Photonic realization of topologically protected bound states in domain-wall waveguide arrays

J. P. Lee-Thorp1, I. Vukičević1, X. Xu2, J. Yang3, C. L. Fefferman4, C. W. Wong3 and M. I. Weinstein5

1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA; jpl2154@columbia.edu, w2143@columbia.edu
2 Department of Computer Science, Columbia University, New York, NY, USA; xx153@columbia.edu
3 Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA and Department of Mechanical Engineering, Columbia University, New York, NY, USA; yangh@seas.ucla.edu, chenvi.wong@ucla.edu
4 Department of Mathematics, Princeton University, Princeton, NJ, USA; cf@math.princeton.edu
5 Department of Applied Physics and Applied Mathematics and Department of Mathematics, Columbia University, New York, NY, USA; miw2103@columbia.edu

(Dated: March 7, 2022)

We present an analytical theory of topologically protected photonic states for the two-dimensional (2D) waveguide arrays studied in the quantum Hall effect in condensed matter physics3–5. Since 2005, there has been intense focus on the protected states of topological insulators6, 7. More recently, there has also been growing interest in photonic analogues of the topologically protected states observed in electronic systems8–10. In particular, such states have been shown to arise via line-defects (edges) and time-reversal or spatial-inversion symmetry breaking in linear and nonlinear photonics, e.g.11–17.

Theoretical arguments for the existence and robustness of topologically protected edge states have been given in tight-binding models, e.g.28–34. Linear regimes, in both deterministic and random media outside of limiting regimes, such as the tight-binding or nearly-free-photon approximations. Indeed, many physical settings of interest, including photonics in low contrast periodic structures, fall outside these regimes; see also13.

In22, 23, a class of one-dimensional (1D) continuous systems described by the Schrödinger equation with a domain-wall modulated (DWM) periodic potential were proved to have topologically protected bound states, originating in the zero-mode of an effective 1D Dirac equation, a mechanism which plays a role in8, 24; see also25. In this Letter, we propose and investigate a photonic realization of these states as topologically protected guided wave modes in a class of coupled two-dimensional (2D) waveguide arrays governed by Maxwell’s equations.

\begin{equation}
E(x, z, t) = e^{i\omega t} e^{i\pm \sqrt{-1}z} z \Psi \left(\frac{-\omega}{c} z \right),
\end{equation}

No tight-binding or nearly-free-photon assumptions are made; the results hold for bulk structures of arbitrary material contrast.

We further demonstrate, through \textit{ab initio} numerical simulations for the full three-dimensional (3D) Maxwell equations, that these waveguide modes and their properties persist for physically realistic 3D optical waveguide arrays. In particular, robustness against geometric and intrinsic background thermal perturbations is demonstrated. These states have fundamentally linear dispersion and broadband flat group velocity dispersion.

Photonic waveguide array structures are an important class of photonic crystals, providing a natural platform for basic studies of topological insulators and their photonic applications. They permit qualitative study and quantitative measurements of many phenomena26, 27. Recent work has explored 2D arrays in linear and nonlinear regimes, in both deterministic and random media28–34. We seek a general understanding of topological protection, a theory which is applicable outside of limiting regimes, such as the tight-binding or nearly-free-photon approximations. Indeed, many physical settings of interest, including photonics in low contrast periodic structures, fall outside these regimes; see also13.

In22, 23, a class of one-dimensional (1D) continuous systems described by the Schrödinger equation with a domain-wall modulated (DWM) periodic potential were proved to have topologically protected bound states, originating in the zero-mode of an effective 1D Dirac equation, a mechanism which plays a role in8, 24; see also25. In this Letter, we propose and investigate a photonic realization of these states as topologically protected guided wave modes in a class of coupled two-dimensional (2D) waveguide arrays governed by Maxwell’s equations.

\begin{equation}
E(x, z, t) = e^{i\omega t} e^{i\pm \sqrt{-1}z} z \Psi \left(\frac{-\omega}{c} z \right),
\end{equation}

No tight-binding or nearly-free-photon assumptions are made; the results hold for bulk structures of arbitrary material contrast.

We further demonstrate, through \textit{ab initio} numerical simulations for the full three-dimensional (3D) Maxwell equations, that these waveguide modes and their properties persist for physically realistic 3D optical waveguide arrays. In particular, robustness against geometric and intrinsic background thermal perturbations is demonstrated. These states have fundamentally linear dispersion and broadband flat group velocity dispersion.

