Consumer Satisfaction on Mocaf (Modified Cassava Flour) Based Food Products in Supporting Industrial Revolution 4.0: SEM Approach

Riyanti Isaskar¹, Dwidjono Hadi Darwanto², Lestari Rahayu Waluyati.², Irham²

¹Agriculture Faculty, Brawijaya University, Malang, Indonesia
²Agriculture Faculty, Gajah Mada University, Yogyakarta, Indonesia

*Corresponding author: riyanti_is@yahoo.com

Abstract. The increase in the snack food industry in Indonesia is one of the effects of improving the current lifestyle. Along with the progress of the digitalization era, technology and marketing strategies that take advantage of the industrial revolution 4.0 demand for snacks is also felt to grow rapidly. Likewise with the growth of culinary tourism provides an opportunity for small industries in the food sector to innovate in developing their products to be attractive to tourists. Mocaf (modified cassava flour) is local flour produced from cassava through a fermentation process, in the long-term it can be used as a substitute for wheat flour. This study aims to determine the variables that affect consumer satisfaction with mocaf-based food products. Purposive sampling technique was applied as a method for determining the sample, with a sample size of 145 people. The analytical method used is structural equation model with the help of warp-PLS software using two exogenous variables namely product quality variable (X1) and price variable (X2) also satisfaction endogenous variable (Y). The results of the analysis show that product quality variables have no significant effect on customer satisfaction, while the price variable has a significant positive effect on customer satisfaction. This shows that in the consumption of mocaf-based processed products, consumers consider product prices more than product quality to influence satisfaction.

1. Introduction

Today's snacks play an important role in consuming the daily diet of people [1]. The increasing demand for the food and beverage industry in Indonesia is one of the impacts of improving the lifestyle of the fast and instant society in meeting their needs. Coupled with the increasing interest in traveling, it was felt to contribute to growing culinary tourism for visitors who indirectly added to the high dependence on wheat flour. There had been known that most of the processed food offered uses wheat flour, which incidentally cannot yet be produced domestically. Therefore food diversity needs to be done to change people's diet so that it does not depend on one type of food [2]. Mocaf flour is one of the local sources of carbohydrate which is processed by fermentation to produce characteristics that are close to wheat flour [3] so that it can substitute the use of wheat flour in the management of processed food.

The 4.0 industrial revolution or the so-called Internet of Things (IoT) era is considered capable of increasing global food industry competition [4] because it is felt to increase production cost efficiency...
and product distribution to make it easier for consumers to find anything needed to achieve satisfaction. Today’s transformation of digitalization, allows food and beverage agro-industries to design their integrated products from upstream to downstream. Consumers who have been connected to the internet, expect to get everything they need quickly and precisely so that they demand that the producers immediately provide all the information they have regarding their products. Consumer satisfaction is an important indicator for producers to continue to survive in increasingly fierce competition.

Consumer satisfaction is defined as a global evaluation of the state of feeling toward product or service [6]. Theory expectancy / disconfirmation theory is one theory that is often used in many studies. Consumer satisfaction depends on the difference between the quality expected and the reality of the experience felt. If the quality of the product is felt as expected, the consumer is satisfied, but if the quality of the product is not as expected, it will cause dissatisfaction. Consumer satisfaction plays an important role in marketing because it becomes a good predictor of purchase behavior [7]. This study aims to determine the variables that affect consumer satisfaction with mocaf-based food products. The variables used to measure satisfaction are product quality variables and product price variables.

2. Methodology
The structural equation model is used in research to build relationships between several important factors in developing new products [8]. This statistical approach uses WarpPLS 3.0 software to test hypotheses about the relationships between variables used. The data in the study are primary data obtained from respondents of 145 people. Because consumers who have consumed mocaf processed products are not known for certain, probability sampling techniques are not possible. Determination of respondents then used nonprobability techniques, namely purposive sampling. Respondents in this study were respondents who had consumed various processed mocaf products and were in the area of Malang City and Batu City, East Java, Indonesia. Data was collected based on questionnaires that contained consumer perceptions about product quality [9] product prices [10] [11] and consumer satisfaction [12] [13]. All questions regarding consumer perceptions use a 5 point Likert scale (1: Strongly not agree, 2: Not Agree; 3: Neutral; 4: Agree, 5: Strongly Agree).

