Supplementary Information for:
Accelerated reproduction is not an adaptive response to early-life adversity in wild baboons

Chelsea J. Weibela, Jenny Tungb,c,d,e, Susan C. Albertsb,c,d,e, Elizabeth A. Archied

aDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; bDepartment of Biology, Duke University, Durham, NC 27708, USA; cDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; dInstitute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya; eDuke Population Research Institute, Duke University, Durham, NC 27708, USA

Corresponding authors: Chelsea J. Weibel (cweibel2@gmail.com; 574-631-3455) or Elizabeth A. Archie (earchie@nd.edu; 574-631-0178)

Address: Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN 46556, USA

Contents:
1. Supplementary Information Methods ... Page 3
2. Fig. S1. Cumulative early-life adversity predicted lifespan in female baboons .. Page 5
3. Fig. S2. Individual sources of early-life adversity did not predict the timing or pace of reproduction in female baboons Page 6
4. Fig. S3. Accelerated combined reproductive pace offered fitness benefits, but only for individuals who experienced little early-life adversity Page 7
5. Fig. S4. Short interbirth intervals predicted shorter lifespans for individuals who experienced maternal death .. Page 8
6. Table S1. Sample sizes for all statistical analyses ... Page 9
7. Table S2. Results of a multivariate Cox proportional hazards model testing the relationship between each source of early-life adversity and lifespan in female baboons .. Page 10
8. Table S3. Effects of lifespan and pace of reproduction on female lifetime reproductive success (LRS), where LRS is defined as the total number of offspring born to each female that survived to 70 weeks Page 11
9. Table S4. The effects of early-life adversity on pace of reproduction Page 12
10. Table S5. Testing Nettle and Bateson’s 2nd prediction: interaction effects between early-life adversity and pace of reproduction predicting...
lifetime reproductive success, defined as the total number of live offspring born to each female

11. Table S6. Testing Nettle and Bateson’s 2nd prediction: interaction effects between early-life adversity and pace of reproduction predicting lifetime reproductive success, defined as the total number of offspring born to each female that survived to 70 weeks

12. Table S7. Model results for the three Cox proportional hazards models that include maternal death, the three pace of reproduction metrics, and their interactions as predictors of lifespan

13. Table S8. Testing Nettle and Bateson’s 3rd prediction: interaction effects between lifespan and pace of reproduction predicting lifetime reproductive success, defined as the total number of live offspring born to each female

14. Table S9. Testing Nettle and Bateson’s 3rd prediction: interaction effects between lifespan and pace of reproduction predicting lifetime reproductive success, defined as the total number of offspring born to each female that survived to 70 weeks

15. Supplementary Information References
Supplementary Information Text

Methods

Measuring early-life adversity

We measured the same six sources of early-life adversity used in Tung *et al.* (1). The data underlying these measures were collected as follows.

Maternal death. Maternal death occurred if the focal female’s mother died before the focal female reached 4 years of age. Four years represents the earliest age when females attain menarche and become sexually mature (2).

Presence of a competing younger sibling. The presence of a competing younger sibling occurred if the focal female’s mother gave birth to another live offspring before the focal female reached 1.5 years of age, which represents the lower quartile of surviving interbirth intervals in this population.

Drought. Drought occurred if the total rainfall during the focal female’s first year of life did not exceed 200 mm (median annual rainfall is 344 mm). Rainfall is measured daily at the field site using a rain gauge.

Maternal social isolation. We calculated maternal social isolation by determining the relative social connectedness of a focal female’s mother to other adult females during the first two years of the focal female’s life. Social connectedness measures were based on a metric of social connectedness (SCI-F) used in previous studies in this population (1, 3). SCI-F measures the mother’s frequency of grooming interactions (both as the actor or recipient) with other adult females in the social group in the same year and is then normalized relative to these rates for all other females alive in the population during the same year. The value was standardized and adjusted for observer effort (1, 3). To transform this measure of social connectedness into a measure of social isolation, we multiplied these values by -1. For the final maternal social isolation variable, negative measures thus represented females with relatively high frequencies of grooming during the designated time period, while positive measures represented females with relatively low frequencies of grooming (i.e. females with socially isolated mothers).

Maternal dominance rank. Maternal dominance rank was defined as the ordinal dominance rank of the female’s mother during the month that the focal female was born. Dominance ranks in Amboseli are determined based on the observed outcomes of dyadic aggressive interactions, on a monthly basis (4). Win and loss records are compiled into a pairwise interaction matrix and rank orderings are then assigned to
minimize the number of interactions in which lower ranking females won interactions with higher ranking females (1, 5).

