DIGITIZING THE DRAGON HEAD, GEO-CODING THE URBAN LANDSCAPE: GIS AND THE TRANSFORMATION OF CHINA’S URBAN GOVERNANCE

Wen Lin1
School of Geography, Politics, and Sociology, Newcastle University

Abstract: While local governments have been one of the major user groups of GIS, there is still little research on how GIS development in local government might be intertwined with urban governance, particularly in non-Western contexts. Drawing upon insights from GIS implementation, critical GIS, and governmentality studies, this article seeks to bridge this gap by examining the implications of Chinese urban government GIS practices amidst China’s changing urban governance. Through an in-depth case study of Shenzhen, this article analyzes how urban GIS has been transformed from a practice involving internal organizational workflow automation, into a more active dimension of the governance of urban spaces—reflected in the expanding practice of “geo-coding” the urban landscape. “Geo-coding” here refers to a broadly defined spatial practice of carving and reconstructing a rational urban space. GIS practices have constituted a particular form of geographic rationality that seeks to govern at a distance while simultaneously regulating the urban environment, intersecting with the broader transformations of China’s urban governance. These GIS developments have been largely government-centric rather than citizen-centric, yet they provide possibilities for new forms of spatial knowledge production for citizen participation in urban governance. [Key words: Critical GIS, governmentality, geo-coding, urban governance, China, Shenzhen.]

INTRODUCTION

GIS technologies have been increasingly developed and used in Chinese city governments (e.g., Kong, 2001; Lai, 2006), especially in the urban planning sector (Chen et al., 2004), which has been designated as the “dragon head” (longtou) in China’s urban development (Qiu, 2005). The term “dragon head” is frequently used as a metaphor in China’s public political discourse, referring to these entities or industries that have a guiding and steering role in their respective sectors (Wu, 2003). The dragon-head role of urban planning, in contrast to its subordinate role in urban development in China’s pre-reform era, indicates an interesting and complex transformation of political rationalities that calls for governing through autonomy (Tang, 2000). However, there is little work on documenting and analyzing in what ways local government GIS development and urban governance might pervade one another. This study aims to address this issue through an in-depth case study of GIS development in Shenzhen’s city government in China.

I employ a synthetic theoretical framework. First, I draw upon insights from research in GIS implementation, which has noted that GIS can serve multiple roles, including improving quality of mapping, data analysis, information processing, and decision-making support (Worrall, 1994). However, Nedovic-Budic (1998) suggests that more process-
based and context-sensitive studies are needed. In addition, it is also necessary to examine the impacts of GIS over time. Second, critical GIS research also suggests that it is necessary to view GIS as more than merely hardware and software: GIS embodies, and is embedded in, complex social relations with wide-ranging societal implications (Elwood, 2006; Pickles, 1995). The impacts and implications of GIS development, in turn, need to be situated in the social conditions in which the technology is employed. Furthermore, drawing upon insights from governmentality research, I argue that GIS practices have been enrolled and implicated in the transition of political rationalities in China’s urban governance. Specifically, the “geo-coded landscape” notion (Rose-Redwood, 2006, 2012) is useful in explicating how GIS constructions have moved beyond the mere function of mapping or spatial data generation and helped to constitute the geographic rationality of governing and managing heterogeneous urban environments.

My analysis is based on data collected from semi-structured interviews, archival documents, and participant observation through fieldwork conducted in China in 2005 and 2006. In the remainder of the article, I first provide a review of relevant literature. I then situate Shenzhen’s governmental GIS constructions within the broader urban governance transition in reform-era China. I subsequently document the major roles of GIS in Shenzhen’s urban governance and illustrate the ways in which these GIS practices have (re)configured the relations between the governing and the governed, power, and knowledge. I argue that while various GIS technologies have been implemented in Shenzhen’s urban governance, there is an important shift of governing rationality intertwined with such urban GIS usage. This shift places more emphasis on governing the urban space and population through geospatial technologies but differs from the previously encompassing and totalizing work unit system in China’s urban governance. In this way, I show that urban GIS has become an integral part of the devolution of state powers in China in the past generation. This transition share certain traits with the neoliberal discourses of North America and Europe that emphasize state restructuring and inter-urban competition, but exhibits distinctive Chinese characteristics shaped by the authoritarian regime and path dependency (Peck and Zhang, 2013). As such, with a more nuanced analysis on how political and technological rationalities are intertwined and mutually shape one another, this study will contribute to critical GIS and urban geography research through explicating “the [particular] techniques and processes of governance” (Kipnis, 2007, 385) that constitute the complex state-society relations in China including “the coexistence of these evolving state (and party) forms with endemic, uneven and conflictive processes of deepening marketization” (Peck and Zhang, 2013, 380) as well as revealing possible spaces for contestation and resistance.

THEORETICAL BACKGROUND

Constructing and Implementing GIS in Urban Governance

Two strands of GIS research inform my study regarding the intersection of GIS development and urban governance. First, studies of GIS implementation in organizations and government agencies in particular provide insights into various dimensions of evaluating GIS, both with respect to its instrumental roles and social impacts. Second, critical GIS research further provides rich accounts of how GIS practices are socially constructed.
Specifically, in GIS implementation research, some studies focus on the financial aspects of acquiring and implementing GIS (cf. Karikari and Stillwell, 2005; Worrall, 1994). Some other studies provide multi-dimensional frameworks (Nedovic-Budic, 1998), which can be grouped into the following categories: system quality, information quality and use, user satisfaction, individual impact, organizational impact (e.g., Pinto and Onsrud, 1997), and societal impact (e.g., Tulloch et al., 1996). Given the dynamic scopes of GIS and complex environments of implementation, the impacts of GIS are varied and contextual (Nedovic-Budic, 1998; Worrall, 1994). Thus, instead of developing a universal set of evaluation criteria of GIS implementation, Nedovic-Budic (1998), among others, suggests that it is necessary to consider specific organizational settings (such as organizational size and political framework) and user-technical interfaces. Several studies also acknowledge the symbolic meaning of modernity through digital technologies in public administration (e.g., Campbell, 1996). Nonetheless, these studies have focused primarily on the organizational levels, and interactions between the organization and broader social processes have been largely neglected.

At the same time, critical GIS research argues that GIS is a multifaceted, multi-scalar, complex and ambivalent social process, and its implications and impacts should be investigated within the broader social conditions beyond the particular organizational settings where the technologies are employed (Chrisman, 2005; Pickles, 1995; Schuurman, 2002; Sheppard, 2005). In this field, there are fruitful discussions of the role of GIS in local government agencies with a focus on social relations embedded in GIS constructions. For example, Obermeyer and Pinto (1994) acknowledge that the introduction of GIS might increase, rather than reduce, conflicts in planning agencies. Harvey (2006) reveals how GIS and spatial data usage have constituted new meanings of administrative boundaries in relation to neo-liberal governance. These studies, while underpinned by various theoretical approaches, have been concerned with examining how GIS might change organizational operations and performance and alter power relations (both intra-organizational and inter-organizational).

