Influence of methionine/valine-depleted enteral nutrition on nucleic acid and protein metabolism in tumor-bearing rats

Yin-Cheng He, Jun Cao, Ji-Wei Chen, Ding-Yu Pan, Ya-Kui Zhou

Abstract

AIM: To investigate the effects of methionine/valine-depleted enteral nutrition (EN) on RNA, DNA, and protein metabolism in tumor-bearing (TB) rats.

METHODS: Sprague-Dawley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker-256 carcinosarcoma cells was subcutaneously inoculated. 48 TB rats were randomly divided in 4 groups: A, B, C, and D. The TB rats had respectively received jejunal feedings supplemented with balanced amino acids, methionine-depleted, balanced amino acids and valine-depleted for 6 days before injection of 740 KBq $[\text{H}^{-}]$ methionine/valine via jejunum. The $[\text{H}^{-}]$ incorporation rate of the radioactivity into RNA, DNA, and proteins in tumor tissues at 0.5, 1, 2, 4 h postinjection of tracers was assessed with liquid scintillation counter.

RESULTS: Incorporation of $[\text{H}^{-}]$ into proteins in groups B and D was (0.500\pm0.020) % to (3.670\pm0.110) % and (0.708\pm0.019) % to (3.813\pm0.076) % respectively, lower than in groups A [(0.659\pm0.055) % to (4.942\pm0.108) %] and C [(0.805\pm0.098) % to (4.180\pm0.018) %]. Incorporation of $[\text{H}^{-}]$ into RNA, DNA in group B was (0.237\pm0.075) % and (0.231\pm0.052) % respectively, lower than in group A (P<0.01). There was no significant difference in uptake of $[\text{H}^{-}]$ by RNA and DNA between group C and D (P>0.05).

CONCLUSION: Protein synthesis was inhibited by methionine/valine starvation in TB rats and nucleic acid synthesis was reduced after methionine depletion, thus resulting in suppression of tumor growth.

INTRODUCTION

Parenteral nutrition (PN) is now a supportive therapy commonly used for cancer patients. However, some studies have suggested that PN with amino acid balanced solutions may prompt tumor growth.[1-3]. Previous studies have shown that tumor growth was inhibited by a diet or PN lacking in methionine/valine. However, the mechanism is not yet known.[4-13]. In this study, we prepared methionine/valine-free amino acid imbalance solutions to investigate the effects of methionine/valine depleted EN on RNA, DNA, and protein metabolism in TB rats.

MATERIALS AND METHODS

Radiopharmaceuticals

Methionine ($[\text{H}^{-}\text{Met}]$, specific activity of 148 MBq·mg$^{-1}$) and valine ($[\text{H}^{-}\text{Val}]$, specific activity of 240 MBq·mg$^{-1}$) was purchased from Chinese institute of atomic energy. The radiochemical purity was over 95%.

Catheterization of jejunostomy

SD rats weighing (160±20) g were purchased from the animal center of Wuhan University, China. They were allowed to acclmate for one week. After fasting for 12 hours, rats were anesthetized with i.p. sodium pentobarbital (40 mg·kg$^{-1}$). The animals were undergone catheterization of jejunostomy (day 0). A silicone rubber catheter (2 mm ID, 3 mm OD) was inserted into the proximal jejunum. The catheter passed through a subcutaneous tunnel and emerged between the scapulae. The catheter was sutured to the animal’s back to protect the lines and was connected to a swivel so that animals can move without any restrictions in individual metabolic cages. The cannulation system consists of a microinfusion pump, a swivel, rat-harness and a silicone-tube-jejunostomy. Coprophagy was prevented by an own model of faecal collection cup. Animals were fasted for 48 hours after operation but they were provided with water ad libitum, and then given normal rat diets.

Preparation of TB rats

Walker-256 carcinosarcoma cells were obtained from Chinese Center of Culture Preservation. On day 0, the rats were inoculated subcutaneously in the right flank with 107 tumor cells of approximately 0.1 ml of cell suspension. Tumors were palpable in 7 days after transplantation.

Jejunal feeding

Enteral feedings were found to be a safe and cost-effective method for providing nutrition to cancer-bearing patients. On day 8, 48 TB rats were randomly divided into four groups (12 rats per group) and received enteral nutrition (jejunal feeding): Group A: TB rats were fed enteral nutrition solutions composed of balanced amino acids for 6 days before injection of 740 KBq $[\text{H}^{-}\text{MET}}$.

