Generalised neo-pseudo projective recurrent Finsler space

Indiwar Singh Chauhan¹*, T S Chauhan², Mohammad Gauhar³
1 Assistant Professor, Deptt. of Mathematics, Bareilly College, Bareilly (U.P.), India.
Tel.: 09219269009
2 Associate Professor, Deptt. of Mathematics, Bareilly College, Bareilly (U.P.), India
3 Research Scholar, IFTM University, Moradabad (U.P.), India

Abstract

Objectives: The purpose of this paper is to obtain several results in the field of generalised neo-pseudo projective recurrent Finsler space. Methods: A generalization technique is employed to solve the resulting problem. We provide its application in the study of space-time. Findings: In section 1, we have defined and studied some of the basic and useful results for later work. Section 2 deals for the neo-pseudo projective recurrent curvature tensor. The notion of neo-pseudo projective recurrent space of second order has been delineated in the section 3. In the section 4 we have studied the generalised neo-pseudo projective recurrent space and established several new results.

Novelty/Conclusion: In this paper we have studied some recurrent properties of neo-pseudo projective curvature tensor in a Finsler space. We have obtained several new results which are as follows:

- If the space Fⁿ admits a neo-pseudo projective curvature tensor Q_{βγδ}^{α}, then Q_{βγδ}^{α} is skew-symmetric with regard to last two indices.
- If the neo-pseudo projective deviation tensor Q_{β}^{α} and pseudo deviation tensor field T_{β}^{α} coincides to each other for q = 1 then space is W-flat.
- If Fⁿ admits the projectively flat Q-recurrent space then the relation \nabla_β Q_γ^ρ + \nabla_γ Q_β^ρ = 0 holds good.
- If a Finsler space Fⁿ admits projectively flat Q-birecurrent space then the relation K_{βγδ} Q_γ^α + K_{βρδ} Q_ρ^α + K_{ργδ} Q_γ^ρ = 0 holds good.
- If the space is Q-birecurrent then the generalised Q-recurrent space is Q-symmetric.
- For the projective flat generalised Q-recurrent space the relation \nabla_β \nabla_γ Q_ρ^α + \nabla_γ \nabla_δ Q_ρ^α + \nabla_ρ \nabla_δ Q_γ^α = 0 holds good.

AMS Subject Classification: 58B20, 53C20, 53C60.
Keywords: Neo-pseudo; recurrent; projective; curvature tensor; bisymmetric; flat
1 Introduction

Let F^n be an n-dimensional Finsler space with a positive definite metric $g_{\alpha \beta}$, which admit a projective deviation tensor field W^α_{β} and pseudo deviation tensor field T^α_{β} satisfying

$$Q^\alpha_{\beta} = p W^\alpha_{\beta} + q T^\alpha_{\beta} \quad (1.1)$$

where in p and q are scalars which are positively homogenous of degree zero in \dot{x}^α.

Prof. U.P. Singh and Prof. A.K. Singh while developing the theory of neo-pseudo projective curvature tensor, obtain two kinds of curvature tensor $Q^\alpha_{\beta \gamma}$ and $Q^\alpha_{\beta \gamma \delta}$ \(^{(1)}\). With a view to defining the projective deviation tensor field and pseudo deviation tensor field, he constructed the quantities $Q^\alpha_{\beta}(x, \dot{x})$ which behave like neo-pseudo projective deviation tensor.

