Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al₂O₃ catalyst pellet

Abayomi O. Olatunde¹ · Olaosebikan A. Olafadehan¹ · Mohammed A. Usman¹

Received: 18 February 2020 / Accepted: 22 April 2020 / Published online: 1 May 2020
© The Author(s) 2020

Abstract
A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al₂O₃ catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of \(1.623 \times 10^{-4}\) m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.

Keywords Isothermal · Langmuir–Hinshelwood–Hougen–Watson · Power law · Effectiveness factor · Steam reforming

Abbreviations

Symbol	Definition
Aj,k	Orthogonal collocation matrix representing first derivative
AAD	Absolute average deviation
Bj,k	Orthogonal collocation matrix representing second derivative
Ci	Concentration of species \(i\) within the catalyst pellet, mol/m³
Cs	Concentration of species \(i\) at the outer surface of catalyst pellet, mol/m³
C̄i	Dimensionless concentration of species \(i\)
cpi	Specific heat capacity of species \(i\), J/(kg K)
(De)i	Effective diffusion coefficient of species \(i\) in the particle, m²/s
E	Activation energy, J/mol
F_M0	Molar flow rate of methanol in the feed, mol/s
NC	Number of components
NR	Number of interior collocation points in the radial direction
n	Power rate order, dimensionless
Re	Reynolds number, dimensionless
R	Radius of catalyst pellet, m
R̄i	Dimensionless reaction rate of species \(i\)
Ru	Universal gas constant, J/(mol K)
(−ṙi)	Rate of disappearance of species \(i\), mol/(kg cat s)
(−ṙi)̅	Rate of disappearance of species \(i\), at the pellet surface mol/(kg cat s)
−ṙM	Reaction rate of methanol at the catalyst outer surface, mol/(kg cat s)
r	Radial distance of pellet, m
SD	Standard deviation
T	Temperature within catalyst pellet, K
T̄c	Temperature in the centre of the catalyst pellet, K
T̄s	Temperature at the outer surface of catalyst pellet, K
T̄	Dimensionless temperature within the catalyst pellet
t	Time, s
W	Weight of catalyst, kg

¹ Department of Chemical and Petroleum Engineering, University of Lagos, Lagos, Nigeria

* Abayomi O. Olatunde
 aolatunde@unilag.edu.ng
Fractional conversion of methanol, dimensionless

\(y_i \) Mol fraction of component \(i \), dimensionless

Greek symbols

\(\beta_i \) Heat of reaction parameter with respect to reaction, \(l \), dimensionless

\(\gamma \) Arrhenius number, dimensionless

\(\sigma \) Dimensionless radial distance

\(\varepsilon_p \) Void fraction of the particle, dimensionless

\(\eta \) Non-isothermal effectiveness factor, dimensionless

\(\lambda_e \) Effective thermal conductivity of pellet, W/\((m\ K) \)

\(\rho_p \) Density of catalyst particle, kg/m\(^3\)

\(\Phi \) Thiele modulus, dimensionless

\(\Delta H_{\text{rxn}, l} \) Heat of reaction per mole of component, with respect to reaction \(l \), J/mol

\(\Delta H_f^{0} \) Standard heat of formation at 25 °C, J/mol

Subscripts

\(c \) Centre condition

\(i \) Species

\(l \) Stoichiometric reaction using power law and LHHW

\(L \) Langmuir–Hinshelwood–Hougen–Watson

\(M \) Methanol

\(p \) Particle

\(\text{PL} \) Power law

\(s \) Catalyst outer surface

\(S \) Steam

Introduction

The use of hydrogen fuel as a major source of fuel in the near future has gained a tremendous recognition in the past few years [1]. It is now being used as an energy carrier in fuel cells and mobile vehicles because it is a clean fuel that does not emit carbon dioxide when burned or used. It can be stored as a liquid or gas, and has been described as a long replacement of fossil fuels [1]. While several works have been done on economical ways of producing hydrogen from hydrocarbons such as alcohols, gasoline, natural gas and many other ways [2, 3], steam reforming of methanol has been preferred because of the advantage of high energy density, availability and safe handling, and lack of inter-carbon bonds in methanol, hence relatively low reforming temperatures (433–573 K). In addition, steam reforming of methanol produces limited CO, typically less than 5000 ppm and a higher hydrogen fraction in the reformate compared to that of partial oxidation of methanol. Methanol is rich in hydrogen as the ratio of carbon to hydrogen is 1:4 compared to other candidates of hydrogen production [4]. Therefore, methanol is often converted into a hydrogen-rich gas before it is fed to the fuel cell stack, and steam reforming (SR) of methanol is suitable for this process.

Many investigators have proposed the reaction network for modelling this process, with the kinetic expressions given, based on their extensive experimental studies [4–14]. However, in addition to the kinetics, estimation of the effect of intra-particle diffusion resistance in catalyst particles is also significant in the design of the catalytic reformer. These will generally have to be included in any realistic model of a reactor and explicitly explained. Major works have not been done in the literature on the effect of intra-particle diffusion resistance on this complex reaction system, thus the need to study this.

