Chapter 1
Investigating the Potential of Integrated STEM Education from an International Perspective

Judy Anderson and Yeping Li

Contents
1.1 Background: Sharing Common Interests in STEM Education ... 1
1.2 Inviting International Perspectives on Integrated STEM Education 2
1.3 Structuring and Organising the Volume .. 4
 1.3.1 Reviewing Approaches to STEM Integration ... 4
 1.3.2 Designing Integrated STEM Approaches for Students ... 6
 1.3.3 Implementing Integrated STEM Approaches in Teacher Education 7
 1.3.4 Identifying Future Directions .. 8
1.4 STEM Education: Now More than Ever? ... 9
References ... 11

1.1 Background: Sharing Common Interests in STEM Education

We are both mathematics educators by training with a keen interest in curriculum and the ways teachers use innovative curriculum to transform students’ experiences in classrooms. Having written about mathematics curriculum and conducted research into the ways teachers use the curriculum to design lessons and tasks to meet their students’ needs (e.g., Anderson, 2014; Li & Lappan, 2014), we independently developed an interest in integrated curriculum and the ways the mathematics curriculum connects with the other STEM subjects: science, technology, and engineering. We have published in the field of science, technology, engineering, and mathematics (STEM) education, but we agree this is still a contested space and we

J. Anderson (✉)
Sydney School of Education and Social Work, The University of Sydney, Camperdown, NSW, Australia
e-mail: Judy.anderson@sydney.edu.au

Y. Li
Texas A&M University, College Station, TX, USA
e-mail: yepingli@tamu.edu

© Springer Nature Switzerland AG 2020
J. Anderson, Y. Li (eds.), Integrated Approaches to STEM Education, Advances in STEM Education, https://doi.org/10.1007/978-3-030-52229-2_1
need to encourage our colleagues to take a more critical stance about the role of STEM education in the broader school curriculum (Li & Schoenfeld, 2019; Tytler, Williams, Hobbs, & Anderson, 2019). To pursue the goal of encouraging debate about integrated STEM education, we sought opportunities to discuss the challenges with colleagues at international conferences.

As members of the International Group for the Psychology of Mathematics Education (IGPME), we facilitated a Working Group at the Singapore conference in 2017, followed by a Discussion Group at the Umea, Sweden conference in 2018. Each session was well attended with 25–30 participants from more than 15 countries at each. As participants shared their knowledge and experiences of STEM education, it became apparent many of our colleagues were similarly interested in integrated STEM curriculum and the role of mathematics in connecting the STEM subjects. At each session, we proposed the development of a volume to share our experiences, critique current practices, and propose new approaches to STEM curriculum and instruction. Not wanting to limit the contributions to mathematics educators, we also circulated a call for chapters to a broad audience of STEM educators and this volume is the outcome of this joint effort.

The objective of Integrated Approaches to STEM Education: An International Perspective was to showcase international contributions to STEM research and practice with recommendations for researchers, policymakers, and teachers about the future of integrated STEM education. The book aimed to evaluate the efficacy of integrated STEM education as it is currently practised and identify opportunities for further research and potential collaborations in the STEM education research community.

1.2 Inviting International Perspectives on Integrated STEM Education

Researching STEM education has been gaining momentum with increased calls for strategies to improve student engagement and to increase participation in senior schooling in countries where mathematics and science are not compulsory (Freeman, Marginson, & Tytler, 2015; Roth, 2018). At the same time, the diversity of perspectives and approaches (from curricular to pedagogical) challenges the collection of evidence to establish a research base which justifies the funds currently being invested in STEM education (Honey, Pearson, & Schweingruber, 2014). In the USA, STEM education has been extensively supported over the years with national policy and substantial Federal Government funding to develop a STEM focus (Li, 2014; Li, Wang, Xiao, Froyd, & Nite, 2020). Bybee (2013) argues the lack of a common understanding or definition of STEM education has led to a diversity of approaches with scant evidence for the success of many of the initiatives adopted by schools and school systems. In recent reports in Australia, there has been a strong recognition of the importance of STEM thinking and skills for all students and an advocacy of the need to bring school science and mathematics closer to the way
science and mathematics are practiced in contemporary settings across the STEM disciplines (Office of the Chief Scientist, 2016; Tytler, Swanson, & Appelbaum, 2015).

