Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression

Sylvie Brassart-Pasco 1,2*, Stéphane Brézillon 1,2, Bertrand Brassart 1,2, Laurent Ramont 1,2,3, Jean-Baptiste Oudart 1,2,3 and Jean Claude Monboisse 1,2,3

1 Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4 231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France, 2 CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France, 3 CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France

The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell–cell or cell–matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.

Keywords: cancer, microenvironment, extracellular matrix, matrikines, integrins, proteases

INTRODUCTION

The tumor microenvironment (TME) is a complex structure composed of a large variety of cell types embedded in a modified extracellular matrix (ECM), with bidirectional communication between cells and ECM macromolecules to determine tumor progression and metastatic dissemination. The communication may involve cell–cell contacts but may also be controlled by intact ECM macromolecules or by several of their domains released by limited proteolysis and called matrikines or matricryptins. In this review, we will focus on ECM alterations occurring in TME, on the role of released matrikines in the control of cancer progression, and on the potential use of ECM fragments as biomarkers for cancer diagnosis and prognosis.
TUMOR MICROENVIRONMENT: AN ACTIVE PLAYER IN CANCER PROGRESSION

Tumors are diverse by the nature of their TME composition, stromal cell proportion, and activation states. TME undergoes transformations during tumor progression as a result of tissue remodeling. TME comprises a wide variety of cell types such as fibroblasts, endothelial cells, pericytes, and immune and inflammatory cells. These different cells elicit cross-talks leading to cell activation and differentiation and alterations in ECM structural and biological properties facilitating tumor cell proliferation, invasion, and metastatic dissemination. Within the TME, different T cell and B cell populations infiltrate invasive tumors and draining lymphoid organs (1). Tumor-associated macrophages (TAMs) are either tissue-resident or derived from bone marrow or spleen and play an important role in tumorigenesis regulation by facilitating cell migration, invasion, and metastasis (2). Tumor cells lead to the recruitment of neutrophils in tumorigenesis sites by secreting chemokines and interleukin (IL)-8. Infiltration by neutrophils appears to confer a poor prognosis (3). A dominant cellular component is fibroblasts that exert a key role in cancer progression and metastasis. Fibroblasts are usually quiescent and become activated to differentiate into myofibroblasts, also called cancer-associated fibroblasts (CAFs) (4). The main progenitors of CAFs come from resident fibroblasts, but CAFs can also come from smooth muscle cells, pericytes, or from bone marrow-derived mesenchymal cells leading to a heterogeneous cell population (5–7). Growth factors, secreted by tumor cells and infiltrating immune cells, largely govern stromal fibroblast recruitment. Transforming growth factor (TGF)β, platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)2 are key mediators of fibroblast activation. CAFs become synthetic machines that produce TME components creating an ECM structure as well as metabolic and immune reprogramming of TME. CAF secretome includes growth factors [epidermal growth factor (EGF), bone morphogenetic protein (BMP), FGF, or TGFβ] and some chemokines such as C-X-C motif ligand (CXCL)12 or stroma-derived factor (SDF)-1, which recruit circulating endothelial progenitor cells (4). These soluble factors, in conjunction with the angiogenic switch and several miRNAs, stimulate endothelial cells and their associated pericytes to develop tumor angiogenesis or lymphangiogenesis (2).

METABOLIC ALTERATIONS IN THE TUMOR MICROENVIRONMENT

During the local growth of tumor, the surrounding vessels fail to meet the high demand of oxygen leading to hypoxic areas within the tumor and TME (8). Prolyl-hydroxylases are responsible for the labeling of hypoxia-inducible factors (HIFs) to be degraded by 26S proteasome. Under hypoxic conditions, prolyl-hydroxylases are inhibited, leading to the stabilization of HIFs that induces the expression of various genes implicated in tumor progression. Moreover, hypoxic responses include the unfolded protein response (UPR) and mammalian target of rapamycin (mTOR) signaling (9). mTOR signaling, through the phosphoinositide 3-kinase (PI3K)/Akt pathway, largely contributes to the regulation of cell survival, growth, and metabolism through phosphorylation of the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1 protein) and ribosomal protein S6 kinase (10). HIF-1 is also a key regulator of the metabolic switch. By inducing specific gene expression, it alters the cellular metabolism, increasing glycolysis and lactate production (11, 12). Lactate arises from glycolysis which takes place under hypoxic conditions, but in tumors, glycolysis can also take place in oxygenated areas (8).

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase of inflammatory cells generates oxidative stress. Superoxide ions are converted into hypochlorous acid (HOCl) by myeloperoxidase and into OH* radicals. Tumor cells with a high metabolism also release reactive oxygen species (ROS) and promoted ROS production in CAFs. ROS induce oxidative stress in TME and activate HIF-1 and nuclear factor (NF)-κB pathways, leading to an increase in autophagy (7). ROS also induce strong alterations in DNA, cell membrane, and ECM components. For example, collagen I is partially degraded by ROS and becomes more susceptible to proteolytic cleavage (13). Among proteases, neutrophils or TAMs secrete matrix metalloproteinase (MMP)-8 and-9 as well as neutrophil elastase that collaborates with CAF-secreted proteases to degrade ECM.

Main metabolic alterations of TME are summarized in Figure 1.

EXTRACELLULAR MATRIX ALTERATIONS IN THE TUMOR MICROENVIRONMENT

Another important feature of TME is the composition and organization of ECM, whose mechanical properties affect cell behavior. The ECM is mainly secreted by CAFs which produce more ECM proteins than normal fibroblasts. It is composed of various macromolecules including collagens, glycoproteins (fibronectin and laminins), proteoglycans, and polysaccharides with different physical and biological properties. Interstitial matrix, primarily synthesized by stromal cells, is rich in fibrillar collagens and proteoglycans. CAF secretome analyses show an increased secretion of bone morphogenetic protein (BMP)1, thrombospondin-1, and elastin interface 2 (7, 14). Several splice variants of fibronectin ED-A and ED-B and tenascins C and W may be secreted by CAFs (15). Interstitial ECM is highly

