Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-
diversity at varying depth in marine benthos

Supplementary material

Appendix S1. List of sessile taxa recorded in the study area.
Appendix S2. Full list of functional traits.
Appendix S3. Functional trait values.
Appendix S4. Principal Coordinates Analysis (PCoA) for functional dimensions.
Appendix S5. PERMDISP tests at the scale of sites.
Appendix S6. PCoA ordination of islands \times depths centroids.
Appendix S7. Pairwise values of compositional β-diversity and components.
Appendix S8. Pairwise values of functional β-diversity and components.
Appendix S9. Patterns of β-diversity vs. geographic distance at the scale of sites.
Appendix S10. Data.
Appendix S1. List of sessile taxa recorded in the study area.

Foraminifera	**Miniacina miniacea** (Pallas, 1766)
	Acetabularia acetabulum (Linnaeus) P.C. Silva, 1952
	Anadyomene stellata (Wulfen) C. Agardh, 1823
	Caulerpa cylindracea Sonder, 1845
	Codium bursa (Olivi) C. Agardh, 1817
	Codium coralloides (Kützing) P.C. Silva, 1960
	Dasycladus vermicularis (Scopoli) Krasser, 1898
	Flabellia petiolata (Turra) Nizamuddin, 1987
	Green Filamentous Algae
	Halimeda tuna (J. Ellis & Solander) J.V. Lamouroux, 1816
	Palmophyllum crassum (Naccari) Rabenhorst, 1868
	Valonia macrophysa Kützing, 1843
	Amphiroa spp.
	Botryocladia sp.
	Dudresnaya verticillata (Withering) Le Jolis, 1863
	Ellisolandia elongata (J. Ellis & Solander) K.R. Hind & G.W. Saunders, 2013
	Encrusting Rhodophytes
	Gloiocladia repens (C. Agardh) Sánchez & Rodríguez-Prieto, 2007
	Halopteris scoparia (Linnaeus) Sauvageau, 1904
	Jania rubens (Linnaeus) J.V. Lamouroux, 1816
	Jania virgata (Zanardini) Montagne, 1846
	Laurencia spp.
	Peyssonnelia spp.
	Tricleocarpa fragilis (Linnaeus) Huisman & R.A. Townsend, 1993
	Bryopsis, Cladophora
	A. rigida J.V. Lamouroux, 1816; A. cryptarthrodia Zanardini, 1844; A. beauvoisi J.V. Lamouroux, 1816
	Lithophyllum, Lithothamnion, Neogoniolithon, Mesophyllum
	L. obtusa (Hudson) J.V. Lamouroux, 1813; L. microcladia Kützing, 1865; Chondrophycus sp.; P. rubra (Greville) J. Agardh, 1851; P. squamaria (S.G. Gmelin) Decaisne, 1842; P. rosamarina Boudouresque & Denizot, 1973
Ochrophyta

Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, 1851

Cutleria sp.

Cystoseira compressa (Esper) Gerloff & Nizamuddin, 1975

Dictyopteris polypodioides (A.P. De Candolle) J.V. Lamouroux, 1809

Dictyota spp.

Discosporangium mesarthrocarpum (Meneghini) Hauck, 1885

Padina pavonica (Linnaeus) Thivy, 1960

Sargassum sp.

Porifera

Agelas oroides (Schmidt, 1864)

Aplysina aerophoba (Nardo, 1833)

Chondrosia reniformis Nardo, 1847

Cliona rhodensis Rützler & Bromley, 1981

Cliona schmidtii (Ridley, 1881)

Cliona viridis (Schmidt, 1862)

Crambe crambe (Schmidt, 1862)

Dysidea avara (Schmidt, 1862)

Hemimycale columnella (Bowerbank, 1874)

Ircinia variabilis (Schmidt, 1862)

Oscarella lobularis (Schmidt, 1862)

Petrosia (Petrosia) ficiformis (Poiret, 1789)

Phorbas fictitius (Bowerbank, 1866)

Sarcotragus spinulosus Schmidt, 1862

Scalarispongia scalaris (Schmidt, 1862)

Cnidaria

Balanophyllia (Balanophyllia) europaea (Risso, 1826)

Corallium cornucopiae (Pallas, 1766)

Hydroids

Leptopsammia pruvoti Lacaze-Duthiers, 1897

Annelida

Serpula vermicularis Linnaeus, 1767

Hydroides dianthus (Verrill, 1873)

Pomatoceros spirorbis

Mollusca

Rocellaria dubia (Pennan, 1777)
Kingdom	Species	Depth
Crustacea	*Perforatus perforatus* (Bruguière, 1789)	5 m depth
	Chlidonia pyriformis (Bertoloni, 1810)	5 m depth
	Encrusting Bryozoans	5 m depth
	Myriapora truncata (Pallas, 1766)	15 m depth
	Nolella gigantea (Busk, 1856)	5 m depth
	Smittina cervicornis (Pallas, 1766)	15 m depth
	Ascidia mentula Müller, 1776	5 m depth
	Ascidia sp.	5 m depth
	Halocynthia papillosa (Linnaeus, 1767)	15 m depth
	Didemnidae	5 m depth
	Diplosoma listerianum (Milne Edwards, 1841)	5 m depth
	Halocynthia papillosa (Linnaeus, 1767)	15 m depth
	Other	Filamentous Algae
	Filamentous Algae	
	Polysiphonia, Ceramium, Sphacelaria, Feldmannia, Hincksia	

* = taxa found only at 5 m depth; ** = taxa found only at 15 m depth.
Appendix S2. Full list of functional traits.

The list of functional traits was compiled based on the framework proposed by Bremner et al. (2006, 2008), which identified 28 biological traits as key indicators of main ecosystem processes, properties and activities, including energy and elemental cycling (carbon, nitrogen, phosphorus, sulphur), silicon cycling, calcium carbonate cycling, food supply/export, productivity, habitat/shelter provision, temporal pattern (population variability, community resistance and resilience), propagule supply/export, adult immigration/emigration, and modification of physical processes. The processes of trait identification and selection integrated a recent reviews of biological and ecological species traits listing 42 traits defined specifically for benthic invertebrates (Costello et al. 2015).

Since our study focused on subtidal sessile assemblages on bedrock, traits that did not apply to this condition were not considered (e.g., bioturbation). Traits referring to physiography, hydrodynamic and tidal regimes, and biological zone of the benthic realm were also discarded, because the study exclusively concerned assemblages from open coast, exposed rocky reefs in the subtidal.

Traits that are difficult to quantify in the real world such as, for instance, the predictability of population dynamics, were excluded (Bremner et al. 2006). In some cases, multiple aspects where here condensed into a single trait; for example, information of growth form, shape, and habit was resumed into the single trait Body Complexity, accounting for both body shape and three-dimensional structure.

A total of 48 functional traits were selected (see Table A1). Information for each taxon recorded (see Appendix S1) and each functional trait was searched in the scientific literature, using the main search engines (i.e., Web of Science, Scopus, Google Scholar), and in several authoritative online databases (accessed in July 2018, see below for bibliographic and web references).

About 10% of organisms were identified only as genera, families or morphological groups. For genera and families, trait values were assigned based on information at these taxonomic levels, if available. In many cases the collection of destructive samples allowed the identification of intra-taxon species composition (see Appendix S1). Therefore, after checking intra-taxon similarity, it was possible to ascribe a common trait value for categorical and ordinal variables, whereas the average value was assigned for numeric variables. The same approach was used for morphological groups. When a common value could not be identified (i.e., when trait values largely differed among grouped species), ‘NA’ (not available) was inserted in the matrix. More generally, ‘NA’ was used also when no information was found on a given trait. For traits Biomass, Caloric content, and CaCO3 content, when data on the species was not available, trait values of a similar congeneric was used.
For six traits, data were found only for 1/3 taxa or less. These traits were not considered in the analysis of functional diversity due to the substantial lack of information. Also, nine traits were not included in the analysis (see Table A1) because all taxa accounted for the same value and, therefore, did not contribute to differences in functional diversity between depth or among islands.

Data for the 48 functional traits were provided in Appendix S3.
Table S1. Full list of selected functional traits. The 48 traits were grouped in seven categories involving key biological and ecological features referring to morphology, life cycles and growth, reproduction, dispersal and colonization, interactions with the environment, biological interactions, matter and energy flow. “Type” column indicates whether traits are expressed as a numeric, ordinal, or categorical variable. A short description of traits and the range of trait values is reported. The % of taxa for which functional trait values were available is also provided (“Data availability”). Traits considered in functional diversity analysis (33) are given in grey.

