Eficácia da simulação realística para o ensino do exame físico pulmonar: ensaio clínico randomizado

Effectiveness of realistic simulation for teaching pulmonary physical examination: randomized clinical trial

Como citar este artigo:
Carino ACC, Fernandes RM, Fernandes MICD, Tinôco JDS, Gomes CST, Almeida ATD, et al. Effectiveness of realistic simulation for teaching pulmonary physical examination: randomized clinical trial. Rev Rene. 2022;23:e80801. DOI: https://doi.org/10.15253/2175-6783.20222380801

Resumo

Objetivo: avaliar a eficácia da simulação clínica realística para o ensino do exame físico pulmonar em discentes de graduação em Enfermagem. Métodos: estudo experimental do tipo pré-teste e pós-teste aplicado a grupo intervenção e controle aleatórios. A amostra foi de 30 discentes, divididos aleatoriamente. A análise foi realizada a partir de estatística descritiva e inferencial, por meio do teste de Kolmogorov-Smirnov e do Teste t para amostras independentes, considerando significativamente estatístico p≤0.05. Aplicou-se a escala de satisfação validada com o grupo intervenção. Resultados: identificou-se aumento de acertos no pós-teste do grupo intervenção, submetido à simulação realística. Nesse grupo, a média de erros variou de 4,87 no pré-teste para 2,13 no pós-teste. No grupo controle, os discentes diminuíram ou mantiveram o número de acertos das questões no pós-teste, e a média de erros aumentou, no pré-teste foi de 3,87 e no pós-teste foi de 4,0. A diferença de acertos entre o grupo intervenção e o grupo controle foram significativos (p=0,000). Conclusão: a partir da simulação realística, os alunos obtiveram uma menor média de erros no pós-teste. Contribuições para a prática: os resultados desta pesquisa favorecem a inserção curricular da simulação para o ensino do exame físico pulmonar na graduação de enfermagem.

Descrições: Enfermagem; Exercício de Simulação; Exame Físico; Ensaios Clínicos; Aprendizagem.

Resumo

Objective: to evaluate effectiveness of realistic clinical simulation for teaching pulmonary physical examination to undergraduate nursing students. Methods: experimental study of pre-test and post-test type applied to randomized intervention and control groups. The sample consisted of 30 students, randomly divided. The analysis was performed using descriptive and inferential statistics, through Kolmogorov-Smirnov test and t-test for independent samples, considering statistical significance p≤0.05. A satisfaction scale validated with the intervention group was applied. Results: we identified increased correct answers in post-test in the intervention group, which was submitted to realistic simulation. In this group, the mean number of errors varied from 4.87 in the pre-test to 2.13 in the post-test. In the control group, students either decreased or maintained the number of correct answers in the post-test, and mean errors increased, from 3.87 in the pre-test to 4.0 in post-test. The difference in correct answers between intervention and control groups was significant (p=0.000). Conclusion: from realistic simulation, students obtained a lower average error rate on post-test. Contributions to practice: results of this research favor the curricular insertion of simulation for teaching pulmonary physical examination in undergraduate nursing.

Descriptors: Nursing; Simulation Exercise; Physical Examination; Clinical Trial; Learning.
Introdução

O curso de graduação em enfermagem visa à formação de sujeitos éticos, reflexivos, críticos e autônomos, por meio do desenvolvimento de conhecimentos, habilidades, e atitudes nos estudantes. As atividades práticas supervisionadas são um dos principais métodos de formação, em que se aperfeiçoam habilidades técnicas e procedimentos, desenvolvendo a identidade profissional do aluno e consolidando teorias aprendidas em sala de aula[1,2].

O período de atividade prática supervisionada é marcado por intenso estresse emocional[3]. Dentre os temores dos discentes, avulta-se a realização do exame físico pulmonar. Nesse exame, são utilizados os métodos propedêuticos da inspeção, palpação, percussão e ausculta[4]. A fase da ausculta é referida como uma das mais propensas ao erro, corroborada pelo sentimento de insegurança decorrente das poucas oportunidades para desenvolver a habilidade técnica em laboratório[5].