The path analysis model in PLS has two relationships, namely inner model and outer model [14]. The following is an explanation of the relationship

2.1 Inner Model

Inner model is a specification of relations between latent variables. Latent variables and manifest indicators or variables can be standardized without removing general properties so that constant parameters can be removed from the model. The equation model is as follows

\[ \mathbf{Y} = \mathbf{Y}^* \beta + \mathbf{X}\gamma + \mathbf{e} \]

Informations:
- \( \mathbf{Y} \): vector variable laten endogenous
- \( \mathbf{Y}^* \): matrix variable laten endogenous
- \( \mathbf{X} \): matrix variabel laten exogenous
- \( \mathbf{e} \): vector galat inner model
- \( \beta \): vector path coefisien among variable endogenous
- \( \gamma \): vector path coefisien among variable exogenous toward endogenous

Based on Figure 1 below, the path analysis model on the inner model can be written as follows:

\[ Y = \gamma_1 X_1 + \gamma_2 X_2 + e \]
2.2 Outer Model

Outer model is a specification of the relationship between a latent variable and its indicator, which defines the characteristics of the construct with its manifest variable. There are two indicator properties in the equation model. Following is the equation of the reflective indicator model:

\[ x = \lambda_x X + u \]
\[ y = \lambda_y Y + v \]

Informations:
- \( X \): matrices indicator to variable latent exogenous
- \( Y \): matrices indicator to variable latent exogenous
- \( \lambda_x \): matrices loading for variable latent exogenous
- \( \lambda_y \): matrices loading for variable latent endogenous
- \( u \): galat for variable latent exogenous
- \( v \): galat for variable latent endogenous

Based on Figure 1 the outer model can be written as follows:

a. The exogenous latent variable 1 is reflective
\[ x_{11} = \lambda_{x11} X_1 + u_{11} \]
\[ x_{12} = \lambda_{x12} X_1 + u_{12} \]
\[ x_{13} = \lambda_{x13} X_1 + u_{13} \]

b. The exogenous latent variable 1 is reflective
\[ x_{21} = \lambda_{x21} X_2 + u_{21} \]
\[ x_{22} = \lambda_{x22} X_2 + u_{22} \]
\[ x_{23} = \lambda_{x23} X_2 + u_{23} \]

c. Variable laten endogenous 1 is reflective
\[ y = \lambda_{y1} Y + v_{1} \]

This study involved a hypothesis that was tested using Structural Equation Modeling (SEM).

H1: Perception of product quality has a positive effect on product satisfaction
H2: Perception of product prices has a positive effect on product satisfaction
3. Result

3.1. Sociodemography Consumers of Processed Products Based on Mocaf

Consumer sociodemographic characteristics such as gender, occupation, number of household members, age, education and income have a relationship with consumer decisions and awareness of a product.

| Table 1. Consumers Sociodemographic Characteristics Processed Products Based on Mocaf |
|---------------------------------|--------|----------|
| Characteristic                  | Code   | N    | %    |
| Gender                          | Male   | 38   | 26.2 |
|                                 | Female | 107  | 73.8 |
|                                 | Total  | 145  | 100  |
| Job                             | Goverment | 34 | 23.4 |
|                                 | Officer |    |      |
|                                 | Private | 45   | 31   |
|                                 | House Wife | 21 | 14.5 |
|                                 | Student | 40   | 27.6 |
|                                 | Soldier/ Police | 1 | 0.7 |
|                                 | Others  | 4    | 2.8  |
|                                 | (Pensioner) |    |      |
| Total                           |        | 145  | 100  |
| Household size                  | 1 person | 4   | 2.8  |
|                                 | 2 persons | 27  | 18.6 |
|                                 | 3 persons | 44  | 30.3 |
|                                 | 4 persons | 43  | 29.7 |
|                                 | >5 persons | 27  | 18.6 |
| Total                           |        | 145  | 100  |
| Age (Years)                     | 19 – 31 | 77   | 53.1 |
|                                 | 32 – 44 | 29   | 20   |
|                                 | 45 – 57 | 27   | 18.6 |
|                                 | >58     | 12   | 8.3  |
| Total                           |        | 145  | 100  |
| Education Level                 | SD     | 0    | 0.0  |
|                                 | SMP    | 3    | 2.1  |
|                                 | SMA    | 33   | 22.8 |
|                                 | D3     | 13   | 9    |
|                                 | S1     | 56   | 38.6 |
|                                 | S2 or S3 | 40  | 27.6 |
| Total                           |        | 145  | 100  |
| Income (Millions)               | < 1    | 19   | 13.1 |
|                                 | 1 - 2jt | 42   | 29   |
|                                 | >2 - 3.5jt | 30 | 20.6 |
|                                 | >3.5jt - 5jt | 22 | 15.2 |
|                                 | > 5jt   | 32   | 22.1 |
| Total                           |        | 145  | 100  |