Category	Trait	Description	Type	Values	Notes	Data availability			
Morphology	Body complexity	Body shape and three-dimensional structure	Ordinal	1 (Crustose, flat); 2 (Filamentous, tubular); 3 (globose, lobate); 4 (Shrub-like); 5 (Erect - coarsely branched); 6 (Erect - arborescent)	–	100%			
Body size	Body size	Dimension of the body/colony (cm)	Ordinal	1 (1<); 2 (1-2); 3 (3-10); 4 (11-20); 5 (21-50); 6 (>50)	–	100%			
Flexibility	Flexibility	Quality of bending without breaking (angle)	Ordinal	1 (Rigid, <10°); 2 (Intermediate, >10° and <45°); 3 (Flexible, >45°)	–	100%			
Fragility	Fragility	Likelihood to break as a result of physical impact	Ordinal	1 (Fragile); 2 (Intermediate); 3 (Robust)	–	100%			
Life cycle and growth	Growth form	Individual or modular life form	Categorical	S (Individual); M (Modular)	–	100%			
Life cycle	Life cycle	Type of life cycle: haplontic (multicellular haploid stage, unicellular diploid stage), diplontic (the opposite of haplontic), or haplo-diplontic (presence of multicellular haploid and diploid stages)	Categorical	H (haplontic); D (diplontic); HD (haplo-diplontic)	–	94%			
Developmental mechanism	Development of the organism through spores, planktotrophic larvae, or lecitotrophic larvae	Categorical	S (Spores); P (Planktotrophic); L (Lecithotrophic)	–	91%				
-------------------------	--	-------------	---	---	---				
Growth rate	Rate of increasing in size (mm mo\(^{-1}\))	Ordinal	1 (very slow: <0.1); 2 (slow: up to 1-2); 3 (moderate: up to 5); 4 (fast: up to 10); 5 (very fast: >10)	–	87%				
Life span	Approximate duration of life (years)	Ordinal	1 (1 or less); 2 (few); 3 (10-30); 4 (>30)	–	91%				
Reproductive type (sexual)	Type of sexual reproduction	Categorical	H (Hermaphrodite/Monoecious); G (Gonochoristic/Dioecious)	–	85%				
Gamete type	Morphology of male and female gametes	Categorical	I (Isogamous); A (Anisogamous); O (Oogamous)	–	91%				
Reproductive season	Range of months or season(s) for reproduction	Categorical	Spring; Summer; Winter; Autumn; Combinations (e.g., Spring-Summer)	–	61%				
Reproductive strategy	Type of life strategy encompassing a single (semelparous) or multiple (iteroparous) reproductive events during life	Categorical	S (Semelparous); I (Iteroparous)	–	90%				
Generation time	Time between two generations (years)	Ordinal	1 (<1); 2 (1); 3 (2-5); 4 (6-10); 5 (11-20); 6 (21-50); 7 (51-100); 8 (>100)	Insufficient information for most of taxa	28%				
Time to maturity	Time to sexual maturity (years)	Ordinal	1 (<1); 2 (1); 3 (2-5); 4 (6-10); 5 (11-20); 6 (21-50); 7 (51-100); 8 (>100)	Insufficient information for most of taxa	34%				
Fecundity	**Size of eggs**	**Numeric**	**µm**	**Insufficient information for most of the taxa**	**27%**				
Fecundity-Number of eggs	**Number of eggs**	**Numeric**	**Number of eggs**	**Insufficient information for most of the taxa**	**13%**				
Fertilization type	**External or internal fertilization**	**Categorical**	**I (Internal); E (External)**	**All taxa have external fertilization**	**100%**				
Spatial distribution	**Distribution range at basin scale (Mediterranean Sea)**	**Categorical**	**A (Central Mediterranean); B (Western and Central Mediterranean); C (Mediterranean basin-scale); D (Alien)**	**94%**					
Duration of larval stage (pelagic)	**Time spent by larval stages in the water column before settlement (days)**	**Categorical**	**1 (<7); 2 (7-15); 3 (15-30); 4 (>30)**	**97%**					
Asexual reproduction	**Presence or absence of any type of asexual reproduction**	**Categorical**	**Y (Present); N (Absent)**	**100%**					
Recruitment success	**Rate of post-settlement survival**	**Numeric/Ordinal**	**Number or % of surviving recruits**	**Insufficient information for most of the taxa**	**0%**				
Migration	**Ability to migrate**	**Ordinal**	**1 (Resident); 2 (Passive); 3 (Active)**	**All taxa are resident**	**100%**				
Mobility	**Movement type**	**Categorical**	**S (Swimmer); C (Crawler); B (Burrower); D (Drifter); A (Attached)**	**All taxa are sessile (Attached)**	**100%**				
Regeneration potential	**Potential of surviving after injury or damage through regeneration of lost tissues**	**Categorical**	**Y (Present); N (Absent)**	**All taxa have regeneration potential**	**100%**				
Dispersal potential (larval)	Distance of larval dispersal	Ordinal	1 (very low: <1 m); 2 (low: 10s m); 3 (medium: 100s m); 4 (high: 1000s m); 5 (very high: 10s km)	Insufficient information for most of the taxa	30%				
Dispersal potential (adult)	Distance of adult dispersal	Ordinal	1 (very low: <1 m); 2 (low: 10s m); 3 (medium: 100s m); 4 (high: 1000s m); 5 (very high: 10s km)	None for all taxa (all are sessile)	100%				
Living habit/environmental position	Position with respect to the substrate	Categorical	ENDO (Endobenthic); EPI (Epibenthic)	–	100%				
Strength of attachment to substrate	Difficulty of being detached from the substrate	Ordinal	1 (Low); 2 (Moderate); 3 (High)	–	100%				
Min depth	Approximate upper limit of depth distribution range (m)	Ordinal	1 (0-2); 2 (3-5); 3 (5-15)	–	96%				
Max depth	Approximate lower limit of depth distribution range (m)	Ordinal	1 (<15); 2 (15-50); 3 (50-100); 4 (100-200); 5 (>200)	–	93%				
Min salinity	Approximate lower limit of the salinity range	Numeric	PSU	–	85%				
Max temperature	Approximate upper limit of temperature range	Numeric	°C	–	88%				
Max N	Approximate upper limit of nitrogen range	Numeric	µmol/L	–	79%				
Max P	Approximate upper limit of phosphorous range	Numeric	µmol/L	–	78%				
Biological interactions	Min $O\%$ saturation	Degree of attachment to substrate	Substratum preferences	Sociability	Defence	Biogenic habitat provision	Scale of habitat provision	Food type/diet	Dependency
-------------------------	-----------------------	----------------------------------	------------------------	------------	--------	---------------------------	--------------------------	----------------	------------
	Approximate lower limit of oxygen saturation range	Quality of being permanently or temporary attached to the substrate	Type of typical substrate	Aptitude to live with conspecific or to form colonies	Presence of defence against predators, competitors	Quality of providing shelter or secondary substrate for other organisms	Persistence in providing shelter, secondary substrate or forming biogenic habitat	Type of food ingested	Presence of symbiotic interactions
	Numeric	Categorical	Categorical	Ordinal	Categorical	Ordinal	Ordinal	Categorical	Categorical
	% O_2 saturation	P (Permanently); T (Temporary)	e.g., bedrock, sand, mud, boulders	1 (Solitary); 2 (Gregarious); 3 (Colonial)	None; Physical; Chemical; Physical-chemical	1 (None); 2 (Shelter); 3 (Substrate); 4 (Substrate + Shelter)	1 (None); 2 (Ephemeral); 3 (Moderate); 4 (Long-lasting)	Chemical uptake; Suspended matter (including living matter)	e.g., independent, parasitic, commensal, mutualistic
	–	All taxa are permanently attached	All taxa are typical of bedrock	–	–	–	–	–	All taxa are independent
	73%	100%	100%	100%	85%	99%	100%	100%	100%
Matter and energy flow

Feeding habit	Strategy employed for food collection/production	Ordinal	1 (Producer); 2 (Passive suspension feeder); 3 (Active suspension feeders); 4 (Predators)	
Biomass	Biomass	Numeric	g of dry weight per 100 g of fresh weight	
			–	100%
Caloric content	Energy content of tissues	Numeric	KJ g\(^{-1}\) ash-free weight	
			–	99%
CaCO\(_3\) content	Amount CaCO\(_3\) in tissues (% per g dry weight)	Ordinal	1 (None/low: <30%); 2 (Intermediate: 30-60%); 3 (High: 60-80%); 4 (Very high: >80%)	100%
Reference for traits

Literature

Adl, S. M. et al. 2012. The Revised Classification of Eukaryotes. – *J. Eukaryot. Microbiol.* 59: 429–514.

Afonso-Carrillo, J. et al. 2006. *Botryocladia chiajeana* and *Botryocladia macaronesica* sp. nov. (Rhodymeniaceae. Rhodophyta) from the Mediterranean and the eastern Atlantic, with a discussion on the closely related genus *Irvinea*. – *Phycologia* 45: 277–292.

Airi, V. et al. 2014. Reproductive Efficiency of a Mediterranean Endemic Zooxanthellate Coral Decreases with Increasing Temperature along a Wide Latitudinal Gradient. – *PLoS ONE* 9: e91792.

Becerro, M. A. et al. 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. – *Oecologia* 135: 91–101.

Becerro, M. A. and Turon, X. 1992. Reproductive Cycles of the Ascidians *Microcosmus sabatieri* and *Halocynthia papillosa* in the Northwestern Mediterranean. – *Mar. Ecol.* 13: 363–373.

Benita, M. et al. 2018. *Padina pavonica*: Morphology and Calcification Functions and Mechanism. – *Am. J. Plant Sci.* 9: 1156–1168.

Berger, S. and Liddle, L. B. 2003. The life cycle of *Acetabularia* (Dasycladales. Chlorophyta): textbook accounts are wrong. – *Phycologia.* 42: 204–207.

