Both CTCF-dependent and -independent Insulators Are Found between the Mouse T Cell Receptor α and Dad1 Genes*

Received for publication, March 19, 2004, and in revised form, April 12, 2004
Published, JBC Papers in Press, April 13, 2004, DOI 10.1074/jbc.M403121200

Frédérique Magdinier‡, Timur M. Yusufzai, and Gary Felsenfeld§

From the Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0504

The T cell rearrangement of the T cell receptor (TCR) genes TCRα and δ is specifically regulated by a complex interplay between enhancer elements and chromatin structure. The α enhancer is active in T cells and drives TCRα recombination in collaboration with a locus control region-like element located downstream of the Ca gene on mouse chromosome 14. Twelve kb further downstream lies another gene, Dad1, with a program of expression different from that of TCRα. The ~6-kb locus control region element lying between them contains multiple regulatory sites with a variety of roles in regulating the two genes. Previous evidence has indicated that among these there are widely distributed regions with enhancer blocking (insulating) activity. We have shown in this report that one of these sites, not previously examined, strongly binds the insulator protein CTCF-binding factor (CTCF) in vitro and in vivo and can function in an enhancer blocking assay. However, other regions within the 6-kb element that also can block enhancers clearly do not harbor CTCF sites and thus must reflect the presence of a previously undetected and distinct vertebrate insulator activity.

The T cell receptor genes (TCR) play a central role in the development of T lymphocytes. Rearrangement within the TCR α, β, γ, and δ gene segments lead to specific recognition and immunological response to foreign antigens. The heterodimeric αβ TCR is expressed in the major subset of circulating peripheral blood T cells, whereas the γδ TCR is expressed in a minor population of T cells. The α and δ genes are located on the same locus in human, mouse, and chicken genomes, and a separate enhancer has been identified for each of the TCR genes (Fig. 1A; reviewed in Ref. 1). During mouse embryonic development, the δ genes are rearranged at 14 days of gestation, whereas the rearrangement of the α genes starts at day 16. Consequently, TCR ontogeny is tightly regulated by a complex array of cis-acting elements and targeted changes in chromatin structure exerting either positive or negative regulatory effects on VDJ recombination (reviewed in Ref. 2).

In T cell lines, nine hypersensitive sites (HS) have been identified in the 3′ region of the TCRα locus (Fig. 1C). HS1 maps to the TCRα enhancer (3), HS7 and 8 are located within the Ca gene (4) and HS1′ (5) and HS2–6 (4) lie downstream of Ea. Constructs containing HS2–6 are required for cell-specific, copy number-dependent TCRα expression in transgenic mice, independent of the integration site of the transgene (4). Thus, it was suggested that this region may be the locus control region (LCR) of the TCRα locus, consisting of a set of important elements that control the locus accessibility to regulatory factors by opening the chromatin structure as described for other LCRs (6–8).

Using a gene targeting approach to study the role of the TCRα LCR in vivo, Hong et al. (9) have identified a new gene located 12 kb downstream of the α constant region and the region containing the hypersensitive sites (Fig. 1, A and C). This gene, Dad1, is expressed ubiquitously (9), and the coding sequences of Dad1 are highly conserved between species even in organisms that do not have TCR genes, such as yeast (10) or Caenorhabditis elegans (11). The Dad1 protein has been shown to play a role in preventing apoptosis in certain cell types (10, 12–13) and is also a subunit of the oligosaccharyltransferase enzyme complex that initiates N-linked glycosylation (10, 14).

The nine DNase I hypersensitive elements within the 12-kb region separating the TCRα locus and Dad1 form distinct patterns in lymphoid tissues where both TCRα and Dad1 are expressed and in non-lymphoid tissues where only Dad1 is expressed. The replacement of HS2–6 in its natural context impairs Dad1 expression, resulting in early lethality of mice (9). Indeed, mice carrying this deletion die at 7 days post coitum, before TCRα activation, suggesting that this region is important for both TCRα and Dad1 expression. Moreover, a deletion of Eaα that leaves HS2–6 intact abolishes VDJ recombination and transcription of the TCRα gene, indicating that HS2–6 cannot control TCRα expression in the absence of the enhancer (15). Nonetheless, a deletion of HS2–6 that leaves Ea intact affects TCRα expression (9). Therefore, Zhong and Kran- gel (16) suggested that the HS2–6 is a boundary element that has an LCR-like activity, able to confer copy number-dependent and integration site-independent expression on an Ea-containing transgene (4–5) but also able to protect both against ectopic activation of the TCRα by Dad1 regulatory elements and, reciprocally, against Ea activation of Dad1 expression in T cells. They also showed that HS2–6 blocks an enhancer from activating a promoter when located between the two (16). However, in addition to enhancer-blocking activity, HS2–6 also shows a synergistic activation property when located upstream of the enhancer, suggesting that this region is a mosaic of regulatory elements involved in a complex regulation system for both TCRα and Dad1 genes.

