The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2, addressing the preliminary results of passive immunization through convalescent plasma. We...
Revisão recente sobre a terapia com plasma em pacientes com COVID-19 relatou baixa frequência de eventos adversos graves e melhora nos sintomas clínicos em alguns participantes após a terapia com plasma, mas os autores julgaram existir risco de viés de relatório.

Os títulos altos ou baixos de anticorpos neutralizantes contra a COVID-19 podem ser manejados para reduzir os sintomas e a mortalidade do paciente. Existem 24 ensaios clínicos avançados nas fases II-III, III e IV relatados em vários países usando PC para tratar esses pacientes e responder a essa pergunta. Embora a imunização passiva seja utilizada há mais de um século no tratamento de doenças infecciosas, resultados recentes apresentam desafios na definição do melhor momento de extração do plasma e na escolha do doador, além do custo de todo esse procedimento. Essa falta de informação potencializa os movimentos de grupos antivacina e antiplasma.

I OBJETIVO

Destacar o esforço científico global na luta contra o SARS-CoV-2, abordando a imunização passiva por plasma convalescente e seus resultados preliminares.

I MÉTODOS

Foi realizada uma pesquisa até 14 de setembro de 2020 em ClinicalTrials.gov (https://clinicaltrials.gov/), Chinese Clinical Trial Registry (http://www.chictr.org.cn/abouten.aspx) e EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/) para ensaios clínicos de intervenção sobre transfusão de PC, em pacientes com COVID-19, usando a seguinte estratégia de pesquisa: [(COVID-19 OR SARS-CoV-2 OR nCoV-2019) AND (Convalescent Plasma OR Plasma Exchange) AND (Treatment OR Therapy)]. Em seguida, a mesma estratégia foi usada para pesquisar ensaios nas bases de dados PubMed e Scopus sobre a eficácia da terapia com PC para tratar pacientes com COVID-19.

Critérios de inclusão e exclusão

Esta revisão incluiu protocolos de ensaios clínicos (PEC) nas fases III e IV que abordassem o desenvolvimento de terapias baseadas em PC para tratamento de pacientes com COVID-19 por imunização passiva e estudos que mostrassem a eficácia da terapia com PC aplicada em mais de 25 pacientes com COVID-19. Os motivos para exclusão de estudos foram os seguintes: PEC de estudos observacionais, PEC envolvendo vacinas e PEC cancelados ou não aprovados até a data da pesquisa nas bases de dados.
Elegibilidade dos estudos, extração de dados, coleta de dados e avaliação de risco de viés

A elegibilidade dos estudos seguiu as diretrizes *Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).*

Análise dos dados

Todos os resultados foram descritos e apresentados por meio de distribuição percentual para todas as variáveis analisadas nas tabelas.

RESULTADOS

Seleção de estudos

Após a aplicação das estratégias de busca nas bases de dados, 170 PEC foram identificados (153 protocolos no ClinicalTrials.gov, 14 no *Chinese Clinical Trial Registry* e três no *EU Clinical Trials Register*). A estratégia de busca utilizou o PRISMA.

Com base nos critérios de inclusão e exclusão estabelecidos, dentre os 170 protocolos identificados, 146 ensaios clínicos foram excluídos após a triagem (130 protocolos eram fases I e II, e 16 eram observacionais), restando 24 protocolos selecionados dessas bases de dados. No total, 24 PEC foram incluídos neste trabalho sobre imunização passiva para COVID-19 por meio de terapia com PC.

Dentre os estudos selecionados publicados nas bases de dados citadas, apenas três estudos apresentaram dados suficientes que permitiam uma análise estatística dos desfechos, para avaliar a eficácia da terapia com PC devido ao número de pacientes com COVID-19 (*n* ≥ 25).

Visão geral dos protocolos de ensaios clínicos sobre imunização passiva para COVID-19

Dos 24 ensaios clínicos mais avançados sobre terapia com PC para pacientes hospitalizados com COVID-19, apenas um (4,2%) estava na fase IV, com taxa de progresso do estudo (TPE) de 58%, recrutando indivíduos em diferentes países pelo patrocinador holandês (barra verde da figura 1). Nos estudos de fase III (54,2%), quase metade dos PEC tinha TPE de mais de 40%, principalmente no México e nos Estados Unidos (barras azuis da figura 1), e nos estudos de fase II-III (41,7%) um PEC tinha TPE de 100% na Holanda, conforme mostrado na figura 1 e na tabela 1.

