Coagulation kinetics beyond mean field theory using an optimised Poisson representation

James Burnett and Ian J. Ford

Department of Mathematics, UCL, Gower Street, London WC1E 6BT, United Kingdom

Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT, United Kingdom

Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics can be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants. This can be a poor approximation when the mean populations are small. However, using the Poisson representation it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work we encounter instabilities that can be eliminated using a suitable ‘gauge’ transformation of the problem [P. D. Drummond, Eur. Phys. J. B38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.

I. INTRODUCTION

The process of coagulation or aggregation is responsible for the coarsening of a size distribution of particles suspended in gaseous or liquid media. In essence the phenomenon consists of a sequence of statistically independent events where two (or possibly more) particles unite, perhaps as a result of collision, to create a composite particle, and each event reduces the number of particles in the system\(^{11,27-28}\). This has further consequences such as colloidal precipitation or accelerated rainfall from clouds\(^{11,27-28}\). Fragmentation can be present as well\(^{7}\), but precipitation processes are typically dominated by irreversible agglomeration. The phenomenon is familiar and yet it can present some surprises, an example of which was presented by Lushnikov\(^{7}\) in an exact study of coagulation kinetics driven by various choices of aggregation rates. In the later stages of a process where the binary coagulation rate is proportional to the product of the masses of the participants, for example, a single particle emerges with a mass representing a sizable fraction of that of the entire system\(^{11,27-28}\). This has been termed a gelation event and standard kinetic models of coagulation are unable to account for the phenomenon, for the simple reason that they are designed to describe systems consisting of very large populations of particles in each size class. They rely on a so-called mean field approximation, though this is not always clearly recognised. When small particle populations play a key role in the kinetics, different approaches become necessary\(^{11,27-28}\), the most common being Monte Carlo modelling\(^{11,27-28}\).

This paper investigates the utility of a rate equation model of kinetic processes that is able to capture small population effects. The Markovian master equations that describe coagulation may be transformed mathematically into a problem in the dynamics of continuous stochastic variables acted upon by complex noise. The solutions to the transformed dynamics may be related to the evolving statistical properties of the populations in the physical system. The recasting of the problem into one that concerns complex ‘pseudo-populations’ can be done in two distinct ways, either using methods of operator algebra similar to those employed in quantum field theories\(^{22,24}\) or through the so-called Poisson representation of the populations\(^{24,25}\). The physical problem concerning the stochastic evolution of a set of (integer-valued) populations is replaced by the task of solving and averaging a set of stochastic differential equations\(^{27-28}\).

The advantage of such a transformation over Monte Carlo simulation of the process\(^{11,27-28}\) emerges for cases where the particles come in many species or sizes, since the configuration space of the populations, and hence the computational cost increases very rapidly, but in order to illustrate the approach we study a very simple example of coagulation, where the aggregation rates do not depend on the masses of the participants. This is very different from the cases that exhibit gelation, studied by Lushnikov and others, and we might not expect major deviations from a mean field approach, but nevertheless it is possible to demonstrate the analytic procedure, and compare the accuracy of numerical pseudo-population dynamics and averaging with respect to other approaches\(^{11,27-28}\), in order to form a view on the usefulness of the approach.

In section 11 the master equations describing the basic problem of \(A + A \rightarrow A\) aggregation are developed and then the Poisson representation is introduced and used to derive the equivalent stochastic dynamics problem and
associated averaging scheme. The exact solution for the evolving complex pseudo-population is obtained and its properties established. In section III a parallel numerical study of the stochastic problem is discussed. Inherent instabilities in the dynamics may be eliminated using the Cameron-Martin-Girsanov formula, or equivalently through a so-called gauge transformation introduced by Drummond. However, this comes with the introduction of diffusive dynamics for a subsidiary variable that for extended evolution times would seem to require high computational cost for accuracy. Nevertheless, with a certain choice of transformation, termed an optimised gauge, we can ensure that the coagulation process is completed before this diffusive noise becomes apparent. We comment on the procedures and prospects for their further use in more complicated models in section IV.

II. ANALYTIC MODEL OF COAGULATION

A. Master equations

We consider the dynamics of a population of particles of a species A undergoing binary coagulation $A + A \rightarrow A$. The distinction between particles of different mass is ignored and the rate at which aggregation events takes place is a constant, making this one of the simplest cases to study. The evolution of $P(N,t)$, the probability at time t that N particles remain, is described by a set of master equations of the form

$$\frac{dP(N,t)}{dt} = \kappa(N+1)NP(N+1,t) - \kappa N(N-1)P(N,t).$$

(1)

The first term corresponds to the rate of gain in the probability of observing population N as a result of an aggregation event in circumstances where there are $N + 1$ particles, properly weighted by the number of particle pairs in such an initial state and the probability $\kappa/2$ of an event per unit time and per pair. The second term corresponds to the rate of loss of probability due to aggregation starting from a population equal to N. Multiplying the master equations by N and summing over N it can be shown that

$$\frac{d\overline{N}}{dt} = -\kappa \left(\overline{N^2} - \overline{N}\right),$$

(2)

where statistical averages are written $\overline{F(N)} = \sum F(N)P(N,t)$.

If we take the view that $\overline{N^2} \approx \overline{N}^2$, which corresponds to the neglect of fluctuations in population (which is why the procedure is called a mean field approximation), and consider a large mean population $\overline{N} \gg 1$, such that only the first term on the right hand side in Eq. (2) is retained, we can write

$$\frac{d\overline{N}}{dt} \approx -\kappa \overline{N}^2,$$

(3)

and this can be integrated to give

$$\overline{N} \approx \frac{\overline{N}_0}{1 + \kappa \overline{N}_0 t},$$

(4)

where \overline{N}_0 is the initial mean population. This is the classical Smoluchowski solution to this type of coagulation kinetic.

If the second term in Eq. (2) is retained, but again neglecting fluctuations, then the integration yields

$$\overline{N} \approx \frac{\overline{N}_0 \exp(\kappa t)}{1 - \overline{N}_0 (1 - \exp(\kappa t))},$$

(5)

which ought to be more accurate than Eq. (4), especially in the limit $t \rightarrow \infty$ when it goes to unity rather than zero.

Rather than making the mean field approximation $\overline{N^2} \approx \overline{N}^2$, we could generate an evolution equation for $\overline{N^2}$ by multiplying the master equation by $\overline{N^2}$ and summing, namely

$$\frac{d\overline{N^2}}{dt} = \kappa \left(-2\overline{N^3} + 3\overline{N^2} - \overline{N}\right),$$

(6)

but now the third moment appears on the right hand side. An equation for the evolution of this moment would involve the fourth moment: this is a hierarchy problem that often arises in kinetic theory. A closure condition such as $\overline{N^3} = \overline{N}^2 \overline{N}$ could be imposed, but the accuracy of such assumptions is questionable.

Similarly, the numerous master equations for the $P(N_1, N_2, \ldots, t)$ in a more general model where there are different categories of species $\{A_i\}$ with populations $\{\overline{N}_i\}$ would reduce under a mean field approximation to

$$\frac{d\overline{N}_i}{dt} = \frac{1}{2} \sum_{j=1}^{i-1} \kappa_{i-j,j} \overline{N}_{i-j} \overline{N}_j - \sum_j \kappa_{i,j} \overline{N}_i \overline{N}_j,$$

(7)

where the coefficients $\kappa_{i,j}$ quantify the rate of aggregation of the form $A_i + A_j \rightarrow A_{i+j}$ between species i and j, with i representing species mass, for example. If we should need a treatment beyond the mean field approximation, then for relatively simple stochastic processes we could use Monte Carlo simulations to extract the relevant statistical properties, but for more complex coagulation problems the use of this technique can become computationally expensive.

The transformation of the problem we wish to investigate is of interest since it reduces the master equations to the form of Eq. (2) and more generally Eq. (7), but supplemented by a noise term on the right hand side. This is not the same as inserting noise to represent a random source term in the population dynamics, nor is it an additional representation of stochasticity in the coagulation kinetics. It is a noise term that creates the statistical correlations in the populations that are neglected when the mean field approximation is taken. It turns out that the dynamics of simple binary coagulation may be modelled...
by a pseudo-population ϕ that evolves according to the equation

$$\frac{d\phi}{dt} = -\kappa \phi^2 + \xi(t), \quad (8)$$

where ξ is a noise with certain statistical properties. This may be compared with Eq. (9). The notable aspect of this representation is that the noise is complex, such that the variable ϕ is generally complex as well. Averages are to be taken over the noise history to make a connection with the dynamics of a real population. Nevertheless, the solution of Eq. (8) can be a simpler task than that posed by Eq. (1). We next describe how this transformation may be achieved.