Another related body of work in critical GIS is the discussion of spatial data infrastructure (SDI) development, which subsumes an array of geospatial technologies and data, networks, standards, policies, stakeholders, organizational aspects, and end users (Georgiadou et al., 2005; Harvey and Tulloch, 2006). These initiatives, mainly carried out by state agencies at various levels, have been initially driven by economic purposes. Later efforts and discourses have sought to address the issue of access and tackle broader social and political questions such as environmental regulations and food security, underpinning the notions of information society and social progress (Georgiadou et al., 2005). Studies show that the roles and impacts of SDI vary widely and are dependent on institutional arrangements and organizational factors as well as technological factors. Notable efforts have been carried out to examine the sociopolitical dimensions of SDIs (e.g., Craig, 2005; Elwood, 2008; Georgiadou et al., 2005; Harvey and Tulloch, 2006). For example, in their study of the national SDI development in the United States, Harvey and Tulloch (2006) show that data sharing in local government tends to be informal and that it is carried out to support existing governmental activities rather than corresponding to national policies or programs. Some studies also examine the influence of state devolution on SDI and data access (Elwood, 2008; Ghose, 2007; Martin, 2003). In these contexts, local governments and other non-state agencies may take up new roles and responsibilities in addressing a
range of socioeconomic issues, in which spatial data are often seen to play an important role in planning and decision-making as well as collaborative governance.

Together, these studies demonstrate the importance of investigating the roles and impacts of GIS and spatial data constructions developed and employed by state agencies through both technological factors as well as social and political processes. Yet there has been little research on how GIS development in government is co-constitutive of broader processes of urban governance. Specifically, there is very little research that traces how the usage of GIS and associated discourses have been intertwined with political and governmental rationalities in relation to urban governance. This study seeks to interrogate this nexus. In particular, I argue that insights from the study of governmentality are essential to understand the complex relations of GIS as a social and political process (Crampton, 2004; Pickles, 2004).

Governmentality and the Geo-Coded Landscape

Following Foucault (1991), the notion of governmentality refers to “the array of knowledge and techniques that are concerned with the systematic and pragmatic guidance and regulation of everyday conduct” (Ong, 2006, 4). The governmentality concept provides critical insights into mapping and GIS practices (Brown and Knopp, 2006; Crampton, 2004; Hannah, 2000; Harvey, 2006; Pickles, 2004). For example, Crampton (2004) views mapping as an aspect of geographic governance that reflects and constitutes political reasoning. He investigates the shifts of governmental reasoning between choropleth mapping and dasymetric mapping from the early 19th century to the 20th century, which helped shape knowledge of population distributions and space. Pickles (2004) provides an account of how urban space has been rationalized with new ways of mapping in the 19th century such as the emergence of paronomasia technology. He shows how the technologies and practices of mapping have emerged as part of “a broad social project of urban and social rationalization,” “paralleled by the use of cartographic rationality and its presentational logics as new forms of commodification” (Pickles, 2004, 133).

These studies reveal the important role of mapping technologies in constituting spaces and territories that may in turn structure our way of understanding the world and acting upon it. Pickles (2004, 5) notes that “cartographic institutions and practices have coded, decoded and recoded planetary, national and social spaces.” Rose-Redwood (2006) further argues that geographic governance is a pre-condition of biopolitical power (see also Crampton, 2004). Increasingly, spaces have been geo-coded to enable more efficient and rational management. Here, “geo-coding” is a broadly defined spatial practice, rather than a geo-computational technique. This practice provides the geographic foundation that links governmental knowledge with the governed population (Rose-Redwood, 2006). For

2The notion of governmentality has several meanings (Dean, 1999). First, it can mark a particular form of modern governmental reasoning that takes as its object “the population” and is coincident with the emergence of political economy. Second, it implies a certain relationship of government to other forms of power, in particular sovereignty and discipline. Third, governmentality seeks to enframe the population within what might be called apparatuses of security. And fourth, it stresses the long process by which the juridical and administrative apparatuses of the state come to incorporate the disparate arenas of rule concerned with this government of the population. This is the process Foucault calls the “governmentalization of the state” (Dean, 1999, 18–20).
example, historical urban house numbering in the United States can be viewed as a type of geo-coding practice that should not be taken for granted (Rose-Redwood, 2006). This type of geo-coded urban landscape emerged in parallel with the commodification of urban space in capitalist societies (Pickles, 2004; Rose-Redwood, 2006). The notion of a “geo-coded landscape” (Rose-Redwood, 2006; see also Pickles, 2004 and Crampton, 2003) is particularly useful in my study. While these geo-coding practices are mainly situated in Western industrialized contexts, such a conceptualization draws important attention to examining how geographic technology usage has emerged within particular socio-economic contingencies and consequently what are the implications.

A number of researchers have attempted to extend Foucault’s ideas into non-Western contexts (Legg, 2005; Ong, 2006; Sigley, 2006). In particular, several studies have investigated how governmentality processes operate in China (Anagnost, 1997; Hoffman, 2006; Sigley, 2006; Tang, 2000). Sigley (2006, 494) argues that China’s “socialist governmentality,” especially during the Maoist period (1949–1976), is characterized by a belief in “the ability to know the object to be governed in detail.” The state occupied a position of moral authority and was able to intervene into the social life in every aspect, which can be characterized using Foucault’s notion of disciplinary power (see also Tang, 2000). The objectification of the governed was facilitated by a range of techniques such as mass mobilization through powerful propaganda and institutions such as the work unit system (see, e.g., Anganost, 1997).

However, as the society becomes more diverse with China’s transition from a centrally planned economy to a market-oriented one since the 1980s, new strategies have emerged for governing through autonomy, either through “market mechanisms or the autonomous conduct of individuals” (Sigley, 2006, 495). As such, the reform process has produced a hybrid form of political rationality, which is authoritarian while also seeking to govern certain subjects through their own autonomy (Sigley, 2006; see also Cartier, 2011). Meanwhile, scholars have documented how state power has transformed from previously all-encompassing administration to more indirect and micro-level social control (e.g., Chung, 2007). This shift of governmental reasoning intertwined with the scalar strategy of economic decentralization in China forms the backdrop against which GIS is developed and employed in China’s urban planning and related agencies.

With respect to planning knowledge production, Sandercock’s work (1998, 2003) illustrates how different forms of rationalities underpin planning theory and practices. In particular, she identifies five major pillars of the so-called “Chicago model,” which are characterized by instrumental rationalities, comprehensiveness of planning, quantitative modeling, state-directed and hierarchical features, and a public image of neutrality. However, such a paradigm has been challenged in recent years. New theoretical developments on planning have emerged, of which some major characteristics include: means-ends rationalities (such as for building bridges and dams), planning as negotiated, political, and focused actions, appreciation of different forms of knowledge including more “experiential, grounded, contextual, intuitive knowledges” by local communities, community-based planning geared to community empowerment, and multiple publics

3The work unit system (danwei) serves as the basic unit of urban social, economic, and political life in socialist China’s cities, providing its members with housing, free medical care, and other welfare services (Bray, 2005, 3).
As I will analyze later, GIS constructions in Shenzhen’s planning agencies appear to experience a transition from an earlier focus on automating internal administrative workflows to more explicitly using geo-spatial technologies to help govern and discipline urban environments on a larger scale. In these processes, one can argue that a means-ends rationality, using Sandercock’s term, is playing a role such as reducing operational errors through employing GIS and information technologies. There is also a discourse of enhancing public participation in the discourse of “E-governance.” However, I argue that these developments must be understood as instrumental rationalities (Sandercock, 1998; see also Pickles, 2004). Furthermore, these practices are also enrolled in the state’s attempts to “geo-code” the increasingly diverse urban environments in the face of rapid urbanization and globalization. This can be shown through the example of the development of an “urban grid information system.” Such transformations of geographic knowledge production in urban governance constitute a hybrid governing rationality in China (Sigley, 2006) intersecting with the increasing role of the city as a major economic entity in China (Wu, 2003). It is through these perspectives that I will situate and investigate the case of Shenzhen.

