An embedding from the Ringel-Hall algebra to the
Bridgeland’s Ringel-Hall algebra associated to an algebra
with global dimension at most two *

Shengfei Geng
Department of Mathematics, Sichuan University, Chengdu 610064, China
E-mails: genshengfei@scu.edu.cn
Liangang Peng
Department of Mathematics, Sichuan University, Chengdu 610064, China
E-mails: penglg@scu.edu.cn

Abstract. For any finitely dimensional associative algebra with global dimension ≤ 2, we show that there is an embedding from the twisted Ringel-Hall algebra to the Bridgeland’s Ringel-Hall algebra. In particular, this result is true for tilted algebras and canonical algebras.

2000 Mathematics Subject Classification: 16G10, 16W35

Keywords: Ringel-Hall algebras, 2-periodic complexes, Bridgeland’s Ringel-Hall algebras, tilted algebras, canonical algebras.

1 Introduction

For any finite-dimensional semi-simple complex Lie algebra, there is a famous theorem saying that its positive roots correspond bijectively to the isomorphism classes of all (finitely dimensional) indecomposable modules of the corresponding hereditary algebra, which was proved by Gabriel [Gab] for ADE type and then extended by Dlab-Ringel [DR] for any type. This result gave a realization of the positive root system of the semi-simple complex Lie algebra from the modules of the hereditary algebra.

To realize the multiplication of the semi-simple complex Lie algebra from the module category of the hereditary algebra, Ringel [Ri2] introduced a Hall algebra from any abelian category with finite morphism spaces, which generalizes Hall’s definition from p-groups [Ha]. He [Ri3] showed that the positive part of the semi-simple complex Lie algebra can be realized via the Hall algebra from the module category of the hereditary algebra. Moreover, he [Ri4] proved that the positive part of the quantized enveloping algebra of the semi-simple complex Lie algebra is isomorphic to the Hall algebra in some twisted form from the module category of the hereditary algebra. Later, Green [Gr] extended this result to any symmetrizable Kac-Moody Lie algebra case by showing that there is a natural co-multiplication in the Hall algebra of any hereditary algebra.

So a natural question is how one can use the representation theory of hereditary algebras to realize whole but not only the positive part of any symmetrizable Kac-Moody Lie algebra

*Supported partly by the National Natural Science Foundation of China (Grant No. 11126319) and the National 973 Programs (Grant No. 2011CB808003).
and its quantized enveloping algebra. There have been many attempts to approach such a question. One way was to consider the Drinfeld double of the Hall algebra of any hereditary algebra constructed by Xiao in [X], and in this way he realized the full quantized enveloping algebra. Second way was given by Peng-Xiao in [PX1] and [PX2] who used the similar method as Ringel’s to construct the Ringel-Hall Lie algebra from any root category, which is the orbit category of all shift square orbits in the derived category of a hereditary algebra. In this way they realized the full symmetrizable Kac-Moody Lie algebra. Third way was introduced by Toën in [T] who constructed the derived Ringel-Hall algebra from the derived category. Recently, Bridgeland [Br] gave a more clever way to consider directly the \(\mathbb{Z}_2 \)-graded complexes (or 2-cycle complexes as called in [PX1], or 2-periodic complexes as in some literature) of projective modules of an algebra with finite global dimension to construct the Ringel-Hall algebra. He showed that the full quantized enveloping algebra can be also realized by his Ringel-Hall algebra. Later Yanagida [Y] proved that in hereditary algebra case the Bridgeland’s Ringel-Hall algebra is isomorphic to the Drinfeld double of the Hall algebra. Inspired by work of Bridgeland, Grosky recently in [Gro] constructed the semi-derived Ringel-Hall algebras from complex categories or \(\mathbb{Z}_2 \)-graded complex categories. In each way above there also were some further researches, see [Ka], [SVdB1], [SVdB2], [PT], [Cr], [Hu], [LP], [Sch], [XX], and so on.

In this paper we only consider Bridgeland’s Ringel-Hall algebras. For any hereditary algebra, Bridgeland [Br] has proven that the twisted Ringel-Hall algebra can be naturally embedded in the Bridgeland’s Ringel-Hall algebra. We extend this result to the case of any algebra with with global dimension \(\leq 2 \). Some special interesting consequences should be for tilted algebras and canonical algebras. Such two kinds of algebras are very important and they both have global dimension \(\leq 2 \).

Notation. We fix a field \(k = \mathbb{F}_q \) with \(q \) elements, and set \(t = \sqrt{q} \). We write \(\text{Iso}(\mathcal{A}) \) for the set of isomorphism classes of a small category \(\mathcal{A} \). The symbol \(|S| \) denotes the number of elements of a finite set \(S \).

2 Preliminaries

In this section, we give basic definitions and properties of Ringel-Hall algebra, following [Ri4], [Br], and [Sch].

In this section, \(\mathcal{A} \) denotes an abelian category and satisfy the following conditions:

(a) \(\mathcal{A} \) is essentially small, with finite morphism spaces,

(b) \(\mathcal{A} \) is linear over \(k = \mathbb{F}_q \),

(c) \(\mathcal{A} \) is of finite global dimension and has enough projectives.

Given objects \(A, B, C \in \mathcal{A} \), define \(\text{Ext}^1_{\mathcal{A}}(A, C)_B \subset \text{Ext}^1_{\mathcal{A}}(A, C) \) to be the subset parameterising extensions with middle term isomorphic to \(B \).

