Analysis of eight genes modulating interferon gamma and human genetic susceptibility to tuberculosis: a case-control association study

Marlo Möller*1, Almut Nebel2, Paul D van Helden1, Stefan Schreiber2 and Eileen G Hoal1

Abstract
Background: Interferon gamma is a major macrophage-activating cytokine during infection with Mycobacterium tuberculosis, the causative pathogen of tuberculosis, and its role has been well established in animal models and in humans. This cytokine is produced by activated T helper 1 cells, which can best deal with intracellular pathogens such as M. tuberculosis. Based on the hypothesis that genes which regulate interferon gamma may influence tuberculosis susceptibility, we investigated polymorphisms in eight candidate genes.

Methods: Fifty-four polymorphisms in eight candidate genes were genotyped in over 800 tuberculosis cases and healthy controls in a population-based case-control association study in a South African population. Genotyping methods used included the SNPlex Genotyping System™, capillary electrophoresis of fluorescently labelled PCR products, TaqMan® SNP genotyping assays or the amplification mutation refraction system. Single polymorphisms as well as haplotypes of the variants were tested for association with TB using statistical analyses.

Results: A haplotype in interleukin 12B was nominally associated with tuberculosis (p = 0.02), but after permutation testing, done to assess the significance for the entire analysis, this was not globally significant. In addition a novel allele was found for the interleukin 12B D5S2941 microsatellite.

Conclusions: This study highlights the importance of using larger sample sizes when attempting validation of previously reported genetic associations. Initial studies may be false positives or may propose a stronger genetic effect than subsequently found to be the case.

Background
Infection with the tuberculosis (TB) agent Mycobacterium tuberculosis (M. tuberculosis) and its subsequent outcomes (active TB, latent infection or clearance of the bacterium by the pulmonary immune system) are complex traits due to interactions between numerous host genetic susceptibility factors and the environment. Heritability analyses have shown that an individual's immune response to TB infection will be regulated by the genetic background, with an estimated heritability ranging from 36% to 80% [1-6]. Although many of the host genetic factors involved in TB still remain unidentified, several susceptibility genes have been repeatedly associated with the disease in different populations [7,8].

Interferon gamma (IFN-γ) is a member of the interferon family which plays a crucial role in the reaction of the immune system in resistance to pathogens such as M. tuberculosis. There has been a great deal of interest in this cytokine since its discovery, because the macrophage, an important target cell of IFN-γ, is a fundamental role player in the immune system. The T helper 1 (Th1) cell response, which is required to contain M. tuberculosis infection, is largely characterised by IFN-γ production. However production of this cytokine alone is not sufficient to protect against disease [9]. Even so, convincing evidence for its importance in the control of mycobacterial infections has been found in both experimental and clinical studies. Mice with a disrupted IFN-γ gene (IFNG) show increased susceptibility to TB [10] and replacement

* Correspondence: marlom@sun.ac.za
1 Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, PO Box 19063, Stellenbosch University, Tygerberg 7505, South Africa
Full list of author information is available at the end of the article

© 2010 Möller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
of the gene into the lung confers resistance [11]. In most TB patients the production of M. tuberculosis-induced IFN-γ by peripheral blood mononuclear cells is reduced at the time of diagnosis [12]. During and after successful treatment, these levels increase significantly [13]. It is also known that the IFN-γ concentrations in sputum and bronchoalveolar lavage fluid can be used as an estimate of disease activity via a direct correlation [14]. Although IFN-γ is required for an initial protective Th1 cell response to M. tuberculosis, the increased production of this cytokine post-infection is indicative of the risk of developing active TB. A recent study showed that macaque monkeys with high IFN-γ levels two months post-infection with M. tuberculosis were more likely to develop active TB [15] and similar observations have been made in humans [16,17], perhaps indicating a failed immune response. Some experimental data have suggested that IFN-γ is a correlate of protective immunity against TB [18,19], although other studies in humans, mice and cattle do not support this [20-22]. Humans with mutations in genes of the interleukin 12/interleukin 23/IFN-γ axis have an increased susceptibility to even non-pathogenic mycobacteria and are extremely susceptible to M. tuberculosis and Salmonella, but not to other bacteria (reviewed by [23]). These mutations are all associated with the rare human syndrome known as Mendelian susceptibility to mycobacterial disease (MSMD). In addition to the experimental and clinical studies discussed above, genetic association studies have also suggested that IFN-γ is important in protecting against mycobacterial infection. The functional +874ATT single nucleotide polymorphism (SNP), a common variant in the IFNG gene, has been associated with TB in the South African Coloured population (SAC) [24] and various others [25] and even appears to be clinically relevant in sputum conversion in patients [26]. However, since TB is a complex disease and several genes are involved in its pathogenesis, it is possible that genes regulating IFN-γ levels could also contain variants contributing to susceptibility.

