Comparative Studies on the Physiobiochemical, Enzymatic, and Ionic Modifications in Salt-tolerant and Salt-sensitive Citrus Rootstocks under NaCl Stress

Rashad M. Balal
Department of Horticulture, University College of Agriculture, University of Sargodha, Punjab, 40100, Pakistan

Muhammad M. Khan
Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan

Muhammad A. Shahid¹ and Neil S. Mattson
Department of Horticulture, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850

Tahira Abbas
Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan

Muhammad Ashfaq
Department of Agri-entomology, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan

Francisco Garcia-Sanchez
Dpto. Nutrición Vegetal, Centro de Edafología y Biología aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain

Usman Ghazanfer
Department of Plant Pathology, University College of Agriculture, University of Sargodha, Punjab, 40100, Pakistan

Vicente Gimeno
Dpto. Nutrición Vegetal, Centro de Edafología y Biología aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain

Zafar Iqbal
Department of Plant Pathology, University College of Agriculture, University of Sargodha, Punjab, 40100, Pakistan

Additional index words. antioxidants, epidermal cells, stomata, photosynthesis, stomatal conductance, ions

Abstract. A study was conducted to investigate the morphological, physiobiochemical, enzymatic, and ionic differences among four cultivated citrus (Citrus sp.) rootstocks with different salt tolerances. Two salt-tolerant rootstocks [Rangpur lime (C. limonia) and Rubidoux (C. trifoliata)] and two salt-sensitive rootstocks [Carrizo citrange (Citrus sinensis × C. trifoliata) and Sanchton citrumello (C. trifoliata × C. paradisi)], were subjected to NaCl stress in greenhouse conditions. The 9-month-old plants were exposed to four different NaCl levels (0, 30, 60, or 90 mM) in sand culture for 3 months. Plant biomass (fresh weight, dry weight, root length, shoot length, and leaf thickness), physiological attributes (number of stomata, stomatal size, number of epidermal cells, photosynthesis rate, stomatal conductance (gS), water use efficiency, and transpiration rate), and ion content (Na⁺, K⁺, Ca²⁺, Mg²⁺, and Cl⁻) were adversely affected by salt stress, but salt-tolerant cultivars were comparatively less affected. Salt stress also enhanced antioxidant enzyme activity (superoxide dismutase, catalase, and peroxidase), particularly in salt-tolerant cultivars. The salt-sensitive cultivars accumulated the greatest content of Na⁺ and Cl⁻ in their leaves, whereas the salt-tolerant cultivars accumulated the greatest content of Na⁺ and Cl⁻ in their leaves, an adaptation to combat the highly saline conditions. Overall, it was concluded that the salt tolerance of rootstocks is associated with a greater antioxidant enzyme activity and differing accumulation patterns of Na⁺, K⁺, Ca²⁺, Mg²⁺, and Cl⁻ in leaves and roots; these can be considered potential indicators of a cultivar’s sensitivity to salt stress.
Excess amounts of these salts enhance the osmotic potential (ψ_s) of the soil matrix, restricting the plant’s water intake (Garcia-Sanchez et al., 2002a, 2002b). Plants have developed many adaptive strategies in response to abiotic stresses such as salinity that ultimately influence plant growth and yield (McCue and Hanson, 1990).

Sodium and chloride are major ions and can cause various disorders in citrus plants (Romero-Aranda et al., 1998). Sodium chloride is reported to be a major source of ions in salt solutions disorders in citrus plants (Romero-Aranda et al., 1998). Beyond the osmotic effects of salt in the root zone, salt stress causes oxidative stress in plant cells through the generation of reactive oxygen species (ROS), including hydroxyl and superoxide radicals, through various metabolic processes such as photorespiration (Noreen and Ashraf, 2009). Salinity reduces stomatal function and favors the denaturation of chlorophyll (Hernandez et al., 1999), which ultimately leads to a reduction in g_s, photosynthetic activity, and the generation of free oxygen radicals, thus inducing oxidative stress. ROS can cause toxic reactions such as lipid peroxidation, protein degradation, and DNA mutation (McCord, 2000). In response, a plant may synthesize more antioxidant enzymes (Sairam et al., 2005), including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) (Noreen and Ashraf, 2009).

