Green synthesis of fluorescent CdO nanoparticles using *Leucaena leucocephala* l. extract and their biological activities

Abstract

The synthesis of metal oxide nanoparticle is in vogue due to their miraculous application in diverse fields. In this study, we report the facile green synthesis of cadmium oxide nanoparticles (CdONPs) synthesized by an implicitly environmentally benign process using *Leucaena leucocephala* L. aqueous plant extract as an effective stabilizing and capping agent. The characterization of green synthesized CdONPs were done by using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform Infrared (FTIR) and Photoluminescence. Moreover, CdONPs evinced potent antimicrobial, antimalarial and antimycobacterial activity against selected human pathogens.

Keywords: nanotechnology, green synthesis, *leucaena leucocephala* l., CdONPs, biological activities

Abbreviations: CdONPs, cadmium oxide nanoparticle; FESEM, field emission scanning electron microscopy; EDX, energy-dispersive x-ray spectroscopy; FTIR, fourier transform infrared

Introduction

Over the past few decades, the use of nanostructured material is becoming more widespread due to its curious and miraculous application in the areas of chemistry, pharmacy, agriculture, textile sizing, optoelectronics, physics and so on. Among these nanostructures, metal oxide nanoparticles that exhibit the technological importance for solar cell, gas sensor, optical coating and photovoltaic cell. Therein, cadmium oxide is a known n-type semiconductor, piezoelectric characteristics and polycrystalline in nature. Cadmium oxide nanostructures are applied in solar cells, gas sensors, transparent electrodes and photodiodes, catalysts, photocatalysts and optoelectronic devices. There are several techniques to prepare these materials such as sonochemical, microemulsion, hydrothermal and plant mediated method. However, currently plant extract mediated nanomaterial synthesis is getting lot of attention to the several numerous advantages offered by chemical and physical methods. Herein, we investigate the cost effective, safe and ecofriendly green synthesis of CdONPs using plant extracts of *Leucaena leucocephala* L. and their antibacterial, antimalarial and antimycobacterial activity against bacterial pathogens has been evaluated. Hence it is proposed that the biosynthesized CdONPs have significant biomedical applications.

Materials and methods

Materials

Cadmium nitrate tetrahydrate ([Cd(NO₃)₂]·4H₂O 98%, Analytical grade, Sigma-Aldrich), sodium bicarbonate (NaHCO₃, Analytical grade, 99.7%, Sigma-Aldrich) and dimethyl sulfoxide (DMSO, ACS reagent, 99.9%, Sigma-Aldrich) were used. All chemicals were used as such without any further purification. All the solutions were prepared using deionized water. The fresh leaves of *Leucaena leucocephala* L. were collected from Chandwad college campus, Nashik, Maharashtra, India. The collected leaves were washed with deionized water, cut into small pieces. All glassware’s are washed with deionized water and acetone and dried in oven before use.

Green synthesis of CdONPs

5g powder of *Leucaena leucocephala* L. leaves were transferred into 250ml beaker containing 100ml deionized water. The mixture were refluxed at 80–90°C for 20minutes and cooled at room temperature followed by filtered through ordinary filter paper. The resultant filtrate was again filtered through Whatmann No. 1. The filtered extract is stored in refrigerator at 4°C and used for synthesis of CdONPs. 2.0g of Cadmium nitrate tetrahydrate was added in 100ml of the *Leucaena leucocephala* L. water extract solution. The solution was mixed homogeneously using magnetic stirrer at 400rpm for 60min (Figure 1). After time of period the color of solution turns to yellow. The solid deposit was purified by centrifugation at 4000rpm for 30min. It was then dried in oven at 300°C. The resulted powder was obtained and packed for characterization purposes.

Characterization techniques

The morphology and composition of the synthesized CdONPs were examined by field emission scanning electron microscopy (FESEM, FEI, Nova Nano SEM 450), FESEM coupled energy-dispersive X-ray spectroscopy (EDS, Bruker, XFlash 6130). The Fourier transform
Infrared (FTIR) spectrum was recorded by JASCO 4100 in the range of 4000–400 cm$^{-1}$. Photoluminescence studies were evaluated by using fluorescence spectrophotometer (JOBIN YVON FLUOROLOG-3-11, Spectrofluorimeter).