Given the clinical and experimental evidence showing a crucial role of the IFN-γ pathway in host defence against TB, we investigated eight candidate genes which could potentially modulate the function of this vital cytokine, namely interleukin 4 (IL4), interleukin 10 (IL10), interleukin 12B (IL12B), interleukin 12 receptor beta 1 (IL12RB1), interleukin 12 receptor beta 2 (IL12RB2), interleukin 18 (IL18), wingless-type MMTV integration site family, member 5A (WNT5A) and frizzled homolog 5 (FZD5). Fifty-four polymorphisms in these genes were genotyped and evaluated using a case-control association (Additional file 1) or functional effects) and dbSNP (Additional file 2). Genotyping of the 54 variants was done by the SNPlex Genotyping System™ (Applied Biosystems), capillary electrophoresis of fluorescently labelled PCR products [30], TaqMan® SNP genotyping assays (Applied Biosystems) [31,32] or the amplification mutation refraction system (ARMS-PCR) [33].

Statistical analysis

Since the allele frequencies of the polymorphisms analysed in this study were not known for the SAC population prior to the completion of genotyping and were necessary for power calculations before starting the experiment, we estimated from prior data that each SNP would at least have a minor allele frequency of 5% in our study group. Given this assumption we had 95% confidence (alpha error p = 0.05) and 80% power (beta error = 0.2) to detect an odds ratio of at least 2.15 with the number of samples available (432 cases and 482 controls). After genotyping, power calculations were done with the experimentally
determined allele frequencies of the SNPs previously associated with tuberculosis to confirm that we had enough power to exclude the previously reported genetic effect sizes in the SAC population. All power calculations were done with Epi Info 2000 (Centers for disease control and prevention, USA). Hardy-Weinberg equilibrium was assessed for all SNPs.

Contingency tables of the distribution of genotypes between cases and controls were analysed by the chi-square test or the Fisher’s exact test where appropriate. For the *IL12B* D5S2941 (rs10631390) microsatellite marker the number of ATT repeats was determined by direct counting and plotted as a distribution graph. Since this graph was bimodal, the alleles were divided into two subclasses, as previously described [34-36]. The shorter repeats, with (ATT)₇ and (ATT)₈, were designated as S alleles and the longer repeats, with (ATT)₉ and (ATT)₁₀, were designated as L alleles. Prism version 4.02 was used to calculate p-values for single-point associations (Additional file 2).

Bonferroni corrections for multiple testing were done by considering the number of independent linkage disequilibrium (LD) blocks per gene [37]. We determined twenty-one independent tests and consequently a p-value of 0.002 was adopted as a threshold for significance. Haplotype frequencies were inferred using the COCAPHASE program that is part of the UNPHASED suite [38], http://portal.litbio.org/Registered/Webapp/glue/). Haplotype blocks were selected with Haplovie [39] by considering LD blocks. Global significance for haplotype analyses were tested with COCAPHASE and 10 000 permutation replications were done.

Results and discussion

We genotyped 53 SNPs and 1 short tandem repeat (STR) in a large collection of SAC TB patients (n = 432) and controls (n = 482). All variants were in Hardy-Weinberg equilibrium in the control population. Four SNPs (rs2070874 in *IL4*, rs2853639 in *IL12B* and rs566926 and rs7622120 in *WNT5A*) were nominally associated with disease (p < 0.05), but these were no longer considered to be statistically significant after adjusting our threshold of significance (p = 0.002) to correct for multiple tests (Additional file 2). More importantly, however, our study did not replicate previously reported associations of *IL4*, *IL10*, *IL12B* and *IL12RB1* polymorphisms with TB (Additional files 1 and 2).

Polymorphisms in the *IL4* promoter could influence the transcription levels of that gene. Specifically, a functional SNP (rs2243250, IL-4-C590T), located 589 bp upstream of the transcriptional site, has been associated with increased promoter strength, stronger binding of transcription factors and with different levels of IL-4 activity [40,41], but was not associated with TB in our study. The CC genotype of this polymorphism was previously associated with protection against pulmonary TB in south India and Russia [42,43], but not in The Gambia [44]. A possibility is that alternative splicing, and not increased expression of the *IL4* gene, is the actual regulatory mechanism in the production of IL-4, since the product of alternative splicing, namely IL-4δ2, is a competitive antagonist of IL-4 [45]. Individuals with latent TB infection, but who remain healthy, have high levels of this variant mRNA [46]. During chemotherapy, IL-4δ2, but not IL-4, levels increased in HIV positive and negative patients with TB [47]. In addition, there is a difference in the stability of the two *IL4* mRNA products in TB patients, with IL-4 being more stable than IL-4δ2 [48]. Therefore the ratio of IL-4 and IL-4δ2 may play a role in disease progression, treatment or outcome, rather than the phenotype “diseased” per se [48]. An example of a gene involved in response to TB treatment is the vitamin D receptor gene (*VDR*). The time taken for an individual to convert to sputum negativity while receiving TB chemotherapy could be independently predicted by the *VDR* genotype, even though the *VDR* polymorphisms were not associated with TB disease [49]. The apparent exclusion of a significant genetic effect of *IL4* in TB susceptibility is therefore not an indication that the cytokine does not have a function in TB disease.