Known insulator elements vary greatly in their DNA sequences and the specificity of proteins that bind to them. However, they share at least one of the two following properties: (i) they have the ability to act as an enhancer blocker when placed between an enhancer and the promoter, and (ii) they have the
ability to protect against position effects due to the chromosomal environment (17–19). The first vertebrate insulator to be described is located near the 5′ end of the chicken β-globin locus (20). A number of insulators have now been identified in other vertebrates, located between genes with independent patterns of expression and consistent with a role in preventing inappropriate interaction between the regulatory elements of the neighboring loci. The insulators at the ribosomal RNA genes of Xenopus (21), the Bead-1 element at human TCRδ locus (22), the chicken β-globin gene 5′ HS4 element (22), and the imprinted Igf2/H19 locus (23–24) are bound by the CTCF protein. Moreover, CTCF sites have been found recently at the Tux locus, suggesting also a role for CTCF in X inactivation (25). The CTCF protein is only present in higher eukaryotes, and its sequence is highly conserved among species. CTCF is a multivalent protein that binds to different targets through the combinatorial use of its 11 zinc fingers and can be involved in gene activation or repression and chromatin insulation (26).

In this report, we describe a search for potential binding sites for CTCF within the region between the TCRα locus and the Dad1 gene. We began by comparing this DNA sequence to all the known CTCF sites. Despite the presence of several close homologs, in vitro binding studies followed by in vivo chromatin immunoprecipitation analysis revealed only a single CTCF binding site, located downstream of the enhancer of the TCRα locus and possessing a strong enhancer blocking activity in our assay. We also undertook a quantitative study of the pattern of histone acetylation across the region that revealed that this enhancer blocking site may be associated with a more complex array of regulatory elements. Surprisingly, although we confirmed the enhancer blocking activity of the region containing sites HS2–6 as previously described (16), we found no evidence of additional CTCF sites in this region. This indicates the presence of novel enhancer blocking insulator elements that remain to be characterized. Our results suggest that the CTCF protein participates in the insulator activity of this region, allowing proper expression of TCRα and Dad1 genes, but is working in concert with previously unrecognized mechanisms of insulation.

EXPERIMENTAL PROCEDURES

Cell Culture—The human erythroleukemia cell line K562 was maintained in improved minimal essential medium. The mouse fibroblast cell line NIH3T3 was grown in Dulbecco’s minimal essential medium. The human erythroleukemia cell line K562 was main- tained in improved minimal essential medium. The mouse fibroblast cell line NIH3T3 was grown in Dulbecco’s minimal essential medium. Media were supplemented with 10% fetal calf serum. AKR1.G.1Ovar.1.26 T lymphocytes were obtained from ATCC and grown in Dulbecco’s minimal essential medium supplemented with 4 mg/ml glucose and 10% horse serum. All cell lines were grown at 37°C in a humidified atmosphere of 5% CO₂.

Preparation of Nuclear Extracts—Cells (5 × 10⁶) were harvested, rinsed in 1× phosphate-buffered saline, resuspended in 0.67× phosphate-buffered saline, and incubated on ice for 10 min. After centrifugation, the pellet was resuspended in ice-cold 10× Heps (pH 7.9), 1.5 M MgCl₂, 10 mM KCl, 1 mM dithiothreitol in the presence of protease inhibitors, and nuclei were released by Dounce homogenization. After A- centrifugation, the pellet was resuspended in 20× Heps (pH 7.9), 25% glycerol, 0.42 M NaCl, 1.5 mM EDTA, 1 mM dithiothreitol. Samples were Dounce-homogenized, stirred on ice for 30 min, and centrifuged at 25,000 × g for 30 min. The supernatant was frozen in a dry ice/ethanol bath and stored at −80°C.

Oligos and Gel Mobility Shift Assay—In a first attempt to search for potential CTCF sites, the TCRα/Dad1 sequence was compared with the 14-bp consensus binding site for CTCF insulator activity (22–23). The following sequences were tested for CTCF binding by gel mobility shift assay: 730–745, GTGCTTCTAAGTGGACAGCAGGGGAGCATCAGGAGGAGGACCCACTCCACCCCTGCTGAGGAGT; 2896–2898, GCACGCGGTCTAAAGCAGGAGAG GGAGGACCCACTCCACCCCTGCTGAGGAGT; 2880–2883, GGACCCCGGCACTCAGGAGAGGGAGGACCCACTCCACCCCTGCTGAGGAGT; 2878–2891, GCTGGAGTTAAGAACGATCGCCGATTAGCGGAGGAGGACCCACTCCACCCCTGCTGAGGAGT; 2850–2863, AATCCACGAGTTCCCTCCAGTCGAGGAGGACCCACTCCACCCCTGCTGAGGAGT; 2839–2852, GCTGGAGTTAAGAACGATCGCCGATTAGCGGAGGAGGACCCACTCCACCCCTGCTGAGGAGT. The corresponding oligos are indicated in Fig. 1C.

Gel mobility shift assays were carried out in a binding buffer composed of 20 mM HEPES (pH 7.9), 150 mM KCl, 5 mM MgCl₂, 1 mM dithiothreitol, 5% glycerol, 0.5% Triton X-100. DNA binding was carried out at room temperature for 30 min in the presence of 1–2 μl of nuclear extract, 20–40 fmol of end-labeled probe, and 100 μg/ml poly(dI-dC). Cold competitors were added simultaneously with the labeled probes at 50–100-fold molar excess. For supershift experiments, nuclear extracts were precleared in binding buffer at 4°C for 2 h with anti-CTCF antibody (Upstate Biotechnology) followed by a 30-min incubation at room temperature with the DNA as described above.