Abbreviations: ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; BMP, bone morphogenetic protein; CAF, cancer-associated fibroblast; ECM, extracellular matrix; ERK, elastin receptor complex; FGF, fibroblast growth factor; 4E-BP1, protein, eukaryotic initiation factor 4E-binding protein 1; HER2, human epidermal growth factor receptor-2; LN, laminin; LOX, lysyl oxidase; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; PDGF, platelet-derived growth factor; ROS, reactive oxygen species; SDF 1, stroma-derived factor 1; SNN, synstatin; sVEGFR1, soluble VEGF tyrosine kinase receptor 1; TAM, tumor-associated macrophage; TGFβ, transforming growth factor β; TME, tumor microenvironment.
FIGURE 1 | Main metabolic and extracellular matrix (ECM) alterations in the tumor microenvironment (TME) during tumor progression. During cancer progression, tumor cells increase lactate production, leading to an acidification of TME. Tumor cells, cancer-associated fibroblasts (CAFs), polymorphonuclear leukocytes (PMNs), and monocytes secrete proteases, such as matrix metalloproteinases (MMPs), that degrade ECM and release matrikines. CAFs induce a higher secretion of ECM macromolecules that leads to an excessive deposition of ECM components. Tumor cells, PMNs, and monocytes produce reactive oxygen species (ROS) that degrade ECM components and particularly collagen I, facilitating tumor cell migration. They also stimulate the production of MMPs. Hypoxia also induces hypoxia-inducible factor (HIF) stabilization, lysyl oxidase (LOX) and transglutaminase activation, collagen and elastin cross-linking leading to ECM stiffening. These events favor tumor cell migration and cancer progression.

charged and hydrated and greatly participates in the tensile strength of tissues. Stiffness of neoplastic tumors is strongly higher than adjacent normal tissues. Cancer cells, CAFs, and TAMs, stimulated by hypoxia, modulate together ECM within the TME through an excessive deposition of structural components such as collagens, as well as cross-linking enzymes of the lysyl oxidase (LOX) and transglutaminase families, particularly LOX-1, LOXL-2, and transglutaminase-2 (16, 17). Collagen and elastin fibers are reoriented and cross-linked by LOX and transglutaminase, resulting in larger and more rigid fibrils that facilitate cell migration (18, 19). Figure 1 summarizes the main ECM alterations in TME.

EXTRACELLULAR MATRIX BREAKDOWN BY MIGRATING CANCER CELLS

A decisive hallmark in cancer progression is the crossing of ECM and basement membrane (BM) by cancer cells. To penetrate the ECM, cancer cells secrete a number of proteolytic enzymes of the MMP family. BMs are specialized ECMs which are more compact and less porous. They present a distinct composition with collagen IV and laminin interconnected networks and proteoglycans such as perlecan. Several other types of collagen are associated to the BM, collagens XV, XVIII, and XIX. During ECM-barrier crossing, proteases release soluble and active fragments referenced in Table 1, called matrikines or matricryptins which may control cancer progression.

EXTRACELLULAR MATRIX-DERIVED FRAGMENTS INFLUENCE TUMOR PROGRESSION

The different matrikines derived from ECM macromolecules, collagens, glycoproteins, or proteoglycans may exert either pro- or anti-tumorigenic properties in various cancer models (Table 1). We and others demonstrated that collagen IV-derived matrikines (canstatin, tumstatin, and tetrastatin) and collagen XIX-derived matrikine act through binding to α3β1, α5β1, or αvβ3 integrins. The binding elicits an inhibition of
TABLE 1 | ECM fragments affect the main hallmarks of cancer progression.

| ECM bioactive fragments | Parent molecule | Generating enzymes | Receptors | Biological activity |
|-------------------------|-----------------|--------------------|-----------|---------------------|
| Collagen fragments      |                 |                    |           |                     |
| Type IIB procollagen NH2 propeptide | Type IIB collagen | ADAMTS-3 (20) | αvβ3, αvβ5 integrins (21) | EC and tumor cell death (chondrosarcoma, cervical and breast cancer) (21) through programmed cell necrosis (22) |
| Arresten (α1 chain NC1 domain) | Type IV collagen | Cathepsin S (23) MT1-MMP, MT2-MMP (24) | α1β1 integrin (25, 26) | Angiogenesis and tumor growth (melanoma, glioblastoma, colorectal and lung cancer, squamous cell carcinomas) (25) FAK/c-Raf/MEK-1/2/ERK-1/p38 MAPK pathways in EC |
| Canstatin (α2 chain NC1 domain) | Type IV collagen | Cathepsin S (23) MT1-MMP, MT2-MMP (24) | α1β1, αvβ3, αvβ5 integrins (27) | Angiogenesis and tumor growth (ocular, lung, breast, oral squamous cell, esophageal carcinoma, gastric, ovarian, pancreatic, prostate, and colorectal cancer (23) VEGF-A/VEGFR-1-2 signaling pathway in squamous cell carcinoma (29) Apoptosis in cancer cell and EC through bcl-2/bcl-xl/bax ratio modulation (25) |
| Tumstatin (α3 chain NC1 domain) | Type IV collagen | MMP-9 (31) | αvβ3, αvβ5 integrins (32) | Angiogenesis and tumor growth (melanoma, gloma, osteosarcoma, breast, colon, prostate and lung cancer, gastric, hepatocellular, and squamous cell carcinoma (33, 34) |
| 54–132 amino-acid sequence | | | | S4–132 amino-acid sequence: G1 arrest, caspase-3 activation and FAK/P38/Akt/mTOR pathway in ECs (35) |
| 185–203 amino-acid sequence | | | | 185–203 amino-acid sequence: melanoma and EC migration through a decrease in MMP-2, uPA, t-PA (36) |
| Tetrastatin (α4 chain NC1 domain) | Type IV collagen | αvβ3 integrin (37) | | Tumor growth (melanoma, gloma, osteosarcoma, breast, colon, prostate and lung cancer, gastric, hepatocellular and squamous cell carcinoma (37–40) FAK/P38/Akt pathway and MMP-2 in tumor cells (37, 38) |
| Lamstatin (α5 chain NC1 domain) | Type IV collagen | | | Angiogenesis (41) and lung cancer growth (42, 43) Unknown molecular mechanism |
| Hexastatin (α6 chain NC1 domain) | Type IV collagen | | | Angiogenesis and tumor growth (Lewis lung carcinoma and spontaneous pancreatic insulinoma) (44) Unknown molecular mechanism |
| Vascatin (NC1 domain of collagen VIII alpha 1 chain) | Type VIII collagen | | | EC proliferation and tumor growth and metastasis in murine hepatocellular carcinoma models (45) PcK1, JAG2, and c-Fos, Notch/AP-1 pathway (46) |
| Restin (NC10 domain of collagen XV) | Type XV collagen | | | EC migration, renal carcinoma growth (47) and breast cancer metastasis (48) ATP3 activity by direct interaction (49) EMT through p73 binding, miR-200a/b increase and ZEB1/2 inhibition in breast cancer cells (49) |
| Endostatin (20-kDa C-terminal fragment of collagen XVIII) | Type XVIII collagen | α5β1 integrin; caveolin-1 (50) | | Angiogenesis, lymphangiogenesis and tumor growth (51) Src-kinase pathway, RhoA GTPase activity, Ras/c-Raf/p38/Erk-1 pathway in EC (52, 53) |

