SPECTRAL FLOW INSIDE ESSENTIAL SPECTRUM IV:
F^*F IS A REGULAR DIRECTION

NURULLA AZAMOV

Abstract. Let H_0 and V be self-adjoint operators such that V admits a
factorisation $V = F^*JF$ with bounded self-adjoint J and $|H_0|^{1/2}$ compact F.
Flow of singular spectrum of the path of self-adjoint operators $H_0 + rV$, $r \in \mathbb{R}$,
— also called spectral flow, through a point λ outside the essential spectrum
of H_0 is well studied, and appears in such diverse areas as differential geometry
and condensed matter physics.

Inside the essential spectrum the spectral flow through λ for such a path is
well-defined if the norm limit
$$\lim_{y \to 0^+} F(H_0 + rV - \lambda - iy)^{-1} F^*$$
exists for at least one value of the coupling variable $r \in \mathbb{R}$. This raises the
question: given a self-adjoint operator H_0 and $|H_0|^{1/2}$ compact operator F,
for which real numbers λ there exists a bounded self-adjoint operator J such
that the limit above exists? Real numbers λ for which this statement is true
we call essentially regular or semi-regular and the operator $V = F^*JF$ we call
a regular direction for H_0 at λ.

In this paper we prove that λ is semi-regular for H_0 if and only if the
direction F^*F is regular.

1. Introduction

Flow of eigenvalues of a norm-continuous path of self-adjoint operators,
$$H_r = H_0 + rV,$$
which share the common essential spectrum, σ_{ess}, through a point λ outside the
essential spectrum is well studied. The resulting integer number is also called spectral
flow, which has independent origins in operator theory [Kr] and differential geometry [APS]
and since then appeared in such areas as index theory and condensed matter physics, see e.g. [C].

For λ inside the essential spectrum the spectral flow, whether it is flow of eigen-
values or more generally flow of singular spectrum, is not well-defined, due to well-
known extreme volatility of singular spectrum embedded in the essential spectrum.
The spectral shift function (SSF) $\xi(\lambda)$ could have been considered as an analogue
of spectral flow, which has independent origins in operator theory [Kr] and differential geometry [APS]
and since then appeared in such areas as index theory and condensed matter physics, see e.g. [C].

For λ inside the essential spectrum the spectral flow, whether it is flow of eigenvalues or more generally
flow of singular spectrum, is not well-defined, due to well-known extreme volatility of singular spectrum
embedded in the essential spectrum. The spectral shift function (SSF) $\xi(\lambda)$ could have been considered as
an analogue of spectral flow, which has independent origins in operator theory [Kr] and differential geometry [APS]
and since then appeared in such areas as index theory and condensed matter physics, see e.g. [C].

For λ inside the essential spectrum the spectral flow, whether it is flow of eigen-
values or more generally flow of singular spectrum, is not well-defined, due to well-
known extreme volatility of singular spectrum embedded in the essential spectrum.
The spectral shift function (SSF) $\xi(\lambda)$ could have been considered as an analogue
of spectral flow, which has independent origins in operator theory [Kr] and differential geometry [APS]
and since then appeared in such areas as index theory and condensed matter physics, see e.g. [C].

For λ inside the essential spectrum the spectral flow, whether it is flow of eigenvalues or more generally
flow of singular spectrum, is not well-defined, due to well-known extreme volatility of singular spectrum
embedded in the essential spectrum. The spectral shift function (SSF) $\xi(\lambda)$ could have been considered as
an analogue of spectral flow, which has independent origins in operator theory [Kr] and differential geometry [APS]
and since then appeared in such areas as index theory and condensed matter physics, see e.g. [C].

2000 Mathematics Subject Classification. Primary 47A40.
Key words and phrases. Spectral flow, essential spectrum, resonance index, limiting absorption
principle.
total resonance index (TRI), see [Az2] and [AD]. TRI is integer-valued for a.e. \(\lambda \), and coincides with the classical spectral flow outside \(\sigma_{ess} \), see [Az3].

In order to define TRI one does not need a trace class condition, — it suffices to assume the limiting absorption principle (LAP), see e.g. [AMG] and [Y] for more information on LAP. LAP admits many interpretations. We shall outline one which we will use.

