Rosa26 Locus Supports Tissue-Specific Promoter Driving Transgene Expression Specifically in Pig

Qingran Kong1,9, Tang Hai2,*, Jing Ma1, Tianqiang Huang1, Dandan Jiang1, Bingteng Xie1, Meiling Wu1, Jiaqiang Wang1, Yuran Song2,3, Ying Wang2, Yilong He1, Jialu Sun1, Kui Hu1, Runfa Guo1, Liu Wang2, Qi Zhou2, Yanshuang Mu1,*, Zhonghua Liu1,*

1 Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China, 2 State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 3 Graduate University of the Chinese Academy of Sciences, Beijing, China

Abstract

Genetically modified pigs have become a popular model system in fundamental research, agricultural and biomedical applications. However, random integration often result in unstable expression of transgene and unpredictable phenotypes. The Rosa26 locus has been widely used to produce genetic modified animals with high and consistent expressing of transgene in mouse, human and rat, as it can be targeted efficiently and is not subject to gene-silencing effects. Recently, the first case of reporter gene targeting pigs in porcine Rosa26 (pRosa26) locus was reported. In the study, full sequence of pRosa26 locus was further characterized, and the pRosa26 promoter (pR26) was cloned and we evidenced that the new porcine endogenous promoter is suitable for driving transgene expression in a high and stable manner by avoiding DNA methylation. Furthermore, elongation factor 1a promoter (EF1a) -driven GFP reporter and Myostatin promoter (MyoP) -driven Follistatin (Fst) were successfully targeted into the pRosa26 locus by traditional homologous recombination (HR) strategy. EF1a showed high activity and hypomethylation at the locus. And, muscle-specific promoter MyoP was activated strictly in muscle of the pRosa26 targeted pigs, indicating Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner. The study provided further demonstration on biomedical and agricultural applications of porcine Rosa26 promoter and locus.

Introduction

Genetically modified pigs hold great promise in the fields of fundamental research, agriculture and biomedicine [1]. Overexpression of transgenes an important option to produce transgenic pigs with favorable phenotypes [2]. However, insertional mutagenesis, repeat-induced gene silencing and unknown position effect that usually happen in random integration may inhibit transgene expression [3,4]. To fully exploit transgenic pigs, great emphasis that usually happen in random integration may inhibit transgene expression [3,4]. To fully exploit transgene expression, the restriction of specific genomic site with high homologous combination frequency and ubiquitous transcriptional activity is also critical for success in gene targeting. The most preferred integration site for success in gene targeting is the Rosa26 locus in mouse [18–20]. The Rosa26 (Gt(Rosa)26Sor) gene was identified originally as a ubiquitous marker in a retroviral gene-trapping screen in mouse ESCs. It expresses a non-coding RNA (ncRNA) ubiquitously in embryonic and adult tissue [18]. As in mouse, the human and rat
Rosa26 loci were identified and successfully targeted by traditional HR [21,22], suggesting gene targeting at this locus is efficient. Recently, the pRosa26 locus has been characterized by homology search with human Rosa26 sequences and targeted by a Cre-dependent reporter gene [23]. Now, hundreds of transgenic animals and cell lines expressing a variety of transgenes have been successfully created using the Rosa26 locus.

Tissue-specific promoters are valuable for elucidating specific gene functions and for use in gene therapy [24,25]. However, even in mouse, activity of tissue-specific promoters driving transgene expression at the locus has not been addressed. Manipulating gene expression in muscle is of interest for a wide array of fundamental and applied research [26]. In the study, the sequence of pRosa26 locus was further characterized, and Myostatin promoter (MyoP), a muscle-specific promoter, was targeted into the locus. We demonstrate that Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner.

Materials and Methods

Animals

All the treatments of pigs in this research were approved by the Northeast Agriculture University Institutional Animal Care and Use Committee. All pigs involved in this research were raised and bred followed the guideline of Animal Husbandry Department of Heilongjiang, P.R.China.

