Desempenho do PRISM III e do PIM 2 em unidade de terapia intensiva pediátrica oncológica

Performance of PRISM III and PIM 2 scores in a cancer pediatric intensive care unit

INTRODUÇÃO

Os sistemas de escore são utilizados com vista a proporcionar pontos de referência que sejam reconhecíveis por outros observadores. São utilizados para indicar a gravidade e avaliar o risco de mortalidade na unidade de terapia intensiva (UTI). Esses sistemas ajudam na identificação e na resolução de problemas e objetivam medir a gravidade da doença, calibrando esses dados a um determinado desfecho, como, por exemplo, óbito ou sobrevida. Esses resultados são também indicadores da qualidade do serviço prestado e servem para avaliação comparativa interna e externa. (1)

A implementação desses sistemas é de grande importância para precisão e acurácia do prognóstico em pacientes oncológicos internados em UTI pediátrica, pois esse grupo de pacientes apresenta maiores taxas de mortalidade e, desse modo, tem necessidade de previsão de desfechos desfavoráveis de maneira mais precoce e efetiva.
Inicialmente, para fazer esse tipo de avaliação, eram adotados métodos subjetivos, como sistema de classificação clínica, no qual os doentes eram agrupados de acordo com sua estabilidade e necessidade de intervenção terapêutica.(2)

Em 1974, Cullen criou o Therapeutic Intervention Scoring System (TISS), um método indireto e objetivo de análise da gravidade da doença baseando-se em recursos terapêuticos e factores de piora clínica do paciente. Esse método foi posteriormente revisado por Keene, em 1983. (2,3) Surgiram também escores para situações clínicas específicas, como a escala de coma de Glasgow e o Injury Severity Score. (4,5)

Escores quantitativos subjetivos surgiram a partir do avanço de dados clínicos associados ao uso de ferramentas estatísticas para determinação de variáveis clínicas relevantes, possibilizando, a partir de uma fórmula matemática, correlacionar o risco de morte em porcentagem. (6) São exemplos desse tipo de escore o Physiologic Stability Index que, após um processo de revisão, deu origem ao Pediatric Risk of Mortality (PRISM). (7,8)

Os principais escores desenvolvidos para população pediátrica são o PRISM9-12 e o Pediatric Index of Mortality (PIM)13-15 e suas novas versões, o PRISM IV16 e o PIM 3. (13,14) Esses escores foram desenvolvidos identificando-se variáveis relevantes para o risco de mortalidade, tendo sido pontuados após análise estatística de regressão logística.

Estimam-se, para o Brasil, 420 mil casos novos de câncer durante o ano de 2019, sem considerar o câncer de pele não melanoma. (16,17) Uma vez que o percentual mediano dos tumores infanto-juvenis observados nos Registros de Câncer de Base Populacional (RCBP) brasileiros é de aproximadamente 3%, depreende-se que ocorrerão 12,500 casos novos de câncer em crianças e adolescentes (até os 19 anos). (18)

As variáveis estudadas constituíram três grupos: para caracterização clínico-epidemiológica; para a análise da gravidade da doença; e para a caracterização demográfica. A amostra foi estratificada em relação à idade: crianças (0-11 anos) e adolescentes (12-18 anos).

Foi realizado um estudo de coorte retrospectivo. Os objetivos foram: comparar a mortalidade observada na UTI pediátrica de um hospital infantil com a mortalidade teórica prevista de acordo com os escores de mortalidade de PRISM e PIM; calcular a área sob a curva (AUC) para discriminação e calibração do PRISM III e PIM 2; e aplicar a calibração de Hosmer-Lemeshow (25) para os escores PRISM III e PIM 2.

Os critérios de inclusão foram: pacientes internados na UTI pediátrica por mais de 8 horas, de internação para análise do PRISM, e de desfecho. Os critérios de exclusão foram: internações de menos de 8 horas, internações na UTI pediátrica por meio do escore de mortalidade, e internações de mais de 8 horas, menos de 8 horas ou de 4 horas em caso de óbito; admitidos em parada cardiorrespiratória que não foram ressuscitados; e internações com duração de permanência na UTI pediátrica por mais de 8 horas.