The Southwestern procedure is based on a protocol previously described (27). Nuclear extracts (25 μg) and recombinant CTCF proteins (0.5 μg) were resolved by 4–20% SDS-PAGE electrophoresis and transferred at 4°C for 5 h at 350 mAmps to polyvinylidene difluoride membranes. After transfer, immobilized proteins were denatured for 5 min in binding buffer (20 mM Heps (pH 7.9), 3 mM MgCl₂, 40 mM KCl, and 10 mM 2-mercaptoethanol) containing 6 μg guanidine hydrochloride, followed by four successive 2-fold dilutions with binding buffer only and two additional washes with binding buffer alone. The filters were then blocked for 10 min with 2% nonfat dried milk in binding buffer and washed with binding buffer alone. The filters were incubated for 1 h at room temperature in binding buffer with 0.1% Triton X-100 in the presence of 100 ng/ml denatured and nonspecific competitor DNA (20 μg/ml native Escherichia coli DNA, 2 μg/ml denatured E. coli DNA). Finally, the filters were washed four times in binding buffer supplemented with 0.01% Triton X-100. After air drying for 5 min, the filters were exposed to film.

Formaldehyde Cross-linking and Chromatin Immunoprecipitation—In vitro protein-DNA cross-linking was carried out as described (28) with some modifications (29). Generally, 1.5–2 × 10⁶ cells were harvested and rinsed one time in phosphate-buffered saline, and nuclei were prepared in ice-cold RSB buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 5 mM MgCl₂) in the presence of a mixture of protease inhibitors. After centrifugation, nuclei were resuspended in RSB buffer containing 0.1 mg/ml nuclease P-4. Proteins were cross-linked for 10 min at room temperature, followed by 40 min at 4°C with a final concentration of 1% in 0.1 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 50 mM Tris (pH 8). After lysis in the presence of SDS, nucleoprotein complexes were sonicated to reduce DNA fragments to 400–600 bp. To reduce nonspecific background, the chromatin solution was preclarified with salmon sperm DNA/protein A-agarose beads for 1 h at 4°C. At this point DNA was prepared from a sample of protein A-purified chromatin and used as the input sample. Antibodies specific for acetylated histones H3 or H4 (Upstate Biotechnology) were incubated with protein A-clarified chromatin overnight at 4°C with gentle rocking. After immunoprecipitation, immune complexes were collected by adding 60 μl of salmon sperm DNA/protein A-agarose beads for 4 h at 4°C. The beads were washed with 1% formaldehyde and unbound chromatin was separated, and the protein A-agarose was washed. Complexes were then eluted in 1% SDS, 0.1 M NaHCO₃, and cross-links were reversed by heating. DNA was recovered from input and antibody-DNA/protein A-agarose beads for 1 h at 4°C. To reduce nonspecific binding, the chromatin solution was preclarified with salmon sperm DNA/protein A-agarose beads for 1 h at 4°C. At this point DNA was prepared from a sample of protein A-purified chromatin and used as the input sample. Antibodies specific for acetylated histones H3 or CTCF (Upstate Biotechnology) were incubated with protein A-clarified chromatin overnight at 4°C with gentle rocking. After immunoprecipitation, immune complexes were collected by adding 60 μl of salmon sperm DNA/protein A-agarose beads for 4 h at 4°C. The beads were washed with 1% formaldehyde and unbound chromatin was separated, and the protein A-agarose was washed. Complexes were then eluted in 1% SDS, 0.1 M NaHCO₃, and cross-links were reversed by heating. DNA was recovered by proteinase K digestion, phenol extraction, and ethanol precipitation. DNA samples were quantified using picogreen fluorescence (Molecular Probes, Eugene, OR) and an ABI 2000 capillary electrophoresis system.

Primers and TaqMan Probes—Primers and TaqMan probes were selected from the region between the mouse TCRα and the Dad1 gene (GenBank™ accession numbers AF000941 and X14895) using the PE Applied Biosystems Primer Express software. Primers and TaqMan probes were obtained from Invitrogen and PE Applied Biosystems, respectively. The list is given in Table I.

Real-time PCR and Data Analysis—DNA from input and antibody-bound chromatin were analyzed by real-time PCR using the TaqMan universal PCR master mix protocol (PE Applied Biosystems) and an ABI prism sequence detector as described previously (30–32). Each

Insulators at the TCRα/Dad1 Locus
amplification was carried out in triplicate to control for PCR variation on 2 ng of DNA at 50 °C for 2 min and 95 °C for 15 s, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The Ct values were collected at 60 °C. The Ct is the number of PCR cycles necessary to reach a predetermined fluorescence intensity and is a function of the amount of target DNA in the samples analyzed. Quantification was determined by applying the comparative Ct method as described previously (31). The concentration of primers and TaqMan probes used was determined by following the optimization procedure described in PE Applied Biosystems protocol.

