An algebraic model for the free loop space

Manuel Rivera

Abstract. We describe an algebraic chain level construction that models the passage from an arbitrary topological space to its free loop space. The input of the construction is a categorical coalgebra, i.e. a curved coalgebra satisfying certain properties, and the output is a chain complex. The construction is a modified version of the coHochschild complex of a differential graded (dg) coalgebra. When applied to the chains on an arbitrary simplicial set \(X \), appropriately interpreted, it yields a chain complex that is naturally quasi-isomorphic to the singular chains on the free loop space of the geometric realization of \(X \). We relate this construction to a twisted tensor product model for the free loop space constructed using the adjoint action of a dg Hopf algebra model for the based loop space.

1. Introduction

To any space \(Y \) one can naturally associate a new space \(LY \) defined as the set of continuous maps from the circle \(S^1 \) to \(Y \) equipped with the compact-open topology. The space \(LY \) is called the free loop space of \(Y \) and may be equipped with a natural \(S^1 \)-action given by rotation of loops. In this article, we present an algebraic chain level model for the passage \(Y \to LY \) that does not assume any hypothesis on the underlying space \(Y \). The construction requires a small amount of data and, consequently, is potentially useful for calculations and for studying how the algebraic topology of a geometric space manifests at the level of the free loop space.

The main idea is inspired by the following picture. Suppose \(X \) is a simplicial set. For the purposes of capturing the intuitive idea, the reader may assume \(X \) arises from a simplicial complex equipped with a total ordering of its vertices. We consider ordered sequences \((\sigma_0, \cdots, \sigma_p)\) of simplices in \(X \) such that the last vertex of \(\sigma_i \) is the first vertex of \(\sigma_{i+1} \) for \(i = 0, \cdots, p-1 \) and the last vertex of \(\sigma_p \) is the first vertex of \(\sigma_0 \). These ordered sequences of simplices were called closed necklaces in [RS18].

We want to think of a closed necklace in \(X \) as a family of free loops in \(|X| \), the geometric realization of \(X \), parameterized by a cube of an appropriate dimension. More precisely, adapting a classical construction of Adams described in [Ada56], it is possible to decompose a closed necklace \((\sigma_0, \cdots, \sigma_p)\) into a family of free loops in \(|X| \) parameterized by a particular subdivision of a cube of dimension \(|\sigma_0| + \cdots + |\sigma_p| - p\) having the following properties:

(i) the base points of every loop in this family always lie inside the special simplex \(\sigma_0 \), and

(ii) the boundary of such family may be described in terms of all “sub-closed necklaces” of codimension 1.

In [RS18], this idea was used to construct a combinatorial model for \(L|X| \) given by gluing a set of polyhedra indexed by closed necklaces in \(X \). In the present paper, we are concerned...
with an algebraic version of this construction. Namely, for an arbitrary commutative ring \(k \), we describe a functorial construction that produces a \(k \)-chain complex, directly from the natural algebraic structure of the normalized \(k \)-chains \(C_\ast(X) \) suitable interpreted, that computes the \(k \)-homology of \(L|X| \). We highlight four essential observations that are used in this algebraic construction.

(1) The first observation is that the graded \(k \)-module freely generated by closed necklaces in \(X \) may be described algebraically in terms of the cotensor product for a bicomodule structure of the normalized chains \(C_\ast(X) \) over the coalgebra \(C_0(X) = k[X_0] \) generated by the set of vertices of \(X \). This bicomodule structure on \(C_\ast(X) \) is determined by projecting a simplex to its first or last vertex. Then for any pair of simplices \(\sigma_0 \) and \(\sigma_1 \) in \(X \), requiring the last vertex of \(\sigma_0 \) to be the first vertex of \(\sigma_1 \) is equivalent to requiring the tensor \(\sigma_0 \otimes \sigma_1 \in C_\ast(X) \otimes_k C_\ast(X) \) to lie inside the sub-\(k \)-module

\[
C_\ast(X) \square C_0(X) C_\ast(X) \subseteq C_\ast(X) \otimes_k C_\ast(X),
\]

where \(\square_{C_0(X)} \) denotes the cotensor product of \(C_0(X) \)-bicomodules.

(2) The second observation is that the boundary of a closed necklace representing a family (or “chain”) of free loops may be described algebraically in terms of certain simplicial face maps and the Alexander-Whitney coproduct

\[
\Delta : C_\ast(X) \to C_\ast(X) \square C_0(X) C_\ast(X).
\]

The resulting description of the boundary is reminiscent of the differential of the coHochschild complex of a differential graded (dg) coalgebra as studied in [Doi81], [HPS09], and other articles. However, now we are in the different context of comonoids in the category of bicomodules over a coalgebra with cotensor product as monoidal structure.

(3) The third observation is that the relevant structure of \(C_\ast(X) \) for our purposes may be packaged as a curved coalgebra satisfying certain properties, which we call a categorical coalgebra. This notion is inspired by Holstein and Lazarev’s categorical Koszul duality theory [HL22]. Any categorical coalgebra \(C \) gives rise to a comonoid in the monoidal category of \(C_0 \)-bicomodules with cotensor product. Furthermore, any categorical coalgebra gives rise to a dg category through a many object version of the cobar construction. The main construction of the article is then a version of the coHochschild chain complex for categorical coalgebras that coincides with the classical coHochschild complex when restricted to connected dg coalgebras. It has a categorical coalgebra as input and a mixed complex, i.e. a chain complex equipped with an additional degree +1 operator squaring to zero, as output. The coHochschild complex is invariant with respect to a suitable notion of weak equivalence drawn from Koszul duality theory.

(4) The fourth observation is that in order to recover a homological model for the free loop space \(L|X| \) for an arbitrary simplicial set \(X \), certain formal localization must be performed at the 1-simplices of \(X \). This step is not necessary if all the 1-simplices in \(X \) already have inverses up to homotopy (e.g. \(X \) is a Kan complex). This localization may be described in purely algebraic terms. In order to extract the set of elements to be localized, we consider categorical coalgebras equipped with an additional dg coalgebra enrichment on their associated dg category. We call these \(B_\infty \)-categorical coalgebras. We define an extended version of the coHochschild complex that takes a \(B_\infty \)-categorical coalgebra and produces a chain complex.
by formally inverting a particular set (extracted by applying the set-like elements functor to
the dg coalgebra enrichment of the associated cobar dg category) in the coHochschild complex
of the underlying categorical coalgebra.

Our main result, informally stated, is the following.

Theorem. For an arbitrary simplicial set X, the extended coHochschild complex of
$C_*(X)$, a B_∞-categorical coalgebra model for the normalized chains on X, is naturally quasi-
isomorphic to $C_{\text{sing}}^*(L|X|)$, the singular chains on the free loop space.

As our proof will reveal, this result may be understood as a simplification of a theorem
proved by Goodwillie in [Goo85] and independently by Burghelea and Fedorowicz in [BF86]
saying the following. For any path-connected pointed topological space (Y, b), the Hochschild
chain complex of the Pontryagin dg algebra $C_{\text{sing}}^*(\Omega b Y)$ of singular chains on the based
(Moore) loop space of Y at b is naturally quasi-isomorphic to $C_{\text{sing}}^*(LY)$. Our streamlined
model is essentially deduced from this result using (a generalization of) the fact that for
any conilpotent dg coalgebra C we have two resolutions for the dg algebra $A = \text{Cobar}(C)$
as an A-bimodule: 1) the classical two-sided bar resolution $\text{Bar}(A, A, A)$, and 2) a smaller
resolution $\mathcal{Q}(A, C, A)$ with underlying module $A \otimes C \otimes A$. The first one is used when defining
the Hochschild complex of A, while the second one is used when defining the coHochschild
complex of C. We describe an explicit natural quasi-isomorphism of A-bimodules

$$\mathcal{Q}(A, C, A) \xrightarrow{\sim} \text{Bar}(A, A, A),$$

see Proposition 16.

Finally, we establish a relationship between the extended coHochschild complex model for
the free loop space and Brown’s twisted tensor product model for a fibration. This involves
proving that a natural dg bialgebra structure constructed on the extended cobar construction
of a reduced simplicial set is in fact a dg Hopf algebra. We then model the holonomy of
the free loop space fibration in terms of the adjoint action of such dg Hopf algebra. This
relationship with Brown’s twisted tensor product may be used to give an algebraic model
of the inclusion $Y \to LY$ of points as constant loops in terms of the coHochschild complex.
We expect this to be useful in studying and computing the string topology of non-simply
connected manifolds.

Acknowledgments. This research was supported by NSF Grant 210554 and the Karen
EDGE Fellowship. The author would like to thank Julian Holstein, Ralph Kaufmann, Andrey
Lazarev, Anibal Medina, Yang Mo, Maximilien Peroux, Dennis Sullivan, Daniel Tolosa, and
Mahmoud Zeinalian, for fruitful exchanges.

2. Preliminaries

Fix a commutative ring with unit k. We assume familiarity with the notions of differential
graded (dg) k-modules, k-algebras, k-coalgebras and k-categories. For generalities about
dg categories and their homotopy theory we refer to [Tab05], [Tab10], and [Toë11]. All
(co)algebras in this article will be (co)associative and (co)unital. All differentials will have
degree -1. We denote by Ch_k the category of dg k-modules (i.e. k-chain complexes) and
$\text{Ch}_k^{\geq 0}$ its full sub-category of non-negatively graded objects. Denote by dgAlg_k, dgCoalg_k,
and dgCat_k the categories of dg algebras, dg coalgebras, and small dg categories, respectively.
In this article, we will furthermore assume that all dg algebras and coalgebras are flat as
k-modules and all dg categories are locally k-flat. An additional subscript of “≥ 0” in the
notation for these categories will also mean the full sub-category of non-negatively graded objects. Whenever we write ⊗ we mean ⊗_k, unless noted otherwise. All signs in this article are determined by the Koszul sign convention.

For any graded algebra A, we denote by A^{op} the graded algebra with A as underlying k-module and multiplication defined by µ_A : t, where t : A ⊗ A → A ⊗ A is given by t(a ⊗ b) = (-1)^{|a||b|}b ⊗ a and µ : A ⊗ A → A is the multiplication of A. Similarly, for any graded coalgebra C, we denote by C^{op} the graded coalgebra with X as underlying k-module and coproduct defined by t ∘ Δ where Δ : C → C ⊗ C is the coproduct of C.

