Preventive antimicrobial action and tissue architecture ameliorations of \textit{Bacillus subtilis} in challenged broilers

Essam S. Soliman1,*, Rania T. Hamad2 and Mona S. Abdallah3

1. Department of Animal Hygiene, Zoonosis, and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; 2. Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Al Minufya 33511, Egypt; 3. Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.

Corresponding author: Essam S. Soliman, e-mail: soliman.essam@vet.suez.edu.eg
Co-authors: RTH: drrania_vet2007@yahoo.com, MSA: drmona_salim@yahoo.com
Received: 15-09-2020, Accepted: 19-01-2021, Published online: 26-02-2021

doi: www.doi.org/10.14202/vetworld.2021.523-536 How to cite this article: Soliman ES, Hamad RT, Abdallah MS (2021) Preventive antimicrobial action and tissue architecture ameliorations of \textit{Bacillus subtilis} in challenged broilers, \textit{Veterinary World}, 14(2): 523-536.

Abstract

Background and Aim: Probiotics improve intestinal balance through bacterial antagonism and competitive exclusion. This study aimed to investigate the \textit{in vitro} antimicrobial activity, as well as the \textit{in vivo} preventive, immunological, productive, and histopathological modifications produced by probiotic \textit{Bacillus subtilis}.

Materials and Methods: The \textit{in vitro} antimicrobial activities of \textit{B. subtilis} (5×106 CFU/g; 0.5, 1.0*, 1.5, and 2.0 g/L) were tested against \textit{Escherichia coli} O157: H7, \textit{Salmonella} Typhimurium, \textit{Candida albicans}, and \textit{Trichophyton mentagrophytes} after exposure times of 0.25, 0.5, 1, and 2 h using minimal inhibitory concentration procedures. A total of 320 1-day-old female Ross broiler chickens were divided into five groups. Four out of the five groups were supplemented with 0.5, 1.0*, 1.5, and 2.0 g/L probiotic \textit{B. subtilis} from the age of 1 day old. Supplemented 14-day-old broiler chickens were challenged with only \textit{E. coli} O157: H7 (4.5×108 CFU/mL) and \textit{S. Typhimurium} (1.2×107 CFU/mL). A total of 2461 samples (256 microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1575 organs) were collected.

Results: The \textit{in vitro} results revealed highly significant (p<0.001) killing rates at all-time points in 2.0 g/L \textit{B. subtilis}: 99.9%, 90.0%, 95.6%, and 98.8% against \textit{E. coli}, \textit{S. Typhimurium}, \textit{C. albicans}, and \textit{T. mentagrophytes}, respectively. Broilers supplemented with 1.5 and 2.0 g/L \textit{B. subtilis} revealed highly significant increases (p<0.01) in body weights, weight gains, carcass weights, edible organs’ weights, immune organs’ weights, biochemical profile, and immunoglobulin concentrations, as well as highly significant declines (p<0.01) in total bacterial, \textit{Enterobacteriaceae}, and \textit{Salmonella} counts. Histopathological photomicrographs revealed pronounced improvements and near-normal pictures of the livers and hearts of broilers with lymphoid hyperplasia in the bursa of Fabricius, thymus, and spleen after supplementation with 2.0 g/L \textit{B. subtilis}.

Conclusion: The studies revealed that 1.5-2.0 g of probiotic \textit{B. subtilis} at a concentration of 5×106 CFU/g/L water was able to improve performance, enhance immunity, and tissue architecture, and produce direct antimicrobial actions.

Keywords: broiler chickens, histopathological photomicrographs, immunity, \textit{in vitro} antimicrobial, \textit{in vivo} preventive, probiotics.

Introduction

Expansion in the poultry industry in the past 50 years has been accompanied by the emergence of a large variety of pathogens and increased microbial resistance. These effects have been attributed to the extensive and abnormal use of antibiotics as prophylactics and therapeutic agents. Recent research has focused on finding alternative supplements that minimize and/or prevent the maintenance of microbial agents in the environment, localization in target tissues, and the production of disease, as well as enhancing immunity levels in broiler chickens [1].

Alternatives such as cytokines, bacteriophages [2], \textit{Nigella sativa} Linn [3], cinnamon (\textit{Cinnamomum zeylanicum}) oil [4], inorganic nano-selenium [5], and probiotics [6] have been suggested and found to be effective in improving performance and immunity.

Probiotics are living microorganisms that, when supplemented in adequate amounts and concentrations, result in health benefits [7]. Probiotic supplementation contributes to beneficial effects, such as improved performance, increased feed efficiency, improved nutrient digestion, and absorption [8], increased egg production, improved health, and reduced pathogenic enzyme secretion [9]. One study that investigated the expanded use of probiotics in poultry farming showed that newly hatched chickens from supplemented flocks could be protected against colonization of \textit{Salmonella} Enteritidis with a dosing suspension of gut contents derived from healthy adult chickens [10], a concept is known as “competitive exclusion”.

Copyright: Soliman, \textit{et al}. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
In addition to competitive exclusion activity, probiotics exert their effects by regulating intestinal permeability, performing a foster action for the degradation and damage caused by enteric pathogens, enhancing humoral and cellular immunity, and altering agent pathogenicity [11]. Probiotics possess antimicrobial actions against many microorganisms, including Clostridium perfringens, Salmonella Typhimurium, Escherichia coli, and Staphylococcus aureus [12], by producing organic acids and antibacterial substances such as hydrogen peroxide, defensins, and bacteriocins.

This study aims to evaluate the in vitro antimicrobial action of probiotic Bacillus subtilis (5×10^6 CFU/g) at different concentrations (0.5, 1.0*, 1.5, and 2.0 g/L) against E. coli O157: H7 (4.5×10^12 CFU/mL), S. Typhimurium (1.2×10^10 CFU/mL), Candida albicans (2.5×10^10 CFU/mL), and Trichophyton mentagrophytes (2.5×10^10 CFU/mL) after different exposure intervals (0.25, 0.5, 1, and 2 h) using minimal inhibitory concentration tests. The study also aims to study the in vivo preventive and prophylactic actions of probiotic B. subtilis on productive performance, histopathological picture, biochemical profile, intestinal microbial load, immune and edible organs’ weights, and immunoglobulin (Ig) concentrations in 14-day-old broiler chickens challenged with E. coli O157: H7 (4.5×10^12 CFU/mL) and S. Typhimurium (1.2×10^10 CFU/mL).

Materials and Methods

Ethical approval

The protocol and used materials of the current scientific research were approved by the Scientific Research Ethics Committee, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt with approval number (2019004).

Study period and location

The in-vitro study was carried out during June and July 2019 in Animal, Poultry and Environmental Hygiene laboratories, Department of Animal Hygiene, Zoonosis and Animal Behavior and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia. The in-vivo study was conducted from September 5th, 2019 to October 12th, 2019 in the Broiler Experimental Units, Faculty of Veterinary Medicine, Suez Canal University, Ismailia.

Carcasses’ and organs’ weights, bacteriological, and performance indices assessments were conducted in Animal, Poultry and Environmental Hygiene laboratories, Ismailia. Biochemical and immunoglobulin assays were conducted in the Clinical Pathology Laboratories, Suez Canal University Hospital. Histopathological examinations and photomicrography were conducted in the Pathology Department, Al Minufya.

In vitro antimicrobial action of probiotics

Preparation of probiotic suspensions

B. subtilis (5×10^6 CFU/g) powder was purchased from a veterinary pharmacy in Ismailia, Egypt. The bag was opened with care, and four quantities were weighed (0.5, 1.0*, 1.5, and 2.0 g), and each weight was dissolved in 1 L of deionized water to produce the four targeted concentrations: 0.5, 1.0*, 1.5, and 2.0 g/L.

Preparation of bacterial and fungal cultures

E. coli O157: H7 suspension (1.8×10^10 CFU/mL) and S. Typhimurium lyophilized vials (2.4×10^10 CFU/mL) were purchased from the Animal Health Research Institute, Dokki, Cairo. E. coli O157: H7 was propagated in MacConkey broth (Thermo Scientific™ Oxoid™ MacConkey Broth, CM0505, 500 g) at 44°C for 24 h, while S. Typhimurium was propagated in tetrathionate broth (Thermo Scientific™ Oxoid™ Tetrathionate Broth Base, CM0029, 500 g) at 37°C for 24 h, as recommended by Soliman et al. [13]. From the positive MacConkey and tetrathionate tubes, 10 µL was dropped onto eosin methylene blue (EMB) agar (EMB, Modified Levine EMB Thermo Scientific™ Oxoid™, CM0069B, 500 g) and CHROMagar™ (BD BBL™ CHROMagar™ Salmonella READY-TO-USE Plated Media) and the plates were incubated at 37°C for 24 h [14]. Metallic green colonies of E. coli O157: H7 and pink colonies of S. Typhimurium were counted, collected, and reconstituted in buffered peptone water (Thermo Scientific™ Oxoid™ Buffered Peptone Water, CM0509B, 500 g), providing suspensions of 4.5×10^10 and 1.2×10^10 CFU/mL, respectively.

