TRIANGLE-ROUNDEDNESS IN MATROIDS

JOÃO PAULO COSTALONGA1 AND XIANQIANG ZHOU2

Abstract. A matroid N is said to be triangle-rounded in a class of matroids \mathcal{M} if each 3-connected matroid $M \in \mathcal{M}$ with a triangle T and an N-minor has an N-minor with T as triangle. Reid gave a result useful to identify such matroids as stated next: suppose that $M > N$ are binary 3-connected matroids, T is a triangle of M and $e \in T \cap E(N)$; then M has a 3-connected minor M' with an N-minor such that T is a triangle of M' and $|E(M')| \leq |E(N)| + 2$. We strengthen this result by dropping the condition of the existence of such element e and proving that there is a 3-connected minor M' of M with an N-minor N' such that T is a triangle of M' and $E(M') - E(N') \subseteq T$. This result is extended to the non-binary case and, as an application, we prove that $M(K_5)$ is triangle-rounded in the class of the regular matroids.

Key words: matroid minors; roundedness; matroid connectivity.

1. Introduction

Let \mathcal{M} be a class of matroids closed for minors and isomorphisms and \mathcal{F} a family of matroids. An \mathcal{F}-minor of a matroid M is a minor of M isomorphic to a member of \mathcal{F}. We say that \mathcal{F} is (k, t)-rounded in \mathcal{M} if each element of \mathcal{F} is k-connected and, for each k-connected matroid $M \in \mathcal{M}$ and each t-subset $T \subseteq E(M)$, M has an \mathcal{F}-minor using T. We define \mathcal{F} to be t-rounded in \mathcal{M} if it is $(t + 1, t)$-rounded in \mathcal{M}. A matroid N is said (k, t)-rounded (resp. t-rounded) in \mathcal{M} if so is $|N|$. When we simply say that a matroid or family of matroids is (k, t)-rounded or t-rounded with no mention to a specific class of matroids, we are referring to the class of all matroids.

Bixby \cite{1} proved that $U_{2,4}$ is 1-rounded. Seymour \cite{14} established a method to find a minimal 1-rounded family containing a given family of matroids; in that work it is established that $\{U_{2,4}, M(K_4)\}$, $\{U_{2,4}, F_7, F_7^*\}$, $\{U_{2,4}, F_7, F_7^*, M^*(K_{3,3}), M^*(K_5), M^*(K_5')\}$ and $\{U_{2,5}, U_{3,5}, F_7, F_7^*\}$ are 1-rounded.

Seymour \cite{16} proved that $U_{2,4}$ is also 2-rounded and, later, in \cite{17}, established a method to find a minimal 2-rounded family containing a given family of matroids.

Khan \cite{6} and Coullard \cite{5} proved independently that $U_{2,4}$ is not 3-rounded. To the best of our knowledge, there is no known criterion to check (k, t)-roundedness for $k \geq 4$. For $t \geq 3$, Oxley \cite{9} proved that $\{U_{2,4}, \mathcal{W}^3\}$ is $(3,3)$-rounded. Moss \cite{7} proved that $\{\mathcal{W}^2, \mathcal{W}^3, \mathcal{W}^4, M(\mathcal{W}_3), M(\mathcal{W}_4), Q_6\}$ is $(3,4)$-rounded and $\{M(\mathcal{W}_3), M(\mathcal{W}_4), M(\mathcal{W}_5), M(K_5 \setminus e), M(K_5 \setminus e), M(K_{1,2,3}), M^*(K_{1,2,3}), S_9\}$ is $(3,5)$-rounded in the class of the binary matroids.

1Departamento de Matemática, Universidade Federal do Espírito Santo. Av. Fernando Ferrari, 514; Campus de Goiabeiras, 29075-910, Vitória, ES, Brazil. e-mail: joacostalonga@gmail.com (corresponding author).

2Department of Mathematics and Statistics, Wright State University, Dayton, OH, 45435, USA and School of Mathematical Sciences, Huaqiao University, Fujian, China. e-mail: xiangqian.zhou@wright.edu.
There are works on classification of small \(r \)-rounded families of matroids for \(t = 1, 2 \). Oxley \[8\] proved that for \(|E(N)| \geq 4 \), \(N \) is 1-rounded if and only if \(N \cong U_{2,4}, P(U_{1,3}, U_{1,1}) \) or \(Q_6 \) and 2-rounded if and only if \(N \cong U_{2,4} \). Reid and Oxley \[12\] proved that, up to isomorphisms, the unique 2-rounded matroids with more than three members in the class of \(GF(q) \)-representable matroids are \(M(\mathcal{W}_3) \) and \(\mathcal{M}(\mathcal{W}_4) \) for \(q = 2, U_{2,4} \) and \(W^3 \) for \(q = 3 \) and \(U_{2,4} \) for \(q \geq 4 \).

In this work, we focus on a different type of roundedness. A family of matroids \(\mathcal{F} \) is said to be \textit{triangle-rounded} in \(\mathcal{M} \) if all members of \(\mathcal{F} \) are 3-connected and, for each matroid \(M \in \mathcal{M} \) with an \(\mathcal{F} \)-minor and each triangle \(T \) of \(M \), there is an \(\mathcal{F} \)-minor of \(M \) with \(T \) as triangle. We say that a matroid \(N \) is \textit{triangle-rounded} in \(\mathcal{M} \) if \(\{N\} \) is \(\{N\} \). Some examples of triangle-rounded matroids and families are \(U_{2,4} \) in the class of all matroids, \(F_7 \) in the class of binary matroids and \(M^*(K_{3,3}) \) in the class of regular matroids (Asano, Nishizeki and Seymour \[2\]), \(M(K_5 \setminus e) \) in the class of regular matroids and \(\{S_8, J_{10}\} \) in the class of binary matroids (Reid \[13\]). The proofs for the triangle-roundedness of the later two rely on the following criterion:

\textbf{Theorem 1.} (Reid \[13\] Theorem 1.1) \(\{e, f, g\} \) be a triangle of a 3-connected binary matroid \(M \) and \(N \) be a 3-connected minor of \(M \) with \(e \in E(N) \). Then, there exists a 3-connected minor \(M' \) of \(M \) using \(\{e, f, g\} \) such that \(M' \) has a minor which is isomorphic to \(N \) and \(E(M') \) has at most \(|E(N)| + 2 \) elements.

