SHORT COMMUNICATION

ON THE FRESHWATER FISH FAUNA OF KRISHNA RIVER, SANGLI DISTRICT, MAHARASHTRA, INDIA

Suresh M. Kumbar, Shrikant S. Jadhav, Swapnali B. Lad, Abhijit B. Ghadage, Satyawan S. Patil & C. Shiva Shankar

26 July 2021 | Vol. 13 | No. 8 | Pages: 19093–19101
DOI: 10.11609/jott.6281.13.8.19093-19101
On the freshwater fish fauna of Krishna River, Sangli District, Maharashtra, India

Suresh M. Kumbar, Shrikant S. Jadhav, Swapnali S. Patil, Abhijit B. Ghadage, Satyawan S. Patil & C. Shiva Shankar

Abstract: Freshwater fish fauna of Krishna River, Sangli district was studied from 2013 to 2017. A total of 73 species belonging to 10 orders, 22 families, and 49 genera were recorded, of which, 29 species are endemic to the Western Ghats and 11 species endemic to the Krishna River system. Labeo kontius, an endemic barb of the Cauvery River System was recorded for the first time from the Krishna River, Maharashtra. As per the IUCN Red List of Threatened Species, 54 species are assessed as ‘Least Concern’, four species as ‘Near Threatened’, three species as ‘Vulnerable’, five as ‘Endangered’, and two as ‘Data Deficient’. The conservation status of two species has not yet been assessed. Fish fauna of the Krishna River within the study area is threatened as a result of alien species, and several anthropogenic stressors such as pollution from industrial as well as agricultural sources, human settlements, and overfishing. Since, this small study area harbours 28 endemic and eight threatened species, their conservation should be given high priority.

Keywords: Conservation, endemic species, fish diversity, threats, Western Ghats.

The Western Ghats of India is global biodiversity hotspot (Myers et al. 2000), known for its high level of endemism of taxonomic groups such as amphibians and freshwater fish. Around 320 species belonging to 11 orders, 35 families, and 112 genera are known from this region (Dahanukar & Raghavan 2013) and this number is certain to increase given the high number of species being discovered on a yearly basis. Krishna is one of the major perennial rivers of the northern Western Ghats. The river originates at Mahabaleshwar (17.988°N; 73.637°E), Satara District, Maharashtra, and traverses a distance of 290 km through Satara, Sangli, and Kolhapur districts in Maharashtra, thereafter flowing through the states of Karnataka and Telangana before emptying into the Bay of Bengal at Hamasaladeevi in Andhra Pradesh.

Previous studies on the fish fauna of Krishna River was carried out by Jayaram (1995), but no separate ‘river-wise’ locations for the species collected, were provided. A major study on the fish fauna of Krishna River was also carried out by Kumbar et al. 2021. Specific studies on the fish fauna of the Krishna River (in addition to the Godavari) were carried out by David (1963), but no separate ‘river-wise’ locations for the species collected, were provided. We are grateful to the principal, Arts, Commerce & Science College, Palus, District Sangli for facilities. We are also thankful to Dr. Kailash Chandra, Director, Zoological Survey of India, Kolkata; Dr. R.S. Bhatnagar, scientist-E & officer-in-charge, Western Regional Centre, Zoological Survey of India, Pune and Dr. Deepa Jaiswal, scientist-E & officer-in-charge, Freshwater Biology Regional Centre, Zoological Survey of India, Hyderabad for the facilities and encouragement. The first author thanks the University Grants Commission, New Delhi, for financial assistance to this major research project.
Annandale (1919) reported 18 species from the Yenna River at Medha, followed by Silas (1953) who studied the fish fauna of Mahabaleshwar and Wai and recorded 14 species. Arunachalam et al. (2002) recorded 14 species from Dhom reservoir, and subsequently Jadhav et al. (2011) reported 58 species from the Koyla tributary. More recently, Kharat et al. (2012) provided an updated checklist of the fish fauna of Krishna River at Wai and Dhom reservoir, and reported the presence of 51 species. The only published work on the freshwater fishes of the Krishna River in Sangli District is by Kumbar & Lad (2014) who recorded 13 species of catfishes. In the present paper, we provide a comprehensive checklist of the freshwater fishes of the Krishna River in Sangli District is by Kumbar & Lad (2014) who recorded 13 species of catfishes. In the present paper, we provide a comprehensive checklist of the freshwater fishes of the Krishna River in Sangli District and identify possible threats so as build baseline data for future conservation action.

