Exact and Asymptotic Results on Coarse Ricci Curvature of Graphs

Bhaswar B. Bhattacharya
University of Pennsylvania

Sumit Mukherjee

Follow this and additional works at: https://repository.upenn.edu/statistics_papers

Part of the Applied Mathematics Commons, Business Commons, Discrete Mathematics and Combinatorics Commons, and the Statistics and Probability Commons

Recommended Citation
Bhattacharya, B. B., & Mukherjee, S. (2015). Exact and Asymptotic Results on Coarse Ricci Curvature of Graphs. Discrete Mathematics, 338 (1), 23-42. http://dx.doi.org/10.1016/j.disc.2014.08.012

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/statistics_papers/598
For more information, please contact repository@pobox.upenn.edu.
Abstract
Ricci curvature was proposed by Ollivier in a general framework of metric measure spaces, and it has been studied extensively in the context of graphs in recent years. In this paper we obtain the exact formulas for Ollivier's Ricci-curvature for bipartite graphs and for the graphs with girth at least 5. These are the first formulas for Ricci-curvature that hold for a wide class of graphs, and extend earlier results where the Ricci-curvature for graphs with girth 6 was obtained. We also prove a general lower bound on the Ricci-curvature in terms of the size of the maximum matching in an appropriate subgraph. As a consequence, we characterize the Ricci-flat graphs of girth 5. Moreover, using our general lower bound and the Birkhoff–von Neumann theorem, we give the first necessary and sufficient condition for the structure of Ricci-flat regular graphs of girth 4. Finally, we obtain the asymptotic Ricci-curvature of random bipartite graphs $G(n, n, p)$ and random graphs $G(n, p)$, in various regimes of p.

Keywords
graph curvature, optimal transportation, random graphs, Wasserstein's distance

Disciplines
Applied Mathematics | Business | Discrete Mathematics and Combinatorics | Statistics and Probability
EXACT AND ASYMPTOTIC RESULTS ON COARSE RICCI CURVATURE OF GRAPHS

BIHASWAR B. BHATTACHARYA AND SUMIT MUKHERJEE

Abstract. In this paper we study Ollivier’s coarse Ricci-curvature for graphs, and obtain exact formulas for the Ricci-curvature for bipartite graphs and for the graphs with girth at least 5. These are the first formulas for Ricci-curvature which hold for a wide class of graphs. We also obtain a general lower bound on the Ricci-curvature involving the size of the maximum matching in an appropriate subgraph. As a consequence, we characterize Ricci-flat graphs of girth 5, and give the first necessary and sufficient condition for the structure of Ricci-flat regular graphs of girth 4. Finally, we obtain the asymptotic Ricci-curvature of random bipartite graphs $G(n, n, p)$ and random graphs $G(n, p)$, in various regimes of p.

1. Introduction

Ricci curvature is a fundamental concept in Riemannian geometry, which provides a way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of \mathbb{R}^n. Ricci curvature plays an important role in general relativity, where it is the key term in the Einstein field equations, and in the celebrated Ricci flow equation, where a time-dependent Riemannian metric is deformed in the direction of negative its Ricci curvature. Bakry and Émery [1] attempted to define Ricci-curvature through the heat semigroup on a metric measure space. In the recent years, there has been several work on defining a synthetic Ricci curvature on general metric measure spaces by Sturm [20, 21], Lott and Villani [13], and Ohta [14].

In the context of graphs, Chung and Yau [3] developed the notion of Ricci-flat graphs, while proving log-Sobolev inequalities. Later, Lin and Yau [12] generalized the notion of Bakry and Émery to the framework of graphs. Finally, Ollivier [16] introduced a notion of coarse Ricci-curvature that extends to any Markov chains on metric spaces. This was used to generalize a series of classical theorems in positive Ricci-curvature, such as spectral gap estimates, concentration of measure or log-Sobolev inequalities [15, 17]. Joulin and Ollivier [8] proved nonasymptotic estimates for the rate of convergence of empirical means of Markov chains, together with a Gaussian or exponential control on the deviations of empirical means, under the assumption of positive curvature of the underlying space. This assumption reduces to the well-known contraction under path coupling when the underlying space is a finite graph, which has been used extensively to prove fast mixing of several discrete Markov chains (refer to Chapter 14 of Levin et al. [9] for details on path coupling and its application to fast mixing and approximate counting of proper q-colorings of a graph).

Recently, Ollivier’s Ricci-curvature has been studied in the context of graph by Jost and Liu [7], Paeng [18], and Cho and Paeng [2]. Lin et al. [10, 11] considered a modified definition of Ricci-curvature of graphs, and proved several analogous results. In this paper we study Ollivier’s Ricci-curvature on graphs using the Markov kernel of the simple random walk on the graph. We obtain exact formulas for Ricci-curvature for bipartite graphs and for the graphs with girth at least

2010 Mathematics Subject Classification. 90C08, 05C70, 52B12.

Key words and phrases. Bipartite matching, Graph curvature, Optimal transportation, Random graphs, Wasserstein’s distance.
5. Previously, an exact formula was only known for graphs with girth at least 6 [2, 7]. Our formulas extend these results and provide, for the first time, exact expressions for the Ricci-curvature for a large class of graphs. Using these results we characterize Ricci-flat graphs of girth at least 5. We also prove several other bounds on the Ricci-curvature, involving different graph parameters. The most interesting among them is the derivation of a general lower bound in terms of the size of the maximum matching in an appropriate neighborhood subgraph. Using this we a first necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4. Finally, using some results from approximate matching in random graphs, we study the asymptotic behavior of Ricci-curvature of random bipartite graphs $G(n, n, p)$ and random graphs $G(n, p)$, in various regimes of p.

1.1. Ollivier’s Ricci-curvature: Definitions and Notations. In this section we recall some basic facts about Ollivier’s Ricci curvature on graphs and introduce other relevant definitions and notations.

For two probability measures μ_1, μ_2 on a metric space (X, d), the transportation distance (or the Wasserstein distance) between them is defined as

$$W_1(\mu_1, \mu_2) = \inf_{\nu \in M(\mu_1, \mu_2)} \int_{X \times X} d(x, y) d\nu(x, y), \tag{1.1}$$

where $M(\mu_1, \mu_2)$ is the collection of probability measures on $X \times X$ with marginals μ_1 and μ_2. Another useful representation of the transportation distance is through the celebrated Kantorovich duality (Theorem 1.14, Villani [22]), which states that

$$W_1(\mu_1, \mu_2) = \sup_{f \in L^1_{\mu_1}} \left\{ \int_X f d\mu_1 - \int_X f d\mu_2 \right\}, \tag{1.2}$$

where the supremum is taken over all functions $f : X \to \mathbb{R}$ which satisfy $|f(x) - f(y)| \leq d(x, y)$, for all $x, y \in X$.

The transportation distance between probability measure is used to define the Ricci-curvature of metric measure spaces. A metric measure space (X, d, m) is a metric space (X, d), and a collection of probability measures $m = \{m_x : x \in X\}$ indexed by the points of X. The coarse Ricci curvature of a metric measure space is defined as follows:

Definition 1.1 (Ollivier [16]). On any metric measure space (X, d, m), for any two distinct points $x, y \in X$, the coarse Ricci curvature of (X, d, m) of (x, y) is defined as $\kappa(x, y) := 1 - \frac{W_1(m_x, m_y)}{d(x, y)}$.

Hereafter, we shall refer to Ollivier’s coarse Ricci curvature simply as Ricci curvature and we shall study it for locally finite graphs. Consider a locally finite unweighted graph $G = (V(G), E(G))$, equipped with the standard shortest path graph distance d_G, that is, $d_G(x, y)$ for $x, y \in V(G)$, is the length of the shortest path in G connecting x and y. For $x \in V(G)$ denote by d_x and $N_G(x)$ the degree of x and the set of neighbors of x, respectively. For each $x \in V(G)$ define a probability measure

$$m_x(y) = \begin{cases} \frac{1}{d_x}, & \text{if } y \in N_G(x) \\ 0, & \text{otherwise}. \end{cases}$$

Note that these are just the transition probabilities of a simple random walk on the vertices of G. If $m_G = \{m_x : x \in V(G)\}$, then considering the metric measure space $\mathcal{M}(G) := (V(G), d_G, m_G)$, we can define the Ricci curvature for any edge $(x, y) \in E(G)$ as $\kappa_G(x, y) := 1 - W_1^G(m_x, m_y)$. Applying Equation (1.1) for $\mathcal{M}(G)$ we get

$$W_1^G(m_x, m_y) = \inf_{\nu \in A} \sum_{z_1 \in N_G(x)} \sum_{z_2 \in N_G(y)} \nu(z_1, z_2) d(z_1, z_2), \tag{1.3}$$
where \(\mathcal{A} \) denotes the set of all \(d_x \times d_y \) matrices with entries indexed by \(N_G(x) \times N_G(y) \) such that
\[
\nu(x', y') \geq 0, \quad \sum_{z \in N_G(y)} \nu(x', z) = \frac{1}{d_y}, \quad \text{and} \quad \sum_{z \in N_G(x)} \nu(z, y') = \frac{1}{d_x},
\]
for all \(x' \in N_G(x) \) and \(y' \in N_G(y) \). By the Kantorovich duality in Equation (1.2) we can also write
\[
W_1^G(m_x, m_y) = \sup_{f, 1-\text{Lip}} \left\{ \sum_{z \in N_G(x)} f(z)m_x(z) - \sum_{z \in N_G(y)} f(z)m_y(z) \right\}. \tag{1.4}
\]

Henceforth, we denote by \(\mathcal{L}_1 \) the set of all 1-Lipschitz functions on \(G \), that is, the set of all functions \(f : V(G) \to \mathbb{R} \) such that \(|f(x) - f(y)| \leq d_G(x, y) \), for \(x, y \in V(G) \). For any \(x \in V(G) \) and any function \(f \in \mathcal{L}_1 \), define \(E_x(f) = \sum_{z \in N_G(x)} f(z)m_x(z) = \frac{1}{d_x} \sum_{z \in N_G(x)} f(z) \). With these notations, Equation (1.4) now becomes
\[
W_1^G(m_x, m_y) = \sup_{f \in \mathcal{L}_1} \{ E_x(f) - E_y(f) \}. \tag{1.5}
\]
Hereafter, the subscript and superscript \(G \) from \(\kappa_G \), \(W_1^G \), and \(d_G \) will be often omitted when the graph is clear from the context.

1.2. Prior Work on Ricci Curvature of Graphs.

Recently, there has been a series of papers on coarse Ricci-curvature when the metric space is a graph \(G \). Jost and Liu proved the following general bounds:

Theorem 1.1 (Jost and Liu [7]). For any graph \(G \), with \((x, y) \in E(G) \),
\[
\frac{|\Delta_G(x, y)|}{dx \lor dy} - \left(1 - \frac{1}{dx} - \frac{1}{dy} - \frac{|\Delta_G(x, y)|}{dx \land dy}\right) + \left(1 - \frac{1}{dx} - \frac{1}{dy} - \frac{|\Delta_G(x, y)|}{dx \lor dy}\right) \leq \kappa(x, y) \leq \frac{|\Delta_G(x, y)|}{dx \lor dy},
\]
where \(\Delta_G(x, y) \) is the number of triangles supported on \((x, y) \).

They also show that the lower bound is tight for trees. In fact, it is clear from their proof that the lower bound is an equality whenever there are no 3, 4, or 5 cycles supported on \((x, y) \). In particular, the lower bound is tight whenever \(g(G) \geq 6 \), where \(g(G) \) is the girth of the graph \(G \). Recently, Cho and Paeng [2] proved this independently, and also showed that the girth condition and the tree formula, obtained by putting \(|\Delta_G(x, y)| = 0 \) in the lower bound in (1.5), are equivalent in the following sense: the tree formula holds for all \((x, y) \in E(G) \), if and only if \(g(G) \leq 6 \). Cho and Paeng [2] also proved other Ricci-curvature bounds involving girth. In particular, they showed that if \(g(G) \geq 5 \), then \(\kappa(x, y) \leq -1 + \frac{n}{2} \), where \(\delta := \delta(G) \) is the minimum degree in \(G \), and \((x, y) \in E(G) \). They also obtained interesting lower bounds on the clique number and chromatic number of a graph with the Ricci curvature. Paeng [18] used Ollivier’s Ricci curvature to obtain upper bounds of diameter and volume for finite graphs.