Identification of pRosa26

The mouse Rosa26 promoter and exon 1 sequences were used as a template to search the NCBI Scrofa 10.2 database. A highly conserved sequence (sequence similarity >88%) on porcine chromosome 13 was found as the putative pRosa26 locus. pRosa26 exon 1 was predicted according to the alignment of mouse Rosa26 exon 1. Porcine ESTs mapping on the region were obtained by BlastN (NCBI). RT-PCR were performed using primers aligned within the predicted exon 1 (forward: 5’CGGCTTAGAGAAGAGGCTGTCG3’) and the ESTs to clone pRosa26 mRNA. 2 exons flanking 1 intron were amplified with the primer based on the EST sequence of EW546160 (reverse: 5’CCACGGTCCCTCTCTGATTACCC’). To reveal the full-length of pRosa26, we performed 5’ and 3’ RACE using 5’-full RACE Kit and 3’-full RACE Core Set Ver. 2.0 (Takara). 5’ RACE primers (5’CTAGCCGGAGCTCTCTGAGGAGGCC3’ and 5’GCACAGCCCTCTCTGAGGAGGCC3’) were designed according to exon 1 and 3’ RACE primers (5’GGAGAAGAAGTAGGTCTAGTGAG3’ and 5’GGTAAATCACAGAGGAGCAGTGG3’) were designed according to EW546160. Gap sequence was amplified by nested PCR using outer primer set (forward: 5’GGATCTTTGAGCCGTACCTGGGACC3’ and reverse: 5’GCTGAGGGTCCCAAATGCTTTG3’ and inner primer set (forward: 5’CAATCTCGAGCCAGGCTGTCG3’ and reverse: 5’GCTTAGGGTCCCAAATGCTTTG3’). PCR products were cloned into pMD18T (Takara) for sequencing (Invitrogen).

Vector construction

EF1a and pR26 (with exon 1) from Yorkshire pig genome were subcloned into EGFP-C1 (Clontech) instead of CMV at 5’ AseI and 3’ Eco47III restriction sites to construct plasmids EGFP-C1/EF1a and EGFP-C1/pR26. To construct targeting vectors, 1.3 kb 5’ short arm and 3.6 kb 3’ long arm were amplified, sequenced and subcloned into PPN6 plasmid at 5’ NolI/3’ KpnI and 5’ XhoI/3’ NheI restriction sites, respectively. The primer sequences for 5’ arm were 5’GGAGAGAGCTGGCACAAGAGGCC3’ (forward) and 5’GCTATTAGCATAGCGAAGTGG3’ (reverse), and 5’CCCAACTAGTGTCTGTCTGCAGTATCTG3’ (forward) and 5’CCACGTGCTCCTACATAGGGTG3’ (reverse) for 3’ arm. The sequences of IRES-GFP from TRE plasmid (addgene) and EF1a were subcloned into PPN6 plasmid at 5’HpaI/3’ Xhol and 5’ ClaI/3’ XbaI restriction sites to construct targeting vector PPN6/EF1a-GFP. Sequence of MysP-Fst replacing EF1a-IRES-GFP was subcloned into PPN6/EF1a-GFP to construct PPN6/MysP-Fst targeting vector.

Cell culture and transfection

PFFs derived from E32 Congjiang minipig fetuses were transfected by liposome-mediated plasmid pEGFP-C1, EGFP-C1/EF1a and EGFP-C1/pR26, and selected by 800 ug/ml G418 for 15 days. The surviving cells were considered as positive cells and screen by Southern blot. The positive cells were cultured in DMEM+20% FBS (Gibco) and collected per 10 days from 15D to 55D for further analysis. In targeting experiment, 1,107 founder PFFs from E32 Yorkshire pig fetuses were trypanosed into single and resuspended by 400 ul BTXpress High Performance Electroporation Solution (BTX), and 20 ul 1 ug/ml of the targeting vectors linearized using NolI restriction enzyme were added. Cell electroporation was induced with 1DC pulse of 240 v for 30 msec on a BTX Elector-Cell Manipulator 2001 (BTX, San Diego, CA). After electroporation, the cells were plated on 20 10 cm dishes. 24 h later, G418 (800 ug/ml) and GANC (2 umol/L) were added into the cultures. After selection for 10 to 15 days, colonies were picked and cultured in 48-well plates using cloning cylinders, and screen by 5’ arm PCR. The forward primer for PCR screening (F: 5’GATATCGTTTGATGGTGG3’) was located 300 bp upstream of 5’ arm and the reverse primer (R: 5’CGTATATACTGTTGATACGGC3’) was downstream of SA sequence. The expected PCR product was 1.8 kb in the correctly targeted clones. Fluorescence was detected and imaged using Nikon 70i fluorescence microscope.

