Observational Study
Characterization of patients with both alcoholic and nonalcoholic fatty liver disease in a large United States cohort

George Khoudari, Amandeep Singh, Mazen Noureddin, Danielle Fritze, Rocio Lopez, Imad Asaad, Eric Lawitz, Fred Poordad, Kris V Kowdley, Naim Alkhouri

ORCID number: George Khoudari (0000-0002-9570-4937); Amandeep Singh (0000-0001-8581-1405); Mazen Noureddin (0000-0003-2127-2046); Danielle Fritze (0000-0002-1950-2196); Rocio Lopez (0000-0002-4319-420X); Imad Asaad (0000-0002-0648-6625); Eric Lawitz (0000-0002-4234-224X); Fred Poordad (0000-0002-1500-1569); Naim Alkhouri (0000-0001-9872-2391).

Author contributions: All authors have contributed to this manuscript and have agreed on the content; Alkhoury N, Fritze D, and Noureddin M were involved in the study design; Khoudari G, Alkhoury N, and Singh A were involved with data analysis; Lopez R provided statistical support; Khoudari G, Kowdley K V, Singh A, Poordad F, Lawitz E, and Asaad I were involved with data interpretation, drafting and revising the work, All authors provided approval for the final version to be published.

Institutional review board statement: NHANES was approved by the Institutional Review Board at the Center for Disease Control and Prevention. This study does not require IRB approval.

Informed consent statement: Informed consent was obtained from all participants.

Conflict-of-interest statement: All authors have no conflict of interest and nothing to disclose.

Abstract
BACKGROUND
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome (MetS) and is characterized by steatosis in the absence of significant alcohol consumption. However, MetS and significant alcohol intake coexist in certain individuals which may lead to the development of BAFLD.

AIM
To assess the clinical characteristics of patients with both alcoholic and NAFLD (BAFLD) in a large cohort in the United States.

METHODS
INTRODUCTION

Fat accumulation in the liver, known as fatty liver disease, is a major cause of chronic liver disease worldwide[1]. There are two main classifications of fatty liver disease: alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). The well-accepted threshold values of alcohol consumption thought to contribute to ALD are 30 g/d for men and 20 g/d for women[3]. NAFLD, on the other hand, is considered as the hepatic manifestation of the metabolic syndrome (MetS) and is characterized by the presence of liver steatosis in the absence of other causes of fatty liver disease, particularly significant alcohol consumption. Recently, in the general population, the prevalence of obesity and MetS has been rising[5]; this increase presumably positively correlates with cases of NAFLD. Globally, NAFLD is estimated to afflict approximately 25.24% (95% CI: 22.10-28.65) of the population[6], and is on track to become the leading cause of liver transplantation in the near future. Similarly, the prevalence of ALD is on the rise. Currently, it affects nearly 8% of the general population in the United States. Alcohol appears to differentially induce toxic effects on the liver based on sex: It takes approximately twice the volume of alcohol and a longer duration of alcohol consumption for men to develop ALD compared to women[7]. In men, ethnicity appears to affect rates and outcomes of alcoholic cirrhosis:

In men, ethnicity appears to affect rates and outcomes of alcoholic cirrhosis:

成年人从国家卫生和营养调查中选取了2003-2014年间的参与者。NAFLD是根据升高的alanine aminotransferase (ALT)和体重超重或肥胖在其他原因的肝病中诊断的。BAFLD患者符合NAFLD的诊断标准，但也可能患有其他的原因。用全国健康和营养调查数据集，我们研究了两种脂肪肝疾病的分类，我们相信这是由于对这两种疾病的风险因素。Core tip: Using the National Health and Nutrition Examination Survey dataset, we studied a new classification of fatty liver disease that we believe is due to risk factors for both non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease occurring in the same individual. We propose to call this entity Both Alcoholic and NAFLD (BAFLD). As most of the risk factors that lead to BAFLD are potentially modifiable, understanding their reciprocal association and combined effect on the liver may aid in understanding, treating, and preventing BAFLD.
Incidence is highest in African-Americans followed by Hispanics then Caucasians; however, Hispanic males have the highest mortality rates from alcoholic cirrhosis\(^8,9\).

