Abstract: Stacking (pyramiding) several resistance genes of diverse race specificity in one and the same plant by hybridization provides for high and durable resistance to major diseases, such as potato late blight (LB), especially when breeders combine highly efficient genes for broad-spectrum resistance that are novel to the intruding pathogens. Our collection of potato hybrids manifesting long-lasting LB resistance comprises, as a whole, the germplasm of 26 or 22 *Solanum* species (as treated by Bukasov and Hawkes, respectively), with up to 8–9 species listed in the pedigree of an individual hybrid. This collection was screened with the markers of ten genes for race-specific resistance to *Phytophthora infestans* (*Rpi* genes) initially identified in *S. demissum* (*R1*, *R2*, *R3a*, *R3b*, and *R8*), *S. bulbocastanum/S. stoloniferum* (*Rpi-blb1/Rpi-sto1, Rpi-blb2, Rpi-blb3*) and *S. venturii* (*Rpi-vnt1*). The hybrids comprised the markers for up to four-six *Rpi* genes per plant, and the number of markers was significantly related to LB resistance. Nevertheless, a considerable portion of resistance apparently depended on presently insufficiently characterized resistance genes. Bred from these multiparental hybrids, the advanced lines with the stacks of broad-specificity *Rpi* genes will help anticipate LB outbreaks caused by rapid pathogen evolution and the arrival of new pathogen strains.

Keywords: *Phytophthora infestans*; *Solanum* species; genetic diversity; potato hybrids; late blight; durable resistance; genes for resistance to *P. infestans*; anticipatory breeding

1. Introduction

Persistent and unrelenting, late blight (LB) of potato (*Solanum tuberosum* L.) caused by the oomycete *Phytophthora infestans* (Mont.) de Bary levies a permanent tax on potato growers: up to $10 billion is lost annually as direct crop losses and costs of chemical protection; the losses rise dramatically in the years of epidemic disease development [1–3]. The most economical and environment-friendly way to effectively contest and contain LB is to breed new cultivars with durable resistance. Durable resistance is empirically defined as resistance efficient over long periods of widespread crop cultivation under conditions favorable to disease, a compromise between plant defense capacity and the evolutionary potential of the pathogen [4]. Such resistance is reached by transferring the genes for resistance to *P. infestans* (*Rpi* genes) into cultivated potato [5]. Wild potatoes readily supply the necessary germplasm, and multiple *Rpi* genes have already been introgressed into marketable cultivars by the marker-assisted sexual and somatic hybridization or with the technologies of genetic engineering [3,5,10–11]. This resistance is gained slowly and with hard labor—and can be disappointedly lost, sometimes within few years, due to the rapid evolution of *P. infestans* genome and the arrival of new pathogen strains with novel repertoire of (a)virulence genes (*Avr* genes) [1–3,6,10,11].
An efficient strategy to overcome or at least alleviate this problem, when aiming at long-lasting and durable LB resistance, is to combine in one plant the Rpi genes that recognize several Avr genes. This strategy is called gene stacking, or pyramiding. Such gene pyramids will remain sustainable and effective as long as at least one Rpi component of the pyramid can recognize the corresponding Avr gene of the pathogen and trigger the defense response. Theoretically, a pyramid of four resistance genes would withstand pathogen invasion—on condition that both the resistance gene pyramids and the colonizing pathogen population(s) would concurrently fulfill several criteria. First, the stacked resistance genes should be highly effective and not leaky. Second, the best resistance genes and their combinations are those truly novel to the infecting pathogen population. Third, the pathogen genome should only rarely recombine, a criterion easily met only in a primarily asexual population. Fourth, the resistance will stay durable at a low level of gene flow due to pathogen migration [1,6,12–16].

In the case of potato, the most evident way to achieve long-lasting resistance against *P. infestans* is to recruit new Rpi genes into breeding schemes and to stack as many Rpi genes as possible into a single cultivar. The genetic diversity of cultivated potatoes that may provide such resources has been substantially pauperized in the process of conventional breeding [6,9–11]. Therefore within the last two decades, combining multiple resistance genes into a single plant genotype has heavily relied on the identification and cloning of Rpi genes of interest from the vast resource offered by wild *Solanum* species. Particularly inviting sources of germplasm enhancement are insufficiently explored South American wild potatoes, which have not been conspicuously involved in practical breeding, and the species that were never before reported to resist LB [7,9–11,17–20].

In the past centuries preceding the informed breeding, many cultivated genotypes in Mexico and South America had already harbored a significant contribution of wild germplasm [9]. Current germplasm enrichment by identifying and introgressing new Rpi genes and new alleles of already known Rpi genes must also include careful study of the gene pools presently used by breeders. Among other things, such exploration would lower the chance to undermine the efforts of breeders if they deploy Rpi genes that have already been broken by local pathogen strains [3,6,9,10,12–16].

The search for new Rpi genes and new alleles of previously characterized Rpi genes (allele mining) brings us to the mission of a wider span: identification of the full complement of *Solanum* genes contributing to the resistance to *P. infestans* [7,10,17–19–21]. For more than three decades, this field was successfully searched using various DNA markers [5,7,9,21–23]. Later, over 20 Rpi genes were identified and cloned from wild *Solanum* species. Recent breakthrough technologies of resistance gene enrichment sequencing (RenSeq) and the diagnostic version of this technology (dRenSeq) have opened new vistas to comprehensive exploration of *Solanum* Rpi genes and their introduction to advanced breeding schemes [24,25]; in addition, these technologies facilitate the wide-ranging characterization of allelic diversity enabling the evolutionary analysis of Rpi genes and prediction of new sources of these genes in genetic collections.

The multiparental potato hybrids described in this paper were obtained by remote crosses and combine genetic material from 20 wild and two cultivated *Solanum* species as treated by Hawkes [26], with up to 8–9 species reported per single hybrid pedigree. For over a decade, many of these hybrids and derived advanced lines have manifested high LB resistance. They are prospective donors containing pyramids of broad specificity genes that nowadays are readily involved in breeding, such as Rpi-bbl1 = Rpi-sto1, Rpi-bbl2, Rpi-vnt1, R2 = Rpi-bbl3, etc. An important advantage of these breeding donors is that the introgressed Rpi genes maintain the genetic environment inherited from parental forms, including race-nonspecific resistance genes [5,18]. Rather than single genes, the remote crosses would transfer whole clusters of genes combining the Rpi genes of diverse race specificity and even the genes for resistance concurrently to several pests. These hybrid characteristics would ensure the stability of future cultivars and slow down the onset of more adapted pathogen forms in potato stands [5,17,18]. Here we present the
evidence obtained with the markers of ten Rpi genes characterized in more detail. Some data presented below have been reported earlier [27,28] at the Euroblight workshops (https://agro.au.dk/forskning/internationale-platforme/euroblight/).

2. Materials & Methods

2.1. Plant Material

The plant material explored in this study is predominantly represented by multiparental interspecific hybrids. The pedigrees of these hybrids combine from two to nine species of Solanum L., section Petota Dumort. (Table 1). The sample under study includes ten hybrids with high field resistance to LB bred by I.M. Yashina at the Russian Potato Research Center (Korenevo, Moscow region), hereinafter Yashina’s hybrids [29], by crossing demissoid potato varieties and/or breeding lines, which were backcrosses comprising the genetic material of S. andigenum Juz. & Buk. (=S. tuberosum ssp. andigena Hawkes), S. chacoense Bitt. and S. chilotanum (Buk. & Lechn.) Hawkes (=S. tuberosum ssp. tuberosum L.). Hereinafter, the names of Solanum species in the pedigrees of hybrids (Table 1) are listed according to Hawkes [26] and those of cultivars follow the information provided by breeders. Ten hybrids originally obtained by V.A. Kolobaev at the Institute of Plant Protection (Pushkin, St. Petersburg), hereinafter Kolobaev’s hybrids [30], were bred using the accessions of wild Solanum species from the VIR collection, which were previously recognized as the sources of high LB resistance: S. berthaultii Hawkes, S. pinnatisectum Dunal., S. polytrichon Rydb., S. simplicifolium Bitt., and S. verrucosum Schlecht. Thirty seven hybrids produced by E.V. Rogozina at VIR, hereinafter Rogozina’s hybrids [30,31], represent two-species hybrids and backcrosses with the participation of South American species S. alandiae Cárd. and S. okadae Hawkes & Hjert., which have not been previously involved in potato breeding. They also include the hybrids obtained by crossing potato cultivars and breeding lines comprising the genetic material of cultivated and wild potato species: S. andigenum (=S. tuberosum ssp. andigena), S. leptostigma Juz. (=S. tuberosum ssp. tuberosum L.), S. phureja Juz. & Buk., S. rybinii Juz. & Buk. (=S. phureja), S. demissum Lindl., S. stoloniferum Schlechtd. & Bché, S. vallis-mexici Juz., and S. vernei Bitt. & Wittm. It is significant to emphasize that the development of these hybrids involved many South American species rarely used by the Russian breeders. Many of these hybrids bred over several decades are particularly important as they possibly preserved the Rpi alleles that could have been lost in the world collections of wild Solanum species due to genetic drift and loss of individual accessions.

Table 1. Wild Solanum species section Petota Dumort. listed in the pedigrees of interspecific hybrids explored in this study. Species are listed as treated by Bukasov, Hawkes and Spooner [26,32,33].

Series in the Section Petota	Species	Countries	Germplasm Codes
Acaulia Juz.	S. acaule Bitt.	Argentina, Bolivia, Peru	acl
Bulbocastana (Rydb.) Hawkes	S. bulbocastanum Dun.	Guatemala, Mexico	blb
Commersoniana Buk.	S. commersonii Dun.	Argentina, Brazil, Paraguay, Uruguay	cmm
Demissa Buk.	S. demissum Lindl.	Mexico, Guatemala	dms
	S. × edinense Berth.	Mexico	edm
	S. × semidemissum Juz.	Mexico	sem
Table 1. Cont.

