A Facile Surface Preservation Strategy for the Lithium Anode for High-Performance Li–O2 Batteries

Zhizhong Luo, Guangbin Zhu, Liankun Yin, Fujie Li, Ben Bin Xu, Laurent Dala, Xiaoteng Liu,* and Kun Luo*

ABSTRACT: Protecting an anode from deterioration during charging/discharging has been seen as one of the key strategies in achieving high-performance lithium (Li)–O2 batteries and other Li–metal batteries with a high energy density. Here, we describe a facile approach to prevent the Li anode from dendritic growth and chemical corrosion by constructing a SiO2/GO hybrid thin layer on the surface. The uniform pore-preserving layer can conduct Li ions in the stripping/plating process, leading to an effective alleviation of the dendritic growth of Li by guiding the ion flux through the microstructure. Such a preservation technique significantly enhances the cell performance by enabling the Li–O2 cell to cycle up to 348 times at 1 A·g−1 with a capacity of 1000 mAh·g−1, which is several times the cycles of cells with pristine Li (58 cycles), Li–GO (166 cycles), and Li–SiO2 (187 cycles). Moreover, the rate performance is improved, and the ultimate capacity of the cell is dramatically increased from 5400 to 25,200 mA·h·g−1. This facile technology is robust and conforms to the Li surface, which demonstrates its potential applications in developing future high-performance and long lifespan Li batteries in a cost-effective fashion.

KEYWORDS: lithium metal anode, SiO2/GO coating, protective layer, cyclic stability, Li–O2 battery

INTRODUCTION

Aprotic Li–O2 batteries (LOBs), a promising energy solution for automotive and aerospace engineering, have superior advantage because of their high energy densities, when compared with conventional lithium–/sodium–ion batteries (LIBs/SIBs).1–8 Currently, the technical development in aprotic LOBs encounters substantial bottlenecks, including high charge overpotential, passivation of the cathode, and poor stability of the electrolyte and Li metal anode.7 Significant efforts have been made to enhance the cyclic stability and other electrochemical performances of LOBs by promoting the sluggish kinetics of oxygen reduction and evolution using proper catalysts,9 porous cathode materials,10,11 redox mediators,12,13 and stable electrolytes.14,15

Despite its natural scarcity, problematic stability, and safety issues,16 Li metal is regarded as an ideal anode material for rechargeable batteries because of its superhigh specific energy (3860 mA·h·g−1), low redox potential (∼3.04 V vs standard hydrogen electrode), and low mass density (0.534 g·cm−3). However, Li anodes encounter challenges such as the uneven stripping/plating of Li ions and the low Coulombic efficiency during charge/discharge cycles, which usually lead to the dendritic growth of Li to cause the short-circuiting and “dead Li” (i.e., broken Li branches) after the repeated charging/discharging operation16 and a rapid degradation in the battery cell.17 The decaying in LOBs can be accelerated as the crossover oxidative species such as soluble oxygen reduction intermediates (O2−, LiO2−, etc.), H2O, and other reaction byproducts can accelerate Li loss, thus resulting in a declined cycle life.16,19

One of the recent research interests has been focused on the protection of Li anodes because the dendritic deposition of lithium metal and dendrite formation along the solid–electrolyte interphase (SEI) are unveiled as key issues to determine the safety and performance of LOBs.20,21 The strategies exercised for protecting Li anodes can be categorized in the following: (1) using poreless, air-impermeable, and waterproof separators to prevent O2, H2O, and other soluble species in the electrolyte from corroding the anode in LOBs;22–24 however, the increase of the overall cell resistance remains under concern. (2) Optimizing the structure of SEI layers, where the lifespan of LOBs can be extended after...
treating the SEI layers on Li anodes chemically (including the reaction with CO$_2$, N$_2$, and F- and B-containing electrolyte additives)$^{25-29}$ or electrochemically, $^{30-32}$ (3) Generating ionically conductive, mechanically robust, and chemically stable protection layer(s) on Li anodes, and the commonly used materials for such protection layers include polymers (e.g., poly(1,4-dioxacyclohexane) 33), inorganic compounds (e.g., germanium or indium compounds $^{34-36}$), and composites (e.g., Al$_2$O$_3$/PVDF-HFP or AlF$_3$/PEDOT-PEG37,38).

Graphene and graphene oxide (GO) have been reported previously to offer protection to the Li anode by preventing from dendrite growth, corrosion, and strengthening the stability of SEI. $^{39-43}$ Li and co-workers 43 employed reduced GO to prevent Li dendrites by directing their growth. Zhao et al. 41 encapsulated a Li alloy with graphene sheets to prevent the corrosion from air. Gao and co-workers 43 designed a molecular level SEI by embedding polymeric Li salts with GO, which provides the SEI to have excellent stability and good passivation properties, which prevents the Li metal anode from dendrite growth and corrosion. Silica was also used for Li metal protection. Tang and co-workers applied silica nanoparticles (SiO$_2$ NPs) in a cross-linked polymer solid-state electrolyte for increasing the Li ionic conductivity by forming 3D ion transport paths. 44 Lin et al. employed a silica aerogel as a backbone for a polymer electrolyte for high Li ionic conductivity and modulus. 45 Herein, we propose an anode protection strategy by developing an artificial composite layer consisting of SiO$_2$ NPs and GO nanosheets on the Li metal (Li–SiO$_2$/GO) anode. GO sheets act as a barrier to hinder the growth of Li dendrites and the deteriorative attack of oxygen species from the electrolyte; the SiO$_2$ NPs embedded in GO sheets can provide an effective interlayer and pores for Li ion diffusion by preventing the aggregation of GO sheets. With this designed protection, the LOBs with Li–SiO$_2$/GO anodes exhibit superior cycling stability, rate performance, and ultimate capacity. We hope this anode protection technology will find future applications in next-generation sustainable energy solutions.

