Tryptophan Hydroxylase-1 Regulates Immune Tolerance and Inflammation

Elizabeth C. Nowak
Dartmouth College

Victor C. de Vries
Dartmouth College

Anna Wasiuk
Dartmouth College

Cory Ahonen
Dartmouth College

Kathryn A. Bennett
Dartmouth College

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Medical Immunology Commons

Dartmouth Digital Commons Citation

Nowak, Elizabeth C.; de Vries, Victor C.; Wasiuk, Anna; Ahonen, Cory; Bennett, Kathryn A.; LE Mercier, Isabelle; Ha, Dae-Gon; and Noelle, Randolph J., "Tryptophan Hydroxylase-1 Regulates Immune Tolerance and Inflammation" (2012). *Dartmouth Scholarship*. 1246.
https://digitalcommons.dartmouth.edu/facoa/1246

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.
Authors
Elizabeth C. Nowak, Victor C. de Vries, Anna Wasiuk, Cory Ahonen, Kathryn A. Bennett, Isabelle LE Mercier, Dae-Gon Ha, and Randolph J. Noelle
Tryptophan hydroxylase-1 regulates immune tolerance and inflammation

Elizabeth C. Nowak,1 Victor C. de Vries,1 Anna Wasiuk,1 Cory Ahonen,1 Kathryn A. Bennett,1 Isabelle Le Mercier,1 Dae-Gon Ha,1 and Randolph J. Noelle1,2

1Department of Microbiology and Immunology, Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, NH 03756
2Medical Research Council Centre for Transplantation, Guy’s Hospital, King’s College London, King’s Health Partners, London SE1 9RT, England, UK

Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 deficiency breaks allograft tolerance, induces remission, and intensifies neuroinflammation, respectively. All of these effects of Tph-1 deficiency are independent of its downstream product serotonin. Because mast cells (MCs) appear to be the major source of Tph-1 and restoration of Tph-1 in the MC compartment in vivo compensates for the defect, these experiments introduce a fundamentally new mechanism of MC-mediated immune suppression that broadly impacts multiple arms of immunity.

One well-documented method to control immunity and tolerance is through the regulation of nutrients in their immune microenvironment. Best described is the tryptophan deficiency mediated by the catabolic enzyme indoleamine 2,3-dioxygenase (IDO), which locally depletes tryptophan and liberates the immunoregulatory metabolites known as kynurenines. T cell activation is exquisitely sensitive to local tryptophan catabolism, and thus this enzyme exerts profound protective effects in allo-fetal rejection, autoimmune immunity, and inflammation. IDO can also be detected in tumors and draining LNs, and DC expression of IDO limits T cell responsiveness to antigen (Munn and Mellor, 2007; Katz et al., 2008). In addition to IDO, some human cancers express tryptophan 2,3-dioxygenase (TDO), which also utilizes tryptophan as a substrate to produce kynurenines (Pilotte et al., 2012). Furthermore, cysteine and arginine deficiency in tumors can inhibit T cell activation (Rodriguez et al., 2004; Srivastava et al., 2010), suggesting that loss of any number of amino acids may serve as a common tumor escape mechanism.

In accordance with these findings, in a model of skin allograft tolerance, it was observed that multiple catabolic enzymes were up-regulated that consume a litany of essential amino acids. It was shown that these enzymatic activities could dampen T cell proliferation through nutrient deprivation (Cobbold et al., 2009). One of the many enzymes that were up-regulated was Tph-1 (tryptophan hydroxylase-1), a synthase which utilizes tryptophan as a substrate to produce serotonin and melatonin (Yao et al., 2011), and it was speculated that Tph-1 may precipitate the loss of tryptophan in the local microenvironment (Zelenika et al., 2001). In the present study, we sought to determine whether Tph-1, the isoform expressed in the periphery (Walther et al., 2003), could function as a regulator of immunity through the control of tryptophan metabolism and uncovered a novel and profound immunoregulatory function for this enzyme.

© 2012 Nowak et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-nd/3.0/).
RESULTS
Mast cells (MCs) express Tph-1

A study from our laboratory previously reported that MCs are critical in maintaining regulatory T cell–dependent skin allograft tolerance (Lu et al., 2006). Concordant with these observations, gene array analyses performed by two different groups established that tolerant skin allografts display an MC signature with heightened signal for Tph-1 and other MC gene products (Zelenika et al., 2001; Lu et al., 2006). Pilot experiments showed that purified MCs from tolerant allografts expressed heightened levels of Tph-1 compared with MCs from syngeneic grafts (not depicted). It was also observed that peritoneal MCs from naive mice express ~1,000-fold higher expression for Tph-1 message than any other hematopoietic cell type examined by quantitative RT-PCR (qRT-PCR) and that Tph protein expression appears to be restricted to MCs (Fig. 1). Heightened Tph-1 expression in MCs appeared unique, as the expression for other catabolic enzymes was absent or minimal (Fig. 1 B).