Esta situação exacerbou-se durante o contexto pandêmico da COVID-19, sendo identificada a necessidade de formar profissionais qualificados para atuar frente às afecções respiratórias. Nesse contexto, o presente estudo pressupõe que alunos submetidos à simulação clínica anterior à prática hospitalar apresentam maior conhecimento sobre o exame físico pulmonar. Para tanto, com vistas a ratificar essa afirmativa, este estudo objetivou avaliar a eficácia da simulação clínica realística para o ensino do exame físico pulmonar em discentes de graduação em Enfermagem. Partiu-se do seguinte questionamento: A simulação realística é eficaz no processo de ensino aprendizagem do ensino do exame físico pulmonar em graduandos de enfermagem?

Métodos

Trata-se de um estudo experimental do tipo pré-teste e pós-teste, realizado em uma Universidade Federal localizada no Nordeste do Brasil durante o ano de 2018. A pesquisa foi desenvolvida em três etapas: construção do roteiro de simulação, validação por especialistas e implementação da intervenção educacional do Pirâmide de Miller, o domínio cognitivo refere-se ao primeiro e ao segundo nível da pirâmide ("saber" e "saber como fazer"). O "saber" refere-se ao conhecimento teórico, enquanto o "saber como fazer" ao conhecimento aplicado. Na prática profissional, o "fazer" é baseado no conhecimento do "saber aliado ao "saber como fazer"[6-9].

As habilidades e competências necessárias para o desenvolvimento destes níveis devem ser demonstradas pelos alunos ainda durante a formação acadêmica, que caracteriza o "mostrar como faz". Esse nível corresponde às avaliações práticas baseadas em atividades clínicas, sendo exemplos a observação pelo aluno do atendimento a pacientes reais, e pacientes simulados e o emprego da simulação realística[6-9].

A simulação tem sido uma técnica em saúde explorada como estratégia nos laboratórios de ensino para proporcionar um ambiente reflexivo e desenvolver competências teórico-práticas indispensáveis para o futuro enfermeiro[10-13]. Entretanto, nenhum desses estudos abordava especificamente a simulação no ensino do exame físico pulmonar.

Nesse contexto, o presente estudo pressupõe que alunos submetidos à simulação clínica anterior à prática hospitalar apresentam maior conhecimento sobre o exame físico pulmonar. Para tanto, com vistas a ratificar essa afirmativa, este estudo objetivou avaliar a eficácia da simulação clínica realística para o ensino do exame físico pulmonar em discentes de graduação em Enfermagem. Partiu-se do seguinte questionamento: A simulação realística é eficaz no processo de ensino aprendizagem do ensino do exame físico pulmonar em graduandos de enfermagem?
Eficácia da simulação realística para o ensino do exame físico pulmonar: ensaio clínico randomizado

O estudo seguiu as recomendações do Consolidated Standards of Reporting Trials (CONSORT).

O roteiro de simulação foi construído a partir da literatura científica e referencial pertinente, sendo composto pelos seguintes tópicos: título do cenário, objetivos, materiais, participantes, descrição do caso clínico, orientação dos diálogos, debriefing e referências. O caso clínico continha a narrativa da história clínica do paciente e suas necessidades voltadas para o sistema respiratório. O desenho da simulação clínica seguiu o modelo National League for Nursing (NLN)/Jeffries Simulation Framework(14), abordando as seguintes etapas: definição dos objetivos de aprendizagem; definição das competências a serem desenvolvidas; duração da simulação; personagens envolvidos na simulação; história atual do cliente simulado; informações adicionais que compõem o prontuário; falas direcionadas dos personagens da simulação e os objetivos da simulação a serem entregues ao aluno(15). Criou-se ainda um check-list sobre as atividades esperadas do aluno durante a simulação, a fim de subsidiar as discussões durante o debriefing.

Na segunda etapa, a avaliação do roteiro de simulação foi realizada com nove especialistas enfermeiros a partir de um grupo focal. Referente ao quantitativo de especialista, o número foi determinado pela fórmula n = Z²1-α/2. P (1 - P) / e², na qual Z1-α/2 refere-se ao nível de confiança adotado, P representa a proporção esperada de especialistas indicando a adequação de cada item, e “e” representa a diferença de proporção aceitável em relação ao que seria esperado(16).