EXPERIMENTAL SECTION

Chemicals and Materials. Potassium permanganate (KMnO$_4$, AR, Sinopharm Group), hydrogen peroxide (H$_2$O$_2$, 30%, Sinopharm Group), sodium nitrate (NaNO$_3$, AR, Sinopharm Group), and sulfuric acid (H$_2$SO$_4$, AR, Sinopharm Group) were used as received. Dimethyl ether (DME, anhydrous, 99.5%, Sigma-Aldrich), dimethyl sulfoxide (DMSO, 99.9%, Sigma-Aldrich), and propylene carbonate (PC, 99.7%, Sigma-Aldrich) were dehydrated with activated 4 Å molecular sieves. Lithium perchlorate (LiClO$_4$, 99.9%, Sigma-Aldrich) was dried at 160 °C in a vacuum oven for 12 h prior to use. Graphite (Sigma-Aldrich), silica NPs (SiO$_2$, d = 30 ± 5 nm, ShangHai Keyan Co., Ltd.), mult wall carbon nanotubes (MWNs, d = 10 ± 1 μm, L = 3–6 μm, Sigma-Aldrich), carbon paper (TORAY, TGP-060), and borosilicate glass fiber (GF, d = 18 mm, Whatman) were used as received. Li plates (d = 14 mm, Shenzhen Poxon Machinery Technology Co. Ltd.) were saturated in a PC solution containing 0.1 M LiClO$_4$ for at least 48 h before use.

Preparation of SiO$_2$/GO Hybrids. GO was prepared using the modified Hummer’s method.46 Typically, 1.0 g of graphite, 0.5 g of NaNO$_3$, and 23 ml of H$_2$SO$_4$ were mixed and stirred at 0 °C for 1 h. The mixture was heated to 35 °C, and then 3.0 g of KMnO$_4$ was slowly added. After stirring for 7 h, another 3.0 g of KMnO$_4$ was added, and the mixture was kept stirring for the next 12 h. The mixture was cooled down in air, and then 400 ml of ice water was added under stirring. After that, 30 wt% H$_2$O$_2$ was gradually added until the color of the mixture turned from brown to yellow. The solid content in the mixture was separated by centrifugation at 8000 rpm and then repeatedly rinsed with deionized water until the supernatant became neutral. The precipitate was mixed with deionized water under ultrasonic stirring for 3 h and then allowed to stand for 12 h. The GO suspension in the container was removed and used for further synthesis.

SiO$_2$ NPs were ultrasonically dispersed in the GO suspension with a mass ratio of 1.2 (SiO$_2$/GO) for 2 h, the precipitate was then removed and dried in a vacuum oven at 80 °C for 24 h. The dried SiO$_2$/GO powder was carefully ground and then dispersed in DME (5 mg mL$^{-1}$), where 0.5 mg of the slurry was repeatedly pipetted until it completely covered the surface of a Li plate, followed by a smoothening process using a fine blade, and after drying in a glove box at ambient temperature, the Li anode with protective SiO$_2$/GO coating is obtained and denoted Li–SiO$_2$/GO. The Li anodes coated with either monocomponent SiO$_2$ or GO were prepared as reference samples, denoted Li–SiO$_2$ and Li–GO, respectively. Various GO/SiO$_2$ mass ratios (0.5:1, 1:1, 2:1, 3:1, and 4:1) and loading amounts (0.1, 0.2, 0.6, 0.8, 1.0, and 1.5 mg) were prepared and constructed as a preserving layer on the Li anodes.

Battery Assembly and Testing. The batteries were assembled and built into CR2032 coin cells in an Ar-filled glove box (MIKOUNA, Super, H$_2$O < 0.1 ppm, O$_2$ < 0.1 ppm) and tested using a standard battery testing system (CT-3008W-SV10mA, Newark Technology Limited).

LOBs were assembled using both Li anodes and MWNT cathodes in the CR2032 cells. The Li anodes employed in the experiment included the pristine Li plate and Li plates with different surface coatings. The cathode was prepared by spraying the MWNTs in ethanol slurry onto a carbon paper at a loading of 0.1 mg cm$^{-2}$. To assemble the coin cells, an anode cap was first placed, and then a Li anode (either pristine Li or one of the anodes with surface coatings), a glass fiber separator (wetted with 100 μL of 1 M LiClO$_4$/DMSO electrolyte), a MWNT cathode, and a cathode cap were placed in sequence and encapsulated. The cells were mounted separately in the holders of a home-made battery testing box filled with pure oxygen at 1.0 atm. The cyclic performance test was settled at a rate of 1 A g$^{-1}$ with a fixed capacity of 1000 mAh g$^{-1}$ within the potential window from 2.0 to 4.5 V. The rate performance was measured at current densities of 2, 3, and 5 A g$^{-1}$, and the capacity of 1000 mAh g$^{-1}$ within the potential cutoff was from 2.0 to 4.5 V.

To characterize the ionic conductivity of coating layers, LiSS (stainless steel) cells were assembled and subjected to electrochemical impedance spectroscopy (EIS) analysis in an O$_2$-free atmosphere. An anode cap, a Li plate, a GF separator (wetted with 100 μL of 1 M LiClO$_4$/DMSO electrolyte), a SS plate, and a CR2032 cathode cap (without holes) were placed in sequence and encapsulated to construct a LiSS cell. To investigate the stability of Li anodes with surface coatings in an O$_2$ atmosphere, a LiSS foam cell was assembled; the approach used was similar to the LiSS cell, except for using a CR2032 cathode cap with holes and a SS foam to replace the SS plate. The LiSS cells and LiSS foam cells with Li–GO, Li–SiO$_2$ and Li–SiO$_2$/GO were also assembled using the same approaches. To characterize the resistance of LOBs (the assembly approach was the same as LOBs) after cycling for certain times, the EIS test was carried out after introducing N$_2$ to remove any O$_2$. All EIS plots were recorded on an electrochemical station (CHI 660, CH Instruments) at an open-circuit potential with 5 mV of ac amplitude in the frequency range from 0.1 Hz to 1 MHz.

