Geometric approach to p-singular Gelfand-Tsetlin \mathfrak{gl}_n-modules

Elizaveta Vishnyakova

Abstract

We give an elementary construction of a $p \geq 1$-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-module in terms of local distributions. This is a generalization of the universal 1-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-module obtained in [FGR1]. We expect that the family of new Gelfand-Tsetlin modules that we obtained will lead to a classification of all irreducible $p > 1$-singular Gelfand-Tsetlin modules. So far such a classification is known only for singularity $n = 1$.

1 Introduction

In classical Gelfand-Tsetlin Theory one constructs explicitly an action of the Lie algebra $\mathfrak{g} := \mathfrak{gl}_n(\mathbb{C})$ in a basis forming by Gelfand-Tsetlin tableaux. Let V be the vector space of all Gelfand-Tsetlin tableaux of fixed order, see the main text for details, and $\mathcal{U}(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. In [FO] it was proved that there exists a ring structure on the vector space $\mathcal{R} := H^0(V, \mathcal{M} \star \Gamma)$, where $\mathcal{M} \star \Gamma$ is the sheaf of meromorphic functions on V with values in a certain group Γ acting on V, such that the classical Gelfand-Tsetlin formulas define a homomorphism of rings $\Phi : \mathcal{U}(\mathfrak{g}) \to \mathcal{R}$. In the case when $\text{Im} \, \Phi$ is holomorphic on a certain orbit $\Gamma(o)$ of a point $o \in V$ the converse statement is also true: any homomorphism of rings $\Phi : \mathcal{U}(\mathfrak{g}) \to \mathcal{R}$ defines a Gelfand-Tsetlin like formulas with basis forming by elements of $\Gamma(o)$. The study of the case when $\text{Im} \, \Phi$ is not holomorphic in $\Gamma(o)$, but one singular, was initiated in [FGR1]. For instance the authors [FGR1] constructed the universal 1-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-module using pure algebraic methods. Another version of the construction from [FGR1] of 1-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-module can be found in [Z].

In the present paper we study the case of singularity $p \geq 1$. In fact, we give a new elementary geometric construction of p-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-modules. In the case $p = 1$ our construction gives another version of the constructions of the universal 1-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-modules obtained in [FGR1] and [Z]. The universal 1-singular Gelfand-Tsetlin $\mathfrak{gl}_n(\mathbb{C})$-modules was
used in [FGR1, FGR2] to classify all irreducible Gelfand-Tsetlin modules with 1-singularity. We expect that our construction of p-singular Gelfand-Tsetlin \(gl_n(\mathbb{C}) \)-modules will lead to a classification of all irreducible \(p > 1 \)-singular Gelfand-Tsetlin modules.

Moreover, our approach leads to a geometric explanation of the formulas from [FGR1, Z] for the \(gl_n(\mathbb{C}) \)-action in the universal 1-singular Gelfand-Tsetlin basis. On the other side, our approach may be used for other homomorphisms \(\Psi : U(\mathfrak{h}) \to \mathcal{R} \), where \(\mathfrak{h} \) is any Lie algebra. In fact, we describe necessary conditions for the image of the homomorphism \(\Psi : U(\mathfrak{h}) \to \mathcal{R} \) such that certain local distributions supported on the elements of the orbit \(\Gamma(o) \) form a basis for an \(\mathfrak{h} \)-module.

2 Preliminaries

Let \(V \) be the vector space of Gelfand-Tsetlin tableaux \(V \cong \mathbb{C}^{n(n+1)/2} = \{(x_{ki}) \mid 1 \leq i \leq k \leq n\} \), where \(n \geq 2 \), and \(\Gamma \cong \mathbb{C}^{n(n-1)/2} \) be the free abelian group generated by \(\sigma_{st} \), where \(1 \leq t \leq s \leq n-1 \). We fix the following action of \(\Gamma \) on \(V \): \(\sigma_{st}(x) = (x_{ki} + \delta_{kt}^{st}) \), where \(x = (x_{ki}) \in V \) and \(\delta_{kt}^{st} \) is the Kronecker delta. We put \(G = S_1 \times S_2 \times \cdots \times S_n \), where \(S_i \) is the symmetric group of degree \(i \). The group \(G \) acts on \(V \) in the following way \((s(x))_{ki} = x_{ks(i)} \), where \(s = (s_1, \ldots, s_n) \in G \).

