Separating the impact of nuclear skin and nuclear deformation on elliptic flow and its fluctuations in high-energy isobar collisions

Jiangyong Jia,1,2, * Giuliano Giacalone,3,† and Chunjian Zhang1

1 Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
2 Physics Department, Brookhaven National Laboratory, Upton, NY 11976, USA
3 Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Bulk nuclear structure properties, such as radii and deformations, leave distinct signatures in the final states of relativistic heavy-ion collisions. Collisions of isobars, in particular, offer an easy route to establish clear correspondences between the structure of colliding nuclei and the final state observables. Here we investigate the impact of nuclear skin and nuclear deformations on elliptic flow (v_2) and its fluctuations in high-energy $^{96}\text{Ru}+^{96}\text{Ru}$ and $^{96}\text{Zr}+^{96}\text{Zr}$ collisions, for which experimental data is available. We show that the difference in skin thickness between these isobars impacts the intrinsic ellipticity of the collision systems, or reaction-plane flow, v_2^{rr}. In contrast, differences in nuclear deformations impact only the fluctuations of v_2 around v_2^{rr}. Through isobar collisions, one can separate the influence of nuclear skin and nuclear deformations in the v_2 data. This is a significant step towards assessing the consistency of nuclear phenomena across energy scales.

PACS numbers: 25.75.Gz, 25.75.Ld, 25.75.-1

The structure of most of atomic nuclei is characterized by prominent bulk properties, reflecting collective correlations in many-body systems held together by the strong force. Mapping out such properties and how they evolve across the Segré chart is one of the main goals of nuclear physics [1, 2]. Information about the collective features of nuclei is typically inferred via spectroscopic and scattering experiments conducted at low energies. In the past five years or so, an expanded list of nuclei utilized in collision experiments at ultra-relativistic energies has lead to the identification of fingerprints of collective nuclear properties also in such processes [3–13]. The angular (azimuthal) particle distributions emitted in high-energy nuclear collisions carry, in particular, direct information about the structure of the colliding ions, to the extent that, for certain collision configurations, the shape of the particle distributions in momentum space can be related directly to the shape of the colliding ions at the time of scattering.

This is made possible by the nearly-ideal fluid nature of the quark-gluon plasma (QGP) created in high-energy collisions. In a hydrodynamic picture, the emergence of final-state anisotropies in the azimuthal particle spectra stems from the presence of spatial anisotropies in the initial conditions of the fluid expansion [14–16]. These anisotropies are in turn sourced by the positions in the initial conditions of the fluid expansion [14–16]. The important question is, then, to which extent established information from low-energy nuclear physics can provide a consistent picture of the phenomena observed at high-energy colliders. In this paper we make significant progress in this direction.

In heavy-ion collisions, the deformation of the colliding ions becomes manifest mainly in the limit of fully-overlapping configurations (central collisions), where the shape of the colliding bodies is fully resolved. However, nuclear structure effects can be cleanly isolated as well over the full centrality range by comparing two isobaric collision systems [8, 11, 13]. Isobar nuclei have the same mass number, therefore, any visible difference in the observables measured in two isobaric systems must originate from differences in their structure, which impacts the initial condition and evolution of the QGP. Collisions of isobars, $^{96}\text{Ru}+^{96}\text{Ru}$ and $^{96}\text{Zr}+^{96}\text{Zr}$, have been performed at the BNL Relativistic Heavy Ion Collider (RHIC). They demonstrate this argument. Ratios of observables taken between $^{96}\text{Ru}+^{96}\text{Ru}$ and $^{96}\text{Zr}+^{96}\text{Zr}$ collisions show significant and centrality-dependent departures from unity [17]. Most models of heavy ion collisions describe the data by parameterizing the nucleon density within the colliding ions according to a Woods-Saxon (WS) profile,

$$
\rho(r, \theta, \phi) \approx \frac{1}{1 + e^{(r - R_0(1 + \beta_2 Y_2^2(\theta, \phi) + \beta_3 Y_3^3(\theta, \phi))) / a_0}},
$$