Integrated Approaches to STEM Education: An International Perspective provides a platform for international scholars to share evidence for effective practices in integrated STEM education and contribute to the theoretical and practical knowledge gained from the diversity of approaches. Many publications on STEM education focus on one or two of the separate STEM disciplines without considering the potential for delivering STEM curriculum as an interdisciplinary approach (Anderson, English, Fitzallen, & Symons, 2020)—this publication seeks to debate the efficacy of an integrated STEM curriculum and instruction, providing evidence to examine and support various perspectives. The volume focuses on the problems seen by teachers and academics working in the fields of science, technology, engineering, and mathematics and provides a set of valued practices which have demonstrated their use and viability to improve the quality of integrated STEM education.

This volume includes chapters that debate the conceptual basis of integrated STEM education, review historical developments in integrated STEM education policy and practices, describe the outcomes of effective integrated STEM education approaches, including curriculum design and pedagogical practices, and provide recommendations for ways forward for research and practice. This volume offers evidence to a range of stakeholders interested in integrated STEM education. Policymakers can benefit from access to research into integrated STEM education and its outcomes, and teachers can benefit from learning new approaches to the design and delivery of integrated STEM education. Their students can then benefit from opportunities designed and provided to solve real-world problems using knowledge from some or all the STEM subjects. Finally, we expect our readers will benefit from reading about the ways different countries and jurisdictions have approached integrated STEM education over the last few years across all grades of schooling.

Our initial invitation to contribute to the volume welcomed contributions on empirical research, theoretical frameworks, or detailed case studies showing what works in classrooms and what lessons may be learned. We were interested in chapters that investigated diverse contexts and explored a broad range of STEM education issues and challenges. The original list of suggested topics or themes for the volume included:

- Perspectives on integrated STEM education
- Approaches to integrating the separate STEM curriculum disciplines
- Case studies of integrated STEM education in countries or school jurisdictions
- Case studies of integrated STEM education in classrooms or schools
- Developing teachers’ integrated STEM education knowledge and practices
- Assessing integrated STEM education
- The role of one of the disciplines in integrated STEM education
- The influence of context on integrated STEM practices
- Involvement with the wider community and other stakeholders in integrated STEM education in schools
• The most appropriate skills and dispositions for integrated STEM education
• Students’ and teachers’ reactions to integrated STEM education and,
• Approaches to researching integrated STEM education.

We received contributions which explored many of these topics and themes. However, organising this diversity into a coherent volume was a challenge, but we decided to structure the volume into four parts, according to the focus on approaches to STEM integration, designing integrated approaches for students, implementing integrated STEM approaches in teacher education, and future directions. The chapter contributions in each part are described in the next section of this chapter.

1.3 Structuring and Organising the Volume

1.3.1 Reviewing Approaches to STEM Integration

The challenge for teachers and school leaders is to determine how they will design integrated STEM curriculum when faced with separate subject curriculum documents and, typically, separate subject assessment and reporting regimes. The design of integrated STEM curriculum is not a trivial task and requires subject expertise and experience in designing school-based curriculum which focuses not just on curriculum content but on potentially new pedagogical approaches. While designing integrated curriculum is not a new idea (see for example Beane, 1997; Dewey, 1938), focusing on the STEM subjects has meant that schools have had to rally the STEM expertise within the school and to plan ways to work together, particularly in secondary school contexts, where teachers may be located in separate staff rooms. But as Mockler (2018) states,

… a renewed focus on STEM … both in Australia and elsewhere, might provide us with a new energy for curriculum innovation and curriculum integration. We might add to this the imperatives contributed by the contemporary world, where developing students’ capacity to navigate knowledge and information across disciplinary boundaries is increasingly important (p. 229).

In designing integrated STEM curriculum, some describe the level of integration or a continuum of integration suggesting a hierarchy from disciplinary, to multidisciplinary, to interdisciplinary, and finally to transdisciplinary (Beane, 1997; Vasquez, 2015). Like Vasquez’s “inclined plan of STEM integration” (p. 13), Gresnigt, Taconis, van Keulen, Gravemeijer, and Baartman (2014) proposed a ‘staircase’ model of curriculum integration, but they added isolated, connected, and nested levels before multidisciplinary, interdisciplinary, and transdisciplinary. Rennie, Venville, and Wallace (2018) argued against these hierarchical approaches to STEM integration because they imply one end of the continuum is of greater value than the other. Instead, they used categorisations of the kinds of approaches schools adopted
based on their extensive experience working with teachers and identified six approaches which they referred to as synchronised, thematic, project based, cross-curricular, school specialised, and community-focused.

