Nanosilver: new ageless and versatile biomedical therapeutic scaffold

Shahid Ullah Khan,1,2 Tawfik A Saleh,3 Abdul Wahab,4 Muhammad Hafeez Ullah Khan,1,2 Dilfaraz Khan,5 Wasim Ullah Khan,4 Abdur Rahim,7 Sajid Kamal,8 Farman Ullah Khan,9 Shah Fahad1,10

1College of Plant Sciences and Technology, 2National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan, People’s Republic of China; 3Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; 4Department of Pharmacy, Kohat University of Science and Technology, Kohat, 5Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan; 6School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People’s Republic of China; 7Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan; 8School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 9Department of Chemistry, University of Science and Technology, Bannu, 10Department of Agriculture, University of Swabi, Swabi, Pakistan

Abstract: Silver nanotechnology has received tremendous attention in recent years, owing to its wide range of applications in various fields and its intrinsic therapeutic properties. In this review, an attempt is made to critically evaluate the chemical, physical, and biological synthesis of silver nanoparticles (AgNPs) as well as their efficacy in the field of theranostics including microbiology and parasitology. Moreover, an outlook is also provided regarding the performance of AgNPs against different biological systems such as bacteria, fungi, viruses, and parasites (leishmanial and malarial parasites) in curing certain fatal human diseases, with a special focus on cancer. The mechanism of action of AgNPs in different biological systems still remains enigmatic. Here, due to limited available literature, we only focused on AgNPs mechanism in biological systems including human (wound healing and apoptosis), bacteria, and viruses which may open new windows for future research to ensure the versatile application of AgNPs in cosmetics, electronics, and medical fields.

Keywords: synthesis of AgNPs, theranostics, antimicrobial properties, biomedical applications of AgNPs

Introduction

“Nano” is a Greek word meaning small or dwarf. Nanoparticles can be defined as the particles ranging in size from 1 to 100 nm in either direction but can be considered as ranging up to several hundred nanometers.1 These are actually aggregates of atoms, ions, or molecules. In other words, “nano” is used to represent one billion of a meter or can be referred to as 10^{-9} m. The concept of nanotechnology was first defined by Professor Norio Taniguchi in 1974, and since then, the field of nanotechnology has been receiving immense attention, especially from the early 1980s.2,3 Various terminologies are used for silver particles such as colloidal silver, nanosilver, silver nanostructures, and silver nanoparticles (AgNPs). For the sake of convenience, we use the abbreviation AgNPs throughout this review. Nanotechnology is an advanced field dealing with the manufacturing of different kinds of nanomaterials having biomedical applications.4 Due to a wide range of transmittable diseases caused by different pathogenic bacteria and their enhanced antibiotic resistance, many pharmaceutical companies and researchers are striving for synthesizing novel materials with enhanced antibacterial activity and reduced side effects. Currently, nanoscale materials have achieved considerable attention as novel antimicrobial agents due to their high surface area-to-volume ratio and distinct physical and chemical properties.5-7 The extremely strong broad-spectrum antimicrobial property of AgNPs is the key direction for the improvement of AgNPs-based biomedical products, including bandages, catheters, antiseptic sprayers, textiles, and food storage containers.8
Currently, different metals including zinc, titanium and copper,9 magnesium and gold,10,11 and alginate12 are used as antimicrobial agents, but among these AgNPs have been found to be the most efficient due to their outstanding antimicrobial properties.13 In particular, nanosilver has been verified to have a great medicinal value attributable to its characteristic antibacterial,13,14 antifungal,9 antiviral,15 antiprotozoal,16 anticatalytic,17 and antiarthropodal characteristics.18 In cancer, metastasis is a great challenge to oncologists and clinicians due to the development of resistance to anticancer agents;19 however, this problem can be overcome by nanoscale materials, especially nanosilver.

Nowadays, the applications of nanoparticles are tremendously increasing as they possess unique optical, chemical, electrical, electronic, and mechanical properties. These properties are attributed to their large surface area-to-volume ratio, which imparts them unique properties as compared to atoms/molecules as well as the bulk of the same material. Metallic particles, specifically AgNPs, are in focus due to their antimicrobial resistance as metal ions, while antibiotics are losing their effectiveness due to development of resistant strains of microbes.1 Although the antimicrobial properties of AgNPs are extensively studied, their activities against other types of pathogens such as arthropods and different types of cancer cells have been evaluated only recently. AgNPs as therapeutic agents have achieved remarkable attention in the treatment of cancer, leishmania, malaria, and many other human diseases. However, there still remain many questions that are a matter of discussion for future research.

The focus of this review is to provide a comprehensive, well-elaborated, and up-to-date view about what is currently investigated about the antimicrobial and antiparasitic activities and various methods used for the synthesis of AgNPs. Besides, we strive to compile all the most recent investigations about the applications of AgNPs in many fields with a special focus on cancer and viral infection inhibition, and the toxicology of AgNPs. We strongly believe that this review will provide a handy mechanistic framework for the future analysis of AgNPs.

Methods for the synthesis of nanosilver

AgNPs can be synthesized by various methods (Figure 1) including chemical synthesis,8,20–22 physical techniques,8,22,23 and green or biological methods.24–26 Some important examples for biological, physical, and chemical synthesis of AgNPs are mentioned in Table 1.

Silver nanostructure prepared by chemical methods

AgNPs can be synthesized by chemical reduction,92 electrochemical technique,20 irradiation-assisted chemical method,93 and pyrolysis;21 of these, chemical reduction has been the most common route to synthesize nanosilver. Three main components, namely organic and inorganic reducing agents, capping agents or stabilizers, and metal precursors or silver salts, are used in this method (Figure 2). Hydrogen gas,94 borohydride,80,94,95 citrate,96 ascorbic acid,97 hydrazine compounds, polyol process, Tollen’s reagent, N,N-dimethylformamide, and poly (ethylene glycol) (PEG)-block polymers are the reducing agents most frequently used in this method. These reductants bring about a reduction of silver ions (Ag+) to metallic silver (Ag0) followed by agglomeration into oligomeric clusters in aqueous and nonaqueous solutions. Finally, these clusters form metallic colloidal nanosilver.98–100 Borohydride has been extensively used for reduction process because of its strong and rapid reductant properties as well as its ability to act as a stabilizer to evade aggregation of AgNPs throughout decaying.94

The commonly reported stabilizing/capping agents include surfactants and polymeric compounds such as polyvinyl pyrrolidone (PVP), PEG, poly(N-isopropylacrylamide), poly (methyl methacrylate), poly (methacrylic acid), and collagen.101,102 Among these stabilizers, the alcohols, thiols, amines, acidic functional groups, and surfactants protect the nanoparticles from sedimentation as well as protect them from losing their surface properties. Silver nitrate (AgNO3) is the most significant silver salt frequently used for the preparation of AgNPs, and as compared to other salts, it is chemically stable, easily available, and cost-effective.103 A detailed summary of reducing, capping, or stabilizing agents and silver salts or metal precursors used in biological, chemical, and physical methods is provided in Table 2.

In their recent study, Zhang et al reported that colloidal silver could be synthesized through the chemical reaction of polymethylene bisacrylamide aminoethyl piperazine with terminal dimethylamine groups (HPAMAM-N(CH3)2). Later on, it was documented that these groups have strong reducing and stabilizing potential.104 In another case study, it was demonstrated that polyol process and modified injection technique could produce spherical, highly mono-dispersed AgNPs of controllable size. The reaction temperature and rate of injection were important factors in this method to obtain uniform AgNPs of reduced sized. AgNPs with 17±2 nm diameter were obtained at 100°C and 2.5 mL/s injection rate.75
Similar to chemical reduction method, the silver nanostructure can be synthesized by an electrochemical method. Using this approach, small-sized (10–20 nm) AgNPs with spherical shape can be produced. Furthermore, using crystals of zeolite, monodisperse silver nanospheroids of size 1–18 nm have been formed by electrochemical reduction. However, using organic and aqueous interface, polyphe-nylpyrrole-coated silver nanospheroids of size 3–20 nm can be obtained by electrochemical method.

Irradiation is another method to prepare AgNPs. Abid et al concluded from their study that AgNPs of definite shape and size can be produced using laser irradiation of surfactant and an aqueous solution of silver salt. Sudeep and Kamat successfully induced the synthesis of AgNPs in ethanol/toluene organic solution. However, more investigations are needed to further address the possible in vitro and in vivo potential toxicities that can be the outcomes of the chemical method used for synthesizing AgNPs.

AgNPs preparation by physical methods

The most important physical techniques frequently used for the preparation of AgNPs include evaporation/vapor condensation, arc discharge, energy ball milling, and direct current magnetron sputtering method. Compared to chemical methods, physical methods are generally less time consuming and do not involve any type of hazardous chemicals. However, high energy consumption and requirement of long time for thermal stability are still the bottlenecks of these methods.

Tsui et al used the small ceramic heater and laser ablation method, respectively, to synthesize AgNPs. Later on, investigators successfully synthesized colloidal AgNPs in a...
metal solution with no chemical reagent added. Furthermore, using arc discharge method, Tien et al produced AgNPs having 20–30 nm size in pure water without the addition of any stabilizers or surfactants.103

Some studies documented that AgNPs were formed when bulk materials in solution were subjected to laser ablation technique.22,113–115 Meanwhile, it was also found that silver nanospheroids sized 20–50 nm can be obtained by the same technique in pure water with femtosecond laser pulses at 800 nm.71 Laser ablation method has an advantage over other techniques because there is no need to add any reagent to solutions. Thus, laser ablation technique is useful for the production of uncontaminated and pure metal colloids.116

Table 1 Biologically, physically, and chemically synthesized AgNPs

Methods and organisms/ process used	Shape	Size (nm)	Reference
Biological			
Bacteria			
Acinetobacter calcoaceticus	Spherical	8–12	27
Enterobacter aerogenes	Spherical	25–35	28
Klebsiella pneumoniae	Spherical	15–37	29
Proteus mirabilis	Spherical	10–20	30
Shewanella oneidensis	Spherical	2–16	31
MR-1	Cuboidal	93	32
Stenotrophomonas maltophilia			
Vibrio alginolyticus	Spherical	50–100	33
Bacillus licheniformis	Spherical	50	34
Brevibacterium casei	Spherical	10–50	35
Exiguobacterium spp.	Spherical	5–50	36
Rhodococcus spp.	Spherical	10–15	37
Thermoactinomyces spp.	Spherical	20–40	38
Bacillus thuringiensis	ND	43.52–142.97	39
Plants			
Chenopodium murale	ND	30–50	40
Fraxinus excelsior	Spherical	25–40	41
Moringa oleifera	Spherical	100	42
Hyphnea musciformis	Cubic	40–60	43
Nectantes arboristis	Spherical and oval	5–20	44
Turmeric	Spherical	5–10	45
Lantana camara	ND	11–24	46
Jasminum nudum	Spherical	9.4	47
Psidium guajava	Spherical	26	48
Saraca indica	Spherical	22	49
Leucas aspera	Spherical	25–80	50
Dalbergia spinosa	Spherical	18	51
Melia dubia	Spherical	30–50	52
Citrus sinensis	Spherical	7.36	53
Chrysanthemum indicum	Spherical	37.71–71.99	54
Acacia leucophloea	Spherical	17–29	55
Aegle marmelos	Spherical	34.7	56
Alpinia galanga	Spherical	20.82	57
Antigonon leptopus	Spherical	10–60	58
Artemisia princeps	Spherical	10–40	59
Caesalpinia coriaria	Triangle, hexagonal, and spherical	40–98	60
Cassia auriculata	Spherical	20	61
Eclipta prostrata	Spherical	34	62
Fungi			
Penicillium expansum	ND	14 and 25	63
Aspergillus terreus	ND	10–18	64
Fusarium oxysporum	Spherical	40.3±3.5	65
Cryphonectria sp.	Spherical	30–70	66
Cochliobolus lunatus	Spherical	3–21	67
Fusarium culmorum	Spherical	5–25	68
Pestalotiella spp.	Spherical	10–40	69
Phoma glomerata	Spherical	60–80	70
Aspergillus niger	Spherical	03–30	71
Algae			
Spirulina platensis	Spherical	07–16	72

(Continued)

Methods and organisms/ process used	Shape	Size (nm)	Reference
Physical			
Using arc discharge	ND	10	71
By laser ablation	ND	20–50	72
By physical deposition of metal	Round	3.5	73
Using electrical arc discharge	Nanospheres	–10	74
Using electrical arc discharge	Nanospheres	14–27	75
Chemical			
Using polyol process	Spherical	17±02	76
By photoinduced method	Triangle	30–120	77
Using UV light irradiation	ND	02–08	78
By electrochemical reduction	ND	03–20	79
Using electrochemical method	Spherical	10–20	80
Using plasma gas	Spherical	10–80	81

Abbreviations: AgNPs, silver nanoparticles; ND, not detected; Uv, ultraviolet.

Figure 2 Chemical synthesis of AgNPs.

Abbreviation: AgNPs, silver nanoparticles.
Table 2 Widely used reducing agents, metal precursors/salts, and capping/stabilizing agents in AgNPs synthesis

Methods	Common reductants or reducing agents	Important metal precursors/salts	Stabilizing/capping agents
Biological	Proteins	AgNO₃	Proteins
	Peptides	Ag₃S	Peptides
	Carbohydrates	AgO	Carbohydrates
	Bacteria		Bacteria
	Fungi		Fungi
	Yeast		Yeast
	Algae		Algae
	Plants		Plants
Chemical	Sodium citrate (Na₃C₆H₅O₇)	AgNO₃	Polyvinyl pyrrolidone ((C₆H₅NO)₃)
	Ascorbic acid (C₆H₃O₆)	AgClO₃	Poly (ethylene glycol) (C₆H₄O₆)₃
	Sodium borohydride (NaBH₄)	AgSO₄	Poly (methacrylic acid) (C₆H₅O₃)
	Hydrogen gas (H₂)		Poly (methyl methacrylate) ((C₆H₅O)₃)
	Tollens' reagent (Ag(NH₃)NO₃)		Poly(N-isopropylacrylamide) ((C₆H₅NO)₃)
	NN-Dimethylformamide (C₆H₅NO)		Collagen
	Poly (ethylene glycol)-block copolymers (C₆H₄O₆-n)		Trisodium citrate (Na₃C₆H₅O₇)
	Dextrose (C₆H₁₂O₆)		Dodecanoic acid (C₆H₁₂O₆)
	Hydrazine compounds (N₂H₄)		Oleylamine (C₁₇H₃₃NH₂)
	β-D-Glucose (C₆H₁₂O₅)		Gluconic acid (C₆H₆O₃)
	m-Hydroxy benzaldehyde (C₆H₄O₂)		Carboxymethylated chitosan
	Carboxymethylated chitosan		Sodium dodecyl sulfate (NaC₁₂H₂₅SO₄)
	Alcohols (R–OH)		Bis(2-ethylhexyl) sulfosuccinate (AOT) (C₂₀H₄₁NaO₅S)
Physical	Electric arc discharge and water	Ag wires and AgNO₃	Sodium citrate (Na₃C₆H₅O₇)

Abbreviation: AgNPs, silver nanoparticles.

