Extreme Variability and Episodic Lifetime of Quasars

Yue Shen1,2,\textcopyright

1 Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received 2021 July 12; revised 2021 August 8; accepted 2021 August 10; published 2021 November 2

Abstract

We constrain the average episodic quasar lifetime (as in steady-state accretion) using two statistics of quasars that are recently turned off (i.e., dimmed by a large factor): (1) the fraction of turned-off quasars in a statistical sample photometrically observed over an extended period (e.g., $\Delta t = 20$ yr) and (2) the fraction of massive galaxies that show “orphan” broad Mg II emission, argued to be short-lived echoes of recently turned-off quasars. The two statistics constrain the average episodic quasar lifetime to be hundreds to thousands of years. Much longer (or shorter) episodic lifetimes are strongly disfavored by these observations. This average episodic lifetime is broadly consistent with the infall timescale (viscous time) in the standard accretion-disk model for quasars, suggesting that quasar episodes are governed by accretion-disk physics rather than by the gas supply on much larger scales. Compared with the cumulative quasar lifetime of $\sim 10^9 - 10^8$ yr constrained from quasar clustering and massive black hole demographics, our results suggest that there are $\sim 10^3 - 10^5$ episodes of quasar accretion during the assembly history of the supermassive black hole. Such short episodes should be clustered over intervals of $\sim 10^4$ yr to account for the sizes of ionized narrow-line regions in quasars. Our statistical argument also dictates that there will always be a small fraction of extreme variability quasars caught in “state transitions” over multiyear observing windows, despite the much longer episodic lifetime. These transitions could occur in a rather abrupt fashion during non-steady accretion.

Unified Astronomy Thesaurus concepts: Quasars (1319); Active galactic nuclei (16); Surveys (1671)

Supporting material: figure set

1. Introduction

Quasars are efficiently accreting supermassive black holes (SMBHs) in galactic nuclei during which they assemble most of their present-day masses (Soltan 1982; Yu & Tremaine 2002; Shankar et al. 2009). The lifetime of quasars is an important quantity to understand the growth of SMBHs and their roles in galaxy evolution (e.g., Kroupa et al. 2020). Measurements of quasar clustering (e.g., Shen et al. 2007; Eftekharzadeh et al. 2015) as well as population synthesis of SMBH accretion (e.g., Yu & Tremaine 2002; Shankar et al. 2009) have constrained the cumulative lifetime of quasars to be broadly within $10^6 - 10^7$ yr; see additional constraints on quasar lifetimes in Martini (2004). However, it is unclear if quasar accretion is continuous over this time span, or episodically through many cycles of efficient accretion. Currently, lifetime of individual quasars can be derived from measurements of the proximity effect (e.g., Eilers et al. 2017, 2021; Khrykin et al. 2019); these measurements often imply much shorter (e.g., $\lesssim 10^4$ yr) quasar lifetimes, suggesting quasar accretion is episodic in nature.

In this work, we use a simple statistical argument to constrain the episodic quasar lifetime. Quasar accretion events, even if episodic, occur on much longer timescales than a human lifetime. For example, for steady-state quasar accretion disks described by the α-disk model (Shakura & Sunyaev 1973), the viscous infall timescale over which the accretion rate can change significantly across the UV-optical-emitting part of the disk is on the order of centuries for a $10^8 M_\odot$ SMBH. However, if we observe a large number of quasars over an extended observing window, which samples random phases in one episodic accretion event of these quasars, probabilistically we will find some of these quasars turning off during this observing period. The fraction f_{TO} of turned-off quasars over this period Δt can then be used to estimate the average episodic lifetime $t_{ep} = \Delta t / f_{TO}$. This idea was first introduced in Martini & Schneider (2003), and here we develop it further with recent findings from long-term quasar monitoring observations as well as simulations of quasar accretion disks. For simplicity, here we assume a constant episodic lifetime for all quasars; otherwise t_{ep} is averaged over the population of quasars.

This paper is organized as follows. In Section 2, we detail our methodology and results, introducing an additional statistic related to recently turned-off quasars. We discuss caveats and implications of our results in Section 3 and conclude in Section 4. All timescales refer to the quasar rest-frame unless otherwise specified. The term “quasar” refers to unobscured broad-line quasars of $>10^8 M_\odot$ SMBHs accreting at an Eddington ratio of $L_{bol}/L_{Edd} \sim 0.1$, where L_{bol} and L_{Edd} are the bolometric and Eddington luminosities of the quasar. This definition corresponds to a nominal luminosity threshold of $L_{bol} > 10^{45}$ erg s$^{-1}$ (or $M_* < -22$) for quasars. Throughout this work we use the phrases “turned-off” and “turned-on” to refer to events where the accretion rate significantly deviates from the prior steady state, accompanied by large flux changes.