With the help of tensor $Q^\alpha_{\beta}(x, \dot{x})$ the absolute differential of concerning vector referred to the scalar function $Q(x, \dot{x})$ is defined as follows \(^{(1–3)}\):

$$Q^\alpha_{\beta \gamma} = \frac{1}{3} (\dot{x}^\beta Q^\alpha_{\gamma} - \dot{x}^\gamma Q^\alpha_{\beta}) \quad (1.2)$$

and

$$Q^\alpha_{\beta \gamma \delta} = \dot{x}^\beta Q^\alpha_{\gamma \delta} \quad (1.3)$$

It is easy to verify that the neo-pseudo projective curvature tensor satisfies the following relations \(^{(1,4)}\):

$$Q^\alpha_{\beta \gamma} + Q^\alpha_{\gamma \delta \beta} + Q^\alpha_{\delta \beta \gamma} = 0 \quad (1.4)$$

$$Q^\alpha_{\beta \gamma} \dot{x}^\beta = Q^\alpha_{\gamma} \quad (1.5)$$

and

$$Q^\alpha_{\beta \gamma \delta} \dot{x}^\beta = Q^\alpha_{\gamma \delta} \quad (1.6)$$

Moreover, these curvature tensor also satisfy the following identities

$$Q^\alpha_{\beta \gamma \delta} \dot{x}^\beta \dot{x}^\gamma = Q^\alpha_{\delta} \quad (1.7)$$

and

$$Q^\alpha_{\beta} \dot{x}^\beta = 0 \quad (1.8)$$

As it is well known, in the Finsler space a scalar function $Q(x, \dot{x})$ is given by

$$Q^\alpha_{\alpha} = (n - 1) q T \quad (1.9)$$

Let us consider a curvature tensor W^α_{β} in Finsler space, is termed as projective curvature tensor in the Finsler space and is defined as follows \(^{(2,5,6)}\):

$$W^\alpha_{\beta} = H^\alpha_{\beta} + T^\alpha_{\beta} \quad (1.10)$$

Wherein H^α_{β} is positively homogeneous of degree one in \dot{x}^α.

In analogy with the relation (1.1) the projective curvature tensors $W^\alpha_{\beta \gamma}$ and $W^\alpha_{\beta \gamma \delta}$ in the Finsler space with the condition $p = q = 1$ may be defined as follows \(^{(2,7)}\):

$$W^\alpha_{\beta \gamma} = H^\alpha_{\beta \gamma} + Q^\alpha_{\beta \gamma} \quad (1.11)$$

$$W^\alpha_{\beta \gamma \delta} = H^\alpha_{\beta \gamma \delta} + Q^\alpha_{\beta \gamma \delta} \quad (1.12)$$
and

\[W_{\beta\gamma\delta}^\alpha = H_{\beta\gamma\delta}^\alpha + Q_{\beta\gamma\delta}^\alpha \]

(1.13)

In view of above discussions, we have the following theorems:

Theorem 1.1:
For the neo-pseudo projective curvature tensor the relation

\[Q_{\beta\gamma}^\alpha = -Q_{\gamma\beta}^\alpha \]

(1.14)

holds good.

Proof:
Interchanging \(b \) and \(g \) in equation (1.2) and adding this with new equation, we get the desired result.

Theorem 1.2:
If the space \(F^n \) admits a neo-pseudo projective curvature tensor \(Q_{\alpha\beta\gamma}^\delta \) then \(Q_{\alpha\beta\gamma}^\delta \) is skew-symmetric with regard to last two indices.

Proof:
Interchanging \(g \) and \(d \) in equation (1.3) and adding the new equation to the equation (1.3), we obtain

\[Q_{\alpha\beta\gamma}^\delta + Q_{\alpha\beta\delta\gamma} = \delta_\beta Q_{\gamma\delta}^\alpha + \delta_\delta Q_{\gamma\beta}^\alpha \]

(1.15)

From equations (1.14) and (1.15), we get

\[Q_{\alpha\beta\gamma}^\delta = -Q_{\alpha\beta\delta\gamma} \]

(1.16)

Theorem 1.3:
If the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) coincides with geodesic deviation tensor field \(H_{\alpha\beta}^\gamma \) in the Finsler space \(F^n \) then projective deviation tensor field \(W_{\alpha\beta}^\gamma \) and the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) are identically equal to each other.

