On symmetric and Hermitian rank distance codes

Antonio Cossidente Giuseppe Marino Francesco Pavese

Abstract

Let \(M \) denote the set \(S_{n,q} \) of \(n \times n \) symmetric matrices with entries in \(\text{GF}(q) \) or the set \(H_{n,q^2} \) of \(n \times n \) Hermitian matrices whose elements are in \(\text{GF}(q^2) \). Then \(M \) equipped with the rank distance \(d_r \) is a metric space. We investigate \(d \)-codes in \((M, d_r)\) and construct \(d \)-codes whose sizes are larger than the corresponding additive bounds. In the Hermitian case, we show the existence of an \(n \)-code of \(M \), \(n \) even and \(n/2 \) odd, of size \((3q^n - q^{n/2})/2\), and of a \(2 \)-code of size \(q^6 + q(q-1)(q^4 + q^2 + 1)/2 \), for \(n = 3 \). In the symmetric case, if \(n \) is odd or if \(n \) and \(q \) are both even, we provide better upper bound on the size of a \(2 \)-code. In the case when \(n = 3 \) and \(q > 2 \), a \(2 \)-code of size \(q^4 + q^3 + 1 \) is exhibited. This provides the first infinite family of \(2 \)-codes of symmetric matrices whose size is larger than the largest possible additive \(2 \)-code and an answer to a question posed in [25, Section 7], see also [23, p. 176].

Keywords: symmetric rank distance codes; Hermitian rank distance codes; symplectic polar spaces; Hermitian polar spaces; Segre variety.

1 Introduction

Let \(q \) be a power of a prime and let \(\text{GF}(q) \) be the finite field with \(q \) elements. Denote by \(S_{n,q} \) the set of \(n \times n \) symmetric matrices with entries in \(\text{GF}(q) \) and by \(H_{n,q^2} \) the set of \(n \times n \) Hermitian matrices whose elements are in \(\text{GF}(q^2) \). Let \(M \) be \(S_{n,q} \) or \(H_{n,q^2} \). For two matrices \(A, B \in M \), define their rank distance to be

\[
d_r(A, B) = \text{rk}(A - B).
\]

Thus \(d_r \) is a metric on \(M \) and \((M, d_r)\) is a metric space. A rank metric code \(C \) is a non–empty subset of \((M, d_r)\). The minimum distance of \(C \) is

\[
d_r(C) = \min \{ d_r(c_1, c_2) \mid c_1, c_2 \in C, c_1 \neq c_2 \}.
\]

We will refer to a code in \((M, d_r)\) with minimum distance \(d \) as a \(d \)-code. A \(d \)-code is said to be maximal if it maximal with respect to set theoretic inclusion, whereas it is called maximum
if it has the largest possible size. If a d–code $C \subset \mathcal{M}$ forms a subgroup of $(\mathcal{M}, +)$, then C is called additive. Upper bounds on the size of a d–code of \mathcal{M} were provided in [20, Corollary 7], [21, Lemma 3.5, Proposition 3.7], [24, Proposition 3.4] and [22, Theorems 1 and 2]. In the case when C is additive much better bounds can be obtained. Indeed in [21, Lemmas 3.5 and 3.6], [23, Theorem 4.3], the author proved that the largest additive d–codes of $\mathcal{S}_{n,q}$ have size at most either $q^{n(n-d+2)/2}$ or $q^{(n+1)(n-d+1)/2}$, according as $n - d$ is even or odd, respectively, whereas the size of the largest additive d–codes of \mathcal{H}_{n,q^2} cannot exceed $q^{n(n-d+1)}$, see [22, Theorem 1]. Moreover there exist additive d–codes whose sizes meet the upper bounds for all possible value of n and d, except when $\mathcal{M} = \mathcal{H}_{n,q^2}$, n, d are both even and $3 < d < n$, see [20, Theorems 12 and 16], [21, Theorem 4.4], [23, Theorem 5.3], [22, Theorems 4 and 5], [24, Theorem 6.1], [6], [7], [8]. If d is odd, a d–code attaining the corresponding additive bound is maximum. This is not always true if d is even. However not much is known about d–codes whose size is larger than the corresponding additive bound. In the Hermitian case, if n is even, there is an n–code of \mathcal{H}_{n,q^2} of size $q^n + 1$ [22, Theorem 6], [11, Theorem 18]. In the symmetric case only sporadic examples of non–additive d–codes that are larger than the largest possible additive d–code are known [24, Tables 2 and 9].

Let $\mathcal{W}(2n - 1, q)$ be a non–degenerate symplectic polar space and $\mathcal{H}(2n - 1, q^2)$ be a non–degenerate Hermitian polar space. Let Π_1 be a generator of $\mathcal{W}(2n - 1, q)$ and let Λ_1 be a generator of $\mathcal{H}(2n - 1, q^2)$. It is known that there exists a bijection τ between the matrices of $\mathcal{S}_{n,q}$ or \mathcal{H}_{n,q^2} and the generators of $\mathcal{W}(2n - 1, q)$ or $\mathcal{H}(2n - 1, q^2)$ disjoint from Π_1 or Λ_1, respectively, see [2, Proposition 9.5.10], [11]. Here an upper bound on the maximum number of generators of $\mathcal{W}(2n - 1, q)$ or $\mathcal{H}(2n - 1, q^2)$ pairwise intersecting in at most an $(n - 3)$–dimensional projective space is derived, see Theorems 5.2 and 5.4. As a by product, by means of τ, the following upper bound on the size of a 2–code C of $\mathcal{S}_{n,q}$ is obtained:

$$|C| \leq \begin{cases} \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} \frac{q^j}{q^n - q^{j+1} + 1} \prod_{i=1}^{j} \frac{q^{2(n-i+1)} - 1}{(q^2 - 1)(q^{i+1} + 1)} & \text{if } n \text{ is odd,} \\ \prod_{i=2}^{n} (q^i + 1) & \text{if } n \text{ is even.} \end{cases} \quad (1.1)$$

Since the previous known upper bound for the size of a 2–code of $\mathcal{S}_{n,q}$ was $q^{n(n-1)/2+1}(q^{n-1} + 1)/(q + 1)$ for q odd [21, Proposition 3.7], and $q^{n(n+1)/2} - q^n + 1$ for q even [24, Proposition 3.4], it follows that (1.1) provides better upper bounds if n is odd or if n and q are both even.

By using τ, it can be seen that an n–code C of $\mathcal{S}_{n,q}$ or \mathcal{H}_{n,q^2} exists if and only if there exists a partial spread of $\mathcal{W}(2n - 1, q)$ or $\mathcal{H}(2n - 1, q^2)$ of size $|C| + 1$, see Lemmas 3.1 and 4.1 [11]. It is well–known that the points of $\mathcal{W}(2n - 1, q)$ can be partitioned into $q^n + 1$ pairwise disjoint generators of $\mathcal{W}(2n - 1, q)$, that is, $\mathcal{W}(2n - 1, q)$ admits a spread. On the other hand, $\mathcal{H}(2n - 1, q^2)$ has no spread. If n is odd, an upper bound for the largest partial spreads of $\mathcal{H}(2n - 1, q^2)$ is $q^n + 1$ [29] and there are examples of partial spreads of that size [18]. If n is even the situation is less clear: upper bounds can be found in [15], as for lower bounds there is a partial spread of $\mathcal{H}(2n - 1, q^2)$ of size $(3q^2 - q)/2 + 1$ for $n = 2, q > 13$, [11, p. 32] and of size $q^n + 2$ for $n \geq 4$ [11]. Here, generalizing the partial spread of $\mathcal{H}(3, q^2)$, we show the existence of a partial spread of
Consider the map defined by

\[\xi : \text{PG}(1, q) \times \text{PG}(2, q) \rightarrow \text{PG}(5, q), \]

taking a pair of points \(x = (x_1, x_2) \) of \(\text{PG}(1, q) \), \(y = (y_1, y_2, y_3) \) of \(\text{PG}(2, q) \) to their product \((x_1y_1, \ldots, x_2y_3) \). This is a special case of a wider class of maps called Segre maps [13]. The image of \(\xi \) is an algebraic variety called the Segre variety and denoted by \(\Sigma_{1,2} \). The Segre variety

\(\mathcal{H}(2n - 1, q^2) \), in the case when \(n \) is even and \(n/2 \) is odd, of size \((3q^n - q^{n/2})/2 + 1 \) (cf. Theorem 6.4) and hence, if \(n \) is even and \(n/2 \) is odd, of an \(n \)-code of \(\mathcal{H}_{n,q^2} \) of size \((3q^n - q^{n/2})/2 \).

In the remaining part of the paper, we focus on the case \(n = 3 \). First, a further improvement on the size of a 2–code \(C \) of \(S_{3,q} \) is obtained (cf. Corollary 6.7):

\[|C| \leq \frac{q(q^2 - 1)(q^2 + q + 1)}{2} + 1. \]

Then we construct 2–codes of \(S_{3,q} \) and \(\mathcal{H}_{3,q^2} \) of size \(q^4 + q^3 + 1 \) and \(q^6 + q(q-1)(q^4 + q^2 + 1)/2 \), respectively. This provides the first infinite family of 2–codes of \(S_{3,q} \) whose size is larger than the largest possible additive 2–code and an answer to a question posed in [25, Section 7], see also [23, p. 176].

\section{2 Preliminaries}

\subsection{2.1 Projective and polar spaces}

Let \(\text{PG}(r - 1, q) \) be the projective space of projective dimension \(r - 1 \) over \(\text{GF}(q) \) equipped with homogeneous projective coordinates \(X_1, \ldots, X_r \). We will use the term \(n \)-space of \(\text{PG}(r - 1, q) \) to denote an \(n \)-dimensional projective subspace of \(\text{PG}(r - 1, q) \). We shall find it helpful to represent projectivities of \(\text{PG}(r - 1, q) \) by invertible \(r \times r \) matrices over \(\text{GF}(q) \) and to consider the points of \(\text{PG}(r - 1, q) \) as column vectors, with matrices acting on the left. Let \(U_i \) be the points having 1 in the \(i \)-th position and 0 elsewhere. Furthermore, we denote by \(0_n \) and \(I_n \) the \(n \times n \) zero matrix and identity matrix, respectively; if \(M \) is an \(n \times n \) matrix over \(\text{GF}(q) \), we denote by \(L(M) \) the \((n - 1) \)-space of \(\text{PG}(2n - 1, q) \) whose underlying vector space is the vector space spanned by the rows of the \(n \times 2n \) matrix \((I_n \ M) \); we also use the notation \(L(M) = \langle (I_n \ M) \rangle \). If \(m \) divides \(r \), an \((m-1) \)-spread of \(\text{PG}(r - 1, q) \) is a set of pairwise disjoint \((m-1) \)-spaces of \(\text{PG}(r - 1, q) \) which partition the point set of \(\text{PG}(r - 1, q) \).

A \textit{finite classical polar space} \(\mathbf{P} \) arises from a vector space of finite dimension over a finite field equipped with a non–degenerate reflexive sesquilinear form. In this paper we will be mainly concerned with symplectic polar spaces and Hermitian polar spaces. A projective subspace of maximal dimension contained in \(\mathbf{P} \) is called a \textit{generator} of \(\mathbf{P} \). For further details on finite classical polar spaces we refer the readers to [13]. A \textit{partial spread} \(\mathbf{S} \) of \(\mathbf{P} \) is a set of pairwise disjoint \(m \)-spaces of \(\mathbf{P} \) which partition the point set of \(\mathbf{P} \).

\subsection{2.1.1 Segre varieties}

Consider the map defined by

\[\xi : \text{PG}(1, q) \times \text{PG}(2, q) \rightarrow \text{PG}(5, q), \]

taking a pair of points \(x = (x_1, x_2) \) of \(\text{PG}(1, q) \), \(y = (y_1, y_2, y_3) \) of \(\text{PG}(2, q) \) to their product \((x_1y_1, \ldots, x_2y_3) \). This is a special case of a wider class of maps called Segre maps [13]. The image of \(\xi \) is an algebraic variety called the \textit{Segre variety} and denoted by \(\Sigma_{1,2} \). The Segre variety
Σ_1,2 has two rulings, say \(R_1 \) and \(R_2 \), containing \(q^2 + q + 1 \) lines and \(q + 1 \) planes, respectively, satisfying the following properties: two subspaces in the same ruling are disjoint, elements of different ruling intersect in exactly one point and each point of \(\Sigma_1,2 \) is contained in exactly one member of each ruling.

Notice that the set \(R_1 \) consists of all the lines of \(\text{PG}(5,q) \) incident with three distinct members of \(R_2 \) and, from [13, Theorem 25.6.1], three mutually disjoint planes of \(\text{PG}(5,q) \) define a unique Segre variety \(\Sigma_1,2 \). A line of \(\text{PG}(5,q) \) shares 0, 1, 2 or \(q + 1 \) points with \(\Sigma_1,2 \). Also, the automorphism group of \(\Sigma_1,2 \) in \(\text{PGL}(6,q) \) is a group isomorphic to \(\text{PGL}(2,q) \times \text{PGL}(3,q) \) [13, Theorem 25.5.13]. For more details on Segre varieties, see [13].

2.2 Graphs

Recall some definitions and results from [3, 10]. Suppose \(\Gamma \) is a (simple, undirected) graph having \(V \) as set of vertices. The adjacency matrix \(A \) of \(\Gamma \) is a symmetric real matrix whose rows and columns are indexed by 1, \ldots, |V|. The eigenvalues of \(\Gamma \) are those of its adjacency matrix \(A \). A graph \(\Gamma \) is called regular of valency \(k \) or \(k \)-regular when every vertex has precisely \(k \) neighbors. If \(\Gamma \) is regular of valency \(k \), then \(A1 = k1 \), where \(1 \) denotes the all one column vector. Hence \(k \) is an eigenvalue of \(\Gamma \) and for every eigenvalue \(\lambda \) of \(\Gamma \), we have that \(|\lambda| \leq k \). Furthermore the multiplicity of \(k \) equals the number of connected components of \(\Gamma \).

Let \(\Gamma \) be a \(k \)-regular graph and let \(\{V_1, \ldots, V_m\} \) be a partition of \(V \). Let \(A \) be partitioned according to \(\{V_1, \ldots, V_m\} \), that is,

\[
A = \begin{pmatrix}
A_{1,1} & \cdots & A_{1,m} \\
\vdots & & \vdots \\
A_{m,1} & \cdots & A_{m,m}
\end{pmatrix},
\]

such that \(A_{i,j} \) is a square matrix for all 1 \(\leq i \leq m \). The quotient matrix \(B \) is the \(m \times m \) matrix with entries the average row sum of the blocks of \(A \). More precisely,

\[
B = (b_{i,j}), \quad b_{i,j} = \frac{1}{v_i}1^t A_{i,j} 1,
\]

where \(v_i \) is the number of rows of \(A_{i,j} \). If the row sum of each block \(A_{i,j} \) is constant then the partition is called equitable or regular and we have \(A_{i,j} 1 = b_{i,j} 1 \) for 1 \(\leq i, j \leq m \). One important class of equitable partitions arises from automorphisms of \(\Gamma \), indeed the orbits of any group of automorphisms of \(\Gamma \) form an equitable partition. The following result is well known and useful.

Lemma 2.1 (Lemma 2.3.1, [3], Theorem 9.4.1, [10]). Let \(B \) be the quotient matrix of an equitable partition. If \(\lambda \) is an eigenvalue of \(B \), then \(\lambda \) is an eigenvalue of \(A \).

Let \(\Gamma \) be a vertex-transitive graph and let \(B \) be the quotient matrix of an equitable partition arising from the orbits of some subgroup of \(\text{Aut}(\Gamma) \). If \(|V_i| = 1 \) for some \(i \), then every eigenvalue of \(A \) is an eigenvalue of \(B \).

