Multispecies selectivity of line fishing towards sustainability

B.G. Hutubessy

Faculty of Fisheries and Marine Science, Pattimura University

email: gracehutubessy@gmail.com

Abstract. Understanding the selectivity of demersal fish towards different fishing methods is an important contribution to generate fisheries management plan. The purpose of this study is to examine the selectivity of line fishing on reef fishes based on multispecies approach. Coral fishes were caught by hand lines, longlines and trolled lines by fishers from Kotania bay, Maluku-Indonesia. The species and size of fish catch from January 2013 to December 2014 was filled in logbooks. Multispecies selectivity was estimated by the abundance size spectrum according to methods of fishing: handline, longline and trolled line. In total, 30886 reef fishes were collected, representing 147 species and 37 families. By grouping into genus, longline captured 55 genus which selective to genus Epinephelus, Handline caught 54 genus targeting on genus Lethrinus and trolled line caught 24 genus which selective to genus Plectropomus. Size distribution by hook sizes were not normally distributed (P<0.001). Multispecies approach from multi-gear selectivity analysis resulted that trolled line was the high selective method especially for grouper family. Handline showed equal selectivity among species captured while the selectivity of longline was varied among fish. Fishing method, hook sizes and biodiversity are the important factors affecting multispecies selectivity. Knowledge of multispecies selectivity is important for fisheries management and fishing allocation in supporting balance fishery is recommended to maintain fisheries sustainability.

1. Introduction

Fishing amplifies oscillation in the abundances of fish stock, more variable in population dynamics due to truncated the age and size structure the fish population [1][2]. Large individual exploitation changes the basic dynamics of harvested populations and destructive fishing methods such explosion and poison might collapse the stock ultimately. If selective fishing destabilize population dynamics, could community trophic dynamics stability be affected? Certainly, every fishing gear is selective at the community level: targeting on valuable species; large-sized species; prefers on large size classes within species meanwhile minimum size limits are established as management tools [3][4]. Since various amounts of unwanted size classes or species have been captured by the most of fisheries [5][6], the different of catch composition and the fish population or community in the fishing ground is called selective fishing [7]: escaping many animals is depend on their size or behavior. In general, it is considered that the more selective the better (e.g. [8]), and "perfect gear selectivity" became the goal of gear technologists [9].

Recently, consideration has been taken to the idea that selective fishing might alter biodiversity and ecosystem function [10]. By directly removing large fish, not all sizes are targeted, so fishing affect the size structure of communities [11] and indirectly increasing the abundance of smaller fish released from predation [12]. Selective fishing is ecologically disturbing, however unselective fishing might be benefit economically. In prawn fisheries, for instance, small fish removal and discarding probably increases prawn production because small fish is considered as prawn predators and competitor [13]. Within species, it is now well established that size-selective fishing creates an evolutionary selective pressure that drives generally counter-productive genetic changes in populations [14]; for example, targeting large individuals induces evolution towards smaller sizes and slower growth [15].
In marine ecological processes, size is recognized as an important feature [16]. Due to fishing being size-selective, the size distribution of marine populations and assemblages is often used to monitor fishing impacts [17]. The ‘size-spectrum theory’ has been developed for marine ecosystems [18]. Size spectrum is the distribution of biomass or abundance across body size classes, where each individual is defined by size regardless of species. The shape of the size spectrum is known to be sensitive to fishing intensity and selectivity, especially when large fish are targeted [17]. Naturally, selective fishing might generate gaps that would disturb the biomass flow and potentially alter oscillatory dynamics, creating temporal variations in biomass and catch. As size is related to many life-history traits and largely determines ecological role in trophic chains [19], size diversity provides a substitution for functional diversity. This study results imply that both fishing methods and selectivity affect biodiversity components of conservation interest.

Selective fishing aims to reduce or limited unwanted by-catch as well. In demersal line fishing, unwanted by-catch such as dolphins, sharks, turtles and other endangered megafauna species were rarely occurred compared than pelagic line fishing [20][21]. However, low-valued species and sizes by-catch are the most occasion during the operation of lines fisheries, especially in the coral reef as the most diverse community habitat [22][23]. Line fishing which generally use baits or artificial baits during the practices, most of the catches consisted of high trophic level species. Piscivores fishes was the most species caught but species from other trophic guilds were captured as well. By studying the selectivity of line fishing which is commonly operated to catch coral fish community, analysis on the catches may figure susceptibility of by-catches remain in the community.