METHODS
Field surveys were undertaken in the Krishna River, Sangli district, Western Maharashtra from the year 2013 to 2017. Fish specimens were collected from Bahe (17.1138°N & 74.2811°E), Borgaon (17.0808°N & 74.3691°E), Sangli (16.8591°N & 74.5577°E), Miraj (16.7877°N & 74.6291°E), and Mhaisal (16.7358°N & 74.6986°E) (Figure 1), with the help of local fishers using different mesh-sized gill nets and cast nets. Alternatively, fish samples were also procured from local fish markets.

Assuming that the fishing effort for a given type of net was constant, the relative abundance of the fish was grossly categorized following Dahanukar et al. (2012), namely abundant (76–100 % of total catch), common (51–75 % of total catch), moderate (26–50 % of total catch), and rare (1–25 % of total catch). Samples were preserved in 10% formalin and identified using the available literature (Menon 1987, 1992; Talwar & Jhingran 1991; Jayaram & Dhas 2000; Jayaram &
Sanyal 2003; Jayaram 1991, 2006, 2010) and relevant recent taxonomic literature related to different groups (Dahanukar et al. 2011; Keskar et al. 2015; Katawate et al. 2016; Lavoué et al. 2020; Sudasinghe et al. 2020). All identified specimens are deposited at the Department of Zoology, Arts, Commerce and Science College, Palus, Sangli District, Maharashtra, with accession numbers from ZID 01–73.

RESULTS

We recorded a total 73 species of freshwater fish belonging to 10 orders, 22 families and 49 genera from the Krishna River in Sangli district (Table 1). Order Cypriniformes dominated with 42 species, followed by Siluriformes (18 species), Anabantiformes (three species), Synbranchiformes, Perciformes, & Beloniformes (two species each), and Cyprinodontiformes, Gobiiformes, Osteoglossiformes, & Cichliformes (one species each). Representative species of fish collected from Krishna River are shown in (Images 1, 2, 3 & 4). As per the IUCN Red List of Threatened Species, 54 species are assessed as ‘Least Concern’, four species as ‘Near Threatened’, three species as ‘Vulnerable’, five as ‘Endangered’, two as ‘Data Deficient’, and the conservation status of two species has not yet been assessed. Of the 73 species, 29 are endemic to the Western Ghats, and 11 are endemic to the Krishna River System (Table 1). Microlevel distribution of species along the upstream-downstream gradient showed that 56 species occurred in upper reaches, 28 species in middle stream, and 37 species in downstream respectively (Figure 1). Of the total fish collected, 15 species were found to be common, six abundant, 28 moderate and 24 rare.

Fish fauna of Krishna River is severely threatened by pollution from organic wastes particularly around the towns of Sangli and Miraj as well as from pollution due to agricultural runoff and sewage. Recently, sand mining has also increased significantly along the stretch of the river near Bahe and Borgaon, resulting in the loss of available habitats to the fish fauna of these areas. Similarly, overfishing, indiscriminate use of poison to collect fish in large numbers and using fine-meshed gill-nets, is a specific threat to species of the genera *Bangana*, *Tor*, *Hypselobarbus*, *Labeo*, *Cirrhinus*, *Opsarius*, *Salmostoma*, *Botia*, *Mystus*, *Cirrhinus*, and *Puntius*.

We also recorded seven non-native species—four transplanted: *Cirrhinus mrigala*, *Labeo rohita*, *Labeo catla*, *Labeo calbasu* in all sites and three alien invasive species: *Oreochromis mossambicus*, *Cyprinus carpio* and *Clarias gariepinus* at Sangli and Miraj. Studies in their entirety of Krishna River by Jayaram (1995) have recorded 10 invasive alien species, but interestingly Jadhav et al. (2011) could not record any alien species from Koyana tributary. However, Dahanukar et al. (2012) recoded seven introduced species from Indrayani River near Pune, and four species from Hiranyakeshi River by Kumkar et al. (2017).