Betti, F. et al. 2011. Life history of *Cornularia cornucopiae* (Anthozoa: Octocorallia) on the Conero Promontory (North Adriatic Sea). – *Mar. Ecol.* 33: 49–55.

Bradbury, I. R. et al. 2008. Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. – *Proc. R. Soc. London B Biol. Sci.* 275: 1803–1809.

Brey, T. et al. 1988. Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. – *J. Exp. Mar. Biol. Ecol.* – 117: 271–278.

Bürger, K. et al. 2017. Morphological changes with depth in the calcareous brown alga *Padina pavonica*. – *Bot. Mar.* 60: 171–180.

Cabioch, J. et al. 2006. Guide des Algues des mers d’Europe. – Delachaux & Niestle.

Casoli, E. et al. 2016. Impact and colonization dynamics of the bivalve *Rocellaria dubia* on limestone experimental panels in the submerged Roman city of Baiae (Naples. Italy). – *Int. Biodeter. Biodegr.* 108: 9–15.

Cebrián, E. et al. 2000. Shallow rocky bottom benthic assemblages as calcium carbonate producers in the Alboran Sea (southwestern Mediterranean). – *Oceanol. Acta.* 23: 311–322.
Chihara, M. 1974. The significance of reproductive and spore germination characteristics to the systematic of the corallinaceae: nonarticulated coralline algae. – *J. Phycol.* 10: 266–274.

Clayton, M. N. 1992. Propagules of marine macroalgae: Structure and Development. – *Br. Phycol. J.* 27: 219–232.

Corriero, M. M. et al. 2013. Sexual reproduction in *Sarcotragus spinosulus* from two different shallow environments. – *Mar. Ecol.* 34: 394–408.

Costantini, F. et al. 2018. Chasing genetic structure in coralligenous reef invertebrates: patterns, criticalities and conservation issues. – *Sci. Rep.* 8: 5844.

Crisp, D. J. and Bourget, E. 1985. Growth in Barnacles. – *Adv. Mar. Biol.* 22: 199–244.

Daniel, K. S. and Therriault, T. W. 2007. Biological synopsis of the invasive tunicate *Didemnum* sp. – *Can. Manuscr. Rep. Fish. Aquat. Sci.* 2788: 1–53.

de Caralt, S. et al. 2010. *In situ* aquaculture methods for *Dysidea avara* (Demospongiae, Porifera) in the Northwestern Mediterranean. – *Mar. Drugs.* – 8: 1731-1742.

Dethier, M. N. and Steneck, R. S. 2001. Growth and persistence of diverse intertidal crusts: survival of the slow in a fast-paced world. – *Mar. Ecol. Progr. Ser.* 223: 89–100.

Dumais, J. et al. 2000. *Acetabularia*: A Unicellular Model for Understanding Subcellular Localization and Morphogenesis during Development. – *J. Plant Growth Regul.* 19: 253–264.

Ereskovsky, A. et al. 2013. Pluriannual study of the reproduction of two Mediterranean *Oscarella* species (Porifera. Homoscleromorpha): cycle, sex-ratio, reproductive effort and phenology. – *Mar. Biol.* 160: 423–438.

Falace, A. et al. 2005. Morphological and reproductive phenology of *Cystoseira compressa* (Esper) Gerloff & Nizzamudin (Fucales: Fucophyceae) in the Gulf of Trieste (North Adriatic Sea). – *Ann. Ser. Hist. Nat.* 15: 71–78.

Ferretti, C. et al. 2009. Growth dynamics and bioactivity variation of the Mediterranean demosponges *Agelas ooides* (Agelasida, Agelasidae) and *Petrosia ficiformis* (Haplosclerida, Petrosiidae). – *Mar. Ecol.* 30: 327-336.

Garate, L. et al. 2016. Contrasting growth and survival of two cryptic sponge species sharing habitats in western Mediterranean. XIX Iberian Symposium on Marine Biology Studies. – *Front. Mar. Sci.* doi: 10.3389/conf.FMARS.2016.05.00170.

Garrabou, J. and Zabala, M. 2001. Growth Dynamics in Four Mediterranean Demosponges. – *Estuar. Coast. Shelf Sci.* 52: 293–303.

Geertz-Hansen, O. et al. 1994. Functional implications of the form of *Codium bursa*, a balloon-like Mediterranean macroalga. – *Mar. Ecol. Progr. Ser.* 108: 153–160.

Goffredo, S. et al. 2011. Sexual reproduction in the Mediterranean endemic orange coral *Astroides calycularis* (Scleractinia: Dendrophylliidae). – *Bull. Mar. Sci.* 87: 589–604.
Goffredo, S. et al. 2004. Growth and population dynamics model of the Mediterranean solitary coral *Balanophyllia europaea* (Scleractinia, Dendrophylliidae). – *Coral Reefs* 23: 433–443.

Grantham, B. A. et al. 2003. Dispersal potential of marine invertebrates in diverse habitats. – *Ecol. Appl.* 13: S108–S116.

Herbert, R. J. H. et al. 2003. Range extension and reproduction of the barnacle *Balanus perforatus* in the eastern English Channel. – *J. Mar. Biol. Assoc. U. K.* 83: 73–82.

Hereu, B. et al. 2008. Multiple controls of community structure and dynamics in a sublittoral marine environment. – *Ecology* 89: 3423–3435.

Hoyt, W. D. 1910. Alternation of Generations and Sexuality in *Dictyota dichotoma*. – *Bot. Gazette.* 49: 55–57.

Hughes, D. J. et al. 2007. Survivorship and tube growth of reef-building *Serpula vermicularis* (Polychaeta: Serpulidae) in two Scottish sea lochs. – *Aquat. Conserv.: Mar. Freshw. Ecosyst.* 18: 117–129.

Kinlan, B. P. et al. 2005. Propagule dispersal and the scales of marine community process. – *Divers. Distrib.* 11: 139–148.

Kinlan, B. P. and Gaines, S. D. 2003. Propagule dispersal in marine and terrestrial environments: a community perspective. – *Ecology* 84: 2007–2020.

Klein, J. and Verlaque, M. 2008. The *Caulerpa racemosa* invasion: A critical review. – *Mar. Pollut. Bull.* 56: 205–225.

Kupriyanova, E. K. et al. 2001. A review of life history in serpulimorph polychaetes: ecological and evolutionary perspectives. – *Oceanogr. Mar. Biol. Ann. Rev.* 39: 1–101.

Lamare, M. D. and Wing, S. R. 2001. Calorific content of New Zealand marine macrophytes. – *New Zeal. J. Mar. Freshw. Res.* 35: 335–341.

Lindsay, S. M. 2010. Frequency of injury and the ecology of regeneration in marine benthic invertebrates. – *Integr. Comp. Biol.* 50: 479–493.

Lombardi, C. et al. 2011. Effects of ocean acidification on growth, organic tissue and protein profile of the Mediterranean bryozoan *Myriapora truncata*. – *Mar. Ecol. Progr. Ser.* 13: 251–262.

Lombardi, C. et al. 2015. Morphological plasticity in a calcifying modular organism: evidence from an in situ transplant experiment in a natural CO2 vent system. – *R. Soc. Open Sci.* 2: 140413.

Maldonado, M. and Riesgo, A. 2009. Gametogenesis, embryogenesis, and larval features of the oviparous sponge *Petrosia ficiformis* (Haplosclerida, Demospongiae). – *Mar. Biol.* 156: 2181–2197.

Maldonado, M. et al. 2012. Ancient Animals, New Challenges: Developments in Sponge Research. – Springer Netherlands.
Martin, D. and Uriz, M. J. 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates. – J. Exp. Mar. Biol. Ecol. 173: 11–27.

Nannini, M. et al. 2015. Effects of thermal stress on the growth of an intertidal population of *Ellisolambia elongata* (Rhodophyta) from N–W Mediterranean Sea. – Mar. Environ. Res. 112 (B): 11–19.

Neto, A. I. 2000. Observations on the Biology and Ecology of Selected Macroalgae from the Littoral of São Miguel (Azores). – Bot. Mar. 43: 483–498.

Nicol, W. L. and Reisman, H. M. 1976. Ecology of the Boring Sponge (*Cliona celata*) at Gardiner's Island, New York. – Chesapeake Sci. 17: 1–7.

Novaczek, I. et al. 1989. Thermal tolerance of *Stypocaulon scoparium* (Phaeophyta, Sphacelariales) from eastern and western shores of the North Atlantic Ocean. – Helgol. Meeresunters 43: 183–193.

Ostrovsky, A. N. 2014. Evolution of Sexual Reproduction in Marine Invertebrates. Example of gymnolaemate bryozoans. – Springer Netherlands.

Ozgun, S. and Turan, F. 2015. Biochemical composition of some brown algae from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. – J. Black Sea/Medit. Environ. 21: 125–134.

Patarra, R. F. et al. 2017. Effects of light, temperature and stocking density on *Halopteris scoparia* growth. – J. Appl. Phycol. 29: 405–411.

Paul, N. A. et al. 2014. Comparative production and nutritional value of “sea grapes” – the tropical green seaweeds *Caulerpa lentillifera* and *C. racemosa*. – J. Appl. Phycol. 26: 1833–1844.