Os critérios para a inclusão dos especialistas consistiam em: ser enfermeiro; titulação mínima de mestre; ser docente da disciplina de Semiologia e Semiotécnica da Enfermagem ou desenvolver pesquisas direcionadas ao ensino e ter disponibilidade para comparecer à reunião presencial de validação do instrumento de intervenção. Foram excluídos aqueles que não compareceram à reunião agendada.

A avaliação por grupo focal partiu-se de uma reunião com os especialistas com duração de quatro horas, na qual foram discutidos os objetivos do estudo e o roteiro da simulação realística. Discutiram-se cada tópico e o moderador/pesquisador obteve consenso sobre as opiniões expressadas. Todas as contribuições foram analisadas e acrescidas ao cenário.

Na terceira etapa, a intervenção educativa foi implementada com 30 discentes do quarto período da graduação em enfermagem no laboratório de habilidades de uma instituição federal, matriculados na disciplina de Semiologia e Semiotécnica da Enfermagem. Esse quantitativo se refere ao número estimado de discentes por semestre nos períodos da graduação.

Os alunos foram aleatoriamente divididos em grupos de controle e intervenção, mediante disponibilidade para participar da intervenção. Os primeiros 15 alunos formaram o grupo-intervenção e receberam as instruções sobre a simulação, os quais foram convidados a se candidatar, voluntariamente, aos papéis de enfermeiro e estudante de Enfermagem. O grupo-controle recebeu apenas a aula tradicional.

Os participantes de ambos os grupos responderam inicialmente ao instrumento pré-teste formado por duas etapas: a primeira com a caracterização sociodemográfica e acadêmica dos alunos e a segunda parte composta por 10 questões referentes ao exame físico pulmonar, contemplando questões objetivas de múltiplas-escolhas acerca dos métodos propedêuticos para avaliação do segmento pulmonar no paciente, atribuindo 01 ponto para cada questão do instrumento. As questões tinham o mesmo valor por acreditarem-se no caráter holístico e interligado do exame físico pulmonar.

A escolha dessa disciplina para o experimento proporcionou maior controle ao estudo e reduziu possíveis vieses, tendo em vista que os alunos não vivenciaram experiências hospitalares anteriores. Os critérios de inclusão amostral foram: acesso prévio à aula teórica tradicional sobre o exame físico pulmonar e ausência de experiência hospitalar anterior. Excluíram-se os discentes que possuíssem alguma experiência hospitalar prévia. Destaca-se que, dentre os participantes, nenhum apresentava essa situação.
O paciente foi representado pelo manequim Nursing Anne Simulator, da marca Laerdal Medical®, na qual foram ajustados parâmetros alterados do sistema pulmonar, a partir de seu sistema computacional. A comunicação aluno-manequim ocorreu a partir de um ator treinado, em um cenário simulado previamente testado pela pesquisadora responsável.

Toda a cena foi filmada e, após a finalização, perpassada para o restante do grupo, com vistas a subsidiar a última etapa, o debriefing. Nesse momento, todos os discentes do grupo intervenção refletiram sobre as ações desenvolvidas durante a simulação e o cuidado prestado ao paciente.

Por fim, os alunos dos grupos intervenção e controle responderam ao pós-teste, contendo as mesmas 10 questões acerca do exame físico pulmonar do instrumento pré-teste. De maneira similar ao realizado anteriormente, atribuiu-se 01 ponto para cada questão, totalizando 10 pontos máximos. Utilizou-se as mesmas questões para o pré-teste e pós-teste, considerando padronizar o nível de dificuldade, bem como avaliar a eficácia da simulação no aprendizado dos alunos do grupo intervenção e comparar o resultado com o grupo controle.

Além disso, o grupo intervenção também respondeu a uma escala de satisfação (17), a qual se referia ao grau de satisfação com a aplicação da simulação realística, em que foram abordados três eixos: prático, realismo e cognitivo. As três etapas da simulação: briefing, debriefing e o pós-teste foram realizadas no Laboratório de Habilidades Práticas da referida instituição. A simulação ocorreu durante o turno da manhã.

