Enumerating perfect forms

Achill Schürmann
(Otto-von-Guericke Universität Magdeburg)
Perfect Forms

Consider the space $S^n_{>0}$

of positive definite quadratic forms $Q : \mathbb{R}^n \to \mathbb{R}$

(of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$)
Perfect Forms

Consider the space $S_{>0}^n$ of positive definite quadratic forms $Q : \mathbb{R}^n \to \mathbb{R}$ (of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$).

DEF: $\lambda(Q) = \min_{x \in \mathbb{Z}^n \setminus \{0\}} Q[x]$ is the arithmetical minimum.
Perfect Forms

Consider the space $S_{>0}^n$ of positive definite quadratic forms $Q : \mathbb{R}^n \rightarrow \mathbb{R}$ (of sym. pos. def. matrices in $\mathbb{R}^{n \times n}$)

DEF: $\lambda(Q) = \min_{x \in \mathbb{Z}^n \setminus \{0\}} Q[x]$ is the arithmetical minimum

DEF: $Q \in S_{>0}^n$ perfect \iff Q is uniquely determined by $\lambda(Q)$ and $\text{Min } Q = \{ x \in \mathbb{Z}^n : Q[x] = \lambda(Q) \}$
Extreme Forms

THM: (Hermite, 1850)

\[\lambda(Q) \leq \left(\frac{4}{3} \right)^{(n-1)/2} (\text{det } Q)^{1/n} \]

(Hermite, 1822–1901)
Extreme Forms

THM: (Hermite, 1850)

\[\lambda(Q) \leq \left(\frac{4}{3} \right)^{(n-1)/2} \left(\det Q \right)^{1/n} \]

Hermite’s constant

\[\mathcal{H}_n = \sup_{Q \in \mathcal{S}^n_{>0}} \frac{\lambda(Q)}{(\det Q)^{1/n}} \]

(1822–1901)
Extreme Forms

THM: (Hermite, 1850)

\[\lambda(Q) \leq \left(\frac{4}{3} \right)^{(n-1)/2} (\det Q)^{1/n} \]

Hermite’s constant

\[H_n = \sup_{Q \in S^n_{\geq 0}} \frac{\lambda(Q)}{(\det Q)^{1/n}} \]

DEF:

\(Q \) is (geometric) extreme

if it attains a local maximum of \(\lambda(Q)/(\det Q)^{1/n} \) on \(S^n_{\geq 0} \)
Sphere packings

$$\delta_n = \mathcal{H}_n^{n/2} \frac{\text{vol } B^n}{2^n}$$

density of densest lattice sphere packing
Sphere packings

\[\delta_n = \mathcal{H}_{n/2} \frac{\text{vol } B^n}{2^n} \]

density of densest lattice sphere packing

- \(\lambda(Q) \) — squared length of shortest non-zero lattice vector
- \(\det(Q) \) — squared volume of a fundamental cell
Known results

n	PQF/lattice	δ_n	\mathcal{H}_n	author(s)
2	A_2	0.9069...	$(\frac{4}{3})^{1/2}$	Lagrange, 1773
3	$A_3 = D_3$	0.7404...	$2^{1/3}$	Gauß, 1840
4	D_4	0.6168...	$4^{1/4}$	Korkine & Zolotarev 1877
5	D_5	0.4652...	$8^{1/5}$	Korkine & Zolotarev 1877
6	E_6	0.3729...	$(\frac{64}{3})^{1/6}$	Blichfeldt, 1935
7	E_7	0.2953...	$64^{1/7}$	Blichfeldt, 1935
8	E_8	0.2536...	2	Blichfeldt, 1935
Known results

n	PQF/lattice	δ_n	\mathcal{H}_n	author(s)
2	A_2	0.9069...	$(\frac{4}{3})^{1/2}$	Lagrange, 1773
3	$A_3 = D_3$	0.7404...	$2^{1/3}$	Gauß, 1840
4	D_4	0.6168...	$4^{1/4}$	Korkine & Zolotarev 1877
5	D_5	0.4652...	$8^{1/5}$	Korkine & Zolotarev 1877
6	E_6	0.3729...	$(\frac{64}{3})^{1/6}$	Blichfeldt, 1935
7	E_7	0.2953...	$64^{1/7}$	Blichfeldt, 1935
8	E_8	0.2536...	2	Blichfeldt, 1935
24	Λ_{24}	0.0019...	4	Cohn & Kumar, 2004