Here we establish a stronger result for binary matroids:

\textbf{Theorem 2.} If \(M \) is a 3-connected binary matroid with a 3-connected minor \(N \) with \(|E(N)| \geq 4 \) and \(T \) is a triangle of \(M \), then \(M \) has a 3-connected minor \(M' \) with an \(N \)-minor \(N' \) such that \(E(M') = E(N') \subseteq T \).

Theorem 2 follows from our more general result:

\textbf{Theorem 3.} Let \(M \) be a 3-connected matroid with a 3-connected minor \(N \) satisfying \(|E(N)| \geq 4 \). Suppose that \(T \) is a triangle of \(M \) and \(M \) is minor-minimal with the property that \(M \) has no \(N \)-minor using \(T \). Then \(r(M) - r(N) \leq 2 \) and for some \(N \)-minor \(N' \) of \(M \), \(|E(M) - (E(N') \cup T)| \leq 1 \). Moreover, if \(E(M) - E(N') \nsubseteq T \), then one of the following assertions holds:

(a) \(r(M) - r(N) = 1, r^*(M) - r^*(N) \in \{2, 3\} \) and \(M \) has an element \(x \) such that \(E(M) - E(N') \subseteq T \cup x \) and \(x \) is the unique element of \(M \) such that \(\text{si}(M/x) \) is 3-connected with an \(N \)-minor; or

(b) \(r^*(M) - r^*(N) = 2, r(M) - r(N) \in \{1, 2\} \) and \(M \) has an element \(y \) such that \(E(M) - E(N') \subseteq T \cup y \) and \(y \) is a 4-circuit of \(M \) such that \(M/y \) has no \(N \)-minor and \(M \setminus A \) has no \(N \)-minor for each subset \(A \) of \(T \).

The possible cases described in this theorem indeed occur, we give examples in Section 3. We say that a graph \(G \) is \textit{triangle-rounded} if so is \(M(G) \) in the class of graphic matroids. Using Theorem 2 we establish that \(K_5 \) is triangle-rounded, in other words:

\textbf{Theorem 4.} If \(G \) is a 3-connected graph with a triangle \(T \) and a \(K_5 \)-minor, then \(G \) has a \(K_5 \)-minor with \(E(T) \) as edge-set of a triangle.

\textbf{Remark: } \(K_3 \) and \(K_4 \) are triangle-rounded, but no larger complete graph than \(K_5 \) is triangle-rounded. Indeed, consider, for disjoint sets \(X, Y \) and \(z \) satisfying \(|X|, |Y| \geq 2 \), a complete
graph K on vertex set $X \cup Y \cup \{z\}$. Consider also a graph G extending K by two vertices x and y with $E(G) - E(K) = \{xy, xz, yz, xx', yy' : x' \in X \text{ and } y' \in Y\}$. Note that $G \setminus xy \cong K_n$. But no K_n-minor of G uses $\{xy, xz, yz\}$ because contracting any other edge than xy in G results in a graph with more than one parallel pair of edges.

The next result allows us to derive triangle-roundedness in the class of regular matroids from triangle-roundedness in the classes of graphic and cographic matroids.

Theorem 5. If a family \mathcal{F} of internally 4-connected matroids with no triads is triangle-rounded both in the class of graphic and cographic matroids, then \mathcal{F} is triangle-rounded in the class of regular matroids not isomorphic to R_{10}.

As R_{10} has no $M(K_5)$-minor and $M(K_5)$ is internally 4-connected with no triads and trivially triangle-rounded in the class of cographic matroids, it follows from Theorems 4 and 5 that:

Corollary 6. $M(K_5)$ is triangle-rounded in the class of regular matroids.

All proofs are in the next section.

2. Proofs

In this section we prove the theorems. Next we state some results used in the proofs.

Lemma 7. (Whittle, [18, Lemma 3.6]) Let M be a 3-connected matroid with elements x and p such that $si(M/x)$ and $si(M/x,p)$ are 3-connected, but $si(M/p)$ is not 3-connected. Then, $r(M) \geq 4$ and there is a rank-3 cocircuit C^* of M containing x such that $p \in cl_M(C^*) - C^*$.

Lemma 8. (Whittle [18, Lemma 3.7]) Let C^* be a rank-3 cocircuit of a 3-connected matroid M such that $p \in cl_M(C^*) - C^*$.

(a) If $z_1, z_2 \in C^*$, then $si(M/p, z_1) \equiv si(M/p, z_2)$.

(b) If N is a matroid and for some $x \in C^*$, $si(N/x, p)$ is 3-connected with an N-minor, then $si(N/z, p)$ is 3-connected with an N-minor for each $z \in C^*$.

Lemma 9. (Whittle [18, Lemma 3.8]) Let C^* be a rank-3 cocircuit of a 3-connected matroid M. If $x \in C^*$ has the property that $cl_M(C^*) - x$ contains a triangle of M/x, then $si(M/x)$ is 3-connected.

Lemma 10. (Wu, [Lemma 3.15][19]) If I^* is a coindependent set in a matroid M and $M \setminus I^*$ is vertically 3-connected, then so is M.