Group B: TB rats were fed methionine-depleted enteral nutrition solutions for 6 days before injection of 740 KBq $[\text{H}^{-}\text{MET}}$.

Group C: TB rats were fed enteral nutrition solutions composed of balanced amino acids for 6 days before injection of 740 KBq $[\text{H}^{-}\text{VAL}}$.

Group D: TB rats were fed valine-depleted enteral nutrition solutions for 6 days before injection of 740 KBq $[\text{H}^{-}\text{VAL}}$.

TB rats received continuous jejunal tube infusion with pump...
for nutritional support at a daily dose of 330 ml·kg⁻¹, non-protein calorie was approximately 1160 K·J·kg⁻¹. A microinfusion pump was used for constant administration of EN solutions. TB rats were not fed during the entire infusion experiment, however they had free access to water.

Composition of amino acid solutions

Table 1 lists the components of amino acid solutions.

Amino acids	Balanced amino acids (Group A, C)	Methionine-depleted (Group B)	Valine-depleted (Group D)
	5.5	5.5	5.5
Isoleucine			
Leucine	7.5	7.5	7.5
Lysine	7.0	7.0	7.0
Methionine	6.0	-	6.0
Phenylalanine	4.0	4.0	4.0
Threonine	5.0	5.0	5.0
Tryptophan	1.5	1.5	1.5
Valine	6.0	6.0	-
Arginine	6.0	6.0	6.0
Histidine	3.0	3.0	3.0
Proline	4.0	4.0	4.0
Tyrosine	1.0	1.0	1.0
Alanine	20.0	20.0	20.0
Glycine	7.5	7.5	7.5
Aspartic acid	4.0	4.0	4.0
Total amino acid	88.0	82.0	82.0
Total N	14.1	13.1	13.1

Composition of EN solutions

Table 2 summarizes the daily EN compositions infused into various groups.

Amino acids	Balanced amino acids (group A, C)	Methionine-depleted (group B)	Valine-depleted (group D)
Amino acid solutions	350	350	350
50% Glucose	300	300	300
20% Intralipid	100	100	100
Electolytes, vitamine	250	250	250
Total calorie (K·L⁻¹)	3 513.3	3 507.9	3 507.9
Total N (g·L⁻¹)	4.9	4.6	4.6
Non-protein calorie/N	122	131	131

Specimen sampling

After the infusions were completed, three rats per group were respectively killed by cervical dislocation at 0.5, 1, 2 and 4 hours postinjection of tracers. The whole tumor was dissected and used for the tissue uptake of radioactivity.

Nucleic acid and protein analysis

To assess the incorporation of the radioactivity into macromolecular materials, portions of the tumor tissues (70-120 mg) were divided into the acid-soluble fraction (ASF) and the acid-precipitate fraction (APF). Radiolabeled APF was divided into four fractions: lipids, RNA, DNA and proteins. To analyze ³H-Met and ³H-Val metabolites, the tumor tissues were homogenated in 1 ml of ice-cold 0.4 M HClO₃. The homogenate was centrifuged at 3 000 rpm for 5 min. The precipitate was resuspended in 1 ml of CHCl₃·CH₂OH (2:1,V/V). After centrifugation at 3 000 rpm for 10 min, the CHCl₃·CH₂OH phase was separated. This extraction was repeated twice. The combined CHCl₃·CH₂OH fraction contains radiolabeled lipids. The precipitate was dissolved in 1 ml of 0.3 M KOH. After incubation of the solution at 37 °C for 1 hour to hydrolyze RNA, 0.32 ml of 3 N HClO₃ was added. The mixture was kept on ice for 5 min. The precipitate was then separated and washed with 1 ml 0.5 M HClO₃, as described above. The combined supernatant was designated as the alkaline-labile fraction containing the RNA hydrolysate. The precipitate was resuspended in 1 ml of 0.5 M HClO₃, and heated at 90 °C for 15 min to hydrolyze DNA. The solution was kept on ice for 5 min, and precipitate was separated and washed with 0.4 M HClO₃, twice. The combined supernatant and the final precipitate were assessed as the acid-labile fraction containing hydrolysates of DNA and protein fraction, respectively.

