Will purposely seeking detect more colorectal polyps than routine performing during colonoscopy?

Yanliu Chu, MD, PhD^{a,b}, Juan Zhang, BN^b, Ping Wang, Master of Epidemiology and Health Statistics^b, Tian Li, MMed^b, Shuyi Jiang, MMed^b, Qinfu Zhao, MMed^b, Feng Liu, BN^b, Xiaozhong Gao, BMed^b, Xiuli Qiao, BMed^b, Xiaofeng Wang, BMed^b, Zhenhe Song, MMed^b, Heye Liang, MMmed^b, Jing Yue, BMed^b, Enqiang Linghu, MD, PhD^a.

Abstract

Background & Goals: We observed that the number of colorectal polyps found intraoperatively was often higher than that encountered preoperatively during elective colonoscopic polypectomy. To evaluate whether more polyps can be detected when they are purposely sought than when they are routinely examined during colonoscopy.

Materials and methods: Patients undergoing colonoscopy were randomized into groups A and B. Before colonoscopy was performed, endoscopists were instructed to seek polyps for group A purposely but not for group B. Polypectomy was electively completed. In groups A and B, the cases of elective polypectomy were named groups AR and BR, including groups AR-1 and BR-1, during the first colonoscopy and groups AR-2 and BR-2 during the second colonoscopy for polypectomy, respectively. The following data were calculated: the number of polyps detected (NPD) and the polyp detection rate (PDR) in all cases and the number of polyps missed (NPM) and partial polyp miss rate (PPMR) in the cases of colorectal polyps.

Results: A total of 419 cases were included in group A, 421 in group B, 43 in group AR, and 35 in group BR. No significant differences in PDR were found between groups A and B and in PPMR between groups AR-1 and BR-1 ($P < .05$), although PPMR in group AR-1 was higher than in group AR-2 ($P < .05$), similar results were found in PPMR between groups BR-1 and BR-2 ($P < .05$).

Conclusion: Purposely seeking for colorectal polyps did not result in more polyps detected compared with routine colonoscopy.

Abbreviations:

- ADR = adenoma detection rate
- AI = artificial intelligence
- BBPS = Boston bowel preparation scale
- ICC = interval colorectal cancer
- NPD = the number of polyps detection
- NPM = the number of polyps missed
- PDR = polyp detection rate
- PPMR = partial polyp miss rate
- SPD = the size of polyps detection
- SPM = the size of polyps missed

Keywords: colorectal polyps, colorectal cancer, screening colonoscopy

1. Introduction

Colorectal cancer usually originates from a small neoplastic polyp, which gradually increases in size and is accompanied by dysplasia and malignancy. Moreover, missed colorectal polyps in colonoscopy have been progressively recognized as a significant cause of interval colorectal cancer (ICC). Therefore, colorectal polyp detection rate (PDR) or adenoma detection rate (ADR) has gradually become an important parameter for evaluating the quality of colonoscopy. In the endoscopic clinical practice, obtaining the corresponding pathological data of all polyps is difficult; thus, PDR is a more practical approach compared with ADR. Therefore, improving PDR and decreasing polyp miss rate (PMR) have become our aims during colonoscopy. During elective colonoscopic polypectomy, we observed an interesting phenomenon: the number of colorectal polyps found intraoperatively was often higher than that encountered preoperatively. As such, we conducted the present study to determine whether more colorectal polyps can be detected by purposely seeking them compared with routine colonoscopy.
2. Materials and methods

2.1. Grouping and design

From August 9, 2016 to January 5, 2018, patients undergoing colonoscopy were randomized into groups A and B. In group A, the endoscopists were instructed to seek colorectal polyps purposely before performing colonoscopy. In group B, colonoscopy was performed without the above implications. In group A, patients with colorectal polyps for elective endoscopic removal were named as group AR, which was named as group AR-1 during the first colonoscopy. They were named as group AR-2 during the second colonoscopy for polypectomy. In accordance with the above rules, groups BR, BR-1, and BR-2 were named. This study was conducted with the approval of the Weihai Municipal Hospital Ethics Committee. Before the endoscopic procedures were initiated, every patient signed informed consent.