Figure 1. MCs have specific expression of Tph-1. (A) Tph-1 expression (as determined by qRT-PCR) of the indicated cell types standardized to β-actin expression (mean ± SEM) is shown. For each cell type, two independent FACS-sorted samples were used. Each MC and macrophage sample was pooled from the peritoneal lavage of 20 mice. All other samples were pooled from the LN and spleen of two to four mice. (B) Peritoneal MC expression of the following genes was determined by qRT-PCR: arginase (Arg), dopa decarboxylase (Ddc), histidine decarboxylase (Hdc), IDO, inducible nitric oxide synthase (iNos), l-threonine dehydrogenase (Tdh), TDO, Tph-1, and Tph-2. Two independent samples were used to determine mean ± SEM shown. (A and B) ND indicates that a signal was not detected. (C) Intracellular staining for Tph-1 was performed for MCs, CD4+ T cells, CD8+ T cells, B cells, CD11c+ DCs, and F4/80+ CD11b+ macrophages in WT (bold lines) and Tph-1−/− (shaded areas) mice (n = 3–4 mice/group, and each cell type was tested in at least two independent experiments). (D) Naive LN sections were sectioned and stained for Tph-1 expression on MCs. CD117 staining is blue, Tph-1 staining is green, and overlap is white. Results are representative of three different mice/group. Bar, 10 µm.

Figure 2. Tph-1−/− mice have elevated serum tryptophan levels and a normal MC compartment. (A) Serum tryptophan levels from in-house-bred naive WT and Tph-1−/− mice (n = 13–14 mice/group from three independent experiments) were determined by ELISA. Mean ± SEM is shown. The p-value was determined by Student’s t test. (B) Peritoneal lavage, lungs, intestines, spleen, and skin of Tph-1−/− mice were analyzed by flow cytometry for the relative number of MCs and compared with WT mice. Data are pooled from two independent experiments (n = 7–8 mice/group), and mean is indicated.
Based on these findings and the recognition that Tph-1 can locally deplete tryptophan, the potential functional involvement of Tph-1 in mediating immune tolerance within the skin microenvironment was studied in Tph-1–/– mice. Tph-1–/– mice have been previously described as harboring no gross physical abnormalities except diminished cardiac function (Côté et al., 2003) and enhanced liver microcirculation (Lang et al., 2008). However, the immune compartments of Tph-1–/– mice have not been well characterized. The genetic absence of Tph-1 appears to impact the steady-state levels of tryptophan as serum from Tph-1–/– mice contains ~5 µg/ml more tryptophan in serum than that of WT controls (P = 0.0152; Fig. 2 A). Although systemic levels of tryptophan are generally attributed to the activity of TDO, it appears that IDO can modulate the relative amounts of tryptophan under inflammatory conditions (Schröcksnadel et al., 2006). Therefore, it appears that constitutive loss of Tph-1 can also alter tryptophan levels in the periphery. The analysis of immune cell phenotypes on WT and Tph-1–/– mice revealed that these mice were indistinguishable across all tissues examined (not depicted). Furthermore, the lack of Tph-1 does not appear to impact the frequency (Fig. 2 B) or numbers (not depicted) of MCs, which have been described as the cells most abundantly expressing Tph-1 (Stoll et al., 1990; Mathiau et al., 1994; Csaba et al., 2006).

Figure 3. Tph-1 is essential for the maintenance of tolerance. (A and B) WT and Tph-1–/– mice were grafted with syngeneic C57BL/6 or allogeneic CB6F1 skin. DST- and α-CD40L–treated mice received an allogeneic skin graft. In the indicated groups, PCPA and 5-HTP were given every other day for the duration of the experiment starting at day −8 for DST/α-CD40L–treated mice and day −1 for syngeneic and allogeneic mice. The number of mice/group is indicated, and data were pooled from two or more independent experiments. (C) Histology staining on skin allografts in DST/α-CD40L–treated mice of Tph-1 or WT mice at day 10 after grafting. Tph-1 is shown in red, and cKit (CD117) is shown in blue. In the overlay, white arrows indicate double-positive cells, and blue arrows indicate cells positive for cKit but not for Tph-1. (D) Reconstitution of serotonin in the granules of MCs was confirmed by immunofluorescent staining on purified peritoneal lavage MCs. Serotonin staining is in red, cKit staining in blue, and nuclear staining in yellow. The white arrows indicate MCs positive for serotonin, whereas the red arrows indicate MCs negative for serotonin. Bars, 20 µm. (E) Graft draining LNs from DST/α-CD40L–treated mice were depleted of antigen-presenting cells and restimulated with irradiated WT of F1 antigen-presenting cells for 18 h for IFN-γ and for 36 h for IL-17A before ELISPOT development. Data show n = 7–8 mice/group, and mean ± SEM is representative of results from two independent experiments. P-values were determined by Student’s t test. (F) Mast-deficient (Wsh) mice were locally (skin) reconstituted with 6–8-wk-old MCs from WT or Tph-1–/– mice 8 wk before DST/α-CD40L treatment. After receiving a skin graft, mice were monitored for rejection for another 50 d. Data shown were combined from two independent experiments.
Donor–specific transfusion (DST)/α-CD40L–treated mice reject allogeneic skin grafts with Tph-1 deficiency

