \), then \(n \geq 2k + t + 4 \). Let \(\mathcal{F} \subseteq \binom{V}{t} \) be a maximal non-trivial \(t \)-intersecting family which is not any of the exceptional families in (i) and (ii) of Theorem 1.1. Set
\[f_2(n, k, t) = \frac{f(n, k, t) - |\mathcal{F}|}{\binom{n-t-2}{k-t-2}}, \]
where the function \(f \) is as defined in (8). It suffices to prove \(f(n, k, t) > |\mathcal{F}| \) or equivalently \(f_2(n, k, t) > 0 \).

Let \(\mathcal{T} \) be the set of all \(\tau_t(\mathcal{F}) \)-subspaces \(T \) of \(V \) which satisfy \(\dim(T \cap F) \geq t \) for any \(F \in \mathcal{F} \).

Case 1. \(\tau_t(\mathcal{F}) = t + 1 \).

Case 1.1. \(|\mathcal{T}| = 1 \).

In this case, by Lemma 3.7(i), we have
\[q^{-1} f_2(n, k, t) \geq \binom{n-t-1}{1} - \binom{k-t}{2} - \binom{t+1}{1} \binom{k-t}{1} \binom{k-t+1}{1}. \]

If \((t, q) = (1, 2) \), then \(n \geq 2k + 3 \) and
\begin{align*}
\frac{3}{2} f_2(n, k, t) & \geq 3 \cdot (2^{n-2} - 1) - (2^{k-1} - 1)(2^{k-2} - 1) - 9 \cdot (2^{k-1} - 1)(2^k - 1) \\
& = 3 \cdot 2^{n-2} - 37 \cdot 2^{k-3} + 9 \cdot 2^k + 10 \cdot 2^{k-1} + 2^{k-2} - 13 \\
& > 0
\end{align*}
as desired. Suppose that \(n \geq 2k + 3 \) and \(q \geq 3 \) if \(t = 1 \), and that \(n \geq 2k + t + 4 \) if \(t \geq 2 \). By Lemma 2.1(iii)(iv), we have

\[
q^{-1} f_2(n, k, t) > q^{n-t-2} - q^{2(k-t-1)} - 8q^{2k-t-1} > 0
\]
as desired.

Case 1.2. \(|T| \geq 2 \) and \(\tau_t(T) = t \).

Let \(M = \sum_{T \in \mathcal{T}} T \) and \(l = \dim(M) \). Since \(\mathcal{F} \) is a maximal non-trivial \(t \)-intersecting family other than any of the exceptional families in Theorem 1.1, we have \(l \leq k - 1 \) by Lemmas 3.4 and 3.5.

Let us first consider the case when \(l = t + 2 \). Then \(k \geq 4 \) as \(l \leq k - 1 \). By (16) and Lemma 2.1(iii), we have

\[
q^{-2} f_2(n, k, t) \geq q^{n-t-1} \left[\begin{array}{c} k-t-1 \\ 1 \end{array} \right] - q^{-1} \left[\begin{array}{c} k-t \\ 2 \end{array} \right] - q^{n-t} \left[\begin{array}{c} k-t-1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] - \left[\begin{array}{c} t \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right]
\]

Thus, if \(t = 1 \), then

\[
q^{-2} f_2(n, k, t) > q^{k+1} \left(n-k-5 - q^{k-6} - q^{k-3} - 1 \right) > 0
\]
as \(n \geq 2k + 3 \). If \(t \geq 2 \), then

\[
n - t - 3 \geq \max\{2k - 2t, k + 1\} + 2
\]
as \(n \geq 2k + t + 4 \), and hence the inequality above implies \(q^{-2} f_2(n, k, t) > 0 \). In either case we have \(f_2(n, k, t) > 0 \) as desired.

Now consider the case when \(t + 3 \leq l \leq k - 1 \). Then

\[
\left[\begin{array}{c} n-l \\ k-l+1 \end{array} \right] \leq \left[\begin{array}{c} n-t-3 \\ k-t-2 \end{array} \right].
\]

Since \(n - t - 1 \geq \max\{2k - 2t + 2, t + 3\} + 2 \) and \(l \leq k - 2 \), by (15) we have

\[
f_2(n, k, t) \geq \frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} \left[\begin{array}{c} k-t \\ 2 \end{array} \right] - q^{n-t} \left[\begin{array}{c} k-l+1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t \\ 1 \end{array} \right] - q^{k+1-t} \left[\begin{array}{c} t \\ 1 \end{array} \right] \cdot \frac{n-l}{k-l+1} \frac{k+l+1}{k-t-2} - q^{n-t-1} \left[\begin{array}{c} k-t-1 \\ 2 \end{array} \right] - q^{n-t} \left[\begin{array}{c} k-l+1 \\ 1 \end{array} \right] \left[\begin{array}{c} k-t+1 \\ 1 \end{array} \right] - q^{k+1-t} \left[\begin{array}{c} t \\ 1 \end{array} \right] \cdot \frac{q^n - 1}{q^{n-t-2} - 1}
\]

as desired.

