State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich*, H.-C. Nägerl†, D. M. Stamper-Kurn‡, and H. J. Kimble

Norman Bridge Laboratory of Physics 12-33
California Institute of Technology, Pasadena, CA 91125

Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2–3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ≥1 s. The loss of successive atoms from the trap N ≥ 3 → 2 → 1 → 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom’s internal state.

A long-standing ambition in the field of cavity quantum electrodynamics (QED) has been to trap single atoms inside high-Q cavities in a regime of strong coupling [1]. Diverse avenues have been pursued for creating the trapping potential for atom confinement, including additional far-off-resonant trapping beams [2], near-resonant light with with \(\hat{n} \approx 1 \) intracavity photons [3, 4], and single trapped ions in high-finesse optical cavities [5, 6], although strong coupling has yet to be achieved for trapped ions. A critical aspect of this research is the development of techniques for atom localization that are compatible with strong coupling, as required for quantum computation and communication [7, 8, 9, 10, 11, 12].

In this Letter we present experiments to enable quantum information processing in cavity QED by (1) achieving extended trapping times for single atoms in a cavity while still maintaining strong coupling, (2) realizing a trapping potential for the center-of-mass motion that is largely independent of the internal atomic state, and (3) demonstrating a scheme that allows continuous observation of trapped atoms by way of the atom-field coupling. More specifically, we have recorded trapping times up to 3 s for single Cs atoms stored in an intracavity far-off-resonance trap (FORT) [13], which represents an improvement by a factor of 10 beyond the prior results for atomic trapping [3] and localization [4], although strong coupling has yet to be achieved beyond the first realization of\(\delta_0 \). The full plot gives \(\delta_f \) versus \(m_F \) for each of the levels \(6P_{3/2}, F' = 2, 3, 4, 5 \) for \(\lambda_F = 935.6 \text{ nm} \). In each case, the normalization is \(\delta = \delta_0/\delta_0 (\lambda_F = 935.6 \text{ nm}) \) [17].

hence the effective coupling between an atomic transition and the cavity mode become strong functions of the atom’s position within the trap [14]. However, due to the specific multi-level structure of Cesium, the wavelength \(\lambda_f \) of the trapping laser can be tuned to a region where both of these problems are eliminated for the \(6S_{1/2} \rightarrow 6P_{3/2} \) transition, as illustrated in Fig. 1 [16]. Around the “magic” wavelength \(\lambda_F = 935 \text{ nm} \), the sum of AC-Stark shifts coming from different allowed optical transitions results in the ground \(6S_{1/2} \) and excited \(6P_{3/2} \) states both being shifted downwards by comparable amounts, \(\delta_0 S_{1/2} \approx \delta_0 P_{3/2} \), albeit with small dependence on \((F', m_F') \) for the shifts \(\delta_0 P_{3/2} \).

The task then is to achieve state-independent trapping while still maintaining strong coupling for the \(6S_{1/2} \rightarrow 6P_{3/2} \) transition. Our experimental setup to achieve this end is schematically depicted in Fig. 1 [16]. Significantly, the cavity has a TEM\(_{00} \) longitudinal mode located nine mode orders below the mode employed for cavity QED at 852 nm, at the wavelength \(\lambda_F = 935.6 \text{ nm} \), allowing the implementation of a FORT with \(\delta_0 S_{1/2} \approx \delta_0 P_{3/2} \). The

![FIG. 1: AC-Stark shifts (\(\delta_0 S_{1/2}, \delta_0 P_{3/2} \)) for the (6S\(_{1/2}, 6P_{3/2} \)) levels in atomic Cs for a linearly polarized FORT. The inset shows (\(\delta_0 S_{1/2}, \delta_0 P_{3/2}, F' = 2 \)) as functions of FORT wavelength \(\lambda_F \). The full plot gives \(\delta_0 P_{3/2} \) versus \(m_F \) for each of the levels \(6P_{3/2}, F' = 2, 3, 4, 5 \) for \(\lambda_F = 935.6 \text{ nm} \). In each case, the normalization is \(\delta = \delta_0/\delta_0 (\lambda_F = 935.6 \text{ nm}) \) [17].](image)
field to excite this cavity mode is provided by a laser at λ_F, which is independently locked to the cavity. The finesse of the cavity at λ_F is $\mathcal{F} \sim 2200$, so that a mode-matched input power of 1.2 mW gives a peak AC-Stark shift $\delta_{6S_{1/2}}/2\pi = -47$ MHz for all states in the $6S_{1/2}$ ground manifold, corresponding to a trap depth $U_0/k_B = 2.3$ mK, which was used for all experiments.

