Cohort Study
Evaluating memory dysfunction after spinal anesthesia among patients undergoing elective surgery: Descriptive-analytical study

Sepideh Vahabi, Arash Karimi, Siavash Beiranvand*, Simin Babaei
Department of Anesthesiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

ARTICLE INFO
Keywords:
- Spinal anesthesia
- General anesthesia
- Marcaine
- Memory impairment
- Elective surgery

ABSTRACT
Background: Anesthesia has a number of side effects including cognitive impairment after the surgery. Postoperative cognitive impairment is commonly associated with general anesthesia. Objective: The aim of this study is to evaluate the effects of Marcaine (bupivacaine hydrochloride) in memory impairment among patients undergoing elective surgery.

Materials and methods: In this study descriptive-analytical study, patients undergoing elective lower extremity or lower abdomen surgery requiring spinal anesthesia were included. Following 24 h of the surgery, standard Wechsler questionnaire was used to assess memory of the patients. Other demographic and clinical parameters such as age, gender and blood pressure, pulse rate were also recorded. The obtained data was analyzed using SPSSv18.

Results: In this study, 105 patients where 55 (52.4%) males and 50 (47.6%) females were studied. The mean age of the subjects was 35.73 ± 10.64 years. There was a significant difference between the mean of memory scores in terms of logical memory and overall memory (P < 0.001). There was a significant relationship between the mean scores of patients’ rational memory and systolic blood pressure at admission (P = 0.030). There was a significant relationship between mean associative learning scores in patients and systolic blood pressure at admission (P = 0.046) and type of surgery (P = 0.013). Furthermore, overall memory scores were significantly associated with age (P = 0.041).

Conclusion: Based on the results of this study, it can be concluded that spinal anesthesia had a significant effect on some areas of memory. Further studies in this area can yield more reliable results.

The research approved by the committee of research ethics of Lorestan university (IR.LUMS.REC.1398.162). https://ethics.research.ac.ir

1. Introduction

Postoperative cognitive decline (POCD) is described as the loss of memory, concentration, language, learning and other daily activities following the surgery under regional or general anesthesia [1,2]. It is more common in elderly population and is associated with the reduction in quality of life(3). Other factors that can influence POCD include hypoxemia, preoperative pain and impaired neurological function, metabolic disturbance and certain types of anesthetic agents and surgeries [4,5]. The incidence of POCD can be 16–59% following 7 days of the surgery and 12–34% following 12 weeks postoperatively [5].

Exposure to anesthetics like nitrous oxide, isoflurane, and midazolam can impair memory and are known to have neurogenerative effects [6,7]. The role of proinflammatory cytokines has been chiefly suggested to cause POCD such as increase in IL-6 levels. Furthermore, cyclooxygenase-2 is increased in response to cerebral injury in ischemia and can lead to memory disturbances [5]. A recent study has indicated that decrease in glial cell-derived neurotrophic factor leads to neuroinflammation in animal model and can cause memory dysfunction [8]. Alterations in gene expression after general anesthesia is also reported to lead to neuroplasticity [9,10]. Owing to known effects of general anesthesia in cognitive impairment, a number of studies have argued on substituting general anesthesia with regional anesthesia [4,11,12].

The aim of this study is to evaluate the effects of regional anesthesia with bupivacaine hydrochloride in memory impairment among patients undergoing elective surgery.

* Corresponding author.
E-mail address: beiranvand.s@lums.ac.ir (S. Beiranvand).

https://doi.org/10.1016/j.amsu.2021.01.034
Received 28 November 2020; Received in revised form 11 January 2021; Accepted 11 January 2021
Available online 20 January 2021
2049-0801/© 2021 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license
2. Methods

This study is a descriptive-analytical study conducted from January 2020–June 2020 where changes in memory was evaluated after spinal anesthesia following first 24 h after elective surgery. Inclusion criteria included patients undergoing elective surgery with any pathology of the lower abdomen and lower extremities requiring spinal anesthesia, male and female patients with age groups of 18–30 years, between 30 to 49 years and 50–65 years, patients with an education level of graduation or higher and those who consented to participate in the study. Exclusion criteria include arrhythmias (affected by spinal anesthesia), hypoxia, hypothermia, hyperthermia, hemodynamic changes more than 30% compared to baseline, need to receive spinal anesthesia more than once (insufficient block), pregnancy, hospitalization in special wards, need of general anesthesia, cognitive or memory problems, Alzheimer’s or dementia, and those who did not consent to participate in the study.