In overall, the aim of this study is to measure the selectivity of line fishing on reef fishes based on multispecies approached. Abundance size-spectrum which grouped by genus of fish was used to visualized species and size selectivity of line fishing.

2. Materials and Method
2.1. Field work
Line fishing operated by fishers from Kotania Bay (Fig. 1) was observed from logbooks. Fishers filled the logbook since January 2013 to December 2014.

![Figure 1. The map of Kotania Bay and the distribution of important supporting habitats to the fishery](image)

Three types of line fishing: handlines, trolled lines and longlines were used to catch reef fishes at various depths. Handline, a monofilament line with 1 to 4 hooks was deployed at various depths ranged...
from 2 to 60m. Hooks #7, #8, #11, #12 and #14 with fish as baits were occupied by fishers to catch from reefs to pelagic sandy bottoms. Trolled line consists of a monofilament line connected to 1m wire and an artificial bait attached to a hook #7 or #8. The line was located at 6 to 9m above the reefs and towed from a boat at a slow and steady speed closed to a drop off. Longline is a monofilament line with 100-200 hooks which is deployed for 2 hours. Hooks #7-#14 were occupied during this study.

Every single catch was identified following [26], and measured its fork length (cm). Maturity size for each species was obtained from fishbase.org [27]. If size maturity was not available for a particular species, other species within genus will be used.

2.2. Data Analysis
First, catch by gear was standardized based on duration of fishing for each gear. Data of fishing duration and number of catches were log-transformed and the slope (b) of their linear relationship was used in the catch standardized equations below (Hutubesy 2015, unpub. Data):

- Handline: \(C_{std} = C_{act} \times 0.97 \times (7/\text{hour fishing})^{0.33} \)
- Trolled line: \(C_{std} = C_{act} \times 0.97 \times (7/\text{hour fishing})^{0.73} \)
- Longline: \(C_{std} = C_{act} \)

A \(C_{std} \) is standardized catch, \(C_{act} \) is an actual catch, 0.79 is the probability of catch by gear and 0.33 and 0.73 were the coefficient regressions between hour fishing and CPUE. Standardized catch of longline is equal to actual catch due to fishing duration for all operations of longlines is almost similar.

Normality test using Kolmogorov-Smirnov test (SAS 1.2) was applied for fork length of fish caught by various hook numbers and gear type.

Abundance size spectrum was set as relationship between the number of individuals in a body size class and the average size in that body size class. By grouping into genus, 8cm size class was occupied to produce abundance size spectrum for handline, longline and trolled line. Only genus represented by more than 100 individuals were included in the spectrum. For each size spectrum, relationship of log transformed of length and CPUE was analyzed to produce a regression line of size spectrum. The line slope is -1 if number of small and large fish captured is balanced.

3. Result and Discussion

3.1. Catch of line fishing
Total of 30886 reef fishes was captured by lines fishers at Kotania Bay from January 2013 to December 2014 and represented 147 species from 33 Families (Table 1). The catch of longlines was the biggest in numbers (18574 fish) belongs to 113 species and 31 families. Handlines caught 9824 fishes from 104 species and 24 families. Trolled line captured 2485 fishes represented 49 species from 13 families. The most family caught by trolled lines was Serranidae which consisted of 18 species, 2169 individual of fish and composed 87.2% of the total catch. Dominated species caught by trolled line were coral trout which were 793 individuals of Plectropomus oligocanthus and 711 individual of P. leopardus.

3.2. Size Distribution by hook
Size of fish caught (FLcm) by various hook numbers was not normally distributed, neither the logarithm (Log_{10}) transformed fork length data (P<0.001), except for hook #11 belonged to handline (P>0.15). Distribution of transformed fork length data for each gear (Fig. 2) showed overlapping of sizes from different hook numbers. Therefore, for further selectivity analysis, multispecies from multihook were combined to produce a size spectrum for each gear type.
Table 1. Family and species of fish caught by line fishing at Kotania Bay

