Supplementary Information

Infrared characterization of formation and resonance stabilization of the Criegee intermediate methyl vinyl ketone oxide

Chen-An Chung¹ and Yuan-Pern Lee¹,²,³*

¹Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300093, Taiwan,
²Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan,
³Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan.

(Y.-P. L) - vplee@nctu.edu.tw
Table of Contents
Supplementary Note 1. Computational Results --- 1
Supplementary Note 2. IR spectra of precursor (Z)-(CH₂I)HC=C(CH₃)I (1) ------------------------------- 1
Supplementary Note 3. IR spectra of the iodoalkenyl radical (Z)-C₂H₃C(CH₂)I (2) ------------------- 2
Supplementary Note 4. Photolysis of (Z)-(CH₂I)HC=C(CH₃)I (1) in O₂ at 35 Torr --------------------- 3
Supplementary Note 5. Spectral simulation of conformers of MVKO ------------------------------- 5
Supplementary Note 6. Photolysis of (Z)-(CH₂I)HC=C(CH₃)I in O₂ at high pressure -------------- 5
Supplementary Note 7. Temporal profiles of C₂H₅C(CH₃)I, C₂H₅C(CH₃)OO, and C₂H₅C(CH₃)IOO ------------------------------- 6
Supplementary Note 8. Estimated relative yields of MVKO (3) and C₂H₅C(CH₃)IOO (4) -- 8
Supplementary Table 1. Cartesian coordinates of optimized geometries of precursors (Z)- and (E)- (CH₂I)HC=C(CH₃)I and iodoalkyl radicals (Z)- and (E)-C₂H₃C(CH₃)I and (Z)- and (E)- (CH₂I)CHC(CH₃) predicted with the B3LYP/aug-cc-pVTZ-pp method -- 10
Supplementary Table 2. Cartesian coordinates of optimized geometries of four conformers of the Criegee intermediates syn-trans-, syn-cis-, anti-trans-, and anti-cis-C₂H₅C(CH₃)OO and dioxole predicted with the B3LYP/aug-cc-pVTZ method -- 11
Supplementary Table 3. Cartesian coordinates of optimized geometries of nine conformers of iodoperoxy radical C₂H₅C(CH₃)IOO predicted with the B3LYP/aug-cc-pVTZ-pp method---------------------------------- 12
Supplementary Table 4. Cartesian coordinates of optimized geometries of six conformers of iodoperoxy radical C(CH₃)ICHCH₂OO predicted with the B3LYP/aug-cc-pVTZ-pp method ---- 14
Supplementary Table 5. Comparison of experimental vibrational wavenumbers and IR intensities of (Z)- (CH₂I)HC=C(CH₃)I (1) with those of (Z)- and (E)-(CH₂I)HC=C(CH₃)I predicted with the B3LYP/aug-cc-pVTZ-pp method-- 15
Supplementary Table 6. Vibrational wavenumbers and IR intensities of (Z)- and (E)-C₂H₅CC(CH₃)I and (Z)- and (E)-(CH₂I)CHC(CH₃) predicted with the B3LYP/aug-cc-pVTZ-pp method -- 16
Supplementary Table 7. Vibrational wavenumbers and IR intensities of four conformers of Criegee intermediates C₂H₅C(CH₃)OO and dioxole predicted with the B3LYP/aug-cc-pVTZ method -- 18
Supplementary Table 8. Vibrational wavenumbers and IR intensities of nine conformers of iodoperoxy radical C₂H₅C(CH₃)IOO predicted with the B3LYP/aug-cc-pVTZ-pp method------ 21
Supplementary Table 9. Vibrational wavenumbers and IR intensities of six conformers of iodoperoxy radical C(CH₃)ICHCH₂OO predicted with the B3LYP/aug-cc-pVTZ-pp method ---- 24
Supplementary Table 10. Rotational parameters and type ratios for each vibrational state of four conformers of Criegee intermediates MKVO predicted with the B3LYP/aug-cc-pVTZ method -- 26
Supplementary Table 11. Comparison of observed vibrational wavenumbers of (Z)-C_2H_3C(CH_3)I (2) in region 800–1450 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ-pp method.---28

Supplementary Table 12. Comparison of observed vibrational wavenumbers of syn-trans-C_2H_3C(CH_3)OO (3) in region 800–1500 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ method.---29

Supplementary Table 13. Comparison of observed vibrational wavenumbers of syn-cis-C_2H_3C(CH_3)OO in region 800–1500 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ method.---30

Supplementary Table 14. Comparison of observed vibrational wavenumbers of C_2H_3C(CH_3)IOO (4) in region 800–1500 cm\(^{-1}\) with C_2H_3C(CH_3)IOO-1 and C_2H_3C(CH_3)IOO-2 calculated with the B3LYP/aug-cc-pVTZ-pp method.---31

Supplementary Table 15. Summary on estimates of concentrations of species in varied experiments.--32

Supplementary Figure 1. Geometries of conformers of methyl vinyl ketone oxide (MVKO) and dioxole predicted with the B3LYP/aug-cc-pVTZ method.---33

Supplementary Figure 2. Geometries of precursors (Z)-(E)-(CH_2)IHC=C(CH_3)I and (Z)/(E)-iodoalkyl radicals C_2H_3C(CH_3)I and (CH_2)IHC(CH_3) predicted with the B3LYP/aug-cc-pVTZ-pp method.---34

Supplementary Figure 3. Geometries of nine conformers of iodoperoxy radicals C_2H_3C(CH_3)IO predicted with the B3LYP/aug-cc-pVTZ-pp method.---35

Supplementary Figure 4. Geometries of six conformers of iodoperoxy radicals C(CH_3)ICCHCH_2OO predicted with the B3LYP/aug-cc-pVTZ-pp method.---36

Supplementary Figure 5. Comparison of IR spectra of (Z)-CH_2IHC=C(CH_3)I (1) in the gaseous phase and in solid p-H_2 with quantum-chemical calculations.---37

Supplementary Figure 6. Temporal evolution of observed spectra and processed spectra in region 1450–850 cm\(^{-1}\) at resolution 1.0 cm\(^{-1}\) upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/N_2 (0.03/75 Torr) and comparison with predicted stick spectra.--------------------------38

Supplementary Figure 7. Comparison of IR spectra of (Z)-C_2H_3C(CH_3)I (2) in the gaseous phase with quantum-chemical calculations.---39

Supplementary Figure 8. Temporal evolution of observed and processed spectra in region 1450–850 cm\(^{-1}\) at resolution 0.5 cm\(^{-1}\) upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O_2 (0.04/35 Torr).---40

Supplementary Figure 9. Resonance structures and frontier orbitals of syn-trans-MVKO.---41

Supplementary Figure 10. Temporal evolution of observed and processed spectra in region 1450–850 cm\(^{-1}\) at resolution 1.0 cm\(^{-1}\) upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O_2 (0.042/347 Torr) __42
Supplementary Figure 11. Temporal evolution of observed and processed spectra in region 1450–850 cm⁻¹ at resolution 1.0 cm⁻¹ upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O₂ (0.035/236 Torr) 43

Supplementary Figure 12. Comparison of bands in group C with stick IR spectra of nine conformers of iodoperoxy radical C₂H₃C(CH₃)IOO 44

Supplementary Figure 13. Comparison of bands in group C with stick IR spectra of six conformers of iodoperoxy radical C(CH₃)ICHCH₂OO 45

Supplementary Figure 14. Temporal profiles of species upon photolysis at 248 nm of a mixture of (Z)-(CH₂I)HC=C(CH₃)I (0.04 Torr) and O₂ (35 Torr) and a mixture of (Z)-(CH₂I)HC=C(CH₃)I (0.04 Torr) and O₂ (347 Torr). 46

Supplementary References 47
Supplementary Note 1. Computational Results

The geometries and relative energies of four conformers of Criegee intermediates \(\text{syn-trans-} \), \(\text{syn-cis-} \), \(\text{anti-trans-} \), and \(\text{anti-cis-} \)-C\(_2\)H\(_3\)C(CH\(_3\))OO and dioxole are presented in Supplementary Figure 1. Those of precursors (\(Z \))- and (\(E \))-(CH\(_2\))IHC=C(CH\(_3\))I and iodoalkyl radicals (\(Z \))- and (\(E \))-conformers of C\(_2\)H\(_2\)C(CH\(_3\))I and (CH\(_2\))CHC(CH\(_3\)) are presented in Supplementary Figure 2. The geometries and relative energies of nine possible conformers of iodoperoxy radical C\(_2\)H\(_3\)C(CH\(_3\))IOO and six possible conformers of C(CH\(_3\))ICHCH\(_2\)OO are presented in Supplementary Figures 3 and 4, respectively. Cartesian coordinates of all conformers of (CH\(_2\))IHC=C(CH\(_3\))I, C\(_2\)H\(_3\)C(CH\(_3\))I, (CH\(_2\))CHC(CH\(_3\)), C\(_2\)H\(_3\)C(CH\(_3\))OO, dioxole, C\(_2\)H\(_3\)C(CH\(_3\))IOO, and C(CH\(_3\))ICHCH\(_2\)OO are listed in Supplementary Tables 1–4.

Computed scaled harmonic vibrational wavenumbers and IR intensities of precursors (\(Z \))- and (\(E \))-(CH\(_2\))IHC=C(CH\(_3\))I, iodoalkyl radicals (\(Z \))- and (\(E \))-conformers of C\(_2\)H\(_2\)C(CH\(_3\))I and (CH\(_2\))CHC(CH\(_3\)), Criegee intermediates \(\text{syn-trans-} \), \(\text{syn-cis-} \), \(\text{anti-trans-} \), and \(\text{anti-cis-} \)-C\(_2\)H\(_3\)C(CH\(_3\))OO and dioxole, nine conformers of iodoperoxy radicals C\(_2\)H\(_3\)C(CH\(_3\))IOO, and six conformers of iodoperoxy radicals C(CH\(_3\))ICHCH\(_2\)OO are listed in Supplementary Tables 5–9, respectively. The anharmonic vibrational wavenumbers of Criegee intermediates \(\text{syn-trans-} \), \(\text{syn-cis-} \), \(\text{anti-trans-} \), and \(\text{anti-cis-} \)-C\(_2\)H\(_3\)C(CH\(_3\))OO and dioxole are also listed in Supplementary Table 7. The rotational parameters and type ratios for each vibrational state of the four conformers of Criegee intermediates MKVO are listed in Supplementary Table 10.

Supplementary Note 2. IR spectra of precursor (\(Z \))-(CH\(_2\))IHC=C(CH\(_3\))I (1)

The IR spectrum of gaseous precursor (\(Z \))-(CH\(_2\))IHC=C(CH\(_3\))I (1) in region 1450–850 cm\(^{-1}\) is presented in Supplementary Figure 5(a). This spectrum is compared with the spectrum of (1) in a solid \(p \)-H\(_2\) matrix\(^1\) and stick spectra of (1) predicted with the B2PLYP-D3 and B3LYP methods in
Supplementary Figure 5. Four intense bands near 1434, 1294, 1152, and 1063 cm\(^{-1}\) and two weaker ones near 1384 and 1169 cm\(^{-1}\) (the latter appears as a shoulder of the band near 1152 cm\(^{-1}\)) were observed, in agreement with those observed for the same conformer in a \(p\)-H\(_2\) matrix at 3.2 K.\(^{1}\)

According to the plot of experimental wavenumbers versus harmonic vibrational wavenumbers of (I) predicted with the B3LYP/aug-cc-pVTZ-pp method, we derived a linear scaling equation \(y = (0.9708 \pm 0.0159) x + (9.3 \pm 20.7)\), in which \(y\) and \(x\) are experimental and harmonic vibrational wavenumbers, respectively. All observed wavenumbers and intensities are compared with those observed in solid \(p\)-H\(_2\) and scaled harmonic vibrational wavenumbers and IR intensities in Supplementary Tables 5. We employed this equation to scale the predicted harmonic vibrational wavenumbers of other species considered in this work. On comparison of the spectrum of precursor reported by Barber et al. (in Supporting Information),\(^{2}\) the samples that these authors used were clearly a mixture of both (Z)- and (E)-conformers, with the former dominant, as they stated. In this work, a nearly pure (Z)-conformer (I) was used.

Supplementary Note 3. IR spectra of the iodoalkenyl radical (Z)-C\(_2\)H\(_3\)C(CH\(_3\))I (2)

When the diiodoalkene precursor (I) in N\(_2\) was irradiated with light at 248 nm, the intensity of its lines decreased significantly, as shown in Supplementary Figure 6(b) as a difference spectrum obtained from the \(ac\)-channel recorded 0–3 \(\mu\)s after irradiation; intense negative bands indicate the destruction of the precursor, whereas the formation of products is indicated by some extremely weak positive features. The expanded spectra of products recorded 0–3 and 10–15 \(\mu\)s after irradiation are shown in Supplementary Figures S6(c) and S6(d), respectively, with the negative bands truncated. The features corresponding to the primary photolysis product decreased with time, but a broad feature near 915 cm\(^{-1}\) and two sharp lines at 919 and 892 cm\(^{-1}\) increased continuously. We termed these six features near 1406, 1261, 1109, 1019, 925, and 873 cm\(^{-1}\) that are associated with the primary photolysis product as group A and marked them A\(_1\)–A\(_6\) in Supplementary Figure 6(c); the
bands with positions near 925 and 873 cm\(^{-1}\) are less certain because of their small intensities and severe interference from the broad feature near 915 cm\(^{-1}\). The intensities of these features in group A decreased significantly in the spectrum recorded 10–15 \(\mu\)s after irradiation, indicating the transient nature of the carrier. We added the bands of the precursor, Supplementary Figure 6(a), back to the spectrum in Supplementary Figure 6(c) to minimize its interference and present it in Supplementary Figure 6(e); the regions with which the intense absorption of the precursor might interfere are shaded with grey. Some regions of the parent absorption could not be compensated completely because some precursors might become internally excited upon irradiation, so that their absorption spectrum is differed from that before irradiation.

