Arsenic removal from iron-containing groundwater by delayed aeration in dual-media sand filters

Md Annaduzzaman a,*, Luuk C. Rietveld a, Bilqis Amin Hoque b, Md Niamul Bari c, Doris van Halem b

a Sanitary Engineering Section, Department of Water Management, Delft University of Technology, The Netherlands
b Environment and Population Research Center, Bangladesh
c Department of Civil Engineering, Rajshahi University of Engineering and Technology, Bangladesh

1. Introduction

Groundwater arsenic (As) contamination is a severe drinking water quality problem and a threat to human health in Bangladesh and other countries (Smedley and Kinniburgh, 2002; Chakraborti et al., 2013). Chronic exposure to As-contaminated drinking water has resulted in tens of millions of people suffering from skin lesions, hyperkeratosis, melanosis, skin cancer, and cancer of internal organs (Luzi et al., 2004; Li et al., 2012; Guo et al., 2013). The World Health Organization (WHO) recommends that As concentrations in drinking water should not be more than 10 µg/L (Smith et al., 2000). However, according to Bangladesh Drinking Water Standard (BDWS), the recommended value for As in drinking water is 50 µg/L. Nevertheless, groundwater in an extended area of Bangladesh contains As concentrations higher than those recommended values (Rosso et al., 2011; Perez and Francisca, 2013; Haque et al., 2018), and sometimes, it even exceeds 1500 µgAs/L (Nordstrom, 2002; Cavalcá et al., 2019). In reducing groundwater, at near-neutral pH, As exists in the thermodynamically stable form as arsenite or As(III) (H₂AsO₃) (Cullen and Reimer, 1989; Smedley and Kinniburgh, 2002), while, in oxidizing conditions, arsenate or As(V) is the predominant species (H₃AsO₄, H₂AsO₅²⁻) (Lafferty et al., 2010; Villa-Lobos et al., 2014). Various treatment technologies, including adsorption, coagulation/flocculation, chemical precipitation, lime softening, ion-exchange, and membrane filtration have been studied to remove As from water (Meng et al., 2001; Su and Puls, 2001; Roberts et al., 2004; Zhang et al., 2010; Pio et al., 2015; Niazi et al., 2018; Shakoor et al., 2019; Amen et al., 2020). However, these options are energy-intensive, and/or consume chemicals that make the treatment methods expensive (Haque et al., 2004, 2006; Hosain et al., 2014). In addition, commonly available treatment systems are complicated to operate and maintain, needing regular parts’ replacement and after-market services that are expensive and skilled personnel who may not be locally available (Delaire et al., 2017). As a consequence, these technologies are not sustainable in the long run in vulnerable communities (Hosain et al., 2014, 2015).

Therefore, there is a need for simple, economical, and energy-
efficient alternatives, utilizing locally available materials and less or no use of additional chemicals (Katsyiannis et al., 2015; Hering et al., 2017; Senn et al., 2018). Passive groundwater treatment consists of aeration, followed by single or multiple filtration steps (Morrison et al., 2017; Senn et al., 2018) without using chemicals, as shown in Fig. 1. Aeration frequently consists of cascades or spray aerators, followed by gravitational filtration through a submerged filter bed. Traditionally, aeration, followed by single or multiple filtration steps (Morrison et al., 2017; Senn et al., 2018). Passive groundwater treatment consists of use of additional chemicals (Katsoyiannis et al., 2015; Hering et al., 2015; Gude et al., 2016), depending on the water chemistry (Sorlini and Gialdini, 2014). Co-removal of As with groundwater native-Fe is reported to be only possible if As concentration is low (<50 µg/L) (Katsyiannis et al., 2015; Gude et al., 2018a) and the Fe to As ratio is sufficiently high (Biswas et al., 2012; Sharma et al., 2016; Annaduzzaman et al., 2018). Furthermore, studies by Holm and Wilson (2006) showed that despite having groundwater native-Fe²⁺ of >1.5 mg/L, only 20–25% (8–10 µg/L) of As could be removed. This was also the case in Lowry and Lowry’s (2002) study that showed aeration and storage of Fe²⁺-containing groundwater, facilitated only partial As removal with hydrous ferric oxide (HFO) flocs. Roberts et al. (2004) also revealed that 50–55 mg/L of Fe²⁺ was required to achieve <50 µg/L As in the treated solution from 500 µg/L of As in a single-step Fe²⁺ oxidation system, while in a step-wise Fe³⁺-oxidation system, only 20–25 mg/L of Fe²⁺ was sufficient to have an efficiency of over 90% As removal. All of these studies underline that the ratio of Fe to As played a major role in the As removal process.