which contains four structure parameters, nuclear skin a_0, half-width radius R_0, quadrupole deformation β_2, and octupole deformation β_3. Model studies have established that isobar ratios are indeed controlled by parameter differences, $\Delta \beta_2^2 = \beta_2^{\text{rr}} - \beta_2^{\text{Zr}}$, $\Delta \beta_3^3 = \beta_3^{\text{rr}} - \beta_3^{\text{Zr}}$, $\Delta a_0 = a_0^{\text{rr}} - a_0^{\text{Zr}}$ and $\Delta R_0 = R_0^{\text{rr}} - R_0^{\text{Zr}}$ [18].

Many observables have been shown to present a sensitivity to the nuclear profile parameters, such as the mean transverse momentum p_T [19], its fluctuations [13],
the spectator neutron number [20], Fourier plane correlations [21, 22], and shape-size correlations [6, 10, 12]. In the present study, the key observable is the simple elliptical asymmetry of the azimuthal particle distributions, known as elliptic flow $v_2 = v_2 e^{2i\Psi}$, which characterizes the anisotropic flow of particles along the direction Ψ with an amplitude v_2 and periodicity of π. v_2 emerges as a hydrodynamic response to the elliptical shape of the region of overlap between two colliding ions. In isobar collisions, the ratio of v_2 between 96Ru+96Ru and 96Zr+96Zr collisions shows a complex non-monotonic centrality dependence, which can be explained as a combined effect from differences in the WS parameters between 96Ru and 96Zr [23]. In this paper, we show that the impact of the deformations parameters (β_2 and β_3) can be fully disentangled from that of the radial profile parameters (a_0 and R_0), and point out the consequences of such a result.

We start from Fig. 1. We parametrize the plane transverse to the collision axis (transverse plane) with Cartesian coordinates where the x direction is along the impact parameter direction. For events at a given centrality, the distribution of $V_2 \equiv (v_{2x}, v_{2y})$ is approximately a two-dimensional Gaussian [24]

$$p(v_{2x}, v_{2y}) = \frac{1}{\pi \delta^2} \exp\left[-\frac{(v_{2x} - v_{2P}^x)^2 + v_{2y}^2}{\delta^2}\right]. \quad (2)$$

The displacement along x, v_{2P}^x, is the so-called reaction plane flow, associated with the average elliptic geometry, whereas the fluctuation around the intrinsic geometry, δ, is the variance of elliptic flow due to, e.g., fluctuations in the positions of the colliding nucleons. Our point is that, to leading order, a change in the radial profile of the nucleus, determined by either a_0 or R_0 [see Fig. 1(a)], modifies the intrinsic ellipticity, v_{2P}, with little impact on the flow fluctuation. On the other hand, in the presence of nuclear deformations [see Fig. 1(b)], the random orientation of the colliding nuclei implies an increase in δ, with little impact on v_{2P}^x [25]. Now, if $p(V_2)$ is a Gaussian, the root-mean-squared elliptic flow, experimentally accessible via a two-particle correlation, is $v_2(2) = \sqrt{(v_{2P}^x)^2 + \delta^2}$, while higher-order cumulants of v_2, measured via multi-particle correlations, are all identical and equal to v_{2P},

$$v_2(4) = v_2(6) = \ldots = v_2(\infty) = v_{2P}^x. \quad (3)$$

In this limit, the fluctuation of v_2 can be measured as

$$\delta^2 = v_2(2^2) - v_2(4^2). \quad (4)$$

In the following, we demonstrate our argument about the sensitivity of v_{2P}^x and δ to the nuclear structure parameters by means of transport model calculations.