B. Poisson representations

Gardiner and Chaturvedi outlined a method for transforming master equations into a Fokker-Planck equation by representing probability distributions as integrals of weighted complex Poisson distributions. The probability of finding N particles at time t may be written

$$P(N,t) = \int f(\phi, t)\exp(-\phi) N! \phi^{-N} \exp(\phi) \, d\phi. \quad (9)$$

This is a superposition of Poisson distributions, over a closed contour of complex mean values ϕ, with an evolving weighting function $f(\phi, t)$ which has initial value

$$f(\phi, 0) = \sum_N P(N,0) N! \phi^{-N} \exp(\phi). \quad (10)$$

such that if the contour C includes the origin, the initial condition $P(N,0)$ is recovered from Eq. (9). There are two particular initial conditions of interest. If the initial population is known to be N_0 then $P(N,0) = \delta_{N,N_0}$ and

$$f(\phi, 0) = f_{N_0}(\phi) = \frac{N_0!}{2\pi i} \phi^{-N_0} \exp(\phi), \quad (11)$$

whereas if $P(N,0)$ is a Poisson distribution with mean λ then we might use

$$f(\phi, 0) = f_\lambda^p(\phi) = \sum_N \frac{1}{2\pi i} \lambda^N \phi^{-N+1} \exp(\phi - \lambda). \quad (12)$$

Alternatively, we could employ a Poisson representation that involves a 2-d integration over the entire complex plane, namely

$$P(N,t) = \int f(\phi, t)\exp(-\phi) N! \phi^{-N} \exp(\phi) \, d^2\phi. \quad (13)$$

Substituting the Poisson representation of the probabilities given in Eqs. (9) or (13) into Eq. (1) leads to an evolution equation for $f(\phi, t)$:

$$\frac{\partial f}{\partial t} = \kappa \frac{\partial(\phi^2 f)}{\partial \phi} - \kappa \frac{\partial^2 f}{\partial \phi^2}. \quad (14)$$

This emerges as long as integration boundary terms can be dropped, which could potentially be a problem for the 2-d integration scheme (13) but is not an issue for the closed contour integral representation (9). But since a stochastic problem described by a Fokker-Planck equation such as (14) can be recast as one involving a stochastic differential equation (SDE), the properties of the distribution $f(\phi, t)$ can be reconstructed by solving

$$d\phi = -\kappa \phi^2 \, dt + i(2\kappa)^{1/2} \phi \, dW, \quad (15)$$

where dW_t is an increment in a Wiener process with properties $\langle dW_t \rangle = 0$ and $\langle (dW_t)^2 \rangle = dt$, the brackets representing an average over the noise. This Ito-type SDE takes the promised form of Eq. (9). Note that the noise term is complex since the second derivative in Eq. (14) has a negative coefficient. The equivalence between approaches is such that the average of a function $\bar{A}(\phi)$ weighted according to the solution $f(\phi, t)$ with initial condition $f(\phi, 0) = \delta(\phi - \phi_0)$ (namely the Green’s function of the Fokker-Planck equation) is equal to the average of the same function of a stochastic variable $\phi(t)$ evolved over a noise history W_t with initial condition $\phi(0) = \phi_0$. Both averages will be denoted with angled brackets and subscript in the form $\langle \bar{A}(\phi) \rangle_{\phi_0}$ time dependence understood. We next demonstrate that $f(\phi)$ can be determined explicitly for this problem.

C. Stochastic evolution of a complex pseudo-population

Consider $G(\phi, x) = \phi^{-1} \exp(x)$ with stochastic variables evolving according to $d\phi = adt + bdW_t$ and $dx = p\,dt + qW_t$. By Ito’s lemma we have

$$dG = \frac{\partial G}{\partial \phi} d\phi + \frac{\partial G}{\partial x} dx + \frac{1}{2} b^2 \frac{\partial^2 G}{\partial \phi^2} dt + b q \frac{\partial G}{\partial \phi} dt + \frac{1}{2} q^2 \frac{\partial^2 G}{\partial x^2} dt, \quad (16)$$

so

$$dG = -\frac{1}{\phi} G d\phi + G dx + b^2 \frac{G dt}{\phi^2} - \frac{bq}{\phi} G dt + \frac{q^2}{2} G dt \quad (17)$$

$$= \left(-\frac{a}{\phi} + p + \frac{b^2}{\phi^2} - \frac{bq}{\phi} + \frac{q^2}{2} \right) G dt + \left(-\frac{b}{\phi} + q \right) GdW_t.$$

With the aim of reducing this to a deterministic form, we choose $b = q\phi$, in which case

$$dG = \left(-\phi^{-1} a + p + \frac{q^2}{2} \right) G dt. \quad (18)$$

We set $q = i(2\kappa)^{1/2}$ and $p = \kappa$, in which case the SDE for x integrates to give $x(t) = \kappa t + i(2\kappa)^{1/2} W_t$, having chosen
We obtain an explicit solution to the stochastic dynamics:
\[d\phi = -\kappa \phi^2 dt + i(2\kappa)^{1/2} \phi dW_t, \]
as desired, and
\[dG = \kappa \phi G dt = \kappa e^t dt = \kappa e^{t+i(2\kappa)^{1/2}W_t} dt, \]
and this integrates to
\[G(t) = G(0) + \kappa \int_0^t \exp \left(\kappa s + i(2\kappa)^{1/2} W_s \right) ds. \]
Since \(G = \phi^{-1}(t) \exp (kt + i(2\kappa)^{1/2} W_t) \) and \(G(0) = \phi_0^{-1} \),
we obtain an explicit solution to the stochastic dynamics:
\[\phi(t) = \frac{\phi_0 \exp (kt + i(2\kappa)^{1/2} W_t)}{1 + \kappa \phi_0 \int_0^t \exp (\kappa s + i(2\kappa)^{1/2} W_s) ds}. \]

We next show that an average of this stochastic variable can be related to \(N \), the particle population averaged over the stochasticity of the physical coagulation process.

D. Integrals over initial pseudo-population

Using Eq. (9) we can write
\[\overline{A(N)} = \sum_{N=0}^{\infty} A(N) \int_C f(\phi, t) \exp(-\phi) \frac{\delta^N}{N!} d\phi \]
\[= \int_C f(\phi, t) \tilde{A}(\phi) d\phi = \langle \tilde{A}(\phi) \rangle, \]
noting that the final expression differs from the average \(\langle \tilde{A}(\phi) \rangle_{\phi_0} \) introduced earlier, since the initial weighting \(f(\phi, 0) \) takes the general form of Eq. (10) instead of \(\delta(\phi - \phi_0) \), and where
\[\tilde{A}(\phi) = \sum_N A(N) \exp(-\phi) \frac{\delta^N}{N!}. \]

For example, if \(A(N) = N \), then \(\tilde{A}(\phi) = \phi \), and for \(A(N) = N^2 \) we have \(\tilde{A}(\phi) = \phi^2 + \phi \). A similar construction might be made using the 2-d integration scheme (13). As for the state probabilities \(P(N, t) \), we note that
\[P(N', t) = \sum_N \delta_{NN'} P(N, t) = \delta_{NN'}. \]
Taking \(A(N) = \delta_{NN'} \) we find that the corresponding \(\tilde{A}(\phi) \) according to Eq. (24) is \(\exp(-\phi) \delta^N / N! \) and hence
\[P(N, t) = \langle \exp(-\phi) \delta^N / N! \rangle. \]

As noted earlier, the Fokker-Planck equation (14), written as \(\mathcal{L} f(\phi, t) = 0 \), has a Green’s function satisfying \(\mathcal{L} G(\phi, \phi_0, t) = 0 \) for \(t > 0 \) with initial condition \(G(\phi, \phi_0, 0) = \delta(\phi - \phi_0) \) and we can write
\[\langle \tilde{A}(\phi) \rangle_{\phi_0} = \int_C G(\phi, \phi_0, t) \tilde{A}(\phi) d\phi, \]
which is intuitively understood as a superposition of the stochastic evolution of a function of the pseudo-population \(\phi(t) \) that evolves from points on a contour that encircles the origin. An average over all end-points, three examples of which are shown as filled circles, corresponds to the quantity \(\langle \phi \rangle_{\phi_0} \).

