Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2

Arif Kivraka,*, Berdan Ulaşb, Hilal Kivrakb

a Department of Chemistry, Faculty of Sciences, Van Yuzuncu Yıl University, 65000 Van, Turkey
b Department of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yıl University, 65000 Van, Turkey

ARTICLE INFO
Keywords:
Covid-19
SARS-CoV-2
Anti-viral Drug
Favipiravir
Remdesivir

ABSTRACT

Coronavirus, known as the coronavirus pandemic, is continuing its spread across the world, with over 42 million confirmed cases in 189 countries and more than 1.15 million deaths. Although, scientists focus on the finding novel drugs and vaccine for SARS-CoV-2, there is no certain treatment for it. Antiviral drugs such as; oseltamivir, favipiravir, umifenovir, lopinavir, remdesivir, hydroxychloroquine, chloroquine, azithromycin, ascorbic acid, corticosteroids, are mostly used for patients. They prevent cytokine storm that is the main reason of deaths related to SARS-CoV-2. In addition, anti-inflammatory agents have critical roles to inhibit the lung injury and multisystem organ dysfunction. The combination with anti-viral drugs with other drugs displays high synergistic effects. In the present study, the drugs used for Covid-19 are analyzed and compare the efficiency for the Covid-19 patients from the different continents including USA, South Korea, Italy, Spain, Germany, Russia, Brazil, Turkey, and China. Nowadays, all countries tried to find vaccine and new drug candidates for SARS-CoV-2, but anti-viral drugs may be the best candidates for the treatment of Covid-19 before finding novel anti-Covid drug.

1. Introduction

COVID-19 is a new coronavirus disease identified in December 2019. Patients have clinical symptoms as dry cough, dyspnea, fever, and bilateral lung infiltrates on imaging. Cases were all linked to Wuhan’s Huanan Seafood Wholesale Market, trading in fish and a variety of live animal species including poultry, bats, marmots, and snakes. On 7th January 2020, The causative agent was identified from throat swab samples conducted by the Chinese Centre for Disease Control and Prevention (CCDC) and was named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, it was called as COVID-19 by the World Health Organization (WHO) \cite{1}.

Infected patients have usually mild symptoms as dry cough, sore throat, and fever. Furthermore, the most of the cases have been resolved and according to the sexuality and age symptoms degree alters. For instance, 54.3\% of those infected with SARS-CoV-2 are male with a median age of 56 years and patients requiring intensive care support were older and had multiple comorbidities including cardiovascular, cerebrovascular, endocrine, digestive, and respiratory disease. Those in intensive care were also more likely to report dyspnoea, dizziness, abdominal pain, and anorexia \cite{1}.

This respiratory disease is very severe and potentially fatal in some patients according to their age and chronic disease history. It has been reported that 15\% of cases related to this disease are severe, and mortality rate varies between 1.5\% and 10\% \cite{2}. As of May 25, 2020, over 5,43 million cases of COVID-19 were reported, with greater than 345,000 deaths. It was reported that 91.1\% of cases were diagnosed with pneumonia \cite{3}. The second most common diagnosis is acute respiratory distress syndrome (3.4\%) \cite{4}. Although the fatality rate of SARS-CoV-2 is lower than these of Middle East respiratory syndrome (MERS-CoV) and SARS-CoV, the higher contagiousness of SARS-CoV-2 is a significant risk for the healthcare system. Presently COVID-19 seems to spread from person to person as common cold or influenza viruses-ie, face to face contact with a sneeze or cough, or from contact with secretions of people who are infected.

At present study, anti-viral drugs were analyzed to find the efficiency of the treatments of SARS-CoV-2 virus. It is known that countries used different drugs and drug combinations for patients. These therapy methods usually depend on the number of deaths and the number of patients used ventilation. Moreover, there is no certain treatments ways for COVID-19. In this study, different countries from all over the world were analyzed with their drugs which were used for COVID-19. We also

* Corresponding author.
E-mail address: akivrak@yyu.edu.tr (A. Kivrak).

https://doi.org/10.1016/j.intimp.2020.107232
Received 26 October 2020; Received in revised form 20 November 2020; Accepted 20 November 2020
Available online 30 November 2020
1567-5769/© 2020 Elsevier B.V. All rights reserved.
displayed that total case numbers and deaths between January to September 2020. Interestingly, it was observed that second wave started before September 2020 all countries.