Os dados foram organizados em planilhas eletrônicas do Microsoft Office Excel®, versão 2013. Para a análise estatística, utilizou-se o software estatístico IBM SPSS Statistic 21.0 for Windows. Foram calculadas as frequências relativas e absolutas das variáveis categóricas, bem como as medidas de tendência central e de dispersão dos dados quantitativos, os quais tiveram sua normalidade testada pelo Teste de Shapiro-Wilk. A análise da eficácia da intervenção foi verificada por meio do Teste t para amostras independentes, com p≤0,05.

Respeitou-se os preceitos éticos de pesquisa com seres humanos. O Termo de Consentimento Livre e Esclarecido foi assinado por todos os participantes envolvidos. O presente estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal do Rio Grande do Norte, sob o número de parecer 2.057.709/2017.

Resultados

A caracterização amostral está expressa na Tabela 1, em que os resultados demonstram semelhança entre as características sociodemográficas e estudantis entre os acadêmicos de enfermagem de ambos os grupos, conforme p≤0,05.

Tabela 1 – Caracterização sociodemográfica e estudantil da amostra (n=30). Natal, RN, Brasil, 2018

Variáveis	Intervenção	Controle	p-valor*
	n (%)	n (%)	
Sexo			
Feminino	12 (40,0)	12 (40,0)	0,510
Masculino	3 (10,0)	3 (10,0)	
Estado civil			1,000
Com companheiro	4 (13,3)	5 (16,7)	
Sem companheiro	11 (36,7)	10 (33,3)	
Alguma reprovação			1,000
Sim	5 (16,7)	1 (3,3)	
Não	10 (33,3)	14 (46,7)	
Primeira graduação			0,130
Sim	9 (30,0)	11 (36,7)	
Não	6 (20,0)	4 (13,3)	
Realização de curso técnico			1,000
Sim	2 (6,7)	1 (3,3)	
Não	13 (43,3)	14 (46,7)	
Participação de projetos envolvendo exame físico			1,000
Sim	3 (10,0)	5 (16,7)	
Não	12 (40,0)	10 (33,3)	

*Teste exato de Fisher

Visando a melhor compreensão da condução do ensaio clínico, sua validade e aplicabilidade de suas conclusões, seguiu-se o CONSORT. O diagrama de fluxograma da pesquisa é apresentado na Figura 1.
Eficácia da simulação realística para o ensino do exame físico pulmonar: ensaio clínico randomizado

No pré-teste, implementado nos grupos intervenção e controle, verifica-se que não houve diferença estatística significativa em relação ao número de acertos para cada questão, indicando homogeneidade no conhecimento prévio dos grupos. Em relação ao pós-teste, também não houve diferença estatística entre os grupos intervenção e controle quando o número de acertos foi analisado para cada questão individualmente. Salienta-se que os questionamentos 1, 2 e 9 obtiveram 100% de acerto no grupo intervenção, o que impossibilitou a formação da Tabela 2×2. A porcentagem de acertos por pergunta encontra-se na Tabela 2.

Figura 1 – Fluxograma da pesquisa. Natal, RN, Brasil, 2018

Tabela 2 – Distribuição de acertos do grupo intervenção e controle (n=30). Natal, RN, Brasil, 2018

Questões	Pré-teste	Pós-teste				
	Intervenção (%)	Controle (%)	p-valor*	Intervenção (%)	Controle (%)	p-valor*
1	100,0	66,7	-	100,0	60,0	-
2	46,7	53,3	0,610	100,0	53,3	-
3	33,3	53,3	0,600	66,7	66,7	1,000
4	40,0	20,0	1,000	86,7	73,3	0,470
5	40,0	80,0	0,520	73,3	80,0	1,000
6	40,0	53,3	0,310	80,0	40,0	0,520
7	13,3	33,3	0,520	26,7	13,3	0,470
8	80,0	66,7	1,000	66,7	60,0	0,580
9	73,3	86,7	1,000	100,0	86,7	-
10	40,0	60,0	1,000	86,7	46,7	1,000

p-valor = Teste exato de Fisher
Entretanto, verifica-se aumento de acertos na maioria das questões aplicadas após a intervenção no grupo submetido à simulação realística. Nesse grupo, a média de erros variou de 4,87 no pré-teste para 2,13 no pós-teste. Em contrapartida, no grupo controle, observou-se que os discentes diminuíram ou mantiveram o número de acertos das questões no pós-teste. Neste sentido, a média de erros desse grupo aumentou, no pré-teste foi de 3,87 e a média de erros no pós-teste foi de 4,0.

