CONVEXITY OF λ-HYPERSURFACES

TANG-KAI LEE

Abstract. We prove that any n-dimensional closed mean convex λ-hypersurface is convex if $\lambda \leq 0$. This generalizes Guang’s work on 2-dimensional strictly mean convex λ-hypersurfaces. As a corollary, we obtain a gap theorem for closed λ-hypersurfaces with $\lambda \leq 0$.

1. Introduction

A hypersurface M^n in \mathbb{R}^{n+1} is called a λ-hypersurface if it satisfies

\begin{equation}
H - \frac{\langle x, n \rangle}{2} = \lambda
\end{equation}

where H is the mean curvature, n is the outer unit normal of M, x is the position vector, and λ is a constant. This equation arises in the study of isoperimetric problems in weighted (Gaussian) Euclidean spaces (c.f. [MR15]), which is a long-standing topic studied in various fields in science ([Led94], [Bar01], [Bor03], etc.). Recently, Cheng and Wei [CW18] defined a weighted volume functional, and showed that the critical points of the functional under some weighted volume-preserving variations are exactly λ-hypersurfaces.

When $\lambda = 0$, λ-hypersurfaces are exactly self-shrinkers. Self-shrinkers play an important role in the study of mean curvature flow (MCF), since White [Whi97] and Ilmanen [Ilm95] showed that self-shrinkers arise as the tangent flows of MCF based on Huisken’s monotonicity formula [Hui90] and Brakke’s compactness theorem [Bra78]. Many classification results of self-shrinkers were proposed. Abresch and Langer [AL86] showed that the only 1-dimensional closed embedded self-shrinker is the circle S^1. Huisken [Hui90] later dealt with the higher-dimensional cases, proving that any closed, embedded, and mean convex (which means $H \geq 0$) n-dimensional self-shrinkers are exactly spheres S^n. For the non-compact situation, Huisken [Hui93] proved that all smooth, embedded, and mean convex self-shrinkers with polynomial volume growth and bounded second fundamental form are generalized cylinders $S^k \times \mathbb{R}^{n-k}$. This result was later improved by Colding and Minicozzi [CM12], in which they removed the condition of bounded second fundamental form in Huisken’s classification.

When $\lambda \neq 0$, there are relatively few and incomplete classification results so far. In [CW18], Cheng and Wei characterized compact λ-hypersurfaces with $H - \lambda \geq 0$ and some curvature conditions (c.f. theorem 5.1). Inspired by [SX20], Guang [Gua21] showed that any strictly mean convex (which means $H > 0$) 2-dimensional λ-hypersurfaces are in fact convex if $\lambda \leq 0$. The main goal of this paper is to generalize Guang’s result to higher-dimensional mean convex λ-hypersurfaces.

Date: June 21, 2021.

2010 Mathematics Subject Classification. 53C42.
Theorem 1.2. Let M^n be a smooth, closed, and embedded λ-hypersurface in \mathbb{R}^{n+1} with $\lambda \leq 0$. If M is mean convex, then it is convex.

This theorem is a generalization of Guang’s result in [Gua21]. Guang used the explicit expressions for the derivatives of the principal curvatures at the non-umbilical points of a surface, which were first derived in [HIMW19]. We follow the same spirit to derive a differential inequality for the sum of a part of principal curvatures at the points where there is a gap among some principal curvatures (c.f. lemma 3.1). Though we could not derive similar explicit expressions, it turns out that the information we derive is sufficient to obtain the higher-dimensional generalization. Also, we use the maximum principle to weaken the assumption of strict mean convexity in [Gua21], which Huisken [Hui90] also applied when classifying closed mean convex self-shrinkers.