In a substantial proportion of the population, the risk factors that contribute to each of the two main types of fatty liver disease coexist within a given individual. Alcohol consumption sensitizes the liver to damage induced by MetS and vice versa; this could result in concurrent ALD and NAFLD in the same liver. We propose to call this scenario both alcoholic and NAFLD (BAFLD). We also believe that due to the presence of risk factors for both ALD and NAFLD, patients with BAFLD are at higher risk of advanced fibrosis (AF) and complications related to end-stage liver disease. Studies describing the combined effect of alcohol consumption and MetS on hepatic steatosis are scarce. MetS and excess alcohol consumption are likely responsive to modifiable dietary and lifestyle factors; therefore, understanding their reciprocal interaction and combined effect on the liver might lead to a better understanding of BAFLD pathogenesis as well as strategies for treatment and prevention\(^10\). The aim of this study was to determine and compare the prevalence and clinical characteristics of BAFLD to NAFLD in a large cohort of subjects in the United States.

MATERIALS AND METHODS

Subjects

All adult (18+ years) subjects who participated in the National Health and Nutrition Examination Survey (NHANES) during 2003-2014 cycles were identified and assessed. The NHANES is a survey program conducted by the National Center for Health Statistics (NCHS), which is part of the Centers for Disease Control and Prevention (CDC). The program is designed to assess the health and nutritional status of adults and children in the United States. It began in the early 1960s and became a continuous program in 1999. It examines a sample of 5000 persons a year from different counties across the United States representing the United States population of all ages. The survey includes interview questionnaires, standardized physical examination, and laboratory tests from blood samples collected at examination centers and analyzed at a central laboratory. The survey was approved by the Institutional Review Board at the Center for Disease Control and Prevention, and informed consent was obtained from all participants.

Diagnosis of NAFLD was made based on elevated alanine aminotransferase (ALT) (> 30 U/L in males and > 19 in females) and being overweight or obese [body mass index (BMI) ≥ 25 kg/m\(^2\)] in the absence of other causes of chronic liver disease (viral hepatitis, autoimmune liver disease, metabolic liver disease, total parenteral nutrition and medications etc.) Patients with BAFLD met the criteria for NAFLD but also had either MetS or type 2 diabetes and consumed excessive amounts of alcohol defined as ≥ 3 drinks/d for men and ≥ 2 drinks/d for women. The following patients were excluded; reported use of hepatotoxic medications, hepatitis viral infection, missing ALT, missing BMI, no alcohol intake information, missing diabetes status, and missing information on MetS components. MetS was defined as central obesity plus at least 2 of the following: diabetes, hypertension, hypertriglyceridemia or low high-density lipoprotein cholesterol (HDL).

Demographic variables including age, gender, ethnicity, waist circumference, average drinks a day, smoking status, BMI, central obesity, hypertension, diabetes, triglyceride (TG), HDL, MetS, and other variables were also collected. Laboratory parameters including aspartate aminotransferase (AST), ALT, alkaline phosphatase, platelets, albumin, bilirubin, lipid profile including TG and hemoglobin A1c (HbA1C) were also measured.

To assess for the presence of AF in NAFLD and BAFLD, a non-invasive liver fibrosis score, Fibrosis-4 (FIB-4) index, was calculated using age, AST, ALT and platelet count.

Outcomes

The primary outcome was to assess the prevalence and clinical characteristics of NAFLD and BAFLD. The secondary outcome was to evaluate the prevalence of AF in patients with NAFLD and BAFLD.

Statistical analysis

Data is presented as the mean ± SE or un-weighted frequency (%). The prevalence of NAFLD and BAFLD was assessed by calculating the percent of participants meeting the definitions of each; the corresponding 95% CIs are reported. A subgroup analysis was performed in subjects with either of the two liver diseases. The unadjusted analysis was implemented to evaluate differences between NAFLD and BAFLD;
continuous variables were compared using t-tests, and categorical variables were compared using Rao-Scott chi-square tests. A multivariable regression analysis was performed to compare disease severity between the BAFLD and NAFLD groups, after adjusting for diabetes and other components of the metabolic syndrome. Linear regression was used to model FIB-4 score while logistic regression was used to model the presence of suspected AF based on these scores.

