miR-21 promotes bevacizumab induced epithelial-mesenchymal transition in retinal pigment epithelial cells by regulating Snail expression via TGFβ1/smad2/3 signaling pathway

CURRENT STATUS: UNDER REVIEW

Lingling Yang
shandong eye institute

Yingbin Hua
Weifang Medical University

Li Zhou
Qingdao University Medical College

Shan Song
Weifang Medical University

Haifeng Xu 🌐 chxhf@126.com
qingdao eye hospital
Corresponding Author
ORCiD: 0000-0002-7300-5043

DOI:
10.21203/rs.2.9504/v1

SUBJECT AREAS
Ophthalmology

KEYWORDS
Bevacizumab, Retinal pigment epithelial cells, Epithelial-mesenchymal transition, miR-21, Snail, TGFβ1, smad2/3
Abstract

Background

The purpose of this study was to investigate the role of microRNA-21 (miR-21) on bevacizumab (BEV)-induced Epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells in vitro.

Methods

Human retinal pigment epithelial cells line (ARPE-19) were exposed to clinical dosage of BEV and miR-21 expression was measured by qRT-PCR assay. The effects of miR-21 on BEV-induced EMT were examined through gain- or loss- expression of miR-21 using miR-21 mimic or inhibitor. The expression of α-smooth muscle actin (α-SMA), E-cadherin, Snail, TGFβ1 and smad2/3 were detected by western blot. TGFβ1/smads2/3 signaling was inhibited by using SB431542 and SIS3.

Results

Clinical dosage of BEV caused EMT and enhanced miR-21 expression in ARPE-19 cells. The inhibition of miR-21 attenuated the EMT effect of BEV, while over-expression of miR-21 promoted this activity. Snail was up-regulated by BEV and the promotion was partially suppressed by miR-21 inhibitor and aggravated by miR-21 mimic. miR-21 regulated BEV-induced TGFβ1 increasing and smad2/3 phosphorylation. The EMT and Snail expression promoted by BEV and miR-21 mimic in ARPE-19 cells was impaired by inhibition of TGFβ1/smads2/3 signaling.

Conclusions

miR-21 promoted BEV-induced EMT in ARPE cells through up-regulating of Snail expression via regulation of TGFβ1/smads2/3 signaling pathway. miR-21 might be a potential miRNA-based therapeutic target in reducing BEV-induced subretinal fibrosis.
Background

Intravitreal injection of anti-vascular endothelial growth factor (VEGF) agents is first line therapy for most of the vasoproliferative ocular diseases such as wet-age related macular degeneration (wAMD), proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO) [1,2]. Unfortunately, both long and short-term application of anti-VEGF agents had revealed some unfavorable effects such as tractional retinal detachment and subretinal fibrosis [3-6]. The mechanism underlying anti-VEGF agents-induced subretinal fibrosis remains unclear. In previous studies, we found that bevacizumab (BEV) increased the expression of inflammatory mediators associated with fibrosis in human retinal pigment epithelial (ARPE-19) cells [7,8]. Epithelial-mesenchymal transition (EMT) of RPE cells plays an important role in the development of ocular fibrotic diseases after anti-VEGF treatment [9,10].

MicroRNAs (miRs) are a class of endogenous small RNAs of about 18-22 nucleotides in length that regulate gene expression and exert various biological functions such as proliferation, differentiation, apoptosis, immune function, and angiogenesis [11,12]. Up-or down-regulations of certain miRs are closely related to the occurrence and progression of various diseases and can be applied as molecular targets to diagnosis and treatment ocular diseases [13-16]. It has been reported that miR-21 plays a critical role in regulating fibrosis of various tissues through diverse pathways [17-19]. Usui-Ouchi A et al found that upregulation of miR-21 levels in the vitreous humor is associated with development of proliferative vitreoretinal disease by promoted cell proliferation and migration in RPE cells [20]. Many studies in other organs have shown that miR-21 is involved in the EMT of cells [21-24]. Snail is a zinc-finger transcription factor and one of the best-known functions of Snail is to regulate EMT during tumorigenesis and fibrosis. Li H et al determined that Snail involves in the TGFβ1-mediated EMT of RPE cells and overexpression of Snail in RPE cells
activated EMT [25,26]. Wang et al have demonstrated that miR-21 could stabilize Snail by
regulating the PTEN/Akt/GSK3β pathway in sepsis [27]. In current study, we aimed to
investigate the effect of miR-21 on BEV induced EMT in ARPE-19 cells and to search
potential molecular therapy targets for attenuating fibrosis after BEV treatment.