![Figura 1. Análise do percentual da taxa de progresso do estudo de protocolos de ensaios clínicos sobre terapia de plasma convalescente para pacientes com COVID-19 hospitalizados distribuídos por suas fases (barra verde: fase IV; barras azuis: fase III; e barras vermelhas: fase II-III), com o correspondente país patrocinador](image)
Tabela 1. Desenho do estudo, braços, intervenções e progresso do tempo de estudo

Número de identidade	Fase	Características do paciente	Intervenção por braço	Dose PC (dia)	Faixa etária (anos)	Data de início	Data de conclusão	Progresso (%)	Situação de recrutamento
NCT02735707[13]	IV	Doença respiratória aguda grave e pneumonia adquirida na comunidade grave	Corticosteroides versus antibióticos versus macrolídeo versus antiviral para gripe versus LPV/Rit versus HCQ versus IFN-β1a versus Anak versus Tmab versus Vit C versus heparina versus simvastatina versus PC versus TP	1 ou 2 unidades em 48 horas	>18	11/4/2016	1/12/2023	58	Recrutamento
NCT04391101[11]	III	Pacientes graves tratados na UTI	PC associado a TP versus TP	400-500mL	>18	1/6/2020	1/12/2021	19,2	Ainda sem recrutamento
NCT04372979[12]	III	Atendimento precoce de pacientes hospitalizados	PC associado a TP versus PP associado a TP	200-230mL	18-80	1/5/2020	1/5/2021	37,3	Ainda sem recrutamento
NCT04418518[13]	III	Atendimento precoce a pacientes hospitalizados	PC associado a TP versus TP	500mL de doador único ou 2 unidades de 250mL de 1-2 doações	18-70	24/6/2020	1/12/2021	15,6	Recrutamento
NCT0435767[14]	III	Pacientes graves/criticos hospitalizados	PC (títulos de anticorpos ≥1:160) versus placebo	PC: 1 unidade versus placebo: solução fisiológica com multivitamínico	>18	11/8/2020	1/12/2022	4,0	Ainda sem recrutamento
NCT04432103[15]	III	Pacientes graves/criticos hospitalizados	PC de IgG (pacientes graves versus pacientes críticos) associado a TP	NR	>19	19/6/2020	30/9/2020	84,5	Ainda sem recrutamento
NCT0449696[16]	III	Atendimento precoce a pacientes hospitalizados	PC versus TP	500mL de doador único ou 2 unidades de 250mL de 1-2 doações	>20	14/5/2020	31/12/2020	53,2	Recrutando
NCT04425915[17]	III	Pacientes graves/criticos hospitalizados	PC associado a TP versus TP	2 doses de 250mL em dias consecutivos iniciadas no dia 3 do início dos sintomas	>21	14/8/2020	30/5/2021	26,3	Recrutando
NCT04362176[18]	III	Atendimento precoce a pacientes ou em UTI	Patógeno reduzido PC versus placebo	PC: 500mL em 12 horas (dia 0) versus placebo: 250mL de Ringer lactato associado a multivitaminas (dia 1)	>22	24/4/2020	1/4/2021	41,8	Recrutando
NCT04381658[19]	III	Insuficiência respiratória grave com ventilação mecânica invasiva	PC (títulos de anticorpos > 1:164) versus HIg	PC: 400 mL (2 unidades) versus HIg 0,3g/kg/dia (5 doses)	16-18	6/5/2020	30/9/2020	89,1	Recrutando
NCT0436125[20]	III	Pacientes hospitalizados	PC (título alto) versus PP (PFC ou PC 24)	PC-AT 2 doses de 250mL de doador único em 24 horas; PFC: 2 unidades de 200-275mL	>1	30/4/2020	1/12/2021	23,6	Recrutando
NCT04376034[21]	III	Gravidade leve, moderada e grave/crítica	PC associado a TP versus TP	Adultos: 200 a 250mL; crianças: 10mL/kg; 2 unidades de pacientes graves ou em condição crítica	>30 dias	16/4/2020	30/3/2021	43,4	Recrutando
NCT04463960[22]	III	Sem pacientes graves	LPV/Rit versus HCQ versus PC	1 unidade no dia 1 e no dia 2	>18	21/7/2020	12/6/2022	8,0	Recrutando

continua...
A imunoterapia passiva ocorre por meio da infusão de plasma de indivíduos convalescentes, por isto o uso do termo plasma convalescente que também pode ser denominado plasma hiperimune ou plasma convalescente compatível com ABO (tipo sanguíneo).