Photonic waveguide array structures are an important class of photonic crystals, providing a natural platform for basic studies of topological insulators and their photonic applications. They permit qualitative study and quantitative measurements of many phenomena26, 27. Recent work has explored 2D arrays in linear and nonlinear regimes, in both deterministic and random media28–34. We seek a general understanding of topological protection, a theory which is applicable outside of limiting regimes, such as the tight-binding or nearly-free-photon approximations. Indeed, many physical settings of interest, including photonics in low contrast periodic structures, fall outside these regimes; see also13.

In22, 23, a class of one-dimensional (1D) continuous systems described by the Schrödinger equation with a domain-wall modulated (DWM) periodic potential were proved to have topologically protected bound states, originating in the zero-mode of an effective 1D Dirac equation, a mechanism which plays a role in8, 24; see also25. In this Letter, we propose and investigate a photonic realization of these states as topologically protected guided wave modes in a class of coupled two-dimensional (2D) waveguide arrays governed by Maxwell’s equations.
where \((\mu, \Psi(x')) \) is a solution of the Schrödinger eigenvalue problem (EVP) with potential \(-\varepsilon(x')\), and energy

\[
\mu = -\frac{c^2}{\omega} k_z^2.
\]

\[
\left(-\frac{\partial^2}{\partial x'^2} - \varepsilon \left(\frac{c}{\omega} x'\right)\right) \Psi(x') = \mu \Psi(x'), \quad \Psi \in L^2(\mathbb{R}).
\]

(2)

Here, \(\varepsilon(x') \) denotes the guided mode effective permittivity as a function of the dimensionless transverse distance \(x' = \frac{x}{c} \), \(k_z \) is the \(z \)-propagation constant, and \(c \) is the vacuum speed of light. If \((\mu, \Psi) \) is an eigenpair of (2) for which \(k_z^2 = -\omega^2(c\mu) > 0 \), then \(k_z \) is real and (1) is a guided TM mode, propagating in \(z \) and localized in \(x \).

B. Topologically protected bound states

In [22, 23], the authors study topologically protected bound states in 1D domain-wall modulated (DWM) Schrödinger Hamiltonians of the form:

\[
H^d = -\partial_x^2 + V_{c}(x) + V_{w}(x),
\]

where \(V_{c} \) and \(V_{w} \) denote even-index and odd-index cosine series, respectively, and \(\kappa(X) \) is a so-called domain wall function that satisfies \(\kappa(X) \to \pm \kappa_\infty \), \(X \to \pm \infty \), with \(\kappa_\infty > 0 \). \(H^d \) interpolates between dimer structures at \(x = \pm \infty \). For \(\delta = 0 \), \(H^0 \) has distinguished quasimomentum-energy pairs where its dispersion curves cross linearly; see FIG. 1(a).

Theorem 1 ([22, 23]) The Floquet-Bloch EVPs for \(H^0 = -\partial_x^2 + V_{c}(x) \):

\[
H^0 \Phi(x; k_x) = E \Phi(x; k_x),
\]

possess Dirac points. These are pairs \((k_{x,*}, \pi, E_*)\) with mappings \(k_x \to (E_\pm(k_x), \Phi_\pm(x; k_x)) \) such that the dispersion locus near \((k_{x,*}, \pi, E_*)\) is given by:

\[
E_\pm(k) - E_* = \pm \lambda_2 (k - k_{x,*} - O((k_x - k_{x,*})^2)).
\]

Here, \(\lambda_2 = 2i(\Phi_1, \partial_x \Phi_2)_{L^2([0,1])} \neq 0 \) is the “Fermi velocity.”

Associated with each Dirac point of the periodic (unmodulated) Hamiltonian, \(H^0 \), there is a topologically protected branch of bound states of the Schrödinger EVP for the DWM Hamiltonian, \(H^d \).

Theorem 2 ([22, 23])

Let \((k_{x,*}, \pi, E_*)\) denote a Dirac point of \(H^0 = -\partial_x^2 + V_{c}(x) \). Assume the (generically satisfied) non-degeneracy condition: \(\lambda_2 \neq 0 \), where \(\lambda_2 = 2i(\Phi_1, \partial_x \Phi_2)_{L^2([0,1])} \) and \(\partial_x = (\Phi_1, W_{c} \Phi_2)_{L^2([0,1])} \).

1. There exists, for small \(\delta \), a family of exponentially localized eigensolutions, \(\delta \to (E^d, \Psi^d) \) of the EVP:

\[
H^d \Psi^d = E^d \Psi^d, \quad \Psi^d \in L^2(\mathbb{R}),
\]

bifurcating from energy \(E_* \) at \(\delta = 0 \).