GOVERNING SHENZHEN WITH GIS DEVELOPMENT

Shenzhen, located on the northern border of Hong Kong within the rapidly urbanized Pearl River Delta region in southern China, has been one of the leading cities in developing information technologies and GIS in its governmental sector. Specifically, the Shenzhen Urban Planning and Land Information Center (SUPLIC hereafter) has been a key entity in developing local government GIS. The SUPLIC, founded in 1993, has more than 100 staff members and is the largest government agency of its kind in Shenzhen. Technological development in SUPLIC has no doubt been influenced by its organizational context and by local sociopolitical conditions, such as the monopoly control of spatial resources by the planning bureau in local government, strong financial support of the organization, and strong leadership (Lin, 2008).

Two major transformations of China’s urban governance have played a key role in shaping the constructions and discourses of GIS in urban governments including that of Shenzhen. One is the restructuring of the state, through which the city has emerged as a key player in socioeconomic as well as technological developments. The other is the transformation of political rationalities that has co-evolved with the restructuring of the state. These shaping forces in the case of China are in contrast to the important role of the private sector in local governments’ GIS development in Western capitalist societies (see Lin and Ghose, 2010).

The Chinese city mainly served an administrative role in the pre-reform era, but is now promoted by the central government as a key scale for national economic growth; this transition marks a crucial rescaling strategy of state power (Cartier, 2001; Chung, 2007; Douglass et al., 2012; Ma, 2004; Wu, 2002). As such, cities are left to themselves to attract investment for local development, creating a dynamic of intensified entrepreneurial competition to promote growth, with wide-ranging consequences for inter- and intra-urban spatial restructuring (Lin and Yi, 2011; Wu, 2003, 2011). Second, there are
challenges for city administrations in maintaining governance over urban spaces that have become more dynamic, mobile, diverse, and unequal as a result of market reforms and rapid urbanization (Ma and Wu, 2005). Nevertheless, the central government’s policies and plans remain an important force in shaping local politics in China because of the legacy of the centrally planned system (Ng and Tang, 2004). There are still strong vertical connections between the central ministries and their corresponding municipal departments. These connections exemplify significant, distinctive features of Chinese urbanism (Zhang, 2012) although state restructuring in China shares many characteristics with the devolution processes observed in North America and Europe (Brenner, 2004; Swyngedouw, 2005; Ward, 2000).

Shenzhen “heralds the essence and evolution” of China’s economic reform, global integration, and modernization by virtue of its role as the first Special Economic Zone (SEZ) (Chen and de’Medici, 2010, 1141). The SEZ developments were aimed to serve as an experimental field for economic reforms, including the transfer of new technologies and management practices from abroad, which would subsequently be applied elsewhere in China. Shenzhen first served as an export-oriented manufacturing zone and has experienced unprecedented urban growth, growing into a business service center. More recently, city elites and planners have attempted to build Shenzhen into a “world city,” encouraging high-tech industry development as opposed to the earlier emphasis on manufacturing.

Such political economic structural transformations are accompanied by new forms of governing rationality. The process of implementing new regulations and building institutions suggests that the way of governance has changed from “a dominant, all-encompassing surveillance to one that is more indirect” (Chung, 2007, 792; Bray, 2006; Saich, 2004). In this process, the state power, rather than being hollowed out, re-scales and reconsolidates into lower levels of governance, particularly at the urban scale (Cartier, 2005; Chung, 2007; Wu, 2002). Wu (2002) notes that rapid urban growth creates a vacuum in governance, as the former institutions of direct control (e.g., the work unit system) are dissolving, while adequate alternative systems are not completely ready. In response, territorial organizations (such as the municipality, “urban districts”, and “street offices”) are reinvented and consolidated to restore a governable society rather than self-organized local governance (Wu, 2002).

In particular, urban planning, which played a rather subordinate role in the pre-reform era, is now a central part of city management and socioeconomic development (Ng and Tang, 2004; Wu, 2007). Tang (2000) illustrates how urban planning knowledge has been produced in such transitions, viewing urban planning as part of the tactics and strategies of the Chinese state to govern economy and society (see also Lu, 2006). In the case of Shenzhen, the urban planning and land management sector, which was initially under the same bureau until 2004, has played a fundamental role in the city’s development (Ng, 2005; Ng and Tang, 2004). Cities and towns, which offer advantages to discipline the collective whole and environment of individuals and enterprises, have gained prominence in the reform era. Simultaneously, urban planners in China are very keen to exploit the emergent role of cities and towns in the national economy and society to raise the societal role of urban planners (Tang, 2000). Information technology has played an increasing role in planning agencies shaped by this new urban governance rationality.

As such, since the mid-1990s, there has been a burgeoning interest in GIS implementation for city governments as the major users (Chen et al., 2004; Kong, 2001). One
important driving force has been the national agenda of “informationization” (xinxihua), in which the central state has strived to foster GIS and other IT developments in China (Lin and Ghose, 2010). The policy discourse has started to associate IT development in government agencies with the technology’s transformative role of improving governmental operations and services. It is important to note that this emphasis of improving governmental services facilitated by technological developments is closely related to the governmental rationality transition to more indirect ways of governing in China (Sigley, 2006). More recently, much attention has been given to government GIS applications in China, in which the urban scale has emerged as an important arena for enacting the national informationization agenda. This is in parallel with the urban restructuring process taking place since the 1980s, which has important implications for authority and power in city governments and thus for GIS use in these state agencies.

In response to the increasing inter-urban competition noted earlier, Shenzhen city leaders have called for more administrative efficiency, and more detailed sociospatial information for urban management. Meanwhile, local planners also strive to undertake and represent local planning to conform to national policy agendas, in order to gain discursive and material support for local development—creating a dynamic process of “scaling up” (see also Lin and Ghose, 2010). GIS and other information technologies have become important instruments in achieving these goals, and coordinating planning implementation and development control functions. Moreover, GIS also plays a symbolic and political role in urban governance, mediating the power relations between the central and local authorities. I further illustrate these roles of GIS in Shenzhen’s urban government and tease out the ways in which they are intertwined with the changing political rationalities in the following section.

CONSTRUCTIONS OF GIS IN SHENZHEN

The SUPLIC has developed and implemented a range of GIS technologies in Shenzhen’s planning agency since its inception. Four major functions of these GIS constructions can be identified: automated mapping, data processing, online service provision, and urban management monitoring. While the major roles of such GIS practices have not been significantly different from those identified in the GIS implementation literature, I contend that it is important to interpret these GIS practices through the lens of the restructuring urban governance and transitioning political rationalities in China. Such an analysis provides a more nuanced illustration of how technological and political rationalities intersect and mutually constitute one another. I further argue that together these practices constitute a particular form of geographic governance, manifested in attempts to “geo-code” the urban landscape (Rose-Redwood, 2012). This form of governing is perhaps most apparent in the example of the “urban grid information system” development, which is a key element of urban management monitoring (the fourth function in the list above). However, the other three functions help to pave the way for enacting such a form of governance.