2. Methodology and Results

Quasars are not constant “light bulbs,” and they display stochastic variability over the full ranges of timescales and wavelengths. In the UV-optical emission from the accretion disk, quasar variability typically reaches $\sim 10\%-20\%$ on months-to-years timescales (e.g., Suberlak et al. 2021), with a small fraction ($\sim 10\%$) of them reaching as much as one magnitude on multiyear timescales (e.g., MacLeod et al. 2016; Rumbaugh et al. 2018). There are now mounting evidence that most of these observed extreme variability quasars are not due
to transient events such as dust obscuration, microlensing, or tidal disruption events (e.g., \cite{Lawrence2018}). Such evidence comes from spectral analysis of the bright and dim phases (e.g., \cite{Runnoe2016}), polarimetric measurements (e.g., \cite{Hutsemekers2017}), and observations of delayed echoes in the mid-infrared dust emission (e.g., \cite{Sheng2017}). Furthermore, \cite{Rumbaugh2018} showed that there are systematic differences between extreme variability quasars and normal quasars, indicating that intrinsic accretion processes is the origin for the observed extreme variability. By extension, the so-called “changing-look” or “changing-state” quasars (e.g., \cite{LaMassa2015, Yang2018, Graham2020}), the most extreme events where a quasar apparently changes spectral types between Type 1 and Type 2, are mostly recently turned-off or turned-on quasars.

The terms “extreme variability,” “changing-look,” and “changing-state” have different definitions and context in different studies. \cite{Rumbaugh2018} defined extreme variability quasars as those with maximum variability of one magnitude in the g band, which is a simple and reproducible definition. “Changing-look” quasars are often defined as those with disappearing/appearing broad Balmer emission, but this definition depends on the signal-to-noise ratio of the faint-state spectrum. A more severe problem of this definition of changing-look quasars is that many of them have persistent broad Mg II emission even in the faint state (e.g., \cite{MacLeod2019, Yang2020a}). \cite{Graham2020} suggested the name “changing-state” quasars to refer to those normally called “changing-look” quasars, but the ambiguity remains as what corresponds to a state transition. In this work, we use a simple, quantitative, and reproducible definition of state transitions with specific applications to turn-off quasars (i.e., dimming by >2 mag in g), as detailed below.

The ubiquitous luminosity fluctuations of quasars do not necessarily mean that the accretion disk is not in a steady state in terms of the mass accretion rate. In recent global radiative MHD simulations of quasar accretion disks (e.g., \cite{Jiang2019a, Jiang2020a}), light-curve variability is produced even when the mass accretion rate at large radii is roughly constant. These simulated accretion-disc light curves have variability amplitudes (between high and low flux points) as large as a factor of about two on multiyear timescales (\cite{Jiang2019a}). In extreme cases, where a certain region of the inner (UV-emitting) accretion disk is convectively unstable due to enhanced iron opacity, the simulated light-curve fluctuations can reach as much as a factor of about three to six on multiyear timescales (\cite{Jiang2020b}). Given high computational demand, these simulations have only been performed for limited cases. Nevertheless, these recent simulation results offer theoretical insights on episodes of quasar accretion.

Since quasars are variable even in steady-state accretion, it is a nontrivial task to define a quasar episode and its “turn-off.” Our following discussions are based on our best attempt to define quasar episodes in a reasonable and quantitative way, but the reader should keep in mind the ambiguity in the definitions. In \cite{Martini2003}, the definition of the turn-off of a quasar episode is that the quasar luminosity drops below $M_I = -23$ after accounting for typical quasar variability. This is a reasonable choice. However, a significant drop in the accretion rate (i.e., the ending of one episode) of a luminous quasar may still keep the accreting SMBH in the quasar regime, but the accretion state has changed from the prior steady state. In reality, the quasar may accrete at various rates at different times and never go completely quiescent, and one can always define an episode by requiring the accretion luminosity to be within a specific factor of the mean luminosity.

