Development and Notch Signaling Requirements of the Zebrafish Choroid Plexus

Brent R. Bill1,2,3, Darius Balciunas1,2,4, Joshua A. McCarra1, Eric D. Young1, Toua Xiong1, Ashley M. Spahn1, Marta García-Lecea5, Vladimir Korzh5, Stephen C. Ekker1,2,3,6, Lisa A. Schimenti2,4,7,8,*

1 Department of Genetics, Cell and Development, University of Minnesota, Minneapolis, Minnesota, United States of America, 2 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America, 3 Institute of Human Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America, 4 Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America, 5 Laboratory of Fish Developmental Biology, Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore, 6 Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America, 7 Department of Pediatrics, Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, United States of America, 8 Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, United States of America

Abstract

Background: The choroid plexus (CP) is an epithelial and vascular structure in the ventricular system of the brain that is a critical part of the blood-brain barrier. The CP has two primary functions, 1) to produce and regulate components of the cerebral spinal fluid, and 2) to inhibit entry into the brain of exogenous substances. Despite its importance in neurobiology, little is known about how this structure forms.

Methodology and Principal Findings: Here we show that the transposon-mediated enhancer trap zebrafish line Et<sup>Mn16</sup> expresses green fluorescent protein within a population of cells that migrate toward the midline and coalesce to form the definitive CP. We further demonstrate the development of the integral vascular network of the definitive CP. Utilizing pharmacologic pan-Notch inhibition and specific morpholino-mediated knockdown, we demonstrate a requirement for Notch signaling in the development of the CP. We identify three Notch signaling pathway members as mediating this effect, notch1b, deltaA, and deltaD.

Conclusions and Significance: This work is the first to identify the zebrafish choroid plexus and to characterize its epithelial and vascular integration. This study, in the context of other comparative anatomical studies, strongly indicates a conserved mechanism for development of the CP. Finally, we characterize a requirement for Notch signaling in the developing CP. This establishes the zebrafish CP as an important new system for the determination of key signaling pathways in the formation of this essential component of the vertebrate brain.

Introduction

The choroid plexus (CP) is a set of vital structures in the brain central to the formation, regulation and protection of the cerebral spinal fluid (CSF). Development and physiology of the CP has implications for many central nervous system pathologies and for the targeting of pharmaceutical treatment to the central nervous system [1,2]. In humans and other mammals, the CP consists of four independent structures, one in each of the four ventricles of the brain [1]. On the cellular level, the structure can be divided into three separate compartments, a vascular core, a stroma, and a layer of polarized epithelia [1]. The polarized epithelial cells surround the stroma and vascular core and exist as a monolayer, with their basal surface facing the stroma, and their apical surface extending microvilli and cilia into the CSF-filled ventricles [3].

Classic studies in human embryology place the onset of CP development at 6 weeks gestation and continuing past birth [1]. Comparative studies in mice place development of the CP beginning at embryonic day 11 [4]. In humans, the first of the choroid plexuses to develop is the fourth ventricle CP (4vCP), or its orthologue the myelencephalic choroid plexus (mCP), in other organisms including tetelos [1,5]. However, despite its importance in neurobiology, little is known about how this important structure forms.

We use the transgenic line Et<sup>Mn16</sup>, which express GFP in a subset of definitive mCP epithelial cells, to characterize the development of the zebrafish mCP in vivo. The subset of the mCP primordial epithelia are initially found in a diffuse pattern along the dorsal roof of the fourth ventricle and coalesce at the midline to form the definitive mCP. Upon coalescence, the dorsal longitudinal vein (DLV) provides the small vessel bed that invades...
the epithelium of the mCP. Time-dependent inhibition of Notch signaling defines a requirement for this pathway in CP development. Morpholino-based ligand/receptor inhibition studies map this critical signaling event to the notch1b receptor and the two candidate ligands, dia and dld. Together, this study provides the first description of CP development in vivo and demonstrates a role for Notch signaling in mCP development.

