Objective speech intelligibility prediction using a deep learning model with continuous speech-evoked cortical auditory responses

Youngmin Na¹, Hyosung Joo², Le Thi Trang², Luong Do Anh Quan² and Jihwan Woo¹,²*

¹Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea. ²Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea

Auditory prostheses provide an opportunity for rehabilitation of hearing-impaired patients. Speech intelligibility can be used to estimate the extent to which the auditory prosthesis improves the user's speech comprehension. Although behavior-based speech intelligibility is the gold standard, precise evaluation is limited due to its subjectiveness. Here, we used a convolutional neural network to predict speech intelligibility from electroencephalography (EEG). Sixty-four–channel EEGs were recorded from 87 adult participants with normal hearing. Sentences spectrally degraded by a 2-, 3-, 4-, 5-, and 8-channel vocoder were used to set relatively low speech intelligibility conditions. A Korean sentence recognition test was used. The speech intelligibility scores were divided into 41 discrete levels ranging from 0 to 100%, with a step of 2.5%. Three scores, namely 30.0, 37.5, and 40.0%, were not collected. The speech features, i.e., the speech temporal envelope (ENV) and phoneme (PH) onset, were used to extract continuous-speech EEGs for speech intelligibility prediction. The deep learning model was trained by a dataset of event-related potentials (ERP), correlation coefficients between the ERPs and ENVs, between the ERPs and PH onset, or between ERPs and the product of the multiplication of PH and ENV (PHENV). The speech intelligibility prediction accuracies were 97.33% (ERP), 99.42% (ENV), 99.55% (PH), and 99.91% (PHENV). The models were interpreted using the occlusion sensitivity approach. While the ENV models’ informative electrodes were located in the occipital area, the informative electrodes of the phoneme models, i.e., PH and PHENV, were based on the occlusion sensitivity map located in the language processing area. Of the models tested, the PHENV model obtained the best speech intelligibility prediction accuracy. This model may promote clinical prediction of speech intelligibility with a comfort speech intelligibility test.

KEYWORDS
speech intelligibility, deep-learning, continuous speech, occlusion sensitivity, EEG
Introduction

Auditory prostheses, such as hearing aids and cochlear implants, provide an excellent opportunity for hearing-impaired patients to rehabilitate their auditory modality. The outcome of auditory prosthesis use depends on the signal processing strategies: modulation of the current pulse train from sound in cochlear implants (CI) (Macherey et al., 2006; Wouters et al., 2015; Nogueira et al., 2019) or reduction of stationary and background noise and customized personal setting of hearing aids (Launer et al., 2016). In addition, the individual’s status, such as the insertion depth of the CI electrode, and the experience of cochlear implantation, could also affect the performance of CI (Vandali et al., 2000; Wanna et al., 2014). To evaluate the benefit of auditory prostheses, a behavioral speech intelligibility test is typically conducted using rating scales based on how well the listener comprehends sentences (Kim et al., 2009). In this behavioral test, a listener is asked to repeat or write what they hear in a recognition test. Speech intelligibility is estimated by scoring the number of correctly identified words (Enderby, 1980; Kent et al., 1989; Healy et al., 2015; Lee, 2016). Although the behavioral assessment can be conducted efficiently and quickly, a self-reported approach may be less reliable and less sensitive in evaluating the true hearing capability (Koewijin et al., 2018). Vocoder simulation has also been used in speech tests to simulate the performance of hearing impairment in normal-hearing listeners (Mehta and Oxenham, 2017).

