APPENDICES

Appendix A. Index Tests included in this Systematic Review

GenoType® MTBDR, introduced by Hain Lifescience in 2004, was among the first commercially available LPAs for molecular TB drug resistance. This was replaced by the GenoType® MTBDRplus (subsequently referred to as Hain V1), which was endorsed by WHO in 2008. This assay includes rpoB probes to determine RIF resistance, katG probes to determine high-level INH resistance, and inhA probes (not included in the initial GenoType® MTBDR assay) to determine low-level INH resistance. Hain developed an updated version of the MTBDRplus line probe assay in 2011 (subsequently referred to as Hain V2) to replace Hain V1. Hain V2 has an improved sample preparation that showed increased sensitivity for TB detection in the 2 studies published so far. Hain V2 was officially launched in February 2012 and Hain V1 has only remained on the market in countries until registration for Hain V2 was completed. At the current time, China remains the only country where Hain V1 is available. In 2011, Nipro Corporation has a line probe assay called NTM+MDRTB Detection Kit 2 (subsequently referred to as Nipro) on the market. This assay underwent Japanese registration in 2012 and allows for identification of M. tuberculosis complex (MTB) and resistance to RIF and INH and also differentiates M. avium, M. intracellulare and M. kansasii.

The rpoB, katG and inhA mutation probes are the same for the three assays aside from the katG S315N mutation, which is included in the Nipro assay but not Hain V1/V2. In addition there are some minor variations in the codon regions covered for the wild type between Hain V1/V2 and Nipro (see Figure S2a-d).

Figure S1. Index LPAs
Example of a) Hain GenoType MTBDRplus V1 and V2 strip readout and b) Nipro NTM+MDR Detection Kit 2 strip readout
Figure S2. Wild-type and mutation probes in index LPAs

Figure S2a. Hain V1/2 mutations in the \(\text{rpoB} \) gene and the corresponding wild type and mutation bands

Sequence	Codons Analyzed	Mutation
\(\text{rpoB} \text{ WT1} \)	505-509	F508L, T508A, S509T
\(\text{rpoB} \text{ WT2} \)	510-513	L511P*
\(\text{rpoB} \text{ WT2/WT3} \)	510-517	Q513L*, Q513P, del516-516
\(\text{rpoB} \text{ WT3/WT4} \)	513-519	rpoB MUT1, D516Y, D516Y, del515
\(\text{rpoB} \text{ WT4/WT5} \)	516-522	del518*, N521i
\(\text{rpoB} \text{ WT5/WT6} \)	518-525	S522L, S522Q
\(\text{rpoB} \text{ WT7} \)	526-529	rpoB MUT2A, H526Y, H526D
\(\text{rpoB} \text{ WT8} \)	530-533	rpoB MUT3

* This rare mutation has only been detected theoretically (in silico) yet. It is therefore possible that it cannot be detected in vitro.
Figure S2b. Hain V1/2 mutations in the *katG* gene and the corresponding wild type and mutation bands

Failing wild type band	Codon analyzed	Developing mutation band	Mutation
katG WT	315	*katG* MUT1	S315T1
		katG MUT2	S315T2

Figure S2c. Hain V1/2 mutations in the *inhA* promoter region and the corresponding wild type and mutation bands

Failing wild type band	Analyzed nucleic acid position	Developing mutation band	Mutation
inhA WT1	-15	*inhA* MUT1	C-15T
	-16	*inhA* MUT2	A-16G
inhA WT2	-8	*inhA* MUT3A	T-8C
		inhA MUT3B	T-8A

Figure S2d. Nipro mutations in the *rpoB*, *katG* and *inhA* genes and the corresponding mutation bands

NTM-MDR- TB2 strip	Probe	Amino acid (nucleotide) region covered by probe
	rpoB	509-514
	rpoB	515-520
	rpoB	520-525
	rpoB	525-530
	rpoB	530-535
	rpoB	D316V
	rpoB	H526Y
	rpoB	H526D
	rpoB	S531L
	inhA	(–17 to –3)
	inhA	(a-16g)
	inhA	(c-159)
	inhA	(t-8c)
	inhA	(t-8a)
	katG	294-299
	katG	313-317
	katG	323-327
	katG	325-330
	katG	S315T
	katG	S315N
Appendix B. Outcome Measures

Composite Reference Standard

The composite reference standard took into account the results from phenotypic DST and sequencing. If results were discrepant between phenotypic DST and sequencing, the final determination was based on whether the sequencing mutations detected are thought to be clinically significant (i.e. associated with resistance) using the TB dream database as a reference[22] and ReSeqTB (David Dolinger, personal communication) and additional clinical outcomes data[23]. The composite reference standard was constructed without knowledge of LPA results. If conventional DST showed sensitivity but sequencing identified mutations recognized to be associated with resistance, the composite reference standard was considered resistant. If conventional DST shows resistance but sequencing does not identify mutations to be associated with resistance, the composite reference standard was considered resistant (as mutations will be assumed outside of the region sequenced or alternatively there may be low-level heteroresistance below the limit of detection of the some sequencing technologies used; e.g. Sanger). The composite reference standard was constructed without knowledge of LPA results.

Indeterminate or invalid results

Test results were defined as ‘indeterminate’ if test results were valid but readers were unable to draw conclusions on the presence or absence of RIF/INH-resistance based on the visible banding pattern. This may be due to weak or completely absent bands for RIF or INH for a sample that tested positive for MTB on the LPA. Per manufacturers’ instructions, test results were regarded invalid if either the conjugate/colour control or the amplification control was negative. Of note, the only exception is that if the LPA result is positive for MTB, the amplification control may be weak or negative due to competition of the amplification reaction and thus this constitutes a valid test result. Since studies often do not differentiate between indeterminate and invalid results, we reported them together and described these as indeterminate.
Appendix C. Search Strategy

Date of search = 25th September 2015.

Source	Date Range Searched	Hits Retrieved
ELECTRONIC DATABASES		
Medline (PubMed)	2004-present	328
EMBASE	2004-present	468
EMBASE meeting papers	2004-present	145
Web of Science	2004-present	533
BIOSIS	2004-present	165
Cochrane	2004-present	6
LILACS	2004-present	5
Final number of records in		1650
Endnote database after deleting		
duplicates		916

Individual Database Search Strategies

PubMed

''("Tuberculosis"[Mesh] OR tuberculosis[tw] OR TB[tw] OR antitubercular[tw] OR "Mycobacterium tuberculosis"[Mesh]) AND (LPA[tw] OR LiPA[tw] OR "GenoType MTBDR"[tw] OR Nipro[tw] OR Hain[tw] OR MTBDRsl[tw] OR MTBDRplus[tw] OR "line probe assay"[tw] OR "line probe assays"[tw] OR "molecular diagnostic technique"[tw] OR "line probe assay"[tw] OR "line probe assays"[tw]) AND ("2004/01/01"[PDAT] : "2015/09/31"[PDAT])

Results 328

EMBASE

''mycobacterium tuberculosis'/exp OR tuberculosis:ab,ti OR tb:ab,ti OR tuberculosis*:ab,ti AND 'drug resistance'/exp OR 'tuberculosis'/exp OR tuberculosis:ab,ti OR tb:ab,ti OR tuberculosis*:ab,ti AND ('line probe assay?' OR (genotype* AND mtbdplus) OR lpa OR lipa OR 'genotype'/dn OR 'genotype mtbdrplus'/dn OR 'genotype mtbdrplus':ab,ti OR 'lipa'/dn OR 'mtbdrplus'/dn OR 'hain lifescience'/df OR nipro OR mtbdr OR mdrtb) AND ((article)/lim OR [article in press]/lim OR [editorial]/lim OR [erratum]/lim OR [letter]/lim OR [note]/lim OR [review]/lim OR [short survey]/lim) AND [2004-2015]/py

Results = 468

Meeting and Conference Papers added to EMBASE Meeting Conference folder ''mycobacterium tuberculosis'/exp OR tuberculosis:ab,ti OR tb:ab,ti OR tuberculosis*:ab,ti AND 'drug resistance'/exp OR 'tuberculosis'/exp OR tuberculosis:ab,ti OR tb:ab,ti OR tuberculosis*:ab,ti AND ('line probe assay?' OR (genotype* AND mtbdplus) OR lpa OR lipa OR 'genotype'/dn OR 'genotype mtbdrplus'/dn OR 'genotype mtbdrplus':ab,ti OR 'lipa'/dn OR 'mtbdrplus'/dn OR 'hain lifescience'/df OR nipro OR mtbdr OR mdrtb) AND ('conference abstract'/it OR 'conference paper'/it) AND [2004-2015]/py

Results 145
Web of Science

(((TS=((tuberculosis OR (TB)) OR ('MDR) (TB'))))) AND (TS=(((((((MTBDR*) OR ('line) (probe) (assay')))) OR ('line) (probe) (assay*'))))) OR (lpa)) OR (lipa)) OR (('genotype) (mtbdrplus'))) OR ('lipa')) OR ('mtbdrplus')) OR (('hain) (lifescience')))) OR (nipro)) OR (mdrtb)))) NOT (DT=(MEETING ABSTRACT OR PROCEEDINGS PAPER))) AND DOCUMENT TYPES: (Article OR Abstract of Published Item OR Book OR Book Chapter OR Correction OR Correction, Addition OR Discussion OR Editorial Material OR Letter OR Review OR (DT=(MEETING ABSTRACT OR PROCEEDINGS PAPER)))
Indexes=SCI-EXPANDED Timespan=2004-2015

535 results

BIOSIS

You searched for: ((TS=(line probe assay OR LPA OR liPA OR MTBDRplus OR MTBDR plus OR Hain OR Nipro) AND TS=(tuberculosis OR TB)) AND DOCUMENT TYPES: (Article OR Book Chapter OR Letter OR Meeting OR Meeting Paper) OR Meeting Abstract OR Meeting Address OR Meeting Paper))
Refined by: PUBLICATION YEARS: (2013 OR 2009 OR 2012 OR 2008 OR 2014 OR 2006 OR 2007 OR 2011 OR 2005 OR 2015 OR 2004 OR 2010)

Results 164

Cochrane
("line probe assay" OR lipa OR lpa OR 'genotype mtbdrplus' OR 'mtbdrplus' OR 'hain lifescience' OR nipro OR mdrtb) AND (Tuberculosis OR TB)

6 results

Lilacs
MTBDRplus [Words] or MTBDR [Words] AND tuberculosis

5 results
Appendix D. QUADAS-2 Protocol

Domain 1: Patient Selection:

Risk of Bias: Could the selection of patients have introduced bias?

- Signaling question 1: Was a consecutive or random sample of patients or specimens enrolled? We scored ‘yes’ if the study enrolled a consecutive or random sample of eligible patients; ‘no’ if the study selected patients by convenience, and ‘unclear’ if the study did not report the manner of patient selection or this could not be discerned.
- Signaling question 2: Was a case-control design avoided? We scored ‘yes’ if the study enrolled only patients suspected of drug-resistant TB, including patients with confirmed TB. We scored ‘no’ if the study enrolled patients for whom resistance status was already known, and ‘unclear’ if the study did not report the design or this could be discerned.
- Signaling question 3: Did the study avoid inappropriate exclusions? We scored ‘yes’ if no inappropriate exclusions were noted. We scored ‘no’ if studies noted specific exclusions. Inappropriate exclusions could potentially occur if patients were excluded based on prior knowledge about them or if the technician did not record performed test results but this was not anticipated for research studies in this review.

Risk of Bias was scored as ‘low risk’ if selection was done in a random or consecutive manner, avoided a case-control design and there were no inappropriate exclusions. Risk of Bias was scored as ‘high risk’ if selection was by convenience or based on a case-control design; and ‘unclear risk’ if the manner of participant selection was unclear or information on patient or specimen selection was not provided.

Applicability: Are there concerns that the included patients and setting do not match the review question?

