Data Article

Data of innovation ambidexterity as a mediator in the absorptive capacity effect on sustainable competitive advantage

Astadi Pangarso a, b, *, Endang Siti Astuti a, Kusdi Raharjo a, Tri Wulida Afriantya a

a Business Administration Department, Administrative Science Faculty, Brawijaya University, Indonesia
b Business Administration Department, Telkom University, Indonesia

ARTICLE INFO

Article history:
Received 18 November 2019
Received in revised form 20 January 2020
Accepted 20 January 2020
Available online 29 January 2020

Keywords:
Innovation ambidexterity
Absorptive capacity
Sustainable competitive advantage
Indonesian higher education

ABSTRACT

This data article shows the nexus between absorptive capacity (X), innovation ambidexterity (Y1) and sustainable competitive advantage (Y2). There are three nexus points between the constructs, namely the direct nexuses of X to Y1, X to Y2 and the indirect nexus from X to Y2 through Y1. The raw data of 530 self-administrated questionnaires were obtained from 64 non-vocational private higher education institutions in the Bandung area of West Java, Indonesia. Data analyzing were conducted using SPSS and Smart PLS. The data are useful as the data can be reproduced, reused and reanalysed. This data article also opens up better research opportunities going forward through collaboration with other researchers.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author. Business Administration Department, Administrative Science Faculty, Brawijaya University, Indonesia.
E-mail addresses: astadipangarso@student.ub.ac.id, astadipangarso@telkomuniversity.ac.id (A. Pangarso).

https://doi.org/10.1016/j.dib.2020.105200
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data description

The questionnaire data consisted of 3 research variables, namely absorptive capacity (AC) as the independent variable (X), innovation ambidexterity (IA) as the first dependent variable (Y1) and sustainable competitive advantage (SCA) as the second dependent variable (Y2). The questionnaire consists of 60 statement indicators that must be answered based on the Likert scale of 1–5 (very disagree to very agree). Variable X consists of 19 indicator items adopted from Ref. [1]; variable Y1 consists of 9 indicator items adopted from Refs. [2,3]; and variable Y2 consists of 32 indicator items adopted from Refs. [4,5]. Questionnaire data were obtained from Research Data [6].

This questionnaire belongs to the category of self-administration and therefore it needs to be tested for common method variance [7]. Self-administrated questionnaires can potentially lead to a common method bias. Therefore this questionnaire needs to be checked in order to whether this research is free...
from common method bias. The evaluation of common method variance (CMV) using the Harman single factor test has been carried out and the variance value is 38.837%. If the percentage variance is below 50%, then it can be said that the measurement of the research indicators has passed the common method bias. Table 1 states the results of the Harman single factor test for CMV testing using SPSS.

From the results of the descriptive statistics as can be seen in Table 2, the demographics of the respondents in this research were balanced between men and women. The highest number of educated level was a Master’s. Furthermore, the research respondents were dominated by full-time lecturers.

The questionnaire data analyzing were done using the smart PLS protocol according to Ref. [8]. Data analyzing using smart PLS consists of the measurement model evaluation and structural model evaluation. The measurement model calculation can be seen sequentially in Tables 3–5. Smart PLS preparation begins from assessing the measurement model through indicator reliability, internal

Component	Initial Eigenvalues	Extraction Sums of Squared Loadings
1	23.302	38.837
2	3.004	5.007
3	2.635	4.392
4	1.991	3.318
5	1.564	2.607
6	1.471	2.452
7	1.446	2.409
8	1.204	2.007
9	1.165	1.942
10	1.060	1.766
11	.987	1.645
12	.869	1.448
13	.821	1.369
14	.781	1.302
15	.744	1.240
16	.724	1.207
17	.686	1.144
18	.677	1.128
19	.655	1.092
20	.617	1.028
21	.608	1.013
22	.589	.982
23	.570	.951
24	.551	.918
25	.545	.908
26	.494	.823
27	.475	.791
28	.465	.776
29	.458	.764
30	.451	.752
31	.437	.728
32	.430	.716
33	.400	.666
34	.396	.660
35	.383	.638
36	.361	.602
37	.351	.584
38	.341	.568
39	.332	.553
40	.328	.547
41	.315	.524