Event-related potentials (ERPs), in response to word or tone stimuli, have been used to evaluate auditory function objectively. Recently, several studies have shown that electroencephalography (EEG) signals in response to continuous speech stimuli are entrained to speech features: temporal envelope, spectrogram, and phonetics of speech (Scott et al., 2000; Liebenthal et al., 2005; Nourski et al., 2009; Ding and Simon, 2014; O’Sullivan et al., 2015; Crosse et al., 2016; Di Liberto et al., 2018). The speech temporal envelope (ENV), developed using the temporal response function model (TRF), is an effective feature to understand neural responses to continuous speech (Ciccarelli et al., 2019; Nogueira and Dolhopiatenko, 2020, 2022). However, the TRF model is limited in analyzing short (<5 s) responses due to the impact of onset response to a sentence (Crosse et al., 2016, 2021). Therefore, cross-correlation, which measures the similarity between the neural response and the speech sentence, can be more reliable in tracking neural signals in response to short sentences.

It was reported that speech intelligibility affected ENV entrainment (Ding and Simon, 2013; Vanthornhout et al., 2018; Lesenfangs et al., 2019; Nogueira and Dolhopiatenko, 2022). Sentence comprehension requires complex hierarchical stages that integrate the phonological and prosodic processes of an acoustic input (Snedeker and Huang, 2009). Vanthornhout et al. (2018) developed a prediction model for the speech reception threshold using the TRF model, which could explain the variance of speech reception. Moreover, Di Liberto et al. (2015) showed that a speech prediction model with a phonetic feature was outperformed by the envelope model. Thus, a combination of ENV and phoneme (PH) onset information can be effective for feature computation. However, predicting a speech intelligibility score from EEG signals to continuous stimuli with a linear input-output model is still a challenge. Recently, deep learning models have been widely used to classify auditory neural outcomes (Ciccarelli et al., 2019; Craik et al., 2019; Roy et al., 2019; Nogueira and Dolhopiatenko, 2020). Ciccarelli et al. (2019) showed that the non-linear model for decoding of auditory attention outperformed the linear model. As a sentence is non-linearly and hierarchically processed in the human brain along the complex auditory pathway, a non-linear model can perform better in predicting speech intelligibility. Thereby, deep learning can be successfully used in a non-linear model to investigate auditory neural processing. Deep learning requires two essential processes for better predictive performance. First, the reduction of attribute noise, which leads to a decrease in overfitting and memorization of noise data, can be achieved by neural tracking with speech features from EEG (Zhu and Wu, 2004; Altaheri et al., 2021; Cherloo et al., 2021; Zhou et al., 2021). Second, data augmentation increases the amount of data and helps to overcome the problem of limited data (Lashgari et al., 2020).

Although accurate classification is achieved through deep learning, it is essential to interpret the results for clinical use. The explainable deep learning models, the gradient-weighted class activation map (Grad-CAM), and the occlusion analysis map have been developed and applied to the classification tasks of an EEG data model (Jonas et al., 2019; Li et al., 2020; Mansour et al., 2020; Uyttenhove et al., 2020; Lombardi et al., 2021). While the Grad-CAM typically highlights the important lesion, the occlusion analysis map tracks multifocal lesions and thus supports information with higher spatial resolution (Oh et al., 2020; Aminu et al., 2021; Govindarajan and Swaminathan, 2021). Occlusion analysis has been used to discover cortical areas related to movement tasks in EEG classification and identify important regions for image classification (Zeiler and Fergus, 2014; Ieracitano et al., 2021). In this study, we developed a deep learning model to predict speech intelligibility scores with EEG signals to continuous sentences. The typical speech features of ENV and phoneme onset impulse were used. An occlusion sensitivity map was used to select sensitive EEG channels to predict speech intelligibility scores (Esmaeizadeh et al., 2018; Singh et al., 2020).
Materials and methods

Participants

Eighty-seven participants with normal hearing (44 males and 43 females) participated in this study. They were 20–33 years old (mean = 24.0 and standard deviation = 2.4). All experimental procedures and the written informed consent procedure were reviewed and approved by the Institutional Review Board of the University of Ulsan.