PC: plasma convalescente; LPV: lopinavir; Rit: ritonavir; HCQ: hidroxicloroquina; IFN-β 1a: interferon beta-1a; Anak: anakinra; Tmab: tocilizumabe; Smab: sarilumabe; Vit C: vitamina C; TP: tratamento padrão; UTI: unidade de terapia intensiva; PP: plasma padrão; IgG: imunoglobulina G; NR: não reportar; HiG: imunoglobulina humana; PFC: plasma fresco congelado; PC24: plasma congelado em 24 horas após a flebotomia; PC-AT: plasma convalescente de alto título; IV: intravenoso; Az: azitromicina.

---Continuação---

Tabela 1. Desenho do estudo, braços, intervenções e progresso do tempo de estudo

Número de identidade	Fase	Características do paciente	Intervenção por braço	Dose PC (dia)	Faixa etária (anos)	Data de início	Data de conclusão	Progresso (%)	Situação de recrutamento
NCT04345289(23)	III	Pacientes hospitalizados com doença leve, moderada e grave/crítica	PC associado a TP (Smab versus baricitinibe versus HCQ) versus TP associado a placebo injetável	PC: (2 vezes de 300mL) e dose única de 600mL; placebo: (2 vezes de 300mL) e dose única de 600mL de solução fisiológica IV por placebo; 3 vezes ao dia (7 dias)	>18	1/5/2020	15/6/2021	33,2	Recrutando
NCT04342182(24)	II-III	Pacientes hospitalizados	PC associado a TP versus TP	300mL (de acordo com o protocolo Erasmus MC KIS)	>18	8/4/2020	1/7/2020	100	Recrutando
NCT04388410(25)	II-III	Pacientes hospitalizados com doença grave ou risco de doença grave	PC versus placebo	PC: 2 unidades de 200mL dentro de 24-72 horas; placebo: 200mL de soro fisiológico	>18	25/8/2020	31/12/2020	15,6	Ainda sem recrutamento
NCT04374526(26)	II-III	Pacientes hospitalizados	PC associado a TP versus TP	200mL/dia por 3 dias	>65	27/5/2020	30/6/2021	27,6	Recrutando
NCT04384588(27)	II-III	Pacientes oncológicos e não oncológicos com doença grave	PC associado a TP versus TP	1 ou mais unidades	>15	7/4/2020	6/4/2021	44,0	Recrutando
NCT04425837(28)	II-III	Pacientes hospitalizados com alto risco de doença grave ou em UTI	PC (títulos de anticorpos 1:160) associado a TP versus TP	2 doses de 200mL por dia	>18	1/7/2020	1/2/2021	34,9	Ainda sem recrutamento
NCT04395170(29)	II-III	Atendimento precoce a pacientes hospitalizados	PC associado a TP versus anti-COVID-19 HiG versus TP	PC: 200-250mL (dias 1 e 2); Solução IgG a 10%: 50mL (paciente ≥50kg); 1mL/kg (paciente <50Kg), nos dias 1 e 3	>18	1/9/2020	1/6/2021	4,8	Ainda sem recrutamento
NCT04380935(30)	II-III	Pacientes hospitalizados na UTI (usando ventilação mecânica)	PC associado a TP versus TP	NR	>18	18/5/2020	31/10/2020	71,7	Ainda sem recrutamento
NCT04332835(31)	II-III	Gravidade moderada e grave/crítica	PC associado a TP versus HCQ associado a TP	250mL nos dias 1 e 2	18-60	8/8/2020	31/10/2020	44,0	Ainda sem recrutamento
NCT04385043(32)	II-III	Pacientes hospitalizados com alto risco de doença grave	PC associado a TP versus anti-COVID-19 HiG versus TP	NR	18-60	1/5/2020	15/5/2021	35,9	Recrutando
NCT04381936(33)	II-III	Pacientes hospitalizados com alto risco de doença grave	LPV/Rit versus corticosteroides versus HCQ versus AZI versus Tmab associado a TP versus PC associado a TP	275mL±75mL nos dias 1 e 2	Todos	19/3/2020	1/12/2031	4,2	Recrutamento
Intervenção com plasma convalescente