A coclique of \(\Gamma \) is a set of pairwise nonadjacent vertices. The independence number \(\alpha(\Gamma) \) is the size of the largest coclique of \(\Gamma \). Let \(\lambda_1 \geq \cdots \geq \lambda_{|V|} \) be the eigenvalues of \(\Gamma \). The following
3 Symmetric matrices and symplectic polar spaces

Let $W(2n−1,q)$ be the non–degenerate symplectic polar space of $PG(2n−1,q)$ associated with the following alternating bilinear form

$$
\begin{pmatrix}
X_1, \ldots, X_{2n}
\end{pmatrix}
\begin{pmatrix}
0_n & I_n \\
-I_n & 0_n
\end{pmatrix}
\begin{pmatrix}
Y_1 \\
\vdots \\
Y_{2n}
\end{pmatrix}.
$$

Let \perp denote the symplectic polarity of $PG(2n−1,q)$ defining $W(2n−1,q)$ and let $PSp(2n,q) = Sp(2n,q)/\langle −I \rangle$, where $Sp(2n,q)$ is the group of isometries of the alternating bilinear form previously defined. Hence $PSp(2n,q)$ consists of projectivities of $PG(2n−1,q)$ fixing $W(2n−1,q)$. It acts transitively on the generators of $W(2n−1,q)$. Denote by $Π_1$ the $(n−1)$–space of $PG(2n−1,q)$ spanned by U_{n+1}, \ldots, U_{2n}. Then $Π_1$ is a generator of $W(2n−1,q)$. Let G be the stabilizer of $Π_1$ in $PSp(2n,q)$. Then it is readily seen that an element of G is represented by the matrix

$$
\begin{pmatrix}
T^{−t} \\
0_n & T
\end{pmatrix},
$$

where $T ∈ GL(n,q)$ and $S_0 ∈ S_{n,q}$. Hence $G ∼ S_{n,q} × (GL(n,q)/\langle −I_{2n} \rangle)$ has order

$$
\frac{q^{n(n+1)/2} \prod_{i=0}^{n−1} (q^n − q^i)}{gcd(2, q − 1)}
$$

and it acts transitively on the set G of generators of $W(2n−1,q)$ disjoint from $Π_1$.

Define an action of $S_{n,q} × GL(n,q)$ on $S_{n,q}$ as follows

$$
((S_0,T), S) ∈ (S_{n,q} × GL(n,q)) × S_{n,q} \rightarrow TST^t + S_0 ∈ S_{n,q}.
$$

Its orbitals are the relations of an association scheme, the so called association scheme of symmetric matrices [14, 11]. The following result enlightens a correspondence between $S_{n,q}$ and G, see also [2, Proposition 9.5.10].

Lemma 3.1. There is a bijection between $S_{n,q}$ and G such that $S_{n,q} × GL(n,q)$ acts on $S_{n,q}$ as G acts on G. In particular, a d–code of $S_{n,q}$ corresponds to a set of generators of $W(2n−1,q)$ disjoint from $Π_1$ pairwise intersecting in at most an $(n − d − 1)$–space, and conversely.

Proof. Let $S ∈ S_{n,q}$. Since the rank of the matrix $\begin{pmatrix} I_n & S \\ 0_n & I_n \end{pmatrix}$ is $2n$, it follows that $L(S)$ is disjoint from $Π_1$. The map $S \mapsto L(S)$ is injective. Moreover $|S_{n,q}| = |G|$ and $L(S)$ is a generator of $W(2n−1,q)$, indeed

$$
(I_n \begin{pmatrix} 0_n & I_n \\ -I_n & 0_n \end{pmatrix} \begin{pmatrix} I_n \\ S \end{pmatrix} = 0.
$$
Finally, let \(g \in G \) be represented by the matrix (3.1). Then \(L(S)^g = \langle (T^{-1} ST^t + T^{-1}S_0) \rangle = \langle (I_n \ TST^t + S_0) \rangle = L(TST^t + S_0) \). This completes the proof of the first part of the statement. Let \(\mathcal{C} \) be a \(d \)-code of \(S_{n, q} \) and let \(S_1 \) and \(S_2 \) be two different elements of \(\mathcal{C} \). Since \(\text{rk}(S_1 - S_2) \geq d \), it follows that \(L(S_1) \cap L(S_2) \) is at most an \((n - d - 1)\)-space.

Let \(\Pi_2 = L(0_n) \). The previous lemma implies that the number of orbits of \(G_{\Pi_2} \) on \(G \) equals the number of relations of the association scheme on symmetric matrices. Since \(|G| = q^{n(n+1)/2} \) and \(G \) acts transitively on \(G \), it follows that the stabilizer of \(\Pi_2 \) in \(G \), namely \(G_{\Pi_2} \), has order

\[
\prod_{i=0}^{n-1} \frac{q^n - q^i}{\text{gcd}(2, q - 1)}.
\]

More precisely an element of \(G_{\Pi_2} \) is represented by the matrix

\[
\begin{pmatrix}
T^{-t} & 0_n \\
0_n & T
\end{pmatrix},
\]

(3.2)

where \(T \in \text{GL}(n, q) \). The group \(G_{\Pi_2} \) acts transitively on points and hyperplanes of both \(\Pi_1 \) and \(\Pi_2 \). The action of the group \(G_{\Pi_2} \) on points of \(W(2n - 1, q) \) has been studied in [16, p. 347]. For the sake of completeness a direct proof is given below.

Lemma 3.2. The orbits of \(G_{\Pi_2} \) on points of \(W(2n - 1, q) \setminus (\Pi_1 \cup \Pi_2) \) are

- \(\mathcal{P}_0 \) of size \((q^n - 1)(q^{n-1} - 1)/(q - 1)\),

- \(\mathcal{P}_1 \) of size \(q^{n-1}(q^n - 1)\),

if \(q \) is even and

- \(\mathcal{P}_0 \) of size \((q^n - 1)(q^{n-1} - 1)/(q - 1)\),

- \(\mathcal{P}_1, \mathcal{P}_2 \), both of size \(q^{n-1}(q^n - 1)/2\),

if \(q \) is odd.

Proof. Let \(g \) be the projectivity of \(G_{\Pi_2} \) associated with the matrix (3.2), for some \(T \in \text{GL}(n, q) \). Then \(g \) stabilizes \(U_{n+1} \) if and only if the first column of \(T \) is \((z, 0, \ldots, 0)^t\), for some \(z \in \text{GF}(q) \setminus \{0\} \), which is equivalent to the requirement that the first row of \(T^{-t} \) is \((z^{-1}, 0, \ldots, 0)\), for some \(z \in \text{GF}(q) \setminus \{0\} \). It follows that \(\text{Stab}_{G_{\Pi_2}}(U_{n+1}) \) has two orbits on points of \(\Pi_2 \), namely \(U_{n+1}^\perp \cap \Pi_2 \) and \(\Pi_2 \setminus U_{n+1}^\perp \). Hence \(G_{\Pi_2} \) permutes in a single orbit the lines of \(W(2n - 1, q) \) meeting both \(\Pi_1 \), \(\Pi_2 \) in a point. Similarly the lines not of \(W(2n - 1, q) \) meeting both \(\Pi_1 \), \(\Pi_2 \) in a point form a unique \(G_{\Pi_2} \)-orbit.

Let \(P = U_2 + U_{n+1} \). A projectivity of \(G_{\Pi_2} \) stabilizing \(P \) has to fix both \(U_2 \) and \(U_{n+1} \). Straightforward calculations show that a member of \(G_{\Pi_2} \) fixes \(P \) if and only if it is associated with the matrix (3.2), where

\[
T = \begin{pmatrix}
x & * & * & \ldots & * \\
0 & x^{-1} & 0 & \ldots & 0 \\
0 & * & \vdots & \ddots & T' \\
0 & * & \vdots & \ddots & \vdots \\
\end{pmatrix},
\]
for some $T' \in \text{GL}(n-2,q)$ and $x \in \text{GF}(q) \setminus \{0\}$. Therefore $|\text{Stab}_{G_{\Pi_2}}(P)| = (q-1)(q^n-1)(q^{n-2}-1)|\text{GL}(n-2,q)|/\gcd(2,q-1)$. Hence $|P^G_{\Pi_2}| = (q^n-1)(q^{n-1}-1)/(q-1)$, which equals the number of points of $W(2n-1,q) \setminus (\Pi_1 \cup \Pi_2)$ that lie on the lines of $W(2n-1,q)$ meeting both Π_1, Π_2 in one point.

Let $z \in \text{GF}(q) \setminus \{0\}$ and let $P = U_1 + zU_{n+1}$. As before, a projectivity of G_{Π_2} stabilizing P_z has to fix both U_1 and U_{n+1}. Straightforward calculations show that the projectivity $g \in G_{\Pi_2}$ fixes the line U_1U_{n+1} if and only if it is associated with the matrix $\begin{pmatrix} y & 0 & \ldots & 0 \\ 0 & & & \\ \vdots & & T'' & \\ 0 & & & \end{pmatrix}$, where

$$T = \begin{pmatrix} y & 0 & \ldots & 0 \\ 0 & & & \\ \vdots & & T'' & \\ 0 & & & \end{pmatrix},$$

for some $T'' \in \text{GL}(n-1,q)$ and $y \in \text{GF}(q) \setminus \{0\}$. Moreover g stabilizes P_z if and only if $y = \pm 1$. In this case we have that $|\text{Stab}_{G_{\Pi_2}}(P)| = |\text{GL}(n-1,q)|$. Hence if q is even, $|P_z^G_{\Pi_2}| = q^n(q^n-1)$, which equals the number of points of $W(2n-1,q) \setminus (\Pi_1 \cup \Pi_2)$ that lie on the lines not belonging to $W(2n-1,q)$ and meeting both Π_1, Π_2 in one point. If q is odd, then $|P_z^G_{\Pi_2}| = q^n(q^n-1)/2$.

Representatives for these two orbits are P_{z_1} and P_{z_2}, where z_1 is a non–zero square in $\text{GF}(q)$ and z_2 is a non–square of $\text{GF}(q)$. Indeed there is no element of G_{Π_2} sending P_{z_1} to P_{z_2}. To see this fact assume on the contrary that there is a projectivity of G_{Π_2} mapping P_{z_1} to P_{z_2}. Then it has to fix the line U_1U_{n+1}. On the other hand such a projectivity sends the point P_{z_1} to $P_{y^2z_1}$. Hence $z_2 = y^2z_1$, a contradiction. \hfill \Box

Remark 3.3. Note that if q is odd and ℓ is a line such that $\ell \cap \Pi_2 = P_2 = (x_1, \ldots, x_n, 0, \ldots, 0)$, $\ell \cap \Pi_1 = P_1 = (0, \ldots, 0, y_{n+1}, \ldots, y_{2n})$ and ℓ is not a line of $W(2n-1,q)$, then the point $P = P_1 + zP_2 \in \ell$ belongs to P_1 or to P_2, according as $z(x_1, \ldots, x_n)(y_{n+1}, \ldots, y_{2n})^t$ is a non–zero square or a non–square in $\text{GF}(q)$. Therefore $|\ell \cap P_1| = |\ell \cap P_2| = (q-1)/2$. Moreover, it can be checked that there are projectivities of $\text{Stab}_{\text{PSp}(2n-1,q)}(\{\Pi_1, \Pi_2\}) \setminus G_{\Pi_2}$ interchanging the two orbits and hence $\text{Stab}_{\text{PSp}(2n-1,q)}(\{\Pi_1, \Pi_2\})$ acts transitively on points of $W(2n-1,q) \setminus (\Pi_1 \cup \Pi_2)$.

From Lemma 3.1 \(\Pi_3\) is a generator of $W(2n-1,q)$ disjoint from both Π_1 and Π_2 if and only if $\Pi_3 = L(A)$, where A is an invertible matrix of $S_{n,q}$. Hence there are

$$q^{\frac{n(n+1)}{2}} \sum_{i=1}^{\left[\frac{n}{2}\right]} \left(\prod_{i=1}^{\left[\frac{n}{2}\right]} (q^{2i-1} - 1)\right)$$

generators of $W(2n-1,q)$ disjoint from both Π_1 and Π_2, see [10] Theorem 2, [17] Corollary 19. The following result is well known. For the convenience of the reader a direct proof is provided.

Lemma 3.4 (Theorem 21, [17]). Let Π_3 be a generator of $W(2n-1,q)$ disjoint from Π_1 and Π_2. The points $P \in \Pi_3$ such that there exists a line of $W(2n-1,q)$ through P intersecting Π_1 and Π_2 are the absolute points of a non–degenerate polarity which is

- pseudo–symplectic if q is even and n is odd,
orthogonal if q and n are odd,

symplectic or pseudo–symplectic if q and n are even,

elliptic orthogonal or hyperbolic orthogonal if q is odd and n is even.

Proof. Let $\Pi_3 = L(A)$ be a generator of $W(2n - 1, q)$ such that $|\Pi_1 \cap \Pi_3| = |\Pi_2 \cap \Pi_3| = 0$. We show that there is a non–degenerate polarity ρ of Π_3 associated with the matrix A. Observe that the $(n - 1)$–space Π_3 has equations:

$$
\begin{pmatrix}
X_{n+1} \\
\vdots \\
X_{2n}
\end{pmatrix} = A
\begin{pmatrix}
X_1 \\
\vdots \\
X_n
\end{pmatrix}
$$

Hence the point P belongs to Π_3 if and only if $P = (x_1, \ldots, x_n, 0, \ldots, 0) + (0, \ldots, 0, x_1, \ldots, x_n) (0_n \quad A)^t$ and P lies on the line ℓ joining the points $(0, \ldots, 0, x_1, \ldots, x_n) (0_n \quad A)^t \in \Pi_1$ and $(x_1, \ldots, x_n, 0, \ldots, 0) \in \Pi_2$. Thus ℓ^\perp is represented by the equations: $x_1 X_{n+1} + \ldots + x_n X_{2n} = (x_1, \ldots, x_n) A (X_1, \ldots, X_n)^t = 0$ and a point $P' = (y_1, \ldots, y_n, 0, \ldots, 0) + (0, \ldots, 0, y_1, \ldots, y_n) (0_n \quad A)^t \in \Pi_3$ belongs to ℓ^\perp if and only if

$$(y_1, \ldots, y_n) A \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix} = 0.$$

This concludes the proof. \qed

Lemma 3.5. The group G_{Π_2} has the following orbits on generators of $W(2n - 1, q)$ disjoint from both Π_1 and Π_2:

- one orbit if q is even and n is odd,

- two equally sized orbits if q and n are odd,

- two orbits having size

$$q^{-\frac{n(n-2)}{4}} \prod_{i=1}^{\frac{n}{2}} (q^{2i-1} - 1) \quad \text{and} \quad q^{-\frac{n(n-2)}{4}} (q^n - 1) \prod_{i=1}^{\frac{n}{2}} (q^{2i-1} - 1)$$

if q and n are even,

- two orbits having size

$$q^{\frac{n^2}{2}} \left(q^{\frac{n}{2}} + 1 \right) \prod_{i=1}^{\frac{n}{2}} (q^{2i-1} - 1) \quad \text{and} \quad q^{\frac{n^2}{2}} \left(q^{\frac{n}{2}} - 1 \right) \prod_{i=1}^{\frac{n}{2}} (q^{2i-1} - 1)$$

if q is odd and n is even.
Proof. Let $\Pi_3 = L(A)$ be a generator of $W(2n - 1, q)$ such that $|\Pi_1 \cap \Pi_3| = |\Pi_2 \cap \Pi_3| = 0$ and let g be the projectivity of G_{Π_2} associated with the matrix (3.2), for some $T \in \mathrm{GL}(n, q)$. From the proof of Lemma 3.2, $\Pi_3^3 = L(TAT^t)$. Therefore g stabilizes Π_3 if and only if $TAT^t = A$. It follows that $|Stab_{G_{\Pi_2}}(\Pi_3)| = 12$ Appendix I)

$$|Stab_{G_{\Pi_2}}(\Pi_3)| = \begin{cases}
\frac{(n-1)^2}{4} \prod_{i=1}^{n-1} (q^{2i} - 1) & \text{for } n \text{ odd}, \\
\frac{n^2}{4} \prod_{i=1}^{n-1} (q^{2i} - 1) & \text{for } q, n \text{ even, } a_{ij} = a_{ji}, a_{ii} = 0, \\
q^{n(n-2)} (\frac{n}{2} - 1) \prod_{i=1}^{n-2} (q^{2i} - 1) & \text{for } q, n \text{ even, } a_{ij} = a_{ji}, a_{ii} \neq 0, \text{ for some } i, \\
q^{n(n-2)} (\frac{n}{2} + 1) \prod_{i=1}^{n-2} (q^{2i} - 1) & \text{for } q \text{ odd, } n \text{ even, } \det(A) \text{ square of } GF(q) \setminus \{0\}, \\
q^{n(n-2)} (\frac{n}{2} - 1) \prod_{i=1}^{n-2} (q^{2i} - 1) & \text{for } q \text{ odd, } n \text{ even, } \det(A) \text{ non–square of } GF(q),
\end{cases}$$

where $A = (a_{ij})$. The result follows. \Box

Remark 3.6. We remark that if q and n are odd, then the generator $\Pi_3 = L(A), A \in S_{n,q}$, $\mathrm{rk}(A) = n$, belongs to the first or the second G_{Π_2}–orbit on generators of $W(2n - 1, q)$ skew to Π_1, Π_2, according as $\det(A)$ is a square or a non–square in $GF(q)$. It can be easily seen that there are projectivities of $Stab_{PSp(2n-1,q)}(\Pi_1, \Pi_2)$ acts transitively on generators of $W(2n - 1, q)$ disjoint from Π_1 and Π_2.