Regardless of the level of integration of the STEM subjects, or the approach adopted by schools to design integrated curriculum, curriculum integration is challenging and requires time, effort, collaboration, and commitment by teachers and school leaders. Mockler (2018) described enablers and constraints to designing integrated curriculum when reflecting on the development of the first national curriculum in Australia. She suggested enablers include having broader goals for education than just learning content knowledge, focusing on understanding ‘big ideas’, and learners ready access to real-world information through digital technologies. Whereas constraints might include a backlash against learner-centred approaches, a desire for standardisation and increased focus on core subjects, and greater accountability particularly through high-stakes testing. While the constraints might dampen the potential for integrated curriculum work, teachers and school leaders continue to seek ways to design more effective learning opportunities for their students and this is particularly evident in the international STEM movement (Anderson, Wilson, Tully, & Way, 2019; English, 2019; Tytler et al., 2019).

The chapters in this first part of the volume consider some of the challenges described here, as well as discipline integrity and policy agendas. Tytler describes the growth of STEM education, particularly from the policy perspective and through a framework of competencies associated with the STEM disciplines; he examines interdisciplinarity in greater depth, particularly as it impacts on the integrity of mathematics. The chapter by Baldinger and her colleagues addresses the concern about the role of mathematics in integrated STEM curriculum by conducting a literature review of recent publications to identify themes from “mathematically-rich integrated STEM studies”. Themes include communication, task authenticity, the centrality of inquiry, and the importance of informal learning spaces. Park, Wu, and Erduran analyse science curriculum documents to identify evidence of types of STEM discipline knowledge and understandings. An integrated STEM framework for developing countries is investigated in the chapter by Makonye and Diamini.

Chapters examining the process of, or potential models for, curriculum integration include those by English, Watson, Fitzallen and Chick, and Bennison and Geiger. In her chapter, English explores the role of design in curriculum innovation and integration, presenting evidence from students’ design project work. Watson and colleagues propose the potential of statistics to facilitate integration of the STEM subjects and describe several approaches through students’ activities. While Bennison and Geiger investigate the potential of numeracy across the curriculum as a new model for STEM curriculum integration with outcomes presented from teachers’ lessons. The second part of the volume examines integrated STEM projects developed to support student learning.
1.3.2 Designing Integrated STEM Approaches for Students

While Dewey (1938) and Beane (1997) promoted experiential and connected learning approaches to enhance students’ understanding of their world, most countries have separate curriculum documents for each of the STEM subjects. Consequently, most schools present the curriculum as separate learning experiences, particularly in secondary schools, although science, technology, and mathematics teachers may use ‘project work’ to engage students and provide them with opportunities to tackle real-world problems (Tytler et al., 2019). However, most real-world problems require the use of knowledge from more than one of the STEM subjects. While primary school teachers are better placed to connect knowledge for their students, it seems a wasted opportunity for secondary school STEM teachers not to connect with each other when such projects are offered to the students they teach (Anderson et al., 2020).

Research into the efficacy of integrated STEM education, particularly regarding long-term benefits to students, is still an emerging field. However, evidence is gradually building that an integrated, interdisciplinary approach to teaching science, technology, and mathematics (including engineering-like design practices) supports improved problem-solving skills, increased learning-engagement, and improved science and mathematics outcomes (Becker & Park, 2011; Tytler et al., 2019). Combining inquiry-based learning with an integrated STEM approach provides rich opportunities for students to develop a range of general capabilities, such as critical thinking, self-direction, creativity, and communication (Rosicka, 2016). When the inquiry focuses on a real-world problem that is meaningful to the students, their engagement has been found to extend beyond their immediate learning, to increased interest in further study in the component disciplines of STEM, and in future STEM-related careers (Holmes, Gore, Smith, & Lloyd, 2018).