Stimuli

Ten continuous sentences spoken by a male speaker were selected from the Korean standard sentence list for adults.
Na et al. 10.3389/fnins.2022.906616

FIGURE 3
The overall scheme of speech intelligibility prediction, including speech stimuli, electroencephalogram data, feature extraction, and model prediction. The speech features of envelope (ENV), phoneme onset train (PH), and ENV ⊗ PH generate the features of ENV continuous-speech evoked potentials (CSEP), PH CSEP, and PHENV CSEP by cross-correlating with the electroencephalogram response (EEG).

FIGURE 4
The behavioral speech intelligibility score (left panel) of individuals in response to vocoded and natural continuous-speech stimuli. The bars (right panel) indicate the incidence of each score.

(Jang et al., 2008). The duration of each sentence was 1.8 ± 0.2 s, and the number of phonemes in each sentence was 18.6 ± 3.9. The natural (non-vocoded) and noise-vocoded sentences were used in this study. A noise vocoder was used to simulate poor sensitivity with normal-hearing listeners. The vocoder consisted of a logarithmically-spaced filter bank between 200 and 5,000 Hz. Natural sentences are then filtered through the filter bank, which is modulated with a Gaussian white noise and synthesized sequentially (Mehta and Oxenham, 2017). The channel of vocoder parameter was set to 2, 3, 4, 5, and 8 for five noise-vocoded conditions, wherein a lower number of channels generated more spectrally degraded stimuli.

Behavioral test and electroencephalography

The Korean sentence recognition test was conducted to evaluate the behavioral speech intelligibility score in a soundproof room prior to EEG data acquisition. The test used 10 sentences selected out of 90, and the participant was asked to verbally repeat the sentence which was presented through a loudspeaker (NS-B51, YAMAHA, Hamamatsu, Japan) at a comfortable level of 60 dBA. The behavioral speech test was performed using natural and noise-vocoded sentences. The behavioral speech intelligibility score, which was calculated

Deep learning layer	Filter size	Kernel dimension (H × W)	Output (H × W × D)
Input			299 × 299 × 3
Conv2D	32	16 × 16	299 × 299 × 32
LeakyReLU			299 × 299 × 32
Conv2D	8	8 × 8	299 × 299 × 8
LeakyReLU			299 × 299 × 8
Maxpooling2D	2 × 2		149 × 149 × 8
Conv2D	8	4 × 4	149 × 149 × 8
LeakyReLU			149 × 149 × 8
Maxpooling2D	2 × 2		148 × 148 × 8
Conv2D	3	3 × 3	148 × 148 × 3
LeakyReLU			148 × 148 × 3
Maxpooling2D	2 × 2		147 × 147 × 3
Batch normalization			147 × 147 × 3
Fully connected	1 × 38		1 × 1 × 38
Softmax			1 × 1 × 38
Classification			38
using the number of correctly repeated words out of 40 target words, ranged from 0 to 100, with a step of 2.5.

EEG data were recorded using a 64-channel system (Biosemi Active 2, Netherlands) in a soundproof room. The natural and vocoded sentences were randomly played by a loudspeaker (NS-B51, YAMAHA, Hamamatsu, Japan) 1 m away from the participants. The inter-stimulus interval (between sentences) was set to 3 s, and each sentence was repeated 100 times. Difficult tasks had precedence over easy tasks to minimize learning throughout the tasks (Figure 1). During this passive experiment, a participant could watch a silent video with subtitles on an LCD monitor and could rest for 10 min between sessions. The raw EEG data were downsampled to 256 Hz for computational efficiency and preprocessed using the EEGLAB toolbox (Delorme and Makeig, 2004). The down-sampled EEG data were re-referenced using average referencing and band-pass (1–57 Hz) filtered by a Hamming windowed sinc FIR filter (Widmann, 2006). The typical eye-movement related artifact was rejected using the extended infomax independent component analysis and manually inspected correction. The EEG data were epoched in the intervals –0.5 to 2.5 s, relative to stimulus onset.

