Coordination of construction manipulation robotic system
using UAV

A G Bulgakov* and E G Pakhomova

1 Southwest State University, Kursk, Russia

* agi.bulgakov@gmail.com

Abstract. Drone technology has demonstrated to be of great contribution to the construction field. Tasks such as photogrammetry, plot surveillance and assets inspections are successfully automated with the aerial robotic technology with some level of contribution of a human operator. In this paper we analyse the possibility to achieve fully automated construction task using dispersed robotic system: a drone and mobile robotic crane. The role of the drone is to study the surroundings and generate a desired trajectory for the crane boom arm in order to lay-in pergola blades. The paper focuses on the layers of the dispersed cyber-physical system allowing to achieve such complex task and optimize the trajectory of the crane boom arm by resolving two-dimensional Chebyshev-Gauss collocation method in order to have minimum-jerk path.

1. Introduction

The practical implementation of the cyber-physical systems in our day to day life is well established. We recognize the development in such solutions leading to Internet of Things (IoT), augmented and virtual reality contributing to a new level of end-user’s satisfactions and extended useful experience. In contrast, the paradigm of applying cyber-physical systems to the construction field is yet to explore and set its own potential.

This is majorly due to the late and slow development of the autonomous and robotized platforms which has a projected application in the construction field.

A techno-commercial solution of the autonomous systems in construction is rarely considered as it is always cheaper and less risky to deploy man-power (carpenters, steel fixers) rather than purchasing and customizing a robotic solution.

In one hand, the implementation of sophisticated solution is costly and require specialized staff present at site for monitoring, and on the other hand, the solution is not widely tested and its results are barely registered and recognized.

In this paper, we tackle the first challenge aiming to reduce the specialized and idle man power by studying the automation level required to lay-in pergola blades on top of a building using dispersed cyber-physical system composed of a drone and a mobile lifting crane. By cyber-physical system, we understand the concept of reliable fusion between computational and physical platform embedded within the same body [1-5], however, enabling better interaction capabilities with the surrounding (world and human operator) though many modalities and processes. In light of that, the terms of interaction, integration and enhancement are key areas where the research of cyber physical systems is occurring.
Traditionally, the physical system is a consolidated system and not dispersed over selected area. Recently, with the introduction of Internet of things, the probability of designing distributed physical systems became achievable, as it overcame the disadvantages of radio systems and the huge cost related to GPS and GLONASS integration in navigation platforms, which made this solution not optimal techno-commercially. In this paper, we introduce the cyber-physical system consisting of the following levels:

- aerial: a UAV scanning the roof and generating the positioning tasks for the subsequent component of the pergola;
- cybernetic: analyzing the video-input of the UAV and generating trajectory for the manipulator using visual odometry algorithm;
- ground: a Mobile robotic crane, receiving the coordinates from the cyber system and performing the laying-out of the pergola blades.

A concept of the solution is illustrated in figure 1 according to which, the UAV will dictate the following parameters as a potential control task to the cybernetic system: the swing angle ϕ, the luff angle θ, the hoist elevation h and the mobility across axis OX and OY, which can be replaced by the angle formed by the hoist and the luff axis [6-10].

![Figure 1. Concept of dispersed cyber-physical system.](image)

2. Paradigm of proposed cyber physical system

By paradigm, we underline a worldview underlying theories and methodologies of a particular scientific subject. To some extent, the notion of the cyber-physical system is well defined in the IT fields. However, its application in other engineering subjects is yet to be defined.

Our target in this paper is to make notions more tangible and hence allowing better evaluation and optimization. In line of that, we will be studying the generic system architecture, the enabling knowledge and technology assets, and distinguishing system characteristics allowing for expansion and optimization.

Cyber physical systems (CPS) have emerged from the synergetic merging of information, sensory and communication system with a physical system. This is a comparable notion to mechatronic system, from where we will begin integrating CPS architecture to the electromechanical word of construction.
In addition, we have to consider the human-machine interface as the CPS will not be deployed at site in isolation with the other construction activities. Hence, an additional layer in the CPS will be figuring out and influencing on the overall performance of the system. Figure 2 and 3 illustrate generalized CPS layers and compared to the applied proposed CPS [11, 12].

![Figure 2. Traditional CPS.](image)

![Figure 3. Proposed CPS.](image)

As one can see from figures 2 and 3, the difference between a traditional and the proposed CPS can be highlighted in several points: firstly, the human-machine interface is encompassed inside the CPS in the traditional system, however, in the proposed layout, the layer is peripheral and has no direct interaction with the autonomous technology and cyber field.

