Blood pressure levels and cardiovascular risk according to age in patients with diabetes mellitus: a nationwide population-based cohort study

Hack-Lyoung Kim1†, Hyue Mee Kim2†, Chang Hee Kwon3, Jeong-Hun Shin4, Mi-Hyang Jung5, Chan Joo Lee6, Dae-Hee Kim7, Woo-Hyeun Kim8, Si-Hyuck Kang9, Ju-Hee Lee10, In Jeong Cho11, Ik Sung Cho6, Jun Hyeok Lee12, Dae Ryong Kang12, Hae-Young Lee13, Wook-Jin Chung14, Sang-Hyun Ihm15, Kwang Il Kim9, Eun Joo Cho16, Il-Suk Sohn17, Hyeon-Chang Kim8, Jin Ho Shin8, Ju Han Kim18, Sung Kee Ryu19, Seok-Min Kang6, Wook Bum Pyun11, Myeong-Chan Cho10, Sungha Park6* and Ki-Chul Sung20*

Abstract

Background: Little is known about age-specific target blood pressure (BP) in hypertensive patients with diabetes mellitus (DM). The aim of this study was to determine the BP level at the lowest cardiovascular risk of hypertensive patients with DM according to age.

Methods: Using the Korean National Health Insurance Service database, we analyzed patients without cardiovascular disease diagnosed with both hypertension and DM from January 2002 to December 2011. Primary end-point was composite cardiovascular events including cardiovascular death, myocardial infarction and stroke.

Results: Of 241,148 study patients, 35,396 had cardiovascular events during a median follow-up period of 10 years. At the age of < 70 years, the risk of cardiovascular events was lower in patients with BP < 120/70 mmHg than in those with BP 130–139/80–89 mmHg. At the age of ≥ 70, however, there were no significant differences in the risk of cardiovascular events between patients with BP 130–139/80–89 mmHg and BP < 120/70 mmHg. The risk of cardiovascular events was similar between patients with BP 130–139/80–89 mmHg and BP 120–129/70–79 mmHg, and it was significantly higher in those with BP ≥ 140/90 mmHg than in those with BP 130–139/80–89 mmHg at all ages.

Conclusions: In a cohort of hypertensive patients who had DM but no history of cardiovascular disease, lower BP was associated with lower risk of cardiovascular events especially at the age of < 70. However, low
Background
Hypertension and diabetes mellitus (DM), 2 major cardiovascular risk factors, have emerged as major medical and public health issues globally. There has been a continued growth in the prevalence of hypertension [1] and DM [2], and both conditions are associated with increased risk of cardiovascular morbidity and mortality [3–6]. Hypertension affects approximately 70% of patients with DM, which is twice as common as those without DM [7]. Importantly, the coexistence of hypertension and DM substantially increases in the risk of cardiovascular disease (CVD), and chronic kidney disease [8, 9]. Two thirds of diabetic patients die from CVD, in which hypertension is the main cause of CVD [10]. Therefore, it is very important to control hypertension in patients with DM in order to reduce their cardiovascular risk and to improve prognosis.

Because blood pressure (BP) rises with age, hypertension is one of the main medical problems with high prevalence in the elderly [11]. Even in elderly people, the beneficial effect of BP control on the reduction in the risk of cardiovascular events has been suggested [12, 13], and BP control should not be neglected. However, elderly subjects are often frail, have many comorbidities, and are more vulnerable to the side effects of intensive BP control [14]. In clinical practice, many physicians are worried about the side effects or complications of intensive BP lowering in elderly patients. Therefore, age must be considered when setting target BP. However, there is limited data regarding age-specific target BP in patients with DM. The 2017 American College of Cardiology/American Heart Association (ACC/AHA) guidelines suggested a target BP of 130/80 mmHg for diabetic patients at all ages [15]. Otherwise, in patients with DM, the European guidelines recommended a target BP of 130/70–79 mmHg and 130–140/70–79 mmHg for subjects aged <65 years and ≥65 years, respectively [16]. There is still insufficient evidence as to whether BP needs to be lowered intensively in patients with DM and whether the target BP should differ according to age. Thus, the aim of this study was to determine the BP level at the lowest cardiovascular risk of hypertensive patients with DM according to age.

Methods
Data sources
This study used a database provided by the National Health Insurance Services-Health Screening (NIHS-HEALS) cohort in Korea. NHIS is a single insurance provider in Korea and covers 97.2% of the Korean population; enrollees aged 40 years or older are entitled to a general health screening program every 2 years. A database includes data regarding sociodemographics, use of inpatient and outpatient services, diagnoses, prescriptions, death, and health screening examination data (e.g., health questionnaires and laboratory tests). The cohort details have been previously described [17]. The study was approved by the Institutional Review Board of Kangbuk Samsung Hospital (# KBSMC 2019-01-018). The anonymized dataset was provided to the researchers from the NHIS and informed consent was waived.