The objective of this study was to numerically compute non-isothermal effectiveness factor in a spherical catalyst pellet for catalytic steam reforming of methanol on Cu/ZnO/Al\(_2\)O\(_3\) catalyst. Thus, a computational procedure using the method of orthogonal collocation was presented for the numerical solution of the governing differential mass and energy balance equations with a view to estimate the concentration profiles of key components (methanol and hydrogen) and temperature profile inside the catalytic pellet using the non-linear power law and highly non-linear LHHW kinetics of the steam reforming of methanol, and thus computing the non-isothermal effectiveness factor. The effects of reaction kinetics, catalyst size, thermal conductivity, diffusion coefficient and surface temperature on effectiveness factor were considered. The kinetics for the steam reforming of methanol on Cu/ZnO/Al\(_2\)O\(_3\) catalyst used in this study was obtained by Lee et al. [4] in a regime of intra-particle diffusion limitations, as external mass and heat transfer resistances were negligible during the catalytic steam reforming of methanol [1, 4, 13, 15], and thus appropriate for use in this investigation.

Development of mathematical model

The steady-state mass and energy balance equations for a spherical catalyst pellet are given by the following equations, respectively:

\[
\frac{(D_i)}{\rho_p} \left(\frac{d^2C_i}{dr^2} + \frac{2}{r} \frac{dC_i}{dr} \right) = \left[-r'_i(C_i, T) \right] \quad i = \text{CH}_3\text{OH}, \text{H}_2\text{O},
\]

\[
\frac{\lambda_e}{\rho_p (\Delta H_{\text{rxn}, l})} \left(\frac{d^2T}{dr^2} + \frac{2}{r} \frac{dT}{dr} \right) = \left[-r'_i(C, T) \right],
\]

where \(D_i \) is the diffusion coefficient, \(\rho_p \) is the density of the catalyst particle, \(\lambda_e \) is the effective thermal conductivity of the pellet, \(\Delta H_{\text{rxn}, l} \) is the heat of reaction per mole of component, with respect to reaction \(l \), \(\Delta H_f^{0} \) is the standard heat of formation at 25 °C, \(r' \) is the reaction rate, \(C_i \) is the mole fraction of component \(i \), and \(T \) is the temperature.
where \(\Delta r'_i (C_i, T) \) is the rate of disappearance of species \(i \) [\(\text{kmol/(kg cat s)} \)] and \((D_x) \) the effective diffusivity of component \(i \), which is often approximately constant inside a catalyst particle and \(l \) is the number of reaction.

In Eqs. (1) and (2), it was assumed that external mass and heat transfer resistances were negligible while the resistances to mass and heat transfer inside the catalyst (i.e., intra-particle resistance) were significant.

These equations are subject to the following boundary conditions:

(i) At the pore centre,
\[
\begin{align*}
 r = 0, \quad & \frac{\partial C_i}{\partial r} = 0, \quad \frac{\partial T}{\partial r} = 0. \\
\end{align*}
\]
(3)

(ii) At the pore mouth,
\[
 r = \frac{d_p}{2} = R, \quad C_i = (C_i)_s, \quad T = T_s.
\]
(4)

The following dimensionless variables are defined:
\[
\bar{C}_i = \frac{C_i}{(C_i)_s}, \quad \bar{T} = \frac{T}{T_s}, \quad \sigma = \frac{r}{R},
\]
\[
\bar{R}_l(\bar{C}_i, \bar{T}) = \frac{[\Delta r'_i (C_i, T)]}{(\Delta r'_i)_s [(C_i)_s, T_s]}.
\]
(5)

Combining Eqs. (1) to (5), we have the following equation:
\[
\bar{T} = 1 + \beta_i \left[1 - \bar{C}_i \right],
\]
(6)

where \(\beta_i = \frac{(-\Delta H_{\text{rea}})(D_x)(C_i)_s}{(C_i)_s} \) is a heat of reaction parameter with respect to reaction \(l \), which characterizes the potential for temperature gradients inside the particle.

Equation (1) in dimensionless form yields:
\[
\frac{d^2 \bar{C}_i}{d \sigma^2} + 2 \frac{d \bar{C}_i}{d \sigma} - \frac{\phi^2 \bar{R}_l(\bar{C}_i, \bar{T})}{\bar{T}} = 0 \quad i = \text{CH}_3\text{OH}, \text{H}_2\text{O}, \text{H}_2, \text{CO}, \text{O}, \text{CO}_2, \text{H}_2\text{O}
\]
(7)

where \(\phi = R \sqrt{\frac{k_{\text{H}}}{(\Delta r'_i)_s [(C_i)_s]} } \) is called the Thiele modulus, and \(\bar{R}_l(\bar{C}_i, \bar{T}) \) is the dimensionless rate of reaction of species \(i \), normalized with respect to the reaction rate at the external conditions.

The boundary conditions of Eq. (7) are \(\bar{C}_i = 1 \) at \(\sigma = 1 \) and \(\frac{d \bar{C}_i}{d \sigma} = 0 \) at \(\sigma = 0 \).

The developed model Eqs. (6) and (7) can now be applied to any reaction system or network.

Application of the model to the reaction kinetics

The steam reforming of methanol on a commercial Cu/ZnO/Al\(_2\)O\(_3\) catalyst to produce hydrogen was considered. This reforming reaction was studied at atmospheric pressure and in a temperature range between 433 and 533 K by [4]. The main reaction is
\[
\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 3\text{H}_2 \quad \Delta H = 57 \text{ kJ/mol at } 200^\circ \text{C}
\]
(8)

The chief products of steam reforming of methanol are hydrogen and carbon dioxide with a small amount of CO, usually less than 1%, as a by-product [16–18]. However, Lee et al. [4] obtained a power rate law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) rate expressions for the reforming reaction by fitting the rate expressions to their experimental data. An excellent fitting of the data by the LHHW expression indicated that the dehydrogenation of the adsorbed methoxy to the adsorbed oxymethylene is the rate-determining step, and that adsorption of all reacting species other than methoxy and hydrogen on the active sites was negligible.