Using Seymour’s Splitter Theorem (as stated in [11, Corollary 12.2.1]) and proceeding by induction on i using Lemma 10, we may conclude:

Corollary 11. Let $N < M$ be 3-connected matroids such that M has no larger wheel or whirl-minor than N in case N is a wheel or whirl respectively. Then, there is a chain of 3-connected matroids $N \cong M_n < \cdots < M_1 < M_0 = M$ such that for each $i = 1, \ldots, n$ there is $x_i \in E(M_i)$ satisfying $M_i = M_{i-1} / x_i$ or $M_i = M_{i-1} \setminus x_i$. Moreover, for $I := \{x_i : M_{i-1} = M_i / x_i\}$ and $I^* := \{x_i : M_{i-1} = M_i / x_i\}$,

(a) I is an independent set and I^* is a coindependent set of M.

(b) for each $1 \leq i \leq n$, $M/(I \cap \{x_1, \ldots, x_i\})$ and $(M\setminus\{I^* \cap \{x_1, \ldots, x_i\}\})^*$ are vertically 3-connected.

Theorem 12. (Whittle, Corollary 3.3) Let N be a 3-connected minor of the 3-connected matroid M. If $r(M) \geq r(N) + 3$, then for each element x such that $si(M\setminus x)$ is 3-connected with an N-minor, there exists $y \in E(M)$ such that $si(M\setminus y)$ and $si(M\setminus x, y)$ are 3-connected with N-minors.

Theorem 13. (Whittle Lemma 3.4 and Theorem 3.1 and Costalonga Theorem 1.3) Let $k \in \{1,2,3\}$ and let M be a 3-connected matroid with a 3-connected minor N such that $r(M) - r(N) \geq k$. Then M has a k-independent set J such that $si(M\setminus x)$ is 3-connected with an N-minor for all $x \in J$.

Lemma 14. (Costalonga Corollary 4) Suppose that $M > N$ are 3-connected matroids with $r^*(M) - r^*(N) \geq 4$ and N is cossimple. Then:

(a) M has a coinddependent set S of size 4 such that $co(M\setminus e)$ is 3-connected with an N-minor for all $e \in S$; or

(b) M has distinct elements a_1, a_2, b_1, b_2, b_3 such that, $T_S := \{a_s, b_t, b_3\}$ is a triangle for $(s, t) = \{1,2\}$, $T^* := \{b_1, b_2, b_3\}$ is a triad of M and $co(M\setminus T^*)$ is 3-connected with an N-minor.

Proof of Theorem 13: Suppose that the result does not hold. This is, for each N'-minor of M, $E(M) - E(N') \not\subseteq T$ and items (a) and (b) of the theorem do not hold. It is already known that $U_{2,4}$ is triangle-rounded [2], so, we may assume that $|E(N)| \geq 5$. The proof will be based on a series of assertions. First, note that it follows from the minimality of M that:

(I). If, for $x \in E(M)$, $si(M\setminus x)$ is 3-connected with an N-minor, then $x \in cl_M(T)$.

(II). If T^* is a triad and T is a triangle of M such that $T^* \setminus T = \{x\}$, then $M\setminus x$ has no N-minor.

Subproof: Suppose the contrary. Let $T^* \setminus T = \{a, b\}$. As N is simple and cosimple, $M\setminus x$ is 3-connected with an N-minor. But $M\setminus x/a \setminus b$ has an N-minor. By Lemma 9, $si(M\setminus x)$ is 3-connected. By [1] $x \in cl_M(T)$. As $x \notin T$, then T^* meets a 4-segment of M. This implies that $M \cong U_{2,4}$, a contradiction.

(III). If, for $x \in E(M)$, $co(M\setminus x)$ is 3-connected with an N-minor, then $x \in T$.

Subproof: Suppose the contrary. Then $T \not\subseteq E(co(M\setminus x))$ and therefore, there is a triad T^* meeting x and T. A contradiction to [11].

(IV). If $si(M\setminus x)$ and $si(M\setminus x, y)$ are 3-connected with N-minors, then so is $si(M\setminus y)$ and $x, y \in T$.

Subproof: First we prove that $si(M\setminus y)$ is 3-connected. Suppose the contrary. By Lemma 7 there is a rank-3 cocircuit C^* such that $x \in C^*$ and $y \in cl(C^*) - C^*$. By [11] $x \in cl(T)$. By orthogonality, $T \subseteq cl(C^*)$. As $r(C^*) = 3$, there is $z \in C^* - cl(T)$ and T is a triangle of M containing in $cl_{M}(z)$ in C^*. By Lemma 9, $si(M\setminus z)$ is 3-connected and, by Lemma 8, $M\setminus z$ is an N-minor. A contradiction to [11]. So, $si(M\setminus y)$ is 3-connected.

By [11] $x, y \in cl(T)$. If, for some $(a, b) = (x, y)$, $a \notin T$, then, as $M\setminus b$ has an N-minor and a is in a parallel pair of $M\setminus b$, it follows that $M\setminus a$ has an N-minor. Moreover, in this case, $T \cup a$ is 4-segment of M and $M\setminus a$ is 3-connected with an N-minor, contradicting the minimality of M. Thus, $x, y \in T$.
(V). \(r(M) - r(N) \leq 2 \) and \(r^*(M) - r^*(N) \leq 3. \)

Subproof: If \(r(M) - r(N) \geq 3 \), then, by Theorem \([13]\) there is an independent set \(J \) of size 3 such that \(\text{si}(M/x) \) is 3-connected with an \(N \)-minor for all \(x \in J \). So, there is \(x \in J - \text{cl}_M(T) \), a contradiction to \([11]\). Thus, \(r(M) - r(N) \leq 2. \)