Lin et al. [11] introduced a different notion of Ricci-curvature on graphs by modifying Ollivier’s definition. It is defined as the differential limit of a lazy random random walk on the graph, and we shall refer to it as the modified Ricci-curvature to distinguish it from Ollivier’s coarse Ricci-curvature. The modified definition has some properties which are similar to the original definition, however, in several contexts they are very different. Using the modified definition, they proved a theorem on the modified Ricci curvature of the Cartesian product of graphs. They established upper bounds for diameters and the number of vertices for graphs with positive curvatures, and also proved some asymptotic properties of modified Ricci-curvature for random graphs. Recently, Lin et al. [10] characterized the set of all modified Ricci-flat graphs with girth at least 5, where a graph is called modified Ricci-flat whenever it has modified Ricci-curvature zero for every edge in the graph. They showed that if \(G \) is a connected modified Ricci-flat graph with girth \(g(G) \geq 5 \), then \(G \) is the infinite path, or a cycle \(C_n \) with \(n \geq 6 \), the dodecahedral graph, the Petersen graph, or the half-dodecahedral graph.
1.3. Summary of Our Results and Organization of the Paper. In this paper we obtain exact expressions of Ollivier’s Ricci-curvature for bipartite graphs and for the graphs with girth at least 5. For a bipartite graph G with $(x, y) \in E(G)$, we show that the Ricci-curvature has the form

$$\kappa(x, y) = -2 \left(1 - \frac{1}{d_x} - \frac{1}{d_y} - \mathcal{E}_G(x, y) \right)_+. $$

The explicit form of $\mathcal{E}_G(x, y)$ is given in Theorem 3.1, and can be interpreted as a non-negative correction term which improves the lower bound in Theorem 1.1 to an exact equality.

Similarly, when G is a graph with girth greater 4 and $(x, y) \in E(G)$, the Ricci-curvature has the form

$$\kappa(x, y) = -2 \left(1 - \frac{1}{d_x} - \frac{1}{d_y} - \mathcal{F}_G(x, y) \right)_+ \wedge \left(1 - \frac{1}{d_x} - \frac{1}{d_y} \right)_+. $$

The explicit form of $\mathcal{F}_G(x, y)$ is given in Theorem 3.3, and as before, can be interpreted as a non-negative correction term.

To the best of our knowledge, exact formulas for Ricci-curvature were only known for the graphs with girth at least six [2, 7]. Our results not only subsume these results, but also provide the first exact formulas for Ricci-curvature for a large class of non-trivial graphs, namely graphs with no odd-cycles and graphs with no cycles smaller than 5. As a consequence of these results, we characterize the set of all Ricci-flat graphs of girth at least 5, where a graph G is said to be Ricci-flat if $\kappa(x, y) = 0$ for all $(x, y) \in E(G)$. This is in analogue to the result on modified Ricci-curvature of Lin et al. [10] in the context of Ollivier’s coarse Ricci-curvature.

In Theorem 4.1 we prove a general lower bound on the Ricci-curvature $\kappa(x, y)$ in terms of the size of the matching matching among the non-common neighbors of x and y in the graph G. This bound is often tight, especially in regular graphs which have a perfect matching between the non-common neighbors of x and y. As the set of all transportation matrices in d-regular graphs is related to the famous Birkhoff polytope, our lower bound result combined with the celebrated Birkhoff-von Neumann theorem gives a necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4, which is detailed in Corollary 4.3.

Finally, we also study the Ricci-curvature of random bipartite graphs $G(n, n, p)$ (Theorem 5.2) and random graphs $G(n, p)$ (Theorem 5.3), in various regimes of p. Using a stronger version of the Hall’s marriage theorem, and the existence of near-perfect matching in random bipartite graphs, we obtain the limiting behavior of the Ricci-curvature in the regimes of p where it has a constant limit in probability. We also show that when $np_n \to \lambda$, that is, the graph is locally tree-like, the Ricci-curvature converges in distribution to the tree formula of Jost and Lin [7]. These are the first known results for Ollivier’s Ricci-curvature for Erdős-Rényi random graphs. The analogous version of these results using the modified Ricci-curvature were obtained by Lin et al. [11]. They showed almost sure convergence to constant limits, but could not capture all the different regimes of p.

In Section 2 we prove several important lemmas which build the foundations for proving the main results. We show that the computation of Ricci-curvature on a graph can be formulated as a totally unimodular linear programming problem, and so it suffices to optimize over integer valued 1-Lipschitz functions. We also prove a crucially important reduction lemma where we identify the exact neighborhood an edge $(x, y) \in E(G)$ that needs to be considered while computing the Ricci-curvature $\kappa(x, y)$. In Section 6 we summarize our work and give directions for future work.
2. Preliminaries

We begin by proving an extension lemma for Lipschitz function on graphs. Let $G = (V(G), E(G))$ be a finite unweighted graph. Let $U \subset V(G)$ be a fixed subset of vertices, and d_G the shortest path metric on G.

Lemma 2.1. Any 1-Lipschitz function $g : U \rightarrow \mathbb{R}$, that is, $|g(a) - g(b)| \leq d_G(a,b)$, for $a, b \in U$, can be extended to a 1-Lipschitz function $\tilde{g} : V(G) \rightarrow \mathbb{R}$ on G, that is, $|g(a) - g(b)| \leq d_G(a,b)$, for $a, b \in V$.

Proof. Define $\tilde{g} := g$ on U. Let $z \in V(G) \setminus U$ be any point. Note that result follows by induction if we can construct a function $\tilde{g} : U \cup \{z\} \rightarrow \mathbb{R}$ which satisfies $|g(a) - g(b)| \leq d_G(a,b)$, for $a, b \in U \cup \{z\}$. To this end, let

$$A := \bigcap_{a \in U} [\tilde{g}(a) - d_G(a,z), \tilde{g}(a) + d_G(a,z)].$$

Observe that if A is empty, then there must exist $a, b \in U$ such that $\tilde{g}(a) + d_G(a,z) < \tilde{g}(b) - d_G(b,z)$. This implies that

$$g(b) - g(a) > d_G(a,z) + d_G(b,z) \geq d_G(a,b).$$

This contradicts the assumption that g is Lipschitz on U, and proves that A is non-empty. Therefore, we can define $\tilde{g}(z) = r$, for some $r \in A$. Moreover, by construction $|\tilde{g}(a) - \tilde{g}(b)| \leq d_G(a,b) \leq d_G(a,b)$, for any two vertices $a, b \in U \cup \{z\}$. By repeating this constructing inductively for every $z \in V(G) \setminus U$, the result follows.

Next, we show that computing the transportation distance is a linear programming problem, with integral extreme points. To prove this we use the following result from linear programming (Theorem 2.2, Chapter 4, Yemelichev et al. [23]): The polyhedron $\mathcal{P} = \{w : b_1 \leq Mw \leq b_2, d_1 \leq w \leq d_2\}$ has integral extreme points, whenever b_1, b_2, d_1, d_2 are integral vectors and M is totally unimodular, that is, the determinant of every sub-matrix of M is 0, +1, or -1.

Lemma 2.2. For $(x,y) \in E(G)$, there exists $g \in \mathcal{L}_1$ such that $g : V(G) \rightarrow \mathbb{Z}$, $g(x) = 0$, and $g = \arg \sup_{f \in \mathcal{L}_1} \{E_x(f) - E_y(f)\}$. Thus, while computing $\kappa(x,y)$ it suffices to optimize over integer valued 1-Lipschitz functions, and consequently $\kappa(x,y)$ is rational.

Proof. For $(x,y) \in E(G)$ and $f \in \mathcal{L}_1$, denote by $T_{xy}(f) = E_x(f) - E_y(f) = \sum_{z \in N(x)} f(z) - \frac{1}{\Delta_y} \sum_{z \in N(y)} f(z)$. Note that T_{xy} is location invariant, that is, $T_{xy}(f) = T_{xy}(f + c)$, for any $c \in \mathbb{R}$. Therefore, w.l.o.g. generality we can assume $g(x) = 0$. Thus, computing the transportation distance is equivalent to

$$\max_f T_{xy}(f) \text{ subject to } |f(a) - f(b)| \leq 1 \text{ for } (a, b) \in E(G), \text{ and } f(x) = 0.$$

This is clearly a linear programming problem with $|V(G)| - 1$ variables and $2|E(G)|$ constraints.

The set of all feasible functions of this linear program forms a polytope in $\mathbb{R}^{|V(G)|-1}$ with finitely many extreme points. Consider the digraph $D(G)$ obtained by duplicating every edge of G and orienting one each in both directions. As each of the constraints of the linear program are of the form $|f(a) - f(b)| \leq 1$ for $(a, b) \in E(G)$, the set of constraints can be written as $Mf \leq 1$ and $|f| \leq \text{diam}(G) \cdot 1$, where M is the incidence matrix of the digraph $D(G)$, f is the vector of values of f with $f(x) = 0$, and $\text{diam}(G)$ is the diameter of the graph G. As M is totally unimodular (Theorem 13.9, Schrijver [19]), the set of points of this linear program are integral, completing the proof of the lemma. \qed
2.1. Reduction Lemma: Removing Large Cycles. The transportation distance, and hence the Ricci curvature, of an edge \((x, y) \in E(G)\), is a local property depending only on vertices which are close to \(x\) and \(y\). In this section we prove a reduction lemma where we make the above statement precise by exactly identifying the sub-graph of \(G\) which contributes to Ricci curvature of an edge \((x, y) \in E(G)\).

Before we proceed to state the lemma, we introduce some notations which will be used throughout the paper. Consider a locally finite unweighted graph \(G = (V(G), E(G))\). For any two vertices \(x, y \in V(G)\), such that \((x, y) \in E(G)\), we associate the following quantities (refer to Figure 1(a)):

- \(\Delta_G(x, y)\): This is set of vertices in \(V(G)\) which are common neighbors of both \(x\) and \(y\), that is, \(\Delta_G(x, y) = N_G(x) \cap N_G(y)\). In fact, \(|\Delta_G(x, y)|\) is the number of triangles in \(G\) supported on \((x, y)\).

- \(P_G(x, y)\): This is the set of vertices which are at distance 2 from both \(x\) and \(y\). That is, \(P_G(x, y) = \{v \in V(G) : d_G(x, v) = d_G(y, v) = 2\}\). Note that each vertex in \(P_G(x, y)\) belongs to a 5-cycle supported on \((x, y)\).

Define \(V_{(x,y)} := N_G(x) \cup N_G(y) \cup P_G(x, y)\), and denote by \(H\) the subgraph of \(G\) induced by \(V_{(x,y)}\).

Lemma 2.3 (Reduction Lemma). For a locally finite unweighted graph \(G = (V(G), E(G))\) and an edge \((x, y) \in E(G)\), \(\kappa_G(x, y) = \kappa_H(x, y)\). Moreover, for computing \(\kappa(x, y)\) it suffices to assume that there are no edges between \(\Delta_G(x, y)\) and \(P_G(x, y)\).