Social density. Social density was determined based on the total number of adult social group members in the focal female’s social group on the day of her birth. Membership in a social group is determined via census data that are collected during regular field observations. Individuals are considered adults if the females have attained menarche and the males have enlarged testes.

Measuring pace of reproduction and lifespan

Calculating age at first live birth. Age at first birth was defined as the focal female’s age when she gave birth to her first live offspring. For the majority of individuals in the data set, the subject’s birthdate and the date when she gave birth to her first live offspring are known to within a few days (birthdate=91.4%, N=255; date of first birth=90.3%, N=252); for the rest of the individuals, the dates are accurate within three months (birthdate=8.6%, N=24; date of first birth=9.7%, N=27).

Calculating lifespan. For all lifespan measurements, individuals’ birthdates and death dates are known within a few days. In our survival models, we also included censored individuals—individuals who are either still alive or for whom we stopped following while they were still living. For these individuals (N=132; 57.4%), birthdates and censored dates are also known to within a few days.
Fig. S1. Cumulative early-life adversity predicted lifespan in female baboons. Survival curves show that the number of experienced sources of early-life adversity predicted adult lifespan. Lifespan was significantly reduced for individuals who experienced more sources of adversity ($r^2=0.052$, Wald Test $P=4.67 \times 10^{-4}$, $N=230$). Colors indicate the number of adverse conditions occurring in early life.
Fig. S2. Individual sources of early-life adversity did not predict the timing or pace of reproduction in female baboons. Plots depict the relationship between all pairwise combinations of the three individual sources of early-life adversity that predict survival (maternal death [row A]; competing sibling [row B]; maternal social isolation [row C]), and the three measures of reproductive pace (age at first birth [left column]; interbirth interval [middle column]; combined reproductive pace [right column]). None of the sources of early-life adversity significantly predicted any of the pace of reproduction measures. Data points in plots A and B are jittered along the x-axis to increase readability.
Fig. S3. Accelerated combined reproductive pace offered fitness benefits, but only for individuals who experienced little early-life adversity. (A) Predicted relationships between cumulative adversity, pace of reproduction, and lifetime reproductive success (LRS) under the iPAR model. (B) The observed relationships between cumulative adversity, combined reproductive pace, and LRS in this study. The points in B represent the raw data and are colored and shaped based on whether the combined reproductive pace was above (accelerated=blue circles) or below (delayed=purple triangles) the median value. The lines represent the predicted values from the linear model that best fit the data, holding combined reproductive pace at the bottom 25th percentile (delayed=purple dashed) or the top 25th percentile (accelerated=blue solid). The model with the interaction was nearly a better fit for the data compared to the model without the interaction, based on our model selection criterion (ΔAIC=1.999; N=32); however, the interaction was in the opposite direction of the iPAR’s prediction (plot A). Specifically, plot B shows that accelerated reproduction predicted greater LRS for individuals who did not experience early-life adversity, but not for females who did experience early-life adversity. Data points in plot B are jittered along the x-axis to increase readability.
Fig. S4. Short interbirth intervals predicted shorter lifespans for individuals who experienced maternal death. Survival curves showing the interaction effect between maternal death and average interbirth interval ($P_{interaction}=0.035$; $P_{IBI}=0.014$; $P_{maternal death}=0.034$; N=110). Colors represent exposure to maternal death in the first four years of life (blue=no maternal death; red=maternal death) and line types represent average length of interbirth intervals (solid=shorter than the median; dashed=longer than the median). The pattern reveals that individuals who experienced maternal death led shorter lives if they accelerated their reproduction as adults.
Table S1. Sample sizes for all statistical analyses. Analyses focus on the four measures of early-life adversity that most strongly predict lifespan (see Results).

Analysis	Maternal death	Competing sibling	Maternal social isolation	Cumulative adversity
Nettle & Bateson’s 1st prediction: Does early adversity predict survival?				230 females
Initial analysis 1: Does accelerated pace of reproduction increase fitness?	Age at first birth & average IBI			110 females
	Combined reproductive pace			81 females
Initial analysis 2: Does early-life adversity predict accelerated pace of reproduction?	Age at first birth	279 females	279 females	211 females
	IBI	643 intervals in 189 females	643 intervals in 189 females	452 intervals in 138 females
	Combined reproductive pace	80 females	80 females	32 females
Nettle & Bateson’s 2nd prediction: Does accelerated pace of reproduction predict increased fitness specifically for females who experienced early-life adversity?	Age at first birth	145 females	145 females	85 females
	Average IBI	110 females	110 females	61 females
	Combined reproductive pace	81 females	81 females	32 females
Nettle & Bateson’s 3rd prediction: Does accelerated pace of reproduction predict increased fitness specifically for females with short lifespan?	Age at first birth			145 females
	Average IBI			110 females
	Combined reproductive pace			81 females
Table S2. Results of a multivariate Cox proportional hazards model testing the relationship between each source of early-life adversity and lifespan in female baboons (whole model \(r^2 = 0.08, P = 2.36 \times 10^{-3}, N = 230 \)). Maternal death, maternal social isolation, and competing sibling were the strongest predictors of lifespan in this population.