Southern blots

At least 10 ug DNA of each sample was used in Southern blot. DNA from EGFP-C1, EGFP-C1/EF1a and EGFP-C1/pR26 transfected cells were digested with Eco47III/HindIII. The hybridization probe used to detect the GFP transcription unit DNA (GFP probe) was synthesized by PCR, and the sequences of the primers were 5’GAGCAAGGGCGAGGCTGTTCA3’ (forward) and 5’TGCAGAATTTGGCAGTCG3’ (reverse). For genotyping the cloned pigs, DNA were digested with Xhol/XbaI or HindIII/BamHI, and hybridized with KI probe or Fst probe. KI probe identifying the 3’ arm was synthesized by PCR, and the sequences of the primers were 5’GTTAGTAACGTAGAGTGATTTG3’ (forward) and 5’GGGAACCCAGCTACAGATCTG3’ (reverse). For genotyping the MysP-Fst transfection unit DNA (Fst probe) was synthesized by PCR, and the sequences of the primers were 5’TTTGTTGACTTTGTGCGACAGAGGTT3’ (forward) and 5’GCTTTTGCTCGGCTGAGG3’ (reverse). The PCR products were labeled by DIG Oligonucleotide 3’-End Labeling Kit (Roche).

Production cloned embryos and pigs

In vitro matured porcine oocytes were used as recipient oocytes for nuclear transfer. After 42–44 hours of maturation culture, the oocytes were treated with 1 mg/ml hyaluronidase (Sigma) to remove the surrounding granulosa and cumulus cells. Oocytes that clearly extruded a first polar body were selected as recipient.
cytoplasm. Cumulus-free (denuded) oocytes were enucleated by aspirating the first polar body and adjacent cytoplasm in enucleation medium with a glass pipette 25 micro-meter in diameter in TCM-199-Hepes plus 0.3% BSA and 7.5 microgram/ml Cytochalasin B. Donor cells were injected into the perivitelline space of enucleated oocytes. Injected oocytes were placed in fusion/activation medium (0.3 M mannitol, 1.0 mM CaCl₂, 0.1 mM MgCl₂, and 0.5 mM HEPES). Fusion/activation was induced with 2DC pulses of 1.2 kv/cm for 30 msec on a BTX Electroporator-Cell Manipulator 2001 (BTX, San Diego, CA). The embryos were cultured in porcine zygote medium-3 (PZM-3) at 38.5°C in 5% CO₂ in air. The cleavage rate and the blastocyst rate were assessed at 48 h and 144 h after activation, and cell number was examined by staining the nucleus of cloned embryos at blastocyst stage with 5 μg/ml Hoechst 33342. For producing cloned pigs, cloned embryos after 1 day cultured were surgically transferred into the oviduct of a surrogate the day after observed estrus. An ultrasound scanner has been used to monitor the pregnancy status of the surrogates weekly after a month of implantation and the cloned piglets were delivered by natural birth.

