Complete chloroplast genomes of *Achnatherum inebrians* and comparative analyses with related species from Poaceae

Xuekai Wei1, Xiuzhang Li2, Taixiang Chen1, Zhenjiang Chen1, Yuanyuan Jin1, Kamran Malik1 and Chunjie Li1

1 State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China

2 Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China

Keywords
Achnatherum inebrians; chloroplast genomes; comparative analysis; phylogenetic analysis; Poaceae

Correspondence
C. Li, State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
E-mail: chunjie@lzu.edu.cn

(Received 5 February 2021, revised 24 March 2021, accepted 19 April 2021)

This article reports the complete chloroplast genome of *Achnatherum inebrians*, a poisonous herb that is widely distributed in the rangelands of Northern China. The genome is 137,714 bp in total and consists of a large single-copy (81,758 bp) region and small single-copy (12,682 bp) region separated by a pair of inverted repeats (21,637 bp). The genome contains 130 genes, including 84 protein-coding genes, 38 tRNA genes and 8 ribosomal RNA genes, and the guanine + cytosine content is 36.17%. We subsequently performed comparative analysis of complete genomes from *A. inebrians* and other Poaceae-related species from GenBank. Thirty-eight simple sequence repeats were identified, further demonstrating rapid evolution in Poaceae. Finally, the phylogenetic trees of 37 species of Poaceae and 2 species of Amaranthaceae were constructed by using maximum likelihood and Bayesian inference methods, based on the genes of the complete chloroplast genome. We identified hotspots that can be used as molecular markers and barcodes for phylogenetic analysis, as well as for species identification. Phylogenetic analysis indicated that *A. inebrians* is a member of the genus *Stipa* rather than *Achnatherum*.

Abbreviations
BI, Bayesian inference; GC, guanine + cytosine; IR, inverted repeat; IRA, inverted repeat region a; IRB, inverted repeats region b; LSC, large single copy; ML, maximum likelihood; NCBI, National Center for Biotechnology Information; Pi, nucleotide variation; RSCU, relative synonymous codon usage; SSC, small single copy; SSR, simple sequence repeat.
infected by a symptomless fungal endophyte, *Epichloë* (*Epichloë gansuensis* or *Epichloë inebrians*) [7–9]. *Achnatherum inebrians* is commonly referred to as drunken horse grass because of the presence of two alkaloids produced in *Epichloë* endophyte-infected *A. inebrians* plants, ergonovine and ergine, which cause toxicity or death to horses and other livestock [10–12]. The presence of *Epichloë* endophytes in aboveground tissues can regulate the metabolic processes of host grasses, including promoting plant growth and enhancing the tolerance of host plants to various biotic and abiotic stresses, such as heavy metals, low temperature, drought and salinity [13–19].

Chloroplasts are small photosynthetic machinery and carbon fixation organelles that are present in algae and plant cells. Most chloroplast-encoded proteins are responsible for photosynthesis and the synthesis of fatty acids and amino acids [20,21]. Chloroplasts have their own genetic system, consisting of a closed circular structure ranging from 115 to 165 kb in length, a small single-copy (SSC) region, a large single-copy (LSC) region and a pair of inverted repeats (IRs) [22–25]. Compared with nuclear genomes, chloroplast genomes have fewer nucleotide substitutions and rearrangements of genome structures, moderate genome size, and desirable collinear properties among different species, providing an ideal model to decipher genomic evolution and phylogenetic relationships in angiosperms [26,27]. High-throughput sequencing technology has stimulated the rapid development of chloroplast genome sequencing [28] and enabled the study of evolutionary dynamics at a more taxonomically complex level (species or lower level) [29].

Achnatherum species are poorly studied from a genomic perspective. To date, chloroplast genomes are available for only one representative, *Achnatherum splendens* [30]. This study for the first time reports the complete chloroplast genome sequence of *A. inebrians*, including a description of its general features, IR contraction and expansion, codon usage and analysis of simple sequence repeats (SSRs). In addition, we compared the gene contents, organization, and phylogenetic relationships with other chloroplast genomes in Poaceae, which will help improve the understanding of chloroplast genome characteristics, structural diversity and evolution within Poaceae.