UV-initiated photoreduction

A simple and effective method, ultraviolet (UV)-initiated photoreduction, has been reported for the synthesis of AgNPs in the presence of citrate, PVP, poly (acrylic acid), and collagen. For instance, Huang and Yang produced AgNPs via photoreduction of AgNO₃ in layered inorganic laponite clay suspension which served as a stabilizing agent for the prevention of NPs aggregation. The properties of produced NPs were studied as a function of UV irradiation time. Bimodal size distribution and relatively large AgNPs were obtained using UV irradiation for 3 h. Further irradiation disintegrated the AgNPs into smaller-sized particles with a single distribution mode until a relatively stable size and size distribution were obtained. Silver NPs (nanosphere, nanowire, and dendrite) have been prepared by UV irradiation photoreduction technique at room temperature using poly (vinyl alcohol) (PVA) (as protecting and stabilizing agent). The concentration of both PVA and AgNO₃ played a significant role in the growth of the nanorods and dendrites.

Previous studies demonstrated that UV light can assist in the reduction of silver ions to immobilize AgNPs on the surface of the polymer. Synthesis approach was applied to immobilize AgNPs in situ on the surface of sericin gel with the assistance of UV light. Scanning electron microscopy (SEM), X-ray diffractometry, Fourier-transform infrared spectroscopy, and differential scanning calorimetry were applied to characterize the surface tomography and structure of the AgNPs-modified sericin materials. Sericin gel was cut into small sheets and then soaked into 50 mM AgNO₃ solution. At the same time, sericin gel sheets were irradiated with a 365 nm UV light lamp (24 W) for 10, 30, and 60 min to make AgNPs immobilize on the surface of sericin gel, respectively. The collected AgNPs-modified sericin materials were dried at room temperature, and then their surface tomography, structure, and antimicrobial activity were studied.

The sonoelectrochemistry technique utilizes the ultrasonic power primarily to manipulate the material mechanically. The pulsed sonoelectrochemical synthetic method involves alternating sonic and electric pulses. Electrolyte composition plays a crucial role in shape formation. It was reported that silver nanospheres could be prepared by sonoelectrochemical reduction using a complexing agent, nitritotriacetate, to avoid aggregation.

Silver nanostructure synthesis using biological systems

The bio-based or green synthesis of AgNPs has great advantages over chemical and physical methods. Biologically synthesized AgNPs are eco-friendly, as no toxic reductants or stabilizing agents are used during the synthesis of nanoparticles.
In biological systems, the health hazardous reducing and stabilizing agents can be substituted by essential biomolecules such as proteins and carbohydrates, which are locally produced by microbes including bacteria, fungi, and algae using proteins and polysaccharides as reducing and stabilizing agents for the synthesis of AgNPs.

Plants

Plant-based production is one of the most cost-effective and valuable alternative large-scale method for synthesizing AgNPs. Researchers have put attempts and focused to synthesize AgNPs of varying size and shape using different plant extracts with a broad range of antimicrobial, anticancer, antiviral, and antitumoural activities as shown in Table 3.

Plants name	Part used	Shape of AgNPs	Size of AgNPs (nm)	Biological properties	Reference
Cassia auriculata	Leaf	Spherical, triangle, and hexagonal	40–98	Antibacterial	81
Chenopodium murale	Leaf	ND	30–35	Antibacterial	40
Chrysanthemum indicum	Flowers	Spherical	37.71–71.99	Antibacterial	53
Dalbergia spinosa	Leaves	Spherical	18	Antibacterial, antioxidant, and anti-inflammatory	51
Melia dubia	Leaf	ND	30–50	Antibacterial and larvicidal	82
Azadirachta indica	Leaf	Hexagonal and spherical	200	Antibacterial	83
Andrographis paniculata	Leaf	Cubic	40–60	Antibacterial	84
Acacia leucophloea	Bark	Spherical	17–29	Antibacterial	54
Chrysanthemum indicum	Flowers	Spherical	37.71–71.99	Cytotoxicity	53
Aegle marmelos	Fruit	Spherical	34.7	Antibacterial	55
Alpinia galanga	Rhizome	Spherical	20.82	Antifungal and antibacterial	56
Lantana camara	Leaf	ND	11–24	Antibacterial	46
Moringa oleifera	Leaf	Spherical	100	Antibacterial	85
Pelargonium graveolens	Leaf	Spherical	6	Anticancer	86
Psidium guajava	Leaves and fruit	Spherical	60 and 26	Antifungal and antibacterial	48, 87
Turmeric	Root	Spherical	5–10	Antioxidant	45
Marinda citrifolia	Root	ND	32–55	Anticancer	88
Frasinus excelsior	Leaf	Spherical	25–40	Antioxidant	41
Ficus carica	Latex	Spherical	163.7	Antioxidant	89
Euophorbia nivulia	Stem latex	Spherical	<100	Anticancer	90
Cassia auriculata	Leaf	Spherical	20	Anticancer	60
Artemisia princeps	Leaf	Spherical	10–40	Anticancer and antibacterial	58
Alternanthera sessilis	Leaf	Spherical	32.81	Anticancer	58
Albizia adianthifolia	Leaf	Spherical	4–35	Anticancer	91

Abbreviations: AgNPs, silver nanoparticles; ND, not detected.

In a recent study, the leaf extract of *Ocimum sanctum* was found to reduce Ag ions into crystalline AgNPs having a size of 4–30 nm in 8 min. However, due to the presence of ascorbic acid in the plant leaves, the silver ions were readily reduced to metallic silver. The authors related the stability of the particles to the presence of proteins which played an important role as capping agents. The resulted AgNPs were effective against *Escherichia coli* and *S. aureus*.

The cubic- and hexagonal-shaped AgNPs of 31–40 nm size were obtained using the bark extract of *Cinnamomum zeylanicum*. Spherically shaped nanosilver sized 1–10 nm was synthesized from geraniol (C_{10}H_{16}O) compound isolated from two important medicinal plants, namely *Pelargonium graveolens* and *Azadirachta indica*. These AgNPs ablated fibrosarcoma Wehi 164 cancer cells. In another study, ten different *Cassia* medicinal plant species were screened for the biosynthesis of AgNPs. It was also found that the leaves of *P. graveolens* and *Cinnamomum camphora* contained effective against *Bacillus cereus* and *Staphylococcus aureus* bacterial strains. Krishnaraj et al and Veerasamy et al were able to synthesize AgNPs of size 20–30 and 35 nm, respectively, using leaf extracts of the medicinal plants *Acalypha indica* and *Garcinia mangostana*.
terpenoids which were responsible for the biosynthesis of AgNPs.130,138 Among them, only the aqueous leaf extract of \textit{Cassia roxburghii} supported the synthesis of stable AgNPs (35 nm size). These nanoparticles were further tested against human and plant pathogenic fungi, and they exhibited excellent result as compared to tested standard drugs.139

Chandran et al140 and Li et al141 reported the synthesis of AgNPs from the leaf extracts of \textit{Aloe vera} and \textit{Capsicum annum} plants, respectively. The rapid synthesis of AgNPs using the fruit extract of \textit{Carica papaya} was demonstrated, and it was found that the synthesized nanoparticles were highly toxic against different multidrug-resistant (MDR) human pathogens.142 Begum et al143 were able to synthesize stable AgNPs of various shapes using black tea leaf extract. Extracellular synthesis of AgNPs was also carried out using leaf extract of \textit{Pine}, \textit{Persimmon}, \textit{Ginkgo}, \textit{Magnolia}, and \textit{Platanus} plants.144 In addition, AgNPs were successfully synthesized using the latex and seed extract of \textit{Jatropha curcas}.145 The compatibility of the bark and powder extracts of \textit{Curcuma longa} was also checked towards the formation of AgNPs, and it was reported that bark extract could produce a higher amount of AgNPs compared to the powder extract.146

Babu and Prabu described the AgNP synthesis using a leaf extract of \textit{C. camphora}, while the reduction was considered to be due to presence of the phenolics, terpenoids, polysaccharides, and flavonoids in the extract.147

A simple, environmental-friendly, and cost-effective method has been developed to synthesize AgNPs using tea leaf extract. The synthesized AgNPs showed a good stability in terms of time-dependent release of silver ions. Due to the larger size and less silver ion release, the synthesized NPs showed low antibacterial activity against \textit{E. coli}.148

The biosynthesis of AgNPs was reported for the first time using identified antimicrobial molecules (gallic acid + apocynin) and (gallic acid + apocynin + quercetin) from the medicinal plant \textit{Pelargonium endlicherianum Fenzl.}, and these AgNPs had dramatically enhanced antimicrobial activity.149

Bacteria

Klaus et al were the first to explore the ability of the bacterium \textit{Pseudomonas stutzeri AG259} to synthesize AgNPs. The bacteria exhibited a remarkable property of surviving in an extreme silver-rich environment, which might be the possible explanation for the accumulation of nanosilver.150 Nanosilver particles have been synthesized using both Gram-positive and Gram-negative bacteria including the silver-resistant bacteria to form AgNPs.151 Some bacteria have the ability to produce extracellular AgNPs, while others can synthesize intracellular AgNPs. Interestingly, some bacteria including \textit{Calothrix pulvinata}, \textit{Anabaena flos-aquae},152 \textit{Vibrio alginolyticus},33 \textit{Aeromona} \textit{spp. SH10},153 \textit{Plectonema boryanum} \textit{UTEX 485,}154 and \textit{Lactobacillus} \textit{spp.} \textit{SH09} have the ability to produce both extra- and intracellular AgNPs.

Like other methods, metal precursors or silver salts are also used in the preparation of silver nanostructure from bacterial cultures. The production of AgNPs using sulfide (Ag$_2$S) and oxide (Ag$_2$O) of silver has also been reported by various studies.151,156 In a recent report, the culture supernatant of bacterium \textit{Bacillus licheniformis} was used to produce 40 and 50 nm AgNPs, respectively.157,158 AgNPs of 1–6 nm size has also been produced using visible light emission from the supernatants of \textit{Klebsiella pneumoniae}.159 Furthermore, it was also found that \textit{Lactobacillus} strains can be used for the production of AgNPs.155,160 Recently, the bacterial strains of \textit{Aeromonas} \textit{spp. SH10} and \textit{Corynebacterium} \textit{spp. SH09} were screened for the biosynthesis of AgNPs. The authors concluded from their results that the bio-reduction of [Ag(NH$_3$)$_2$]$^+$ resulted in the production of monodispersed and stable AgNPs.153

Fungi

Green and/or biogenic synthesis of any type of nanoparticles involves natural processes occurring in microorganisms like fungi, bacteria, and plants, as shown in Figure 3. These organisms generate biocompatible nanostructures having excellent therapeutic potential.131 Fungi-based synthesis of AgNPs is also eco-friendly and of low cost. In a recent study, two fungal strains, namely \textit{Penicillium expansum} HA2N and \textit{Aspergillus terreus} HA1N, were reported for the synthesis of AgNPs. The transmission electron microscopy result showed that 14–25 nm AgNPs were obtained from \textit{P. expansum}, while 10–18 nm AgNPs were obtained from \textit{A. terreus}. The efficacy of these AgNPs was further examined against different fungal species which demonstrated their strong antifungal potential.62

Recent studies showed that AgNPs of size 5–25 and 5–50 nm could be extracellularly synthesized using \textit{Aspergillus fumigatus} and \textit{Fusarium oxysporum}, respectively.161,162 The authors further reported that most of the nanoparticles were spherical in shape; however, rare triangular-shaped nanoparticles were also noticed.161

Balaji et al used an extracellular solution of \textit{Cladosporium cladosporiodes} for the reduction of AgNO$_3$ to form spherical-shaped AgNPs of 10–100 nm size. They further reported that \textit{C. cladosporiodes} released some organic materials, including polysaccharides, organic acids, and proteins, which were responsible for the formation of spherical crystalline
AgNPs. Penicillium spp. were also used for the production of AgNPs. Soil-isolated Penicillium spp. J3 which has the ability to produce silver nanoparticles was used for the synthesis, and the AgNPs formation took place on the surface of the cells in which proteins acted as stabilizing agents.

The spherical nanosilver can also be synthesized using Coriolus versicolor, but the reduction of AgNPs is time-consuming (ie, 72 h; however, the duration could be reduced to 1 h by tailoring the reaction conditions using alkaline media at pH 10). The alkaline media play a vital role in the bio-reduction of silver ions, water hydrolysis, and interaction with protein functionalities. Furthermore, the S–H group from the protein plays an excellent role in the bio-reduction, whereas glucose molecule also plays a significant role in the reduction of AgNPs. Aspergillus flavus can also be used to obtain stable nanosilver with more than 3 months of stability in aqueous solution. Meanwhile, the stabilizing agents released by fungal species ensure prevention of aggregation.

Algae

Algae have been recently studied for the synthesis of AgNPs. Venkatpurwar and Pokharkar reported the formation of AgNPs from aquatic red algae using sulfated polysaccharides. These AgNPs were highly constant at broad pH range (2–10) and showed effective antibacterial activity against Gram-negative than Gram-positive bacteria. El-Rafie et al extracted water-soluble polysaccharides from aquatic microalgae. These polysaccharides were used as both reducing and stabilizing agents for AgNPs formation. The colloidal solutions imparted antimicrobial activity when tested on cotton fabrics. More recently, Salari et al were able to synthesize AgNPs from macroalgae Spriogyra varians through bio-reduction of silver ions. These AgNPs functioned as efficient bactericidal mediators in response to many pathogenic bacteria. Some other algal species, namely Tetraselmis gracilis, Chaetoceros calcitrans, Isochrysis galbana, and Chlorella salina, can be successfully used for the AgNPs biosynthesis.

Polysaccharides

Polysaccharides have been widely used for biomedical applications, as they are biocompatible and biodegradable. Polysaccharides are considered as excellent templates for the preparation of nanosilvers. Polysaccharides play a dual role, that is, reductants and/or capping agents, in the synthesis of AgNPs. For more than a decade, gentle heating of starch (capping agent) and β-D-glucose (reducing agent) has resulted in the formation of AgNPs.
The starch solution (reducing/capping agent) and AgNO₃ (salt) have been used for the synthesis of AgNPs, and using these agents, stable AgNPs sized 10–34 nm were formed. These nanoparticles were stable in the aqueous solution at 25°C for around 3 months. Similarly, small-sized AgNPs (5–20 and ≤10 nm) can be prepared using starch (stabilizer and capping agent) and NaOH solution having glucose (reducing agent). Small-sized (1–21 nm) and spherical-shaped AgNPs have been synthesized using carboxymethyl starch in aqueous solution with a stability of more than 3 months at 25°C. The alkaline solutions can also be used for solubilization of spherical nanoparticles in starch. Recent studies revealed that ester of alginic acid (sodium and calcium alginate) can be used for the preparation of AgNPs. Some studies also reported that the spherical-shaped and small-sized (1–4 nm) AgNPs can be obtained in 1 min from sodium alginate using water as solvent at 70°C.