(Continued)
| ECM bioactive fragments | Parent molecule | Generating enzymes | Receptors | Biological activity |
|------------------------|----------------|--------------------|-----------|---------------------|
| NC1 XIX | Type XIX collagen | Plasmin (55) | αvβ3 integrin (56) | Frizzled domain (FZC18) \(\nabla\) Wnt/β-catenin pathway (54) \(\nabla\) Melanoma cell migration, invasion, tumor growth and angiogenesis (56, 57) \(\nabla\) MMP-14 (57) in melanoma \(\nabla\) FAK/P3K/Akt/mTOR pathway in melanoma cells (57) |
| Elastin fragments | | | | |
| VG-6 (VGAPG) | Elastin | Proteinase 3, cathepsin G (58), MMP-7,9,12 (59), neprilysin (60) | ERC, αvβ3 and αvβ5 integrins, galactin-3 (61), RPSA (62) | Angiogenesis (63) and tumor growth in melanoma models (62, 64, 65) \(\nabla\) MT1-MMP, \(\nabla\) P3K/Akt/NO synthase, \(\nabla\) NO/cGMP/Erk1/2 pathways in EC (66) \(\nabla\) IL-1β through NF-κB pathway in melanoma cell (67) \(\nabla\) MMP and plasminogen activation cascades in cancer cells |
| AG-9 (AGVPQLGVG) | Elastin | Proteinase 3, cathepsin G (58), MMP-7,9,12 (59), neprilysin (60) | RPSA (62) | Tumor growth in a melanoma model (62) \(\nabla\) Tumor cell migration, invasion through MMP and plasminogen activation cascades |
| Laminin fragments | | | | |
| IKVAV (α1 chain fragment) | Laminin-111 | | α3β1 and α6β1 integrins (68) | Angiogenesis, tumor growth, and metastasis (68) \(\nabla\) bone marrow mesenchymal stem cell proliferation by activating MAPK/ERK1/2 and PI3K/Akt signaling pathways (69) \(\nabla\) t-PA in melanoma cells (68) |
| AG73 (RIKRLQVQLSR from α1 chain) | Laminin-111 | Syndecans 1, 2, and 4 (68) | | Angiogenesis and tumor growth (68) \(\nabla\) Rac1 and ERK1/2 signaling pathways (70) \(\nabla\) Tumor growth and metastasis (68) Unknown mechanism |
| YIGSR (β1 chain fragment) | Laminin-111 | 67 KD receptor (68) | | Angiogenesis and tumor growth (68) \(\nabla\) MMP-9 production in melanoma cells (68) |
| C16 (KAFDITYVRLKF from γ1 chain) | Laminin-111 | | αvβ3 and α5β1 integrins (68) | Tumor growth (68) \(\nabla\) MMP-9 production in melanoma cells (68) |
| γ2 chain N-terminal fragment | Laminin 332 | MMP-2, cathepsin S, MT1-MMP (71) | α3β1 integrin, CD-44 (71) | Angiogenesis, tumor growth and metastasis (71) Unknown mechanism |
| α3 chain C-terminal fragment | Laminin 332 | Plasmin, MMP-2, MT1-MMP, C-proteinase, mTLD, BMP-1 (71) | α3β1 and α6β1 integrins (71) | Angiogenesis, tumor growth (71) Unknown mechanism |
| A5G27 (RLVSYNGIIFFLK from α5 chain) | Laminin 511 | | Cell surface glycans (72) | Breast tumor cell proliferation \(\nabla\) 4T1.2 experimental pulmonary metastasis (72) Unknown mechanism |
| Fibronectin fragments | | | | |
| Anastellin (type III module) | Fibronectin | | | Angiogenesis, tumor growth and metastasis (73) \(\nabla\) p38 MAPK activation in EC (74) |
| Proteoglycans fragments | | | | |
| Metastatin | Aggrecan | ADAMTS (75) | | Growth, migration, angiogenesis of melanoma and prostate cancer (76) Unknown mechanism |
| Endorepellin | Perlecan | MMP-7 (77) | α2β1 integrin (79) | EC proliferation and migration, angiogenesis, tumor growth (78–84) \(\nabla\) VEGF-A/VEGFR pathway in EC (79) \(\nabla\) autophagy through Pdgf activation in EC (79, 85) |

(Continued)
the focal adhesion kinase (FAK)/PI3K/Akt/mTORC1 pathway, which is one of the main intracellular pathways involved in TME metabolic alterations. The inhibition leads to a decrease in the proliferative and invasive properties of tumor cells in various cancer models (27, 33, 38, 56). The main receptors, biological activities, and molecular mechanisms identified for ECM bioactive fragments are reported in Table 1 and are illustrated in Figure 2.

### EXTRACELLULAR MATRIX FRAGMENTS AS TUMOR BIOMARKERS

During cancer progression, an excessive ECM remodeling by proteinases, especially MMPs, is observed, and small ECM fragments are released into the circulation. The levels of these fragments may represent a measure of tumor activity and invasiveness and could be proposed as biomarkers (115). Serum and biofluid biomarkers are easy to collect, noninvasive, low cost, and can be followed over the course of the disease. Identification of new biofluid biomarkers may help in early detection, diagnosis, disease monitoring, and in individual treatment selection and thus on patient outcome. However, the low concentrations of ECM-derived fragments in body fluids remain a limitation to the development of these biomarkers in daily practice.

### Collagens

Type I collagen is a major ECM component susceptible to proteinase degradation during cancer progression. Type I collagen cross-linked carboxyterminal telopeptide (ICTP) measurement in patient sera appears to be useful for bone metastasis screening in lung cancer patients, including stage III–IV non-small-cell lung cancer (NSCLC) or extensive disease (ED) small-cell lung cancer (SCLC) (116). ICP