Os dados foram coletados dos prontuários médicos, a partir de uma ficha de questionário. Os dados estatísticos foram analisados em um programa de computador (Statistica 8.0). A comparação entre a mortalidade desejada e a observada foi feita pelo teste de Hosmer-Lemeshow.(25) A análise foi feita dividindo os pacientes em dez níveis de risco de mortalidade, para comparar mortalidade observada e esperada. A discriminação dos sobreviventes e óbitos, foi calculada a área sob a curva Característica de Operação do Receptor (COR). (56)

Para quantificar a qualidade dos cuidados prestados na UTI pediátrica por meio do escore de mortalidade, utilizou-se o índice padronizado de mortalidade (IPM), (27) que compara a estatística de morrer com a mortalidade observada.
No presente estudo, foram adotados os preceitos da resolução 466/12 do Conselho Nacional de Saúde, sendo aprovado, em 6 de junho de 2018, pelo Comitê de Ética em Pesquisa da Fundação Santa Casa de Misericórdia do Pará (FSCMPA), baseado em um parecer consultivo 2.695.187, CAAE 89172218.8.0000.5171.

RESULTADOS

Durante o período do estudo, ocorreram 489 internações, mas foram incluídas apenas 338 (69,1%). As 151 (30,8%) internações excluídas continham informações incompletas ou não se adequaram aos critérios de inclusão, sendo descartadas. A maioria era do sexo feminino (50,9%), mediana de 8, desvio padrão de ± 5 anos, com variação de 3 meses a 18 anos (Tabela 1).

A maioria dos pacientes teve internação clínica (66,7%) e apresentava leucemia aguda (38%), seguida por tumores do sistema nervoso central (20%). O tipo de leucemia mais comum foi a linfoblástica aguda (72,5%), seguida de mieloide aguda (24,5%).

Os diagnósticos mais frequentes na admissão foram distúrbios respiratórios (22,8%), seguidos por sepsis/choque séptico/disfunção de múltiplos órgãos (18,4%) e distúrbios de coagulação e sangramento (16,8%).

Dos 338 pacientes estudados, 62 (18,3%) foram a óbito, sendo que 38 (61,5%) desses óbitos tiveram como causa o choque séptico e/ou disfunção de múltiplos órgãos.

As tabelas 2 e 3 avaliam as semelhanças na mortalidade observada e esperada em dez intervalos de risco de mortalidade, por meio do teste de ajuste de Hosmer-Lemeshow para o PRISM III – nas primeiras 24 horas e para o PIM 2 estimado a partir de toda a amostra do escore original, respectivamente (qui-quadrado de 11,56, 8df, p = 0,975, para PRISM III; e qui-quadrado de 0,48, 8df, p = 0,999, para PIM 2).

A média do PRISM III foi 15 e a do PIM 2 foi de 24%. A mediana do PIM 2 e do PRISM III para sobreviventes e não sobreviventes foi de 2,3% (0,6 - 7,8%) e 13,4% (6,5 - 62%), e 2,8% (1,4 - 9,1%) e 18,7% (6,2 - 55,9%) respectivamente, porém não houve diferença estatisticamente significativa entre os grupos (p > 0,05) pelo teste U de Mann-Whitney.

Obteve-se área sob a curva COR de 0,71 (intervalo de confiança de 95% - IC95% 0,47 - 0,92) para o PRISM III e 0,76 (IC95% 0,58 - 0,89) para o PIM 2 (Figura 1).

A mortalidade estimada pelo PRISM III foi de 79,5 (23,5%) e pelo PIM de 80,1 (23,7%) pacientes. Isso corresponde a um IPM de 0,78 (IC95% 0,70 - 0,87) para o PRISM III e 0,77 (IC95% 0,69 - 0,88) para o PIM2.

Tabela 1 - Análise das variáveis sociodemográficas, clínicas e de suporte terapêutico em pacientes internados na unidade de terapia intensiva pediátrica