Source: Primary Data, 2018

Based on Table 1, it is known that 73.8% of respondents in this study were women. This is because women are easy to find and have a greater disposition to consume more quality products than the previous product compared to men [15]. The age level of consumers is 73.1% aged 19-44 years with an education level of 75.2% of consumers going to college. This shows that consumers of mocaf flour are at a productive age and have a high educational background so consumers are more easily invited to
discuss the development of local food products and healthy food such as gluten free on mocaf-based products [16][17][18]. Job status of consumers 54.4% work as employees, both government and private employees and it is also known that consumers have an average income of more than 3.5 million per month as much as 57.9%. 78.6% of consumers are known to more than 3 people, the large number of family members can be an opportunity for the development of local products because of the influence of the role of parents in educating their families about the positive impact of a product [19].

3.2. Analysis of Measuring Validity and Reliability of Instruments

Testing the validity by looking at Pearson correlation, the instrument is declared valid if the correlation value is > 0.3. Complete results are presented in Table 2 below:

| Table 2. Test the Validity of Research Instruments |
|----------------|----------------|--------|-----------|
| **Variable**   | **Dimension**  | **Item** | **Correlation** | **Conclusion** |
| Product Quality (X1) | | X1.1.1 | 0.541 | Valid |
| | | X1.1.2 | 0.599 | Valid |
| | | X1.1.3 | 0.574 | Valid |
| | | X1.1.4 | 0.722 | Valid |
| | Organoleticps (X1.1) | X1.1.5 | 0.487 | Valid |
| | | X1.2.1 | 0.357 | Valid |
| Packaging (X1.2) | | X1.2.2 | 0.401 | Valid |
| | | X1.2.3 | 0.388 | Valid |
| | | X1.3.1 | 0.443 | Valid |
| | Expired dates (X1.3) | X1.3.2 | 0.417 | Valid |
| Price Compatibility with quality (X2.2) | | X2.2.1 | 0.524 | Valid |
| Competitive prices (X2.3) | | X2.2.2 | 0.495 | Valid |
| | | X2.3 | 0.363 | Valid |
| Affordability of prices (X2.1) | | X2.1.1 | 0.465 | Valid |
| | | X2.1.2 | 0.497 | Valid |
| Product Price (X2) | Satisfaction (Y) | Y1 | 0.503 | Valid |
| | | Y2 | 0.387 | Valid |

Table 2. shows that the correlation value of all total items corrected > 0.3. Thus it can be concluded that all items in the instrument have met the validity. The next stage is the instrument reliability testing. The instrument was declared reliable when the Cronbach Alpha value > 0.6. The complete results of the reliability test are presented in Table 3 below:

| Table 3. Test Reliability of Research Instruments |
|----------------|----------------|--------|-----------|
| **Variable**   | **Alpha Cronbach** | **Conclusions** |
| Product Quality (X1) | 0.707 | Reliabel |
| Product Price (X2) | 0.701 | Reliabel |
| Satisfaction (Y1) | 0.719 | Reliabel |

Table 3. shows the value of Cronbach Alpha to seven research variables > 0.6. Thus it can be concluded that the instrument has fulfilled valid and reliable requirements, so that the data obtained from the instrument (questionnaire) can be used for data analysis at a later stage [20].

