On the analytic spread and the reduction number of the ideal of maximal minors

Mitsuhiro MIYAZAKI

Abstract: Let \(m, n, a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_r \) be integers with \(1 \leq a_1 < \cdots < a_r \leq m \) and \(1 \leq b_1 < \cdots < b_r \leq n \). And let \(x \) be the universal \(m \times n \) matrix with the property that \(i \)-minors of first \(a_i - 1 \) rows and first \(b_i - 1 \) columns are all zero, for \(i = 1, \ldots, r + 1 \) \((a_{r+1} := m + 1 \text{ and } b_{r+1} := n + 1)\). For an integer \(u \) with \(1 \leq u \leq m \), we denote by \(U \) the \(u \times n \) matrix consisting of the first \(u \) rows of \(x \). In this paper, we consider the analytic spread and the reduction number of the ideal of maximal minors of \(U \).

Key words: ideal of maximal minors, analytic spread, reduction number, ASL, distributive lattice

1 Introduction

In this paper all rings and algebras are assumed to be commutative with identity element. For an \(m \times n \) matrix \(U \) with entries in a ring \(R \), we denote by \(I_t(U) \) the ideal of \(R \) generated by all the \(t \)-minors of \(U \), where we put \(I_0(U) = R \) and \(I_t(U) = (0) \) for \(t \) with \(t > \min\{m, n\} \). And if \(I_k(U) \neq (0) \) and \(I_{k+1}(U) = (0) \), we call \(I_k(U) \) the ideal of maximal minors of \(U \). In this paper, we consider the analytic spread and the reduction number of the ideal of maximal minors of the matrix defined below.

Let \(K \) be an infinite field, \(m, n, r \) be integers with \(1 \leq r \leq \min\{m, n\} \), \(a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_r \) be integers with \(1 \leq a_1 < \cdots < a_r \leq m \) and \(1 \leq b_1 < \cdots < b_r \leq n \). In this situation, there is a universal \(m \times n \) matrix \(x \) with the condition

\[
\begin{align*}
I_i(\text{first } a_i - 1 \text{ rows}) &= (0) \\
I_i(\text{first } b_i - 1 \text{ columns}) &= (0)
\end{align*}
\]

for \(i = 1, \ldots, r + 1 \), where we set \(a_{r+1} := m + 1 \) and \(b_{r+1} := n + 1 \). That is, \(x \) satisfies (1.1) and if \(U \) is an \(m \times n \) matrix with entries in a \(K \)-algebra \(S \) satisfying (1.1), there is a unique \(K \)-algebra homomorphism \(K[x] \to S \) mapping \(x \) to \(U \), where \(K[x] \) is the \(K \)-algebra generated by the entries of \(x \).

There are two ways to construct such a matrix \(x \). One is to define \(x \) as a homomorphic image of the generic \(m \times n \) matrix (i.e. an \(m \times n \) matrix whose
entries are independent indeterminates) X in the quotient ring of $K[X]$. The
other is to define x as the array of products of generic matrices, see [HE,
HR, BV]. In this paper, we follow the first way.

Let X be the generic $m \times n$ matrix, $K[X]$ the polynomial ring generated
by the entries of X. Then it is known that $K[X]$ is a graded algebra with
straightening laws (ASL for short) over K generated by $\Delta(X)$, where

$$\Delta(X) := \{[c_1, c_2, \ldots, c_s|d_1, d_2, \ldots, d_s] \mid s \leq \min\{m, n\},
1 \leq c_1 < \cdots < c_s \leq m, 1 \leq d_1 < \cdots < d_s \leq n\}$$

and the partial order of $\Delta(X)$ is defined by

$$[c_1, c_2, \ldots, c_s|d_1, d_2, \ldots, d_s] \leq [c'_1, c'_2, \ldots, c'_s|d'_1, d'_2, \ldots, d'_s]$$
$$\iff s \geq s', c_1 \leq c'_1, \cdots, c'_s \leq c_s, d_1 \leq d'_1, \cdots, d'_s \leq d_s.$$

And $\Delta(X)$ is embedded in $K[X]$ by corresponding $[c_1, c_2, \ldots, c_s|d_1, d_2, \ldots, d_s]$
to $\det(X_{i,j})$. See [DEP1], [BV].