The radioactivities of fractions were counted by liquid scintillation counter. The tissue radioactivity was expressed as differential uptake ratio (DUR).

DUR= Counts of tumor tissue (cpm)/sample weight (g)
 Injection dose counts (cpm)/body weight (g)

Statistical analysis

Student t test was used to examine the data. The difference was considered significant when P value was less than 0.05.

RESULTS

Three TB rats died of intestinal fistula, diarrhea, infection of abdominal cavity. Table 3 represented incorporation of ³H into nucleic acids and proteins in TB rats after treatment.

Group	0.5 h	1 h	2 h	4 h
RNA A	0.208±0.002	0.300±0.002	0.349±0.007	0.405±0.007b
B	0.149±0.012	0.249±0.009	0.260±0.010	0.399±0.010
C	0.200±0.007	0.250±0.030	0.283±0.029a	0.326±0.014a
D	0.180±0.013	0.210±0.024	0.300±0.034	0.320±0.030a
DNA A	0.210±0.013	0.300±0.020	0.339±0.039	0.400±0.002c
B	0.179±0.010a	0.204±0.039a	0.240±0.028a	0.300±0.015a
C	0.200±0.011	0.250±0.040	0.283±0.033a	0.340±0.057a
D	0.180±0.015	0.220±0.024	0.300±0.007	0.320±0.035
Proteins A	0.659±0.055	2.410±0.149	3.450±0.125	4.492±0.108
B	0.500±0.020a	2.000±0.203a	2.890±0.090a	3.670±0.110a
C	0.805±0.098	2.510±0.101a	3.540±0.101a	4.180±0.018
D	0.708±0.019	1.887±0.020a	2.916±0.085a	3.613±0.076

³P <0.05, ⁴P <0.01, vs group A or C. ³Number of rats=2.

DISCUSSION

Influence of Methionine/Valine-depleted enteral nutrition on protein metabolism in TB rats

Patients with malignant tumors often show severe protein-amino acid metabolism disorder and uncorrectable negative nitrogen balance. Researchers have begun to reconsider the prescription of amino acid imbalance solution for cancer patients. Total parenteral nutrition deprived of methionine or valine cause tumor growth inhibition, but also have no significantly negative influences on the host animals.[16-18]

Table 3 shows the ³H incorporation rate in tumor tissues at
various times after 'H-Met/Val injections. Regardless of Methionine/Valine-depleted enteral nutrition, the radioactivity into nucleic acids and proteins increased with time. In proteins we found an accumulation of the label which was up to 3-10-fold higher than in DNA and RNA. It represents the principle pathway for methionine and valine anabolism. Accumulation of 'H-Met/Val into malignant tissue is thought to be due to amino acid metabolism of cancer cells such as increased active transport and incorporation of amino acid into protein fractions. In the complete absence of Methionine or Valine, the 'H incorporation rate of the radioactivity into proteins in tumor tissues was from 75.8 % to 87.9 % of the control value. That is to say, in agreement with Xiao's study[20], protein synthesis was inhibited by methionine/valine depletion, in this case suppressing tumor growth[19-20].

Although essential amino acids are indispensable for physical well-being, the body lacks the ability to synthesize these compounds. Amino acids are an important materials of protein synthesis, amino acid imbalance are considered to principally involving alterations in intracellular protein synthesis, the deprivation of essential amino acids (Met, Val) leads to inhibit activity of tumor growth[21,22].

Influence of Methionine/Valine-depleted enteral nutrition on RNA and DNA in TB rats
Methionine adenosyltransferase is the enzyme which is responsible for the synthesis of S-adenosyl-L-methionine (SAM) using methionine and adenosine triphosphate (ATP). Most of SAM are used in transmethylation reaction in which methyl groups are added to compounds and SAM is converted to S-adenosylhomocysteine. SAM is the principal biological methyl donor. SAM can easily transfer its methyl group to a large variety of acceptor substrates including tRNA, rRNA, mRNA, DNA, proteins, phospholipides, biological amines, and a long list of small molecules[29-33]. So 'H-Met is also incorporated into nucleic acids by transmethylation via S-adenosyl-L-methionine. Methionine depleted enteral nutrition can decrease methylation of tumor tissues and lead to further reduction in nucleic acid synthesis and inhibition of cancer growth at molecular levels.