2.2. Inclusion and exclusion criteria

Cases involving emergency colonoscopy, inflammatory bowel disease, history of colorectal surgery, history of colorectal polyp resection, and less than 18 years of age were not enrolled. Colonoscopy cases that did not reach the ileocecal were also excluded.

2.3. Anesthesia

All explorations were performed under intravenous anesthesia with sufentanil followed by propofol. Loss of eyelash reflex indicated successful induction of anesthesia, thereby prompting the endoscopists to commence with the procedures. Colonoscopy and colonoscopic polypectomies were performed by 16 endoscopists.

2.4. Bowel preparation score

Boston bowel preparation scale (BBPS) was used to evaluate bowel preparation.[13–15]

2.5. Parameter acquisition

The following data were prospectively collected: sex, age, weight, height, single/double operating colonoscopy, BBPS, intubation time, withdrawal time, and the number and size of polyps. The characteristics of endoscopists included colonoscopy operation period, average annual colonoscopy cases, and total colonoscopy cases. The number of polyps detected (NPD) and the polyp detection rate (PDR) in all cases and the number of polyps missed (NPM) and partial polyp miss rate (PPMR) in the cases of colorectal polyp were calculated. PDR is defined as the number of cases of colorectal polyps found in every 100 cases of colonoscopy. PPMR is defined as the number of cases of partial polyps missed in every 100 cases of colorectal polyps. PPMR was obviously different from PMR. PMR is defined as the number of cases of colorectal polyps missed in every 100 colonoscopies. The actual total number of polyps in patients involves the number of polyps found pre-polypectomy and polypectomy intraoperatively.

2.6. Statistical analysis

Quantitative variables were expressed as mean ± standard deviation. The t-test was used for testing the significance between quantitative variables, and χ²-test was used to detect the significant differences between qualitative variables. Kolmogorov–Smirnov test was used to verify the normal distribution of quantitative data. Wilcoxon rank sum test was used for non-normally distributed data. P-value less than .05 was considered significant.

3. Results

3.1. General information

A total of 1390 patients met the inclusion criteria, and 550 patients were not included in the study. A total of 419 patients were enrolled in group A, 421 in group B, 43 in group AR, and 35 in group BR.

3.2. Patient features

No differences in terms of sex, age, weight, and height were found between groups A and B, groups AR-1 and BR-1, and groups AR-2 and BR-2 (P > .05). The above data are shown in Tables 1 and 4.

3.3. Endoscopists’ characteristics

In terms of endoscopist’s colonoscopy operation period, average annual colonoscopy cases, and total colonoscopy cases, no differences were found between groups A and B, AR-1 and BR-1, AR-2 and BR-2, AR-1 and AR-2, and BR-1 and BR-2 (P > .05, Tables 1 and 4).

3.4. Colonoscopy operation-related parameters

In terms of single/double operating colonoscopy, withdrawal time, and intubation time, no differences were observed between groups A and B, AR-1 and BR-1, AR-2 and BR-2, AR-1 and AR-2, and BR-1 and BR-2 (P > .05). No significant differences were

Table 1

Gender	F	M	Age	Weight	Height	ECOP (min)	<5	5-10	≥10	EAACC (n)	ETAC (n)
Group A	200	219	52.11	68.62	166.25	63	89	267	347	1733	
Group B	192	229	52.29	67.73	166.34	54	94	273	342	1708	
Group AR1	20	23	55.56	71.92	167.33	4	7	32	335	1676	
Group BR1	20	15	53.26	73.86	168.83	3	5	27	383	1912	
Group AR2	20	23	55.56	71.92	167.33	3	6	32	366	1828	
Group BR2	20	15	53.26	73.86	168.83	2	4	29	402	2010	

EAACC = endoscopist’s average annual colonoscopy cases, ECOP = endoscopist’s colonoscopy operation period, ETAC = endoscopist’s total colonoscopy cases.
found in BBPS between groups A and B, AR-1 and BR-1, and AR-2 and BR-2 (P < .05). However, significant differences were observed between AR-1 and AR-2 and BR-1 and BR-2 (P < .05, Tables 2 and 4).

