This is a repository copy of Sensitivity of the Kaiser Permanente early-onset sepsis calculator: A systematic review and meta-analysis.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158205/

Version: Published Version

Article:
Pettinger, Katherine J, Mayers, Katie, McKechnie, Liz et al. (1 more author) (2020) Sensitivity of the Kaiser Permanente early-onset sepsis calculator: A systematic review and meta-analysis. EClinicalMedicine. 100227. ISSN 2589-5370

https://doi.org/10.1016/j.eclinm.2019.11.020

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Research Paper

Sensitivity of the Kaiser Permanente early-onset sepsis calculator: A systematic review and meta-analysis

Katherine J. Pettinger, Katie Mayers, Liz McKechnie, Bob Phillips

Abstract

Background: Determining which babies should receive antibiotics for potential early onset sepsis (EOS) is challenging. We performed a meta-analysis quantifying how many EOS cases might be ‘missed’ using the Kaiser Permanente electronic calculator, compared with National Institute for Health and Care Excellence (NICE) guidelines.

Methods: A systematic literature search was carried out for studies citing the article in which the calculator was publicised. Studies were eligible if they presented data evaluating the calculator, either by retrospective case review or prospective cohort study. The primary outcome measure was numbers of culture positive EOS cases where the calculator did not recommend empirical antibiotics, but NICE guidelines would have. Data were pooled using a random effect meta-analysis. A subgroup analysis was performed using data from studies of babies exposed to chorioamnionitis.

Findings: Eleven studies were included. There were a total of 75 EOS cases across the studies and a minimum of 14 (best case scenario), and a maximum of 22 (worst case scenario) cases where use of the calculator would have resulted in delayed or missed treatment, compared to if NICE guidelines had been followed. The probability of missed/delayed treatment for an EOS case were best case 0.19 [95% confidence intervals 0.11 – 0.29], worst case 0.31 [95% CI 0.17 – 0.49]. The probability of missing cases was significantly more in babies exposed to chorioamnionitis.

Interpretation: A large proportion of EOS cases were ‘missed’ by the calculator. Further evaluation of the calculator is recommended before it is introduced into UK clinical practice.

Funding: None.

1. Introduction

Early onset neonatal sepsis (EOS) is defined as infection occurring within 72 h of birth. Babies with EOS may be asymptomatic initially, whilst non-infective pathology can mimic EOS; determining who should receive antibiotics is challenging. In the UK, babies are treated based on risk factors and clinical indicators (see Tables 1 and 2) as defined by the National Institute for Health and Care Excellence (NICE) [1].

Neonatal antibiotic administration has been reported to be associated with pain, parental anxiety and separation, and in childhood: asthma, allergy and autoimmune disease [2], as well as presenting significant workload and financial cost.

An electronic risk calculator has been developed by Kaiser Permanente (KP), for babies born ≥ 34 weeks gestation, to aid decision making when considering EOS. It is available online: https://neonatalsepsiscalculator.kaiserpermanente.org/InfectionProbabilityCalculator.aspx.

In a high-profile paper published in JAMA Pediatrics it was shown to reduce empirical antibiotic use substantially [3]. The calculator contains the following fields: background EOS incidence, gestational age, highest maternal antepartum temperature, rupture of membranes in hours, maternal GBS status and type/timing of intrapartum antibiotics. Clinical presentation is factored in, which adjusts the ‘at birth’ recommendation given by the calculator. Empirical antibiotics are recommended when the risk is ≥ 3/1000 births, or a blood culture and observation if the risk is ≥ 1/1000 live births.

The use of a calculator as part of a strategy of managing neonatal EOS adds an objective element to the decision to give or withhold antibiotics. It is vital that the calculator is thoroughly evaluated; it provides an exciting opportunity to provide tailored treatment, but because EOS is rare, it could take substantial time before any
additional ‘missed’ cases of EOS became apparent. In addition, we should be cautious when extrapolating results between countries, because of differences in the EOS incidence and in healthcare practices (e.g. national screening programmes for GBS). Given the impressive reduction in antibiotic usage which has been demonstrated [3], we wanted to investigate whether this might be at the expense of delaying or missing treatment for some babies with true sepsis.

The aim of this meta-analysis was to pool all the data for available studies of the calculator, to determine the proportion of babies with culture proven EOS which would have been treated using NICE guidelines but were not identified as requiring empiric antibiotics by the calculator.