If \(r^*(M) - r^*(N) \geq 4 \), then Lemma \([14]\) applies. If item (a) of that Lemma holds, then we have an element \(x \in E(M) - T \) such that \(\text{co}(M\backslash x) \) is 3-connected with an \(N \)-minor, contradicting \([III]\). So, consider the elements given by item (b) of Lemma \([14]\). Let \(s \in \{1, 2\} \). Note that \(M\backslash T^* \) is isomorphic to a minor of \(M\backslash a_s \). By the dual version of Lemma \([9]\) on \(T_s \) and \(a_s \), it follows that \(\text{co}(M\backslash a_s) \) is 3-connected with an \(N \)-minor and, therefore, \(a_s \in T \) by \([III]\). So, \(a_1, a_2 \in T \). By orthogonality between \(T \) and \(T^* \), \(b_3 \notin T \). As \(M\backslash b_3 \) has an \(N \)-minor, then, by \([III]\) \(\text{co}(M\backslash b_3) \) is not 3-connected. By Bixby’s Lemma, \(\text{si}(M/ b_3) \) is 3-connected. As \(M\backslash T^* \) has an \(N \)-minor, then, so has \(M\backslash b_3 \), and, therefore, \(\text{si}(M/ b_3) \) is 3-connected with an \(N \)-minor, contradicting the fact that they are the elements of a set with rank at least 3 in \(W \).

Thus, \(r(M) = r(W) + 1 \). Now, by Theorem \([13]\) there is an element \(x \) such that \(\text{si}(M/x) \) is 3-connected with an \(W \)-minor \(W' \). By Lemma \([10]\) \(M, x \) is vertically 3-connected with an \(N \)-minor for each non-spoke \(y \) of \(W \). By \([IV]\) all non-spokes of \(W' \) are in \(T \), a contradiction again.

Now, we assume that there is no wheel or whirl \(W \) such that \(N < W \leq M \) and the hypotheses of Seymour’s Splitter Theorem now hold for \(M \) and \(N \).

(VII). If \(x \in E(M) \) and \(\text{si}(M/x) \) is 3-connected with an \(N \)-minor, then \(x \in T \).

Subproof: Suppose the contrary. By \([11]\) \(x \in \text{cl}_M(T) \), which is a line with more than 3 points. As \(M\backslash x \) is 3-connected for all \(z \in \text{cl}_M(T) - T \), then \(M\backslash z \) has no \(N \)-minor if \(z \in \text{cl}_M(T) - T \). As \(M/x \) has an \(N \)-minor, \(\text{cl}_M(T) = T \cup x \) and \(M\backslash x \) has no \(N \)-minor. This implies that \(r^*(M) - r^*(N) \geq 2 \) as \(T \) is in a parallel class of \(M/x \).

Let us check that for each \(z \in E(M) - x \), \(\text{si}(M/z) \) is not 3-connected with an \(N \)-minor. Suppose the contrary, by \([11]\) \(z \in \text{cl}_M(T) \), this implies that \(M\backslash x \) has an \(N \)-minor, a contradiction. So \(x \) is the unique element of \(M \) such that \(\text{si}(M/x) \) is 3-connected with an \(N \)-minor. By Theorem \([13]\) \(r(M) - r(N) = 1 \).

Consider the structures defined as in Corollary \([11]\). By what we proved, for all choices of \(M_1, \ldots, M_n \), we have \(I = \{x\} \) and \(n = 3 \) or 4. As \(M\backslash x \) has a parallel class with 3 elements, then \(x = x_3 \) or \(x = x_4 \), so, we have two cases to consider:
Case 1. We may pick M_1, \ldots, M_n with $x = x_n$: For all $y \in E(M) - x$ such that $M\setminus y$ is 3-connected with an N-minor, we have $y \in T$ by (III). In particular this holds for each $y \in I^* \cup \cl_M(T) - x$. So, $I^* \cup (\cl_M(T) - x) \subseteq T$. This implies the validity of the theorem and, in particular, of item (a).

Case 2. Otherwise: Now, necessarily, $n = 4$ and $x = x_3$. Moreover, $M' := M\setminus x_1, x_2, x_4$ is not 3-connected, but so is M'/x. This implies that x is in a cocircuit with size at most two in M'. As $M_2 = M\setminus x_1, x_2$ is 3-connected, then x is in a serial pair of M' with an element z. This implies that $M\setminus I^*/z \cong N$. By Lemma (III), $\si(M/z)$ is 3-connected with an N-minor. A contradiction to the uniqueness of x established before.

(VIII). If $\co(M\setminus x)$ and $\co(M\setminus x, y)$ are 3-connected with N-minors, then $\co(M\setminus y)$ is 3-connected and $x, y \in T$.

Subproof: Suppose the contrary. By (III), $\co(M\setminus y)$ is not 3-connected. By the dual of Lemma (2) there is a corank-3 circuit C containing x with $y \in \cl_*(C) - C$.

First assume that $C \notin T$. If M has a 4-cocircuit D^* contained in $C \cup y$, then, as $|D^* \cap C| \geq 3$ and $T \not\subseteq C$, there is $z \in (D^* \cap C) - T$. So, $D^* - z$ is a triad of $M\setminus z$ contained in $\cl_{M\setminus z}((C - z)$ and, by the dual of Lemmas (3) and (4), $\co(M/z)$ is 3-connected with an N-minor. But this contradicts (III). Thus, $C \cup y$ contains no 4-cocircuit of M. But $r^*(C \cup y) = 3$ and $y \in \cl_*(C) - C$, so $C \cup y$ is the disjoint union of a singleton set $\{e\}$ and a non-trivial coline L^* containing y. By the dual of Lemmas (3) and (4), $\co(M\setminus e)$ is 3-connected with an N-minor. By (III), $e \in T$. By the dual of Lemma (3), for some $f \in T^*$, $\co(M\setminus x, y) \cong \co(M\setminus f, y) \cong \co(M\setminus T^*)$ has an N-minor. Thus, $M\setminus y$ has an N-minor and, by Bixby's Lemma, $\si(M\setminus y)$ is 3-connected with an N-minor. By (VII), $y \in T$. Since T meets L^*, it follows that L^* is a triad and, as a consequence, $|C| = 3$. By orthogonality, there is $g \in (T^* \cap T) - y \subseteq C$. Since $e \in (C \cap T^*) - T^*$, then $C \cap T$ is a 4-segment of M meeting a triad, a contradiction. Therefore, $C = T$.