The assignments of these new features in group A to the iodoalkenyl radical \((Z)-C_2H_3C(CH_3)I\) (2) is discussed in the main text. Comparison of IR spectra of features in group with the IR stick spectra of two possible photolysis products, \((Z)-C_2H_3C(CH_3)I\) (2) and \((Z)-(CH_2I)CHC(CH_3)_3\), according to the scaled harmonic vibrational wavenumbers predicted with the B3LYP method are shown in Figure 2. The observed new features agree satisfactorily with lines predicted near 1418, 1261, 1108, 930, and 887 cm\(^{-1}\) for (2), as compared in Supplementary Table 11. Comparison of IR spectra of lines in group A with the IR stick spectra of \((Z)-C_2H_3C(CH_3)I\) (2) and \((E)-C_2H_3C(CH_3)I\) is presented in Supplementary Figure 7; the agreement of experiments with the latter is poor, indicating that the conversion from \((Z)-\) to \((E)-\)conformation did not occur.

Supplementary Note 4. Photolysis of \((Z)-(CH_2I)HC=C(CH_3)I\) (1) in O\(_2\) at 35 Torr

The top trace in Supplementary Figure 8(a) shows the absorption spectrum, on a reduced scale, of a flowing mixture of (1) (0.04 Torr) and O\(_2\) (35 Torr) before photolysis; Supplementary Figures 8(a)–(c) show expanded difference spectra recorded 0–5, 5–10, and 30–35 \(\mu\)s, respectively, after photolysis of the mixture at 248 nm; the negative bands corresponding to the destruction of the
precursor are truncated. The spectrum of the iodoalkenyl radical \((Z)-C_2H_3C(CH_3)I\) (2) shown in Supplementary Figure 6(e) is reproduced in Supplementary Figure 8(d) for comparison. Small bands of (2) were observed only 0–5 µs after irradiation before it reacted completely with \(O_2\). Some new features appeared and their intensities reached maxima near 5–10 µs, whereas some bands appeared at a later period and became more prominent in the spectrum recorded 30–35 µs after irradiation; the latter features correspond to absorption of the end product methyl vinyl ketone (MVK, \(C_2H_3C(O)CH_3\)), of which spectrum is presented in Supplementary Figure 8(e) for comparison. We stripped absorption bands of the iodoalkenyl radical (2) and MVK and added back the bands of the precursor (1) in spectra shown in Supplementary Figures 8(a)–(c); the resultant spectra are presented in Supplementary Figures 8(f)–(h). Seven bands near 1416, 1383, 1346, 1060, 987, 948, and 916/908 cm\(^{-1}\) that have correlated variations in intensity and reached their maxima 5–10 µs after irradiation are termed group B and marked \(B_1–B_7\) in Supplementary Figure 8(g); feature \(B_7\) contains two sharp bands at 916 and 908 cm\(^{-1}\). The regions with which intense absorption of the precursor might interfere are shaded with grey; however, perhaps only the region 1140–1180 cm\(^{-1}\) containing the most intense absorption band of the precursor is unreliable. Although feature \(B_4\) near 1060 cm\(^{-1}\) overlaps partially with the absorption band of the precursor near 1063 cm\(^{-1}\), its absorption contour is expected to be reliable because of the excellent reproducibility of our FTIR spectra. The weak band near 891 cm\(^{-1}\) does not belong to group B because of its unsatisfactory correlation in intensity variations in varied reaction periods. These features in group B are assigned to the Criegee intermediate syn-trans-MVKO (3), as discussed in the main text. Comparison of observed vibrational wavenumbers of syn-trans-\(C_2H_3C(CH_3)OO\) (3) in region 800–1500 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ method is shown in Supplementary Table 12. The major resonance structures of syn-trans-MVKO (3) is shown in Supplementary Figure 9.

Some weak features might be tentatively assigned to syn-cis-\(C_2H_3C(CH_3)OO\), as discussed in
the main text. Observed vibrational wavenumbers of syn-ciss-C\(_2\)H\(_3\)C(CH\(_3\))OO in region 800–1500 cm\(^{-1}\) are compared with those predicted with the B3LYP/aug-cc-pVTZ method in Supplementary Table 13.

Supplementary Note 5. Spectral simulation of conformers of MVKO

With program PGopher,\(^3\) we simulated the rotational contours of some vibrational modes of Criegee intermediates syn-trans-, syn-cis-, anti-trans-, and anti-cis-MVKO using rotational parameters of the lower state (\(A''\), \(B''\), and \(C''\)) and upper states (\(A', B',\) and \(C'\)), and ratios of \(a\)-type/\(b\)-type/\(c\)-type predicted with the B3LYP/aug-cc-pVTZ method (Supplementary Table 10). The parameters employed in the simulations are \(J_{\text{max}} = 200\), \(T = 298\) K, Gaussian width (FWHM) = 0.64 (corresponding to the instrument resolution of 0.5 cm\(^{-1}\)). The weighting factors of bands of types \(a\), \(b\), and \(c\) in each resultant vibrational absorption band were determined by the squares of the projections of the dipole derivatives for each vibrational mode onto rotational axes \(a\), \(b\) and \(c\).

Supplementary Note 6. Photolysis of (Z)-(CH\(_2\))IHC=C(CH\(_3\))I in O\(_2\) at high pressure

The top trace in Supplementary Figure 10(a) shows the absorption spectrum, on a reduced scale, of (Z)-1,3-diiodobut-2-ene/O\(_2\) (0.042/347 Torr) in a flowing mixture before photolysis. Supplementary Figures 10(a)–(c) present the difference absorption spectra of this flowing mixture 0–25, 25–50, and 50–100 \(\mu\)s after photolysis; the spectra were recorded with the internal 24-bit ADC with temporal resolution 12.5 \(\mu\)s. Supplementary Figures 10(d) and 10(e) depict reference spectra of syn-trans-MVKO (3) and MVK, respectively. Supplementary Figures 10(f)–(h) show the spectra processed from Supplementary Figures 10(a)–10(c), with absorption of MVKO (3) and MVK stripped and that of the precursor (1) added back. Similar plots for experiments of (Z)-1,3-diiodobut-2-ene/O\(_2\) (0.035/236 Torr) 0–10, 10–20, and 20–30 \(\mu\)s after photolysis, recorded with an external ADC, and those processed with bands of MVKO (3) and MVK removed and those of the precursor
(1) added back are presented in Supplementary Figure 11. Six bands near 1375, 1213, 1108, 1063, 986, and 885 cm\(^{-1}\) that showed correlated intensity variations and decayed slowly after irradiation are termed group C and marked C\(_1\)–C\(_6\) in Supplementary Figures 10(f) and 11(f). The band near 934 cm\(^{-1}\) appears not to be associated with group C because of its unsatisfactory correlation in intensity variations at varied experimental period; it might be an artifact from stripping the most-intense band of syn-trans-MVKO (3). The observed spectra of bands of group C are compared with the stick IR spectra of nine possible conformers of C\(_2\)H\(_3\)C(CH\(_3\))IOO (4) in Supplementary Figure 12 and with the stick spectra of six possible conformers of C(CH\(_3\))ICHCH\(_2\)OO in Supplementary Figure 13. These features in group C are assigned to the iodoperoxy adduct C\(_2\)H\(_3\)C(CH\(_3\))IOO (4), as discussed in the main text. Comparison of observed vibrational wavenumbers of C\(_2\)H\(_3\)C(CH\(_3\))IOO (4) in region 800–1500 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ method for the two least-energy conformers is shown in Supplementary Table 14.

Supplementary Note 7. Temporal profiles of C\(_2\)H\(_3\)C(CH\(_3\))I (2), C\(_2\)H\(_3\)C(CH\(_3\))OO (3), and C\(_2\)H\(_3\)C(CH\(_3\))IOO (4)

Supplementary Figure 14(a) presents temporal profiles of the iodoalkenyl radical (2) (black triangles) and the MVKO (3) (blue circles) upon UV irradiation of (1) in O\(_2\) at 35 Torr. Parts of band A\(_2\) (1260–1270 cm\(^{-1}\)) and B\(_6\) (920–960 cm\(^{-1}\)) in the raw spectra were integrated to yield the temporal evolution of (2) and (3), respectively. The integrated intensity of the iodoalkenyl radical (2) showed an immediate rise upon UV irradiation of the mixture, followed by a rapid decay before it reached a non-zero baseline. The non-zero baseline is due to some contribution of the final product MVK shown in Supplementary Figure S8(e), which was unavoidable. The integrated intensity of MVKO (3) showed an initial rise from zero, followed by a slow decay; its rate of rise correlates well with the rate of decay of (2), supporting that (3) was produced from the reaction of (2) with O\(_2\) and that our
spectral assignments are reasonable.

Supplementary Figure 14(b) presents the temporal profiles of iodoperoxy adduct (4) (black triangles and red inverted triangles) and MVKO (3) (blue circles) in an experiment of (1) in O\textsubscript{2} at 347 Torr. Parts of bands C\textsubscript{3} (1100–1120 cm-1), C\textsubscript{6} (862–907 cm-1), and B\textsubscript{6} (920–960 cm-1) were integrated to yield the temporal evolution of (4) and (3), respectively. All profiles were normalized for ease of comparison; species (3) and (4) showed a similarly sharp rise due to the rapid formation reaction of (2) with O\textsubscript{2} at high pressure, followed by different slow decays. The similar rate of rise is consistent with the expectation from a parallel reaction, supporting that MVKO (3) and the iodoperoxy adduct (4) were produced from the same reaction, that of iodoalkenyl radical (2) with O\textsubscript{2}. In contrast, the temporal profile of MVK (pink diamonds, integrated over 1250–1270 cm-1) had a slow rise, indicating the nature of secondary formation. The fraction of loss of MVKO (3) appeared to be smaller than that of (4). This might be because band B\textsubscript{6} overlaps with an intense band of MVK in this region, and MVK is a major product when O\textsubscript{2} pressure is high. The profile of (3) after 0.2 ms is thus unreliable and might reflect mostly the behavior of MVK. Further experiments with higher spectral resolution are needed to clarify this problem.

The spectra obtained at 35 Torr showed predominant production of (3) with little contribution of (4) (Supplementary Figure 8). In contrast, at 236 and 347 Torr, the yield of (3) decreased and that of (4) increased significantly (Supplementary Figures 10 and 11). The analysis is listed in Supplementary Table 15 and discussed in the following section. This observation is also consistent with the expectation that the iodoperoxy adduct (4) is stabilized at higher pressure instead of decomposition to MVKO + I, similarly to what was observed in experiments of CH\textsubscript{2}I + O\textsubscript{2}4. Lin et al. recently proposed that, based on their observation of the temporal profiles of UV absorption of MVKO (3) above 50 Torr, the iodoperoxy adduct was produced from the source reaction but decomposed to MVKO + I at a time scale of ms5 in support of our observation of (4). We did
observe the decay of iodoperoxy adduct, but we are uncertain about the formation of MVKO (3) from (4) because the interference from the intense band of MVK, as stated previously.

Supplementary Note 8. Estimated relative yields of MVKO (3) and C₂H₃C(CH₃)IOO (4)

The relative yields of MVKO (3) and (Z)-C₂H₃C(CH₃)IOO (4) at varied pressures were estimated on integrating the destruction of a band (1130–1190 cm⁻¹) of precursor (1), the formation of band B₆ (920–960 cm⁻¹) of MVKO (3) and bands C₃ (1100–1120 cm⁻¹) and C₆ (862–907 cm⁻¹) of C₂H₃C(CH₃)IOO (4); these integrated absorbance were divided with their respective IR intensities predicted with the B3LYP method. The concentration c (in molecule cm⁻³) of each species except (1) in the photolysis region was calculated according to equation (1),

\[
c = 2.65 \times \frac{2.30 \int \Delta A \, dV}{l \times S}
\]

in which 2.65 is the volume ratio, \(V_{IR}/V_{UV}\), for the IR probe and UV photolysis,⁶ \(\int \Delta A \, dv\) is the intensity in cm⁻¹ for the integrated region in the difference spectrum (base 10), 2.30 is \(\ln 10\), \(l\) is 360 cm for IR path length, and \(S\) is the band intensity in cm molecule⁻¹ calculated with the B3LYP method. The partial pressure of (1) was derived on comparing the observed integrated absorbance of IR bands in regions 1130–1190 cm⁻¹ and 1025–1085 cm⁻¹ with the calibration curve obtained at varied pressures. The experimental results are summarized in Supplementary Table S15. We emphasize that the error of the calculated IR intensity might be as large as factor 2 and is not included in the listed errors. Furthermore, as some bands might suffer interference from absorption of other species, the estimated concentrations might have large errors. Nevertheless, a comparison of the relative values of the same species is expected to be reliable.