The three most frequently investigated polymorphic variants in *IL10* (rs1800872, rs1800871 and rs1800896) were not associated with TB in our study. These SNPs are linked and in most cases three haplotypes (CCG, ATA and CCA) are observed [50]. The haplotypes and individual SNPs have been shown to correlate with IL-10 production, transcriptional activity and nuclear-binding activity [50-53]. The rs1800896 SNP has previously been associated with TB in Cambodia [54], Sicily [55] and Turkey [56], but not in China [57], The Gambia [58], Malawi [59], India [60], Spain [61] or Korea [62]. A smaller, second study done in Korea found that this polymorphism was associated with new and recurrent TB [63]. A recent meta-analysis found no evidence for association between TB and this SNP [25]. The rs1800872 SNP is in complete linkage disequilibrium (LD) with rs1800871 and these SNPs were associated with TB in Korea [62], but not in The Gambia, Malawi, China, Colombia, Turkey or Uganda [56-59,64-66]. Since the three-SNP haplotype of *IL10* was previously associated with TB, we also tested this in the SAC population. In contrast to other studies [56,65], there was no association evident in our analysis (Table 1). A four-SNP haplotype previously associated with TB in Korea [62], consisting of rs1800896, rs1800871, rs1800872 and rs3024496, was also not associated with disease in this study (Table 2). Stein et al. found that a three-SNP haplotype consisting of rs1518111, rs1554286 and rs1800872 was associated with protection
against TB [64]. More recently a large case-control association study (number of cases = 2010, number of controls = 2346) in Ghana determined that an \(IL10 \) haplotype was in fact associated with tuberculin skin test (TST) response and not with pulmonary disease [67]. This could not be tested for in our study.

The \(IL12B \) D5S2941 microsatellite (rs10631390), an (ATT)\(_n\) repeat in intron 2 of the gene, was previously associated with TB in the Hong Kong Chinese population [68]. We identified a novel (ATT)\(_{10}\) allele (which was confirmed by sequencing, data not shown) as well as the known (ATT)\(_7\), (ATT)\(_8\) and (ATT)\(_9\) alleles of the D5S2941 microsatellite in the SAC population. However, none of these were associated with TB in our study (Additional file 2). In previous studies done in Caucasian-Americans [69] and Hong Kong Chinese [68], only the (ATT)\(_8\) and (ATT)\(_9\) alleles of this STR were ever observed, although the presence of the (ATT)\(_7\) allele in two Swedish families was mentioned in a diabetes study [30]. There are no reports concerning this marker in African populations. Since the (ATT)\(_7\), (ATT)\(_8\) and (ATT)\(_9\) alleles were previously identified in individuals from European and Asian descent, we speculate that the (ATT)\(_{10}\) allele is a genetic contribution from the African parental population of the SAC. The 3'UTR \(IL12B \) SNP (rs3212227) [70,71] may influence gene expression levels and has previously been associated with TB in various populations [68,72-74], but not in all [60,75,76]. This polymorphism was not associated with TB in our study either. Even though none of the other \(IL12B \) polymorphisms investigated were associated with TB in the single-point analysis (similar to the results published by Kusuhara et al. [77] for rs11135058, rs2288831 and rs6870828), we found a nominally significant association between a haplotype in \(IL12B \) and resistance to TB in the SAC population (Figure 1, Table 3). The haplotype occurred more frequently in controls than in cases (\(p = 0.02, \text{OR} = 1.53, 95\% \text{CI} [1.07-2.02] \)) and was tagged by the A allele of the rs2853696 SNP, which was

Table 1: \(IL10 \) three SNP haplotype analysis.
Block 1a
1
2
3

Global significanceb 0.15

\(^a \) The order of the SNPs is rs1800872, rs1800871 and rs1800896.

\(^b \) Global significance were calculated in COCAPHASE [38] and 10 000 permutations were done.

Table 2: \(IL10 \) four SNP haplotype analysis.
Block 1a
1
2
3
4
5

Global significanceb 0.44

\(^a \) The order of the SNPs is rs3024496, rs1800872, rs1800871, rs1800896.

\(^b \) Global significance were calculated in COCAPHASE [38] and 10 000 permutations were done.
not associated with TB on its own. However, after permutation testing this association was not globally significant \((p = 0.11) \).