On the one hand, there has been a major emphasis on increasing the efficiency of governmental operations with these digital technologies to economize the time for administration, which corresponds to the technocratic approach favored in China’s urban governance (see Saich, 2004; Tang, 2000) and shares traits of the instrumental rationalities
in the “Chicago model” of planning (Sandercock, 1998). In many ways, GIS uses and functions in the planning department reflect an “ideology of automation” (McHaffie, 2002), in order to help accelerate the rate of capital accumulation in the city. On the other hand, GIS development in relation to the recent “Digital City” and “E-governance” discourse in China also points to the goal of improving governmental operations and services facilitated by digital information technologies. These efforts and discourses help to facilitate, directly and indirectly, the large-scale operations of urban management monitoring, through which the geo-coded urban landscape is produced and operated upon. These roles are discussed in greater detail below.

Mapping Automation

One of the major functions of GIS in SUPLIC has been mapping automation, especially reflected in the development of the Fundamental Geographic Information System. This system was one of the five GIS databases initiated in the early workstation infrastructure (Lin, 2008). Upon completion, the database consisted of 6,870 charts of topographic maps with a total size of 5.78 gigabytes of data. This database includes maps of topography, land use, construction, road networks, and underground utilities (Peng et al., 1998). The data have been frequently updated through regular terrain surveys contracted to survey and mapping companies, while SUPLIC is in charge of monitoring the accuracy and standardization of the survey results and transferring them into the database.

This system has played an important role in enhancing the work efficiency of the bureau (Peng et al., 1998). Previously in any business operation reliant on topographic maps, the staff had to work with different paper maps of various scales. These manual operations were considered inefficient and susceptible to error. For example, land-record boundaries may mistakenly overlap in the department’s land lease procedure (Peng et al., 1998; Interviewee 1, GIS manager in SUPLIC, May 24, 2006). Digitizing these topographic maps and automating the mapping process allowed staff to display and overlay multiple digital topographic maps for land-record processing. Such a change has improved the land management, planning management, and property management business procedures in the bureau. This shift has also shortened update cycles, improving the timeliness of the database.

This database has also fostered inter-organizational data exchange. It has been one of the most frequently requested data sources by other entities (Interviewee 2, GIS staff in SUPLIC, 15 May 2006; Peng et al., 1998). In particular, the urban design and municipal public works entities associated with the planning bureau have been regular users of this database to assist with their master planning, district planning and zoning practices. Recently, various thematic data have also been provided to other municipal bureaus and companies such as the police department, the fire department, the environment protection department, a municipal running water company, and a local telephone company.

Data Processing and Workflow Acceleration

One of the frequently stated goals of developing information systems including GIS in the planning bureau has been to increase administrative efficiency. One significant case is the development of the Document Processing Information System (DPIS) (SUPLIC,
The DPIS was launched to facilitate the bureau’s “one-stop” administration reform. In this system, the staff can view the progress of related document processing, including who has processed the document. Moreover, a new set of time limits were designated for each business procedure. Each step of each business procedure was identified and assigned a specific time allocation, as part of a standardization that has sped up many of SUPLIC’s internal processing functions.

The DPIS development has been considered a significant success through automating the major document processing procedures, as it not only saves time for administrative operations, but also increases the transparency of the workflow within the bureau (Interviewee 3, official in the Shenzhen Land and Housing Bureau, 2006). In particular, the aspect of accelerating the speed of organizational business operations has been emphasized by the planners, which can facilitate and attract more foreign investment (Ng, 2005). Consequently, it is believed that the transaction costs for the overall capital circulation in the city would be reduced. It was reported that three to four months after the implementation of the one-stop service equipped with the DPIS, over 500 foreign enterprises had set up their factories in Shenzhen (Ng, 2005, 131).

Online Service Delivery and E-Governance

In addition to internal data transfer and processing, GIS has also been used for direct service delivery to the public, which is increasingly combined with Web-based technologies. Compared to the stand alone information system development, the use of the Internet in Shenzhen’s planning department is relatively newer. So is the notion of “E-governance” in Shenzhen, which is inseparable from the national promotion of “government-online” project and “E-governance” development, which is intended to enhance administrative efficiency, transparency, and public participation. SUPLIC has been developing the bureau’s official website since the early 2000s. As an example, housing permits approvals have been posted online. Another example is the E-petition system that collects citizens’ opinions and complaints on urban planning issues. E-petition and other similar applications such as the “Emailing the mayor” functions are now common “E-governance” practices in Chinese cities (Hartford, 2005). Live online question-and-answer discussions between planners and citizens on master planning issues have also been undertaken on the official website.4

An E-mapping application has been developed on the planning department’s official website with four layers of streets and transit routes, statutory planning information, building names, and the basic ecological control line. It is difficult to assess how often and in what ways this online mapping application has been used by the general public. Nonetheless, a local newspaper’s report at the time of fieldwork provides information about possible interactions between the general public and this application (Daily, March 30, 2006). This report critiqued the lack of updates on public facilities information such as hospitals, police stations, and so forth on the E-mapping site. It pointed out that the most

4For example, the planning bureau has undertaken a live online discussion with the citizen on the Draft of Shenzhen Planning (2006–2010) in March 2006 (http://www.szplan.gov.cn/main/gzcy/wsbsl/200603240206346.shtml).
up-to-date location information on the E-mapping site is that of commercial enterprises rather than that of public facilities. This article citing citizens’ opinions argued that this website maintained by SUPLIC has become “too commercialized.” In response, the SUPLIC urged the correspondent unit to update the location information of public facilities. Meanwhile, SUPLC explained to the newspaper that this delay in data updates on public agencies was largely caused by the slower speed of the data provision from these public entities being mapped. In other words, commercial enterprises would provide more updated information promptly, while the public agencies involved tend to be “slower” in doing so. Overall, in the local official reports, the above technological applications involving the Internet have been considered to facilitate greater public participation.

Monitoring Urban Change and Decision Support Systems

As addressed earlier, Shenzhen has undergone tremendous urban growth, with massive transformation of the built environment. GIS-related technologies are seen as a critical means to manage urban space and to facilitate urban growth (Ng, 2005). One example is the “basic ecological control line” (BECL) project initiated in 2005, spearheaded by the planning bureau, working in collaboration with the city’s environment protection bureau. Part of Shenzhen’s territory comprised of steep slopes, forests and wetlands, was delineated by the BECL (Figure 1), with a prohibition on any new construction. To enforce

![Map of land use control framework (2003–2005) (Source: Shenzhen City Government, 2003). The green shaded area denotes the protected area carved by the BECL.](image)
the prohibition, remotely sensed images were used to monitor land use changes for any signs of new construction. If any “suspicious spots” were identified from these remotely sensed images, investigative fieldwork would be undertaken. Decisions on further actions were informed by analysis of historical documents in the planning department (e.g., to identify whether an owner had applied for a permit prior to the establishment of the BECL). This type of technological development at the municipal level has not been practiced in other Chinese cities before. However, the use of remote sensing data for land use management has been carried out at the national level, such as by the Ministry of Land and Resources. This use of remote sensing and GIS analysis has allowed the government to “govern at a distance” (Rose-Redwood, 2006; Sigley, 1996). Shenzhen’s experience is thus a good example of how technologies for “governing at a distance” are reconstituting governance at the urban scale.

Another notable example is the more recently developed “urban grid information system” in Shenzhen. The urban grid information system is derived from a project originated in Beijing, in which part of the city is divided into a set of grids to better manage the urban environment (Chen, 2006). The Ministry of Construction has established an industrial standard based on Beijing’s experience. Various built environment features (such as municipal utilities including sewage wells, street trees, bus stops, etc.) have been coded and recorded as “elements” and “events”. Elements and events are further subdivided into large and small categories. Specifically, the types of the “large category” include: public facilities, roads, urban environment, urban green space, housing, other facilities, and the like. Each of these large categories is further subdivided into small categories. For example, in the large category of public facilities, the small category components include various well covers for sewage, water pipes, power lines, and heating facilities (Ministry of Construction, 2005).