Proof. To begin with observe that \(d_G(a, b) \leq d_H(a, b)\), for any \(a, b \in V(H)\). Therefore, any function which is Lipschitz in \(d_G\) is also Lipschitz in \(d_H\). Therefore,

\[
W^H_1(m_x, m_y) \geq W^G_1(m_x, m_y).
\]

To show the other inequality it suffices to show that for any 1-Lipschitz function \(f : V(H) \to \mathbb{R}\) with respect to \(d_H\), we can define a function \(g : V(G) \to \mathbb{R}\) which is 1-Lipschitz with respect to \(d_G\) and agrees with \(f\) on \(N_G(x, y) := N_G(x) \cup N_G(y)\), as the transportation distance between \(m_x\) and \(m_y\) only depends on the values of the function at \(N_G(x, y)\). To this end, define \(g = f\) on \(N_G(x, y)\).
Observe that if \(a, b \in \mathcal{N}_G(x,y)\), then by construction of \(H\) there is a path from \(a\) to \(b\) of length \(d_H(a,b)\) in \(H\), and so \(d_G(a,b) = d_H(a,b)\). Moreover, as \(f\) is Lipschitz with respect to \(d_H\), we have \(|g(a) - g(b)| = |f(a) - f(b)| \leq d_H(a,b) = d_G(a,b)\). Finally, applying Lemma 2.1 with \(U = \mathcal{N}_G(x,y)\) proves that \(g\) can be extended to a Lipschitz function with respect to \(d_G\) on the whole of \(V(G)\). This proves that \(W^H_1(m_x,m_y) \leq W^G_1(m_x,m_y)\), and the proof of the first part of the lemma is complete.

To show the second part, it suffices to show that \(\kappa_H(x,y) = \kappa_{H,e}(x,y)\), for an edge \(e\) between \(\Delta_G(x,y)\) and \(P_G(x,y)\). By the dual definition (1.3) it means that the optimal transfer matrix \(\mathcal{A}\) remains unchanged if we drop the edge \(e\). This is equivalent to showing that for any \(z_1 \in \mathcal{N}_G(x)\) and \(z_2 \in \mathcal{N}_G(y)\) there is a shortest path connecting \(z_1, z_2\) without using \(e\). The following cases may arise:

- \(d_H(z_1, z_2) = 3\): The shortest path not using \(e\) in this case is \((z_1, x, y, z_2)\).
- \(d_H(z_1, z_2) = 2\): If \(z_1 \in \mathcal{N}_G(x) \cap \mathcal{N}_G(y)\) then a path of length 2 not containing \(e\) is \((z_1, y, z_2)\).
- \(d_H(z_1, z_2) = 1\): The shortest path in this case is \((z_1, z_2)\) and \(e \neq (z_1, z_2)\), as \(d_H(z_1, x) = 1, d_H(z_2, y) = 1\).

\[
\kappa(x,y) = -2\left(1 - \frac{1}{d_x} - \frac{1}{d_y}\right)^+.
\]

If \(\varphi_G(x,y)\) denotes the set of edges between \(\Delta_G(x,y)\) and \(P_G(x,y)\) (red edges in Figure 1(a)), we denote the core neighborhood of \((x,y)\) in \(G\) as the subgraph

\[
G_{(x,y)} := (V(H), E(H) \setminus \varphi_G(x,y)).
\]

The above lemma shows that it suffices to consider only the core neighborhood subgraph \(G_{(x,y)}\) for computing the Ricci-curvature of \((x,y) \in E(G)\), which greatly simplifies computations of \(\kappa(x,y)\).

One of the first known exact formula for Ricci-curvature for graphs is the following result of Jost and Liu [7] for trees:

Theorem 2.1 (Jost and Liu [7]). For any neighboring vertices \(x, y\) of a tree \(T\),

\[
\kappa(x,y) = -2\left(1 - \frac{1}{d_x} - \frac{1}{d_y}\right)^+.
\]

An immediate consequence of Lemma 2.3 and the above theorem is the following corollary, which generalizes the formula for Ricci curvature of trees to graphs with girth \(\geq 6\). This generalization was clear from the proof of Theorem 2.1 in Jost and Lin [7], and was also proved by Cho and Paeng [2].

Corollary 2.2 ([2, 7]). For a locally finite unweighted graph \(G = (V(G), E(G))\) and an edge \((x,y) \in E(G)\),

\[
\kappa(x,y) = -2\left(1 - \frac{1}{d_x} - \frac{1}{d_y}\right)^+,
\]

if there are no 3, 4, and 5 cycles supported on \((x,y)\). In particular, the above formula holds whenever the girth of \(G\) is at least 6.
3. Bipartite Graphs and Graphs With Girth Greater Than 4

Jost and Liu [7] obtained bounds on Ricci-curvature involving the number of triangles supported on \((x, y)\), that is \(|\Delta_G(x, y)|\). Their main result is stated in Theorem 1.1, which reduces to the following when there are no triangle supported on \((x, y)\):

\[-2\left(1 - \frac{1}{d_x} - \frac{1}{d_y}\right) \leq \kappa(x, y) \leq 0.\]

(3.1)

It is also known that the lower bound is tight for the graphs with girth at least 6 [2, 7]. Cho and Paeng [2] also obtained bounds on the Ricci-curvature of graphs with girth at least 5 in terms of the minimum degree of the graph. In this section, using the reduction lemma and by a careful analysis of the structure of the core-neighborhood we improve all existing bounds to obtain exact formulas for the Ricci-curvature in bipartite graphs and graphs with girth at least 5.

3.1. Ricci Curvature of Bipartite Graphs. In this section we shall give an exact formula for \(\kappa(x, y)\) whenever the graph \(G\) is bipartite, that is, there are no cycles of odd-length in \(G\). We know that \(N_G(x)\) and \(N_G(y)\) denote the set of neighbors of \(x\) and \(y\), respectively. We partition \(N_G(x) = N_0(x) \cup N_1(x) \cup \{y\}\), where

\[N_1(x) := \{z \in N_G(x) \setminus \{y\} : d_G(z, N_G(y)) = 1\},\]

is the set of neighbors of \(x\) which are on a 4-cycle supported on \((x, y)\).

\[N_0(x) := N_G(x) \setminus (N_1(x) \cup \{y\}),\]

is the set of remaining neighbors of \(x\), apart from \(y\).

Similarly, we can define a partition \(N_G(y) = N_0(y) \cup N_1(y) \cup \{x\}\). Now, if we assume that \(G\) is bipartite, \(|\Delta_G(x, y)| = 0\) and \(|P_G(x, y)| = 0\). This simplifies the structure of the core neighborhood, and using that we now give the exact formula for \(\kappa(x, y)\) in bipartite graphs.

\[\begin{align*}
N_0(x) & \quad U_1(x) \quad U_2(x) \quad U_3(x) \\
N_0(y) & \quad L_1(y) \quad L_2(y) \quad L_3(y) \\
x & \quad R_1(x, y) \\
y & \quad R_2(x, y) \\
N_1(x) & \\
N_1(y) \quad R_3(x, y)
\end{align*}\]

Figure 2. Ricci curvature of bipartite graphs: Structure of the core neighborhood.
Theorem 3.1. Let $G = (V(G), E(G))$ be a locally finite bipartite graph and $(x, y) \in E(G)$. Suppose $R(x, y)$ is the subgraph of $G_{(x,y)}$ induced by $N_1(x) \cup N_1(y)$, and $R_1(x, y), R_2(x, y), \ldots, R_q(x, y)$ be the connected components of $R(x, y)$. If $U_a(x) = V(R_a(x, y)) \cap N_1(x)$ and $L_a(y) = V(R_a(x, y)) \cap N_1(y)$, for $a \in \{1, 2, \ldots, q\}$, then

$$
\kappa(x, y) = -2 \left(1 - \frac{1}{d_x} - \frac{1}{d_y} - \frac{|N_1(y)|}{d_y} \right) + \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot \mathbf{1}_{\left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y} \right\}}. \tag{3.2}
$$

Proof. Using Lemma 2.3 we can replace G by its core neighborhood $G_{(x,y)}$. As G is bipartite, there are no edges between $N_0(x)$ and $N_1(x)$, and between $N_0(y)$ and $N_1(y)$. Therefore, the structure of the core neighborhood $G_{(x,y)}$ is as depicted in Figure 2.

For any $Z \subseteq V(G_{(x,y)})$ and any function $f \in \mathcal{L}_1$, denote by $W_f(Z) = \sum_{z \in Z} f(z)$. Therefore, for $(x, y) \in E(G)$,

$$
E_y(f) - E_x(f) = \frac{f(x) + W_f(N_0(y)) + W_f(N_1(y))}{d_y} - \frac{f(y) + W_f(N_0(x)) + W_f(N_1(x))}{d_x}. \tag{3.3}
$$

Lemma 2.2 implies that it suffices to maximize $E_y(f) - E_x(f)$ over 1-Lipschitz functions f satisfying $f(x) = 0$, and $f(y) \in \{-1, 0, 1\}$. Therefore, for $i \in \{-1, 0, 1\}$ define

$$
\kappa_i(x, y) := 1 - \max_{f \in \mathcal{L}_1, f(y) = i} (E_y(f) - E_x(f)),
$$

and observe that $\kappa(x, y) = \kappa_{-1}(x, y) \wedge \kappa_0(x, y) \wedge \kappa_1(x, y)$. Assuming $f(x) = 0$ we consider the following three cases separately.

Case 1. $f(y) = -1$. This implies that $f(z) \leq 0$ for $z \in N_G(y)$ and $f(z) \geq -1$, for $z \in N_G(x)$. Therefore, from Equation (3.3) we get

$$
E_y(f) - E_x(f) \leq \frac{1}{d_x} + \frac{|N_0(x)| + |N_1(x)|}{d_x} = 1.
$$

Moreover, this bound is attained by the function $g : V(G_{(x,y)}) \mapsto \mathbb{R}$:

$$
g(z) = \begin{cases}
-1, & \text{if } z \in N_G(x), \\
0, & \text{otherwise},
\end{cases}
$$

which is 1-Lipschitz on the core neighborhood of (x, y) (refer to 2(a)). This implies, $\kappa_{-1}(x, y) = 0$.

Case 2. $f(y) = 0$. This implies that $f(z) \leq 1$ for $z \in N_G(y)$ and $f(z) \geq -1$, for $z \in N_G(x)$. Therefore, from Equation (3.3) we get as before,

$$
E_y(f) - E_x(f) \leq \frac{|N_0(y)| + W_f(N_1(y))}{d_y} - \frac{|N_0(x)| + W_f(N_1(x))}{d_x},
$$

$$
= \frac{|N_0(y)|}{d_y} + \frac{|N_0(x)|}{d_x} + \frac{W_f(N_1(y))}{d_y} - \frac{W_f(N_1(x))}{d_x},
$$

$$
= \frac{|N_0(y)|}{d_y} + \frac{|N_0(x)|}{d_x} + \sum_{a=1}^{q} \left\{ \frac{W_f(L_a(y))}{d_y} - \frac{W_f(U_a(x))}{d_x} \right\}, \tag{3.4}
$$

where $U_a(x)$ and $L_a(y)$ are as defined in the statement of the theorem, for $a \in \{1, 2, \ldots, q\}$. For any 1-Lipschitz function $f : V(G_{(x,y)}) \mapsto \mathbb{Z}$ with $f(x) = f(y) = 0$ denote the restriction of f to
$L_a(y) \cup U_a(x) \cup \{x, y\}$ as f_a, for $a \in \{1, 2, \ldots, q\}$. This implies that

$$1 - \kappa_0(x, y) \leq \frac{|N_0(y)|}{d_y} + \frac{|N_0(x)|}{d_x} + \sum_{a=1}^{q} \max_{f_a \in \mathbb{Z}} \left\{ \frac{W_{f_a}(L_a(y))}{d_y} - \frac{W_{f_a}(U_a(x))}{d_x} \right\} \quad (3.5)$$

Fix $a \in \{1, 2, \ldots, q\}$, and consider a 1-Lipschitz function $f_a : L_a(y) \cup U_a(x) \cup \{x, y\} \mapsto \mathbb{Z}$, with $f_a(x) = f_a(y) = 0$. Define

$$W(f_a) := \frac{W_{f_a}(L_a(y))}{d_y} - \frac{W_{f_a}(U_a(x))}{d_x}.$$

Now, if there exists $z \in N_1(y)$ such that $f_a(z) = -1$, then for f_a be to 1-Lipschitz $f_a(w) \in \{-1, 0\}$, for all $w \in N_G(z) \cap N_1(x)$. Then the function $f_a' : L_a(y) \cup U_a(x) \cup \{x, y\} \mapsto \mathbb{Z}$, with $f_a'(z) = 0$ and $f_a'(w) = f_a(w)$, for all $w \neq z$, satisfies $W(f_a) < W(f_a')$. Therefore, it suffices to assume that $f_a(z) \in \{0, 1\}$ for all $z \in N_1(y)$, and similarly $f_a(z) \in \{-1, 0\}$ for all $z \in N_1(x)$. This observation and the bipartite structure of $R_a(x, y)$ immediately implies that there are two possibilities:

(i): $f_a(z) = 0$ for all $z \in L_a(y)$ and $f_a(z) = -1$ for all $z \in U_a(x)$;

(ii): $f_a(z) = 1$ for all $z \in L_a(y)$ and $f_a(z) = 0$ for all $z \in U_a(x)$.

