RANK ligand (RANKL) induces activation of NFκB, enhancing the formation, resorptive activity, and survival of osteoclasts. Ca2+ transduces many signaling events, however, it is not known whether the actions of RANKL involve Ca2+ signaling. We investigated the effects of RANKL on rat osteoclasts using microspectrofluorimetry and patch clamp. RANKL induced transient elevation of cytosolic free Ca2+ concentration ([Ca2+]i) to maxima 220 nM above basal, resulting in activation of Ca2+-dependent K+ current. RANKL elevated [Ca2+]i, in Ca2+-containing and Ca2+-free media, and responses were prevented by the phospholipase C inhibitor U73122. Suppression of [Ca2+]i elevation using the intracellular Ca2+ chelator 1,2-bis(Ο-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA) abolished the ability of RANKL to enhance osteoclast survival. Using immunofluorescence, NFκB was found predominantly in the cytosol of untreated osteoclasts. RANKL induced transient translocation of NFκB to the nuclei, which was maximal at 15 min. U73122 or BAPTA delayed nuclear translocation of NFκB. Delays were also observed upon inhibition of calcineurin or protein kinase C. We conclude that RANKL acts through phospholipase C to release Ca2+ from intracellular stores, accelerating nuclear translocation of NFκB and promoting osteoclast survival. Such cross-talk between NFκB and Ca2+ signaling provides a novel mechanism for the temporal regulation of gene expression in osteoclasts and other cell types.

RANK ligand (RANKL) is a member of the tumor necrosis factor superfamily that plays an essential role in osteoclastogenesis, as well as the activation and survival of mature osteoclasts. This factor is expressed on osteoclasts, stromal cells, B-lymphoid lineage cells, and activated T-cells as a transmembrane ligand and it also exists in a biologically active soluble form (1–3). RANKL acts through its receptor RANK, which is expressed on osteoclast precursors, mature osteoclasts, as well as dendritic cells (4). Osteoprotegerin (OPG) is a soluble decoy receptor, which binds RANKL and blocks its interaction with RANK (4).

Signaling through RANK involves the recruitment of cytosolic tumor necrosis factor receptor-associated factors (TRAFs) 1, 2, 3, 5, and 6, which in turn activate multiple signaling pathways (5–7). For example, the association of RANK with TRAF2 induces activation of c-Jun N-terminal kinase, which leads to phosphorylation of c-Jun and activation of AP-1 (7–9). TRAF6 has been implicated in activation of the nonreceptor tyrosine kinase c-Src and the transcription factor NFκB (10, 11).

NFκB transcription factors are dimers of the five mammalian NFκB proteins: p50 (RelA), RelB, c-Rel, p50 (NFκB1), and p52 (NFκB2). NFκB regulates the expression of a large number of genes involved in cell survival as well as in cellular responses to inflammation and stress (12, 13). Typically, NFκB exists as a heterodimer of p50 and p65 (12). NFκB is retained in the cytoplasm complexed with inhibitory proteins IκBs. RANK signaling involves activation of NFκB-inducing kinase, leading to activation of IκB kinases (IKK) α and β, which in turn phosphorylate serine residues on IκB, targeting it for degradation in the proteasome (5, 11, 14). IκB degradation exposes the NFκB nuclear localization sequence, permitting its nuclear import. Within the nucleus, NFκB acts in concert with other transcription factors to regulate gene expression, with termination of the signal caused by binding of IκB (15). NFκB is essential for osteoclastogenesis, as disruption of both p50 and p52 subunits of NFκB leads to an osteopetrotic phenotype, because of impaired osteoclast differentiation (16).

Interaction of RANKL with RANK is crucial for osteoclast function, however, there are gaps in our understanding of the signaling events leading to activation of NFκB in response to RANKL. Although interaction of RANK with TRAF6 is necessary and sufficient to activate NFκB, dominant negative forms of TRAF molecules are unable to completely block NFκB activation, suggesting that a TRAF-independent pathway is also involved (5, 11). Because Ca2+-sensitive effectors such as calcineurin and protein kinase C (PKC) mediate NFκB activation in T lymphocytes and monocyte cell lines (17, 18), we considered the possible role of Ca2+ in the activation of NFκB by RANKL in osteoclasts.

We tested the hypothesis that RANKL signaling in osteoclasts involves elevation of [Ca2+], and examined the role of cytosolic Ca2+ in cell survival and activation of NFκB. Classical
biochemical approaches for studying osteoclasts are limited because of difficulty in isolating cells in sufficient number and purity. Furthermore, osteoclasts are terminally differentiated, and therefore do not proliferate in culture. We overcame these restrictions by studying authentic osteoclasts using single-cell techniques: microspectrofluorimetry and patch clamp to study changes in \([Ca^{2+}]_i\), and membrane currents, and immunofluorescence to study nuclear translocation of NFκB. We report that RANKL stimulates phospholipase C (PLC) leading to release of \(Ca^{2+}\) from intracellular stores, transient elevation of \([Ca^{2+}]_i\), and activation of \(Ca^{2+}\)-dependent K+ current. The effect of RANKL on osteoclast survival was found to be dependent on elevation of \([Ca^{2+}]_i\). Moreover, nuclear translocation of NFκB was slowed when elevation of \(Ca^{2+}\) was suppressed or when calcineurin or PKC were inhibited. Thus, phospholipase C and \(Ca^{2+}\) signaling are revealed to be important regulators of NFκB activation and osteoclast survival.