Constructs and Enhancer Blocking Assay—Different fragments within the TCR-Dad1 region were generated by PCR on genomic DNA and cloned into the pNI vector at the Ascl site using the following primers: F311–330, 5'-AGGCCGCCTACTGGAGCACATTTGGGGTG-3'; R1287–1307, 5'-AGGCCGCTCTCTTTATCCATGACCTTTTG-3'; R1614–1635, 5'-AGGGCCGCTAAATGGAGAGACAGGGGG-3'; F1450–1489, 5'-AGGCCGCCTTGCAAGGGAGACAGCGCGGC-3'; R4011–4030, 5'-AGGCAGCTCGTTGCGAGGCTGGTCCG-3'; F3864–3866, 5'-AGGCAGCTGTTGCGAGGCTGGTCCG-3'; R2001–2009, 5'-AGTGGTGGCGCATCGTTTA-3'; R2180–2201, 5'-AGCCACCAAGATTGAACACAGGAAAT-3'.

Search for CTCF Binding Sites within the TCRα-Dad1 Region—Because the DNA region between the TCRα locus and the ubiquitously expressed Dad1 gene (Fig. 1A) has been shown to possess an insulator activity (16), we searched for CTCF binding sites across the region that is flanked by the enhancer of the TCRα (Eα) and exon 3 of Dad1. We searched a 6298-bp sequence derived from the mouse T cell receptor α locus enhancer element (GenBank access number X14895) and the mouse DNase I hypersensitive sites 2–6 of the LCR for the T cell receptor α chain gene (GenBank accession number AF000941) containing HS1, HS1', and HS2–6. In a first attempt, the consensus binding site for insulator activity at the chicken β-globin and the Igf2/H19 loci (22–23) was used for this search (Fig. 1B). The best match to the consensus sequence was found at positions 730–743. Over this region, 13 of the 14 bases are identical to the canonical site. At position 2878–2891, 12 of the 14 bases are identical to the consensus, whereas at positions 2296–2309, 5545–5558 and 2850–2863, and 3753–3766 the homologies are either 11/14 or 10/14.

CTCF is a versatile protein that can bind to different DNA targets depending on the combinatorial use of the 11 zinc fingers. Therefore, we compared the TCRα-Dad1 sequence to the other known CTCF binding sites and found five additional potential sites (Fig. 1C). At position 147–195, a match of 25 of 47 bases to the chicken lysozyme gene silencer (35) was found. Another potential site was found at position 1806–1850, displaying a match of 26 of 46 bases to the CTCF repressor site located downstream of the human c-Myc P2 promoter (36). At position 2780–2810, the match of 19 bases/32 corresponds to the promoter of the amyloid β-protein precursor where CTCF activates transcription (37). Two other candidate sites were also found: a match at position 3607–3655 homologous to the chicken c-myc 5'-flanking sequence (34/46) (38) and at position 3647–3724 homologous to the CTCF methylation-sensitive insulator site at the human myotonic dystrophy locus (39).

TABLE I

Position	Primers and probes
21–200	5'-GCCAGAGTAGAAGCAAGAAATTGG-3'
671–830	5'-GGGACCAGCTTATCCCGTG-3'
1321–1500	5'-AGTGGTGGCGCATCGTTTA-3'
2001–2180	5'-AGCCACCAAGATTGAACACAGGAAAT-3'
2491–2670	5'-AGCCACCAAGATTGAACACAGGAAAT-3'
3101–3280	5'-AGTGGTGGCGCATCGTTTA-3'
3821–4000	6FAM-CCCAGCACTTAGGAGACAGGG-3'
4501–4680	6FAM-CCCAGCACTTAGGAGACAGGG-3'
5871–6050	6FAM-CCCAGCACTTAGGAGACAGGG-3'
6119–6298	6FAM-CCCAGCACTTAGGAGACAGGG-3'
In Vitro Binding of the Various Sequences to CTCF—
To determine whether these candidate sequences are actually capable of binding CTCF, gel retardation assays were carried out. A set of oligonucleotides containing the potential CTCF site at position 15–28 within the 40-base pair oligonucleotides (see “Experimental Procedures”) were end-labeled and tested for the ability to bind CTCF in nuclear extracts. For each DNA fragment, the mobility was compared with the mobility of the CTCF-chicken β-globin FII consensus sites. Shading indicates conservation with the consensus sites. Stars indicate the position of the CpG sites sensitive to DNA methylation. The second Cpg site, present in the CTCF site at position 730–743, is underlined. The position of the different sites is based on GenBank sequence numbers X14895 and AF 000941 and are indicated by arrows. A, alignment of the Ca and Dad1 region with other known CTCF sites. The position of the sites and the degree of homology are indicated. The previously characterized sites for CTCF are the chicken lysozyme promoter, the human c-Myc P2 promoter, the human amyloid β protein promoter (APB), the chicken c-myc promoter, the human muscular dystrophy locus (DM1). The region between the Ca and the Dad1 genes is drawn to scale. The nine hypersensitive sites are represented in gray. The four exons of the Ca gene are indicated by white boxes. Exon 3 of Dad1 is indicated by a black box.