2. Statistics, Prevention, Diagnosis, and treatment

After COVID-19 appeared in Wuhan on December 1, 2019, it spread rapidly to other countries. Following the spread of COVID-19 to all continents, a pandemic was declared by WHO on March 11, 2020. The center of the pandemic that started in Asia shifted to Europe in mid-March and then to America. According to John Hopkins University, the total number of cases in the world was 54,518,771, the number of patients recovered was 38,259,383 while the total number of deaths was 1,319,267 until November 16, 2020. Besides, At November 16, 2020, while 15,316,990 of 15,415,926 active patients had COVID-19 with mild symptoms, 98,936 patients were in critical condition. Below the detailed information about the COVID-19 statistics of some countries in Europe, America, and Asia, the measures they have taken against this pandemic, and the treatment protocols is given.

2.1. Italy

On 31 January, the first two cases in Italy were confirmed in Rome. The fact that serious measures began to be taken in 3 weeks after the first case appeared, caused the cases in Italy to spread rapidly. Then, various measures were put into effect by taking advantage of China’s pandemic experience. It can be seen from Fig. 1a that the number of daily cases reached their highest values, especially between 17 and 29 March and 3–7 November. On November 6, the highest number of cases was reached with 39,809 days of cases. Firstly, on February 23, entrance and exit restrictions were imposed to 11 towns in the north of Italy, and schools in this region were closed [5]. This restriction was expanded on 8 March by including the whole Lombardia region and 12 cities while quarantine measures applied to 16 million people were applied to the whole country on 9 March [6]. On March 11, the activities of businesses other than supermarkets, banks, and pharmacies were stopped, and these measures were further tightened [7]. Parks and many factories were closed on 19 and 21 March, respectively. It can be seen from Fig. 1b that, thanks to these measures, the rate of case increase has decreased.

Fig. 1. a) Daily new cases and b) total COVID-19 statistics for Italy.
and the total number of cases has reached a plateau. While a total of 902,409 cases and 41,063 deaths were reported in Italy until 7 November, the fatality rate was reported as 4.6%. The normalization effects in Italy are clearly seen from Fig. 1a and b. Especially after October 4, Italy is experiencing the second wave for COVID-19, and the increase in the number of daily cases continues rapidly. The treatment protocol published by the Italian Society of Infectious and Tropical Diseases for the treatment of COVID-19 is given in Table 1 [8].

2.2. Spain

The first case in Spain was confirmed on January 31, and no new cases were reported almost during February [9]. While 1,399,169 cases were reported from the beginning of the pandemic process until 7 November, the deaths and recovery numbers were reported as 38,833 and 150,376. It is seen that the daily increase rate of COVID-19 cases in Spain gradually decreased after April (Fig. 2a). This decrease can be explained by the declaration of a 15-day state of emergency by the Spanish government on March 13 and the implementation of quarantine conditions throughout the country [10]. The Spanish government has applied the Italian model in terms of social measures. Therefore, the daily number of cases in these two countries after the measures are parallel. In addition, the dramatic decrease in the number of daily cases in June is followed by the sharp increases in the number of daily cases as a result of the relaxation of quarantine conditions. This observed increase after 13 July can be clearly followed in Fig. 2b. In Spain, the maximum daily number of cases in first wave and second waves were determined as 8271 and 20640, respectively. The much higher number of infected cases in the second wave can be directly attributed to the elimination of nationwide measures. The usage information of drugs such as Remdesivir, Lopinavir/Ritonavir, Chloroquine/Hydroxychloroquine, Tocilizumab, Sarilumab, Ruxolitinib, Siltuximab, Baricitinib, Anakinra, Interferon Beta-1B, and Interferon Alpha-2B have been published by the Spanish Agency for Medicines and Health Products for COVID-19 (Table 2) [11]. However, the agency stated that this information is for informational purposes rather than a suggestion.