The power-law expression obtained for steam reforming of methanol on Cu/ZnO/Al\(_2\)O\(_3\) catalyst was of the form given by Lee et al. [4]:
\[
(-r'_M) = k_0 \exp \left(-\frac{E_1}{R_u T} \right) \rho_M (A + p_{H_2})^{a_2} \text{[mol/(kg cat s)]},
\]
(9)

where \(k_0 = 2.19 \times 10^9 \text{ mol Pa}^{0.083}/(\text{kg cat s}) \), \(E_1 = 1.03 \times 10^5 \text{ J/mol}, a_1 = 0.564, a_2 = -0.647 \) and \(A = 1.16 \times 10^9 \text{ Pa} \).

The LHHW rate expression obtained for steam reforming of methanol on Cu/ZnO/Al\(_2\)O\(_3\) catalyst had the form given by Lee et al. [4]:
\[
(-r'_M) = \frac{k_{01} \exp \left(-\frac{E_2}{R_u T} \right) K_1 \rho_M}{\left(1 + K_1 \rho_M \sqrt{p_{H_2}} \right) \left(1 + K_2 p_{H_2} \right)} \text{[mol/(kg cat s)]},
\]
(10)

where
\[
k = k_{01} \exp \left(-\frac{E_2}{R_u T} \right) = 3.13 \times 10^{10} \exp \left(-\frac{1.11 \times 10^5}{R_u T} \right) \text{[mol/(kg s)]},
\]
\[
K_1 = K_{01} \exp \left(-\frac{\Delta H_1}{R_u T} \right) = 1.186 \times 10^{-4} \exp \left(\frac{2.0 \times 10^4}{R_u T} \right) \text{[Pa}^{-0.5}\text{]}.
\]
\[K_2 = K_{02} \exp \left(\frac{-\Delta H_2}{R_u T} \right) = 6.34 \times 10^{-10} \exp \left(\frac{5.0 \times 10^4}{R_u T} \right) \text{[=] Pa}^{-1}. \]

To estimate the non-isothermal effectiveness factor of the catalyst particle, the intra-particle concentration profiles of the reacting species and on the reaction rate. However, the components identified in the steam reforming of methanol are methanol (M), steam (S), carbon dioxide (C), hydrogen (H\textsubscript{2}) and nitrogen (N\textsubscript{2}). Carbon monoxide was neglected in the reforming mixture since its concentration was insignificant. Moreover, the reaction rate for the steam reforming of methanol was found to depend on the partial pressures of methanol and hydrogen, as evident in Eqs. (11) and (12); therefore, the concentration profiles of the two components (methanol and hydrogen) are needed to evaluate the non-isothermal effectiveness factor of the catalyst particle. Using the modified Maxwell–Stefan equation to formulate the multicomponent diffusion in the catalyst [19, 20], we have

\[
\bar{C}_{H_2} = 1 + \frac{3(D_e)_M(C_M)_s}{(D_e)_{H_2}(C_{H_2})_s}(1 - \bar{C}_M),
\]

\[
\bar{C}_{CO_2} = 1 + \frac{(D_e)_M(C_M)_s}{(D_e)_{CO_2}(C_{CO_2})_s}(1 - \bar{C}_M),
\]

\[
\bar{C}_S = 1 - \frac{(D_e)_M(C_M)_s}{(D_e)_S(C_S)_s}(1 - \bar{C}_M),
\]

where \((D_e)_M\) and \((D_e)_{H_2}\) are the respective effective diffusivities of methanol and hydrogen in the catalyst, and \((C_M)_s\) and \((C_{H_2})_s\), the dimensionless concentrations of methanol and hydrogen at the external surface of the catalyst. Equation (11) shows that there is a mutual relation between concentration profile of methanol and hydrogen inside a catalyst particle, which is in agreement with Schneider [19, 20] relation.

The non-isothermal effectiveness factor, \(\eta\), of the catalyst is given by

\[
\eta = \frac{3}{\phi^2} \frac{d\bar{C}_M}{d\sigma} \bigg|_{\sigma = 1}.
\]

Hence, to estimate the effectiveness factor by Eq. (14), it is necessary to solve governing Eq. (7) to obtain the dimensionless concentration profile of methanol inside the catalyst pellet, \(\bar{C}_M(\sigma)\), and then obtain the dimensionless temperature profile inside the catalyst pellet via Eq. (6).