2. Methods

2.1. Search strategy and selection criteria

We carried out a systematic review and meta-analysis of the sensitivity of the KP EOS calculator, in studies where it was either implemented or compared theoretically to standard practice.

2.1.1. Eligibility criteria

Any studies using the calculator in babies which reported the number of cases of EOS in the study period were eligible for inclusion.

2.1.2. Outcome measures

The proportion of cases of EOS which would have been ‘missed’, or where treatment would have been delayed by using the calculator, were compared to NICE guidelines. We considered any baby with positive blood cultures and an EOS risk score of >0.19 as a ‘miss’ only if the NICE guidelines would have recommended treatment (as per Tables 1 and 2). Any cases where treatment was not recommended by the calculator, but this was concordant with NICE guidelines, were not classified as a ‘miss’.

2.1.3. Search

The search was carried out by two authors independently (KJP/KM), using a modified cluster technique, snowballing from studies citing the 2017 JAMA pediatrics paper [3]. Citing articles were sought on Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) 1946 to July 23, 2019, Embase 1996 to 2019 Week 29 and Maternity & Infant Care Database (MIDIRS) 1971 to May 2019, and Google Scholar with the “Since 2017” filter on 24/07/2019. Risk of bias was assessed using QUADAS-2 and was low/moderate for all included articles.

Table 1

Risk factors for EOS defined by NICE [1].
• Invasive group B streptococcal (GBS) infection in a previous baby
• Maternal GBS colonisation, bacteriuria or infection in current pregnancy
• Prelabour rupture of membranes
• Preterm birth following spontaneous labour
• Rupture of membranes for > 18 h in a preterm birth
• Intrapartum fever > 38 °C, or confirmed or suspected chorioamnionitis
• Parenteral antibiotic treatment given to the woman (red flag)
• Suspected or confirmed infection in another baby in the case of a multiple pregnancy (red flag)

No studies prior to 2011 (when the calculator was first described [4]) were included. Papers where there were no cases of EOS in the study period were excluded, as uninformative to the sensitivity calculation. Individual patient level data was sought. Review articles and commentaries, where no new data were presented, were excluded. Only one report of each cohort was included. No language limits were applied.

Table 2

Clinical indicators of possible EOS described by NICE [1].
• Altered behaviour or responsiveness
• Altered muscle tone (e.g. floppiness)
• Feeding difficulties / intolerance
• Abnormal heart rate
• Signs of respiratory distress
• Respiratory distress starting > 4 h after birth (red flag)
• Hypoxia
• Jaundice within 24 hrs after birth
• Apnoea
• Encephalopathy
• Seizures (red flag)
• Need for CPR
• Mechanical ventilation in a term baby (red flag)
• Persistent pulmonary hypertension
• Temperature abnormality
• Signs of shock (red flag)
• Bleeding, thrombocytopenia, or abnormal coagulation
• Oliguria
• Altered glucose homeostasis
• Metabolic acidosis
• Local signs of infection
the developers of the tool without citing Kuzniewicz et al.’s 2017 JAMA pediatrics paper. The calculator’s origins are described by Puopolo et al. in a 2011 paper [4]. We searched Medline, MEDIIRS and Embase for each author’s publications since 2011 for any additional papers. Posters presented at conferences were included where possible. Clinicians known to be using the calculator were contacted and asked to share data.

2.1.4. Study selection
Once duplicates were removed, the abstracts of all the articles from the search were reviewed independently by two authors (KP and KM), discussing any differences. A third was available for resolution, if required.

2.1.5. Data analysis
The number of EOS cases in each study period and the number of those which were ‘missed’ or where treatment was delayed when compared to NICE guidelines (as per Tables 1 and 2) was recorded, using the study authors’ calculation of risk based on their local baseline rate of infection (note that this varied between studies). Where there was uncertainty about whether a case would be ‘missed’ or not, the authors were contacted for further details and clarification. A sensitivity analysis was undertaken.

2.1.6. Data items
Where possible, we collected the following data from included studies:

- Number of babies in the sample
- Location
- Date of data collection
- Organism grown
- Clinical condition at birth (well, equivocal or ill by KP standards)
- Gestational age
- Highest maternal temperature
- Maternal GBS status
- Duration of membrane rupture
- Maternal antibiotics
- EOS risk at birth and after examination

The risk of bias across studies (“publication bias”) was not statistically assessed.

