AN IDENTITY OF THE SYMMETRY FOR THE
FROBENIUS-EULER POLYNOMIALS ASSOCIATED WITH
THE FERMIONIC \(p \)-ADIC INVARIANT \(q \)-INTEGRALS ON \(\mathbb{Z}_p \)

TAEKYUN KIM

Abstract. The main purpose of this paper is to prove an identity of symmetry for the
Frobenius-Euler polynomials. It turns out that the recurrence relation and multiplication
theorem for the Frobenius-Euler polynomials which discussed in [K. Shiratani, S.
Yamamoto, On a \(p \)-adic interpolation function for the Euler numbers and its deri-
vatives, Memo. Fac. Sci. Kyushu University Ser.A, 39(1985), 113-125]. Finally we investigate
several further interesting properties of symmetry for the fermionic \(p \)-adic invariant
\(q \)-integral on \(\mathbb{Z}_p \) associated with the Frobenius-Euler polynomials and numbers.

§1. Introduction

The \(n \)-th Frobenius-Euler numbers \(H_n(q) \) and the \(n \)-th Frobenius-Euler polynomi-
als \(H_n(q, x) \) attached to an algebraic number \(q \neq 1 \) may be defined by the exponential
generating functions

\[
\sum_{n=1}^{\infty} H_n(q) \frac{t^n}{n!} = \frac{1 - q}{e^t - q}, \quad \text{see [6,7]},
\]

\[
\sum_{n=0}^{\infty} H_n(q, x) \frac{t^n}{n!} = \frac{1 - q}{e^t - q} e^x t.
\]

It is easy to show that \(H_n(q, x) = \sum_{l=0}^{n} \binom{n}{l} x^{n-l} H_l(q) \). Let \(p \) be a fixed prime.
Throughout this paper \(\mathbb{Z}_p, \mathbb{Q}_p, \mathbb{C}, \) and \(\mathbb{C}_p \) will, respectively, denote the ring of \(p \)-adic rational integers, the field of \(p \)-adic rational numbers, the complex number field,
and the completion of algebraic closure of \(\mathbb{Q}_p \). When one talks of \(q \)-extension, \(q \)
is variously considered as an indeterminate, a complex \(q \in \mathbb{C} \), or a \(p \)-adic number
\(q \in \mathbb{C}_p \), see [9-22]. If \(q \in \mathbb{C} \), then we assume \(|q| < 1 \). If \(q \in \mathbb{C}_p \), then we assume

\text{Key words and phrases.} fermionic \(p \)-adic \(q \)-integral, Frobenius-Euler number.

2000 AMS Subject Classification: 11B68, 11S80
This paper is supported by Jangjeon Mathematical Society(JJMS-10R-2008)
$|1 - q|_p < 1$. For $x \in \mathbb{Q}_p$, we use the notation $[x]_q = \frac{1 - q^x}{1 - q}$, and $[x]_{-q} = \frac{1 - (-q)^x}{1 + q}$, see [5-6]. The normalized valuation in \mathbb{C}_p is denoted by $|\cdot|_p$ with $|p|_p = \frac{1}{p}$. We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$ and denote this property by $f \in UD(\mathbb{Z}_p)$, if the difference quotients $F_f(x, y) = \frac{f(x) - f(y)}{x - y}$ have a limit $l = f'(a)$ as $(x, y) \to (a, a)$. For $f \in UD(\mathbb{Z}_p)$, let us start with the expression

$$I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \to \infty} \frac{1}{[dp^N]_q} \sum_{0 \leq x < dp^N} f(x) q^x,$$

Thus, we note that

$$qI_q(f_1) = I_q(f) + (q - 1)f(0) + \frac{q - 1}{\log q} f'(0),$$

where $f_1(x) = f(x + 1)$.

The fermionic p-adic invariant q-integral on \mathbb{Z}_p is defined as

$$(2) \quad I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N-1} f(x)(-q)^x,$$