Secondly, the tactile technology is substituted with an autonomous system as we are aiming to robotize construction task and lastly, the direct interaction with the environment and application is done by a synergetic “mechatronic layer” responsible of communication and execution of the task. In addition, the environment layer is neither connected directly to the autonomous and cyber system. In short, the difference lays in omitting the human factor influencing the process and replacing it with actuating mechanism.

The proposed model complies with the worldwide notions of CPS especially point C5 stating the system should be articulated and heterogeneous. By articulated, we define the connectivity of the system with its embedded components and environment; and by heterogeneous - we mean the different physical origin of each systems: having a cyber part, a synergy and actuators. The same is import as the CPS can suffer possible downtime leading to task failure. In this case, the CPS analysed by its Cyber part has to plan for a functional (graceful) degradation [13].

3. System architecture

In this paragraph, we will discuss the core parts of the CPS, its parameters, requirement and functions. We will study the cyber system component, set the algorithm of trajectory generation for the crane boom arms using UAV and identify the transformation equations between the pixel and metric references.

The last part of the paragraph will address the optimization of the generated trajectory and transformation of the boom arm movement to a two-dimensional Chebyshev-Gauss collocation method in order to achieve minimum jerk movement considering zero initial conditions.

3.1. Cyber system

Firstly, regarding the cyber field, an embedded software command the generation of the trajectory of the crane boom arms and requirement of the geometric coordinates explained in paragraph 1.
addition, the cyber system is responsible of intra and inter-objects transmissions. As per the current standards of CPS the following range of transmission for a multi-scale CPS need to be identified:

| Table 1. Transmission range for intra and inter-Objects communication. |
|--------------------------|--------------------------|--------------------------|
| Intra-Object Transmission | Inter -Objects Transmission | |
| Not Available | Global | 10^6 m |
| Nano Scale | from 10^{-9} m | Long range | 10^4 m |
| Micro Scale | up to 10^{-6} m | Medium Range | 10^2 m |
| Macro Scale | up to 10^{-3} m | Short Range | 10^0 m |

From table 1, we need to pay attention to the following: the intra-object transmission needs to be respected and achieved by all means, since it is a mandatory requirement for possible functional degradation in case of system failure.

Pertaining to the inter-objects’ transmission, a least of medium range should be achieved allowing the communication between the drone and the crane with possible engagement from the human-machine interface.

The other part of the cyber system is the trajectory generating software. We will be deploying the drone, equipped with a camera, to generate desired trajectory for the boom arm, study possible collision and assign subsequent step to lay the pergola blade. Using machine vision and odometry, CPS can autonomously define the trajectory of the boom arm. Figure 4 and equations (1-3) illustrate the transition between pixel to metric coordinates.

The distance from the camera to a specific coordinate (Earth-axis) is computed using the following equations:

$$d (x) = H_f = H \cdot \tan(\phi + \alpha);$$ \hspace{1cm} (1)

$$d (y) = H_B = H \cdot \tan(\theta + \beta);$$ \hspace{1cm} (2)

Using equations (1) and (2), we can identify the transformation formulas between different reference systems.

![Figure 4. Illustration of different reference systems and coordinates.](image-url)
\[
\begin{align*}
X_n &= \frac{x}{\ell_x} \cos \left(\arctan \left(\frac{H_y}{H_r} \right) \right) \\
Y_n &= \frac{y}{\ell_y} \sin \left(\arctan \left(\frac{H_y}{H_r} \right) \right) \\
\rho_x &= \sqrt{X_n^2 + Y_n^2} \cdot \cos \left(\arctan \left(\frac{H_y}{H_r} \right) \right) \\
\rho_y &= \sqrt{X_n^2 + Y_n^2} \cdot \sin \left(\arctan \left(\frac{H_y}{H_r} \right) \right).
\end{align*}
\] (3)

where \(X_n \) and \(Y_n \) are the pixel coordinates, \(x \) and \(y \) are the body axis coordinate and \(\rho_x \) and \(\rho_y \) are the angular pixel coordinates.

3.2. Actuating system
The actuators are responsible of fulfilling the generated trajectory, to lift and lay the pergola blades according to the defined coordinates. In addition, the process has to be jerk-free movement in order to avoid collisions and inverted pendulum effect, especially that wind might affect the positioning of the blade at a certain height. To achieve an optimal trajectory to the manipulator, the movement will be posed and solved as quadratic programming using multi-segment Chebyshev orthogonal collocation for transcription. Using the two-dimensional Chebyshev-Gauss collocation method to obtain possible numerical solution of differential equation by partially is differentiating it in time and discretizing it using finite difference method [14]. Taking into consideration that the trial or candidate trajectories \(f_k(x) \) will be set on homogenous Dirichlet boundary conditions [13], the approximate solution can be presented in the following equation:

\[
U^N(x, t) = \sum_{k=0}^{N} a_k(t) f_k(x)
\] (4)

In the collocation approach, the differential equation has to be satisfied by the approximate solution at the collocation points in the assigned domain [15-18]. The derivative at each node can be found by multiplying the value at any Chebyshev point by a differentiation matrix.