This implies that

$$\max_{f_a \in \mathbb{Z}, f_a(y)=0} W(f_a) = \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\{\frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y}\}} + \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\{\frac{|U_a(x)|}{d_x} > \frac{|L_a(y)|}{d_y}\}} \cdot \left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y}\right\}.$$\quad (3.6)

Noting that $\sum_{a=1}^{q} |U_a(x)| = |N_1(x)|$, and substituting Equation (3.6) in Equation (3.5) we get

$$\kappa_0(x, y) \geq 1 - \frac{|N_0(y)|}{d_y} - \frac{|N_0(x)|}{d_x} - \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\{\frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y}\}}.$$

Now, consider the 1-Lipschitz function $g : V(G(x,y)) \mapsto \mathbb{R}$

$$g(z) = \begin{cases}
-1, & \text{if } z \in N_0(x); \\
1, & \text{if } z \in N_0(y); \\
g_a(z), & \text{if } z \in U_a(x) \cup L_a(y); \\
0, & \text{otherwise};
\end{cases}$$

where for $a \in \{1, 2, \ldots, q\}$,

$$g_a(z) := \begin{cases}
-1 \cdot 1_{\{\frac{|U_a(x)|}{d_x} \leq \frac{|L_a(y)|}{d_y}\}}, & \text{if } z \in U_a(x); \\
1 \cdot 1_{\{\frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y}\}}, & \text{if } z \in L_a(y).
\end{cases}$$

It is easy to see that

$$E_y(g) - E_y(g) = \frac{|N_0(y)|}{d_y} + \frac{|N_0(x)|}{d_x} \cdot \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\{\frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y}\}}.$$
Therefore, \(g \) attains the lower bound in Equation \((3.7) \) and we have
\[
\kappa_0(x, y) = \frac{1}{d_x} - \frac{|N_0(x)|}{d_y} - \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\left\{ \frac{|U_a(x)|}{d_y} < \frac{|L_a(y)|}{d_x} \right\}},
\]
(3.8)

Case 3. \(f(y) = 1 \). This implies that \(f(z) \leq 2 \) for \(z \in N_G(y) \) and \(f(z) \geq -1 \), for \(z \in N_G(x) \). Therefore, from Equation \((3.3) \) we get as before,
\[
E_y(f) - E_x(f) \leq \frac{2|N_0(y)|}{d_y} + \frac{|N_0(x)|}{d_x} - \sum_{a=1}^{q} \left\{ \frac{W_f(L_a(y))}{d_y} - \frac{W_f(U_a(x))}{d_x} \right\},
\]
(3.9)
where \(U_a(x) \) and \(L_a(y) \) for \(a \in \{1, 2, \ldots, q\} \) are as defined in the statement of the theorem. As before, for any 1-Lipschitz function \(f : V(G(x,y)) \mapsto \mathbb{Z} \) with \(f(x) = 0, f(y) = 1 \) denote the restriction of \(f \) to \(L_a(y) \cup U_a(x) \cup \{x, y\} \) as \(f_a \), for \(a \in \{1, 2, \ldots, q\} \). Define \(W(f_a) \) as before. Then from the bipartite structure of \(R_a(x, y) \) it follows that \(g_a := \operatorname{arg\,max}_{f_a \in \mathcal{L}_1, f_a(y) = 1} W(f_a) \) must be one of the following:

(i): \(g_a(z) = 0 \) for all \(z \in L_a(y) \) and \(g_a(z) = -1 \) for all \(z \in U_a(x) \),
(ii): \(g_a(z) = 1 \) for all \(z \in L_a(y) \) and \(g_a(z) = 0 \) for all \(z \in U_a(x) \),
(iii): \(g_a(z) = 2 \) for all \(z \in L_a(y) \) and \(g_a(z) = 1 \) for all \(z \in U_a(x) \).

This implies that,
\[
\max_{f_a \in \mathcal{L}_1, f_a(y) = 0} W(f_a) = \max \left\{ \frac{|U_a(x)|}{d_x}, \frac{|L_a(y)|}{d_y}, \frac{2|L_a(y)|}{d_x} - \frac{|U_a(x)|}{d_y} \right\},
\]
(3.10)
Noting that \(\sum_{a=1}^{q} |U_a(x)| = |N_1(x)| \), and substituting Equation \((3.10) \) in Equation \((3.9) \) we get
\[
\kappa_1(x, y) \geq \frac{2}{d_x} - \frac{2|N_0(y)|}{d_y} - \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\left\{ \frac{|U_a(x)|}{d_y} < \frac{|L_a(y)|}{d_x} \right\}}.
\]
(3.11)

Now, consider the 1-Lipschitz function \(g : V(G(x,y)) \mapsto \mathbb{R} \)
\[
g(z) = \begin{cases}
-1, & \text{if } z \in N_0(x); \\
1, & \text{if } z \in N_0(y); \\
g_a(z), & \text{if } z \in U_a(x) \cup L_a(y); \\
0, & \text{otherwise};
\end{cases}
\]
where for \(a \in \{1, 2, \ldots, q\} \),
\[
g_a(z) := \begin{cases}
-1 \cdot 1_{\left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}} + 1 \cdot 1_{\left\{ \frac{|L_a(y)|}{d_y} < \frac{|U_a(x)|}{d_x} \right\}}, & \text{if } z \in U_a(x); \\
2 \cdot 1_{\left\{ \frac{|L_a(y)|}{d_y} < \frac{|U_a(x)|}{d_x} \right\}}, & \text{if } z \in L_a(y).
\end{cases}
\]
It is easy to see that \(g \) attains the lower bound in Equation \((3.11) \) and we have
\[
\kappa_1(x, y) = \frac{2}{d_x} - \frac{2|N_0(y)|}{d_y} - \sum_{a=1}^{q} \left\{ \frac{|L_a(y)|}{d_y} - \frac{|U_a(x)|}{d_x} \right\} \cdot 1_{\left\{ \frac{|U_a(x)|}{d_y} < \frac{|L_a(y)|}{d_x} \right\}},
\]
(3.12)
Note that \(\kappa_1(x, y) = 2\kappa_0(x, y) \) and \(\kappa_{-1}(x, y) = 0 \). Therefore, \(\kappa(x, y) = \kappa_{-1}(x, y) \land \kappa_0(x, y) \land \kappa_1(x, y) = \kappa_1(x, y) \land 0 \), and the proof completes.

The formula in the above theorem is exact, as a result, it is quite complicated and heavily depends on the structure of the graph. In the following corollary we derive a clean upper bound which is tight, whenever the graph \(G \) is connected.

Corollary 3.2. Let \(G = (V(G), E(G)) \) be a locally finite bipartite graph and \((x, y) \in E(G) \). Then

\[
\kappa(x, y) \leq -2 \left(1 - \frac{1}{d_x} - \frac{1}{d_y} - \left\{ \frac{|N_1(x)|}{d_x} \land \frac{|N_1(y)|}{d_y} \right\} \right)_+, \\
\text{and equality whenever } R(x, y) \text{ is connected. In particular, for the complete bipartite graph } K_{p,q} \text{ (} p \leq q \text{), } \kappa(x, y) = 0, \text{ for any } (x, y) \in E(K_{p,q}).
\]

Proof. The proof of the first part follows from Equation 3.1 by dropping the last non-negative term. The second part follows from Equation 3.1 by direct substitution, from which the result on \(K_{p,q} \) follows.

3.2. Ricci Curvature of Graphs with Girth Greater Than 4

In this section we shall give an exact formula for \(\kappa(x, y) \) for graphs \(G \) with girth greater than 4. As before, partition \(N_G(x) = N_0(x) \cup N_2(x) \cup \{y\} \), where

- \(N_2(x) = \{ z \in N_G(x) \setminus \{y\} : d_G(z, N_G(y) = 2) \} \), is the set of neighbors of \(x \) which are on some 5-cycle supported on \((x, y) \).
- \(N_0(x) = N_G(x) \setminus (N_2(x) \cup \{y\}) \), is the set of remaining neighbors of \(x \), apart from \(y \).

Similarly, we can define a partition \(N_G(y) = N_0(y) \cup N_2(y) \cup \{x\} \). Using these definitions we now give the exact formula for \(\kappa(x, y) \) for graphs \(G \) with girth greater than 4.

![Figure 3. Ricci curvature of graphs with girth at least 5: Structure of the core neighborhood.](image)
Theorem 3.3. Let $G = (V(G), E(G))$ be a locally finite graph with girth $g(G) \geq 5$ and $(x, y) \in E(G)$. Suppose $Q(x, y)$ be the subgraph of $G(x, y)$ induced by $N_1(x) \cup N_1(y) \cup P_G(x, y)$, and $Q_1(x, y), Q_2(x, y), \ldots Q_q(x, y)$ be the connected components of $Q(x, y)$. If $U_a(x) = V(Q_a(x, y)) \cap N_1(x)$ and $L_a(y) = V(Q_a(x, y)) \cap N_1(y)$, for $a \in \{1, 2, \ldots, q\}$, then $\kappa(x, y) = \kappa_0(x, y) \wedge \kappa_1(x, y)$, where
\[
\kappa_0(x, y) = -\left(1 - \frac{1}{d_x} - \frac{1}{d_y}\right)_+.
\]
and
\[
\kappa_1(x, y) = -\left(2 - \frac{2}{d_x} - \frac{2}{d_y} - \frac{|N_2(x)|}{d_x} + \sum_{a=1}^{q} \left\{ \frac{|U_a(x)|}{d_x} - \frac{|L_a(y)|}{d_y} \right\} \cdot \mathbf{1}_{\left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}} \right)_+.
\]
Proof. The proof of this theorem is similar to the proof of Theorem 3.1. Using Lemma 2.3 we can replace G by its core neighborhood $G(x, y)$, which is depicted in Figure 3. For any $Z \subseteq V(G(x, y))$ and any function $f \in \mathcal{L}_1$, denote by $W_f(Z) = \sum_{z \in Z} f(z)$. Therefore, for $(x, y) \in E(G)$,
\[
E_y(f) - E_x(f) = \frac{f(x) + W_f(N_0(y)) + W_f(N_2(y))}{d_y} - \frac{f(y) + W_f(N_0(x)) + W_f(N_2(x))}{d_x}.
\]
As before, for $i \in \{-1, 0, 1\}$ define
\[
\kappa_i(x, y) := 1 - \max_{f \in \mathcal{L}_1, f(y)=i} (E_y(f) - E_x(f)),
\]
and observe that $\kappa(x, y) = \kappa_{-1}(x, y) \wedge \kappa_0(x, y) \wedge \kappa_1(x, y)$. Assuming $f(x) = 0$ we consider the following three cases separately.