---

**TABLE 1 | Continued**

| ECM bioactive fragments | Parent molecule | Generating enzymes | Receptors | Biological activity |
|-------------------------|-----------------|--------------------|-----------|---------------------|
| Versikine | Versican | ADAMTS (86) | TLR2 (34) | Immunogenicity in myeloma (87, 88) IL-1β, IL-6 expression by myeloma-associated macrophages through both Pp2 kinase-dependent or -independent pathways (89) Growth, migration, angiogenesis in melanoma and breast cancer (93–96) FAK/Akt/ERK pathway MMP-14 proteolytic activity (90, 97) keratocytes migration (92, 98) |
| Lmucorin (SSLvELDSYNSKLNIP) L9M (ELDSYNSKLK) Lumikine/LumC13 | Lumican | αβ1 integrin (89), MMP-14 (90, 91), ALKS/TGFr1 (92) | Growth, migration, angiogenesis in melanoma and breast cancer (93–96) |
| Synstats | Syndecan-1 | αvβ3, αvβ5 and α3β1 integrins, HER2, VEGFR2 (co-receptors of ectodomain) (34, 99–103) | Angiogenesis in breast cancer (104–106) Depend on HER2- and EGFR-coupled mechanism (104) |
| SSTN92-119, SSTN 82-130, SSTN 210-240 | Syndecan-4 | EGFR, α3β1 integrin (co-receptors of ectodomain) (34) | Cell motility (104) Depend on HER2- and EGFR-coupled mechanism (104) |
| Glypicans | Glypican-3 derived peptide | Glypican-3 | Wnt | Cell proliferation, migration and invasion in hepatocellular carcinoma (107) Wnt/β-catenin, Hedgehog, and YAP pathway (108–110) Macrophage recruitments in tumor (108) EMT (108) |
| Has | HA oligosaccharides | HA | CD44 (111) | Alters tumor growth, metastatic potential, and progression in prostate, colon, breast, and endometrial cancers (112, 113, 165) LMW HA promotes angiogenesis (114) HMW HA decreases angiogenesis, induces EMT (114) |
The levels of markers reflecting type I (C1M), type III (C3M), and type IV (C4M, C4M12) collagen degradation by MMPs were significantly elevated in serum of ovarian or breast cancer patients compared to healthy controls (124).

Type VI collagen expression is correlated with various pro-tumorigenic events. Levels of type VI collagen α1 and α3 chain fragments, derived from MMP proteolysis, appear higher in serum from cancer patients (breast, colon, gastric, ovarian, pancreas, prostate cancer, NSCLC, SCLC, melanoma) compared to healthy patients and have promising diagnostic accuracy (125). Type VI collagen α3 chain circulating fragment levels were significantly higher in the serum of pancreatic ductal adenocarcinoma patients compared to healthy patients or patients with benign lesions (126).

Elevated serum endostatin levels were found in various human cancers including colorectal cancer (127), soft tissue sarcoma (128), and advanced-stage nasopharyngeal carcinoma (129). They are correlated with a favorable outcome in acute myeloid leukemia (130). On the contrary, high serum endostatin levels are associated with enhanced ECM degradation and poor patient outcome in patients with bladder cancer (131) and with non-Hodgkin lymphoma (132). Determination of soluble vascular
endothelial growth factor tyrosine kinase receptor (sVEGFR)-1 and endostatin levels may be useful in the diagnosis of malignant pleural effusions in patients with lung cancer (133). Preoperative serum VEGF and endostatin levels may be used for evaluating the biological behavior, invasion, and metastasis of gastric, hepatocellular, and colorectal carcinoma (134).

**Elastin**

Elastin fragments, released by proteases, are increased in the serum of stage I–IV NSCLC patients compared to healthy controls. These results suggest the use of elastin fragments as potential biomarkers (135), but further validations in clinical trials are needed.

**Laminins**

Laminins were reported to promote tumor progression. The serum level of LNγ2 fragments increases according to the T classification of head and neck squamous cell carcinoma (HNSCC) and decreases after the use of curative treatments. The level of LNγ2 fragments in serum may be useful to predict response to treatment of patients with HNSCC (136). The presence of soluble laminin fragments (ULN) corresponding to the N-terminal domain of the β2 chain was measured in urine of healthy subjects and patients with tumor. Mean level of ULN in lung tumor patients is significantly higher than that in healthy subjects (137). Serum laminin P1 fragment was studied in patients with SCLC and NSCLC and in normal subjects. The serum concentration of laminin P1 was elevated in 58.9% of SCLC and in 11.5% of NSCLC patients compared to healthy subjects. Median value in SCLC patients was significantly higher than that in NSCLC patients and in normal subjects (138). Urine laminin P1 measurement allows to discriminate between invasive and noninvasive urothelial cell carcinoma of the bladder (139).

**Proteoglycans**

The cleavage of proteoglycans like aggrecan and versican by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) in epithelial ovarian cancer has been demonstrated and is considered of prognostic value (75).

Perlecan fragments in the serum of prostate cancer patients were correlated with overall MMP-7 staining levels in prostate cancer tissues. Domain IV fragments of perlecan were highlighted in stage IV patient sera, but not detected in normal patient sera, suggesting that perlecan is degraded during metastasis. The association of perlecan fragments in sera and MMP-7 expression in tissues reflects prostate cancer invasivity (77). In breast cancer, the level of the endorepellin LG3 fragment in serum was significantly lower in breast cancer patients compared to healthy subjects. This suggests the endorepellin LG3 fragment as a new potential serological biomarker in breast cancer (140).

NSCLC patients presenting tumors with a low concentration of sulfated glycosaminoglycans (GAG) and high proteoglycan (PGs) levels presented better overall survival compared to patients with a high concentration of sulfated GAG and low expression of proteoglycans. These data suggest that matrix PGs could be considered as biomarkers in lung cancer (141).

Versican has been shown to be a potential biomarker in different cancers such as hepatocellular carcinoma (142), colon cancer (143), and recently in ovarian cancer (144). Hope et al. (145) provide a rational for testing versican proteolysis as a predictive and/or prognostic immune biomarker.

Lumcorin, a lumican-derived peptide mimics the inhibitory effect of lumican in melanoma progression (97). Lumikine, another lumican-derived peptide, promotes the healing of corneal epithelium debridement (92). These peptides might be putative cancer biomarkers but, to our knowledge, there are up to now no data in the literature describing lumican-derived peptides as biological markers in cancer.

Syndecan-1 was reported to play an immunomodulatory function in the polarization of CD4+ T helper (Th) cells that were isolated from the TME of inflammatory breast cancer (IBC) and non-IBC patients (99). These results suggest that syndecan-1 expression in tumor could offer therapeutic potential in breast cancer. Remarkably, syndecan-1 seems to be overexpressed in inflammatory breast cancer, making it a potential biomarker.

New biomarkers such as syndecan-2 gene methylation (with improved detection sensitivity and specificity at lower costs) should lead to a great improvement in colorectal cancer screening. Syndecan-2 gene methylation was reported as a frequent event in precancerous lesions and appears detectable in bowel lavage fluid to identify patients with colorectal cancer (146, 147).

Syndecan-3- and aggrecan-peptides were recently described as novel biomarkers for the detection of epithelial ovarian cancer (144).

