Whole genome sequencing and annotation of halophilic *Salinicoccus* sp. BAB 3246 isolated from the coastal region of Gujarat

Vishal Mevadaa,⁎, Shradhdha Patelb, Jignesh Pandyaa, Himani Joshib, Rajesh Patelb

a Shri Sarvajanik Science College, Sarvajanik Campus, Mehsana, India
b Department of Life Sciences, Hem. North Gujarat University, Patan, India

ABSTRACT

Salinicoccus sp. BAB 3246 is a halophilic bacterium isolated from a marine water sample collected from the coastal region of Gujarat, India, from a surface water stream. Based on 16sRNA sequencing, the organism was identified as *Salinicoccus* sp. BAB 3246 (Genebank ID: KF889285). The present work was performed to determine the whole genome sequence of the organism using Ion Torrent PGM platform followed by assembly using the CLC genomics workbench and genome annotation using RAST, BASys and MaGe. The complete genome sequence was 713,204 bp identified with second largest size for *Salinicoccus* sp. reported in the NCBI genome database. A total of 652 degradative pathways were identified by KEGG map analysis. Comparative genomic analysis revealed *Salinicoccus* sp. BAB 3246 as most highly related to *Salinicoccus halodurans* H3B36. Data mining identified stress response genes and operator pathway for degradation of various environmental pollutants. Annotation data and analysis indicate potential use in pollution control in industrial influent and saline environment.

Specifications

Organism/cell line/tissue	*Salinicoccus* sp. BAB 3246
Sex	Not applicable
Sequencer or array type	Ion Torrent PGM platform
Data format	Fasta complete genome
Experimental factors	Marine water sample
Experimental features	Shotgun whole genome sequencing followed by genome annotation using RAST, BASys and MaGe.
Sample source location	Gujarat, India (21.672439 N 72.275925 E)
Data submission	BioProject: PRJNA342322

2. Introduction

The genus *Salinicoccus*, belonging to family *Staphylococcaceae* was first proposed by Ventosa et al., (1990) and is defined as moderately halophilic, aerobic, Gram-positive, non-motile, non-sporulating, and heterotrophic cocci [1]. The genomic DNA G + C content of the species in this genus lies within the range of 46−51 mol%. Most species in genus *Salinicoccus* including *Salinicoccus albus*, *Salinicoccus carnicancri*, *Salinicoccus roseu*, *Salinicoccus halodurans*, *Salinicoccus luteus* have been found in salty environments, such as fermented foods, solar salterns, salt mines, salt lakes, and saline soils [1−7]. Alongside, genus *Salinicoccus* is also reported for production of Amylase, Protease, Gelatinase like enzymes in hyper saline environments [8].

The members of the *Salinicoccus* genus are abundant in the marine environments suggesting that they play important roles in marine ecosystems, such as the degradation of aromatic compounds and the biogeochemical cycles of carbon and sulfur [5]. *S. roseus* has been reported to exhibit high salinity and high lactate resistance [9]. *Salinicocci* have much importance in biotechnology applications such as serine metabolism strategies to adapt to lactate stress [10]. In order to understand the genetic variability and industrial applications of those genes, genome sequencing and annotation of strain *Salinicoccus* sp. BAB 3246 was executed. The prime interest was to identify presence of
distinctive enzymes for potential industrial applications.

3. Experimental design, materials and methods

The halophilic organism was isolated from marine water collected from surface streams of coastal region near Bhavnagar, Gujarat, India (latitude, longitude: 21.67 N, 72.27E). The isolation was performed by providing 15% Sodium Chloride containing Medium. The identification of *Salinococcus* sp. BAB 3246 was validated by 16 s rRNA sequencing and submitted to Genebank (accession no: KF889285.1). Furthermore, the DNA was extracted using Hi-Media Kit for Genomic DNA isolation Kit. The genome sequencing was performed using Ion Torrent PGM generating 15,26,815 sequencing reads. Initially all reads were subjected to preprocessing and conversion of BAM to fasta file format using Galaxy NGS: BamTools, online server using default parameters provided by the developer [11]. The genome data were assembled using CLC Genomic Workbench 5. The final whole genome assembly size was reported is 7,13,204 bp. The genome annotation was performed using RAST (Rapid Annotation using Subsystem Technology) [12], BASys (a web server for automated bacterial genome annotation) [13] and MaGe (Microscope Genome Annotation) [14]. The RAST analysis revealed total 1691 coding sequences (Table 1). A total of 1009 subsystems were identified, including Stress Response (42), Sulfur Metabolism (4), Potassium metabolism (4) and Iron metabolism (1). However, the highest numbers of subsystems were observed for Amino Acids and Derivatives (159), Protein Metabolism (153) and Carbohydrate synthesis (150) (Fig. 1). KEGG pathway analysis was performing using seed viewer system of RAST. The KEGG map analysis revealed 652 pathways associated with only degradation of metabolites (Table 2).

