University–industry collaboration in curriculum design and delivery: A model and its application in manufacturing engineering courses

MA Valiente Bermejo, M Eynian, L Malmsköld and A Scotti
University West, Trollhättan, Sweden

Abstract
The advantages and importance of university–industry collaboration, particularly in curriculum design and delivery, are well-known. However, although curriculum development models are available in the literature, very few are sufficiently concrete to be applicable in practice or are generalizable beyond their discipline of origin. In this paper, a co-operative model based on the Plan–Do–Study–Act cycle is presented and described. An example of its application in the curriculum design of two courses in welding within a Manufacturing Engineering Master’s program is detailed. The model was found successful based on the evaluation of the courses by students, teachers, and the industrial representatives involved. Therefore, it proved to be an effective tool for bridging the gap between industrial needs and academia in the field of Manufacturing Engineering education. At the same time, the methodology is generalizable and is applicable to any field of education.

Keywords
university–industry collaboration, curriculum design, higher education, co-production, manufacturing engineering education, welding courses

Several forms of university–industry collaboration have been identified and reported in the literature (Perkmann and Walsh, 2007; Sjöö and Hellström, 2019). Collaborative research projects, human resources transfer, including the training of industry employees at universities, the participation of adjunct faculty from industry, and cooperation in curriculum development, are only a few examples of a wide range of possible collaboration forms. Researchers have worked extensively on the analysis of these collaborations, considering the benefits for the stakeholders but also the challenges and barriers that hinder cooperation in their own countries. For instance, the importance of university–industry collaboration in economic growth has been studied in the USA (Lee, 1996) and in El Salvador (Navarro et al., 2019). Specific barriers to collaboration were found in Thailand (Brimble and Doner, 2007) and Malaysia (Salleh and Omar, 2013). Thune (2011) conducted an empirical study on success factors in university–industry collaboration in Norway. In Sweden, perceptions of university–industry collaboration have been studied (Baraldi et al., 2013) and different attitudes towards collaboration reported. Sellenthin (2011) claimed that, despite the existence of public policies supporting collaboration, the willingness of researchers to engage with the industry was related to their field of research and the financial constraints experienced. On the other hand, Davey et al. (2013) found that university managers were less committed to collaboration than academics. In Japan, Motohashi and Muramatsu (2012) reported that the policies supporting university–industry collaboration increased the number of patents.

One conclusion that can be drawn from a survey of the literature is that the university–industry collaboration has proved to be a crucial element in the innovation and economic development of regions and countries worldwide, and this is why collaboration is commonly supported by public institutions in what is referred to as the Triple Helix model (Cai and Etzkowitz, 2020; Dooley and Kirk, 2007; Guimon, 2013).

Corresponding author:
MA Valiente Bermejo, Department of Engineering Science, University West, Gustava Melins Gata 2, Trollhättan, Västra Gotaland 46186, Sweden.
Email: asun.valiente@hv.se
This paper focuses specifically on one type of university–industry collaboration: curriculum design and development. In recent years, several examples of collaboration in curriculum design have been published in relation to different educational areas and with the same motivation—to align university education with new technological and social realities. Examples from throughout the world are available in the literature: in the field of design in Portugal (Camacho and Alexandre, 2019), in renewable energies in Latin America and Europe (Comodi et al., 2019), in the areas of tourism (Dopson and Tas, 2004) and the automotive industry (Mears et al., 2011; Tomovic, 2001) in the USA, in industrial engineering in Thailand (Koomsap et al., 2019), applied to the development of competences for Industry 4.0 in Estonia (Kusmin et al., 2018), concerning the oil and gas sector in Nigeria (Lagoke et al., 2020), in business informatics in Serbia (Matkovic et al., 2014), in banking and finance in Ethiopia (Tessema and Abeje, 2017), in nursing in Australia (Theobald et al., 2021), and in several disciplines in the Philippines (Lagudor and Ramos, 2014), Malaysia (Ma’dan et al., 2020) and Tanzania (Mgaiwa, 2021).