Principal parameters relevant to cavity QED with the system in Fig. 2 are the Rabi frequency $2\gamma_0$ for a single quantum of excitation and the amplitude decay rates (κ, γ) due to cavity losses and atomic spontaneous emission. For our system, $\gamma_0/2\pi = 24$ MHz, $\kappa/2\pi = 4.2$ MHz, and $\gamma/2\pi = 2.6$ MHz, where γ_0 is for the $(6S_{1/2}, F = 4, m_F = 4) \rightarrow (6P_{3/2}, F' = 5, m_F' = 4)$ transition in atomic Cs at $\lambda_0 = 852.4$ nm. Strong coupling is thereby achieved $(\gamma_0 \gg (\kappa, \gamma))$, resulting in critical photon and atom numbers $n_0 = \gamma^2/(2\gamma_0^2) \simeq 0.006$, $N_0 = 2\kappa\gamma/\gamma_0^2 \simeq 0.04$. The small transition shifts for our FORT mean that γ_0 is considerably larger than the spatially dependent shift δ_0 of the bare atomic frequency employed for cavity QED, $\gamma_0 \gg \delta_0 \equiv |\delta_{6S_{1/2}} - \delta_{6S_{1/2}}|$, whereas in a conventional FORT, $\delta_0 \sim 2|\delta_{6S_{1/2}}| \gg \gamma_0$.

In addition to the FORT field, the input to the cavity consists of probe and locking beams, all of which are directed to separate detectors at the output. The transmitted probe beam is monitored using heterodyne detection, allowing real-time detection of individual cold atoms within the cavity mode. The cavity length is actively stabilized and tunable independently of all other intracavity fields. The probe as well as the FORT beam are linearly polarized along a direction l_+ orthogonal to the x-axis of the cavity.

Cold atoms are collected in a magneto-optical trap (MOT) roughly 5 mm above the cavity mirrors and then released after a stage of sub-Doppler polarization-gradient cooling. Freely falling atoms arrive at the cavity mode over an interval of about 10 ms, with kinetic energy $E_K/k_B \simeq 0.8$ mK, velocity $v \simeq 0.30$ m/s, and transit time $\Delta t = 2w_0/v \simeq 150$ μs. Two additional orthogonal pairs of counter-propagating beams in a $\sigma^+ - \sigma^-$ configuration illuminate the region between the cavity mirrors along directions at $\pm 45^\circ$ relative to \hat{y}, \hat{z} (the “$y-z$ beams”) and contain cooling light tuned red of $F = 4 \rightarrow F' = 5$ and repumping light near the $F = 3 \rightarrow F' = 3$ transition. These beams eliminate the free-fall velocity to capture atoms in the FORT and provide for subsequent cooling of trapped atoms.

We employed two distinct protocols to study the lifetime for single trapped atoms in our FORT.

(1) Trapping “in the dark” with the atom illuminated only by the FORT laser at λ_F and the cavity-locking laser at λ_C. For this protocol, strong coupling enables real-time monitoring of single atoms within the cavity for initial triggering of cooling light and for final detection.

(2) Trapping with continuous observation of single atoms with cavity probe and cooling light during the trapping interval. In this case, atoms in the cavity mode are monitored by way of the cavity probe beam, with cooling provided by the auxiliary $y-z$ beams.