A intervenção com PC aplicada em todos os PEC foi para pacientes hospitalizados com diferentes graus de comprometimento da doença, principalmente para os casos graves internados em UTI (58,3%) com ou sem ventilação mecânica invasiva, e todos os pacientes receberam o TP para COVID-19. Os braços de intervenção aplicados nesses pacientes hospitalizados normalmente comparavam o PEC da terapia com plasma mais TP em relação a somente TP associado ou não a alguns medicamentos selecionados, como corticosteroides, antibióticos, antimaláricos (hidroxicloroquina), anticoagulantes, imunoglobulina humana, medicamentos antivirais, entre outros. A terapia com PC foi aplicada principalmente por meio de dose única com diferentes volumes de transfusão (45,8%). O volume mais utilizado foi de 500mL, em 20,8%, seguido de doses de 200 a 250mL em 8,3%, 400mL em 8,3%, 300mL em 4,2%, e 600mL em 4,2%. Nos casos com mais de uma dose, o volume foi de duas doses de 250mL, utilizadas na maioria dos PEC, seguidas de 2x200mL e 2x300mL. As doses de plasma foram derivadas de um único doador ou de até dois doadores diferentes em alguns PEC. Quase todos os PEC testaram a intervenção em indivíduos com mais de 18 anos, com exceção de dois PEC (Tabela 1).

Em relação às características do desenho do estudo desses PEC, a figura 2 mostra que a intervenção foi randomizada em sua maioria (87,5%), e poucos PEC utilizaram algum tipo de mascaramento (33,3%), como cegamento simples (participante), duplo (participante e avaliador dos desfechos), triplo (participante, prestador de cuidados e avaliador dos desfechos) e quádruplo (participante, prestador de cuidados, investigador e avaliador dos desfechos). No entanto, 12,5% dos PEC não adotaram nenhuma técnica utilizada para minimizar o viés nas alocações e no cegamento, mantendo-se open-label. A inscrição estimada em ensaios clínicos em fase IV é de 7,100 indivíduos, em fase III é de 36 a 2.400 indivíduos e, em fase II-III, de 60 a 15 mil indivíduos. O número estimado de voluntários em cada protocolo está representado pela barra de escala colorida na figura 2.

Figura 2. Desenhos de estudo de ensaios clínicos de imunização passiva contra a COVID-19 (terapia com plasma), distribuídos sistematicamente pelos diferentes tipos de alocação (randomizada ou não), mascaramento (nenhum, cegamento único, duplo, triplo e quádruplo), inscrição estimada (variada de 36 a 15 mil indivíduos) e países de estudo. A barra de escala colorida representa o número estimado de voluntários em cada protocolo.
Rede global de pesquisa em protocolos de ensaios clínicos

Entre os PEC multicêntricos sobre PC, o de fase IV é o único com colaborações intercontinentais representadas pelas linhas pretas tracejadas no mapa-múndi (Figura 3), com 87 centros de recrutamento (cilindros verdes) distribuídos na América do Norte, na Europa e na Oceania. Os PEC de fase III também têm colaboração entre países e envolvem 48 centros de recrutamento (cilindros amarelos) nos Estados Unidos e no Canadá. Os outros PEC multicêntricos envolvem um número variado de centros de recrutamento dentro do mesmo país, como Austrália com 79 centros (cilindros roxos), Holanda com 18 centros (cilindros azuis), Dinamarca com 12 centros (cilindros cinza escuro), Itália com seis centros (cilindros laranja), destacados na figura 3, com a imagem ampliada para melhor visualização do centros de colaboração e outros com cerca de três centros. Os PEC de centro único concentram-se principalmente na América do Norte e América do Sul.
Desfecho da terapia com plasma em pacientes COVID-19

Os três estudos que avaliam a eficácia da terapia com plasma também prioritizam a avaliação da COVID-19 em pacientes graveremente doentes ou com risco de vida, como os ensaios clínicos avançados mencionados. A intervenção da terapia com PC variou muito entre os estudos, sem um consenso sobre o melhor padrão de aplicação de PC. Em relação aos resultados, os estudos mostraram redução de 53% na gravidade da doença (dispensando terapia intensiva),\(^{36-38}\) de 26% no tempo de internação\(^{36-38}\) e de 35% a 50% na mortalidade\(^{36-38}\) relacionando efeitos adversos em menos de 4% dos pacientes após tratamento com PC em diferentes doses e volumes associados à terapia padrão para COVID-19,\(^ {36-38}\) conforme mostrado na tabela 2.