Pérez-Lópeza, P. D. et al. 2017. Life cycle assessment of in situ mariculture in the Mediterranean Sea for the production of bioactive compounds from the sponge *Sarcotragus spinosulus*. – J. Clean. Prod. 142: 4356–4368.

Pisuta, D. P. and Pawlik, J. R. 2002. Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? – J. Exp. Mar. Biol. Ecol. 270: 203–214.

Portacci, G. et al. 2006. Il monitoraggio del benthos di Porto Cesareo (LE) (Mar Ionio): autoecologia e dinamica di popolazioni epibentoniche. – Biol. Mar. Medit. 13: 265–267.

Quintanilla, E. et al. 2013. Sexual reproductive cycle of the epibiotic soft coral *Alcyonium coralloides* (Octocorallia, Alcyonacea). – Aquat. Biol. 18: 113–124.

Ribes, M. et al. 1998. Seasonal variation of in situ feeding rates by the temperate ascidian *Halocynthia papillosa*. – Mar. Ecol. Progr. Ser. 175: 201–213.

Ricciardi, A. and Bourget, E. 1998. Weight-to-weight conversion factors for marine benthic macroinvertebrates. – Mar. Ecol. Progr. Ser. 163: 245–251.
Riesgo, A. et al. 2014. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). – Zool. Scripta 43: 101–117.

Rodríguez-Prieto, C. et al. 2007. Vegetative and reproductive morphology of Gloiocladia repens (C. Agardh) Sánchez et Rodríguez-Prieto comb. nov. (Rhodymeniales, Rhodophyta), with a taxonomic re-assessment of the genera Fauchea and Gloiocladia. – Eur. J. Phycol. 42: 145–162.

Rützler, K. and Bromley, R. G. 1981. Cliona rhodensis. New Species (Porifera: Hadromerida) from the Mediterranean. – Proc. Biol. Soc. Wash. 94: 1219–1225.

Sansón, M. et al. 2002. Sublittoral and Deep-Water Red and Brown Algae New from the Canary Islands. – Bot. Mar. 45: 35–49.

Sarà, M. 1974. Sexuality in the Porifera. – It. J. Zool. 41: 327–348.

Sartoni, G. and De Biasi, A. M. 1999. A survey of the marine algae of Milos Island, Greece. – Cryptogamie Algol. 20: 271–283.

Shanks, A. L. 2009. Pelagic Larval Duration and Dispersal Distance Revisited. – Biol. Bull. 216: 373–385.

Shanks, A. L. et al. 2003. Propagule dispersal distance and the size and spacing of marine reserves. – Ecol. Appl. 13: S159–S169.

Steimle, F. W. Jr. and Terranova, R. J. 1985. Energy Equivalents of Marine Organisms from the Continental Shelf of the Temperate Northwest Atlantic. – J. Northwest Atl. Fish. Sci. 6: 117–124.

Teixidó, N. et al. 2006. Demographic dynamics over long-term period of the coralligenous communities in the NW Mediterranean Sea. XIV Simposio Ibérico de Estudios de Biología Marina. Barcelona, 12-15 September.

Teixidó, N. et al. 2011. Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops. – PLoS ONE 6: e23744.

Teixidó, N. et al. 2009. Decadal demographic trends of a long-lived temperate encrusting sponge. – Mar. Ecol. Progr. Ser. 375: 113–124.

Terlizzi, A. et al. 2011. Detrimental physiological effects of the invasive alga Caulerpa racemosa on the Mediterranean white seabream Diplodus sargus. – Aquat. Biol. 12: 109–117.

Thoms, C. et al. 2004. Chemical defense of Mediterranean sponges Aplysina cavernicola and Aplysina aerophoba. – Z. Naturforsch. 59:113–22.

Toste, M. F. et al. 2003. Life history of Colpomenia Sinuosa (Scytosiphonaceae, Phaeophyceae) in the Azores. – J. Phycol. 39: 1268–1274.

Turon, X. et al. 2013. Lights and shadows: growth patterns in three sympatric and congeneric sponges (Ircinia spp.) with contrasting abundances of photosymbionts. – Mar. Biol. 160: 2743–2754.
Varela-Álvarez, E. et al. 2012. Mediterranean Species of *Caulerpa* Are Polyploid with Smaller Genomes in the Invasive Ones. – *PLoS ONE* **7**: e47728.

Vizetto-Duarte, C. et al. 2015. Fatty acid profile of different species of algae of the *Cystoseira* genus: a nutraceutical perspective. – *Nat. Prod. Res.* **29**: 1264–1270.

Vroom, P. S. et al. 2003. Field biology of *Halimeda tuna* (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction. – *Hydrobiologia* **501**: 149–166.

Websites

http://macoi.ci.uc.pt (Portuguese seaweeds website, University of Coimbra, Portugal)

http://dryades.units.it (University of Trieste, Italy)

https://www.marlin.ac.uk/biotic (BIOTIC – Biological Traits Information Catalogue – The Marine Life Information Network. Marine Biological Association of the UK)

http://eol.org (The Encyclopedia of Life, Smithsonian Institution's National Museum of Natural History (USA) and other international partners)

http://www.marinexspecies.org (World Register of Marine Species – WoRMS Editorial Board, 2018. World Register of Marine Species. Available at VLIZ)

http://www.algaebase.org (Guiry, M. D. and Guiry, G.M. 2018. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway)

https://www.sealifebase.ca (Palomares, M. L. D. and Pauly, D. 2018. SeaLifeBase. World Wide Web electronic publication)

http://www.habitas.org.uk (National Museums Northern Ireland)

https://species.nbnatlas.org (National Biodiversity Network. UK)

http://www.iobis.org (Ocean Biogeographic Information System – Intergovernmental Oceanographic Commission (IOC) of UNESCO and other international partners)
Appendix S3. Functional trait values for all taxa found in the study (see Appendix S1). Values are reported for all the 48 functional traits listed in Table S1 (Appendix S2). NA = not available/not found.