Methods

Cell culture and treatment

The ARPE-19 cells (ATCC, Rockefeller, Maryland, USA) were cultured in DMEM/F-12 medium
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco,
Life Technologies, Carlsbad, USA), 100 U/ml penicillin and 100 μg/ml streptomycin (Sigma-
Aldrich, St Louis, MO, USA) at 37°C in humidified air with 5% CO₂. ARPE-19 cells were
exposed to a clinical concentration (0.25 mg/ml) of BEV (Roche Diagnostics, GmbH,
Germany) for 2 days. In some experiments, 10 μM of SB431542 (Tocris Bioscience,
Minneapolis, Minnesota, USA) and 2 μM of SIS3 (Aladdin, Shanghai, China) were added in
the culture medium.

Cell transfection

The ARPE-19 cells divided into several groups: the negative control (NC) group (ARPE-19
cells were treated with BEV and transfected with negative control sequence of miR-21
inhibitor or mimic); miR-21 inhibitor group (ARPE-19 cells were transfected with 50 nM of
miR-21 inhibitor (RiboBio Biotechnology, Guangzhou, China) one day before BEV
treatment); miR-21 mimic group (ARPE-19 cells were transfected with 50 nM of miR-21
mimic (RiboBio Biotechnology) one day before BEV treatment).

qRT-PCR assay

The quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to
detect the expression of miR-21 in ARPE-19 cells. Total RNA was isolated using Trizol
(Invitrogen, Carlsbad, CA, USA) from ARPE-19 cells and the level of miR-21 was determined using specific primers (RiboBio Biotechnology, Guangzhou, China). U6 was used for normalization. qRT-PCR was performed using the Qiagen Rotor-Gene quantitative PCR system according to the manufacturer's protocol (Vazyme Biotech, Nanjing, China). Reaction conditions: pre-change for 10 seconds at 95°C, 5 seconds at 95°C, and 20 seconds at 60°C for 40 cycles. The expression level of the gene is represented by 2-ΔΔCt (Ct represents a cycle threshold).

Western blot analysis

Total protein was extracted from lysis of ARPE-19 cells in a radioimmunoprecipitation assay (RIPA) buffer containing a mixture of protease inhibitors and 50 μg of total protein per sample were loaded and separated on 10% SDS-PAGE, and then wet-transferred using PVDF membranes (Rugby WAR, UK). The membranes were blocked in 5% skimmed milk powder in TBST and incubated overnight with specific primary antibodies of E-cadherin (1:1000; Abcam), α-SMA (1:1000; Abcam), Snail (1:1000; Cell Signaling Technology, Trask Lane, Danvers, USA), TGFβ1 (1:1000; Cell Signaling Technology), Phospho-smad2/3 (1:1000; Cell Signaling Technology) and total-smad2/3 (1:1000; Cell Signaling Technology). On the second day, horseradish peroxidase-labeled secondary antibody (goat anti-rabbit IgG at a concentration of 1:2000, ZSGB-BIO, Beijing, China) was added dropwise for 1 hour at room temperature. After the end of the immunological reaction, the cells were illuminated and developed with a western blot chemiluminescence reagent (Invitrogen, Carlsbad, CA, USA). Images were captured using a western blot imaging system (Bio-rad ChemiDoc Touch, USA) and were analyzed using Image J version software (NIH, Bethesda, MD, USA).