2. \(\Psi^d(x) \) is well-approximated by a slowly varying and spatially decaying modulation of the degenerate modes \(\Phi_1 \) and \(\Phi_2 \):

\[
\Psi^d(x) \approx \alpha_{+1}(\delta x) \Phi_1(x) + \alpha_{+2}(\delta x) \Phi_2(x).
\]

The amplitude vector \(\alpha = (\alpha_{+1}, \alpha_{+2}) \) is a zero mode of a 1D Dirac operator: \(D^d = i\lambda_2 \sigma_3 \partial_x + \partial_y \kappa(X) \sigma_1 \), where \(\sigma_1 \) and \(\sigma_3 \) are the standard Pauli matrices.

3. This zero-energy state of \(D \) persists for arbitrary spatially localized perturbations of the domain wall, \(\kappa(X) \), and hence the bifurcation is topologically protected.

FIG. 1(b)-(c) illustrate aspects of Theorem 2 for a range of \(\delta \)-values. In particular, the first branch of mid-gap eigenmodes (red) bifurcates into \(\mathcal{I}_d \equiv (E_* - \delta|\kappa_\infty \partial_x|, E_* + \delta|\kappa_\infty \partial_x|) \).

C. Protected vs non-protected modes

To contrast the protected modes of DWM structures with conventional non-protected modes of periodic structures with defects which arise via bifurcations from a band-edge energy, \(E_b(k_{\text{edge}}) \), consider the Hamiltonian

\[
h^d = -\partial_x^2 + V_{c}(x) + \delta \kappa(x) W_{c}(x) + \delta^2 G(\delta x),
\]

which incorporates both a domain-wall induced phase defect \(\delta \kappa(x) W_{c}(x) \) and a continuous defect \(\delta^2 G(\delta x) \): scalings are chosen so that both effects are of comparable size. Band-edge bifurcations are seeded by bound states of the effective Schrödinger operator:

\[
h_{b, \text{eff}} = -(2m_{b, \text{eff}})^{-1} \partial^2_x + Q_b(x),
\]

with effective mass \(m_{b, \text{eff}}^{-1} = \frac{E_b}{(k_{\text{edge}})^2} \) and effective potential \(Q_b(x) = c_b \left(\kappa_\infty - \kappa^2(X) \right) + G(X) \).
rapid oscillations of δx; see Theorem 2 and [22, 37]. Therefore, using the computation gives $\delta\kappa = 0$ and $k(X) = \tanh(X)$. Non-protected modes; $\kappa \equiv 1$ and $G(X) = 3e^{-X^2}$.

c_0 > 0. While the zero-energy eigenstate of D, which induces the bifurcation of bound states from a Dirac point $[1]$, persists under arbitrary (even large) localized perturbations of the domain wall, $k(X)$, the localized states of h_{eff}, and therefore their induced branch of bound states [1], are not stable to arbitrary localized perturbations, $G(X)$ [26, 27].

In FIG. 1(c), where $G \equiv 0$, the domain wall induces bifurcations from Dirac points as well as from band edges. In FIG. 1(d), a non-zero localized perturbation, $G(X)$, has destroyed the lower band edge bifurcation; the edge bifurcation can be removed by smooth deformation of h^b while the Dirac point bifurcation is topologically protected.

The protected states of DWM structures also exhibit a remarkable robustness of their eigenvalues (operating or working frequencies) when compared with those of conventional structures with localized defects. To illustrate this, we extend the previous model to a Hamiltonian $h^b = -\partial_x^2 + V_c(x) + \delta\kappa(\gamma \delta x)W_o(x) + \delta^2 G(\gamma \delta x)$, with defect mode eigenvalue, E^b_0, where changing γ varies the phase defect’s transition region width (where κ transitions between positive to negative values) and the area of the localized defect, G. The potential in h^b is assumed to be smooth. For $\gamma \approx 1$ and $0 < \delta \ll 1$, $E^b_0 - E^{b^{-1}}$ is of the order $(\Delta E)_\kappa = (\gamma - 1)\delta \times \int (\delta x) e^c(\delta x)W_o(x)\Psi_0^b |^2 dx$ for the protected mode (DWM κ, $G \equiv 0$), and of the order $(\Delta E)_G = (\gamma - 1)\delta \times \int (\delta x) G''(\delta x)|\Psi_G^b|^2 dx$ for the non-protected mode ($\kappa \equiv 1$, localized $G \neq 0$).