Case 1. $f(y) = -1$. This implies that $f(z) \leq 0$ for $z \in N_G(y)$ and $f(z) \geq -1$, for $z \in N_G(x)$. Therefore, from Equation (3.15) we get
\[
E_y(f) - E_x(f) \leq \frac{1}{d_x} + \frac{|N_0(x)| + |N_2(x)|}{d_x} = 1.
\]
Moreover, this bound is attained by the function $g(z) := -1 \cdot \mathbf{1}_{\{z \in N_G(x) \cup \{y\}\}}$ which is 1-Lipschitz on the core neighborhood of (x, y). This implies, $\kappa_{-1}(x, y) = 0$.

Case 2. $f(y) = 0$. This implies that $f(z) \leq 1$ for $z \in N_G(y)$ and $f(z) \geq -1$, for $z \in N_G(x)$. Therefore, from Equation (3.15) we get,
\[
E_y(f) - E_x(f) \leq \frac{|N_0(y)| + |N_2(y)|}{d_y} + \frac{|N_0(x)| + |N_2(x)|}{d_x},
\]
\[
= 2 - \frac{1}{d_x} - \frac{1}{d_y}.
\]
This implies that $\kappa_0(x, y) \geq -1 + \frac{1}{d_x} + \frac{1}{d_y}$.

Now, consider the 1-Lipschitz function $g : V(G(x, y)) \to \mathbb{R}$
\[
g(z) = \begin{cases}
-1, & \text{if } z \in N_0(x) \cup N_2(x); \\
1, & \text{if } z \in N_0(y) \cup N_2(y); \\
0, & \text{otherwise.}
\end{cases}
\]
It is easy to see that $E_y(g) - E_y(g) = 2 - \frac{1}{d_x} - \frac{1}{d_y}$. Therefore, g attains the lower bound in Equation (3.17) and we have
\[
\kappa_0(x, y) = -1 + \frac{1}{d_x} + \frac{1}{d_y}.
\]
Case 3. \(f(y) = 1 \). This implies that \(f(z) \leq 2 \) for \(z \in N_G(y) \) and \(f(z) \geq -1 \), for \(z \in N_G(x) \). From Equation (3.15) and similar to Case 3 in Theorem 3.1 we get,

\[
E_y(f) - E_x(f) \leq \frac{2|N_0(y)|}{d_y} + \frac{|N_0(x)| - 1}{d_x} + \sum_{a=1}^{q} \left\{ \frac{W_f(L_a(y))}{d_y} - \frac{W_f(U_a(x))}{d_x} \right\},
\]

where \(U_a(x) \) and \(L_a(y) \) for \(a \in \{1, 2, \ldots, q\} \) are as defined in statement of the theorem. As before, for any 1-Lipschitz function \(f : V(G(x,y)) \to \mathbb{Z} \) with \(f(x) = 0, f(y) = 1 \) denote the restriction of \(f \) to \(L_a(y) \cup U_a(x) \cup \{x, y\} \) as \(f_a \), for \(a \in \{1, 2, \ldots, q\} \). Define \(W(f_a) \) as before. Then it is easy to see that \(g_a := \arg \max_{f_a \in \mathcal{F}_1, f_a(y) = 1} W(f_a) \) must be either

(i): \(g_a(z) = 1 \) for all \(z \in L_a(y) \) and \(g_a(z) = -1 \) for all \(z \in U_a(x) \),

(ii): \(g_a(z) = 2 \) for all \(z \in L_a(y) \) and \(g_a(z) = 0 \) for all \(z \in U_a(x) \).

This implies that,

\[
\max_{f_a \in \mathcal{F}_1, f_a(y) = 0} W(f_a) = \max \left\{ \frac{|L_a(y)|}{d_y}, \frac{|U_a(x)|}{d_x}, \frac{2|L_a(y)|}{d_y} \right\},
\]

\[
= \left\{ \frac{|L_a(y)|}{d_y} + \frac{|U_a(x)|}{d_x} \right\} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\} + \frac{2|L_a(y)|}{d_y} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y} \right\},
\]

\[
= \left\{ \frac{|U_a(x)|}{d_x} - \frac{|L_a(y)|}{d_y} \right\} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\} + \frac{2|L_a(y)|}{d_y} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y} \right\}
\]

Noting that \(\sum_{a=1}^{q} |L_a(y)| = |N_2(y)| \), and substituting Equation (3.19) in Equation (3.18) we get

\[
\kappa_1(x, y) \geq 1 - \frac{|N_0(x)| - 1}{d_x} - \frac{2|N_0(y)| + |N_2(y)|}{d_y} - \sum_{a=1}^{q} \left\{ \frac{|U_a(x)|}{d_x} - \frac{|L_a(y)|}{d_y} \right\},
\]

\[
= -2 + \frac{2}{d_x} + \frac{2}{d_y} + \frac{|N_2(x)|}{d_x} - \sum_{a=1}^{q} \left\{ \frac{|U_a(x)|}{d_x} - \frac{|L_a(y)|}{d_y} \right\} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}.
\]

Now, consider the 1-Lipschitz function \(g : V(G(x,y)) \to \mathbb{R} \) with \(g(x) = 0, g(y) = 1 \) and

\[
g(z) = \begin{cases}
-1, & \text{if } z \in N_0(x); \\
2, & \text{if } z \in N_0(y); \\
g_a(z), & \text{if } z \in U_a(x) \cup L_a(y).
\end{cases}
\]

where for \(a \in \{1, 2, \ldots, q\} \),

\[
g_a(z) := \begin{cases}
-1 \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}, & \text{if } z \in U_a(x); \\
1 \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y} \right\} + 2 \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}, & \text{if } z \in L_a(y); \\
1 \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} < \frac{|L_a(y)|}{d_y} \right\}, & \text{if } z \in P_C(x,y).
\end{cases}
\]

It is easy to see that \(g \) attains the lower bound in Equation (3.20) and we have

\[
\kappa_1(x, y) = -2 + \frac{2}{d_x} + \frac{2}{d_y} + \frac{|N_2(x)|}{d_x} - \sum_{a=1}^{q} \left\{ \frac{|U_a(x)|}{d_x} - \frac{|L_a(y)|}{d_y} \right\} \cdot 1 \left\{ \frac{|U_a(x)|}{d_x} \geq \frac{|L_a(y)|}{d_y} \right\}.
\]

Note that \(\kappa_1(x, y) \wedge \kappa_0(x, y) = \kappa_1(x, y) \) and \(\kappa_{-1}(x, y) = 0 \). Therefore, \(\kappa(x, y) = \kappa_{-1}(x, y) \wedge \kappa_0(x, y) \wedge \kappa_1(x, y) = \kappa_1(x, y) \wedge 0 \), and the proof completes. \(\square \)
3.3. Ricci-Flat Graphs with Girth 5. Recall that a graph G is said to be Ricci-flat if $\kappa(x, y) = 0$, for all $(x, y) \in E(G)$. The following corollary characterizes Ricci-flat graphs with girth at least 5.

Corollary 3.4. A connected graph G is a Ricci-flat graph with $g(G) \geq 5$, if and only if G is one of the following: the path P_n ($n \geq 2$), the infinite ray, the infinite path, the cycle C_n ($n \geq 5$), or the star graph T_n ($n \geq 3$).

Proof. Suppose $\kappa(x, y) = 0$ for all $(x, y) \in E(G)$ and $g(G) \geq 5$. Then it follows from Theorem 3.3 that $\frac{1}{d_x} + \frac{1}{d_y} \geq 1$, for all $(x, y) \in E(G)$. This implies that either $d_x = d_y = 2$, or $d_x \land d_y = 1$, for all $(x, y) \in E(G)$. The following two cases arise:

Case 1: There is a vertex $v \in V(G)$ with $d_v \geq 3$. Then all neighbors of v must have degree 1, with no edges left to connect to other vertices. Thus, the graph G must be a n-star T_n rooted at v.

Case 2: $d_x \leq 2$ for all $x \in V(G)$. If $d_x = 2$, for all $x \in V(G)$, then it is easy to see that G is an infinite path or a cycle of length at least 5. Hence, it suffices to assume that there is at least one vertex $V(G)$ with degree 1. Then there can be at most 2 vertices with degree 1. Thus, depending on whether the number of degree 1 vertices is one or two, G is either the infinite half ray or the finite path P_n, respectively.

Lin et al. [10] characterized Ricci-flat graphs of girth 5 using their modified definition of Ricci-curvature. The above corollary is the analogous version of their result using Ollivier’s original definition of coarse Ricci-curvature. As it happens, the structure of Ollivier’s Ricci-flat graphs of girth 5 is much simpler than the structure of the modified Ricci-flat graphs. Apart from the infinite path and the cycle, the modified Ricci-flat graphs of girth 5 include quite complicated graphs, such as the Peterson graph, the dodecahedral graph, and the half-dodecahedral graph. Ollivier’s Ricci-flat graph however includes the n-star, which is not included in the modified definition. This illustrates that the structure of Ricci-flat graphs in the two definitions of Ricci-curvature are, in fact, quite different.

4. A General Lower Bound With Maximum Matching and Ricci-Flat Regular Graphs of Girth 4

In this section we establish connections between Ricci-curvature and the size of the matching matching in the core neighborhood subgraph. We prove a general lower bound on the Ricci-curvature in terms of the size of the maximum matching. The bound is often nearly tight, especially in triangle-free regular graphs. Using this bound we prove a necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4.

4.1. A General Lower Bound With Maximum Matching. Let $G = (V, E)$ be a fixed graph, with $(x, y) \in E(G)$. Recall that $N_G(x)$ and $N_G(y)$ denote the set of neighbors of x and y, and $\Delta_G(x, y) = N_G(x) \cap N_G(y)$. Define, $Q_G(x) = N_G(x) \setminus \Delta_G(x, y)$ and $Q_G(y) = N_G(y) \setminus \Delta_G(x, y)$. Let $\Pi_G(x, y)$ be the subgraph of G induced by the vertices in $Q_G(x) \cup Q_G(y)$. A matching in $\Pi_G(x, y)$ is a collection of disjoint edges $(a, b) \in E(G)$, with $a \in Q_G(x)$ and $b \in Q_G(y)$.

Theorem 4.1. Let $G = (V, E)$ be a fixed graph, with $(x, y) \in E(G)$. If $|M_G(x, y)| \leq |Q_G(x)| \land |Q_G(y)|$ is the size of the maximum matching in $\Pi_G(x, y)$, then

$$
\kappa(x, y) \geq \frac{|\Delta_G(x, y)|}{d_x \lor d_y} - 2 \left(1 - \frac{|M_G(x, y)| + |\Delta_G(x, y)|}{d_x \lor d_y}\right).
$$
Moreover, if \(|M_G(x,y)| = |Q_G(x)| \wedge |Q_G(y)|\), then \(\kappa(x, y) \geq \frac{|\Delta_G(x,y)|}{d_x \vee d_y} - 2\left(1 - \frac{d_x \wedge d_y}{d_x \vee d_y}\right)\).