Suspensions of C. albicans and T. mentagrophytes (3.5×10^7 CFU/mL) were provided by the Animal Health Research Institute of Ismailia. Fungal suspensions were propagated in Sabouraud Dextrose Broth (SDB, HIMEDIA® Sabouraud Dextrose Broth, MU033, 500 g) at 37°C for 24 h, dropped onto Sabouraud Dextrose agar (SDA, Thermo Scientific™ Oxoid™ SDA, CM0041, 500 g), and incubated at 37°C for 24 h. Typical colonies were identified by morphological appearance and lactophenol cotton blue stain (Hardy Diagnostics® Lactophenol Cotton Blue, Z68, 15 mL). Colonies were counted, collected, and reconstituted in SDB, providing suspensions of 2.5×10^6 CFU/mL for each organism.

Testing probiotic concentrations against bacterial and fungal cultures

The procedures were carried out using the minimal inhibitory concentration according to Soliman et al. [15]. One milliliter from each bacterial or fungal suspension was added to each replicates of 9 mL of each probiotic concentration (0.5, 1.0*, 1.5, and 2.0 g/L), and mixed using a vortexer (Vortex Mixer XH-D, 2800 r/m, 30 W, bowl and dish shapes). After 0.25, 0.5, 1, and 2 h of exposure time, 100 µL were transferred and added to 10-mL physiological saline resuscitation tubes held previously at 4°C and mixed thoroughly by vortexing. The tubes were transferred for the bacteriological assessment.
In vivo efficiency of probiotics

Experimental birds: Microclimate and management

A total of 320 1-day-old female Ross chicks were purchased from a company in Ismailia, Egypt. Broiler chicks were divided on their arrival into five groups: G1, G2, G3, G4, and G5 (control), 64 chicks in each group (four replicates of 16 birds). Groups were placed into five independent rooms. The floors of the five rooms were treated with superphosphate (0.5 g/m²) before being covered with a hay deep litter system according to Soliman and Hassan [16]. Each room was ventilated through fans on one sidewall and V-shaped windows on the opposing sidewall, contributing to negative pressure cross-ventilation across the room. Broiler chicks in each room were supplied with a continuous lighting regimen using blue LED lights that were adjusted to provide 23 h of lighting and 1 h of darkness a day, as recommended by Soliman and Hassan [17]. The five rooms were secured using the essential biosecurity measures recommended by Soliman and Abdallah [18]: Fly-proof nets, foot dips at the entrance, controlled traffic in and out, restricted access to the rooms, protection of the food storage areas, protection of water resources, and protection from wild bird entrance.

Before the broilers’ arrival, the microclimatic temperature was adjusted and maintained in the five rooms at 35°C (brooding temperature) using halogen heaters (Bravo BR–4T Heater 4 halogen Candles, 2400 W). The indoor temperature was controlled and minimized at a rate of 3°C/week by increasing the ventilation rates during the daylight hours until 26°C was achieved by the end of the 3rd week. Birds were given ad libitum access to dechlorinated water and were supplied with a corn-soybean ration to meet their nutritional requirements, as recommended by the National Research Council [19] and Applegate and Angel [20]. Broilers were provided with the corn-soybean ration into two successive stages: The starter ration was provided from 1 to 13 days and constituted 23% protein, 3.81% crude fiber, 4.9% fat, and 2950 kcal/kg energy; and the grower ration was provided from 14 days until the end of the fattening cycle (38 days) and constituted 21% protein, 3.39% crude fiber, 5.8% fat, and 3100 kcal/kg energy. The experiment was designed to last for 38 days. Survival rates, microclimatic thermal level, and humidity level were monitored during the experiment.

Broilers were immunized by mass vaccination in dechlorinated drinking water during the early morning after water deprivation for 2-3 h. Birds were vaccinated against infectious bronchitis using PESTIKAL B1 SPF H120 ≥10^{15} live attenuated virus vaccine on the 6th day, against infectious bursal disease using SERVAC D78 Strain VMG91 ≥10^{19} live attenuated vaccine on the 14th and 21st days, and against Newcastle disease (ND) virus using PESTIKAL LaSota ≥10^{6} live lentogenic ND virus on the 18th and 28th days.

Probiotic supplementation

The chicks in four out of the five broiler groups (G1, G2, G3, and G4) were given drinking water supplemented with *B. subtilis* (5×10^6 CFU/g) from 1 day of age at a rate of 0.5, 1.0* (recommended by the manufacturer), 1.5, and 2.0 g/L, respectively. The fifth group was used as an unsupplemented control group.

E. coli O157: H7 and S. Typhimurium challenge

Broilers in groups G1, G2, G3, and G4 were challenged with *E. coli* O157: H7 (4.5×10^12 CFU/mL) and S. Typhimurium (1.2×10^7 CFU/mL) in the drinking water at 14 days of age [21].

Performance indices

The live body weights of the broiler groups were measured by weighing 56 birds from each group. The number of the weighed birds was calculated using the simple random sampling procedures described by Thrusfield [22] with a 5% error as following:

\[
N = 1.96^2 \frac{P_{exp}}{d^2}
\]

Where *n*=required sample size, *P*_{exp}=expected prevalence, *d*=desired absolute precision. Feed intakes expressed by grams (g) were calculated in each group by dividing the total amount consumed by the birds in such a group by the total number of surviving birds in the group. Weight gains expressed by (g), feed conversion ratios (FCR), and performance indices were calculated as recommended by Soliman and Hassan [23].

Sampling

A total of 2461 samples, including 256 *in vitro* microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1,575 organs (including bursa of Fabricius, spleen, thymus, heart, and liver) were collected during the period of the study.

Blood samples (a total of 315 sera samples) were obtained by sacrificing 63 birds in each of the five groups by the end of the study (38 days). The blood samples were received in sterile screw-capped centrifuge tubes, held at 37°C for 30 min, and centrifuged (Fisher®Thermo Scientific CL.10 Centrifuge with F-G3 Rotor, max rpm: 4000) at 3000 rpm for 15 min. Clear non-hemolyzed sera samples were pipetted using an automatic pipette (Thermo Scientific™ Finnpipette™ Adjustable Volume Single-Channel Micro Pipettor, 100-1000 μL volume) into 2-mL Eppendorf tubes and stored at −20°C for the biochemical and immunological assays.

Duodenal swabs (315 swabs and 63 per group) were collected from the intestines of sacrificed broilers’ and placed in 9 mL of buffered peptone water (Thermo Scientific™ Oxoid™ Buffered Peptone Water, CM0509B, 500 g); and the *in vitro* microbial-probiotic mixtures (256 samples, 4 replicates×4 contact times×4 cultures×4 probiotic concentrations) in the physiological saline resuscitation tubes were transferred for bacteriological assessment.
A total of 315 birds were slaughtered after blood sampling and decapitation; the shanks and feet were removed with a knife, and birds were de-feathered and eviscerated of all organs except kidneys. The carcasses were weighed and expressed in grams (carcass weight: CW/g). Edible organs such as the heart and liver, and the immune organs (bursa of Fabricius, spleen, and thymus) were removed, weighed, and recorded as g/kg bodyweight. All organs were kept in 10% formalin for histopathological examination. Sacrificed birds were hygienically disposed of after sampling through burial of the carcasses, heads, shanks, feet, and viscera with the use of slaked lime beneath and above, and the area was fenced to discourage carnivorous animals.

Biochemical and immunological assay

Sera (a total of 315 sera samples were collected from 315 sacrificed birds: 63 birds from each experimented group) were examined for levels of total protein (expressed in g/dL), albumin (expressed in g/dL), alanine aminotransferase (expressed in IU/L), aspartate aminotransferase (expressed in IU/L), urea (expressed in mg/dL), and creatinine (expressed in mg/dL) using a Roche COBAS Integra 800 Chemistry Analyzer. Ig (IgG, IgM, and IgA; expressed in mg/dL) concentrations were measured using a Roche Elecsys 1010 Immunoassay Analyzer.