Akahoshi et al. [78] reported the first case-control association study assessing \(IL12RB1 \) in TB susceptibility in the general population. Two common haplotypes (consisting of 4 SNPs, of which rs375947 was genotyped in our study) were identified, and homozygosity for the allele 2 haplotype was significantly associated with TB in Japan. Healthy subjects with this haplotype had lower levels of IL-12-induced signalling. Remus et al. [79] investigated \(IL12RB1 \) in 101 Moroccan families where two promoter polymorphisms in strong LD with each other (rs436857 and rs393548) were associated with disease, but no association was detected with the haplotype reported by Akahoshi et al. [78]. A second study done in Japan showed that two intronic SNPs were associated with disease, and a haplotype consisting of different SNPs to that identified by Akahoshi et al., was associated with resistance to TB [77]. However, this study did not replicate the association found with the promoter polymorphisms in the Moroccan families. Our investigation of the SAC population, genotyping larger sample sizes than the two positive reports from Japan [77,78], did not detect any association with \(IL12RB1 \) SNPs (Additional file 2) or haplotypes (data not shown). Studies in Korea [80] and Indonesia [81] could not validate the findings either. The association found in Japan could be population-specific, but it could also a false-positive result. For this reason, replication of those results should be attempted in an independent, larger Asian population [81].

Promoter polymorphisms in \(IL12RB2 \) were also investigated, since this gene was previously associated with leprosy [82], an infectious disease caused by \(Mycobacterium leprae \). Coding SNPs in this gene were previously shown to have no influence on mycobacterial infection [78,80], but the degree of expression of this gene, possibly regulated by promoter polymorphisms, could determine the intensity of the cell-mediated immune response to mycobacteria [82]. However rs3762317, which disrupts a GATA transcription factor binding site [33], and rs11576006, which participates in the creation of another GATA site [33], were not associated with TB in our study.

IL-18 is a proinflammatory cytokine and, together with IL-12, one of the primary inducers of IFN-γ production by T cells [83,84]. To date only one other association study between polymorphisms in \(IL18 \) and susceptibility to TB has been published, namely a study by Kusuhara et

Block 1a	Frequency Cases	Frequency Controls	p value	
1	A-G-T-S-G-G	0.63	0.62	0.61
2	C-G-C-L-T-C	0.25	0.24	0.49
3	A-A-T-S-G-G	0.06	0.09	0.02
4	C-G-C-L-T-G	0.03	0.04	0.38

Global significance: 0.11

Figure 1: Plot of LD between \(IL12B \) markers analysed in control individuals of the SAC population. Generated by Haplovie v4.1. The 5' and 3' ends of the genes are indicated and r² values (%) are shown on the squares (no value = 100%). The colours of the squares represent \(D' \) values, with dark grey being \(D' = 1 \), and white \(D' = 0 \).
al. which considered 21 candidate genes including IL18 [77]. Amongst others, they genotyped 6 SNPs spread throughout IL18, but did not consider the functional promoter or synonymous polymorphisms, and found no association between this gene and TB susceptibility. We genotyped functional promoter polymorphisms, the synonymous SNP and other variants, but did not detect statistically significant associations in single SNP or haplotype analyses either.

Both the innate and acquired immune systems are necessary to eradicate mycobacteria from the host [20]. A microarray-based gene-expression screening of mycobacteria-infected macrophages was done to search for novel regulatory pathways in innate responses to infection [85]. This study suggested that the Wingless/Frizzled (WNT/FZD) signalling system connects the innate and adaptive immunity during infections and implicated the WNT5A protein in human defence against infection with M. tuberculosis [85]. Blumenthal et al. [85] demonstrated that WNT5A is expressed by antigen-presenting cells when they are stimulated by mycobacteria or other bacterial structures. In addition, both WNT5A and its receptor FZD5, regulate IL-12 and IFN-γ production in antigen-presenting cells when exposed to mycobacteria. None of the WNT5A or FZD5 SNPs genotyped was associated with disease in the case-control. In addition, no haplotypes from these genes were associated with TB either.

Perhaps surprisingly, our study did not validate some previously described findings, even though it had enough power to detect the effect sizes reported by those studies (Additional file 2). Some of those associations were based on extremely low sample numbers (which could lead to false positive associations) or did not correct for multiple testing. Underpowered studies may not detect effect sizes that are small, but reasonable considering the current power to detect the effect sizes reported by those studies. This may not have been published.

The findings presented here demonstrate the common phenomenon in association studies, where the first report is usually a positive association and subsequent studies are often negative. Unfortunately, because of publication bias, other association studies which considered these eight candidate genes and found results similar to ours may not have been published.

Conclusions
We found a nominally significant association with an IL12B haplotype which was not considered to be globally significant after permutation testing to determine the significance for the entire analysis, and we identified a novel allele of the IL12B DSS2941 microsatellite in the SAC population. This research illustrates the complexity of TB where a well-known pathway cannot be conclusively genetically associated with the disease.

Additional material

Additional file 1 Previous association studies of tuberculosis susceptibility candidate genes investigated in this study. A table which summarises previous association studies of candidate genes investigated in this study.

Additional file 2 Candidate genes and polymorphisms analysed in this study. A table containing the results of the single-point association analyses done in this study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The work presented in the article was carried out in collaboration between all authors. MM participated in the study design and genotyping experiments, analysed the data, interpreted the results and wrote the paper. AN, PDVH, SS and EGH participated in the study design, interpreted results and wrote the paper. All authors approved the final manuscript.