Tabela 2. Estudos que avaliam a eficácia da terapia com plasma em pacientes com COVID-19

Referências	Amostra n/PC	Título de anticorpos	Dose PC (mL)	Carga viral \(\times 10^8\) /dL	Tratamentos anteriores	Hospitalização (variação)	Eventos adversos (n)	Redução da taxa de mortalidade	
Abolghasemi et al.\(^ {29}\)	189/115 PC versus 74 TP	Índice de corte de título de anticorpos plasmáticos >1,1	2x500mL	NI	TP + antiviral (LPV/Rit), HCQ e agente anti-inflamatório	9.54 dias PC versus 12.88 dias TP	PC reduziu o tempo de hospitalização em aproximadamente 26%	Aproximadamente 1% PC	14.8% PC versus 24.3% TP Aproximadamente 40%
Li et al.\(^ {30}\)	103/52 PC (23 graves + 29 com risco de vida) versus 51 TP (22 graves + 29 com risco de vida)	1:350 (6 doadores) 4-13mL/kg	Redução em pacientes graves: 44,7% (24 horas), 68,1% (48 horas) e 79,7% (72 horas) livre de vírus		Antiviral (41/46; 89,1%); antibacteriano (38/46; 82,6%); fitoterapia chinesa (26/46; 56,5%); corticoides (21/46; 45,7%); antiinfiamatório (15/46; 32,6%); Hlg (13/46; 28,3%); Interferon (12/46; 26,1%)	Gravess: 32,00 (26,00-40,00); com risco de vida: indeterminado (46,00-Indeterminado)		Aproximadamente 4% PC	15,7% PC versus 24,0% TP Aproximadamente 35%
Xia et al.\(^ {31}\)	1.568/138	Não significativamente maior nos que responderam de forma rápida ao tratamento do que nos que responderam de forma moderada	200-1.200mL	20/25 (80%) ficaram livres de vírus após 14 dias					

PC: plasma convalescente; TP: tratamento padrão; NI: não informado; LPV: lopinavir; Rit: ritonavir; HCQ: hidroxicloroquina; Hlg: imunoglobulina humana; UTI: unidade de terapia intensiva.

DISCUSSÃO

Na ausência de um tratamento efetivo para pacientes com COVID-19, muitos estudos têm buscado alternativas para tratar os pacientes e melhorar sua defesa imune, como é o caso do uso da terapia com PC. O ensaio de recuperação\(^ {40}\) fornece evidências para apoiar algumas formas de tratamento (por exemplo, dexametasona) e de melhora da imunidade em pacientes em condições críticas, e esse ensaio utiliza a terapia com PC como braço terapêutico. No entanto, muitos aspectos dessa terapia ainda estão sendo explorados, como o intervalo de tempo limite e o momento ideal de coleta para a COVID-19, ou os títulos de imunoglobulina G/linmunoglobulina M (IgG/IgM) dos doadores, a melhora clínica proporcionada pela terapia, sua eficácia em pacientes críticos ou não críticos e seus efeitos adversos.

Dentre os 170 PEC identificados, apenas 24 PEC eram em fase avançada (III/IV) com 33 mil indivíduos, concentrados nas regiões da América, mostrando as principais questões referentes à eficácia do uso do PC ainda incertas ou frágeis para justificar a ampliação de seu uso no atendimento hospitalar de pacientes críticos ou não críticos. Além disso, nenhum país, incluindo os Estados Unidos, licenciou o PC como tratamento para a COVID-19. A Food and Drug Administration (FDA) o considerou elegível para uso mais amplo sob uma autorização de uso de emergência,\(^ {41}\) embora outros países tenham concedido aprovação para seu uso em alguns pacientes.