All analyses were performed using SAS survey procedures (version 9.4, The SAS Institute, Cary, NC, United States), which account for the complex sampling design of NHANES and appropriately weight participants in statistical models. The full sample MEC exam weights were used in all analyses; weights for combined cycles were constructed following the guidelines provided in the NHANES analytic guidelines.

RESULTS

Prevalence of BAFLD in United States adult population

A total of 20939 subjects met the inclusion criteria during the 2003-2014 cycles. Overall, the prevalence of NAFLD was 25.9% (95%CI: 25.1-26.8), and that of BAFLD was 0.84% (95%CI: 0.67-1.02), which corresponds to an estimated 1.24 million Americans affected by BAFLD as shown in Table 1.

Patient characteristics: The descriptive characteristics of the study participants are shown in Table 2. Compared to patients with NAFLD, patients with BAFLD were more likely to be males, but there were no significant differences in the mean age between the two groups (43.8 vs 44.5 years; \(P = 0.34 \)). The BAFLD population had approximately 2.5 times more current smokers than NAFLD group and they also had approximately 16 times a greater number of drinks/d. Given the fact that we used MetS and diabetes mellitus type 2 (DM2) as part of the definition of BAFLD, components of the MetS were more common in the BAFLD cohort. For example, central obesity was also more prevalent in BAFLD patients. In addition, we found significantly higher percentage of MetS in BAFLD group compared to NAFLD population, with high prevalence of HTN, DM, hypertriglyceridemia and low HDL, \(P < 0.001 \) for all. Patients with BAFLD were more likely to have significantly higher ALT, AST, gamma glutamyl transferase (GGT). Patients with BAFLD also had significantly higher cholesterol and HbA1C than NAFLD patients. Interestingly, compared to NAFLD patients, those with BAFLD had lower platelet counts.

Prevalence of AF in patients with NAFLD and BAFLD

Based on FIB-4 index of 2.67 or higher, patients with BAFLD were found to have significantly higher prevalence of AF compared to the NAFLD group, (7.1% ± 2.5 in the BAFLD group vs 1.7% ± 0.22 in the NAFLD group, \(P = 0.045 \)) as seen in Figure 1. Even after adjusting for all the components of MetS, subjects with BAFLD had 3.2 times higher odds of having AF than those with NAFLD [OR (95%CI) for FIB-4 > 2.67 = 3.2 (1.4, 7.0, \(P = 0.004 \)].

DISCUSSION

To the best of our knowledge, the current study provides novel data on the prevalence and clinical characteristics of BAFLD in the United States adult population. The main findings of our study are the following: (1) BAFLD is common in the United States with an estimated 1.24 million Americans being affected; (2) Compared to NAFLD, patients with BAFLD were more likely to be male and active smokers; (3) They also have higher ALT (53.1 vs 38.2 U/L), AST (43.3 vs 31.2 U/L), and lower platelet counts (243 vs 261 K/uL) \((P < 0.05 \) for all); and (4) The prevalence of AF was also significantly higher in patients with BAFLD than subjects with NAFLD with an adjusted OR of having AF being 3.2 (1.4, 7.0) based on the FIB-4 index.

Several studies have highlighted the strong bidirectional association between MetS components and NAFLD\(^{[4,13]}\). Obesity is a principle risk factor for both NAFLD and MetS. NAFLD was reported to occur in > 95% of patients with severe obesity undergoing bariatric surgery\(^{[5,14]}\). Between 1980 and 2014, the World Health Organization (WHO) reported a doubling of obesity, with 39% of adults being considered overweight in 2014. In light of this, it is unsurprising that the prevalence of NAFLD is estimated to be close to 25% of the adult population\(^{[6,15]}\), which is consistent with our results.