Denote by \(\mathcal{M} \) and by \(\mathcal{O} \) the sheaves of meromorphic and holomorphic functions on \(V \), respectively. Let us take \(f \in H^0(V,\mathcal{M}) \), \(s \in G \) and \(\sigma \in \Gamma \). We set

\[
\begin{align*}
 s(f) &= f \circ s^{-1}, \\
 \sigma(f) &= f \circ \sigma^{-1}, \quad \text{and} \quad s(\sigma) = s \circ \sigma \circ s^{-1}.
\end{align*}
\]

Denote by \(\mathcal{M} \star \Gamma := \bigoplus_{\sigma \in \Gamma} \mathcal{M} \sigma \) the sheaf of meromorphic functions on \(V \) with values in \(G \). In other words, \(\mathcal{M} \star \Gamma \) is the sheaf of meromorphic sections of the trivial bundle \(V \times \bigoplus_{\sigma \in \Gamma} \mathbb{C} \sigma \to V \). An element in \(\mathcal{M} \star \Gamma \) is a finite linear combination of \(f \sigma \), where \(f \in \mathcal{M} \) and \(\sigma \in \Gamma \). There exists a natural structure of a skew group ring on \(H^0(V,\mathcal{M} \star \Gamma) \), see [FO]. Indeed,

\[
\sum_i f_i \sigma_i \circ \sum_j f'_j \sigma'_j := \sum_{ij} f_i \sigma_i(f'_j) \sigma_i \circ \sigma'_j.
\]

Here \(f_i, f'_j \in H^0(V,\mathcal{M}) \) and \(\sigma_i, \sigma'_j \in \Gamma \). This skew ring we will denote by \(\mathcal{R} \). To simplify notations we use \(\circ \) for the multiplication in \(\mathcal{R} \) and for the product in \(\Gamma \). We will also consider the multiplication \(A \star B := B \circ A \) in \(H^0(V,\mathcal{M} \star \Gamma) \). The ring \(\mathcal{R} \) possesses the following action of the group \(G \)

\[
\begin{align*}
 s\left(\sum_i f_i \sigma_i \right) &= \sum_i s(f_i) s(\sigma_i).
\end{align*}
\]
It is easy to see that this action preserves the multiplication in \(\mathcal{R} \). Hence the vector space \(\mathcal{R}^G \) of all \(G \)-invariant elements is a subring in \(\mathcal{R} \).

The classical Gelfand-Tsetlin formulas have the following form in terms of generators:

\[
E_{k,k+1}(T(v)) = -\sum_{i=1}^{k} \frac{\prod_{j=1}^{k+1} (x_{ki} - x_{k+1,j})}{\prod_{j \neq i} (x_{ki} - x_{kj})} T(v + \delta_{ki});
\]

\[
E_{k+1,k}(T(v)) = \sum_{i=1}^{k} \frac{\prod_{j=1}^{k} (x_{ki} - x_{k-1,j})}{\prod_{j \neq i} (x_{ki} - x_{kj})} T(v - \delta_{ki});
\]

\[
E_{k,k}(T(v)) = \left(\sum_{i=1}^{k} (x_{ki} + i - 1) - \sum_{i=1}^{k-1} (x_{k-1,i} + i - 1) \right) (T(v)),
\]

see for instance [FGR1], Theorem 3.6. Here \(E_{st} \in \mathfrak{gl}_n(\mathbb{C}) \), \(T(v) \in V \) is a point in \(V \) with coordinates \(v = (x_{ki}) \) and \(T(v \pm \delta_{ki}) \in V \) is the tableau obtained by adding \(\pm 1 \) to the \((k,i) \)-th entry of \(T(v) \). A Gelfand-Tsetlin tableau is called generic if \(x_{rt} - x_{rs} \notin \mathbb{Z} \) for any \(r \) and for any \(s \neq t \). In the case when \(T(v) \) is a generic Gelfand-Tsetlin tableau Formulas (1) define a \(\mathfrak{gl}_n(\mathbb{C}) \)-module structure on the vector space spanned by the elements of the orbit \(\Gamma(T(v)) \), see for instance Theorem 3.8 in [FGR1] and references therein. Note that the action of \(\Gamma \) in \(V \) is free. Hence, \(\Gamma(T(v)) \simeq \Gamma \) and the elements of the orbit \(\Gamma(T(v)) \) form the Gelfand-Tsetlin basis. Another observation is that the coefficients in Formulas (1) are holomorphic in sufficiently small neighborhood of \(\Gamma(T(v)) \) for a generic \(T(v) \).