In this work, we define a quasar episode as the phase during which the accretion is approximately in a steady state in terms of the mass loading rate at large disk radii, and the “turn-off” of this episode refers to when the quasar continuum dims by two magnitudes in the g band, i.e., a transition of the accretion state or accretion event. The g band is preferred over longer wavelength bands given less contamination from host light. This definition of the turn-off of one episode is of course somewhat arbitrary, but does not undermine our reasoning. It provides a quantitative definition based on observations, and is motivated theoretically by recent quasar accretion-disk simulations (\cite{Jiang2019a, Jiang2020a}), as elaborated below.

Using a dimming magnitude of two (a factor of about six in flux) is a reasonable choice, since it is too large to be consistent with steady-state accretion in latest simulations; it would also produce less ambiguous “state transitions” when observing the quasar spectroscopically at the bright and faint states in the presence of the host light. A smaller dimming magnitude (e.g., one magnitude) does not lead to unambiguous state transitions from an observational point of view. In addition, luminosity fluctuations of one magnitude can be produced on multiyear timescales in simulations of quasar accretion disks roughly in a steady state (\cite{Jiang2019a, Jiang2020a}). On the other hand, although using a larger dimming magnitude would ensure we capture the turn-off of a quasar episode, it would result in poor statistics to constrain the fraction of turned-off quasars (e.g., only a handful of quasars would be classified as turn-off quasars in our sample below). More importantly, using a larger dimming magnitude would miss some genuine turn-off quasars, since the presence of host emission would necessarily limit the dynamic range of possible magnitude dimming for the whole system. For example, using spectral decomposition, \cite{VandenBerk2006} found ~60% of SDSS quasars ($M_I < -22$) at $z < 0.75$ have a host-to-total fraction $f_H > 0.1$ at rest-frame ~4200 Å, with a median host fraction of 0.3. A host fraction of 0.3 (0.1) would limit the maximum dimming to be 1.3 (2.5) magnitude.

There is another empirical justification for our definition of turn-off quasars. A dimming factor of two magnitudes roughly reduces the nominal Eddington ratio of ~0.1 to ~0.01, where there is a change in the behavior of the X-ray-to-optical ratio α_{OX}, indicative of a qualitative change in the accretion flow structure that signals a state transition (e.g., Figure 8 in \cite{Jin2021}).

A factor of about six change ($\Delta g = 2$) in the quasar continuum flux is sufficient to produce the apparent appearance/disappearance of the broad-line emission powered by the quasar continuum, leading to the observational identification of “changing-look” quasars, although the latter term is not rigorously defined. If we monitor a large sample of quasars over an extended period, the fraction of turned-off quasars within this period among the general quasar population constrains the episodic lifetime, regardless of how many episodes a quasar experiences during its entire cumulative lifetime.

To apply this statistic, one can start from a well-defined quasar sample, and count the number of turned-off quasars over a fixed time window. Here we use spectroscopically confirmed quasars identified from the SDSS in the Stripe 82 region and re-observed in the Dark Energy Survey (DES) imaging survey.
(Shen et al. 2011; Rumbaugh et al. 2018). The much deeper DES photometry ensures all SDSS quasars are detected in the later DES epochs even when the quasar turns off, leaving only the host galaxy emission. The combined SDSS+DES optical light curves span ~ 16 yr in the observed frame (Rumbaugh et al. 2018; Luo et al. 2020).

There are 7481 SDSS Stripe 82 quasars covered in DES with decade-long light curves (Rumbaugh et al. 2018), which is our parent sample. Although a larger photometric quasar sample is available (Peters et al. 2015) in the Stripe 82 region, most of them do not have accurate spectroscopic redshifts, and are too faint, such that host contamination would cause incompleteness in the identification of turn-off quasars. The statistics of extreme variability quasars from the systematic search in Rumbaugh et al. (2018) are directly used for our selection of turn-off quasars.

Among these 7481 quasars, there are 25 quasars that turned off (dimmed by more than two magnitudes in g) within this observing baseline. We further exclude one quasar (with negligible impact on our statistics) that has no available optical light curve from Yang et al. (2020b). The fraction of turn-off quasars is thus $\sim 0.32 \pm 0.06\%$ (24/7481), where uncertainties are estimated using Poisson statistics (bootstrapping error bars are similar). The quasar rest-frame duration of these observations is ~ 8 yr averaged over the redshift distribution of the sample (median $z \sim 1.2$). Therefore we estimate an average episodic quasar lifetime of $t_{ep} \sim 2500 \pm 470$ yr. The true uncertainties are obviously larger, given the ambiguity of defining state transitions, but unlikely to change the episodic lifetime by an order of magnitude.

