Primary Research

Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population

Bangshun He1,2†, Tao Xu1†, Bei Pan1, Yuqin Pan1,2, Xuhong Wang3, Jingwu Dong4, Huiling Sun1,2, Xueni Xu3, Xiangxiang Liu1 and Shukui Wang1,2*

Abstract

Background: Helicobacter pylori (H. pylori)-induced gastric cancer is an intricate progression of immune response against H. pylori infection. IL-16, TGF-β1 and TLR4 pathways were the mediators involved in the immune response. We hypothesized that genetic variations in genes of these pathways have potential susceptibility to gastric cancer risk, and predict clinical outcomes of patients.

Methods: To investigate the susceptibility and prognostic value of genetic variations of IL-16, TGFBR1 and TLR4 pathways to gastric cancer, we performed a case–control study combined a retrospective study in a Chinese population. Genotyping for all polymorphisms was based on the Sequenom's MassARRAY platform, and H. pylori infection was determined by using an immunogold testing kit.

Results: We found rs10512263 CC genotype was found to be a decreased risk of gastric cancer (CC vs. TT: adjusted OR = 0.54, 95% CI 0.31–0.97); however, rs334348 GG genotype was associated with increased risk of gastric cancer (GG vs. AA: adjusted OR = 1.51, 95% CI 1.05–2.18). We found that carriers harboring rs1927911 A allele (GA/AA) or rs10512263 C allele (CT/CC) have unfavorable survival time than none carriers (rs1927911: GA/AA vs. GG: adjusted HR = 1.27, 95% CI 1.00–1.63; rs10512263: CT/CC vs. TT: adjusted HR = 1.29, 95% CI 1.02–1.63) and that individuals harboring both two minor alleles (rs1927911 GA/AA and rs10512263 CT/CC) suffered a significant unfavorable survival (adjusted HR = 1.64, 95% CI 1.17–2.31).

Conclusion: In short, we concluded that two polymorphisms (rs334348, rs10512263) in TGFBR1 were associated with risk of gastric cancer, and that TLR4 rs1927911 and TGFBR1 rs10512263 were associated with clinical outcomes of gastric cancer patients.

Keywords: IL-16, TGFBR1, TLR4, Polymorphism, Gastric cancer, Susceptibility, Prognosis

Background

Gastric cancer is the fifth most common cancer worldwide and ranks third cause of cancer related mortality [1]. Almost over half of new diagnosed cases are from eastern Asian, predominantly in China [2]. Gastric cancer is a multifactorial disease with multistep etiology. Epidemiological studies have demonstrated that interaction of environmental factors, such as Helicobacter pylori (H. pylori) infection, excessive salt intake, alcohol drinking and tobacco smoking, and genetic background was regarded as risk of gastric cancer.

For environmental factors, H. pylori causing chronic inflammation has been verified as a key factor involved in gastric carcinogenesis. Moreover, for genetic background, polymorphisms in immune-related genes, such as IL-1B, IL-1RN, IL-10, could affect their expression and were suggested as risk factors of gastric cancer [3, 4]. In addition, we previously reported genetic polymorphisms in the promoter of IL-1B/IL-1RN were the...
risk of gastric cancer [5, 6]. Of immune-related genes, IL-16 is a pro-inflammatory cytokine that has a variety of biological functions, playing a role in the development and homeostasis of the immune system [7], and stimulating the secretion of tumor-associated inflammatory cytokines including TNF-α, IL-1β, IL-6, and IL-15 [8]. In addition, polymorphisms in IL-16 were investigated to be a risk of various cancers, including gastric cancer, and the diagnostic and prognostic value of serum IL-16 levels for patients with gastric cancer was also reported [9]. Transforming growth factor beta-1 (TGF-β1), a multifunctional cytokine, combined its receptor (TGFBR1) plays a biphasic role in carcinogenesis that, in early stages of cancer, it acts as a tumor suppressor by inhibiting cellular proliferation or by promoting cellular differentiation and apoptosis; in later stages of cancer, however, it turns to be a tumor promoter by stimulating angiogenesis and cell motility, suppressing immune response, and increasing progressive invasion and metastasis [10–12]. Moreover, serum TGF-β1 levels implicating a predictive and prognostic value for patients with gastric cancer [13, 14] may indicate polymorphisms in genes of TGF-β1 pathway including TGFBR1 could influence the risk and clinical progression of gastric cancer [15–17]. In the progression of H. pylori infection, toll-like receptors (TLRs), a group of membrane-bound receptors proteins, play a pivotal role in innate immune response and provide first line of host defense. Among TLRs, TLR-4 is the main receptor of lipopolysaccharide (LPS) and plays a role in initiating the inflammatory response of H. pylori infection. After binding of microbial ligands, a dysregulation of TLR signalling may contribute to an unbalanced ratio between pro- and anti-inflammatory cytokines, resulting in increasing higher risk of developing gastric cancer [18]. Similarly, polymorphisms in TLR4 has been implicated as risk factors for gastric cancer [18]; however, the conclusion of susceptibility of these polymorphisms to gastric cancer risk remains elusive [19–21].