Um dos primeiros ensaios clínicos com PC que analisou 103 pacientes com COVID-19 grave e risco de vida (idade mediana de 70 anos)\(^ {37}\) não mostrou signi-
ficância estatística na melhora clínica após 28 dias ou redução da mortalidade. No entanto, houve evidências de efeitos terapêuticos notáveis e possível atividade antiviral em grupos de pacientes de 60 a 80 anos, no estágio final da evolução da doença, após 14 dias de sintomas, utilizando apenas unidades com títulos de anticorpos muito altos (IgG superior a 1:50) específicos para spike (S) e domínio de ligação ao receptor (RBD). Outro estudo sobre o tratamento com PC em pacientes com COVID-19 grave(42) mostrou melhora significativa dos sintomas clínicos, com aumento da saturação da oxi-hemoglobina após o terceiro dia de transfusão, redução das lesões pulmonares, melhora dos critérios laboratoriais de rotina e da função pulmonar acompanhada por rápida neutralização da viremia, utilizando 200mL de PC proveniente de doadores recentemente recuperados com títulos de anticorpos neutralizantes entre 1:160-640, cerca de 16,5 dias após o início dos sintomas, associados ao tratamento padrão e agentes antivirais. Apenas três PEC(14,19,28) mencionaram os títulos de anticorpos usados na terapia com PC (acima de 1:160), e os estudos de Abolghasemi et al.(36) e Li et al.,(37) também relataram o uso de títulos de anticorpos acima de 1.1 na terapia com PC associados à melhora clínica e à redução da mortalidade.

Para reduzir a variabilidade na resposta terapêutica dos pacientes, a OMS recomenda alguns cuidados e padronização na seleção de doadores de PC.(43) O critério de elegibilidade em relação à idade do doador não varia muito: 18 a 67 anos.(36,44) Os doadores eram pacientes que se recuperaram de COVID-19 e não mostraram detecção de SARS-CoV-2 por reação em cadeia da polimerase quantitativa em tempo real (qRT-PCR) ou quaisquer sintomas relacionados após um período que variou entre os estudos. Em um estudo, os doadores podem ter se recuperado após 1 semana, e o curto período de recuperação talvez possa ter contribuído para a morte de cinco em seis pacientes.(45) Recuperação mais longa permitiu relatos de eficácia terapêutica. Esse período pode ser de 10 dias, com a coleta realizada em duas vezes, com diferença de 24 horas,(46) de pelo menos 14 dias(36,47) e de mais de 2 semanas.(36,42,44) Em alguns casos, o qRT-PCR dos swabs nasofaríngeos deve ser testado como negativo duas vezes, com intervalo de 24 horas entre os exames.(36,42)

Em relação à quantificação de anticorpos, os títulos de IgG específicos para S-RBD variam de doador para doador. Estudo demonstrou que dez em 25 amostras de plasma coletado exibiram o título de 1:450, 6/25 1:350, ao passo que, nos demais, variaram de 1:1 a 1:150.(44) A maioria dos estudos utilizou um volume de PC em torno de 500mL, em dose única ou dividido em duas doses, proveniente de um único doador(12,16,20,23) ou de dois doadores diferentes.(12,16) Portanto, essa falta de padronização na seleção dos doadores, no controle de qualidade do PC e nos pacientes receptores poderia explicar os diversos efeitos terapêuticos.

Alguns possíveis efeitos adversos com o uso do PC podem ser evitados, como o uso de PC sem antígenos, que poderia causar lesão pulmonar aguda associada à transfusão (TRALI - transfusion-related acute lung injury), como os antígenos leucocitários humanos que protegem o embrião.(36) Em ensaio clínico multicêntrico, não foi permitido o uso de PC em mulheres grávidas, com o objetivo de prevenir a ocorrência de TRALI.(36)

A gravidade da doença do paciente transfundido com PC variou de leve, moderada, grave a crítica. Um PEC com pacientes graves dividiu os grupos de estudo em pacientes com doença respiratória aguda grave e pneumonia grave adquirida na comunidade.(10) Outro PEC comparou os efeitos do tratamento em pacientes com COVID-19 oncológicos e não oncológicos.(27) A admissão na unidade de terapia intensiva está relatada em alguns PEC,(11,18,28,30) embora se presuma que isso se aplique a todos os pacientes graves. Em alguns PEC, o tratamento com PC foi comparado a outros tratamentos, como corticoides, antibióticos, anticorpos monoclonais e medicamentos antivirais.(10,22,23,33)

Alguns resultados publicados permitiram a avaliação de diferentes parâmetros quanto à eficácia do tratamento. Em estudo em que foi aplicado o PC, seis de 17 pacientes necessitaram de ventilação mecânica - na maioria pacientes idosos.(17) Em estudo multicêntrico, a taxa de mortalidade foi de 14,8% dos pacientes (n=115).(36) Resultados semelhantes foram encontrados em outro estudo multicêntrico (15,7%).(36) Em outro, a mortalidade foi de apenas 2,2%.(38) Um estudo utilizou essa terapia em pacientes com hipertensão, diabetes ou doença cardiovascular, mas não ficou claro o efeito dessas comorbidades no resultado do tratamento com PC.(36)