EXPERIMENTAL PROCEDURES

Osteoclast Isolation and Culture—Osteoclasts were isolated from the long bones of neonatal Wistar rats or neonatal New Zealand White rabbits as described previously (19). Briefly, long bones were dissected free from soft tissues and cut with a scalpel to release bone fragments into 2–3 ml of osteoclast culture medium that consisted of Medium 199 buffered with 25 mM HEPES and HCO3 - (Invitrogen, Burlington, Ontario) supplemented with 15% heat-inactivated fetal bovine serum and 1% antibiotic solution (penicillin, 10,000 units/ml; streptomycin, 10,000 μg/ml; amphotericin B, 25 μg/ml). Cells were suspended by repeated passage through a pipette and plated on glass coverslips or 35-mm culture dishes. Rat osteoclasts were incubated at 37 °C in 5% CO2 for 1 h, then gently washed with phosphate-buffered saline (PBS) to remove nonadherent cells and incubated in fresh medium for at least 1 h before use. To quantify survival, we counted the number of rat osteoclasts in culture dishes at time 0 (time of addition of RANKL or vehicle) and at 24 h. Rabbit osteoclasts were maintained at 37 °C in 5% CO2 for 2 h after isolation, then fresh culture medium was added and cells were incubated at 37 °C in 5% CO2 for 2 to 7 days before use. The majority of nonosteoclastic cells were removed from rabbit preparations using Pronase (0.001% in PBS with 0.5 mM EDTA) for ~5 min at room temperature (22–25 °C) with intermittent agitation (modified from Ref. 20). Osteoclasts were identified by the presence of three or more nuclei, and by their characteristic morphology under phase-contrast microscopy. Rat osteoclast precursors were identified as large (20–40 μm in diameter) mononucleated cells that were generally circular in outline, possessed a region of granular cytoplasm, and often exhibited a broad pseudopodium. These mononucleated cells all stained strongly with neutral red, and 92% stained positive for the osteoclast marker tartrate-resistant acid phosphatase. These procedures were approved by the Council on Animal Care of the University of Western Ontario.

Test Substances—Soluble RANKL (murine recombinant 158–316) and OPG (human recombinant 215–316 fused at the N terminus to a linker peptide and a FLAG tag) was purchased from 808,000, Santa Cruz Biotechnology, Santa Cruz, CA) and RANKL was applied before seal formation was 3–5 MO. Cells were superfused in physiological buffer at room temperature. Currents were recorded with Axopatch-1D amplifier, filtered, and digitized at 2–5 kHz using PClamp 6.0 (Axon Instruments, Union City, CA).

NFκB Localization by Immunofluorescence—Osteoclasts on glass coverslips were incubated with or without RANKL in osteoclast culture medium at 37 °C and at the indicated times fixed with 4% paraformaldehyde (10 min); washed in PBS (3 × 5 min); permeabilized with 0.1% Triton X-100 in PBS (10 min), washed in PBS (3 × 5 min); and blocked with 1% normal goat serum in PBS (NGS) for 1–2 h at room temperature. Monoclonal antibody to p65 (catalog number sc-8008, Santa Cruz Biotechnology, Santa Cruz, CA) was diluted 1:100 in NGS and applied overnight at 4 °C, followed by washing in PBS and incubation at room temperature with biotinylated goat anti-mouse IgG (Vector Laboratories Inc., Burlingame, CA) diluted 1:200 in NGS. After incubation (2 h, room temperature) with fluorescein-conjugated streptavidin (Vector Laboratories Inc.) (1:100 in NGS), coverslips were washed, mounted on slides with Vecta-Shield (Vector Laboratories Inc.), and examined using a Zeiss LSM 510 laser-scanning confocal microscope. We assessed localization of fluorescent label in all osteoclasts on each coverslip (usually 40–70 cells/coverslip). Osteoclasts were rated positive for nuclear localization if fluorescence intensity of one or more nuclei exceeded that of the cytoplasm.

Statistical Analyses—Data are presented as representative traces, as percentages of total cells tested, or as mean ± S.E. with sample size (n) indicating the number of osteoclasts for Ca2+-fluorescence or electrophysiology studies, or the number of separate cell preparations for immunofluorescence studies. Differences were assessed by one-way analysis of variance for correlated samples, followed by a Tukey or Dunnett test when appropriate.

RESULTS

RANKL Induces Elevation of Cytosolic Free Ca2+—Rat osteoclasts were loaded with fura-2, and Ca2+ was monitored by microspectrofluorimetry. Osteoclasts had basal \([Ca^{2+}]_i\), of 154 ± 4 nm (n = 118, mean ± S.E.). Osteoclasts responded to soluble RANKL with elevation of \([Ca^{2+}]_i\), which typically peaked and then declined slowly, even in the continued presence of RANKL. Upon washout of RANKL, \([Ca^{2+}]_i\), returned promptly to basal levels (Fig. 1A). Multiple \([Ca^{2+}]_i\), transients could be elicited by successive applications of RANKL (Fig. 1B), although the subsequent responses were slightly decreased in amplitude. No responses were observed when osteoclasts were stimulated with vehicle (n = 25). Moreover, OPG blocked the ability of RANKL to induce \([Ca^{2+}]_i\), elevations in osteoclasts that were responsive to multiple applications of RANKL alone (n = 3).

The proportion of osteoclasts responding to RANKL with elevation of \([Ca^{2+}]_i\), was dependent on the concentration of RANKL (Fig. 1C). \([Ca^{2+}]_i\), elevations were elicited by concentrations of RANKL as low as 10 pg/ml. The maximum proportion of osteoclasts (~60%) responded to RANKL at 10–100 ng/ml, with half-maximal effects at ~0.1 ng/ml. When the amplitudes of the RANKL-induced Ca2+ transients were quantified, similar concentration dependence was observed (Fig. 1D). At concentrations of 10–100 ng/ml, RANKL elevated \([Ca^{2+}]_i\), to peaks of 220 ± 30 nm above basal (based on 15
RANKL elicits Ca\(^{2+}\) elevations in rat osteoclasts. Single rat osteoclasts were loaded with fura-2, bathed in physiological buffer, and [Ca\(^{2+}\)]\(_i\) was monitored by microspectrofluorimetry. A, RANKL (100 ng/ml) was applied to cells for 60 s, as indicated by the bar below the Ca\(^{2+}\) trace. B, illustrated is the response of one osteoclast to 2 successive stimulations with RANKL (10 ng/ml), where Ca\(^{2+}\) transients diminished in amplitude upon successive stimulation. C, the percentage of osteoclasts responding to the single application of RANKL increased with increasing RANKL concentration (10\(^{-3}\) to 10\(^{-2}\) ng/ml, applied locally, \(n = 12\) osteoclasts for each concentration, except 10\(^{-3}\) ng/ml, where \(n = 6\)). Elevations in [Ca\(^{2+}\)]\(_i\) > 25 nM above basal were considered to be responses. D, amplitudes of Ca\(^{2+}\) transients were quantified as maximum elevations above basal levels. The curve illustrates dependence of amplitude on RANKL concentration. Data are mean ± S.E. of three to eight responsive osteoclasts for concentrations of RANKL ≥ 10\(^{-2}\) ng/ml.