Ao aplicar o teste t para amostras independentes, percebe-se uma diferença significativa entre as médias gerais das amostras com valor de aproximadamente 0,0007 e estatística positiva de acertos de 3,79.

O resultado obtido demonstra uma evidência fortíssima a favor da simulação realística como ferramenta de aprendizado para o exame físico pulmonar para graduandos de enfermagem.

No que tange ao grau de satisfação dos discentes sobre a simulação realística, os indivíduos do grupo intervenção caracterizaram a intervenção de acordo com os dados contidos na Tabela 3.

Diante dos resultados apresentados na Tabela 3, verificou-se que os indivíduos do grupo intervenção classificaram-na como extremamente satisfatória, muito satisfatória e satisfatória, na maioria dos eixos analisados.

Tabela 3 – Distribuição do grau de satisfação com a aplicação da simulação realística. Natal, RN, Brasil, 2018

Dimensões e respectivos itens	ES (%)	MS (%)	S (%)	PS (%)
Satisfação com a dimensão prática				
Satisfação global com a simulação	46,7	26,7	26,7	0
Aprendizagens conseguidas	46,7	20,0	33,3	0
Motivação quando da vinda para o curso	60,0	20,0	20,0	0
Dinamismo da simulação	46,7	26,7	26,7	0
Participação ativa no cenário desenvolvido	53,3	13,3	33,3	0
Interação com os colegas	46,7	26,7	26,7	0
Interação com os docentes	53,3	26,7	20,0	0
Satisfação com o grau de dificuldade do cenário	46,7	26,7	26,7	0
Produtividade durante o curso	46,7	40,0	6,7	6,7
Satisfação com a dimensão realismo				
Realismo do cenário desenvolvido	53,3	33,3	6,7	6,7
Credibilidade durante o cenário	60,0	26,7	6,7	6,7
Qualidade do material utilizado	40,0	46,7	13,3	0
Qualidade do equipamento utilizado	40,0	46,7	13,3	0
Qualidade do simulador	40,0	46,7	6,7	6,7
Satisfação com a dimensão cognitiva				
Satisfação com a discussão pós-cenário (debriefing)	60,0	26,7	13,3	0
Ligação do cenário à teoria	60,0	33,3	6,7	0
Adequação às temáticas desenvolvidas nas aulas	53,3	40,0	6,7	0

ES: Extremamente Satisfatória; MS: Muito Satisfatória; S: Satisfatória; PS: Pouco Satisfatória; I: Insatisfatória.
Discussão

Este estudo aponta que a simulação é uma metodologia ativa eficaz e com diferenças significativas no aprendizado quando comparada apenas ao ensino tradicional. A vantagem dessa tecnologia educacional consiste nos resultados positivos apresentados nas diversas áreas de ensino(18-20). Devido ao caráter multifacetado da simulação realística, esta se adapta a diferentes contextos e complexidades do ensino na área da saúde(21).

Os discentes que são instruídos em cenários simulados apresentam maior confiança, autoeficácia, pensamento crítico, compreensão da temática abordada e domínio do diálogo interprofissional e profissional-paciente(22-23), o que justifica os elevados índices de satisfação na presente pesquisa por parte do grupo intervenção.

A qualidade do simulador e da simulação obtiveram avaliações de acordo com a escala de satisfação como extremamente satisfatória, muito satisfatória ou satisfatória. Resultado similar foi verificado em estudo no qual os discentes demonstraram um alto nível de satisfação e confiança com a nova habilidade, bem como melhores níveis de compreensão e autoeficácia(24).

A simulação possibilita uma aprendizagem significativa e estimula o desempenho cognitivo dos alunos. Além disso, seu uso pode possibilitar aos estudantes o aumento da capacidade de tomar decisões, o desenvolvimento de habilidades e competências necessárias para a realização de procedimentos técnicos e o raciocínio crítico-reflexivo e diagnóstico(9).