Since all the reacting species (methanol, M, steam, S, carbon dioxide and hydrogen) involved in the steam reforming of methanol are in the gaseous phase, ideal gas law, \(\rho = CR_u T\), is applied to the reaction rate of disappearance of methanol, Eq. (9), to obtain

\[
(-r'_M) = k_0 \exp \left(-\frac{E_1}{R_u T} \right) (C_M R_u T)^{a_1} \left(\frac{A}{R_u T} + C_H R_u T \right)^{a_2}.
\]

Applying ideal gas law to LHHW rate expression (10), we have

\[
(-r'_M) = k_{01} \exp \left(-\frac{E_1}{R_u T} \right) K_1 \sqrt{R_u T} \frac{C_M}{\sqrt{C_{H_2}}} \left[1 + K_1 \sqrt{R_u T} \left(\frac{C_M}{\sqrt{C_{H_2}}} \right) \right] \left(1 + \sqrt{K_2 C_H R_u T} \right).
\]

Rendering the power rate law model and LHHW rate expression for the steam reforming of methanol in dimensionless forms, and using the respective expressions obtained in Eq. (9), we have the following equations for the power rate law model and LHHW rate expression, respectively:

\[
\frac{d^2\bar{C}_M}{d\sigma^2} + \frac{2}{\eta} \frac{d\bar{C}_M}{d\sigma} - \phi^2 \exp \left(-\frac{\gamma_{PL}}{1 + \beta (1 - \bar{C}_M)} \right) \left[\frac{A}{R_u T} + R_u (C_{H_2})_s T_s \bar{C}_{H_2} \right]^{a_2} \left(\bar{C}_M \bar{T} \right)^{a_1} = 0,
\]

\[
\frac{d^2\bar{C}_M}{d\sigma^2} + \frac{2}{\eta} \frac{d\bar{C}_M}{d\sigma} - \phi^2 \exp \left(-\frac{(\tau + \eta)}{1 + \beta (1 - \bar{C}_M)} \right) \bar{C}_M \bar{T} \frac{\bar{T}}{C_{H_2}} = 0,
\]

where

\[
\gamma_{PL} = \frac{E_1}{R_u T},
\]

\[
\beta = \frac{(-\Delta H_{rea}) (D_e)_M (C_M)_s}{\lambda_T T},
\]

\[
\phi_{PL} = R \sqrt{\frac{\rho_{PL} k_0 (R_u T)^{a_1}}{(D_e)_M (C_M)_s^{1-a_2}}},
\]
\[\phi_L = R \left[\rho_{p01}K_{01} \left[\frac{R_uT_s}{(C_H)_s} \right]^{0.5} \right] . \quad (22) \]

\[DEN1 = 1 + K_{01} \left[\frac{R_uT_s}{(C_M)_s} \right], \]
\[\exp \left[\frac{-\gamma_1}{1 + \beta \left(1 - \frac{T}{C_M} \right)} \right] \bar{C}_M \left(\frac{T}{C_H} \right). \quad (23) \]

\[DEN2 = 1 + \left[K_{01}R_u(C_H)T_s \exp \left[\frac{-\gamma_2}{1 + \beta \left(1 - \frac{T}{C_M} \right)} \right] \bar{C}_M \frac{T}{C_H}, \right. \quad (24) \]
\[\gamma_L = \frac{E_2}{R_uT_s}, \quad (25) \]
\[\gamma_i = \frac{\Delta H_i}{R_uT_s}, \quad i = 1, 2. \quad (26) \]

The boundary conditions of Eqs. (17) and (18) are \(\bar{C}_M = 1 \) at \(\sigma = 1 \) and \(\frac{\partial C_M}{\partial \sigma} = 0 \) at \(\sigma = 0 \).
\(\bar{T} \) and \(\bar{C}_H \), are as given in Eqs. (6) and (11), respectively.

The Ergun equation was used to calculate the pressure drop through the catalyst beds. It is represented as follows:

\[\Delta P = \left(\frac{150}{Re} + 1.75 \right) \frac{\rho_H \nu^2}{d_p} \left(\frac{1 - \epsilon_p}{\epsilon_p^3} \right) L, \]

where \(\Delta P \) is the pressure drop, \(Re \) is the Reynolds number, \(\rho_j \) is the density of the fluid, \(u_o \) is the superficial velocity, \(d_p \) is the catalyst pellet diameter, \(\epsilon_p \) is the bed voidage and \(L \) is the length of the packed bed.

Numerical method of solution

Orthogonal collocation

The numerical method adopted for the solution of the developed models for the catalytic steam reforming of methanol with a view to predicting the key component concentration profile inside the pellet and thus computing non-isothermal effectiveness factor values is the orthogonal collocation method [21, 22].

Parameters and operating conditions used for the computation

In the computational procedure of this study, the effective diffusivity values of methanol and hydrogen in the catalyst were estimated using the modified Maxwell–Stefan equation [19] and the cross-linked pore model [23], recommended by Haugaard and Livbjerg [24] based on experimental comparison of the pore-diffusion models. The respective effective diffusivities of methanol, \((D_e)_M \), hydrogen, \((D_e)_H \), carbon dioxide, \((D_e)_{CO_2} \), steam, \((D_e)_S \), are given by

\[(D_e)_M = \frac{\epsilon_p}{\tau} \left(\frac{y_S - y_M}{D_{M-S}} + \frac{y_{CO_2} + y_M}{D_{M-CO_2}} + \frac{y_H_2 + 3y_M}{D_{M-H_2}} + \frac{y_{N_2}}{D_{M-N_2}} + \frac{1}{(D_K)_M} \right)^{-1}, \quad (27) \]

\[(D_e)_H = \frac{\epsilon_p}{\tau} \left(\frac{y_M + y_{H_2}}{3D_{H_2-M}} + \frac{y_S + y_{H_2}}{3D_{H_2-S}} + \frac{y_{CO_2} - y_{H_2}}{3D_{H_2-CO_2}} + \frac{y_{N_2}}{D_{H_2-N_2}} + \frac{1}{(D_K)_H} \right)^{-1}, \quad (28) \]