We examined the optical light curves of these 24 turn-off quasars compiled by Yang et al. (2020b). About half of them show gradual fading over ~ 16 yr, which is generally difficult to reproduce with stochastic variability (Luo et al. 2020), while the remainder may recover their luminosity to some extent near the end of the light curve. Some of these quasars seem to re-brighten significantly within a few years after reaching the faintest state; we retain such objects in our turn-off quasar sample, and discuss their implications in Section 3. Two of them, however, show rapid

![Figure 1](image-url). The g-band light curve of an example turned-off quasar at $z = 0.937$ in our sample. The light-curve data are taken from Yang et al. (2020b) that extend beyond the baseline in Rumbaugh et al. (2018). The red dashed line and band indicate the g-band magnitude and ± 0.2 magnitude range corresponding to the definition of quasars of $M_g = -23$ in Martini & Schneider (2003), which is one magnitude brighter than our definition of quasars. The full figure set of the 24 turned-off quasars with available light curves from Yang et al. (2020b) is provided as an online figure set.

(The complete figure set (24 images) is available.)

Table 1

Summary of the 24 Turn-off Quasars from the Stripe 82+DES Sample in Rumbaugh et al. (2018)

DBID	J2000 Designation	Redshift	FIRST Detection
68411	001130.40+005751.7	1.4934	1
88455	001420.44-003620.3	0.9589	0
1332516	014048.62-003500.9	1.3839	0
1222002	015335.63+010353.5	1.6176	0
1667120	020537.13+02644.3	1.5136	0
1647982	021752.75+001521.6	1.1805	0
2024892	022252.26-000942.4	0.8222	1
2031395	022533.10+000308.3	2.2563	0
2121523	022652.24-003916.5	0.6252	0
2046931	023814.15+001941.4	1.6023	0
2551347	024741.84+011355.2	0.5396	0
2474612	024837.54+011119.2	0.8088	0
2597579	025505.68+002522.9	0.3535	0
2582415	025515.09+003740.5	1.0228	1
2564935	025712.75-004253.8	1.5716	0
2655567	21187.39+001316.7	0.4629	0
1742362	215944.32+000527.8	0.9367	0
1571037	221302.57+000310.5	0.7614	0
779102	224433.56+000735.4	1.5434	0
861520	224924.01+004750.4	1.3500	1
281099	232838.04-005313.6	1.5531	1
3935573	234142.32+003312.4	0.9861	1
3950342	234855.04+002539.1	1.2752	0
3924967	235936.81-003112.7	1.0956	1

Note. Col. (1) lists the object ID (DBID) used in the light curve catalog of Yang et al. (2020b). Col. (4) indicates if this object was detected in the FIRST radio survey ($1 = $detection; $0 = $non-detection; $-1 = $not covered by FIRST) from the catalog in Shen et al. (2011).

weeks to months) and large-amplitude optical variations likely dominated by blazar activity. Nevertheless, this fraction (2/24) is too small to affect our statistical estimation. Likewise, the fraction of radio-loud quasars in the sample is also too small to impact our results significantly. One example light curve is shown in Figure 1, and the full figure set is available as an online figure set. Table 1 lists the basic information of these 24 turn-off quasars.

There is a second statistic related to recently turned-off quasars, based on observations of the galaxy rather than the quasar population. Roig et al. (2014) discovered a population of massive red galaxies that display broad Mg II emission on top of a mainly passive galaxy spectrum (i.e., no quasar continuum); these systems are referred to as “broad Mg II emitters.” Their narrow-line emission on average places these objects in the AGN branch on the BPT diagram (Baldwin et al. 1981). Guo et al. (2020) used photoionization calculations to argue that these broad Mg II emitters are recently turned-off quasars, where the broad Mg II emission is slowly responding to the faded quasar continuum, as determined by atomic physics and radiative transfer. Indeed, the broad Mg II emission will disappear over multiple years (e.g., Guo et al. 2019, P. Hall et al., 2021 in preparation), corroborating the idea that the persisting broad Mg II is echoing the recently diminished quasar light.\(^3\)

