Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: a joint expert opinion

R. Dummer,1,* P.A. Ascierto,2 N. Basset-Seguin,3 B. Dréno,4 C. Garbe,5 R. Gutzmer,6 A. Hauschild,7 R. Krattinger,1 J.T. Lear,8 J. Malvehy,9 D. Schadendorf,10 J.J. Grob11

1Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
2Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
3Department of Dermatology, Hôpital Saint Louis, Paris, France
4Department of Dermato Oncology, University Hospital Nantes, Nantes, France
5Division of Dermato-oncology, University of Tübingen, Tübingen, Germany
6Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Hannover, Germany
7Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
8Department of Dermatology, Manchester Academic Health Science Centre, Manchester University and Salford Royal NHS Trust, Manchester, UK
9Dermatology Department, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
10Department of Dermatology, University Hospital Essen, Essen & German Cancer Consortium, Heidelberg, Germany
11Dermatology and Oncology Service, Aix Marseille University and Timone Hospital, Marseille, France
*Correspondence: R. Dummer. E-mail: reinhard.dummer@usz.ch

[Correction added on 28 August 2020, after first online publication: the name of author ‘J.J. Grob’ has been corrected in this version.]

Abstract
Sonidegib and vismodegib are hedgehog pathway inhibitors (HhIs) approved for the treatment of advanced basal cell carcinoma (BCC). Until recently, vismodegib was the only targeted treatment available for patients with locally advanced BCC (laBCC) in cases where surgery and radiotherapy are inappropriate. Sonidegib has recently been approved and now presents an alternative treatment option. The clinical differences between the two HhIs in patients with laBCC are unclear, as no head-to-head randomized controlled trials are or will be initiated. Moreover, there were important differences in the designs of their pivotal studies, BOLT (sonidegib) and ERIVANCE (vismodegib), and these differences complicate evidence-based analysis of their relative efficacy and safety profiles. In this paper, a group of clinical experts in the management of laBCC summarizes the clinical and pharmacological profiles of sonidegib and vismodegib based on published data and their own clinical experience. One key difference between the two pivotal studies was the criteria used to assess BCC severity. ERIVANCE (a single-arm phase II trial) used the conventional Response Evaluation Criteria in Solid Tumors (RECIST), while the more recent double-blind randomized BOLT trial used the stringent modified RECIST. A preplanned analysis adjusted the outcomes from BOLT with RECIST-like criteria, and this enabled the experts to discuss relative efficacy outcomes for the two treatments. Centrally reviewed objective response rate (ORR) for vismodegib was 47.6% (95% CI: 35.5–60.6) at 21-month follow-up using RECIST. After adjusting with RECIST-like criteria, the ORR for sonidegib according to central review at 18-month follow-up was 60.6% (95% CI: 47.8–72.4). Both treatments were associated with similar patterns of adverse events. Sonidegib and vismodegib share the same efficacy and tolerability profiles, but their pharmacokinetic profiles show several differences, such as volume of distribution and half-life. Further studies are needed to understand how these differences may impact clinical practice.

Conflict of interest
All the authors have been paid as consultants of Sun Pharmaceutical Industries, Ltd. In addition, Prof. R. Dummer has intermittent, project focused consulting and/or advisory relationships with Novartis; Merck Sharp & Dohme (MSD); Bristol-Myers Squibb (BMS); Roche; Amgen; Takeda; Pierre Fabre; Sun Pharmaceutical Industries, Ltd. Prof. P.A. Ascierto reports consulting or advisory roles with BMS; Roche-Genentech; MSD; Array; Novartis; Merck Serono; Pierre Fabre; Incyte; Genmab; Newlink Genetics; Medimmune; AstraZeneca; Syndax; Sun Pharmaceutical Industries, Ltd.; Sanofi; Idera; Ultimovacs. Research funds from BMS, Roche-Genentech, Array. Ralf Gutzmer reports personal fees and non-financial support from BMS, Roche Pharma, Merck Serono, Pierre Fabre, Sanofi Regeneron and Almirall Hermal, grants,

DOI: 10.1111/jdv.16230

JEADV 2020, 34, 1944–1956 © 2020 European Academy of Dermatology and Venereology
personal fees and non-financial support from Amgen and Novartis, personal fees from MSD, LEO, AstraZeneca, Sun Pharma and 4SC, grants and personal fees from Pfizer and grants from Johnson&Johnson, outside the submitted work.

Funding sources
The expert panel discussion was funded in its entirety by Sun Pharmaceutical Industries, Ltd.

Introduction
Basal cell carcinoma (BCC) is the most common form of cancer in the Caucasian population. Most BCCs can be removed by surgery, but occasionally, they progress deep into the tissue or metastasize to the extent where curative surgery and radiotherapy are not feasible. In a systematic analysis at one tertiary referral centre, locally advanced BCC (laBCC) comprised <1% of all BCCs in almost 10,000 patients. In some patients with laBCC, surgical intervention can result in disfiguring deformity, loss of function and morbidity, and Nägeli and Dummer have proposed criteria to help define when surgery and irradiation is inappropriate (Table 1).

Multidisciplinary care is essential in the management of laBCC, and effective communication is vital to ensure patients have realistic expectations from their treatment. Alongside effective adverse effect (AE) management, pretreatment education about potential AEs increases the likelihood that patients will tolerate optimal treatment durations.