Os itens com menor classificação estudantil na Escala de satisfação foram os referentes a qualidade do material, do equipamento e do simulador utilizado, sendo categorizados como “pouco satisfatórios”. Assim, enfoca-se a necessidade da construção minuciosa de cenários baseados em fatos reais, com aplicação de design detalhado e investimento na qualificação dos profissionais facilitadores(25). Desta forma, para ter uma simulação fidedigna, faz-se necessário investimento, por parte da instituição educativa, e políticas institucionais de ensino que priorizem métodos ativos de ensino.

Acredita-se que a chave para o sucesso dessa estratégia de ensino é o diálogo voltado para a construção de um pensamento crítico-reflexivo acerca do tema, possibilitado pelo momento do debriefing centrado no aluno(21,24), este que, como metodologia de avaliação para a formação dos alunos das áreas da saúde, demonstra auxiliar na avaliação do desempenho cognitivo dos alunos, bem como incentiva e promove o desenvolvimento das habilidades e competências fundamentais para os profissionais(9).

Pesquisa recente desenvolvida com graduandos de enfermagem reforça os achados do presente estudo, enfocando que a simulação realística contribui para a execução de técnicas e procedimentos de Enfermagem no exercício da conduta profissional e na autonomia(26). Tal fato é relevante devido à alegação de que, durante a graduação, os estudantes enfrentam dificuldades na execução do exame físico, apontando a ausculta direcionada e a distribuição do tempo destinado à prática como os maiores dificultadores(7).

Outrossim, o fato dos discentes serem atraídos pela experiência da simulação se deve à alta autonomia possibilitada pelo método, bem como à capacidade de tomar decisões sozinhos e prestar cuidados eficazes ao paciente, o que motiva o aluno a buscar estratégias pessoais de aprendizado e a ser mais proativo na prática clínica(26). Estudos realizados recentemente demonstraram efeitos positivos da implementação desta estratégia metodológica durante as aulas de urgência e emergência(24), atenção à saúde materno-infantil(25), doenças cardiovasculares(26) e feridas(27).

Destarte, ratifica-se a necessidade de aliar a tecnologia às necessidades dos discentes da área de saúde, a fim de preparar os estudantes para a realidade da prática clínica. Nesse sentido, acredita-se que o uso da simulação realística para o ensino do exame físico pulmonar, antes da atuação prática, contribui para uma atenção à saúde mais segura e eficaz.

Vale ressaltar ainda a importância de mais es-
tudos relacionados à simulação realística do exame físico pulmonar, visto a necessidade de profissionais de enfermagem capacitados para a realização do exame.

Limitações do estudo

A limitação deste estudo decorre da pesquisa ter sido realizada de maneira pontual em uma universidade pública. Sugere-se, assim, a realização de novas pesquisas abrangendo um maior número de estabelecimentos de ensino. Outrossim, a escassez de estudos que abordem a utilização do exame físico, especificamente do exame pulmonar, contribuiu para a limitação da pesquisa e comparação de estudos.

Contribuições para a prática

Acredita-se que a pesquisa pode contribuir para a melhora da qualidade do ensino do exame físico pulmonar, agregando conhecimentos e estratégias fomentadas pela utilização de uma metodologia ativa. Os resultados desta pesquisa favorecem a inserção curricular da simulação para o ensino na graduação de enfermagem. Destarte, a aplicação da simulação pode promover mudanças significativas na autoconfiança e satisfação dos alunos, bem como minimizar a ocorrência de eventos adversos na prática, contribuindo para a segurança dos pacientes.

Conclusão

Constatou-se que a aplicação da simulação realística para o ensino do exame físico pulmonar em graduandos de enfermagem apresentou melhoria no desempenho dos alunos do grupo-intervenção. Os resultados deste estudo demonstram impacto positivo da simulação realística na execução do exame físico pulmonar, mediante a melhoria do desempenho de suas habilidades teórico-práticas e dos níveis de satisfação com a metodologia empregada pelos alunos. Destaca-se, também, a homogeneidade das características dos grupos intervenção e controle.

Contribuição dos autores

Concepção e projeto ou análise e interpretação dos dados: Carino ACC, Fernandes RM, Fernandes MICD, Tinôco JDS, Gomes CST, Almeida ATD, Lira ALBC.

