Autoimmune liver diseases in systemic rheumatic diseases

Chrong-Reen Wang, Hung-Wen Tsai

Systemic rheumatic diseases (SRDs) are chronic, inflammatory, autoimmune disorders with the presence of autoantibodies that may affect any organ or system. Liver dysfunction in SRDs can be associated with prescribed drugs, viral hepatitis, alternative hepatic comorbidities and coexisting autoimmune liver diseases (AILDs), requiring an exclusion of secondary conditions before considering liver involvement. The patterns of overlap diseases depend predominantly on genetic determinants with common susceptible loci widely distributing in both disorders. In AILDs, it is important to identify the overlapping SRDs at an early stage since such a coexistence may influence the disease course and prognosis. Commonly co-occurring SRDs in AILDs are Sjögren syndrome (SS), rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) in autoimmune hepatitis (AIH), and SS, RA or systemic sclerosis in primary biliary cholangitis. Owing to different disease complications and therapies, it is imperative to differentiate between SLE liver involvement and SLE-AIH overlap disease. Therapeutic options can be personalized to control coexisting conditions of liver autoimmunity and rheumatic manifestations in AILD-SRD overlap diseases. The collaboration between hepatologists and rheumatologists can lead to significant advances in managing such a complex scenario. In this review, we provide a comprehensive overview on coexisting AILDs in different SRDs and the therapeutic approach in managing these overlap diseases.
Core Tip: Liver dysfunction in systemic rheumatic diseases (SRDs) can be associated with prescribed drugs, viral hepatitis, alternative hepatic comorbidities and coexisting autoimmune liver diseases (AILDs), requiring an exclusion of secondary conditions before considering liver involvement. In AILDs, it is imperative to identify the overlapping SRDs at an early stage since such a coexistence may influence the disease course and prognosis. Commonly co-occurring SRDs in AILDs are Sjögren syndrome (SS), rheumatoid arthritis (RA) or systemic lupus erythematosus in autoimmune hepatitis, and SS, RA or systemic sclerosis in primary biliary cholangitis. Therapeutic options can be personalized to control coexisting conditions of liver autoimmunity and rheumatic manifestations in AILD-SRD overlap diseases.

INTRODUCTION

Systemic rheumatic diseases (SRDs) are chronic, inflammatory, autoimmune disorders with the presence of autoantibodies that may affect any organ or system; they include systemic lupus erythematosus (SLE), Sjögren syndrome (SS), systemic sclerosis (SSc), rheumatoid arthritis (RA), idiopathic inflammatory myopathies (IIM), mixed connective tissue disease (MCTD), systemic vasculitis (SV), etc. [1]. Although SRDs can have liver involvement, most patients only have abnormal liver enzymes without significant changes in histopathology[2,3]. Hepatic dysfunction can be a secondary phenomenon, associated with prescribed drugs, viral hepatitis (VH), alternative liver comorbidities, and coexisting autoimmune liver diseases (AILDs).

The major cause of abnormal liver function test (LFT) in patients with SRDs is associated with medications, i.e. drug-induced liver injury (DILI)[3]. Given that a variety of medications are used in the management of SRDs, it is frequently encountered in clinical practice. High occurrences of DILI in SRDs are due to the chronic or high-dose prescription of medications, the existence of susceptible factors that makes patients prone to hepatotoxicity, and/or the use of herbal or ayurvedic compounds[2,3]. Elevated liver enzymes with predominant cholestatic or hepatocellular damage pattern can be observed in SRDs treated with non-steroidal anti-inflammatory drugs (NSAIDs), synthetic disease modifying anti-rheumatic drugs (SDMARDs), corticosteroids (CS), immunosuppressants, biologic agents or oral small molecules[2]. Most medications only cause a mild elevation in liver enzymes, which reverses with drug cessation. On rare occasions, severely irreversible hepatic damage may occur and progress into chronic liver disease or fulminant hepatic failure. Despite the relative safety with a low-dose prescription, methotrexate, a SDMARD frequently used in SRD-related arthritis, has been reported to cause acute liver dysfunction with confounding factors like concomitant NSAIDs use, and progressive liver fibrosis and cirrhosis can occur when used chronically[4]. It usually occurs after a prolong use for no less than 2 years and with a total accumulated dose of 1.5 g[5]. Notably, there is a risk of hepatitis B virus (HBV) reactivation depending on the dose and duration of CS use and the status of hepatitis B surface antigen and hepatitis B core antibody in SRDs[6]. Furthermore, acute or progressing liver dysfunction can be related to coexisting VH, requiring screen tests for HBV and hepatitis C virus (HCV) infection to provide early antiviral treatment and avoid reactivating or worsening VH after immunosuppressive therapy[3]. Table 1 summaries the hepatic abnormalities associated with the common medications used in SRDs[2,7]. Although immune checkpoint inhibitors have altered the therapeutic paradigm in oncological patients, there is undesirable off-target autoimmune reaction causing adverse effects like musculoskeletal manifestations and immune hepatitis, a pan-lobular active hepatitis resembling AIH[9].

Although the liver is the largest lymphoid organ involved in the immune response against invading pathogens and in the maintenance of tolerance to self-molecules, it can also be a target of autoimmune diseases[10]. AILDs are attributed to a complex interplay of socioeconomic, environmental and genetic factors, all of which may participate in their pathogenesis[11]. Most common AILDs are autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), which may occur individually or in combination[12]. These disorders are characterized by hepatic lymphocyte infiltration, elevated liver enzymes, generation of autoantibodies, and associated HLA loci. Coexisting extra-hepatic autoimmune diseases such as SRDs, have been well described in the literature[13]. AIH often goes into disease remission with first-line therapy, including CS alone or plus AZA[14]. PBC has a normal life expectancy if treated early with ursodeoxycholic acid (UDCA) in responsive patients, while no effective therapy has been found to alter the natural course of PSC, except liver transplantation (LT) [15,16]. Some patients with AILDs may eventually progress into end-stage liver disease requiring LT, and with an increased risk of recurrent activities and acute or chronic rejection[17,18]. Currently, AILD research has focused on obtaining a better understanding of the pathogenetic process for identification.
Medications	Hepatic abnormalities	Likelihood score category in DILI
NSAIDs	LEE, cholestasis, acute liver failure, VBDS	A for diclofenac, ibuprofen, sulindac
Glucocorticoids	LEE, NAFLD, acute liver failure, HBV reactivation	A in high dosages
Immunosuppressive agents		
Azathioprine	LEE, cholestasis, NRH, peliosis hepatitis, VOD	A
Mycophenolate mofetil	LEE	D
Cyclophosphamide	LEE, VOD	B
Cyclosporine	LEE, cholestasis	C
Tacrolimus	LEE	C
Conventional DMARDs		
Hydroxychloroquine	LEE	C
Leflunomide	LEE, acute liver failure, HBV reactivation	B
Methotrexate	LEE, NAFLD, HBV reactivation, fibrosis, cirrhosis	A
Penicillamine	LEE, cholestasis	A
Sulfasalazine	LEE, cholestasis, DRESS	A
Biologic/targeted DMARDs		
Abatacept	LEE, HBV reactivation	C
Anakinra	LEE	C
Apremilast	Unlikely liver injury	E
Belimumab	Unlikely liver injury	E
Mepolizumab	Unlikely liver injury	E
Rituximab	LEE, HBV reactivation	A
TNF blockers1	LEE, cholestasis, HBV reactivation, AIH	A for infliximab
Tocilizumab	LEE, HBV reactivation	C
Tofacitnib	Suspected liver injury, potential HBV reactivation	E'
Ustekinumab	Suspected liver injury, possible HBV reactivation	E'

1TNF blockers including adalimumab, certolizumab, etanercept, golimumab and infliximab.
2Categorization of Likelihood Score in drug-induced liver injury. A: Definite; B: Highly likely; C: Probable, D: Possible, E: Unlikely; E’: Suspected.
NSAIDs: Non-steroidal anti-inflammatory drugs; HBV: Hepatitis virus B; DILI: Drug-induced liver injury; DRESS: Drug rash with eosinophilia and systemic symptoms; LEE: Liver enzyme elevation; NAFLD: Nonalcoholic fatty liver disease; NRH: Nodular regenerative hyperplasia; SDMARDs: Synthetic disease-modifying antirheumatic drugs; SRDs: Systemic rheumatic disease; VBDS: Vanishing bile duct syndrome; VOD: Veno-occlusive disease.

of new therapeutic targets to reduce morbidity and improve survival[15]. Table 2 demonstrates the demographic, clinical, laboratory, pathological, therapeutic and prognostic characteristics of three common AILDs[11-20].

In AILDs, it is imperative to identify the co-occurring SRDs at an early stage by using autoantibody screening, since such a coexistence may influence their natural course and disease prognosis[21]. The patterns of overlap diseases depend predominantly on genetic determinants, with common susceptible loci widely distributing in both disorders[20]. The similar epidemiological links between AILDs and SRDs are further reflected in their shared pathogenesis, best exemplified by the concept of autoimmune epithelitis, i.e., concomitant PBC and SS[22,23]. Furthermore, AILDs and SRDs have common serologic profiles with the presence of particular autoantibodies and hyper-gammaglobulinemia[21,24]. Progressive liver damage can be identified in overlap diseases despite rare complications with liver cirrhosis and hepatic failure[3]. Table 3 shows the reported prevalence of coexisting AILDs in different SRDs.

The therapeutic strategies in AILDs and SRDs are also overlapping, with CS as first-line treatment in most cases, followed by administration of immunosuppressants, and potential application of targeted therapy[21]. Nevertheless, therapeutic options can be personalized to control coexisting conditions of liver autoimmunity and rheumatic manifestations[24]. A collaboration between hepatologists and
Table 2: Demographic, clinical, laboratory, pathological, therapeutic and prognostic profiles in three common autoimmune liver diseases

Category	AIH	PBC	PSC
Demographic			
Sex	Predominant F, 4:1	Predominant F, 10:1	Predominant M, 2:1
Age	Any, median 45 yr	Common above 40 yr	Any, typical 30-50 yr
Prevalence	Rare, 4-25 per 10000	Rare, 2-40 per 100000	Rare, 4-16 per 100000
Laboratory			
Abnormal LFT	Majorly AST/ALT	Majorly ALP/GGT	Majorly ALP/GGT
Serum Ig	Elevated IgG	Elevated IgM	Elevated IgG, IgM
Autoantibody	I: ANA, ASMA; II: anti-LKM, -LC	ANA, AMA	ANCA
HLA-DR	DR3, DR4	DR8	DR52
Liver biopsy			
Interface HA	Typical finding	Occasional	Occasional
Portal infiltrate	Lymphoplasmacytic	Lymphocytic	Lymphocytic
Bile duct lesion	Occasional	Florid duct lesion	Obliterative duct
Granuloma	Rare	Typical finding	Rare
Diagnosis	AIH score for definite diagnosis	AMA, liver biopsy, Cholestatic LFT	Cholangiography, Cholestatic LFT
Coexistent SRD			
SLE	0.7%-2.8%	1.3%-3.7%	1.70%
SS	1.4%-35%	3.5%-38%	CR
SSc	0.80%	2.3%-12%	CR
RA	1.6%-5.4%	1.8%-13%	1.2%-3.4%
IBM	CR	0.6%-3.1%	CR
MCTD	CR	0.60%	NA
SV	1.60%	2.20%	CR
Sarcoidosis	0.60%	2.70%	0.80%
First-line Tx	CS or CS plus AZA	UDCA	No effective therapy
Prognosis	Generally responsive to IS, poor prognosis if untreated	Excellent prognosis if responsive to UDCA	Median survival without LT 12-16 yr after diagnosis

AIH: Autoimmune hepatitis; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AMA: Antimitochondrial autoantibody; ANA: Anti-nuclear antibody; ANCA: Perinuclear antineutrophil cytoplasmic antibody; APS: Antiphospholipid syndrome; ASMA: Anti-smooth muscle antibody; AST: Aspartate aminotransferase; AZA: Azathioprine; CR: Case report; CS: Corticosteroids; EHAID: Extra-hepatic autoimmune disease; HA: Hepatitis; Ig: Immunoglobulin; IIM: Idiopathic inflammatory myopathies; IS: Immunosuppressants; GGT: Gamma-glutamyl transferase; LC: Liver cytosol; LKM: Liver kidney microsomal; LFT: Liver function test; LT: Liver transplantation; MCTD: Mixed connective tissue disease; NA: Not available; PBC: Primary biliary cholangitis; PSC: Primary sclerosing cholangitis; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; SS: Sjögren syndrome; SSc: Systemic sclerosis; Tx: Treatment; UDCA: Ursodeoxycholic acid.