Aberrant signalling of the hedgehog pathway is important to the pathophysiology of BCC, and two licensed hedgehog pathway inhibitors (HhIs), sonidegib and vismodegib, are indicated for the treatment of laBCC in cases where surgery and radiotherapy are inappropriate.

Vismodegib was EMA-approved for treatment of laBCC and symptomatic metastatic BCC based on outcomes from the ERIVANCE study. Sonidegib, which is comparatively new to the market, gained EMA-approval for laBCC treatment based on the results of the BOLT study. Although these two agents act on the same pathway and have similar indications, there are currently no evidence-based recommendations to help clinicians choose between them, as there are no randomized controlled trials comparing sonidegib with vismodegib and the pivotal phase II studies, BOLT and ERIVANCE, did not compare the HhIs with standard of care. Thus, the clinical differences between sonidegib and vismodegib in patients with laBCC remain unclear. A 2017 analysis attempted to provide an indirect comparison between sonidegib and vismodegib by using statistical methods to reduce potential confounders between the two pivotal studies. However, while this study adjusted for some key differences in patient baseline characteristics, it did not consider numerous other important differences between BOLT and ERIVANCE.

Without head-to-head comparisons, an expert discussion using the published data on sonidegib and vismodegib is valuable in understanding their relative study outcomes, without introducing additional statistical analyses or further confounders. The expert panel of this review paper is made up of clinicians who are internationally recognized experts in the treatment of laBCC and are involved in developing national and/or international non-melanoma guidelines, together with a pharmacologist. All the experts are from countries where both HhIs have been approved for the treatment of laBCC.

Sonidegib and vismodegib have different pharmacokinetic profiles
Studies into the pharmacokinetic profiles of sonidegib and vismodegib have shown several differences. Sonidegib and vismodegib demonstrate a high level of binding (~99%) to the plasma proteins alpha-1-acid glycoprotein (AAG) and human serum albumin (HSA). However, the plasma protein binding of sonidegib within a dose range of 200–800 mg was non-concentration-dependent, whereas vismodegib at 150 mg or higher demonstrated concentration-dependent binding. Overall, vismodegib plasma levels strongly correlated with AAG plasma levels, due to saturable, highly reversible drug-protein binding. Once saturated, vismodegib showed further low-affinity binding to the high-capacity binder HSA. Therefore, vismodegib 150 mg delivered the maximum serum concentration, and a higher dosage will not increase the unbound drug level in the plasma. In contrast, increasing sonidegib dosage resulted in increasing level of unbound active drug in the plasma until dose-limited absorption occurred.

Vismodegib has a volume of distribution of 16–27 L, suggesting that it is largely confined to the plasma and has limited tissue penetration. In contrast, sonidegib seems to be more lipophilic than vismodegib and has a volume of distribution of >9,000 L, indicating extensive distribution in the tissues.

Table 1 Criteria to define when surgery and irradiation is inappropriate in laBCC

Criteria	Details
>5 BCCs, if patient suffers from genetic syndromes	
BCC >10 mm, relapsing after 2 surgeries in critical locations (e.g. periorcular and perioral areas)	
BCC infiltrating in bone/cartilage/other structures and curative resection unlikely	
Relapsing BCC after multiple surgeries and/or radiotherapy	
Advanced BCC in patients who do not qualify for general anaesthesia	

BCC, basal cell carcinoma; laBCC, locally advanced BCC.
Sonidegib has a long elimination half-life of 28–30 days and achieves steady state after 3–4 months. In contrast, vismodegib has a half-life of 4–12 days and achieves steady state after 7–21 days. In general, the more extended the half-life, the longer it takes to reach steady state and maximum effect, and AEs will take longer to subside on stopping treatment.

However, further studies are needed to compare the impact of dosage titration (both up- and down-titration) between sonidegib and vismodegib.

BOLT and ERIVANCE are appropriate for comparative discussion

The BOLT study was a multicentre, international, randomized, double-blind, pivotal, phase IIb clinical trial assessing the efficacy and safety of sonidegib, with a primary endpoint of overall response rate (ORR) determined by MRI and multiple biopsies via central review. Although BOLT participants were randomized 1:2 to sonidegib 200 or 800 mg, the expert panel discussion focused on outcomes of sonidegib 200 mg in patients with laBCC because this is the approved dose and indication.

ERIVANCE was a non-randomized, single-arm multicentre, international, pivotal, phase IIb clinical trial assessing the efficacy and safety of vismodegib 150 mg in patients with laBCC and metastatic BCC, with ORR by central review as the primary endpoint.

Vismodegib was also assessed in two other phase II studies, STEVIE and MIKIE. However, because of important differences (summarized in Table 2), the expert group considered that data from these studies were not appropriate for head-to-head comparison of efficacy and their review therefore focused on the pivotal studies, ERIVANCE and BOLT.

ERVANCE and BOLT had similar baseline patient characteristics, and both used ORR by central review as the primary endpoint (Table S1, Supporting Information). However, beyond this, there are many important differences between these studies (Table 2).