Variável	Admissão
Sexo	338 (100)
Masculino	166 (49,1)
Idade	
1 mês a 1 ano	25 (7,3)
2 - 5 anos	140 (41,3)
6 - 12 anos	85 (25,3)
13 - 21 anos	88 (26)
Outros hospitais	96 (28,5)
Diagnóstico de admissão	338 (100)
Desordem respiratória	77 (22,8)
Desordem cardiovascular	32 (9,5)
Desordem neurológica	31 (9,1)
Sepse/choque séptico/disfunção de múltiplos órgãos	62 (18,4)
Infeção (sem sepsie relatada)	75 (22,2)
Desordem endócrino-metabólica e nutricional	7 (2,2)
Desordem digestiva	17 (5,1)
Desordem hematólogica e coagulação	57 (16,8)
Monitorização	53 (15,7)
Desordem renal	15 (4,4)
Tempo de internação (dias)	338 (100)
1	18 (5,3)
2 - 7	178 (52,8)
7 - 14	117 (34,5)
> 14	25 (7,4)
Suporte renal	10 (100)
Peritoneal	2 (20)
Hemodiálise	8 (80)
Suporte de oxigênio na admissão	338 (100)
Ventilação mecânica	155 (45,9)
Invasiva	310 (91,6)
Não invasiva	13 (8,4)
Respiração espontânea	183 (54,1)
Sem assistência	18 (9,9)
Máscara facial	130 (71)
Cânula nasal	35 (19,2)
Droga vasoativa	338 (100)
Sim	104 (30,9)
Não	234 (69,1)
Tempo de ventilação mecânica (dias)	189 (100)
0 - 1	42 (22,2)
1 - 3	45 (23,8)
3 - 7	35 (18,5)
> 7	67 (35,4)
Choques	139 (100)
Séptico	56 (40,3)
Hipovolêmico	37 (20,6)
Cardiogênico	33 (23,7)
Outros	13 (9,3)
Sepsis continuaum	83 (100)
Sepses e sepsse severa	27 (32,5)
Choque séptico/disfunção de múltiplos órgãos	56 (67,5)

Resultados expressos por n (%).
Tabela 2 - Calibração dos escores do Pediatric Risk of Mortality III, por meio do teste de ajuste de Hosmer-Lemeshow, em estratos de risco para mortalidade e sobrevivência de pacientes internados na unidade de terapia intensiva pediátrica

Escore do PRISM III	Admissão (338)	Sobrevida	Mortalidade	
	Valor de p = 0,975			
< 1	3	3	2,9807	0,0193
1 - 5	15	14	14,7598	1,2402
5 - 7,5	39	37	37,8253	1,1747
7,5 - 10	44	43	41,7476	1,2524
10 - 12,5	42	40	38,6120	3,3880
12,5 - 15	54	49	49,3062	4,6938
15 - 20	60	48	44,3365	15,6634
25 - 30	17	14	4,803	12,197
> 30	15	6	1,2975	13,7025
Total	338	276	258,478	79,52197

PRISM - Pediatric Risk of Mortality.

Tabela 3 - Calibração dos escores do Pediatric Index of Mortality 2, por meio do teste de ajuste de Hosmer-Lemeshow, em estratos de risco para mortalidade e sobrevivência de pacientes internados na unidade de terapia intensiva pediátrica

Escore do PIM 2	Admissão (338)	Sobrevida	Mortalidade	
	Valor de p = 0,99			
< 1	36	35	35,8762	0,1238
1 - 5	44	42	42,7990	1,201
5 - 10	78	73	72,0547	5,9453
10 - 15	39	34	34,0602	4,9398
15 - 20	33	30	26,9570	6,043
20 - 25	11	10	8,4690	2,531
25 - 30	10	9	7,1650	2,835
30 - 40	10	6	6,5020	3,498
40 - 50	9	5	4,7210	4,279
> 50	68	32	18,0470	49,95301
Total	338	276	257,8098	80,19025

PRISM - Pediatric Risk of Mortality.

DISCUSSÃO

Quanto ao desempenho dos escores em relação à mortalidade geral da população por meio do IPM, tanto o PRISM III quanto o PIM 2 a superestimaram. Ambos os escores foram criados há alguns anos e podem não levar em consideração a atual população de crianças e adolescentes com doença crônica complexa, que pode influenciar nessa diferença entre mortalidade observada e esperada. Alguns estudos apresentaram resultados similares. (27)

A avaliação do desempenho discriminatório dos modelos por meio da área sob a curva COR evidenciou que tanto o PRISM III como o PIM 2 têm regular poder de discriminação entre sobreviventes e não sobreviventes (0,71 para o PRISM III e 0,76 para o PIM2). Muitos autores relataram que o PRISM III superestima (27) a mortalidade e não apresenta boa calibração e discriminação em populações específicas. (28-30)
A população estudada apresentou taxa de mortalidade geral de 18,3% e, dentre esse percentual, 61,5% foram por choque séptico/disfunção de múltiplos órgãos. Outros estudos mostraram mortalidade próxima ou superior.\(^{(31)}\) O desenvolvimento de infecções potencialmente graves provavelmente está associado ao grau de imunossupressão, resultado tanto da doença neoplásica de base, quanto pós-quimioterapia.\(^{(32,33)}\) É importante ressaltar também que, no período estudado, ainda não tinham sido estabelecidos protocolos de prevenção e bundles preventivos de infecção relacionada à assistência, o que pode ter contribuído para a elevada taxa de mortalidade.