Because band C₆ of C₂H₃C(CH₃)IOO (4) in region 862–907 cm⁻¹ overlaps with the weak band
B7 of MVKO (3), we performed spectrum subtraction to remove the contribution of (3) and estimated the error associated with this interference to be less than 11%. Even including this possible errors, the observed intensity of band C₆ relative to those of other bands in group C appeared, however, to be much greater than theoretically predicted; the absolute concentration of (4) according to band C₆ might be overestimated. As shown in rows 10 and 11 of Supplementary Table S15, the estimated concentration of (4) according to bands C₃ and C₆ varied by factor 1.5–2.3.

Nevertheless, the percentage variation of concentrations estimated from each band as the total pressure increased, after taking into account the difference in photolysis yield of the precursor (1) in each experiment, is expected to be reliable. The derived relative concentrations of (3) and (4) are compared at varied pressure. From rows 12–14 in Supplementary Table 15, it is clear that the relative yield of MVKO (3) decreased to ~63%, whereas that of the iodoperoxy adduct (4) increased significantly to a factor 1.8–2.9, as the pressure increased from 35 Torr to 347 Torr.
Supplementary Table 1 Cartesian coordinates of optimized geometries of precursors (Z)- and (E)- (CH$_2$I)HC=C(CH$_3$)$_3$I and iodoalkyl radicals (Z)- and (E)-C$_2$H$_5$C(CH$_3$)$_3$I and (Z)- and (E)- (CH$_2$I)CHC(CH$_3$)$_3$I predicted with the B3LYP/aug-cc-pVTZ-pp method.

	x	y	z		x	y	z
(Z)-(CH$_2$I)HC=C(CH$_3$)$_3$I				(E)-(CH$_2$I)HC=C(CH$_3$)$_3$I			
C$_1$	-0.86339	0.34407	1.17814	C$_1$	-1.32719	-0.66300	1.12428
C$_2$	-0.00616	1.38122	0.58527	C$_2$	0.00355	-0.08842	0.84376
C$_3$	1.21426	1.25485	0.06672	C$_3$	0.97664	-0.70146	0.16870
C$_4$	2.01770	2.37724	-0.50570	C$_4$	0.95084	-2.04267	-0.48671
H$_1$	-0.36188	-0.60061	1.34490	H$_1$	-1.68249	-0.41647	2.11797
H$_2$	-1.37213	0.68000	2.07420	H$_2$	-1.41672	-1.72564	0.94465
H$_3$	-0.42431	2.38418	0.56639	H$_3$	0.17318	0.90676	1.23172
H$_4$	2.96739	2.49162	0.01892	H$_4$	1.14757	-1.94874	-1.55573
H$_5$	2.24994	2.19618	-1.55652	H$_5$	1.72281	-2.69406	-0.07434
H$_6$	1.46150	3.31266	-0.42875	H$_6$	-0.01543	-2.53002	-0.36326
I$_1$	2.20124	-0.63627	-0.02399	I$_1$	2.83370	0.32656	-0.05947
I$_2$	-2.55398	-0.16766	-0.16404	I$_2$	-2.90072	0.22781	-0.17075

	x	y	z		x	y	z
(Z)-(C$_2$H$_5$I)C(CH$_3$)$_3$I				(E)-(C$_2$H$_5$I)C(CH$_3$)$_3$I			
C$_1$	-2.12400	-1.67023	0.00000	C$_1$	1.60646	2.89572	0.00000
C$_2$	-2.12260	-0.29766	0.00000	C$_2$	1.28358	1.55870	0.00000
C$_3$	-1.05063	0.58203	0.00000	C$_3$	1.02600	1.02600	0.00000
C$_4$	-1.18368	2.06637	0.00000	C$_4$	1.78190	0.00000	0.00000
H$_1$	-1.20694	-2.24109	0.00000	H$_1$	2.64163	3.20242	0.00000
H$_2$	-3.05594	-2.21494	0.00000	H$_2$	0.86246	3.67838	0.00000
H$_3$	-3.09169	0.19715	0.00000	H$_3$	2.10591	0.85388	0.00000
H$_4$	-0.70936	2.51327	0.87730	H$_4$	-1.88661	1.53908	0.00000
H$_5$	-0.70883	2.51342	-0.87730	H$_5$	-1.88661	1.53908	0.87767
H$_6$	-2.23818	2.34761	0.00000	H$_6$	-1.10240	2.85622	0.00000
I$_1$	0.94144	-0.13582	0.00000	I$_1$	-0.19578	-1.08006	0.00000

	x	y	z		x	y	z
(Z)-(CH$_2$I)CHC(CH$_3$)$_3$I				(E)-(CH$_2$I)CHC(CH$_3$)$_3$I			
C$_1$	-0.49186	1.12935	0.17418	C$_1$	0.64727	-0.74350	-0.72959
C$_2$	-1.68724	0.49456	-0.42624	C$_2$	1.65206	-0.96739	0.35463
C$_3$	-2.72293	0.06829	0.25386	C$_3$	2.76830	-0.29032	0.46848
C$_4$	-4.03259	-0.55200	0.06234	C$_4$	3.52726	0.81821	-0.10869
H$_1$	-0.59465	1.30843	1.23704	H$_1$	0.30367	-1.66665	-1.18315
H$_2$	-0.17982	2.02905	-0.34404	H$_2$	0.97040	-0.04326	-1.48991
H$_3$	-1.68495	0.39125	-1.51500	H$_3$	1.42376	-1.76235	1.05060
H$_4$	-4.09373	-1.51284	0.57787	H$_4$	3.68479	1.60691	0.63031
H$_5$	-4.83350	0.08020	0.45126	H$_5$	4.51093	0.48966	-0.45053
H$_6$	-4.22958	-0.72806	-1.00389	H$_6$	3.00671	1.26757	-0.96493
I$_1$	1.30611	-0.15867	0.00400	I$_1$	-1.23528	0.13596	0.04816
Supplementary Table 2. Cartesian coordinates of optimized geometries of four conformers of Criegee intermediates syn-trans-, syn-cis-, anti-trans-, and anti-cis-C$_2$H$_3$C(CH$_3$)OO and dioxole predicted with the B3LYP/aug-cc-pVTZ method.

	syn-trans- C$_2$H$_3$C(CH$_3$)OO	syn-cis-C$_2$H$_3$C(CH$_3$)OO
C$_1$	-2.44486	2.28191
C$_2$	-1.25774	0.48547
C$_3$	0.02300	0.32295
C$_4$	0.28325	1.44766
H$_1$	-2.54373	-1.54785
H$_2$	-3.36098	0.00000
H$_3$	-1.20522	0.00000
H$_4$	0.90061	0.00000
H$_5$	0.90061	0.00000
H$_6$	-0.63139	-0.49474
O$_1$	1.01810	-0.87065
O$_2$	2.27167	0.00000

	anti-trans-C$_2$H$_3$C(CH$_3$)OO	anti-cis-C$_2$H$_3$C(CH$_3$)OO
C$_1$	-2.05395	1.03612
C$_2$	-0.71361	1.15505
C$_3$	0.05380	0.10647
C$_4$	-0.51097	0.43163
H$_1$	-2.64000	0.07046
H$_2$	-2.59672	1.93281
H$_3$	-0.12962	2.14761
H$_4$	-1.13347	1.02574
H$_5$	-1.13347	-0.87933
H$_6$	0.29635	-0.47916
O$_1$	1.34510	-1.14998
O$_2$	1.99034	0.61236

	dioxole	
C$_1$	-2.17104	-0.00224
C$_2$	-0.68504	-0.00172
C$_3$	0.16846	-0.01503
C$_4$	1.55813	0.02299
H$_1$	-0.08531	0.02460
H$_2$	1.36535	-0.3678
H$_3$	-2.53256	0.88493
H$_4$	-2.58656	-0.01377
H$_5$	-2.53179	-0.87664
H$_6$	-0.08485	-0.02954
O$_1$	2.09931	0.94487
O$_2$	2.17307	-0.83639
Supplementary Table 3. Cartesian coordinates of optimized geometries of nine conformers of iodoperoxy radical C$_2$H$_3$C(CH$_3$)OO predicted with the B3LYP/aug-cc-pVTZ-pp method.

	C$_2$H$_3$C(CH$_3$)OO-1		C$_2$H$_3$C(CH$_3$)OO-2			
C1	2.39257	-1.89435	-0.14418	2.41424	-1.74673	-0.51159
C2	1.62653	-0.95586	-0.68620	1.51134	-1.28223	0.34421
C3	0.97374	0.15469	0.05624	0.92411	0.08481	0.34802
C4	1.39627	0.40961	1.48068	1.08023	0.83187	1.65475
H1	2.60617	-1.93616	0.91454	2.79946	-1.15567	-1.32886
H2	2.82620	-2.67034	-0.75872	2.79081	-2.75440	-0.40769
H3	1.43329	-0.95550	-1.75188	1.14670	-1.91003	1.14748
H4	1.18327	-0.45956	2.09701	0.57522	1.79160	1.62484
H5	2.46892	0.61345	1.50515	0.66947	0.23444	2.46499
H6	0.86535	1.26549	1.88460	2.14507	0.99206	1.83936
O1	1.19603	1.32725	-0.78769	1.48731	0.80649	-0.76877
O2	0.80771	2.46346	-0.25965	1.26733	2.10188	-0.74872
I1	-1.24052	-0.23524	0.00469	-1.27818	-0.14700	-0.07948

	C$_2$H$_3$C(CH$_3$)OO-3		C$_2$H$_3$C(CH$_3$)OO-4			
C1	2.42023	-1.57657	-0.79032	-2.09404	2.05561	-0.23337
C2	1.68024	-0.47482	-0.81681	-1.45288	0.98093	-0.67437
C3	0.93571	0.07554	0.34538	-0.84861	-0.07038	0.18443
C4	1.23491	-0.48570	1.71493	-1.20903	-0.08962	1.65103
H1	2.53924	-2.18424	0.09584	-2.23902	2.25996	0.81805
H2	2.93128	-1.91350	-1.68119	-2.49535	2.77911	-0.92876
H3	1.58039	0.10246	-1.72570	-1.37242	0.81709	-1.73759
H4	0.97906	-1.54059	1.75953	-0.90779	0.83774	2.13170
H5	2.29767	-0.36570	1.93261	-2.28846	-0.21052	1.74812
H6	0.65888	0.04133	2.47131	-0.71205	-0.91681	2.15140
O1	1.16582	1.51383	0.48278	-1.11908	-1.40373	-0.40570
O2	1.05943	2.20140	-0.62909	-2.41620	-1.63141	-0.46285
I1	-1.25311	-0.17155	-0.08304	1.35622	0.02746	-0.05285

	C$_2$H$_3$C(CH$_3$)OO-5		C$_2$H$_3$C(CH$_3$)OO-6			
C1	2.63199	-0.32753	1.34212	-2.21329	1.86661	-0.13279
C2	1.58025	0.43451	1.07061	-1.35573	1.19706	0.62693
C3	0.84622	0.51248	-0.22332	-0.81042	-0.15792	0.34280
C4	0.84234	1.89870	-0.84058	-0.98690	-1.15730	1.46646
H1	3.05085	-1.02375	0.63081	-2.58662	1.47714	-1.06850
H2	3.10404	-0.27200	2.31291	-2.56987	2.83900	0.17570
H3	1.19438	1.11423	1.82078	-1.00151	1.62291	1.55827
H4	0.25453	1.91526	-1.75514	-2.05006	-1.29497	1.65900
H5	0.42496	2.61708	-0.13961	-0.51121	-0.77712	2.36771
H6	1.87048	2.18744	-1.06764	-0.54090	-2.11528	1.20931
O1	1.40540	-0.34583	-1.24590	-1.31447	-0.67671	-0.93398
O2	1.35444	-1.63359	-0.98253	-2.51365	-1.21401	-0.80801
	C\textsubscript{2}H\textsubscript{3}C(CH\textsubscript{3})IOO-7	C\textsubscript{2}H\textsubscript{3}C(CH\textsubscript{3})IOO-8				
-----	---	---				
I\textsubscript{1}	-1.27137	-0.10966	0.14967	1.36006	0.05440	-0.10917
C\textsubscript{1}	-1.34558	2.21363	-0.48362	0.93963	-2.54732	-0.33936
C\textsubscript{2}	-1.75602	1.00984	-0.12057	1.57755	-1.40093	-0.16830
C\textsubscript{3}	-0.94824	-0.12268	0.43106	1.01944	-0.05363	0.17691
C\textsubscript{4}	-1.09054	-0.28983	1.93461	1.43250	0.42365	1.55613
H\textsubscript{1}	-0.30037	2.48890	-0.49447	-0.13699	-2.62340	-0.28365
H\textsubscript{2}	-2.06028	2.96254	-0.79487	1.49325	-3.45327	-0.54332
H\textsubscript{3}	-2.81580	0.77260	-0.14826	2.66147	-1.37674	-0.24328
H\textsubscript{4}	-0.58863	-1.19407	2.27210	1.09754	1.44138	1.73165
H\textsubscript{5}	-2.15054	-0.35776	2.18794	2.52194	0.39079	1.63190
H\textsubscript{6}	-0.66345	0.56922	2.44450	1.00866	-0.23504	2.30973
O\textsubscript{1}	-1.42679	-1.39037	-0.11580	1.57779	0.82542	-0.86329
O\textsubscript{2}	-1.66091	-1.36151	-1.40884	1.45852	2.10763	-0.61295
I\textsubscript{1}	1.20987	-0.00174	-0.07243	-1.18398	0.07286	-0.00274