In Vitro antimycobacterial screening of synthesized CdONPs

The antimycobacterial screening for synthesized CdONPs was obtained for Mycobacterium tuberculosis H37RV, by using L J (Lowenstein and Jensen) MIC method. Stock solutions of primary 1000, 500, 250 and secondary 200, 100, 62.5, 50, 25, 12.5, 6.25, 3.25μg/ml of CdONPs in DMSO were added in the liquid L J Medium and then media were sterilized. A culture of Mycobacterium tuberculosis H37RV growing on L. I. medium were harvested in 0.85% saline in bijou bottles. These tubes were then incubated at 37°C for 24hrs. These tubes were then incubated at 37°C. Growth of bacilli was seen after 12days, 22days and finally 28days of incubation respectively. Tubes having the CdONPs were compared with control tubes where medium alone was incubated with Mycobacterium tuberculosis H37RV. The concentration at which no development of colonies occurred or <20 colonies was taken as MIC concentration of test compound. The standard strain Mycobacterium tuberculosis H37RV was tested with known drug isoniazid.

Results and discussion

FE-SEM microphotographs

From the FESEM image as shown in Figure 2 the synthesized CdONPs present uniform and define spherical morphology. Each CdONPs possesses the average particles size of 36-57nm. It is noticed that green synthesis of CdONPs produces the small and uniform size of spherical particles.

EDS studies

The composition of green synthesized CdONPs has been analyzed by investigating the energy-dispersive X-ray spectroscopy (EDS), as shown in Figure 3. EDS spectrum displays the Cd and O peaks. Other peaks corresponding to C in the EDS is an artifact of the phenols, flavonoids, coumarins and enzymes capping over the synthesized CdONPs. The antimycobacterial screening for synthesized CdONPs was carried out in 96 well microtiter plates according to the protocol.

Vibrational properties

Figure 4 represents the FTIR spectrum of CdONPs synthesized from leaves of Leucaena leucocephala L. The broad peak at 3352cm$^{-1}$ reveals the presence of an O-H functional group on the surface of nanoparticles. The corresponding to C-H asymmetric stretching vibration occurs at 2924cm$^{-1}$. The peaks around 1614cm$^{-1}$ is corresponding to C=C in CdO backbone, and those at 1371cm$^{-1}$ correspond to wagging of CH2 vibration. The FTIR results confirm

Figure 1 Schematic diagram of green synthesis of CdONPs.

Figure 2 FE-SEM microphotographs of CdONPs deposited on a carbon strip.

Figure 3 EDS spectrum of CdONPs synthesized

Figure 4 FTIR spectrum of CdONPs synthesized
the presence of phytochemicals in the plant extract such as, which further act as capping agents for the synthesis of CdONPs and is in good agreement with the phytochemical screening of aqueous leaves extract of *Leucaena leucocephala*.

Table 1 Phytochemical screening of aqueous extract of *Leucaena leucocephala* L.

Phytochemical	Test	Phytochemical	Test
Tannin	+	Saponins	+
Coumarins	+	Emodins	-
Proteins	-	Flavonoid	+
Cardial Glycoside	+	Anthraquinone	-
Anthocyanosides	-	Steroid	+
Phenol	+	Amino acids	+
Carbohydrate	+		

Antimicrobial activity of CdO-NPs

In this context, we decided to investigate antimicrobial activity of green synthesized CdONPs against selected human pathogens viz *Pseudomonas aeruginosa*, *Streptococcus pyogenes*, *Staphylococcus aureus*, *Escherichia coli*, *Candida alicans* and *Aspergillus niger*. These bacterial and fungal strains were poured into nutrient agar plate and spread evenly over the plate with the help of glass spreader and the “well” was made with the help of disc diffusion method. The different concentrations of synthesized CdONPs (25, 50, 100, 250, 500µg/ml) were tested for antimicrobial activity against these selected pathogen with ampicilline has positive control. The plates were then kept at 4-5°C for 1hr, followed by incubated in incubator at 37°C for 24hrs. After 24hrs, exact zone of inhibition was measured with respect to positive controls (Table 2).

Antimalarial activity

The green synthesized CdONPs were screened using *in vitro* antimalarial activity against *Plasmodium falciparum* by measuring
the MIC (µg/mL) against standard Quinine and Chloroquine, as shown in Table 3.