Fig. 1. Sequences of the putative CTCF sites in the intergenic region between the TCRα/Dad1 locus and Dad1. A, schematic diagram of the TCRα/locus on mouse chromosome 14. The variable (V), joining (J), diversity (D), constant (C) regions and enhancers (E) are shown. The Dad1 gene is indicated by a black box. The region containing hypersensitive sites is HS1. HS2-HS6 is depicted by a gray oval. Transcriptional orientations of the genes are shown by arrows. B, alignment of the region located between Ca and Dad1 with the Igγ2/H19 and chicken β-globin FII consensus sites. C, alignment of the Ca-Dad1 region with other known CTCF sites. The position of the sites and the degree of homology are indicated. The previously characterized sites for CTCF are the chicken lysozyme promoter, the human c-Myc P2 promoter, the human amyloid β protein promoter (APB), the chicken c-myc promoter, the human muscular dystrophy locus (DM1). The region between the Ca and the Dad1 genes is drawn to scale. The nine hypersensitive sites are represented in gray. The four exons of the Ca gene are indicated by white boxes. Exon 3 of Dad1 is indicated by a black box.

Fig. 2. Identification of a putative binding site for CTCF within the TCRα-Dad1 region. A, the oligonucleotide at position 730–743 was tested for gel mobility with increasing amounts of AKR1 nuclear extract (lanes 1–6) and compared with the mobility of the chicken β-globin FII site for CTCF (lanes 7–10). B, supershift experiments using an antibody directed against CTCF on increasing amounts of AKR1 extract with the 730–743 probe (lanes 1–2) and the FII probe (lanes 3–4). C, the binding of CTCF to the 730–743 probe was compared on increasing amounts of AKR1 extracts (lanes 1–4) with increasing amounts of NIH 3T3 nuclear extracts (lanes 5–8).
The results described above show that there is potentially a stream of the E gene, although deletion of the CpG site diminished the binding (Fig. 3A, lane 1). Following competition with a 100-fold excess of unlabeled competitor duplexes, Lane 2, chicken 5’HS4FI (FII); lane 3, Xα’ chicken 5’HS4FIII mutant (X3); lane 4, chicken 5’HS4FI CTT deletion mutant (CTT); lane 5, unlabeled TAD1. Asterisk denotes labeled probe. B, gel retardation analysis of complexes between labeled chicken 5’HS4FI (40 fmol) and AKR1 nuclear extracts (lane 1) following competition with a 100-fold excess of unlabeled competitor duplexes. Lane 2, FII; lane 3, X3; lane 4, CCT; lane 5, unlabeled TAD1. Asterisk denotes labeled probe. C, gel mobility shift assay of TAD1 or TAD1 mutants and AKR1 nuclear extracts. Triangles above gel indicate increasing amounts of AKR1 nuclear extracts. Lanes 1–3, TAD1; lanes 4–6, TAD1 sequence with a deletion of the CTCF site (ΔCTCF); lanes 7–9, TAD1 sequence with a deletion of the Cpg site within the CTCF binding site (ΔCpG).

We did not observe a decrease in the affinity of CTCF binding when this site was methylated on both strands (data not shown), although deletion of the CpG site diminished the binding (Fig. 3C, lanes 7–9), suggesting that these nucleotides are nonetheless important for CTCF targeting.

We also used the TAD1 mutant oligonucleotides for competition studies. As expected from previous experiments, the molar excess of unlabeled wild type TAD1 DNA can displace, at least partially, the binding of CTCF to the labeled wild type probe, whereas the mutant versions of TAD1 cannot (data not shown).

The binding of CTCF to the chicken 5’HS4FI (Fig. 4, lanes 1–3), TAD1 (lanes 4–6), and TAD1-ΔCTCF sequences (lanes 7–9) was also investigated by Southwestern analysis of AKR1 and K562 nuclear extracts (the cells in which the enhancer blocking assays are performed) as well as purified recombinant CTCF from baculovirus extracts. Migration patterns were identical for the recombinant CTCF and the endogenous protein from human or mouse extracts. However, no binding was observed for the TAD1-ΔCTCF probe, as expected. These results suggest the presence of a single, high affinity binding site for CTCF in a region corresponding roughly to the previously identified HS1’ binding site.

Enhancer Blocking Activity of the TAD1 CTCF Site—Earlier work by Zhong & Krangel (16) described the enhancer blocking activity of the HS2–6 sequence. However, at that time the HS1’ site had not been identified and was not included in the study. The results described above show that there is potentially a strong and previously undetected CTCF binding site downstream of the Eα, close to and perhaps coincident with the HS1’ site. CTCF is responsible for enhancer blocking activity at the chicken β-globin locus and other vertebrate insulators (22, 26, 40). Using a colony assay, we therefore tested the ability of the TAD1 site to block the activation of a promoter by an enhancer (20). At the same time, we re-examined the remainder of the region upstream of Dad1 for similar properties. In each colony assay, a construct containing a fragment of λ DNA integrated between the reporter gene (γ-Neo) and the mouse 5’ HS2 enhancer (pJC-3.4) was used as a reference to determine the relative colony number. The pJC5–4 construct, which contains one copy of the 1.2-kb 5’HS4 chicken insulator sequence on each side of the reporter gene, was used as a control for enhancer blocking activity. Three overlapping genomic fragments (Fig. 5A, HS1’-2, HS2-4, and HS4-6) within the TCRa-Dad1 region and the HS1’ site alone (HS1’) were subcloned into the testing vector in both orientations (Fig. 5B). As a control, the pN1 empty vector was also included in our study. As described earlier (16) in a different experimental system (Jurkat T cells), both HS2-4 and HS4-6 strongly reduced the colony number in an orientation-independent way, suggesting that these enhancer blocking activities are not T cell specific. When the HS1’-2 fragment was used, the number of Neo-resistant clones was significantly reduced to a level similar to that for the chicken β-globin insulator element (4.7-fold). Similar results were obtained when a shorter fragment containing only the HS1’ site was used (5-fold insulation). These results suggest that the TAD1 site for CTCF participates in the enhancer blocking activity of the TCRa-Dad1 DNA region.