Definition 2.1 The Ringel-Hall algebra \(\mathcal{H}(\mathcal{A}) \) is the vector space over \(\mathbb{C} \) with basis indexed by elements \(A \in \text{Iso}(\mathcal{A}) \), and with associative multiplication defined by

\[
[A] \circ [C] = \sum_{B \in \text{Iso}(\mathcal{A})} \frac{\text{Ext}^1_{\mathcal{A}}(A, C)_B}{|\text{Hom}_{\mathcal{A}}(A, C)|}[B].
\]

The unit is \([0]\).
Let $K(A)$ denote the Grothendieck group of A. We write $\hat{A} \in K(A)$ for the class of an object $A \in A$. Let $K_{\geq 0}(A) \subset K(A)$ be the subset consisting of these classes. For objects $A, B \in A$, define

$$\langle \hat{A}, \hat{B} \rangle = \sum_{i \in \mathbb{Z}} (-1)^i \dim_k \text{Ext}^i_A(A, B).$$

The sum is finite by our assumptions on A, and descends to give a bilinear form

$$\langle -, - \rangle : K(A) \times K(A) \to \mathbb{Z}$$

known as the Euler form. We also consider the symmetrized form

$$(-,-) : K(A) \times K(A) \to \mathbb{Z},$$

defined by $(\alpha, \beta) = \langle \alpha, \beta \rangle + \langle \beta, \alpha \rangle$.

Definition 2.2 The twisted Ringel-Hall algebra $H_{tw}(A)$ is the same vector space as $H(A)$ but with twisted multiplication defined by

$$[A] * [C] = t^{\langle \hat{A}, \hat{C} \rangle} \cdot [A] \circ [C].$$

Let $C_2(A)$ be the abelian category of \mathbb{Z}_2-graded complexes in A. The objects of this category consist of diagrams

$$M_1 \xrightarrow{d_1} \xleftarrow{d_0} M_0,$$

with $d_{i+1} \circ d_i = 0$. Two morphisms $s_\bullet, t_\bullet : M_\bullet \rightarrow N_\bullet$ are said to be homotopic if there are morphisms $h_i : M_i \rightarrow N_{i+1}$ such that

$$t_i - s_i = d_{i+1} \circ h_i + h_{i+1} \circ d_i.$$

For an object $M_\bullet \in C_2(A)$, we define its class in the K-group by

$$\hat{M}_\bullet := \hat{M}_0 - \hat{M}_1 \in K(A).$$

Denote by $K_2(A)$ the homotopy category obtained from $C_2(A)$ by identifying homotopic morphisms. Let us also denote by $C_2(P) \subset C_2(A)$ the full subcategories whose objects are complexes of projectives in A. The shift functor [1] of complexes induces an involution

$C_2(A) \xrightarrow{\ast} C_2(A).$

This involution shifts the grading and changes the sign of the differential as follows:

$$M_\bullet = (M_1 \xrightarrow{d_1} \xleftarrow{d_0} M_0) \xrightarrow{\ast} M_\bullet^* = (M_0 \xrightarrow{-d_0} \xleftarrow{-d_1} M_1).$$
Lemma 2.6 (\([\mathcal{P}X1]\), \([\mathcal{B}r]\)) There is a fully faithful functor \(D : R_2(\mathcal{A}) \rightarrow \mathcal{K}_2(\mathcal{P})\) sending a \(\mathbb{Z}\)-graded complex of projectives \((P_i)_{i \in \mathbb{Z}}\) to the \(\mathbb{Z}_2\)-graded complex

\[
\bigoplus_{i \in \mathbb{Z}} P_{2i+1} \cong \bigoplus_{i \in \mathbb{Z}} P_{2i}.
\]

The functor \(D\) is an equivalent when \(\mathcal{A}\) is hereditary (see \([\mathcal{P}X1]\)).

Lemma 2.4 (\([\mathcal{B}r]\)) For \(M_* , N_* \in \mathcal{C}_2(\mathcal{P})\), we have

\[
\text{Ext}^1_{\mathcal{C}_2(\mathcal{A})}(N_*, M_*) \cong \text{Hom}_{\mathcal{K}_2(\mathcal{A})}(N_* , M_*^*).
\]

A complex \(M_* \in \mathcal{C}_2(\mathcal{A})\) is called acyclic if \(H_*(M_*) = 0\). To each object \(P \in \mathcal{P}\), we can attach acyclic complexes

\[
K_P = (P \xrightarrow{1} 0 \ P), \quad K_P^* = (P \xrightarrow{0 \ 1} P).
\]

Lemma 2.5 (\([\mathcal{B}r]\)) For each acyclic complex of projectives \(M_* \in \mathcal{C}_2(\mathcal{P})\), there are objects \(P, Q \in \mathcal{P}\), unique up to isomorphism, such that \(M_* \cong K_P \oplus K_Q^*\).

Let \(\mathcal{H}(\mathcal{C}_2(\mathcal{A}))\) be the Ringel-Hall algebra of the abelian category \(\mathcal{C}_2(\mathcal{A})\) defined in 2.1, \(\mathcal{H}(\mathcal{C}_2(\mathcal{P})) \subset \mathcal{H}(\mathcal{C}_2(\mathcal{A}))\) be the subspace spanned by complexes of projective objects. Define \(\mathcal{H}_{tw}(\mathcal{C}_2(\mathcal{P}))\) to be the same vector space as \(\mathcal{H}(\mathcal{C}_2(\mathcal{P}))\) with the twisted multiplication

\[
[M_*] * [N_*] := t^{(M_0,N_0)+(M_1,N_1)} \cdot [M_*] \circ [N_*],
\]

then \(\mathcal{H}_{tw}(\mathcal{C}_2(\mathcal{P}))\) is an associative algebra.

We have the following simple relations satisfied by the acyclic complexes \(K_P\),

Lemma 2.6 (\([\mathcal{B}r]\)) For any object \(P \in \mathcal{P}\) and any complex \(M_* \in \mathcal{C}_2(\mathcal{P})\), we have the following relations in \(\mathcal{H}_{tw}(\mathcal{C}_2(\mathcal{P}))\) :

\[
[K_P] * [M_*] = t^{(P,M_*)} \cdot [K_P \oplus M_*], \quad [M_*] * [K_P] = t^{- (M_*, P)} \cdot [K_P \oplus M_*] \quad (1)
\]

\[
[K_P] * [M_*] = t^{(P,M_*)} \cdot [M_*] * [K_P], \quad [K_P^*] * [M_*] = t^{- (P,M_*)} \cdot [M_*] * [K_P] \quad (2)
\]

