Functional drinks based on grape juice and fruit and berry raw materials

E A Sosyura, E S Romanenko, M V Selivanova, T S Aysanov, N A Esaulko and M S German

Stavropol State Agrarian University, Faculty of Agrobiology and land resources, Zootekhnicheskiy lane 12, Stavropol, 355017, Russia

E-mail: elena_st_86@mail.ru

Abstract: In article are provided the results of research on studying of structure and properties of products of conversion of fruits of feijoa and blackberries and their use as a raw source of physiologically active agents for preparation of beverages of a functional purpose on the basis of grape juice.

1. Introduction
Providing the population with high-quality food in the wide range is an important task of the food industry. Around the world, and recently and in our country, along with the production of soft drinks the more spreading began obtain the drinks which contain the vegetable components. Research and development of such scientists, as G.M. Zajko, L.V. Donchenko, L.Ya. Rodionova, T.G. Prichko, I.A. Ilyin, G.A. Gorelikova, L.A. Maurnikova, E.A. Kazakova, M.V. Palagina, etc., devoted to the technology of their production.

Natural grape juice is one of the most important and valuable food and diet in relation to food component [3]. Due to the fact that in the process of juice production lost part of macro- and microelements, amino acids, organic acids and vitamins, the preparation of drinks based on juice with the addition of physiologically active ingredients from plant material will help to balance the composition of grape juice on the content of biologically active substances and saturate it scarce macro- and micronutrients.

2. Materials and methods
The production of functional drinks based on grape juice is especially important due to the presence in the South of Russia is diverse and available raw materials base and modern high-performance equipment [4].

In our research as the bases of grape juice used juice of direct extraction from grapes Kubanets. The variety is widespread in the south of Russia. The variety has good sugar content, resistance to various fungal diseases, pests and frost, allows sparing the chemical treatment that increases the environmental friendliness of products derived therefrom.

For juice production scheme was chosen, which provides for the processing of grapes with a short-term infusion mash, wort selection of 60 decalitres out of 1 ton of grapes, the resulting wort clarification by settling and is then pasteurized. The physical and chemical composition of grape juice are shown in table 1.
Table 1. The physical and chemical composition of the grape juice of direct extraction.

Name of indicator	The value of the indicator
Mass fraction of soluble solids, %	23,9
Mass concentration of sugars, g/100 cm³	21,0
The mass concentration of titratable acids equivalent tarraric, g/dm³	4,3
pH	3,75

In our studies, we used the fruits of feijoa and blackberries as components that have the functional orientation.

Selection of raw materials based on an analysis of published data on its chemical composition and pharmacological properties, the possibility of its harvesting in the south of Russia and the compatibility of organoleptic indicators of plants as part of drinks. Particular attention was paid to the absence of toxic substances, the presence of coloring and aromatic compounds as well as substances having antimicrobial, antioxidant effect.

Using feijoa and blackberries, which grow in the southern regions of Russia in large quantities, allows to expand the raw material base of domestic fruit processing factories, reduce the market share of food products, which include synthetic, chemically synthesized flavorings, reduce the cost of semifinished products transportation, and hence reduce the cost of beverages of a functional purpose [5, 6, 7].

To use the pineapple guava and blackberry in the composition of their drink water extracts were prepared and studied their chemical composition.

Research of feijoa extract showed a high content of vitamin C – 51,8 mg / dm³, vitamin PP – 140,9 mg / dm³ and phenol carbonic acids – 576,5 mg / dm³ (figure 1).

![Figure 1](image)

Figure 1. The content of vitamins and phenol carbonic acids in the extract of feijoa, mg/dm³.

The high concentration of the extract feijoa minerals [8]. The potassium content in the test extract was 1648,0 mg / dm³, calcium – 163,3 mg / dm³. Furthermore, feijoa extract significant iodine content was found – 0,55 mg / dm³, which is entirely absent in the grape juice.

A feature of physical and chemical composition of blackberry extract was the presence of a large number of phenolic compounds (1392,9 mg / dm³), including anthocyanins, which the mass concentration was 143,7 mg / dm³ (table 2).

Table 2. The physical and chemical composition of blackberry extract.

Name of indicator	The value of the indicator
Mass fraction of soluble solids,%	5,0
Mass concentration of sugars, g/100 cm³	4,0
Mass concentration of titratable acids in terms of malic acid g/dm³	5,5
pH	3,8
The total amount of phenolic substances, mg/dm³ 1392,9
Anthocyanins, mg/dm³ 143,7

Also in blackberry extract was identified by a group of biologically active substances – vitamins (C and PP) and phenol carbonic acids (chlorogenic, caffeic, gallic, protocatechuic) (figure 2).