	C\textsubscript{2}H\textsubscript{3}C(CH\textsubscript{3})IOO-9		
C\textsubscript{1}	-0.85679	2.49716	-0.16648
C\textsubscript{2}	-1.47631	1.33291	-0.05901
C\textsubscript{3}	-0.89363	-0.01110	0.24765
C\textsubscript{4}	-1.24917	-0.52097	1.63195
H\textsubscript{1}	0.21643	2.59302	-0.07871
H\textsubscript{2}	-1.42190	3.40015	-0.35148
H\textsubscript{3}	-2.55621	1.28131	-0.16151
H\textsubscript{4}	-0.88415	-1.53528	1.77847
H\textsubscript{5}	-2.33304	-0.51140	1.74686
H\textsubscript{6}	-0.81049	0.13087	2.38376
O\textsubscript{1}	-1.39059	-0.97870	-0.77997
O\textsubscript{2}	-2.68859	-1.16469	-0.68266
I\textsubscript{1}	1.26940	-0.15094	-0.06681
Supplementary Table 4. Cartesian coordinates of optimized geometries of six conformers of iodoperoxy radical C(CH$_3$)$_2$ICHCH$_2$OO predicted with the B3LYP/aug-cc-pVTZ-pp method.

	x	y	z		x	y	z
	(Z)-C(CH$_3$)$_2$ICHCH$_2$OO-1				(Z)-C(CH$_3$)$_2$ICHCH$_2$OO-2		
C$_1$	-1.93990	-0.57964	0.47207	2.01366	-0.00210	0.56055	
C$_2$	-1.32212	0.75917	0.27465	4.01900	-0.86918	-0.17093	
C$_3$	-0.04772	1.06450	0.06597	-0.16532	1.19392	0.05182	
C$_4$	0.48084	2.45228	-0.10650	-0.96368	2.43584	-0.18200	
H$_1$	-1.25808	-1.39637	0.25046	1.49103	-0.95249	0.48647	
H$_2$	-2.35891	-0.69584	1.47152	2.51845	0.06865	1.52411	
H$_3$	-2.02274	1.58870	0.31726	1.64187	2.13308	0.31147	
H$_4$	1.20142	2.69935	0.67429	-1.45991	2.40194	-1.15277	
H$_5$	0.99309	2.55786	-1.06380	-1.74173	2.55109	0.57383	
H$_6$	-0.33814	3.17163	-0.06623	-0.31359	3.31121	-0.15097	
O$_1$	-3.05319	-0.76906	-0.46649	3.07480	-0.00079	-0.45979	
O$_2$	-4.11955	-0.09243	-0.09691	4.01900	-0.86918	-0.17093	
I$_1$	1.47432	-0.43795	-0.02478	-1.34028	-0.59120	-0.01699	
	(Z)-C(CH$_3$)$_2$ICHCH$_2$OO-3				(E)-C(CH$_3$)$_2$ICHCH$_2$OO-1		
C$_1$	1.98740	-0.27280	-0.85219	-2.57328	0.03534	0.64762	
C$_2$	1.29033	0.97901	-0.45186	-1.14017	-0.32932	0.45685	
C$_3$	0.02760	1.14266	-0.07823	-0.17255	0.52586	0.13698	
C$_4$	-0.58880	2.45343	0.29199	-0.26536	1.99478	-0.11752	
H$_1$	1.41635	-1.16882	-0.62391	-2.76358	1.10444	0.67260	
H$_2$	2.26209	-0.26390	-1.90828	-2.99397	-0.42833	1.53889	
H$_3$	1.90503	1.87504	-0.48265	-0.90496	-1.37588	0.59529	
H$_4$	-1.41382	2.70445	-0.37598	0.34686	2.54988	0.59444	
H$_5$	-0.99183	2.42042	1.30511	0.10817	2.23150	-1.11436	
H$_6$	0.15797	3.24684	0.23845	-1.29141	2.35219	-0.04467	
O$_1$	3.28769	-0.38556	-0.18185	-3.35388	-0.50669	-0.49474	
O$_2$	3.15351	-0.65805	1.09953	-4.63092	-0.37782	-0.30757	
I$_1$	-1.34273	-0.49583	0.01976	1.81399	-0.23996	-0.04844	
	(E)-C(CH$_3$)$_2$ICHCH$_2$OO-2				(E)-C(CH$_3$)$_2$ICHCH$_2$OO-3		
C$_1$	2.61026	-0.25949	-0.92265	-2.63033	0.51860	0.50438	
C$_2$	1.17265	-0.50923	-0.60978	-1.24380	-0.02135	0.37574	
C$_3$	0.28715	0.43389	-0.30052	-0.16399	0.69476	0.07926	
C$_4$	0.48469	1.90915	-0.18388	-0.05107	2.15908	-0.19607	
H$_1$	2.85268	0.78415	-1.09531	-2.70867	1.58317	0.30535	
H$_2$	2.94133	-0.86217	-1.76776	-3.06718	0.28483	1.47452	
H$_3$	0.86578	-1.54600	-0.63521	-1.16032	-1.08614	0.54748	
H$_4$	-0.15880	2.44249	-0.88488	0.59284	2.64165	0.54054	
H$_5$	0.21981	2.24708	0.81854	0.39760	2.33045	-1.17506	
H$_6$	1.51946	2.19086	-0.36967	-1.02312	2.65012	-0.17494	
O$_1$	3.48715	-0.72416	0.17047	-3.51283	-0.09460	-0.50017	
O$_2$	3.47194	0.10625	1.18924	-3.89364	-1.30122	-0.13977	
I$_1$	-1.72154	-0.18413	0.09731	1.71237	-0.32725	-0.01846	
Supplementary Table 5. Comparison of experimental vibrational wavenumbers and IR intensities of (Z)-(CH₂I)HC=C(CH₃)I (1) with those of (Z)- and (E)-(CH₂I)HC=C(CH₃)I predicted with the B3LYP/aug-cc-pVTZ-pp method.

Mode	This work (gas)	p-H₂	(Z)-conformer	(E)-conformer				
	ν/cm⁻¹	Intensity	ν/cm⁻¹	Intensity	ν/cm⁻¹	Intensity		
v₁	3100	0.6	3109	1.1				
v₂	3010	8	2982.6	7	3035	6.7	3087	0.4
v₃	2975	29	3031	2.1	3017	5.0		
v₄	2929	18	2972.4	18	3012	12.0	3023	12.1
v₅	2888	4	2824.5	15	3000	5.9	3003	4.0
v₆	2854	5	2847.9	5	2945	17.0	2953	9.4
v₇	1641	17	1641.2	20	1644	33.5	1633	69.2
v₈	1439.8	3	1453	3.5	1460	6.2		
v₉	1434	24	1432.0	29	1442	6.4	1440	4.6
v₁₀	1430.3	18	1434	12.5	1435	11.2		
v₁₁	1384	3	1381.6	1	1383	2.1	1385	6.9
v₁₂	1294	29	1299.1	41	1300	29.3	1339	2.2
v₁₃	1169		1168.6	25	1157	30.8	1149	22.2
v₁₄	1152	100	1153.0	100	1143	73.3	1134	120.9
v₁₅	1095.0	<1	1084	1.3	1059	3.8		
v₁₆	1063	24	1061.6	31	1049	31.9	1052	39.9
v₁₇	1038.2	<1	1043	1.2	1039	3.2		
v₁₈	965	2	965.3	1	957	2.7	917	4.7
v₁₉	837	20	837.9	27	853	15.3	878	12.3
v₂₀	810.6	8	806	8.6	825	1.2		
v₂₁	547.3	16	547	38.6	608	8.7		
v₂₂	530.3	10	519	11.4	509	24.3		
v₂₃	424	8.5	426	31.7				
v₂₄	410	9.9	353	11.5				
v₂₅	259	1.7	291	3.7				
v₂₆	264	3.0	257	1.2				
v₂₇	201	0.4	203	0.5				

*aHaupa et al. J. Phys. Chem. A (submitted). bPercentage IR intensities relative to the most intense band near 1152 cm⁻¹. cHarmonic vibrational wavenumber x scaled according to y = (0.9708 ±0.0159) x + (9.3 ± 20.7); see text. dIn unit of km mol⁻¹. eoverlapped with the band at 1152 cm⁻¹.
Supplementary Table 6. Vibrational wavenumbers and IR intensities of (Z)- and (E)-C₂H₃CC(CH₃)I and (Z)- and (E)-(CH₂I)CHC(CH₃) predicted with the B3LYP/aug-cc-pVTZ-pp method.

Mode	Symmetry	(Z)-C₂H₃CC(CH₃)I	(E)-C₂H₃CC(CH₃)I		
		\(\nu / \text{cm}^{-1} \)	Intensity	\(\nu / \text{cm}^{-1} \)	Intensity
\(\nu_1 \)	a'	3161	5.6	3158	6.8
\(\nu_2 \)	a'	3072	2.3	3076	2.8
\(\nu_3 \)	a'	3022	15.6	3072	4.9
\(\nu_4 \)	a'	3001	13.3	3019	10.4
\(\nu_5 \)	a'	2930	21.1	2939	14.1
\(\nu_6 \)	a'	1483	5.3	1487	0.6
\(\nu_7 \)	a'	1455	1.2	1453	0.1
\(\nu_8 \)	a'	1418	8.9	1410	23.4
\(\nu_9 \)	a'	1379	3.1	1374	7.5
\(\nu_{10} \)	a'	1261	37.0	1311	0.7
\(\nu_{11} \)	a'	1221	1.6	1214	5.6
\(\nu_{12} \)	a'	1108	35.3	1088	76.1
\(\nu_{13} \)	a'	1018	7.5	999	5.6
\(\nu_{14} \)	a'	887	10.3	888	8.3
\(\nu_{15} \)	a'	537	8.9	612	18.0
\(\nu_{16} \)	a'	438	6.2	347	2.4
\(\nu_{17} \)	a'	281	0.4	288	0.6
\(\nu_{18} \)	a'	194	0.1	225	0.2
\(\nu_{19} \)	a''	2973	9.1	2979	8.7
\(\nu_{20} \)	a''	1429	11.0	1431	10.5
\(\nu_{21} \)	a''	1013	1.6	1016	1.5
\(\nu_{22} \)	a''	930	10.4	951	9.5
\(\nu_{23} \)	a''	803	40.8	790	44.0
\(\nu_{24} \)	a''	560	2.5	555	2.0
\(\nu_{25} \)	a''	314	5.5	313	3.5
\(\nu_{26} \)	a''	219	0.4	175	0.2
\(\nu_{27} \)	a''	148	0.5	91	0.2
Mode	(Z)-(CH₂I)CHC(CH₃)	(E)-(CH₂I)CHC(CH₃)			
------	---------------------	---------------------			
	𝜈/cm⁻¹^a	Intensity^b	𝜈/cm⁻¹^a	Intensity^b	
v₁	3097	0.2	3093	0.6	
v₂	3027	4.2	3026	2.8	
v₃	2991	5.7	3025	3.5	
v₄	2968	11.4	2990	5.3	
v₅	2945	12.1	2967	11.1	
v₆	2888	22.5	2889	16.8	
v₇	1704	30.4	1696	25.2	
v₈	1441	6.0	1443	8.2	
v₉	1435	9.0	1430	9.0	
v₁₀	1417	9.0	1419	7.2	
v₁₁	1365	2.1	1365	4.9	
v₁₂	1276	0.2	1295	1.4	
v₁₃	1146	72.2	1145	67.0	
v₁₄	1129	9.3	1110	9.8	
v₁₅	1064	6.6	1031	0.1	
v₁₆	1026	1.1	1022	0.6	
v₁₇	1012	1.3	1007	4.5	
v₁₈	902	7.3	884	6.8	
v₁₉	812	5.7	821	11.6	
v₂₀	768	19.7	779	38.7	
v₂₁	509	38.0	533	41.2	
v₂₂	430	1.8	461	0.2	
v₂₃	250	10.4	364	15.9	
v₂₄	244	3.1	204	0.4	
v₂₅	203	6.4	191	3.6	
v₂₆	134	1.9	118	0.0	
v₂₇	80	0.2	62	0.6	

^aHarmonic vibrational wavenumber 𝜈 scaled according to 𝑦 = (0.9708 ± 0.0159) 𝜈 + (9.3 ± 20.7); see text.
^bIn unit of km mol⁻¹.
Supplementary Table 7. Vibrational wavenumbers and IR intensities of four conformers of Criegee intermediates C$_2$H$_3$C(CH$_3$)OO and dioxole predicted with the B3LYP/aug-cc-pVTZ method.