It was also found that gum ghatti and gum kondagou can be used as stabilizer and reducing agent for the synthesis of AgNPs. Using gum ghatti, narrow-sized (4.8–6.4 nm) AgNPs were produced, whereas gum kondagou produced 2–9 nm AgNPs. Moreover, AgNPs of undetectable size to 25 nm (spherical) were also obtained from alkali-soluble xanthan and acacia. Schizophyllan and hyaluronic acid (HA) were used as reducer and stabilizing agent for the synthesis of AgNPs. HA was analyzed chemically and thermally, and the results showed that 5–30 nm AgNPs can be obtained. Similarly, carboxymethyl chitosan and N-phthaloyl chitosan were also used in the preparation of nanosilver. In a recent report, it was investigated that under acidic medium, silver chitosan film was formed due to the mixing of both silver salts and chitosan. Also, acidic medium and chitosan were used as chelating agents for AgNPs.

Cellulose is also one of the most important groups of polysaccharides, and due to its unique properties, cellulose is considered as an excellent template for the nanosilver formation. Both soluble and insoluble cellulose have been employed for the preparation of AgNPs, where alcohol and aldehyde groups performed an important role in the stabilization and reduction of silver ions as presented in Figure 4.

Figure 4 Polysaccharides-based synthesis of AgNPs in which polysaccharides (cellulose), alcohol, and aldehyde groups act as stabilizing agents. Abbreviation: AgNPs, silver nanoparticles.
Recently, the green synthesis of AgNPs using hydroxyl propyl cellulose (HPC) has also been reported. HPC plays a dual role (reducer and stabilizer) in the synthesis of AgNPs. Insoluble cellulose was also investigated for the synthesis of AgNPs. Furthermore, it was indicated that various types of fibers were used in the silver salt solution. Meanwhile, experimental results showed that AgNPs of undetectable size to 160 and 50 nm were deposited on cotton and viscose fibers, respectively. Recently, cotton fabrics were investigated for the synthesis of the AgNPs. Trisodium citrate was used as a reducing agent at 90°C. Experimental results indicated that 20–90 nm AgNPs can be obtained.

Synthesis of AgNPs by proteins and DNA

Sericin, a globular glue protein, is exclusively produced in the middle silk gland of silkworm when silkworm spins a cocoon for protective and adhesive effects. Silkworm cocoon is usually composed of about 75% fibroin and 25% sericin. However, sericin has been disposed of as a waste during the silk reeling process in the past few thousand years. It is not only a great waste of natural resources but also causes serious environmental pollution. Modern studies propounded that sericin performs a variety of biological activities, such as anticoagulation, antioxidant, antibacterial, and mitogenic effects, on mammalian cells. In regenerative medicines, it is usually mingled with functional polymers to form various scaffolds for biomedical purposes.

Silk fibroin is a natural protein present in silkworm silk and is a common biomacromolecule with a unique sequence-specific self-assembling behavior.

Over the past decade, silk fibroin has been applied in tissue engineering as a degradable surgical suture and scaffold for its good biocompatibility, controllable biodegradability, and easy fabrication into different forms, such as fibers, films, gels, and three-dimensional scaffolds. Silk fibroin is a good candidate for biomineralization. Previous works have indicated that silk fibroin regulates the morphologies of inorganic nanoparticles during the biomineralization process. Silk fibroin contains 18 types of amino acid residues, including some polar amino acids such as tyrosine (Tyr). Tyr endows silk fibroin with the electron-donating property. The electron-donating property of the phenolic hydroxyl group of Tyr could directly reduce silver ion to AgNP. Thus, it is possible to synthesize AgNPs through the reduction of Ag⁺ by silk fibroin in situ to prepare the antibacterial silk film. Biopolymer film such as AgNPs silk is limited in its packaging application due to its poor mechanical property. To improve the mechanical property, biopolymer–polymer interaction is developed by blending natural biopolymers with polymers. PVA is a biodegradable, biocompatible, water-soluble, and nontoxic semicrystalline polymer. It offers good thermomechanical property, thermal stability, mechanical strength, and flexibility, as well as good optical and physical properties that are crucial for packaging application. Moreover, PVA is approved by the US Food and Drug Administration as an indirect food additive for flexible food packaging. The combination of AgNPs, silk fibroin, and PVA will be promising for active packaging.

Graphene oxide (GO), an oxidized form of graphene, has been extensively used for various applications since the discovery of graphene in 2004. Recently, GO has been utilized as a platform for growing NPs or attaching pre-synthesized NPs on its surface to produce NP-GO nanocomposites (NCs). Interestingly, NP-GO NCs exhibit enhanced surface enhanced Raman scattering, catalytic, and antibacterial properties compared to bare GO and NP. Recent studies reported the fabrication of AgNPs-decorated GO as an effective antibacterial agent.

Synthesis of AgNPs decorated on magnetic GO NCs was demonstrated, which showed highly effective inhibitory property and reusability even at the very low concentration (12.5 ppm).

Biomedical applications of AgNPs

Antimicrobial activities of AgNPs as presented in Figures 1 and 5 have been known for many centuries, but their assessment on a scientific basis has only been realized in recent years. Sondi and Salopek-Sondi for the first time depicted AgNPs performance against *E. coli*, to propose a possible enlightenment of the observed action of AgNPs on bacteria. The authors revealed that the appearance of “pits” in bacterial cell wall and accumulation of AgNPs in the cellular membrane resulted in an enhanced permeability of cell wall and eventually induced bactericidal activity.

Devi and Joshi evaluated 53 strains of various fungi for the mycosynthesis of AgNPs and showed considerable effectiveness of AgNPs against *Streptococcus pyogenes*, *Salmonella enterica*, *S. aureus*, and *Enterococcus faecalis*. Moreover, the mycosynthesized nanoparticles also exhibited potential antibacterial activity and synergistic effect with erythromycin, chloramphenicol, methicillin, and ciprofloxacin against *Enterobacter aerogenes* and *K. pneumoniae* and with antibiotics ampicillin, tetracycline, gentamycin, and streptomycin against *E. coli*, *S. aureus*, and *Pseudomonas aeruginosa*. The antibacterial activity of AgNPs strongly...
depends on the size of the silver particles as reported in previous reports. AgNPs with a smaller size have high activity due to a relative increase in contact surface.

Shameli et al reported size-based bactericidal potential of various AgNPs prepared in PEG against S. aureus and Salmonella typhimurium bacteria using disc diffusion method. AgNPs were found to be very effective and cause momentous inhibition of both strains. They summarized that the bactericidal potential of AgNPs in PEG can be tuned by controlling the size of nanoparticles, since smaller particles have a relatively greater contact surface area than larger particles. The factors that are influencing the activity of AgNPs (size, shape, concentration, UV radiation, and combination with different antibiotics) should be taken into account during the preparation processes and medicinal applications of AgNPs.

Similarly, investigations by Raheman et al and Gade et al had already demonstrated the biocidal potential of AgNPs, respectively. Silver bionanocomposite films having a size less than 20 nm were tested against E. coli, P. aeruginosa, S. aureus, and Micrococcus luteus. These silver composites exhibited satisfactory antibacterial properties.

In recent studies, spherical-shaped 20, 18, and 15 nm AgNPs were prepared. The experimental result showed that all AgNPs were active against different strains of bacteria. In another study, AgNPs having a spherical shape and ranging in size from 5 to 30 nm and crude latex aqueous extract were tested against different bacterial pathogens such as Enterococci spp., B. cereus, Shigella spp., P. aeruginosa, S. aureus, K. pneumoniae, and E. coli. These biosynthesized AgNPs were found to have the capability of enhancing the antimicrobial activity compared to crude latex aqueous extract. The nanoparticles assumed spherical geometry and were often aggregated into small particles with quite a uniform size of 12.50–41.90 nm. These AgNPs showed exceptional antibacterial property against different strains of bacteria. Afterwards, they were found to be more effective against E. coli and K. pneumoniae than against E. faecalis and S. mutans. This differential activity may possibly be due to the difference in bacterial cell wall structure.

Recently, AgNPs with an average uniform size of 5 nm were tested against bacteria. Results indicated that the efficiency of antibiotics was improved in the presence of AgNPs against test strains. The activity of AgNPs was more pronounced with ampicillin against the Gram-negative bacteria Shigella flexneri and P. aeruginosa, and vancomycin against the Gram-positive bacteria Streptococcus pneumoniae and S. aureus. More interestingly, these antibiotics exhibited higher antimicrobial efficiency in association with AgNPs. These results suggested that AgNPs could be used as an adjuvant for curing various infectious diseases caused by bacteria. AgNPs which were synthesized by the green method and their antibacterial properties were studied using diffusion method. The concentration of AgNPs was varied as 25, 50, 75, and 100 μg/mL. The highest efficiency of AgNPs was found against S. aureus (23 mm) and E. coli (28 mm). The moderate activity was obtained against Salmonella typhi (18 mm) followed by M. luteus (15 mm) and P. aeruginosa (13 mm).

AgNPs, having a size of 26 nm, have been reported to be efficient against E. faecalis CCM 4224, S. aureus CCM 3953, E. coli CCM 3954, and P. aeruginosa CCM 3955. The modified antibacterial activity of silver NPs was considerably improved as confirmed by minimum inhibitory concentration (MIC) values ranging from 6.75 down to 0.84 μg/mL. In another study, the growth rates of bacteria were studied under varying AgNPs concentrations, incubation temperatures, times, and pH. E. coli and S. aureus were shown to be substantially inhibited by AgNPs, and the antibacterial activity of AgNPs did not change with pH or temperature.

AgNPs in montmorillonite were prepared, and their antibacterial activities against S. aureus and methicillin-resistant S. aureus (Gram-positive bacteria) and E. coli, E. coli O157:H7, and K. pneumoniae (Gram-negative bacteria) were tested by the disc diffusion method using Mueller–Hinton agar. The smaller AgNPs exhibited significantly higher antibacterial activity. More recently, cream formulations of AgNPs and AgNO₃ were prepared, and their antibacterial activity was evaluated on human pathogens (S. aureus, Proteus vulgaris, E. coli, P. aeruginosa, and Candida albicans) and a plant pathogen (Agrobacterium tumefaciens). The antimicrobial studies concluded that AgNPs have 200 times more inhibitory effect compared to AgNO₃. The AgNPs act by damaging the cell membrane of E. coli, which was confirmed by SEM study.

The antibacterial activity of AgNPs was tested against nine human diseases-causing Gram-negative bacteria and one Gram-positive bacteria. AgNPs extracts had the capability to enhance antibacterial activity against all tested strains compared to the extracts alone. AgNPs were more bactericidal in liquid than in solid medium, probably due to better contact with bacterial cells in a liquid state. Maximum zone of inhibition was 19 mm for nanoparticles of leaves on P. aeruginosa (ATCC278223) and 18 mm for latex nanoparticles on S. flexneri (ATCC12022). The minimum zone of inhibition was 7 mm for both nanoparticles of leaves.
and latex on *S. typhi* (ATCC19430) and *S. typhimurium* (ATCC14028), respectively.\(^{231}\)

The leaf extract of *Lantana camara* was used for the biosynthesis of AgNPs. These nanoparticles were evaluated for catalytic and antibacterial activities. The biosynthesized nanosilver had excellent potential against the tested strains including *E. coli*, *Pseudomonas* spp., *Bacillus* spp., and *Staphylococcus* spp. Moreover, these AgNPs also showed higher catalytic activity in the reduction of methylene blue observed using UV–vis spectrophotometer.\(^{232}\) Spherical nanosilver sized 10–15 nm was synthesized from fresh spinach leaves. These nanoparticles had strong bactericidal potential and good catalytic property toward methyl red and methylene blue.\(^{233}\)

A recent study on the effect of AgNPs (13.4 nm) against *E. coli* and *S. aureus* found their MIC values to be below 6.6 nM and above 33 nM, respectively.\(^{234}\) Another study was conducted against the bacterium *E. coli*. The results showed that AgNPs (16 nm) had the ability to inhibit *E. coli* colony-forming unit at a concentration of 60 μg/mL.\(^{235}\) Furthermore, the activity of some important dendrimer (polyamidoamine) Ag-composites has also been reported against *E. coli*, *S. aureus*, *P. aeruginosa*, *Klebsiella mobilis*, and *Bacillus subtilis*.\(^{104}\)

The antimicrobial property of AgNPs is most exploited in the medical field, though their anti-inflammatory nature is also considered immensely useful. Initial studies have suggested that the acceleration of wound healing in the presence of nanoparticles is due to the reduction of local matrix metalloproteinase activity and the increase in neutrophil apoptosis within the wound.

Recent evidence suggests that nanosilver has a potent anti-inflammatory effect\(^{236–238}\) and accelerates wound healing.\(^{239,240}\) Silver has long been known to possess antibacterial activity and has been used throughout history, from Hippocrates’ early treatment of ulcers to C.S.F. Crede’s treatment of gonococcal infections in newborns. Silver is still used clinically, and nanosilver is emerging as a valuable tool in the therapeutic armory (Figure 5). Silver sulfadiazine is the gold standard for the topical treatment of burn patients.\(^{241}\) The resurgent interest in silver and nanosilver has been motivated by the emergence of rampant antibiotic-resistant bacteria and the increasing prevalence of hospital-acquired bacterial infections. The use of silver has been severely limited by the toxicity of silver ions to humans; however, nanotechnology has facilitated the production of smaller silver particles with increasingly large surface area-to-volume ratios, greater efficacy against bacteria,\(^{242,243}\) and most importantly, lower toxicity to humans.\(^{244}\)

Nanocrystalline silver wound dressings have been commercially available for over a decade (eg, Acticoat\(^{39}\)) and are in current clinical use for the treatment of various wounds, including burns,\(^{240,245,246}\) toxic epidermal necrolysis,\(^{247}\) Stevens–Johnson syndrome,\(^{248}\) chronic ulcers,\(^{237}\) and pemphigus.\(^{248}\)

Figure 5 Graphical abstract representing the synthesis (green) and the biocidal potential of AgNPs against various microbes.
Abbreviation: AgNPs, silver nanoparticles.
Typical dressings consist of two layers of polyethylene mesh forming a sandwich around a layer of polyester gauze. Typical nanocrystalline coatings are 900 nm thick with a crystallite size of 10–15 nm and are applied to the polyethylene layer.