There is a natural action of \(\mathcal{R} \) on \(H^0(V, \mathcal{M}) \) that is given by

\[
F \mapsto (f \sigma)(F) := f \sigma(F) = fF \circ \sigma^{-1}.
\]

Let us identify \(T(v) \in V \) with the corresponding evaluation map \(ev_v : H^0(V, \mathcal{O}) \to \mathbb{C}, \ F \mapsto F(v) \). (Note that \(V \) is a Stein manifold, so this identification exists.) Assume that \(R = f_i \sigma_i \in \mathcal{R} \) is holomorphic in a neighborhood of \(v \). Then we have \(ev_v \circ f_i \sigma_i(F) = f_i(v) F(\sigma_i^{-1}(v)) \), where \(F \in H^0(V, \mathcal{O}) \). We put \(R(ev_v) := ev_v \circ R \). In these notations we have \(R_1(R_2(ev_v)) = ev_v \circ (R_2 \circ R_1) = (R_1 * R_2)(ev_v) \), where \(R_1, R_2 \in \mathcal{R} \). Now we can rewrite Formulas (1) in the following form

\[
\Phi(E_{st})(ev_v) = ev_v \circ \Phi(E_{st}). \tag{2}
\]

Here \(\Phi(E_{st}) \in \mathcal{R} \) is defined by Formulas (1). For example,

\[
\Phi(E_{k,k+1}) = -\sum_{i=1}^{k} \frac{\prod_{j=1}^{k+1} (x_{ki} - x_{k+1,j})}{\prod_{j \neq i} (x_{ki} - x_{kj})} \sigma_{ki}^{-1}. \tag{3}
\]
In this formula we interpret x_{ki} as the coordinate functions on V. Now we see that the statement of Theorem 3.8 in [FGR1] is equivalent to

$$
(\Phi(X) \ast \Phi(Y))(ev_v) - (\Phi(Y) \ast \Phi(X))(ev_v) = \Phi([X,Y])(ev_v),
$$

where $X, Y \in \mathfrak{g}$ and v is generic. In [FO] the following theorem was proved.

Theorem 1. [Futorny-Ovsienko] The classical Gelfand-Tsetlin formulas (1) define a homomorphism of rings $\Phi : U(\mathfrak{g}_-) \to \mathcal{R}$, where $\Phi(X), X \in \mathfrak{g}$, is as in (2) and $\mathfrak{g}_- = \mathfrak{gl}_n(\mathbb{C})$ with the multiplication $[X,Y]_\mathfrak{g} = -[X,Y] = Y \circ X - X \circ Y$.

Proof. Let us give a proof of this theorem for completeness using complex analysis. First of all define a homomorphism of the (free associative) tensor algebra $\mathcal{T}(\mathfrak{g})$ to \mathcal{R} using (1). Such a homomorphism always exists because $\mathcal{T}(\mathfrak{g})$ is free. We need to show that the ideal generated by the relation $\Phi(Y) \circ \Phi(X) - \Phi(X) \circ \Phi(Y) - \Phi([X,Y])$ maps to 0 for any $X, Y \in \mathfrak{g}$. In fact we can rewrite Formulas (3) in the following form for any generic $v \in V$, any $X, Y \in \mathfrak{g}$ and any $F \in H^0(V, \mathcal{O})$:

$$
ev_v \circ (\Phi(Y) \circ \Phi(X)(F) - \Phi(X) \circ \Phi(Y)(T)) = ev_v \circ \Phi([X,Y])(F).
$$

Since generic points v are dense in V, the following holds for any holomorphic F:

$$
(\Phi(Y) \circ \Phi(X)(F) - \Phi(X) \circ \Phi(Y)(F)) = \Phi([X,Y])(F).
$$

It is remaining to prove that if $R \in \mathcal{R}$ such that $R(F) = 0$ for any $F \in H^0(V, \mathcal{O})$, then $R = 0$. Indeed, let $R = \sum_{i=1}^S f_i \sigma_i$ and $U \subset V$ be a sufficiently small open set.

Clearly it is enough to prove a local version of our statement for any such U: from $R(F)|_U = 0$ for any $F \in H^0(V, \mathcal{O})$ and $R \in \mathcal{R}|_U$, it follows that $R|_U = 0$.

Firstly assume that all functions f_i are holomorphic in U and $x_0 \in U$. Let us fix $i_0 \in \{1, \ldots, s\}$ and let us take $F \in H^0(V, \mathcal{O})$ such that $F(\sigma_{i_0}^{-1}(x_0)) \neq 0$ and $F(\sigma_{i_0}^{-1}(x_0)) = 0$ for $i \neq i_0$. Then $R(F)(x_0) = (\sum_{i=1}^S f_i \sigma_i(F))(x_0) = f_{i_0}(x_0)F(\sigma_{i_0}^{-1}(x_0)) = 0$. Hence $f_{i_0}(x_0) = 0$. Therefore, $f_{i_0}|_U = 0$ for any i_0 and $R|_U = 0$.