The potential role of Tph-1 deficiency in immune tolerance was studied in a model of skin allograft tolerance. Here mice were treated with a tolerance-inducing regimen of DST in combination with α-CD40L on days −7, −5, and −3 and then received an allogeneic CB6F1 (C57BL/6 × BALB/c) skin graft on day 0 (Quezada et al., 2003). In the first experiments, the specific and irreversible inhibitor parachlorophenylalanine (PCPA), which has been reported to effectively block the effects of Tph with multiple treatments (Côté et al., 2003), was used. Approximately 90% of the PCPA-treated mice receiving DST/α-CD40L rejected their skin allografts within 30 d. In contrast, 100% of DST/α-CD40L–treated WT mice retained their skin allografts for >50 d (Fig. 3 A). The role of Tph-1 in allograft tolerance was then studied in Tph-1−/− mice (Fig. 3, A and B). It was shown that 80% of the DST/α-CD40L–treated Tph-1−/− mice rejected their skin grafts within 30 d as compared with DST/α-CD40L–treated WT mice (P < 0.0001 between these two groups by log-rank test). Tph-1−/− mice grafted with syngeneic grafts retained those grafts as did WT controls, establishing that Tph-1 is not involved in wound healing. Furthermore, allogeneic grafts placed on unmanipulated WT or Tph-1−/− mice mounted similar rejection responses with regard to the frequency and rates of graft rejection (Fig. 3 B). It was also noted that the majority of MCs in Tph-1−/− mice in donor skin allografts were negative for Tph-1, indicating that they were host derived (Fig. 3 C). The loss of tolerance in this model was not caused by the absence of peripheral serotonin synthesis in the Tph-1−/− mice as adding back 5-hydroxytryptophan (5-HTP), which bypasses the Tph-1 deficiency to restore serotonin levels, did not allow for long-lived tolerance in Tph-1−/− mice (Fig. 3 B). Because MCs store serotonin in their granules, reconstitution of serotonin biosynthesis by 5-HTP administration in Tph-1−/− mice was confirmed by histological analysis of cytopsins of peritoneal lavage MCs (Fig. 3 D). It is therefore concluded that Tph-1 is required for the maintenance of peripheral tolerance independently of serotonin.

To determine whether rejection in the DST/α-CD40L–treated Tph-1−/− mice was caused by the emergence of an allogeneic T cell response, T cells from draining LNs 14 d after the initial grafting were recalled with F1 antigen–presenting cells to assess their cytokine production (Fig. 3 E). An increase in the allogeneic–specific IFN-γ response (P = 0.0334) as well as IL-17A response (P = 0.0084) was observed in the DST/α-CD40L–treated Tph-1−/− mice compared with similarly prepared WT mice.

Based on the finding that the highest signal of Tph-1 message and protein expression occurs in MCs, it was envisioned that MC-derived Tph-1 is responsible for the phenotype seen in the deficient mice. W6 mice harbor a MC deficiency caused by a c-Kit mutation and can be readily reconstituted with genetically deficient MCs to test the role of MC-derived genes in immune responses (Grimbaldeston et al., 2005). As such, W6 mice were reconstituted with WT or Tph-1−/− BM-derived MCs (BMMCs). As previously reported, DST/α-CD40L–treated W6 mice reconstituted with WT BMMCs show a gradual erosion of tolerance leading to rejection of ∼50% of the allografts between days 30 and 60 after transplantation (Lu et al., 2006). However, when DST/α-CD40L–treated
Wth mice were reconstituted with Tph-1−/− BMMCs, it was observed that all mice rejected their allograft within 30 d with P = 0.0002 in comparison with WT BMMC-reconstituted mice by log-rank test (Fig. 3 F). Therefore, it appears that MC-derived Tph-1, and not Tph-1 produced by other cells, is necessary for long-term graft tolerance.

