Protein potential of *Desmodesmus asymmetricus* grown in greenhouse as an alternative food source for aquaculture

Alberto Oscanoa¹ · Miguel Cervantes¹ · Leenin Flores² · Anthony Ruiz²

Received: 10 February 2022 / Accepted: 31 March 2022 / Published online: 16 April 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
During ten months, batch culture of *Desmodesmus asymmetricus* microalgae was carried out under greenhouse conditions. The inoculation ratio was 1:1 (inoculum:treated water). The cultures were maintained for 5 days with natural light and constant aeration mixed with carbon dioxide. The biomass was concentrated by centrifugation and dried by lyophilization; subsequently, total proteins and amino acid concentration were quantified. A relationship between biomass production and seasonal variation was observed; the lowest dry biomass production was recorded in June (38.8 ± 1.0 mg L⁻¹ day⁻¹) and July (43.3 ± 0.1 mg L⁻¹ day⁻¹); while the highest values were greater than 70 mg L⁻¹ day⁻¹ in March. There was a high positive correlation between wet and dry biomass (*r* = 0.97, *p* < 0.001) with a mean conversion of 26%. The mean percentage of protein was 26.1 ± 2.6%, the highest percentage was registered in March (31.03 ± 1.48%) as well as the concentration of amino acids. Regarding amino acids, arginine obtained the highest concentration (4.08 ± 0.43 g 100 g⁻¹), followed by aspartic acid (3.36 ± 0.23 g 100 g⁻¹), while the lowest values were for methionine (0.55 ± 0.21 g 100 g⁻¹), histidine (0.77 ± 0.07 g 100 g⁻¹) and tyrosine (1.01 ± 0.17 g 100 g⁻¹). Finally, according to the essential amino acid index (in fish ≥ 0.90, in crustaceans > 0.80), the biomass of *D. asymmetricus* has potential as a food supplement for the production of feed in aquaculture.

Keywords Biomass · *Desmodesmus asymmetricus* · Essential amino acids index · Bioreactor · Total protein

Introduction
Microalgae are photosynthetic microorganisms, whose size are between 2–200 µm, and they can grow autotrophically or heterotrophically. There are many types of organization: unicellular, filamentous or colonial. Cells can have external structures such as membranes, cell walls or silica exoskeletons (Randrianarison and Aqeel Ashraf 2017). They are the simplest organisms in the plant kingdom with a great capacity to adapt to different environments, they use light energy and fix carbon dioxide more efficiently than higher plants; in addition, they promote greater CO₂ fixation in symbiotic systems (heterotrophic/nitrifying bacteria consortium) and an efficient treatment for the nutrient removal, thus producing high amounts of microalgal biomass (Christaki et al. 2011; Gaignard et al. 2018; Sepehri et al. 2020). Currently, there are 100,000 identified species (Guiry et al. 2014) and distributed worldwide in practically all environments (Posten and Feng 2016; Geada et al. 2017).

The first records about the use of microalgae as food date back 2000 years, when Chinese used the *Nostoc* genus to survive during famine. Another reference about the application of microalgae in nutrition was associated with the treatment of patients with leprosy, who were fed with a soup enriched with *Chlorella sp.* and they were observed to have an increase in their weight, energy, and general health (Milledge 2011; Sigamani et al. 2016). The development of the culture of microalgae began in Japan as a solution to the food shortage caused by World War II, consequently, microalgae-based enriched products began to be developed. Thenceforth, many studies related to biomass production have focused on obtaining biofuels, wastewater treatment and as a protein-rich food source for human and animal consumption, mainly for aquaculture (Spolaore et al. 2006; Christaki et al. 2011; Yaakob et al. 2014; García et al. 2017; Koyande et al. 2019).
Several studies have shown that microalgae are an attractive source of metabolites, such as polyunsaturated fatty acids (PUFA), carotenoids, phycobilins, peptides and polysaccharides. as well as being a good source of vitamins A, B1, B2 and B12 (Skjånes et al. 2013; De Morais et al. 2015). Currently, several products are marketed in the form of tablets, powder, solution or in mixtures with snacks, cookies, noodles, drinks, candies, gums, wines and cereals (Sathasivam et al. 2019; Levasseur et al. 2020). The main countries that lead the world production are China, India, Taiwan, Germany and a few countries in Latin America (Koyande et al. 2019; Levasseur et al. 2020).

There are two well-known genus: Arthospira (commercially known as Spirulina) and Chlorella, which have reached productions of 12,000 and 5000 tons per year, respectively. In the last decades, many researchers have focused their studies on the biomass production of other species such as Haematococcus, Dunaliella, Botryococcus, Phaeodactylum, Porphyridium, Chaetoceros, Crypthecodinium, Isochrysis, Nannochloris, Nitzschia, Schizochytrium, Tetraselmis and Skeletonema. (Plaza et al. 2009; Matos et al. 2017; Sathasivam et al. 2019; Levasseur et al. 2020). Despite this, the percentage that has been studied is still small compared to all the potential species worldwide. Likewise, there is still little research on the development of organoleptically acceptable products, their compounds, benefits, isolation techniques, performance improvement, determination of their bioactivity and toxicity (Stengel et al. 2011; Buono et al. 2014; Levasseur et al. 2020).

In aquaculture, the protein supplied in feed comes mainly from fishmeal. This ingredient is expensive because it comes from the production of fisheries and its high demand worldwide (Amaya et al. 2007; FAO 2018, 2020). As an alternative solution, new commodity markets have been developed such as high-quality processed animal by-products (hydrolyzed feather meal, blood meal, meat and bone meal), vegetable flour, protein concentrates obtained from oilseeds and legume grains. Similarly, it is known that in salmonid farming, fish oil in feed has been replaced by other fats of animal and vegetable origin, although these "second generation" ingredients are not without limitations (Hua et al. 2019).

This sector needs to grow; therefore, several institutions have begun to investigate the use of "third generation ingredients", which is defined as ingredients that come from lower trophic levels (Shah et al. 2018; Glencross et al. 2020). In this way, microalgae biorefineries emerge as an option, furthermore, there is an advantage for the reuse of industrial emissions, since their waste "outputs" (CO2, nutrients, heat) turn out to be the essential "inputs" for the cultivation of microalgae, which would allow rapid cell growth and a greater accumulation of biomass. Ingredients produced from microalgae as aquafeeds could have competitive advantages over land crops, for example in terms of input costs, smaller cultivation area and carbon credits from CO2 conversion (Roy and Pal 2014; Allen et al. 2019; Perez-Velazquez et al. 2019; Levasseur et al. 2020).

In Peru, there is a need to carry out biotechnology studies on native microalgae because they are scarce. In this way, its potential could be explored in different industries, for example, in the aquaculture, cosmetic, food, pharmaceutical, renewable energy, etc. For this reason, the objective of this study was to evaluate the cultivation of the native microalga Desmodesmus asymmetricus under greenhouse conditions to determine biomass production values, protein and amino acid concentrations, as well as its potential as an ingredient for the aquaculture industry.