Series in the Section Petota	Species	Countries	Germplasm Codes
Longipedicellata Buk.	S. antipoeticzii Buk. = S. stoloniferum	Mexico	ant
	S. polytrichon Rydb. = S. stoloniferum	Mexico	plt
	S. stoloniferum Schlecht. & Bch.	Mexico	sto
	S. ×vallis-mexici Juz.	Mexico	vll
Megistacroloba Cárdenas & Hawkes	S. megistacrolobum Bitt.	Peru, Bolivia, Argentina	mga
Pinnatisecta (Rydb.) Hawkes	S. pinnatisectum Dun.	Mexico	pnt
	S. andigenum Cár. & Buk. = S. tuberosum ssp. andigena Hawkes	Argentina, Bolivia, Guatemala, Colombia, Ecuador, Mexico, Peru, Venezuela	adg
	S. berthaultii Hawkes	Bolivia	ber
	S. brevicaule Bitt.	Bolivia	brc
	S. chilotanum (Buk. & Lechn.) Hawkes (= S. tuberosum ssp. tuberosum L.).	Chile	chi
	S. leptostigma Juz. (= S. tuberosum ssp. tuberosum L.).	Chile	lpt
	S. microdontium Bitt.	Argentina, Bolivia	mcd
	S. okadae Hawkes & Hjert.	Argentina, Bolivia	oka
	S. phureja Juz. & Buk. (=S. phureja Juz. & Buk.)	Ecuador, Colombia, Venezuela, Bolivia, Peru	phu
	S. rybinii Juz. & Buk.	Ecuador, Colombia, Venezuela, Bolivia, Peru	ryb
	S. simplicifolium Bitt. = S. microdontium	Argentina, Bolivia	sim
	S. sperazzini Bitt.	Argentina	spg
	S. verruei Bitt. & Wittm.	Argentina	vrn
	S. verrucosum Schlechtld.	Mexico	ver

In addition to all these hybrids, our study also included several registered varieties, some of which come from complex interspecific hybrids: Alouette (https://varieties.ahdb.org.uk/varieties/view/Alouette; [25]), Sarpo Mira and Sarpo Axona (http://sarpo.co. |
As a whole, this collection (Tables 1 and 2) contains potato hybrids with their pedigrees representing nine series of *Solanum* L. section *Petota* Dumort. and listing 22 wild and four cultivated *Solanum* species as treated by Bukasov [32], which correspond to 20 wild and two cultivated *Solanum* species as treated by Hawkes [26] and 15 wild and one cultivated species as treated by Spooner [33]. The pedigrees of some individuals include as many as nine *Solanum* species. To verify SCAR markers of *Rpi* genes we also employed the accessions of wild *Solanum* species in the VIR collection.

2.2. Resistance to Pathogens

Late blight resistance of leaves was evaluated in long-term field trials under conditions of natural infestation in two European regions of the Russian Federation, i.e., the Northwest (VIR, Pushkin, St. Petersburg; 59.42′ E, 30.25′ N) and the Central (Institute of Phytopathology, Ramenskaya Gorka, Moscow region; 55.63′ E, 36.95′ N).

In the Northwest region, the growing seasons during the period of field trials were different: in 2016 and 2017, abundant precipitation and cool temperatures were favorable for the early manifestation and development of LB; in 2014, 2019 and 2020, moderate rainfall and unstable temperatures delayed the appearance of disease. In the Central region, dry weather early in the 2014 growing season delayed the LB progress; however, heavy rainfall and a drop in temperature early in August provided extremely favorable conditions for the LB development on potato haulms and later, damage to tubers. Through the following six years (2015–2020), the weather conditions were favorable for a fairly early (the middle of June) LB development, and later LB epiphytoty. Within this period, the air temperatures in June and the first half of July were below the long-term values. In addition, significant precipitation was recorded annually.

Pathogen population at two sites was represented by numerous diverse and highly aggressive complex races of *P. infestans* comprising seven to eleven virulence genes [35].

The field assessment of the partial LB resistance of potato plants was carried out every 10–12 days, and these data were used to calculate the area under the disease progress curve (AUDPC) in the course of the growth season and the corresponding yield losses caused by the early destruction of leaves (%). To evaluate the LB resistance level, the calculated yield losses were converted into 1–9-point scores, where 9 points correspond to the highest resistance level [35].

Resistance to LB in the laboratory tests was evaluated with detached leaves according to the Eucablight protocol (www.euroblight.net/). Detached leaves of plants grown in a greenhouse were infected with a highly virulent and aggressive isolate of *P. infestans* N161 (race 1.2.3.4.5.6.7.8.9.10.11, mating type A1) isolated in the Moscow region (the collection of the Institute of Phytopathology), using cv. Santé as a reference [35]. The aggressiveness of N161 in the Lapwood test [36] with Santé tubers exceeded the indices registered with all isolates collected in the potato stands under study. The experimental data for LB resistance were transformed to 1–9-point scores.

The experimental data were processed by the methods of nonparametric statistics (Kruskal-Wallis test of variance, Spearman’s rank correlation and cluster analysis) using the STATISTICA Advanced package (StatSoft Russia; http://statsoft.ru/products/).
Table 2. Multiparental interspecific hybrids and potato cultivars included in this study.

Hybrid, Cultivar	Bred from	Pedigree ****	LB Resistance *****		
		♀Female	♂Male	Field	Laboratory
Hybrids bred by I.M. Yashina					
2585-67 F1	Nikulinskij [Mavka × [Apta (INTERSPECIFIC HYBRID × Hindenburg)] × Karpatskij]	Peterburgskij [[Omega (adg, dms, chi) × E 109/111] ×]	7	6	
2585-70 F1	Nikulinskij	Peterburgskij	5	4	
2585-80 F1	Nikulinskij	Peterburgskij	7	6	
97.12-18 F1	Nikulinskij	88.16/20 [(S.chacoense × S. tuberosum) × Kameraz] × Belorusskij 3	5	4	
2359-13 F1	Nikulinskij	88.16/20 [(S.chacoense × S. tuberosum) × Kameraz] × Belorusskij 3	6	5	
2584-7 F1	Nikulinskij	Ausonia (Wilja × Konst 63-655 adg)	6	4	
97.13-9 F1	Nikulinskij	375.333.1 (cmn, dms, mga)	5	3	
97.1.17 F1	Lugovskoj (164-1C/72 × 60C/73)	88.16/20 [(S.chacoense × S. tuberosum) × Kameraz] × Belorusskij 3	7	4	
2372-60 F1	1977-76 Zarevo (7692 C 68 × Bekra)	adg, dms, plt	8	6	
2522-173 F1	Utenok [Adretta × [(Saska × Ora) × [(Apta × MPI 44335 1309 (adg,dms)) × Schwalbe] Lu.59.884/3 × Axilia] × 15-26 [Lyubimec × 172m-7 (S.chacoense×S. tuberosum)]]	90/2	6	3	
Hybrids bred by V.A. Kolobaev					
10/5-09 F1	Zagadka Pitera (dms, phu, sto, tbr, vrn)	mixture of pollen ***	6–7	4	
11/6-09 F2	Zagadka Pitera (dms, phu, sto, tbr, vrn)	mixture of pollen	6–7	4	
12/1-09 F4	S. pinnatisectum k-17464 Fausta (Sommerstarke (dms) × W8102/214)	6–7	6		
13/11-09 F1	F2 (S. pinnatisectum k-17464 × Gitte (adg))	mixture of pollen	7	5	
14/8-09 F5	(S. polytrichon k-5345 × MPI 50-140/5 (ant = sto, dms))	MPI 50-140/5 (ant = sto, dms)	6	4	
15/13-09 F1	(S. pinnatisectum k-17464 × Gitte (adg))	F2 [(S. polytrichon k-5345 × MPI 50-140/5 (ant=sto)) × MPI 50-140/5] × F3[(S. verrucosum × MPI 50-140/5) × Licaria] × F2 [F2[(S. polytrichon k-5345 × MPI 50-140/5) × MPI 50-140/5] × [(S. simplicifolium k-5400 × MPI 50-140/9) × Mariella (adg, dms)] × Desiree]}	6	6	
Table 2. Cont.

Hybrid, Cultivar *	Bred from	Pedigree ****	LB Resistance *****		
		♀Female	♂Male	Field	Laboratory
Hybrids bred by I.M. Yashina					
16/27-09 F1		[(S. berthaultii k-8510 × Tajga (adg, dms)) × Omega (adg, chi, dms)] × F2[(S. polytrichon k-5345 × MPI 50-140/5 (ant=sto) × MPI 50-140/5) × F2[(S. simplicifolium k-5400 × MPI 50-140/5) × Gitte (adg)] × Hera]	Nayada (adg, dms, phu, sto, tbr, vrn)	7	6
18/40-2000 F2		[(S. polytrichon k-5345 × MPI 50-140/5 (ant=sto) × Umbra) × Fausta (dms)]	[(S. simplicifolium k-5400 × MPI 50-140/5) × Gitte (adg)] × Hera	6	5
111 (38 KVA) F1	Fermer			6.5–8	6
113 (50/1 KVA) F1		Zagadka Pitera (dms, phu, sto, tbr, vrn) × mixture of pollen	Nayada (adg, dms, phu, sto, tbr, vrn) × mixture of pollen	6–7	6
Hybrids bred by E.V. Rogozina					
117-1 F1		Atzimba (adg, dms)	S. alandiae k-21240	5–7	5
117-2 F1		Atzimba	S. alandiae k-21240	6–7	6
39-1-2005 F1		Atzimba	S. alandiae k-21240	6–8	7
24-1 F1		Atzimba	S. alandiae k-21240	6–8	7
24-2 F1		Atzimba	S. alandiae k-21240	6–8	7
25-1-2007 F1		Elizaveta	24-1 (Atzimba × S. alandiae k-21240)	5	5
25-2-2007 F1		Elizaveta	24-1 (Atzimba × S. alandiae k-21240)	4–5	4
134-2-2006 F1		24-2 (Atzimba × S. alandiae k-21240)	Svitanok kievskij	6–7	6
134-3-2006 F1		24-2 (Atzimba × S. alandiae k-21240)	Svitanok kievskij	2–3	3
134-6-2006 F1		24-2 (Atzimba × S. alandiae k-21240)	Svitanok kievskij	5–6	5
135-1-2006 F1		Svitanok kievskij	24-2 (Atzimba × S. alandiae k-21240)	5–7	5
135-2-2006 F1		Svitanok kievskij	24-2 (Atzimba × S. alandiae k-21240)	4.5–7	4
139 (4-1-2012) F1		Atzimba × S. alandiae k-21240	F5 [(S. polytrichon k-5345 × MPI 50-140/5) × MPI 50-140/5]	7–9	6
97-155-1 F1		Bobr (adg, dms, sto)	91-21-4 (adg, dms, ryb)	7–8	6
Table 2. Cont.