The patients’ memory level was determined 12 h and 24 h after the surgery by a medical intern in the teaching hospitals of (XXX) from 2018 to 2019.

Spinal anesthesia was injected with 0.5 cc of 3% Marcaine (bupivacaine hydrochloride) through an angiocatheter with a 25 gauge into the space between the L3-L4 vertebrae in a single attempt. The patients were monitored after every 3–5 min. Patients received 500CC normal saline solution before the surgery. The temperature of the operation theatre was set between 33 and 38 °C. The study tool was the standard Wechsler questionnaire, which is used as an objective scale for assessing memory, as indicated in previous studies [6].

With this test, in general, it is possible to: 1. Learn and instant recall 2. Concentrate attention 3. Orientation and recall of long-term memory. The Wechsler Memory Scale includes 7 subtests.

1. Personal awareness of everyday and personal issues
2. Awareness of time and place of orientation
3. Mental control
4. Logical memory
5. Repeat forward and reverse digits
6. Visual memory
7. Learning association

Each subtest consists of several questions and are graded according to patients’ response in a particular time frame. By summing the scores of all seven tests and adding a modified standard score that is standardized in the United States, the total score of a person’s memory is obtained (138).

The was computerized and statistically analyzed using SPSSv18. Descriptive statistics such as frequency distribution tables and mean and standard deviation or mean and mid-quarter amplitude were used to present data. For data analysis, tests such as analysis of variance (ANOVA), and one-way ANOVA or longitudinal models such as marginal model were used. P < 0.05 was considered statistically significant.

The research approved by the committee of (XXX). Entry in this study was voluntary and prior to the start of the research, informed written consent was obtained from all the patients.

The work has been reported in line with the STROCSS criteria [13].

3. Results

3.1. Demographic and clinical description

In this study, 105 patients were included where 55 (52.4%) were male and 50 (47.6%) were female. The mean age of the patients was 35.73 ± 10.64 years, Table 1. 60 patients (57.1%) had a diploma. 35 (33.3%) patients underwent uterine dilation and curettage surgery. 49 patients (46.7%) lost anesthetic effects within 4 h after the start of the procedure. 83 patients (79%) received saddle anesthetic block. The mean systolic blood pressure at the preoperatively was 101.12 ± 9.82 mm Hg, which varied between 93.46 ± 8.57 mm Hg as the mean minimum systolic pressure during surgery and 114.46 ± 10.05 mm Hg as the maximum systolic pressure during surgery. The mean diastolic blood pressure before the surgery was 83.42 ± 9.02 mmHg, which was 75.68 ± 9.31 mmHg as the mean minimum intraoperative diastolic pressure and 90.98 ± 10.4 mmHg as the maximum diastolic pressure during the surgery. The mean heart rate of patients at the preoperatively was 80.02 ± 13.09 beats per minute, which ranged from 74.97 ± 12.11 beats per minute as the minimum and 88.54 ± 11.5 beats per minute as the maximum heart rate, intraoperatively.

Table 1

	Mean	Standard deviation	p-value
Personal, public information before the operation	6	0	
Personal, public information after the operation	6	0	
Change public personal information	0	0	
Preoperative orientation	5	0	
Postoperative orientation	5	0	
Orientation change	0	0	
Preoperative mental control	6.59	1.2611	
Postoperative mental control	6.59	1.2611	
Change mental control	0	0	
Preoperative logical memory	17.619	3.9629	<0.001
Postoperative logical memory	18.152	3.2538	
Change logical memory	0.5333	1.05672	
Learn associations before the operation	19.352	5.0739	0.439
Learn associations after the operation	19.457	4.5267	
Changing associative learning	0.1048	1.38101	
Repeat the digits before the operation	9.448	0.9505	0.052
Repeat the digits after the operation	9.571	1.0907	
Change the repetition of digits	0.1238	0.64592	
Preoperative visual memory	12.21	1.3898	0.061
Postoperative visual memory	12.371	1.2879	
Changing visual memory	0.1619	0.87567	
Total preoperative memory	73.848	7.7944	<0.001
Total postoperative memory	75.062	6.7641	
Change the total memory	1.2141	3.08707	

*aStatistically significant difference (0.05 < n = 105).

