A CHARACTERIZATION OF THE n-ARY
MANY-SORTED CLOSURE OPERATORS AND A
MANY-SORTED TARSKI IRREDUNDANT BASIS
THEOREM

J. CLIMENT VIDAL AND E. COSME LLÓPEZ

Abstract. A theorem of single-sorted algebra states that, for a
closure space (A, J) and a natural number n, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted
signature Σ and a Σ-algebra A such that every operation of A
is of an arity $\leq n$ and $J = Sg_A$, where Sg_A is the subalgebra
generating operator on A determined by A. On the other hand,
a theorem of Tarski asserts that if J is an n-ary closure operator
on a set A with $n \geq 2$, and if $i < j$ with $i, j \in \text{IrB}(A, J)$, where
$\text{IrB}(A, J)$ is the set of all natural numbers n such that (A, J) has
an irredundant basis (\equiv minimal generating set) of n elements,
such that $\{i + 1, \ldots, j - 1\} \cap \text{IrB}(A, J) = \emptyset$, then $j - i \leq n - 1$.
In this article we state and prove the many-sorted counterparts of
the above theorems. But, we remark, regarding the first one under
an additional condition: the uniformity of the many-sorted closure
operator.

1. Introduction.

A well-known theorem of single-sorted algebra states that, for a
closure space (A, J) and a natural number $n \in \mathbb{N} = \omega$, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted sig-
nature Σ and a Σ-algebra A such that every operation of A
is of an arity $\leq n$ and $J = Sg_A$, where Sg_A is the subalgebra generating operator on A determined by A. On the other hand, in [3], it was stated
that, for an algebraic many-sorted closure operator J on an S-sorted
set A, $J = Sg_A$ for some many-sorted signature Σ and some Σ-algebra A if, and only if, J is uniform. And, by using, among others, the just
mentioned result, our first main result is the following characterization
of the n-ary many-sorted closure operators: Let S be a set of sorts, A
an S-sorted set, J a many-sorted closure operator on A, and $n \in \mathbb{N}$.
Then J is n-ary and uniform if, and only if, there exists an S-sorted

signature Σ and a Σ-algebra A such that $J = \text{Sg}_A$ and every operation of A is of an arity $\leq n$.

We turn next to Tarski’s irredundant basis theorem for single-sorted closure spaces. But before doing that let us begin by recalling the terminology relevant to the case. Given an $n \in \mathbb{N}$, a set A, and a closure operator J on A, the closure operator J is said to be an n-ary closure operator on A if $J = J_{\leq n}^n$, where $J_{\leq n}^n$ is the supremum of the family $(J_{\leq n}^m)_{m \in \omega}$ of operators on A defined by recursion as follows: for $m = 0$, $J_{\leq n}^0 = \text{Id}_{\text{Sub}(A)}$; for $m = k + 1$, with $k \geq 0$, $J_{\leq n}^{k+1}(X) = J_{\leq n} \circ J_{\leq n}^k$, where $J_{\leq n}$ is the operator on A defined, for every $X \subseteq A$, as follows:

$$J_{\leq n}(X) = \bigcup \{J(Y) \mid Y \in \text{Sub}_{\leq n}(X)\},$$

where $\text{Sub}_{\leq n}(X)$ is $\{Y \subseteq X \mid \text{card}(Y) \leq n\}$.

Alfred Tarski in [3], on pp. 190–191, proved, as reformulated by S. Burris and H. P. Sankappanavar in [2], on pp. 33–34, the following theorem. Given a set A and an n-ary closure operator J on A with $n \geq 2$, for every $i, j \in \text{IrB}(A, J)$, where $\text{IrB}(A, J)$ is the set of all natural numbers n such that (A, J) has an irredundant basis (\equiv minimal generating set) of n elements, if $i < j$ and $\{i+1, \ldots, j-1\} \cap \text{IrB}(A, J) = \emptyset$, then $j - i \leq n - 1$. Thus, as stated by Burris and Sankappanavar in [2], on p. 33, the length of the finite gaps in $\text{IrB}(A, J)$ is bounded by $n - 2$ if J is an n-ary closure operator. And our second main result is the proof of Tarski’s irredundant basis theorem for many-sorted closure spaces.

2. MANY-SORTED SETS, MANY-SORTED CLOSURE OPERATORS, AND MANY-SORTED ALGEBRAS.

In this section, for a set of sorts S in a fixed Grothendieck universe \mathcal{U}, we begin by recalling some basic notions of the theory of S-sorted sets, e.g., those of subset of an S-sorted set, of proper subset of an S-sorted set, of delta of Kronecker, of cardinal of an S-sorted set, and of support of an S-sorted set; and by defining, for an S-sorted set A, the concepts of many-sorted closure operator on A and of many-sorted closure space. Moreover, for a many-sorted closure operator J on A, we define the notions of irredundant or independent part of A with respect to J, of basis or generator of A with respect to J, of irredundant basis of A with respect to J, and of minimal basis of A with respect to J. In addition, we state that the notion of irredundant basis of A with respect to J is equivalent to the notion of minimal basis of A with respect to J and, afterwards, for a many-sorted closure space (A, J), we define the subset $\text{IrB}(A, J)$ of \mathbb{N} as being formed by choosing those natural numbers which are the cardinal of an irredundant basis of A with respect to J. On the other hand, for a natural number n, we define the concept of n-ary many-sorted closure operator on A and provide a
characterization of the \(n\)-ary many-sorted closure operators \(J\) on \(A\), in terms of the fixed points of \(J\). Besides, for a set of sorts \(S\), we define the concept of \(S\)-sorted signature, and, for an \(S\)-sorted signature \(\Sigma\), the notion of \(\Sigma\)-algebra and, for a \(\Sigma\)-algebra \(A\), the concept of subalgebra of \(A\) and the subalgebra generating many-sorted operator \(\text{Sg}_A\) on \(A\) determined by \(A\). Subsequently, once defined the notion of finitely generated \(\Sigma\)-algebra, we state that, for a finitely generated \(\Sigma\)-algebra \(A\), \(\text{IrB}(A, \text{Sg}_A) \neq \emptyset\).

Definition 2.1. An \(S\)-sorted set is a function \(A = (A_s)_{s \in S}\) from \(S\) to \(U\).

Definition 2.2. Let \(S\) be a set of sorts. If \(A\) and \(B\) are \(S\)-sorted sets, then we will say that \(A\) is a subset of \(B\), denoted by \(A \subseteq B\), if, for every \(s \in S\), \(A_s \subseteq B_s\), and that \(A\) is a proper subset of \(B\), denoted by \(A \subset B\), if \(A \subseteq B\) and, for some \(s \in S\), \(B_s - A_s \neq \emptyset\). We denote by \(\text{Sub}(A)\) the set of all \(S\)-sorted sets \(X\) such that \(X \subseteq A\).