In the above studies, the authors examine the relationship between academia and the needs of industry in their regions or countries in the context of curriculum design. Usually, the stakeholders are involved in surveys or workshops, and in some cases specific curricula are proposed. From these studies, it is observed that either the curriculum development models proposed are very general—for example, Tyler’s Curriculum Development Model (Ornstein and Hunkins, 1988, referred to by Dopson and Tas, 2004), in which the activities for curriculum development and interaction between the agents (students, society, and academia) are not specified—or, on the contrary, the description of the interaction is so specific and detailed as, for example, in the research by Kusmin et al. (2018), that generalization for other universities, disciplines or countries would be difficult. Only Matkovic et al. (2014) refer to a general model for curriculum development (Analysis, Design, Development, Implementation, and Evaluation (ADDIE)). In this model, an indication is provided of practical tasks and activities for curriculum development that could be applicable to other contexts.

Therefore, few extant studies provide curriculum development models that are both sufficiently concrete to be applicable in practice and general enough to be transferable to other disciplines. The purpose of our work is to help fill this gap. In this paper, a general model for curriculum design is presented with university–industry collaboration in several loops during both design and delivery, sufficiently concrete to allow its application in any discipline. In addition, the application of the model in two courses at MSc level (Welding Processes and Welding Metallurgy) is detailed.

Methodology

Background

The ambition of our organization was to develop an educational program at the Master’s level that would identify the needs of industry in a rapidly changing field, such as that of Manufacturing Engineering. In other words, we wished to fill the gap between industry’s needs and the education provided by having those needs reflected in the selection and development of courses within the program.

A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was conducted at the management level before starting the curriculum design process. The most important strengths identified were the solid and historical collaboration with Swedish industry, especially in engineering education and production technology research. For example, only in 2020 a total of 89 research projects ran in collaboration with industry in the Engineering Department, involving 103 Swedish and 14 foreign companies. Representative of the outputs for this co-production in research were joint scientific publications (86 publications in 2020 in collaboration with the industry) and the participation of industrial doctoral students (5 in 2020) and academic doctoral students (15 in 2020) associated with the projects. When it comes to education, in the last 5 years the offer of engineering-related courses especially developed for the competence development and lifelong learning of professionals has grown significantly. These courses are linked to production technology, are mainly given online, and apply pedagogic models dedicated to industrial students, as described by Hattinger and Eriksson (2018, 2020). In addition, co-operative education (Co-Op) in our engineering study programs at undergraduate level has been strongly connected to industry for the past 30 years by alternating theoretical studies at university with salaried internship periods in companies. This vision positioned University West as the leading university in Sweden in Work Integrated Learning. The research facilities at our Production Technology Center, built up in consortia with industries, also constituted a unique strength that supported the decision to launch the new Master’s program.

In the SWOT analysis, the Opportunity was identified as the availability of funds to develop new educational programs offered by the Swedish Knowledge Foundation, while the main Weakness related to the need to recruit personnel in specific areas which were currently understaffed. The main Threat for management related to the need to plan sustainable growth for the institution, given the increase in human resources required not only for this specific Master’s program but also for other areas under development (i.e., electrical vehicles and additive manufacturing) and in which the department was planning to grow in both education and research.
The conclusion from the SWOT analysis at management level was to support the development of the Master’s program in Manufacturing Engineering, and this is when a new model to develop the curriculum design was conceived.

Description of the model

The model for the design and delivery of courses in the program is inspired by the Plan–Do–Study–Act (PDSA) cycle (Deming, 1950). The PDSA cycle, as an iterative process, is widely used as a management tool to ensure development and continuous improvement in organizations. For example, the ISO 9001 standard, a well-known quality management system applied in industry worldwide, is based on the PDSA cycle. Healthcare is another sector in which PDSA has been commonly used to improve quality (Taylor et al., 2014). According to Tichnor-Wagner (2018), the use of continuous improvement cycles is relatively new in the field of education.

Figure 1 shows the PDSA cycle used in the conception and design of each of the courses in the program, including a description of the main activities conducted in each step.

One novel approach added to the basic PDSA cycle is that in our model iterative loops were included in the Planning stage, to strengthen the collaboration with industry in the definition and discussion of course contents, and in the Study stage. This novelty in the approach is illustrated in Figure 2 and will be detailed below.