In [8], H.J.H. Tuenter provided a generalization of the Bernoulli number recurrence

$$B_m = \frac{1}{a(1 - a^m)} \sum_{j=0}^{m-1} a^j \binom{m}{j} B_j \sum_{i=0}^{a-1} i^{m-j},$$

where $a, m \in \mathbb{Z}$ with $a > 1$ and $m \geq 1$, attributed to E.Y. Deeba and D.M. Rodriguez[2] and to I. Gessel[3]. Define $S_m(k) = 0^m + 1^m + \cdots + k^m$, where $a, m \in \mathbb{Z}$, with $a \geq 0$ and $m \geq 0$. H.J.H. Tuenter proved that the quantity

$$\sum_{j=0}^{m} \binom{m}{j} a^{j-1} B_j b^{m-j} S_{m-j}(a - 1),$$

is symmetric in a and b, provided $a, b, m \in \mathbb{Z}$, with $a > 0, b > 0$ and $m \geq 0$. In this paper we prove an identity of symmetry for the Frobenius-Euler polynomials. It
turns out that the recurrence relation and multiplication theorem for the Frobenius-Euler polynomials which discussed in [7]. Finally we investigate the several further interesting properties of the symmetry for the fermionic p-adic invariant q-integral on \mathbb{Z}_p associated with the Frobenius-Euler polynomials and numbers.

§2. An identity of symmetry for the Frobenius-Euler polynomials

From (2) we can derive

$$(3) \quad q I_{-q}(f_1) + I_{-q}(f) = [2]_q f(0), \text{ where } f_1(x) = f(x+1).$$

By continuing this process, we see that

$$q^n I_{-q}(f_n) + (-1)^{n-1} I_{-q}(f) = [2]_q \sum_{l=0}^{n-1} (-1)^{n-1-l} q^l f(l), \text{ where } f_n(x) = f(x+n).$$

When n is an odd positive integer, we obtain

$$(4) \quad q^n I_{-q}(f_n) + I_{-q}(f) = [2]_q \sum_{l=0}^{n-1} (-1)^l f(l) q^l.$$

If $n \in \mathbb{N}$ with $n \equiv 0 \pmod{2}$, then we have

$$(5) \quad q^n I_{-q}(f_n) - I_{-q}(f) = [2]_q \sum_{l=0}^{n-1} (-1)^{l-1} f(l) q^l.$$

From (1) and (3) we derive

$$(6) \quad \int_{\mathbb{Z}_p} e^{xt} d\mu_{-q}(x) = \frac{1 - (-q)^{-1}}{e^t - (-q)^{-1}} = \sum_{n=0}^{\infty} H_n(-q^{-1}) \frac{t^n}{n!}.$$

Thus, we note that

$$\int_{\mathbb{Z}_p} x^n d\mu_{-q}(x) = H_n(-q^{-1}), \text{ and } \int_{\mathbb{Z}_p} (y + x)^n d\mu_{-q}(x) = H_n(-q^{-1}, x).$$

Let $n \in \mathbb{N}$ with $n \equiv 1 \pmod{2}$. Then we obtain

$$[2]_q \sum_{l=0}^{n-1} (-1)^l q^l t^m = q^n H_m(-q^{-1}, n) + H_m(-q^{-1}).$$
For \(n \in \mathbb{N} \) with \(n \equiv 0 \pmod{2} \), we have

\[
q^n H_m(-q^{-1}, n) - H_m(-q^{-1}) = [2]_q \sum_{l=0}^{n-1} (-1)^{l+1} q^l l^m.
\]

By substituting \(f(x) = e^{xt} \) into (4), we can easily see that

\[
(7) \quad \int_{\mathbb{Z}_p} q^n e^{(x+n)t} d\mu_q(x) + \int_{\mathbb{Z}_p} e^{xt} d\mu_q(x) = [2]_q \frac{q^n e^{nt} + 1}{qe^t + 1} = [2]_q \sum_{l=0}^{n-1} (-1)^{l+1} q^l e^{lt}.
\]

Let \(S_{k,q}(n) = \sum_{l=0}^{n} (-1)^l l^k q^k \). Then \(S_{k,q}(n) \) is called by the alternating sums of powers of consecutive \(q \)-integers. From the definition of the fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \), we can derive

\[
(8) \quad \int_{\mathbb{Z}_p} q^n e^{(x+n)t} d\mu_q(x) + \int_{\mathbb{Z}_p} e^{xt} d\mu_q(x) = \frac{[2]_q \int_{\mathbb{Z}_p} e^{xt} d\mu_q(x)}{\int_{\mathbb{Z}_p} e^{nxt} q^{(n-1)x} d\mu_q(x)}.
\]

By (8), we easily see that

\[
\int_{\mathbb{Z}_p} q^{(n-1)x} e^{nxt} d\mu_q(x) = \frac{1 + q}{q^n e^{nt} + 1}.
\]

Let \(w_1, w_2 (\in \mathbb{N}) \) be odd. By using double fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \), we obtain

\[
\int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} e^{(w_1 x_1 + w_2 x_2)t} d\mu_q(x_1) d\mu_q(x_2) = \frac{[2]_q (q^{w_1 w_2 e^{w_1 w_2 t}} + 1)}{(qe^{w_1 t} + 1)(qe^{w_2 t} + 1)}.
\]