Symmetric Li|Li cells were assembled to investigate the protection of Li anodes with different coatings in an O$_2$-free atmosphere, where an anode cap, a Li plate, a glass fiber separator (wetted with 100 μL of 1 M LiClO$_4$/DMSO electrolyte), another Li plate, and a CR2032 cathode cap (without holes) were placed in sequence and encapsulated. In the case of O$_2$, the Li plate with a hole (diameter of 2 mm) and a CR2032 cathode cap with holes were used, and the assembly approach was similar to those without O$_2$. The same approach was also applied to the assembly of symmetric Li|Li cells with Li–GO, Li–SiO$_2$, and Li–SiO$_2$/GO. The charge/discharge cycling was carried out with a time period fixed for 1 h at the current density of 0.1 mA cm$^{-2}$.

Characterization. A field-emission scanning electron microscope (S-4800, Hitachi) and a transmission electron microscope (JEM-2000F, JEOL) operating at 200 kV were employed to observe the morphology of the anodes and cathodes. An X-ray diffractometer (X’Pert PRO)
of SiO₂ and GO is shown in the TEM images in Figure S1. GO when they are laminated together. Morphology information of the largest speci- fied porous GO layer is caused by the intercalation of SiO₂ NPs into the GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

RESULTS AND DISCUSSION

Structural Identification of Protective Coating Layers.

Figure 1a reveals a laminated structure for the SiO₂/GO coating layer, that is, the SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.

The SiO₂ NPs are intercalated among GO sheets, which effectively inhibits the overlapping aggregation of GO sheets and thereby produces nano-/mesopores for Li ion transportation. Two more cells with SiO₂ and GO individually coated anode were also assembled and tested for comparison; this is done to reveal the combined functions of both SiO₂ and GO, when they are laminated together. Morphology information of SiO₂ and GO is shown in the TEM images in Figure S1.
10^{-6}, 5.59×10^{-8}, and 1.09×10^{-6} S·cm$^{-1}$ (Figure 2d), respectively.

The standard EIS analysis is used to compare the effect of GO, SiO$_2$, and SiO$_2$/GO coatings on the Li ion conductivity in Li/Si cells versus pristine Li, which is listed in Figure 2c.38 The Nyquist plot (Figure 2a,b) shows that the intercept of the real axis represents the impedance of Li$^+$ diffusion (R_s) from the electrolyte solution to lithium metal.38,49 In the cell with pristine
Li, the impedance is 3.01 Ω. Compared to pristine Li, the impedance of the GO layer is 3.43 Ω, representing the Li ion conductivity of 1.56 × 10^{-4} S·cm^{-1}; this increase is due to the restacking of GO sheets that hinder the Li ion diffusion, in line with previous reports.47,50 Li–SiO\textsubscript{2} delivers a comparable impedance of 3.21 Ω to pristine Li, which indicates the high Li ion conductance (2.01 × 10^{-3} S·cm^{-1}) within the SiO\textsubscript{2} NP layer. Li–SiO\textsubscript{2}/GO exhibits a resistance of 7.76 Ω (conductivity of 7.46 × 10^{-4} S·cm^{-1}) for Li ion diffusion, which resulted from the high porosity of the hybrid layer that enhances the Li ion conductivity. EIS analysis of LiSS foam cells is conducted in an O\textsubscript{2} atmosphere to compare the stability of Li anodes with or without coating layers. As displayed in Figure S3a, the Nyquist plot of the pristine Li anode varied after staying in an O\textsubscript{2} atmosphere for 2 days; in contrast, with GO, SiO\textsubscript{2}, and SiO\textsubscript{2}/GO coating layers (Figure S3b), the Nyquist plots of cells after 2 days showed a slight variation, implying that the stability of Li anodes with coating layers has improved.

Li Symmetric Battery Performance Evaluation. We carried out galvanostatic charge/discharge measurements to investigate the impact of surface coatings on the long-term cyclic stability of Li symmetric batteries with GO, SiO\textsubscript{2}, and SiO\textsubscript{2}/GO coating layers. The Li/Li cells with a pair of pristine Li electrodes can only cycle for 134 h (Figure 3a), whereas a longer lifetime of 412 h is achieved after coating GO on the Li electrodes. The cycle life is further extended to 1200 and 1000 h, respectively, using the SiO\textsubscript{2} and SiO\textsubscript{2}/GO coatings. The cycling performances of Li, Li–GO, Li–SiO\textsubscript{2}, and Li–SiO\textsubscript{2}/GO electrodes are compared within the initial 4 h (Figure 3b), where Li, Li–SiO\textsubscript{2}, and Li–SiO\textsubscript{2}/GO exhibit similar voltage profiles during the Li stripping/plating process at the magnitudes of about 26 mV. However, Li–GO presents a larger value of 48 mV, suggesting that a higher resistance was generated by the GO coating. From 132 to 136 h (Figure 3c), the voltage oscillation of Li–GO increased to ca. 70 mV, and the values of Li–SiO\textsubscript{2} and Li–SiO\textsubscript{2}/GO electrodes remained unchanged. The pristine Li presents a sharp increase of overpotential after 135 h, suggesting a battery failure.51 In Figure 3d, the voltage hysteresis of Li–GO is noticeably broadened over 600 mV between 408 and 412 h, indicating a battery failure; however, the amplitudes of Li–SiO\textsubscript{2} and Li–SiO\textsubscript{2}/GO remained below 24 mV. After 614 h (Figure 3e), the potential oscillation of Li–SiO\textsubscript{2}/GO (88 mV) becomes larger than Li–SiO\textsubscript{2} (34 mV) and keeps increasing to 475 mV until the battery fails at 1000 h. Li–SiO\textsubscript{2} manifests the longest cycling life and ends up at 1200 h.