Source of early-life adversity	Coefficient	Hazard ratio (± 95% CI)	P	Interpretation
Maternal rank	0.024	1.024 (0.980 – 1.070)	0.288	
Competing sibling	0.532	1.702 (0.968 – 2.994)	0.065	Competing younger sibling predicts earlier mortality
Maternal social isolation	0.378	1.459 (1.042 – 2.043)	0.028	Maternal social isolation predicts earlier mortality
Rainfall	0.081	1.084 (0.603 – 1.948)	0.787	
Maternal death	0.866	2.377 (1.507 – 3.748)	1.96 \times 10^{-4}	Maternal death predicts earlier mortality
Social density	-0.005	0.995 (0.968 – 1.023)	0.720	
Table S3. Effects of lifespan and pace of reproduction on female lifetime reproductive success (LRS), where LRS is defined as the total number of offspring born to each female that survived to 70 weeks†.

Predictor variable*	Coefficient	SE	z	P	% variance explained
Model 1: Do lifespan, age at first birth, and average IBI predict LRS?					
Lifespan	0.407	0.021	19.518	7.00 x 10^{-37}	71.8%
Age at first birth	-0.608	0.174	-3.503	6.74 x 10^{-4}	6.7%
Average IBI	-3.043	0.700	-4.347	3.18 x 10^{-5}	3.3%
Model 2: Do lifespan and combined reproductive pace predict LRS?					
Lifespan	0.422	0.025	16.591	2.65 x 10^{-27}	70.5%
Combined reproductive pace	-0.884	0.154	-5.755	1.63 x 10^{-7}	`8.8%

† Results using the original definition of lifetime reproductive success (the total number of live offspring born to each female) are found in Table 2 in the main text.
* Lifespan and age at first birth are measured in years, while average interbirth interval (IBI) is the natural log transformed length of the mean IBI measured in days.
Table S4. The effects of early-life adversity on pace of reproduction. For initial analysis 2, we used multivariate linear models to test all pairwise combinations of different measures of early-life adversity and different measures of reproductive acceleration. Our measures of early adversity included cumulative adversity (all adverse events combined), maternal death, competing sibling, and maternal social isolation; our measures of reproductive acceleration included age at first birth, surviving interbirth intervals, and combined reproductive pace. Covariates include social/environmental factors shown in prior studies to explain variation in female reproduction in our population (6, 7). None of the sources of early-life adversity significantly predicted female reproductive timing or pace (p-values > 0.05).

Predictor variables	Coefficient	SE	P	Interpretation	
Effects of cumulative adversity					
Response variable: Age at first birth (N = 211 females)	Cumulative early adversity	0.021	0.047	0.66	Cumulative adversity does not predict age at first birth
Group size at first birth	-0.003	0.007	0.67	Group size does not predict age at first birth	
Response variable: Interbirth interval (IBI) (N = 452 intervals in 138 females)	Cumulative early adversity	0.006	0.014	0.69	Cumulative adversity does not predict IBI duration
Rank at the start of the IBI	0.009	0.002	<0.001	Low ranking females have longer IBIs	
Parity at the start of the IBI	0.024	0.032	0.46	Parity does not predict IBI duration	
Age at the start of the IBI	-0.063	0.019	<0.001	Middle-aged females have shorter IBIs	
Age² at the start of the IBI	0.003	0.001	<0.001		
Response variable: Combined reproductive pace (CRP) (N = 32 females)	Cumulative early adversity	-0.046	0.133	0.73	Cumulative adversity does not predict CRP
Group size at first birth	-0.014	0.017	0.39	Group size does not predict CRP	
Average rank at the start of the IBIs	0.089	0.022	<0.001	Low ranking females have slower CRP	
Effects of maternal death					
Response variable: Age at first birth (N = 279 females)	Maternal death	-0.020	0.087	0.82	Maternal death does not predict age at first birth
Group size at first birth	0.001	0.006	0.90	Group size does not predict age at first birth	
Response variable: Interbirth interval (N = 643 intervals in 189 females)	Maternal death	-0.010	0.025	0.69	Maternal death does not predict IBI duration
Rank at the start of the IBI	0.009	0.002	<0.001	Low ranking females have longer IBIs	
Parity at the start of the IBI	0.038	0.027	0.16	Parity does not predict IBI duration	
Age at the start of the IBI	-0.045	0.015	0.003	Middle-aged females have shorter IBIs	
Age² at the start of the IBI	0.002	0.001	0.002		
Response variable: Combined reproductive pace (N = 80 females)	Maternal death	0.055	0.160	0.73	Maternal death does not predict CRP
Group size at first birth	0.009	0.015	0.55	Group size does not predict CRP	
--------------------------	-------	-------	------	---------------------------------	
Average rank at the start of the IBIs	0.089	0.016	<0.001	Low ranking females have slower CRP	