2.1.7. Risk of bias in individual studies
The risk of bias was assessed for each included study using QUADAS-2 risk of bias assessment tool, see Table 3 and Supplementary table S2.

2.1.8. Subgroup analyses
There has been discussion in the literature about the use of the calculator amongst higher-risk groups of babies, specifically, babies exposed to chorioamnionitis. We therefore performed a subgroup analysis of all papers focussed on chorioamnionitis exposed babies.

2.1.9. Sensitivity analyses
Determining which cases were missed by the calculator compared to NICE guidelines, presented some challenges. Maternal fever may prompt a clinical team to commence parenteral antibiotics for possible maternal sepsis/chorioamnionitis. Parenteral antibiotics given up to 24 h after birth are a red flag for neonatal sepsis, but maternal fever in isolation is not an indicator for neonatal antibiotics [1]. If papers did not specify whether a mother was being treated for possible sepsis or chorioamnionitis, it was not possible to say whether the baby would have been treated according to NICE guidelines. Dr Kuzniewicz advised that when in doubt, they would classify a high maternal temperature as potential sepsis, in order to give a conservative evaluation of the calculator.

For completion, we performed two meta-analyses, a ‘worst case’ scenario where uncertain cases were recorded as a ‘miss’, and a ‘best case’ scenario where the uncertain cases were treated as if they were not missed.

2.1.10. Summary measures
The principle summary measure is the proportion of delayed/missed treatment of EOS using the calculator compared to NICE guidelines.

2.1.11. Synthesis of results
The pooled proportion of delayed/missed cases was estimated by a binomial-normal model (rma.glmm) of logit transformed proportions in the metafor package of R. The effect of being in a whole-population cohort vs. a high-infection risk cohort was evaluated as a moderator variable. Heterogeneity between studies was assessed describing I2.

3. Results

3.1. Study selection

The initial literature search produced 144 papers, see Fig. 1. Duplicates were removed leaving 90 articles. The Kuzniewicz 2017 article, two articles found on reviewing reference lists and a conference poster were added resulting in 94 papers which were reviewed in detail. No relevant additional papers were found by searching for publications from the authors of Puopolo 2011 [4]. 15 studies were reviewed in depth. One study was excluded because there were no cases of EOS [7]; a further was excluded as no information on the number of EOS cases was provided [8]. One study was excluded as it was not possible to extract individual patient level data [9]. A further study was excluded as it was not possible to determine whether the participants were started on antibiotics due to strict adherence to guidelines [10]. 11 studies met the inclusion criteria.

3.2. Study characteristics

The studies are summarised in Table 3. The largest is Kuzniewicz 2017 [3], where the calculator was introduced into practice in place of national guidance. Dhudasia 2018 [11], Strunk 2018 [12] and Arora 2019 [13] are cohort studies where the calculator was formally introduced as standard clinical practice and antibiotic use before and after introduction compared. Sharma 2019 [14] is similar; the calculator was introduced prospectively into clinical practice, but the paper relates specifically to babies exposed to chorioamnionitis. Due to insufficient data availability, we had to exclude the pre-intervention group in Arora 2019 [13] because we were unable to determine which cases would have been missed.

Carola 2018 [15], Shakib 2015 [16] and Money 2017 [17] were comparing retrospectively and theoretically how many babies would have been recommended treatment in a subset of babies born to mothers with confirmed or suspected chorioamnionitis. Joshi 2019 was a quality improvement project mainly relating to serial physical examinations as an alternative method to manage babies exposed to chorioamnionitis [18]. It was eligible for inclusion

3.2.1. Study characteristics

The studies are summarised in Table 3. The largest is Kuzniewicz 2017 [3], where the calculator was introduced into practice in place of national guidance. Dhudasia 2018 [11], Strunk 2018 [12] and Arora 2019 [13] are cohort studies where the calculator was formally introduced as standard clinical practice and antibiotic use before and after introduction compared. Sharma 2019 [14] is similar; the calculator was introduced prospectively into clinical practice, but the paper relates specifically to babies exposed to chorioamnionitis. Due to insufficient data availability, we had to exclude the pre-intervention group in Arora 2019 [13] because we were unable to determine which cases would have been missed.