\[(D_e)_{CO_2} = \frac{\epsilon_p}{\tau} \left(\frac{y_{H_2} - 3y_{CO_2}}{D_{CO_2-H_2}} + \frac{y_M + y_{CO_2}}{D_{M-CO_2}} + \frac{y_S - y_{CO_2}}{D_{CO_2-S}} + \frac{y_{N_2}}{D_{CO_2-N_2}} + \frac{1}{(D_K)_{CO_2}} \right), \quad (29) \]

\[(D_e)_S = \frac{\epsilon_p}{\tau} \left(\frac{y_M - y_S}{D_{M-S}} + \frac{y_{CO_2} + y_S}{D_{S-CO_2}} + \frac{y_H_2 + 3y_S}{D_{S-H_2}} + \frac{y_{N_2}}{D_{S-N_2}} + \frac{1}{(D_K)_S} \right), \quad (30) \]
where ε_p is the porosity of the catalyst, τ the tortuosity of pores in the catalyst, y_i the mole fraction of component i, D_{ij} the diffusivity for a binary mixture of i and j, and $(D_{e})_{M}, (D_{e})_{H_2}, (D_{e})_{CO_2}$ and $(D_{e})_S$ the Knudsen diffusivities of methanol, hydrogen, carbon dioxide and steam, respectively. The tortuosity factor, τ, is a parameter, which corrects deviations of the real pore structure from the ideal cylindrical straight pores. $\tau = 3$ was assumed, a theoretical value for a random pore system [23]. The binary diffusivity was estimated by the method of Reid et al. [26]. The Knudsen diffusivity of component i is given by Smith [25]:

$$
(D_{e})_i = 9\bar{\tau}\sqrt{\frac{T_{re}}{M_i}} \text{ m}^2/\text{s},
$$

(31)

where $\bar{\tau}$ is the mean pore radius [=] m, T_{re} the reaction temperature [=] K and M_i the molecular weight of species i.

The effective diffusivities, $(D_e)_{M}, (D_e)_{H_2}, (D_e)_{CO_2}$ and $(D_e)_{S}$, are seen to depend on the mole fractions of all components of the reaction mixture at a point in the catalyst. Schneider [19, 20] has shown that the change of the effective diffusivity along the pores in the catalyst is not very marked even under strong diffusion limitations, and that the effective diffusivity evaluated at the outer surface of a catalyst particle can be used throughout the particle without introducing any serious error into the concentration profile.

Effectiveness radial thermal conductivity computation [27]:

$$
\frac{\lambda_e}{\lambda_f} = \alpha + \beta \text{Pr Re}.
$$

(32)

For metal spheres:

$\alpha = 13$, $\beta = 0.11$, $0.021 < \frac{\mu}{\alpha d_i} < 0.086$, 0.086.

$$
\text{Pr} = \frac{\frac{C_P \mu}{\lambda_f}}{} = \frac{48.9926 \times 2.71E - 4}{3.08E - 2} = 0.4311,
$$

(33)

$$
\text{Re} = \frac{\frac{d_p G}{\mu}}{} = \frac{3.62E - 4 \times 3.42}{2.71E - 4} = 4.5744,
$$

(34)

$$
\frac{\lambda_e}{\lambda_f} = [13 + 0.118 \times 0.4311 \times 4.5747],
$$

(35)

$\lambda_e = 0.4071$ W/mK.

Results and discussion

The results of the study are presented and discussed in this section. The case study depicts the results of the effect of intra-particle diffusion resistance on methanol steam reforming on a commercial Cu/ZnO/Al₂O₃ catalyst using power rate law and LHHW kinetics, respectively (Tables 1 and 2).

Effect of temperature on effectiveness factor

Figure 1 shows the effect of change in surface temperature on effectiveness factor of steam reforming of methanol on a commercial Cu/ZnO/Al₂O₃ catalyst. At temperature below 473 K, the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one. At this point, almost all the catalyst surfaces are available for reaction. As the

Table 1	The geometric, kinetic and parameters used for the steam reforming of methanol on a commercial Cu/ZnO/Al₂O₃ catalyst	
Physical properties and bed characteristics	**Value**	**Unit**
Fluid density	57	(kg/m³)
Reactor tube diameter	6.80	(m)
Mass velocity	1.30	(m/s)
Viscosity	3.42	(kg m⁻² s⁻¹)
Thermal conductivity of the fluid	3.30 x 10⁻²	(W/m K)
Heat of reaction (523 K)	57,939.52	(J/mole)
Methanol partial pressure in feed	0.01519875	(MPa)
Steam partial pressure in feed	0.03033975	(MPa)
Horsepower	45.744	(kW)
Void fraction in the bed	0.47	(m³/m³)
Density	2400	(kg/m³)
BET area	66	(m²/g)
Void fraction in particles	0.47	
Specific heat of the fluid	48.9927	(J/kg K)
Specific heat of the catalyst	1904	(J/kg K)
Thermal conductivity of the fluid	3.30 x 10⁻²	(W/m K)
Void fraction in the bed	0.47	
Mass velocity	3.42	(kg m⁻² s⁻¹)
Viscosity	2.70 x 10⁻⁴	(Pa s)

These values of constants and parameters were taken from the experimental work of Lee et al. [4] and Peppley et al. [9] and to which the simulation results were compared.
temperature increases above 473 K, there is considerable increase in the diffusion limitation effect. This implies that at temperature above 473 K, effect of intra-particle diffusion resistance becomes predominant providing only small area of the catalyst for reaction with most of the reactions taking place very close to the outer surface of the catalyst. The trend is in agreement with Lee et al. [4] with an absolute average deviation (AAD) of 0.111 and standard deviation (SD) of 0.131.