Speech features: Envelope, phoneme, and envelope and phoneme

The PH onset impulse train and the ENV of the natural sentences were used as speech (stimuli) features. All PH onsets in the sentences were automatically identified (Yoon and Kang, 2013) using Praat software (University of Amsterdam, Netherlands) and manually confirmed. The number of phonemes in each sentence ranged from 17 to 22 (mean: 18.6, standard deviation: 3.9). The PH onset impulse train consisted of a sequence of unit impulses at the onset time of the phoneme. The ENVs were computed using a full-wave rectifier and a low-pass filter (30 Hz cutoff). The cutoff frequency of 30 Hz was chosen to obtain a sufficient amplitude envelope of EEG data (Souza and Rosen, 2009; Roberts et al., 2011). Using these aforementioned values, the product of the multiplication of the PH and ENV (PHENV) was calculated.

Deep learning for speech intelligibility prediction

The EEG data were randomly split into a training set (80% of the original data set) and an unseen test set (20%), as depicted in Figure 2. An ERP was computed by averaging 80 EEG data epochs. A bootstrap sampling procedure was employed to generate ERPs and continuous speech-evoked potentials (CSEPs), evenly distributed across the range of speech intelligibility scores. The deep learning features of the CSEPs were computed by averaging the cross-correlation coefficients between the EEG data epochs and speech (stimuli) features. As a result, 800 ERPs and CSEPs from the training set, and 200 ERPs and CSEPs from the test set, were taken.

To enlarge the number of training datasets and guarantee that they reached 8,000, the training datasets were augmented with one of three approaches: Gaussian noise, temporal cutout, or sensor dropout. One of the approaches was randomly selected for each augmentation (Wang et al., 2018). The augmentation techniques used the best parameters obtained in a previous
TABLE 4 Summary of regions of significant contribution for deep learning. The ten most significant EEG channels and their regions, to predict speech intelligibility, are selected using occlusion sensitivity analysis.

Deep learning using	Regions of significant contribution for deep learning
ERP	Cz, C6, C4, FCz, P6, F1, CP2, C3, Pz, FC3
ENV	O2, T8, PO4, CP4, C6, C1, T7, CP2, FT8, P5
PH	C3, C1, F1, P10, F3, F8, P9, C5, F6, PO8
PHENV	C3, C1, F1, F3, F5, P4, C5, TP7, C6, C4

EEG, electroencephalography; ERP, event-related potential; ENV, stimuli envelope; PH, phoneme; PHENV, phoneme-envelope.

Results

Figure 4 plots the behavioral speech intelligibility scores in response to natural and noise-vocoded (2, 3, 4, 5, and 8 channel) sentences. Although the scores are not evenly distributed, it covered overall score ranges except 30.0, 37.5, and 40%. Table 2 shows the statistical summary of the behavioral scores.

Table 3 summarizes the performance of the deep learning models. The predictive accuracies were 97.33% (ERP), 99.42% (ENV), 99.55% (PH), and 99.91% (PHENV). Compared to the probabilistic chance level of 2.63%, the four deep learning models achieved comparable performance on predicting the speech intelligibility score. The deep learning model with the feature based on the PHENV yielded the highest accuracy of 99.91%.

Figure 5 shows the topographical map of occlusion sensitivity computed from the four deep learning models. The color indicates the level of contribution to a classification decision at each channel. Here, the dominant contribution was observed in the occipital region for the ENV-based model, whereas the dominancy was spread over the central, frontal, and parietal brain regions for the ERP, the PH-based model, and the PHENV-based model. Table 4 summarizes the 10 most sensitive EEG channels and the corresponding brain regions for deep learning to predict speech intelligibility scores.

Conclusion and discussion

In this study, we developed a deep learning model to predict speech intelligibility scores using continuous speech-evoked EEG signals. The cross-correlation coefficients between typical speech features (PH and ENV) and EEG responses to speech were implemented as a feature for deep learning and the model achieved the highest classification accuracy of 99.91%. The topographic map illustrating the frontal, central, and parietal regions provided important information for the classification.