Statistical analysis

Statistical analysis was performed using SPSS 19.0 software (SPSS Inc., Chicago, IL, USA),
and the data were expressed as mean ± standard deviation. The data between two groups were analyzed by unpaired t-test. One-way ANOVA test was used to determine the statistical difference among three groups. Values of p<0.05 were considered significant.

Results

Bevacizumab causes EMT in ARPE-19 cells

The effect of BEV on EMT in ARPE-19 cells was determined by detecting of an epithelial marker (E-cadherin) and a mesenchymal marker (α-smooth muscle actin, α-SMA). The western blot results showed 0.25 mg/ml of BEV treatment caused loss expression of E-cadherin (Fig 1A) and increased expression of α-SMA (Fig 1B) significantly indicating that BEV induced EMT in ARPE-19 cells under our experimental conditions.

BEV-induced EMT were regulated by miR-21 in ARPE-19 cells

The level of miR-21 in ARPE-19 cells were evaluated by qRT-PCR. The results showed that the expression of miR-21 in BEV treated ARPE-19 cells were up-regulated compared with the control group (1.02 ± 0.025 vs. 2.43 ± 0.345, P < 0.05) (Fig 2). To determine the role of miR-21 on regulating BEV-induced EMT, the expression level of miR-21 was decreased by transfected with miR-21 inhibitor and increased by transfected with miR-21 mimic when the cells were exposed to BEV. Western blot results showed that the E-cadherin expression in the miR-21 inhibitor group was obviously higher than that in the NC group and the α-SMA expression was significantly reduced in the miR-21 inhibitor group than that in the NC group (Fig 3 A and B). Conversely, the E-cadherin expression in the miR-21 mimic group was down-regulated significantly compared with the NC group and the α-SMA expression was up-regulated in the miR-21 mimic group than that in the NC group (Fig 3 C and D). These findings demonstrated the low expression of E-cadherin and high expression of α-SMA caused by BEV were reversed by decreasing miR-21 expression and enhanced by increasing miR-21 expression suggesting that miR-21 may play a critical role in regulating
BEV-induced EMT in ARPE-19 cells.

miR-21 mediates BEV-induced Snail production in ARPE-19 cells

Snail is a known mesenchymal marker, we examined whether miR-21 regulates BEV-induced EMT responses by modulating Snail production in ARPE-19 cells in the present studies. As expected, BEV enhanced the protein expression of Snail in ARPE-19 cells significantly (Fig 4A). Inhibition of miR-21 using miR-21 inhibitor suppressed the production of Snail enhanced by BEV (Fig 4B) and promotion of miR-21 using miR-21 mimic aggravated the expression of Snail (Fig 4C). The results indicated that miR-21 might promote BEV-induced EMT via mediating Snail production.

TGFβ1/smad2/3 pathway involved in BEV-induced EMT in ARPE-19 cells

In order to understand the mechanism of BEV promoting EMT, we detected the effect of BEV on TGFβ1/smad2/3 signaling pathway in our experimental system. We found that BEV up-regulated TGFβ1 (Fig 5A) and p-smad2/3 (Fig 5B) dramatically. TGFβ1 inhibitor SB431542 and smad3 inhibitor SIS3 were used to block TGFβ1/Smad2/3 pathway and the expression of E-cadherin, α-SMA and Snail were measured to further determine the role of TGFβ1/Smad2/3 signaling in BEV-induced EMT. As shown in Fig 5C, SB431542 and SIS3 increased the expression of E-cadherin, and decreased the expression of α-SMA and Snail in BEV-treated ARPE-19 cells.

miR-21 regulated TGFβ1/smad2/3 signaling and inhibition of TGFβ1/smad2/3 signaling abrogated miR-21 over-expression induced EMT promotion