Set

$$\delta := [a_1, a_2, \ldots, a_r|b_1, b_2, \ldots, b_r] \in \Delta(X)$$
$$\Delta(X; \delta) := \{\gamma \in \Delta(X) \mid \gamma \geq \delta\}$$
$$\Omega := \Delta(X) \setminus \Delta(X; \delta)$$
$$A := K[X]/\Omega K[X].$$

Then, since Ω is a poset ideal of $\Delta(X)$, A is a graded ASL over K
generated by $\Delta(X; \delta)$. If we denote the image of X in A by x, then, by the Laplace
expansion, we see that x is the universal $m \times n$ matrix satisfying (1.1).

Let u be an integer with $1 \leq u \leq m$, and U be the $u \times n$ matrix consisting
of the first u rows of x. In this paper, we consider the analytic spread and
the reduction number of the ideal of maximal minors I of U. If we take k
such that $a_k \leq u < a_{k+1}$, then by the definition of A, we see that $I_k(U) \neq (0)$
and $I_{k+1}(U) = (0)$. Therefore $I = I_k(U)$.

2 Analytic spread

We denote the irrelevant maximal ideal of A by m.

Northcott-Rees [NR] defined for an ideal a of a local ring (R, m) with
infinite residue field, the analytic spread $\ell(a)$ of a to be the dimension of

$$R/m \otimes \text{Gr}_a(R) = R/m \oplus a/m \oplus a^2/m^2 \oplus \cdots$$

and showed that the analytic spread of a is the number of minimal generators
of any minimal reduction of a. They also showed, essentially, that for an ideal
b contained in a,

\[(2.1) \quad ba^n = a^{n+1} \iff \bar{b} \supseteq (R/n \otimes \text{Gr}_a(R))^{n+1},\]

where \(\bar{b}\) is the ideal of \(R/n \otimes \text{Gr}_a(R)\) generated by \((b + na)/na(\subseteq a/na)\).

Now set
\[
\Theta := \{ \gamma \in \Delta(X) \mid [a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k] \leq \gamma \\
\leq [u-k+1, \ldots, u|n-k+1, \ldots, n]\}.
\]

If \(\alpha\) and \(\beta\) are incomparable elements in \(\Delta(X)\), then the standard representation of \(\alpha\beta\) in the ASL \(K[X]\) is of the form
\[
\alpha\beta = \sum_i b_i \gamma_{i1} \gamma_{i2} + \sum_j b'_j \delta_j
\]
and for each \(i\) and \(j\), the union of row (column) numbers of \(\gamma_{i1}\) and \(\gamma_{i2}\) (\(\delta_j\)) as a multi-set is the same as that of \(\alpha\) and \(\beta\) \([\text{DEP1}], [\text{BV}]\). Therefore, if \(\theta_1\) and \(\theta_2\) are incomparable elements of \(\Theta\), then, since minors of \(U\) size greater than \(k\) are zero, the standard representation of \(\theta_1\theta_2\) in the ASL \(A\) is of the form
\[
\theta_1\theta_2 = \sum_i b_i \gamma_{i1} \gamma_{i2}, \quad \gamma_{ij} \in \Theta.
\]

It follows from \([\text{DEP2}]\) Proposition 1.1 that \(K[\Theta]\) is a sub-ASL of \(A\) and

\[(2.2) \quad A/m \oplus I/mI \oplus I^2/mI^2 \oplus \cdots \simeq K[\Theta].\]

Therefore
\[
\ell(I) = \dim K[\Theta] = \text{rank}\Theta + 1.
\]

By counting the rank of \(\Theta\), we see the following

Theorem 2.1 The analytic spread \(\ell(I)\) of \(I\) is

\[k(u + n - k + 1) - \sum_{i=1}^{k} (a_i + b_i) + 1.\]