Acknowledgements
Sample collection was funded by a grant from the Wellcome Trust (053844/Z/98/Z) to Paul van Helden and Eileen Hoal. Genotyping was funded by the German National Genome Research Network and supported by the DFG Excellence Cluster "Inflammation at Interfaces". We thank all study participants for their cooperation; E. Hanekom Keet, T. Wesse, L. Bossen, M. Davids, A. Dietsch and M. Friskov for technical help and R. Vogler for database support.

Author Details
1Molecular Biology and Human Genetics, MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, PO Box 19063, Stellenbosch University, Tygerberg 7505, South Africa and 1Institute for Clinical Molecular Biology, Christian-Albrechts-University, Schittenhelmstrasse 12, 24105 Kiel, Germany

Received: 5 February 2010 Accepted: 7 June 2010
Published: 7 June 2010

References
1. Comstock GW. Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978, 117:621-624.
2. Jepson A, Fowler A, Banyu W, Singh M, Bennett S, Whittle H, Hill AV: Genetic regulation of acquired immune responses to antigens of Mycobacterium tuberculosis: a study of twins in West Africa. Infect Immun 2001, 69:3983-3994.

3. Kallmann FJ, Resner D: Twin studies on the significance of genetic factors in tuberculosis. Am Rev Tuberc 1942, 47:549-547.

4. Newport MJ, Goethegebuer T, Wess HA, Whittle H, Siegrist CA, Marchant A: Genetic regulation of immune responses to vaccines in early life. Genes Immun 2004, 5:121-129.

5. Kimman TG, Janssen R, Hoel EG: Future prospects in respiratory syncytial virus genetics. Future Virology 2006, 1:483-492.

6. Cobat A, Gallant CJ, Simkin L, Black GF, Stanley K, Hughes J, Doherty TM, Hanekom WA, Eley B, Beyers N, Jaïs J, van Helden PD, Abel L, Hoal EG, Akars A, Schun E: High heritability of anti-mycobacterial immunity in a hyper-endemic area for tuberculosis disease. J Infect Dis 2010, 201:15-19.

7. Möller M, de Wit E, Hoal EG: Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 2010, 58:3-26.

8. van Helden PD, Möller M, Babb C, Warren R, Walzl G, Uys P, Hoal E: TB epidemiology and human genetics. Nat Rev 2009, 7:17-31.

9. Leal IS, Smiedegard B, Anderssen P, Appelberg R: Failure to induce enhanced protection against tuberculosis by increasing T-cell-dependent interferon-gamma generation. Immunology 2001, 104:157-161.

10. Cooper AM, Dalton DK, Stewert TA, Griffin JP, Russell DG, Orme IM: Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993, 178:2243-2247.

11. Moreira AL, Tsenova L, Murray PJ, Freeman S, Bergtold A, Chiriboga L, Kaplan G: Aerolos infection of mice with recombinant BCG secreting murine IFN-gamma partially reconstitutes local protective immunity. Microb Pathog 2000, 29:175-185.

12. Hirsch CS, Toossi Z, Ottino C, Johnson JL, Schwander SK, Robertson S, Wallis RS, Edmonds K, Okwera A, Mugyera R, Peters P, Ellner JJ: Depressed T-cell interferon-gamma responses in pulmonary tuberculosis: analysis of underlying mechanisms and modulation with therapy. J Infect Dis 1999, 180:2069-2073.

13. Jo EK, Park JK, Dockrell HM: Dynamics of cytokine generation in patients with active pulmonary tuberculosis. Curr Opin Infect Dis 2003, 16:205-210.

14. Ribeiro-Rodrigues R, Resende CT, Johnson JL, Ribeiro F, Palaci M, Sa RT, Maciel EL, Pereira FM, Lettono V, Toossi Z, Boom WH, Dietze R, Ellner JJ, Hirsch CS: Sputum cytokine levels in patients with pulmonary tuberculosis are early markers of mycobacterial clearance. Clin Diagn Lab Immun 2004, 70:122-129.

15. Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, Chiosea I, Capuano SV, Fuhrman C, Klein E, Flynn J: Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 2009, 77:4631-4642.

16. Doherty TM, Demesse A, Ölofsson J, Wolday D, Britton S, Equlale T, Ravn P, Andersen P: Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol 2002, 40:704-706.

17. Winke J, Rowinska-Zarkiewsz A, Demkow U, Szopinski J, Szolowska M, Filewiska M, Jagodziński J, Roszkowski-Sliz K: Interferon gamma production in the course of Mycobacterium tuberculosis infection. J Physiol Pharmacol 2008, 59(Suppl 6):751-759.

18. Park SK, Cho S, Lee IH, Jeon HS, Hong SH, Smego RA Jr, Cho SN: Subcutaneously administered interferon-gamma for the treatment of multidrug-resistant pulmonary tuberculosis. Int J Infect Dis 2007, 11:344-340.