Tph-1 and immune suppression to tumor
As MC expression of Tph-1 is critical for allograft tolerance and MCs have been implicated in suppressing antitumor immunity (Maltby et al., 2009), experiments were designed to determine whether MC-derived Tph-1 mediated immune tolerance to an intradermal (i.d.) skin tumor model. MB49 is a bladder cell carcinoma that expresses male minor histocompatibility antigen and readily grows and kills male mice because they are centrally tolerant to H-Y (Summerhayes and Franks, 1979; Halak et al., 1999). In contrast, female WT mice have delayed tumor growth kinetics in comparison with WT males yet nonetheless ultimately succumb to tumor. Strikingly, female Tph-1−/− mice have reduced tumor growth kinetics, and ~50% completely reject MB49. It was also confirmed that the effect of Tph-1 deficiency was independent of serotonin biosynthesis by the lack of effect of administration of 5-HTP (Fig. 4 A). 11 d after tumor inoculation, tumor-specific recall responses from T cells from the draining LNs were measured (Fig. 4 B). Female Tph-1−/− mice had significantly higher numbers of IL-17A-specific spots (P < 0.01) in comparison with all other groups, and IFN-γ-specific spots were elevated in female Tph-1−/− mice although it did not reach statistical significance. Through reconstitution of Wth mice with either BMMCs from either WT or Tph-1−/− mice, it was confirmed that Tph-1−/− BMMCs conferred protection to the same extent as female Tph-1−/− mice with P = 0.0052 between WT and Tph-1−/− BMMC-reconstituted mice (Fig. 4 C). The data establish that MCs maintain a suppressive antitumor microenvironment and that Tph-1 is a major mediator within this context.

Tph-1 deficiency exacerbates experimental autoimmune encephalomyelitis (EAE)
The question arose as to whether Tph-1 only enhances immunity under immune-tolerant or -suppressive conditions, or can it function in tempering inflammation in general? To address this question, the impact of Tph-1 deficiency on a central nervous system (CNS) inflammatory disease was studied. EAE is a model of CNS inflammation in which encephalitogenic Th17 lineage T cells infiltrate the CNS, mediate damage, and cause ascending paralysis. Using suboptimal disease conditions, it was found that Tph-1−/− mice develop earlier and more severe disease than controls (P = 0.0064; Fig. 5 A).

Further characterization of immune responses during EAE found that Tph-1−/− mice have an enhanced frequency of encephalitogenic T cells. Analysis of T cell responses during EAE revealed that on day 7 after immunization (when neither group showed disease), Tph-1−/− mice had greater numbers of CD4+ T cells expressing CCR6 (P = 0.0484), one of the adhesion molecules necessary to be on the first wave of T cells that infiltrate the CNS (Fig. 6 A; Liston et al., 2009; Reboldi et al., 2009). Tph-1−/− mice also had elevated recall IL-17A production by CD4+ T cells (P = 0.0002). At late stages of disease, Tph-1−/− mice also had elevated numbers of CD4+ and CD8+ T cells that were infiltrating the CNS, which have high IL-17A and IFN-γ recall responses (Fig. 6 B). To determine whether this effect is just caused by differences in T cell serotonin levels of WT, Tph-1−/−, and Tph-1−/− + 5-HTP-treated (last shot given 2 d before sample collection) mice on day 21 after EAE induction were determined by ELISA (n = 11–12 mice/group pooled from three independent experiments). The p-value was determined by one-way ANOVA analysis and indicates difference from WT mice. (B and C) Mean ± SEM is shown.

Figure 5. Tph-1−/− mice have exacerbated EAE independent of their serotonin level. (A) WT, Tph-1−/−, and Tph-1−/− + 5-HTP-treated (starting on day −1 and continuing every other day for the duration of the experiment) mice were monitored and scored. Data are pooled from three independent experiments and show mean ± SEM for n = 13 mice/group. P-values indicate significance in comparison with WT mice and were calculated by Mann–Whitney U test. (B) Serum serotonin levels of WT, Tph-1−/−, and Tph-1−/− + 5-HTP–treated (one shot at 2 d prior) mice on day 1 after EAE induction were determined by ELISA (n = 11–12 mice/group pooled from three independent experiments). (C) Serum serotonin levels of WT, Tph-1−/−, and Tph-1−/− + 5-HTP–treated (last shot given 2 d before sample collection) mice on day 21 after EAE induction were determined by ELISA (n = 13 mice/group pooled from three independent experiments). P < 0.001.
Therefore, it presented itself as a potential target for mediating the differences observed in WT and Tph-1−/− mice. The phosphorylation of S6 ribosomal protein, one of the targets of mTOR, in CD4+ T cells was measured in the draining LNs 4 d after EAE immunization, and we found that it was elevated in Tph-1−/− mice (P = 0.04; Fig. 7). This suggests that comparatively there is a reduction of mTOR activity in WT mice that is consistent with there potentially being a tryptophan-deficient microenvironment imposed by Tph-1.

