Corrigendum: Phytoplasmas—The “Crouching Tiger” Threat of Australian Plant Pathology

Jian Liu1,2,3, David Gopurenko3,4, Murray J. Fletcher3, Anne C. Johnson3 and Geoff M. Gurr1,2,3*

1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China, 2 Institute of Applied Ecology, Fujian Agriculture & Forestry University, Fuzhou, China, 3 Institute of Applied Ecology, Fujian Agriculture & Forestry University, Fuzhou, China, * Correspondence: Geoff M. Gurr gurr@csu.edu.au

Open Access

Edited and reviewed by: Brigitte Mauch-Mani, University of Neuchâtel, Switzerland

*Correspondence: Geoff M. Gurr gurr@csu.edu.au

Specialty section: This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

Received: 21 June 2018 Accepted: 17 August 2018 Published: 26 October 2018

Citation: Liu J, Gopurenko D, Fletcher M. J., Johnson A. C., & Gurr, G. M. (2017). Front. Plant Sci. 8:599. doi: 10.3389/fpls.2017.00599

In the original article, information for phytoplasmas in Table 1 did not fully reflect recent changes in taxonomy, or showed changes only as footnotes. Corrections have been made in the sections below and in Table 1.

Abstract
Phytoplasmas are insect-vectored bacteria that cause disease in a wide range of plant species. The increasing availability of molecular DNA analyses, expertise, and additional methods in recent years has led to a proliferation of discoveries of phytoplasma-plant host associations and in the numbers of taxonomic groupings for phytoplasmas. The widespread use of common names based on the diseases with which they are associated, as well as separate phenetic and taxonomic systems for classifying phytoplasmas based on variation at the 16S rRNA-encoding gene, complicates interpretation of the literature. We explore this issue and related trends through a focus on Australian pathosystems, providing the first comprehensive compilation of information for this continent, covering the phytoplasmas, host plants, vectors, and diseases. Of the 33 16Sr groups currently defined, only groups II, XI, XII, XXIII, XXV, and XXXIII have been recorded in Australia and this highlights the need for ongoing biosecurity measures to prevent the introduction of additional pathogen groups. Many of the phytoplasmas reported in Australia have not been sufficiently well-studied to assign them to 16Sr groups so it is likely that unrecognized groups and sub-groups are present. Wide host plant ranges are apparent among well studied phytoplasmas, with multiple crop and non-crop species infected by some. Disease management is further complicated by the fact that putative vectors have been identified for few phytoplasmas, especially in Australia. Despite rapid progress in recent years using molecular approaches, phytoplasmas remain the least well-studied group of plant pathogens, making them a “crouching tiger” disease threat.