Materials and methods

Sample collection and DNA extraction

Fresh *A. inebrians* leaves were collected from alpine grassland in Tianzhu county (37°11′N, 102°47′E), Gansu province, China. For chloroplast genome DNA extraction, the collected fresh pieces were immediately placed in liquid nitrogen and stored at −80°C until chloroplast genome DNA was extracted. The voucher specimen was stored at the Official Herbage and Turfgrass Seed Testing Centre, Ministry of Agriculture, Lanzhou, China. Total genomic DNA was extracted using the hexadecyltrimethyl ammonium bromide method, and the quality of chloroplast genome was measured by NanoDrop 2000 (Thermo Scientific, Wilmington, NC, USA) and agarose gel electrophoresis. The quantified DNA (260/280 value is 1.6–1.8, and the concentration is >20 ng·µL⁻¹; the band is about 5K) was used for library construction.

Library preparation and sequencing and genome assembly

The qualified library was sequenced with Illumina NovaSeq (Wuhan Benagen Tech Solutions Company Limited, Wuhan, China). The raw sequencing data were filtered with low-quality data to obtain effective data. SOAPNUKE (Version: 2.1.0; Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei, China) was used as the filtering software for the project, and the filtering standards were as follows: (a) remove reads with N base content exceeding 5%, (b) remove reads with low mass (Q score ≤ 5) and the number of bases reaches 50%, and (c) remove the adapter sequence contained in reads. The Illumina NovaSeq sequencer was used for paired-end sequencing, and the reads length was 150 bp, which in pieces was done by nucleic acid shear (Covaris M220; USA) apparatus [centrifuge at 3000 g (relative centrifugal force) for 1 min].

Chloroplast genome assembly was performed using NOVOPLASTY software (version 3.2; parameter: k-mer = 39; https://github.com/ndierckx/novoplasty), and the published gene sequence of the target species was selected as the seed sequence (JF698225.1) to splice chloroplast genomes. The joining together with the relative chloroplast genome (NC_029390.1) was blastn (version: BLAST 2.9.0+; parameter: −e value, 1e−5; ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/) alignment, which adjusts the order of target sequences based on alignment with related species. If the connected sequence contains gap (including N sequence), then GAPCLOSER (version 1.12; https://github.com/aquaskyline/SOAPdenovo2) was used to further fill the hole to obtain the final stitching result.

Genome annotation and comparative genome analyses

Chloroplast genome functional annotation includes encoding gene prediction and noncoding RNA annotation (rRNA and tRNA annotations). Gene annotation was performed using CPGAVAS2 [31], and the map of the circular
The *A. inebrians* chloroplast genome was drawn through the online tool Chloroplot [32]. The distribution of codon usage was detected by using CODONW (version 1.4.4; https://sourceforge.net/projects/codonw/) with the relative synonymous codon usage (RSCU) ratio [33]. The codon of *A. inebrians* chloroplast was visually compared among species of 17 Poaceae with r language and TBTOOLS [34].

The *A. inebrians* chloroplast genome was compared with the other five chloroplast genomes using the Shuffle–Lagan model of the MVISTA program [35]; *Alopecurus japonicus* served as the reference. IRSCOPE was used to visualize the boundaries between the IR and SC regions of *A. inebrians*, and the results were compared and analyzed with three other Poaceae species [36]. The four chloroplast genomes of Poaceae were initially compared using MAFFT [37] and then manually adjusted using BIOEDIT [38]. Variable sites and nucleotide variations (Pi) in the entire chloroplast genome and LSC, IR and SSC regions of four species were calculated using DNASP [39].

Repeat sequence analyses

The SSRs of *A. inebrians* and three other chloroplast genomes were identified using the online web tool MISA (version 2.1) [40]. The parameter sets of the minimum number of repetitions of SSRs for mononucleotides, dinucleotides, trinucleotides, tetranucleotides, pentanucleotides and hexanucleotides were 10, 5, 4, 3, 3 and 3, respectively.

Phylogenetic analyses

Phylogenetic relationships were reconstructed by using the complete *A. inebrians* chloroplast genome and 36 other Poaceae chloroplast genomes submitted in the National Center for Biotechnology Information (NCBI); *Cyperus rotundus* and *Eleocharis dulcis* were used as outgroups. All species and accession numbers of the chloroplast genomes in NCBI are listed in Table S1. Phylogenetic analysis was conducted on the PHYLOSUITE version 1.2.2 platform [41]. The nucleotide sequence of the whole chloroplast genome was aligned in MAFFT based on default parameters [37]. Ambiguously aligned fragments were removed using GBLOCKS [42], with the following parameter settings: minimum number of sequences for a conserved/flank position (20/20), maximum number of contiguous nonconserved positions (6), minimum length of a block (11) and allowed gap positions (0). ModelFinder [43] was used to select the best-fit model using Akaike information criterion. Maximum-likelihood (ML) phylogenies were inferred using IQ-TREE [44] under the GTR+R4+F model for 5000 ultrafast [45] bootstraps, approximate Bayes test [46] and the Shimodaira–Hasegawa-like approximate likelihood-ratio test [47]. Bayesian inference (BI) phylogenies were inferred using MRBAYES 3.2.0 [48] under the GTR+I+G+F model (two parallel runs and 1 000 000 generations), in which the initial 25% of sampled data were discarded as burn-in. The generated trees were visualized using the online web tool iTOL [49].

