Nutrition and Epigenetics in Human Health

Robert Murraya Graham C. Burdgea Keith M. Godfreya, c, d Karen A. Lillycropb

aAcademic Unit of Human Development and Health, Faculty of Medicine, bCentre for Biological Sciences, Faculty of Natural and Environmental Sciences, and cMRC Lifecourse Epidemiology Unit, University of Southampton, and dNIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, UK

Key Words
Epigenetics · DNA methylation · Developmental origins of health and disease · Early life environment

Abstract
Adult-onset diseases such as type 2 diabetes and cardiovascular disease are now highly prevalent in both developed and developing countries. Evidence from both human and animal studies shows that the prenatal and early postnatal environments can influence susceptibility to chronic diseases in later life. The mechanisms by which the early life environment influences future disease risk have been suggested to include the altered epigenetic regulation of gene expression. In this article, we will review how the early life environment alters the epigenome leading to an altered susceptibility to disease in later life and how our understanding of the underlying mechanisms may allow the development of new intervention strategies to reduce the burden of disease in later life.

Introduction
Non-communicable diseases (NCD) such as diabetes, cardiovascular disease (CVD) and the metabolic syndrome, account for over a third of all deaths globally (World Health Organisation). In low- and middle-income countries, NCDs are becoming particularly important, since a rapid increase in their prevalence has been observed as these countries undergo
socio-economic improvement [1]. Fixed genomic variations such as single nucleotide polymorphisms and copy number variations explain only a fraction of the variation in NCD risk in a population [2]. However, there is growing evidence that the prenatal and early postnatal environments play important roles in influencing the risk of developing a wide range of NCDs in later life. A relationship between the quality of the early life environment and later disease risk was first shown in a Norwegian study that found a strong association of undernutrition and poverty during childhood and adolescence with later development of CVD in late middle age [3]. Subsequent work by Barker and colleagues [4–6] and Hales et al. [7] related the health of middle-aged individuals in the UK to their recorded birth measurements. Lower birth weight was found to correlate strongly with the later risk of CVD, type 2 diabetes, hypertension, and hyperlipidaemia. Further epidemiological studies have confirmed these associations between lower birth weight and later disease risk but have also shown that babies born at the highest birth weights are also at increased risk of developing diabetes or obesity in later life (fig. 1) [8, 9].

While these epidemiological studies were the first to show a relationship between fetal growth and chronic disease risk, studies of the Dutch Hunger Winter, a famine which occurred in the Netherlands during the winter of 1944, have clearly demonstrated that maternal nutrition influences the health of the child in later life and that the timing of the environmental constraint is important. Studies from the Dutch Hunger Winter found that individuals whose mothers were exposed to famine periconceptually and in the first trimester of pregnancy exhibited an increased risk of obesity and CVD, whereas individuals whose mothers were exposed in the later stages of gestation showed an increased incidence of insulin resistance and hypertension in later life [10, 11].

Comparable findings have now been replicated in a variety of animal models where, typically, rats or mice have been fed either a low-protein diet, a global dietary restriction, a high-fat or even a junk food diet during pregnancy and/or lactation [12–14]. Interestingly, the offspring exhibit similar features to human cardiometabolic disease including hypertension, dyslipidaemia, obesity and insulin resistance in later life.

The induction of different phenotypes by perturbations in early life nutrition has been suggested by Gluckman and Hanson [15] to reflect a predictive adaptive response whereby the organism, acting through the process of developmental plasticity, can adjust its developmental programme in response to environmental cues to aid fitness or survival in later life. When an organism adapts to an environment and is subsequently exposed to a different envi-

Fig. 1. Weight at birth is presented has a U-shaped association with later disease risk. Nutritional exposure in the intrauterine environment has an impact upon the life course of the developing foetus. The relationship between birth weight and future risk from diseases, including CVD, diabetes and stroke, is U-shaped, with risk increasing as birth weight moves further away from a theoretical optimum. There is no specific threshold of disease, but an increasing risk at more extreme birth weights.
Environment after birth, a 'mismatch' occurs leaving the organism maladapted and at risk of metabolic disease in later life [16]. The mismatch between the prenatal and postnatal environments has been suggested to be central to the burgeoning rates of NCDs observed in countries undergoing socio-economic transition (e.g. populations moving from rural to urban areas) [17, 18].