3.5. PDR, NPD, SPD, PPMR, NPM, and SPM

No significant differences were observed in terms of PDR, NPD, and SPD between groups A and B; PPMR, NPM, and SPM between groups AR-1 and BR-1; and PPMR, NPM, and SPM between groups AR-2 and BR-2 (P < .05). PPMR in group AR-1 was higher than that in group AR-2 (P < .05), and similar results were found in PPMR between group BR-1 and BR-2 (P < .05). The differences in NPD, SPD, NPM, and SPM in AR-1 and AR-2 (P < .05) were not significant. However, significant differences were found in NPD, NPM, and SPM in BR-1 and BR-2 (P < .05). However, no significant differences were found in SPD between groups BR-1 and BR-2 (P < .05). The above data are shown in Tables 3 and 4. Besides, whether the diameter of the

Table 2

The colonoscopy operation-related parameters in the studied groups.

Group	CO (s)	DOC (min)	BBPS (score)	IT (min)	WT (min)								
	0-3	4-6	7-9	<5	5-10	10-20	20-30	≥30	<6	6-9	≥9		
Group A	128	291	27	233	159	125	194	76	18	6	146	139	134
Group B	110	311	25	209	193	129	188	64	13	7	171	128	122
Group AR1	20	23	3	24	16	14	17	7	3	5	25	4	14
Group BR1	13	22	5	18	12	6	20	8	1	0	8	15	12
Group AR2	18	25	1	9	33	13	20	8	2	0	2	7	34
Group BR2	14	21	0	7	28	10	19	5	1	0	2	8	25

BBPS = Boston bowel preparation score, CO = colonoscopy operation, DOC = double operating colonoscopy, IT = intubation time, SOC = single operating colonoscopy, WT = withdrawal time.

Table 3

The polypectomy-related parameters in the studied groups.

Variable	PDR	NPD	SPD	PPMR	NPM	SPM
	<0.5	0.5-1	≥1	<0.5	0.5-1	≥1
Group A	41.77%	501	157	204	140	-
Group B	42.76%	494	181	200	113	-
Group AR1	-	137	30	38	69	44.19%
Group BR1	-	66	8	50	8	57.41%
Group AR2	202	23	65	114	9.30%	7
Group BR2	129	23	83	21	8.57%	3

NPD = the number of polyps detection, NPM = the number of polyps missed, PDR = polyp detection rate, PPMR = partial polyp miss rate, SPD = the size of polyps detection, SPM = the size of polyps missed.
polyp was less or greater than 0.5 cm did not lead to significant differences in PDR between groups A and B in NPD and PPMR, NPM, and SPM between groups AR-1 and BR-1 (P > .05, Table 5).

4. Discussion

Colorectal polyps are rarely accompanied by symptoms before canceration other than occasional stool abnormalities. Therefore, current research focuses on increasing PDR and decreasing PMR during colonoscopy, thereby reducing the incidence of colorectal cancer and even ICC.[13–16]

Many studies have been conducted on colorectal polyps. Similarly, many instruments and technological innovations, such as the advent of endocuff,[17,18] third eye retroscope,[19,20] high-definition endoscopy,[21–23] full-spectrum endoscopy,[24–27] and a variety of chromoendoscopy,[28–30] have been developed to improve PDR, some endoscopists add a transparent cap in front of the colonoscope[31] or use water-aided colonoscopy.[32–34] In addition, a few reports have focused on the effects of bowel preparation on improving PDR.[35–39] Several studies have explored the correlation between the features of colonoscopy operators, including endoscopists and nurses, and PDR.[40–42] Besides, much research has been devoted to the control of withdrawal time.[43–50]

The above studies explored the objective factors related to colonoscopy. The results showed that several elements, such as adequate bowel preparation and withdrawal time of more than 6 minutes, have contributed to improving PDR.[40]

However, whether endoscopists subjectively affect PDR during colonoscopy and the different levels of focus of the operators that may cause different PDR are factors that must be considered. We often detect new polyps by chance in the second colonoscopy for a polyp was less or greater than 0.5 cm did not lead to significant differences in PDR between groups A and B in NPD and PPMR, NPM, and SPM between groups AR-1 and BR-1 (P > .05, Table 5).