Equilibrium adsorption studies of As on Fe oxides show that although both As(III) and As(V) have an affinity for Fe oxides (Dixit and Hering, 2003; Hug and Leupin, 2003; Voegelin and Hug, 2003; Luzi et al., 2004; Han et al., 2016), during Fe²⁺ oxidation and subsequent fresh HFO formation, the removal capacity for As(V) is much higher (Manning et al., 2002; Mercer and Tobiason, 2008; Hering et al., 2017). The removal of As(III) is more efficient through co-precipitation, while As(V) removal is related to surface complexation/precipitation with HFO flocs (Tian et al., 2017). Therefore, in order to develop passive groundwater treatment into an efficient system for As removal by HFO flocs, it is critical to promote the presence of As in the oxidized As(V) state during onset Fe²⁺ oxidation.

In this study, it was hypothesized that by delaying the oxidation of groundwater native-Fe²⁺, the available adsorption capacity of the freshly formed HFO flocs can be utilized better for sufficient As removal. Therefore, anoxic storage before aeration and filtration was applied to allow step-wise Fe²⁺ oxidation. This novel oxidation sequence was compared against a conventional oxic storage system, to study the influence on As removal efficiency by delayed/step-wise oxidation followed by aeration and dual-media sand filtration. Moreover, in this treatment system, locally available filter materials were used without additional adsorbents/chemicals. The study was conducted in Rajshahi (Bangladesh), using naturally As-contaminated groundwater (329±0.05 µg/L) in the presence of other inorganic groundwater contaminants (e.g., Fe³⁺, PO₄³⁻, NH₄⁺).

2. Materials and methods

2.1. Water quality

The pilot-scale experiments were conducted using As contaminated groundwater in Uttar Kazirpara village in Paba Upazila of Rajshahi district, Bangladesh. Table 1 provides the relevant water quality parameters of used natural groundwater. The groundwater was in a reducing/anoxic state and abstracted from 50(±1) m depth using an electric submersible pump (GAZI, Bangladesh).

![Fig. 1. The concept of delayed aeration by application of an anoxic storage container before aeration and dual-bed filtration.](image-url)
2.2. Experimental set-up

The experimental set-up consisted of four identical dual-media filter columns to run the two parallel experiments in duplicate (Fig. 2). The As (III) oxidation and removal were investigated with two different storage conditions from the same source water: (1) conventional oxic storage and (2) anoxic storage. The oxic storage container was equipped with a spray aerator placed 35 cm above the container, whereas the anoxic storage container had an inlet at the bottom of the container—preventing any atmospheric contact. On the first day, the systems were allowed to overflow for 5 min to remove atmospheric oxygen. On the subsequent days, groundwater was added to the remaining stored water (about one-third of the volume), to refill the storage systems.

After storage, the water was aerated by letting it drip into the column from the pipeline, which was placed 35 cm above the top of the supernatant level of the column (Fig. 2). Each column has a diameter of 10 cm and a height of 120 cm. The columns were filled with 40(±2%) cm anthracite (0.6–0.9 mm) on top followed by 50(±2%) cm of quartz sand (0.3–0.75 mm) at the bottom. The quartz sand (known as Domar sand) is commonly used in construction, and gravel packing of the screen during tubewell installation. The Domar sand was bought from locally available shops. Before starting the experiment, the filter columns were extensively backwashed until the supernatant was visually clear. The experimental flow rate was set to 9 L/h to achieve a filtration velocity of 1 (±10%) m/h. The supernatant water level was kept at 15–20 cm above the filter bed, when the level rose beyond 20 cm due to filter clogging, backwashing was done.

Backwashing was executed with a 20% expansion of the filter bed using stored water and continued until the supernatant water was visually clear (±20 min). No chemicals were used during the experiments. Throughout the experimental period of 30 days, the column was continuously fed with water and covered to protect the water from direct sunlight exposure. The water quality of the different storage containers, supernatant, anthracite filtrate and column filtrate were compared for 30 days, and all experiments were performed in duplicates.

2.3. Sampling and analytical procedure

The parameters pH, dissolved oxygen (DO), oxidation-reduction potential (ORP), and temperature (T) were directly measured on-site during sample collections using WTW electrodes (SenTix 940, FDO® 925, SenTix ORP 900, and Terracon 925, respectively). Samples were collected on days 1, 5, 10, 20, and 30. The filtered and unfiltered 15 ml water samples were collected in polypropylene transparent 15 ml centrifuge tubes (Sigma Aldrich) and the relevant samples were acidified immediately in the field for preservation until further analysis. The samples were acidified with ultrapure HNO₃ acid (ACS reagent, 70%; Formula weight 60.01 g/mol; Sigma Aldrich) that made up for 1.5% of the total solution. Furthermore, 250 ml filtered (0.45 µm) and non-acidified water samples were collected in 250 ml polypropylene laboratory-grade water vials for determining ammonium (NH₄⁺), nitrate (NO₃⁻), and phosphate (PO₄³⁻) concentrations. All filtered samples were filtered using a polyether-sulfone 0.45 µm filter (25 mm, VWR). Arsenic and Fe were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in the water laboratory at the Delft University of Technology, the Netherlands. The concentration of NH₄⁺, NO₃⁻, and PO₄³⁻ were determined from 250 ml filtered samples at Rajshahi Regional Laboratory, Department of Public Health Engineering (DPHE), Bangladesh.