Let C^* be a cocircuit such that $y \in C^* \subseteq T \cup y$. If C^* is a triad, we have a contradiction to (II) since $y \in C^* - T$ and $M\setminus y$ has an N-minor. So, C^* is a 4-cocircuit and $C^* = T \cup y$. By Bixby's Lemma, $\si(M\setminus y)$ is 3-connected. Since $y \notin T$, then $M\setminus y$ has no N-minor by (VII). If $r(M) = r(N)$, then $N \cong M\setminus x, y$ and $M\setminus y$ is 3-connected, therefore $r(M) - r(N) \in \{1, 2\}$.

For all 2-subsets A of T, $M\setminus A$ has no N-minor because, otherwise, y would be in the serial pair $C^* - A$ of $M\setminus A$ and a $M\setminus y$ would have an N-minor.

As $\co(M\setminus x, y)$ has an N-minor, hence $r^*(M) - r^*(N) \geq 2$. If $r^*(M) - r^*(N) \geq 3$, then, by Theorem (12) there is $z \in E(M)$ such that $\co(M\setminus z)$ and $\co(M\setminus x, z)$ are 3-connected with N-minors. By (III), $z \in T$. So, for $A := \{x, z\} \subseteq T$, $M\setminus A$ has an N-minor, a contradiction. Therefore, $r^*(M) - r^*(N) = 2$. To prove the theorem and item (b), we have to find an N-minor N' of M with $E(M) - E(N') \subseteq T \cup y$. Consider a chain of matroids, sets and elements as in Corollary (11). Let a and b, in this order, be the elements deleted from M in order to get M_n from M as in the chain (recall that $r^*(M) - r^*(N) = 2$). By Lemma (10), $\co(M\setminus a)$ is 3-connected with an N-minor, hence, by (III), $a \in T$. It follows from Lemma (10) and (IV), (V) and (VII) that $I \subseteq T$. We just have to prove now that $b = y$. Suppose the contrary. If $b \notin T$, then, for $A := \{a, b\} \subseteq T$, $M\setminus A$ has an N-minor, a contradiction, as we saw before. Thus, $b \notin T$ and, by (III), $\co(M\setminus b)$ is not 3-connected. So, a and b play similar roles as x and y and applying the same steps for a and b.
TRIANGLE-ROUNDEDNESS IN MATROIDS

as we did for \(x \) and \(y \), we conclude that \(D^* := T \cup b \) is a cocircuit of \(M \). By circuit elimination on \(C^* := T \cup y, D^* \) and any element \(e \) of \(T \), it follows from the cosimplicity of \(M \) and from the orthogonality with \(T \) that \((T - e) \cup \{y, b\} \) is a cocircuit of \(M \). Therefore, \(y \) is in a series class of \(M \setminus a, b \), which has an \(N \)-minor. But this implies that \(M / y \) has an \(N \)-minor, a contradiction. So, \(b = y \) and (b) holds.

Now, consider the structures as given by Corollary I[11]. It follows from \([IV], [V]\) and \([VII]\) that \(I \subseteq T \). If \(r^*(M) - r^*(N) \leq 2 \), it follows from \([III]\) and \([VIII]\) that \(I^* \subseteq T \). This implies that \(T \subseteq E(M) - E(N') \) for \(N' \leq N \), and the theorem holds in this case. So, we may assume that \(r^*(M) - r^*(N) = 3 \). If \(|I| = 0 \), then \(N' = M \setminus I^* \) and \(M \setminus e \) is 3-connected with an \(N \)-minor for all \(e \in I^* \) and by \([III]\), \(I^* \subseteq T \). So, \(|I| \) \geq 1. By Lemma \([10]\) and \([VIII]\), the elements of \(I^* \) with the two least indices in \(x_1, \ldots, x_n \) are in \(T \). So, \(|T \cap I^*| \leq 1 \) and as \(I \subseteq T \), \(|I| = 1 \). Therefore, \(n = 4 \). Since \(I \subseteq T \), \(x_1 \in I \) by the simplicity of \(M_1 \). If \(I = \{x_1\} \), then \(M \setminus e \) is 3-connected for all \(e \in I^* \), a contradiction, as before. Therefore, \(I = \{x_3\} \text{ or } \{x_2\} \). This implies that \(T = \{x_1, x_2, x_3\} \).

By Theorem \([13]\) there is a 3-coindependent set \(J^* \) of \(M \) such that \(co(M \setminus e) \) is 3-connected with \(N \)-minor for all \(e \in J^* \). By \([III]\), \(J^* = \{x_1, x_2, x_3\} \). If \(T \) meets a triad \(T^* \), then, for \(f \in T^* - T \) and \(e \in T \cap T^* \) we have that \(M \setminus e \) and, therefore, \(M \setminus f \), have an \(N \)-minor. But in this case, by Lemma \([9]\), \(si(M \setminus f) \) is 3-connected with an \(N \)-minor, a contradiction to \([IV]\). Thus, \(T \) meets no triads of \(M \). Next, we check:

\((IX)\). We may not pick \(M_1, \ldots, M_4 \) in such a way that \(I = \{x_3\} \).