A transfusão da terapia com PC para COVID-19 deve seguir algumas condições preestabelecidas, como disponibilidade de uma população de doadores que já se recuperou da doença e pode doar soro convalescente; bancos de sangue para processar as doações de soro; disponibilidade de testes, incluindo testes sorológicos, para detectar SARS-CoV-2 em exames séricos e virológicos para medir a neutralização viral; apoio laboratorial de virologia para a realização desses exames e padronização da fase e condição do paciente com COVID-19.(48)

As principais limitações dos estudos multicênicos foram o número reduzido de pacientes nos grupos de controle em comparação ao grupo de tratamento, geralmente devido à falta de compatibilidade do grupo sanguíneo do PC e ao uso concomitante ou prévio de
outro tratamento. Outra limitação é a falta de protocolos padronizados e treinamento para a equipe do estudo, além de diversidade no monitoramento dos pacientes. Por sua vez, a principal limitação do nosso estudo foi a impossibilidade de realizar uma metanálise, devido à falta de um número robusto de estudos que relataram efetos terapêuticos conclusivos dessa modalidade, como diminuição dos títulos de SARS-CoV-2. No entanto, alguns artigos publicados sobre estudos multicêntricos demonstraram que o PC pode ser uma modalidade terapêutica promissora.

COLABORAÇÃO DOS AUTORES

A extração e coleta de dados e a avaliação do risco de viés foram realizadas por seis autores (Fernando Anselmo de Oliveira, Mariana Penteado Nucci, Gabriel Nery de Albuquerque Rego, Arielly da Hora Alves, Leopoldo Penteado Nucci e Javier Bustamante Mamani) organizados em pares, que revisaram e avaliaram, de forma independente e aleatória, as informações registradas nos protocolos de ensaios clínicos e estudos identificados pela estratégia de busca nas bases de dados mencionadas. As discrepâncias entre os autores na seleção de estudos e na extração de dados foram discutidas com dois autores (Luciana Cavalheiro Marti e Lionel Fernel Gamarra) e resolvidas. A inclusão final dos estudos desta revisão foi acordada entre todos os autores.

CONCLUSÃO

Atualmente, não há opções terapêuticas confiáveis para pacientes com COVID-19 em estado crítico. Com base nos poucos resultados de dados clínicos multicêntricos consolidados disponíveis, concluímos que os estudos de terapia com plasma convalescente forneceram resultados relevantes em casos graves/criticos de pacientes com COVID-19, reduzindo o tempo de internação, a gravidade da doença e a mortalidade, com baixa frequência de eventos adversos em um número considerável de pacientes. Porém, não é possível afirmar, de forma conclusiva, qual a real relevância desse tratamento, devido à falta de dados que permitam uma análise estatística robusta, como uma metanálise.

AGRADECIMENTOS

Lionel Fernel Gamarra teve apoio do Sistema Nacional de Laboratórios em Nanotecnologias (SisNANO) 2.0 (Conselho Nacional de Desenvolvimento Científico e Tecnológico/Ministério da Ciência, Tecnologia, Inovações e Comunicações, processo 442539/2019-3).
17. ClinicalTrials.gov. Efficacy of convalescent plasma therapy in patients with COVID-19. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04376034

18. ClinicalTrials.gov. Passive immunity trial of the nation for COVID-19 (PassItOnII). Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04425899

19. ClinicalTrials.gov. Convalescent plasma vs human immunoglobulin to treat COVID-19 pneumonia. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04362176

20. ClinicalTrials.gov. Evaluation of SARS-CoV-2 (COVID-19) antibody-containing plasma therapy (ESCAPE). Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04381858

21. ClinicalTrials.gov. Convalescent plasma collection and treatment in pediatrics and adults. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04345289

22. ClinicalTrials.gov. Australasian COVID-19 trial (ASCOTT) [Internet]. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04483960

23. ClinicalTrials.gov. Efficacy and safety of novel treatment options for adults with COVID-19 pneumonia. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04432182

24. ClinicalTrials.gov. Convalescent plasma as therapy for Covid-19 severe SARS-CoV-2 disease (CONCOVID Study). Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04345289