Materials and methods

Culture of microalgae

The culture of the microalgae D. assymetricus was carried out in batch mode. The strain code of the Banco de Gernoplasma de Organismos Acuáticos (Instituto del Mar del Perú—IMARPE) is IMP-BG-249. The inoculum in exponential phase (~1.0 ± 0.5 × 10⁶ cells mL⁻¹) was obtained from Laboratorio de Alimento Vivo (IMARPE). The microalgae were cultivated in vertical tubular bioreactors of 30 L at Laboratorio de Invernadero y Sala de procesos (IMARPE), according to the procedure manual described by Oscanoa et al. (2018). It was considered to have a number of bioreactors necessary to reach 900 L of harvest. The inoculation ratio was 1:1 (microalgal inoculum:treated freshwater); freshwater was filtered with 10, 5 and 1 µm cartridges and irradiated with ultraviolet light. The culture medium used was liquid foliar fertilizer Bayfolan®, dose of 0.28 mL L⁻¹ (Morales-Ventura et al. 2012; Fernandez-Linares et al. 2019). Constant aeration mixed with 0.5 mL L⁻¹ CO2 flow were supplied. The conditions of cultures were natural light, pH 7.02 ± 0.53, dissolved oxygen 8.62 ± 0.42 mg L⁻¹ and salinity 0.36 ± 0.15 ppm.

Monitoring of abiotic parameters

Microalgae culture was conducted from January to October 2018, whose seasons are distributed as follows: summer (January, February, March), autumn (April, May), winter (June, July, August, September) and spring (October, November, December). The cultures were kept for 5 days. A weekly harvest was carried out.

Abiotic parameters were recorded daily at 8:00, 12:00 and 16:00 h. Culture temperature (CT), pH, salinity and dissolved oxygen (DO) were measured with multiparameter WTW (Multi 350i, Weilheim, Germany) according to the equipment manual. Greenhouse temperature (GT) was...
register with max/min wall thermometer (Ootdty, Shangay, China). Illuminance (IL) was measured with a lux meter Control Company (CC-3252, Texas, EEUU) and photosynthetically active radiation (PAR) were register with a radiation meter LI-COR (LI-1400, Nebraska, EEUU).

Biomass Production

The cultures were harvested in 500 L tanks and concentrated by means of centrifugation method. For this, a Westfalia semi-industrial separator (OTC3, Oelde, Germany) was used at 10,000 rpm and output flow between 120–200 L h⁻¹. The samples were placed in steel trays, they were spread in layers of 1 cm maximum thickness and were frozen (-20 °C) and stored for later drying. The harvest cell density (HCD) and the wet biomass production (WBP) were determined in this stage.

Subsequently, the biomass obtained was dried in a Labconco lyophilizer (18L, Kansas, USA) at a vacuum pressure between 0.022–0.070 mbar. The collector temperature was -56 °C. The biomass was dried using the following temperature ramp: -15 °C for 8 h; then 0.5 °C min⁻¹ to 5 °C for 15 h; finally, 0.5 °C min⁻¹ until 25 °C for 7 h. The samples were withdrawn and homogenized in a mortar until the pulverized dry biomass was obtained. The dry biomass production (DBP) was determined considering the concentration of dry biomass (mg L⁻¹) divided by the time of cultivation (days). The percentage of conversion from wet to dry biomass (%WB/DB) was determined. The chemical analyzes of the samples were carried out in the Laboratorio de Análisis Instrumental (IMARPE).

Protein content and amino acid profile

The percentage of protein was estimated according to the method of Hartree (1972), which consists of extracting proteins from 5 mg of biomass by adding a solution of sodium carbonate, sodium and potassium tartrate, copper sulfate and reagent of Folin–Ciocalteau to produce a blue-colored complex and compare it to a bovine serum albumin (BSA) standard for quantification, by UV spectrophotometry at a wavelength of 650 nm.

Concerning to determination of the amino acid profile, 30 mg of dry biomass of the microalgae were mixed with 2 mL of 6 M hydrochloric acid and incubated in a dry bath at 112 °C during 22 h for the acid hydrolysis reaction (Hirs et al. 1954). Then, 50 μL of the hydrolyzed sample was transferred to a test tube to which 100 μL of 2.5 mM L-aminobutyric acid (internal standard) and 4850 μL of ultrapure water were added. The solution was filtered on a 0.45 μm PTFE syringe filter and 10 μL of the filtrate was derivatized, using the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent (Cohen and Michaud 1993) following the instructions of the AccQ-Fluor reagent kit (Waters Corporation, Milford, MA, USA). Next, 5 μL of the derivatized amino acid solution was injected into the Hitachi Elite LaChrom HPLC (Hitachi High Technologies, Tokyo, Japan), equipped with an L-2200 autosampler, L-2130 HTA pump, L-2350 column oven and fluorescence detector L-2485. A Thermo Scientific™ Hypersil GOLD™ C18 column of 150 mm x 4.6 mm x 5 μm (Thermo Fisher Scientific, Walthman, MA, USA) was used. The HPLC equipment was programmed to operate with the following conditions: column temperature 37 °C, excitation wavelength 250 nm, emission wavelength 395 nm, flow rate 1.0 mL min⁻¹. The mobile phases were as follows: (A) 140 mM sodium acetate pH 5.1 and (B) Acetonitrile with the following gradient: 0–2 min, 100% A; 2–24 min, 100–83.5% A; 24–30 min, 83.5–75% A; 30.1–38 min 100% A. Finally, the data acquisition and analysis were performed with the EZChrom Elite v3.2.1 software (Agilent Technologies, Santa Clara, CA, USA). The tryptophan (Trp) and cysteine (Cys) amino acids were not identified by the applied analytical technique.

Once the amino acid values were determined, the chemical score and the essential amino acid index (EAAI) were estimated. The chemical score was calculated as the ratio of the value of each essential amino acid (EAA) of the microalgal sample with the value of the corresponding amino acid of a standard protein as described by Peñaflorida (1989). In the event that the chemical score was greater than 1, this value was approximated as 1. The EAA requirements from standard protein used in this study is shown in Table 1. The EAAI evaluates the degree of EAA of the whole sample in relation to the composition or requirements of EAA of the organism (Ju et al. 2008; Zhang et al. 2009). The formula proposed by Peñaflorida (1989) was used to calculate the EAAI (Eq. 1), where: a_{AA} = percentage of EAAi in the total of EAA of the sample, A_{AA} = percentage of EAAi in the total EAA in the standard and n = quantity of essential amino acids determined.

$$EAAI = \sqrt[n]{\frac{a_{AA_1}}{A_{AA_1}} \times \frac{a_{AA_2}}{A_{AA_2}} \times \cdots \times \frac{a_{AA_n}}{A_{AA_n}}}$$

Statistical analysis

The Pearson correlation index (r) was calculated to determine the correlation between the variables. The data from the mean comparisons were analyzed by analysis of variance (ANOVA) with a significance level of 0.05 and the Tukey post-hoc test. The Kruskal Wallis test was applied for the data that did not meet the ANOVA assumptions. Finally, in order to know the interrelationships between the factors analyzed (abiotic parameters and amino acid profile), the Principal Component Analysis—PCA was applied. The
Results

Abiotic parameters

A moderate positive correlation was observed between IL-GT and PAR-GT, while a high correlation between PAR-IL and PAR-CT (Fig. 1). The highest temperature inside greenhouse (GT) was above 26 °C during January and February while the lowest temperature was 19 °C during June and July (Fig. 1A). The GT for these last months were significantly lower compared to the other months evaluated (p = 1.000). The CT values were between 26–28 °C in warm seasons and ∼20 °C in cold seasons (Fig. 1D). The highest IL average was obtained in March (221 ± 137 Klux) with significant differences compared to June (p < 0.001) (Fig. 1A); in the same way with PAR, the highest average was obtained in March (336 ± 162 µmol m−2 s−1) with significant differences compared to June (p < 0.001) (Fig. 1B). When graphing PAR with GT, the same trend is also observed (Fig. 1C).