Definition 2.3. Given a sort \(t \in S\) and a set \(X\) we call **delta of Kronecker** for \((t, X)\) the \(S\)-sorted set \(\delta^{t,x}\) defined, for every \(s \in S\), as follows:

\[
\delta^{t,x}_s = \begin{cases} X, & \text{if } s = t; \\
\emptyset, & \text{otherwise.} \end{cases}
\]

For a final set \(\{x\}\), to abbreviate, we will write \(\delta^{t,x}\) instead of the more accurate \(\delta^{t,\{x\}}\).

We next define, for a set of sorts \(S\), the concept of cardinal of an \(S\)-sorted set, for an \(S\)-sorted set \(A\), the notion of support of \(A\), and characterize the finite \(S\)-sorted sets in terms of its supports.

Definition 2.4. Let \(A\) be an \(S\)-sorted set. Then the **cardinal** of \(A\), denoted by \(\text{card}(A)\), is the cardinal of \(\coprod A\), where \(\coprod A\), the coproduct of \(A = (A_s)_{s \in S}\), is \(\bigcup_{s \in S}(A_s \times \{s\})\). Moreover, \(\text{Sub}_{\text{fin}}(A)\) denotes the set of all finite subsets of \(A\), i.e., the set \(\{X \subseteq A \mid \text{card}(X) < \aleph_0\}\), and, for a natural number \(n\), \(\text{Sub}_{\leq n}(A)\) denotes the set of all subsets of \(A\) with at most \(n\) elements, i.e., the set \(\{X \subseteq A \mid \text{card}(X) \leq n\}\). Sometimes, for simplicity of notation, we write \(X \subseteq_{\text{fin}} A\) instead of \(X \in \text{Sub}_{\text{fin}}(A)\).

Definition 2.5. Let \(S\) be a set of sorts. Then the **support** of \(A\), denoted by \(\text{supp}_S(A)\), is the set \(\{s \in S \mid A_s \neq \emptyset\}\).

Proposition 2.6. An \(S\)-sorted set \(A\) is finite if, and only if, \(\text{supp}_S(A)\) is finite and, for every \(s \in \text{supp}_S(A)\), \(\text{card}(A_s) < \aleph_0\).

Definition 2.7. Let \(S\) be a set of sorts and \(A\) an \(S\)-sorted set. A **many-sorted closure operator** on \(A\) is a mapping \(J\) from \(\text{Sub}(A)\) to \(\text{Sub}(A)\), which assigns to every \(X \subseteq A\) its \(J\)-closure \(J(X)\), such that, for every \(X, Y \subseteq A\), satisfies the following conditions:

1. \(X \subseteq J(X)\), i.e., \(J\) is extensive.
(2) If \(X \subseteq Y \), then \(J(X) \subseteq J(Y) \), i.e., \(J \) is isotone.

(3) \(J(J(X)) = J(X) \), i.e., \(J \) is idempotent.

Given two many-sorted closure operators \(J \) and \(K \) on \(A \), \(J \) is called \textit{smaller than} \(K \), denoted by \(J \leq K \), if, for every \(X \subseteq A \), \(J(A) \subseteq K(A) \).

A \textit{many-sorted closure space} is an ordered pair \((A, J)\) where \(A \) is an \(S \)-sorted set and \(J \) a many-sorted closure operator on \(A \). Moreover, if \(X \subseteq A \), then \(X \) is \textit{irredundant} (or \textit{independent}) with respect to \(J \) if, for every \(s \in S \) and every \(x \in X_s \), \(x \notin J(X - \delta^s_x) \), \(X \) is a \textit{basis} (or a \textit{generator}) with respect to \(J \) if \(J(X) = A \), \(X \) is an \textit{irredundant basis} with respect to \(J \) if \(X \) irredundant and a basis with respect to \(J \), and \(X \) is a \textit{minimal basis} with respect to \(J \) if \(J(X) = A \) and, for every \(Y \subset X \), \(J(Y) \neq A \).

We next state that the notion of irredundant basis of \(A \) with respect to \(J \) is equivalent to the notion of minimal basis of \(A \) with respect to \(J \). Moreover, for a many-sorted closure space \((A, J)\), we define \(\text{IrB}(A, J) \) as the intersection of the set of all natural numbers and the set of the cardinals of the irredundant basis of \(A \) with respect to \(J \).

Proposition 2.8. Let \((A, J)\) be a many-sorted closure space and \(X \subseteq A \). Then \(X \) is an irredundant basis with respect to \(J \) if, and only if, it is a minimal basis with respect to \(J \).

Definition 2.9. Let \(S \) be a set of sorts and \((A, J)\) a many-sorted closure space. Then we denote by \(\text{IrB}(A, J) \) the subset of \(\mathbb{N} \) defined as follows:

\[
\text{IrB}(A, J) = \mathbb{N} \cap \left\{ \text{card}(X) \left| \begin{array}{l}
X \text{ is an irredundant basis} \\
\text{of } A \text{ with respect to } J
\end{array} \right. \right\}.
\]

Later, in this section, after having defined, for a set of sorts \(S \) and an \(S \)-sorted signature \(\Sigma \), the concept of \(\Sigma \)-algebra, for a \(\Sigma \)-algebra \(A = (A, F) \), the uniform algebraic many-sorted closure operator \(S_gA \) on \(A \), called the subalgebra generating many-sorted operator on \(A \) determined by \(A \), and the notion of finitely generated \(\Sigma \)-algebra, we will state that, for a finitely generated \(\Sigma \)-algebra \(A \), \(\text{IrB}(A, S_gA) \neq \emptyset \).

Definition 2.10. Let \(A \) be an \(S \)-sorted set, \(J \) a many-sorted closure operator on \(A \), and \(n \) a natural number.

(1) We denote by \(J_{\leq n} \) the many-sorted operator on \(A \) defined, for every \(X \subseteq A \), as follows:

\[
J_{\leq n}(X) = \bigcup \{J(Y) \mid Y \in \text{Sub}_{\leq n}(X)\}.
\]

(2) We define the family \((J_{\leq n}^m)_{m \in \mathbb{N}}\) of many-sorted operator on \(A \), recursively, as follows:

\[
J_{\leq n}^m = \begin{cases}
\text{Id}_{\text{Sub}(A)}, & \text{if } m = 0; \\
J_{\leq n} \circ J_{\leq n}^k, & \text{if } m = k + 1, \text{ with } k \geq 0.
\end{cases}
\]
(3) We denote by $J_{\leq n}^S$ the many-sorted operator on A that assigns to an S-sorted subset X of A, $J_{\leq n}^S(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^m(X)$.

(4) We say that J is n-ary if $J = J_{\leq n}^S$.

Remark. Let J be a many-sorted closure operator on A. Then J is 0-ary, i.e., $J = J_{\leq 0}^S$, if and only if, for every $X \subseteq A$, we have that

$$J(X) = X \cup J(\emptyset^S),$$

where \emptyset^S is the S-sorted set whose sth coordinate, for every $s \in S$, is \emptyset.