In our first protocol, the $F = 4 \rightarrow F' = 5$ transition is strongly coupled to the cavity field, with zero detuning of the cavity from the bare atomic resonance, $\Delta_C \equiv \omega_C - \omega_{4-5} = 0$. In contrast to Ref. 2, here the FORT is ON continuously without switching, which makes a cooling mechanism necessary to load atoms into the trap. The initial detection of a single atom falling into the cavity mode is performed with the probe beam tuned to the lower sideband of the vacuum-Rabi spectrum ($\Delta_p = \omega_p - \omega_{4-5} = -2\pi \times 20$ MHz). The resulting increase in transmitted probe power when an atom approaches a region of optimal coupling triggers ON a pulse of transverse cooling light from the $y-z$ beams, detuned 41 MHz red of ω_{4-5}. During the subsequent trapping interval, all near-resonant fields are turned OFF (including the transverse cooling light). After a variable delay τ_T, the probe field is switched back ON to detect whether the atom is still trapped, now with $\Delta_p = 0$.

Data collected in this manner are shown in Fig. 4(a), which displays the conditional probability P to detect an atom given an initial single-atom triggering event versus the time delay τ_T. The two data sets shown in Fig. 4(a) yield comparable lifetimes, the upper acquired with mean intracavity atom number $N = 0.30$ atoms and the lower with $\bar{N} = 0.019$ \bar{N}. The offset in P between these two curves arises primarily from a reduction in duration δt of the cooling pulses, from 100 μs to 5 μs, which results in a reduced capture probability. Measurements with constant δt but with \bar{N} varied by adjusting the MOT parameters allow us to investigate the probability of trapping an atom other than the “trigger” atom and of capturing more than one atom. For example, with $\delta t = 5$ μs as in the lower set, we have varied $0.011 \lesssim \bar{N} \lesssim 0.20$ with no observable change in either P_T or the trap lifetime τ. Since a conservative upper bound on the relative probability of trapping a second atom is just $\bar{N}/2$ (when $\bar{N} \ll 1$), these data strongly support the conclusion that our measurements are for single trapped atoms. We rou-
tarily observe lifetimes $2 \, s < \tau < 3 \, s$ depending upon the parameters chosen for trap loading and cooling.

Fig. 3(b) explores scattering processes within the FORT that transfer population between the $6S_{1/2}, F = (3, 4)$ ground-state hyperfine levels. For these measurements, the $F = 4$ level is initially depleted, and then the population in $F = 4$ as well as the total $3+4$ population are monitored as functions of time t_D to yield the fractional population $f_4(t_D)$ in $F = 4$. The measured time $\tau_R = (0.11 \pm 0.02) \, s$ for re-equilibration of populations between $F = (3, 4)$ agrees with a numerical simulation based upon scattering rates in our FORT, which predicts $\tau_R = 0.10 \, s$ for atoms trapped at the peak FORT intensity in an initially unpolarized state in the $F = 3$ level.

Turning next to the question of the mechanisms that limit our FORT lifetime, we recall that parametric heating caused by intensity fluctuations of the trapping field can be quite important [2, 25]. From measurements of intensity fluctuations for our FORT around twice the mean intracavity atom number $\bar{N} \approx 0.3$, while the lower set is for $\bar{N} \approx 0.019$ atoms. Exponential fits (solid lines) yield lifetimes $\tau_{\text{upper}} = (2.4 \pm 0.2)$ s and $\tau_{\text{lower}} = (2.0 \pm 0.3)$ s. (b) The fractional population $f_4(t_D)$ in $F = 4$ following depletion of this level at $t_D = 0$. An exponential fit (solid line) gives $\Gamma_R = (0.11 \pm 0.02) \, s$.

An example of the resulting probe transmission is shown in Fig. 4, which displays two separate records of the continuous observation of trapped atoms. Here, the probe detuning $\Delta_p = \omega_p - \omega_{4\rightarrow4} = 0$ and the probe strength is given in terms of $\bar{m} = |\langle \hat{a} \rangle|^2$ deduced from the heterodyne current, with \hat{a} as the annihilation operator for the intracavity field. We believe that the $y - z$ repumping beams (which excite $F = 3 \rightarrow F' = 3$ resonance, with detuning Δ_4) significantly, we observe trap loading with no cooling light near the $F = 4 \rightarrow F' = 5$ transition.