Effectiveness factor and Thiele modulus plot of both kinetics

Figure 2 shows the variation of effectiveness factor, η, with Thiele modulus, φ, for the power law kinetics of the reaction process. The reaction being endothermic, both concentration and temperature profiles decrease towards the centre of the pellet. For large values of the Thiele modulus, the rate of reaction is much greater than the rate of diffusion; thus, the

Table 2
Calculated values of Knudsen and effective diffusion coefficients of species for the reaction system

Species	Knudsen diffusion coefficient (m2/s)	Effective diffusion coefficient (m2/s)
Methanol	3.14×10^{-6}	4.91×10^{-7}
Hydrogen	1.25×10^{-5}	1.96×10^{-6}
Carbon dioxide	2.67×10^{-6}	4.191×10^{-7}
Steam	4.18×10^{-6}	6.55×10^{-7}
Effectiveness factor is much less than unity, and the process is said to be diffusion-limited, that is, the surface reaction is rapid and that the reactant is consumed very close to the external pellet surface and very little penetrates into the interior of the pellet. However, when the diffusion rate is much larger than the reaction rate, the effectiveness factor is near unity and the process is said to be reaction-limited, and a significant amount of the reactant diffuses well into the pellet interior without reacting. From the plot, it can be seen that the internal diffusion effectiveness factor is approximately equal to 1.0 when the Thiele modulus is lower than 1.1, which means majority of the reactants diffuse quickly into the catalyst centre and the effect of internal diffusion can be neglected. When the value of Thiele modulus increased from 1.3 to 3.4, the value of the internal diffusion effectiveness factor decreased from 0.8332 to 0.507, which indicates that the effect of internal diffusion resistance is pronounced. At Thiele modulus greater than 4.0, the internal diffusion effectiveness factor is very small which means severe intraparticle diffusion resistance meaning most of the catalyst is not being utilized.

Figure 3 shows the power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics superimposed, it is seen that there is only a slight difference in the values of the effectiveness factor variation with Thiele modulus for both the power law and LHHW kinetics for steam reforming of methanol on Cu/ZnO/Al2O3 catalyst, indicating that the two reaction kinetics can be used to predict the reaction process. Figure 4

Fig. 3 Effectiveness factor versus Thiele modulus for both power law and LHHW kinetics for steam reforming of methanol on Cu/ZnO/Al2O3 catalyst

![Effectiveness factor versus Thiele modulus](image1)

Fig. 4 Effectiveness factor versus Thiele modulus using LHHW kinetics for steam reforming of methanol on Cu/ZnO/Al2O3 catalyst at different heat of reaction parameter

![Effectiveness factor versus Thiele modulus](image2)
shows the variation of the values of effectiveness factor with Thiele modulus at different heat of reaction parameter, β, using power law kinetics for steam reforming of methanol on Cu/ZnO/Al$_2$O$_3$ catalyst. The plot shows decrease in the magnitude of effectiveness factor as β decreases from -0.01 to -0.8, all having very close values of effectiveness factor at different Thiele modulus. This is because the reaction being endothermic, the temperature decreases toward the centre of the pellet and since the rate decreases with drop in temperature, the effect of the heat-transfer resistance is diminished thus resulting in the closeness of the non-isothermal η profiles for various values of heat of reaction parameter for methanol, β. Therefore, the decrease in temperature (and of course the reaction rate) in going into the pellet is indicative of the little significance of the mass transfer.

Effect of diffusion coefficient and thermal conductivity

Figures 5 and 6 show the effect of diffusion coefficient and thermal conductivity on effectiveness factor respectively. From Fig. 5, as the diffusion coefficient increases, the effectiveness factor becomes limited by surface reaction effect and thus increasing the effectiveness factor. At a diffusion coefficient of $4.60 \times 10^{-7} \text{ m}^2/\text{s}$, the effectiveness factor is 0.6571; at $7.50 \times 10^{-7} \text{ m}^2/\text{s}$, the effectiveness factor increases by almost 30% to 0.6691. Increasing the diffusion coefficient to $1.50 \times 10^{-6} \text{ m}^2/\text{s}$ shows a small increase of about 0.5% to 0.6721. Further increase in diffusion coefficient does not show appreciable increase in the value of effectiveness factor. This is because for endothermic reaction which is
the reaction we are considering, temperature and concentration gradients both reduce the reaction rate below that evaluated at surface conditions. The decrease in rate going into the pellet for endothermic reaction means that the mass transfer is of little importance which thus makes the diffusion coefficient to have minimal effect on effectiveness factor. Therefore, operating with the diffusion coefficient of $1.50 \times 10^{-6} \text{ m}^2/\text{s}$ for this reaction process will reduce to minimal value the effect of intra-particle diffusion resistance. As shown in Fig. 6, as the thermal conductivity increases, the diffusion effect becomes the limiting effect and thus decreasing the effectiveness factor. At thermal conductivity of $0.204 \text{ W/m}^2\text{K}$, the effectiveness factor is 0.6598; at $0.4071 \text{ W/m}^2\text{K}$, the effectiveness factor decreases by almost 1.2% to 0.6521. Increasing the thermal conductivity to $1.080 \text{ W/m}^2\text{K}$ shows a small decrease of about 1.1% to 0.644. Further increase in thermal conductivity does not show appreciable change in the value of effectiveness factor. This is because the effective thermal conductivities of catalyst pellets are very low. For endothermic reaction, there is a decrease in temperature and diffusion rate into the pellets as stated earlier. Thus, the effect of heat transfer resistance is diminished which then makes the effect of effective thermal conductivity on the effectiveness factor not to be pronounced. Therefore, operating with the thermal conductivity $1.080 \text{ W/m}^2\text{K}$ will reduce to minimal value the effect of intra-particle diffusion resistance in the reaction process.

