Discrepant Results of Hepatitis B Virus Genotype Determination by PCR and DNA Sequencing

Yihan Xiao
Hainan Medical University

Lan Ni
Wuhan University Zhongnan Hospital

Zhigang Cui
Hainan Medical University

Long Sun
Hainan Medical University

Xiaojun Zhou
Hainan Medical University

Xinjun Chen
Hainan Medical University

Lihua Li
Hainan Medical University

Chuanning Tang
Hainan Medical University

Feifei Yin
Hainan Medical University

Jiang Du
Hainan Medical University

Lina Liu
Hainan Medical University

Gang Lu
Hainan Medical University

Xiuji Cui
Hainan Medical University
Huji@hainmc.edu.cn
Hainan Medical University
https://orcid.org/0000-0003-1707-2492

Yunfan Quan
Hainan Medical University

Research Article

Keywords: Hepatitis B virus, genotypes, multiplex-PCR, Escherichia coli

Posted Date: November 23rd, 2021
Abstract

Currently, multiplex-PCR with genotype-specific primers is widely used for preliminary screening of hepatitis B virus (HBV) genotyping, despite its relatively lower accuracy compared with whole genome sequencing. Here, we present the discrepant results of HBV genotyping by PCR and full-length sequencing. HBV DNA was isolated from chronic hepatitis B serum and the HBV genotype was detected by PCR using genotype-specific primers and full-length genome sequencing. As a result, the determination of genotype B by the PCR method was consistent with the DNA sequencing results; however, PCR revealed that genotype C exhibited a mixed genotype of B and C in the current study. In conclusion, the PCR-based genotyping method may not provide accurate information of the HBV genotype and whole genome sequencing remains the “gold standard” method for HBV genotyping.

1. Introduction

Currently, over 290 million people worldwide suffer from chronic hepatitis B virus (HBV) infection (WHO 2021). In China, approximately 7.18% of the population are HBV carriers who are at risk of developing end stages of liver disease, including liver cirrhosis and hepatocellular carcinoma (Chen et al. 2006; Wang et al. 2014).

HBV contains a partially double-stranded DNA within a nucleocapsid surrounded by envelope proteins (Delius et al. 1983). HBV genome replication relies on a viral polymerase that harbors RNA-dependent reverse transcriptase (Summers and Mason 1982; Hu and Seeger 2015). However, the high error rate of RT coupled with a substantial amount of daily production (approximately 10^{11} copies/day), as well as selected immune pressures, frequently results in substantial genetic diversity that may evolve into several HBV genotypes (Lau and Wright 1993; Pourkarim et al. 2014; Lin and Kao 2015).

Recently, HBV has been classified into nine genotypes (A–I) and one tentative genotype J based on more than 7.5% differences in the full-length HBV genome sequences (Kramvis and Kew 2007; McNaughton et al. 2020). In addition, each genotype is further divided into subgenotypes based on more than 4.5% and less than 7.5% nucleotide differences (Kramvis and Kew 2007).

It has been shown that the different HBV genotypes display distinct tendencies of chronic infection, HBeAg seroconversion, and responses to interferon-based therapy (Orito et al. 2001; Kao 2002; Kao et al. 2004; Livingston et al. 2007; Ito et al. 2014; McMahon et al. 2021). Although HBV genotyping has not been widely used in clinical settings, the recent European Association for the Study of the Liver guidelines for HBV treatment recommend different timelines for treatment cessation due to a lack of response for genotypes A-D (European Association for the Study of the Liver. Electronic address and European Association for the Study of the 2017). This indicates that the HBV genotype is beginning to be considered in the context of patient management.

Several molecular-based methods have been developed for HBV genotyping, including polymerase chain reaction (PCR) with genotype-specific primers, PCR-restriction fragment length polymorphism, PCR-invader assay, oligonucleotide microarray chip, and sequencing analysis of the whole or portions of the HBV
among them, the sequencing analysis of whole HBV genome is considered to be the “gold standard” method for genotyping; however, it is relatively time-consuming and expensive, especially with respect to the large number of samples (Kramvis and Kew 2007; McNaughton et al. 2020). By contrast, since PCR-based genotyping methods are rapid and inexpensive, they are widely used in HBV genotyping; however, any nucleotide substitution in the PCR primer binding site may alter the HBV genotyping results.

In the present study, we found discrepancies in the results between PCR-based methods and the whole HBV genome sequencing analysis. The results and the possible reason for the discrepancy is described.