Issue 2: Complex taxonomic nomenclature, paragraphs 2 and 3
Second, as molecular methods became available, workers were able to group and phenetically classify phytoplasmas using restricted fragment length polymorphism (RFLP) analysis of a PCR amplified portion of the 16S rRNA gene with a defined set of restriction enzymes (Lee et al., 1998). The RFLP profiles generated for different phytoplasmas are generally consistent with sequence-based phylogenetic analyses of the 16S rRNA gene, particularly in the co-identification and grouping of related strains. The 33 16Sr groups currently defined each have a similarity of less
16Sr group	"Candidatus Phytoplasma" name	Phytoplasma trivial name	Host plant species	Potential vectors	Location*	References*
II	australasiae³	Australian lucerne yellows	Medicago sativa, Carica papaya	Orobus argentatus, Austroagallia torriss, Orosius spp., Batracomorphus sp.	South Australia, New South Wales, Northern Territory	Padovan and Gibb, 2001¹; Pilkington et al., 2003²; Yang et al., 2013
II	Bonamia pannosa little leaf	Bonamia pannosa			Northern Territory	Schneider et al., 1999; Padovan and Gibb, 2001
II	Cactus witches’ broom	Carica papaya			Northern Territory	Padovan and Gibb, 2001
II	Cocky apple witches’ broom	Pterochonia careya			Queensland	Davis et al., 2001
II	Waltheria little leaf	Mitracarpus hirtus, Saccharum sp., Spermacoce sp., Waltheria indica, Carica papaya			Northern Territory	Schneider et al., 1999; Tran-Nguyen et al., 2000; Padovan and Gibb, 2001; Wilson et al., 2001
II	australasiae	Tomato big bud	Achyrathes aspera, Aeschynomene spp., Alysicarpus rugosus, Ameranthus sp., Apium graveolens, Arachis spp., Boerhaavia sp., Brugmansia x candida, Capsicum annum, Carica papaya, Catharanthus roseus, Cajanus cajan, Citrus paradisi, Croton coccoides, Crotalaria spp., Cenchrus ciliaris, Cichorium intybus, Cleome viscosa, Cucurbita maxima, Cynodon dactylon, Daucus carota, Eclipsia sonchifolia, Eragrostis tefzita, Eriachne obtusa, Euphorbia mili, Evolvulus sp., Gerbera sp., Goodenia sp., Guizotia abyssinica, Ipomoea spp., Lactuca sativa, Lycopersicon esculentum, Macroplium spp., Medicago sativa, Mucuna pruriens, Passiflora sp., Phlox sp., Psyllalis minima, Potobulus divsana, Rychnchosia minima, Saccharum sp., Sarcocinus hartmanii × S. falcatum, Sesamum indicum, Sida cordifolia, Lycopersicon esculentum, Solarium melongena, Stylosanthes scabra, Trifolium repens, Vigna spp., Vite vinifera, Zinnia elegans	Austroagallia torriss	Northern Territory, New South Wales, Queensland, Western Australia, Victoria	Gibb et al., 1995; Davis et al., 1997b; Gowanlock et al., 1998; De La Rue et al., 1999; Tran-Nguyen et al., 2000, 2003; Wilson et al., 2001; Pilkington et al., 2004; Streten and Gibb, 2006
II	aurantifolia	Chickpea little leaf	Cicer arietinum		Western Australia	Saqib et al., 2005
II	australasiae	Papaya yellow crinkle	Carica papaya		Queensland	Gibb et al., 1996; White et al., 1998
II	australasiae	Papaya mosaic	Carica papaya		Queensland	Gibb et al., 1996; White et al., 1998
II	Tree medic witches’ broom	Medicago arborea			South Australia	Yang et al., 2013
TABLE 1 | Continued

16Sr group	“Candidatus Phytoplasma” name	Host plant species	Potential vectors	Location	References
II	Pigeon pea phyloidy	Cajanus cajan		South Australia	Yang et al., 2013
II	Pigeon pea little leaf	Arachis spp., Crotalaria sp., Desmodium triflorum, Indigofera sp., Macroptilium bracteatum, Petroselinum sp., Sesuvium portulacastrum, Stylosanthes spp., Vigna radiata		Northern Territory, Queensland, Torres Strait	Schneider et al., 1999; De La Rue et al., 2001; Padovan and Gibb, 2001; Wilson et al., 2001; Davis et al., 2003; Streten and Gibb, 2006
II-D	australasiae	Pale purple coneflower witches’ broom		Tasmania	Peace et al., 2011
XI-B	Cynodon white leaf	Cynodon dactylon, Dactyloctenium aegyptium		Northern Territory, Western Australia	Schneider et al., 1999; Tran-Nguyen et al., 2000; Blanche et al., 2003
XI-B	Sorghum grassy shoot	Dactyloctenium spp., Sorghum stipoideum, Whiteochloa spp., Chloris inflata, Whiteochloa cymbiformis		Western Australia, Northern Territory	Tran-Nguyen et al., 2000; Blanche et al., 2003
XII	Australian lucerne yellows	Medicago sativa		New South Wales	Getachew et al., 2007
XII	Papaya dieback	Carica papaya		Queensland	Gibb et al., 1996; White et al., 1998
XII-B	australiense	Pumpkin yellow leaf curl	Cucurbita maxima, C. moschata	Queensland, Western Australia, Northern Territory	Streten et al., 2005
XII-B	australiense	Cenchrus bunchy shoot	Cenchrus setiger	Western Australia	Tran-Nguyen et al., 2000
XII-B	australiense	Strawberry green petal disease	Fragaria x ananassa	Queensland	Padovan et al., 2000
XII-B	australiense	Strawberry lethal yellows	Fragaria x ananassa	Queensland	Padovan et al., 2000
XII-B	australiense	Australian grapevine yellows	Vitis vinifera, Carica papaya	South Australia, Queensland	Davis et al., 1997a; Davis and Sinclair, 1998; Davis et al., 2003
XXIIIc		Buckland Valley grapevine yellows	Vitis vinifera	Victoria	Constable et al., 2003; Streten and Gibb, 2006; Zhao and Davis, 2016