In particular, for \(P, Q \in \mathcal{P}\), we have

\[
[K_P] * [K_Q] = [K_P \oplus K_Q], \quad [K_P] * [K_Q^*] = [K_P \oplus K_Q^*]. \quad (3)
\]
Lemma 2.7
\[[K_P^\ast] \ast [M_\ast] = t^{-\langle \hat{P}, \hat{M} \rangle} \cdot [K_P \oplus M_\ast], \quad [M_\ast] \ast [K_P^\ast] = t^{\langle \hat{M}, \hat{P} \rangle} \cdot [K_P \oplus M_\ast]. \] (4)

Proof: The proof is similar to the proof of the equations (1) (see [Br]). \[\square\]

Definition 2.8 The localized Ringel-Hall algebra \(\mathcal{DH}(A) \) is the localization of \(\mathcal{H}_{tw}(C_2(P)) \) with respect to the elements \([M_\ast]\) corresponding to acyclic complexes \(M_\ast \):
\[\mathcal{DH}(A) := \mathcal{H}_{tw}(C_2(P))[\{M_\ast \mid H_s(M_\ast) = 0\}] \]
As explained in [Br], this is the same as localizing by the elements \([K_P]\) and \([K_P^\ast]\) for all objects \(P \in P \).

Write \(\alpha \in K(A) \) in the form \(\alpha = \hat{P} - \hat{Q} \) for objects \(P, Q \in P \), and set \(K_\alpha = [K_P] \ast [K_Q]^{-1}, K_\alpha^\ast = [K_P^\ast] \ast [K_Q^\ast]^{-1} \). Still as explained in [Br], the equations (2) continue to hold with the elements \([K_P]\) and \([K_P^\ast]\) replaced by \(K_\alpha \) and \(K_\alpha^\ast \) for arbitrary \(\alpha \in K(A) \).

Definition 2.9 The reduced localized Ringel-Hall algebra is given by setting \([M_\ast] = 1\) whenever \(M_\ast \) is an acyclic complex, invariant under the shift functor. In symbols
\[\mathcal{DH}_{red}(A) = \mathcal{DH}(A)/\{[M_\ast]-1 : H_s(M_\ast) = 0, M_\ast \cong M_\ast^\ast\} \]
By Lemma 2.5, this is the same as setting \([K_P] \ast [K_P^\ast] = 1\) for all \(P \in P \).

3 Main results

In this section, let \(A = \text{mod} B \) be the category of finitely generated right \(B \)-modules, where \(B \) is a finite-dimensional algebra with global dimension \(\leq 2 \). Hence, every object \(A \in A \) has a projective resolution of the form
\[0 \rightarrow P_2 \xrightarrow{a_2} P_1 \xrightarrow{a_1} P_0 \xrightarrow{a_0} A \rightarrow 0. \] (5)

The following is well known.

Lemma 3.1 Any resolution (5) is isomorphic to a resolution of the form
\[0 \rightarrow P_2' \oplus R_1 \xrightarrow{\begin{pmatrix} a_2' & 0 \\ 0 & 0 \end{pmatrix}} P_1' \oplus R_0 \oplus R_1 \xrightarrow{\begin{pmatrix} a_1' & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}} P_0' \oplus R_0 \xrightarrow{(a_0', 0)} A \rightarrow 0 \] (6)
for some objects \(R_0, R_1 \in P \), and some minimal projective resolution
\[0 \rightarrow P_2' \xrightarrow{a_2'} P_1' \xrightarrow{a_1'} P_0' \xrightarrow{a_0'} A \rightarrow 0. \] \[\square\]

Given an object \(A \in A \), take a minimal projective resolution (5) and consider the corresponding 2-periodic complex
\[C_A := P_1 \xrightarrow{\begin{pmatrix} a_1 \\ 0 \end{pmatrix}} P_0 \oplus P_2 \] (7)
Note that any two minimal projective resolutions of \(A \) are isomorphic. So the complex \(C_A \) is well-defined up to isomorphism. In addition we have the homological groups \(H_0(C_A) = A, H_1(C_A) = 0 \), and in \(K(A) \) we have \(C_A = P_0 + P_2 - P_1 = A \).

Proposition 3.2 Given objects \(A_1, A_2 \in A \), take minimal projective resolutions

\[
0 \to P_2 \xrightarrow{a_2} P_1 \xrightarrow{a_1} P_0 \xrightarrow{a_0} A_1 \to 0
\]

\[
0 \to Q_2 \xrightarrow{b_2} Q_1 \xrightarrow{b_1} Q_0 \xrightarrow{b_0} A_2 \to 0
\]

then there is an epimorphism \(\phi : \text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2}) \to \text{Hom}_A(A_1, A_2) \) and

\[
|\ker \phi| = |\text{Hom}_A(P_2, Q_0)| \times |\text{Hom}_A(P_1, Q_2)| \times |\text{Hom}_A(P_0, Q_1)|/|\text{Hom}_A(P_0, Q_2)|.
\]

Proof: Let

\[
\bar{f} = \left(h , \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \in \text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2}).
\]

We have the following exchange diagram

\[
\begin{array}{ccc}
P_1 & \xrightarrow{(a_1, 0)} & P_0 \oplus P_2 \\
\downarrow h & & \downarrow \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \\
Q_1 & \xrightarrow{(b_1, 0)} & Q_0 \oplus Q_2
\end{array}
\]

i.e., we have

\[
\begin{cases}
a \circ a_1 = b_1 \circ h \\
c \circ a_1 = 0 \\
b_2 \circ c = 0 \\
b_2 \circ d = h \circ a_2
\end{cases}
\]

Because \(b_2 \) is a monomorphism, we have \(c = 0 \). And we have the following exchange graph

\[
\begin{array}{cccccc}
0 & \to & P_2 & \xrightarrow{a_2} & P_1 & \xrightarrow{a_1} & P_0 & \xrightarrow{a_0} & A_1 & \to & 0 \\
\downarrow d & & \downarrow h & & \downarrow a & & \downarrow \phi & & \downarrow f & & \downarrow 0 \\
0 & \to & Q_2 & \xrightarrow{b_2} & Q_1 & \xrightarrow{b_1} & Q_0 & \xrightarrow{b_0} & A_2 & \to & 0
\end{array}
\]