Densest lattice sphere packings known
Known results

\(n \)	PQF/lattice	\(\delta_n \)	\(\mathcal{H}_n \)	author(s)
2	A\(_2\)	0.9069...	\(\left(\frac{4}{3} \right)^{1/2} \)	Lagrange, 1773
3	A\(_3\) = D\(_3\)	0.7404...	\(2^{1/3} \)	Gauß, 1840
4	D\(_4\)	0.6168...	\(4^{1/4} \)	Korkine & Zolotarev 1877
5	D\(_5\)	0.4652...	\(8^{1/5} \)	Korkine & Zolotarev 1877
6	E\(_6\)	0.3729...	\(\left(\frac{64}{3} \right)^{1/6} \)	Blichfeldt, 1935
7	E\(_7\)	0.2953...	\(64^{1/7} \)	Blichfeldt, 1935
8	E\(_8\)	0.2536...	2	Blichfeldt, 1935
24	\(\Lambda_{24} \)	0.0019...	4	Cohn & Kumar, 2004

Densest lattice sphere packings known

OPEN: What are the densest sphere packings for \(n \geq 4 \)?
Voronoi’s characterization

THM: (Voronoï, 1907)

\[Q \text{ extreme } \iff Q \text{ perfect and eutactic} \]
Voronoï’s characterization

THM: (Voronoï, 1907)

\[Q \text{ extreme } \iff Q \text{ perfect and eutactic} \]

DEF: \(Q \in S^n_{>0} \) is eutactic, if

\[Q^{-1} = \sum_{v \in \text{Min } Q}^{\alpha_v} v v^t \quad \text{if } \alpha_v > 0 \]
Determinant minimization

Extreme forms are local minima of \((\det Q)^{\frac{1}{n}} \)

on \(\mathcal{R} = \{ Q \in S^n_\succ 0 : \lambda(Q) \geq 1 \} \)
Determinant minimization

Extreme forms are local minima of \((\det Q)^{\frac{1}{n}}\)

on \(\mathcal{R} = \{ Q \in S_{>0}^n : \lambda(Q) \geq 1 \} \)

\[= \{ Q \in S_{>0}^n : Q[x] \geq 1 \text{ for all } x \in \mathbb{Z}^n \setminus \{0\} \} \]
Determinant minimization

Extreme forms are local minima of \((\det Q)^{\frac{1}{n}} \) on

\[R = \{ Q \in S^n_{>0} : \lambda(Q) \geq 1 \} \]

\[= \{ Q \in S^n_{>0} : Q[x] \geq 1 \text{ for all } x \in \mathbb{Z}^n \setminus \{0\} \} \]

\[Q[x] = \langle Q, xx^t \rangle = \text{trace}(Q xx^t) \]

is for fixed \(x \in \mathbb{R}^n \)

linear in the \(\binom{n+1}{2} \) parameters \(q_{ij} \) of \(Q \)
Ryshkov Polyhedra

- \mathcal{R} is a locally finite polyhedron
Ryshkov Polyhedra

- \mathcal{R} is a locally finite polyhedron
- Vertices of \mathcal{R} are perfect forms
Ryshkov Polyhedra

• \mathcal{R} is a locally finite polyhedron

• Vertices of \mathcal{R} are perfect forms

• $\alpha \mapsto \left(\det(Q + \alpha Q') \right)^{\frac{1}{n}}$ is strictly concave on $S^n_{>0}$
Voronoi Cones
Voronoi Cones

- \(\text{grad} \, \det Q = (\det Q)Q^{-1} \) for \(Q \in S_{>0}^n \)
Voronoi Cones

\[\text{grad} \det Q = (\det Q)Q^{-1} \quad \text{for} \quad Q \in S_{>0}^n \]

\[V(Q) = \text{cone}\{uv^t : v \in \text{Min } Q\} \]
Voronoi Cones

- \(\text{grad det } Q = (\det Q)Q^{-1} \) for \(Q \in S_{>0}^n \)

\[
\mathcal{V}(Q) = \text{cone}\{uv^t : v \in \text{Min } Q\}
\]