In Shenzhen’s grid system, the city is divided into 8,764 grids (Shenzhen SEZ Daily, April 7, 2007). Each unit is smaller than the lowest “Community” level and is assigned a 14-digit code, including the information of the District number, Street Office number, and Community number. A “two-core” management system comprising a city management monitor center and a city management committee is adopted based on Beijing’s model (Figure 2). The city management monitor center is responsible for data collection and

![Diagram](image-url)

Fig. 2. The general workflow of the “New Urban Management Model” (based on Chen, 2006).
processing regarding the urban environment management, with data provided by a patrol team on the ground. A centralized database plays a key role in identifying respective city departments to deal with problems discovered by the patrol team. The city management committee is responsible for allocating the tasks delivered from the monitor center to correspondent administrative departments and units. This committee is also responsible for negotiating the relationships among different departments if needed and assessing the outcomes of the operations carried out responding to the issues reported. For example, if a sewage well cover is missing, the patroller in charge of that grid can promptly report this via a specifically designed GPS-enabled cell phone to the city monitor center. With the grid-based coding, the location can be quickly identified, and the Street Office of that district can be called upon to deal with this issue by the city management committee, using the information provided from the monitor center (Figure 2). After the Street Office completes any operations regarding the reported issue, they are expected to report the result back to the monitor center. The monitor center then assesses the outcome and decides whether this could be identified as a “closed case” or not. All these outcomes are recorded and summarized through a so-called “Automated Assessment Mechanism” integrated in the computer system. The general public may provide feedback or comment upon these outcomes (Shenzhen SEZ Daily, January 8, 2006).

This model of urban management has been highly praised in China as it can provide prompter responses to urban built environment management issues. In particular, the establishment of the independent monitor center and the “two-core” model are believed to transcend the traditional compartmentalization of urban management (Shenzhen Economic Daily, September 21, 2007). Previously, urban management issues were undertaken by different city departments. For example, the transportation bureau would be responsible for issues related to road networks and the urban management bureau for “unregulated” street vendors. Lack of coordination or overlapping responsibilities among city departments impeded prompt responses to problems (Chen, 2006; Shenzhen SEZ Daily, January 8, 2006). In the newly established model, the monitor center, equipped with GIS and provided with authority by the municipal government, can exercise significant power in managing urban environments across different departmental boundaries. Data suggesting greater efficiency of monitoring these urban built environments have been frequently cited in the media (Shenzhen SEZ Daily, January 8, 2006). As such, this new urban management model has been applauded by city leaders, and it has been implemented in more than 50 Chinese cities including Shenzhen (Beijing Daily, June 6, 2008).

Clearly, GIS technologies have played an important role in monitoring and managing urban environments. This urban management model indicates an interesting shift in governance. The urban grid information system reflects the efforts of the state power in recreating and governing urban spaces, by which the local government claims to provide “better governance” and ease the tensions between the public and the government due to the “improved efficiency” (Chen, 2006). Officials have shown interest in possible overlaying other socioeconomic data (e.g., real-estate data, micro-economic data, environmental protection data, and so on) on this urban-grid base (Nanfang Daily, July 28, 2006). In this way, “we would have a better understanding of the market, say, the housing market, on a particular location” (Nanfang Daily, July 28, 2006). Creating such urban spaces can thus help to facilitate capital accumulation in the city. This urban grid system
model has been applied in many Chinese cities and has attracted international attention from cities in France, the United States, Canada and India (Beijing Daily, June 6, 2008). This shift has been accompanied with institutional and organizational changes in urban governance, such as the monitor center in the urban grid management system and the collaboration with other city departments in the biological ecology control line project.

I view such practices of urban monitoring systems as a form of “geo-coding the urban landscape” that aims to administer urban space for the proper functioning of the government (Crampton, 2004; Rose-Redwood, 2006). Urban space, in particular, the public built environment, is carved into “more manageable” grids with specific boundaries and coding. Moreover, the efforts of automating the mapping operations and data processing as well as the “E-governance” discourse are not separated from the practice of geo-coding the urban landscape. In many ways, the former constitutes the latter. For example, the data collection and management process enabled by the central GIS system housed in the monitor center is necessarily built upon the long-standing efforts of developing GIS and related information technologies in urban government. The discourse of “E-governance” and “Digital Shenzhen” also underpin the discourse of improving urban governance through the geo-coding urban landscape practice. I illustrate the implications of these GIS constructions at multiple levels further in the next section.

NEW CONSTRUCTIONS OF GIS: FROM WORKFLOW AUTOMATION TO GEO-CODING URBAN LANDSCAPES

The preceding analysis has examined the multiple roles of GIS in Shenzhen’s planning agency. These uses of GIS illustrated above have important effects on urban planning knowledge production and power relations at different levels. First, within the planning department, GIS has provided information in a more structured way. According to the staff as well as the senior leaders from SUPLIC and the planning department, work efficiency has increased under a digital environment. There is also more transparency of workflow, which has modified the traditional work structure of the local authority (Interviewee 3, Official in Shenzhen Land and Housing Bureau, 3 March 2006). The increasing transparency of workflow has been noted as important for the anti-corruption efforts by the local authority (Interviewee 1, GIS manager in SUPLIC, 24 May 2006). Such technological developments also have an impact on the composition of the local administration. The GIS staff members have played a larger role in the urban government for data collection and analysis, training other staff, and maintaining the systems. Nonetheless, some still feel that the so-called “information staff” who would deal with IT and GIS have not obtained a stronger role in participating in decision-making (Interviewee 4, official in Shenzhen Science and Information Bureau, 15 June 2006).

At the municipal level, the planning department’s public image has improved in Shenzhen (Interviewee 5, GIS scholar, 2 August 2006; Peng et al., 1998), particularly with respect to faster business service delivery. These technological developments also facilitate greater data accessibility such as the online postings noted earlier. It is claimed that these technological developments have facilitated more citizen participation, for example, informing citizens of planning projects and collecting their feedback. These developments in turn reinforce the position of the urban planning sector in Shenzhen as the “dragon head.”
At the national level, such GIS developments have been packaged to gain national recognition, winning several national awards. The national recognition and the “pioneering role” of Shenzhen are seen as strategically important for local policy makers and planners in a keen inter-urban competition environment. Such national recognition in turn enables Shenzhen to obtain high-profile status from national senior leaders, contributing to Shenzhen’s local development strategy. For instance, after the second China Digital City Expo was held in Suzhou, the local planners and GIS practitioners from Shenzhen felt that with the increasing GIS developments in other Chinese cities, Shenzhen needed to reclaim and maintain its pioneering role in this realm. Consequently, Shenzhen requested to host the third China Digital City Expo, which was subsequently held in 2007 in Shenzhen.

However, several critical issues can be raised with regard to these urban GIS constructions. First, while cost reduction has been frequently associated with the use of information technology, tremendous capital and human resources have been invested to deliver on the rhetoric of “inevitable” technological development. For example, the workstation project cost around 30 million RMB (approximately US$3.75 million at that time). However, due to the miscommunications among the project teams as well as the lack of skilled staff on GIS, this application performed poorly in the planning bureau. In terms of cost-benefit evaluation, the returns did not always sufficiently justify the expenses. One interviewee noted, “Sometimes, it could be a bit waste of money [in developing some information systems] because they are not substantially used” (Interviewee 6, senior GIS manager in SUPLIC, 27 July 2006). One can argue here that GIS has also played a symbolic role of modernity and efficiency for the public administration (see also Lin and Ghose, 2010).