Hybrid, Cultivar *	Bred from	Pedigree ****	LB Resistance *****	Field	Laboratory
		♀Female	♂Male		
Hybrids bred by I.M. Yashina					
128-05-03	F1	97-155-1 (adg, ryb, sto)	Nayada (adg, dms, phu, sto, tbr, vrn)	6–7	5
118 (118-5-2011)	F2	91-21-4 (adg, dms, ryb)	91-21-4 (adg, dms, ryb)	5–8	6
120 (118-6-2011)	F2	91-21-4 (adg, dms, ryb)	91-21-4 (adg, dms, ryb)	5–7	5
160-1	F2	91-21-4 (adg, dms, ryb)	Bobr (adg, dms, sto)	7–8	nd
160-17	F2	91-21-4 (adg, dms, ryb)	Bobr (adg, dms, sto)	6–7	5
106 (171-3)	F2	91-21-4 (adg, dms, ryb)	Bobr (adg, dms, sto)	6–7	6
123 (128-6)	F2	91-21-4 (adg, dms, ryb)	Bobr (adg, dms, sto)	6–8	6
90-6-2	F1	194-4 (adg, phu, sto)	CIP-1039 (adg)	7	nd
99-6-5	F1	90-6-2 (adg, phu, sto)	Hertha (adg, dms, ryb, tbr)	3–4	nd
99-6-6	F1	90-6-2 (adg, phu, sto)	Hertha (adg, dms, ryb, tbr)	5	nd
97-153-2	F1	90-6-2 (adg, phu, sto)	91-21-4 (adg, dms, ryb)	6	5
2 (194-4т)	F1	99-6-6 (adg, dms, phu, ryb, sto, tbr)	Zagadka Pitera (dms, sto, vrn, phu, tbr)	6–7	5
99-4-1	F1	180-1 (sto)	Hertha (adg, dms, ryb, tbr)	5–7	5
7 (93-5-30)	F1	41.85.6 (adg, phu, ryb)	91-19-2 (acl, blb, sto)	5–7	5
190-4	F1	194-4 (adg, phu, sto)	Gibridnyj 14 (dms, vll)	7–8	4
97-162-2	F1	90-21-1 (adg, mcd, ryb, spg, sto)	91-15-2 (adg, ryb, sto)	3	nd
34-6	F1	190-4 (adg, dms, phu, sto, vll)	97-162-2 (adg, mcd, ryb, spg, sto)	5	nd
53 (34-5-2003)	F1	190-4 (adg, dms, phu, sto, vll)	97-162-2 (adg, mcd, ryb, spg, sto)	6	5
135-3-2005	F1	S. okadae k-20921	5	nd	
135-5-2005	F1	S. okadae k-20921	S. chacoense k-19759	5	nd
8-1-2004	F1	S. okadae k-20921	S. chacoense k-19759	5	nd
8-3-2004	F1	S. okadae k-20921	S. chacoense k-19759	5	nd
8-5-2004	F1	S. okadae k-20921	S. chacoense k-19759	5	nd
Other hybrids and cultivars employed as standards					
R3	nd **	nd	nd	nd	nd
R8	nd	nd	nd	nd	nd
R9	nd	nd	nd	nd	nd
Magellanes	nd	nd	indigenous cultivar of Chile S. tuberosum ssp. tuberosum L.	-	nd
Alouette	nd	AR 02-139-1	Laura	8–9	7
Table 2. Cont.

Hybrid, Cultivar *	Bred from	Pedigree ****	LB Resistance *****
		♀Female	♂ Male Field Laboratory
Hybrids bred by I.M. Yashina			
Atzimba F1		US 133.3	5- 52- AT-1 (adg) 4
Sarpo Axona nd		nd	8- nd
Sarpo Mira 76 PO 12 14 268		D 187	8- 7
Alpha F1		Paul Kruger	4- Preferent 3
Bintje F1		Munstersen	3- Fransen 3
Desiree F1		Urgenta	4- Depesche 2
Early Rose Eersteling	nd	Garnet Chili	- 4- nd
		Duke of York	- 4- nd
Escort F1		Rental	Cebeo 64 197 16
		(dms) 6–7	6- 7
Gloria nd		Alpha?	Bato 5- 3-4
Jubel F1		Victoria Augusta 78 92 7	nd
Robijn nd		Rode Star	Preferent 5- 4
Elizaveta F1	acl, adg, dms, phu, sto, tbr, vrn	nd	5- 4
Nayada nd	adg, dms, phu, sto, tbr, vrn	nd	6- 5
Negr nd	indigenous cultivar of Chile S. tuberosum ssp. tuberosum L.	-	4- 3
Priečul’skij rannij	Irish Cobbler	Jubel	5- 3
Svitanok kievskij nd	Adretta (adg, dms) 3774c 71	5- 4	
Zagadka Pitera nd	dms, phu, sto, tbr, vrn	nd	6- 5

* https://www.europotato.org/varieties/view; ** nd, no data; *** see Table 1 for germplasm codes; **** mixture of pollen from several interspecific hybrids of high LB resistance; ***** 1–9-point scores, from susceptible to resistant.

2.3. Molecular and Bioinformatics Methods

Genomic DNA from young plant leaves was isolated with the AxyPrep Multisource Genomic DNA Miniprep Kit (Axygen Biosciences, Union City, CA, USA) or DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). DNA concentration was measured with an UV/Vis NanoPhotometer P300 (IMPLEN, München, Germany). Oligonucleotide primers were designed using the programs BLAST 2.0 (http://blast.ncbi.nlm.nih.gov/Blast.cgi.), SeqMan, Lasergene 7.0 (http://www.dnastar.com), Oligonucleotide Properties Calculator (http://www.basic.northwestern.edu/biotools/oligocalc.html) and synthesized by Syntol, Moscow (www.syntol.ru). Primer melting temperatures were adjusted empirically. DNA amplification was run in a MJ PTC-200 thermocycler (Bio-Rad, Hercules, CA, USA). The PCR mix contained 1 μL of 10× PCR buffer Mg2+ Plus for Taq DNA polymerase (Fermentas, St. Leon-Rot, Germany), 1 μL of dNTP mix (2.5 mM of each), 1 μL each of forward and reverse primers (1 μM), 5 U of Taq DNA polymerase, 30–60 ng/μL of genomic DNA, and sterile deionized water to 10 μL. PCR products were separated by electrophoresis in 1% (w/v) agarose in 1× TAE buffer for 40 min at 6 V/cm and visualized under UV after staining with ethidium bromide using a Gel Logic 100 Imaging System (Eastman Kodak Company, Rochester, NY, USA). Following electrophoretic separation, PCR-amplified DNA fragments were purified using QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The fragments were cloned using pGEM-T Easy Vector System I (Promega, Madison, WI, USA) and sequenced with nucleic acid analyzers ABI PRISM 3130xl (Applied Biosystems,
Foster City, CA, USA) or Nanophor 05 (Institute for Analytical Instrumentation, St. Petersburg, Russia). Sequenced fragments were assembled using SeqMan package, Lasergene 7.0. BLAST 2.0. and SeqMan, Lasergene 7.0 programs were used to mine genomic databases for \(\text{Rpi} \) genes and their homologues, and their phylogenetic analysis was performed with the MEGA6 package [37].

2.4. SCAR Markers for Resistance Genes

All SCAR markers (Table 3, Figure 1) were derived from the sequences of already well-characterized \(\text{Rpi} \) prototype genes deposited in the NCBI Genbank (https://www.ncbi.nlm.nih.gov/nucleotide/). Most markers were already reported elsewhere, and some were designed or modified following multiple alignment of the prototype gene sequences, their structural homologues and anonymous genome fragments lifted from the NCBI Genbank using BLAST and Vector NTI Suite 8 package (Invitrogen, Carlsbad, CA, USA). In the case of \(\text{R2/Rpi-blb3} \) and \(\text{Rpi-blb1/Rpi-sto1} \), more than one marker was used to recognize the particular gene. Wherever possible, marker specificity was verified against wild species that were the initial sources of the prototype genes in the NCBI Genbank, including amplification, cloning and sequencing the marker amplicons and phylogenetic analysis of the marker sequences. To this end, multiple alignments of nucleotide sequences assembled using a combination of the Martinez and Needleman-Wunsch algorithms were performed with SeqMan, Lasergene 7.0 Sequences. The phylogenetic analysis was performed with MEGA6 (https://www.megasoftware.net/).
Table 3. SCAR markers of Solanum *Rpi* genes (see also Figure 1).