Results

Identification of the zebrafish CP

EtMn16 is a GFP expressing transposon-mediated enhancer trap identified as part of an ongoing genomic annotation project [6]. At 30 hours post fertilization (hpf), cells of the fin bud, a symmetric set of cells that extend processes medially in the ventral hindbrain and spinal column, and the optic vesicles express GFP (Fig. 1A-C). At 4 days post fertilization (dpf), we observe two additional structures expressing GFP. The first structure appears at the dorsal-most point of the fourth ventricle on the midline (Fig. 1D, arrowhead). The second structure is situated anterior to the eyes at the dorsal-most point of the third ventricle on the midline (Fig. 1D, arrow). Based on comparative anatomical studies in multiple organisms including teleosts [1], we attribute the anterior GFP-expressing cells as those of the diencephalic choroid plexus (dCP), and the posterior GFP-expressing cells as those of the myelencephalic choroid plexus (mCP) [Fig. 1E (lateral section), Fig. 1F (transverse section)].

Glial fibrillary acidic protein (Gfap) is an early transient marker of the CP epithelium [7]. We used immunohistochemistry on 6 μm longitudinal cryosections of 5 dpf mCP with a monoclonal antibody (zrf-1) directed against zebrafish Gfap [8]. We observe Gfap expression in the epithelial cells of the mCP (Fig. 1G) as defined by colocalization of Gfap (red) and GFP (Fig. 1H, merged image). This colocalization of Gfap and GFP-expressing cells in EtMn16 larvae in conjunction with anatomical analyses indicates EtMn16 labels the forming zebrafish mCP.

Development of the mCP as visualized in the EtMn16 Larvae

CP formation was imaged in vivo using EtMn16 zebrafish larvae. GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the cells progressively coalesce (Fig. 2C,D) toward the midline forming a plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B). At 3 and 4 dpf, the GFP-expressing presumptive mCP are first observed in the roof plate of the fourth ventricle at 2.5 dpf (Fig. 2B).

The vasculature of the mCP is supplied by the DLV

The CP is tightly associated with vasculature in mammalian systems [9] as part of the blood brain barrier. We visualized functional blood vessel integration in the CP using EtMn16/Tg(gata1:dsRed) double transgenic fish, with the latter transgene targeting Notch signaling during CP formation. DAPT was applied to embryos at 50 hpf to avoid indirect effects caused by early embryologic patterning defects. DAPT treatment resulted in a dramatic increase in mCP size in EtMn16 larvae [from a mean of 3200 μm±160 s.e.m. in vehicle-treated EtMn16 to a mean size of 5000 μm±150 s.e.m. (p=1.98*10-11) in DAPT-treated larvae (Fig. 5H)]. This appears to be due to a lateral expansion as the mCP remains a monolayer (Fig. 5I).

As DAPT is a pan-Notch signaling inhibitor, we sought to specifically identify the individual Notch receptor and its ligand(s) involved in mCP formation. We conducted a reverse genetic screen utilizing morpholino oligonucleotides previously designed and validated against ten known zebrafish Notch pathway members [15–19]. We first screened morpholinos targeting four Notch receptors: notch1a, notch1b, notch2, and notch3 (Fig. 5H). Treatment with 0.5 ng of notch1b-targeted morpholino leads to expansion of the mCP epithelium (mean 5700 μm±320 s.e.m. (p=3.8*10-3) (Fig. 5D)) compared to wild type (3300 μm±120 s.e.m.)(Fig. 5A). We then screened morpholinos targeting Notch ligands: jagged1a, jagged1b, jagged2, deltaA (dia), and deltaD (dld) (Fig. 5E). The mCP in dld-targeted morphant larvae is significantly larger (5100 μm±280 s.e.m.) compared to untreated EtMn16 controls (3000 μm±95 s.e.m.)(p=1.9*10-6) (Fig. 5E). Knockdown of dia also increases the mCP size significantly.
(4600 μm ± 630 s.e.m. p = 0.02), but this effect is much less consistent than the effect of \( \text{dll} \) (Fig. 5I). In addition, while the size of the mCP epithelial domain is not significantly different in \( \text{notch1a} \)-targeted morphants compared to controls, there is a visible effect on the mCP structure in morphant larvae (Fig. 5C) with a loss of a cohesive mCP epithelial sheet. Therefore, we conclude that knockdown of \( \text{notch1b} \), \( \text{dll} \), and \( \text{dll} \) significantly expands the domain occupied by the mCP epithelia. Together, these analyses implicate a novel Notch pathway critical role in CP formation.