Morphology	Life cycle and growth															
	Body complexity	Body size	Flexibility	Fragility	Growth form	Life cycle	Developmental mechanism	Growth rate	Life span							
Jania rubens	6	3	2	1	M	HD	S	5	1							
Acetabularia acetabulum	2	3	3	1	I	D	S	5	2							
Agelas oroides	3	4	2	2	M	D	L	4	3							
Amphipora	6	3	1	1	M	HD	S	NA	2							
Anadyomene stellata	4	2	3	1	M	D	S	4	1							
Aplysina aerophoba	5	5	2	2	M	D	L	1	2							
Ascidia mentula	3	3	2	2	I	D	L	NA	3							
Ascidia sp. 1	3	3	2	2	I	D	L	NA	3							
Perforatus perforatus	3	2	1	3	I	D	P	5	2							
Balanophylla (Balanophyllia) europaea	3	3	1	2	I	D	NA	1	3							
Botryocladia sp.	3	2	2	1	M	HD	S	4	2							
Caulerpa cylindracea	5	6	3	1	M	H	S	5	2							
Chidonia pyriformis	2	1	2	1	M	D	L	NA	NA							
Chondrosia reniformis	3	5	2	2	M	D	L	1	4							
Cliona schmidt	1	3	1	1	M	D	L	4	2							
Codium bursa	3	4	2	3	M	D	S	4	2							
Codium coralloides	3	5	2	2	M	D	S	4	2							
Colpomenia sinuosa	3	4	2	1	M	HD	S	4	1							
Ellisolandia elongata	6	3	3	2	M	HD	S	2	2							
Cutleria sp.	1	3	1	1	M	HD	S	4	1							
Cystoseira compressa	6	5	3	3	M	D	S	3	2							
Dasycladus vermicularis	3	3	2	1	M	D	S	NA	1							
Latin Name	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6										
------------------------------------	---------	---------	---------	---------	---------	---------										
Dictyopteris polypodioides	5	5	3	2	M	HD										
Dictyota spp.	5	5	3	2	M	HD										
Didemnidae	1	2	1	1	M	D										
Diplosoma listerianum	1	4	1	1	M	D										
Dudensnaya verticillata	6	3	3	1	M	HD										
Dysidea avara	3	4	2	2	M	D										
Erect Bryozoans	6	3	1	1	M	D										
Encrusting Rhodophytes	1	4	1	2	M	HD										
Encrusting Bryozoans	1	4	1	1	M	D										
Crambe crambe	1	5	1	2	M	D										
Gloiocladia repens	5	3	3	2	M	NA										
Filamentous Algae	2	2	3	1	M	NA										
Discosporangium mesarthrocarpum	4	3	3	1	M	NA										
Flabellia petiolata	5	3	2	2	M	D										
Rocellaaria dubia	3	2	1	1	I	D										
Green Filamentous Algae	2	2	2	1	M	D										
Cliona viridis	1	4	1	1	M	D										
Halimeda tuna	5	4	2	1	M	D										
Jania virgata	6	3	2	1	M	HD										
Halocynthia papillosa	3	4	2	1	M	D										
Hemimycale columella	1	4	1	1	M	D										
Hydroids	2	2	2	1	M	D										
Ircinia variabilis	3	5	2	3	M	D										
Laurencia obtusa	6	4	3	2	M	HD										
Leptopsammia pravoti	3	3	1	1	I	D										
Scalarispongia scalaris	3	5	2	3	M	D										
Miniacina miniacea	3	1	1	1	I	HD										
Myriapora truncata	5	3	1	1	M	D										
Species	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	S15	S16
-------------------------------	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----
Nolella gigantea	2	1	1	1												
Oscarella lobularis	3	4	2	1												
Padina pavonica	4	3	2	2												
Palmophyllum crassum	1	4	1	1												
Peyssonella (Petrosia) ficiformis	3	5	1	3												
Cliona rhodensis	1	3	1	1												
Phorbas fictitius	1	4	1	1												
Sarcotragus spinosulus	6	6	3	2												
Sargassum sp.	2	3	1	1												
Smittina cervicornis	5	3	1	1												
Cornularia cornucopiae	2	1	1	1												
Halopteris scoparia	6	4	3	2												
Tricleocarpa fragilis	5	3	2	1												
Valonia macrophysa	3	2	1	1												
Vermetidae	2	3	1	2												
Species	Reproductive type	Gamete type	Fertilization type	Reproductive season	Reproductive strategy	Generation time	Time to maturity	Fecundity - Egg size	Fecundity - Number of eggs							
--------------------------------------	-------------------	-------------	-------------------	---------------------	-----------------------	------------------	-------------------	----------------------	---------------------------							
Jania rubens	G	O	E	Spring-Summer	S	1	1	20-90 µm	NA							
Acetabularia acetabulum	H	I	E	NA	I	NA	3	NA	NA							
Agelas oroides	G	O	E	NA	I	NA	NA	NA	NA							
Amphiroa sp.	G	O	E	Spring-Summer	I	NA	NA	NA	NA							
Anadyomene stellata	G	A	E	NA	S	1	1	NA	NA							
Aplysina aerophoba	G	O	E	NA	I	NA	NA	NA	NA							
Ascidia mentula	H	O	E	Spring-Summer	I	NA	NA	0.15 nm	6-8 mm³							
Ascidia sp. 1	H	O	E	Spring-Summer	NA	NA	NA	NA	NA							
Perforatus perforatus	H	O	E	Spring-Summer	I	1	1	221 µm	100s to 1000s							
Balanophyllia (Balanophyllia) europaea	H	O	E	Summer-Winter	I	NA	3	400 µm	8-14 mm³							
Botryocladia sp.	G	NA	E	Summer	I	NA	NA	NA	NA							
Caulera cylindracea	H	I	E	Summer	I	NA	NA	NA	NA							
Chidonia pyriformis	H	O	E	NA	NA	NA	NA	NA	NA							
Chondrosia reniformis	G	O	E	Summer	I	NA	NA	NA	NA							
Cliona schmidt	G	O	E	Summer	I	NA	NA	NA	NA							
Codium bursa	G	A	E	NA	I	NA	NA	NA	NA							
Codium coralloides	G	A	E	NA	I	NA	NA	NA	NA							
Colpomenia sinuosa	G	A	E	Spring	S	1	1	NA	NA							
Ellisolandia elongata	G	O	E	Winter-Spring	I	NA	NA	20-90 µm	NA							
Cutleria sp.	G	A	E	NA	S	1	1	NA	NA							
Cystoseira compressa	G	O	E	NA	I	NA	NA	60-250 µm	NA							
Dasycladus vermicularis	G	I	E	NA	S	1	1	NA	NA							
Species	Habitat	Stage	Density	Size	Abundance											
---------------------------------	--------------	------------------	---------	------------	------------											
Dictyopteris polypodioides	G O E	Summer	S	1	1											
Dictyota spp.	G O E	Summer	S	1	1											
Didemnidae	H O E	Spring-Summer	S	NA	2											
Diplosoma listerianum	H O E	Summer-Autumn	S	1	1											
Dudresnaya verticillata	G O E	Spring-Summer	S	1	1											
Dysidea avara	H O E	Summer	I	NA	NA											
Erect Bryozoans	NA O E	Summer-Autumn	S	1	1											
Encrusting Rhodophytes	G O E	Spring-Summer	S	NA	NA											
Encrusting Bryozoans	H O E	Summer	I	NA	NA											
Crambe crambe	H O E	Summer	I	NA	NA											
Gloioclada repens	H NA E	Summer-Autumn	NA	NA	NA											
Filamentous Algae	NA NA E	NA	NA	S	1											
Discosporangium mesarthrocarpum	NA NA E	NA	NA	S	1											
Flabellia petioluta	G A E	NA	I	NA	NA											
Roccellaria dubia	NA O E	NA	I	NA	NA											
Green Filamentous Algae	G A E	NA	S	1	1											
Cliona viridis	H O E	Summer	I	NA	NA											
Halimeda tuna	G A E	Summer-Autumn	S	1	NA											
Jania virgata	G O E	Spring-Summer	S	1	1											
Halocynthia papillosa	H O E	Summer-Autumn	I	NA	NA											
Hemimycale columella	H O E	Summer	I	NA	NA											
Hydroids	G O E	NA	I	NA	NA											
Ircinia variabilis	H O E	Spring-Summer	I	NA	NA											
Laurencia obtusa	G O E	NA	S	1	NA											
Leptopsammia privati	G O E	Summer	I	NA	NA											
Scalarispongia scalaris	G O E	Summer	I	NA	NA											
Miniacina miniacea	NA I E	NA	I	NA	NA											
Myriapora truncata	G O E	Spring	NA	NA	NA											
Species	HW	OD	ED	Season	Size	Notes										
-----------------------------	----	----	----	--------------	------	----------------										
Nolella gigantea	NA	O	E	NA	NA	NA										
Oscarella lobularis	H	O	E	Spring-Summer	I	NA 150 µm										
Padina pavonica	H	O	E	Spring-Summer	S	1 180 µm										
Palmophyllum crassum	NA	NA	E	NA	I	NA										
Petrosia (Petrosia) ficiformis	G	O	E	Spring-Summer	I	NA 200 µm 4 mm³										
Peyssonella spp.	H	O	E	NA	I	NA										
Cliona rhodensis	H	O	E	Summer	I	NA										
Phorbas fictitious	NA	O	E	NA	NA	NA										
Sarcotragus spinosulus	H	O	E	Summer	I	NA 60-250 µm										
Sargassum sp.	H	O	E	Summer	I	NA										
Serpulidae	H	O	E	Spring-Summer	I	1 40-230 µm										
Smittina cervicornis	H	O	E	NA	I	NA										
Cornularia cornucopiae	NA	O	E	Spring-Summer	NA	NA										
Halopteris scoparia	H	O	E	Autumn-Winter	I	NA										
Tricleocarpa fragilis	G	O	E	NA	S	NA										
Valonia macrophysa	NA	NA	E	Spring-Summer	S	NA										
Vermetidae	G	O	E	Spring-Summer	I	NA										
Appendix S3. (continued).