The morphology of Li metals during cycling was characterized and is shown in Figure 3f–m. After 200 h of operation, Li metal of the Li/Li cell exhibits a coarse surface topped with mossy Li (Figure 3f, top-view SEM image), and the side-view SEM image shows that large cracks appeared on the top layer, with several cracks showing a clear tendency to reach deeper layers (Figure 3j). With only GO coating, as seen from the top-view image (Figure 3g), cracks caused by mossy Li are still observed on the surface of the Li metal; however, cracks are hardly seen on the side-view image (Figure 3k). Figure 3j,k shows a fluffy profile on the top layer mossy Li, which looks different from the pure Li metal; this is the evidence that the surface of these two anodes has been corroded. Those cells with SiO\textsubscript{2} (Figure 3h,l) and SiO\textsubscript{2}/GO (Figure 3i,m) coating layers have no obvious mossy Li, and cracks can be seen after cycling for 800 h; in addition, the cross-sectional image shows a compacted SEI. These results demonstrate that SiO\textsubscript{2} and SiO\textsubscript{2}/GO coating layers can facilitate stable SEI formation and regulate Li deposition.

The long-term cyclic stability of Li symmetric batteries with GO, SiO\textsubscript{2}, and SiO\textsubscript{2}/GO coating layers was also investigated in an O\textsubscript{2} atmosphere. As shown in Figure 4a, the Li/Li cells with a pristine Li electrode can only cycle for 80 h; in contrast, the cells with GO, SiO\textsubscript{2}, and SiO\textsubscript{2}/GO layers can cycle up to 250, 300, and 480 h, respectively. During the first 4 h (Figure 4b), Li/Li cells with pristine Li, Li–SiO\textsubscript{2}, and Li–SiO\textsubscript{2}/GO present a discharge overpotential of 8 mV, but it is 34 mV for the Li–GO electrode. In the charge process, Li/Li cells with pristine Li, Li–GO, and Li–SiO\textsubscript{2} show an overpotential of 36 mV, and it is 16 mV for the Li–SiO\textsubscript{2}/GO electrode. The Li/Li cell with the Li–SiO\textsubscript{2}/GO electrode also exhibits the smallest overpotential during the discharge and charge processes. This could be due to the SiO\textsubscript{2}/GO layer that formed the most stable SEI on the Li surface. From 80 to 84 h (Figure 4c), the Li/Li cell with pristine Li...
Li shows severe potential oscillation, which is an indication of the cell failure. However, Li–Li cells with the Li–SiO\textsubscript{2} and Li–SiO\textsubscript{2}/GO electrode showed an overpotential of 44 mV, but the Li–GO electrode showed 72 mV. After 250 h (Figure S4d), the overpotential of Li–Li cells with the Li–GO electrode increased by 2 V and 700 mV, respectively, but the increase is only about 100 mV for the cell with the Li–SiO\textsubscript{2}/GO electrode. After 300 h (Figure S4e), the increase in the overpotential of Li–Li cells with the Li–SiO\textsubscript{2}/GO electrode is more than 2 V, but it is only 140 mV for the one with the Li–SiO\textsubscript{2}/GO electrode. Although the overpotential increases during the Li stripping/plating process in the O\textsubscript{2} atmosphere, the cell with the Li–SiO\textsubscript{2}/GO electrode still maintains the lowest overpotential, implying that the SiO\textsubscript{2}/GO layer improves the stability of the Li anode.

The morphology of Li electrodes from Li–Li cell cycling in the O\textsubscript{2} atmosphere can be found in Figure S4f–m. After cycling for 80 h, the Li electrode generated a lot of powder on the surface (Figure S4f); large cracks and a thick layer of powder can be observed from the side view (Figure S4j); this white powder is the corrosion product of LiOH. Morphology of Li–GO, Li–SiO\textsubscript{2}, and Li–SiO\textsubscript{2}/GO electrodes after operating for 200 h is also characterized. Compared to the Li electrode, Li–GO and Li–SiO\textsubscript{2} anodes produced less powder on the surface (Figure S4g,h), and no obvious cracks are visible from the side view (Figure S4k,l). The Li–SiO\textsubscript{2}/GO electrode shows an appearance with a smoother surface and a better evenly distributed cross section (Figure S4i,m).

LOB Performance Evaluation. The cyclic stability and rate performance of LOBs with the pristine Li, Li–GO, Li–SiO\textsubscript{2}, and Li–SiO\textsubscript{2}/GO anodes are assessed and compared (Figure 4). The cell with pristine Li can only operate for 58 cycles (Figure 4a). The discharge potential stays at about 2.72 V before the 15th cycle and then gradually dropped to 2.22 V at the 58th cycle. The charge potential keeps increasing from 4.10 V from the 1st cycle and ends up with ca. 4.24 V at the 58th cycle. The charge/discharge profiles of the cell with the Li–GO anode in Figure 4b suggest a better cyclic performance 166 times. The discharge plateau is maintained at 2.79 V within the initial 58 cycles, which then reduced down to 2.63 V at the 166th cycle. The charge plateau starts from 3.90 V at the 1st cycle and gradually increases to 4.42 V at the 166th cycle. The cell with the Li–SiO\textsubscript{2} anode can cycle 187 times, as displayed in Figure 4c, during which the discharge voltage is maintained at 2.76 V within 120 cycles and finally decreases to 2.64 V at the 187th cycle. The charge voltage is located at 3.83 V at the 1st cycle and approaches 4.41 V at the end.

Interestingly, the Li–SiO\textsubscript{2}/GO anode (Figure 4d) presents the best battery performance with a significantly extended lifespan of the LOB cell to 348 cycles. The discharge voltage remains above 2.70 V for 230 cycles and then declines to 2.43 V at the 348th cycle. The charge voltage begins with just 3.03 V at the 1st cycle, which increases to 3.68 V at the 58th cycle, 3.98 V at the 230th cycle, 4.12 V at the 290th cycle, and finally as 4.30 V at the 348th cycle. The LOB with the Li–SiO\textsubscript{2}/GO anode also renders a better rate performance than the others (Figure 4e–h). At the rate of 2 A g−1, the cell with the Li–SiO\textsubscript{2}/GO anode can operate 194 times, higher than the cells with the pristine Li (46 times), Li–GO (116 times), and Li–SiO\textsubscript{2} anodes (118 times). At the rate of 3 A g−1, the cells with the pristine Li, Li–GO, and Li–SiO\textsubscript{2} anodes can run for 34, 53, and 59 cycles, and...
the cell with the Li–SiO2/GO anode can run 83 times. At 5 A·g⁻¹, the cells with the pristine Li, Li–GO, and Li–SiO2 anodes can cycle 26, 33, and 36 times, and the cell with the Li–SiO2/GO anode can operate 56 times. Moreover, an ultimate capacity of the LOB with the Li–SiO2/GO anode is achieved at 25,200 mAh·g⁻¹ (Figure S5), while the cells with pristine Li, Li–GO, and Li–SiO2 anodes show values as 5400, 19,900, and 23,700 mAh·g⁻¹, respectively.