3.2. Change in memory before and after the surgery

There was no significant difference between the mean memory score in terms of personal and general information, orientation and mental control. Based on the results of paired t-test, there was a statistically significant difference between the average memory scores in the logical memory dimension and the total memory score (P < 0.001). The difference between the scores of associative memories, repetition memory, visual memory before and after the surgery were not significantly different, p = 0.439, p = 0.052 and p = 0.061. Overall, the memory score before and after the surgery were significantly different, p < 0.001 (Table 1).

Evaluation of the score obtained in personal and general information section of the questionnaire with demographic and clinical variables.

We also determined if the variables such as age, gender, level of education, etc. is related to the score obtained in the personal and general information section of the Wechsler questionnaire or not. The difference between the points obtained before and after the surgery in the of personal and general information in relation to all study variables is zero, which means that the ability to answer personal and general questions of the Wechsler questionnaire is not related to the variables studied in this study.

Evaluation of the score obtained in the section of temporal and spatial orientation with demographic and clinical variables.

The difference between these variables (age, gender, education level,
anesthesia recovery time, duration of anesthesia, blood pressure and heart rate) obtained before and after the surgery is zero, showing that the ability to answer questions related to the spatial and temporal orientation with the Wechsler questionnaire is not related to the variables in this study.

Evaluation of the score obtained in the section of mental control with demographic and clinical variables.

The difference between the scores obtained before and after the surgery in the section of mental control in relation to other variables (age, gender, education level, anesthesia recovery time, duration of anesthesia, blood pressure and heart rate) is equal to zero showing that ability to answer the questions related to the mental control using Wechsler questionnaire is not related to the variables studied in this study.

Evaluation of the score obtained in the section of logical memory with demographic and clinical variables.

As seen in Table 2, the changes related to patients’ logical memory scores before the surgery with systolic blood pressure were statistically significant. \(p = 0.030 \). Based on the results of paired \(t \)-test, correlation between patients’ mean memory scores and maximal diastolic blood pressure during the operation was not significant \(p = 0.089 \). Based on the results of paired \(t \)-test, no statistically significant relationship was observed between patients’ mean memory scores and other variables, \(p > 0.05 \).

Evaluation of the score obtained in section of associative learning with demographic and clinical variables.

Based on the results of paired \(t \)-test, the mean scores of associative learning in patients and systolic blood pressure during admission and type of operation were statistically significant \(p = 0.046 \) and \(p = 0.013 \), respectively. Based on the results of paired \(t \)-test, no statistically significant relationship was observed between the mean scores of associative learning in patients and other variables (\(P < 0.05 \), Table 3).

3.3. Evaluation of the score from the repetition memory and demographic and clinical variables

Based on the results of paired \(t \)-test, no statistically significant relationship was found between the mean repetition memory scores of

Table 2
Investigating the changes in the score obtained in the dimension of logical memory by demographic and clinical features.

Age
Third quantile
Second quantile
First quantile
Gender
Male
Female
Education
Undergraduate
Undergraduate
Kind of surgery
Other
Pillow lumbar (PNS)
Perianal abscess
lower limb trauma
Dilatation and curettage (D&C)
Time to leave anesthesia
2h
3h
4h
Level of anesthesia
Saddle anesthesia
vertex T11
vertex T12
Systolic blood pressure threshold upon admission
First quantile
Second quantile
Third quantile
Diastolic blood pressure threshold upon admission
First quantile
Second quantile
Third quantile
Maximum systolic blood pressure during surgery
First quantile
Second quantile
Third quantile
Maximum diastolic blood pressure during surgery
First quantile
Second quantile
Third quantile
Minimal systolic blood pressure during surgery
First quantile
Second quantile
Third quantile
Minimal systolic blood pressure during surgery
First quantile
Second quantile
Third quantile
Heart rate per minute threshold during admission
First quantile
Second quantile
Third quantile
Minimum heart rate during surgery
First quantile
Second quantile
Third quantile
Maximum heart rate during surgery
First quantile
Second quantile
Third quantile

*Statistically significant difference \(0.05 < n = 105 \).
patients’ and other variables (p > 0.05).