Rheumatologists in clinical practice can lead to significant advances in managing such a complex scenario. Herein, we provide a comprehensive overview on coexisting AILDs in different SRDs and the therapeutic approach in managing these overlap diseases.

SLE

SLE is a less common SRD, occurring mostly in women of childbearing age and having heterogenous clinical manifestations affecting any organ or system as well as presenting antinuclear antibody (ANA) and a variety of autoantibodies[25]. The liver is generally not a target organ in SLE and hepatic
Table 3 Reported prevalence of concomitant autoimmune liver diseases in different systemic rheumatic diseases

Category	AIH	PBC	PSC	AIH/PBC OS
SLE	1.6%-15%	2.2%-7.5%	CR	CR
SS	0.4%-4.4%	3.4%-8.9%	CR	CR
SSc	CR	0.8%-3.3%	CR	CR
RA	1.3%	3.8%-6.5%	CR	CR
IIM	CR	0.7%	CR	CR
MCTD	1.6%	CR	NA	NA

AIH: Autoimmune hepatitis; APS: Antiphospholipid syndrome; CR: Case report; IIM: Idiopathic inflammatory myopathies; NA: Not available; OS: Overlap syndrome; PBC: Primary biliary cholangitis; PSC: Primary sclerosing cholangitis; RA: Rheumatoid arthritis; SLE: Systemic lupus erythematosus; SS: Sjögren syndrome; SSc: Systemic sclerosis.

Involvement is not included in the classification or diagnostic criteria. Abnormal LFT is common in SLE, usually with subtle changes, in up to 60% of cases during the disease course, while elevated liver enzymes occur during disease flares in less than 20% of patients[3,26,27]. Hepatic dysfunction in SLE can be classified into primary form due to disease itself or secondary form including DILI, VH, vascular disorders, alternative liver comorbidities and coexisting AILDs[28]. Before considering the liver involvement in SLE, it is necessary to exclude other secondary conditions.

Lupus hepatitis (LH) is reactive liver damage caused by immune-complex deposition, in contrast to lupoid hepatitis, a term used in the 1950s to define what was later known as AIH[29,30]. This manifestation is usually synchronous with disease activity and affects less than 10% of patients[31-33]. It is characterized by asymptomatic transaminasemia with the presence of anti-ribosomal P antibody (commonly known as ARPA) and non-specific histopathological changes. Although CS may help to improve impaired LFT, there is a risk of flare up upon cessation of its use[34]. Figure 1 shows the liver biopsy finding from a patient with LH demonstrating non-specific histopathological changes.

The main cause of liver dysfunction in SLE was salicylate toxicity in the 1950s[35]. Later on, owing to a rare prescription, another common finding of liver biopsy was steatohepatitis, an alternative liver comorbidity. Nowadays, the known risk factors for development of non-alcoholic fatty liver disease (NAFLD) include obesity, physical inactivity and sedentary lifestyle[36], which are also shared by SLE. Furthermore, patients with SLE have been shown to have higher incidences of metabolic syndrome and insulin resistance[37], especially with the use of CS[38]. Increased frequencies of NAFLD have been found in liver biopsy specimens from patients with SLE[39].

The presence of antiphospholipid antibody (aPL) in SLE underlies an increased probability of thrombophilia, leading to antiphospholipid syndrome (APS) with vascular thrombosis[40]. APS can affect the hepatic circulation, causing hepatic arterial thrombosis, portal vein thrombosis and Budd-Chiari syndrome (BCS) as well as the rarely-observed liver infarction and hepatic veno-occlusive disease[41,42]. Notably, BCS results from the obstruction of hepatic venous outflow[43] can be an initial manifestation of patients with SLE-associated APS[44]. In particular, aPL has been reported to be involved in the pathogenesis of hepatic nodular regenerative hyperplasia (referred to herein as NRH), small-nodule transformation of hyperplastic hepatocytes with a later development of non-cirrhotic portal hypertension[3,45]. Although higher frequencies of aPL could be detected in AILDs, there was no definite clinical or histological correlation with their presence in such patients[3,46].

Autoimmune gastrointestinal diseases have been linked to SLE with shared pathogenic mechanisms responsible for the development of both disorders[47]. Although AIH and PBC are rare AILDs, the coexistence with either of these diseases is not uncommon among SLE patients with liver enzyme abnormalities, suggesting a causal relationship between their overlap[28,48,49]. Since SLE-PSC overlap disease rarely occurs (but has been described in case reports[28,48]), it remains to be ascertained whether they are casual associations. A review on individual AILD coexisting with SLE is depicted as follows.

AIH is a rare AILD characterized by interface hepatitis as the most specific histological change, and the presence of autoantibodies including anti-liver kidney microsomal-1 (LKM-1)/liver cytosol-1 (LC-1) in type II, a rare subgroup affecting female pediatric patients, and ANA/anti-smooth muscle antibody (ASMA) in type I[50]. Clinical manifestations vary from asymptomatic to nonspecific symptoms of varying severity, including fatigue, malaise, nausea, anorexia and abdominal pain. The criteria established by the International Autoimmune Hepatitis Group (commonly known as the IAHG) are usually used for the diagnosis of AIH[51]. Due to different disease complications and therapeutic regimens between AIH and LH, it is imperative to differentiate between two disease entities[28,34]. AIH may lead to end stage liver disease, and its immunosuppressive therapy needs to be continued for at least 2 years of hepatic biochemical remission before attempting withdrawal[50]. Liver biopsy is highly
recommended for their distinction[28,34]. LH usually demonstrates lobular infiltrates or occasionally mild perilobular infiltrates, whereas AIH is characterized by portal mononuclear infiltrates invading nearby lobules to induce interface hepatitis and form hepatocyte rosettes, followed by confluent lytic necrosis and finally cirrhosis[30].

SLE-AIH overlap disease is defined by fulfilling American College of Rheumatology (commonly known as the ACR) criteria for the classification of SLE in patients who also meet IAIHG criteria for the diagnosis of AIH[34,51,52]. The prevalence of AIH in SLE ranges from 1.6% to 15%, lower in general cohorts and higher in patients with abnormal LFT[39,53-58]. Immunosuppressive treatment for AIH is also effective for SLE, and has been demonstrated to successfully apply to their overlap cases[28]. Most cases with coexisting SLE and AIH responded well to CS or plus immunosuppressants[48]. The long-term outcome for SLE-AIH overlap disease has been observed to be better than AIH alone[34]. Nevertheless, there are sporadic cases of acute liver failure or end-stage liver disease requiring LT[59,60].

PBC is the most common AILD affecting women predominantly. It is characterized by destructive lymphocytic cholangitis involving small bile ducts, and leading to progressive ductopenia, hepatic fibrosis[65]. Clinical manifestations vary from asymptomatic to non-specific symptoms with jaundice and pruritus. According to the guidance from American Association for the Study of Liver Diseases (commonly known as the AASLD), the diagnosis of PBC is established when two of three items are met, including biochemical cholestasis based on alkaline phosphatase (ALP) elevation, presence of antimitochondrial autoantibody (AMA), and histological evidences of nonsuppurative destructive cholangitis and interlobular bile ducts destruction[62]. The nomenclature of PBC has already shifted from cirrhosis to cholangitis, reflecting the dramatically improved prognosis upon first-line UDCA therapy without the development of cirrhosis[65,64].

SLE-PBC overlap is defined by fulfilling the diagnostic criteria for both diseases[34,52,62]. SLE usually affects younger females of childbearing age, whereas PBC is more common in middle-aged women. By genome-wide studies, both diseases have been reported to share the IRF5-TNPO3 gene-spanning haplotype loci[66]. The prevalence of PBC in SLE patients with liver dysfunction ranges from 2.2% to 7.5%, usually lower than that of AIH[39,53-55,57]. In a review of SLE overlapping with PBC, 69% were diagnosed first by PBC, 24% had coexisting SS, and 2 deaths were due to PBC-related hepatic failure[66]. For patients with concomitant SLE and PBC, regardless of the SLE treatment, UDCA is effective first-line therapy for PBC[49].

The diagnosis of PBC-AIH overlap is established with coexisting features of both diseases[67]. Two commonly used criteria for the diagnosis of PBC-AIH overlap syndrome are the IAIHG and Paris criteria[31,68]. Patients with overlapping PBC and AIH have been described to exhibit significantly higher rates of LC, portal hypertension and mortality as compared with those with AIH or PBC alone[69]. PBC with features of AIH should be considered for immunosuppressive therapy[49], while PBC-AIH overlap disease can benefit from combination treatment with UDCA and CS or plus AZA[69]. There is a rare association between SLE and PBC-AIH overlap disease[70]. In a large case series with 71 overlap patients, EHAIDs were identified in 31 (44%), while only 2 (3%) had concurrent SLE[71].

In contrast to western countries, AIH had been considered a rare etiology in the Asia-Pacific region, where VH is a major diagnosis in patients with chronic liver diseases[72]. A very low prevalence of AIH was found in Taiwan in earlier years, raising concerns about under-recognition in an area with a high prevalence of HBV infection and associated liver cirrhosis and hepatocellular carcinoma complications[73], where clinicians would have been more familiar with VH and might have tended to overlook AIH.
SSc is an uncommon SRD characterized by vasculopathy and fibrosis of the skin and internal organs, with the presence of anti-topoisomerase I and anti-centromere antibodies (ACA) in diffuse and limited cutaneous subsets, respectively[105]. It has a higher mortality rate than other SRDs. The gastrointestinal tract is affected in up to 90% of patients[106], and hepatic fibrosis has been identified at autopsy[107]. Since liver involvement is rarely observed in SSc[3], abnormal LFT should exclude other possibilities first before considering disease per se. There are diverse autoimmune diseases like AILDs co-occurring within SSc patients and their family members[108], suggesting common pathophysiological...
Table 4 Clinical, laboratory, therapeutic and outcome data in 3 patients with systemic lupus erythematosus-autoimmune hepatitis overlap disease

Patient number	1	2	3
Sex	Female	Female	Female
SLE Dx age	19	50	20
ACR criteria	8/11	7/11	8/11
AIH Dx age	26	37	22
IAIHG score	Definite	Definite	Definite

Clinical

	1	2	3
SLE	Skin, joint, renal, hematology, serositis	Skin, joint, renal, hematology, serositis	Skin, joint, renal, hematology, serositis
AILD complication	Jaundice, malaise LC with PH	Jaundice, pruritus hepatosplenomegaly	Jaundice, anorexia
Coexistent AID	Nil	PBC, SS	Nil

Laboratory

	1	2	3
Hemogram	HA, TP	HA, TP, leukopenia	TP, leukopenia
Proteinuria autoantibody	2 g/d	2.5 g/d	1 g/d
SLE-related autoantibody	ANA, anti-dsDNA/Sm	ANA, anti-dsDNA/Sm	ANA, anti-dsDNA
AILD-related autoantibody	ASMA	ASMA	ASMA
Others	ARPA, ANCA	ARPA, anti-Ro/La	ARPA
IgG (mg/dL)	2130	2520	1615
AST (IU/L)	1563	116	97
ALT (IU/L)	1093	217	177
Bil (mg/dL)	23.8	3.7	2.4
ALP (IU/L)	432	621	344
HLA-DR	DR8, DR15	DR4, DR15	DR4, DR7
HHV/CMV/EBV	No	No	No

Treatment

	1	2	3
CS/AZA, LDLT and low-dose CS/FK506 after OP	CS/AZA, UDCA RTX and low-dose CS for maintenance	CS/AZA, AZA RTX and low-dose CS for maintenance	CS/AZA, AZA for maintenance

Outcome

	1	2	3
Stabilized LFT and low SLEDAI	Normalized LFT and low SLEDAI	Normalized LFT and low SLEDAI	

1Enrollment from 2018 July to 2021 June.
2Peak levels during autoimmune hepatitis.
3Human hepatitis viruses including hepatitis A virus, hepatitis B virus and hepatitis C virus.