The LOB performance can be affected by the SiO2/GO mass ratio and loading amount. As shown in Figure S6a, the cycle numbers of the Li anodes with SiO2/GO coatings are larger than those with sole GO or SiO2 coating; the best performance is obtained when the GO/SiO2 ratio is 3/1 (Figure S7d). The side-view SEM images of Li–GO (Figure S7a) and 1/1 (Figure S7b), and no SiO2 NPs are also observed when the GO/SiO2 ratio is 3/1 (Figure S7c) and 4/1 (Figure S7d). The side-view SEM images of Li–SiO2/GO with different loading amounts (Figure S8) reveal a smooth and compact morphology for the SiO2/GO layers when the loading amount is less than 0.6 mg, and a rough and cracked morphology when the loading mass exceeds 1.0 mg, which is in agreement with the above battery testing results.

Structural Examination and Failure Analysis for Variant Li Anodes after Cycling. SEI evolution of Li anodes is investigated by XPS (Figure 5, Table S1). For the pristine Li anode (Figure 5a, top 3 spectra), the C1s spectrum shows three peaks at 284.8, 286.8, and 288.8 eV; the Li1s spectrum exhibits a peak at 55.4 eV; and the O1s spectrum displays two peaks at 531.7 eV and 533.1 eV; these indicate the existence of RCOCOOLi after soaking in the PC electrolyte for 48 h. As for Li–GO (Figure 5b, top 3 spectra), Li–SiO2 (Figure 5c, top 3 spectra), and Li–SiO2/GO anodes (Figure 5d, top 3 spectra), C1s spectra exhibit three peaks at 284.8, 285.5, and 288.8 eV; Li1s shows a peak at 55.4 eV; and O1s shows a peak at 532.6 eV, attributing to RCH2COOLi. The discrepancies between the Li anodes with or without coating layers are possibly because Li plates with coating layers are not pretreated with the PC electrolyte, and DME used as a dispersant for GO and SiO2 composites contributed to the formation of RCH2COOLi. After cycling 10 times, the C1s spectra of Li (Figure 5a, bottom 3 spectra), Li–GO (Figure 5b, bottom 3 spectra), and Li–SiO2 (Figure 5c, bottom 3 spectra) anodes show three peaks at 284.8, 285.5, and 288.8 eV; Li1s spectra display two peaks at 54.6 and 55.4 eV; and O1s spectra exhibit two peaks at 531.2 and 532.6 eV. Li1s of 54.6 eV and O1s of 531.2 eV belong to LiOH, indicating that the corrosion occurs in the Li anode. In contrast, for the Li–SiO2/GO anode (Figure 5d, bottom), the C1s spectrum shows four peaks at 284.8, 285.4, 288.8, and 289.9 eV; Li1s and O1s exhibit one peak at 55.4 and 532.6 eV, respectively. C1s of 289.9 eV is assigned to Li2CO3, possibly because the oxygen groups of GO participate in the formation of SEI. These results imply that after 10 cycles, RCOCOOLi and Li2CO3 are the main components of the SEI, and corrosion of the Li–SiO2/GO anode by H2O is inhibited by the SiO2/GO coating layer.

Morphological evolution after charge/discharge cycling reveals the role of surface coating in preserving the Li anode. Figure 6a show the pristine Li anode and the pulverized anode after 58 cycles, which originally possesses a thickness of 348 μm (Figure 6e), suggesting that the battery failure is associated with the fast consumption of Li. The Li–GO anode presents a rough surface at the 58th cycle (Figure 6b), where Li metal still retains a thickness of 172 μm (Figure 6f). The Li–SiO2 anode also shows a coarsened and scraggy surface after cycling 58 times (Figure 6c), leaving the Li metal with a thickness of about 186 μm (Figure 6g). As for the Li–SiO2/GO anode, a smooth and compact surface is retained after 58 cycles (Figure 6d) with the average thickness of metallic Li for up to 264 μm (Figure 6h).
which offers a solid evidence to show the effective protection offered by the SiO2/GO hybrid coating. Figure 6f–l displays the XRD patterns of powder from Li, Li–GO, Li–SiO2, and Li–SiO2/GO anodes’ surface after 58 cycles. The powders from the pristine Li anode manifest 11 peaks at 20.4, 32.5, 35.7, 41.6, 49.2, 51.4, 56.0, 62.2, 73.9, 75.7, and 79.4°, which can be assigned to the (001), (101), (110), (002), (102), (200), (112), (211), (212), (220), and (221) facets of the LiOH crystal (JCPDS no. 85-0736). The intensity decreases in the order of pristine Li, Li–GO, Li–SiO2, and Li–SiO2/GO anodes, indicating the decreased amount of LiOH in line with the increasing thickness of the Li anode after 58 cycles (Figure 6f). This further proved that the corrosion of the Li anode has been alleviated by the protective coating. The SEM images and XRD patterns of Li–GO anodes after 166 cycles (Figure S9a,d), of Li–SiO2 anodes after 187 cycles (Figure S9b,e), and of Li–SiO2/GO anodes after 348 cycles (Figure S9c,f) exhibit the same feature as the pristine Li anode, which show the identical products at battery failure.