4. Results
By implementing the proposed model, and running the quadratic programming listing on Matlab, we obtained the result of multi-segment trajectory simulation as depicted in figure 5.

Figure 5. Results of multi-segment trajectory.
In figure 5 can be seen that the trajectory is passing by all the Chebyshev node points, where the initial a final velocity rated in rad/s is zero and the angle of the final trajectory is almost negligible.

By applying the same concept to the both sections of the manipulator, with specific boundaries and input trajectory, we can see that the arm end-effector holding the bald is travelling smoothly, on the doted lines, shown in figure 5, taking into consideration for joint 1 and 2, the initial velocity is zero (starting point of lifting task), and the resultant final velocity of the end-effector is also zero rad/s, which corresponds to discharge of the manipulator after laying task.

5. Conclusion
This paper studied the architecture of multi layered cyber-physical system consisting of UAV and robotic crane. The role of the UAV is to generate desired path for the crane boom arm in order to lift and lay pergola blades on top of a building. The paper addressed different layers of the cyber physical systems and proposed an additional synergetic part interacting solely with human machine interface and acquire information for the environment. In such scenario the cyber physical system will be bordered and allow for better functional (graceful) degradation if required. Later, the paper focused on the trajectory planning and generation of transportation coordinates of the pergola blades. The problem is then transformed as two-dimensional Chebyshev-Gauss orthogonal collocation method aiming to achieve jerk-free transportation and positioning of the blades. The obtained simulation results illustrated both the joints of the lifting crane have followed the optimal trajectory, passing by all Chebyshev points with minimum jerk considering that the initial velocity of the joints is zero and the final velocity should be obtained zero rad/s with minimum to zero overshooting angles.
An analysis of the values of the volume modulus K in polydisperse composites with spherical inclusions defined by formula (1) showed that for studies of an infinite number of values of this module it is advisable to proceed to the consideration of dimensionless functions k and ϕ - functions of three dimensionless parameters. A numerical study of formulas (3) revealed the possibility of a graphical representation of the functions k and ϕ in a flat space ($k - w$) (see figure 1). By values, this space is divided into internal (lower) and external (upper).

For values of $\theta = 0$, formulas (3) are reduced to two degenerate formulas (8) represented in the same $k - w$ space by figures k_0 and ϕ_0 (see figure 6). The contours of these figures limit the region of location of points that display the values of the modules k_0 for two ordered subsets of degenerate composites (with an undeformable filler). In this case, the upper figure displays (for given values of the modules of the matrix) the highest values of the module $k (\eta \mu, \theta, w)$.

The space between the figures k_0 and ϕ_0 (see figure 2, 3) is intended to place the figured regions of the values of the modules $k (\eta \mu, \theta, w)$ of the composites in which the value of θ is nonzero. The figures of the regions for such composites (with elastic filler) continuously fill the named intermediate space. Examples of such figures are presented in figure 4 and 5.

The graphical visibility of the solutions (see figures 2, 3, 4 and 5) given by equations (1), (3) and (8) significantly expands the scope of the applied use of these formulas. At the same time, there is a real possibility of conducting targeted experimental studies (mechanical compression tests of standard sized composite samples) to confirm the predicted properties of the composites. In this case, there is no need for physical analogies that were used by Christensen [19-29].