- \(Q \text{ eutactic} \iff Q^{-1} \in \text{relint } \mathcal{V}(Q) \)
Voronoi Cones

- $\text{grad} \det Q = (\det Q)Q^{-1}$ for $Q \in S_{>0}^n$

$V(Q) = \text{cone}\{vv^t : v \in \text{Min } Q\}$

- Q eutactic $\iff Q^{-1} \in \text{relint } V(Q)$

- Q perfect $\iff V(Q)$ is $(\frac{n+1}{2})$-dimensional
Arithmetic equivalence
Arithmetic equivalence

Q and $U^t QU$ with $U \in \text{GL}_n(\mathbb{Z})$ are arithmetical equivalent

$\text{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by

$Q \mapsto U^t QU$
Arithmetic equivalence

Q and $U^t QU$ with $U \in \text{GL}_n(\mathbb{Z})$ are arithmetical equivalent

$\text{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by

$$Q \mapsto U^t QU$$

THM (Voronoi, 1907): \{ $Q \in S^*_n$ perfect with $\lambda(Q) = 1$ \} / \sim finite
Arithmetic equivalence

Q and $U^t Q U$ with $U \in \text{GL}_n(\mathbb{Z})$ are arithmetical equivalent

$\text{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by

$$Q \mapsto U^t Q U$$

THM (Voronoi, 1907): \(\left\{ Q \in S^n_{>0} \text{ perfect with } \lambda(Q) = 1 \right\} \div \sim \text{ finite} \)

\[\Rightarrow\] Enumeration of perfect and extreme forms is possible
Arithmetic equivalence

Q and $U^t QU$ with $U \in \text{GL}_n(\mathbb{Z})$ are arithmetical equivalent

$\text{GL}_n(\mathbb{Z})$ operates on \mathcal{R} and its vertices and edges by

$$Q \mapsto U^t QU$$

THM (Voronoi, 1907): \{ $Q \in S_{\geq 0}^n$ perfect with $\lambda(Q) = 1$ \} / \sim finite

\Rightarrow Enumeration of perfect and extreme forms is possible

Voronoi’s algorithm : Vertex enumeration up to arithmetical equivalence
Voronoi’s algorithm

Start with a perfect form Q
Voronoi’s algorithm

Start with a perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

$$\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$
Voronoi’s algorithm

Start with a perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
Voronoi’s algorithm

Start with a perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

$$\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. **SVPs**: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \ldots, k$
Voronoï’s algorithm

Start with a perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. **SVPs**: Determine contiguous perfect forms $Q_i = Q + \alpha R_i, \ i = 1, \ldots, k$

4. **ISOMs**: Test if Q_i is arithmetically equivalent to a known form
Voronoï’s algorithm

Start with a perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in S^n : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. **SVPs**: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$, $i = 1, \ldots, k$

4. **ISOMs**: Test if Q_i is arithmetically equivalent to a known form

5. Repeat steps 1.–4. for new perfect forms
Enumeration of perfect forms

- **BOTTLENECK**: Computing rays of polyhedra!

 EX: Rays of a 36-dim. polyhedral cone given by 120 linear inequalities yield „neighbors“ of E_8.
Enumeration of perfect forms

- **BOTTLENECK:** Computing rays of polyhedra!

EX: Rays of a 36-dim. polyhedral cone given by 120 linear inequalities yield „neighbors“ of E_8

n	# perfect forms	# extreme forms	author(s)
2	1	1	Lagrange, 1773
3	1	1	Gauß, 1840
4	2	2	Korkine & Zolotareff, 1877
5	3	3	Korkine & Zolotareff, 1877
6	7	6	Barnes, 1957
7	33	30	Jaquet-Chiffelle, 1991
Enumeration of perfect forms

- **BOTTLENECK:** Computing rays of polyhedra!