Effects of competing sibling

Response variable: Age at first birth (N = 279 females)
Competing sibling
Group size at first birth

Response variable: Interbirth interval (N = 643 intervals in 189 females)
Competing sibling
Rank at the start of the IBI
Parity at the start of the IBI
Age at the start of the IBI
Age² at the start of the IBI

Response variable: Combined reproductive pace (N = 80 females)
Competing sibling
Group size at first birth
Average rank at the start of the IBIs

Effects of maternal social isolation

Response variable: Age at first birth (N = 211 females)
Maternal social isolation
Group size at first birth

Response variable: Interbirth interval (N = 452 intervals in 138 females)
Maternal social isolation
Rank at the start of the IBI
Parity at the start of the IBI
Age at the start of the IBI
Age² at the start of the IBI

Response variable: Combined reproductive pace (N = 32 females)
Maternal social isolation
Group size at first birth
Average rank at the start of the IBIs
Table S5. Testing Nettle and Bateson’s 2nd prediction (8): interaction effects between early-life adversity and pace of reproduction predicting lifetime reproductive success, defined as the total number of live offspring born to each female. Results using the alternative definition of lifetime reproductive success, which includes offspring survival to weaning, are found in Table S6. We tested for an interaction effect between all pairwise combinations of early-life adversity (cumulative early-life adversity, maternal death, competing sibling, and maternal social isolation) and all three measures of reproductive acceleration (age at first birth, surviving interbirth intervals, and combined reproductive pace). For each early-life adversity and pace of reproduction combination, the best-fitting model for predicting lifetime reproductive success was determined via a difference in Akaike information criteria (AIC) greater than 2; if the difference in AICs was less than 2, we chose the simpler model (the model without the interaction effect). ΔAIC values greater than 2 represent comparisons where the model with the interaction was a better fit for the data. The asterisk (*) marks a model where the interaction was a better fit for the data. For all of the adversity and pace of reproduction pairings, the model with the interaction was only a better fit under one condition: maternal death and combined reproductive pace. However, this interaction was in the opposite direction of the iPAR’s prediction.

Predictor variable	Coefficient	SE	P	ΔAIC (ΔAIC > 2 supports the presence of an interaction effect)	Interpretation
Adversity metric: Cumulative adversity					
Pace of reproduction metric: Age at first birth (N = 85 females)					
Interaction Age at first birth	-1.888	0.861	0.031	-1.318	The interaction effect does not significantly improve model fit
Cumulative adversity	-4.084	3.475	0.243		
Interaction	0.453	0.560	0.422		
No interaction Age at first birth	-1.310	0.478	0.008		
Cumulative adversity	-1.293	0.371	0.001		
Pace of reproduction metric: Interbirth interval (N = 61 females)					
Interaction Interbirth interval	-6.598	4.309	0.131	-1.976	The interaction effect does not significantly improve model fit
Cumulative adversity	-3.533	18.048	0.846		
Interaction	0.418	2.769	0.881		
No interaction Interbirth interval	-6.020	1.953	0.003		
Cumulative adversity	-0.811	0.414	0.055		
Pace of reproduction metric: Combined reproductive pace (N = 32 females)					
Interaction Combined reproductive pace	-3.260	1.568	0.047	1.999	The interaction effect does not significantly improve model fit
Cumulative adversity	-0.433	0.612	0.485		
Interaction	1.780	0.922	0.064		
Adversity metric: Maternal death

Pace of reproduction metric: Age at first birth (N = 145 females)

Interaction	Age at first birth	Maternal death	Interaction	p-value
Interaction	-1.597	0.468	0.153	
Maternal death	-7.761	4.895	0.001	
Interaction	1.147	0.789	0.149	
No interaction	-1.194	0.378	0.223	
Maternal death	-0.701	0.572		

The interaction effect does not significantly improve model fit.