Biomass production

The total culture volume produced in ten months was 31,370 L, which represented a final production of 45 kg of wet biomass and 10 kg of dry biomass. The lowest dry biomass production (DBP) was recorded during the months with the lowest temperature: June (38.8 ± 1.0 mg L−1 day−1) and July (43.3 ± 0.1 mg L−1 day−1); in addition, no significant differences were obtained between them (p = 0.999). While the highest values of DBP were obtained in months of warm temperatures, whose values were higher than 70 mg L−1 day−1 (Fig. 2). A moderate positive correlation was observed between DBP – IL (r = 0.845, p = 0.002); while, there is a high correlation between DBP with PAR and CT (r = 0.920, p < 0.005; r = 0.937, p < 0.005 respectively). There was a high correlation between the dry and wet biomass weight (r = 0.971, p < 0.010), with an average conversion of 26% (Fig. 3).

Proteins

According to our results, the mean protein percentage of the 10 months of culture was 26.1 ± 2.6% (Fig. 4), its highest value was obtained in March (31.03 ± 1.48%) with significant differences compared to April, May and July (p = 0.001).

Apparently, according to Fig. 5, there would be a direct relationship between WBP and total protein concentration, however, when performing a correlation between the variables, a low relationship was found. In the same way, it happened with CT (r = 0.433, p = 0.211) and PAR (r = 0.521, p = 0.122), only a significant direct correlation was observed with IL (r = 0.796, p = 0.026). However, when the outlier corresponding to June was eliminated a significant positive correlation was obtained between the mean percentage of proteins and DBP (r = 0.832, p < 0.001).

Amino acids profile

The highest concentration of amino acids was recorded in March (Z = 2.84) (Fig. 6). Arginine (Arg) was the amino

Table 1 Amino acid requirement in different aquaculture species (g 100 g−1 dry weight)

Amino acids	Sparus aurata	Psetta maxima	Pampus argentus	Prochilodus lineatus	Penaeus vannamei
Arginine (Arg)	5.4	4.8	3.5	4.0	2.0
Histidine (His)	1.7	1.5	1.4	1.5	0.8
Isoleucine (Ile)	2.6	2.6	2.0	2.9	1.7
Leucine (Leu)	4.5	4.6	4.0	4.9	2.4
Lysine (Lys)	5.0	5.0	4.5	5.8	1.6
Methionine (Met) + Cysteine (Cys)	2.4	2.7	1.9	1.6	0.7
Phenylalanine (Phe) + Tyrosine (Tyr)	2.9	3.8	4.6	1.4	
Threonine (Thr)	2.8	2.9	2.9	2.8	1.2
Valine (Val)	3.0	2.9	2.8	3.5	1.4

Extracted from the following references:

a,b Kaushik (1998)

c Hossain et al. (2011)

d Bicudo and Cyrino (2009)

e Xie et al. (2012)
acid with the highest concentration (4.08 ± 0.43 g 100 g−1), followed by aspartic acid (Asp) (3.36 ± 0.23 g 100 g−1), in contrast to methionine (Met) (0.55 ± 0.21 g 100 g−1), histidine (His) (0.77 ± 0.07 g 100 g−1) and tyrosine (Tyr) (1.01 ± 0.17 g 100 g−1) (**p < 0.001**), which were the lowest concentration. The final average of all amino acids is shown in Table 3. In our study, the chemical score was determined for different species (Table 2), it was observed that for fish the lowest value was > 0.70, while the limiting amino acid for *P. vannamei* was isoleucine (chemical score = 0.57). Concerning the EAAI, the highest value was for *P. maxima* (0.92) and the lowest value was for *P. vannamei* (0.85).
Likewise, Fig. 7 shows the principal component analysis (PCA), it was observed that first component obtained direct correlation with the variables CT, GT, IL and with two amino acids: methionine (Met) and tyrosine (Tyr); while, the other amino acids are in the second component with direct correlation.

Discussion

Abiotic parameters

For the production of microalgae biomass, mainly for proteins, we should consider that the concentration of nutrients, composition of the culture medium, temperature and light are factors that influence the biochemical composition of biomass, as well as their interrelationships with other environmental parameters; therefore, these are parameters that should be optimized to improve biomass and protein production (Barbosa et al. 2003; Rasdi and Qin 2015; Khan et al. 2018; Sarker and Salam 2020). Light (Illuminance (IL) and PAR) is the source of energy to carry out photosynthesis, it mainly affects the growth and metabolism of microalgae. Temperature affects enzyme activity, nutritional requirements and gas solubility in cultures (Ras et al. 2013). For this reason, it is very important to know the optimal conditions and the tolerance limits of different parameters for each species (Ma et al. 2016, Jazzar et al. 2016).

Illuminance values between 20–500 klx should be used for the light to be effective, while a range of 27–500 µmol m⁻² s⁻¹ should be considered for PAR (Singh and Singh 2015). In our study, the greenhouse cultures of D. asymmetricus remained within the average of these values. In addition, the temperature, illuminance and PAR showed the highest values in warm months and the lowest values in cold months. On the other hand, some species of microalgae resist wide pH ranges, such as the genus Chlorella and Desmodesmus. The optimal growth of microalgae under normal conditions occurs between pH of 7 to 9 (Park et al. 2011; Ma et al. 2014; Beltrán-Rocha et al. 2017; Morales et al. 2018). In our study, an adequate pH of 7.02 ± 0.53 was maintained. Most microalgal species survive under mesophilic temperature conditions (16–27 °C), a value > 35° C would cause a collapse in the microalgal growth (Ras et al. 2013; Hernández-Pérez and Labbé 2014; IMARPE 2018; Barten 2020). According to the latter, in the case of genus Desmodesmus, the culture temperature between 25–28 °C was adequate.

Biomass production

Seasonal variation throughout the year influences biomass production (Eustance et al. 2015; Janssen 2016). In winter, production decreases due to the low intensity of light and temperature, while in summer it increases (Pérez—López et al. 2017). Light intensity is necessary for photosynthesis, at low intensity the photosynthesis rate decreases because photochemical reactions are limited by the availability of light and the ability of cells to absorb them, which affects microalgal growth (Masojídek et al. 2013).