We are interested in how LPA performed in patients suspected of having PTB who were evaluated as they would be in settings of intended use, based on the description of the clinical and laboratory settings in which the test was evaluated. Per current guidelines, LPA should be performed in laboratories at the district level and above. If study setting was below the district level, this raised the concern that the included patients and setting did not match the review question, given the infrastructure and quality control measures needed for a laboratory to perform LPA testing. We judged ‘low’ concern if the selected specimens match the review question, which reflects the way the test will be used in practice. We judged ‘high’ concern if the selected specimens or isolates did not represent those for which the test will be used in practice, such as extrapulmonary samples. We judged ‘unclear’ concern if we cannot tell.

Domain 2: Index Test

Risk of Bias: Could the conduct or interpretation of the index test have introduced bias?

- Signaling question 1: Were the index test results interpreted without knowledge of the results of the reference standard? We will score ‘yes’ if the resistance pattern of the specimen for LPA testing was interpreted without knowledge of the reference standard. We scored ‘no’ for all studies where LPA was performed without blinding to the results of reference specimens (blinding was more likely for fresh rather than frozen specimens). It is possible that bias could have been introduced when LPA is performed on culture specimens since interpretation of the test requires subjective analysis of the pattern of strips detected. If the index test is interpreted with an automated reader there should be no bias, however if it is hand interpreted or if the reader can be modified, this is subjective and could introduce bias. End users should be provided with a printed result that is not subject to interpretation. We scored ‘unclear’ if this is not stated.
- Signaling question 2: If a threshold was used, was it prespecified? The threshold was prespecified in all versions of LPA i.e. we score ‘yes’ for all studies.

For risk of bias, we judged ‘low risk’ for studies that were blinded or where LPA was clearly performed and recorded prior to culture results being available, ‘high risk’ for unblinded studies, and ‘unclear
risk’ for studies where blinding status was unclear or unspecified. Although sample processing was likely to be different between studies, this is unlikely to introduce systematic bias.

Applicability: Are there concerns that the index test, its conduct, or its interpretation differ from the review question? Variations in test technology, execution, or interpretation may affect estimates of the diagnostic accuracy of a test.

We judged ‘low concern’ if the test was done as per recommendation of the manufacturer for LPA samples and if blinding was stated. We judged ‘high concern’ if the lack of blinding was stated and/or if additional steps were used for sample preparation and ‘unclear concern’ if the blinding status of the study was unclear or unspecified.

Domain 3: Reference Standard

Risk of Bias: Could the reference standard, its conduct, or its interpretation have introduced bias?

- Signaling question 1: Is the reference standard likely to correctly classify the target condition? We scored ‘yes’ if either culture/DST with WHO critical concentrations, sequencing (with noted caveats below) or a composite reference standard with culture and sequencing were used. Since we excluded studies that did not have an adequate reference standard, we did not score ‘no’ for any included studies but scored ‘unclear’ if the conduct of performing the reference standard was unclear. Culture is the test currently endorsed by WHO for the detection of MTB and for DST. Sequencing may be used as a reference standard for DST in some studies. The accuracy of genetic sequencing for the detection of drug resistance varies according to the drug in question. For H-resistance detection, about 10-15% of phenotypically resistant strains do not have mutations in target genes. Therefore a sequencing reference standard alone is likely to misclassify a subset of isolates. However for R-resistance detection, a subset of clinically significant resistance mutations in rpoB will appear sensitive on phenotypic DST (Van Deun 2012, 2015). A composite reference standard would therefore be used ideally but we anticipated that most included studies would employ one of the other reference standards that are WHO endorsed and will thus still be scored as ‘yes’.

- Signaling question 2: Were the reference standard results interpreted without knowledge of the results of the index test? We scored ‘yes’ if the reference test provided was culture e.g. MGIT 960 DST if it is known that an automated result was generated (except for LJ with confirmation of MTB by a NAAT-based test), if blinding was explicitly stated, or if it was clear that the reference standard was performed at a separate laboratory and/or performed by different people. We scored ‘no’ if the study stated that the reference standard was interpreted with knowledge of the index LPA result. We will score ‘unclear’ if this was not stated or answered inadequately.

For risk of bias, we judged ‘low risk’ if the reference standard used is WHO-endorsed and performed as per WHO recommendations or if a composite reference standard was used and if the reference standard was interpreted without knowledge of the index LPA result. We judged ‘high risk’ if the reference standard was interpreted with knowledge of the index LPA test and ‘unclear risk’ if the standards under which the reference standard were performed were unclear.

Applicability: Are there concerns that the target condition as defined by the reference standard does not match the question?

We judge applicability to be of ‘low concern’ for all studies.

Domain 4: Flow and Timing

Risk of Bias: Could the patient flow have introduced bias?

- Signaling question 1: Was there an appropriate interval between the index test and reference standard? We scored ‘yes’ if the tests were paired or separated by less than 48 hours after treatment initiation. We scored ‘no’ if the reference and index tests were not performed on paired samples or were separated by more than a week. We scored ‘unclear’ if this was not stated in the paper or answered inadequately. In the majority of included studies, we expected specimens for LPA and culture to be
obtained at the same time (i.e. to be performed on paired samples for the majority of studies), when patients are suspected of having TB or MDR-TB. Although TB is often a chronic infection thus making misclassification of disease status unlikely, being on treatment could alter the microbial population of specimens collected more than 48 hours after treatment initiation.

- Signaling question 2: Did all patients receive the same reference standard? We scored ‘yes’ if all studies used the same reference standard (acceptable reference standard as specified above, i.e. either phenotypic, genotypic or composite reference standard, as a criterion for inclusion in the review). We scored ‘no’ if different reference standards were used or if the reference standard was only applied to a selective group of patients or if culture was followed by sequencing of only the discrepant results because this could introduce potential verification bias if the same reference standard was not used to confirm all index test results. We scored ‘unclear’ if this was not stated in the paper or answered inadequately.

- Signaling question 3: Were all patients included in the analysis? The answer to this question was determined by comparing the number of patients enrolled with the number of patients included in the two-by-two tables. We noted if authors recorded the number of indeterminate results. We scored ‘yes’ if the number of participants enrolled was clearly stated and corresponded to the number presented in the analysis or if exclusions were adequately described. We scored ‘no’ if there were participants missing or excluded from the analysis and there was no explanation given; and ‘unclear’ if not enough information was given to assess whether participants were excluded from the analysis e.g. if the number of participants originally enrolled in the study was not explicitly stated.

For risk of bias, we judged ‘low risk’ if the index and reference tests were performed on paired specimens or performed within less than 48 hours of treatment, if the same reference standard was applied to all patients or specimens and if all patients or specimens were included. We judged ‘high risk’ if the interval between the index and reference test was >48 hours after treatment initiation or if different reference standards were applied to different groups included in the study or if patients or specimens were inappropriately excluded. We judged ‘unclear risk’ if the interval between reference and index tests was unclear or if it was unclear that the same reference standard was not applied to all participants or specimens or if it is unclear whether patients or specimens were excluded from the analysis inappropriately.
Appendix D.2. Characteristics related to Methodological Quality (QUADAS-2) for included studies.

Patient Selection

Rifampicin Resistance

17 datasets were judged to have a ‘high risk of bias’. In 2 datasets, this was due to the lack of consecutive or random sampling of patients or specimens and in 14 datasets this was due to the use of a case-control design. 21 datasets were judged to have a ‘low risk of bias’. In 56 datasets, the risk of bias was ‘unclear’. In 54 of these 56 datasets, the method of sampling patients or specimens was not specified, 1 dataset had an unclear design and in 1 dataset it was unclear whether there had been inappropriate exclusions. In 15 of these 54 datasets with an unclear method of sampling, the design of the study was also unclear. In 1 of these 54 datasets, it was also unclear whether there had been inappropriate exclusions. Applicability in this domain focused on whether the patients who underwent LPA testing and whether the clinical and or laboratory settings were appropriate for their intended use. Applicability was judged to be ‘low-risk’ in 76 datasets and no datasets were ‘high-risk’. 18 datasets were judged to be of ‘unclear-risk’, 10 of which did not specify the type of patients or specimens that were tested, 7 of which did not specify the laboratory setting in which testing was performed and 1 of which did not specify either of these factors.

Isoniazid resistance detection

In the ‘patient selection’ domain, 16 datasets were judged to have a ‘high risk of bias’. In 2 datasets, this was due to the lack of consecutive or random sampling of patients or specimens and in 13 datasets this was due to the use of a case-control design. 21 datasets were judged to have a ‘low risk of bias’. In 53 studies, the risk of bias was ‘unclear’. In 50 of these 53 datasets, the method of sampling patients or specimens was not specified and in 1 dataset it was unclear whether there had been inappropriate exclusions. In 14 of these 50 datasets with an unclear method of sampling, the design of the dataset was also unclear. In 1 of these 50 datasets, it was also unclear whether there had been inappropriate exclusions. Applicability in this domain focused on whether the patients who underwent LPA testing and whether the clinical and or laboratory settings were appropriate for their intended use. Applicability was judged to be ‘low-risk’ in 72 datasets and no datasets were ‘high-risk’. 18 datasets were judged to be of ‘unclear-risk’, 10 of which did not specify the type of patients or specimens that were tested, 7 of which did not specify the laboratory setting in which testing was performed and 1 of which did not specify either of these factors.
In the ‘patient selection’ domain, 5 datasets were judged to have an ‘unclear risk of bias’ because the method of sampling patients or specimens was not specified and the other dataset had a ‘low risk of bias’. Applicability in this domain focused on whether the patients who underwent LPA testing for MTB detection and whether the clinical and or laboratory settings were appropriate for their intended use. Applicability was judged to be ‘low-risk’ in 5 datasets and no datasets were ‘high-risk’. 1 dataset was judged to be of ‘unclear-risk’ as the laboratory setting in which testing was performed was not specified.

Index Test

Rifampicin Resistance
In the ‘index test’ domain, 0 datasets were judged to have a ‘high risk of bias’. 28 datasets were judged to have a ‘low risk of bias’. In 66 datasets, the risk of bias was ‘unclear’, because datasets did not specify whether the person performing the index test was blinded to the results of the reference standard testing. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer’s recommendations. Applicability was judged to be ‘low-risk’ in 86 datasets. 8 datasets were judged to ‘high-risk’ for applicability concerns due to variations in which the test was performed that were not according to the manufacturer’s recommendations.

Isoniazid resistance detection
In the ‘index test’ domain, 0 datasets were judged to have a ‘high risk of bias’. 27 datasets were judged to have a ‘low risk of bias’. In 63 datasets, the risk of bias was ‘unclear’, because datasets did not specify whether the person performing the index test was blinded to the results of the reference standard testing. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer’s recommendations. Applicability was judged to be ‘low-risk’ in 82 datasets. 8 datasets were judged to ‘high-risk’ for applicability concerns due to variations in which the test was performed that were not according to the manufacturer’s recommendations.

MTB detection
In the ‘index test’ domain, 0 datasets were judged to have a ‘high risk of bias’. 4 datasets were judged to have a ‘low risk of bias’. In 2 datasets, the risk of bias was ‘unclear’, because datasets did not specify whether the person performing the index test was blinded to the results of the reference
standard testing. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer’s recommendations. Applicability was judged to be ‘low-risk’ in 5 datasets. 1 dataset was judged to be ‘high-risk’ for applicability concerns due to a variation in which the test was performed that were not according to the manufacturer’s recommendations.

Reference Standard

Rifampicin Resistance
In the ‘reference standard’ domain, 0 datasets were judged to have a ‘high risk of bias’. 26 datasets were judged to have a ‘low risk of bias’. In 68 datasets, the risk of bias was ‘unclear’, because datasets did not specify whether the person performing the reference test was blinded to the results of the index test. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer's recommendations. Applicability was judged to be of ‘low-concern’ in all 94 datasets.

Isoniazid resistance detection
In the ‘reference standard’ domain, 0 datasets were judged to have a ‘high risk of bias’. 25 datasets were judged to have a ‘low risk of bias’. In 65 datasets, the risk of bias was ‘unclear’, because datasets did not specify whether the person performing the reference test was blinded to the results of the index test. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer’s recommendations. Applicability was judged to be of ‘low-concern’ in all 90 datasets.