The speciation of As(III) was conducted using the ion-exchange resin Amberlite® IRA-400 chloride (Sigma Aldrich), by pushing 100 ml filtered (0.45 µm filter) water through a 60 ml syringe which contained 30 ml ion-exchange resin. After resin filtration, the remaining As concentrations were considered to be uncharged As(III) (Karori et al., 2006; Gude et al., 2016). The concentration of As(V) was calculated by deducting As(III) from the total As concentration obtained from the 0.45 µm filtered sample as mobile, dissolved As.

Fig. 2. Schematic overview of the dual-media sand filtration set-up. The anaerobic groundwater was exposed to atmospheric oxygen by a spray aerator before the oxic storage, whereas, the submerged inlet was used to fill the anoxic storage to avoid aeration. The pre-stored water was aerated by letting it drip into the column from the pipeline from 35 cm above the column top. The dual-media column experiments were performed in duplicates for each storage system.
2.4. Data analysis

The data analyses were conducted using one-way analysis of variance (ANOVA) with a confidence level of 95% (α = 0.05) for the statistical validation of the removal efficiency of As, Fe, NH$_4^+$, and PO$_4^{3-}$ during different filtration steps. The obtained duplicate data from each step and condition (oxic and anoxic) were used in duplicate assays from each sampling day (n = 5) over the experimental 30 days. The data were presented in the form of mean with their standard deviations. The p-value (probability value) from the ANOVA test was used to determine the significant difference between the duplicate results from the two different operational conditions (oxic and anoxic storage) followed by aeration and RSF steps. The analyzed p-value was consistently below 0.05 for As, Fe, NH$_4^+$ and PO$_4^{3-}$ removal at different operational conditions and filtration steps, meaning the removal was statistically significant.

3. Results and discussion

3.1. Fe$^{2+}$ oxidation in the storage systems

The pH, DO, ORP, and Fe$^{2+}$ concentrations in the oxic and anoxic storage systems are presented in Fig. 3. The natural groundwater pH, DO, and ORP were stable at 6.94(±0.2), 0.07(±0.06) mg/L, and −110 (±4) mV, respectively (Table 1). Due to aeration before storage in the oxic system, the pH, DO, and ORP increased to 7.5(±0.1), 6.21(±0.2) mg/L, and 50(±14) mV, correspondingly, since CO$_2$ was stripped (i.e., pH increase) and O$_2$ was added during aeration (Rahman, 2017). Furthermore, the aeration facilitated rapid oxidation of Fe$^{2+}$ to Fe$^{3+}$ and form HFO flocs. This was to be expected as the kinetics of homogeneous Fe$^{2+}$ oxidation at pH 7.5 and high DO is fast (t$_{1/2}$: roughly 2–3 min) (Morgan and Lahav, 2007; Katsoyiannis et al., 2008a, 2008b). The total Fe concentration in the oxic storage system dropped slightly in the course of experiments and varied between 1.97 and 2.19 mg/L (Fig. 3d), which can be explained by the settling of HFO flocs in this non-stirred storage system. The 2.08 mg/L oxidized Fe$^{3+}$ roughly corresponded to the consumed DO of 0.30 mg/L, which was calculated based on the 1:4 stoichiometry of the Fe$^{2+}$ oxidation reaction with DO (Stumm and Lee, 1961), illustrating that DO was the electron acceptor under the oxic conditions.

In the anoxic storage, the continuously low pH, DO, and ORP resulted in limited Fe$^{2+}$ oxidation. However, the pH and DO remained low over days, whereas ORP increased slowly with increasing Fe$^{2+}$ oxidation to Fe$^{3+}$. The pH and DO were found to be 6.86(±0.04), 0.24 (±0.1) mg/L, respectively, but ORP drifted from −96.7 mV on the first day to −45.7 mV, −15.8 mV, 21.7 mV, and 48.6 mV on days 5, 10, 20 and 30, correspondingly (Fig. 3c). From the graphs, the observed increase in pH, DO, and ORP on day 5 compared to day 1 could have resulted from the dilution effect of newly added water with remaining stored water (one-third of the volume). Due to the stable operation of the systems over days, the measurements stabilized from day 5–10 onwards (Fig. 3a,c). The oxidation of Fe$^{2+}$ also increased over time from 0.64 mg/L of oxidized Fe$^{3+}$ on the first day to 0.9 mg/L on day 30, where the Fe$^{2+}$ oxidation rate in the anoxic storage was 0.8 mg/Lh and 0.12 mg/Lh on day 1 and 30 correspondingly.