Carola 2018 [15], Shakib 2015 [16] and Money 2017 [17] were comparing retrospectively and theoretically how many babies would have been recommended treatment in a subset of babies born to mothers with confirmed or suspected chorioamnionitis. Joshi 2019 was a quality improvement project mainly relating to serial physical examinations as an alternative method to manage babies exposed to chorioamnionitis [18]. It was eligible for inclusion
Location	Study type	Dates	Population	EOS data	Antibiotic usage	Risk of bias as per QUADAS-2
California, USA	Prospective single-centre cohort	2010 – 2015	Baseline period: 95,543 babies	Epoch 1: 24 cases of EOS		
4 missed by calculator.						
Epoch 2: 15 cases of EOS						
2 missed by the calculator, plus 4 additional possible misses						
Epoch 3: 12 cases of EOS						
2 missed by calculator as confirmed following d/w Dr Kuzniewicz	Antibiotic use reduced from 5.0% to 2.6%	low				
Philadelphia, USA	‘retrospective’ single-centre cohort	Epoch 1: March 2014-May 2015	Epoch 1: 5692 babies	4 cases of EOS: 1 × GBS, 3 × E. coli		
maximum 3 misses, minimum 1 miss	Antibiotic use reduced from 6.3% to 3.7%	low				
Subiaco, Western Australia	Prospective single-centre cohort	Epoch 1: Oct 2014 - January 2015	Epoch 1: 1731 babies	2 cases of EOS		
1 case in each epoch, both were clinically unwell requiring admission to the neonatal unit.						
The calculator recommended empirical treatment in both cases, therefore, no missed cases						
7 positive blood cultures, 2 contaminants (Staph. aureus and alpha-haemolytic streptococci)						
5 cases of EOS						
3 × cases picked up by both NICE and calculator						
2 × missed by both, therefore no misses compared to NICE	Antibiotic use reduced from 12.0% to 7.6%	low				
Wales, UK	Prospective cohort (EOS calculator results not acted upon – NICE guidelines followed)	February – April 2018	3593 babies			
≥ 34 weeks gestation	1 case of EOS					
Treated with empirical antibiotics according to calculator recommendations, therefore no misses	Antibiotic use would have been reduced from 16% to 4.3%, 74% relative reduction	low				
Illinois, USA	Prospective single-centre cohort	August 2016 – September 2017	276 babies			
≥ 34 weeks gestation admitted to neonatal unit	3 cases of EOS, 1 × GBS, 1 × Enterococcus faecalis, 1 × E. coli					
2 misses:						
Case 1: GBS						
score at birth: 0.09; well: 0.04, equivocal: 0.43, ill: 1.83						
Treated because became clinically ill at 6 h. This is a miss – it fits NICE criteria for treatment based on clinical indicators but scored <3.						
Case 2: Enterococcus faecalis						
score at birth: 0.25;						
Maternal chorioamnionitis and prolonged rupture of membranes. Would most likely have been treated from birth using NICE guidelines.	Antibiotic use reduced from 70.3% to 49.6%	low				
Utah, USA	Single centre, prospective quality improvement programme	June 2014 – December 2017	11,924 babies admitted to a newborn nursery unclear gestation 187 infants were excluded because their treatment was decided by NICU clinicians who had not received the quality improvement training.	3 cases of EOS, 1 × GBS, 1 × Enterococcus faecalis, 1 × E. coli	Antibiotic use reduced from 7% to 1%	low