The chapters in this part of the volume present case studies of integrated STEM program experiences for students, with evidence of impact on student learning and engagement. At the primary school level, Miller, Severance, and Krajcik describe a fifth-grade unit connecting the particle nature of matter with computational thinking. Evidence from students reveals how identifying and using patterns helps students explain and predict the phenomenon of taste. Wang and her colleagues explore the use of robotics in an afterschool setting to identify primary school students’ use of scientific language to communicate thinking. Kang presents evidence of impact of a large-scale integrated STEAM education approach in South Korea, which used project-based learning to deliver programs across most levels of schooling. Compared to a control group of students who were not taught the integrated approach, the STEAM students had variable outcomes, depending on the expertise of the curriculum designers.

Several chapters have focused on integrated STEM approaches in secondary school contexts. Skilling uses a transdisciplinary STEM project to investigate students’ beliefs and engagement as they build electro-mechanical robots. Steffensen used tenth grade students’ discussions and debates about climate change to explore
their use of mathematics to argue and critically analyse information. From a different perspective, Ubuz conducted research into teachers’ views about whether a Technology and Design course had the potential to contribute to students’ STEM capability development. Touitou, Schneider, and Krajcik report on the assessment of students’ performance on integrated STEM tasks designed to invoke mathematical and design thinking in a high school physics unit of work. Bartholomew and Williams examine an approach to STEM skill assessment aimed at improving reliability and validity of assessing open-ended STEM projects. Designing effective integrated STEM experiences for students requires substantial support for teachers in both preservice and in-service education.

Studies into student engagement and motivation suggest students begin to disengage from the STEM subjects as early as primary school, although the main shifts appear to occur in early secondary school (Martin, Anderson, Bobis, Way, & Vellar, 2012). Addressing engagement and achievement in the STEM subjects in schools requires support for teachers to design curriculum which enthuses students, challenges their beliefs about the role of the STEM subjects in solving real-world problems, and inspires them to continue to study these subjects into the future (Moore, Johnson, Peters-Burton, & Guzey, 2016). Support for teachers through professional learning is a necessary component for successful implementation of innovative programs.

1.3.3 Implementing Integrated STEM Approaches in Teacher Education

Professional learning programs for primary and secondary school STEM teachers have been designed and implemented in many contexts to support teacher co-construction of integrated STEM curriculum and inquiry-based learning approaches (Nadelson & Seifert, 2017). Informed by research into high-quality, high-impact professional development design principles, effective programs should involve teams of teachers, working collaboratively to design programs suitable for their students (Darling-Hammond, Hyler, Gardner, & Espinoza, 2017; Voogt, Pieters, & Handelzalts, 2016). Designing real-world STEM problems or STEM project-based learning tasks also involves designing assessment rubrics to provide feedback to students on discipline knowledge as well as the key skills of critical thinking, creativity, collaboration, and communication (Care & Kim, 2018).

Some of the contributions in this part of the volume examined the development of STEM knowledge in preservice teacher education. Delen, Morales, and Krajcik develop a Design-based Pedagogical Content Knowledge (DPCK) framework to support teachers using engineering design processes to connect scientific knowledge with pedagogy. Henriques, Oliveira, and Baptista investigate prospective mathematics and physics teachers’ development of integrated STEM projects using an authentic integration model.
Other chapters examine the professional learning of practicing teachers, using a variety of approaches. Anderson and Tully evaluate a year-long program for both primary and secondary school teachers as school teams worked together to design, implement, and evaluate a school-based approach to integrated STEM education. Connor and her colleagues present results from a computer programming professional learning program for primary school teachers, using an innovative model to teach coding and collective argumentation. Crowder, Dovi, and Naff also investigate a coding professional development program for elementary school coaches with evidence of the effectiveness of the collaborative, inquiry-based design of the program. Hunter’s high possibility classroom model was used in three elementary schools to demonstrate how teachers collaborated in school-based teams to implement new pedagogies to promote integrated STEM. Through a collaboration between researchers in Taiwan, Thailand, and Vietnam, Lin, Chien, and Chang describe an approach to the development of an integrated STEM module, followed by teachers’ reactions to a workshop demonstrating the use of the module, while Costa and her colleagues report how coaching by university educators supports elementary teachers’ implementation of integrated STEM tasks in classrooms.

All the teacher education programs presented here provide evidence of the potential to impact teachers’ knowledge and understanding of STEM and their capacity to implement integrated STEM approaches in their classrooms. However, questions of scalability and sustainability for each of these programs remain. So, what of future directions for research in integrated STEM education?

