SEIR model for COVID-19 dynamics incorporating the environment and social distancing

Samuel M Mwalili¹,3*, Mark Kimathi², Viona Ojiambo¹, Duncan K Gathungu¹ and Rachel W. Mbogo³

Abstract

Objective: Coronavirus disease 2019 (COVID-19) is a pandemic of respiratory disease spreading from person-to-person caused by a novel coronavirus and poses a serious public health risk. The goal of this study is to apply SEIR compartmental mathematical model for prediction of COVID-19 epidemic dynamics incorporating pathogen in the environment and interventions. The next generation matrix approach was used to determine the basic reproduction number R₀. The model equations are solved numerically using fourth and fifth order Runge–Kutta methods.

Results: The value of basic reproduction number R₀ was determined as 2.03, implying that the pandemic will persist in the human population. Results after simulating various scenarios indicate that disregarding social distancing, wearing of masks and frequent washing of hands can have devastating effects on the human population. The model shows that quarantine and isolation are key winners to this pandemic.

Keywords: SEIR model; COVID-19 dynamics; Social distancing; Mathematical model; Basic reproduction number; Runge–Kutta method

Introduction

Coronaviruses are a large family of viruses that are known to cause illness ranging from the common cold to more severe diseases such as Severe Acute Respiratory Syndrome (SARS). A novel coronavirus, previously designated 2019-nCoV, was identified as the cause of a cluster of pneumonia cases in Wuhan, a city in the Hubei Province of China, at the end of 2019. It subsequently spread throughout China and elsewhere, becoming a global health emergency. In February 2020, the World Health Organization (WHO) designated the disease COVID-19, which stands for coronavirus disease 2019 [1], a global pandemic.

The objective of this study to apply SEIR compartmental mathematical model for prediction of COVID-19 epidemic dynamics considering different intervention scenarios which might give insights on the best interventions to reduce the epidemic risk.

Several authors have worked on mathematical modeling of the novel coronavirus. A mathematical model for MERS-CoV transmission dynamics was used to estimate the transmission rates in two periods due to the implementation of intensive interventions [9, 10].
Further and related to this work, a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source to the human infection was developed [10]. This article, however, differs from [10] in the sense that (1) the compartmental models are different; (2) an additional compartment for the pathogens included in non-linear way; and (3) thorough simulation studies were performed.

Main text

Methods

In the study, a mathematical model of the spread and transmission of COVID-19 causing Corona virus is formulated. We consider two interacting populations, the human population as hosts and the pathogens as the vector. The model subdivides the total human population size at time t denoted as $N(t)$ into susceptible human beings as $S(t)$, the exposed human beings as $E(t)$, the asymptomatic infectious human population as $I_A(t)$, the symptomatic infectious population as $I_S(t)$ and the recovered human population as $R(t)$. The pathogen vector in the environment is denoted as $P(t)$. Hence for the human population we have $N(t) = S(t) + E(t) + I_A(t) + I_S(t) + R(t)$.

Studies have shown that the virus can be transmitted in two ways, namely: human to human and environment to human. The epidemic data indicates that both asymptomatic $I_A(t)$ and symptomatic $I_S(t)$ infected individuals spread the COVID-19 virus to susceptible humans $S(t)$ with whom they are in close contact. In addition, when infected individuals sneeze or cough, without taking the necessary precautions, the virus spread to the environment they are in. Since the pathogen(virus) $P(t)$ is known to survive in the environment for some days, susceptible individuals $S(t)$ in close contact to this environment are likely to get exposed to these pathogens, especially in the early days of the COVID-19 outbreak. In the process of the disease spread, the susceptible individual first moves to the exposed population $E(t)$ since the host has an incubation period [10]. The exposed individual moves to either asymptomatic $I_A(t)$ or symptomatic $I_S(t)$ infectious population. $P(t)$ is the number or quantity of pathogens present during interaction of human beings at time t. Majority of the infectious individuals recovers and move to the recovered human population $R(t)$.

The compartmental model depicting the interaction between the human population, and the pathogens in the environment is shown in Figure 1 below.