The growth and productivity of citrus plants are inhibited by saline as a result of the ion toxicity of Na$^+$ and Cl$^-$ as well as the ion antagonisms that occur with Na$^+$ and Cl$^-$ that limit nutrient availability (Munns and James, 2003). In citrus production, rootstock are used to control a plant’s size and form and play a key role in establishing excellent fruit quality and yield. Rootstocks also may impart a tolerance to various biotic and abiotic factors, thus contributing to higher production (Waqar et al., 2007). In citrus plants, excess salts in the root zone may negatively affect plant morphological features, mineral nutrition, and various physio-biochemical mechanisms; i.e., photosynthesis, g_s and transpiration (Garcia-Sanchez and Syvertsen, 2006; Garcia-Sanchez et al., 2006). Citrus rootstocks may play an important role with regard to the emerging threat of soil salinity. Therefore, the present study was conducted to assess the effect of salt stress on the various physiological and biochemical aspects of salt-tolerant and salt-sensitive citrus rootstocks. The findings of this investigation also clearly demonstrate the differences that occur with respect to various morphological, biochemical, enzymatic, and ionic attributes of salt-tolerant and salt-sensitive citrus rootstocks. The results may indicate the degree to which rootstocks enhance citrus performance under saline conditions and lead to early screening methods to detect tolerant rootstocks.

Materials and Methods

Plant material and growth conditions

To study the effect of salinity on citrus rootstock cultivars, a greenhouse experiment was conducted with potted plants and a sand substrate. Two salt-tolerant (Rangpur lime and Rubidoux) and two salt-sensitive (Carrizo citrange and Sanchton citrumello) rootstocks, screened from 10 rootstocks in a preliminary experiment (R.M. Balal, unpublished data) were used. The seeds were sown in nursery beds to grow the rootstock seedlings. The 6-month-old seedlings were carefully removed and transplanted into 30 × 25-cm black-painted plastic pots filled with 6.5 kg (4.5 L volume) of Astatula fine sand (hyperthermic, uncoated, Typic Quartzipsamments). The sand was fine with a pH of 6.0 to 6.5, a field capacity of 7.2%, and a wilting point at 1.2% moisture content (volume basis) (Camara-Zapata et al., 2004). Pots were placed in a greenhouse with a photoperiod of 16 h (with incandescent bulbs), temperature of 26 ± 2 °C, and relative humidity of 70%. The seedlings were watered with modified half-strength Hoagland solution for 90 d under greenhouse conditions (Hoagland and Arnon, 1950). After the 90-d establishment period, four different levels of NaCl (0, 30, 60, or 90 mM) were applied to citrus rootstock plants along with half-strength Hoagland solution in the irrigation solution for another 90 d. The seedlings were adjusted to their final NaCl concentration by gradually increasing the salt concentration by 30 mM every 2 d to avoid osmotic shock. The control treatment (0 mM) received only half-strength Hoagland solution. After the 90-d treatment period, samples of leaves, shoots, and roots were collected for the determination of morphophysiologial and biochemical attributes. There were five replicates (an experimental unit was one plant in one pot) per treatment-by-cultivar combination. For each parameter listed subsequently, five replicates were used (i.e., samples were collected from each experimental unit).

Determination of shoot/root biomass and leaf thickness

For estimation of shoot/root biomass, the plants were harvested carefully from the pots and washed with distilled water. The fresh weights of the roots and shoots were recorded, and the samples were placed in an oven at 70 °C to determine the dry weight. Leaf thickness was measured with laser-illuminated light microscope (Eclipse Ni-E; Nikon, Tokyo, Japan) by using an ocular micrometer (MeCan, Saitama, Japan), whereas the leaf was viewed on a computer monitor through the use of EFD-3 software (Shenzhen Eternal Science, Beijing, China).

Determination of number of stomata, epidermal cells, and stomatal size

The number of stomata and epidermal cells was counted by separating a very thin abaxial layer (2 × 3 mm) from a sample leaf epidermis. This dry layer was carefully separated and placed on the stage of microscope (Eclipse Ni-E with Optiphot-2 eyepiece; Nikon). A drop of water was applied to the dry layer, covered with a microscope slide, and stomata were viewed on a monitor using EFD-3 software. The number of stomata and epidermal cells was counted at a magnification of 40 × 10 (1 mm2 had ≈20–25 stomata per slide) (Almansa et al., 2002). The length and width of stomata and epidermal cells were measured in microns with the microscope (Moya et al., 2003).