E. Noise-averaged pseudo-population

We now establish the statistical properties of the stochastic variable \(\phi(t) \). Our strategy will be to represent
\(\langle \phi \rangle_{\phi_0} \), the average of Eq. (22) over the noise for a given initial value \(\phi_0 \), as a (formal) series in positive powers of \(\phi_0 \). The first term is straightforward to identity: we write
\[
\langle \phi \rangle_{\phi_0} \approx \int dW_t \phi_0 \exp(i2\kappa) \frac{1}{2} W_t,
\]
and then employ the stochastic integral identity
\[
\int dW_t \exp(i2W_t) = (\exp(i2W_t) = \exp(-c^2t/2),
\]
such that
\[
\langle \phi \rangle_{\phi_0} = \phi_0 + O(\phi_0^2).
\]
The proof of Eq. (31) follows from considering the stochastic evolution of \(F(x) = \exp(x) \) where \(x = icW_t \). Ito’s lemma states that \(\frac{d}{dt} F = F' dx + (ic)^2 F'' dt/2 = icF F_d W - c^2 dt/2 \), where the primes indicate differentiation. Averaging leads to \(\frac{d}{dt} F = -c^2 (F) dt/2 \) and hence to \((F) = \exp(-c^2t/2) \) since \(F(0) = 1 \). The formal series is written
\[
\langle \phi \rangle_{\phi_0} = \sum_{j=1}^{\infty} C_j(t) \phi_0^j = \phi_0 \sum_{n=0}^{\infty} (-\alpha)^n(M_n(t)),
\]
with \(C_j(t) = (-\kappa)^{j-1} M_{j-1}(t) \) and where
\[
M_j(t) = \left(e^{ct+i(2\kappa)\frac{1}{2}W_t} \left(\int_0^t e^{ts+i(2\kappa)\frac{1}{2}W_s} ds \right)^j \right).
\]
We focus our attention on the evolution of the mean particle population \(\overline{N} \) for cases where there are \(N_0 \) particles at \(t = 0 \). The initial distribution is \(P(N, 0) = \delta_{N_0} \), so we use Eqs. (29) and (11) to obtain
\[
\overline{N} = \langle \phi \rangle = \int d\phi N_0! 2^{N_0} \phi_0^{-N_0} \exp(\phi_0) \langle \phi \rangle_{\phi_0},
\]
and by inserting (33) and expanding the integrand we find that
\[
\overline{N} = \sum_{j=1}^{N_0} C_j(t) \frac{N_0!}{(N_0-j)!},
\]
using standard calculus of residues. Notice that the series for \(\overline{N} \) is finite even though the series for \(\langle \phi \rangle_{\phi_0} \) is infinite. We have already established that \(C_1(t) = 1 \) in Eq. (32). In order to evaluate \(C_2(t) \) we need to consider
\[
I(t, s) = \langle \exp\left(i(2\kappa)^{1/2} (W_t + W_s) \right) \rangle,
\]
in which the weighting is a product of the gaussian probabilities for generating a value \(W_t \) of the Wiener process at time \(s \) and a value \(W_t \) at the later time \(t \) given the earlier value. Writing \(W_t + W_s = W'_t + 2W_s \) where \(W'_t = W_t - W_s \) we find this factorises as follows:
\[
I(t, s) = \int dW'_t \exp\left(i(2\kappa)^{1/2} W'_t \right) \times \frac{1}{(2\pi(t-s))^{1/2}} \exp\left(\frac{(W'_t - 2s)^2}{2(t-s)} \right) \times \frac{1}{(2\pi s)^{1/2}} \exp\left(-\frac{W_s^2}{2s} \right),
\]
using Eq. (31), and hence \(C_2(t) = -\kappa M_1(t) \) with
\[
M_1(t) = e^{ct} \int_0^t ds e^{ks} \left(\exp\left(i(2\kappa)^{1/2} (W_t + W_s) \right) \right) \]
\[
= e^{ct} \int_0^t ds e^{ks} I(t, s) = \int_0^t ds e^{-2ks} = \frac{1}{2\kappa} (1 - e^{-2ct}).
\]
The averaging rapidly becomes more laborious. Consider next \(C_3(t) = \kappa^2 M_2(t) \). We need to evaluate
\[
M_2 = \int_0^t ds_1 \int_0^{s_1} ds_2 e^{k(t+s_1+s_2)} \times \langle \exp\left[i(2\kappa)^{1/2} (W_t + W_{s_1} + W_{s_2}) \right] \rangle
\]
\[
= 2 \int_0^t ds_1 \int_0^{s_1} ds_2 e^{k(t+s_1+s_2)} \times \langle \exp\left[i(2\kappa)^{1/2} (W_t - W_{s_1} + 2(W_{s_1} - W_{s_2}) + 3W_{s_2}) \right] \rangle,
\]
where an ordering \(t \geq s_1 \geq s_2 \geq 0 \) has been imposed by the choice of integration limits, the change in which is accounted for by inserting the prefactor of two. Using Eq. (31) this reduces to
\[
M_2 = 2 \int_0^t ds_1 \int_0^{s_1} ds_2 \exp(\kappa t + s_1 + s_2) \times \exp\left(-\kappa (t-s_1) \right) \exp\left(-4\kappa s_1 - s_2 \right) \exp\left(-9\kappa s_2 \right)
\]
\[
= 2 \int_0^t ds_1 \int_0^{s_1} ds_2 \exp(-2\kappa s_1) \exp(-4\kappa s_2),
\]
which becomes
\[
M_2 = \frac{1}{2\kappa} \int_0^t ds_1 \exp(-2\kappa s_1) \left(1 - \exp(-4\kappa s_1) \right)
\]
\[
= \frac{1}{2\kappa} \left[\frac{1}{2\kappa} \left(1 - e^{-2ct} \right) - \frac{1}{6\kappa} \left(1 - e^{-6ct} \right) \right].
\]
Similarly, we can show that
\[
M_3 = 6 \int_0^t ds_1 \int_0^{s_1} ds_2 \int_0^{s_2} ds_3 e^{-2\kappa s_1} e^{-4\kappa s_2} e^{-6\kappa s_3},
\]
and the pattern that emerges is

\[M_n = n! \int_0^t ds_1 \cdots \int_0^{s_n} ds_n e^{-2ks_1} \cdots e^{-2nks_n}. \]

(45)

In order to proceed further, we notice that the \(M_n \) are related to one another by repeated integration of the nested integrals. We define

\[m_n(kt) = \frac{(2\kappa)^n}{n!} M_n(t) = \int_0^{2\kappa t} ds_1 \int_0^{2\kappa s_1} ds_2 \cdots \int_0^{2\kappa s_{n-1}} ds_n e^{-s_1} e^{-2s_2} \cdots e^{-n s_n}, \]

such that \(m_1 = 1 - \exp(-2\kappa t) \) and

\[m_2 = \frac{1}{6} \left(2 - 3e^{-2\kappa t} + e^{-6\kappa t} \right) = \frac{1}{2} m_1 - \frac{1}{6} (1 - e^{-6\kappa t}). \]

(46)

We evaluate \(m_3 \) in detail in order to relate it to \(m_1 \) and \(m_2 \):

\[m_3 = \int_0^{2\kappa t} ds_1 \int_0^{2\kappa s_1} ds_2 \int_0^{2\kappa s_2} ds_3 e^{-s_1} e^{-2s_2} e^{-3s_3} \]

\[= \int_0^{2\kappa t} ds_1 \int_0^{2\kappa s_1} ds_2 e^{-s_1} e^{-2s_2} e^{-3s_3} - \frac{1}{3} (1 - e^{-3s_2}) \]

\[= \frac{1}{3} m_2 - \frac{1}{3} \int_0^{2\kappa t} ds_1 \int_0^{s_1} ds_2 e^{-s_1} e^{-2s_2} \]

\[= \frac{1}{3} m_2 - \frac{1}{3} \int_0^{2\kappa t} ds_1 e^{-s_1} \frac{1}{5} (1 - e^{-5s_1}) \]

\[= \frac{1}{3} m_2 - \frac{1}{3} m_1 + \frac{11}{3} \frac{1}{5} (1 - e^{-12\kappa t}). \]

(47)

On the basis of an analysis of further cases, we conjecture that the pattern is

\[m_n = \frac{1}{n} m_{n-1} - \frac{m_{n-2}}{n[n + (n - 1)]} \]

\[+ \frac{m_1}{n(n + (n - 1))[n + (n - 1) + (n - 2)]} \]

\[\cdots + (-1)^n \frac{m_1}{n(n + (n - 1)) \cdots [n + (n - 1) + \cdots + 2]} \]

\[+ (-1)^{n+1} \frac{1}{n(n + (n - 1)) \cdots [n + (n - 1) + \cdots + 2]} \]

\[\times \int_0^{2\kappa t} ds_1 \exp[-(n + [n - 1] + \cdots + 1)s_1]. \]

(49)

This may be simplified since \(n + (n - 1) + \cdots + 1 = \frac{1}{2} n(n + 1), \), a triangular number, and

\[n + (n - 1) + \cdots + (n - j + 1) \]

\[= n + (n - 1) + \cdots + 1 \]

\[- [(n - j) + (n - j - 1) + \cdots + 1] \]

\[= \frac{1}{2} n(n + 1) - \frac{1}{2} (n - j)(n - j + 1) = \frac{j}{2} (2n + 1 - j), \]

(50)

is a difference of triangular numbers, such that

\[m_n = \frac{1}{n} m_{n-1} - \frac{1}{n[n + (n - 1)]]} m_{n-2} + \cdots \]

\[+ (-1)^{l+1} \left(\prod_{j=1}^l \left(\frac{j}{2} (2n + 1 - j) \right) \right)^l m_{n-l} + \cdots \]

\[+ (-1)^{n+1} \left(\prod_{j=1}^n \left(\frac{j}{2} (2n + 1 - j) \right) \right)^l m_0(n), \]

(51)

where we define

\[m_0(n) = 1 - \exp[-n(n + 1)k]. \]

(52)

Next we note that

\[\prod_{j=1}^l \left(\frac{j}{2} (2n + 1 - j) \right) \]

\[= \frac{1}{2} (1.2 \cdots l) [2n \cdots (2n - l)] = \frac{l!(2n)!}{2(2n - l)!}, \]

(53)

so finally

\[m_n = \sum_{l=1}^n 2^l (2n - l)!(-1)^{l+1} \frac{l!(2n)!}{2(2n - l)!} m_{n-l}, \]

(54)

in agreement with Eqs. 47 and 48, and where the \(n \)-dependence of \(m_0 \) appearing in the final term is understood. This provides a complete recursive solution to the stochastic problem. Evaluation of the \(m_n \) by integration of Eq. 46 using Mathematica for \(n \) up to twenty confirms this relation and the conjectured pattern that relates them.

F. Mean populations in example cases

From the previous section we can establish that \(C_1(t) = 1 \) and

\[C_2(t) = -\frac{1}{2} m_1 = -\frac{1}{2} (1 - e^{-2\kappa t}) \]

\[C_3(t) = \frac{1}{2} m_2 = \frac{1}{12} (2 - 3e^{-2\kappa t} + e^{-6\kappa t}) \]

\[C_4(t) = \frac{3}{4} m_3 = \frac{1}{24} + \frac{3}{40} \left(2 - 3e^{-2\kappa t} + e^{-6\kappa t} \right) \]

(55)

and we use these and Eq. 46 to obtain the exact time dependence of the mean population for initial population \(N_0 \) from 1 to 4. For \(N_0 = 1 \), we obtain

\[\mathcal{N} = C_1(t) \frac{N_0!}{(N_0 - 1)!} = 1, \]

(56)

which is clearly what we would expect. For \(N_0 = 2 \) we find that

\[\mathcal{N} = \sum_{j=1}^2 C_j(t) \frac{N_0!}{(N_0 - j)!} = 2C_1(t) + 2C_2(t) \]

\[= 2 - (1 - e^{-2\kappa t})! = 1 + e^{-2\kappa t}, \]

(57)
and this can be checked by solving the underlying master equations for this simple case. They are \(dP(1,t)/dt = 2\kappa P(2,t)\) and \(dP(2,t)/dt = -2\kappa P(2,t)\) with initial conditions \(P(1,0) = 0\) and \(P(2,0) = 1\), giving solutions \(P(2,t) = \exp(-2\kappa t)\) and \(P(1,t) = 1 - \exp(-2\kappa t)\) such that \(\overline{N} = \sum N P(N,t) = P(1,t) + 2P(2,t) = 1 + \exp(-2\kappa t)\).