Q-PCR analysis

Total RNAs were extracted from each sample using the PureLink Micro-to-Midi system (Invitrogen) according to the manufacturer’s instructions, and reverse transcription was used to generate cDNAs using PrimeScript RT Reagent Kit (TaKaRa). Real-time PCR was performed using SYBR Premix Ex Taq (TaKaRa) and the 7500 Real-Time PCR System (Applied Biosystems), with the following parameters: 95°C for 30 sec, followed by 40 two steps cycles at 95°C for 5 sec and at 60°C for 34 sec. Primers for GFP were 5’TGAACCGCAGTGAGCATGGAAGG3’ (forward) and 5’ACCTTGATGGCGGCTCTTGCTTG3’ (reverse). The primers for pRosa26 were 5’GGCTCCTGAGAGGCTGGGCT’3 (forward) and 5’AGACGTTGGCTCCAAGTCTTGGTC3’ (reverse). Fst primers were 5’CCGAATGAAAGAAAGAACAA3’ (forward) and 5’GTCCACACACATGTTGAGGCTG3’ (reverse). b-actin was used as a reference gene and the primer sequences were 5’TGAGTTTTTGTAGTJAGG3’ (forward) and 5’CCAAAACACACTTCCTTCTA3’ (reverse). A 307 bp sequence in pR26 containing one CpG island with 38 CpG sites was amplified using the primer pair: 5’GTGAGTTTTGAGTGTAGG3’ (forward) and 5’CCAAAACACACTTCCTTCTA3’ (reverse). A 307 bp sequence in EF1a containing two CpG islands and 44 CpG sites was amplified using the primer pair: 5’TTATGGTGTTGGAATGTTT3’ (forward) and 5’GAACACTCTCCCTTAATC3’ (reverse). The amplification of bisulfite-modified DNA was performed using Hot start Taq™ polymerase (TaKaRa), with the following conditions: 94°C for 5 min, followed by 40 three steps cycles at 94°C for 30 sec, 52°C for 30 sec and at 72°C for 1 min. The PCR products were separated on 1% agarose gels and purified, followed by sequencing (Invitrogen). The presence of a cytosine residue after bisulfite treatment shows that the cytosine residue was protected from bisulfite modification by methylation. Methylation and non-methylated CpG dinucleotides of each clone are illustrated with closed and open circles, respectively. At least ten clones were sequenced and analyzed for each sample.

Statistical analysis

Statistical analysis was performed using SPSS 13.0 for MicroSoft Windows. Data are shown as mean ± SD. One-way ANOVA was used to assess differences between groups. The Duncan method was employed for pairwise comparison and followed by Bonferroni correction. P<0.05 (two-tailed) was considered as statistically significance.

Results

Identification of porcine Rosa26

Using the mouse Rosa26 promoter and exon 1 sequences (761 bp) as a template to search the NCBI Sscrofa 10.2 database, we located a highly conserved region (sequence similarity >88%) on porcine chromosome 13 (Figure S1). A large number of ESTs and transcripts map to the genomic region by screen of the Ensemble database. To get the ncRNA of pRosa26, we designed primers aligned within the predicted exon 1 and ESTs locating to the region to perform RT-PCR. 2 exons flanking 1 intron were...
amplified with the primers based on the EST sequence of EW546160, and the pRosa26 ncRNA was transcribed in the opposite strand of one ThampD3 gene (Figure S2). 3’ and 5’ RACE were performed and a 646 bp transcript with termination signal was identified, suggesting at least we got the full-length of one ThumpD3 gene (Figure S2). Part of the sequence of intron 1 is not available in the NCBI Sscrofa 10.2 database. To facilitate gene targeting, we supplied 422 bp sequence for the gap by nest PCR using flanking primer sets (Figure S3).

Activity of pRosa26 promoter driving transgene expression

To determine whether pR26 can highly and consistently drive gene expression just like the mouse promoter, we compared expressions of GFP reporters driven by pR26, CMV and EF1a in porcine fetal fibroblasts (PFFs) and embryos. pR26, CMV and EF1a-driven GFP were transfected into PFFs and that was confirmed by Southern blot (Figure 2A). Flow cytometry and Western blot analysis showed GFP expressions were incomparable levels among the three cell lines (Figure 2B and C). Stable expressions were observed in pR26-driven GFP transgenic PFFs up to 55D and cloned embryos using the PFFs as donor cells, and the pattern was highly similar to EF1a-driven GFP (Figure 2D and E). Promoter activity is negatively regulated by DNA methylation [27]. For bisulfite sequencing analysis of pR26 that drives GFP reporter, pR26 of Congjiang minipig with a lack of GGC was used to transfect PFFs of Yorkshire pig (Figure 2F). We found that pR26 could remain hypomethylated in PFFs and cloned embryos (Figure 2G). These data suggest that pR26 is suitable for driving transgene expression in a high and stable manner.