Second, the notion that GIS and spatial data usage will guarantee better decision-making process reflects a technocratic planning culture in SUPLIC. An internal report notes that “We should consider some ways of expanding the functions of the information system [...] so the load of face-to-face interactions can be reduced” (Internal work report by one Land Resource Office, 2001). While this document does not reflect the opinions of all of the local officials, it does convey the strong technocratic traits in Shenzhen’s governing practices. Some of my research informants have recognized the potential problems that arise out of such a technocratic focus in planning. One planner noted, for instance, that some citizens found it difficult to comprehend the topographic mapping, which served as a base map in a planning application. For an average citizen who may not have the requisite technical knowledge, the use of spatial data can lead to confusion instead of clarity, and adversely affect citizen participation in urban planning.

Third, in the process of GIS development much of the attention has been given to the internal needs of the government agency, while the digital divide among citizens within Shenzhen is seldom addressed. Throughout the years, SUPLIC’s GIS practices have prioritized serving the needs of the planning department. As one interviewee acknowledged, “We are bound up with the internal demands and could not reach out much to the external ones” (Interviewee 7, GIS manager in SUPLIC, 21 June 2006). For example, the focus of the mapping automation applications has been on facilitating internal administration and assisting related official organizations for planning and urban design. Digital Shenzhen is designed to build Shenzhen into a world city. Thus, GIS developments serve more at a level of informing citizens rather than actively engaging them in decision-
making processes, and public participation in urban planning is still very limited. Moreover, while Shenzhen has among the highest GDP per capita in China’s major cities, it also has among the highest levels of inequality (Chen and de’Medici, 2010; Xinhua News, 31 May 2006). The use of GIS is more likely to empower those who can afford to have access to these technologies or have the necessary knowledge to understand the way spatial data is provided by the local government.

With respect to the larger-scale geo-coding urban landscape practices, the media have highlighted the improved quality of urban built environment management because of this urban grid system implementation and increased satisfactions by the citizens. However, there could be increasing surveillance conducted through this form of urban governance, as addressed by Crampton (2004) in his analysis of GIS usage and mapping practices. Furthermore, situated in China’s rapid urbanization and its decentralization of the central government, these practices facilitate the restructuring of state power. The emphasis of these urban government technological developments is to control the increasingly diverse urban environments in the face of dissolving work-unit institutions of direct control in reform-era China. The policy makers propose that in the future, an array of social, economic, and demographic data (such as census, housing, and the like) can be overlaid on the urban grid, enabling resource management and decision-making (Nanfang Daily, 28 July 2006). The population information and the city environment thus can be calculated upon a shared geographic scale in the city, distinct from the previously encompassing population governance by each work unit within the city (Lu, 2006). Such planning knowledge production, in many ways, is underpinned by the instrumental rationality identified in Sandercock’s discussion (1998, 2003), although there are also discourses encouraging citizen input.

This form of knowledge production highlights an increasing role played by urban planning in Shenzhen’s urban governance. The more prominent position of urban planning is in contrast to its status in the pre-reform era in China, during which urban planning was subordinated to national economic planning and was mainly to carry out physical designs of capital projects decided by higher-level government (Leaf, 2005). As Tang (2000, 61) points out, in this shift of political rationality in China’s urban planning, “it is not the individual enterprise that is subject to surveillance; it is the environment it operates that is to be disciplined.” Thus, regulating the urban environment through GIS allows city leaders to facilitate more fluid capital accumulation. These strategies include the efforts of automation within the administration, such as the “one-stop” service development. Thus the urban environment is also seen as a valuable resource that needs to be properly controlled and exploited. In this way, GIS deployment helps to constitute more governable, and perhaps more profitable, urban spaces that are inscribed and coded in the seemingly controllable and efficient layers of objects.

CONCLUSION

Despite the rapid development of GIS in a wide range of social fields including urban governance, there has been little research to trace how these GIS constructions intersect with and constitute governmental rationalities. This article seeks to bridge this gap. Deciphering these dynamics and sociotechnological intersections and constructions in the Chinese context is important, as this will not only add to the scarce literature in
critical GIS research in non-Western contexts (Lin, 2008; Lin and Ghose, 2010), but also contribute to discussions in urban geography aiming to unpack and conceptualize various forms and modalities of urban restructuring and governance (e.g., Peck and Zhang, 2013; Sigley, 2006; Wu, 2007). There have been significant efforts to discuss the extent to which urban restructuring in China can be considered as neoliberal governance derived from Western contexts (e.g., Kipnis, 2007; Wu, 2008; Zhang, 2012). What is commonly recognized in these debates is that the Chinese case is distinguished by strong state intervention and centralized political control of a process of economic decentralization. At the same time, a number of scholars have called for a broader conceptualization of neoliberalization (Brenner et al., 2010) and viewing these possible “exceptions” as a “political rationality” (Ong, 2006, 3). As such, I suggest that a synthesized analysis approach from the GIS implementation literature, critical GIS, and governmentality is useful in unraveling the complex GIS development process. I further illustrate these relationships through the case of Shenzhen situated in China’s transitioning urban governance.

China’s economic reforms and participation in the global economy have resulted in increasing “entrepreneurial city” activities (Wu, 2003). Cities have become central sites and entities for capital accumulation and social control, along with expanded deployment of GIS and other IT in city governments. At the same time, the persisting central-local political connections remain an important force in China’s urban governance. Such a dynamic restructuring of state power from the national to the municipal reflects a “Foucauldian regulatory role” (Harvey, 2006, 64) of the national “informationization” and other related national agendas, which supplements mandates and direct commands from the central government. GIS development in urban China is shaped by the national ambitions of state modernization and economic growth, intersecting with the challenges of governing an increasingly diverse and unequal urban society. Shenzhen’s dramatic growth makes it a valuable case for studying this process. Shenzhen’s planning department has strived to manage urban growth more efficiently and to facilitate local economic development at the same time, developing and employing a range of GIS and information technologies ranging from data processing to decision-making support.

I argue that a shift of governing rationality has taken place through the notion of “geo-coding the urban landscape,” intertwined with these GIS constructions in Shenzhen’s urban governance. This form of governing rationality views the urban environment as a whole and leaves more room for urban governance at lower levels, in stark contrast to the strict top-down hierarchies of pre-reform governance. In this sense, GIS development is both practical and strategic. With the increasing drive of scaling-down urban governance and associated information requests, GIS and other mapping practices by urban elites serve as an important instrument to monitor, regulate, reconfigure, and transform urban spaces for capital accumulation and social control. These practices also contribute to the status of Shenzhen in the Chinese city system, a scaling-up strategy employed by local agencies in an environment of keen inter-urban competition.

Conversely, these technical constructions help define and constitute the seemingly more “rational, disciplined” urban spaces. However, in these attempts of modernizing the state, the focus has been largely government-centric rather than citizen-centric. The discourse of “public participation” in China’s urban planning has remained narrow and
limited. Yet, this critical and nuanced analysis has shown that there have been constant requests and active engagement from the general public, putting pressure on the local authority. As such, while GIS tends to empower those with established technological expertise, it also provides possibilities for other forms of knowledge production and contestation. These findings resonate with other research suggesting that rather than a hollowing-out effect of state power usually found in Western transformations of urban governance, China’s urban transition is marked by a more complex re-working of central-local state relations (e.g., Ma and Wu, 2005; Zhang, 2012). At the same time, this analysis also shows that these GIS constructions, which constitute the efforts of rationalizing urban spaces, are not a monolithic process without contestation.