MTB detection
In the ‘reference standard’ domain, 0 datasets were judged to have a ‘high risk of bias’. 3 datasets were judged to have a ‘low risk of bias’ and 3 datasets were judged to have an ‘unclear risk of bias’ as they did not specify whether the person performing the reference test was blinded to the results of the index test. Applicability in this domain focused on whether the conduct of performing and interpreting the index test was in line with the manufacturer's recommendations. Applicability was judged to be of ‘low-concern’ in all 6 datasets.
Flow and Timing

Rifampicin Resistance
In the ‘flow and timing domain, 12 datasets were judged to have a ‘high risk of bias’ because more than one type of reference standard was used and not all patients or specimens received the same reference standard. 78 datasets were judged to have a ‘low risk of bias’. In the remaining 4 datasets, the risk of bias was ‘unclear’, because 3 datasets did not specify the type of reference standard that was used and 1 dataset did not include all patients in the 2x2 tables.

Isoniazid Resistance
In the ‘flow and timing domain, 12 datasets were judged to have a ‘high risk of bias’ because more than one type of reference standard was used and not all patients or specimens received the same reference standard. 74 datasets were judged to have a ‘low risk of bias’. In the remaining 4 datasets, the risk of bias was ‘unclear’, because 3 datasets did not specify the type of reference standard that was used and 1 dataset did not include all patients in the 2x2 tables.

MTB Detection
In the ‘flow and timing domain, all 6 datasets were judged to have a ‘low risk of bias’.
Appendix D3. Risk of bias and applicability summaries for each QUADAS-2 domain by study

Figure S3a. Risk of bias and applicability summary for RIF and INH resistance detection

Hain MDRTBplus V1 Studies, Risk of Bias

	Patient Selection	Index Test	Reference Standard	Flow and Timing
Al-Mutairi, 2011	-	?	?	+
Albert, 2010	+	+	+	+
Anek-Vorapong, 2010 (a)	?	+	+	+
Anek-Vorapong, 2010 (b)	?	+	+	+
Asante Poku, 2015	+	?	?	+
Ascencios 2012 (a)	?	?	?	+
Ascencios 2012 (b)	?	?	?	+
Aung, 2015	?	?	?	+
Aurin, 2014	?	?	?	+
Banu, 2014	?	?	?	+
Barnard, 2008	+	+	?	+
Brossier, 2009	?	?	?	+
Bwanga, 2010	-	+	+	+
Cabibbe, 2015 (a)	?	?	?	+
Cabibbe, 2015 (b)	?	?	?	+
Causse, 2008 (a)	?	?	?	+

Applicability Concerns

	Patient Selection	Index Test	Reference Standard
Al-Mutairi, 2011	+	-	+
Albert, 2010	+	+	+
Anek-Vorapong, 2010 (a)	+	+	+
Anek-Vorapong, 2010 (b)	+	+	+
Asante Poku, 2015	+	+	+
Ascencios 2012 (a)	+	+	+
Ascencios 2012 (b)	+	+	+
Aung, 2015	+	+	+
Aurin, 2014	+	+	+
Banu, 2014	+	+	+
Barnard, 2008	+	+	+
Brossier, 2009	+	+	+
Bwanga, 2010	+	+	+
Cabibbe, 2015 (a)	+	+	+
Cabibbe, 2015 (b)	+	+	+
Causse, 2008 (a)	+	+	+
null			
Patient Selection	Index Test	Reference Standard	Flow and Timing
-------------------	------------	---------------------	-----------------
Huang, 2015	+	?	+
Huang, 2009	?	?	?
Huang, 2014	?	?	+
Huyen, 2010	-	+	+
Imperiale, 2012	?	?	?
Imperiale, 2012			
Jin, 2012			
Kapata, 2015	+	?	+
Khadka, 2011	?	?	+
Kumar, 2014	?	+	+
Lacoma, 2008	?	+	+
Lacoma, 2008	?	+	+
Li, 2015	+	?	+
Luetkemeyer, 2014			
Lyu, 2013			
Macedo 2009	?	+	+
Maschmann Rde, 2013			

Figure S3a (cont.)
	Patient Selection	Index Test	Reference Standard	Flow and Timing
Miotto, 2008 (a)	-	?	?	+
Miotto, 2008 (b)	?	?	?	+
Miotto, 2009 (a)	?	?	?	+
Miotto, 2009 (b)	?	?	?	+
Mironova, 2012 (a)	?	?	?	+
Mironova, 2012 (b)	?	?	?	+
N’Guessan, 2014	?	?	?	+
Nathavitharana, 2016 (a)	-	+	+	-
Nathavitharana, 2016 (b)	+	+	+	-
Niehaus, 2015	+	?	?	+
Nikolayevskyy, 2009	+	+	+	+
Nwofor, 2015	?	?	?	+
*Ocheretina, 2014	?	?	?	+
Raizada, 2014	+	?	?	+
Raveedran, 2012 (a)	?	?	?	+
Raveedran, 2012 (b)	?	?	?	+
Patient Selection	Index Test	Reference Standard	Flow and Timing	
-------------------	------------	--------------------	-----------------	
Rigouts, 2011	+	+	+	
*Rufai, 2014	?	+	+	
Sangsayunh, 2014	?	?	+	
*Schon, 2013	-	?	+	
Scott, 2011	+	+	+	
Shubladze, 2013	+	?	+	
Simons, 2015	+	?	+	
Singhal, 2012	?	?	+	
Tessema 2012	?	?	+	
Tho, 2011	-	?	+	
Tolani, 2012 (i)	-	?	+	
Tolani, 2012 (ii)	-	?	+	
Tukvadze, 2012	+	?	+	
Vijdea, 2008	-	?	+	
Yadav, 2013	?	+	+	
Yordanova, 2013	-	?	+	

- Green indicates 'Yes', red indicates 'No', and yellow indicates 'Questionable'.

- Rigouts, 2011
- *Rufai, 2014
- Sangsayunh, 2014
- *Schon, 2013
- Scott, 2011
- Shubladze, 2013
- Simons, 2015
- Singhal, 2012
- Tessema 2012
- Tho, 2011
- Tolani, 2012 (i)
- Tolani, 2012 (ii)
- Tukvadze, 2012
- Vijdea, 2008
- Yadav, 2013
- Yordanova, 2013
Figure S3a (cont.)

Hain MDRTBplus V2 Studies, Risk of Bias

Patient Selection	Index Test	Reference Standard	Flow and Timing
Babishvili, 2015	+	-	+
Catanzaro, 2015	?	-	+
Crudu, 2012	?	+	+
Nathavitharana, 2016 (c)	-	+	+
Nathavitharana, 2016 (d)	+	+	+

Applicability Concerns

Patient Selection	Index Test	Reference Standard	
Babishvili, 2015	+	+	
Catanzaro, 2015	?	+	
Crudu, 2012	+	+	
Nathavitharana, 2016 (c)	+	+	+
Nathavitharana, 2016 (d)	+	+	+

Nipro NTM+/MDR Detection Kit 2 Studies, Risk of Bias

Patient Selection	Index Test	Reference Standard	Flow and Timing
Mitarai, 2012 (a)	?	?	-
Mitarai, 2012 (b)	?	?	-
Rienthong, 2015 (a)	-	+	+
Rienthong, 2015 (b)	+	+	+
Nathavitharana, 2016 (e)	-	+	+
Nathavitharana, 2016 (f)	+	+	+

Applicability Concerns

Patient Selection	Index Test	Reference Standard	
Mitarai, 2012 (a)	?	+	
Mitarai, 2012 (b)	?	+	
Rienthong, 2015 (a)	?	+	+
Rienthong, 2015 (b)	?	+	+
Nathavitharana, 2016 (e)	+	+	+
Nathavitharana, 2016 (f)	+	+	+

* These 4 studies only contributed data to RIF resistance detection (but not INH)
Figure S3b. Risk of bias and applicability summary for each QUADAS domain for each study for MTB detection.

Hain MDRTBplus V1 Studies, Risk of Bias	Applicability Concerns			
Patient Selection	**Index Test**	**Reference Standard**	**Flow and Timing**	
Dorman, 2012	?	+	+	+
Felkel, 2013	?	?	+	+
Friedrich, 2011	?	?	+	+
Luetkemeyer, 2014	?	+	+	+
Scott, 2011	+	+	+	+

Hain MDRTBplus V2 Studies, Risk of Bias	Applicability Concerns			
Patient Selection	**Index Test**	**Reference Standard**		
Crudu, 2012	?	+	+	+

Dorman, 2012	+	+	+
Felkel, 2013	+	+	+
Friedrich, 2011	+	+	+
Luetkemeyer, 2014	+	+	+
Scott, 2011	?	-	+
Appendix E. List of Excluded Studies.

(Total 130)

Not Pulmonary TB

1. Folkvardsen DB, Svensson E, Thomsen VO, Rasmussen EM, Bang D, et al. (2013) Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis? J Clin Microbiol 51: 1596-1599.

2. Folkvardsen DB, Thomsen VO, Rigouts L, Rasmussen EM, Bang D, et al. (2013) Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol 51: 4220-4222.

Other LPA

1. Aliyu G, El-Kamary SS, Abimiku A, Hungerford L, Obasanya J, et al. (2014) Cost-effectiveness of point-of-care digital chest-x-ray in HIV patients with pulmonary mycobacterial infections in Nigeria. BMC Infect Dis 14: 675.

2. Bang H, Park S, Hwang J, Jin H, Cho E, et al. (2011) Improved rapid molecular diagnosis of multidrug-resistant tuberculosis using a new reverse hybridization assay, REBA MTB-MDR. Journal of Medical Microbiology 60: 1447-1454.

3. Ben Kahla I, Ben Selma W, Marzouk M, Ferjeni A, Ghezal S, et al. (2011) Evaluation of a simplified IS6110 PCR for the rapid diagnosis of Mycobacterium tuberculosis in an area with high tuberculosis incidence. Pathol Biol (Paris) 59: 161-165.

4. Brent AJ, Mugo D, Mysyimi R, Mutiso A, Morpeth S, et al. (2011) Performance of the MGIT TBc identification test and meta-analysis of MPT64 assays for identification of the Mycobacterium tuberculosis complex in liquid culture. J Clin Microbiol 49: 4343-4346.

5. Cho E, Shamputa IC, Kwak HK, Lee J, Lee M, et al. (2013) Utility of the REBA MTB-Rifa(R) assay for rapid detection of rifampicin resistant Mycobacterium tuberculosis. BMC Infect Dis 13: 478.

6. Jureen P, Engstrand L, Eriksson S, Alderborn A, Krabbe M, et al. (2006) Rapid detection of rifampin resistance in Mycobacterium tuberculosis by Pyrosequencing technology. J Clin Microbiol 44: 1925-1929.

7. Kiraz N, Saglik I, Kiremitci A, Kasifoglu N, Akgun Y (2010) Evaluation of the GenoTy pe Mycobacteria Direct assay for direct detection of the Mycobacterium tuberculosis complex obtained from sputum samples. J Med Microbiol 59: 930-934.

8. Kurtoglu MG, Ozdemir M, Kesli R, Baysal B (2014) Comparison of the GenoType® MTBC molecular genetic assay with culture methods in the diagnosis of tuberculosis. Archives of Medical Science 10: 315-318.

9. Negi SS, Anand R, Pasha ST, Gupta S, Basir SF, et al. (2006) Molecular characterization of mutation associated with rifampicin and isoniazid resistance in Mycobacterium tuberculosis isolates. Indian J Exp Biol 44: 547-553.

10. O'Donnell N, Corcoran D, Lucey B, Barrett A (2012) Molecular-based mycobacterial identification in a clinical laboratory setting: a comparison of two methods. Br J Biomed Sci 69: 164-168.

11. Ritter C, Lucke K, Sirgel FA, Warren RW, van Helden PD, et al. (2014) Evaluation of the AID TB resistance line probe assay for rapid detection of genetic alterations associated with drug resistance in Mycobacterium tuberculosis strains. J Clin Microbiol 52: 940-946.

12. Seagar AL, Prendergast C, Emmanuel FX, Rayner A, Thomson S, et al. (2008) Evaluation of the GenoType® Mycobacteria Direct assay for the simultaneous detection of the Mycobacterium tuberculosis complex and four atypical mycobacterial species in smear-positive respiratory specimens. J Med Microbiol 57: 605-611.