We simulate the dynamics of the QGP using the multi-phase transport model (AMPT) [26]. We use AMPT v2.26t5 in the string-melting mode at $\sqrt{s_{NN}} = 200$ GeV with a partonic cross section of 3.0 mb [27, 28]. This model successfully describes the isobar ratios of v_2, v_3, and N_{ch} measured by the STAR collaboration [9, 18]. We simulate generic isobar 96X+96X collisions with five choices of β_2, β_3, R_0 and a_0, as listed in Table I. This allows us to define ratios that isolate the influence of the nuclear structure parameters step-by-step, e.g., Case1/Case2 includes the effect of β_2, Case1/Case3 includes the effect of β_2 and β_3, and so on. The cumulants of elliptic flow are calculated within the multi-particle cumulant framework [29, 30], for hadrons with $0.2 < p_T < 2$ GeV. The two-particle cumulant $v_2(2)$ is obtained by correlating particles in $0 < \eta < 2$ with those in $-2 < \eta < 0$ to suppress short-range correlations that do not emerge from the collective expansion of the system [31]. $v_2(4)$ is instead free of such contributions by construction, and is thus obtained from all particles with $|\eta| < 2$. Additionally, we calculate the true v_{2P} from the azimuthal correlation of particles relative to the impact parameter, and the true flow fluctuation as $\delta^2 = v_2(2^2) - (v_{2P}^x)^2$. The simulated events are binned in classes defined by the number of nucleons that participate in the interaction N_{part}, which is a good enough proxy for the experimentally-defined collision centrality.

In Fig. 2, we show our results for $v_2(2)$, $v_2(4)$, and δ, averaged between 96Ru+96Ru and 96Zr+96Zr collisions, and how they compare with STAR data. The comparison with data is generally good. In central collisions, AMPT correctly predicts a sign change for $v_2(4)$, qualitatively similar to STAR data but with a smaller magnitude. This sign change can be attributed to volume fluctuations associated with the event-activity variable, such as N_{part} or N_{ch}, which could have a strong impact on multi-particle cumulants [10, 32, 33]. Indeed, we observe a stronger sign change pattern when the events are binned in N_{ch} [34],

\[\text{FIG. 1. (a) Sketch of a collision of spherical nuclei with different skin thickness, } a_0. \text{ The influence of the nuclear skin is primarily on the average ellipticity along the } x \text{ direction, i.e., an increase in the reaction plane flow, } v'_{2x}. \text{ (b) Collisions of deformed nuclei with } \beta_2 = 0.25 \text{ and random orientations (four orientations for each nucleus as shown by solid lines). The random orientations mostly result in an enhanced ellipticity fluctuation, } \delta. \]
The results are shown in the left column of Fig. 3. Figure 3(a) shows the complex centrality dependence of $R_{v_2}(2)$, arising from both deformation and radial profile parameters. In contrast, $R_{v_2(4)}$ [Fig. 3(b)] is sensitive mostly to a_0, whereas R_{δ} [Fig. 3(c)] is sensitive mostly to β_n. Therefore, the behavior of $R_{v_2(2)}$ can be fully decomposed into a part sensitive to the nuclear skin and a part sensitive to the nuclear deformations. One can establish the following relation,

$$R_{v_2(2)}^2 = R_{\delta}^2 + (R_{v_2(4)}^2 - R_{\delta}^2) r,$$

$$R_{v_2(2)} \approx R_{\delta} + (R_{v_2(4)} - R_{\delta}) r,$$

where the second line is obtained by assuming all ratios are close to unity. In central collisions where $r = 0$, the behavior of $R_{v_2(2)}$ is dominated by R_{δ}. In mid-central collisions, the non-monotonic behavior of $R_{v_2(2)}$ in the top-left panel of Fig. 3 results from the interplay of $R_{v_2(4)}$ and R_{δ}. This is our main result. The right column of Fig. 3 shows, in addition, the ratios of the true intrinsic ellipticities, $R_{v_2}^{\text{true}}$ [Fig. 3(d)], and the true flow fluctuation, R_{δ_rep} [Fig. 3(e)], obtained from $\delta_{2\text{rep}}^2 = v_2^2(2)^2 - (v_2^{\text{true}})^2$. We see that, for a difference in skin thickness of $\delta_0 = 0.06$ fm, the value of v_2^{true} is enhanced by about 10% in 96Ru+96Ru collisions. The impact of β_n on $R_{v_2}^{\text{true}}$ is subleading, as expected. In addition, we see that the value of v_2^{true} varies more strongly when changing nuclear structure parameters than that of $v_2^2(4)$. As a result, the ratio R_{δ_rep} shows somewhat larger dependence on nuclear structure than R_{δ}. One further comment is in order. Elliptic flow emerges, event-by-event, as a response to the initial ellipticity of the system. This quantity, denoted by E_2, is usually quantified as the second Fourier harmonic of the initial density distribution [38]. With the excellent approximation of a linear scaling, $V_2 \propto E_2$, on an event-by-event basis, the ratios of observables analyzed in Fig. 3 can be estimated starting solely from the knowledge of E_2 and its fluctuations. In the supplemental material we show that the behaviors observed in Fig. 3 do indeed originate largely from the initial state.