1.3.4 Identifying Future Directions

Two commentary chapters are contained in this volume from experienced STEM education scholars. We asked them to provide a commentary on the work published in this volume and to offer their suggestions for future directions. Froyd’s perspective, from an engineering education scholar, suggests the need for further investigation of the impact of computational thinking on STEM project work, the continued focus on teacher professional learning, and further consideration of the types of assessment approaches appropriate for STEM project work. In their reflections on the volume, Chiu and Krajcik focused on the notion of an iSTEM-plus curriculum, highlighting the opportunities afforded through an integrated STEM curriculum, but also describing the challenges and threats. They present strategies to support the further development of iSTEM-plus environments, concluding with a call for greater international collaboration and sharing of resources and expertise.

While the chapters in this volume provide evidence of the potential of integrated STEM education, many authors also raise questions and possibilities for further research. Some suggestions for further research raised by authors include, but are not limited to:
1. Investigating what models of interdisciplinarity and in what topics lead to engagement of students for particular learning outcomes (Tytler in Chap. 3)
2. Developing programs of assessment that support such curriculum innovations (Bartholomew & Williams in Chap. 18; Tytler in Chap. 3; Wang et al. in Chap. 12.)
3. Exploring the development and cognitive components of systems thinking (English in Chap. 4)
4. Understanding teachers’ and students’ reasoning strategies in integrated STEM environments (Baldinger et al. in Chap. 5)
5. Comparing longitudinal research on student outcomes focusing on data analysis aspects of integrated STEM activities (Watson et al. in Chap. 6)
6. Researching how teachers can provide greater emphasis on mathematics to promote critical aspects of STEM learning (Bennison & Geiger in Chap. 7)
7. Investigating how mathematics, as a discipline, operates in a wider enterprise of STEM and how it relates to the other three disciplines (Park, Wu & Erduran in Chap. 8)
8. Conducting international comparative studies about diverse and effective ways of developing twenty-first century competencies (Wang et al. in Chap. 12),
9. Exploring issues of subject integrity and inequitable subject representation in STEM project work (English in Chap. 4; Skilling in Chap. 14),
10. Considering issues of teacher implementation of integrated STEM curriculum in diverse contexts (Ubuz in Chap. 16),
11. Researching student transferability of STEM skills beyond the task or unit within which they were demonstrated (Touitou et al. in Chap. 17),
12. Following PSTs into classrooms to examine whether their STEM knowledge is transferred into their classrooms (Delen et al. in Chap. 20; Henriques et al. in Chap. 21)
13. Connecting learning in teacher professional learning about integrated STEM with improved student learning outcomes (Anderson & Tully in Chap. 22).

With these research ideas in mind, we hope readers will continue to explore integrated STEM approaches and contribute to our knowledge of the field. While the STEM movement has continued for some time now, researchers still have a way to go to identify the most effective ways to design and deliver integrated STEM curriculum in schools. Given Bybee’s 2020 vision for STEM education published in 2010, it is clear we still have many questions to investigate (Bybee, 2010).

1.4 STEM Education: Now More than Ever?

The title for the final section of this chapter is from a book recently published by Rodger Bybee (2018). Bybee has been a regular contributor to debates about STEM education, with several well-known and highly cited publications in the field. In 2010, he published Advancing STEM Education: A 2020 Vision, calling for a
ten-year strategic plan to “move beyond the slogan and make STEM literacy for all students an educational priority” (p. 30). The plan recommended developing model STEM units with professional development for teachers and “exemplary assessment at the elementary, middle, and high school levels” (p. 34). He recommended this would need to be followed by systemic changes in policies, programs, and practices at local, state, and national levels, with strategies to evaluate and refine approaches over several years. Even though the contributions in this volume provide examples of model STEM units, successful professional development programs, suggestions for approaches to assessment of STEM project work, and research into national and even international collaborative efforts, there is little evidence that Bybee’s 2020 vision has been realised.