To confirm this observation, we tested for insulating activity a construct in which 14 bp of the CTCF site were deleted (pN1 ΔCTCF). When the mutant version was used, the enhancer blocking activity was lost (1.1-fold insulation), indicating that the new CTCF binding site located downstream of the T cell receptor α enhancer acts as a positional enhancer blocking element when placed between an enhancer and a promoter.

In Vivo Distribution of Histone H3 Acetylation and CTCF Binding within the TCRα-Dad1 Region—To determine the histone acetylation status of the TCRα-Dad1 locus in vivo, high resolution chromatin immunoprecipitation assays were performed on mouse T cells (AKR1) and fibroblasts (NIH 3T3). Samples were treated with formaldehyde to cross-link proteins to DNA, sonicated for chromatin fractionation, and immunoprecipitated with antibodies to acetylated histone H3 tails. For each cell line, the input (before immunoprecipitation) and bound fractions of the no-antibody and immunoprecipitated samples were analyzed using TaqMan real-time PCR. For this purpose, we designed 10 probes targeted evenly across the domain (Fig. 6). In AKR1 lymphoid cells, histone tails were...
acetylated (3.7–6.25-fold enrichment of the immunoprecipitated fraction over the input) across the entire locus with a peak (17.6-fold) at the HS1 site. In non-lymphoid cells (NIH 3T3), the overall level of H3 acetylation was lower than in the AKR1 site with a peak only at the HS1 (NIH 3T3), the overall level of H3 acetylation was lower than in the AKR1 and NIH 3T3 cells (Fig. 6). In confirmation of the in vitro results, CTCF is found in vivo only at the HS1 hypersensitive site in both lymphoid (AKR1) and non-lymphoid (NIH 3T3) cells. Moreover, the high acetylation levels described above are found mainly at that site.

The CTCF Site at HS1 Is Associated with a Nuclear Matrix Attachment Region—Nuclear matrix attachment regions (MARs) have been associated variously with regions of altered chromatin conformation and histone modification and with the ability to influence transcriptional activity of nearby genes. Previous reports have also suggested that some MARs are associated with enhancer blocking elements (42–43). In addition, MARs can function as boundary elements to alleviate position effect in transgenic animals (44–46). Thus, there appear to be different classes of MARs with different sequence specificities, functions, and mechanisms of action. This variability in reported properties may reflect the operational definition of a MAR, which involves its ability to co-purify with an insoluble, DNaseI-resistant and salt- or detergent-extracted nuclear fraction.

Recent results from our laboratory (47) have shown that CTCF forms a complex with the nucleolar and nuclear matrix-binding protein nucleophosmin. Furthermore, the CTCF insulator site at the 5’ end of the chicken β-globin locus co-purifies with the nuclear matrix fraction in a CTCF-dependent manner. It has also been reported that CTCF behaves as a matrix protein (49). Given these results, the suggested association of MAR activity with insulators and the presence of non-CTCF enhancer blocking activity over extended portions of the 6.2-kb region, we surveyed this region for associations with the nuclear matrix. In this experiment, we measured the amount of endogenous DNA remaining in the nuclear matrix fraction of AKR1 cells prepared with detergent in a low ionic buffer (lithium salt method) (34) after digestion with DNase I, using the TaqMan probes across the HS1-HS6 region. We found that following DNase I extraction, the CTCF site at the HS1 hypersensitive site is highly enriched (22-fold) in the nuclear matrix fraction compared with bulk DNA. A slight enrichment of 4.6-fold can also be seen between the HS3 and the HS4 sites, suggesting that this region is also associated with the nuclear matrix, whereas other regions are accessible to enzymatic digestion with DNase I and cannot be amplified (Fig. 7). Similar results were observed when in vitro nuclear matrix assays were performed or when the nuclear matrix was extracted with a high salt procedure (data not shown).

DISCUSSION

The TCR δ, α, and DadI genes share a complex genomic locus. However, the three genes have distinct temporal and spatial expression patterns, and transcriptional regulation by cis-acting elements is tightly constrained. An LCR active at the double positive stage in T cells enhances TCRα recombination and drives the αβ lineage recombination. As discussed in the Introduction, the LCR at the TCRα-DadI locus is a bifunctional element regulating the tissue specificity of the TCRα rearrangement but also expression of the ubiquitous DadI gene (4, 9). Within this LCR, HS1 is specific for T cells. Downstream of this element, six additional sites, HS1’ and HS2–6, have been identified within a 6.2-kb region (5, 9, 50); these sites alone cannot provide chromatin accessibility for VDJ recombination and transcription of the TCRα genes (15) but are involved in DadI regulation (9). Thus, HS2–6 differs from classical LCRs because it does not provide absolute copy number dependence and does not function in single copy, indicating that although this region may have partial LCR function, it may have other roles as well. Indeed, Zhong & Krangel (16) showed that the HS2–6 region displayed an enhancer blocking activity suggesting that this region acts as a boundary element allowing the

T. M. Yusufzai and G. Felsenfeld, unpublished data.
expression of Dad1 in non-lymphoid cells and protecting against inappropriate activation of Dad1 by Ea.