AID: Autoimmune disease; AIH: Autoimmune hepatitis; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AAMA: Antimitochondrial autoantibody; ANCA: Antineutrophil cytoplasmic antibody; ARPA: Anti-ribosomal-P antibody; ASMA: Anti-smooth muscle antibody; AST: Aspartate aminotransferase; AZA: Azathioprine; Bv: Bilirubin; CMV: Cytomegalovirus; CS: Corticosteroids; Dx: Diagnosis; EBV: Epstein-Barr virus; IAIHG: International Autoimmune Hepatitis Group; HA: Hemolytic anemia; HHV: Human hepatitis viruses; LC: Liver cirrhosis; LDLT: Living donor liver transplantation; LFT: Liver function test; OP: Operation; PBC: Primary biliary cholangitis; PH: Portal hypertension; RTX: Rituximab; SLEDAI: SLE disease activity index; SS: Sjögren syndrome; TP: Thrombocytopenia; UDCA: Ursodeoxycholic acid; VH: Viral hepatitis.

mechanisms between these disorders.

Increased prevalence of PBC has been observed in SSc, varying from 0.8% to 3.3%[108-112], and there is a 2.3% to 12.4% occurrence of SSc in PBC[90-94,111]. SSc-PBC overlap disease has the presence of both ACA and AMA[113], and tends to occur in older females with the limited cutaneous subset[114]. This overlap disorder has a slower disease progression in comparison with PBC alone; however, survival is similar due to an increase in SSc-related non-liver death. The use of UDCA has been observed to reduce skin lesions in addition to improved hepatic cholestasis in overlap patients[115].

A 0.8% prevalence of SSc has been reported from a AIH cohort[98], and patients with SSc-AIH overlap disease can be found in the literature[116,117]. In a review with 11 cases[117], all had positive ACA and a later presentation of AIH, 9 with limited cutaneous subtype and 3 with AIH-PBC overlap. Despite a risk of scleroderma renal crisis under the higher dosages of CS use, there were no adverse events associated with the use of CS in SSc-PBC overlap patients[118].
Figure 2 Liver biopsied tissues from 2 patients with systemic lupus erythematosus-autoimmune hepatitis overlap disease. A and B: Case 1 (A) lymphoplasmacytic infiltration with interface activity and (B) lymphoplasmacytic infiltration with interface activity. Plasma cells are indicated by blue arrows and rosette formations by black arrows; C and D: Case 2 (C) lymphoplasmacytic infiltration with interface activity, and (D) rosette formation (arrows). Hematoxylin and eosin staining, 400 × magnification.

RA

RA is a common SRD primarily affecting the joints and causing cartilage and bone damage, with extra-articular presentations and the presence of rheumatoid factor (commonly referred to as RF) and anti-cyclic citrullinated peptide (commonly referred to as CCP) autoantibodies[121]. Among patients with chronic inflammatory joint diseases, liver involvement has been recognized in RA, despite not showing a significant extra-articular manifestation[122]. Elevated liver enzymes have been identified in up to 50% of patients with RA[2]. DILI is not uncommonly observed in RA, especially under the treatment of NSAIDs and SDMARDs including leflunomide, methotrexate, penicillamine and sulfasalazine, all with potential hepatotoxicity[2,7,123]. Patients are at the hazard of developing NAFLD with the risk factors of chronic inflammation and CS use[2]. Prior to the widespread use of methotrexate in RA, the hepatic histopathological findings at autopsy were most commonly mild portal tract inflammation, rarely diffuse fibrosis of advanced grades[124]. Two rare extra-articular manifestations, rheumatoid vasculitis and Felty syndrome, have been reported to cause necrotizing hepatic arteritis with liver rupture and NRH with portal hypertension, respectively[125,126].

There were no differences in the prevalence of HBV and HCV infection in RA as compared with the general population[127]. Nevertheless, immunosuppressive therapy for RA may significantly worsen underlying VH, and further affect the clinical course and disease prognosis, requiring the survey of viral markers and their antibodies before its initiation[123]. Since the use of tumor necrosis factor (TNF) blockades in RA can cause inactive HBV reactivation[7,128], HBsAg-positive individuals should receive anti-viral prophylactic treatment[129]. Although the TNF pathway is involved in perpetuation of hepatic inflammation and fibrosis progression in HCV infection[130], further studies are needed to verify the safety of anti-TNF therapy in HCV-infected patients[131]. Notably, the use of TNF antagonists has been reported to be associated with the development of AIH in RA[7,132].
The most common coexisting AILDs in RA is PBC with a prevalence of 3.8% to 6.3%[53,97,123], while the occurrence of RA in PBC has been reported to be 1.8% to 13%[90-94]. Around 50% of patients with PBC were shown to be positive for RF[135]. Since RA is usually diagnosed before PBC in patients with the overlap disease, AMA should be screened in RA with elevated cholestatic liver enzymes[134]. Genetic studies have shown that RA has HLA-DQ81, STAT4, IRF5, MMEL1 and CTLA4 genes in common with PBC, predisposing to develop PBC in RA with the overlapping genetic trait[135]. Potentially hepatotoxic drugs used in RA can be avoided in patients with RA-PBC overlap disease[123].

AIH is rarely observed in RA with a 1.3% prevalence reported from patients with liver dysfunction[97]. Furthermore, in patients with AIH, there is a 1.6% to 5.4% prevalence of RA[98,100-102]. AIH can be diagnosed during the RA progression as acute or chronic hepatitis, but rarely fulminant hepatic failure[123]. In addition, in patients with AIH-PBC overlap disease, RA is accounting for an occurrence of 4.2%[71].

High circulating levels of TNF were found in AIH, while a TNF antagonist etanercept has been demonstrated to improve the AIH histological lesions in RA[136]. Nevertheless, anti-TNF therapy can induce the production of autoantibodies, including ANA and ASMA, leading to the development of distinct autoimmune diseases[137]. Notably, anti-TNF-inhibitor-associated AIH (also known as ATIAIH), a serious idiosyncratic DILI, has been well documented in a large-scale analysis of 389 cases[136]. ATIAIH has a female predominance, a period of 3-14 mo between starting therapy and AIH occurrence, and improvement upon medication stoppage and CS use. Infliximab is the most frequently administered medication, and RA is the most commonly reported indication.

There was a 1.2% and a 3.4% prevalence of RA in two large-scale PSC cohorts[81,139]. In patients with RA-PSC overlap disease, the presence of HLA-DR4 has been reported to have unusual progression to cirrhosis, 14-48 mo after the diagnosis of PSC[140], implicating a clinical marker at a high risk of cirrhosis development.

Psoriatic arthritis (PsA) is a less common SRD with psoriasis (PsO) and inflammatory arthritis, associating with extra-articular manifestations which have an impact on their therapeutic regimens[141]. Similar to RA, liver enzyme abnormalities in PsA and PsO can be caused by comorbid NAFLD and used medications including NSAIDs and conventional or biologic/targeted SDMADs. Despite an increased association of AIH in PsA and PsO[142], these patients might be under anti-TNF therapy, and both diseases are commonly observed complications in ATIAIH[138].

IIM

IIM including polymyositis (PM) and dermatomyositis (DM), an uncommon group of SRDs with the presence of myositis-specific/associated antibodies, have weakness due to skeletal muscle inflammation and extra-muscular involvement[143]. Since transaminases are also muscle-derived enzymes with increased levels during IIM disease activity, an increase of aspartate aminotransferase and alanine aminotransferase more than creatine kinase or an alteration of cholestatic enzymes should consider a possibility of hepatic dysfunction[3]. During the first 3 years to 5 years after the onset of DM, the risk of cancer is increased, rarely hepatocellular carcinoma. Since DM can be associated with malignancy as a paraneoplastic syndrome[144], sporadic cases had HBV-associated hepatocellular carcinoma with a concurrent or later diagnosis of DM[145,146].

Although IIM usually occur alone, these SRDs may associate with other extra-muscular autoimmune diseases including AILDs, more frequently in patients with PM than DM[147]. Positive AMA could be identified in 2.5% of patients with IIM[148], and there were sibling cases of familial clustering with PBC-PM overlap disease[149]. PBC can be identified in IIM with a prevalence of 0.7%[148], while the occurrence of PM in PBC ranges from 0.6% to 3.1%[90,92,93]. There are sporadic cases with PM coexisting with AIH, AIH-PBC overlap disease or PSC[150-152].

MCTD

In addition to the presence of anti-U1 small nuclear ribonucleoprotein (known as snNRP) antibody in high titers, MCTD has distinct features including Raynaud’s phenomenon and puffly hands as well as mixed findings from PM, SLE and SSc[153]. It is a rare SRD with a strong HLA linkage, distinctly differing from ethnically matched healthy controls and other SRDs. Hepatic dysfunction occurs in MCTD usually caused by DILI and pulmonary hypertension-related liver congestion[97,153]. Coexistent AILDs are rarely observed in patients with MCTD[153]. In addition to published case reports, a 1.6% prevalence of AIH was found in MCTD[154], while a 0.6% prevalence of MCTD could be identified in PBC[90]. There was no observed association with MCTD in two PSC case series[81,141].
SV

SV is a rare SRD characterized by inflammation of vascular walls, resulting in a broad spectrum of clinical manifestations dependent on the site, type, and size of involved vessels[155]. Although the diagnosis relies on clinical presentations confirmed by histopathological findings, large/medium and small vessel involvement can be supported by angiographical examinations and laboratory tests (e.g., ANCA), respectively[155,156]. Owing to hepatic vascular involvement[2,53], polyarteritis nodosa (referred to herein as PAN), a medium-vessel SV associated with HBV infection[157], may have elevated liver enzymes. A 2.2% prevalence of SV has been reported from a large-scale PBC series with 361 cases [94], while a 1.6% occurrence of SV was identified in a 122-patient AIH series[98]. There were sporadic cases of AIH coexisting with PAN[158].

Testing for ANCA can support the diagnosis of ANCA-associated vasculitis including eosinophilic granulomatosis with polyangiitis (also referred to as EGPA), granulomatosis with polyangiitis and microscopic polyangiitis (also referred to as MPA) in spite of seropositivity in only one-third of EGPA cases[159]. Notably, ANCA has a diagnostic relevance beyond SV, justifying its occurrence in suspected type I AIH which is lacking conventional autoantibodies[160]. AILDs usually develop atypical perinuclear-ANCA not targeting the classical myeloperoxidase with the positive frequencies highest in patients with PSC[21,156]. There is no clinical nor prognostic value of ANCA testing in patients with AILDs. This atypical autoantibody, referred to as peripheral anti-nuclear neutrophil antibody, can react with beta-tubulin isotype 5 and shares structural homology with the intestinal bacterial protein FtsZ [161]. Nevertheless, it is not specific for AILDs, and it is also present in VIH and alcoholic liver disease [162]. Interestingly, ANCA was detected in the bile of PSC patients and correlated with the severity of bile duct stricture[163]. Sixteen cases of ANCA-associated vasculitis-AILD overlap disease have been reported, with twelve involving women, PBC in eleven, and GPA in eight[164-166].

OTHER SRDS

Adult-onset Still’s disease (AOSD) is a rare SRD usually affecting young adults, with spiking fever, polyarthritis, evanescent rash and marked hyperferritinemia as well as uncommon life-threatening macrophage activation syndrome[167]. In medical practice, hyperferritinemia is a non-specific finding related to iron overload in only 10% of cases such as hereditary hemochromatosis, while underlying causes attributing to a reactive increase in the rest 90% patients such as AOSD[168]. Hepatic dysfunction is commonly observed in AOSD, mostly due to the disease itself and without any specific histological finding[97,167]. Coexisting AILDs have rarely been observed, and there are sporadic cases of AIH-AOSD overlap disease[169].