Table 1. Summary of complete chloroplast genomes for *Achnatherum inebrians*, *Achnatherum splendens*, *Stipa hymenoides*, and *Stipa purpurea*.

Item	Achnatherum inebrians	Achnatherum splendens	Stipa hymenoides	Stipa purpurea
Total size (bp)	137 714	136 876	137 742	137 370
LSC size (bp)	81 758	80 958	81 709	81 202
SSC size (bp)	12 682	12 640	12 803	12 842
IR size (bp)	21 637	21 639	21 615	21 663
Total GC content (%)	38.8	38.9	38.8	38.8
LSC GC content (%)	36.8	36.7	36.9	36.9
SSC GC content (%)	33.1	33.3	33.6	32.9
IR GC content (%)	44.1	44.2	44.1	44.1
Number of genes	130	130	130	130
Number of protein-coding genes	84	84	84	84
Number of tRNA genes	38	38	38	38
Number of rRNA genes	8	8	8	8
A total of 130 genes were found in the whole chloroplast genome of *A. inebrians*, including 84 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and 2 pseudogenes (ycf3 and ycf4; Table 1; Fig. 1). The protein-coding genes include 11 genes for large ribosomal proteins [rpl32, rpl14, rpl22, rpl33, rpl20, rpl36, rpl23 (×2), rpl16, rpl2 (×2)], 16 for small ribosomal proteins [rps3, rps16, rps8, rps11, rps12 (×2), rps18, rps2, rps14, rps19 (×2), rps15 (×2), rps7 (×2), rps4], 5 for photosystem I (psaJ, psaA, psaB, psaC, psaF), 15 for photosystem II (psbB, psbK, psbH, psbL, psbA, psbI, psbM, psbJ, psbT, psbC, psbZ, psbF, psbD, psbE, psbN) and 6 for ATP synthase (Table 2).

In the chloroplast genome of *A. inebrians*, eight protein-coding (rps19, rpl2, rpl23, ndhB, nadH, rps7,
Self-replication Ribosomal proteins (LSU) rpl32 and rps15, four rRNA (rrn16, rrn23, rrn4.5 and rrn5) and eight tRNA genes (trnA-UGG, trnE-GUG, trnL-GAU, trnL-CAU, trnL-CAA, trnN-GUU, trnR-ACG and trnV-GAC) were duplicated in the IR regions (Fig. 1).

Introns play an important role in gene expression regulation. Many introns have the ability to enhance the high expression of exogenous genes at specific times and locations of plants, thus producing the desired agronomic traits. The chloroplast genome of A. inebrians includes 15 intron-containing genes (Table S2). The pseudogene ycf3 has two introns, while all other genes contain a single intron. The intron of the trnK-UUU gene is largest (2488 bp), and matK is located within its intron. The nadH gene is a transspliced gene with a 5' exon located in an SSC region and two 3' exons located in IR regions, as previously reported in other chloroplast genomes [50,51].

Nucleotide sequences of protein-coding genes usually start with ATG. However, there are some exceptions in the A. inebrians chloroplast genome in which the first nucleotide is changed from A to G or C, the second nucleotide is changed from T to C, and the third nucleotide is changed from G to C, such as rps19, which starts with GTG, rps12, starts with ACT, and rpl2, starts with ATA (Table S3). This is similar to the common features of many homologous genes reported in the chloroplast genomes of other plants [52–58].

Table 2. List of annotated genes in the chloroplast of Achnatherum inebrians.