Family	Species	Handline	Longline	Trolling
Ariidae	Arius arius	1	60	1
Balistidae	Balistapus sp	4	1	
	Balistapus undulatus	40	9	2
	Balistoides viridescens	65	138	
	Naso brevirostris	1		
	Pseudobalistes fuscus	99	1	
	Rhinecanthus verrucosus	1		
	Sufflamen chrysopterus	2	2	
	Sufflamen frenatus	59	64	
Belonidae	Tylosurus crocodilus	1	325	
	Tylosurus sp		65	
Bothidae	Pseudorhombus sp			242
Caesionidae	Caesio cunning	79	16	
	Caesio erythrogaster	7		
	Caesio pisang	96		
	Pterocaesio diagramma	3		
	Pterocaesio pisang	6		
	Pterocaesio tile	23		
	Alectes ciliaris	31	31	
Carangidae	Carangoides chrysophrys			32
	Carangoides malabaricus	77	6	4
	Carangoides orthogrammus	2		
	Carangoides sp	13	10	
	Caranx bucculentus	18	91	
	Caranx melampygus	105	1288	91
	Caranx sexfasciatus	8		
	Caranx sp	50		
	Decapterus russelli	5		
	Gnathanodon specious	19	3	
	Magalaspis Cordyla	484		
	Ulua mentalis		5	
Carcharhinidae	Carcharhinus plumbeus		29	
	Carcharhinus sp		43	
Chirocentridae	Chirocentrus dorab		6	
Dasyatidae	Dasyatis imbricata		30	
	Dasyatis sp		90	
	Taeniura lymma	1	17	
	Taeniura meyeni		164	
Diodontidae	Diodon liturosus	14	137	
Fistularidae	Fistularia petimba		142	
Haemulidae	Plectorhynchus celebicus	153		
	Plectorhynchus gibbosus	43	39	
Table 1. cont.

Family	Species	Total	Guttenberger
Plectorhynchus	*Plectorhynchus lineatus*	46	245
	Plectorhynchus sp	1	18
Holocentridae	*Myripristis hexagonatus*	158	
	Myripristis kuntee	1	42
	Myripristis violacea		71
	Ostichthys kaianus	68	
	Sargocentron rubrum	127	
	Sargocentron violaceum	51	
Labridae	*Cheilinus chlorurus*		260
	Cheilinus fasciatus	22	102
	Cheilinus tribolatus	11	2
	Cheilinus tribolatus	3	1
	Cheilinus undulatus	4	14
	Choerodon anchorago	210	
	Choerodon cephalotes	1	108
	Halichoeres scapularis	8	8
	Halichoeres sp		14
Latidae	*Psammoperca waigiensis*		599
Lethrinidae	*Gymnocranius elongatus*	214	816
	Lethrinus erythropterus	11	728
	Lethrinus laticaudis	97	60
	Lethrinus lentjan	893	1238
	Lethrinus microdon	60	
	Lethrinus miniatus	909	127
	Lethrinus nebulosus	87	2
	Lethrinus ornatus	142	
	Lethrinus semicinctus		25
	Lethrinus sp	49	94
	Lethrinus xanthatceilus	11	1
	Monotaxis grandoculis	50	
Lutjanidae	*Aprion virescens*		67
	Epinephelus sp		2
	Etelis carbonculus	9	32
	Lutjanus argentus	121	49
	Lutjanus bohar	121	1558
	Lutjanus carponotatus		2
	Lutjanus decussatus		24
	Lutjanus fulviflamma	369	341
	Lutjanus fulvas	29	49
	Lutjanus gibbus		2
	Lutjanus malabaricus		17
	Lutjanus russelli	365	27
	Lutjanus sebae	14	446
	Lutjanus semicintus	40	
Table 1. cont.