We next prove that J is 1-ary, i.e., that $J = J_{\leq 1}^S$, if and only if, for every $X \subseteq A$, we have that

$$J(X) = J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Let us suppose that, for every $X \subseteq A$, $J(X) = J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$.

Then it is obvious that, for every $X \subseteq A$, $J(X) \subseteq J_{\leq 1}(X)$. Let us verify that, for every $X \subseteq A$, $J_{\leq 1}(X) = \bigcup \{J(Y) \mid Y \in \text{Sub}_{\leq 1}(X)\} \subseteq J(X)$. Let Y be an element of Sub$_{\leq 1}(X)$. Then $Y = \emptyset^S$ or $Y = \delta^{t,a}$, for some $t \in S$ and some $a \in X_t$. If $Y = \emptyset^S$, then

$$J(\emptyset^S) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).$$

If $Y = \delta^{t,a}$, then $J(\delta^{t,a}) \subseteq \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$, hence

$$J(\delta^{t,a}) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).$$

Thus $J_{\leq 1}(X) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X)$. Therefore $J = J_{\leq 1}$.

Hence, for every $m \geq 1$, $J = J_{\leq m}^S$. Consequently J is 1-ary.

Reciprocally, let us suppose that J is 1-ary, i.e., that, for every $X \subseteq A$, $J(X) = \bigcup_{m \in \mathbb{N}} J_{\leq 1}^m(X)$. Then, obviously, we have that

$$J(X) \supseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Let us verify that, for every $m \in \mathbb{N}$, $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq m}^1(X)$. Evidently $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^0(X) \cup J_{\leq 1}^1(X)$. Let k be ≥ 1 and let us suppose that $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq k}^1(X)$.

We will show that $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq k+1}^1(X)$. By definition we have that

$$J_{\leq k+1}^1(X) = J_{\leq 1}(J_{\leq k+1}^1(X)) = \bigcup \{J(Z) \mid Z \in \text{Sub}_{\leq 1}(J_{\leq k+1}^1(X))\}.$$

Let Z be an element of Sub$_{\leq 1}(J_{\leq k+1}^1(X))$. Then $Z \subseteq J_{\leq k+1}^1(X)$. But we have that $J_{\leq 1}^k(X) = \bigcup \{J(Y) \mid Y \in \text{Sub}_{\leq 1}(J_{\leq k+1}^1(X))\}$. Therefore, for some $Y \in \text{Sub}_{\leq 1}(J_{\leq k+1}^1(X))$, $Z \subseteq J(Y)$. Thus $J(Z) \subseteq J(J(Y)) = J(Y)$. But $J(Y) \subseteq J_{\leq k+1}^1(X)$. Consequently $J(Z) \subseteq J_{\leq k+1}^1(X)$. Whence, by the induction hypothesis, $J(Z) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$. From this, since Z was an arbitrary element of Sub$_{\leq 1}(J_{\leq k+1}^1(X))$, we infer that

$$J_{\leq k+1}^1(X) = \bigcup \{J(Z) \mid Z \in \text{Sub}_{\leq 1}(J_{\leq k+1}^1(X))\} \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$
Thus, for every $X \subseteq A$, we have that
\[J(X) = J(\emptyset^S) \cup \bigcup_{s,x \in X} J(\delta^s_x). \]

Remark. Let n be ≥ 1, A an S-sorted set, $X \subseteq A$, and J a many-sorted closure operator on A. Then, for every $k \geq 0$ and every $Y \subseteq A$, if $Y \in \text{Sub}_{\leq_n}(J^{k}_{\leq_n}(X))$, then $Y \in \text{Sub}_{\leq_n}(J^{k+1}_{\leq_n}(X))$.

We next state, for a natural number $n \geq 1$ and a many-sorted closure operator J on an S-sorted set A, that the family of many-sorted operators $(J^{m}_{\leq_n})_{m \in \mathbb{N}}$ on A is an ascending chain and that $J^{\omega}_{\leq_n}$, which is the supremum of the above family, is the greatest n-ary many-sorted closure operator on A which is smaller than J.

Proposition 2.11. For a natural number $n \geq 1$, an S-sorted set A, and a many-sorted closure operator J on A, the family of many-sorted operators $(J^{m}_{\leq_n})_{m \in \mathbb{N}}$ on A is an ascending chain, i.e., for every $m \in \mathbb{N}$, $J^{m}_{\leq_n} \leq J^{m+1}_{\leq_n}$. Moreover, $J^{\omega}_{\leq_n}$ is the greatest n-ary many-sorted closure operator on A such that $J^{\omega}_{\leq_n} \leq J$.

We next provide a characterization of the n-ary many-sorted closure operators J on an S-sorted set A in terms of the fixed points X of J and of its relationships with the J-closures of the subsets of X with at most n elements.

Proposition 2.12. Let A be an S-sorted set, J a many-sorted closure operator on A, and n a natural number. Then J is n-ary if, and only if, for every $X \subseteq A$, if, for every $Z \in \text{Sub}_{\leq_n}(X)$, $J(Z) \subseteq X$, then $J(X) = X$ (i.e., if, and only if, for every $X \subseteq A$, X is a fixed point of J if X contains the J-closure of each of its subsets with at most n elements).

Proof. If $n = 0$, then the result is obvious. So let us consider the case when $n \geq 1$. Let us suppose that J is n-ary and let X be a subset of A such that, for every $Z \in \text{Sub}_{\leq_n}(X)$, $J(Z) \subseteq X$. We want to show that $J(X) = X$. Because J is extensive, $X \subseteq J(X)$. Therefore it only remains to show that $J(X) \subseteq X$. Since, by hypothesis, $J(X) = \bigcup_{m \in \mathbb{N}} J^{m}_{\leq_n}(X)$, to show that $J(X) \subseteq X$ it suffices to prove that, for every $m \in \mathbb{N}$, $J^{m}_{\leq_n}(X) \subseteq X$.

For $m = 0$ we have that $J^{0}_{\leq_n}(X) = X \subseteq X$.

Let us suppose that, for $k \geq 0$, $J^{k}_{\leq_n}(X) \subseteq X$. Then we want to show that $J^{k+1}_{\leq_n}(X) \subseteq X$. But, by definition, we have that
\[J^{k+1}_{\leq_n}(X) = J_{\leq_n}(J^{k}_{\leq_n}(X)) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq_n}(J^{k}_{\leq_n}(X)) \}. \]

Hence what we have to prove is that, for every $Y \in \text{Sub}_{\leq_n}(J^{k}_{\leq_n}(X))$, $J(Y) \subseteq X$. Let Y be a subset of $J^{k}_{\leq_n}(X)$ such that $\text{card}(Y) \leq n$. Since $J^{k}_{\leq_n}(X) \subseteq X$, we have that $Y \subseteq X$ and $\text{card}(Y) \leq n$, therefore $J(Y) \subseteq X$. Consequently, for every $X \subseteq A$, if, for every $Z \in \text{Sub}_{\leq_n}(X)$, $J(Z) \subseteq X$, then $J(X) = X$.