(continued on next page)
consistency reliability, convergent validity and discriminant validity [8]. The reliability of the indicator is known by the loading factor value (>0.708), which means that the indicator is reliable. The factor loading in Table 3 for each indicator must be more than 0.708. If the factor loading value is less than 0.708, then it will be removed and not included in the next evaluation process. Only the indicators with loading factor values of 0.708 or more are included in the next evaluation process. From Fig. 1, it can be seen that there are indicators whose values are the same or more than 0.708.

Internal consistency reliability is measured based on composite reliability values (CR) > 0.70, which means that the research variable is reliable. The convergent validity is represented by the value of Average Variance Extracted/AVE (>0.50), which means that the variable can explain more than 50% of the variance of the indicators. The AVE value in Table 4 for each variable must be higher than 0.50.

Furthermore, the discriminant validity uses HeteroTraitMonoTrait (HTMT) values. The HTMT or discriminant validity values in Table 5 for each research variable must be less than 0.90. The HTMT values of the research variables were below 0.90 [9], which means that the research variables have good discriminant validity.

All of the indicators and variables have passed the measurement model evaluation process and have fulfilled all of the rules of thumb, as can be seen in Fig. 1.

Table 1 (continued)

Component	Initial Eigenvalues	Extraction Sums of Squared Loadings	
	Total % of Variance	Cumulative %	
42	.309	.515	93.318
43	.306	.510	93.828
44	.292	.487	94.315
45	.292	.487	94.802
46	.287	.478	95.280
47	.264	.440	95.720
48	.253	.422	96.142
49	.243	.405	96.547
50	.240	.400	96.947
51	.227	.379	97.325
52	.213	.355	97.681
53	.210	.350	98.031
54	.197	.328	98.360
55	.189	.315	98.674
56	.182	.303	98.977
57	.173	.288	99.265
58	.159	.264	99.529
59	.154	.257	99.787
60	.128	.213	100.000

Extraction Method: Principal Component Analysis.

Table 2

Respondent profile.

Characteristics	Sub characteristics	Frequency	Percentage (%)
Gender	Male	277	52
	Female	253	48
Education level	Bachelor	35	7
	Master	380	72
	Ph.D/DR.	115	21
Structural position	No	134	25
	Yes	396	75
Structural Position Name	Lecturer	277	52
	Quality Assurance	52	10
	Leader	201	38
	Absorptive Capacity	Innovation Ambidexterity	Sustainable Competitive Advantage
---	-------------------	--------------------------	----------------------------------
X10	0.754		
X11	0.690		
X12	0.718		
X13	0.724		
X14	0.723		
X15	0.775		
X16	0.804		
X17	0.765		
X18	0.677		
X19	0.710		
X2	0.696		
X3	0.753		
X4	0.799		
X5	0.780		
X6	0.773		
X7	0.706		
X8	0.610		
X9	0.603		
Y1.1	0.755		
Y1.2	0.714		
Y1.3	0.645		
Y1.4	0.722		
Y1.5	0.801		
Y1.6	0.781		
Y1.7	0.713		
Y1.8	0.825		
Y1.9	0.816		
Y2.1	0.525		
Y2.10	0.560		
Y2.11	0.634		
Y2.12	0.529		
Y2.13	0.553		
Y2.14	0.582		
Y2.15	0.551		
Y2.16	0.531		
Y2.17	0.705		
Y2.18	0.767		
Y2.19	0.484		
Y2.2	0.474		
Y2.20	0.761		
Y2.21	0.759		
Y2.22	0.683		
Y2.23	0.669		
Y2.24	0.760		
Y2.25	0.798		
Y2.26	0.777		
Y2.27	0.612		
Y2.28	0.733		
Y2.29	0.665		
Y2.3	0.619		
Y2.30	0.012		
Y2.31	0.055		
Y2.32	0.046		
Y2.4	0.589		
Y2.5	0.695		
Y2.6	0.676		
Y2.7	0.406		
Y2.8	0.661		
Y2.9	0.704		
X1	0.658		
After evaluating the measurement model, it is followed by an evaluation of the structural model consisting of the values of inner VIF, path coefficients, specific indirect effect, R^2 and Q^2 [8]. The Fig. 2 and Table 6 show the structural evaluation model in sequence from Table 6 through to 10. The inner VIF structural model for all of the research variables in Table 6 has fulfilled the cut-off in the range of 0.20 up to less than 5, which means that all of the research variables are free from collinearity problems.