2.3. USA

In U.S., 9,951,416 cases and 239,832 deaths from COVID-19 have been reported until 7 November. As seen in Fig. 3a, no significant decreases in the number of cases were observed due to the lack of a stable quarantine throughout the country and the early initiation of normalization due to economic concerns. Thanks to the measures taken to maintain social distance across the country, the number of cases from April to May was about 35,000 while the highest daily number of cases was observed with 130,623 as of November 7. Although the increase in the number of daily cases accelerated after 8 June, after November 1, the increase in the number of daily cases is out of control (average daily number of cases is about 100,000). This increase is thought to be caused by the rapid normalization of America. Until November 7, the death rate from COVID-19 was reported as 2.41% while the recovery rate was reported as 38.7%. For the treatment of COVID-19 in the U.S., Azithromycin, Chloroquine, Hydroxychloroquine, Lopinavir/Ritonavir, and Remdesivir are recommended by the U.S. National Institutes of Health. The use of these antiviral drugs with their doses for adults is summarized in Table 3 [12].

2.4. Brazil

The first case in Brazil was informed on 26 February 2020 [13]. The travel history and genetic findings of the first case show that the virus spread from northern Italy to Brazil [14]. Then, on February 3, an emergency was declared in Brazil [15]. On February 6, various measures such as restrictions on entry and exit from the country, quarantine measures, and exhumation were taken. Nevertheless, Imperial College (London, England), which compiles the transmission rates of COVID-19 by country, reported that Brazil has the highest spread rate [16]. Many researchers attribute the rapidly increasing number of cases in Brazil to President Bolsonaro’s inadequate policies on COVID-19. As of November 7, a total of 5,640,952 cases were detected in Brazil. 414,531 of these cases are still infected and deaths from COVID-19 have been reported as 162,077 (Fig. 4b). Besides, death and recovery rates were calculated as 2.87% and 89.8%. However, in Brazil, the number of cases has still not been controlled and the increase continues (Fig. 4a). A treatment protocol for COVID-19 has been published by the health ministry in Brazil. Accordingly, Chloroquine + Azithromycin or Hydroxychloroquine + Azithromycin antiviral drugs are used for patients with mild and moderate symptoms in adult patients. In severe patients, only hydroxychloroquine and azithromycin are used together. A detailed treatment protocol for adult patients is given in Table 4 [17].

2.5. Germany

The first COVID-19 case in Germany was detected by the German Ministry of Health on January 27, 2020 [18]. The pandemic process in Germany is managed by the Robert Koch Institute. As of 7 November, 644,048 cases, 11,306 deaths, and 411,997 recovered cases were reported. In Germany, similar to many other countries, it has taken important measures regarding social distance. The most striking of these is the prohibition of gathering more than two people as of March 22. In mid-March, borders with France, Switzerland, Austria, Denmark, and Luxembourg were closed, while flights to many countries were banned. In the state of Bavaria, a partial curfew was imposed. As a result of these measures, a rapid decrease in the number of daily cases was observed after the period of 25 March-4 April, when the number of daily cases was the highest (Fig. 5a) for this period. The measures are taken to ensure social distance has a great contribution in controlling COVID-19 in Germany. After July, travel bans and contact restrictions were gradually lifted and the number of cases started to increase again (Fig. 5b). The second wave started on 3 August and has not reached the maximum point yet. The daily number of cases on November 7 is 23,399 and continues to increase. Germany is distinguished from other European countries with a particularly low mortality rate. Many researchers attribute this low mortality rate to the lower average age of the diagnosed population compared to other European countries [19]. Remdesivir is used as an antiviral in the treatment protocol recommended by