Nearly 70% of the adult population worldwide is estimated to consume alcohol; the highest consumption levels are found in the developed world, particularly Europe and North America\(^{[1]}\). This suggests that the prevalence of ALD in the United States
would likely be high as well. Diseases of excess alcohol largely affect men, which could be explained by the fact that men drink more frequently, in larger quantities, and have fewer abstainers than women\[10\]. However, females are more prone to alcohol-related liver injury upon consuming lesser quantities of alcohol for shorter durations. Determining the relative clinical contributions of alcohol consumption and MetS to fatty liver disease is difficult, especially when both risk factors are present in the same patient. Indeed, it is well known that patients with NAFLD can consume higher amounts of alcohol than previously thought\[11\]. Obesity/MetS and excessive alcohol consumption may coexist in a significant proportion, affecting the liver in ways that may lead to the development of BAFLD.

Although, there are data addressing the effect of alcohol or obesity on liver\[18-21\], the interaction between alcohol consumption and obesity/MetS and their effect on liver biochemical variables are not well characterized. Age, sex, and ethnicity affect NAFLD prevalence; the likelihood of men having NAFLD is two times higher than women\[11\]. In the present study, patients with BAFLD were more likely to be males (75.8% ± 3.9% vs 46.9% ± 0.87%) and smokers (45.3% vs 17.6%) than patients with NAFLD alone. This is likely due to the larger number of males with alcoholic liver disease and high percentage of male smokers.

Furthermore, our data demonstrate that patients with BAFLD, when compared to the NAFLD group, had higher liver enzymes and lower platelets counts, suggesting more advanced liver disease in these patients. Our results are in concordance with previous studies that implied that the effect of alcohol consumption on hepatic steatosis, as measured by the examination of serum liver enzymes, increased with increasing BMI\[22-25\]. Hepatic steatosis was only found in 16% of lean controls in the Dionysos study in Northern Italy; however, this prevalence was increased to 46% in subjects with an alcohol intake > 60 g/d and to 76% in the obese participants\[26\].

Notably, in our study, BAFLD patients had three-times the risk of AF than the NAFLD group. This likely suggests that the combined effect of ALD and NAFLD have a synergistic unfavorable impact on hepatic fibrosis. The mechanism underlying this interaction is not known. Few small studies have assessed the effect of alcohol consumption on the underlying hepatic histopathology in subjects diagnosed with NAFLD. In a cohort of 112 patients with liver biopsies, Petersen et al\[27\] found that the only positive association between weight and fatty liver was seen in patients who were overweight and had moderate alcohol consumption. Ekstedt et al\[28\] found faster fibrosis progression in NAFLD patients who consumed alcohol in moderate amounts. Binge drinking and insulin resistance have been reported to be independent risk factors associated with the progression of fibrosis over a mean of 13.8-year interval. In 1997, Naveau et al\[29\] and Raynard et al\[30\] showed that BMI is positively associated with AF in ALD. Obesity may sensitize an individual to alcohol-induced liver injury at a much lower dose. We estimated 1.24 million Americans might be affected by BAFLD with the concomitant three-fold increase in AF; therefore, this is a significant public health issue with important policy implications.

Our results showed significantly higher blood TG (268 mg/dL vs 186 mg/dL) in patients with BAFLD compared to patients with NAFLD. We propose that there may be a combined additive or synergistic effect of alcohol and NAFLD on triglycerides. NAFLD is characterized by increases in TG, very-low-density lipoprotein (LDL), apolipoprotein B to apolipoprotein A1 ratio, and small dense LDL in conjunction with low HDL\[31\]. Similarly, alcohol consumption is a well-known cause of secondary hypertriglyceridemia and it may exaggerate hypertriglyceridemia in primary lipid disorders\[32,33\]. Therefore, BAFLD patients may have increased cardio vascular disease (CVD) risk and mortality compared to patients with NAFLD. However, these findings should be interpreted with caution given the fact that MetS and DM2 were included in the definition of BAFLD.

