Studying the Moisture Capacity of Artificial Soils Containing Industrial Byproducts

L M Smolenskaya¹, S Yu Rybina¹, E A Pendyurin¹

¹Belgorod State Technological University V.G. Shukhov, st. Kostyukova, 46, Belgorod, 308012, Russia

E-mail: smolenskaylarisa@yandex.ru

Abstract. Artificial soils based on sand and clay contain multiple byproducts such as defecation precipitate and byproduct of wet magnetic separation (WMS). The organic portion is the sediment from the sludge lagoons of the pig farm. We have studied the moisture retention capacity of artificial soils. The moisture capacity is mainly contributed to by clay (28 mg/g), defecation precipitate (20 mg/g), and the sludge-lagoon sediments (30 mg/g).

Specific surface area of artificial soils lies within a range of 50 to m²/g, which is close to ordinary chernozem soils. The obtained artificial-soil compositions can be used for land reclamation as an alternative substrate of natural soil.

1. Introduction

Mining and unsustainable use of the resources stored in the pedosphere have resulted in the depletion or even irreversible loss of fertile soil layers. The destroyed structure coupled with altered compositions and properties cause some types of the soil biocenosis to die, which in its turn results in the degradation of soils [1-2]. Reclamation can bring soil back to its original state, or at least close to it [3-4].

There are multiple approaches to soil remediation [5-6]. One of them consists in creating artificial soil [7-9]. Artificial soil is a complex system where each individual component is important [10-11]. There exist numerous ways to create artificial soil [12-14]. It mostly contains components used in the biotesting of soils, such as sand, white clay, sphagnum peat, and calcium carbonate [15-16].

2. Statement of Problem

In this research, artificial soil was mainly made of mineral components such as sand and clay, to which we added calcium-containing substances, i.e. chalk and defecation precipitate. Beside these components, we used byproducts of wet magnetic separation (WMS) as an inert structuring additive. The sludge-lagoon sediments from pig farms were used as the organic component (see Table 1). Sediments accounted for 15% of the total mass. As such sediments had a humidity of 80%, using them enabled us to use less water for the humidification of artificial soils. Chernozem from Belgorod Oblast was used as a control sample.
Table 1. Soil composition.

Components	Control sample	Sample #1	Sample #2
Sand	20	20	
Clay	35	20	
Defecation precipitate	10	10	
WMS byproducts	20	20	
Soil	100		15
Sludge-lagoon sediments	15	15	

3. Results and Discussion

The obtained samples of artificial soil were studied for moisture absorption and retention qualities. To that end, we analyzed the absorption of water vapor by separate components as well as by the artificial soil as a whole.

Moisture absorption kinetics was studied by the weight method at various equilibrium pressures of the dessicator-generated vapor. The results are shown in Figures 1 to 3.

Figure. 1. Moisture absorption kinetics in the control sample at various desiccator humidity values.

The control sample was found to absorb up to 18 mg of moisture per gram of soil.
Sample #2 featured higher moisture absorption rates than its counterpart #1, perhaps due to higher porosity and aeration. We believe this was because Sample #2 contained 15% of the control soil.

Dry sludge-lagoon sediments absorb more water than natural soils (up to 30 mg/kg). When such sediment is dried, it becomes dispersed, which increases its porosity and therefore results in greater moisture absorption [17-19].

Defecation precipitate can retain up to 25 mg of moisture; similar patterns are observed when testing the moisture absorption capacity of clay (up to 28 mg/g).

Sand and WMS by-products have low moisture content when used as artificial-soil components. This means that clay, defecation precipitate, and sludge-lagoon sediments contribute more to the moisture absorption capacity of the soil. In this respect, sand and WMS by-products are “ballast” components, since their moisture retention capacity is 2.5 to 3 mg, which is 10 times less than clay or defecation precipitate.

We used the preliminary values to plot the adsorption isotherm.
Figure 4. Water vapor adsorption isotherms. **Legend:** control, 2, 1.

The observed moisture absorption were used to determine the specific surface area. According to the calculations, the specific surface area was consistent with the values characteristic of natural soils (see Table 2).

Table 2. Specific surface area of artificial-soil samples

Indicator	Unit	Control	1	2
Adsorption, a•10^{-3}	g/g	11.5	7.4	10.9
Specific surface area, S	m^2/g	70.2	49.4	72.8

These data indicated that the specific surface area was close to that of the ordinary chernozem of the Central Chernozem Region [20]. Therefore, moisture retention capacity is at max in clay, defecation precipitate, and sludge-lagoon sediments, meaning that adding them to artificial soils help retain not only moisture but also other nutrients.

