Abstract

This article presents an analysis of a power system under different types of contingences (power generators and high voltage transmission line outages). The work initiated by a new strategy based on location of deployment distributed generators, namely scenario A and scenario B. System losses, line loading capability and generated power has been determined, with and without the existence of the distributed generators deployment in the distribution network. A Diesel Generators with 5MVA each has been chosen to be as a distributed generators for many of economical considerations, the major is that they can be set to switch on when there's interference in power from the service organization and turn back off when power is reestablished for a safe. An arbitrary locations has been proposed as contingencies. The analysis done based on Newton Raphson and a linear programming approach as an Optimal Power Flow (OPF) applied on IEEE 30 bus test system. Matlab and Power World programs has been adopted for the simulation.
1. Sushree Sangita Nayak, Swasti Bachan Panda and Sipra Das Mohapatra"State Estimation and Total Transfer Capability Calculation in Deregulated Power System" proceedings of the IEEE International Conference on Computing Methodologies and Communication (ICCMC), pp. 757-761, 2017

2. Carlo Cecati, Costantino Citro, Antonio Piccolo and Pierluigi Siano"Smart Operation of Wind Turbines and Diesel Generators According to Economic Criteria" IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, pp. 4514-4525, October 2011

3. T. Niknam, A.M. Ranjbar, A.R. Shirani, B.Mozafari and A. Ostadi"Optimal Operation of Distribution System with Regard to Distributed Generation: A Comparison of Evolutionary Methods", IAS pp. 2690-2697, 2005

4. T.K.A. Rahman, S.R.A. Rahim and I. Musirin"Optimal Allocation and Sizing of Embedded Generators" National Power and Energy Conference (PECon) proceedings, Kuala Lumpur, Malaysia, pp. 288-294, 2004

5. Wenzhong Gao and Xi Chen"Distributed Generation Placement Design and Contingency Analysis with Parallel Computing Technology", Journal of Computers, Vol. 4, No. 4, pp. 347-354, April 2009.

6. Amroune Mohammed and Bouktir Tarek "Power System Transient Stability Analysis with High Wind Power Penetration"International Electrical Engineering Journal (IEEJ) Vol. 4, No.1, pp. 907-913, 2013

7. Zhaoxia Sun, Weiwei Li, Jinfeng Zhu, Qiangmin Liu and Tianci Liu"A planning Method for sitting and Sizing of Distributed Generation Based on Chance-constrained Programming" 5th international conference on Electric Utility Deregulation and Restructuring and Power Technologies, November 26-29, pp. 527-531, Changsha, China, 2015.

8. Wenbo Shi, Xiaorong Xie, Chi-Cheng Chu, and Rajit Gadh"Distributed Optimal Energy Management in Microgrids" IEEE Transactions on Smart Grid, pp. 1- 10, 2014

9. Natthaphob Nimpitiwan and Gerald Heydt"Consequences of Fault Currents Contributed by Distributed Generation"Power Systems Engineering Research Center, Arizona State University, 2006

10. Timothy A. Loehlein"Maintenance is one key to diesel generator set reliability"Technical information from Cummins Power Generation, 2007

11. Hadi Saadat "Power System Analysis", McGraw-Hill Companies, 1999

Index Terms

Computer Science Power Systems
Keywords

Power flow, OPF, Diesel Generator, Contingency analysis