(continued on next page)
Location	Study type	Dates	Population	EOS data	Antibiotic usage	Risk of bias as per QUADAS-2
Shakib et al. (2015)	Utah, USA, Single centre, retrospective record review	2006 – 2013	698 babies \(\geq 34 \) weeks gestation born to mothers with chorioamnionitis	6 positive blood cultures, 5 contaminants (4x CoNS, 1 x micrococcus) 1 case of EOS: GBS		
No misses - EOS risk score for the GBS case was 7.85 per 1000						
3 positive blood cultures, 2 contaminants (1 x CoNS, 1 x Actinomyces odontolyticus)						
1 case of EOS: Enterococcus						
Enterococcus: highest maternal temp 38.1 °C, 20 h ROM, chorioamnionitis exposed.						
EOS risk score was 0.77/1000 = 1 x miss	Antibiotic use would have been reduced to 12%	Low-moderate				
Money et al. (2017)	Staten Island, NY, USA, Single centre, retrospective record review	2009 – 2016	362 babies "term" babies, unwell babies excluded born to mothers with chorioamnionitis	5 cases of EOS		
1 x GBS, 1 x E. coli, 3 x ‘other’ Streptococci						
minimum 1 miss, maximum 3.						
E. coli: at birth score: 2.39, after examination: 0.98, therefore miss						
GBS: at birth score: 4.02, after examination: 1.65, possible miss, depending which score was used						
Strep. sanguinis: at birth score 2.03, after examination 41.34, possible miss, depending which score was used						
1 case of EOS Treated with empirical antibiotics according to calculator recommendations, therefore no misses	Antibiotic use would have been reduced from 99.7% to 2.5%	Low-moderate				
Carola et al. (2018)	Philadelphia, USA, Single centre, retrospective record review	2006 – 2017	896 babies \(\geq 35 \) weeks gestation born to mothers with chorioamnionitis	1 case of EOS Treated with empirical antibiotics according to calculator recommendations, therefore no misses	Antibiotic use would have been reduced to 23.5%	Low-moderate
Sharma et al. (2019)	Minneapolis, USA, Single-centre prospective cohort study	Pre implementation January - December 2015 post implementation: April 2016 - March 2018	epoch 1: 109 babies epoch 2: 180 babies \(\geq 36 \) weeks gestation born to mothers with chorioamnionitis	1 case of EOS: GBS		
Highest maternal temp 38.3 °C, known maternal GBS carriage but untreated, chorioamnionitis exposed. EOS score at birth was 0.93 per 1000, therefore= 1 x miss	Antibiotic use reduced from 40% to 23%	Low				
Joshi et al. (2019)	Stanford, USA, Single centre, retrospective record/chart review, as part of a separate quality improvement project	2015 – 2017	339 babies \(\geq 34 \) weeks gestation born to mothers with chorioamnionitis	1 case of EOS: GBS		
Highest maternal temp 38.3 °C, known maternal GBS carriage but untreated, chorioamnionitis exposed. EOS score at birth was 0.93 per 1000, therefore= 1 x miss | Antibiotic use reduced by 12.3% to 5.1%, but this was not achieved by using the calculator | Low-moderate |
because the authors had compared their results to those which might have been achieved using the calculator and presented data on the number of EOS cases.

Goel 2019 was a prospective cohort study comparing the calculator against NICE guidelines. All babies were managed according to NICE guidelines, and the calculator recommendations were not acted upon [19].

Stipelman 2019 was a 2 phased quality improvement project, designed to improve uptake of the calculator in their centre [20]. There was sufficient data to incorporate it into the meta-analysis.

3.3. Results of individual studies

See and Supplementary Table S1 – data extracted from articles, excluding contaminants.

3.4. Risk of bias across studies

When blood culture results are known, i.e. in retrospective studies, it is possible that the clinical condition of the baby at birth may be recorded differently in the light of this, introducing bias. This is a potential issue for Joshi 2019, Shakib 2015, Money 2017 and Carola 2018 which evaluated the calculator retrospectively (using contemporaneous notes). Kuzniewicz 2017, Dhudasia 2018, Strunk 2018, Sharma 2019 and Arora 2019 had retrospective comparison groups which could also have been affected.

Kuzniewicz 2017, Dhudasia 2018, Strunk 2018, Sharma 2019, and Arora 2019 were using the calculator prospectively and were at risk of a different form of bias, that is, their retrospective interpretation of the national guidelines. For example, a baby born to a febrile mother, who has a low EOS score, but goes on to become septic. According to the calculator the baby would not receive

Fig. 1. Study selection.
immediate antibiotics. However, a clinician using national guidelines could have been more conservative and treated the baby empirically in case of possible maternal sepsis. The interpretation of such findings is not clearly described and may be a source of potential bias.

Dhudasia 2018 is the only paper which explains exactly how the “at birth” and “after examination” scores were acted upon; nursing staff calculated the risk at birth for every baby, and if it was >0.7/1000 then the paediatrician was alerted, and the baby examined. No clear evidence of publication bias was noted.

3.5. Synthesis of results

Across the studies there were 75 cases of culture proven EOS. There was a minimum of 14 (best case scenario), and a maximum of 22 (worst case scenario), cases of EOS where the calculator did not recommend empirical antibiotics, i.e. they would have been/were initially ‘missed’ compared to NICE guidelines, see supplementary table S3.