Figure 2. The content of vitamins and phenol carbonic acids in the extract of blackberry, mg/dm³.

The greatest amount of nicotine contained (33,6 mg / dm³) and caffeic acid (31,3 mg / dm³). First discovered resveratrol (0,1 mg / dm³), which is a phenolic compound with antioxidant and cardio effect.

These findings allow the use of extracts of feijoa and blackberry as additional sources of bioactive substances and because of their low sugar content, acidity and intense color, apply it for blending with the grape juice in order to optimize its physical and chemical composition and the harmonization of taste qualities [9].

When determining the optimum ratio of basic beverage ingredients in the composition as the main criteria were selected sensory characteristics of finished products. Range added in beverages extracts ranged from 10 to 30%.

As a result of tasting the highest scores were awarded to: for a drink from feijoa – option consists of 80% juice and 20% extract; for a drink with blackberry – option, which includes 85% juice and 15% extract. At a higher content of extract beverage taste became inharmonious and uncharacteristic products processing grapes, with less significant differences from grape juice were observed.

It was found that the addition of feijoa and blackberry extracts grape juice allowed to enrich its flavor and taste of the sophisticated tones with juniper, quince, tar and berry shades, enhance its color, and thus improve the quality of the finished beverage. Compared to grape juice tasting score beverages increased to 2,7-3 points.

As a result of investigation of physical and chemical composition of the obtained beverage it has been found that the introduction into beverages and feijoa blackberry extracts led to a decrease in their content of sugar, increasing the concentration of titratable acid and total phenolics. Furthermore, addition of blackberry extract it possible to increase the mass concentration of anthocyanins in the beverage from 40,2 to 64,5 mg / dm³, provided that the finished product a bright and elegant color (table 3).

Table 3. The physical and chemical composition of grape juice and beverages of a functional purpose on the basis there of.

Name of indicator	The grape juice	Beverage with added feijoa	Beverage with added blackberry
Mass concentration of sugars, g/100 cm³	21,0	19,4	18,8
Mass concentration of titratable ac-	4,3	4,9	6,0
ids in terms of tartaric, g/dm3

pH	3,75	3,4	3,4
The total amount of phenolic substances, mg/dm3	892,9	1290,3	843,6
Anthocyanins, mg/dm3	40,2	25,8	64,5
Acidimetric indicator	48,8	39,6	31,3

Mass concentration of vitamins and phenol carboxylic acids in the test beverage with the addition of feijoa extract was 195,44 mg / dm3 (figure 3).

Figure 3. The content of vitamins and phenol carboxylic acid in the drink of a functional purpose on the basis of grape juice and feijoa, mg / dm3.

Introduction to the framework juice blackberry extract helped increase in 1,5-2 times the mass concentration of gallic, caffeic and orotic acids having P-vitamin activity in the beverage functionality. Mineral the value of functional beverages due to their content of macro- and microelements (table 4).

When making feijoa extract in the drink was identified iodine mass concentration which was 0,1 mg / dm3. In the investigated beverage with the introduction of blackberry extract is set for optimal assimilation of its ratio of calcium with magnesium is about 1:0,7.

Table 4. The content of macronutrients in beverages of a functional purpose on the basis of grape juice, mg / dm3.

Cation, mg/dm3	Beverage with added feijoa	Beverage with added blackberry
Potassium	1603,0	1302,0
Natrium	48,0	31,8
Magnesium	106,0	90,6
Calcium	136,2	126,1
Sum	1893,2	1550,5

Thus, the investigated beverages of a functional purpose by introducing into their structure feijoa and blackberry extract is rich in biologically active substances: vitamins, phenol carboxylic acids, as well as macro- and microelements, necessary for normal functioning of the human organism. Contents of anthocyanins increased by 60% with the introduction of blackberry extract, which enhances and enriches the color of the finished beverage.

In assessing functional properties of the beverage it has been found that they include increased mass concentration of phenolcarboxylic acids and vitamins as compared with direct extraction of grape juice. At the same time the satisfaction of daily requirement for vitamins in the use of batch volume (300 ml) developed for a drink with feijoa ranged from 15 to 43,5%, in the macro- and micronu-
trients – up 53.0% from the norm. For beverages with blackberry this figure was from 6.8 to 15.6% (table 5).

Table 5. Comparative evaluation of the functional properties of the developed beverages.

Name of physiologically functional ingredient	Daily requirement, mg	Providing daily needs, % of normal
Vitamin C	70	grape juice (control)
Vitamin PP	20	drink based on grape juice and feijoa
Potassium	2500	drink based on grape juice and blackberry
Magnesium	400	20
Iodine	0.15	20.0
Silicium	5	53.0

Indicators of toxicological and microbiological safety of drinks based on grape juice and plant extracts are normal and consistent with the requirements of the Technical Regulations of the Customs Union on juice products from fruits and vegetables.