EX: Rays of a 36-dim. polyhedral cone given by 120 linear inequalities yield “neighbors“ of E_8

n	# perfect forms	# extreme forms	author(s)
2	1	1	Lagrange, 1773
3	1	1	Gauß, 1840
4	2	2	Korkine & Zolotareff, 1877
5	3	3	Korkine & Zolotareff, 1877
6	7	6	Barnes, 1957
7	33	30	Jaquet-Chiffelle, 1991
8	10916	2408	Dutour Sikirić, Sch. & Vallentin, 2005; Riener, 2005
9	> 500000		

Computer assisted proof with *Recursive Adj. Decomp. Method* for ray enumeration under symmetries

(showing that the “E_8-cone” has 25075566937584 rays in 83092 orbits)
Equivariant theory

For a finite group $G \subset \text{GL}_n(\mathbb{Z})$ the space of invariant forms

$$T_G := \{ Q \in S^n : G \subset \text{Aut} \ Q \}$$

is a linear subspace of S^n; $T_G \cap S^n_{>0}$ is called Bravais space.
Equivariant theory

For a finite group $G \subset \text{GL}_n(\mathbb{Z})$ the space of invariant forms

$$T_G := \{ Q \in S^n : G \subset \text{Aut} Q \}$$

is a linear subspace of S^n; $T_G \cap S^n_{>0}$ is called Bravais space

IDEA (Bergé, Martinet, Sigrist, 1992):
Intersect Ryshkov polyhedron \mathcal{R} with a linear subspace $T \subset S^n$
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S^n_{>0} \)

- is \(T \)-extreme if it attains a loc. max. of \(\delta \) within \(T \)
T-perfect and T-extreme forms

DEF: $Q \in T \cap S^n_{>0}$

- is T-extreme if it attains a loc. max. of δ within T
- is T-perfect if it is a vertex of $\mathcal{R} \cap T$
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S_{\geq 0} \)

- is **T-extreme** if it attains a loc. max. of \(\delta \) within \(T \)
- is **T-perfect** if it is a vertex of \(\mathcal{R} \cap T \)
- is **T-eutactic** if \(Q^{-1} | T \in \text{relint}(\mathcal{V}(Q) | T) \)
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S^n_{>0} \)
- is **T-extreme** if it attains a loc. max. of \(\delta \) within \(T \)
- is **T-perfect** if it is a vertex of \(R \cap T \)
- is **T-eutactic** if \(Q^{-1} \mid T \in \text{relint}(\mathcal{V}(Q) \mid T) \)

THM (BMS, 1992): \(Q \) **T-extreme** \(\iff \) \(Q \) **T-perfect and T-eutactic**
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S_{>0} \)
- is **T-extreme** if it attains a loc. max. of \(\delta \) within \(T \)
- is **T-perfect** if it is a vertex of \(\mathcal{R} \cap T \)
- is **T-eutactic** if \(Q^{-1} \mid T \in \text{relint}(\mathcal{V}(Q) \mid T) \)

THM (BMS, 1992): \(Q \) **T-extreme** \(\iff \) \(Q \) **T-perfect** and **T-eutactic**

- \(Q, Q' \in T \cap S_{>0} \) are called **T-equivalent**, if \(\exists U \in \text{GL}_n(\mathbb{Z}) \) with
\[
Q' = U^t QU \quad \text{and} \quad T = U^t TU
\]
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S^n_{>0} \)

- is **T-extreme** if it attains a loc. max. of \(\delta \) within \(T \)
- is **T-perfect** if it is a vertex of \(R \cap T \)
- is **T-eutactic** if \(Q^{-1} | T \in \text{relint} (\mathcal{V}(Q) | T) \)

THM (BMS, 1992): \(Q \) **T-extreme** \(\iff \) **T-perfect and T-eutactic**

- \(Q, Q' \in T \cap S^n_{>0} \) are called **T-equivalent**, if \(\exists U \in \text{GL}_n(\mathbb{Z}) \) with
 \[Q' = U^tQU \quad \text{and} \quad T = U^tTU \]

THM (Jaquet-Chiffelle, 1995): \(\{ T_G\text{-perfect } Q : \lambda(Q) = 1 \} / \sim_{T_G} \) finite
T-perfect and T-extreme forms

DEF: \(Q \in T \cap S^n_{>0} \)
- is **T-extreme** if it attains a loc. max. of \(\delta \) within \(T \)
- is **T-perfect** if it is a vertex of \(\mathcal{R} \cap T \)
- is **T-eutactic** if \(Q^{-1} | T \in \text{relint}(V(Q) | T) \)

THM (BMS, 1992): \(Q \) **T-extreme** \(\iff \) \(Q \) **T-perfect** and **T-eutactic**