A natural further question is whether Huisken-type classification also holds for λ-hypersurfaces. That is, could we classify all λ-hypersurfaces given some curvature conditions, like mean-convexity? In the curve case, Guang [Gua18] proved that any smooth embedded 1-dimensional λ-hypersurface (or λ-curve) is either a straight line or a circle if $\lambda \geq 0$, which generalized Abresch and Langer’s result. For the higher dimensional case, Heilman [Hei17] proved that convex n-dimensional λ-hypersurfaces are generalized cylinders if $\lambda \geq 0$. However, when $\lambda < 0$, Chang [Cha17] showed that for certain $\lambda < 0$, there are some closed embedded mean convex λ-curves other than circles. Thus we could not expect Huisken-type results to hold for general $\lambda \in \mathbb{R}$. We hope that theorem 1.2 will shed some light on the higher-dimensional case when $\lambda \leq 0$. In particular, using the curvature condition discovered in [CW18], we can prove the following gap theorem for mean convex λ-hypersurfaces when $\lambda \leq 0$.

Theorem 1.3. Let M^n be a smooth, closed, and embedded λ-hypersurface in \mathbb{R}^{n+1}. If $\lambda \leq 0$ and the mean curvature of M satisfies

$$0 \leq H \leq \frac{\sqrt{\lambda^2 + 2} + \lambda}{2},$$

then M is a round sphere.

We remark that if we assume M is a convex λ-hypersurface, then the result of theorem 1.3 could also be derived from the gap theorem proven by Guang [Gua18]. What’s new here is that we only need to assume $H \geq 0$, and then by theorem 1.2 we can get the convexity.

The organization of this paper is as follows. In section 2, we will introduce the Simons-type identities for λ-hypersurfaces, which was given by Guang in [Gua18]. In section 3, we derive a differential inequality for the sum of a part of principal curvatures at the points where there is a gap among some principal curvatures. In section 4, we use the identities and the inequality in the preceding sections to prove the main theorem 1.2. In section 5, we prove a gap theorem 1.3 by applying Cheng and Wei’s theorem.

Acknowledgement. The author is grateful to Prof. Bill Minicozzi for his helpful and inspiring comments. He also appreciates Kai-Hsiang Wang’s indications on some deficiencies in an earlier draft, and Qiang Guang’s generosity on sharing some useful references. This work was completed
when the author visited the National Center for Theoretical Science (NCTS) in Taiwan, and the author is also grateful for much helpful discussion with people in NCTS.

2. Simons-type Identities

On a hypersurface M in \mathbb{R}^{n+1}, we consider the drift Laplacian
\[\mathcal{L} := \Delta - \frac{1}{2} \nabla_{x^T} (\cdot) \]
and also the following linear operator
\[L := \mathcal{L} + |A|^2 + \frac{1}{2} = \Delta - \frac{1}{2} \nabla_{x^T} (\cdot) + |A|^2 + \frac{1}{2} \]
where Δ and A denote the Laplacian operator and the second fundamental form of M, and x^T is the tangential component (with respect to M) of the position vector x. These operators were introduced by Colding and Minicozzi to study the stability of self-shrinkers. In fact, the operator L appears in the second variation formula of the F-functional (c.f. [CM12]).

Guang [Gua18] established the following Simons-type identities. These identities will play a crucial role in the proof of the main theorem 1.2. We remark that these kinds of identities have been developed in [CM12] and [CM15] for self-shrinkers. For completeness, we include the proof in [Gua18] here.

Lemma 2.1 ([Gua18]). If M is a λ-hypersurface in \mathbb{R}^{n+1}, then
\[LA = A - \lambda A^2 \] (2.2)
and in particular, taking the trace of (2.2) gives
\[LH = H + \lambda |A|^2. \] (2.3)

