ABSTRACT

Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a significant and severe complication that affects morbidity and mortality. We studied both pediatric and adult patients using the Acute Kidney Injury Network (AKIN) definition.

Methods: This was an observational retrospective cohort study done at King Abdulaziz University Hospital in Jeddah, Saudi Arabia, and approved by the ethical committee. The exclusion criteria were baseline serum creatinine (SCr) ≥ 4 mg/dL or preexisting renal failure requiring dialysis, reoperation, death within 24 hours postoperatively, and operative mortality or missing data. We included 941 patients in the analysis using statistical software SPSS, version 15.0.

Results: Of the total number of patients, 28.68% in the adult group and 20.07% in the pediatric group developed CSA-AKI. Adult risk factors included the age group 60-69 years, cardiopulmonary bypass (CPB), number of grafts, and hypertension. In the pediatric group, CPB, aortic cross-clamping (ACX), and the lower preoperative SCr were the main risk factors.

Conclusion: Conventional conservative management and preoperative identification of predictor risk factors are essential for preventing CSA-AKI, constituting the primary strategy for optimal management.

INTRODUCTION

Acute kidney injury (AKI) is a rapid deterioration of glomerular filtration rate (GFR) associated with significant renal function impairment. CSA-AKI is reported in up to 30% of patients undergoing cardiac surgery and is considered an independent risk factor for increased morbidity and mortality causing dialysis in up to 4% [Hoste 2008; Wijeysundera 2007; Mehta 2006; Thakar 2005]. A slight increase of (0.3-0.5 mg/dL) in SCr is significantly correlating to an increase in 30-day mortality [Lassnigg 2004]. CSA-AKI is the second cause of AKI in intensive care units (ICU), preceded by sepsis, increasing the death by fourfold, reaching up to 8% [Uchino 2005; Karkouti 2009]. Mortality associated with renal replacement therapy (RRT) reaches up to 63% [Thakar 2005]. It is known that hypertension, advanced age, hyperlipidemia, and peripheral vascular disease are nonmodifiable risk factors for AKI [Lopez-Delgado 2013]. Uniquely among surgeries, cardiac surgery has some properties that increase AKI risks, such as CPB, ACX, high rates, volumes of exogenous blood product transfusion, and high doses of vasopressors [Gomez 2014]. Fortunately, many CSA-AKI risk factors can be modified. Identifying risk factors is one of the essential strategies to prevent or minimize CSA-AKI.

MATERIALS AND METHODS

This was an observational retrospective cohort study done at King Abdulaziz University Hospital (KAUH) Jeddah, SA, approved by KAUH ethical committee. A total of 1265 patients underwent cardiac surgery between January 2016 and December 2020. AKIN defined CSA-AKI for pediatric and adult groups as an increase in SCr of ≥ 0.3 mg/dL above baseline that persisted for more than 48 hours postoperatively. Also, it classifies CSA-AKI into 3 stages [Bellomo 2004]. (Table 1)

The exclusion criteria were baseline SCr ≥ 4 mg/dL or preexisting renal failure requiring dialysis, reoperation, death within 24 hours postoperatively, and operative mortality or missing data. A total of 941 patients were included in the analysis using the statistical software SPSS, version 15.0. Mann-Whitney test was used in univariate analysis of continuous variables, and the Pearson Chi-square test or Fisher’s exact test was used to analyzing categorical variables.

Statistical analysis: Continuous variables are presented as medians and 25-75 (25-75 median percentiles) as data were not normally distributed, and categorical variables are expressed as frequencies and percentages. Mann-Whitney test was used in univariate analysis of continuous variables, and the Pearson Chi-square test or Fisher’s exact test was used to analyzing categorical variables.
RESULTS