The pooled probability of missing a case of EOS, which would not have been missed by the NICE guidelines, were best case 0.19 [95% confidence interval (CI) 0.11–0.29, I² 0%] [see Fig. 2], worst case 0.31 [95% CI 0.17–0.49, I² 37%] [see Fig. 3]. Exclusion of the papers focused on chorioamnionitis exposed babies [14–18] did not alter these estimates meaningfully (0.17 vs 0.19, and 0.26 vs 0.31 for the ‘best’ and ‘worst’ case analyses, see Figs. 4 and 5). Studies which retrospectively evaluated the calculator in babies exposed to chorioamnionitis showed the calculator performed less well: best case scenario 0.33 [95% CI 0.11 – 0.67, I² 0%] [see Fig. 6], worst case scenario 0.56 [95% CI 0.25 – 0.82, I² 0%] (see Fig. 7) (test for subgroup difference, \(p = 0.03 \)).

4. Discussion

This systematic review and meta-analysis has demonstrated that, compared to the NICE guidelines the probability of the calculator missing a case of EOS were best case 0.19 [0.11 – 0.29], worst case: 0.31 [0.17 – 0.49]. Amongst a subset of babies exposed to chorioamnionitis, the calculator appears more likely to miss cases; the probability of missing cases was best case 0.33 [0.11 – 0.67], worst case 0.56 [0.25 – 0.82]. The studies were relatively homogeneous; the patient groups were similar (all neonates <72 hours old, all >34 weeks gestation).

Some studies were retrospective, but since they were using contemporaneous notes, there is a limit to the effect this could have had. The intervention, the KP EOS calculator, was the same across the studies. The outcome was well defined and consistent: was the EOS score greater or less than 3/1000 births. Compared to current guidance, the calculator failed to recommend treatment in at least 14/75 babies with EOS (and possibly up to 22 babies) who would have been treated using NICE guidelines. This is in addition to any babies who will inevitably be missed by the NICE guidelines. The baby with E.coli, for example, in Stipelman 2019 [20] had an isolated temperature of >38 °C, which would not trigger treatment based on NICE guidelines, however the clinician decided to commence antibiotics. The EOS score was <3/1000 and so the calculator would also not have recommended treatment and would have missed this case.

The impressive reduction in the use of antibiotics which can be achieved with the calculator can be seen in Table 3, e.g. from 5% to 2.6% in Kuzniewicz et al. [3], or in babies exposed to chorioamnionitis one paper demonstrated a potential reduction from 99.7% to 2.5% [17]. However, given the low sensitivity we have demonstrated, we
believe that the risks of introducing this tool do not outweigh the benefits. Potential delays in antibiotic administration by using the calculator have been highlighted previously, in a letter to JAMA pediatrics by Rajbhandari et al. [21]. This was rebutted by Kuzniewicz and colleagues, explaining that any potential delays in treatment are far outweighed by the dramatic reduction in antibiotics which they have achieved [22].

Difference in microbiology and in healthcare practices between the UK and the USA are significant in this context. In the UK for example, GBS screening is not routine, observation nurseries (as described by Money et al.) are not common, prolonged stays on post-natal wards for babies not receiving antibiotics are unusual, and paediatricians are unlikely to ever encounter the majority of babies, as most care is delivered by midwives. When the EOS calculation is low risk, the calculator recommends “routine vitals”. However, the majority of UK babies would not have routine observations carried out at all, unless there was clinical concern.

Kuzniewicz et al., point out that “if adopting out approach, individual centers must assess local care structures” [3]. If the calculator were to be adopted in the UK, current postnatal care would have to be adapted. For example, if a baby who would have qualified for observations due to one risk factor as per NICE has a low EOS risk score, would they be allowed to go home after 6 h? Clearly, robust local policies would need to be drawn up on exactly how the calculator were to be used.

It is striking that in all the available evidence there were only 75 cases of EOS. Collins et al demonstrate that effective evaluation of a prediction model would require at least 100 (and possibly 200) external cases, to validate the model [23]. We would suggest this be carried out retrospectively by accumulating a large series of cases of babies evaluated for sepsis (whilst continuing to use NICE guidelines) rather than rolling out the calculator and potentially missing further cases of EOS.

We have not carried out a corresponding meta-analysis to determine the number of misses that NICE guidelines might have compared to the calculator. Given the broad recommendations for antibiotic use in the NICE guidelines, this was felt unlikely to be beneficial. This study evaluates the sensitivity of the calculator compared to NICE guidelines. We have not made any assessment of its specificity, or its safety when implemented with a whole-nursery system of newborn care. This study does not make a comprehensive assessment of the overall performance of the calculator, rather we have assessed its immediate ability to accurately detect babies who go on to have positive blood cultures.