Proof. W.l.o.g. assume \(d_x \leq d_y\) and let \(|M_G(x,y)| = k\). By the definition of matching there exists \(T_x := \{a_1, a_2, \ldots, a_k\} \subseteq Q_G(x)\) and \(T_y := \{b_1, b_2, \ldots, b_k\} \subseteq Q_G(y)\) such that \(d_G(a_i, b_i) = 1\). Consider any 1-Lipschitz function \(f : V(G) \rightarrow \mathbb{Z}\). Lemma 2.2 implies that it suffices to optimize over \(f(x) = 0\). This means that \(|f(z)| \leq 1\) for all \(z \in N_G(x)\), and \(|f(a) - f(b)| \leq 1\).

\[
T_{xy}(f) = \sum_{i=1}^{k} \left(\frac{f(b_i) - f(a_i)}{d_y} \right) + \sum_{z \in \Delta_G(x,y)} \left(\frac{f(z)}{d_y} - \frac{f(z)}{d_x} \right) + \sum_{z \in Q_G(y) \setminus T_y} \frac{f(z)}{d_y} - \sum_{z \in Q_G(x) \setminus T_x} \frac{f(z)}{d_x}
\]

\[
\leq \frac{k}{d_y} + \left(2 \frac{1}{d_x} - 1 \frac{1}{d_y} \right) \sum_{i=1}^{k} \left| f(a_i) - f(z) \right| + \sum_{z \in \Delta_G(x,y)} \left| \frac{f(z)}{d_y} \right| + \sum_{z \in Q_G(x) \setminus T_x} \left| \frac{f(z)}{d_x} \right|
\]

The result follows from noting that \(\kappa(x,y) = 1 - \sup f \in \mathcal{F}, f(x) = 0 \text{ and } |Q_G(x)| = d_x - |\Delta_G(x, y)|, |Q_G(y)| = d_y - |\Delta_G(x, y)|\). If \(d_x \leq d_y\) and \(k = |Q_G(x)| \wedge |Q_G(y)|\), then \(k = |Q_G(x)| = d_x - |\Delta_G(x, y)|\), and the result follows from the previous bound by direct substitution.

Combining the lower bound in the above theorem and the upper bound from Theorem 1.1 we get

\[
\frac{|\Delta_G(x,y)|}{d_x \vee d_y} - 2\left(1 - \frac{M_G(x,y) + |\Delta_G(x,y)|}{d_x \vee d_y}\right) \leq \kappa(x,y) \leq \frac{|\Delta_G(x,y)|}{d_x \vee d_y}.
\]

In the following section we obtain a necessary and sufficient condition on the structure of regular graphs for which the upper bound in Equation 4.2 is tight. As a consequence we characterize Ricci-flat regular graphs with girth 4.

4.2. Ricci-Flat Regular Graphs with Girth 4. Recall that the Birkhoff polytope \(B_n\) is the convex polytope in \(\mathbb{R}^{n^2}\) whose points are the doubly stochastic matrices, that is, the \(n \times n\) matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1 [24]. The Birkhoff-von Neumann theorem states that the extreme points of the Birkhoff polytope are the permutation matrices, that is, matrices with exactly one entry 1 in each row and each column and 0 elsewhere.

Using this result on the Birkhoff polytope and Theorem 4.1 it is easy to get a necessary and sufficient condition on the structure of Ricci-flat graphs with girth 4 which are regular. In fact, we shall prove a much stronger result where we give a necessary and sufficient condition on the structure of the graph for which the upper bound in Equation 4.2.

Theorem 4.2. For be a graph \(G = (V, E)\), with \((x, y) \in E(G)\) and \(d_x = d_y = d\), \(\kappa(x, y) = \frac{|\Delta_G(x,y)|}{d}\), if and only if there is a perfect matching between \(Q_G(x)\) and \(Q_G(y)\).

Proof. If there is a perfect matching between \(Q_G(x)\) and \(Q_G(y)\), then by Theorem 4.1, \(\kappa(x, y) = \frac{|\Delta_G(x,y)|}{d}\).

Conversely, suppose \(\kappa(x, y) = \frac{|\Delta_G(x,y)|}{d}\). From Equation 1.3

\[
\kappa(x, y) = 1 - \inf_{\nu \in A} \sum_{z_1 \in N_G(x)} \sum_{z_2 \in N_G(y)} \nu(z_1, z_2) d(z_1, z_2),
\]
where \mathcal{A} is the set of all $d \times d$ matrices with entries indexed by $N_G(x) \times N_G(y)$ such that $\nu(x', y') \geq 0$, $\sum_{z \in N_G(y)} \nu(x', z) = \frac{1}{d}$, and $\sum_{z \in N_G(x)} \nu(z, y') = \frac{1}{d}$, for all $x' \in N_G(x)$ and $y' \in N_G(y)$. Therefore, \mathcal{A} forms a Birkhoff polytope in \mathbb{R}^{d^2} (after multiplying with d), and since $\kappa(x, y)$ is a linear function defined over \mathcal{A}, it is maximized at one the extreme points. Therefore, by the Birkhoff-von Neumann theorem the optimal transfer plan is a permutation matrix.

To complete the proof, note that the optimal transfer plan, which is given by a permutation matrix, cannot transfer any mass to or from $\Delta_G(x, y)$. Moreover, each transfer must be over a path of length 1. This is because a mass of $1/d$ needs to be transferred by a path of length at least 1 for all vertices in $N_G(x) \setminus \Delta_G(x, y)$, which already gives $W_1(x, y) \geq 1 - \Delta_G(x, y)/d$, and so any further mass transfer will result in $\kappa(x, y) < \Delta_G(x, y)/d$, a contradiction. This implies that there must be a perfect matching between $Q_G(x)$ and $Q_G(y)$. \hfill \square

When G is triangle free, by definition $Q_G(x) = N_G(x)$ and $Q_G(y) = N_G(y)$. The following corollary is then immediate from the above theorem:

Corollary 4.3. A connected graph G with $g(G) = 4$ and $d_x = d_y = d$ has $\kappa(x, y) = 0$ if and only if there is a perfect matching between $N_G(x)$ and $N_G(y)$.

This implies that regular, triangle-free Ricci-flat graphs must have a perfect matching between $N_G(x)$ and $N_G(y)$ for all $(x, y) \in E(G)$. The n-dimensional integer lattice \mathbb{Z}^n, the n-dimensional hypercube C_n^2, a cycle C_n of length $n \geq 4$, and the complete bipartite graph $K_{n,n}$, are examples of regular Ricci-flat graphs of girth 4. Identifying the set of all such regular graphs appears to be difficult graph theory problem, which remains open.

5. **Ricci Curvature of Random Graphs**

In this section we study the behavior of Ollivier’s Ricci-curvature for Erdős-Rényi random graphs $G(n, p)$ in different regimes of p. As we saw in the previous section, the Ricci-curvature is greatly determined by the size of matchings in the core neighborhood subgraph. In this section we will prove a technical matching lemma, establish properties of matchings in random bipartite graphs, and use these results to obtain Ricci-curvature of random graphs.

5.1. **A More Technical Matching Lemma.** Let $G = (V, E)$ be a fixed graph, with $(x, y) \in E(G)$. Define, $R_G(x) = (N_G(x) \setminus \{y\}) \setminus \Delta_G(x, y)$ and $R_G(y) = (N_G(y) \setminus \{x\}) \setminus \Delta_G(x, y)$. Let $H_G(x, y)$ be the subgraph of G induced by the vertices in $R_G(x) \cup R_G(y)$. The subgraph $H_G(x, y)$ is said to have a m-matching of size k if there exists $T_x := \{a_1, a_2, \ldots, a_k\} \subseteq R_G(x)$ and $T_y := \{b_1, b_2, \ldots, b_k\} \subseteq R_G(y)$ such that $d_G(a_i, b_i) \leq m$, for $m \in \mathbb{Z}^+$ and $k \leq |R_G(x)| \wedge |R_G(y)|$. Note that a 1-matching of size k is just the standard bipartite matching of size k between $R_G(x)$ and $R_G(y)$ in the subgraph $H_G(x, y)$.

The following lemma gives a lower bound on the Ricci-curvature in terms of the size of 2-matchings in $H_G(x, y)$. We shall use this lemma later to bound Ricci-curvature of random graphs.

Lemma 5.1. Let $G = (V, E)$ be a fixed graph, with $(x, y) \in E(G)$, and $H_G(x, y)$ be the subgraph of G induced by the vertices in $R_G(x) \cup R_G(y)$. If there exists a 2-matching of size k ($k \leq |R_G(x)| \wedge |R_G(y)|$) in the $H_G(x, y)$, then

$$\kappa(x, y) \geq -2 + \frac{3|\Delta_G(x, y)| + k + 2}{d_x \lor d_y}.$$

Moreover, if $k = |R_G(x)| \wedge |R_G(y)|$, then $\kappa(x, y) \geq -2 + \frac{2|\Delta_G(x, y)| + d_x \wedge d_y + 1}{d_x \lor d_y}$.
Proof. W.l.o.g. assume $d_x \leq d_y$. By the definition of m-matching there exists $T_x := \{a_1, a_2, \ldots, a_k\} \subseteq R_G(x)$ and $T_y := \{b_1, b_2, \ldots, b_k\} \subseteq R_G(y)$ such that $d_G(a_i, b_i) \leq 2$. Consider any 1-Lipschitz function $f : V(G) \mapsto \mathbb{Z}$. Lemma 2.2 implies that it suffices to optimize over $f(x) = 0$. This means that $|f(z)| \leq 1$ for all $z \in N_G(x)$, and $|f(a_i) - f(b_i)| \leq 2$. If $T_{xy}(f) = \mathbb{E}_x(f) - \mathbb{E}_y(f)$, then from calculations similar to the proof of Theorem 4.1

$$T_{xy}(f) = -\frac{f(y)}{d_x} + \sum_{i=1}^k \left(\frac{f(b_i)}{d_y} - \frac{f(a_i)}{d_x} \right) + \sum_{z \in \Delta_G(x,y)} \left(\frac{f(z)}{d_y} - \frac{f(z)}{d_x} \right) + \sum_{z \in R_G(y) \setminus T_y} \frac{f(z)}{d_y} - \sum_{z \in R_G(x) \setminus T_x} \frac{f(z)}{d_x} \leq \frac{|f(y)|}{d_x} + \frac{2k}{d_y} + \left(\frac{1}{d_x} - \frac{1}{d_y} \right) \{k + |\Delta_G(x,y)|\} + \frac{2(|R_G(y)| - k)}{d_y} + \frac{|R_G(x)| - k}{d_x}. \tag{5.1}$$

Note that $\kappa(x, y) = 1 - \sup_{f \in \mathcal{F}, f(x) = 0} T_{xy}(f)$. Therefore, simplifying Equation 5.1 the result follows. Moreover, if $d_x \leq d_y$ and $k = |R_G(x)| \wedge |R_G(y)|$, then $k = |R_G(x)| = d_x - 1 - |\Delta_G(x,y)|$, and the result follows from the previous bound by direct substitution.

5.2. Matchings in Random Bipartite Graphs. Matchings in random graphs are well studied in the literature [6], beginning with the celebrated result of Erdős and Rényi [5] on the existence of perfect matchings. The proof of this result relies on the celebrated Hall’s marriage theorem. We shall use a stronger version of the Hall’s theorem to obtain an analogous result about the existence of near-perfect matching in random bipartite graphs. We will use this result later to prove Ricci-curvature of random graphs.

Recall Hall’s marriage theorem which states that a bipartite graph $G = (V, E)$ with bipartition (A, B) has a perfect matching if and only if for $X \subseteq A$, $|N_G(X)| \geq |X|$, where $N_G(X) = \bigcup_{x \in X} N_G(x)$. We shall need the following strengthening of the Hall’s theorem [4]:

Theorem 5.1. [4] Consider a bipartite graph $G = (V, E)$ with bipartition (A, B). For $X \subseteq A$, define $\delta(X) = |X| - |N_G(X)|$, where $N_G(X) = \bigcup_{x \in X} N_G(x)$. Let $\delta_{\max} = \max_{X \subseteq A} \delta(X)$. Then the size of the maximum matching in G is $|A| - \delta_{\max}$. \hfill \Box

Using this theorem we now prove the following lemma about the existence of near-perfect matching in random bipartite graphs.

Lemma 5.2. For every $\varepsilon \in (0, 1)$,

$$\lim_{n \to \infty} \mathbb{P}(G(n, n, p) has a matching of size $n(1 - \varepsilon)$) = \begin{cases} 0 & \text{if } np \to 0, \\ 1 & \text{if } np \to \infty. \end{cases}$$

Proof. Let $G \sim G(n, n, p)$ be a random bipartite graph with bipartition (A, B), with $|A| = |B| = n$ and edge probability p.