During the filling of the anoxic storage, the introduction of DO into the abstracted groundwater could not be fully avoided, which probably led to partial oxidation of Fe$^{2+}$. However, the acceleration of Fe$^{2+}$ oxidation over days in the anoxic storage is likely linked to either accumulation of Fe$^{3+}$-hydroxides that catalyze the oxidation reaction (heterogeneous Fe$^{2+}$ oxidation; van Beek et al., 2015) or development of Fe$^{2+}$ oxidizing biofilm (biological Fe$^{2+}$ oxidation) (de Vet et al., 2011; Lin et al., 2012; Uddin et al., 2019). Nevertheless, Fe$^{2+}$ oxidation in the anoxic system was indeed suppressed throughout the experimental period, allowing for delayed/step-wise oxidation.

3.2. As(III) oxidation and removal in the storage systems

Arsenic concentration and speciation in the oxic and anoxic storage systems are presented in Fig. 4. Partial As(III) oxidation and As removal was observed in both storage systems with slightly more oxidation and removal in the oxic storage. The groundwater contained 329(±0.05) µg/L of As(III) at the beginning of experiments. Arsenic removal as As(III) was roughly in proportion to the Fe$^{2+}$ oxidation, which suggests that As(III) removal was mainly due to the formation and settling of HFO flocs. However, due to the slow oxidation rate in the anoxic system, the removal of As(III) was significantly lower than in the oxic system.
L of total As, with 290(±0.02) µg/L being As(III). On the first day of operation, the oxic storage system contained 267 µg/L of total As, in which As(III) was 216(±10) µg/L (Fig. 4a); the anoxic system contained 280 µg/L of total As and 240 µg/L of As(II) (Fig. 4b). After 5–10 days, the operational mode was considered to be stable (see the previous section), also reflected in the stabilization in As(III) concentrations after 10 days, with an average As(III) concentration of 72(±8) µg/L in the oxic and anoxic storage respectively (Fig. 4).

The elevated average As(V) concentration of 95 µg/L (min. 52 µg/L to the max. 115 ±(±10) µg/L) in the oxic storage indicates the high level of As (III) oxidation under aerated conditions, which may be due to various oxidation processes, such as enhanced homogeneous oxidation (Bissen and Frimmel, 2003; Shumlas et al., 2016), biological As(V) oxidation (Quéméneur et al., 2008; Cavalcà et al., 2013), oxidation by reactive intermediates (OH, H₂O₂, and O₂) formed during Fe(III) oxidation and/or Fenton-like (Fe(IV) based) reactions (Hug et al., 2001; Hug and Leupin, 2003; Roberts et al., 2004; Sahai et al., 2007; Ciardelli et al., 2008). The findings are in agreement with studies by Holm (2002), Kim and Nriagu, 2000; Senn et al., 2018).

In the case of the anoxic storage system, the low DO level (<0.25 mg/L) limited homogeneous As(III) oxidation (Bissen and Frimmel, 2003; Shumlas et al., 2016), rapid Fe²⁺ oxidation and formation of abundant reactive intermediates (e.g., OH, H₂O₂, and O₂), thus hampering As(V) formation. However, the observed As(III) concentration seemed to be slightly dropping over 30 days, likely due to the increase in Fe³⁺ oxidation over time (Fig. 4b). When calculating the ratio between oxidized Fe³⁺ and removed As on day 30, the amount of removed As per gram of Fe was higher in the system with anoxic storage (80(±4) µgAs/mgFe³⁺) than in the conventional oxic storage (60(±5) µgAs/mgFe³⁺), with a p-value of less than 0.05. The lower removal ratio in the oxic storage was in agreement with previous findings, where it has been stated that at pH above 7.0, As(V) removal with HFO flocs decreased considerably, due to lowering the positive surface charge, compared to systems with low pH (Wilkie and Hering, 1996; Katsyliannis and Zouboulis, 2002; Dixit and Hering, 2003; Senn et al., 2018). Other studies also revealed that freshly formed HFO flocs in anoxic systems are more efficient for As removal as opposed to pre-formed HFO flocs in the traditional oxic storage systems (Kim and Nriagu, 2000; Senn et al., 2018).