According to our results, DBP changes as a function of seasonal variations and it would be affected by CT and PAR, since there was a direct correlation between them. Authors such as Gomez et al. (2016) mentioned that the relationship between light intensity and photosynthesis rate are independent of temperature at low intensities (< 100 µmol m⁻² s⁻¹). It depends on the dark reactions of photosynthesis and the level of nutrients. The microalgae will grow slowly in low luminosity, but it will be more efficient at capturing light, despite of this energy will not be used properly. If the light intensity is high
(> 200 µmol m⁻² s⁻¹), the development of microalgae will be limited by carbon fixation and the cells will use less of their own resources as in the synthesis of chlorophyll. Furthermore, Ras et al. (2013) indicate that the effect of temperature in the cultures responds constantly to the environmental temperature; therefore, the cell temperature will be equal to the temperature of the culture medium in comparison with other physicochemical parameters. In addition, the optimal temperature range has low influence on biomass production, in contrast to light (light intensity, photoperiod, wavelength, light source and photosynthetically active radiation) (Ma et al. 2016; Vecchi et al. 2020).

On the other hand, the dry biomass production of *D. asymmetricus* (38–78 mg L⁻¹ day⁻¹) coincides with reported by Mata et al. (2010), who obtained values between 30–260 mg L⁻¹ day⁻¹ of *Desmodesmus sp*. cultured in different systems. Likewise, *Desmodesmus obliquus* has registered values between 4–740 mg L⁻¹ day⁻¹ and 10–190 mg L⁻¹ day⁻¹ for *Desmodesmus quadricauda* (Rodolfi et al. 2009; Zhou et al. 2015). Similarly, the dry biomass of other freshwater species such as *Chlorella vulgaris* (20–200 mg L⁻¹ day⁻¹) and *Haematococcus pluvialis* (50–60 mg L⁻¹ day⁻¹) were similar with the values of our study (Dos Santos et al. 2021); although, the value was lower compared to *Chlorella pyrenoidosa* (2900–3640 mg L⁻¹ day⁻¹) (Mata et al. 2010).

Proteins

Proteins were the first substances recognized as vital for all organisms, hence their name comes from the Greek word "protos" which means "of first importance" and they constitute one of the most abundant components of most living beings. Proteins are macromolecules constituted by hydrogen, carbon, oxygen and nitrogen; sometimes, it can include elements such as iron, cobalt or phosphorus. They are formed by a specific sequence of their own constituent elements: amino acids. There are 20 different amino acids that are linked through peptide bonds, all of them have an amino group (–NH₂) and a carboxyl group (–COOH) attached to the same carbon atom (alpha carbon) and differ in their side chains or R groups (Allison 2011).

In aquaculture, the evaluation of protein and amino acid requirements are important for the formulation of diets with greater efficiency and thus achieve sustainable aquaculture (Hua et al. 2019). An adequate intake of amino acids (from proteins) stimulates growth in fish. In addition, the
percentage of protein determines the production costs, mainly in the diet of marine fish, since they require high levels; for this reason, this compound is considered the most important for fish culture (Sanz 2000). The nutritional value of a protein source is a function of its digestibility and its amino acid profile (Trushenski et al. 2006). However, like other organisms, fish do not have a true requirement for protein, but have a specific requirement for a well-balanced profile of essential and nonessential amino acids in the diet (Gaye-Siessegger et al. 2007; De Almeida and Possebon 2014; Massamitu et al. 2015).

In fish farming, the protein requirement is influenced by the energy-protein balance, amino acid composition, digestibility of the diet, quantity of non-protein energy in the diet, muscle composition, blood histochemistry, intestinal health and gene expression (Glencross 2009; Conde-Sieira and Soengas 2017). The excess of energy in the diets can be a limit of consumption, since the fish ingest until they cover their energy requirements. Many authors affirm that there is a decrease in the protein requirement of fish as they increase their weight and age. Protein requirement can be altered due to a change in water temperature (Singh et al. 2009; Mizanur et al. 2014). Many studies report that salmonids can only tolerate low inclusion levels (< 10% of the diet) of microalgae meal such as *Arthrospira*, *Chlorella*, *Entomoneis*, *Isochrysis*, *Nannochloropsis*, *Phaeodactylum* and *Tetraselmis*. Also, there are some studies that indicate that the diet can be replaced up to 20% with a mixture of *Scenedesmus/Chlamydomonas* and *Desmodesmus/Nanofrustulum* (generally considered a benthic genus, however, they can be found in water columns) (FAO 2009; Walker and Berlinsky 2011; Tibbetts 2018).

Table 3 shown a compilation of several investigations about the nutritional composition of different species of microalgae. The Scenedesmaceae family (genus *Scenedesmus* and *Desmodesmus*) has reported between 8–56% of dry weight protein, similar to our study (26.1 ± 2.6% of protein). On the other hand, genus such as *Chlorella* and *Arthrospira* obtained values between 67 and 73%, respectively (Tibbetts 2018; Batista et al. 2020; Colombo et al. 2020; Glencross et al. 2020; Raji et al. 2020). In the microalgae, the percentage of protein is dependent on the supplied nitrogen source; the protein decreases if the nitrogen concentration decreases in the medium and its assimilation is strongly dependent on light, it incorporates or reduces nutrients such as nitrate (NO₃⁻) through the regulation of the synthesis and activity of the enzyme nitrate reductase. Another form of assimilation and incorporation occurs when light supplies ATP through photophosphorylation. Another indirect pathway occurs through the photosynthetic production of carbon compounds to accept the reduced nitrogen. This last methodology is carried out.
because light and carbon dioxide are needed to obtain the maximum rates of incorporation of nitrate, nitrite and ammonium, (Lachman et al. 2019; Kumar and Bera 2020). According to our results, a significant direct correlation was observed between the percentage of total proteins and the illuminance (IL). In addition to the above, the intensity of light influences the biochemical composition of biomass due to the effect on photosynthesis, a high intensity of light produces stress in microalgae and increases storage compounds such as lipids, carbohydrates and carotenoids as a replacement for proteins (He et al. 2015; Nzayisenga et al. 2020; Sui et al. 2021). In June (atypical data respect to the percentage of proteins), probably the lower IL compared to the other months (94.5 ± 64.4 klux) has doubled the chlorophyll content, since the species of the genus Scenedesmus adapt their photosynthetic apparatus between 6 and 8 h of culture (Senge and Senger 1990; Singh and Singh 2015), as a consequence, they would fix more nitrogen by increasing the protein content (Evans 1989; Evans and Clarke 2019).

Amino acids profile

Amino acids are structural units of proteins, they are generally classified as: essential, non-essential and conditional, the latter has been proposed by some researchers in recent years (Li et al. 2009; Wu et al. 2014). A deficiency of amino acids results in inadequate use of the nutrients in the diet; therefore, there is low growth and low feeding efficiency in organisms (Kaushik and Seiliez 2010). Essential amino acids have carbon skeletons that are not synthesized by organisms or are synthesized in insufficient amounts; therefore, they must be provided from the diet. In contrast, non-essential amino acids are specific for each organism and they are synthesized de novo to satisfy their requirements (Wu 2010). For many years, without much evidence, it was assumed that organisms (including humans) could synthesize sufficient amounts of all non-essential amino acids and that they were unnecessary in diets to achieve adequate growth or maintain good health. However, the increase in the number of investigations in various organisms has shown that