The genome annotation using BASys annotate 955 genes amongst total 2330 genes reported in and automated mode. The amino acid composition was also examined using BASys (Fig. 2). The highest amino acid residue content was predicted for Leucine followed by Glycine, Glutamic acid and Alanine. Annotated data were displayed in the form of circular DNA as a genome browser map for easy representation of genome data (Fig. 3). The genome annotation using Microscope Genome Annotation identified 1772 Genomic Objects (without artifacts): CDS, 1326; fCDS, 358; misc_RNA, 16; rRNA, 12; tRNA, 60.

4. Quantitative comparison of coding sequences, rna and subsystem

The comparison of genome size for six different strains available in NCBI genome database revealed that, *S. halodurans* strain had the largest genome size of 2,778,379 bp followed by 873,136 bp, 713,204 bp, 679,606 bp, 461,933 bp and 342,819 bp respectively for *S. carnicancri* Crm, *Salinicoccus* sp. BAB 3246, *S. luteus* DSM 17002, *S. roseus* and *S. albus* DSM 19776 strain. A maximum of 2839 coding sequences was reported for *S. halodurans* followed by 1691, 863, 668, 449 and 334 respectively for *Salinicoccus* sp. BAB 3246, *S. carnicancri* Crm, *S. luteus* DSM 17002, *S. roseus* and *S. albus* DSM 19776 strain (Table 3).

Genome	Salinicoccus sp. BAB 3246
Size (bp)	7,13,204
G + C content	49.1
Number of coding sequences	1691
Number of features	1762
Number of subsystems	1009
Number of RNAs	71
Number of contigs	1

Table 1

Summary of RAST annotation.

Fig. 1. Subsystem category distribution.
No	Name of derivative	KEGG map analysis	Salinicoccus sp. BAB-3246
1	1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation	Tyrosine metabolism	4
2	1,2-Dichloroethane degradation	1,2-Dichloroethane degradation	1
3	1,4-Dichlorobenzene degradation	Benzoate degradation via hydroxylation	2
		Glyoxylate and dicarboxylate metabolism	9
4	1- and 2-Methylnaphthalene degradation	Benzoate degradation via hydroxylation	2
5	2,4-Dichlorobenzoate degradation	Benzoate degradation via hydroxylation	2
6	3-Chloroacrylic acid degradation	Benzoate degradation via hydroxylation	2
7	Atrazine degradation	Atrazine degradation	1
8	Benzoate degradation via CoA ligation	Benzoate degradation via CoA ligation	4
		Benzoate degradation via hydroxylation	2
		Butyrate metabolism	9
		Ethylbenzene degradation	1
		Phenylalanine metabolism	1
		Pyruvate metabolism	14
9	Benzoate degradation via hydroxylation	Benzoate degradation via CoA ligation	4
		Benzoate degradation via hydroxylation	2
		Caprolactam degradation	2
		Glycolysis/gluconeogenesis	17
		Naphthalene and anthracene degradation	1
		Phenylalanine metabolism	1
		Pyruvate metabolism	14
		Tryptophan metabolism	9
		Tyrosine metabolism	4
10	Biphenyl degradation	Benzoate degradation via CoA ligation	4
		Benzoate degradation via hydroxylation	2
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
11	Bisphenol A degradation	Benzoate degradation via hydroxylation	2
12	Caprolactam degradation	Benzoate degradation via hydroxylation	2
		Caprolactam degradation	2
13	Carbazole degradation	Benzoate degradation via CoA ligation	4
		Benzoate degradation via hydroxylation	2
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
		Tryptophan metabolism	9
14	Ethylbenzene degradation	Benzoate degradation via CoA ligation	4
		Benzoate degradation via hydroxylation	2
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
		Propanoate metabolism	6
		Pyruvate metabolism	14
15	Fluorene degradation	Benzoate degradation via hydroxylation	2
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
16	Fluorobenzoate degradation	Benzoate degradation via hydroxylation	2
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
17	Geraniol degradation	Geraniol degradation	3
18	Limonene and pinene degradation	Valine, leucine and isoleucine degradation	9
19	Lysine degradation	Lysine degradation	6
		Lysine degradation	6
20	Naphthalene and anthracene degradation	Benzoate degradation via hydroxylation	2
		Naphthalene and anthracene degradation	1
		Pyruvate metabolism	14
		Tryptophan metabolism	9
		Tyrosine metabolism	4
21	Other glycan degradation	Glycosphingolipid biosynthesis - ganglio series	1
22	Styrene degradation	Citrate cycle (TCA cycle)	14
		Ethylbenzene degradation	1
		Glycolysis/gluconeogenesis	17
		Propanoate metabolism	6
		Pyruvate metabolism	14
23	Synthesis and degradation of ketone bodies	Butyrate metabolism	9
		Fatty acid metabolism	5
		Glycolysis/gluconeogenesis	17
		Pyruvate metabolism	14
24	Tetrachloroethene degradation	Glyoxylate and dicarboxylate metabolism	9