13. Shah NS, Lan NT, Huyen MN, Laserson K, Iademarco MF, et al. (2009) Validation of the line-probe assay for rapid detection of rifampicin-resistant Mycobacterium tuberculosis in Vietnam. Int J Tuberc Lung Dis 13: 247-252.

14. Skenders G, Fry AM, Prokopovic a I, Greckoseja S, Broka L, et al. (2005) Multidrug-resistant tuberculosis detection, Latvia. Emerg Infect Dis 11: 1461-1463.

15. Viveiros M, Martins M, Couto I, Rodrigues L, MacHado D, et al. (2010) Molecular tools for rapid identification and novel effective therapy against MDRTB/XDRRTB infections. Expert Review of Anti-Infective Therapy 8: 465-480.

16. Zaki MES, Hassanin N (2006) DNA sequence analysis of rpoB gene mutations in rifampicin-resistant Mycobacterium tuberculosis. Journal of Rapid Methods and Automation in Microbiology 14: 237-248.
Other LPA - MTBDR

1. Ahmad S, Al-Mutairi NM, Mokaddas E (2009) Comparison of performance of two DNA line probe assays for rapid detection of multidrug-resistant isolates of Mycobacterium tuberculosis. Indian Journal of Experimental Biology 47: 454-462.

2. Al-Mutairi N, Ahmad S, Mokaddas E (2008) Performance of the genotype MTBDR assay for molecular detection of multidrug-resistant strains of Mycobacterium tuberculosis. Annals of Saudi Medicine 28: 203-206.

3. Bang D, Bengard Andersen A, Thomsen VO (2006) Rapid genotypic detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis directly in clinical specimens. J Clin Microbiol 44: 2605-2608.

4. Brossier F, Veziris N, Truffot-Pernot C, Jarlier V, Sougakoff W (2006) Performance of the genotype MTBDR line probe assay for detection of resistance to rifampin and isoniazid in strains of Mycobacterium tuberculosis with low- and high-level resistance. J Clin Microbiol 44: 3659-3664.

5. Cavusoglu C, Turhan A, Akinci P, Soyler I (2006) Evaluation of the Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in strains of Mycobacterium tuberculosis. Annals of Saudi Medicine 28: 203-206.

6. Hillemann D, Rusch-Gerdes S, Richter E (2006) Application of the Genotype MTBDR assay directly on sputum specimens. Int J Tuberc Lung Dis 10: 1057-1059.

7. Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S (2005) Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol 43: 3699-3703.

8. Hofmann-Thiel S, Van Ingen J, Feldmann K, Turaev L, Uzakova GT, et al. (2009) Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent, Uzbekistan. European Respiratory Journal 33: 368-374.

9. Makinen J, Marttila HJ, Marjamaki M, Viljanen MK, Soini H (2006) Comparison of two commercially available DNA line probe assays for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 44: 350-352.

10. Miotto P, Piana F, Penati V, Canducci F, Migliori GB, et al. (2006) Use of genotype MTBDR assay for molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis clinical strains isolated in Italy. J Clin Microbiol 44: 2485-2491.

11. Saglik I, Oz Y, Kiraz N (2014) Evaluation of the GenoType MTBDR assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. Indian J Med Microbiol 32: 318-322.

12. Somoskovi A, Dormandy J, Mitsani D, Rivenburg J, Salfinger M (2006) Use of smear-positive samples to assess the PCR-based genotype MTBDR assay for rapid, direct detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin. J Clin Microbiol 44: 4459-4463.

13. Tho DQ, Ha DT, Duy PM, Lan NT, Hoa DV, et al. (2008) Comparison of MAS-PCR and GenoType MTBDR assay for the detection of rifampicin-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 12: 1306-1312.

No primary data

1. Singh S (2014) Early detection of multi-drug resistant tuberculosis in India using GenoType MTBDRplus assay & profile of resistance mutations in Mycobacterium tuberculosis. Indian J Med Res 140: 477-479.

2. Wiwanitkit V (2015) GenoType MTBDR assay for detection of rifampicin and isoniazid resistance. Indian J Med Microbiol 33: 147.

Abstract only

1. Archontakis Z, Dimoulas C, Charitakis A, Kanaki S, Foyntoylakis S, et al. (2011) Evaluation of GeneXPERT MTB/RIF assay in respiratory and non-respiratory specimens for the rapid detection of Mycobacterium tuberculosis. Clinical Microbiology and Infection 17: S592.

2. Bachiyska E, Ivanova A, Mertjanov D, Kantardjiev T, Borrone E, et al. (2010) Characterization of multidrug-resistant strains of M. tuberculosis in Bulgaria. Clinical Microbiology and Infection 16: S702.

3. Barreales-Fonseca A, Garcia-Martinez De Artola D, Hernandez-Caceres I, Alcoba-Florez J (2012) GeneXpert MTB/RIF system in pulmonary and extrapulmonary specimens: Comparison with other nucleic acid technologies. Clinical Microbiology and Infection 18: 773.

4. Bogli-Stuber K, Lechenne B, Hilty A, Bodmer T (2007) Evaluation of the GenoType((R)) MTBDRplus assay for the direct detection of isoniazid- and rifampicin-resistant mycobacterium tuberculosis. International Journal of Medical Microbiology 297: 5-6.

5. Catanzaro A, Garfein R, Rodrigues C, Victor T, Ajbani K, et al. (2013) Rapid testing for drug susceptibility.
6. Crudu V, Romancenco E, Noroc E, Turcan N, Blagodeteleva G (2013) The MTBDRplus 2.0 for rapid diagnosis of multidrug-resistant tuberculosis among patients with high risk of TB resistance. European Respiratory Journal 42.

7. Galkina K, Nosova E, Krasnova M (2012) Modern molecular direct tests for rapid identification and drug susceptibility testing of Mycobacterium tuberculosis. European Respiratory Journal 40.

8. Ghariani A, Mehiri E, Mahdhi S, Draoui H, Essalah L, et al. (2012) Mycobacterium tuberculosis mdr strains in Tunisia: Resistance support and genotypic profile. Clinical Chemistry and Laboratory Medicine 50: A122-A123.

9. Gkaravela L, Foka A, Athanassiou M, Lazarou N, Kontos F, et al. (2012) The genetic diversity of Mycobacterium tuberculosis complex in Azerbaijan by 24 MIRU-VNTR loci genotyping in association with susceptibility testing by conventional and molecular methods. Clinical Microbiology and Infection 18: 829.

10. Gkaravela L, Foka A, Sevdali M, Kolonitsiou F, Spiliopoulou A, et al. (2011) Diagnosis of tuberculosis and susceptibility testing by conventional and molecular methods in Southwestern Greece. Clinical Microbiology and Infection 17: S807-S808.

11. Han SB, Yu JK, Park K, Lee GD, Kim Y, et al. (2011) Comparison of Advansure MDR-TB Genoblot assay kit with Genotype HMDRplus and conventional drug susceptibility test. Clinical Microbiology and Infection 17: S604-S605.

12. Hernández-Cáceres I, Díez-Gil Ó, Alcoba-Flórez J (2011) Genotypic detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis strains by the pyrosequencing method. Clinical Microbiology and Infection 17: S483.

13. Idrees F, Irfan M, Jabeen K, Hasan R (2014) Genotype MTBDR plus Line Probe Assay as a rapid tool for the diagnosis of smear-negative tuberculosis in bronchoalveolar lavage fluid in Pakistan. European Respiratory Journal 44.

14. Ioannidis P, Papaventsis D, Karabela S, Marinou I, Konstantinidou E, et al. (2012) Evaluation of Genotype® MTBDRplus for the rapid detection of Mycobacterium tuberculosis resistance to rifampicin and isoniazid in clinical samples. Clinical Microbiology and Infection 18: 545.

15. Ismail F, Seleno L, Ismail N (2014) Evaluation of Xpert MTB/RIF assay for the diagnosis of paediatric TB. International Journal of Infectious Diseases 21: 376.

16. Ismail NA, Dreyer A, Omar SV, Daum LT, Fischer G, et al. (2011) Evaluation of PrimeStore® molecular transport medium for use in the diagnosis of TB. Clinical Microbiology and Infection 17: S551.

17. Jayalakshmi TK, Hire R, Joshi S, Kondo Y (2012) Line probe assay (LiPA) based rapid detection of multiple drug resistant (MDR) mycobacterium tuberculosis (MTB). European Respiratory Journal 40.

18. Kang S, Kim E (2010) Mutation detection of katG, inhA, and rpoB gene using reverse hybridization and direct sequencing in Korea. Journal of Molecular Diagnostics 12: 884-885.

19. Lorent N, Kong C, Pe R, Kim T, Sok S, et al. (2013) Implementation of rapid drug-susceptibility testing for patients at high risk of multidrug-resistant tuberculosis in Cambodia. European Respiratory Journal 42.

20. Matabane MMZ, Ismail F, Strydom KA, Onwuegbuna O, Vally Omar S, et al. (2014) Evaluation of three molecular assays for the detection of M. tuberculosis from direct clinical specimens. International Journal of Infectious Diseases 21: 371.

21. Mauya AK, Kant S, Singh AK, Nag V, Kushwaha RAS, et al. (2012) Frequency and mutational patterns of multidrug resistance tuberculosis by MTBDRplus assay in Northern India. International Journal of Infectious Diseases 16: E25-E25.

22. Mironova S, Kontsevaya I, Pimkina E, Nikolayevskyy V, Skenders G, et al. (2011) Performance of the GenoType® MTBDRplus assay for detection of Mycobacterium tuberculosis drug resistance in routine settings: A multicentre study. Clinical Microbiology and Infection 17: S588.

23. Mokaddas MA, Al Mutairi N, Ahmed S (2010) Comparison of INNO-LiPA Rif. TB, genotype MTBDRplus, PCR-RFLP and DNA sequencing for detecting multidrug-resistant Mycobacterium tuberculosis isolates. Clinical Microbiology and Infection 16: S613.

24. Nieto LM (2011) Characterization of extremely drug resistant isolates of mycobacterium tuberculosis detected in Colombia during 2006 to 2010. American Journal of Tropical Medicine and Hygiene 85: 329.

25. Orikiriza P, Tibenderana B, Siedner MJ, Byarugaba F, Moore CC, et al. (2014) Challenges of detecting resistance to first and second line anti-tuberculosis drugs in southwestern Uganda. American Journal of Tropical Medicine and Hygiene 91: 391.

26. Parpieva N, Beloserkov V, Safaev K, Shakirov A (2014) Mutations in the genes of drug-resistant mycobacterium tuberculosis in Uzbekistan. European Respiratory Journal 44.

27. Sahid F, Bhagoobhai L, Wadula J, Karstaedt A, Seetharam S (2014) Comparison of the GeneXpert and Hain Line
28. Sangsayunh P, Cheewakul K, Chuchothawon C (2013) Genotype MTBDR (Hain) test in suspected MDR-TB patients. European Respiratory Journal 42.

29. Seagar AL, Rayner A, Claxton P, Laurenson I (2010) Assessment of GenoType MTBDRplus assay performance compared to culture using respiratory and non-respiratory samples in Scotland. Clinical Microbiology and Infection 16: S609.

30. Sewpersadh M, Bapela NB, Erasmus L, Van Der Walt ML (2012) Phenotypic and genotypic discordant drug-resistant mycobacterium tuberculosis isolates identified from South Africa. American Journal of Respiratory and Critical Care Medicine 185.

31. Totten S, May R, Heifets LB (2011) Comparative study of two diagnostic tools for the rapid detection of mycobacterium tuberculosis complex from smear positive respiratory specimens. American Journal of Respiratory and Critical Care Medicine 183.

32. Umubyeyi Nyaruhirira A, Toussaint M, Koblavi Deme S, Kamanzi E, Gasana M (2012) The impact of the genotypeMTBDRplus test on time to diagnosis and treatment of multi drug resistant tuberculosis in Rwanda. International Journal of Infectious Diseases 16: e298.

33. Unzaga M, Blanco R, Fernandez M, Morla A, Garcia L, et al. (2007) Genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolates. International Journal of Antimicrobial Agents 29: S572-S573.