For $\delta \ll 1$, we have $\Psi_0^b, \Psi_G^b \approx \delta^2 e^{-c|\delta x|}$, $c > 0$; see Theorems 1 and 22 [27]. Therefore, using the rapid oscillations of $W_o(\gamma / \delta)$, we have $(\Delta E)_\kappa \approx (\gamma - 1)\delta \times \int F(y)W_o(\gamma/\delta)dy = \mathcal{O}((\gamma - 1)\delta^M)$, for all $M \in \mathbb{Z}^+$ where $F(y) = ye^c(\gamma) e^{-2|\delta y|}$. On the other hand, a direct computation gives $(\Delta E)_G = \mathcal{O}((\gamma - 1)\delta)$. Hence, for small δ and $\gamma \approx 1$, we have $|(\Delta E)_\kappa| \ll |(\Delta E)_G|$. Numerical simulations for larger δ and $\gamma - 1$ further corroborate the strong robustness of the operating frequency of topologically protected modes; see FIG. 2.

III. MAXWELL SETTING

A. 2D topologically protected, guided TM modes

Returning to the Maxwell setting, Theorems 2 and 1 imply:

Corollary 1 Maxwell’s equations exhibit topologically protected, transversely localized, guided TM modes.

We realize these topologically robust TM modes in a photonic waveguide array by constructing a coupled 2D silicon-air waveguide array profile, $\varepsilon_0(x)$, corresponding to a potential, $U_0(x)$. We construct $U_0(x)$ to be the two-valued approximation of a choice of $V_c(x) + \delta\kappa(\delta x)W_o(x)$, scaled to match the effective permittivities of silicon (12.1) and air (1). $U_{\delta=1}(x)$ is the DWM structure and...
$U_{\delta=0}(x)$ is the periodic potential having Dirac points. Finally, we set $\varepsilon(\frac{\pi}{a}) = -U_d(x)$; see (2). The 2D DWM waveguide array is shown in FIG. 3(b). Although the relative length scale between $U_d(x)$ and $\varepsilon(x)$ is important, the computations may be carried out at arbitrary length scales due to the scale invariance of Maxwell’s equations [12].

Since the numerically computed lowest energy gap mode of the Schrödinger equation with the DWM potential, $U_d=1(x)$, satisfies $\mu < 0$, $k_z = \pm (\omega/c)\sqrt{-\mu}$ is real and the corresponding TM mode in (1) is guided.

The dispersion curves, $k_z \mapsto \omega(k_z)$, for TM modes of the 2D periodic (unmodulated) structure, $\varepsilon_{\delta=0}(x)$, are displayed in FIG. 3(c). These curves are computed by solving the 2D Maxwell equations for ω at discrete k_x values, using MPB [38]. The dispersion curves, $k_z \mapsto \omega(k_z)$, for the DWM waveguide, $\varepsilon_{\delta=1}(x)$, are displayed in FIG. 3(e). In analogy with the Schrödinger setting, robust guided-modes are observed in gaps about Dirac points at quasi-momentum $k_z = \pi/a$, where a is the lattice constant; see FIG. 1(a)-(b). Qualitatively similar dispersion curves are observed for TE modes.

We numerically study on-axis z-propagation in the DWM 2D waveguide of a Gaussian wave-packet, using the approximate paraxial Schrödinger equation [39, 40]. For the periodic array, the energy of the launched packet quickly delocalizes (FIG. 4(a)). In contrast, in the DWM structure, a topologically protected mode is excited and confines most of the energy on-axis (FIG. 4(b)).

A quantitative comparison of localization properties of the DWM and periodic structures is obtained by measuring, ξ, the fraction of power remaining within (roughly) the width of the profile of the stationary localized mode of the DWM structure at $z = 50a$: $\xi = \|E(x, z = 50a)\|_{L^2([-5a, 5a])}^2 / \|E(x, z = 0)\|_{L^2([-30a, 30a])}^2$. The DWM structure achieves significantly more localization: $\xi_{\text{DWM}} = 0.92$ and $\xi_{\text{periodic}} = 0.35$.

B. 3D topologically protected, guided TM modes

The theory summarized in Theorem 2 and Corollary 1 is exact and rigorous for a 2D waveguide with effective permittivity satisfying $\varepsilon = \varepsilon(x)$. The physical 3D DWM waveguide is a finite height (y)-truncation of the 2D structure. Numerical simulations (below) show a long lived 3D state, localized in the x-direction even for small height truncations. A schematic of a 3D silicon waveguide (effective permittivity 12.1) with height 0.25a and silicon dioxide cladding (effective permittivity 2.085) is shown in FIG. 5(b).