For \(N_0 = 3\) we get

\[
\overline{N} = \sum_{j=1}^{3} C_j(t) \frac{N_0!}{(N_0-j)!} = 3C_1(t) + 6C_2(t) + 6C_3(t) \\
= 1 + \frac{3}{2} e^{-2\kappa t} + \frac{1}{2} e^{-6\kappa t}
\]

(58)

which may also be checked by solving the master equations directly.

Finally for \(N_0 = 4\) we obtain

\[
\overline{N} = \sum_{j=1}^{4} C_j(t) \frac{N_0!}{(N_0-j)!} \\
= 4C_1(t) + 12C_2(t) + 24C_3(t) + 24C_4(t) \\
= 1 + \frac{9}{5} e^{-2\kappa t} + \frac{e^{-6\kappa t}}{5} + \frac{1}{5} e^{-12\kappa t}
\]

(59)

All these solutions satisfy the initial condition \(\overline{N} = N_0\) at \(t = 0\) and tend to unity as \(t \to \infty\), as required.

These results should be compared with those of Barzykin and Tachiya\(^{[10]}\) who found an exact solution to the master equations for this problem using a generating function approach. They obtained

\[
\overline{N} = \sum_{j=1}^{N_0} (2j-1) \frac{(N_0-1)!}{(N_0+j-1)! (N_0-j)!} e^{-j(j-1)\kappa t},
\]

(60)

and our calculations are consistent with this expression.

We now go on to study the variance of the particle population.

G. Variance in population

In order to calculate the variance in the population we need the second moment \(\overline{N^2}\), which is equivalent to the quantity \(\langle \phi^2 + \phi \rangle\). We could expand \(\phi^2\) as a formal power series, just as we did for \(\phi\), but instead we exploit a short cut due to the relationship

\[
\frac{d\langle \phi^2 \rangle}{dt} = -\kappa \langle \phi^2 \rangle,
\]

(61)

that arises from Eq. (15). We hence obtain from Eq. (36)

\[
\overline{N^2} = \sum_{j=1}^{N_0} \left(\frac{1}{\kappa} \frac{dC_j(t)}{dt} + C_j(t) \right) \frac{N_0!}{(N_0-j)!}
\]

(62)

and using Eqs. (55) we can construct the time derivatives, giving \(dC_1(t)/dt = 0\) together with

\[
\begin{align*}
\frac{1}{\kappa} \frac{dC_2(t)}{dt} & = e^{-2\kappa t} \\
\frac{1}{\kappa} \frac{dC_3(t)}{dt} & = \frac{1}{2} \left(e^{-2\kappa t} - e^{-6\kappa t} \right) \\
\frac{1}{\kappa} \frac{dC_4(t)}{dt} & = -\frac{3}{20} e^{-2\kappa t} + \frac{1}{4} e^{-6\kappa t} - \frac{1}{10} e^{-12\kappa t}
\end{align*}
\]

(63)

which puts us in a position to calculate the variance \(\sigma^2 = \overline{N^2} - \overline{N}\).

Considering first the trivial case \(N_0 = 1\), we deduce \(\overline{N^2} = 1\) and \(\sigma^2 = 0\) as we would expect since there is no evolution. For \(N_0 = 2\), \(\overline{N^2} = 2 + \left[\exp(-2\kappa t) - \frac{1}{2} \left(1 - \exp(-2\kappa t) \right) \right] = 1 + 3 \exp(-2\kappa t)\).

This has the correct limits of \(\overline{N^2} = 4\) and \(1\) for \(t = 0\) and \(t \to \infty\), respectively. The variance is then \(\sigma^2 = 1 + 3 \exp(-2\kappa t) - \left(1 + \exp(-2\kappa t) \right)^2 = \exp(-2\kappa t) - \exp(-4\kappa t)\).

This also has the correct limits of zero at both \(t = 0\) and \(t \to \infty\). It goes through a maximum at \(-2\kappa + 4\kappa \exp(-2\kappa t) = 0\) or \(2\kappa = \ln 2\). The maximum variance is then \(\sigma^2_{\text{max}} = 1/4\). We can check the behaviour of the variance for this case using the previously derived solutions to the master equation for \(N_0 = 2\). We have \(\overline{N^2} = \sum N^2 P(N,t) = P(1,t) + 4P(2,t) = 1 - \exp(-2\kappa t) + 4 \exp(-2\kappa t) = 1 + 3 \exp(-2\kappa t)\) as required.

We employ Mathematica\(^{[20]}\) to calculate higher order coefficients \(m_n\) and hence the \(C_n(t)\) in Eq. (36). We illustrate this with the time-dependent mean and standard deviation for the case with \(N_0 = 12\), shown in Figure 2.

The exact form of \(\overline{N}\) obtained from the analysis is

\[
\overline{N} = \frac{1}{58786} \left(e^{-132\kappa t} + 21 e^{-110\kappa t} + 209 e^{-90\kappa t} + 1309 e^{-72\kappa t} + 5775 e^{-56\kappa t} + 19019 e^{-42\kappa t} + 48279 e^{-30\kappa t} + 95931 e^{-20\kappa t} + 149226 e^{-12\kappa t} + 177650 e^{-6\kappa t} + 149226 e^{-2\kappa t} + 58786 \right)
\]

(64)

which is consistent with the Barzykin and Tachiya expression\(^{[10]}\). Eq. (4) happens to account reasonably well for the evolution of the mean population, as shown in Figure 2, but of course the mean field approximation upon which it is based cannot produce the standard deviation, which is also shown.
Figure 2. Mean (solid line) and standard deviation (short dashed line) of the population as a function of time, in a coagulating system with initial population $N_0 = 12$ and with $\kappa = 1$. The long dashed curve is the mean population according to Eq. (5).

H. Averaged pseudo-population as $t \to \infty$

It is of interest to determine the value of $\langle \phi \rangle_{\phi_0}$ as $t \to \infty$. Consider, using Ito’s lemma,

$$d\phi^n = n\phi^{n-1}d\phi + \frac{1}{2}(-2\kappa\phi^2)n(n-1)\phi^{n-2}dt,$$ \hspace{1cm} (65)

and insert Eq. (15) and average such that

$$d\langle \phi^n \rangle = -\kappa n\langle \phi^{n+1} \rangle dt - \kappa n(n-1)\langle \phi^n \rangle dt.$$ \hspace{1cm} (66)

Assuming that as $t \to \infty$ all the $\langle \phi^n \rangle$ become time independent, we deduce that $\langle \phi^{n+1} \rangle = -(n-1)\langle \phi^n \rangle$ in this limit, in which case all moments for $n \geq 2$ tend to zero, for all initial conditions.

Next, we note that

$$d(e^{-\phi}) = -e^{-\phi}d\phi - \kappa\phi^2 e^{-\phi}dt = -i(2\kappa)\phi e^{-\phi}dW_t,$$ \hspace{1cm} (67)

using Eq. (15), such that $d\langle \exp(-\phi) \rangle = 0$, and imposing the initial condition we obtain $\langle \exp(-\phi) \rangle_{\phi_0} = \exp(-\phi_0)$ for all t. Since

$$\langle e^{-\phi} \rangle_{\phi_0} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \langle \phi^n \rangle_{\phi_0} \to 1 - \langle \phi \rangle_{\phi_0},$$ \hspace{1cm} (68)

as $t \to \infty$, due to the vanishing of moments with $n \geq 2$, we conclude that the stochastic dynamics of $\phi(t)$ give rise to

$$\langle \phi \rangle_{\phi_0} \to 1 - \exp(-\phi_0)$$ \hspace{1cm} (69)

in the late time limit. We shall use this result to check the outcomes of numerical calculations in a later section. The result makes sense because the mean population arising from a Poisson distribution with mean λ at $t = 0$ is equal to $\langle \phi \rangle_{\phi_0=\lambda}$. Intuitively, all initial situations sampled from such a distribution lead to a final population of unity as $t \to \infty$ except for the case of a initial population of zero, the probability of which is $\exp(-\lambda)$. The mean population as $t \to \infty$ is $N = 0 \times \exp(-\lambda) + 1 \times (1 - \exp(-\lambda)) = 1 - \exp(-\lambda)$.

We can confirm this result by considering kinetics starting from a definite initial population N_0. From Eq. (35) we write

$$N \to \int_C d\phi_0 \frac{N_0!}{2\pi i} \phi_0^{N_0-1} \exp(\phi_0)(1 - \exp(-\phi_0))$$

$$= \int_C d\phi_0 \frac{N_0!}{2\pi i} \phi_0^{N_0-1} \sum_{n=1}^{\infty} \frac{1}{n!} \phi_0^n$$ \hspace{1cm} (70)

$$= \sum_{n=1}^{\infty} \delta_{N_0n} = 1 - \delta_{N_00},$$

demonstrating that the asymptotic mean population is unity, unless $N_0 = 0$ in which case it is zero.