So there exists a unique \(f \in \text{Hom}_A(A_1, A_2) \) s.t. the graph

\[
\begin{array}{cccccc}
0 & \to & P_2 & \xrightarrow{a_2} & P_1 & \xrightarrow{a_1} & P_0 & \xrightarrow{a_0} & A_1 & \to & 0 \\
\downarrow d & & \downarrow h & & \downarrow a & & \downarrow f & & \downarrow 0 \\
0 & \to & Q_2 & \xrightarrow{b_2} & Q_1 & \xrightarrow{b_1} & Q_0 & \xrightarrow{b_0} & A_2 & \to & 0
\end{array}
\]

exchanged. We define \(\phi(\bar{f}) = f \).
On the other hand, for any \(f \in \text{Hom}_A(A_1, A_2) \), it is easy to find \(d, h, a, \) s.t.

\[
\begin{array}{ccccccccc}
0 & \rightarrow & P_2 & \xrightarrow{a_2} & P_1 & \xrightarrow{a_1} & P_0 & \xrightarrow{a_0} & A_1 & \rightarrow & 0 \\
\downarrow{d} & & \downarrow{h} & & \downarrow{a} & & \downarrow{f} & & \\
0 & \rightarrow & Q_2 & \xrightarrow{b_2} & Q_1 & \xrightarrow{b_1} & Q_0 & \xrightarrow{b_0} & A_2 & \rightarrow & 0 \\
\end{array}
\]

exchanged. For any \(b \in \text{Hom}_A(P_2, Q_0) \), we have

\[
\tilde{f} = \left(h, \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \right) \in \text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2}),
\]

and \(\phi(\tilde{f}) = f \) by the definition. Therefore, there is a surjection

\[
\phi : \text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2}) \rightarrow \text{Hom}_A(A_1, A_2).
\]

It is easy to see that \(\phi \) is a morphism. So \(\phi \) is an epimorphism.

Let

\[
\tilde{f} = \left(h, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) \in \text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2}),
\]

such that \(\phi(\tilde{f}) = 0 \). We have \(c = 0 \) and the following exchange graph

\[
\begin{array}{ccccccccc}
0 & \rightarrow & P_2 & \xrightarrow{a_2} & P_1 & \xrightarrow{a_1} & P_0 & \xrightarrow{a_0} & A_1 & \rightarrow & 0 \\
\downarrow{d} & & \downarrow{h} & & \downarrow{a} & & \downarrow{f} & & \\
0 & \rightarrow & Q_2 & \xrightarrow{b_2} & Q_1 & \xrightarrow{b_1} & Q_0 & \xrightarrow{b_0} & A_2 & \rightarrow & 0 \\
\end{array}
\]

So there exists only a morphism \(a' \) from \(P_0 \) to \(\ker(b_0) \). Conversely, consider the exact sequence

\[
0 \rightarrow \ker b_0 \xrightarrow{i_0} Q_0 \xrightarrow{b_0} A_2 \rightarrow 0
\]

and if there is a morphism \(a' \) from \(P_0 \) to \(\ker(b_0) \), we can let \(a = a' \circ i_0 \). So the number of \(a \in \text{Hom}_A(P_0, Q_0) \) with \(\phi(\tilde{f}) = 0 \) is equal to \(|\text{Hom}_A(P_0, \ker(b_0))| \). Since \(P_0 \) is a projective module, using the exact sequence

\[
0 \rightarrow Q_2 \xrightarrow{b_2} Q_1 \xrightarrow{\pi_1} \ker(b_0) \rightarrow 0
\]

we have \(\dim_k \text{Hom}_A(P_0, \ker(b_0)) = \dim_k \text{Hom}_A(P_0, Q_1) - \dim_k \text{Hom}_A(P_0, Q_2) \), i.e.

\[
|\text{Hom}_A(P_0, \ker(b_0))| = |\text{Hom}_A(P_0, Q_1)|/|\text{Hom}_A(P_0, Q_2)|.
\]

Now fix \(a \). Since \(d \) is determined uniquely by \(h \), we just need to decide \(h \). Note that \(h \) satisfies the following exchange graph

\[
\begin{array}{cccc}
P_1 & \xrightarrow{a_1} & P_0 & \\
\downarrow{h} & & \downarrow{a} & \\
Q_1 & \xrightarrow{b_1} & Q_0 & \\
\end{array}
\]

(8)
This reduces the following exchange graph

\[
\begin{array}{ccc}
P_1 & \xrightarrow{a_1} & P_0 \\
\downarrow{h} & & \downarrow{a'} \\
Q_1 & \xrightarrow{\pi_1} & \ker b_0
\end{array}
\]

Since \(P_1 \) is projective, using the exact sequence

\[
0 \rightarrow Q_2 \xrightarrow{b_2} Q_1 \xrightarrow{\pi_1} \ker b_0 \rightarrow 0,
\]

we get an exact sequence

\[
0 \rightarrow \Hom_A(P_1, Q_2) \rightarrow \Hom_A(P_1, Q_1) \rightarrow \Hom_A(P_1, \ker(b_0)) \rightarrow 0.
\]

Note that \(a' \circ a_1 \in \Hom(P_1, \ker(b_0)) \) is fixed. So the number of \(h \) satisfying the exchange graph (9) is equal to \(|\Hom_A(P_1, Q_2)| \).

From the above discussions and noting that there is no restriction to the morphism \(b \) from \(P_2 \) to \(Q_0 \), we have

\[
|\ker(\phi)| = |\Hom_A(P_2, Q_0)| \times |\Hom_A(P_1, Q_2)| \times |\Hom_A(P_0, Q_1)| / |\Hom_A(P_0, Q_2)|.
\]

By Lemma 2.3 and Lemma 2.4, we have the following relations:

Lemma 3.3 \(\Ext_{C_2(A)}(C_{A_1}, C_{A_2}) \cong \Ext_A(A_1, A_2) \).