**Figure 1. \( \text{Et}^{\text{Mn16}} \) co-localizes with Gfap in mCP epithelia.** GFP is expressed in multiple anatomical locations in \( \text{Et}^{\text{Mn16}} \) larvae (A–D). At 30 hpf (A–C), lateral orientation, GFP is expressed in cells of the otic vesicle (inverted arrowhead), the pectoral fin (closed arrow), ventral hindbrain and spinal cord (open arrow) brightfield image (A), fluorescent image (B), and merged image (C). In addition to cells of the ventral hindbrain, at 4 dpf (D) (dorsal orientation), two additional structures express GFP, the diencephalic CP (dCP) (closed arrow), and the myelencephalic CP (mCP) (closed arrowhead). The mCP lies posterior to the cerebellum (Ce) [5 dpf, 6 μm longitudinal cryosection (E)], within the ventricle (v) dorsal to the fifth rhombomere (r5) [5 dpf, 6 μm transverse cryosection (F)]. Cells of the mCP express Gfap (G) and colocalize with GFP expressing cells (H), merged image (I) and are not seen in the negative control lacking antibodies for Gfap and GFP (J). Abbreviations: eye (E), pectoral fin (Pf), cerebellum (Ce), and medulla oblongata (Mo). All images except F are oriented anterior to the left; F is oriented dorsal to the top. Scale bar is 50 μm.

doi:10.1371/journal.pone.0003114.g001
Identification of the CP as visualized in the Et\textsuperscript{Mn16} larvae

We demonstrate that the GFP-expressing cells of Et\textsuperscript{Mn16} are dCP and mCP epithelium. The mCP in zebrafish is located within the fourth ventricle posterior to the cerebellum (Fig. 1E,F), consistent with the location of the 4vCP/mCP in mammals and other teleosts [1,20]. The mCP of zebrafish expresses Gfap, a transient fetal marker for human 4vCP [7]. This is the first description of the CP in zebrafish.

Development of the mCP epithelia

We describe Et\textsuperscript{Mn16} GFP-expressing cells that migrate laterally along the roof plate of the fourth ventricle, coalesce and become a subset of the definitive mCP epithelium. Garcia-Lecea and coworkers describe a second enhancer trap SqET33-E20 (Gateways) transgenic zebrafish that express GFP within cells that migrate along the anterior posterior axis at the midline, coalesce and form a distinct subset of definitive mCP epithelia [21]. These SqET33-E20-labeled cells are temporally and spatially separated from the cells we describe marked by Et\textsuperscript{Mn16}. The Et\textsuperscript{Mn16} transgenic line labels cells highly reminiscent of cell lineages described by Hunter and Dymecki that migrate out of the dorsal rhombomeric lip and directly populate the mouse mCP [22]. We conclude that these migrating cells found in fish and mice are orthologous and the resulting developmental model represents a likely shared and conserved mechanism for CP development in vertebrates.