Reciprocally, let us suppose that, for every $X \subseteq A$, if for every $Z \in \text{Sub}_{\leq n}(X)$, $J(Z) \subseteq X$, then $J(X) = X$. We want to show that J is n-ary, i.e., that $J = J_{\leq n}$. Let X a subset of A. Then it is obvious that $J_{\leq n}(X) = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(X) \subseteq J(X)$. We now proceed to prove that $J(X) \subseteq J_{\leq n}(X)$. Since J is isotone and, by the definition of $J_{\leq n}$, $X \subseteq J_{\leq n}(X)$, we have that $J(X) \subseteq J(J_{\leq n}(X))$. Therefore to prove that $J(X) \subseteq J_{\leq n}(X)$ it suffices to prove that $J(J_{\leq n}(X)) = J_{\leq n}(X)$. But the just stated equation follows from the supposition because, as we will prove next, for every $Z \in \text{Sub}_{\leq n}(J_{\leq n}(X))$, we have that $J(Z) \subseteq J_{\leq n}(X)$. Let Z be a subset of $J_{\leq n}(X)$ such that $\text{card}(Z) \leq n$. Then, for some $\ell \in \mathbb{N}$, $\text{supp}_S(Z) = \{s_0, \ldots, s_{\ell-1}\}$ and, for every $\alpha \in \ell$, there exists an $n_\alpha \in \mathbb{N} - 1$ such that $Z_{s_\alpha} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_\alpha-1}\}$. Therefore, for every $\alpha \in \ell$ and for every $\beta \in n_\alpha$ there exists an $m_{\alpha,\beta} \in \mathbb{N}$ such that $z_{\alpha,\beta} \in J_{\leq n}(X)_{s_\alpha}$. Since it may be helpful for the sake of understanding, let us represent the situation just described by the following figure:

\[
\begin{array}{cccc}
\vdots & \vdots & \vdots \\
\cdots & \cdots & \cdots \\
z_{0,0} & z_{0,1} & \cdots & z_{0,n_0-1} \\
\vdots & \vdots & \vdots & \vdots \\
z_{\ell-1,0} & z_{\ell-1,1} & \cdots & z_{\ell-1,n_{\ell-1}-1} \\
\end{array}
\]

Hence, for every $\alpha \in \ell$ there exists a $\beta_\alpha \in n_\alpha$ such that $Z_{s_\alpha} \subseteq J_{\leq n}(X)_{s_\alpha}$. On the other hand, since the family of many-sorted operators $(J^m_{\leq n} \mid m \in \mathbb{N})$ on A is an ascending chain, there exists an m in the set $\{m_{\alpha,\beta} \mid \alpha \in \ell\}$ such that, for every $\alpha \in \ell$, $J_{\leq n}(X)_{s_\alpha} \subseteq J^m_{\leq n}(X)$. Thus $Z \subseteq J^m_{\leq n}(X)$. Therefore, since, in addition, $\text{card}(Z) \leq n$, we have that $Z \in \text{Sub}_{\leq n}(J^m_{\leq n}(X))$. Thus

\[
J(Z) \subseteq J^m_{\leq n}(X) = J_{\leq n}(J^m_{\leq n}(X)) = \bigcup \{J(K) \mid K \in \text{Sub}_{\leq n}(J^m_{\leq n}(X))\}
\]

Consequently $J(Z) \subseteq J^\omega_{\leq n}(X)$. Hence $J(X) \subseteq J^\omega_{\leq n}(X)$. Whence $J = J_{\leq n}^\omega$, which completes the proof.

We next recall the notion of free monoid on a set and, for a set of sorts S, we define, by using the the just mentioned notion, the concept of S-sorted signature and, for an S-sorted signature Σ, the concept of Σ-algebra.

Definition 2.13. Let S be a set of sorts. The free monoid on S, denoted by S^*, is (S^*, λ, λ), where S^*, the set of all words on S, is $\bigcup_{n \in \mathbb{N}} \text{Hom}(n, S)$, the set of all mappings $w: n \longrightarrow S$ from some $n \in \mathbb{N}$ to S, λ, the concatenation of words on S, is the binary operation on S^* which sends a pair of words (w, v) on S to the mapping $w \lambda v$ from $|w| + |v|$ to S, where $|w|$ and $|v|$ are the lengths (\equiv domains) of the
and an S-sorted closure operator on A to the set Σ of the formal operations of arity w, sort (or coarity) s, and rank (or biarity) (w, s).

Definition 2.14. Let S be a set of sorts. Then an S-sorted signature is a function Σ from $S^\ast \times S$ to U which sends a pair $(w, s) \in S^\ast \times S$ to the set $\Sigma_{w, s}$ of the formal operations of arity w, sort (or coarity) s, and rank (or biarity) (w, s).

Definition 2.15. Let Σ be an S-sorted signature and A an S-sorted set. The $S^\ast \times S$-sorted set of the finitary operations on A is the family $(\text{Hom}(A_w, A_s))_{(w, s) \in S^\ast \times S}$, where, for every $w \in S^\ast$, $A_w = \prod_{i \in |w|} A_{w_i}$. A structure of Σ-algebra on A is an $S^\ast \times S$-mapping $F = (F_{w, s})_{(w, s) \in S^\ast \times S}$ from Σ to $(\text{Hom}(A_w, A_s))_{(w, s) \in S^\ast \times S}$. For a pair $(w, s) \in S^\ast \times S$ and a formal operation $\sigma \in \Sigma_{w, s}$, in order to simplify the notation, the operation from A_w to A_s corresponding to σ under $F_{w, s}$ will be written as F_σ instead of $F_{w, s}(\sigma)$. A Σ-algebra is a pair (A, F), abbreviated to A, where A is an S-sorted set and F a structure of Σ-algebra on A.

Since it will be used afterwards, we next define, for a set of sorts S and an S-sorted set A, the notions of algebraic and of uniform many-sorted closure operator on A.

Definition 2.16. A many-sorted closure operator J on an S-sorted set A is algebraic if, for every $X \subseteq A$, $J(X) = \bigcup_{K \subseteq \text{fin}} X J(K)$, and is uniform if, for every $X, Y \subseteq A$, if $\text{supp}_S(X) = \text{supp}_S(Y)$, then $\text{supp}_S(J(X)) = \text{supp}_S(J(Y))$.

We next prove that, for a many-sorted closure operator, the property of being n-ary is stronger than that of being algebraic.

Proposition 2.17. Let n be a natural number. If a many-sorted closure operator J on an S-sorted set A is n-ary, then J is an algebraic many-sorted closure operator on A.

Proof. Let J be an n-ary many-sorted closure operator on an S-sorted set A and let X be a subset of A. Then, obviously, $\bigcup_{K \subseteq \text{fin}} X J(K) \subseteq J(X)$. Since $J(X) = J_{\leq n}(X) = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(X)$, to prove that $J(X) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$ it suffices to prove that, for every $m \in \mathbb{N}$, $J^m_{\leq n}(X) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$.