Study population and patient involvement
A total of 314,293 subjects who were diagnosed with both hypertension and DM from January 2002 to December 2011 were extracted from the NIHS-HEALS cohort. Subjects were considered as having hypertension if: (1) hypertension was diagnosed before health screening examination, or (2) anti-hypertensive medications were prescribed before. Having DM was defined if: (1) DM was diagnosed before health screening examination, (2) hypoglycemic agents were prescribed before, or (3) fasting glucose ≥126 mg/dL. Among them, patients with the following were excluded: prior history of myocardial infarction or stroke (n = 36,712), death before second screening (n = 623), diagnosis of malignancy (n = 28,410), and unavailable data (n = 7400). Therefore, a total of 241,148 patients were finally analyzed. Flow chart for study enrollment is shown in Fig. 1. Individuals were followed up until the development of death, and the first occurrence of cardiovascular events, or the end of the study (December 2017). This research was done without patient involvement.

BP data
The data on BP records were extracted from the NIHS-HEALS cohort. Considering BP variability, 2 BP records within 4 years were averaged. BP measured using a sphygmomanometer or an oscillometric device. BP
measurements were recommended twice at 2 min intervals after 5 min of stabilization.

Cardiovascular events
The collection of information on the occurrence of cardiovascular events began the day after second check-up, and patients with cardiovascular events between 2 check-ups were excluded from the study. Baseline clinical data used in this study was obtained from the second check-up. The primary study endpoint was major cardiovascular events including cardiovascular death, myocardial infarction and stroke. A diagnosis of myocardial infarction was made based on discharge diagnosis after a hospitalization (ICD-10 codes: I21-23). A diagnosis of stroke was made based on discharge diagnosis (ICD-10 codes: I60-69) in patients who had been hospitalized and undergone brain imaging [18]. The cause and date of death were confirmed by the records from the National Statistical Office of Korea. The secondary study endpoint was each clinical event.

Statistical analysis
Continuous variables are expressed as mean (standard deviation) and categorical variables as percentages. The mean values of continuous variables were compared using analysis of variance, and the frequencies of categorical variable were compared using chi-square test among BP category groups. The incidence of endpoints was calculated and adjusted for age, income level, history of smoking, physical activity, alcohol consumption, body mass index, fasting glucose, total cholesterol, and use of aspirin or statin. Subgroup analyses were performed by dividing the patients into those aged <50 years, 50–59 years, 60–69 years, and ≥ 70 years to determine the appropriate target BP according to age. Restricted cubic splines were fitted to evaluate the non-linear relationship between BP and outcomes. A value < 0.05 was considered statistically significant. Statistical analyses were performed using SAS Statistical Software (version 9.4, SAS Institute, Cary, North Carolina, USA) and R Statistical Software (version 3.5.2, R Foundation for Statistical Computing, Vienna, Austria).

Results
Baseline characteristics of the study patients according to BP categories
The baseline characteristics of the study subjects according to BP categories are shown in Table 1. Compared to the lower BP group, the higher BP group tended to be older and male, had higher BMI, consumed more alcohol, had low household income, had higher level of fasting glucose and total cholesterol, and more frequently used aspirin or antihypertensive medications, and less frequently used statin.

Cardiovascular events according to BP and age categories
A total of 35,396 events occurred during a median follow-up period of 10.0 years. Cardiovascular events according to BP and age categories are shown in Table 2. In the total population, as BP rose, cardiovascular events more frequently occurred: the incidence of cardiovascular events was lowest in the lowest BP group (<120/70 mmHg)
Table 1 Baseline characteristics of study subjects according to SBP/DBP categories