3.1 $W(5,q)$

Set $n = 3$. Let $W(5,q)$ be the symplectic polar space of $PG(5, q)$ as described above. Recall that G is the set of q^6 planes of $W(5,q)$ that are disjoint from Π_1, the group G is the stabilizer of Π_1 in $PSp(6,q)$, $\Pi_2 = L(0_3)$ and G_{Π_2} is the stabilizer of Π_2 in G.

Following Lemma 3.2 let P_0 be the set of points R of $W(5,q) \setminus (\Pi_1 \cup \Pi_2)$ such that the line through R intersecting Π_1 and Π_2 is a line of $W(5,q)$ and let P be its complement in $W(5,q) \setminus (\Pi_1 \cup \Pi_2)$. Note that P coincides with P_1 or $P_1 \cup P_2$, according as q is even or odd. Then $|P_0| = (q^2 - 1)(q^2 + q + 1)$ and $|P| = q^5 - q^2$. Let ℓ be a line of $W(5,q)$ disjoint from $\Pi_1 \cup \Pi_2$. The hyperplane (Π_2, ℓ) meets Π_1 in a line, say r_ℓ, and the three–space (ℓ, r_ℓ) meets Π_2 in a line, say t_ℓ. Hence the line ℓ defines a unique three–space $T_\ell = (r_\ell, t_\ell)$ meeting both Π_1, Π_2 in a line.

Lemma 3.7. Let ℓ be a line of $W(5,q)$ disjoint from $\Pi_1 \cup \Pi_2$, then $|\ell \cap P_0|$ belongs to $\{1, q+1\}$, if q is even, and to $\{0, 1, 2\}$, if q is odd.

Proof. There are two possibilities, either T_ℓ^\perp is a line of $W(5,q)$ or it is not. In the former case, among the $q + 1$ lines meeting ℓ, r_ℓ, t_ℓ in one point, there is exactly one line of $W(5,q)$. If the latter case occurs, then $T_\ell \cap W(5,q)$ is a $W(3,q)$ and the regulus R determined by ℓ, r_ℓ, t_ℓ consists of lines of $W(3,q)$. Thus its opposite regulus consists of either 1 or $q + 1$ lines of $W(3,q)$ if q is even and of 0 or 2 lines of $W(3,q)$ if q is odd. \Box
Let us partition the set of lines of $W(5, q)$ disjoint from $\Pi_1 \cup \Pi_2$. Let

- $\mathcal{L}_0 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, |\ell \cap \mathcal{P}_0| = q + 1 \}$,
- $\mathcal{L}_1 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, T^\perp_\ell \text{ is a line of } W(5, q) \}$,
- $\mathcal{L}_2 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, |\ell \cap \mathcal{P}_0| = 1, T^\perp_\ell \text{ is not a line of } W(5, q) \}$,

if q is even, or

- $\mathcal{L}_0 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, |\ell \cap \mathcal{P}_0| = 0, T^\perp_\ell \text{ is not a line of } W(5, q) \}$,
- $\mathcal{L}_1 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, T^\perp_\ell \text{ is a line of } W(5, q) \}$,
- $\mathcal{L}_2 = \{ \ell \text{ line of } W(5, q) : |\ell \cap (\Pi_1 \cup \Pi_2)| = 0, |\ell \cap \mathcal{P}_0| = 1, T^\perp_\ell \text{ is not a line of } W(5, q) \}$,

if q is odd. Note that in both cases if $\ell \in \mathcal{L}_1$, then $|\ell \cap \mathcal{P}_0| = 1$, whereas if q is even and $\ell \in \mathcal{L}_0$, then T^\perp_ℓ is not a line of $W(5, q)$.

Lemma 3.8. If q is even, then

$$|\mathcal{L}_0| = q^2(q^3 - 1), \quad |\mathcal{L}_1| = q(q^2 - 1)(q^3 - 1), \quad |\mathcal{L}_2| = q^2(q^2 - 1)(q^3 - 1).$$

If q is odd, then

$$|\mathcal{L}_0| = \frac{q^2(q - 1)(q^3 - 1)}{2}, \quad |\mathcal{L}_1| = q(q^2 - 1)(q^3 - 1), \quad |\mathcal{L}_2| = \frac{q^2(q + 1)(q^3 - 1)}{2}.$$

Proof. The line T^\perp_ℓ meets both Π_1, Π_2 in one point. If T^\perp_ℓ is a line of $W(5, q)$, then $T^\perp_\ell \cap W(5, q)$ consists of $q + 1$ generators of $W(5, q)$ through T^\perp_ℓ and hence there are $q(q - 1)^2$ lines of $W(5, q)$ contained in T_ℓ and disjoint from $\Pi_1 \cup \Pi_2$. Since there are $(q + 1)(q^2 + q + 1)$ lines of $W(5, q)$ meeting both Π_1, Π_2 in one point, we get $|\mathcal{L}_1| = q(q^2 - 1)(q^3 - 1)$. If T^\perp_ℓ is not a line of $W(5, q)$, then $T^\perp_\ell \cap W(5, q)$ is a non-degenerate symplectic polar space $W(3, q)$ and the regulus \mathcal{R} determined by ℓ, r_ℓ, t_ℓ is a regulus of $W(3, q)$. The point line dual of $W(3, q)$ is a parabolic quadric $Q(4, q)$ and the lines r_ℓ and t_ℓ correspond to two points R, T such that the line RT meets $Q(4, q)$ only in R and T. Moreover, the regulus \mathcal{R} corresponds to a conic C of $Q(4, q)$, where $R, T \in C$.

Assume that q is even, then ℓ belongs either to \mathcal{L}_0 or to \mathcal{L}_2, according as the opposite regulus of \mathcal{R} has $q + 1$ or one line of $W(3, q)$. In this case the parabolic quadric $Q(4, q)$ has a nucleus, say N. Moreover, the opposite regulus of \mathcal{R} has $q + 1$ or one line of $W(3, q)$ according as N belongs to the plane (C) or does not. Therefore, in $W(3, q)$, ℓ can be chosen in $q - 1$ ways such that it belongs to \mathcal{L}_0 and in $(q^2 - 1)(q - 1)$ ways such that it belongs to \mathcal{L}_2. Since there are $q^2(q^2 + q + 1)$ lines not of $W(5, q)$ meeting both Π_1, Π_2 in one point, we get $|\mathcal{L}_0| = q^2(q^3 - 1)$ and $|\mathcal{L}_2| = q^2(q^2 - 1)(q^3 - 1)$.

If q is odd, then ℓ belongs either to \mathcal{L}_0 or to \mathcal{L}_2, according the opposite regulus of \mathcal{R} has 0 or 2 lines of $W(3, q)$. In this case the opposite regulus of \mathcal{R} has 0 or 2 lines of $W(3, q)$ according as the polar of (C) with respect to the orthogonal polarity of $Q(4, q)$ is a line external or secant to $Q(4, q)$. Therefore, in $W(3, q)$, ℓ can be chosen in $q(q - 1)^2/2$ ways such that it
belongs to \mathcal{L}_0 and in $(q^3 - q)/2$ ways such that it belongs to \mathcal{L}_2. Since there are $q^2(q^2 + q + 1)$ lines not of $\mathcal{W}(5, q)$ meeting both Π_1, Π_2 in one point, we get $|\mathcal{L}_0| = q^3(q - 1)(q^3 - 1)/2$ and $|\mathcal{L}_2| = q^3(q + 1)(q^3 - 1)/2$.

Lemma 3.9. Let Π_3 be a plane of $\mathcal{W}(5, q)$ skew to Π_1 and Π_2. The $q + 1$ planes of the Segre variety $\Sigma_{1, 2}$ of $\text{PG}(5, q)$ determined by Π_1, Π_2, Π_3 are generators of $\mathcal{W}(5, q)$.

Proof. Let A be an invertible matrix of $S_{3, q}$ and consider the symplectic Segre variety $\Sigma_{1, 2}$ determined by the planes Π_1, Π_2 and $L(A)$. Direct computations show that the remaining $q - 2$ planes of $\Sigma_{1, 2}$ are the planes $L(\lambda A)$, where $\lambda \in \text{GF}(q) \setminus \{0, 1\}$.

We will refer to a Segre variety $\Sigma_{1, 2}$ of $\text{PG}(5, q)$ whose $q + 1$ planes are generators of $\mathcal{W}(5, q)$ as a symplectic Segre variety of $\mathcal{W}(5, q)$. As a consequence of Lemma 3.4, the following corollary arises.

Corollary 3.10. Let $\Sigma_{1, 2}$ be a symplectic Segre variety containing Π_1, Π_2 and let Π_3 be a plane of $\Sigma_{1, 2}$, $\Pi_3 \neq \Pi_1$, $\Pi_3 \neq \Pi_2$. Then Π_3 contains one line of \mathcal{L}_0, $q + 1$ lines of \mathcal{L}_1 and $q^2 - 1$ lines of \mathcal{L}_2, if q is even, and $q(q - 1)/2$ lines of \mathcal{L}_0, $q + 1$ lines of \mathcal{L}_1 and $q(q + 1)/2$ lines of \mathcal{L}_2, if q is odd.

Proof. From Lemma 3.4 there is a non-degenerate polarity ρ of Π_3. Note that if ℓ is a line of Π_3, then $\ell^\rho = T_\ell^\perp \cap \Pi_3$. If q is even, ρ is a pseudo–polarity and the unique line of Π_3 belonging to \mathcal{L}_0 is the line ℓ_0 consisting of its absolute points. The other lines of Π_3 belong to \mathcal{L}_1 if they pass through ℓ_0^ρ and to \mathcal{L}_2 otherwise. If q is odd, ρ is an orthogonal polarity and its absolute points form a conic, say C. A line of Π_3 belongs either to \mathcal{L}_1, or to \mathcal{L}_0 or to \mathcal{L}_2 according as it is tangent, external or secant to C, respectively.

For a point $P \in \Pi_2$, let Σ_P denote a 3–space contained in P^\perp and not containing P. When restricted to Σ_P, the polarity \perp defines a non–degenerate symplectic polar space of Σ_P, say \mathcal{W}_P. Moreover $r_P = \Sigma_P \cap \Pi_1$ and $t_P = \Sigma_P \cap \Pi_2$ are lines of \mathcal{W}_P. In what follows we investigate the action of the group G_{Π_2} on G.

Lemma 3.11. The group G_{Π_2} has the following orbits on G:

- the plane Π_2;
- \mathcal{G}_1 of size $q^3 - 1$ consisting of the planes of G meeting Π_2 in a line,
- \mathcal{G}_2 of size $q^3 - 1$ consisting of the planes of G meeting Π_2 in a point and no plane of \mathcal{G}_1 in a line,
- \mathcal{G}_3 of size $(q^2 - 1)(q^3 - 1)$ consisting of the planes of G meeting Π_2 in a point and q planes of \mathcal{G}_1 in a line,
- \mathcal{G}_4 of size $q^2(q^3 - 1)(q - 1)$ consisting of the planes of G disjoint from Π_2,

if q is even.
• the plane Π_2;
• G_1 of size $(q^3 - 1)/2$ consisting of the planes of G meeting Π_2 in a line and having q^2 points of \mathcal{P}_1,
• G_2 of size $(q^3 - 1)/2$ consisting of the planes of G meeting Π_2 in a line and having q^2 points of \mathcal{P}_2,
• G_3 of size $q(q - 1)(q^3 - 1)/2$ consisting of the planes of G meeting Π_2 in a point and $q + 1$ planes of $G_1 \cup G_2$ in a line,
• G_4 of size $q(q + 1)(q^3 - 1)/2$ consisting of the planes of G meeting Π_2 in a point and $q - 1$ planes of $G_1 \cup G_2$ in a line,
• two orbits, say G_5 and G_6, both of size $q^2(q^3 - 1)(q - 1)/2$, consisting of planes of G disjoint from Π_2,

if q is odd.

Proof. There are $q^3 - 1$ members of G intersecting Π_2 in a line. The number of generators of $\mathcal{W}(5, q)$ through P disjoint from Π_1 and intersecting Π_2 exactly in P equals the number of lines of \mathcal{W}_P disjoint from both r_P and t_P, and they are $q^2(q - 1)$. As the point P varies on Π_2 we get $q^2(q^3 - 1)$ generators of $\mathcal{W}(5, q)$ disjoint from Π_1 and intersecting Π_2 at exactly one point. Hence there are $q^2(q - 1)(q^3 - 1)$ generators of $\mathcal{W}(5, q)$ disjoint from both Π_1 and Π_2. Alternatively, if $A \in S_{3,q}$, then $L(A) \cap \Pi_2$ is a $(3 - \text{rk}(A) - 1)$–space of Π_1.

Let π be a plane of G intersecting Π_2 in a line. Since G_{Π_2} is transitive on lines of Π_2, we may assume without loss of generality that $\pi \cap \Pi_2$ is the line U_2U_3. Then $\pi : X_5 = X_6 = 0, X_4 = zX_1$, for some $z \in GF(q) \setminus \{0\}$. Let g be the projectivity of G_{Π_2} associated with the matrix $[3, 2]$, for some $T \in GL(3, q)$. Then g stabilizes π if and only if

$$T = \begin{pmatrix} \pm 1 & * & * \\ 0 & T' & 0 \end{pmatrix},$$

where $T' \in GL(2, q)$. Hence $|Stab_{G_{\Pi_2}}(\pi)| = \text{gcd}(2, q - 1)q^2/|GL(2, q)|/\text{gcd}(2, q - 1)$ and $|\pi^{G_{\Pi_2}}|$ equals $q^3 - 1$ if q is even or $(q^3 - 1)/2$ if q is odd. In the even characteristic case the planes of G meeting Π_2 in a line are permuted in a unique orbit, say G_1. In the odd characteristic case, there are two orbits, say G_1 and G_2; it can be seen that representatives for G_1 and G_2 are $\pi_1 : X_5 = X_6 = X_4 - z_1X_1 = 0$ and $\pi_2 : X_5 = X_6 = X_4 - z_2X_1 = 0$, respectively, where z_1 is a non–zero square in $GF(q)$ and z_2 is a non–square of $GF(q)$. Moreover $Stab_{G_{\Pi_2}}(\pi)$ acts transitively on the q^2 points of $\pi \setminus \Pi_2$.

Let π be a plane of G and intersecting Π_2 in the point P and let ℓ be the line of \mathcal{W}_P obtained by intersecting π with Σ_P. Let \mathcal{R} be the regulus determined by r_P, t_P, ℓ and \mathcal{R}^o be its opposite regulus.