For $m = 0$, since $J^0_{\leq n}(X) = X$, we have that $J^0_{\leq n}(X) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$.

Let m be $k + 1$ with $k \geq 0$ and let us suppose that $J^k_{\leq n}(X) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$. We want to prove that $J^{k+1}_{\leq n}(X) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$.

However, by definition, $J^{k+1}_{\leq n}(X) = \bigcup\{J(Z) \mid Z \in \text{Sub}_{\leq n}(J^k_{\leq n}(X))\}$. Thus it suffices to prove that, for every $Z \in \text{Sub}_{\leq n}(J^k_{\leq n}(X))$, $J(Z) \subseteq \bigcup_{K \subseteq \text{fin}} X J(K)$.
Let Z be a subset of $J_{\leq n}(X)$ such that $\text{card}(Z) \leq n$. Then, since, by the induction hypothesis, $J_{\leq n}(X) \subseteq \bigcup_{K \subseteq \text{fin}X} J(K)$, we have that $Z \subseteq \bigcup_{K \subseteq \text{fin}X} J(K)$ and, in addition, that $\text{card}(Z) \leq n$. Hence, for some $\ell \in \mathbb{N}$, $\text{supp}(Z) = \{s_0, \ldots, s_{\ell-1}\}$ and, for every $\alpha \in \ell$, there exists an $n_\alpha \in \mathbb{N} - 1$ such that $Z_{s_\alpha} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_\alpha-1}\}$. Therefore, for every $\alpha \in \ell$ and every $\beta \in n_\alpha$ there exists a $K^{\alpha,\beta} \subseteq \text{fin}X$ such that $z_{\alpha,\beta} \in J(K^{\alpha,\beta})_{s_\alpha}$. Since it may be helpful for the sake of understanding, let us represent the situation just described by the following figure:

\[
\begin{array}{cccc}
 z_{0,0} \in J(K^{0,0})_{s_0} & \cdots & z_{0,n_0-1} \in J(K^{0,n_0-1})_{s_0} \\
 \vdots & \ddots & \vdots \\
 z_{\ell-1,0} \in J(K^{\ell-1,0})_{s_{\ell-1}} & \cdots & z_{\ell-1,n_{\ell-1}-1} \in J(K^{\ell-1,n_{\ell-1}-1})_{s_{\ell-1}}
\end{array}
\]

Then, for every $\alpha \in \ell$, $Z_{s_\alpha} \subseteq J(\bigcup_\beta K^{\alpha,\beta})_{s_\alpha}$, where $\bigcup_\beta K^{\alpha,\beta} \subseteq \text{fin}X$. So, for $L = \bigcup_{\alpha,\beta} K^{\alpha,\beta}$, we have that $L \subseteq \text{fin}X$ and $Z \subseteq J(L)$. Therefore $J(Z) \subseteq J(J(L)) = J(L) \subseteq \bigcup_{K \subseteq \text{fin}X} J(K)$.

We next define when a subset X of the underlying S-sorted set A of a Σ-algebra A is closed under an operation F_σ of A, as well as when X is a subalgebra of A.

Definition 2.18. Let A be a Σ-algebra and $X \subseteq A$. Let σ be a formal operation in $\Sigma_{w,s}$. We say that X is closed under the operation $F_\sigma: A_w \longrightarrow A_s$ if, for every $a \in X_w$, $F_\sigma(a) \in X_s$. We say that X is a subalgebra of A if X is closed under the operations of A. We denote by $\text{Sub}(A)$ the set of all subalgebras of A (which is an algebraic closure system on A).

Definition 2.19. Let A be a Σ-algebra. Then we denote by Sg_A, the many-sorted closure operator on A defined as follows:

\[
\text{Sg}_A \begin{cases}
 \text{Sub}(A) \longrightarrow \text{Sub}(A) \\
 X \longmapsto \bigcap \{C \in \text{Sub}(A) \mid X \subseteq C\}.
\end{cases}
\]

We call Sg_A the subalgebra generating many-sorted operator on A determined by A. For every $X \subseteq A$, we call $\text{Sg}_A(X)$ the subalgebra of A generated by X. Moreover, if $X \subseteq A$ is such that $\text{Sg}_A(X) = A$, then we say that X is an S-sorted set of generators of A, or that X generates A. Besides, we say that A is finitely generated if there exists an S-sorted subset X of A such that X generates A and card(X) $< \aleph_0$.

Proposition 2.20. Let A be a Σ-algebra. Then the many-sorted closure operator Sg_A on A is algebraic, i.e., for every S-sorted subset X of A, $\text{Sg}_A(X) = \bigcup_{K \subseteq \text{fin}X} \text{Sg}_A(K)$.

For a Σ-algebra A we next provide another, more constructive, description of the algebraic many-sorted closure operator Sg_A, which, in addition, will allow us to state a crucial property of Sg_A. Specifically, that Sg_A is uniform.
Definition 2.21. Let Σ be an S-sorted signature and A a Σ-algebra.

1. We denote by E_A the many-sorted operator on A that assigns to an S-sorted subset X of A, $E_A(X) = X \cup \left(\bigcup_{\sigma \in \Sigma \cdot s, s \in S} F_{\sigma}[X_{\text{ar}(\sigma)}] \right)_{s \in S}$, where, for $s \in S$, $\Sigma \cdot s$ is the set of all many-sorted formal operations σ such that the coarity of σ is s and for $\text{ar}(\sigma) = w \in S^*$, the arity of σ, $X_{\text{ar}(\sigma)} = \prod_{i \in |w|} X_{w_i}$.

2. If $X \subseteq A$, then we define the family $(E_n^A(X))_{n \in \mathbb{N}}$ in Sub(A), recursively, as follows:

\[
E_0^A(X) = X, \\
E_n^A(X) = E_A(E_n^A(X)), \quad n \geq 0.
\]

3. We denote by E^ω_A the many-sorted operator on A that assigns to an S-sorted subset X of A, $E^\omega_A(X) = \bigcup_{n \in \mathbb{N}} E_n^A(X)$.

Proposition 2.22. Let A be a Σ-algebra and $X \subseteq A$, then $Sg_A(X) = E^\omega_A(X)$.

In [3], on pp. 82, we stated the following proposition (there called Proposition 2.7).

Proposition 2.23. Let A be a Σ-algebra and $X, Y \subseteq A$. Then we have that

1. If $\text{supp}_S(X) = \text{supp}_S(Y)$, then, for every $n \in \mathbb{N}$, $\text{supp}_S(E_n^A(X)) = \text{supp}_S(E_n^A(Y))$.
2. $\text{supp}_S(Sg_A(X)) = \bigcup_{n \in \mathbb{N}} \text{supp}_S(E_n^A(X))$.
3. If $\text{supp}_S(X) = \text{supp}_S(Y)$, then $\text{supp}_S(Sg_A(X)) = \text{supp}_S(Sg_A(Y))$.