Characteristic	<120/ <70 mmHg	120–129/70–79 mmHg	130–139/80–89 mmHg	140–149/90–99 mmHg	≥150/ ≥100 mmHg	P value	Total	
N	10,077	59,116	99,595	49,915	22,445	9.31%	241,148	100%
Age, median (IQR), years	56 (48–64)	57 (49–64)	59 (50–66)	62 (53–68)	<0.001	58 (50–66)		
Sex						<0.001		
Men	3604	27,612	52,940	26,777	11,374	50.67%	121,807	50.51%
Women	6473	31,504	46,655	23,638	11,071	49.33%	119,341	49.49%
Body mass index, mean (SD), kg/m²	23.31 (3.06)	24.49 (3.15)	25.12 (3.18)	25.35 (3.29)	25.33 (3.51)	<0.001	2496 (3.26)	
BP, mean (SD), mmHg								
Systolic BP	11003 (614)	121.59 (5.43)	13206 (491)	142.87 (4.01)	156.98 (7.87)	<0.001	133.13	
Diastolic BP	65683 (319)	74.72 (3.35)	81.81 (4.21)	86.82 (5.63)	91.92 (7.77)	<0.001	81.38	
Smoking								
Never	7320	65,049	63,616	70.16%	161,488	66.7%		
Past	1211	12,138	12,251	23.75%	61,722	25.60%		
Current	1546	16,408	28,704	15.26%	38,184	16.11%		
Physical activity, times/week						<0.001		
0	5461	31,021	26,683	12,978	57.82%	126,945	52.64%	
1–2	1498	14,609	14,704	14.11%	34,903	14.47%		
3–4	1142	12,241	12,250	14.09%	28,807	11.95%		
5–6	835	8001	9098	8.21%	20,620	8.55%		
7	1141	12,769	6233	12.49%	29,873	12.39%		
Alcohol consumption, times/week						<0.001		
0	7676	62,821	31,182	6.40%	156,778	67.40%		
<1	1146	12,906	5790	11.60%	29,346	12.62%		
1–2	860	16,077	8219	16.47%	36,136	15.54%		
3–4	221	4433	2571	5.42%	10,336	4.44%		
≥5	174	3358	2207	5.30%		0.00%		
Table 1 (continued)

Characteristic	<120/ <70 mmHg	120–129/70–79 mmHg	130–139/80–89 mmHg	140–149/90–99 mmHg	≥ 150/ ≥ 100 mmHg	P value	Total
Household income, quartiles						<0.001	
First (highest)	3708	36.80%	21,254	35.95%	35,335	3.54%	6866
Second	2470	24.51%	14,685	24.84%	24,505	24.60%	5345
Third	1920	19.05%	11,488	19.43%	19,105	19.18%	4822
Fourth (lowest)	1979	19.64%	11,689	19.77%	20,650	20.73%	5322
Fasting blood glucose, mean (SD), mg/dL							
<100.0	4884	48.47%	24,654	41.70%	31,291	39.29%	7515
100.0–125.9	2736	27.15%	18,458	31.22%	31,650	33.79%	7567
≥ 126.0	2457	23.85%	16,004	27.07%	26,916	26.93%	7363
Total cholesterol, mean (SD), mg/dL						<0.001	
<200.0	6615	65.64%	36,604	61.92%	59,020	59.26%	12,023
200.0–239.9	2530	25.11%	16,234	27.46%	28,763	28.88%	7005
≥ 240.0	932	9.25%	6278	10.62%	11,812	11.86%	3417
Aspirin						<0.001	
No	7351	72.95%	42,226	71.43%	35,117	70.40%	15,832
Yes	2726	27.05%	16,890	28.57%	29,478	29.60%	6613
Statin						<0.001	
No	7979	79.18%	47,773	80.81%	82,862	83.02%	42,381
Yes	2098	20.82%	11,343	19.19%	16,913	16.98%	3147
Aspirin or statin						<0.001	
No	6217	61.69%	36,379	61.54%	62,035	62.29%	16,232
Yes	3860	38.31%	22,737	38.46%	37,560	37.71%	8072
Anti-hypertensive medications						<0.001	
No	6886	68.33%	36,049	60.98%	55,657	55.88%	10,811
Yes	3191	31.67%	23,067	39.02%	43,938	44.12%	11,634

SBP: systolic blood pressure; DBP: diastolic blood pressure; IQR: interquartile range; SD: standard deviation.
(1212/10,000 person-years), and highest in the highest BP group (≥150/100 mmHg) (2293/10,000 person-years). Compared to patients with BP 130–139/80–89 mmHg, the risk of cardiovascular events was significantly lower in those with BP <120/70 mmHg and BP 120–129/70–79 mmHg with HR of 0.85 (95% CI 0.80–0.90) and HR of 0.94 (95% CI 0.92–0.97), respectively. Compared to patients with BP 130–139/80–89 mmHg, the risk of cardiovascular events was significantly higher in those with BP 140–149/90–99 mmHg and BP ≥150/100 mmHg with HR of 1.12 (95% CI 1.09–1.15) and HR of 1.33 (95% CI 1.29–1.37), respectively.

At the age of <70 years, the risk of cardiovascular events was significantly lower in patients with BP <120/70 mmHg than in those with BP 130–139/80–89 mmHg. The risk reduction was stronger at younger ages: HRs (95% CIs) were 0.74 (0.61–0.90), 0.87 (0.77–0.99), and 0.86 (0.78–0.95), in patients with <50 years, 50–59 years, and 60–69 years, respectively. At the age of ≥70 years, however, there were no significant differences in the risk of cardiovascular events between patients with BP 130–139/80–89 mmHg and BP <120/70 mmHg with HR of 0.99 (95% CI 0.88–1.11). The risk of cardiovascular events was similar between patients with BP 130–139/80–89 mmHg and BP 120–129/70–79 mmHg at all ages. The risk of cardiovascular events was significantly higher in patients with BP ≥140/90 mmHg than those with BP 130–139/80–89 mmHg at all ages. The younger the patients, the higher the risk. Adjusted HRs for the risk of cardiovascular events according to BP and age categories are also demonstrated in Fig. 2. Restricted cubic spline curves show age-specific adjusted hazard ratios for cardiovascular events according to systolic BP (SBP) and diastolic BP

