Spin and charge distribution symmetry dependence of stripe phases in two-dimensional electron systems confined to wide quantum wells

Yang Liu, D. Kamburov, M. Shayegan, L.N. Pfeiffer, K.W. West, and K.W. Baldwin

Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544

(Dated: May 2, 2014)

Measurements in clean two-dimensional electron systems confined to wide GaAs quantum wells in which two electric subbands are occupied reveal an unexpected rotation of the orientation of the stripe phase observed at a half-filled Landau level. Remarkably, the reorientation is sensitive to the spin of the half-filled Landau level and the symmetry of the charge distribution in the quantum well.

A low-disorder two-dimensional electron system (2DES) subjected to a strong perpendicular magnetic field \((B)\) displays a variety of novel quantum phases. At high \(B\), when the Fermi energy \((E_F)\) resides in the lowest \((N = 0 \text{ and } 1)\) Landau levels (LLs), electrons typically condense into incompressible liquid states and exhibit the fractional quantum Hall effect \([1]\). At lower \(B\), when \(E_F\) lies in the higher LLs \((N \geq 2)\), phases with non-uniform density are predicted to be the ground states. More specifically, when a spin-split \(N \geq 2\) LL is half filled, the 2DES breaks the rotational symmetry by forming a unidirectional charge density wave, the so-called stripe phase \([2, 3]\). Experimentally, strong anisotropy is seen in in-plane transport coefficients at LL filling factors \(\nu = 9/2, 11/2, 13/2, \text{ and } 15/2\): the longitudinal resistance commonly vanishes along the \([110]\) crystal direction along which the stripes form ("easy" axis), but exhibits a strong peak along the \([110]\) direction ("hard" axis) \([4, 5]\). It is believed that a native symmetry-breaking mechanism that determines the orientation of the stripes can rotate to be along the "abnormal" \([110]\) direction at high densities. At a density where the stripe phase at \(\nu = 13/2\) is along the abnormal direction, we can rotate it back to the normal direction by making the quantum well charge distribution asymmetric while keeping the density fixed. Our observations therefore reveal that the symmetry-breaking mechanism that determines the direction of the stripe phases depends not only on the 2DES density but also on the spin orientation of the LL in which \(E_F\) resides, and on the symmetry of the charge distribution in the quantum well.

Our samples were grown by molecular beam epitaxy, and each consists of a wide GaAs QW bounded on either side by undoped \(\text{Al}_{0.24}\text{Ga}_{0.76}\text{As}\) spacer layers and \(\text{Si}\)-doped layers. We report here data for two samples, with QW widths \(W = 42\) and \(51\) nm, and as-grown densities of \(n \simeq 3.1\) and \(2.5 \times 10^{11}\) \(\text{cm}^{-2}\), respectively. The low-temperature \((T = 0.3\) K) mobilities of these samples are \(\mu \simeq 600\) \(\text{m}^2/\text{Vs}\). The samples have a van der Waals geometry and each is fitted with an evaporated Ti/Au front-gate and an In back-gate. We carefully control the density and the charge distribution symmetry in the QW by applying voltage biases to these gates \([13, 16]\). The measurements were carried out in a dilution refrigerator with base temperature \(T \simeq 30\) mK, and we used low-frequency \((< 20\) Hz) lock-in techniques to measure the transport coefficients. Throughout this article, the longitudinal resistances measured along the \([110]\) direction \((R_{xx})\) are shown in red, and those measured along the \([110]\) direction \((R_{yy})\) are shown in black. With this notation, a black trace showing a much larger resistance than a red trace corresponds to the "normal" stripe orientation \([110]\), i.e., the one that is commonly seen in standard, single-subband QWs at low densities. Conversely, a black trace showing a much smaller resistance than a red trace signals that the stripes are formed along \([110]\), which we refer to as the "abnormal" orientation.

Figure 1 illustrates one of our main findings. It shows \(R_{xx}\) and \(R_{yy}\) traces, in the filling range \(6 < \nu < 8\), for a symmetric (balanced) 42-nm-wide QW at six different...
densities \(n = 2.13, 2.35, 2.45, 2.67, 3.32, \text{ and } 3.70 \times 10^{11} \text{ cm}^{-2} \). At \(\nu = 13/2 \), as a function of increasing \(n \), transport is first isotropic (Fig. 1(a)), shows a “normal” anisotropy (Fig. 1(b)), becomes isotropic again (Fig. 1(c)), and then exhibits anisotropy but now along the “abnormal” direction (Figs. 1(d-f)). The behavior at \(\nu = 15/2 \), is markedly different; it is isotropic in Figs. 1(a-c) and then shows a “normal” anisotropy at higher \(n \) (Figs. 1(d-f)). The traces shown in Figs. 1(d-f) are particularly noteworthy: transport is anisotropic at both \(\nu = 13/2 \) and 15/2, but the orientation of the anisotropy in a single trace is different at these two fillings.