Responsive osteoclasts of 24 tested). We also assessed changes in Ca\(^{2+}\) upon application of RANKL to rat osteoclast precursors. Even at concentrations of 1 μg/ml, RANKL caused elevation of [Ca\(^{2+}\)]\(_i\) in only 3 of 27 osteoclast precursors tested, whereas 11 of 17 multinucleated osteoclasts, tested in the same preparations, responded with elevation of Ca\(^{2+}\). As a negative control, we tested the responses of spindle-shaped stromal cells and found that none of the 12 cells tested responded to RANKL. Thus, a proportion of osteoclast precursors responded to RANKL with elevation of [Ca\(^{2+}\)]\(_i\), although the percentage of responsive precursors was significantly lower than that of mature osteoclasts. All subsequent studies were performed using multinucleated osteoclasts.

We next investigated the source of Ca\(^{2+}\) contributing to RANKL-induced elevation of [Ca\(^{2+}\)]\(_i\), in osteoclasts. RANKL elicited Ca\(^{2+}\) elevations of comparable amplitude in Ca\(^{2+}\)-containing and Ca\(^{2+}\)-free extracellular solutions, consistent with release of Ca\(^{2+}\) from intracellular stores (Fig. 2, A and B, \(n = 5\)). Ca\(^{2+}\) release from stores often involves PLC-mediated production of inositol 1,4,5-trisphosphate. We have shown previously that the PLC inhibitor U73122 blocks P2Y nucleotide receptor-mediated elevation of [Ca\(^{2+}\)]\(_i\) in osteoclasts (21). Treatment of osteoclasts with U73122 (1 μM for 10 min) abolished the RANKL-induced rise of [Ca\(^{2+}\)]\(_i\), whereas RANKL still elicited [Ca\(^{2+}\)]\(_i\) elevations in the presence of the control compound U73343 or vehicle (Fig. 2, C and D, \(n = 5\)). Taken together, these data indicate that RANKL signals through PLC leading to release of Ca\(^{2+}\) from intracellular stores and transient elevation of [Ca\(^{2+}\)]\(_i\). Our findings are in contrast to previous observations that RANKL caused sustained elevation of [Ca\(^{2+}\)]\(_i\), in osteoclasts (23).

RANKL Activates Ca\(^{2+}\)-dependent K\(^+\) Current—An independent approach was used to verify the effect of RANKL on [Ca\(^{2+}\)]\(_i\), in osteoclasts. Rat, rabbit, and human osteoclasts possess intermediate conductance Ca\(^{2+}\)-dependent K\(^+\) channels (24). Because only a subpopulation of rat osteoclasts
voltage (I-V) relationships were determined from the voltage Ca²⁺ nucleotide receptors on osteoclasts leading to release of

close to that recorded at the peak of the response to RANKL showed (Fig. 3). Control I-V relationship displayed inwardly rectifying K⁺ current at negative potentials. RANKL-activated Ca²⁺ current was determined by subtraction of control current from the peak current during application of RANKL. The RANKL-induced Ca²⁺ current exhibited a linear I-V relationship and reversed direction close to −70 mV, consistent with activation of the Ca²⁺-dependent K⁺ current. Data are representative of 6 responsive osteoclasts of 14 tested.

Rabbit osteoclasts were held under voltage clamp at −30 mV, and voltage ramps from −100 to +100 mV in 240 ms were commanded every 2 s. A, RANKL (100 ng/ml), applied locally for 20 s where indicated by the bar, caused outward current at −30 mV, and inward current at −100 mV. B, current-voltage (I-V) relationship for the same osteoclast prior to stimulation (Control) and at the peak of the response to RANKL. Control I-V relationship displayed inwardly rectifying K⁺ current at negative potentials. RANKL activated a large outward current. C, the RANKL-induced current was determined by subtraction of control current from the peak current during application of RANKL. The RANKL-induced current exhibited a linear I-V relationship and reversed direction close to −70 mV, consistent with activation of the Ca²⁺-dependent K⁺ current. Data are representative of 6 responsive osteoclasts of 14 tested.

exhibits this current (22), we used patch clamp techniques to monitor the effects of RANKL on membrane currents of rabbit osteoclasts, which all demonstrate the current (25). Cells were held at −30 mV and voltage ramp commands were applied every 2 s. RANKL (100 ng/ml) evoked outward current after a delay of −10 s (n = 6 out of 14 osteoclasts tested) with inward current apparent at −100 mV (Fig. 3A). Current-voltage (I-V) relationships were determined from the voltage ramp commands. Basal current prior to application of RANKL was dominated by the inwardly rectifying K⁺ current Kir2.1 that has been identified previously in osteoclasts (Fig. 3B, Control). Subtraction of the control current from that recorded at the peak of the response to RANKL showed that the RANKL-induced current was linear and reversed close to −70 mV, indicating K⁺-selective current (Fig. 3C). A similar, linear K⁺ current has been shown previously to closely follow elevations of [Ca²⁺][−] in osteoclasts (22). Thus, RANKL-induced current likely represents activation of Ca²⁺-dependent K⁺ channels because of rise of [Ca²⁺][−]. Hence, the voltage-clamp data independently confirm that RANKL induces elevation of [Ca²⁺][−] in osteoclasts.