| Table 2 Cardiovascular events of study subjects according to BP and age categories |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Clinical event | < 120/ <70 mmHg | 120–129/70–79 mmHg | 130–139/80–89 mmHg | ≥150/ ≥100 mmHg |
| Total Events | 1123 | 7625 | 13,764 | 8188 | 4696 |
| Person-years | 92,622 | 567,439 | 983,762 | 484,528 | 204,774 |
| Incidence (events/100,000 person-years) | 1212 | 1344 | 1399 | 1690 | 2293 |
| Adjusted HR (95% CI) < 50 years | 0.85 (0.80–0.90) | 0.94 (0.92–0.97) | Ref | 1.12 (1.09–1.15) | 1.33 (1.29–1.37) |
| Events | 113 | 951 | 1763 | 874 | 430 |
| Person-years | 30,886 | 167,650 | 288,016 | 119,956 | 39,039 |
| Incidence (events/100,000 person-years) | 366 | 567 | 612 | 729 | 1101 |
| Adjusted HR (95% CI) 50–59 years | 0.74 (0.61–0.90) | 0.96 (0.89–1.04) | Ref | 1.20 (1.10–1.30) | 1.79 (1.61–1.99) |
| Events | 265 | 1860 | 3409 | 1815 | 877 |
| Person-years | 27,949 | 182,438 | 318,830 | 146,385 | 55,314 |
| Incidence (events/100,000 person-years) | 948 | 1020 | 1069 | 1240 | 1585 |
| Adjusted HR (95% CI) 60–69 years | 0.87 (0.77–0.99) | 0.94 (0.89–1.00) | Ref | 1.16 (1.10–1.23) | 1.43 (1.32–1.54) |
| Events | 425 | 2999 | 5361 | 3301 | 1916 |
| Person-years | 24,115 | 158,546 | 276,831 | 155,068 | 72,302 |
| Incidence (events/100,000 person-years) | 1762 | 1892 | 1937 | 2129 | 2650 |
| Adjusted HR (95% CI) ≥70 years | 0.86 (0.78–0.95) | 0.97 (0.92–1.01) | Ref | 1.09 (1.05–1.14) | 1.32 (1.25–1.39) |
| Events | 320 | 1815 | 3231 | 2198 | 1473 |
| Person-years | 9670 | 58,803 | 100,083 | 63,116 | 38,117 |
| Incidence (events/100,000 person-years) | 3309 | 3087 | 3228 | 3482 | 3864 |
| Adjusted HR (95% CI) 60–69 years | 0.99 (0.88–1.11) | 0.95 (0.89–1.00) | Ref | 1.08 (1.03–1.14) | 1.17 (1.10–1.25) |

HR, hazard ratio; CI, confidence interval. BP, blood pressure.
(DBP) categories (Fig. 3). There was a significant interaction between SBP and age for the prediction of cardiovascular events (interaction P < 0.001).

Similar results were obtained in sex-specific analysis (Additional file 1: Tables S1 and S2). Low BP < 120/70 mmHg was more associated with reduced cardiovascular risk in women than in men. The incidence of cardiovascular events with high BP above 130–139/80–89 mmHg was consistently observed regardless of obesity (Additional file 1: Tables S3 and S4). All-cause mortality and primary end-point results according to BP and age categories are demonstrated in Additional file 1: Tables S5–S8. The risk of all-cause or cardiovascular mortality was significantly higher in patients with BP < 120/70 mmHg than in those with BP 130–139/80–89 mmHg in patients with age of ≥ 60 years. The risk of myocardial infarction was not different between patients with BP < 120/70 mmHg and BP 130–139/80–89 mmHg.
at all ages. However, the risk of stroke was significantly lower in patients with BP < 120/70 mmHg than in those with BP 130–139/80–89 mmHg at all ages. All-cause or cardiovascular mortality and the risk of stroke were significantly higher in patients with BP > 140/90 mmHg than in those with BP 130–139/80–89 mmHg at all ages. The risk of myocardial infarction was significantly increased when BP was ≥ 150/90 mmHg.

