Calculations of Nuclear Astrophysics and Californium Fission Neutron Spectrum Averaged Cross Section Uncertainties using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity Covariances

Boris Pritychenko1,*

1National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA
(Dated: June 19, 2014; Received XX May 2014; revised received XX August 2014; accepted XX September 2014)

Nuclear astrophysics and californium fission neutron spectrum averaged cross sections and their uncertainties for ENDF materials have been calculated. Absolute values were deduced with Maxwellian and Mannhart spectra, while uncertainties are based on ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity covariances. These quantities are compared with available data, independent benchmarks, EXFOR library, and analyzed for a wide range of cases. Recommendations for neutron cross section covariances are given and implications are discussed.

I. INTRODUCTION

Calculations of integral values at NNDC have been conducted in parallel with the ENDF/B-VII library releases [1, 2]. These values represent the complementary data sets for nuclear astrophysics, industry, and data evaluation applications. First results on reaction rates and neutron cross sections [3] have demonstrated a large potential of ENDF/B-VII for applications, such as KADoNiS stellar nucleosynthesis library [4]. Further interactions with the fundamental and applied science communities have initiated work on the extended list of integral values and their uncertainties [5–7]. Calculations of nuclear astrophysics and californium fission neutron spectrum averaged cross section (i.e. californium spectrum) uncertainties are presented in the following sections.

II. MAXWELLIAN-AVERAGED CROSS SECTIONS UNCERTAINTIES

Nuclear data covariances are essential for fundamental and applied nuclear science and technology. They provide the experimentally-observable uncertainties that are necessary for application development. Maxwellian-averaged cross sections and their uncertainties have been calculated in recent years [3, 5]. Fig. 1 shows cross section uncertainties for ENDF/B-VII.1 evaluated library, Low Fidelity project, and KADoNiS database [2, 4, 8, 9] demonstrate nuclear astrophysics value of ENDF and Low Fidelity covariances for stellar nucleosynthesis research. At the same time, the ENDF/B-VII.1 and Low Fidelity uncertainties are relatively large for precise calculations. The stellar nucleosynthesis calculations require the stringent cross section uncertainties in order <3% to finalize the branching of the s-process path. However, even a specially-designated KADoNiS library, at the present state, cannot satisfy this requirement, and further research is necessary.

FIG. 1. (Color online) Maxwellian-averaged neutron capture cross section, $kT=30$ keV, uncertainties for ENDF/B-VII.1 library, Low-Fidelity project and KADoNiS database [2, 4, 8, 9]. Data are taken from [9].

* Corresponding author: pritychenko@bnl.gov
III. 252CF FISSION NEUTRON SPECTRUM AVERAGED CROSS SECTIONS AND THEIR UNCERTAINTIES

252Cf is often used in nuclear physics as a compact, portable and intense neutron source. Its neutron energy spectrum is similar to a fission reactor, with an average energy of 2.13 MeV. This is very convenient for ENDF libraries validation tests in the fast region, even though it is not exactly representative of a fast reactor spectrum (being hotter) \cite{9}.

For evaluation purposes, 252Cf spectrum neutron fission and capture averaged cross sections were calculated using Maxwellian-averaged ($kT=1420$ keV) spectrum and Mannhart evaluation \cite{3,10}. Fig. 2 shows the ratio of calculated californium spectra cross sections using Maxwellian, and Mannhart approaches \cite{10}. This ratio indicates that Maxwellian spectrum provides a reasonable fit of californium data, however, it falls short of being used for nuclear standards and dosimetry purposes. Consequently, the Mannhart evaluation has been chosen for calculation of californium spectrum cross sections.

Presently, the original and 640-group representations of Mannhart evaluation are frequently considered. To evaluate a possible spectrum representation impact, neutron cross sections have been calculated using the both formats. Figs. 3, 4 show the ratios of californium fission and capture cross sections for both representations of the linearized ENDF libraries. The plotted ratios clearly demonstrate the impact of different representations.

Following the nuclear dosimetry example, 252Cf spectrum neutron fission averaged cross sections for major evaluated libraries: ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0 \cite{2,11,12} have been produced using the 640-group format and shown in the Table I. These data are in a good agreement with the previously-published CIELO values \cite{9}. Californium spectrum neutron capture averaged cross sections are available upon request.
Calculations of Nuclear Astrophysics ... NUCLEAR DATA SHEETS

Material	ENDF/B-VII.1	JEFF-3.1.2	JENDL-4.0	EXFOR
88-Ra-223	5.485E-2±8.293E-4	5.485E-2±8.293E-4	5.485E-2±8.293E-4	
96-Cm-242	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-243	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-244	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-245	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-246	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-247	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-248	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-249	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-250	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-251	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	
96-Cm-252	1.265E-2±5.504E-2	1.265E-2±5.504E-2	1.265E-2±5.504E-2	

TABLE I: 640-group california spectrum neutron fission averaged cross sections for ENDF, JEFF, and JENDL major evaluated libraries, and EXFOR (experimental nuclear reaction data) (K\(^+\)~1.42 MeV) [2][4][11].
TABLE I: 640-group californium spectrum neutron (continued).

Material	ENDF/B-VII.1 (barns)	JEFF-3.1.2 (barns)	JENDL-4.0 (barns)	EXFOR (barns)
98-Cf-253	7.674E-1±3.941E-1	7.677E-1±3.918E-1		
98-Cf-254	1.779E+0±6.068E-1	1.773E+0±6.573E-1		
99-Es-251	1.355E+0±7.800E-1	1.352E+0±7.677E-1		
99-Es-252	2.143E+0±6.295E-1	2.143E+0±6.307E-1		
99-Es-253	1.028E+0±7.579E-1	1.027E+0±7.546E-1		
99-Es-254	1.001E+0±1.745E-1	1.089E+0±1.766E-1		
99-Es-254M	1.885E+0±2.099E-1	1.884E+0±2.076E-1		
99-Es-255	7.059E-1±6.022E-1	7.053E-1±5.969E-1		
100-Fm-255	2.189E+0±6.989E-1	2.294E+0±3.473E-2		

IV. CROSS SECTION UNCERTAINTIES ANALYSIS AND RECOMMENDATIONS

To evaluate ENDF libraries covariances in the fast neutrons region I will consider Maxwellian, and californium spectra cross sections uncertainties, and deduce recommendations.