Bacteriological examination

Ten microliters from each of the in vitro microbial-probiotic mixture (256 samples, 4 replicates×4 contact times×4 cultures×4 probiotics concentrations) resuscitation tubes were dropped (using the drop plate technique as recommended by Kim and Lee [24]) onto EMB agar (Modified Levine EMB Thermo Scientific™ Oxoid™, CM0069B, 500 g) and CHROMagar (BD BBL™ CHROMagar™ Salmonella READY-TO-USE Plated Media) for the E. coli O157: H7 and Typhimurium assays, respectively, during the in vitro study were detected, counted, and compared to the original microbial counts used, and the killing rates were calculated. Total bacterial count on SPA, TEC on EMB agar, and TSC on CHROMagar cultured from the in vivo intestinal swabs that showed 30-300 CFU were recorded. The counting of microbial colonies during the in vitro and in vivo studies was carried using a darkfield colony counter (R164109 Reichert-Jung Quebec Darkfield 3325 Colony Counter, Fisher Scientific) [27], and the counts were converted into logarithmic numbers.

Histopathological examination

Tissue samples from the liver, heart, spleen, thymus, and bursa of Fabricius were washed with 5% phosphate-buffered saline (PBS) (ABI® PBS, PBS, 10× concentrated, sterile, pH 7.4, without CaCl₂ and MgCl₂, 500 mL) and fixed through impregnation in 10% buffered formalin saline solution. The tissues were maintained until complete fixation, cut into sections of 5-mm thickness, and put into tissue cassettes. The specimens were dehydrated through transfer through a series of alcohols with different concentrations, cleared with two changes of xylool, embedded into paraffin, and cut into 4-µm-thick sections. The obtained tissue sections were stained with hematoxylin and eosin as recommended by Bancroft et al. [28] and Jones et al. [29]. Histological sections were examined using a Zeiss Axioplan microscope (Carl Zeiss MicroImaging, Thornwood, NY, USA) under 40× and photographed.

Statistical analysis

Statistical analysis was carried out using SPSS version 20 (SPSS-20, IBM Corp., NY, USA) [30]. The recorded data were analyzed using a two-way multifactorial analysis of variance for all treated groups, age, and their interactions. Data were analyzed for the in vitro influence of different probiotic concentrations (0.5, 1.0*, 1.5, and 2.0 g/L) on microbial cultures after different exposure intervals (0.25, 0.5, 1, and 2 h), and for the in vivo influence of the probiotic concentration, broiler age, and their interactions on performance, immunity, carcass weight, immune organ weight, edible organ weights, and intestinal microbial counts. The statistical model was summarized as follow:

\[
Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}
\]

Where \(Y_{ijk}\) was the measurement of the dependent variables; \(\mu\) was overall mean; \(\alpha\) was the fixed effect of the probiotic concentrations; \(\beta\) was the fixed effect of the broiler’s age; \((\alpha\beta)\) was the interaction effect of the probiotic concentrations by broiler’s age; and \(\varepsilon_{ijk}\) was the random error. The results were displayed in tables as high significance at \(p<0.01\), significant at \(p<0.05\), and non-significant at \(p>0.05\). The logarithmic forms (Log10) of total bacterial, Enterobacteriaceae, and total Salmonella count (TSC), and the plates were incubated at 37°C for 24-48 h.

Typical colonies of E. coli, Salmonella, Candida/Trichophyton on EMB agar, CHROMagar, and SDA, respectively, during the in vitro study were detected, counted, and compared to the original microbial counts used, and the killing rates were calculated. Total bacterial count on SPA, TEC on EMB agar, and TSC on CHROMagar cultured from the in vivo intestinal swabs that showed 30-300 CFU were recorded. The counting of microbial colonies during the in vitro and in vivo studies was carried using a darkfield colony counter (R164109 Reichert-Jung Quebec Darkfield 3325 Colony Counter, Fisher Scientific) [27], and the counts were converted into logarithmic numbers.

Available at www.veterinaryworld.org/Vol.14/February-2021/26.pdf
Salmonella counts were calculated using Microsoft Excel 2016.

Results

In vitro antimicrobial actions

The in vitro antimicrobial actions are shown in Table-1. The overall in vitro antimicrobial actions of the probiotic revealed highly significant reductions (p<0.01) in E. coli O157: H7, S. Typhimurium, C. albicans, and T. mentagrophytes viable counts (up to 99.9%, 55.7%, 55.1%, and 60.2%, respectively) when exposed to 2.0 g/L B. subtilis suspension compared to other concentrations, regardless of the contact time. The probiotic revealed highly significant antimicrobial actions (p<0.01) as the contact time with the microbial cultures increased to 2 h.

Different contact times conferred highly significant reductions (p<0.01) in the E. coli O157: H7 viable count: up to 99.8% in 0.5 g/L B. subtilis suspension after 1 h, 100.0% in 1.0* g/L B. subtilis suspension after 2 h, and 95.6% in 2.0 g/L B. subtilis suspension after 2 h.

The yeast assays also revealed significant viable cell count reduction rates. C. albicans showed highly significant reductions (p<0.01): Up to 91.0% in 0.5 g/L B. subtilis suspension after 2 h, 94.2% in 1.0* g/L B. subtilis suspension after 2 h, 94.8% in 1.5 g/L B. subtilis suspension after 2 h, and 95.6% in 2.0 g/L B. subtilis suspension after 2 h. T. mentagrophytes also showed highly significant reductions.

Table-1: In vitro antimicrobial action (killing rate mean±SE) of different Bacillus subtilis probiotic' concentrations at different exposure times.

Probiotic g/L	Contact times/h	Bacterial cultures (%)	Fungal cultures (%)	
		Escherichia coli	Candida albicans	
		O157: H7	Typhimurium	Trichophyton mentagrophytes
Overall means concerning probiotic concentrations				
0.5 g/L	84.3±0.61	32.4±0.15	52.2±0.07	56.2±0.8
1.0* g/L	99.2±0.33	40.0±0.26	52.6±0.08	57.0±0.07
1.5 g/L	99.9±0.01	50.0±0.33	54.0±0.07	59.6±0.09
2.0 g/L	99.9±0.00	55.7±0.16	55.1±0.09	60.2±0.06
p-value	0.001	0.000	0.334	0.069
Overall means concerning contact times				
0.25 h	84.3±0.31	18.5±0.18	13.2±0.08	18.0±0.05
0.5 h	99.2±0.25	27.8±0.19	35.2±1.19	40.0±1.23
1 h	99.9±0.01	54.2±0.36	73.2±1.65	78.0±0.69
2 h	100.0±0.00	79.2±2.22	92.2±0.53	97.0±0.61
p-value	0.005	0.001	0.000	0.002
Probiotics concentrations by contact times interactions				
0.5 g/L				
0.25 h	40.4±4.12	7.8±0.71	12.0±1.63	16.0±1.55
0.5 h	97.0±0.20	17.1±0.00	34.0±2.58	38.0±1.32
1 h	99.8±0.01	43.5±2.14	72.0±0.65	76.0±2.11
2 h	99.9±0.00	68.5±1.16	91.0±1.01	95.0±1.02
1.0* g/L				
0.25 h	97.0±0.20	13.5±0.66	12.4±1.22	16.8±0.98
0.5 h	99.8±0.01	22.8±0.00	38.1±0.99	39.2±0.56
1 h	100.0±0.00	49.2±1.98	75.8±3.61	77.4±1.12
2 h	100.0±0.00	74.2±1.22	94.2±1.55	95.3±0.01
1.5 g/L				
0.25 h	99.8±0.01	23.5±0.82	13.8±1.55	19.4±0.02
0.5 h	99.9±0.00	32.8±0.00	39.8±2.58	41.4±0.52
1 h	100.0±0.00	59.2±0.98	75.8±3.66	79.2±1.32
2 h	100.0±0.00	84.2±1.32	94.8±1.21	98.1±1.08
2.0 g/L				
0.25 h	99.9±0.00	29.2±1.66	14.8±1.66	20.1±0.62
0.5 h	100.0±0.00	38.5±0.62	41.5±2.55	42.0±1.54
1 h	100.0±0.00	65.0±1.54	79.4±1.15	80.0±1.54
2 h	100.0±0.00	90.0±0.02	95.0±0.98	98.8±1.00
p-value	0.094	0.002	0.001	0.000

Means carrying different superscripts in the same column are significantly different at P<0.05 or highly significantly different at P<0.01. Means carrying the same superscripts in the same column are non-significantly different at P<0.05. SE=Standard error, *Recommended concentration by the manufacturer.
(p<0.01): Up to 95.0% in 0.5 g/L B. subtilis solution after 2 h, 95.3% in 1.0* g/L B. subtilis solution after 2 h, 98.1% in 1.5 g/L B. subtilis suspension after 2 h, and 98.8% in 0.5 g/L B. subtilis suspension after 2 h.