Proof:

\[
\Ext_{C_2(A)}(C_{A_1}, C_{A_2}) \cong \Hom_{K_2(A)}(C_{A_1}, C_{A_2}^*) \\
\cong \Hom_{R_2(A)}(A_1, A_2[1]) \\
\cong \bigoplus_{i \in \mathbb{Z}} \Hom_{D^b(A)}(A_1, A_2[2i + 1]) \\
= \bigoplus_{i \geq 0} \Hom_{D^b(A)}(A_1, A_2[2i + 1]) \\
= \bigoplus_{i \geq 0} \Ext^i_A(A_1, A_2)
\]

Since the global dimension of \(A \) is at most two, we have

\[
\Ext_{C_2(A)}(C_{A_1}, C_{A_2}) \cong \bigoplus_{i \geq 0} \Ext^{2i+1}_A(A_1, A_2) = \Ext_A(A_1, A_2).
\]

Given \(A \in \mathcal{A} \), take a minimal projective resolution (5), define

\[
E_A = t(\hat{\mathcal{P}}_1 - \hat{\mathcal{P}}_2, \hat{A}) \cdot K_{-\hat{\mathcal{P}}_1} * K_{\hat{\mathcal{P}}_2} * K_{-\hat{\mathcal{P}}_2} * [C_A] \in \mathcal{D}_H(A).
\]

From the following proposition, one can see that \(E_A \) is not depend on whether the projective resolution is minimal or not.
Proposition 3.4 Suppose we take a different, not necessarily minimal, projective resolution (6), consider the corresponding complex (7) in $C_2(P)$, i.e. let

$$C'_A := R_0 \oplus P_1 \oplus R_1 \rightarrow R_0 \oplus P_0 \oplus R_1 \oplus P_2;$$

and

$$E'_A = t(P_1 + R_0 + R_1 - 2P_2 + R_1) \cdot K_{-\hat{p}_1 - R_0 - R_1} * K_{\hat{p}_2 + R_1} * K_{-\hat{p}_2 - R_1} * [C'_A].$$

Then we have

$$E'_A = E_A.$$

Proof: Note that $[C'_A] = [K_{R_1}^* + K_{R_0} + C_A]$. By Lemma 2.6 and Lemma 2.7, we have

$$[C'_A] = [K_{R_1}^* + K_{R_0} + C_A] = t(P_1, A) \cdot K_{R_1}^* * K_{R_0} * [C_A].$$

Hence,

$$E'_A = t(P_1 + R_0 + R_1 - 2(\hat{p}_2 + R_1)) \cdot K_{-\hat{p}_1 - R_0 - R_1} * K_{\hat{p}_2 + R_1} * K_{-\hat{p}_2 - R_1} * [C'_A]$$

$$= t(P_1 + R_0 + R_1 - 2(\hat{p}_2 + R_1)) \cdot K_{-\hat{p}_1 - R_0 - R_1} * K_{\hat{p}_2 + R_1} * K_{-\hat{p}_2 - R_1} * [C_A]$$

$$= t(P_1 + R_0 + R_1 - 2(\hat{p}_2 + R_1)) \cdot (R_1, A) \cdot K_{-\hat{p}_1 - R_0 - R_1} * K_{\hat{p}_2 + R_1} * K_{-\hat{p}_2 - R_1} * [C_A]$$

$$= t(P_1 - 2\hat{p}_2, A) \cdot K_{-\hat{p}_1} * K_{\hat{p}_2} * K_{-\hat{p}_2} * [C_A]$$

$$= E_A \quad \Box$$

Proposition 3.5 For $B_i \in A$, $1 \leq i \leq s$, assume that $\{[B_i]|1 \leq i \leq s\}$ is linearly independent in $\mathcal{H}_{tw}(A)$. Then for any $P_i, Q_i, R_i, S_i(1 \leq i \leq s) \in P$, $\{K_{P_i}^* \cdot K_{Q_i}^* \cdot K_{R_i} \cdot K_{S_i}^* \cdot [B_i]|1 \leq i \leq s\}$ is linearly independent in $\mathcal{D}H(A)$.

Proof: Assume there exist $l_i \in \mathbb{C}$, $1 \leq i \leq s$, such that in $\mathcal{D}H(A)$

$$\sum_{i=1}^{s} l_i K_{P_i}^* \cdot K_{Q_i}^* \cdot K_{-R_i} \cdot K_{-S_i}^* \cdot [C_{B_i}] = 0.$$

Then multiplying suitable K_{P_i}, K_{Q_i} for some $P, Q \in P$ we can get

$$\sum_{i=1}^{s} l_i K_{X_i}^* \cdot K_{Y_i}^* \cdot [C_{B_i}] = 0.$$
in $\mathcal{H}_{tw}(C_2(P))$ for some $X_i, Y_i \in \mathcal{P}$, $1 \leq i \leq s$. By Lemma 2.6 and Lemma 2.7, we have
\[
\sum_{i=1}^{s} l_i \cdot t(\hat{x}_i - \hat{y}_i, \hat{b}_i) \cdot [K_{X_i} \oplus K_{Y_i}^* \oplus C_{B_i}] = 0
\]
in $\mathcal{H}_{tw}(C_2(P))$. If there is $u (1 \leq u \leq s)$ such that $l_u \neq 0$, there must be $v (1 \leq v \leq s)$ such that $v \neq u, l_v \neq 0$ and
\[
K_{X_u} \oplus K_{Y_u}^* \oplus C_{B_u} \cong K_{X_v} \oplus K_{Y_v}^* \oplus C_{B_v}.
\]
Then
\[
H_0(K_{X_u} \oplus K_{Y_u}^* \oplus C_{B_u}) \cong H_0(K_{X_v} \oplus K_{Y_v}^* \oplus C_{B_v}).
\]
Since for any $P \in \mathcal{P}$, $H_0(K_P) = H_1(K_P) = H_0(K_P^*) = H_1(K_P^*) = 0$, and $H_0(C_{B_i}) = B_i (1 \leq i \leq s)$, we have $B_u \cong B_v$, a contradiction with $\{[B_i]|1 \leq i \leq s\}$ linearly independent in $\mathcal{H}_{tw}(A)$. So for any $u (1 \leq u \leq s)$, we have $l_u = 0$. Hence, $\{K_{\hat{P}_i}^* * K_{\hat{Q}_i}^* * K_{\hat{R}_i} * K_{\hat{S}_i} * [C_{B_i}]|1 \leq i \leq s\}$ is linearly independent in $\mathcal{D}\mathcal{H}(A)$. \square

