Automatic one-loop calculation of MSSM processes with GRACE

J. Fujimotoa, T. Ishikawaa, M. Jimbob, T. Konc and M. Kurodad

aKEK, Oho, Tsukuba, Ibaraki 305-0801 Japan
bTokyo Management College, Ichikawa, Chiba 272-0001, Japan
cSeikei University, Musashino, Tokyo 180-8633, Japan
dMeiji Gakuin University, Totsuka, Yokohama 244-8539, Japan

We have developed the system for the automatic computation of cross sections, GRACE/SUSY, including the one-loop calculations for processes of the minimal supersymmetric extension of the standard model. For an application, we investigate the process $e^+ e^- \rightarrow Z^0 h^0$.

1. Introduction

Supersymmetry (SUSY) between bosons and fermions at the unification-energy scale is one of the most promising hypothesis, which is expected to resolve the remaining problems in the standard model (SM). In particular, the minimal supersymmetric extension of the SM (MSSM)1 has been extensively studied in the last decade due to the simplicity.

For more than ten years, we have been developing the system of the automatic computation of high energy physics processes. The system for the computation of the SM, GRACE, has been published2.

In including the interactions of SUSY particles in the GRACE system, we have made several modifications and the expansion of the system3,4. As the first outcome from GRACE/SUSY, we have published a package of event-generator, SUSY23, which contains 23 specific SUSY processes for $e^+ e^- \rightarrow 2$-body and 3-body5. At this stage, the model definition files are based on the Hikasa’s Manual6.

Recently, we have constructed the complete lagrangian of the MSSM7 using the European convention: namely, the positive chiragino is called a particle and the ranges of μ and $\tan \beta$ are defined as $0 \leq \tan \beta \leq 1$ and $-\infty \leq \mu \leq +\infty$. Thus we have published the new version of GRACE/SUSY (GRACE v2.2.0)8, which is available from9 http://minami-home.kek.jp/.

In the world, there exist several other groups independently developing the systems of the automatic computation in the SM with different methods9,10,11,12, and also developing the systems of the automatic computation in the MSSM, FeynArts-FormCalc13 and CompHEP14.

In this paper, we present the latest development of the GRACE/SUSY system including the one-loop calculations in the MSSM.

2. GRACE/SUSY/LOOP

2.1. Renormalization scheme

In the the MSSM, several particles are mixed states, so there are three kinds of way of introducing wavefunction renormalization constants. We adopt the renormalization scheme of the MSSM as follows:

- the gauge-boson sector: the conventional approach15 (Renormalization constants of wavefunctions are introduced to unmixed bare states and mass counterterms are introduced to mixed mass eigenstates.)
- the Higgs sector: the Dabelstein’s approach16; the chargino sector and the neutralino sector: the Kuroda’s approach17 (see also...
(Renormalization constants of wavefunctions are introduced only to unmixed bare states.)

- the matter-fermion sector and the sfermion sector: the Kyoto approach [19]
 (Renormalization constants of wavefunctions are introduced only to mixed mass eigenstates.)

2.2. How to check the system

For the tree-level calculations, we first check the gauge invariance of amplitudes at a point of the phase space before the integration. In the GRACE system, the gauge invariance check is automatically carried out using the covariant gauge and the unitary gauge. In the SM, we have also checked GRACE with the non-linear gauge [20]. In the MSSM, we have already checked the gauge invariance for 582,102 processes with up to six-external particles within quadruple precision [21].

For the one-loop calculations, we check the invariance of cross sections varying three parameters, the UV constant (C_{UV}), the fictitious photon mass (λ) and the cutoff energy of the soft photon (k_c). As an example of the invariance checks, the result for the process $e^+e^- \rightarrow \tilde{\chi}^0_2\tilde{\chi}^0_2$ at $\sqrt{s} = 1900$ GeV is shown in ref. [22], using the same input parameters as in ref. [23].

2.3. Application

As an application, we consider the production of the lighter CP-even Higgs h^0 [24]. First, we compare the CP-even Higgs masses, M_{h^0} and M_{H^0}, with the results of the Dabelstein [16]. In Table 1 and Table 2, the tree masses, one-loop masses are compared using parameters in (1) and (2). We can claim the agreement is satisfactory.

$$M_Z = 91.187, \ M_W = 80.35, \ m_t = 175,$$
$$M_{A^0} = 300, \ \mu = -100, \ M_2 = 400,$$
$$\tilde{m}_{\tilde{f}_L} = \tilde{m}_{\tilde{f}_R} = m_{\tilde{f}L} = 500, \ \theta_f = 0$$

for all sfermions,

(masses in GeV).

$$M_{A^0} = 200, \ m_t = 150 \ \text{(in GeV)},$$

We have investigated the process $e^+e^- \rightarrow Z^0h^0$ [24], using the input values (1) except $M_W = 80.423$ GeV, $m_t = 174$ GeV, $M_{A^0} = 150, 250$ and 350 GeV. We found that the cross sections are not sensitive to M_{A^0} at $\sqrt{s} = 500$ GeV. In Figure 1 we show the results for $M_{A^0} = 150$ GeV.

![Figure 1](image_url)

Figure 1. Cross-sections for $e^+e^- \rightarrow Z^0h^0$. The solid (dashed) line shows the radiative corrected (Born) cross sections in pb at $\sqrt{s} = 500$ GeV.