Further, by induction assume that our statement holds for $(q-1)$ non-holomorphic in U coefficients f_1, \ldots, f_{q-1}, where $q - 1 < s$. Consider meromorphic in U functions $f_1 = g_1/h_1, \ldots, f_q$, where g_1, h_1 are holomorphic in U without common non-invertible factors. Then $h_1R \in \mathcal{R}|_U$ satisfies the equality $h_1R(F)|_U = 0$ for any F and it has $(q - 1)$ non-holomorphic summands. Therefore, $h_1R|_U = 0$ and in particular $g_1 = 0$. \square

Remark. It is well-known that the image $\Phi(U(\mathfrak{g}_-))$ is G-invariant. This fact can be also verified directly.

The interpretation of a point $T(v)$ as an evaluation map ev_v suggests a possibility to define a $\mathfrak{gl}_n(\mathbb{C})$-module structure on local distributions, i.e. on linear
maps $D_v : \mathcal{O}_v \to \mathbb{C}$ with $m^*_v \subset \text{Ker}(D_v)$, where $s > 0$ and m_v is the maximal ideal in the local algebra \mathcal{O}_v. In [FGR1] the authors consider formal limits $\lim_{v \to v_0} (T(v + z) - T(v + \tau(z)))/(x_{ki} - x_{kj})$, where $\tau \in G$ is a certain involution, $i \neq j$, $v_0 \in V$ is an 1-singular tableau, see Section 5, and v is a generic tableau. In fact this limit may be interpreted as a sum of local distributions, see Section 5. However geometric interpretations were not given in [FGR1]. The idea to use local distributions we develop in the present paper. In more details, let $R \in R$ and D_v be a local distribution. We have an action of (R, \ast) on local distributions defined by $R(D_v) = D_v \circ R$. Indeed, $(R_1 \ast R_2)(D_v) = D_v \circ R_1 \circ R_2 = R_1(R_2(D_v)), R_i \in R$.

By Theorem 1 we have $(\Phi(X) \ast \Phi(Y))(D_v) - (\Phi(Y) \ast \Phi(X))(D_v) = \Phi([X, Y])(D_v)$, if this expression is defined, and $D_v \mapsto \Phi(X)(D_v)$ gives a structure of a $\mathfrak{gl}_n(\mathbb{C})$-module on local distributions. Our goal now is to find orbits $\Gamma(o)$ and describe local distributions at points of $\Gamma(o)$ such that this formula is defined.

3 Gelfand-Tsetlin modules

In this section we follow [FGR1, Z]. Consider the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ of $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$. We have the following sequence of subalgebras

$$\mathfrak{gl}_1(\mathbb{C}) \subset \mathfrak{gl}_2(\mathbb{C}) \subset \cdots \subset \mathfrak{gl}_n(\mathbb{C}).$$

This sequence induces the sequence of the corresponding enveloping algebras

$$\mathcal{U}(\mathfrak{gl}_1(\mathbb{C})) \subset \cdots \subset \mathcal{U}(\mathfrak{gl}_n(\mathbb{C})).$$

Denote by Z_m the center of $\mathcal{U}(\mathfrak{gl}_m(\mathbb{C}))$, where $1 \leq m \leq n$. The subalgebra Υ in $\mathcal{U}(\mathfrak{gl}_n(\mathbb{C}))$ generated by elements of Z_m, where $1 \leq m \leq n$, is called the Gelfand-Tsetlin subalgebra of $\mathcal{U}(\mathfrak{gl}_n(\mathbb{C}))$. This subalgebra is the polynomial algebra with $n(n+1)/2$ generators (c_{ij}), where $1 \leq j \leq i \leq n$, see [FGR1], Section 3. Explicitly these generators are given by

$$c_{ij} = \sum_{(s_1, \ldots, s_j) \in \{1, \ldots, i\}^j} E_{s_1s_2}E_{s_2s_3} \cdots E_{s_js_1},$$

where E_{st} form the standard basis of $\mathfrak{gl}_n(\mathbb{C})$.