Source	D. asymmetricus	Soy\(^a\)	Egg\(^b\)	Scenedesmus\(^c\)	Arthospira\(^d\)	Chorella\(^e\)
Protein (%)	20–31	36	47	8–56	42–73	14–67
Essential amino acids						
Arginine (Arg)	4.1	7.4	6.2	6–7	4–8	3–14
Histidine (His)	0.8	2.6	2.4	2–3	1–5	1–6
Isoleucine (Ile)	1.4	5.3	6.6	4–5	<1–7	<1–4
Leucine (Leu)	2.4	7.7	8.8	7–9	5–14	3–9
Lysine (Lys)	2.4	6.4	5.3	5–6	3–8	2–10
Methionine (Met)	0.5	1.3	3.2	1–2	1–5	<1–2
Phenylalanine (Phe)	1.9	5.0	5.8	5–7	3–7	2–8
Threonine (Thr)	1.7	4.0	5.0	5–6	3–7	<1–6
Triptofano (Trp)	-	1.4	1.7	<1–2	<1–3	1–10
Valine (Val)	1.9	5.3	7.2	6	3–7	2–7
Non-essential amino acids						
Alanine (Ala)	3.1	5.0	–	9.0	6.8	7.9
Asparagine (Asn)	3.4	1.3	11.0	8.4	8.6	9.0
Cysteine (Cys)	-	1.9	2.3	0.6	0.4	1.4
Glutamine (Gln)	3.1	19.0	12.6	10.7	12.6	11.6
Glycine (Gly)	2.1	4.5	4.2	7.1	4.8	5.8
Proline (Pro)	1.7	5.3	4.2	3.9	3.9	4.8
Tyrosine (Tyr)	1.0	3.7	4.2	3.2	3.9	3.4
Serine (Ser)	2.2	5.8	6.9	3.8	4.2	4.1

Extracted from the following references:

\(^a\)Barka and Blecker (2016)
\(^b\)Christaki et al. (2011)
\(^c\)Tibbetts (2018)
\(^d\)Kent et al. (2015)
\(^e\)Koyande et al. (2019)
some amino acids, traditionally classified as non-essential (glutamine, glutamic acid and arginine), play important roles in multiple cell signaling pathways, thus regulating gene expression, intracellular protein turnover, nutrient metabolism and oxidative immune defense. In addition, they can generate a benefit in the species of interest when it is supplied in adequate amounts in the diet (Li et al. 2009; Pianesso et al. 2015; Alagawany et al. 2020; Hoseini et al. 2020).

In fish farming, fish must be fed balanced levels of nutrients in their diets for successful aquaculture (Hixson 2014). The balance of proteins and amino acids is important to achieve optimal performance as in fish growth as in physiological and immune function (Hoseini et al. 2019). Amino acids are important molecules for living organisms with functions in protein and hormone synthesis, immune and antioxidant responses, and other physiological functions (Li et al. 2007; Wu 2009). A balanced amino acid profile in the diet is more important than protein levels in teleost diets, as each amino acid has some vital functions in the fish body (Wilson 2003; Andersen et al. 2016).

Table 3 shows the analysis of amino acid profile of *D. asymmetricus* and the values were compared with other food sources such as: soy (Barka and Blecker 2016), egg (Christaki et al. 2011), *Scenedesmus* (Tibbetts 2018), *Arthospira* (Kent et al. 2015; Tibbetts 2018) and *Chlorella* (Kent et al. 2015; Koyande et al. 2019), which shows that microalgae can produce the amino acids commonly found in proteins. In our results, the essential amino acids values were lower compared to other organisms. Highlights the value of arginine, which is in the average value of 4.1 ± 0.43 g 100 g⁻¹ dry weight. Arginine is an essential amino acid in fish with different physiological roles in health and growth performance (Wilson 2003).

Several methods have been developed to evaluate the protein quality of a given product, due to its formulation depends on the type of organism and the feeding technique, as well as the amount of amino acids absorbed. According to De Bhowmick and Hayes (2022), protein quality is related to the composition and bioavailability of amino acids, which is directly proportional to the digestibility of ingested protein. The most used methods to evaluate the protein quality of a product are amino acid score (AAS), essential amino acid index (EAAI), chemical score (CS), biological value (BV), protein digestibility (either in vitro or in vivo), net protein utilization (NPU), protein efficiency ratio (PER), protein digestibility corrected amino acid score (PDCAAS), and digestible indispensable amino acid index (DIAAS) (Wang et al. 2021). Despite the existence of updated and reliable indexes, the EAAI is still used as a reference index for the protein quality of the product (Acquah et al. 2020).

Concerning the EAAI, authors such as Oser 1959, Zhang et al. (2009) and Ju et al. (2008) proposed that values of EAAI ≥ 0.95 in different organisms and a value close or equal to 1.0 for shrimp, indicate that the diet contains an amino acid profile similar to that found in the entire body of the organism. The ingredients with EAAI > 0.90 were considered good quality protein foods; EAAI equal 0.80 were considered as useful and values < 0.70 were inadequate. However, the characteristics of an ingredient to satisfy the amino acid requirements of an animal depends on the rate of consumption, bioavailability (digestibility) and composition (Li et al. 2010) because these characteristics change according to the interaction between the food and the organism that consumes it. Likewise, the values obtained from the chemical score indicate that foods with low EAA require the inclusion of nutrients, either by other sources of protein or synthetic amino acid supplements. In this way, it seeks to obtain a performance similar to a high-quality diet (Nunes et al. 2014).

The EAAI found for the different organisms was greater than 0.80, therefore, it was classified as a useful protein material according to Ju et al. (2008). The EAAI value was equal to the biofloc of bacteria reported by Ju et al. (2008) and it was close to the value of soybean meal (0.87) intended as food for *Penaeus monodon* (Peñalarflora, 1989). In our study, the EAAI result was within the range reported for different microalgae (marine and freshwater), which range from 0.76–1.00 (Kent et al. 2015; Tibbetts et al. 2018; Cobos et al. 2020). Hence, *D. asymmetricus* can be classified as a food with good quality proteins and useful for the growth of different aquatic organisms for example Peruvian grunt (*Anisotremus scupularis*), Fine flounder (*Paralichthys adspersus*), Streaked prochilod (*Prochilodus lineatus*) and shrimp (*Penaeus vannamei*).

According to Morançais et al. (2018) the temperature used in the culture system can influence its amino acids concentration. The PCA results showed a direct correlation between temperature (CT and IL) and the amino acids methionine and tyrosine. These results agree with those reported by James et al. (1989), who observed a similar behavior for *Chlorella* at temperatures between 25 and 30 °C. Likewise, Uslu et al. (2009) indicated similar results for these amino acids in a Spirulina species that was cultivated at different temperatures, in warm (33.9 ± 0.4 °C) and cold (18.6 ± 0.5 °C) months.

Conclusions

Our results provide an overview of *Desmodesmus asymmetricus* production under greenhouse conditions (temperature between 18 and 27 °C and lighting from 130 to 221 Klux), which was adapted to cultivation during a period of 10 months (January to October). The highest biomass production was obtained in March (approximately 70 mg
aspartic acid (3.4 g 100 g⁻¹). Regarding the potential as food input for aquaculture, microalgae must be evaluated, in order to get a new food for this purpose. It is recommended to carry out studies on the formulation of diets in aquaculture. In addition, the profitability and safety of the biomass of this microalgae must be evaluated, in order to get a new food input for aquaculture.