Immune response triggered by H. pylori infection, including host adaptive immune response (such as IL-1β, TNF-α, IL-10, IL-16) and innate immune response (such as TLR4), is an intricate progression, which is responsible for clinical outcomes of individuals with H. pylori infection. Thus, polymorphisms occurring in immune genes could serve as possible susceptibility factors to the development of gastric cancer and have a predictive value for gastric cancer clinical outcome. Here, we conducted a case–control study to assess the susceptibility of polymorphisms in IL-16, TGFBR1 and TLR4 to risk of gastric cancer in a Chinese population, and the prognostic value of the polymorphisms was also evaluated by a retrospective study.

Materials and methods
Study population
For the case–controls study, we recruited 479 patients histologically diagnosed as gastric cancer and 483 age- and sex-matched healthy controls who came to the hospital for routine physical examination. The demographic features of participants were collected via a questionnaire or by reviewing patients’ medical records. The TNM stages were classified according to American Joint Commission for Cancer Staging in 2002 (the sixth edition). For retrospective study, we traced survival state of all patients through on-site interview, direct calling or medical chart review, and finally, a total of 460 patients were followed up to 5 years. The protocol of this study was approved by the Institutional Review Board of the Nanjing First Hospital, and written informed consents were obtained from all participants.

DNA extraction and genotyping
We retrieved the potential genetic variations in IL-16, TGF-BR1 and TLR4 from the National Center for Biotechnology Information dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP), and then the genetic variations were selected followed the following criteria: (1) the minor allele frequency (MAF) is not less than 5% in Han Chinese population; (2) with position in exons, promoter region, 5’ untranslated regions (UTR) or 3’ UTR; and (3) published results shown to be associated with any cancer risk. For those polymorphisms in intron if meet the criterion (3) were also included. Finally, a total of 11 polymorphisms were selected (Additional file 1: Table S1).

The DNA extraction and genotyping was performed as we previously described [22]. A GoldMag-Mini Whole Blood Genomic DNA Purification Kit (GoldMag Co. Ltd. Xi’an, China) was used for DNA extraction, and then the genotyping was performed on the SequenomMassARRAY platform.

H. pylori infection detection
To identify the H. pylori infection, the serum of all participants were collected to detect H. pylori antibody by using a H. pylori immunogold testing kit (KangmeiTianhong Biotech Co., Ltd, Beijing, China).

Statistical analysis
The difference of demographic features of the two groups was assessed by t test or χ² test. For the distribution of genotypes, a goodness of fit Chi square test was adopted to test the Hardy–Weinberg equilibrium (HWE) in the control group, and then, the susceptibility of polymorphisms to gastric cancer risk was expressed with odds ratios (ORs) and 95% confidence intervals.
(CIs). Subgroups analyze was conducted if there was a significant association of the polymorphism to gastric cancer risk. The risk of polymorphisms was calculated by using a logistic regression model based on SAS v9.1 (SAS Institute, Cary, NC, USA). The hazard ratios (HRs) of genotypes to survival time of patients were calculated by Cox regression analysis with SPSS 11.0 (SPSS, Chicago, IL, USA). The p value < 0.05 was considered statistically significant difference.

Result

Characteristics of the study population

The health controls and patients were matched for age (p = 0.748) and gender (p = 0.881). There were significant differences between the two groups with respect to the frequency of *H. pylori* infection (p = 0.039), cigarette smoking (p < 0.001) and alcohol consumption (p < 0.001), summarized in Additional file 1: Table S2. The observed frequencies of all tested genotypes in controls did not deviate from HWE (shown in Additional file 1: Table S1).

Association between polymorphisms and risk of gastric cancer

Two polymorphisms in *TGFBR1* were observed to be potentially associated with risk of gastric cancer. rs10512263 CC genotype was found to be a decreased risk of gastric cancer (CC vs. TT: adjusted OR = 0.54, 95% CI 0.31–0.97, p = 0.039); however, rs334348 GG genotype was associated with increased risk of gastric cancer (GG vs. AA: adjusted OR = 1.51, 95% CI 1.05–2.18, p = 0.028), shown in Table 1.

Stratified analysis by age, gender, *H. pylori* infection status, tumor stage and tumor site revealed that the significant association of rs10512263 to risk of gastric cancer was maintained in the subgroup of male, and subgroup of individuals with older age, shown in Table 2. In the stratification analysis by pathologic characteristics, we observed that the significant association of rs334348 to risk of gastric cancer was maintained in the subgroup of patients with clinical stage T1–T2. In addition, although no significant association was found, abnormal significant of two polymorphisms to risk of gastric cancer was observed in subgroup of clinical stage T1–T2 and in subgroup of non-cardiac, shown in Table 3.