Behçet’s disease (BD) is a SRD with a variable worldwide prevalence, characterized by vasculitis affecting the small/Large venous and arterial vessels, and presenting with orogenital ulcers, ocular lesions and systemic involvement[170]. The liver is rarely involved, and the commonest hepatic complication is BCS with thrombosis of the inferior vena cava and hepatic vein[171]. Elevated ALP levels of liver origin has been reported in 10% of patients, with a correlation to disease activity[172]. Case reports of Behçet’s disease concomitant with AIH or PBC can be found in the literature[173,174].

IgG4-RD is a rare SRD, characterized by elevated serum IgG4 concentrations and fibroinflammation in the affected tissues, with dense lymphoplasmacytic infiltrates rich in IgG4-positive plasma cells and storiform fibrosis[175]. Cases of type I AIP and IgG4-related sclerosing cholangitis (commonly referred to as IgG4-SC), two common forms of IgG4-RD usually occurring in combination, have painless jaundice and cholestatic LFT abnormalities due to liver involvement[176,177]. Although CS has favorable therapeutic efficacy[49], AIP and IgG4-SC are associated with significant morbidity and mortality due to extra-pancreatic organ failure and malignancy[176]. AIP has been reported to be associated with PBC and PSC[178,179]. Infiltrating IgG4-positive plasma cells can be observed in the AIH liver, suggesting involvement of IgG4 in its pathogenesis[180]. Nevertheless, the disease concept of IgG4-AIH remains to be established[181].

Sarcoidosis is an uncommon SRD, characterized by the formation of noncaseating granulomas in various organs, predominantly the lungs, lymphatic system, skin, and eyes, or a different combination of these sites[182]. Abnormal LFT has been observed in one-fourth of patients with chronic sarcoidosis; among which, 15% are suspected of having liver involvement with cholestatic pattern of injury[183]. Although hepatic sarcoidosis is mainly asymptomatic, it can progress to LC, while such cases are rare [184]. AILDs coexisting with sarcoidosis have been reported, having a prevalence of 0.6% in AIH and 0.8% in PSC[51,99]. Several case reports have described the association of sarcoidosis with PBC[88]. A 2.7% prevalence of sarcoidosis was found in a PBC cohort from Greece[185], whereas an epidemiological study with 1510 patients from the United Kingdom failed to show an association between the two disorders[186].

Relapsing polychondritis is a rare SRD, characterized by cartilaginous inflammation throughout the body, especially involving the hyaline cartilage of the ears, nose and joints, and the respiratory tract [187]. Liver involvement with cholestatic hepatic dysfunction has been observed scarcely in such
patients[188]. The association of relapsing polychondritis with AILDs has been reported with PBC or PSC overlap diseases[189,190].

CONCLUSION

SRDs are chronic, inflammatory, autoimmune disorders with the presence of autoantibodies that may affect any organ or system. Liver dysfunction in SRDs can be associated with prescribed drugs, VH, alternative hepatic comorbidities and coexisting AILDs, requiring an exclusion of secondary conditions before considering liver involvement. The patterns of overlap diseases depend predominantly on genetic determinants with common susceptible loci widely distributed in both disorders. In AILDs, it is important to identify the overlapping SRDs at an early stage, since such a coexistence may influence the disease course and prognosis. Commonly co-occurring SRDs in AILDs are SS, RA or SLE in AIH, and SS, RA or SSc in PBC. Owing to different disease complications and therapies, it is imperative to differentiate between SLE liver involvement and SLE-AIH overlap disease. Therapeutic options can be personalized to control coexisting conditions of liver autoimmunity and rheumatic manifestations in AILD-SRD overlap diseases. The collaboration between hepatologists and rheumatologists in clinical practice can lead to significant advances in managing such a complex scenario.

ACKNOWLEDGEMENTS

The authors are indebted to Dr. IC Wu (Division of Gastroenterology and Hepatology) for his valuable comments and to other doctors at the National Cheng Kung University Hospital involved in the diagnosis and management of reported patients.

FOOTNOTES

Author contributions: Wang CR designed the report; Wang CR and Tsai HW wrote the paper, collected the clinical data and analyzed the pathological specimens.

Conflict-of-interest statement: The authors declare having no real or potential conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Taiwan

ORCID number: Chrong-Reen Wang 0000-0001-9881-7024; Hung-Wen Tsai 0000-0001-9223-2535.

REFERENCES

1 Bossuyt X, De Langhe E, Borghi MO, Meroni PL. Understanding and interpreting antinuclear antibody tests in systemic rheumatic diseases. Nat Rev Rheumatol 2020; 16: 715-726 [PMID: 33154583 DOI: 10.1038/s41584-020-00522-w]

2 Gebre selassie A, Aduli F, Howell CD. Rheumatologic Diseases and the Liver. Clin Liver Dis 2019; 23: 247-261 [PMID: 30947875 DOI: 10.1016/j.cld.2018.12.007]

3 De Santis M, Crotti C, Selmi C. Liver abnormalities in connective tissue diseases. Best Pract Res Clin Gastroenterol 2013; 27: 543-551 [PMID: 24090941 DOI: 10.1016/j.bped.2013.06.016]

4 Visser K, Katchamart W, Loza E, Martinez-Lopez JA, Salliot C, Trudeau J, Bombardier C, Carmona L, van der Heijde D, Bijluma JW, Boumpas DT, Canhao H, Edwards CJ, Hamuryudan V, Kvien TK, Leeb BF, Martin-Mola EM, Mielants H, Müller-Ladner U, Murphy G, Östergaard M, Pereira IA, Remus-Remus C, Zochling J, Dougados M. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative. Ann Rheum Dis 2009; 68: 1086-1093 [PMID: 19033291 DOI: 10.1136/ard.2008.094474]
5 Conway R, Carey JJ. Risk of liver disease in methotrexate treated patients. *World J Hepatol* 2017; 9: 1092-1100 [PMID: 28995965 DOI: 10.4254/wjh.v9.i26.1092]

6 Perrillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. *Gastroenterology* 2015; 148: 221-244.e3 [PMID: 25447852 DOI: 10.1013/j.gastro.2014.10.038]

7 LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 - [PMID: 31643176]

8 Hayashii PH. Drug-Induced Liver Injury Network Causality Assessment: Criteria and Experience in the United States. *Int J Mol Sci* 2016; 17: 201 [PMID: 26861284 DOI: 10.3390/ijms1702201]

9 Sanjeevaiah A, Kerr T, Beg MS. Approach and management of checkpoint inhibitor-related immune hepatitis. *J Gastrointest Oncol* 2018; 9: 220-224 [PMID: 29564187 DOI: 10.21037/jgo.2017.08.14]

10 Gao B. Basic liver immunology. *Cell Mol Immunol* 2016; 13: 265-266 [PMID: 27041634 DOI: 10.1038/cmi.2016.09]

11 Lee BT, Tana MM, Kahn JA, Dara L. We Are Not Immune: Racial and Ethnic Disparities in Autoimmune Liver Diseases. *Hepatology* 2021; 74: 2876-2887 [PMID: 34057634 DOI: 10.1002/hep.31985]

12 Washington MK. Autoimmune liver disease: overlap and outliers. *Mod Pathol* 2007; 20 Suppl 1: S15-S30 [PMID: 17486048 DOI: 10.1038/modpathol.3800684]

13 Wong GW, Heneghan MA. Association of Extrahepatic Manifestations with Autoimmune Hepatitis. *Dig Dis* 2015; 33 Suppl 2: 25-35 [PMID: 26641498 DOI: 10.1159/000440470]

14 Terzizoli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmune hepatitis: Standard treatment and systematic review of alternative treatments. *World J Gastroenterol* 2023; 23: 6030-6048 [PMID: 28970719 DOI: 10.3748/wjg.v23.i13.6030]

15 Tanaka A. Emerging novel treatments for autoimmune liver diseases. *Hepatol Res* 2019; 49: 489-499 [PMID: 30969002 DOI: 10.1111/hepr.13347]

16 Engel B, Taubert R, Jaeckel E, Manns MP. The future of autoimmune liver diseases - Understanding pathogenesis and improving morbidity and mortality. *Liver Int* 2020; 40 Suppl 1: 149-153 [PMID: 32707655 DOI: 10.1111/liv.14378]

17 Chen C, Ke R, Yang F, Cai Q, Liu J, Huang X, Chen J, Xu F, Jiang Y. Risk factors for recurrent autoimmune liver diseases after liver transplantation: A meta-analysis. *Medicine (Baltimore)* 2020; 99, e20205 [PMID: 32443344 DOI: 10.1097/MD.0000000000002015]

18 Heinemann M, Liwiński T, Adam R, Berenguer M, Mirza D, Malek-Hosseini SA, Heneghan MA, Lodge P, Pratschke J, Lohse AW, Schramm C; all the other contributing centers (www.eltr.org) and the European Liver and Intestine Transplant Association (ELITA). Long-term outcome after living donor liver transplantation compared to donation after brain death in autoimmune liver diseases: Experience from the European Liver Transplant Registry. *Am J Transplant* 2022; 22: 626-633 [PMID: 34605157 DOI: 10.1111/ajt.16684]

19 Trivedi PJ, Hirschfield GM. Recent advances in clinical practice: epidemiology of autoimmune liver diseases. *Gut* 2021; 70: 1989-2003 [PMID: 34269966 DOI: 10.1136/gutjnl-2020-322362]

20 Guo L, Zhou L, Zhang N, Deng B, Wang B. Extrahepatic Autoimmune Diseases in Patients with Autoimmune Liver Diseases: A Phenomenon Neglected by Gastroenterologists. *Gastroenterol Res Pract* 2017; 2017: 2376231 [PMID: 28191014 DOI: 10.1155/2017/2376231]

21 Selmi C, Generali E, Gershwin ME. Rheumatic Manifestations in Autoimmune Liver Disease. *Rheum Dis Clin North Am* 2018; 44: 291-499 [PMID: 31061163 DOI: 10.1016/j.rdc.2017.09.008]

22 Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and Sjögren's syndrome: autoimmune epithelitis. *J Autoimmun* 2012; 39: 34-42 [PMID: 22178199 DOI: 10.1016/j.jaut.2011.11.005]

23 Parisi D, Chivasso C, Perret J, Soyfoo MS, Delporte C. Current State of Knowledge on Primary Sjögren's Syndrome, an Autoimmune Exocrinopathy. *J Clin Med* 2020; 9 [PMID: 32698460 DOI: 10.3390/jcm9072299]

24 Sirooti S, Generali E, Cerbelli A, Isailovic N, De Santis M, Selmi C. Personalized medicine in rheumatology: the paradigm of serum autoantibodies. *Auto Immun Highlights* 2017; 8: 10 [PMID: 28702930 DOI: 10.1016/j.aih.2017.00698]

25 Tsokos GC. Systemic lupus erythematosus. *N Engl J Med* 2011; 365: 2110-2121 [PMID: 22129255 DOI: 10.1056/NEJMra1100359]

26 Runyon BA, LaBrecque DR, Anuras S. The spectrum of liver disease in systemic lupus erythematosus. Report of 33 histologically-proved cases and review of the literature. *Am J Med* 1980; 69: 187-194 [PMID: 7405944 DOI: 10.1016/0002-9343(80)90378-2]

27 Ebert EC, Hagspiel KD. Gastrointestinal and hepatic manifestations of systemic lupus erythematosus. *J Clin Gastroenterol* 2011; 45: 436-441 [PMID: 21422947 DOI: 10.1097/MCG.0b013e31820f1b88]

28 González-Requeiro JA, Cruz-Contreras M, Menayo-Chalico J, Barrera-Vargas A, Ruiz-Margáin A, Campos-Murguia A, Espin-Nasser M, Martínez-Benítez B, Méndez-Canó VH, Macias-Rodriguez RUI. Hepatic manifestations in systemic lupus erythematosus. *Lupus* 2020; 29: 813-824 [PMID: 33290496 DOI: 10.1177/096120332032923398]