As such, this study helps to enhance our understanding of how policy discourses and spatial technology developments at various scales might be mobilized, employed, and reconfigured in particular sites as well as how they might pervade one another. I therefore call for more critical analysis of “the technological” and how it might intersect with the political regarding urban transformation and governance in China. Moreover, continuous efforts are needed to investigate how the increasing deployment of geospatial technologies by multiple actors and institutions has played a role in urban governance situated in different contexts. This is particularly imperative considering the most recent emergence of Web 2.0 technologies that allow citizens to record and geo-code the environment as well as their experiences.

REFERENCES

Anagnost, A., 1997, National Past-times: Narrative, Representation, and Power in Modern China. Durham, NC: Duke University Press.
Bray, D., 2005, Social Space and Governance in Urban China: The Danwei System from Origins to Reform. Stanford, CA: Stanford University Press.
Bray, D., 2006, Building ‘community’: New strategies of governance in Urban China. Economy and Society, Vol. 35, No. 4, 530–549.
Brenner, N., 2004, Urban governance and the production of new state spaces in western Europe, 1960–2000. Review of International Political Economy, Vol. 11, No. 3, 447–488.
Brenner, N., Peck, J., and Theodore, N., 2010, Variegated neoliberalization: Geographies, modalities, pathways. Global Networks, Vol. 10, No. 2, 182–222.
Brown, M. and Knopp, L., 2006, Places or polygon? Governmentality, scale, and the census in the gay and lesbian atlas. Population, Space and Place, Vol. 12, 223–242.
Campbell, H., 1996, Theoretical perspectives on the diffusion of GIS technologies. In I. Masser, H. Campbell, and M. Craglia, editors, GIS Diffusion: The Adoption and Use of Geographical Information Systems in Local Government in Europe. London: Taylor and Francis, 23–48.
Cartier, C., 2001, Globalizing South China. Oxford, UK: Blackwell Publishers.
Cartier, C., 2005, City-space: scale relations and China’s spatial administrative hierarchy. In L. Ma and F. Wu, editors, Restructuring the Chinese City: Changing Society, Economy and Space. London, UK: Routledge, 21–38.
Cartier, C., 2011, Neoliberalism and the neoauthoritarian city in China: Contexts and research directions. Urban Geography, Vol. 32, No. 8, 1110–1121.

Chen, P., 2006, Investigating digital city management model. Journal of Peking University, Vol. 43, No. 1, 142–148.

Chen, X. and de’Medici, T., 2010, The ‘instant city’ coming of age: Production of spaces in China’s special economic zone. Urban Geography, Vol. 31, No. 8, 1141–1147.

Chen, Z., Wang, D., Li, C., Li, H., and Mao, D., 2004, Digital City and Urban Information System Development. Paper presented at the Tenth Anniversary of the Foundation of the China Association of GIS, Beijing, November 14–16.

Chrisman, N., 2005, Full circle: More than just social implications of GIS. Cartographica, Vol. 40, No. 4, 23–35.

Chung, H., 2007, The change in China’s state governance and its effects upon urban scale. Environment and Planning A, Vol. 39, 789–809.

Craig, W., 2005, The white knights of spatial data infrastructure: The role and motivation of key individuals. The URISA Journal, Vol. 16, 5–13.

Crampton, J. W., 2003, The Political Mapping of Cyberspace. Edinburgh, Scotland: University of Edinburgh Press.

Crampton, J. W., 2004, GIS and geographic governance: Reconstructing the choropleth map. Cartographica, Vol. 39, No. 1, 41–54.

Dean, M., 1999, Governmentality: Power and Rule in Modern Society. Thousand Oaks, CA: Sage Publications.

Douglass, M., Wissink, B., and Van Kempen, R., 2012, Enclave urbanism in China: Consequences and interpretations. Urban Geography, Vol. 33(2), 167–182.

Elwood, S., 2006, Critical issues in participatory GIS: Deconstructions, reconstructions, and new research directions. Transactions in GIS, Vol. 10, No. 5, 693–708.

Elwood, S., 2008, Grassroots groups as stakeholders in spatial data infrastructures: challenges and opportunities for local data development and sharing. International Journal of Geographical Information Science, Vol. 22, No. 1, 71–90.

Foucault, M., 1991, Governmentality. In G. Burchell, C. Gordon, and P. Miller, editors, The Foucault Effect: Studies in Governmentality. Chicago, IL: University of Chicago Press, 87–104.

Georgiadou, Y., Puri, S., and Sahay, S., 2005, Towards a potential research agenda to guide the implementation of spatial data infrastructures: A case study from India. International Journal of Geographic Information Systems, Vol. 19, 1113–1130.

Ghose, R., 2007, Politics of scale and networks of association in public participation GIS. Environment and Planning A, Vol. 39, No. 8, 1961–1980.

Hannah, M., 2000, Governmentality and the Mastery of Territory in Nineteenth-Century America. Cambridge, UK: Cambridge University Press.

Hartford, K., 2005, Dear Mayor: Online communications with local governments in Hangzhou and Nanjing. China Information, Vol. 19, No. 2, 217–260.

Harvey, F., 2006, Reconfiguring administrative geographies in The United States. ACME: An International E-Journal for Critical Geographies, Vol. 4, No. 1, 57–79.

Harvey, F. and Tulloch, D., 2006, Local-government data sharing: Evaluating the foundations of spatial data infrastructures. International Journal of Geographical Information Science, Vol. 20, No. 7, 743–768.
Hoffman, L., 2006, Autonomous choices and patriotic professionalism: On governmentality in late-socialist China. *Economy and Society*, Vol. 35, No. 4, 550–570.

Karikari, I. and Stillwell, J., 2005, Applying cost/benefit analysis to evaluate investment in GIS: The case of Ghana’s lands commission secretariat, Accra. *Transactions in GIS*, Vol. 9, No. 4, 489–505.

Kipnis, A., 2007, Neoliberalism reified: Suzhi discourse and tropes of neoliberalism in the People’s Republic of China. *The Journal of the Royal Anthropological Institute*, Vol. 13, No. 2, 383–400.

Kong, Y., 2001, GIS Diffusion in China: Theoretical Considerations and Preliminary Case Studies. PhD dissertation, Chinese University of Hong Kong.

Lai, M., 2006, *Improve City’s Function and Public Service Capability Through Informationization*. Paper presented at the Second China International Conference on Digital City and China International Expo on Digital City Construction Technology and Equipment, Suzhou, China, June 10–12.

Leaf, M., 2005, Modernity confronts tradition: The professional planner and local corporatism in the rebuilding of China’s cities. In B. Sanyal, editor, *Comparative Planning Cultures*. New York: Routledge, 91–111.

Legg, S., 2005, Foucault’s population geographies: Classifications, biopolitics and governmental spaces. *Population, Space and Place*, Vol. 11, No. 3, 137–156.

Lin, G. C. S. and Yi, F., 2011, Urbanization of capital or capitalization on urban land? Land development and local public finance in urbanizing China. *Urban Geography*, Vol. 32, No. 1, 50–79.

Lin, W., 2008, GIS development in China’s urban governance: A case study of Shenzhen. *Transactions in GIS*, Vol. 12, No. 4, 493–515.