Mode	Symmetry	syn-trans-C$_2$H$_3$C(CH$_3$)OO Har	syn-trans-C$_2$H$_3$C(CH$_3$)OO Anharmonic	syn-cis-C$_2$H$_3$C(CH$_3$)OO Har	syn-cis-C$_2$H$_3$C(CH$_3$)OO Anharmonic		
ν_1	a'	3155	3098	3.0	3159	3113	0.8
ν_2	a'	3086	3034	0.7	3090	3037	5.3
ν_3	a'	3076	3102	4.7	3072	3012	1.1
ν_4	a'	3070	2967	1.3	3058	3001	6.9
ν_5	a'	2954	2917	22.3	2946	2909	5.6
ν_6	a'	1626	1627	3.8	1630	1634	12.7
ν_7	a'	1455	1445	14.6	1460	1440	19.7
ν_8	a'	1454	1437	22.3	1452	1449	48.1
ν_9	a'	1425	1420	15.3	1403	1394	0.1
ν_{10}	a'	1367	1365	18.2	1366	1364	23.3
ν_{11}	a'	1304	1308	6.5	1308	1319	0.4
ν_{12}	a'	1278	1282	1.3	1244	1239	26.5
ν_{13}	a'	1045	1048	34.5	1084	1086	9.2
ν_{14}	a'	1000	1004	32.4	1011	1010	12.3
ν_{15}	a'	948	947	127.4	935	934	85.5
ν_{16}	a'	792	791	0.1	794	792	2.1
ν_{17}	a'	594	596	8.7	604	604	29.1
ν_{18}	a'	490	489	8.5	479	478	5.8
ν_{19}	a'	331	333	5.1	325	313	6.7
ν_{20}	a'	259	254	8.1	232	221	5.9
ν_{21}	a''	2990	2923	0.6	2982	2914	0.8
ν_{22}	a''	1409	1396	8.9	1408	1393	9.8
ν_{23}	a''	1020	1033	0.1	1019	1017	8.9
ν_{24}	a''	1004	951	16.9	999	947	12.4
ν_{25}	a''	948	939	43.6	971	968	33.9
ν_{26}	a''	676	666	5.6	659	647	7.7
ν_{27}	a''	459	448	1.1	445	435	1.2
ν_{28}	a''	284	267	0.2	271	272	1.4
Mode	Symmetry	\(v_{29} \)	\(a'' \)	\(v_{30} \)	\(a'' \)	\(\text{anti-trans-C}_2\text{H}_3\text{C(CH}_3\text{)}\text{OO} \)	\(\text{anti-cis-C}_2\text{H}_3\text{C(CH}_3\text{)}\text{OO} \)
------	----------	-------------	-------------	-------------	-------------	------------------	------------------
		Harmonic\(^a\)	Anharmonic	Intensity\(^b\)	Harmonic\(^a\)	Anharmonic	Intensity\(^b\)
\(v_1 \)	\(a' \)	3161	3120	2.3	3196	3128	1.9
\(v_2 \)	\(a' \)	3129	3074	8.8	3071	3017	13.2
\(v_3 \)	\(a' \)	3075	2988	1.7	3059	3092	4.8
\(v_4 \)	\(a' \)	3063	3001	2.3	3057	2922	6.6
\(v_5 \)	\(a' \)	2968	2945	7.8	2951	2910	4.7
\(v_6 \)	\(a' \)	1612	1617	4.7	1602	1594	28.5
\(v_7 \)	\(a' \)	1469	1465	1.3	1480	1471	12.5
\(v_8 \)	\(a' \)	1425	1427	38.5	1423	1432	50.9
\(v_9 \)	\(a' \)	1391	1385	20.9	1419	1419	21.3
\(v_{10} \)	\(a' \)	1369	1360	3.6	1379	1373	3.0
\(v_{11} \)	\(a' \)	1338	1333	15.9	1309	1313	6.4
\(v_{12} \)	\(a' \)	1250	1246	0.5	1231	1229	22.7
\(v_{13} \)	\(a' \)	1050	1055	124.6	1081	1093	4.2
\(v_{14} \)	\(a' \)	999	1001	82.4	1014	1016	52.2
\(v_{15} \)	\(a' \)	957	954	38.3	942	938	59.8
\(v_{16} \)	\(a' \)	780	789	4.4	802	814	4.9
\(v_{17} \)	\(a' \)	625	624	6.6	622	625	4.6
\(v_{18} \)	\(a' \)	475	474	2.5	407	404	7.0
\(v_{19} \)	\(a' \)	323	331	3.2	340	338	2.8
\(v_{20} \)	\(a' \)	247	256	4.8	302	293	8.6
\(v_{21} \)	\(a'' \)	3017	2960	5.1	2996	2925	5.3
\(v_{22} \)	\(a'' \)	1439	1433	10.7	1441	1437	8.9
\(v_{23} \)	\(a'' \)	1029	1031	12.2	1028	1015	2.2
\(v_{24} \)	\(a'' \)	1025	1006	4.9	1010	991	7.1
\(v_{25} \)	\(a'' \)	962	960	38.4	999	1058	39.8
\(v_{26} \)	\(a'' \)	712	707	4.4	710	705	5.5
\(v_{27} \)	\(a'' \)	385	383	1.0	385	368	0.2
\(v_{28} \)	\(a'' \)	265	258	0.1	280	271	0.4
\(v_{29} \)	\(a'' \)	120	111	1.2	169	223	1.7
\(v_{30} \)	\(a'' \)	91	125	0.1	122	51	0.1
Mode	Symmetry	Harmonic^a	Anharmonic	Intensity^b			
------	----------	----------------------	-------------	----------------------			
v₁	a	3171	3128	0.6			
v₂	a	3052	2989	8.0			
v₃	a	3011	2946	7.1			
v₄	a	2963	2938	16.9			
v₅	a	2927	2701	37.8			
v₆	a	2895	2894	78.5			
v₇	a	1700	1696	56.9			
v₈	a	1500	1495	3.4			
v₉	a	1462	1449	8.2			
v₁₀	a	1446	1434	7.7			
v₁₁	a	1392	1379	3.8			
v₁₂	a	1341	1335	4.4			
v₁₃	a	1266	1268	40.8			
v₁₄	a	1188	1178	20.0			
v₁₅	a	1153	1115	0.2			
v₁₆	a	1056	1045	0.7			
v₁₇	a	1038	1026	5.9			
v₁₈	a	1017	1028	9.8			
v₁₉	a	1011	1001	1.1			
v₂₀	a	953	952	31.2			
v₂₁	a	906	877	6.7			
v₂₂	a	839	829	13.4			
v₂₃	a	756	760	3.2			
v₂₄	a	708	697	31.0			
v₂₅	a	622	611	2.7			
v₂₆	a	564	554	0.0			
v₂₇	a	339	331	2.2			
v₂₈	a	237	262	5.1			
v₂₉	a	173	112	1.0			
v₃₀	a	60	-888	2.1			

^aHarmonic vibrational wavenumber x scaled according to y = (0.9708 ± 0.0159) x + (9.3 ± 20.7); see text. ^bIn unit of km mol⁻¹.
Supplementary Table 8. Vibrational wavenumbers and IR intensities of nine conformers of iodoperoxy radical C$_2$H$_3$C(CH$_3$)IOO predicted with the B3LYP/aug-cc-pVTZ-pp method.

Mode	C$_2$H$_3$C(CH$_3$)IOO-1	C$_2$H$_3$C(CH$_3$)IOO-2	C$_2$H$_3$C(CH$_3$)IOO-3			
	v cm$^{-1}$	Int.b	v cm$^{-1}$	Int.b	v cm$^{-1}$	Int.b
v$_1$	3148	3.7	3157	1.8	3146	3.5
v$_2$	3083	0.3	3084	1.0	3102	1.5
v$_3$	3073	0.5	3073	0.1	3068	3.0
v$_4$	3069	2.2	3071	3.1	3062	1.8
v$_5$	3041	4.5	3034	4.4	3037	4.2
v$_6$	2961	9.8	2956	9.1	2964	8.9
v$_7$	1654	1.0	1647	1.2	1649	1.1
v$_8$	1457	4.3	1455	4.9	1456	2.2
v$_9$	1452	2.7	1442	2.1	1454	5.5
v$_{10}$	1421	15.7	1422	13.2	1420	15.8
v$_{11}$	1376	15.4	1376	13.6	1383	12.2
v$_{12}$	1305	0.1	1304	0.1	1299	0.7
v$_{13}$	1247	9.3	1205	14.3	1245	11.2
v$_{14}$	1145	4.2	1170	14.0	1155	6.4
v$_{15}$	1108	31.7	1103	10.2	1102	28.2
v$_{16}$	1054	56.8	1050	74.7	1054	50.9
v$_{17}$	1008	13.4	1020	10.0	1017	14.1
v$_{18}$	985	3.6	1002	8.2	985	4.1
v$_{19}$	954	39.3	956	37.3	953	38.6
v$_{20}$	847	11.4	870	7.3	851	11.0
v$_{21}$	767	69.8	754	61.0	735	75.2
v$_{22}$	680	12.0	686	26.3	701	6.1
v$_{23}$	569	4.7	569	6.8	594	9.7
v$_{24}$	484	27.8	522	19.6	462	20.1
v$_{25}$	416	8.3	413	10.9	423	8.2
v$_{26}$	332	2.5	329	4.0	332	0.8
v$_{27}$	286	0.6	268	0.3	268	2.3
v$_{28}$	261	0.5	259	0.4	258	0.8
v$_{29}$	249	4.9	243	6.9	246	6.4
v$_{30}$	219	4.5	222	2.7	230	1.8
v$_{31}$	213	1.0	207	0.3	215	1.8
v$_{32}$	102	0.1	95	0.4	104	0.2
v$_{33}$	89	0.2	70	0.1	96	0.1
Mode	\(\nu^a/\text{cm}^{-1}\)	Int. \(b\)	\(\nu^a/\text{cm}^{-1}\)	Int. \(b\)	\(\nu^a/\text{cm}^{-1}\)	Int. \(b\)
------	------------------	--------	------------------	--------	------------------	--------
\(v_1\)	3148	3.9	3154	2.0	3155	1.7
\(v_2\)	3083	0.2	3079	0.9	3079	1.5
\(v_3\)	3069	2.9	3069	1.9	3069	2.1
\(v_4\)	3057	3.0	3058	3.3	3053	4.0
\(v_5\)	3039	2.7	3032	4.6	3041	2.2
\(v_6\)	2969	4.0	2960	9.1	2973	3.4
\(v_7\)	1652	1.0	1648	0.9	1648	0.4
\(v_8\)	1455	2.6	1453	6.1	1455	6.7
\(v_9\)	1455	4.7	1447	2.8	1447	1.8
\(v_{10}\)	1419	16.0	1423	14.4	1421	14.2
\(v_{11}\)	1375	11.1	1381	10.9	1375	13.2
\(v_{12}\)	1306	0.3	1303	0.1	1301	0.0
\(v_{13}\)	1212	9.4	1199	14.5	1183	10.8
\(v_{14}\)	1131	15.5	1137	10.5	1129	8.7
\(v_{15}\)	1098	20.5	1104	13.9	1085	8.9
\(v_{16}\)	1059	83.9	1061	79.9	1067	107.5
\(v_{17}\)	1005	11.2	1019	7.8	1015	3.8
\(v_{18}\)	983	4.5	995	6.8	999	9.4
\(v_{19}\)	952	38.0	953	38.7	956	33.8
\(v_{20}\)	881	17.9	872	7.6	885	9.6
\(v_{21}\)	740	74.8	754	58.4	715	66.8
\(v_{22}\)	712	1.4	681	22.4	711	17.0
\(v_{23}\)	538	9.3	615	21.1	626	10.6
\(v_{24}\)	522	9.0	514	6.9	491	3.3
\(v_{25}\)	394	3.1	365	10.0	378	3.6
\(v_{26}\)	324	4.4	357	1.2	341	3.5
\(v_{27}\)	288	1.9	268	0.9	280	0.7
\(v_{28}\)	259	1.4	251	2.3	253	1.5
\(v_{29}\)	249	2.7	246	3.8	247	3.8
\(v_{30}\)	223	2.3	235	0.9	222	2.2
\(v_{31}\)	181	2.2	194	1.1	192	0.8
\(v_{32}\)	98	0.2	132	0.1	106	0.2
\(v_{33}\)	85	0.5	101	0.4	76	0.9
Mode	C₂H₃C(CH₃)IOO-7	Int.	C₂H₃C(CH₃)IOO-8	Int.	C₂H₃C(CH₃)IOO-9	Int.
------	----------------	------	----------------	------	----------------	------
	ν a/cm⁻¹		ν a/cm⁻¹		ν a/cm⁻¹	
v₁	3147	0.4	3148	3.2	3145	3.7
v₂	3067	1.8	3069	0.4	3065	1.9
v₃	3061	3.1	3067	3.2	3053	4.1
v₄	3045	3.3	3040	6.1	3051	0.3
v₅	3029	5.9	3035	3.3	3036	3.8
v₆	2958	11.0	2956	12.5	2968	4.3
v₇	1669	6.9	1670	6.2	1665	7.9
v₈	1452	4.7	1456	3.4	1455	4.5
v₉	1447	1.8	1443	1.6	1445	2.1
v₁₀	1416	21.2	1417	21.9	1416	17.5
v₁₁	1380	9.8	1373	13.0	1373	10.7
v₁₂	1301	4.0	1302	4.9	1292	5.0
v₁₃	1192	21.5	1192	37.1	1167	53.8
v₁₄	1146	15.4	1143	3.0	1129	4.7
v₁₅	1082	44.8	1085	46.6	1090	56.2
v₁₆	1060	30.8	1051	22.6	1040	14.7
v₁₇	1024	6.6	1023	10.1	1019	8.1
v₁₈	987	3.4	993	4.7	999	6.2
v₁₉	962	36.9	970	38.5	963	36.0
v₂₀	862	11.7	854	13.2	876	11.5
v₂₁	749	42.2	756	33.7	725	27.3
v₂₂	689	13.0	657	13.4	676	5.4
v₂₃	568	14.9	595	11.9	632	21.3
v₂₄	501	4.1	485	12.1	435	6.5
v₂₅	419	14.9	397	11.7	377	2.8
v₂₆	323	1.2	327	4.1	361	1.0
v₂₇	285	3.5	316	0.4	307	4.4
v₂₈	256	1.7	265	0.1	264	1.2
v₂₉	255	1.5	260	2.2	251	0.1
v₃₀	232	0.5	220	0.7	193	1.1
v₃₁	177	0.6	186	0.4	187	0.4
v₃₂	91	0.4	88	0.3	110	0.8
v₃₃	72	0.4	66	0.3	80	0.3