BOLT endpoints assessment criteria were more stringent compared with ERIVANCE

Complete, partial and overall response rates

There are important differences between BOLT and ERIVANCE regarding lesion assessment, and this has complicated evidence-based analysis of the relative efficacy and safety of sonidegib and vismodegib. Since some BCCs demonstrate slow growth, it can be difficult to differentiate stable disease (SD) from progressive disease (PD), particularly over short assessment periods. In addition, regressed lesions present scar-like plaques, which can be difficult to differentiate complete response (CR) from partial response (PR). In order to reduce the risk of this bias, this review focuses on ORR, defined as the proportion of patients with a best overall response of CR or PR.

Investigator review vs central review

BOLT and ERIVANCE both assessed response by central and investigator review (Fig. 2). In general, investigator review showed more positive outcomes than central review. In the primary analysis of ERIVANCE, the concordance between assessment by central review and investigator review was 60%; ORR by central review was 42.9% (95% CI: 30.5–56.0), with 20.6% CR and 22.2% PR, whereas ORR by investigator review was 60.3% (95% CI: 47.2–71.7), with 31.7% CR and 28.6% PR.

Similar trends were observed in BOLT and in subsequent follow-ups in both studies (Tables S2 and S3, Supporting Information). Central review is more rigorous and was the primary endpoint of both pivotal studies and is thus more appropriate for comparison.

RECISt vs mRECISt

ERVANCE used the Response Evaluation Criteria in Solid Tumors (RECISt) version 1.0 protocol, while BOLT used modified RECISt (mRECISt) criteria (Table 3). There is no evidence to support mRECISt being more reproducible than RECISt, but mRECISt is considered to have more stringent evaluation criteria and is more likely to detect minimal signs of disease and disease progression (Table 4). Therefore, mRECISt may classify a given treatment response as partial, whereas the same response may be considered as complete using RECISt. Similarly, mRECISt is more likely to detect signs of
Table 2 Overview of sonidegib and vismodegib clinical trials in patients with locally advanced basal cell carcinoma

Treatment	BOLT1	ERIVANCE2	STEVIE3	MIKIE4
Randomized 1 : 2 to sonidegib 200 mg QD (laBCC, n = 66) or 800 mg QD (laBCC, n = 128)	Vismodegib 150 mg QD (laBCC, n = 63)	Vismodegib 150 mg QD (laBCC, n = 1119)	Randomized 1 : 1 to vismodegib 150 mg QD in an intermittent schedule of 12 weeks vismodegib followed by 8 weeks placebo (n = 116) or 24 weeks induction followed by an intermittent schedule of 8 weeks placebo followed by 8 weeks vismodegib (n = 113)	

Inclusion criteria
- ≥18 years old
- Inoperable laBCC or surgery is contraindicated and radiotherapy is contraindicated or inappropriate
- Adequate bone marrow, liver, and renal function
- ≥18 years old
- Inoperable laBCC and prior radiotherapy, unless radiotherapy is contraindicated or inappropriate
- ≥18 years old
- Inoperable laBCC or surgery is contraindicated and radiotherapy is contraindicated or inappropriate
- ECOG Performance Status 0–2
- ≥18 years old
- Multiple BCC, including participants with Gorlin syndrome, with at least 6 clinically evident BCC lesions (3 of which measured ≥ 5 mm in diameter)
- ECOG Performance Status 0–2
- Adequate renal and hepatic function and hematopoietic capacity
- ≥18 years old
- Multiple BCC, including participants with Gorlin syndrome, with at least 6 clinically evident BCC lesions (3 of which measured ≥ 5 mm in diameter)
- ECOG Performance Status 0–2
- Adequate renal and hepatic function and hematopoietic capacity
- ≥18 years old
- Multiple BCC, including participants with Gorlin syndrome, with at least 6 clinically evident BCC lesions (3 of which measured ≥ 5 mm in diameter)
- ECOG Performance Status 0–2
- Adequate renal and hepatic function and hematopoietic capacity

Exclusion criteria
- Major surgery within 4 weeks of initiation of study medication
- Pregnancy or lactation
- Participation in an investigational study in the previous 4 weeks
- Concurrent therapy with other anti-neoplastic agents
- Neuromuscular disorders or concurrent drugs that may cause muscle damage
- Concurrent medical conditions that may interfere or potentially affect the interpretation of the study
- Oral drugs or lack of physical integrity of the upper gastrointestinal tract, or known malabsorption syndromes
- Major organ dysfunction
- Pregnancy or lactation
- Participation in an investigational study in the previous 4 weeks
- Life expectancy of <12 weeks
- Superficial multifocal BCC, which may be considered unresectable due to breadth of involvement
- Uncontrolled medical illnesses that would contraindicate the use of the investigational drug and an inability to swallow capsules
- Concurrent anti-tumour therapy
- Concurrent anti-tumour therapy
- Completion of the most recent anti-tumour therapy less than 21 days prior to the initiation of treatment
- Uncontrolled medical illness
- Concurrent anti-tumour therapy
- Concurrent anti-tumour therapy
- Known or suspected alcohol abuse
- One of the following known rare hereditary conditions: galactose intolerance, primary hypolactasia or glucose-galactose malabsorption

BCC assessment criteria
- mRECIST
- RECIST
- RECIST
- –

Primary endpoint
- ORR (CR + PR) by central review
- ORR (CR + PR) by central review
- Safety
- Mean per cent change from baseline in the number of clinically evident BCC