Table 3 showed that the RNA and DNA incorporation rate in group B was lower than in control group (group A). Based on these findings, cancer cells were known to have lower levels of DNA and RNA synthesis on methionine-depleted enteral nutrition.

Theoretically, it is considered that 'H-Val is incorporated into proteins but not into other high-molecular materials such as nucleic acids. The incorporation of 'H-Val was detected in nucleic acids at negligible amounts, which possibly reflects contamination by labeled proteins during the experimental processes. However, because no metabolic pathway for the DNA incorporation of 'H-Val is considered, the radioactivity in the acid-labile fraction is probably derived from basic proteins such as chromosomal histones.

REFERENCES
1. Bozetti F, Gavazzi C, Cozzaglio L, Costa A, Spinelli P, Viola G. Total parenteral nutrition and tumor growth in malnourished patients with gastric cancer. Tumori 1999; 85: 163-166
2. Sasamura T, Matsuda A, Kokuba Y. Tumor growth inhibition and nutritional effect of d-amino acid solution in AH109A hepatoma-bearing rats. J Nutr Sci Vitaminol 1998; 44: 79-87
3. Forchielli ML, Paoluci G, Lo CW. Total parenteral nutrition and home parental nutrition: an effective combination to sustain malnourished children with cancer. J Nutr Res Rev 1999; 57: 15-20
4. Sasamura T, Matsuda A, Kokuba Y. Nutritional effects of a D-methionine-containing solution on AH109A hepatoma-bearing rats. Biosci Biotechnol Biochem 1998; 62: 2418-2420
5. Xiao HB, Cao WX, Yin HR, Lin YZ, Ye SH. Influence of L-methionine-deprived total parenteral nutrition with 5-fluorouracil on gastric cancer and host metabolism. World J Gastroenterol 2003; 7: 698-701
6. Nagahama T, Goseki N, Endo M. Doxorubicin and vincristine with methionine depletion contributed to survival in the Yoshida sarcoma bearing rats. Anticancer Res 1998; 18: 25-31
7. Cao WX, Cheng QM, Fei XF, Li SF, Yin HR, Lin YZ. A study of preoperative methionine-depleting parenteral nutrition plus chemotherapy in gastric cancer patients. World J Gastroenterol 2000; 6: 255-258
8. Tang B, Li YN, Kruger WD. Defects in methylthioadenosine phosphorylase are associated with both not responsible for methionine-dependent tumor cell growth. Cancer Res 2000; 60: 5543–5547
9. Komatsu H, Nishihira T, Chini M, Doi H, Shinhe R, Mori S, Satomi S. Effects of caloric intake on anticancer therapy in rats with valine-depleted amino acid imbalance. Nutr Cancer 1997; 28: 107-112
10. Yoshida S, Ohta J, Shiroyuzu Y, Ishibashi N, Harada Y, Yamana H, Shiroyuzu K. Effect of methionine-free total parenteral nutrition and insulin-like growth factor I on tumor growth in rats. Am J Physiol 1997; 273: E10-16
11. Komatsu H, Nishihira T, Chini M, Doi H, Shinhe R, Mori S, Satomi S. Effect of valine depleted total parenteral nutrition on fatty liver development in tumor-bearing rats. Nutrition 1998; 14: 276-281
12. Tan Y, Xu M, Guo H, Sun X, Kubota T, Hoffman RM. Anticancer efficacy of methionine in vivo. Anticancer Res 1986; 16: 3931-3936
13. Guo H, Tan Y, Kubota T, Moossa AR, Hoffman RM. Methionine depletion modulates the antitumor and antimetastatic efficacy of ethionine. Anticancer Res 1996; 16: 2719-2723
14. Sasamura T, Matsuda A, Kokuba Y. Effects of D-methionine-containing solution on tumor cell growth in vitro. A tmznaitteforschung 1996; 49: 541-543
15. Bozetti F, Gavazzi C, Miceli R, Rossi N, Mariani L, Cozzaglio L, Bonfanti G, Piacenza S. Perioperative total parenteral nutrition in malnourished, gastrointestinal cancer patients: a randomized, clinical trial. JPEN 2000; 24: 7-14