Redação do manuscrito ou revisão crítica relevante do conteúdo intelectual: Carino ACC, Fernandes RM, Fernandes MICD, Tinôco JDS, Gomes CST, Almeida ATD, Lira ALBC.

Aprovação final da versão a ser publicada: Carino ACC, Fernandes RM, Fernandes MICD, Tinôco JDS, Gomes CST, Almeida ATD, Lira ALBC.

Concordância em ser responsável por todos os aspectos do manuscrito relacionados à precisão ou integridade de qualquer parte do manuscrito sejam investigadas e resolvidas adequadamente: Carino ACC, Fernandes RM, Fernandes MICD, Tinôco JDS, Gomes CST, Almeida ATD, Lira ALBC.

Referências

1. Rigobello JL, Bernardes A, Moura AA, Zanetti ACB, Spirir WC, Gabriel CS. Supervised curricular internship and the development of management skills: a perception of graduates, undergraduates, and professors. Esc Anna Nery. 2018;22(2):e20170298. doi: https://dx.doi.org/10.1590/2177-9465-EAN-2017-0298

2. Fong S, Tan A, Czupryn J, Oswald A. Patient-centred education: how do learners’ perceptions change as they experience clinical training? Adv Health Sci Educ Theory Pract. 2019;24(1):15-32. doi: https://doi.org/10.1007/s10459-018-9845-y

3. Dias EG, Barbosa ET, Barbosa EKT, Bardquim VA. Ocorrência de estrés entre estudantes de Enfermagem. Revista de enfermagem. 2021;39(1):11-20. doi: https://doi.org/10.15446/avenferm.v39n1.84665

4. Lima T, Monteiro CR, Domingues TAM, Oliveira APD, Fonseca CD. Exame físico na enfermagem: avaliação do conhecimento teórico-prático. Nursing (São Paulo). 2020;23(264):3906-21. doi: https://doi.org/10.36489/nursing.2020v23i264p3906-3921
5. Doğru BV, Aydin LZ. The effects of training with simulation on knowledge, skill and anxiety levels of the nursing students in terms of cardiac auscultation: a randomized controlled study. Nurse Educ Today. 2020;84:104216. doi: https://doi.org/10.1016/j.nedt.2019.104216

6. Pimentão AR, Ueno TMRL, Silva AC, Nogueira TO, Oliveira MLC. Clinical simulation to confront covid-19: complementary training of nurses. Rev Enferm UFPE on line. 2021;15:e246653.

7. Boostel R, Felix JVC, Bortolato-Major C, Pedrolo E, Vayego SA, Mantovani MF. Stress of nursing students in clinical simulation: a randomized clinical trial. Rev Bras Enferm. 2018;71(3Suppl):967-74. doi: http://dx.doi.org/10.1590/0034-7167-2017-0187

8. Cate OD, Carraccio C, Damodaran A, Gofton W, Hamstra SJ, Hart DE, et al. Entrustment decision making: extending miller’s pyramid. Med Acad. 2021;96(2):199-204. doi: https://dx.doi.org/10.1097/ACM.00000000000003800

9. Mota LM, Santos ALF, Wyszomirska RMAF. Assessment of cognitive knowledge associated with debriefing in realistic simulation. Res Soc Dev. 2022;11(3):e3881326583. doi: https://dx.doi.org/10.33448/rsd-v11i3.26583

10. Ferri P, Rovesti S, Magnani D, Barbieri A, Bargellini A, Mongelli F, et al. The efficacy of interprofessional simulation in improving collaborative attitude between nursing students and residents in medicine: A study protocol for a randomised controlled trial. Acta Biomed. 2018;89(suppl 7):32-40. doi: http://dx.doi.org/10.23750/abm.v89i7-S.7875

11. Souza EFD, Silva AG, Silva AILF. Active methodologies for graduation in nursing: focus on the health care of older adults. Rev Bras Enferm. 2018;71(suppl 2):920-4. doi: https://dx.doi.org/10.1590/0034-7167-2017-0150

12. Schams K, Snyder A, Zeller D, Caywood K. Learning together: combining undergraduate and graduate simulated learning for practicing physical assessment skills. Nurse Educ Perspect. 2020;5(6):177-9. doi: http://doi.org/10.1097/01.NEP.0000000000000533