Figure 1 SEIR-P model of COVID-19 transmission

The parameters used in the COVID-19 transmission model are given in the table below.
In this case the left hand side is equated to zero. The relevant equilibrium points are obtained by solving the equations in (1) when Equilibria and Basic Reproduction Number of the SEIR-P model

The model culminates to a six-dimensional system of ordinary differential equations as follows.

\[
\begin{align*}
\frac{dS}{dt} &= b - \frac{\beta_2 S P}{1 + \alpha_2 P} - \frac{\beta_3 S(I_A + I_S)}{1 + \alpha_1 P} - \psi E - \mu S, \\
\frac{dE}{dt} &= \frac{\beta_3 S P}{1 + \alpha_1 P} - \frac{\beta_2 S(I_A + I_S)}{1 + \alpha_2 P} - \psi E - \mu E - \omega E, \\
\frac{dI_A}{dt} &= (1 - \delta) \omega E - (\mu + \sigma) I_A - \gamma_A I_A, \\
\frac{dI_S}{dt} &= \delta \omega E - (\mu + \sigma) I_S - \gamma_A I_A, \\
\frac{dR}{dt} &= \gamma S I_S + \gamma_A I_A - \mu R, \\
\frac{dP}{dt} &= \eta_A I_A + \eta_S I_S - \mu P.
\end{align*}
\]

with the initial conditions: \(S(0) > 0, E(0) > 0, I_A > 0, I_S > 0, R(0) = 0, P(0) > 0\)

The human population is recruited into the susceptible at a rate \(b\). The terms \(\beta_1 S P\) and \(\beta_2 S(I_A + I_S)\) describes the rate at which susceptible individuals \(S(t)\) gets infected by environment pathogens \(P(t)\) and the infectious humans \(I_A(t)\) and \(I_S(t)\) respectively. The health experts and governments have been advising people, during this outbreak, to minimize contact with infectious individuals either by social distancing. Therefore in our model we propose to have new infections occur in the form \(\beta_1 S P\) and \(\beta_2 S(I_A + I_S)\) respectively, where the interaction proportions \(\alpha_1\) and \(\alpha_2\) denotes reciprocal of the frequency with which susceptible individuals gets infected with COVID-19 from the environment and from infectious individuals, respectively.

Table 1 Description of model parameters.

Model Parameter Name	Symbol	Value
Birth rate of the human population	\(b\)	0.00018 days\(^{-1}\)
Natural human death rate	\(\mu\)	4.563 \times 10^{-5} \text{ days}^{-1}\)
Human Life expectancy	\(\frac{1}{\mu}\)	21915 days or 60 years
Natural death rate of pathogens in the environment	\(\mu_P\)	0.1724 days\(^{-1}\)
Life expectancy of pathogens in the environment	\(\frac{1}{\mu_P}\)	5.8 days
Proportion of interaction with an infectious environment	\(\alpha_1\)	0.10
Proportion of interaction with an infectious individual	\(\alpha_2\)	0.10
Rate of transmission from \(S\) to \(E\) due to contact with \(P\)	\(\beta_1\)	0.00414
Rate of transmission from \(S\) to \(E\) due to contact with \(I_A\) and/or \(I_S\)	\(\beta_2\)	0.0115
Proportion of symptomatic infectious people	\(\delta\)	0.7
Progression rate from \(E\) back to \(S\) due to robust immune system	\(\psi\)	0.0051
Progression rate from \(E\) to either \(I_A\) or \(I_S\)	\(\omega\)	0.09
Death rate due to the Coronavirus	\(\sigma\)	0.0018
Rate of recovery of the symptomatic population	\(\gamma_S\)	0.05 days\(^{-1}\) or \(\frac{1}{20 \text{ days}}\)
Rate of recovery of the asymptomatic human population	\(\gamma_A\)	0.0714 days\(^{-1}\)
Rate of virus spread to environment by symptomatic infectious individuals	\(\eta_S\)	0.1 days\(^{-1}\) or \(\frac{1}{10 \text{ days}}\)
Rate of virus spread to environment by asymptomatic infectious individuals	\(\eta_A\)	0.05 days\(^{-1}\) or \(\frac{1}{20 \text{ days}}\)

Equilibria and Basic Reproduction Number of the SEIR-P model

The relevant equilibrium points are obtained by solving the equations in (1) when the left hand side is equated to zero.

Existence of Disease-Free-Equilibrium Point (DFE)

In this case \(I_A = I_S = P = 0\), which implies that \(E = 0\) and \(R = 0\) too. Hence we have:

\[
0 = b - \mu S \implies S = \frac{b}{\mu}.
\]
Therefore DFE is given by \(\left(\frac{b}{\mu}, 0, 0, 0, 0, 0 \right) \).