In order to understand the data of Fig. 1, we present in Fig. 2 a Landau level (LL) fan diagram for this 42-nm-wide QW sample as a function of \(n \), or equivalently the magnetic field position of \(\nu = 13/2 \) \((B_{\nu=13/2})\). We show the LLs for the symmetric (S) and antisymmetric (A) electric subbands. The index 0, 1, or 2 following S and A is the LL orbital quantum number \((N)\), and the up- (↑) and down-spin (↓) levels are represented by solid and dashed lines. The relevant energies are the subband separation \((\Delta)\), the cyclotron energy \((\hbar \omega_c)\), and the Zeeman energy \((E_Z)\) as we increase \(n \) while keeping the QW balanced, \(\hbar \omega_c \) and \(E_Z \) increase but \(\Delta \) decreases \cite{15, 17}, causing crossings of the S2 and A0 levels. As we discuss below, these crossings are consistent with the evolution seen in Fig. 1. We emphasize that the LL fan diagram shown in Fig. 2 is based quantitatively on the parameters of our sample. For example, we measured \(\Delta \) from Fourier transforms of the Shubnikov-de Haas oscillations at low magnetic fields \cite{15}. These measured \(\Delta \) are also consistent with all the parallel-spin LL crossings we observe in this sample \cite{16}; these crossings occur at \(\Delta = i \cdot \hbar \omega_c \) where \(i = 1, 2, 3, ... \). We found that the expression \(\Delta = 80 - 8.2 \cdot n \), which we use in Fig. 2 plot, accurately describes the dependence of \(\Delta \) on \(n \) in the range of densities reached in our experiments (\(\Delta \) has units of K and \(n \) is given in units of \(10^{11} \text{ cm}^{-2} \)). For \(E_Z \) we used an effective g-factor of \(g^* = 3.5 \) which is 8-fold enhanced relative to the GaAs band g-factor (0.44); this \(E_Z \) is consistent with all the observed crossings between LLs of antiparallel-spin, which are signaled by spikes in the longitudinal resistance \cite{18}.

Focusing first on \(\nu = 13/2 \), in Fig. 2 we show the

FIG. 1. (color online) Longitudinal magneto-resistance measured at \(T = 30 \text{ mK} \) in a 42-nm-wide QW along the [110] \((R_{xx}\), red traces) and [110] \((R_{yy}\), black traces) directions. Data are shown in the filling factor range \(6 < \nu < 8 \) at different electron densities as indicated. The field positions of half-filled LLs \((\nu = 13/2 \text{ and } 15/2)\) are marked by vertical lines, and the LL in which \(E_F \) resides at the different half-fillings are indicated in boxes.

FIG. 2. (color online) Landau level energy diagram as a function of density for the 42-nm-wide QW. The relevant energies are the subband separation \((\Delta)\), and the cyclotron and Zeeman energies \((\hbar \omega_c \text{ and } E_Z)\); the up- (↑) and down-spin (↓) levels are represented by solid and dashed lines, respectively. The energies are plotted as a function of the field position of filling factor \(\nu = 13/2 \) (bottom axis) and \(\nu = 15/2 \) (top axis). The positions of \(E_F \) at \(\nu = 13/2 \) and 15/2 are marked by the green and blue lines, respectively. The triangles labeled a to f point to the positions of \(\nu = 13/2 \) and 15/2 for the densities at which traces are shown in Figs. 1(a-f).
position of the E_F at this filling in green, and mark the densities (or $B_n=13/2$) corresponding to the data of Fig. 1 with up-pointing triangles. At the lowest density $n = 2.13 \times 10^{11}$ cm$^{-2}$, E_F lies in the A0$^\uparrow$ level at $\nu = 13/2$ and the 2DES is isotropic as seen in Fig. 1(a). As we increase n to 2.35×10^{11} cm$^{-2}$, E_F moves to the S2$^\downarrow$ level at $\nu = 13/2$. Strong anisotropy is seen in the data (Fig. 1(b)), consistent with E_F now lying in an $N = 2$ LL. The resistance peak in R_{yy} and minimum in R_{xx} indicate the stripe phase is along the "normal" direction. Further increasing n to 2.45×10^{11} cm$^{-2}$, this stripe phase disappears and the 2DES becomes isotropic again (Fig. 1(c)) when E_F moves back to an $N = 0$ LL, namely the A0$^\downarrow$ level. The anisotropy reappears as soon as E_F moves to the S2$^\uparrow$ level at $n = 2.67 \times 10^{11}$ cm$^{-2}$ (Fig. 1(d)) and the 2DES remains anisotropic up to the highest n achievable in this sample. Remarkably, however, in Figs. 1(d-f) at $\nu = 13/2$ we observe a resistance peak in R_{xx} and a minimum in R_{yy}, signaling that the stripe direction has rotated and is now along the "abnormal" direction.