Acknowledgements The authors wish to thanks staff of Instituto del Mar del Perú, the biologist Gheraldine Ynga by microalgae provided. Also, we thank to Eng. Raúl Porras for his support in the calibration of measurement equipment.

Author contributions AOH, MCG, LFR and ARS: performed experimental designs, performed the manuscript and data processing; AOH, MCG, LFR and ARS: collected and analyzed the samples; AOH, MCG, LFR and ARS: reviewed and approved the manuscript.

Funding This work could not have been possible without the participation of the administration of the financial resources of the Presupuesto por Resultados (PpR) of the Instituto del Mar del Perú (IMARPE).

Declarations

Conflict of interest The authors do not incur conflicts of interest.

Ethical approval The authors declare not to have incurred in ethical or legal faults during the development of the investigation and writing of this work.

References

Acquah C, Tibbetts S, Pan S, Udenigwe C (2020) Nutritional quality and bioactive properties of proteins and peptides from microalgae In: Jacob-Lopes E, Manzoni M, Queiroz M, Queiroz L (eds) Handbook of microalgae—based processes and products, London, pp 493–520. https://doi.org/10.1016/B978-0-12-81536-0.00019-1.

Alagawany M, Elmesr S, Farag MR et al (2020) Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health—a comprehensive review. Vet Q. https://doi.org/10.1080/01652176.2020.1857887

Allen K, Habte-Tsion M, Thompson K et al (2019) Freshwater microalgae (Schizochytrium sp.) as a substitute to fish oil for shrimp feed. Sci Rep 9(1):61–78. https://doi.org/10.1038/s41598-019-41020-8

Allison L (2011) Fundamental Molecular Biology 2nd Ed. Wiley-Blackwell, p 65. ISBN: 978-1-119-15629-1.

Amaya A, Davis A, Rouse D (2007) Replacement of fish meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture 262(2–4):393–401. https://doi.org/10.1016/j.aquaculture.2006.11.015

Andersen SM, Waagbo R, Espe M (2016) Functional amino acids in fish health and welfare. Front Biosci 8:143–169. https://doi.org/10.2741/757

Barbosa MJ, Hoogakker J, Wijffels RH (2003) Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique. Biomol Eng 20(4–6):115–123. https://doi.org/10.1016/s1389-0344(03)00033-9

Barten R, Wijffels R, Barbosa M (2020) Bioprospecting and characterization of temperature tolerant microalgae from Bonaire. Algal Res 50:102008. https://doi.org/10.1016/j.algal.2020.102008

Barka A, Blecker C (2016) Microalgae as a potential source of single-cell proteins. A review. Biotechnol Agron Soc Environ 20(3):427–436. https://doi.org/10.25518/1780-4507.13132

Batista S, Pintado M, Marques A et al (2020) Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J Appl Phycol. https://doi.org/10.1007/s10811-020-02185-2

Beltrán-Rocha J, Guajardo-Barbosa C, Barceló-Quinta I (2017) Biotreatment of secondary municipal effluents using microalgae: Effect of pH, nutrients (C, N and P) and CO₂ enrichment. Rev Biol Mar Oceanogr 52(3):417–427. https://doi.org/10.4067/S0718-19572017000300001

Bicudo A, Cyrino J (2009) Estimating amino acid requirement of Litopenaeus vannamei juveniles. J Appl Phycol. https://doi.org/10.1007/s10811-020-02185-2

Buono S, Langellotti A, Martello A et al (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685. https://doi.org/10.1039/c4fo00125g

Cobos M, Pérez S, Braga J et al (2020) Nutritional evaluation and human health-promoting potential of compounds biosynthesized by native microalgae from the Peruvian Amazon. World J Microbiol Biotechnol 36(8):10. https://doi.org/10.1007/s11274-020-02896-1

Cohen S, Michaud D (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem 211(2):279–287. https://doi.org/10.1006/abio.1993.1270

Colombo SM, Foroutani MB, Parrish CC (2020) Fats and Oils in Aquafeed Formulations. In: Shahidi F (eds) Bailey’s industrial oil and fat products. Wiley, New Jersey, pp 1–28. https://doi.org/10.1002/0471678449.s01095

Conde-Sieira M, Soengas JL (2017) Nutrient sensing systems in fish: impact on food intake regulation and energy homeostasis. Front Neurosci 10:603. https://doi.org/10.3389/fnins.2016.00603

Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62(8):794–799. https://doi.org/10.3109/09637486.2011.582460

De Almeida A, Possebon J (2014) Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile. Lat Am J Aquat Res 42(1):271–275. https://doi.org/10.1007/s12155-014-0288-3

De Bhowmick G, Hayes M (2022) In vitro protein digestibility of selected seaweeds. Foods 11(3):289. https://doi.org/10.3390/foods11030289

De Morais M, Vaz B, De Morais E et al (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:1–15. https://doi.org/10.1155/2015/835761

Dos Santos MGB, Duarte RL, Maciel AM et al (2021) Microalgae biomass production for biofuels in Brazilian scenario: a critical review. Bioenergy Res 14:23–42. https://doi.org/10.1007/s12155-020-10180-1