*a*Harmonic vibrational wavenumber ν scaled according to ν = (0.9708 ± 0.0159)x + (9.3 ± 20.7); see text. *b*In unit of km mol⁻¹.
Supplementary Table 9. Vibrational wavenumbers and IR intensities of six conformers of iodoperoxy radical C(CH$_3$)ICHCH$_2$OO predicted with the B3LYP/aug-cc-pVTZ-pp method.

Mode	(Z)-C(CH$_3$)ICHCH$_2$OO-1	(Z)-C(CH$_3$)ICHCH$_2$OO-2	(Z)-C(CH$_3$)ICHCH$_2$OO-3			
	ν a/cm$^{-1}$	Int. b	ν a/cm$^{-1}$	Int. b	ν a/cm$^{-1}$	Int. b
v1	3054	2.0	3045	6.5	3046	4.5
v2	3040	1.4	3032	1.7	3033	2.5
v3	3015	12.1	3016	11.3	3015	11.7
v4	3005	5.0	3006	4.6	3005	5.0
v5	2980	8.6	2978	6.5	2973	11.5
v6	2948	13.0	2948	12.8	2948	13.8
v7	1668	24.7	1668	32.9	1669	23.6
v8	1453	4.1	1453	4.6	1453	4.4
v9	1439	4.8	1450	6.1	1439	5.4
v10	1435	12.9	1434	12.8	1435	12.4
v11	1384	3.0	1384	3.5	1384	3.0
v12	1337	4.6	1343	18.5	1338	7.4
v13	1272	44.4	1282	42.3	1280	40.8
v14	1239	7.0	1196	10.9	1234	9.4
v15	1137	38.1	1154	9.2	1127	21.4
v16	1113	23.7	1114	39.8	1106	34.0
v17	1057	8.5	1065	17.9	1061	7.6
v18	1045	0.9	1045	0.6	1045	0.6
v19	1015	11.4	1003	3.6	1012	6.0
v20	936	23.8	951	22.8	948	13.5
v21	837	21.6	862	16.0	860	35.9
v22	820	13.7	811	9.7	796	8.5
v23	563	2.3	582	35.5	566	6.6
v24	517	18.7	462	2.8	506	12.6
v25	428	6.9	427	8.8	432	10.5
v26	421	3.2	407	1.2	419	3.6
v27	347	3.9	344	4.9	330	5.1
v28	276	0.7	275	1.1	275	1.0
v29	214	0.4	209	0.4	217	1.0
v30	164	2.3	184	1.6	185	1.4
v31	144	0.4	122	1.4	145	1.6
v32	82	3.2	66	0.1	75	0.9
v33	44	3.2	41	2.4	34	2.1
Mode	(E)-C(CH₃)ICHCH₂OO-1	(E)-C(CH₃)ICHCH₂OO-2	(E)-C(CH₃)ICHCH₂OO-3			
------	----------------------	---------------------	---------------------			
v₁	3093 cm⁻¹ 0.6	3093 cm⁻¹ 0.9	3094 cm⁻¹ 0.4			
v₂	3049 cm⁻¹ 10.2	3059 cm⁻¹ 7.1	3058 cm⁻¹ 8.7			
v₃	3027 cm⁻¹ 12.8	3032 cm⁻¹ 12.0	3024 cm⁻¹ 15.5			
v₄	3008 cm⁻¹ 3.3	3008 cm⁻¹ 3.6	3007 cm⁻¹ 3.8			
v₅	2988 cm⁻¹ 9.0	2992 cm⁻¹ 17.0	2988 cm⁻¹ 13.2			
v₆	2957 cm⁻¹ 7.2	2958 cm⁻¹ 7.0	2956 cm⁻¹ 8.9			
v₇	1652 cm⁻¹ 60.3	1650 cm⁻¹ 52.1	1654 cm⁻¹ 43.9			
v₈	1464 cm⁻¹ 6.1	1459 cm⁻¹ 7.9	1456 cm⁻¹ 7.7			
v₉	1443 cm⁻¹ 4.4	1438 cm⁻¹ 4.2	1438 cm⁻¹ 10.4			
v₁₀	1436 cm⁻¹ 11.7	1434 cm⁻¹ 10.5	1435 cm⁻¹ 2.8			
v₁₁	1385 cm⁻¹ 6.4	1386 cm⁻¹ 6.1	1386 cm⁻¹ 6.5			
v₁₂	1351 cm⁻¹ 27.4	1346 cm⁻¹ 10.5	1345 cm⁻¹ 9.0			
v₁₃	1314 cm⁻¹ 26.3	1312 cm⁻¹ 14.4	1303 cm⁻¹ 8.6			
v₁₄	1195 cm⁻¹ 26.4	1239 cm⁻¹ 15.3	1244 cm⁻¹ 22.8			
v₁₅	1149 cm⁻¹ 8.9	1126 cm⁻¹ 25.2	1136 cm⁻¹ 29.4			
v₁₆	1102 cm⁻¹ 70.7	1106 cm⁻¹ 59.9	1102 cm⁻¹ 60.5			
v₁₇	1061 cm⁻¹ 14.6	1053 cm⁻¹ 4.2	1053 cm⁻¹ 7.5			
v₁₈	1042 cm⁻¹ 0.6	1042 cm⁻¹ 0.6	1041 cm⁻¹ 0.7			
v₁₉	966 cm⁻¹ 5.1	984 cm⁻¹ 12.4	981 cm⁻¹ 8.5			
v₂₀	931 cm⁻¹ 17.4	910 cm⁻¹ 7.5	917 cm⁻¹ 9.2			
v₂₁	875 cm⁻¹ 17.8	872 cm⁻¹ 26.0	856 cm⁻¹ 14.8			
v₂₂	829 cm⁻¹ 6.1	794 cm⁻¹ 15.7	825 cm⁻¹ 17.2			
v₂₃	610 cm⁻¹ 10.6	612 cm⁻¹ 16.9	609 cm⁻¹ 19.9			
v₂₄	515 cm⁻¹ 35.1	544 cm⁻¹ 2.8	541 cm⁻¹ 0.6			
v₂₅	447 cm⁻¹ 1.8	442 cm⁻¹ 11.9	440 cm⁻¹ 9.5			
v₂₆	350 cm⁻¹ 5.0	371 cm⁻¹ 10.6	391 cm⁻¹ 7.7			
v₂₇	305 cm⁻¹ 0.6	318 cm⁻¹ 1.7	290 cm⁻¹ 1.6			
v₂₈	279 cm⁻¹ 2.0	286 cm⁻¹ 2.2	274 cm⁻¹ 1.6			
v₂₉	211 cm⁻¹ 0.2	213 cm⁻¹ 0.1	215 cm⁻¹ 0.9			
v₃₀	180 cm⁻¹ 0.3	179 cm⁻¹ 0.2	182 cm⁻¹ 0.2			
v₃₁	90 cm⁻¹ 1.9	130 cm⁻¹ 0.4	121 cm⁻¹ 0.4			
v₃₂	70 cm⁻¹ 0.0	64 cm⁻¹ 1.7	67 cm⁻¹ 2.5			
v₃₃	43 cm⁻¹ 3.1	50 cm⁻¹ 2.6	53 cm⁻¹ 1.7			

*aHarmonic vibrational wavenumber x scaled according to \(y = (0.9708 \pm 0.0159) x + (9.3 \pm 20.7) \); see text. *bIn unit of km mol⁻¹.
Supplementary Table 10. Rotational parameters and ratios of types for each vibrational state of four conformers of Criegee intermediates MKVO predicted with the B3LYP/aug-cc-pVTZ method.

v_i	Sym.	syn-trans-C$_2$H$_3$C(CH$_3$)OO	syn-cis-C$_2$H$_3$C(CH$_3$)OO						
		A''/A''	B'/B''	C'/C''	type ratio	A''/A''	B'/B''	C'/C''	type ratio
v_1	a'	0.99950 0.99946 0.99950	$a/b = 7/93$	0.99986 0.99933 0.99952	$a/b = 86/14$				
v_2	a'	0.99930 0.99940 0.99939	$a/b = 98/2$	0.99980 0.99894 0.99922	$a/b = 25/75$				
v_3	a'	0.99913 0.99952 0.99944	$a/b = 11/89$	0.99990 0.99938 0.99952	$a/b = 18/82$				
v_4	a'	0.99909 0.99966 0.99957	$a/b = 37/63$	0.99945 0.99999 0.99991	$a/b = 1/99$				
v_5	a'	0.99998 0.99969 0.99989	$a/b = 4/96$	1.00016 0.99981 1.00006	$a/b = 65/35$				
v_6	a'	1.00016 0.99822 0.99848	$a/b = 71/29$	0.99852 0.99918 0.99890	$a/b = 64/36$				
v_7	a'	0.99972 0.99964 0.99960	$a/b = 2/98$	0.99859 0.99936 0.99917	$a/b = 96/4$				
v_8	a'	0.99797 0.99857 0.99893	$a/b = 99/1$	0.99994 0.99737 0.99948	$a/b = 33/67$				
v_9	a'	1.00039 0.99924 0.99917	$a/b = 27/73$	0.99938 0.99960 1.00011	$a/b = 66/4$				
v_{10}	a'	0.99128 0.99982 0.99923	$a/b = 1/99$	0.99483 0.99936 0.99868	$a/b = 76/24$				
v_{11}	a'	0.99955 0.99859 0.99817	$a/b = 41/59$	0.99966 1.00025 0.99965	$a/b = 60/40$				
v_{12}	a'	0.99972 1.00023 0.99891	$a/b = 97/3$	0.99930 0.99850 0.99765	$a/b = 52/48$				
v_{13}	a'	1.00153 1.00087 0.99958	$a/b = 89/11$	1.00174 0.99998 0.99911	$a/b = 31/69$				
v_{14}	a'	0.99851 0.99864 0.99925	$a/b = 88/12$	0.99933 0.99777 0.99945	$a/b = 93/7$				
v_{15}	a'	1.00075 0.99795 0.99812	$a/b = 95/5$	1.00008 0.99698 0.99807	$a/b = 63/37$				
v_{16}	a'	0.99779 0.99940 0.99862	$a/b = 99/1$	0.99912 0.99895 0.99844	$a/b = 84/16$				
v_{17}	a'	1.00076 0.99943 0.99926	$a/b = 99/1$	0.99857 0.99926 0.99910	$a/b = 90/10$				
v_{18}	a'	1.00058 0.99957 0.99963	$a/b = 43/5$	1.00187 0.99984 0.99954	$a/b = 99/1$				
v_{19}	a'	0.99927 0.99987 0.99865	$a/b = 42/58$	0.99755 1.00223 0.99952	$a/b = 1/99$				
v_{20}	a'	1.00039 0.99918 0.99869	$a/b = 90/10$	0.99860 0.99969 0.99842	$a/b = 74/26$				
v_{21}	a''	0.99909 0.99966 0.99957	c	1.00091 0.99973 1.00014	c				
v_{22}	a''	1.00878 0.99964 1.00024	c	1.00587 0.99975 1.00026	c				
v_{23}	a''	1.00070 1.00069 0.99997	c	0.99898 0.99953 0.99997	c				
v_{24}	a''	0.99883 0.99864 1.00018	c	0.99865 0.99981 1.00029	c				
v_{25}	a''	0.99682 0.99944 1.00018	c	0.99891 0.99928 1.00002	c				
v_{26}	a''	1.00063 0.99996 1.00022	c	1.00070 1.00002 1.00041	c				
v_{27}	a''	0.99781 1.00023 1.00054	c	0.99816 1.00063 1.00086	c				
v_{28}	a''	1.00319 1.00070 1.00056	c	0.99974 1.00026 1.00043	c				
v_{29}	a''	0.99495 0.99929 0.99902	c	0.99279 1.00110 0.99903	c				