Species	Spatial distribution	Duration of larval stage	Asexual reproduction	Recruitment success	Migration	Mobility	Regeneration potential	Dispersal potential (larval)	Dispersal potential (adult)
Jania rubens	C	1	Y	NA	1	A	Y	NA	1
Acetabularia acetabulum	C	1	Y	NA	1	A	Y	NA	1
Agelas oroides	C	2	Y	NA	1	A	Y	NA	1
Amphiroa spp.	C	1	Y	NA	1	A	Y	NA	1
Anadyomene stellata	C	1	Y	NA	1	A	Y	NA	1
Aplysina aerophoba	C	2	Y	NA	1	A	Y	NA	1
Ascidia mentula	C	2	N	NA	1	A	Y	4	1
Ascidia sp. 1	NA	NA	N	NA	1	A	Y	4	1
Perforatus perforatus	C	2	N	NA	1	A	Y	5	1
Balanophyllia (Balanophyllia) europaea	C	4	N	NA	1	A	Y	5	1
Botryocladia sp.	C	1	Y	NA	1	A	Y	NA	1
Caulerpa cylindracea	D	1	Y	NA	1	A	Y	NA	1
Chlidonia pyriformis	B	2	Y	NA	1	A	Y	NA	1
Chondrosia reniformis	C	1	Y	NA	1	A	Y	5	1
Cliona schmidtii	C	2	Y	NA	1	A	Y	NA	1
Codium bursa	C	1	Y	NA	1	A	Y	4	1
Codium coralloides	C	1	Y	NA	1	A	Y	4	1
Colpomenia sinuosa	C	1	Y	NA	1	A	Y	2	1
Ellisolandia elongata	C	1	Y	NA	1	A	Y	NA	1
Cutleria sp.	C	1	Y	NA	1	A	Y	NA	1
Cystoseira compressa	C	1	Y	NA	1	A	Y	NA	1
Dasycladus vermicularis	C	1	Y	NA	1	A	Y	NA	1
Species	Region	Y	NA	A	Y	NA	1		
-------------------------------	--------	---	----	---	----	----	---		
Dictyopteris polypodioides	C	1	Y	NA	1	A	Y	NA	1
Dictyota spp.	C	1	Y	NA	1	A	Y	NA	1
Didemnidae	C	1	Y	NA	1	A	Y	NA	1
Diplosoma listerianum	A	3	Y	NA	1	A	Y	NA	1
Didrasnaya verticillata	C	1	Y	NA	1	A	Y	NA	1
Dysidea avara	C	2	Y	NA	1	A	Y	NA	1
Erect Bryozoans	B	2	Y	NA	1	A	Y	3	1
Encrusting Rhodophytes	C	1	Y	NA	1	A	Y	3	1
Encrusting Bryozoans	B	2	Y	NA	1	A	Y	NA	1
Crambe crambe	C	1	Y	NA	1	A	Y	5	1
Gloiocladia repens	C	1	Y	NA	1	A	Y	NA	1
Filamentous Algae	NA	1	Y	NA	1	A	Y	5	1
Discosporangium mesarthrocarpum	C	1	Y	NA	1	A	Y	NA	1
Flabellia petiolata	C	1	Y	NA	1	A	Y	NA	1
Roccellaria dubia	C	2	N	NA	1	A	Y	NA	1
Green Filamentous Algae	C	1	Y	NA	1	A	Y	NA	1
Cliona viridis	C	2	Y	NA	1	A	Y	NA	1
Halimeda tuna	C	1	Y	NA	1	A	Y	NA	1
Jania virgata	C	1	Y	NA	1	A	Y	NA	1
Halocynthia papillosa	C	2	Y	NA	1	A	Y	4	1
Hemimycale columella	A	2	Y	NA	1	A	Y	NA	1
Hydroids	NA	3	Y	NA	1	A	Y	NA	1
Ircinia variabilis	C	1	Y	NA	1	A	Y	5	1
Laurencia obtusa	C	1	Y	NA	1	A	Y	NA	1
Leptopsamnia pruvoti	B	4	Y	NA	1	A	Y	4	1
Scalarispongia scalaris	NA	2	Y	NA	1	A	Y	NA	1
Miniacina miniacea	C	NA	Y	NA	1	A	Y	NA	1
Species	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	
------------------------------	----------	----------	----------	----------	----------	----------	----------	----------	
Myriapora truncata	B	2	Y	NA	1	A	Y	NA	1
Nolella gigantea	B	2	Y	NA	1	A	Y	NA	1
Oscarea lobularis	C	2	Y	NA	1	A	Y	NA	1
Padina pavonica	C	1	Y	NA	1	A	Y	NA	1
Palmophyllum crassum	C	2	Y	NA	1	A	Y	NA	1
Petrosia (Petrosia) ficiformis	C	1	Y	NA	1	A	Y	NA	1
Peyssonellia spp.	C	1	Y	NA	1	A	Y	NA	1
Cliona rhodensis	B	2	Y	NA	1	A	Y	NA	1
Phorbas fictitius	C	1	Y	NA	1	A	Y	2	1
Sarcotragus spinosulus	C	2	Y	NA	1	A	Y	NA	1
Sargassum sp.	C	3	Y	NA	1	A	Y	NA	1
Serpulidae	C	3	Y	NA	1	A	Y	NA	1
Smitina cervicornis	B	2	Y	NA	1	A	Y	NA	1
Cornularia cornucopiae	C	3	Y	NA	1	A	Y	NA	1
Halopteris scoparia	C	1	Y	NA	1	A	Y	NA	1
Tricleocarpa fragilis	C	1	Y	NA	1	A	Y	NA	1
Valonia macrophysa	C	1	Y	NA	1	A	Y	NA	1
Vermetidae	C	3	N	NA	1	A	Y	2	1
Appendix S3. (continued).