Gene	Prototype Gene *	Marker, Size, bp.	Position on the Gene, bp	Primers Sequences	Anneal. Temp., °C	References
Rpi-R1	AF447489	Rpi-R1-1205	5126–6331	F-cactcgtgacatatctcacta R-gtgcgtaccttatttcgcaagaat	61	[21]
	FJ536325	Rpi-R2-686	1370–2055	F-gtctctgtacatccatg R-acggctcttctgcaagaat	54	[38]
		Rpi-R2-1137	1277–2413	F-aagatacgtgtaaaggctgtg R-atctttctagttccccgacaagctacg	60	[39]
	FJ536346	Rpi-blb3-305	5551–5855	F-agcttctgggtgctattgg R-gtaacctacgagctcaggg	63.5	[8]
Rpi-R3a	AY849382	Rpi-R3a-1380	1677–3056	F-gtactctctttctttcttacacttag R-agccatcctgctcttctacaggg	64	[21]
Rpi-R3b	JF900492	Rpi-R3b-378	94818–95195	F-gtctgtgatgctgtgcttctctctcagg R-accaggtttctctgatactcaggtt	64	[40]
Rpi-R8	KU530153	Rpi-R8-1276	73694–74970	F-aacaggggactaactgtgctg R-gctgtaggtgctgatactctcttggagg	62.5	[41] modif.
Rpi-blb1 = Rpi-sto1	AY336128	Rpi-blb1-821	2304–3124	F-aactgtatggtgatcgtg R-gtgcgtatcggccatgcggtgtagc	62	[42]
	AY336128	Rpi-blb1-226	3143–3368	F-cagacccgcttctgcag R-ttcactttctgtctgtctgtctgctg	50	[43]
	EU884421	Rpi-sto1-890	241–1130	F-accaagggccacaggttccttcc R-ctctcgtcgtctgctaataaca	65	[8]
Rpi-blb2	DQ122125	Rpi-blb2-976	3226–4202	F-gcatcgggtgctagc R-attactgtggtcagagggcc	55	[44]
Rpi-vnt1	FJ423046	Rpi-vnt1.3-612	89–701	F-cctctccctccctcacttag R-gcatgccccactttattgaaaccaac	58	[45]

* Accession numbers in the NCBI Genbank (https://www.ncbi.nlm.nih.gov/genbank/).
3. Results & Discussion
3.1. LB Resistance of the Multiparental Potato Hybrids

In the field experiments, 50 hybrids and cultivars were assessed for their LB resistance in the span of seven years (2014–2020). Ten Yashina’s hybrids, ten Kolobaev’s hybrids and 23 Rogozina’s hybrids were evaluated together with seven standard cultivars. For the sake of comparison, another seven cultivars (Alouette, Atzimba, Elizaveta, Nayada, Priekul’skij, Svitanyok kievskij and Zagadka Pitera) were tested in field trials for four years within the 2014–2020 period. The cvs. Alouette (8–9), Sarpo Mira (8) and Yashina’s hybrid 2372-60 (8 points of resistance) were highly resistant to LB; Rogozina’s hybrids 24-1, 24-2 and 123 (8–8), 97-155-1, 160-1 and 190-4 (7–8), 139 (4-1- 2012) (7–9), Kolobaev’s hybrid 111 (38 KVA) (6.5–8), Yashina’s hybrids 2585-67 and 97.1.17 (both 7 points) were resistant (Table 2). Resistance indices of hybrids 2585-67, 2372-60, 97.1.17, 13 /11-09, 111 (38 KVA), 24-1, 24-2, 139 (4-1-2012) and cvs. Alouette and Sarpo Mira significantly differ from those of LB-susceptible cvs. Alpha and Bintje (3–4 points) by Kruskal-Wallis criterion ($H = 270.01, p = 0.001$). Resistance indices of cvs. Alouette and Sarpo Mira significantly differ from those of cvs. Priekul’skij, Elizaveta, Eersteling, Gloria, Robijn and hybrids 2585-70, 97.12.18, 97.13-9, 25-1-2007, 25-2-2007, 97-162-2 and 134-3-2006 (3–5 points). In cvs. Escort, Atzimba, Nayada, Svitanyok kievskij, Zagadka Pitera and 27 hybrids, the indices of field resistance varied from 5 to 7 points depending on the year of trial. These cultivars and hybrids manifested moderate LB resistance in the field trials as compared to resistant and susceptible potato genotypes.

Ten Yashina’s hybrids, ten Kolobaev’s hybrids, 24 Rogozina’s hybrids and 16 cultivars were evaluated in laboratory tests with detached leaves. Resistant (7–8 points) were hybrids...
24-1 and 24-2 and cvs. Alouette, Sarpo Axona and Sarpo Mira. Susceptible (2–3 points) were cvs. Alpha, Bintje, Desiree, Eersteling and hybrids 97.13-9, 2522-173, 134-3-2006 (Table 2). The data from field trials and laboratory assessments run in parallel for many years are in good agreement (Spearman’s correlation coefficient $r = 0.75$ at $p < 0.05$).

Based on the evidence from long-term field trials and laboratory assessment, 55 hybrids and cultivars were grouped in the following way (Figures 2 and 3). Full coupling grouping using Euclidean distance and k-means clustering gave similar results. By the hierarchical classification, the sample of 55 hybrids and cultivars is separated into three groups with a similarity level >0.4. The k-means method also formed three disjoint subsets: each cluster consists of similar objects, and objects from different clusters differ significantly from each other. Cluster 1 comprises potato genotypes, which are moderately resistant to LB in the field trials and moderately susceptible in laboratory tests: cvs Nayada and Zagadka Pitera and hybrids 14/8-09; 18/40-2000; 10/5-09; 13/11-09; 16/27-09; 25-1-2007; 134-6-2006; 34-5-2003; 117-2; 128-05-03; 135-1-2006; 135-2-2006; 93-5-30; 99-4-1; 118-6-2011; 2584-7; 97.1.17.

Potato cultivars and hybrids resistant to LB are pooled into cluster 2, which includes 16 genotypes: cvs. Alouette, Sarpo Mira and Escort, hybrids 11/06-09, 12/1-09, 113 (50/1 KVA), 111 (38 KVA), 134-2-2006, 118-5-2011, 139 (4-1-2012), 24-1, 24-2, 2585-67, 2585-80, 2359-13. Susceptible genotypes are combined into cluster 3, which includes cultivars Alpha, Bintje, Eersteling, Elizaveta, Gloria, Priekul’skij rannij, Robijn, Svitanok kievskij, and hybrids 2585-70, 97.12.18, 97.13-9, 2522-173, 25-2-2007 and 134-3-2006 (Table 2).

Figure 2. The hierarchical clustering dendrogram of potato genotypes. Potato genotypes: n = 55. C_1, Alpha; C_2, Bintje; C_3, Eersteling; C_4, Gloria; C_5, Robijn; C_7, Elizaveta; C_8, Priekul’skij rannij; C_9, Svitanok kievskij; C_10, Nayada; C_11, Zagadka Pitera; C_12, Escort; C_13, Sarpo Mira; C_14, Alouette; C_15, 14/8-09; C_16, 18/40-2000; C_17, 10/5-09; C_18, 11/6-09; C_19, 113 (50/1 KVA); C_20, 12/1-09; C_21, 13/11-09; C_22, C_15/13-09; C_23, 111 (38 KVA); C_24, 16/27-09; C_25, 134-3-2006; C_26, 25-1-2007; C_27, 25-2-2007; C_28, 134-6-2006; C_29, 34-5-2003; C_30, 97-153-2; C_31, 117-2; C_32, 128-05-03; C_33, 134-2-2006; C_34, 135-1-2006; C_35, 135-2-2006; C_36, 171-3; C_37, 194-4r; C_38, 39-1-2005; C_40, 93-5-30; C_41, 99-4-1; C_42, 118-5-2011; C_43, 118-6-2011; C_44, 128-6; C_45, 139 (4-1-2012); C_46, 24-1; C_47, 24-2; C_48, 2585-70; C_49, 2522-173; C_50, 2584-7; C_51, 97.12-18; C_52, 97.13-9; C_53, 2585-67; C_54, 2585-80; C_55, 97.1.17; C_56, 2359-13; C_57, 2372-60.
3.2. Rpi Genes in the Multiparental Potato Hybrids

As expected, the hybrids and standard cultivars with Demissa species in their pedigrees, including cvs Atzimba [46] and both Sarpos (https://pomidom.ru/sarpo-mira-potatoes/) contain as many as three to five markers of genes Rpi-R1—Rpi-R8 (Table 4). However, several demissoid hybrids, such as 2585-80, 2584-7, 97.1.17, 12/1-09, 97-153-2, and 99-4-1 seem to comprise only one or two of Rpi-R1—Rpi-R8 genes. Potato differentials R5, R8 μR9 each harbored four to five markers of these genes. The Rpi-R8 gene is expected in differentials R8 and R9 [38], but not in R5.

To recognize the Rpi-R2/Rpi-blb3 genes, we used three SCAR markers corresponding to different regions of this gene (Figure 1, Table 3). Marker Rpi-R2-686 covers about half of the Rpi-R2-1137 sequence, and the evidence for these two markers matches in most cases (Table 4). The third marker Rpi-blb3-305 usually follows Rpi-R2-1137. The Rpi-R2/Rpi-blb3 family of genes in the cluster on chromosome 4 has been reported in many Mexican species [20,40,47,48], and to distinguish the input of particular germplasms in the interspecific hybrids should become the goal of future studies. It is difficult to explain the presence of Rpi-R2 markers in S. chacoense × S. okadae hybrid (135-3-2005)—especially when other segregants of this combination are free of these markers.
Table 4. Markers of *Rpi* genes in multiparental interspecific hybrids and reference potato cultivars (1/0—presence/absence of markers).