While some countries appear to have committed substantial funds to STEM programs, many STEM education efforts are still piecemeal, and conducted at the local or regional levels of school education. Without STEM education becoming an integral component of the mandated curriculum, it is unlikely this will change (Lowrie, Downes, & Leonard, 2017). It seems a major challenge or hurdle which has yet to be overcome is the relationship between learning knowledge, skills, and understandings of the separate STEM subjects versus the benefits of an integrated curriculum that allows students to tackle bigger problems. Efforts to create integrated curriculum experiences in the past have not necessarily been sustained, as was the case with the middle school movement in the 1990s (Beane 1997). There are many reasons why implementing integrated curriculum is challenging, including curriculum structures, assessment practices, teachers’ knowledge and beliefs, as well as school structures and historical practices (Wallace, Sheffield, Rennie, & Venville, 2007). But is it time to seriously rethink the purpose of schooling and the knowledge students need to meet the challenges of today’s society?

Returning to Bybee’s recent book STEM Education Now More than Ever (2018). He describes initial concerns about the lack of a clear definition for STEM and the need for citizens to address twenty-first century challenges such as:

… economic growth, climate change, a reduction in biodiversity, vulnerabilities of the internet, energy efficiency, emerging and re-emerging infectious diseases, clean water, space exploration, and healthy oceans among others—depend on solutions that look at least somewhat to science, technology, engineering and mathematics (p. 6).

He argues “STEM provides opportunities to introduce issues beyond the traditional disciplines, such as citizenship” (p. 7). Given that politicians frequently ignore the advice of scientists, Bybee calls for education to provide increased opportunities for students to develop STEM competencies such as:

- Understanding the nature of science
- Cultivating an understanding and ability to use evidence and form reasonable arguments
- Engaging in civil discourse and,
- Developing twenty-first century workforce skills (p. 146).
With recent international catastrophes, including floods, fires, melting icecaps, and the Covid-19 pandemic, there are good reasons why we do need STEM education now more than ever.

References

Anderson, J. (2014). Forging new opportunities for problem solving in Australian mathematics classrooms through the first national mathematics curriculum. In Y. Li & G. Lappan (Eds.), *Mathematics curriculum in school education* (pp. 209–229). Dordrecht, The Netherlands: Springer.

Anderson, J., Wilson, K., Tully, D., & Way, J. (2019). “Can we build the wind powered car again?” Students’ and teachers’ responses to a new integrated STEM curriculum. *Journal of Research in STEM Education, 5*(1), 20–39.

Anderson, J., English, L., Fitzallen, N., & Symons, D. (2020). The contribution of mathematics education researchers to the current STEM education agenda. In J. Way, C. Attard, J. Anderson, J. Bobis, K. Cartwright, & H. McMaster (Eds.), *Research in mathematics education in Australasia, 2015–2019* (pp. 27–57). Singapore: Springer Nature.

Beane, J. A. (1997). *Curriculum integration: Designing the core of a democratic school*. New York: Teachers College Press.

Becker, K., & Park, K. (2011). Integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A meta-analysis. *Journal of STEM Education, 12*(5), 23–37.

Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. *Technology and Engineering Teacher, 70*(1), 30–35.

Bybee, R. W. (2013). *The case for STEM education: Challenges and opportunities*. Arlington, VA: NSTA Press.

Bybee, R. W. (2018). *STEM education: Now more than ever*. Arlington, VA: NSTA Press.

Care, E., & Kim, H. (2018). Assessment of twenty-first century skills: The issue of authenticity. In E. Care, P. Griffin, & M. Wilson (Eds.), *Assessment and teaching of 21st century skills* (pp. 21–40). Cham, Switzerland: Springer Nature.

Darling-Hammond, L., Hyler, M., Gardner, M., & Espinoza, D. (2017). Effective teacher professional development. Palo Alto, CA: Learning Policy Institute.

Dewey, J. (1938). *Experience and education*. New York: Macmillan.

English, L. D. (2019). Learning while designing in a fourth-grade integrated STEM problem. *International Journal of Technology and Design Education, 5*, 1–22.

Freeman, B., Marginson, S., & Tytler, R. (2015). Widening and deepening the STEM effect. In B. Freeman, S. Marginson, & R. Tytler (Eds.), *The age of STEM: Educational policy and practice across the world in science, technology, engineering and mathematics* (pp. 1–21). London: Routledge Taylor and Francis Group.

Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., & Baartman, I. (2014). Promoting science and technology in primary education: A review of integrated curricula. *Studies in Science Education, 50*(1), 47–84.