An analogy is light echoes from extended narrow-line regions (NLRs) in recently turned-off quasars, e.g., Hanny’s Voorwerp (Keel et al. 2012). Such echoes can be long lasting (depending on how far away they are from the faded central quasar), e.g., $\sim 10^7-10^8$ yr after the death of the quasar (Keel et al. 2012), meaning they are much more common than broad Mg II echoes. The NLR echoes as a chronometer thus have a much more coarse temporal resolution than broad Mg II echoes.
This temporary phase with broad Mg II emission but no quasar continuum provides a chronometer of the last stage of a quasar episode. This phase must be longer than a few years, given the persistence of such broad Mg II emission (e.g., Guo et al. 2019, P. Hall et al., 2021 in preparation). It must also be less than several decades, since the broad Mg II emission originates from the broad-line region, and photoionization calculations suggest it cannot sustain its strength when the central engine is gone for decades (Guo et al. 2020). Therefore a reasonable estimate of the average duration of this phase is $\Delta t_{\text{MgII}} \sim 10$ yr (quasar rest-frame). The relative abundance of broad Mg II emitters and quasars combined with Δt_{MgII} then constrains the episodic quasar lifetime. Both Roig et al. (2014) and Guo et al. (2019) reported the fraction of broad Mg II emitters among SDSS galaxies at $0.4 \lesssim z \lesssim 0.8$. Given the flux limit of SDSS, these galaxies are mostly massive galaxies with stellar masses of $\sim 10^{11}$ M_\odot (Chen et al. 2012), and they are roughly the hosts for quasars with black hole mass of $\sim 10^8 - 10^9 M_\odot$ within this redshift range. The selection generally requires well-detected broad Mg II emission and the absence of quasar-like blue continuum and broad Hβ emission. But the details in the parent samples and the selection criteria are different in these two studies, resulting in slightly different sample statistics. Roig et al. (2014) reported a broad Mg II emitter fraction of $<0.1\%$ while Guo et al. (2019) reported a fraction of $\sim 0.02\%$. In this work, we use these two estimates to bracket the range of the fraction of broad Mg II emitters among massive galaxies at $z \sim 0.6$.

The fraction of quasars among massive galaxies (or the duty cycle) at $z \sim 0.6$ is $\sim 1\%$ inferred from quasar clustering measurements (e.g., Laurent et al. 2017). Based on the relative frequency of broad Mg II emitters and quasars among massive galaxies, we estimate an average episodic quasar lifetime at $z \sim 0.6$ of $\sim 100 - 500$ yr.

The estimates of the episodic quasar lifetime from these two turn-off statistics differ by an order of magnitude, which we attribute to the difficulties of precisely matching the broad Mg II emitter and quasar populations among massive galaxies, as well as consistently defining the turn-off signatures for both statistics. Indeed, the original AGN luminosity of these broad Mg II emitters, traced by the [O III] 5007 luminosity, is systematically lower than that of SDSS quasars by ~ 0.8 dex (H. Guo, 2021 private communications). Roughly a third of the Mg II emitters would have original AGN luminosities above the threshold of quasars ($L_{\text{bol}} > 10^{44}$ erg s$^{-1}$). Thus if we require the Mg II emitters to have quasar luminosities before turn-off, the estimated episodic lifetime will be revised up by a factor of ~ 3.

Furthermore, a less extreme drop in the quasar continuum, e.g., by a factor of about two to three, may produce “orphan” broad Mg II emission in a galaxy spectrum as well, because the reduced (but not turned-off) quasar continuum (and optical broad emission lines) may be difficult to detect in the presence of host galaxy light. In this case, the reported Mg II emitter fraction would significantly over-predict the incidents of turned-off quasars (defined as those faded by >2 mags), and underestimate the episodic lifetime. More dedicated photo-ionization calculations and better statistics of broad Mg II emitters are needed to fully address this discrepancy. Finally, the two turn-off quasar samples are not matched in redshift, which the episodic lifetime may depend on. The current sample statistics are insufficient to match these two samples in the redshift-luminosity space.

3. Discussion

Given that all the statistics we utilize are only accurate to a factor of a few, we cannot place a precise constraint on the average episodic quasar lifetime. It is also well expected that the duration of quasar episodes would differ in different systems, at different times for the same system, or at different redshifts. However, from a statistical point of view, it is unlikely that the ensemble-averaged episodic lifetime is much longer than 10^4 yr, because then we would observe a much smaller (by at least an order of magnitude) fraction of turned-off quasars with accumulated data in the last few decades; essentially all quasars would be accreting and emitting more constantly over this observing window.

The cumulative quasar lifetime is $\sim 10^6 - 10^8$ yr constrained from quasar clustering measurements and SMBH demographics (see Section 1). It is unlikely that a SMBH will acquire most of its mass by accreting for $\lesssim 10^6$ yr at a moderate Eddington ratio of 0.1 and a radiative efficiency of 10%, since the e-folding time is 5×10^5 yr. Our results thus imply that, during the assembly history of a SMBH, it must experience $\sim 10^{-10}$ such relatively short quasar episodes in order to grow to its observed mass by accretion. Additional accretion may occur during the obscured phase, although the accreted SMBH mass density is already substantial during the unobscured phase as constrained from quasar clustering and SMBH demographics.