In the Planning stage, a draft course plan (objective of the course, integration with other program courses, resources, and proposed syllabus) is elaborated by university experts in the course subject, taking into consideration relevant scientific and technological contents together with novel pedagogic approaches. Then, the course coordinator selects the stakeholders (representatives from industry whose core business is related to the course subject, lecturers, program manager, and student representative) and invites them to a workshop. The draft course plan is discussed with the stakeholders and suggestions for course content and support proposals from industry are noted and discussed. After this first workshop, the course coordinator redefines the course content and planned activities in light of the outputs, and the stakeholders are called to a second workshop at which the updated course plan is presented and discussed again until it is considered ready and approved. Figure 2 illustrates this process. In successive years, the Planning stage starts with a workshop to plan the actions decided as the outcome of the previous year.

In the Do stage, the designed course is delivered to the students. Immediately after delivery of the course, the Study stage starts with surveys of the students and lecturers and the industrial representatives who participated to assess the degree to which the objectives have been accomplished. Then, the outcome of the current course and its evaluations are discussed and analyzed, again in a workshop. The workshop is attended by the course coordinator, the program manager and the industrial partners. Actions related to improvements are proposed and sketched during the workshop and, if necessary, subsequent discussion is held via e-mail or video conferencing. In parallel, the course is reported by the course coordinator to the program council, which lists the needs for improvement and proposes plans for the implementation of the improvements as part of the university-wide quality system. The course is then reconceived and is ready for another term. As there is always room for upgrading (technological and pedagogical advances), the current course is used as the initial step for a new loop. The model includes the constitution of an industrial advisory board that can be called for meetings twice per year to follow up and discuss the reports on the courses delivered during the year and to explore new forms of collaboration.

Application of the model in the Master of Manufacturing Engineering program

General aspects. The 2-year MSc program in Manufacturing Engineering offered by University West started in 2018 and was built on the grounds of the former Master’s program in Manufacturing and in synergy with the MSc program in Robotics that had already been established (four courses were shared by the programs). Figure 3 shows the structure of the program, which includes 14 courses and periods of internship in industry. Eight out of the courses were to be developed, and these were: Advanced Materials Science, Advanced Manufacturing Processes 1, Advanced Manufacturing Processes 2, Welding Processes, Welding Metallurgy, Statistical Process Control, and Design of Experiments (DOE), Surface Engineering and Additive Manufacturing.

Except for the course on Statistical Process Control and DoE, which is not directly connected to industry, course managers were approached and encouraged to use the new model. Below, the application of the model is described in more detail for two specific courses in the program: Welding Processes and Welding Metallurgy.

Application in the design of the Welding Processes and Welding Metallurgy courses

In the program, the students are educated in welding technology through two sequential courses in the first year: Welding Processes (6 credits) in Learning Period 3 and Welding Metallurgy (7.5 credits) in LP4, as shown in Figure 3. For the purposes of this paper, these courses have been chosen to exemplify the application of the course development methodology. The workflow described in Figures 1 and 2 was followed.

To prepare the first workshop with industrial partners, firms in the welding sector which had previously collaborated with University West were invited, along with other welding-related companies of interest for us. The companies...
contacted were a maximum of 450 km from University West. To allow maximum attendance, the workshop was offered both face-to-face in Trollhättan and online. E-mail messages were sent out to key personnel in the companies. Fifty-three people from 33 welding-related companies were invited to the workshop and 20 from 11 companies attended the first event.

In this first workshop, the program manager presented the Master’s program and the Co-Operative education concept, emphasizing the PDSA cycle and the advantages for academia and the industry of developing these courses hand in hand. The course coordinators presented a proposal of the content for the Welding Processes and the Welding Metallurgy courses. The key to the workshop’s success was the lively brainstorming on course content: this revealed the interest and commitment of the business partners in contributing to the welding courses. In addition to their inputs on the course contents, the companies were invited to collaborate in several ways (Figure 4), such as offering their facilities to host study visits, providing the course with physical

![Figure 1](image1.png)

Figure 1. PDSA cycle applied in the design of each course in the program, including a description of the main activities conducted in each stage.

![Figure 2](image2.png)

Figure 2. University West course design model inspired by the PDSA cycle but including additional iterations in the Plan and the Study stages.
resources such as handbooks or specimens to investigate in the lab sessions, providing guest lecturers and co-supervising students during their internships in the companies and/or during their Master’s thesis projects.