From the above proposition, it is easy to get the following result:

Corollary 3.6 For $B_i \in \mathcal{A}$, $1 \leq i \leq s$, assume that $\{[B_i]|1 \leq i \leq s\}$ is linearly independent in $\mathcal{H}_{tw}(A)$. Then $\{[C_{B_i}]|1 \leq i \leq s\}$ is linearly independent in $\mathcal{D}\mathcal{H}(A)$, and $\{[E_{B_i}]|1 \leq i \leq s\}$ are also linearly independent in $\mathcal{D}\mathcal{H}(A)$. \square

Theorem 3.7 There is an injective algebra homomorphism
\[
I_+: \mathcal{H}_{tw}(A) \hookrightarrow \mathcal{D}\mathcal{H}(A), \quad [A] \mapsto E_A.
\]

Proof : Given objects $A_1, A_2 \in \mathcal{A}$ in $\mathcal{H}_{tw}(A)$ we have
\[
[A_1] * [A_2] = t(\hat{A}_1, \hat{A}_2) \sum_{[A_3]} |\text{Ext}_A(A_1, A_2, A_3)| / |\text{Hom}_A(A_1, A_2)| \cdot [A_3].
\]
Take minimal projective resolutions
\[
0 \rightarrow P_2 \xrightarrow{a_2} P_1 \xrightarrow{a_1} P_0 \xrightarrow{a_0} A_1 \rightarrow 0
\]
\[
0 \rightarrow Q_2 \xrightarrow{b_2} Q_1 \xrightarrow{b_1} Q_0 \xrightarrow{b_0} A_2 \rightarrow 0
\]
It is easy to get one projective resolution of A_3,
\[
0 \rightarrow P_2 \oplus Q_2 \rightarrow P_1 \oplus Q_1 \rightarrow P_0 \oplus Q_0 \rightarrow A_3 \rightarrow 0.
\]
By Lemma 3.3, $\text{Ext}_{C_2(A)}(C_{A_1}, C_{A_2}) = \text{Hom}_{K_2(A)}(C_{A_1}, C_{A_2}^*) = \text{Ext}_A(A_1, A_2)$. Then it is easy to see that any extension of A_1 by A_2 is the complex C_{A_3} defined by the corresponding extension A_3 of A_1 by A_2. Using Lemma 2.6 and Lemma 2.7, we have
\[
I_+(A_1) * I_+(A_2)
\]
\[
= t(\hat{P}_1 - 2\hat{P}_2, A_1) + (\hat{Q}_1 - 2\hat{Q}_2, A_1) \cdot K_{-\hat{P}_1} * K_{\hat{P}_2} * K_{-\hat{P}_2} * [C_{A_1}] + K_{\hat{Q}_1} * K_{-\hat{Q}_2} * [C_{A_1}]
\]
\[
= t(\hat{P}_1 - 2\hat{P}_2, A_1) + (\hat{Q}_1 - 2\hat{Q}_2, A_2) + (\hat{Q}_1 - A_1) - 2(\hat{Q}_2, A_1) \cdot K_{-\hat{P}_1} * K_{\hat{P}_2} * K_{-\hat{P}_2} * K_{\hat{Q}_1} * K_{-\hat{Q}_2} * [C_{A_1}] * [C_{A_2}]
\]
\[
= t(\hat{P}_1 - 2\hat{P}_2, A_1) + (\hat{Q}_1 - 2\hat{Q}_2, A_2) + (\hat{Q}_1 - A_1) - 2(\hat{Q}_2, A_1) + (\hat{P}_1 - \hat{Q}_1 + \hat{Q}_2, A_1) + (\hat{P}_0 + \hat{P}_2, A_0 + \hat{Q}_2) - (\hat{P}_1 - \hat{Q}_1 - 2\hat{P}_2 - 2\hat{Q}_2, A_3)
\]
\[
\sum_{[A_3]} |\text{Ext}_A(A_1, A_2, A_3)| / |\text{Hom}_{C_2(A)}(C_{A_1}, C_{A_2})| * E_{A_3}.
\]
From Proposition 3.2, we know

\[|\text{Hom}_{\mathcal{C}(\mathcal{A})}(C_{A_1}, C_{A_2})| = |\text{Hom}_{\mathcal{A}}(A_1, A_2)| \cdot |\text{Hom}_{\mathcal{A}}(P_2, Q_0)| \cdot |\text{Hom}_{\mathcal{A}}(P_1, Q_2)| \cdot |\text{Hom}_{\mathcal{A}}(P_0, Q_1)|/|\text{Hom}_{\mathcal{A}}(P_0, Q_2)| \]

Because

\[I_+([A_1] * [A_2]) = \iota^{(A_1, A_2)} \cdot \sum_{[A_3]} \frac{|\text{Ext}_{\mathcal{A}}(A_1, A_2) A_3|}{|\text{Hom}_{\mathcal{A}}(A_1, A_2)|} * E_{A_3}, \tag{11} \]

comparing (10) and (11), since \(|\text{Hom}_{\mathcal{A}}(P, Q)| = q(P, Q) = \iota^2(P, Q) \) for any projective modules \(P, Q \), we have \(I_+([A_1] * [A_2]) = I_+([A_1]) * I_+([A_2]) \) if and only if

\[
\iota^{(\hat{P}_1 - 2\hat{P}_2, \hat{A}_1)} + (\hat{Q}_1 - 2\hat{Q}_2, \hat{A}_2) = 2(\hat{Q}_2, \hat{A}_1) + (\hat{P}_1, \hat{Q}_1) + (\hat{P}_0 + \hat{Q}_0 + \hat{Q}_2) - (\hat{P}_1 + \hat{Q}_1 - 2\hat{P}_2 - 2\hat{Q}_2, \hat{A}_3)
\]

\[= \iota^{(A_1, A_2) + 2(\hat{P}_2, \hat{Q}_0) + 2(\hat{P}_1, \hat{Q}_2) + 2(\hat{P}_0, \hat{Q}_1) - 2(\hat{P}_1, \hat{Q}_1)} \quad \tag{12} \]

Using \(\tilde{A}_3 = \tilde{A}_1 + \tilde{A}_2, \tilde{A}_1 = \tilde{P}_0 + \tilde{P}_2 - \tilde{P}_1 \) and \(\tilde{A}_2 = \tilde{Q}_0 + \tilde{Q}_2 - \tilde{Q}_1 \), it is easy to verify that (12) is established.