(Proof.) For any fixed $p \in M$, take a local orthonormal frame $\{e_i\}_{i=1,\ldots,n}$ such that $\nabla_{e_i} e_j = 0$ for all i and j, where ∇^M is the Riemannian connection of M. Thus we can write $\nabla_{e_i} e_j = a_{ij} n$ where a_{ij} is the component of the second fundamental form A. As a result,
\[\text{Hess}_{(x,n)}(e_i, e_j) = \nabla_{e_j} \nabla_{e_i} \langle x, n \rangle = \nabla_{e_j} \sum_{l=1}^{n} \langle x, -a_{il} e_l \rangle \]
\[= -a_{ij} + \sum_{l=1}^{n} (-a_{il} \langle x, e_l \rangle - a_{il} \langle x, a_{lj} n \rangle) \]
\[= -A(e_i, e_j) - (\nabla_{x^T} A)(e_i, e_j) - \langle x, n \rangle A^2(e_i, e_j) \]
where $a_{il,j}$ is the component of ∇A, and we use the Codazzi equation $a_{il,j} = a_{ij,l}$. In conclusion, we derive
\[\text{Hess}_{(x,n)} = -A - \nabla_{x^T} A - \langle x, n \rangle A^2. \] (2.4)
Plug this into the Simons identity
\[\Delta A = -|A|^2 A - HA^2 - \text{Hess}_H \] (2.5)
which holds for any hypersurface in \(\mathbb{R}^n \) (c.f. the formula (2.14) in [CM11]), and we get

\[
LA = \Delta A - \frac{1}{2} \nabla_x r(A) + |A|^2 A + \frac{1}{2} A
\]

\[
= A - \left(H - \frac{\langle x, n \rangle}{2} \right) A^2
\]

\[
= A - \lambda A^2
\]

based on the \(\lambda \)-hypersurface equation (1.1). (2.3) follows directly after taking the trace since \(\text{tr} A = -H \).

\[\square\]

3. Estimates of Principal Curvatures

In this section, we let \(M \) be a smooth mean convex hypersurface in \(\mathbb{R}^{n+1} \). Besides, we will write \(k_1 \leq \cdots \leq k_n \) to be the principal curvatures of \(M \) in the ascending order. For \(l \geq 1 \), consider

\[
S_l := \sum_{m=l+1}^{n} k_m,
\]

which is the sum of the largest \(n-l \) principal curvatures. In general, \(S_l \) is just a continuous function on \(M \). However, if \(k_l < k_{l+1} \) at a point \(p \in M \), the inverse function theorem will imply \(k_1 + \cdots + k_l \) and thus \(S_l \) are both differentiable near \(p \). At such a point, we establish the following differential inequality for \(S_l \).

Lemma 3.1. Suppose \(k_l < k_{l+1} \) for some \(l \geq 1 \) at a point \(p \in M \). Then at \(p \), we have

\[
(LS_l) \geq \frac{S_l}{2} - |A|^2 S_l + \lambda \sum_{m=l+1}^{n} k_m^2.
\]

Proof. We only need to consider those points near which we could take a principal frame \(\{v_1, \cdots, v_n\} \) such that

\[
k_i = -a_{ii} := -A(v_i, v_i)
\]

and

\[
a_{ij} := A(v_i, v_j) = 0 \text{ for } 1 \leq i \neq j \leq n.
\]

Such points form a dense and open set in \(M \) (c.f. [Sin75]), so after proving (3.2) at these points, it follows that (3.2) holds for all \(p \in \{k_l < k_{l+1}\} \) by continuity.

Now assume \(v_1, \cdots, v_n \) form a principal frame near \(p \). For any fixed \(i \), since \(\langle v_i, v_i \rangle = 1 \), we have

\[
\langle \nabla v_i, v_i \rangle = \frac{1}{2} \nabla v \langle v_i, v_i \rangle = 0
\]

for any local vector field \(v \). Hence we can write

\[
\nabla v_i v_m = \sum_{j \neq m} c^{mj}_i v_j
\]
for some smooth functions c_{ij}^{mj} near p. Based on (3.10) and (3.6), near the point p, we have

$$\nabla_v k_m = -\nabla_v (A(v_m, v_m)) = -(\nabla_v A)(v_m, v_m) + 2A(\nabla_v v_m, v_m) = -(\nabla_v A)(v_m, v_m),$$