Proof:
If the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) coincides with geodesic deviation tensor field \(H_{\alpha\beta}^\gamma \). Consequently, from equation (1.11) follows

\[W_{\alpha\beta}^\gamma = Q_{\alpha\beta}^\gamma \]

(1.17)

Hence projective deviation tensor field \(W_{\alpha\beta}^\gamma \) and the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) are identically equal to each other.

Theorem 1.4:
If the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) and pseudo deviation tensor field \(T_{\alpha\beta}^\gamma \) coincides to each other for \(q = 1 \) then Finsler space admits the condition \(W_{\alpha\beta}^\gamma = 0 \) i.e. \(W \)-flat.

Proof:
Insitng \(q = 1 \) in equation (1.1), we obtain

\[Q_{\alpha\beta}^\gamma = p \ W_{\alpha\beta}^\gamma + T_{\alpha\beta}^\gamma \]

(1.18)

If the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) and pseudo deviation tensor field \(T_{\alpha\beta}^\gamma \) coincides to each other then from equation (1.18) we observe that

\[W_{\alpha\beta}^\gamma = 0 \]

(1.19)

This manifests that the space is \(W \)-flat.

Theorem 1.5:
If the neo-pseudo projective deviation tensor \(Q_{\alpha\beta}^\gamma \) and projective deviation tensor field \(W_{\alpha\beta}^\gamma \) coincides to each other then the geodesic deviation tensor field \(H_{\alpha\beta}^\gamma \) vanish identically i.e. \(H \)-flat.

Proof:
If the neo-pseudo projective deviation tensor Q_{β}^{α} and projective deviation tensor field W_{β}^{α} coincides to each other then from equation (1.11) follows the result

$$H_{\beta}^{\alpha} = 0$$

(1.20)

Consequently, the space is H-flat.

Theorem 1.6:

If the projective deviation tensor field W_{β}^{α} and geodesic deviation tensor field H_{β}^{α} coincides to each other then the neo-pseudo projective deviation tensor Q_{β}^{α} vanish identically i.e. Q-flat.

Proof:

If the projective deviation tensor field W_{β}^{α} and geodesic deviation tensor field H_{β}^{α} coincides to each other. Consequently, from equation (1.11) follows

$$Q_{\beta}^{\alpha} = 0$$

(1.21)

Therefore the space is Q-flat.

2 Recurrent neo-pseudo projective curvature tensor in Finsler space

In view of the investigation of Prof. U.P. Singh and Prof. A.K. Singh\(^{(1)}\) we observe that if the neo-pseudo projective deviation tensor Q_{β}^{α} is necessarily recurrent then projective deviation tensor and pseudo deviation tensor are proportional to each other.

As a consequence of this follows the result

$$W_{\beta}^{\alpha} = t T_{\beta}^{\alpha}$$

(2.1)

wherein t is a scalar.

As a consequence of equations (1.1) and (2.1), we obtain

$$Q_{\beta}^{\alpha} = s T_{\beta}^{\alpha}$$

(2.2)

wherein $s = pt + q$ is any scalar and positively homogeneous of degree zero in x^{α}.

Definition 2.1:

A Finsler space whose curvature tensor is recurrent is called Q-recurrent Finsler space.

In view of the definition it follows that for a recurrent space, we have

$$\nabla_{\epsilon} Q_{\beta \gamma \delta}^{\alpha} = R_{\epsilon} Q_{\beta \gamma \delta}^{\alpha}$$

(2.3)

wherein R_{ϵ} is a non-zero vector termed as the recurrent vector field.

Definition 2.2:

An n-dimensional Finsler space F^n is called Q-symmetric when the covariant derivative of curvature tensor is everywhere zero i.e.

$$\nabla_{\epsilon} Q_{\beta \gamma \delta}^{\alpha} = 0$$

(2.4)

Definition 2.3:

A Finsler space F^n is said to be Q-flat when its curvature tensor vanishes identically.