Syndecan-1 and syndecan-4 are described as independent indicators in breast carcinomas (148). Peptides based on interaction motifs in syndecan-1 and syndecan-4, named synstatins or SSTN peptides, are potential therapeutic agents for carcinomas depending on the HER2 and epidermal growth factor receptor (EGFR) pathway for their invasion and survival (104).

Glypican-1 detected in exosomes was suggested as a putative biomarker for early detection of pancreatic (149–154) and colorectal cancer (155, 156).

Glypican-3 is an important player in the Wnt, Hedgehog, and YAP signaling cascades involved in cancer cell proliferation and migration (108, 109). It is overexpressed in hepatocarcinoma and lung carcinoma and was reported as a poor prognosis marker in hepatocarcinoma. Glypican-3 represents a promising immunotherapeutic target. Different GPC3-targeting therapies have been developed: the use of humanized anti-GPC3 cytotoxic antibodies, the treatment with peptide/DNA vaccines, immunotoxin therapies, and genetic therapies (107, 157–162).

The involvement of CD44 and hyaluronan (HA) and the interaction of both molecules were demonstrated in numerous cancers (Table 1) and suggest their potential as biomarkers. HA molecules may exert distinct effects depending on their size and concentration. High-molecular-weight HAs (HMW HAs) are involved in cell proliferation and tissue development, whereas low-molecular-weight HAs (LMW HAs) enhance angiogenesis. Serum level of LMW HA in patients with breast cancer was correlated with lymph node metastasis, and LMW HA was suggested as a cancer biomarker (114). An increase in HA levels...
induces tumor growth in mice and is associated with poor prognosis in pancreatic ductal adenocarcinoma (PDAC) patients. The inhibition of HA synthesis/signaling or the depletion of HA in tumor stroma may be a promising therapeutic approach to fight against PDAC progression (112). HA was also reported to facilitate cell proliferation and invasiveness in malignant pleural mesothelioma (163) and in melanoma (164) and may be used as a biomarker for early diagnosis and management of these diseases (163–165).

CONCLUSION

ECM fragments evidenced peripheral tissue proteolysis by cancer cells and could control cancer progression by exerting both anti-angiogenic and anti-tumorigenic properties. We showed that ECM-derived bioactive fragments are able to inhibit major transduction pathways involved in TME alterations, such as the FAK/P13K/Akt/mTORC1 pathway (Figure 2). They represent potent antitumor agents that might be useful in combination with conventional chemo-, immune-, and targeted therapies as part of personalized medicine. Moreover, they diffuse into the body and are easy to measure in the blood or body fluids and thus can represent valuable markers for the diagnosis and prognosis of numerous cancers.

AUTHOR CONTRIBUTIONS

SB-P, SB, BB, and JM contributed to manuscript writing. LR and J-BO contributed to manuscript revision. J-BO designed Figure 2. All authors approved the final version of the manuscript.

FUNDING

This work was supported by the Centre National de la Recherche Scientifique (UMR 7369), the University of Reims Champagne-Ardenne, and the Region Grand-Est.

ACKNOWLEDGMENTS

The authors thank R. Rivet for his helpful contribution in bibliography.

REFERENCES

1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. (2009) 9:239–52. doi: 10.1038/nrc2618
2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. (2013) 19:1423–37. doi: 10.1038/nm.3394
3. Gregory AD, Houghton AM. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. (2011) 71:2411–6. doi: 10.1158/0008-5472.CAN-10-2583
4. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. (2016) 16:582–98. doi: 10.1038/nrc.2016.73
5. Martin M, Wei H, Lu T. Targeting microenvironment in cancer therapeutics. Oncotarget. (2016) 7:52575–83. doi: 10.18632/oncotarget.9824
6. Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. (2006) 5:13–20. doi: 10.1016/j.ccr.2005.05.024
7. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics. (2018) 18:e1700167. doi: 10.1002/prm2.201700167
8. Saggard JK, Yu M, Tan Q, Tannock IF. The tumor microenvironment and strategies to improve drug distribution. Front Oncol. (2013) 3:154. doi: 10.3389/fonc.2013.00154
9. Laitala A, Erler JT. Hypoxic signalling in tumour stroma. Front Oncol. (2018) 8:189. doi: 10.3389/fonc.2018.00189
10. Griselda de la Cruz Lopez M, Carerra A, Ortiz Sanchez E, Garcia Carranza A. mTORC1 as regulator of mitochondrial functions and a therapeutic target in cancer. Front Oncol. (2019) 9:1373. doi: 10.3389/fonc.2019.01373
11. Escoté X, Fajas L. Metabolic adaptation to cancer growth: From the cell to the organism. Cancer Lett. (2015) 356:171–5. doi: 10.1016/j.canlet.2014.03.034
12. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. (2017) 27:863–75. doi: 10.1016/j.tcb.2017.06.003
13. Minobeisse JC, Gardès-Albert M, Randoux A, Borel JP, Ferradini C. Collagen degradation by superoxide anion in pulse and gamma radiolysis. BBA Gen Suby. (1988) 965:29–35. doi: 10.1016/0304-4165(88)90147-X
14. Socovich AM, Naba A. The cancer matrixome: From comprehensive characterization to biomarker discovery. Semin Cell Dev Biol. (2019) 89:157–66. doi: 10.1016/j.semcdb.2018.06.005