The vasculature of the mCP is supplied by the DLV

We characterize the mCP-associated vasculature in zebrafish. The DLV supplies the blood to the mCP, bifurcating just inside the margin of the mCP epithelia, and forming junctions with both the PCeV and PCeV\textsuperscript{9} (Fig. 3A–F). The DLV bends dorsally just before crossing the mCP margin and is tightly associated with the dorsal surface of the mCP epithelial monolayer (Fig. 3G,H). The DLV sprouts from the MGcV and MGcV\textsuperscript{9} between 40–48 hpf via angiogenesis. The DLV reaches a hypothesized decision point at \approx 50 hpf, and the PCeV and PCeV\textsuperscript{9} grow dorsomedially to meet it. The trans-choroid plexus branch (TCB) develops between the DLV-PCeV junction and the DLV-PCeV\textsuperscript{9} junction between 55–120 hpf. This forms a variable structure that overlays the mCP epithelia, and produces a network of small vessels that connect the bifurcated DLV and TCB. This is the first description of the development of the vasculature associated with the mCP and has many similarities to the development of mammalian mCP [9]. Future studies will be required to identify whether these small vessels that cross between the DLV and TCB are orthologous to the fenestrated capillaries of mammals.

Synthesis of a model for zebrafish mCP development

By comparing the developmental time points at which the DLV and mCP epithelia develop (Fig. 2, Fig. 4) [21], we can precisely order developmental events in the mCP. Garcia-Lecea and coworkers describe a subset of mCP epithelial precursor cells that are initially spread out at the dorsal midline from rhombomere 2–6 that coalesce between 48–72 hpf and express GFP in their SqET33-E20 line [21]. The DLV and PCeV develop to the location associated with the mCP synchronously with the GFP-expressing cells of SqET33-E20. Intriguingly, the developmental cue is independent of the vasculature (Fig. S1E) suggesting an attractant that promotes growth to the fourth ventricle roof plate.
Previous work has suggested the existence of such an organizer in mouse [23–26]. After the DLV has completed junction formation with the PCeV and PCeV', the subset of EtMn16 defined mCP migrate laterally coalescing on the roof of the fourth ventricle, by 5 dpf. This model is the first to integrate both the cellular migration of the mCP epithelial precursors with that of the development of the vasculature and lays the groundwork for further vascular studies. For example, the zebrafish should be a very tractable model to identify, the dorsal roof organizer and the factors that localize both vasculature and epithelial development to the fourth ventricle roof plate.

The Notch signaling pathway is required for mCP development

We undertook a small-scale targeted chemical and morpholino-mediated screen to investigate the role of Notch signaling in mCP development. The pan-Notch signaling chemical inhibitor (DAPT), when exposed to 50 hpf EtMn16 embryos increased the size of the developing mCP epithelia. To specify those members of the Notch pathway that are involved, we utilized previously validated Notch and Notch ligand targeting morpholinos to investigate the individual effect of several notch receptors and ligands. The notch1b, dla, and dld-targeted morpholinos increase the size of the mCP similar to the DAPT treatment, while other Notch and Notch ligand-targeting morpholinos did not significantly alter mCP size. It should be noted, however, that while other morpholinos were unable to change CP size, there may have been other effects on the structure as exemplified by a notch1a knockdown mCP (Fig. 5c) that has an increase in GFP-negative surface area within the mCP structure. Previous reports on Notch signaling in the mammalian CP have shown that multiple Notch ligands are expressed in the CP [13], a novel Notch2-mediated ligand independent role for adult rat CP integrity [27], and that expression of a constitutively activated Notch1 protein causes an increase in the proliferative potential of the CP precursor cells by activating mitosis in normally quiescent cells [22]. This study presented here identifies an endogenous requirement for notch1b in development of the mCP and a functional role for any Notch ligand (dla and dld) in the mCP. Future studies will be required to determine the relationship of Notch1a, Dla, and Dld, the localization of these proteins, and the nature of the expanded mCP including the role of the vasculature in determining the domain occupied by the CP.

Conclusion

We provide the first description of the zebrafish CP by characterizing a transgenic line (EtMn16) that expresses GFP in the zebrafish dCP and mCP epithelia. We observe a tight integration between the mCP and its vascular supply, primarily the DLV and TCB. We provide a model that integrates development of the epithelial and vascular components of the mCP. In addition,
we demonstrate a functional role for endogenous Notch signaling in mCP epithelia. We identify a Notch receptor and two Notch ligands involved in the lateral expansion of the mCP epithelial layer. This model provides a unique system in which to rapidly expand the knowledge of the molecular signaling pathways that contribute to CP development.