It has been reported that highly active cross-over oxygen reduction intermediates (O2− and Li2O2−) attack the Li anode and cause corrosion; they also react with the electrolyte and produce water molecules which are harmful to the Li metal.15,18,23,31 Sun et al. revealed that the side reaction and produce water molecules which are harmful to the Li and cause corrosion; they also react with the electrolyte and SiO2/GO anodes.

348 cycles, respectively, illustrating the alleviation of discharge product accumulation with the application of protective coatings on the Li anodes.

XRD analysis indicates that the MWNT cathode in the cell with the pristine Li anode after 58 cycles manifests two peaks at 26.4 and 54.5°, corresponding to the (002) and (104) facets of MWNTs (JCPDS no. 41-1487), as shown in Figure S10a, and the peak at 32.5° can be attributed to the (101) facet of the LiOH crystal (JCPDS no. 85-0736). Correspondingly, the MWNT cathode in the cell with the Li–SiO2/GO anode also presents one peak at 32.5°, which is attributed to the (101) facet of LiOH (JCPDS no. 85-0736) at the 58th cycle (Figure S10b), and the intensity is much lower than that of the cell with pure Li, indicating that less solid products are accumulated, which is confirmed by the SEM image of the cathode (Figure 7e). At the 348th cycle (Figure S10c), the intensity of the three identifying peaks (at 20.4, 35.7, and 51.4° attributed to the (001), (110), and (200) facets of LiOH) increased; the process is much slower than that of the MWNT cathode from the cell with pristine Li. The presence of LiOH on both the cathode and the anode indicates the irreversible consumption of Li. The application of a coating layer effectively reduces the Li loss that normally arose from the dendritic growth, volume change, and corrosion during the stripping/plating process, which subsequently reduces the polarization and alleviates the cathode passivation.

Further investigation using electrochemical impedance proves the protection effect of the artificial layer. After cycling 58 times, N2 was introduced into LOBs to remove O2 for 30 min, and then the resistance of LOBs was characterized by EIS. Figure S11 presents the Nyquist plots of the LOBs with pristine Li, Li–GO, Li–SiO2, and Li–SiO2/GO as anodes and the equivalent circuit. Solution resistance (R1), constant phase element 1 (CPE1), and charge-transfer resistance (R2) at the high-frequency region are assigned to the impedance at the Li/electrolyte interface; the constant phase element (CPE2) and charge-transfer resistance (R3) at the medium frequency region contributed to the impedance at the solid product/cathode interface. Values of resistance are shown in Table S2. The R0, R1, and R2 of LOBs with pure Li are 219.0, 248.5, and 329.0 Ω, respectively. Those values of the cell anode coated with GO and SiO2 layers are reduced to 48.4, 83.4, and 93.4 Ω, and to 41.4, 69.3, and 86.4 Ω, respectively. The values are further reduced to 34.2, 17.8, and 74.1 Ω with the Li–SiO2/GO-coated anode. In agreement with morphology observation in Figures 6 and 7, EIS results
confirmed that the protection coatings led to a more stable Li anode and a less passivated cathode.

We considered that the nano-/mesopores introduced by SiO2 NPs in the coating layer not only facilitate the diffusion of Li ions but also act as a guide for the uniform Li ion flux in the striping/plating process, which reduces the risk of localized Li dissolution and suppresses the dendritic growth of Li. In practical LOBs, the introduction of the oxygen reduction reaction brings soluble intermediates (such as O2− and LiO2−), and the decomposed byproducts of the electrolyte. These may immigrate through the GF separator and cause serious chemical corrosion of Li anodes. Here, the incorporation of SiO2 and GO manifests a synergistic effect of the barrier effect, the ionic conductance, and the Li ion flux guidance. The SiO2/GO layer in this research provides the best protection for the Li anode, leading to the most stable LOB that has never been reported elsewhere.

CONCLUSIONS

In summary, we describe a facile strategy to preserve the Li anode by coating a SiO2/GO composite layer, so that the dendritic growth and chemical corrosion of the Li anode during the electrochemical activities can be largely minimized or prevented. The structural composite layer with a large amount of nanopores resulted from the intercalation of SiO2 NPs among the GO sheets, yielding an enhanced transportation of Li ions. The resultant LOB with the Li–SiO2/GO anode can reach more than 348 cycles at 1 A g−1 with a capacity of 1000 mA h g−1, which is several times the cells with the pristine Li (58 cycles), Li–GO (166 cycles), and Li–SiO2 (187 cycles) anodes. The rate performance and ultimate capacity of the LOB with the Li–SiO2/GO anode are also significantly improved. We hope that this low-cost coating strategy find applications in future LIB technologies.

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c08355.

TEM images, ultimate capacity curves of LOBs, cyclic performance comparison of LOBs, SEM images, XRD patterns, Nyquist plots, XPS investigation of SEI evolution of LOBs, and EIS analysis of LOBs (PDF)

AUTHOR INFORMATION

Corresponding Authors

Xiaoteng Liu — Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.; orcid.org/0000-0001-7574-1709; Email: terence.liu@northumbria.ac.uk

Kun Luo — School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China; College of Materials Science and Engineering, Guanlin University of Technology, Guanlin 541004, P. R. China; orcid.org/0000-0001-6526-4304; Email: luokun@cczu.edu.cn

Authors

Zhihong Luo — College of Materials Science and Engineering, Guanlin University of Technology, Guanlin 541004, P. R. China

Guangbin Zhu — College of Materials Science and Engineering, Guanlin University of Technology, Guanlin 541004, P. R. China

Liankun Yin — College of Materials Science and Engineering, Guanlin University of Technology, Guanlin 541004, P. R. China

Fujie Li — College of Materials Science and Engineering, Guanlin University of Technology, Guanlin 541004, P. R. China

Ben Bin Xu — Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.; orcid.org/0000-0002-6747-2016

Laurent Dala — Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsami.0c08355

Author Contributions

Z.L. and G.Z. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grant no. 11874051), the UK Engineering Physics and Science Research Council (grant no. EP/S032886/1), and the Natural Science Foundation of Guangxi (grant nos. 2018GXNSFAA281184 and 2019GXNSFAA245046).