Role of Ca²⁺ in Osteoclast Survival—It was shown previously that RANKL prolongs osteoclast survival in vitro (26). We investigated the role of Ca²⁺ in this process using the intracellular Ca²⁺-chelator BAPTA. To establish conditions for effective buffering of Ca²⁺ by BAPTA, we used ATP, which activates P2Y nucleotide receptors on osteoclasts leading to release of Ca²⁺ from intracellular stores and reproducible elevation of [Ca²⁺][−] (21). Osteoclasts were incubated with ATP (100 μM) to ensure their responsiveness, then treated with different concentrations of BAPTA-AM and rechallenged with ATP. We established that loading with 50 μM BAPTA-AM for 10 min at room temperature was optimal for suppressing elevation of [Ca²⁺][−] induced by ATP (Fig. 4A, n = 8). We then confirmed that, under these conditions, BAPTA was effective in preventing RANKL-induced elevation of [Ca²⁺][−], (Fig. 4B).

To examine the role of [Ca²⁺][−] in osteoclast survival, cells were treated with BAPTA-AM or vehicle. The medium was changed and osteoclasts were incubated with RANKL (100 ng/ml) or vehicle at 37 °C for 24 h. The number of osteoclasts per dish at 24 h was expressed as a percentage of the initial number of osteoclasts in the same dish. Osteoclast survival was significantly greater in cultures treated with RANKL alone than under all other conditions (p < 0.05). Initial cell numbers (100%) were 182 ± 61, 169 ± 27, 125 ± 31, and 159 ± 39 osteoclasts/dish for samples treated with vehicle, RANKL alone, BAPTA alone, or BAPTA and RANKL, respectively. Data are means ± S.E. from four independent experiments.

Fig. 3. RANKL activates Ca²⁺-dependent K⁺ current in osteoclasts. Rabbit osteoclasts were held under voltage clamp at −30 mV, and voltage ramps from −100 to +100 mV in 240 ms were commanded every 2 s. A, RANKL (100 ng/ml), applied locally for 20 s where indicated by the bar, caused outward current at −30 mV, and inward current at −100 mV. B, current-voltage (I-V) relationship for the same osteoclast prior to stimulation (Control) and at the peak of the response to RANKL. Control I-V relationship displayed inwardly rectifying K⁺ current at negative potentials. RANKL activated a large outward current. C, the RANKL-induced current was determined by subtraction of control current from the peak current during application of RANKL. The RANKL-induced current exhibited a linear I-V relationship and reversed direction close to −70 mV, consistent with activation of the Ca²⁺-dependent K⁺ current. Data are representative of 6 responsive osteoclasts of 14 tested.

Fig. 4. Effect of intracellular Ca²⁺ chelator, BAPTA, on osteoclast survival. A, the ability of BAPTA to suppress P2Y nucleotide receptor-induced elevation of [Ca²⁺][−], was demonstrated in rat osteoclasts. Single osteoclasts were first stimulated with ATP (100 μM), then incubated with BAPTA-AM (50 μM) or vehicle (0.05% dimethyl sulfoxide) for 10 min before rechallenging with ATP. ATP abolished Ca²⁺ responses to ATP. Data are representative of 5 osteoclasts treated with vehicle and 8 osteoclasts loaded with BAPTA. B, parallel coverslips were incubated with BAPTA-AM (50 μM) or vehicle for 10 min, then the medium was changed and the osteoclasts were challenged with RANKL (100 ng/ml). RANKL elicited Ca²⁺ responses in 4 of 9 osteoclasts treated with vehicle, whereas 0 of 9 BAPTA-loaded osteoclasts responded to RANKL. C, to examine the role of [Ca²⁺][−] in osteoclast survival, rat osteoclasts were treated with BAPTA-AM or vehicle as described above. The medium was then changed and osteoclasts were incubated with RANKL (100 ng/ml) or vehicle at 37 °C for 24 h. The number of osteoclasts per dish at 24 h was expressed as a percentage of the initial number of osteoclasts in the same dish. Osteoclast survival was significantly greater in cultures treated with RANKL alone than under all other conditions (p < 0.05). Initial cell numbers (100%) were 182 ± 61, 169 ± 27, 125 ± 31, and 159 ± 39 osteoclasts/dish for samples treated with vehicle, RANKL alone, BAPTA alone, or BAPTA and RANKL, respectively. Data are means ± S.E. from four independent experiments.
Role of \(\text{Ca}^{2+} \) in Regulation of NFκB by RANK Ligand

Effect of PLC Inhibitor on RANKL-induced Nuclear Translocation of NFκB

Rat osteoclasts were pretreated with test compounds prior to addition of RANKL (100 ng/ml) or its vehicle at time 0. Samples were fixed at the indicated times and localization of the p65 subunit of NFκB was determined by immunofluorescence. A, confocal image on left illustrates cytoplasmic localization of NFκB in vehicle-treated osteoclast. Image on right illustrates nuclear localization of NFκB in a different osteoclast treated with RANKL (100 ng/ml) for 30 min. Calibration bar of 10 \(\mu \)m applies to both panels. Micrographs are representative of results from 12 independent experiments. B, kinetics of RANKL-induced nuclear translocation of NFκB. Cells were pretreated with the PLC inhibitor U73122 (1 \(\mu \)M) or dimethyl sulfoxide (vehicle for inhibitors, 0.1% final) for 1 h at 37 °C prior to addition of RANKL (100 ng/ml) or its vehicle. The number of osteoclasts exhibiting nuclear localization of NFκB was expressed as a percentage of the total number of osteoclasts on the coverslip. RANKL caused rapid translocation of NFκB to the nuclei. Treatment with U73122 delayed nuclear translocation of NFκB. Data are representative of results from 12 independent experiments. B, kinetics of nuclear localization of NFκB. Nuclear translocation observed 15 min following addition of RANKL to parallel samples from six independent experiments). U73343, a closely related analog of U73122, which does not inhibit PLC or block RANKL-induced nuclear translocation of NFκB in response to RANKL (100 ng/ml) (47 ± 6% in control versus 44 ± 5% in U73122-treated, based on parallel samples from six independent experiments). U73343, a closely related analog of U73122, which does not inhibit PLC or block RANKL-induced nuclear translocation of NFκB (Fig. 5C). Thus, we provide evidence that RANKL signaling through PLC affects the kinetics of NFκB translocation.