An example of the resulting probe transmission is shown in Fig. 4, which displays two separate records of the continuous observation of trapped atoms. Here, the probe detuning $\Delta_p = \omega_p - \omega_{4\rightarrow4} = 0$ and the probe strength is given in terms of $\bar{m} = |\langle \hat{a} \rangle|^2$ deduced from the heterodyne current, with \hat{a} as the annihilation operator for the intracavity field. We believe that the $y - z$ repumping beams (which excite $F = 3 \rightarrow F' = 3$) provide cooling, since without them the atoms would “roll” in and out of the near-conservative FORT potential (indeed no trapping occurs in their absence). In addition, this is a continuous cooling and loading scheme, so that we routinely load multiple atoms into the trap.

The most striking characteristic of the data collected in this manner is that \bar{m} versus t always reaches its deepest level within the $\approx 10 \, ms$ window when the falling atoms arrive, subsequently increasing in a discontinuous “staircase” of steps. As indicated in Fig. 4, our interpretation is that there is a different level for \tilde{m} associated with each value N of the number of trapped atoms (with the level decreasing for higher N), and that each step is due to the loss of an atom from the cavity mode. In addition, we observe a strong dependence both of the initial trapping probability and of the continuous observation time on the detuning of the transverse beams, with an optimal value $\Delta_4 \approx 25 \, MHz$ to the blue of the $3 \rightarrow 3$ transition, which strongly suggests blue Sisyphus cooling [30].

We stress that observations as in Fig. 4 are made possible by strong coupling in cavity QED, for which individual intracavity atoms cause the displayed changes in probe transmission. While \bar{m} in Figure 4 is only ≈ 0.01,
it represents an output flux \(\approx 5 \times 10^5 \) photons per second. The probe is also critical to the cooling, although it is not clear whether this beam is acting as a simple “repumper” or is functioning in a more complex fashion due to strong coupling. We have not seen such striking phenomena under similar conditions for cavity QED with the \(F = 4 \to F' = 5 \) transition. Note that our ability to monitor the atom as well as to cool its motion are enabled by the state-insensitive character of the trap, since the net transition shifts are small, \((g_0, \Delta_3) \gg \delta_0 \).

In summary, we have demonstrated a new set of ideas within the setting of cavity QED, including state insensitive trapping suitable for strong coupling. Trapping of single atoms with \(g_0 \gg (\delta_0, \kappa, \gamma) \) has been achieved with lifetimes \(\tau \approx 2 - 3 \) s. Since intrinsic heating in the FORT is quite low (\(\sim 11 \) \(\mu \)K/s due to photon recoil), we anticipate extensions to much longer lifetimes. Continuous observations of multiple atoms in a cavity have been reported, and involve an interplay of a strongly coupled probe field for monitoring and a set of \(y - z \) cooling beams. Our measurements represent the first demonstration of cooling for trapped atoms strongly coupled to a cavity. Beyond its critical role here, state insensitive trapping should allow the application of diverse laser cooling schemes, leading to atomic confinement in the Lamb-Dicke regime with strong coupling, and thereby to further advances in quantum information science.

We gratefully acknowledge the contributions of K. Birnbaum, A. Boca, T. W. Lynn, S. J. van Enk, D. W. Vernooy, and J. Ye. This work was supported by the Caltech MURI Center for Quantum Networks under ARO Grant No. DAAD19-00-1-0374, by the National Science Foundation, and by the Office of Naval Research.