Determination of photosynthesis, stomatal conductance, transpiration rate, and water use efficiency

The photosynthetic rate (P_n), transpiration (E), and g_s were measured from the second most recently mature healthy young leaf from each plant using a portable infrared gas analyzer (LCA-4 ADC; Analytical Development Co., Hoddesdon, U.K.). All measurements were made during the day between 1000 and 1200 h with a molar flow of air per unit leaf area of 403.3 mmol·m$^{-2}$·s$^{-1}$, an atmospheric pressure 99.9 kPa, a water vapor pressure in the chamber between 0.60 and 0.89 kPa, a maximum photosynthetic active radiation at the leaf surface.
Table 1. Correlations among plant dry weight (DW), photosynthesis rate (P_n), stomatal conductance (g_s), transpiration rate (E), number of stomata (NS), stomatal size (SS), water use efficiency (WUE), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), leaf sodium content, and leaf chloride content of four citrus rootstocks grow under salt stress.

	DW	P_n	g_s	E	NS	SS	WUE	SOD	POD	CAT	Leaf Na	Leaf Cl
DW	1	0.93	0.87	0.76	0.82	0.67	0.9	0.71	0.63	0.79	-0.91	-0.89
P_n		1	0.84	0.75	0.93	0.81	0.95	0.56	0.63	0.48	-0.87	-0.76
g_s			1	0.49	0.74	0.67	0.54	0.43	0.38	0.29	-0.77	-0.84
E				1	0.84	0.76	0.86	0.55	0.45	0.31	-0.95	-0.91
NS					1	0.23	0.68	0.38	0.44	0.29	-0.68	-0.73
SS						1	0.64	0.38	0.33	0.29	-0.71	-0.66
WUE							1	0.26	0.33	0.33	0.59	0.94
SOD								1	0.59	0.63	0.91	0.91
POD									1	0.25	0.84	
CAT										1	0.76	
Leaf Na											1	
Leaf Cl												

Na = sodium; Cl = chloride.
of 1711 μmol·m⁻²·s⁻¹, a leaf temperature between 28.4 and 32.4 °C, an ambient temperature between 22.4 and 27.9 °C, and an ambient CO₂ concentration of 352 μmol·mol⁻¹. The water use efficiency (WUE) was calculated using the formula: WUE = Pn/E.

Determination of enzyme activity

Nitrate reductase. The nitrate reductase activity (NRA) was determined following the protocol of Sym (1984). Briefly, fresh, chopped leaves (0.5 g) were added to test tubes containing phosphate buffer (pH 7.0), 0.5 mL of 0.02 M KNO₃, 0.5 mL of sulphanilamide, and 0.5 mL of N-(1-naphthyl)-ethylene diamine dihydrochloride and then centrifuged for 5 min at 1500 g. The absorbance at 542 nm was measured using a set of NaNO₂ standards. The activity was calculated and expressed as the amount (in micromoles) of NO₂ released per gram of fresh weight per hour.

Nitrite reductase. The nitrite reductase activity (NiRA) was calculated by the method of Ramarao et al. (1983). Fresh leaves were chopped, and 0.5 g was added to a 25-mL test tube wrapped with aluminium foil and containing 4.5 mL of phosphate buffer (pH 5.0) and 0.5 mL of NaNO₂ (0.02 M). One milliliter of extract, 0.5 mL of 1% sulphanilamide, and 0.5 mL of 0.02% aqueous solution of N-(1-naphthyl)-ethylene diamine dihydrochloride were added to the tubes and allowed to stand for 20 min for color development. The optical density was measured at 540 nm with a spectrophotometer, and a standard curve was developed with NaNO₂. The activity was calculated and expressed as the amount (in micromoles) of NO₂ released per gram of fresh weight per hour.

Estimating antioxidant enzyme activity, fresh leaves (0.5 g) were ground in an ice-cooled tissue grinder in 5 mL of 50 mM cooled phosphate buffer (pH 7.8). The homogeneous mixture was centrifuged at 1500 g for 20 min at 4 °C. The supernatant was used to determine the activities of the following enzymes.

Superoxide dismutase. The activity of SOD was analyzed according to the protocol of Giannopolitis and Ries (1977) by calculating its potential to hinder the photoreduction of nitroblue tetrazolium (NBT). The reaction solution (3 mL) contained 50 mM NBT, 1.3 mM riboflavin, 13 mM methionine, 75 mM (ethylene diaminetetraacetic acid) EDTA, 50 mM phosphate buffer (pH 7.8), and 20 mL of enzyme extract. The absorbance of the solution was measured at 560 nm using a spectrophotometer (model 650; Hitachi, Tokyo, Japan). One unit of SOD activity was defined as the amount of enzyme that restricted 50% of the NBT photo decline.