Definition. [Definition 3.1, [FGR1]] A finitely generated $\mathcal{U}(\mathfrak{gl}_n(\mathbb{C}))$-module M is called a Gelfand-Tsetlin module with respect to Υ if M splits into a direct sum of Υ-submodules:

$$M = \bigoplus_m M(m),$$

5
where the sum is taken over all maximal ideals \(m \) in \(\Upsilon \). Here
\[
M(m) = \{ v \in M \mid m^q(v) = 0 \text{ for some } q \geq 0 \}.
\]

For the following theorem we refer [FGR1], Section 3 and [Z], Theorem 2. Compare also with Theorem 1.

Theorem 2. The image \(\Phi(\Upsilon) \) coincides with the subalgebra of polynomials in \(H^0(V, O^G) \). In other words, for any \(X \in \Upsilon \) we have \(\Phi(X) = F \text{id} \), where \(F \) is a \(G \)-invariant polynomial.

Corollary. All modules corresponding to the homomorphism \(\Phi \) with a basis forming by local distributions on \(V \) are Gelfand-Tsetlin modules.

Proof. Indeed, let \(D_v \) be a local distribution on \(V \). Then for any \(X \in \Upsilon \) we have
\[
\Phi(X)(D_v) = D_v \circ \Phi(X) = D_v \circ (F \text{id}).
\]
By definition of a local distribution, \(D_v \) annihilates \(m_q \) for some \(q > 0 \), where \(m_v \) is the maximal ideal in \(H^0(V, O) \). In particular, \(D_v \) annihilates a degree of the corresponding to \(m_v \) maximal ideal in \(\Phi(\Upsilon) \).

4 Alternating holomorphic functions

An alternating polynomial is a polynomial \(f(x_1, \ldots, x_n) \) such that
\[
f(\tau(x_1), \ldots, \tau(x_n)) = (-1)^\tau f(x_1, \ldots, x_n),
\]
for any \(\tau \in S_n \). An example of an alternating polynomial is the Vandermonde determinant
\[
V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i).
\]
In fact this example is in some sense unique. More precisely, we need the following property of alternating polynomials.

Proposition 1. Any alternating polynomial \(f(x_1, \ldots, x_n) \) can be written in the form \(f = V_n \cdot g \), where \(g = g(x_1, \ldots, x_n) \) is a symmetric polynomial.

Proof. The proof follows from the following facts. Firstly every alternating polynomial \(f \) vanishes on the subvariety \(x_i = x_j \), where \(i \neq j \). Hence \((x_i - x_j) \) is a factor of \(f \) and therefore \(V_n \) is also a factor of \(f \). Secondly it is clear that the ratio \(g = f/V_n \) is a symmetric polynomial.

Corollary. Let \(F = F(x_1, \ldots, x_n) \) be a holomorphic alternating function, i.e \(F(\tau(x_1), \ldots, \tau(x_n)) = (-1)^\tau F(x_1, \ldots, x_n) \) for any \(\tau \in S_n \). Then \(F = V_n \cdot G \), where \(G = G(x_1, \ldots, x_n) \) is a symmetric holomorphic function.
We will use this Corollary in Gelfand-Tsetlin Theory. Let \(o = (x_{0ij}^o) \in V \) be a Gelfand-Tsetlin tableau such that \(x_{0k1}^o = \cdots = x_{0k_p}^o \), where \(p \geq 2 \). Denote by \(W \) a sufficiently small neighborhood of the orbit \(\Gamma(o) \). For simplicity we put \(x_j := x_{kij} \). Let \(V_p = \mathcal{V}(x_1, \ldots, x_p) \) and \(S_p \subset G \) be the permutation group of \((x_1, \ldots, x_p) \). We need the following proposition.

Proposition 2. Let \(A_j = \sum (H_j^i) / \mathcal{V}_p \sigma_i \in R \), where \(j = 1, \ldots, q \), and \(H_j^i \) are holomorphic in \(W \), be \(S_p \)-invariant elements in \(R \). Then \(A_1 \circ \cdots \circ A_q = \sum (G_i / \mathcal{V}_p) \sigma_i \), where \(G_i \) are holomorphic at \(o \).

Proof. Assume by induction that for \(k = q - 1 \) our statement holds. In other words, assume that \(A_1 \circ \cdots \circ A_{q-1} = \sum (G_i / \mathcal{V}_p) \sigma_i \), where \(G_i \) are holomorphic at \(o \). We have

\[
A_1 \circ \cdots \circ A_q = \sum_{i,j} G_i \sigma_i (H_j^i) / \mathcal{V}_p \sigma_i (\mathcal{V}_p) \sigma_i \circ \sigma_j.
\]