DISCUSSION

Krishna River harbours a number of endemic and threatened species. We collected *Glyptothorax cf. poonaensis* from Bahe near Islampur in moderate numbers. These specimens resemble *G. poonaensis* (Hora 1938), but differs considerably with the description provided in Dahanukar et al. (2011). It is therefore possible that this species might comprise a ‘complex’. The population of Endangered and endemic *Bangana nukta* is declining drastically in the study area. The local knowledge of fishers. Pollution, overfishing and the competition created by transplanted carps such as...
Order	Family	Species	Status	WGE	KRE	IUCN Red List	
1	Anabantiformes	Channidae	Channa gachua (Hamilton, 1822)	M	-	-	LC
2			Channa punctata (Bloch, 1793)	M	-	-	LC
3			Channa striata (Bloch, 1793)	R	-	-	LC
4	Beloniformes	Belonidae	Xenentodon cancila (Hamilton, 1822)	R	-	-	LC
5	Hemiramphidae	Hyperhampus limbus (Valenciennes, 1847)	R	-	-	LC	
6	Cichliformes	Cichlidae	Oreochromis mossambicus (Peters, 1852)	C	-	-	LC
7	Botiidae	Botia striata Rao, 1920	A	+	+	EN	
8	Cobitidae	Leptodochalichthys thermalis (Valenciennes, 1846)	A	-	-	LC	
9	Cyprinidae	Amblypharyngodon mola (Hamilton, 1822)	R	-	-	NE	
10	Cyprinidae	Labeo calbasu (Hamilton, 1822)	M	-	-	LC	
11	Cyprinidae	Labeo catla (Hamilton, 1822)	R	-	-	LC	
12	Cyprinidae	Labeo fimbriatus (Bloch, 1795)	R	-	-	LC	
13	Cyprinidae	Labeo kentus (Jerdon, 1849)	R	+	-	LC	
14	Cyprinidae	Labeo setosus (Sykes, 1839)	R	+	+	LC	
15	Cyprinidae	Labeo rohita (Hamilton, 1822)	R	-	-	LC	
16	Cyprinidae	Labeo sanjaymoluri Katwate, Jadhav, Raghavan & Dahanukar, 2016	A	+	+	NE	
17	Cyprinidae	Labeo sophore (Hamilton, 1822)	C	-	-	LC	
18	Cyprinidae	Labeo thalassemus (Sykes, 1839)	M	+	-	DD	
19	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
20	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
21	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
22	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
23	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
24	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
25	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
26	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
27	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
28	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
29	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
30	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
31	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
32	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
33	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
34	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
35	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
36	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
37	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
38	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
39	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
40	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
41	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
42	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
43	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
44	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
45	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
46	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
47	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
48	Cyprinidae	Labeo zops Rüppell, 1835	M	+	+	LC	
49	Cyprinodontiformes	Aplocheilidae	Aplocheilus lineatus (Valenciennes, 1846)	R	-	-	LC
50	Gobiiformes	Gobiidae	Glossogobius giuris (Hamilton, 1822)	C	-	-	LC
51	Osteoglossiformes	Notopteridae	Notopterus microlepis Bloch & Schneider, 1801	C	-	-	LC
52	Perciformes	Ambassidae	Chanda nama Hamilton, 1822	M	-	-	LC
53	Perciformes	Ambassidae	Parambassis ranga (Hamilton, 1822)	M	-	-	LC
Cirrhinus mrigala, Labeo rohita, and Labeo catla may also be contributing to the population decline of B. nukta (Ghate et al. 2002; Kharat et al. 2003; Dahanukar et al. 2012). Similarly, Hypselobarbus musullah assessed as ‘Endangered’ as per IUCN criteria (Dahanukar & Raghavan 2011) was collected in low numbers at Bahe. Labeo potail, a species that has been assessed as ‘Endangered’ due to population decline of 50–60% in the last 10 years due to organic and inorganic pollution, exploitation and competition created by transplanted carps (Dahanukar 2011) was collected near Palus and Sangli. However, their numbers are declining rapidly due to pollution from domestic organic waste and effluents released heavily from industries situated on the river-bank. Another Krishna River endemic and threatened species, Botia striata (locally called ‘waghmasa’) (Image 3-22) was recorded from Bahe, Borgeon and Islampur. At Bahe and Borgeon, indiscriminate collection of this species by aquarium traders in the summer months is a major threat to the species. The species is however relatively abundant in the study area, and also in Koyna River (Jadhav et al. 2011).

Gagata itchkeea (Image 3-25) a species recorded previously from the Krishna River system (Kalwar & Kelkar 1956; Jayaram 1995; Kharat et al. 2003; Wagh & Ghate 2003; Chandanshive et al. 2007) was collected from Bahe in very low numbers. Other important endemic species such as Garra bicornuta, Parapsilorhynchus discophorus, Pachypterus khovlachor were also collected from various sampling sites.

We recorded Labeo kontius (Image 1) for the first time from the Krishna River system in, Maharashtra State, through samples from Miraj, thus extending its range to the northern part of the Western Ghats. Labeo kontius was described by Jerdon (1849) from Cauvery River and its tributaries. Currently, the species is also known to occur in the Bhavani and Moyar rivers and their tributaries (Rajan 1955; Manimekalan 1998), as well as in the main stretch of the Cauvery River (Jayaram et al. 1982; Jayaram & Dhas 2000).