As a consequence of this definition follows the result:

$$Q_{\beta \gamma \delta}^{\alpha} = 0$$

(2.5)

Contracting (2.3) with x^{β} and use of equation (1.6), we obtain

$$\nabla_{\epsilon} Q_{\gamma \delta}^{\alpha} = R_{\epsilon} Q_{\gamma \delta}^{\alpha}$$

(2.6)

Again contracting (2.6) with x^{γ} and making use of equation (1.5), we get

$$\nabla_{\epsilon} Q_{\delta}^{\alpha} = R_{\epsilon} Q_{\delta}^{\alpha}$$

(2.7)
Thus, we have now the following theorem:

Theorem 2.1:
For the recurrence vector space R_ε in the Finsler space F^n there exists the relation

$$\nabla_\rho \nabla_\varepsilon = (\nabla_\rho R_\varepsilon - \nabla_\varepsilon R_\rho).$$

Proof:
Differentiating (2.3) covariantly with regard to x^ρ, we get

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = (\nabla_\rho R_\varepsilon + R_\varepsilon R_\rho) Q^\alpha_{\beta\gamma\delta}$$

(2.8)

Interchanging ε and δ in equation (2.8) and subtracting the new equation from equation (2.8), we obtain

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} - \nabla_\varepsilon \nabla_\rho Q^\alpha_{\beta\gamma\delta} = (\nabla_\rho R_\varepsilon - \nabla_\varepsilon R_\rho) Q^\alpha_{\beta\gamma\delta}$$

(2.9)

Contracting (2.9) with $x^\beta x^\gamma$ and use of equation (1.7), we get

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma} = (\nabla_\rho R_\varepsilon) Q^\alpha_{\beta\gamma}$$

(2.10)

Contracting α and δ in equation (2.10) and use of equation (1.9), we obtain

$$\nabla_\rho \nabla_\varepsilon - \nabla_\varepsilon \nabla_\rho (\log T) = (\nabla_\rho R_\varepsilon - \nabla_\varepsilon R_\rho)$$

(2.11)

Definition 2.4:
If the neo-pseudo projective curvature tensor $Q^\alpha_{\beta\gamma\delta}$ in the Finsler space F^n satisfies the relation

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = K_{\rho\varepsilon} Q^\alpha_{\beta\gamma\delta}$$

(3.1)

then F^n is termed as Q-recurrent with recurrence vector field R_ε.

Consequently, we have a theorem:

Theorem 2.2:
If F^n admits the projectively flat Q-recurrent space then the relation

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} + \nabla_\rho Q^\alpha_{\beta\gamma\delta} + \nabla_\gamma Q^\alpha_{\varepsilon\beta\delta} = 0$$

holds good.

Proof:
If the space is projectively flat then from equation (1.12), we have

$$H^\alpha_{\beta\gamma} + Q^\alpha_{\beta\gamma} = 0$$

(2.13)

Differentiating (2.13) covariantly with respect to x^ε, we get

$$\nabla_\varepsilon H^\alpha_{\beta\gamma} + \nabla_\varepsilon Q^\alpha_{\beta\gamma} = 0$$

(2.14)

Taking the cyclic permutation in β, γ, ε and adding, we have

$$\left(\nabla_\varepsilon H^\alpha_{\beta\gamma} + \nabla_\beta H^\alpha_{\varepsilon\gamma} + \nabla_\gamma H^\alpha_{\varepsilon\beta} \right) + \left(\nabla_\varepsilon Q^\alpha_{\beta\gamma} + \nabla_\beta Q^\alpha_{\varepsilon\gamma} + \nabla_\gamma Q^\alpha_{\varepsilon\beta} \right) = 0$$

(2.15)

The first part of equation (2.15) vanishes due to commutation formula (6), equation (6.13), p.128), hence we obtain

$$\nabla_\varepsilon Q^\alpha_{\beta\gamma} + \nabla_\beta Q^\alpha_{\varepsilon\gamma} + \nabla_\gamma Q^\alpha_{\varepsilon\beta} = 0$$

(2.16)