*Georgia Institute of Technology, Atlanta, GA 30332

†Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

Department of Physics, University of California, Berkeley, CA 94720

[1] For a review, see contributions in the special issue of Phys. Scr. T76, 127 (1998).
[2] J. Ye et al., Phys. Rev. Lett. 83, 4987 (1999); and D. W. Vernooy, Doctoral Thesis (California Institute of Technology, 2000).
[3] C. J. Hood et al., Science 287, 1447 (2000); Phys. Rev. A 63, 013401 (2000).
[4] P. W. H. Pinkse et al., Nature 404, 365 (2000).
[5] G. R. Gethöhrlein et al., Nature 414, 49 (2001).
[6] J. Eschner et al., Nature 413, 495 (2001).
[7] T. Pellizari et al., Phys. Rev. Lett. 75, 3788 (1995).
[8] J. I. Cirac et al., Phys. Rev. Lett. 78, 3221 (1997).
[9] S. van Enk et al., Science 279, 205 (1998).
[10] C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999).
[11] S. Bose et al., Phys. Rev. Lett. 83, 5158 (1999).
[12] A. S. Parkins and H. J. Kimble, Journal Opt. B: Quantum Semiclass. Opt. 1, 496 (1999).
[13] Laser Cooling and Trapping, H. J. Metcalf and P. van der Straten (Springer-Verlag, 1999).
[14] C. J. Hood and C. Wood as described in H. J. Kimble et al., Laser Spectroscopy XIV, eds. Rainer Blatt et al. (World Scientific, Singapore, 1999), 80.
[15] H. Katori et al., J. Phys. Soc. Jpn. 68, 2479 (1999); T. Ido et al., Phys. Rev. A 61, 061403 (2000).
[16] S.J. van Enk et al., Phys. Rev. A 64, 013407 (2001).
[17] The shifts shown in Fig. incorporate the following couplings, including counter-rotating terms: \(6S_{1/2} \to nP_{1/2,3/2} \), for \(n = 6 - 11 \); \(6P_{3/2} \to nS_{1/2} \) for \(n = 6 - 15 \); \(6P_{3/2} \to nD_{3/2,5/2} \) for \(n = 5 - 11 \). Relevant parameters are taken from C. J. Hood, Doctoral Thesis (California Institute of Technology, 2000), and from M. Fabry and J. R. Cusenot, Can. J. Phys. 54, 836 (1976).
[18] C. J. Hood et al., Phys. Rev. A 64, 033804 (2001).
[19] H. Mabusi et al., Opt. Lett. 21, 1393 (1996).
[20] Because of small stress-induced birefringence in the cavity mirrors, we align the directions of linear polarization along an axis that coincides with one of the cavity eigen-polarizations \([15]\), denoted by \(\hat{\ell}_z \). For initial polarization along \(\hat{\ell}_z \), measurements of FORT [probe] polarization along \(\hat{\ell}_z \) for the cavity output power \(P \) give \(P_c / P < 0.02/0.002 \) for the FORT [probe] beam.
[21] The (incoherent) sum of the four intensities is \(I_{4,5} \sim 60 \text{mW/cm}^2 \) for the cooling and \(I_{3,0} \sim 40 \text{mW/cm}^2 \) for the repumping light, with uncertainties of roughly \(2 \% \).
[22] C. J. Hood et al., Phys. Rev. Lett. 80, 4157 (1998).
[23] Specific examples of single-atom detection events are omitted here. For \(\Delta_\sigma = -g_0 \), the increases in cavity transmission are quite similar to those in Refs. 2, 22, while for \(\Delta_\sigma = 0 \), the decreases are similar to those in Refs. 2, 13, albeit now in the presence of the FORT.
[24] \(N \) is estimated from the mean number of atom transit events (duration \(\approx 150 \mu \)s) during the interval \(\approx 10 \) ms from the falling MOT atoms, in the absence of trapping.
[25] T. A. Savard et al., Phys. Rev. A 56, R1095 (1997); C.
W. Gardiner et al., ibid. 61, 045801 (2000).

[26] The predicted $\tau_{radial} > 10^4$ s.

[27] K. L. Corwin et al., Phys. Rev. Lett. 83, 1311 (1999).

[28] R. A. Cline et al., Opt. Lett. 19, 207 (1994).

[29] A. Kuhn et al., Phys. Rev. Lett. 89, 067901 (2002).

[30] D. Boiron et al., Phys. Rev. A 53, R3734 (1996) and references therein.