Suppression of miR-21 by miR-21 inhibitor inhibited the promotion effects of TGFβ1 (Fig 6A) and p-smad2/3 (Fig 6B) caused by BEV. Moreover, over-expression of miR-21 by miR-21 mimic more enhanced the promotion of TGFβ1 (Fig 6C) and p-smad2/3 (Fig 6D) induced by BEV in ARPE-19 cells. We further blocked TGFβ1/Smad2/3 pathway to examine its role in regulating the EMT promotion effects mediated by miR-21. The reduced expression of E-
cadherin and the elevated promotion of α-SMA and Snail expression induced by miR-21 mimic were inhibited by SB431542 or SIS3 (Fig 6E). The above findings suggested that TGFβ1/Smad2/3 pathway played an important role in regulating the function of miR-21, blockage of TGFβ1/smad2/3 signaling abrogated miR-21 over-expression induced EMT promotion in ARPE-19 cells.

Discussion

Anti-VEGF agents such as BEV are widely used in the treatment of ocular neovascular disease. Fibrosis as an unfavorable effect caused by anti-VEGF therapy may seriously impair the visual prognosis [3,8,28]. EMT of RPE cells plays a critical role in the development of ocular fibrotic diseases [9,10]. In the present study, we demonstrated that BEV caused EMT in ARPE-19 cells accompanying with the upregulation of miR-21. The further analysis of miR-21 on BEV-induced EMT with miR-21 inhibitor and mimic showed that miR-21 played a key role in BEV-induced EMT in ARPE-19 cells by regulating Snail expression. Furthermore, the study found that miR-21 promoted BEV-induced EMT via TGFβ1/smad2/3 signaling.

MicroRNAs are small non-coding single stranded RNAs, which could be molecular targets for the diagnosis and treatment of diseases. Several microRNAs such as MicroRNA-148a and MicroRNA-124 have been reported associated with EMT of RPE cells [29-31]. We found that miR-21 was significantly higher in the vitreous fluid of patients with diabetic retinopathy, and it was positively correlated with the number of anti-VEGF drug injections, suggesting that anti-VEGF treatment can change the expression level of miR-21, and miR-21 may be involved in the occurrence of subretinal fibrosis after anti-VEGF treatment (data not shown). Previous studies have indicated that miR-21 is closely related to the occurrence of fibrosis in many organs, including the lung, heart, kidney and skin [17]. Usui-Ouchi A et al identified miR-21 as a candidate fibrotic miRNA with an important role
in the pathogenesis of proliferative vitreoretinal disease (PVD) [20]. As key cells that respond of anti-VEGF agents, RPE cells play an important role in the occurrence of retinal fibrosis. RPE cells participate in the formation of fibrosis mainly through epithelial-mesenchymal transition. Here, we first studied the potential role of miR-21 in BEV-induced EMT in vitro using ARPE-19 cells. We found that the expression of miR-21 in BEV-treated ARPE-19 cells was up-regulated significantly. Gain- and loss-of-function studies revealed that miR-21 positively regulated BEV-induced EMT by decreasing the expression of E-cadherin and increasing the expression of α-SMA. Many researches about the relationship of miR-21 and EMT in other tissues [21-23,32] are consistent with our results, which further prove our conclusion. However, miR-21-5p were downregulated in TGFβ2-induced EMT in human RPE cells [31].