3.3. Fe and As oxidation-removal after aeration

Over the experimental period of 30 days, after both the oxic and the anoxic storage, the groundwater was aerated by dipping from 35 cm above the filter bed. The dissolved Fe²⁺, Fe³⁺, As(III), and As(V) concentrations before and after aeration is shown in Fig. 5. After aeration before feeding the filtration units, the pH, DO and ORP for the oxic storage system was 7.7(±0.07), 6.7(±0.1) mg/L, and 61(±0.6) mV respectively and for the anoxic storage system, the pH, DO, and ORP was 7.4(±0.04), 5.83(±0.02) mg/L, and 45.7(±0.6) mV, correspondingly. The oxic storage water contained 2.08(±0.07) mg/L of total Fe, wherein 89% was HFO flocs (>0.45 µm), indicating no/limited Fe²⁺ was

![Fig. 4. Arsenic species (As(III), As(V), and removed As) and their average concentration in the duplicate (a) oxic and (b) anoxic storage systems. The error bar represents the standard deviation.](image-url)

![Fig. 5. The (a) Fe²⁺ and Fe³⁺; and (b) As(III) and As(V) species (average) concentration in the oxic and anoxic storage system and after aeration before the filter bed. The error bar represents the standard deviation of duplicate column experiments.](image-url)
available for oxidation during the aeration before column feeding.

In the anoxic system, however, the introduction of O₂ during aeration before column feeding resulted in oxidation of the 1.20 mg/L of residual Fe²⁺ from anoxic storage (Fig. 5a). Subsequently, Fe³⁺-hydrolyzed to filterable/insoluble (0.45 µm membrane filter) Fe³⁺ (HFO) flocs. Along with Fe²⁺ oxidation, 120 µg/L of additional As(III) oxidation was also observed after this aeration step (Fig. 5b). In the oxic system, 55 µg/L of As(III) was also oxidized during the second aeration step, while Fe²⁺ was not present anymore, probably as a result of homogeneous As(III) oxidation by DO or bacterial processes that could be developed over time (Shumlas et al., 2016; Gude et al., 2018b). During filtration, a supernatant water level of 15–20 cm was maintained to provide a hydraulic head and a saturated filter bed. The water sample was collected from the supernatant water, which was in contact with the top layer of the filter bed, providing a potential carrier for bacteria and promoting biological oxidation of As(III), as earlier reported by Katsoyiannis and Zouboulis (2004) and Gude et al. (2018b). The aeration step prior to filtration, thus aided in partial As(III) oxidation and As removal in both oxic and anoxic systems. However, the system with anoxic storage showed a higher As removal than the oxic storage system (p<0.05), probably due to the presence of newly, in-situ formed active HFO flocs (Wilson et al., 2004; Mercer and Tobiason, 2008; Senn et al., 2018). The removed As after aeration (supernatant) of the oxic and the anoxic system was 12 µg/L (7%) and 50 µg/L (25%), respectively. This also confirmed the findings of the work of Roberts et al. (2004), who stated that multiple additions of Fe²⁺ lead to more As(III) oxidation and removal compared to a higher and single Fe²⁺ dose.

3.4. Fe and As removal in the filter bed

The dissolved Fe, As(III), and As(V) concentrations in the filtrate is shown in Fig. 6. For both the systems with oxic and anoxic storage, Fe removal was quick and efficient to result in 97% removal in the top anthracite layer. Independent of the storage systems before aeration-filtration, the filtrate Fe concentration was consistently lower than 0.3 mg/L (Fig. 6a), and thus below the WHO drinking water standard. Although the column influent concentrations of Fe²⁺/Fe³⁺ and As(III)/As(V) were similar for both systems, As removal was considerably more effective in the columns that followed anoxic storage. The filtrate As concentration in the anoxic system was 28 µg/L, whereas in the oxic system it was 128 µg/L (p<0.05) (Fig. 6b). Hering et al. (1996) proposed that the varied As removal with in-situ and pre-formed HFO flocs results from their surface charge differences. According to model predictions by Holm (2002), the removal capacity of As by in-situ HFO flocs can be 3.8 times higher than that of preformed HFO flocs. Other studies also indicate that the increase in surface site density of in-situ formed HFO flocs (0.7 mol site/molFe) is higher than the pre-formed HFO flocs (0.205 mol site/molFe) (Fuller et al., 1993; Mercer and Tobiason, 2008). Furthermore, the lower filtrate pH of 7.1 in the anoxic system compared to the oxic system pH of 7.7 could be another reason for more As removal with adsorptive HFO flocs. The lower pH in the anoxic system slowed the HFO floc formation (Katsoyiannis et al., 2008a; Gude et al., 2016; Zhang et al., 2019), and probably helped to increase the positive surface charge of HFO flocs, and thereby improved As removal (Wilkie and Hering, 1996). According to Mercer and Tobiason (2008), for 90% As removal in an ideal scenario, the required Fe:As ratio is about 9 and 6 at pH 7.3 and 6.2 respectively, where Holm’s (2002) study mentioned that the pH difference by two units can increase or decrease As removal from 10% to 90%.