Growth traits

The effects of different concentrations of B. subtilis suspension on the growth traits of broilers are shown in Table-2. The monitoring and observations of the broilers that received probiotic treatment revealed significantly lower mortalities: 1.3% (3 out of 230 broilers) during the entire experiment. Weight gains and performance indices revealed highly significant increases (p<0.01) in broilers supplemented with 2.0, 1.5, 1.0*, and 0.5 g/L B. subtilis suspension (Table-2). Feed intakes showed highly significant declines (p<0.01) in broilers supplemented with 2.0, 1.5, 1.0*, and 0.5 g/L B. subtilis suspension. FCR revealed highly significant (p<0.01) lower and promising ratios in broilers supplemented with 2.0, 1.5, 1.0*, and 0.5 g/L B. subtilis suspension. Age interactions with the different treatments showed highly significant increases (p<0.01) in weight gains and performance indices at the 3rd, 5th, 4th, 2nd, and 1st weeks, respectively, and highly significant increases (p<0.01) in feed intakes as age proceeded. Highly significant increases (p<0.01) were also observed in the FCR at the 5th, 4th, 3rd, 1st, and 2nd weeks, respectively.

Live, carcass, and immune organ weights

The effects of different concentrations of B. subtilis suspension on the live, carcass, and immune organ weights of broilers are shown in Table-3. Live body, carcasses, immune organs (bursa of Fabricius and thymus), and edible organs (liver and heart) weights,

Table-2: Performance indices (mean±SE) in broilers supplemented with different concentrations of probiotics.

Probiotic g/L	Age/week	BWG/g	FI/g	FCR	PI
Overall means concerning probiotic concentrations					
0.5 g/L	364.6±6.62	580.7±5.95	1.58±0.13	6.24±0.53	
1.0* g/L	383.2±2.95	563.2±5.84	1.47±0.11	6.94±0.62	
1.5 g/L	400.8±3.12	526.4±5.36	1.33±0.11	8.24±0.72	
2.0 g/L	421.9±3.24	504.0±5.29	1.17±0.10	9.23±0.82	
Control	349.0±2.38	589.1±5.95	1.66±0.13	5.71±0.45	
p-value	0.000	0.001	0.000	0.000	
Overall means concerning contact times					
1st week	116.0±1.84	129.1±2.39	1.12±0.02	1.35±0.05	
2nd week	403.1±4.16	299.8±4.79	0.74±0.01	7.49±0.18	
3rd week	537.8±7.74	590.4±5.44	1.10±0.02	10.02±0.29	
4th week	418.0±2.26	773.8±5.92	2.01±0.10	8.48±0.68	
5th week	444.6±1.51	969.9±1.22	2.25±0.07	9.02±0.37	
p-value	0.000	0.005	0.001	0.002	
Probiotics concentrations by contact times interactions					
0.5 g/L					
1st week	121.5±1.25	140.3±0.42	1.15±0.01	1.32±0.02	
2nd week	402.3±4.32	316.6±0.98	0.79±0.00	7.01±0.11	
3rd week	510.5±1.73	613.0±0.68	1.20±0.03	8.89±0.33	
4th week	315.3±5.05	800.6±1.28	2.56±0.10	5.44±0.29	
5th week	473.5±29.96	1030.8±1.35	2.22±0.15	8.53±0.64	
1.0* g/L					
1st week	107.5±1.36	130.8±1.01	1.21±0.01	1.14±0.02	
2nd week	415.0±4.69	299.6±1.54	0.72±0.01	7.67±0.15	
3rd week	526.3±4.71	601.4±0.94	1.14±0.01	9.46±0.19	
4th week	331.1±1.54	789.5±3.43	2.39±0.07	5.92±0.21	
5th week	536.0±2.06	994.8±1.62	1.87±0.07	10.5±0.46	
1.5 g/L					
1st week	103.0±1.71	117.6±0.88	1.14±0.02	1.18±0.03	
2nd week	434.6±4.05	285.3±1.43	0.65±0.00	8.67±0.13	
3rd week	589.4±1.67	576.1±1.40	0.98±0.03	11.9±0.52	
4th week	454.2±2.65	749.6±1.02	1.68±0.11	9.80±0.62	
5th week	423.0±3.88	901.3±0.71	2.21±0.19	9.62±0.99	
2.0 g/L					
1st week	128.3±2.01	111.6±1.20	0.87±0.02	1.84±0.06	
2nd week	385.0±4.67	261.1±2.44	0.67±0.01	8.06±0.21	
3rd week	557.1±1.30	540.6±1.60	0.97±0.02	11.39±0.39	
4th week	629.1±1.24	724.1±1.27	1.15±0.02	14.96±0.40	
5th week	410.0±2.12	882.6±2.78	2.18±0.11	9.91±0.57	
Control					
1st week	119.6±1.08	145.0±0.00	1.21±0.01	1.25±0.02	
2nd week	378.8±3.64	334.1±2.89	0.88±0.01	6.01±0.09	
3rd week	505.6±7.07	621.1±1.92	1.22±0.02	8.46±0.16	
4th week	360.3±1.52	805.1±1.57	2.25±0.09	6.29±0.30	
5th week	380.8±1.94	1040.0±3.41	2.76±0.13	6.54±0.38	
p-value	0.000	0.001	0.000	0.001	

Means carrying different superscripts in the same column are significantly different at (p<0.05) or highly significantly different at (p<0.01). Means carrying the same superscripts in the same column are non-significantly different at P<0.05. LBW=Live body weight, BWG=Body weight gain, FCR=Feed conversion ratio, PI=Performance index, SE=Standard error; *Recommended concentration by the manufacturer
revealed highly significant increases (p<0.01) in the broilers supplemented with 2.0 g/L *B. subtilis* suspension compared to other supplemented groups and the unsupplemented control group, with no significant differences between heart weights of the broilers supplemented with 2.0 and 1.5 g/L *B. subtilis*. On the other hand, spleen’s weights revealed highly significant declines (p<0.01) in all treated broilers compared to the unsupplemented control group.

Intestinal microbial load and immunoglobulin concentration

The effects of different concentrations of *B. subtilis* suspension on the intestinal microbial load and immunoglobulin concentration of broilers are shown in Table-4. The total bacterial counts revealed highly significant declines (p<0.01) in broilers supplemented with 2.0 g/L *B. subtilis*, with no significant differences between broilers supplemented with 2.0 and 1.5 g/L *B. subtilis*. Meanwhile, the total Enterobacteriaceae and *Salmonella* counts showed highly significant declines (p<0.01) in broilers supplemented 2.0 g/L *B. subtilis* compared with the other supplemented groups and the control group.

Immunoglobulin IgG, IgM, and IgA concentrations were found to be significantly increased (p<0.01) in broilers supplemented with 2.0 g/L *B. subtilis* compared to the other supplemented groups and the control group.

Biochemical profile

The effects of different concentrations of *B. subtilis* suspension on the biochemical profiles of broilers are shown in Table-5. Total protein, albumin, alanine aminotransferase, and aspartate aminotransferase levels were found to be significantly improved (p<0.01) in broilers supplemented with 2.0 g/L *B. subtilis* compared to the other treated groups and the untreated controls. Meanwhile, urea and creatinine levels showed a significant decline (p<0.01) in broilers supplemented with 2.0 g *B. subtilis*/L drinking water compared to the other supplemented groups and the control group.

Histopathological examination

The results of the histopathological examination after supplementation with different concentrations of *B. subtilis* suspension are shown in Figures-1-5. The photomicrographs of the livers of broilers supplemented with 0.5 g/L (Figure-1a) and 1.0* g/L (Figure-1b) *B. subtilis* suspensions reveal adhesive perihepatitis with severe leukocytic infiltrations, and hepatocyte examination revealed severe vacuolation of the cytoplasm with mild areas of hemorrhage compared to control (Figure-1c). Broilers supplemented with 1.5 g/L *B. subtilis* suspension (Figure-1c) revealed adhesive perihepatitis with severe leukocytic infiltrations, and hepatocyte examination revealed severe vacuolation of the cytoplasm with mild areas of hemorrhage compared to the other treated groups and the untreated controls.

Table-3: Live body, carcass, and immune organs’ weight (mean±SE/g) in broilers supplemented with different concentrations of probiotics.