Family	Species	Count	Length	
Lutjanidae	Lutjanus sp	7	505	
	Lutjanus vitta	129	57	2
	Pristipomoides multidens	4	1	
	Pristipomoides typus	191	2	
Monocanthidae	Monocanthis sp	50		
Mullidae	Parupeneus barberinus	8		
	Parupeneus chrysopleurion	35	185	
	Parupeneus multifasciatus	39	24	
Murraenidae	Gymnothorax buroensis	14	7	
	Gymnothorax pictus	2	6	
Myliobatidae	Aetomileus maculatus	4		
Nemipteridae	Nemipterus nematophorus	98	309	
	Nemipterus zyson	170	40	
	Pentapodus caninus	267	5	
	Pentapodus trivittatus	143		
	Scolopsis bineatatus	2	4	
	Scolopsis temporalis	17	152	
Pomacentridae	Neoglyphidodon oxyodon	2		
Priacanthidae	Priacanthus hamrur	201		
	Priacanthus macracanthus	160	4	
	Priacanthus sp	1		
Scaridae	Chlorurus blekeeri	6		
Scianidae	Johnius sp	26		
Scombridae	Euthinnus affinis	49	3	
	Grammatorcynus bineatatus	12		
	Gymnosarda sp	78		
	Rastreliger kanagurta	4	501	
	Scomberomerus commersoni	9	6	6
	Scombroides tala	6		
Serranidae	Anyperodon leucogrammicus	54		
	Centrogenys vaigiensis	21	27	
	Cephalopolis boenack	602	69	9
	Cephalopolis cyanostigma	16	14	
	Cephalopolis miniata	196		
	Cephalopolis polleni	10		
	Cephalopolis sonnerati	394	11	18
	Cephalopolis sp	3		
	Cromileptes altivalis	2	224	8
	Epinephelus aerolatus	20		
	Epinephelus caeruleopunctatus	16	2	16
	Epinephelus coioides	25	17	28
	Epinephelus fuscoguttatus	33	970	50
	Epinephelus latifasciatus	15	1	
Table 1. cont.

Species	Occurrence	Length (mm)	Weight (g)	
Epinephelus merra	10	435	3	
Epinephelus morrhua	9		2	
Epinephelus quoyanus	299		2	
Epinephelus sexfasciatus	155	1127	5	
Epinephelus sp	560	146	165	
Epinephelus suillus	78	1010		
Plectropomus areolatus			10	
Plectropomus leopardus	118	557	711	
Plectropomus maculatus			2	37
Plectropomus oligocanthus	118	94	791	
Plectropomus sp	6	10	2	
Variola albimarginata	837	126	301	
Variola louti			2	
Anyperodon leucogrammicus			3	
Siganidae				
Siganus canaliculatus			3	
Sparidae				
Acanthopagrus berda	30		1	
Dentex blochii			2	
Sphyraenidae				
Sphyraena jello	38	412	5	
Teraponidae				
Therapon jarbua	24	101		
Toxotidae				
Toxotes jaculator			12	
Total fish	10073	18561	2477	
Total Families	33	24	31	13
Total Species	150	104	110	49
Figure 2. Box plot of size distribution of fish caught by longline (A), handline (B) and trolled line (C).
3.2. Selectivity of longline
Genus of fish captured by longline was dominated by *Epinephelus*, consisted of 10 species. The size ranged from 6cm to 68cm with modus on 28.1cm-36.0cm length class. The second genus was *Lutjanus* with 9 species. Size ranged from 7cm to 71cm and the modus was on 20.1-28.0cm length class (Fig. 2). Other genus which abundantly captured by longline were *Lethrinus*, *Caranx*, and *Gymnocranius*. Genus *Caranx* consisted of 4 species, *Lethrinus* with 8 species and *Gymnocranius* with one species. Most of these genus were caught under 30cm fork length.

![Abundance size spectrum of longline catch based on genus. The regression line was obtained from the relationship between log transformed of the total catch and maximum size of the length class.](image)

Figure 3. Abundance size spectrum of longline catch based on genus. The regression line was obtained from the relationship between log transformed of the total catch and maximum size of the length class.

Almost all species caught are edible for the locals, but some genus are not economically valuable. Less value genus were included stingrays (*Taeniura* and *Dasyatis*), floutmouth (*Fistularia*), porcupinefish (*Diodon*), grunter (*Terapon*), monocle bream (*Scolopsis*) and shark (*Carcharinus*). The catch of longline was also pelagic species such as *Rastrelliger* (indian mackerel) and *Megalaspis* (scad).

The size-spectrum of longline which resulted slope of -1.79 indicates that longline selectively captured more large species than small fish. Five genus were captured as large sizes including *Lutjanus*, *Caranx*, and *Plectropomus* and was categorised as target species. Other large fish captured such *Dasyatis*, *Taeniura*, *Tylosurus*, *Sphyraena*, and *Carcharinus* were included as non-target species. The last two genus are predator for juveniles of some target species.

Since longline was deployed vertically, the fishing area was wider, from bottom to mid water layer. Some pelagic species was attracted to the bait, and some predators might come closed to the hooked preys.