Genotypes	Solanum Species in Hybrid Pedigrees *	Genes	The Number of Genes											
	R1	R2 = *Rpi-blb3*	R3a	R3b	R8	*Rpi-blb1 = Rpi-sto1*	*Rpi-blb2*	*Rpi-vnt1-3*						
	R1-1205	R2-1137	R2-686	*Rpi-blb3*-305	R3a-1380	R3b-378	R8-1276	RB-226	*Rpi-blb1*-821	*Rpi-sto1*-890	*Rpi-blb2*-976	*Rpi-vnt1.3*-612		
Hybrids bred by I.M. Yashina														
2585-67	adg, chi, dms, tbr	0	1	1	1	1	1	0	0	0	0	0	3	
2585-70	adg, chi, dms, tbr	0	1	1	1	1	1	0	0	0	0	0	3	
2585-80	adg, chi, dms, tbr	0	1	1	1	0	0	0	0	0	0	0	1	
2359-13	chc, dms, tbr	1	1	1	1	1	1	0	0	0	0	0	4	
2584-7	adg, chc, dms, edn, ryb, tbr	0	1	1	1	0	1	0	0	0	0	0	2	
97.12-18	chc, dms, tbr	0	0	0	0	0	1	1	1	0	0	0	3	
97.13-9	cmm, dms, mga, tbr	0	1	1	1	1	1	1	0	0	0	1	0	5
2372-60	adg, chc, dms, lpt, sto, tbr	1	1	1	1	1	0	0	0	0	0	0	4	
2522-173	adg, chc, dms, tbr	0	0	0	0	0	1	1	1	0	0	0	3	
97.1.17	adg, chc, dms, sem, tbr	0	1	1	1	0	0	0	0	0	0	0	1	
10/5-09	dms, phu, sto, tbr, vrn	0	1	1	1	1	1	1	0	0	1	0	5	
Genotypes	Solanum Species in Hybrid Pedigrees	Genes												
-----------	------------------------------------	--												
		R1	R2 = Rpi-blb3	R3a	R3b	R8	Rpi-blb 1 = Rpi-sto1	Rpi-blb2	Rpi-vnt1-3	The Number of Genes				
		R1-1205	R2-1137	R2-686	Rpi-blb3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-blb1-821	Rpi-sto1-890	Rpi-blb2-976	Rpi-vnt1.3-612	
11/6-09	dms, phu, sto, tbr, vrn	0	1	1	1	1	1	1	0	0	0	1	0	5
12/1-09	dms, pnt, tbr	0	1	1	1	0	0	0	1	1	1	0	0	2
13/11-09	adg, pnt, tbr	0	0	0	0	0	1	1	1	1	1	0	1	4
14/8-09	Ant = sto, dms, plt = sto, tbr	0	1	0	0	1	1	1	0	0	0	0	1	5
15/13-09	adg, ant = sto, dms, plt = sto, sim = mcd, tbr, ver	0	1	1	0	0	1	1	1	1	1	1	0	5
16/27-09	adg, ant = sto, ber, chi, dms, phu, plt = sto, sim = mcd, tbr, vrn	1	0	0	0	0	0	1	1	1	1	1	0	4
18/40-2000	adg, dms, mcd, plt = sto, sto, tbr, vrn	1	0	0	0	0	1	0	0	0	0	0	1	3
Table 4. Cont.

Geno-Types	Solanum Species in Hybrid Pedigrees *	R1-1205	R2-1137	R2-686	Rpi-b1b3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-b1b1-821	Rpi-sto1-890	Rpi-b1b2-976	Rpi-vnt1-612	The Number of Genes
111 (38 KVA)	adg, ant = sto, dms, plt = sto, sim = mcd, tbr	0	1	1	1	1	1	0	1	1	1	1	0	5
113 (50/1 KVA)	adg, dms, phu, sto, tbr, vrn	1	0	0	0	0	0	1	1	0	0	1	0	4

Hybrids bred by E.V. Rogozina

Geno-Types	Solanum Species in Hybrid Pedigrees *	R1-1205	R2-1137	R2-686	Rpi-b1b3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-b1b1-821	Rpi-sto1-890	Rpi-b1b2-976	Rpi-vnt1-612	The Number of Genes
117-1	adg, aln = brc, dms, tbr	0	0	0	0	0	1	0	0	0	1	0	1	2
117-2	adg, aln = brc, dms, tbr	0	1	0	0	0	1	1	0	0	0	0	1	5
39-1-2005	adg, aln = brc, dms, tbr	0	0	0	0	0	1	0	1	1	1	1	0	3
24-1	adg, aln = brc, dms, tbr	0	0	0	0	0	1	1	0	0	0	0	1	4
24-2	adg, aln = brc, dms, tbr	0	1	1	1	0	1	0	0	0	0	0	1	4
25-1-2007	acl, adg, aln = brc, dms, phu, sto, tbr, vrn	1	0	0	0	0	1	0	0	0	0	0	1	3
Table 4. Cont.

Geno-Types	Solanum Species in Hybrid Pedigrees *	Genes	Genes												
		$R1$	$R2 = Rpi-blb3$	$R3a$	$R3b$	$R8$	$Rpi-blb1 = Rpi-sto1$	$Rpi-blb2$	$Rpi-vnt1-3$	The Number of Genes					
		$R1-1205$	$R2-1137$	$R2-686$	$Rpi-blb3-305$	$R3a-1380$	$R3b-378$	$R8-1276$	$RB-226$	$Rpi-blb1-821$	$Rpi-sto1-890$	$Rpi-blb2-976$	$Rpi-vnt1-3$		
25-2-2007	acl, adg, aln = brc, dms, phu, sto, tbr, vrn	1	0	0	0	0	1	1	0	0	0	1	1	5	
134-2-2006	adg, aln = brc, dms, tbr	1	1	0	0	0	0	1	1	0	0	0	0	1	5
134-3-2006	adg, aln = brc, dms, tbr	0	0	0	0	0	0	1	0	0	0	0	0	0	1
134-6-2006	adg, aln = brc, dms, tbr	0	0	0	0	1	1	1	0	0	0	0	0	1	4
135-1-2006	adg, aln = brc, dms, tbr	0	1	1	1	1	1	0	0	0	0	0	0	1	4
135-2-2006	adg, aln = brc, dms, tbr	1	1	1	1	1	1	0	1	0	0	0	0	0	5
139 (4-1-2012)	adg, aln = brc, ant = sto, dms, plt = sto, tbr	1	0	0	0	0	0	0	0	1	1	1	1	0	3
97-155-1	adg, dms, ryb, sto, tbr	0	1	1	1	1	1	0	0	0	0	0	1	5	
Table 4. Cont.

Genotypes	Solanum Species in Hybrid Pedigrees *	Genes	The Number of Genes	
		R1-1205 R2-1137 R2-686 Rpi-blb3-305 R3a-1380 R3b-378 R8-1276 RB-226 Rpi-blb1-821 Rpi-sto1-890 Rpi-blb2-976 Rpi-vnt1-612		
128-05-03	adg, dms, phu, ryb, sto, tbr, vrn	0 1 1 1 1 1 1 1 0 0 0 0 0	4	
118 (118-5-2011)	adg, dms, ryb, sto, tbr	0 1 0 0 1 1 0 1 0 0 0 0 0	4	
120 (118-6-2011)	adg, dms, ryb, sto, tbr	0 1 0 0 1 1 1 0 0 0 0 0 0	4	
160-1	adg, dms, ryb, sto, tbr	0 0 0 0 0 0 1 0 0 0 1 0 2	2	
160-17	adg, dms, ryb, sto, tbr	0 0 0 0 0 0 1 0 0 0 1 0 2	2	
106 (171-3)	adg, dms, ryb, sto, tbr	0 0 0 0 0 0 1 1 0 0 0 0 0	2	
123 (128-6)	adg, dms, ryb, sto, tbr	1 0 0 0 1 1 1 0 0 0 1 0 5	5	
90-6-2	adg, phu, sto, tbr	1 1 0 0 0 0 1 1 1 0 0 0 1	5	
99-6-5	adg, dms, phu, sto, tbr	0 1 0 0 0 0 1 1 1 0 0 0 1	5	
99-6-6	adg, dms, phu, sto, tbr	1 1 0 0 1 1 0 1 0 0 0 0 1	6	
97-153-2	adg, dms, phu, sto, tbr	0 0 0 0 0 1 0 0 1 0 0 0 0	2	
Table 4. Cont.

Geno-Types	Solanum Species in Hybrid Pedigrees *	Genes	The Number of Genes											
		R1	R2 = Rpi-blb3	R3a	R3b	R8	Rpi-blb 1 = Rpi-sto1	Rpi-blb2	Rpi-vnt1-3					
		R1-1205	R2-1137	R2-686	Rpi-blb3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-blb1-821	Rpi-sto1-890	Rpi-blb2-976	Rpi-vnt1.3-612	
2 (194-4r)	adg, dms, phu, ryb, sto, tbr, vrn	0	0	0	0	0	1	1	0	1	0	0	0	3
99-4-1	adg, dms, ryb, sto, tbr	1	0	0	0	0	1	0	0	0	0	0	0	2
7 (93-5-30)	acl, adg, blb, dms, phu, ryb, sto, tbr	0	0	0	0	0	1	1	0	0	0	1	0	3
190-4	adg, dms, phu, sto, tbr, vll	1	1	1	0	0	0	1	1	0	0	0	1	5
97-162-2	adg, mcd, ryb, spg=brc, sto, tbr	0	0	0	0	0	1	0	0	0	1	0	2	
34-6	adg, mcd, ryb, spg=brc, sto, tbr	1	0	0	0	0	1	0	0	0	1	0	3	
53 (34-5-2003)	adg, mcd, ryb, spg=brc, sto, phu, tbr, vll	0	0	0	0	0	1	0	0	0	1	0	2	
135-3-2005	chc, oka	0	1	1	1	0	0	1	0	0	0	1	0	3
Table 4. Cont.

Genotypes	Solanum Species in Hybrid Pedigrees *	Genes	The Number of Genes												
		R1	R2 = Rpi-blb3	R3a	R3b	R8	Rpi-blb 1 = Rpi-sto1	Rpi-blb2	Rpi-vnt1-3						
		R1-1205	R2-1137	R2-686	Rpi-blb3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-blb1-821	Rpi-sto1-890	Rpi-blb2-976	Rpi-vnt1.3-612		
135-5-2005	chc, oka	0	0	0	0	0	0	1	0	0	0	1	0	2	
8-1-2004	chc, oka	0	0	0	0	0	0	0	0	0	0	1	0	1	
8-3-2004	chc, oka	0	0	0	0	0	0	0	0	0	0	0	1	0	2
8-5-2004	chc, oka	0	0	0	0	0	0	1	0	0	0	1	0	2	
Reference genotypes															
R5	dms, tbr	1	1	1	1	0	1	1	0	0	0	1	0	5	
R8	dms, tbr	0	0	0	0	1	1	1	0	0	0	1	0	4	
R9	dms, tbr	1	1	1	1	1	1	0	0	0	0	1	0	5	
Magel-lanes	S. tuberosum ssp. tuberosum L.	1	0	0	0	0	0	0	0	0	0	1	0	2	
Alouette	vnt	0	0	0	0	1	1	0	0	0	0	0	1	3	
Atzimba	adg, dms, tbr	0	0	0	0	0	0	1	1	0	0	1	0	3	
Sapro Axona	dms, tbr	0	0	0	0	0	1	1	0	0	0	0	0	2	
Sapro Mira	dms, tbr	0	0	0	0	1	1	1	0	0	0	0	0	3	
Alpha	tbr	0	0	0	0	0	0	0	1	0	0	0	0	1	
Bintje	tbr	0	0	0	0	0	0	0	0	0	0	0	1	1	
Desiree	tbr	0	0	0	0	0	1	0	0	0	0	0	0	1	
Table 4. Cont.