Epigenetic Regulation

The mechanisms by which the early life environment may influence future disease risk have been suggested to include the altered epigenetic regulation of genes [19]. Epigenetic mechanisms have the potential to provide the required levels of both variability and rapid adaptability to allow these developmental changes to be induced and maintained throughout the life course. Epigenetic modifications, which are stably inherited through cell division without alteration of the DNA sequence, allow a large degree of control over a gene's tran-
scriptional state. Epigenetic processes include: DNA methylation, histone modifications, and non-coding RNAs. Together, they affect all aspects of gene expression and repression, controlling access to the underlying DNA sequence, and thereby defining the role of each cell within the body.

DNA Methylation

DNA methylation is the transfer of a methyl group to the 5′ carbon position of cytosine, creating 5-methylcytosine [20]. In mammals, methylation of cytosine mainly occurs within the dinucleotide sequence CpG, when a cytosine is immediately 5′ to a guanine. Hypermethylation is associated with gene silencing and hypomethylation with gene activation [21, 22]. DNA methylation can act directly to block binding of transcription factors (TF) [23], though it is thought that its main mode of action is through promoting the recruitment of a myriad of other repressive factors that mediate local chromatin changes [24]. Methylation of DNA appears to be directly antagonistic to certain histone modifications that promote an open and accessible form of chromatin [25], and has also been shown to alter nucleosome occupancy thereby blocking TF and Pol II binding [26]. DNA methylation levels are high in both the sperm and the egg at fertilization, but global methylation levels decrease during the first few days of development, until they reach their lowest levels around blastocyst implantation, whereupon a wave of de novo methylation occurs within the inner cell mass, giving rise to lineage specific methylation patterns that are maintained in differentiated tissues [27, 28].

Histone Modifications

Two of each of the four histone proteins H2A, H2B, H3 and H4, combine together with DNA to form a nucleosome, the most basic structure of chromatin, which is then packaged into higher order chromatin structures [29, 30]. The unstructured tails of histone proteins provide a platform for modifying enzymes that catalyse the addition of different histone modifications to specific residues, which can directly affect the chromatin structure, but also provide binding sites for proteins involved in gene regulation. Together, histone modifications and DNA methylation control the chromatin structure, and therefore, the biological role played by the underlying DNA sequence [30, 31].

Non-Coding RNA

Less than half of the transcribed RNA within a cell acts as a template for production of proteins. Non-coding RNAs (ncRNAs), both long and short, are central components of the transcriptional regulation machinery, and are essential for both translational and transcriptional regulation within the cell [32–35]. Small ncRNAs can induce mRNA degradation or translational repression and, when binding within the promoter region of a gene, induce both DNA methylation and repressive histone modifications resulting in reduced transcriptional activity or even complete repression [36–38]. Large ncRNAs can coat regions of a chromosome, creating repressive domains encompassing many kilobases, and are essential in processes such as X-inactivation and imprinting [39–42].
Epigenetic Changes Induced by the Early Life Environment

There is an increasing body of evidence suggesting that the early life environment can alter the epigenome. One of the first examples to highlight the influence of maternal diet on DNA methylation levels in the offspring was shown by the AVY mouse where coat colour is determined by the methylation status of the 5′ end of the agouti gene [43–46]. Supplementation of the maternal diet with dietary methyl donors and co-factors (including folic acid, vitamin B\textsubscript{12}, betaine and choline) led to an increase in the methylation of the agouti gene and a shift in coat colour of the offspring from yellow to black.

Studies in other animal models have also shown that both macro- and micronutrient intake during pregnancy can alter the methylation of key metabolic genes within the offspring. For instance, feeding a protein-restricted diet during pregnancy induced the hypomethylation of GR and PPAR\textalpha genes. This decrease in DNA methylation was accompanied by an increase in GR and PPAR\textalpha gene expression and persistent changes in the metabolic processes that these nuclear receptors control [47, 48]. Maternal protein restriction has also been shown to induce the hypomethylation of the angiotensin receptor promoter (AGTR1B); this was associated with a three-fold increase in gene expression. AGTR1B directly impacts the levels of adrenal aldosterone, a major factor in the development of hypertension [49].