| Table 1 | COVID-19 treatment protocol proposed by the Italian Society of Infectious and Tropical Diseases. |
Treatment Protocols	
Patient with mild symptoms but over 70 years of age or with different diseases or worsening conditions	Lopinavir/Ritonavir + Chloroquine or Hydroxychloroquine > Lopinavir/Ritonavir: 200 mg or 200 mg twice daily Chloroquine or Hydroxychloroquine: 500 mg per day > Darunavir: 800 mg per day Ritonavir: 100 mg per day Darunavir/Cobicistat + Chloroquine or Hydroxychloroquine: 150 mg per day Chloroquine or Hydroxychloroquine: 500 mg twice per day for 20 days Hydroxychloroquine: 200 mg twice a day
Patient with severe symptoms or Hydroxychloroquine Remdesivir + Chloroquine or Hydroxychloroquine Remdesivir: 200 mg for the first day, 100 mg daily for the following days Chloroquine: 500 mg twice daily Hydroxychloroquine: 200 mg twice per day	

* If lopinavir is not available; ** If Lopinavir/Ritonavir is not available

A. Kivrak et al.
the Robert Koch Institute (RCI). According to this algorithm, the use of 200 mg Remdesivir on the first day and 100 mg on the following days was deemed appropriate for adults and adolescents. It is stated that the use of Remdesivir should be between 5 and 10 days. On the other hand, RCI does not recommend the use of hydroxychloroquine and Lopinavir/Ritonavir. It has been stated that the use of these antiviral drugs for COVID-19 is the responsibility of doctors. The detailed treatment procedure recommended by RCI is given in Table 5 [20].

2.6. South Korea

The first COVID-19 case in South Korea appeared on January 20, and the maximum number of cases was observed on March 3 [21]. The rapid increase in the number of cases in the early days has been associated with a ritual held in a church in Daegu [22]. The total number of infected, dead, and recovered until 7 November 2020 has been reported as 27,284,517, and 24,910, respectively. South Korea’s mortality rate

Table 2
COVID-19 treatment protocol recommended by the Spanish Agency for Medicines and Health Products.

Treatment Protocols	Details
Remdesivir	➢ 200 mg for the first day and 100 mg daily for 2–10 days
Lopinavir/Ritonavir	➢ 200/50 mg twice per day
Chloroquine/Hydroxychloroquine	➢ 400 mg per 12 h and 100 mg daily for 2–5 days
Tocilizumab	➢ 600 mg for patients 75 kg ➢ 400 mg for patients < 75 kg
Sarilumab	➢ 200 or 400 mg per day
Ruxolitinib	➢ 5 mg twice daily for 14 days
Siltuximab	➢ 11 mg for 1 h ➢ Other doses vary according to the CRP level
Baricitinib	➢ 4 mg once daily for 7–14 days
Anakinra	➢ 400 mg per day for a maximum of 15 days
Interferon Beta-1B and Interferon Alpha-2B	n.a.

Fig. 2. a) Daily new cases and b) total COVID-19 statistics for Spain.
from COVID-19 was determined as 1.89%. But thanks to the early social isolation measures, the epidemic was brought under control in a short period. Also, with the disciplined implementation of lock-down measures, test policy, and social isolation measures, the daily number of cases was reduced to 22 on April 17, 2020 (Fig. 6) [23]. The number of cases followed this decreasing trend until May 26, 2020. However, as a result of the normalization policy followed subsequently, a slight increase was observed in the number of daily cases. The daily cases, which increased again in August and September, was brought under control towards the end of September. For the moderate and severe cases, Central Clinical Task Force has suggested Lopinavir 400 mg/Ritonavir 100 mg twice a day or Hydroxychloroquine 400 mg/Chloroquine 500 mg orally per day [24]. In addition, Remdesivir was added to this treatment protocol, which lasted 7–10 days [25]. The details of this treatment protocol is summarized in Table 6.