DISCUSSION

The findings presented herein describe Tph-1 as an important and novel MC-derived regulator of immunological tolerance. This single molecule exerts striking alterations in immunological outcomes in models of transplantation tolerance, tumor growth, and autoimmunity. Tph-1 metabolizes priming, myelin-specific Th17 cells were adoptively transferred into WT and Tph-1−/− mice. Data show that these T cells could effectively initiate disease in Tph-1−/− mice but not controls (P < 0.0001), showing that Tph-1−/− mice are better able to sustain and facilitate encephalitogenic T cell–mediated pathogenesis (Fig. 6 C). Although hampered by differences in EAE severity caused by the increased age of the mice, the phenotype of Wsh mice reconstituted with Tph-1−/− BMMCs looked consistent with that of Tph-1−/− mice, suggesting MC-derived Tph-1 is responsible for this effect (Fig. 6 D).

Tph-1−/− mice have enhanced signaling of mammalian target of rapamycin (mTOR)

The mTOR pathway can promote CD4 T cell differentiation to Th1 and Th17 cells (Delgoffe et al., 2009), and its activity is inhibited in vitro with loss of essential amino acids (Cobbold et al., 2009). Therefore, it presented itself as a potential target for mediating the differences observed in WT and Tph-1−/− mice. The phosphorylation of S6 riboprotein, one of the targets of mTOR, in CD4+ T cells was measured in the draining LNs 4 d after EAE immunization, and we found that it was elevated in Tph-1−/− mice (P = 0.04; Fig. 7). This suggests that comparatively there is a reduction of mTOR activity in WT mice that is consistent with there potentially being a tryptophan-deficient microenvironment imposed by Tph-1.

Figure 6. Tph-1−/− mice have increased encephalitogenic T cell responses. (A) Day 7 after inoculation for EAE, mice were taken down and draining LNs were stained for the indicated parameters (after restimulation for cytokine stains). Data are pooled from three independent experiments (n = 11 mice/group), and mean is indicated. (B) Day 21 after inoculation, lymphocytes from the CNS were isolated and stained for the indicated parameters (after restimulation for cytokine stains). Data are pooled from three independent experiments (n = 15–18 mice/group), and mean is indicated. (A and B) P-values were determined by Student’s t test. (C) Mice were injected with activated MOG35–55-specific T cells, and disease severity was monitored over time. Data are pooled from two independent experiments and show mean ± SEM for n = 14–16 mice/group. The p-value was determined by Mann–Whitney U test. (D) Wsh mice were given WT or Tph-1−/− BMMCs systemically and given 8 wk to reconstitute. These mice and age-matched controls were immunized for active EAE and monitored for disease severity over time. Data show mean ± SEM for n = 10–15 mice/group pooled from two independent experiments.
tryptophan for the purpose of producing serotonin. However, the experiments presented here clearly show that the major immunological impact of this pathway is not through the regulation of serotonin levels and therefore must be caused by its ability to exhaust tryptophan as suggested by the mTOR experiments.

There are several catabolic enzymes that have been suggested to contribute to the establishment of immune tolerance. For example, during skin allograft tolerance, DCs activated by regulatory T cells can express enzymes to consume 9 of the 10 essential amino acids and cause a reduction in mTOR signaling (Cobbold et al., 2009). Extensive work on IDO, one of the tryptophan-catabolizing enzymes, also shows that it can limit immune responses through the induction of the GCN2 stress response, which promotes anergy, as well as the production of tryptophan metabolites that suppress inflammation (Munn and Mellor, 2007). There are also some indications that different catabolic enzymes may counter-regulate the activity of each other. For example, the production of nitric oxide by inducible nitric oxide synthase can prevent IDO activity (Katz et al., 2008). However, in the case of Tph-1 expression by MCs, this does not appear to be occurring because MCs have little to no messenger RNA expression for other catabolic enzymes, so competition for substrate is not likely contributing to the immunosuppressive activity of Tph-1.

In the case of Tph-1, the question arises as to which cell type is the target of the tryptophan deficiency in the tolerant microenvironment. Although we observe enhancement of mTOR activity in CD4 T cells with Tph-1 deficiency during EAE, it is not yet clear whether this is the case in our transplant and tumor models. In addition, there could be additional targets of Tph-1 activity. For example, we have recently reported that within the tolerant allograft, graft-derived DCs mediate regional allo-specific unresponsiveness. Upon analysis of gene expression of these DCs, it appears that they have experienced a nutrient-stressed environment (de Vries et al., 2011). We would contend that this is caused by Tph-1 activities on DCs from the increased MCs that infiltrate the tolerant allograft. It would also be of interest to determine the factors that up-regulate Tph-1 expression in MCs as well as additional cell types to potentially mediate immune tolerance.