Before concluding, let us comment on the fact that the STAR collaboration has also measured an approximation of v_2^{true} by correlating particles with the spectator neutrons.

Ratios	Case1	Case2	Case3	Case4	Case5
R_{v_2}	0.50	0.46	0.162	0.06	0.20
a_0	0.50	0.46	0.06	0.20	0.20
β_2	0.50	0.46	0.06	0.20	0.20
β_3	0.50	0.46	0.06	0.20	0.20

Table I. Nuclear structure parameters used in the simulations of 96Ru+96Ru and 96Zr+96Zr collisions. Case1 and Case5 represent, respectively, our full parameterizations of 96Ru and 96Zr.
Wrapping up, we have found that the nuclear radial profile parameters, i.e., nuclear skin thickness, a_0, and half-density radius, R_0, mostly influence the magnitude of v_2 along the impact parameter direction, i.e., the reaction-plane elliptic flow, v_2^{rp}. Conversely, the nuclear deformations, β_2, mostly influence the elliptic flow fluctuation, δ. Based on our simulations, we conclude that the measured isobar ratio of v_2^{zdc} is determined by $a_{0}^{0Ru} - a_{0Zr}$, while the measured isobar ratio of δ arises from the interplay of $\beta_{2}^{0Ru} - \beta_{2}^{2Zr}$ and $\beta_{3}^{0Ru} - \beta_{3}^{2Zr}$. This new result has now to be combined with the information from previous studies [18, 36], showing that the isobar ratio of triangular flow coefficients, $v_3\{2\}$, is dominated by $\beta_{2}^{0Ru} - \beta_{2}^{2Zr}$. Therefore, We have three ratios, $R_{v_2(2)}$, $R_{v_2(4)}$, and R_δ, that provide separate constraints on three features of the colliding nuclei, namely Δa_0, $\Delta \beta_2^2$, and $\Delta \beta_3^2$. A pressing question in nuclear phenomenology is whether the structure-induced phenomena observed in high-energy collisions are consistent or not with the expectations from low-energy nuclear experiments and theories. These results represent, then, a stepping stone to the achievement of this goal. Finally, let us briefly comment on the fact that our conclusions do not make any specific use of the Gaussian Ansatz for v_2 fluctuations that we have used to motivate our analysis. The fluctuations of v_2 are, in fact, non-Gaussian, especially in peripheral collisions, where v_2^{rp} is large and one becomes sensitive to the bound $v_2 < 1$ [41, 42]. It would be interesting to generalize this study to higher-order cumulants, $v_2\{4, 6, 8\}$, and see how nuclear structure impacts these quantities in isobar collisions (see Ref. [43] for a study in collisions of uranium-238 nuclei). In the supplemental material, we show results for $R_{v_3(4)}$, $R_{v_3(6)}$ and $R_{v_3(8)}$, and also study the fine splitting of these cumulants at the level of the eccentricity fluctuations. Our preliminary conclusion is that, for such observables, there is no obvious separation of nuclear structure effects, as in the case of $v_2\{2\}$, although this is work in progress.