If $np \to 0$ and there is a matching of size $n(1 - \varepsilon)$ in G, then $|E(G)| \geq n(1 - \varepsilon)$. But $E(G) \sim Bin(n^2, p)$, and so $\mathbb{P}(E(G) \geq n(1 - \varepsilon)) \to 0$ by Markov’s inequality.

Next, suppose $np \to \infty$. Let $X \subseteq A$, with $|X| \geq \varepsilon n$. If $D(X) = \sum_{x \in X} d_x$, then $D(X) \sim Bin(n|X|, p)$, and by Hoeffding’s inequality $\mathbb{P}(D(X) < |X|) \leq \exp(-2|X|(np - 1)^2)$. Thus, by a union bound,

$$\mathbb{P}(\exists X \subseteq A : |N_G(X)| < |X|, |X| \geq \varepsilon n) \leq \mathbb{P}(\exists X \subseteq A : D(X) < |X|, |X| \geq \varepsilon n) \leq \sum_{|X| = n\varepsilon} \binom{n}{|X|} \exp(-2|X|(np - 1)^2) \leq 2^n \exp(-2\varepsilon n(np - 1)^2) \to 0.$$
Thus, with probability $1 - o(1)$, for any $X \subseteq A$, with $|X| \geq \varepsilon n$, $|N_G(X)| \geq |X|$. Therefore, from Theorem 5.1, G has a matching of size $n(1 - \varepsilon)$ with probability $1 - o(1)$, when $np \to \infty$. □

Remark 5.1. Lemma 5.2 immediately gives that for a random bipartite graph $G(m, n, p)$ with $(m \wedge n)p \to \infty$, $\lim_{m,n \to \infty} P(G(m, n, p) \text{ has a matching of size } (m \wedge n)(1 - \varepsilon)) = 1$.

5.3. Ricci Curvature of Random Bipartite Graphs. We are now ready to state and prove our result on the Ricci curvature of random bipartite graphs. Let $G(n, n, p)$ be a random bipartite graph with bipartition (A_n, B_n). Let $a \in A_n$ and $b \in B_n$ be two fixed vertices. For $G \sim G(n, n, p)$, conditioned on the edge (a, b) being present, denote by $\kappa_n(a, b)$ the Ricci-curvature of the edge (a, b) in G.

Theorem 5.2. Let $G(n, n, p_n)$ be the distribution of a random bipartite graph with bipartition (A_n, B_n), conditioned on the edge (a, b) being present.

(a) If $np_n \to 0$ then with probability $1 - o(1)$ the edge (a, b) is isolated, and consequently $\kappa_n(a, b) = 0$.

(b) If $np_n \to \lambda$ for $0 < \lambda < \infty$, then $\kappa_n(a, b) \xrightarrow{p} -2 \left(1 - \frac{1}{1+X_1} - \frac{1}{1+X_2}\right)_+$, where X_1, X_2 are independent Poisson(λ) random variables, that is, the Ricci curvature converges in distribution to Ricci-curvature of its limiting tree.

(c) If $np_n \to \infty$, and $np_n^2 \to 0$ then $\kappa_n(a, b) \xrightarrow{p} -2$.

(d) If $np_n^2 \to \infty$, then $\kappa_n(a, b) \xrightarrow{p} 0$.

Proof. Let $G \sim G(n, n, p_n)$ be a random bipartite graph with bipartition $A_n = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ and $B_n = \{\beta_1, \beta_2, \ldots, \beta_n\}$. For $i, j \in \{1, 2, \ldots, n\} = [n]$ define let $\delta_{ij} = 1$ if $(\alpha_i, \beta_j) \in E(G)$ and 0, otherwise. Define $X_n^a := \sum_{j \in [n] \setminus \{b\}} \delta_{aj}$ and $X_n^b := \sum_{i \in [n] \setminus \{a\}} \delta_{bi}$. Clearly, (X_n^a, X_n^b) are independent binomial random variables with parameters $(n - 1, p_n)$ and measurable which are measurable with respect to $\mathcal{F}_n := \sigma(\delta_{aj}, \delta_{bi}, i \in [n] \setminus \{a\}, j \in [n] \setminus \{b\})$.

(a) In this case, $P(\{X_n^a \neq 0\} \cup \{X_n^b \neq 0\}) \leq E(X_n^a + X_n^b) \leq 2np_n \to 0$. Therefore, with probability $1 - o(1)$ the edge (a, b) is isolated.

(b) Observe that, in this case,

$$
P\left(\sum_{i \in [n] \setminus \{b\}} \sum_{j \in [n] \setminus \{a\}} \delta_{aj} \delta_{ij} \delta_{ib} \neq 0\right) \leq \sum_{i \in [n] \setminus \{b\}} \sum_{j \in [n] \setminus \{a\}} E(\delta_{aj} \delta_{ij} \delta_{ib}) \leq n^2 p_n^3 = O(1/n).
$$

Therefore, with probability $1 - O(1/n)$ there are no 4-cycles in G supported on (a, b). As G is bipartite, the girth of G is at least 6, and Lemma 2.2 implies that

$$
\kappa_n(a, b) = -2 \left(1 - \frac{1}{1+X_n^a} - \frac{1}{1+X_n^b}\right)_+.
$$

The conclusion follows on noting that $(X_n^a, X_n^b) \xrightarrow{p} (X_1, X_2)$, where X_1, X_2 are independent Poisson(λ) random variables.

(c) Let $R_G(b)$ denote the set of vertices in $N_G(b)$ which are not connected to any vertex in $N_G(a)$. Then given \mathcal{F}_n,

$$
|R_G(b)| \sim Bin\left(X_n^b, 1 - (1 - p_n)X_n^a\right) \text{ and } E\left(\frac{|R_G(b)|}{X_n^b}\big|\mathcal{F}\right) = 1 - (1 - p_n)X_n^a \xrightarrow{p} 0,
$$

as $np_n^2 \to 0$. Consequently, we have $|R_G(b)| = o_p(X_n^b)$. Defining $R_G(a)$ by symmetry we have $|R_G(a)| = o_p(X_n^a)$. Now, consider the 1-Lipschitz function f on the (random) core-neighborhood
As bipartite graphs are triangle free, from Equation 3.1 we know that $\kappa(n, p) = 0$. If n is large enough, let $G \in \mathcal{G}(n, p)$, then with probability $1 - o(1)$, there exists a bipartite matching between in G. Moreover, by definition $W_n(a, b) \leq 3$ and the conclusion follows.

(d) As bipartite graphs are triangle free, from Equation 3.1 we know that $\kappa(a, b) \leq 0$. So, it suffices to prove only the lower bound.

The RHS converges to 3 in probability. Thus, $W_n(a, b) \geq 3 - o(1)$ with probability $1 - o(1)$. Moreover, by definition $W_n(a, b) \leq 3$ and the conclusion follows.

5.4. Ricci Curvature of Erdős-Rényi random graphs. Building on the techniques developed in the previous section, we now determine the limiting behavior of Ricci-curvature for Erdős-Rényi random graphs $\mathcal{G}(n, p_n)$ in different regimes of p.

Theorem 5.3. Let $\mathcal{G}(n, p_n)$ be the distribution of a Erdős-Rényi random graph with vertex set V_n, conditioned on the edge (a, b) being present.

(a) If $np_n \to 0$ then with probability $1 - o(1)$ the edge (a, b) is isolated, and consequently $\kappa_n(a, b) = 0$.

(b) If $np_n \to \lambda$ for $0 < \lambda < \infty$, then $\kappa_n(a, b) \xrightarrow{p} -2\left(1 - \frac{1}{1+X_1} - \frac{1}{1+X_2}\right)$, where X_1, X_2 are independent Poisson(λ) random variables, that is, the Ricci curvature converges in distribution to Ricci-curvature of its limiting tree.

(c) If $np_n \to 0$, $n^2p_n^2 \to 0$, then $\kappa_n(a, b) \xrightarrow{p} -2$.

(d) If $n^2p_n^2 \to 0$, then $\kappa_n(a, b) \xrightarrow{p} -1$.

(e) If $np_n^2 \to 0$, then $\kappa_n(a, b) \xrightarrow{p} 0$.

(f) If $p_n \to p$ with $0 < p < 1$, then $\kappa_n(a, b) \xrightarrow{d} p$.
Proof. Let $V_n = \{v_1, v_2, \ldots, v_n\}$ and $G \sim \mathbb{G}(n, p_n)$ be a random graph with vertex set V_n, conditioned on the edge (a, b) being present, for 2 fixed vertices $a, b \in V_n$. For $\{i, j\} \subseteq \{1, 2, \ldots, n\} := [n]$ define let $\delta_{ij} = 1$ if $(v_i, v_j) \in E(G)$ and 0, otherwise. Define $X_n^a := \sum_{j \in [n] \setminus \{a, b\}} \delta_{aj}$ and $X_n^b := \sum_{i \in [n] \setminus \{a, b\}} \delta_{ib}$. Clearly, (X_n^a, X_n^b) are independent binomial random variables with parameters $(n-2, p_n)$ and measurable which are measurable with respect to $\mathcal{F}_n := \sigma(\delta_{aj}, \delta_{ib}, i \in [n] \setminus \{a, b\}, j \in [n] \setminus \{a, b\})$.

(a) By Markov’s inequality we have $\mathbb{P}(\{X_n^a + X_n^b = 0\}) \leq \mathbb{E}(X_n^a + X_n^b) \leq 2np_n \rightarrow 0$. So, the edge (a, b) is isolated with probability $1 - o(1)$, and $\kappa_n(a, b) = 0$.

(b) We will show that in this case there are no cycles of length $3, 4, \text{ or } 5$ supported on (a, b) with probability $1 - O(1/n)$. In this regard, note that

\[
\mathbb{P}(\exists \text{ a } 3\text{-cycle supported on } (a, b)) \leq \sum_{j \in [n] \setminus \{a, b\}} \mathbb{E}(\delta_{aj}\delta_{bj}) \leq np_n^2 = O(1/n),
\]

\[
\mathbb{P}(\exists \text{ a } 4\text{-cycle supported on } (a, b)) \leq \sum_{\{j, k\} \subseteq [n] \setminus \{a, b\}} \mathbb{E}(\delta_{aj}\delta_{jk}\delta_{kb}) \leq n^2p_n^3 = O(1/n),
\]

\[
\mathbb{P}(\exists \text{ a } 5\text{-cycle supported on } (a, b)) \leq \sum_{\{j, k, l\} \subseteq [n] \setminus \{a, b\}} \mathbb{E}(\delta_{aj}\delta_{jk}\delta_{kl}\delta_{lb}) \leq n^3p_n^4 = O(1/n).
\]

This implies that $\mathbb{P}(\exists \text{ a } 3, 4, \text{ or } 5 \text{ cycle supported on } (a, b)) = O(1/n)$. Therefore, with probability $1 - O(1/n)$, the girth of G is at least 6, and Lemma 2.2 implies that

\[
\kappa_n(a, b) = -2 \left(1 - \frac{1}{1 + X_n^a} - \frac{1}{1 + X_n^b}\right).
\]

The conclusion follows on noting that $(X_n^a, X_n^b) \overset{d}{\rightarrow} (X_1, X_2)$, where X_1, X_2 are independent Poisson(λ) random variables.