Our study has several limitations. It was a cross-sectional study using a large...
Factor (unit)	NAFLD	BAFLD	P value
Gender, % ± SE	46.9 ± 0.87¹ 75.8 ± 3.9²	< 0.001	
Male	75.8 ± 3.9²	46.9 ± 0.87¹	
Current smoker, % ± SE	17.6 ± 0.66¹ 45.3 ± 5.2²	< 0.001	
BMI, mean ± SE	32.4 ± 0.13 33.1 ± 0.56	< 0.001	
Overweight (BMI 25+), % ± SE	100.0 ± 0.00 100.0 ± 0.00		
Obese (BMI 30+), % ± SE	57.6 ± 1.04 64.4 ± 4.7	0.18	
Severely obese (BMI 40+), % ± SE	11.1 ± 0.63 12.3 ± 3.2	0.7	
Waist circumference (cm), mean ± SE	106.5 ± 0.32 111.9 ± 1.3	< 0.001	
Average number of drinks/d, mean ± SE	0.26 ± 0.01² 4.3 ± 0.22¹	< 0.001	
Central obesity, % ± SE	79.2 ± 0.86² 92.3 ± 2.5¹	< 0.001	
HTN (MS), % ± SE	43.5 ± 1.03¹ 74.7 ± 3.8²	< 0.001	
Diabetes (MS), % ± SE	20.5 ± 0.68¹ 38.1 ± 5.0²	< 0.001	
Low HDL, % ± SE	47.2 ± 1.05 49.5 ± 4.7	< 0.001	
Hypertriglyceridemia, % ± SE	48.5 ± 1.02¹ 82.3 ± 2.9²	< 0.001	
Metabolic Syndrome, % ± SE	42.6 ± 1.04¹ 91.4 ± 2.6²	< 0.001	
Platelet count (1000 cells/μL), mean ± SE	261.4 ± 1.2² 243.1 ± 5.7¹	0.007	
ALT (U/L), mean ± SE	38.2 ± 0.32¹ 53.1 ± 3.6²	< 0.001	
AST (U/L), mean ± SE	31.2 ± 0.34¹ 43.3 ± 3.3²	< 0.001	
Total bilirubin (mg/dL), mean ± SE	71.4 ± 0.51 76.7 ± 3.4	0.01	
Alkaline phosphatase (U/L), mean ± SE	0.72 ± 0.01 0.77 ± 0.02	0.007	
Creatinine (mg/dL), mean ± SE	0.86 ± 0.00 0.86 ± 0.01	0.15	
Cholesterol (mg/dL), mean ± SE	206.8 ± 0.79¹ 224.7 ± 4.3²	< 0.001	
Triglycerides (mg/dL), mean ± SE	186.6 ± 2.8² 268.0 ± 17.2¹	< 0.001	
HDL (mg/dL), mean ± SE	48.3 ± 0.30 48.3 ± 1.7	< 0.001	
LDL (mg/dL), mean ± SE	121.2 ± 0.71 122.8 ± 4.8	< 0.001	
Gamma glutamyl transferase (U/L), mean ± SE	36.6 ± 0.62¹ 94.6 ± 16.4²	0.002	
Glycohemoglobin (%) , mean ± SE	5.6 ± 0.02 5.7 ± 0.09	< 0.001	
FIB-4, mean ± SE	0.94 ± 0.01² 1.2 ± 0.09¹	0.001	
FIB-4 > 2.67, % ± SE	1.7 ± 0.22 7.1 ± 2.5	0.045	

Population weighted means or percentages are presented with corresponding SE.

1Significantly different from NAFLD; 2Significantly different from BAFLD. Post-hoc comparisons were done using Bonferroni correction. NAFLD: Non-alcoholic fatty liver disease; BAFLD: Both alcoholic and non-alcoholic fatty liver disease; BMI: body mass index; HTN: Hypertension; HDL: High density lipoprotein; LDL: Low density lipoprotein; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; FIB-4: Fibrosis-4.