Krishna River harbours a rich diversity of endemic and threatened fishes of Western Ghats. However, this fauna is threatened due to overfishing, introduced species, sand mining and organic and inorganic pollution. If the present anthropogenic impact continues, this might lead to a drastic decline of habitats and populations of fish species available in this region. It is therefore essential to declare some stretch of rivers as aquatic sanctuaries, particularly near Bahe and Miraj for protection and preservation of endemic and threatened species and mitigation of anthropogenic stress.

REFERENCES

Annandale, N. (1919). Bombay streams fauna: notes on fresh water fish mostly from the Satara and Poona Districts. *Records of the Indian Museum* 16: 125–138.
Image 2. 1—Systomus sarana (Hamilton) | 2—Pethia sanjaymoluri Katwate, Jadhav, Kumkar, Raghavan & Dahanukar | 3—Hypselobarbus jerdoni (Day) | 4—Puntius chola (Hamilton) | 5—Bangana nukta (Sykes) | 6—Hypselobarbus kolus (Sykes) | 7—Devario aequipinnatus (McClelland) | 8—Salmostoma bacalla (Hamilton) | 9—Salmostoma novacula (Valenciennes) | 10—Opsarius bendelisis (Hamilton) | 11—Osteobrama vigorsii (Sykes) | 12—Rohtee ogilbi (Sykes) | 13—Hypselobarbus mussullah (Sykes) | 14—Gymnostomus ariza (Hamilton) | 15—Xenentodon cancila (Hamilton).
Image 3. 16—Labeo fimbriatus (Bloch) | 17—Labeo rohita (Hamilton) | 18—Cirrhinus reba (Hamilton) | 19—Garra bicornuta Rao | 20—Osteobrama peninsularis Silas | 21—Paracanthocobitis mooreh (Sykes) | 22—Botia striata Rao | 23—Sperata seenghala (Sykes) | 24—Mystus vittatus (Bloch) | 25—Gagata itchkeea (Sykes) | 26—Pangasius pangasius (Hamilton) | 27—Mastacembelus armatus (Lacepede) | 28—Macrognathus pancalus (Hamilton) | 29—Hyporhamphus limbatis (Valenciennes) | 30—Oreochromis mossambicus (Peters) | 31—Parambassis ranga (Hamilton) | 32—Channa punctata (Bloch).
Arunachalam, M., A. Sankaranarayanan, A. Manimekalan, R. Soranam, R. & A. Johnson (2002). Fish fauna of some streams and rivers in the Western Ghats of Maharashtra. Journal of the Bombay Natural History Society 99(2): 337–341.

Chandanshiv, E.N., S. M. Kamble & B. E. Yadav (2007). Fish fauna of Pavana river of Pune, Maharashtra. Zoos' Print Journal 22(5): 2693–2694. https://doi.org/10.11609/JoTT.ZPJ.1481.1693-4

Dahanukar, N., M. Diwekar & M. Paingankar (2011). Rediscovery of threatened and Western Ghats endemic Sisorid Catfish Glyptothorax poonaensis (Teleostei: Sisoridae). Journal of Threatened Taxa 3(7): 1885–1898. https://doi.org/10.11609/JoTT.o2771.2310-7

Dahanukar, N. & R. Raghavan (2013). Freshwater fishes of Western Ghats: Checklist v 1.0 August 2013. MN - Newsletter of IUCN SSC/WI Freshwater Fish Specialist Group - South Asia and the Freshwater Fish Conservation Network of South Asia (FFCNSA) I: 6–16.

Dahanukar, N. & R. Raghavan (2011). Hypselobalbus musculos. The IUCN Red List of Threatened Species. Downloaded on 03 September 2020. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T172446A6893728.en

Dahanukar, N. (2011). Labeo potail. The IUCN Red List of Threatened Species. Downloaded on 03 September 2020. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T169627A6657573.en

David, A. (1936). Studies on the fish and fisheries of the Godavari river and the Krishna River systems. Pt. I. Proceedings of the Nature Academy of Science, India, Allahabad 2 (B): 263–286.

Fricke, R., W.N. Eschmeyer & Van der Laan (eds.) (2020). The Freshwater Fishes of the Indian Region. Second Edition. Narendra Publishing House, Delhi, 383pp.

Jayaram, K.C. (2010). The Freshwater Fishes of the Indian Region. Narendra Publishing House, Delhi, 616pp.

Jerdon, T.C. (1849). On the freshwater fishes of Souther India. Madras. J. Lit. Sci., 15: 302 346.