Antifungal property of AgNPs

In 2008, Kim et al demonstrated the potential of AgNPs against 44 strains of six fungal species, namely *Candida tropicalis*, *C. albicans*, *Candida glabrata*, *Candida krusei*, *Candida parapsilosis*, and *Trichophyton mentagrophytes*. The AgNPs were found active against various strains of *T. mentagrophytes* and *Candida* spp. Similarly, Velluti et al found that silver complexes [Ag$_2$(SMX)$_3$] showed good activity against 10 fungal strains, namely *C. tropicalis* (C 131), *C. albicans* (ATCC 10231), *Cryptococcus neoformans* (ATCC 32264), *Saccharomyces cerevisiae* (ATCC 9763), *A. fumigatus* (ATCC 26934), *A. flavus* (ATCC 9170), *Aspergillus niger* (ATCC 9029), dermatophytes including *Trichophyton rubrum* (C 113), *T. mentagrophytes* (ATCC 9972), and *Microsporum gypseum* (C 115).

Gajbhiye et al reported the efficiency of biogenic AgNPs against *Pleospora herbarum*, *Phoma glomerata*, *Fusarium semitectum*, *Trichoderma* spp., and *C. albicans*. Furthermore, they also reported the synergistic effects of AgNPs in association with fluconazole. In 2009, Jo et al demonstrated the antifungal potential of silver ions and nanoparticles against two plant pathogenic fungi, *Magnaporthe grisea* and *Bipolaris sorokiniana*. The fungicidal potential of AgNPs in combination with various heterocyclic compounds like phthalazine, thiazolidine, hydrazide, pyrazolo, tetrazolo, and pyridazine derivatives was studied against *C. albicans* and *A. flavus*, and the AgNPs were found to have significant fungicidal activity against tested organisms.

Recently, six fungal species, namely *Penicillium brevicompactum*, *A. fumigatus*, *Mortierella alpina*, *C. cladosporoides*, *Chaetomium globosum*, and *Stachybotrys chartarum*, were selected for the study of the antifungal activity of AgNPs. The growth rates of all tested fungal species, except *Mortierella* spp., were affected by the addition of AgNPs, which caused the limitation of *Chaetomium* and *Stachybotrys* on gyspum products. Each fungus showed a distinct response to applied AgNPs depending upon the concentration and the rate of Ag ions released into the environment.

In 2010, Jaidev and Narasimha demonstrated the antifungal (*A. niger*) and antibacterial (*Staphylococcus* spp., *E. coli*, *Bacillus* spp.) activities of AgNPs. They reported that nanosilver has excellent inhibitory activity against *A. niger* confirming the maximum activity as compared to *Bacillus* spp. (0.8 cm), *Staphylococcus* spp. (0.9 cm), and *E. coli* (0.8 cm). Meanwhile, Nasrollahi et al studied the fungicidal potential of AgNPs against *S. cerevisiae* and *C. albicans*. Their results were productive confirming the excellent potential of AgNPs as compared to standard antifungal agents (viz. fluconazole and amphotericin B). Savithramma et al prepared AgNPs using a different extract of medicinal plants, *Shorea tumbuga*ga, *Boswellia ovalifoliolata*, and *Svensonia hyderabensis*, to evaluate their antifungal activity against *A. niger*, *Curvularia* spp., *A. flavus*, *Fusarium* spp., and *Rhizopus* spp. The results confirmed that all biogenic AgNPs showed considerable antifungal activity against various fungal spp. The AgNPs synthesized with *S. hyderabensis* exhibited higher activity as compared to AgNPs synthesized using the other two plants.

Kaur et al reported the fungicidal potential of silver and chitosan nanoparticles against *A. flavus*, *Rhizoctonia solani*, and *Alternaria alternata* from chickpea seeds. In 2012, Arjun and Bholay also demonstrated the momentous efficiency of AgNPs against *T. rubrum*, *C. albicans*, and *A. fumigatus*. Xu et al also tested nanosilver and natamycin against 216 strains of fungi from patients suffering from severe keratitis. These included 82 isolates of *Aspergillus*, 112 isolates of *Fusarium*, and 10 isolates of *Alternaria*. Results demonstrated that AgNPs had higher activity as compared to natamycin. Similarly, Dar et al studied the biocidal potential of AgNPs synthesized from *Cryphonectria* spp. against *S. typhi*, *E. coli*, *S. aureus*, and *C. albicans*, concluding that AgNPs can be used as potential antifungal agents.

More recently, the antifungal activity of mycosynthesized AgNPs was tested for the first time against plant pathogenic fungi. AgNPs displayed good antifungal activity against *C. albicans* (12.63 mm) followed by *R. solani* (12.03 mm) and *Cochliobolus lunata* (11.23 mm) at 1 mg/mL concentration. The nanoparticles were less effective against *Fusarium* spp. (9.37 mm). In another study, AgNO$_3$ was tested against three fungi namely *Trichoderma* spp. (ATCC 18648), *Mucor* spp. (ATCC 48559), and *A. niger* (ATCC 6275), and it was found to exhibit good antifungal activity.

The antifungal activity of AgNPs against *C. tropicalis* and *C. albicans* was also investigated. Stable nanoparticles of size 12.5±4.9 nm (mean ± SD) were obtained, which presented high activity against *Candida* spp. The spherical and polydispersed AgNPs, ranging in size from 4 to 36 nm and 8 to 60 nm, respectively, were applied against superficial mycoses caused by *T. rubrum*, *Malassezia furfur*, *C. albicans*,...
and *C. tropicalis*. The AgNPs exhibited highest antifungal activity against *T. rubrum* and the least against *M. furfur* and *C. albicans* as compared to others.\(^{262}\)

C. glabrata and *C. krusei* were exposed to spherical nanoparticles (19 nm) with positive surface charge. The MIC\(_50\) values were 0.1–1 g mL\(^{-1}\) AgNPs, and minimum fungicidal concentration (MFC) values were 0.25 and 0.5 g mL\(^{-1}\) for *C. glabrata* and *C. krusei*, respectively.\(^{263}\) Meanwhile, another research confirmed that concentrations of AgNPs between 10 and 25 μM reduced the growth rates of the tested fungus and bacteria and showed the bactericidal/fungicidal activity by delaying the exponential and stationary phases. However, complete inhibition of the growth of *C. albicans* MTCC183 was found at a concentration of 10 μM AgNPs.\(^{264}\)

A more recent report showed that AgNPs (spherical, 1–40 nm) had excellent antifungal activity against *R. solani* cultures by inhibiting 83% of the mycelium growth at 25 μg/mL concentration.\(^{265}\) In another study, several essential oils were tested for their antifungal activity. The oil isolated from the bark of *Cinnamomum cassia* had the highest activity against MIC and MFC values for all tested strains in the range of 0.0006%–0.0097% (v/v) and 0.0012%–0.019% (v/v), respectively.

Further studies were carried out about the antifungal activity of AgNPs against some *Candida* spp. The fungicidal efficacy of AgNPs functionalized with PVP was established. The PVP-functionalized silver particles demonstrated no damage to fungi until the exposure time was 24 h. After 24 h, no viability of fungal cells was observed. The work revealed that Ag particles aggregate outside the fungal cells, releasing free silver ions and thus inducing cell necrosis through the reduction process.\(^{266}\) Naz et al synthesized silver particles capped with 5-amino-β-resocyclic acid hydrochloride dehydrate (AR). They analyzed their nanostructures before and after conjugation to silver metal for in vitro antifungal, antibacterial, antioxidant, and enzyme inhibitory properties. The results indicated that the fungicidal activity of Ag, AR, and Ag AR were not momentous as compared to the dithane-M45 (standard fungicide).\(^{267}\)

Anticancer property of AgNPs

AgNPs have been popular for their antibacterial and antifungal activities. However, recent studies have exploited AgNO\(_3\) potential in neoplastic maladies. Recently, eco-friendly AgNPs were synthesized from the leaf extracts of *Vitex negundo*\(^{268}\) and *Sesbania grandiflora*, and their efficacy was tested against human colon cancer cell lines HCT15 and MCF-7, respectively. The results demonstrated that AgNPs obtained from *V. negundo* showed antiproliferative effects on cancer cell line, reduced DNA synthesis, and induced apoptosis.\(^{268}\) Similarly, nanosilver obtained from *S. grandiflora* also caused cytotoxicity, oxidative stress, and apoptosis in tumor cells.\(^{269}\) Moreover, green-synthesized AgNPs from the leaves extract of *Podophyllum hexandrum* and *Suaveola monoica* were examined and found to show cytotoxic activity and apoptotic effect, respectively.\(^{270,271}\)

Piao et al demonstrated that OH radicals released by the AgNPs attacked cellular molecules including DNA, proteins, and lipids to induce oxidative damages.\(^{272}\) In another report, it was shown that AgNPs exhibited toxicity due to some factors such as dose, size of particles, and time. In the case of MCF-7 cell culture, the toxicity was due to the dose of AgNPs. AgNPs also caused cellular damage in Human Epidermoid Larynx (Hep-2) cell line through reactive oxygen species (ROS) formation.\(^{273}\) Lima et al greenly synthesized nanosilver and evaluated its genotoxicity and cytotoxicity.\(^{53}\) Also, Durán et al studied the potential of biosynthesized AgNPs. These nanosilver particles interacted with DNA, proteins, and cellular organelles via ROS, and induced necrosis and apoptosis in the tumor cells.\(^{274}\)

New nanocrystalline silver with a structural size of 8 nm customized with TAT cell penetrating peptide (AgNP-TAT) exhibited higher antitumor property in both nonresistant and MDR cells without any discrimination. The AgNP-TAT displayed outstanding efficacy in killing tumor cells, that is, up to 24-fold higher than pristine AgNO\(_3\) without TAT alteration. Moreover, the AgNP-TAT also displayed considerable reduction in adverse toxic effects, in vivo.\(^{275}\)

Dimocarpus longan Lour. peel aqueous extract (acts as reducing and stabilizing agent) was evaluated for the synthesis and anticancer and antibacterial effects of AgNPs. The antibacterial activities of AgNPs were evaluated using dilution method, whereas their efficacy against human prostate cancer (PC-3) cells was in vitro evaluated via blue assay and Western blot by the expression of phosphorylated stat 3, caspase-3, bcl-2, and survivin. These nanoparticles had the face-centered cubic structure (size 9–32 nm) and exhibited great bactericidal potential against both Gram-positive and Gram-negative strains of bacteria.\(^{276}\)

In another study, *Malus domestica* and *Origanum vulgare* extracts were used for the synthesis of nanosilver. The *M. domestica* extract-biosynthesized silver had considerable effects on MCF-7 breast cancer cells, whereas silver synthesized from *O. vulgare* aqueous extracts showed dose-dependent response against human lung cancer A549 cell line.\(^{277,278}\)
In a recent study, AgNPs were obtained from the stem bark extract of *Moringa olifera*. These biosynthesized AgNPs were tested for anticancer properties. The flow cytometry results showed apoptosis induced through ROS generation in HeLa cells. The rhamnolipids were isolated from *P. aeruginosa* strain JS-11 and used for the biosynthesis of Rh-AgNPs. These nanosilver particles were tested against MCF-7 human cells. Furthermore, caffeic acid-mediated spherical nanosilver particles of 6.67±0.35 nm size were used against cancer cells. The results showed that AgNPs efficiently inhibited the growth of HepG2 cells via apoptosis induction.

Recently, spherical-shaped (6.2±0.2 nm) silver-(protein-lipid) nanoparticles (Ag-LP-NPs) were obtained using the seed extract of *Sterculia foetida*. These eco-friendly Ag-LP-NPs showed antiproliferative activity against HeLa cancer cell lines and also showed potential toxicity in a dose-dependent manner. More recently, biogenic AgNPs were obtained from the flower extract of *Plumeria alba* (frangipani) known as frangipani AgNPs (FS NPs). These FS NPs had a cytotoxic effect on COLO 205 which was determined by MTT assay, and after 24 and 48 h of incubation, the IC₅₀ concentration was found at 4 and 5.5 μg/mL, respectively. Furthermore, the FS NPs cytotoxic affect on COLO 205 cells was associated with the loss of membrane integrity and chromatin condensation that have a great role in the induction of apoptosis as evidenced by acridine orange/ethidium bromide staining.

On the other hand, it was also demonstrated that AgNO₃ and metal-based nanoparticles (AgNPs) had strong potential for cytotoxic, antiproliferative, and apoptotic property in H-ras 5RP7 cells and cervical cancer, respectively.

Biosynthesized nanosilver from the extract of *Pterocladia diellacapillacea* (11.4±3.52 nm) and *P. aeruginosa* (13–76 nm) showed great potential against human hepatocellular carcinoma (HepG2) cell lines and human cervical cancer cells (HeLa), respectively. In another study, it was found that green-synthesized nanosilver (45±0.15 nm) from novel *Nocardiopsis* spp. had potent activity against in vitro human cervical cancer cell line. The IC₅₀ value was recorded in the range of 200 μg/mL of AgNPs against HeLa cancer cells.

It was also found that the plumbagin-caged nanosilver induced ~80% cell death at a concentration of 2.5 μM, whereas no cytotoxicity was observed for normal cells.

A study published by Y easmin et al demonstrated that AgNPs were obtained from the flower extract of *Moringa olifera* bark. These biosynthesized AgNPs were tested against cervical cancer cell lines (HeLa), lung cancer (A549), and mice macrophage or RAW 264.7 and found that the particles effectively killed these cell lines in a dose-dependent manner. Venil et al reported flexirubin (a bacterial pigment)-mediated silver nanoparticles for the first time that were highly cytotoxic (IC₅₀ value of 36 μg/mL) against human breast cancer cell lines (MCF-7).

Nowadays, chitosan-based biosynthesized silver nanoparticles are mostly synthesized and used against different cancer cell lines. A study performed by Venkatesan et al demonstrated that porous chitosan-alginate-biosynthesized AgNPs exhibited cytotoxic effects against breast cancer cell line MDA-MB-231 (IC₅₀=4.6 mg/L). A recent study demonstrated that loaded quinazolinone polypeptide/chitosan silver chloride NC had active anticancer efficacy against Ehrlich ascites carcinoma cells. The chitosan-silver hybrid nanoparticles were proven to induce apoptosis in HepG2 cells by downregulating BCL2 gene and upregulating P53.

Antiviral property of AgNPs

AgNPs have received enormous attention for their bactericidal potential, while the antiviral activities of metal nanoparticles remain an emergent area. The potential of AgNPs was studied in both prokaryotic and eukaryotic organisms, and it was reported that small-sized AgNPs of around 25 nm or less had outstanding potential in viral infection inhibition. The aqueous extract of *Ricinus communis* was used for the synthesis of nanoparticles, which resulted in AgNPs sized 1,000 nm. Smaller-sized (5–20 nm) AgNPs were obtained from fungi. The results indicated that the small-sized AgNPs had an excellent ability to decrease the infection potential of herpes simplex virus types (HSV) 1/2 and human parainfluenza virus type 3.