Association between polymorphisms and clinical outcome

A retrospective study was conducted based on 460 patients with follow-up information on survival period of 5 years. We found that carriers harboring rs1927911 A allele (GA/AA) or rs10512263 C allele (CT/CC) have unfavorable survival time than none carriers (rs1927911: GA/AA vs. GG: adjusted HR = 1.27, 95% CI 1.00–1.63, p = 0.054; rs10512263: CT/CC vs. TT: adjusted HR = 1.29, 95% CI 1.02–1.63, p = 0.031), shown in Table 4.

The stratified analysis based on the age, gender, tumor site or clinical stage was also performed for the significant polymorphisms, and the result revealed that carriers with rs1927911 A allele have poor survival in subgroup of patients with age younger than 64 years old (GA/AA vs. GG: adjusted HR = 1.64, 95% CI 1.13–2.38), male (GA/AA vs. GG: adjusted HR = 1.36, 95% CI 1.03–1.81), and non-cardiac gastric cancer (GA/AA vs. GG: adjusted HR = 1.34, 95% CI 1.00–1.80), and that rs1927911 A allele carriers have poor survival in the subgroup of male (CT/CC vs. TT: adjusted HR = 1.43, 95% CI 1.09–1.87), patients in clinical stage T1–T2 (CT/CC vs. TT: adjusted HR = 2.54, 95% CI 1.38–4.69), and non-cardiac gastric cancer (NCGC) (CT/CC vs. TT: adjusted HR = 1.36, 95% CI 1.02–1.80), shown in Table 5.

To identify the impact of the co-occurrence of rs1927911 and rs10512263 on overall survival, we analyzed the association between locus–locus interaction and overall survival, and the result shown that individuals harboring both two minor alleles (rs1927911GA/AA and rs10512263CT/CC) suffered a significant unfavorable survival (adjusted HR = 1.64, 95% CI 1.17–2.31), shown in Table 6.

Discussion

This case–control study combined retrospective study observed that two polymorphisms (rs334348, rs10512263) in *TGFBR1* were associated with risk of gastric cancer, and that rs1927911 and rs10512263 were associated with survival of gastric cancer patients.

TGFBR1 rs6478974 is a genetic variation in intron 1, it was previously reported to be associated with microRNAs expression and involved in carcinogenesis [23]. In addition, the significant association of rs6478974 to gastric cancer risk was also reported [15]; however, in this study, we observed such a significant association in the subgroup of male but for all participants, indicating male carrying rs6478974 polymorphisms have higher gastric cancer risk than female. Another polymorphism rs10512263 locating intron 1 of *TGFBR1* was observed as a susceptibility of gastric cancer in this study; however, an opposite result was also reported [15]. It is noted that, in the subgroup analysis, we observed that the decreased risk of the polymorphism to gastric cancer was maintained in the subgroup of male, and those with age older than 64 years, suggesting the susceptibility of the polymorphism to gastric cancer risk could be effected by demographic characteristics of participants. Due to the limited sample sized of this study, the significant should be verified by further study. *TGFBR1* rs334348 located in...
Table 1 Association between polymorphisms and risk of gastric cancer