Group	Gene group	Gene name
Self-replication	Ribosomal proteins (LSU)	rpl32, rpl14, rpl22, rpl33, rpl20, rpl36, rpl23a (x 2), rpl16b, rpl23b (x 2)
	Ribosomal proteins (SSU)	rps2, rps16, rps8, rps11, rpl12a (x 2), rps18, rps2, rps14, rps19 (x 2), rps15a (x 2), rps7a (x 2), rps4
	RNA polymerase	rpoC2, rpoC1, rpoB, rpoA
	tRNA gene	tRNA gene
	rRNA gene	rRNA gene
	trnA gene	trnA-UGG, trnE-GUG, trnL-CAU (x 2), trnL-CAA (x 2), trnN-GUU (x 2), trnR-ACG (x 2), trnV-GAC (x 2), trnT-GAC (x 2), trnU-GU (x 2), trnY-GUA, trnR-UUC, trnG-GCC, trnM-CAU, trnL-UUA
	tRNA gene	trnA gene
	Subunits of photosystem I	psaA, psaB, psaJ, psal, psaC
	Subunits of photosystem II	psbB, psbK, psbH, psbL, psbA, psbl, psbM, psbJ, psbT, psbC, psbZ, psbF, psbD, psbE, psbN
	Subunits of NADH dehydrogenase	ndhB, ndhBb (x 2), ndhK, ndhD, ndhAb, ndhH (x 2), ndhF, ndhC, ndhl, ndhJ, ndhE
	Subunits of cytochrome b/f complex	petA, petG, petB, petN, petD, petL
	Subunits for ATP synthase	atpE, atpH, atpI, atpA, atpB, atpBb
	Large subunit RuBisCO	rbcL
Gene for photosynthesis	Translational initiation factor	infA
	Maturase	matK
	Protease	clpF
	Envelope membrane protein	cemA
	C-type cytochrome synthesis	ccsA
	Hypothetical chloroplast	ycf3, ycf4
	reading frames (ycf)	ycf3, ycf4

*aGenes located in the IRs.; bGene with one intron.; cGene with two introns.
used. These codons are shown in blue, which indicates an RSCU value of less than 1 and weak codon bias. The results showed the codon usage preferences of the most chloroplast genome, among which TTA, AGA, GCT, TCT and ACT are used most frequently (Fig. 3). Approximately two-thirds of all codons of A. inebrians that had high RSCU values showed a high A/T preference in the third codon. This phenomenon is common in the chloroplast genomes of higher plants [59,60].

Repeat sequences and SSR analyses

SSRs, also known as microsatellites, a section of DNA in a genome consisting of the basic units of one to six and repeated many times, are widely distributed in chloroplast genomes. SSRs are often used as molecular markers for studying chloroplast genome evolution and population genetics [61,62]. We investigated the distribution of SSRs in the A. inebrians chloroplast genome and found a total 38 SSRs, of which 31 were in the LSC region (82%), 3 were in the SSC region (8%) and 4 were in IR regions (10%; Fig. 4A). In total, four categories of SSRs, that is, mononucleotide, dinucleotide, trinucleotide and tetranucleotide, were detected. Mononucleotide repetition is most prevalent in each chloroplast genome, followed by dinucleotide, trinucleotide and tetranucleotide repetition. The most dominant SSRs are A/T mononucleotides (18%) from the frequency of the classified repeat types (Table S4). The SSR motifs in the A. inebrians and three other chloroplast genomes (A. splendens, Stipa hymenoides, Stipa purpurea) that are closely related to A. inebrians were analyzed (Fig. 4B). The study results showed little differences in the distribution pattern and number of SSRs among the four chloroplast genomes except the tetranucleotide repetition AAAG, which was detected in only A. inebrians (Fig. 4C).

Comparative genome analyses

In this study, the chloroplast genomes of eight Poaceae were analyzed using the MVISTA program, with S. hymenoides serving as a reference (Fig. 5). These species have considerable similarities in genome composition and size. The coding regions of the eight Poaceae species were almost identical, whereas the noncoding regions were more variable. The highly divergent regions were found among the intergenic spacers, including matk-rps16, rps16-trnQ-UGG, trnG-UGG-trnT-GGU, psbM-petN, rbcL-psal, ndhF-rpl32, rps2-rpl23 and psbE-petL in LSC, and ndhF-rpl32 and psaC-ndhE in SSC, which might be regarded as
potential molecular markers for Poaceae plants. In the whole chloroplast variable region, the *A. inebrians* share high sequence identity with those of *S. purpurea* more than *A. splendens* and relatively lower identity with those of *Cynosurus cristatus* and *A. japonicus*.

Pis of four Poaceae were calculated to further demonstrate the differences in the chloroplast genomes of Gramineae at the sequence level. As shown in Fig. 6, the divergence values among *S. purpurea*, *S. hymenoides*, *A. splendens* and *A. inebrians* ranged from 0 to 0.06, with a mean of 0.00837, and the IR regions were more conserved than the LSC and SSC regions. The most divergent region, *rps3-rpl22*, showed a divergence value of 0.06 in the LSC region, while the *ccsA* gene showed a high Pi (0.031) value in the SSC region. The intergenic regions among *trnT-GGU-trnT-GGU* and *rbcL-psaI* also showed a relatively high divergence value (>0.025). These regions may undergo rapid nucleotide replacement at the species level. These hotspots can be used as molecular markers and barcodes for phylogenetic analysis and species identification of Poaceae.