Figure 4. The DLV develops via angiogenic sprouting and supplies the mCP. The development of the integral vasculature in the mCP was examined in living zebrafish larvae. The DLV (arrow in all panels) sprouts from the MCeV/MCeV' (gray open arrowheads) via angiogenic sprouting between 40 hpf (A) and 48 hpf (B), and develops via growth cone-like filopodial extensions (C). The P CeV and P CeV' (white open arrowheads) grow dorsomedially to meet the DLV in the roof of the fourth ventricle (D). Fusion occurs between the DLV (arrow) and P CeV or P CeV' (E), followed by extension to the symmetric partner (P CeV or P CeV') (F). Once connected, the DLV branches once more (G, small arrowhead) to form the trans-choroid plexus branch (TCB) (small arrowhead). By 120 hpf, the main vasculature of the mCP is in place (H). A diagrammatic representation of the final structure, with naming of the vessels and a superimposed mCP for comparison is shown (I). Small connecting vessels (concave arrow) connecting the DLV and TCB elaboration to form the mCP (J). Abbreviations: mesencephalic vein (MsV & MsV'), middle cerebral vessel (MCeV and MCeV'), dorsal longitudinal vein (DLV), posterior cerebral vein (P CeV and P CeV') and myelencephalic choroid plexus (mCP). All images are oriented anterior to the left, and scale bars are 50 μm.

doi:10.1371/journal.pone.0003114.g004
Methods

Fish Strain, Care and Use

Fish are housed in the University of Minnesota Zebrafish Core facility under standard conditions [28] in accordance with IACUC-approved protocols. Lines propagated for this study include: Tg(fli-1:eGFP)[12] (ZIRC), Tg(gata-1:dsRed)[10] (a kind gift from Dr. Len Zon), and EtMn16 (see below). Double transgenics were developed by paired matings and include: Tg(fli-1:eGFP)/Tg(gata-1:dsRed) and Tg(gata-1:dsRed/EtMn16). Wild type zebra-

Figure 5. Notch signaling is required for proper development of the myelencephalic choroid plexus. Pan Notch Inhibition with DAPT (B, dorsal-mounted live larvae and G, transverse section) results in an increase in the mCP epithelial domain compared to vehicle-treated control larvae (A, dorsal mounted live larvae and F, transverse section). This increase in domain size is due to lateral spreading as the mCP remains as a monolayer (G, DAPT-treated versus F, vehicle treated). Further analysis showed that this effect is mediated by inhibition of notch1b (D, 5 dpf live larvae) dla, and dld (E, 5 dpf live larvae). Inhibition of notch1a (C, 5 dpf live larvae) did not significantly alter the size of the mCP epithelial domain but did effect overt structure. Panels A–F are dorsal views with anterior to the left, and panels G and H are 6 μm cryosections labeled with an antibody against GFP (green) and DAPI (blue) staining the nuclei. Quantitative measurements show the distribution mCP sizes in individual fish. Measurements are shown for Notch receptor inhibition by DAPT and morpholino experiments (H), and for Notch ligand inhibition by morpholinos (I) Each point in the histograms represents a measurement of a live larval zebrafish mCP. The mean ± s.e.m. is indicated by the line and error bars respectively. Significant effects on mCP size are observed for 10 μM DAPT, notch1b, dla, and dld knockdown (*** p < 0.0001). For a full list of mean, s.e.m., and p-values, see table S2. Abbreviations: eye (E), pectoral fin (Pf), and otic vesicle (Ov). Arrows indicate mCP. Scale bars are 50 μm.

doi:10.1371/journal.pone.0003114.g005
fish are obtained from Segrest Farms. Timed bulk matings were used to obtain one-cell embryos for injections.