Now we also consider the following fermionic \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \) associated with Frobenius-Euler polynomials.

\[
I = \int_{\mathbb{Z}_p} \int_{\mathbb{Z}_p} e^{(w_1 x_1 + w_2 x_2 + w_1 w_2 x_2)t} d\mu_q(x_1) d\mu_q(x_2)\]

\[
= \frac{[2]_q e^{w_1 w_2 x_1 t} (q^{w_1 w_2 e^{w_1 w_2 t}} + 1)}{(qe^{w_1 t} + 1)(qe^{w_2 t} + 1)}.
\]

From (9) and (8), we can derive
Theorem 1. Let \(w_1, w_2 (\in \mathbb{N}) \) be odd and let \(n(\geq 0) \) with \(n \equiv 1 (\mod 2) \). Then we have

\[
\sum_{i=0}^{n} \binom{n}{i} H_i(-q^{-1}, w_2 x) S_{n-i, q w_2} (w_1 - 1) w_1^i w_2^{n-i}
\]

where \(H_n(q, x) \) are the \(n \)-th Frobenius-Euler polynomials.

Setting \(x = 0 \) in (13), we obtain the following corollary.
Corollary 2. Let \(w_1, w_2 \in \mathbb{N} \) be odd and let \(n \in \mathbb{Z}_+ \) be an odd. Then we have

\[
\sum_{i=0}^{n} \binom{n}{i} H_i(-q^{-1}) S_{n-i, q} (w_1 - 1) w_1^{n-i} w_2^{n-i} = \sum_{i=0}^{n} \binom{n}{i} H_i(-q^{-1}) S_{n-i, q} (w_2 - 1) w_2^{n-i} w_1^{n-i},
\]

where \(H_i(-q^{-1}) \) are the \(n \)-th Frobenius-Euler numbers.

If we take \(w_2 = 1 \) in (13), then we have

\[
H_n(-q^{-1}, w_1 x) = \sum_{i=0}^{n} \binom{n}{i} H_i(-q^{-1}, x) S_{n-i, q} (w_1 - 1) w_1^i.
\]

Setting \(x = 0 \) in (14), we obtain the following corollary.

Corollary 3. Let \(w_1 (> 1) \) be an odd integer and let \(n \in \mathbb{Z}_+ \) with \(n \equiv 1 \pmod{2} \). Then we have

\[
H_n(-q^{-1}) = \frac{1}{1 - w_1^n} \sum_{i=0}^{n-1} \binom{n}{i} H_i(-q^{-1}) S_{n-i, q} (w_1 - 1) w_1^i.
\]

From (7) and (8), we derive

\[
I = \left(\frac{e^{w_1 w_2 x t}}{[2]q} \int_{\mathbb{Z}_p} e^{w_1 x_1 t} d\mu_{-q}(x_1) \right) \left(\frac{[2]q \int_{\mathbb{Z}_p} e^{w_2 x_2 t} d\mu_{-q}(x_2)}{\int_{\mathbb{Z}_p} e^{w_1 w_2 x t} q(w_1 w_2 - 1)x d\mu_{-q}(x)} \right) \\
= \left(\frac{e^{w_1 w_2 x t}}{[2]q} \int_{\mathbb{Z}_p} e^{w_1 x_1 t} d\mu_{-q}(x_1) \right) \left([2]q \sum_{l=0}^{w_1-1} (-1)^l q^{w_2 l} e^{w_2 l t} \right) \\
= \sum_{l=0}^{w_1-1} (-1)^l q^{w_2 l} \int_{\mathbb{Z}_p} e^{(x_1 + w_2 x + \frac{w_2}{w_1} l) t w_1} d\mu_{-q}(x_1) \\
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{w_1-1} (-1)^l q^{w_2 l} H_n(-q^{-1}, w_2 x + \frac{w_2}{w_1} l) \right) \frac{t^n}{n!}.
\]