3.4. Evaluation of the scores of visual memory and demographic and clinical variables

Based on the results of paired t-test between patients’ mean visual memory scores and other variables were not statistically related, p > 0.05.

3.5. Evaluation of total scores and demographic and clinical variables

Based on the results of paired t-test between the mean total scores obtained in all sections of the questionnaire was significantly related with age, p = 0.041. This association was insignificant for other variables (p > 0.05), Table 4.

3.6. Multivariate modeling and clinical variables

Clinical variables including systolic and diastolic blood pressure during admission, minimum and maximum systolic and diastolic blood pressure during surgery, heart rate per minute at admission and minimum and maximum heart rate per minute during surgery were correlated with each other. Therefore, they are not useable in the multivariate modeling process; a problem known as multicollinearity. To prevent this problem, an exploratory factor analysis was performed on the above variables. In this process, the principal component analysis approach was used for better interpretation of factor loads using Varimax rotation. Two factors were identified where the first and second factor determined about 74.48% of the variance between the variables (the first factor 44.57% and the second factor 29.91%). The first factor was related to systolic and diastolic blood pressure before surgery, heart rate per minute at admission and minimum and maximum systolic and diastolic blood pressure during surgery and the maximum systolic and diastolic blood pressure during surgery were higher. The second factor was related to heart rate per minute before the surgery and perioperative the minimum and maximum heart rate.

Table 3
Investigating the changes in the score obtained in the dimension of learning associations by demographic and clinical features.

	preoperative logical memory	Postoperative logical memory	Logical Memory change	p-value
	Mean Standard deviation	Mean Standard deviation	Mean Standard deviation	
Age				
Third quantile	18.18 5.51	18.6 5.25	0.42 0.69	0.079
Second quantile	20.14 3.48	20.32 3.05	0.18 0.96	
First quantile	19.77 5.9	19.45 4.96	-0.32 2.09	
Gender				
Male	19.47 5.53	19.41 4.94	-0.06 1.66	0.191
Female	19.22 4.57	19.51 4.08	0.29 0.98	
Education				
Undergraduate>	19.34 5.48	19.53 4.99	0.19 0.96	0.304
Undergraduate≤	19.38 3.88	19.26 3.04	-0.12 2.14	
Kind of surgery				
Other	19.98 4.52	20.09 4.19	0.11 0.8	0.013
Pilonidal sinus (PNS)	21.25 4.5	20.39 3.4	-0.86 2.58	
Perianal abscess	17.43 6.89	17.89 6.37	0.46 0.95	
lower limb trauma	20.07 2.35	19.93 2.57	-0.14 0.24	
Dilution and curettage (D&K)	19.1 4.41	19.51 3.99	0.41 0.91	
Time to leave anesthesia				
2h	20.53 4.01	20.66 3.66	0.13 0.79	0.612
3h	19.1 4.16	19.36 3.83	0.26 0.8	
4h	19.17 6.01	19.14 5.27	-0.03 1.84	
Level of anesthesia				
Saddle anesthesia	19.39 5.35	19.5 4.73	0.11 1.53	0.824
vertebra T11	19.74 2.74	19.71 2.88	-0.03 0.41	
vertebra T12	17.5 6.84	17.9 6.08	0.4 0.96	
Systolic blood pressure threshold upon admission	19.11 5.28	19.38 5.11	0.26 0.69	0.046
First quantile	19.13 5.07	19.54 4.53	0.41 0.91	
Second quantile	19.81 4.97	19.46 3.99	-0.36 2.05	
Diastolic blood pressure threshold upon admission	19.9 5.7	19.92 5.1	0.02 2.09	0.836
First quantile	18.9 5.36	18.97 4.69	0.08 1.04	
Second quantile	19.37 4.18	19.59 3.84	0.21 0.87	
Maximum systolic blood pressure during surgery	20.28 4.92	20.57 4.6	0.29 0.8	0.337
First quantile	19.08 5.45	18.92 4.71	-0.17 1.97	
Second quantile	18.64 4.81	18.83 4.12	0.2 1.05	
Maximum diastolic blood pressure during surgery	19.25 5.85	19.38 5.2	0.12 1.97	0.970
First quantile	19.34 5.12	19.4 4.51	0.06 1.12	
Second quantile	19.47 4.21	19.6 3.85	0.13 0.77	
Minimal systolic blood pressure during surgery	18.56 5.66	18.9 5.4	0.34 0.77	0.096
First quantile	19.2 4.38	19.44 3.89	0.24 0.91	
Second quantile	20.5 5.89	20.14 4.32	-0.06 2.4	
Minimal systolic blood pressure during surgery	20.78 5.25	20.13 4.92	0.35 0.76	0.382
First quantile	19.03 5.61	18.91 4.51	-0.12 2.28	
Second quantile	19.2 4.59	19.25 4.19	0.05 0.86	
Heart rate per minute threshold during admission	18.59 4.23	18.98 3.8	0.39 0.9	0.227
First quantile	19.07 4.12	19.89 3.57	-0.17 1.91	
Second quantile	19.29 6.61	19.43 5.98	0.13 0.99	
Minimum heart rate during surgery	18.45 4.3	18.89 3.85	0.44 0.83	0.220
First quantile	19.99 4.12	19.86 3.63	-0.12 1.93	
Second quantile	19.53 6.49	19.56 5.86	0.03 1.04	
Maximum heart rate during surgery	18.89 4.45	19.28 4.05	0.39 0.88	0.183
First quantile	19.41 4.4	19.2 3.83	-0.21 1.96	
Second quantile	19.83 6.4	19.95 5.72	0.13 1.02	