Table 5

Variable	Groups A vs B	Groups AR-1 vs BR-1	Groups A vs B	Groups AR-1 vs BR-1
	<0.5cm	≥0.5cm	<0.5cm	≥0.5cm
NPD	Z = −1.256	0.209	Z = −0.945	0.345
PPMR	–	–	–	–
NPM	Z = 0.562	0.333	Z = −0.945	0.345
SPM	Z = 1.000	0.467	Z = −0.945	0.345

NPD = the number of polyps detected, NPM = the number of polyps missed, PPMR = partial polyp miss rate, defined as the number of cases of partial polyps missed in every 100 cases of colorectal polyps, SPM = the size of polyp polys missed.

In our single-center study, PDR and reduction of the rate of polyp missed diagnosis in colonoscopy were not improved by purposely seeking polyps. The current trend in colonoscopy research is artificial intelligence (AI), and its application may serve as a promising direction. We are also conducting research on this topic. We hope that AI can help us observe more colorectal polyps and nip more cases of colorectal cancer in the bud.

Author contributions

Conceptualization: Yanliu Chu, Juan Zhang, Enqiang Linghu.
Data curation: Ping Wang, Shuyi Jiang.
Formal analysis: Ping Wang.
Funding acquisition: Yanliu Chu, Xiaozhong Gao.
Investigation: Tian Li, Shuyi Jiang, Xiaozhong Gao, Xiaofeng Wang, Zhenhe Song.
Methodology: Yanliu Chu, Juan Zhang, Shuyi Jiang, Qinfu Zhao, Feng Liu, Xiaozhong Gao, Xiuli Qiao, Xiaofeng Wang, Zhenhe Song, Heye Liang, Jing Yue.
Project administration: Yanliu Chu, Juan Zhang, Tian Li, Shuyi Jiang, Qinfu Zhao, Feng Liu, Xiaozhong Gao, Xiuli Qiao, Xiaofeng Wang, Zhenhe Song, Heye Liang, Jing Yue.
Resources: Shuyi Jiang, Peng Liu, Xiaozhong Gao, Xiuli Qiao, Heye Liang.
Software: Shuyi Jiang, Peng Liu.
Supervision: Yanliu Chu, Feng Liu, Xiaozhong Gao, Xiuli Qiao, Xiaofeng Wang, Zhenhe Song, Heye Liang, Jing Yue, Enqiang Linghu.

Validation: Yanliu Chu, Feng Liu, Xiaozhong Gao, Xiuli Qiao, Xiaofeng Wang, Zhenhe Song, Heye Liang, Enqiang Linghu.

Visualization: Feng Liu.

Writing – original draft: Yanliu Chu, Tian Li, Qinfu Zhao.

Writing – review & editing: Yanliu Chu, Tian Li, Qinfu Zhao.