so

$$\Delta k_m = -\sum_{i=1}^{n} \nabla_v \nabla_v (A(v_m, v_m)) = -\sum_{i=1}^{n} \nabla_v ((\nabla_v A)(v_m, v_m))$$

$$= -(\Delta A)(v_m, v_m) - 2\sum_{i=1}^{n} (\nabla_v A)(\nabla_v v_m, v_m)$$

(3.7)

$$= -(\Delta A)(v_m, v_m) - 2\sum_{i=1}^{n} \sum_{j\neq m} c_{ij}^{mj} a_{jm,i}$$

by (3.6). To calculate the term involving the derivative of the second fundamental form, notice that for $j \neq m$, $A(v_j, v_m) = 0$, based on which we have

$$0 = \nabla_v (A(v_j, v_m))$$

$$= a_{jm,i} + A(\nabla_v v_j, v_m) + A(v_j, \nabla_v v_m)$$

$$= a_{jm,i} + A(\sum_{l\neq j} c_{lj}^{mj} v_l, v_m) + A(v_j, \sum_{l\neq m} c_{il}^{ml} v_l)$$

(3.8)

$$= a_{jm,i} - c_{ij}^{jm} k_m - c_{ij}^{mj} k_j$$

where we use the decomposition (3.6) and the relations (3.3) and (3.4). To get a more precise form, observe that the orthogonality condition $\langle v_j, v_m \rangle = 0$ implies

(3.9)

$$0 = \nabla_v \langle v_j, v_m \rangle = \langle \nabla_v v_j, v_m \rangle + \langle v_j, \nabla_v v_m \rangle = c_{ij}^{jm} + c_{ij}^{mj}$$

due to the orthonormality and (3.6). Putting (3.9) back into (3.8), we obtain

$$0 = a_{jm,i} + c_{ij}^{mj} (k_m - k_j),$$

with which we could simplify (3.7) as

(3.10)

$$\Delta k_m = -(\Delta A)(v_m, v_m) + 2\sum_{i=1}^{n} \sum_{j\neq m} (c_{ij}^{mj})^2 (k_m - k_j).$$

Now we apply the Simons-type identity (2.2), which gives

$$(\Delta A)(v_m, v_m) = \frac{1}{2}(\nabla_x A)(v_m, v_m) + \frac{1}{2}A(v_m, v_m) - |A|^2 A(v_m, v_m) - \lambda A^2 (v_m, v_m).$$

$$= -\frac{1}{2}\nabla_x k_m - \frac{1}{2}k_m + |A|^2 k_m - \lambda k_m^2.$$

Combining this with (3.10), we derive

$$\Delta k_m = \frac{1}{2}\nabla_x k_m + \frac{1}{2}k_m - |A|^2 k_m + \lambda k_m^2 + 2\sum_{i=1}^{n} \sum_{j\neq m} (c_{ij}^{mj})^2 (k_m - k_j).$$
As a result,
\[\mathcal{L} k_m = \Delta k_m - \frac{1}{2} \nabla_x^T k_m = \frac{1}{2} k_m - |A|^2 k_m + \lambda k_m^2 + 2 \sum_{i=1}^n \sum_{j \neq m} (c_{ij}^m)^2 (k_m - k_j). \]

Therefore, summing over \(m \) from \(l+1 \) to \(n \) leads to
\[\mathcal{L} S_l = \sum_{m=l+1}^n \mathcal{L} k_m = \frac{1}{2} \sum_{m=l+1}^n k_m - |A|^2 \sum_{m=l+1}^n k_m + \lambda \sum_{m=l+1}^n k_m^2 + 2 \sum_{m=l+1}^n \sum_{i=1}^n \sum_{j \neq m} (c_{ij}^m)^2 (k_m - k_j) \]
\[= \frac{1}{2} S_l - |A|^2 S_l + \lambda \sum_{m=l+1}^n k_m^2 + 2 \sum_{m=l+1}^n \sum_{i=1}^n \sum_{j \neq m} (c_{ij}^m)^2 (k_m - k_j) \]
where some of the terms in the large sum get cancelled when \(m \) and \(j \) are switched since (3.9) implies
\[(c_{ij}^m)^2 = (c_{ji}^m)^2 \]
for all \(j \neq m \). Then the inequality (3.2) follows since by our convention, \(k_m - k_j \geq 0 \) for all \(m > l \geq j \).