Pace of reproduction metric: Interbirth interval (N = 110 females)

Interaction	Interbirth interval	Maternal death	Interaction	p-value
Interaction	-8.364	1.875	<0.001	
Maternal death	-42.391	21.401	0.054	
Interaction	6.408	3.289		
No interaction	-6.282	1.560	<0.001	
Maternal death	-0.713	0.583	0.224	

The interaction effect does not significantly improve model fit.

Pace of reproduction metric: Combined reproductive pace (N = 81 females)

Interaction	Combined reproductive pace	Maternal death	Interaction	p-value
Interaction	-1.598	0.489	0.002	4.001*
Maternal death	-0.762	0.696	0.277	
Interaction	1.794	0.737	0.017	
No interaction	-0.810	0.377	0.035	
Maternal death	-0.634	0.716	0.379	

The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who do not experience maternal death and accelerate their reproduction accrue fitness benefits.

Adversity metric: Competing sibling

Pace of reproduction metric: Age at first birth (N = 145 females)

Interaction	Age at first birth	Competing sibling	Interaction	p-value
Competing sibling	0.389	5.877	0.947	-1.881
Interaction	-0.330	0.968	0.734	
No interaction	-1.301	0.375	0.001	
Competing sibling	-1.599	0.650	0.015	

The interaction effect does not significantly improve model fit.

Pace of reproduction metric: Interbirth interval (N = 110 females)

Interaction	Interbirth interval	Competing sibling	p-value	
Competing sibling	-6.617	1.776	<0.001	
No interaction	-1.779	10.202	25.377	0.688

The interaction effect does not significantly
Interaction	Combined reproductive pace	Competing sibling	Interaction	Combined reproductive pace	Competing sibling	
No interaction	-1.819	3.939	0.645	-6.987	1.580	<0.001
Pace of reproduction metric: Combined reproductive pace (N = 81 females)						
Interaction	-0.868	1.245	0.488	-1.490		
No interaction	-1.110	0.426	0.011			
Adversity metric: Maternal social isolation						
Pace of reproduction metric: Age at first birth (N = 85 females)						
Interaction	-1.405	0.542	0.011	-1.155		
Maternal isolation	4.920	6.094	0.422			
Interaction	-0.873	0.970	0.371			
No interaction	-1.273	0.521	0.017			
Maternal isolation	-0.537	0.598	0.372			
Pace of reproduction metric: Interbirth interval (N = 61 females)						
Interaction	-7.630	2.162	<0.001	0.488		
Maternal isolation	45.700	29.548	0.127			
Interaction	-6.988	4.536	0.129			
No interaction	-6.312	2.008	0.003			
Maternal isolation	0.194	0.638	0.762			
Pace of reproduction metric: Combined reproductive pace (N = 32 females)						
Interaction	-0.869	0.716	0.235	0.809		
Maternal isolation	-1.066	0.990	0.290			
Interaction	-2.836	1.770	0.120			
No interaction	-0.568	0.709	0.429			
Maternal isolation	-0.575	0.966	0.556			

The interaction effect does not significantly improve model fit.
Table S6. Testing Nettle and Bateson’s 2nd prediction (8): interaction effects between early-life adversity and pace of reproduction predicting lifetime reproductive success, defined as the total number of offspring born to each female that survived to 70 weeks. Results using the original definition of lifetime reproductive success, which does not consider offspring survival, are found in Table S5. We tested for an interaction effect between all pairwise combinations of early-life adversity (cumulative early-life adversity, maternal death, competing sibling, and maternal social isolation) and all three measures of reproductive acceleration (age at first birth, surviving interbirth intervals, and combined reproductive pace). For each early-life adversity and pace of reproduction combination, the best-fitting model for predicting lifetime reproductive success was determined via a difference in Akaike information criteria (AIC) greater than 2; if the difference in AICs was less than 2, we chose the simpler model (the model without the interaction effect). ΔAIC values greater than 2 represent comparisons where the model with the interaction was a better fit for the data. The asterisk (*) marks a model where the interaction was a better fit for the data. For all of the adversity and pace of reproduction pairings, the model with the interaction was only a better fit under two conditions: maternal death and interbirth intervals, and maternal death and combined reproductive pace. However, these interactions were in the opposite direction of the iPAR’s prediction.