(continued on next page)
Table 2 (continued)

No	Name of derivative	KEGG map
25	Toluene and xylene degradation	Pyruvate metabolism 14
		Benzoate degradation via CoA ligation 4
		Benzoate degradation via hydroxylation 2
		Glycerolipid metabolism 3
		Glycolysis/gluconeogenesis 17
26	Trinitrotoluene degradation	Trinitrotoluene degradation 1
27	Valine, leucine and isoleucine degradation	Biosynthesis of type II polyketide backbone 1
		Citrate cycle (TCA cycle) 14
		Propanoate metabolism 6
		Pyrimidine metabolism 17
		Valine, leucine and isoleucine biosynthesis 12
		Valine, leucine and isoleucine degradation 9
28	Gamma-Hexachlorocyclohexane degradation	Benzoate degradation via hydroxylation 2
		Citrate cycle (TCA cycle) 14
		Glyoxylate and dicarboxylate metabolism 9
		Naphthalene and anthrancene degradation 1

Fig. 2. Amino acid composition of Salinicoccus sp. BAB 3246.

Fig. 3. Genome browser map for Salinicoccusp. BAB 3246.
5. Nucleotide sequence accession number

The complete sequence of *Salinicoccus* sp. BAB 3246 genome can be accessed under the NCBI BioProject: PRJNA342322.

Acknowledgments

We/authors are thankful to Department of Life Sciences and The Virtual Institute of Bioinformatics, HNGU, Patan, India to provide sequencing and computational facility.

References

[1] A. Ventosa, M.C. Márquez, F. Ruiz-Berraquero, M. Kocur, *Salinicoccus roseus* gen. nov., sp. nov., a new moderately halophilic gram-positive coccus, Syst. Appl. Microbiol. 13 (1990) 29–33, http://dx.doi.org/10.1016/S0723-2020(11)80177-3.

[2] L. França, F.A. Rainey, M.F. Nobre, M.S. da Costa, *Salinicoccus salsiraiae* sp. nov.: a new moderately halophilic gram-positive bacterium isolated from salted skate, Extremophiles 10 (2006) 531-6, http://dx.doi.org/10.1007/s00792-006-0532-1.

[3] Z. Aslam, J.H. Lim, M. Yasir, Y.R. Chung, S.-T. Lee, *Salinicoccus jeotgali* sp. nov., isolated from jeotgal, a traditional Korean fermented seafood, Int. J. Syst. Evol. Microbiol. 57 (2007) 633-8, http://dx.doi.org/10.1099/ijs.0.64586-0.

[4] M. Gao, L. Wang, S. Chen, Y. Zhou, H. Liu, *Salinicoccus kekensis* sp. nov., a novel alkaliphile and moderate halophile isolated from Keke Salt Lake in Qinghai, China, Antonie Van Leeuwenhoek 98 (2010) 351-7, http://dx.doi.org/10.1007/s10482-010-9449-x.

[5] Y.Q. Zhang, L.Y. Liu, H.Y. Liu, Y.Q. Zhang, L.H. Xu, W.J. Li, *Salinicoccus luteus* sp. nov., isolated from a desert soil, Int. J. Syst. Evol. Microbiol. 57 (2007) 1901–1905, http://dx.doi.org/10.1099/ijs.0.64967-0.