For any set S we denote by k[S] the k-coalgebra whose underlying k-module is freely generated by S and whose coproduct Δ : k[S] → k[S] ⊗ k[S] is determined by Δ(s) = s ⊗ s for any s ∈ S. The counit ε : k[S] → k is determined by ε(s) = 1_k for any s ∈ S.

2.1. Cotensor product

Let C be a dg k-coalgebra. Let M and N be dg right and left C-comodules, respectively, with coaction maps ρ_M : M → M ⊗ C and ρ_N : N → C ⊗ N. The cotensor product of M and N over C is defined as

\[(2.1) M \square_C N = \ker(\rho_M \otimes \id_N - \id_M \otimes \rho_N : M \otimes N \rightarrow M \otimes C \otimes N).\]

The category of k-flat dg C-bicomodules, denoted by C-biComod, becomes a monoidal category when equipped with the cotensor product ⊙_C and unit object C. Suppose A is a monoid in this category, namely, a dg C-bicomodule equipped with an associative product A ⊙_C A → A and unit u : C → A. Let E and F be dg right and left C-comodules, respectively. Suppose that E and F are further equipped with right and left dg A-module structures respectively, namely, we have action maps µ_E : E ⊙_C A → E and ρ_F : A ⊙_C F → F satisfying the usual compatibilities. Define the tensor product \(E \boxtimes_A F \) over A to be the dg k-module

\[(2.2) E \boxtimes_A F = \ker(\rho_F \square_C \id_F - \id_E \square \rho_F : E \square_C A \square_F F \rightarrow E \square_C F).\]

2.2. DG categories as monoids

Given any dg category A ∈ dgCat_k with object set Θ_A define a monoid \(M(A) \) in the monoidal category of dg k[Θ_A]-bicomodules equipped with the cotensor product ⊙_{k[Θ_A]} as follows. The underlying dg k-module of \(M(A) \) is given by the direct sum

\[\bigoplus_{x, y \in Θ_A} A(x, y). \]

The k[Θ_A]-bicomodule structure maps

\[M(A) \rightarrow k[Θ_A] \otimes M(A) \]

and

\[M(A) \rightarrow M(A) \otimes k[Θ_A] \]

are induced by the source and target maps in A, respectively. The monoid structure

\[\square_{k[Θ_A]} M(A) \rightarrow M(A) \]

is induced by the composition of morphisms in A and the unit map k[Θ_A] → M(A) is determined by \(x \mapsto \id_x \in A(x, x)_0 \) for all \(x \in Θ_A \).
2.3. Two sided bar construction. Let A be a dg category and, for simplicity, denote by A_0 the coalgebra $k[\mathcal{O}_A]$. Let M and N be right and left dg modules over $M(A)$, respectively, in the monoidal category $(A_0\text{-biComod}, \boxtimes_{A_0})$. This means that M and N are k-flat dg A_0-bicomodules equipped dg maps

$$M \boxtimes_{A_0} M(A) \to M \text{ and } M(A) \boxtimes_{A_0} N \to N$$

defining right and left dg $M(A)$-actions, respectively. The two-sided bar construction of M and N over A is the dg A_0-bicomodule

$$\text{Bar}_{A_0}(M, A, N)$$

defined as follows. The underlying graded k-module is defined to be

$$\bigoplus_{i=0}^{\infty} \left(M \boxtimes_{A_0} (s^{i+1}M(A)) \boxtimes_{A_0} N \right),$$

where $M(A) = M(A)/u(A_0)$, where $u : A_0 \to M(A)$ is the unit map.

We will use the classical “bar” notation

$$m[a_1] \cdots [a_p] n$$

to denote a generator

$$m \square s^{+1}a_1 \square \cdots \square s^{+1}a_p \square n,$$

where $m \in M$, $n \in N$, and $a_i \in M(A)$ for $i = 1, \cdots, p$. The differential

$$\partial_{M,A,N} : \bigoplus_{i=0}^{\infty} \left(M \boxtimes_{A_0} (s^{i+1}M(A)) \boxtimes_{A_0} N \right) \to \bigoplus_{i=0}^{\infty} \left(M \boxtimes_{A_0} (s^{i+1}M(A)) \boxtimes_{A_0} N \right)$$

is defined as the sum of linear maps

$$\partial_{M,A,N} = d_M \boxtimes \text{id}_{M(A)} \boxtimes \text{id}_N + \text{id}_M \boxtimes D_{M(A)} \boxtimes \text{id}_N + \text{id}_M \boxtimes \text{id}_{M(A)} \boxtimes d_N + \theta,$$

where d_M, d_N, and $D_{M(A)}$ are the differentials of M, N, and $M(A)$, respectively, and θ is given by the following formula

$$\theta(m[a_1] \cdots [a_p] n) = m \cdot a_1[a_2] \cdots [a_p] n + \sum_{i=1}^{p-1} \pm m[a_1] \cdots [a_i a_{i+1}] \cdots [a_p] n \pm m[a_1] \cdots [a_{p-1}] a_p m.$$

The associativity of the monoid structure of $M(A)$, the compatibilities of the differentials with the products and actions, and $d_M^2 = d_N^2 = D_{M(A)}^2 = 0$ all together imply that $\partial_{M,A,N}^2 = 0$.

The A_0-bicomodule structure on $\bigoplus_{i=0}^{\infty} \left(M \boxtimes_{A_0} (s^{i+1}M(A)) \boxtimes_{A_0} N \right)$ is given by the left and right A_0-comodule structures of M and N, respectively.

2.4. The Hochschild complex. For any dg category A, the chain complex

$$\text{Bar}_{A_0}(M(A), A, M(A))$$

has a natural dg $M(A)$-bimodule structure in the category of A_0-bicomodules with cotensor product \boxtimes_{A_0}. This construction is clearly functorial with respect to morphisms of dg categories. We recall the definition of the Hochschild chain complex.
Definition 1. Define a functor

$$C\mathcal{H}_{\ast} : \text{dgCat}^{\geq 0}_{k} \to \text{Ch}^{\geq 0}_{k},$$

called the Hochschild complex, as follows. For any $A \in \text{dgCat}^{\geq 0}_{k}$, the underlying dg k-module of $C\mathcal{H}_{\ast}(A)$ is defined by

$$\text{Bar}_{A_{0}}(M(A), A, M(A)) \otimes_{M(A) \otimes M(A)^{op}} M(A),$$

see 2.2 for notation.

The generators of $C\mathcal{H}_{\ast}(A)$ may be written as $[a_{1} \cdots | a_{p}| a_{p+1}]$, where $a_{p+1} \in M(A)$, $a_{i} \in M(A)$ with $s(a_{i}) = t(a_{i+1})$ for $i = 1 \cdots p$, and $t(a_{p+1}) = s(a_{p})$. Using this notation, the differential

$$\partial_{A} : C\mathcal{H}_{\ast}(A) \to C\mathcal{H}_{\ast-1}(A)$$

is given by the same formula as the differential for the Hochschild complex of a dg algebra. One may equip this construction with a mixed complex structure via Connes’ operator

$$B : C\mathcal{H}_{\ast}(A) \to C\mathcal{H}_{\ast+1}(A).$$

In this setting, B is given by

$$B([a_{1} \cdots | a_{p}| a_{p+1}]) = \sum_{i=1}^{p+1} \pm [a_{i} \cdots | a_{p+1}| a_{1} \cdots | a_{i-1}]id_{s(a_{i})} s$$

Just as in the classical case of the Hochschild complex of a dg algebra, one may check that $(\bigoplus_{n=0}^{\infty} C\mathcal{H}_{n}(A), \partial_{A}, B)$ is a non-negatively graded mixed complex functorially associated to any $A \in \text{dgCat}^{\geq 0}_{k}$.

3. Categorical coalgebras and the cobar construction

In this section we define the notion of categorical coalgebras. This is a version of a curved coalgebra over a set of “objects” or “points” satisfying certain properties. Any categorical coalgebra gives rise to a dg category through a many object version of the cobar construction. These notions have been adapted from [HL22] in order to be applied to the algebraic topology setting and to work over an arbitrary commutative ring k. The corresponding notion in [HL22] is that of a “pointed curved coalgebra”.

3.1. Categorical coalgebras.

Definition 2. A categorical k-coalgebra consists of the data $C = (C, \Delta, d, h)$ such that

1. $C = \bigoplus_{i=0}^{\infty} C_{i}$ is a non-negatively graded flat k-module.
2. $\Delta : C \to C \otimes C$ is a degree 0 coassociative counital coproduct with counit $\varepsilon : C \to k$
3. The set

$$\mathcal{S}(C) := \{x \in C : \Delta(x) = x \otimes x, \varepsilon(x) = 1_{k}\}$$

of “set-like” elements in C is non-empty and

$$C_{0} \cong k[\mathcal{S}(C)],$$

4. $d : C \to C$ is a linear map of degree -1 which is a graded coderivation of Δ.
5. The projection map $\varepsilon : C \to C_{0}$ satisfies $\varepsilon \circ d = 0$. In other words, $d : C_{1} \to C_{0}$ is the zero map.
(6) \(h : C \to k \) is a linear map of degree \(-2\) satisfying \(h \circ d = 0 \) and
\[
d \circ d = (h \otimes \text{id}) \circ (\Delta - \Delta^{op})
\]
where \(\Delta^{op} = t \circ \Delta \) for \(t(x \otimes y) = (-1)^{|x||y|} y \otimes x \). The right hand side of the above equation is being considered as a map \(C \to k \otimes C \cong C \). The map \(h \) is called the curvature of \(C \). Equation 3.1 may be rewritten as
\[
d^2(x) = \sum_{(x)} h(x')x'' + x' h(x'').
\]

Any categorical coalgebra \(C \) has a natural \(C_0 \)-bicomodule structure with coaction maps
\[
\rho_l : C \xrightarrow{\Delta} C \otimes C \xrightarrow{\text{id}_C \otimes \varepsilon} C_0 \otimes C
\]
and
\[
\rho_r : C \xrightarrow{\Delta} C \otimes C \xrightarrow{\varepsilon \otimes \text{id}_C} C \otimes C_0.
\]
Furthermore, the coassociativity of \(\Delta : C \to C \otimes C \) implies that \(\Delta : C \to C \otimes C \) factors as \(C \to C \otimes C_0 \to C \otimes C; \) so \(C \) may be regarded as a comonoid in the category of graded \(C_0 \)-bicomodules with monoidal structure given by the cotensor product \(\boxtimes \).

