Research Paper
The Effects of L-dopa, SCH23390 Hydrochloride and Sulpiride on Adiponectin and Luteinizing Hormone Levels in an Animal Model of Polycystic Ovary Syndrome

Khadijeh Haghighat Gollo1, *Fariba Mahmoudi1, Abolfazl Bayrami1, Saber Zahri1

1. Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.

ABSTRACT

Background and Aim: In patients suffer from Polycystic Ovary Syndrome (PCOS), the secretion of the Luteinizing Hormone (LH) increases while adiponectin secretion and dopamine release decreases. Dopamine and adiponectin exert inhibitory effects on LH secretion. In the present study the effects of L-dopa and dopamine receptor antagonists were investigated on LH secretion and adiponectin gene expression of in PCOS model rats to determine whether dopaminergic pathway might be involved in the decreasing LH via affecting adiponectin.

Methods & Materials: Following estradiol valerate-induced PCOS, fifteen PCOS rats were divided into 3 groups including saline receiving group, L-dopa(100 mg/kg) or simultaneous injections of sulpride(10 mg/kg), SCH23390 hydrochloride (1 mg/kg) and L-dopa(100 mg/kg). Five intact rats received saline as negative control group. Blood samples were collected via tail vein. Ovary and hypothalamus were dissected and frozen. Serum concentration of LH and relative gene expression of adiponectin in ovary and hypothalamus were determined by radioimmunoassay and real-time-PCR method.

Ethical Considerations: This study was approved by the Research Committee of University of Mohaghegh Ardabili (Code: 95.125.1).

Results: Induction of PCOS caused a significant increase in mean serum concentration of LH and a significant decrease in mean relative gene expression of ovarian and hypothalamic adiponectin compared to control group. L-dopa caused a significant decrease in serum concentration of LH, a significant decrease in hypothalamic gene expression of adiponectin compared to PCOS rats. But it did not significantly increase ovarian adiponectin gene expression in comparison to PCOS rats. Dopamine receptor antagonists inhibit the effects of L-dopa on LH and hypothalamic gene expression of adiponectin.

Conclusion: Dopaminergic signaling pathway may be involved in decreasing LH secretion via increasing hypothalamic adiponectin gene expression level in PCOS rats.

Key words: L-dopa, Adiponectin, Polycystic ovary syndrome, Sulpiride, SCH23390

Extended Abstract

Introduction

Polycystic Ovary Syndrome (PCOS) is associated with insulin resistance, elevated serum androgen levels, and an increase in the ratio of Luteinizing Hormone (LH) to Follicle-Stimulating Hormone (FSH) [1, 2]. Adiponectin is synthesized in adipose tissue, hypothalamus, and gonads [3, 4]. Deficiency in adiponectin production leads to insulin resistance and disruption in lipid and glucose metabolisms [7, 8]. Serum adiponectin levels in PCOS women are lower than in healthy individuals [8, 10]. L-dopa is a precursor to the neurotransmitters dopamine, epinephrine and norepi-
Dopamine and L-dopa inhibit Hypothalamic-Pituitary-Gonadal (HPG) axis activity [15, 16]. PCOS is associated with decreased dopamine release [19]. This study aimed to examine the effects of L-dopa and dopamine receptor antagonists (SCH 23390 as D1 receptor and sulpiride as D2 receptor) on LH secretion and relative expression of adiponectin gene in the hypothalamus and ovaries of rats with PCOS induced by terine [14].

Materials and Methods

To perform this study, 20 Wistar female rats weighing 180-220 g were used. In order to induce PCOS, the animals received intramuscular injection of Estradiol Valerate (EV) in the estrous stage. 15 PCOS rats were divided into three groups of saline, L-dopa (100 mg/kg), and L-dopa + sulpiride + SCH 23390 (100 mg/kg L-dopa + 10mg/kg sulpiride + 1mg/kg SCH 23390 hydrochloride), and 5 healthy rats received saline as negative control group. In groups receiving antagonists and L-dopa, antagonists were injected 10 minutes before L-dopa injection. The hypothalamus and ovarian samples were isolated and stored at -80°C until RNA extraction. The average serum LH concentration was measured using Radioimmune assay (RIA). The mean relative expression of adiponectin gene in the ovaries and hypothalamus was calculated using real-time PCR assay and delta-delta CT method (2^−ΔΔCt formula). The data obtained from this formula were analyzed in SPSS V.16 software using one-way ANOVA test and the mean data were compared by using Tukey’s post-hoc test. The results were presented as Mean±SD, considering the significance level of P≤0.05.