Whether the benefits of reducing antibiotics use outweigh the occasional ‘miss’ or delay is hard to quantify, since it is difficult to estimate the effects of widespread (over)use of antibiotics to individuals and populations. This meta-analysis has demonstrated that a large proportion of true cases of EOS are ‘missed’ by the calculator, in addition to those which would be missed by NICE guidelines. The probability of missing additional cases compared to the NICE...
Proportion of cases missed by the calculator (additional to any cases missed by NICE), whole cohort studies – best case scenario.

Study	Proportion [95% CI]
Kuzniewicz − baseline period	0.17 [0.06, 0.37]
Kuzniewicz − learning period	0.13 [0.03, 0.41]
Kuzniewicz − calculator period	0.17 [0.04, 0.48]
Dhudasia 2018	0.25 [0.03, 0.76]
Strunk 2018	0.17 [0.01, 0.81]
Goel 2019	0.08 [0.01, 0.62]
Arora 2019	0.25 [0.01, 0.89]
Stipelman 2019	0.67 [0.15, 0.96]

Fig. 4. Proportion of cases missed by the calculator (additional to any cases missed by NICE), whole cohort studies – best case scenario.

Proportion of cases missed by the calculator (additional to any cases missed by NICE), whole cohort studies – worst case scenario.

Study	Proportion [95% CI]
Kuzniewicz − baseline period	0.17 [0.06, 0.37]
Kuzniewicz − learning period	0.40 [0.19, 0.65]
Kuzniewicz − calculator period	0.17 [0.04, 0.48]
Dhudasia 2018	0.75 [0.24, 0.97]
Strunk 2018	0.17 [0.01, 0.81]
Goel 2019	0.08 [0.01, 0.62]
Arora 2019	0.25 [0.01, 0.89]
Stipelman 2019	0.67 [0.15, 0.96]

Fig. 5. Proportion of cases missed by the calculator (additional to any cases missed by NICE), whole cohort studies – worst case scenario.
Study	Proportion [95% CI]
Shakib 2015	0.25 [0.01, 0.89]
Money 2017	0.75 [0.11, 0.99]
Carola 2018	0.20 [0.03, 0.69]
Sharma 2019	0.25 [0.01, 0.89]
Joshi 2019	0.75 [0.11, 0.99]
RE Model	0.33 [0.11, 0.67]

Fig. 6. Proportion of cases missed by the calculator (additional to any cases missed by NICE), chorioamnionitis exposed babies – best case scenario.

Study	Proportion [95% CI]
Shakib 2015	0.25 [0.01, 0.89]
Money 2017	0.75 [0.11, 0.99]
Carola 2018	0.60 [0.20, 0.90]
Sharma 2019	0.25 [0.01, 0.89]
Joshi 2019	0.75 [0.11, 0.99]
RE Model	0.56 [0.25, 0.82]

Fig. 7. Proportion of cases missed by the calculator (additional to any cases missed by NICE), chorioamnionitis exposed babies – worst case scenario.
guidelines is significantly higher amongst babies exposed to chorioamnionitis.

Given these concerns, further analyses of known cases of EOS is required to determine what proportion would be initially missed or result in delayed treatment. No method for predicting EOS is perfect, and there is no substitute for clinical monitoring, since there will almost inevitably be some babies without risk factors for infection who nevertheless go onto to become septic. Effective evaluation will need approximately 100 cases of EOS to have occurred, a threshold not yet reached in the available literature.

Declaration of competing interest

We declare no competing interests.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2019.11.020.

References

[1] NICE. Neonatal infection : antibiotics for prevention and treatment. Clinical Guideline [CG149]. 2012;(August):1–40. Available from: https://www.nice.org.uk/guidance/cg149/resources/neonatal-infection-early-onset-antibiotics-for-prevention-and-treatment-35109579233221.

[2] Kuzniewicz MW, Walsh EM, Li S, Fischer A, Escobar GJ. Development and implementation of an early-onset sepsis calculator to guide antibiotic management in late preterm and term neonates. Jt Comm J Qual Patient Saf 2016;42(5):232–9.