© 2020 European Academy of Dermatology and Venereology
slight disease progression that may be classified as SD under RECIST. The use of these different evaluation criteria adds a further complication to comparing outcomes between the trials. However, BOLT included a preplanned analysis which adjusted study outcomes with RECIST-like criteria, similar to those used in ERIVANCE.15

Follow-up period

The follow-up periods were different between the two studies, and there were no reported outcomes with the same minimum follow-up period (Fig. 2).9,11,15,25,26,29 The closest follow-up time points across the studies were the 18-month analysis for BOLT and the 12-month update (21-month follow-up) for ERIVANCE.9,11,15,25,26,29

As a result of all these inter-study variations, the expert panel considered the most representative data for discussion were the ORRs based on RECIST criteria by central review at 18- to 21-month follow-up. The outcomes from the final analyses were not considered appropriate for discussion, as ERIVANCE did not include a central review at the 30-month update.

Sonidegib and vismodegib share a similar efficacy profile

In BOLT, 66 patients with laBCC were treated with sonidegib 200 mg, and in ERIVANCE, 63 patients with laBCC were treated with vismodegib 150 mg.9,11 The baseline demographics and patient characteristics between the two studies were similar, with key differences being the greater number of patients with prior surgery and prior radiotherapy in ERIVANCE (Table S1, Supporting Information).9,11

At the initial 9-month follow-up of ERIVANCE, the primary endpoint (ORR by central review using RECIST) for vismodegib 150 mg was 42.9% (95% CI: 30.5–56.0), with 20.6% CR and 22.2% PR (Table S3, Supporting Information).9 At the 21-month follow-up, ORR increased to 47.6% (95% CI: 35.5–60.6), with 22.2% CR and 25.4% PR (Table 5).26 The final outcomes of ERIVANCE at 39-months were reported by investigator review only.29

Based on the US Food and Drug Agency recommendation, the BOLT study of sonidegib used mRECIST criteria determined by central review and reported an ORR of 47.0% (95% CI: 34.6–59.7) at primary 6-month follow-up, with 3.0% CR and 43.9% PR, increasing to 56.1% (95% CI: 43.3–68.3) at 18-month follow-up, with 4.5% CR and 51.5% PR (Table S2, Supporting Information).11,15 At long-term follow-up (30 months), sonidegib was associated with an ORR of 56.1% (95% CI: 43.3–68.3), 4.5% CR and 51.5% PR.15

After adjusting the response in BOLT using RECIST-like criteria, ORR by central review for sonidegib at 18 months increased by a small proportion from 56.1% (CR, 4.5%; PR, 51.5%) to 60.6% (CR, 22.7%; PR, 37.9%; Table 6).15 In contrast, CR increased 5-fold using the less stringent RECIST-like
Similar trends were observed in the primary analysis and 30-month follow-up (Tables S3 and S4, Supporting Information). This increase in CR was primarily due to lesions previously considered as PR under mRECIST being considered CR under RECIST-like criteria (Fig. 3). The adjusted CR rate was similar to that observed in ERIVANCE at 21 months.15,26

The centrally reviewed median duration of response (mDOR) and median progression-free survival (mPFS) with sonidegib in BOLT was higher than those observed with vismodegib in ERIVANCE.15,26 Ideally, data from the final analyses of the two pivotal studies should be used to review mDOR and mPFS. However, the study outcomes for vismodegib at the final analysis were only reported by investigator review, so 21-month follow-up data were used for discussion instead. The centrally reviewed mDOR was 26.1 months [95% CI: not estimable (NE)] with sonidegib at 30-month follow-up and 9.5 months (95% CI: 7.4–21.4) with vismodegib at 21-month follow-up (Table 7, Fig. 4).10,15,26 In the investigator review, the mDOR was 15.7 months (95% CI: 12.9–20.2) with sonidegib at 30-month follow-up and 26.2 months (95% CI: 9.0–37.6) with vismodegib...
Table 4 Composite overall response in laBCC determined by mRECIST and RECIST-like criteria

MRI†	Photographic	Histology§	Composite overall response mRECIST¶	BCC-RECIST-like
CR	CR	Negative	CR	CR
	PR (scar/fibrosis only) or SD (scar/fibrosis only)	Negative		
	NA	Negative	CR	CR
NA	CR	Negative	CR	CR
	PR (scar/fibrosis only) or SD (scar/fibrosis only)	Negative		
	NA	Negative	CR	CR
PR	CR	Negative	PR	CR
	PR (scar/fibrosis only) or SD (scar/fibrosis only)	Negative		
	NA	Negative	PR	CR
SD	CR	Negative	PR	CR
	PR (scar/fibrosis only) or SD (scar/fibrosis only)	Negative		
	NA	Negative	PR	CR
CR	PR	Negative	PR	CR
	SD	Negative	SD	CR
	NA	Negative	SD	SD
PR	CR	Positive or unknown	PR	PR
	PR (scar/fibrosis only)	Positive or unknown		
	NA	Positive or unknown	PR	PR
PR	CR	Positive or unknown	PR	PR
	PR (scar/fibrosis only)	Positive or unknown		
	NA	Positive or unknown	PR	PR
SD	CR	Positive or unknown	SD	PR
	PR (scar/fibrosis only)	Positive or unknown		
	NA	Positive or unknown	SD	SD
NA	CR	Positive or unknown	PR	PR
	PR (scar/fibrosis only)	Positive or unknown		
	NA	Positive or unknown	PR	PR
CR	SD	Positive or unknown	SD	PR
	SD (scar/fibrosis only)	Positive or unknown		
PR	SD	Positive or unknown	SD	PR
	SD (scar/fibrosis only)	Positive or unknown		
SD	SD	Any	SD	SD
	SD (scar/fibrosis only)	Any		
	NA	Positive or unknown	SD	SD
NA	SD	Unknown	SD	SD
	SD (scar/fibrosis only)	Unknown		
Any (except PD)	Unknown	Any	Unknown	Unknown
Unknown	Any (except PD)	Any	Unknown	Unknown
PD	Any	Any	PD	PD
Any	PD	Any	PD	PD