Baram-Pinto et al investigated the inhibitory effect of AgNPs against HSV-1 and demonstrated that sulfonate-capped nanosilver inhibited HSV-1 infection. Furthermore, they demonstrated that AgNPs prevented the attachment and entry of virus into a cell or prevented the cell from spreading the virus. The heparan sulfate is a cellular primary acceptor of HSV, and thus competes with the virus for attaching to the cell and the potential was enhanced due to the presence of the inner core AgNPs. This study also demonstrated the virucidal action of AgNPs. These nanoparticles exhibited anti-HIV activity at an early stage of viral infection and also prevented the further replication of HIV-1. Furthermore, the viruses and other microbial strains were grown under multicycler growth condition in the absence or presence of colloidal
silver to check the antimicrobial property. As expected, no viral growth was seen with any strains tested.300

A recent study also showed that T lymphocyte (T)-tropic and macrophage (M)-tropic strains of HIV-1 were extremely susceptible to the AgNPs coated with polyurethane condom.15

In a recent study, different types of nanosilver particles were biosynthesized from \textit{F. oxysporum} (4–13 nm), \textit{Curvularia} spp. (5–23 nm), and \textit{Alternaria} and \textit{Phoma} spp. (7–20 nm). Silver particles produced from \textit{F. oxysporum} and \textit{Curvularia} spp. had exceptional antiviral activity but were less cytotoxic to Vero cells, whereas particles produced from \textit{Alternaria} and \textit{Phoma} spp. showed moderate virucidal action. This study also confirmed that small-sized nanoparticles have excellent ability to inhibit the replication of virus as compared to larger ones.297

More recently, the tannic acid-modified AgNPs in the range of 13, 33, and 46 nm were found to reduce HSV-2 infectivity in vivo and in vitro. In particular, tannic acid in the same amount also showed somewhat in vivo potential against the virus. Therefore, tannic acid-modified nanosilver was used as an antimicrobial agent in addition to cream or protective gel used for oral herpes infections treatment.301

Antiprotozoal property of AgNPs

According to the WHO, leishmaniasis is the sixth most infectious disease.302 Leishmaniasis is one of the most abandoned tropical infections around the globe, with occurrence in 88 countries and a predictable number of 500,000 cases of visceral form and 1.5 million cases of cutaneous leishmaniasis.303 Rossi-Bergmann et al demonstrated the potential function of biosynthesized AgNPs (using \textit{F. oxysporum}) against \textit{Leishmania amazonensis} promastigotes both in vivo and in vitro. They also compared the biologically and chemically synthesized AgNPs. Their results demonstrated that biosynthesized nanosilver was four times more active as compared to chemically produced AgNPs in vitro, while the in vivo results showed it was even more effective.304

The protozoal vector-borne diseases are the most common and important infections in developed regions, resulting in over one million deaths from malaria on yearly bases, worldwide.305 To control the malaria vector, researchers strive to discover innovative approach against antimalarial agents. Among various antimalarial drugs, AgNPs have also been evaluated against malarial parasites and reported with promising potential against malaria. In recent studies, the biologically synthesized AgNPs from \textit{Andrographis paniculata} Nees. (Acanthaceae) –55 nm in size306 and \textit{Catharanthus roseus} leaves (approximate size 35–55 nm) were tested against \textit{P. falciparum}.307 In another study, the higher antimalarial potential of AgNPs was reported. The AgNPs were bio-reduced in 5% \textit{Cassia occidentalis} leaf broth against chloroquine-sensitive and chloroquine-resistant strains of \textit{P. falciparum} and malarial vector \textit{Anopheles stephensi}.312

Mechanism of action of AgNPs in biological systems

To date, there is no proper mechanism for the synthesis of AgNPs. A proposed hypothetical mechanism behind the synthesis of nanoparticles is an enzymatic reaction in which the complex of reducing enzymes present in the plant, fungal, or bacterial extract reduces the chemicals such as AgNO\textsubscript{3} into silver ions and nitrate ions.308

Plants contain a complex network of antioxidant metabolites and enzymes that work together to prevent oxidative damage to cellular components. It was reported that plant extracts contain biomolecules including polyphenols, ascorbic acid, flavonoids, sterols, triterpenes, alkaloids, alcoholic compounds, polysaccharides, saponins, β-phenylethylamines, glucose and fructose, and proteins/enzymes which could be used as reductants to react with silver ions and therefore used as scaffolds to direct the formation of AgNPs in the solution. Hypothetically, biosynthetic products or reduced cofactors play an important role in the reduction of respective salts to nanoparticles. However, it seems probable that some glucose and ascorbate reduce AgNO\textsubscript{3} and HAuCl\textsubscript{4} to form nanoparticles.131,140,308,309 In neem leaf broth, terpenoids are the surface-active molecules stabilizing the nanoparticles, and reaction of the metal ions is possibly facilitated by reducing sugars.310 A study using \textit{Capsicum annuum} extract also indicated that the proteins which have amine groups played a reducing and controlling role during the formation of AgNPs in the solutions and that the secondary structure of the proteins changed after reaction with silver ions.141 \textit{Ficus benghalensis} leaf contains antioxidants and polyphenols (flavonoids), and it can also directly scavenge molecular species of active oxygen. Antioxidant action of flavonoids resides mainly in their ability to donate electrons or hydrogen atoms, that is, change keto group to enol form. Proteins, enzymes, phenolics, and other chemicals within plant leaf extract reduce silver salts and also provide excellent tenacity against agglomeration, which can be further studied to understand the mechanism of evolution by biological systems.309,311

The precise and accurate mechanism of action of AgNPs is still far from being understood completely. However based...
on previously reported studies, we summarize the AgNPs mechanism in different biological systems such as bacteria, human, fungi, virus, leishmania, and protozoa.

Figure 6 shows the mechanism of action of AgNPs in a biological system. The antiviral mechanism of AgNPs, as depicted in Figure 6A, begins after the attachment of the virus to host cell during which the virus inserts its genetic material into the cell. Silver particles bind to the genetic material and block its replication which ultimately leads to translational inhibition, and in this way, viral growth is inhibited. Wound healing and antibacterial mechanism of AgNPs are shown in Figure 6B. Although not reported in the literature, we assume that AgNPs may react with free oxygen in the wound portion followed by its ionization. This ionized active silver may regulate FOXO1 which is a transcription factor stimulating wound healing molecule, TGF-β1. Furthermore, active silver has also been reported to generate ROS. In the eukaryotic system, the ROS activate JNK and p53 proteins which induce Bax proteins to migrate to the mitochondrial surface resulting in cytochrome C release from mitochondria which subsequently results in PARP cleavage. This phenomenon leads to apoptosis. The antibacterial mechanism of AgNPs starts with adhesion of AgNPs to bacterial cell followed by pit formation through which AgNPs enter the cell. These AgNPs then bind to nuclear material residing inside the bacteria. This leads to transcriptional and translational disruption and subsequently leads to ROS generation, which results in antibacterial activity.

Antibacterial activity

As reported for other metals, it is assumed that AgNPs may undergo redox reaction leading to the generation of free radicals (ROS, reactive nitrogen species) which triggers cytotoxicity in bacterial cells. The AgNPs first adhere to the bacterial cell wall leading to destabilization of cell membrane potential and low levels of ATPs in the cell followed by cell death.312,313 There are some assumptions regarding AgNPs-induced bacterial cell death.

First, silver ions produced from AgNPs inside bacterial cells may interact with cellular glutathione and oxidize it. This phenomenon leads to the generation of ROS which consequently triggers bacterial growth inhibition.314 Second, the oxidized glutathione may result in an increased lipid peroxidation leading to membrane disruption, thereby resulting in leakage of cellular constituents.272 Third, DNA contains sulfur and phosphorous groups. AgNPs may bind to these groups leading to unwinding of DNA which may lead to transcriptional and translational inhibition, thereby resulting in leakage of cellular constituents.272

Figure 6 Mechanism of action of AgNPs in a biological system. (A) AgNPs antiviral mechanism. After attachment to host cell, the virus inserts its genetic material into the cell. Silver particles bind to the genetic material and block its replication which ultimately leads to translational inhibition, and in this way, viral growth is inhibited. (B) Wound healing and antibacterial mechanism of AgNPs. Although not reported in the literature, we assume that AgNPs may react with free oxygen in the wound portion followed by its ionization. This ionized active silver may regulate FOXO1 which is a transcription factor stimulating wound healing molecule, TGF-β1. Furthermore, active silver has also been reported to generate ROS. In the eukaryotic system, the ROS activate JNK and p53 proteins which induce Bax proteins to migrate to the mitochondrial surface resulting in cytochrome C release from mitochondria which subsequently results in PARP cleavage. This phenomenon leads to apoptosis. The antibacterial mechanism of AgNPs starts with adhesion of AgNPs to bacterial cell followed by pit formation through which AgNPs enter the cell. These AgNPs then bind to nuclear material residing inside the bacteria. This leads to transcriptional and translational disruption and subsequently leads to ROS generation, which results in antibacterial activity.

Abbreviations: AgNPs, silver nanoparticles; ROS, reactive oxygen species.
disruption, thereby leading to the production of ROS as shown in Figure 6.

Anticancer action

The available literature about the anticancer potential of AgNPs strongly suggests that ROS generation is a result of the interaction of AgNPs with cancer cells. A study reported the anticancer potential of AgNPs against A549 and B16 cells. The interaction of AgNPs with A549 and B16 cells resulted in the production of superoxide anion (O2·-) and hydrogen peroxide (H2O2) species which arrested the uncontrolled cell division of the cancer cells. A plentitude of studies also suggests the antitumor activity of colloidal silver and gold nanoparticles on cancer cells due to the formation of ROS inside the cells. The increased formation of superoxide and hydrogen peroxide species also affects signal transduction pathways triggering apoptosis. Superoxide radicals also contribute to uncoupling of respiration with ATP synthesis.

Another possible reason for cancer cells death is the release of silver ions from AgNPs because the concentration of silver ions determines cell death distinguishing between normal and cancer cells. Furthermore, the release of silver ions from AgNPs is also dependent on the pH of the medium (the lower the pH, the higher the release of ions). It is well established that the pH of tumor cells is slightly acidic than normal cells.

In tumor cells where the pH is slightly acidic than normal cells, AgNPs release more silver ions followed by formation of ROS leading to cancer cell death. However Asharani et al reported silver ions as a downstream signal of ROS. They reported that the interaction of AgNPs with cancer cells results in the generation of ROS followed by silver ions release form AgNPs through the oxidative dissolution process in acidic pH (5.0–6.4).

Cytotoxicity of AgNPs on normal cells

Considering the distribution of AgNPs in multiple tissues, recent studies have revealed that cell types can influence responses to AgNPs. When fibroblast cells (NIH3T3) and colon cancer epithelial cells (HCT116) were exposed to AgNPs, the two types of cells showed distinct responses. For the fibroblast cells, exposure to AgNPs resulted in high expression of ROS and c-Jun N-terminal kinases, which activated mitochondrial apoptotic pathways. However, the epithelial cells showed less of a response to AgNPs because the expression of antiapoptotic protein bcl-2 was activated to protect against apoptotic stimuli. Starch-coated AgNPs can cause different genotoxicities to fibroblast cells (IMR-90) and glioblastoma cells (U251). For both types of cells, AgNPs can diffuse into mitochondria and the nucleus, induce mitochondrial dysfunction, and increase the level of ROS, and subsequently cause DNA damage, chromosomal aberrations, and cell cycle arrest. However, fibroblast cells are more resistant to AgNPs, while the glioblastoma cells are more sensitive to AgNPs because fibroblast cells can recover from cell cycle arrest.

Although AgNPs are widely used nanoparticles in the biomedical field, safety in the uses of AgNPs is still controversial. Conventional AgNPs had a strong affinity towards extracellular membranes and can accumulate in tissues in excess amount for a long time causing several toxic effects to normal cells. The most common effects of AgNPs had been observed on erythrocytes, where they can lyse the membrane and induce oxidative stress-related responses such as induction of heme oxygenase I or formation of protein carboxyls. AgNPs and the ions released from the oxidized nanosilver surface directly bind to sulfur- and phosphorus-containing cellular constituents such as proteins and DNA, potentially causing damage to cellular machinery. The toxic effects of nanosilver on macrophages had been studied in the past. Upon uptake by the macrophage, silver metal could be further dissolved to Ag+ ions in the lysosomes due to the lower pH. Such Ag+ ions are highly toxic to mitochondria and induce apoptosis. Moreover, AgNPs had been reported to be toxic to the liver, skin, lung, and neural cells.

In conclusion, the AgNPs show toxic effects to all kinds of cells by interfering with their metabolic pathways, induction of apoptosis, and producing superoxides, genotoxicity, or other cytological consequences. However, there is still not enough data available to conclude what the toxic effects of AgNPs are due to the different sizes, shapes, and features of AgNPs. Therefore, extensive research is needed in this field to explore the proper mechanism of action of AgNPs in normal and carcinoma cell lines.

Preparation of AgNPs to function in a specific tumor site

Surface chemistry can influence the interaction of AgNPs with target tumor cells. The surface charges should be negative or neutral on AgNPs to target the specific tumor site. Also, the surface modification of AgNPs with a different biomarker of cancer can make them target the specific tumor site. The particle sizes are also a very important factor in targeting tumor site.
Antiviral mechanism

During viral infection, the virus first comes in contact with the host cell and introduces its nuclear material through binding and fusion events into susceptible cells. Though the mechanism is not fully understood, AgNPs are assumed to interfere with this phenomenon by interacting with the viral surface glycoproteins in susceptible cells. Furthermore, AgNPs have also been reported to inhibit the post-entry stages of the HIV-1 life cycle, because AgNPs maintained their antiviral activity even after they were added to the cells already infected with HIV. The mechanism behind this event is that AgNPs may have blocked other functional HIV-1 proteins, and lessened reverse transcription rates through direct binding to sulfur and phosphorous groups of nuclear material. PVP-coated AgNPs efficiently inhibit respiratory syncytial virus (RSV) possibly by binding to evenly distributed surface glycoproteins on RSV virion’s envelope.336 A different capping agent, namely mercaptoethanesulfonate, has been used for AgNPs tested against HSV-1.298 Sulfonate-coated AgNPs either block the attachment and entry of HSV-1 virus into cell or cell-to-cell proliferation of the virus. Their anti-HSV-1 activity depends on their ability to mimic heparan sulfate (the cellular primary receptor for HSV) and thus compete with the virus for binding to the cell and is amplified by the presence of the inner core of nanosilver. The understanding of antiviral mechanism of AgNPs is still in its early stages; hence, further studies are needed to explore the mechanisms of action of AgNPs, which may render the conceivable antiviral development of AgNPs to fill the vital niche of a wide range of antiviral agents.

Antifungal and antiprotozoal mechanism

AgNPs may disrupt membrane integrity and inhibit normal budding process in yeast. As stated before, the AgNPs result in the generation of ROS, and the protozoans, viz. leishmania parasites, exhibit sensitivity to ROS.337 Studies related to antifungal and antiprotozoal activities of AgNPs are very rare, so further investigations are required to document the detailed antifungal and antiprotozoal mechanisms of AgNPs.