- \(Q, Q' \in T \cap S^n_{>0} \) are called **T-equivalent**, if \(\exists U \in \text{GL}_n(\mathbb{Z}) \) with
 \[
 Q' = U^tQU \quad \text{and} \quad T = U^tTU
 \]

THM (Jaquet-Chiffelle, 1995): \(\{ T_G \text{-perfect } Q : \lambda(Q) = 1 \} / \sim_{T_G} \) finite

\[\Rightarrow\] Voronoi's algorithm can be applied to \(\mathcal{R} \cap T_G \)
T-Algorithm

SVPs: Obtain a T-perfect form Q
T-Algorithm

SVPs: Obtain a T-perfect form Q

1. **SVP**: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone

$$\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \geq 1 \text{ for all } x \in \operatorname{Min} Q \}$$
T-Algorithm

SVPs: Obtain a T-perfect form Q

1. **SVP:** Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv:** Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$
T-Algorithm

SVPs: Obtain a T-perfect form Q

1. **SVP**: Compute $\operatorname{Min} Q$ and describing inequalities of the polyhedral cone

$$\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \geq 1 \text{ for all } x \in \operatorname{Min} Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. For the indefinite $R_i, i = 1, \ldots, k$

 SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$
T-Algorithm

SVPs: Obtain a T-perfect form Q

1. **SVP:** Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv:** Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. For the *indefinite* $R_i, i = 1, \ldots, k$
 SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$

4. **T-ISOMs:** Test if Q_i is T-equivalent to a known form
T-Algorithm

SVPs: Obtain a T-perfect form Q

1. **SVP**: Compute $\text{Min } Q$ and describing inequalities of the polyhedral cone

 $$\mathcal{P}(Q) = \{ Q' \in T : Q'[x] \geq 1 \text{ for all } x \in \text{Min } Q \}$$

2. **PolyRepConv**: Enumerate extreme rays R_1, \ldots, R_k of $\mathcal{P}(Q)$

3. For the **indefinite** $R_i, i = 1, \ldots, k$

 SVPs: Determine contiguous perfect forms $Q_i = Q + \alpha R_i$

4. **T-ISOMs**: Test if Q_i is T-equivalent to a known form

5. Repeat steps 1.–4. for new perfect forms
Examples/Applications

n	2	4	6	8	10	12
# E-perfect	1	1	2	5	1628	?
maximum δ	0.9069...	0.6168...	0.3729...	0.2536...	0.0360...	

Perfect Eisenstein forms
Examples/Applications

n	2	4	6	8	10	12
$\# E$-perfect	1	1	2	5	1628	?
maximum δ	0.9069\ldots	0.6168\ldots	0.3729\ldots	0.2536\ldots	0.0360\ldots	

Perfect Eisenstein forms

n	2	4	6	8	10	12
$\# G$-perfect	1	1	1	2	\geq 8192	?
maximum δ	0.7853\ldots	0.6168\ldots	0.3229\ldots	0.2536\ldots		

Perfect Gaussian forms
Examples/Applications

n	2	4	6	8	10	12
# E-perfect	1	1	2	5	1628	?
maximum δ	0.9069…	0.6168…	0.3729…	0.2536…	0.0360…	

Perfect Eisenstein forms

n	2	4	6	8	10	12
# G-perfect	1	1	1	2	\geq 8192	?
maximum δ	0.7853…	0.6168…	0.3229…	0.2536…		

Perfect Gaussian forms

n	4	8	12	16
# Q-perfect	1	1	8	?
maximum δ	0.6168…	0.2536…	0.03125…	

Perfect Quaternion forms
Extension from Lattices to Periodic Sets
Extension from Lattices to Periodic Sets

$$\Lambda = A \left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n \right)$$ with $A \in \text{GL}_n(\mathbb{R})$, $t_i \in \mathbb{R}^n$ and $t_m = 0$

is identified (up to orthogonal transformations) with

$$(A^t A, t_1, \ldots, t_{m-1}) \in S_{>0}^{n,m} := S_{>0}^n \times \mathbb{R}^{n \times (m-1)}$$
Extension from Lattices to Periodic Sets

\[\Lambda = A \left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n \right) \text{ with } A \in \text{GL}_n(\mathbb{R}), \, t_i \in \mathbb{R}^n \text{ and } t_m = 0 \]

is identified (up to orthogonal transformations) with

\[\left(A^t A, t_1, \ldots, t_{m-1} \right) \in \mathcal{S}^{n, m}_{>0} := \mathcal{S}^n_{>0} \times \mathbb{R}^n \times (m-1) \]