(Statistically significant difference (0.05 < n = 105).
3.7. Multivariate modeling of the relationship between demographic and clinical variables

Based on the analysis of covariance model and by adjusting the effect of other variables, the relationship between patient age group and mean change in the patient’s logical memory score was significant, \(p = 0.002 \). The change in logical memory score in patients in the second decade of age, compared to the first trimester of age, was 0.614 points more on average, \(p = 0.252 \) and \(p = 0.956 \). The relationship between the first and second factors and the mean change in the patient’s logical memory score was not significant, \(p = 0.252 \) and \(p = 0.956 \) (Table 5).

Discussion

Spinal anesthesia is the most common technique used for anesthesia during surgery [14,15]. Spinal anesthesia has many advantages such as patient comfort, elimination of the risks of general anesthesia, and postoperative pain control [16,17]. The aim of this study was to evaluate the memory changes after spinal anesthesia in the first 24 h after elective surgeries. There is a statistically significant difference after logical memory and total memory score following the surgery (\(p < 0.001 \)). No change was observed in the response memory of individuals to their personal and general information, before and after anesthesia. Furthermore, no change was observed in the level of mental control of individuals before and after anesthesia. A statistically significant relationship was found between the mean of patients’ rational memory scores and dilatation and curettage patients, \(p = 0.06 \). Also, the change in logical memory score in patients with pilonidal sinus was 0.292 on average less than uterine dilatation and curettage, \(p = 0.123 \). Also, change in logical memory score in patients undergoing other surgeries requiring spinal anesthesia (obstructive uropathies, fallopian tube ligation, etc.) compared to dilatation and curettage of the uterus was 0.085 less, \(p = 0.633 \). The relationship between the first and second factors and the mean change in the patient’s logical memory score was not significant, \(p = 0.252 \) and \(p = 0.956 \).
The second factor is related to the number of heart beats per minute during surgery. A study by Wu, Hsu [21] evaluated the effects of regional anesthesia on POCD, concluding in a systematic review that general anesthesia is chiefly associated with cognitive impairment. A study by Fathy, Hussein [22] compared the effects of lidocaine and bupivacaine in POCD among patients undergoing elective cataract surgery. The results of the study concluded that both lidocaine and bupivacaine impair verbal memory, attention, and executive function, however, the effects of lidocaine are more severe. Furthermore, it has been reported that these effects are in response to the type of local anesthesia used rather than the type of surgery [23]. Nonetheless, Naghibi, Nazemroaya [24] concluded that lidocaine is preferable regional anesthesia for cataract in terms of POCD as compared to dexamethasone[25].