Activity of ubiquitous promoter in the pRosa26 locus

To check whether the pRosa26 locus allowed widely and high activity of ubiquitous promoter, we targeted EF1a-driven GFP into the locus by traditional HR strategy. The targeting vector contains a 1.5 kb 5’ short arm and a 3.6 kb 3’ long arm, together spanning 5.1 kb of intron 1 of the pRosa26 locus (Figure 3A). PFFs were electroporated with the linearized targeting vector and selected by G418 (800 μg/ml) and GANC (2 μmol/L). After 10 to 15 days selection, 404 clones were expanded and screened by genotyping PCR. One correctly targeted clone (GFP-KI) was identified by 5’ arm PCR analysis (Figure 3B) and GFP expression (Figure 3C), and used as donor cells to construct cloned embryos. The targeting efficiency was 0.25% (Table 1). GFP-KI cloned embryos developed to blastocyst in a rate with no significant difference compared with control group and expressed high level of GFP (Table 2 and Figure 3D). Bisulfite sequencing analysis demonstrated hypomethylated status of EF1a in GFP-KI PFFs and blastocysts (Figure 3E). These data indicate that the pRosa26 locus has an advantage in maintenance of promoter activity by avoiding epigenetic silencing.

Activity of tissue-specific promoter in the pRosa26 locus

Rosa26 locus enables high activity of ubiquitous promoter driving transgene expression of transgene [28,29], however, the activity of tissue-specific promoter targeted into the locus has not been addressed. In the study, we targeted MyoP-driven Fst (MyoP-Fst) into the pRosa26 locus. MyoP-Fst expression cassette was subcloned into the targeting vector, replacing EF1a-IRES-GFP (Figure 4A). After electroporation and selection, 516 clones of PFFs were expanded and screened by 5’ arm PCR. 3 out of 516 clones were identified as correctly targeting clones and used as donor cells to construct cloned embryos. The targeting efficiency was 0.58% (Table 1). A total of 3206 cloned embryos were transferred into 16 recipient mothers. 3 recipients were pregnant and 6 cloned piglets were obtained (Table 3). By Southern blot

Figure 1. Identification of the pRosa26 locus. (A) A diagram of the pRosa26 locus on chromosome 13. (B) Expression of pRosa26 ncRNA in various tissues relative to b-actin by Q-PCR. Error bars are mean±SD. doi:10.1371/journal.pone.0107945.g001
Figure 2. GFP expression driven by the pRosa26 promoter. (A) Southern blot of the transgenic cell lines. Expected bands of 0.8 kb were detected after Eco47III/HindIII digestion. (B) Flow cytometry analysis of the transgenic cell lines. (C) GFP expression in the transgenic PFFs detected by Western blot. (D) GFP expression in transgenic PFFs over a long term culture up to 55D detected by Q-PCR. (E) GFP expression in transgenic cloned embryos detected by Q-PCR. (F) pR26 sequence of Congjiang minpig and Yorkshire pig. There is a lack of GGC in pR26 sequence of Congjiang minpig compared to Yorkshire pig. (G) DNA methylation status of pR26 in transgenic PFFs and cloned blastocysts. The methylation status was detected by the bisulfite sequencing. Methylated and non-methylated CpG dinucleotides of each clone are illustrated with closed and open circles, respectively. doi:10.1371/journal.pone.0107945.g002
analysis, 5 correctly targeted pigs (Fst-KI) with the integration of a single copy of the targeting vector were confirmed, except one cloned pig (130801) from cell line Fst-KI130103 proved to be untargeted (Figure 4B). Western blot demonstrated Fst expression in ear of 3 Fst-KI stillbirths (Figure 4C). Q-PCR (Figure 4D) and Western blot (Figure 4E) analysis showed remarkably higher

Figure 3. EF1a-GFP targeting in the pRosa26 locus. (A) Schematic representative of the EF1a-GFP targeting vector and a segment of the pRosa26 locus. SA, splice acceptor. The blue dashed line indicates the band size (1.8 kb) in the 5' arm PCR analysis using F and R primer set. (B) 5' arm PCR analysis of targeted cell clone. M, DNA marker. P6, PPNT6 plasmid. WT, wild type DNA. (C) GFP expression in correctly targeted cells (200×). (D) GFP expression in cloned blastocysts from targeted cells (100×). (E) DNA methylation status of EF1a in pRosa26 targeted cells and cloned blastocysts. The methylation status was detected by the bisulfite sequencing. Methylated and non-methylated CpG dinucleotides of each clone are illustrated with closed and open circles, respectively.

doi:10.1371/journal.pone.0107945.g003

Table 1. The targeting efficiency of GFP and Fst.