Comparison of advantages and disadvantages of different synthesis methods

Various routes are employed for the synthesis of AgNPs (Figure 1), and so we aimed to explore the merits and demerits of each above-mentioned method. Chemical synthesis is one of the important methods for AgNPs preparation. In chemical method, the major drawback is the use of highly deleterious organic solvents. These solvents have lower biocompatibility which limits their natural applications.25 In contrast, the physical techniques have no harmful substances employed during preparation of AgNPs, and thus uncontaminated and pure AgNPs can be obtained.116 Generally, physical methods are fast, and narrow-sized nanostructure formulations are produced which is another advantage of physical technique over chemical method.23,102 However, the use of furnace tubes in the physical method has some disadvantages such as consumption of high energy,8,22,102,112 and requirement of more time for thermal stability22,111,112 and more space.111,112

An advantage of biogenic methods over physical and chemical approaches is that they do not require deleterious solvents, while biopolymers play an important role as stabilizing and reducing agents.8,338 Green synthesis also has other advantages such as higher stability for longer time,338 and is facile, biocompatible, and cost-effective, and biogenically synthesized nanostructures have good applications in biomedical realm. Applications of biosynthesized AgNPs have been reviewed in many studies.25,339,340 Furthermore, it is very interesting that AgNPs produced by biosynthesis methods can be used in a lot of applications; however, the main disadvantage of these methods is purification. During purification procedure, there is a chance of bacterial contamination and transfection which may be considered as a major constraint in their biomedical applications.129

Significance and toxicity of silver nanostructure

Silver is considered as one of the most imperative metals which can be used in various fields, for instance, in magnetics, optics, and electronics.341 Besides these, it has also been used as an anticancer, antiviral, bactericidal, fungicidal, and antiprotozoal agent.342 It has been reported that low amount of silver has excessive potential against microorganisms, while the AgNPs at high concentration (> 10 μM) are toxic to mammals as well as host organisms.343 However, some reports demonstrated nanosilver as pharmacologically sound and nontoxic to humans.342

Silver nanostructures have emergent role and versatility in various fields; however, some momentous evidence has also been reported in the literature regarding the toxicity of Ag nanostructures toward a number of hosts ranging from microorganisms to complex animals.

The AgNPs also inactivate microorganisms such as bacteria, algae, viruses, and fungi. Some metals like silver (Ag), tellurium (Te), and mercury (Hg) are very toxic to the majority of bacteria and exhibit aberrant antimicrobial
property even at small amount. Some reports have also proven the effective nature of AgNPs against fungi such as *S. cerevisiae*, algae such as *Chlamydomonas reinhardtii*, and viruses such as hepatitis B virus and HIV-1.

The toxicity of silver nanostructure against complex organisms has also been reported in fish (zebrafish), humans, mice, rats, and *Diptera* spp. (*Drosophila melanogaster*). The detailed investigation of toxicity of AgNO₃ can be found in some studies.

Miscellaneous applications of AgNPs

Combination of nano- and metallic silver has been found to possess strong antimicrobial and antiparasitic properties. Hence, AgNO₃ has been used in a wide range of applications in multiple disciplines. Silver has historical biomedical applications, such as silver foil, and AgNO₃ sutures are used to prevent infections of surgical wounds, treat gonorrheal eye in newborns, repair vaginal tear after childbirth, and treat burns.

Recently, AgNPs have displayed a tremendous cytotoxic effect against leukemia cells, breast cancer cells, hepatocellular carcinoma, and human liver HepG2 cells and lung cancer cells. Furthermore, AgNPs have been widely used in medical devices and consumer products such as surgical instruments, sterilizers, medical catheters, artificial teeth or orthodontics, bone coating, skin donation, creams, lotions, household sprays, home appliances, toys, detergents, toothpastes, soaps, containers for food storage and preservations, and antibiotic paints. Moreover, AgNPs have wide applications in electronics, such as data storage and optical devices, inks, nano- and optoelectronics, and nonlinear and sub-wavelength optics. Several investigators have demonstrated that AgNPs and silver composites possess the ability to catalyze chemical reactions, for example, oxidation of CO, oxidation of benzene to phenol, photodegradation of gaseous acetaldehyde, and reduction of p-nitrophenol to p-aminophenol. AgNPs have sensing applications in DNA sequencing and also play an important role in water filtration. The detailed application of AgNPs is demonstrated in Figure 1.

Conclusion and future remarks

From the forgone discussion, it can be concluded that AgNPs have gained remarkable interest, as they possess a wide range of applications in different fields including material science, biotechnology, and environmental and medical fields. Attributable to their distinctive physiochemical properties, AgNPs have been extensively used against bacteria, fungi, virus, leishmaniasis, malaria, and neoplastic cells. Moreover, AgNPs have been prepared by different procedures such as chemical, physical, and biological methods. In biosynthetic methods, the potential of nature-gifted environmental-friendly reducers and stabilizers has been explored. The biogenic method is considered eco-friendly and handy to be applied in various realms, for instance, medical, cosmetic, and pharmaceutical fields. There still exist some open questions regarding silver-based nanotechnology, and each synthetic method has critical limitations which require special attention to eradicate. Furthermore, the toxic effects of AgNPs targeting from microorganisms to higher organisms including human is another interesting aspect that has also been outlined in this review.

Although reports regarding the potential of AgNPs against cancer, malaria and leishmaniasis, and other human diseases are available, it will be a great revolution to find out the potential role of AgNPs against world’s leading diseases with high mortality like AIDS and chronic hepatitis, which still need proper treatment. The biological systems including bacteria, fungi, and plants maintain a tight regulation of various metabolic machineries such as photosynthesis, respiration, and transport mechanism for several ions across membranes, and cell architecture (organization of lipids and proteins in the cell membrane and other endomembranes and cell wall). How AgNPs could take a promising part in regulating these metabolic pathways operating simultaneously will be an interesting facet of AgNPs mechanism of action which awaits elucidation. Furthermore, as evident from many studies, cancer cells use glucose, glutamine, asparagine (in some cases), lipids, and proteins as fuels for their uncontrolled proliferation. Now the question is whether AgNPs prevent the growth of cancer cells either by activation of the expression of glucosidase, lipase, or proteinase enzymes or by clinging to the mitotic and meiotic apparatus during cell division to block the whole metabolic machinery of the abnormal cells. For a certain type of cancer like acute lymphoblastic leukemia where asparagine is the main nutrient reservoir, if AgNPs control its levels by regulating the expression of L-asparaginase, then pH change (ie, from neutral to acidic) of the medium (blood) would occur which could cause hindrance to the cancer cell proliferation. In short, in-depth handy mechanistic studies are required to fill these gaps.

Acknowledgments

The author S Ullah Khan has been supported by the Chinese Scholarship Council for his PhD study. TA Saleh would like to acknowledge the support and funding provided by
King Fahd University of Petroleum & Minerals (KFUPM) through Project No IN161011 and No IN131053 under the Deanship of Research. The authors also thank Dr Nawshad Muhammad and Usman Ali for their critical reading of the manuscript, and U Ali who did some artwork in the manuscript.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Gong P, Li H, He X, et al. Preparation and antibacterial activity of FeO@Ag nanoparticles. *Nanotechnology*. 2007;18(28):285604.

2. Taniguchi N. On the Basic Concept of Nanotechnology: Proceedings of the International Conference on Production Engineering. 1974, Tokyo. *Part II*. Tokyo: Japan Society of Precision Engineering; 1974.

3. Fox CL Jr, Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. *Antimicrob Agents Chemother*. 1974;5(6):582–588.

4. Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. *Nanoscale Res Lett*. 2014;9(1):373.

5. Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuyu RK. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. *Mutagenesis*. 2015;30(4):577–591.

6. Duran N, Marcato PD. Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. *Int J Food Sci Technol*. 2013;48(6):1127–1134.

7. Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. *Appl Microbiol Biotechnol*. 2012;94(2):287–293.

8. Wei L, Ju X, Patel A, Chen Z-S, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. *Drug Discov Today*. 2015;20(5):595–601.

9. Malachová K, Praus P, Rybková Z, Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. *Appl Clay Sci*. 2011;53(4):642–645.

10. Gu H, Ho P, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. *Nanot Lett*. 2003;3(9):1261–1263.

11. Cao X, Ye Y, Liu S. Gold nanoparticle-based signal amplification for biosensing. *Anal Biochem*. 2011;417(1):1–16.

12. Ahmad Z, Pandey R, Sharma S, Khuller G. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. *Indian J Chest Dis Allied Sci*. 2006;48(3):171–176.

13. Ratli Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aequorin root extract of *Erythrina indic* lam. *Spectrochim Acta A Mol Biomol Spectrosc*. 2015;135:1137–1144.

14. Manikanandan R, Manikanandan B, Raman T, et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of *Andrographis echioides* and characterization of its antibacterial, anticancer and anti-inflammatory activities. *Spectrochim Acta A Mol Biomol Spectrosc*. 2015;138:120–129.

15. Mohammed Fayaz A, Ao Z, Girilal M, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. *Int J Nanomedicine*. 2012;7:5007–5018.

16. Adhikari U, Ghosh A, Chandra G. Nano particles of herbal origin: a recent eco-friend trend in mosquito control. *Asian Pac J Trop Dis*. 2013;3(2):167–168.

17. Bindhu MR, Umadevi M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. *Spectrochim Acta A Mol Biomol Spectrosc*. 2015;135:373–378.

18. Subarani S, Sabhanyakam S, Kamaraj C. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against *Anopheles stephensi Liston and Culex quinquefasciatus* Say (Diptera: Culicidae). *Parasitol Res*. 2013;112(2):487–499.

19. Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kalepa P, Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of *Andrographis echioides* and its bio-efficacy on anticancer and antibacterial activities. *J Photochem Photobiol B*. 2015;151:118–124.

20. Roldán MV, Pellegrini N, De Sanctis O. Electrochemical method for Ag-PEG nanoparticles synthesis. *J Nanopart*. 2013;2014:524150.

21. Sotiriou GA, Teleki A, Camenzind A, et al. Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. *Chem Eng J*. 2011;170(2–3):547–554.

22. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. Nanosilver nanoparticles in medical applications: synthesis, performance, and toxicity. *Int J Nanomedicine*. 2014;9:2399–2407.

23. Asanithi P, Chaiyakun S, Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. *J Nanomater*. 2012;2012:963609.

24. Li G, He D, Qian Y, et al. Fungus-mediated green synthesis of silver nanoparticles using *Aspergillus terreus*. *Int J Mol Sci*. 2011;13(1):466–476.

25. Park Y. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. *Toxicol Res*. 2014;30(3):169–178.

26. Marshwani ZU, Khan T, Khan MA, Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. *Appl Microbiol Biotechnol*. 2015;99(23):9923–9934.

27. Singh R, Wagh P, Bellare J, et al. Synthesis, optimization, and characterization of silver nanoparticles from *Acinetobacter calcoaceticus* and their enhanced antibacterial activity when combined with antibiotics. *Int J Nanomedicine*. 2013;8:4277–4290.

28. Karthik C, Radha K. Biosynthesis and characterization of silver nanoparticles using *Enterobacter aerogenes*: a kinetic approach. *Dig J Nanomater Biostomo*. 2012;7(3):1007–1014.

29. Kalpana D, Lee YS. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown *Klebsiella pneumoniae*. *Enzyme Microb Technol*. 2013;52(3):151–156.

30. Samadi N, Golkaran D, Eslamifar A, Janalifar H, Fazeli MR, Mohseni FA. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of *Proteus mirabilis* isolated from photographic waste. *J Biomed Nanotechnol*. 2009;5(3):247–253.

31. Debabov V, Voeikova T, Shebanova A, et al. Bacterial synthesis of silver sulfide nanoparticles. *Nanotechnol Russ*. 2013;8(3–4):269–276.

32. Oves M, Khan MS, Zaïdi A, et al. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of *Stenotrophomonas maltophilia*. *PLoS One*. 2013;8(3):e59140.

33. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajothiga B, Annadurai G. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria *Vibrio alginolyticus*. *Nanosci Nanotechnol*. 2013;3(1):21–25.

34. Siriram MI, Kalishwaralal K, Gurunathan S. Biosynthesis of silver and gold nanoparticles using *Bacillus licheniformis*. *Methods Mol Biol*. 2012;906:33–43.

35. Kalishwaralal K, Deepak V, Pandian SRK, et al. Biosynthesis of silver and gold nanoparticles using *Brevibacterium casei* and *Colloids Surf B Biosurfaces*. 2010;77(2):257–262.

36. Tamboli DP, Lee DS. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. *J Hazard Mater*. 2013;260:878–884.

37. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. *Environ Sci Pollut Res*. 2014;21(2):1503–1513.
38. Deepa S, Kanimozhi K, Panneerselvam A. Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. *Int J Curr Microbiol Appl Sci*. 2013;2(9):223–230.

39. Banu AN, Balasubramanian C, Moothi PV. Biosynthesis of silver nanoparticles using *Bacillus thuringiensis* against dengue vector, *Aedes aegypti* (Diptera: Culicidae). *Parasitol Res*. 2014;113(1):311–316.

40. Abdel-Aziz MS, Shaheen MS, El-Nakeety AA, Abdel-Wahhab MA. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using *Chenopodium murale* leaf extract. *J Saudi Chem Soc*. 2014;18(4):356–363.

41. Parveen M, Ahmad F, Malla MA, Azaz S. Microwave-assisted green synthesis of silver nanoparticles from *Fraxinus excelsior* leaf extract and its antioxidant assay. *Appl Nanosci*. 2016;6(2):267–276.

42. Sujitha V, Murugan K, Paulpandi M, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector *Aedes aegypti*. *Parasitol Res*. 2015;114(9):3315–3325.

43. Roni M, Murugan K, Panneerselvam C, et al. Characterization and biotoxicity of *Hyphaea musciniformis*-synthesized silver nanoparticles as potential eco-friendly control tool against *Aedes aegypti* and *Plutella xylostella*. *Ecotoxicol Environ Saf*. 2015;121:31–38.

44. Gogoi N, Babu PJ, Mahanta C, Bora U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of *Nynctanthes arboristis* and in vitro investigation of their antibacterial and cytotoxic activities. *Mater Sci Eng C Mater Biol Appl*. 2015;46:463–469.

45. Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. *ACS Sustainable Chem Eng*. 2014;2(7):1717–1723.

46. Ajitha B, Reddy YAK, Reddy PS. Green synthesis and characterization of silver nanoparticles using *Lantana camara* leaf extract. *Mater Sci Eng C*. 2015;49:373–381.

47. Lallawmawma H, Sathishkumar G, Sarahfhubu S, et al. Synthesis of silver and gold nanoparticles using *Jasminum nudum* leaf extract and its larvicidal activity against filarial and arboviral vector *Culex quinquefasciatus* Say (Diptera: Culicidae). *Environ Sci Pollut Res Int*. 2015;22(22):17753–17768.