Probiotic g/L	LBW/g	Carcass weight/g	Edible organs weights/g	Immune organs weights/g			
			Liver/g	Heart/g	Bursa/g	Spleen/g	Thymus/g
Overall means concerning probiotic concentrations							
0.5 g/L	1876±4.63	1555±4.6	20.5±0.18	10.3±0.02	1.45±0.01	1.51±0.04	2.51±0.08
1.0* g/L	1923±6.85	1692±6.8	21.7±0.22	11.5±0.09	1.78±0.01	1.74±0.06	2.10±0.03
1.5 g/L	2102±14.39	1892±14.3	23.1±0.16	12.9±0.05	1.86±0.04	1.61±0.01	2.45±0.02
2.0 g/L	2191±12.00	1996±12.0	24.8±0.16	14.5±0.03	2.33±0.05	2.46±0.07	2.97±0.06
Control	1789±6.21	1433±6.2	19.2±0.09	9.2±0.02	2.12±0.05	2.62±0.01	2.56±0.03
p-value	0.000	0.000	0.000	0.003	0.001	0.001	0.001

Means carrying different superscripts in the same column are significantly different at P<0.05 or highly significantly different at P<0.01. Means carrying the same superscripts in the same column are non-significantly different at P>0.05. LBW=Live body weight, SE=Standard error, *Recommended concentration by the manufacturer

Table-4: Logarithmic bacterial counts (mean±SE CFU/mL) and Immunoglobulin concentrations (mean±SE mg/dL) in broilers supplemented with different concentrations of probiotics.

Probiotic g/L	Log. bacterial counts	Immunoglobulin concentrations				
	Log TBC CFU/mL	Log TEC CFU/mL	Log TSC CFU/mL	IgG mg/dL	IgM mg/dL	IgA mg/dL
Overall means concerning probiotic concentrations						
0.5 g/L	4.20±0.01	3.50±0.05	2.40±0.01	1359±0.01	254±0.00	143±0.01
1.0* g/L	4.14±0.00	3.45±0.01	2.32±0.00	1495±0.02	300±0.00	158±0.01
1.5 g/L	4.06±0.02	3.42±0.03	1.43±0.00	1540±0.02	406±0.01	155±0.01
2.0 g/L	4.06±0.02	2.70±0.04	0.6±0.01	1794±0.01	499±0.00	243±0.02
Control	4.74±0.01	2.49±0.03	0.47±0.01	1318±0.02	204±0.01	153±0.01
p-value	0.001	0.001	0.001	0.000	0.000	0.001

Means carrying different superscripts in the same column are significantly different at P<0.05 or highly significantly different at P<0.01. Means carrying the same superscripts in the same column are non-significantly different at P>0.05. TBC=Total bacterial count, TEC=Total Enterobacteriaceae count, TSC=Total Salmonella count, IgG=Immunoglobulin G, IgM=Immunoglobulin M, IgA=Immunoglobulin A, Log=Logarithm, SE=Standard error, *Recommended concentration by the manufacturer

Veterinary World, EISSN: 2231-0916 529
Table-5: Biochemical parameters (mean±SE) in broilers supplemented with different concentrations of probiotics.

Probiotic g/L	TP g/dL	ALB g/dL	ALT IU/L	AST IU/L	Urea mg/dL	Creat mg/dL
0.5 g/L	3.57±0.00	1.87±0.00	27.1±0.02	36.1±0.02	26.4±0.23	0.56±0.01
1.0* g/L	4.39±0.02	3.17±0.00	26.9±0.05	36.1±0.09	25.2±0.13	0.74±0.01
1.5 g/L	4.39±0.01	2.37±0.01	25.7±0.08	34.8±0.13	25.0±0.05	0.49±0.02
2.0 g/L	4.99±0.01	3.87±0.01	27.4±0.23	36.6±0.07	24.3±0.33	0.44±0.01
Control	3.59±0.01	1.87±0.00	27.2±0.08	36.1±0.10	27.2±0.13	0.59±0.01
p-value	0.005	0.001	0.000	0.006	0.000	0.000

Means carrying different superscripts in the same column are significantly different at $P<0.05$ or highly significantly different at $P<0.01$. Means carrying the same superscripts in the same column are non-significantly different at $P>0.05$. TP=Total protein, ALB=Albumin, ALT=Alanine aminotransferase, AST=Aspartate aminotransferase, Urea=Urea, Creat=Creatinine, SE=Standard error, *Recommended concentration by the manufacturer.

Figure-1: Photomicrographs of hematoxylin and eosin (H&E) stained sections of the liver, (a) the liver of G1 (broilers supplemented with 0.5 g/L Bacillus subtilis) showing adhesive perihepatitis (arrow), mononuclear cell infiltration (arrowhead), vaculation of hepatocytes cytoplasm (V) with mild hemorrhage (H). (b) The liver of G2 (broilers supplemented with 1.0* g/L B. subtilis). (c) The liver of G3 (broilers supplemented with 1.5 g/L B. subtilis). (d) The liver of G4 (2.0 g/L B. subtilis). (e) The liver of G5 (control group). H&E (40×). Bar 50 µm.

Figure-2: Photomicrographs of hematoxylin and eosin (H&E) stained sections of the heart, (a) the heart of G1 (broilers supplemented with 0.5 g/L Bacillus subtilis) showing pericarditis (arrow), vaculation of myocardial cells (V). (b) The heart of G2 (broilers supplemented with 1.0* g/L B. subtilis). (c) The heart of G3 (broilers supplemented with 1.5 g/L B. subtilis). (d) The heart of G4 (broilers supplemented with 2.0 g/L B. subtilis). (e) The heart of G5 (control group). H&E (40×). Bar 50 µm.

showed vacuolated cytoplasm in the liver, congestion of the central vein, and mild leukocytic infiltrations compared to the controls (Figure-1e). Meanwhile, the livers of broilers supplemented with 2.0 g/L B. subtilis (Figure-1d) showed pronounced improvement of the histopathological picture.

The histopathological examinations of the heart (Figures-2a and b) revealed severe fibrous pericarditis with degeneration of the myocardium, and some of the myocardial cells showed vacuolated cytoplasm with leukocytic infiltrations in broilers supplemented with 0.5 and 1.0* g/L B. subtilis, respectively, compared to the controls (Figure-2e). The hearts of the broilers supplemented with 1.5 g/L B. subtilis (Figure-2c) showed mild pericarditis with mild myocarditis and vacuolated cytoplasm in some of the myocardial cells. The hearts of the broilers supplemented with 2.0 g/L B. subtilis (Figure-2d) showed an improved and near-normal histopathological picture.

Stained histopathological sections of the bursas of Fabricius (Figures-3a and b), thymuses (Figures-4a and b), and spleens (Figures-5a and b) of the broilers supplemented with 0.5 and 1.0* g/L B. subtilis, respectively, revealed severe lymphoid depletion compared to the controls (bursa of Fabricius: Figure-3e, thymus: Figure-4e, spleen: Figure-5e). Broilers supplemented with 1.5 g/L B. subtilis showed mild lymphoid depletion in the bursa of Fabricius (Figure-3c), thymus...
The bursas of Fabricius, thymuses, and spleens of the broilers that were supplemented with 2.0 g/L *B. subtilis* showed lymphoid hyperplasia (Figures-3d-5d) compared to the normal view of the bursa of Fabricius in the controls (Figure-3e, thymus in Figure-4e, and spleen in Figure-5e).

Discussion

Probiotics are effective and promising feed and water additives in the field of preventive measures and therapeutics for broiler chickens [31,32]. Probiotics can enhance and improve the intestinal mucosa and microbiota, thus improving the performance and production of broiler chickens [33,34]. *B. subtilis* has been categorized as a type of probiotic bacteria that naturally inhabit the intestine of healthy broilers and can promote gut conditions [35,36], absorption functions, performance [37,38], and immunity [39], and can alleviate many overwhelming challenges, such as microbial stress and heat stress [40].