Effect of BAPTA on the kinetics of RANKL-induced nuclear translocation of NFκB

Rat osteoclasts were treated with BAPTA-AM (50 \(\mu \)M), calcein blue-AM (50 \(\mu \)M, AM Control) or dimethyl sulfoxide (0.05%, vehicle) for 10 min. The medium was then changed and cells were incubated with or without RANKL (100 ng/ml) at 37 °C for the indicated times. The number of osteoclasts exhibiting nuclear localization of NFκB was determined as a percentage of maximum translocation observed in each experiment. Loading with BAPTA, but not calcein blue, significantly delayed RANKL-induced nuclear translocation of NFκB. Data are means ± S.E. of seven independent experiments, except for AM control where \(n = 3 \). 100% value was 59 ± 4% of total number of osteoclasts. *, indicates significant difference of BAPTA/RANKL compared with RANKL alone, \(p < 0.05 \).

To examine a role of the PLC signaling pathway, we determined the kinetics of RANKL-induced NFκB translocation in osteoclasts treated with the PLC inhibitor U73122, which prevents \([\text{Ca}^{2+}]_i\) elevations induced by RANKL. U73122 markedly delayed translocation of NFκB from the cytoplasm to the nuclei in response to RANKL. In U73122-treated cells, maximum translocation was delayed until 30 min following addition of RANKL (versus 15 min in parallel samples treated with RANKL alone) (Fig. 5B). U73122 did not significantly affect the RANKL-induced elevation of \([\text{Ca}^{2+}]_i\) (Fig. 6, data based on parallel samples from six independent experiments). U73343, a closely related analog of U73122, which does not inhibit PLC or block RANKL-induced elevation of \([\text{Ca}^{2+}]_i\) (Fig. 2, C and D), had no significant effect on RANKL-induced translocation of NFκB (Fig. 5C). Thus, we provide evidence that RANKL signaling through PLC affects the kinetics of NFκB translocation.

Effect of BAPTA on RANKL-induced Nuclear Translocation of NFκB—We next examined whether chelation of intracellular \(\text{Ca}^{2+} \) using BAPTA affected the kinetics of RANKL-induced translocation of NFκB. Using loading conditions established above, we found that BAPTA delayed nuclear translocation of NFκB induced by RANKL (Fig. 6, data based on parallel samples from seven independent experiments). In BAPTA-loaded osteoclasts, maximum translocation was observed 30–60 min following treatment with RANKL (100 ng/ml) versus 15–30 min in cells treated with RANKL alone. Loading of cells with BAPTA significantly reduced the proportion of osteoclasts exhibiting nuclear localization of NFκB at 15 min, whereas the proportion of cells exhibiting nuclear localization at 60 min was significantly increased (as indicated by asterisks in Fig. 6). Furthermore, BAPTA reduced the maximum proportion of osteoclasts exhibiting nuclear translocation of NFκB in response to treatment with RANKL (41 ± 6% for BAPTA-loaded osteoclasts versus 57 ± 5% for control osteoclasts). In the absence of RANKL, BAPTA did not significantly affect NFκB distribution (Fig. 6).

Hydrolysis of BAPTA-AM results in release of small molecular weight products because of the degradation of the acetoxymethyl ester (AM) moieties. To determine whether these degradation products might affect NFκB translocation, we ex-
Role of Ca2+ in Regulation of NF\textkappa B by RANK Ligand

The effects of cyclosporin A and bisindolylmaleimide I were additive at 7 min, however, the calcineurin inhibitor had no additional effect at 15 min (Fig. 7, data based on parallel samples from seven independent experiments). Similarly, NF\textkappa B translocation at 7 min in samples treated with FK506 together with bisindolylmaleimide I was 54 ± 6% of control, significantly less than in samples treated with bisindolylmaleimide I or FK506 alone (77 ± 3 and 67 ± 7%, respectively, n = 7). Like cyclosporin A, FK506 had no additional effect at 15 min (translocation in the presence of FK506 and bisindolylmaleimide I was 78 ± 4% of control versus 71 ± 5% in osteoclasts treated with bisindolylmaleimide I alone, n = 7). Taken together, these data indicate that calcineurin and PKC are downstream effectors of RANK that accelerate activation of NF\textkappa B.

DISCUSSION

We demonstrate that RANKL induces transient elevation of [Ca2+], in osteoclasts because of activation of PLC and release of Ca2+ from intracellular stores. The rise of [Ca2+], stimulates Ca2+-dependent K+ current, accelerates nuclear translocation of NF\textkappa B, and promotes osteoclast survival, indicating key functional roles for PLC and Ca2+ in RANK signaling in osteoclasts.

Half-maximal effects of RANKL on [Ca2+], were observed at ~0.1 ng/ml, with maximal actions at 10–100 ng/ml. These findings are in keeping with the concentration dependence reported for the induction of osteoclastogenesis by RANKL (27, 28), suggesting that elevation of [Ca2+], is mediated by RANK. Moreover, OPG prevented RANKL-induced elevation of [Ca2+], ruling out possible nonspecific effects. Repeated application of RANKL elicited multiple Ca2+ transients indicating lack of short term desensitization. In *vivo*, RANK signaling is thought to be mediated primarily by interaction of osteoclasts and their precursors with cells expressing RANKL (stromal cells, osteoclasts, and lymphocytes). Lack of desensitization would allow osteoclasts to receive multiple signals from neighboring cells, giving rise to temporal and spatial summation of RANKL signals.

Our data demonstrate that RANK signaling in osteoclasts involves PLC. PLC-\gamma is activated by growth factor receptor tyrosine kinases or nonreceptor tyrosine kinases linked to cytokine receptors (29). In this regard, RANK and TRAF6 interact with, and activate the nonreceptor tyrosine kinase c-Src (10), which may serve to recruit PLC-\gamma to the RANK-signaling complex in osteoclasts, as was shown for endothelial cells (30). Targeted disruption of c-src results in an osteopetrotic phenotype because of compromised resorptive function of osteoclasts (31). Interestingly, osteoclastogenesis is not impaired in c-src knockout mice, indicating a different requirement for c-Src signaling in osteoclasts and their precursors. In keeping with these differences, we observed that RANKL-induced Ca2+ signaling is more prominent in mature osteoclasts than in precursors. Furthermore, TRAF6-deficient mice have been reported to display osteoporosis because of nonfunctional osteoclasts (32), also suggesting critical differences between RANKL signaling in precursors and mature osteoclasts. However, osteoclastogenesis was found to be impaired in another TRAF6 knockout model (33), leaving open the question of the precise role for TRAF6-dependent pathways in RANKL-induced osteoclastogenesis and activation of resorption.