3. Results

The studies developed technological scheme of production of beverages of a functional purpose on the basis of grape juice [10, 11] (figure 4).

Figure 4. Technological scheme of production of functional drinks based on grape juice: 1 – feed hopper; 2 – crusher; 3 – conveyor; 4 – pump for pulp; 5 – pneumatic press; 6 – conveyor for pomace; 7 – sump for pressing fractions (PF); 8 – sump for wort-drift (WD); 9 – tank with agitator; 10 – cooler; 11 – sump; 12 – pump; 13 – vacuum-perlite filter; 14 – tank; 15 – pasteurizer; 16 – ultra-cooler; 17 – blender; 18 – tangential membrane filter; 19 – roller conveyor; 20 – washer; 21 – sorting and inspection conveyor; 22 – elevator; 23 – crusher; 24 – conical tank; 25 – tank for extract; G – grapes; P – pulp; WD – wort-drift; PF – pressing fraction of wort; SW – sediment from wort; WF – wort filtrate; CW – clarified wort; F – feijoa fruit; UE – unpasteurized extract; B – blackberries; FE – feijoa extract; BE – blackberry extract.
In the proposed technological scheme used modern high-performance equipment to receive high quality products and reduce the production costs.

The developed technology has been tested in the factory of «Wines and Beverages of Abkhazia» in Sukhumi (Abkhazia Republic).

Developed and approved technical documentation for the production of new grades of functional drinks «Energy. Feijoa» and «Energy. Blackberries». The results of research work implemented in the educational process of the department of production and processing of food products from of plant raw material of Stavropol State Agrarian University in Stavropol (Russia).

4. Conclusions

Thus, as a result of the research is scientifically proved and developed the technology functional purpose drinks with a high content of biologically active substances from the grape juice direct extraction using natural local herbs. The possibility of using the fruits of feijoa and blackberries as sources of biologically active components. Developed new formulations of beverages of a functional purpose and an assessment of their quality and safety. Established functional properties designed drinks, due to the high content of essential and nonessential amino acids, vitamins C and PP, phenol carbonic acids and organic acids, macro-and micronutrients.

References

[1] Romanenko E S, Sosyura E A, Esaulko N A, Selivanova M V and Aysanov T S 2018 «Healthy» Food Products Based On Natural Plant Material Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (4) 1095–104

[2] Romanenko E S, Sosyura E A, Nudnova A F, Esaulko N A, Selivanova M V and Parusova K V 2016 Antioxidant activity of unabi fruit Food industry 9 28–9

[3] Sosyura E A, Guguchkina T I and Burtsev B V 2014 Technology of production of functional drinks based on grape juice Agricultural Bulletin of Stavropol Region 1 (13) 35–8

[4] Romanenko E S, Lysenko S N, Sosyura E A and Nudnova A F 2015 The current state and prospects for the development of the grape-growing industry in the Stavropol Territory Wine-making and viticulture 4 4–7

[5] Sosyura E A, Guguchkina T I, Burtsev B V and Nudnova A F 2013. Extracts from plant material in drinks technology of functional purpose Agricultural Bulletin of Stavropol Region 2 (10) 41–4

[6] Sosyura E A, Guguchkina T I, Burtsev B V and Presnyakova O P 2013 The use of the fruits of feijoa and blackberries for the production of drinks of a functional purpose Food industry 7 57–9

[7] Sosyura E A, Guguchkina T I, Burtsev B V, Romanenko E S, Nudnova A F and Prudko Yu 2015 Prospects of using fruit of feijoa and blackberry for production of drinks of the functional purpose Harvard Journal of Fundamental and Applied Studies 1 (7) 548–56

[8] Sosyura E A, Presnyakova O P, Guguchkina T I and Burtsev B V 2013. The fruits of feijoa and blackberries – raw materials for the production of functional drinks Beer and drinks 1 16–9

[9] Sosyura E A, Guguchkina T I, Burtsev B V, Romanenko E S, Nudnova A F and Prudko Yu 2015 Prospects of using natural plant materials In technology of drinks of the functional purpose Japanese Educational and Scientific Review 1(9) 774–9

[10] Guguchkina T I, Sosyura E A, Burtsev B V and Presnyakova O P 2011 Drins of a functional purpose on the basis of grape juice and feijoa Beer and drinks 5 54–6

[11] Sosyura E, Romanenko E, Selivanova M, Aysanov T and N Esaulko 2018 Development of technology for functional drinks using fruit and berry raw materials Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(6) 1251–7