Based on the length of fish caught, the catch of longline comprised of 35% above the maturity size. It implied that more than half of the catch were immature or under legal size.
3.3. Selectivity of handline

From 53 genus of fish captured by handline, *Lethrinus* was the most abundance genus represented 9 species. The length ranged from 11 to 66cm with mode of 20.1-28cm length class. Genus *Cephalopolis, Lutjanus* and *Epinephelus* have similar abundance and similar length mode, 20.1-28cm.

The size spectrum (Fig. 4) showed uniform pattern of size distribution for abundance genus, the optimum size was 28cm FL. Since size distribution of fish caught by handline showed similar pattern, the vulnerability of reef fish towards handline might be equal. The practise of handline in coral reef habitat was categorised as a passive method, expecting predators to overcome the bait provided. Consequently, predator species has equal opportunity to be hooked.

The slope of size spectrum was -0.707. Abundance of small fish caught was higher than large fish, and about 67% were categorized as unmature fish. This result indicates that fishing activities were conducted at shallow part of the reef, where abundance of small fish or juveniles was high [28] and diversity of species was also high [29]. Therefore, it should take into account for fisheries management the practice of selective fishing at shallow coastal reef to sustain the biodiversity.

![Figure 4. Abundance size spectrum of handline catch based on genus.](image-url)
3.4. Selectivity of trolled line

Compare than two other methods, trolled line is an active method of line fishing. Number of genus caught was 24 and only 5 genus were abundantly captured, cod *Plectropomus*, trout *Variola*, rockcod *Epinephelus*, trevally *Caranx* and rockcod *Cephalopolis*. Based on the most abundantly caught, trolled line was highly selective on genus *Plectropomus*. Size ranged from 7cm to 87cm, with length mode of 44cm. Cod, trout, and rockcod were including into grouper family which has biological features: hermaphroditism, long lived, and low fecundity [30]. High vulnerability towards trolled line might positioned these species in high risk rank of fish.

Size spectrum of trolled line catch showed flat slope line, -0.39 (Figure 5). Although the optimum size of fish captured, 44cm, was higher than two other methods, however, more small fish were caught than large fish. Percentage of mature fish was 0.24, means that immature fish were more vulnerable to trolled line.

\[
y = -0.3898x + 1.892
\]
\[R^2 = 0.0273\]

Figure 5. Abundance size spectrum of trolled line catch based on genus.

4. Conclusion

The catch of line fishing was categorized as predator species to other marine animals. Vulnerability of fish from trophic guild piscivores and benthivores was high towards handline and trolled line. Towards longline, the vulnerability to be captured was varied among species but it was equal towards handline. Vulnerability of family Serranidae towards trolled line was high and lead to population declined.

Based on the size spectrum slope line, selective fishing method will produce less steep slope of size spectra [31]. Varied selectivity of longline among species produced size spectrum with steep slope line.
(-1.8). Equal selectivity of handline among species produced less steep slope line (-0.7). High selectivity of trolled line on Serranids produced a flat slope line (-0.39).

To support sustainability of fisheries, handline fishery should be distributed to various depths to avoid capturing small size of fish. Practice of trolled line for demersal reef fish should be reduced otherwise the population of reef fishes especially groupers will be threatened.

Considering that this study is based on the filled logbook by fishers, fish length data are often based on memory rather than using provided measuring tools. Fish size was informed greater that published maximum size.

Acknowledgement
This research was funded by the Indonesian Higher Education Directorate General especially DP2M under the scheme of MP3EI. Special thanks to fishers in Kotania Bay who’s faithfully taken time to fill out the logbook.