Assume that \((G_i / \mathcal{V}_p) \sigma_i (H_j^i) / \mathcal{V}_p) \sigma_i (\mathcal{V}_p) \sigma_i \) is singular at \(o \). Note that \(G_i \sigma_i (H_j^i) \) is holomorphic at \(o \). Let \(\sigma_i(x_1, \ldots, x_p) = (x_1 + m_1, \ldots, x_p + m_p) \), where \(m_i \in \mathbb{Z} \). Hence,

\[
\sigma_i (\mathcal{V}_p) = \prod_{1 \leq i < j \leq p} (x_j - x_i + m_j - m_i).
\]

If \((G_i / \mathcal{V}_p) \sigma_i (H_j^i) / \mathcal{V}_p \) is singular at \(o \), we have \(m_{i_1} = \cdots = m_{i_r} \), where \(r \leq p \). For instance, \(\tau (\sigma_{i_0}) = \sigma_{i_0} \) for any \(\tau \in S_r \), where \(S_r \) is the permutation group of \((x_{i_1}, \ldots, x_{i_r}) \). The product \(\sum (G_i / \mathcal{V}_p) \sigma_i \) is \(S_p \)-invariant since \(A_s \) are \(S_p \)-invariant by assumption. Since \(\sigma_{i_0} \) is \(S_r \)-invariant and the decomposition \(\sum (G_i / \mathcal{V}_p) \sigma_i \in R \) is unique, the function \(G_{i_0} / \mathcal{V}_p \) is \(S_r \)-invariant. Therefore the holomorphic function \(G_{i_0} \) is \(S_r \)-alternating. By Corollary of Proposition 1, we have \(G_{i_0} = \mathcal{V}_r (x_{i_1}, \ldots, x_{i_r}) G_{i_0} \). Hence, \((G_i / \mathcal{V}_p) \sigma_i (H_j^i) / \mathcal{V}_p) \sigma_i (\mathcal{V}_p) \) is holomorphic at \(o \). \(\square \)

5 Main results

Let \(o = (x_{ij}^o) \) be a Gelfand-Tsetlin tableau such that \(x_{0k1}^o = \cdots = x_{0k_p}^o \), where \(p \geq 2 \), and such that \(x_{st}^0 - x_{sr}^0 \notin \mathbb{Z} \) otherwise. We will call the orbits \(\Gamma(o) \) of such points \(p \)-singular and corresponding modules \(p \)-singular Gelfand-Tsetlin \(\mathfrak{gl}_n(\mathbb{C}) \)-modules. The stabilizer \(G_o \subset G \) of \(o \) is isomorphic to the permutation group \(G_o \simeq S_p \). We put \(z_{rt} = x_{kri} - x_{kjt} \), where \(r \neq t \). Then \(\frac{\partial}{\partial z_{rt}} = \frac{1}{2} (\frac{\partial}{\partial x_{kri}} - \frac{\partial}{\partial x_{kjt}}) \) are the corresponding
derivations. Let us fix a sufficiently small neighborhood \(W \) of the orbit \(\Gamma(o) \) such that \(W \) is \(\Gamma \) and \(G \)-invariant. We put

\[
\mathcal{L} := ev_o \circ \frac{\partial}{\partial z_{12}} \circ \cdots \circ \frac{\partial}{\partial z_{1p}} \circ \cdots \circ \frac{\partial}{\partial z_{p-1,p}} \cdot z_{12} \cdots z_{1p} z_{23} \cdots z_{p-1,p}.
\]

Clearly \(\mathcal{L} \) is \(S_p \)-invariant. Indeed, \(z_{12} \cdots z_{1p} z_{23} \cdots z_{p-1,p} \) is equal in fact to the Vandermonde determinant \(V_p \) in \(x_{ki_1}, \ldots, x_{ki_p} \). Hence it is alternating, see Section 4. On the other side, \(\tau(\frac{\partial}{\partial z_{1i}}) = \tau \circ \frac{\partial}{\partial z_{1i}} \circ \tau^{-1} = \frac{\partial}{\partial z_{1i}(\tau(o))} \). Therefore the sequence of derivations in \(\mathcal{L} \) is also alternating. Further we put

\[
T := \{(12), \ldots, (1p), (23), \ldots, (p-1, p)\}
\]

and \(I, J \) are two subsets in \(T \) such that \(I \cup J = T \) and \(I \cap J = \emptyset \). Then the elements \(z_T, z_I, z_J \) and the elements \(\frac{\partial}{\partial z_T}, \frac{\partial}{\partial z_I}, \frac{\partial}{\partial z_J} \) are the product and the composition of the corresponding \(z_{ij} \), respectively. In this notations \(\mathcal{L} = ev_o \circ \frac{\partial}{\partial z_T} \cdot z_T \). Note that \(z_T = V_p \). For any subset \(I \subset T \) and \(\sigma_i \in \Gamma \), consider the following sum of local distributions

\[
D_{I,\sigma_i} := \mathcal{L} \circ \sum_{\tau \in S_p} (-1)^{\tau} \tau(z_I \sigma_i)/z_T.
\]

Clearly, we have the following relations

\[
D_{I,\sigma_i} = (-1)^{\tau'} D_{\tau'(I),\tau'(\sigma_i)}, \quad \tau' \in S_p.
\] (4)

And we do not have other relations here. We need the following proposition.