2. Materials And Methods

2.1 Isolation of serum HBV DNA and PCR-based HBV genotyping

Serum samples from 52 Chronic hepatitis B patients were randomly collected from the first affiliated hospital and the second affiliated hospital of Hainan Medical University, Haikou, Hainan, China. HBV DNA was isolated from 200 µL of serum using a QIAamp MinElute Virus Spin Kit (Qiagen, Cat#5704) in accordance with the manufacturer’s instructions. The sampling procedures were approved by the Ethics Committee of Hainan Medical University.

HBV genotype-specific primers introduced by Naito H et al. were used to detect the HBV genotypes using nested PCR (Naito et al. 2001). In brief, the nucleotide positions from 2,823 to 704 of the HBV genome were first amplified by universal primers using serum HBV DNA as a template. Next, a second round of PCR was carried out using the mixture of genotype-specific primers (genotypes A, B, and C) (Table 1). The HBV genotype was evaluated based on the migration of PCR products via DNA electrophoresis on a 3% agarose gel. Negative controls were included at each step of the PCR reaction to avoid false-positive results.
Table 1
List of PCR primer pairs

Primers	Sequence (5’→3’)	Nucleotide position
Genotypic PCR		
First round	P1 5'-TCACCATATTCTTTGGGAACAAGA-3'	nt 2823-2845
	S1-2 5'-CGAACCACTGAACAAATGGC-3'	nt 685-704
Second round	genotype A 5'-CTCGCGGAGATTGACGAGATGT-3'	nt 113-134
	genotype B 5'-CAGGTTGTTGAGTGACTGGAGA-3'	nt 324-345
	genotype C 5'-GGTCCTAGGAATCTGTGATTTG-3'	nt 165-186
	genotype ABC 5'-GGCTCMAGTTCMGGAACAGT-3'	nt 67-86
HBV Plasmid		
Full length	F-1818(Sacl) 5'-CTATATTAAGCAGAGCTCCACCAGCACCATGCAACTTTTTC-3'	nt 1804-1826
	L-Reverse(Sapi) 5'-CCGGAAGCTTGGAGCTCTTCAACACACCAATTTATGCTACT-3'	nt 1783-1803
For sequencing	pLB forward 5'-CGACTCACTATAGGGAGAGCGGC-3'	pLB vector (HBV nt1804)
	P4 5'-CCTTGGACACATAAGGTGGG-3'	nt 2457-2476
	P5 5'-GTGGAGCCCTCAGGCTCAGG-3'	nt 3075-3094
	P6 5'-GCTGCTATGCTCATTCTTC-3'	nt 415-433
	P7 5'-CCAACTTACAAGGCCCTTTC-3'	nt 1102-1120

2.2 Amplification of the full-length of HBV genome and sequencing analysis
To further verify the HBV genotype, the full-length of HBV genome was amplified using F-1818/L-reverse primer pairs using KOD DNA polymerase (TOYOBO, Japan, Cat#KMM101), which possesses proof-reading activity to minimize nucleotide mismatch (Table 1). The PCR products were recovered from the 1% agarose gel and ligated with the pLB-vector (Tiangen, Cat#VT205), and were subsequently transformed into DH5α Escherichia coli. Positive colonies detected by conventional colony PCR with genotype-specific primer pairs were further cultured in Luria Broth medium containing ampicillin (100 mg/mL). Plasmid DNA was isolated and subjected to the full-length HBV genome sequencing.

The obtained HBV sequences were genotyped using the NCBI web-based HBV genotyping tool (https://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) (Rozanov et al. 2004).

3. Results

3.1 Phenomenon of the genotype B and C mixture

In the present study, we tested the accuracy of PCR-based HBV genotyping in 52 serum samples before commencing large scale HBV genotype screening. As a result, 55.8% (29 of 52) of the samples were determined to be HBV genotype B. Intriguingly, 44.2% (23 of 52) samples were determined as a mixture of genotype B and C based on the migration of PCR products in DNA electrophoresis. The representative pattern of DNA migration on electrophoresis is described in Figure 1A. Moreover, based on the DNA band density on agarose gel, the PCR production of genotypes B and C was variable in the serum samples; some samples produced more genotype B than C (Figure 1A, lane 3) or produced less genotype B than C (Figure 1A, lane 4).