3 Neo-Pseudo Projective Recurrent Space:

Definition 3.1:
Neo-pseudo projective curvature tensor $Q^\alpha_{\beta\gamma\delta}$ of a Finsler space satisfies the relation

$$\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = K_{\rho\varepsilon} Q^\alpha_{\beta\gamma\delta}$$

(3.1)

wherein $K_{\rho\varepsilon}$ is non-zero recurrent tensor, then it is called neo-pseudo projective recurrent space of second order or briefly a Q-birecurrent space.\(^{(3,4)}\)
Definition 3.2:
If the covariant derivative of neo-pseudo projective curvature tensor \(Q^a_{\beta\gamma\delta} \) vanishes identically then the space is termed as Q-bisymmetric.

As a consequence of above definition follows the result
\[\nabla_\rho \nabla_\epsilon Q^a_{\beta\gamma\delta} = 0 \] (3.2)

In this regard we shall now establish the following theorem:

Theorem 3.1:
The necessary and sufficient condition for Finsler space to be Q-bisymmetric space is that the neo-pseudo projective tensor vanishes identically.

Proof:
Since neo-pseudo projective tensor vanishes i.e. \(Q^a_{\beta\gamma\delta} = 0 \). Consequently from equation (3.1) it follows that \(\nabla_\rho \nabla_\epsilon Q^a_{\beta\gamma\delta} = 0 \).

This manifests that the space to be Q-bisymmetric.

Conversely, if the space to be Q-bisymmetric then the converse of theorem is immediately proof.

Remark 3.1:
It is noteworthy that every Q-recurrent is necessarily Q-birecurrent.

Theorem 3.2:
In a Finsler space \(F^n \), the recurrent tensor field \(K_{\epsilon\rho} \) is not symmetric in general.

Proof:
Contracting \(\alpha \) and \(\delta \) in equation (3.1) yields
\[\nabla_\rho \nabla_\epsilon Q^a_{\beta\gamma} = K_{\epsilon\rho} Q_{\beta\gamma} \] (3.3)

Interchanging \(\epsilon \) and \(\rho \) in equation (3.3) and subtracting the new equation from equation (3.3), we obtain
\[\nabla_\rho \nabla_\epsilon Q_{\beta\gamma} - \nabla_\epsilon \nabla_\rho Q_{\beta\gamma} = (K_{\epsilon\rho} - K_{\rho\epsilon}) Q_{\beta\gamma} \] (3.4)

Contracting (3.4) with \(\dot{x}^\beta \ x^\gamma \) and use of equation (1.7), we get
\[\nabla_\rho \nabla_\epsilon Q - \nabla_\epsilon \nabla_\rho Q = (K_{\epsilon\rho} - K_{\rho\epsilon}) Q \] (3.5)

Using commutation formula (5), equation (6.10), p.126 and equation (2.2), we obtain
\[(K_{\epsilon\rho} - K_{\rho\epsilon}) Q = (\partial_\sigma Q) H^\sigma_{\rho\epsilon} \] (3.6)

From equations (1.9) and (3.6), consequently, follows
\[K_{\epsilon\rho} - K_{\rho\epsilon} = \partial_\sigma (\log T) H^\sigma_{\rho\epsilon} \] (3.7)

Yields the result
\[K_{\epsilon\rho} \neq K_{\rho\epsilon} \] (3.8)

Theorem 3.3:
If a Finsler space \(F^n \) admits projectively flat Q-birecurrent space then the relation \(K_{\epsilon\rho} Q^a_{\beta\gamma} + K_{\beta\rho} Q^a_{\gamma\epsilon} + K_{\gamma\epsilon} Q^a_{\epsilon\beta} = 0 \) holds good.