However, these quasar episodes can either be distributed sparsely or highly clustered over the entire life span of a quasar. In a gas-rich nuclear environment, the events that the SMBH replenishes its accretion disk may occur quite frequently, leading to short gaps in individual quasar episodes. For example, roughly one-third of the turned-off quasars in our SDSS+DES sample seem to re-brighten (to some extent) in only a few years after dimming to the lowest flux state. These re-brightening events could be due to normal accretion-disk variability at the fainter state, or signal the onset of another quasar episode. In the latter case, this rising phase has not yet reached steady state, thus its short rising time (e.g., a few years) is not in direct conflict with the much longer viscous time. This may explain why some proximity-effect measurements suggested short ($<10^4$ yr) quasar lifetimes while others suggested much longer lifetimes (e.g., Khrykin et al. 2019; Eilers et al. 2021): when the accretion disk is rapidly replenished, the proximity zone in the IGM around the quasar will feel no difference as if the quasar were continuously on. The same argument applies to the few kiloparsec sizes of the quasar narrow-line region that require clustered quasar episodes over $\gtrsim 10^4$ yr (Martini 2004; Schawinski et al. 2015).

If efficient mass accretion onto the SMBH is triggered in a major fueling event, e.g., from a gas-rich major merger, then it is possible that quasar episodes are grouped within periods of bursts that can last as long as $\sim 10^6$ yr, until stellar and/or AGN feedback interrupts the gas supply. For example, models of quasar-level accretion fueled by recycled gas in elliptical...
galaxies (Ciotti & Ostriker 2007) predict bursts of $\sim 0.1 - 1$ Myr in duration, separated by much longer gaps of quiescence due to AGN feedback. Similarly, cosmological hydrodynamic simulations of quasar-hosting galaxies show $\lesssim 1$ Myr sporadic quasar bursts during the early growth of the SMBH, regulated by stellar feedback continuously evacuating gas from the galactic nucleus (Anglés-Alcázar et al. 2017). Of course, none of these galaxy simulations can resolve the quasar accretion disk, which is more directly related to the episodic quasar lifetime.

Smaller accreting SMBHs with luminosities in the Seyfert regime (i.e., $L_{\text{bol}} \lesssim 10^{45}$ erg s$^{-1}$) could have shorter episodic lifetimes than quasars, since the relevant timescales (e.g., the viscous time) pertaining to accretion disks are generally shorter for smaller SMBHs. Indeed, monitoring of low-redshift Seyferts in the past few decades has discovered several “changing-look” AGNs that changed their spectral types back and forth frequently. One notable example is NGC 4151 (also Mrk 1018 and Mrk 590), where the broad emission lines had disappeared and later reappeared over the course of several decades (e.g., Osterbrock 1977; Penston & Perez 1984; Shapovalova et al. 2010). The frequency of such dramatic flux changes is seemingly higher in Seyferts than in quasars. The implied episodic accretion time is then only tens of years for Seyferts.

While we have focused on recently turned-off quasars, in principle, the statistics of recently turned-on quasars can constrain the episodic lifetime as well. This can either be done with historic data for a quasar sample constructed from a later survey (e.g., Martini & Schneider 2003), or observing a galaxy sample compiled in an earlier survey at later times. The latter approach requires a well-characterized parent galaxy sample (basically, we require an estimate of the space density of recently turned-on quasars). Moreover, some of these “turned-on” events are transient tidal disruption events in a fully grown SMBH, which are different from the regular feeding cycles during the major growth period of the SMBH. Nevertheless, it is worth exploring such galaxy-based statistics with multi-epoch observations and careful matching between different samples, e.g., redshift, quasar luminosity, etc. (e.g., Yang et al. 2018).

Finally, we comment on the comparison with the results in Martini & Schneider (2003). Using SDSS Early Data Release (EDR) quasars and historic POSS imaging, Martini & Schneider (2003) derived a lower limit of $\sim 20,000$ yr for the episodic quasar lifetime, seemingly much longer than our estimates. Despite the ~ 50 yr baseline between POSS and SDSS, they did not find any SDSS EDR quasars that were not “on” at the POSS epoch, after accounting for the detection limit in POSS. It is possible that the POSS+SDSS constraints only apply to the most luminous quasars, which may have a longer average episodic lifetime than moderate-luminosity quasars as discussed earlier. If we use the same definition as in Martini & Schneider (2003) for the “on” phase, $M_z < -23$, and require that the quasar stays “off” after the dimming (otherwise the temporary state transition may be missed by the two-epoch POSS+SDSS observations), there are still ~ 10 “turned-off” quasars in our SDSS+DES sample, resulting in an average episodic lifetime of ~ 7000 yr.