The industrial partners reacted positively to the above-mentioned modes of cooperation and there was an initial offer from their side concerning how they could contribute to and cooperate in the development of the courses. The companies’ representatives suggested adding new course contents to meet the industry’s needs, such as standardization in welding, non-destructive testing, more practical labs, and novel manufacturing processes (e.g., friction stir welding).

The second workshop was held 1 month after the first. During this event, the teachers presented the revised course syllabus, including the suggestions from the industrial representatives noted in the first workshop and the companies confirmed their involvement and cooperation in the development of the courses. Table 1 summarizes the contents suggested by the partners in the first workshop and the activities that the course coordinators included in the revised courses to take into consideration the needs of industry. For example, the Swedish Welding Commission (Svetskommissionen) was invited to give a lecture on welding standards in the Welding Metallurgy course; the teaching of non-destructive testing was intensified through a study visit and a practical lab at one of the industrial partners’ facilities; and a study visit was arranged to a welding equipment supplier, including a demonstration and lecture on friction stir welding and submerged arc welding.

In response to the request for more lab activities, and aiming at more efficient labs, a new module of media-assisted lab classes was developed. These are non-passive welding laboratory classes assisted by video recording. This development made the labs less laborious for the teachers and more attractive and efficient for the students, while time and lab resources were used more effectively.

Once the course had been delivered, surveys were sent to students, teachers and industrial partners, and the stakeholders were called to a third workshop. The purpose was to share the feedback from the surveys and to discuss and refine the next edition of the course plan if necessary. The students’ evaluation was unanimously positive with regard to the study visits conducted and to the participation of guest lecturers from the industry. Similarly, the video-assisted labs were also positively evaluated. The participants from the companies rated their participation highly. In the subsequent offerings of the courses, the course coordinators have maintained contact with the industry and the activities have been consolidated. Before starting each course, the industry representatives were contacted to discuss the involvement of their companies and were also invited to the course coordination meeting with the teachers to agree any readjustment in activities and content. Currently the cycle has run for three times, with successful and engaged collaboration from industry and with high rates in students’ evaluation of the courses.

Discussion

Use of PDSA models in education

According to Tichnor-Wagner (2018), the use of continuous improvement cycles in education is relatively new. In terms
of curriculum development in higher education, one model was found in the literature, as previously mentioned in the introductory section: the ADDIE model presented by Matkovic et al. (2014). The general model has been complemented with indications of practical tasks and activities to develop the curriculum. When comparing ADDIE with the model proposed in this paper based on the PDSA cycle, some similarities can be found. On the one hand, both are cyclical and iterative models with the aim of a continuous improvement in curriculum design and delivery, and both fit the dual purpose of generality, to be applicable in any discipline, and with a level of concreteness that supports practical development. Other similarities are found between the “Do” and “Implementation” stages, which in both models include the realization or delivery of the course. However, differences are also apparent: for example, some tasks that are in the “Planning” stage in the PDSA model are found under the stages of “Analysis, Design, and Development” in the ADDIE model.

Difficulties encountered

The main difficulty encountered in fully accomplishing the implementation of the proposed model was that of constituting an industrial advisory board, whose advice was expected to be valuable in meeting industry’s expectations at the program level. The benefits of having industrial advisory boards in educational programs have been described by Taylor and Calitz (2020) and challenges have been identified by Kullberg and Paulin (2019). The engagement of the industry representatives was well executed in the two welding courses referred to in this paper. The coordinators of other courses in the program, such as Surface Engineering, Additive Manufacturing and Advanced Manufacturing Processes, confirmed the active involvement of industry representatives in the design and delivery of their courses also. However, it was commonly observed that none of the industry representatives who were engaged in the courses wanted to step forward and offer support at the program level. One reason for this may be that they felt that their field of expertise was closely related to a specific course, and they might therefore feel a lack of command of other disciplines in the program. It may also be that the personal trust and relationship that had been created and built between the industry representatives and the course coordinators due to former collaborations served as a motivating and engaging factor for the courses, but not for the program. Bruneel et al. (2010) referred to the importance of personal trust consolidated through former collaborative experiences in encouraging new collaborations. Consistently with that view, Genheimer and Shehab (2009) pointed out that industry members with close ties to the university (i.e., alumni) are more likely to contribute as advisory board members. Therefore, personal relationships and formerly established trust are important factors that cannot be underestimated. In this case, the constitution of an advisory board in the program is still outstanding work that will require new efforts and maybe new strategies to engage industrial partners.