15. Grahovac J, Wells A. Matrixin and matricellular regulators of EGFR receptor signaling on cancer cell migration and invasion. Lab Invest. (2014) 94:31–40. doi: 10.1038/labinvest.2013.132
16. Ermon B, Bauer J, Jain Y, Jung B, Saif T. Biophysics of tumor microenvironment and cancer metastasis - a mini review. Comput Struct Biotechnol J. (2018) 16:279–87. doi: 10.1016/j.csbj.2018.07.003
17. Ebbe JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. (2019) 36:171–98. doi: 10.1007/s10585-019-09966-1
18. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. (2012) 125:5591–6. doi: 10.1242/jcs.116392
19. Levental KR, Yu H, Kass L, Lakins JN, Egbeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. (2009) 139:891–906. doi: 10.1016/j.cell.2009.10.027
20. Fernandes RJ, Hirohata S, Engle JM, Collae A, Cohn DH, Eyre DR, et al. Procollagen II amino propeptide processing by ADAMTS-3. J Biol Chem. (2001) 120:453–65. doi: 10.1074/jbc.M104662000
21. Wang Z, Bryan J, Franz C, Havioglu N, Sandell LJ. Type IIIB procollagen NH2-propeptide induces death of tumor cells via interaction with integrins αvβ3 and αvβ5. J Biol Chem. (2010) 285:20806–17. doi: 10.1074/jbc.M110.118521
22. Sandell LJ. Novel functions for Type II procollagen. Connect Tissue Res. (2014) 55:20–5. doi: 10.3109/03008207.2013.867340
23. Sugiyama A, Mitus A, Okada M, Yamawaki H. Canthropsin S degrades arrestin and canstatin in infarcted area after myocardial infarction in rats. J Vet Med Sci. (2019) 103:1562–70. doi: 10.1292/jvms.18-0674
24. Reclusini IT, Myers C, Lassiter KS, Surmak A, Szabova L, Holmbeck K, et al. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell. (2009) 40:1581–96. doi: 10.1016/j.devcel.2009.07.016
25. Aikio M, Alahuhta I, Nurminen K, Suojanen J, Palovuori R, Teppo S, et al. Arresten, a collagen-derived angiogenesis inhibitor, suppresses invasion of squamous cell carcinoma. PlaśO N. (2012) 7:e51044. doi: 10.1371/journal.pone.0051044
26. Sudhakar A, Nyberg P, Keshamouni VG, Mannam AP, Li J, Sugimoto H, et al. Human α1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by α1β1 integrin. J Clin Invest. (2005) 317:2562–72. doi: 10.1172/JCI24813
27. Magnon C, Gaalup A, Mullan B, Rouillac V, Bidart JM, Griscelli F, et al. Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with αvβ3 and αvβ5 integrins. Cancer Res. (2005) 65:9837. doi: 10.1158/0008-5472.CAN-04-3536

28. Okada M, Yamawaki H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci. (2019) 7:122–34. doi: 10.1002/jps.21801.02.00

29. Xing YN, Deng P, Xu HM. Canstatin induces apoptosis in gastric cancer. Cancer Med. (2016) 5:2977–88. doi: 10.1002/cam4.866

30. Brassart-Pasco S, Sénéchal K, Thevenard J, Ramont L, Devy J, Di et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: Comparison to endostatin. Biochem Biophys Res Commun. (1999) 118:9152–23. doi: 10.1006/bbrc.1999.0248

31. Lu Z, Jiao D, Qiao J, Yang S, Yan M, Cui S, et al. Restin suppressed epithelial-mesenchymal transition and tumor metastasis in breast cancer cells through upregulating mir-200a/b expression via association with p73. Mol Cancer. (2015) 62:125–33. doi: 10.1186/s12943-015-0370-9

32. Pedchenko V, Zent R, Hudson BG. Lamstatin - a novel inhibitor of lymphangiogenesis derived from collagen αvβ5 integrins bind both the proximal RGD site and non-RGD motifs within noncollagenous (NC1) domain of the α3 chain of type IV collagen: Implication for the mechanism of endothelial cell adhesion. J Biol Chem. (2004) 61:1022–8. doi: 10.1074/jbc.M311901200

33. Monboisse JC, Oudart JB, Ramont L, Brassart-Pasco S, Maquart FX, et al. Structural and antitumor properties of the α4(IV) collagen αvβ3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem. (2000) 65:581–91. doi: 10.1074/jbc.C000186200

34. Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix degradation of type IV collagen (Tumstatin) are conformation-dependent. J Biol Chem. (2004) 278:4238–49. doi: 10.1074/jbc.M307736200

35. Brassart-Pasco S, Sénéchal K, Thevenard J, Ramont L, Devy J, Di Stefano L, et al. Tumstatin, the NC1 domain of the α4(IV) collagen: A novel potent anti-tumor matrikine. PLoS ONE. (2012) 7:e29587. doi: 10.1371/journal.pone.0029587

36. Xiong YN, Deng P, Xu HM. Canstatin induces apoptosis in gastric cancer xenograft growth in mice through the mitochondrial apoptotic pathway. Biochem Biophys Res Commun. (2012) 434:113–19. doi: 10.1016/j.bbrc.2012.06.072

37. Monboisse JC, Oudart JB, Ramont L, Brassart-Pasco S, Maquart FX, et al. Canstatin induces apoptosis in gastric cancer cells through upregulating mir-200a/b expression via association with p73. Mol Cancer. (2015) 62:125–33. doi: 10.1186/s12943-015-0370-9

38. Xiong YN, Deng P, Xu HM. Canstatin induces apoptosis in gastric cancer xenograft growth in mice through the mitochondrial apoptotic pathway. Biochem Biophys Res Commun. (2012) 434:113–19. doi: 10.1016/j.bbrc.2012.06.072
63. Robinet A, Faheem A, Cauchard J-H, Huet E, Vincent L, Lorimier S, et al. Estatin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci. (2005) 118:343–56. doi: 10.1242/jcs.01613

64. Watay C, Labrousse AL, Debret R, Bouhniat P, Bellon G, Antonicelli F, et al. Estatin-derived peptides upregulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein. J Invest Dermatol. (2004) 122:256–65. doi: 10.1046/j.0020-2680.2004.02228.x

65. Devy J, Duca L, Cantarelli B, Joseph-Pietras D, Scandolera A, Ruscinia A, et al. Estatin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcl-1 (MMP-1) collagenase. Br J Cancer. (2010) 103:1562–70. doi: 10.1038/sj.bjc.6605926

66. Fahem A, Robinet A, Cauchard J-H, Duca L, Soulé-Rothhut M, Rothhut B, et al. Elastokine-mediated up-regulation of MT1-MMP is triggered by nitric oxide in endothelial cells. Int J Biochem Cell Biol. (2008) 40:1581–96. doi: 10.1016/j.biocel.2007.11.022

67. Debret R, Le Naour RR, Sallenave JM, Deshorgue A, Hornebeck WG, et al. Elastin-derived peptides modulate integrin αvβ3 expression in melanoma cell line. J Invest Dermatol. (2006) 126:1860–8. doi: 10.1038/sj.jid.5700337

68. Kikkawa Y, Hozumi K, Katagiri F, Nomizu M, Kleinman HK, Koblishki JE. Elastin-derived peptides modulate the properties of metastatic breast tumour cells. Clin Exp Metastasis. (2011) 28:909–21. doi: 10.1007/s10585-011-9422-8

69. Li B, Qiu T, Zhang P, Wang X, Yin Y, Li S. IKVAV regulates ERK1/2 and Akt signalling pathways in BMMSC population growth and proliferation. Cell Prolif. (2014) 47:133–45. doi: 10.1111/cpr.12094