(Continued)
TABLE 1 | Continued

16Sr group	“Candidatus Phytoplasma” name	Host plant species	Potential vectors	Location^\(\dagger\)	References*
XXV^1	Weeping tea tree witches’ broom	Melaleuca spp.		Queensland	Davis et al., 2003; Zhao and Davis, 2016
XXXIII	Allocasuarina yellows	Allocasaurina muelleriana		South Australia	Gibb et al., 2003; Zhao and Davis, 2016
	Poinsettia branching^b	Euphorbia pulcherrima			Schneider et al., 1999
	Galactia little leaf	Galactia tenuiflora		Northern Territory	Padovan and Gibb, 2001
	Sorghum bunchy shoot	Sorghum stipoidum			Tran-Nguyen et al., 2000
	Stylosanthes little leaf	Achis pintoi, Carica papaya, Saccharum sp., Sesuvium portulacastrum, Stylosanthes scabra, Orosius spp., Stylosanthes brachyophylla, Stylosanthes graminifolia	Austroagallia torrida, Orosius spp., Batracomorphus sp.	Northern Territory, Queensland, New South Wales	Schneider et al., 1999; Tran-Nguyen et al., 2000; De La Rue et al., 2001; Padovan and Gibb, 2001; Davis et al., 2003; Gopurenko et al., 2016
	Sugarcane white leaf	Saccharum sp.		Western Australia, Queensland	Tran-Nguyen et al., 2000
	Vigna little leaf	Vigna lanscillata, Carica papaya, Tridax procumbens	Austroagallia torrida, Batracomorphus sp.	Northern Australia	Schneider et al., 1999; De La Rue et al., 2001; Padovan and Gibb, 2001
	Mundulia yellows disease^c	Eucalyptus camaldulensis, E. barteri, E. leucophloea		South Australia	Harold et al., 2006
	Paulownia witches’ broom^g	Paulownia sp.		Western Australia	Bayliss et al., 2005

*Denotes reference for vector data.
^\(\dagger\) Location data are from the listed references but not every plant species was diseased in every location.
A new taxon, Ca. Phytoplasma australasiae was proposed (White et al., 1998) to include the phytoplasma associated with papaya yellow crinkle and papaya mosaic (as well as tomato big bud) but later revised to “Ca. australiasiae” (to include the papaya-associated phytoplasmas but not TBB; Firn et al., 2003). Davis and Sinclair (1998) moved the AGY phytoplasma from the 16SrI group into the stolbur group (16SrXII) and designated it subgroup B. Constable et al. (2003) reported a close relationship to 16Sr I. Zhao and Davis (2016) subsequently placed this into a new group: 16SrXXIII. Zhao and Davis (2016) placed this into this new group and potentially a new “Ca. Phytoplasma” species. This phytoplasma has not been found in economically important field crops. Tentative data only for a phytoplasma etiology. RFLP patterns showed high similarity to “Candidatus Phytoplasma australiasiae.”
than 85% compared with any representative phytoplasma from within an established 16Sr group (Zhao and Davis, 2016). Table 1 summarizes available information on the 16Sr groups reported in Australian studies. Of the 33 16Sr groups reported internationally, only groups II, XI, XII, XXIII, XXV, and XXXIII have been recorded in Australia and this highlights the need for ongoing biosecurity measures to prevent the introduction of additional pathogen groups.