I. Source enhanced coagulation

We can determine the asymptotic behaviour of a system of coagulating species in which there is also an injection rate j. The underlying master equation is

$$\frac{dP(N,t)}{dt} = jP(N-1,t) - jP(N,t) + \kappa(N+1)P(N+1,t) - \kappa NP(N,t),$$ \hspace{1cm} (71)

with the first term deleted for the case $N = 0$. The evolution of the corresponding pseudo-population is given by

$$d\phi = jdt - \kappa\phi^2 dt + i(2\kappa)^{1/2}\phi dW_t.$$ \hspace{1cm} (72)

This time we find that

$$d(e^{-\phi}) = -e^{-\phi}d\phi - \kappa\phi^2 e^{-\phi}dt = -j(e^{-\phi})dt - i(2\kappa)^{1/2}\phi e^{-\phi}dW_t,$$ \hspace{1cm} (73)

so that $d(e^{-\phi}) = -j(e^{-\phi})dt$ and $\langle e^{-\phi} \rangle \propto e^{-jt}$, with the proportionality factor depending on the initial condition. We also have

$$d\langle \phi^n \rangle = n\langle \phi^{n-1} \rangle (j - \kappa\phi^2) dt - \kappa n(n-1)\langle \phi^n \rangle dt,$$ \hspace{1cm} (74)

which in a stationary state implies, for $n \geq 1$, that

$$\langle \phi^{n+1}_\infty \rangle = \frac{j}{\kappa} \langle \phi^{n-1}_\infty \rangle (j - \kappa\phi^2)/j + (n-1)\langle \phi^n_\infty \rangle.$$ \hspace{1cm} (75)

This is reminiscent of a recurrence relation\(^{22}\) for modified Bessel functions, $I_{n-1}(x) - I_{n+1}(x) = (2n/x)I_n(x)$, when written in the form $\frac{1}{2}I_n(x) = \frac{1}{2}I_{n-2}(x) - (n-1)I_{n-1}(x)$, which suggests that $\langle \phi^{n+1}_\infty \rangle \propto (j/\kappa)^{n/2}I_{n-1}(2(j/\kappa)^{1/2})$ for
$n \geq 0$. Since with $n = 1$ we have $\langle \phi^2 \rangle_{st} = j/\kappa$, the proportionality factor is $[I_1(2(j/\kappa)^{1/2})]^{-1}$. Notice that we do not label these stationary averages according to ϕ_0 since memory of the initial condition is lost for this case. In the final stationary state of a source enhanced coagulating system we therefore expect the mean population to be

$$\overline{N}_{st} = \langle \phi \rangle_{st} = \left(\frac{j}{\kappa} \right)^{1/2} I_0 \left(\frac{2(j/\kappa)^{1/2}}{I_1(2(j/\kappa)^{1/2})} \right), \quad (76)$$

which is similar to analysis performed elsewhere. Note the limit of this result when $j \to 0$ does not correspond to Eq. (69) since dependence on the initial condition is retained when $j = 0$.

J. Remarks

We conclude our consideration of analytical approaches by noting that the coagulation problem can be studied in a variety of ways, and that introducing complex stochastically evolving pseudo-populations, averaged over the noise and over a complex contour of initial values (or over the entire plane), might seem very elaborate compared with the direct analytic solution to the master equations, for example. Our purpose, however, is to establish explicitly that the approach works for a simple case. Our attention now turns to the numerical solution of the stochastic dynamics and averaging procedure to determine whether this can be performed efficiently for the model. Establishing this would suggest that a wider set of stochastic problems based on master equations might be amenable to solution using these techniques.

III. NUMERICAL APPROACH.

A. Stochastic numerics

An analytical solution to the SDEs corresponding to more complicated coagulation schemes, for example those involving multiple species and modelled in the mean field approximation with rate equations such as (7), is unlikely to be available. In these cases our approach is implemented through a numerical solution of the SDEs for the relevant pseudo-populations $\phi_i(t)$, followed by averaging over the noise and a suitable weighting of the results over the initial values ϕ_0. We test the feasibility of this strategy for the simple $A + A \to A$ model.

We solve the SDE (15) numerically using a C++ code. In Figure 3, we plot $\Re\langle \phi \rangle_{\phi_0}$ against t for $\phi_0 = 1$, 2 and 3, averaging ϕ over 10^3 trajectories driven by independent realisations of the Wiener process based on 10^5 timesteps of length 5×10^{-5}, and with $\kappa = 1$. Also shown are analytical results based on the formal series developed in section II E truncated at the 12th power of ϕ_0. This representation of the analytical solution appears to be accurate for values of ϕ_0 up to three. For the largest value of t shown, the series approximates well to values $1 - \exp(-\phi_0)$, in agreement with the analysis in section II E. In contrast, the 12th order series representation with $\phi_0 = 5$ deviates noticeably from the expected asymptotic behaviour for this range of t, indicating a series truncation error. For small t the outcomes resemble the mean field result Eq. (4), as we suggest they should in Appendix A.

However, the numerical results do not appear to be very satisfactory. Firstly, the averages are noisy, suggesting that 10^3 realisations are too few in number to obtain statistical accuracy, though this can of course be increased. Secondly, they do not seem to possess the correct limits at large times: they all seem to tend towards unity. Thirdly, they often exhibit sharp peaks, which are sometimes large enough to cause the numerical simulation to fail, as is seen in the case for $\phi_0 = 3$, where a negative spike at $t \approx 2.85$ causes the calculation to crash. These instabilities, even if not terminal, have a disproportionate effect on the statistics when the number of realisations is limited. Such instabilities have been encountered before in simulations, and in the next section we examine their origin and consider how they can be avoided.

B. Elimination of instabilities

The origin of the large fluctuations in the value of $\phi(t)$ can be understood by considering the deterministic contribution to the evolution of $\phi(t)$ on the complex plane according to Eq. (15). This is shown schematically by block arrows in Figure 4 representing the magnitude and orientation of the complex quantity $-\phi^2$. Were it not for stochastic noise, a trajectory that started with a posi-
These instabilities are not desirable and action should be taken to eliminate them. They are less common if the timestep in the numerical simulation is reduced, since this lowers the likelihood of a noise-driven jump into the right hand side of the complex plane, but this increases the computational expense of the approach. We therefore need a mathematical scheme that can suppress the dangerous drift pattern in the stochastic dynamics while retaining the statistical properties of solutions to the SDE.

Drummond proposed a scheme for the elimination of such instabilities that took the form of a modification to the fundamental Poisson representation through the introduction of a weighting parameter $\Omega(t)$, chosen to evolve according to

$$d\Omega = \Omega g dW_t,$$ \hfill (77)

with initial condition $\Omega(0) = 1$, and where g is an arbitrary function. A new variable ϕ' is introduced, subject to the same initial condition imposed on ϕ, and evolving according to

$$d\phi' = -\kappa |\phi'|^2 dt + i(2\kappa)^{1/2} \phi' (dW_t - g dt),$$ \hfill (78)

and Drummond showed that the Ω-weighted average of ϕ' over the noise is the same as the corresponding average of ϕ:

$$\langle \phi \rangle = \langle \Omega \phi' \rangle.$$ \hfill (79)

However, since ϕ' and ϕ evolve according to different SDEs, they need not suffer from the same instabilities.

Drummond termed this the ‘gauging away’ of the instabilities of the original SDE, the terminology suggested by recognising that Eq. [79] possesses an invariance with respect to different choices of g. The approach is in fact equivalent to a transformation of the probability measure in stochastic calculus, and can be perhaps be most easily understood as an application of the Cameron-Martin-Girsanov formula in stochastic calculus, as we describe in more detail in Appendix B.

We first explore one of Drummond’s gauge functions $g(\phi')$ that has the capacity to tame the instability in the coagulation problem. Consider the choice

$$g = i (\kappa/2)^{1/2} (\phi' - |\phi'|),$$ \hfill (80)

which leads to the SDEs

$$d\phi' = -\kappa |\phi'|^2 dt + i(2\kappa)^{1/2} \phi' dW_t,$$ \hfill (81)

and

$$d\Omega = i (\kappa/2)^{1/2} (\phi' - |\phi'|) \Omega dW_t.$$ \hfill (82)

The crucial difference between Eqs. [81] and [15] is that the drift term in the SDE for ϕ' is always directed towards the origin. It lacks the ability to produce an excursion towards $\phi' = -\infty$. Meanwhile, $\Omega(t)$ evolves diffusively in the complex plane, with no drift and hence

![Image of a diagram](https://example.com/diagram.png)

Figure 4. The block arrows indicate the magnitude and direction of drift of $\phi(t)$ across the complex plane brought about by the deterministic term $-\kappa |\phi|^2 dt$ in the SDE [15]. The effect of this pattern is seen in an example realisation of the evolution. An excursion from the quasistable crescent shaped region near the origin towards negative Re ϕ evolution. An excursion from the quasistable crescent shaped region near the origin towards negative Re ϕ evolution. An excursion from the quasistable crescent shaped region near the origin towards negative Re ϕ evolution. An excursion from the quasistable crescent shaped region near the origin towards negative Re ϕ evolution.
The expected analytic behaviour is indicated, and in comparison with Figure 3 the quality of the numerical results is much improved, which is a consequence of the gauging procedure. The evolution of \(\text{Re}(\varsigma') \) is indicated, and in comparison with Figure 3 the quality of the numerical results is much improved, which is a consequence of the gauging procedure. The evolution of \(\text{Re}(\varsigma) \) for the case with \(\phi_0 = 1 \) is shown in the inset, to illustrate its slight deviation from the expected value of unity as \(t \) increases, due to sampling errors.

\[d(\Omega) = 0. \]

As long as \(\phi' \) is real, the increment \(d\Omega \) vanishes. Because of this feature, Drummond called this choice of \(g \) a minimal gauge function, and regarded it as a natural choice for cases where \(\phi' \) is expected to take real values for most of its history.

We have studied this reformulation of the coagulation problem and confirmed numerically that \(\phi'(t) \) does not suffer from instabilities of the kind experienced by \(\phi(t) \), and that the \(\Omega \)-weighted average of \(\phi' \) appears to agree with various analytic results expected for \(\langle \phi \rangle_{\phi_0} \), as shown in Figure 5. Nevertheless, we notice that the statistical uncertainty in the average of \(\Omega(t) \) grows as time progresses, and this introduces a decline in accuracy, for a given number of realisations. We next address the reasons for this.

\section{Asymptotic behaviour of \(\Omega \)}

The diffusive behaviour of the weight function \(\Omega \) can be best demonstrated by considering the evolution of the mean of \(|\Omega|^2 \). We have \(d\Omega = g\Omega dW_t \) and hence \(d\Omega^* = g^*\Omega^* dW_t \) such that, using Ito’s lemma

\[d(\Omega^2) = \Omega d\Omega^* + \Omega^* d\Omega + g\Omega g^* dW_t, \]

and so

\[d(|\Omega|^2) = \langle |g|^2 |\Omega|^2 \rangle dt, \]

which indicates that the mean square modulus of \(\Omega \) increases monotonically, whatever choice of function \(g \) is made. This result is illustrated schematically in Figure 6, the mean of \(\Omega \) is unity for all \(t \), but its increasing mean square modulus suggests that the distribution of \(\Omega \) spreads out. As a consequence, the extraction of the statistical properties of the problem will require an ever larger number of realisations as \(t \) increases. This is the price to pay; it seems, for the taming of the instabilities in the original SDE.