Assume that q is even. There are $q - 1$ possibilities for the line ℓ such that the regulus \mathcal{R}^o contains $q + 1$ lines of W_P, and $(q^2 - 1)(q - 1)$ possibilities for ℓ such that \mathcal{R}^o contains exactly one
line of \mathcal{W}_P. Varying P in Π_2 we get two sets, namely \mathcal{G}_2 and \mathcal{G}_3, of size q^3-1 and $(q^2-1)(q^3-1)$, respectively. Observe that there are 0 or q planes of \mathcal{G}_1 meeting π in a line, according as π belongs to \mathcal{G}_2 or \mathcal{G}_3. We claim that \mathcal{G}_2 and \mathcal{G}_3 are two G_{Π_2}-orbits. Let π be the plane with equations $X_2 + X_6 = X_3 + X_5 = X_4 = 0$. Direct computations show that $\pi \in \mathcal{G}_2$. The projectivity g of G_{Π_2} associated with the matrix \((3.2)\), $T \in \text{GL}(3, q)$, stabilizes π if and only if

$$
T = \begin{pmatrix}
 x & 0 & 0 \\
 * & T' & \\
 * & &
\end{pmatrix},
$$

where $x \in \text{GF}(q) \setminus \{0\}$ and $T' \in \text{SL}(2, q)$. Hence $|\text{Stab}_{G_{\Pi_2}}(\pi)| = q^2(q-1)|\text{SL}(2, q)|$ and $|\pi_{G_{\Pi_2}}| = q^3 - 1 = |\mathcal{G}_2|$. Let π be the plane having equations $X_2 + X_5 = X_3 + X_6 = X_4 = 0$. Direct computations show that $\pi \in \mathcal{G}_3$. The projectivity g of G_{Π_2} associated with the matrix \((3.2)\), $T \in \text{GL}(3, q)$, stabilizes π if and only if

$$
T = \begin{pmatrix}
 x & 0 & 0 \\
 * & y & y' \\
 * & y' & y
\end{pmatrix},
$$

where $x, y, y' \in \text{GF}(q)$, $x \neq 0$ and $y^2 + y'^2 = 1$. Hence $|\text{Stab}_{G_{\Pi_2}}(\pi)| = q^3(q - 1)$ and $|\pi_{G_{\Pi_2}}| = (q^2 - 1)(q^3 - 1) = |\mathcal{G}_3|$.

Assume that q is odd. There are $q(q-1)^2/2$ possibilities for the line ℓ such that the regulus \mathcal{R}^0 contains no line of \mathcal{W}_P, and $q(q^2 - 1)/2$ possibilities for ℓ such that \mathcal{R}^0 contains exactly two lines of \mathcal{W}_P. Varying P in Π_2 we get two sets, say \mathcal{G}_3 and \mathcal{G}_4 of size $q(q - 1)(q^3 - 1)/2$ and $q(q + 1)(q^3 - 1)/2$ respectively. Observe that there are $q + 1$ or $q - 1$ planes of $\mathcal{G}_1 \cup \mathcal{G}_2$ meeting π in a line, according as π belongs to \mathcal{G}_3 or \mathcal{G}_4. Again we want to show that \mathcal{G}_3 and \mathcal{G}_4 are two G_{Π_2}-orbits. Let α be a fixed non–square in $\text{GF}(q)$ and let π be the plane with equations $X_5 - \alpha^2 X_2 = X_6 + \alpha X_3 = X_4 = 0$. Direct computations show that $\pi \in \mathcal{G}_3$. The projectivity g of G_{Π_2} associated with the matrix \((3.2)\), $T \in \text{GL}(3, q)$, stabilizes π if and only if

$$
T = \begin{pmatrix}
 x & 0 & 0 \\
 * & y & -\alpha y' \\
 * & y' & -y
\end{pmatrix} \quad \text{or} \quad T = \begin{pmatrix}
 x & 0 & 0 \\
 * & y & \alpha y' \\
 * & y' & y
\end{pmatrix},
$$

where $x, y, y' \in \text{GF}(q)$, $x \neq 0$ and $y^2 - \alpha y'^2 = 1$. Note that there are $q + 1$ couple $(y, y') \in \text{GF}(q) \times \text{GF}(q)$ such that $y^2 - \alpha y'^2 = 1$. Therefore $|\text{Stab}_{G_{\Pi_2}}(\pi)| = q^2(q - 1)(q + 1)$ and $|\pi_{G_{\Pi_2}}| = q(q - 1)(q^3 - 1)/2 = |\mathcal{G}_3|$. Let π be the plane having equations $X_2 - X_6 = X_3 - X_5 = X_4 = 0$. Direct computations show that $\pi \in \mathcal{G}_4$. The projectivity g of G_{Π_2} associated with the matrix \((3.2)\), $T \in \text{GL}(3, q)$, stabilizes π if and only if

$$
T = \begin{pmatrix}
 x & 0 & 0 \\
 * & y & 0 \\
 * & 0 & y^{-1}
\end{pmatrix} \quad \text{or} \quad T = \begin{pmatrix}
 x & 0 & 0 \\
 * & 0 & y \\
 * & y^{-1} & 0
\end{pmatrix},
$$

where $x, y \in \text{GF}(q) \setminus \{0\}$. In this case $|\text{Stab}_{G_{\Pi_2}}(\pi)| = q^2(q-1)^2$ and $|\pi_{G_{\Pi_2}}| = q(q+1)(q^3-1)/2 = |\mathcal{G}_4|$.

From Lemma \((3.5)\) the group G_{Π_2} has one or two orbits on generators of $\mathcal{W}(5, q)$ skew to Π_1 and Π_2. \[\square\]
Lemma 3.12. Assume that q is even. Let $\Pi \in \mathcal{G}_2$ and $\Pi' \in \mathcal{G}_3$. Then the number of planes of \mathcal{G}_2 meeting Π or Π' in a line is zero or one, whereas the number of planes of \mathcal{G}_3 meeting Π or Π' in a line equals $q^2 - 1$ or $q^2 - q - 2$.

Proof. Let $P = \Pi \cap \Pi_2$, $P' = \Pi' \cap \Pi_2$, $\ell = \Pi \cap \Sigma_P$, $\ell' = \Pi' \cap \Sigma_{P'}$, \mathcal{R} be the regulus determined by t_P, t_P, ℓ and \mathcal{R}' be the regulus determined by t'_P, t'_P, ℓ'. From the proof of Lemma 3.11, the opposite regulus of \mathcal{R}, say \mathcal{R}^o, consists of lines of \mathcal{W}_P, whereas the opposite regulus of \mathcal{R}', say \mathcal{R}'^o, has exactly one line of \mathcal{W}_P.

If a plane $\gamma \in \mathcal{G}_2 \cup \mathcal{G}_3$ intersects Π in a line, then $\gamma = \langle P, s \rangle$, where s is a line of \mathcal{W}_P intersecting ℓ and skew to r_P and t_P. Moreover, γ belongs to \mathcal{G}_2 or \mathcal{G}_3 according as there are $q + 1$ or one line of \mathcal{W}_P meeting s, r_P, t_P. Since the number of lines of \mathcal{W}_P intersecting ℓ at a point and skew to r_P and t_P equals $q^2 - 1$ and, if s is one of these lines, there is exactly one line of \mathcal{W}_P meeting s, r_P, t_P, the statement holds true in this case.

Similarly, if a plane $\gamma \in \mathcal{G}_2 \cup \mathcal{G}_3$ intersects Π' in a line, then $\gamma = \langle P', s \rangle$, where s is a line of $\mathcal{W}_{P'}$ intersecting ℓ' and skew to r'_P and t'_P. Moreover, γ belongs to \mathcal{G}_2 or \mathcal{G}_3 according as there are $q + 1$ or one line of $\mathcal{W}_{P'}$ meeting s, r'_P, t'_P. The point line dual of $\mathcal{W}_{P'}$ is a parabolic quadric $\mathcal{Q}(4, q)$, the lines r'_P, t'_P and ℓ' correspond to three points, say R, T, L, such that the line RT meets $\mathcal{Q}(4, q)$ only in R and T. Moreover, the regulus \mathcal{R}' corresponds to a conic C of $\mathcal{Q}(4, q)$, where $R, T, L \in C$. Let N be the nucleus of $\mathcal{Q}(4, q)$. Then N does not belong to the plane $\langle C \rangle$ and the points R, T, N span a plane meeting $\mathcal{Q}(4, q)$ in a conic, say C'. Hence there is a plane $\gamma \in \mathcal{G}_2$ meeting Π' in a line if and only if there is a point U of C' such that the line UL is a line of $\mathcal{Q}(4, q)$. There exists only one such a point: the intersection point between the three–space containing the lines of $\mathcal{Q}(4, q)$ through L and the conic C'. Analogously, there is a plane $\gamma \in \mathcal{G}_3$ meeting Π' in a line if and only if there is a point $U \in \mathcal{Q}(4, q)$ not belonging to C' such that the line UL is a line of $\mathcal{Q}(4, q)$ and the lines UR and UT are not lines of $\mathcal{Q}(4, q)$. There exist exactly $q^2 - q - 2$ points having these properties. \[\square\]

Lemma 3.13. Assume that q is odd. Let $\Pi \in \mathcal{G}_5$ and $\Pi' \in \mathcal{G}_6$, then either $|\Pi \cap \mathcal{P}_1| = |\Pi' \cap \mathcal{P}_2| = q(q - 1)/2$ and $|\Pi \cap \mathcal{P}_2| = |\Pi' \cap \mathcal{P}_1| = q(q + 1)/2$ or $|\Pi \cap \mathcal{P}_1| = |\Pi' \cap \mathcal{P}_2| = q(q + 1)/2$ and $|\Pi \cap \mathcal{P}_2| = |\Pi' \cap \mathcal{P}_1| = q(q - 1)/2$. Moreover through a line of $\mathcal{L}_0 \cup \mathcal{L}_3$, there pass $(q - 1)/2$ planes of \mathcal{G}_5 and $(q - 1)/2$ planes of \mathcal{G}_6, whereas the q generators passing through a line of \mathcal{L}_1 and skew to Π_1, Π_2 are planes either of \mathcal{G}_5 or of \mathcal{G}_6.

Proof. Let A be an invertible matrix of $S_{3, q}$ and consider the symplectic Segre variety $\Sigma_{1, 2}$ determined by the Π_1, Π_2 and $L(A)$. The planes of $\Sigma_{1, 2}$ distinct from Π_1 and Π_2 are $L(\lambda A)$, where $\lambda \in GF(q) \setminus \{0\}$. Taking into account Remark 3.16 we have that $(q - 1)/2$ members of $\Sigma_{1, 2}$ belong to \mathcal{G}_5 and $(q - 1)/2$ members of $\Sigma_{1, 2}$ belong to \mathcal{G}_6. Moreover, taking into account Remark 3.13 if λ is a non–zero square of $GF(q)$, then the point of $L(A)$ given by $(x, y, z, 0, 0, 0) + (0, 0, 0, x, y, z)(0_3 A)^t$ belongs to \mathcal{P}_1 if and only if the point of $L(\lambda A)$ given by $(x, y, z, 0, 0, 0) + (0, 0, 0, x, y, z)\lambda (0_3 A)^t$ belongs to \mathcal{P}_1, whereas if λ is a non–square of $GF(q)$, then the point of $L(A)$ given by $(x, y, z, 0, 0, 0) + (0, 0, 0, x, y, z)(0_3 A)^t$ belongs to \mathcal{P}_1 if and only if the point of $L(\lambda A)$ given by $(x, y, z, 0, 0, 0) + (0, 0, 0, x, y, z)\lambda (0_3 A)^t$ belongs to \mathcal{P}_2. Let $\Pi = L(\lambda A) \in \mathcal{G}_5,$
\(\Pi' = L(\lambda' A) \in \mathcal{G}_6 \). From Lemma 3.3, there is a non-degenerate conic \(C \) (resp. \(C' \)) of \(\Pi \) (resp. \(\Pi' \)). Observe that exactly one of the two following possibilities occurs: either \(\Pi \cap \mathcal{P}_1 \) are the points of \(\Pi \) internal to \(C \), \(\Pi \cap \mathcal{P}_2 \) are the points of \(\Pi \) external to \(C \), \(\Pi' \cap \mathcal{P}_1 \) are the points of \(\Pi' \) internal to \(C' \), \(\Pi' \cap \mathcal{P}_2 \) are the points of \(\Pi' \) external to \(C' \), \(\Pi \cap \mathcal{P}_2 \) are the points of \(\Pi \) internal to \(C \), \(\Pi' \cap \mathcal{P}_1 \) are the points of \(\Pi' \) external to \(C' \), \(\Pi' \cap \mathcal{P}_1 \) are the points of \(\Pi' \) internal to \(C' \), \(\Pi' \cap \mathcal{P}_2 \) are the points of \(\Pi' \) external to \(C' \).

Let \(\ell \) be a line of \(\mathcal{W}(5, q) \) and let \(\Pi_3 \) be a generator of \(\mathcal{W}(5, q) \) skew to \(\Pi_1 \), \(\Pi_2 \) such that \(\ell \subset \Pi_3 \). Denote by \(\rho \) the non-degenerate polarity of \(\Pi_3 \) arising from Lemma 3.3 and let \(C_3 \) be the corresponding non-degenerate conic. If \(\ell \in \mathcal{L}_0 \cup \mathcal{L}_2 \), then \(T^\perp_\ell \) is a line meeting both \(\Pi_1 \), \(\Pi_2 \) in a point and it is not a line of \(\mathcal{W}(5, q) \). Hence, by Remark 3.3, \(T^\perp_\ell \) contains \((q-1)/2 \) points of \(\mathcal{P}_1 \) and \((q-1)/2 \) points of \(\mathcal{P}_2 \). Since \(\ell^\rho \) is the point \(\Pi_3 \cap T^\perp_\ell \), we have that through \(\ell \) there pass \((q-1)/2 \) planes of \(\mathcal{G}_5 \) and \((q-1)/2 \) planes of \(\mathcal{G}_6 \). If \(\ell \in \mathcal{L}_1 \), then \(T^\perp_\ell \) is a line of \(\mathcal{W}(5, q) \) meeting both \(\Pi_1 \), \(\Pi_2 \) in a point. In this case \(\ell \cap C_3 \) consists of one point, say \(Q \). The \(q \) points of \(\ell \) distinct from \(Q \) are external to \(C_3 \) and hence they all lie in a unique point–orbit, that is either \(\mathcal{P}_1 \) or \(\mathcal{P}_2 \). Therefore the \(q \) generators of \(\mathcal{W}(5, q) \) passing through \(\ell \) and skew to \(\Pi_1 \), \(\Pi_2 \) are such that the external points of their corresponding conics are all points belonging to the same point orbit, that is either \(\mathcal{P}_1 \) or \(\mathcal{P}_2 \). Hence these \(q \) generators lie in the same \(G_{\Pi_2} \)–orbit which contains \(\Pi_3 \).

4 Hermitian matrices and Hermitian polar spaces

Let \(\omega \in \text{GF}(q^2) \setminus \{0\} \) such that \(\omega^q = -\omega \) and let \(\mathcal{H}(2n-1, q^2) \) be the non-degenerate Hermitian polar space of \(\text{PG}(2n-1, q^2) \) associated with the following Hermitian form

\[
(X_1, \ldots, X_{2n}) \begin{pmatrix}
0_n & \omega I_n \\
\omega^t I_n & 0_n
\end{pmatrix}
\begin{pmatrix}
Y_1^q \\
\vdots \\
Y_{2n}^q
\end{pmatrix},
\]

Let \(\text{PGU}(2n, q^2) \) be the group of projectivities of \(\text{PG}(2n-1, q^2) \) stabilizing \(\mathcal{H}(2n-1, q^2) \). Denote by \(\Lambda_1 \) the \((n-1)\)–space of \(\text{PG}(2n-1, q^2) \) spanned by \(U_{n+1}, \ldots, U_{2n} \). Then \(\Lambda_1 \) is a generator of \(\mathcal{H}(2n-1, q^2) \). Denote by \(\tilde{G} \) the stabilizer of \(\Lambda_1 \) in \(\text{PGU}(2n, q^2) \). In this case an element of \(\tilde{G} \) is represented by the matrix

\[
\begin{pmatrix}
T^{-t} & 0_n \\
H_0^t T^{-t}
\end{pmatrix},
\]

where \(T \in \text{GL}(n, q^2) \) and \(H_0 \in \mathcal{H}_{n,q^2} \). Hence \(\tilde{G} \cong \mathcal{H}_{n,q^2} \rtimes (\text{GL}(n, q^2)/\{aI_{2n}\}) \), where \(a^{q^2+1} = 1 \), and

\[
|\tilde{G}| = q^{n^2} \prod_{i=0}^{q-1} (q^{2n} - q^{2i}) / q + 1.
\]

Define an action of \(\mathcal{H}_{n,q^2} \rtimes \text{GL}(n, q^2) \) on \(\mathcal{H}_{n,q^2} \) as follows

\[
((H_0, T), H) \in (\mathcal{H}_{n,q^2} \rtimes \text{GL}(n, q^2)) \times \mathcal{H}_{n,q^2} \mapsto TH (T^q)^t + H_0 \in \mathcal{H}_{n,q^2}.
\]

Its orbitals are the relations of an association scheme, the so called association scheme of Hermitian matrices \[30\] [23]. As in the symmetric case there is a correspondence between \(\mathcal{H}_{n,q^2} \) and
the set \tilde{G} of generators of $H(2n-1, q^2)$ disjoint from Λ_1 (see also [2 Proposition 9.5.10]). The proof is similar to that of the symmetric case and hence it is omitted.