Model	Predictor variable	Coefficient	SE	P	ΔAIC (>2 supports the presence of an interaction effect)	Interpretation
Adversity metric: Cumulative adversity						
Pace of reproduction metric: Age at first birth (N = 85 females)						
Interaction	Age at first birth	-1.729	0.736	0.021	-1.314	The interaction effect does not significantly improve model fit
	Cumulative adversity	-3.642	2.971	0.224		
	Interaction	0.388	0.479	0.421		
No interaction	Age at first birth	-1.233	0.409	0.003		
	Cumulative adversity	-1.249	0.317	<0.001		
Pace of reproduction metric: Interbirth interval (N = 61 females)						
Interaction	Interbirth interval	-10.792	3.647	0.004	0.227	The interaction effect does not significantly improve model fit
	Cumulative adversity	-23.032	15.275	0.137		
	Interaction	3.411	2.343	0.151		
No interaction	Interbirth interval	-6.070	1.683	<0.001		
	Cumulative adversity	-0.801	0.357	0.029		
Pace of reproduction metric: Combined reproductive pace (N = 32 females)						
Interaction	Combined reproductive pace	-2.638	1.436	0.077	1.390	The interaction effect does not significantly improve model fit
	Cumulative adversity	-0.937	0.560	0.106		
	Interaction	1.495	0.845	0.088		
No interaction	Combined reproductive pace	-0.315	0.603	0.605		
Adversity metric: Maternal death

Pace of reproduction metric: Age at first birth (N = 145 females)	Interaction	Age at first birth	Maternal death	Interaction	Maternal death	Interaction
		-1.567	0.387	<0.001	-7.994	4.043
		1.149	0.652	0.080	0.038	0.038
The interaction effect does not significantly improve model fit		1.160				

Pace of reproduction metric: Interbirth interval (N = 110 females)

Interaction	Interbirth interval	Maternal death	Interaction
	-8.183	1.532	<0.001
	-51.064	17.491	0.004
	7.699	2.688	0.005
The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who do not experience maternal death and have short IBIs accrue fitness benefits	6.198*		

Pace of reproduction metric: Combined reproductive pace (N = 81 females)

Interaction	Combined reproductive pace	Maternal death	Interaction
	-1.253	0.422	0.004
	-1.287	0.601	0.035
	1.414	0.637	0.029
The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who do not experience maternal death and accelerate their reproduction accrue fitness benefits	3.031*		

Adversity metric: Competing sibling

Pace of reproduction metric: Age at first birth (N = 145 females)	Interaction	Age at first birth	Competing sibling	Interaction
		-1.307	0.341	<0.001
		-2.485	4.815	0.607
		0.106	0.793	0.894
The interaction effect does not significantly improve model fit	-1.982			

Pace of reproduction metric: Interbirth interval (N = 110 females)

Interaction	Interbirth interval	Competing sibling	Interaction					
	-7.329	1.454	<0.001					
	-26.301	20.775	0.208					
	3.791	3.224	0.242					
The interaction effect does not significantly improve model fit	-0.575							
Interaction	No interaction	Combined reproductive pace	Competing sibling	Interaction	Combined reproductive pace	Competing sibling	Interaction	P value
---------------------	----------------	----------------------------	-------------------	---------------	----------------------------	-------------------	---------------	-----------
	Interbirth interval	-6.558	1.300	<0.001		-1.887	0.598	0.002
	Competing sibling	-0.872	0.982	0.378				
	Interaction	1.651	1.039	0.116				
Pace of reproduction metric: Combined reproductive pace (N = 81 females)								
	No interaction	Combined reproductive pace	-1.050	0.337	0.003			
	Competing sibling	-1.892	0.751	0.138				
	Interaction	1.651	1.039	0.116				
Adversity metric: Maternal social isolation								
	No interaction	Combined reproductive pace	-1.205	0.474	0.013			
	Maternal isolation	-0.064	5.325	0.990				
	Interaction	-0.070	0.848	0.934				
Pace of reproduction metric: Age at first birth (N = 85 females)								
	No interaction	Combined reproductive pace	-1.194	0.453	0.010			
	Maternal isolation	-0.509	0.520	0.335				
	Interaction	-1.194	0.453	0.010				
Pace of reproduction metric: Interbirth interval (N = 61 females)								
	No interaction	Combined reproductive pace	-7.189	1.899	<0.001			
	Maternal isolation	28.785	25.965	0.272				
	Interaction	-4.394	3.986	0.275				
Pace of reproduction metric: Combined reproductive pace (N = 32 females)								
	No interaction	Combined reproductive pace	-0.580	0.698	0.413			
	Maternal isolation	-1.065	0.964	0.279				
	Interaction	-1.638	1.725	0.350				
	No interaction	Combined reproductive pace	-0.407	0.672	0.550			
	Maternal isolation	-0.781	0.915	0.400				

The interaction effect does not significantly improve model fit.