19. Roberts T, Beyers N, Aguirre A, Walzl G: Immunosuppression during Active Tuberculosis is Characterized by Decreased Interferon-gamma Production and CDS2 Expression with Elevated Forkhead Box P3, Transforming Growth Factor-beta, and Interleukin-4 mRNA Levels. J Infect Dis 2007, 195:870-878.

20. Flynn JL, Chan J: Immunology of tuberculosis. Annu Rev Immunol 2001, 19:93-129.

21. Mittmeyer HW, Sterhoff U, Kohler A, Krause M, Lazar D, Mex P, Miekley D, Kaufmann SH: Poor correlation between BCG vaccination-induced T cell responses and protection against tuberculosis. Proc Natl Acad Sci USA 2007, 104:12343-12349.

22. Buddle BM, Wedlock DN, Denis M, Skinner MA: Identification of immune response correlates for protection against bovine tuberculosis. Vet Immunol Immunopathol 2005, 108:45-51.

Al-Muhisen S, Casanova JL: The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol 2008, 122:1043-1051.

24. Ronkivuori M, Nel HJ, Cooke GS, van Helden PD, Hoal EG: Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet 2003, 361:1871-1872.

25. Pacheco AG, Cardoso CC, Moraes MO: IFNG +874T/A, IL10 -1082G/A and TNF -308G/A polymorphisms in association with tuberculosis susceptibility: a meta-analysis study. Hum Genet 2008, 123:477-484.

26. Shibasaki M, Yagi T, Yatsuya H, Okamoto M, Nishikawa M, Baba H, Hashimoto N, Senda K, Kawabe T, Nakashima K, Imaizumi K, Shimokata K, Hasegawa Y: An influence of Interferon-gamma gene polymorphisms on treatment response to tuberculosis in Japanese population. J Infect 2009, 58:467-469.

27. Kritzinger FE, den BS, Enarson DA, Lombard CJ, Borgdorff MW, Gie RP, Beyers N: No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Trop Med Int Health 2009, 14:136-142.

28. Incidence Of TB In The Provinces Of South Africa [http://www.hiv.org.za/healthstats/16/data]

29. Barrero LB, Neyrolles O, Babb CL, Tallieux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L: Promoter Variation in the DC-SIGN Encoding Gene CD209 Is Associated with Tuberculosis. PLoS Medicine 2006, 3:e20.

30. Bergholdt R, Ghandil P, Johannesen J, Kristiansen OP, Kockum I, Luthman H, Ronningen KS, Nerup J, C riots F: Genetic and functional evaluation of an interleukin-12 polymorphism (IDDM18) in families with type 1 diabetes. J Med Genet 2004, 41:e39.

31. Hampe J, Wollstein A, Lu T, Frevel HJ, Will M, Manaster C, Schreiber S: An integrated system for high throughput TaqMan based SNP genotyping. Bioinformatics (Oxford, England) 2001, 17S5-655.

32. Teuber M, Koch WA, Manaster C, Wachter S, Hampe J, Schreiber S: Improving quality control and workflow management in high-throughput single-nucleotide polymorphism genotyping environments. Journal of the Association for Laboratory Automation 2005, 10:43-47.

33. vien Ritschoten JG, Westland R, van den Bogaard R, Nieste-Otter MA, van Veen A, Jonkers RE, van der Pouw Kraan TC, den Hartog MT, Wierenga EA: A novel polymorphic GATA site in the human IL-12beta2 promoter region affects transcriptional activation. tissue Antigens 2004, 63:538-546.

34. Lee EY, Hym JJ, Lee HS, Lee YJ, Song YW: Dinucleotide repeat polymorphism in intron II of human Toll-like receptor 2 gene and susceptibility to rheumatoid arthritis. Int J Immunogenet 2006, 33:211-215.

35. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S, Sasaki H: Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000, 66:187-195.

36. McDermid RE, Spielman RS: Insulin gene 5' flanking polymorphism. Length of class 1 alleles in number of repeat units. Diabetes 1995, 44:1296-1300.

37. Nocodendrus KK, Liu W, Chase GA, Tsai YJ, Fallin MD: Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genet 2005, 6(Suppl 1):S78.

38. Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003, 25:115-121.

39. Barrett JC, Fry B, Maller J, Daly MJ: Haplview: analysis and visualization of LD and haplotype maps. Bioinformatics (Oxford, England) 2005, 21:263-265.

40. Luoni G, Vera F, Arca B, Sirima BS, TROYE-BLUMBERG M, Celuzi M, Kwatkiowski D, Montano D: Antimarial antibody levels and IL4 polymorphism in the Fulani of West Africa. Genes Immun 2001, 2:411-414.

41. Rosenwasser LI, Klemm DJ, Dresback JK, Inamura H, Mascali J, KLinnert M, Borish L: Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopys. Clin Exp Allergy 1995, 25(Suppl 2):74-78.
42. Vidyarani M, Selvaraj P, Prabhu AS, Jawahar MS, Adhilakshmi AR, Narayanan PR. Interferon gamma (IFNgamma) & interleukin-4 (IL-4) gene variants & cytokine levels in pulmonary tuberculosis. Indian J Med Res 2006, 124:403-410.