Lemma 4.1. There is a bijection between H_{n,q^2} and \tilde{G} such that $H_{n,q^2} \rtimes GL(n, q^2)$ acts on H_{n,q^2} as G acts on \tilde{G}. In particular, a d-code of H_{n,q^2} corresponds to a set of generators of $H(2n-1, q^2)$ disjoint from Λ_1 pairwise intersecting in at most an $(n-d-1)$-space, and conversely.

As before, if $\Lambda_2 = L(0_n)$, the previous lemma implies that the number of orbits of G_{Λ_2} on \tilde{G} equals the number of relations of the association scheme on Hermitian matrices.

Lemma 4.2 ([27]). Let Π_3 be a generator of $H(2n-1, q^2)$ disjoint from Π_1 and Π_2. The points $P \in \Pi_3$ such that there exists a line of $H(2n-1, q^2)$ through P intersecting Π_1 and Π_2 are the absolute points of a non-degenerate unitary polarity of Π_3.

5 2-codes of $S_{n,q}$ or H_{n,q^2}

Let Γ_W or Γ_H be the graph whose vertices are the generators of $W(2n-1, q)$ or $H(2n-1, q^2)$ and two vertices are adjacent whenever they meet in an $(n-2)$-space. Then Γ_W or Γ_H is a distance regular graph having diameter n, see [2] Section 9.4. A coclique of Γ_W or Γ_H is a set of generators of $W(2n-1, q)$ or $H(2n-1, q^2)$ pairwise intersecting in at most an $(n-3)$-space.

Lemma 5.1 (Theorem 9.4.3, [2]). The eigenvalues θ_j, $0 \leq j \leq n$, of Γ_W are:

$$\theta_j = \frac{q^j(q^{n-2j+1}+1)}{q-1} - 1, \text{ with multiplicity } f_j = \frac{q^j(q^{n-2j+1}+1)}{q^n-j+1} \prod_{i=1}^{j} \frac{q^{2(n-i+1)}-1}{(q^i-1)(q^{i-1}+1)}.$$

The eigenvalues λ_j, $0 \leq j \leq n$, of Γ_H are:

$$\lambda_j = \frac{q^{2j}(q^{2n-4j+1}+1)}{q^2-1} - \frac{1}{q+1}, \text{ with multiplicity } g_j = \frac{q^{2j}(q^{2n-4j+1}+1)}{q^{2n-2j+1}+1} \prod_{i=1}^{j} \frac{(q^{2n-2i+2}-1)(q^{2n-2i+1}+1)}{(q^{2i}-1)(q^{2i-1}+1)}.$$

The eigenvalue θ_j is positive or negative, according as $0 \leq j \leq \left\lceil \frac{n-1}{2} \right\rceil$ or $\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq j \leq n$, respectively, and

$$\deg(f_j) = \begin{cases} nj + j(n-2j+1) & \text{if } 0 \leq j \leq \left\lceil \frac{n-1}{2} \right\rceil, \\ nj + (j-1)(n-2j+1) & \text{if } \left\lceil \frac{n-1}{2} \right\rceil + 1 \leq j \leq n. \end{cases}$$

Moreover $\deg(f_i) < \deg(f_j)$, if $0 \leq i < j \leq \left\lceil \frac{n-1}{2} \right\rceil$, and $\deg(f_i) > \deg(f_j)$, if $\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq i < j \leq n$. From the Cvetković bound (Lemma 2.2), it follows that $\alpha(\Gamma_W) \leq \sum_{j=0}^{\frac{n-1}{2}} f_j$, if n is odd. Note that the Hoffman bound gives a better upper bound for $\alpha(\Gamma_W)$ than the Cvetković bound in the cases n is even. Hence, the following result arises.

Theorem 5.2. Let X be a set of generators of $W(2n-1, q)$ pairwise intersecting in at most an $(n-3)$-space. Then

$$|X| \leq \begin{cases} \sum_{j=0}^{\frac{n-1}{2}} \frac{q^j(q^{n-2j+1}+1)}{q^n-j+1} \prod_{i=1}^{j} \frac{q^{2(n-i+1)}-1}{(q^i-1)(q^{i-1}+1)} & \text{if } n \text{ is odd}, \\ \prod_{i=2}^{n} (q^i+1) & \text{if } n \text{ is even}. \end{cases}$$
9.5.10. In particular, \(\Gamma' \) is also known as the last subconstituent of \(\Gamma_W \) [2, Corollary 8.4.4]:

\[
\| \mathcal{C} \| \leq \begin{cases}
\sum_{j=0}^{n-1} \frac{q^j(q^n-2j+1)}{q^n-1} \prod_{i=1}^{j} \frac{2^{2(j+1)}}{(q^i-1)(q^{i-1}+1)} & \text{if } n \text{ is odd}, \\
\prod_{i=2}^{n} (q^i + 1) & \text{if } n \text{ is even}.
\end{cases}
\]

The term of highest degree in Corollary 5.3 is \(q^{(n+1)/2} - q^n + 1 \) if \(n \) is odd or \(q^{(n+1)/2} - q^n + 1 \) if \(n \) is even. The previous known upper bound for the size of a 2-code of \(S_{n,q} \) is \(q^{(n-1)/2} + 1 \) for odd \(q \) [21, Proposition 3.7], and \(q^{(n+1)/2} - q^n + 1 \) for even \(q \) [24, Proposition 3.4]. Therefore Corollary 5.3 provides better upper bounds if \(n \) is odd or if \(n \) and \(q \) are both even.

Regarding 2-codes of \(S_{3,q} \), a further improvement will be obtained in Section 6.

In the Hermitian case, \(\lambda_j \) is positive or negative, according to as \(0 \leq j \leq \left\lfloor \frac{n-1}{2} \right\rfloor \) or \(\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq j \leq n \), respectively, and

\[
\deg(g_j) = \begin{cases}
4j(n-j) & \text{if } 0 \leq j \leq \left\lfloor \frac{n-1}{2} \right\rfloor, \\
4j(n-j) - (2n - 4j + 1) & \text{if } \left\lceil \frac{n-1}{2} \right\rceil + 1 \leq j \leq n.
\end{cases}
\]

Moreover \(\deg(g_i) < \deg(g_j) \), if \(0 \leq i < j \leq \left\lfloor \frac{n-1}{2} \right\rfloor \), and \(\deg(g_i) > \deg(g_j) \), if \(\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq i < j \leq n \). From the Cvetković bound, it follows that \(\alpha(\Gamma_{H}) \leq \sum_{j=0}^{n-1} g_j \), if \(n \) is odd and \(\alpha(\Gamma_{H}) \leq n (2^n + 1) g_j \), if \(n \) is even.

Theorem 5.4. Let \(\mathcal{X} \) be a set of generators of \(H(2n-1,q^2) \) pairwise intersecting in at most an \((n-3) \)-space. Then

\[
|\mathcal{X}| \leq \begin{cases}
\sum_{j=0}^{n-1} \frac{q^{2j}(q^{2n-2j+1}+1)}{q^{2n-1}+1} \prod_{i=1}^{j} \frac{(q^{2n-2i+2}-1)(q^{2n-2i+1}+1)}{(q^{2i-1}+1)(q^{2i-2}+1)} & \text{if } n \text{ is odd}, \\
\sum_{j=2}^{n} \frac{q^{2j}(q^{2n-2j+1}+1)}{q^{2n-1}+1} \prod_{i=1}^{j} \frac{(q^{2n-2i+2}-1)(q^{2n-2i+1}+1)}{(q^{2i-1}+1)(q^{2i-2}+1)} & \text{if } n \text{ is even}.
\end{cases}
\]

From Lemma 3.1 the size of the largest 2-codes of \(H_{n,q^2} \) coincides with the maximum number of members of \(\tilde{G} \), the set of generators of \(H(2n-1,q^2) \) disjoint from \(\Lambda_1 \), such that they pairwise intersect in at most an \((n-3) \)-space. Let \(\Gamma'_{H} \) be the induced subgraph of \(\Gamma_{H} \) on \(\tilde{G} \). The graph \(\Gamma'_{W} \) is also known as the last subconstituent of \(\Gamma_{W} \) or the Hermitian forms graph, see [2] Proposition 9.5.10. In particular \(\Gamma'_{W} \) is a distance-regular graph of diameter \(n \). The eigenvalues of \(\Gamma'_{H} \) are [2] Corollary 8.4.4:

\[
\frac{(-q)^{2n-j} - 1}{q+1}, \text{ with multiplicity } \prod_{i=1}^{j} \frac{(-q)^{n+i-1} - 1}{(-q)^i - 1} \prod_{i=0}^{j-1} \frac{(-(-q)^n - (-q)^i)}{(-(-q)^n - (-q)^i)},
\]

respectively, with \(0 \leq j \leq n \).

In this case the Hoffman bound gives a better upper bound for \(\alpha(\Gamma'_{H}) \) than the Cvetković bound, that is \(q^{(n-1)^2}(q^{2n-1} + 1)/(q + 1) \). However this was already known [22, Theorem 2].
6 Large non–additive rank distance codes

In the case when C is additive much better bounds can be provided. Indeed in [23, Theorem 4.3], [22, Theorem 1] the author proved that the largest additive d–codes of $S_{n,q}$ have size at most either $q^{n(d+2)/2}$ or $q^{(n+1)(n-d+1)/2}$, according as $n - d$ is even or odd, respectively, whereas the size of the largest additive d–codes of H_{n,q^2} cannot exceed $q^{n(n-d+1)}$. As far as regard codes whose size is larger than the additive bound not much is known. In the Hermitian case, if n is even, there is an n–code of H_{n,q^2} of size $q^n + 1$ [22, Theorem 6], [11, Theorem 18]. Observe that from Lemma 3.1 and Lemma 4.1, an n–code C of $S_{n,q}$ or H_{n,q^2} exists if and only if there exists a partial spread of $W(2n - 1, q)$ or $H(2n - 1, q^2)$ of size $|C| + 1$. It is well–known that the points of $W(2n - 1, q)$ can be partitioned into $q^n + 1$ pairwise disjoint generators of $W(2n - 1, q)$, that is, $W(2n - 1, q)$ admits a spread. On the other hand, $H(2n - 1, q^2)$ has no spread. If n is odd, an upper bound for the largest partial spreads of $H(2n - 1, q^2)$ is q^{n+1} [29] and there are examples of partial spreads of that size [18]. If n is even the situation is less clear: upper bounds can be found in [15], as for lower bounds there is a partial spread of $H(2n - 1, q^2)$ of size $(3q^2 - q)/2 + 1$ for $n = 2, q > 13$, [11, p. 32] and of size q^{n+2} for $n \geq 4$ [11]. Here, generalizing the partial spread of $H(3, q^2)$, we show the existence of a partial spread of $H(2n - 1, q^2)$, in the case when n is even and $n/2$ is odd, of size $(3q^n - q^{n/2})/2 + 1$, see Theorem 6.3. Hence the following result holds true.

Theorem 6.1. If n is even and $n/2$ is odd, then there exists an n–code of H_{n,q^2} of size $\frac{3q^n - q^{n/2}}{2}$.

For small values of d, q and n, in [24] there are several d–codes of $S_{n,q}$ and H_{n,q^2} whose sizes are larger than the corresponding additive bounds, namely a 2–code of $S_{3,2}$ of size 22, a 2–code of $S_{3,3}$ of size 135, a 2–code of $S_{3,4}$ of size 428, a 2–code of $S_{3,5}$ of size 934, a 2–code of $S_{3,7}$ of size 3100, a 2–code of $S_{4,2}$ of size 320, a 4–code of $S_{5,2}$ of size 96, a 2–code of $H_{3,4}$ of size 120 and a 4–code of $H_{4,4}$ of size 37. Besides these few examples, no d–codes whose sizes are larger than the largest possible additive d–codes are known.

In the remaining part of this section we focus on the case $n = 3$. From Corollary 5.3 a 2–code C of $S_{3,q}$ has size at most

$$\frac{q(q^2 + 1)(q^2 + q + 1)}{2} + 1.$$

First, we improve on the upper bound of the size of C. Then we construct 2–codes of $S_{3,q}$ and H_{3,q^2} that are larger than the largest possible additive 2–codes. This provides an answer to a question posed in [25, Section 7], see also [23, p. 176]. The main results are summarized in the following theorem.

Theorem 6.2. Let C be a maximum 2–code of $S_{3,q}$, $q > 2$, then

$$q^4 + q^3 + 1 \leq |C| < q(q^2 - 1)(q^2 + q + 1) + 1.$$

Let C be a maximum 2–code of H_{3,q^2}, then

$$q^6 + q(q - 1)(q^4 + q^2 + 1) \leq |C| \leq q^4(q^4 - q^3 + q^2 - q + 1).$$
6.1 Partial spread of \(\mathcal{H}(8m - 5, q^2) \)

Let us consider the projective line \(\text{PG}(1, q^{4m-2}) \) whose underlying vector space is \(V(2, q^{4m-2}) \), and let \(\mathcal{H}(1, q^{4m-2}) \) be a non-degenerate Hermitian polar space of \(\text{PG}(1, q^{4m-2}) \) associated with \(h \), where \(h \) is a sesquilinear form on \(V(2, q^{4m-2}) \). The vector space \(V(2, q^{4m-2}) \) can be regarded as a \((4m-2)\)-dimensional vector space over \(\text{GF}(q^2) \), say \(\tilde{V} \). More precisely

\[
\tilde{V} = \left\{ \left(x, x^q, \ldots, x^{q^{4m-4}}, y, y^q, \ldots, y^{q^{4m-4}} \right) \mid (x, y) \in V(2, q^{4m-2}) \right\}.
\]

Let \(\text{PG}(4m - 3, q^2) \) be the projective space whose underlying vector space is \(\tilde{V} \) and let

\[
Tr_{q^{4m-2}|q^2} : x \in \text{GF}(q^{4m-2}) \mapsto \sum_{i=0}^{2m-2} x^{q^{2i}} \in \text{GF}(q^2)
\]

denote the usual trace function. Note that

\[
\tilde{h} = Tr_{q^{4m-2}|q^2} \circ h : \tilde{V} \times \tilde{V} \longrightarrow \text{GF}(q^2)
\]

is a non-degenerate sesquilinear form on \(\tilde{V} \) and hence there is a non-degenerate polar space \(\mathcal{H}(4m - 3, q^2) \) of \(\text{PG}(4m - 3, q^2) \) associated with \(\tilde{h} \). See [2] for more details. Let \(\rho \) be the unitary polarity of \(\text{PG}(4m - 3, q^2) \) defining \(\mathcal{H}(4m - 3, q^2) \).

Lemma 6.3. There exists a \((2m - 2)\)-spread \(S \) of \(\text{PG}(4m - 3, q^2) \), such that \(q^{2m-1} + 1 \) members of \(S \) are generators of \(\mathcal{H}(4m - 3, q^2) \) and the remaining \(q^{4m-2} - q^{2m-1} \) are such that they occur in \((q^{4m-2} - q^{2m-1})/2 \) pairs of type \(\{\Delta, \Delta^\rho\} \), where \(|\Delta \cap \Delta^\rho| = 0 \).

Proof. With the notation introduced above, if \(W \) is a vector subspace of \((V(2, q^{4m-2})\) of dimension one, then

\[
\left\{ \left(x, x^q, \ldots, x^{q^{4m-4}}, y, y^q, \ldots, y^{q^{4m-4}} \right) \mid (x, y) \in W \right\}
\]

is a \((2m - 1)\)-dimensional vector subspace of \(\tilde{V} \). Hence a point of \(\text{PG}(1, q^{4m-2}) \) is sent to a \((2m - 2)\)-space of \(\text{PG}(4m - 3, q^2) \) and two distinct \((2m - 2)\)-spaces of \(\text{PG}(4m - 3, q^2) \) so obtained are pairwise skew. Let \(S \) be the set of \((2m - 2)\)-spaces of \(\text{PG}(4m - 3, q^2) \) constructed in this way. Then \(S \) is a \((2m - 2)\)-spread of \(\text{PG}(4m - 3, q^2) \) and \(|S| = q^{4m-2} + 1 \).