The Basic Reproduction Number

The basic reproduction number, usually denoted as \(R_0 \) defines the average number of secondary infections infected by an infectious individual. This number gives us whether the infection will spread through the population or not. The next generation matrix approach is used to obtain \(R_0 \). Let \(x = (E, I_A, I_S, P)^T \) then the model can be written as \(\frac{dx}{dt} = F(x) - V(x) \), where

\[
F(x) = \begin{pmatrix}
\beta_1 SP_{1+\alpha_1 P} + \beta_2 S(I_A+I_S) \\
0 \\
\eta_A I_A + \eta S I_S \\
0 \\
0
\end{pmatrix}
\]

and

\[
V(x) = \begin{pmatrix}
(\psi + \mu + \omega) E \\
(\mu + \sigma + \gamma) I_S - \delta \omega E \\
(\mu + \sigma + \gamma_A) I_A - (1 - \delta) \omega E \\
\mu P P
\end{pmatrix}
\]

Evaluating the derivatives of \(F \) and \(V \) at the disease-free equilibrium point, obtained above, yields \(\mathbf{FV}^{-1} \) as below:

\[
\mathbf{FV}^{-1} = \begin{pmatrix}
\frac{\beta_2 b \delta \omega}{\mu C_1 C_2} + \frac{\beta_2 b (1 - \delta) \omega}{\mu C_1 C_3} & \frac{\beta_2 b}{\mu C_2} & \frac{\beta_1 b}{\mu \mu P} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\eta S \delta \omega & \eta A (1 - \delta) \omega & \frac{\eta S}{C_2} & \frac{\eta A}{C_3}
\end{pmatrix}
\]

where \(C_1 = \psi + \mu + \omega, C_2 = \mu + \sigma + \gamma_S \) and \(C_3 = \mu + \sigma + \gamma_A \). The reproduction number, \(R_0 \), is the spectral radius of the product \(\mathbf{FV}^{-1} \) which is given by:

\[
R_0 = \frac{\frac{\beta_2 b \delta \omega}{\mu C_1 C_2} + \frac{\beta_2 b (1 - \delta) \omega}{\mu C_1 C_3}}{2} + \sqrt{\left(\frac{\beta_2 b \delta \omega}{\mu C_1 C_2} + \frac{\beta_2 b (1 - \delta) \omega}{\mu C_1 C_3} \right)^2 + 4 \frac{\beta_1 b}{\mu \mu P} \left(\frac{\eta S \delta \omega}{C_2} + \frac{\eta A (1 - \delta) \omega}{C_3} \right)}
\] (3)

Denoting the basic reproduction numbers for human as \(R^h_0 \) and for pathogens as \(R^p_0 \), we make the following deductions:

\[
R^h_0 = \frac{\beta_2 b}{\mu C_1} \left[\frac{\delta \omega}{C_2} + \frac{(1 - \delta) \omega}{C_3} \right]
\] (4)

\[
R^p_0 = \frac{\beta_1 b}{\mu \mu P C_1} \left[\frac{\eta S \delta \omega}{C_2} + \frac{\eta A (1 - \delta) \omega}{C_3} \right]
\] (5)

Therefore,

\[
R_0 = \frac{R^h_0 + \sqrt{(R^h_0)^2 + 4R^p_0^2}}{2}
\] (6)

Notice that the basic reproduction number \(R_0 \) consists of two parts, representing the two modes of transmission of the coronavirus.
Results
In this section, we approximate solutions to the model equations (1) using fourth and fifth order Runge-Kutta methods which are implemented via the `ode45` function. The initial values used are \(S(0) = 93000, E(0) = 1000, I_A(0) = 50, I_S(0) = 50, R(0) = 0, P(0) = 500 \). Figure 2 (a) depicts the change in the populations as time increases from 0 to 90 days. During the first 10 days, the number of susceptible humans declines rapidly as the number of exposed individuals increases rapidly due to contact with infected individuals \((I_A \text{ and } I_S)\) and also the virus in the environment \((P)\). After the latency period, and without mitigating the epidemic, the number of infected individuals surges, surpassing the hospital bed capacity \((BC)\), set here as 8000. The infected individuals who exhibit mild or no symptoms \(I_A\) are considered to be 30 percent of the total infected population. The model parameters used in this simulation study are shown in Table 1.