3 Reduction number

In the following, we multiply the degree of elements in \(K[\Theta]\) by \(1/k\) and adjust the degree of the right hand side of \([2.2]\) to the left hand side. We also denote the irrelevant maximal ideal of \(K[\Theta]\) by \(n\), and the analytic spread \(\ell(I)\) of \(I\) by \(l\). By \([2.1]\) if \(J\) is a homogeneous ideal of \(A\) generated by elements of degree \(k\) (if we consider the degree in \(K[\Theta]\), then degree 1 by the convention above) and is a minimal reduction of \(I\), then the minimal
generating system of \(J \) is a homogeneous system of parameters of degree 1 in \(K[\Theta] \). Conversely, any homogeneous system of parameters of degree 1 in \(K[\Theta] \) generates a minimal reduction of \(I \) in \(A \) (see the proof of [NR §2 Theorem 1]).

If \(J \) is a homogeneous ideal of \(A \), and a minimal reduction of \(I \), we denote by \(r_J(I) \) the reduction number \(\min\{ n \midJI^n = I^{n+1}\} \) of \(I \) with respect to \(J \). If \(v_1, v_2, \ldots, v_l \) is a minimal system of generators of \(J \) of degree 1, then by (2.1),

\[
\begin{align*}
r_J(I) &= \min\{ n \mid (v_1, v_2, \ldots, v_l) \supseteq n^{n+1}\} \\
&= \max\{ n \mid (K[\Theta]/(v_1, v_2, \ldots, v_l))_n \neq 0 \} \\
&= a(K[\Theta]/(v_1, v_2, \ldots, v_l)),
\end{align*}
\]

where \(a(\cdot) \) is the \(a \)-invariant defined by Goto-Watanabe (see [GW Definition (3.1.4)]). Since \(\Theta \) is a distributive lattice, we see that \(K[\Theta] \) is a Cohen-Macaulay ring. Therefore by [GW, Remark (3.1.6)], we see that

\[
r_J(I) = a(K[\Theta]) + l.
\]

On the other hand by the proof of [Sta2, 4.4 Theorem], we see that

\[
\text{Hilb}(K_R, \lambda) = (-1)^{\dim R} \text{Hilb}(R, \lambda^{-1})
\]

for a Cohen-Macaulay standard graded ring \(R \) over a field, where \(\text{Hilb}(\cdot, \cdot) \) denotes the Hilbert series, \(K_R \) denotes the canonical module of \(R \). So in order to calculate the \(a \)-invariant, we may replace the ring with a Cohen-Macaulay ring with the same Hilbert series. Since the two ASL's generated by the same poset has the same Hilbert series, we compute the \(a \)-invariant of \(K[\Theta] \) by computing the \(a \)-invariant of the Hibi ring \(R_K(\Theta) \).

In general, for a distributive lattice \(D \), if we denote the set of all the join irreducible elements of \(D \) (i.e. elements \(x \) of \(D \) such that there is exactly one \(y \in D \) such that \(y < x \)) by \(P \), it is known that

\[
D \simeq J(P) := \{ J \mid J \text{ is a poset ideal of } P \}.
\]

And if one takes a family \(\{X_\alpha\}_{\alpha \in P \cup \{-\infty\}} \) of indeterminates and set \(\varphi(I) := X_\infty \prod_{\alpha \in I} X_\alpha \) for \(I \in J(P) \), then Hibi [Hib] showed that

\[
\mathcal{R}_K(D) := K[\varphi(I) \mid I \in J(P)] \subseteq K[X_\alpha \mid \alpha \in P \cup \{-\infty\}]
\]

is a homogeneous ASL over \(K \) generated by \(D \). Where we set \(\deg X_\infty = 1 \) and \(\deg X_\alpha = 0 \) for any \(\alpha \in P \).

Set

\[
M := \{(n_\alpha)_{\alpha \in P \cup \{-\infty\}} \in \mathbb{N}^{#P+1} \mid \alpha \leq \beta \implies n_\alpha \geq n_\beta \}.
\]
Then M is a submonoid of $N^{#P+1}$ and

$$R_{K}(D) = K[M] := K[X^{\omega} \mid \omega \in M],$$

where X^{ω} is the multi-index.