Note that \(\mathcal{H}(1, q^{4m-2}) \) consists of \(q^{2m-1} + 1 \) points. The polarity of \(\text{PG}(1, q^{4m-2}) \) defining \(\mathcal{H}(1, q^{4m-2}) \) fixes each of these \(q^{2m-1} + 1 \) points and interchanges in pairs the remaining \(q^{4m-2} - q^{2m-1} \) points of \(\text{PG}(1, q^{4m-2}) \). Therefore an element \(\Delta \) of \(S \) is a generator of \(\mathcal{H}(4m - 3, q^2) \) if \(\Delta \) corresponds to a point of \(\mathcal{H}(1, q^{4m-2}) \); otherwise \(|\Delta \cap \Delta^\rho| = 0 \).

Let \(\mathcal{H}(8m - 5, q^2) \) be a non-degenerate Hermitian polar space of \(\text{PG}(8m - 5, q^2) \) and let \(\perp \) be the unitary polarity of \(\text{PG}(8m - 5, q^2) \) defining \(\mathcal{H}(8m - 5, q^2) \).

Theorem 6.4. \(\mathcal{H}(8m - 5, q^2) \) has a partial spread of size \(\frac{3q^{4m-2} - q^{2m-1}}{2} + 1 \).

Proof. Let \(\Pi_1, \Pi_2, \Pi_3 \) be three pairwise disjoint generators of \(\mathcal{H}(8m - 5, q^2) \). Then \(\Pi_i \simeq \text{PG}(4m - 3, q^2) \). Moreover, there is a non-degenerate unitary polarity \(\rho_i \) of \(\Pi_i \), see Lemma[4,7]. Let \(\mathcal{H}_i \) be the
Hermitian polar space of Π_1, defined by ρ_i, $i = 1, 2, 3$. From Lemma 6.13 there exists a $(2m-2)$–spread S of Π_1, such that $q^{2m-1} + 1$ members of S are generators of H_1 and the remaining $q^{4m-2} - q^{2m-1}$ are such that they occur in $(q^{4m-2} - q^{2m-1})/2$ pairs of type $\{\Delta, \Delta^\rho\}$, where $|\Delta \cap \Delta^\rho| = 0$. For an element Δ_1 of S, let $\Delta_2 = \langle \Pi_3, \Delta_1 \rangle \cap \Pi_2$ and $\Delta_3 = \langle \Pi_2, \Delta_1 \rangle \cap \Pi_3$. Then $\Delta_2^\rho = \Delta_2^\perp \cap \Pi_3 = \Delta_2^\perp \cap \Pi_2$ and $\Delta_3^\rho = \Delta_3^\perp \cap \Pi_3 = \Delta_3^\perp \cap \Pi_2$. Similarly, $\Delta_1^\rho = \Delta_1^\perp \cap \Pi_1 = \Delta_1^\perp \cap \Pi_1$.

If Δ_1 is a generator of H_1, then $\Delta_1^\rho = \Delta_i$, $i = 1, 2, 3$, and $\langle \Delta_1, \Delta_2 \rangle$ is a generator of $H(8m - 5, q^2)$. Varying Δ_1 among the $q^{2m-1} + 1$ members of S that are generators of H_1, one obtains a set Z_1 of $q^{2m-1} + 1$ generators of $H(8m - 5, q^2)$ that are pairwise disjoint.

If Δ_1 is such that $|\Delta_1 \cap \Delta_2^\rho| = 0$, then consider the following generators of $H(8m - 5, q^2)$:

$$\langle \Delta_1, \Delta_2^\rho \rangle, \langle \Delta_2^\rho, \Delta_3 \rangle, \langle \Delta_3, \Delta_1^\rho \rangle, \langle \Delta_1^\rho, \Delta_2 \rangle, \langle \Delta_2, \Delta_3^\rho \rangle, \langle \Delta_3^\rho, \Delta_1 \rangle \rangle.$$

Among these six generators, we can always choose three of them such that they are pairwise disjoint. For instance

$$\langle \Delta_1, \Delta_2^\rho \rangle, \langle \Delta_3, \Delta_1^\rho \rangle, \langle \Delta_2, \Delta_3^\rho \rangle$$

are pairwise skew since any two of them span the whole $PG(8m - 5, q^2)$. Repeating this process for each of the $(q^{4m-2} - q^{2m-1})/2$ couples $\{\Delta_1, \Delta_2^\rho\}$ such that $|\Delta_1 \cap \Delta_2^\rho| = 0$, a set Z_2 of $3(q^{4m-2} - q^{2m-1})/2$ pairwise disjoint generators of $H(8m - 5, q^2)$ is obtained. Again two members of $Z_1 \cup Z_2$ span the whole $PG(8m - 5, q^2)$. Therefore $Z_1 \cup Z_2$ is a partial spread of $H(8m - 5, q^2)$ of size $3(q^{4m-2} - q^{2m-1})/2 + q^{2m-1} + 1 = (3q^{4m-2} - q^{2m-1})/2 + 1$.

6.2 2–codes of $S_{3,q}$

Let \perp be the symplectic polarity of $PG(5, q)$ defining $W(5, q)$. Recall that G is the set of q^6 planes of $W(5, q)$ that are disjoint from Π_1, the group G is the stabilizer of Π_1 in $PSp(6, q)$, $\Pi_2 = L(03)$, and G_{Π_2} is the stabilizer of Π_2 in G. For a point P in Π_2, let Σ_P denote a 3–space contained in P^\perp and not containing P. When restricted to Σ_P, the polarity \perp defines a non–degenerate symplectic polar space of Σ_P, say W_P. Moreover $r_P = \Sigma_P \cap \Pi_1$ and $t_P = \Sigma_P \cap \Pi_2$ are lines of W_P.

6.2.1 The upper bound

The graph Γ_W has valency $q(q^2 + q + 1)$. Let Γ_W' be the induced subgraph of Γ_W on G. The graph Γ_W' is also known as the second subconstituent of Γ_W, see [1]. Then Γ_W' is connected, has valency $q^3 - 1$ and it is vertex–transitive, since $G \leq Aut(\Gamma_W')$ is transitive on G. A 2–code of $S_{3,q}$ is a coclique of Γ_W'. We want to apply the Cvetković bound (Lemma 2.2) to the graph Γ_W'. In order to do that we need to compute the spectrum of Γ_W'. Consider the equitable partition arising from the action of the group G_{Π_2} on G. Then, according to Lemma 3.11, the set G is partitioned into $\{\Pi_2\}, G_1, G_2, G_3, G_4\}$ if q is even or into $\{\Pi_2\}, G_1, G_2, G_3, G_4, G_5, G_6\}$ if q is odd. Let $B = (b_{ij})$ denote the quotient matrix of this equitable partition. In other words, b_{ij} is the number of planes of G_j intersecting a given plane of G_i in a line.
Lemma 6.5. If \(q \) is even, then
\[
B = \begin{pmatrix}
0 & q^3 - 1 & 0 & 0 & 0 \\
1 & q - 2 & q^3 - q & 0 & 0 \\
0 & 0 & 0 & q^2 - 1 & q^2(q - 1) \\
0 & q & 1 & q^2 - q - 2 & q^2(q - 1) \\
0 & 0 & 1 & q^2 - 1 & q^3 - q^2 - 1
\end{pmatrix}.
\]

If \(q \) is odd, then
\[
B = \begin{pmatrix}
0 & \frac{q^3 - 1}{2} & \frac{q^3 - 1}{2} & 0 & 0 & 0 \\
1 & \frac{q - 3}{2} & \frac{q^3 - q}{2} & \frac{q^3 - q}{2} & 0 & 0 \\
1 & \frac{q - 3}{2} & \frac{q^3 - q}{2} & \frac{q^3 - q}{2} & 0 & 0 \\
0 & \frac{q + 1}{2} & \frac{q^3 - q}{2} & \frac{q^2(q - 1)}{2} & \frac{q^2(q - 1)}{2} & \frac{q^2(q - 1)}{2} \\
0 & \frac{q - 1}{2} & \frac{q + 1}{2} & \frac{(q - 3)(q + 1)}{2} & \frac{q^2(q - 1)}{2} & \frac{q^2(q - 1)}{2} \\
0 & 0 & 0 & \frac{q(q - 1)}{2} & \frac{q(q + 1)}{2} & \frac{q^2(q - 1)}{2}
\end{pmatrix}.
\]

Proof. Let \(q \) be even. Every plane of \(G_1 \) meets \(\Pi_2 \) in a line, no plane of \(\cup_{i=2}^{4} G_i \) meets \(\Pi_2 \) in a line and no plane of \(G_1 \) meets a plane of \(G_4 \) in a line. Hence \(b_{12} = q^3 - 1 \), \(b_{21} = 1 \), \(b_{25} = b_{52} = b_{1j} = b_1 = 0 \), \(j \neq 2 \), \(i \neq 2 \).

Let \(\sigma \in G_1 \) and let \(\gamma \in \cup_{i=1}^{3} G_i \) such that \(\gamma \cap \sigma \) is a line. If \(\gamma \in G_1 \), then \(\sigma \cap \Pi_2 = \gamma \cap \Pi_2 \). Hence \(b_{22} = q - 2 \). From Lemma 3.11 \(\gamma \notin G_2 \) and hence \(b_{23} = 0 \). If \(\gamma \in G_3 \), let \(P \) be the point \(\gamma \cap \Pi_2 \). Then \(P \in \sigma \cap \Pi_2 \). Let \(\ell = \sigma \cap \Sigma P \) and \(s = \gamma \cap \Sigma P \). Then \(|\ell \cap t_P| = 1 \) and \(|\ell \cap r_P| = 0 \). On the other hand the line \(s \) is skew to \(r_P \) and \(t_P \) and meets \(\ell \) in a point. Since \(s \) can be chosen in \(q^2 - q \) ways, we have that there are \(q^2 - q \) planes of \(G_3 \) in \(P \) meeting \(\sigma \) in a line. Varying \(P \) in \(\sigma \cap \Pi_2 \), we obtain \(b_{24} = q^3 - q \).

Let \(\sigma \in G_2 \cup G_3 \), \(P = \sigma \cap \Pi_2 \), and let \(\gamma \in \cup_{i=1}^{4} G_i \) such that \(\gamma \cap \sigma \) is a line. Note that necessarily \(P \in \gamma \). By Lemma 3.11 there is no plane of \(G_2 \) meeting a plane of \(G_1 \) in a line and if \(\sigma \in G_3 \), then there are \(q \) planes of \(G_1 \) meeting \(\sigma \) in a line. Hence \(b_{32} = 0 \) and \(b_{34} = q \). From Lemma 3.12 it follows that \(b_{33} = 0 \), \(b_{34} = q^2 - 1 \), \(b_{43} = 1 \) and \(b_{44} = q^2 - q - 2 \). Through a line of \(\sigma \) not containing \(P \), there pass exactly \(q - 1 \) planes of \(G_4 \). Therefore \(b_{45} = q^2(q - 1) \).

Let \(\sigma \in G_4 \) and let \(\gamma \in \cup_{i=1}^{4} G_i \) such that \(\gamma \cap \sigma \) is a line. If \(\gamma \in G_2 \) or \(G_3 \), then \(\sigma \cap \gamma \in \Sigma_0 \) or \(L_0 \). Also, through a line of \(L_0 \) or \(L_2 \) there pass one plane of \(G_2 \) or \(G_3 \) and \(q - 1 \) planes of \(G_4 \), whereas through a line of \(L_1 \) there are \(q \) planes of \(G_4 \). Since \(\sigma \) contains one line of \(L_0 \), \(q + 1 \) lines of \(L_1 \) and \(q^2 - 1 \) lines of \(L_2 \), we have \(b_{53} = 1 \), \(b_{54} = q^2 - 1 \) and \(b_{55} = q^3 - q^2 - 1 \).

Let \(q \) be odd. Every plane of \(G_1 \cup G_2 \) meets \(\Pi_2 \) in a line, no plane of \(\cup_{i=3}^{6} G_i \) meets \(\Pi_2 \) in a line and no plane of \(G_1 \cup G_2 \) meets a plane of \(G_5 \cup G_6 \) in a line. Hence \(b_{12} = b_{13} = (q^3 - 1)/2 \), \(b_{21} = b_{31} = 1 \), \(b_{26} = b_{27} = b_{36} = b_{37} = b_{62} = b_{72} = b_{63} = b_{73} = b_{1j} = b_1 = 0 \), \(j \neq 2, 3 \), \(i \neq 2, 3 \).

Let \(\sigma \in G_1 \cup G_2 \) and let \(\gamma \in \cup_{i=1}^{4} G_i \) such that \(\gamma \cap \sigma \) is a line. If \(\gamma \in G_1 \cup G_2 \), then \(\sigma \cap \Pi_2 = \gamma \cap \Pi_2 \). Hence \(b_{22} = b_{33} = (q - 3)/2 \) and \(b_{23} = b_{32} = (q - 1)/2 \). If \(\gamma \in G_3 \cup G_4 \), let \(P \) be the point \(\gamma \cap \Pi_2 \). Then \(P \in \sigma \cap \Pi_2 \). The lines \(r_P \), \(t_P \), \(s = \Sigma P \cap \gamma \) are three pairwise disjoint lines of \(W_P \). Let \(R \) be the regulus consisting of the lines of \(W_P \) intersecting both \(r_P \) and \(t_P \). The points covered by the lines of \(R \) form a hyperbolic quadric \(Q^+(3,q) \). The line \(s \) is external or secant to \(Q^+(3,q) \).
according as $\gamma \in G_3$ or G_4. Moreover the line $\ell = \sigma \cap \Sigma_P$ is tangent to $Q^+(3, q)$ at the point $\ell \cap t_P$. For a point $L \in \ell \setminus t_P$, the plane $L^+ \cap \Sigma_P$ meets $Q^+(3, q)$ in a non-degenerate conic C; in this plane, through the point L there are $(q - 1)/2$ lines of W_P external to C and skew to both r_P, t_P and $(q - 1)/2$ lines of W_P secant to C and skew to both r_P, t_P. By varying the point P over the line $\sigma \cap \Pi_2$, we get $b_{24} = b_{25} = b_{34} = b_{35} = (q^3 - q)/2$.

Let $\sigma \in G_3 \cup G_4$, $P = \sigma \cap \Pi_2$, and let $\gamma \in \cup_{i=1}^6 G_i$ such that $\gamma \cap \sigma$ is a line. Note that necessarily $P \in \gamma$. As before, let R be the regulus consisting of the lines of W_P intersecting both r_P and t_P and denote by $Q^+(3, q)$ the corresponding hyperbolic quadric. Let ℓ be the line $\sigma \cap \Sigma_P$ and $s = \gamma \cap \Sigma_P$. The line ℓ is skew to r_P, t_P and it is external or secant to $Q^+(3, q)$ according as $\sigma \in G_3$ or G_4. If $\gamma \in G_1 \cup G_2$, then s is a line of W_P meeting both t_P and ℓ, and it is disjoint from r_P. Also $s \cap \ell$ belongs to P_1 or P_2, according as $\gamma \in G_1$ or G_2, respectively. From the proof of Lemma 3.13 we have that $|\ell \cap P_1| = |\ell \cap P_2| = (q - 1)/2$ if ℓ is secant and $|\ell \cap P_1| = |\ell \cap P_2| = (q + 1)/2$ if ℓ is external. Hence $b_{42} = b_{43} = (q + 1)/2$ and $b_{52} = b_{53} = (q - 1)/2$. If $\gamma \in G_3 \cup G_4$, then s is a line of W_P intersecting ℓ and disjoint from r_P and t_P. Also $|s \cap Q^+(3, q)|$ equals 0 or 2 (i.e., ℓ belongs to L_0 or L_2, respectively), according as $\gamma \in G_1$ or G_3. If ℓ is external, through a point of ℓ, there are $(q - 1)/2$ lines of W_P secant to $Q^+(3, q)$ and skew to r_P and t_P and $(q - 3)/2$ lines of W_P external to $Q^+(3, q)$ distinct from ℓ and skew to r_P and t_P. Hence $b_{44} = (q - 3)(q + 1)/2$ and $b_{45} = (q^2 - 1)/2$. If ℓ is secant, through a point of ℓ not on $Q^+(3, q)$, there are $(q - 3)/2$ lines of W_P secant to $Q^+(3, q)$ distinct from ℓ and skew to r_P and t_P and $(q - 1)/2$ lines of W_P external to $Q^+(3, q)$ and skew to r_P and t_P; through a point of $\ell \cap Q^+(3, q)$, there are $q - 1$ lines of W_P secant to $Q^+(3, q)$ distinct from ℓ and skew to r_P and t_P. Hence $b_{54} = (q - 1)^2/2$ and $b_{55} = (q^2 - 1)/2$. A line of σ not containing P belongs to L_0 or L_2 and, by Lemma 3.13 through such a line there pass exactly $(q - 1)/2$ planes of G_5 and $(q - 1)/2$ planes of G_6. Therefore $b_{46} = b_{47} = b_{56} = b_{57} = q^2(q - 1)/2$.