In conclusion, a substantial percentage of the general American population may have BAFLD. Patients with BAFLD tend to have more advanced disease and may have a higher risk of progression to cirrhosis or end-stage liver disease. Therefore, future research should aim to identify the burden of liver disease in this population and intervene in a timely fashion. The risk of the combined effects of MetS and alcohol consumption should be taken seriously in all patients with suspected NAFLD.
Figure 1 The prevalence of advanced fibrosis in patients with non-alcoholic fatty liver disease (1.7%) and both alcoholic and non-alcoholic fatty liver disease (7.1%). Patients with BAFLD have 3-fold increase in the prevalence of advanced fibrosis. NAFLD: Non-alcoholic fatty liver disease; BAFLD: Both alcoholic and non-alcoholic fatty liver disease; AF: Advanced fibrosis.

Importantly, screening for risky, often under-reported, alcohol consumption should be considered. Data on safe alcohol consumption in NAFLD is conflicting and needs further assessment in future prospective studies.

ARTICLE HIGHLIGHTS

Research background
Fatty liver disease caused by excess alcohol consumption is called alcoholic liver disease (ALD) whereas fatty liver disease caused by metabolic disease is called non-alcoholic fatty liver disease (NAFLD). Often, risk factors for both types of fatty liver diseases occur in the same individual, especially as the prevalence of both of these diseases is on the rise. The presence of both types of fatty liver disease in one individual may lead to the development of a new condition we call both alcoholic and NAFLD (BAFLD). We believe that patients with BAFLD are at a higher risk of advanced fibrosis and complications related to end-stage liver disease. Studying and understanding BAFLD has important public health and policy implications.

Research motivation
A new fatty liver entity, we call BAFLD, occurs when both ALD and NAFLD risk factors are present in the same individual. We reported on the clinical characteristics and degree of liver fibrosis in BAFLD patients compared to NAFLD patients. As most of the risk factors that lead to BAFLD are modifiable dietary and lifestyle choices, understanding their reciprocal interaction and combined effect on the liver might lead to a better understanding of BAFLD pathogenesis, treatment, and prevention. This has important public health and policy implications.

Research objectives
This study aimed to identify the prevalence of NAFLD and BAFLD and to assess the clinical characteristics of patients with BAFLD in comparison to those with NAFLD in a large cohort of subjects in the United States.

Research methods
This is a cross-sectional study that was done using National Health and Nutrition Examination Survey between 2003-2014. NAFLD and BAFLD patients were identified. Univariable and multivariable analysis were performed to assess differences between NAFLD and BAFLD and to compare severity based on a validated fibrosis score (FIB4 index).

Research results
The prevalence of NAFLD was at 25.9% and that of BAFLD was 0.84% which corresponds to an estimated 1.24 million Americans affected by BAFLD. Compared to NAFLD, patients with BAFLD were more likely to be male, smokers, have higher ALT, AST, triglycerides, and lower platelets; $P < 0.01$ for all. More importantly, after adjusting for MetS components, BAFLD patients were significantly about three times more likely to have advanced fibrosis based on FIB4 index > 2.67, $P = 0.004$.

Research conclusions
In conclusion, a substantial percentage of the general American population may have BAFLD. Patients with BAFLD tend to have more advanced disease and may have a higher risk of progression to cirrhosis and end-stage liver disease. Therefore, special attention should be paid to this population to identify the burden of liver disease and intervene in a timely fashion.

Research perspectives
The possibility of the combined effects of MetS and alcohol consumption should be considered in all patients with suspected NAFLD. Vitality, consideration should be given to the role of screening for identification of risky, often under-reported, alcohol consumption. Data on safe alcohol consumption in NAFLD is conflicting and needs further assessment in future prospective studies.