Snail transcription factor has been implicated as an important regulator in EMT of RPE cells. The expression of E-cadherin, which plays a key role in maintaining the epithelial phenotype is mainly regulated by Snail. Snail represses the expression of E-cadherin at transcriptional level by binding to E-box consensus sequences in the E-cadherin promoter [25]. Snail positively regulates TGFβ1-induced EMT in human RPE cells; specific inhibition of Snail could significantly attenuate TGF-β1-induced EMT [25]. Over-expression of Snail could directly trigger EMT in ARPE-19 cells [26]. Previous study has demonstrated that miR-21 has the function of stabilizing Snail [27]. Snail is usually maintained at low levels in cells [33], while BEV treatment dramatically increased the expression of Snail in ARPE-19 cells. Enhanced miR-21 by miR-21 mimic increased the production of Snail and down-regulated miR-21 by miR-21 inhibitor decreased the production of Snail. These results suggesting that miR-21 could regulate Snail in ARPE-19 cells under BEV treatment conditions. Further detection of TGFβ1/smaded2/3 signaling revealed that BEV promoted TGFβ1 expression and smad2/3 phosphorylation, up or down-regulated of miR-21
enhanced or suppressed the activation of TGFβ1/smad2/3 signaling. TGFβ1 has been considered as a major regulator in EMT and fibrosis development. TGFβ1 could cause the phosphorylation of smad2 and smad3 proteins and phosphoactivated smad2/3 form a complex with smad4 that regulates numerous target genes. The transcriptional events of TGFβ1/smad2/3 subsequently regulate cell function by inducing growth arrest, apoptosis, cell migration, EMT, etc [34]. In this experiment, we found blockage of TGFβ1/smad2/3 signaling abrogated BEV caused EMT and abrogated miR-21 over-expression induced EMT promotion and Snail over-expression demonstrating the crucial role of TGFβ1/smad2/3 pathway in regulating the EMT promotion effects mediated by BEV and miR-21 in ARPE-19 cells. These findings are consistent with many previous studies in other tissues [35-39]. Several studies have reported that TGFβ1/smad2/3 signaling was involved in EMT process in RPE cells [40-42].

Conclusions

In conclusion, our findings demonstrated miR-21 regulated BEV-triggered EMT in RPE cells through up-regulating Snail expression via TGFβ1/smad2/3 signaling pathway. Inhibition of miR-21 could attenuate BEV-induced EMT. miR-21 might be a potential miRNA-based therapeutic target in reducing anti-VEGF agents-induced subretinal fibrosis.

Declarations

Acknowledgements

None.

Funding

This study was supported by the Shandong Provincial Key Research and Development Program (2017GSF18141), and the National Natural Science Foundation of China (81670828). Lingling Yang is partially supported by the Taishan Scholar Youth Professional
Program (20150215, 20161059).

Availability of data and materials
The all data used to support the findings of this study are available from the corresponding author upon request.

Author contributions
LLY and HFX contributed to the design of the study; LLY, YBH, LZ and SS conducted the study; LLY and YBH collection, management and analysis of the data; LLY and YBH prepared the manuscript; LLY and HFX crucially revised the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate
This research was performed on the ARPE-19 cell line in vitro and did not involve live human or animal subjects.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol. 2016; 3:311-6.
2. Kwong TQ, Mohamed M. Anti-vascular endothelial growth factor therapies in ophthalmology: current use, controversies and the future. Br J Clin Pharmacol. 2014; 78 (4):699-706.
3. Hwang JC, Del Priore LV, Freund KB, et al. Development of Subretinal Fibrosis After Anti-VEGF Treatment in Neovascular Age-Related Macular Degeneration. Ophthalmic
4. Shields C. Bevacizumab for Coats' disease with exudative retinal detachment and risk of vitreoretinal traction. Br J Ophthalmol. 2012; 96 (3):356-9.

5. Michels S, Rodrigues E, Hager A, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta ophthalmologica. 2011; 89 (1):70-5.

6. Hsu YJ, Hsieh YT, Yeh PT, et al. Combined Tractional and Rhegmatogenous Retinal Detachment in Proliferative Diabetic Retinopathy in the Anti-VEGF Era. J Ophthalmol. 2014; 2014:917375.

7. Chu SJ, Zhang ZH, Wang M, et al. Effect of bevacizumab on the expression of fibrosis-related inflammatory mediators in ARPE-19 cells. Int J Ophthalmol. 2017; 10(3):366-71.

8. Zhang M, Chu S, Zeng F, et al. Bevacizumab modulates the process of fibrosis in vitro. Clin Exp Ophthalmol. 2015; 43 (2):173-9.

9. Saika S, Yamanaka O, Flanders KC, et al. Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. Endocr Metab Immune Disord Drug Targets. 2008; 8 (1):69-76.