Eustace E, Wray J, Badvipour S et al (2015) The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of...
Scenedesmus acutus in outdoor raceway ponds. J Appl Phycol 28(3):1459–1469. https://doi.org/10.1007/s10811-015-0709-z
Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C₃ plants. Oecologia 78:9–19. https://doi.org/10.1007/BF00377192
Evans JR, Clarke VC (2019) The nitrogen cost of photosynthesis. J Exp Bot 70(1):7–15. https://doi.org/10.1093/jxb/ery366
FAO (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture – A review. Food and Agriculture Organization of the United Nations. Rome. https://www.fao.org/3/i1141e/i1141e.pdf
FAO (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Food and Agriculture Organization of the United Nations. Rome. https://www.fao.org/3/i9540en/i9540en.pdf
FAO (2020) The State of World Fisheries and Aquaculture. Sustainability in action. Food and Agriculture Organization of the United Nations. Rome. https://doi.org/10.4060/ca9229en.
Fernandez-Linares L, Duran-Paramo E, Guerrero-Barajas C (2019) A scale-up evaluation of a semicontinuous culture of Scenedesmus sp. in a raceway under greenhouse conditions using a commercial fertilizer as culture medium. Biofuels. Doi: https://doi.org/10.1080/17597256.2019.1614256.
Gaignard C, Gargouch N, Dubessay P et al (2018) New horizons in culture and valorization of red microalgae. Biotech Adv 37(1):193–222. https://doi.org/10.1016/j.biotechadv.2018.11.014
García JL, De Vicente M, Galán B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotech 10(5):1017–1024. https://doi.org/10.1111/1751-7915.12801
Gaye-Siessegger J, Focken U, Abel H et al (2007) Influence of dietary non-essential amino acid profile on growth performance and amino acid metabolism of Nile tilapia, Oreochromis niloticus (L.). Comput Biochem Physiol A 146(1):71–77. https://doi.org/10.1016/j.cbpa.2006.09.025
Geadas P, Vasconcelos V, Vicente et al (2017) Microalgal biomass cultivation. In: Rastogi RP, Madanwar D, Pandey A (eds) Algal green chemistry, recent progress in biotechnology. Elsevier, Amsterdam, pp 258–278. https://doi.org/10.1016/b978-0-444-63784-0.00013-8
Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquaculture 1(2):71–124. https://doi.org/10.1111/j.1755-3131.2009.00106.x
Glencross B, Huibin D, Schrama J (2020) The application of single-cell ingredients in aquaculture feeds—a review. Fish 5(3):22. https://doi.org/10.3390/fish5030022
Gomez A, Lopez J, Rodriguez et al (2016) Produccion de compuestos fenólicos por cuatro especies de microalgas sometidas a diferentes condiciones de iluminación. Lat Am J Aquat Res 44(1):137–143. https://doi.org/10.1856/vol44-issue1-fulltext-14
Guiry M, Guiry G, Morrison et al (2014) AlgalBase: An on-line resource for algae. Cryptogam 35(2):105–115. https://doi.org/10.1016/j.crypt.2014.10.021
Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427. https://doi.org/10.1016/0003-2697(72)90094-2
He Q, Yang H, Wu L et al (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Biore sour Technol 191:219–228. https://doi.org/10.1016/j.biotech.2015.05.021
Hernández-Pérez A, Labbé J (2014) Microalgas, cultivo y beneficios. Rev Biol Mar Oceanogr 49(2):157–173. https://doi.org/10.4067/S0718-19572014000200001
Hirs CH, Stein WH, Moore S (1954) The amino acid composition of ribonuclease. J Biol Chem 211(2):941–950. https://doi.org/10.1016/S0021-9258(18)71181-2
Hixson SM (2014) Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J Aquat Res Dev 5:234. https://doi.org/10.4172/2155-9546.1000234
Hossain M, Almatar S, James C (2011) Whole body and egg amino acid composition of silver pomfret, Pampus argenteus (Euphrasen, 1778) and prediction of dietary requirements for essential amino acids. J Appl Ichthyol 27(4):1067–1071. https://doi.org/10.1111/j.1439-0426.2011.01738.x
Hoseini S, Ahmad Khan M, Yousefi M et al (2020) Roles of arginine in fish nutrition and health: insights for future researches. Rev Aquaculture. https://doi.org/10.1111/raa.12424
Hoseini SM, Yousefi M, Hoseinifar SH et al (2019) Effects of dietary arginine supplementation on growth, biochemical, and immunological responses of common carp, Cyprinus carpio L., stressed by stocking density. Aquaculture 503:452–459. https://doi.org/10.1016/j.aquaculture.2019.01.031
Hua K, Cobcroft J, Cole A et al (2019) The future of aquatic protein: implications for protein sources in aquaculture diets. O Earth 1(3):316–329. https://doi.org/10.1016/j.oneear.2019.10.018
IMARPE (2018) Informe Manuales abril – junio 2018. Instituto del Mar del Perú, Lima.
James CM, Al-Hinty S, Salman AE (1989) Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 77:337–351. https://doi.org/10.1016/0044-8486(89)90218-4
Janssen M (2016) Microalgal photosynthesis and growth in mass culture. Adv Chem Eng. https://doi.org/10.1016/bsa.ache.2015.11.001
Jazzar S, Berrejeb N, Messaoud C et al (2016) Growth parameters, photosynthetic performance, and biochemical characterization of newly isolated green microalgae in response to culture condition variations. Appl Biochem Biotechnol 179(7):1290–1308. https://doi.org/10.1007/s12010-016-2066-z
Ju Z, Forster I, Conquest L et al (2008) Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquacult Nutr 14(6):533–543. https://doi.org/10.1111/j.1365-2095.2007.00559.x
Kaushik S (1998) Whole body amino acid composition of European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata) and turbot (Psetta maxima) with an estimation of their IAA requirement profiles. Aquat Living Resour 11(5):355–368. https://doi.org/10.1016/s0990-7440(98)80007-7
Kaushik SJ, Seiliez I (2010) Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac Res 41(3):322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x
Kent M, Welladens HM, Mangott A et al (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 10(2):e0118985. https://doi.org/10.1371/journal.pone.0118985
Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. https://doi.org/10.1186/s12934-018-0879-x
Koyande A, Chew K, Ranathuk K et al (2019) Microalgae: a potential alternative to health supplementation for humans. Food Sci Hum Well 8:16–24. https://doi.org/10.1016/j.fshw.2019.03.001
Kumar A, Bera S (2020) Revisiting nitrogen utilization in algae: a review on the process of regulation and assimilation. Biore sour Technol Rep 12:100584. https://doi.org/10.1016/j.biter.2020.100584
Lachmann SC, Mettler-Alltmann T, Wacker A et al (2019) Nitrate or ammonium: influences of nitrogen source on the physiology
of a green alga. Ecol Evol 9(3):1070–1082. https://doi.org/10.1002/ece3.4790
Levasseur W, Perré P, Pozzobon V (2020) A review of high value-added molecules by microalgae in light of the classification. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2020.107545
Li P, Mai K, Trushenski J et al (2009) New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. J Amino Acids 37(1):43–53. https://doi.org/10.1007/s00726-008-0171-1
Li X, Rezaei R, Li P et al (2010) Composition of amino acids in feed ingredients for animal diets. J Amino Acids 40(4):1159–1168. https://doi.org/10.1007/s00726-010-0740-y
Li P, Yin Y, Li D et al (2007) Amino acids and immune function. Br J Nutr 98(02):237. https://doi.org/10.1017/s000711450769936x
Ma YA, Huang HF (2016) Yu CC (2016) The optimization of operating parameters on microalgae upscaled process planning. Bioprocess Biosyst Eng 39:521–532. https://doi.org/10.1007/s00449-015-1534-0
Ma X, Zhou W, Fu Z et al (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algal cultivation system. Bioreour Technol 167:8–13. https://doi.org/10.1016/j.biortech.2014.05.087
Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020
Matos J, Cardoso C, Bandarra N et al (2017) Microalgae as healthy ingredients for functional food: a review. Food Funct 8(8):2672–2685. https://doi.org/10.1039/c7fo00409e
Massamitu W, Michelato M, Salaro A et al (2015) Estimation of the dietary essential amino acid requirements of colilioja Astyanax fasciatus by using the ideal protein concept. Lat Am J Aquat Res 43(5):888–894. https://doi.org/10.3856/vol43-iss5-fulltext-8
Masojídek J, Torzillo G, Koblížek M (2013) Photosynthesis in Microalgae. In: Levine I, Fleurence J (eds) Microalgae in health and disease: factors on carbon dioxide fixation by microalgae. FEMS Microbiol Lett 68(1):1–8. https://doi.org/10.1007/s12595-013-0089-9
Morales-Ventura J, Nandini S, Sarma S and Castellanos-Paez (2012) Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media. Rev Biol Trop 60(3):955–965. http://www.scielo.sr/scielo.php?script=sci_arttext&pid=S0034-77442012000300001&lng=en&tlng=en
Morales M, Sánchez L, Revah S (2018) The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiol Lett 65(3):10. https://doi.org/10.1093/femsle/fnx262
Nzajiyenga JC, Farge X, Groll SL (2020) Effects of light intensity on growth and lipid production in microalgal grown in wastewater. Biotechnol Biofuels 13(1). https://doi.org/10.1186/s13068-019-1646-x
Oscar BL (1959) An integrated essential amino acid index for predicting the biological value of proteins. In: Albanese AA (ed) Protein and Amino Acid Nutrition. Academic Press, Amsterdam, pp 281–295
Park J, Craggs R, Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42. https://doi.org/10.1016/j.biortech.2010.06.158
Peñafiorida FD (1989) An evaluation of indigenous protein sources as potential component in the diet formulation for tiger prawn, Penaeus monodon, using essential amino acid index (EAAI). Aquac 83(3–4):319–330. https://doi.org/10.1007/BF0044-8486(89)90043-4
Pérez-López P, De Vree J, Feijoo G et al (2017) Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl Energy 205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102
Perez-Velazquez M, Gatlin D, González-Félix M et al (2019) Effect of fishmeal and fish oil replacement by algal meals on biological performance and fatty acid profile of hybrid striped bass (Morone chrysops × M. saxatilis). Aquac 507:83–90. https://doi.org/10.1016/j.aquaculture.2019.04.011
Pianeso D, Radünz Neto J, Da Silva L et al (2015) Determination of tryptophan requirements for juvenile silver catfish (Rhamdia quelen) and its effects on growth performance, plasma and hepatic metabolites and digestive enzymes activity. Anim Feed Sci Technol 210:172–183. https://doi.org/10.1016/j.anifeeds.2015.09.025
Plaza M, Herrero M, Cifuentes A et al (2009) Innovative natural functional ingredients from microalgae. J Agr Food Chem 57(16):7159–7170. https://doi.org/10.1021/jf901070g
Posten C, Feng S (2016) Microalgae biotechnology. Adv Biochem Eng Bioeng 94. https://doi.org/10.1007/978-3-319-23808-1
Rajji AA, Jamoh WA, Bakar NHA et al (2020) Dietary use of Spirulina (Arthrospira) and Chloroella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish. J Appl Physiol 32:1763–1770. https://doi.org/10.1007/s10811-020-02070-y
Aqeil RGI, Ashraf M (2017) Microalgae: a potential plant for energy production. Landsc Ecol Geol 1(2):104–120. https://doi.org/10.1007/24749508.2017.133285
Ras M, Steyer J, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12(2):153–164. https://doi.org/10.1007/s11157-013-9310-6
Rasdi NW, Qin JG (2015) Effect of N: P ratio on growth and chemi-cal composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27:2221–2230. https://doi.org/10.1007/s10811-014-0495-z
Rodolli L, Chini Zittelli G, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033
Roy S, Pal R (2014) Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc Zool Soc 68(1):1–8. https://doi.org/10.1016/j.d2595-013-0089-9
Sanz A, García Gallego M, De la Higuera M (2000) Protein nutrition and Amino Acid Nutrition. In: Albanese AA (ed) Protein and Amino Acid Nutrition. Academic Press, Amsterdam, pp 281–295
Sarker NK, Salam PA (2020) Design of batch algal cultivation systems and ranking of the design parameters. Energy Ecol Environ. https://doi.org/10.1007/s40974-020-00149-3
Sathasivam R, Radhakrishnan A, Hashem A, Abd-Allah E (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