Remark 3. Note that it is possible for a categorical coalgebra to have non-zero curvature and for \(d : C \to C \) to square zero.

Definition 4. A morphism of categorical coalgebras \(C = (C, \Delta, d, h) \) and \(C' = (C', \Delta', d', h') \) consists of a pair \((f_0, f_1)\) where

(1) \(f_0 : (C, \Delta) \to (C', \Delta') \) is a morphism of graded \(k \)-coalgebras,

(2) \(f_1 : C \to C'_0 \) is a \(C'_0 \)-bicomodule map of degree \(-1\) such that the composition
\[
f_1 = \varepsilon \circ f_1, \text{ where } \varepsilon' \text{ is the counit of } C',
\]

satisfies
\[
f_0 \circ d = d' \circ f_0 + (f_1 \otimes f_0) \circ (\Delta - \Delta^{op})
\]
and
\[
h' \circ f_0 = h + f_1 \circ d + (f_1 \otimes f_1) \circ \Delta.
\]

The composition of two morphisms of categorical coalgebras is defined by
\[
(g_0, g_1) \circ (f_0, f_1) = (g_0 \circ f_0, g_1 \circ f_0 + g_0 \circ f_1).
\]

Denote by \(\text{cCoalg}_k \) the category of categorical coalgebras.

3.2. The cobar functor. Working over a field and with unbounded complexes, Holstein and Lazarev define in [HL22] a functor from pointed curved coalgebras to dg categories extending the classical cobar functor from conilpotent dg coalgebras to augmented dg algebras. The same construction can be defined for categorical coalgebras over an arbitrary ring. We now describe this construction in our setting.

Definition 5. Define a functor
\[
\Omega : \text{cCoalg}_k \to \text{dgCat}_k^{>0},
\]
called the cobar functor, as follows. Given any \(C = (C, d, \Delta, h) \in \text{cCoalg}_k \), the objects of \(\Omega(C) \) are the elements of the set \(\mathcal{S}(C) \) of set-like elements in \(C \).

For any \(x \in \mathcal{S}(C) \) denote by \(i_x : k \to C_0 = k[\mathcal{S}(C)] \) the map determined by \(i_x(1_k) = x \). The map \(i_x \) gives rise to a \(C_0 \)-bicomodule structure on \(k \) through the maps
\[
k \cong k \otimes k \xrightarrow{i_x \otimes \text{id}_k} C_0 \otimes k
\]
and
\[k \cong k \otimes k \overset{id_k \otimes i_z}{\longrightarrow} k \otimes C_0. \]

We denote this \(C_0 \)-bicomodule by \(k_z \) and its generator by \(id_z \).

Write \(C = \overline{C} \oplus C_0 \). Denote by \(s^{-1}\overline{C} \) the graded \(k \)-module obtained by applying the shifting \(\overline{C} \) by \(-1\). We have the following three degree \(-1\) maps:

1. \(\overline{d}: s^{-1}\overline{C} \to s^{-1}\overline{C} \)
2. \(\overline{\Delta}: s^{-1}\overline{C} \to s^{-1}\overline{C} \otimes s^{-1}\overline{C} \), and
3. \(\overline{h}: s^{-1}\overline{C} \overset{s^{-1}\overline{C} \to C \otimes C_0}{\longrightarrow} C \otimes C_0 \overset{h \otimes id}{\longrightarrow} k \otimes C_0 \cong C_0. \)

For any two \(x, y \in \mathcal{S}(C) \) define a non-negatively graded \(k \)-module by
\[\Omega(C)(x, y) = \bigoplus_{i=0}^{\infty} k_x \overline{\bigotimes} (s^{-1}\overline{C})^{\bigotimes i} k_y, \]
where \((s^{-1}\overline{C})^{\bigotimes i}\) denotes the \(i \)-fold cotensor product of \(C_0 \)-bicomodules and \((s^{-1}\overline{C})^{\bigotimes 0} = C_0. \)

We will use the notation \(\{c_1|\cdots|c_p\} \) to denote a generator
\[id_x \overline{\bigotimes} s^{-1}c_1 \overline{\bigotimes} \cdots \overline{\bigotimes} s^{-1}c_p \overline{\bigotimes} id_y \in \Omega(C)(x, y). \]

We say the monomial \(\{c_1|\cdots|c_p\} \) has length \(p \). In particular, note
\[\Omega(C)(x, x)_0 = k_x \oplus k_x \overline{\bigotimes} s^{-1}C_1 \overline{\bigotimes} k_x. \]

The differential
\[D_{x, y} : \Omega(C)(x, y)_k \to \Omega(C)(x, y)_{k-1} \]
is defined by extending
\[\overline{h} + \overline{d} + \overline{\Delta}: k_x \overline{\bigotimes} s^{-1}\overline{C} \overline{\bigotimes} k_y \to k_x \overline{\bigotimes} C_0 \overline{\bigotimes} k_y \oplus k_x \overline{\bigotimes} s^{-1}\overline{C} \overline{\bigotimes} k_y \oplus k_x \overline{\bigotimes} (s^{-1}\overline{C})^{\bigotimes 2} \overline{\bigotimes} k_y \]
as a “derivation” to monomials of arbitrary length. It follows directly from (2), (4), and (6) in Definition 2 that \(D_{x, y} \circ D_{x, y} = 0 \). The composition in \(\Omega(C) \) is given by concatenation of monomials. For every \(x \in \mathcal{S}(C) \), \(1_k \in k_x \cong k_x \overline{\bigotimes} C_0 \overline{\bigotimes} k_x \subset \Omega(C)(x, x)_0 \) is the identity morphism.

Given a morphism \((f_0, f_1): C \to C' \) between categorical coalgebras, define a morphism
\[\Omega(f_0, f_1): \Omega(C) \to \Omega(C') \]
of dg categories as follows. Since \(f_0: C \to C' \) is a map of coalgebras, \(f_0 \) restricts to a map of sets \(\mathcal{S}(C) \to \mathcal{S}(C') \), which defines the functor \(\Omega(f_0, f_1) \) on objects. For any two \(x, y \in \mathcal{S}(C) \)
define
\[\Omega(f_0, f_1)_{x,y}: \Omega(C)(x, y) \to \Omega(C')(f_0(x), f_0(y)) \]
by extending the map
(3.5) \[k_x \overline{\bigotimes} s^{-1}C \overline{\bigotimes} k_y \longrightarrow k_{f_0(x)} \overline{\bigotimes} s^{-1}C \overline{\bigotimes} k_{f_0(y)} \oplus k_{f_0(x)} \overline{\bigotimes} C_0 \overline{\bigotimes} k_{f_0(y)} \]

(3.6) \[\{c\} \mapsto \{f_0(c)\} + id_{f_0(x)} \overline{\bigotimes} f_1(c) \overline{\bigotimes} id_{f_0(y)} \]

“multiplicatively” to monomials \(\{c_1|\cdots|c_p\} \) of arbitrary length. Note that
\[k_{f_0(x)} \overline{\bigotimes} C_0 \overline{\bigotimes} k_{f_0(y)} \]
is a non-trivial \(k \)-module if and only if \(f_0(x) = f_0(y) \), in which case it is isomorphic to \(k \).

Hence, \(id_{f_0(x)} \overline{\bigotimes} f_1(c) \overline{\bigotimes} id_{f_0(y)} \) may be identified with a scalar. It follows directly from 3.2 and 3.3 that \(\Omega(f_0, f_1)_{x,y} \) is a chain map for each \(x, y \in \Omega_C \) and from 3.4 that compositions are compatible.
Remark 6. When k is a field, a categorical k-coalgebra is a pointed curved k-coalgebra C (as defined in [HL22]) that is non-negatively graded and whose coradical is exactly the degree zero summand $C_0 \subseteq C$ (which is assumed to be non-trivial). In this case, the splitting map (which is part of the structure in the definition of a pointed curved coalgebra) is precisely the projection map $C \to C_0$. In particular, by the definition of a pointed curved coalgebra, C_0 is generated by the set-like (sometimes called “group-like”) elements of C.

Definition 7. A B_∞-categorical coalgebra is a categorical coalgebra C equipped with degree 0 coassociative coproducts $\Delta_{x,y} : \Omega(C)(x,y) \to \Omega(C)(x,y) \otimes \Omega(C)(x,y)$ for all $x, y \in \Delta(C)$ making $\Omega(C)$ into a category enriched over $(\text{dgCoalg} \geq 0_k, \otimes)$, the monoidal category of differential non-negatively graded coassociative counital k-coalgebras. B_∞-categorical coalgebras form a category when equipped with maps of categorical coalgebras that preserve the additional structure. We denote this category by $B_\infty\text{-cCoalg}_k$. This notion has also been considered in [MRZ23].

3.3. The extended cobar functor. We define a new version of the cobar construction by formally inverting set-like elements in the dg coalgebra of morphisms of the cobar construction of a B_∞-categorical coalgebra, generalizing a construction of [HT10]. This will give rise to a functorial construction that recovers the dg category of paths of the geometric realization of a simplicial set X when applied to a B_∞-categorical coalgebra of chains on X, as it will be discussed in Section 4.

Let $\mathcal{Z} : B_\infty\text{-cCoalg}_k \to \text{Cat}$ be the functor defined as follows. For any $C \in B_\infty\text{-cCoalg}_k$, the set of objects of $\mathcal{Z}(C)$ is $\Delta(C)$. For any two objects x and y

$$\mathcal{Z}(C)(x,y) = \{ f \in \Omega(C)(x,y) | \Delta_{x,y}(f) = f \otimes f \text{ and } \varepsilon_{x,y}(f) = 1 \}.$$

In other words, $\mathcal{Z}(C)(x,y) = \Delta(\Omega(C)(x,y), \Delta_{x,y})$. Since the composition in $\Omega(C)$ is compatible with the dg coalgebra structures on the morphisms and identity morphisms are set-like, it follows that $\mathcal{Z}(C)$ becomes a category with composition induced by that of $\Omega(C)$. The functoriality of the construction follows since Ω is a functor and taking set-like elements in a coalgebra is functorial.