34. Van Der Spoel Van Dijk A, Wojno J, Hoosen AA (2014) Multi-drug resistant tuberculosis (MDR-TB) in the Free State, South Africa in 2012. International Journal of Infectious Diseases 21: 78.

35. Zhang L, Duo L, Lu X, Xie Y, Song X, et al. (2011) Molecular epidemiology of multidrug-resistant (MDR) Mycobacterium tuberculosis revealed by genotype MTBDR assays in southern China. Clinical Microbiology and Infection 17: S599-S600.

Unable to translate

1. Aslan G, Tezcan S, Emekdaş G (2009) Evaluation of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in clinical Mycobacterium tuberculosis complex culture isolates. Mikrobiyoloji bülteni 43: 217-226.

2. Chikamatsu K, Mizuno K, Aono A, Yamada H, Sugamoto T, et al. (2011) [Evaluation of GenoType MTBDRplus for the detection of multi-drug-resistant Mycobacterium tuberculosis strains]. Kekkaku 86: 697-702.

3. Duo LN, Wang LL, Song XB, Xie Y, Lu XJ, et al. (2011) [GenoType MTBDRplus assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis in Sichuan]. Nan Fang Yi Ke Da Xue Xue Bao 31: 822-824.

4. Fan QW, Guo J, Zhang HZ, Wu XY, Hu XN, et al. (2011) The characteristics of drug resistant relevant genes in multidrug-resistant and extensively drug-resistant tuberculosis by fast molecular assay. Chinese Journal of Microbiology and Immunology (China) 31: 1133-1137.

5. Gui XH, Xu P, Zhao M, Wang LL, Wu J, et al. (2010) [Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis]. Zhonghua Jie He He Hu Xi Za Zhi 33: 43-45.

6. Higuchi T, Fushiwaki T, Tanaka N, Miyake S, Ogura T, et al. (2004) [Direct detection of rifampicin resistant Mycobacterium tuberculosis in sputum by line probe assay (LiPA)]. Kekkaku 79: 525-530.

7. Inagaki T, Yagi T, Ichikawa K, Nakagawa T, Moriyama M, et al. (2010) [Clinical application of line probe assay (LiPA) for rifampicin (RFP)-resistant gene examination in sputum from tuberculosis patients]. Kekkaku : [Tuberculosis] 85: 703-709.

8. Kanavaki S, Papaventsis D, Karabela S, Ioannisidis P, Konstantinidou E, et al. (2010) Bacteriologically confirmed active tuberculosis cases in children: Experience of the Hellenic National Reference Laboratory for Mycobacteria (1994-2009). Acta Microbiologica Hellenica 55: 157-168.

9. Kim BJ, Oh SH, Cho EJ, Park SK (2006) Cross-resistance between rifampicin and rifabutin and its relationship with rpoB gene mutations in clinically isolated MDR-TB atrains. Tuberculosis and Respiratory Diseases 60: 171-179.

10. Matsumoto T, Ogata H, Toyota E, Suzuki K, Saito T, et al. (2013) [Clinical evaluation of a line probe assay kit for the identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis]. Kekkaku 88: 291-296.

11. Mindr R, Spinu V, Popa C, Botezatu E, Spataru R (2014) [Conventional and molecular diagnosis in a group of
patients with drug-resistant tuberculosis]. Pneumologia 63: 168-173.

12. Nosova E, Krasnova MA, Galkina K, Makarova MV, Litvinov VI, et al. (2013) [Comparing performance of "TB-BIOCHIP", "Xpert MTB/RIF" and "genotype MTBDRplus" assays for fast identification of mutations in the Mycobacterium tuberculosis complex in sputum from TB patients]. Mol Biol (Mosk) 47: 267-274.

13. Sezen F, Albayrak N, Ozkara S, Karagoz A, Alp A, et al. (2015) The First Step for National Tuberculosis Laboratory Surveillance; Ankara, 2011. Mikrobiyoloji Bulenti 49: 143-155.

No diagnostic accuracy data

1. Abate D, Tedla Y, Meressa D, Ameni G (2014) Isoniazid and rifampicin resistance mutations and their effect on second-line anti-tuberculosis treatment. International Journal of Tuberculosis and Lung Disease 18: 946-951.

2. Aliyu G, El-Kamary SS, Abimiku A, Ezati N, Mosunmola I, et al. (2013) Mycobacterial Etiology of Pulmonary Tuberculosis and Association with HIV Infection and Multidrug Resistance in Northern Nigeria. Tuberc Res Treat 2013: 650561.

3. Ando H, Kondo Y, Suetake T, Toyota E, Kato S, et al. (2010) Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 54: 1793-1799.

4. Aubry A, Sougakoff W, Bodzongo P, Delcroix G, Armand S, et al. (2014) First Evaluation of Drug-Resistant Mycobacterium tuberculosis Culture isolates from Congo Revealed Misdetection of Fluoroquinolone Resistance by Line Probe Assay Due to a Double Substitution T80A-A90G in GyrA. PLoS One 9: e95083.

5. Chen HY, Yu MC, Huang WL, Wu MH, Chang YL, et al. (2012) Molecular detection of rifabutin-susceptible Mycobacterium tuberculosis. J Clin Microbiol 50: 2085-2088.

6. Coronel J, Roper M, Mitchell S, Castillo E, Gamarra N, et al. (2010) MODS accreditation process for regional reference laboratories in Peru: validation by GenoType(R) MTBDRplus. Int J Tuberc Lung Dis 14: 1475-1480.

7. Deepa D, Achanta S, Jaju J, Rao K, Samyukta R, et al. (2013) The impact of isoniazid resistance on the treatment outcomes of smear positive re-treatment tuberculosis patients in the state of Andhra Pradesh, India. PLoS One 8: e76189.

8. Dinic L, Akande P, Idigbe EO, Ani A, Onwujekwe D, et al. (2012) Genetic determinants of drug-resistant tuberculosis among HIV-infected patients in Nigeria. J Clin Microbiol 50: 2905-2909.

9. Dinic L, Idigbe OE, Meloni S, Rawizza H, Akande P, et al. (2013) Sputum smear concentration may misidentify acid-fast bacilli as Mycobacterium tuberculosis in HIV-infected patients. J Acquir Immune Defic Syndr 63: 168-177.

10. Diriba B, Berkessa T, Mamo G, Tedla Y, Ameni G (2013) Spoligotyping of multidrug-resistant Mycobacterium tuberculosis isolates in Ethiopia. Int J Tuberc Lung Dis 17: 246-250.

11. Feliciano CS, Nascimento MM, Anselmo LM, Pocente RH, Bellissimo-Rodrigues F, et al. (2015) Role of a GenoType MTBDRplus line probe assay in early detection of multidrug-resistant tuberculosis at a Brazilian reference center. Braz J Med Biol Res 48: 759-764.

12. Ferreira Junior SL, Dalla Costa ER, Santos PG, Gomes HM, Silva MS, et al. (2014) In house reverse membrane hybridisation assay versus GenoType MTBDRplus and their performance to detect mutations in the genes rpoB, katG and inhA. Mem Inst Oswaldo Cruz 109: 307-314.

13. Garcia-Sierra N, Lacoma A, Prat C, Haba L, Maldonado J, et al. (2011) Pyrosequencing for rapid molecular detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 49: 3683-3686.

14. Hauck Y, Fabre M, Vergnaud G, Soler C, Pourcel C (2009) Comparison of two commercial assays for the characterization of rpoB mutations in Mycobacterium tuberculosis and description of new mutations conferring weak resistance to rifampicin. J Antimicrob Chemother 64: 259-262.

15. Hernandez-Neuta I, Varela A, Martin A, von Groll A, Jureen P, et al. (2010) Rifampin-isoniazid oligonucleotide typing: an alternative format for rapid detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 48: 4386-4391.

16. Huyen MN, Cobelens FG, Buu TN, Lan NT, Dung NH, et al. (2013) Epidemiology of isoniazid resistance mutations and their effect on tuberculosis treatment outcomes. Antimicrob Agents Chemother 57: 3620-3627.

17. Iem V, Somphavong S, Buisson Y, Steenkeste N, Breyssse F, et al. (2013) Resistance of Mycobacterium tuberculosis to antibiotics in Lao PDR: first multicentric study conducted in 3 hospitals. BMC Infect Dis 13: 275.

18. Imperiale BR, Di Giulio AB, Adrian Cataldi A, Morcillo NS (2014) Evaluation of Mycobacterium tuberculosis cross-resistance to isoniazid, rifampicin and levofloxacin with their respective structural analogs. J Antibiot (Tokyo) 67: 749-754.

19. Jacobson KR, Theron D, Kendall EA, Franke MF, Barnard M, et al. (2013) Implementation of genotype
20. Kambli R, Ajbani K, Sadani M, Nikam C, Shetty A, et al. (2015) Defining multidrug-resistant tuberculosis: correlating GenoType MTBDRplus assay results with minimum inhibitory concentrations. Diagn Microbiol Infect Dis 82: 49-53.

21. Kansal R, Madan M, Asthana AK, Agrawal C, Saluja A (2014) Evaluation of line probe assay for diagnosis of multidrug resistant tuberculosis in a tertiary care centre - A preliminary report from western Uttar Pradesh. Indian Journal of Public Health Research and Development 5: 108-111.

22. Kehinde AO, Adebiyi EO (2013) Molecular diagnosis of MDR-TB using GenoType MTBDRplus 96 assay in Ibadan, Nigeria. Niger J Physiol Sci 28: 187-191.

23. Kumar P, Kumar P, Balooni V, Singh S (2015) Genetic mutations associated with rifampicin and isoniazid resistance in MDR-TB patients in North-West India. Int J Tuberc Lung Dis 19: 434-439.

24. Kurup R, George C (2013) Detection of drug resistant Mycobacterium tuberculosis among patients with and without HIV infection in a rural setting. West Indian Med J 62: 122-126.

25. Mekonnen D, Admassu A, Mulu W, Amor A, Benito A, et al. (2015) Multidrug-resistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia. Int J Infect Dis.

26. Molina-Moya B, Lacoma A, Prat C, Diaz J, Dudnyk A, et al. (2015) AID TB resistance line probe assay for rapid detection of resistant Mycobacterium tuberculosis in clinical samples. J Infect 70: 400-408.

27. Muller B, Streicher EM, Hoek KG, Tait M, Trollip A, et al. (2011) inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa? Int J Tuberc Lung Dis 15: 344-351.

28. Mulu W, Mekonnen D, Yimer M, Admassu A, Abera B (2015) Risk factors for multidrug resistant tuberculosis patients in Amhara National Regional State. Afr Health Sci 15: 368-377.

29. Ochong EA, Oduyebo OO, Onwuezobe IA, Obeten SM, Ogban GI, et al. (2013) Rapid confirmation of drug susceptibility in Mycobacterium tuberculosis using MPT 64 Ag based test. Asian Pacific Journal of Tropical Disease 3: 207-210.

30. Ocheretina O, Morose W, Gauthier M, Joseph P, D'Meza R, et al. (2012) Multidrug-resistant tuberculosis in Port-au-Prince, Haiti. Rev Panam Salud Publica 31: 221-224.

31. Orikiriza P, Tibenderana B, Siedner MJ, Mueller Y, Byarugaba F, et al. (2015) Low resistance to first and second line anti-tuberculosis drugs among treatment naive pulmonary tuberculosis patients in southwestern Uganda. PLoS One 10: e0118191.

32. Putri FA, Burhan E, Nawas A, Soepandi PZ, Sutoyo DK, et al. (2014) Body mass index predictive of sputum culture conversion among MDR-TB patients in Indonesia. Int J Tuberc Lung Dis 18: 564-570.

33. Ruiz Jimenez M, Guillen Martin S, Prieto Tato LM, Cacho Calvo JB, Alvarez Garcia A, et al. (2013) "Induced sputum versus gastric lavage for the diagnosis of pulmonary tuberculosis in children". BMC Infect Dis 13: 222.

34. Sharma S, Madan M, Agrawal C, Asthana AK (2014) Genotype MTBDR plus assay for molecular detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. Indian J Pathol Microbiol 57: 423-426.