Case 1.3. \(|T| \geq 2 \) and \(\tau_t(T) = t + 1 \).

In this case, by Lemma 3.7(i) and Lemma 2.8(i), we have \(f(n, k, t) > |F| \) if \(1 \leq t \leq \frac{k}{2} - \frac{3}{2} \).

Case 2. \(t + 2 \leq \tau_t(F) \leq k \).
Case 2.1. \(t = 1 \).

Since \(t = 1 \), we have \(3 \leq \tau_1(\mathcal{F}) \leq k \). Consider the case \(\tau_1(\mathcal{F}) = k \) first. By Lemma 3.8(i), in this case we have

\[
f(n, k, t) - |\mathcal{F}| \geq \left[\frac{n-1}{k-1} \right] \left[\frac{n-3}{k-2} \right] - q \left[\frac{k-1}{2} \right] \left[\frac{n-3}{k-3} \right] - \left[\frac{k^k}{1} \right].
\]

(32)

If \((n, k, q) = (9, 3, 2)\), then \(f(n, k, 1) - |\mathcal{F}| \geq 36 > 0 \). If \((n, k) = (9, 3)\) and \(q \geq 3 \), then \(f(n, k, 1) - |\mathcal{F}| \geq q^7 + q^6 - q^5 - 4q^4 - 5q^3 - 4q^2 - 2q > 0 \). Since when \(k = 3 \) the right-hand side of (32) is increasing with \(n \), we have \(f(n, 3, 1) - |\mathcal{F}| > 0 \) for \(n \geq 10 \). If \((n, k, q) = (11, 4, 2)\), then \(f(n, k, 1) - |\mathcal{F}| \geq 249850 > 0 \). If \((n, k) = (11, 4)\) and \(q \geq 3 \), or \(n = 2k + 3 \) and \(k \geq 5 \), or \(n \geq 2k + 4 \) and \(k \geq 4 \), then by Lemma 2.1(iii)(iv),

\[
f(n, k, 1) - |\mathcal{F}| \geq \left[\frac{n-3}{k-3} \right] (q^{n-2} - q^{2k-3}) - 2k \cdot q^{k(k-1)}
\]

\[
> q^{(k-3)(n-k)+n-3} - 2k \cdot q^{k(k-1)}
\]

\[
= 0.
\]

Now let us consider the case when \(3 \leq \tau_1(\mathcal{F}) < k \). In this case, by Lemma 3.9, we have

\[
f_2(n, k, 1) \geq \frac{q^{n-2} - 1}{q^{k-2} - 1} \left[\frac{k-1}{1} \right] - q \left[\frac{k-1}{2} \right] - (q + 1) \left[\frac{k^2}{1} \right] - q^4 \left[\frac{k}{1} \right].
\]

If \(q \geq 3 \), then by \(n \geq 2k + 3 \), \(k \geq 4 \) and Lemma 2.1(iii)(iv), we obtain

\[
f_2(n, k, 1) > q^{n-2} - q^{2k-3} - 4(q + 1)q^{2k-2} - q^{k+4}
\]

\[
\geq q^{2k-3} (q^4 - 1 - 4q^2 - 4q - q^{2k-4})
\]

\[
> 0.
\]

If \(q = 2 \), then by \(n \geq 2k + 3 \), \(k \geq 4 \) and \((2n-2 - 1)(2^{k-1} - 1)/(2^{k-2} - 1) > 2^{2k+2} \) we obtain

\[
f_2(n, k, 1) \geq \frac{(2n-2 - 1)(2^{k-1} - 1)}{2^{k-2} - 1} - \frac{2}{3} (2^{k-1} - 1)(2^{k-2} - 1) - 3(2^{k-1})^2 - 2^4(2^k - 1)
\]

\[
> \frac{11}{3} \cdot 2^{2k-2} - 19 \cdot 2^{k-1} + \frac{37}{3}
\]

\[
> 0.
\]

Case 2.2. \(t \geq 2 \).