The current *in vitro* results revealed that the *B. subtilis* 2.0 g/L suspension was able to produce direct significant *in vitro* antimicrobial action against *E. coli* O157: H7 (4.5×10⁷ CFU/mL) and *S. Typhimurium* (1.2×10⁷ CFU/mL) after 0.25 and 2 h, respectively. Supplementing broilers with 1.5 or 2.0 g *B. subtilis* (5×10⁶ CFU/g/L of drinking water) induced significant reductions in total bacterial, *Enterobacteriaceae*, and *Salmonella* counts. These *in vitro* and *in vivo* antimicrobial actions may be attributable to direct-fed microbes, organic acid production, and protein killing molecules released from *B. subtilis*. The current results were consistent with those in the study by Oh et al. [41], who found that supplementing broilers with probiotics reduced coliform and *E. coli* counts in *Salmonella*-challenged broilers. Ebrahimi et al. [42] concluded that acidic pH from organic acids produced by supplementing broilers with PrimaLac® reduced growth and colonization of *Campylobacter jejuni*. Nishiyama et al. [43] and Saint-Cyr et al. [44] reported that using *Lactobacillus gasseri* SBT2055 and *Bacillus sp.* suppressed the growth and colonization of *C. jejuni*. Carter et al. [45] reported similar results when they used a mixture of *Enterococcus faecium* and *Lactobacillus salivarius* to inhibit the growth and colonization of *S. Enteritidis*. Neveling et al. [46] revealed that multispecies probiotics composed of *Lactobacillus crispatus*, *L. salivarius*, *Lactobacillus gallinarum*, *Lactobacillus johnsonii*, *Enterococcus faecalis*, and *Bacillus amyloliquefaciens* could inhibit the colonization of *S. Enteritidis* in the intestine when administered to broiler chickens.
The current results showed that the *B. subtilis* 2.0 g/L suspension was able to produce significant *in vitro* antimicrobial action against *C. albicans* (2.5×10⁶ CFU/mL) and *T. mentagrophytes* (2.5×10⁶ CFU/mL) after 2 h. The current results correlate well with those of Zhang et al. [47], who reported that *B. subtilis* ANSB060 could neutralize the aflatoxins produced by *Aspergillus pseudotamarii*, *Aspergillus flavus*, *Aspergillus niger*, *Aspergillus parasiticus*, *Aspergillus ochraceoroseus*, and *Aspergillus nomius* and, when administered to broilers, could improve growth and increase weight gains. Fan et al. [48] found that the inclusion of *B. subtilis* in the diets of broilers could improve the intestinal microbiota and neutralize the harmful influence of aflatoxin-producing agents by degrading the cell wall polysaccharide contents of aflatoxin-producing agents. Abdolmaleki et al. [49] reported that probiotic *Bacillus* spp. MBIA2.40 had a protective influence. They found that the inclusion of *Bacillus* spp. MBIA2.40 in diets contaminated with fungal growth and their associated aflatoxins could minimize the negative influences of these fungal organisms and their toxins in broiler chickens.

Probiotics can exert their action through various methods, including blocking bacterial binding sites (competitive inhibition), regenerating intestinal mucosa, and enhancing the secretion of digestive enzymes. In our study, supplementing broilers with 1.5 and 2.0 g *B. subtilis* (5×10⁶ CFU/g in each liter of drinking water) enhanced the live body weight, accelerated weight gains, and improved performance indices compared to 1.0 g *B. subtilis* (the quantity recommended by the manufacturer). The observed actions could be attributed to the enhancing influence of *B. subtilis* probiotics on intestinal permeability and absorption functions. The results were consistent with those of He et al. [50] and Hosseini et al. [51], who reported that the inclusion of probiotics in broiler chicken rations could improve nutrient digestion, performance, antioxidant levels and activity, and intestinal morphology barriers against pathogenic microorganisms. Sobczak and Kozłowski [52] recorded synchronized results and found that *B. subtilis* (1×10⁸ CFU/kg feed) improved performance, egg quality, and yolk cholesterol contents. Kim and Lillehoi [53] concluded in their study that probiotics can be beneficial for the growth and performance of broiler chickens and could enhance disease resistance. Ribeiro et al. [54], Buta et al. [55], Meyer et al. [56], and Dong et al. [57] found that *B. subtilis* supplementation could alter the intestinal permeability and enhance the productive performances of broiler chickens.

In our study, the broilers that were supplemented with 1.5 and 2.0 g *B. subtilis* (5×10⁶ CFU/g in each liter of drinking water) showed increased carcass weights and increased edible and immune organ weights. The results were supported by those of Hrnčár et al. [58], who used a 20-g *Bacillus amyloliquefaciens*/kg ration for 35 days and found enhanced performance, carcass quality, and improved digestibility. Hassan et al. [59] concluded that using *Bacillus* sp., *Clostridium butyricum* probiotics (0.05% Saltose, 0.05% Clostat, and 0.05% Clostridium-stop), and phytobiotics (0.1% Sangrovit) significantly improved carcass traits compared to antibiotics (0.025% bacitracin methylene di-salicylate). Javandel et al. [60] investigated the influence of powdered *Heracleum persicum* and probiotic combinations on the performance and carcass quality of 270 1-day-old broilers and revealed significantly higher body weight gains, body weights, and carcass weights, with significantly lower abdominal fat.

Probiotics can produce immune-stimulant activity by impacting T and B effector cells, T cell regulators, enterocytes, and antigen-presenting cells, as reported by Alagawany et al. [61]. The current study revealed an immune-stimulant influence of probiotics in all tested concentrations, but the most prominent increase was recorded in the IgG, IgM, and IgA concentrations of the broilers supplemented with 2.0 g *B. subtilis* (5×10⁶ CFU/g/L of drinking water). The results were consistent with those reported by Harimurti and Ariyadi [62], who found a great ability of probiotics to stimulate Peyer’s patches activities, plasma cell functions, and immunoglobulin secretions. They also reported increased expression of claudin-1, -3, and -5 mRNA in broilers supplemented with probiotics.
Trani et al. [63] reported the abilities of probiotics to enhance gut mucosal immunity by increasing the levels of secretory IgA. Yisa et al. [64] and Awais et al. [65] concluded that the inclusion of 1 g of probiotics in the diet can be sufficient for stimulating the immune system and allowed the proliferation of beneficial microorganisms in the gut. Ashraf and Shah [66] reported that probiotics could enhance gut mucosal immunity by increasing the levels of IgA. Gonmei et al. [67] concluded that Lactobacillus reuteri PIA16, previously isolated from the chicken gut, could enhance the humoral and cell-mediated immunity of broiler chickens, and lower the mortality and susceptibility to disease. Sarwar et al. [68] showed that probiotics, when administered with vaccines, at a rate of 2.0 g/500 mL of water, could induce an improvement in antibody titer.

Broilers supplemented with 1.5-2.0 g B. subtilis (5×10^6 CFU/g/L of drinking water) in our study showed significant increases in total protein, albumin, alanine aminotransferase, and aspartate aminotransferase and significant declines in urea and creatinine. The enhancing influence of probiotic B. subtilis on the biochemical profile could be attributable to the regulation of gastrointestinal permeability and enhanced physiological function. The results were compatible with those of Shankar et al. [69], who recorded improved serum levels of total protein, albumin, and high-density lipoproteins and significantly lower serum levels of total cholesterol and low-density lipoproteins in broilers supplemented with 0.1, 0.15, and 0.2% Saccharomyces cerevisiae. Deraz [70] recorded improved levels of total protein and glucose in broilers supplemented with Lactococcus lactis at a rate of 10^6 CFU/mL and Lactobacillus plantarum at a rate of 10^12 CFU/mL. The current results were consistent with those of Hussein and Selim [71], who investigated the efficiency of 0.5% dried yeast (S. cerevisiae), 0.5% multi-strain probiotics (Lactobacillus acidophilus, B. subtilis, and Aspergillus oryzae), and 0.25% dried yeast and multi-strain probiotics in broilers. They found higher total protein, globulin, and glucose levels in all of the treatments compared to the controls. Hussein et al. [72] recorded significantly lowered levels of alanine aminotransferase and glucose in broilers that were supplemented with B. subtilis probiotics.

The histopathological photomicrographs revealed that supplementing broilers with 2.0 g/L B. subtilis probiotics could produce improved and near-normal histopathological pictures of livers and hearts with lymphoid hyperplasia in the bursas of Fabricius, thymuses, and spleens of broilers challenged with E. coli O157: H7 and S. Typhimurium. The current results were consistent with those reported by Abramowicz et al. [73] and Adhikari et al. [74], who revealed that B. subtilis supplementation in broiler chickens was able to enhance the histopathological structure of the intestine, improved intestinal microbiota actions, and enhanced its barriers to reduce the incidence of necrosis. Huang et al. [75] also revealed that supplementing broiler chickens with C. butyricum probiotics improved the structure of the intestinal walls, reduced the incidence of necrotic enteritis, and enhanced the local immune response against pathogenic microorganisms. Ohnood et al. [76] found that feeding broiler chickens on B. subtilis induced significant increases in total villus area and villus length and minimized the incidence of pathogenic lesions that arose from the challenge with C. perfringens. They also recorded near-normal liver histopathological architecture with mild lymphocytic infiltrations among hepatocytes, while in the intestine they recorded normal intestinal villi with mild metaplasia of the columnar epithelium lining the villi into goblet cells. Kogut [77] recommended probiotics in broiler chickens for their modulatory actions on the intestinal microbiota and their ability to enhance the histopathological picture of the intestine.