Results

The results of comparing the mean serum LH concentrations in the negative control and PCOS groups are shown in Table 1. The mean relative expression of adiponectin gene in the ovaries and hypothalamus of the PCOS control group showed a significant decrease compared to the negative control group (P=0.001 for ovaries and P=0.015 for hypothalamus) (Figure 1). For the PCOS group received L-do-

![Figure 1. The mean relative expression of adiponectin gene in the ovaries and hypothalamus of rats received saline, L-dopa only, and L-dopa plus sulpiride (SUL) and SCH 23390. * Compared to the healthy group; # compared to the PCOS control; & compared to the L-dopa group](image-url)
pa only, the mean relative expression of adiponectin gene in the ovaries and hypothalamus increased non-significantly (P=0.924) and significantly (P<0.001), respectively (Figure 1). For the PCOS group received L-dopa, sulpiride, and SCH 23390 hydrochloride simultaneously, the mean relative expression of adiponectin gene in the ovaries and hypothalamus decreased non-significantly (P=0.948) and significantly (P=0.025), respectively (Figure 1).

Discussion

The results of the present study showed that in PCOS rats, serum LH concentrations increased significantly compared to the healthy rats, while the mean relative expression of adiponectin gene in the ovaries and hypothalamus of PCOS rats reduced significantly compared to the healthy rats. The results are consistent with previous research on the extent of adiponectin secretion in humans and rodents with PCOS. Previous studies have shown that the serum adiponectin level is reduced in women with PCOS compared to healthy peers, and PCOS obese women have lower serum levels than non-PICOS obese women [8, 22]. Decreased adiponectin levels in PCOS women may be due to increased production of androgens caused by reduced inhibitory effects of adiponectin on theca cells [23], because hyperandrogenism and obesity have been shown to play an important role in reducing plasma levels of adiponectin and causing insulin resistance, which is a major feature of PCOS [24, 25].

L-dopa exerted inhibitory effects on LH secretion and stimulatory effects on adiponectin gene expression in the hypothalamus of PCOS rats; however, it had no stimulatory effects on adiponectin gene expression in the ovaries of PCOS rats. This is consistent with the results of an in-vitro study where researchers examined the effects of dopamine on adipocyte cells incubated in culture, and reported the stimulatory effects of dopamine on adiponectin secretion from these cells [22]. Dopamine receptor antagonists including SCH23390 hydrochloride and sulpiride blocked the inhibitory effects of L-dopa on the LH secretion and its stimulatory effects on the relative expression of the adiponectin gene in the hypothalamus of PCOS rats. Increasing the activity of dopaminergic neurons may be effective in controlling endocrine disorders caused by decreased adiponectin secretion in PCOS patients.

Ethical Considerations

Compliance with ethical guidelines

This study ethically approved in ethics committee of University of Mohaghegh Ardabili (Code: 95-125-1).

Funding

The present paper was extracted from the MSc thesis of the first author, Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Deputy of Research and Technology of the Mohaghegh Ardabili University for their financial and non-financial supports. Also thank to Dr. Homayoun Khaz’ali from Shahid Beheshti University for providing the instruments.
همهی اثرات رشدی LHRH و پلی‌کیستیتهای تخمدانی (PCOS) به مطالعات مختلفی مربوط می‌شود و به شناخت و پیش‌بینی آن اثرات می‌پردازد. دانشمندان به‌طور گسترده‌ای به پژوهش‌هایی در مورد اثرات تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در نمایشگاه‌های علمی می‌پردازند. در این مقاله به مطالعه تأثیر تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در حیوانات پرورش‌شده می‌پردازیم.