Polymorphism	Genotype	Cases, n (%)	Controls, n (%)	OR (95% CI)	OR (95% CI)²	p value
(IL-16 rs4072111	CC	334 (69.73)	345 (71.43)	Reference	Reference	
	TC	126 (26.30)	122 (25.26)	1.07 (0.80, 1.43)	1.01 (0.75, 1.36)	0.970
	TT	19 (3.97)	16 (3.31)	1.23 (0.62, 2.43)	1.20 (0.60, 2.41)	0.600
	TC/TT	145 (30.27)	138 (28.57)	1.09 (0.82, 1.43)	1.02 (0.77, 1.36)	0.870
	Additive model	1.08 (0.86, 1.37)	1.04 (0.82, 1.32)		0.755	
rs4778889	TT	267 (55.74)	266 (55.07)	Reference	Reference	
	CT	182 (38.00)	192 (39.75)	0.94 (0.73, 1.23)	0.92 (0.70, 1.20)	0.524
	CC	30 (6.26)	25 (5.18)	1.20 (0.68, 2.09)	1.20 (0.60, 2.41)	0.542
	CT/CC	212 (44.26)	217 (44.93)	0.97 (0.76, 1.26)	0.95 (0.73, 1.23)	0.688
	Additive model	1.01 (0.82, 1.25)	1.00 (0.81, 1.23)		0.965	
rs859	TT	129 (26.93)	124 (25.67)	Reference	Reference	
	CT	235 (49.06)	248 (51.35)	0.94 (0.73, 1.23)	0.92 (0.70, 1.20)	0.406
	CC	30 (6.26)	25 (5.18)	1.20 (0.68, 2.09)	1.20 (0.60, 2.41)	0.542
	CT/CC	212 (44.26)	217 (44.93)	0.97 (0.76, 1.26)	0.95 (0.73, 1.23)	0.688
	Additive model	1.01 (0.82, 1.25)	1.00 (0.81, 1.23)		0.965	
rs11556218	TT	306 (63.88)	308 (63.77)	Reference	Reference	
	GT	151 (31.52)	157 (32.51)	1.97 (0.74, 1.27)	0.93 (0.71, 1.23)	0.628
	GG	22 (4.59)	25 (5.18)	1.23 (0.65, 2.34)	1.29 (0.68, 2.48)	0.439
	GT/GG	173 (36.12)	175 (36.23)	1.00 (0.77, 1.29)	0.97 (0.74, 1.27)	0.820
	Additive model	1.02 (0.82, 1.28)	1.01 (0.81, 1.27)		0.913	
rs1131445	TT	221 (46.14)	210 (43.48)	Reference	Reference	
	CT	211 (44.05)	222 (45.96)	0.90 (0.69, 1.18)	0.94 (0.72, 1.23)	0.655
	CC	47 (9.81)	51 (10.56)	0.88 (0.57, 1.36)	0.93 (0.59, 1.46)	0.748
	CT/CC	258 (53.86)	273 (56.52)	0.90 (0.70, 1.16)	0.93 (0.72, 1.21)	0.592
	Additive model	0.92 (0.76, 1.12)	0.95 (0.78, 1.16)		0.618	
TLR4	TT	240 (50.10)	251 (51.97)	Reference	Reference	
	CT	191 (39.87)	196 (40.58)	1.02 (0.78, 1.33)	1.05 (0.80, 1.38)	0.733
	CC	48 (10.00)	46 (9.45)	1.39 (0.87, 2.22)	1.38 (0.86, 2.23)	0.184
	CT/CC	239 (49.90)	232 (48.03)	1.08 (0.84, 1.39)	1.10 (0.85, 1.42)	0.481
	Additive model	1.11 (0.91, 1.35)	1.12 (0.92, 1.36)		0.275	
rs1927911	GG	171 (35.70)	175 (36.23)	Reference	Reference	
	GA	226 (47.18)	226 (46.79)	1.02 (0.77, 1.35)	1.04 (0.78, 1.38)	0.801
	AA	82 (17.12)	82 (16.98)	1.02 (0.71, 1.48)	0.99 (0.68, 1.45)	0.967
	GA/AA	308 (64.30)	308 (63.77)	1.02 (0.79, 1.33)	1.03 (0.79, 1.34)	0.844
	Additive model	1.01 (0.85, 1.21)	1.01 (0.84, 1.21)		0.930	
rs11536889	GG	303 (63.26)	293 (60.66)	Reference	Reference	
	CG	156 (32.57)	166 (34.37)	0.91 (0.69, 1.19)	0.91 (0.69, 1.19)	0.477
	CC	48 (10.00)	46 (9.45)	0.81 (0.44, 1.49)	0.76 (0.40, 1.43)	0.392
	CG/CC	176 (36.74)	190 (39.34)	0.90 (0.69, 1.16)	0.89 (0.69, 1.16)	0.402
	Additive model	0.90 (0.73, 1.13)	0.90 (0.72, 1.12)		0.355	
TGF-β1	TT	219 (45.72)	194 (40.17)	Reference	Reference	
	AT	204 (42.59)	220 (45.55)	0.82 (0.63, 1.08)	0.80 (0.61, 1.06)	0.118
	AA	56 (11.69)	69 (14.29)	0.72 (0.48, 1.08)	0.68 (0.45, 1.02)	0.063
	AT/AA	260 (54.28)	289 (59.83)	0.80 (0.62, 1.03)	0.78 (0.60, 1.01)	0.055
	Additive model	0.84 (0.70, 1.01)	0.82 (0.68, 0.99)		0.028	
the 3’ UTR region, and it was suggested with location in miRNA-628-5p binding site, resulting in GG genotype turn to be associated with lower TGFBR1 expression [24]. In addition, previous study has also reported that it could confer an increased risk of colorectal cancer by affecting TGFBR1 expression [25].