Catalase and peroxidase. The CAT and POD activities were measured by the procedure of Chance and Maehly (1955) with some alterations. The CAT reaction solution (3 mL) comprised 50 mM phosphate buffer (pH 7.0), 5.9 mM H₂O₂, and 0.1 mL of enzyme extract. The changes in absorbance of the reaction solution were recorded every 20 s at 240 nm. One unit of CAT activity was defined as an absorbance change of 0.01 units per min. The POD reaction solution (3 mL) comprised 50 mM phosphate buffer (pH 5.0), 20 mM guaiacol, 40 mM H₂O₂, and 0.1 mL of enzyme extract. Changes in the absorbance of the reaction solution were measured every 20 s at 470 nm. One unit of POD activity was defined as an absorbance change of 0.01 units per min. The activity of each enzyme was expressed on the basis of protein content.

Fig. 2. Effect of salt stress (0, 30, 60, or 90 mM NaCl applied in the irrigation water) on leaf attributes of two salt-tolerant (T) and two salt-sensitive (S) cultivated citrus rootstocks: number of stomata (A), stomatal size (B), number of epidermal cells (C), and leaf thickness (D). Each value represents the mean of five replicates ± SE. Two-way analysis of variance for the interaction of cultivar × treatment and main effects of cultivar and treatment were significant at P < 0.05. Letters within a cultivar represent mean separation comparison using Tukey’s honestly significant difference (HSD) test (C. citrange = Carrizo citrange, S. citrumello = Sanchton citrumello).
Na⁺, K⁺, Ca²⁺, and Mg²⁺ Determination. Dried, ground plant material (0.5 g) from roots, shoots, and leaves was digested with concentrated sulphuric acid (5 mL) and H₂O₂ (35%, 0.5 mL per digestion tube) as described by Wolf (1990). The digested samples were then analyzed for Na⁺ and K⁺ by a flame photometer (Jenway PFP-7; Keison Products, Chelmsford, U.K.). A graded series of standards (ranging from 10 to 100 mg·L⁻¹) of Na⁺ and K⁺ was prepared, and standard curves were calculated. The values of Na⁺ and K⁺ from the flame photometer were compared with the standard curves, and the original quantities were computed. Ca²⁺ and Mg²⁺ were determined titrimetrically using an EDTA solution (0.01 N) as a standard solution and eriochrome black T and calcon as indicators as described by Bower and Hatcher (1962).

Chloride. To prepare extracts containing chloride, ground material (1 g) was heated with 20 mL of distilled water in 20-mL test tubes, which were placed in an oven at 65 °C overnight. Chloride extracts were filtered using Whatman-40 filter paper, and the chloride concentration was determined using a chloride analyser (Model 920; Corning, Achem, Germany).

Statistical analysis

The experimental units were arranged in the greenhouse according to a randomized complete design. All statistical analyses were conducted using Statistix (Version 8.1; Analytical Software, Spotfire, Greece). For all measured parameters, a two-way analysis of variance was conducted to determine the significant main effects of cultivar and salt treatment as well as their interaction (cultivar-by-salt treatment). For a given measured parameter, and within each cultivar, significant salt treatment responses were assessed using the Tukey’s honestly significant difference test. Finally, the correlation coefficients
measuring the degree of linear relationship between two given
variables were calculated for several parameters (plant dry
weight, P_n, g_S, E, number of stomata, stomatal size, WUE,
SOD, POD, CAT, leaf Na^+, and leaf Cl^-) using Pearson product-
moment correlation coefficients. Table 1 was prepared using
the data from all four cultivars.

Results

EFFECT OF NaCl STRESS ON PLANT BIOMASS. Salinity caused
a significant ($P < 0.05$) reduction in root and shoot fresh and dry
biomass, but this effect was more pronounced in the salt-
sensitive plants, Carrizo citrange and Sanchton citrumello (Fig. 1).
Significant reductions in the mean percentage over
the control of 4%, 12%, 18%, and 43% were recorded for root
fresh weight; 9%, 15%, 16%, and 9% for root dry weight; 3%,
4%, 21%, and 42% for shoot fresh weight; and 10%, 14%, 25%,
and 24% for shoot dry weight for Rangpur lime, Rubidoux,
Carrizo citrange, and Sanchton citrumello, respectively. Salt
stress significantly reduced ($P < 0.05$) root and shoot lengths,
but the largest percentage reductions were observed in the salt-
sensitive cultivars, Carrizo citrange (37% root and 26% shoot)
and Sanchton citrumello (49% root and 24% shoot). Likewise,
the sensitive cultivars exhibited a reduction in leaf thickness,
but there was a smaller percentage reduction in the tolerant
cultivars, especially Rangpur lime (Fig. 2).