[6] Y.G. Chen, X.L. Cui, Y.X. Wang, Y.Q. Zhang, Q.Y. Li, Z.X. Liu, M.L. Wen, Q. Peng, W.J. Li, *Salinicoccus albus* sp. nov., a halophilic bacterium from a salt mine, Int. J. Syst. Evol. Microbiol. 59 (2009) 874–879, http://dx.doi.org/10.1099/ijs.0.003251-0.

[7] M.J. Jung, M.S. Kim, S.W. Roh, K.S. Shin, J.W. Bae, *Salinicoccus carnicancri* sp. nov., a halophilic bacterium isolated from a Korean fermented seafood, Int. J. Syst. Evol. Microbiol. 60 (2010) 653-658, http://dx.doi.org/10.1099/ijs.0.012047-0.

[8] M. de Lourdes Moreno, D. Pérez, M.T. García, E. Mellado, Halophilic bacteria as a source of novel hydrolytic enzymes, Lifestyles (Basel, Switzerland) 3 (2013) 38–51, http://dx.doi.org/10.3390/life3010038.

[9] H. Wang, L. Wang, H. Yang, Y. Cai, Y. Xue, B. Yu, Y. Ma, Comparative proteomic insights into the lactate responses of halophilic *Salinicoccus roseus* W12, Sci Rep 5 (2015) 13776, http://dx.doi.org/10.1038/srep13776.

[10] A. Ventosa, *Salinicoccus*, Bergey’s Man. Syst. Archaea Bact, John Wiley & Sons, Ltd, Chichester, UK, 2015, pp. 1–7, , http://dx.doi.org/10.1002/9781118960608.gbm00568.

[11] D.W. Barnett, E.K. Garrison, A.R. Quinlan, M.P. Strømberg, G.T. Marth, Bamtools: a C++ API and toolkit for analyzing and managing BAM files, Bioinformatics 27 (2011) 1691–1692, http://dx.doi.org/10.1093/bioinformatics/btr174.

[12] R.K. Aziz, D. Bartels, A. Best, M. DeJongh, T. Disz, R. a Edwards, K. Formusa, S. Gerdes, E.M. Glass, M. Kubal, F. Meyer, G.J. Olsen, R. Olson, A.L. Osterman, R. a Overbeek, L.K. McNeil, D. Paarmann, T. Paczian, B. Parrello, G.D. Pesch, C. Reich, R. Steven, O. Vassieva, V. Voutstein, A. Wilke, Q. Zagnitko, The RAST server: rapid annotations using subsystems technology, BMC Genet. 9 (2008) 75, http://dx.doi.org/10.1186/1471-2164-9-75.

[13] G.H. Van Domselaar, P. Stothard, S. Shrivastava, J.A. Cruz, A.C. Guo, X. Dong, P. Lu, D. Szafron, R. Greiner, D.S. Wishart, BASys: a web server for automated bacterial genome annotation, Nucleic Acids Res. 33 (2005) 455–459, http://dx.doi.org/10.1093/nar/gki593.

[14] D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen, A. Lajus, F. Le Fèvre, C. Longin, D. Mornico, D. Roche, Z. Rouy, G. Salvignol, C. Scarpelli, A.A.T. Smith, M. Weiman, C. Médiagne, MicroScope - an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res. 41 (2013) 636–647, http://dx.doi.org/10.1093/nar/gks1194.

Table 3

Quantitative comparison of coding sequence, RNA and subsystem.

Genome	Size (bp)	G + C content	Coding sequences	Features	RNAs	Subsystems	BioProject
Salinicoccus sp. BAB_3246	713,204	49.1	1691	1762	71	202	PRJNA342322
Salinicoccus roseus	461,933	49.9	449	459	10	80	PRJNA272357
Salinicoccus carnicancri	873,136	47.6	863	909	46	138	PRJNA175941
Salinicoccus albus DSM 19776	342,819	45.2	334	334	0	77	PRJNA185242
Salinicoccus luteus DSM 17002	679,606	49.7	668	669	1	114	PRJNA235106
Salinicoccus halodurans	2,778,379	44.5	2839	2912	73	388	PRJNA282445

V. Mevada et al. Genomics Data 13 (2017) 30–34