Table 5
Relationship between demographic and clinical variables on changing the patient’s logical memory score.

Variable	R²	Standard error	P-value
Age	–	–	0.002
Third quantile	0.504	0.1874	0.007
Second quantile	0.614	0.1776	0.001
First quantile	Standard range	–	–
Kind of surgery	–	–	0.095
Other	0.085	0.01773	0.633
Pilonidal sinus (PNS)	0.292	0.1892	0.123
Perianal abscess	0.367	0.1948	0.060
Lower limb trauma	0.268	0.2805	0.340
Dilation and curettage (D&C)	Standard range	–	–
Score the first factor	–	–	0.252
Systolic and diastolic blood pressure during admission	0.125	0.1584	0.431
Minimum systolic and diastolic blood pressure during surgery	0.128	0.154	0.408
Maximum systolic and diastolic blood pressure during surgery	Standard range	–	–
Second factor score	–	–	0.956
Maximum heart rate per minute during surgery	–	–	
Minimum heart rate per minute during surgery	Standard range	–	–
Heart rate per minute during patient admission	–	–	

The first factor associated with systolic and diastolic blood pressure at admission is the minimum systolic blood pressure and intraoperative diastole and maximum systolic and diastolic blood pressure are higher.

***The second factor is related to the number of heart beats per minute during surgery admission and the minimum and maximum number of beats the heart is higher per minute during surgery.

scores and systolic blood pressure before the surgery. A statistically significant relationship was found between the mean associative memory score and systolic blood pressure during admission and the type of surgery. Visual memory was not associated with any variable studied. We also reported that the total memory score was associated with age. A study by Alipour, S et al. [18], reported that regional anesthesia is significantly associated with memory loss, particularly logical and number repeat memory. Araghizadeh et al., conducted a study to evaluate the effects of general and spinal anesthesia on long-term and short-term memory among patients who were candidates for lower limb or lower abdomen surgery. The patients were evaluated 24 h and 3 months following the surgery. The results of this study show a decrease in short-term memory, verbal index, and attention and concentration index following 24 h after the surgery under general anesthesia. No such correlation was reported following spinal anesthesia. Sprung, Schulte [19] reported that, despite the decline in cognitive function is reported with both, regional and general anesthesia, memory decline is only associated with general anesthesia. Similarly, Zywiel, Prabhu [20] also concluded in a systematic review that general anesthesia is chiefly associated with cognitive impairment. A study by Wu, Hsu [21] evaluating the effects of general and spinal anesthesia intraoperative neu- raxial does not decrease the incidence of POCD as compared to general anesthesia.

Fathy, Hussein [22] compared the effects of lidocaine and bupivacaine in POCD among patients undergoing elective cataract surgery. The results of the study concluded that both lidocaine and bupivacaine impair verbal memory, attention, and executive function, however, the effects of lidocaine are more severe. Furthermore, it has been reported that these effects are in response to the type of local anesthesia used rather than the type of surgery [23]. Nonetheless, Naghibi, Nazemroaya [24] concluded that lidocaine is preferable regional anesthesia for cataract in terms of POCD as compared to dexamethasone[25].

5. Conclusion

The results of our study indicate that age and blood pressure can affect memory after spinal anesthesia. Furthermore, several parts of memory like logical memory can show greater alterations. Clinical parameter like blood pressure and type of surgery may predict changes in the memory function after spinal anesthesia.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Ethical approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent to participate

Written consent was obtained from all the participants for the participation in the study.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Funding source

No funding was secured for this study.

Contributors’ statement page

Dr. Sepideh Vahabi: conceptualized and designed the study, drafted the initial manuscript, and reviewed and revised the manuscript.