Table 2 shows the demographic and clinical characteristics of pediatric patients who were subjected to cardiac surgery. Those patients were divided into two groups, according to the occurrence of acute kidney injury. Most of the pediatric patients were in the age group > 30 days-≤ 2 years (N = 329, 57.9%), and the least were ≥ 13- < 18 years (N = 31, 5.5%). Males were greater in number than females (54.9% vs. 45.1%); non-Saudi patients were more than Saudi (82.4% vs. 17.6%). The same distributions of age, gender, and nationality were found in patients with and without AKI with insignificant differences between them (P = 0.092, P = 0.600, and P = 0.784, respectively). The median of CPB and ACX durations were 68 and 48 min that was significantly prolonged in patients with AKI versus those without AKI (79 versus 64 min and 57 vs. 45, P < 0.0001 for both). Case urgency was mostly elective than emergent in all patients (82.6% vs. 17.4%)

Table 1. Acute Kidney Injury Network (AKIN) criteria

Stage	Serum Creatinine	Urine Output
1	Increase ≥0.3 mg/dL, or Increase ≥150-200% (1.5-2-fold) from baseline	<0.5 mL/kg/h for 6 h
2	Increase ≥200-300% (2-3-fold) from baseline	<0.5 mL/kg/h for 12 h
3a	Patients receiving renal replacement therapy are included in Stage 3	Increase > 300% (>3-fold) from baseline, or Serum creatinine to ≥4 mg/dL with an acute Increase of ≥0.5 mg/dL
		Anuria for ≥12 h

Table 2. Characteristics of pediatric patients undergoing cardiac surgery, according to the occurrence of acute kidney injury (AKI).

Variables	All patients (N = 568)	AKI (N = 114)	No AKI (N = 454)	Significance
Age category				0.092
≤ 30 days		69 (12.1%)	18 (15.8%)	
> 30 days- ≤2 years	329 (57.9%)	72 (63.2%)	257 (56.6%)	
> 2- < 13 years	139 (24.5%)	21 (18.4%)	118 (26.0%)	
≥ 13- < 18 years	31 (5.5%)	3 (2.6%)	28 (6.2%)	
Gender				0.600
Male	312 (54.9%)	60 (52.3%)	252 (55.5%)	
Female	256 (45.1%)	54 (47.4%)	202 (44.5%)	
Nationality				0.784
Saudi	100 (17.6%)	21 (18.4%)	79 (17.4%)	
Non-Saudi	468 (82.4%)	93 (81.6%)	375 (82.6%)	
Cardiac pulmonary bypass (min)	68 (49.0-88.5)	79.0 (61.5-97.5)	64.0 (47.0-85.0)	0.0001
Aortic cross-clamp (min)	48 (31.0-64.0)	57.0 (42.0-70.5)	45.0 (29.0-63.0)	0.0001
Case urgency				0.891
Elective	469 (82.6%)	95 (83.3%)	374 (82.6%)	
Emergent	99 (17.4%)	19 (16.7%)	99 (17.4%)	
Preoperative creatinine (mg/dl)	0.33 (0.25-0.44)	0.24 (0.19-0.32)	0.35 (0.27-0.46)	0.0001
Postoperative creatinine (mg/dl)	0.34 (0.24-0.46)	0.49 (0.37-0.67)	0.31 (0.21-0.41)	0.0001
Difference between pre- and postoperative creatinine (mg/dl)	0.00 (-0.10-0.11)	0.24 (0.16-0.36)	-0.04 (-0.12-0.03)	0.0001
Percentage changes of creatinine (%)	100 (71.98-135.25)	195.50 (163.86-259.29)	87.50 (65.63-109.62)	0.0001
Stages of acute kidney injury				
Stage 1		62 (54.4%)	-	
Stage 2		35 (30.7%)	-	
Stage 3		17 (14.9%)	-	
Death within index hospitalization	15 (2.6%)	8 (7.0%)	7 (1.5%)	0.004
Table 3. Characteristics of adult patients undergoing cardiac surgery according to the occurrence of acute kidney injury (AKI).