\[\square \]

4. Proof of the Main Theorem

We are in a position to prove the main theorem 1.2 using lemma 2.1 and 3.1. We state the main theorem here again.

Theorem 4.1. Let \(M^n \) be a smooth, closed, and embedded \(\lambda \)-hypersurface in \(\mathbb{R}^{n+1} \) with \(\lambda \leq 0 \). If \(M \) is mean convex, then it is convex.

(Proof.) The case with \(\lambda = 0 \) directly follows from the classification of closed mean convex self-shrinkers, so we may assume \(M \) is a mean convex \(\lambda \)-hypersurface with \(\lambda < 0 \).

First we show that \(M \) is strictly convex. In fact, (2.3) implies
\[\Delta H - \frac{1}{2} \nabla_x^T H + \left(|A|^2 - \frac{1}{2} \right) H = \lambda |A|^2 \leq 0. \]

Therefore, if \(H \) vanished at some points, the maximum principle would imply that \(H \equiv 0 \). Thus \(M \) would be planar, contradicting the assumption. Consequently we verify that \(M \) is strictly convex. That is, \(H > 0 \) on \(M \). In particular, \(S_l > 0 \) on \(M \) for all \(l \geq 1 \).

Next, we will prove the conclusion of the theorem by a contradiction argument. That is, assume there existed \(\overline{p} \in M \) such that \(k_1(\overline{p}) < 0 \). Then
\[\frac{H}{S_1} = 1 + \frac{k_1}{S_1} \]
would attain its minimum at such point, say at \(p \). We can find \(l \geq 1 \) such that at this point \(p \),
\[k_1 = \cdots = k_l < k_{l+1}. \]
We claim that at p, the function $\frac{H}{S_l}$ also attains its minimum. Otherwise, if $\frac{H(q)}{S_l(q)} < \frac{H(p)}{S_l(p)}$ for some $q \neq p$, which means
\[
\sum_{m=1}^{l} k_m(q) \frac{S_l}{H(q)} - \sum_{m=1}^{l} k_m(p) \frac{S_l}{H(p)} < 0,
\]
then after expanding the terms, we get
\[
H(p) \sum_{m=1}^{l} k_m(q) < H(q) \sum_{m=1}^{l} k_m(p) = H(q) \cdot l k_1(p).
\]
This particularly implies
\[
H(p) k_1(q) < H(p) \cdot \frac{1}{l} \sum_{m=1}^{l} k_m(q) < H(q) k_1(p),
\]
which then results in
\[
\frac{H(q)}{S_l(q)} = 1 + \frac{k_1(q)}{S_l(q)} < 1 + \frac{k_1(p)}{S_l(p)} = \frac{H(p)}{S_l(p)},
\]
contradicting the minimality of $\frac{H}{S_l}$ at p. Thus we prove that $\frac{H}{S_l}$ attains its minimum at p. Consequently, we have
\[
(4.2) \quad \mathcal{L} \left(\frac{H}{S_l} \right) \geq 0 \text{ and } \nabla \left(\frac{H}{S_l} \right) = 0
\]
at p, where S_l is differentiable at p since $k_1(p) < k_{l+1}(p)$. Note that \[23\] implies
\[
\mathcal{L} H = \frac{H}{2} - |A|^2 H + \lambda |A|^2.
\]
Combining this with lemma \[3.1\], we obtain that at p,
\[
\mathcal{L} \left(\frac{H}{S_l} \right) = \frac{S_l \mathcal{L} H - H L S_l}{S_l^2} - 2 \left\langle \nabla \left(\frac{H}{S_l} \right), \frac{\nabla S_l}{S_l} \right\rangle
\leq \frac{1}{S_l} \left(\frac{H}{2} - |A|^2 H + \lambda |A|^2 \right) - \frac{H}{S_l^2} \left(\frac{S_l}{2} - |A|^2 S_l + \lambda \sum_{m=l+1}^{n} k_m^2 \right)
\leq \frac{\lambda}{S_l} \left(|A|^2 - \frac{H}{S_l} \sum_{m=l+1}^{n} k_m^2 \right)
= \frac{\lambda}{S_l} \left(\sum_{i=1}^{n} k_i^2 - \left(1 + \frac{l}{S_l} \frac{1}{S_l} \right) \left(\sum_{m=l+1}^{n} k_m^2 \right) \right)
= \frac{\lambda}{S_l} \left(\sum_{i=1}^{l} k_i^2 - \sum_{j=1}^{l} k_j \left(\sum_{m=l+1}^{n} k_m^2 \right) \right)
= \frac{\lambda k_1}{S_l} \left(k_1 - \frac{1}{S_l} \left(\sum_{m=l+1}^{n} k_m^2 \right) \right),
\]
which is negative since \(k_1(p) = \cdots = k_l(p) < 0 \). Thus we derive a contradiction with (1.2), and the conclusion of the theorem follows. \(\square \)