Effect of catalyst size

Figure 7 presents the effect that change in catalyst size will have on the magnitude of effectiveness factor. As the catalyst

![Fig. 7 Effect of catalyst size on effectiveness factor](image)

![Fig. 8 Variation of pressure drop in the reactor with catalyst size](image)
size increases, the effectiveness factor decreases. At the catalyst size of 8.41×10^{-4} m, the effectiveness factor is 0.3954, decreasing the catalyst size to 2.36×10^{-4} m the value of effectiveness factor increased to 0.6522. The catalyst size of 1.623×10^{-4} m was able to produce effectiveness factor of 1, thus removing the effect of intra-particle resistance on the catalyst with minimal pressure drop of 8% which is still within the allowed 10% pressure drop for fixed bed reactor [28]. This shows that catalyst size of 1.623×10^{-4} m is still acceptable for the reaction process as it is still with accepted pressure drop value. This effect is very important in the design and optimization of the reactor. Figure 8 shows the variation of pressure drop with catalyst size at reactor length of 0.00635 m considered for the reaction process. The pressure drop varies linearly with catalyst size with the difference from the initial value still less than 10%.

Figure 9 shows the concentration profiles of the reactant (methanol) at different Thiele moduli, 1.2, 2.2, 3.4, 4.6, 5.0 and 5.9 inside the catalyst pellet using the power law kinetics. At Thiele modulus of 1.2, the intra-particle diffusion resistance has no major effect on the rate of reaction per pellet. Almost all the entire volume of the catalyst is reacting at the same rate as about 80% of the methanol is able to diffuse quickly into the centre of the catalyst pellet. At Thiele modulus of 2.2, the effect of intra-particle diffusion started becoming predominant with almost 60% of the reactant being converted before diffusing to the centre of the catalyst pellet. When the Thiele modulus is 3.4, 75% of the reactant was converted at the surface of the catalyst pellet before reaching the centre. While for large Thiele moduli of 4.6, 5.0 and 5.9, by the time reactant gets to the centre of the catalyst pellet, almost 97% of it has been converted. This is in agreement with Fig. 2. For these large values of Thiele moduli, the rate of reaction is greater than the diffusion rate; thus, the effectiveness factor is much less than unity and the process is said to be diffusion limited, that is, the surface reaction is rapid and the reactant is consumed very close to external pellet surface and vert little penetrates into the interior of the pellet. Figure 10 depicts the temperature profile at different Thiele moduli inside the catalyst pellet. The temperature drops are minimal at different Thiele moduli which shows that the reaction process is isothermal. This may be due to the endothermic nature of steam reforming process and also because of slow heat transfer into the reactor from the external heating system [29, 30]. Thus, to increase heat transfer into the process, internal heating of the system can be adopted which can increase the temperature in the catalyst and leads to increase in the rate of conversion [30], or by combining endothermic steam reforming with exothermic combustion part of methanol which supplies the required heat [29].

Figure 11 shows the partial pressure of the key components inside the catalyst pellet. The two reactants methanol and steam partial pressure decreases from the outer catalyst surface to the centre of the catalyst as they reacted to form the products carbon dioxide and hydrogen. The products have their partial pressure increase from the centre of the pellet to the outer surface. Table 3 depicts the effect of molecular diffusion and Knudsen diffusion on the overall effective diffusivity inside the catalyst pellet. The molecular diffusivity is greater than Knudsen diffusivity which shows that the diffusion of the
reactants into the catalyst pellet is more of molecular diffusion than Knudsen diffusion. This is due to the smaller size of the methanol particles which allow easy passage of the reactants into the catalyst pellet.

Conclusions

A mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a non-isothermal heterogeneous packed bed reactor. The model developed was solved to predict the non-isothermal effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al₂O₃ catalyst, a source of hydrogen fuel. Results show that reducing the catalyst size to 1.623 \(\times 10^{-4}\) m eliminates the effect of intraparticle diffusion effect. An increase in diffusion coefficient leads to an increase in the effectiveness factor while increase
in thermal conductivity leads to a decrease in effectiveness factor. Both power law and the developed LHSHW kinetics for steam reforming of methanol on Cu/ZnO/Al₂O₃ were able to predict the reaction process adequately. Also at temperature below 473 K, the effect on intra-particle diffusion limitation is reduced to the barest minimum.