EFFECT OF SALT STRESS ON PHYSIOLOGICAL ATTRIBUTES. The
number of stomata and epidermal cells generally declined with
an increase in NaCl stress (Fig. 2). Tolerant rootstocks
exhibited a smaller percentage reduction (10% to 21%) with
respect to the number of stomata than did sensitive cultivars
(33% to 39% reduction compared with control plants). With
respect to the number of epidermal cells, tolerant cultivars
exhibited a smaller reduction (18%) than did sensitive cultivars
(50%). Similarly, a considerable decrease in stomatal size was
observed with an elevation in NaCl stress, but the tolerant
cultivars were less adversely affected (22% to 24% reduction)
compared with the salt-sensitive rootstocks (52% to 58%
reduction).

The control plants (0 mM NaCl) of the four cultivars
exhibited similar photosynthetic activities. However, under
increasing salt stress, P_n was more severely impaired in the
salt-sensitive cultivars (46% to 54% decrease over the control)
compared with the salt-tolerant cultivars (27% to 30% decrease
over the control) (Fig. 3). Stomatal conductance was higher in
the leaves of the salt-resistant rootstocks exposed to 90 mM
NaCl (7% to 8% reduction compared with the control), whereas
the leaves of the salt-sensitive cultivars exhibited a greater
percentage reduction at 90 mM (41% to 42% compared with the
control). The plants exposed to NaCl had a greater variation in
transpiration rate compared with those grown under non-
stressed conditions. The stressed plants of Rubidoux main-
tained a relatively high transpiration rate at 90 mM NaCl
compared with 0 mM NaCl (11% reduction), whereas Carrizo
citrange exhibited the greatest percentage reduction in transpi-
ration [53% (Fig. 3)]. The plants exposed to NaCl exhibited
a greater WUE than the plants grown under non-saline
conditions. It was observed that the stress-tolerant cultivars
had a greater WUE than did salt-sensitive cultivars (Fig. 3). A
strong correlation was observed between physiological attrib-
utes (P_n, g_S, number of stomata, stomatal size) and growth
(plant fresh and dry weights) (Table 1).

EFFECT OF SALT STRESS ON ENZYMATIC ACTIVITIES. NRA and
NiRA decreased as the NaCl concentration increased (Fig. 3).
However, a higher leaf NRA and NiRA significantly
differentiated the salt-tolerant rootstocks from salt-sensitive
rootstocks. When comparing the plants treated with 90 mM
NaCl with the control plants, the tolerant cultivars had lower
percentage decreases in NRA (5% to 19%) and NiRA (2% to
5%), whereas the sensitive cultivars exhibited greater per-
centage decreases in NRA (23% to 33%) and NiRA (21% to
23%). Salinity also increased antioxidant activity (SOD,
POD, and CAT), but sensitive rootstocks were less affected
(Fig. 4). It is clear that the SOD, POD, and CAT activities
were highest in the plants exposed to 90 mM NaCl stress
compared with the control plants. The greatest percentage

J. AMER. SOC. HORT. SCI. 137(2):86–95. 2012. 91
increase (at 90 mM vs. control) was found for the tolerant rootstocks (31% to 64% increase), whereas for the sensitive rootstocks, the percentage increase was only 5% to 13%. A strong correlation was found between antioxidant activities and growth attributes (Table 1).

Effect of salt stress on ion content. Leaf Na⁺ and Cl⁻ concentrations were significantly elevated with increased NaCl concentrations (Fig. 5). With respect to the leaves, compared with the control treatments, the salt-tolerant cultivars exhibited a percentage increase of 60% to 156% for Na⁺ and 12% to 33% for Cl⁻, whereas the salt-sensitive cultivars exhibited a percentage increase of 204% to 567% for Na⁺ and 150% to 534% for chloride Cl⁻. Shoot Na⁺ and Cl⁻ concentrations exhibited a pattern similar to that found in the leaves (Fig. 5). However, in roots, the salt-tolerant rootstocks exhibited a larger percentage increase in Na⁺ (154% to 592%) and Cl⁻ (99% to 258%) compared with the control, whereas the salt-sensitive cultivars exhibited a smaller percentage increase in Na⁺ (21% to 134%) and Cl⁻ (20% to 58%) (Fig. 5). Overall, it was observed that the salt-tolerant cultivars showed a maximum concentration of Na⁺ and Cl⁻ in the roots, whereas the salt-sensitive cultivars showed a maximum concentration of Na⁺ and Cl⁻ in their leaves followed by in their shoots. Salinity caused a significant (P < 0.05) reduction in root, shoot, and leaf K⁺, Ca²⁺, and Mg²⁺ in each of the four genotypes tested (Fig. 6). Rangpur lime and Rubidoux exposed to 90 mM had greater concentrations of K⁺, Ca²⁺, and Mg²⁺ in their leaves and shoots than did salt-stressed Carrizo citrange and Sanchton citrumello. Salt-tolerant and salt-sensitive cultivars exhibited a specific pattern in the roots different from that found in the leaves and shoots. Overall, compared with the sensitive rootstocks, tolerant rootstocks exhibited a smaller reduction in leaf and root K⁺, Ca²⁺,
and Mg$^{2+}$ concentrations in response to an increased salt concentration.