5. Gap theorem for Mean Convex \(\lambda \)-hypersurfaces

In [CW18], Cheng and Wei proved a rigidity theorem for \(\lambda \)-hypersurfaces under some curvature assumptions. Their result is an application of the arguments that Huisken applied in [Hui90] and [Hui93]. (Note that the definition of \(\lambda \)-hypersurfaces in [CW18] is different from that in this article by a constant. The sign convention of the second fundamental form in [CW18] is also different from ours.) We use the maximum principle to give a proof of the theorem here following the ideas in [Hui90]. In the mean convex case, we can use theorem [1.2] to derive a gap theorem when \(\lambda \leq 0 \).

Theorem 5.1 ([CW18]). Let \(M^n \) be a smooth, closed, and embedded \(\lambda \)-hypersurface in \(\mathbb{R}^{n+1} \). If \(H - \lambda \geq 0 \) and \(\lambda(2(H - \lambda)\text{tr} A^3 + |A|^2) \leq 0 \), then \(M \) is a round sphere.

(Proof.) By the maximum principle, we have \(H - \lambda > 0 \). Using (2.4), (2.5), and the \(\lambda \)-hypersurface equation (1.1), we can derive
\[
\Delta H = \frac{1}{2} H + \frac{1}{2} \nabla_{x^T} H - (H - \lambda)|A|^2
\]
and
\[
\Delta |A|^2 = 2|\nabla A|^2 + |A|^2 - 2|A|^4 + \frac{1}{2} \nabla_{x^T}|A|^2 - 2\lambda \text{tr} A^3.
\]
As a result,
\[
\Delta \left(\frac{|A|^2}{(H - \lambda)^2} \right) = \frac{\Delta |A|^2}{(H - \lambda)^2} - \frac{2|A|^2}{(H - \lambda)^3} \Delta H - \frac{4}{(H - \lambda)^3} \langle \nabla |A|^2, \nabla H \rangle + \frac{6|A|^2}{(H - \lambda)^4} |\nabla H|^2
\]
\[
= \frac{1}{(H - \lambda)^4} \left(2(H - \lambda)^2|\nabla A|^2 + \frac{1}{2} H^2 \nabla_{x^T}|A|^2 - H|A|^2 \nabla_{x^T} H \right)
\]
\[
+ \frac{1}{(H - \lambda)^4} \left(-\lambda(H - \lambda) \left(2(H - \lambda)\text{tr} A^3 + |A|^2 \right) - 4(H - \lambda) \langle \nabla |A|^2, \nabla H \rangle + 6|A|^2 |\nabla H|^2 \right).
\]
Plugging in
\[
|a_{ij} \nabla_i H - (H - \lambda) \nabla_i a_{ij}|^2 = |A|^2 |\nabla H|^2 + |\nabla A|^2 (H - \lambda)^2 - (H - \lambda) \langle \nabla H, \nabla |A|^2 \rangle
\]
and
\[
\nabla \left(\frac{|A|^2}{(H - \lambda)^2} \right) = \frac{\nabla |A|^2}{(H - \lambda)^2} - \frac{2|A|^2}{(H - \lambda)^3} \nabla H,
\]
we finally obtain