2.7. Russia

On January 31, the first two COVID-19 cases in Russia were confirmed by Russian Ministry of Health [26]. Although some researchers claim that there is a delay in COVID-19 measures, many measures have been taken in Russia to reduce the number of COVID-19 cases. The most striking of these is the decision to close the workplaces between 30 March and 11 May [27]. While all international flights in the country were banned on March 27, curfews were declared in many states, especially Moscow Municipality, on March 29 [28]. With the reopening of workplaces as of May, the normalization process started. Almost all workplaces became open on June 8 [29]. In the following period, Russia has reached the highest number of daily cases on May 11 with a daily number of 11,656 cases. Even though a gradual decrease in the number of daily cases has been achieved with the social isolation measures taken, the fact that the duration of these measures was not
bars, theaters, cinemas, gyms, and cafes were closed on March 16. On March 12 after the first confirmed case. Besides, COVID-19 experiences of other countries were taken into account, and to these measures, the first cases in Turkey have been identified almost simultaneously. interferon-alpha The COVID-19 treatment procedure recommended by the Russian Ministry of Health was recommended for pregnant women. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected. long enough resulted in the increase in the number of cases after 8 August. Before the number of daily cases in the first wave was reduced to below 6000, the second wave started around 8 September and the increase in the number of daily cases accelerated. Until 7 November, 1,753,836 COVID-19 cases have been detected in Russia (Fig. 7). The total number of deaths and total recovered cases and mortality rates to date have been reported as 30,251, 1,342,814 and 1.72, respectively. The COVID-19 treatment procedure recommended by the Russian Ministry of Health is summarized in Table 7. Accordingly, Recombinant interferon-alpha + Hydroxychloroquine and Umifenovir + Hydroxychloroquine drugs are primarily used in the treatment of COVID-19 (Table 7) [30]. In cases where hydroxychloroquine is not available, the use of Recombinant interferon-alpha + Mefloquine and Umifenovir + Mefloquine drugs has been recommended. In addition, it is recommended to use Recombinant interferon-alpha + Umifenovir drugs in case the side effects of Hydroxychloroquine and Mefloquine are detected.
Fig. 4. a) Daily new cases and b) total COVID-19 statistics for Brazil.

Table 4
COVID-19 treatment protocol recommended by the Brazilian Ministry of Health.

Treatment Protocols	For Moderate Symptoms	For Severe Symptoms
Chloroquine + Azithromycin or Hydroxychloroquine + Azithromycin*	➢ Chloroquine: 500 mg twice per day for the first day and 500 mg daily for the next 2–5 days	➢ Hydroxychloroquine: 400 mg twice per day for the first day and 400 mg daily for the next 2–5 days
Azithromycin*	➢ Azithromycin: 500 mg once a day for 5 days	➢ Azithromycin: 500 mg per day for 5 days

> Hydroxychloroquine: 500 mg once a day for 5 days
Hydroxychloroquine: 500 mg once a day for 5 days
3.3. Remdesivir

Remdesivir, developed by Gilead Sciences, is a member of antiviral drugs with broad-spectrum (Fig. 10). It was used for RNA virus infections treatments by acting adenosine nucleotide analogue [38]). Although, remdesivir has adverse effects including the elevation of hepatic enzymes, renal impairments, and hypotension, FDA was approved for the treatments of COVID-19 last days. Recent studies improved that remdesiver displayed high anti-viral activity at lower values of the EC$_{50}$ (1.13 μM). Last clinical trials offer that remdesivir could be used for COVID-19 patients with low oxygen saturation and critical patients on ventilation [39]. The mortality rate significantly decreased from 11 to 7.1% when remdesivir was used. Antiviral activity against several coronaviruses including SARS-CoV and MERS-CoV, remdesivir was also reported via in vitro and in vivo studies. On the other hand, Remdesevir was reported some adverse effect such as; hepatic enzymes, diarrhea, rash, renal impairment, hypotension, organ-dysfunction syndrome, septic shock, acute kidney injury, and hypotension.