Discussion

In this study, the reductions in growth attributes could have been the result of a decline in the water potential ψ_w in response to salt stress, which could reduce cell elongation and cell division. The results regarding growth attributes and plant biomass reported in the current study are in accordance with the findings of Ashraf and Ahmad (2000) and Ltaief et al. (2007). In the present investigation, salt stress induced a significant reduction in various physiological attributes such as the number of stomata, the number of epidermal cells, P_n, g_S, and E. The decline in these physiological traits may be associated with the combined effect of different factors, i.e., a reduction in the leaf calcium and potassium contents and a reduction in the number and size of stomata. The reduction in stomatal size in this study may be the result of a reduced turgidity in the guard cells attributable to a lower availability of cations such as Ca$^+$ and K$^+$ that regulate stomatal opening and closing (Iljin, 1957). The mechanisms of how salt stress affects the number of stomata and epidermal cells have not been reported in the literature but may relate to the degree to which water stress limits cell division during organ development. However, there are similar reports that have found a reduction in the number of stomata and epidermal cells under stressed conditions (Hwang and Chen, 1995; Martins and Castro, 1999). Photosynthetic activity is directly dependent on gas exchange through the stomata, and any disturbances in the stomata have a negative effect on P_n. In our investigation, salt stress negatively affected the Ca$^{2+}$ and K$^+$ content, stomatal number, and stomatal size; therefore, the decrease in the photosynthetic parameters (P_n, g_S, and E) may have been the result of these factors. Accordingly, the Ca$^{2+}$ and K$^+$ content, stomatal number, and stomatal size were less adversely affected in the tolerant rootstock cultivars, which may have resulted in more efficient P_n, g_S, and E, consequently leading to better growth and development than the salt-sensitive cultivars. The results regarding WUE are in accordance with those of Grewal (2010) and Hessini et al. (2009). A strong correlation was observed between P_n and WUE as indicated in Table 1.

With regard to NRA, we found that the tolerant cultivars were less affected by increases in NaCl compared with the sensitive cultivars. Similarly, Khan et al. (1990) have also observed that NRA is more prominently reduced in susceptible *Sorghum bicolor* cultivars than in tolerant cultivars under saline conditions. Very little information is available on the response of NiRA to salinity; however, it has been reported that...
a reduction in NiRA may be the result of lower substrate (NO₂⁻) availability. Because NO₂⁻ is a product of NRA activity, a decrease in NRA activity could reduce NiRA as well.

In the current study, salt stress increased the enzyme activities of SOS, POD, and CAT in all genotypes, but the most substantial increases were found in the salt-tolerant rootstocks (Fig. 4). The high antioxidant activities in the tolerant rootstocks could be considered a major reason for better performance under saline conditions. The higher antioxidant activity would decrease lipid peroxidation as a result of ROS. The resultant greater membrane integrity would enhance the efficiency of photosynthesis and dry matter formation. The findings of the present study are in agreement with those of Heidari (2010). A strong correlation was noted between antioxidant enzymes and plant dry matter (shoot and leaves) (Table 1).