Sepehri A, Sarrafzadeh M, Avatefazeli, (2020) Interaction between Chlorella vulgaris and nitirifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J Clean Prod 247:9164. https://doi.org/10.1016/j.jclepro.2019.119164

Senge M, Senger H (1990) Response of the photosynthetic apparatus during adaptation of Chlorella and Ankistrodesmus to irradiance changes. J Plant Physiol 136(6):675–679. https://doi.org/10.1016/0176-1617(90)81343-x

Shah M, Lutzu G, Alam A et al (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Physiol 30:197–213. https://doi.org/10.1007/s10811-017-1234-z

Singh RK, Desai AS, Chavan SL et al (2009) Effect of water temperature on dietary protein requirement, growth and body composition of Asian catfish, Clarias Batrachus. Fry J Therm Biol 34(1):8–13. https://doi.org/10.1016/j.jtherbio.2008.08.005

Singh S, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444. https://doi.org/10.1016/j.rser.2015.05.024

Sigamani S, Ramamurthy D, Natarajan H (2016) A review on potential biotechnological applications of microalgae. J Appl Pharm Sci 6(08):179–184. https://doi.org/10.7324/JAPS.2016.60829

Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crít Rev Biotechnol 33(2):172–215. https://doi.org/10.3109/07388551.2012.681625

Spolaore P, Joannis-Cassan CDE et al (2006) Commercial applications of microalgae. J BioSci Bioeng 101(2):87–96. https://doi.org/10.1263/jbb.101.87

Stengel D, Connan S, Popper Z (2011) Algal chemodiversity and bio-activity: sources of natural variability and implications for commercial application. Biotechnol Adv 29(5):483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016

Sui Y, Harvey PJ (2021) Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella salina. Foods 10:1018. https://doi.org/10.3390/foods10051018

Tibbetts SM (2018). The potential for “Next-Generation”, microalgal-based feed ingredients for salmonid aquaculture in context of the blue revolution. In: Lopes E, Queiroz L, Queiroz M. Microalgal Biotechnology. IntechOpen, London, pp 152–175. https://doi.org/10.5772/intechopen.73551

Trushenski JT, Kasper CS, Kohler CC (2006) Challenges and opportunities in Finfish nutrition. N Am J Aquac 68(2):122–140. https://doi.org/10.1577/a05-006.1

Uslu LH, Isik O, Sayin S et al (2009) The effect of temperature on protein and amino acid composition of Spirulina platensis. J Fish Aquat Sci 26:139–142

Vecchi V, Barera S, Bassi R et al (2020) Potential and challenges of improving photosynthesis in algae. Plants 9(1):67. https://doi.org/10.3390/plants9010067

Walker A, Berlinsky D (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquac 73(1):76–83. https://doi.org/10.1016/j.15222055.2010.549030

Wang Y, Tibbetts S, McGinn, (2021) Microalgae as sources of high-quality protein for human food and protein supplements. Foods 10(12):3002. https://doi.org/10.3390/foods10123002

Wilson RP (2003) Amino acids and proteins. In: Halver JE, Hardy RW (eds) Fish nutrition. Academic Press, Washington, pp 43–179. https://doi.org/10.1016/b978-012319652-1.50004-5

Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17. https://doi.org/10.1007/s00726-009-0269-0

Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1(1):31–37. https://doi.org/10.3945/an.110.1008

Wu G, Bazer F, Dai W et al (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2(1):387–417. https://doi.org/10.1146/annurev-animal-022513-114113

Xie F, Zeng W, Zhou Q et al (2012) Dietary LYSINE requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture 358–359:116–121. https://doi.org/10.1016/j.aquaculture.2012.06.027

Yaakob Z, Ali E, Zainal A et al (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res (thalass) 21(1):6. https://doi.org/10.1186/2241-5793-21-6

Zhang T, Chi Z, Sheng J (2009) A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Mar Biotechnol 11:280–286. https://doi.org/10.1007/s10051012-008-9144-3

Zhou X, Yuan S, Chen R et al (2015) Sustainable production of energy from microalgae: review of culturing systems, economics, and modelling. J Renew Sustain Energy 7(1):012701. https://doi.org/10.1063/1.4906919

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.