Creation of the Et\textsuperscript{Mn16} line

Et\textsuperscript{Mn16} is a product of a Sleeping Beauty (SB) transposon mediated-enhancer trap screen previously described [6]. In brief, a weak EF\textsubscript{1}\alpha enhancer element upstream of zebrafish optimized GFP (GM2) was placed in between the SB inverted-direct repeats (pT2/S2EF1a-GM2). Co-injection of this construct with SB transposase mRNA was performed into 1–2 cell embryos and propagated as described [29,30].

Immunohistochemistry

Six micron cryosections were obtained on a Leica CM3050S cryostat via previously developed techniques [31]. Antibodies used include zrf-I (1:32) (1:5, ZIRC), anti-GFP G1544 (1:200, Sigma), and Alexafluor conjugated goat anti-mouse and goat anti-rabbit (1:2000, Invitrogen). Slides were mounted with Vectashield Mounting Medium with DAPI (Vector Laboratories).

Microinjection of morpholinos

Zebrafish were collected and injected as described previously [33]. Morpholino oligonucleotides were obtained from GenecTools LLC. To investigate Notch signaling during CP formation, we used published oligonucleotides against Notch1, Jagged and Delta transcripts from the zebrafish (Table S1) [15–19]. For each morpholino, we confirmed that there was no significant sequence overlap between oligonucleotides targeting these highly related proteins (Table S1). The notch1b-targeted morpholino was co-injected with tp53-targeted morpholino (1.5×) to verify effects were not due to off-targeting [34].

Notch inhibitor treatment

We used the gamma-secretase inhibitor DAPT (Sigma) to inhibit all Notch signaling in zebrafish [14]. To identify the window of Notch sensitivity, we added DAPT at several different developmental time-points (data not shown). We determined treatment at 50 hours post fertilization was optimal. Fish were dechorinated and placed in medium Petri dishes with 6ml of embryo medium. 100 \mu M DAPT (suspended in DMSO) was added at various doses as described previously [35]. 6% DMSO in embryo medium (v/v) was used as a vehicle control.

Microscopy and Imaging

All images were taken on a Zeiss Axioplan 2 with Apotome utilizing the Axiocam mRM (Zeiss). For brightfield microscopy, fish were imaged under DIC optics. For imaging CP development, zebrafish were mounted in 1% melting point and anesthetized using tricane [28]. Images were processed using Axiovision software with Image 4D (Versions 4.2 and 4.6; Zeiss), and Photoshop (Version 8; Adobe).

Measurements and Statistics

The surface area of the mCP (as defined by Et\textsuperscript{Mn16} fluorescence) was measured using the outline measurement module (Axiovision 4.2 and 4.6). Values were entered into graphing software, Prism (Version 4; GraphPad) for histograms and normality statistics. Normality was determined for each of the distributions utilizing the D’Agostino & Pearson omnibus normality test (alpha = 0.05) and Shapiro-Wilk normality test (alpha = 0.05) (data not shown) for each of the treatments to verify that the Student T-test was appropriate (Version 4; GraphPad). Student T-tests were performed to determine statistical significance (two tailed with unequal distribution) in Excel (version 11.4.1; Microsoft).

Supporting Information

Figure S1 Variation of the DLV-PCeV junction. The DLV (arrows) bifurcated to join the PCeV and PCeV\textsuperscript{v} (open arrowheads) and the TCB (small arrowheads) connects the two junctions. This structure is plastic. The most common structure includes a third branch that transits between the DLV and the TCB (A–C), but in some instances the third DLV-TCB branch does not form by 5 dpf (D). The most rare occurrence is that the DLV does not develop (E). The PCeV and PCeV\textsuperscript{v} still meet in the location of the pCP, but lack blood flow (E, open arrowheads). All images are shown with anterior to the left. Scale bar is 50 \mu m. Found at: doi:10.1371/journal.pone.0003114.s001 (0.05 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0003114.s002 (0.05 MB RTF)

Table S2

Found at: doi:10.1371/journal.pone.0003114.s003 (0.05 MB DOC)

Acknowledgments

Thanks to University of Minnesota Zebrafish Core Facility and to Aubrey Nielsen, Daniel Wolbrink, Daniel Carlson, and Rachel Bowers for excellent zebrafish care and maintenance.