The number of hypotheses in the structural model consists of 2 direct nexus and one indirect nexus. The direct nexuses are X to Y1 and Y1 to Y2. The indirect nexus is X to Y2 through Y1. Table 7 shows that all of the direct nexus are significant.

In Table 7, the rule of thumb of the direct effect between the variables shows that the p-value is smaller than 0.05 and the t-statistics value is higher than 1.96 (using a 5% confidence level).

In Table 8, the rule of thumb for the specific indirect effect between the variables shows that the p-value is less than 0.05 and the t-statistics value is higher than 1.96 (using a 5% confidence level). Table 8 shows that the indirect nexus is significant.

Table 4
CR and AVE values.

	Composite Reliability (CR)	Average Variance Extracted (AVE)
Absorptive Capacity	0.945	0.588
Innovation Ambidexterity	0.920	0.657
Sustainable Competitive Advantage	0.936	0.620

Table 5
HTMT values.

	Absorptive Capacity	Innovation Ambidexterity	Sustainable Competitive Advantage
Absorptive Capacity			
Innovation Ambidexterity	0.897		
Sustainable Competitive Advantage	0.831	0.789	

Fig. 1. Measurement model evaluation.
In Table 9, the rule of thumb shows that the original sample (O) value of R^2 and the p-value are both smaller than 0.05. The original sample (O) values are higher than 0.25. Furthermore, the R^2 values between 0.5 and 0.75 indicate that the structural model has moderate explanatory power (see Table 9).

In Table 10, the rule of thumb shows that the values of Q^2 are higher than zero. All of the Q^2 values are in the range of 0.25–0.5, which means that the structural model has medium predictive relevance.

All of the variables have passed the structural model evaluation process and they have fulfilled all of the rules of thumb. The structural model evaluation can be seen in Fig. 2 below.

2. Experimental design, materials, and methods

This data article used a quantitative research method approach. The data analysis unit were organisations. The research population consisted of all non-vocational private higher education institution in the area of Bandung, West Java, Indonesia taken from Ref. [10]. The number of samples of this research were the same as the total non-vocational private higher education institutions in the Bandung area, which were 81. The sampling technique used was non-probability sampling, with saturated sampling making all of the members of the population the sample [11]. Each non-vocational private higher education institution had an average of 10 respondents, so the total number of respondents who would filled the questionnaire were 810. The questionnaire data were collected between May 2019 and September 2019. The questionnaire data that were collected and found to be suitable for the analyzing were 530 questionnaires from 64 non-vocational private higher education institutions. The response rate of the data collection was 65.43%. The data collected has fulfilled the minimum requirements of the Smart PLS sample size recommendation, with a range of 8–90 organisations for theoretical models with a significance level of 5% [8]. The data collected were analyzed into SPSS for common method variance in order to evaluate whether the research indicators are free of bias [7]. Descriptive statistics were used to know the respondent’s profile.

Table 7
Path coefficients.

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
0.825	0.825	0.018	45.811	0.000
0.723	0.724	0.030	23.956	0.000

The definition of significance of bold is if the p-value less than 0.05.

Table 8
Specific indirect effect.