3. Conclusion and outlook

We have developed the system for the automatic computation of cross sections, GRACE/SUSY, including the one-loop calculations for processes in the MSSM. For an application, we investigate the process $e^+e^- \rightarrow Z^0h^0$.

Remaining tasks for us are:

- checking GRACE/SUSY/1LOOP with the non-linear gauge in the MSSM
- checking GRACE/SUSY/1LOOP for the invariance of cross sections on the UV constant in
other processes, for example, sfermion productions and neutralino productions.

Acknowledgements

This work was partly supported by Japan Society for Promotion of Science under the Grant-in-Aid for Scientific Research B (No.14340081).

REFERENCES

1. H.P. Nilles, Phys. Rep. 110 (1984), 1.
2. H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985), 75.
3. T. Ishikawa, et al., GRACE manual Version 1.0, KEK Report92-19 (1993).
4. T. Kon, in ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES—Proceedings of XXXth Rencontres de Moriond, Les-Ars, Savoie, France, March 11-18, 1995, edited by J. Tran Thanh Van, (Éditions Fronties, Gif-sur-Yvette Cedex, 1996), p.287.
5. M. Jimbo, et al., in New Computing Techniques in Physics Research IV—Proceedings of the Fourth International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High Energy and Nuclear Physics (AIHENP95), Pisa, Italy, April 3-8, 1995, edited by B. Denby and D. Perret-Gallix, (World Scientific, Singapore, 1995), p.149.
6. T. Kaneko, et al., in Proceedings of the Workshop on Physics and Experiments with Linear Colliders, Morioka-Appi, Iwate, Japan, September 8-12, 1995, edited by A. Miyamoto et al., (World Scientific, Singapore, 1996), p.579.
7. H. Tanaka, et al., Nucl. Instrum. Meth. A 389 (1997), 295.
8. J. Fujimoto, et al., Comput. Phys. Commun. 111 (1998), 185.
9. K. Hikasa, SUSY manuscript, version July 5, 1995, unpublished.
10. M. Kuroda, KEK CP-080 (1999), hep-ph/9902340
See also, J. Rosiek, Phys. Rev. D41 (1990) 3464; erratum KA-TP-8-1995, hep-ph/9511250.
11. J. Fujimoto, et al., Comput. Phys. Commun. 153 (2003), 106.
9. E. Boos, et al., in New Computing Techniques in Physics Research, edited by D. Perret-Gallix and W. Wojcik, (Édition du CNRS, Paris, 1990), p.573.
 E. Boos, et al., in New Computing Techniques in Physics Research II, edited by D. Perret-Gallix, (World Scientific, Singapore, 1992), p.665.
 A. Pukov, in New Computing Techniques in Physics Research III, edited by K.-H. Becks and D. Perret-Gallix, (World Scientific, Singapore, 1994), p.473.
10. J. Kühbeck, M. Böhm and A. Denner, Comput. Phys. Commun. 60 (1990), 165.
 R. Mertig, M. Böhm and A. Denner, Comput. Phys. Commun. 64 (1991), 345.
 A. Denner, et al., Phys. Lett. B 291 (1992), 278.; Nucl. Phys. B 387 (1992), 467.
 R. Mertig, in New Computing Techniques in Physics Research III, edited by K.-H. Becks and D. Perret-Gallix, (World Scientific, Singapore, 1994), p.467.
 H. Eck and J. Kühbeck, ibid., p.565.
11. T. Stelzer and W.F. Long, Comput. Phys. Commun. 81 (1994), 357.
 F. Maltoni and T. Stelzer, JHEP 0302 (2003), 027.
12. T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118 (1999), 153.
13. T. Hahn, Nucl. Phys. Proc. Suppl. 89 (2000), 231.; Comput. Phys. Commun. 140 (2001), 418.
 T. Hahn and C. Schappacher, Comput. Phys. Commun. 143 (2002), 54.
14. D.S. Gorbunov and A.V. Semenov, hep-ph/0111291
 A. Semenov, Nucl. Instrum. Meth. A502 (2003), 558.
15. M. Böhm, W. Hollik and H. Spiesberger, Fortschr. Phys. C34 (1986), 687.
16. A. Dabelstein, Z. Phys. C67 (1995), 495.
17. M. Kuroda, in Research report to the Ministry of Education, Science and Culture, Japan, the Grant-in-Aid for Scientific Research C (No.08640391), (1999), p.127.
18. T. Fritzsche and W. Hollik, Eur. Phys. J. C24 (2002), 619.
19. K-I. Aoki, et al., Prog. Theor. Phys. Suppl. 73 (1982), 1.
20. G. Bélanger, et al., LAPTH-982-03, KEK-CP-138 (2003), hep-ph/0308080
21. T. Ishikawa, Gauge invariance check in SUSY processes, unpublished.
 (Results were partly shown at QFTHEP'97, Samara, 1997).
22. J. Fujimoto, et al., to appear in Proceedings of QFTHEP’2003, hep-ph/0402144
23. M.A. Diaz, S.F. King and A. Ross, Nucl. Phys. B529 (1998), 23.
24. V. Driesen, W. Hollik and J. Rosiek, Z. Phys. C71 (1996), 259.
 S. Heinemeyer, et al., Eur. Phys. J. C19 (2001), 535.