29 Mackay IR, Taft LL, Cowling DC. Lupoid hepatitis and the hepatic lesions of systemic lupus erythematosus. *Lancet* 1959; 1: 65-69 [PMID: 13621639 DOI: 10.1016/s0140-6736(59)91136-5]

30 Adiga A, Nugent K. Lupus Hepatitis and Autoimmune Hepatitis (Lupoid Hepatitis). *Am J Med Sci* 2017; 353: 329-335 [PMID: 28317620 DOI: 10.1016/j.amjms.2016.10.014]

31 Piga M, Vacca A, Porru G, Cauli A, Mathieu A. Liver involvement in systemic lupus erythematosus: incidence, clinical course and outcome of lupus hepatitis. *Clin Exp Rheumatol* 2010; 28: 504-510 [PMID: 20609296 DOI: 10.1186/1471-2474-11-143]

32 Zheng RH, Wang JH, Wang SB, Chen J, Guan WM, Chen MH. Clinical and immunopathological features of patients with lupus hepatitis. *Chin Med J (Engl)* 2013; 126: 260-266 [PMID: 23324274]

33 Ohira H, Takiguchi J, Rai T, Abe K, Yokokawa J, Sato Y, Takeda I, Kanno T. High frequency of anti-ribosomal P antibody in patients with systemic lupus erythematosus-associated hepatitis. *Hepatol Res* 2004; 28: 137-139 [PMID: 15294274];
Autoimmune liver diseases in SRDs

Wang CR et al. Autoimmune liver diseases in SRDs

WJG, June 21, 2022, Volume 28, Issue 23

DOI: 10.1016/j.hepres.2003.11.008

34 Afzal W, Haghi M, Hasni SA, Newman KA. Lupus hepatitis, more than just elevated liver enzymes. Scand J Rheumatol 2020; 49: 427-433 [PMID: 32942921 DOI: 10.1080/03009742.2020.1744712]

35 Horizon AA, Wallace DJ. Risk/benefit ratio of nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus. Expert Opin Drug Saf 2004; 3: 273-278 [PMID: 15268645 DOI: 10.1517/14740388.3.4.273]

36 Tanaka N, Kimura T, Fujimori N, Nagaya T, Komatsu M, Tanaka E. Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J Gastroenterol 2019; 25: 163-177 [PMID: 30679070 DOI: 10.3748/wjg.v25.i2.163]

37 Chung CP, Avalos I, Oaseer A, Gebretsadik T, Shintani A, Raggi P, Stein CM. High prevalence of the metabolic syndrome in patients with systemic lupus erythematosus: association with disease characteristics and cardiovascular risk factors. Am Rheum Dis 2007; 66: 208-214 [PMID: 16901956 DOI: 10.1136/ard.2006.054973]

38 Wang CR, Tsai HW. Anti- and non-tumor necrosis factor-α-targeted therapies effects on insulin resistance in rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. World J Diabetes 2021; 12: 238-260 [PMID: 33758645 DOI: 10.4239/wjd.v12.i23.238]

39 Chowdhary VR, Crowson CS, Poterucha JJ, Modr KG. Liver involvement in systemic lupus erythematosus: case review of 40 patients. J Rheumatol 2007; 35: 2159-2164 [PMID: 18793002 DOI: 10.3899/jrheum.080336]

40 Ruiz-Irastorza G, Crowther M, Branch W, Khamashta MA. Antiphospholipid syndrome. Lancet 2010; 376: 1498-1509 [PMID: 20822807 DOI: 10.1016/S0140-6736(10)60709-X]

41 Utman I, Khamashta M. The abdominal manifestations of the antiphospholipid syndrome. Rheumatology (Oxford) 2007; 46: 1641-1647 [PMID: 17636180 DOI: 10.1093/rheumatology/kem158]

42 Guin B, Loffroy R, Cercueil JP, Sagot P, Krause D, Tixier H. MRI diagnosis and follow-up of hepatic infarction in a patient with antiphospholipid syndrome. Arch Gynecol Obstet 2011; 283: 659-662 [PMID: 20411270 DOI: 10.1007/s00404-010-1467-4]

43 Aydilini M, Bayraktar Y. Budd-Chiari syndrome: etiology, pathogenesis and diagnosis. World J Gastroenterol 2007; 13: 2693-2697 [PMID: 17909337 DOI: 10.3745/wjg.v13.i19.2693]

44 Pandirayar J, Sathayeesan A, Budd-Chiari Syndrome as an Initial Manifestation of Systemic Lupus Erythematosus. J Clin Diagn Res 2016; 10: OD01-OD02 [PMID: 27190864 DOI: 10.3760/jcdr.2016.1603.7532]

45 Hartele M, Gurtkowski K, Milkiewicz P. Nodular regenerative hyperplasia: evolving concepts on underdiagnosed cause of portal hypertension. World J Gastroenterol 2011; 17: 1400-1409 [PMID: 21472997 DOI: 10.3748/wjg.v17.i11.1400]

46 Branger S, Schleinitz N, Veit V, Martaresche C, Bourlière M, Robin X, Garcia S, San Marco M, Camoin L, Durand JM, Harlé JR. [Auto-immune hepatitis and antiphospholipids]. Rev Med Interne 2007; 28: 218-224 [PMID: 17331625 DOI: 10.1016/j.revmed.2006.12.005]

47 Alves SC, Fassano S, Isenberg DA. Autoimmune gastrointestinal complications in patients with systemic lupus erythematosus: case series and literature review. Lupus 2016; 25: 1509-1519 [PMID: 27329649 DOI: 10.1177/0961203316655210]

48 Bessone F, Poles N, Roma MG. Challenge of liver disease in systemic lupus erythematosus: Clues for diagnosis and hints for pathogenesis. World J Hepatol 2014; 6: 394-409 [PMID: 25018850 DOI: 10.4245/wjh.v6.i6.394]

49 Ali AH, Carey EJ, Lindor KD. The management of autoimmunity in patients with cholestatic liver diseases. Expert Rev Gastroenterol Hepatol 2016; 10: 73-91 [PMID: 26523975 DOI: 10.1586/17474124.2016.1093088]

50 Heneghan MA, Yeoman AD, Verma S, Smith AD, Longhi MS. Autoimmune hepatitis. Lancet 2013; 382: 1433-1444 [PMID: 23788484 DOI: 10.1016/S0140-6736(12)62163-1]

51 Wiegand C, Schramm C, Lohse AW. Scoring systems for the diagnosis of autoimmune hepatitis: past, present, and future. Semin Liver Dis 2009; 29: 254-261 [PMID: 19675998 DOI: 10.1055/s-0029-1233522]

52 Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725 [PMID: 9324032 DOI: 10.1002/art.1780490028]

53 Matsumoto T, Kobayashi S, Shimizu H, Nakajima M, Watanabe S, Kitami M, Sato N, Abe H, Aoki Y, Hoshii T, Hashimoto H. The liver in collagen diseases: pathologic study of 160 cases with particular reference to hepatic arteritis, primary biliary cirrhosis, autoimmune hepatitis and nodular regenerative hyperplasia of the liver. Liver 2000; 20: 366-373 [PMID: 11092254 DOI: 10.1034/j.1600-0676.2000.020005366.x]

54 Efe C, Purnak T, Ozaslan E, Ozbalkan Z, Karaslan Y, Altıparmak E, Muratöri P, Wahlin S. Autoimmune liver disease in patients with systemic lupus erythematosus: a retrospective analysis of 147 cases. Scand J Gastroenterol 2011; 46: 732-737 [PMID: 21348808 DOI: 10.3109/03009771.2011.558114]

55 Takahashi A, Abe K, Saito R, Iwadate H, Okai K, Katsušima F, Monoe K, Kanno Y, Saito H, Kobayashi H, Watanabe H, Ohira H. Liver dysfunction in patients with systemic lupus erythematosus. Intern Med 2013; 52: 1461-1465 [PMID: 23812192 DOI: 10.2169/internalmedicine.52.9458]

56 Oka H. The survey of autoimmune hepatitis in Japan. In: Annual Report of the Study Group on Severe Hepatitis. Tokyo: Japanese Ministry of Health and Welfare, 1988: 235-241

57 Heijke R, Ahmad A, Fredlund M, Wrestram L, Dahlström Ö, Dahl C, Kechagias S, Sjöwall C. Usefulness of Clinical and Laboratory Criteria for Diagnosing Autoimmune Liver Disease among Patients with Systemic Lupus Erythematosus: An Observational Study. J Clin Med 2021; 10 [PMID: 34301268 DOI: 10.3390/jcm10173820]

58 Tamai Y, Ito K, Kim F, Fukase M. American rheumatism association (ARA) preliminary criteria for the classification of systemic lupus erythematosus and autoimmune hepatitis. Rheumachi 1974; 14: 88-94

59 Bartelb H, Wallace DJ, Klinenberg JR. Liver transplantation in patients with systemic lupus erythematosus. Lupus 1995; 4: 15-17 [PMID: 7767333 DOI: 10.1177/09612033950400104]

60 Wang CR, Wu IC, Tsai HW. An overlap syndrome involving systemic lupus erythematosus and autoimmune hepatitis in a patient receiving a living-donor liver transplantation. Lupus 2020; 29: 96-97 [PMID: 31830423 DOI: 10.1097/01.rho.20191894381]

61 Leo A, Wang GQ, Gershwin ME, Hirschfeld GM. Primary biliary cholangitis. Lancet 2020; 396: 1915-1926 [PMID: 33308474 DOI: 10.1016/S0140-6736(20)31607-X]
62 Lindor KD, Bowls CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2019; 69: 394-419 [PMID: 30070375 DOI: 10.1002/hep.30142]

63 Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, Ma X, Mackay IR, Parés A, Tanaka A, Vierling JM, Poupan R. Changing nomenclature for PBC: From 'cirrhosis' to 'cholangitis'. J Hepatol 2015; 63: 1285-1287 [PMID: 26365765 DOI: 10.1016/j.jhep.2015.06.031]

64 Floreani A, Tanaka A, Bowls C, Gershwin ME. Geooepidemiology and changing mortality in primary biliary cholangitis. J Gastroenterol 2017; 52: 655-662 [PMID: 28563790 DOI: 10.1007/s00535-017-1333-2]

65 Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM, Lessard CJ, Vaughn SE, Marion M, Weirach MT, Namjou B, Adler A, Rasmussen A, Glenn S, Montgomery CG, Hirschfeld GM, Xie G, Coltescu A, Amos C, Li H, Ice JA, Nath SK, Mariette X, Bowman S, UK Primary Sjögren's Syndrome Registry, Rischmueller M, Lester S, Brn JG, Goransson LG, Harboe E, Omdal R, Cunningham-Graham DS, Vaye T, Miceli-Richard C, Brennan MT, Lessard JA, Wahren-Herlenius M, Kvarnström M, Illie GG, Witte T, Jonsson R, Eriksson P, Nordmark G, Ng W; UK Primary Sjögren's Syndrome Registry, Anaya JM, Rhodes NL, Segal BM, Merrill JT, James JA, Guthridge JM, Scalford RH, Alarcon-Riquelme M, Baé SC, Boackle SA, Criswell LA, Gilseng K, Kamen DL, Jacob CO, Kimberly R, Brown E, Edberg J, Alarcón GS, Reveille JD, Vilá LM, Petri M, Ramsey-Goldman R, Freedman BI, Niewold T, Stevens AM, Tsao BP, Ying J, Mayes MD, Gorlova OY, Nakamura K, Martin E, Martin J, Siminovitch K, Moser Sivils KL, Gaffney PM, Langefeld CD, Harley JB, Kaufman KM. The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 2015; 24: 582-596 [PMID: 25205108 DOI: 10.1093/hmg/ddu455]

66 Shizuma T. Clinical Characteristics of Concomitant Systemic Lupus Erythematosus and Primary Biliary Cirrhosis: A Literature Review. J Immunol Res 2015; 2015: 713728 [PMID: 26094047 DOI: 11155/2015/713728]