†Per RECIST v1.1. ‡Per World Health Organization criteria. §Based on multiple biopsies from lesion surface area. ¶An independent review committee re-evaluated all assessments for the laBCC cohort to determine a composite response.

Adapted from Lear, et al.15 [CC BY-NC 4.0].

BCC, basal cell carcinoma; CR, complete response; laBCC, locally advanced BCC; mRECIST, modified RECIST; MRI, magnetic resonance imaging; NA, not available; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.
at 39-month follow-up (Tables S2 and S3, Supporting Information). The centrally reviewed mPFS was 22.1 months (95% CI: NE) with sonidegib at 30-month follow-up and 9.5 months (95% CI: 7.4–14.8) with vismodegib at 21-month follow-up (Table 7, Fig. 5). In the investigator review, the mPFS was 19.4 months (95% CI: 16.6–23.6) with sonidegib at 30-month follow-up and 12.9 months (95% CI: 10.2–28.0) with vismodegib at 39-month follow-up (Tables S2 and S3, Supporting Information). The estimated overall survival (OS) was 93.2% at 30-month follow-up with sonidegib (Table S2, Supporting Information), and the estimated OS was 85.5% at 39-month follow-up with vismodegib (Table S3, Supporting Information).

These outcomes in laBCC patients were based on different lengths of treatment exposure, as well as two separate studies, which added complexity to drawing a conclusion. Analyses of quality of life (QoL) results are not reported here, but they are included in the discussion.

Sonidegib and vismodegib share a similar tolerability profile

At the final 39-month data cut-off in ERIVANCE, patients’ median duration of exposure to vismodegib was 12.9 months, and 96 of 104 patients with laBCC or mBCC treated with vismodegib 150 mg discontinued their treatment. About 57% of patients had discontinued vismodegib 150 mg due to AEs or physicians’/patients’ decision by 39 months. All patients experienced ≥1 treatment emergent AEs (TEAEs). Similar rates of discontinuation were observed in BOLT, where patients’ median duration of exposure to sonidegib was 11.0 months at the final 30-month analysis and 73 of 79 patients with laBCC or mBCC treated with sonidegib 200 mg discontinued their treatment. About 53% of

Table 5 Efficacy in patients with laBCC in the BOLT (18-month follow-up) and ERIVANCE (21-month follow-up) studies

Patients with laBCC	Sonidegib 200 mg QD15 Central review RECIST-like	Vismodegib 150 mg QD26 Central review RECIST
n = 66	n = 63	
ORR n (%); 95% CI	40 (60.6); 47.8–72.4	30 (47.6); 35.5–60.6
CR, n (%)	14 (21.2)	14 (22.2)
PR, n (%)	26 (39.4)	16 (25.4)
SD, n (%)	20 (30.3)	22 (34.9)
PD, n (%)	1 (1.5)	8 (12.7)
Unknown, n (%)	5 (7.6)	3 (4.8)

CR, complete response; laBCC, locally advanced basal cell carcinoma; ORR, objective response rate; PD, progressive disease; PR, partial response; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Table 6 Efficacy using mRECIST and RECIST criteria in patients with laBCC treated with sonidegib 200 mg by central review at 18-month follow-up in the BOLT study

Patients with laBCC	Sonidegib 200 mg QD15-18-month follow-up Central review	
mRECIST n = 66	RECIST-like n = 66	
ORR, n (%); 95% CI	37 (56.1); 43.3–68.3	40 (60.6); 47.8–72.4
CR, n (%)	3 (4.5)	14 (21.2)
PR, n (%)	34 (51.5)	26 (39.4)
SD, n (%)	23 (34.8)	20 (30.3)
PD, n (%)	1 (1.5)	1 (1.5)
Unknown, n (%)	5 (7.6)	5 (7.6)