3.4. Dexamethasone (Corticosteroids)

Recently, Oxford University announced that Dexamethasone, corticosteroid, is the most effective drug for the treatments of COVID-19 [40] (Fig. 10). Two thousand patients saves life against the new type of corona virus in England. Dexamethasone prevents the cytokine storm in patients, which is the result of an excessive immune systems [41]. When the steroid drug dexamethasone was used against COVID-19, it reduced deaths by one-third in ventilator-dependent patients and by one-fifth in patients with less oxygen saturation. COVID-19 cause the severe

Table 5

COVID-19 treatment protocol recommended by the RKI.

Treatment Protocols
Remdesivir*
Dexamethasone

* It is used in the presence of pneumonia due to COVID-19, and the treatment is continued for maximum of 10 days
Favipiravir (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was synthesized by Toyama Chemical Co., Ltd. in 2002 and approved in 2014 [43] (Fig. 10). It is an anti-viral drug that inhibits the RNA-dependent RNA polymerase of influenza virus. Favipiravir displays a broad range of influenza viruses, including A(H1N1), A(H5N1) and the recently emerged A(H7N9) avian virus [44]. After starting COVID-19, many countries used favipiravir against corona virus treatment. Some clinical applications show that high dose of favipiravir (1800–2400 mg of first day) could be the best way for the decreasing corona effects, followed by

3.5. Favipiravir

Systemic inflammatory response such as lung injury, ARDS, and multi-system organ dysfunction. Therefore, anti-inflammatory effects of corticosteroid therapy could be eliminating these viral complications. On the other hand, dexamethasone was used more than 14 days; it did not reduce the mortality [42]. Some case reports displayed that high dose of corticosteroids could be multi-organ dysfunction and a potentially increased risk of deaths. As a result, the therapy of dexamethasone is not clear for the treatments of SARS-CoV-2, but it may be applied with combination with other anti-viral drugs.

Table 6

COVID-19 treatment protocol recommended by South Korean Central Clinical Task Force [24]

Treatment Protocol	Lopinavir/Ritonavir or Chloroquine or Hydroxychloroquine
➢ Lopinavir: 400 mg twice per day ➢ Ritonavir: 100 mg twice per day ➢ 500 mg per day ➢ 400 mg per day	

![Fig. 6. a) Daily new cases and b) total COVID-19 statistics for South Korea.](attachment:fig6.png)
Fig. 7. a) Daily new cases and b) total COVID-19 statistics for Russia.
The proposed mechanism of actions of anti-COVID-19 drugs was shown in Fig. 12. The treatments are depended on the life cycle of SARS-CoV-2 in host cell [47]. The detail mechanism could be summarized as;

3.6.1. Binding and penetration;

The human angiotensin-converting enzyme 2 (ACE2) is the main cell receptor for COVID-19, so SARS-CoV-2 entry into host cells by using ACE2 receptor on the cell membrane [48]. Recently researchers suggested that the S genetic code of the receptor binding spike protein plays critical roles to entry into the host cell. On the other hand, general functions including protein assembly, envelope generation, encasing the RNA, budding, and pathogenesis are controlled by the nucleocapsid (N), the small envelope (E) and membrane (M) proteins. When the antibodies against SARS-CoV-2, obtained by plasma cells, could be neutralize the virus to decrease its pathogenicity (Fig. 12) [49].

3.6.2. Genome release;

The genome of SARS-CoV-2 can be released after the process of membrane fusion. Hydroxychloroquine or chloroquine increase the pH of the intranuclear body, lysosome, and Golgi bod, genome replication, and assembly of mature viral particles [50]. The pH interferes with SARS-CoV-2 entry into endosomes and blocks viral-endosome fusion (Fig. 12).

3.6.3. Genome replication;

The positive (+)-sense genomic RNA forms the synthesis of negative (–)-sense RNA, followed by the template to give the RNA chain of progeny virus. Remdesivir and Favipiravir are improved that they can be integrated into the RNA chain of progeny SARS-CoV-2 as the substrate of the RNA-dependent RNA polymerase (RdRp). Remdesivir and Favipiravir inhibit the replication of viral genomes (Fig. 12) [51-53].