O presente estudo apresenta limitações por basear-se em revisões retrospectivas de prontuários, ocasionando viés de coleta e interpretação, e por ser unicêntrico. Além disso, apresenta grande percentual (30,8%) de pacientes excluídos do estudo. Como vantagens, no entanto, o estudo apresentou número amostral moderado, além de ser pioneiro na região.

A literatura ainda é deficiente em estudos demonstrando o desfecho de pacientes pediátricos com câncer admitidos em UTI pediátrica. No cuidado ao paciente oncológico, é necessário desenvolver modelos para quantificar a gravidade da doença e prever o risco de mortalidade que abramjam suas peculiaridades. A aplicação desses modelos no futuro pode ser útil para prever melhor a evolução da doença.

CONCLUSÃO

Na unidade de terapia intensiva pediátrica oncológica, ambos os escores superestimaram a mortalidade real com a prevista. Os modelos preditivos estudados apresentaram regular capacidade de discriminação entre os sobreviventes e não sobreviventes nos pacientes com câncer infantil-juvenil, sendo o PIM 2 superior ao PRISM III. São, portanto, ferramentas importantes na avaliação prognóstica desses pacientes. É importante frisar que este foi o primeiro estudo do gênero a ser realizado nessa amostra populacional específica, e novas pesquisas são necessárias para melhor calibração e validação desses escores nessa população.

ABSTRACT

Objective: To assess the performance of Pediatric Risk of Mortality (PRISM) III and Pediatric Index of Mortality (PIM) 2 scores in the pediatric intensive care unit.

Methods: A retrospective cohort study. Data were retrospectively collected from medical records of all patients admitted to the pediatric intensive care unit of a cancer hospital from January 2017 to June 2018.

Results: The mean PRISM III score was 15, and PIM 2, 24%. From the 338 studied patients, 62 (18.34%) died. The PRISM III estimated mortality was 79.52 patients (23.52%) and for PIM 2 80.19 patients (23.72%), corresponding to a standardized mortality ratio (95% confidence interval: 0.78 for PRISM II and 0.77 for PIM 2). The Hosmer-Lemeshow chi-square test was 11.56, 8df, 0.975 for PRISM II and 0.48, 8df, p = 0.999 for PIM 2. The area under the Receiver Operating Characteristic curve was 0.71 for PRISM III and 0.76 for PIM 2.

Conclusion: Both scores overestimated mortality and have shown a regular ability to discriminate between survivors and non-survivors. Models should be developed to quantify the severity of cancer pediatric patients in Pediatric Intensive Care Units and to predict the mortality risk accounting for their peculiarities.

Keywords: Risk assessment; Prognosis; Child mortality; PRISM; PIM 2; Intensive care units, pediatric; Pediatric oncology
10. Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med. 1996;24(5):743-52.

11. Pollack MM, Holubkov R, Funai T, Dean JM, Berger JT, Wessel DL, Meert K, Berg RA, Newth CJ, Harrison RE, Cercillo J, Dalton H, Shanley T, Jenkins TL, Tamburro R; Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network. The Pediatric Risk of Mortality Score: Update 2015. Pediatr Crit Care Med. 2016;17(1):2-9.

12. Marcin JP; Pollack MM. Review of the methodologies and applications of scoring systems in neonatal and pediatric intensive care. Pediatr Crit Care Med. 2000;1(1):20-7.

13. Wölfner A, Osello R, Gulisino J, Calderini E, Vigna G, Santuz P, Amigoni A, Savon F, Caramelli F, Rossiet E, Cecchetti C, Corbani M, Piastra M, Testa R, Coiffer G, Stancanelli G, Gatto E, Arnato R, Prinelli F, Salvo I. Pediatric Intensive Therapy Network (TIPNet) Study Group. The importance of mortality risk assessment: validation of the Pediatric Index of Mortality 3 Score. Pediatr Crit Care Med. 2016;17(3):251-6.

14. Straney L, Clements A, Parsons RC, Pearson G, Shann F, Alexander J, Slater A; ANZICS Paediatric Study Group and the Paediatric Intensive Care Audit Network. Paediatric Index of Mortality 3: an updated model for predicting mortality in pediatric intensive care. Pediatr Crit Care Med. 2013;14(7):673-81.

15. Shann F, Pearson G, Slater A, Wilkinson K. Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care. Intensive Care Med. 1997;23(2):201-7.

16. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças e Agravos não Transmissíveis e Promoção da Saúde. Saúde Brasil 2017: uma análise da situação de saúde e os desafios para o alcance dos objetivos de desenvolvimento sustentável. Brasília: Ministério da Saúde; 2018.

17. Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Estimativa 2016: incidência de câncer no Brasil. Rio de Janeiro: INCA; 2015.122 p.

18. Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). Coordenação de Prevenção e Vigilância. Incidência, mortalidade e morbidade hospitalar por câncer em crianças, adolescentes e adultos jovens no Brasil: informações dos registros de câncer e do sistema de mortalidade. Rio de Janeiro: Inca, 2016.

19. Ward ZJ, Yeh JM, Bhakta N, Frazier AL, Girardi F, Atun R. Global childhood cancer survival estimates and priority-setting: a simulation-based analysis. Lancet Oncol. 2019;20(7):972-83.

20. Groalow J, Ozols RF, Bajoria R, Cheson BD, Sandler HM, Winer EP, Bonner J, Demetri GD, Curran W Jr, Ganz PA, Kramer BS, Kris MG, Markman M, Mayer RJ, Raghavan D, Ramsey S, Reaman GH, Sawaya R, Schuchter LM, Sweeterham JW, Vohat DT, Davidson NE, Schilsky RL, Lichter AS; American Society of Clinical Oncology. Clinical cancer survival estimates and priority-setting: a simulation-based analysis. Crit Rev Oncol Hematol. 2019;142:153-63.

21. American Cancer Society. Cancer facts & figures 2018. Atlanta: American Cancer Society; 2018. [cited 2021 Feb 5]. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf

22. Ribeiro RC, Antillon F, Pedrosa F, Pui CH. Global pediatric oncology: lessons from partnerships between high-income countries and low- to mid-income countries. J Clin Oncol. 2016;34(1):53-61.

23. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

24. Beningr N, Poole JE, Ballot DE, Geel JA. Appropriateness of admissions of children with cancer to intensive care facilities in a resource-limited setting. SA J Oncol. 2017;1(1):7.

25. Wösten-van Asperen RM, van Gestel JPJ, van Grotel M, Tschesiedel E, Dohna-Schwake C, Valla PV, Willems J, Angaard Nielsen JS, Krause ME, Potratz J, van den Heuvel-Eibrink MM, Brielfer J; POKER (PICU Oncology Kids in Europe Research group) research consortium. PICU mortality of children with cancer admitted to pediatric intensive care unit a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2019;142:153-63.

26. Thukral A, Lodha R, Irshad M, Arora NK. Performance of Pediatric Risk of Mortality (PRISM), Pediatric Index of Mortality (PIM), and PIM2 in a pediatric intensive care unit in a developing country. Pediatr Crit Care Med. 2006;7(4):356-61.

27. Slater A, Shann F; ANZICS Paediatric Study Group. The suitability of the Pediatric Index of Mortality (PIM), PIM2, the Pediatric Risk of Mortality (PRISM), and PRISM III for monitoring the quality of pediatric intensive care in Australia and New Zealand. Pediatr Crit Care Med. 2004;5(6):447-54.

28. Nyirasafari R, Corden MH, Karambizi AC, Kabayiza JC, Makuza JD, Wong R, et al. Predictors of mortality in a paediatric intensive care unit in Kigali, Rwanda. Paediatr Int Child Health. 2017;37(2):109-15.

29. St-Louis E, Séguin J, Roizblatt D, Deckelbaum DL, Baird R, Razek T. Systematic review and need assessment of pediatric trauma outcome benchmarking tools for low-resource settings. Pediatr Surg Int. 2018;33(3):299-309.

30. Manotas H, Ibarra M, Arteaga A, Romero A. Lesión renal aguda en niños de los trastornos del sistema nervioso. Acta Colomb Cuid Intensivo. 2018;18(4):207-11.

31. Giongo MS. Comparação entre cinco escóres de mortalidade em UTI pediátrica [dissertação]. Porto Alegre: Programa de Pós-Graduação em Pediatria e Saúde da Criança, Pontifícia Universidade Católica do Rio Grande do Sul; 2007.

32. Baden LR, Swaminathan S, Angarone M, Blouin G, Camins BC, Casper C, et al. Prevention and Treatment of Cancer-Related Infections, Version 2.2016, National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2016;14(7):882-913.

33. Alvarez PA, Berezin EM, Mirmic M. Etiologia das infecções em crianças com neutropenia febúl pós-quimioterapia. Arq Med Hosp Fac Cien Med Santa Casa São Paulo. 2014;59(1):40-2.