As in other cell types, cytosolic Ca2+ likely plays important roles in regulating a number of osteoclast functions. We have shown that RANKL activates the intermediate conductance Ca2+-dependent K+ current (IKCa) in osteoclasts. Our previous studies have shown that elevation of [Ca2+], results in activation of this current (22), so our electrophysiological results

Fig. 7. Effect of inhibitors of calcineurin and protein kinase C on RANKL-induced nuclear translocation of NF\textkappa B. Parallel samples of rat osteoclasts were incubated with the indicated inhibitors or vehicle (0.05% dimethyl sulfoxide) for 30 min at 37 °C before addition of RANKL (100 ng/ml). Nuclear translocation of NF\textkappa B was assessed at 7 and 15 min following addition of RANKL. Data are expressed as percentages of translocation observed in parallel samples of vehicle-treated control cells at 7 and 15 min after addition of RANKL. Dashed line indicates 100% level. Calcineurin inhibitor, cyclosporin A (CaA, 1 μM, n = 8) significantly reduced RANKL-induced nuclear translocation of NF\textkappa B at 7 min (p < 0.05), but had no effect at 15 min. The PKC inhibitor bisindolylmaleimide I (Bis, 100 nM, n = 7), significantly reduced RANKL-induced nuclear translocation of NF\textkappa B at both 7 and 15 min (p < 0.05). The effects of cyclosporin A and bisindolylmaleimide I were additive at 7 min, however, cyclosporin A had no additional effect at 15 min. * indicates significant difference compared with control, p < 0.05. #, indicates significant difference compared with samples treated with only one inhibitor, p < 0.05. Data are means ± S.E., 100% (control) values were 32 ± 3 and 39 ± 3% of total number of osteoclasts for 7 and 15 min, respectively.

NF\textkappa B translocation (% of control)

Inhibitor	% of control at 7 min	% of control at 15 min
CaA	75 ± 3	67 ± 7
Bis	80 ± 4	71 ± 6
CaA+Bis	85 ± 2	75 ± 5
CaA+Bis	90 ± 1	80 ± 4

Note: CaA = cyclosporin A (1 μM), Bis = bisindolylmaleimide I (100 nM).
provide independent evidence to support RANKL-induced elevation of [Ca\(^{2+}\)]. In vivo, the membrane hyperpolarization resulting from activation of IKCa would modulate the activity of electrogenic ion transport systems and increase the driving force for influx of Ca\(^{2+}\), a vital process in T cell signaling (34). Similarly, IKCa may play an important role in osteoclast regulation, especially considering that IKCa channels are selectively expressed in rat osteoclasts having the morphological characteristics of actively resorbing cells (22). Ca\(^{2+}\) also regulates cytoskeletal organization through Ca\(^{2+}\)-dependent actin-binding proteins, such as gelsolin, that play critical roles in osteoclast motility (35). Therefore, RANKL-induced alterations in [Ca\(^{2+}\)]\(_i\), could have multiple downstream effects in osteoclasts. In this regard, we found that elevation of [Ca\(^{2+}\)]\(_i\), is necessary for RANKL to prolong osteoclast survival. Although previous reports have suggested that elevation of [Ca\(^{2+}\)]\(_i\), in osteoclasts leads to inhibition of resorption (36), more recent studies have implicated Ca\(^{2+}\)-dependent pathways in promoting osteoclast formation (37). In osteoclasts, as in other systems, the effects of [Ca\(^{2+}\)]\(_i\), elevation likely depend upon the pattern, amplitude, and duration of the Ca\(^{2+}\) signal as well as its interactions with other signaling pathways.

NF\(\kappa\)B is a key transcription factor that promotes cell survival in many systems (13). In the present study, we have shown that RANKL-induced Ca\(^{2+}\) signaling accelerates nuclear translocation of NF\(\kappa\)B. Several mechanisms may be considered. Elevation of [Ca\(^{2+}\)]\(_i\), alone appears to be insufficient to activate NF\(\kappa\)B in osteoclasts. Nucleotides, such as ATP (10–100 \(\mu\)M), which bind to the P2Y class of G protein-coupled receptors causing even greater release Ca\(^{2+}\) from stores (21), do not activate NF\(\kappa\)B in osteoclasts.\(^8\) Similarly, elevation of [Ca\(^{2+}\)]\(_i\), alone is insufficient to activate NF\(\kappa\)B in immune cells (18, 38). Therefore, Ca\(^{2+}\) appears to act in concert with other canonical signaling pathways to accelerate activation of NF\(\kappa\)B in osteoclasts.

RANK signaling involves a cascade of events, beginning with the recruitment of TRAFs, leading to activation of NF\(\kappa\)B-inducing kinase and the IKK complex (5, 11, 14). Enhanced activity of the enzyme complex would increase phosphorylation of I\(\kappa\)B, accelerating translocation of NF\(\kappa\)B to the nucleus. Ca\(^{2+}\) may act to increase activity of the IKK complex, and indeed, IKK\(\beta\) is reported to be activated synergistically by two Ca\(^{2+}\)-dependent mediators of T cell receptor signaling, calcineurin and PKC (18). We show in osteoclasts that RANK signaling involves these same mediators.

Calcineurin is a serine/threonine phosphatase that is stimulated by Ca\(^{2+}\). The immunosuppressant drugs cyclosporin A and FK506 bind distinct immunophilins and inhibit the activity of calcineurin (38). We found that both of these inhibitors delayed the initial phase of NF\(\kappa\)B activation in osteoclasts, without affecting maximal activation. Similar actions of distinct inhibitors support the interpretation that their effects are mediated by calcineurin. The actions of calcineurin inhibitors were restricted to early time points, which might be explained by the fact that elevation of [Ca\(^{2+}\)]\(_i\), in response to RANKL is transient, giving rise to only brief activation of calcineurin. Our findings may have relevance to previously observed inhibitory effects of cyclosporin A on osteoclastic resorption in vitro (39). Stimulation of PLC also leads to increased activation of PKC.