3.6.4. Protein biosynthesis;

The negative (−)-sense RNA is used as a template with mRNAs transcribed to direct the protein biosynthesis of SARS-CoV-2 in the cytoplasm. The enzyme 3-chymotrypsin-like protease (3CLpro) has a crucial role in processing this RNA. The 3CLpro is inactivated by Lopinavir/ritonavir (Fig. 12) [54].

3.6.5. Assembly;

The genomic RNA and virion proteins are assembled to give the infective form of SARS-CoV-2 (Fig. 12).

3.6.6. Release;

Final step of the life cycle is releasing SARS-CoV-2 from the host cell via exocytosis (Fig. 12).

4. Conclusion

COVID-19 causes the 42 million case and 1.15 million deaths all over the world. The number of cases and deaths in many countries, especially Germany, France, and Italy, reached the highest levels of after the months. The highest number of cases was the USA with 7.5 million cases, is followed by India with 6.7 million cases and Brazil with 5 million cases. Interestingly, the number of new cases in Russia increases each day compared to the other countries.

Recent clinical reports displayed that the specific treatment methods for SARS-CoV-2 is not known. However, some antiviral drugs and agents, such as osel tamivir, favipiravir, umifenovir, lopinavir, remdesivir, hydroxychloroquine, chloroquine, azithromycin, ascorbic acid, corticosteroids, have been used for the treatment of SARS-CoV-2. Some of them reduce cytokine storm that is the main reason of mortality related to SARS-CoV-2. Moreover, they used as anti-inflammatory agents which prevent the lung injury and multisystem organ dysfunction. Many of these drugs are used in combination with anti-viral drugs to create synergistic effects, such as hydroxychloroquine and favipiravir; Lopinavir/Ritonavir and hydroxychloroquine etc. Many of them are more effective when used early stage of the SARS-CoV-2 infection. For example, favipiravir have the highest activity against SARS-CoV-2 in the first 5 days.

Today, there is no certain treatments ways for COVID-19. At the present study, we analyzed different countries from all over the world and compare the drugs for the treatments of COVID-19. Total case numbers and deaths from January 2020 to November 2020 were also shown. It was observed that second wave started, so new drugs will be investigated for long term therapy. As a result, all countries tried to find new vaccine against SARS-CoV-2, and they also tried to find new drug candidates to prevent from virus. Anti-viral drugs may be best candidates for the treatments of COVID-19 before finding novel anti-Covid drugs.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Fig. 8. a) Daily new cases and b) total COVID-19 statistics for Turkey.

Table 8
COVID-19 treatment protocol recommended by the Turkish Ministry of Health.

Treatment Protocols	Hydroxychloroquine and/or Favipirapir	Lopinavir/Ritonavir
For Mild/Moderate /Severe Symptoms	➢ 2x200 mg for 5 days	➢ 200/50 mg every 12 h for 10-14 days
Treatment in pregnant women with definite diagnosis of COVID-19	➢ 2 x 1600 mg loading and 2 x 600 mg maintenance for 5 days	
Fig. 9. a) Daily new cases and b) total COVID-19 statistics for China.

Table 9
COVID-19 treatment protocol recommended by the China National Health Commission.

Treatment Protocols	Dosages
General Treatment	
Interferon alpha	> 5 million U 2 times per day
Lopinavir/Ritonavir	> 200/50 mg twice a day for maximum 10 days
Ribavirin + Lopinavir/Ritonavir Or Ribavirin + Interferon	> 500 mg, 2 or 3 times for maximum 10 days
Chloroquine phosphate	> 500 mg twice a day during 7 days for weigh over 50 kg
Abidol	> 200 mg for three times a day during maximum 10 days

Usage of 3 or more antiviral drugs are not recommended at the same time
Country	Chloroquine	Hydroxychloroquine	Lopinavir/Ritonavir	Remdesivir	Azithromycin	Dexamethasone	Recombinant interferon alpha	Favipiravir	Umifenovir
Italy	X	X	X	X					
Spain	X	X	X	X					
Germany	X		X						
Turkey								X	
Russia	X		X						X
South Korea	X	X	X						
USA	X	X	X						
Brazil	X	X	X						
China	X		X						X

Fig. 10. The used drugs against COVID-19.