Species	Living habit - environmental position	Substrate preference	Degree of attachment to substrate	Strength of attachment to substrate	Min depth	Max depth	Min salinity	Max Temperature	Max N	Max P	Min O% saturation
Jania rubens	EPI	Bedrock	P	1	1	50	38.0	26.0	1.69	0.23	97.4
Acetabularia acetabulum	EPI	Bedrock	P	1	1	10	38.0	17.0	1.69	0.23	97.4
Agelas oroides	EPI	Bedrock	P	3	3	40	37.9	17.0	0.54	0.13	99.49
Amphiroa spp.	EPI	Bedrock	P	3	1	40	37.1	26.0	0.70	0.11	103.8
Anadyomene stellata	EPI	Bedrock	P	2	2	30	35.7	27.0	5.24	0.50	85.85
Aplysina aerophoba	EPI	Bedrock	P	3	1	130	35.0	27.5	NA	NA	NA
Ascidia mentula	EPI	Bedrock	P	2	2	200	20.0	28.0	0.12	0.65	94.5
Ascidia sp. 1	EPI	Bedrock	P	2	NA	NA	NA	NA	NA	NA	NA
Perforatus perforatus	EPI	Bedrock	P	3	1	20	NA	NA	NA	NA	NA
Balanophyllia (Balanophyllia) europaea	EPI	Bedrock	P	3	1	100	NA	27.0	0.28	NA	NA
Botryocladia sp.	EPI	Bedrock	P	1	1	NA	34.3	28.7	5.24	0.50	85.9
Caulerpa cylindracea	EPI	Bedrock	P	2	1	70	34.4	29.0	2.38	0.31	87.7
Chlidonaria pyriformis	EPI	Bedrock	P	1	2	70	35.2	25.7	0.86	0.13	97.19
Chondrosia reniformis	EPI	Bedrock	P	3	2	80	36.0	24.0	4.13	0.28	79.9
Cliona schmidtii	ENDO	Bedrock	P	3	2	80	36.3	26.0	4.13	0.28	79.9
Codium bursa	EPI	Bedrock	P	2	2	30	37.9	17.4	1.69	0.23	97.4
Codium coralloides	EPI	Bedrock	P	2	2	NA	NA	NA	NA	NA	NA
Colpomenia sinuosa	EPI	Bedrock	P	1	1	40	34.9	26.4	5.11	0.71	99.6
Ellisolandia elongata	EPI	Bedrock	P	3	1	20	38.0	17.4	1.42	0.18	101.0
Cutleria sp.	EPI	Bedrock	P	3	2	30	38.2	16.3	7.12	0.45	102.0
Cystoseira compressa	EPI	Bedrock	P	3	1	20	38.0	17.0	1.42	0.18	101.0
Dasycladus vermicularis	EPI	Bedrock	P	2	2	100	37.1	26.0	0.99	0.18	99.9
Dictyopteris polypodioides	EPI	Bedrock	P	2	1	40	35.0	25.3	7.25	0.50	99.7
Species	Growth Form/Depth	Environment	Width	Height	Calculated Red	Calculated Green	% Red	% Green			
-------------------------------	-------------------	-----------------	-------	--------	----------------	------------------	------	--------			
Dictyota spp.	EPI Bedrock P	2 1 40	35.0	26.0	7.25 0.50	97.4					
Didemnidae	EPI Bedrock P	2 1 20	35.0	25.0	NA NA NA	88.7					
Diplosoma listerianum	EPI Bedrock P	1 1 20	35.2	27.7	6.73 1.17	100.0					
Dudresnaya verticillata	EPI Bedrock P	3 2 50	35.5	15.7	1.33 0.25	99.1					
Dysidea avara	EPI Bedrock P	2 1 >200	34.9	27.0	2.79 1.52	71.1					
Erect Bryozoans	EPI Bedrock P	2 2 30	38.0	17.0	1.69 0.23	97.4					
Green Filamentous Algae	EPI Bedrock P	1 NA NA NA	37.5	17.5	NA NA NA	102.6					
Discosporangium mesarthrocarpum	EPI Bedrock P	1 2 70	NA	NA	NA NA NA	NA					
Flabellia petiolata	EPI Bedrock P	1 1 30	37.9	17.4	1.42 0.18	98.3					
Rocellaria dubia	ENDO Bedrock P	1 1 40	NA	14.0	7.49 0.54	98.5					
Green Filamentous Algae	EPI Bedrock P	1 1 90	34.4	28.9	7.42 1.03	102.6					
Clypeaster hirsutus	ENDO Bedrock P	1 1 60	37.0	26.4	1.42 0.18	99.5					
Halimeda tuna	EPI Bedrock P	1 1 20	37.9	17.1	0.21 0.13	102.6					
Halocynthia papillosa	EPI Bedrock P	1 2 100	37.9	NA	1.69 0.23	97.4					
Hemimycale columella	EPI Bedrock P	2 1 50	35.4	12.0	8.32 0.63	97.0					
Hydroids	EPI Bedrock P	1 NA NA NA	37.9	17.1	NA NA NA	NA					
Ircinia variabilis	EPI Bedrock P	3 1 >200	37.9	24.3	3.96 0.21	98.7					
Laurencia obtusa	EPI Bedrock P	2 1 30	38.0	26.4	1.42 0.18	103.8					
Leptopsammia pruvoti	EPI Bedrock P	1 3 >200	38.4	17.3	2.72 0.12	99.5					
Scalarispongia scalaris	EPI Bedrock P	3 1 70	37.7	16.3	1.05 0.22	101.1					
Miniacina miniacea	EPI Bedrock P	1 1 200	34.7	28.9	0.83 0.36	94.0					
Myriapora truncata	EPI Bedrock P	2 2 >200	37.5	20.0	NA NA NA	NA					
Nolella gigantea	EPI Bedrock P	1 3 200	38.4	15.7	0.87 0.13	94.7					
Species	Distribution	Substrate	Size	Width	Height	Density	Height	Weight	Score		
---------------------------------	--------------	-----------	------	-------	--------	---------	--------	--------	-------		
Oscarella lobularis	EPI	Bedrock	P	2	1	40	35.0	16.0	7.49	0.54	97.3
Padina pavonica	EPI	Bedrock	P	1	1	40	34.4	28.5	2.38	0.31	97.4
Palmophyllum crassum	EPI	Bedrock	P	2	2	130	36.4	26.1	3.80	0.34	91.2
Petrosia (Petrosia) ficiformis	EPI	Bedrock	P	3	2	80	36.3	23.3	3.01	0.23	94.4
Peyssonnelia spp.	EPI	Bedrock	P	3	2	60	35.4	24.4	2.38	0.31	87.7
Cliona rhodensis	ENDO	Bedrock	P	2	1	20	36.1	23.7	1.69	0.23	98.5
Phorbas fictitius	EPI	Bedrock	P	2	1	40	32.8	27.8	7.25	0.50	99.7
Sarcotragus spinosulus	EPI	Bedrock	P	3	3	>200	37.8	17.1	3.92	0.21	91.3
Sargassum sp.	EPI	Bedrock	P	2	1	30	NA	25.6	NA	NA	NA
Serpulidae	EPI	Bedrock	P	3	1	>200	34.2	23.7	13.30	0.92	89.0
Smittina cervicornis	EPI	Bedrock	P	2	1	120	35.0	25.0	NA	NA	NA
Cornularia cornucopiae	EPI	Bedrock	P	1	2	20	NA	NA	NA	NA	NA
Halopteris scoparia	EPI	Bedrock	P	3	1	20	38.0	30.0	1.42	0.18	101.0
Tricleocarpa fragilis	EPI	Bedrock	P	2	1	100	32.5	27.2	NA	NA	NA
Valonia macrophysa	EPI	Bedrock	P	1	1	110	35.2	26.9	2.09	0.22	94.3
Vermetidae	EPI	Bedrock	P	3	1	>200	35.4	23.3	18.20	1.24	NA
Biological interactions	Matter and energy flow										
-------------------------	------------------------										
Sociability	Dependency	Defence	Biogenic habitat provision	Scale of habitat provision	Food type/diet	Feeding habit	Biomass	Caloric content	CaCO₃ content		
Jania rubens	1	Independent	None	2	2	Chemical uptake	1	25	17.0	2	
Acetabularia acetabulum	1	Independent	None	1	1	Chemical uptake	1	25	16.9	1	
Agelas oroides	3	Independent	Chemical	2	3	Suspended matter	3	17	22.5	1	
Amphiroa spp.	1	Independent	Physical	1	1	Chemical uptake	1	25	17.0	2	
Anadyomene stellata	1	Independent	None	1	1	Chemical uptake	1	25	16.9	1	
Aplysina aerophoba	3	Independent	Chemical	2	3	Suspended matter	3	17	22.5	1	
Ascidia mentula	1	Independent	NA	2	1	Suspended matter	3	6	21.6	1	
Ascidia sp. 1	1	Independent	NA	2	1	Suspended matter	3	6	21.6	1	
Perforatus perforatus	2	Independent	Physical	1	1	Suspended matter	3	7	22.7	3	
Balanophyllia (Balanophyllia) europaea	1	Independent	Chemical	3	4	Suspended matter	4	14	16.1	4	
Botryocladia sp.	1	Independent	None	1	1	Chemical uptake	1	25	17.0	1	
Caulerpa cylindracea	3	Independent	Chemical	1	1	Chemical uptake	1	21	9.2	1	
Chilone pyriforis	3	Independent	None	1	1	Suspended matter	3	NA	21.6	3	
Chondrosia reniformis	3	Independent	None	2	3	Suspended matter	3	17	22.5	1	
Cliona schmidti	3	Independent	Physical	1	1	Suspended matter	3	17	22.5	1	
Codium bursa	1	Independent	None	3	1	Chemical uptake	1	25	16.0	1	
Codium coralloides	1	Independent	None	1	1	Chemical uptake	1	25	16.0	1	
Colpomenia sinuosa	1	Independent	None	1	1	Chemical uptake	1	25	17.6	1	
Ellisolamia elongata	1	Independent	Physical-chemical	2	1	Chemical uptake	1	25	20.8	2	
Cutleria sp.	1	Independent	None	1	1	Chemical uptake	1	25	17.6	1	
Cystoseira compressa	1	Independent	None	4	4	Chemical uptake	1	25	18.9	1	
Dasycladus vermicularis	1	Independent	None	2	2	Chemical uptake	1	25	16.9	1	
Dictyopteris polyiodioides	1	Independent	None	4	3	Chemical uptake	1	25	17.6	1	
Species	Design	Source	Method	Component	Tolerance	Tolerance	Tolerance	Tolerance	Tolerance	Tolerance	
------------------------------	-----------------	--------------	-----------------	-------------------	------------	-----------	-----------	-----------	-----------	-----------	
Dictyota spp.	1 Independent	None	2 Chemical uptake	1 2 Chemical uptake	1 25 17.6 1						
Didemnidae	3 Independent	Chemical	1 1 Suspended matter	3 6 21.6 1							
Diplosoma listerianum	3 Independent	Chemical	1 1 Suspended matter	3 6 21.6 1							
Dudresnaya verticillata	1 Independent	None	2 2 Chemical uptake	1 25 17.0 1							
Dysidea avara	3 Independent	Chemical	2 3 Suspended matter	3 17 22.5 1							
Erect Bryozoans	3 Independent	NA	2 2 Suspended matter	3 18 21.6 3							
Encrusting Rhodophytes	3 Independent	Physical	3 4 Chemical uptake	1 52 17.0 1							
Encrusting Bryozoans	3 Independent	NA	1 1 Suspended matter	3 18 21.6 3							
Crambe crambe	3 Independent	Chemical	2 1 Suspended matter	3 17 22.5 1							
Gloiocladia repens	1 Independent	None	1 1 Chemical uptake	1 25 17.0 1							
Filamentous Algae	1 Independent	None	1 1 Chemical uptake	1 25 17.0 1							
Discosporangium mesarthocarpum	1 Independent	None	2 2 Chemical uptake	1 25 17.6 1							
Filabellia petiolata	1 Independent	None	2 2 Chemical uptake	1 25 16.9 1							
Rocellaria dubia	1 Independent	Physical	1 1 Suspended matter	3 9 22.6 4							
Green Filamentous Algae	1 Independent	None	1 1 Chemical uptake	1 25 17.8 1							
Cliona viridis	3 Independent	Physical	1 1 Suspended matter	3 17 22.5 1							
Halimeda tuna	1 Independent	None	4 3 Chemical uptake	1 25 16.9 2							
Jania virgata	1 Independent	None	2 2 Chemical uptake	1 25 17.0 2							
Halocynthia papillosa	1 Independent	NA	2 1 Suspended matter	3 6 21.6 1							
Hemimycale columella	3 Independent	Chemical	1 1 Suspended matter	3 17 22.5 1							
Hydroids	3 Independent	Chemical	1 1 Suspended matter	4 NA 20.6 1							
Ircinia variabilis	3 Independent	Chemical	2 3 Suspended matter	3 17 22.5 1							
Laurencia obtusa	1 Independent	None	4 3 Chemical uptake	1 25 17.0 1							
Leptopsammia pruvoti	1 Independent	Chemical	1 1 Suspended matter	4 14 16.1 4							
Scalarispongia scalaris	3 Independent	NA	2 3 Suspended matter	3 17 22.5 1							
Minicula miniacea	3 Independent	None	1 1 Suspended matter	2 1 NA 3							
Myriapora truncata	3 Independent	Physical-chemical	2 3 Suspended matter	3 18 21.6 3							
Nolella gigantea	3 Independent	NA	1 1 Suspended matter	3 18 21.6 3							