Holmes, K., Gore, J., Smith, M., & Lloyd, A. (2018). An integrated analysis of school students’ aspirations for STEM careers: Which student and school factors are most predictive? *International Journal of Science and Mathematics Education, 16*(4), 655–675.

Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). *STEM integration in K-12 education: Status, prospects, and an agenda for research*. Washington, DC: National Academies Press.

Li, Y. (2014). International Journal of Science Education—A platform to promote STEM education and research worldwide. *International Journal of STEM Education, 1*(1), 1–2.
Li, Y., & Lappan, G. (2014). Mathematics curriculum in school education: Advancing research and practice from an international perspective. In Y. Li & G. Lappan (Eds.), *Mathematics curriculum in school education* (pp. 3–12). Dordrecht, The Netherlands: Springer.

Li, Y., & Schoenfeld, A. H. (2019). Problematizing teaching and learning mathematics as “given” in STEM education. *International Journal of STEM Education, 6*(4), 1–13.

Li, Y., Wang, K., Xiao, Y., Froyd, J. E., & Nite, S. B. (2020). Research and trends in STEM education: A systematic analysis of publicly funded projects. *International Journal of STEM Education, 7*, 17. https://doi.org/10.1186/s40594-020-00213-8

Lowe, T., Downes, N., & Leonard, S. (2017). *STEM education for all young Australians: A bright spots learning hub foundation paper, for SVA, in partnership with Samsung*. Canberra, Australia: University of Canberra STEM Education Research Centre.

Martin, A. J., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching off in mathematics: An ecological study of future intent and disengagement among middle school students. *Journal of Educational Psychology, 104*(1), 1–18.

Mockler, N. (2018). Curriculum integration in the 21st century: Some reflections in the light of the Australian curriculum. In A. Reid & D. Price (Eds.), *The Australian curriculum: Promises, problems and possibilities* (pp. 229–240). Canberra, Australia: The Australian Curriculum Studies Association.

Moore, T. J., Johnson, C. C., Peters-Burton, E. E., & Guzey, S. S. (2016). The need for a STEM road map. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), *STEM road map: A framework for integrated STEM education* (pp. 3–12). New York: Routledge.

Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. *The Journal of Educational Research, 110*(3), 221–223.

Office of the Chief Scientist. (2016). *Australia’s STEM workforce: Science, technology, engineering and mathematics*. Canberra, Australia: Commonwealth of Australia.

Rennie, L., Venville, G., & Wallace, J. (2018). Making STEM curriculum useful, relevant and motivating for students. In R. Jorgensen & K. Larkin (Eds.), *STEM education in the junior secondary: The state of play* (pp. 91–110). Singapore: Springer Nature.

Rosicka, C. (2016). *Translating STEM education into practice*. Camberwell, Australia: Australian Council for Educational Research.

Roth, W. M. (2018). STEM and affect in adolescence: A cultural-historical approach. In R. Jorgensen & K. Larkin (Eds.), *STEM education in the junior secondary: The state of play* (pp. 15–36). Singapore: Springer Nature.

Tytler, R., Swanson, D. M., & Appelbaum, P. (2015). Subject matters of science, technology, engineering, and mathematics. In M. F. He, B. D. Schultz, & W. H. Schubert (Eds.), *The Sage guide to curriculum in education* (pp. 27–35). Thousand Oaks, CA: Sage.

Tytler, R., Williams, G., Hobbs, L., & Anderson, J. (2019). Challenges and opportunities for a STEM interdisciplinary agenda. In B. Doig, J. Williams, D. Swanson, R. Borromeo, & P. D. Ferri (Eds.), *Interdisciplinary mathematics education: The state of the art and beyond* (pp. 51–81). Cham, Switzerland: Springer.

Vasquez, J. (2015). STEM: Beyond the acronym. *Educational Leadership, 72*(4), 10–15.

Voogt, J. M., Pieters, J. M., & Handelzalts, A. (2016). Teacher collaboration in curriculum design teams: Effects, mechanisms, and conditions. *Educational Research and Evaluation, 22*(3–4), 121–140.

Wallace, J., Sheffield, R., Rennie, L., & Venville, G. (2007). Looking back, looking forward: Re-searching the conditions for integration in the middle years of schooling. *Australian Educational Researcher, 34*(2), 29–49.