CR, complete response; laBCC, locally advanced basal cell carcinoma; mRECIST, modified RECIST; ORR, objective response rate; PD, progressive disease; PR, partial response; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Figure 3 Photographs of locally advanced basal cell carcinoma lesion (laBCC) and lesion classification using BCC-Response Evaluation Criteria in Solid Tumors (RECIST)-like and modified RECIST (mRECIST) protocol. (a) LaBCC lesion at baseline; (b) LaBCC after treatment with sonidegib 200 mg. Lesion response to treatment: MRI and photo assessment showed partial response; negative result on biopsy. Using mRECIST criteria, the composite overall response would be considered a partial response, whereas using BCC-RECIST-like criteria, this is considered a complete response (Table 2). These images are used with the kind permission of Assoc. Prof. A Guminski, Northern Clinical School, Sydney.
patients had discontinued sonidegib 200 mg due to AEs or physicians’/patients’ decision by 30 months. In both studies, AEs were the primary reason for patients’ and physicians’ decisions to discontinue treatment. Over half of the patients with laBCC or mBCC treated with vismodegib 150 mg in ERIVANCE at 39 months experienced AEs including muscle spasms (71.2%), alopecia (66.3%), dysgeusia (55.8%) and weight loss (50.0%) (Table S5, Supporting Information). Most AEs were mild. The most frequent grade ≥3 AE was weight loss (8.7%), followed by muscle spasms (5.8%) and fatigue (4.8%) (Table S5, Supporting Information). The shortest median time to onset of AEs with vismodegib 150 mg was dysgeusia at 1.48 months (95% CI: 0.99–2.07), followed by muscle spasm at 1.89 months (95% CI: 1.35–2.73) (Fig. 6). Median time to onset of weight loss was the longest, at 6.13 months (95% CI: 4.5–7.36).

At 30 months, the most commonly reported TEAEs (any grade) in patients with laBCC or mBCC treated with sonidegib 200 mg (n = 79) were muscle spasms (54.4%), alopecia (49.4%) and dysgeusia (44.3%) (Table S5, Supporting Information). Most AEs were mild. The most frequent grade ≥3 AEs was elevated creatine kinase (6.3%), weight loss (5.1%) and muscle spasms (2.5%) (Table S5, Supporting Information). The shortest median time to onset of AEs with sonidegib 200 mg was fatigue at 1.08 months (95% CI: 0.53–3.6), followed by muscle spasm at 2.07 months (95% CI: 1.87–3.19) (Fig. 6). The longest median times to onset of AEs were diarrhoea (95% CI: 1.35–10.32) and weight loss (95% CI: 4.70–8.31) at 6.47 months.

Initial assessment of published data from both pivotal studies showed that sonidegib had an approximately 10% lower incidences of most AEs compared with vismodegib at final analyses. Overall, TEAEs reported with sonidegib were slightly less frequent and less severe compared with vismodegib. The time to onset of AEs also indicated that patients treated with sonidegib may experience AEs slightly later than with vismodegib, with the exception of fatigue (Fig. 6).

Patients with laBCC	Sonidegib 200 mg QD	Vismodegib 150 mg QD
Follow-up time, Months	30	21
DCR (CR + PR + SD), %	91%	83%
KM median (95% CI), Months	26.1 (NE)	9.5 (7.4–21.4)
KM median (95% CI), Months	22.1 (NE)	9.5 (7.4–14.8)

CI, confidence interval; CR, complete response; DCR, disease control rate; DOR, duration of response; KM, Kaplan–Meier; laBCC, locally advanced basal cell carcinoma; NE, not estimable; PFS, progression-free survival; PR, partial response; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Table 7 Duration of response and progression-free survival in patients with laBCC treated with sonidegib 200 mg at 30 months and vismodegib 150 mg at 21 months by central review

Figure 4 Duration of response (DOR) in patients with locally advanced basal cell carcinoma lesion (laBCC) in the BOLT and ERIVANCE studies. (a) Kaplan–Meier plot of DOR in patients with laBCC treated with sonidegib 200 mg once daily (QD) (n = 37) by central review in the BOLT study;* (b) Kaplan–Meier plot of DOR in patients with laBCC treated with vismodegib 150 mg QD (n = 27) by central review in the ERIVANCE study.† CI, confidence interval; NE, not estimable. *Adapted from Lear, et al. [CC BY-NC 4.0]. †Adapted from European Medicines Agency.
as indicative values. In general, sonidegib and vismodegib are associated with similar patterns of AEs, suggesting HhI class-dependent effects.15,26,29,30

Further studies are needed to provide a conclusive outcome

The key clinical questions regarding sonidegib and vismodegib focus around their relative risk–benefits and whether switching between the two HhIs could be useful.

One of the most important differences between these agents is their pharmacokinetic profile. Sonidegib at 200 and 800 mg demonstrated non-concentration-dependent plasma protein binding, whereas vismodegib at 150 mg or higher demonstrated concentration-dependent plasma protein binding.15–17 Sonidegib has a longer half-life (28–30 days) and higher volume of distribution (\(>9000\) L) than vismodegib (4–12 days and 16–27 L, respectively).10,12,19–21 How these differences may impact the use of these HhIs in clinical practice remains an open question. For example, the differences in time to steady state and plasma concentration between the two HhIs do not seem to correlate with the effect of the drugs – the median time to response was 3.9 months for sonidegib in BOLT and 5.6 months for vismodegib in ERIVANCE.9,11 However, sonidegib demonstrated a longer time to AE onset (except for fatigue), with even less frequent and less severe AEs compared with vismodegib.26,29,30 Nevertheless, it was suggested that switching between the two HhIs is unlikely to be useful from a safety perspective, as the two drugs showed the same mode of action and similar patterns of AEs.