Apart from HFO floc filtration, the filter bed probably also functioned as a bio-filter for As(III) oxidation by AsOB (Shafluzzaman et al., 2008; Gude et al., 2018b). In both storage systems, the residual As(III) that enters the filter bed was fully oxidized to As(V) in the anthracite layer perhaps by the presence of AsOB in the filter bed (Gude et al., 2018b). They also indicated that the penetration of freshly or in-situ formed HFO flocs into the filter bed for the anoxic system facilitates more As(V) adsorption compared to pre-formed HFO floc penetration for the oxic system (Wang et al., 2008; Amstaetter et al., 2010; Holmann et al., 2010). Similar to Gude et al. (2016), the rapid removal of HFO flocs in the first layer resulted in the low As removal in the bottom sand layer (3–7 µg/L).

3.5. Ammonium, nitrate, and phosphate removal

Over the experimental period of 30-day, the concentrations of NH₄⁺ and NO₃⁻ in different treatment steps of the system with oxic and anoxic storage are shown in Fig. 7. In groundwater, the NH₄⁺ and NO₃⁻ concentrations were, on average, 0.96(±0.02) mg/L and 0.39(±0.02) mg/L, respectively (Table 1). After the first five days, the concentration of NH₄⁺ decreased in the oxic system due to the onset of biological nitrification, resulting in NO₃⁻ concentration increase by aerobic oxidation of NH₄⁺ (Koch et al., 2019). The lack of DO in the anoxic storage system limited the NH₄⁺ oxidation process, consequently, 0.79(±0.05) mg/L of NH₄⁺ remained in the storage system. After 5–10 days, the oxidation of NH₄⁺ was observed to commence in the filter bed for both the oxic and anoxic systems, as can be observed from the lowering of NH₄⁺ and increase in NO₃⁻ concentration in the filter bed (anthracite) (de Vet et al., 2011; van Keusel et al., 2015; Koch et al., 2019). However, the results did not imply a 1:1 NH₄⁺ conversion to NO₃⁻ (N-Balance), probably meaning that the nitrification process was not complete, resulting in (intermediate) nitrite (NO₂⁻) production. However, it may be concluded that the nitrification process, although delayed in start-up, was not hampered by the step-wise Fe²⁺ oxidation sequence in the anoxic system.

The PO₄³⁻ concentrations in the stored water and different treatment
steps over time are depicted in Fig. 8. In the groundwater, the PO_4^{3-} concentration was 2.15(\pm0.03) mg/L, which dropped to an average of 0.76(\pm0.05) mg/L in the oxic storage system (Fig. 8a). However, in the anoxic storage system, PO_4^{3-} concentration remained high at 1.68(\pm0.22) mg/L (Fig. 8b). The large decrease of PO_4^{3-} concentration in the oxic storage system, compared to the anoxic storage system ($p<0.05$), can be explained by co-precipitation with HFO flocs (Guan et al., 2009; Voegelin et al., 2010) originating from rapid Fe^{2+} oxidation. In the anoxic storage followed by aeration-filtration, the PO_4^{3-} removal follows the step-wise Fe^{2+} oxidation. PO_4^{3-} was partially removed during anoxic storage (0.47(\pm0.18 mg/L) and aeration (1.14(\pm0.06 mg/L) before filtration (Fig. 8b). The removal of PO_4^{3-} was also observed at different layers of the filter bed (aerated water vs. anthracite filtrate vs. column filtrate), indicating ongoing adsorption of PO_4^{3-} onto HFO flocs. The concentration of PO_4^{3-} further decreased in the column filtrate to 0.38(\pm0.07) mg/L and 0.30(\pm0.05) mg/L from anthracite filtrate concentration of 0.45(\pm0.06) mg/L and 0.43(\pm0.04) mg/L respectively for the oxic and anoxic systems.

4. Considerations for application

The suitability of the As co-precipitation with naturally present Fe^{2+} by anoxic storage followed by aeration-sand filtration system was evaluated in Bangladesh based on the five criteria proposed by WHO (2013), which are effectiveness, appropriateness, acceptability, cost, and implementations.