CTCF is a highly conserved, ubiquitously expressed protein that has been found to bind to all identified vertebrate insulator sequences (Introduction). Given the strong insulation activity of the HS2–6 region, we decided to search for the presence of putative CTCF binding sites, first by comparing the region between HS1 and HS6 at the TCRα-Dad1 locus to all the known binding sites for CTCF. Several candidate sites were identified, but direct measurement of binding in vitro revealed that only one of these corresponded to a high affinity CTCF binding site, located at the HS1’ hypersensitive site. Chromatin immunoprecipitation assays confirmed that CTCF was bound to this site in vivo and that this was the only such site occupied by CTCF in the entire HS1–6 region.

Using our enhancer blocking assay in erythroleukemia cell lines (K562), we were able to confirm, as shown previously in Jurkat T cells (16), that multiple fragments tested within the HS2–6 region confer enhancer blocking activity. This indicates that proteins or mechanisms mediating this activity are not T cell-specific and is consistent with a role for HS2–6 in both TCRα and Dad1 control. We also report here the presence of a new site harboring enhancer blocking activity, located at the previously identified HS1’ site (5) and corresponding to a bind-
Nucleophosmin co-localizes with CTCF at the nucleolar nuclear matrix, notably the nucleolar protein nucleophosmin and interacts with proteins known to be associated with the TAD1 site harbors additional regulatory elements that may in identifying any. There is at least good reason to suspect that the sites themselves will be relatively small and bind specific proteins that in turn can interact with some element of the nuclear architecture to create a loop domain structure. The identification of such sites within this region will be important both for understanding insulator function and the regulation of the TCRα/Dad1 locus.

Acknowledgments—We thank M. Krangel for providing the pLCR 8.0 construct. We are grateful to members of the laboratory for useful discussions and advice.