Therefore the algebraic many-sorted closure operator Sg_A is uniform.

Proposition 2.24. If A is a finitely generated Σ-algebra, then every S-sorted set of generators of A contains a finite S-sorted subset which also generates A.

Corollary 2.25. If A is a finitely generated Σ-algebra, then we have that $\text{IrB}(A, Sg_A)$ is not empty.

3. A characterization of the n-ary many-sorted closure operators.

A theorem of Birkhoff-Frink (see [1]) asserts that every algebraic closure operator on an ordinary set arises, from some algebraic structure on the set, as the corresponding generated subalgebra operator. However, for many-sorted sets such a theorem is not longer true without qualification. In [3], on pp. 83–84, Theorem 3.1 and Corollary 3.2, we characterized the corresponding many-sorted closure operators as precisely the uniform algebraic operators. We next recall the just mentioned characterization since it will be applied afterwards to provide
a characterization of the \(n \)-ary many-sorted closure operators on an \(S \)-sorted set.

Let us notice that in what follows, for a word \(w : |w| \to S \) on \(S \), with \(|w|\) the length of \(w \), and an \(s \in S \), we denote by \(w^{-1}[s] \) the set \(\{ i \in |w| \mid w(i) = s \} \), and by \text{Im}(w) \) the set \(\{ w(i) \mid i \in |w| \} \).

Theorem 3.1. Let \(J \) be an algebraic many-sorted closure operator on an \(S \)-sorted set \(A \). If \(J \) is uniform, then \(J = Sg_{\mathbf{A}} \) for some \(S \)-sorted signature \(\Sigma \) and some \(\Sigma \)-algebra \(\mathbf{A} \).

Proof. Let \(\Sigma = (\Sigma_{w,s})_{(w,s) \in S^* \times S} \) be the \(S \)-sorted signature defined, for every \((w,s) \in S^* \times S\), as follows:

\[
\Sigma_{w,s} = \{ (X, b) \in \bigcup_{X \in \text{Sub}(A)} \{ X \} \times J(X)_s \mid \forall t \in S (\text{card}(X_t) = |w|_t) \},
\]

where for a sort \(s \in S \) and a word \(w : |w| \to S \) on \(S \), with \(|w|\) the length of \(w \), the number of occurrences of \(s \) in \(w \), denoted by \(|w|_s\), is \(\text{card}(w^{-1}[s]) \).

Before proceeding any further, let us remark that, for \((w,s) \in S^* \times S\) and \((X, b) \in \bigcup_{X \in \text{Sub}(A)} \{ X \} \times J(X)_s\), the following conditions are equivalent:

1. \((X, b) \in \Sigma_{w,s}, \text{ i.e., for every } t \in S, \text{card}(X_t) = |w|_t.\)
2. \(\text{supp}_S(X) = \text{Im}(w)\) and, for every \(t \in \text{supp}_S(X)\), \(\text{card}(X_t) = |w|_t.\)

On the other hand, for the index set \(\Lambda = \bigcap_{Y \in \text{Sub}(A)} \{ Y \times \text{supp}_S(Y) \} \) and the \(\Lambda \)-indexed family \(\{ (Y_s) \mid s \in \Lambda \} \) whose \((Y, s) \)-th coordinate is \(Y_s \), precisely the \(s \)-th coordinate of the \(S \)-sorted set \(Y \) of the index \((Y, s) \in \Lambda \), let \(f \) be a choice function for \((Y_s)_{(Y, s) \in \Lambda} \), i.e., an element of \(\prod_{(Y, s) \in \Lambda} Y_s \).

Moreover, for every \(w \in S^* \) and \(a \in \prod_{i \in |w|} A_{w(i)} \), let \(M_{w,a} = (M_{w,a}^s)_{s \in S} \) be the finite \(S \)-sorted subset of \(A \) defined as \(M_{w,a}^s = \{ a_i \mid i \in w^{-1}[s] \} \), for every \(s \in S \).

Now, for \((w,s) \in S^* \times S\) and \((X, b) \in \Sigma_{w,s}\), let \(F_{X,b} \) be the many-sorted operation from \(\prod_{i \in |w|} A_{w(i)} \) into \(A \) that assigns \(b \) to \(a \in \prod_{i \in |w|} A_{w(i)} \) such that \(M_{w,a} = (M_{w,a}^s)_{s \in S} = \text{supp}_S(X_1) \), for all \(s \in S \).

We will prove that the \(\Sigma \)-algebra \(\mathbf{A} = (A, F) \) is such that \(J = Sg_{\mathbf{A}} \). But before doing that it is necessary to verify that the definition of the many-sorted operations is sound, i.e., that for every \((w,s) \in S^* \times S\), \((X, b) \in \Sigma_{w,s}\) and \(a \in \prod_{i \in |w|} A_{w(i)}\), it happens that \(s \in \text{supp}_S(J(M_{w,a}))\), and for this it suffices to prove that \(\text{supp}_S(M_{w,a}) = \text{supp}_S(X)\), because, by hypothesis, \(J \) is uniform and, by definition, \(b \in J(X)_s\).

If \(t \in \text{supp}_S(M_{w,a})\), then \(M_{t}^{w,a} \) is nonempty, i.e., there exists an \(i \in |w| \) such that \(w(i) = t \). Therefore, because \((X, b) \in \Sigma_{w,s}\), we have that \(0 < |w|_t = \text{card}(X_t) \), hence \(t \in \text{supp}_S(X)\).

Reciprocally, if \(t \in \text{supp}_S(X)\), \(|w|_t > 0\), and there is an \(i \in |w| \) such that \(w(i) = t \), hence \(a_i \in A_t\), and from this we conclude that \(M_{t}^{w,a} \neq \emptyset\),
i.e., that \(t \in \supp_S(M^{w,a}) \). Therefore, \(\supp_S(M^{w,a}) = \supp_S(X) \) and, by the uniformity of \(J \), \(\supp_S(J(M^{w,a})) = \supp_S(J(X)) \). But, by definition, \(b \in J(X)_s \), so \(s \in \supp_S(J(M^{w,a})) \) and the definition is sound.

Now we prove that, for every \(X \subseteq A \), \(J(X) \subseteq \text{Sub}_{\text{fin}}(A) \). Let \(X \) be an \(S \)-sorted subset of \(A \), \(s \in S \) and \(b \in J(X)_s \). Then, because \(J \) is algebraic, \(b \in J(Y)_s \), for some finite \(S \)-sorted subset \(Y \) of \(X \). From such \(Y \) we will define a word \(w_Y \) in \(S \) and an element \(a_Y \) of \(\prod_{i \in |w_Y|} A_{w_Y(i)} \)

\[
\begin{align*}
(1) \quad &Y = M^{w_Y,ay}, \\
(2) \quad & (Y, b) \in \sum_{w_Y,s}, \text{i.e., } b \in J(Y)_s \text{ and, for all } t \in S, \text{ card}(Y_t) = |w_Y|, \text{ and} \\
(3) \quad & a_Y \in \prod_{i \in |w_Y|} X_{w_Y(i)},
\end{align*}
\]

then, because \(F_{Y,b}(a_Y) = b \), we will be entitled to assert that \(b \in \text{Sub}_{\text{fin}}(A)_s \).