Definition 8. Define a functor

$$\hat{\Omega} : B_\infty\text{-cCoalg}_k \to \text{dgCat} \geq 0_k,$$

called the extended cobar functor, by letting

$$\hat{\Omega}(C) = \Omega(C)[\mathcal{Z}(C)^{-1}],$$

namely, by formally (strictly) inverting the set of 0-cycles determined by the morphisms of $\mathcal{Z}(C)$ inside $\Omega(C)$.

Remark 9. In practice, we will consider the above construction when the natural map

$$k[\mathcal{Z}(C)] \to \Omega(C)$$

is a cofibration of cofibrant and locally k-flat dg categories, where $k[\mathcal{Z}(C)]$ denotes the dg category obtained by linearizing the morphisms of $\mathcal{Z}(C)$ and defining each differential to be trivial.
In this case, the strict localization
\[\hat{\Omega}(C) = \Omega(C)[Z(C)^{-1}] \]
is a homotopical localization. In other words, under these hypotheses, an \(\Omega \)-quasi-equivalence \(f: C \to C' \) between categorical coalgebras induces a quasi-equivalence \(\hat{\Omega}(f): \hat{\Omega}(C) \to \hat{\Omega}(C') \) of \(\mathsf{dg} \) categories. This follows since we may interpret the extended cobar functor as a pushout of \(\mathsf{dg} \) categories
\[\hat{\Omega}(C) = \Omega(C) \bigsqcup_{k[Z(C)]} k[Z(C)][Z(C)^{-1}]. \]

This pushout is a homotopy pushout in Tabuada’s model structure on \(\mathsf{dgCat} \) when \(k[Z(C)] \to \Omega(C) \) is a cofibration of \(\mathsf{dg} \) categories, since both \(k[Z(C)] \) and \(k[Z(C)][Z(C)^{-1}] \) are locally \(k \)-flat \(\mathsf{dg} \) categories and consequently left proper objects, see [Hol14].

4. Chains on a simplicial set and the \(\mathsf{dg} \) category of paths

The first goal of this section is to describe a version of the normalized simplicial chains as a functor
\[C_*: s\mathsf{Set} \to \mathsf{B}_\infty \text{-cCoalg}_k. \]
Then we show that, for any simplicial set \(X \), the extended cobar construction applied to the \(\mathsf{B}_\infty \)-categorical coalgebra of chains \(C_*(X) \) yields a model for the \(\mathsf{dg} \) category of paths on the topological space \(|X| \).

4.1. Chains as a categorical coalgebra. For any simplicial set \(X \), denote by \((\overline{C}_*(X), \partial) \) the \(\mathsf{dg} \) \(k \)-module of normalized simplicial chains. Recall the Alexander-Whitney coproduct, given on any simplex \(\sigma \in X_n \) by
\[\Delta(\sigma) = \sum_{i=0}^{n} \sigma(0, \ldots, i) \otimes \sigma(i, \ldots, n), \]
imduces a coassociative coproduct
\[\Delta: \overline{C}_*(X) \to \overline{C}_*(X) \otimes \overline{C}_*(X) \]
of degree 0. In the above formula, \(\sigma(0, \ldots, i) \) and \(\sigma(i, \ldots, n) \) denote the first \(i \)-th and last \((n - i) \)-th faces of \(\sigma \), respectively. This construction gives rise to a functor
\[C_*^\Delta: s\mathsf{Set} \to \mathsf{dgCoalg}^{\geq 0}_k \]
given by
\[C_*^\Delta(X) = (\overline{C}_*(X), \partial, \Delta) \]

For any two simplicial sets \(X \) and \(Y \), the natural Eilenberg-Zilber shuffle map
\[\text{EZ}_{X,Y}: \overline{C}_*(X) \otimes \overline{C}_*(Y) \to \overline{C}_*(X \times Y) \]
is a map of \(\mathsf{dg} \) coalgebras and consequently makes \(C_*^\Delta \) into a lax monoidal functor, as explained in 17.6 of [EM66].

The projection map \(\epsilon: \overline{C}_*(X) \to \overline{C}_0(X) \) does not satisfy \(\epsilon \circ \partial = 0 \). However, as suggested in [HL22], the differential \(\partial \) may be modified to obtain a categorical coalgebra as follows.
Definition 10. For any $X \in \mathbf{sSet}$ define a categorical coalgebra $\tilde{C}^\Delta_*(X) \in \mathbf{cCoalg}_k$ as follows. The underlying graded k-module of $\tilde{C}^\Delta_*(X)$ is exactly $\mathcal{C}_*(X)$, which is given by $\mathcal{C}_n(X) = k[X_n]/D(X_n)$, where $D(X_n) \subseteq k[X_n]$ is the sub k-module generated by degenerate n-simplices.

Let $e : k[X_1] \to k$ be the linear map sending degenerate 1-simplices to $0 \in k$ and non-degenerate 1-simplices to $1 \in k$. The map e induces a linear map $\tilde{e} : \mathcal{C}_1(X) \to k$. Define a new differential

$$\tilde{\partial} : \mathcal{C}_*(X) \to \mathcal{C}_{*-1}(X)$$

by

$$\tilde{\partial} = \partial - (\text{id} \otimes \tilde{e} - \tilde{e} \otimes \text{id}) \circ \Delta.$$

The map $\tilde{\partial}$ is a coderivation of Δ and the projection map $\epsilon : \mathcal{C}_*(X) \to \mathcal{C}_0(X)$ now satisfies $\epsilon \circ \tilde{\partial} = 0$. Finally, define $h : \mathcal{C}_2(X) \to k$ by

$$h = (\tilde{e} \otimes \tilde{e}) \circ \Delta + \tilde{e} \circ \partial.$$

A routine check yields that $\tilde{C}^\Delta_*(X) = (\mathcal{C}_*(X), \tilde{\partial}, \Delta, h)$ defines an object in \mathbf{cCoalg}_k. Furthermore, this construction gives rise to a functor $\tilde{C}^\Delta_* : \mathbf{sSet} \to \mathbf{cCoalg}_k$.

The following result establishes a connection between the cobar functor from categorical coalgebras to dg categories and the dg nerve functor originally defined in [Lur17].

Theorem 11. The composition of functors

$$\Omega \circ \tilde{C}^\Delta_* : \mathbf{sSet} \to \mathbf{dgCat}_k$$

is naturally isomorphic to the (1-categorical) left adjoint of the dg nerve functor $N_{dg} : \mathbf{dgCat}_k \to \mathbf{sSet}$.

Proof. This result was proved in section 4 of [HL22]. The one object case was proved in [RZ18].

The dg nerve and its left adjoint also fit into a Quillen adjunction as we now record. Denote the left adjoint of N_{dg} by

$$\Lambda : \mathbf{sSet} \to \mathbf{dgCat}_k.$$

Theorem 12. The adjunction

$$\Lambda : \mathbf{sSet} \rightleftarrows \mathbf{dgCat}_k : N_{dg}$$

is a Quillen adjunction of model categories when \mathbf{sSet} is equipped with Joyal’s model structure and \mathbf{dgCat}_k with Tabuada’s model structure. In particular, $\Lambda \cong \Omega \circ \tilde{C}^\Delta_*$ sends categorical equivalences of simplicial sets to quasi-equivalences of dg categories.

Proof. This is Proposition 1.3.1.20 in [Lur17]. The second statement follows since all simplicial sets are cofibrant in Joyal’s model structure.

Remark 13. In general, the functor Λ does not send weak homotopy equivalences of simplicial sets to quasi-equivalences of dg categories. However, if $f : X \to X'$ is a weak homotopy equivalence and X and X' are “group-like”, namely, their homotopy categories are groupoids, then $\Lambda(f)$ is a quasi-equivalence of dg categories.
4.2. Chains as a B_{∞}-categorical coalgebra. We now describe a natural lift of \tilde{C}^Δ_* to the category B_{∞}-$cCoalg_k$. For simplicity we will denote this lift by

$$C_*: sSet \to B_{\infty}$-$cCoalg_k.$$

To define this lift we use the factorization of Λ, constructed in Section 6 of [RZ18], through the category of small categories enriched over cubical sets (with connections). More precisely, in [RZ18] we constructed a functor

$$\mathcal{C}_c: sSet \to \mathcal{C}et_{c},$$

from simplicial sets to the category of small categories enriched over the monoidal category of cubical sets (with connections). Then we showed that Λ is naturally isomorphic to the composition

$$sSet \xrightarrow{\mathcal{Q}_c} \mathcal{C}et_{c} \xrightarrow{\Omega_c} dgCat_k,$$

where Ω_c is the functor obtained by applying the monoidal functor Q_* of normalized cubical chains at the level of morphisms.

The chain complex of normalized cubical chains $Q_* (K)$ on a cubical set K, with or without the extra data of connections, has a natural coproduct structure

$$\nabla: Q_* (K) \to Q_* (K) \otimes Q_* (K)$$

making $Q_* (K)$ into a dg coalgebra. It is completely determined by its action on the standard 0-cube and 1-cube given by the formulas

$$\nabla [0] = [0] \otimes [0]$$

and

$$\nabla: [0, 1] \mapsto [0] \otimes [0, 1] + [0, 1] \otimes [1],$$

respectively.

Hence, the natural isomorphism $\Lambda \cong \Omega_c \circ \mathcal{Q}_c$ together with this cubical coproduct provides a natural lift of $\Lambda: sSet \to dgCat_k$ to the category of small categories enriched over the monoidal category of dg k-coalgebras. Using the identification $\Lambda \cong \Omega \circ \tilde{C}^\Delta_*$, we may interpret this additional structure as a functor

$$C_*: sSet \to B_{\infty}$-$cCoalg_k,$$

lifting

$$\tilde{C}^\Delta_*: sSet \to cCoalg_k.$$

In particular, if X is a simplicial set with one vertex (i.e. a reduced simplicial set) then this construction provides the dg algebra $\Omega(C^\Delta_*(X))$ with a natural dg bialgebra structure.