48. Gupta K, Hazarika SN, Saikia D, Namsa ND, Mandal M. One step green synthesis and anti-microbial and anti-biofilm properties of *Psidium guajava* leaf extract-mediated silver nanoparticles. *Mater Lett*. 2014;125:67–70.

49. Vidhu VK, Philip D. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using *Saraca indica* flower. *Spectrochim Acta A Mol Biomol Spectrosc*. 2014;117:102–108.

50. Suganya G, Karthi S, Shivakumar MS. Larvicidal potential of silver nanoparticles synthesized from *Leucas aspera* leaf extracts against dengue vector *Aedes aegypti*. *Parasitol Res*. 2014;113(5):1673–1679.

51. Muniyappan N, Nagarajan N. Green synthesis of silver nanoparticles with *Dalbergia spinosa* leaves and their applications in biological and catalytic activities. *Process Biochem*. 2014;49(6):1054–1061.

52. Kahliras GA, Wally LM, Fredrick SJ, Hisky M, Prieto AL, Owens JE. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. *ACS Sustainable Chem Eng*. 2013;2(3):367–376.

53. Arokyiaraj S, Arasu MV, Vincent S, et al. Rapid green synthesis of silver nanoparticles from *Chrysanthemum indicum* L. and its antibacterial and cytotoxic effects: an in vitro study. *Int J Nanomedicine*. 2014;9:379–388.

54. Murugan K, Senthil Kumar B, Senbagam D, Al-Sohaibani S. Biosynthesis of silver nanoparticles using *Acacia leucophloea* extract and their antibacterial activity. *Int J Nanomedicine*. 2014;9:2431–2438.

55. Nithya Deva Krupa A, Raghavan V. Biosynthesis of silver nanoparticles using *Aegle marmelos* (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. *Bioinsorng Chem Appl*. 2014;2014:949538.

56. Joseph S, Matthew B. Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of *Alpinia galanga* and evaluation of their catalytic and antimicrobial activities. *J Nanopart*. 2014;2014:967802.
124. Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. *Appl Microbiol Biotechnol*. 2009;88(4):741–749.

125. Jung JH, Oh HC, Noh HS, Ji JH, Kim SS. Metal nanoparticle generation using a small ceramic heater with a local heating area. *J Aerosol Sci*. 2006;37(12):1662–1670.

126. Balaji DS, Sasavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of *Cladosporium cladosporioides* fungus. *Colloids Surf B Biointerface*. 2009;68(1):88–92.

127. Bhattacharya D, Gupta RK. Nanotechnology and potential of microorganisms. *Crit Rev Biotechnol*. 2005;25(4):199–204.

128. Mourato A, Gadano M, Lino AR, Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. *Bioinorg Chem Appl*. 2011;2011:546074.

129. Sintubin L, Verstraele W, Boon N. Biologically produced nanosilver: current state and future perspectives. *Biotechnol Bioeng*. 2012;109(10):2422–2436.

130. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. *Biotechnol Prog*. 2009;19(6):1627–1631.

131. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. *J Nanopart Res*. 2008;10(3):507–517.

132. Iravani S. Green synthesis of metal nanoparticles using plants. *Green Chem*. 2011;13(10):2638–2650.

133. Elumalai E, Prasad T, Hemachandran J, Therasa SV, Thirumalai T, Parakkal S, et al. Green synthesis of metal nanoparticles using plants. *J Nanopart Res*. 2010;12(9):549–554.

134. Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaivelavan P, Mohan N. Synthesis of silver nanoparticles using *Acalypha indica* leaf extracts and its antibacterial activity against water borne pathogens. *Colloids Surf B Biointerface*. 2010;76(1):50–56.

135. Veerasamy R, Xin TZ, Gunasagar S, et al. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activity. *J Saudi Chem Soc*. 2011;15(2):113–120.

136. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using *Ocimum sanctum* (Tulsi) leaf extract and screening its antimicrobial activity. *J Nanopart Res*. 2011;13(7):2981–2988.

137. Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. *Colloids Surf A Physicochem Eng ASP*. 2014;444:226–231.

138. Karatoprak GS, Aydin G, Altinsoy B, Altinkaynak C, Kosar M, Ocsoy I. The effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. *Enzyme Microb Technol*. 2017;97:21–26.

139. Klaus T, Joerger R, Olsson E, Granqvist C-G. Silver-based crystalline nanoparticles, microbially fabricated. *Proc Natl Acad Sci U S A*. 1999;96(24):13611–13614.

140. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pynoe S, Misra A. Green synthesis of silver nanoparticles using seed extract of *Jatropha curcas*. *Colloids Surf A Physicochem Eng ASP*. 2009;348(1–3):212–216.

141. Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using *Curcuma longa* tuber powder and extract on cotton cloth for bactericidal activity. *Bioresour Technol*. 2010;101(20):7961–7965.

142. Babu SA, Prabu HG. Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. *Mater Lett*. 2011;65(11):1675–1677.

143. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu CP. Green synthesis of silver nanoparticles using tea extract and evaluation of their stability and antibacterial activity. *Colloids Surf A Physicochem Eng ASP*. 2014;444:226–231.

144. Prakash A, Bhuvana R, et al. Green synthesis of silver nanoparticles using *Aspergillus fumigatus* and *Candida tropicalis*. *Mater Lett*. 2009;63(10):1263–1266.

145. Jang SY, Song JH, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. *Bioprocess Biosyst Eng*. 2009;32(1):79–84.

146. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pynoe S, Misra A. Green synthesis of silver nanoparticles using seed extract of *Jatropha curcas*. *Colloids Surf A Physicochem Eng ASP*. 2009;348(1–3):212–216.

147. Rathod BN, Jjuver RL, et al. Green synthesis of silver nanoparticles using *Tulsi* leaf. *Int J Pharm Sci*. 2014;6(12):2009;73(2):332–338.

148. Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried *Cinnamomum camphora* leaf. *Nanotechnology*. 2007;18(10):105104.

149. Balashanmugam P, Balakumaran M, Murugan R, Dhanapal K, Kalaielvavan P. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. *Microbiol Res*. 2016;192:52–64.

150. Chandran SP, Chaudhary M, Padicha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using *Aloe vera* plant extract. *Biotechnol Prog*. 2006;22(2):577–583.

151. Li S, Chen Y, Xie A, et al. Green synthesis of silver nanoparticles using *Capsicum annum* L. *Extract. Green Chem*. 2007;9(8):852–858.

152. Jain D, Daima HK, Kachhawa S, Kothari SL. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. *Dig J Nanomater Biostruc*. 2009;4(3):557–563.

153. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. *Colloids Surf B Biointerface*. 2009;71(1):113–118.

154. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. *Bioprocess Biosyst Eng*. 2009;32(1):79–84.
166. Vigneshwaran N, Ashpatpute N, Varadarajan P, Nanchane R, Paralikar K, Balasubramanya R. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. *Mater Lett.* 2007;61(6):1413–1418.

167. Venkatpurwar V, Pokharvkar V. Green synthesis of silver nanoparticles using marine polysaccharide: study of in-vitro antibacterial activity. *Mater Lett.* 2011;65(6):999–1002.

168. El-Rafie H, El-Rafie MH, Zahran MK. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. *Carbohydr. Polym.* 2013;96(2):403–410.

169. Salari Z, Danafar F, Babaghi S, Ateae SA. Sustainable synthesis of silver nanoparticles using macroalgae Spirulina varians and analysis of their antibacterial activity. *J Saudi Chem Soc* 2016;20(4):459–464.

170. Shahverdi AR, Minaein S, Shahverdi HR, Jamalifar H, Nohi A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. *Process Biochem.* 2007;42(5):919–923.

171. Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. *J Am Chem Soc.* 2003;125(46):13940–13941.

172. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. *Carbohydr. Res.* 2006;341(12):2012–2018.

173. Tai CY, Wang YH, Liu HS. A green process for preparing silver nanoparticles using spinning disk reactor. *AIChE J.* 2008;54(2):445–452.

174. Gao X, Wei L, Yan H, Xu B. Green synthesis and characteristic of core-shell structure silver/starch nanoparticles. *Mater Lett.* 2011;65(19–20):2963–2965.

175. El-Sheik MA. A novel photosynthesis of carboxymethyl starch-stabilized silver nanoparticles. *Sci World J.* 2014;2014:514563.

176. El-Rafie M, Ahmed HB, Zahran M. Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch. *Int Sch Res Notices.* 2014;2014:702396.

177. Liu Y, Chen S, Zhong L, Wu G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. *Radiat Phys Chem.* 2009;78(4):251–255.

178. Saha S, Pal A, Kundu S, Basu S, Pal T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. *Langmuir.* 2009;26(4):2885–2893.

179. Zahran MK, Ahmed HB, El-Rafie MH. Alginate mediate for synthesis controllable sized AgNPs. *Carbohydr. Polym.* 2014;111:10–17.

180. Kora AJ, Sashidhar R. Antibacterial effects of gum kondagogu reduced/stabilized silver nanoparticles. *Biol Macromol.* 2014;111:10–17.

181. Liu B, Xu H, Zhao L, Liu W, Zhao L, Li Y. Preparation and characterization of sericin-silver nanoparticle composite with effective antibacterial action and good biocompatibility. *Mater Sci Eng C.* 2017;70:509–516.

182. Liu B, Xu H, Zhao L, Li Y. Biosynthesis and characterization of AgNPs–Silk/PVA film for potential packaging application. *Materials (Basel).* 2017;10(6):pii:E667.

183. Rehan M, Mashalhy HM, Mowafi S, El-Kheir AA, Emam HE. Multifunctional textile design using in-situ AgNPs incorporation into natural fabric matrix. *Dyes Pigments.* 2015;118:9–17.

184. He H, Tao G, Wang Y, et al. In situ green synthesis and characterization of silver nanoparticles using polysaccharides extracted from marine macroalgae and natural material. *Mater Sci Eng C.* 2016;60:502–509.

185. Geimi AK, Novoselov KS. The rise of graphene. *Sci W orld J.* 2014;2014:514563.

186. Cano A, Fortunati E, Cháfer M, González-Martínez C, Chiralt A, Kenny J. The role of branched polyesters as stabilizers for the preparation of silver nanoparticles by green approach. *Polymers.* 2016;1:1.

187. Dailey LA, Wittmar M, Kissel T. The role of branched polyesters as stabilizers for the preparation of silver nanoparticles by green approach. *Polymers.* 2016;1:1.

188. Rehan M, Mashalhy HM, Mowafi S, El-Kheir AA, Emam HE. Multi-functional textile design using in-situ AgNPs incorporation into natural fabric matrix. *Dyes Pigments.* 2015;118:9–17.

189. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. *Biomaterials.* 2005;26(34):7082–7094.

190. Wang Y, Kim HJ, Junjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. *Biomaterials.* 2006;27(36):6064–6082.

191. Vepari C, Kaplan DL. Silk as a biomaterial. *Prog Polym Sci.* 2007;32(8–9):991–1007.

192. Fei X, Shao Z, Chen X. Synthesis of hierarchical three-dimensional copper oxide nanostuctures through a biominalization-inspired approach. *Nanoscale.* 2013;5(17):7991–7997.

193. Mi R, Liu Y, Chen S, Shao Z. Structure and properties of various hybrids fabricated by silk nanofibrils and nanohydroxypapate. *Nanoscale.* 2016;8(48):20096–20102.

194. Selvakannan PR, Swami A, Sriasithayanarayanan D, et al. Synthesis of aqueous Au core–Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transfered silver nanoparticles at the air–water interface. *Langmuir.* 2004;20(18):7825–7836.

195. Liu B, Xu H, Zhao L, Liu W, Zhao L, Li Y. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. *Carbohydr. Polym.* 2017;157:842–849.

196. Chierri E, Chierelli F, Ray-Chaudhury S, Praveen K, Mariniello G, Manenti N. Environmentally degradable bio-based polymeric blends and composites. *Macromol Biosci.* 2004;4(3):218–231.

197. Dailey LA, Wittmar M, Kissel T. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. *J Control Release.* 2005;101(1–3):137–149.

198. Cao A, Fortunati E, Cháfer M, Gonzalez-Martínez C, Chiralt A, Kenny J. Effect of cellulose nanocrystals on the properties of pea starch–poly (vinyl alcohol) blend films. *J Mater Sci.* 2015;50(21):6979–6992.

199. Geim AK, Novoselov KS. The rise of graphene. *Nat Mater.* 2007;6(3):183–191.

200. Tang XZ, Cao Z, Zhang H-B, Liu J, Yu ZZ. Growth of silver nanoparticles at the air–water interface. *Langmuir.* 2004;20(18):7825–7836.
209. Georgakilas V, Gounis D, Tzitzios V, Pasquato L, Guldi DM, Prato M. Decorating carbon nanotubes with metal or semiconductor nanoparticles. *J Mater Chem*. 2007;17(26):2679–2694.

210. Williams G, Seger B, Kamat PV. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. *ACS Nano*. 2008;2(7):1487–1491.

211. Ocsoy I, Gurbakan B, Chen T, et al. DNA-guided metal-nanoparticle formation on graphene oxide surface. *Adv Mater*. 2013;25(16):2319–2325.

212. Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. *ACS Nano*. 2013;7(10):8972–8980.

213. Strayer A, Ocsoy I, Tan W, Jones JB, Paret ML. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. *Plant Dis*. 2016;100(7):1460–1465.

214. Liu L, Liu J, Wang Y, Yan X, Sun DD. Facile synthesis of monodisperse silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. *New J Chem*. 2011;35(7):1418–1423.

215. Xu WP, Zhang LC, Li JP, et al. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. *J Mater Chem*. 2011;21(12):4593–4597.

216. Qiao G, Zhang D, Qi P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. *J Colloid Interface Sci*. 2011;360(2):463–470.

217. Bonde S, Rathod D, Ingle A, Ade R, Gade A, Rai M. Murraya koenigii–*Calotropis gigantea* leaves extract and its antibacterial activity. *J Photochem Photobiol B*. 2015;149:84–92.

218. Ahmed KB, Senthilnathan R, Megaranja S, Anbazhagan V. Sunlight mediated synthesis of silver nanoparticles using redox photoprotein and their application in catalysis and colorimetric mercury sensing. *J Photochem Photobiol B*. 2015;151:39–45.

219. Devi LS, Joshi SR. Antimicrobial and synergistic effects of silver nanoparticles using *Calotropis gigantea* leaf extract. *J Photochem Photobiol B*. 2017;177:7–14.

220. Bonde S, Rathod D, Ingle A, Ade R, Gade A, Rai M. Murraya koenigii–*Calotropis gigantea* leaves extract and its antibacterial activity. *J Photochem Photobiol B*. 2015;149:84–92.

221. Liu HL, Dai SA, Fu KY, Hsu SH. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. *Int J Nanomedicine*. 2010;5:1017–1028.

222. Shamel K, Ahmad MB, Jazayeri SD, et al. Investigation of antimicrobial properties silver nanoparticles prepared via green method. *Chem Cent J*. 2012;6(1):73.

223. Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M. Biofabrication of silver nanoparticles by *Opuntia ficus-indica*: in vitro antibacterial activity and study of the mechanism involved in the synthesis. *Curr Nanosci*. 2010;6(4):370–375.

224. Bin Ahmad M, Lim JJ, Shameli K, Ibrahim NA, Tay MY, Chieng BW. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route. *Chem Cent J*. 2012;6(1):101.

225. Rajkubaran C, Sudha K, Sathishkumar G, Sivaramakrishnan S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of *Calotropis gigantea* L. *Spectrochim Acta A Mol Biomol Spectrosc*. 2015;136(Pt B):924–930.

226. Ramar M, Manikandan B, Marimuthu PN, et al. Synthesis of silver nanoparticles using *Solanum trilobatum* fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. *Spectrochim Acta A Mol Biomol Spectrosc*. 2015;140:223–228.

227. Kvitk V, Panáček A, Soukupova J, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). *J Phys Chem Phys*. 2008;112(15):5852–5834.

228. Kim SH, Lee HS, Ryu D-S, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against *Staphylococcus aureus* and *Escherichia coli*. *Korean J Microbiol Biotechnol*. 2011;39(1):77–85.

229. Shamel K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. *Int J Nanomedicine*. 2011;6:581–590.

230. Marslin G, Selvakesan RK, Franklin G, Sarmento B, Dias AC. Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from *Withania somnifera*. *Int J Nanomedicine*. 2015;10:5955–5963.

231. Salem W, Hardiy M, Sayed W, Hassan N. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. *Ind Crops Prod*. 2014;62:228–234.

232. Ajitha B, Ashok Kumar Reddy Y, Shameri S, Rajesh K, Suneetha Y, Sreedhara Reddy P. *Lantana camara* leaf extract mediated synthesis of silver nanoparticles: antibacterial, green catalyst. *J Photochem Photobiol B*. 2015;149:84–92.

233. Ahmed KB, Senthilnathan R, Megaranja S, Anbazhagan V. Sunlight mediated synthesis of silver nanoparticles using redox photoprotein and their application in catalysis and colorimetric mercury sensing. *J Photochem Photobiol B*. 2015;151:39–45.
250. Velluti F, Mosconi N, Acevedo A, et al. Synthesis, characterization, microbiological evaluation, genotoxicity and synergism tests of new silver nano complexes with sulfamoxole: X-ray diffraction of [Ag2 (SMX) 2]. DMSO. J Inorg Biochem. 2014;141:58–69.

251. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009;5(4):382–386.

252. Jeyaraj M, Rajesh M, Arun R, et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf B Biointerfaces. 2013;102:708–717.

253. Nasrollahi A, Pourshamsian K, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nanodimins. 2011;1(3):233–239.

254. Khatiwada CP. Green synthesis of silver nanoparticles using Plumeria alba flower extract and their antibacterial and antifungal activities. J Inorg Biochem. 2015;141:348–351.

255. Jacob SJ, Finub J, Narayanavan Y. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces. 2012;91:212–214.

256. Dwivedi S, Saqib Q, Al-Khedhairy AA, Ahmed J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

257. Rajasekharreddy P, Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized silver nanoparticles from leaf extract of Vitis negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–324.

258. Vazquez-Muñoz R Avalos-Borja M, Castro-Longo E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One. 2014;9(10):e108876.

259. Naz SS, Shah MR, Islam NU, et al. Synthesis and bioactivities of silver nanoparticles capped with 5-amino-β-resorcylic acid hydrochloride dihydrate. J Nanobiotechnology. 2014;12(1):34.

260. Prabh R, Arulvasu C, Babu G, Manikandan R, Srinivasan P. Biologically synthesized green silver nanoparticles from leaf extract of Vitis negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem. 2013;48(2):317–324.

261. Khatami M, Pourseyedi S, Mousavi M, et al. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles biosynthesized by using an endophytic fungus, Microbiol Biotechnol. 2015;178:9–17.

262. Artunduaga Bonilla JJ, Paredes Guerrero DJ, Sánchez Suárez CI, Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Ortíz López CC, Torres Sáez RG. In vitro antifungal activity of silver nanoparticles against indoor mould growth. J Microbiol. 2015;31(11):1801–1809.

263. Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles. J Microbiol. 2012;7(1A):338–345.

264. Atog F, Bholay A. Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Dev. 2012;7(1A):338–345.

265. Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural analysis of silver nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93(10):1037–1043.

266. Ogar A, Tylko G, Turnau K. Antifungal properties of silver nanoparticles against indoor mould growth. Sci Total Environ. 2015;521–522:305–314.

267. Jacob SJ, Finub J, Narayanavan Y. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces. 2012;91:212–214.

268. Rana R, Astuti S, Ahmad J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

269. Dwivedi S, Saqib Q, Al-Khedhairy AA, Ahmed J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

270. Liu J, Zhao Y, Guo Q, et al. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials. 2012;33(26):6155–6161.

271. Khatiwada CP. Green synthesis of silver nanoparticles using Plumeria alba flower extract and their antibacterial and antifungal activities. J Microbiol. 2015;31(11):1801–1809.

272. Khatiwada CP. Green synthesis of silver nanoparticles using Plumeria alba flower extract and their antibacterial and antifungal activities. J Inorg Biochem. 2015;139:200–205.

273. Mallmann EJ, Cunha FA, Castro BN, Maciel AM, Menezes EA, Fechine PB. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop Sao Paulo. 2015;57(2):165–167.

274. Arun TV, Bholay A. Biosynthesis of silver nanoparticles and its antifungal activities. J Environ Res Dev. 2012;7(1A):338–345.

275. Liu J, Zhao Y, Guo Q, et al. TAT-modified nanosilver for combating multidrug-resistant cancer. Biomaterials. 2012;33(26):6155–6161.

276. Jo YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles. J Microbiol. 2012;7(1A):338–345.

277. Rana R, Astuti S, Ahmad J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

278. Guo D, Dou D, Ge L, Huang Z, Wang L, Gu N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf B Biointerfaces. 2015;134:229–234.

279. Rana R, Astuti S, Ahmad J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

280. Dwivedi S, Saqib Q, Al-Khedhairy AA, Ahmad J, Siddiqui MA, Musarrat J. Rhomnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. Colloids Surf B Biointerfaces. 2015;132:290–298.

281. Guo D, Dou D, Ge L, Huang Z, Wang L, Gu N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Colloids Surf B Biointerfaces. 2015;134:229–234.

282. Rajasekharreddy P, Pranu P. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng C Mater Biol Appl. 2014;39:203–212.

283. Mata R, Nakkaala JR, Sadras SR. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C Mater Biol Appl. 2015;51:216–225.

284. Kaplan A, Akalin Cifteci G, Kuthu HM. Cytotoxic, anti-proliferative and apoptotic effects of silver nitrate against H-ras transformed SRP77. Cytotechnology. 2016;68(5):1727–1735.

285. Pandurangan M, Enkhtaisan G, Venkatasamy B, et al. Time and concentration-dependent therapeutic potential of silver nanoparticles in cervical carcinoma cells. Biol Trace Elem Res. 2016;170(2):309–319.

286. El Kassas HY, Attia AA. Bacterial application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev. 2014;15(3):1299–1306.

287. Ramalingam V, Rajaram R, PremKumar C, et al. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J Basic Microbiol. 2014;54(9):928–936.

288. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK. Biosynthesis, antibacterial and cytotoxic effect of silver nanoparticles using a novel Nocardiosis sp. MBRC-1. Biomed Res Int. 2013;2013:287638.
Saxena A, Tripathi RM, Zafar F, Singh P. Green synthesis of silver nanoparticles using aqueous solution of *Ficus benghalensis* leaf extract and characterization of their antibacterial activity. *Mater Lett.* 2012;67(1):91–94.

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au core–Ag shell nanoparticles using Neem (*Azadirachta indica*) leaf broth. *J Colloid Interface Sci.* 2004;275(2):496–502.

Tripathi RM, Ranac D, Shrivastav A, Singh RP, Shrivastav BR. Biogenic synthesis of silver nanoparticles using *Saraca indica* leaf extract and evaluation of their antibacterial activity. *Nano Biomed Eng.* 2013;5(1):50–56.

Shrivastava S, Bera T, Roy A, Singh G, Ramachandra Rao P, Dush A. Characterization of enhanced antibacterial effects of novel silver nanoparticles. *Nanotechnology.* 2007;18(22):225103.

Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antifungal activity and mechanism of silver nanoparticles on *Escherichia coli*. *Appl Microbiol Biotechnol.* 2010;85(4):1115–1122.

Masis L, Veeravalli K, Georgiou G. The many faces of glutathione in bacteria. *Antioxid Redox Signal.* 2006;8(5–6):753–762.

Zhang D, Zhao YX, Gao YJ, et al. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. *J Mater Chem B.* 2013;1(38):5100–5107.

Minaei L, Yeheksely-Hayon D, Yelin D. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. *Sci Rep.* 2013;3:2146.

Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. *J Exp Clin Cancer Res.* 2010;29(1):148.

Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J. Redox control of cell death. *Antioxid Redox Signal.* 2002;4(3):405–414.

Garrido C, Galluzzo L, Brunet M, Puig P, Dideolt C, Kroemer G. Mechanisms of cytotoxic crome release from mitochondria. *Cell Death Differ.* 2006;13(9):1423–1433.

Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. *J Nanopart Res.* 2010;12(5):1531–1551.

Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutical exploitation. *Cancer Res.* 1989;49(16):4373–4384.

Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. *Nanotechnology.* 2008;19(25):255102.

Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of silver nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. *Toxicol Lett.* 2008;179(3):130–139.

Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. *ACS Nano.* 2009;3(2):279–290.

Netcharonsirisuk P, Puthong S, Dubas S, Palaga T, Komolpis K. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines. *J Nanopart Res.* 2016;18(11):322.

Boudreau MD, Imam MS, Paredes AM, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. *Toxicol Sci.* 2016;150(1):131–160.

Kim MJ, Shin S. Toxic effects of silver nanoparticles and nanowires on erythrocytes. *Food Chem Toxicol.* 2014;67:80–86.

Haase A, Tentschert J, Jungnickel H, et al. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. *J Phys Conf Ser.* 2011;304(1):012030.

Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiropi GA. Toxicity of silver nanoparticles in macrophages. *Small.* 2013;9(15):2576–2584.

Faedmaleki F, H Shirazi F, Salarian AA, Ahmad Ashtiani H, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. *Iran J Pharm Res.* 2014;13(1):235–242.

Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. *Environ Health Perspect.* 2010;118(3):407–413.
332. Gilga AR, Skoglund S, Wallinder IO, Faddei B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.

333. Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res. 2015;136:253–263.

334. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):pii:E1534.

335. Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. Epub 2014 Nov 20.

336. Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol. 2008;4(2):149–158.

337. Murray HW. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med. 1981;153(5):1302–1315.

338. Saifuddin N, Wong CW, Yasmurfa AA. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem. 2009;6(1):61–70.

339. Schröfel A, Kratošová G, Šafaříková I, Šafařík M, Raška I, Shor LM. Application of biosynthesized metallic nanoparticles—a review. Acta Biomater. 2014;10(10):4023–4042.

340. Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol. 2014;14(7):4757–4780.

341. Emam HE, Ahmed HB. Polysaccharides templates for assembly of nanosilver. Carbohydr Polym. 2016;135:300–307.

342. Landsdown A. Silver in health care: antimicrobial effects and safety in use. In: Hipler UC, Elsner P, editors. Biofunctional Textiles and the Skin. Vol 33. Basel: Karger Publishers; 2006:17–34.

343. Conrad AH, Tramp CR, Long CJ, Wells DC, Paulsen AQ, Con.

344. Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011;85(7):743–750.

345. Silver S, Phung Le T, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33(7):627–634.

346. Fung QL, Wu J, Chng QG, Cui FZ, Kim TN, Kim JQ. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668.

347. Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials. 2013;34(32):7884–7894.

348. Guo D, Zhao Y, Zhang Y, et al. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J Biomed Nanotechnol. 2014;10(4):669–678.

349. Gurunathan S, Han JW, Eppakalyavala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDMA-MB-231 human breast cancer cells. Biomed Res Int. 2013;2013:535796.

350. Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S. Green synthesis of silver nanoparticles using Gannoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine. 2013;8:4399–4413.

351. Kim SH, Choi BS, Kang K, Choi YS, Yang SI. Low temperature synthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Appl Toxicol. 2014;34(11):1155–1166.

352. folding R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549.

353. Nazir S, Hussain T, Iqbal MD, Muazzam AG, Ismail JM. Novel and cost-effective green synthesis of silver nano particles and their in vivo antitumor properties against human cancer cell lines. J Biosci. 2011;26(1):425–430.

354. Fumo F, Morley KS, Wong B, et al. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother. 2004;54(6):1019–1024.

355. Matsuura T, Abe Y, Sato Y, Okamoto K, Ushige M, Akagaya Y. Prolonged antimicrobial effect of tissue conditioners containing silver-zoelite. J Dent. 1997;25(5):373–377.

356. Ikawa H, Yamamoto T, Hamada T, Rahardjo MB, Murata H, Nakano S. Antifungal effect of zoelite-incorporated tissue conditioner against Candida albicans growth and/ or acid production. J Oral Rehabil. 1999;24(5):350–357.

357. Amendola V, Polizzi S, Meneghetti M. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir. 2007;23(12):6766–6770.

358. Navaladjan S, Viswanathan B, Varadarajan TK, Viswanath RP. Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation. Nanotechnology. 2008;19(4):045603.

359. Fernández EJ, García-Barrasa J, Laguna A, López-de-Luzuriaga JM, Monge M, Torres C. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology. 2008;19(18):185602.

360. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Nanobiotechnology. 2005;3(1):6.

361. Kim YS, Kim JS, Cho HS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20(6):575–583.

362. Navarro E, Picapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42(23):8959–8964.

363. Lu L, Sun RW, Chen R, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13(2):253–262.

364. Echeguiugua JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3(1):6.

365. Yeo MK, Yoon JW. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol. 2009;5(1):23–31.

366. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005;19(7):975–983.

367. Sungh JH, Ji JH, Yoon JU, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008;20(6):567–574.

368. Ahamed M, Posgai R, Gorye TJ, Nielsen M, Hussain SM, Rowe JJ. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol. 2010;242(3):263–269.

369. Sims JM. On the treatment of vesico-vaginal fistula. Int Urogynecol J. 1998;9(4):236–248.

370. Schirmer KG. Die Verhütung der Augenentzündung der Neugeborenen [Prevention of Inflammatory Eye Disease in the Newborn]. Berlin: Hirschwald; 1882. German.
376. Jacob JA, Mahal HS, Biswas N, Mukherjee T, Kapoor S. Role of phenol derivatives in the formation of silver nanoparticles. *Langmuir*. 2008;24(2):528–533.

377. Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. *Biotechnol Bioeng*. 2005;90(1):59–63.