Fig. 3. Heatmap analysis for codon distribution of all protein-coding genes of 18 Poaceae species. Color key: higher red values indicate higher RSCU values, and lower blue values indicate lower RSCU values.
Expansion and contraction at the borders of the IR regions are common evolutionary events that often result in genome size variations in chloroplast genomes. We investigated the position of genes at the junction regions of four chloroplast genomes: *S. purpurea*, *S. hymenoides*, *A. splendens* and *A. inebrians*. In the *A. inebrians* plastome, the boundary of IR–LSC extended into the *rps19* gene; the boundary of IR–SSC extended into the *ndhF* gene, and 48 bp of *ndhF* extended into the IR region (IRa); and the boundaries of IRs region b (IRb)–LSC and IRa–LSC extend into the *rpl22* and *psbA* genes, respectively. Only 37 bp of *rps22* was duplicated in the LSC region, while 48 bp of *rps19* was duplicated in IRb. Similarly, the *ndhH* gene was located at the junction of SSC–IRa, and *ndhH* is 17, 28, 28 and 31 bp from the SSC and IRb borders in *S. purpurea*, *S. hymenoides*, *A. splendens* and *A. inebrians*, respectively. The connections between IR and SSC regions often vary in chloroplast genomes of higher plants and have been commonly reported in previous studies [63,64]. In this study, a detailed comparison of the borders among the IR, LSC and SSC regions of the four Poaceae chloroplast genomes was explored and is presented in Fig. 7. Our results suggest that the IR–LSC boundary might be conserved among the chloroplast genomes of closely related family species.

Phylogenetic analysis

The phylogenetic tree was constructed based on 37 whole-chloroplast genomes from the Poaceae family using *C. rotundus* and *E. dulcis* as outgroups (Fig. 8). The phylogenetic trees generated by BI (Fig. S1) and ML methods and their topology were nearly identical. The tree topology from ML analysis is shown in Fig. 8. The relevant data of phylogenetic trees are shown in the supplementary materials (Tables S5 and S6). According to the trees’ topology, the 37 species of Poaceae were divided into five subfamilies: Pooideae, Oryzooideae, Chloridoideae, Arundinoideae and Panicoideae. The ML (bootstraps value = 100) and BI (posterior probability values = 1) topology both supported that *A. inebrians* has a sister relationship to the genus *S. hymenoides*. The position of *A. inebrians* and all other nodes in the topology are supported with posterior probability values of 1.0, except three nodes. Our study provides valuable genetic information for genome-scale phylogenetic studies in Poaceae plants.
In this study, next-generation sequencing technology was used to sequence the chloroplast genome of *A. inebrians*, and its genetic information was reported for the first time. The comparative analysis of gene composition and structure revealed that *A. inebrians* has a conserved chloroplast genome like other grassland plants [65,66].

A total of 130 genes were found in the *A. inebrians* chloroplast genome, including 84 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The *ycf1*, *ycf2* and
accD were lost, which is a common trend in many Poaceae plants [67], indicating that genetic degeneration occurred during the process of gene evolution.

A total of 38 SSRs were identified in the A. inebrians chloroplast genome. The most dominant SSRs were A/T mononucleotides (18%) from the frequency...
of classified repeat types. SSRs can be regarded as good markers in plant populations for addressing genetic diversity among closely related taxa. Therefore, improved ability to study interspecies differences can be used in conjunction with SSR markers developed by nuclear genomes to address phylogenetic relationships among closely related species [68].

During the genome evolution process, the sequence marginal region of the IR region was changed [69]. With the expansion and contraction of the IR boundary, some genes entered the IR region and some entered the single-copy region, resulting in changes in the number of genes among different species. The chloroplast genome size is mainly dependent on the expansion and contraction of IR and SSC boundary regions [70].

The comparative analysis of A. inebrians and other species showed that, except for the high conservation of complete chloroplast, there are some significant differences among them. For example, the MVISTA program and Pi analysis both determined that rbcl-psal and psbE-petL can be used for the development of phylogenetic markers. A. inebrians share high sequence identity with those of S. purpurea more than A. splendens and the same as phylogenetic tree. It is a major finding and will be helpful for researchers in getting more information about genetic resources.