43. Nasednikiova IO, Urzauza OI, Voronkova OV, Strelis AK, Novitsky WV, Nikulina EL, Hasanova RR, Kononova TE, Serebryakova VA, Vlasieva OA, Suhalentseva NA, Churina EG, Kolosova AE, Fedorovitch TV. Allelic polymorphism of cytokine genes during pulmonary tuberculosis. Bull Exp Biol Med 2005, 149:175-180.

44. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV: Interleukin-10 polymorphism associated with decreased risk of tuberculosis. Exp Mol Med 2005, 37:128-132.

45. Oh JH, Yang CS, Noh YK, Kweon YM, Jung SS, Son JW, Kong SJ, Yoon JU, Lee JS, Kim HJ, Park JK, Jo EK, Song CH: Polymorphisms of interleukin-10 and tumour necrosis factor-alpha genes are associated with newly diagnosed and recurrent pulmonary tuberculosis. Respir Res 2007, 12:394-398.

46. Stein CM, Zalwango S, Chunda AB, Millard C, Leontiev DV, Horvath AL, Cartier KC, Chervenak K, Room WH, Elston RC, Mugwera RD, Whalen CC, Iyengar SK: Linkage and association analysis of candidate genes for TB and TNFalpha cytokine expression: evidence for association with IFN gamma, IL-10, and TNF receptor 1 genes. Hum Genet 2007, 121:663-673.

47. Ates O, Musielim B, Cingel G, Topal-Sankaya A. Interleukin-10 and tumour necrosis factor-alpha gene polymorphisms in tuberculosis. J Clin Immunol 2008, 28:223-236.

48. Henao MI, Montes C, Paris SC, Garcia LF. Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinburgh, Scotland) 2006, 86:11-19.

49. Thyre T, Browne EW, Chibunma UA, Gyapong J, Orii O, Owusu-Dabo E, Brattig NW, Niemann S, Rusc-Gerdes S, Horstmann RD, Meyer CG: IL-10 haplotype associated with tuberculosis skin test response but not with pulmonary TB. PLoS ONE 2009, 4:e49240.

50. Tso HW, Liu YL, Tam CM, Wong HS, Chiang AK. Associations between IL-12B Polymorphisms and Tuberculosis in the Hong Kong Chinese Population. J Infect Dis 2004, 190:913-919.

51. Davoodi-Semirondi A, Yang JJ, She JX: IL-12p40 is associated with type 1 diabetes in Caucasian-American families. Diabetes 2002, 51:2334-2336.

52. Hall MA, McGlinn ET, Coakley G, Fisher SA, Boki K, Middleton D, Kaklamanis E, Moutoupsoulos H, Loughran TP Jr, Ollier WE, Panayi GS, Lanchbury JS: Genetic polymorphism of IL-12 p40 gene in immune-mediated diseases. Genes Immun 2000, 1:219-224.

53. Huang D, Cancilla MR, Morahan G. Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genomics 2000, 1:515-520.

54. Akahoshi M, Ishihara M, Remus N, Uno K, Miyake K, Hirota T, Nakashima K, Matsuda A, Kanda M, Enomoto T, Ohno S, Nakashima H, Casanova JL, Hopkin JM, Tamari M, Mao XQ, Shirakawa T: Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004, 114:503-509.

55. Morahan G, Kaur G, Singh M, Raphapt CC, Kumar N, Katoch V, Mehra NK, Huang D: Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007, 69(Suppl 1):233-236.

56. Zhang L, Moreau P, Kiehlbauch JA, Kranich C, Matzinger P: IL-12 stimulation of CD8+ T cells. J Immunol 2000, 164:2526-2530.

57. Peng LY, Zheng DH, Zhang Y, Li HT, Zhan J, Li M, Liao Y: Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genomics 2000, 1:515-520.

58. Akahoshi M, Ishihara M, Remus N, Uno K, Miyake K, Hirota T, Nakashima K, Matsuda A, Kanda M, Enomoto T, Ohno S, Nakashima H, Casanova JL, Hopkin JM, Tamari M, Mao XQ, Shirakawa T: Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004, 114:503-509.

59. Morahan G, Kaur G, Singh M, Raphapt CC, Kumar N, Katoch V, Mehra NK, Huang D: Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007, 69(Suppl 1):233-236.

60. Zhang L, Moreau P, Kiehlbauch JA, Kranich C, Matzinger P: IL-12 stimulation of CD8+ T cells. J Immunol 2000, 164:2526-2530.

61. Peng LY, Zheng DH, Zhang Y, Li HT, Zhan J, Li M, Liao Y: Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genomics 2000, 1:515-520.

62. Akahoshi M, Ishihara M, Remus N, Uno K, Miyake K, Hirota T, Nakashima K, Matsuda A, Kanda M, Enomoto T, Ohno S, Nakashima H, Casanova JL, Hopkin JM, Tamari M, Mao XQ, Shirakawa T: Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004, 114:503-509.