Given the concerns in both western and modernizing societies over the increasing consumption of energy-rich diets, and their implications, a number of studies have also explored the effects of maternal high-fat feeding on DNA methylation in the offspring. Hoile et al. [12] showed that maternal high-fat feeding during pregnancy led to the reduced expression of FADS2, the rate-limiting enzyme in polyunsaturated fatty acid synthesis, and the altered methylation of key CpG nucleotides within its promoter in the offspring [50]. In contrast, high-fat feeding for a 9-week period during adulthood induced only a transient effect on FADS2 expression and methylation. This suggests that changes induced in early life persist once the cause is removed, but in adulthood, these systems are far harder to influence outside of the developmental windows of plasticity [12].

However, it has also become apparent that the period of epigenetic plasticity may extend beyond the early intrauterine period into postnatal life. Over-feeding in neonatal life was shown to induce the hypermethylation of the proopiomelanocortin (POMC) promoter, a gene that plays a key role in appetite control. Hypermethylation of the POMC promoter prevented upregulation of POMC expression despite high plasma levels of both leptin and insulin [51]. Lillycrop et al. [48] have also shown that, in rats whose mothers were fed protein-sufficient or restricted diets during pregnancy, increasing folic acid intake in the juvenile-pubertal period led to increased methylation of the promoter region of PPAR\textalpha, with decreased PPAR\textalpha expression and levels of β-oxidation [48]. Moreover, Ly et al. [52] have shown that folic acid supplementation during the peripubertal period led to a decrease in DNA methyl transferase activity and an increase in mammary tumorigenesis.

Effect of the Early Environment on the Human Epigenome

In humans, studies on the Dutch Hunger Winter cohort showed that periconceptual exposure to famine was associated with a small decrease in CpG methylation across the imprint control region of IGF2, while those individuals exposed to famine in late gestation showed no altered methylation at the same region [53]. This was a pattern repeated for a number of other genes examined, with exposure during the periconceptual period being associated with small DNA methylation changes within multiple loci (including leptin, IL-10, MEG3 and ABCA3) while those exposed in later pregnancy did not show these changes [54].
The association between early life exposures and epigenetic changes in key metabolic regulatory genes suggests that such changes may well underpin the long-term changes in gene expression and metabolism seen in the offspring. However, because of the technical challenges associated with changing the methylation status of a single CpG site in vivo there is yet no formal proof that these methylation changes are causal. In these studies on individuals from the Dutch Hunger Winter, methylation was measured in peripheral blood suggesting that epigenetic traits in peripheral tissues may provide useful proxy markers of future disease risk in more disease-relevant cell types [54, 55].

Recently, Godfrey et al. [56] reported in two independent cohorts that the methylation status of a single CpG site in the promoter region of the retinoid X receptor α was related positively to childhood adiposity in both boys and girls such that retinoid X receptor α promoter methylation explained over a fifth of the variance in childhood fat mass [56]. These findings not only support that hypothesis that developmentally induced epigenetic marks make a significant contribution to later phenotype but also suggest that the detection of epigenetic marks even in peripheral tissue may allow identification of individuals at increased risk of chronic disease in later life before the onset of clinical disease, and so facilitate targeted intervention strategies.

Conclusions

Epigenetic marks, laid down during the prenatal period in response to maternal nutrition, are associated with altered gene expression patterns in important metabolic tissues. The resultant alterations to both growth and metabolism are linked to later development of diabetes, hyperlipidaemia, hypertension, and CVD.

The presence of epigenetic marks, linked to later disease risk, raises the possibility of preventative medicine. Globally, health care providers are experiencing an upsurge in the diagnosis of NCDs, but by the time of diagnosis, treatment is expensive, and can only manage the condition. Epigenetic biomarkers that have the potential to be used as predictors of an individual’s disease risk will allow for a far earlier detection for those most at risk, potentially allowing a more effective strategy of preventative treatment, improving the individual’s quality of life and reducing the financial burden that is associated with current treatment strategies.