\textbf{Subproof:} Suppose the contrary. Then, we may pick the chain of matroids in such a way that \(M_4 = M \setminus x_1, x_2 / x_3 \setminus x_4 \) with \(I = \{x_3\} \). As \(x_4 \not\in T \), by \([III]\), \(co(M \setminus x_4) \) is not 3-connected and \(M^* \) has a vertical 3-separation \((A, x_4, B) \). This is, both \(A \) and \(B \) are 3-separating sets of \(M \), \(x_4 \in cl^*(A) \cap cl^*(B) \) and \(r^*(A), r^*(B) \geq 3 \). So, \((A, B) \) is a 2-separation of \(M \setminus x_4 \), but \(M \setminus x_4, x_1, x_2 / x_3 \) is 3-connected and we may assume, therefore, that \(|A - \{x_1, x_2, x_3\}| = |A - T| \leq 1 \). As \(|A| \geq 3 \), then \(|A \cap T| \geq 2 \) and \(A \) spans \(T \). This implies that \(Y = A \cup T \) is a 3-separating set of \(M \). Moreover, \(Y = T \) or \(Y = T \cup A \) for some \(y \in E(M) - T \).

Let us prove that \(T \cup x_4 \) is a cocircuit of \(M \). Note that \(x_4 \in cl^*(Y) \). If \(Y = T \), then, as \(T \) meets no triads, it follows that \(T \cup x_4 \) is a 4-cocircuit. So, we may assume that \(Y = T \cup y \) for some \(y \in E(M) - T \). If \(r_M(Y) = 2 \), \(Y \) is a 4-segment of \(M \). As \(M \setminus x_3 \) has an \(N \)-minor, then so has \(M \setminus y \). In this case, \(M \setminus y \) is 3-connected, contradicting \([III]\) since \(y \not\in T \). Thus, \(r_M(Y) = 3 \). Since \(|Y| = 4 \) and \(Y \) is 3-separating, it follows that \(r^*(Y) = 3 = r^*(T) \). Now, \(T \) cospans \(y \), and as \(T \cup y \) cospans \(x_4 \), it follows that \(T \) cospans \(x_4 \) and \(T \cup x_4 \) is a cocircuit of \(M \) since \(T \) meets no triads.

As \(T \cup x_4 \) is a cocircuit of \(M \), hence \(T - \{x_3, x_4\} \) is a serial pair of \(M_2 = M \setminus x_1, x_2 \) which is 3-connected with at least 4 elements, a contradiction. Thus, \((IX)\) holds.

Now, by \((IX)\), \(I = \{x_2\} \) for all choices of chains. This implies that there are no pair of elements \(\{a, b\} \subseteq E(M) \) such that \(M \setminus a \) and \(M \setminus a, b \) are 3-connected with an \(N \)-minor. In particular, \(M \setminus x_1, x_3 \) is not 3-connected. But \(M_3 = M \setminus x_1, x_2 / x_3 \) is 3-connected. As \(M \setminus x_1 \) is 3-connected, then \(x_2 \) is in a serial pair \(\{x_2, z\} \) of \(M \setminus x_1, x_3 \). Hence, \(M / z \) has an \(N \)-minor. Since \(M \setminus x_1 \) is 3-connected, it follows that \(\{z, x_2, x_3\} \) is a triad of \(M \setminus x_1 \). But \(T \) meets no triads of \(M \) and, therefore, \(C^* := \{z, x_1, x_2, x_3\} = T \cup z \) is a 4-cocircuit of \(M \). If \(z \in cl(T) \), then \(r^*(C^*) = 2 \) and \(C^* \) is a 2-separating set of \(M \). This implies that \(r(T) = r(C^*) = 2 \), contradicting the fact that
We define $K_{3,3}^{1,1}$ as the graph in Figure 1. The following lemma is a well-known result and is a straightforward consequence of Seymour’s Splitter Theorem.

Lemma 15. If G is a 3-connected graph with a K_5-minor then, either $G \cong K_5$ or G has a $K_{3,3}^{1,1}$-minor.

![Figure 1. $K \cong K_{3,3}^{1,1}$](image)

Proof of Theorem 4: We have to prove that for each 3-connected simple graph G with a K_5-minor and for each triangle T of G, G has a K_5-minor using $E(T)$. Consider a counter-example G with $|E(G)|$ as small as possible. By Theorem 2, we may assume $E(G) - E(K_5) \subseteq E(T)$. As no edges may be added to K_5 in order to get a 3-connected simple graph, then $|G| = 6$ or 7. If $|G| = 7$, then G is obtained from K_5 by expanding a vertex into the triangle T. In this case, there are two vertices $u, v \in V(T)$ with degree 3 and it is clear that for the edges $e, f \in E(T)$ incident to u and v respectively, we have $si(G/e, f) \cong K_5$. So, we may assume that $|G| = 6$. By Lemma 15, up to labels, G is obtained from $K \cong K_{3,3}^{1,1}$ (the graph in Figure 1), by adding the edges of $E(T) - E(K)$. Since $K/uv \cong K_5$, then $uv \in T$ and we may assume without losing generality that $V(T) = \{u, v, a\}$, so $G = K + va$. Now, it is clear that $G/ba/ub$ is a K_5-minor of G using T. This proves the theorem. □

The following Lemma has a slightly stronger conclusion than [11, Proposition 9.3.5] (it states beyond that R has a K-minor, the way it is obtained), but the proof for [11] Proposition 9.3.5] also holds for the following Lemma.

Lemma 16. Let $R = K \oplus_3 L$ be a 3-sum of binary matroids, where K and L are 3-connected and $E(K) \cap E(L) = S$. Then there are $X, Y \subseteq E(L) - S$ such that $R/X\setminus Y$ is obtained from R by relabeling the elements s_1, s_2 and s_3 of S in K by respective elements l_1, l_2 and l_3 of L.