At $\nu = 15/2$, transport is isotropic at the lowest three n (Figs. 1(a-c)). This is expected as E_F lies in the A0$^\uparrow$ level; see the blue lines and the down-pointing triangles in Fig. 2. When n is further increased, E_F moves to the S2$^\downarrow$ level and the 2DES becomes anisotropic (Figs. 1(d-f)) at $\nu = 15/2$. In sharp contrast to the $\nu = 13/2$ case, however, the stripe phase at $\nu = 15/2$ is oriented along the "normal" direction up to the highest n achievable in the sample. It is clear that at a given fixed density (e.g., Fig. 1(e)), the stripes' direction depends on the spin orientation of the LL where E_F resides (S2$^\uparrow$ for $\nu = 13/2$ and S2$^\downarrow$ for $\nu = 15/2$).

Data taken in a 51-nm-wide QW (Fig. 3) qualitatively confirm the spin-dependent reorientation of the stripe phase. As we increase n, the stripe phase rotates from the normal to the abnormal direction if E_F lies in the S2$^\uparrow$ level at $\nu = 13/2$, but it never rotates when E_F lies in the S2$^\downarrow$ level at $\nu = 15/2$ (Figs. 3(b,c)). However, the reorientation at $\nu = 13/2$ is not seen at the lowest n (Fig. 3(a)), suggesting that it depends on n also. Figure 3(d) indicates that, as expected, the 2DES becomes isotropic at the highest $n = 2.9 \times 10^{11}$ cm$^{-2}$ when E_F moves to the A1 LLs (Fig. 3(e)). Note also that in Figs. 3(a-d) we are showing data for different magnetic field sweep directions. In contrast to previous observations near the stripe phase reorientations in single-subband 2DESs [13, 14], we observe no hysteresis in our data [12].

Figure 4 illustrates yet another remarkable property of the stripe phases in our samples. Here data are shown for the 51-nm-wide sample of Fig. 3 at a fixed density of $n = 2.5 \times 10^{11}$ cm$^{-2}$ while we make the charge distribution in the QW asymmetric via applying front- and back-gate voltage biases with opposite polarity. When the charge distribution is symmetric (Fig. 4(a)) the stripe phase at $\nu = 13/2$ is along the abnormal direction, but a small asymmetry in the charge distribution reorients the phase along the normal direction [19].

The data presented in Figs. 1-4 provide evidence for
additional subtleties and twists in the physics of stripe phases in 2DESs. While we do not have an explanation for the behaviors revealed in our wide QW data, some implications are noteworthy. First, in both the 42- and 51-nm-wide QWs, the reorientation at $\nu = 13/2$ occurs at a very similar density, $n \approx 2.5 \times 10^{11}$ cm$^{-2}$ [20]. Therefore, we cannot rule out the possibility that our observed reorientation is density-induced. However, in single-subband, narrow QWs, the stripe phases at $\nu = 9/2$ and 11/2 both rotate above the same threshold density ($\sim 2.9 \times 10^{11}$ cm$^{-2}$, see [13]), suggesting that the electron spin is not playing a role. In contrast, the rotation we report here in wide QWs appears to be spin-dependent: the stripe phase rotates at $\nu = 13/2$ when E_F lies in the S$^\uparrow_2$ level, but never rotates at $\nu = 15/2$ when E_F is in the S$^\downarrow_2$ level. Also, in our samples the stripe phase rotates at a density ($n \approx 2.5 \times 10^{11}$ cm$^{-2}$) which is smaller than the well-established critical density $n \approx 2.9 \times 10^{11}$ cm$^{-2}$ in hetero-junctions and narrow QW samples [13, 14]. Moreover, the filling factors in our study ($\nu = 13/2$ and 15/2) are larger than in previous reports (9/2 and 11/2). Together with the lower threshold densities, this implies that the transition fields in our experiment are much smaller compared to previous measurements (~ 1.5 T vs. ~ 2.8 T).