Since $R_{\geq 0} M \cap N^{#P+1} = M$, we see by [Sta1, Theorem 4.1],

$$K_{K[M]} = \bigoplus_{\omega \in \text{int}(R_{\geq 0}M) \cap M} KX^{\omega}.$$

Because $\text{int}(R_{\geq 0}M) \cap M = \{(n_{\alpha})_{\alpha \in P U \{-\infty\}} \in N^{#P+1} \mid n_{\alpha} > 0, \alpha < \beta \Rightarrow n_{\alpha} > n_{\beta}\}$, we see that

$$a(K[M]) = -\min\{\deg X^{\omega} \mid \omega \in \text{int}(R_{\geq 0}M) \cap M\}
= - (\text{rank}P + 2).$$

In particular, by taking D to our Θ, we see that

$$r_{J}(I) = a(K[\Theta]) + l = a(R_{K}(\Theta)) + l = l - (\text{rank}P + 2),$$

where P is the set of join irreducible elements of Θ.

By considering row numbers and column numbers separately, we see that Θ is the poset product of two distributive lattices, say D_{1} and D_{2}. $(x_{1}, x_{2}) \in D_{1} \times D_{2}$ is join irreducible if and only if x_{1} is a join irreducible element of D_{1} and x_{2} is the minimal element of D_{2} or x_{1} is the minimal element of D_{1} and x_{2} is a join irreducible element of D_{2}. So if we denote the set of all the join irreducible elements of D_{i} by P_{i} for $i = 1, 2$, the set of join irreducible elements of Θ is isomorphic to the disjoint union of P_{1} and P_{2}. Therefore

$$\text{rank}P = \max\{\text{rank}P_{1}, \text{rank}P_{2}\}.$$

Since D_{1} and D_{2} are of the same form, we consider D_{1} in the following.

Since

$$D_{1} = \{[c_{1}, c_{2}, \ldots, c_{k}] \mid 1 \leq c_{1} < \cdots < c_{k} \leq u, a_{i} \leq c_{i} (i = 1, \ldots, k)\},$$

$$[c_{1}, c_{2}, \ldots, c_{k}] \leq [d_{1}, d_{2}, \ldots, d_{k}] \iff \forall i; c_{i} \leq d_{i},$$

$$[c_{1}, c_{2}, \ldots, c_{k}] < [d_{1}, d_{2}, \ldots, d_{k}] \iff \exists i; d_{i} = c_{i} + 1, d_{j} = c_{j} (j \neq i),$$

$[c_{1}, c_{2}, \ldots, c_{k}]$ is a join irreducible element of D_{1} if and only if there is unique i such that

$$c_{i} > a_{i}, \quad c_{i} > c_{i-1} + 1,$$

(3.2)
where we assume that \(c_1 > c_0 + 1 \) is always valid. For a join irreducible element \([c_1, c_2, \ldots, c_k]\), we take \(i \) satisfying (3.2) and set
\[
p := u - c_i - (k - i), \quad q := i - 1.
\]

We denote the map which send \([c_1, c_2, \ldots, c_k]\) to \((p, q)\) by \(\varphi\).

It is easy to construct a join irreducible element \([c_1, c_2, \ldots, c_k]\) such that \(\varphi([c_1, c_2, \ldots, c_k]) = (p, q)\), if \((p, q)\) is in the image of \(\varphi\). And it also easy to verify that if \((p, q)\) is in the image of \(\varphi\) and \(0 \leq p' \leq p, 0 \leq q' \leq q\), then \((p', q')\) is also in the image of \(\varphi\). Moreover, if \([c_1, c_2, \ldots, c_k]\) and \([d_1, d_2, \ldots, d_k]\) are join irreducible elements of \(D_1\), and \(\varphi([c_1, c_2, \ldots, c_k]) = (p, q), \varphi([d_1, d_2, \ldots, d_k]) = (p', q')\), then
\[
[c_1, c_2, \ldots, c_k] \leq [d_1, d_2, \ldots, d_k] \iff p \geq p', q \geq q'.
\]