Third, phytoplasmas are classified in the provisional genus “Candidatus Phytoplasma” (IRPCM, 2004). To date, there are 42 formally described species and ten potentially novel phytoplasma species (Davis et al., 2015). This number exceeds the current number of 16s rRNA groups because some of these groups contain several “Candidatus Phytoplasma” species. At least 100 subgroups are known (Dickinson and Hodgetts, 2013). According to Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group, a novel “Ca. Phytoplasma” species description should refer to a single, unique 16S rRNA gene sequence (>1,200 bp), and a strain can be recognized as a novel “Ca. Phytoplasma” species if its 16S rRNA gene sequence has <97.5% similarity to that of any previously described “Ca. Phytoplasma” species (Duduk and Bertaccini, 2011). Additional biological characters such as antibody specificity, host range and vector transmission specificity as well as genetic markers can also be used in an integrative taxonomy approach for species differentiation. Of the 42 recognized “Ca. Phytoplasma” species, only Ca. Phytoplasma aurantifolia, Ca. Phytoplasma australasiæ and Ca. Phytoplasma australiense are reported in Australia (Table 1) but uncertainty exists because many papers appear without Ca. Phytoplasma names which are used consistently only in the case of the GenBank database.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

REFERENCES
Bayliss, K. L., Saqib, M., Dell, B., Jones, M. G. K., and Hardy, G. E. S. J. (2005). First record of “Candidatus Phytoplasma australiense” in Paulownia trees. Australas. Plant Pathol. 34, 123–124. doi: 10.1071/APP04089
Blanche, K. R., Tran-Nguyen, L. T. T., and Gibb, K. S. (2003). Detection, identification and significance of phytoplasmas in grasses in northern Australia. Plant Pathol. 52, 505–512. doi: 10.1046/j.1365-3059.2003.00871.x
Constable, F. E., Whiting, J. R., Jones, J., Gibb, K. S., and Symons, R. H. (2003). The distribution of grapevine yellows disease associated with the buckland valley grapevine yellows phytoplasma. J. Phytopathol. 151, 65–73. doi: 10.1046/j.1439-0434.2003.00681.x
Davis, R., Dally, E. L., Gundersen, D. E., Lee, I. M., and Habili, N. (1997a). “Candidatus Phytoplasma australiense,” a New Phytoplasma Taxon Associated with Australian Grapevine Yellows. Int. J. Syst. Evol. Microbiol. 47, 262–269. doi: 10.1099/00207713-47-2-262
Davis, R. I., Henderson, J., Jones, L. M., McTaggart, A. R., O’Dwyer, C., Tsatsia, F., et al. (2015). First record of a wilt disease of banana plants associated with phytoplasmas in Solomon Islands. Australas. Plant Dis. Notes 10:14. doi: 10.1017/A96114
Davis, R., Schneider, B., and Gibb, K. (1997b). Detection and differentiation of phytoplasmas in Australia. Aust. J. Agric. Res. 48, 535–544. doi: 10.1071/AJ96114
Davis, R. E., and Sinclair, W. A. (1998). Phytoplasma identity and disease etiology. Phytopathology 88, 1372–1376. doi: 10.1094/PHYTO.1998.88.12.1372
Davis, R. I., Jacobson, S. C., Rue, S. J., Tran-Nguyen, L., Gunua, T. G., and Rahamma, S. (2003). Phytoplasma disease surveys in the extreme north of Queensland, Australia, and the island of New Guinea. Australas. Plant Pathol. 32, 269–277. doi: 10.1071/APP03020
Davis, R. I., Jacobson, S. C., Waldeck, G. J., De La Rue, S. J., and Gibb, K. S. (2001). A witches’ broom of cocky apple (Planchonia careya) in north Queensland. Australas. Plant Pathol. 30, 179–179. doi: 10.1071/AP0106