Phylogenetic studies of plants mainly use the chloroplast and nuclear genome to analyze the genome structure and modifications [66,70]. The Poaceae family not only has an economic importance but also it is one of the major families on which international cooperative molecular phylogenetic studies were conducted [71,72]. Our results support Poaceae being composed by two big clades: BOP (Bambusoideae, Oryzoideae, and Pooideae) and PACCAD (Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, and Danthonioideae), which is similar to the findings reported in previous research [72,73]. In this study, for the first time, we reconstructed phylogenetic trees based on the chloroplast genome of 37 Poaceae plants, including A. inebrians. In terms of evolutionary relationships, our study results strongly support that A. inebrians belongs to the genus Stipa.

As for the division and classification of Achnatherum, there is an unavoidable relationship between it and Stipa. In the past, many scholars did not recognize or use the genus Achnatherum and still used Stipa in their studies [74–77]. But at the same time, other scholars used Achnatherum in their studies [3,78–80]. According to the comparison of the morphological characteristics (Table S7), A. inebrians is inclined to the Achnatherum, but there are some (awn, fruit, basal disc) morphologically similar to Stipa. Our study provides support only for relevant classification at the molecular level and does not fully represent the real classification status. Specific follow-up studies can make use of mitochondrial genes, nuclear genes and other genetic markers for further classification.

Acknowledgements

This study was funded by the National Basic Research Program of China (2014CB138702); the Natural Science Foundation of China (31971756); Program for Changjiang Scholars and Innovative Research Team in University, China (IRT17R50); the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20100102); the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0302); Fundamental Research Funds for the Central Universities (LZUJBKY-2021-kb10); 111 Project (B12002); and the Fundamental Research Funds for the Central Universities (LZUJBKY-2021-kb36).

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Author contributions

XW, XL and CL designed experiments. XW, ZC and YJ carried out the experiments. XW and ZC analyzed experimental results. XW, TC and KM wrote the manuscript.

Data accessibility

The annotated complete chloroplast genome sequences were submitted to the NCBI database with accession number MW423581.

References

1. Shi ZC (1997) Important Poisonous Plants of China Grassland, pp. 166–176. China Agriculture Press, Beijing.
2. Hance HF (1876) On a Mongolian grass producing intoxicating in cattle. J Botany 14, 210–212.
3. Geng YL (1959) Illustration of China Main Plants—Poaceae, pp. 579–618. Science Press, Beijing.
4. Chu QG and Yang YC (1990) Study on classification and morphological evolution of the genus Achnatherum in China. J Liyang Agric Coll 7, 282–290.
Yao X, Christensen MJ, Bao GS, Zhang CP, Li XZ, Li CJ and Nan ZB (2015) A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China. Sci Rep 5, 18527–18534.

Yao X, Chen ZJ, Wei XK, Chen SH, White J, Huang X, Li CJ and Nan ZB (2020) A toxic grass Achnatherum inebrians serves as a diversity refuge for the soil fungal community in rangelands of northern China. Plant Soil 448, 425–438.

Nan ZB and Li CJ (27-29 Sep. 2000) Neotyphodium in native grasses in China and observations on endophyte/host interactions. In Proceedings of Proceedings of the 4th International Neotyphodium/Grass Interactions Symposium (Paul VH and Daiprich PD eds). Soest.

Li CJ, Nan ZB, Paul VH, Dapprich PD and Liu Y (2004) A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon 90, 141–147.

Chen L, Li X, Li C, Swoboda GA, Young CA, Sugawara K, Leuchtmann A and Schardl CL (2015) Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 107, 863–873.

Li CJ, Nan ZB, Zhang CJ, Zhang CY and Zhang YH (2009) Effects of drunken horse grass infected with endophyte on Chinese rabbit. J Agric Tech 11, 84–90.(in Chinese with English Abstract).

Liang Y, Wang H, Li C, Nan Z and Li F (2017) Effects of feeding drunken horse grass infected with Epichloë gansuensis endophyte on animal performance, clinical symptoms and physiological parameters in sheep. BMC Vet Res 13, 223–229.

Zhang XX, Li CJ, Nan ZB and Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52, 70–78.

Johnson LJ, Bonth ACM, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD and Popay AJ (2013) The exploitation of Epichloë endophytes for agricultural benefit. Fungal Divers 60, 171–188.

Kauppinen M, Saikkonen K, Helander M, Pirttila AM and Wali PR (2016) Epichloë grass endophytes in sustainable agriculture. Nat Plants 2, 15224–15230.

Xia C, Li N, Zhang Y, Li C, Zhang X and Nan Z (2018) Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Dis 102, 2061–2073.