Conclusion

B. subtilis probiotic supplementation at a concentration of 5×10^6 CFU/g and a rate of 1.5-2.0 g/L of drinking water produced a suitable intrinsic environment for enhancing and flourishing the commensal intestinal microbiota, improved the absorption activity, increased weight gains, enhanced the performance, increased the carcass weights, and improved the biochemical parameters in broiler chickens. The supplementation also initiated immune-stimulating action by increasing immunoglobulin concentrations (IgG, IgM, and IgA). *B. subtilis* probiotics produced significant in vitro antimicrobial action against *E. coli* O157: H7 (4.5×10^12 CFU/mL), *S. Typhimurium* (1.2×10^7 CFU/mL), *C. albicans* (2.5×10^6 CFU/mL), and *T. mentagrophytes* (2.5×10^5 CFU/mL), and minimized and/or prevented the colonization of *E. coli* O157: H7 and *S. Typhimurium* in 14-day-old broiler chickens overwhelmed with *E. coli* O157: H7 (4.5×10^2) and *S. Typhimurium* (1.2×10^7 CFU/mL).

Authors’ Contributions

ESS designed the *in vitro* and *in vivo* experimental design, participated, and supervised the execution of the experiment, and contributed to the writing of the manuscript. RTH conducted the histopathological examinations and contributed to the writing of the manuscript. MSA participated in the execution of the experiment and contributed to the writing of the manuscript. All authors have read and approved the final manuscript.

Acknowledgments

We would like to express our grateful thanking to Prof. MAA Sobieh for his generous directions while conducting the studies, as well to the Community Services and Environmental Development Sector staff, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt, for their help. The authors did not receive any funds for this study.
Cinnamomum zeylanicum - rd - rd th) oil as a

Veterinary World, EISSN: 2231-0916 534

Iannitti, T. and Palmieri, B. (2010) Therapeutical use of pro

Alagawany, M., Abd El-Hack, M.E., Arif, M. and

Popova, T. (2017) Effect of probiotics in poultry for improv

Mokhtari, R., Yazdani, A. and Kashfi, H. (2015) The effects

Hill, C., Guarner, F., Reid, G., Gibson, G.R.,

Aalaei, M., Khatibjoo, A., Zaghari, M., Taherpou, K.,

Soliman, E.S., Hamad, R.T. and Ahmed, A. (2017) Prophylactic and immune modulatory influences of Nigella sativa Linn. in broilers exposed to biological challenge. Vet. World, 10(12): 1447-1455.

Abd El-Hack, M.E., Alagawany, M., Abdel-Moneim, A.M.E., Mohammed, N.G., Khafaga, A.F., Bin-Jumah, M., Othman, S.I., Allam, A.A. and Elmes, S.S. (2020) Cinnamomum (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry a review. Antibiotics (Basel), 9(5): 210.

Soliman, E.S., Mahmoud, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic impact of nano-selenium on performance, carcasses quality and tissues’ selenium concentration using RP-HPLC during microbial challenge in broiler chickens. Vet. World, 13(9): 1780-1797.

Aalaet, M., Khaitibjoa, A., Zaghari, M., Taherpou, K., Akbari-Gharaei, M. and Soltani, M. (2019) Effect of single- and multi-strain probiotics on broiler breeder performance, immunity and intestinal toll-like receptors expression. J. Appl. Anim. Res., 47(1): 236-242.

Solomon, S.M., Bumfeld, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic and immune modulatory influences of Nigella sativa Linn. in broilers exposed to biological challenge. Vet. World, 10(12): 1447-1455.

Abd El-Hack, M.E., Alagawany, M., Abdel-Moneim, A.M.E., Mohammed, N.G., Khafaga, A.F., Bin-Jumah, M., Othman, S.I., Allam, A.A. and Elmes, S.S. (2020) Cinnamomum (Cinnamomum zeylanicum) oil as a potential alternative to antibiotics in poultry a review. Antibiotics (Basel), 9(5): 210.

Soliman, E.S., Mahmoud, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic impact of nano-selenium on performance, carcasses quality and tissues’ selenium concentration using RP-HPLC during microbial challenge in broiler chickens. Vet. World, 13(9): 1780-1797.

Aalaet, M., Khaitibjoa, A., Zaghari, M., Taherpou, K., Akbari-Gharaei, M. and Soltani, M. (2019) Effect of single- and multi-strain probiotics on broiler breeder performance, immunity and intestinal toll-like receptors expression. J. Appl. Anim. Res., 47(1): 236-242.

Solomon, S.M., Bumfeld, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic impact of nano-selenium on performance, carcasses quality and tissues’ selenium concentration using RP-HPLC during microbial challenge in broiler chickens. Vet. World, 13(9): 1780-1797.

Aalaet, M., Khaitibjoa, A., Zaghari, M., Taherpou, K., Akbari-Gharaei, M. and Soltani, M. (2019) Effect of single- and multi-strain probiotics on broiler breeder performance, immunity and intestinal toll-like receptors expression. J. Appl. Anim. Res., 47(1): 236-242.

Solomon, S.M., Bumfeld, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic impact of nano-selenium on performance, carcasses quality and tissues’ selenium concentration using RP-HPLC during microbial challenge in broiler chickens. Vet. World, 13(9): 1780-1797.

Aalaet, M., Khaitibjoa, A., Zaghari, M., Taherpou, K., Akbari-Gharaei, M. and Soltani, M. (2019) Effect of single- and multi-strain probiotics on broiler breeder performance, immunity and intestinal toll-like receptors expression. J. Appl. Anim. Res., 47(1): 236-242.

Solomon, S.M., Bumfeld, F.F., Fadel, M.A. and Hamad, R.T. (2020) Prophylactic impact of nano-selenium on performance, carcasses quality and tissues’ selenium concentration using RP-HPLC during microbial challenge in broiler chickens. Vet. World, 13(9): 1780-1797.
broiler chickens reared under heat stress. Poult. Sci., 97(4): 1101-1108.

34. Wang, W.C., Yan, F.F., Hu, J.Y., Amen, O.A. and Cheng, H.W. (2018) Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J. Anim. Sci., 96(5): 1654-1666.

35. Harrington, D., Sims, M. and Kehlet, A.B. (2016) Effect of Bacillus subtilis supplementation in low energy diets on broiler performance. J. Appl. Poult. Res., 25(1): 29-39.

36. Gadde, U.D., Oh, S., Lee, Y., Davis, E., Zimmerman, N., Rehberger, T. and Lillegård, H.S. (2017a) The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens. Probiotics Antimicrob. Proteins, 9(4): 397-405.

37. Wang, W.C., Yan, F.F., Hu, J.Y., Amen, O.A. and Zhao, L. (2016) Ameliorating effects of Probiotics Antimicrob. Proteins, 1101-1108.

38. Wang, W., Li, X., Qiu, C., Wu, D., Wang, X., Wei, X.M. and Piao, X.S. (2019) Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. Animals, 9(11): 985.

39. Abdolmaleki, M., Saki, A.A. and Alikhani, M.Y. (2019) Protective effects of Bacillus sp. MB124.20 and Gallipiro on growth performance, immune status, gut morphology and serum biochemistry of broiler chickens feeding by aflatoxin contaminated diet. Arch. Poult. Sci., 7(2): 185-194.

40. He, T.F., Long, S.F., Mahfuz, S., Wu, D., Wang, X., Wei, X.M. and Piao, X.S. (2019) Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. J. Anim. Sci., 114(1): 236-243.

41. Wang, H., Ni, X., Qing, X., Zeng, D., Luo, M., Liu, L. and Jing, B. (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front. Microbiol., 8(1): 1073.

42. Al-Fataftah, A.R. (2020) Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J. Therm. Biol., 92(1): 102654.

43. Abdelgader, A., Abuhamiel, M., Hayajneh, F. and Al-Falatah, A.R. (2020) Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens. J. Therm. Biol., 92(1): 331-341.

44. Oh, J.K., Pajarillo, E.A.B., Chae, J.P., Kim, I.H., Yang, D.S. and Kang, D.K. (2017) Effects of Bacillus subtilis C582L on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum. J. Anim. Sci. Biotechnol., 8(5): 19 January 2017: Article 1.