$A"=0.2887$ cm$^{-1}$, $B"=0.0785$ cm$^{-1}$, $C"=0.0624$ cm$^{-1}$, $A"'=0.2171$ cm$^{-1}$, $B"'=0.0916$ cm$^{-1}$, $C"'=0.0652$ cm$^{-1}$
v	Sym.	a''	A''/A''	B'/B''	C'/C''	type ratio	A''/A''	B'/B''	C'/C''	type ratio
v_1	a'	0.99904	0.99988	0.99962	$a/b = 8/92$	0.99695	1.00052	0.99899	$a/b = 13/87$	
v_2	a'	0.99910	0.99888	0.99897	$a/b = 75/25$	0.99958	0.99958	0.99960	$a/b = 2/92$	
v_3	a'	0.99875	1.00012	0.99963	$a/b = 93/7$	1.00002	0.99953	0.99976	$a/b = 99/1$	
v_4	a'	0.99930	1.00015	0.99991	$a/b = 50/50$	1.00004	0.99965	0.99987	$a/b = 77/23$	
v_5	a'	0.99965	0.99985	0.99992	$a/b = 67/33$	0.99948	1.00002	0.99996	$a/b = 48/52$	
v_6	a'	1.00081	0.99765	0.99857	$a/b = 2/98$	1.00094	0.99783	0.99915	$a/b = 86/14$	
v_7	a'	0.99906	1.00031	0.99992	$a/b = 13/87$	0.99894	0.99864	0.99898	$a/b = 99/1$	
v_8	a'	0.99991	0.99967	1.00061	$a/b = 62/38$	0.99921	0.99944	1.00060	$a/b = 74/26$	
v_9	a'	0.99566	0.99930	1.00049	$a/b = 1/99$	0.99970	1.00026	0.99970	$a/b = 99/1$	
v_{10}	a'	0.99812	0.99790	0.99565	$a/b = 39/61$	0.99980	0.99671	0.99766	$a/b = 64/36$	
v_{11}	a'	0.99778	0.99904	0.99755	$a/b = 27/73$	1.00138	0.99962	0.99999	$a/b = 97/3$	
v_{12}	a'	1.00089	1.00045	0.99966	$a/b = 5/95$	0.99863	0.99812	0.99731	$a/b = 67/33$	
v_{13}	a'	0.99930	1.00188	0.99933	$a/b = 96/4$	1.00153	1.00116	0.99945	$a/b = 92/8$	
v_{14}	a'	0.99945	0.99673	0.99914	$a/b = 91/9$	0.99944	0.99876	0.99892	$a/b = 20/80$	
v_{15}	a'	0.99923	0.99924	0.99903	$a/b = 98/2$	0.99872	0.99874	0.99840	$a/b = 1/99$	
v_{16}	a'	0.99782	0.99961	0.99844	$a/b = 96/4$	0.99913	0.99942	0.99850	$a/b = 99/1$	
v_{17}	a'	0.99979	0.99941	0.99920	$a/b = 59/41$	0.99922	0.99910	0.99911	$a/b = 72/28$	
v_{18}	a'	1.00123	0.99981	0.99965	$a/b = 44/56$	1.00025	1.00152	1.00082	$a/b = 27/73$	
v_{19}	a'	1.00128	1.00161	0.99945	$a/b = 9/91$	1.00561	1.00069	0.99957	$a/b = 91/9$	
v_{20}	a'	1.00220	0.99995	0.99807	$a/b = 52/48$	0.99666	1.00169	0.99645	$a/b = 11/89$	
v_{21}	a''	0.99987	0.99987	0.99994	c	0.99946	1.00026	0.99999	c	
v_{22}	a''	1.00344	0.99967	1.00011	c	0.99985	1.00264	1.00013	c	
v_{23}	a''	1.00060	1.00068	0.99997	c	0.99957	0.99894	0.99974	c	
v_{24}	a''	0.99914	0.99934	0.99979	c	0.99831	0.99907	0.99991	c	
v_{25}	a''	0.99749	0.99901	0.99992	c	1.00013	0.99792	1.00032	c	
v_{26}	a''	0.99991	0.99939	1.00015	c	0.99949	0.99961	1.00026	c	
v_{27}	a''	0.99896	1.00089	1.00106	c	1.00348	0.99808	1.00157	c	
v_{28}	a''	0.99839	0.99794	1.00071	c	0.99461	0.99943	1.00069	c	
v_{29}	a''	0.99079	1.00483	1.00274	c	0.99619	1.00094	1.00129	c	
v_{30}	a''	0.99308	1.00021	0.99946	c	1.00128	0.99783	1.00012	c	

$A''=0.1841$ cm$^{-1}$, $B''=0.0991$ cm$^{-1}$, $C''=0.0652$ cm$^{-1}$
$A''=0.1582$ cm$^{-1}$, $B''=0.1214$ cm$^{-1}$, $C''=0.0696$ cm$^{-1}$
Supplementary Table 11. Comparison of observed vibrational wavenumbers of (Z)-C₂H₃C(CH₃)I (2) in region 800–1450 cm⁻¹ with those calculated with the B3LYP/aug-cc-pVTZ-pp method.

Mode	Sym.	Experiment	Calculation	Mode description
		v/cm⁻¹	v/cm⁻¹	
		Intensity	Intensity	
			a	
v₈	a’	1406	1418	C²H bend/C²C³ str.
		13	8.9	
v₉	a’	1379	1221	C⁴H₃ umbrella
		3.1	1.6	
v₁₀	a’	1261	1261	C²/C³ str./C²H bend
		38	37.0	
v₁₁	a’	1221	1108	C¹C² str.
		1.6	35.3	
v₁₂	a’	1109	1108	C³C⁴ str./C¹C²C³ bend
		100	35.3	
v₁₃	a’	1019	1018	CH ip bend/C⁴H₂ wag
		22	7.5	
v₁₄	a’	873	887	C¹H₂ ip bend/C³I str.
		16	10.3	
v₂₀	a”	1429	1030	C⁴H₂ twist
		11.0	10.4	
v₂₁	a”	1013	1030	C⁴H₂ rock/C²C³C⁴ oop def.
		1.6	10.4	
v₂₂	a”	925	930	C²H oop bend
		8	10.4	
v₂₃	a”	803		C¹H₂ wag
		40.8		

a Harmonic vibrational wavenumber x scaled according to (0.9708 ± 0.0159)x + (9.3 ± 20.7); see text. b Percentage IR intensities relative to the most intense band near 1109 cm⁻¹. c In unit of km mol⁻¹. d Approximate mode description. str.: stretch; def.: deform; ip: in-plane; oop: out-of-plane.
Supplementary Table 12. Comparison of observed vibrational wavenumbers of syn-trans-C_2H_3C(CH_3)OO (3) in region 800–1500 cm\(^{-1}\) with those calculated with the B3LYP/aug-cc-pVTZ method.

Mode	Sym.	Experiment \(\nu /\text{cm}^{-1}\)	Int.\(^b\)	Harmonic\(^a\) \(\nu /\text{cm}^{-1}\)	Int.\(^c\)	Anharmonic \(\nu /\text{cm}^{-1}\)	Mode description\(^d\)
\(v_7\)	a’	1455	14.6	1445		1437	asym. C(2)C(3)C(4) str.
\(v_8\)	a’	1454	22.3				C(3)O str.
\(v_9\)	a’	1416	12	1425	15.3	1420	C(1)H_2 scissor
\(v_{10}\)	a’	1346	7	1367	18.2	1365	C(4)H_3 umbrella
\(v_{11}\)	a’	1304	6.5	1308			C(2)C(3) str./HC(1)C(2) bend
\(v_{12}\)	a’	1278	1.3	1282			C(2)H ip bend
\(v_{13}\)	a’	1060	45	1045	34.5	1048	CH ip bend/C(4)H_3 wag
\(v_{14}\)	a’	987	44	1000	32.4	1004	CH ip bend
\(v_{15}\)	a’	948	100	948	127.4	947	OO str.
\(v_{16}\)	a’	792	0.1	791			sym. C(2)C(3)C(4) str.
\(v_{22}\)	a''	1383	10	1409	8.9	1396	C(4)H_3 def.
\(v_{23}\)	a''	1020	0.1	1033			oop def.
\(v_{24}\)	a''	1004	16.9	951			C(2)H oop bend
\(v_{25}\)	a''	916/908	15	948	43.6	939	C(1)H_2 wag

\(^a\)Harmonic vibrational wavenumber \(x\) scaled according to \((0.9708 \pm 0.0159) x + (9.3 \pm 20.7)\); see text. \(^b\)Percentage IR intensities relative to the most intense band near 948 cm\(^{-1}\). \(^c\)In unit of km mol\(^{-1}\). \(^d\)Approximate mode description. str.: stretch; def.: deform; ip: in-plane; oop: out-of-plane.
Supplementary Table 13. Comparison of observed vibrational wavenumbers of syn-cis-C$_2$H$_3$C(CH$_3$)OO in region 800–1500 cm$^{-1}$ with those calculated with the B3LYP/aug-cc-pVTZ method.

Mode	Sym.	Experiment \(\nu / \text{cm}^{-1} \)	Harmonica \(\nu / \text{cm}^{-1} \)	Int.b	Anharmonic \(\nu / \text{cm}^{-1} \)	Mode descriptionc
\(\nu_7 \)	a’	1460	19.7	1440	C(3)O str.	
\(\nu_8 \)	a’	1452	48.1	1449	asym. C(2)C(3)C(4) str.	
\(\nu_9 \)	a’	1403	0.1	1394	C(1)H$_2$ scissor/ C(4)H$_3$ umbrella	
\(\nu_{10} \)	a’	1366	23.3	1364	C(4)H$_3$ umbrella	
\(\nu_{11} \)	a’	1308	0.4	1319	C(1)H/C(2)H iph. bend	
\(\nu_{12} \)	a’	1243	26.5	1239	C(2)C(3) str./C(2)H ip bend	
\(\nu_{13} \)	a’	1084	9.2	1086	CH ip bend	
\(\nu_{14} \)	a’	1011	12.3	1010	C(4)H$_3$ wag/CH ip bend	
\(\nu_{15} \)	a’	935	85.5	934	OO str.	
\(\nu_{16} \)	a’	794	2.1	792	sym. C(2)C(3)C(4) str.	
\(\nu_{22} \)	a’	1408	9.8	1393	C(4)H$_3$ def.	
\(\nu_{23} \)	a’	1031	8.9	1017	oop def.	
\(\nu_{24} \)	a’	999	12.4	947	C(2)H oop bend	
\(\nu_{25} \)	a’	980	33.9	968	C(1)H$_2$ wag	

aHarmonic vibrational wavenumber \(\nu \) scaled according to \((0.9708 \pm 0.0159) \times (9.3 \pm 20.7)\); see text. bIn unit of km mol$^{-1}$. cApproximate mode description. str.: stretch; def.: deform; ip: in-plane; oop: out-of-plane; iph: in-phase. dOverlapped with syn-trans-MVKO.
Supplementary Table 14. Comparison of observed vibrational wavenumbers of C$_2$H$_3$C(CH$_3$)IOO (4) in region 800‒1500 cm$^{-1}$ with C$_2$H$_3$C(CH$_3$)IOO-1 and C$_2$H$_3$C(CH$_3$)IOO-2 calculated with the B3LYP/aug-cc-pVTZ-pp method.

Mode	Experiment	C$_2$H$_3$C(CH$_3$)IOO-1a	C$_2$H$_3$C(CH$_3$)IOO-2a	Mode descriptiond
v$_8$	1457 4.3	1455 4.9	C4H$_3$ def.	
v$_9$	1452 2.7	1442 2.1	C4H$_3$ def.	
v$_{10}$	1421 15.7	1422 13.2	C1H$_2$ scissor	
v$_{11}$	1375 53	1376 15.4	C4H$_3$ umbrella	
v$_{12}$	1305 0.1	1304 0.1	HC2C1 bend	
v$_{13}$	1213 53	1247 9.3	C2C3 str.	
v$_{14}$	1145 4.2	1170 14.0	OO str.	
v$_{15}$	1108 100	1108 31.7	1103 10.2	CH ip bend/C4H$_2$ wag
v$_{16}$	1063 80	1054 56.8	1050 74.7	C3C4 str./C4H$_2$ wag
v$_{17}$	1008 13.4	1020 10.0	C2H oop bend	
v$_{18}$	986 47	985 3.6	1002 8.2	CH ip bend/C4H$_2$ wag
v$_{19}$	954 39.3	956 37.3	C1H$_2$ wag	
v$_{20}$	885 100	847 11.4	870 7.3	C2C3 str.

aHarmonic vibrational wavenumber x scaled according to $(0.9708 \pm 0.0159) x + (9.3 \pm 20.7)$; see text. bPercentage IR intensities relative to the most intense band near 1109 cm$^{-1}$. cIn unit of km mol$^{-1}$. dApproximate mode description. str.: stretch; def.: deform; ip: in-plane; oop: out-of-plane.
Supplementary Table 15. Summary on estimates of concentrations of species in varied experiments.