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
0.596	0.598	0.034	17.421	0.000

The definition of significance of bold is if the p-value less than 0.05.

In Table 9, the rule of thumb shows that the original sample (O) value of R^2 and the p-value are both smaller than 0.05. The original sample (O) values are higher than 0.25. Furthermore, the R^2 values between 0.5 and 0.75 indicate that the structural model has moderate explanatory power (see Table 9).

In Table 10, the rule of thumb shows that the values of Q^2 are higher than zero. All of the Q^2 values are in the range of 0.25–0.5, which means that the structural model has medium predictive relevance.

All of the variables have passed the structural model evaluation process and they have fulfilled all of the rules of thumb. The structural model evaluation can be seen in Fig. 2 below.

2. Experimental design, materials, and methods

This data article used a quantitative research method approach. The data analysis unit were organisations. The research population consisted of all non-vocational private higher education institution in the area of Bandung, West Java, Indonesia taken from Ref. [10]. The number of samples of this research were the same as the total non-vocational private higher education institutions in the Bandung area, which were 81. The sampling technique used was non-probability sampling, with saturated sampling making all of the members of the population the sample [11]. Each non-vocational private higher education institution had an average of 10 respondents, so the total number of respondents who would filled the questionnaire were 810. The questionnaire data were collected between May 2019 and September 2019. The questionnaire data that were collected and found to be suitable for the analyzing were 530 questionnaires from 64 non-vocational private higher education institutions. The response rate of the data collection was 65.43%. The data collected has fulfilled the minimum requirements of the Smart PLS sample size recommendation, with a range of 8–90 organisations for theoretical models with a significance level of 5% [8]. The data collected were analyzed into SPSS for common method variance in order to evaluate whether the research indicators are free of bias [7]. Descriptive statistics were used to know the respondent’s profile.

Table 9
R^2 values.

Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values	
Innovation Ambidexterity	0.680	0.681	0.030	22.929	0.000
Sustainable Competitive Advantage	0.523	0.526	0.044	12.018	0.000

The definition of significance of bold is if the p-value less than 0.05.
Smart PLS was used with the considerations as follow [8]:

1. Aims to identify the key driver of a variable (measurement model)
2. Can be used to structure complex theoretical models (consisting of many indicators)
3. Can be used for small sample sizes and for data that is not normally distributed
4. Aim at analysing the latent variables (structural model)

SmartPLS was used for the measurement model evaluation and structural model evaluation [8]. The measurement model evaluation was first used in the analyzing of the Smart PLS data in order to examine the feasibility of the research indicators. All of the indicators are stated to have met the rule of thumb. The measurement model evaluation was followed by the structural model evaluation. The structural model evaluation was used to examine the nexus between the research variables with conclusions that were either significant or not. The data analyzing in the structural model evaluation used the complete bootstrapping 5000 sample method inclusive of the two-tailed BCa confidence interval method and a 0.05 confidence level.

Acknowledgements

1. LPDP (Indonesia Endowment Fund for Education) as a research funder.
2. LPPM Telkom University as a publication funder.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105200.

References

[1] C. Camisón, B. Forés, Knowledge absorptive capacity: new insights for its conceptualization and measurement, J. Bus. Res. 63 (7) (2010) 707–715.
[2] J.L. Soares, D. Roberto, J. Carlos, P. José, S. Neto, “Organizational Ambidexterity : a study in Brazilian higher education institutions, J. Technol. Manag. Innovat. 13 (3) (2018) 36–46.
[3] A. Sengupta, A.S. Ray, University research and knowledge transfer: a dynamic view of ambidexterity in british universities, Res. Pol. 46 (5) (2017) 881–897.
[4] Kementerian Riset, Teknologi, “Klasterisasi Perguruan Tinggi Indonesia Tahun 2017.”, 2017. Available, https://www.kopertis12.or.id/wp-content/uploads/2017/08/Pemeringkatan-PT-2017-min.pdf. (Accessed 1 February 2020).