Proof:
Differentiating equation (2.16) covariantly with respect to \(x^\rho \), we get
\[\nabla_\rho \nabla_\epsilon Q^a_{\beta\gamma} + \nabla_\epsilon \nabla_\rho Q^a_{\beta\gamma} + \nabla_\rho \nabla_\gamma Q^a_{\gamma\beta} = 0 \] (3.9)

Since the space is Q-birecurrent then equation (3.2) assumes the form
\[K_{\epsilon\rho} Q^a_{\beta\gamma} + K_{\beta\rho} Q^a_{\gamma\epsilon} + K_{\gamma\epsilon} Q^a_{\epsilon\beta} = 0 \] (3.10)
4 Generalised Neo-Pseudo Projective Recurrent Space:

Let us consider the relation

\[\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = R_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} + K_{\varepsilon\rho} Q^\alpha_{\beta\gamma\delta} \] \hspace{1cm} (4.1)

wherein \(R_\rho \) and \(K_{\varepsilon\rho} \) are recurrence vector and recurrence tensor fields respectively.

Definition 4.1:

The neo-pseudo projective curvature tensor \(Q^\alpha_{\beta\gamma\delta} \) of Finsler space \(F^n \) satisfying the condition (4.1) is called generalised neo-pseudo projective recurrent curvature tensor\(^{(3,4)}\).

Definition 4.2:

Finsler space \(F^n \) equipped with the generalised neo-pseudo projective recurrent curvature tensor \(Q^\alpha_{\beta\gamma\delta} \) is called generalised neo-pseudo projective recurrent Finsler space\(^{(3,9)}\).

In this regard, we have the following theorems:

Theorem 4.1:

The necessary and sufficient condition for Finsler space \(F^n \) to be Q-symmetric is that the space has to be Q-birecurrent.

Proof:

If the space be Q-symmetric i.e. \(\nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = 0 \), then

\[\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = K_{\varepsilon\rho} Q^\alpha_{\beta\gamma\delta} \] \hspace{1cm} (4.2)

which is the condition of Q-birecurrent.

Conversely, let us assume that the space be Q-birecurrent, follows the condition (4.2). Inserting equation (4.2) into equation (4.1), we obtain \(\nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = 0 \). Hence the space is Q-symmetric.

Theorem 4.2:

If the space \(F^n \) is Q-symmetric and Q-flat then its generalised neo-pseudo projective recurrent space vanishes identically.

Proof:

If the space be Q-symmetric i.e. \(\nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = 0 \) and Q-flat i.e. \(Q^\alpha_{\beta\gamma\delta} = 0 \). Consequently, from equation (4.1) follows

\[\nabla_\rho \nabla_\varepsilon Q^\alpha_{\beta\gamma\delta} = 0 \]. This establishes the validity of the theorem.

Remark 4.1:

It is noteworthy that if \(F^n \) to be Q-symmetric and Q-flat follows that the generalised neo-pseudo projective recurrent space necessarily vanishes. Consequently, the space is simply generalised Q-symmetric one.

Theorem 4.3:

If space \(F^n \) admits Q-symmetric and Q-flat then the space is a generalised Q-symmetric one.

Proof:

It follows immediately from theorem 4.2.

Theorem 4.4:

In Finsler space \(F^n \), if the space is Q-birecurrent then the generalised Q-recurrent space is Q-symmetric.

Proof:

It is obvious from equations (2.4), (3.1) and (4.1).

Theorem 4.5:

For the recurrence vector \(R_\rho \) the relation

\[R_\rho \nabla_\varepsilon T - R_\varepsilon \nabla_\rho T = 0 \] \hspace{1cm} (4.3)

holds good.

Proof:

Contracting (4.1) by \(\alpha \) and \(\delta \), we obtain

\[\nabla_\rho \nabla_\varepsilon Q^\beta_\gamma = R_\rho \nabla_\varepsilon Q^\beta_\gamma + K_{\varepsilon\rho} Q^\beta_\gamma \] \hspace{1cm} (4.4)