زمینه و هدف

از مهم‌ترین عواملی که باعث افزایش سطوح سرمی آندروژن ها و عوامل اختلال در تخمک گذاری و ناباروری زنان می‌شوند، هورمون لوتئینه کننده و PCOS (سندروم تخمدان پلی کیستیک) می‌باشند. در این مقاله به بررسی اثرات تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در حیوانات پرورش‌شده می‌پردازیم.

مواد و روش‌ها

پاتریاها:

- ال‌دوپا (100 mg/kg هیدروکلراید)
- SCH23390 (10 mg/kg سولپرید)
- Salmi (100 mg/kg)

روش‌های:

- ال‌دوپا و LHRH را به سه گروه بر اساس تزریق انتخاب کردند.
- گروه 1: ال‌دوپا و LHRH در مدل SCH23390 به عنوان داروی علاجی استفاده می‌شد.
- گروه 2: ال‌دوپا و LHRH در مدل Salmi به عنوان داروی علاجی استفاده می‌شد.
- گروه 3: ال‌دوپا و LHRH در مدل Salmi به عنوان داروی علاجی استفاده می‌شد.

نتایج و بحث

نتایج مطالعه نشان داد که تزریق ال‌دوپا و LHRH در حیوانات پرورش‌شده می‌تواند به سطوح سرمی آندروژن ها و عوامل اختلال در تخمک گذاری و ناباروری زنان کاهش جدی بیاید. در این مقاله به بررسی اثرات تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در حیوانات پرورش‌شده می‌پردازیم.

پژوهشگر

آتشیت، نظامی و شایعات

نام جامعه

از مهم‌ترین عواملی که باعث افزایش سطوح سرمی آندروژن ها و عوامل اختلال در تخمک گذاری و ناباروری زنان می‌شوند، هورمون لوتئینه کننده و PCOS (سندروم تخمدان پلی کیستیک) می‌باشند. در این مقاله به بررسی اثرات تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در حیوانات پرورش‌شده می‌پردازیم.

مواد و روش‌ها

پاتریاها:

- ال‌دوپا (100 mg/kg هیدروکلراید)
- SCH23390 (10 mg/kg سولپرید)
- Salmi (100 mg/kg)

روش‌های:

- ال‌دوپا و LHRH را به سه گروه بر اساس تزریق انتخاب کردند.
- گروه 1: ال‌دوپا و LHRH در مدل SCH23390 به عنوان داروی علاجی استفاده می‌شد.
- گروه 2: ال‌دوپا و LHRH در مدل Salmi به عنوان داروی علاجی استفاده می‌شد.
- گروه 3: ال‌دوپا و LHRH در مدل Salmi به عنوان داروی علاجی استفاده می‌شد.

نتایج و بحث

نتایج مطالعه نشان داد که تزریق ال‌دوپا و LHRH در حیوانات پرورش‌شده می‌تواند به سطوح سرمی آندروژن ها و عوامل اختلال در تخمک گذاری و ناباروری زنان کاهش جدی بیاید. در این مقاله به بررسی اثرات تزریق ال‌دوپا و LHRH بر ترشح HCG و پلی‌کیستیتهای تخمدانی (PCOS) در حیوانات پرورش‌شده می‌پردازیم.

پژوهشگر

آتشیت، نظامی و شایعات
تویاب‌های ترموگنریزی است که از اسید آمین L-هدروکسی‌تن ترموگنریزی pharmaco- ترموگنریزی حیوان‌های ترموگنریزی خود را در مبحث آورده‌ایم، به نظر می‌رسد که در صورتی که در این مطالعه مطالعه‌های حیاتی و سلولی انجام شود، ممکن است در نتیجه‌ای مشابه این مطالعه به دست آید.