45. Ebrahimi, H., Rahimi, S., Khaki, P., Grimes, J.L. and Kathariou, S. (2016) The effects of probiotics, organic acid, and a medicinal plant on the immune system and gastrointestinal microflora in broilers challenged with Campylobacter jejuni. Turk. J. Vet. Anim. Sci., 40(3): 329-336.

46. Nishiyama, K., Seto, Y., Yoshioka, K., Kakuda, T., Takai, S., Yamamoto, Y. and Maki, H. (2014) Lactobacillus gaseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PLoS One, 9(9): e108827.

47. Saint-Cyr, M.J., Guyard-Nicodème, M., Messaoudi, S., Chemaly, M., Cappelleri, J.M., Dousseau, X. and Haddad, N. (2016) Recent advances in screening of anti-Campylobacter activity in probiotics for use in poultry. Front. Microbiol., 7(31 May 2016): Article 553.

48. Carter, A., Adams, M., La Ragione, R.M. and Woodward, M.J. (2017) Colonization by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet. Microbiol., 199(1): 100-107.

49. Neveling, D.P., van Emmenes, L., Ahire, J.J., Pietere, E., Smith, C. and Dicks, L.M.T. (2019) Effect of a multi-species probiotic on the colonisation of Salmonella in broilers. Probiotics Antimicrob. Proteins, 12(3): 896-905.

50. Zhang, L., Ma, Q., Ma, S., Zhang, J., Jiu, R., Ji, C. and Zhao, L. (2016) Ameliorating effects of Bacillus subtilis ANSB060 on growth performance, antioxidiant functions, and aflatoxin residues in ducks fed diets contaminated with aflatoxins. Toxins, 9(1): 1-11.

51. Fan, Y., Zhao, L., Ma, Q., Li, X., Shi, H., Zhou, T., Zhang, J. and Ji, C. (2013) Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed mouldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol., 59(1): 748-753.

52. Sokaz, A. and Kozlovska, K. (2015) The effect of a probiotic preparation containing Bacillus subtilis a Tcc pTa-6737 on egg production and physiological parameters of laying hens. Ann. Anim. Sci., 15(3): 711-723.

53. Kim, W.H. and Lillegård, H.S. (2019) Immunity, immuno-modulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Poult. Sci., 98(1): 41-50.

54. Buta, A., Oprea, O., Sevcicu, P., Daradics, Z., Spataru, S. and Ognean, L. (2020) Analysis of the influence of a nutraceutical supplement with probiotic effects on health index and productive performance in broiler chicken. AgroLife Sci., 9(1): 54-63.

55. Meyer, M.M., Fries-Craft, K.A. and Bobeck, E.A. (2020) Composition and inclusion of probiotics in broiler diets alter intestinal permeability and spleen immune cell profiles without negatively affecting performance. J. Anim. Sci., 98(1): skz383.

56. Dong, Y., Li, R., Liu, Y., Ma, L.Y., Zha, J.H., Qiao, X.B., Chai T.J. and Wu, B. (2020) Benefit of dietary supplementation with Bacillus subtilis BYS2 on growth performance, immune response, and disease resistance of broilers. Probiotics Antimicrob. Proteins, 12(4): 1385-1397.

57. Nrnčár, C., Gašparovič, M., Weis, J., Arpášová, H., Hrnčár, C., Gašparovič, M., Weis, J., Arpášová, H., Hrnčár, C., Gašparovič, M., Weis, J., Arpášová, H., Pistoiv, V., Fik, M. and Bujko, J. (2016) Effect of three-strain probiotics on productive performance and carcass characteristics of broiler chickens. Sci. Papers Anim. Sci. Biotechnol., 49(2): 149-154.

58. Alagawany, M., Abd El-Hack, M.E., Farag, M.R., El-Fatatih, A.R. and Mohamed, M.A. (2018) Using different feed additives as alternative to antibiotic growth promoter to improve growth performance and carcass traits of broilers. Int. J. Poult. Sci., 17(6): 255-261.

59. Javanpel, F., Nosrati, M., van den Hoven, R., Seidavi, A., Laudadio, V. and Tutarelli, V. (2019) Effects of Hogweed (Heracleum persicum) powder, flavophospholipol, and probiotics as feed supplements on the performance, carcass and blood characteristics, intestinal microflora, and immune response in broilers. J. Poult. Sci., 56(4): 262-269.

60. Harimurti, S. and Ariyadi, B. (2015) Effects of indigenous spore-forming probiotic as feed supplement on performance and safety in broilers. J. Anim. Sci., 14(5): 276-278.
63. Trani, A., Loizzo, P., Calvano, C.D., Cassone, A., Gambacorta, G., Zambrini, A.V., Zambonin, C.G. and Faccia, M. (2016) Effects of a *Lactobacillus acidophilus* D2 enriched diet on yolk protein in hen eggs. *Eur. Poult. Sci.*, 80(2016): Article 124.

64. Yisa, T.A., Ibrahim, O.A., Tasdu, S.M. and Yakubu, U.P. (2015) Effect of probiotics (*Lactobacillus acidophilus* and *Bifidobacterium bifidum*) as immune stimulant on hybrid Catfish heteroclaricas. *Br. Microbiol. Res. J.*, 9(1): 1-6.

65. Awais, M.M., Jamal, M.A., Akhtar, M., Hameed, M.R., Anwar, M.I. and Ullah, M.I. (2019) Immunomodulatory and ameliorative effects of *Lactobacillus* and *Saccharomyces* based probiotics on pathological effects of eimeriasis in broilers. *Microb. Pathog.*, 126(1): 101-108.

66. Ashraf, R. and Shah, N.P. (2014) Immune system stimulation by probiotics microorganisms. *Crit. Rev. Food Sci. Nutr.*, 54(7): 938-956.

67. Gonmei, G., Sapcota, D., Saikia, G.K., Deka, P., Mahanta, J.D., Kalita, N., Saikia, B.N. and Talukdar, J.K. (2019) Studies on immune response to Newcastle disease virus in broiler chickens fed with *Lactobacillus reuteri* PIA16 isolated from the gut of indigenous chicken of Assam, India. *Vet. World*, 12(8): 1251-1255.

68. Sarwar, N., Mehmood, A., Sheraz, A. and Noman, M. (2019) Protective effect of probiotics in combination with vaccination on antibody response, biochemical and hematological indices in broilers. *Pak. Vet. J.*, 39(3): 451-454.

69. Shankar, P.A., Premavalli, K., Omprakash, A.V., Kirubakaran, J.J., Hudson, G.H. and Vairamuthu, S. (2018) Effect of dietary yeast supplementation on serum biochemical profile of broiler chicken. *Indian Vet. J.*, 95(6): 13-15.

70. Deraz, S.F. (2018) Synergetic effects of multispecies probiotic supplementation on certain blood parameters and serum biochemical profile of broiler chickens. *J. Anim. Health Prod.*, 6(1): 27-34.

71. Hussein, E. and Selim, S. (2018) Efficacy of yeast and multi-strain probiotic alone or in combination on growth performance, carcass traits, blood biochemical constituents, and meat quality of broiler chickens. *Livest. Sci.*, 216(1): 153-159.

72. Hussein, E.O.S., Ahmed, S.H., Abudabos, A.M., Aljumaah, M.R., Alkhulali, M.M., Nassan, M.A., Suliman, G.M., Nael, M.A.E. and Swelem, A.A. (2020) Effect of antibiotic, phytobiotic and probiotic supplementation on growth, blood indices and intestine health in broiler chicks challenged with *Clostridium perfringens*. *Animals*, 10(3): 507.

73. Abramowicz, K., Krauze, M. and Ognik, K. (2020) Use of *Bacillus subtilis* PB6 enriched with choline to improve growth performance, immune status, histological parameters and intestinal microbiota of broiler chickens. *Anim. Prod. Sci.*, 60(5): 625-634.

74. Adhikari, P., Kiess, A., Adhikari R. and Jha, R. (2020) An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. *J. Appl. Poult. Res.*, 29(2): 515-534.

75. Huang, T., Peng, X.Y., Gao, B., Wei, Q.L., Xiang, R., Yuan, M.G. and Xu, Z.H. (2019) The effect of *Clostridium butyricum* on gut microbiota, immune response and intestinal barrier function during the development of necrotic enteritis in chickens. *Front. Microbiol.*, 10(11 October 2019): Article 2309.

76. Olnood, C.G., Beski, S.S., Choct, M. and Iji, P.A. (2015) Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens. *Anim. Nutr.*, 1(3): 184-191.

77. Kogut, M.H. (2019) The effect of microbiome modulation on the intestinal health of poultry. *Anim. Feed Sci. Technol.*, 250(1): 32-40.