Zhang X, Li C and Nan Z (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175, 703–709.
Complete chloroplast genomes of *A. inebrians*

X. Wei et al.

--

a high-quality forage grass in Northern China. *Mitochondrial DNA Part B-Resources* **4**, 1841–1843.

31 Shi L, Chen H, Jiang M, Wang L, Wu X, Huang L and Liu C (2019) CPGAVAS2, an integrated plastome sequence annotator and analyzer. *Nucleic Acids Res* **47**, W65–W73.

32 Zheng S, Poczai P, Hyvonen J, Tang J and Amiryousefi A (2020) Chloroplot: an online program for the versatile plotting of organelle genomes. *Front Genet* **11**, 576124–576131.

33 Sharp PM, Tuohy TMF and Mosurski KR (1986) *Nucleic Acids Res* **14**, 5125–5143.

34 Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y and Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. *Mol Plant* **13**, 1194–1202.

35 Frazer KA, Pachter L, Poliakov A, Rubin EM and Dubchak I (2004) VISTA: computational tools for comparative genomics. *Nucleic Acids Res* **32**, W273–W279.

36 Amiryousefi A, Hyvonen J and Poczai P (2018) IRScopes: an online program to visualize the junction sites of chloroplast genomes. *Bioinformatics* **34**, 3030–3031.

37 Katoh K and Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol Biol Evol* **30**, 772–780.

38 Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt. *Nucleic Acids Symp Ser* **41**, 95–98.

39 Rozas J, Ferrer-Mata A, Carlos Sanchez-DelBarrio J, Guirao-Rico S, Librado P, Ramos-Onsins SE and Sanchez-Gracia A (2017) DnaSP 6: dna sequence polymorphism analysis of large data sets. *Mol Biol Evol* **34**, 3299–3302.

40 Beier S, Thiel T, Muench T, Scholz U and Mascher M (2017) MISA-web: a web server for microsatellite prediction. *Bioinformatics* **33**, 2583–2585.

41 Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li WX and Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol Ecol Resour* **20**, 348–355.

42 Talavera G and Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. *Syst Biol* **56**, 564–577.

43 Kalyaanamoorthy S, Bui Quang M, Wong TKF, von Haeseler A and Jermini LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods* **14**, 587–589.

44 Lam-Tung N, Schmidt HA, von Haeseler A and Bui Quang M (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268–274.

45 Bui Quang M, Minh Anh Thi N and von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. *Mol Biol Evol* **30**, 1188–1195.

46 Anisimova M, Gil M, Dufayard J-F, Dessimoz C and Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. *Syst Biol* **60**, 685–699.

47 Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W and Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst Biol* **59**, 307–321.

48 Zhao MJ, Ren Q, Wang YL, Deng RK, Ren MM, Wang G and Liu XG (2017) A Three-Level Parallel Algorithm For MrBayes 3.2. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/ IJCC), pp. 12–15.

49 Letunic I and Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res* **47**, W256–W259.

50 Zhang D, Li K, Gao J, Liu Y and Gao L-Z (2016) The complete plastid genome sequence of the wild rice *Zizania latifolia* and comparative plastid genomics of the rice tribe Oryzeae, Poaceae. *Front Ecol Evol* **4**, 1–17.

51 Zhang Y-J, Ma PF and Li DZ (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). *PLoS One* **6**, e20596–e20611.

52 Yi D-K and Kim K-J (2016) Two complete chloroplast genome sequences of genus *Paulownia* (Paulowniaceae): *Paulownia coreana* and *P. tomentosa*. Mitochondrial DNA Part B-Resources **1**, 627–629.

53 Park I, Kim WJ, Yeo SM, Choi G, Kang YM, Piao R and Moon BC (2017) The complete chloroplast genome sequences of *Fritillaria ussuriensis* Maxim. and *Fritillaria cirrhosa* D. Don, and comparative analysis with other *Fritillaria* species. *Molecules* **22**, 982–997.

54 Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J and Chen S (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant *Artemisia annua*. *Molecules* **22**, 1330–1343.

55 Wu M, Li Q, Hu Z, Li X and Chen S (2017) The complete *Amomum kravanh* chloroplast genome sequence and phylogenetic analysis of the commelinas. *Molecules* **22**, 1875–1887.

56 Zeng S, Zhou T, Han K, Yang Y, Zhao J and Liu Z-L (2017) The complete chloroplast genome sequences of six *Rehmannia* species. *Genes* **8**, 103–118.
57 Chi X, Wang J, Gao Q, Zhang F and Chen S (2018) Complete chloroplast genomes of two Lancea species with comparative analysis. Molecules 23, 602–612.