The experiments presented provide a new prospective on this immunologically important enzyme. Its end product serotonin can impact inflammation, particularly in the gut.
EAE immunization and clinical evaluation. Age-matched WT and Tph-1−/− mice were immunized subcutaneously with 125 μg MOG135-151 peptide (Peptides International) emulsified in IFA (Sigma-Aldrich) supplemented with 0.5 mg/mouse Mycobacterium tuberculosis H37 (Difco Laboratories) on day 0 and an i.p. injection of 200 ng pertussis toxin (List Biologicals) on days 0 and 2. For adoptive transfer EAE, donor 2D2 transgenic T cells received a standard immunization as previously described (Nowak et al., 2009), and lymphocytes were isolated out of mice 10 d later. Cells were stimulated with 20 μg/ml MOG135-151, 10 μg/ml anti–IFN-γ (BioXCell), 20 ng/ml IL-23 (BD), 10 ng/ml IL-6 (PeproTech), and 10 ng/ml IL-1β (PeproTech) for 4 d before resolation of live T cells (~80% positive for IL-17A). Recipient mice were injected with 1.0 × 10⁶ T cells i.v. Mice were scored as previously described (Becher et al., 2002).

Antibodies and reagents. Mouse monoclonal antibodies to CD8 (53-6.7) and CD4 (GK1.5) were purchased from eBioscience. Mouse monoclonal antibodies to CD4 (RM4.5), CD45 (30-F1), IL-17A (TC11-18H10.1), IFN-γ (XM12.1), CCR6 (29-2L17), CD117 (ACK2), FcεRI (MAR-1), CD11b (M1/70), CD11c (N418), F4/80 (BM8), and CD19 (6D5) were purchased from BioLegend. Tph-1 antibody was purchased from Santa Cruz Biotechnology, Inc. Secondary F(ab′)2 anti–rabbit IgG antibody was purchased from eBioscience. P-S6 antibody and its isotype control antibody were purchased from Cell Signaling Technology.

ELISPOT antibodies for IFN-γ were purchased from Mabtech and those for IL-17A were purchased from BioLegend. Both were developed using the AEC substrate kit from BD. ELISA kits for serotonin (Enzo Life Sciences) and tryptophan (Rocky Mountain Diagnostics) were used according to the manufacturers’ directions. 5-HTTP (Sigma-Aldrich) and PCPA (Sigma-Aldrich) were given i.p. at 5.5 mg/mouse every other day in all indicated experiments starting the day before any other treatment.

Histology. Sections were cut and stained as previously described (Lu et al., 2006). In brief, tissues were fixed in OCT, sectioned onto slides, fixed with methanol and acetone, stained with antibody in 10% serum, washed extensively, and mounted with Prolong Gold (Molecular Probes) according to the manufacturer’s directions. Unstained and single-stain sections were performed for each tissue. In addition, the same staining cocktails were used on tissue sections to serve as a negative control for Tph-1 and serotonin stains. Images were taken on an LSM 510 confocal microscope (Carl Zeiss) and analyzed using LSM 5 Image Browser (Carl Zeiss).

Flow cytometry. Single cell suspensions were incubated with antibodies conjugated with FITC, PE, PerCP, APC, Alexa Fluor 647, and/or Alexa Fluor 700. Intracellular staining and restimulation for cytokine staining were performed as previously described (Nowak et al., 2009). To stain for Tph-1, cells were surface stained, fixed, stained with antibody in 10% serum, washed extensively, and mounted with Prolong Gold (Molecular Probes) according to the manufacturer’s directions. Unstained and single-stain sections were performed for each tissue. In addition, the same staining cocktails were used on tissue sections to serve as a negative control for Tph-1 and serotonin stains. Images were taken on an LSM 510 confocal microscope (Carl Zeiss) and analyzed using LSM 5 Image Browser (Carl Zeiss).

RNA preparation and qRT-PCR. All cell populations were sorted on a FACS Aria (BD). For MC samples, the cell number acquired was insufficient for postsort analysis, so the samples were assessed for expression of several MC markers and products to confirm specificity of cells. RNA was prepared according to the manufacturer’s directions using an RNeasy Mini kit (QIAGEN). MC samples were further amplified and converted to cDNA using QuantiTect Whole Transcriptome kit (QIAGEN). All other samples were transcribed to cDNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories). qRT-PCR was performed as previously described (Becher et al., 2002). All samples were standardized to expression of β-actin. Primers used are as follows: β-actin (5′-CCACACCCGGCATTTGC-3′ and 5′-TCTGCGCTCTGACCCACAT-3′), Tph-1 (5′-GAAGAC- AACATCCCGCAACT-3′ and 5′-CTTCAGCCAAAGGAGGAACG-3′), argepine (5′-CAGAAGAATGGGAGTTCAG-3′ and 5′-CAGATATG- CAGAGGATCAC-3′), dopa decarboxylase (5′-AGGCAGAACAGAAAGATTGAAGACA-3′ and 5′-GAGGGTTGAGTTATTATTTCTTTTCACCA-3′), histidine decarboxylase (5′-GATCAGATTTCTACCTGTTG-3′ and 5′-GTTGATACATCCATCCCTTG-3′), IDO (5′-TGGCAACTTGTCGAGAAGAAAAG-3′ and 5′-ATTGCTTTCCAGCTTCTACG-3′), inductible nitric oxide synthase (5′-ACCCCTTGTGTCACCAGGAAGATTGTT-3′ and 5′-TGAACCGATGCTTTGCATTAGCA-3′), 1,3-threonine dehydrogenase (5′-AAGGACCCGGCCTGACTTCTC-3′ and 5′-CCGAGACATTGTGATCTAGA-3′), TDO (5′-TGGAAGACTATGTTCCGTG-3′ and 5′-TCGCTGTTGAAGAGCTC-3′), and Tph-2 (5′-CGAGAGAGGTTGTCCTTG-3′ and 5′-TTTGGCCTTTTGTCTTC-3′).