Let $\sigma \in G_5 \cup G_6$ and let $\gamma \in \cup_{i=3}^6 G_i$ such that $\gamma \cap \sigma$ is a line. If $\gamma \in G_3$ or G_4, then $\sigma \cap \gamma \in L_0$ or L_2, respectively. Also, through a line of L_0 or L_2 there pass one plane of G_3 or G_4, $(q - 1)/2$ planes of G_5 and $(q - 1)/2$ planes of G_6, see Lemma 3.13. Moreover, by Lemma 3.13 through a line of L_1 there are q planes disjoint from Π_1 and Π_2 and they belong either to G_5 or to G_6 according as $\sigma \in G_5$ or $\sigma \in G_6$, respectively. Since, by Corollary 3.1, σ contains $q(q - 1)/2$ lines of L_0, $q + 1$ lines of L_1 and $q(q + 1)/2$ lines of L_2, it follows that $b_{64} = b_{74} = q(q - 1)/2$, $b_{65} = b_{75} = q(q + 1)/2$, $b_{66} = b_{77} = q^2(q - 1)/2 - 1$ and $b_{67} = b_{76} = q^2(q - 1)/2$.

Theorem 6.6. The spectrum of the graph Γ_W' is

$$(q^3 - 1)^1, (q^2 - 1)^{(2(q+1)(q^3-1))/2}, (-1)^{(q^3 - q^2 + 1)(q^3-1)}, (-q^2 - 1)^{(q(q-1)(q^3-1))/2}.$$

Proof. The matrix B described in Lemma 6.5 has four distinct eigenvalues, three of them are simple: $q^3 - 1$, $q^2 - 1$ and $-q^2 - 1$, whereas the multiplicity of the eigenvalue -1 is two or four, according as q is even or odd. From Lemma 2.1 the graph Γ_W' has four distinct eigenvalues: $q^3 - 1$, $q^2 - 1$, -1, $-q^2 - 1$ with multiplicities m_0, m_1, m_2, m_3, respectively. Note that $m_0 = 1$, since Γ_W' is connected. Moreover, the following equations have to be satisfied (see for instance
[28] p. 142));

\[1 + m_1 + m_2 + m_3 = q^6, \]
\[q^3 - 1 + (q^2 - 1)m_1 - m_2 - (q^2 + 1)m_3 = 0, \]
\[(q^3 - 1)^2 + (q^2 - 1)^2m_1 + m_2 + (q^2 + 1)^2m_3 = q^6(q^3 - 1). \]

It follows that \(m_1 = q(q + 1)(q^3 - 1)/2, m_2 = (q^3 - 1)(q^3 - q^2 + 1), m_3 = q(q - 1)(q^3 - 1)/2. \)

By applying the Cvetković bound (Lemma 2.2), we get \(\alpha(\Gamma'_{W}) \leq \frac{q(q^2-1)(q^2+q+1)}{2} + 1. \)

Corollary 6.7. Let \(\mathcal{C} \) be a 2–code of \(S_{3,q} \), then \(|\mathcal{C}| \leq \frac{q(q^2-1)(q^2+q+1)}{2} + 1. \)

Problem 6.8. We obtained a better upper bound for a 2–code of \(S_{n,q} \) in the case \(n = 3 \), by applying the Cvetković bound to the graph \(\Gamma'_{W} \), the last subconstituent of \(\Gamma_{W} \). Determine whether or not this holds true for \(n > 3 \).

6.2.2 The lower bound

Here we provide the first infinite family of 2–codes of \(S_{3,q} \) whose size is larger than the largest possible additive 2–code.

Construction 6.9. Let \(\mathcal{F}_P \) be a line–spread of \(W_P \) containing \(r_P \) and \(t_P \) and let \(\mathcal{X}_P \) be the set of \(q^2 - 1 \) generators of \(W(5, q) \) passing through \(P \) and meeting \(\Sigma_P \) in a line of \(\mathcal{F}_P \setminus \{r_P, t_P\} \).

Define the set \(\mathcal{X} \) as follows

\[\bigcup_{P \in \Pi_2} \mathcal{X}_P \cup \{\Pi_2\}. \]

Theorem 6.10. The set \(\mathcal{X} \) consists of \((q + 1)(q^3 - 1) + 1 \) planes of \(W(5, q) \) disjoint from \(\Pi_1 \) and pairwise intersecting in at most one point.

Proof. By construction every member of \(\mathcal{X} \) distinct from \(\Pi_2 \) meets \(\Pi_2 \) in exactly one point. Let \(\sigma_1, \sigma_2 \in \mathcal{X} \setminus \{\Pi_2\} \). If \(\sigma_1 \cap \Pi_2 = \sigma_2 \cap \Pi_2 \), then \(|\sigma_1 \cap \Pi_2| = 1 \) and there is nothing to prove. Hence let \(P_i = \sigma_i \cap \Pi_2, i = 1, 2 \), with \(P_1 \neq P_2 \). Assume by contradiction that \(\sigma_1 \cap \Pi_2 \) is a line, say \(\ell \). If \(\ell \cap \Pi_2 \) is a point, say \(R \), then \(R \in \sigma_1 \cap \Pi_2 \). If \(R \neq P_1 \) then the line \(RP_1 \) would be contained in \(\sigma_1 \cap \Pi_2 \), contradicting the fact that \(|\sigma_1 \cap \Pi_2| = 1 \). Similarly if \(R \neq P_2 \), then \(RP_2 \subseteq \sigma_2 \cap \Pi_2 \), a contradiction. Therefore \(R = P_1 = P_2 \), contradicting the fact that \(P_1 \neq P_2 \). Hence \(|\ell \cap \Pi_2| = 0 \) and both \(\sigma_1, \sigma_2 \) are contained in \(\ell^\perp \). However in this case the line \(P_1P_2 \) is a line of \(W(5, q) \) contained in \(\ell^\perp \) and disjoint from \(\ell \); a contradiction. \(\square \)

Corollary 6.11. There exists a 2–code of \(S_{3,q} \) of size \((q^2 - 1)(q^3 + q + 1) + 1 \).

From Corollary 6.7 a 2–code of \(S_{3,2} \) has at most 22 elements and hence the 2–code of \(S_{3,2} \) obtained from Construction 6.9 is maximal; an alternative proof of its maximality will be exhibited (Corollary 6.15). Moreover, from [24], this code is the unique largest 2–code of \(S_{3,2} \) of size 22. Our next step is to show that, if \(q > 2 \), the 2–code of \(S_{3,q} \) provided in Construction 6.9 can be further enlarged. In order to do that some preliminary results are required.
Lemma 6.12. Let \(\sigma \not\in \mathcal{X} \) be a plane of \(\mathcal{W}(5,q) \) disjoint from \(\Pi_1 \) and meeting \(\Pi_2 \) in at least one point. Then there exists a plane of \(\mathcal{X} \) meeting \(\sigma \) in a line.

Proof. Let \(\sigma \not\in \mathcal{X} \) be a plane disjoint from \(\Pi_1 \) and meeting \(\Pi_2 \) in one point, say \(P \). Then \(\sigma \) meets \(\Sigma_P \) in a line, say \(s \), and there are \(q+1 \) lines of \(\mathcal{F}_P \setminus \{ r_P, t_P \} \) meeting \(s \) in one point. It follows that there are \(q+1 \) planes of \(\mathcal{X}_P \) meeting \(\sigma \) in a line. \(\square \)

Lemma 6.13. Through a point \(R \) of \(\mathcal{W}(5,q) \setminus (\Pi_1 \cup \Pi_2) \) there pass either \(q \) or \(q+1 \) planes of \(\mathcal{X} \), according as the line through \(R \) intersecting \(\Pi_1 \) and \(\Pi_2 \) is a line of \(\mathcal{W}(5,q) \) or it is not.

Proof. Let \(R \) be a point of \(\mathcal{W}(5,q) \setminus (\Pi_1 \cup \Pi_2) \), let \(\ell_R \) be the unique line through \(R \) intersecting both \(\Pi_1 \) and \(\Pi_2 \) and let \(R_i = \ell_R \cap \Pi_i, i = 1,2 \). Let \(s \) denote the line \(R_i \cap \Pi_2 \). If a plane of \(\mathcal{X}_P \) contains the point \(R \), then \(P \in s \). On the other hand for a fixed \(P \in s \) there is at most one plane of \(\mathcal{X}_P \) containing \(R \). Hence there are at most \(q+1 \) planes of \(\mathcal{X} \) through \(R \). If \(P \in s \) and \(P \neq R_2 \), then both \(R_2 \) and \(R \) are in \(P \). Hence \(\ell_R \subseteq P \), the line \(r_P = P \cap \Pi_i \) contains \(R_1 \) and \(\langle P, r_P \rangle \cap \ell_R = \{ R_1 \} \). Therefore \(R \not\in \langle P, r_P \rangle \) and there exists a plane of \(\mathcal{X}_P \) containing \(R \). On the other hand, if \(P = R_2 \), then \(R \in \langle P, r_P \rangle \). Finally note that \(R_2 \in s \) if and only if \(\ell_R \) is a line of \(\mathcal{W}(5,q) \).

Let \(\mathcal{L} \) be the set of lines of \(\mathcal{W}(5,q) \) disjoint from \(\Pi_1 \cup \Pi_2 \) contained in a plane of \(\mathcal{X} \). Then \(|\mathcal{L}| = q^2(q+1)(q^3-1) \).

Lemma 6.14. If \(q \) is even, then \(\mathcal{L} \subseteq \mathcal{L}_2 \). If \(q \) is odd, then \(|\mathcal{L} \cap \mathcal{L}_0| = |\mathcal{L} \cap \mathcal{L}_2| \).

Proof. Let \(\ell \) be a line of \(\mathcal{L} \). Thus there is a point \(P \in \Pi_2 \) and a plane \(\sigma \) of \(\mathcal{X}_P \) containing \(\ell \). The three–space \(T_\ell \) is contained in \(P \) and does not contain \(P \), otherwise \(|\sigma \cap \Pi_1| \neq 0 \). Hence \(T_\ell \cap \mathcal{W}(5,q) \) is a non–degenerate symplectic polar space \(\mathcal{W}(3,q) \) and \(|\mathcal{L} \cap \mathcal{L}_1| = 0 \). Note that \(\mathcal{D} = \{ T_\ell \cap \gamma : \gamma \in \mathcal{X}_P \} \cup \{ r_\ell, t_\ell \} \) is a line–spread of \(\mathcal{W}(3,q) \). In the point–line dual of \(\mathcal{W}(3,q) \), the line–spread \(\mathcal{D} \) is an ovoid \(\mathcal{O} \) of the parabolic quadric \(\mathcal{Q}(4,q) \) and the regulus determined by \(r_\ell, t_\ell, \ell \), would correspond to three points \(P_1, P_2, P_3 \) of a conic \(\mathcal{C} \) of \(\mathcal{Q}(4,q) \) such that \(P_1, P_2, P_3 \in \mathcal{O} \).

Assume that \(q \) is even. Then the parabolic quadric \(\mathcal{Q}(4,q) \) has a nucleus \(N \). If \(\ell \) were in \(\mathcal{L}_0 \), then \(N \not\in \langle \mathcal{C} \rangle \). Consider a three–space \(Z \) of the ambient projective space of \(\mathcal{Q}(4,q) \) such that \(N \not\in Z \). By projecting points and lines of \(\mathcal{Q}(4,q) \) from \(N \) to \(Z \), we obtain the points and lines of a non–degenerate symplectic polar space \(\mathcal{W} \) of \(Z \). In particular \(\mathcal{C}' = \{ NP \cap Z : P \in \mathcal{C} \} \) is a line of \(Z \) and \(\mathcal{O}' = \{ NP \cap Z : P \in \mathcal{O} \} \) is an ovoid of \(W \). Then we would have \(|\mathcal{C}' \cap \mathcal{O}'| \geq 3 \), a contradiction, see [20].

Assume that \(q \) is odd. The line \(\ell \) belongs to \(\mathcal{L}_2 \) if and only if the line polar to the plane \(\langle P_1, P_2, P_3 \rangle \) with respect to the polarity of \(\mathcal{Q}(4,q) \) is secant to \(\mathcal{Q}(4,q) \). Let \(\mathcal{A} \) be the conic obtained by intersecting \(\mathcal{Q}(4,q) \) with the plane polar to the line \(\langle P_1, P_2 \rangle \) with respect to the orthogonal polarity of \(\mathcal{W}(4,q) \) associated with \(\mathcal{Q}(4,q) \). Let us count the triple \((R, S, P_3) \), where \(R, S \in \mathcal{A}, R \neq S, P_3 \in \mathcal{O} \setminus \{P_1, P_2\} \) and both \(RP_3, SP_3 \) are lines of \(\mathcal{Q}(4,q) \). The point \(R \) can be chosen in \(q+1 \) ways and for a fixed \(R \), the point \(P_3 \) can be chosen in \(q-1 \) ways. Finally once \(R \) and \(P_3 \) are fixed, the point \(S \) is uniquely determined. Hence there are \(q^2-1 \) such triples. It
turns out that there are \((q^2 - 1)/2\) points \(P_3 \in O \setminus \{P_1, P_2\}\) such that the line polar to the plane \(\langle P_1, P_2, P_3 \rangle\) with respect to the polarity of \(Q(4, q)\) is secant to \(Q(4, q)\) and \((q^2 - 1)/2\) points \(P_3 \in O \setminus \{P_1, P_2\}\) such that the line polar to the plane \(\langle P_1, P_2, P_3 \rangle\) with respect to the polarity of \(Q(4, q)\) is external to \(Q(4, q)\).

\[\square\]

Corollary 6.15. The 2–code of \(\mathcal{S}_{3,2}\) obtained from Construction 6.9 is maximal.

Proof. From Lemma 6.12 if there exists a plane \(\sigma\) disjoint from \(\Pi_1\) such that it meets every plane of \(\mathcal{X}\) in at most one point, then \(\sigma\) must be disjoint from \(\Pi_2\). From Lemma 3.4 \(\sigma\) contains exactly one line of \(\mathcal{L}_0\), 3 lines of \(\mathcal{L}_1\) and 3 lines of \(\mathcal{L}_2\). Since \(|\mathcal{L}_2| = |\mathcal{L}|\), the result follows.

Let \(\Pi_3\) be a generator of \(\mathcal{W}(5, q)\) disjoint from both \(\Pi_1\) and \(\Pi_2\). Let us denote by \(\Pi_i, 1 \leq i \leq q + 1\), the \(q + 1\) planes of the unique symplectic Segre variety of \(\mathcal{W}(5, q)\) containing \(\Pi_1, \Pi_2, \Pi_3\). In what follows we want to prove that it is possible to construct \(\mathcal{X}\) in such a way that the \(q - 1\) planes \(\Pi_i, 3 \leq i \leq q + 1\) can be added to it.

6.2.2.1 The even characteristic case

Assume that \(q > 2\) is even. Since the planes \(\Pi_1, \ldots, \Pi_{q+1}\) are pairwise disjoint generators of \(\mathcal{W}(5, q)\), from Lemma 3.4 there is a non–degenerate pseudo–polarity \(\rho_i\) of \(\Pi_i\). The set of absolute points of \(\rho_i\) are those of a line \(v_i\) of \(\Pi_i\). Let \(V_i = v_i^\rho_i\). Note that the unique line of \(\mathcal{L}_0\) contained in \(\Pi_i\) is \(v_i, 3 \leq i \leq q + 1\), while the \(q + 1\) lines of \(\mathcal{L}_1\) contained in \(\Pi_i\) are those through \(V_i, 3 \leq i \leq q + 1\).