To investigate the involvement of PKC, we used bisindolylmaleimide I, a selective inhibitor of the conventional and novel PKC isoforms, and carried out control studies using the inactive analog, bisindolylmaleimide V. Inhibition of PKC also caused delay in NF\(\kappa\)B activation, again with no marked change in maximal activation. In contrast to the calcineurin blockers, PKC inhibition resulted in a greater delay in NF\(\kappa\)B translocation, which could reflect the time course for production of diacylglycerol. Therefore, it would appear that early stages of NF\(\kappa\)B activation involve the convergence of several signaling pathways. Moreover, the effects of calcineurin and PKC blockers were additive, and similar in amplitude to the effects of BAPTA, all supporting a critical role for Ca\(^{2+}\) in controlling the latency of NF\(\kappa\)B activation.

Because the concurrence of multiple transcription factors regulates expression of genes, the kinetics of their activation is of critical importance. In this regard, the temporal pattern of NF\(\kappa\)B activation has recently been shown to generate specificity in gene expression (40). In concert with other transcription factors, NF\(\kappa\)B controls cell survival and the expression of genes encoding cytokines and adhesion molecules (12, 13, 41). RANK also activates AP-1, which requires cooperative interactions with other transcription factors and coactivators, including NF\(\kappa\)B, to achieve stimulus-specific regulation of transcription (42, 43). In this regard, c-Jun and c-Fos have been shown to interact directly with the p65 subunit of NF\(\kappa\)B, enhancing transactivation via both the \(\beta\) and AP-1 response elements (44). In addition, NF\(\kappa\)B interacts with the cancer-amplified coactivator ASC-2 and other transcriptional regulators to control gene expression (45). Therefore, the relative activities of NF\(\kappa\)B and other transcription factors at any point of time will determine the composition of multiprotein transcription complexes and consequently gene expression. Thus, distinct responses will depend upon the kinetics of activation of NF\(\kappa\)B and other transcription factors stimulated by RANKL or by other signaling molecules acting on the osteoclast. Whether the dependence of osteoclast survival on [Ca\(^{2+}\)]\(_i\), elevation is because of changes in the kinetics of NF\(\kappa\)B translocation or because of the activation of other Ca\(^{2+}\)-dependent pathways is yet to be determined. Nevertheless, the cross-talk between NF\(\kappa\)B and Ca\(^{2+}\) signaling demonstrated here provides a novel mechanism for the temporal regulation of NF\(\kappa\)B activity and gene expression in osteoclasts and other cell types.

Acknowledgments—We thank Dr. Lin Naemsch for performing preliminary electrophysiological and immunofluorescence studies on rabbit osteoclasts, and Caigong Liou for assistance in performing immunofluorescence labeling. We acknowledge Drs. John Hiscott (McGill University), David Litchfield (University of Western Ontario), and Michael Underhill (University of Western Ontario) for helpful comments on the manuscript. We thank Drs. William Boyle and Colin Dunstan (Agen Inc., Thousand Oaks, CA) for providing soluble RANKL and OPG.

REFERENCES
1. Manabe, N., Kawaguchi, H., Chikuda, H., Miyaura, C., Inada, M., Nagai, R., Nabeshima, Y., Nakamuka, K., Sinclair, A. M., Scheuermann, R. H., and Kurz, M. (2001) J. Immunol. 167, 2625–2631
2. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombiero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., Semald, G., Gun, J., Delanay, J., and Boyle, W. J. (1998) Cell 93, 165–176
3. Yasuda, H., Shima, N., Nakajawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tsuchiya, A., Yano, K., Goto, M., Murakami, A., Endo, E., Morinaga, T., Higashib, K., Udagawa, N., Takashashi, N., and Suda, T. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 3397–3402
4. Hoffbauer, L. C. (1999) Eur. J. Endocrinol. 141, 185–210
5. Wang, B., Josien, J., Lee, S. Y., Volodogodskaia, M., Steinnman, R. M., and Choi, Y. (1998) J. Biol. Chem. 273, 28355–28359
6. Galibert, L., Tomateto, M. E., Anderson, D. M., Cosman, D., and Dougall, W. C. (1998) J. Biol. Chem. 273, 34129–34137
7. Darnay, B. G., Haridas, V., Ni, J., Moore, P. A., and Aggarwal, B. B. (1998) J. Biol. Chem. 273, 20551–20555
8. Lee, H. Z., Kwack, K., Kim, K. C., Lee, S. H., and Kim, H. M. (2000) Mol. Pharmaco. 58, 1556–1565
9. Zhang, Y. H., Heulsmann, A., Tondravi, M. M., Mukherjee, A., and Abu-Amor, Y. (2001) J. Biol. Chem. 276, 565–568
10. Wang, B. R., Besser, D., Kim, N., Aron, J. R., Volodogodskaia, M., Hanafusa, H., and Choi, Y. (1999) Mol. Cell. 4, 1041–1049
11. Darnay, B. G., Ni, J., Moore, P. A., and Aggarwal, B. B. (1999) J. Biol. Chem.
Role of Ca\(^{2+}\) in Regulation of NFkB by RANK Ligand