Dr. Arash Karimi and Dr. Simin Babaei: Designed the data collection instruments, collected data, carried out the initial analyses, and reviewed and revised the manuscript.

Dr. Siavash Beiranvand: Coordinated and supervised data collection, and critically reviewed the manuscript for important intellectual content.

Declaration of competing interest

The authors deny any conflict of interest in any terms or by any
means during the study.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jamsu.2021.01.034.

References

[1] S. Beiranvand, M. Saki, M. Behzadifar, A. Bakhtiari, M. Behzadifar, M. Keshvari, et al., The effect of the Iranian health transformation plan on hospitalization rate: insights from an interrupted time series analysis, BMC Health Serv. Res. 20 (2020) 1-8.

[2] R. Alizadeh, S.-M. Mireskandari, A. Arzanbahi, M.-E. Darabi, R. Padmehr, A. Jafarzadeh, et al., Oral clonidine premedication reduces nausea and vomiting in children after appendectomy, Iran. J. Pediatr. (Persian Ed.) 22 (3) (2012) 399.

[3] S. Vahabi, P. Veiskarami, M. Rouzbahani, S. Lashani, B. Farzan, Cross-sectional study on hearing loss and auditory reaction time before and after spinal anesthesia with marcaine 0.5% in patients undergoing elective surgery, Annals of Medicine and Surgery 60 (2020) 236–240.

[4] N. Davis, M. Lee, A.Y. Lin, L. Lynch, M. Monteleone, L. Falzon, et al., Postoperative cognitive function following general versus regional anesthesia: a systematic review, J. Neurosurg. Anesthesiol. 26 (4) (2014) 369–376, https://doi.org/10.1097/ANA.0000000000000120. PubMed PMID: 25144505.

[5] N. Caza, R. Taha, Y. Qi, G. Blaise, Chapter 26 the effects of surgery and anesthesia on memory and cognition, in: W.S. Sossin, J.-C. Lacaille, V.F. Castellucci, S. Belleville (Eds.), Progress in Brain Research, vol. 169, Elsevier, 2008, pp. 409–422.

[6] G. Stratmann, J. Lee, J.W. Sall, B.H. Lee, R.S. Alvi, J. Shih, et al., Effect of general anesthesia in infancy on long-term recognition memory in humans and rats, Epub 06/09, Neuropsychopharmacology 39 (10) (2014) 2275–2287, https://doi.org/10.1038/npp.2014.134. PubMed PMID: 24910347.

[7] R. Alizadeh, Z.A. Fard, Renal effects of general anesthesia from old to recent studies, J. Cell. Physiol. 234 (10) (2019) 16944–16952.

[8] L. Gui, X. Lei, Z. Zuo, Decrease of glial cell-derived neurotrophic factor contributes to anesthesia-and surgery-induced learning and memory dysfunction in neonatal rats, J. Mol. Med. 95 (4) (2017) 369–379.

[9] G.A. Mashour, S.A. Forman, J.A. Campagna, Mechanisms of general anesthesia: from molecules to mind, Epub 2005/07/15, Best Pract. Res. Clin. Anesthesiol. 19 (3) (2005) 349–364, https://doi.org/10.1016/j.bpa.2005.01.004. PubMed PMID: 16036686.

[10] M. Moradkhani, S. Shabaninia, S. Vahabi, Comparison between ketamine and propofol combined against propofol alone for brachial plexus nerve block in open fixation of forearm fracture: a randomized controlled trial, International Journal of Surgery Open 27 (2020) 136–139.

[11] S. Vahabi, A. Karimi, S. Beiranvand, M. Moradkhani, K. Hassanvand, Comparison of the effect of different dosages of celecoxib on reducing pain after cystocele and rectocele repair surgery, The Open Anesthesia Journal 14 (1) (2020), https://doi.org/10.2147/LRA.S185367.

[12] R. Alizadeh, Z. Aghaie-Fard, Renal impairment and analgesia: from effectiveness to adverse effects, J. Cell. Physiol. 234 (10) (2019) 17205–17211.