REFERENCES

1. Souza MR, Diniz MdF, Medeiros-Filho JE, Araújo MS. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease. Arq Gastroenterol 2012; 49: 89-96 [PMID: 22481692 DOI: 10.1590/S0004-28032012000100015]

2. European Association for the Study of the Liver (EASL). European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-1402 [PMID: 27062661 DOI: 10.1016/j.jhep.2015.11.004]

3. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ; American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterology. The diagnosis and management of non-alcoholic fatty liver disease: practice guidelines by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592-1609 [PMID: 22656328 DOI: 10.1016/j.gastro.2012.04.035]

4. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73-84 [PMID: 26767365 DOI: 10.1002/hep.27544]

5. World Health Organization. Global status report on noncommunicable diseases 2014. 2014; 176 Available from: https://www.who.int/nmh/publications/ncd-status-report-2014/en/

6. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67: 328-357 [PMID: 28714183 DOI: 10.1002/hep.29367]

7. Sato N, Lindros KO, Baraona E, Ikekima K, Mezey E, Järveläinen HA, Ramchandani VA. Sex difference in alcohol-related organ injury. Alcohol Clin Exp Res 2001; 25: 405-415 [PMID: 11391047 DOI: 10.1111/j.1530-0277.2001.tb02333.x]

8. Basra S, Anand BS. Definition, epidemiology and magnitude of alcoholic hepatitis. World J Hepatol 2011; 3: 108-113 [PMID: 21731902 DOI: 10.4245/wjh.v3.i.5.108]

9. Stinson FS, Grant BF, Dufour MC. The critical dimension of ethnicity in liver cirrhosis mortality statistics. Alcohol Clin Exp Res 2001; 25: 1181-1187 [PMID: 11505049 DOI: 10.1111/j.1530-0277.2001.tb02333.x]

10. Sanyal AJ, American Gastroenterological Association. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002; 123: 1705-1725 [PMID: 12404245 DOI: 10.1016/S0016-5085(02)00102-6]

11. Byrne CD, Tarigher G. NAFLD: a multisystem disease. J Hepatol 2015; 62: S47-S64 [PMID: 25920090 DOI: 10.1016/j.jhep.2014.12.012]

12. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, Shridhar M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin Gastroenterol Hepatol 2011; 9: 524-530.e1; quiz e60 [PMID: 21440669 DOI: 10.1016/j.cgh.2011.03.020]

13. Sasaki A, Nitta H, Otsuka K, Umemura A, Baba S, Obuchi T, Wakabayashi G. Bariatric surgery and non-alcoholic Fatty liver disease: current and potential future treatments. Front Endocrinol (Lausanne) 2014; 5: 164 [PMID: 25386164 DOI: 10.3389/fendo.2014.00164]

14. Subich M, Clanton J, Makuszewski M, Bohon A, Zografakis JG, Dan A. Liver disease in the morbidly obese: a review of 1000 consecutive patients undergoing weight loss surgery. Surg Obes Relat Dis 2015; 11: 137-141 [PMID: 25701955 DOI: 10.1016/j.soard.2014.08.015]

15. Younossi Z, Amstic QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11-20 [PMID: 28930295 DOI: 10.1038/nrgastro.2017.109]

16. World Health Organisation. Global status report on alcohol and health 2014: Glob status Rep alcohol. 2014; 1-392 Available from: URL: http://apps.who.int/iris/bitstream/10665/112736/1/9789240629763_eng.pdf?ua=1

17. Marks P, Williams R. Calorie and alcohol consumption in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2012; 24: 527-530 [PMID: 22343784 DOI: 10.1097/MEG.0b013e3283514edb]

18. Daeppen JB, Smith TL, Schneck MA. Influence of age and body mass index on gamma-glutamyltransf erase activity: a 15-year follow-up evaluation in a community-based sample. Alcohol Clin Exp Res 1998; 22: 941-944 [PMID: 9660326 DOI: 10.1111/j.1530-0277.1998.tb03893.x]

19. Lawlor DA, Sattar N, Smith GD, Ebrahim S. The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase. Am J Epidemiol 2005; 161: 1081-1088 [PMID: 15901629 DOI: 10.1093/aje/kwi125]

20. Rohrer JE, Rohland BM, Denison A, Way A. Frequency of alcohol use and obesity in community medicine patients. BMC Fam Pract 2005; 6: 17 [PMID: 15845150 DOI: 10.1186/1471-2296-6-17]