High concentrations of Na⁺ and Cl⁻ in the roots of salt-tolerant cultivars (Fig. 5) may be the result of a more selective transport of ions to upper plant parts; this could also be an adaptation to salt tolerance. Sensitive cultivars failed to restrict the transport of excessive Na⁺ in their roots to the shoots and leaves. It has been previously reported that the tolerance of citrus rootstocks to salinity is associated with the ability to restrict, or at least reduce, the supply of Na⁺ and Cl⁻ ions to the shoots (Arbona et al., 2006; Moya et al., 2003), and the present study is consistent with that finding. Overall, the Na⁺ and Cl⁻ content in the leaves showed a strong negative correlation with Pn; therefore, the cultivars with less Na⁺ in their leaves maintained a high Pn and more dry matter (Table 1). The reduction in beneficial ions such as Ca²⁺, K⁺, and Mg²⁺ may be the result of the antagonistic effect of Na⁺ with these ions, especially Ca²⁺ and K⁺, which has been reported by others (Hu and Schmidhalter, 2005; Levy and Syvertsen, 2004; Neto and Tabosa, 2000). This major difference in ion accumulation could be a primary reason for differentiating salt-tolerant rootstocks from salt-sensitive ones.

In summary, we found that salt stress limits rootstock growth by disturbing various morphological, physiological, and biochemical mechanisms within plant tissues. In particular, the concentration of inorganic osmolytes (Ca²⁺, K⁺, and Mg²⁺) and antioxidant activities (SOD, POD, and CAT) are highly associated with the salt tolerance of citrus rootstocks. The roots of tolerant rootstocks appear to restrict the transport of ions (Na⁺ and Cl⁻) to shoots and leaves. These divergent patterns of antioxidant enzyme activity and ion accumulation may be useful as early indicators of salt tolerance for screening rootstock responses to high NaCl.

Literature Cited

Almansa, S.M., J.A. Hernandez, A. Jimenez, M.A. Botella, and F. Sevilla. 2002. Effect of salt stress on superoxide dismutase activity in leaves of *Citrus limonum* in different rootstock–scion combinations. Biol. Plant. 45:545–549.

Arbona, V., A.J. Macro, D.J. Iglesias, M.F. Lopez-Clements, M. Talon, and A. Gomez-Cadness. 2006. Carbohydrate depletion in roots and leaves of salt-affected potted *Citrus clementina* L. Plant Growth Regulat. 46:153–160.

Ashraf, M. and S. Ahmad. 2000. Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (*Gossypium hirsutum* L.). Field Crops Res. 66:115–127.

Bower, C.A. and J.T. Hatcher. 1962. Characterization of salt-affected soils with respect to sodium. Soil Sci. 93:275–280.

Camara-Zapata, J.M., F. Garcia-Sanchez, V. Martinez, M. Nieves, and A. Cerda. 2004. Effect of NaCl on citrus cultivars. Agronomie 24:155–160.

Chance, M. and A.C. Maehly. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764–817.

Garcia-Sanchez, F. and J.P. Syvertsen. 2000. Salinity tolerance of Cleopatra mandarin and Carrioz citrange citrus rootstock seedling is affected by CO₂ enrichment during growth. J. Amer. Soc. Hort. Sci. 131:24–31.

Garcia-Sanchez, F., J.P. Syvertsen, V. Martinez, and J.C. Melgar. 2006. Salinity tolerance of ‘Valencia’ orange trees on rootstocks with contrasting salt tolerance is not improved by moderate shade. J. Expt. Bot. 57:3697–3706.

Garcia-Sanchez, M.R., P. Bernet, J. Puchades, E.A. Gomez, and M.J. Asins. 2002a. Evaluation of salt tolerance of five citrus rootstocks using screening technique. Aust. J. Agr. Res. 53:653–662.

Garcia-Sanchez, F., J. Jifón, M. Carvajal, and J.P. Syvertsen. 2002b. Gas exchange, chlorophyll and nutrient contents in relation to Na⁺ and Cl⁻ accumulation in ‘Sunburst’ mandarin grafted on different rootstocks. Plant Sci. 162:705–712.

Giannopolitis, C.N. and S.K. Ries. 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59:309–314.

Gorai, M., M. Ennajeh, H. Khemira, and M. Nefati. 2010. Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in *Phragmites australis* plants. Flora 205:462–470.

Grewal, H.S. 2010. Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertisol with variable subsoil NaCl salinity. Agr. Water Mgt. 97:148–156.

Hayat, S., S.A. Hasan, M. Yusuf, Q. Hayat, and A. Ahmad. 2010. Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in *Vigna radiata*. Environ. Exp. Bot. 69:105–112.

Heidari, M. 2010. Nucleic acid metabolism, proline concentration and antioxidative enzyme activity in canola (*Brassica napus* L.) under salinity stress. Agr. Sci. China 9:504–511.

Hernandez, J.A., A. Campillo, A. Jimenez, J.J. Alancon, and F. Sevilla. 1999. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol. 141:241–251.