The interaction effect does not significantly improve model fit.

The interaction effect does not significantly improve model fit.
Table S7. Model results for the three Cox proportional hazards models that include maternal death, the three pace of reproduction metrics, and their interactions as predictors of lifespan. The only significant interaction effect was between interbirth interval and maternal death. The direction of the interaction suggests that accelerating reproduction was costly (i.e. lead to shorter lifespans) for individuals who experienced maternal death.

Predictor variable	Coefficient	Hazard ratio (± 95% CI)	P	N (# events)	Interpretation
Pace of reproduction metric: Age at first birth					
Age at first birth	0.136	1.146 (0.848 – 1.547)	0.375	280 (145)	The interaction effect is not significant
Maternal death	1.189	3.285 (0.106 – 102.143)	0.498		
Interaction	-0.129	0.879 (0.505 – 1.531)	0.650		
Pace of reproduction metric: Interbirth interval					
Interbirth interval	1.995	7.356 (1.487 – 36.380)	0.014	110 (110)	The interaction effect is significant; individuals who lose their mother and have short IBIs live shorter lives
Maternal death	20.300	6.551 x 10^4 (4.544 – 9.445 x 10^16)	0.034		
Interaction	-3.113	0.044 (0.002 – 0.801)	0.035		
Pace of reproduction metric: Combined reproductive pace					
Combined reproductive pace	0.177	1.193 (0.816 – 1.745)	0.362	81 (81)	The interaction effect is not significant
Maternal death	0.092	1.097 (0.644 – 1.868)	0.735		
Interaction	-0.619	0.539 (0.260 – 1.115)	0.096		
Testing Nettle and Bateson’s 3rd prediction (8): interaction effects between lifespan and pace of reproduction predicting lifetime reproductive success, defined as the total number of live offspring born to each female. Results using the alternative definition of lifetime reproductive success, which includes offspring survival to weaning, are found in Table S9. For each early-life adversity and pace of reproduction combination, the best-fitting model for predicting lifetime reproductive success was determined via a difference in Akaike information criteria (AIC) greater than 2; if the difference in AICs was less than 2, we chose the simpler model (the model without the interaction effect). ΔAIC values greater than 2 represent comparisons where the model with the interaction was a better fit for the data (represented with an asterisk (*)). For each pace of reproduction measure, the model with the interaction was a better fit for the data; however, the interaction was in the incorrect direction. For all of these circumstances, individuals who accelerated their reproduction only accrued greater lifetime reproductive success if they led long lives.

Table S8

Testing Nettle and Bateson’s 3rd prediction: Interaction effects between lifespan and pace of reproduction predicting lifetime reproductive success, defined as the total number of live offspring born to each female. Results using the alternative definition of lifetime reproductive success, which includes offspring survival to weaning, are found in Table S9. For each early-life adversity and pace of reproduction combination, the best-fitting model for predicting lifetime reproductive success was determined via a difference in Akaike information criteria (AIC) greater than 2; if the difference in AICs was less than 2, we chose the simpler model (the model without the interaction effect). ΔAIC values greater than 2 represent comparisons where the model with the interaction was a better fit for the data (represented with an asterisk (*)). For each pace of reproduction measure, the model with the interaction was a better fit for the data; however, the interaction was in the incorrect direction. For all of these circumstances, individuals who accelerated their reproduction only accrued greater lifetime reproductive success if they led long lives.