References
[1] Sayfeddine D, Bulgakov A and Kruglova T 2017 Intelligent passively stabilized quadrotor IOP Conf. Series: Earth and Environmental Science DOI:10.1088/1755-1315/87/3/032036
[2] Bulgakov A, Kruglova T and Bock T 2019 Formulation of the Optimization Problem of the Cyber-physical Diagnosis System Configuration Level for Construction Mobile Robots Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019) Alberta p 704-708
[3] Cho Y, Haas C T, Liapi K, and Sreenivasan S V 2002 A framework for rapid local area modelling for construction automation, Autom. Constr. 11 no. 6 p 629–641
[4] Lin J J, Han K K and Golparvar-Fard M A 2015 Framework for Model-Driven Acquisition and Analytics of Visual Data Using UAVs for Automated Construction Progress Monitoring, Computing in Civil Engineering
[5] Wang F, Cui J and Chen B M 2013 Comprehensive UAV Indoor Navigation System Based on Vision Optical Flow and Laser FastSLAM. Acta Autom Sin.
[6] Upadhay A 2018 UAV-Robot relationship for coordination of robots on a collision free path, International conference on robotics and smart manufacturing (RoSMa) p 424-31
[7] Ham Y, Han K K, Lin J J and Golparvar-Fard M 2016 Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Vis Eng.
[8] Ellenberg A, Branco L, Krick A, Bartoli I and Kontsos A 2015 Use of Unmanned Aerial Vehicle for Quantitative Infrastructure Evaluation J Infrastruct Syst.
[9] Gheisari M, Irizarry J and Walker B N 2014 UAS4SAFETY: The Potential of Unmanned Aerial Systems for Construction Safety Applications. In, Construction Research Congress
[10] Liu T, Yang L, Lin Q, Guo Y and Liu Y 2014 Anchor-free backscatter positioning for RFID tags with high accuracy Proceedings - IEEE INFOCOM
[11] Bulgakov A, Evgenov A and Weller C 2015 Automation of high-rise structures inspection using quadrotor vol. 123 Procedia Engineering p 101 – 109
[12] Horvath I and Gerritsen B 2012 Cyber-physical systems: concepts, technologies and implementation principles Proceedings of TMCE May 7–11 p 19-36
[13] Cheng A and Cheng D T 2005 Heritage and early history of the boundary element method vol. 29. Engineering Analysis with Boundary Elements p 268–302
[14] Sameeh M 2016 Chebyshev Collocation Method for Parabolic Partial Integrodifferential Equations Advances in Mathematical Physics p 7
[15] https://arxiv.org/pdf/gr-qc/0609020.pdf
[16] Parthasarathy S A 1997 Tight Analysis of the Greedy Algorithm for Set Cover, J. Algorithms, vol. 25 p 237–254,
[17] Bouabdallah S 2007 Design and control of quadrotors with application to autonomous flying. Master's thesis, Swiss Federal Institute of Technology
[18] Rajhans A, Cheng S W, Schmerl B, Garlan D, Krogh B H, Agbi C and Bhave A 2009 An architectural approach to the design and analysis of cyber-physical systems vol. 21 Proceedings of the 3rd International Workshop on Multi-Paradigm Modeling-MPM EASST pp 1-10
[19] Sayfeddine D 2019 Functional degradation of cyber-physical aerial system for trajectory planning and agent tracking. The International Conference on Information Technologies in Business and Industry
[20] Kuo C-H, Kuo C-M, Leber A and Boller C 2013 Vector thrust multi-rotor copter and its application for building inspection. International Micro Air Vehicle Conference and Flight Competition (IMAV2013), Toulouse France.
[21] Bulgakov A, Emelianov S, Bock T and Sayfeddine D. 2014 Control of hovering altitude of a quadrotor with shifted center of gravity for inspection of high-rise structures. Proceedings of the 31st International Symposium on Automation and Robotics in Construction (ISARC) Sydney Australia
[22] Bertram T, Bock T, Bulgakov A and Evgenov A. 2014 Generation the 3D Model Building by Using the Quadcopter, 31st International Symposium on Automation and Robotics in Construction and Mining, Sydney Australia University of Technolog p 778-783
[23] Pascal W H, Wegner J D and Schindler K 2015 Globally consistent registration of terrestrial laser scans via graph optimization, ISPRS Journal of Photogrammetry and Remote Sensing Vol. 109 p 126-138
[24] Kusovkov N 1976 Modal control and observer devices Machine industry proceedings, Moscow p.184
[25] Eschmann C, Kuo C M, Kuo C-H and Boller C 2016 Unmanned Aircraft Systems for Remote Building Inspection and Monitoring. 6th European Work-shop on Structural Health Monitoring
[26] Tanaka S, Nakamura K, Imai R, Kubota S and Sakurai J 2016 Design Data Generation System for Progress Control of Working Form Proceedings of Civil Engineering Conference in the Asian Region Hawaii USA, p 1-12
[27] Kubota S, Kawai, Y and Kadotani R 2017 Accuracy Validation of Point Clouds of UAV Photogrammetry and its Application for River Management The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences p 195-199
[28] Sayfeddine D, Nonlinear autoregressive neural network with exogenous inputs based solution for local minimum problem of agent tracking using quadrotor. Electronic scientific journal. Engineering Journal of Don. Vol. 2 2014
[29] Akinci B, Boukamp F, Gordon C, Huber D, Lyons C and Park K 2006 A formalism for utilization of sensor systems and integrated project models for active construction quality control Autom. Constr. vol. 15 p 124–138