Let \(H_0 \) be a self-adjoint operator on a Hilbert space \(\mathcal{H} \) and \(F: \mathcal{H} \to \mathcal{K} \) be a closed \(|H_0|^{1/2} \)-compact operator, which we call a \textit{rigging} in \(\mathcal{H} \). Then the pair \(H_0 \) and \(F \) is said to obey LAP if there exists the norm limit, \(T_{\lambda + i0}(H_0) \), of the operator

\[
T_{\lambda + iy}(H_0) := FR_{\lambda + iy}(H_0)F^* := F(H_0 - \lambda - iy)^{-1}F^*
\]

for a.e. \(\lambda \in \mathbb{R} \). TRI is well-defined at \(\lambda \) for a pair of operators \(H_0 \) and \(V = F^*JF \), where \(J \in B_{sa}(\mathcal{K}) \), if the norm limit \(T_{\lambda + i0}(H_r) \) exists for at least one value of the coupling variable \(r \), in which case it automatically exists for all \(r \) except a discrete set. We say that a real number \(\lambda \) is \textit{essentially regular} or \textit{semi-regular} for \(H_0 \) if there exists at least one \(J \in B_{sa}(\mathcal{K}) \) such that the norm limit \(T_{\lambda + i0}(H_0 + rF^*JF) \) exists for at least one \(r \). In this case we also say that \(V = F^*JF \) is a \textit{regular direction} for \(H_0 \) at \(\lambda \).

For more motivation for this paper I refer to papers [Az2] [Az3] [AD] [AD2] and their introductions.

The main result of this paper is the following theorem.

Theorem 1.1. Let \(H_0 \) be a self-adjoint operator and \(F \) be a closed \(|H_0|^{1/2} \)-compact operator. If \(\lambda \) is semi-regular for \(H_0 \), then \(F^*F \) is a regular direction.

Theorem [1.1] is simple but important, as it gives a natural choice of a regular direction. It also allows to simplify the definition of a semi-simple point \(\lambda \) of a s.a. operator \(H_0 \) as follows: if \(F^*F \) is a regular direction for \(H_0 \) at \(\lambda \) then \(\lambda \) is semi-simple. Finally, Theorem [1.1] shows that semi-simplicity of a point \(\lambda \) depends on a relationship between a self-adjoint operator \(H_0 \) and a rigging \(F \) only.

2. Proof of Theorem [1.1]

The premise means by definition that there exists a regular direction \(V = F^*JF \) at \(H_0 \), that is, \(T_{\lambda + i0}(H_0 + rV) \) exists for all real numbers \(r \) except a discrete set. We need to show that for some real number \(r \) the norm limit

\[
T_{\lambda + i0}(H_0 + rF^*F) =: T_{\lambda + i0}(\tilde{H}_r)
\]

also exists. The second resolvent identity applied to the operator

\[
\tilde{H}_{sr} = H_r + r(sF^*F - V),
\]

where \(s \in \mathbb{R} \), gives

\[
T_z(\tilde{H}_{sr}) = T_z(H_r + rF^*(s - J)F) = \left[1 + rT_z(H_r)(s - J) \right]^{-1}T_z(H_r).
\]

Thus, for some real number \(s \) the norm limit \(T_{\lambda + i0}(\tilde{H}_{sr}) \) exists if and only if the operator

