ON A HOMOTOPY 4-SPHERE

Dedicated to George Floyd

SELMAN AKBULUT

Abstract. We give a brief survey of some facts about homotopy 4-spheres [A1], then give a proof that the curious homotopy sphere constructed in [A2] is in fact diffeomorphic to the standard S^4, and discuss its relation to infinite order loose corks and anti-corks.

0. General remarks

How to generate interesting examples smooth homotopy 4-spheres? and how to decide if they are diffeomorphic to S^4? If you don’t mind having 3-handles, an easy way to generate such examples is to start with a balanced presentation of the trivial group (this means that the number of generators and relators in the presentation are the same).

$$G = \{ x_1, x_2, \ldots, x_n \mid r_1(x_1, \ldots, x_n), \ldots, r_n(x_1, \ldots, x_n) \}$$

Then we attach 1-handles to B^4 for the generators, and 2-handles for the relators, giving this presentation, and then double the resulting 4 manifold. Then try to solve the resulting Andrews-Curtis problem, which is usually a difficult algebra problem. But turning this handlebody upside down can sometimes result a different handlebody presentation with easier Andrews-Curtis problem, as suggested in the example of [A4] (this approach has not been pursued further than this example).

Any pair of closed smooth simply connected 4-manifolds M and M', that might be exotic copies of each other, can be decomposed into two equal pieces $M = C \sim_{id} W$ and $M' = C \sim_{f} W$, where W is contractible and $f : \partial W \to \partial W$ is some involution ([A3], [M], [CFHS]). Furthermore, in [AM] it was shown that these pieces can be assumed to be Stein manifolds. For this reason, we named the Stein piece (W, f) a cork, and call such a piece without the Stein property a loose cork.

0.1. On constructing homotopy spheres, and detecting S^4. In particular any homotopy 4-sphere Σ can be decomposed as a union of two Stein contractible manifolds $\Sigma = W_+ \sim_f -W_-$ glued along their common boundaries by some diffeomorphism: $f : \partial W_+ \to \partial W_-$.

Date: June 11, 2020.

1991 Mathematics Subject Classification. 58D27, 58A05, 57R65.
This could be the starting point of studying homotopy spheres. Often the contractible pieces W_\pm turn out to be ribbon contractible manifolds, that is they are obtained by blowing down B^4 along properly imbedded ribbon disks $D_\pm \subset B^4_\pm$ (e.g. 6.2 of [A1], as in Figure 1 or Figure 2).

By putting the pieces together we see that Σ is just the Gluck twisted S^4 along the imbedded 2-sphere $S^2 = D_+ \sim_\partial D_- \subset B^4_+ \sim_\partial B^4_- = S^4$. Here the 2-sphere S^2 can be used to introduce a cancelling 2/3-handle pair, from which we may cancel the 1-handles of Σ. Afterwards by turning Σ upside down we get a 3-handle free handle presentation of Σ. This is how the 3-handle free handlebodies of the homotopy spheres of [A5], [A7], [A2] were constructed. In the first two cases, by introducing further cancelling 2/3-handle pairs we are able to identify them with the standard S^4.

But the homotopy sphere Σ of [A2] turned out to be difficult. Even after clearing all of its 3-handles, we weren’t able to decide if it was the standard S^4. One source of difficulty was that its gluing diffeomorphism f is unusual, because it is not adapted to the handlebody of W (i.e. it is not induced from an obvious symmetry of the handles of W), it is an internal diffeomorphism R of its boundary 3-manifold Y^3, pulled back by a boundary identificaion $F : \partial W \rightarrow Y$ (Figure 2). Here the manifold W is the Stein manifold $W(0,1)$ of [A1] and the involution of ∂W is induced by pulling back 180 rotation of Y by F (i.e. conjugating the 180 degree rotation by F). This implies that, the Glucked 2-sphere $S^2 \subset S^4$ is obtained by identifying two identical ribbons $D_\pm \subset B^4_\pm$ along their boundaries with 180 degree rotation (Figure 3).

Theorem 1. The 3-handle free handlebody picture of Σ which was described in [A8] as Figure 4 is in fact diffeomorphic to S^4.

Proof. First perform the handle slide of Figures 5 to go to Figure 6, then do the handle slide of Figure 6 to arrive to S^4.

![Figure 1. A ribbon contractible manifold](image-url)
Figure 2. Pulling back involution by $F : \partial W \to Y^3$

Figure 3. Σ is described as Gluck twisted S^4

Figure 4. Gluck twisting \Rightarrow 3-handle free handlebody of Σ
Remark 1. Note that in [A10] an anti-cork was created by carving a cork W. But we now know that infinite order cork automorphisms can be induced from δ-moves, which in term can be interpreted as being induced by carving B^4 by infinitely many different ribbons ([A7] [A9]). So, by reverse constructing infinitely many loose corks can be obtained by infinitely many different anti-corks (the anticorks are exotic copies of each other). For example, ribbon disk D which $K\# - K$ bounds in B^4 (for some knot K) can be extended by concatenating D with the “swallow-follow” isotopy of $K\# - K$ to itself, along the collar $S^3 \times [0, 1]$ of the boundary (Figure 7), as shown in Figure 8. This isotopy extends to an ambient isotopy $F_t : B^3 \times [0, 1] \rightarrow B^3 \times [0, 1]$, which is fixed on $B^3 \times 0 \sim S^2 \times [0, 1]$. Carving B^4 along D_n gives the anti-corks in question.

Figure 5. Sliding handles to simplify Σ

Figure 6. More handle slides to identify $\Sigma = S^4$
Figure 7. Carving infinitely distinct anti-corks from W

Figure 8. Swallow-follow concordance on the boundary

References

[A1] S. Akbulut, 4-Manifolds, vol. 25 of Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2016.

[A2] S. Akbulut, Cork twisting and automorphisms of 3-manifolds https://arxiv.org/pdf/1912.11804.pdf

[A3] S. Akbulut, A Fake compact contractible 4-manifold, J. Differ. Geom. 33 (1991) 335–356.

[A4] S. Akbulut, Cork twisting Schoenflies problem, Jour of GGT, vol 8 (2014) 35-43

[A5] S. Akbulut, Cappell-Shaneson homotopy spheres are standard, Ann. of Math. 171 (2010) 2171-2175.

[A6] S. Akbulut, On infinite order corks, Proc. Gökova Geometry/Topology Conference (GGT), 2016, 151–157.

[A7] S. Akbulut, Homotopy 4-spheres associated to an infinite order loose cork, https://arxiv.org/pdf/1901.08299.pdf

[A8] S. Akbulut, On an infinite order cork automorphisms, arXiv:2001.03170v2

[A9] S. Akbulut, Infinitely many absolutely exotic manifolds, PGGT, Proc. of 26th Gokova Geometry-Topology Conference/Atiyah volume (to appear)

[A10] S. Akbulut, A solution to a conjecture of Zeeman, Topology, vol.30, no.3, pp 513-515 (1991)
[AM] S. Akbulut and R. Matveyev, *A convex decomposition theorem for 4-manifolds*, Int. Math. Res. Notices, no. 7 (1998) 371-381.

[CFHS] C.L. Curtis, M.H. Freedman, W.C. Hsiang and R. Stong, *A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds*, Invent. Math. 123, no.2 (1996), 343–348.

[M] R. Matveyev, *A decomposition of smooth simply-connected h-cobordant 4-manifolds*, Jour. Diff. Geom. 44, no. 3 (1996), 571–582.

GGTI, Mehmet Gokoval Sokak, no: 53, Akyaka, Ula, Mugla, Turkiye

E-mail address: akbulut.selman@gmail.com