By Corollary 3.6, if \(\{[B_i]|1 \leq i \leq s\} \) is linearly independent in \(\mathcal{H}_{tw}(\mathcal{A}) \) for any \(B_i(1 \leq i \leq s) \in \mathcal{A} \), then \(\{[E_{B_i}]|1 \leq i \leq s\} \) is also linearly independent in \(\mathcal{D}(\mathcal{A}) \). Therefore, \(I_+ \) is injective. \(\square \)

Let \(\pi \) be the natural homomorphism from \(\mathcal{D}(\mathcal{A}) \) to \(\mathcal{D}(\mathcal{A}) \), we have

Theorem 3.8 There is an embedding of algebras \(\tilde{I}_+ = \pi \circ I_+: \mathcal{H}_{tw}(A) \hookrightarrow \mathcal{D}(\mathcal{A}) \).

Proof: Clearly \(\tilde{I}_+ \) is an algebra homomorphism. So we only need to prove that \(\tilde{I}_+ \) is injective. Let \(J \) be the ideal in \(\mathcal{D}(\mathcal{A}) \) generated by \(K_{\hat{P}} - K_{\hat{P}}^* \) for all \(P \in \mathcal{P} \). Then by above theorem and \(\mathcal{D}(\mathcal{A}) = \mathcal{D}(\mathcal{A})/J \), we just need to prove \(\text{im}I_+ \cap J = 0 \).

It is easy to see that all \(K_{\hat{P}}K_{\mathcal{A}}^*K_{\mathcal{A}}K_{\mathcal{A}}^* \cdots K_{\mathcal{A}}^*[M] \) span \(\mathcal{D}(\mathcal{A}) \), where \(P, Q, R, S \in \mathcal{P} \) and \(M \in C_2(\mathcal{P}) \) has no non-zero direct summand of acyclic complexes. Therefore any element in \(\text{im}I_+ \cap J \) has the form

\[
\sum_{i=1}^s l_i E_{B_i} = \sum_{j=1}^n h_j (K_{-X_j} - K_{X_j}^*) * K_{\hat{P}_j} * K_{\hat{W}_j} * K_{-Y_j} * K_{-Z_j} * [(M_j)\cdot] \]

for some \(l_i, h_j \in \mathbb{C}, 1 \leq i \leq s, 1 \leq j \leq n \), and some \(B_i \in \mathcal{A}, 1 \leq i \leq s \), where \(\{[B_i]|1 \leq i \leq s\} \) is linearly independent in \(\mathcal{H}_{tw}(\mathcal{A}) \), and some \(T_j, W_j, X_j, Y_j, Z_j \in \mathcal{P} \) and \((M_j)\cdot \in C_2(\mathcal{P}) \) for \(1 \leq j \leq n \) so that each \((M_j)\cdot \) has no non-zero direct summand of acyclic complexes. Multiplying \(K_{\hat{P}}K_{\mathcal{A}}^* \) on the both sides for some suitable \(P, Q \in \mathcal{P} \), we can get

\[
\sum_{i=1}^s l_i t_i K_{\hat{P}_i} * K_{\mathcal{A}}^* [C_{B_i}] = \sum_{j=1}^n h_j (1 - K_{X_j}^* K_{X_j}^*) * K_{\hat{P}_j} * K_{\mathcal{A}}^* [M] \]

in \(\mathcal{H}_{tw}(C_2(\mathcal{P})) \) for some \(P_i, Q_i, R_j, S_j \in \mathcal{P}, 1 \leq i \leq s, 1 \leq j \leq n \), where all \(t_i \in \mathbb{C} \) are not zero.

Suppose some \(l_i \neq 0 \) and take \((M_1)\cdot, (M_2)\cdot, \cdots, (M_{im})\cdot \in \{ (M_1)\cdot, (M_2)\cdot, \cdots, (M_n)\cdot \} \) to be all the \(\mathbb{Z}_2 \)-graded complexes such that each of them is isomorphic to \(C_{B_i} \). Note that

\[\{ K_{\hat{P}}K_{\mathcal{A}}^*[M] \mid P, Q \in \mathcal{P}, M \in C_2(\mathcal{P}) \} \]
is also a basis in $\mathcal{H}_{tw}(C_2(\mathcal{P}))$. We have
\[l_i t_i K_{F_i}^* * K_{Q_i}^* * [C_{B_i}] = \sum_{j=1}^{m_i} h_{ij}(1 - K_{X_{ij}}^* * K_{R_{ij}}^* * K_{S_{ij}}^* *[M_{ij}]) \] \tag{13}

in $\mathcal{H}_{tw}(C_2(\mathcal{P}))$. Under the above basis, since the sum of the coefficients of the equation (13) on the right is zero, we have $l_i t_i = 0$ as the coefficient on the left and so $l_i = 0$, which is a contradiction with $l_i \neq 0$. Hence for any $1 \leq i \leq s$, we have $l_i = 0$. Therefore, $\text{im}I_+ \cap J = 0$. \(\square \)

Remarks 3.9 If we set $F_A = E_A^*$, then there is also an injective algebra homomorphism
\[I_- : \mathcal{H}_{tw}(A) \hookrightarrow \mathcal{D}(A), \quad [A] \mapsto F_A \]
and this embedding can induce an embedding form $\mathcal{H}_{tw}(A)$ to $\mathcal{D}_{red}(A)$. \(\square \)

In the following we will get some interesting consequences.