Hessini, K., J.B. Martinez, M. Gandour, A. Albouchi, A. Soltani, and C. Abdelli. 2009. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in *Spinatula alterniflora*. Environ. Exp. Bot. 67:312–319.

Hoagland, D.R. and D.J. Arnon. 1950. The water culture method for growing plants without soil. California Agr. Expt. Sta. Circ. 347.

Hu, Y. and V. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168:541–549.

Hwang, Y.H. and S.C. Chen. 1995. Anatomical responses in *Kandelia candel* (L.) druce seedlings growing in the presence of different concentrations of NaCl. Bot. Bull. Acad. Sin. 36:181–188.

Iljin, W.S. 1957. Drought resistance in plants and physiological processes. Annu. Rev. Plant Physiol. 8:257–274.

Khan, A.H., M.Y. Ashraf, and A.R. Azmi. 1990. Effect of NaCl on growth and nitrogen metabolism of sorghum. Acta Physiol. Plant. 12:233–238.

Levy, Y. and J.P. Syvertsen. 2004. Irrigation water quality and salinity effects in citrus trees. Hort. Rev. 30:37–82.

Ltaief, B., B. Sifi, M. Zaman-Allah, J. Drevon, and M. Lachaal. 2007. Effects in citrus trees. Hort. Rev. 30:37–82.

Ltuief, B., B. Sifi, M. Zaman-Allah, J. Drevon, and M. Lachaal. 2007. Effects on root–nodule conductance to the oxygen diffusion in the *Cicer arietinum*–*Mesorhizobium ciceri* symbiosis. J. Plant Physiol. 164:1028–1036.

Martins, M.B.G. and P.R.C. Castro. 1999. Growth regulators and tomato leaf anatomy (*Lycopersicon esculentum* Mill.) cv. Angela Gigante. Scientia Agricola 56:693–703.

McCord, J.M. 2000. The evolution of free radicals and oxidative stress. Amer. J. Med. 108:652–659.
McCue, A.M. and A.D. Hanson. 1990. Drought and salt tolerance: Toward understanding and application. Trends Biotechnol. 8:358–362.

Moya, J.L., A. Gomez-Cadenas, E. Primo-Millo, and M. Talon. 2003. Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J. Expt. Bot. 54:825–833.

Munns, R. and R.A. James. 2003. Screening methods for salt tolerance: A case study with tetraploid wheat. Plant Soil 253:201–218.

Neto, A.A.D. and J.N. Tabosa. 2000. Salt stress in maize seedlings: II. Distribution of cationic macronutrients and its relation with sodium. Revista Brasileira de Engenharia Agrícola e Ambiental 4:165–171.

Noreen, Z. and M. Ashraf. 2009. Assessment of variation in antioxidative defense system in salt treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J. Plant Physiol. 166:1764–1774.

Rachmilevitch, S., A.B. Cousins, and A.J. Bloom. 2004. Nitrate assimilation in plants shoots depends on photorespiration. Proc. Natl. Acad. Sci. USA 101:11506–11510.

Ramarao, C.S., V.H. Patil, B.D. Dhak, and S.B. Kadrekar. 1983. A simple in vivo method for the determination of nitrite reductase activity in rice roots. Zentrum Pflanzen Physiological 109:81–85.

Raveh, E. and Y. Levy. 2005. Analysis of xylem water as an indicator of current chloride uptake status in citrus trees. Sci. Hort. 103:317–327.

Romero-Aranda, R., J.L. Moya, F.R. Tadeo, F. Legaz, and E. Primo-Millo. 1998. Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: Beneficial and detrimental effects of cations. Plant Cell Environ. 21:1243–1253.

Sairam, R.K., G.C. Srivastava, S. Agarwal, and R.C. Meena. 2005. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 49:85–91.

Sym, G.J. 1984. Optimization of the in vivo assay conditions for nitrate reductase in barley (Hordeum vulgare L. cv. irgri). J. Food Sci. Agr. 35:725–730.

Waqar, A., M.A. Nawaz, M.A. Iqbal, and M.M. Khan. 2007. Effect of different rootstocks on plant nutrient status and yield in Kinnow mandarin (Citrus reticulata Blanco). Pak. J. Bot. 39:1779–1786.

Wolf, B. 1990. A comparative system of leaf analysis and its use for diagnosing nutrient status. Commun. Soil Sci. Plant Anal. 13:1053–1059.

Zekri, M. 2004. Strategies to manage salinity problem in citrus. Proc. Intl. Soc. Citiculture 2:639–643.