Description	Unit	Expt. 1	Expt. 2	Expt. 3	Expt. 4				
1 Pressure of (Z)-(CH₂I)HC=C(CH₃)I (1)	mTorr	40	40	35	42				
2 Pressure of O₂	Torr	35	82	246	347				
3 Probed period	µs	0‒5	0‒5	0‒5	12.5‒25				
4 Integrated absorbance 1130–1190 cm⁻¹ for (1)	cm⁻¹	0.35	± 0.02a	0.33	± 0.02	0.11	± 0.01	0.081	± 0.004
5 Integrated absorbance, B₆ (920–960 cm⁻¹) for (3)	cm⁻¹	0.12	± 0.01	0.10	± 0.01	0.028	± 0.002	0.17	± 0.001
6 Integrated absorbance, C₃ (1100–1120 cm⁻¹) for (4)	cm⁻¹	0.021	± 0.002	0.019	± 0.002	0.011	± 0.001	0.009	± 0.001
7 Integrated absorbance, C₆ (862–907 cm⁻¹) for (4)	cm⁻¹	0.027	± 0.003	0.025	± 0.003	0.015	± 0.002	0.018b	± 0.002
8 Loss of (1) from raw 4 upon irradiation	10¹³c	34	± 2d	32	± 2	11	± 1	7.9	± 0.4
9 (3) after irradiation, from row 5	10¹³c	9.6	± 1	8.0	± 0.8	2.2	± 0.2	1.4	± 0.1
10 (4) after irradiation, from row 6	10¹³c	10.5	± 1.0	9.5	± 1.0	5.5	± 0.6	4.5	± 0.5
11 (4) from after irradiation, row 7	10¹³c	15.4	± 1.7	14.3	± 1.7	8.6	± 1.1	10.3b	± 1.1
12 (3) from rows 8 & 9, relative to experiment 1	1.00	± 0.15e	0.89	0.71	± 0.12	0.63	± 0.09		
13 (4) from rows 8 & 10, relative to experiment 1	1.00	± 0.16	0.96	1.62	± 0.29	1.84	± 0.30		
14 (4) from rows 8 & 11s, relative to experiment 1	1.00	± 0.18	0.97	1.73	± 0.35	2.87b	± 0.49		

*Error bars reflect mainly uncertainties in baseline. *b*Might be interfered by an unknown band appeared at high pressure. *c*In unit of molecule cm⁻³. *d*Error bars reflect only the error from integration, but not the error due to interference of other species, which is difficult to estimate. *e*Error bars reflect propagated errors from numbers in two rows.
Supplementary Fig. 1 Geometries of conformers of methyl vinyl ketone oxide (MVKO) and dioxole predicted with the B3LYP/aug-cc-pVTZ method. (a) syn-trans-$\text{C}_2\text{H}_3\text{C}(\text{CH}_3)\text{OO}$ (3). (b) syn-cis-$\text{C}_2\text{H}_3\text{C}(\text{CH}_3)\text{OO}$. (c) anti-trans-$\text{C}_2\text{H}_3\text{C}(\text{CH}_3)\text{OO}$. (d) anti-cis-$\text{C}_2\text{H}_3\text{C}(\text{CH}_3)\text{OO}$. (e) dioxole. Bond lengths (black) are in Å and angles (blue) are in degree; Φ is the dihedral angle.
Supplementary Fig. 2 Geometries of precursors (Z)-(E)-(CH2I)HC=C(CH3)I and (Z)-(E)- iodoalkyl radicals C2H3C(CH3)I and (CH2I)CHC(CH3) predicted with the B3LYP/aug-cc-pVTZ-pp method. (a) (Z)-(CH2I)HC=C(CH3)I. (b) (E)-(CH2I)HC=C(CH3)I. (c) (Z)-C2H3C(CH3)I. (d) (E)-C2H3C(CH3)I. (e) (Z)-(CH2I)CHC(CH3). (f) (E)-(CH2I)CHC(CH3). Bond lengths (black) are in Å and angles (blue) are in degree; \(\Phi \) is the dihedral angle.
Supplementary Fig. 3 Geometries of nine conformers of iodoperoxy radicals $C_2H_5C(CH_3)IOO$ predicted with the B3LYP/aug-cc-pVTZ-pp method. Bond lengths (black) are in Å and angles (blue) are in degree; Φ is the dihedral angle.
Supplementary Fig. 4 Geometries of six conformers of iodoperoxy radicals C(CH₃)ICHCH₂OO predicted with the B3LYP/aug-cc-pVTZ-pp method. Bond lengths (black) are in Å and angles (blue) are in degree; Φ is the dihedral angle.
Supplementary Fig. 5 Comparison of IR spectra of (Z)-CH$_2$IHC=C(CH$_3$)$_2$ (1) in the gaseous phase and in solid p-H$_2$ with quantum-chemical calculations. (a) Gaseous spectrum. (b) spectrum in solid p-H$_2$. (c) stick IR spectrum predicted with the B2PLYP-D3/aug-cc-pVTZ-pp method. (d) stick IR spectrum predicted with the B3LYP/aug-cc-pVTZ-pp method.
Supplementary Fig. 6 Temporal evolution of observed spectra and processed spectra in region 1450‒850 cm\(^{-1}\) at resolution 1.0 cm\(^{-1}\) upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodobut-2-ene/N\(_2\) (0.03/75 Torr) and comparison with predicted stick spectra. (a) Absorption spectrum before photolysis. (b) Difference spectrum recorded 0‒3 µs after photolysis. (c) Expanded spectrum of (b) with negative bands truncated. (d) Expanded difference spectrum recorded 10‒15 µs after photolysis. (e) Spectrum of (c) with absorption bands of precursor (1) added back to eliminate negative bands. Grey areas in (c)–(e) represent regions of possible interference from the absorption of precursor (1). New features in group A are marked A\(_1\)–A\(_6\).
Supplementary Fig. 7 Comparison of IR spectra of (Z)-C₂H₃C(CH₃)I (2) in the gaseous phase with quantum-chemical calculations. (a) (Z)-C₂H₃C(CH₃)I in the gaseous phase. (b) Stick IR spectrum of (Z)-C₂H₃C(CH₃)I. (c) Stick IR spectrum of (E)-C₂H₃C(CH₃)I predicted with the B3LYP/aug-cc-pVTZ-pp method. Grey areas represent regions of possible interference from absorption of the parent molecules.
Supplementary Fig. 8 Temporal evolution of observed and processed spectra in region 1450‒850 cm⁻¹ at resolution 0.5 cm⁻¹ upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O₂ (0.04/35 Torr). Difference spectra recorded 0‒5 µs (a), 5–10 µs (b), and 30–35 µs (c) after irradiation; the absorption of the precursor is shown on a reduced scale and shifted upward in (a). (d) Spectrum of (Z)-C₂H₃C(CH₃)I (2) taken from Supplementary Figure 6(e). (e) Absorption spectrum of methyl vinyl ketone (MVK); (f)‒(h) processed spectra of (a)‒(c) with bands of (2) and MVK removed and those of the precursor (1) added back. Grey areas represent regions of possible interference from absorption of the parent molecules. New features are marked B₁–B₇ in (g).
(a) Major resonance structures of MVKO

(b) Frontier-orbital diagrams showing the delocalization over the CCCOO skeleton

Supplementary Fig. 9 Resonance structures and frontier orbitals of syn-trans-MVKO. The electron density isovalues are 0.01 e/Å³.
Supplementary Fig. 10 Temporal evolution of observed and processed spectra in region 1450‒850 cm⁻¹ at resolution 1.0 cm⁻¹ upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O₂ (0.042/347 Torr). Difference spectra recorded 0‒25 µs (a), 25‒50 µs (b), and 50‒100 µs (c) after irradiation; the absorption of the precursor is shown on a reduced scale in (a). (d) Spectrum of MVKO (3) taken from Figure 3(a) of main text. (e) Absorption spectrum of methyl vinyl ketone (MVK). (f)‒(h) processed spectra of (a)‒(c) with bands of (3) and MVK removed and those of the precursor (1) added back. Grey areas represent regions of possible interference from absorption of the parent molecules. New features are marked C₁‒C₆ in (f).
Supplementary Fig. 11 Temporal evolution of observed and processed spectra in region 1450–850 cm\(^{-1}\) at resolution 1.0 cm\(^{-1}\) upon photolysis at 248 nm of a flowing mixture of (Z)-1,3-diiodo-but-2-ene/O\(_2\) (0.035/236 Torr). Difference spectra recorded 0–10 \(\mu\)s (a), 10–20 \(\mu\)s (b), and 20–30 \(\mu\)s (c) after irradiation; the absorption of the precursor is shown on a reduced scale in (a). (d) Spectrum of MVKO (3) taken from Figure 3(a) of main text. (e) Absorption spectrum of methyl vinyl ketone (MVK). (f)–(h) processed spectra of (a)–(c) with bands of (3) and MVK removed and those of the precursor (1) added back. Grey areas represent regions that might suffer interference from absorption of the parent molecules. New features are marked \(C_1\)–\(C_6\) in (f).
Supplementary Fig. 12 Comparison of bands in group C with stick IR spectra of nine conformers of iodoperoxy radical $\text{C}_2\text{H}_3\text{C}(\text{CH}_3)\text{IOO}$. (a) Spectrum taken from Supplementary Figure 10(g); grey areas represent regions of possible interference from absorption of the precursor. (b)–(j) Stick spectra of nine conformers simulated according to scaled harmonic vibrational wavenumbers and IR intensities calculated with the B3LYP/aug-cc-pVTZ-pp method.
Supplementary Fig. 13 Comparison of bands in group C with stick IR spectra of six conformers of iodoperoxy radical C(CH₃)ICCH₂OO. (a) Spectrum taken from Supplementary Figure 10(g); grey areas represent regions of possible interference from absorption of the precursor. (b)–(g) Stick spectra of six conformers simulated according to scaled harmonic vibrational wavenumbers and IR intensities calculated with the B3LYP/aug-cc-pVTZ-pp method.
Supplementary Fig. 14 Temporal profiles of species upon photolysis at 248 nm of a mixture of (Z)-(CH₂I)HC=C(CH₃)I (0.04 Torr) and O₂ (35 Torr) and a mixture of (Z)-(CH₂I)HC=C(CH₃)I (0.04 Torr) and O₂ (347 Torr). (a) Criegee intermediate MVKO (3) integrated over region 920–960 cm⁻¹ (blue circles, B₆ band) and iodoalkyl radical (2) integrated over region 1260–1270 cm⁻¹ (black triangles). (b) MVKO (3) (blue circles), iodoperoxy adduct (4) integrated over 1100–1120 cm⁻¹ (black triangle, C₃ band) and 862–907 cm⁻¹ (red inverted triangle, C₆ band), and methyl vinyl ketone (MVK) integrated over 1250–1270 cm⁻¹ (pink diamonds).
Supplementary References

1. Haupa, K. A., Chen, K.-P., Li, Y.-K. & Lee, Y.-P. Infrared spectra of (Z)- and (E)-C2H3C(CH3)I radicals produced upon photodissociation of (Z)- and (E)-(CH2I)HC=C(CH3)I in solid para- hydrogen. *J. Phys. Chem. A* **124**, 5887–5895 (2020).

2. Barber, V. P., Pandit, S., Green, A. M., Trongsiriwat, N., Walsh, P. J., Klippenstein, S. J. & Lester, M. I. Four-carbon Criegee intermediate from isoprene ozonolysis: methyl vinyl ketone oxide synthesis, infrared spectrum, and OH production. *J. Am. Chem. Soc.* **140**, 10866–10880 (2018).

3. Western, C. M. *PGOPHER, a Program for Simulating Rotational Structure* (University of Bristol UK, 2010) version 10.1.183 http://pgopher.chm.bris.ac.uk.

4. Huang, Y.-H., Chen, L.-W. & Lee, Y.-P. Simultaneous infrared detection of the ICH2OO radical and Criegee intermediate CH2OO: The pressure dependence of the yield of CH2OO in the reaction CH2I + O2. *J. Phys. Chem. Lett.* **6**, 4610–4615 (2015).

5. Lin, Y.-H., Li, Y.-L., Chao, W., Takahashi, K. & Lin, J. J.-M. The Role of the iodine-atom adduct in the synthesis and kinetics of methyl vinyl ketone oxide— a resonance-stabilized Criegee intermediate, *Phys. Chem. Chem. Phys.* **22**, 13603–13612 (2020).

6. Chung, C.-A., Su, J.-W. & Lee, Y.-P. Detailed mechanism and kinetics of the reaction of Criegee intermediate CH2OO with HCOOH investigated via infrared identification of conformers of hydroperoxymethyl formate and formic acid anhydride. *Phys. Chem. Chem. Phys.* **21**, 21445–21455 (2019).