Metabolomic fingerprint of coronary blood in STEMI patients depends on the ischemic time and inflammatory state

\(^a\text{Martino Deidda, MD PhD; }^b\text{Cristina Piras, PhD; }^c\text{Giulio Binaghi, MD PhD; }^d\text{Damiana Congia, MD; }^e\text{Alessandro Pani, Md; }^f\text{Alberto Boi, MD; }^g\text{Francesco Sanna, MD; }^h\text{Angelica Rossi, MD; }^i\text{Bruno Loi, MD; }^j\text{Christian Cadeddu Dessalvi, MD PhD FESC; }^k\text{Luigi Atzori, MD; }^l\text{Maurizio Porcu, MD FESC; }^m\text{Giuseppe Mercuro, MD}

\(^a\text{Department of Medical Sciences and Public Health, University of Cagliari; }^b\text{Department of Biomedical Sciences, University of Cagliari; }^c\text{Department of Cardiology, G. Brotzu Hospital; }^d\text{Catheterization Lab, G. Brotzu Hospital, Cagliari, Sardinia, Italy}
Figure 1S. 500 MHz 1H NMR spectra of plasma extracts obtained from a) short total ischemic time b) long total ischemic time.

Peaks: 1, Isoleucine; 2, Leucine; 3, Valine; 4, Lactate; 5, Alanine; 6, Lysine; 7, Acetate; 8, N-acetylgroups; 9, Proline; 10, Glutamine; 11, Glutamate; 12, Pyroglutamate; 13, Citrate; 14, Asparagine; 15, Creatine; 16, Creatinine; 17, Ornithine; 18, Choline; 19, Phosphocholine; 20, Glucose; 21, Myo-Inositol; 22, 2-phosphoglycerate; 23, Serine. * Resonances of contrast agent.