REFERENCES

1. Glusman, G., Rowen, L., Lee, I., Boysen, C., Roach, J. C., Smit, A. F., Wang, K., Koop, B. F., and Hood, L. (2001) Immunity 15, 37–54
2. Krangel, M. S., McMurry, M. T., Hernandez-Munain, C., Zhong, X., and Carabana, J. (2000) Immunol. Rev. 22, 127–135
3. Winoto, A., and Hood, L. (1999) Cell 99, 649–655
4. Diaz, P., Cado, D., and Winoto, A. (1994) Immunity 1, 207–217
5. Ortiz, B. D., Cado, D., and Winoto, A. (1999) Mol. Cell. Biol. 19, 1901–1909
6. Gresveld, F., van Assendelft, G. B., Greaves, D. R., and Kollia, G. (1987) Cell 51, 975–985
7. Orkin, S. H. (1990) Cell 63, 665–672
8. Felsenfeld, G. (1990) Nature 355, 219–224
9. Hong, N. A., Cado, D., Mitchel, J., Ortiz, B. D., Hsieh, S. N., and Winoto, A. (1997) Mol. Cell. Biol. 17, 2151–2157
10. Silberstein, S., Collins, P. G., Kelleher, D. J., and Gilmore, R. (1995) J. Cell Biol. 131, 371–383
11. Sugimoto, A., Hinak, R. R., Nakashima, T., Nishimoto, T., and Rothman, J. H. (1995) EMBO J. 14, 4434–4441
12. Nakashima, T., Sekiguchi, T., Kurako, A., Fukushima, K., Shihata, Y., Garamsan, Y., and Nishimoto, T. (1998) Mol. Cell. Biol. 13, 6367–6374
13. Hong, N. A., Kabra, N. H., Hsieh, S. N., Cado, D., and Winoto, A. (1999) J. Immunol. 163, 1888–1893
14. Nakashima, T., Nakahama, T., Nagata-Kuno, K., Fukushima, K., Iida, H., Sakaguchi, M., Bebarta, Y., Komiyama, S., and Nishimoto, T. (1997) Genes Cells 2, 129–141
15. Sleckman, B. P., Bardos, C. G., Ferrini, R., Davidson, L., and Alt, F. W. (1997) Immunity 7, 505–515
16. Zhong, X. P., and Krangel, M. S. (1999) J. Immunol. 163, 295–300
17. Bell, A. C., West, A. G., and Felsenfeld, G. (2001) Science 291, 447–450
18. Garamsan, T. K., and Corneliusova, T. I., and Corneliusova, T. I. (2001) Ann. Rev. Genet. 35, 193–208
19. West, A. G., Gaszner, M., and Felsenfeld, G. (2002) Genes Dev. 16, 271–288
20. Chung, J. H., Whiteley, M., and Felsenfeld, G. (1995) Cell 74, 505–514
21. Robinett, C. C., O’Connor, A., and Dunaway, M. (1997) Mol. Cell. Biol. 17, 2866–2873
22. Bell, A. C., West, A. G., and Felsenfeld, G. (1999) Cell 98, 387–396
23. Bell, A. C., and Felsenfeld, G. (2000) Nature 405, 482–485
24. Bell, A. C., Schloenbom, J. D., Ingram, R. S., Levere, J. S., and Tilghman, S. M. (2000) Nature 405, 486–489
25. Chao, W., Hoyh, K. R., Spencer, R. J., Davidow, L. S., and Lee, J. T. (2002) Science 295, 345–347
26. Ohlbom, R., Renkawitz, R., and Lobanenkov, V. (2001) Trends Genet. 17, 520–527
27. Yosef, T. M., and Wolfe, A. P. (2000) Nuclear Acids Res. 28, 4172–4179
28. Orlando, V., and Paro, R. (1993) Cell 75, 1187–1198
29. Magdiner, F., and Wolfe, A. P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4990–4995
30. Litt, M. D., Simpson, M., Gaszner, M., Allis, C. D., and Felsenfeld, G. (2001) Science 293, 2453–2455
31. Litt, M. D., Simpson, M., Recillas-Targa, F., Prizoeu, M., and Felsenfeld, G. (2001) EMBO J. 20, 2224–2233
32. Mutskov, V. J., Farrell, C. M., Wade, P. A., Wolfe, A. P., and Felsenfeld, G. (2002) Genes Dev. 16, 1540–1554
33. Chung, J. H., Bell, A. C., and Felsenfeld, G. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 575–580
34. Mirkovitch, J., Mirault, M. E., and Laemmli, U. K. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 575–580
35. Yusufzai, T. M., and Wolffe, A. P. (2000) Trends Genet. 16, 2455–2457
36. Hofmann, J., and Krangel, M. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 1753–1758
37. Mutskov, V. J., and Wolfe, A. P. (2000) Proc. Natl. Acad. Sci. U. S. A. 100, 223–228
38. Burgin, M., Arnold, R., Lutz, M., Kaiser, B., Rung, R., Lechte, F., Filipovic, G., Lohmanen, V. V., and Renkawitz, R. (1997) Mol. Cell. Biol. 17, 1281–1288
39. Filipovic, G. N., Fagerlie, S., Klenova, E. M., Myers, C., Dehner, Y., Gondwani, G. A., Neiman, P. E., Collins, S. J., and Lohmanen, V. V. (1996) Mol. Cell. Biol. 16, 2802–2813
40. Vostro, A. A., and Quitschke, W. W. (1997) J. Biol. Chem. 272, 33533–33539
41. Lohmanen, V. V., Nicolas, B. R., Adler, V. V., Paterson, H., Klenova, E. M., Polokevicius, A. V., and Godwin, A. G. (1999) Oncogene 34, 1743–1753
42. Filipovic, G. N., Thienes, C. P., Penn, B. H., Cho, D. H., Hu, Y. T., Moore, J. M., Kiesert, T. R., Lohmanen, V. V., and Tapscott, S. J. (2001) Nat. Genet. 28,
40. Saitoh, N., Bell, A. C., Recillas-Targa, F., West, A. G., Simpson, M., Pikaart, M., and Felsenfeld, G. (2000) *EMBO J.* **19**, 2315–2322
41. Santoso, B., Ortiz, B. D., and Winoto, A. (2000) *J. Biol. Chem.* **275**, 1952–1958
42. Stief, A., Winter, D. M., Stratling, W. H., and Sippel, A. E. (1989) *Nature* **341**, 343–345
43. Villemure, J. F., Savard, N., and Belmaaza, A. (2001) *J. Mol. Biol.* **312**, 963–974
44. McKnight, R. A., Shamay, A., Sankaran, L., Wall, R. J., and Hennighausen, L. (1992) *Proc. Natl. Acad. Sci. U. S. A.* **89**, 6943–6947
45. Forrester, W. C., Fernandez, L. A., and Grosschedl, R. (1999) *Genes Dev.* **13**, 3003–3014
46. Phi-Van, L., and Stratling, W. H. (1996) *Biochemistry* **35**, 10735–10742
47. Yusufzai, T. M., Tagami, H., Nakatani, Y., and Felsenfeld, G. (2004) *Mol. Cell* **13**, 291–298
48. Byrd, K., and Corces, V. G. (2003) *J. Cell Biol.* **162**, 565–574
49. Dunn, K. L., Zhao, H., and Davie, J. R. (2003) *Exp. Cell Res.* **288**, 218–223
50. Ortiz, B. D., Harrew, F., Cado, D., Santoso, B., and Winoto, A. (2001) *J. Immunol.* **167**, 3836–3845
51. Kalos, M., and Fournier, R. E. (1995) *Mol. Cell. Biol.* **15**, 198–207
Both CTCF-dependent and -independent Insulators Are Found between the Mouse T Cell Receptor α and Dad1 Genes
Frédérique Magdinier, Timur M. Yusufzai and Gary Felsenfeld

J. Biol. Chem. 2004, 279:25381-25389.
doi: 10.1074/jbc.M403121200 originally published online April 13, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M403121200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 51 references, 25 of which can be accessed free at http://www.jbc.org/content/279/24/25381.full.html#ref-list-1