\section{Optimised gauge}

Nevertheless, the choices available to us in the gauging procedure, or equivalently the freedom to shift the probability measure according to the Cameron-Martin-Girsanov formula, allow us to optimise the quality of the numerical estimates of \(\langle \phi \rangle \). Consider a new gauge function labelled by the real variable \(\kappa \):

\[g = i(\kappa/2)^{1/2}(\phi' - |\phi'| - R), \]

which differs from Eq. \(80 \) by an imaginary constant. It leads to the SDEs

\[d\phi' = -\kappa\phi' (R + |\phi'|) dt + i(2\kappa)^{1/2}\phi' dW_t, \]

and

\[d\Omega = i(\kappa/2)^{1/2}(\phi' - |\phi'| - R) \Omega dW_t, \]

with the property \(\langle \phi \rangle = \langle \Omega \phi' \rangle \). For \(R > 0 \) this has the effect of strengthening the drift towards the origin in the SDE for \(\phi' \). It is revealing to study the evolution of the square modulus of \(\phi' \) under this gauge. We write

\[d(|\phi'|^2) = \phi' d\phi'^* + \phi'^* d\phi' + i(2\kappa)^{1/2}\phi' \left[-i(2\kappa)^{1/2}\phi'^* \right] dt \]

\[= -\kappa |\phi'|^2 (R + |\phi'|) dt - i(2\kappa)^{1/2}|\phi'|^2 dW_t \]

\[- \kappa |\phi'|^2 (R + |\phi'|) dt + i(2\kappa)^{1/2}|\phi'|^2 dW_t + 2\kappa |\phi'|^2 dt, \]

Figure 5. Evolution of \(\text{Re}(\phi'(t)\Omega(t)) \) according to Eqs. (81) and (82), with \(\phi_0 = 1, 2 \) and 3, for the same timestep and number of realisations as in Figure 3. The expected analytic behaviour is indicated, and in comparison with Figure 3 the quality of the numerical results is much improved, which is a consequence of the gauging procedure. The evolution of \(\text{Re}(\Omega) \) for the case with \(\phi_0 = 1 \) is shown in the inset, to illustrate its slight deviation from the expected value of unity as \(t \) increases, due to sampling errors.

Figure 6. Sketch of the probability distribution of \(\Omega \) over the complex plane as time proceeds. The common centre of the dark (early time) and lighter (late time) density plots lies at \(\Omega = 1 \). The diffusive behaviour suggests that the statistics in the sampling of \(\Omega \) and hence the quality of \(\Omega \)-weighted averages will suffer as time progresses.
more, the evolution of the average square modulus of \(R \) is described by

\[
d|\phi'|^2 = 2\kappa(1 - R)|\phi'|^2 - 2\kappa|\phi'|^3,
\]

and thus \(|\phi'|\) evolves deterministically towards an asymptotic value of \((1 - R)\), if \(R \leq 1 \), or zero if \(R > 1 \).

It is also revealing to consider the SDE for \(R \) explicitly:

\[
d(|R|^2) = \phi\, d\Omega + \Omega\, d\phi' + i(\kappa/2)^{1/2}(\phi' - |\phi'| - R)\Omega i(\kappa/2)^{1/2}\phi\, dt
\]

\[
= \phi\, i(\kappa/2)^{1/2}(\phi' - |\phi'| - R)\Omega\, dt
\]

\[
= \Omega \left(-\kappa|\phi'| (R + |\phi'|) dt + i(2\kappa)^{1/2}\phi'\, dW_t\right)
\]

\[
- \kappa|\phi'| (R + |\phi'| - R)\, dt
\]

\[
= -\kappa|\phi'|^2 dt + i(\kappa/2)^{1/2}\phi' (2 - R)\Omega\, dW_t,
\]

such that as \(t \to \infty \) the stochastic term tends towards either

\[
i(\kappa/2)^{1/2}\phi' ((1 - R) \exp[i\arg(\phi')] + 1)\, dW_t,
\]

if \(R \leq 1 \), or \(i(\kappa/2)^{1/2}\phi' (2 - R)\, dW_t \) if \(R > 1 \). Furthermore, the evolution of the average square modulus of \(\Omega \) is described by

\[
d(|\Omega|^2) = \frac{\kappa}{2}|\phi'| - |\phi'| - R|^{2}|\Omega|^2\, dt
\]

which tends to \(\frac{1}{2}\kappa|\Omega|\, dt \) if \(R \leq 1 \), or \(\frac{1}{2}\kappa R^2|\Omega|^2\, dt \) if \(R > 1 \).

This analysis indicates that there are advantages in making specific choices of \(R \). If we choose \(R = 2 \), Eq. (90) shows that we can eliminate the noise term controlling the asymptotic time evolution of \(\Omega \).

The correspondence is very good, and the noise does not significantly distort the results over the time scale for the completion of the coagulation.

Using the gauge function (86) with \(R = 1 \) we can study further aspects of the pseudo-population dynamics that were investigated analytically in section II. For particle coagulation starting from a Poisson distribution with mean \(\lambda \) the averages are simply given by quantities \(\mathcal{A}(N) = \langle \mathcal{A} \rangle_x \). In Figure 8 we plot the evolution of a selection of state probabilities \(P(N,t) \) for \(\lambda = 5 \), derived from Eq. (25), together with the solutions to Eq. (21) for a similar case with the initial Poisson distribution truncated at \(N = 12 \) for convenience. The timestep and number of realisations are the same as in earlier cases. The correspondence is very good, and the noise does not significantly distort the results over the time scale for the completion of the coagulation.

Finally, we examine source enhanced coagulation modelled by Eq. (72), with the use of the optimised gauge. The quantities \(\langle \phi \rangle = \langle \Omega \phi' \rangle \) and \(\langle \phi'^2 \rangle = \langle \Omega \phi'^2 \rangle \) are plotted for \(j = \kappa = 1 \) in Figure 9 and they correspond well with the analytical results for late times obtained in section III. The initial condition is a Poisson distribution with \(\lambda = 2 \). Furthermore, to indicate that not all quantities are statistically well behaved, we also show the average of \(\exp(-\phi) \), which ought to equal \(\exp(-2j) \) for this case. Clearly more realisations would be needed to reproduce this behaviour accurately with the prevailing choice of gauge.
we expect to find behaviour that arises due to statistical fluctuations around low mean populations that cannot be captured in the usual mean field formulation. We plan to address such cases in further work.

Specifically, we employ a Poisson representation\cite{23,24} of the probability $P(N,t)$ that there should be N particles present at time t in the simple case of $A + A \rightarrow A$ kinetics. The Poisson representation is a superposition of Poisson distributions with complex means. The description can be cast as a problem in the stochastic dynamics of a complex pseudo-population, the average of which over the noise and the initial condition is related to the average of the physical particle population. Analytical work gives a series expansion of this average in powers of the initial value of the pseudo-population, and this can be employed to recover known results\cite{19,21,25,27}. The development of the series involves the evaluation of multiple integrals of functions of the Wiener process. We have also identified some exact results valid in the limit $t \rightarrow \infty$, and in Appendix A give an approximate result for small kt that bears a resemblance to a mean field solution to the kinetics. We have discussed the evaluation of averages of general functions of the population, such as higher moments and the standard deviation. We have also evaluated moments of the pseudo-population in the stationary state of a coagulating system enhanced by a constant injection rate of new particles.

Analytical work can only be performed in certain circumstances, and more generally the numerical solution of the stochastic differential equations (SDEs) is necessary, followed by averaging over noise and initial condition. Unfortunately, numerical instabilities make this problematic, as has been noted previously\cite{23,24,27}. However, we follow Drummond\cite{23} in identifying an SDE for a pseudo-population that is free of instabilities, that is to be used together with a weighting procedure that reproduces the statistics of the desired system. In Appendix B we have shown that this ‘gauging’ scheme is equivalent to an adaptive shift in the probability measure for the stochastic variable in the SDE, and that the weighting procedure is an application of the Cameron-Martin-Girsanov formula. This interpretation arguably makes the gauging procedure a little more intuitive.

We have identified a choice of gauge, and associated transformation of the problem, that provides the statistical information in a rather optimised fashion. With this approach, the growth with time in the statistical uncertainty that is inherent with gauging can be adequately controlled, such that we need to generate relatively few realisations of the evolution, requiring a rather slight computational effort. A number of the analytically derived results have been reproduced using this numerical approach.

Of course Monte Carlo simulation of coagulation events taking place in an evolving population of particles would be an obvious alternative numerical method for studying this system. It is readily implemented, for example using...
the Gillespie algorithm\cite{gillespie1977stochastic} and has the capacity to include population fluctuation effects, allowing us to explore various processes of interest. It is an approach that is probably easier to grasp than the methods we have outlined, and more computationally efficient for the problem under consideration here. Nevertheless, we believe that pseudo-population methods will prove to be more efficient than Monte Carlo in coagulation problems involving multiple species.

Since Monte Carlo is equivalent to a solution of the master equations, the point can be made by enumerating how many of these equations there might be. If we wish to study the evolution of clusters of monomers that have size dependent agglomeration properties, then each size must be treated as a distinct species. If we consider cluster sizes ranging from 1 to N_{max} monomers, then the master equations will describe the evolution of probabilities $P(N_1,N_2,\ldots,N_{N_{\text{max}}},t)$ where N_i denotes the population of clusters of size i. If the number of possible values of each population is allowed to lie between 0 and n_i^{max}, then the number of elementary population distributions that must be considered is $\prod_{i=1}^{N_{\text{max}}}(n_i^{\text{max}}+1)$. It is reasonable to say that this number could be rather large and will grow faster than N_{max}. The solution to such a large number of coupled ODEs, or the equivalent Monte Carlo simulation, would be daunting.