Strengths

After three years of offering these courses, the participation of industry in their design and delivery has been fully consolidated, which is a sign of the benefit and satisfaction for all the stakeholders. Therefore, the co-operative model presented here was found to be an effective strategy for bridging the gap between industrial needs and the university education provided in the Manufacturing Engineering field. Furthermore, the different modes of collaboration offered to the companies (Figure 4) led to an aligned curriculum, skills development, and more opportunities for students to be employed after their studies. This has been also reported in

Content suggested by industrial partners in first workshop	Activities included by course coordinators in revision of the syllabus and presented at second workshop for approval
Standardization in welding	The Swedish Welding commission was invited to give a lecture to the students in the welding metallurgy course
Health and safety in welding	A specific lecture on the topic was specifically included in the welding processes course
NDT	A specific lecture on the topic was scheduled in the welding metallurgy course and a study visit to Siemens Turbo Machinery was arranged for in situ demonstration of NDT.
More connection between theoretical content and practise in the labs	Video-assisted labs were developed in the welding processes course
Some companies proposed initial collaborations from their side (see Figure 4)	The final participation of industry in specific course activities (guest lectures, study visits, handbooks, materials, etc.) was confirmed

NDT, Non-destructive testing.
the literature by Ssebuwufu et al. (2012) and by Plewa et al. (2015). In addition, the relationship built with the industry through the process has also reinforced our collaboration in research projects.

Because of the success of this collaborative model when developing the courses in the MSc program in Manufacturing Engineering, the same approach has been adopted in the design of new MSc programs that are currently under preparation at University West. Our model has also opened the door for us to collaborate with EU partners in educational research projects, aiming at developing innovative work-based learning practices.

Conclusions
In this paper, the use of a PDSA model modified with additional iterative loops in the Plan and Study stages has been shown to be a successful model in developing and delivering courses in the MSc program in Manufacturing Engineering at University West. Differently from other approaches in the literature, the model presented here has the necessary level of generality for it to be applicable in other disciplines and at other educational levels. At the same time, it contains a description of activities which is sufficiently concrete for it to be applicable in practice.

Acknowledgments
The support and collaboration received by the companies and their representatives are gratefully acknowledged (in alphabetical order): Fredrik Olofsson (Brogen Industries AB), Niklas Malmberg (CEVT), Sofia Hansson (CEVT), Lars-Erik Stridh (Dunderbro Engineering), E娃-Lena Bergquist (ESAB AB), Jorgen Sall (ESAB AB), Rebecka Nilsson (ESAB AB), Ebrahim Harati (ITW Welding AB), Satya Kondapalli (ITW Welding AB), Johan Ingemansson (Lincoln Electric), Dennis Johansson (Midroc Rodoverken AB), Daniel Eyzop (Outokumpu Stainless AB), Stephen Shotton (Siemens Turbomachinery AB), Tomas Wahlberg (Siemens Turbomachinery AB), and Hubert Wilbs (TRUMPF maskin AB).

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants from the Swedish Knowledge Foundation, project AMECO (grant number 20180019).

ORCID iD
MA Valiente Bermejo © https://orcid.org/0000-0003-3374-6282

References
Baraldi E, Forsberg PB and Severinsson K (2013) Crafting university–industry interactions: a typology and empirical illustrations from uppsala university, Sweden. In: The university–industry interaction conference, Amsterdam, The Netherlands, May 27–29, 2013, pp. 157–193.