Since the symptomatic individuals \(I_S\) are much more infectious than the asymptomatic \(I_A\), the transmission of COVID-19 through contacts in households, workplaces, schools, from foodstuffs, or during commute rises. This leads to a surge of the virus in environments such as workplace, school, foodstuffs, and public transport, see Figure 2(b), and consequently more cases of the coronavirus are confirmed, see Figure 2(a) between 10 − 35 days. In this model we take the constants \(\alpha_1\) and \(\alpha_2\) to be reciprocal of the frequency with which individuals acquires the COVID-19 from the environment and from infected individuals, respectively. In Figures 2 the model shows that when \(\alpha_1 = 0.05\) i.e. high chances of getting infected by a contaminated environment, as compared to an infected individual, the number of Exposed, Asymptomatic and Symptomatic individuals increases. However, when \(\alpha_2 = 0.05\) i.e. higher chances of getting infected by an individual, as compared to an infected environment. Moreover, in Figure 2(c) the number of Susceptible vanishes by the 23rd day for \(\alpha_2 = 0.05\) since many people were infected quite rapidly, see Figures 2 (d), (e) and (f) for duration 0 − 20 days. Therefore, with very low new infections the number of infected individuals subsequently reduces from the 25th day onward, where the number of infected individuals is seen to be lower for \(\alpha_2 = 0.05\), as compared to when \(\alpha_1 = 0.05\) and \(\alpha_2 = 0.1\).

![Figure 2](https://example.com/figure2.png)

Figure 2 The simulated humans and pathogens populations are shown in (a) and (b) respectively. Effects of the constants \(\alpha_1\) and \(\alpha_2\) which determines the rate of new infections, are shown in (c), (d), (e), and (f). \(\alpha_1 = 0.1, \alpha_2 = 0.1\), is depicted by the continuous line, \(\alpha_1 = 0.05, \alpha_2 = 0.1\) is depicted by the dashed line, and \(\alpha_1 = 0.1, \alpha_2 = 0.05\) is depicted by the dotted line.

Discussion
The model shows that ignoring safety guidelines such as social distancing, wearing of masks, frequent wash of hands and cutting down on travel has devastating effect on the susceptible individuals. There is a growing concern that this disease could continue to ravage the human population globally since many aspects of the COVID-19 are yet to be discovered, which also poses a challenge to the long-term mathematical modeling of the disease.
Limitations
Given we made assumptions of the parameters at onset of the pandemic, there is a possibility that the model may overestimate the pandemic at later period of time.

Declaration
Abbreviations
COVID-19: Coronavirus disease 2019, 2019-nCov: 2019 novel Coronavirus, WHO: World Health Organization, SARS: Severe Acute Respiratory Syndrome, CDC: Center for Disease Control and Prevention, MERS-Cov: Korea Middle East Respiratory Syndrome Coronavirus, CFR: Case Fatality Rate.

Acknowledgments
The authors appreciate ample time given by their respective universities towards this manuscript.

Author's contributions
All the authors contributed equally to this article.

Funding
This study has not received any funding.

Availability of data and materials
Not Applicable.

Ethics approval and consent to participate
Not Applicable.

Consent for publish
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

References

1. WHO: Coronavirus disease 2019 (COVID-19): situation report, 51 (2020)
2. WHO: Coronavirus disease 2019 COVID-19: Situation report, 49 (2020)
3. Wu, Z., McGoogan, J.M.: Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in china: summary of a report of 72 314 cases from the chinese center for disease control and prevention. Jama (2020)
4. Park, J.Y., Han, M.S., Park, K.U., Kim, J.Y., Choi, E.H.: First pediatric case of coronavirus disease 2019 in korea. Journal of Korean Medical Science 35(11) (2020)
5. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., et al.: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, china: a descriptive study. The Lancet 395(10223), 507–513 (2020)
6. Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W., Lin, Y., Zheng, Y., et al.: Clinical characteristics of 24 asymptomatic infections with covid-19 screened among close contacts in nanjing, china. Science China Life Sciences, 1–6 (2020)
7. Dehkordi, A.H., Alizadeh, M., Derakhshan, P., Babazadeh, P., Jahandideh, A.: Understanding epidemic data and statistics: A case study of covid-19. arXiv preprint arXiv:2003.06933 (2020)
8. Hsieh, Y.-H.: 2015 middle east respiratory syndrome coronavirus (mers-cov) nosocomial outbreak in south korea: insights from modeling. PeerJ 3, 1505 (2015)
9. Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y.: The characteristics of middle eastern respiratory syndrome coronavirus transmission dynamics in south korea. Osong public health and research perspectives 7(1), 49–55 (2016)
10. Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., Yin, L.: A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty 9(1), 1–8 (2020)
11. Sookaromdee, P., Wiwanitkit, V., et al.: Imported cases of 2019-novel coronavirus (2019-ncov) infections in thailand: Mathematical modelling of the outbreak. Asian Pac J Trop Med 13(3) (2020)