Proposition 3. Let us take \(\sum_i h_i \sigma_i \in \mathcal{R} \) an \(S_p \)-invariant element that satisfies conditions of Proposition 2 at \(o \). Then we have the following equality of holomorphic operators

\[
\mathcal{L} \circ \left(\sum_i h_i \sigma_i \right) = \frac{1}{|S_p|} \sum_{I,i} \frac{\partial g_i}{\partial z_I} (o) D_{I,\sigma_i},
\] (5)

where \(g_i = z_T h_i \) and \(T \) and \(I \) are as above. In other words Formula (5) means that \((\sum_i h_i \sigma_i)(\mathcal{L}) \) is a linear combination of the local distributions \(D_{I,\sigma_i} \).

Proof. We have

\[
\mathcal{L}(h_i \sigma_i) = ev_o \circ \frac{\partial}{\partial z_T} \circ g_i \sigma_i = ev_o \circ \left(\sum_I \frac{\partial g_i}{\partial z_I} \frac{\partial}{\partial z_J} \circ \sigma_i \right) = \\
\sum_I \frac{\partial g_i}{\partial z_I} (o) \left(ev_o \circ \frac{\partial}{\partial z_J} \frac{\partial}{\partial z_I} \circ z_i \sigma_i \right) = \sum_I \frac{\partial g_i}{\partial z_I} (o) \left(ev_o \circ \frac{\partial}{\partial z_T} \cdot z_T \circ \sigma_i \right) = \\
\sum_I \frac{\partial g_i}{\partial z_I} (o) \left(\mathcal{L} \circ \frac{\sigma_i}{z_J} \right).
\]
Since $L(h_\sigma_i)$ is S_p-invariant, we have:

$$|S_p|L(h_\sigma_i) = \sum \frac{\partial g_i}{\partial z_I}(o) \mathcal{L} \circ \left(\sum_{\tau \in S_p} \frac{(-1)^\tau(z_I\sigma_i)}{z_T} \right) = \sum \frac{\partial g_i}{\partial z_I}(o) \mathcal{L} \circ D_{I,\sigma_i}.$$

The proof is complete. □

Theorem 3. [Main result 1] Let \mathfrak{g} be any Lie algebra and $\Phi : \mathcal{U}(\mathfrak{g}) \to \mathcal{R}$ be a homomorphism of rings. If $\Phi(\mathfrak{g})$ is generated by elements satisfying the conditions of Proposition 2, then the vector space spanned by the elements D_{I,σ_i}, where $I \subset T$ is a subset and $\sigma_i \in \Gamma$, up to relations (4) form a basis for the \mathfrak{g}-module.

Proof. Assume that $\Phi(\mathfrak{g})$ is generated by A_i as in Proposition 2. By this proposition we see that any product of such generators has the form $\sum (G_i/\mathcal{V}_p)\sigma_i$, where G_i are holomorphic at o. We need to prove that $\sum (G_i/\mathcal{V}_p)\sigma_i(D_{I,\sigma_j})$ is a linear combination of $D_{I',\sigma_{j'}}$. We have

$$\sum (G_i/\mathcal{V}_p)\sigma_i(D_{I,\sigma_j}) = D_{I,\sigma_j} \circ \sum (G_i/\mathcal{V}_p)\sigma_i =$$

$$\mathcal{L} \circ \left(\sum_{\tau \in S_p} \frac{(-1)^\tau(z_I\sigma_j)}{\mathcal{V}_p} \right) \circ \sum_i (G_i/\mathcal{V}_p)\sigma_i.$$

Now we apply Proposition 2 to the composition in the last line. The result follows from Proposition 3. □

Note that the classical Gelfand-Tsetlin generators (1) satisfy conditions of Proposition 2.

Theorem 4. [Main result 2] The vector space spanned by the elements D_{I,σ_i}, where $I \subset T$ is a subset and $\sigma_i \in \Gamma$, up to relations (4) form a basis for the $\mathfrak{gl}_n(\mathbb{C})$-module. By Corollary of Theorem 2, this module is a Gelfand-Tsetlin module.