Acknowledgements We acknowledge the contribution of Reaction Engineering and Energy Research group of Chemical and Petroleum Engineering Department of University of Lagos, Nigeria.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agarwal V, Patel S, Pant KK (2005) H₂ production by steam reforming of methanol over Cu/ZnO/Al₂O₃ catalysts: transient deactivation kinetics modelling. Appl Catal A Gen 279:155–164
2. Brown LF (2001) A comparative study of fuels on-board hydrogen production for fuel-cell powered automobile. Int J Hydrog Energy 106(1–2):249–257
3. Joensen F, Rostrup-Nielsen JR (2002) Conversion of hydrocarbons and alcohols for fuel cells. J Power Sources 105(2):195–201
4. Lee JK, Ko JB, Kim DH (2004) Methanol steam reforming over Cu/ZnO/Al₂O₃ catalyst: kinetics and effectiveness factor. Appl Catal A Gen 278:25–35
5. Amphlett JC, Evans MJ, Mann RF, Weir RD (1985) Hydrogen production by catalytic steam reforming of methanol. Part 2: Kinetics of methanol decomposition using girdler G66B catalyst. Can J Chem Eng 63:605–611
6. Jiang CJ, Trimm DL, Wainwright MS, Cant NW (1993) Kinetic study of steam reforming of methanol over copper based catalyst. Appl Catal A Gen 93:245–255
7. Jiang CJ, Trimm DL, Wainwright MS, Cant NW (1993) Kinetic mechanism for the reaction between methanol and water over Cu/ZnO/Al₂O₃ catalysts. Appl Catal A Gen 97:145–158
8. Idem RO, Bakshi NN (1996) Kinetics modelling of the production of hydrogen from methanol-steam reforming process over Mn-promoted coprecipitated Cu-Al catalyst. Chem Eng Sci 51(14):3697–3708
9. Peppley BB, Amphlett JC, Kearns LM, Mann RF (1999) Methanol steam reforming on Cu/ZnO/Al₂O₃ catalyst—part 1: the reaction network. Appl Catal 179:21–29
10. Giessler K, Newson E, Vogel F, Truong TB, Hottinger P, Wokaun A (2001) Autothermal methanol reforming for hydrogen production in fuel cell applications. Phys Chem Chem Phys 3:289
11. Samm SR, Savinell RF (2002) Kinetics of methanol-steam reforming in an internal reforming fuel cell. J Power Sources 112:13–29
12. Lim MS (2001) The Production of Hydrogen from Methanol in PEMFC System. Ph.d Thesis, Kyungpook National University, Taegu
13. Purnama H, Ressler T, Jentoft RE, Soerijanto H, Schögl R, Schomäcker R (2003) CO formation/selectivity for steam reforming of methanol with a commercial Cu/ZnO/Al₂O₃ catalyst. Appl Catal A 259:83–90
14. Santacesaria E, Carra S (1983) Kinetics of catalytic steam reforming of methanol in a CSTR reactor. Appl Catal 5:345–358
15. Agrell J, Birgersson H, Boutonnnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al₂O₃ catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106(1–2):249–257
16. Ledjeff–Hey K, Formanski V, Kalk T, Ross J (1998) Compact hydrogen production systems for solid polymer fuel cells. J Power Sources 71(1–2):199–207
17. Wiese W, Emonts B, Peters R (1999) Methanol steam reforming in a fuel cell drive system. J Power Sources 84(2):187–193
18. Peters R, Düssterwald HG, Höhlein B (2000) Investigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell powered passenger car. J Power Sources 86(1–2):507–514
19. Schneider P (1976) Intraparticle diffusion in multicomponent catalytic reactions. In: Heinemann H, Carberry JJ (eds) Catalysis Reviews, Science and Engineering, vol 12. Marcel Dekker, New York, pp 201–278
20. Schneider P (1998) Effectiveness factor for a non-isothermal simple catalytic reaction with combined transport processes: Maxwell–Stefan approach. Collect Czech Chem Commun 63:252–270
21. Villadsen JW, Stewart WE (1967) Solution of boundary value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501
22. Villadsen JW, Michelsen ML (1978) Solution of differential models by polynomial approximation. Prentice-Hall Inc, Englewood Cliffs
23. Feng C, Stewart WE (1973) Practical models of isothermal diffusion and flow of gases in porous solids. Ind Eng Chem Fundam 12(2):143–147
24. Hauggaard J, Livbjerg H (1998) Models of pore diffusion in porous catalysts. Chem Eng Sci 53(16):2941–2948
25. Smith JM (1981) Chemical engineering kinetics, McGraw-Hill chemical engineering series, 3rd edn. McGraw-Hill Inc, New York, USA
26. Reid RC, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New York, USA
27. Yagi S, Wakao N (1959) Heat transfer and mass transfer from wall to fluid in packed beds. Am Inst Chem Eng J 5(1):79–85
28. Iordanidjia AA (2002) Mathematical modelling of catalytic fixed bed reactors. Ph.D. Thesis of Twente University Press, Enschede, The Netherlands
29. Papavasilous J, Avgouropoulos C, Ioannides T (2004) Production of hydrogen via combined steam reforming of methanol over catalyst. Catal Commun 5:231–235
30. Suh J, Lee M, Greif R, Grogoropoulos CP (2009) Transport phenomena in a steam-methanol reforming microreactor with internal heating. Int J Hydrogen Energy 14:1–26