3.3. Results of SEM Data Analysis

3.3.1 Goodness of Fit Model

The feasibility of the research model can be proven by looking at the analysis of the coefficient of determination of multivariate expressed by Q-Square (Q). Q-Square is a measure of how well the observations made give results to the research model. Q > 0 indicates the model has predictive relevance. Criteria for the strength of the weak model are measured based on predictive relevance Q-square values
that range from 0 (zero) to one \[21\]. The closer to the 0 value of Q-Square predictive relevance provides a clue that the research model is getting weaker, on the contrary, getting away from 0 (zero) and getting closer to the value of 1 (one), means the research model is getting better. Based on R2 value, Q2 or Stone Geiser Q-Square test can be calculated, namely:

\[Q^2 = 1 - (1 - R^2)\]

\[Q^2 = 1 - (1 - 0.352)\]

\[Q^2 = 0.352 = 35.2\%\]

The calculation results show a predictive-relevance value of 0.352 or 35.2%. The predictive value of relevance of 35.2% also indicates that the diversity of data that can be explained by the model is 35.2% or in other words the information contained in the 35.2% data can be explained by the model. While the remaining 64.8% is explained by other variables (which have not been contained in the model) and errors. Likewise, when viewed from the Goodness of Fit Model in the WarpPLS analysis, it is known that the model has met the requirements to be interpreted \[22\].

**Table 4. Result of Fit and Quality Indices Model**

| Model Fit                          | Criteria                          | Result       | Information     |
|------------------------------------|------------------------------------|--------------|-----------------|
| Average path coefficient (APC)     | P<0.05                             | 0.323, p<0.001 | Good            |
| Average R-square (ARS)             | P<0.05                             | 0.352, p<0.001 | Good            |
| Average adjusted R-square (AARS)   | P<0.05                             | 0.342, p<0.001 | Good            |
| Average block VIF (AVIF)           | acceptable if \(\leq\) 5, ideally \(\leq\) 3.3 | 1.241 | Ideally          |
| Average full collinearity VIF (AFVIF) | acceptable if \(\leq\) 5, ideally \(\leq\) 3.3 | 1.380 | Ideally          |
| Tenenhaus gof (gof)                | Small \(\geq\) 0.25; Medium \(\geq\) 0.36; Large \(\geq\) 0.36 | 0.430 | Very Good        |
| Sympson’s paradox ratio (SPR)      | acceptable if \(\geq\) 0.7 | 1.000 | Ideally          |
| R-square contribution ratio (RSCR) | acceptable if \(\geq\) 0.9, ideally \(\geq\) 1 | 1.000 | Ideally          |

In SEM analysis there is an outer loading value and the outer weight shows the weight of each indicator as a measure of each latent variable. The indicator with the largest outer loading or outer weight indicates that the indicator is the measure of the strongest (dominant) variable \[14\]. The entire variable X1 which consists of 10 items and X2: 5 items, the results of the analysis show that the value of the p-value of each item is significant as a measure of the two exogenous variables. The following table 5 presents the first part of the measurement model for the perception of product quality (X1) and the product price variable (X2).

**Table 5. The Outer Model Test Results Variables Perceived Product Quality (X1) and Product Price (X2) Towards Food Processors Based on Mocaf**

| Variable      | Indicators Outer loading | Outer loading | P-value | Information     |
|---------------|--------------------------|---------------|---------|-----------------|
| Products Quality (X1) | Organoleptics (X1.1) | 0.555 | <0.001 | Significant       |
|               | Product Packing (X1.2)  | 0.763 | <0.001 | Significant       |
|               | Expired date (X1.3)     | 0.750 | <0.001 | Significant       |
| Products Price (X2)   | Affordability of prices (X2.1) | 0.746 | <0.001 | Significant       |
|               | Price compatibility with quality (X2.2) | 0.811 | <0.001 | Significant       |
|               | Competitive prices (X2.3) | 0.653 | <0.001 | Significant       |

Based on Table 5. On the perceived product quality variable (X1) it is known that the product packaging indicator (X1.2) obtained an outer loading of 0.763 greater than the other indicators, while the
organoleptic indicator (X1.1) had the smallest outer loading value of 0.555. The three indicators have significant p-value <0.001 as a measure of perceptions of product quality (X1). From the magnitude of the outer loading coefficient it is known that the product packaging indicator (X1.2) is the strongest measure of the variable X2.

While the product price perception variable (X2) is known that the indicator of price suitability with product quality (X2.2) has the highest outer loading value of 0.811, whereas the competitive price indicator (X2.3) has the smallest outer loading value of 0.653. All indicators (X2) have a p-value <0.001 which means significant as a measure of the product price perception variable (X2). And the price suitability indicator with product quality (X2.2) is known to be the strongest measure of product price perception variable (X2).