But given that \(Y \) is finite if, and only if, \(\supp_S(Y) \) is finite and, for every \(t \in \supp_S(Y) \), \(Y_t \) is finite, let \(\{ s_\alpha \mid \alpha \in m \} \) be an enumeration of \(\supp_S(Y) \) and, for every \(\alpha \in m \), let \(\{ y_{\alpha,i} \mid i \in p_\alpha \} \) be an enumeration of the nonempty \(s_\alpha \)-th coordinate, \(Y_{s_\alpha} \), of \(Y \). Then we define, on the one hand, the word \(w_Y \) as the mapping from \(|w_Y| = \sum_{\alpha \in m} p_\alpha \) into \(S \) such that, for every \(i \in |w_Y| \) and \(\alpha \in m \), \(w_Y(i) = s_\alpha \) if, and only if, \(\sum_{\beta \in \alpha} p_\beta \leq i \leq \sum_{\beta \in \alpha+1} p_\beta - 1 \) and, on the other hand, the element \(a_Y \) of \(\prod_{i \in |w_Y|} A_{w_Y(i)} \) as the mapping from \(|w_Y| \) into \(\bigcup_{i \in |w_Y|} A_{w_Y(i)} \) such that, for every \(i \in |w_Y| \) and \(\alpha \in m \), \(a_Y(i) = y_{\alpha,i} - \sum_{\beta \in \alpha} p_\beta \) if, and only if, \(\sum_{\beta \in \alpha} p_\beta \leq i \leq \sum_{\beta \in \alpha+1} p_\beta - 1 \). From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a particular case of the fact that the mapping \(M \) from \(\bigcup_{w \in S^*} (\{w\} \times \prod_{i \in |w|} A_{w(i)}) \) into \(\text{Sub}_{\text{fin}}(A) \) that to a pair \((w, a)\) assigns \(M^{w,a} \) is surjective.

From the above and the definition of \(F_{Y,b} \) we can affirm that \(F_{Y,b}(a_Y) = b \), hence \(b \in \text{Sub}_{\text{fin}}(A)_s \). Therefore \(J(X) \subseteq \text{Sub}_{\text{fin}}(A) \).

Finally, we prove that, for every \(X \subseteq A \), \(\text{Sub}_{\text{fin}}(A)_s \subseteq J(X) \). But for this, by Proposition \[\text{Proposition 2.22}\], it is enough to prove that, for every subset \(X \) of \(A \), we have that \(E_A(X) \subseteq J(X) \). Let \(s \in S \) be and \(c \in E_A(X)_s \). If \(c \in X_s \), then \(c \in J(X)_s \), because \(J \) is extensive. If \(c \not\in X_s \), then, by the definition of \(E_A(X) \), there exists a word \(w \in S^* \), a many-sorted formal operation \((Y, b) \in \sum_{w, s} \) and an \(a \in \prod_{i \in |w|} X_{w(i)} \) such that \(F_{Y,b}(a) = c \). If \(M^{w,a} = Y \), then \(c = b \), hence \(c \in J(Y)_s \), therefore, because \(M^{w,a} \subseteq X \), \(c \in J(X)_s \). If \(M^{w,a} \neq Y \), then \(F_{Y,b}(a) \in J(M^{w,a})_s \), but, because \(M^{w,a} \subseteq X \) and \(J \) is isotone, \(J(M^{w,a}) \) is a subset of \(J(X) \), hence \(F_{Y,b}(a) \in J(X)_s \). Therefore \(E_A(X) \subseteq J(X) \).

The just stated theorem together with Proposition \[\text{Proposition 2.23}\] entails the following corollary.
Corollary 3.2. Let J be an algebraic many-sorted closure operator on an S-sorted set A. Then $J = Sg_A$ for some S-sorted signature Σ and some Σ-algebra A if, and only if, J is uniform.

We next prove that for a natural number n, an S-sorted signature Σ, and a Σ-algebra A, under a suitable condition on Σ related to n, the uniform algebraic many-sorted closure operator Sg_A is an n-ary many-sorted closure operator on A.

Proposition 3.3. Let Σ be an S-sorted signature, A a Σ-algebra, and $n \in \mathbb{N}$. If Σ is such that, for every $(w, s) \in S^* \times S$, $\Sigma_{w,s} = \emptyset$ if $|w| > n$—in which case we will say that every operation of A is of an arity $\leq n$—, then the uniform algebraic many-sorted closure operator Sg_A is an n-ary many-sorted closure operator on A, i.e., $Sg_A = (Sg_A)^{\leq n}$.

Proof. It follows from $Sg_A(X) = E_A(X)$ and from the fact that, for every $X \subseteq A$, $E_A(X) \subseteq (Sg_A)^{\leq n}(X) \subseteq Sg_A(X)$. The details are left to the reader. However, we notice that it is advisable to split the proof into two cases, one for $n = 0$ and another one for $n \geq 1$. □

Proposition 3.4. Let A be an S-sorted set, J a many-sorted closure operator on A, and $n \in \mathbb{N}$. If J is n-ary (hence, by Proposition 2.17, algebraic) and uniform, then there exists an S-sorted signature Σ' and a Σ'-algebra A' such that $J = Sg_{A'}$ and every operation of A' is of an arity $\leq n$.

Proof. If we denote by $A = (A, F)$ the Σ-algebra associated to J constructed in the proof of Theorem 3.31 then taking as Σ' the S-sorted signature defined, for every $(w, s) \in S^* \times S$, as: $\Sigma'_{w,s} = \Sigma_{w,s}$, if $|w| \leq n$; and $\Sigma'_{w,s} = \emptyset$, if $|w| > n$, and as $A' = (A', F')$ the Σ'-algebra defined as: $A' = A$, and $F' = F \circ \text{inc}^{\Sigma', \Sigma}$, where $\text{inc}^{\Sigma', \Sigma} = (\text{inc}^{\Sigma', \Sigma}_{w,s})_{(w, s) \in S^* \times S}$ is the canonical inclusion of Σ' into Σ, then one can show that $J = Sg_{A'}$. □

From the just stated proposition together with Proposition 3.3 it follows immediately the following corollary, which is an algebraic characterization of the n-ary and uniform many-sorted closure operators.

Corollary 3.5. Let J be a many-sorted closure operator on an S-sorted set A and $n \in \mathbb{N}$. Then J is n-ary and uniform if, and only if, there exists an S-sorted signature Σ and a Σ-algebra A such that $J = Sg_A$ and every operation of A is of an arity $\leq n$.