67 Boberg KM, Chapman RW, Hirschfeld GM, Lohse AW, Manns MP, Shizuma T, Boackle SA, Criswell LA. International Autoimmune Hepatitis Group. Overlap syndromes: the International Autoimmune Hepatitis Group (IAIHG) position statement on a controversial issue. J Hepatol 2011; 54: 374-385 [PMID: 21067838 DOI: 10.1016/j.jhep.2010.09.002]

68 Chazouillères O, Wendam D, Serfaty L, Montembault S, Rosmorduc O, Poppon R. Primary biliary cirrhosis-autoimmune hepatitis overlap syndrome: clinical outcomes and response to therapy. Hepatology 1998; 29: 296-301 [PMID: 9695990 DOI: 10.1002/hep.10280203]

69 To U, Silveira M. Overlap Syndrome of Autoimmune Hepatitis and Primary Biliary Cholangitis. Clin Liver Dis 2018; 22: 603-611 [PMID: 30259856 DOI: 10.1016/j.clld.2018.03.010]

70 González LA, Orrego M, Ramírez LA, Vásquez G. Primary biliary cirrhosis/autoimmune hepatitis overlap syndrome developing in a patient with systemic lupus erythematosus: a case report and review of the literature. Lupus 2011; 20: 108-111 [PMID: 20724352 DOI: 10.1177/0961203310378673]

71 Efe C, Wahlin S, Ozalas E, Berlot AH, Purnak T, Muratori L, Quarneti C, Arslan G, Richter J, Yüksel O, Muratori P. Autoimmune hepatitis/primary biliary cirrhosis overlap syndrome and associated extrahepatic autoimmune diseases. Eur J Gastroenterol Hepatol 2012; 24: 531-534 [PMID: 22465972 DOI: 10.1097/MEG.0b013e328350f95b]

72 Tanaka A, Ma X, Yokosuka O, Weltman M, You H, Amarpurkar DN, Kim YJ, Abbas Z, Payawal DA, Chang ML, Efe C, Ozalas E, Abe M, Mitchell-Train R, Zeniya M, Han KH, Vierling JM, Takikawa H. Autoimmune liver diseases in the Asia-Pacific region: Proceedings of APASL symposium on AIH and PBC 2016. Hepatol Int 2016; 10: 909-915 [PMID: 27609679 DOI: 10.1111/hij.12972-016-9767-9]

73 Lin CL, Kuo JH. Perspectives and control of hepatitis B virus infection in Taiwan. J Formos Med Assoc 2015; 114: 901-909 [PMID: 26184565 DOI: 10.1016/j.jfma.2015.06.003]

74 Koy LB, Lin CY, Tsai SL, Lee C, Lin CN, Sheu MJ, Kuo HT, Sun CS. Type I autoimmune hepatitis in Taiwan: diagnosis using the revised criteria of the International Autoimmune Hepatitis Group. Dig Dis Sci 2006; 51: 1978-1984 [PMID: 17053960 DOI: 10.1007/s10620-005-9068-y]

75 Lazaridis KN, LaRusso NF. Primary Sclerosing Cholangitis. N Engl J Med 2016; 375: 1161-1170 [PMID: 27653566 DOI: 10.1056/NEJMa1506330]

76 Alberti-Flor JJ, Leffers L, Schiffl E. Early diagnosis of primary sclerosing cholangitis occurring in a patient with systemic lupus erythematosus and diabetes mellitus. Am J Gastroenterol 1984; 79: 889-891 [PMID: 6507412]

77 Lamy P, Valla D, Bourgeois P, Rueff B, Benhamou JP. Primary sclerosing cholangitis and systemic lupus erythematosus. Gastroenterol Clin Biol 1988; 12: 962-964 [PMID: 3069553]

78 Audan A, Bruley Des Varannes S, Georgelin T, Sagan C, Cloarec D, Serraz H, Le Bodic L. Primary sclerosing cholangitis and systemic lupus erythematosus. Gastroenterol Clin Biol 1995; 19: 123-126 [PMID: 7720973]

79 Kadokawa Y, Omagari K, Matsuo I, Otsu Y, Yamamoto U, Ohba K, Miyazaki M, Harada T, Taguchi T, Kohno S. Primary sclerosing cholangitis associated with lupus nephritis: a rare association. Dig Dis Sci 2003; 48: 911-914 [PMID: 12772788 DOI: 10.1023/A:1023095428321]

80 Oh DC, Ng TM, Ho J, Leong KP. Systemic lupus erythematosus with concurrent protein-losing enteropathy and primary sclerosing cholangitis: a unique association. Lupus 2006; 15: 102-104 [PMID: 16539281 DOI: 10.1111/j.1641-870X.2006.00433.x]

81 Saarinen S, Olerup O, Broome U. Increased frequency of autoimmune diseases in patients with primary sclerosing cholangitis. Am J Gastroenterol 2000; 95: 3195-3199 [PMID: 11095341 DOI: 10.1111/j.1572-0241.2000.00392.x]

82 Mariette X, Criswell LA. Primary Sjögren's Syndrome. N Engl J Med 2018; 378: 931-939 [PMID: 29514034 DOI: 10.1056/NEJMcp1702514]

83 Kaplan MJ, Ike RW. The liver is a common non-exocrine target in primary Sjögren's syndrome: a retrospective review. BMC Gastroenterol 2002; 2: 21 [PMID: 12230633 DOI: 10.1186/1471-230X-2-21]

84 Ramos-Casals M, Sánchez-Tapias JM, Parés A, Forns X, Brito-Zerón P, Nardi N, Vazquez P, Vélez D, Arias I, Bové A, Plaza J, Rodés J, Font J. Characterization and differentiation of autoimmune vs viral liver involvement in patients with Sjögren's syndrome. J Rheumatol 2006; 33: 1593-1599 [PMID: 16881116 DOI: 10.1002/247317890121-8]

85 Lindgren S, Manthorpe R, Eriksson S. Autoimmune liver disease in patients with primary Sjögren's syndrome. J Hepatol
MD. Primary biliary cirrhosis (PBC), PBC autoantibodies, and hepatic parameter abnormalities in a large population of fifty-eight autopsy cases and fifty-eight matched controls.

Forbes A, Denton CP, Sjögren Syndrome. Autoimmunity in systemic sclerosis. Ann Rheum Dis 2001; 60: 1046-1049 [PMID: 11620476 DOI: 10.1136/ard.60.11.1046]

Wang L, Zhang FC, Chen H, Zhang X, Xu D, Li YZ, Wang Q, Gao LX, Yang YJ, Kong F, Wang K. Connective tissue diseases in primary biliary cirrhosis: a population-based cohort study. World J Gastroenterol 2013; 19: 5131-5137 [PMID: 23964148 DOI: 10.3748/wjg.v19.i51.5137]

Floreani A, Franceschet I, Cazzagon N, Spinazza A, Buja A, Furlan P, Baldo V, Gershwin ME. Extrahepatic autoimmune conditions associated with primary biliary cirrhosis. Clin Rev Allergy Immunol 2015; 48: 192-197 [PMID: 24809534 DOI: 10.1007/s12016-014-8428-6]

Selmic C, Gershwin ME. Chronic Autoimmune Epithelitis in Sjögren's Syndrome and Primary Biliary Cholangitis: A Comprehensive Review. Rheumatol Ther 2017; 4: 263-279 [PMID: 28791611 DOI: 10.1007/s12016-017-0074-2]

Bournia VK, Vlachoyiannopoulos PG. Subgroups of Sjögren's patients according to serological profiles. J Autoimmun 2012; 39: 15-26 [PMID: 22575069 DOI: 10.1016/j.jaut.2012.03.001]

Takahashi A, Abe K, Yokokawa J, Iwatade H, Kobayashi H, Watanabe H, Irisawa A, Ohira H. Clinical features of liver dysfunction in collagen diseases. Hepatol Res 2010; 40: 1092-1097 [PMID: 20880057 DOI: 10.1111/j.1877-0589.2010.00707.x]

Czaja AJ, Carpenter HA, Santrach PJ, Moore SB. Genetic predispositions for the immunological features of chronic active hepatitis. Hepatology 1993; 18: 816-822 [PMID: 8406354 DOI: 10.1002/hep.1840180411]

Werner M, Prytz H, Ohlsson B, Alner S, Björnsson E, Bergquist A, Wallerstedt S, Sandberg-Gertzen H, Hultcrantz R, Sangfeld P, Weiland O, Danielsson A. Epidemiology and the initial presentation of autoimmune hepatitis in Sweden: a nationwide study. Scand J Gastroenterol 2008; 43: 1224-1240 [PMID: 18699163 DOI: 10.1080/03655280802130183]

Teufel A, Weimann A, Kahaly GJ, Centner C, Piendl A, Wörns M, Lohse AW, Galle PR, Kanzler S. Concurrent autoimmune diseases in patients with autoimmune hepatitis. J Clin Gastroenterol 2010; 44: 208-213 [PMID: 20087196 DOI: 10.1097/MCG.0b013e3181c74e0d]

Abe M, Masahia T, Zeniya M, Yamamoto K, Onji M, Tsubouchi H; Autoimmune Hepatitis Study Group-Subgroup of the Intractable Hepato-Biliary Disease Study Group in Japan. Present status of autoimmune hepatitis in Japan: a nationwide population-based cohort study. Hepatology 2011; 54: 1369-1379 [PMID: 21979302 DOI: 10.1002/hep.24055]

Wong GW, Yeong T, Lawrence D, Yeoman AD, Verma S, Heneghan MA. Concurrent extrahepatic autoimmunity in autoimmune hepatitis: implications for diagnosis, clinical course and long-term outcomes. Liver Int 2017; 37: 449-457 [PMID: 27541063 DOI: 10.1111/liv.13236]

Montefusco PP, Geiss AC, Bronzo RL, Randall S, Kahn E, McKinley MJ. Sclerosing cholangitis, chronic pancreatitis, and Sjögren's syndrome: a syndrome complex. Am J Surg 1984; 147: 822-826 [PMID: 6731702 DOI: 10.1016/0002-9378(84)90183-3]

Zeron PB, Retamozo S, Bové A, Kostov BA, Sisó A, Ramos-Casals M. Diagnosis of Liver Involvement in Primary Sjögren Syndrome. J Clin Transl Hepatol 2013; 1: 94-102 [PMID: 26355632 DOI: 10.14218/JCTH.2013.00011]

Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 389: 1685-1699 [PMID: 28413064 DOI: 10.1016/S0140-6736(17)30933-9]

Forbes A, Marie I. Gastrointestinal complications: the most frequent internal complications of systemic sclerosis. Rheumatology (Oxford) 2009; 48 Suppl 3: iii6-iii9 [PMID: 19487222 DOI: 10.1093/rheumatology/ken485]

D’Angelo WA, Fries JF, Masi AT, Shulman LE. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 1969; 46: 428-440 [PMID: 5780367 DOI: 10.1016/0002-9343(69)90044-8]

Hudson M, Rajas-Villarraga A, Coral-Alvarado P, López-Guzmán S, Mantilla RD, Chalem P; Canadian Scleroderma Research Group; Colombian Scleroderma Research Group, Baron M, Anaya JM. Polyautoimmunity and familial autoimmunity in systemic sclerosis. J Autoimmun 2008; 31: 156-159 [PMID: 18646489 DOI: 10.1016/j.jaut.2008.05.002]

Abu-Shakra M, Guillenin F, Lee P. Gastrointestinal manifestations of systemic sclerosis. Semin Arthritis Rheum 1994; 24: 29-39 [PMID: 7985035 DOI: 10.1016/0049-0172(94)90097-3]

Pope JE, Thompson A. Antimitochondrial antibodies and their significance in diffuse and limited scleroderma. J Clin Rheumatol 1999; 5: 206-209 [PMID: 19078387 DOI: 10.1097/00124743-199908000-00005]

Rigamonti C, Shand LM, Feudjo M, Bunn CC, Black CM, Denton CP, Burroughs AK. Clinical features and prognosis of primary biliary cirrhosis associated with systemic sclerosis. Gut 2006; 55: 388-394 [PMID: 16150855 DOI: 10.1136/gut.2005.075002]