In the one vertex case, a version of this construction has been studied in detail in [Bau80], [Bau81] and, more recently, in [MR21]. In the many vertex case, this version of the chains functor has been also discussed in [MRZ23]. We refer the reader to these references for more details.

4.3. The extended cobar construction as a model for the path category. For any topological space Y denote by $\mathcal{P}Y$ the topologically enriched category whose objects are the points of Y and morphisms $\mathcal{P}Y (x, y)$ are given by the space (with compact-open topology) of pairs (r, γ) where r is a non-negative real number (which we call the “parameter”) and $\gamma: [0, r] \to Y$ a continuous path with $\gamma(0) = x$ and $\gamma(r) = y$. Composition is given by concatenation of paths and adding the corresponding parameters. Identities are constant paths with parameter $r = 0$. We call $\mathcal{P}Y$ the path category of Y.
Denote by $C^\text{sing}(\mathcal{P}Y)$ the dg k-category obtained by applying the normalized singular chains functor (equipped with the Eilenberg-Zilber lax structure) on the morphisms of the topologically enriched category $\mathcal{P}Y$. This gives rise to a functorial construction

$$\text{Top} \to \text{dgCat}_k$$

$$Y \mapsto C^\text{sing}_*(\mathcal{P}Y)$$

that sends weak homotopy equivalences of spaces to quasi-equivalence of dg categories.

Theorem 14. For any simplicial set X, the dg categories $\hat{\Omega}(C_*(X))$ and $C^\text{sing}_*(\mathcal{P}|X|)$ are naturally quasi-equivalent.

Proof. The natural map

$$k[Z(C_*(X))] \to \Omega(C_*(X))$$

is a cofibration between cofibrant dg categories, since, by Theorem 11, it may be identified with

$$\Lambda(i): \Lambda(\text{sk}_1 X) \to \Lambda(X),$$

where $\Lambda: \text{sSet} \to \text{dgCat}_k$ is the left adjoint of the dg nerve functor and $i: \text{sk}_1 X \hookrightarrow X$ the inclusion of the 1-skeleton of X into X. By Remark 9, the (ordinary) pushout $\hat{\Omega}(C_*(X)) \cong \Lambda(X)[X_1^{-1}]$ is actually a homotopy pushout of the maps $\Lambda(i): \Lambda(\text{sk}_1 X) \to \Lambda(X)$ and $\Lambda(\text{sk}_1 X) \to \Lambda(\text{sk}_1 X)[X_1^{-1}]$, where $\Lambda(\text{sk}_1 X)[X_1^{-1}]$ is the dg category obtained by linearizing the free groupoid generated by the quiver $X_1 \Rightarrow X_0$ determined by the first two simplicial face maps. Let

$$\mathcal{K}: \text{sSet} \to \text{sSet}$$

be a Kan replacement functor so that there is a natural quasi-equivalence of dg categories

$$\Lambda(\text{sk}_1 X)[X_1^{-1}] \cong \Lambda(\mathcal{K}(\text{sk}_1 X)).$$

By Theorem 12, $\Lambda: \text{sSet} \to \text{dgCat}_k$ is a left Quillen functor between Joyal’s model structure on simplicial sets and Tabuada’s model structure on dg categories, thus Λ preserves homotopy pushouts. Hence, we have natural quasi-equivalence of dg categories

$$\hat{\Omega}(C_*(X)) \cong \Lambda(X)[X_1^{-1}] \cong \Lambda(X \prod_{\text{sk}_1 X} \mathcal{K}(\text{sk}_1 X)).$$

Note the map

$$X \to X \prod_{\text{sk}_1 X} \mathcal{K}(\text{sk}_1 X)$$

is a weak homotopy equivalence of simplicial sets and the homotopy category of $X \prod_{\text{sk}_1 X} \mathcal{K}(\text{sk}_1 X)$ is a groupoid. It follows that $\Lambda(X \prod_{\text{sk}_1 X} \mathcal{K}(\text{sk}_1 X))$ is naturally quasi-equivalent to the dg category $C^\text{sing}_*(\mathcal{P}|X| \prod_{\text{sk}_1 X} \mathcal{K}(\text{sk}_1 X))$ and consequently to $C^\text{sing}_*(\mathcal{P}|X|)$, as desired.

□

5. The coHochschild complex of a categorical coalgebra

We define a version of the coHochschild complex for categorical coalgebras. Then we establish a relationship with the Hochschild complex of a dg category. The coHochschild complex in the case of connected dg coalgebras has been studied in [HPS09] and [HS21].
5.1. The coHochschild complex. We construct a functor

\[\text{coH}_* : \text{Coalg}_k \rightarrow \text{Ch}_k \]

called the coHochschild complex, as follows. For any categorical coalgebra \(C \), the underlying graded \(k \)-module of \(\text{coH}_*(C) \) is defined by

\[
C \sideset{_{C_0 \otimes C_0^{op}}^C}{\square} M(\Omega(C)) := (C \sideset{_{C_0 \otimes C_0^{op}}^C}{\square} M(\Omega(C))) \bigcap (C \sideset{_{C_0 \otimes C_0^{op}}^C}{\square} M(\Omega(C)))
\]

Explicitly, this notation is saying that \(\text{coH}_k(C) \) is generated as a graded \(k \)-module by monomials

\[
x = x_0 \square s^{-1} x_1 \square \cdots \square s^{-1} x_p = x_0 \{ x_1 | \cdots | x_p \},
\]

where \(x_0 \in C \), \(x_i \in \overline{C} \) for \(i = 1, \cdots, p \), \(x_p \otimes x_0 \in C \square C_0 \), and \(|x_0| + |x_1| + \cdots + |x_p| - p = k \).

The differential \(\partial : \text{coH}_k(C) \rightarrow \text{coH}_{k-1}(C) \)
is defined by

\[
\partial(x) = d_C x_0 \{ x_1 | \cdots | x_p \} + \sum_{i=1}^{p} \pm x_0 \{ x_1 | \cdots | d_C x_i | \cdots | x_p \} + \sum_{i=1}^{p} \pm x_0 \{ x_1 | \cdots | \overline{h}(x_i) | \cdots | x_p \}
\]

\[
+ \sum_{(x_0)} \pm x_0' \{ x_0'' | x_1 | \cdots | x_p \} + \sum_{(x_1)} \pm x_0 \{ x_1 | \cdots | x_i' | x_i'' | \cdots | x_p \} + \sum_{(x_0)} \pm x_0'' \{ x_1 | \cdots | x_p | x_0' \}.
\]

The signs are determined, as usual, from the Koszul sign convention. One may also equip the chain complex \(\text{coH}_*(C) \) with the further structure of a mixed complex by defining a degree +1 operator

\[P : \text{coH}_*(C) \rightarrow \text{coH}_{*+1}(C) \]

through the formula

\[
P(x_0 \{ x_1 | \cdots | x_p \}) = \sum_{i=1}^{p} \pm \varepsilon(x_0) x_i \{ x_{i+1} | \cdots | x_p | x_1 | \cdots | x_{i-1} \},
\]

where \(\varepsilon : C \rightarrow k \) denotes the counit of \(C \). A straightforward computation yields that

\((\text{coH}_*(C), \partial, P) \)
is a non-negatively graded mixed \(k \)-complex. This construction is clearly functorial with respect to maps of categorical coalgebras.

5.2. The extended coHochschild complex. Define the extended Hochschild complex as the functor

\[\widehat{\text{coH}}_* : \text{B}_\infty \cdot \text{Coalg}_k \rightarrow \text{Ch}_k \]
given by

\[
C \sideset{_{C_0 \otimes C_0^{op}}^C}{\square} M(\widehat{\Omega}(C)).
\]
5.3. Relationship with the Hochschild chain complex. Let C be a categorical coalgebra and M and N right and left dg modules over $\mathcal{M}(\Omega(C))$, respectively, as in 2.3. Define a graded k-module
\[\Omega(M, C, N) := M \square C \square N \]
and consider the linear map $\partial_2 : \Omega(M, C, N) \to \Omega(M, C, N)$ of degree -1 defined by
\[\partial_2 = d_M \square \text{id}_C \square \text{id}_N + \text{id}_M \square d_C \square \text{id}_N + \text{id}_M \square \text{id}_C \square d_N + \theta', \]
where
\[\theta'(m \square n) = \pm (m \cdot \{ c' \}) \square c'' n \pm m \square c' \square (\{ c'' \} \cdot n). \]

Remark 15. Note that ∂_2 may not square to zero, since d_C may not square to zero in a categorical coalgebra. When C is a connected dg coalgebra then $\Omega(M, C, N)$ is indeed a chain complex.

We will now define a map H of degree $+1$ and two maps π and α of degree 0 fitting in the diagram
\[H \hookrightarrow \text{Bar}_{C_0}(M, \Omega(C), N) \xrightarrow{\pi} \Omega(M, C, N). \]
These maps will satisfy three equations given in Proposition 16.

1. Define $\pi : \text{Bar}_{C_0}(M, \Omega(C), N) \to \Omega(M, C, N)$ on any generator $m[\{a_1\} \cdots |a_p|n]$ by letting
\[\pi(m[\{a_1\} \cdots |a_p|n]) = 0 \text{ if } p > 1, \]
and when $p = 1$, writing $a_1 = \{c_1\} \cdots |c_q\}$, define
\[\pi(m[\{c_1\} \cdots |c_q\}])n = \sum_{i=1}^{q} m \cdot \{c_1\} \cdots |c_{i-1}\} \square |c_i\} \square |c_{i+1}\} \cdots |c_q\} \cdot n \]
if $q > 0$, and
\[\pi(m[x])n = m \square x \square n \]
if $q = 0$ and $x \in S(C) \subset C_0$.

