Supporting Information

for

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

Limin Wang, Aisha Adebola Womiloju, Christiane Höppener, Ulrich S. Schubert and Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551. doi:10.3762/bjnano.12.44

Additional figures and tables
Figure S1: Representative diagram depicting the power, pressure, and temperature measured during the microwave-assisted coating of the glass substrate.

Figure S2: Histograms of SERS substrates from different batches after their preparation: (a) batch 1 and (b) batch 2.
Figure S3: SEM images of the SERS substrates immersed into different organic solvents and PBS solutions for 1 and 4 h, respectively.

Figure S4: Raman intensities found for the marker peak at 1442 cm\(^{-1}\) of a monolayer prepared from 10^{-4} M 4-ATP. After eight minutes the peak intensity reaches a plateau, indicating the formation of a complete monolayer on the SERS substrates.
Figure S5: Reference Raman spectra of a 4-ATP-coated, non-treated, clean SERS substrate (red) and the Raman spectrum of the SERS substrate only (black). The corresponding peak assignment is provided in Table S1.

Table S1: Peak assignment for the SERS spectrum shown in Figure S5 [1,2]. A dimerization process takes place and leads to the transformation of 4-ATP into 4,4'-dimercaptoazobenzene (DMAB) as seen in the appearance of the b$_2$ modes or a$_g$, respectively [1].

SERS band frequency/cm$^{-1}$	Assignment (4-APT/DMAB)
1580	ν(CC), b$_2$/a$_g$ mode
1440	δ(CH) + ν(CC), b$_2$/a$_g$ mode
1394	ν(CC) + δ(CH), b$_2$/a$_g$ mode
1145	δ(CH), a$_1$ mode
1078	ν(CS), a$_1$ mode
Figure S6: Reference Raman spectrum of a monolayer of 4-ATP self-assembled on a water-treated SERS substrate.

Figure S7: EDX elemental analysis of the SERS substrate without treatment (a) and treated with PBS buffer of pH 5 (b). The insets represent the SEM images. Scale bar: 500 nm. The elements O, Si, C, Na, and Al in (b) could be attributed to the glass substrate.
Table S2: Main components of different buffer solutions.

Different buffer solutions	Ingredients	Cations	Anions
PBS pH 3	NaCl, KCl,	Na⁺, K⁺	Cl⁻, H₂PO₄⁻
	NaH₂PO₄, KH₂PO₄		
PBS pH 5	NaCl, KCl,	Na⁺, K⁺	Cl⁻, H₂PO₄⁻
	NaH₂PO₄, KH₂PO₄		
Acetate pH 5	CH₃COONa, CH₃COOH	Na⁺	CH₃COO⁻
PBS pH 7	NaCl, KCl,	Na⁺, K⁺	Cl⁻, HPO₄²⁻,
	Na₂HPO₄, KH₂PO₄		H₂PO₄⁻
HBG pH 7	HEPES, glucose		
TBE pH 8	Tris base, boric acid, EDTA		
PBS pH 9	NaCl, KCl,	Na⁺, K⁺	Cl⁻, HPO₄₂⁻
	Na₂HPO₄, K₂HPO₄		
Carbonate pH 10	NaHCO₃, Na₂CO₃	Na⁺	HCO₃⁻, CO₃²⁻
PBS pH 11	NaCl, KCl,	Na⁺, K⁺	Cl⁻, HPO₄²⁻
	Na₂HPO₄, K₂HPO₄		

[1] Huang, Y.-F.; Wu, D.-Y.; Zhu, H.-P.; Zhao, L.-B.; Liu, G.-K.; Ren, B.; Tian, Z.-Q. Phys. Chem. Chem. Phys., 2012, 14, 8485–8497.

[2] Hu, X.; Wang, T.; Wang, L.; Dong, S. J. Phys. Chem. C 2007, 111, 6962–6969.