In Bangladesh, people prefer using tubewells to other drinking water options due to low operation and maintenance costs, and water accessibility around the year (Hossain et al., 2014). With the proposed treatment method, it is possible to achieve As removal without using any additional chemicals. Moreover, it uses only locally available materials and works with an existing groundwater source. Previous studies suggested Fe/As ratios over 40 (mg/mg) would be required to reduce As levels below 50 μg/L (Meng et al., 2002; Ware, 2013) with passive
treatment. The present study indicates that delayed aeration-oxidation of Fe2+ could be a promising method for As removal with Fe/As ratios as low as 10 (mg/mg). However, from a waste management perspective, it is recommended to apply this treatment scheme on a larger scale. Although the combination of anoxic storage followed by aeration and sand filtration is effective against As(III) with Fe/As ratios much lower (40 mg/mg). Consequently, the combination of anoxic storage followed by aeration and sand filtration can be used as a cost-effective and chemical-free alternative for removing As(III) from groundwater under field-relevant conditions.

5. Conclusion

This study aimed to investigate the influence on As removal efficiency by delayed aeration using an anoxic pre-storage system followed by aeration and dual-media sand filtration. This novel treatment sequence was compared against conventional aeration filtration for groundwater containing total As of 329 g/L being As(III) and 2.33 mg/L Fe2+. The obtained step-wise Fe2+ oxidation with anoxic pre-storage enhanced As removal to 92%, compared to only 61% in the conventionaloxic system. It is suggested that this was due to the formation of fresh HFO flocs during step-wise oxidation in the anoxic system. Moreover, Fe2+ oxidation did not compromise the removal of other groundwater contaminants like NH\textsubscript{4}+ and PO\textsubscript{4}3-. Therefore, this study demonstrated that with anoxic storage, passive treatment is an effective barrier against As(III) with Fe/As ratios much lower (<10 mg/mg) than previously determined (>40 mg/mg). Consequently, the combination of anoxic storage followed by aeration and sand filtration can be used as a rapid screening tool for arsenic and manganese in drinking water wells. Environ. Sci. Technol. 46, 434-440. https://doi.org/10.1021/acs.est.5b0358a.

6. Acknowledgments

This study was supported by the DELTAP project funded by the NWO-WOTRO research grant. The authors acknowledge all research assistants from RUET, Rajshahi University, and EPRC in the pilot-scale experimentation in Rajshahi Bangladesh for their help and logistic supports during the intensive fieldwork. The authors also wish to thank landowner Md Sirajul Islam and his family, for allowing work to be done on their premises for the whole day over the entire experimental period. Without their support, this study would not have been possible.

References

Ames, R., Bashir, H., Bibi, I., Shaheen, S.M., Niazi, N.K., Shahid, M., Hussain, M.M., Antoniadis, Y., Shkouro, M.B., Al-Solaimani, S.G., Wang, H., Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem. Eng. J. 396, 125195. https://doi.org/10.1016/j.cej.2020.125195.

Amundson, K., Borch, T., Langedal, E.M., Karlen, A., 2010. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102-108. https://doi.org/10.1021/es903172c.

Annaduzzaman, M., Bhattacharya, P., Biswas, A., Hossain, M., Ahamed, K.M., van Halem, D., 2018. Arsenic and manganese in shallow tubewell: validation of platform color as a screening tool in Bangladesh. Groundw. Sustain. Dev. 6, 181-188. https://doi.org/10.1016/j.gsd.2017.11.008.

Biswas, M., Frimmel, F.H., 2003. Arsenic - A review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim. Hydrobiol. 31, 97-107. https://doi.org/10.1007/s10532-003-00048-y.

Cavalca, L., Corsini, A., Andreoni, V., Muyzer, G., 2013. Draft genome sequence of the arsenite-oxidizing strain Aliihoeflea sp. 2WW, isolated from arsenic-contaminated groundwater. Genome Announc. 1, 1-6. https://doi.org/10.1128/genomea.01072-13.

Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi, T., Muyzer, G., 2019. Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwater in Northern Italy. Front. Microbiol. 10, 1-15. https://doi.org/10.3389/fmicb.2019.01480.

Dixit, S., Hering, J.G., 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxyhydroxides. Environ. Sci. Technol. 37, 1182-1189. https://doi.org/10.1021/es000309r.

Delaire, C., Amrose, S., Zhang, M., Hake, J., Gadgil, A., 2017. How do operating conditions affect As(III) removal by iron electrocoagulation? Water Res. https://doi.org/10.1016/j.jwpre.2017.01.030.

De Vries, J.C.J., Rietveld, L.C., van Halem, D., 2016. Fate of low arsenic concentrations in field environments using mobile phone photometry of field kits. J. Water Process Eng. 21, 107-113. https://doi.org/10.1016/j.watres.2015.10.034.

Guo, H., Ren, Y., Liu, Q., Zhao, K., Li, Y., 2013. Enhancement of arsenic adsorption of aragonite in drinking water. Acta Hydrochim. Hydrobiol. 31, 97-107. https://doi.org/10.1007/s10532-013-0012-2.