4. The irredundant basis theorem for many-sorted closure spaces.

We next show Tarski’s irredundant basis theorem for many-sorted closure spaces.

Theorem 4.1 (Tarski’s irredundant basis theorem for many-sorted closure spaces). Let (A, J) be a many-sorted closure space. If J is an
n-ary many-sorted operator on the \(S \)-sorted set \(A \), with \(n \geq 2 \), and if \(i < j \) with \(i, j \in \text{IrB}_J(A) \) such that
\[
\{i + 1, \ldots, j - 1\} \cap \text{IrB}_J(A) = \emptyset,
\]
then \(j - i \leq n - 1 \). In particular, if \(n = 2 \), then \(\text{IrB}_J(A) \) is a convex subset of \(N \).

Proof. Let \(Z \subseteq A \) be an irredundant basis with respect to \(J \) such that \(\text{card}(Z) = j \) and \(\mathcal{K} = \{ X \in \text{IrB}_J(A) \mid \text{card}(X) \leq i \} \). Since \(J \) is \(n \)-ary, we can assert that \(J(Z) = A = \bigcup_{m \in \mathbb{N}} J^m(Z) \), so, for every \(s \in S \), \(J(Z)_s = A_s = \bigcup_{m \in \mathbb{N}} J^m(Z)_s \). Let \(X \) be an element of \(\mathcal{K} \). Then there exists a \(k \in \mathbb{N} - 1 \) such that \(X \subseteq J^k(Z) \). The natural number \(k \) should be strictly greater than 0, because if \(k = 0 \), \(X \subseteq J^0(Z) = Z \), but \(\text{card}(X) = i < j = \text{card}(Z) \), so \(Z \) would not be an irredundant basis. So that, for every \(X \in \mathcal{K} \), \(\{ k \in \mathbb{N} - 1 \mid X \subseteq J^k(Z) \} \neq \emptyset \).

Therefore, for every \(X \in \mathcal{K} \), we can choose the least element of such a set, denoted by \(d_Z(X) \), and there is fulfilled that \(d_Z(X) \) is greater than or equal to 1. For \(d_Z(X) - 1 \) we have that \(X \not\subseteq J^{d_Z(X)-1}(Z) \).

So we conclude that there exists a mapping \(d_Z : \mathcal{K} \rightarrow \mathbb{N} - 1 \) that to an \(X \in \mathcal{K} \) assigns \(d_Z(X) \). The image of the mapping \(d_Z \), which is a nonempty part of \(\mathbb{N} - 1 \), is well-ordered, hence it has a least element, which is, necessarily, non zero, \(t + 1 \), therefore, since \(\mathcal{K}/\text{Ker}(d_Z) \) is isomorphic to \(\text{Im}(d_Z) \), by transport of structure, it will also be well-ordered, then we can always choose an \(X \in \mathcal{K} \) such that, for every \(Y \in \mathcal{K} \), \(d_Z(X) \leq d_Z(Y) \), e.g., an \(X \) such that its equivalence class corresponds to the minimum \(t + 1 \) of \(\text{Im}(d_Z) \). Moreover, among the \(X \) which have the just mentioned property, we choose an \(X^0 \) such that, for every \(Y \in \mathcal{K} \) with \(Y \subseteq J^{d_Z(X)+1}(Z) \), it happens that
\[
\text{card}(X^0 \cap (J^{d_Z(X)+1}(Z) - J^t(Z))) \leq \text{card}(Y \cap (J^{d_Z(X)+1}(Z) - J^t(Z))).
\]

By the method of election we have that \(X^0 \subseteq J^{d_Z(X)+1}(Z) \) but \(X^0 \not\subseteq J^t(Z) \). Of the latter we conclude that there exists an \(s_0 \in S \) such that \(X^0 \not\subseteq J^t_s(Z) \), therefore
\[
(J^{d_Z(X)+1}(Z)_{s_0} - J^t(Z)_{s_0}) \cap X^0_{s_0} \neq \emptyset.
\]

Let \(a_0 \in (J^{d_Z(X)+1}(Z)_{s_0} - J^t(Z)_{s_0}) \cap X^0_{s_0} \). Then \(a_0 \in X^0_{s_0} \), \(a_0 \in J^{d_Z(X)+1}(Z)_{s_0} \) but \(a_0 \not\in J^t(Z)_{s_0} \). However, \(J^{d_Z(X)+1}(Z) = J_{\leq n}(Z)_{s_0} \), by definition, hence there exists a part \(F \) of \(J_{\leq n}(Z) \) such that \(\text{card}(F) \leq n \) and \(a_0 \in J(F)_{s_0} \). Let \(X^1 \) be the part of \(A \) defined as follows:
\[
X^1_s = \begin{cases}
X^0_s \cup F_s, & \text{if } s \neq s_0; \\
(X^0_{s_0} - \{a_0\}) \cup F_{s_0}, & \text{if } s = s_0.
\end{cases}
\]

It holds that \(X^0 \subseteq J(X^1) \). Therefore \(J(X^0) \subseteq J(X^1) \), but \(J(X^0) = A \), hence \(J(X^1) = A \), i.e., \(X^1 \) is a finite generator with respect to \(J \), thus \(X^1 \) will contain a minimal generator \(X^2 \) with respect to \(J \). It
holds that \(\text{card}(X^2) \leq \text{card}(X^1) < \text{card}(X^0) + n \). It cannot happen that \(\text{card}(X^0) + n \leq j \). Because if \(\text{card}(X^0) + n \leq j \), then \(\text{card}(X^2) < j \), hence, since
\[
\{i+1, \ldots, j-1\} \cap \text{IrB}(A, J) = \emptyset,
\]
\(X^2 \in \mathcal{K} \), but \(X^2 \subseteq J_{\leq n}^{i+1}(Z) \) and, moreover, it happens that
\[
\text{card}(X^2 \cap (J_{\leq n}^{i+1}(Z) - J_{\leq n}^{i}(Z))) < \text{card}(X^0 \cap (J_{\leq n}^{i+1}(Z) - J_{\leq n}^{i}(Z))),
\]
because \(a_0 \not\in X^2_{a_0} \) but \(a_0 \in X^0_{a_0} \), which contradicts the choice of \(X^0 \).
Hence \(\text{card}(X^0) + n > j \). But \(\text{card}(X^0) \leq i \), therefore \(j - i < n \), i.e., \(j - i \leq n - 1 \).

\[\Box\]

References

[1] G. Birkhoff and O. Frink, *Representation of lattices by sets*. Trans. Amer. Math. Soc., 64 (1948), pp. 299–316.
[2] S. Burris and H.P. Sankappanavar, *A course in universal algebra*, Springer-Velag, 1981.
[3] J. Climent Vidal and J. Soliveres Tur, *On many-sorted algebraic closure operators*. Math. Nachr. 266 (2004), pp. 81–84.
[4] A. Tarski, *An interpolation theorem for irredundant bases of closure operators*, Discrete Math. 12 (1975), pp. 185–192.