Statistical analysis. Data graphs were made using Prism software (GraphPad Software) and expressed as the mean ± SEM. Differences for graphs with one grouping were analyzed by Student’s t test (two groups) or one-way analysis of variance (ANOVA) and Tukey analysis (three or more groups). Log-rank tests were used to compare skin graft survival and survival of mice inoculated with MB49. For the study of MB49 growth kinetics, two-way ANOVA was used to assess significance. In EAE time course experiments, statistical relevance was determined using Mann–Whitney U Test.

This work was supported by grants from the National Institutes of Health (A1084089, A123079, and A1048667) and by the Medical Research Council Centre for Transplantation and Biomedical Research Center at King’s College London. E.C. Nowak is supported by a postdoctoral fellowship from the National Multiple Sclerosis Society.

The authors have no conflicting financial interests.

Submitted: 22 February 2012
Accepted: 24 August 2012

REFERENCES

Becher, B., B.G. Durell, and R.J. Noelle. 2002. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110:493–497.

Cobbold, S.P., E. Adams, C.A. Farquhar, K.F. Nolan, D. Howie, K.O. Lui, P.J. Fairchild, A.L. Mellor, D. Ron, and H. Waldmann. 2009. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA. 106:12685–12690. http://dx.doi.org/10.1073/pnas.0903919106

Côté, F., E. Thévenot, C. Figny, Y. Fromes, M. Darmon, M.A. Ripoche, E. Bayard, N. Hanoun, F. Saurini, P. Lechat, et al. 2003. Disruption of the nonneuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. USA. 100:13525–13530. http://dx.doi.org/10.1073/pnas.2253056100

Csaba, G., P. Kovács, and E. Pállinger. 2006. Hormones in the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat perivascular mast cells. Life Sci. 78:1871–1877. http://dx.doi.org/10.1016/j.lfs.2005.08.044

de Vries, V.C., K. Pino-Lagos, E.C. Nowak, K.A. Bennett, C. Oliva, and R.J. Noelle. 2011. Mast cells condition dendritic cells to mediate alloantigen tolerance. Immunity. 35:550–561. http://dx.doi.org/10.1016/j.immuni.2011.09.012

Delgoffe, G.M., T.P. Kole, Y. Zheng, P.E. Zarek, K.L. Matthews, B. Xiao, P.F. Worley, S.C. Kozman, and J.D. Powell. 2009. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 30:832–844. http://dx.doi.org/10.1016/j.immuni.2009.04.014

Grimbaldeston, M.A., C.C. Chen, A.M. Pilpinsky, M. Tsai, S.Y. Tam, and S.J. Galli. 2005. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am. J. Pathol. 167:835–848. http://dx.doi.org/10.1016/s0002-9440(10)62055-x
Halak, B.K., H.C. Maguire Jr., and E.C. Lattimore. 1999. Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site. Cancer Res. 59:911–917.

Hofstetter, H.H., R. Mössner, K.P. Lesch, R.A. Linker, K.V. Toyka, and R. Gold. 2005. Absence of reuptake of serotonin influences susceptibility to clinical autoimmune disease and neuroantigen-specific interferon-gamma production in mouse EAE. Clin. Exp. Immunol. 142:39–44. http://dx.doi.org/10.1111/j.1365-2249.2005.02901.x

Katz, J.B., A.J. Muller, and G.C. Prendergast. 2008. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222:206–221. http://dx.doi.org/10.1111/j.1600-065X.2008.00610.x

Lang, P.A., C. Contaldo, P. Georgiev, A.M. El-Badry, M. Recher, M. Schreiner, A.J. Coyle, L.H. Kasper, and R.J. Noelle. 2009. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206:1653–1660. http://dx.doi.org/10.1084/jem.20090246

O’Connell, P.J., X. Wang, M. Leon-Ponte, C. Griffiths, S.C. Pingle, and G.P. Ahern. 2006. A novel form of immune signaling revealed by transmutation of the inflammatory mediator serotonin between dendritic cells and T cells. Blood. 107:1010–1017. http://dx.doi.org/10.1182/blood-2005-07-2903