- For fixed \(m \) and \(t = (t_1, \ldots, t_{m-1}) \), the set of periodic sets with points at min. dist. \(\geq \lambda > 0 \) is identified with a locally finite polyhedron \(\mathcal{R} \) in \(\mathcal{S}^n_{>0} \).
Extension from Lattices to Periodic Sets

\[\Lambda = A \left(\bigcup_{i=1}^{m} t_i + \mathbb{Z}^n \right) \] with \(A \in \text{GL}_n(\mathbb{R}) \), \(t_i \in \mathbb{R}^n \) and \(t_m = 0 \)

is identified (up to orthogonal transformations) with

\[\left(A^t A, t_1, \ldots, t_{m-1} \right) \in S_{>0}^{n,m} := S_{>0}^n \times \mathbb{R}^n \times (m-1) \]

- For fixed \(m \) and \(t = (t_1, \ldots, t_{m-1}) \), the set of periodic sets with points at min. dist. \(\geq \lambda > 0 \) is identified with a locally finite polyhedron \(\mathcal{R} \) in \(S_{>0}^n \)

THM: For rational and fixed \(t \),
there exist only finitely many *inequivalent* vertices of \(\mathcal{R} \)
Periodic extreme sets
Periodic extreme sets

DEF: \(X = (Q, t) \in S_{>0}^{n,m} \) (and a corresponding periodic pointset) is called periodic extreme, if it is \(m' \)-extreme for all possible representations \(X' \in S_{>0}^{n,m'} \) (attains a local maximum of \(\delta \) on \(S_{>0}^{n,m'} \))
Periodic extreme sets

DEF: $X = (Q, t) \in S_{>0}^{n,m}$ (and a corresponding periodic pointset) is called periodic extreme, if it is m'-extreme for all possible representations $X' \in S_{>0}^{n,m'}$ (attains a local maximum of δ on $S_{>0}^{n,m'}$)

DEF: $Q \in S_{>0}^{n}$ (and a corresponding lattice) is called strongly eutactic, if

$$Q^{-1} = \sum_{v \in \text{Min } Q} v v^t$$
Periodic extreme sets

DEF: \(X = (Q, t) \in S_{>0}^{n,m} \) (and a corresponding periodic pointset) is called periodic extreme, if it is \(m' \)-extreme for all possible representations \(X' \in S_{>0}^{n,m'} \) (attains a local maximum of \(\delta \) on \(S_{>0}^{n,m'} \)).

DEF: \(Q \in S_{>0}^{n} \) (and a corresponding lattice) is called strongly eutactic, if

\[
Q^{-1} = \alpha \sum_{v \in \text{Min } Q} v v^t
\]

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme.
Periodic extreme sets

DEF: \(X = (Q, t) \in S_{>0}^{n,m} \) (and a corresponding periodic pointset) is called periodic extreme, if it is \(m' \)-extreme for all possible representations \(X' \in S_{>0}^{n,m'} \) (attains a local maximum of \(\delta \) on \(S_{>0}^{n,m'} \))

DEF: \(Q \in S_{>0}^n \) (and a corresponding lattice) is called strongly eutactic, if

\[
Q^{-1} = \alpha \sum_{v \in \text{Min } Q} vv^t
\]

THM: (Sch. 2007) Perfect and strongly eutactic forms are periodic extreme

COR: \(A_n, D_n, E_n \) and \(\Lambda_{24} \) are periodic extreme
ToDo

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)
Todo

• Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)

• Systematic searches for dense periodic (non-lattice) sets
ToDo

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)

- Systematic searches for dense periodic (non-lattice) sets

Challenges

- Prove for some non-lattice sphere packing that it is denser than any lattice packing in its dimension
ToDo

- Systematic searches for interesting perfect and extreme forms / lattices (in suitable subspaces)

- Systematic searches for dense periodic (non-lattice) sets

Challenges

- Prove for some non-lattice sphere packing that it is denser than any lattice packing in its dimension

- Determine Hermite’s constant for some $n \geq 9 \ (n \neq 24)$
Muchas Gracias!

http://www.math.uni-magdeburg.de/lattice_geometry/