21. Stranges S, Dorn JM, Muti P, Freudenheim JL, Farinoro E, Russell M, Nochajski TH, Trevisan M. Body fat distribution, relative weight, and liver enzyme levels: a population-based study. Hepatology 2004; 39: 754-763 [PMID: 14999604 DOI: 10.1002/hep.20419]

22. Alatalo PI, Kouvisto HM, Hiitala JP, Puukka KS, Bloigu R, Niemelä OJ. Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index. Am J Clin Nutr 2008; 88: 1097-1103 [PMID: 18842799 DOI: 10.1093/ajcn/88.4.1097]

23. Ruiz CE, Everhart JE. Joint effects of body weight and alcohol on elevated serum alanine aminotransferase in the United States population. Clin Gastroenterol Hepatol 2005; 3: 1266-1268 [PMID: 16301053 DOI: 10.1016/j.cgh.2005.07.043]

24. Shen Z, Li Y, Yu C, Shen Y, Xu L, Xu C, Xu G. A cohort study of the effect of alcohol consumption and obesity on serum liver enzyme levels. Eur J Gastroenterol Hepatol 2010; 22: 820-825 [PMID: 19829121]
Khoudari G et al. Both alcoholic and nonalcoholic fatty liver disease

DOI: 10.1097/MEG.0b013e3283328b86

25 Loomba R, Bettencourt R, Barrett-Connor E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study. *Aliment Pharmacol Ther* 2009; 30: 1137-1149 [PMID: 19737152 DOI: 10.1111/j.1365-2036.2009.04141.x]

26 Bellantani S, Saccozzi G, Masutti F, Crocè L, Sodoggia M, Brandi G, Sasso F, Cristanini G, Tribelli C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. *Ann Intern Med* 2000; 132: 112-117 [PMID: 10964427 DOI: 10.7326/0003-4819-132-2-200001180-00004]

27 Petersen P. Fatty liver in patients with moderate alcohol consumption, diabetes mellitus and overweight. *Scand J Gastroenterol* 1977; 12: 781-784 [PMID: 594649 DOI: 10.3109/00365527709181720]

28 Ekstedt M, Franzén LE, Holmqvist M, Bendtsen P, Mathiesen UL, Bodmar G, Keckhagias S. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. *Scand J Gastroenterol* 2009; 44: 366-374 [PMID: 19016382 DOI: 10.1080/00365520802555991]

29 Naveau S, Giraud V, Borteto E, Aubert A, Capron F, Chaput JC. Excess weight risk factor for alcoholic liver disease. *Hepatology* 1997; 25: 108-111 [PMID: 8985274 DOI: 10.1002/hep.510250120]

30 Raynard B, Balian A, Fallik D, Capron F, Bedossa P, Chaput JC, Naveau S. Risk factors of fibrosis in alcohol-induced liver disease. *Hepatology* 2002; 35: 635-638 [PMID: 11870378 DOI: 10.1053/jhep.2002.31782]

31 Corey KE, Misdraji J, Gerud I, Zheng H, Chung RT, Krauss RM. Nonalcoholic steatohepatitis is associated with an atherogenic lipoprotein subfraction profile. *Lipids Health Dis* 2014; 13: 100 [PMID: 24952382 DOI: 10.1186/1476-511X-13-100]

32 Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, Stalenhoef AF. Endocrine society. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 2012; 97: 2969-2989 [PMID: 22962670 DOI: 10.1210/jc.2011-3213]

33 Klop B, Wouter Jukema J, Rabelink TJ, Castro Cañadas M. A physician’s guide for the management of hypertriglyceridemia: the etiology of hypertriglyceridemia determines treatment strategy. *Panminerva Med* 2012; 54: 91-103 [PMID: 22525664]

34 Wang A, Lazo M, Carter HB, Groopman JD, Nelson WG, Platz EA. Association between Liver Fibrosis and Serum PSA among U.S. Men: National Health and Nutrition Examination Survey (NHANES), 2001-2010. *Cancer Epidemiol Biomarkers Prev* 2019; 28: 1331-1338 [PMID: 31160348 DOI: 10.1158/1055-9965.EPI-19-0145]