Groups	Expanded cell clones	Positive targeted clones screened by 5’ arm PCR	Targeting efficiency (%)
GFP	404	1	0.25
Fst	516	3	0.58

doi:10.1371/journal.pone.0107945.t001
expression of Fst in MyoP-specifically active tissues of heart and muscle in Fst-KI pig (130101-1) comparing with WT pig. Corresponding with that, hypomethylated status of MyoP was observed in these tissues (Figure 4F). And in other tissues such as brain, intestine, spleen, liver, lung and fat, MyoP was low active and hypermethylated. These results indicate that pRosa26 locus supports MyoP driving transgene expression in a muscle-specific manner. Until now, 2 (130731-1 and 130731-2) of 5 correctly targeted pigs are still alive (Figure 4G).

Discussion

The number of genetically modified pigs has dramatically increased in recent years. However, common obstacles have been lack of desired phenotypes [1–4]. This study describes the identification and characterization of the porcine Rosa26 promoter and locus, and demonstrates the activities of ubiquitous and tissue-specific promoters at the locus, providing an important advancement for genetical modification in pig.

Consistent with previous report [23], we confirmed that porcine Rosa26 gene located on porcine chromosome 13 and obtained a 646 bp-long transcript from the pRosa26 locus, which is longer

Table 2. The development of GFP-KI cloned embryos in vitro.

Groups	Embryos	Fusion (%)	Cleavage (%)	Blastocyst (%)	Cell No. of blastocyst	GFP positive blastocyst (%)
Control	220	70.0±2.6 (n = 154)	85.7±5.0 (n = 132)	22.1±4.5 (n = 34)	31.4±3.4	–
GFP-KI	244	65.2±3.0 (n = 159)	83.3±3.0 (n = 132)	25.7±7.2 (n = 34)	35.5±4.9	83.4±3.0 (n = 28)

Note: Different superscripts mean significant difference (p < 0.05).

doi:10.1371/journal.pone.0107945.t002

Figure 4. MyoP-Fst targeting in the pRosa26 locus. (A) Schematic representative of the MyoP-Fst targeting vector and a segment of the pRosa26 locus. SA, splice acceptor. The red and black dashed lines indicate the knockin (1.2 kb) and WT (3.0 kb) band sizes expected after XhoI/XbaI digestion in the Southern blot. The yellow dashed line indicates the Fst band size (1.85 kb) expected after HindIII/BamHI digestion in the Southern blot. The blue dashed line indicates the band size (1.8 kb) in the 5' arm PCR analysis using F and R primer set. (B) Southern blot of cloned pigs. 5 correctly targeted pigs were confirmed. (C) Fst expression in ear of 3 Fst-KI pigs by Western blot. (D) Fst expression relative to b-actin in various tissues of Fst-KI pig by Q-PCR. (E) Fst expression in various tissues of Fst-KI pig by Western blot. (F) DNA methylation status of MyoP in various tissues of Fst-KI pig. (G) Fst-KI pigs. 130731-1 and -2 are marked with *. WT, wild type.

doi:10.1371/journal.pone.0107945.g004
than the one Li et al. described [23]. The termination signal was found in the 3′ end of our obtained transcript, suggesting that at least we get the full-length of one transcript variant of pRosa26. Unlike the highly conserved promoter region of Rosa26 gene between mouse and pig, the porcine transcript exhibited low homology with that of mouse and rat, indicating the function of Rosa26 gene may be non-conservative. Actually, little is know of the function of Rosa26. It possibly works to regulate the expression of ThumpD3 [30]. In mouse, human and rat, Rosa26 overlaps with the ThumpD3 gene, which is positioned in the reverse orientation downstream of Rosa26 [18,21,22], however, there are two ThumpD3 genes in pig, and pRosa26 locates in the reverse orientation upstream of one ThumpD3 gene and in the same orientation upstream of another ThumpD3 gene (Figure S2).