6
On the other hand,

\[
I = \left(\frac{e^{w_1w_2xt}}{[2]_q} \int_{\mathbb{Z}_p} e^{w_2x^d}d\mu_q(x_2) \right) ^ \left(\frac{[2]_q \int_{\mathbb{Z}_p} e^{w_1x_1l}d\mu_q(x_1)}{\int_{\mathbb{Z}_p} e^{w_1w_2xt}q(w_1w_2^{-1})x_2d\mu_q(x)} \right) \\
= \left(\frac{1}{[2]_q} \int_{\mathbb{Z}_p} e^{w_2x^d}d\mu_q(x_2) \right) ^ \left(\frac{\sum_{l=0}^{w_2-1} (l)q^{w_1l}e^{(w_1l+w_1w_2)t}}{[2]_q} \right) \\
= \sum_{l=0}^{w_2-1} (-1)^lq^{w_1l} \int_{\mathbb{Z}_p} e^{(x_2+w_1x+w_2l)t}d\mu_q(x_2) \\
= \sum_{n=0}^{\infty} \left(\frac{w_2^n}{n!} \sum_{l=0}^{w_2-1} (-1)^lq^{w_1l}H_n(-q^{-1}, x+w_1x+w_2l) \right) t^n.
\]

(16)

By comparing the coefficients on the both sides of 915) and (160, we obtain the following theorem.

Theorem 4. Let \(w_1, w_2(\in \mathbb{N})\) be odd and let \(n \in \mathbb{Z}_+\) with \(n \equiv 1\pmod{2}\). Then we have

\[
w_1^n \sum_{l=0}^{w_2-1} (-1)^lq^{w_2l}H_n(-q^{-1}, w_2x+w_2l) = w_2^n \sum_{l=0}^{w_2-1} (-1)^lq^{w_1l}H_n(-q^{-1}, w_1x+w_1l).
\]

Setting \(w_2 = 1\) in Theorem 4, we get the multiplication theorem for the Frobenius-Euler polynomials as follows:

\[
H_n(-q^{-1}, w_1x) = w_1^n \sum_{l=0}^{w_2-1} (-1)^lq^{l}H_n(-q^{-1}, x+l)w_1.
\]

References

[1] L. Comtet, *Advanced combinatorics*, Reidel, Dordrecht, 1974.

[2] E. Deeba, D. Rodriguez, *Stirling’s series and Bernoulli numbers*, Amer. Math. Monthly 98 (1991), 423-426.

[3] M. Cenkci, M. Can and V. Kurt, *p-adic interpolation functions and Kummer-type congruences for q-twisted Euler numbers*, Adv. Stud. Contemp. Math. 9 (2004), 203–216.

[4] F. T. Howard, *Application of a recurrence for the Bernoulli numbers*, J. Number Theory 52 (1995), 157-172.

[5] T. Kim, *The modified q-Euler numbers and polynomials*, Adv. Stud. Contemp. Math. 16 (2008), 161-170.

[6] T. Kim, *Euler numbers and polynomials associated with zeta functions*, Abstract and Applied Analysis 2008 (2008), 13 pages(Articles in Press).

[7] K. Shiratani, S. Yamamoto, *On a p-adic interpolation function for the Euler numbers and its derivatives*, Mem. Fac. Sci., Kyushu University Ser. A 39 (1985), 113-125.

[8] H. J. H. Tuenter, *A Symmetry of power sum polynomials and Bernoulli numbers*, Amer. Math. Monthly 108 (2001), 258-261.
[9] T. Kim, $q-$Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288–299.
[10] T. Kim, A Note on p-Adic q-integral on \mathbb{Z}_p Associated with q-Euler Numbers, Adv. Stud. Contemp. Math. 15 (2007), 133–138.
[11] T. Kim, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), 598–608.
[12] T. Kim, q-Extension of the Euler formula and trigonometric functions, Russ. J. Math. Phys. 14 (2007), 275–278.
[13] T. Kim, Power series and asymptotic series associated with the q-analog of the two-variable p-adic L-function, Russ. J. Math. Phys. 12 (2005), 186–196.
[14] T. Kim, Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), 91–98.
[15] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15–27.
[16] B. A. Kupershmidt, Reflection symmetries of q-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412–422.
[17] H. Ozden, Y. Simsek, S.-H. Rim, I.N. Cangul, A note on p-adic q-Euler measure, Adv. Stud. Contemp. Math. 14 (2007), 233–239.
[18] M. Schork, Ward’s “calculus of sequences”, q-calculus and the limit $q \to -1$, Adv. Stud. Contemp. Math. 13 (2006), 131–141.
[19] M. Schork, Combinatorial aspects of normal ordering and its connection to q-calculus, Adv. Stud. Contemp. Math. 15 (2007), 49-57.
[20] Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13 (2006), 340–348.
[21] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp. Math. 11 (2005), 205–218.
[22] Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series, J. Math. Anal. Appl. 318 (2006), 333-351.

Taekyun Kim
Division of General-Education, Kwangwoon University, Seoul 139-701, S. Korea
e-mail: tkim@kw.ac.kr; tkim64@hanmail.net