References

[1] Hill MJ, Morson BC, Bussey HJ. Aetiology of adenoma-carcinoma sequence in large bowel. Lancet 1978;1:245–7.
[2] Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1995;332:1977–81.
[3] Cai B, Liu Z, Xu Y, et al. Adenoma detection rate in 41,010 patients from Southwest China. Oncol Lett 2015;9:2073–7.
[4] Kaminski MF, Regula J, Kraszewska E, et al. Quality indicators for colonoscopy and the risk of interval cancer. N Engl J Med 2010;362:1795–803.
[5] Boroff ES, Gurudu SR, Hentz JG, et al. Polyp and adenoma detection rates in the proximal and distal colon. Am J Gastroenterol 2013;108:993–9.
[6] Elharrat S, Ortiz AM, Yarlagadda A, et al. Estimation of the adenoma detection rate from the polyp detection rate by using a conversion factor in a predominantly Hispanic population. J Clin Gastroenterol 2015;49:589–93.
[7] Schramm C, Scheller I, Franklin J, et al. Predicting ADR from PDR and individual adenoma-to-polyp-detection-rate ratio for screening and surveillance colonoscopies: a new approach to quality assessment. United European Gastroenterol J 2017;5:742–9.
[8] Murchie B, Tandon A, Zackria S, et al. Can polyp detection rate be used prospectively as a marker of adenoma detection rate? Surg Endosc 2018;32:1141–8.
[9] Atta MA, Patel NC, Ratsnapli SK, et al. Nonneoplastic polypometry during screening colonoscopy: the impact on polyp detection rate, adenoma detection rate, and overall cost. Gastrointest Endosc 2015;82:370–5.
[10] Delavari A, Salimzadeh H, Beshesari F, et al. Mean polyp per patient is an accurate and readily obtainable surrogate for adenoma detection rate: results from an opportunistic screening colonoscopy program. Middle East J Dig Dis 2015;7:214–9.
[11] Francis DL, Rodriguez-Correa DT, Buchner A, et al. Application of a conversion factor to estimate the adenoma detection rate from the polyp detection rate. Gastrointest Endosc 2011;73:493–7.
[12] Williams JE, Holub JL, Faigel DO. Polypometry rate is a valid quality measure for colonoscopy: results from a national endoscopy database. Gastrointest Endosc 2012;75:576–82.
[13] Calderwood AH, Schroy PC, Lieberman DA, et al. Boston Bowel Preparation Scale scores provide a standardized definition of adequate for describing bowel cleanliness. Gastrointest Endosc 2014;80:269–76.
[14] Lai EJ, Calderwood AH, Doros G, et al. The Boston bowel preparation scale: a valid and reliable instrument for colonoscopy-oriented research. Gastrointest Endosc 2009;69(3 Pt 2):620–5.
[15] Calderwood AH, Jacobson BC. Comprehensive validation of the Boston Bowel Preparation Scale. Gastrointest Endosc 2010;72:686–92.
[16] Gitarda F, Tomasselli G, Capoccacia R, et al. Efficacy in standard clinical practice of colonoscopic polypometry in reducing colorectal cancer incidence. Gut 2001;48:812–5.
[17] Baez MD, Jackson CS, Lunn J, et al. Endoscopist assisted colonoscopy significantly increases sessile serrated adenoma detection in veterans. J Gastrointest Oncol 2017;8:636–42.
[18] Zippin M, Hong W, Crispino P, et al. New device to implement the adenoma detection rate. World J Clin Cases 2017;5:258–63.
[19] DeMarco DC, Odstrcil E, Lara LF, et al. Impact of experience with a retrograde-viewing device on adenoma detection rates and withdrawal times during colonoscopy; the Third Eye Retroscope study group. Gastrointest Endosc 2010;71:542–50.
[20] Gralnek IM. Emerging technological advancements in colonoscopy: Third Eye Retroscope and Third Eye Panoramic(TM), Fuse (Full Spectrum Endoscopy) colonoscopy platform, Extra-Wide-Angle-View colonoscopy, and NaviAid(TM) G-EYE(TM) balloon colonoscope. Dig Endosc 2015;27:223–31.
[21] Rex DK, Third Eye Retroscope: rationale, efficacy, challenges. Rev Gastroenterol Disord 2009;9:1–6.
[22] Longcroft-Wheaton G, Brown J, Cowlishaw D, et al. High-definition vs. standard-definition colonoscopy in the characterization of small colonic polyps: results from a randomized trial. Endoscopy 2012;44:903–10.
[23] Basford PJ, Longcroft-Wheaton G, Higgins B, et al. High-definition endoscopy with i-Scan for evaluation of small colon polyps: the HiSCOPE study. Gastrointest Endosc 2014;79:111–8.
[24] Rath T, Tontini GE, Negel A, et al. High-definition endoscopy with digital chro-moendoscopy for histologic prediction of distal colorectal polyps. BMC Gastroenterol 2015;15:145.
[25] Pigó F, Bertani H, Manno M, et al. i-Scan high-definition white light endoscopy and colorectal polyps: prediction of histology, interobserver and intraobserver agreement. Int J Colorectal Dis 2013;28:399–406.