Brimble P and Doner RF (2007) University-industry linkages and economic development: the case of Thailand. World Development 35(6): 1021–1036. DOI: 10.1016/j.worlddev.2006.05.009

Bruned J, D’Este P and Salter A (2010) Investigating the factors that diminish the barriers to university-industry collaboration. Research Policy 39(7): 858–868. DOI: 10.1016/j.respol.2010.03.006

Cai Y and Etzkowitz H (2020) Theorizing the triple helix model: past, present, and future. Triple Helix 6(1): 1–38. DOI: 10.1163/21971927-bja10003

Camacho B and Alexandre R (2019) Design education. university-industry collaboration, a case study. The Design Journal 22(Suppl. 1): 1317–1332. DOI: 10.1080/14606925.2019.1594958

Comodi G, Cioccolanti L, Mahkamov K, et al. (2019) Analysis of labour market needs for engineers with enhanced knowledge in renewable energy in some European and Latin-American countries. Energy Procedia 158: 1135–1140. Innovative Solutions for Energy Transitions. DOI: 10.1016/j.egypro.2019.01.279.1

Davey T, Baaken T, Galan-Muros V, et al. (2011) Study on the Cooperation between Higher Education Institutions and Public and Private Organisations in Europe. European Commission, European Institute of Innovation and Technology; economic partnership. Public open tender EAC/37/2009, 30 August. Germany: Science-to-Business Marketing Research Centre.

Deming WE (1950) Elementary Principles of the Statistical Control of Quality: A Series of Lectures. Tokyo, Japan: Nippon Kagaku Gijutsu Remmei.

Dooley L and Kirk D (2007) University-industry collaboration: grafting the entrepreneurial paradigm onto academic structures. European Journal of Innovation Management 10(3): 316–332. DOI: 10.1108/14601060710776734

Dopson LR and Tas RF (2004) A practical approach to curriculum development: a case study. Journal of Hospitality & Tourism Education 16(1): 39–46. DOI: 10.1080/10963758.2004.10696783

Genheimer SR and Shehab RL (2009) A survey of industry advisory board operation and effectiveness in engineering education. Journal of Engineering Education 98(2): 169–180. DOI: 10.1002/j.2168-9830.2009.tb01015.x

Guimon J (2013) Promoting university-industry collaboration in developing countries. USA: Innovation Policy Platform. OECD and World Bank. Available at: 10.13140/RG.2.1.5176.8488.

Hattinger M and Eriksson K (2018) Co-construction of knowledge in work-integrated e-learning courses in joint industry-university collaboration. International Journal of Advanced Corporate Learning (IJAC) 11(1): 10. DOI: 10.3991/ijac.v11i1.9152

Hattinger M and Eriksson K (2020) Mind the gap: a collaborative competence e-learning model between university and industry.
In: Proceedings of the 53rd Hawaii international conference on system sciences, Hawaii, pp. 79–88

Koomsap P, Luong HT, Lima RM, et al. (2019) Roles of MSIE graduates to support Thailand sustainable smart industry. Transdisciplinary Engineering for Complex Socio-technical Systems. Amsterdam, Netherlands: IOS Press. 75–84. DOI: 10.3233/ATDE190110

Kullberg S and Paulin D (2019) Program advisory boards in engineering education - industry representatives and their contributions to program development. In: Proceedings11th international conference on education and new learning technologies, Palma de Mallorca, Spain, July 2019, pp. 2531–2535. DOI: 10.21125/edulearn.2019.0693.

Kusmin K-L, Tammets K and Ley T (2018) University-industry interoperability framework for developing the future competences of industry 4.0. Interaction Design and Architectures Journal 38: 28–45.

Lagoke O, Adesola S and Soname S (2020) Social network analysis as a methodological tool to understand university-industry dynamism in enhancing the HEI curriculum – a case of the Nigerian oil industry. Studies in Higher Education 46: 2417–2430. DOI: 10.1080/03075079.2020.1723529.

Laguador JM and Ramos LR (2014) Industry-partners’ preferences for graduates: input on curriculum development. Journal of Education and Literature 1(1): 1–8

Lee YS (1996) ‘Technology transfer’ and the research university: a search for the boundaries of university-industry collaboration. Research Policy 25(6): 843–863. DOI: 10.1016/0048-7333(95)00857-8

Ma’dan M, Imsial MT and Daud S (2020) Strategies to enhance graduate employability: insights from Malaysian public university policy-makers. Malaysian Journal of Learning and Instruction 17(2): 137–165. DOI: 10.32890/mjli2020.17.2.5.