70. Nascimento CF, de Siqueira AS, Pinheiro JJV, Freitas VM, Jäger RG. Laminin-111 derived peptides AG73 and C16 regulate invadopodia activity of a human adenocystic carcinoma cell line. Exp Cell Res. (2011) 317:2562–72. doi: 10.1016/j.yexcr.2011.08.022

71. Roaselle P, Beck K. Laminin 332 processing impacts cellular behavior. Cell Adhes Migr. (2013) 7:122–34. doi: 10.4161/cam.23132

72. Kusuma N, Anderson RL, Pouliot N. Laminin α2-derived peptides modulate the properties of metastatic breast tumour cells. Clin Exp Metastasis. (2011) 28:909–21. doi: 10.1007/s10585-011-9422-8

73. Ambesi A, McKeown-Longo PJ. Anastelitin, the angiostatic fibronectin peptide, is a selective inhibitor of lysophospholipid signaling. Mol Cancer Res. (2009) 7:255–65. doi: 10.1158/1541-7786.MCR-08-0195

74. You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastelitin is independent of anastelitin's effect on matrix fibronectin. Matrix Biol. (2009) 28:101–9. doi: 10.1016/j.matbio.2009.01.003

75. Lima MA, Dos Santos L, Turri JA, Nonogaki S, Buim M, Lima JE, et al. Prognostic value of ADAMTS proteases and their substrates in epithelial ovarian cancer. Pathobiology. (2016) 12:508–15. doi: 10.1159/000464624

76. Li N, Lapevich RK, Underhill CR, Han Z, Gao F, Swartz G, et al. Metastasin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. (2001) 61:1022–8.

77. Grindel B, Li Q, Arnold R, Petros J, Zayazfooun M, Muldoon M, et al. Perlecain/HSPP2 and matrilsyn/MMP-7 as indices of tissue invasion: Tissue localization and circulating perlecain fragments in a cohort of 288 radical prostatectomy patients. Oncotarget. (2016) 59:615– 29. doi: 10.18632/oncotarget.11976

78. Gubbioati MA, Neill T, Iozzo RV. A current view of perlecain in physiology and pathology: a mosaic of functions. Matrix Biol. (2017) 57–8:285–98. doi: 10.1016/j.matbio.2016.09.003

79. Douglass S, Goyal A, Iozzo RV. The role of perlecain and endorepellin in the control of tumor angiogenesis and endothelial cell autoconnection. Connect Tissue Res. (2015) 56:381–91. doi: 10.3109/030082820.2015.1045297

80. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV, Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecain. J Biol Chem. (2003) 278:4238–49. doi: 10.1074/jbc.M210445200

81. Le Bel Kim H, Choi J, Kim JH, Hahn MJ, Lee C, et al. Crystal structure of the LG3 domain of endorepellin, an angiogenesis inhibitor. J Mol Biol. (2011) 414:231–42. doi: 10.1016/j.jmb.2011.09.048

82. Goyal A, Gubbioati MA, Chery DR, Han L, Iozzo RV. Endorepellin-evoked autophagy contributes to angiostasis. J Biol Chem. (2016) 291:19245–56. doi: 10.1074/jbc.M116.740266

83. Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: a common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev. (2007) 59:156–73. doi: 10.1016/j.addr.2005.10.012
and vascular endothelial growth factor receptor 2 at the onset of endothelial cell dissemination during angiogenesis. FEBs J. (2013) 280:2194–206. doi: 10.1111/febs.12134

102. Jung O, Beauvais DL, Adams KM, Raapraeger AC. VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. J Cell Sci. (2019) 132:jsct323645. doi: 10.1242/jcs.232645

103. Metwally HA, El-Gayar AM, El-Shishtawy MM. Inhibition of the signaling pathway of syndecan-1 by syndetin: a promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats. Arch Biochem Biophys. (2018) 652:50–8. doi: 10.1016/j.abb.2018.06.007

104. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular

105. Sato N, Kohi S, Hirata K, Goggins M. Role of hyaluronan in pancreatic

106. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H,

107. Shimizu Y, Suzuki T, Yoshikawa T, Endo I, Nakatsura T. Next-generation

108. Zhou F, Shang W, Yu X, Tian J. Glypican-3: a promising biomarker for

109. Nabeya Y, Shimada H, Okazumi S, Matsubara H, Gunji Y, Suzuki T, et al. Serum cross-linked carboxyterminal telopeptide of type I collagen (ICTP) as a prognostic tumor marker in patients with esophageal squamous cell carcinoma. Cancer. (2002) 94:940–9. doi: 10.1002/cncr.11399

110. Nakanishi T, Sameni M, Kurose K, Kojima N, Kuroki H, Gotoh M, et al. Cross-linkage of type I collagen by synstatin, a novel peptide inhibitor. J Biol Chem. (2015) 290:38–9. doi: 10.1074/jbc.M114.602436

111. Liu B, Zhao Y, Yuan J, Zeng L, Sun R, Meng X, et al. Elevated N-telopeptide as a potential diagnostic marker for bone metastasis in lung cancer: A meta-analysis. PLoS ONE. (2017) 12:693–8. doi: 10.1371/journal.pone.0176960

112. Jablonka F, Alves B da CA, de Oliveira CGB, Wroclawski ML, Szwarc M, Vitória W de O, et al. Serum crosslinked-N-terminal telopeptide of type I collagen (NTx) has prognostic implications for patients with initial prostate carcinoma (PCa): A pilot study. Clin Chim Acta. (2014) 18:75–15. doi: 10.1016/j.cca.2013.06.025

113. Tamiya M, Kobayashi M, Morimura O, Yasue T, Nakasuji T, Satomu M, et al. Clinical significance of the crosslinked N-telopeptide of type I collagen as a prognostic marker for non-small-cell lung cancer. Clin Lung Cancer. (2013) 11:1605–13. doi: 10.1016/j.cllc.2012.03.012

114. Karousou E, Misra S, Ghatak S, Dobra K, Götte M, Vigetti D, et al. Inhibition of the signaling fragment of type VI collagen have serum biomarker potential in cancer - a proof of concept study. Transl Oncol. (2019) 63:1371–8. doi: 10.1016/j.tranon.2019.02.004

115. Kang CY, Wang J, Axell-House D, Soni P, Chu ML, Chipitsyna G, et al. Clinical significance of serum COL6A3 in pancreatic ductal adenocarcinoma. J Gastrointest Surg. (2014) 58:1865–7. doi: 10.1007/s11605-013-2326-y

116. Kanodia T, Väyrynen JP, Klintrop K, Mäkelä J, Karppinen SM, Pihlajaniemi T, et al. Serum endostatin levels are elevated in colorectal cancer and correlate with invasion and systemic inflammatory markers. Br J Cancer. (2014) 65:509–14. doi: 10.1038/bjc.2014.456