In particular, the coheight of \([c_1, c_2, \ldots, c_k]\) in \(P_1\) is \(p + q\). Therefore, if we set
\[
\{i \mid a_i + 1 < a_{i+1}, a_i < u, i \leq k\} = \{l_1, \ldots, l_v\}, \quad l_1 < \cdots < l_v,
\]
then the minimal elements of \(P_1\) are \([a_1, a_2, \ldots, a_{l_1-1}, a_l + 1, a_{l+1}, \ldots, a_k]\), \(\ldots, [a_1, a_2, \ldots, a_{l_v-1}, a_{l_v} + 1, a_{l_v+1}, \ldots, a_k]\) and their coheights are \(u - k - a_{l_1} + 2l_1 - 2, \ldots, u - k - a_{l_v} + 2l_v - 2\) respectively.

Example 3.1 If \(u = 13, k = 8, [a_1, a_2, \ldots, a_k] = [1, 2, 3, 7, 8, 10, 11, 12]\), then \(v = 3, l_1 = 3, l_2 = 5\) and \(l_3 = 8\) and the minimal elements of \(P_1\) are
\[
\gamma_1 = [1, 2, 4, 7, 8, 10, 11, 12]
\gamma_2 = [1, 2, 3, 7, 9, 10, 11, 12]
\gamma_3 = [1, 2, 3, 7, 8, 10, 11, 13].
\]

And the Hasse diagram of \(P_1\) is the following.

![Hasse diagram](attachment:image.png)

Summing up, we obtain the following
Theorem 3.2 If we set

\[
\begin{align*}
\{ i \mid a_i + 1 < a_{i+1}, \ a_i < u, \ i \leq k \} &= \{ l_1, \ldots, l_v \}, \ l_1 < \cdots < l_v \\
\{ i \mid b_i + 1 < b_{i+1}, \ b_i < n, \ i \leq k \} &= \{ l'_1, \ldots, l'_{v'} \}, \ l'_1 < \cdots < l'_{v'},
\end{align*}
\]

then for any minimal reduction J of I, the reduction number \(r_J(I) \) of I with respect to J is equal to

\[
\ell(I) - \max \{ u - k - a_{l_1} + 2l_1, \ldots, u - k - a_{l_v} + 2l_v, \\
n - k - b_{l'_1} + 2l'_1, \ldots, n - k - b_{l'_{v'}} + 2l'_{v'} \}.
\]

References

[BV] Bruns, W. and Vetter, U.: “Determinantal Rings.” Lecture Notes in Mathematics 1327 Springer (1988)

[DEP1] DeConcini, C., Eisenbud, D. and Procesi, C.: Young Diagrams and Determinantal Varieties. Inv. Math. 56 (1980), 129–165

[DEP2] DeConcini, C., Eisenbud, D. and Procesi, C.: “Hodge Algebras.” Astérisque 91 (1982)

[GW] Goto, S. and Watanabe, K.: On graded rings, I. J. Math. Soc. Japan 30 (1978), 179–213

[Hib] Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. in “Commutative Algebra and Combinatorics” (M. Nagata and H. Matsumura, ed.), Advanced Studies in Pure Math. 11 North-Holland, Amsterdam (1987), 93–109.

[HE] Hochster, M. and Eagon, J. A. Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Amer. J. Math. 93 (1971), 1020–1058

[HR] Hochster, M. and Roberts, J. L.: Rings of Invariants of Reductive Groups Acting on Regular Rings are Cohen-Macaulay. Adv. Math. 13 (1974), 115–175

[NR] Northcott, D. G. and Rees, D.: Reductions of ideals in local rings. Proc. Cambridge Phil. Soc. 50 (1954), 145–158.

[Sta1] Stanley, R. P.: Linear homogeneous diophantine equations and magic labelings of graphs. Duke Math. J. 40 (1973), 607–632.

[Sta2] Stanley, R. P.: Hilbert Functions of Graded Algebras. Adv. Math. 28 (1978), 57–83.