Let us recall the definitions of tilted algebras and canonical algebras.

Definition 3.10 ([HR]) Let H be a finite-dimensional hereditary algebra. An H-module T is a tilting module if it satisfies:

1. $\text{proj.dim}_HT \leq 1$;
2. $\text{Ext}^1_H(T, T) = 0$;
3. there exists a short exact sequence $0 \rightarrow H \rightarrow T_0 \rightarrow T_1 \rightarrow 0$, where T_0, T_1 are direct summands of a finite direct sum of copies of T respectively.

The endomorphism algebra $B = \text{End}_HT$ is called a tilted algebra.

Definition 3.11 ([Ri1]) Let $p = (p_0, p_1, \ldots, p_n)$ be a $(n+1)$-tuple of integers $p_i \geq 1$, $\lambda = (\lambda_2, \ldots, \lambda_n)$ be pairwise distinct elements of k. A canonical algebra B of type (p, λ) is the following quiver

with relations given by
\[X_i^{p_i} = X_0^{p_0} - \lambda_i X_1^{p_1} \quad \text{for} \quad i = 2, 3, \ldots, n, \]

By [GL], $\mathcal{D}^b(B)$ is equivalent to $\mathcal{D}^b(\text{coh}(\mathcal{X}))$, where $\text{coh}(\mathcal{X})$ is the category of coherent sheaves on a weighted projective line \mathcal{X} of type (p, λ).

12
By [HR] tilted algebras have global dimension at most two and it is obvious that canonical algebras have global dimension \(\leq 2 \). As an application, we have

Corollary 3.12 Assume that \(\mathcal{A} = \text{mod} B \) is the category of finitely generated right \(B \)-modules where \(B \) is a tilted algebra or a canonical algebra. Then there is an embedding of algebras from \(\mathcal{H}_{\text{tw}}(\mathcal{A}) \) to \(\mathcal{D}\mathcal{H}(\mathcal{A}) \) and \(\mathcal{D}\mathcal{H}_{\text{red}}(\mathcal{A}) \).

Remarks 3.13 It should be also interesting to apply to some other algebras which are neither tilted algebras nor tubular algebras but with global dimension \(\leq 2 \). For example, the algebra is given respectively by the following quivers with relations

\[
\begin{align*}
\alpha &\quad \beta \\
\beta &\quad \alpha
\end{align*}
\]

\(\alpha \beta = 0 \), and

\[
\begin{align*}
\alpha & \quad \beta \\
\gamma & \quad \alpha
\end{align*}
\]

\(\beta \alpha = 0 \)

References

[Br] T. Bridgeland, Quantum groups via Ringel-Hall algebras of complexes, Annals of Mathematics 177 (2013), no. 2, 739-759.

[Cr] T. Cramer, Double Hall algebras and derived equivalences, Adv. Math. 224 (2010), no. 3, 1097-1120.

[DR] V. Dlab and C. M. Ringel, On algebras of finite representation type, J. Algebra 33 (1975), 306-394.

[Gab] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math., 6 (1972), 71-103.

[GL] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras. Springer Lecture Notes in Math. 1273, 265-297, Springer-Verlag, Berlin, 1987.

[Gr] J. A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. Math. 120 (1995), 361-377.

[Gro] M. Grosky, Semi-derived Hall algebras and tilting invariance of Bridgeland-Hall algebras, arXiv:1303.5879v2.

[Ha] P. Hall. The algebra of partitions, Proc. 4th Canadian Math. Congress (1959) 147-159.

[Hu] A. Hubery, From triangulated categories to Lie algebras: A theorem of Peng and Xiao in Trends in representation theory of algebras and related topics, Contemp. Math., 406, Amer. Math. Soc., Providence, RI(2006), 51-66.

[HR] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), 399-443.

[Ka] M. Kapranov, Heisenberg doubles and derived categories, J. Algebra 202 (1998), 712-744.

[LP] Y. Lin, L. Peng, Elliptic Lie algebras and tubular algebras, Adv. Math. 196 (2005), no. 2, 487-530.

[PX1] L. Peng, J. Xiao, Root categories and simple Lie algebras, J. Algebra 198 (1997), no. 1, 19-56.

[PX2] L. Peng, J. Xiao, Triangulated categories and Kac-Moody algebras, Invent. Math. 140 (2000), no. 3, 563-603.

[PT] L. Peng, Y. Tan, Derived categories, tilted algebras, and Drinfeld doubles, J. Algebra 266 (2003) 723-748.

[Ri1] C. M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Mathematics 1099, Springer-Verlag, Berlin, 1984.

[Ri2] C. M. Ringel, Hall algebras, In: Topics in Algebra. Banach Centre. Publ. 26. Part I. Warszawa.(1990),433-447.
[Ri3] C. M. Ringel, Hall polynomials for the representation-finite hereditary algebras, Adv. Math. 84 (1990), no. 2, 137-178.

[Ri4] C. M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), no. 3, 583-591.

[Sch] O. Schiffmann, Lectures on Hall algebras, arXiv:0611617v2.

[SVdB1] B. Sevenhant, M. Van den Bergh, On the double of the Hall algebra of a quiver, J. Algebra 221 (1999), 135-160.

[SVdB2] B. Sevenhant, M. Van den Bergh, A relation between a conjecture of Kac and the structure of the Hall algebra, J. Pure Appl. Algebra 160 (2001), 319-332.

[T] B. Töen, Derived Hall algebras, Duke Math. J. 135 (2006), no. 3, 587-615.

[X] J. Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra 190 (1997), no. 1, 100-144.

[XX] J. Xiao, F. Xu, Hall algebras associated to triangulated categories, Duke Math. J. 143 (2008), no. 2, 357-373.

[Y] S. Yanagida, A note on Bridgeland’s Hall algebras of two periodic complexes, arXiv:1207.0905.