Numerically computed dispersion curves: $k_z \mapsto \omega(k_z)$, for TM modes of the 3D DWM waveguide are displayed in FIG. 5(e). From $\omega(k_z)$, we compute the group velocity dispersion (GVD), $\partial^2 k_z / \partial \omega^2$; see figure inset.

Corollary 1 ensures that the 2D TM-modes, which bifurcate from Dirac points, are topologically stable. We
confirm the existence and persistence of their 3D counterparts through a computational study of two classes of physical perturbations: (i) changes in the effective permittivity due to thermal fluctuations; and (ii) geometric perturbations in the lattice constants (waveguide channels) of the array due to fabrication imperfections, both 10% perturbations, randomly sampled from a uniform distribution. FIG. 5(d) (solid) displays the mean deviation of the GVD curves of perturbed waveguides relative to the unperturbed (DWM) waveguide, calculated from one hundred independent simulations. Also plotted (dotted), for reference, are the corresponding mean relative deviation of the GVD curves for a regular channel silicon-silicon dioxide waveguide (of height 0.25a and channel width 0.45a). GVD robustness of topologically protected DWM guided modes, with respect to thermal and geometric perturbations, is comparable to that for regular channel modes.

Fixing ω = 4.0c/a, we also observe that the mode itself remains localized against the perturbations, as measured by the perturbed effective mode area statistics \[A_{\text{thermal}} = 0.92 \pm 0.09 \] and \[A_{\text{geometric}} = 0.9 \pm 0.4 \]. Here the perturbed mode areas are normalized against the unperturbed mode area, and reported as means with corresponding standard deviations, calculated from fifty independent simulations.

IV. CONCLUSION

Summarizing, building upon the theory of [22, 23], we have demonstrated the bifurcation of highly robust guided TM modes for Maxwell’s equations governing a class of DWM photonic waveguide arrays in 2D. Our findings are corroborated by full Maxwell simulations of physically realistic 3D structures, derived from our 2D model. In contrast to the guided wave modes of conventional waveguides, DWM modes are robust to large localized perturbations while having comparable GVD robustness characteristics. These topologically protected states may be well-suited for chip-scale nanofabrication of semiconductor waveguides for communications and frequency source generation.

ACKNOWLEDGMENTS

The authors thank C. Wilson and M. Spiegelman at Columbia LDEO for providing valuable computing resources, E. D. Kingstein and J. F. McMillan for helpful discussions, and the referees for many stimulating insightful comments. This work was supported, in part, by NSF Grants DMS-1265524 (C.L.F.), DMS-1008855 and DMS-1412560 (J.P.L.-T., M.I.W.), CMMI-1520952 (C.W.W., J.Y.), (IGERT) DGE-1069420 (J.P.L.-T., M.I.W., C.W.W., J.Y.); ONR Grant N00014-14-1-0041 (C.W.W., J.Y.); and the Simons Foundation Grant 376319 (M.I.W.).
[24] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Physical Review Letters 42, 1698 (1979).
[25] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[26] Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, Physical review letters 102, 253904 (2009).
[27] Y. N. Joglekar, C. Thompson, D. D. Scott, and G. Vemuri, The European Physical Journal Applied Physics 63, 30001 (2013).
[28] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarzian, A. H. MacDonald, and G. Shvets, Nature materials 12, 233 (2013).
[29] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature 496, 196 (2013).
[30] T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets, Physical review letters 114, 127401 (2015).
[31] P. Titum, N. Lindner, M. Rechtsman, and G. Refael, arXiv:1403.0592.
[32] J. Zeuner, M. C. Rechtsman, and A. Szameit, Opt. Lett. 39, 602 (2014).
[33] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z. Chen, A. Szameit, and M. Segev, Phys. Rev. Lett. 111, 103901 (2013).
[34] Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Phys. Rev. Lett. 111, 243905 (2013).
[35] C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
[36] M. Hoefer and M. Weinstein, SIAM J. Math. Anal. 43, 971 (2011).
[37] V. Duchêne, I. Vukičević, and M. I. Weinstein, Commun. Math. Sci. 13, 777 (2015).
[38] S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
[39] G. Lifante, Integrated Photonics: Fundamentals (Wiley Online Library, Chichester, 2003).
[40] K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equation and the Schrödinger Equation (John Wiley & Sons, New York, 2004).
[41] G. P. Agrawal, Nonlinear fiber optics (Academic press, San Diego, 2007).