25. ClinicalTrials.gov. Safety and efficacy of convalescent plasma transfusion for COVID-19 patients. to prevent disease progression. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04342182

26. ClinicalTrials.gov. Early transfusion of convalescent plasma in elderly COVID-19 patients: to prevent disease progression. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04374526

27. ClinicalTrials.gov. COVID19-convalescent plasma for treating patients with active symptomatic COVID 19 infection (FALP-COVID). Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04388410

28. ClinicalTrials.gov. Efficacy and effectiveness of convalescent plasma in patients with high-risk COVID-19. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04384588

29. ClinicalTrials.gov. Convalescent plasma (PC) and human intravenous anti-COVID-19 immunoglobulin (IV anti-COVID-19 Ig) in patients hospitalized for COVID-19. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04425837

30. ClinicalTrials.gov. Effectiveness and safety of convalescent plasma therapy for COVID-19 patients with acute respiratory distress syndrome. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04395170

31. ClinicalTrials.gov. Effectiveness and safety of convalescent plasma therapy for COVID-19: a randomized, open label, parallel, controlled clinical study. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04332835

32. ClinicalTrials.gov. Hyperimmune plasma in patients with COVID-19 severe infection. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04385043

33. ClinicalTrials.gov. Randomised evaluation of COVID-19 therapy. Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04381936

34. Wadman M. Antivaccine forces gaining online. Science. 2020;368(6492):699.

35. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

36. Abolghasemi H, Esghip F, Cheraghali AM, Imani Fooladi AA, Bolouki Moghadam F, Imazadeh S, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: results of a multicenter clinical study. Transfus Apher Sci. 2020;59(5):102875.

37. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: a Randomized Clinical Trial. JAMA. 2020;324(6):470-60. Erratum in: JAMA. 2020;324(5):519.

38. Xia X, Li K, Wu L, Wang Z, Zhu M, Huang B, et al. Improved clinical symptoms and mortality among patients with severe or critical COVID-19 after convalescent plasma transfusion. Blood. 2020;136(6):755-9.

39. ClinicalTrials.gov. Convalescent plasma for the treatment of severe SARS-CoV-2 (COVID-19). Bethesda: National Library of Medicine; 2020 [cited 2020 Oct 28]. Available from: https://ClinicalTrials.gov/show/NCT04391101

40. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmah E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fagan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexametasona em pacientes hospitalizados com covid-19. N Engl J Med. 2021;384(8):893-704.

41. Estcourt Ll, Roberts DJ. Convalescent plasma for covid-19. BMJ. 2020;370:m3516.

42. Duan K, Liu B, Li C, Zhang H, Yu T, Gu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020;117(17):9490-6.

43. World Health Organization (WHO). Blood products and related biologicals. Blood Regulators Network (BRN). Position paper on use of convalescent plasma, serum or immune globulin concentrates as an element in response to an emerging virus. Geneva: WHO; 2017 [cited 2020 Oct 26]. Available from: https://www.who.int/bloodproducts/brn/2017_BRN_PositionPaper_ConvalescentPlasma.pdf

44. Salazar E, Perez KK, Ashraf M, Chen J, Castillo B, Christensen PA, et al. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with covid-19: a pilot study. Rev Invest Clin. 2020;72(3):159-64.

45. Zeng QL, Yu ZJ, Gou JJ, Li GM, Ma SH, Zhang GF, et al. Effect of convalescent plasma therapy on viral shedding and survival in patients with coronavirus disease 2019. J Infect Dis. 2020 Jun;222(11):38-43.

46. Olivares-Gaizca JC, Riesco-Marin JM, Ojeda-Laguna M, Garces-Eisele J, Soto-Olvera S, Palacios-Alonso A, et al. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with covid-19: a pilot study. Rev Invest Clin. 2020;72(3):159-64.

47. Corta MA, Carinci A, Berber I, Kuki I, Kaya E, Özgil M. Life-saving effect of convalescent plasma treatment in covid-19 disease: clinical trial from eastern Anatolia. Transfus Apher Sci. 2020;59(6):102867.

48. Casadevall A, Pirofski LA. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130(4):1545-8.

49. Joyner MJ, Wright RS, Fairweather D, Senefeld JW, Bruno KA, Klassen SA, et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J Clin Invest. 2020;130(9):4791-7.