1. Absolute cross section values for linearized files are sensitive to the changes of Mannhart evaluation group structure. Calculated values are model dependent and may vary within 1-5%.

2. Nuclear astrophysics and energy applications require covariances for all ENDF materials.

3. Realistic covariances are needed:
 - Covariance matrices that result in >100 % cross section uncertainties should be avoided, such large uncertainties are not very useful for application development.
 - Covariance matrices that result in <1 % cross section uncertainties are not realistic; strong contradiction with the best experiments.
 - Presently, covariance matrices produce wide variations of cross section uncertainties within 0.5-120 % range. This spread should be kept within 3-50 % range.
TABLE II. The summary of the ENDF/B-VII.1 library cross section uncertainties analysis.

Reaction	Maxwellian spectrum, $kT=30$ keV	Uncertainty <1%	Uncertainty >100%	Mannhart spectrum [10]	Uncertainty <1%	Uncertainty >100%
(n,fission)	^{235}U, $^{239,240}\text{Pu}$	$^{235,236}\text{Ac}$, $^{235,237}\text{Np}$, ^{239}Pu,	^{246}Pu, ^{250}Cm, $^{246,248,250,254}\text{Bk}$, $^{251,253,255}\text{Cf}$,	$^{239,240}\text{Pu}$	$^{225,226}\text{Ac}$, ^{234}Th	
(n,γ)	^{229}Pa, ^{237}Pu, ^{249}Cm, ^{258}Bk, ^{255}Fm	^{52}Cr	^{229}Pa, $^{234,235,236}\text{Np}$, ^{237}Pu			

4. Multiple MF=33 covariance matrices can be confusing.

V. CONCLUSIONS

The previously-calculated ENDF/B-VII.1 and Low-Fidelity Maxwellian-averaged cross section uncertainties have been re-analyzed. Californium spectrum neutron fission and capture averaged cross sections and their uncertainties have been calculated for ENDF/B-VII.1, JEFF-3.1.2, and JENDL-4.0 nuclear data libraries. Recommendations for ENDF covariances have been deduced using the application development needs.

Acknowledgements: The author thanks M. Herman (BNL) for support of this work, R. Capote, A. Trkov and V. Zerkin (IAEA) for help with Mannhart spectra and data processing, and Mrs. M. Blennau (BNL) for careful reading of the manuscript and useful suggestions. Work at BNL was funded by the Office of Nuclear Physics, US DoE under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC.

[1] M.B. Chadwick, P. Obložinský, M. Herman et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nucl. Data Sheets 107, 2931 (2006).
[2] M.B. Chadwick, M. Herman, P. Obložinský et al., “ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,” Nucl. Data Sheets 112, 2887 (2011).
[3] B. Pritychenko, S.F. Mughabghab, A.A. Sonzogni, “Calculations of Maxwellian-averaged Cross Sections and Astrophysical Reaction Rates Using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3 and ENDF/B-VI.8 Evaluated Nuclear Reaction Data Libraries,” Atom. Data and Nucl. Data Tables 96, 645 (2010).
[4] I. Dillmann, M. Heil, F. Käppeler et al., “KADoNiS - The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars,” AIP Conf. Proc. 819, 123 (2006). Data downloaded from ⟨http://www.kadonis.org⟩ on April 7, 2010.
[5] B. Pritychenko, S.F. Mughabghab, “Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries,” Nucl. Data Sheets 113, 3120 (2012).
[6] S.F. Mughabghab, “Atlas of Neutron Resonances: Resonance Parameters and Neutron Cross Sections, Z = 1-100” (Elsevier, Amsterdam 2006).
[7] H.D. Choi, R.B. Firestone, R.M. Lindstrom et al., “Database of prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis,” (International Atomic Energy Agency, Vienna, 2006).
[8] R.C. Little, T. Kawano, G.D. Hale et al., “Low-fidelity Covariance Project,” Nucl. Data Sheets 109, 2828 (2008). Available from ⟨http://www.nndc.bnl.gov/lowfi/⟩.
[9] M.B. Chadwick, E. Dupont, E. Bauge et al., “The CIELO Collaboration: Neutron Reactions on ^{1}H, ^{56}Fe, $^{235,238}\text{U}$, and ^{239}Pu,” Nucl. Data Sheets 118, 1 (2014).
[10] W. Mannhart, “Response of Activation Reactions in the Neutron Field of Californium-252 Spontaneous Fission,” International Reactor Dosimetry File 2002 (IRDF-2002), Technical Reports Series No. 452, (International Atomic Energy Agency, Vienna, 2006).
[11] A. J. Koning, E. Bauge, C.J. Dean et al., “Status of the JEFF Nuclear Data Library,” J. of the Korean Physical Society 59, No. 2, 1057 (2011).
[12] K. Shibata, T. Kawano, T. Nakagawa et al., “JENDL-4.0: A New Library for Nuclear Science and Engineering,” J. of Nuclear Science and Technology 48, 1 (2011).
[13] N. Otuka, V. Senkova, E. Dupont et al., Nucl. Data Sheets 120, 272 (2014). Experimental Nuclear Reaction Data (EXFOR), http://www-nds.iaea.org/exfor.