Interchanging \(\varepsilon \) and \(\rho \) in equation (4.4) and subtracting the new equation from equation (4.4), we get

\[\nabla_\rho \nabla_\varepsilon Q^\beta_\gamma - \nabla_\varepsilon \nabla_\rho Q^\beta_\gamma = R_\rho \nabla_\varepsilon Q^\beta_\gamma - R_\varepsilon \nabla_\rho Q^\beta_\gamma + (K_{\varepsilon\rho} - K_{\rho\varepsilon}) Q^\beta_\gamma \] \hspace{1cm} (4.5)
Contracting (4.5) with $\dot{x^\beta}$ x^γ and use of equation (1.7), we get

$$\nabla_\rho \nabla_\epsilon Q - \nabla_\epsilon \nabla_\rho Q = R_\rho \nabla_\epsilon Q - R_\epsilon \nabla_\rho Q + (K_{\epsilon \rho} - K_{\rho \epsilon}) Q$$

(4.6)

By virtue of equations (3.5) and (4.6), we get

$$R_\rho \nabla_\epsilon Q - R_\epsilon \nabla_\rho Q = 0$$

(4.7)

Inserting equation (1.9) in equation (4.7), we get the desired result.

Theorem 4.6:
For the projective flat generalised Q-recurrent space the relation

$$\nabla_\rho \nabla_\epsilon Q^\alpha _{\gamma \delta} + \nabla_\rho \nabla_\gamma Q^\alpha _{\delta \epsilon} + \nabla_\rho \nabla_\delta Q^\alpha _{\epsilon \gamma} = 0$$

holds good.

Proof:
Contracting (4.1) with $\dot{x^\beta}$, we obtain

$$\nabla_\rho \nabla_\epsilon Q^\alpha _{\gamma \delta} = R_\rho \nabla_\epsilon Q^\alpha _{\gamma \delta} + K_{\epsilon \rho} Q^\alpha _{\gamma \delta}$$

(4.8)

Taking the cyclic permutation in ϵ, γ, δ and on making use of equations (2.16) and (3.10), we observe that

$$\nabla_\rho \nabla_\epsilon Q^\alpha _{\gamma \delta} + \nabla_\rho \nabla_\gamma Q^\alpha _{\delta \epsilon} + \nabla_\rho \nabla_\delta Q^\alpha _{\epsilon \gamma} = 0$$

(4.9)

References

1) Singh UP, Singh AK. On neo-pseudo projective tensor fields. Indian J Pure Appl Math. 1979;10(10):1196–1201.
2) Dubey RSD, Singh H. Finsler spaces with recurrent pseudocurvature tensor. Proceedings Mathematical Sciences. 1979;88(4):363–367. Available from: https://dx.doi.org/10.1007/bf02842482.
3) Singh UP, Singh AK. Finsler spaces admitting recurrent neo-pseudo projective tensor fields. Indian J Pure Appl Math. 1981;12(10):1201–1207. Available from: https://insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a82_1201.pdf.
4) Abdallah AA, Navlekar AA, Ghadle KP. On Study Generalized BP – Recurrent Finsler Space. International Journal of Mathematics Trends and Technology. 2019;65(4):74–79. Available from: https://dx.doi.org/10.14445/22315373/ijmtt-v65i4p514.
5) Sinha BB. On projectively flat Finsler space and pseudo deviation tensor. Prog Math. 1971;5:88–92.
6) Srivastava SK, Mishra AK, P. Recurrent Finsler spaces theorem in projective recurrent spaces of third order. International Journal of Science, Environment and Technology. 2016;5(1):185–194. Available from: http://www.ijset.net/journal/856.pdf.
7) Misra SB, Singh HC, Misra AK. On a neo-recurrent F_n^{n*}. Indian J Pure Appl Math. 1985;16(3):232–242.
8) Rund H. Differential Geometry of Finsler space. Berlin. Springer-Verlag. 1959. Available from: https://www.springer.com/gp/book/9783642516122.
9) Gicheru JG, Ngari CG. Cyrus Gitonga Ngari: Decomposition of Riemannian curvature tensor field and its properties. Journal of advances in mathematics and computer science. 2019;30(1):1–15. Available from: https://www.journaljamcs.com/index.php/JAMCS/article/view/28855.