[26] Roepstorff S, Hadi SA, Rasmussen M. Full spectrum endoscopy (FUSE) versus standard forward-viewing endoscope (SFV) in a high-risk population. Scand J Gastroenterol 2017;52:1298–303.
[27] Gralnek IM, Segol O, Sussa A, et al. A prospective cohort study evaluating a novel colonoscopy platform featuring full-spectrum endoscopy. Endoscopy 2013;45:697–702.
[28] Matsuda T, Oono A, Sekiguchi M, et al. Advances in image enhancement in colonoscopy for detection of adenomas. Nat Rev Gastroenterol Hepatol 2017;14:305–14.
[29] Hashimoto K, Higaki S, Nishiai M, et al. Does chromoendoscopy improve the colorectal adenoma detection rate? Hepatogastroenterology 2010;57:1399–404.
[30] Manfredi MA, Abu Dayyeh BK, Bhat YM, et al. Electronic chro-moendoscopy. Gastrointest Endosc 2015;81:249–61.
[31] Pohl H, Bensen SP, Toor A, et al. Cap-assisted colonoscopy and detection of Adenomatous Polyps (CAP) study: a randomized trial. Endoscopy 2015;47:891–7.
[32] Yen AW, Leung JW, Leung FW. A novel method with significant impact on adenoma detection: combined water-exchange and cap-assisted colonoscopy. Gastrointest Endosc 2013;77:944–8.
[33] Leung FW. PDR or ADR as a quality indicator for colonoscopy. Am J Gastroenterol 2013;108:1000–2.
[34] HsiaH YK, Koo M, Leung FW. A patient-blinded randomized, controlled trial comparing air insufflation, water immersion, and water exchange during minimally sedated colonoscopy. Am J Gastroenterol 2014;109:1390–400.
[35] Calderwood AH, Thompson KD, Schroy PC, et al. Good is better than excellent: bowel preparation quality and adenoma detection rates. Gastrointest Endosc 2013;81:691–9.
[36] Gurudu SR, Ramirez FC, Harrison ME, et al. Increased adenoma detection rate with system-wide implementation of a split-dose preparation for colonoscopy. Gastrointest Endosc 2012;76:603–8, e601.
[37] Clark ET, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy: systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate. Am J Gastroenterol 2014;109:1714–23, quiz 1724.
[38] Anderson JC, Butterfly LF, Robinson CM, et al. Impact of fair bowel preparation quality on adenoma and serrated polyp detection: data from the New Hampshire colonoscopy registry by using a standardized preparation-quality rating. Gastrointest Endosc 2014;80:463–70.
[39] Tholey DM, Shelton CE, Francis G, et al. Adenoma detection in excellent versus good bowel preparation for colonoscopy. J Clin Gastroenterol 2015;49:313–9.
[40] Aranda-Hernández J, Hwang J, Kandel G. Seeing better—Evidence based recommendations on optimizing colonoscopy adenoma detection rate. World J Gastroenterol 2016;22:1767–78.
[41] Jung DK, Kim TO, Kang MS, et al. The colonoscopist’s expertise affects the characteristics of detected polyps. Clin Endosc 2016;49:61–8.
[42] Jover R, Zapater P, Bujanda L, et al. Endoscopist characteristics that influence the quality of colonoscopy. Endoscopy 2016;48:241–7.
[43] Kashiwagi K, Inoue N, Yoshida T, et al. Polyp detection rate in transverse digital chromoendoscopy for histologic prediction of distal colorectal carcinoma. Scand J Gastroenterol 2017;52:1298–303.
[44] Baker SL, Miller RA, Creighton A, et al. Effect of 6-minute colonoscopy withdrawal time policy on polyp detection rate in a community hospital. Gastroenterol Nurs 2015;38:96–9.
[45] Butterfly L, Robinson CM, Anderson JC, et al. Serrated and adenomatous polyp detection increases with longer withdrawal time: results from the New Hampshire Colonoscopy Registry. Am J Gastroenterol 2014;109:417–26.

[46] Moritz V, Brethauer M, Ruud HK, et al. Withdrawal time as a quality indicator for colonoscopy - a nationwide analysis. Endoscopy 2012;44:476–81.

[47] Shaukat A, Rector TS, Church TR, et al. Longer withdrawal time is associated with a reduced incidence of interval cancer after screening colonoscopy. Gastroenterology 2015;149:952–7.

[48] Vavricka SR, Sulz MC, Degen L, et al. Monitoring colonoscopy withdrawal time significantly improves the adenoma detection rate and the performance of endoscopists. Endoscopy 2016;48:256–62.

[49] Singh S. Colonoscopy withdrawal time and adenoma detection rates for trainees. Surg Endosc 2013;27:2243–4.

[50] Lee TJ, Blanks RG, Rees CJ, et al. Longer mean colonoscopy withdrawal time is associated with increased adenoma detection: evidence from the Bowel Cancer Screening Programme in England. Endoscopy 2013;45:20–6.

[51] Madhoun MF, Tierney WM. The impact of video recording colonoscopy on adenoma detection rates. Gastrointest Endosc 2012;75:127–33.