Assassi S, Fritzler MJ, Arnett FC, Normann GL, Shah KR, Gourh P, Maneck N, Perry M, Ganesh D, Rahbar MH, Mayes MD. Primary biliary cirrhosis (PBC), PBC autoantibodies, and hepatic parameter abnormalities in a large population of
systemic sclerosis patients. J Rheumatol 2009; 36: 2250-2256 [PMID: 19723904 DOI: 10.3899/jrheum.090340]

Liberal R, Grant CR, Sakkas L, Bizzaro N, Bogdanos DP. Diagnostic and clinical significance of anti-centromere antibodies in primary biliary cirrhosis. Clin Res Hepatol Gastroenterol 2013; 37: 572-385 [PMID: 2386351 DOI: 10.1016/j.clinre.2013.04.005]

McFarlane IM, Bhamaa MS, Kreps A, Iqbal S, Al-Ani F, Saladini-Aponte C, Grant C, Singh S, Awwal K, Koci K, Superstein Y, Arroyo-Mercado FM, Laskar DB, Alhuri P. Gastrointestinal Manifestations of Systemic Sclerosis. Rheumatol Int 2018; 38: [PMID: 29857556 DOI: 10.1007/s00029-019-20025-3]

Göring HD, Panzner M, Lakotta W, Ziemer A. [Coincidence of scleroderma and primary biliary cirrhosis. Results of a systematic study of a dermatologic patient sample]. Hautarzt 1998; 49: 361-366 [PMID: 9642556 DOI: 10.1007/s001050050756]

You BC, Jeong SW, Jang JY, Goo SM, Kim SG, Kim YS, Jeon CH, Jeen YM. Liver cirrhosis due to autoimmune hepatitis with combined systemic sclerosis. Korean J Gastroenterol 2012; 59: 48-52 [PMID: 22289955 DOI: 10.4166/kjg.2012.59.1.48]

Assandri R, Monari M, Montanelli A. Development of systemic sclerosis in patients with autoimmune hepatitis: an emerging overlap syndrome. Gastroenterol Hepatol Bed Bench 2016; 9: 211-219 [PMID: 27458514]

Fraile G, Rodríguez-García JL, Moreno A. Primary sclerosing cholangitis associated with systemic sclerosis. Postgrad Med J 1991; 67: 189-192 [PMID: 2041852 DOI: 10.1136/pgmj.67.784.189]

Zampetti A, Rinninella E, Mannu R, Franceschi F. Scleroderma and liver disease: a case of an association with primary sclerosing cholangitis. Scand J Rheumatol 2016; 45: 334-335 [PMID: 26690847 DOI: 10.3109/03009742.2015.1114667]

Savario E, Furnari M, de Bortoli N, Martirucci I, Bodini G, Ghio M, Savi N, Savarino V. Gastrointestinal involvement in systemic sclerosis. Presse Med 2014; 43: e279-e291 [PMID: 25179225 DOI: 10.1016/j.pmed.2014.03.029]

SmolenJS, Aletaha D, McNees IB. Rheumatoid arthritis. Lancet 2016; 388: 2023-2038 [PMID: 27156434 DOI: 10.1016/S0140-6736(16)30173-5]

Selmi C, De Santis M, Gershwin ME. Liver involvement in subjects with rheumatoid arthritis. Arthritis Res Ther 2011; 13: 226 [PMID: 21722332 DOI: 10.1186/ars3319]

Radovanović-Dinić B, Tešić-Rajković S, Zivkovic V, Grgov S. Clinical connection between rheumatoid arthritis and liver damage. Rheumatol Int 2018; 38: 715-724 [PMID: 29627896 DOI: 10.1007/s00296-018-4021-5]

Ruderman EM, Crawford JM, Maier A, Liu JJ, Gravallese EM, Weinblatt ME. Histologic liver abnormalities in an autopsy series of patients with rheumatoid arthritis. Br J Rheumatol 1997; 36: 210-213 [PMID: 9133932 DOI: 10.1093/rheumatology/36.2.210]

Hocking WG, Lasser K, Ungerer R, Borsohn M, Palos M, Spiegel T. Spontaneous hepatic rupture in rheumatoid arthritis. Arch Intern Med 1981; 141: 792-794 [PMID: 7235790 DOI: 10.1001/archinte.1981.003406010023]

Thorner C, Urowitz MB, Wanless I, Roberts E, Blends LM. Liver disease in Felty's syndrome. Am J Med 1982; 73: 35-40 [PMID: 7091172 DOI: 10.1016/0002-9343(82)90221-4]

Yilmaz N, Karadag Ø, Kimyon G, Yavuz C, Al-Aldous U, Koglu I, Temiz H, Baysal B, Tözün N. Prevalence of hepatitis B and C infections in rheumatoid arthritis and ankylosing spondylitis: A multicenter worldwide study. Eur J Rheumatol 2014; 1: 51-54 [PMID: 27708874 DOI: 10.1515/eurjrheumatol.2014.018]

Mori S, Fujiyama S. Hepatitis B virus reactivation associated with antirheumatic therapy: Risk and prophylaxis recommendations. World J Gastroenterol 2015; 21: 10274-10289 [PMID: 26420955 DOI: 10.3748/wjg.v21.i36.10274]

Pauly MP, Tucker LY, Szpakowski JL, Ready JB, Baer D, Hwang J, Lok AS. Incidence of Hepatitis B Virus Reactivation and Hepatotoxicity in Patients Receiving Long-term Treatment With Tumor Necrosis Factor Antagonists. Clin Gastroenterol Hepatol 2018; 16: 1964-1973.e1 [PMID: 29702293 DOI: 10.1016/j.cgh.2018.03.033]

Brunasso AM, Puntoni M, Gilia A, Massone C. Safety of anti-tumour necrosis factor agents in patients with chronic hepatitis C infection: a systematic review. Rheumatology (Oxford) 2011; 50: 1700-1711 [PMID: 21690185 DOI: 10.1093/rheumatology/ker190]

Viganò M, Degasperi E, Aghemo A, Lampertico P, Colombo M. Anti-TNF drugs in patients with hepatitis B or C virus infection: safety and clinical management. Expert Opin Biol Ther 2012; 12: 193-207 [PMID: 22188392 DOI: 10.1517/14712598.2012.646986]

Ramos-Casals M, Brito-Zeim P, Soto MJ, Cuadrado MJ, Khamashta MA. Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol 2008; 22: 847-861 [PMID: 18028367 DOI: 10.1016/j.berh.2008.09.008]

Sherlock S, Scheuer PJ. The presentation and diagnosis of 100 patients with primary biliary cirrhosis. N Engl J Med 1973; 289: 674-678 [PMID: 4580473 DOI: 10.1056/NEJM197302222890806]

Siegel JL, Luthra H, Donlinger J, Angulo P, Lindor K. Association of primary biliary cirrhosis and rheumatoid arthritis. J Clin Rheumatol 2007; 13: 340-343 [PMID: 17063441 DOI: 10.1097/01.rhe.0000265807.02780.7e]

Smyk DS, Bogdanos DP, Mytilinaiou MG, Burroughs AK, Rigopoulos EL. Rheumatoid arthritis and primary biliary cirrhosis: cause, consequence, or coincidence? Arthritis 2012; 39: 391-397 [PMID: 23150824 DOI: 10.1155/2012/391567]

Toulemonde G, Scoazee JY, Mirosse P. Treatment with etanercept of autoimmun hepatitis associated with rheumatoid arthritis: an open label proof of concept study. Ann Rheum Dis 2012; 71: 1423-1424 [PMID: 22402143 DOI: 10.1136/annrheumdis-2011-200830]

Perez-Alvarez R, Pérez-de-Lis M, Ramos-Casals M; BIOGEAS study group. Biologic-induced autoimmune diseases. Curr Opin Rheumatol 2013; 25: 56-64 [PMID: 23141587 DOI: 10.1097/BOR.0b013e32835b1366]

Vollmer O, Felten R, Mertz P, Lebrun-Vignes B, Salem JE, Arnaud L. Characterization of auto-immune hepatitis associated with the use of anti-TNFα agents: An analysis of 389 cases in VigiBase. Autoimmun Rev 2020; 19: 102460 [PMID: 31917266 DOI: 10.1016/j.autrev.2020.102460]

Lamberts LE, Janse M, Haagsma EB, van den Berg AP, Weersma RK. Immune-mediated diseases in primary sclerosing cholangitis. Dig Liver Dis 2011; 43: 802-806 [PMID: 21700515 DOI: 10.1016/j.dld.2011.05.009]

Gow PJ, Fleming KA, Chapman RW. Primary sclerosing cholangitis associated with rheumatoid arthritis and HLA DR4-
is the association a marker of patients with progressive liver disease? J Hepatol 2001; 34: 631-635 [PMID: 11394667 DOI: 10.1016/s0168-8278(00)00160-x]

141 Ogdie A, Schwartzman S, Eder L, Maharaj AB, Zisman D, Raychaudhuri SP, Reddy SM, Husni E. Comprehensive treatment of psoriatic arthritis: managing comorbidities and extraarticular manifestations. J Rheumatol 2014; 41: 2315-2322 [PMID: 25362171 DOI: 10.3899/jrheum.140882]

142 Yousaf A, Raiker R, Davis SM, Gayam S, Zinn Z. Association between psoriasis, psoriatic arthritis and gastrointestinal disease : An exploratory nationwide inpatient sample analysis. Wien Klin Wochenschr 2021; 133: 586-593 [PMID: 32965553 DOI: 10.1007/s00058-020-01740-8]

143 Dalakas MC. Inflammatory muscle diseases. N Engl J Med 2015; 372: 1734-1747 [PMID: 25923553 DOI: 10.1056/NEJMra1402225]

144 Khan F, Kleppel H, Meera A. Paraneoplastic Musculoskeletal Syndromes. Rheum Dis Clin North Am 2020; 46: 577-586 [PMID: 32631605 DOI: 10.1016/j.rdc.2020.04.002]

145 Chou JW, Lin YL, Cheng KS, Wu PY, Reanne Ju T. Dermatomyositis Induced by Hepatitis B Virus-related Hepatocellular Carcinoma: A Case Report and Review of the Literature. Intern Med 2017; 56: 1831-1837 [PMID: 28717078 DOI: 10.2169/internalmedicine.56.7595]

146 Han J, Wang S, Kwong TNY, Liu J. Dermatomyositis as an extrapeptic manifestation of hepatitis B virus-related hepatocellular carcinoma: a case report and literature review. Medicine (Baltimore) 2018; 97: e11586 [PMID: 30113453 DOI: 10.1097/MD.0000000000011586]

147 Dalakas MC. Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 1991; 325: 1487-1498 [PMID: 1658649 DOI: 10.1056/NEJM199111213252107]

148 Zhang L, Yang H, Lei J, Peng Q, Wang G, Lu X. Muscle pathological features and extra-muscle involvement in idiopathic inflammatory myopathies with anti-mitochondrial antibody. Semin Arthritis Rheum 2021; 51: 741-748 [PMID: 34144364 DOI: 10.1016/j.semarthrit.2021.05.019]

149 Harada N, Dohmen K, Itoh H, Ohshima T, Yamamoto H, Nagano M, Iwata Y, Hachisuka K, Ishibashi H. Sibling cases of primary biliary cirrhosis associated with polymyositis, vasculitis and Hashimoto's thyroiditis. Intern Med 1992; 31: 289-293 [PMID: 1600281 DOI: 10.2169/internalmedicine.31.239]

150 Ko KF, Ho T, Chan KW. Autoimmune chronic active hepatitis and polymyositis in a patient with myasthenia gravis and thyromegal. J Neurol Neurosurg Psychiatry 1995; 59: 558-559 [PMID: 8530953 DOI: 10.1136/jnnp.59.5.558]

151 Kurihara Y, Shishido T, Oku K, Takamatsu M, Ishiguro H, Suzuki A, Sekita T, Shinagawa T, Ishihara T, Nakashima R, Fuji T, Okano Y. Polymyositis associated with autoimmune hepatitis, primary biliary cirrhosis, and autoimmune thrombocytopenic purpura. Mod Rheumatol 2011; 21: 325-329 [PMID: 21240621 DOI: 10.1016/s1016-010-0397-0]