2. Define $\alpha : \Omega(M, C, N) \to \text{Bar}_{C_0}(M, \Omega(C), N)$ by
\[\alpha(m \square c \square n) = m[\{c\}]n + \sum m[\{c'\} \{c''\}]n + \sum m[\{c'\} \{c''\} \{c'''\}]n + \cdots \]
Note α is well defined since the induced coproduct $\Delta : \overline{C} \to \overline{C} \otimes \overline{C}$ is of degree 0 and \overline{C} is concentrated on positive degrees.

3. Define $H : \text{Bar}_{C_0}(M, \Omega(C), N) \to \text{Bar}_{C_0}(M, \Omega(C), N)$ to be a degree $+1$ linear map given on a generator $m[\{a_1\} \cdots |a_p|n]$ as follows. Write $a_1 = \{c_1\} \cdots |c_m\}$ and let
\[H(m[\{c_1\} \cdots |c_m\} |a_2\} \cdots |a_p|n) = 0 \text{ if } m < 2, \]
\[
H(m\{c_1|c_2\}|a_2| \cdots |a_p)n = m\{c_1\}|\{c_2\}|a_2| \cdots |a_p)n + \\
\sum\{c_1'|\{c_1''\}|\{c_2\}|a_2| \cdots |a_p)n + \\
\sum\{\{c_1\}|\{c_1''\}|\{c_2\}|a_2| \cdots |a_p)n + \cdots \text{ if } m = 2,
\]
and, if \(m > 2\), let
\[
H(m\{c_1|\cdots |c_m\}|a_2| \cdots |a_p)n = \\
\sum_{i=1}^{m} m \cdot \{c_1|\cdots |c_{i-1}\}|\{c_i\}|\{c_{i+1}|\cdots |c_m\}|a_2| \cdots |a_p)n + \\
\sum_{i=1}^{m} m \cdot \{c_1|\cdots |c_{i-1}\}|\{c_i''\}|\{c_{i+1}|\cdots |c_m\}|a_2| \cdots |a_p)n + \\
\sum_{i=1}^{m} m \cdot \{c_1|\cdots |c_{i-1}\}|\{c_i''\}|\{c_{i+1}|\cdots |c_m\}|a_2| \cdots |a_p)n + \cdots
\]

A tedious but straightforward computation verifies the following equations hold.

Proposition 16. The maps \(\pi, \alpha,\) and \(H\) defined above satisfy the equations
\[
(5.1) \quad \pi \circ \partial_{M,C,N} = \partial_2 \circ \pi, \\
(5.2) \quad \alpha \circ \partial_3 = \partial_{M,C,N} \circ \alpha, \text{ and} \\
(5.3) \quad H \circ \partial_{M,C,N} + \partial_{M,C,N} \circ H = \alpha \circ \pi - \text{id}_{\text{Bar}_{C_0}(M,\Omega(C),N)}.
\]

We avoid using the terminology “chain contraction” in the above proposition precisely because \(\partial_2\) might not square to zero. In any case, as our main application we consider the case \(M = N = M(\Omega(C))\). In this particular case,
\[
\partial_3 : \Omega(M(\Omega(C)),C,M(\Omega(C))) \rightarrow \Omega(M(\Omega(C)),C,M(\Omega(C)))
\]
does square to zero and so \((\Omega(M(\Omega(C)),C,M(\Omega(C))),\partial_3)\) defines a dg \(k\)-module. In fact, it follows from the definition of a categorical coalgebra that the two terms
\[
\pm m \Box d_2^\Omega(c) n
\]
and
\[
\pm (m \cdot \widehat{h}(c')) \Box e'' n \pm m \Box e' (\widehat{h}(e'') \cdot n)
\]
in \(\partial_3^2(m \Box c \Box n)\) cancel each other.

Theorem 17. For any categorical coalgebra \(C\), there is a natural chain contraction of dg \(k\)-modules
\[
\begin{array}{c}
\Pi \leftarrow \mathcal{H}_*(\Omega(C)) \xrightarrow{\Pi} \text{coCH}_*(\Omega(C)).
\end{array}
\]

If \(C\) is a \(B_\infty\)-categorical coalgebra, then there is a natural chain contraction of dg \(k\)-modules
\[
\begin{array}{c}
\hat{h} \leftarrow \text{Bar}_{C_0}(M(\Omega(C)),\Omega(C),M(\Omega(C))) \leftarrow \Omega(C) \xrightarrow{\pi} \text{coCH}_*(\Omega(C)) \leftarrow \text{coCH}_*(\Omega(C)).
\end{array}
\]

Proof. Recall
\[
\begin{array}{c}
\mathcal{H}_*(\Omega(C)) = \text{Bar}_{C_0}(M(\Omega(C)),\Omega(C),M(\Omega(C))) \leftarrow \Omega(C) \leftarrow \text{coCH}_*(\Omega(C)).
\end{array}
\]
Now we observe there is a natural isomorphism of dg k-modules
\[
\text{coCH}_\ast(C) \cong \Omega(M(\Omega(C)), C, M(\Omega(C))) \otimes_{M(\Omega(C)) \otimes M(\Omega(C))^{\text{op}}} M(\Omega(C)).
\]

Using the notation of Proposition 16, define
\[
\pi = \pi \otimes \text{id}_{M(\Omega(C))},
\]
\[
\alpha = \alpha \otimes \text{id}_{M(\Omega(C))}, \quad \text{and}
\]
\[
H = H \otimes \text{id}_{M(\Omega(C))}.
\]

It follows from Proposition 16 that π, α and H define the data of a natural chain contraction. The proof of the second statement is similar. \(\square\)

5.4. Invariance of the coHochschild complex. Recall a morphism of dg categories $f: A \to A'$ is a quasi-equivalence if
(1) for any two objects x and y in A, the induced map $f_{x,y}: A(x, y) \to A'(f(x), f(y))$ is a quasi-isomorphism of dg k-modules, and
(2) if the induced map on homotopy categories $H_0(f): H_0(A) \to H_0(A')$ is essentially surjective.

Definition 18. A map $f: C \to C'$ between categorical coalgebras is called an Ω-quasi-equivalence if $\Omega(f): \Omega(C) \to \Omega(C')$ is a quasi-equivalence of dg categories.

The coHochschild complex is invariant under Ω-quasi-equivalences as shown next.

Proposition 19. If $f: C \to C'$ is an Ω-quasi-equivalence between categorical coalgebras C and C', then
\[
\text{coCH}_\ast(f): \text{coCH}_\ast(C) \to \text{coCH}_\ast(C')
\]
is a quasi-isomorphism of dg k-modules.

Proof. Since C and C' are flat as k-modules, the dg categories $\Omega(C)$ and $\Omega(C')$ are locally k-flat. Hence, the quasi-equivalence $\Omega(f): \Omega(C) \to \Omega(C')$ induces a quasi-isomorphism between Hochschild complexes
\[
\text{CH}_\ast(\Omega(f)): \text{CH}_\ast(\Omega(C)) \to \text{CH}_\ast(\Omega(C')).
\]

By Corollary 17, we have natural quasi-isomorphisms
\[
\text{CH}_\ast(\Omega(C)) \simeq \text{coCH}_\ast(C)
\]
and
\[
\text{CH}_\ast(\Omega(C')) \simeq \text{coCH}_\ast(C').
\]

It follows that the induced map
\[
\text{coCH}_\ast(f): \text{coCH}_\ast(C) \to \text{coCH}_\ast(C')
\]
is a quasi-isomorphism. \(\square\)
6. The coHochschild complex as a model for the free loop space

We establish a relationship between the extended coHochschild complex and the free loop space. For any topological space Y, we denote by LY the free loop space of Y modeled as the space (with compact-open topology) of pairs (r, γ) where r is a non-negative real number and $\gamma: [0, r] \to Y$ a continuous map with $\gamma(0) = \gamma(r)$. Denote by $C^*_{\text{sing}}(LY)$ the dg k-module of normalized singular chains on LY. Let k be a commutative ring and for any simplicial set X denote by $C_*(X)$ its B_∞-categorical k-coalgebra of chains. Note that the S^1-action on $L|X|$ given by rotating loops gives rise to an operator $R: C^*_{\text{sing}}(L|X)) \to C^*_{\text{sing}}(L|X))$ which gives the chain complex $C^*_{\text{sing}}(L|X))$ the extra structure of a mixed complex.

Theorem 20. For any simplicial set X, the dg k-modules $\coCH_*(C_*(X))$ and $C^*_{\text{sing}}(L|X))$ are naturally quasi-isomorphic.

Proof. For simplicity write $C = C_*(X)$. By Theorem 17, there is a natural chain homotopy equivalence

$$\coCH_*(C) \simeq \text{Bar}_{C_0}(M(\hat{\Omega}(C)), \Omega(C), M(\hat{\Omega}(C))) \otimes_{m(\hat{\Omega}(C)) \otimes m(\hat{\Omega}(C))^{op}} \hat{\Omega}(C).$$

Note that $\Omega(C)$ is a cofibrant dg category being naturally isomorphic to $\Lambda(X)$ where $\Lambda: sSet \to \text{dgCat}_k$ denotes the left adjoint of the dg nerve functor. Hence, the natural map

$$\Omega(C) \cong \Lambda(X) \to \Lambda(X)[X^{-1}] \cong \hat{\Omega}(C)$$

induces a quasi-isomorphism after applying bar constructions. This is a classical fact, for instance see Section 5 in [FM94]. More precisely, the natural map

$$\text{Bar}_{C_0}(M(\hat{\Omega}(C)), \Omega(C), M(\hat{\Omega}(C))) \to \text{Bar}_{C_0}(M(\hat{\Omega}(C)), \hat{\Omega}(C), M(\hat{\Omega}(C)))$$

is a quasi-isomorphism. Consequently, we have a natural quasi-isomorphism

$$\coCH_*(C) \simeq \text{Bar}_{C_0}(M(\hat{\Omega}(C)), \hat{\Omega}(C), M(\hat{\Omega}(C))) \otimes_{m(\hat{\Omega}(C)) \otimes m(\hat{\Omega}(C))^{op}} \hat{\Omega}(C) \cong C_*(\hat{\Omega}(C)).$$

The invariance of the Hochschild complex with respect to quasi-equivalences between locally k-flat dg categories, together with Theorem 14, implies that $C_*(\hat{\Omega}(C))$ is naturally quasi-isomorphic to $C_*(\Sigma_{\text{sing}}^*(\mathcal{P}|X))$. By a result proved by Goodwillie [Goo85] and also (independently) by Burgheda and Fiedorowicz [BF86], there is a natural quasi-isomorphism

$$C_*(\Sigma_{\text{sing}}^*(\mathcal{P}|X)) \simeq C_*(L|X)),$$

as desired. \square

Remark 21. If the simplicial set X has the property of being “group-like”, namely, if the homotopy category of X is a groupoid, then the (non-extended) coHochschild complex $\coCH_*(C_*(X))$ of the underlying categorical coalgebra of $C_*(X)$ is already naturally quasi-isomorphic to $C_*(L|X))$. In other words, there is no need to localize if every 1-simplex in X is invertible up to homotopy. In this case, $\coCH_*(C_*(X))$ and $C_*(L|X))$ are quasi-isomorphic as mixed complexes. This follows since the quasi-isomorphism π in Theorem 17 is a morphism of mixed complexes (i.e. it intertwines the operators B and P) together with the fact that the quasi-isomorphism

$$C_*(\Sigma_{\text{sing}}^*(\mathcal{P}|X)) \simeq C_*(L|X))$$
constructed in [Goo85] and [BF86] is also a morphism of mixed complexes (i.e. intertwines the operators \(B \) and \(R \)). A theory of cyclic homology for categorical coalgebras will be developed by Daniel Tolosa in his PhD thesis.