10. Subramani M, Ponnalagu M, Krishna L, et al. Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep. 2017; 7(1):12242.

11. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15 (8):509-24.

12. Dong H, Lei J, Ding L, et al. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013; 113 (8):6207-33.

13. Rassi DM, De Paiva CS, Dias LC, et al. Review: MicroRNAs in ocular surface and dry eye diseases. Ocul Surf. 2017; 15 (4):660-9.
14. Yu X, Zheng H, Chan MT, et al. Review Article MicroRNAs: new players in cataract. Am J Transl Res. 2017; 9 (9):3896-903.

15. Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem. 2014; 5 (1):1-11.

16. Berber P, Grassmann F, Kiel C, et al. An Eye on Age-Related Macular Degeneration: The Role of MicroRNAs in Disease Pathology. Mol Diagn Ther. 2017; 21 (1):31-43.

17. Liu RH, Ning B, Ma XE, et al. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways (Review). Mol Med Rep. 2016; 13 (3):2359-66.

18. Huang Y, He Y, Li J. MicroRNA-21: A Central Regulator of Fibrotic Diseases Via Various Targets. Curr Pharm Des. 2015; 21 (17):2236-42.

19. Li Y, Zhang J, Lei Y, et al. MicroRNA-21 in Skin Fibrosis: Potential for Diagnosis and Treatment. Mol Diagn Ther. 2017; 21 (6):633-42.

20. Usui-Ouchi A, Ouchi Y, Kiyokawa M, et al. Upregulation of Mir-21 Levels in the Vitreous Humor Is Associated with Development of Proliferative Vitreoretinal Disease. PLoS One. 2016; 11 (6):e0158043.

21. Luo Q, Cai Z, Tu J, et al. Total flavonoids from Smilax glabra Roxb blocks epithelial-mesenchymal transition and inhibits renal interstitial fibrosis by targeting miR-21/PTEN signaling. J Cell Biochem. 2019; 120(3):3861-73.

22. Ghosh A, Degyatoreva N, Kukielski C, et al. Targeting miRNA by tunable small molecule binders: peptidic aminosugar mediated interference in miR-21 biogenesis reverts epithelial to mesenchymal transition. Medchemcomm. 2018; 9 (7):1147-54.

23. Su C, Cheng X, Li Y, et al. MiR-21 improves invasion and migration of drug-resistant lung adenocarcinoma cancer cell and transformation of EMT through targeting HBP1. Cancer Med. 2018; 7 (6):2485-503.

24. Yang L, Fan Y, Zhang X, et al. Role of miRNA-21/PTEN on the high glucose-induced
EMT in human mesothelial peritoneal cells. Am J Transl Res. 2018; 10 (8):2590-9.

25. Li H, Wang H, Wang F, et al. Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011; 6 (8):e23322.

26. Li H, Li M, Xu D, et al. Overexpression of Snail in retinal pigment epithelial triggered epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2014; 446 (1):347-51.

27. Wang S, Wang J, Zhang Z, et al. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis. J Nephrol. 2017; 30 (4):543-50.

28. Wei Q, Zhang T, Jiang R, et al. Vitreous Fibronectin and Fibrinogen Expression Increased in Eyes With Proliferative Diabetic Retinopathy After Intravitreal Anti-VEGF Therapy. Invest Ophthalmol Vis Sci. 2017; 58 (13):5783-91.

29. Takayama K, Kaneko H, Hwang SJ, et al. Increased Ocular Levels of MicroRNA-148a in Cases of Retinal Detachment Promote Epithelial-Mesenchymal Transition. Invest Ophthalmol Vis Sci. 2016; 57(6):2699-705.

30. Jun JH, Joo CK. MicroRNA-124 Controls Transforming Growth Factor β1-Induced Epithelial-Mesenchymal Transition in the Retinal Pigment Epithelium by Targeting RHOG. Invest Ophthalmol Vis Sci. 2016; 57(1):12-22.