(c) As in the previous case, the probability of a triangle and a quadrilateral supported on (a, b) is bounded by np_n^2 and $n^2p_n^3$, and so with probability $1 - o(1)$ there are no 3 and 4-cycles supported on (a, b). Let $Q_2(b) = \{x \in N_G(b) : d_G(x, N_G(a)) = 2\}$. Note that

\[
|Q_2(b)| \mathcal{F}_n \sim \operatorname{Bin}(X_n^b, 1 - (1 - p_n^2)^{(n-4)X_n^a}) \text{ and } \mathbb{E}\left(\frac{|Q_2(b)|}{X_n^b}|\mathcal{F}_n\right) = 1 - (1 - p_n^2)^{(n-4)X_n^a} \overset{p}{\rightarrow} 0.
\]

Now, consider the 1-Lipschitz function f on the (random) core-neighborhood of G defined as follows:

\[
f(x) = \begin{cases} 0 & \text{if } x \in N_G(a), \\ 2 & \text{if } x \in Q_2(b) \cup \{b\}, \\ 3 & \text{if } x \in N_G(b) \setminus Q_2(b), \\ 1 & \text{otherwise.} \end{cases}
\]

Then we have

\[
\mathbb{E}_b(f) - \mathbb{E}_b(f) = \frac{1 + 2|Q_2(b)| + 3(X_n^b - |Q_2(b)|)}{1 + X_n^b} - \frac{2}{1 + X_n^b},
\]

The RHS converges to 3 in probability, and the conclusion follows from arguments similar to the proof of part (c) of Theorem 5.2.

(d) In this case there are no triangles supported on (a, b) with probability $1 - o(1)$. Define $R_1(a) = \{x \in N_G(a) : d_G(x, N_G(b)) = 1\}$, and $R_1(b)$ similarly. By an argument similar to the previous case we have $R_1(a) = \mathcal{O}_p(X_n^a)$ and $R_1(b) = \mathcal{O}_p(X_n^b)$. Now, for any $z_1 \in N_G(a) \setminus R_1(a)$ and $z_2 \in N_G(b) \setminus R_1(b)$ we have $d(z_1, z_2) \geq 2$, and so the function f defined below is 1-Lipschitz:
(e) In this case there may be triangles supported on $p(G)$.

Plugging in f we have

$$\mathbb{E}_a(f) - \mathbb{E}_o(f) = \frac{|R_2(b)| + 2(X^a_n - |R_2(b)|)}{1 + X^a_n} - \frac{1}{1 + X^a_n}.$$

The RHS converges to 2 in probability, proving the upper bound for $\kappa_n(a, b)$.

To prove the lower bound, assuming $\Delta_G(a, b) = \emptyset$ we claim that with probability $1 - o(1)$ there exists a 2-matching between $N_G(a)$ and $N_G(b)$ of size $(1 - \varepsilon)(X^a_n \wedge X^b_n)$. Assuming the claim is true by of Lemma 5.1

$$\kappa_n(a, b) \geq -2 + \frac{2 + (1 - \varepsilon)X^a_n \wedge X^b_n}{(1 + X^a_n) \vee (1 + X^b_n)}.$$

The RHS converges to $-1 - \varepsilon$ in probability, which would finish the proof of (d).

To complete the proof we need to verify the claim, that is, construct a 2-matching between $N_G(a)$ and $N_G(b)$ in the subgraph $H_G(a, b)$. Define a new random graph $\mathcal{H}(G)$ with $V(\mathcal{H}(G)) = N_G(a) \cup N_G(b)$ and an edge between $i \in N_G(a)$ and $j \in N_G(b)$ if and only if it is in the original random graph G there is a path from i to j of length 2.

By this construction, the probability that there is an edge between i and j in $\mathcal{H}(G)$ is $\hat{p}_n := 1 - (1 - p^2_n)^{n-4}$. By a Taylor’s expansion we have

$$|1 - (1 - p^2_n)^{n-4} - np^2_n| \leq 4p^2_n + \frac{1}{2}n^2 p^4_n (1 + p^2_n)^{n-6} = np^2_n \left(\frac{4}{n} + \frac{1}{2} np^2_n e^{np^2_n}\right) = np^2_n o(1),$$

and so for all large n we have $\hat{p}_n \geq np^2_n/2$. Note that there is a 2-matching in $H_G(a, b)$ of size $(1 - \varepsilon)(X^a_n \wedge X^b_n)$ if and only if $\mathcal{H}(G)$ has a 1-matching of size $(1 - \varepsilon)(X^a_n \wedge X^b_n)$. Since existence of a matching is a monotone property and the edges in $\mathcal{H}(G)$ are positively correlated, w.l.o.g. we may assume that the edges in $\mathcal{H}(G)$ are independent, as that would further reduce the probability of a matching. Now, on the set $C_n := \{X^a_n \geq np_n/2, X^b_n \geq np_n/2\}$ we have $(X^a_n \wedge X^b_n)\hat{p}_n \geq np_n\hat{p}_n/2 \geq n^2 p^3_n/4 \rightarrow \infty$. Thus, by Lemma 5.1 we have

$$\mathbb{P}(\mathcal{H}(G) \text{ has no matching of size } (1 - \varepsilon)(X^a_n \wedge X^b_n) \mid \mathcal{F}_n, C_n, |\Delta_G(a, b)| = 0) \leq \delta,$$

from which the claim follows, as $\mathbb{P}(C_n) \rightarrow 1$.

(c) In this case there may be triangles supported on (a, b). Recall $R_G(a) = N_G(a) \setminus \Delta_G(a, b)$ and $R_G(b) = N_G(b) \setminus \Delta_G(a, b)$, and $H_G(a, b)$ is the subgraph of G induced by the vertices in $R_G(a) \cup R_G(b)$. This implies that $|R_G(a)| = X^a_n - |\Delta_G(a, b)|, |R_G(b)| = X^b_n - |\Delta_G(a, b)|$. As $|X^a_n \wedge X^b_n| = |\Delta_G(a, b)| \Rightarrow \infty$, by Remark 5.1 there exists a matching in $H_G(a, b)$ of size $(1 - \varepsilon)(X^a_n \wedge X^b_n)$ with probability $1 - o(1)$, and so by Theorem 4.1 we have

$$\kappa_n(a, b) \geq \frac{|\Delta_G(a, b)|}{(1 + X^a_n) \vee (1 + X^b_n)} - 2\left(1 - \frac{(X^a_n \wedge X^b_n - \Delta_G(a, b))(1 - \varepsilon) + |\Delta_G(a, b)|}{(1 + X^a_n) \vee (1 + X^b_n)}\right).$$

The RHS converges to -2ε in probability, as $|\Delta_G(x, y)| = o_p(X^a_n \wedge X^b_n)$. This proves that $\kappa_n(a, b) \geq 0$ in probability. Moreover, by Equation 3.1 we have $\kappa_n(a, b) \leq \frac{|\Delta_G(x, y)|}{(X^a_n + 1)(X^b_n + 1)}$ which converges to 0 in probability, completes the proof.
By a similar argument as in the previous case, there exists a matching between $R_G(a)$ and $R_G(b)$ of size $(1 - \varepsilon)(X^a_n \land X^b_n - |\Delta G(a, b)|)$, and so by Theorem 4.1 we have

$$\kappa_n(a, b) \geq \frac{|\Delta G(a, b)|}{(1 + X^a_n)(1 + X^b_n)} - 2 \left(1 - \frac{(X^a_n \land X^b_n - |\Delta G(a, b)|)(1 - \varepsilon) + |\Delta G(a, b)|}{(1 + X^a_n)(1 + X^b_n)}\right).$$

The RHS converges to $p - 2\varepsilon(1 - p)$, which together with Equation 3.1 implies that $\kappa_n(a, b) \overset{p}{\to} p$.

6. Conclusions

In this paper we derive exact formulas for Ricci-curvature that hold for a large class of graphs, such as bipartite graphs and those with girth at least 5. The expressions strongly depend on the graph structure. Our derivation also leads to discovery of many useful upper bounds, which in many cases, are tight.

We prove a general lower bound on $\kappa(x, y)$ in terms of the size of the matching matching among the non-common neighbors of x and y in the graph G. This bound is often tight, especially in regular graphs which have a perfect matching between the non-common neighbors. This result and the Birkhoff-von Neumann provide the first necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4. However, it still remains open to characterize the set of graphs with a perfect matching between the non-common neighbors of x and y, for all edges (x, y) in the graph.

We also study the Ricci-curvature of random graphs and characterize the limiting behavior of the Ricci-curvature in the regimes where it has a constant limit in probability. Studying Ricci-curvature for other random graph models is an interesting problem for future research.

Acknowledgement: The authors are indebted to Persi Diaconis for introducing them to the notion of Ricci-curvature and for his inspirational guidance. The authors also thank Sourav Chatterjee, Austen Head, and Susan Holmes for useful discussions.

References

[1] D. Bakry, M. Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math. 1123, Springer, Berlin, 1985.
[2] H. J. Cho, S.-H. Paeng, Ollivier’s Ricci curvature and the coloring of graphs, European Journal of Combinatorics, Vol. 34, 916–922, 2013.
[3] Fan Chung, S.-T. Yau, Logarithmic Harnack inequalities, Math. Res. Lett., Vol. 3, 793–812, 1996.
[4] R. Diestel, Graph Theory, Graduate Texts in Mathematics, Volume 173 (4th Ed.), Springer-Verlag, Heidelberg, 2010.
[5] P. Erdős and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta. Math. Acad. Sci. Hungar., Vol. 17, 359–368, 1966.
[6] S. Janson, T. Łuczak, and A. Ruciński, Random Graphs, New York, Wiley, 2000.
[7] J. Jost and S. Liu, Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs, arXiv:1103.4037v2 [math.CO], 2011.
[8] A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov Chain Monte Carlo, Annals of Probability, Vol. 38 (6), 2418–2442, 2010.
[9] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times, Amer. Math. Soc., Providence, RI, 2009.
[10] Y. Lin, L. Lu, and S. T. Yau, Ricci-flat graphs with girth at least five, arXiv:1301.0102 [math.CO], 2013.
[11] Y. Lin, L. Lu, and S. T. Yau, Ricci Curvature of graphs, Tohoku Math. J., Vol. 63 (4), 605–627, 2011.
[12] Y. Lin and S. T. Yau, Ricci curvature and eigenvalue estimate on locally finite graphs, Math. Res. Lett., Vol. 17 (2), 343–356, 2010.
[13] J. Lott and C. Villani, Ricci curvature for metric measure spaces via optimal transport, *Ann. of Math.* 169 (3), 903–991, 2009.
[14] S. Ohta, On measure contraction property of metric measure spaces, *Comment. Math. Helv.*, Vol. 82, 805–828, 2007.
[15] Y. Ollivier, Ricci curvature of metric spaces, *C. R. Math. Acad. Sci. Paris*, Vol. 345, 11, 643–646, 2007.
[16] Y. Ollivier, Ricci Curvature of Markov Chains on Metric Spaces, *J. Funct. Anal.*, Vol. 256 (3), 810–864, 2009.
[17] Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, *Probabilistic approach to geometry*, 343-381, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.
[18] S.-H. Paeng, Volume and diameter of a graph and Ollivier’s Ricci curvature, *European J. Comb.*, Vol. 33, 1808–1819, 2012.
[19] A. Schrijver, *Combinatorial Optimization: Polyhedra and Efficiency*, Algorithms and Combinatorics, Vol. 24, Berlin, Springer, 2003.
[20] K.-T. Sturm, On the geometry of metric measure spaces, I, *Acta Math.*, Vol. 196, 65–131, 2006.
[21] K.-T. Sturm, On the geometry of metric measure spaces, II, *Acta Math.*, Vol. 196, 133–177, 2006.
[22] C. Villani, *Topics in optimal transportation*, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003.
[23] V. A. Yemelichev, M. M. Kovlev, and M. K. Kravtsov, *Polytopes, Graphs, Optimization*, (Translated by G. H. Lawden), Cambridge University Press, Cambridge, 1984.
[24] G. M. Ziegler, *Lectures on Polytopes*, Graduate Texts in Mathematics, 152 (1st Ed.), New York: Springer, 2007.

Department of Statistics, Stanford University, California, USA, bhaswar@stanford.edu

Department of Statistics, Stanford University, California, USA, sumitm@stanford.edu