3.2 Differentiation of mono- or co-infection of the HBV genotype

To verify whether the mixed genotype phenomenon was due to the co-infection of HBV genotype B and C, we randomly selected three genotype B samples and three mixed genotype samples for whole genome sequencing. The amplified whole HBV genome was further cloned into the pLB-vector. Next, ten colonies from each sample were selected and subjected to conventional colony-PCR using genotype-specific primers to verify the success of cloning and the HBV genotype. As a result, colonies from genotype B continued to be detected as genotype B (Figure 1B, lane 2) and colonies from the mixed genotype were detected as a mixture of genotype B and C (Figure 1B, lane 3). These findings suggest that the phenomenon of the genotype mixture was not the result of a co-infection with genotypes B and C.

3.3 Determination of the HBV genotype using the NCBI web-based HBV genotyping tool

To study the precise genotype of the cloned full-length HBV genome, one colony from each sample was further cultured in Luria Broth medium. The plasmid DNA was isolated and subjected to a sequencing analysis. The obtained HBV sequences were genotyped using the NCBI web-based HBV genotyping tool (https://www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi). The primer pairs used for full-length sequencing are listed in Table 1. The obtained full-length HBV genome sequences were submitted to
GenBank (Accession Nos: MZ934422, MZ934424, MZ934425, MZ934423, MZ934426, and MZ934427). As a result, the mixed genotype samples (Accession Nos: MZ934422, MZ934424, and MZ934425) were all classified as genotype C, and the genotype B samples were all classified as genotype B.

3.4 Comparison of the genotype B-specific primer sequences

To compare the sequences of genotype B-specific primers between genotypes B and C, the reverse primer of genotype B was aligned with the six aforementioned sequences. Unlike the genotype B samples, which had almost identical sequences to the primer, genotype C had three nucleotide mismatches (Figure 2): one located at the 5’ end of the primer sequence and two situated at the 3’ end of the primer sequence.

Discussion

In the present study, we attempted to test the accuracy of a PCR-based HBV genotyping method in a small number of samples prior to initiating large scale HBV genotype screening. Intriguingly, the phenomenon of mixed genotypes was detected in 44.2% (23 of 52) of serum samples using genotype-specific primers (Naito et al. 2001). Since the genotype-specific primers were designed to detect a single genotype, we assumed that patients were co-infected with both genotypes B and C. To address this assumption, we randomly selected six samples and the full-length HBV genome was amplified, cloned, and transformed into *E.Coli*.

While the colony that should have contained one HBV genotype was subjected to genotype-specific PCR, it still showed the mixed genotype phenomenon, suggesting that it was not a genotype B and C co-infection. Based on the full-length HBV genome sequences and web-based genotyping, they all belonged to genotype C. Next, we assumed that the HBV genotype C DNA may contain highly homologous DNA sequences to the genotype B primer binding site. After comparing the genotype B specific primer sequences with the HBV genotype C DNA sequences, three nucleotide mismatches were found (Figure 2): one was located at the 5’ end of the primer sequence and two were situated at the 3’ end of the primer sequence. Although the three nucleotide mismatches, especially the mismatch at the 3’ end of the primer, may reduce the primer binding efficiency, the genotype B-specific primer in our study continued to efficiently bind to HBV genotype C. This effect may result in the genotype B and C mixture phenomenon. In addition, although the six successfully amplified full-length genomes cannot represent all of the studied samples, the results suggest that detection of the HBV genotype via PCR-based methods may easily mislead the mono-infection or co-infection results of the HBV genotype.

Taken together, the present findings indicate that PCR-based HBV genotyping may not be accurate for the determination of the HBV genotype. Moreover, whole HBV genome sequencing remains the “gold standard” for HBV genotyping.

Declarations

Conflict of interest

All authors declare that they have no conflict of interest.
Research involving human participants and/or animals

This article did not contain any study with human participants or animals.

Acknowledgements:

This work was supported by Major Science and Technology Program of Hainan Province (Grant No. ZDKJ2020003), Hainan Provincial Natural Science Foundation of China (Grant No. 819QN237 for FQ, 820RC640 for XC), the National Natural Science Foundation of China (Grant No. 81660335, 82060365) for XC, and Startup Foundation of Hainan Medical University for XC. Research project of the Hainan academician innovation platform (Grant No. YSPTZX202004).