58 Gao B, Yuan L, Tang T, Hou J, Pan K and Wei N (2019) The complete chloroplast genome sequence of Alpinia oxyphylla Miq. and comparison analysis within the Zingiberaceae family. PLoS One 14, e0218817–e0218831.

59 Kim KJ and Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11, 247–261.

60 Zhou J, Cui Y, Chen X, Li Y, Xu Z, Duan B, Li Y, Song J and Yao H (2018) Complete chloroplast genomes of Papaver rhoas and Papaver orientale: molecular structures, comparative analysis, and phylogenetic analysis. Molecules 23, 437–451.

61 Pauwels M, Vekemans X, Gode C, Frerot H, Castric V, Pauwels M, Vekemans X, Gode C, Frerot H, Castric V, Maier RM, Neckermann K, Igloi GL and Kossel H (2017) Phylogenetic conflict among molecular data sets in the tribe Aristideae (Gramineae). Syst Biol 66, 769–782.

62 Powell W, Morgante M, McDevitt R, Vendramin GG and Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes - applications to the population-genetics of Pines. Proc Natl Acad Sci USA 92, 7759–7763.

63 Wang S, Shi C and Gao LZ (2013) Plastid genome sequence of a wild woody oil species, Prinsepia utilis, provides insights into evolutionary and mutational patterns of Rosaceae chloroplast genomes. PLoS One 8, e73946–e73957.

64 MasonGamer RJ and Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticaceae (Graminae). Syst Biol 45, 524–545.

65 Palmer JD, Negent JM and Herbon LA (1987) Unusual structure of genium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84, 769–773.

66 MasonGamer RJ and Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticaceae (Graminae). Syst Biol 45, 524–545.

67 Maier RM, Neckermann K, Igloi GL and Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251, 614–628.

68 Song Y, Chen Y, Lv J, Xu J, Zhu S and Li M (2019) Comparative chloroplast genomes of sorghum species: sequence divergence and phylogenetic relationships. Biomed Res Int 2019, 5046958.

69 Oldenburg DJ and Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335, 953–970.

70 Wakasugi T, Tsudzuki T and Sugiuira M (2001) The genomes of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70, 107–118.

71 Barker NP, Clark LG, Davis JI, Duvall MR, Guala GF, Hsiao C, Kellogg EA, Linder HP, Mason-Gamer RJ, Matthews SY et al. (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Mo Bot Gard 88, 373–457.

72 Aliscioni S, Bell HL, Besnard G, Christin P-A, Columbus JT, Duvall MR, Edwards EJ, Giussani L, Hasenstab-Lehman K, Hili KW et al. (2012) New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol 193, 304–312.

73 Cotton JL, Wysocki WP, Clark LG, Kelchner SA, Pires JC, Edgar PP, Mayfield-Jones D and Duvall MR (2015) Resolving deep relationships of PACMAD grasses: a phylogenomic approach. BMC Plant Biol 15, 178–188.

74 Hitchcock AS (1997) Manual of the Grasses of the United States, 2nd edn. Miscellaneous publications, Washington.

75 Winter BD (1965) The South African Stipeae and Aristideae (Graminae). Bothalia 8, 201–404.

76 Bor NL (1960) The Grasses of Burma, Ceylon, India and Pakistan, pp. 637–647. Pergamon Press Ltd, London: Oxford.

77 Freitag H (1985) The Genus Stipa (Graminae) in Southwest and South Asia. Notes RBG Edinb 42, 355–489.

78 Pilr R (1954) Das system der Gramineae. Bot Jahrb Syst 76, 281–384.

79 Tzvelev NN (1989) The system of grasses (Poaceae) and their evolution. Bot Rev 55, 141–204.

80 Guo BZ (1987) Flora of China, Vol. 9, p. 326. Science Press, Beijing.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. Phylogenetic tree generated by BI.
Table S1. All information of species and the accession numbers of their chloroplast genomes in NCBI.
Table S2. List of intron-containing genes in the CP genomes of Achnatherum inebrians.
Table S3. Nucleotide sequences of protein-coding genes of Achnatherum inebrians chloroplast genome.
Table S4. Frequency of classified repeat types (considering sequence complementary).
Table S5. The relevant data of phylogenetic tree generated by BI.

Table S6. The relevant data of phylogenetic tree generated by maximum likelihood.
Table S7. The morphological characteristics of *Achnatherum inebrians*, genus *Achnatherum*, genus *Stipa*.