Several studies have employed a linear model (i.e., TRF) to predict individual speech intelligibility from EEG responses to overlapped sentences or long story (14 min) stimuli.
One issue with stimulus-driven EEG signals is the speech onset response, which is greater in magnitude than the overall neural activity. For this reason, Crosse et al. (2021) reported that the TRF model may not be a feasible approach to apply in EEG signals in response to short-duration (<5 s) stimuli (Crosse et al., 2021). It is therefore essential to consider the methodological approach to model building in response to speech and continuous stimuli. It should also be noted that the TRF model requires regularization coefficient tuning to avoid overfitting, which makes use of more computational resources and is more complex than cross-correlation. Furthermore, a deep learning model with the cross-correlation coefficient can leverage a non-linear feature to predict the non-linear property of speech intelligibility (Accou et al., 2021).

Subjects participated in the passive listening condition during the electrophysiological data collection in this study. Passive listening provides less experimental fatigue than active listening and can be performed by young children (Roy, 2018; O’Neill et al., 2019). Several studies on selective attention decoding and cortical tracking to long story stimuli have employed the active listening paradigm to keep subjects attentive (Vanthornhout et al., 2018; Lesenfants et al., 2019; Accou et al., 2021; Nogueira and Dolhopiatenko, 2022). Although these participants were asked regarding the stimuli during the experiment for active listening, it may be difficult to ensure a stable attentive level throughout the entire task. In particular, Kong et al. (2014) reported that neural responses from active and passive listeners were similar in quiet conditions, whereas the differences of cross-correlation function were observed in competing speaker conditions. Thus, attention should be considered when predicting speech intelligibility in a selective listening condition.

The occlusion sensitivity enabled the decision of deep learning interpretability (Zeiler and Fergus, 2014; Ieracitano et al., 2021). Here, occlusion sensitivity explained that neural activity from the central and left frontal region made the most important contribution to speech understanding. The topographic map of occlusion sensitivity in PH and PHENV cases showed that the language dominant region (typically F3 within the middle frontal gyrus and TP7 within the middle temporal gyrus) was highly involved in speech intelligibility processes (Scrivener and Reader, 2022). The results are comparable with the findings of neuroimaging studies, specifically that of the sentence-processing network, including the middle frontal and middle temporal gyri (Peelle et al., 2004, 2010; Fiebach et al., 2005; Smirnov et al., 2014). Also, it supports the middle temporal gyrus and the supramarginal gyrus involvement in syntactic and phonological processing (Friederici, 2011). Deep learning with PH and PHENV could be reasonably explainable and interpretable by occlusion sensitivity.

This study has several limitations for clinical implementation. The deep learning model was developed using data from a limited group. The noise-vocoder was used to simulate hearing impairment with normal hearing listeners. Since no data from cochlear implant and hearing aid users were accessed, the model should be sufficiently validated with data of hearing-impaired individuals. In addition, although the group-level deep learning model was developed and tested in this study, it was still challenging to optimize the model with individual-level features due to inter-subject variability (Cheng et al., 2020; Accou et al., 2021). Further investigation of subject-specific models is necessary for the clinical prediction of speech intelligibility. These are the key issues for future studies. We also plan to improve the model by incorporating source EEG data rather than 64-channel EEG data and optimizing the channels based on the occlusion sensitivity map.

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Ethics statement

The studies involving human participants were reviewed and approved by the Institutional Review Board of the University of Ulsan. The patients/participants provided their written informed consent to participate in this study.

Author contributions

YN and JW designed the experiment, developed the model, and examined the results. YN, LT, HJ, and LQ collected data and performed data preprocessing. All authors were involved in preparing the manuscript.