On the other hand, the stochastic approach would require the solution to just N_{max} SDEs for pseudo-populations $\phi_i(t)$; these are analogues of the mean populations of clusters of size i. The SDEs would bear some resemblance to the Smoluchowski coagulation equations for mean populations in the mean field, fluctuation-free limit, given in Eq. \eqref{eq:mean_field}. Analytic solution to these equations might not be possible, but numerical solution is not difficult, especially if we have techniques such as gauging at our disposal to avoid some of the pitfalls we have identified. The drawback is that averaging of the SDEs over a variety of noise histories and perhaps initial conditions is necessary. Nevertheless, the task is linear in N_{max} and must eventually become more efficient than direct solution to the master equations for large enough N_{max}.

It is only when the mean of a population becomes small that deviations from mean field behaviour emerge, and so a hybrid approach might be possible whereby mean field rate equations are used to model the early stages of coagulation, going over to pseudo-population rate equations when the mean population becomes small. This is possible since the mean field rate equations have a close resemblance to the evolution equations of the pseudo-populations, which is an important conceptual connection. Specifically, we could integrate the equations for the $\phi_i(t)$ with the neglect of the noise when the modulus of $\phi_i(t)$ is large, starting them off at the initial mean populations of clusters of size i, such that they remain real, and introduce noise, and average over it, only when the modulus becomes small. This is to be investigated.

In conclusion, we have made conceptual and numerical developments of a method for kinetic modelling that was introduced some decades ago but that appears not to have been fully exploited. We believe that in spite of some complexity in the formulation, the approach possesses considerable intuitive value, and that it has the capability to treat systems with interesting statistical properties for which alternative methods are inappropriate or expensive. We intend to explore these possibilities in further studies.

ACKNOWLEDGMENTS

Funding from the Leverhulme Trust through grant F/07/134/BV is gratefully acknowledged.

Appendix A: Steepest descent evaluation

We have seen that if we employ the representation Eq. \eqref{eq:representation}, the set of initial values of ϕ_i need only form a closed contour around the origin in the complex plane. We now demonstrate that for the purposes of computation there is an optimal contour, depending on the initial population in the problem N_0, and that

$$\mathbb{N} = \oint_C d\phi_0 f_{N_0}(\phi_0) \langle \phi \rangle_{\phi_0},$$

(A1)

where $f_{N_0}(\phi_0)$ is given by Eq. \eqref{eq:f_function}, reduces to Eq. \eqref{eq:integral} for situations with a definite initial population, at least for small kt.

Contour integrals of the form $\int\exp[q(z)]dz$ may be evaluated by the method of steepest descents about saddle points in $q(z)$ defined by locations $z = z_s$ in the complex plane where $dq(z)/dz = 0$. We represent the integrand near a saddle point as $\exp(q(z_s)) \approx \exp(q(z_s)) \exp(q''(z_s)(z-z_s)^2/2)$ and integrate along a contour through z_s on which the imaginary part of $q''(z_s)(z-z_s)^2$ is zero and the real part is negative. If the contour is arranged such that it passes over saddle points along the line of steepest descent on the surface of the modulus of the integrand, and elsewhere follows valleys where the modulus of the integrand is small, then the contour integral may be approximated by a set of gaussian integrations about each saddle point position. We write

$$\mathbb{N} = \oint_C d\phi_0 \frac{N_0!}{2\pi i} \exp(\phi_0 - (N_0 + 1) \ln \phi_0 + \ln(\phi)_{\phi_0}),$$

(A2)

and consider $kt \ll 1$. In this limit $M_r \approx t^n$, according to Eq. \eqref{eq:moment}, and hence $C_j(t) \approx (-kt)^{j-1}$ such that $\langle \phi \rangle_{\phi_0} \approx \phi_0 + O(kt)$. Inserting this into the exponent in Eq. \eqref{eq:integral}, we seek to identify saddle points in the remaining part, namely $q(\phi_0) = \phi_0 - N_0 \ln \phi_0$. Solving $q'(\phi_0) = 1 - N_0/\phi_0 = 0$ identifies a single saddle point of the integrand at a location $\phi_0 = N_0$. The modulus of $\phi_0^{N_0} \exp(\phi_0)$ has a minimum at this point and the real axis is the path of steepest ascent. The path of steepest descent passes
through the saddle point perpendicular to the real axis. The modulus of the integrand, for $N_0 = 5$, is shown in Figure 10.

Clearly, it is sensible to place the contour C along the path of steepest descent through the saddle point and then to complete the circuit around the origin through regions where the modulus of the integrand is as small as possible. The contour integral can then be approximated by the contribution along the straight line parallel to the imaginary axis through $\phi_0 = N_0$. Writing $\phi_0 = N_0 + iy$ and with $\langle \phi \rangle_{\phi_0} = \phi_0 F(\phi_0)$ we have

$$
\mathcal{N} \approx \exp \left(\ln F(N_0) \right) \\
\times \int_{-\infty}^{\infty} dy \frac{N_0!}{2\pi i} \exp \left(\frac{1}{2} \frac{1}{\phi_0} \left(N_0 \phi_0 - N_0 \phi_0^2 \right) \right) \\
\approx \frac{N_0!}{2\pi} \langle \phi \rangle_{\phi_0} N_0^{-1} \int_{-\infty}^{\infty} dy \ e^{-N_0 + N_0 \ln N_0 + (iy)^2/(2N_0)} \\
\approx \langle \phi \rangle_{\phi_0} N_0 \frac{N_0}{2\pi} \frac{\exp(N_0)}{N_0^{N_0+1}} \approx \langle \phi \rangle_{N_0},
$$

(A3)

using Stirling’s approximation $n! \approx n^n \exp(-n)(2\pi n)^{1/2}$ which is quite accurate even for N_0 as low as unity. Finally, the expansion (A3) with the $C_j(t)$ valid for $\kappa t \ll 1$ may be written

$$
\langle \phi \rangle_{\phi_0} \approx \sum_{j=1}^\infty (-\kappa t)^{j-1} \phi_0^j = \frac{\phi_0}{1 + \kappa \phi_0 t},
$$

(A4)

making Eq. (A3) and hence Eq. (A2) consistent with the mean field approximation $\mathcal{N} \approx N_0^\kappa / (1 + \kappa N_0 t)$ for small κt.

Appendix B: Equivalence of Drummond gauging and the Cameron-Martin-Girsanov formula

The equivalence between the statistical properties of the gauged stochastic variable ϕ', when suitably weighted, and those of the ungauged variable ϕ, derived by Drummond and explored in section IIIB is a consequence of some fundamental rules in stochastic calculus that are expressed by the Cameron-Martin-Girsanov formula. An SDE such as

$$
dx = adt + bdW_t,
$$

(B1)

is a statement of a connection between dx and a stochastic variable dW_t with certain statistical properties. When we introduce expectation values such as $\langle dx \rangle$ we are implicitly defining a probability distribution or measure over the values taken by the variable dW_t. Normally the notation dW_t represents an increment in a Wiener process, the continuum limit of a symmetric 1-d random walk in discrete space and time, and the implication is that the probability distribution of values of dW_t is gaussian with zero mean and variance equal to dt.

But how might the expectation value of the increment dW_t change if we were to evaluate it with respect to a different probability distribution? For example, what if it were distributed according to a shifted gaussian proportional to $\exp\left(-\frac{(dW_t - m)^2}{2dt}\right)$ where m is the non-zero mean of dW_t making it no longer correspond to a Wiener process? Let us take the drift in the mean of dW_t under such a shifted gaussian distribution to be proportional to the time elapsed, so we may write $m = \mu dt$ and $\langle dW_t \rangle_Q = \mu dt$. The new probability distribution, based on an asymmetric random walk and denoted Q, is indicated through a suffix on the expectation value. We write $\langle dW_t \rangle_P = 0$ in the old measure, which we denote P, and according to which dW_t is indeed an increment in a Wiener process.

Note that $\langle dW_t - \mu dt \rangle_Q = 0$ and $\langle (dW_t - \mu dt)^2 \rangle_Q = dt$ since the variance of dW_t under measure Q is the same as that under P: we have shifted the gaussian probability distribution for dW_t but not changed its width. Hence, if we define $d\tilde{W}_t = dW_t - \mu dt$ then $\langle d\tilde{W}_t \rangle_Q = 0$ and $\langle (d\tilde{W}_t)^2 \rangle_Q = dt$: we can identify a Wiener process that operates under probability measure Q, and relate it to a Wiener process under measure P. The SDE for x now reads

$$
dx = adt + b \left(d\tilde{W}_t + \mu dt \right),
$$

(B2)

and we can choose to evaluate expectation values under measure P, for which $\langle d\tilde{W}_t \rangle_P = -\mu dt$, or measure Q, for which $\langle d\tilde{W}_t \rangle_Q = 0$.