pRosa26 promoter, conserving functions of its homologues in mouse, human and rat, exhibited a wide activity in variety of adult tissues [31]. Furthermore, pR26 could drive transgene expression in a high and stable manner, unlike CMV, a ubiquitous promoter, which was hypermethylated resulting in a low activity, indicating the porcine endogenous promoter is not rejected in the porcine cellular contexts by epigenetic silencing. We believe that genetically modified pigs will profit from the pRosa26 promoter.

Rosa26 locus is an ideal site for ubiquitous expression of transgene [18,21–23]. In the study, we targeted EF1α-GFP and MyoP-Fst expression cassettes into the pRosa26 locus. Though the targeting efficiency was low (0.25% for GFP targeting and 0.58% for Fst), the gene knockin pigs were successfully obtained by traditional HR strategy. To our knowledge, this is the first study to achieve gene knockin in large animals by traditional HR, suggesting gene targeting in Rosa26 locus is efficient. Moreover, we demonstrated that EF1α and MyoP were activated in the pRosa26 locus. It has been evidenced that the locus appears to be an appropriate docking site for the activity of exogenous ubiquitous promoter [28,29]. Consistent with that, EF1α showed high activity and hypomethylation status in the pRosa26 locus, indicating Rosa26 locus is as a protector against epigenetic silencing of exogenous constructs. However, MyoP was active and showed hypomethylation status in a muscle-specific manner in the pRosa26 targeted pigs. MyoP is the promoter of Myostatin, which is restricted to muscle-specific expression and as a negative regulator of myogenesis [32,33]. Considering that, we contribute the muscle-specific manner of MyoP at the pRosa26 locus to specific cellular contexts and DNA methylation. It has been demonstrated that in myoblast, transcription factor MyoD upregulates myostatin promoter activity and other somatic cells, which are lack of MyoD expression, show a significant reduction of MyoP activity [32]. So, the activity of tissue-specific promoter is determined on the specific cellular contexts. Beside that, specific DNA methylation plays a crucial role in establishing and maintaining the manner of tissue-specific promoter [34]. Taken together, we demonstrate Rosa26 locus supports tissue-specific promoter driving transgene expression in its own manner.

In summary, full sequence of the porcine Rosa26 locus was characterized and EF1α-driven GFP reporter and Myostatin promoter-driven Follistatin were successfully targeted into the locus. These results suggest that the activity of promoter in the Rosa26 locus depends on its own manner instead of the locus. In addition to the previous report (23), the study provided further demonstration on biomedical and agricultural applications of the porcine Rosa26 promoter and locus.

Supporting Information

Figure S1 Alignment of the mouse and porcine Rosa26 sequences. Alignment of the mouse and porcine Rosa26 sequences with the highest degree of homology (sequence similarity >88%). The top arrow denotes the 5′ start of the mouse Rosa26 transcript, and the bottom arrow indicates the start of the 5′ porcine transcript. (TIF)

Figure S2 Porcine ESTs and transcripts neighboring the pRosa26 locus. pRosa26 locus and multiple alignment plot of porcine ESTs and transcripts. This region contains both the pRosa26 locus and the neighboring genes that have also been found in mouse, human and rat. EWS46160 used to design primers to clone pRosa26 is marked with yellow shadow. In mouse, human and rat, Rosa26 overlaps with the ThumpD3 gene, which is positioned in the reverse orientation downstream of Rosa26, however, in pig, there are two ThumpD3 genes, and pRosa26 locates in the reverse orientation upstream of one ThumpD3 gene and in the same orientation upstream of another ThumpD3 gene. (TIF)

Figure S3 Sequence of pRosa26. (A) The sequence of the pRosa26 promoter. (B) The sequence of the pRosa26 ncRNA. Termination signal is marked with red under line. Primers using in 3′ or 5′ RACE are marked with green or blue under line. Primers using in Q-PCR are marked with red bracket. (C) The gap sequence of the pRosa26 intron 1. (TIF)

Acknowledgments

The authors gratefully acknowledge colleagues in the “Lab of Embryo Biotechnology” group for helpful discussions.