16. Yoshioaka T, Wada T, Uchida N, Makih H, Yoshida H, Ide N, Kasai H, Hojo K, Shono K, Maekawa R, Yagi S, Hoffman RM, Sugita K. Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res 1996; 56: 2583-2587
17. Jini D, Phillips M, Byles JE. Effects of parenteral nutrition support and chemotherapy on the phasic composition of tumor cells in gastrointestinal cancer. JPEN 1999; 23: 237-241
18. Machover D, Zittoun J, Broet P, Metzger G, Orrico M, Goldschmidt E, Schiff A, Tonetti C, Tan Y, Delmas-Marsalet B, Luccioni C, Falissard B, Hoffman RM. Cytotoxic synergism of methionine in combination with 5-fluorouracil and folinic acid. Nutrition 2001; 36: 867-876
19. Nishihira T, Takagi T, Mori S. Leucine and manifestation of antitumor activity by valine-depleted amino acid imbalance. Nutrition 1993; 9: 146-152
20. Nishihira T, Takagi T, Kawarabayashi Y, Izumi U, Okhuma S, Koike N, Toyoda T, Mori S. Anti-cancer therapy with valine-depleted amino acid imbalance solution. Tohoku J Exp Med 1988; 156: 259-270
21. Nishihira T, Komatsu H, Sagawa J, Shinhe R, Mori S. Prevention of fatty liver and maintenance of systemic valine depletion using a newly developed dual infusion system. JPEN 1995; 19: 199-203
22. Machover D, Zittoun J, Saffroy R, Broet P, Giraudier S, Magalnudo T, Goldschmidt E, Deburei B, Orrico M, Tan Y, Mishal Z, Chevalleri O, Tonetti C, Jouault H, Usukakara Y, Tanguy ML, Metzger G, Hoffman RM. Treatment of cancer cells with methioninase produces DNA hypomethylation and increases DNA synthesis. Cancer Res 2002; 62: 4685-4689
23. Hoshiya Y, Kubota T, Inada T, Kitaigawa M, Hoffman RM. Methionine-depletion modulates the efficacy of 5-fluorouracil in human gastric cancer in nude mice. Anticancer Res 1997; 17: 4371-4375
24. Poisson-Bichat F, Goncalves RA, Miccoli L, Dutrillaux B, Poupon...
MF. Methionine depletion enhances the antitumoral efficacy of cytotoxic agents in drug-resistant human tumor xenografts. Clin Cancer Res 2000; 6: 643-653
25 Poirson-Bichat F, Lopez R, Bras Goncalves RA, Miccoli L, Bourgeois Y, Demerseman P, Poisson M, Dutrillaux B, Poupon MF. Methionine deprivation and methionine analogs inhibit cell proliferation and growth of human xenografted gliomas. Life Sci 1997; 60: 919-931
26 Hoshiya Y, Kubota T, Matsuzaki SW, Kitajima M, Hoffman RM. Methionine starvation modulates the efficacy of cisplatin on human breast cancer in nude mice. Anticancer Res 1996; 16: 3515-3517
27 Samuels SE, Knowles AL, Tilignac T, Debiton E, Madelmont JC, Attiaix D. Protein metabolism in the small intestine during cancer cachexia and chemotherapy in mice. Cancer Res 2000; 60: 4968-4974
28 Poirson-Bichat F, Gonfalone G, Bras-Goncalves RA, Dutrillaux B, Poupon MF. Growth of methionine-dependent human prostate cancer (PC-3) is inhibited by ethionine combined with methionine starvation. Br J Cancer 1997; 75: 1605-1612
29 Lu SC. Methionine adenosyltransferase and liver disease: it's all about SMA. Gastroenterology 1998; 114: 403-407
30 Zhu SS, Xiao SD, Chen ZP, Shi Y, Fang JY, Li RR, Mason JB. DNA methylation and folate metabolism in gastric cancer. World J Gastroenterol, 2000; 6(Suppl 3): 18
31 Avila MA, Carretero MV, Rodriguez EN, Mato JM. Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Gastroenterology 1998; 114: 364-371
32 Cao WX, Ou JM, Fei XF, Zhu ZG, Yin HR, Yan M, Lin YZ. Methionine-dependence and combination chemotherapy on human gastric cancer cells in vitro. World J Gastroenterol 2002; 8: 230-232
33 Cui J, Yang DH, Bi XJ, Fan ZR. Methylation status of c-fms oncogene in HCC and its relationship with clinical pathology. World J Gastroenterol 2001; 7: 136-139

Edited by Xu JY