Model	Response variable	Coefficient	SE	P	ΔAIC (>2 supports the presence of an interaction effect)	Interpretation
Pace of reproduction metric: Age at first birth (N = 145 females)						
Interaction	Age at first birth	-0.062	0.381	0.870		
	Lifespan	0.910	0.153	<0.001		
	Interaction	-0.062	0.025	0.015		
No interaction	Age at first birth	-0.955	0.114	<0.001		
	Lifespan	0.537	0.014	<0.001		
Pace of reproduction metric: Interbirth interval (N = 110 females)						
Interaction	Interbirth interval	3.436	1.569	0.031	23.553*	The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who have short IBIs and live long lives accrue fitness benefits
	Lifespan	4.027	0.668	<0.001		
	Interaction	-0.542	0.103	<0.001		
No interaction	Interbirth interval	-4.390	0.560	<0.001		
	Lifespan	0.514	0.019	<0.001		
Pace of reproduction metric: Combined reproductive pace (N = 81 females)						
Interaction	Combined reproductive pace	0.746	0.408	0.071	17.381*	The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who have a fast combined reproductive pace and live long lives accrue fitness benefits
	Lifespan	0.495	0.019	<0.001		
	Interaction	-0.109	0.024	<0.001		
No interaction	Combined reproductive pace	-1.043	0.126	<0.001		
	Lifespan	0.515	0.021	<0.001		
Table S9. Testing Nettle and Bateson’s 3rd prediction (8): interaction effects between lifespan and pace of reproduction predicting lifetime reproductive success, defined as the total number of offspring born to each female that survived to 70 weeks. Results using the original definition of lifetime reproductive success, which does not consider offspring survival, are found in Table S8. For each early-life adversity and pace of reproduction combination, the best-fitting model for predicting lifetime reproductive success was determined via a difference in Akaike information criteria (AIC) greater than 2; if the difference in AICs was less than 2, we chose the simpler model (the model without the interaction effect). ΔAIC values greater than 2 represent comparisons where the model with the interaction was a better fit for the data (represented with an asterisk (*)). For two of the pace of reproduction measures (interbirth intervals and combined reproductive pace), the model with the interaction was a better fit for the data; however, the interaction was in the incorrect direction. For these circumstances, individuals who accelerated their reproduction only accrued greater lifetime reproductive success if they led long lives.

Model	Response variable	Coefficient	SE	P	ΔAIC (Δ>2 supports the presence of an interaction effect)	Interpretation
Pace of reproduction metric: Age at first birth (N = 145 females)						
Interaction	Age at first birth	-0.213	0.428	0.620	1.538	The interaction effect does not significantly improve model fit
	Lifespan	0.750	0.172	<0.001		
	Interaction	-0.053	0.029	0.064		
No interaction	Age at first birth	-0.977	0.128	<0.001		
	Lifespan	0.431	0.016	<0.001		
Pace of reproduction metric: Interbirth interval (N = 110 females)						
Interaction	Interbirth interval	3.653	1.890	0.056	16.250*	The interaction effect significantly improves the model, but the interaction is in the direction opposite to the iPAR’s prediction; females who have short IBIs and live long lives accrue fitness benefits
	Lifespan	3.921	0.804	<0.001		
	Interaction	-0.542	0.124	<0.001		
No interaction	Interbirth interval	-4.179	0.652	<0.001		
	Lifespan	0.404	0.022	<0.001		
Pace of reproduction metric: Combined reproductive pace (N = 81 females)						
Interaction	Combined reproductive pace	0.667	0.529	0.211	7.254*	The interaction effect significantly improves the model, but the interaction is in the direction opposite the iPAR’s prediction; females who have a fast combined reproductive pace and live long lives accrue fitness benefits
	Lifespan	0.405	0.025	<0.001		
	Interaction	-0.095	0.031	0.003		
No interaction	Combined reproductive pace	-0.884	0.154	<0.001		
	Lifespan	0.422	0.025	<0.001		
Supplementary Information References

1. J. Tung, E. A. Archie, J. Altmann, S. C. Alberts, Cumulative early life adversity predicts longevity in wild baboons. *Nat Commun* **7**, 11181 (2016).

2. P. O. Onyango, L. R. Gesquiere, J. Altmann, S. C. Alberts, Puberty and dispersal in a wild primate population. *Horm. Behav.* **64**, 240–249 (2013).

3. E. A. Archie, J. Tung, M. Clark, J. Altmann, S. C. Alberts, Social affiliation matters: both same-sex and opposite-sex relationships predict survival in wild female baboons. *Proc. R. Soc. B* **281**, 1–9 (2014).

4. J. Altmann, Observational study of behavior: Sampling methods. *Behaviour* **49**, 227–267 (1974).

5. A. J. Lea, N. K. Learn, M. J. Theus, J. Altmann, S. C. Alberts, Complex sources of variance in female dominance rank in nepotistic society. *Anim. Behav.* **94**, 87–99 (2014).

6. M. J. Charpentier, J. Tung, J. Altmann, S. C. Alberts, Age at maturity in wild baboons: genetic, environmental and demographic influences. *Mol Ecol* **17**, 2026–40 (2008).

7. L. R. Gesquiere, J. Altmann, E. A. Archie, S. C. Alberts, Interbirth intervals in wild baboons: Environmental predictors and hormonal correlates. *Am J Phys Anthr.* (2018).

8. D. Nettle, M. Bateson, Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? *Proc Biol Sci* **282**, 20151005 (2015).