Hering, J.G., Katsoyiannis, I.A., Theoduloz, G.A., Berg, M., Hug, S.J., 2017. Arsenic speciation in the environment. Chem. Rev. 89, 7864-7890. https://doi.org/10.1021/cr00094a002.

Hering, J.G., Chen, P.-Y., Wilkie, J.A., Elimelech, M., Liang, S., 1996. Arsenic removal by ferric chloride. Am. Water Works Assoc. 88, 155-164. https://doi.org/10.1002/j.1551-8833.1996.tb06541.x.

Quamruzzaman, Q., 2013. Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation. Environ. Earth Sci. 78, 5855-5869. https://doi.org/10.1007/s12665-013-3590-0.

Quamruzzaman, Q., 2013. Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation. Environ. Earth Sci. 78, 5855-5869. https://doi.org/10.1007/s12665-013-3590-0.

Rinklebe, J., 2020. A critical review on arsenic removal from water using biochar-based sorbents. Environ. Sci. Technol. 44, 334-349. https://doi.org/10.1021/acs.est.9b05725.

Sahib, F., Biswas, A., Khatun, M., Ahmed, M., Karlen, A., Karlen, A., 2013. Arsenic removal by iron electrocoagulation: a pilot scale study. J. Environ. Eng. 143, 03117002 https://doi.org/10.1061/(ASCE)EE.1943-7870.00001225.
Tian, Z., Feng, Y., Guan, Y., Shao, B., Zhang, Y., Wu, D., 2017. Opposite effects of dissolved oxygen on the removal of As(III) and As(V) by carbonate structural Fe(II). Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-17108-4.

Uddin, M.M., Kurisu, F., Kasuga, I., Furumai, H., Islam, S.M.A., 2019. Potential of biological arsenite oxidation in sand filtration units at arsenic–iron removal plants (AIRPs) in Bangladesh. Appl. Water Sci. 9, 1–7. https://doi.org/10.1007/s13201-019-0992-x.

van Beek, C.G.E.M., Dusseldorp, J., Joris, K., Huysman, K., Leijssen, H., Schoonenberg Kegel, F., de Vet, W.W.J.M., van De Wetering, S., Hofs, B., 2015. Contributions of homogeneous, heterogeneous and biological iron(II) oxidation in aeration and rapid sand filtration (RSF) in field sites. J. Water Supply Res. Technol. - AQUA 65, 195–207. https://doi.org/10.2166/aqua.2015.059.

van Beek, C.G.E.M., Hliemstra, T., Hofs, B., Nederlof, M.M., Van Paassen, J.A.M., Reijnen, G.K., 2012. Homogeneous, heterogeneous and biological oxidation of iron (II) in rapid sand filtration. J. Water Supply Res. Technol. - AQUA 61, 1–13. https://doi.org/10.2166/aqua.2012.033.

van Kessel, M.A.H.J., Speith, D.R., Albertsen, M., Nielsen, P.H., den Camp, H.J.M.O., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555–559. https://doi.org/10.1038/nature16459.

Villalobos, M., Escobar-Quiroz, I.N., Salazar-Camacho, C., 2014. The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III). Geochim. Cosmochim. Acta 125, 564–581. https://doi.org/10.1016/j.gca.2013.10.029.

Voegelin, A., Hug, S.J., 2003. Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferricydrite: an in situ ATR-FTIR study. Environ. Sci. Technol. 37, 972–978. https://doi.org/10.1021/es025840k.

Voegelin, A., Kaegi, R., Frommer, J., Vantelon, D., Hug, S.J., 2010. Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acts 74, 164–186. https://doi.org/10.1016/j.gca.2009.09.020.

Ware, B.H., 2013. Impact of Interfering Compounds on the Ferric Chloride Arsenic Removal Treatment Process. Washington State University.

WHO, 2013. Household water treatment and safe storage (HWTS): manual for the participant, Routledge Handbook of Water and Health. Geneva, Switzerland. https://doi.org/10.4324/9781315693606.

Wilson, S.D., Kelly, W.R., Holm, T.R., Talbott, J.L., 2004. Arsenic Removal in Water Treatment Facilities: Survey of Geochemical Factors and Pilot Plant Experiments. Midwest Technology Assistance Center, Champaign, IL.

Zhang, S., Niu, H., Cai, Y., Zhao, X., Shi, Y., 2010. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607. https://doi.org/10.1016/j.cej.2010.02.013.

Zhang, W., Liu, C., Wang, L., Zheng, T., Ren, G., Li, J., Ma, J., Zhang, G., Song, H., Zhang, Z., Li, Z., 2019. A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: preparation and performance evaluation. Colloids Surf. A 561, 364–372. https://doi.org/10.1016/j.colsurfa.2018.10.077.