In the retrospective study, we observed TLR4 rs1927911 and TGFBR1 rs10512263 were associated with clinical outcomes of gastric cancer patients. TLR4 rs1927911 is an intron variation that was previously reported as a protective factor for gastric cancer [26, 27]; however, we failed to find such a significant association but we observed it was associated with unfavorable OS of gastric cancer patients, especially for male, patients with age younger than 64 years old, or patients with NCGC. To date, the function of rs1927911 remains unclear, we speculated that such a significant association was related the microenvironment of cancer by that TLR4 signaling was involved in drug resistant by inducing the M1 phenotype macrophages [28] and by that TLR4/NF-κB signal pathway mediated uncontrolled inflammation [29]. Moreover, this study observed TGFBR1 rs10512263 has a predictive value for clinical outcomes of gastric cancer patients. Although the function of rs10512263 remains unclear, TGF-β signaling has been suggested to promote gastric cancer progression by enhancing motility and inducing invasiveness of gastric cancer cell [11], or by promoting tumor vasculature conformation [30], which could be partly explained for the predictive role of TGFBR1 rs10512263 in gastric cancer patients.

Polymorphisms in three immune related genes was discussed for their susceptibility and predictive role in gastric cancer. Here, some limitations of this study should be noted. Firstly, the function of these polymorphisms is largely unclear, and we failed to assess the association of polymorphism and TGFBR1, TLR4 expression in patients. Instead of that, to perform functional candidate polymorphism and expression quantitative trait locus (eQTL) analyses on the promising genes, we mined the data from the following databases: GTExPortal (https://www.gtexportal.org/home/) and Haploreg (http://www.broadinstitute.org/mammals/haploreg/haploreg.php), and the results shown that TLR4 rs1927911, TGF-β1 rs10512263 could affect their corresponding gene expression, and that TGF-β1 rs10512263 could regulate certain motifs, which were consistent to our results, see Additional file 2: Figures S1 and S2. Secondly, the sample size of this study was not large enough, which may weaken the statistical power. Thirdly, environmental factors, such as diet, physical exercises, gastric diseases history, and subtype of H. pylori were not included in this study, which may influence the conclusion. Finally, there are number of polymorphisms in the immune related genes, here we selected three of them and some more immune related genes required to be discussed.

Conclusion

We concluded that two polymorphisms (rs334348, rs10512263) in TGF-β1 were associated with risk of gastric cancer, and that TLR4 rs1927911 and TGFBR1...
Table 2 Stratification analyses the association between polymorphisms in TGF-β1 and gastric cancer risk

Genotype	rs6478974	rs334348	rs10512263
	Allele	Allele	Allele
TT	10/9/17	72/74	130/129
AT	10/11/3	105/122	88/88
AA	28/30	52/34	11/13
AT/AA	129/143	157/156	99/101
Additive	0.83	0.95	1.21
rs6478974	(0.63,1.10)	(0.62,1.47)	(0.72,1.63)
rs334348	(0.63,1.10)	(0.62,1.47)	(0.72,1.63)
rs10512263	(0.63,1.10)	(0.62,1.47)	(0.72,1.63)

Genotype	Age	Gender	H. pylori infection											
			Positive	Negative										
	≤ 64	> 64	Male	Female	Positive	Negative								
rs6478974	Ca/Co	OR (95% CI)*	p value	Ca/Co	OR (95% CI)*	p value	Ca/Co	OR (95% CI)*	p value	Ca/Co	OR (95% CI)*	p value		
TT	0.76	0.175	0.412	169/170	0.80	0.164	0.452	63/60	0.81	0.461	0.452	120/91	Reference	
AT	0.76	0.374	0.082	38/54	0.55	0.017	0.663	18/15	1.19	0.552	0.285	33/33	Reference	
AA	0.76	0.156	0.206	197/224	0.74	0.049	0.658	63/65	0.89	0.541	0.485	141/140	Reference	
AT/AA	0.76	0.156	0.206	197/224	0.74	0.049	0.658	63/65	0.89	0.541	0.485	141/140	Reference	
Additive	0.83	0.199	0.100	108/121	1.15	0.143	0.583	35/37	0.85	0.461	1.54	0.278	124/100	Reference
rs334348	0.83	0.199	0.100	108/121	1.15	0.143	0.583	35/37	0.85	0.461	1.54	0.278	124/100	Reference
rs10512263	0.83	0.199	0.100	108/121	1.15	0.143	0.583	35/37	0.85	0.461	1.54	0.278	124/100	Reference

Italic represents any values with p < 0.05
OR odds ratio, Ca case, Co control

* Adjusted for age, gender, smoking, drinking, and H. pylori infection status
Table 3 Stratification analyses the association between polymorphisms in TGF-β1 and gastric cancer by pathologic characteristics