References

1. Chen CJ et al. (2006) Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295:65-73 doi: 10.1001/jama.295.1.65
2. Chen J et al. (2007) Improved multiplex-PCR to identify hepatitis B virus genotypes A-F and subgenotypes B1, B2, C1 and C2. J Clin Virol 38:238-243 doi: 10.1016/j.jcv.2006.12.007
3. Delius H, Gough NM, Cameron CH, Murray K (1983) Structure of the hepatitis B virus genome. J Virol 47:337-343
4. European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the Liver (2017) EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 67:370-398 doi: 10.1016/j.jhep.2017.03.021
5. Hu J, Seeger C (2015) Hepadnavirus Genome Replication and Persistence. Cold Spring Harb Perspect Med 5:a021386 doi: 10.1101/cshperspect.a021386
6. Ito K et al. (2014) Risk factors for long-term persistence of serum hepatitis B surface antigen following acute hepatitis B virus infection in Japanese adults. Hepatology 59:89-97 doi: 10.1002/hep.26635
7. Kao JH (2002) Hepatitis B viral genotypes: clinical relevance and molecular characteristics. J Gastroenterol Hepatol 17:643-650
8. Kao JH, Chen PJ, Lai MY, Chen DS (2004) Hepatitis B virus genotypes and spontaneous hepatitis B e antigen seroconversion in Taiwanese hepatitis B carriers. J Med Virol 72:363-369 doi: 10.1002/jmv.10534
9. Kirschberg O, Schuttler C, Repp R, Schaefer S (2004) A multiplex-PCR to identify hepatitis B virus--enotypes A-F. J Clin Virol 29:39-43 doi: 10.1016/s1386-6532(03)00084-2
10. Kramvis A, Kew MC (2007) Epidemiology of hepatitis B virus in Africa, its genotypes and clinical associations of genotypes. Hepatol Res 37:S9-S19 doi: 10.1111/j.1872-034X.2007.00098.x
11. Lau JY, Wright TL (1993) Molecular virology and pathogenesis of hepatitis B. Lancet 342:1335-1340
12. Lin CL, Kao JH (2015) Hepatitis B virus genotypes and variants. Cold Spring Harb Perspect Med 5:a021436 doi: 10.1101/cshperspect.a021436
13. Livingston SE et al. (2007) Hepatitis B virus genotypes in Alaska Native people with hepatocellular carcinoma: preponderance of genotype F. J Infect Dis 195:5-11 doi: 10.1086/509894
14. McMahon BJ et al. (2021) Hepatitis B Virus (HBV) Genotype: A Significant Risk Factor in Determining which Patients with Chronic HBV Infection should Undergo Surveillance for Hepatocellular Carcinoma: The Hepatitis B Alaska (HEP-B-AK) Study. Hepatology doi: 10.1002/hep.32065
15. McNaughton AL, Revill PA, Littlejohn M, Matthews PC, Ansari MA (2020) Analysis of genomic-length HBV sequences to determine genotype and subgenotype reference sequences. J Gen Virol 101:271-283 doi: 10.1099/jgv.0.001387
16. Naito H, Hayashi S, Abe K (2001) Rapid and specific genotyping system for hepatitis B virus corresponding to six major genotypes by PCR using type-specific primers. J Clin Microbiol 39:362-364 doi: 10.1128/JCM.39.1.362-364.2001
17. Orito E et al. (2001) Geographic distribution of hepatitis B virus (HBV) genotype in patients with chronic HBV infection in Japan. Hepatology 34:590-594 doi: 10.1053/jhep.2001.27221
18. Pourkarim MR, Amini-Bavil-Olyaee S, Kurbanov F, Van Ranst M, Tacke F (2014) Molecular identification of hepatitis B virus genotypes/subgenotypes: revised classification hurdles and updated resolutions. World J Gastroenterol 20:7152-7168 doi: 10.3748/wjg.v20.i23.7152
19. Rozanov M, Plikat U, Chappey C, Kochergin A, Tatusova T (2004) A web-based genotyping resource for viral sequences. Nucleic Acids Res 32:W654-659 doi: 10.1093/nar/gkh419
20. Summers J, Mason WS (1982) Replication of the genome of a hepatitis B–like virus by reverse transcription of an RNA intermediate. Cell 29:403-415
21. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY (2014) The global burden of liver disease: the major impact of China. Hepatology 60:2099-2108 doi: 10.1002/hep.27406
22. WHO (2021) Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

Figures
Figure 1

Detection of HBV genotypes. A) HBV DNA templates in the serum. B) Conventional colony PCR.
Abbreviations: M, DNA marker; B, genotype B; C, genotype C; B&C, a mixture of genotype B and C; bp, base pair.

Figure 2

Alignment of the genotype B-specific primer with a full-length genotype C sequence. Genotype C full-length genomes from the present study were aligned with the genotype B-specific primer (reverse primer). The mismatched nucleotides are indicated with a rectangular box.