Variables	Adult (≥ 18 years) (N = 373)	AKI (N = 107)	No AKI (N = 266)	Significance
Age category	-	-	-	0.004
< 50 years	114 (30.6%)	21 (19.6%)	93 (35.0%)	
50-59 years	115 (30.8%)	33 (30.8%)	82 (30.8%)	
60-69 years	106 (28.4%)	35 (32.7%)	71 (26.7%)	
≥ 70 years	38 (10.2%)	18 (16.8%)	20 (7.5%)	
Gender				0.384
Male	301 (80.7%)	83 (77.6%)	218 (82.0%)	
Female	72 (19.3%)	24 (22.4%)	48 (18.0%)	
Nationality				0.143
Saudi	41 (11.0%)	16 (15.0%)	25 (9.4%)	
Non-Saudi	332 (89.0%)	91 (85.0%)	241 (90.6%)	
Type of surgery				0.235
Adult congenital	92 (24.7%)	18 (16.8%)	74 (27.8%)	
Valve repair	16 (4.3%)	5 (4.7%)	11 (4.1%)	
Valve replacement	57 (15.3%)	15 (14.0%)	42 (15.8%)	
Coronary artery bypass graft	205 (55.0%)	68 (63.6%)	137 (51.5%)	
Combined (CABG+Valve repair)	1 (0.3%)	-	1 (0.4%)	
Combined (CABG+Valve replacement)	2 (0.5%)	1 (0.9%)	1 (0.4%)	
Valve type				0.588
Mechanical	49 (13.1%)	12 (11.2%)	37 (13.9%)	
Biologic	10 (2.7%)	4 (3.7%)	6 (2.3%)	
Cardiac pulmonary bypass (min)	112.00 (89.50-138.00)	122.0 (96.0-158.0)	108.5 (87.0-130.25)	0.003
Aortic cross-clamp (min)	67.50 (54.00-92.00)	72.0 (58.5-100.0)	66.0 (53.0-89.0)	0.051
Case urgency				0.384
Elective	307 (82.3%)	92 (86.0%)	215 (80.8%)	
Emergent	64 (17.2%)	15 (14.0%)	49 (18.4%)	
Urgent	2 (0.5%)	-	2 (0.8%)	
Smoking	93 (24.9%)	25 (23.4%)	68 (25.6%)	0.693
Pre-existing hypertension	175 (46.9%)	62 (57.9%)	113 (42.5%)	0.008
Pre-existing diabetes mellitus	147 (39.4%)	48 (44.9%)	99 (37.2%)	0.196
Preoperative creatinine (mg/dl)	0.97 (0.80-1.17)	1.11 (0.81-1.29)	0.95 (0.79-1.10)	0.0001
Postoperative creatinine (mg/dl)	1.01 (0.78-1.40)	1.84 (1.42-2.62)	0.90 (0.72-1.08)	0.0001
Difference between pre- and postoperative creatinine (mg/dl)	0.06 (-0.11-0.40)	0.67 (0.47-1.18)	-0.04 (-0.15-0.09)	0.0001
Percentage changes creatinine (%)	106.17 (87.17-141.50)	162.71 (147.91-223.58)	95.70 (82.67-109.03)	0.0001
Death within index hospitalization	21 (5.6%)	14 (13.1%)	7 (2.6%)	0.0001
Stages of AKI				
Stage 1	-	73 (68.2%)		
Stage 2	-	20 (18.7%)		
Stage 3	-	14 (13.1%)		
Avoid vasopressors
Maintain sufficient perfusion pressure
Discontinuing angiotensin converting enzyme inhibitors and receptor blockers
Tight glycemic control
Tight glycemic control
© 2022 Forum Multimedia Publishing, LLC

Table 4. Prevention and Recommendations

Preoperatively	Intraoperatively	Postoperatively
Avoiding or minimizing contrast media	Avoid prolonged CPB, ACX	Maintain hemodynamics (dobutamine)
Nephrotoxic drugs	Avoid hypotension	Avoid vasopressors
Optimize renal function	Maintain sufficient perfusion pressure	Balanced fluid and salt administration
Optimize hemodynamics*		Early diagnosis and institution of RRT when
		indicated
Rehydration		Discontinuing angiotensin converting enzyme
		inhibitors and receptor blockers
Delay surgery if needed, Tight glycemic control	Tight glycemic control	Tight glycemic control