\[
\Delta \left(\frac{|A|^2}{(H - \lambda)^2} \right) = \frac{2}{(H - \lambda)^2} \left(|a_{ij} \nabla_i H - (H - \lambda) \nabla_i a_{ij}|^2 - \frac{1}{2} \lambda(H - \lambda) \left(2(H - \lambda)\text{tr} A^3 + |A|^2 \right) \right)
\]
\[
+ \left(-\frac{2}{H - \lambda} \nabla H + \frac{x^T}{2}, \nabla \left(\frac{|A|^2}{(H - \lambda)^2} \right) \right).
\]
By our assumptions, we have
\[
|a_{ij} \nabla_i H - (H - \lambda) \nabla_i a_{ij}|^2 - \frac{1}{2} \lambda(H - \lambda) \left(2(H - \lambda)\text{tr} A^3 + |A|^2 \right) \geq 0,
\]
so the maximum principle implies $|A|^2 = C(H - \lambda)^2$ for some constant C and that

$$|a_{ij} \nabla_i H - (H - \lambda) \nabla_i a_{ij}|^2 - \frac{1}{2} \lambda (H - \lambda) \left(2(H - \lambda) \text{tr} A^3 + |A|^2\right) = 0.$$

In particular, we have

$$|a_{ij} \nabla_i H - (H - \lambda) \nabla_i a_{ij}|^2 = 0.$$

This tells us that the anti-symmetric part of this tensor also vanishes, which implies (5.2)

$$|a_{ij} \nabla_i H - a_{il} \nabla_j H|^2 = 0$$

by the Codazzi equation.

Now we assume M is not a round sphere. Then we can find a point $p \in M$ at which $\nabla H \neq 0$. If we take a local frame e_1, \ldots, e_n such that $e_1 = \frac{\nabla H}{|\nabla H|}$ at p, then (5.2) implies

$$|\nabla H|^2 \left(|A|^2 - \sum_{i=1}^n a_{1i}^2\right) = 0$$

at p. Since $\nabla H(p) \neq 0$, we get $|A|^2 - \sum_{i=1}^n a_{1i}^2 = 0$ at p. As a result,

$$\sum_{i=1}^n a_{1i}^2 = |A|^2 = \sum_{j=1}^n \sum_{k=1}^n a_{jk}^2,$$

which implies $a_{jk} = 0$ if $(j,k) \neq (1,1)$. Thus we get $|A|^2 = a_{11}^2 = H^2$. This along with the fact that $|A|/(H - \lambda)$ is constant implies that H is constant, which leads to a contradiction since we assume M is not a round sphere. □

We remark that when $\lambda = 0$, the calculations above reduce to those in [Hui90]. Now we can use theorem 5.1 to prove our gap theorem 1.3 for mean convex λ-hypersurfaces. We state theorem 1.3 here again.

Theorem 5.3. Let M^n be a smooth, closed, and embedded λ-hypersurface in \mathbb{R}^{n+1}. If $\lambda \leq 0$ and the mean curvature of M satisfies

$$0 \leq H \leq \frac{\sqrt{\lambda^2 + 2} + \lambda}{2},$$

then M is a round sphere.