Cardiovascular risks in patients with anti-hypertensive medications
A total of 105,572 (43.8%) patients were taking anti-hypertensive medications. In these patients with anti-hypertensive medications, the risk of cardiovascular events was not different among those with BP < 120/70, 120–129/70–79, and 130–139/80–89 mmHg, and it was significantly higher in patients with BP ≥ 140/90 mmHg than in those with BP 130–139/80–89 mmHg at the age of <70 years. At the age of ≥70 years, the risk of cardiovascular events was not different among patients with BP < 120/70, 120–129/70–79, 130–139/80–89, and 140–149/90–99 mmHg, and it was significantly higher in those with BP ≥ 150/100 mmHg than in those with BP 130–139/80–89 mmHg (Table 3). All-cause and cardiovascular mortality tended to increase in those with BP < 120/70 mmHg, compared to those with BP 130–139/80–89 mmHg at all ages (Additional file 1: Tables S9 and S10). At BP ≥ 150/100 mmHg, the risk of myocardial infarction tended to increase, but the differences were not statistically significant either age (Additional file 1: Table S11). The lower the blood pressure, the lower the risk of stroke at all ages (Additional file 1: Table S12).

Discussion
In this nationwide population-based cohort of 241,148 patients with both hypertension and DM, but without CVD, those with BP < 120/70 mmHg had significantly lower risk of cardiovascular events than those with BP 130–139/80–89 mmHg at the age of <70 years. However, there was no significant difference in the risk of cardiovascular events in patients with BP < 120/70 mmHg and BP 130–139/80–89 mmHg at the age ≥70. For patients on anti-hypertensive medications, the risk of cardiovascular events was similar between patients with BP ≤ 130–139/80–89 mmHg and higher in those with BP ≥ 140/90 mmHg at all ages. These results suggest that optimal target BP in patients with DM may differ according to age and that: lowering BP to <130/80 mmHg may
be effective at the age of < 70 years, but not in those at the age of ≥ 70 years. In addition, the lower the better may not be applied in patients on anti-hypertensive medications, because all-cause or cardiovascular mortality tended to be even higher in those with < 120/70 mmHg. Based on these results, the drug goal should be less than 140/90 mmHg but individualized.

Although high prevalence of hypertension in patients with DM [7], and markedly increased risk of cardiovascular events in coexistence of hypertension and DM [8, 9], there is limited data on optimal target BP in patients with DM. In a large randomized controlled trial (RCT) of patients with DM demonstrated that lowering SBP to < 135 mmHg using perindopril and indapamide regimen was shown to be significantly associated with reductions in cardiovascular events, compared to the placebo group whose SBP was maintained at ~140 mmHg [19]. However, another RCT showed that, compared with ~135 mmHg, an achieved SBP to 121 mmHg did not reduce cardiovascular morbidity and mortality in patients with DM [20]. Meta-analyses confirmed that reduction of SBP of < 140 mmHg is associated with better cardiovascular outcomes [21], but there is no beneficial effect when SBP is lowered to < 130 mmHg in patients with DM [22]. Another meta-analysis of 73,914 subjects with DM reported that lowering SBP to < 130 mmHg reduced stroke by 39%; however, there was no risk reduction in myocardial infarction [23]. Excluding the effect of strong glycemic control in diabetic patients, a more intensive lowering SBP to < 130 mmHg improved overall outcomes [24]. On the line of similar results, recent meta-analyses showed that in diabetic patients, if the baseline SBP ≥ 140 mmHg, antihypertensive treatment reduced cardiovascular risk; however, if the baseline

Clinical event	< 120/ < 70 mmHg	120–129/70–79 mmHg	130–139/80–89 mmHg	140–149/90–99 mmHg	≥ 150/ ≥ 100 mmHg
Total					
Events	397	2901	5606	3519	2145
Person-years	25,355	195,990	389,630	20,951	97,809
Incidence (events/100,000 person-years)	1566	1480	1439	16,796	2193
Adjusted HR (95% CI)	0.95 (0.85–1.05)	0.97 (0.93–1.02)	Ref 1.11 (1.06–1.16)	1.29 (1.23–1.36)	
< 50 years					
Events	21	214	511	269	136
Person-years	3985	35,306	80,961	38,353	13,671
Incidence (events/100,000 person-years)	527	606	631	701	995
Adjusted HR (95% CI)	0.89 (0.57–1.38)	0.97 (0.82–1.14)	Ref 1.11 (0.95–1.28)	1.58 (1.30–1.91)	
50–59 years					
Events	78	586	1285	738	342
Person-years	7829	63,159	127,672	62,997	25,614
Incidence (events/100,000 person-years)	996	928	1006	1171	1335
Adjusted HR (95% CI)	0.97 (0.77–1.22)	0.91 (0.82–1.00)	Ref 1.16 (1.06–1.27)	1.28 (1.13–1.44)	
60–69 years					
Events	151	1255	2231	1450	928
Person-years	8827	68,351	128,304	74,550	37,595
Incidence (events/100,000 person-years)	1711	1836	1739	1945	2468
Adjusted HR (95% CI)	0.95 (0.80–1.12)	1.05 (0.98–1.13)	Ref 1.10 (1.03–1.18)	1.37 (1.27–1.48)	
≥ 70 years					
Events	147	846	1579	1062	739
Person-years	4713	29,172	52,691	33,611	20,927
Incidence (events/100,000 person-years)	3119	2900	2997	3160	3531
Adjusted HR (95% CI)	1.00 (0.85–1.19)	0.95 (0.87–1.03)	Ref 1.05 (0.97–1.14)	1.15 (1.05–1.25)	