35. Singhal R, Myneedu VP, Arora J, Singh N, Bhalla M, et al. (2015) Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDRplus assay. Indian J Med Microbiol 33 Suppl: 46-52.

36. Singhal R, Myneedu VP, Arora J, Singh N, Sah GC, et al. (2014) Detection of multi-drug resistance & characterization of mutations in Mycobacterium tuberculosis isolates from North- Eastern States of India using GenoType MTBDRplus assay. Indian J Med Res 140: 501-506.

37. Strydom K, Ismail F, Matabane MM, Onwuegbuna O, Omar SV, et al. (2015) Comparison of Three Commercial Molecular Assays for Detection of Rifampin and Isoniazid Resistance among Mycobacterium tuberculosis Isolates in a High-HIV-Prevalence Setting. J Clin Microbiol 53: 3032-3034.

38. Vadwai V, Ajbani K, Jose M, Vineeth VP, Nikam C, et al. (2013) Can inhA mutation predict ethionamide resistance? Int J Tuberc Lung Dis 17: 129-130.

39. Van Deun A, Aung KJ, Hussain A, de Rijk P, Gumusboga M, et al. (2015) Disputed rpoB mutations can frequently cause important rifampicin resistance among new tuberculosis patients. Int J Tuberc Lung Dis 19: 185-190.

40. Vorkas C, Kayira D, van der Horst C, Hoffman I, Hosseinipour M, et al. (2012) Tuberculosis drug resistance and outcomes among tuberculosis inpatients in Lilongwe, Malawi. Malawi Med J 24: 21-24.

41. Wedajo W, Schon T, Bedru A, Kiros T, Hailu E, et al. (2014) A 24-well plate assay for simultaneous testing of first and second line drugs against Mycobacterium tuberculosis in a high endemic setting. BMC Res Notes 7: 512.
43. Workalemahu B, Berg S, Tsegaye W, Abdissa A, Girma T, et al. (2013) Genotype diversity of Mycobacterium isolates from children in Jimma, Ethiopia. BMC Res Notes 6: 352.

44. Zhang L, Ye Y, Duo L, Wang T, Song X, et al. (2011) Application of genotype MTBDRplus in rapid detection of the Mycobacterium tuberculosis complex as well as its resistance to isoniazid and rifampin in a high volume laboratory in Southern China. Mol Biol Rep 38: 2185-2192.

No extractable data, no response from authors

1. Akpaka PE, Baboolal S, Clarke D, Francis L, Rastogi N (2008) Evaluation of methods for rapid detection of resistance to isoniazid and rifampin in Mycobacterium tuberculosis isolates collected in the Caribbean. J Clin Microbiol 46: 3426-3428.

2. Bazira J, Asiimwe BB, Joloba ML, Bwanga F, Matee MI (2010) Use of the GenoType(R) MTBDRplus assay to assess drug resistance of Mycobacterium tuberculosis isolates from patients in rural Uganda. BMC Clin Pathol 10: 5.

3. Bazira J, Asiimwe BB, Joloba ML, Bwanga F, Matee MI (2011) Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in South-Western Uganda. BMC Infectious Diseases 11.

4. Buyankhishig B, Oyuntuya T, Tserelmaa B, Sarantuya J, Lucero MG, et al. (2012) Rapid molecular testing for multi-resistant tuberculosis in Mongolia: A diagnostic accuracy study. International Journal of Mycobacteriology 1: 40-44.

5. Cavusoglu C, Gursel D, Aktoprak HB (2011) Evaluation of the genotype MTBDRplus assay for the diagnosis of tuberculosis and rapid detection of rifampin and isoniazid resistance in clinical specimens. Turkish Journal of Medical Sciences 41: 419-425.

6. Hung NV, Ando H, Thuy TT, Kuwahara T, Hang NT, et al. (2013) Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi, Vietnam. BMC Res Notes 6: 444.

7. Madhuri K, Deshpande S, Dharmashale S, Bharadwaj R (2015) Utility of Line Probe Assay for the Early Detection of Multidrug-Resistant Pulmonary Tuberculosis. J Glob Infect Dis 7: 60-65.

8. Martinez-Lirola MJ, Munoz-Davila MJ, Garcia-de Viedma D, Cabezas Fernandez T, Luzon Garcia P (2014) Usefulness of Genotype MTBDRplus assay in acid-fast bacilli positive smear specimens in Almeria, Spain. Enferm Infecc Microbiol Clin 32: 511-514.

9. Maurya AK, Singh AK, Kant S, Umrao J, Kumar M, et al. (2013) Use of GenoType(R) MTBDRplus assay to assess drug resistance and mutation patterns of multidrug-resistant tuberculosis isolates in northern India. Indian J Med Microbiol 31: 230-236.

10. Maurya AK, Umrao J, Singh AK, Kant S, Kushwaha RA, et al. (2013) Evaluation of GenoType(R) MTBDRplus assay for rapid detection of drug susceptibility testing of multi-drug resistant tuberculosis in Northern India. Indian J Pathol Microbiol 56: 139-143.

11. Minime-Lingoupou F, Pierre-Audigier C, Kassa-Kelembho E, Barilone N, Zandanga G, et al. (2010) Rapid identification of multidrug-resistant tuberculosis isolates in treatment failure or relapse patients in Bangui, Central African Republic. Int J Tuberc Lung Dis 14: 782-785.

12. Neonakis IK, Gitti Z, Baritaki S, Petinaki E, Baritaki M, et al. (2009) Evaluation of GenoType mycobacteria direct assay in comparison with Gen-Probe Mycobacterium tuberculosis amplified direct test and GenoType MTBDRplus for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 47: 2601-2603.

13. Seagar AL, Neish B, Laurenson IF (2012) Comparison of two in-house real-time PCR assays with MTB Q-PCR Alert and GenoType MTBDRplus for the rapid detection of mycobacteria in clinical specimens. J Med Microbiol 61: 1459-1464.

14. Varghese B, Hillemann A, Wijayanti DR, Shoukri M, Al-rabiah F, et al. (2012) New insight into the molecular characterization of isoniazid and rifampicin resistant Mycobacterium tuberculosis strains from Saudi Arabia. Infect Genet Evol 12: 549-556.
Appendix F. Explanation of the 94 datasets

Thirteen studies used different populations of patients or specimens to perform indirect and direct testing separately and were thus included as two separate datasets[19,29-40]. Only one of these studies performed head-to-head testing of all three target LPAs on directly tested clinical specimens and indirectly tested isolates and was included as 6 separate datasets[19]. One study performed indirect testing on two different populations with two different phenotypic reference standards and was included as two separate data sets[41]. Two studies (excluded from MTB analysis due to patient treatment history) examined two different populations of TB patients and were included as four separate datasets. One of these studies recruited ‘chronic’ TB patients failing first line therapies and had two populations: one enrolled prior to starting second line treatment and one population who were enrolled within the first month of treatment[42]. The second study enrolled patients with no prior history of TB and tested them at the beginning of treatment and then again in the 5th month of treatment[43]. Of the total 94 unique datasets, 74 (79%) evaluated patients from low- or middle-income countries. In 57 (61%) datasets, the laboratory setting where LPA was performed was in a low- or middle-income country.
Table S1. Indeterminate results
These are grouped by index test, type of testing and PICO question. The median and range are given followed by the number of datasets that reported this data in parentheses.

	Hain V1 Direct	Hain V1 Indirect	Hain V2 Direct	Hain V2 Indirect	Nipro Direct	Nipro Indirect
Rifampicin resistance	5.1%, 0.9-14.5% (26)	1.0%, 0.5-2.1% (3)	6.0%, 1.3-10.8% (3)	0.5% (1)	6.1% (1)	1.1% (1)
Isoniazid resistance	5.3%, 0.9-14.5% (24)	0.9%, 0.5-1.0% (3)	5.7%, 1.3-12.9% (3)	0.5% (1)	5.9% (1)	0.5% (1)
MTB detection	0.7-1.7% (3)	N/R	N/R	N/R	N/R	N/R

N/R: none reported

Table S2. Diagnostic accuracy of LPA for all three assays, stratified by LPA type.

Reference standard	LPA	Test	Direct or Indirect	# Studies (# Samples)	Sensitivity 95% C.I.	Specificity 95% C.I.	Positive LR 95% C.I.	Negative LR 95% C.I.
Phenotypic	Hain V1	RIF	All	80 (17 375)	97.1% (95.9 - 97.9)	98.9% (98.3 - 99.3)	89.2 (56.4 – 141.1)	0.03 (0.02 – 0.04)
	Hain V2	RIF	All	5 (2 241)	95.0% (91.6 - 97.0)	98.3% (97.2 - 99.0)	56.2 (33.8 – 93.5)	0.05 (0.03 – 0.09)
	Nipro	RIF	All	6 (1 609)	94.3% (89.4 - 97.1)	98.1% (96.8 - 98.9)	50.9 (29.5 – 88.0)	0.06 (0.03 – 0.11)
Phenotypic	Hain V1	INH	All	76 (17 106)	90.2% (88.0 - 92.1)	99.2% (98.9 - 99.5)	112.2 (68.3 – 184.3)	0.09 (0.08 – 0.12)
	Hain V2	INH	All	5 (2 243)	93.6% (90.4 - 95.8)	99.1% (95.6 - 99.8)	102.3 (21.4 – 487.9)	0.06 (0.04 – 0.10)
	Nipro	INH	All	6 (1 605)	86.9% (72.5 - 94.3)	99.1% (97.2 - 99.7)	99.1 (32.2 – 305.3)	0.13 (0.06 – 0.29)
Author, year	LPA (Direct vs Indirect)	Country or Region	Composite standard	Targeted regions sequenced	Samples sequenced	Mutations in phenotypic resistant, LPA sensitive strains (n)*	Mutations in phenotypic sensitive, LPA resistant strains (n)*	Composite standard leads to different test performance
-------------------------	--------------------------	-------------------	--------------------	-----------------------------	------------------	---	---	--
Al-Mutairi, 2011	Hain V1 (Indirect)	Kuwait	BacTec plus targeted sequencing	rpoB†	All 125 strains (82 MDR and 43 pan-susceptible)	4 total: • L533P (1) • I572F (2) • Wild type (1)	None	No
Asante-Poku 2015	Hain V1 (Indirect)	Ghana	Proportion method plus sequencing	rpoB‡	51 phenotypically resistant isolates	None	None	No
Dorman 2012	Hain V1 (Direct)	South Africa	MGIT plus targeted sequencing	rpoB (primers not specified)	4 phenotypic / LPA discordant isolates	2 total: • Wild type (2)	2 total: • S531L (2)	Yes
Fabre 2011	Hain V1 (Indirect)	15 countries	BacTec plus targeted sequencing	rpoB§	All 144 strains (129 RIF-R)	1 total: • double mutation E562G/P564L (1)	None	No
Farooqi 2012	Hain V1 (Direct)	Pakistan	Proportion method plus targeted sequencing	rpoB**	5 phenotypic / LPA discordant isolates	4 total: • del518 (1) • S531W (1) • Wild type (2)	2 total (only 1 sequenced) • H526N (1)	Yes
Felkel 2013	Hain V1 (Direct)	Nigeria	BacTec plus targeted sequencing	rpoB (primers not specified)	1 phenotypic / LPA discordant isolate	1 total: • Wild type (1)	None	No