7. dg Hopf algebras and the adjoint action

This section has two goals. The first goal is to clarify the relationship between the coHochschild complex model for the free loop space and Brown’s twisted tensor product model for the total space of a fibration. The latter uses the conjugation action of (a topological group model of) the based loop space on itself when defining the twisted differential, while the first does not use any antipode map (or inverses) when defining the coHochschild complex differential.

The second goal is to describe a natural chain map

\[C \to \widehat{\mathcal{H}}_\ast(C) \]

modeling the continuous map \(Y \to LY \) sending each point of a space \(Y \) to its corresponding constant loop in the free loop space. We expect this to be useful in string topology of non-simply connected manifolds, where constant loops play a delicate role.

For simplicity, in this section we work with connected dg \(k \)-coalgebras instead of categorical \(k \)-coalgebras, namely, we work in the one object case. For homotopy theoretic applications this is not a strong hypothesis since pointed connected homotopy types may be modeled by reduced simplicial sets (i.e. simplicial sets with a single vertex). For any reduced simplicial set \(X \), we denote by \(C_\ast(X) \) the normalized simplicial chains on \(X \), which is a connected dg coalgebra when equipped with the Alexander-Whitney coproduct. It follows from Section 4.2 that the dg algebra (or dg category with one object) \(\widehat{\Omega}(C_\ast(X)) \) has a natural dg bialgebra structure naturally quasi-isomorphic to the dg bialgebra structure on the singular chain complex \(C_\ast^{\operatorname{sing}}(\Omega_b|X|) \) of based (Moore) loops in \(|X| \) at \(b \). One of the main technical steps in this section is showing that the dg bialgebra \(\widehat{\Omega}(C_\ast(X)) \) has the property of being a dg Hopf algebra. This means there is a map of dg \(k \)-modules

\[s: \widehat{\Omega}(C_\ast(X)) \to \widehat{\Omega}(C_\ast(X)) \]

satisfying

\[\mu \circ (s \otimes \operatorname{id}) \circ \nabla = \eta \circ \varepsilon = \mu \circ (\operatorname{id} \otimes s) \circ \nabla, \]

where \(\nabla: \widehat{\Omega}(C_\ast(X)) \to \widehat{\Omega}(C_\ast(X)) \otimes \widehat{\Omega}(C_\ast(X)) \) is the coproduct, \(\mu: \widehat{\Omega}(C_\ast(X)) \otimes \widehat{\Omega}(C_\ast(X)) \to \widehat{\Omega}(C_\ast(X)) \) the product, \(\varepsilon: \widehat{\Omega}(C_\ast(X)) \to k \) the counit, and \(\eta: k \to \widehat{\Omega}(C_\ast(X)) \) the unit.

7.1. Hochschild chain complex and adjoint action. Given a map \(f: A \to B \) of dg \(k \)-algebras, denote by \(f^*B \) the left dg \(A \otimes A^{op} \)-module whose underlying dg \(k \)-module is \(B \) and the \(A \otimes A^{op} \)-right action is induced through \(f \). Denote by

\[C\mathcal{H}_\ast(A, f^*B) := \operatorname{Bar}(A, A, A) \otimes_{A \otimes A^{op}} f^*B \]

the (normalized) Hochschild chain complex of \(A \) with coefficients in \(f^*(B) \). This has

\[\bigoplus_{p=0}^{\infty} (s^{p+1}) \otimes f^*B \]

as underlying graded \(k \)-module and we write generators \([a_1 | \cdots | a_p]b\) as usual.
Now suppose \(f : A \to B \) is a map of dg \(k \)-bialgebras. Furthermore, suppose the dg bialgebra \(B \) has the property of being a dg Hopf algebra. Denote by \(f_{ad}^* \) the left \(A \)-module whose underlying dg \(k \)-module is \(B \) and left \(A \)-action given by
\[
a \cdot b = \sum (-1)^{|a'||a''|+|b|} f(a'')bs(f(a')),
\]
for any \(a \in A, b \in B \), where \(s : B \to B \) denotes the antipode of \(B \). We call this the adjoint action of \(A \) on \(B \) via \(f \).

The counit \(\epsilon_A : A \to k \) of the dg Hopf algebra \(A \) makes \(k \) into a right dg \(A \)-bimodule. Define a dg \(k \)-module
\[
C_s(A, f_{ad}^* B) := \text{Bar}(k, A, f_{ad}^* B).
\]

Proposition 22. Let \(f : A \to B \) be a dg \(k \)-bialgebra map, where \(B \) has the property of being a dg Hopf algebra. There is a natural isomorphism of dg \(k \)-modules
\[
\mathcal{H}_s(A, f^* B) \cong C_s(A, f_{ad}^* B).
\]

Proof. Define
\[
\varphi : \mathcal{H}_s(A, f^* B) \to C_s(A, f_{ad}^* B) \tag{7.2}
\]
\[
\varphi([a_1] \cdots [a_p] b) := \sum \pm [a''_1] \cdots [a''_p] b f(a'_1 \cdots a'_p).
\]
The antipode compatibility (equation 7.1) in the definition of a dg Hopf algebra implies that \(\varphi \) is a chain map with (strict) inverse given by the chain map
\[
\varphi^{-1}([a_1] \cdots [a_p] b) = \sum \pm [a'_1] \cdots [a''_p] bs(f(a'_1 \cdots a'_p)), \tag{7.4}
\]
where \(s : B \to B \) denotes the antipode of \(B \).

7.2. The cobar construction as a dg Hopf algebra. We wish to apply the above discussion to a dg Hopf algebra model for the based loop space. Recall that, as discussed in 4.2, for any reduced simplicial set \(X \), there is a natural coproduct
\[
\nabla : \hat{\Omega}(C_s(X)) \to \hat{\Omega}(C_s(X)) \otimes \hat{\Omega}(C_s(X))
\]
making \((\hat{\Omega}(C_s(X)), D, \otimes, \nabla)\) into a dg bialgebra, which turns out to be a dg Hopf algebra, as shown next.

Theorem 23. For any reduced simplicial set \(X \), the dg bialgebra \((\hat{\Omega}(C_s(X)), D, \otimes, \nabla)\) has the property of being a dg Hopf algebra.

Proof. We must show the existence of an antipode map
\[
s : \hat{\Omega}(C_s(X)) \to \hat{\Omega}(C_s(X))
\]
that is also a map of dg \(k \)-modules. First note that the \(k \)-bialgebra \(\hat{\Omega}(C_s(X))_0 \) on degree 0 is a Hopf algebra being isomorphic to the group algebra \(k[G(X_1)] \), where \(G(X_1) \) denotes the free group generated by the set of 1-simplices. The antipode
\[
s_0 : \hat{\Omega}(C_s(X))_0 \to \hat{\Omega}(C_s(X))_0
\]
is determined by sending a group-like element to its inverse. Recall that \(\hat{\Omega}(C_s(X)) \) if and only if the identity map \(\text{id} : \hat{\Omega}(C_s(X)) \to \hat{\Omega}(C_s(X)) \) is invertible as an element in the convolution algebra \((\text{Hom}(\hat{\Omega}(C_s(X))), \hat{\Omega}(C_s(X)), \star)\). So far we know that the restriction
\[
\text{id} |_{\hat{\Omega}(C_s(X))_0} : \hat{\Omega}(C_s(X))_0 \to \hat{\Omega}(C_s(X))
\]
is an invertible element in the convolution algebra. We now explain why \(\mathrm{id} \) is invertible following a classical argument of Takeuchi adapted to the dg setting. First recall that Hess and Tonks constructed in [HT10] a chain homotopy equivalence between \(\hat{\Omega}(C_*(X)) \) and \(G(X) \), the simplicial group functorially associated to \(X \) known as Kan’s loop group construction. In particular, this involved constructing two maps of dg algebras

\[
\phi: \hat{\Omega}(C_*(X)) \to C_*(G(X))
\]

and

\[
\psi: C_*(G(X)) \to \hat{\Omega}(C_*(X))
\]

that are chain homotopy inverses to each other, see Theorem 15 in [HT10]. Since \(G(X) \) is a simplicial group, the chain complex \(C_*(G(X)) \) may be equipped with a natural dg Hopf algebra structure with product induced by that of \(G(X) \) (together with the Eilenberg-Zilber map) and Alexander-Whitney coproduct. The antipode

\[
s_{G(X)}: C_*(G(X)) \to C_*(G(X))
\]

is induced by applying the normalized chains functor to the inverse map

\[
(-)^{-1}: G(X) \to G(X).
\]

Furthermore, the map \(g: \hat{\Omega}(C_*(X)) \to \hat{\Omega}(C_*(X)) \) defined by \(g := \psi \circ s_{G(X)} \circ \phi \) is a map of dg \(k \)-modules extending \(s_0 \). This map might not be the inverse of \(\mathrm{id} \) in the convolution algebra but the proof of Lemma 14 in [Tak71] explains how one may obtain such an inverse from \(g \).