Genotype	Co	Clinical stage	T1–T2	T3–T4	Tumor site	Cardiac	Non-cardiac				
			Ca	OR (95% CI)*	p value	Ca	OR (95% CI)*	p value	Ca	OR (95% CI)*	p value
rs6478974											
TT	194	75	Reference	144	Reference	62	Reference	157	Reference		
AT	220	69	0.82 (0.55, 1.21)	0.311	0.79 (0.58, 1.08)	0.140	0.87 (0.58, 1.05)	0.497	0.78 (0.57, 1.05)	0.105	
AA	69	15	0.54 (0.28, 1.04)	0.065	0.76 (0.49, 1.20)	0.238	0.61 (0.32, 1.17)	0.139	0.72 (0.45, 1.13)	0.147	
AT/AA	289	84	0.75 (0.52, 1.09)	0.134	0.79 (0.59, 1.05)	0.109	0.80 (0.54, 1.18)	0.268	0.77 (0.58, 1.02)	0.069	
Additive model	0.76 (0.57, 1.01)	0.054	0.85 (0.69, 1.05)	0.140	0.80 (0.60, 1.07)	0.135	0.83 (0.67, 1.02)	0.077			
rs334348											
AA	158	45	Reference	98	Reference	40	Reference	103	Reference		
AG	240	73	1.19 (0.76, 1.87)	0.442	1.01 (0.73, 1.41)	0.937	1.14 (0.73, 1.80)	0.565	1.04 (0.75, 1.45)	0.825	
GG	85	41	1.73 (1.03, 2.90)	0.039	1.42 (0.94, 2.13)	0.092	1.56 (0.91, 2.68)	0.103	1.48 (0.99, 2.11)	0.055	
AG/GG	325	114	1.31 (0.87, 1.99)	0.196	1.12 (0.82, 1.52)	0.487	1.24 (0.81, 1.89)	0.323	1.15 (0.85, 1.57)	0.373	
Additive model	1.33 (1.02, 1.73)	0.038	1.17 (0.96, 1.43)	0.125	1.25 (0.95, 1.64)	0.108	1.21 (0.99, 1.47)	0.069			
rs10512263											
TT	262	99	Reference	180	Reference	82	Reference	197	Reference		
CT	187	53	0.75 (0.51, 1.12)	0.161	0.93 (0.69, 1.25)	0.620	0.81 (0.54, 1.21)	0.300	0.90 (0.67, 1.21)	0.479	
CC	34	7	0.51 (0.21, 1.24)	0.137	0.59 (0.31, 1.13)	0.113	0.51 (0.20, 1.28)	0.149	0.56 (0.29, 1.07)	0.080	
CT/CC	221	60	0.71 (0.49, 1.05)	0.084	0.88 (0.66, 1.17)	0.366	0.76 (0.51, 1.12)	0.162	0.85 (0.64, 1.13)	0.256	
Additive model	0.73 (0.53, 1.01)	0.054	0.85 (0.67, 1.08)	0.184	0.76 (0.55, 1.05)	0.093	0.83 (0.66, 1.05)	0.120			

Italic represents any values with p < 0.05

OR odds ratio, Ca case, Co control

Adjusted for age, gender, smoking, drinking, and H. pylori infection status
Table 4 Association between polymorphism and overall survival of gastric cancer patients in co-dominant model

Genotype	Cases, n	Death, n (%)	Log-rank p-value	HR	HR (95% CI)*	p-value
rs4072111						
CC	322	205 (0.64)	Reference	Reference		
TC/TT	138	81 (0.59)	0.344	0.88 (0.68,1.14)	1.12 (0.86,1.45)	0.408
rs4778889						
TT	256	172 (0.67)	Reference	Reference		
CT/CC	204	114 (0.56)	0.028	0.77 (0.61,0.97)	0.84 (0.66,1.06)	0.146
rs11556218						
TT	293	192 (0.66)	Reference	Reference		
GT/GG	167	94 (0.56)	0.110	0.82 (0.64,1.05)	0.94 (0.73,1.20)	0.607
rs859						
AA	109	68 (0.62)	Reference	Reference		
GA/GG	351	218 (0.62)	0.633	1.07 (0.81,1.40)	1.03 (0.79,1.36)	0.814
rs1131445						
TT	211	127 (0.60)	Reference	Reference		
CT/CC	249	159 (0.64)	0.150	1.18 (0.94,1.50)	1.06 (0.84,1.35)	0.617
rs10759932						
TT	231	141 (0.61)	Reference	Reference		
TC/CC	229	145 (0.63)	0.563	1.07 (0.85,1.35)	1.07 (0.84,1.35)	0.588
rs1927911						
GG	165	95 (0.58)	Reference	Reference		
GA/AA	295	191 (0.65)	0.113	1.22 (0.95,1.56)	1.27 (1.00,1.63)	0.054
rs11536889						
GG	293	181 (0.62)	Reference	Reference		
CG/CC	167	105 (0.63)	0.957	1.01 (0.79,1.28)	0.99 (0.77,1.26)	0.924
rs6478974						
TT	212	126 (0.59)	Reference	Reference		
TA/AA	248	160 (0.65)	0.224	1.16 (0.92,1.46)	1.23 (0.98,1.56)	0.079
rs334348						
GG	110	64 (0.58)	Reference	Reference		
AG/AA	350	222 (0.63)	0.491	1.10 (0.84,1.46)	1.04 (0.79,1.38)	0.787
rs10512263						
TT	269	157 (0.58)	Reference	Reference		
CT/CC	191	129 (0.68)	0.031	1.29 (1.02,1.63)	1.29 (1.02,1.63)	0.031

Italic represents any values with p < 0.05

* Adjusted for age, sex, tumor site and TNM stage
rs10512263 were associated with clinical outcomes of gastric cancer patients. This is a study firstly discussed the relation of polymorphisms in genes of IL-16, TGFBR1 and TLR4 pathways and survival time of gastric cancer patients in Chinese population and our study could provide epidemiology data for further study.