In the second part the measurement model of satisfaction (Y) is presented. This variable is measured by 2 items, namely satisfaction felt by consumers for the quality of products consumed (Y1) and satisfaction felt by consumers for the prices paid for products consumed (Y2), in full are presented in Table 6. The results of the analysis show that for the two items of consumer satisfaction variables are known to have the value of outer loading which is equal to 0.740 and the value of p-value <0.001 which means significant as a measure of variable Y.

| Table 6. Measurement Model of Satisfactions Variable (Y) |
|----------------------------------------------------------|
| Variable | Item | Outer loading | p-value | Information |
| Satisfaction (Y) | Y1 | 0.740 | <0.001 | significant |
| | Y2 | 0.740 | <0.001 | significant |

3.3.2. Inner Model
This section is an interpretation of the structural model that presents the relationship between research variables, where the structural coefficient of the model states the magnitude of the relationship between variables one to other variables. There is a significant influence between variables one on the other variables, if the P-value is <0.05. The results of the warpPLS analysis are presented in Table 7 below:

| Table 7. Results of WarpPLS Analysis Effects of Variables X1 and X2 on Consumer Satisfaction |
|-----------------------------------------------|
| Hypothesis | Correlations | Coefisien | P-value | Information |
| H1 | Quality Product (X1) → Satisfaction (Y) | 0.111ns | 0.087 | No Significant |
| H2 | Product Price (X2) → Satisfaction (Y) | 0.536* | <0.001 | Significant |

Note: * significant, ns no significant

![Figure 2. Structural Model](image)

Note: ns = not significant; * = significant
Based on Table 7 and Figure 5 it is known that the influence of the perception of product quality (X1) on satisfaction (Y), obtained a structural coefficient of 0.111 and P-value 0.087. Because P-value > 0.05, indicates that there is no significant influence between perceptions of product quality (X1) on satisfaction (Y). This means that the higher the perception of product quality (X1) will not result in the higher or lower variable satisfaction (Y). Thus, hypothesis 1 of this study was rejected.

The effect of product price perception (X2) on satisfaction (Y), obtained a structural coefficient of 0.536 and P-value <0.001. Because the P-value <0.05 and the coefficient are positive, indicating a significant influence between the perception of product prices (X2) on satisfaction (Y). This means that the higher the price perception (X2), will result in high consumer satisfaction (Y). Thus, the hypothesis 2 of this study was accepted.

Consumers who consume mocaf processed products argue that the prices offered by agro-industries are affordable prices for all levels of society, although there is an assumption that the price of mocaf processed products is expensive, but the price is in accordance with the quality of the products produced. Mocaf processed products are one of the non-gluten products that are very good for health, especially for those who are vegetarian and hypersensitive to gluten [1]. Today's consumers, not only concerned with the taste aspects of a product, but the health aspects become a priority in making consumption decisions. Therefore, for most consumers of mocaf processed products, the prices offered to the market are in accordance with the quality they provide.

4. Conclusion
In this study, it is known that product packaging indicators are found to be significant as the dominant measure of product quality perception variables, unfortunately the product quality perception variable does not significantly influence customer satisfaction. However, different from the perception variable of product prices is known to have a significant effect on consumer satisfaction of mocaf-based processed products. This shows that in the development of new products, especially mocaf-based food processed product, processing agro-industries must consider aspects of product prices that match consumer expectations as the dominant aspect of consumer satisfaction. This study has many limitations because the variables used are only limited to two variables. It is expected that in the future, similar research can add several more complex variables to examine other variables that can affect consumer satisfaction in consuming processed products based on mocaf.