[13] R. Agha, A. Abdall-Razak, E. Crowley, N. Dowlat, C. Inouifi, G. Mathew, et al., STROCSS 2019 Guideline: strengthening the reporting of cohort studies in surgery, Int. J. Surg. 72 (2019) 156–165.

[14] S. Beiranvand, A. Karimi, S. Vahabi, A. Amin-Bidokhi, Comparison of the mean minimum dose of bolus oxytocin for proper uterine contraction during cesarean section, Curr. Clin. Pharmacol. 14 (3) (2019) 208–213.

[15] M. Aryafar, R. Bozorgmehr, R. Alizadeh, F. Gholami, A cross-sectional study on monitoring depth of anesthesia using brain function index among elective laparotomy patients, International Journal of Surgery Open 27 (2020) 98–102.

[16] S. Beiranvand, A. Karimi, M.H. Shoar, M.B. Baghdashti, The effects of magnesium sulfate with lidocaine for intracranial brachial plexus block for upper extremity surgeries, J. Brachial Plexus Peripher. Nerve Inj. 15 (1) (2020) e33.

[17] R. Alizadeh, Z. Aghaie-Fard, M. Sadeghi, P. Hassani, P. Saberian, Effects of prehospital traige and diagnosis of ST segment elevation myocardial infarction on mortality rate, Int. J. Gen. Med. 13 (2020) 569–575.

[18] S. Alipour, K. Karvandian, Studying recent memory in patients before and after regional anesthesia, Archives of Anesthesiology and Critical Care 5 (4) (2019) 115–117.

[19] J. Sprung, P.J. Schulte, D.S. Knopman, M.M. Mielke, R.C. Petersen, T. Nevingarten, et al., Cognitive function after surgery with regional or general anesthesia: a population-based study, Alzheimer’s Dementia 15 (10) (2019) 1243–1252, https://doi.org/10.1016/j.jalz.2019.06.4949.

[20] M.G. Zwyzli, A. Prabhu, A.V. Perruccio, R. Gandhi, The influence of anesthesia and pain management on cognitive dysfunction after joint arthroplasty: a systematic review, Epub 2013/11/05, Clin. Orthop. Relat. Res. 472 (5) (2014) 1453–1466, https://doi.org/10.1097/SOR.0000000000001363. PubMed PMID: 24186470; PubMed Central PMCID: PMCPMC3971129.

[21] C.L. Wu, W. Hsu, J.M. Richman, S.N. Raja, Postoperative cognitive function as an outcome of regional anesthesia and analgesia, Regional Anesthesia & Pain Medicine, Anesthesiology & Analgesia 29 (3) (2004), https://doi.org/10.1016/j.janem.2003.11.007, 257-68.

[22] W. Fathy, M. Hussein, H. Khalil, Effect of local anesthesia (with lidocaine vs bupivacaine) on cognitive function in patients undergoing elective cataract surgery, Local Reg. Anesth. 12 (2018) 1–6, https://doi.org/10.2147/TRA.2017.815367. PubMed PMID: 30643450.

[23] W. Fathy, M. Hussein, H. Khalil, Comparative effect of local anesthesia with lidocaine 2% versus topical anesthesia on cognitive function in ophthalmic surgery, e97172-e, Anesthesiol. Pain Med. 9 (6) (2019), https://doi.org/10.5812/apm.2019.05.1364. PubMed PMID: 32280618.

[24] W. Fathy, M. Hussein, H. Khalil, A comparison of the effect of intravenous dexamethasone and lidocaine on prevention of postoperative cognitive disorders in cataract surgery in elderly patients, Journal of Isfahan Medical School 36 (2018) 666–672, https://doi.org/10.22192/jims.36/848/9666.

[25] S. Beiranvand, S. Vahabi, Effect of local ropivacaine on hemodynamic responses in craniotomy patients, J. Invest. Surg. 31 (6) (2018) 464–468.

[26] L. Song, X. Zhang, Y. Zhao, W. Feng, C. Shi, Effect of edaravone on postoperative cognitive function and cerebral oxygen metabolism in elderly patients with spinal surgery, Int. J. Gerontol. 10 (3) (2016) 142–145, https://doi.org/10.1016/j.ijge.2015.10.008.