Let \(Q\) be a point of \(\Pi_2\) not on \(v_2\) and distinct from \(V_2\). Let \(\Sigma_Q\) be a 3–space contained in \(Q^\perp\) and not containing \(Q\). In particular we choose \(\Sigma_Q\) spanned by the lines \(Q^- \cap \Pi_1\) and \(Q'^2\). Note that \(\Sigma_Q \cap \Pi_i = Q^\perp \cap \Pi_i\). Indeed, if \(s\) is the unique line (not of \(\mathcal{W}(5, q)\)) containing \(Q\) and meeting each of the planes \(\Pi_i, 1 \leq i \leq q + 1\), in one point, then \((s \cap \Pi_i)^\rho_i = \Sigma_Q \cap \Pi_i\). When restricted on \(\Sigma_Q\), the polarity \(\perp\) defines a non–degenerate symplectic polar space of \(\Sigma_Q\), say \(\mathcal{W}_Q\). As before, let \(r_Q = \Sigma_Q \cap \Pi_1\) and \(Q'^2 = t_Q = \Sigma_Q \cap \Pi_2\). Let \(R_Q\) be the set of \(q + 1\) lines of \(\mathcal{W}_Q\) defined as follows

\[\{\Sigma_Q \cap \Pi_i : 1 \leq i \leq q + 1\}\]

Then \(R_Q\) is a regulus of \(\mathcal{W}_Q\) containing both \(r_Q\) and \(t_Q\); the opposite regulus of \(R_Q\) contains exactly one line of \(\mathcal{W}_Q\) which is the line consisting of the points \(v_i \cap (s \cap \Pi_i)^\rho_i\).

Lemma 6.16. There exists a Desarguesian line–spread of \(\mathcal{W}_P\) having in common with \(R_Q\) exactly the lines \(r_P\) and \(t_P\).

Proof. Let \(Q(4, q)\) be the point line dual of \(\mathcal{W}_Q\) and let \(N\) be the nucleus of \(Q(4, q)\). The regulus \(R_Q\) corresponds to a conic \(C\) of \(Q(4, q)\) such that \(N \notin (C)\) and the lines \(r_P\) and \(t_P\) correspond to two points of \(C\), say \(R\) and \(T\). The result follows, since there are \(q^2/2 - q\) elliptic quadrics of \(Q(4, q)\) meeting \(C\) exactly in the points \(R, T\).

\[\square\]

For any point \(Q\) of \(\Pi_2\) different from \(V_2\) and not on \(v_2\), let \(F_Q\) be a Desarguesian line–spread of \(\mathcal{W}_Q\) having in common with \(R_Q\) exactly the lines \(r_Q\) and \(t_Q\) and let \(Y_Q\) be the set of \(q^2 - 1\)
generators of \(\mathcal{W}(5, q) \) passing through \(Q \) and meeting \(\Sigma_Q \) in a line of \(\mathcal{F}_Q \setminus \{r_Q, t_Q\} \). For any point \(P \in v_2 \cup \{V_2\} \), let \(\mathcal{X}_P \) be a set of \(q^2 - 1 \) generators of \(\mathcal{W}(5, q) \) passing through \(P \) defined as in Construction 6.9.

Define the set \(\bar{X} \) as follows
\[
\left(\bigcup_{P \in v_2 \cup \{V_2\}} \mathcal{X}_P \right) \cup \left(\bigcup_{Q \in \Pi_2 \setminus (v_2 \cup \{V_2\})} \mathcal{Y}_Q \right) \cup \left(\bigcup_{i=2}^{q+1} \Pi_i \right).
\]

Theorem 6.17. The set \(\bar{X} \) consists of \(q^3 + q^2 + 1 \) planes of \(\mathcal{W}(5, q) \) disjoint from \(\Pi_1 \) and pairwise intersecting in at most one point.

Proof. It is enough to show that a plane \(\sigma \) of
\[
\left(\bigcup_{P \in v_2 \cup \{V_2\}} \mathcal{X}_P \right) \cup \left(\bigcup_{Q \in \Pi_2 \setminus (v_2 \cup \{V_2\})} \mathcal{Y}_Q \right)
\]
meets \(\Pi_i, 3 \leq i \leq q+1 \), in at most one point. If \(\sigma \) intersects \(\Pi_i \) in a line, say \(\ell \), from Lemma 6.14 \(\ell \in L \subseteq L_2 \). Hence \(\ell \neq v_i \) and \(V_i \neq \ell \). Let \(s \) be the unique line through the point \(\ell \) meeting both \(\Pi_1 \) and \(\Pi_2 \) in one point. Let \(Q = s \cap \Pi_2 \). Then \(Q \) coincides with \(\ell^\perp \cap \Pi_2 \) and \(Q \notin v_2 \cup \{V_2\} \). Moreover \(\sigma = \langle Q, \ell \rangle \in \mathcal{Y}_Q \). But in this case the Desarguesian line–spread \(\mathcal{F}_Q \) would have the three lines \(\ell, r_Q, t_Q \) in common with \(\mathcal{R}_Q \), contradicting the fact that \(|\mathcal{F}_Q \cap \mathcal{R}_Q| = 2 \). \(\square \)

6.2.2.2 The odd characteristic case

Assume that \(q \) is odd. Since the planes \(\Pi_1, \ldots, \Pi_{q+1} \) are pairwise disjoint generators of \(\mathcal{W}(5, q) \), from Lemma 3.4 there is a non–degenerate orthogonal polarity \(\rho_i \) of \(\Pi_i \). The set of absolute points of \(\rho_i \) are those of a conic \(\alpha_i \) of \(\Pi_i \). Note that a line \(\ell \) of \(\Pi_i \) belongs to \(L_j \), according as \(|\ell \cap \alpha_i| = j, 0 \leq j \leq 2, 3 \leq i \leq q+1 \).

Let \(Q \) be a point of \(\Pi_2 \) not on \(\alpha_2 \). Let \(\Sigma_Q \) be a 3–space contained in \(Q^\perp \) and not containing \(Q \). In particular we choose \(\Sigma_Q \) spanned by the lines \(Q^\perp \cap \Pi_1 \) and \(Q^\perp \cap \Pi_i \). Indeed, if \(s \) is the unique line containing \(Q \) and meeting each of the planes \(\Pi_i, 1 \leq i \leq q + 1 \), in one point, then \((s \cap \Pi_i)^\rho_i = \Sigma_Q \cap \Pi_i \). When restricted on \(\Sigma_Q \), the polarity \(\perp \) defines a non–degenerate symplectic polar space of \(\Sigma_Q \), say \(\mathcal{W}_Q \). As before, let \(r_Q = \Sigma_Q \cap \Pi_1 \) and \(t_Q = \Sigma_Q \cap \Pi_2 \). Let \(\mathcal{R}_Q \) be the set of \(q + 1 \) lines of \(\mathcal{W}_Q \) defined as follows
\[
\{\Sigma_Q \cap \Pi_i : 1 \leq i \leq q + 1\}.
\]

Then \(\mathcal{R}_Q \) is a regulus of \(\mathcal{W}_Q \) containing both \(r_Q \) and \(t_Q \) and the opposite regulus of \(\mathcal{R}_Q \) contains exactly 0 or 2 lines of \(\mathcal{W}_Q \). The proof of the next result is left to the reader.

Lemma 6.18. There exists a Desarguesian line–spread of \(\mathcal{W}_P \) having in common with \(\mathcal{R}_Q \) exactly the lines \(r_P \) and \(t_P \).

For any point \(Q \) of \(\Pi_2 \) not on \(\alpha_2 \), let \(\mathcal{F}_Q \) be a Desarguesian line–spread of \(\mathcal{W}_Q \) having in common with \(\mathcal{R}_Q \) exactly the lines \(r_Q \) and \(t_Q \) and let \(\mathcal{Y}_Q \) be the set of \(q^2 - 1 \) generators of
\(\mathcal{W}(5, q) \) passing through \(Q \) and meeting \(\Sigma_Q \) in a line of \(\mathcal{F}_Q \setminus \{r_Q, t_Q\} \). For any point \(P \in \alpha_2 \), let \(\mathcal{X}_P \) be a set of \(q^2 - 1 \) generators of \(\mathcal{W}(5, q) \) passing through \(P \) defined as in Construction 6.9.

Define the set \(\bar{\mathcal{X}} \) as follows
\[
\left(\bigcup_{P \in \alpha_2} \mathcal{X}_P \right) \cup \left(\bigcup_{Q \in \Pi_2 \setminus \alpha_2} \mathcal{Y}_Q \right) \cup \left(\bigcup_{i=2}^{q+1} \Pi_i \right).
\]

A proof similar to that given in the even characteristic case yields the following result.

Theorem 6.19. The set \(\bar{\mathcal{X}} \) consists of \(q^4 + q^3 + 1 \) planes of \(\mathcal{W}(5, q) \) disjoint from \(\Pi_1 \) and pairwise intersecting in at most one point.

6.3 2–codes of \(\mathcal{H}_{3, q^2} \)

Let \(\perp \) be the Hermitian polarity of \(\text{PG}(5, q^2) \) defining \(\mathcal{H}(5, q^2) \). Recall that \(\mathcal{G} \) is the set of \(q^9 \) planes of \(\mathcal{H}(5, q^2) \) that are disjoint from \(\Lambda_1 \), the group \(\overline{G} \) is the stabilizer of \(\Lambda_1 \) in \(\text{PGU}(6, q^2) \), \(\Lambda_2 = L(0_3) \), and \(G_{\Lambda_2} \) is the stabilizer of \(\Lambda_2 \) in \(\overline{G} \). For a point \(P \) in \(\Lambda_2 \), let \(\overline{\Sigma}_P \) denote a 3–space contained in \(P^{\perp} \) and not containing \(P \). When restricted to \(\overline{\Sigma}_P \), the polarity \(\perp \) defines a non–degenerate Hermitian polar space of \(\overline{\Sigma}_P \), say \(\mathcal{H}_P \). Moreover \(\overline{r}_P = \overline{\Sigma}_P \cap \Lambda_1 \) and \(\overline{t}_P = \overline{\Sigma}_P \cap \Lambda_2 \) are lines of \(\mathcal{H}_P \).

Construction 6.20. Let \(\overline{\mathcal{F}}_P \) be a partial spread of \(\mathcal{H}_P \) containing \(\overline{r}_P \) and \(\overline{t}_P \) and let \(\mathcal{Y}_P \) be the set of \(|\overline{\mathcal{F}}_P| - 2 \) generators of \(\mathcal{H}(5, q^2) \) passing through \(P \) and meeting \(\overline{\Sigma}_P \) in a line of \(\overline{\mathcal{F}}_P \setminus \{\overline{r}_P, \overline{t}_P\} \). Define the set \(\mathcal{Y} \) as follows
\[
\bigcup_{P \in \Lambda_2} \mathcal{Y}_P \cup \{\Lambda_2\}.
\]

A proof similar to that given in the symmetric case gives:

Theorem 6.21. The set \(\mathcal{Y} \) consists of \((q^4 + q^3 + 1)(|\mathcal{F}| - 2)\) planes of \(\mathcal{H}(5, q^2) \) disjoint from \(\Lambda_1 \) and pairwise intersecting in at most one point.

By selecting \(\mathcal{F} \) as a partial spread of \(\mathcal{H}(3, q^2) \) of size \((3q^2 - q + 2)/2 \), see [1, p. 32], the following arises.

Corollary 6.22. There exists a 2–code of \(\mathcal{H}_{3, q^2} \) of size \(q^6 + \frac{q(q-1)(q^4+q^2+1)}{2} \).

Acknowledgments. This work was supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).

References

[1] A. Aguglia, A. Cossidente, G.L. Ebert, On pairs of permutable Hermitian surfaces, *Discrete Math.*, 301 (2005), 28–33.

[2] A.E. Brouwer, A.M Cohen, A. Neumaier, *Distance–regular graphs*, Springer-Verlag, Berlin, 1989.
[3] A.E. Brouwer, W.H. Haemers, *Spectra of graphs*, Universitext. Springer, New York, 2012.

[4] S.M. Cioabă, J.H. Koolen, On the connectedness of the complement of a ball in distance-regular graphs, *J. Algebraic Combin.*, 38 (2013), 191–195.

[5] D.M. Cvetković, Graphs and their spectra, *Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.*, 354-356 (1971), 1–50.

[6] J.-G. Dumas, R. Gow, J. Sheekey, Rank properties of subspaces of symmetric and Hermitian matrices over finite fields, *Finite Fields Appl.*, 17 (2011), 504–520.

[7] É.M. Gabidulin, N.I. Pilipchuk, Symmetric rank codes, *Probl. Inf. Transm.*, 40 (2004), 103–117.

[8] É.M. Gabidulin, N.I. Pilipchuk, Symmetric matrices and codes correcting rank errors beyond the $\lfloor (d - 1)/2 \rfloor$ bound, *Discret. Appl. Math.*, 154 (2006), 305–312.

[9] N. Gill, Polar spaces and embeddings of classical groups, *New Zealand J. Math.*, 36 (2007), 175–184.

[10] C. Godsil, G. Royle, *Algebraic graph theory*, Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.

[11] R. Gow, M. Lavrauw, J. Sheekey, F. Vanhove, Constant rank–distance sets of Hermitian matrices and partial spreads in Hermitian polar spaces, *Electron. J. Combin.*, 21(1), (Paper 1.26) (2014).

[12] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.

[13] J.W.P. Hirschfeld, J.A. Thas, *General Galois geometries*, Springer Monographs in Mathematics, Springer, London, 2016.

[14] Y. Huo, Z. Wan, Non–symmetric association schemes of symmetric matrices, *Acta Mathematicae Applicatae Sinica*, 9 (1993), 236–255.

[15] F. Ihringer, P. Sin, Q. Xiang, New bounds for partial spreads of $\mathcal{H}(2d - 1, q^2)$ and partial ovoids of the Ree–Tits octagon, *J. Combin. Theory Ser. A*, 153 (2018), 46–53.

[16] O.H. King, Imprimitive maximal subgroups of the symplectic, orthogonal and unitary groups, *Geom. Dedicata*, 15 (1984), 339–353.

[17] A. Klein, K. Metsch, L. Storme, Small maximal partial spreads in classical finite polar spaces, *Adv. Geom.*, 10 (2010), 379–402.

[18] D. Luyckx, On maximal partial spreads of $\mathcal{H}(2n + 1, q^2)$, *Discrete Math.*, 308 (2008), no. 2-3, 375–379.
[19] J. MacWilliams, Orthogonal matrices over finite fields, *Amer. Math. Monthly*, 76 (1969), no. 2, 152–164.

[20] K.-U. Schmidt, Symmetric bilinear forms over finite fields of even characteristic, *J. Combin. Theory Ser. A*, 117 (2010), no. 8, 1011–1026.

[21] K.-U. Schmidt, Symmetric bilinear forms over finite fields with applications to coding theory, *J. Algebraic Combin.*, 42 (2015), no. 2, 635–670.

[22] K.-U. Schmidt, Hermitian rank distance codes, *Des. Codes Cryptogr.*, 86 (2018), 1469–1481.

[23] K.-U. Schmidt, Quadratic and symmetric bilinear forms over finite fields and their association schemes, *Algebraic Combinatorics*, 3 (2020), 161–189.

[24] M. Schmidt, Rank metric codes. *Masters thesis*, University of Bayreuth, Germany, 2016.

[25] J. Sheekey, MRD Codes: Constructions and Connections, *Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications*, Ed. by Schmidt, K.-U. and Winterhof, A., Series: Radon Series on Computational and Applied Mathematics 23, De Gruyter 2019.

[26] J.A. Thas, Ovoidal translation planes, *Arch. Math. (Basel)*, 23 (1972), 110–112.

[27] J.A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces, *Combinatorics ’90* (Gaeta, 1990), 529–544, *Ann. Discrete Math.*, 52, North-Holland, Amsterdam, 1992.

[28] E.R. van Dam, Regular graphs with four eigenvalues, *Linear Algebra Appl.*, 226/228 (1995), 139–162.

[29] F. Vanhove, The maximum size of a partial spread in $\mathcal{H}(4n + 1, q^2)$ is $q^{2n+1} + 1$, *Electron. J. Combin.*, 16 (1) (2009), Note 13, 6.

[30] Z.-X. Wan, *Geometry of matrices*, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[31] Y. Wang, M. Jianmin, Association schemes of symmetric matrices over a finite field of characteristic two, *Journal of Statistical Planning and Inference*, 51 (1996), no. 3, 351–371.