REFERENCES

(1) Feng, N.; He, P.; Zhou, H. Critical Challenges in Rechargeable Aprotic Li–O2 Batteries. Adv. Energy Mater. 2016, 6, 1502303.

(2) Yuan, T.; Jiang, Y.; Sun, W.; Xiang, B.; Li, Y.; Yan, M.; Xu, B.; Dou, S. Ever-Increasing Pseudocapacitance in RGO-MnO-RGO Sandwich Nanostructures for Ultrahigh-Rate Lithium Storage. Adv. Funct. Mater. 2016, 26, 2198–2206.

(3) Jiang, Y.; Li, Y.; Sun, W.; Huang, W.; Liu, J.; Xu, B.; Jin, C.; Ma, T.; Wu, C.; Yan, M. Spatially-confined lithiation-delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries. Energy Environ. Sci. 2015, 8, 1471–1479.

(4) Kong, L.; Liu, X.; Wei, J.; Wang, S.; Xu, B.; Long, D.; Chen, F.-T.; Nb2O5 Nanoparticle Enabled Pseudocapacitance with a Fast Li-Ion Intercalation. NanoScale 2018, 10, 14165–14170.

(5) Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. Transition Metal Oxides for High Performance Sodium Ion Battery Anodes. Nano Energy 2014, 5, 60–66.

(6) Yu, S.; Li, Y.; Lu, Y.; Xu, B.; Wang, Q.; Yan, M.; Jiang, Y. A Promising Cathode Material of Sodium Iron-Nickel Hexacyanoferrate for Sodium Ion Batteries. J. Power Sources 2015, 275, 45–49.

(7) Ma, S.; Zhang, Y.; Cui, Q.; Zhao, J.; Peng, Z. Understanding Oxygen Reactions in Aprotic Li–O2 Batteries. Chem. Phys. B 2016, 25, 018204.

(8) Guo, J.; Zhao, S.; Yang, H.; Zhang, F.; Liu, J. Electron Regulation Enabled Selective Lithium Deposition for Stable Anodes of Lithium-Metal Batteries. J. Mater. Chem. A 2019, 7, 2184–2191.

(9) Cong, Y.; Geng, Z.; Sun, Y.; Yuan, L.; Wang, X.; Zhang, X.; Wang, L.; Zhang, W.; Huang, K.; Feng, S. Cation Segregation of a Site-Deficiency Perovskite Lα2δFeO3−δ Nanoparticles toward High-Performance Cathode Catalysts for Rechargeable Li–O2 Battery. ACS Appl. Mater. Interfaces 2018, 10, 25465–25472.

(10) Shi, C.; Wu, C.; Long, J.; Guo, H.; Dou, S.-X.; Wang, J. Highly Reversible Li–O2 Battery Induced by Modulating Local Electronic Structure via Synergistic Interfacial Interaction Between Ruthenium Nanoparticles and Hierarchically Porous Carbon. Nano Energy 2019, 57, 166–175.
(11) Yu, H.; Dinh, K. N.; Sun, Y.; Fan, H.; Wang, Y.; Jing, Y.; Li, S.; Srinivasan, M.; Yan, Q. Performance-Improved Li-O2 Batteries by Tailoring the Phases of Mo,C Porous Nanorods as an Efficient Cathode. Nanoscale 2018, 11, 14877–14984.

(12) Deng, H.; Qiao, Y.; Zhang, X.; Qu, F.; Chang, Z.; He, P.; Zhou, H. Killing Two Birds with One Stone: a Cu Ion Redox Mediator for a Non-Aqueous Li-O2 Battery. J. Mater. Chem. A 2019, 7, 17261−17265.

(13) Kim, H.; Kwak, W.-J.; Jung, H.-G.; Sun, Y.-K. Verification for Trihalide Ions as Redox Mediators in Li-O2 Batteries. Energy Storage Mater. 2019, 19, 148−153.

(14) Dong, Q.; Yao, X.; Zhao, Y.; Qi, M.; Zhang, X.; Sun, H.; He, Y.; Wang, D. Cathodically Stable Li-O2 Battery Operations Using Water-In-Salt Electrolyte. Chem. 2018, 4, 1345−1358.

(15) Assary, R. S.; Lu, J.; Du, P.; Luo, X.; Zhang, X.; Ren, Y.; Curtiss, L. A.; Amine, K. The Effect of Oxygen Crossover on the Anode of a Li-O2 Battery Using an Ether-Based Solvent: Insights from Experimental and Computational Studies. ChemSusChem 2013, 6, 51−55.

(16) Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194−206.

(17) Guo, Z.; Wang, F.; Li, Z.; Yang, Y.; Tamirat, A. G.; Qi, H.; Han, J.; Li, W.; Wang, L.; Feng, S. Lithiophilic Co/Co,N Nanoparticles Embedded in Hollow N-Doped Carbon Nanocubes Stabilizing Lithium Metal Anodes for Li-Air Batteries. J. Mater. Chem. A. 2018, 6, 22096−22105.

(18) Kim, B. G.; Kim, J.-S.; Min, J.; Lee, Y.-H.; Choi, J. H.; Jang, M. C.; Freunberger, S. A.; Choi, J. W. A Moisture- and Oxygen-Impermeable Separator for Aprotic Li-O2 Batteries. Adv. Funct. Mater. 2016, 26, 1747−1756.

(19) Xin, X.; Ito, K.; Dutta, A.; Kudo, Y. Dendrite-Free Epitaxial Growth of Lithium Metal during Charging in Li-O2 Batteries. Angew. Chem., Int. Ed. 2018, 57, 13206−13210.

(20) Song, H.; Deng, H.; Li, C.; Feng, N.; He, P.; Zhou, H. Advances in Lithium-Containing Anodes of Aprotic Li-O2 Batteries: Challenges and Strategies for Improvements. Small Methods 2017, 1, 1700135.