HR, hazard ratio; CI, confidence interval. BP, blood pressure.
SBP < 140 mmHg, there was no observed benefit in BP lowering therapy [25, 26]. As mentioned above, each study has different target BP, and the results are slightly different, making it difficult to clarify where to put the target BP in patients with DM. In a whole study population in our study, the lower the BP, the lower the cardiovascular events, and thus, the target BP of DM may be suggested as < 130/80 mmHg, if we do not consider age. Most of the existing studies, including meta-analysis, were conducted in the West, but this study is an Asian study, and racial differences should be considered when interpreting our results.

However, age should be considered when setting target BP in hypertensive subjects. Although lowering BP obviously improves clinical outcome [12, 13], adverse effects more frequently occur with intensive treatment in older people [14, 27]. There is still no standard guideline for target BP in elderly subjects. The 2 most widely used guidelines show somewhat differences in target BP in older people. The 2017 ACC/AHA guideline recommends a target BP of < 130/80 mmHg in the elderly, which is the same in younger age [15]. However, there is disagreement with setting the same target BP (< 130/80 mmHg) in subjects aged 30 and 80 years [27]. Indeed, lowering BP to < 130/80 mmHg is difficult in some elderly subjects, especially when they have isolated systolic hypertension and poor vascular compliance [27]. Also, there is concern about more frequent and serious adverse effects from intensive BP control in more frail older subjects [13]. In this context, the 2018 European Society of Cardiology/European Society of Hypertension (ESC/ESH) guideline recommended that in older subjects on BP-lowering drugs, BP should be lowered to < 140/80 mmHg, but not SBP < 130 mmHg [16]. Although age is an important factor for hypertension control, there have been few studies on whether age should be considered when setting target BP in subjects with DM. In the present study, the risk of cardiovascular events was not different among patients with BP < 120/70, 120–129/70–79 and 130–139/80–89 mmHg at the age of ≥ 70 years, suggesting that older subjects with DM do not need strict BP control, which is in line with 2018 ESC/ESH guideline [16]. For patients on anti-hypertensive medications, our study showed that the risk of cardiovascular events was similar in all patients with BP ≤ 130–139/80–89 mmHg and higher in those with BP ≥ 140/90 mmHg, all ages. Rather, when BP was lowered to < 130/80 mmHg, all-cause or cardiovascular mortality tended to rise at all ages. These results suggest different target BPs according to age and anti-hypertensive medications in diabetic patients deserve attention and could be of clinical use.

The results of the present study showed that the risk of cardiovascular events associated with elevated BP decreased as patients became older: reduction in BP from 130–139/80–89 to < 120/70 mmHg was associated 26% reduction in the risk of cardiovascular events at the age of < 50 years, as low as 13%–14% at the age of 50–69 years, and no beneficial effect at the age of ≥ 70 years. These results are in line with those of previous studies in the general population [28]. In the elderly, irreversible pathological changes in vasculature caused by long-standing high BP may develop and lead to cardiovascular events despite a lowered, even normalized BP [27]. The effective prevention of cardiovascular events can be expected by lowering BP in younger patients with DM, so that they need more strict BP control.

Our results suggest that BP can be safely lowered to < 130/80 mmHg in younger patients with DM, but not in elderly diabetics aged ≥ 70 years. However, current study analyzed diabetic patients who were relatively healthy, had no history of CVD and received regular health check-ups. In high-risk diabetics with a history of CVD, the target BP of < 130/80 mmHg may be more appropriate even at the age of ≥ 70 years [29, 30]. Otherwise, target BP should not be lowered to < 130/80 mmHg in diabetic patients with comorbidities and high frailty even at the age of < 70 years due to the risk of side effects of intensive BP lowering [31]. Target BP should be individualized according to the risk of cardiovascular events, comorbidities, frailty and age [32]. In addition, the lower the better is not applied in patients on anti-hypertensive medications: at BP < 140/90 mmHg, there were no differences in the risk of cardiovascular events, but all-cause and cardiovascular mortality was significantly increased at BP < 120/70 mmHg at all ages. Based on these results, the target goal of anti-hypertensive medications should be BP < 140/90 mmHg, but not BP < 120/70 mmHg.