Remark 24. Lemma 14 in [Tak71] implies that a graded bialgebra \(B \), over a field, is a Hopf algebra if and only if the degree 0 bialgebra \(B_0 \) is a Hopf algebra. However, we cannot apply this result right away to our context because the proof uses the existence of an arbitrary linear map extending the antipode in degree 0, a fact we do not immediately have in the dg setting (even over a field) since the arbitrary extension might not preserve differentials.

7.3. coHochschild complex and Brown’s twisted tensor product.

Recall the following classical construction of Ed Brown.

Definition 25. Let \((C, d_C, \Delta_C) \) be a dg coalgebra, \((A, d_A, \mu_A) \) an dg algebra, and \((M, d_M) \) a left dg \(A \)-module with action \(\mu_M: A \otimes M \to M \). Suppose \(\tau: C \to A \) is a twisting cochain, that is, a map of degree \(-1\) satisfying

\[
d_A \circ \tau + \tau \circ d_C + \mu_A \circ (\tau \otimes \tau) \circ \Delta_C = 0.
\]

The **twisted tensor product** of \(C \) and \(M \) over \(\tau \) is defined to be the chain complex \(C \otimes_{\tau} M := (C \otimes M, d_{\tau}) \) where

\[
d_{\tau} = d_C \otimes \mathrm{id}_M + \mathrm{id}_C \otimes d_M + (\mathrm{id}_C \otimes \mu_M) \circ (\mathrm{id}_C \otimes \tau \otimes \mathrm{id}_M) \circ (\Delta_C \otimes \mathrm{id}_M)
\]

Brown proved that the above construction gives rise to a chain model for the total space \(E \) of a fibration \(F \to E \to B \) using a canonical twisting cochain \(\tau: C_*(B) \to C_{*-1}((\Omega B)) \) (following a geometric construction of F. Adams) and the holonomy chain map \(\mu_F: C_*(\Omega B) \otimes C_*(F) \to C_*(F) \).

We now compare the extended coHochschild complex of the chains on a reduced simplicial set to a twisted tensor product constructed via the adjoint action on the dg Hopf algebra structure of the cobar construction. The adjoint action is an algebraic model for the conjugation action of based loops and consequently encodes the holonomy of the free loop fibration \(\Omega B \to L B \to B \).
For any connected dg coalgebra C denote by

$$\iota: C \to \Omega(C)$$

the twisting cochain given by

$$\iota(x) = \{x\}.$$

The twisting cochain ι is called the universal twisting cochain of C.

Given any reduced simplicial set X, let $i: \Omega(C_s(X)) \to \hat{\Omega}(C_s(X))$ the canonical inclusion map, and $i^*_{ad} \hat{\Omega}(C_s(X))$ the left dg $\Omega(C_s(X))$-module determined by the action action, as defined in Section 7.1 using the dg Hopf algebra structure of Theorem 23.

Theorem 26. For any reduced simplicial set X there is a natural chain homotopy equivalence of dg \mathbf{k}-modules

$$C_*(X) \otimes \iota^*_{ad} \hat{\Omega}(C_s(X)) \cong \text{coCH}_*(C_s(X)).$$

Proof. For simplicity, we denote the connected dg coalgebra $C_s(X)$ by C, the augmented dg algebra $\Omega(C_s(X))$ by A, and the dg Hopf algebra $\hat{\Omega}(C_s(X))$ by \hat{A}. Let $i: A \to \hat{A}$ be the natural inclusion map. As in section 7.1, we denote by $i^*_{ad} \hat{A}$ to be \hat{A} equipped with the right dg A-module structure given by the adjoint action and $i^*(A)$ when equipped with the left $(A \otimes A^{op})$-action.

Note there is a natural isomorphism of dg \mathbf{k}-modules

$$(7.5) \quad C \otimes \iota^*_{ad} \hat{A} \cong \Omega(k, C, A) \otimes \iota^*_{ad} \hat{A},$$

where k is thought of as a right dg A-module via the augmentation map.

By Proposition 16, there is a natural chain homotopy equivalence

$$(7.6) \quad \Omega(k, C, A) \otimes \iota^*_{ad} \hat{A} \cong \text{Bar}(k, A, A) \otimes \iota^*_{ad} \hat{A} \cong C_*(A, \iota^*_{ad} \hat{A}).$$

By Proposition 22, there is a natural isomorphism of dg \mathbf{k}-modules

$$(7.7) \quad C_*(A, \iota^*_{ad} \hat{A}) \cong C \text{CH}_*(A, i^* \hat{A}) = \text{Bar}(A, A, A) \otimes A^{\otimes A^{op}} i^* \hat{A}$$

Again by Proposition 16, there is a natural chain homotopy equivalence

$$(7.8) \quad \text{Bar}(A, A, A) \otimes A^{\otimes A^{op}} i^* \hat{A} \cong \Omega(A, C, A) \otimes A^{\otimes A^{op}} i^* \hat{A}.$$

Now observe there is a natural isomorphism of dg \mathbf{k}-modules

$$(7.9) \quad \Omega(A, C, A) \otimes A^{\otimes A^{op}} i^* \hat{A} \cong \text{coCH}_*(C).$$

Putting together 7.5, 7.6, 7.7, 7.8, and 7.9 yields the desired result. □

Remark 27. Note that the \mathbf{k}-linear map $C_*(X) \to \text{coCH}_*(C_s(X))$ given by sending $\sigma \mapsto \sigma \otimes 1_k$ is not in general a chain map (it would be if $C_*(X)$ was strictly cocommutative, which is not). However, we do have a chain map

$$C_*(X) \to C_*(X) \otimes \iota^*_{ad} \hat{\Omega}(C_s(X))$$

given by the same formula

$$\sigma \mapsto \sigma \otimes 1_k.$$

Composing this map with the chain map

$$C_*(X) \otimes \iota^*_{ad} \hat{\Omega}(C_s(X)) \to \text{coCH}_*(C_s(X))$$
given in Theorem 26, we obtain a chain map

$$C_*(X) \to \text{coCH}_*(C_s(X))$$
modeling the continuous map $X \to LX$ that sends a point b in X to the constant loop at b. We expect this map to be useful in studying the Goresky-Hingston coproduct and the corresponding Lie cobracket in the S^1-equivariant setting in the string topology of non-simply connected manifolds.

References

[Ada56] J. F. Adams. “On the cobar construction”. Proc. Nat. Acad. Sci. U.S.A. 42 (1956), pp. 409–412.
[Bau80] Hans J. Baues. Geometry of loop spaces and the cobar construction. Vol. 230. American Mathematical Soc., 1980.
[Bau81] Hans J. Baues. “The double bar and cobar constructions”. Compositio Math. 43.3 (1981), pp. 331–341.
[BF86] D. Burghelea and Z. Fiedorowicz. “Cyclic homology and algebraic K-theory of spaces. II”. Topology 25.3 (1986), pp. 303–317.
[Doi81] Yukio Doi. “Homological coalgebra”. J. Math. Soc. Japan 33.1 (1981), pp. 31–50.
[EM66] Samuel Eilenberg and John C. Moore. “Homology and fibrations. I. Coalgebras, cotensor product and its derived functors”. Comment. Math. Helv. 40 (1966), pp. 199–236.
[FM94] Eric M. Friedlander and Barry Mazur. “Filtrations on the homology of algebraic varieties”. Mem. Amer. Math. Soc. 110.529 (1994). With an appendix by Daniel Quillen.
[Goo85] Thomas G. Goodwillie. “Cyclic homology, derivations, and the free loopspace”. Topology 24.2 (1985), pp. 187–215.
[HL22] J. Holstein and A. Lazarev. “Categorical Koszul duality”. Adv. Math. 409 (2022), Paper No. 108644.
[Hol14] Julian V. S. Holstein. “Properness and simplicial resolutions in the model category dgCat”. Homology Homotopy Appl. 16.2 (2014), pp. 263–273.
[HPS09] Kathryn Hess, Paul-Eugène Parent, and Jonathan Scott. “CoHochschild homology of chain coalgebras”. J. Pure Appl. Algebra 213.4 (2009), pp. 536–556.
[HS21] Kathryn Hess and Brooke Shipley. “Invariance properties of coHochschild homology”. J. Pure Appl. Algebra 225.2 (2021).
[HT10] Kathryn Hess and Andrew Tonks. “The loop group and the cobar construction”. Proceedings of the American Mathematical Society 138.5 (2010), pp. 1861–1876.
[Lur17] Jacob Lurie. Higher Algebra. 2017.
[MR21] Aníbal M. Medina-Mardones and Manuel Rivera. Adams’ cobar construction as a monoidal E_∞-coalgebra model of the based loop space. submitted. 2021.
[MRZ23] Emilio Minichiello, Manuel Rivera, and Mahmoud Zeinalian. “Categorical models for path spaces”. Adv. Math. 415 (2023).
[RS18] Manuel Rivera and Samson Saneblidze. “A combinatorial model for the free loop fibration”. Bull. Lond. Math. Soc. 50.6 (2018), pp. 1085–1101.
[RZ18] Manuel Rivera and Mahmoud Zeinalian. “Cubical rigidification, the cobar construction and the based loop space”. Algebraic & Geometric Topology 18.7 (2018), pp. 3789–3820.
[Tab05] Gonçalo Tabuada. “Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories”. C. R. Math. Acad. Sci. Paris 340.1 (2005), pp. 15–19.
[Tab10] Gonçalo Tabuada. “Differential graded versus simplicial categories”. Topology Appl. 157.3 (2010), pp. 563–593.
[Tak71] Mitsuhiro Takeuchi. “Free Hopf algebras generated by coalgebras”. J. Math. Soc. Japan 23 (1971), pp. 561–582.

[Toë11] Bertrand Toën. “Lectures on dg-categories”. Topics in algebraic and topological K-theory. Vol. 2008. Lecture Notes in Math. Springer, Berlin, 2011, pp. 243–302.

MANUEL RIVERA, DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET, WEST LAFAYETTE, IN 47907-2067

Email address: manuer@purdue.edu