PPARα is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis

Submitted by Emmanuel Lemoine on Wed, 12/11/2013 - 17:07

Titre: PPARα is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis

Type de publication: Article de revue

Auteur: Benameur, Tarek [1], Tual-Chalot, Simon [2], Andriantsitohaina, Ramaroson [3], Martinez, Maria Carmen [4]

Editeur: Public Library of Science

Type: Article scientifique dans une revue à comité de lecture

Année: 2010

Langue: Anglais

Date: 2010

Numéro: 8

Pagination: e12392

Volume: 5

Titre de la revue: PloS one

ISSN: 1932-6203

Mots-clés: Animals [5], Biological [6], Bone [7], Capillaries [8], Cell [9], Endothelial [10], Gene [11], Mice [12], Neovascularization, Physiologic [13], NF-kappa [14], PPAR [15], Proto-Oncogene [16], RNA, Messenger [17], Signal [18], Stem [19], Up-Regulation [20]
Background
Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs.

Methodology/Principal Findings
We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms.

Conclusions/Significance
Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.

URL de la notice
http://okina.univ-angers.fr/publications/ua234 [21]

DOI
10.1371/journal.pone.0012392 [22]

Lien vers le document
http://dx.doi.org/10.1371/journal.pone.0012392 [22]
Publié sur Okina (http://okina.univ-angers.fr)