Pilote, L., P. Larrieu, V. Stroobant, D. Colau, E. Dolusc, R. Fréderick, E. De Paepe, C. Uyttenhove, J. Wouters, B. Maserée, and B.J. Van den Eynde. 2012. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl. Acad. Sci. USA. 109:2497–2502. http://dx.doi.org/10.1073/pnas.1113873109

Quezada, S.A., B. Fuller, L.Z. Jarvinen, M. Gonzalez, B.R. Blazar, A.Y. Rudensky, T.B. Strom, and R.J. Noelle. 2003. Mechanisms of donor-specific transfusion tolerance: preemptive induction of clonal T-cell exhaustion via indirect presentation. Blood. 102:1920–1926. http://dx.doi.org/10.1182/blood-2003-02-0586

Reboldi, A., C. Coine, D. Baumjohann, F. Benvenuto, D. Bottinelli, S. Lira, A. Uccelli, A. Lanzavecchia, B. Engelhardt, and F. Sallusto. 2009. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroidalplexus is required for the initiation of EAE. Nat. Immunol. 10:514–523. http://dx.doi.org/10.1038/ni.1716

Rodriguez, P.C., D.G. Quiceno, J. Zabala, B. Ortiz, A.H. Zea, M.B. Piazuelo, A. Delgado, P. Correa, J. Brayer, E.M. Sotomayor, et al. 2004. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64:5839–5849. http://dx.doi.org/10.1158/0008-5472.CAN-04-0465

Schröcksandl, K., B. Wirlettner, C. Winkler, and D. Fuchs. 2006. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta. 364:82–90. http://dx.doi.org/10.1016/j.cca.2005.06.013

Srivastava, M.K., P. Sinha, V.K. Clements, P. Rodriguez, and S. Ostrand-Rosenberg. 2010. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70:68–77. http://dx.doi.org/10.1158/0008-5472.CAN-09-2587

Stoll, J., C.A. Kozak, and D. Goldman. 1990. Characterization and chromosomal mapping of a cDNA encoding tryptophan hydroxylase from a mouse mastocytoma cell line. Genomics. 7:88–96. http://dx.doi.org/10.1016/0888-7543(90)90522-V

Summerhayes, I.C., and L.M. Franks. 1979. Effects of donor age on neoplastic health. Transplant. Proc. 8:228–231. http://dx.doi.org/10.1016/0304-3940(79)90521-9

Vogt, P.A., C. Contaldo, P. Georgiev, M. Bader, R. Nakamura, K., T. Sato, A. Ohashi, H. Tsurui, and H. Hasegawa. 2008. Aggravation of viral hepatitis by platelet-derived serotonin. Nat. Med. 14:756–761. http://dx.doi.org/10.1038/nm1780

Liston, A., R.E. Kohler, S. Townsley, S. Haylock-Jacobs, I. Comerford, A.C. Caon, J. Webster, J.M. Harrison, J. Swann, I. Clark-Lewis, et al. 2006. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 442:997–1002. http://dx.doi.org/10.1038/nature0510

Maláby, S., K. Khazaei, and K.M. McNagny. 2009. Mast cells in tumor growth: angiogenesis, tissue remodelling and immune-modulation. Biochim. Biophys. Acta. 1796:19–26.

Markees, T., N. Phillips, E. Gordon, R.J. Noelle, J.P. Mordes, D.L. Greiners, and A.A. Rossini. 1998. Improved skin allograft tolerance induced by treatment with donor splenocytes and an extended course of anti-CD154 monoclonal antibody. Transplant. Proc. 30:2444–2446. http://dx.doi.org/10.1016/S0041-1345(98)00680-0

Mathieu, P., N. Bakalar, and P. Aubineau. 1994. Tryptophan hydroxylase can be present in mast cells and nerve fibers of the rat dura mater but only mast cells contain serotonin. Nenur. Lett. 182:133–137. http://dx.doi.org/10.1016/0165-5728(94)90781-x

Munn, D.H., and A.L. Mellor. 2007. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 117:1147–1154. http://dx.doi.org/10.1172/JCI311778

Nakanura, K., T. Sato, A. Ohashi, H. Tsutui, and H. Hasegawa. 2008. Role of a serotonin precursor in development of gut microvilli. Am. J. Pathol. 172:333–344. http://dx.doi.org/10.2353/ajpath.2008.070358

Nocto, A., F. Dahm, W. Jochum, J.H. Jang, P. Georgiev, M. Bader, R. Graf, and P.A. Clavien. 2008. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68:5152–5158. http://dx.doi.org/10.1158/0008-5472.CAN-08-0202

Nowak, E.C., C.T. Weaver, H. Turner, S. Begum-Haque, B. Becher, B. Schreiner, A.J. Coyle, L.H. Kasper, and R.J. Noelle. 2009. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206:1653–1660. http://dx.doi.org/10.1084/jem.20090246