\[
1 + rT_{\lambda + i0}(H_r)(s - J)
\]
is invertible and this is what we will prove. Assume the contrary. Then, since
\(T_{\lambda+0}(H_r)(s-J) \) is compact, by Fredholm alternative for some non-zero analytic
vector-valued function \(\varphi_s \) we have for all real numbers \(s \)
\[
|1 + r T_{\lambda+0}(H_r)(s-J)| \varphi_s = 0.
\]
We can assume that \(s > \|J\| \). Thus, the equality above means that \(-1\) is an
eigenvalue of \(r \sqrt{s-J} T_{\lambda+0}(H_r) \sqrt{s-J} \) for all real \(s > \|J\| \), so, for non-zero vector
function \(\psi_s \) we have
\[
r \sqrt{s-J} T_{\lambda+0}(H_r) \sqrt{s-J} \psi_s = -\psi_s.
\]
Taking the scalar product of both sides of this equality by \(\psi_s \) and then taking the
imaginary part of both sides we get
\[
\langle \psi_s, \sqrt{s-J} \Im T_{\lambda+0}(H_r) \sqrt{s-J} \psi_s \rangle = 0,
\]
and since \(\Im T_{\lambda+0}(H_r) \geq 0 \) from this we find
\[
\Im T_{\lambda+0}(H_r) \sqrt{s-J} \psi_s = 0.
\]
Therefore, the equality (1) turns into
\[
(\sqrt{s-J} \Re r T_{\lambda+0}(H_r) \sqrt{s-J} \psi_s, \psi_s) = 0.
\]
Recall that \(s \) is large enough for the operator \(s-J \) to be invertible. Now we use a
well-known lemma: for an analytic path of self-adjoint operators \(N_s \) the eigenvalue equation
\[
N_s \varphi_s = \lambda(s) \varphi_s
\]
implies
\[
(N_s^* \varphi_s, \varphi_s) = \lambda(s) (\varphi_s, \varphi_s).
\]
Applying this lemma to (2) gives
\[
(\sqrt{s-J} \Re r T_{\lambda+0}(H_r) \sqrt{s-J} \psi_s, \psi_s) + (\sqrt{s-J} \Re T_{\lambda+0}(H_r) \sqrt{s-J}^{-1} \psi_s, \psi_s) = 0.
\]
Combining this with (2) implies
\[
(\psi_s, (s-J)^{-1} \psi_s) = 0.
\]
Now since for large \(s \) the operator \((s-J)^{-1} \) is positive definite, it follows that for
such \(s \) we have \(\psi_s = 0 \). Which is clearly impossible. This contradiction completes
the proof.

Corollary 2.1. If \(V = F^* J F \) is a regular direction then so is \(F^* |J| F \).

Proof. This corollary is a consequence of the proof of Theorem 1.1. In the proof
we need to replace \(s-J \) by \(s |J| - J \) and assume that \(s > 1 \). There is one slight
difficulty, as the operator \(\sqrt{s |J| - J} \) is not necessarily invertible, but it can be
easily overcome: clearly \(\psi_s \) belongs to the closure of the range of \(|J| \) and so we can
restrict the eigenvalue equation to this subspace on which the operator \(\sqrt{s |J| - J} \) is
invertible.

An argument used in the proof of Theorem 1.1 also allows to prove

Corollary 2.2. Suppose \(\lambda \) is a semi-regular point for \(H_0 \). If \(J \geq 0 \) and the direction \(V = F^* J F \) is \(\lambda \)-regular at \(H_0 \) then so is the direction \(F^* \tilde{J} F \) for any \(\tilde{J} \geq J \).

Proof. Proof follows verbatim that of Theorem 1.1 with some obvious changes such
as replacing \(s-J \) by \(s \tilde{J} - J \).
Acknowledgements. The author thanks his wife, Feruza, for financially supporting him during the work on this paper.

References

[AMG] W. O. Amrein, A. B. de Monvel, V. Georgescu, C0-groups, commutator methods and spectral theory of N-body Hamiltonians, Birkhäuser, 1996.

[APS] M. Atiyah, V. Patodi, I. M. Singer, Spectral Asymmetry and Riemannian Geometry. III, Math. Proc. Camb. Phil. Soc. 79 (1976), 71–99.

[Az] N. A. Azamov, Absolutely continuous and singular spectral shift functions, Dissertationes Math. 480 (2011), 1–102.

[Az2] N. A. Azamov, Spectral flow inside essential spectrum, Dissertationes Math. 518 (2016), 1–156.

[Az3] N. A. Azamov, Spectral flow and resonance index, Dissertationes Math. 528 (2017), 1–91.

[AD] N. A. Azamov, T. W. Daniels, Singular spectral shift function for resolvent comparable operators, Math. Nachrichten (2019), 292, 1911–1930.

[AD2] N. A. Azamov, T. W. Daniels, Coupling resonances and spectral properties of the product of resolvent and perturbation, in preparation.

[C] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.

[Kr] M. G. Krein, On the trace formula in perturbation theory, Mat. Sb., 33 75 (1953), 597–626.

[Y] D. R. Yafaev, Mathematical scattering theory: general theory, Providence, R. I., AMS, 1992.

Independent scholar, Adelaide, SA, Australia

Email address: azamovnurulla@gmail.com