DISCUSSION

This study uniquely focuses on pediatrics and adults to identify CSA-AKI risk factors to help prevent it. GFR is the best measure of kidney function, but it lacks specificity and sensitivity as a biomarker, and SCr has been the primary method to detect AKI. The main CSA-AKI predictive risk factors include age, perioperative GFR, lactate dehydrogenase (LDH), prothrombin time (PT), history of surgery, transfusion, cardiac arrhythmia, coronary heart disease (CHD), or chronic kidney disease (CKD), calcium channel blocker (CCB), proton pump inhibitors (PPI), non-steroidal anti-inflammatory drugs (NSAID), antibiotic or statin before surgery [Harky 2020]. Obesity is an independent risk factor, and oxidative stress may partially mediate this association [Moon 2018]. Our study showed that younger age is a protective factor against CSA-AKI. The incidence in the pediatric patients was 20.07%, compared with 28.68% in adults. The reported incidence varies, according to AKI definition, between 1%-30%. We chose strict criteria that define AKI by increasing SCr ≥ 0.3 mg/dL above baseline, thus justifying the high incidence in our study 28.68% compared with others. CSA-AKI pathophysiology is not fully understood. It can be related to impaired renal reserve or decreased renal perfusion, reperfusion, inflammation, oxidative stress, toxins, and hemolysis. Hemoglobin-induced pigment nephropathy is another factor. Prophylactic sodium bicarbonate might help in prevention [Haase 2007]. Many studies showed that CSA-AKI is significantly related to the female gender, presence of chronic obstructive pulmonary disease (COPD), diabetes mellitus (DM), peripheral vascular disease, renal impairment and congestive heart failure (CHF), valve surgery, case urgency, cardiogenic shock requiring intra-aortic balloon, left coronary insufficiency, length of ACX and CPB, off-pump versus on-pump surgery, non-pulsatile flow, hemolysis, and hemodilution [Harky 2020; Wang 2017; Guan 2019; O’Neal...
The Heart Surgery Forum #2022-4881

The main limitation of this study is its retrospective, small number, and single-center nature. Another limitation was not considering other criteria for AKI, especially in pediatrics, because of the controversy of choosing the definitive criteria for this group.

CONCLUSIONS

CSA-AKI is a common and significant complication that affects cardiac surgery results both in adults and pediatrics. Prevention by preoperative identification of predictor risk factors and modification is the best strategy for management.

REFERENCES

Al-Ebrahim KE, Al-Ebrahim E. 2020. Prevention, Classification and Management Review of Deep Sternal Wound Infection. The Heart Surgery Forum. Sep 14 (Vol. 2020, p. 3153).

Bellomo R, Ronco C, Kellum JA, et al. 2004. Acute Renal Failure - Definition, Outcome Measures, Animal Models, Fluid Therapy and Information Technology Needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care, vol. 8, no. 4. 204. 10.1186/cc2872.

Cardoso B, Laranjo S, Gomes I, et al. 2016. Insufficiência renal aguda no contexto de cirurgia cardíaca pediátrica: fatores de risco e prognóstico. Proposta de um modelo preditivo [Acute kidney injury after pediatric cardiac surgery: risk factors and outcomes. Proposal for a predictive model]. Rev Port Cardiol. 35:99-104.

Elassal AA, Al-Ebrahim K, Dehis RS, Ragab ES, Faden MS, Fatani MA, Allam AR, et al. 2021. “Re-exploration for bleeding after cardiac surgery: revaluation of urgency and factors promoting low rate.” Journal of Cardiothoracic Surgery 16, no. 1 1-11.

Elassal AA, Al-Ebrahim K, Makhdoom AM, Fatani M, Ibrahim M. 2021. Hybrid Coronary Revascularization: Perspective Current State After 23 Years of Start. In The Heart Surgery Forum. Apr 27 (Vol. 2021, p. 3693).

Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, et al. 2014. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 41:3-11.

Guan C, Li C, Xu L, et al. 2019. Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. J Nephrol. 32:937-945.

Haase M, Haase-Fielitz A, Bagshaw SM, Ronco C, Bellomo R. 2007. Cardiopulmonary bypass-associated acute kidney injury: a pigment nephropathy? Contrib Nephrol. 156:340-53.

Harky A, Joshi M, Gupta S, Teoh WY, Gatta F, Snosi M. 2020. Acute Kidney Injury Associated with Cardiac Surgery: a Comprehensive Literature Review. Braz J Cardiovasc Surg. 35:211-224.

Hoste EA, Cruz DN, Davenport A, et al. 2008. The epidemiology of cardiac surgery-associated acute kidney injury. Int J Artif Organs. 31:158–165.

Jiang W, Shen B, Wang Y, Xu J, Lao Z, Ding X, Teng J. 2019. Potentially Modifiable Predictors for Renal Replacement Therapy in Patients with Cardiac Surgery Associated-Acute Kidney Injury: a Propensity Score-Matched Case-Control Study. Braz J Cardiovasc Surg. 34:33-40.

Karim HM, Yunus M, Saikia MK, Kalita JP, Mandal M. 2017. Incidence and progression of cardiac surgery-associated acute kidney injury and
its relationship with bypass and cross clamp time. Ann Card Anaesth. 20:22-27.

Karkouti K, Wijeysundera DN, Yau TM, et al. 2009. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 119:495-502.

Kim JH, Kim HJ, Kim JY, Ahn HS, Ahn IM, Choe WJ, Lim CH. 2015. Meta-Analysis of Sodium Bicarbonate Therapy for Prevention of Cardiac Surgery-Associated Acute Kidney Injury. J Cardiothorac Vasc Anesth. 29:1248-56.

Lassnig A, Schmidlin D, Mouhieddine M, et al. 2004. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 15:1597-1605.

Li S, Krawczeski CD, Zappitelli M, et al. 2011. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 39:1493-9.

Lopez-Delgado JC EF, Tortrado H, Rodríguez-Castro D, et al. 2013. Influence of acute kidney injury on short- and long-term outcomes in patients undergoing cardiac surgery: risk factors and prognostic value of a modified RIFLE classification. Crit Care. 293-210.

Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A. 2017. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. Epub. 43:1551-1561.

Mehta RH, Grab JD, O’Brien SM, et al. 2006. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 114:2208-16.

Moon H, Lee Y, Kim S, et al. 2018. Differential signature of obesity in the relationship with acute kidney injury and mortality after coronary artery bypass grafting. Journal of Korean medical science.

O’Neal JB, Shaw AD, Billings FT 4th. 2016. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 4:187.

Ronco C, Kellum JA, Bellomo R. 2008. Cardiac surgery-associated acute kidney injury. International Journal of Artificial Organs. 31:156-157.

Sandokji I, Greenberg JH. 2020. Novel biomarkers of acute kidney injury in children: an update on recent findings. Curr Opin Pediatr. 32:354-359.

Schetz M, Bove T, Morelli A, Mankad S, Ronco C, Kellum JA. 2008. Prevention of cardiac surgery-associated acute kidney injury. Int J Artif Organs. 31:179-89.

Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. 2005. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 16:162-168.

Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. 2005. Influence of renal dysfunction on mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney Int. 67:1112-1119.

Uchino S, Kellum JA, Bellomo R, et al. 2005. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 294:813-818.

Vaschetto R, Groeneveld AB. 2007. An update on acute kidney injury after cardiac surgery. Acta Clinica Belgica. Supplementum. 380:384.

Wang Y, Bellomo R. 2017. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 13:697-711.

Wijeysundera DN, Karkouti K, Dupuis JY, et al. 2007. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 297:1801-1809.

Zangrillo A, Biondi-Zoccai GG, Frati E, et al. 2012. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 26:407-13.