31. Chen X, Ye S, Xiao W, et al. Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells. Int J Mol Med. 2014; 33(5):1195-200.

32. Li C, Song L, Zhang Z, et al. MicroRNA-21 promotes TGF-β1-induced epithelial-mesenchymal transition in gastric cancer through up-regulating PTEN expression. Oncotarget. 2016; 7 (41):66989-7003.

33. Yook JI, Li XY, Ota I, et al. Wnt-dependent regulation of the E-cadherin repressor
snail. J Biol Chem. 2005; 280 (12):11740-8.

34. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616-30.

35. Horiguchi K, Shirakihara T, Nakano A, et al. Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem. 2009; 284 (1):245-53.

36. Thien A, Prentzell MT, Holzwarth B, et al. TSC1 activates TGF-beta-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell. 2015; 32 (5):617-30.

37. Kim J, Kong J, Chang H, et al. (2016) EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget. 2016;7(51):85021-32.

38. Liu X, Ji Q, Deng W, et al. JianPi JieDu Recipe Inhibits Epithelial-to-Mesenchymal Transition in Colorectal Cancer through TGF-β/Smad Mediated Snail/E-Cadherin Expression. Biomed Res Int. 2017; 2017:2613198.

39. Wei MG, Sun W, He WM, et al. Ferulic Acid Attenuates TGF-beta1-Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway. Evid Based Complement Alternat Med. 2015; 2015:619720.

40. Yang S, Yao H, Li M, et al. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells. PLoS One. 2016; 11 (3):e0152687.

41. Yao H, Li H, Yang S, et al. Inhibitory Effect of Bone Morphogenetic Protein 4 in Retinal Pigment Epithelial-Mesenchymal Transition. Sci Rep. 2016; 6:32182.

42. Zhang Y, Zhao D, Yang S, et al. Protective Effects of Fucoidan on Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells and Progression of Proliferative Vitreoretinopathy. Cell Physiol Biochem. 2018; 46 (4):1704-1715.

Figures
BEV caused EMT in ARPE-19 cells. Western blot analysis showed BEV decreased the expression of E-cadherin (A) and increased the expression of α-SMA (B) significantly after exposed to BEV for 48 hours. *p<0.05
Figure 2

BEV increased the expression of miR-21 in ARPE-19 cells. The expression of miR-21 in normal and BEV-treated ARPE-19 cells was validated by quantitative Real-Time PCR. *P<0.05
miR-21 regulated BEV-induced EMT in ARPE-19 cells. ARPE-19 cells were transfected with miR-21 mimetic, miR-21 inhibitor and negative control sequences for 24 hours prior to BEV treatment. miR-21 inhibitor increased E-cadherin and decreased α-SMA expression (A, B). However, miR-21 mimic suppressed E-cadherin and enhanced α-SMA level (C, D). *P<0.05
Figure 4

miR-21 mediated BEV-induced Snail production in ARPE-19 cells. BEV treatment increased Snail expression in ARPE-19 cells (A), and the elevation was inhibited by miR-21 inhibitor (B). miR-21 mimic enhanced the increased Snail production caused by BEV (C). *P<0.05
Effect of TGFβ1/smad2/3 signaling on BEV-induced EMT in ARPE-19 cells. BEV increased the expression of TGFβ1 (A) and smad2/3 phosphorylation (B). SB431542 and SIS3 increased the expression of E-cadherin and decreased the expression of α-SMA and Snail in BEV treated ARPE-19 cells (C).
miR-21 regulated BEV-induced EMT through TGFβ1/smад2/3 signaling. miR-21 inhibitor transfection reversed BEV-induced TGFβ1 production (A) and smad2/3 phosphorylation (B). miR-21 mimic transfection elevated BEV-induced TGFβ1 production (C) and smad2/3 phosphorylation (D). In addition, SB431542 and SIS3 abrogated miR-21 over-expression induced E-cadherin reduction and α-SMA and Snail promotion (E). *P<0.05