Lin, W. and Ghose, R., 2010, Social constructions of GIS in China’s changing urban governance: The case of Shenzhen. *Cartographica*, Vol. 45, No. 2, 89–102.

Lu, D., 2006, *Remaking Chinese Urban Form: Modernity, Scarcity and Space, 1949–2005 Planning, History, and the Environment*. London, UK: Routledge.

Ma, L. and F. Wu, editors, 2005, *Restructuring the Chinese City: Changing Society, Economy and Space*. London, UK: Routledge.

Martin, D., 2003, Reconstructing social GIS. *Transactions in GIS*, Vol. 7, 305–307.

McHaffie, P., 2002, Towards the automated map factory: Early automation at the U. S. geological survey. *Cartography and Geographic Information Science*, Vol. 29, No. 3, 193–206.

Ministry of Construction, 2005, Urban municipal supervision and management Information System-Classification and coding for urban managed components and events (code: CJ/T 214–2005).

Nedovic-Budic, Z., 1998, The impact of GIS technology. *Environment and Planning B: Planning and Design*, Vol. 25, No. 5, 681–692.

Ng, M., 2005, Planning cultures in two Chinese transitional cities: Hong Kong and Shenzhen. In B. Sanyal, editor, *Comparative Planning Cultures*. New York: Routledge, 113–144.

Ng, M. and Tang, W., 2004, The role of planning in the development of Shenzhen, China: Rhetoric and Realities. *Eurasian Geography and Economics*, Vol. 45, No. 3, 190–211.

Obermeyer, N. and Pinto, J., 1994, *Managing Geographic Information Systems*. New York: Guildford.
Ong, A., 2006, *Neoliberalism as exception: Mutations in citizenship and sovereignty*. Durham, NC: Duke University Press.

Peck, J. and Zhang, J., 2013, A variety of capitalism … with Chinese characteristics? *Journal of Economic Geography*, Vol. 13, 357–396.

Peng, Z., Sun, J., Lai, X., and Luo, Z., 1998, The development and applications of Shenzhen fundamental geographic information system. In R. Guo, Z. Wang, X. Can, J. Cheng, M. Zhang, C. Li, F. Peng, J. Tan, Y. Liang, and F. Wen, editors, *Shenzhen Planning and Land Management Information Construction: Theory and Practice*. Guangzhou, China: Guangdong Map Publishing.

Pickles, J., editor, 1995, *Ground Truth*. New York: Guildford Press.

Pickles, J., 2004, *A History of Spaces: Cartographic Reason, Mapping, and the Geo-Coded World*. New York: Routledge.

Pinto, J. and Onsrud, H., 1997, In search of the dependent variable: Toward synthesis in GIS implementation research. In J. Craglia and H. Couclelis, editors, *Geographic Information Research: Bridging the Atlantic*. London, UK: Taylor and Francis, 129–145.

Qiu, B., 2005, Several Issues about the City Master Planning Design – The Summary Speech Given by the Deputy Director of the Ministry of Construction at the City Master Planning Workshop. Retrieved November 1, 2007 from Web site at http://www.hrbcc.gov.cn/Html/Article/btxx/408.html

Rose-Redwood, R. S., 2006, Governmentality, geography, and the geo-coded world. *Progress in Human Geography*, Vol. 30, 469–486.

Rose-Redwood, R. S., 2012, With numbers in place: Security, territory, and the production of calculable space. *Annals of the Association of American Geographers*, Vol. 102, No. 2, 295–319.

Saich, T., 2004, *Governance and Politics of China* (2nd ed.). Basingstoke, UK: Palgrave Macmillan.

Sandercock, L., 1998, *Towards Cosmopolis: Planning for Multicultural Cities*. London, UK: Wiley and Sons.

Sandercock, L., 2003, *Cosmopolis 2. Mongrel Cities of the 21st Century*. London, UK: Continuum Books.

Schuurman, N., 2002, Reconciling social constructivism and realism in GIS. *ACME: An International E-Journal for Critical Geographies*, Vol. 1, No. 1, 75–90.

Shenzhen City Government, 2003, Shenzhen City Recent Development Plan (2003–2005). *Shenzhen Jingqi Jianshe Guihua*, August 11.

Sheppard, E., 2005, Knowledge production through critical GIS: Genealogy and prospects. *Cartographica*, Vol. 40, No. 4, 5–21.

Shenzhen Economic Daily, 2007, Shenzhen urban management through digitized and grid-based systems, September 21.

Shenzhen SEZ Daily, 2006, Despite the move of many government departments, no updates on the government’s online map, March 30.

Shenzhen SEZ Daily, 2006, Shenzhen implements digital city management project, January 8.

Shenzhen SEZ Daily, 2007, Shenzhen is divided into 8764 grids, April 7.
Sigley, G., 1996, Governing Chinese bodies: The significance of studies in the concept of
governmentality for the analysis of government in China. Economy and Society, Vol.
25, 457–482.
Sigley, G., 2006, Chinese governmentalities: Government, governance and the socialist
market economy. Economy and Society, Vol. 35, No. 4, 487–508.
SUPLIC, 2003, Ten Years of Growing Road, Internal Publication.
Swyngedouw, E., 2005, Governance innovation and the citizen: The Janus face of
governance beyond-the-state. Urban Studies, Vol. 42, No. 11, 1991–2006.
Tang, W. S., 2000, Chinese urban planning at fifty: An assessment of the planning theory
literature. Journal of Planning Literature, Vol. 14, No. 3, 347–366.
Tulloch, D. L., Niemann, B. J., Ventura, S. J., and Epstein, E. F., 1996, The Final Stages
of Land Records Modernization and Their Associated Benefits: The Pot at the End of
the Rainbow? White Paper for the Workshop on The Future of Spatial Data and
Society, Mapping Science Committee, National Academy of Sciences/National
Research Council, April 1996.
Ward, K., 2000, A critique in search of a corpus: Re-visiting governance and re-
interpreting urban politics. Transactions of the Institute of British Geographers, Vol.
25, No. 2, 169–185.
Worrall, L., 1994, Justifying investment in GIS: A local government perspective.
International Journal of Geographic Information Systems, Vol. 8, No. 6, 545–565.
Wu, F., 2002, China’s changing urban governance in the transition towards a more
market-oriented economy. Urban Studies, Vol. 39, No. 7, 1071–1093.
Wu, F., 2003, The (post-)socialist entrepreneurial city as a state project: Shanghai’s
reglobalisation in question. Urban Studies, Vol. 40, No. 9, 1673–1698.
Wu, F., 2007, Re-orientation of the city plan: Strategic planning and design competition in
China. Geoforum, Vol. 38, 379–392.
Wu, F., 2008, China’s great transformation: Neoliberalization as establishing a market
society. Geoforum, Vol. 39, 1093–1096.
Wu, J., 2011, Globalization and emerging office and commercial landscapes in Shanghai.
Urban Geography, Vol. 32, No. 4, 511–530.
Xinhua News, May 31, 2006, Shenzhen Sets the Minimum Wage in 2006 as 810 Yuan Per
Month. Retrieved August 27, 2008 from Web site at http://news.xinhuanet.com/
fortune/2006-05/31/content_4622655.htm
Zhang, J., 2012, From Hong Kong’s capitalist fundamentals to Singapore’s authoritarian
governance: The policy mobility of neo-liberalising Shenzhen, China. Urban Studies,
Vol. 49, No. 13, 2853–2871.