Key methodological differences between BOLT and ERIVANCE meant that only specific datasets were selected for discussion, and data from the preplanned analysis from BOLT was used to aid comparison. The mRECIST criteria used in BOLT were considered more stringent compared with RECIST.25 Nevertheless, the centrally reviewed ORR in BOLT at 18-months was comparable using either set of lesion assessment criteria, while the rate of CR increased with RECIST-like criteria.15 This adjusted CR rate was similar to those observed in ERIVANCE at 21 months.15,26 The centrally reviewed mDOR and mPFS with sonidegib at 30 months were longer than vismodegib at 21 months.10,15,26 In the investigator review, vismodegib demonstrated a longer mDOR, but shorter mPFS at 39 months compared with sonidegib at 30 months.10,15,26 However, these data are only indicative of the comparative efficacy profiles of the two HhIs, as they were based on different treatment exposure lengths from two separate studies.

Patients with laBCC treated with sonidegib demonstrated sustained or improved QoL in BOLT, despite development of AEs.11,25,31 Patients with laBCC treated with vismodegib showed no positive changes from baseline on either the physical or emotional portions of the Short Form-36 questionnaire in ERIVANCE.31,32 However, these data cannot be compared, as different health-related QoL scales were used and the assessment frequency also differed. A review of the QoL outcomes from the STEVIE study showed that vismodegib was associated with clinically meaningful improvement in the emotional domain using the Skindex-16 scale.33 However, differences in isolated
health-related QoL scale dimensions may result in bias and should not be compared.

In the absence of a head-to-head comparison study, the clinical relevance of pharmacokinetic profile of sonidegib needs further studies to provide conclusive evidence. Intermittent trials, sequential trials or cross-over trials of the two HhIs, in laBCC patients who discontinued treatment due to AEs, may demonstrate the impact of the pharmacokinetic profiles. Further exploratory studies of real-world populations may shed light on how pharmacokinetic profile differences may affect the use of sonidegib and vismodegib in clinical practice.

Acknowledgements

Topics included in this article were based on, but not limited to, broad discussions at an advisory board meeting, which was sponsored and funded by Sun Pharmaceutical Industries, Ltd. Consultancy fees were paid to meeting participants and travel to and from the meeting was reimbursed. Sun Pharmaceutical Industries, Ltd. participated in developing the content for the meeting. Ada Ho of Havas Life Medicom, United Kingdom, provided medical writing and editorial support to the authors in the development of this manuscript, and financial support for these services was provided by Sun Pharmaceutical Industries, Ltd. The authors maintained complete control over the direction and content of the paper. The authors provided an initial concept during the meeting for the medical writer, who prepared an outline and first draft. Sun Pharmaceutical Industries, Ltd. reviewed the accuracy of the data in the first draft manuscript but had no further involvement in the development of the manuscript. All authors reviewed drafts of the manuscript and further developed

Figure 6 Time to onset and frequency of common adverse events (AEs) at 21 months in patients with locally advanced basal cell carcinoma lesion (laBCC) and metastatic basal cell carcinoma lesion (mBCC) in the BOLT and ERIVANCE studies. (a) Graph of time to onset and frequency of common AEs in patients with laBCC and mBCC treated with sonidegib 200 mg once daily (QD) (n = 79).15,30 (b) Graph of time to onset and frequency of common AEs in patients with laBCC and mBCC treated with vismodegib 150 mg QD (n = 104).26,29 AE, adverse events; CI, confidence interval; CK, creatine kinase.
the concept. Havas Life Medicom subsequently supported incorporation of comments into the final draft for author approval. All authors read and approved the final version for submission.