Geno-Types	Solanum Species in Hybrid Pedigrees *	Genes													
	R1-1205	R2-1137	R2-686	Rpi-blb3-305	R3a-1380	R3b-378	R8-1276	RB-226	Rpi-blb1-821	Rpi-sto1-890	Rpi-blb2-976	Rpi-vnt1-612	The Number of Genes		
Early Rose	tbr	0	0	0	0	0	0	0	0	0	0	0	1	0	2
Eersteling	tbr	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Escort	dms, tbr	1	1	1	0	1	1	0	0	0	0	0	0	0	4
Gloria	adg, dms, tbr	0	1	0	0	1	1	0	0	0	0	0	0	0	3
Jubel	dms?, tbr	1	1	0	0	0	0	1	0	0	0	1	1	5	
Robijn	tbr	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Elizaveta	acl, adg, dms, phu, sto, tbr, vrn	1	0	0	0	1	1	0	1	0	0	0	0	0	4
Nayada	adg, dms, phu, sto, tbr, vrn	1	1	1	1	0	0	1	0	0	0	1	0	4	
Negr	S. tuberosum ssp. tuberosum L.	0	1	0	0	0	0	0	0	0	0	0	0	0	1
Priekul’skij rannij	tbr	0	0	0	0	0	0	1	0	1	0	0	0	0	2
Svitanok kievskij	dms, tbr	0	1	1	1	1	0	1	0	0	0	1	0	5	
Zagadka Pitera	dms, phu, sto, tbr, vrn	0	0	0	0	1	1	1	0	0	0	0	1	4	

* For germplasm codes see Table 1.
The marker Rpi-R3a was previously reported in several *Demissa* and *Longipedicellata* species and also in *S. microdontum* [21]. The functional Rpi-R3a analogues were found in several series of *Petota* species with the effectoromics technology [47], whereas the complete Rpi-R3a cdc was cloned from *S. stoloniferum* (Genbank accession HQ731037). Two genes, Rpi-R3a and Rpi-R3b, are located in one cluster on chromosome 11, and their markers go together in most though not all hybrids (Table 4).

Using the effectoromics technology to mine cv. Sarpo Mira, Rietman et al. [40] reported five Rpi genes: Rpi-3a, Rpi-3b, Rpi-R4, Rpi-Smira1 (Rpi-R9) and Rpi-Smira2 (Rpi-R8). Our marker analysis of this cultivar confirmed the presence of genes Rpi-3a, Rpi-3b, and Rpi-R8. All these genes were most probably transferred from *S. demissum* and *S. stoloniferum* (https://pomidom.ru/sarpo-mira-potatoes/).

Now, let us turn to one more gene assayed with several SCAR markers: Rpi-blb1/Rpi-stol1. Two markers, Rpi-blb1-821 uRpi-stol1-890, which cover different regions of the gene sequence (Figure 1), perfectly concurred in a range of *Bulbocastana* and *Longipedicellata* accessions [49] and now in most hybrids containing the genetic material of these species (Table 4). In addition to the predictable presence of the markers Rpi-blb1-821 and Rpi-stol1-890 in such hybrids, these markers were unexpectedly found in the Atzimba × *S. alandiae* hybrid 39-1-2005. Only single marker Rpi-blb1-821 was found in cv. Prikulskiy rattij and Svitanok kievskij. Previously this marker was also reported in a highly resistant accession VJR5399 of *S. microdontum* [49]. The short marker Rpi-blb1-226 usually accompanied two longer markers of the gene; however, Rpi-blb1-226 alone was found in four genotypes that contained *Longipedicellata* genetic material (113 (50/1 KVA), 118(118-5-2001), 190-4 and cv. Elizaveta), whereas the hybrids 134-2-2006, 135-2-2006, 90-6-2, 90-6-5, 99-6-6 and Atzimba also containing this marker are free from the *stoloniferum* germplasm as the most probable source of this gene.

Our collection lacks the hybrids with the genetic material of *S. venturii*. However, the Rpi-vnt1 analogues and pseudogenes are widely distributed in South American *Tuberosa* species, including *S. microdontum* and *S. okadae* [45]. Indeed, we registered one allele of this gene, Rpi-vnt1-3, in two thirds of hybrids containing the germplasm of *S. alandiae* and *S. microdontum*: the comparison of this allele sequence to that of the prototype Rpi-vnt1 gene indicated 92–98% identity [50]. In addition, the *S. alandiae* genome comprised the structural homologues of R2/Rpi-blb3, R8, R9a, Rpi-vnt1 and Rpi-blb2; respective homologues were 94–99, 94–99, 86–89, and 91% identical with the prototype genes [50]. It is also relevant to mention that the complete Rpi-vnt1-like sequence was cloned from *S. microdontum* ssp. *gigantophyllum* (Genbank accession GU338312). We failed to find the marker Rpi-vnt1.3-612 in all hybrids comprising *S. okadae* genetic material (Table 4), whereas this marker was found in the *S. okadae* accession k-25397-1 different from the accession k-20921 used as the male parent of the hybrids [50].

In each group of hybrids of similar descent created by Yashina and Kolobaev and hybrids with the participation of *S. alandiae* bred by Rogozina, we find a highly consistent inheritance of markers. Thus, the Yashina’s hybrids 2585–67, 2585–70, 2585–80, 2359–13, 2584–7 and 97.13–9 (descended from cv. Nikulinsky as a female parent), seem to comprise the Rpi-R2/Rpi-blb3, Rpi-R3a and Rpi-R3b genes. The Kolobaev’s hybrids 10/5–09 and 11/6–09 (descended from cv. Zagadka Peter as a female parent) inherited the Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8 and Rpi-blb2 genes. In Rogozina’s hybrids 25-1-2007 and 25-2-2007, the Rpi-R1 and Rpi-R3b genes were inherited from the female parent cv. Elizaveta, whereas the Rpi-blb2 gene was transferred from the paternal form—hybrid 24-1. In most hybrids based on *S. alandiae*, the first generation from crosses and backcrosses inherited the marker of Rpi-vnt1.

Of special interest are resistant and moderately resistant hybrids (6 and more points) that nonetheless contain only one or two markers of Rpi genes. Such discrepancy is especially surprising as many of these hybrids seem to include *demissum* and/or *stoloniferum* germplasm: 2585–80, 2584–7, 97.1, 12/1–09, 160–17, 106 (171–3), 97–153–2, 99–4–1, and 53 (34–5–2003) (Tables 2 and 4). Presumably, these hybrids comprise as yet unidentified...
genes or new alleles of already known Rpi genes [7,9] that are not recognized with our markers. Two Rpi genes (Rpi1 and Rpi2) on chromosome 7 of S. pinnatisectum [20,51] may exemplify such case in hybrid 12/1-09. Three hybrids with low numbers of markers: 97-162-2, 34-6 and 53 (34-5-2003) reportedly include genetic material of S. microdontum insufficiently researched by molecular methods. SCAR marker analysis of the South American species S. alandiae and S. okadae accessions in the VIR collection also revealed several structural homologues of already known Rpi-R2, Rpi-R8 and Rpi-blb2 genes of the Mexican species S. demissum and S. bulbocastanum [50].

3.3. LB Resistance is Enhanced by Pyramiding Rpi Genes

The numbers of Rpi genes combined in particular potato hybrids are clearly in line with plant LB resistance in the field experiments. We compared LB resistance in field trials in cultivars and hybrids in two contrasting subsets of potato genotypes: those containing only one Rpi gene and those with five genes. The former subset of nine genotypes comprises six cultivars (Desiree, Bintje, Alpha, Negr, Eersteling, and Robijn) and three hybrids (134-3-2006, 2585-80, and 97.1.17), wherein only one Rpi gene, either Rpi-R2/Rpi-blb3 or Rpi-R8, was found (Table 4). In the latter subset of 18 genotypes five-six genes were recognized (Tables 4 and 5). Two subsets significantly differ in their LB resistance in field trials by the Mann-Whitney criterion: \(U_{observed} = 33 < U_{critical} = 42 \) at \(p < 0.05 \). The Spearman’s correlation coefficient (\(R_{observed} = 0.514 > R_{critical} = 0.382 \) at \(p < 0.05 \)) is another proof of statistically significant relationship between the number of Rpi genes and LB resistance in these subsets of potato cultivars and hybrids.

Mundt [14] demonstrated that under optimal conditions, a stack of four efficient resistance genes would provide a durable protection against the pathogen. We therefore focused on the genotypes that comprised four and more Rpi genes per plant (Table 5). Over 80% of these hybrids, together with the cultivars derived from multiparental hybrids, manifest significant and long-lasting field resistance to LB (6 points and higher). The predominant resistance genes of these genotypes are demissoid Rpi-R3b (with the frequency of 0.79), Rpi-R2/Rpi-blb3 (0.74), Rpi-R8 (0.66), and Rpi-R3a (0.59); the frequencies of other genes are 0.41–0.44 (Table 5).
Table 5. Potato hybrids with 4+ \textit{Rpi} genes.