(Proof.) By theorem 1.2 we know that M is convex. That is, $k_i \geq 0$ for all $i = 1, \ldots, n$. In particular, this implies

$$H|A|^2 = \left(\sum_{i=1}^n k_i\right) \cdot \left(\sum_{j=1}^n k_j^2\right) \geq \sum_{m=1}^n k_m^3 = -\text{tr} A^3.$$

On the other hand, by the upper bound of H, we can conclude that $1 \geq 2(H - \lambda)H$. Combining these gives

$$|A|^2 \geq 2(H - \lambda)H|A|^2 \geq -2(H - \lambda)|A|^2,$$

which implies $\lambda(2(H - \lambda)|A|^2 + |A|^2) \leq 0$. Applying theorem 5.1, the conclusion follows. □
REFERENCES

[AL86] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions. J. Differential Geom. 23 (1986), no. 2, 175–196. MR845704

[Bar01] F. Barthe, An isoperimetric result for the Gaussian measure and unconditional sets. Bull. Lond. Math. Soc. 33 (2001), no. 4, 408–416. MR1832552

[Bor03] C. Borell, The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337 (2003), no. 10, 663–666. MR2030108

[Bra78] K. A. Brakke, The motion of a surface by its mean curvature. Mathematical Notes, 20. Princeton University Press, Princeton, N.J., 1978. MR0485012

[Cha17] J.-E. Chang, 1-Dimensional solutions of the λ-self shriners. Geom. Dedicata 189.1 (2017): 97-112. MR3667341

[CW18] Q.-M. Cheng and G. Wei, Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow. Calc. Var. Partial Differential Equations 57.2 (2018): 1-21. MR3763110

[CM11] T. H. Colding and W. P. Minicozzi II, A course in minimal surfaces. Graduate Studies in Mathematics, Vol. 121, AMS (2011). MR2780140

[CM12] T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; generic singularities. Ann. of Math. (2012): 755-833. MR2993752

[CM15] T. H. Colding and W. P. Minicozzi II, Uniqueness of blowups and Lojasiewicz inequalities. Ann. of Math. (2015): 221-285. MR3374960

[Gua18] Q. Guang, Gap and rigidity theorems of λ-hypersurfaces. Proc. Amer. Math. Soc. 146.10 (2018): 4459-4471. MR3834671

[Gua21] Q. Guang, A note on mean convex λ-surfaces in R^3. Proc. Amer. Math. Soc. 149.3 (2021): 1259-1266. MR4218179

[Hei17] S. Heilman, Symmetric convex sets with minimal Gaussian surface area. Amer. J. Math. 143.1 (2021): 53-94. MR4201779

[HIMW19] D. Hoffman, T. Ilmanen, F. Martín, and B. White, Notes on translating solitons for mean curvature flow. arXiv:1901.09101, 2019.

[Hui90] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom. 31 (1990), no. 1, 285–299. MR1030675

[Hui93] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 175–191, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993. MR1216584

[Ilm95] T. Ilmanen, Singularities of Mean Curvature Flow of Surfaces, preprint, 1995, http://www.math.ethz.ch/~ilmanen/papers/pub.html

[Led94] M. Ledoux, Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space. Bull. Sci. Math. 118 (1994), no. 6, 485–510. MR1309086

[MR15] M. McGonagle and J. Ross, The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space. Geom. Dedicata 178, 277–296 (2015). MR3397495

[Sin75] D. H. Singley, Smoothness theorems for the principal curvatures and principal vectors of a hypersurface. Rocky Mountain J. Math. 5.1 (1975): 135-144. MR0367878

[SX20] J. Spruck and L. Xiao, Complete translating solitons to the mean curvature flow in R^3 with nonnegative mean curvature, Amer. J. Math. 142 (2020), no. 3, 993–1015. MR4101337

[Whi97] B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488 (1997), 1–35. MR1465365

MIT, DEPT. OF MATH., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139-4307

Email address: tangkai@mit.edu