References
1 Trakatelli M, Morton C, Nagore E et al. Update of the European guidelines for basal cell carcinoma management. *Eur J Dermatol* 2014; 24: 312–329.
2 Telfer NR, Colver GB, Morton CA. British Association of Dermatologists. Guidelines for the management of basal cell carcinoma. *Br J Dermatol* 2008; 159: 35–48.
3 Migden MR, Chang AL, Dorox L et al. Emerging trends in the treatment of advanced basal cell carcinoma. *Cancer Treat Rev* 2018; 64: 1–10.
4 Dreier J, Cheng PF, Bogdan Alleman I et al. Pharmacokinetic dose-scheduling of advanced basal cell carcinoma: a multicentre, randomised, double-blind phase 2 trial. *Lancet Oncol* 2015; 16: 404–412.
5 Lear JT, Corner C, Dziewulska P et al. Challenges and new horizons in the management of advanced basal cell carcinoma: a UK perspective. *Br J Cancer* 2014; 111: 1476–1481.
6 Mohan SV, Chang ALS. Advanced basal cell carcinoma: epidemiology and therapeutic innovations. *Curr Dermatol Rep* 2014; 3: 40–45.
7 Silapunt S, Chen L, Migden MR. Hedgehog pathway inhibition in advanced basal cell carcinoma: latest evidence and clinical usefulness. *Ther Adv Med Oncol* 2016; 8: 375–382.
8 Nágeli MC, Dummer R. Vismodegib (Erivedge©). *Schweiz Med Forum* 2014; 14: 284–286.
9 Sekulic A, Migden MR, Oro AE et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. *N Engl J Med* 2012; 366: 2171–2179.
10 European Medicines Agency. EMA/297688/2013 – Erivedge: EPAR - Public assessment report, 2013. URL http://www.ema.europa.eu/docs/en_GB/document_library/EPAR Public_assessment_report/human/002602/WC500166820.pdf (last accessed: January 25, 2019).
11 Migden MR, Guminski A, Gutzmer R et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. *Lancet Oncol* 2015; 16: 716–728.
12 European Medicines Agency. EMA/472165/2015 – Odomzo: EPAR - Public assessment report, 2015. URL https://www.ema.europa.eu/documents/assessment-report/odomzo-epar-public-assessment-report_en.pdf (last accessed: January 25, 2019).
13 Odom D, Mladić D, Purser M et al. A matching-adjusted indirect comparison of sonidegib and vismodegib in advanced basal cell carcinoma. *J Clin Trials Res* 2018; 1: 130–134.
14 Pan S, Wu X, Jiang I et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. *ACS Med Chem Lett* 2010; 1: 130–134.
15 Lear JT, Migden MR, Lewis KD et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. *J Eur Acad Dermatol Venereol* 2018; 32: 372–381.
16 Graham RA, Lum BL, Cheeti S et al. Pharmacokinetics of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors: the role of alpha-1-acid glycoprotein binding. *Clin Cancer Res* 2011; 17: 2512–2520.
17 LoRusso PM, Jimeno A, Dy G et al. Pharmacokinetic dose-scheduling study of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with locally advanced or metastatic solid tumors. *Clin Cancer Res* 2011; 17: 5774–5782.
18 Lu T, Wang B, Gao Y et al. Semi-mechanism-based population pharmacokinetic modeling of the hedgehog pathway inhibitor vismodegib. *CPT Pharmacometrics Syst Pharmacol* 2015; 4: 680–689.
19 Goel V, Hurh E, Stein A et al. Population pharmacokinetics of sonidegib (LDE225), an oral inhibitor of hedgehog pathway signaling, in healthy subjects and in patients with advanced solid tumors. *Cancer Chemother Pharmacol* 2016; 77: 745–755.
20 Graham RA, Hop CE, Borin MT et al. Single and multiple dose intravenous and oral pharmacokinetics of the hedgehog pathway inhibitor vismodegib in healthy female subjects. *Br J Clin Pharmacol* 2012; 74: 788–796.
21 Zollinger M, Lozach F, Hurh E et al. Absorption, distribution, metabolism, and excretion (ADME) of [14C]-sonidegib (LDE225) in healthy volunteers. *Cancer Chemother Pharmacol* 2014; 74: 63–75.
22 Felleter C. Vismodegib (erivedge) for advanced basal cell carcinoma. *Pharm Ther* 2012; 37: 670–682.
23 Basset-Seguin N, Hauschild A, Kunstfeld R et al. Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial. *Eur J Cancer* 2017; 86: 334–348.
24 Dréno B, Kunstfeld R, Hauschild A et al. Two intermittent vismodegib dosing regimens in patients with multiple basal-cell carcinomas (MIKE): a randomised, regimen-controlled, double-blind, phase 2 trial. *Lancet Oncol* 2017; 18: 404–412.
25 Dummer R, Guminski A, Gutzmer R et al. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): a phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. *J Am Acad Dermatol* 2016; 75: 113–123.
26 Sekulic A, Migden MR, Lewis K et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. *J Am Acad Dermatol* 2015; 72: 1021–1026.
27 Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur J Cancer* 2009; 45: 228–247.
28 Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. *J Natl Cancer Inst* 2000; 92: 205–216.
29 Sekulic A, Migden MR, Basset-Seguin N et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. *BMJ Cancer* 2017; 17: 332.
30 Data on file. Sonidegib adverse events 21-month follow up. Sun Pharmaceuticals Industries, Ltd.
31 Migden MR. Quality of life in advanced basal cell carcinoma and treatment with hedgehog inhibitors. *J Clin Trials Res* 2018; 1: 9–16.
32 National Cancer Institute. A study evaluating the efficacy and safety of vismodegib (GDC-0449, hedgehog pathway inhibitor) in patients with advanced basal cell carcinoma, 2017. URL https://clinicaltrials.gov/ct2/show/NCT00833417?term=NCT00833417&rank=1 (last accessed: January 25, 2019).
33 Hansson J, Bartley K, Grob JJ et al. Assessment of quality of life using Skinlex-16 in patients with advanced basal cell carcinoma (BCC) treated with vismodegib in the STEVIE study. *Eur J Dermatol* 2018; 28: 775–783.

Supporting information

Additional Supporting Information may be found in the online version of this article:

Table S1. Baseline demographics and characteristics of patients with locally advanced basal cell carcinoma in the BOLT and ERIVANCE Studies.

Table S2. Efficacy using mRECIST criteria in patients with locally advanced basal cell carcinoma (laBCC) treated with Sonidegib 200 mg by central and investigator review in the BOLT study.

Table S3. Efficacy using RECIST criteria in patients with locally advanced basal cell carcinoma (laBCC) treated with vismodegib 150 mg by central and investigator review in the ERIVANCE study.
Table S4. Efficacy using RECIST-like criteria in patients with locally advanced basal cell carcinoma (laBCC) treated with sonidegib 200 mg by central review from the BOLT study.

Table S5. Commonly reported adverse events according to grade in patients with locally advanced basal cell carcinoma (laBCC) and metastatic basal cell carcinoma (mBCC) in the BOLT and ERIVANCE studies (Final Analyses).