4. Conclusions

Variability is one of the defining characteristics of quasars. However, it has only become well recognized recently that there are a small fraction of quasars that show extreme variability over years to decades timescales, indicative of transitions in their accretion state. The samples of quasars and galaxies with extended temporal coverages are now large enough to derive meaningful constraints on the average episodic lifetime of quasar activity. The longer quasars accrete at more or less steady rates (with luminosity fluctuations within a factor of few), the less frequently we will observe quasars in “state transitions.”

In this work, we used the statistics of recently turned-off quasars to constrain the episodic quasar lifetime. Using two statistics, the fraction of turned-off quasars within a given observing baseline and the relative frequency of broad MgII emitters in galaxies with respect to quasars, we constrain the average episodic quasar lifetime to be hundreds to thousands of years. These order-of-magnitude constraints are mainly limited by the difficulty of precisely defining the state transition (for the first statistic), and uncertainties in the relative frequency of broad MgII emitters and quasars among the galaxy population (for the second statistic). Continued time-domain observations of quasars and galaxies in the coming decades will be able to improve these constraints. In particular, we expect the sample statistics of turn-off quasars will improve both due to longer observing baselines and larger parent samples. These improved sample statistics will allow us to explore the redshift and quasar luminosity dependences of the episodic lifetime.

Nevertheless, our simple statistical arguments strongly disfavor average episodic quasar lifetimes of $> 10^4$ yr. Such long, steady (luminosity within a factor of few) accretion will produce much less frequent incidents of recently turned-off quasars than observed. On the other hand, because the majority of quasars have been observed to be more or less stable over the past ~ 60 yr since the discovery of quasars (Schmidt 1963), quasar episodes must be > 100 yr on average. It is remarkable that our estimates of the episodic quasar lifetime are broadly consistent with the accretion-disk viscous infall time (at $\sim 100 R_g$) for $10^8 - 10^9 M_\odot$ SMBHs, which suggests that quasar episodes are governed by fundamental accretion-disk physics, rather than by the gas supply at much larger spatial scales.

Finally, “changing-look” or “changing-state” quasars are commonly deemed difficult to explain given the long (hundreds to thousands of years) viscous time of steady-state accretion disks and the much shorter timescales (years to decades) over which the transition is observed (e.g., Lawrence 2018). We point out that this might be a misconception: if quasars significantly change their accretion states over centuries on average, then it is guaranteed that we will catch a small fraction of them transitioning within much shorter (e.g., years to decades) observing windows. It is possible, however, that when approaching this “rising/fading” phase of the quasar episode, the accretion flow becomes less stable, resulting in larger luminosity fluctuations on days to years timescales than those in the steady accretion phase, as observed (Rumbaugh et al. 2018; MacLeod et al. 2019). In addition, the transitions themselves could complete in a relatively quick fashion (less than a few years), during which the accretion is unlikely to be in a steady state.

We thank the referee for useful comments that improved the manuscript, and Paul Martini, Hengxiao Guo, Qian Yang, Mike Eracleous, Yan-Fei Jiang, Xin Liu, Scott Anderson, and Paul

5 Alternatively, one may argue that changing-look quasars are a rare sub-class of quasars that have nothing to do with episodic quasar accretion, which would then require modified accretion-disk theories. But Occam’s razor would favor our simple statistical interpretation of changing-look quasars, which predicts an increasing frequency of such objects as the observing baseline increases.
Green for useful comments and discussions. Y.S. acknowledges support from NSF grant AST-2009947.