[3] Kuzniewicz MW, Puopolo KM, Fischer A, Walsh EM, Li S, Newman TB, et al. A quantitative, risk-based approach to the management of neonatal early-onset sepsis. JAMA Pediatr 2017;171(4):365–71.

[4] Puopolo KM, Draper D, Wi S, Newman TB, Zupancic J, Lieberman E, et al. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors. Pediatrics 2011;128(5):e1155–63.

[5] Sloane AJ, Coleman C, Carola DL, Lafferty MA, Edwards C, Greenspan J, et al. Use of a modified early-onset sepsis risk calculator for neonates exposed to chorioamnionitis. J Pediatr 2019;213:52–7.

[6] Benitz WE, Long SS. The holy grail of ascertainment of early-onset neonatal sepsis. J Pediatr 2019;213:10–2.

[7] Ji H, Bridges M, Pesek E, Graham K, Tan L, Chabra S. Acute funisitis correlates with the risk of early-onset sepsis in term newborns assessed using the Kaiser sepsis calculator. Pediatr Dev Pathol 2019;22:523–31.

[8] Ward H, Richardson K, Danko O. PE early onset sepsis – can we screen fewer babies safely. Arch Dis Child 2019;104:A3–4.

[9] Achten NB, Dorigo-Zetsma JW, van der Linden PD, van Brakel M, Plotz FB. Sepsis calculator implementation reduces empiric antibiotics for suspected early-onset sepsis. Eur J Pediatr 2018;177(5):741–6.

[10] Kerste M, Corver J, Sonneveld MC, van Brakel M, van der Linden PD, Babette BA, et al. Application of sepsis calculator in newborns with suspected infection. J Matern Neonatal Med 2016;29(23):3860–5.

[11] Dhudasia MB, Mukhopadhya S, Puopolo KM. Implementation of the sepsis risk calculator at an academic birth hospital. Hosp Pediatr 2018;8(5):243–50.

[12] Strunk T, Buchiboyina A, Sharp M, Nathan D, Doherty D, Patole S. Implementation of the neonatal sepsis calculator in an Australian tertiary perinatal centre. Neonatology 2018;113(4):379–82.

[13] Arora V, Strunk D, Furqan SH, Schweig L, Lefaiver C, George J, et al. Optimizing antibiotic use for early onset sepsis: a tertiary NICU experience. J Neonatal Perinatal Med 2019;12(3):301–12.

[14] Sharma V, Adkisson C, Gupta K. Managing infants exposed to maternal chorioamnionitis by the use of early-onset sepsis calculator. Glob Pediatr Health 2019;6:2333794X19833711.

[15] Carola D, Vaxconcellos M, Sloane A, McElwee D, Edwards C, Greenspan J, et al. Utility of early-onset sepsis risk calculator for neonates born to mothers with chorioamnionitis. J Pediatr 2018;195:48–52 e1.

[16] Shakib J, Buchi K, Smith E, Young PC. Management of newborns born to mothers with chorioamnionitis: is it time for a kinder, gentler approach? Acad Pediatr 2015;15(3):340–4.

[17] Money N, Newman J, Demisse S, Roth P, Blau J. Anti-microbial stewardship: antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J Perinatol 2017;37(12):1304–9.

[18] Joshi NS, Gupta A, Allan JM, Cohen RS, Aby JL, Kim JL, et al. Management of chorioamnionitis-exposed infants in the newborn nursery using a clinical examination – Based Approach. Hosp Pediatr 2019;9(4):227–33.

[19] Goel N, Shrestha S, Smith R, Mehta A, Kettty M, Muxworthy H, et al. Screening for early onset neonatal sepsis : nice guidance-based practice versus projected application of the Kaiser permanente sepsis risk calculator in the UK population. Arch Dis Child Fetal Neonatal Ed 2019;1–5.

[20] Steifman CH, Smith EA, Diaz-echoo M, Stackman J, Stoddard G, Kawamoto K, et al. Early-Onset sepsis risk calculator integration into an electronic health record in the nursery. Pediatrics 2019;144(2):e20183464.

[21] Rajabandari S, La Gamma EA. Early-Onset sepsis calculator-risk of delaying treatment. JAMA Pediatr 2017;171(10):1014–5.

[22] Kuzniewicz MW, Escobar GJ, Puopolo KM. Early-Onset sepsis calculator – risk of delaying treatment – Reply. JAMA Pediatr 2017;171(10).

[23] Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model : a resampling study. Stat Med 2016;35(2):214–26.