References

[1] Anderson C N K et al 2008 Why fishing magnifies fluctuations in fish abundance. Nature 452 (7189): 835–39
[2] Berkeley S A, Hixon M A, Larson R J and M S Love 2004 Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29 : 23–32
[3] Pascoe S 1997 Bycatch management and the Economics of Discarding (Rome: FAO)
[4] Dunlop E S, Enberg K, Jslash;rgensen C and Heino M 2009 Toward Darwinian fisheries management Evol. Appl. 2(3): 245–59
[5] Alverson J G, Freeberg D L, Murawski M H and Pope S A 1994 A Global Assessment of Bycatch and Discards (Rome: FAO)
[6] Kelleher K 2005 Discards in the World’s Marine Fisheries. An update. FAO Technical Paper No. 470 (Rome: FAO) p 131
[7] Wileman R, Ferro B D A, Fonteyne R S T and Millar R 1996 Manual of Methods of Measuring the Selectivity of Towed Fishing Gears. ICES Cooperative Research Report (Copenhagen: ICES)
[8] Pikitch1 B E K, Santora C, Babcock E A, Bakun A, Bonfil R, Conover D O, Dayton P, Doukakis P and Fluharty D 2004 Ecosystem Based Fisheries Management Forum Police 305 (5682): 346–47
[9] Broadhurst M, Kennelly S J and Ray C G 2006 Working Laterally Towards Perfect Selectivity in Fishing Gears. American Fisheries Society Symposium pp 587–94
[10] Zhou S et al 2010 Ecosystem-based fisheries management requires a change to the selective fishing philosophy Proc. Natl. Acad. Sci. 107(21): 9485–89
[11] Rice J and Gislason H 1996 Patterns of Change in the SizeSpectra of Numbers and Diversity of the North Sea Fish Assemblage as Reflected in Surveys and Models. pp 1214–25
[12] Blanchard J L et al 2005 Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES Journal of Marine Science 62: 405-11
[13] Zhou S 2008 Fishery by-catch and discards: A positive perspective from ecosystem-based fishery management. Fish Fish 9(3): 308–15
[14] Law R 2007 Fisheries-induced evolution: present status and future directions. Mar Ecol Prog Ser 335: 271–77
[15] Munch S B, Walsh M R and Conover D O 2005 Harvest selection, genetic correlations, and evolutionary changes in recruitment: one less thing to worry about? Can. J. Fish. Aquat. Sci., 62(4): 802–10
[16] Babcock E A, Coleman R, Karnauskas M and Gibson J 2013 Length-based indicators of fishery and ecosystem status: Glover’s Reef Marine Reserve, Belize. Fish. Res 147: 434–45
Law R, Plank M J and Kolding J 2016 Balanced exploitation and coexistence of interacting, size-structured, fish species *Fish Fish.* 17(2): 281–302

Stokes R, McGlade T K and Law J M 1993 The exploitation of evolving resources. *Lecture Notes in Biomathemat* p 16.

Shin Y J, Rochet M J, Jennings S, Field J G and Gislason H. 2005 Using size-based indicators to evaluate the ecosystem effects of fishing. *ICES J. Mar. Sci.* 62(3): 384–96

Gilman E L *et al* 2007 *Shark Depredation and Unwanted Bycatch in Pelagic Longline Fisheries: Industry Practices and Attitudes, and Shark Avoidance Strategies* (Honolulu:Western Pacific Regional Fishery Management Council)

Komoroske L M and Lewison R L 2015 Addressing fisheries bycatch in a changing world *Frontiers in Marine Science* 2(83):1-11

. Nañola C L., Aliño P M and Carpenter K E 2011 Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity. *Environ. Biol. Fishes* 90(4):405–20

Madduppa H H 2012 Fish biodiversity in coral reefs and lagoon at the Maratua Island, East Kalimantan. *Biodiversitas, J. Biol. Divers* 13(3):145–50

Stoner A W 2004 Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. *J. Fish Biol.* 65(6):1445–71

Løkkeborg S, Siikavuopio S I, Humborstad O B, Utne-Palm A C and Ferter K 2014 Towards more efficient longline fisheries: fish feeding behaviour, bait characteristics and development of alternative baits. *Rev. Fish Biol. Fish.* 24(4):985–1003

Allen G 1999 *Marine Fishes of Southeast Asia. A Field Guide for Anglers and Divers* (Singapore: Periplus Editions) p 296

Froese R and Pauly D 2019 *FishBase*. World Wide Web electronic publication[Online]. Available: www.fishbase.org.

Honório P P F, Ramos R T C and Feitoza B M 2010 Composition and structure of reef fish communities in Paraíba State, north-eastern Brazil. *J. Fish Biol.* 77(4): 907–26

Honda K, Nakamura Y, Nakaoka M, Uy W H and Fortes M D 2013 Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines *PLoS One* 8(8) 1–10

Choat D R and Robertson J H 2002 Age-based studies on coral reef fishes. *Coral Reef Fishes* pp 57–80.

Sweeting C J, Badalamenti F, D’Anna G, Pipitone C and. Polunin N V C 2009 Steeper biomass spectra of demersal fish communities after trawler exclusion in Sicily,” *ICES J. Mar. Sci.* 66: 195–202