For now, we can speak of substituting valuable components with various kinds of waste, including biological treatment waste that is generated in large amounts when treating the wastewaters of pig farms. Such waste can well be used in land reclamation.

4. Conclusions

Artificial soil created using industrial by-products was able to accumulate moisture no less efficiently than the control sample.

Moisture reserves in artificial soils rose from 4-6 to 14-18%, which was close to the control sample. That was mainly due to clay, defecation precipitate, and sludge-lagoon sediments.

The specific surface area of the obtained artificial-soil samples was close to that of ordinary chernozem.

These results prove feasible, solving a number of environmental problems by using such soil compounds as substitutes for natural soils when creating recreational areas or reclaiming man-destroyed areas, as well as when needing to dispose of large amounts of industrial by-products that cannot be reasonably recycled otherwise.
5. References

[1] Ozaryan Yu A Vovchuk E E 2010 Specific features of the restoration of land disturbed in the process of extraction of building materials (on the example of JSC "Korfovskiy stone quarry") Problems of regional ecology 3 pp 141-144

[2] Galanina T V, Lyubimova K V 2010 Problems of recultivation and restoration of disturbed lands in the open field development Mining information and analytical bulletin (scientific and technical journal) 8 pp 256-259

[3] Manukyan R R Papinyan V A, Eloyan A Sh 2009 The use of industrial waste for the reclamation of soda solontsy-salt marshes of the Ararat plain News of the State Agrarian University of Armenia 3 pp 35-39

[4] Gorelov E Yu, Gorelova I S 2016 Systems innovation approach to solving the problems of land reclamation, recultivation and land protection In the collection: The development of scientific, creative and innovative activities of young people. Proceedings of the VIII All-Russian Scientific and Practical Conference of Young Scientists pp 143-146

[5] Moore I D 1993 Terrain properties: Estimation Methods and Scale Effects, Modeling Change in Environmental Systems A J Jakeman et al. editors / I.D. Moore, A. Lewis, J. C. Gallant New York: John Wiley and Sons p 276

[6] Kalinitchenko V P 2016 Soil dynamics management Biogeosystem Technique 4(10) pp 284-316

[7] Babakova O B, Artemenko S E, Tarkhanova L A 2006 Polymer-containing artificial soil for restoring and creating landscapes Ecology and Industry of Russia 2 pp 22-24

[8] Pendyurin E A, Smolenskaya L M, Rybina S Yu, Voropaev V S Artificial soil mix Application for patent number 2017134625

[9] Morozov D O, Rudakov V O, Epishina G P, Berezina N V 2009 Artificial soil Patent RU 2345518

[10] Kabirov R R, Sadykov OF F, Popkov A Yu 2014 Artificial soil Patent for invention RUS 2023219

[11] Kochetov A S, Kovylin V M, Rezhchikov V A 2005 Artificial soil The patent for invention RUS 2301249

[12] Lysenko A A, Sverdlov N I, Vinogradova L E, Shtyagina L M, Illarionova E L, Zaytseva E I 2009 Artificial soil for growing plants Design. Materials Technology 3(10) pp 23-26

[13] Fried A S, Ernakov A V 2015 Biogeochemical circulation in the ecosystems of artificial soils of urban lawn (soil) Agrochemistry 6 pp 77-83

[14] Angers D A, Caron J. 1998 Plant-induced soil changes and feedbacks D A Angers, J. Caron Springer Netherlands pp 55–72

[15] Hillel D 1980 Fundamentals of Soil Physics NY Academic Press p. 110

[16] Crosson P 1986 Agricultural Gand use; a technological and energy prospective Famland, Food Soil Cons. Cos pp 99-111

[17] Arkhangelskaya T A 2006 On Eurasian Soil Sci vol 39 p 20-25

[18] 2004 Agronomic evaluation of the redox status of soils Eurasian Soil Science 37 6 pp 608-617

[19] Danilova T N 2016 Regulation of the water regime of sod-podzolic soils and moisture supply of plants with the help of water-absorbing polymers Agrophysics 1 pp 8-16

[20] Chekmarev P, Lukin S 2017 Dynamics of arable soil fertility, fertilizer use and yields of major crops in the Central Black Earth regions of Russia International Agricultural Journal 4 pp 41-44

Acknowledgments
The article was prepared as part of the development program of the supporting university on the basis of the BSTU named after V.G. Shukhov