Author Contributions

Conceived and designed the experiments: QRK TH YSM JM TQH.Performed the experiments: QRK TH DDJ BTX MLW JQW KH RFG. Analyzed the data: YRS YW YLJ JLS. Contributed reagents/materials/
References

1. Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78: 879–891.

2. Lai L, Kang JX, Li R, Wang J, Witt WT, et al. (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24: 433–436.

3. Estterhas SK, Bouhassira EE, Martin DJ, Ferring S (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22: 469–479.

4. Chiaromonte F, Miller W, Bouhassira EE (2003) Gene length and proximity to neighbors affect genome-wide expression levels. Genome Res 13: 2502–2508.

5. Xin J, Yang H, Fan N, Zhao B, Ouyang Z, et al. (2013) Highly efficient generation of GGTAA1 biallelic knockout ibred mini-pigs with TALENs. PloS one 8: e84250.

6. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24: 372–375.

7. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25: 2436–2452.

8. Carlson DF, Tan W, Lilliego SV, Sverakova D, Proudfoot C, et al. (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109: 17382–17387.

9. Olsen PA, Gelazauskaite M, Randol M, Krauss S (2010) Analysis of illegitimate locus modifications. Molecular therapy: the journal of the American Society of Human Genetics 18: 743–753.

10. Cornu TI, Cathomen T (2010) Quantification of zinc finger nuclease-associated toxicity. Methods Mol Biol 469: 237–245.

11. Pattanayak V, Ramirez CL, Joung JR, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nature methods 8: 765–770.

12. Gupta A, Meng X, Zhao B, Ouyang Z, et al. (2013) Highly efficient generation of GGTAA1 biallelic knockout ibred mini-pigs with TALENs. PloS one 8: e84250.

13. Cornu TI, Cathomen T (2010) Quantification of zinc finger nuclease-associated toxicity. Methods Mol Biol 469: 237–245.

14. Li X, Yang Y, Bu L, Guo X, Tang C, et al. (2014) ROSA26-targeted in vivo models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res.

15. Wang P, Wang SM, Hsieh CJ, Chien CL (2006) Neural expression of alpha-internexin promoter in vitro and in vivo. J Cell Biochem 97: 257–267.

16. Vandenbrouck A, Nakai K (2010) Modeling tissue-specific structural patterns in human and mouse promoters. Nucleic Acids Res 38: 18–25.

17. Rao P, Meeks DA (2009) A tetracycline-inducible and skeletal muscle-specific Cre recombinase transgenic mouse. Developmental neurobiology 69: 401–406.

18. Schumann A, Koetzier PA, Hertz J, Doerrler W (2000) Epigenetic and genotype-specific effects on the stability of de novo imposed methylation patterns in transgenic mice. J Biol Chem 275: 37915–37921.

19. Tchorz JS, Suply T, Ksiazek I, Giachino C, Coota D, et al. (2012) A modified RMCE-compatible ROSA26 locus for the expression of transgenes from exogenous promoters. PloS one 7: e30011.

20. Chen C, Krohan J, Bhattacharya S, Davies B (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a 46531 integrase mediated cassette exchange approach in mouse ES cells. PloS one 6: e23376.

21. Gross JB, Hakenk J, Oglesby E, Marsh-Armstrong N (2006) Use of a ROSA26: GFP transgenic line for long-term Xenopus fate-mapping studies. J Anat 209: 401–413.

22. Burket CT, Montgomery JE, Thummel R, Kassen SC, LaFave MC, et al. (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17: 463–479.

23. Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, et al. (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol 22: 7006–7012.

24. Lee SJ, McPherson AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98: 9306–9311.

25. Li D, Da L, Tang H, Li T, Zhao M (2008) Cpg methylation plays a vital role in determining tissue- and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res 36: 330–341.