Remark. The basis of elements D_{I,σ_i}, where $I \subset T$ is a subset and $\sigma_i \in \Gamma$, up to relations (4), can be simplified in some cases. In other words sometimes we can find a natural submodules in the corresponding module. It depends on the singularity type of $\Phi(\mathcal{U}(\mathfrak{g}))$ at o. It is required in Theorem 3 than the singularity type is not more than \mathcal{V}_p. However, if the singularity type of $\Phi(\mathcal{U}(\mathfrak{g}))$ at o is less than type of \mathcal{V}_p, Formula (5) says that we can reduce our basis.

6 Case of singularity 1

The result of this section is published in [Vi]. Let us fix an 1-singular point $o = (x^0_{k_j}) \in V$ such that $x^0_{k_i} - x^0_{k_j} \in \mathbb{Z}$. We put $z_1 = x_{k_i} - x_{k_j}$. Let W be a
sufficiently small neighborhood of the orbit $\Gamma(o) = \Gamma(x^0)$ that is invariant with respect to the group Γ and with respect to $\tau \in G$, where $\tau \in G$ is defined by $\tau(z_1) = -z_1$ and $\tau(z_i) = z_i$, $i > 1$. In this case we have

$$\mathcal{L} := ev_o \circ \frac{\partial}{\partial z_1} \cdot z_1.$$

In this case our basis has the following form

$$D_1^\sigma := \mathcal{L} \circ (\sigma + \tau(\sigma)), \quad D_2^{\sigma'} := \mathcal{L} \circ \frac{\sigma' - \tau(\sigma')}{z_1}, \quad \sigma, \sigma' \in \Gamma.$$

(6)

Here D_1^σ is the sum of two local distributions $\mathcal{L} \circ \sigma$ at the point $\sigma^{-1}(o)$ and $\mathcal{L} \circ \tau(\sigma)$ at the point $(\tau(\sigma))^{-1}(o)$. The same holds for $D_2^{\sigma'}$. We have the following equalities

$$D_1^{\tau(\sigma)} = D_1^\sigma \quad \text{and} \quad D_2^{\tau(\sigma')} = -D_2^{\sigma'}.$$

(7)

From Theorem 4 it follows that the local distributions $D_1^\sigma, D_2^{\sigma'}$ up to relations (7) form a basis for a $\mathfrak{gl}_n(\mathbb{C})$-module. This $\mathfrak{gl}_n(\mathbb{C})$-module was constructed in [FGR1] and it was called the universal 1-singular Gelfand-Tsetlin module. We can reformulate Theorem 4 in this case as follows.

Theorem 5. The vector space spanned by $(D_1^\sigma, D_2^{\sigma'})$ up to relations (7), where $\sigma, \sigma' \in \Gamma$, is a $\mathfrak{gl}_n(\mathbb{C})$-module. The action is given by Formulas (5).

So we reproved Theorem 4.11 from [FGR1]. The explicit correspondence between notation in [FGR1] and our notations can be deduced from

$$\mathcal{D}T(v + z) := D_2^{\sigma'}(T(v)), \quad \mathcal{D}^{\sigma}(F) = \frac{\partial}{\partial z_1} \bigg|_o (F),$$

where $\sigma'(v) = v + z$ and $T(v)$ and F are holomorphic function on W.

References

[FGR1] Futorny V., Grantcharov D., Ramirez, L.E. Singular Gelfand-Tsetlin modules of $\mathfrak{gl}(n)$. Advances in Mathematics, Volume 290, 26 February 2016, Pages 453-482.

[FGR2] Futorny V., Grantcharov D., Ramirez, L.E. Drinfeld category and the classification of singular Gelfand-Tsetlin $\mathfrak{gl}(n)$-modules. arXiv:1704.01209.

[FO] Futorny V., Ovsienko S. Galois orders. arXiv:math/0610069.
[Vi] Vishnyakova E. Geometric approach to 1-singular Gelfand-Tsetlin \mathfrak{gl}_n-modules, arXiv:1704.00170.

[Z] Zadunaisky P. A new way to construct 1-singular Gelfand-Tsetlin modules. Algebra and Discrete Mathematics, Volume 23 (2017). Number 1, pp. 180-193. Communicated by V. M. Futorny, received by the editors: 21.03.2017, and in final form 30.03.2017.

Elizaveta Vishnyakova
Universidade Federal de Minas Gerais, Brazil
E-mail address: VishnyakovaE@googlemail.com