Additional files

Additional file 1: Table S1. Information of enrolled genetic variations. Table S2. Clinical and demographic characteristics of enrolled participants.

Additional file 2: Figure S1. eQTL analysis of mRNA expression in whole blood and genotype data. A. TLR4 rs1927911, p-value = 0.000016; B. TGF-BR1 rs10512263, p-value = 0.0000029.

Figure S2. Results from the Haploreg website for the TGF-BR1 rs10512263.

Abbreviations
TGF-β1: transforming growth factor beta-1; TGFBR1: TGF-β receptor 1; H. pylori: Helicobacter pylori; TLRs: toll-like receptors; LPS: lipopolysaccharide; MAF: minor allele frequency; 5′UTR: 5′ untranslated regions; OR: odds ratios; CI: confidence intervals; HR: hazard ratios; HWE: Hardy–Weinberg equilibrium; NCGC: non-cardiac gastric cancer.

Authors’ contributions
BH and SW designed this study; TX, BP and YP collected the sample and data; XW, JD analyzed the data; TX, BP and XL conducted the experiments. BH, SW wrote the paper. All authors have reviewed the final version of the manuscript and approved to submit to your journal. All authors read and approved the final manuscript.

Author details
1 General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China. 2 Helicobacter pylori Research Key Laboratory, Nanjing Medical University, Nanjing 210000, China. 3 Medical College, Southeast University, Nanjing 210000, China. 4 Digestive Department, Xuyi People’s Hospital, Huaian 211700, China.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The data of the study are available from the corresponding author on reasonable request.

Table 5 Subgroup analyses of association between polymorphisms and survival in co-dominant model

Group	Case, n	Death, n (%)	rs1927911 GA/AA: GG	HR (95% CI) a	p-value	rs10512263 CT/CC: TT	HR (95% CI) a	P-value
Age < 64	224	130 (0.58)	142/82	1.64 (1.13, 2.38)	0.009	97/127	1.34 (0.95, 1.90)	0.099
Age ≥ 64	236	156 (0.66)	153/83	1.04 (0.75, 1.45)	0.817	94/142	1.19 (0.86, 1.64)	0.286
Gender Male	338	214 (0.63)	216/122	1.36 (1.03, 1.81)	0.034	145/193	1.42 (1.09, 1.87)	0.010
Gender Female	122	72 (0.64)	79/43	1.08 (0.65, 1.80)	0.754	46/76	1.26 (0.76, 2.08)	0.365
Clinical stage								
T1–T2	159	42 (0.26)	102/57	1.36 (0.70, 2.66)	0.367	60/99	2.61 (1.40, 4.86)	0.003
T3–T4	301	244 (0.81)	193/108	1.21 (0.93, 1.58)	0.160	131/170	1.04 (0.80, 1.34)	0.784
Tumor site								
Cardiac	132	87 (0.66)	91/41	1.07 (0.67, 1.71)	0.768	54/78	1.47 (0.94, 2.31)	0.094
Non-cardiac	328	199 (0.61)	204/124	1.34 (1.00, 1.80)	0.050	137/191	1.36 (1.02, 1.80)	0.034

Italic represents any values with p < 0.05

*(Adjusted for age, sex, tumor site and TNM stage)

Table 6 Locus–locus interactions between rs1927911 and rs10512263 and survival

rs1927911	rs10512263	Cases, n	Death, n (%)	Log-rank p value	HR (95% CI) a	p-value
GG	TT	100	53 (53.00)	0.018	Reference	
GG	CT/CC	65	42 (64.42)	1.18 (0.79, 1.03)	0.421	
GA/AA	TT	169	104 (61.54)	1.20 (0.86, 1.67)	0.279	
GA/AA	CT/CC	126	87 (69.05)	1.64 (1.17, 2.31)	0.005	

Italic represents any values with p < 0.05

*(Adjusted for age, sex, tumor site and TNM stage)
Consent for publication
Not applicable.

Ethics approval and consent to participate
This study has acquired approval of the Institutional Review Board of the Nanjing First Hospital, and all enrolled participants or their representatives signed the informed consent according to relevant regulations. All participants signed informed consent in the study.