مقدمه

آزمایشگاهی با آب و غذای کافی قرار گرفت. سطح شکمی مغز به سمت بالا قرار گرفت و برشی به سر حیوانات جدا و جمجمه آن شکافته شد و مغز بلافاصله خارج شد. هر گروه تزریق میکروبی دوپامین به عنوان مهم توانایی غیر از دست خودی‌های تولید سستی آورده بود. دوپامین در طیف‌های مختلف عضلانی بدن به طور مداوم افزایش یافته است و از نظر کلینیکی در درمان بیماری‌های مغزی به عنوان یکی از ابزارهای بسیار کاربردمند است.

آزمایشگاهی با آب و غذای کافی

آزمایشگاهی با آب و غذای کافی قرار گرفت. سطح شکمی مغز به سمت بالا قرار گرفت و برشی به سر حیوانات جدا و جمجمه آن شکافته شد و مغز بلافاصله خارج شد. هر گروه تزریق میکروبی دوپامین به عنوان مهم توانایی غیر از دست خودی‌های تولید سستی آورده بود. دوپامین در طیف‌های مختلف عضلانی بدن به طور مداوم افزایش یافته است و از نظر کلینیکی در درمان بیماری‌های مغزی به عنوان یکی از ابزارهای بسیار کاربردمند است.

آزمایشگاهی با آب و غذای کافی

آزمایشگاهی با آب و غذای کافی قرار گرفت. سطح شکمی مغز به سمت بالا قرار گرفت و برشی به سر حیوانات جدا و جمجمه آن شکافته شد و مغز بلافاصله خارج شد. هر گروه تزریق میکروبی دوپامین به عنوان مهم توانایی غیر از دست خودی‌های تولید سستی آورده بود. دوپامین در طیف‌های مختلف عضلانی بدن به طور مداوم افزایش یافته است و از نظر کلینیکی در درمان بیماری‌های مغزی به عنوان یکی از ابزارهای بسیار کاربردمند است.

آزمایشگاهی با آب و غذای کافی

آزمایشگاهی با آب و غذای کافی قرار گرفت. سطح شکمی مغز به سمت بالا قرار گرفت و برشی به سر حیوانات جدا و جمجمه آن شکافته شد و مغز بلافاصله خارج شد. هر گروه تزریق میکروبی دوپامین به عنوان مهم توانایی غیر از دست خودی‌های تولید سستی آورده بود. دوپامین در طیف‌های مختلف عضلانی بدن به طور مداوم افزایش یافته است و از نظر کلینیکی در درمان بیماری‌های مغزی به عنوان یکی از ابزارهای بسیار کاربردمند است.

آزمایشگاهی با آب و غذای کافی

آزمایشگاهی با آب و غذای کافی قرار گرفت. سطح شکمی مغز به سمت بالا قرار گرفت و برشی به سر حیوانات جدا و جمجمه آن شکافته شد و مغز بلافاصله خارج شد. هر گروه تزریق میکروبی دوپامین به عنوان مهم توانایی غیر از دست خودی‌های تولید سستی آورده بود. دوپامین در طیف‌های مختلف عضلانی بدن به طور مداوم افزایش یافته است و از نظر کلینیکی در درمان بیماری‌های مغزی به عنوان یکی از ابزارهای بسیار کاربردمند است.
پس از سنتز پی سی آر روتر ژن مدل SCH23390 در گروه کنترل منفی و گروه‌های در LH فلخت سرمی در گروه کنترل منفی و گروه‌های

جدول شماره 1 آماری است. میانگین بیان نسبی ژن آدیپونکتین در تخمدان و هیپوتالاموس در مقایسه با گروه کنترل منفی از نظر آماری به طور معنی‌داری افزایش یافت. میانگین بیان نسبی ژن آدیپونکتین در تخمدان و هیپوتالاموس موش‌های صحرایی در مقایسه با گروه کنترل منفی از نظر آماری به طور معنی‌داری کاهش یافت. نتایج حاصل منطبق بر تحقیقات پیشین درباره میزان ترشح آدیپونکتین در وضعیت

پیش نتایج حاصل از یک تحقیق داده که در مورد مهاجم سحرایی PCOS نشان داد. (100% با رای تاخیر 14, 18)

پیش نتایج حاصل از یک تحقیق داده که در مورد مهاجم سحرایی PCOS نشان داد. (100% با رای تاخیر 14, 18)

cDNA بایستی به گروه کنترل منفی کلاه شمعی مربوط نشان داد (100/100±18). هدف محصولات cDNA قبل از آزمون PCOS (تصویر شماره 1). محصولات cDNA قبل از آزمون PCOS (تصویر شماره 1).