Acknowledgements: This research of J.J and C.Z. is supported by DOE DE-FG02-87ER40331. The research of G.G. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster), within the Collaborative Research Center SFB1225 (ISOQUANT, Project-ID 273811115). We acknowledge Somadutta Bhatta and Jean-Yves Ollitrault for useful discussions.

SUPPLEMENTAL MATERIAL

A similar analysis is performed for the eccentricity, ε_2, and its fluctuations, where we decompose $\varepsilon_2\{2\} = \sqrt{\langle \varepsilon_2^2 \rangle}$ into a reaction plane component and a fluctua-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Isobar ratios $R_{v_2(2)}$ (a), $R_{v_2(4)}$ (b), R_δ (c), $R_{v_2^{rp}}$ (d), and $R_{\delta_{np}}$ (e) plotted as a function of N_{part}. They are compared with STAR data from Fig. 23 of Ref. [17]. These ratios are re-calculated at matching N_{part}, which are slightly different from the published ratios at matching centrality as described in detail in Ref. [39].}
\end{figure}
tion component. The results are shown in Fig. 4 with identical layout as in Fig. 3. Specifically, we calculate the four-particle cumulant \(\varepsilon_2(4) \) and the standard reaction-plane eccentricity \(\varepsilon_2^R \), as well as the associated fluctuations defined by \(\delta_{\varepsilon_2} \equiv \sqrt{\varepsilon_2(2)^2 - \varepsilon_2(4)^2} \) and \(\delta_{\varepsilon_2^R} \equiv \sqrt{\varepsilon_2(2)^2 - (\varepsilon_2^R)^2} \) to match the corresponding final state quantities in Fig. 3. We see that the isobar ratios of these initial state estimators already qualitatively or even quantitatively reproduce the AMPT result in Fig. 3, with only a few exceptions. Compared to Fig. 3, we see in particular that the values of \(R_{\varepsilon_2(4)} \) systematically smaller than \(R_{\varepsilon_2(4)} \). However, the values of \(R_{\varepsilon_2^R} \) agree quantitatively with \(R_{\varepsilon_2^R} \) in all four cases. The stronger dependence of \(R_{\delta_{\varepsilon_2}} \) on WS parameters, compared to \(R_{\delta_{\varepsilon_2^R}} \), may then be attributed to the role of non-Gaussianities, which are known to be larger in the distribution of \(\varepsilon_2 \) than in that of \(\varepsilon_2 \), as \(\varepsilon_2 \) fluctuations are largely smeared by the hydrodynamic expansion. We also see that \(R_{\delta_{\varepsilon_2}} \) agrees rather nicely with \(R_{\delta_{\varepsilon_2^R}} \) in Fig. 3, which is expected as both \(\varepsilon_2^R \) and \(\varepsilon_2^R \) are defined relative to the impact parameter, and therefore is less affected by non-Gaussianities. However, both \(R_{\delta_{\varepsilon_2}} \) and \(R_{\delta_{\varepsilon_2^R}} \) show some dependence on \(a_0 \) in peripheral collisions, which are absent in \(R_{\delta_{\varepsilon_2}} \) and \(R_{\delta_{\varepsilon_2^R}} \) in Fig. 3. This is once more likely due to a smearing effect from the hydrodynamic expansion, washing out the primordial non-Gaussianities.

Moving to higher-order fluctuations, we also calculate the ratios of higher-order cumulants, \(R_{\varepsilon_2(6)} \) and \(R_{\varepsilon_2(8)} \), and compare them to \(R_{\varepsilon_2(4)} \). In the Gaussian limit, these ratios should all be identical. However, a characteristic fine splitting is observed experimentally, \(\varepsilon_2(4) \gtrsim \varepsilon_2(6) \gtrsim \varepsilon_2(8) \), reflecting the non-Gaussianity of the distribution of \(\varepsilon_2 \). It is interesting to study whether this fine splitting is affected by the nuclear structure differences. The results are shown in Fig. 5. Unfortunately, the statistical precision of our AMPT results does not allow for a definitive answer to this question. On the other hand, the ratios of higher-order cumulants for \(\varepsilon_2 \) can be calculated with high precision to provide a useful guidance. The results, shown in Fig. 6, bring in a sense both good and bad news. The good news is that the cumulant splittings are impacted by the nuclear structure parameters. The bad news is that both \(\beta_\varepsilon \) and \(a_0 \) seem to affect these ratios at similar level, by reducing the cumulant ratios \(\varepsilon_2(6)/\varepsilon_2(4) \) and \(\varepsilon_2(8)/\varepsilon_2(6) \). We note that the reduction is larger for increasing \(N_{\text{part}} \), and may even change the overall trends of these ratios. While more work may be needed on the conceptual side, it would still be interesting to study whether these effects also survive to the final state and leave similar imprints on \(v_2(4, 6, 8) \), both in simulations and in experiment.