References
[1] Kahlon, T. S., Avena-Bustillos, R. J., & Chiu, M.-C. M. (2017). Sensory Evaluation of Glutten-free Quinoa Whole Grain Snacks. Heliyon, Elsevier.
[2] Hidayat, L. N., & Indrawati, V. (2015). Pengenekaragaman Produk Rich Biscuit Berbasis Tepung Mocaf (Modified Cassava Flour). e-Journal Boga, Vol. 04 No. 3.
[3] Subagyo, A. (2016). Industrialisasi Modified Cassava Flour (MOCAF) Sebagai Bahan Baku Industri Pangan Untuk Menunjang Diversifikasi Pangan Pokok Nasional. Jember: FTP Univ. Jember.
[4] Wang, F., & Zhang, X.-P. (. (2015). The Role of Internet in Changing Industry Competition. Information & Management, 71 -81.
[5] Faqih, K. M. (2016). An Empirical Analysis of Factors Predicting the Behavioral Intention to Adopt Internet Shopping Technology Among Non-Shoppers in a Developing Country Context: Does Gender matter? Journal of Retailing and Consumer Services, 140-164.
[6] Olsen, S. O., Wilcox, J., & Olsson, U. (2005). Consequences of Ambivalence on Satisfaction and Loyalty. Journal of The Academy of Marketing Science, 247-269.
[7] McQuitty, S., Finn, A., & Wiley, J. (2000). Systematically Varing Consumers Satisfaction and its Implications for Product Choice. Academy of Marketing Science Review, 231-254.
[8] Roy, S., Modak, N., & Dan, P. K. (2017). Product Quality as Factors and Measures for New Product Development in Success in Indian Manufacturing Industries. 4.
[9] Jang, S., Ha, J., & Park, K. (2012). Effects of Ethnic Authenticity: Investigating Korean Restaurant Customers in The U.S. International Journal of Hospitality Management, 31(3) 990-1003.
[10] Wu, C., & Liang, R. (2009). Effect of Experiential Value on Customer Satisfaction with Service Encounters in Luxury-hotel Restaurants. *International Journal of Hospitality Management*, 28(4) 586-593.

[11] Xia, L., Monroe, K. B., & Cox, J. L. (2004). The Price is Unfair! A Conceptual Framework of Price Fairness Perceptions. *Journal of Marketing*, 68(1), 1-15.

[12] Ha, J. F., & Jang, S. (2010). Effects of Service Quality and Food Quality: The Moderating Role of Atmospherics in an Ethnic Restaurant Segment. *International Journal of Hospitality Management*, 29(3), 520-529.

[13] Lee, H.-J., & Yun, Z.-S. (2015). Consumers’ Perceptions of Organic Food Attribute and Cognitive and Affective Attitudes and Determinants of Their Purchase Intentions Toward Organic Food. *Food Quality and Preference*, 39, 259-267.

[14] Solimun, Fernandes, A. A., & Nurjannah. (2017). *Metode Statistika Multivariat: Pemodelan Persamaan Struktural (SEM): Pendekatan WarpPLS*. Malang: UB Press.

[15] Kubberod, E., Ueland, O., Rodbotten, M., & Frank Westad, E. R. (2002). Gender Specific Preferences and Attitudes Towards Meat. *Food Quality and Preference*, 13, 285-294.

[16] Sinclair, S., Hammond, D., & Goodman, S. (2013). Sociodemographic Differences in the Comprehension of Nutritional Labels on Food Products. *Journal of Nutrition Education and Behavior*, Volume 45, Number 6.

[17] Li, C., Giasi, A., Xiopeng, & Chi, G. (2018). Sociodemographics and Access to Organic and Local Food: A case study of New Orleans, Louisiana. *The International Journal Of Urban Policy Planning*, 141-150.

[18] Christoph, J. M., Larso, N., Hootman, K. C., Miller, J. M., & Neumark-Sztainer, D. (2018). Who Values Gluten-Free? Dietary Intake, Behaviors and Sociodemographic Characteristics of Young Adult Who Value Gluten-Free Food. *Journal Of The Academy Of Nutrition and Dietetics*, 1389-1398.

[19] Pearson, N., & Gorely, S. J. (2007). Family Correlates of Fruits and Vegetable Consumption in Children and Adolescents: A Systematic Review. *Public Healt Nutrition*, 267-283.

[20] Abdullah, D., hamir, N., & Nor, N. M. (2018). Food Quality, Service Quality, Price Fairness and Restaurant Re-Patronage Intention: The Mediating Role of Customer Satisfaction. *International Academic Research in Business & Social Sciences*, 211-226.

[21] Ghozali, I., & latan, H. (2012). *Partial Least Square : Konsep, Teknik dan Aplikasi SmartPLS 2.0 M3*. Semarang: Badan Penerbit Universitas Diponegoro.

[22] Hair, J. F., Ringle, C. M., & Sarstedt, M. (2014). PLS-SEM: Indeed a Silver Bullet. *Journal of marketing Theory and Practice*, 139-152.