Table 2 Zone of inhibition (mm) of green synthesized CdONPs against selected bacterial pathogens

Test pathogens	Inhibition zone (mm) of CdONPs (µg/mL)control				
	25	50	100	250	500
E. coli	12	17	18	18	22
P. aeruginosa	14	16	17	18	20
S. pyogenus	13	15	17	19	21
S. aureus	13	17	19	20	23
C. albicans (Fungi)	12	14	15	19	20
A. niger (Fungi)	15	16	18	20	24

Table 3 Minimum inhibition concentration (MIC) of green synthesized CdONPs against Plasmodium falciparum

Sl. no	Compound name	Mean IC\textsubscript{50} values
	CdONPs	0.95µg/ ml
	Chloroquine (Standard)	0.020µg/ ml
	Quinine (Standard)	0.268µg/ ml

Antimycobacterial activity of CdONPs

The antimycobacterial screening of green synthesized CdONPs were performed using L J MIC method and it is worthwhile to note that CdONPs were the only evinced inhibition of *Mycobacterium tuberculosis* H37RV completely (99%) at the MIC of 125µg/ml (Table 4).

Table 4 Minimum inhibition concentration (MIC) of green synthesized CdONPs against *Mycobacterium tuberculosis*

Sl. no	Compound name	MIC (µg/mL)
	CdONPs	125µg/ ml
	Isoniazid (Standard)	0.20µg/ ml

Conclusion

A facile, safe and green approach has been developed to synthesize CdONPs by using extract *Leucaena leucocephala* L. as both reducing and stabilizing agents. The green synthesized CdONPs exhibit potent biological activity against selected human pathogens. Overall, we conclude green synthesized CdONPs as a potential candidate for biomedical applications because of their absorbing properties.

Acknowledgements

We are thankful to CIF Savitribai Phule Pune University, SAIF IIT Madras and Microcare Laboratory Gujrat for providing the technical, instrumental and biological activities supports. We are also thankful to Sahebrao Nagare, Kiran Nikam and Dhananjay Shinde for their help during experimental work.

Conflict of interest

The authors declare no conflicts of interest in this work.

References

1. Shakla M, Kumari S, Shukla S, et al. Potent antibacterial activity of nano CdO synthesized via microemulsion scheme. J Mater Environ Sci. 2012;3(4):678–685.
2.Theme FT, Beukes P, Gurib-Fakim A, et al. Green synthesis of monteponite CdO nanoparticles by Agathosmabetulina natural extract. J Alloys and Compounds. 2015;646:1043–1048.
3. Heidari A, Brown C. Study of composition and morphology of cadmium oxide (CdO) nanoparticles for eliminating cancer cells. J Nanomed Res. 2015;2(5):00042.
4. Thovhogi N, Park E, Manikkand E, et al. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus sabdariffa flower extract. J Alloys and Compounds. 2015;655:314–320.
5. Pande SN, Bharati KT, Wakhure SK, et al. Green synthesis of silver nanoparticles by caralluma fimbriata L. and its characterization. Ind J App Res. 2015;5:749–750.
6. Ghotekar SK, Pande SN, Pansambal SS, et al. Biosynthesis of silver nanoparticles using unripe fruit extract of Annona reticulata L. and its characterization. WJPPS. 2015;4:1304–1312.
7. Fransworth NR. Biological and phytochemical screening of plants. J of Pharma Sci. 1996;55(3):225–227.
8. Riekmann KH, Campbell GH, Sax LJ, et al. Drug sensitivity of Plasmodium falciparum: an in–vitro microtechnique. Lancet. 1978;1(8054):22–23.
9. Singh JSB. J. S. B stain– A Review. Indian J Malarial. 1956;10(2):117–129.
10. Pansambal SS, Deshmukh KK, Savale AR, et al. Phytosynthesis and biological activities of fluorescent CuO nanoparticles using Acanthospermum hispidum L. extract. J Nanostruct. 2015;7(3):165–174.
11. Anargyros P, Astill D S, Lim IS. Comparison of improved BACTEC and Lowenstein–Jensen media for culture of mycobacteria from clinical specimens. J Clin Microbio. 1990;28(6):1288–1291.
12. Aher YB, Jain GH, Patil GE, et al. Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against the selected human pathogen. JIMCM. 2017;7(1):776–786.