Genotype	Pedigree	\textit{Rpi-R1}	\textit{Rpi-R2}/\textit{Rpi-blb}3	\textit{Rpi-R3a}	\textit{Rpi-R3b}	\textit{Rpi-R8}	\textit{Rpi-blb1}/\textit{Rpi-sto1}	\textit{Rpi-blb2}	\textit{Rpi-vent1}	Total Gene Number	Field Resistance
2359-13	chc, dms, tbr	1	1	1	1	0	0	0	0	4	6
97.13-9	cmn, dms, mga, tbr	0	1	1	1	1	0	1	0	5	5
2372-60	adg, chc, dms, lpt, sto, tbr	1	1	1	1	0	0	0	0	4	8
10/5-09	dms, phu, sto, tbr, vrn	0	1	1	1	1	0	1	0	5	7
11/6-09	dms, phu, sto, tbr, vrn	0	1	1	1	1	0	1	0	5	7
13/11-09	adg, pnt, tbr	0	0	0	1	1	1	0	1	4	7
14/8-09	Ant = sto, dms, plt = sto, tbr	0	1	1	1	1	0	0	1	5	6
15/13-09	adg, ant = sto, dms, plt = sto, pnt, sim = mcd, tbr, ver	0	1	0	1	1	1	1	0	5	6
16/27-09	adg, ant = sto, ber, chi, dms, phu, plt = sto, sim = mcd, tbr, vrn	1	0	0	0	1	1	1	1	4	7
111 (38 KVA)	adg, ant = sto, dms, plt = sto, sim = mcd, tbr	0	1	1	1	0	1	1	1	0	8
Table 5. Cont.

Genotype	Pedigree	Rpi-R1	Rpi-R2/Rpi-blh3	Rpi-R3a	Rpi-R3b	Rpi-R8	Rpi-blb1/Rpi-sto1	Rpi-blb2	Rpi-vnt1	Total Gene Number	Field Resistance
113 (50/1 KVA)	adg, dms, phu, sto, tbr, vrn	1	0	0	0	1	1	1	1	4	7
117-2	adg, aln = brc, dms, tbr	0	1	0	1	0	1	1	1	4	7
24-1	adg, aln = brc, dms, tbr	0	0	0	1	1	0	1	1	4	8
24-2	adg, aln = brc, dms, tbr	0	1	0	1	0	1	1	1	4	8
25-2-2007	acl, adg, aln = brc, dms, phu, sto, tbr, vrn	1	0	0	1	1	0	1	1	5	5
134-2-2006	adg, aln = brc, dms, tbr	1	1	0	0	1	1	0	1	5	7
134-6-2006	adg, aln = brc, dms, tbr	0	0	1	1	1	0	0	1	4	6
135-1-2006	adg, aln = brc, dms, tbr	0	1	1	1	0	0	0	1	4	7
135-2-2006	adg, aln = brc, dms, tbr	1	1	1	1	0	1	0	0	4	7
97-155-1	adg, dms, ryb, sto, tbr	0	1	1	1	1	0	0	1	5	8
128-05-03	adg, dms, phu, ryb, sto, tbr, vrn	0	1	1	1	1	0	0	0	4	7
118 (118-5-2011)	adg, dms, ryb, sto, tbr	0	1	1	1	0	1	0	0	4	8
Table 5. Cont.

Genotype	Pedigree	Rpi-R1	Rpi-R2/Rpi-blb3	Rpi-R3a	Rpi-R3b	Rpi-R8	Rpi-blb1/Rpi-sto1	Rpi-blb2	Rpi-vnt1	Total Gene Number	Field Resistance
120 (118-6-2011)	adg, dms, ryb, sto, tbr	0	1	1	1	1	0	0	0	4	7
123 (128-6)	adg, dms, ryb, sto, tbr	1	0	1	1	1	0	1	0	5	8
90-6-2	adg, phu, sto, tbr	1	1	0	0	1	1	0	1	5	7
99-6-5	adg, phu, sto, tbr	0	1	0	1	1	1	1	0	5	4
99-6-6	adg, phu, sto, tbr	1	1	1	1	0	1	0	1	6	5
190-4	adg, dms, phu, sto, tbr, vll	1	1	1	1	0	1	0	1	5	8
Escort	dms, tbr	1	1	1	0	1	0	0	0	4	7
Jubel	dms?, tbr	1	1	0	0	1	1	1	1	5	7
Elizaveta	acl, adg, dms, phu, sto, tbr, vrn	1	0	1	1	0	1	0	0	4	5
Nayada	adg, dms, phu, sto, tbr, vrn	1	1	0	1	0	1	0	1	4	6
Svitanok kievskij	dms, tbr	0	1	1	1	1	1	0	0	5	5
Zagadka Pitera	dms, phu, sto, tbr, vrn	0	0	1	1	1	1	0	0	1	4
Frequency		0.44	0.74	0.59	0.79	0.66	0.41	0.44	0.44		

* For germplasm codes see Table 1.
4. Conclusions

High and long-lasting LB resistance is a major prerequisite for sustainable potato production. In this project, a considerable collection of potato interspecific hybrids and standard cultivars was assayed with SCAR markers for ten \(Rpi \) genes, and plant LB resistance was evaluated in the field trials and laboratory tests with detached leaves. These hybrids combine several \(Rpi \) genes that are currently in high demand with potato breeders, such as \(Rpi-R2/Rpi-blb3, Rpi-blb1/Rpi-sto1, Rpi-blb2, \) and \(Rpi-vnt1 \). The level of LB resistance manifested by these hybrids is significantly related to the number of \(Rpi \) genes stacked in a single hybrid. This evidence seems to support the concept of pyramiding \(Rpi \) genes for durable LB resistance. However, when the patterns of gene stacking are examined with SCAR markers, it seems proper to focus on several caveats.

First, a considerable portion of resistance manifested by the investigated hybrids was not associated with the markers used in this study, and we believe that such resistance depended on some new or insufficiently characterized \(Rpi \) genes, which are not recognized by the markers employed to screen the hybrids. To exemplify such possibility, \(S. chacoense \) germplasm is found in many hybrids examined in the present study (Tables 2 and 4), and some of their LB resistance could be related to the \(Rpi-chc1 \) gene [7]. Indeed, screening such hybrids with the marker for this gene developed in our laboratory produced the positive signal in hybrids 2372-60, 2522-173 and 2584-7 but not in 2359-13. Among five \(S. okadae \) k-20921 × \(S. chacoense \) k-19759 hybrids, only 135-3-2005 was positive, other four segregants of this hybrid and the accession \(S. chacoense \) k-19759 itself responded negatively (M. Beketova, personal communication). Another possibility would link such resistance to other defense pathways, including non-specific tolerance.

Second, in such a complex assortment of genetic material, the gene stacks may comprise several alleles of one and the same gene introgressed from different \(Solanum \) species, e.g., \(S. chacoense, S. demissum, S. pinnatisectum, S. phureja, S. stoloniferum, \) etc. [7,20,47,51,52]. It is not always possible to distinguish such alleles. At least, in this study, by using the markers that reliably discriminate between \(demissum \) and \(stoloniferum \) alleles of \(Rpi-R1 \) [53], we demonstrated that nine hybrids combining \(demissum \) and \(stoloniferum \) germplasms comprised only the former allele of \(Rpi-R1 \) and were devoid of the latter.

Third, the SCAR markers employed in this study do not stretch over the full-size sequences of candidate genes, especially in the case of short markers \(Rpi-R3b-378 \) and \(Rpi-blb3-305 \). The changes in the candidate gene under study beyond the region covered by the particular marker would render this gene inactive. Perhaps, the presence of pseudogenes would explain the occurrence of markers of \(Rpi \) genes in the standard cultivars believed to be devoid of such genes: \(Rpi-R1 \) in cv. Magellanes, \(Rpi-R2 \) in cv. Robijn, \(Rpi-R8 \) in cvs Alpha, Desiree, and Eersteling, \(Rpi-blb2 \) in cvs Magellanes and Early Rose, and \(Rpi-vnt1 \) in cvs Bintje and Early Rose (Table 4). Similarly, when the presence of markers in the hybrids is not supported by their pedigrees, such discrepancy can be explained by the presence of inactive homologues. In support of these suggestions, the BLAST search recognized the homologues of all these genes except \(Rpi-vnt1 \) in a true \(S. tuberosum \) cv. Solyntus [54] (the corresponding Genbank accessions CP055238, CP055237, CP055242, CP055241, and CP055239).

Fourth, even when the complete sequences of candidate genes are assessed (e.g., with the dRenSeq technology [25]), the proof for their functionality must be obtained by independent methods, such as effectoromics [40,47,55].

There are two ways to combine a sufficient number of \(Rpi \) genes of broad specificity towards diverse pathogen races and in this way to develop the basis of long-lasting and durable LB resistance: to stack several efficient genes in a single potato genotype or to produce a mosaic of \(Rpi \) genes in a potato stand combining several cultivars. When bred from the multiparental hybrids, the advanced lines with the stacks of broad-specificity \(Rpi \) genes will become prospective breeding donors immediately at hand when new pathogen strains arrive with \(Avr \) genes virulent to existing potato cultivars [1,13,14]. These breeding strategies usually aim at supporting and expanding the genetic diversity in potato stands.
Developing such sources of resistance to combat future pathotypes is called pre-emptive, or anticipatory breeding [56,57]. In the case of *P. infestans*, with its extremely plastic genome [58] and rapid changes in the repertoire of *Avr* genes [1,59], the advanced lines bred from multiparental hybrids would help withstand LB outbreaks caused by rapid pathogen evolution and invasion of new pathotypes.

By their productivity (0.89–1.25 kg of tubers per plant), most tested hybrids were comparable to cv. Sarpo Mira, the international standard of LB resistance, and considerably overtook the susceptible standard cv. Bintje. However, within the selection of highly resistant genotypes with 4+ markers of *Rpi* genes per plant (Table 5), it is difficult to relate tuber yield immediately to plant resistance and the number of resistance genes.

In many aspects, the success of pyramiding *Rpi* genes depends on the breeder’s appraisal of the agricultural ecosystem as a whole [60] and the knowledge of potato *Rpi* genes and *Avr* genes of *P. infestans* in the particular potato stands. In the latter case, rapid and efficient assessment of *Rpi* and *Avr* gene profiles with dRenSeq and PenSeq technologies [25,59] seems most hopeful as regards the prediction of crop losses and evaluation of breeders’ efforts.

Author Contributions: E.E.K., M.A.K. and E.V.R. conceived and designed the research. E.V.R. bred most hybrids. M.A.K. and E.V.R. maintained hybrid collections and evaluated LB resistance. M.P.B., O.A.M. and E.E.K. ran the marker and bioinformatics analysis. E.E.K. and E.V.R. wrote and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the Russian Foundation for Basic Research (projects Nos. 16-04-00098, 18-16-00138 and KO 20-516-10001).