![Figure 4: The isobar ratios](image-url)

FIG. 4. The isobar ratios \(R_{\varepsilon_2(2)} \) (a), \(R_{\varepsilon_2(4)} \) (b), \(R_{\varepsilon_2} \) (c), \(R_{\varepsilon_2^R} \) (e), and \(R_{\delta_{\varepsilon_2}} \) (f) plotted as a function of \(N_{\text{part}} \). They are compared with the same STAR data shown in Fig. 3.

1. Correspond to giacalone@thphys.uni-heidelberg.de
2. Takashi Nakatsukasa, Kenichi Matsuyanagi, Masayuki Matsuo, and Kazuhiro Yabana, “Time-dependent density-functional description of nuclear dynamics,” Rev. Mod. Phys. 88, 045004 (2016), arXiv:1606.04717 [nucl-th].
3. Witold Nazarewicz, “Challenges in Nuclear Structure Theory,” J. Phys. G 43, 044002 (2016), arXiv:1603.02490 [nucl-th].
4. Q. Y. Shou, Y. G. Ma, P. Sorensen, A. H. Tang, F. Vitebk, and H. Wang, “Parameterization of Deformed Nuclei for Glauber Modeling in Relativistic Heavy Ion Collisions,” Phys. Lett. B 749, 215-220 (2015), arXiv:1409.8375 [nucl-th].
5. And Goldsmith, Zhi Qiu, Chun Shen, and Ulrich Heinz, “Collision geometry and flow in uranium + uranium collisions,” Phys. Rev. C 92, 044903 (2015), arXiv:1507.03910 [nucl-th].
6. Giuliano Giacalone, Jacquelyn Noronha-Hostler, Matthew Luzum, and Jean-Yves Ollitrault, “Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions,” Phys. Rev. C 97, 034904 (2018), arXiv:1711.08499 [nucl-th].
7. Giuliano Giacalone, “Constraining the quadrupole...
deformation of atomic nuclei with relativistic nuclear collisions,” Phys. Rev. C 102, 024901 (2020), arXiv:2004.14463 [nucl-th].

[8] Giuliano Giacalone, Jiangyong Jia, and Vittorio Somà, “Accessing the shape of atomic nuclei with relativistic collisions of isobars,” Phys. Rev. C 104, L041903 (2021), arXiv:2102.08158 [nucl-th].

[9] Giuliano Giacalone, Jiangyong Jia, and Chunjian Zhang, “Impact of Nuclear Deformation on Relativistic Heavy-Ion Collisions: Assessing Consistency in Nuclear Physics across Energy Scales,” Phys. Rev. Lett. 127, 242301 (2021), arXiv:2105.01638 [nucl-th].

[10] Jiangyong Jia, Shengli Huang, and Chunjian Zhang, “Probing nuclear quadrupole deformation from correlation of elliptic flow and transverse momentum in heavy ion collisions,” Phys. Rev. C 105, 014906 (2022), arXiv:2105.05713 [nucl-th].

[11] Jiangyong Jia, “Shape of atomic nuclei in heavy ion collisions,” Phys. Rev. C 105, 014905 (2022), arXiv:2106.08768 [nucl-th].