63. Morahan G, Kaur G, Singh M, Raphapt CC, Kumar N, Katoch V, Mehra NK, Huang D: Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007, 69(Suppl 1):233-236.

64. Zhang L, Moreau P, Kiehlbauch JA, Kranich C, Matzinger P: IL-12 stimulation of CD8+ T cells. J Immunol 2000, 164:2526-2530.

65. Peng LY, Zheng DH, Zhang Y, Li HT, Zhan J, Li M, Liao Y: Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genomics 2000, 1:515-520.

66. Akahoshi M, Ishihara M, Remus N, Uno K, Miyake K, Hirota T, Nakashima K, Matsuda A, Kanda M, Enomoto T, Ohno S, Nakashima H, Casanova JL, Hopkin JM, Tamari M, Mao XQ, Shirakawa T: Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004, 114:503-509.

67. Morahan G, Kaur G, Singh M, Raphapt CC, Kumar N, Katoch V, Mehra NK, Huang D: Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007, 69(Suppl 1):233-236.

68. Zhang L, Moreau P, Kiehlbauch JA, Kranich C, Matzinger P: IL-12 stimulation of CD8+ T cells. J Immunol 2000, 164:2526-2530.

69. Peng LY, Zheng DH, Zhang Y, Li HT, Zhan J, Li M, Liao Y: Complete primary structure, chromosomal localisation, and definition of polymorphisms of the gene encoding the human interleukin-12 p40 subunit. Genomics 2000, 1:515-520.

70. Akahoshi M, Ishihara M, Remus N, Uno K, Miyake K, Hirota T, Nakashima K, Matsuda A, Kanda M, Enomoto T, Ohno S, Nakashima H, Casanova JL, Hopkin JM, Tamari M, Mao XQ, Shirakawa T: Association between IFNA genotype and the risk of sarcoidosis. Hum Genet 2004, 114:503-509.

71. Morahan G, Kaur G, Singh M, Raphapt CC, Kumar N, Katoch V, Mehra NK, Huang D: Association of variants in the IL12B gene with leprosy and tuberculosis. Tissue Antigens 2007, 69(Suppl 1):233-236.

72. Zhang L, Moreau P, Kiehlbauch JA, Kranich C, Matzinger P: IL-12 stimulation of CD8+ T cells. J Immunol 2000, 164:2526-2530.
81. Sahiratmadja E, Baak-Pablo R, de Visser AW, Alisjahbana B, Adnan I, van Crevel R, Marzuki S, van Dissel JT, Ottenhoff TH, Van DVL: Association of polymorphisms in IL-12/IFN-gamma pathway genes with susceptibility to pulmonary tuberculosis in Indonesia. *Tuberculosis (Edinb)* 2007, 87:303-311.

82. Ohyama H, Ogata K, Takeuchi K, Namisato M, Fukutomi Y, Nishimura F, Naruishi H, Ohira T, Hashimoto K, Liu T, Suzuki M, Uemura Y, Matsushita S: Polymorphism of the 5' flanking region of the IL-12 receptor beta2 gene partially determines the clinical types of leprosy through impaired transcriptional activity. *J Clin Pathol* 2005, 58:740-743.

83. Lee JS, Song CH, Kim CH, Kong SJ, Shon MH, Kim HJ, Park JK, Paik TH, Jo EK: Profiles of IFN-gamma and its regulatory cytokines (IL-12, IL-18 and IL-10) in peripheral blood mononuclear cells from patients with multidrug-resistant tuberculosis. *Clin Exp Immunol* 2002, 128:516-524.

84. Dinarello CA, Novick D, Puren AJ, Fantuzzi G, Shapiro L, Muhl H, Yoon DY, Reznikov LL, Kim SH, Rubinstein M: Overview of interleukin-18: more than an interferon-gamma inducing factor. *J Leukoc Biol* 1998, 63:658-664.

85. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N: The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. *Blood* 2006, 108:965-973.

86. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG: Replication validity of genetic association studies. *Nat Genet* 2001, 29:306-309.

87. van den Oord EJ: Controlling false discoveries in genetic studies. *Am J Med Genet B Neuropsychiatr Genet* 2008, 147B:637-644.

88. Gallant CJ, Cobat A, Simkin L, Black GF, Stanley K, Hughes J, Doherty TM, Hanekom WA, Eley B, Beyers N, van Helden P, Abel L, Alcaïs A, Hoal EG, Schurr E: The impact of age and sex on anti-mycobacterial immunity of children and adolescents in an area of high tuberculosis incidence. *IJTLDB* in press.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2334/10/154/prepub

doi: 10.1186/1471-2334-10-154
Cite this article as: Möller et al.: Analysis of eight genes modulating interferon-gamma and human genetic susceptibility to tuberculosis: a case-control association study *BMC Infectious Diseases* 2010, 10:154