1. Karin, M., and Ben-Neriah, Y. (2000) *Annu. Rev. Immunol.* **18**, 621–663
2. Mak, T. W., and Yeh, W. C. (2002) *Arthritis Res.* **4**, S243-S252
3. Wei, S., Teitelbaum, S. L., Wang, M. W., and Ross, F. P. (2001) *Endocrinology* **142**, 1290–1295
4. Sun, S. C., Ganchi, P. A., Ballard, D. W., and Greene, W. C. (1993) *Science* **259**, 1912–1915
5. Itoh, Y., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997) *Nat. Med.* **3**, 1285–1289
6. Steffan, N. M., Bren, G. D., Frantz, B., Tocci, M. J., O'Neill, A. E., and Paya, C. V. (1999) *J. Immunol.* **163**, 4885–4901
7. Trushin, S. A., Pennington, K. N., Algeciras-Schimnich, A., and Paya, C. V. (1999) *J. Biol. Chem.* **274**, 22923–22931
8. Naemsch, L. N., Dixon, S. J., and Sims, S. M. (2001) *J. Biol. Chem.* **276**, 39107–39114
9. Tezuka, K., Satoh, T., Kamioka, H., Nijweide, P. J., Tanaka, K., Matsu, T., Ohya, M., Kurhlara, N., Hakeda, Y., and Kumegawa, M. (1992) *Biochem. Biophys. Res. Commun.* **186**, 911–917
10. Weidema, A. F., Dixon, S. J., and Sims, S. M. (2001) *Am. J. Physiol.* **280**, C1531–C1539
11. Weidema, A. F., Barbera, J., Dixon, S. J., and Sims, S. M. (1997) *J. Physiol.* **503**, 303–315
12. Myers, D. E., Collier, F. M., Minkin, C., Wang, H., Holloway, W. R., Malakellis, M., and Nicholson, G. C. (1999) *FEBS Lett.* **463**, 295–300
13. Comarova, S. V., Dixon, S. J., and Sims, S. M. (2001) *Curr. Pharm. Des.* **7**, 637–654
14. Naemsch, L. N., Weidema, A. F., Sims, S. M., Underhill, T. M., and Dixon, S. J. (1999) *J. Cell Sci.* **112**, 4425–4435
15. Lacey, D. L., Tan, H. L., Lu, J., Kaufman, S., Van, G., Qiu, W., Rattan, A., Scully, S., Fletcher, F., Juan, T., Kelley, M., Burgess, T. L., Boyle, W. J., and Polverino, A. J. (2000) *Am. J. Pathol.* **157**, 435–448
16. Kong, Y. Y., Yoshida, H., Sarosi, I., Tan, H. L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A. J., Van, G., Irie, A., Kho, W., Wakeham, A., Dunstan, C. R., Lacey, D. L., Mak, T. W., Boyle, W. J., and Penninger, J. M. (1999) *Nature* **397**, 315–322
17. Liu, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, B., Scully, S., Van, G., Kaufman, S., Juan, S. C., Sun, S., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C. R., Lacey, D. L., and Boyle, W. J. (2000) *Proc. Natl. Acad. Sci. U. S. A.* **97**, 1566–1571
18. Blit, M. J., and Penta, S. N. (2000) *Physiol. Rev.* **80**, 1291–1335
19. Kim, Y. M., Lee, Y. M., Kim, H. S., Kim, J. D., Choi, Y., Kim, K. W., and Kwon, Y. G. (2002) *J. Biol. Chem.* **277**, 6799–6805
20. Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991) *Cell.* **64**, 693–702
21. Lomaga, M. A., Yeh, W. C., Sarosi, I., Duncan, G. S., Furlonger, C., Ho, A., Morony, S., Capparelli, C., Van, G., Kaufman, S., van der Heiden, A., Itie, A., Wakeham, A., Kho, W., Sasaki, T., Cao, Z., Penninger, J. M., Paige, C. J., Lacey, D. L., Dunstan, C. R., Boyle, W. J., Goeddel, D. V., and Mak, T. W. (1999) *Genes Dev.* **13**, 1015–1024
22. Naito, A., Azuma, S., Tanaka, S., Miyazaki, T., Takaci, T., Nakao, K., Nakamura, K., Katsuki, M., Yamamoto, T., and Ioue, J. (1999) *Genes Cells* 4, 353–362
23. Fanger, C. M., Rauer, H., Neben, A. L., Miller, M. J., Walff, H., Rosa, J. C., Ganselin, C. R., Chandy, K. G., and Cahalan, M. D. (2001) *J. Biol. Chem.* **276**, 12249–12256
24. Chelly, M., Kizer, N., Silva, M., Alvarez, U., Kwiatkowski, D., and Hruska, K. A. (2000) *J. Cell Biol.* **148**, 665–678
25. Zaidi, M., Adebanjo, O. A., Moonga, B. S., Sun, L., and Huang, C. L. (1999) *J. Bone Miner. Res.* **14**, 669–674
26. Ishida, N., Hayashi, K., Hoshijima, M., Ogawa, T., Koga, S., Miyatake, Y., Kumegawa, M., Kizuma, T., and Takeya, T. (2002) *J. Biol. Chem.* **277**, 41147–41156
27. Crabtree, G. R. (2001) *J. Biol. Chem.* **276**, 2313–2316
28. Chowdhury, H. M., Shen, V., and Dempster, D. W. (1991) *Calcif. Tissue Int.* **40**, 275–279
29. Hoffmann, A., Levenkeno, A., Scott, M. L., and Baltimore, D. (2002) *Science* **298**, 1241–1245
30. Sha, W. C. (1998) *J. Exp. Med.* **187**, 143–146
31. Chien, Y. W., and Kerppola, T. K. (2001) *Oncogene* **20**, 2438–2452
32. Li, J. J., Cao, Y., Young, M. R., and Colburn, N. H. (2000) *Mol. Carcinog.* **29**, 159–169
33. Stein, B., Baldwin, A. S., Jr., Ballard, D. W., Greene, W. C., Angel, P., and Herrlich, P. (1993) *EMBO J.* **12**, 3879–3891
34. Lee, S. K., Na, S. Y., Jung, S. Y., Choi, J., Oh, B. H., Cheong, J., Meltzer, P. S., Lee, Y. C., and Lee, J. W. (2000) *Endocrinol.** 141, 915–925

Downloaded from http://www.jbc.org/ by guest on July 25, 2018
RANK Ligand-induced Elevation of Cytosolic Ca2+ Accelerates Nuclear Translocation of Nuclear Factor κB in Osteoclasts

Svetlana V. Komarova, Mary F. Pilkington, A. Frederik Weidema, S. Jeffrey Dixon and Stephen M. Sims

*J. Biol. Chem. 2003, 278:8286-8293.
*doi: 10.1074/jbc.M206421200 originally published online December 20, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M206421200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 45 references, 21 of which can be accessed free at http://www.jbc.org/content/278/10/8286.full.html#ref-list-1