Criterion structures of anti-viral drugs used for the treatments of SARS-CoV-2.

Fig. 11.
Acknowledgment

The author (A. Kivrak) would like to acknowledge networking contribution by the COST Action CA17104 “New diagnostic and therapeutic tools against multidrug resistant tumours”.

References

[1] C. Sohrabi, Z. Alsafi, N. O’Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, R. Agha, World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), International Journal of Surgery 76 (2020) 71–76.
[2] S.F. Pedersen, Y.-C. Ho, SARS-CoV-2: a storm is raging, J. Clin. Investig. 130 (5) (2020).
[3] C. Ronco, T. Reis, Kidney involvement in COVID-19 and rationale for extracorporeal therapies, Nat. Rev. Nephrol. (2020) 1–3.
[4] Y. Liu, W. Sun, J. Li, L. Chen, Y. Wang, L. Zhang, et al., Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019, MedRxiv (2020).
[5] Rotondi V, Andriano L, Dowd JB, Mills MC. Early evidence that social distancing and public health interventions flatten the COVID-19 curve in Italy. 2020.
[6] C. Bernuci, C. Brembilla, F. Veicenchi, Effects of the COVID-19 outbreak in Northern Italy: Perspectives from the Bergamo Neurosurgery Department, World Neurosurgery 137 (2020).
[7] Italian Government Presidency of the Council of Ministers. Coronavirus, le misure adottate dal Governo. 2020.
[8] Italian Society of Infectious and Tropical Diseases, Handbook for the care of people with disease-COVI 19, Edition 2.0, March 13, 2020, https://www.simit.org/news/11-vademecum-per-la-cura-delle-persone-con-malattia-da-covid-19.
[9] A. Sisó-Almirall, B. Kostov, M. Mas-Heredia, S. Vilanova-Rotllan, E. Sequeira-Aymar, M. Sans-Corrales, et al., Prognostic factors in Spanish COVID-19 patients: A case series from Barcelona, PLoS ONE 15 (8) (2020).
[10] Spanish Agency for Medicines and Health Products, Tratamientos disponibles sujetos a condiciones especiales de acceso para el manejo de la infección respiratoria por SARS-CoV-2, 2020, https://www.aemps.gob.es/la-aemps/ultima-informacion-de-la-aemps-acerca-del-covid-19/tratamientos-disponibles-para-el-manejo-de-la-infeccion-respiratoria-por-sars-cov-2/?lang=en.
[11] U.S. National Institutes of Health, Characteristics of Potential Antiviral Agents Under Evaluation for Treatment of COVID-19, 2020, https://www.covid19treatmentguidelines.nih.gov/tables/table-2b/.
[12] A.J. Rodriguez-Morales, V. Gallego, J.P. Escalera-Antezena, C.A. Méndez, L. I. Zambrano, C. Franco-Paredes, et al., COVID-19 in Latin America: The implications of the first confirmed case in Brazil, Travel Med. Infect. Dis. 35 (2020).
[13] Croda JHR, Garcia LP. Respuesta inmediata da Vigilancia en Saúde à epidemia da COVID-19. SciELO Public Health; 2020.
[14] García BP, Duarte E. Intervenções não farmacológicas para o enfrentamento à epidemia da COVID-19 no Brasil. SciELO Public Health; 2020.
[15] Ministério Da Saúde, Orientações Do Ministério Da Saúde Para Manuseio Medicamentoso Precoce De Pacientes Com Diagnóstico Da COVID-19, 2020.