- **Design**: 1 Independent, 3 Independent
- **Source**: None, Chemical
- **Method**: Chemical uptake, Suspended matter
- **Component**: Chemical, Suspended matter
- **Tolerance**: 17.6, 21.6
| Taxon | Impact | Type | Impact Type | Stress Cause | Chemistry | Suspension | N | Temperature | P1 | P2 | P3 | P4 |
|---|--------|------------|-------------|---------------|-----------|------------|---|-------------|----|----|----|----|
| **Oscarella lobularis** | 3 | Independent| NA | 2 | 3 | Suspended matter | 3 | 17 | 22.5| 1 |
| **Padina pavonica** | 1 | Independent| None | 2 | 2 | Chemical uptake | 1 | 25 | 17.6| 1 |
| **Palmophyllum crassum** | 3 | Independent| None | 1 | 1 | Chemical uptake | 1 | 25 | 16.9| 1 |
| **Petrosia (Petrosia) ficiformis** | 3 | Independent| Chemical | 2 | 3 | Suspended matter | 3 | 17 | 22.5| 1 |
| **Peyssonelia spp.** | 3 | Independent| None | 4 | 3 | Chemical uptake | 1 | 52 | 17.0| 2 |
| **Cliona rhodensis** | 3 | Independent| Physical | 1 | 1 | Suspended matter | 3 | 17 | 22.5| 1 |
| **Phorbas fictitius** | 3 | Independent| NA | 1 | 1 | Suspended matter | 3 | 17 | 22.5| 1 |
| **Sarcotragus spinosulus** | 3 | Independent| NA | 2 | 3 | Suspended matter | 3 | 17 | 22.5| 1 |
| **Sargassum sp.** | 1 | Independent| None | 4 | 4 | Chemical uptake | 1 | 25 | 17.6| 1 |
| **Serpulidae** | 2 | Independent| Physical | 3 | 4 | Suspended matter | 2 | 20 | 22.0| 3 |
| **Smittina cervicornis** | 3 | Independent| Physical | 2 | 3 | Suspended matter | 3 | 18 | 21.6| 3 |
| **Cornularia cornucopiae** | 3 | Independent| None | 1 | 1 | Suspended matter | 3 | 17 | 16.1| 3 |
| **Halopteris scoparia** | 1 | Independent| None | 4 | 3 | Chemical uptake | 1 | 25 | 17.6| 1 |
| **Tricleocarpa fragilis** | 1 | Independent| None | 2 | 3 | Chemical uptake | 1 | 25 | 17.0| 1 |
| **Valonia macrophysa** | 1 | Independent| None | 1 | 1 | Chemical uptake | 1 | 25 | 16.9| 1 |
| **Vermetidae** | 2 | Independent| Physical | 3 | 4 | Suspended matter | 2 | 8 | 22.0| 4 |
Appendix S4. Principal Coordinates Analysis (PCoA) of the 33 functional traits selected (see Appendix S2). The analysis was based on the Gower dissimilarity matrix obtained from the rectangular matrix of 67 taxa × 33 functional traits (Appendix S3).

Axis	Eigenvalue	Variation explained by individual axis (%)	Cumulative %
1	22565.0	44.1%	44.1%
2	8714.1	17.0%	61.1%
3	5418.4	10.6%	71.7%
4	4117.3	8.0%	79.7%
5	3671.4	7.2%	86.9%
6	3505.6	6.9%	93.8%
7	2332.5	4.6%	98.3%
Appendix S5. PERMDISP testing for differences in multivariate dispersion of sites.

Table S5A. PERMDISP testing for differences among islands in multivariate dispersion of sites.

Tests were performed on compositional and functional dissimilarities and their separated components of turnover and nestedness at each depth. Tests were based on 999 permutations.

Depth	Component	F	p(perm)	tβ	p(perm)
5 m	β	1.789	0.384	1.179	0.591
15 m	β	2.261	0.293	2.030	0.393
5 m	βTURN	0.546	0.830	0.232	0.967
15 m	βTURN	3.537	0.076	0.890	0.708
5 m	βNES	0.738	0.830	0.526	0.906
15 m	βNES	2.506	0.196	0.497	0.889

Table S5B. PERMDISP testing for differences between depths in multivariate dispersion of sites.

Tests were performed on compositional and functional dissimilarities and their separated components of turnover and nestedness. Pair-wise tests between depths for each island were also provided. All tests were based on 999 permutations. KO = Kerkira, KE = Kefalonia, PX = Paxi, ZA = Zakynthos, LE = Lefkada, ME = Meganisi.

Overall	Pair-wise tests for each island													
	KE	KO	LE	ME	PX	ZA								
F	p(perm)	F	p	F	p	F	p	F	p	F	p			
β	3.465	0.055	1.442	0.28	1.017	0.541	1.196	0.219	0.776	0.522	1.619	0.193	5.627	0.028
βTURN	2.855	0.072	2.353	0.122	1.742	0.303	0.596	0.488	0.768	0.359	1.703	0.318	1.809	0.144
βNES	1.287	0.715	1.679	0.205	1.145	0.644	0.047	1	0.179	0.953	0.535	0.707	1.422	0.224
fβ	1.546	0.571	0.284	0.822	0.695	0.681	1.437	0.202	1.036	0.398	0.167	0.923	1.494	0.429
fβTURN	0.544	0.944	0.615	0.709	0.318	0.727	0.26	0.779	0.525	0.335	1.415	0.279	0.266	0.898
fβNES	0.468	0.984	0.623	0.626	0.252	0.83	0.249	0.822	0.562	0.616	0.744	0.641	1.283	0.551
Appendix S6. PCoA ordination of islands x depths centroids based on compositional and functional dissimilarities separated for turnover and nestedness components. Light blue = 5 m, dark blue = 15 m. KO = Kerkira, KE = Kefalonia, PX = Paxi, ZA = Zakynthos, LE = Lefkada, ME = Meganisi.
Appendix S7. Pairwise values of compositional β-diversity (β) and its turnover (β_{TURN}) and nestedness-resultant (β_{NES}) components between assemblages from different islands, calculated at the two investigated depths (5 and 15 m).

	KE	KO	LE	ME	PX	ZA
5 m						
β KE						
KO	0.49					
LE	0.28 0.51					
ME	0.35 0.52 0.29					
PX	0.35 0.55 0.43 0.37					
ZA	0.29 0.47 0.33 0.38 0.38					
β_{TURN} KE						
KO	0.35					
LE	0.15 0.47					
ME	0.21 0.50 0.25					
PX	0.21 0.53 0.41 0.37					
ZA	0.06 0.46 0.26 0.35 0.35					
β_{NES} KE						
KO	0.14					
LE	0.13 0.05					
ME	0.14 0.02 0.04					
PX	0.15 0.02 0.02 0.00					
ZA	0.23 0.01 0.07 0.03 0.03					
	KE	KO	LE	ME	PX	ZA
15 m						
β KE						
KO	0.48					
LE	0.41 0.40					
ME	0.38 0.44 0.33					
PX	0.43 0.35 0.34 0.43					
ZA	0.32 0.48 0.41 0.42 0.47					
β_{TURN} KE						
KO	0.44					
LE	0.32 0.36					
ME	0.33 0.44 0.27					
PX	0.32 0.28 0.32 0.37					
ZA	0.27 0.41 0.27 0.33 0.32					
β_{NES} KE						
KO	0.03					
LE	0.09 0.05					
ME	0.04 0.00 0.05					
PX	0.11 0.07 0.02 0.06					
ZA	0.05 0.07 0.14 0.08 0.14					
Appendix S8. Pairwise values of functional β-diversity (F^β) and its turnover (F^β_{TURN}) and nestedness-resultant (F^β_{NES}) components between assemblages from different islands, calculated at the two investigated depths (5 and 15 m).

	5 m	15 m
F^β	KE KO LE ME PX ZA	KE KO LE ME PX ZA
KE		
KO	0.61	0.44
LE	0.26 0.66	0.50 0.32
ME	0.34 0.64 0.27	0.45 0.27 0.28
PX	0.28 0.62 0.31 0.19	0.50 0.22 0.22 0.28
ZA	0.37 0.61 0.35 0.30 0.22	0.28 0.38 0.44 0.40 0.46
F^β_{TURN}	KE KO LE ME PX ZA	KE KO LE ME PX ZA
KE		
KO	0.54	0.10
LE	0.02 0.64	0.07 0.24
ME	0.02 0.59 0.20	0.11 0.26 0.20
PX	0.06 0.61 0.30 0.09	0.07 0.10 0.20 0.18
ZA	0.01 0.54 0.24 0.26 0.06	0.22 0.09 0.06 0.11 0.07
F^β_{NES}	KE KO LE ME PX ZA	KE KO LE ME PX ZA
KE		
KO	0.07	0.34
LE	0.24 0.01	0.42 0.08
ME	0.32 0.05 0.08	0.34 0.01 0.08
PX	0.21 0.01 0.01 0.10	0.43 0.12 0.02 0.10
ZA	0.36 0.07 0.11 0.04 0.16	0.07 0.29 0.38 0.29 0.39
Appendix S9. Patterns of β-diversity vs. geographic distance at the scale of sites.

β-diversity	Intercept	Slope	p	R	
(β_{TURN})	5 m	0.325	0.0013	0.001	0.115
	15 m	0.391	0.0010	0.001	0.069
(β_{NES})	5 m	0.108	-0.0001	0.178	0.007
	15 m	0.096	-0.0001	0.997	0.000
$F_{\beta_{\text{TURN}}}$	5 m	0.211	0.0011	0.001	0.090
	15 m	0.243	0.0002	0.214	0.006
$F_{\beta_{\text{NES}}}$	5 m	0.234	-0.0006	0.004	0.030
	15 m	0.188	0.0006	0.003	0.032
Appendix S10. Presence/absence data for the six islands at 5m and 15m depth.

Island	KE_5m	ME_5m	LE_5m	LE_15m	ZA_5m	KE_15m	ME_15m	LE_15m	ZA_15m
	1 1 0 1 1 1 0 0 0	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				

Flora

Flora	KE_5m	ME_5m	LE_5m	LE_15m	ZA_5m	KE_15m	ME_15m	LE_15m	ZA_15m
	1 1 1 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 1 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 1 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 1 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				

Fauna

Fauna	KE_5m	ME_5m	LE_5m	LE_15m	ZA_5m	KE_15m	ME_15m	LE_15m	ZA_15m
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				
	1 1 0 1 1 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1	1 1 1 1 0 1 0 0 1				