[12] Benjamin Bally, Michael Bender, Giuliano Giacalone, and Vittorio Somà, “Evidence of the triaxial structure of 129Xe at the Large Hadron Collider,” Phys. Rev. Lett. 128, 082301 (2022), arXiv:2108.09578 [nucl-th].

[13] Jiangyong Jia, “Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions,” Phys. Rev. C 105, 044905 (2022), arXiv:2109.00604 [nucl-th].

[14] Charles Gale, Sangyong Jeon, and Bjørn Schenke, “Hydrodynamic Modeling of Heavy-Ion Collisions,” Int. J. Mod. Phys. A28, 1340011 (2013), arXiv:1301.5893 [nucl-th].

[15] Ulrich Heinz and Raimond Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions,” Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013), arXiv:1301.2826 [nucl-th].

[16] Paul Romatschke and Ulrike Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019) arXiv:1712.05815 [nucl-th].

[17] Mohamed Abdallah et al. (STAR), “Search for the chiral magnetic effect with isobar collisions at $\sqrt{S_{NN}}=200$ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex].

[18] Chunjian Zhang and Jiangyong Jia, “Evidence of Quadrupole and Octupole Deformations in Zr96+Zr96 and Ru96+Ru96 Collisions at Ultrarelativistic Energies,” Phys. Rev. Lett. 128, 022301 (2022), arXiv:2109.01631 [nucl-th].

[19] Hao-jie Xu, Wenbin Zhao, Hanlin Li, Ying Zhou, Lie-Wen Chen, and Fuqiang Wang, “Probing nuclear structure with mean transverse momentum in relativistic isobar collisions,” (2021), arXiv:2111.14812 [nucl-th].

[20] Lu-Meng Liu, Chun-Jian Zhang, Jia Zhou, Jun Xu, Jiangyong Jia, and Guang-Xiong Peng, “Probing neutron-skin thickness with free spectator neutrons in ultracentral high-energy isobaric collisions,” (2022), arXiv:2203.09924 [nucl-th].

