Bilateral Stress Fracture of the Fibulae and Periostitis of the Tibiae

Hiroyuki Tsuchie Kyoji Okada Hiroyuki Nagasawa Shuichi Chida Yoichi Shimada
Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan

Key Words
Stress fracture, bilateral · Fibula

Abstract
Objective: This study describes a unique case of bilateral stress fractures of the fibulae and provides a literature review. Clinical Presentation and Intervention: A 16-year-old female badminton player presented with pain around the bilateral distal lateral legs. She had mild bilateral varus deformity at the knee joint, and the bilateral ankles showed valgus deformity in standing posture. Radiographs and computed tomography showed periosteal reactions on the bilateral distal fibulae. Technetium-99m bone scintigraphy demonstrated increased uptake in the bilateral distal fibulae and the bilateral middle third of the tibiae. A diagnosis of bilateral distal fibular stress fractures was made. She was advised to stop playing badminton until the symptoms disappeared. Conclusion: Varus deformity of the knee and valgus deformity of the ankle may have influenced the mechanism underlying bilateral symmetric stress fractures.

Introduction
Stress fractures generally occur as a result of repetitive accumulation of stresses, and they often occur in athletes [1]. Common sites of the condition are the bones of the lower extremities, but bilateral cases are relatively rare. We describe a unique case of bilateral stress fractures of the fibulae and bilateral periostitis of the tibiae.
was made. We recommended that she avoid activity including badminton. Immobilization was not applied.

Pain began to decrease 1 week after the initial visit and almost disappeared 4 weeks later. Radiographs showed consolidation of periosteal reactions in the bilateral distal fibulae. There was no periosteal reaction in the tibiae, and bilateral periostitis (shin splint) was estimated. She began to participate in badminton gradually starting 8 weeks after the initial examination, and there was no pain at the most recent follow-up 4 months after the initial examination.

Discussion

Stress fractures of the lower extremities generally occur as a result of repetitive accumulation of stress. They are often seen in athletes and military recruits, and usually occur in the lower extremities. In a study of 320 athletes, the most frequent site was the tibia (49.1%), followed in decreasing order of frequency by the tarsals (25.3%), metatarsals (8.8%), femur (7.2%), fibula (6.6%), pelvis (1.6%) and sesamoids (0.9%) [1]. However, reports of bilateral stress fractures have been relatively rare. Matheson et al. [1] suggested that bilateral stress fractures occur in 16.6% of cases based on an analysis of all stress fracture sites. Although the frequency of bilateral fibular stress fractures has not been precisely reported, it is thought to be quite rare.

Only 7 cases of bilateral fibular stress fractures, which were not insufficiency fractures occurring in abnormal bones with decreased mineralization, have been reported in the literature, and they had histories of sports training (table 1) [2–8]. In general, stress fracture of the fibula is classified according to the level of occurrence: proximal,
middle and distal [3, 5, 6]. The lesions of the current patient were distal, most probably due to running activity at the badminton club. The relationship between the region of stress fracture and sport activities is well known; running may cause distal stress fracture and jumping activity the proximal stress fracture [9].

Intense activity such as running may cause unilateral stress fracture of the fibula in a healthy person. However, in the current case, stress fractures occurred symmetrically in the bilateral distal fibulae. In addition, symmetric stress reactions were observed in the bilateral mid-tibiae on bone scintigraphy. To explain the mechanism underlying this bilateral symmetric condition, other intrinsic and bilateral risk factors should be considered. The only detectable abnormality in the current case was varus deformity of the knee and valgus deformity of the ankle in the standing position. Sawant et al. [10] speculated that varus deformity of the knee would produce abnormal stress in both tibiae due to deviation of the mechanical axis. A combination of this abnormal axis and repetitive intense activities might produce stress reaction in the bilateral mid-tibiae and bilateral distal fibulae, since the fibula carries between 6.4 and 16.7% of the load applied to the lower extremity in weight bearing [11]. On biomechanical studies of the fibula, the fibular load is decreased in dorsiflexion or evasion positions and increased in plantar flexion or inversion positions [12]. If the ankles of the current case showed varus deformity, these loads on the fibulae may have increased. However, valgus deformity to compensate for the knee malalignment did not support our speculation. Causes of stress fractures in the bilateral fibulae should be further investigated.

Conclusion

This reported case showed an athlete with bilateral symmetric stress fracture most probably due to varus deformity of the knee and the ankle. A combination of abnormal axis and repetitive intense activities may produce stress reaction in the bilateral mid-tibiae and bilateral distal fibulae.

References

1. Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG: Stress fractures in athletes: A study of 320 cases. Am J Sports Med 1987;15:46–58.
2. Richmond DA, Shafar J: A case of bilateral fatigue fractures of the fibula. Br Med J 1955;1:264–265.
3. Synnott JL, Barry OC: Bilateral stress fracture of the fused lower fibular epiphysis. Ir J Med Sci 1984;153:252–254.
4. Yasuda T, Miyazaki K, Tada K, Matsuda Y, Murakami H: Stress fracture of the right distal femur following bilateral fractures of the proximal fibulas. A case report. Am J Sports Med 1992;20:771–774.
5. Blivin SJ, Martire JR, McFarland EG: Bilateral midfibular stress fractures in a collegiate football player. Clin J Sport Med 1999;9:95–97.
6. Lehman TP, Belanger MJ, Pascale MS: Bilateral proximal third fibular stress fractures in an adolescent female track athlete. Orthopedics 2002;25:329–332.
7. Peiro V, Herrador MA, Leyes M, Guillen P: Bilateral stress fracture of the proximal fibula in a young soccer player on bone scanning. Clin Nucl Med 2003;28:49–51.
8. Roth S, Sextan B, Tudor A, Dapic T, Cicvaric T, Miletic D: Bilateral fibular stress fracture in a young female basketball player. J Pediatr Orthop B 2008;17:195–198.
9. Lord CD, Coutts JW: A study of typical parachute injuries occurring in two hundred and fifty thousand jumps at the parachute school. J Bone Joint Surg 1944;26:547–557.
10. Sawant MR, Bendall SP, Kavanagh TG, Cutton ND: Nonunion of distal stress fractures in patients with deformed arthritic knees. Treatment using modular total knee arthroplasty. J Bone Joint Surg 2000;82:663–666.
11. Lambert KL: The weight-bearing function of the fibula. A strain gauge study. J Bone Joint Surg 1971;53:507–513.
12. Takebe K, Nakagawa A, Minami H, Kanazawa H, Hirohata K: Role of the fibula in weight-bearing. Clin Orthop Relat Res 1984;184:289–292.

Reference	Age, years	Gender	Fibular region	Sporting activity
Richmond and Shafar [2], 1955	45	female	more distal	jogging, sewing
Synnott and Barry [3], 1984	29	female	more distal	jogging
Yasuda et al. [4], 1992	15	male	proximal	rugby
Blivin et al. [5], 1999	20	male	middle	football
Lehman et al. [6], 2002	16	female	proximal	track
Peiro et al. [7], 2003	17	female	proximal	soccer
Roth et al. [8], 2008	14	female	distal and middle	basketball
Current case	16	female	distal	badminton