Second, as illustrated in Fig. 4, the rotated stripe phase can be switched back to the normal direction when the QW charge distribution is made asymmetric. This observation has important implications for the possible origins of the symmetry-breaking potential. For example, Koduvayur et al. [22] recently reported that the application of in-plane shear strain can alter the exchange potential and re-align the stripe direction in GaAs 2D hole systems. Thus they suggested that the residual strain due to surface charge induced fields is responsible for the symmetry-breaking potential of the stripe phases in both hole and electron 2D systems in GaAs. Our data of Fig. 4 do not agree with this conjecture as they show that the stripe phase can be made to lie along the same (normal) direction for electric fields of opposite polarity.

The experimental observations reported here point to additional intricacies that determine how a GaAs 2DES chooses the direction of its anisotropic (stripe) phases at half-filled LLs. Besides the 2DES density, the spin orientation of the LL where E_F lies, as well as the symmetry of the charge distribution can both play roles in stabilizing the stripe phase direction. The spin-dependence is particularly puzzling because the energy of a stripe phase normally should not depend on the spin orientation of the carriers. It is possible that factors such as the mixing of the nearby LLs, particularly the A1 LLs, are responsible for the spin-dependence we observe. The details we present here, namely, our samples’ parameters (well width, density, charge-distribution symmetry, and LL energy diagrams) should provide stimulus and quantitative input for future work aimed at understanding what determines the orientations of the stripe phases.

We acknowledge support through the NSF (grants DMR-0904117 and MRSEC DMR-0819860), and the Moore and Keck Foundations. This work was performed at the National High Magnetic Field Laboratory, which is supported by the NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. We thank E. Palm, J. H. Park, T. P. Murphy and G. E. Jones for technical assistance.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[2] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev. Lett. 76, 499 (1996).
[3] R. Moessner and J. T. Chalker, Phys. Rev. B 54, 5006 (1996).
[4] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999).
[5] R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Solid State Communications 109, 389 (1999).
[6] K. Cooper, M. Lilly, J. Eisenstein, T. Jungwirth, L. Pfeiffer, and K. West, Solid State Communications 119, 89 (2001).
[7] R. L. Willett, J. W. P. Hau, D. Natelson, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 87, 126803 (2001).
[8] T. Jungwirth, A. H. MacDonald, L. Smrčka, and S. M. Girvin, Phys. Rev. B 60, 15574 (1999).
[9] T. D. Stanescu, I. Martin, and P. Phillips, Phys. Rev. Lett. 84, 1288 (2000).
[10] W. Pan, R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 83, 820 (1999).
[11] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999).
[12] The reorientation of stripes in the presence of an in-plane magnetic field is more complicated in quantum well samples where a second electric subband is occupied [W. Pan, et. al. Phys. Rev. Lett. 85, 3257 (2000)].
[13] J. Zhu, W. Pan, H. L. Stormer, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 88, 116803 (2002).
[14] K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 92, 026806 (2004).
[15] Y. W. Suen, H. C. Manoharan, X. Ying, M. B. Santos, and M. Shayegan, Phys. Rev. Lett. 72, 3405 (1994).
[16] Y. Liu, J. Shabani, and M. Shayegan, Phys. Rev. B 84, 195303 (2011).
[17] M. Shayegan, H. C. Manoharan, Y. W. Suen, T. S. Lay, and M. B. Santos, Semiconductor Science and Technology 11, 1539 (1996).
[18] Y. Liu, J. Shabani, D. Kamburov, M. Shayegan, L. N. Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. 107, 266802 (2011).
[19] To be more precise, our bidirectional field sweep data on the 51-nm-wide sample were taken at densities which are about 5% away from the transition density. We cannot rule out that hysteresis might exist closer to the transition density.
[20] At a higher density of $n = 2.7 \times 10^{11}$ cm$^{-2}$, the stripe...
phase at $\nu = 13/2$ in the 51-nm-wide QW sample remains along the abnormal direction when $\delta n/n \simeq 4\%$.

[21] Also, in a 65-nm-wide QW, we do not see any rotation of the stripe phase at $\nu = 13/2$ up to the highest achievable density of $n = 2.0 \times 10^{11} \text{ cm}^{-2}$.

[22] S. P. Koduvayur, Y. Lyanda-Geller, S. Khlebnikov, G. Csathy, M. J. Manfra, L. N. Pfeiffer, K. W. West, and L. P. Rokhinson, Phys. Rev. Lett. 106, 016804 (2011).