Acknowledgments: The authors thank the Center for Collective Use of Equipment “Biotechnology” at the Institute of Agricultural Biotechnology, Moscow, for sequencing *Solanum* genome fragments and the Center for Collective Use of the State Collection of Plant Pathogenic Microorganisms, Indicator Plants and Differential Cultivars at the Institute of Phytopathology for making available the equipment for phytopathological assessments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cooke, D.E.L.; Cano, L.M.; Raffaele, S.; Bain, R.A.; Cooke, L.R.; Etherington, G.J.; Deahl, K.L.; Farrer, R.A.; Gilroy, E.M.; Goss, E.M.; et al. Genome analyses of an aggressive and invasive lineage of the irish potato famine pathogen. *PLoS Pathog.* **2012**, *8*, e1002940. [CrossRef]
2. Fry, W.E. *Phytophthora infestans*: New tools (and old ones) lead to new understanding and precision management. *Ann. Rev. Phytopathol.* **2016**, *54*, 529–547. [CrossRef]
3. Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: Scientific and societal advances in the durph project. *Potato Res.* **2016**, *59*, 35–66. [CrossRef]
4. Brown, J.K.M. Durable resistance of crops to disease: A darwinian perspective. *Ann. Rev. Phytopathol.* **2015**, *53*, 513–539. [CrossRef]
5. Gebhardt, C.; Bellin, D.; Henselewski, H.; Lehmann, W.; Schwarzfischer, J.; Valkonen, J.P.T. Marker-assisted combination of major genes for pathogen resistance in potato. *Theor. Appl. Genet.* **2006**, *112*, 1458–1464. [CrossRef] [PubMed]
6. Bradshaw, J.E. Review and analysis of limitations in ways to improve conventional potato breeding. *Potato Res.* **2017**, *60*, 171–193. [CrossRef]
7. Vossen, J.H.; Jo, K.-R.; Vosman, B. Mining the genus *Solanum* for increasing disease resistance. In *Genomics of Plant Genetic Resources; Crop Productivity, Food Security and Nutritional Quality; Tuberosa, R., Graner, A., Frison, E., Eds.; Springer: Dordrecht, The Netherlands*, 2014; Volume 2, pp. 27–46.
8. Haesaert, G.; Vossen, J.H.; Custers, R.; De Loose, M.; Haverkort, A.; Heremans, B.; Hutten, R.; Kessel, G.; Landschoot, S.; Van Droogenbroeck, B.; et al. Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. *Crop. Prot.* **2015**, *77*, 163–175. [CrossRef]
9. Hardigan, M.A.; Laimbeer, F.P.E.; Newton, L.; Crisovan, E.; Hamilton, J.P.; Vaillancourt, B.; Wiegert-Rininger, K.; Wood, J.C.; Douches, D.S.; Farré, E.M.; et al. Genome diversity of tuber-bearing *Solanum* uncovers complex evolutionary history and targets of domestication in the cultivated potato. *Proc. Natl. Acad. Sci. USA* **2017**, *114*, E9999–E10008. [CrossRef] [PubMed]
10. Bethke, P.C.; Halterman, D.; Jansky, S. Potato germplasm enhancement enters the genomics era. *Agronomy* **2019**, *9*, 575. [CrossRef]
11. Gaiero, P.; Speranza, P.R.; De Jong, H. Introggressive hybridization in potato revealed by novel cytotagentic and genetic technologies. *Am. J. Potato Res.* 2018, 95, 607–621. [CrossRef]

12. McDonald, B.A.; Linde, C. Pathogen population genetics, Evolutionary potential, and durable resistance. *Ann. Rev. Phytopathol.* 2002, 40, 349–379. [CrossRef] [PubMed]

13. Mundt, C.C. Durable resistance: A key to sustainable management of pathogens and pests. *Infect. Genet. Evol.* 2014, 27, 446–455. [CrossRef] [PubMed]

14. Mundt, C.C. Pyramiding for resistance durability: theory and practice. *Phytopathology* 2018, 108, 792–802. [CrossRef] [PubMed]

15. Stam, R.; McDonald, B.A. When resistance gene pyramids are not durable—the role of pathogen diversity. *Mol. Plant Pathol.* 2018, 19, 521–524. [CrossRef] [PubMed]

16. Van Versch, S.; Li, X. Stronger when together: Clustering of plant NLR disease resistance genes. *Trends Plant Sci.* 2019, 24, 688–699. [CrossRef]

17. Halterman, D.A.; Jansky, S.H.; Spooner, D.M. Discovery of new sources of disease resistance using wild potato germplasm. *Am. J. Potato Res.* 2017, 94, 211–250. [CrossRef]

18. Rogozina, E.V.; Khavkin, E.E. Interspecific potato hybrids as donors of durable resistance to pathogens. *Vavilov J. Genet. Breed.* 2017, 21, 30–41. [CrossRef]

19. Li, Y.; Colleoni, C.; Zhang, J.; Liang, Q.; Hu, Y.; Ruess, H.; Simon, R.; Liu, Y.; Liu, H.; Yu, G.; et al. Genomic analyses yield markers for identifying agronomically important genes in potato. *Mol. Plant* 2018, 11, 473–484. [CrossRef]

20. Karki, H.S.; Jansky, S.H.; Halterman, D.A. Screening of wild potatoes identifies new sources of late blight resistance. *Plant Dis.* 2020. [CrossRef]

21. Sokolova, E.; Pankin, A.; Beketova, M.; Kuznetsova, M.; Spiglazova, S.; Rogozina, E.V.; Yashina, I.; Khavkin, E. SCAR markers of the R-genes and germplasm of wild *Solanum* species for breeding late blight-resistant potato cultivars. *Plant Genet. Res.* 2011, 9, 309–312. [CrossRef]

22. Tiwari, J.K.; Siddappa, S.; Singh, B.P.; Kaushik, S.K.; Chakrabarti, S.K.; Bhardwaj, V.; Chandel, P. Molecular markers for late blight resistance breeding of potato: An update. *Plant Breed.* 2013, 132, 237–245. [CrossRef]

23. Ramakrishnan, A.P.; Ritland, C.E.; Sevillano, R.H.B.; Riseman, A. Review of potato molecular markers to enhance trait selection. *Am. J. Potato Res.* 2015, 92, 455–472. [CrossRef]

24. Jupe, F.; Witek, K.; Verweij, W.; Śliwka, J.; Pritchard, L.; Etherington, G.J.; MacLean, D.; Cock, P.J.; Leggett, R.M.; Bryan, G.J.; et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. *Plant J.* 2013, 76, 530–544. [CrossRef] [PubMed]

25. Armstrong, M.R.; Vosson, J.; Lim, T.Y.; Hutten, R.C.B.; Xu, J.; Strachan, S.M.; Harrower, B.; Champouret, N.; Gilroy, E.M.; Hein, I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. *Plant Biotechnol. J.* 2018, 17, 540–549. [CrossRef] [PubMed]

26. Hawkes, J.G. *The Potato: Evolution, Biodiversity and Genetic Resources*; Belhaven Press: London, UK, 1990; p. 259.

27. Khavkin, E.E.; Fadina, O.A.; Sokolova, E.A.; Beketova, M.P.; Drobyazina, P.E.; Rogozina, E.V.; Kuznetsova, M.A.; Yashina, I.M.; Jones, R.W.; Deahl, K.L. *Pyramiding R Genes: Genomic and Genetic Profiles of Interspecific Potato Hybrids and Their Progenitors*; PPO-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2014; pp. 215–220.

28. Fadina, O.A.; Beketova, M.P.; Kuznetsova, M.A.; Rogozina, E.V.; Khavkin, E.E. *Revisiting Late Blight Resistance Genes in Complex Interspecific Potato Hybrids*; PAGV-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2017; pp. 245–256.

29. Yashina, I.M.; Prohorova, O.A.; Kukushkina, L.N. Evaluation of hybrid population of potato for using in breeding on field resistance to late blight. *Dostizh. Nauki Tekh. Agroprom. Kompleksa* 2010, 12, 17–21. (In Russian)

30. Rogozina, E.V.; Kolobaev, V.A.; Khavkin, E.E.; Kuznetsova, M.A.; Beketova, M.P.; Sokolova, E.A. Interspecific potato hybrids as a resource for late blight resistance genes. *Russ. Agric. Sci.* 2013, 40, 10–13. [CrossRef]

31. Rogozina, E.; Chalaya, N.A.; Kuznetsova, M.A.; Demidova, V.N.; Rogozin, A.N.; Smetanina, T.I.; Beketova, M.P.; Fadina, O.A.; Khavkin, E.E. Late blight resistant potato hybrid clones in the VIR collection of plant genetic resources. *Proc. Appl. Bot. Genet. Breed.* 2018, 179, 278–292. [CrossRef]

32. Malcomson, J.F. Races of *Phytophthora infestans* occurring in Great Britain. *Trans. Br. Mycol. Soc.* 1969, 53, 417-IN2. [CrossRef]

33. Bukasov, S.M. Systematics of the potato. *Tr. Prilkl. Bot. Genet. Sel.* 1978, 62, 3–35. (In Russian)

34. Spooner, D.M.; Ghislain, M.; Simon, R.; Jansky, S.; Gavrilenko, T.A. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. *Bot. Rev.* 2014, 80, 283–383. [CrossRef]

35. Kuznetsova, M.A.; Yu Spiglazova, S.; Rogozhin, A.N.; Smetanina, T.I.; Filippov, A.V. *New Approaches for Measuring Potato Susceptibility to Phytophthora Infestans*; PPO-Special Report; Schepers, H.T.A.M., Ed.; DLO Foundation: Wageningen, The Netherlands, 2014; pp. 223–232.

36. Lapwood, D.H. Laboratory assessments of the susceptibility of potato-tuber tissue to blight (*Phytophthora infestans*). *Potato Res.* 1965, 8, 215–229. [CrossRef]

37. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis Version 6.0. *Mol. Biol. Evol.* 2013, 30, 2725–2729. [CrossRef] [PubMed]