References

1. Ramachandran A, Snehalatha C: Rising burden of obesity in Asia. J Obes 2010;2010:pii:868573.
2. Manolio TA, et al: Finding the missing heritability of complex diseases. Nature 2009;461:747–753.
3. Forsdahl A: Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med 1977;31:91–95.
4. Barker DJ, Osmond C: Low birth weight and hypertension. BMJ 1988;297:134–135.
5. Barker DJ, et al: Weight in infancy and death from ischaemic heart disease. Lancet 1989;2:577–580.
6. Barker DJ, et al: Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:62–67.
7. Hales CN, et al: Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991;303:1019–1022.
8. Pettitt DJ, Jovanovic L: Birth weight as a predictor of type 2 diabetes mellitus: the U-shaped curve. Curr Diab Rep 2001;1:78–81.
9. Ong KK: Size at birth, postnatal growth and risk of obesity. Horm Res 2006;65(suppl 3):65–69.
10. Roseboom T, de Rooij S, Painter R: The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006;82:485–491.
11. Painter RC, Roseboom TJ, Bleker OP: Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 2005;20:345–352.
12. Hoile SP, et al: Maternal fat intake in rats alters 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. J Nutr Biochem 2013;24:1213–1220.

13. Lillycrop KA, et al: Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007;97:1064–1073.

14. Cleal JK, et al: Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proc Natl Acad Sci USA 2007;104:9529–9533.

15. Gluckman P, Hanson M: The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 2004;15:183–187.

16. Bateson P, et al: Developmental plasticity and human health. Nature 2004;430:419–421.

17. Norris SA, et al: Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care 2012;35:72–79.

18. Bavdek A, et al: Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 1999;48:2424–2429.

19. Godfrey KM, et al: Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res 2007;61(5 Pt 2):5R–10R.

20. Kumar S, et al: The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 1994;22:1–10.

21. Irizarry RA, et al: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009;41:178–186.

22. Song F, et al: Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 2005;102:3336–3341.

23. Bell AC, Felsenfeld G: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000;405:482–485.

24. Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J Cell Physiol 2007;213:384–390.

25. Matsuyama M, Hsieh CL: DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 2007;27:2746–2757.

26. Patel SA, Graunke DM, Pieper RO: Aberrant silencing of the CpG island-containing human O6-methylguanine DNA methyltransferase gene is associated with the loss of nucleosome-like positioning. Mol Cell Biol 1997;17:5813–5822.

27. Fulkh H, et al: Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation 2008;76:3–14.

28. Li E: Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662–673.

29. Peterson CL, Laniel MA: Histones and histone modifications. Curr Biol 2004;14:R546–R551.

30. Kouzarides T: Chromatin modifications and their function. Cell 2007;128:693–705.

31. Zhang Y, Reinberg D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001;15:2343–2360.

32. Lavorgna G, et al: In search of antisense. Trends Biochem Sci 2004;29:88–94.

33. Gutman M, et al: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458:223–227.

34. Kapranov P, Willingham AT, Gingeras TR: Genome-wide transcription and the implications for genomic organization. Nat Rev Genet 2007;8:413–423.

35. Katayama S, et al: Antisense transcription in the mammalian transcriptome. Science 2005;309:1564–1566.

36. Morris KV, et al: Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004;305:1289–1292.

37. Hawkins PG, et al: Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 2009;37:2984–2995.

38. Kim DH, et al: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 2008;105:16230–16235.

39. Nagano T, et al: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2002;298:1217–1220.

40. Reik W, Lewis A: Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 2005;6:403–410.

41. Terranova R, et al: Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 2008;15:668–679.

42. Zhao L, et al: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008;322:750–756.

43. Morgan HD, et al: Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 1999;23:314–318.

44. Rakyan VK, et al: Metastable epialleles in mammals. Trends Genet 2002;18:348–351.

45. Waterland RA, Travisano M, Tahiliani KG: Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 2007;21:3380–3385.

46. Waterland RA, Jirtle RL: Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003;23:5293–5300.

47. Lillycrop KA, et al: Dietary protein restriction of pregnant rats induces a decrease in DNA methylation of genes involved in fetal growth and development. J Nutr 2005;135:1382–1386.
48 Lillycrop KA, et al: Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 2008;100:278–282.
49 Bogdarina I, et al: Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 2007;100:520–526.
50 Kelsall CJ, et al: Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS ONE 2012;7:e34492.
51 Plagemann A, et al: Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 2009;587(Pt 20):4963–4976.
52 Ly A, et al: Effect of maternal and postweaning folic acid supplementation on mammary tumor risk in the offspring. Cancer Res 2011;71:988–997.
53 Heijmans BT, et al: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008;105:17046–17049.
54 Tobi EW, et al: DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009;18:4046–4053.
55 Brennan K, et al: Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 2012;72:2304–2313.
56 Godfrey KM, et al: Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011;60:1528–1534.