Funding

This work was supported by grants from the National Research Foundation of Korea (NRF-2020R1A2C2003319).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Mansour, M., Khinaissi, F., and Partamian, H. (2020). An explainable model for EEG seizure detection based on connectivity features. arXiv [Preprint].

Mehta, A. H., and Otenhaz, A. J. (2017). Vocoder simulations explain complex pitch perception limitations experienced by cochlear implant users. J. Assoc. Res. Otalaryngol. 18, 789–802. doi: 10.1007/s10162-017-0632-x

Muncke, J., Kuruvila, J., and Hoppe, U. (2022). Prediction of Speech Intelligibility by Means of EEG Responses to Sentences in Noise. Front. Neurosci. 835, 876421. doi: 10.3389/fnins.2022.876421

Nogueira, W., Cosati, G., Schierholz, I., Egger, M., Mirkovic, B., and Büchner, A. (2019). Toward decoding selective attention from single-trial EEG data in cochlear implant users. IEEE Trans. Biomed. Eng. 67, 38–49. doi: 10.1109/TBME.2019.2907638

Nogueira, W., and Dolphopiatenko, H. (2020). “Towards decoding selective attention from single-trial EEG data in cochlear implant users based on deep neural networks,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020, (Spain: IEEE), 8708–8712. doi: 10.1109/ICASSP.2019.8907638

Nogueira, W., and Dolphopiatenko, H. (2022). Predicting speech intelligibility from a selective attention decoding paradigm in cochlear implant users. J. Neural Eng. 19, 062037. doi: 10.1088/1741-2552/ac599f

Nourissi, K. V., Reale, R. A., Oya, H., Kawasaki, H., Kovach, C. K., Chen, H., et al. (2009). Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29, 15564–15574. doi: 10.1523/JNEUROSCI.3065-09.2009

Oh, Y., Park, S., and Ye, J. G. (2020). Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging. 39, 2688–2700. doi: 10.1109/TMI.2020.2993291

O'Neill, E. R., Kreft, H. A., and Oxenham, A. J. (2019). Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. J. Acoust. Soc. Am. 146, 191–196. doi: 10.1121/1.5116089

O'Sullivan, J. A., Power, A. J., Mesgarani, N., Ramaraj, S., Foxe, J. J., Shinno, Cunningham, B. G., et al. (2015). Attentional selection in a cocktail party environment can be decoded from single-trial EEG. Cereb. Cortex 25, 1697–1706. doi: 10.1093/cercor/bht355

Peelle, J. E., McMillan, C., Moore, P., Grossman, M., and Wingfield, A. (2004). Dissociable patterns of brain activity during comprehension of rapid and syntactically complex speech: Evidence from fMRI. Brain Lang. 91, 315–325. doi: 10.1016/j.bandl.2004.05.007

Peelle, J. E., Trovaini, V., Wingfield, A., and Grossman, M. (2010). Neural processing during older adults’ comprehension of spoken sentences: Age differences in resource allocation and connectivity. Cereb. Cortex 20, 773–782. doi: 10.1093/cercor/bhp142

Roberts, B., Summers, R. J., and Bailey, P. J. (2011). The intelligibility of noise-vocoded speech: Spectral information available from across-channel comparison of amplitude envelopes. Proc. R. Soc. B Biol. Sci. 278, 1595–1600.

Roy, R. A. (2018). Auditory working memory: A comparison study in adults with normal hearing and mild to moderate hearing loss. Glob. J. Otalaryngol. 13, 1–14. doi: 10.19008/GJO.2018.13.555862

Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., and Faubert, J. (2019). Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 16, 051001. doi: 10.1088/1741-2552/ab266c

Scott, S. K., Blank, C. S., Rosen, S., and Wise, R. J. (2000). Identification of a brain region involved in the discrimination of speech: Evidence from fMRI. Proc. R. Soc. B Biol. Sci. 267, 1595–1600.