117. Feldman AL, Pak H, Yang JC, Richard Alexander H, Libutti SK. Serum endostatin levels are elevated in patients with soft tissue sarcoma. Cancer. (2001) 65:608–12. doi: 10.1002/1097-0142(20010415)91:8.CO;2-P

118. Kehlet SN, Srisodawat P, Leung D, Kowalski MA, Moreno V, et al. Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients. Sci Rep. (2016) 12:e0187860. doi: 10.1038/srep30599

119. Tang C, Liu Y, Qin H, Li X, Guo W, Li J, et al. Clinical significance of serum BAP, TRACP 5b and ICTP as bone metabolic markers for bone metastasis screening in lung cancer patients. Transl Oncol. (2018) 210:3121–45. doi: 10.1002/hep.30646

120. Jablonka F, Alves B da CA, de Oliveira CGB, Wroclawski ML, Szwarc M, Vitória W de O, et al. Serum crosslinked-N-terminal telopeptide of type I collagen (NTx) has prognostic implications for patients with initial prostate carcinoma (PCa): A pilot study. Clin Chim Acta. (2014) 18:75–15. doi: 10.1016/j.cca.2013.06.025

121. Metwally HA, El-Gayar AM, El-Shishtawy MM. Inhibition of the signaling pathway of syndecan-1 by syndetin: a promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats. Arch Biochem Biophys. (2018) 652:50–8. doi: 10.1016/j.abb.2018.06.007

122. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel statins. Oncogenesis. (2016) 5:e202. doi: 10.1038/oncsis.2016.5

123. Metwally HA, El-Gayar AM, El-Shishtawy MM. Inhibition of the signaling pathway of syndecan-1 by syndetin: a promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats. Arch Biochem Biophys. (2018) 652:50–8. doi: 10.1016/j.abb.2018.06.007

124. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel statins. Oncogenesis. (2016) 5:e202. doi: 10.1038/oncsis.2016.5

125. Metwally HA, El-Gayar AM, El-Shishtawy MM. Inhibition of the signaling pathway of syndecan-1 by syndetin: a promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats. Arch Biochem Biophys. (2018) 652:50–8. doi: 10.1016/j.abb.2018.06.007

126. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel statins. Oncogenesis. (2016) 5:e202. doi: 10.1038/oncsis.2016.5

127. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel statins. Oncogenesis. (2016) 5:e202. doi: 10.1038/oncsis.2016.5

128. Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel statins. Oncogenesis. (2016) 5:e202. doi: 10.1038/oncsis.2016.5
135. Thorlacius-Using J, Kehlet SN, Rennow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol. (2019) 199:1933–941. doi: 10.1007/s00432-018-2799-x

136. Cortes-Dericks L, Schmid RA. CD44 and its ligand hyaluronan as potential biomarkers in malignant pleural mesothelioma: evidence and perspectives. Respir Res. (2017) 18:58. doi: 10.1186/s12931-017-0546-5

137. Wu RL, Sedlmeier G, Kyjacova L, Schmaus A, Philipp J, Thiele M. Syntenin-1 and syndecan-4 are independent indicators in breast carcinoma. J Exp Clin Cancer Res. (2018) 17:482–93. doi: 10.1186/s13046-018-0911-3

138. Frampton AE, Prado MM, López-Jiménez E, Fajardo-Puerta AB, Jawad ZA, Lawton P, et al. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncoimmunology. (2018) 139:39–64. doi: 10.18632/oncoimmunology.24873

139. Li J, Li B, Ren C, Chen Y, Guo X, Zhou L, et al. The clinical significance of circulating GPC1 positive exosomes and its regulative miRNAs in colon cancer patients. Oncoimmunology. (2017) 8:101189–202. doi: 10.18632/oncoimmunology.20516

140. Nobuoka D, Yoshikawa T, Takahashi M, Iwama T, Horie K, Shirakawa H, et al. Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. Oncology. (2016) 4:64. doi: 10.1002/hed.20838

141. Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng Z, et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med. (2017) 21:838–47. doi: 10.1111/jccm.12941

142. Cui Y, Gao J, Sun Y, Zhao X. Elevated glypican-1 expression is associated with an unfavorable prognosis in pancreatic ductal adenocarcinoma. Cancer Med. (2017) 6:1181–91. doi: 10.1002/cam4.1064

143. Li J, Li B, Ren C, Chen Y, Guo X, Zhou L, et al. The clinical significance of circulating GPC1 positive exosomes and its regulative miRNAs in colon cancer patients. Oncoimmunology. (2017) 8:101189–202. doi: 10.18632/oncoimmunology.20516

144. Chida S, Okayama H, Noda M, Saito K, Nakajima T, Aoto K, et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med. (2017) 21:838–47. doi: 10.1111/jccm.12941

145. Frampton AE, Prado MM, López-Jiménez E, Fajardo-Puerta AB, Jawad ZA, Lawton P, et al. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden. Oncoimmunology. (2018) 139:39–64. doi: 10.18632/oncoimmunology.24873

146. Kuratomi Y, Sato S, Monji M, Shimazu R, Tanaka G, Yokogawa K, et al. Serum concentrations of laminin γ2 fragments in patients with head and neck squamous cell carcinoma. Head Neck. (2008) 583:3027–32. doi: 10.1002/hed.20838

147. Hope C, Emmerich PB, Papadas A, Pagenkopf A, Matkowskyj KA, Van De Hey DR, et al. Versican-derived matrikines regulate Batf3-dendritic cell differentiation and promote T cell infiltration in colorectal cancer. J Immunol. (2017) 38:741–67. doi: 10.4049/jimmunol.1700529

148. Melo SA, Rueck LB, Kahler C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. (2015) 523:177–82. doi: 10.1038/nature14581

149. Li J, Chen Y, Guo X, Zhou L, Jia Z, Peng Z, et al. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med. (2017) 21:838–47. doi: 10.1111/jccm.12941

150. Herrerias-Villanueva M, Bujanda L. Glypican-1 in exosomes as biomarker for early detection of pancreatic cancer. Ann Transl Med. (2016) 55:20–5. doi: 10.3978/j.issn.2305-5839.2015.10.39

151. Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. (2017) 81:522–31. doi: 10.1016/j.canlet.2017.02.019

152. Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, et al. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/1AK2/STAT3 signaling pathway. J Exp Clin Cancer Res. (2018) 17:482–93. doi: 10.1186/s13046-018-0911-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling Editor declared a past co-authorship with one of the authors BB.