Matkovic P, Tumbas P, Sakal M, et al. (2014) Curriculum development process redesign based on university-industry cooperation. In: EDULEARN14 proceedings, Barcelona, Spain, July 2014, pp. 4113–4123

Mears L, Omar M and Kurfess TR (2011) Automotive engineering curriculum development: case study for Clemson University. Journal of Intelligent Manufacturing 22(5): 693–708. DOI: 10.1007/s10845-009-0329-z.

Mgaiwa SJ (2021) Fostering graduate employability: rethinking Tanzania’s University practices. SAGE Open 11(2): 2158244021100670. DOI: 10.1177/21582440211006709.

Motohashi K and Muramatsu S (2012) Examining the university industry collaboration policy in Japan: patent analysis. Technology in Society 34(2): 149–162. DOI: 10.1016/j.techsoc.2012.02.006.

Navarro RA, Barbarasa E and Thakkar A (2019) Addressing workforce needs by disrupting traditional industry-higher education relations: the case of El Salvador. Industry and Higher Education 33(6): 391–402. DOI: 10.1177/0950422198785886.

Ornstein AC and Hunkins FP (1988) Curriculum–Foundations, Principles, and Issues. Englewood Cliffs, N.J: Prentice Hall.

Perkmann M and Walsh K (2007) University-industry relationships and open innovation: towards a research agenda. International Journal of Management Reviews 9(4): 259–280. DOI: 10.1111/j.1468-2370.2007.00225.x.

Plewa C, Galán-Muros V and Davey T (2015) Engaging business in curriculum design and delivery: a higher education institution perspective. Higher Education 70(1): 35–53. DOI: 10.1007/s10734-014-9822-1.

Salleh MS and Omar MZ (2013) University-industry collaboration models in Malaysia. Procedia - Social and Behavioral Sciences 102: 654–664. DOI: 10.1016/j.sbspro.2013.10.784.

Sellentin MO (2011) Factors that impact on university–industry collaboration: empirical evidence from Sweden and Germany. Brussels Economic Review 54(1): 81–100.

Sjöö K and Hellström T (2019) University-industry collaboration: a literature review and synthesis. Industry and Higher Education 33(4): 275–285. DOI: 10.1177/0950422219829697.

Ssebuwufu J, Ludwick T and Béland M (2012) Strengthening University–Industry Linkages in Africa: A Study on Institutional Capacities and Gaps. Accra,Ghana: Association of African Universities

Taylor E and Calitz AP (2020) The use of industry advisory boards at higher education institutions in Southern Africa. In: Tait B, Kroeze J and Gruner S (eds) ICT Education. Communications in Computer and Information Science. Cham, Switzerland: Springer International Publishing, pp. 244–259. DOI: 10.1007/978-3-030-35629-3_16.

Taylor MJ, McNicholas C, Nicolay C, et al. (2014) Systematic review of the application of the plan-do-study-act method to improve quality in healthcare. BMJ Quality & Safety BMJ Publishing Group Ltd 23(4): 290–298. DOI: 10.1136/bmjqs-2013-001862.

Tessena BS and Abejehu SB (2017) University-industry collaboration in curriculum development: analysis of banking and finance graduates’ attributes from educators and industries perspective. Education Journal 6(2): 87–93. DOI: 10.11648/j.edujournal.20170602.13.

Theobald KA, Coyer FM, Henderson AJ, et al. (2021) Developing a postgraduate professional education framework for emergency nursing: a co-design approach. BMC Nursing 20(1): 43. DOI: 10.1186/s12912-021-00560-z.

Thune T (2011) Success factors in higher education-industry collaboration: a case study of collaboration in the engineering field. Tertiary Education and Management 17(1): 31–50. DOI: 10.1080/13583883.2011.552627.

Tichnor-Wagner A (2018) Future of education and skills 2030: curriculum analysis: connections between anticipation-action-reflection and continuous improvement cycles. In: 8th IWG meeting, Paris, France, October 2018, p. 18. OECD Organization for Economic Co-operation and Development. Available at: https://www.oecd.org/education/2030/Connections-between-Anticipation-Action-Reflection-and-Continuous-Improvement-Cycles.pdf

Tomovic M (2001) University–industry cooperation in curriculum development and delivery. In: International conference on engineering education, Oslo, 6 August 2001, p. 4.