152 Seibold F, Klein R, Jakob F. Polymyositis, alopecia universalis, and primary sclerosing cholangitis in a patient with Crohn's disease. J Clin Gastroenterol 1996; 23: 121-124 [PMID: 8877639 DOI: 10.1097/00004836-199609000-00011]

153 Gunnarsson R, Hetlevik SO, Lillevy B, Molberg Ø. Mixed connective tissue disease. Best Pract Res Clin Rheumatol 2016; 30: 95-111 [PMID: 27421219 DOI: 10.1016/j.berh.2016.03.002]

154 Marshall JB, Ravendhran N, Sharp GC. Liver disease in mixed connective tissue disease. Arch Intern Med 1983; 143: 1817-1818 [PMID: 6615109 DOI: 10.1001/archinte.1983.00900190309]

155 Chung SW. Vasculitides: From Target Molecules to Novel Therapeutic Approaches. Biomedicines 2021; 9 [PMID: 34209028 DOI: 10.3390/biomedicines9070757]

156 Moiseev S, Cohen Tervaert JW, Ariyura Y, Bogdanos DP, Csernok E, Danneauxos J, Ferrante M, Flores-Suárez LF, Fritzler MJ, Invernizzi P, Jayne D, Jennette JC, Little MA, McAdoo SP, Novikov P, Pusey CD, Radice A, Salama AD, Savige JA, Segelmack M, Shoenfeld Y, Sinico RA, Sousa MJ, Specks U, Terrier B, Tzioufas AG, Vermeire S, Zhao MH, Bossuyt X. 2020 international consensus on ANCA testing beyond systemic vasculitis. Autoimmun Rev 2020; 19: 102618 [PMID: 32663621 DOI: 10.1016/j.autrev.2020.102618]

157 Wang CR, Tsai HW. Human hepatitis viruses-associated cutaneous and systemic vasculitis. World J Gastroenterol 2020; 26: 19-36 [PMID: 33505148 DOI: 10.3748/wjg.v27.i19.19]

158 Kennedy F, Kapelow R, Kalson BD, Roth NC, Rishi A, Barilla-LaBarca ML. A rare case of Polymyositis Nodosa associated with autoimmune hepatitis: a case report. BMC Rheumatol 2021; 5: 17 [PMID: 34034829 DOI: 10.1186/s41927-021-00188-1]

159 Wang CR, Tsai YS, Tsai HW, Lee CH. B-Cell-Depleting Therapy Improves Myocarditis in Seronegative Esoinophilic Granulomatosis with Polyangiitis. J Clin Med 2021; 10 [PMID: 34640595 DOI: 10.3390/jcm10194577]

160 Terjung B, Bogsch F, Klein R, Söhne J, Reichel C, Wasmuth JC, Beuers U, Sauerbruch T, Spengler U. Diagnostic accuracy of atypical p-ANCA in autoimmune hepatitis using ROC- and multivariate regression analysis. Eur J Med Res 2004; 9: 439-448 [PMID: 15546809]

161 Terjung B, Söhne J, Lechentenberg B, Gottwein J, Muench H, Herzog V, Mährer M, Sauerbruch T, Spengler U. p-ANCA in autoimmune liver disorders recognize human beta-tubulin isotype 5 and cross-react with microbial protein Fis2. Gut 2010; 59: 808-816 [PMID: 19951907 DOI: 10.1136/gut.2008.157818]

162 De Riva V, Celadim M, Pittoni M, Plebani M, Angelici P. What is behind the presence of anti-neutrophil cytoplasmatic antibodies in chronic liver disease? Liver Int 2009; 29: 865-870 [PMID: 19459348 DOI: 10.1111/j.1478-7223.2009.01989.x]

163 Lenzen H, Weismüller T3, Negri AA, Wlecke J, Loges S, Strassburg CP, Manns MP, Lankisch TO. Antineutrophil cytoplasmatic antibodies in bile are associated with disease activity in primary sclerosing cholangitis. Scand J Gastroenterol 2013; 48: 1205-1212 [PMID: 23957616 DOI: 10.3109/00335521.2013.825313]

164 Tovoli V, Vannini A, Fusconi M, Frisoni M, Zauli D. Autoimmune liver disorders and small-vascular vasculitis: four case reports and review of the literature. Ann Hepatol 2013; 13: 136-141 [PMID: 24378277 DOI: 10.1155/2014/386561]

165 Yamashita H, Suzuki A, Takahashi Y, Kaneko H, Kano T, Mimori A. Anti-neutrophil Cytoplasmic Antibody (ANCA)-associated Vasculitis Associated with Primary Biliary Cirrhosis: A Case Report and Literature Review. Intern Med 2015; 54: 1303-1308 [PMID: 25986275 DOI: 10.2169/internalmedicine.54.3678]
Wang CR et al. Autoimmune liver diseases in SRDs

Lohani S, Nazir S, Tachamo N, Pagolu P. Autoimmune hepatitis and eosinophilic granulomatosis with polyangitis: a rare association. *BMJ Case Rep* 2017; 2017 [PMID: 28108440 DOI: 10.1136/bcr-2016-218385]

Giacomelli R, Rusciti P, Shoenfeld Y. A comprehensive review on adult onset Still's disease. *J Autoimmun* 2018; 93: 24-36 [PMID: 30077425 DOI: 10.1016/j.jaut.2018.07.018]

Sandnes M, Ulvik RJ, Vorland M, Reikvam H. Hyperperfrinemia-A Clinical Overview. *J Clin Med* 2021; 10 [PMID: 34076164 DOI: 10.3390/jcm10092008]

Fuji K, Rokutanda R, Osugi Y, Koyama Y, Ota T. Adult-onset Still's disease complicated by autoimmune hepatitis: successful treatment with infliximab. *Intern Med* 2012; 51: 1125-1128 [PMID: 22576401 DOI: 10.2169/internalmedicine.51.6824]

Yazici Y, Hatemi G, Bodaghi B, Cheon JH, Suzuki N, Ambrose N, Yazici H. Behçet syndrome. *Nat Rev Dis Primers* 2021; 7: 67 [PMID: 34531393 DOI: 10.1038/s41572-021-00301-1]

Bayraktar Y, Balkanci F, Bayraktar M, Calguneri M. Budd-Chiari syndrome: a common complication of Behçet's disease. *Am J Gastroenterol* 1997; 92: 858-862 [PMID: 9149201]

Takeuchi A, Haraoka H, Hashimoto T. Increased serum alkaline phosphatase activity in Behçet's disease. *Clin Exp Rheumatol* 1989; 7: 619-621 [PMID: 2612081]

Manna R, Ghirlanda G, Bochicchio GB, Papa G, Annese V, Greco AV, Taranto CA, Magaro M. Chronic active hepatitis and Behçet's syndrome. *Clin Rheumatol* 1985; 4: 93-96 [PMID: 3987204 DOI: 10.1007/BF02032326]

Iwadate H, Ohira H, Saito H, Takahashi A, Rai T, Takiguchi J, Sasajima H, Watanabe H, Sato Y. A case of primary biliary cirrhosis complicated by Behçet's disease and palmoplantar pustulosis. *World J Gastroenterol* 2006; 12: 2136-2138 [PMID: 16610072 DOI: 10.3748/wjg.v12.i13.2136]

Stone JH, Zen Y, Deshpande V. IgG4-related disease. *N Engl J Med* 2012; 366: 539-551 [PMID: 22316447 DOI: 10.1056/NEJMra1104650]

Huggett MT, Culver EL, Kumar M, Hurst JM, Rodriguez-Justo M, Chapman MH, Johnson GJ, Pereira SP, Chapman RK, Webster GJM, Barnes E. Type 1 autoimmune pancreatitis and IgG4-related sclerosing cholangitis is associated with extrapancreatic organ failure, malignancy, and mortality in a prospective UK cohort. *Am J Gastroenterol* 2014; 109: 1675-1683 [PMID: 25155229 DOI: 10.1038/ajg.2014.223]

Chen JH, Deshpande V. IgG4-related Disease and the Liver. *Gastroenterol Clin North Am* 2017; 46: 195-216 [PMID: 28506361 DOI: 10.1016/j.gtc.2017.01.001]

Ichimura T, Kondo S, Ambo Y, Hirano S, Ohmi M, Okushiba S, Morikawa T, Shimizu M, Katoh H. Primary sclerosing cholangitis associated with autoimmune pancreatitis. *Hepatogastroenterology* 2002; 49: 1221-1224 [PMID: 12239909]

Li A, Wang Y, Deng Z. Concurrent autoimmune pancreatitis and primary biliary cirrhosis: a rare case report and literature review. *BMJ Gastroenterol* 2014; 14: 10 [PMID: 24410827 DOI: 10.1186/1471-230X-14-10]

Yada N, Kudo M, Chung H, Watanabe T. Autoimmune hepatitis and immunoglobulin G4-associated autoimmune hepatitis. *Dig Dis* 2013; 31: 415-420 [PMID: 24281014 DOI: 10.1159/000355238]

Tanaka A, Notohara K. Immunoglobulin G4 (IgG4)-related autoimmune hepatitis and IgG4-hepatopathy: A histopathological and clinical perspective. *Hepatol Res* 2021; 51: 850-859 [PMID: 34165225 DOI: 10.1111/hepr.13683]

Valeyre D, Prasse A, Nunes H, Uzunhan Y, Müller-Quernheim J. Sarcoidosis. *Lancet* 2014; 383: 1155-1167 [PMID: 24090799 DOI: 10.1016/S0140-6736(13)60680-7]

Cremers J, Drent M, Driessen A, Nieman F, Wijnpen P, Baughman R, Koek G. Liver-test abnormalities in sarcoidosis. *Eur J Gastroenterol Hepatol* 2012; 24: 17-24 [PMID: 22008629 DOI: 10.1097/MEG.0b013e32833477b1]

Shah N, Mitra A. Gastrointestinal and Hepatic Sarcoidosis: A Review Article. *Clin Liver Dis (Hoboken)* 2021; 17: 301-307 [PMID: 33968393 DOI: 10.1002/clld.10155]

Mantaka A, Koulentaki M, Chlouverakis G, Enel-Melono JM, Darivianaki A, Tzardi M, Kouroumalis EA. Primary biliary cirrhosis in a genetically homogeneous population: disease associations and familial occurrence rates. *BMJ Gastroenterol* 2012; 12: 110 [PMID: 2289439 DOI: 10.1186/1471-230X-12-110]

Rajorjya N, Wotton CJ, Yeates DG, Travis SP, Goldacre MJ. Immune-mediated and chronic inflammatory disease in people with sarcoidosis: disease associations in a large UK database. *Postgrad Med J* 2009; 85: 233-237 [PMID: 19520873 DOI: 10.1136/pgmj.2008.067679]

Lahner T, Treiber M, von Werder A, Foerger F, Knopf A, Heemann U, Thuermel K. Relapsing polychondritis: An autoimmune disease with many faces. *Autoimmun Rev* 2010; 9: 540-546 [PMID: 20215048 DOI: 10.1016/j.autrev.2010.02.016]

da Graça Ferronato M, Staub LJ, Teixeira Pinto Viana RC, da Rosa L, Cacess Shiozawa MB, Narciso-Schiavon JL, Dantas-Correia EB, de Lucca Schiavon L. Cholestasis as the initial presentation of relapsing polychondritis. *Ann Hepatol* 2011; 10: 565-567 [PMID: 21911901 DOI: 10.1016/S1665-2681(11)31528-5]

Conn DL, Dickson ER, Carpenter HA. The association of Churg-Strauss vasculitis with temporal artery involvement, primary biliary cirrhosis, and polychondritis in a single patient. *J Rheumatol* 1982; 9: 744-748 [PMID: 7175848 DOI: 10.1007/BF02032091]

Mydlak A, Soldacki D, Foronczechew B, Stoba Z, Powała A, Budlewski T, Pączek L, Mucha K. Relapsing polychondritis in a liver transplant recipient: A case report. *Medicine (Baltimore)* 2017; 96: e8360 [PMID: 29069021 DOI: 10.1097/MD.0000000000008360]