ORCID iDs

Yue Shen https://orcid.org/0000-0003-1659-7035

References

Anglés-Alcázar, D., Faucher-Giguère, C.-A., Quataert, E., et al. 2017, *MNRAS*, 472, L109

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, *PASP*, 93, 5

Chen, Y.-M., Kauffmann, G., Tremonti, C. A., et al. 2012, *MNRAS*, 421, 314

Ciotti, L., & Ostriker, J. P. 2007, *ApJ*, 665, 1038

Eftekharzadeh, S., Myers, A. D., White, M., et al. 2015, *MNRAS*, 453, 2779

Eilers, A.-C., Davies, F. B., Hennawi, J. F., et al. 2017, *ApJ*, 840, 24

Eilers, A.-C., Hennawi, J. F., Davies, F. B., & Simcoe, R. A. 2021, *ApJ*, 917, 38

Graham, M. J., Ross, N. P., Stern, D., et al. 2020, *MNRAS*, 491, 4925

Guo, H., Shen, Y., He, Z., et al. 2020, *ApJ*, 888, 58

Guo, H., Sun, M., Liu, X., et al. 2019, *ApJL*, 883, L44

Hutsemékers, D., Agís González, B., Stuse, D., Ramos Almeida, C., & Acosta Pulido, J.-A. 2017, *A&A*, 604, L3

Jiang, Y.-F., & Blaes, O. 2020, *ApJ*, 900, 25

Jiang, Y.-F., Blaes, O., Stone, J. M., & Davis, S. W. 2019, *ApJ*, 885, 144

Jin, X., Ruan, J. J., Haggard, D., et al. 2021, *ApJ*, 912, 20

Keel, W. C., Lintott, C. J., Schawinski, K., et al. 2012, *AJ*, 144, 66

Khrykin, I. S., Hennawi, J. F., & Worseck, G. 2019, *MNRAS*, 484, 3897

Kroupa, P., Subr, L., Jerabkova, T., & Wang, L. 2020, *MNRAS*, 498, 5652

LaMassa, S. M., Cales, S., Moran, E. C., et al. 2015, *ApJ*, 800, 144

Laurent, P., Eftekharzadeh, S., Le Goff, J.-M., et al. 2017, *JCAP*, 2017, 017

Lawrence, A. 2018, *NatAs*, 2, 102

Luo, Y., Shen, Y., & Yang, Q. 2020, *MNRAS*, 494, 3686

MacLeod, C. L., Green, P. J., Anderson, S. F., et al. 2019, *ApJ*, 874, 8

MacLeod, C. L., Ross, N. P., Lawrence, A., et al. 2016, *MNRAS*, 457, 389

Martini, P. 2004, in Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), 169

Martini, P., & Schneider, D. P. 2003, *ApJL*, 597, L109

Osterbrock, D. E. 1977, *ApJ*, 215, 733

Penston, M. V., & Perez, E. 1984, *MNRAS*, 211, 33P

Peters, C. M., Richards, G. T., Myers, A. D., et al. 2015, *ApJ*, 811, 95

Roig, B., Blanton, M. R., & Ross, N. P. 2014, *ApJ*, 781, 72

Rumbaugh, N., Shen, Y., Morganson, E., et al. 2018, *ApJ*, 854, 160

Runnoe, J. C., Cales, S., Ruan, J. J., et al. 2016, *MNRAS*, 455, 1691

Schawinski, K., Koss, M., Berney, S., & Sartori, L. F. 2015, *MNRAS*, 451, 2517

Schmidt, M. 1963, *Natur*, 197, 1040

Schmitt, H. R., Donley, J. L., Antonucci, R. R. J., Hutchings, J. B., & Kinney, A. L. 2003, *ApJS*, 148, 327

Shakura, N. I., & Sunyaev, R. A. 1973, *A&A*, 24, 337

Shankar, F., Weinberg, D. H., & Miralda-Escudé, J. 2009, *ApJ*, 690, 20

Shapovalova, A. I., Popović, L., Burenkov, A. N., et al. 2010, *A&A*, 509, A106

Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, *ApJS*, 194, 45

Shen, Y., Strauss, M. A., Oguri, M., et al. 2007, *AJ*, 133, 2222

Sheng, Z., Wang, T., Jiang, N., et al. 2017, *ApJL*, 846, L7

Soltan, A. 1982, *MNRAS*, 200, 115

Suberlak, K. L., Ivezić, Z., & MacLeod, C. 2021, *ApJ*, 907, 96

Vanden Berk, D. E., Shen, J., Yip, C.-W., et al. 2006, *AJ*, 131, 84

Yang, Q., Shen, Y., Chen, Y.-C., et al. 2020a, *MNRAS*, 493, 5773

Yang, Q., Shen, Y., Liu, X., et al. 2020b, *ApJ*, 900, 58

Yang, Q., Wu, X.-B., Fan, X., et al. 2018, *ApJ*, 862, 109

Yu, Q., & Tremaine, S. 2002, *MNRAS*, 335, 965