Funding
This study was supported by grants from Jiangsu 333 High-level Talents Cultivating Project to B. H (No. BRA201702), Jiangsu Provincial Medical Youth Talent to B.H (QNRC2016066) and VP (QNRC2016074), Innovation team of Jiangsu provincial health-strengthening engineering by science and education (CXTDB2017008), and Nanjing Medical University Science and Technique Development Foundation Project to H.L.S (No. 2015NJMUZD049).

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 September 2018 Accepted: 9 November 2018
Published online: 20 November 2018

References
1. Global Burden of Disease Cancer, Fitzmaurice C, Dicker D, Pain A, Hama-vid H, Moradi-Lakeh M, Macintyre MF, Allen C, Hansen G, Woodbrook R, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–27.
2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.
3. Zabaleta J. Multifactorial etiology of gastric cancer. Methods Mol Biol. 2012;863:111–35.
4. Persson C, Canedo P, Machado JC, El-Omar EM, Forman D. Polymorphisms in inflammatory response genes and their association with gastric cancer: a HuGE systematic review and meta-analyses. Am J Epidemiol. 2011;173(3):259–70.
5. He BS, Pan YQ, Xu YF, Zhu C, Qu LL, Wang SK. Polymorphisms in interleukin-18 (IL-18) and interleukin 1 receptor antagonist (IL-1RN) genes associate with gastric cancer risk in the Chinese population. Dig Dis Sci. 2011;56(7):2017–23.
6. He B, Zhang Y, Pan Y, Xu Y, Gu L, Chen L, Wang S. Interleukin 1 beta (IL1B) promoter polymorphism and cancer risk: evidence from 47 published studies. Mutag. 2011;26(5):637–42.
7. Yellapa A, Bahr JM, Bitterman P, Abramowicz JS, Edsassy SL, Penumatsa K, Basu S, Rotmensz J, Barua A. Association of interleukin 16 with the development of ovarian tumor and tumor-associated neoangiogenesis in laying hen model of spontaneous ovarian cancer. Int J Gynecol Cancer. 2012;22(2):199–207.
8. Mathy NL, Scheuer W, Lanzendorfer M, Honold K, Ambrosius D, Norley S, Kurth R. Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology. 2000;100(1):63–9.
9. Yang H, Han Y, Wu L, Wu C. Diagnostic and prognostic value of serum interleukin16 in patients with gastric cancer. Mol Med Rep. 2017;16(6):9143–8.
10. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342(18):1350–8.
11. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang XX, Lin SJ, Kalpana R, Tay ST, Suzuki Y, et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology. 2017;153(1):191 e116–204 e116.
12. Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, Cammer M, Rifkind DB. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-beta in gastric tissue. Can Res. 2014;74(9):2642–51.
13. Tas F, Yasasever CT, Karabulut S, Tastekin D, Duranlyildiz D. Serum transforming growth factor-beta1 levels may have predictive and prognostic roles in patients with gastric cancer. Tumour Biol. 2015;36(3):2097–103.
14. Hu WQ, Wang LW, Yuan JP, Yan SY, Li JD, Zhao HL, Peng CW, Yang GF, Li Y. High expression of transform growth factor beta 1 in gastric cancer confers worse outcome: results of a cohort study on 184 patients. Hepatogastroenterology. 2014;61(129):245–50.
15. Chen J, Miao L, Jin G, Ren C, Ke Q, Qian Y, Dong M, Li H, Zhang Q, Ding Y, et al. TGFBR1 tagging SNPs and gastric cancer susceptibility: a two-stage case-control study in Chinese population. Mol Carcinog. 2014;53(2):109–16.
16. Chang WW, Zhang L, Su H, Yao YS. An updated meta-analysis of transforming growth factor-beta1 gene: three polymorphisms with gastric cancer. Tumour Biol. 2014;35(4):2037–44.
17. Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G. Association of polymorphisms in transforming growth factor-beta1 gene with gastric cancer susceptibility: a meta-analysis. Mol Carcinog. 2012;51(7):657–66.
18. Kutikhin AG. Impact of Toll-like receptor 4 polymorphisms on risk of gastric cancer. Hum Immunol. 2011;72(2):193–206.
19. Stubladar D, Jerverica S, Jukic T, Skvarc M, Pintar T, Tepes B, Kavaler B, Stabuc B, Peterlin B, Ihan A. The influence of cytokine gene polymorphisms on the risk of developing gastric cancer in patients with Helicobacter pylori infection. Radiol Oncol. 2015;49(3):256–64.
20. Qadri Q, Rasool R, Afroz D, Naqsh S, Gulzar GM, Yousuf A, Siddiqi MA, Shah ZA. Study of TLR4 and IL-10 polymorphism in Helicobacter pylori infection. N Engl J Med. 2000;342(18):1350–8.