Limitations

Besides inherent shortcomings of the use of administrative database and retrospective design, there are several limitations to this study. First, as the diagnosis of hypertension in our study was based on the diagnostic code, not on the BP levels, there are several possible reasons why many patients diagnosed with hypertension had relatively normal or even low BP, even though many patients were not taking anti-hypertensive medications, as follows: (1) there might be coding errors which have always been an issue when using claim data. Nevertheless, it is reported that the diagnosis accuracy of hypertension is relatively high in claim data (sensitivity = 73% and positive predictive value = 82%) [33], (2) patients who were prescribed anti-hypertensive medications along with health check-ups at regular basis were classified as those who take anti-hypertensive medications in the current study. Thus, it was possible that some
patients who were prescribed anti-hypertensive medications on an irregular basis or who did not undergo health check-ups would be misclassified as that they were not taking anti-hypertensive medications even though they were consistently taking the medications, and (3) we used average value of two would be lower than expected. Despite the various shortcomings, claim data has a strength in that it is not limited to a specific doctors or specific medical institutions, and there is no selection bias. In addition, only patients taking anti-hypertensive medications (they might be certain to be hypertensive) were analyzed separately, and we showed the same results as all patients. Second, as clinic BP measurements were made for the analysis, BP values might be less accurate. BP values from out-of-office BP monitoring such as ambulatory blood pressure monitoring or home blood pressure monitoring may provide more valuable information [34]. In order to minimize errors and inaccuracies, we averaged 2 measurements of BP. Third, the side effects of lowering BP were not identified in this study. Fourth, as the results of our study were obtained from relatively healthy diabetic patients without CVD, it should be noted that it is difficult to apply our results directly to high-risk patients with CVD or those with comorbidity and high frailty [29, 31]. Fifth, we need to be careful when interpreting the results for the secondary study endpoint of the study. In the analysis of each clinical event (the secondary study endpoint, represented in Additional file 1), the incidence of clinical event in each group was very low, so the statistical power would have been weakened. Sixth, information on anti-diabetic medications was not available in our study, because some important anti-diabetic drugs such as dipeptidyl peptidase-4 inhibitors and sodium-glucose co-transporter-2 inhibitors were introduced into the domestic market after patients’ enrollment. Lastly, our results were obtained from all Korean patients, so that its application to other ethnic groups may be limited.

Conclusion

In a cohort of hypertensive patients who had DM but no history of CVD, lower BP was associated with lower risk of cardiovascular events especially at the age of < 70 years. Effort to lower BP of < 130/80 mmHg may be justified in patients at the age of < 70 years; however, the intensive BP lowering strategy is less beneficial in those at the age of ≥ 70 years, and lowering BP to 130–139/80–89 mmHg would be appropriate at the age of ≥ 70. In patients on anti-hypertensive medications, target BP should be < 140/90 mmHg, but not BP < 120/70 mmHg. Well-designed prospective studies are needed to verify our findings.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12933-020-01156-8.

Additional file 1: Table S1. Incidence of primary end-point* according to BP and age categories in men. Table S2. Incidence of primary end-point* according to BP and age categories in women. Table S3. Incidence of primary end-point* according to BP and age categories in patients with body mass index ≥ 25 kg/m². Table S4. Incidence of primary end-point* according to BP and age categories in patients with body mass index < 25 kg/m². Table S5. All-cause mortality according to BP and age categories. Table S6. Cardiovascular mortality according to BP and age categories. Table S7. Incidence of myocardial infarction according to BP and age categories. Table S8. Incidence of stroke according to BP and age categories. Table S9. All-cause mortality of study subjects with anti-hypertensive medications according to BP and age categories. Table S10. Cardiovascular mortality of study subjects with anti-hypertensive medications according to BP and age categories. Table S11. Incidence of myocardial infarction of study subjects with anti-hypertensive medications according to BP and age categories. Table S12. Incidence of stroke of study subjects with anti-hypertensive medications according to BP and age categories.

Abbreviations

BP: Blood pressure; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; DM: Diabetes mellitus; CVD: Cardiovascular disease; ACC/AHA: American College of Cardiology/American Heart Association; ESC/ESH: European Society of Cardiology/European Society of Hypertension; NIH-HEALS: National Health Insurance Services-Health Screening; RCT: Randomized controlled trial.

Acknowledgements

This study was supported by the Korean Society of Hypertension. The National Health Information Database was provided by the NHIS of Korea (NHIS-2019-1-216).

Authors' contributions

H-LK and HMK researched data and wrote the manuscript. CHK, JHL and DRK provided essential materials and performed analysis. CHK, JHS, M-HJ, CJL, D-HK, WK, S-HK, J-HL, UC, IC, H-YL, W-IC, S-HL, KIK, EJC, I-SS, H-CX, JS, JHK, SKR, S-MK, WBP and M-CC read and approved the final manuscript and contributed in revising the manuscript critically for important intellectual content. SP and K-CS revised the manuscript and had primary responsibility for final content. All authors read and approved the final manuscript.