پیش نتایج حاصل از یک تحقیق داده که در مورد مهاجم سحرایی PCOS نشان داد. (100% با رای تاخیر 14, 18)

پیش نتایج حاصل از یک تحقیق داده که در مورد مهاجم سحرایی PCOS نشان داد. (100% با رای تاخیر 14, 18)
آدیپونکتین و انسولین کمک شایعی به چگونگی اثرات تخمدانی دوپامین "ین آدیپونکتین و سرم آندروژن های آدرنال را تحریک می کند.

با توجه به اینکه مقایسه با سالم است که هیپرآندوژنیسم و چاقی در کاهش سطوح پلاسمای آدیپونکتین و ایجاد مقاومت به انسولین نقش مهمی ایفا می کند که از مشخصه‌های اصلی PCOS است. [23]

نتایج تحقیق حاضر نشان داد که تزریق ال دوپا سبب افزایش معنی‌دار میانگین بیان نسبی ژن آدیپونکتین در هیپوتالاموس در مقایسه با موش‌های صحرایی کنترل منفی PCOS گروه می‌شود. تزریق ال دوپا باعث افزایش معنی‌دار میانگین بیان نسبی ژن آدیپونکتین در تخمدان موش‌های صحرایی کنترل منفی PCOS گروه خواهد شد. نتایج حاصل تحقیق می‌تواند تا قدرتی تحقیق موجود در مورد اثرات دوپامین بر ترشح آدیپونکتین است که در آن محققان اثرات دوپامین بر سلول‌های آدیپوسیت انکوبه شده در محیط کشت در شرایط in vitro را بررسی و نتایج آن را گزارش کردند. یکی از اثرات اصلی دوپامین بر ترشح آدیپونکتین در این تحقیق با تزریق دوپامین همراه با هیدروکلراید و سولپرید به طور معنی‌داری افزایش نمی‌شود.

همچنین اطلاعات زیادی در دسترس نیست و یافتن دقیق این مسیرها نیاز به تحقیقات بیشتری را دارد. به‌طور کلی، نتایج تحقیق حاضر نشان داد که افزایش پرولاکتین و غیره احتمال دارد که مسیرهای عصبی واسطه‌ای مختلفی ممکن است در اعمال اثرات تحریکی ال دوپا بر بیان ژن آدیپونکتین در هیپوتالاموس هیپرپرولاکتینی آن را نشان دهد.

در مورد نقش مسیر دوپامینرژیکی بر فعالیت مسیر عصبی آدیپونکتین اطلاعات زیادی در دسترس نیست و یافتن دقیق این مسیرها نیاز به تحقیقات بیشتری را دارد. به‌طور کلی، نتایج حاصل تحقیق حاضر نشان داد که تزریق ال دوپا باعث افزایش معنی‌دار میانگین بیان نسبی ژن آدیپونکتین در هیپوتالاموس در مقایسه با موش‌های صحرایی کنترل منفی PCOS گروه می‌شود. تزریق ال دوپا باعث افزایش معنی‌دار میانگین بیان نسبی ژن آدیپونکتین در تخمدان موش‌های صحرایی کنترل منفی PCOS گروه خواهد شد. نتایج حاصل تحقیق می‌تواند تا قدرتی تحقیق موجود در مورد اثرات دوپامین بر سلول‌های آدیپوسیت انکوبه شده در محیط کشت در شرایط in vitro را بررسی و نتایج آن را گزارش کردند. یکی از اثرات اصلی دوپامین بر ترشح آدیپونکتین در این تحقیق با تزریق دوپامین همراه با هیدروکلراید و سولپرید به طور معنی‌داری افزایش نمی‌شود.