[21] Shujun Zhao, Hao-jie Xu, Yu-Xin Liu, and Huichao Song, “Probing the nuclear deformation with three-particle asymmetric cumulant in RHIC isobar runs,” (2022), arXiv:2204.02387 [nucl-th].
[22] Jiangyong Jia, Giuliano Giacalone, and Chunjiang Zhang, “Precision tests of the nonlinear mode coupling of anisotropic flow via high-energy collisions of isobars,” (2022), arXiv:2206.07184 [nucl-th].
[23] Jiangyong Jia and Chun-Jian Zhang, “Scaling approach to nuclear structure in high-energy heavy-ion collisions,” (2021), arXiv:2111.15559 [nucl-th].
[24] Sergei A. Voloshin, Arthur M. Poskanzer, Aihong Tang, and Gang Wang, “Elliptic flow in the Gaussian model of eccentricity fluctuations,” Phys. Lett. B 659, 537–541 (2008), arXiv:0708.0800 [nucl-th].
[25] Note that a change in nuclear structure also impacts the distribution $p(N_{\text{part}})$, such that the events with the same N_{part} correspond to slightly different centrality and vice versa [39]. This secondary effect leads to a small correlation between ε_r^p and the amount of deformation, but this is a subleading effect compared to that discussed in Fig. 1.
[26] Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, and Subrata Pal, “A Multi-phase transport model for relativistic heavy ion collisions,” Phys. Rev. C 72, 064901 (2005), arXiv:nucl-th/0411110 [nucl-th].
[27] Guo-Liang Ma and Adam Bzdak, “Long-range azimuthal correlations in proton-proton and proton–nucleus collisions from the incoherent scattering of partons,” Phys. Lett. B 739, 209–213 (2014), arXiv:1404.4129 [hep-ph].
[28] Adam Bzdak and Guo-Liang Ma, “Elliptic and triangular flow in p+Pb and peripheral Pb+Pb collisions from parton scatterings,” Phys. Rev. Lett. 113, 252301 (2014), arXiv:1406.2804 [hep-ph].
[29] Ante Bilandzic, Raïmond Snellings, and Sergei Voloshin, “Flow analysis with cumulants: Direct calculations,” Phys. Rev. C 83, 044913 (2011), arXiv:1010.0233 [nucl-ex].
[30] Ante Bilandzic, Christian Holm Christensen, Kristjan Gulbrandsen, Alexander Hansen, and You Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations,” Phys. Rev. C 89, 064904 (2014), arXiv:1312.3572 [nucl-ex].
[31] Jiangyong Jia, Mingliang Zhou, and Adam Trzupek, “Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants,” Phys. Rev. C 96, 034906 (2017), arXiv:1701.03930 [nucl-th].
[32] Mingliang Zhou and Jiangyong Jia, “Centrality fluctuations in heavy-ion collisions,” Phys. Rev. C 98, 044903 (2018), arXiv:1803.01812 [nucl-th].
[33] Jiangyong Jia, Chunjian Zhang, and Jun Xu, “Centrality fluctuations and decorrelations in heavy-ion collisions in a Glauber model,” Phys. Rev. Res. 2, 023319 (2020), arXiv:2001.08602 [nucl-th].
[34] The N_{ch} is defined as number of charged particles with $p_T > 0.1$ GeV and $|\eta| < 0.5$ similar to STAR analysis [17].
[35] Giuliano Giacalone, Jacquelyn Noronha-Hostler, and Jean-Yves Ollitrault, “Relative flow fluctuations as a probe of initial state fluctuations,” Phys. Rev. C 95, 054910 (2017), arXiv:1702.01730 [nucl-th].
[36] Govert Nijs and Wilke van der Schee, “Inferring nuclear structure from heavy isobar collisions using Trajectum,” (2021), arXiv:2112.13771 [nucl-th].
[37] J. Scott Moreland, Jonah E. Bernhard, and Steffen A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions,” Phys. Rev. C 92, 011901 (2015), arXiv:1412.4708 [nucl-th].
[38] Derek Teaney and Li Yan, “Triangularity and Dipole Asymmetry in Heavy Ion Collisions,” Phys. Rev. C 83, 064904 (2011), arXiv:1010.1876 [nucl-th].
[39] Jiangyong Jia, Gang Wang, and Chunjian Zhang, “Impact of event activity variable on the ratio of observables in isobar collisions,” (2022), arXiv:2203.12654 [nucl-th].
[40] ALICE Collaboration, “Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb and Xe-Xe collisions,” (2022), arXiv:2204.10240 [nucl-ex].
[41] Giuliano Giacalone, Li Yan, Jacquelyn Noronha-Hostler, and Jean-Yves Ollitrault, “Skewness of elliptic flow fluctuations,” Phys. Rev. C 95, 014913 (2017), arXiv:1608.01823 [nucl-th].
[42] Rajeev S. Bhalerao, Giuliano Giacalone, and Jean-Yves Ollitrault, “Kurtosis of elliptic flow fluctuations,” Phys. Rev. C 99, 014907 (2019), arXiv:1811.00837 [nucl-th].
[43] Giuliano Giacalone, “Elliptic flow fluctuations in central collisions of spherical and deformed nuclei,” Phys. Rev. C 99, 024910 (2019), arXiv:1811.03959 [nucl-th].
[44] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg, “Glauber modeling in high energy nuclear collisions,” Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007), arXiv:nucl-ex/0701025.
[45] Georges Aad et al. (ATLAS), “Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC,” JHEP 11, 183 (2013), arXiv:1305.2942 [hep-ex].
[46] Albert M Sirunyan et al. (CMS), “Non-Gaussian elliptic flow fluctuations in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV,” Phys. Lett. B 789, 643–665 (2019), arXiv:1711.05594 [nucl-ex].
[47] S. Acharya et al. (ALICE), “Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV,” JHEP 07, 103 (2018), arXiv:1804.02944 [nucl-ex].
[48] Morad Aaboud et al. (ATLAS), “Fluctuations of anisotropic flow in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector,” JHEP 01, 051 (2020), arXiv:1904.04808 [nucl-ex].