Proof of Theorem 5: Let R be a regular matroid with a triangle T and an M-minor for $M \in \mathcal{F}$. Let us check that R has an F-minor using T for some $F \in \mathcal{F}$. If R is graphic or cographic it is trivial, so assume the contrary. By Seymour’s Decomposition Theorem for regular matroids, there are matroids K and L with at least 7 elements each intersecting in a common triangle S such that $R = K \oplus_3 L$ with L being 3-connected and K being 3-connected up to parallel
classes of size two meeting S. Under these circumstances, we may assume that $|E(K) \cap E(M)| \geq |E(L) \cap E(M)|$.

If C is a cycle of R meeting both $E(K)$ and $E(L)$, then there is $s \in S$ such that $(C \cap E(N)) \cup s$ is a cycle of N for $N = K, L$. As we picked L with no parallel pairs, it follows that $cl_R(E(K) - S) \cap E(L) = \emptyset$.

Let us first check that K has an M-minor. Let $M = R/I \setminus I^*$ for some independent set I and co-independent set I^* of R. Since $\lambda_M(E(K) \cap E(M)) \leq \lambda_R(E(K) \cap E(M)) = 2$, then as M is internally 4-connected, it follows that $|E(M) \cap E(L)| \leq 3$, and, moreover, $E(M) \cap E(L)$ is not a triad of M because M has no triads. This implies that $E(M) \cap E(L) \subseteq cl_M(E(M) - E(L))$. By the format of the family of circuits of R, it follows that $E(M) \cap E(L) \subseteq cl_R(E(K) - S)$, which is empty. So, $E(M) \subseteq E(K)$. By Lemma 11 there is a minor K' of R obtained by relabeling the elements s_1, s_2 and s_3 of S in K by respective elements I_1, I_2 and I_3 of L. Consider the matroid K'' obtained from K' by contracting each I_l for those indices $i \in \{1, 2, 3\}$ such that $s_i \in cl_L(I \cap E(L))$. Now K'' is obtained from $R/(I \cap E(L)) \setminus (E(L) \cap I^*)$ by relabaling the remaining elements of S. This implies that K'' and, therefore, K, have M-minors.

If $T \subseteq E(K)$, then K has an \mathcal{F}-minor using T by the minimality of R. But R has an K-minor using T by Lemma 11 and this implies the theorem. So, T meets $E(L)$. As $cl_R(E(K) - S) \cap E(L) = \emptyset$, it follows that $X := T \cap E(L)$ has at least two elements. As L is 3-connected and $\lambda_L(S) = \lambda_L(X) = 2$, then $\kappa_L(S, X) = 2$. By Tutte’s Linking Theorem [11, Theorem 8.5.2], there is a minor N of L with $E(N) = S \cup X$ such that $\lambda_N(S) = 2$. Hence:

$$2 = \lambda_N(S) = r_N(S) + r_N(X) - r(N) \leq 4 - r(N).$$

So, $r(N) \leq 2$. But $r(N) \geq r_N(S) \geq \lambda_N(S) = 2$. Also $r_N(X) \geq \lambda_N(X) = 2$. This implies that S spans N and X contains no parallel pairs of N. Now, each element of X is in parallel with an element of S in N. Therefore, for $N = L/A \setminus B$, we have that $R/A \setminus B$ is obtained from M by relabeling the elements of S by elements of T. So, $R/A \setminus B$ is 3-connected with T as triangle and has an M-minor. By the minimality of R, $R/A \setminus B$ has an \mathcal{F}-minor using T and this proves the Lemma.

\[\square \]

3. Sharpness

First we construct a sharp case for Theorem 3 with $E(M) \subseteq E(N) \cup T$. Consider a complete graph K on $n \geq 14$ vertices. Let $X := \{v_{i,j} : i = 1, 2, 3$ and $j = 1, 2, 3, 4\}$ be a 12-subset of $V(K)$. Consider a triangle T on vertices u_1, u_2 and u_3, disjoint from K. Let $G = K \cup T + \{u_iv_{i,j} : i = 1, 2, 3$ and $j = 1, 2, 3, 4\}$. Define, for disjoint subsets A and B of $E(T)$, $H := G \setminus A/B$, $M := M(G)$. For each $x \in E(G) - E(T)$, $G \setminus x$ has at least 3 parallel pairs and, therefore, no H-minor. For e incident to $v \in V(K)$, in order to get a minor of $G \setminus e$ with $|K| - 12$ vertices with degree $|K| - 1$ and 12 vertices with degree $|K|$ as in H, it is necessary to contract some edge out of T, thus $G \setminus e$ has no H-minor either.

Now, let us construct an example satisfying item (a) of Theorem 3. Let us pick M as a restriction of the affine space \mathbb{R}^3. Consider a 4-subset $L := \{a, b, c, x\}$ of an line R. Let $T := L - x$. Now consider for each $y \in T$ a line R_y meeting L in y in such a way that no three lines among R, R_a, R_b and R_c lay in a same plane. Let $m \geq 6$. For each $y \in T$, pick a m-subset L_y of R_y.
containing y. Let M be the restriction of the affine space to $L \cup L_a \cup L_b \cup L_c$. Let $N = M/x\backslash a, b$ or $N = M/x\backslash T$. Note that it is not possible to get a rank-3 minor of M with 3 disjoint $(m-1)$-segments by contracting other element than x. So all N-minors of M are minors of M/x and therefore, deleting at least two elements of T is necessary to get an N-minor since T is a parallel class of M/x. So, this is the unique way to get an $M/x\backslash a, b$-minor of M. Moreover, deleting the element in the intersection of the three m-lines is the unique way to get and $M/x\backslash T$ from an $M/x\backslash a, b$-minor of M.