13. Tan K, Chong MC, Pathmawathi S, Wong LP. The effectiveness of outcome based education on the competencies of nursing students: a systematic review. Nurse Educ Today. 2018;64:180-9. doi: http://dx.doi.org/10.1016/j.nedt.2017.12.030

14. Jefries PR. The NLN Jefries simulation theory. Wolters Kluwer: National League for Nursing; 2016.

15. Quilici AP, Abrão K, Timerman S, Gutierrez F. Simulação clínica: do conceito à aplicabilidade. São Paulo: Atheneu; 2012.

16. Lopes MVO, Silva VM, Araujo TL. Methods for establishing the accuracy of clinical indicators in predicting nursing diagnoses. Int J Nurs Knowl. 2012;23(3):134-9. doi: https://doi.org/10.1111/j.2047-3095.2012.01213.x

17. Kim Y, Hwang K, Cho O. Simulation education with problem-based learning: effect on nursing students’ communication apprehension. Soc Behav Pers. 2018;46(1):151-60. doi: https://dx.doi.org/10.2224/sbp.6906

18. Oliveira SN, Massaroli A, Martini JG, Rodrigues J. From theory to practice, operating the clinical simulation in Nursing teaching. Rev Bras Enferm. 2018;71(4):1791-8. doi: https://dx.doi.org/10.1590/0034-7167-2017-0180

19. Silva JLG, Oliveira-Kumakura ARS. Clinical simulation to teach nursing care for wounded patients. Rev Bras Enferm. 2018;71(4):1785-90. doi: https://dx.doi.org/10.1590/0034-7167-2017-0170

20. Ferreira RPN, Guedes HM, Oliveira DWD, Miranda JL. Realistic simulation as a method of teaching in the learning of the health field students. Rev Enferm Cent-Oeste Min. 2018;8:e2508. doi: https://doi.org/10.19175/recom.v8i0.2508

21. Fernandes RM, Carino ACC, Fernandes MICD, Tinoco JDS, Ribeiro HCTC, Lira ALBC. Teaching cardiovascular physical examination in nursing: clinical simulation. Rev Bras Enferm. 2020;73(6):e20190530. doi: https://dx.doi.org/10.1590/0034-7167-2019-0530

22. Alconero-Camarero AR, Sarabia-Cobo CM, Catalán-Piris MJ, González-Gómez S, González-López JR. Nursing students’ satisfaction: a comparison between medium- and high-fidelity simul-
lation training. Int J Environ Res Public Health. 2021;18:e804. doi: https://dx.doi.org/10.3390/ijerph18020804

23. Mota L, Maia C, Soares F, Marreiros T, Silva AR, Freitas R. Perspectiva dos estudantes e docentes acerca do debriefing na prática simulada. Rev Invest Inov Saúde. 2019;2(1):41-50. doi: https://doi.org/10.37914/riis.v2i1.46

24. Bortolato-Maior C, Perez-Arthur J, Mattei Â, Mantovani M, Cestari-Felix J, Boostel R. Contribuições da simulação para alunos de graduação em enfermagem. Rev Enferm UFPE online. 2018;12(supl6):1751-62. doi: https://dx.doi.org/10.5205/1981-8963-v12i6a23063 3p1751-1762-2018

25. Cogo ALP, Lopes EFS, Perdomini FRI, Flores GE, Santos MRR. Building and developing realistic simulation scenarios on safe drug administration. Rev Gaúcha Enferm. 2019;40(esp):e20180175. doi: http://10.1590/1983-1447.2019.20180175

26. Alves NP, Gomes TG, Lopes MMCO, Gubert FA, Lima MA, Beserra EP, et al. Realistic simulation and its attributes for nurse training. Rev Enferm UFPE online. 2019;13(5):1420-8. doi:https://dx.doi.org/10.5205/1981-8963-v13i05a239014p1420-1428-2019

27. Kim E. Effect of simulation-based emergency cardiac arrest education on nursing students’ self-efficacy and critical thinking skills: role play versus lecture. Nurse Educ Today. 2018;61:258-63. doi: https://doi.org/10.1016/j.nedt.2017.12.003