Funding

The authors received no specific funding for this work.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The study design was approved by the local ethics committee (Kangbuk Samsung Hospital) and was conducted according to the Declaration of Helsinki.

Consent for publication

The anonymized dataset was provided to the researchers from the NHIS and informed consent was waived.

Competing interests

All authors report no conflict of interest.

Author details

1 Division of Cardiology, Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic
of Korea. 4 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University, Seoul, Republic of Korea. 5 Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea. 6 Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea. 7 Cardiovascular Center, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea. 8 Division of Cardiology, Severance Cardiovascular Hospital and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. 9 Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. 10 Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea. 11 Division of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea. 12 Division of Cardiology, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea. 13 Division of Cardiology, Department of Internal Medicine, Kyunghee University at Gangdong, Seoul, Republic of Korea. 14 Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea. 15 Division of Cardiology, Department of Internal Medicine, Ewha Woman’s University Medical Center, Seoul, Republic of Korea. 16 Center of Biomedical Data Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea. 17 Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. 18 Division of Cardiology, Department of Internal Medicine, Gill Hospital, Gachon University, Incheon, Republic of Korea. 19 Division of Cardiology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Bucheon, Republic of Korea. 20 Division of Cardiology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea. 21 Division of Cardiology, Department of Internal Medicine, Kyunghee University at Gangdong, Seoul, Republic of Korea. 22 Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea. 23 Division of Cardiology, Department of Internal Medicine, Ewha Woman’s University Medical Center, Seoul, Republic of Korea. 24 Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Republic of Korea.

Received: 13 July 2020 Accepted: 10 October 2020 Published online: 19 October 2020

References
1. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389:97–55.
2. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602.
3. Józiewicz JM, Piotrowska A, Wasiak R, et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med. 2019;381:243–51.
4. Laing SP, Sivell DW, Aitken JD, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2000;43:670–5.
5. Orasasu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol. 2009;53:353–42.
6. Klein R, Klein BE, Lee KE, et al. The incidence of hypertension in insulin-dependent diabetes. Arch Intern Med. 1996;156:622–7.
7. Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.
8. Wannamethee SG, Shaper AG, Lennon L, et al. Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med. 2005;165:2644–50.
9. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update: Hypertension. 2001;37:1053–9.
10. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.
11. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.
12. Williamson JD, Suppiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA. 2016;315:2673–82.
13. Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res. 2019;124:1045–60.
14. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/ABC/ACPM/AGS/AAPA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Hypertension. 2018;71:113–115.
15. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.
16. Seong SC, Kim YJ, Park SK, et al. Cohort profile: the National Health Insurance Service- National Health Screening Cohort (NHIS-HEALS) in Korea. BMJ Open. 2017;7:e016640.
17. Park TH, Choi JC. Validation of stroke and thrombolytic therapy in Korean National Health Insurance claim data. J Clin Neurol. 2016;12:43–8.
18. Patel A, MacMahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40.
19. Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.
20. Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810.
21. Thomopoulos C, Patari G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017;35:922–44.
22. Reboldi G, Gentile G, Angelì F, et al. Effects of intensive blood-pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J Hypertens. 2011;29:1253–69.
23. Margolis KL, O’Connor PJ, Morgan TM, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37:1721–8.
24. Brunstrom M, Carlberg BO. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016;352:j17.
25. Edmorn CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systemic review and meta-analysis. JAMA. 2015;313:303–15.
26. Messerli FH, Bangalore S, Messerli AW. Age, blood pressure targets, and guidelines: rift between those who preach, those who teach, and those who treat? Circulation. 2018;138:128–30.
27. Leevston S, Clarke R, Qvallbäck N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.
28. Cardiovascular disease and risk management. standards of medical care in diabetes-2019. Diabetes Care. 2019;42:S103–23.
29. Shen Y, Dai Y, Wang XQ, et al. Searching for optimal blood pressure targets in type 2 diabetic patients with coronary artery disease. Cardiovasc Diabetol. 2019;18:160.
30. Solin A, Grossman E. What should be the target blood pressure in elderly patients with diabetes? Diabetes Care. 2016;39(Suppl.2):S234–43.
31. Sternlicht H, Basile J. Hypertension in the elderly: recent developments and insights. Curr Opin Cardiol. 2020;35:351–6.
32. Quan H, Khan N, Hemmelgarn BR, et al. Validation of a case definition: a systemic review and meta-analysis. BMJ. 2009;339:b2926–37.
33. Quan H, Khan N, Hemmelgarn BR, et al. Validation of a case definition: a systemic review and meta-analysis. BMJ. 2009;339:b2926–37.
34. Dolan E, Stinson A, Thijis L, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46:156–61.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.