De La Rue, S., Padovan, A., and Gibb, K. (2001). Stylosanthes is a Host for Several Phytoplasmas, One of which Shows Unique 16S-23S Intergenic Spacer Region Heterogeneity. J. Phytopathol. 149, 613–619. doi: 10.1046/j.1439-0434.2001.00683.x
De La Rue, S. J., Schneider, B., and Gibb, K. S. (1999). Genetic variability in phytoplasmas associated with papaya yellow crinkle and papaya mosaic diseases in Queensland and the Northern Territory. Australas. Plant Pathol. 28, 108–114. doi: 10.1071/APP9019
Dickinson, M., and Hodgetts, J. (eds) (2013). Phytoplasma: Methods and Protocols, Dordrecht. Netherlands: Science+Business Media.
Duduk, B., and Bertaccini, A. (2011). Phytoplasma classification: taxonomy based on 16S rDNA gene, is it enough? Phytopathogenic Mollicutes 1, 3–13. doi: 10.5958/j.2249-4669.1.1.001
Firrao, G., Gibb, K., and Streten, C. (2005). Short taxonomic guide to the genus “Candidatus Phytoplasma.” J. Plant Pathol. 87, 249–263. doi: 10.4454/jpp.v87i4.926
Getachew, M. A., Mitchell, A., Gurr, G. M., Fletcher, M. J., Pilkington, L. J., and Nikandrow, A. (2007). First report of a “Candidatus phytoplasma australiense”-related strain in lucerne (Medicago sativa) in Australia. Plant Dis. 91, 111–111. doi: 10.1094/PD-91-0111A
Gibb, K., Padovan, A., and Mogen, B. (1995). Studies on sweet potato little-leaf phytoplasma detected in sweet potato and other plant species growing in Northern Australia. Phytopathology 85, 169–174. doi: 10.1094/Phyto-85-169
Gibb, K., Persley, D., Schneider, B., and Thomas, J. (1996). Phytoplasmas associated with papaya diseases in Australia. Plant Dis. 80, 174–178. doi: 10.1094/PD-80-0174
Gibb, K. S., Tran-Nguyen, L. T. T., and Randles, J. W. (2003). A new phytoplasma detected in the South Australian native perennial shrub, Allocasuarina muelleriana. Ann. Appl. Biol. 142, 357–364. doi: 10.1111/j.1744-7348.2003.tb00261.x
Gopurenko, D., Fletcher, M. J., Liu, J., and Gurr, G. M. (2016). Expanding and exploring the diversity of phytoplasmas from lucerne (Medicago sativa). Sci. Rep. 6:37746. doi: 10.1038/srep37746
Gowanlock, D. H., Ogle, H. J., and Gibb, K. S. (1998). Phytoplasma associated with virescence in an epiphytic orchid in Australia. Australas. Plant Pathol. 27, 265–268. doi: 10.1071/AP98031
Harold, D., Gowanlock, D., Stukely, M. J. C., Habili, N., and Randles, J. W. (2006). Mundubia Yellows disease of eucalyptic descriptors and preliminary studies on distribution and etiology. Australas. Plant Pathol. 35, 199–215. doi: 10.1071/APP06013
IRPCM (2004). “Candidatus Phytoplasma,” a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243–1255. doi: 10.1099/0.02854-0
Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I. M. (1998). Revised classification scheme of phytoplasmas based on RFLP Analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48, 1153–1169. doi: 10.1099/0207713-48–4-1153
Liu, B., White, D., Walsh, K., and Scott, P. (1996). Detection of phytoplasmas in dieback, yellow crinkle, and mosaic diseases of papaya using polymerase chain reaction techniques. Aust. J. Agric. Res. 47, 387–394. doi: 10.1071/AR960387
Padovan, A., Gibb, K., and Persley, D. (2000). Association of “Candidatus Phytoplasma australiense” with green petal and lethal yellows diseases.
Liu et al. Corrigendum: Phytoplasma Threats in strawberry. Plant Pathol. 49, 362–369. doi: 10.1046/j.1365-3059.2000.00461.x

Padovan, A. C., and Gibb, K. S. (2001). Epidemiology of phytoplasma diseases in papaya in Northern Australia. J. Phytopathol. 149, 649–658. doi: 10.1046/j.1439-0434.2001.00688.x