* Bold indicates a known resistance conferring mutation
† rpoB HSR, N-terminal and cluster II regions
‡ rpoB Ko1 and Ko2
§ rpoB RPOB-TR1 and RPOB-3R
** rpoB 81bp hypervariable region
| Study Year | Hain V1 Type | Country | Methodology | Gene | Number of Strains | Discordant Results | Wild Type | Susceptibility |
|------------|--------------|---------|-------------|------|-------------------|-------------------|-----------|---------------|
| 2007 | Indirect | Germany | Mixed: MGIT and proportion method plus targeted sequencing | rpoB (primers not specified) | All 125 previously characterized strains (75 MDR, 50 pan-susceptible) | 1 total - V176F (1) | None | No |
| 2007 | Direct | Germany | Mixed: MGIT and proportion method plus targeted sequencing | rpoB (primers not specified) | 11 phenotypic / LPA discordant isolates or deltaWT bands only on LPA | 1 total - Wild type (1) | None | No |
| 2015 | Indirect | China | Proportion method plus targeted sequencing | rpoB (primers not specified) | All 430 strains | None | None | No |
| 2009 | Indirect | Taiwan | Mixed: MGIT or proportion method plus targeted sequencing | rpoB†† | All 272 isolates (242 MDR and 30 pan-susceptible) | 11 total - L533P (8) - Wild type (3) | None | No |
| 2014 | Indirect | Taiwan | Proportion method plus targeted sequencing | rpoB†† | 4 LPA / oligonucleotide array discordant isolates | 3 total - V176F (1) - Wild type (2) | None | No |
| 2010 | Indirect | Vietnam | Proportion method plus targeted sequencing | rpoB†† | 4 phenotypic LPA discordant isolates | 4 total - H526L (1) - Wild type (3) | None | No |
| 2012 | Direct | Argentina | Mixed: proportion, MGIT and microplate colorimetric plus targeted sequencing | rpoB§§ | 84 out of 100 samples tested with LPA | 1 total - D516V (1) | None | No |

†† rpoB-F and rpoB-R
‡‡ rpoBF and rpoBR
§§ 250 bp of the flanking region of the “hot spot” of rpoB
Study	Kit Type	Region	Methodology	rpoB Primers Specified	Total Strains	Mutations	Resistance Association	
Jin 2012	Hain V1	China	Absolute concentration plus targeted sequencing	rpoB (primers not specified)	All 149 strains	11 total: H526R (1), Wild type (10)	None	
Lacoma 2008	Hain V1	Spain	BacTec plus targeted sequencing	rpoB (primers not specified)	48 drug resistant strains	1 total: D516Y (1)	None	
Li 2015	Hain V1	China	Proportion method plus targeted sequencing	rpoB (primers not specified)	49 phenotypic / LPA discordant samples	16 total: D531V (6), Wild type (10)	Yes (rpoB mutations detected on sequencing were presumed to be associated with resistance)	
Maschmann 2013	Hain V1	Brazil	Proportion method plus targeted sequencing	rpoB (primers not specified)	68 culture positive strains	5 total: Insertion between codon 516 and 517 (2), Wild type (3)	Yes	
Mitarai 2012 (a)	Nipro	Japan	Mixed: MGIT, broth microdilution, proportion plus targeted sequencing	rpoB (primers not specified)	40 phenotypic / LPA discordant isolates	1 total: I572F (1)	6 total: H526S (3), L511P (1), D516Y (1), D516D (1)	Yes
Nathavitharana 2016	Hain V1	Mixed: proportion method and MGIT plus targeted sequencing	rpoB (codons 209–694)	All discordant strains and subset of non-discordant strains	15 total: L533P (5), Mixed: S531L plus wild type (1), V251P (4), I572P (2), 569Val (1), Wild type (2)	4 total: L553P (1)	Yes	
Nathavitharana 2016	Hain V2	Mixed: proportion	rpoB (codons)	All discordant strains and subset of non-discordant strains	15 total: L533P (5)	4 total: L553P (1)	Yes	
Study	Method	Country	rpoB Region	Genotypes	Discordant Strains			
------------------------------	-------------------------------	---------------	-------------------	---	-------------------			
Nathavitharana 2016	Method and MGIT plus targeted sequencing	Thailand	rpoB (codons 209–694)	subset of non-discordant strains	13 total			
				All discordant strains and subset of non-discordant strains				
				• Mixed: S531L plus wild type (1)				
				• V251P (4)				
				• I572P (2)				
				• 569Val (1)				
				• Wild type (2)				
				Wild type (3)				
				Mixed isolate of wild type and H526R (1)				
				• Wild type (6)				
				5 total				
Ocheretina 2014	Hain V1 (Indirect)	Haiti	rpoB***	153 rifampin resistant strains	16 total			
				All discordant strains				
				• H526L (4)				
				• H526C (1)				
				• T508A (2)				
				• L511P (5)				
				• L511P and M515T (2)				
				• T508T (2)				
Rienthong 2015a	Nipro (Indirect)	Thailand	rpoB (primers not specified)	10 phenotypic / LPA discordant isolates	7 total			
				All discordant isolates				
				• Mixed isolate of wild type and H526R (1)				
				• Wild type (6)				
				3 total				
				• S531L (1)				
				• L533P (1)				
				• H526N (1)				
				Wild type (3)				
Vijdea 2008 a	Hain V1 (Indirect)	Denmark and Lithuania	rpoB (primers not specified)	1 phenotypic / LPA discordant isolate	None			
				All discordant isolates				
				• S531L (1)				
				• L533P (1)				
				• H526N (1)				
				1 total				
				• L533M (1)				

rpoB_F and rpoB_R
b) INH resistance detection

Author, year	LPA (Direct vs Indirect)	Country of Data Origin	Composite standard	Targeted regions sequenced	Samples sequenced	Mutations in phenotypic resistant, LPA sensitive strains (n)¹⁰	Mutations in phenotypic sensitive, LPA resistant strains (n)¹⁰	Composite standard leads to different test performance
Al-Mutairi, 2011	Hain V1 (Indirect)	Kuwait	BacTec plus, RFLP¹¹ and targeted sequencing	*katG*315 by RFLP, *katG* and *inhA*-RR targeted sequencing¹²	All 125 strains	6 total	None	No
Anek-Vorapong 2010	Hain V1 (Direct)	Thailand	MGIT plus targeted sequencing	*katG* and *inhA*¹³	1 phenotypic / LPA discordant strain	2 total (only 1 sequenced)	None	No
Asante-Poku 2015	Hain V1 (Indirect)	Ghana	Proportion method plus targeted sequencing	*katG*, *inhA* and *oxyR*-ahpC¹⁴	51 phenotypically resistant isolates	2 total	Wild type (2)	No
Aung 2015	Hain V1 (Indirect)	Myanmar	Proportion method plus targeted sequencing	*katG*, *inhA* (primers not specified)	13/17 initially phenotypic / LPA discordant isolates	1 total	Wild type (1)	None
Brossier 2009	Hain V1 (Indirect)	France and WHO	Proportion method plus sequencing	*katG*, *inhA*, *fabG*-inhA (primers not specified)	95 INH resistant strains	13 total	S94A in *inhA* (3)	No
Dorman 2012	Hain V1 (Direct)	South Africa	MGIT plus targeted sequencing	*katG*, *inhA* (primers not specified)	10 phenotypic / LPA discordant isolates	11 total (9 sequenced)	1C15T in	Yes

¹⁰ Bold indicates a known resistance conferring mutation
¹¹ Restriction fragment length polymorphism
¹² INHAF and INHAR, INHAFS and INHARS
¹³ codon 315 of *katG*, nucleic acid positions -15, -16 and -8 in the *inhA* promoter region
¹⁴ *kat G* primers Ko11 and Ko12, *inhA* promoter primers Ko3 and Ko4, *oxyR*-ahpC primers Ko56 and Ko57
Study	Method/Primer Location	Country	Methodology	Genes Assessed	Assay results	Additional Information	
Farooqi 2012	Hain V1 (Direct)	Pakistan	Proportion method plus targeted sequencing	*katG*¹⁵	14 total phenotypic / LPA discordant isolates	14 total: Wild type (8) C15T in *inhA* (1)	
Felkel 2013	Hain V1 (Direct)	Nigeria	BacTec plus targeted sequencing	*katG*, *inhA*¹⁵	1 discordant strain	Wild type	
Hilleman 2007a	Hain V1 (Indirect)	Germany	Mixed: MGIT and proportion method plus targeted sequencing	*katG*, *inhA*, and *ahpC*¹⁷	All 125 strains	6 total: C52T in *ahpC* (1) K152T in *katG* G48A in *ahpC* (1) Wild type (4)	
Hilleman 2007b	Hain V1 (Direct)	Germany	Mixed: MGIT and proportion method plus targeted sequencing	*katG*, *inhA*, and *ahpC*¹⁷	41 MDR or INH resistant strains	4 total: Wild type (4)	
Huang 2015	Hain V1 (Indirect)	China	Proportion method plus targeted sequencing	*katG*, *inhA* (primers not specified)	All 430 strains	5 total: Wild type (5) 2 total: S315T in *katG* (2)	
Huang 2009	Hain V1 (Indirect)	Taiwan	Mixed: MGIT or proportion	*katG*, *inhA* and *ahpC*¹⁸	All 272 isolates	44 total: C-10T in	No

¹⁵ Codon 315 of *katG*
¹⁶ *inhA* primers 3F and 4R, *katG* primers 290F and 583R
¹⁷ *inhA* primers 3F and 4R, *katG* primers 290F and 583R
¹⁸ *inhA* primers 3F and 4R, *katG* primers 290F and 583R
Method plus targeted sequencing	ahpC (6)	
	- G-66A in *ahpC* (2)	
	- G-9A in *ahpC* (2)	
	- C-39T in *ahpC* (1)	
	- -4/-5 insert A in *ahpC* (1)	
	- G-5A and G-6A in *ahpC* (1)	
	- C-15T in *ahpC* (1)	
	- C-32T in *ahpC* (1)	
	- Y337C in *katG* (2)	
	- D419H in *katG* (1)	
	- Y413H in *katG* (1)	
	- del401C in *katG*(1)	
	- A379V in *katG*(1)	
	- L378P in *katG* and E217D in *inhA* (1)	
	- del364T in *katG* and C-12T in *ahpC* (1)	
	- A362D in *katG*(1)	
	- del310A in *katG* and C-10T in *ahpC* (1)	

18 *inhA* primers *inhA* 1713F and *inhA* 1713R, *inhA* 2194F and *inhA* 2194R, *inhA* locus-F and *inhA* locus-R, *katG* primers *katG*-F and *katG*-R, *ahpC* primers *ahpC*-f and *ahpC*-R
Study	Strain	Country	Methodology	Genotypes	Total strains	Sequenced strains
Huang 2014	Hain V1 (Indirect)	Taiwan	Proportion method plus targeted sequencing	katG, inhA and ahpC***	27 total (26 sequenced)	None
				2 LPA / oligonucleotide array discordant results		
Jin 2012	Hain V1 (Indirect)	China	Absolute concentration plus targeted sequencing	katG, inhA (primers not specified)	42 total: S315N in katG (10), S315R in katG (1), S315I in katG (1), Wild type (30)	None
Lacoma 2008	Hain V1 (Indirect)	Spain	BacTec plus targeted sequencing	katG, mabA-inhA-RR, oxyR-ahpC (primers not specified)	48 drug resistant strains	None

- G299A in katG and C-10T in ahpC (1)
- R202G in inhA (1)
- E217D in inhA (1)
- Wild type (16)
- W321S in katG (1)
- R463L in katG (11)
- Wild type (14)
- S315N in katG (10)
- S315R in katG (1)
- S315I in katG (1)
- Wild type (30)
- del234, del155-158 in katG (1)
- 204W -> stop in katG (1)
- S315T and G463T in katG (1)
- del640 in katG (1)
- D94N in katG (1)
- W728Y in katG
| Study | Method | Country | Primers/Method Details | Strains Details | Wild type | WT discordant |
|---------------|-----------------|----------|---|---|-----------|---------------|
| Maschmann 2013| Direct | Brazil | Proportion method on LJ plus targeted sequencing; *katG, inhA* (primers not specified) | *katG*, inhA *aphxC-oxyR* (1) • C-15T in *inhA* (1) • Wild type (6) | 19 total | None |
| Miotto 2008a | Indirect | Italy | MGIT plus targeted sequencing; *katG, inhA* and *mabAF-inha operon* | 173 INH resistant isolates • Wild type (36) | None | No |
| Mitarai 2012a | Indirect | Japan | Mix of MGIT, ogawa, broth microdilution, proportion plus sequencing; *inhA, fabG1, furA and katG* | 53 phenotypic / LPA discordant isolates • *katG* S17N (1) • G206S (1) • E340Q (1) • T152A (1) • Y113S (1) • T367G (2) • N138Y (1) • D142G (1) • K152Q (1) • D163N (1) • W191G (1) • Q461P (1) • G599Stop (1) • F698S (1) • T308P and S346T (2) • D419H (6) • L203L in *fabG1* and M126I in *katG* (1) • L203L in *katG* | None | no |