The expectation value $\langle dx \rangle_Q$ is the solution to a problem that differs from the one initially posed, since the drift term in the SDE has been changed from adt to $(a + b\mu)dt$. However, the point is that it is possible to establish a link between expectation values under the two

Figure 10. Modulus of $\phi_0^{-N_0} \exp(\phi_0)$ for $N_0 = 5$, indicating the saddle point at $\phi_0 = 5$: the path of steepest descent through this point lies parallel to the imaginary axis.
different measures. The average of dx under measure P is equal to a weighted average of dx under Q. Formally, we can write
\[
\langle dx \rangle_P = \left(\frac{dP}{dQ} dx \right)_Q,
\] (B3)
where dP/dQ is the Radon-Nikodym derivative of probability measure P with respect to Q. Furthermore, the Cameron-Martin-Girsanov formula states that we can write
\[
\frac{dP}{dQ} = \exp \left(-\mu d\tilde{W}_t - \frac{1}{2} \mu^2 dt \right),
\] (B4)
which is just a ratio of the gaussian distributions $\exp[-(dW_t + \mu dt)^2/(2dt)]$ and $\exp[-dW_t^2/(2dt)]$. We now define a quantity Ω through the relation $\exp(d\ln\Omega) = dP/dQ$ such that
\[
d\ln\Omega = -\mu^2 dt/2 - \mu d\tilde{W}_t,
\] (B5)
and using Ito’s lemma, we show that Ω evolves according to
\[
d\Omega = d\exp(\ln\Omega) = \exp(\ln\Omega) d\ln\Omega + \frac{1}{2} \exp(\ln\Omega) \mu^2 dt
= \Omega \left(-\mu^2 dt/2 - \mu d\tilde{W}_t + \mu^2 dt/2 \right) = -\mu d\tilde{W}_t,
\] (B6)
We see from Eqs. (B3), (B6) that averages of the increment dx over differently distributed random increments can be related to one another, and that the quantity $d\Omega$ describes the connection. In order for this to make sense mathematically, two conditions must be met. The first is that no process that has non-zero probability under P should be impossible under Q, and vice versa. The second, known as Novikov’s condition, requires that $\langle \exp(\frac{1}{2} \mu^2 dt) \rangle < \infty$.
We now invert the point of view, and instead of considering a single variable treated according to two different averaging procedures, we relate the evolution of two different variables under the same averaging. Explicitly, we consider variable x evolving as $dx = adt + bdW_t$ and another variable x' that evolves according to $dx' = (a + b\mu)dt + bdW_t$, with $x(0) = x'(0)$. The above results imply that we can write
\[
\langle dx \rangle = \langle \exp(-\mu^2 dt/2 - \mu dW_i) dx' \rangle,
\] (B7)
which resembles a combination of Eqs. (B3) and (B4). We shall demonstrate its validity shortly. Note that there is no need to indicate the probability measure on the brackets, or further label the increment dW_i, since here it is a standard Wiener increment with zero mean in the probability distribution under consideration. The inserted factor accounts for the difference in drift in the evolution of x and x' and may also be written $\exp(d\ln\Omega)$ with $d\ln\Omega = -\mu^2 dt/2 - \mu d\tilde{W}_t$ or equivalently $d\Omega = -\mu d\tilde{W}_t$. Clearly we can write $\exp(\int d\ln\Omega) = \exp(\ln(\Omega(t) - \ln(\Omega(0))) = \Omega(t)/\Omega(0)$ so
\[
\Omega(t) = \exp \left(-\frac{1}{2} \int_0^t \mu^2(t') dt' - \int_0^t \mu(t') dW_{t'} \right).
\] (B8)

if we set $\Omega(0) = 1$. Note that $\langle \Omega \rangle = \Omega(0) + \int \langle d\Omega \rangle = 1 - \int \langle \mu dW_t \rangle = 1$. Novikov’s condition on μ for a finite interval of time now reads $\langle \exp \left(\frac{1}{2} \int_0^t \mu^2(t') dt' \right) \rangle < \infty$.
Now consider the following:
\[
\langle \Omega(t) (x'(t) - x'(0)) \rangle
= \left\langle \prod_{i \neq k} e^{-\frac{1}{2} \mu^2(t_k) dt_{k-\mu(t_k)} dW_i} \sum_j dx'_j \right\rangle
= \sum_j \left\langle e^{-\frac{1}{2} \mu^2(t_k) dt_{k-\mu(t_k)} dW_i} dx_i' \right\rangle,
\] (B9)
where we use a discrete representation of the time integration. We have recognised that if $k \neq j$ then
\[
\left\langle e^{-\frac{1}{2} \mu^2(t_k) dt_{k-\mu(t_k)} dW_i} \right\rangle
= \left\langle e^{-\frac{1}{2} \mu^2(t_k) dt_{k-\mu(t_k)} dW_i} \right\rangle = \prod_{i \neq k} e^{-\frac{1}{2} \mu^2(t_k) dt_{k-\mu(t_k)} dW_i} dx_i',
\] (B10)
such that by repetition of this step, the expression reduces to $\langle \exp(-\frac{1}{2} \mu^2(t_j) dt_{j-\mu(t_j)} dW_j) dx'_j \rangle$. Now, since $\langle \exp(-\mu dW_i) \rangle = \exp(\mu^2 dt/2)$ we can write
\[
\left\langle \exp(-\mu dW_i) \right\rangle = -d\langle \exp(-\mu dW_i) \rangle /d\mu
= -\mu dt \exp(\mu^2 dt/2),
\] (B11)
and with the insertion of $dx' = (a + b\mu)dt + bdW_t$, we conclude that
\[
\left\langle e^{-\frac{1}{2} \mu^2(t_j) dt_{j-\mu(t_j)} dW_i} dx'_j \right\rangle
= (a(t_j) + b\mu(t_j)) dt - b\mu(t_j) dt = a(t_j) dt = \langle dx_j \rangle,
\] (B12)
such that
\[
\langle \Omega(t)(x'(t) - x'(0)) \rangle = \sum_j \langle dx_j \rangle = \langle x(t) - x(0) \rangle,
\] (B13)
and since
\[
\langle \Omega(t)x'(0) \rangle = \langle \Omega(t) \rangle \langle x'(0) \rangle = \langle x(0) \rangle,
\] (B14)
this means that
\[
\langle x(t) \rangle = \langle \Omega(t)x'(t) \rangle.
\] (B15)
Thus we have shown that if we wish to evaluate the quantity $\langle x(t) \rangle$ generated by SDE $dx = adt + bdW_t$, we could instead solve the SDEs
\[
dx' = adt + b dW_t - gd t
d\Omega = g dW_t,
\] (B16)
with initial conditions $x'(0) = x(0)$, $\Omega(0) = 1$, and with the function $g(t) = -\mu(t)$ taking arbitrary form subject to Novikov’s condition, and then use the results to evaluate the equivalent quantity $\langle \Omega(t)x'(t) \rangle$. Clearly, this is identical to Drummond’s gauging scheme.

1. M. Smoluchowski, Ann. Physik (Leipzig) 21, 756 (1906).
2. F. Leyvraz, Phys. Rep. 383, 95 (2003).
3. A. A. Lushnikov, Physica D 222, 37 (2006).
4. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, Boston, 1997).
5. B. Mehlig and M. Wilkinson, Phys. Rev. Lett. 92, 250602 (2004).
6. R. McGraw and Y. Liu, Geophys. Res. Lett. 33, L03802 (2006).
7. P. T. Spicer and S. E. Pratsinis, AIChE Journal 42, 1612 (1996).
8. A. A. Lushnikov, J. Colloid Interface Sci. 65, 276 (1978).
9. A. A. Lushnikov, J. Phys. A: Math. Gen. 38, L383 (2005).
10. J. Krug, Phys. Rev. E 67, 065102(R) (2003).
11. M. Smith and T. Matsoukas, Chem. Eng. Sci. 53, 1777 (1998).
12. M. Doi, J. Phys. A: Math. Gen 9, 1465 (1976).
13. M. Doi, J. Phys. A: Math. Gen 9, 1479 (1976).
14. L. Peliti, J. de Phys. 46, 1469 (1985).
15. H. Patzlaff, S. Sandow, and S. Trimper, Z. für Phys. B 95, 357 (1994).
16. P.-A. Rey and M. Droz, J. Phys. A: Math. Gen. 30, 1101 (1997).
17. D. C. Mattis and M. L. Glasser, Rev. Mod. Phys. 70, 979 (1998).
18. M. Sasai and P. G. Wolynes, Proc. Nat. Acad. Sci. USA 100, 2374 (2003).
19. U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A: Math. Gen. 38, R79 (2005).
20. J. Ohkubo, J. Stat. Phys. P09017 (2007).
21. M. Schulz, Eur. Phys. J. Special Topics 161, 143 (2008).
22. J. Ohkubo, Phys. Rev. E 83, 041915 (2007).
23. C. W. Gardiner and S. Chaturvedi, J. Stat. Phys. 17, 429 (1977).
24. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, 2009).
25. P. D. Drummond, Eur. Phys. J. B 38, 617 (2004).
26. P. D. Drummond, T. G. Vaughan, and A. J. Drummond, J. Phys. Chem. A 114, 10481 (2010).
27. O. Deloubrière, L. Frachebourg, H. J. Hilhorst, and K. Kitahara, Physica A 308, 135 (2002).
28. D. Hochberg, M.-P. Zorzano, and F. Morán, Chem. Phys. Lett. 423, 54 (2006).
29. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
30. A. V. Barzykin and M. Tachiya, Phys. Rev. B 72, 075425 (2005).
31. O. Biham and I. Furman, Astrophys. J. 553, 595 (2001).
32. A. A. Lushnikov, J. S. Bhatt, and I. J. Ford, J. Aerosol Sci. 34, 1117 (2003).
33. J. S. Bhatt and I. J. Ford, J. Chem. Phys. 118, 3166 (2003).
34. N. J. B. Green, T. Toniazzo, M. J. Pilling, D. P. Ruffle, N. Bell, and T. W. Hartquist, Astron. & Astrophys. 375, 1111 (2001).
35. C. M. Losert-Valiente Kroon and I. J. Ford, arXiv:0710.5540v1 (2007).
36. Wolfram Research, Inc., Mathematica Version 7 (Wolfram Research, Inc., 2008).
37. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1972).
38. R. H. Cameron and W. T. Martin, Ann. Math. 45, 386 (1944).
39. R. H. Cameron and W. T. Martin, Trans. Amer. Math. Soc. 58, 184 (1945).
40. I. V. Girsanov, Theor. Probab. Appl. 5, 285 (1960).
41. M. W. Baxter and A. J. O. Rennie, Financial calculus: An introduction to derivative pricing (Cambridge University Press, 1996).