(21) Zhang, P.; Zhao, Y.; Zhang, X. Functional and Stability Orientation Synthesis of Materials and Structures in Aprotic Li-O2 Batteries. Chem. Soc. Rev. 2018, 47, 2921−3004.

(22) Yin, Y.-B.; Yang, X.-Y.; Chang, Z.-W.; Zhu, Y.-H.; Liu, T.; Yan, J.-M.; Jiang, Q. A Water/Fireproof Flexible Lithium-Oxygen Battery Achieved by Synergy of Novel Architecture and Multifunctional Separator. Adv. Mater. 2018, 30, 1703791.

(23) Luo, K.; Zhu, G.; Zhao, Y.; Luo, Z.; Liu, X.; Zhang, K.; Li, Y.; Scott, K. Enhanced Cycling Stability of Li-O2 Batteries by Using a Polyurethane/SiO2/Graphene Oxide Nanocomposite Separator. J. Mater. Chem. A. 2018, 6, 7770−7776.

(24) Xu, J.; Li, Y.; Liu, X.; Li, S.; Yu, Q.; Wang, J.; Yan, J.-M.; Zhang, X.-B. In Situ Construction of Stable Tissue-Directed/Reinforced Bipolar Functional Separator/Protection Film on Lithium Anode for Lithium-Oxygen Batteries. Adv. Mater. 2017, 29, 1606552.

(25) Koch, S. L.; Morgan, B. J.; Passerini, S.; Teobaldi, G. Density Functional Theory Screening of Gas-Treatment Strategies for Stabilization of High Energy-Density Lithium Metal Anodes. J. Power Sources 2015, 276, 150−161.

(26) Liu, Q.-C.; Xu, J.-J.; Yuan, S.; Chang, Z.-W.; Xu, D.; Yin, Y.-B.; Li, L.; Zhong, H.-X.; Jiang, Y.-S.; Yan, J.-M.; Zhang, X.-B. Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. Adv. Mater. 2015, 27, 5241−5247.

(27) Yoo, E.; Zhou, H. Enhanced Cycle Stability of Rechargeable Li-O2 Batteries by the Synergy Effect of a LiF Protective Layer on the Li and DMTFA Additive. ACS Appl. Mater. Interfaces 2017, 9, 21307−21313.

(28) Asadi, M.; Sayyahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P.; Hu, X.; Mukherjee, A.; Lau, K. C.; Assary, R. S.; Khalili-Araghi, F.; Klie, R. F.; Curtiss, L. A.; Salehi-Khojin, A. A Lithium-Oxygen Battery with a Long Cycle Life in an Air-Like Atmosphere. Nature 2018, 555, 502−506.

(29) Huang, Z.; Ren, J.; Zhang, W.; Xie, M.; Li, Y.; Sun, D.; Shen, Y.; Huang, Y. Protecting the Li-Metal Anode in a Li-O2 Battery by Using Boric Acid as a SEI-Forming Additive. Adv. Mater. 2018, 30, 1803270.
(48) Liu, S.; Deng, L.; Guo, W.; Zhang, C.; Liu, X.; Luo, J. Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes. Adv. Mater. 2019, 31, 1807585.

(49) Cheng, X.-B.; Yan, C.; Peng, H.-J.; Huang, J.-Q.; Yang, S.-T.; Zhang, Q. Sulfurized Solid Electrolyte Interphases with a Rapid Li+ Diffusion on Dendrite-Free Li Metal Anodes. Energy Storage Mater. 2018, 10, 199–205.

(50) Pan, R.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Stromme, M.; Nyholm, L. Sandwich-Structured Nano/Micro Fiber-Based Separators for Lithium Metal Batteries. Nano Energy 2019, 55, 316–326.

(51) Ye, H.; Zheng, Z.; J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F.; Guo, Y. G. Guiding Uniform Li Plating/Stripping via Lithium Aluminum Alloying Medium for Long-Life Li Metal Batteries. Angew. Chem., Int. Ed. 2019, 58, 1094–1099.

(52) Sun, F.; Gao, R.; Zhou, D.; Osenberg, M.; Dong, K.; Kardjilov, N.; Hilger, A.; Markötter, H.; Bieker, P. M.; Liu, X.; Manke, I. Revealing Hidden Facts of Li Anode in Cycled Lithium-Oxygen Batteries through X-Ray and Neutron Tomography. ACS Energy Lett. 2019, 4, 306–316.

(53) Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte. Joule 2018, 2, 2117–2132.

(54) Zhang, R.; Chen, X.; Shen, X.; Zhang, X.-Q.; Chen, X.-R.; Cheng, X.-B.; Yan, C.; Zhao, C.-Z.; Zhang, Q. Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule 2018, 2, 764–777.

(55) Zhang, H.; Liao, X.; Guan, Y.; Xiang, Y.; Li, M.; Zhang, W.; Zhu, X.; Ming, H.; Lu, L.; Qiu, J.; Huang, Y.; Cao, G.; Yang, Y.; Mai, L.; Zhao, Y.; Zhang, H. Lithiophilic-Lithiophobic Gradient Interfacial Layer for a Highly Stable Lithium Metal Anode. Nat. Commun. 2018, 9, 3729.

(56) Liu, Y.; Xiong, S.; Wang, J.; Jiao, X.; Li, S.; Zhang, C.; Song, Z.; Song, J. Dendrite-Free Lithium Metal Anode Enabled by Separator Engineering via Uniform Loading of Lithiophilic Nucleation Sites. Energy Storage Mater. 2019, 19, 24–30.

(57) Wang, X.; Wang, B.; Tang, Y.; Xu, B. B.; Liang, C.; Yan, M.; Jiang, Y. Manganese Hexacyanoferrate Reinforced by PEDOT Coating Towards High-rate and Long-life Sodium-ion Battery Cathode. J. Mater. Chem. A 2020, 8, 3222–3227.

(58) Kwak, W.-J.; Park, J.; Nguyen, T. T.; Kim, H.; Byon, H. R.; Jang, M.; Sun, Y.-K. A dendrite- and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries. J. Mater. Chem. A 2019, 7, 3857–3862.