By Lemma 3.10, we have

\[
f_2(n, k, t) \geq \frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} \left[\frac{k - t}{1} \right] - q \left[\frac{k - t}{2} \right] - \left[\frac{t + 2}{2} \right] \left[\frac{k - t + 1}{1} \right]^2.
\]

Assume that \(n = 2k + t + 4 \) and \(q = 2 \) first. We have

\[
f_2(n, k, t)
\]

\[
= \frac{(2^{k+3} - 1)(2^{k-t} - 1)}{2^{k-t-1} - 1} - \frac{2}{3} (2^{k-t} - 1)(2^{k-t-1} - 1) - \frac{1}{3} (2^{t+2} - 1)(2^{t+1} - 1)(2^{k-t+1} - 1)^2
\]

\[
> 2^{2k+4} - \frac{1}{3} \cdot 2^{2k-2t} - \frac{1}{3} \cdot 2^{2k+5}
\]

\[
> 0.
\]

24
Now assume that \(n = 2k + t + 4 \) and \(q \geq 3 \), or \(n \geq 2k + t + 5 \). Since \(q^{\left\lfloor \frac{k-t}{2} \right\rfloor} < \left\lfloor \frac{k-t+1}{2} \right\rfloor^2 \) and \(t^2 + 1 \leq 4q^t \), by Lemma 2.1 (ii)(iv), we have

\[
f_2(n, k, t) > \frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} - 4q^t \left\lfloor \frac{k-t+1}{2} \right\rfloor^2
= \left\lfloor \frac{k-t}{2} \right\rfloor \left(\frac{q^{n-t-1} - 1}{q^{k-t-1} - 1} - 4q^t (q^{k-t+1} - 1)^2 \right)
> \left\lfloor \frac{k-t}{2} \right\rfloor \left(q^{n-k} - 16q^{k+t+1} \right)
\geq 0.
\]

This completes the proof.

\[\blacksquare\]

Proof of Theorem 1.2. The result follows from Theorem 1.1, Remark 1 and Lemmas 2.5, 2.6, 2.8 and 2.9.

\[\blacksquare\]

Acknowledgement

This research was supported by NSFC (11671043) and NSF of Hebei Province (A2019205092).

References

[1] R. Ahlswede and L.H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, *J. Combin. Theory Ser. A* 76 (1996) 121–138.

[2] R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, *European J. Combin.* 18 (1997) 125–136.

[3] A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin 1989.

[4] A. Blokhuis, A.E. Brouwer, A. Chowdhury, P. Frankl, T. Mussche, B. Patkós and T. Szőnyi, A Hilton-Milner theorem for vector spaces, *Electron. J. Combin.* 17 (2010) #R71.

[5] M. Cao, Intersecting families and Turán problems for some classical mathematical objects (in Chinese), PhD thesis, Beijing Normal University, 2020.

[6] M. Deza and P. Frankl, The Erdős-Ko-Rado theorem–22 years later, *SIAM J. Algebraic Discrete Methods* 4 (1983) 419–431.

[7] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxf. Ser. (2)* 12(48) (1961) 313–320.

[8] P. Frankl, The Erdős-Ko-Rado theorem is true for \(n = ckt \), in: Combinatorics, Vol. I, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, 1978, pp. 365–375.
[9] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.), Combinatorial Surveys, Cambridge Univ. Press, London, New York, 1987, pp. 81–110.

[10] P. Frankl and Z. Füredi, Beyond the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 56 (1991) 182–194.

[11] P. Frankl and R. Graham, Intersection theorems for vector spaces, European J. Combin. 6 (1985) 183–187.

[12] P. Frankl and R. Wilson, The Erdős-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43(2) (1986) 228–236.

[13] J. Guo, F. Li and K. Wang, t-singular linear spaces, Algebra Colloq. 23 (2016) 227–238.

[14] C. Godsil and M. Karen, Erdős-Ko-Rado Theorems: Algebraic Approaches, Cambridge University Press, 2015.

[15] J. Han and Y. Kohayakawa, The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family, Proc. Amer. Math. Soc. 145(1) (2017) 73–87.

[16] A. Hilton and E. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369–384.

[17] W.N. Hsieh, Intersection theorems for systems of finite vector-spaces, Discrete Math. 12(1) (1975) 1–13.

[18] W.N. Hsieh, Families of intersecting finite vector spaces, J. Combin. Theory Ser. A 18 (1975) 252–261.

[19] A. Kostochka and D. Mubayi, The structure of large intersecting families, Proc. Amer. Math. Soc. 145 (6) (2017) 2311-2321.

[20] H. Tanaka, Classification of subsets with minimal width and dual width in Grassmann, bilinear forms and dual polar graphs, J. Combin. Theory Ser. A 113(5) (2006) 903–910.

[21] K. Wang, J. Guo and F. Li, Association schemes based on attenuated spaces, European J. Combin. 31 (2010) 297–305.

[22] K. Wang, J. Guo and F. Li, Singular linear space and its applications, Finite Fields Appl. 17 (2011) 395–406.

[23] R.M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984) 247–257.