Kalawar, A.G. & C.N. Kelkar (1956). Fishes of Kolhapur. Journal of the Bombay Natural History Society 53(4): 669–679.

Katwate, U., S. Jadhav, P. Kumkar, R. Raghavan & N. Dahanukar (2016). Pethia sanjaymoluri, a new species of barb (Teleostei: Cyprinidae) from the northern Western Ghats, India. Journal of Fish Biology 88: 2027–2050. https://doi.org/10.1111/jfb.12980

Kesar, A., P. Kumkar, U. Katwate, A. Ali, R. Raghavan & N. Dahanukar (2015). Redescription of Nemachilichthys ruppellii, a senior synonym of N. shigomigens (Teleostei: Nemacheilidae). Zoota 4059(3): 555–568.

Kharat, S.S., N.Dahanukar, R. Raut & M. Mahabaleshwarkar (2003). Long term changes in freshwater fish species composition in north Western Ghats, Pune District. Current Science 84(6): 816–820.

Kharat, S.S., M. Paingankar & N. Dahanukar (2012). Freshwater fish fauna of Krishna River at Wai, northern Western Ghats, India. Journal of Threatened Taxa 4(6): 2644–2652. https://doi.org/10.11609/JoTT.o2796.2644-52

Kumar, S.M. & S. Lad (2014). Diversity, threats and conservation of catfish fauna of the Krishna River, Sangli District, Maharashtra, India. Journal of Threatened Taxa 6(1): 5362–5367. https://doi.org/10.11609/JoTT.o3394.5362-7

Kumkar, P., S. S. Kharat, N. S. Sawant, U. Katwate & N. Dahanukar (2017). Freshwater fish fauna of Hiranyakeshi River, the northern Western Ghats, India. Journal of Threatened Taxa 9(5): 10178–10186. https://doi.org/10.11609/jott.3162.9.5.10178-10186

Lavoué, S., S. Z. Ghazali, J. A. F. Jamaluddin, S. A. M. Nor and K. M. Zain (2020). Genetic evidence for the recognition of two allopatric species of Asian bronze featherback Notopterus (Teleostei, Osteoglossomorpha, Notopteridae). Zoosystematics and Evolution, v. 96(2): 449–454.
Manimekalan, A. (1998). The fishes of Mudumalai Wildlife Sanctuary, Tamil Nadu, South India. *Journal of the Bombay Natural History Society* 95(3): 431–443.

Manimekalan, A. (2011). *Labeo kontius*. The IUCN Red List of Threatened Species. Downloaded on 04 September 2020. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T172407A6885940.en

Menon, A.G.K. (1987). *The Fauna of India and Adjacent Countries, Pisces, Vol–4, Teleostei-Cobitoidea, Part–1, Homalopteridae*. Zoological Survey of India, Kolkata, 259pp.

Menon, A.G.K. (1992). *The Fauna of India and Adjacent Countries, Pisces, Vol–4, Teleostei-Cobitoidea, Part–2 Cobitidae*. Zoological Survey of India, Kolkata, 113pp.

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. De Fonseca & J. Kent (2000). Biodiversity and hotspots for conservation priorities. *Nature* 403: 853–858. https://doi.org/10.1038/35002501

Rajan, S. (1955). Notes on a collection of fish from the headwaters of the Bhavani river, South India. *Journal of the Bombay Natural History Society* 53(1): 44–48.

Silas, E.G. (1953). Notes on fishes of Mahabaleshwar and Wai (Satara Dist., Bombay State) *Journal of the Bombay Natural History Society* 51: 579–589.

Sudasinghe, H., R. Pethiyagoda, R. Raghavan, N. Dahanukar, L. Rüber & M. Meegaskumbura (2020). Diversity, phylogeny and biogeography of *Systomus* (Teleostei, Cyprinidae) in Sri Lanka. *Zoologica Scripta*, 1–22. https://doi.org/10.1111/zsc.12445

Sykes, W.H. (1839). On the fishes of the Deccan. *Proceedings of the General Meetings for Scientific Business of the Zoological Society of London* 6: 157–165.

Talwar, P.K. & A.G. Jhingran (1991). *Inland Fishes of India and Adjacent Countries*. Oxford-IBH Publishing Co. Pvt. Ltd., New Delhi, 1158pp.

Wagh, G. K. & H.V. Ghate (2003). Freshwater fish fauna of the rivers Mula and Mutha, Pune, Maharashtra. *Zoos’ Print Journal* 18(1): 977–981. https://doi.org/10.11609/JoTT.ZPJ.18.1.977-89