19 *katG* primers *katG* r and *katG* F, *inhA* primers *inhA* 301Rev and *MabAF*
Study	Method	Country	Sample Description	Methods	Phenotype/LPA Discordant Isolates	Total Cases	Additional Phenotypes
Mitarai 2012 b	Nipro (Direct)	Japan	MGIT 960 plus targeted sequencing	*inhA, fabG1, furA* and *katG*	4 phenotypic / LPA discordant isolates	3 total	G1795T (G599stop) (1)
							T2093C (F698S) in *katG* (1)
							T571C (W191R) and G1079A (G360D) in *katG* (1)
Nathavitharana 2016	Hain V1 (Indirect)		Mixed: proportion method and MGIT plus targeted sequencing	*katG* (codons 268–328), *inhA* (position −148 to +60) for INH	All discordant strains and subset of non-discordant strains	21 total (20 sequenced)	Wild type (15)
							C15T in *inhA* (2)
							S315T in *katG* and G47C in *inhA* (1)
							T324P in *katG* (2)
Nathavitharana 2016	Hain V2 (Indirect)		Mixed: proportion method and MGIT plus targeted sequencing	*katG* (codons 268–328), *inhA* (position −148 to +60) for INH	All discordant strains and subset of non-discordant strains	21 total (20 sequenced)	Wild type (15)
							C15T in *inhA* (2)
							S315T in *katG* and G47C in *inhA* (1)
							T324P in *katG* (2)

Yes
Study	Methodology	Country	Method	Strain Type	Discordant Strains
Nathavitharana 2016	Mixed: proportion method and MGIT plus targeted sequencing	Thailand	*katG* (codons 268–328), *inhA* (position −148 to +60) for INH	All discordant strains and subset of non-discordant strains	20 total (19 sequenced)
• Wild type (15)					
• C15T in *inhA* (3)					
• S315T in *katG* and G47C in *inhA* (1)					
Rienthong 2015a	Nipro (Indirect)	Thailand	MGIT 960 plus targeted sequencing	*katG*, *fabG1* and *inhA* (primers not specified)	10 phenotypic / LPA discordant isolates
• F565F in *katG* (1)					
• D189H in *katG* (1)					
• T618M in *katG* (1)					
• **G279D** and A379D in *katG* (1)					
• G699R in *katG* (1)					
• G690A in *fabG1* (1)					
• Wild type (3)					
Vijdea 2008a	Hain V1 (Indirect)	Denmark and Lithuania	Bactec 460 plus targeted sequencing	*katG*, *inhA* and oxy-R-aphC²⁰ (primers not specified)	4 phenotypic / LPA discordant isolates
• G49A at *oxyR-aphC* (3)
• No amplification at *katG* 463 (1) |

²⁰ *katG* primers *katG1F* and *katG4F*, *inhA* primers fabG1-*inhA*, oxyR-aphC primers 519 and 520 (*fabG1-*inhA) and tomap1 and tomap2 (oxyR–aphC)
SENSITIVITY ANALYSES

Table S4. Sensitivity analysis to exclude studies selecting for MDR risk.

Reference standard	Test	Direct or Indirect	Smear status	# Datasets (# Samples)	Sensitivity 95% CI	Specificity 95% C.I.	Positive LR 95% C.I.	Negative LR 95% C.I.
Phenotypic DST	RIF	Both	All	91 (21 225)	96.7% (95.6 - 97.5)	98.8% (98.2 - 99.2)	79.3 (54.5 – 115.5)	0.03 (0.03 - 0.04)
Phenotypic DST	RIF	Both	All	52 (13 460)	96.7% (94.8-97.9)	99.0 (98.4-99.4)	99.6 (60.6-163.8)	0.03 (0.02-0.05)
Phenotypic DST	INH	Both	All	87 (20 954)	90.2% (88.2 - 91.9)	99.2% (98.7 - 99.5)	109.5 (70.3 - 170.4)	0.10 (0.08 - 0.12)
Phenotypic DST	INH	Both	All	52 (13 460)	88.4% (85.4-90.9)	99.2% (98.6-99.5)	109.1 (62.5-190.3)	0.12 (0.09-0.15)
Phenotypic DST	MDR	Both	All	57 (13 033)	92.9% (90.2 - 94.7)	99.3% (98.7 - 99.6)	127.2 (72.1- 224.5)	0.07 (0.05 - 0.10)
Phenotypic DST	MDR	Both	All	30 (7 680)	94.1% (89.8-96.7)	99.6% (98.9-99.9)	253.6 (87.1-738.0)	0.06 (0.03-0.10)
Table S5. Other pre-specified sensitivity analyses.

LPA	Test	Direct or Indirect	Smear status	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI
				OVERALL			OVERALL		

Excluding studies that did not enroll (or report enrolling) a consecutive or random sample of patients/specimens:

Phenotypic DST	Test	Direct or Indirect	Smear status	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI
Phenotypic DST	RIF	All	All	23 (10 484)	95.5% (92.9-97.2)	98.6% (97.6-99.2)	91 (21 225)	96.7% (95.6 - 97.5)	98.8% (97.0 - 99.9)
Phenotypic DST	INH	All	All	23 (10 484)	90.6% (87.0-93.2)	98.9% (97.9-99.4)	87 (20 954)	90.2% (88.2 - 91.9)	99.2% (97.0 - 99.9)
Phenotypic DST	MDR	All	All	15 (6 363)	93.9% (88.3-97.0)	98.8% (97.9-99.3)	57 (13 033)	92.9% (90.2 - 94.7)	99.3% (97.0 - 99.9)
Phenotypic DST	MTB	All	All	1 (177)	76.1 (N/A)	97.2 (N/A)	6 (3 451)	85.0% (70.0 - 93.3)	98.0% (96.2 - 99.0)

Excluding studies that used a case-control design or that did not specify the study design:

Phenotypic DST	Test	Direct or Indirect	Smear status	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI
Phenotypic DST	RIF	All	All	62 (16 668)	97.0% (93.4-96.6)	98.6% (97.8-99.1)	91 (21 225)	96.7% (95.6 - 97.5)	98.8% (97.0 - 99.9)
Phenotypic DST	INH	All	All	60 (16 634)	90.3% (87.5-92.5)	99.0 (98.3-99.4)	87 (20 954)	90.2% (88.2 - 91.9)	99.2% (97.0 - 99.9)
Phenotypic DST	MDR	All	All	38 (10 006)	94.8% (91.8-96.8)	99.1% (98.3-99.5)	57 (13 033)	92.9% (90.2 - 94.7)	99.3% (97.0 - 99.9)
Phenotypic DST	MTB	All	All	6 (3 451)	83.4 (69.3-91.8)	97.3 (89.9-99.3)	6 (3 451)	85.0% (70.0 - 93.3)	98.0% (96.2 - 99.0)

Excluding studies where operators performing index test results were blinded to the results of the reference standard:

Phenotypic DST	Test	Direct or Indirect	Smear status	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI	# Studies (# Samples)	Sensitivity 95% CI	Specificity 95% CI
Phenotypic DST	RIF	All	All	28 (5 858)	95.8% (93.8-97.2)	98.3% (97.4-98.9)	91 (21 225)	96.7% (95.6 - 97.5)	98.8% (97.0 - 99.9)
Phenotypic DST	INH	All	All	27 (5 835)	91.1% (87.8-93.6)	99.0 (98.0-99.5)	87 (20 954)	90.2% (88.2 - 91.9)	99.2% (97.0 - 99.9)
Phenotypic DST	MDR	All	All	23 (5 129)	92.8% (87.7-95.0)	99.4% (98.6-99.8)	57 (13 033)	92.9% (90.2 - 94.7)	99.3% (97.0 - 99.9)
Phenotypic DST	MTB	All	All	4 (3 249)	75.5 (59.8-86.4)	98.3 (91.3-99.7)	6 (3 451)	85.0% (70.0 - 93.3)	98.0% (96.2 - 99.0)
Figure S4. Forest plots demonstrating the sensitivity and specificity of all the LPAs evaluated for the diagnosis of rifampicin resistance for culture isolates that were tested indirectly compared to phenotypic DST.
Figure S5. Forest plots demonstrating sensitivity and specificity of all the LPAs evaluated for the diagnosis of rifampicin resistance compared against a composite reference standard for all samples regardless of specimen type.

Author	Sensitivity (95% CI)	Specificity (95% CI)	TP	FP	FN	TN
MTBDRplus V1						
Maschmann 2013	82.76 (64.23, 94.15)	96.97 (84.24, 99.32)	24	1	5	32
Felkel 2013	83.33 (35.88, 99.58)	100.00 (60.77, 100.00)	5	0	1	26
Dorman 2012	87.50 (61.65, 98.45)	100.00 (98.17, 100.00)	14	0	2	200
Li 2015	89.87 (84.08, 94.10)	98.78 (97.96, 99.33)	142	16	1135	
Nathavitharan 2016	91.33 (86.10, 95.07)	98.51 (95.70, 99.69)	158	3	15	198
Lacoma 2008	91.67 (61.52, 99.79)	100.00 (92.89, 100.00)	11	0	1	50
Farooqi 2012	92.59 (82.11, 97.94)	100.00 (92.75, 100.00)	50	0	4	49
Huyen 2010	93.10 (83.27, 98.09)	100.00 (93.15, 100.00)	54	0	4	52
Jin 2012	93.45 (88.59, 96.69)	100.00 (94.79, 100.00)	157	0	11	69
Al-Mutairi 2011	95.12 (87.98, 98.66)	100.00 (91.78, 100.00)	78	0	4	43
Huang 2009	95.45 (92.01, 97.71)	100.00 (88.43, 100.00)	231	0	11	30
Imperiale 2012	96.15 (80.36, 99.90)	100.00 (90.75, 100.00)	25	0	1	38
Hilleman 2007	96.77 (83.30, 99.92)	100.00 (91.19, 100.00)	30	0	1	40
Hilleman 2007	98.67 (92.79, 99.97)	100.00 (92.89, 100.00)	74	0	1	50
Huang 2014	98.80 (96.55, 99.75)	100.00 (95.07, 100.00)	248	0	3	73
Fabre 2011	99.22 (95.76, 99.98)	100.00 (81.47, 100.00)	128	0	1	18
Asante Poku 2015	100.00 (39.76, 100.00)	100.00 (96.67, 100.00)	4	0	0	109
Huang 2015	100.00 (81.47, 100.00)	100.00 (98.14, 100.00)	18	0	0	197
Vijdea 2008a	100.00 (84.56, 100.00)	100.00 (96.11, 100.00)	22	0	0	93
Nipro						
Nathavitharan 2016	92.53 (87.56, 95.98)	98.50 (95.68, 99.69)	161	3	13	197
Rienthong 2015a	93.00 (86.11, 97.14)	100.00 (97.72, 100.00)	93	0	7	160
Mitarai 2012a	98.89 (93.96, 99.97)	98.21 (95.49, 99.51)	89	4	1	220
MTBDRplus V2						
Nathavitharan 2016	91.33 (86.10, 95.07)	98.51 (95.70, 99.69)	158	3	15	198
Figure S6. Forest plots demonstrating the sensitivity and specificity of all the LPAs evaluated for the diagnosis of isoniazid resistance for culture isolates that were tested indirectly against phenotypic DST.
Figure S7. Forest plots demonstrating the sensitivity and specificity of all the LPAs evaluated for the diagnosis of isoniazid resistance compared against a composite reference standard for all samples regardless of specimen type.
Figure S8. HSROC graphs of summary estimates for all specimens for RIF and INH resistance (indirect)

Bivariate analysis of the sensitivity and specificity for all LPAs for the diagnosis of drug resistance compared to a phenotypic reference standard in specimens tested indirectly for a) RIF resistance b) INH resistance. In the plots below, the red squares represent the pooled summary estimates, the dashed red lines represent the 95% confidence region and the dashed green lines represent the 95% prediction region. The individual circles represent each study and the size of the circle is proportional to the total sample size.