Next, we construct an example satisfying item (b) of Theorem 3. We denote by $M + e$ the matroid obtained by adding e freely to M. Start with a projective geometry P with $r(P) \geq 6$. Let F be a flat of P with $4 \leq r(F) \leq r(P) - 2$. Consider a copy U of $U_{2,4}$ on ground set $T \cup x := \{x, x_1, x_2, x_3\}$ with $(T \cup x) \cap E(P) = \emptyset$. Let y be an element out of $E(P) \cup T \cup x$. Let M be the matroid obtained by adding y freely to the flat $F \cup T$ of $(P + x) \oplus U$. Note that $E(P)$ is a hyperplane of M and, therefore, $T \cup y$ is a 4-cocircuit of M. Define $N_1 = M/y\backslash x_2\backslash x_3$ and $N_2 := N_1/x_1$. Note that $N_1 = P + x_1$ and N_2 is the truncation of P with rank $r(P) - 1$.

Let $i \in \{1, 2\}$ and $N = M/X\backslash Y$ be an N_i-minor of M. Note that $r^*(M) - r^*(N) = 2$ and $r(M) - r(N) \in \{1, 2\}$. For each $p \in E(N)$, $|E(s_i(M/p))| < |E(N_i)|$. Thus, no element $p \in P$ may be contracted in M in order to get an N_i-minor. So, $X \subseteq T \cup y$.

Let us check that $T \cup y$ meets no circuit of M with less than six elements other than T. Indeed, M/y is a two sum of a 4-point line on $T \cup x$ and a matroid with rank greater than five with x as free element. Thus all circuits of M/y meeting T, except for T itself, have more than five elements. Moreover, M is obtained from M/y adding y as a free element to a flat with rank greater than 4 and, therefore, all circuits of M containing y also have more than five elements. Hence, the triangles of M/X are precisely the triangles of P. Moreover, those must be the same triangles of N since all triangles of N are triangles of M/X and they occur in the same number. As deleting an element of P from M/X would result in a matroid with less triangles than N_i, it follows that $Y \subseteq T \cup y$. Hence, $E(P) \subseteq E(N)$ for each minor N of M isomorphic to N_1 or N_2.

Let us check that M/y has no N_2-minor and, therefore, no N_1-minor too. Suppose for a contradiction that N is an N_2-minor of M/y. We may assume that $N = M/y, x_1 \backslash x_2, x_3$. Note that x_1 is a free element of the rank-r_F flat $F \cup x_1$ of $M/y\backslash x_1, x_2$. This implies that $N[F]$ is a truncation of rank $r_F - 1$ of the rank-r_F projective geometry F. But, as N_2 is the rank-$(r_F - 1)$ truncation of P and $r_F \leq r(P) - 2$, then all rank-$(r_F - 1)$ flats of N_1 are projective geometries and so is F, a contradiction.

Now, for $i = 1, 2$ each N_i-minor of M is the form $M/y, x_i/A$ with $1 \leq i \leq 3$ and A being a i-subset of $T - x_i$. Let A be a 2-subset of T. As we proved for $A = \{x_2, x_3\}$, it follows that M/A has no N_2-minor. Moreover, for $x_k \in T - A$ it is clear that y is not a free element of $M\backslash A/x_k$, which, therefore, is not isomorphic to N_1. Thus $M\backslash A$ has no minor isomorphic to N_1 and neither N_2.

4. Acknowledgements

The authors thank the Visiting Scholar Fund of the Department of Mathematics and Statistics at Wright State University for the support.
REFERENCES

[1] R. E. Bixby, ℓ-matrices and a characterization of binary matroids, Discr. Math. 8 (1974), 139-145.
[2] T. Asano, T. Nishizeki and P. D. Seymour, A note on non-graphic matroids, J. Combin. Theory Ser. B 37 (1984) 290–293.
[3] J. P. Costalonga, On 3-connected minors of 3-connected matroids and graphs, European J. Combin. 33 (2012), 72–81.
[4] J. P. Costalonga, A splitter theorem on 3-connected matroids, European J. Combin. 69 (2018) 7-18.
[5] C. R. Coullard, Counterexamples to conjectures on 4-connected matroids, Combinatorica, 6 (1986), 315–320.
[6] J. Kahn, A problem of P. Seymour on nonbinary matroids, Combinatorica, 5 (1985), 319–323.
[7] T. Moss, A minor-based characterization of matroid 3-connectivity, Adv. Appl. Math 50 (2013) 132–141.
[8] J. G. Oxley, On the intersections of circuits and cocircuits in matroids, Combinatorica 4, 187–195.
[9] J. G. Oxley, On nonbinary 3-connected matroids. Trans. Amer. Math. Soc. 300 (1987) 663–679.
[10] J. G. Oxley, A characterization of certain excluded-minor classes of matroids. European J. Combin. 10, 275–279.
[11] J. G. Oxley, Matroid theory, Oxford graduate texts in mathematics, Oxford University Press, 2006.
[12] J. G. Oxley and T.J. Reid, The smallest rounded sets of binary matroids, European J. Combin. 11 (1990) 47–56.
[13] T. J. Reid, Triangles in 3-connected matroids, Discrete Mathematics 90 (1991) 281–296.
[14] P.D. Seymour, A note on the production of matroid minors. J. Combin. Theory Ser. B 22 (1977) 289–295.
[15] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980), 305–359.
[16] P.D. Seymour, On minors of non-binary matroids, Combinatorica 1 (1981), 387–394.
[17] P.D. Seymour, Minors of 3-connected matroids, European J. Combin. 6 (1985), 375–382.
[18] G. Whittle, Stabilizers of classes of representable matroids, J. Combin. Theory Ser. B 77 (1999), 39–72.
[19] H. Wu, On contractible and vertically contractible elements in 3-connected matroids and graphs, Discrete Math. 179 (1998), 185–203.