Scrivener, C. L., and Reader, A. T. (2022). Variability of EEG electrode positions and their underlying brain regions: Visualizing gel artifacts from a simultaneous EEG-fMRI dataset. Brain Behav. 12:e2476. doi: 10.1002/brb3.2476

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv [Preprint].

Singh, A., Sengupta, S., and Lakhotimanaryanan, V. (2020). Explainable deep learning models in medical image analysis. J. Imaging 6:52. doi: 10.3934/jimaging.20060052

Smirnov, D., Glerean, E., Lahnakoski, J. M., Salmi, J., Jääskeläinen, I. P., Sams, M., et al. (2014). Fronto-parietal network supports context-dependent speech comprehension. Neuprocology 63, 293–303. doi: 10.1016/j.neuroimage.2014.09.007

Snedeker, J., and Huang, Y. T. (2009). “Sentence processing,” in The Cambridge handbook of child language, ed. L. Bavin (Cambridge: Cambridge University Press), 321–337.

Souza, P., and Rosen, S. (2009). Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech. J. Acous. Soc. Am. 126, 792–805. doi: 10.1121/1.3158835

Spedig, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). “Going deeper with convolutions,” in Proceedings of the 2015 IEEE conference on computer vision and pattern recognition, 27–30 June 2016, Las Vegas, NV, 1–9. doi: 10.1109/CVPR.2015.7298594

Tan, M., and Le, Q. (2019). “EfficientNet: Rethinking model scaling for convolutional neural networks,” in Proceedings of the 36th International Conference on Machine Learning (Long Beach: IEEE), 6105–6114.

Uttenhoere, T., Maes, A., Van Steenekiste, T., Deschriver, D., and Dhaene, T. (2020). “Interpretable epilepsy detection in routine, interictal EEG data using deep learning,” in Proceedings of the Machine Learning for Health NeurIPS Workshop, eds E. Albertsen, M. B. A. McDermott, F. Falck, S. K. Sarkar, (Belgium: Ghent University), 355–366.

Vandali, A. E., Whitford, L. A., Plant, K. L., and Clark, G. M. (2000). Speech perception as a function of electrical stimulation rate: Using the Nucleus 24 cochlear implant system. Ear Hear. 21, 608–624. doi: 10.1097/00003446-200012000-00008

Vanthourhout, J., Decruy, L., Wouters, J., Simon, J., and Francart, T. (2018). Speech intelligibility predicted from neural entrainment of the speech envelope. J. Assoc. Res. Otalaryngol. 19, 181–191. doi: 10.1101/246660

Wang, F., Zhong, S., Peng, J., Jiang, J., and Liu, Y. (2018). “Data augmentation for EEG-based emotion recognition with deep convolutional neural networks,” in International Conference on Multimedia Modeling, eds A. Elgammal, T. H. Chalidabhongse, S. Aramvith, Y-S. Ho, K. Schoeffmann, C. W. Ngo, N. E. O’Connor, and M. Gabbouj, (Cham: Springer), 82–93. doi: 10.1155/2021/2520394

Wanna, G. B., Noble, J. H., Carlson, M. L., Gifford, R. H., Dietrich, M. S., Haynes, D. S., et al. (2014). Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124, S1–S7. doi: 10.1002/lary.24728

Widmann, A. (2006). Firefly EEGLAB Plugin. Version 1.5. I. Leipzig: Leipzig University.

Wouters, J., McDermott, H. J., and Francart, T. (2015). Sound coding in cochlear implants: From electric pulses to hearing. IEEE Signal Process Mag. 32, 67–80.

Yoon, T., and Kang, Y. (2013). The Korean phonetic aligner program suite. Available online at: http://korean.uts.ccu.utoronto.ca/kpa/ [accessed August 1, 2022].

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional networks,” in Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, (Cham: Springer), 82–93. doi: 10.1007/978-3-319-09591-9_53

Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., and Zhang, D. (2021). Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review. Cham: IEEE.