Author Contributions

Conceived and designed the experiments: BRB SCE LAS. Performed the experiments: BRB JAM EDY TX AMS. Analyzed the data: BRB LAS. Contributed reagents/materials/analysis tools: BRB DB SCE LAS. Wrote the paper: BRB SCE LAS. Provided an important hypothesis and valuable discussion critical to the formation of this paper: MGI, VK.

References

1. Netsky MG, Shuangshoti S, Tennyson VM, Brightman MW, Becker NH, et al. (1975) The Choroid Plexus in Health and Disease. Charlottesville, VA, USA: University Press of Virginia.
2. Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59: 561–574.
3. Tennyson VM, Appas GD (1968) The fine structure of the choroid plexus adult and developmental stages. Prog Brain Res 29: 63–85.
4. Starrock RR (1979) A morphological study of the development of the mouse choroid plexus. J Anat 129: 777–793.
5. Jacobsen M, Clausen PP, Jacobsen GK, Saunders NR, Möllgard K (1982) Intracellular plasma proteins in human fetal choroid plexus during development. I. Developmental stages in relation to the number of epithelial cells which contain albumin in telencephalic, diencephalic and myelencephalic choroid plexus. Brain Res 255: 239–250.
6. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, et al. (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5: 62.
7. Barreto AS, Vassallo J, Queiroz Ido S (2004) Papillomas and carcinomas of the choroid plexus: histological and immunohistochemical studies and comparison with normal fetal choroid plexus. Arq Neuropsiquiatr 62: 600–607.
8. Marcus RC, Easter SS Jr (1995) Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). J Comp Neurol 358: 365–381.
9. Strong LH (1956) Early development of the ependyma and vascular pattern of the fourth ventricular choroid plexus in the rabbit. Am J Anat 99: 249–290.
10. Traver D, Paw BH, Poss KD, Peanberthy WT, Lin S, et al. (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4: 1238–1246.
11. Isoigi S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230: 278–301.
12. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 240: 307–318.
13. Irvin DK, Nakano I, Paucar A, Kornblum HI (2004) Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res 75: 330–343.
14. Geling A, Steiner H, Willem M, Bally-Cuif L, Haass C (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3: 638–644.
15. Yeo SY, Kim M, Kim HS, Huh TL, Chitnis A (2007) Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos. Dev Biol 301: 555–567.
16. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, et al. (2004) Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenotype. Development 131: 5753–5766.
17. Holley SA, Julius D, Rauch GJ, Geiger R, Nussein-Volhard C (2002) her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 129: 1175–1183.
18. Amoyel M, Cheng YC, Jiang YJ, Wilkinson DG (2005) Wnt1 regulates neurogenesis and mediates lateral inhibition of boundary cell specification in the zebrafish hindbrain. Development 132: 775–785.
19. Wright GJ, Leslie JD, Ariza-McNaughton L, Lewis J (2004) Delta and MAGI proteins: an interaction of Notch ligands with intracellular scaffolding molecules and its significance for zebrafish development. Development 131: 5659–5669.
20. Candal E, Anadon R, Bourrat F, Rodriguez-Moldes I (2005) Cell proliferation in the developing and adult hindbrain and midbrain of trout and medaka (teleosts): a segmental approach. Brain Res Dev Brain Res 160: 157–175.
21. Garcia-Lecea M, Kondrychyn I, Ye Z, Korzh V (In Press) In vivo Analysis of Choroid Plexus Morphogenesis in Transgenic Zebrafish. PLOS Biology 08-PLBH-RA-1865.