همچنین اطلاعات زیادی در دسترس نیست و یافتن دقیق این مسیرها نیاز به تحقیقات بیشتری را دارد. به‌طور کلی، نتایج حاصل تحقیق حاضر نشان داد که افزایش پرولاکتین و غیره احتمال دارد که مسیرهای عصبی واسطه‌ای مختلفی ممکن است در اعمال اثرات تحریکی ال دوپا بر بیان ژن آدیپونکتین در هیپوتالاموس هیپرپرولاکتینی آن را نشان دهد.

در مورد نقش مسیر دوپامینرژیکی بر فعالیت مسیر عصبی آدیپونکتین اطلاعات زیادی در دسترس نیست و یافتن دقیق این مسیرها نیاز به تحقیقات بیشتری را دارد. به‌طور کلی، نتایج حاصل تحقیق حاضر نشان داد که افزایش پرولاکتین و غیره احتمال دارد که مسیرهای عصبی واسطه‌ای مختلفی ممکن است در اعمال اثرات تحریکی ال دوپا بر بیان ژن آدیپونکتین در هیپوتالاموس هیپرپرولاکتینی آن را نشان دهد.
دوپامین بر ترشح آدیپونکتین در مدل‌های پلی‌کیستیک کبدی انسولین به عنوان مهارکننده سطوح آدیپونکتین شناخته شده است.

[۱۱] همچنین نوعی ارتباط خطی منفی بین سطح آدیپونکتین و گلوکز ناشتا مشاهده شده است. در این زمینه برگ و همکاران با استناد به یافته‌های خود اظهار کردند که افزایش آنی در سطوح پلاسمای آدیپونکتین موجب کاهش سطوح گلوکز پلاسما به واسطه مهار بیان آنزیم‌های گلوکونئوژنیک کبدی. همچنین مطالعات موشی از اثرات مهاری انسولین بر آدیپونکتین را مطرح کرده‌اند.

[۳۰] بنابراین کاهش ترشح سرطانی توسعه‌دهنده‌ای را به واسطه مهار بیان آنزیم‌های گلوکونئوژنیک کبدی، انسولینی و پیوند بین آن‌ها مطرح کرده‌اند. همچنین موش‌های دیابتی می‌توانند اثرات مهاری ال دوپا بر ترشح آدیپونکتین را مطرح کنند. البته قسمت دیگری از مطالعات نشان می‌دهد که اثرات ال دوپا و انواع مختلف آنتاگونیست‌های دوپامینی بر بیان ژن آدیپونکتین در هیپوتالاموس و بافت چربی و موش‌های سرطانی ناقص تأثیرگذار نیستند.

نتایج مطالعه در موش‌های صحرایی سبب افزایش غلظت سرمی PCOS شد. لکم‌شناسی و کاهش بیان ژن آدیپونکتین در تخمدان و هیپوتالاموس LH و ترشحات تحریکی بر بیان PCOS اثرات ال دوپا، آنتاگونیست‌های دوپامینی (SCH23390) و مولکول‌های مهارکننده دوپامینی در مدل حیوانی متغیران اثرات تحریکی بر بیان PCOS را بلوک می‌کنند. احتمال دارد که تأثیر ال دوپا در این مدل، بر اثر کاهش فعالیت نورون‌های دوپامینرژیک در کنترل اختلالات اندوکرینی ناشی از کاهش ترشح آدیپونکتین در بیماران PCOS باشد.

ملاحظات اخلاقی

پژوهش از اصول اخلاقی پژوهشگر این تحقیق را کمیته پژوهشی دانشگاه محقق اردبیلی (کد ۱) تایید کرد.
[30] Giahi L, Djazayery A, Rahimy A, Rahmany M, Larijani B. Serum level of adiponectin and its association with insulin sensitivity in overweight diabetic and non-diabetic Iranian men. Iran J Public Health. 2008; 37(2):88-92. https://ijph.tums.ac.ir/index.php/ijph/article/view/2060

[31] Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001; 7(8):947-53. [DOI:10.1038/90992] [PMID]