Pearce, T. L., Scott, J. B., and Pethybridge, S. J. (2011). First report of a 16SrI-D subgroup phytoplasma associated with pale purple coneflower Witches'-Broom disease in Australia. Plant Dis. 95, 773–773. doi: 10.1094/PDIS-03-11-0155

Pilkington, L. J., Gibb, K. S., Gurr, G. M., Fletcher, M. J., Nikandrow, A., Elliott, E., et al. (2003). Detection and identification of a phytoplasma from lucerne with Australian lucerne yellows disease. Plant Pathol. 52, 754–762. doi: 10.1111/j.1365-3059.2003.00934.x

Pilkington, L. J., Gurr, G. M., Fletcher, M. J., Nikandrow, A., and Elliott, E. (2004). Vector status of three leafhopper species for Australian lucerne yellows phytoplasma. Aust. J. Entomol. 43, 366–373. doi: 10.1111/j.1440-6055.2004.00419.x

Saqib, M., Bayliss, K. L., Hardf, G. E. S., and Jones, M. G. K. (2005). First record of a phytoplasma-associated disease of chick pea (Cicer arietinum) in Australia. Australas. Plant Pathol. 34, 425–426. doi: 10.1071/AP05047

Schneider, B., and Gibb, K. S. (1997). Detection of phytoplasmas in declining pears in Southern Australia. Plant Dis. 81, 254–258. doi: 10.1094/PDIS.1997.81.3.254

Schneider, B., Padovan, A., Rue, S., Eichner, R., Davis, R., Bernuetz, A., et al. (1999). Detection and differentiation of phytoplasmas in Australia: an update. Aust. J. Agric. Res. 50, 333–342. doi: 10.1071/AJ98106

Streten, C., Conde, B., Harrington, M., Moulder, J., and Gibb, K. (2005). Candidatus Phytoplasma australiense is associated with pumpkin yellow leaf curl disease in Queensland, Western Australia and the Northern Territory. Australas. Plant Pathol. 34, 103–105. doi: 10.1071/AP04077

Streten, C., and Gibb, K. S. (2006). Phytoplasma diseases in sub-tropical and tropical Australia. Australas. Plant Pathol. 35, 129–146. doi: 10.1071/APP06004

Yago, F., Jones, R. A. C., and Valkonen, J. P. T. (2006). Phytoplasma from little leaf disease affected sweet potato in Western Australia: detection and phylogeny. Ann. Appl. Biol. 149, 9–14. doi: 10.1111/j.1744-7348.2006.00906.x

Tran-Nguyen, L. T. T., Persley, D. M., and Gibb, K. S. (2003). First report of phytoplasma disease in capsicum, celery and chicory in Queensland, Australia. Australas. Plant Pathol. 32, 559–560. doi: 10.1071/AP03053

Tran-Nguyen, L. T. T., Smith, S. H., and Liberato, J. R. (2012). Sweet potato little leaf strain V4 phytoplasma associated with snake bean in the Northern Territory, Australia. Australas. Plant Dis. Notes 7, 147–150. doi: 10.1007/s13314-012-0071-9

White, D. T., Blackall, L. L., Scott, P. T., and Walsh, K. B. (1998). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in “Candidatus Phytoplasma australiense” and a new taxon, “Candidatus Phytoplasma australasia.” Int. J. Syst. Evol. Microbiol. 48, 941–951. doi: 10.1099/00207713-48-3-941

Wilson, D., Blanche, K. R., and Gibb, K. S. (2001). Phytoplasmas and disease symptoms of crops and weeds in the semi-arid tropics of the Northern Territory, Australia. Australas. Plant Pathol. 30, 159–163. doi: 10.1071/AP01015

Yang, S., Habili, N., Aoda, A., Dundas, I., Pauli, J., and Randles, J. (2013). Three group 16SrII phytoplasma variants detected in co-located pigeonpea, lucerne and tree medic in South Australia. Australas. Plant Dis. Notes 8, 125–129. doi: 10.1007/s13314-013-0113-y

Zhao, Y., and Davis, R. E. (2016). Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int. J. Syst. Evol. Microbiol. 66, 2121–2123. doi: 10.1099/ijsem.0.000999

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.