SUPPORTING INFORMATION

Ultrabright Förster Resonance Energy Transfer nanovesicles: the role of the dye diffusion

Judit Morla-Folch, [a,b]# Guillem Vargas-Nadal, [a,b] Edgar Fuentes, [c] Silvia Illa-Tuset, [a]

Mariana Köber, [a,b] Cristina Sissa,[d] Silvia Pujals, [c] Anna Painelli, [d] Jaume Veciana, [a,b] Jordi Farauo, [a] Kevin D. Belfield, [e] Lorenzo Albertazzi, [c,f] Nora Ventosa [a,b]*

[a] Institut de Ciència de Materials de Barcelona, ICMAB-CSIC
Campus UAB, Bellaterra, 08193 Catalonia, Spain
E-mail: jmorla@icmab.es; gvargas@icmab.es; silla@icmab.es; mkober@icmab.es; jfaraudo@icmab.es; vecianaj@icmab.es; ventosa@icmab.es

[b] Centro de Investigación Biomédica en Red CIBER-BBN.
Madrid, 28029, Spain.

[c] Nanoscopy for Nanomedicine Group
Institute for Bioengineering of Catalonia (IBEC)
C/ Baldiri Reixac 15-21, Helix Building, Barcelona, 08028, Catalonia, Spain.
E-mail: efuentes@ibecbarcelona.eu; spujals@ibecbarcelona.eu

[d] Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale
Università di Parma
Parco Area delle Scienze 17/A, Parma, 43124, Italy.
E-mail: cristina.sissa@unipr.it; anna.painelli@unipr.it

[e] Department of Chemistry and Environmental Science, College of Science and Liberal Arts
New Jersey Institute of Technology (NJIT)
323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States.
E-mail: belfield@njit.edu

[f] Molecular Biosensing for Medical Diagnostics Group, Biomedical Engineering Technology Eindhoven University of Technology (TUE)
Eindhoven, 5612 AZ, The Netherlands.
E-mail: L.Albertazzi@tue.nl
Table of Contents

Experimental Procedures

1. Materials 3

2. Methods for Molecular Dynamics Simulations 3

Figure S1. Representation of the Dil-DiD FRET pair in QS 5

Figure S2. Equipment configuration of the small-scale reactor DELOS-susp 6

Figure S3. Histograms obtained from cryo-TEM images of FRET nanoprobes 7

Figure S4. STORM pictures and histogram of FRET nanoprobes 8

Figure S4. Absorption and excitation spectra of QS-I,D at different loadings 9

Figure S6. Normalized absorption spectra of QS-I,D at different loadings 10

Figure S7. Procedure for FRET Ratio estimation through TIRF-microscopy 11

Figure S8. FRET ratio results represented for each nanoprobe 12

Figure S9. Brightness calculated from TIRF-microscopy 13

Figure S10. Stability on time and upon dilution of QS-I,D 81 14

Figure S11. Geometry of Dil (left) and DiD (right) dyes in CPK representation 15

Figure S12. Summary of results of simulation S1: two Dil molecules at QS bilayer 16

Figure S13. Summary of results of simulation S2: two DiD molecules at QS bilayer 17

Figure S14. Donor - acceptor separation during simulation S3 as a function of time 18

Table S1. Process parameters of the Delos-susp methodology for QS preparation 19

Table S2. Characteristics of the dye-loaded nanoformulations 20

Table S3. Geometric parameters of the fluorescent QS 21

Table S4. Volume of QS membrane in relation to the total volume 22

Table S5. Calculation of the dye concentration at the QS membrane 23

Table S6. Brightness per particle 24

Table S7. Optical characteristics of fluorescent inorganic and organic nanoparticles reported in bibliography 25

Table S8. Estimation of donor-acceptor averaged distance in the Quatsome bilayer 27

Table S9. Composition of the systems considered in the MD simulations 28

References 29
Experimental Procedures

1. Materials

5-Cholesten-3β-ol (purity 95%) was purchased from Panreac (Barcelona, Spain). Hexadecyltrimethylammonium bromide (CTAB, BioUltra for molecular biology, purity ≥99.0%) was obtained from Sigma-Aldrich. 1,1'-dioctadecyl-3,3,3’,3'-tetramethyl-indocarbocyanine perchlorate (DiI) and 1,1'-dioctadecyl-3,3,3’,3'-tetramethyl-indodicarbocyanine perchlorate (DiD) were purchased from Life Technologies (Carlsbad, USA). MilliQ water was used for all the sample preparation (Millipore Ibérica, Madrid, Spain). Ethanol (EtOH) was from Teknocroma (Sant Cugat del Vallès, Spain). Carbon dioxide (CO₂, 99.9% purity) was purchased from Carburos Metálicos S.A. (Barcelona, Spain). All reagents and solvents purchased from commercial suppliers were used without further purification.

2. Methods for Molecular Dynamics Simulations

Protocols for MD simulation. All MD simulations were performed using the NAMD program. The equations of motion were solved using a 2 fs time step. Electrostatic interactions were computed using the PME method (PME) with usual settings in NAMD (1 Å resolution, updated each 2-time steps). Lennard-Jones interactions were truncated at 1.2 nm employing a switching function starting at 1.0 nm. Periodic boundary conditions were employed in all directions. The temperature was kept constant at 298 K using a Langevin thermostat with a relaxation time of 1 ps. The pressure of 1 atm and zero surface tension were imposed using the anisotropic Nosé-Hoover-Langevin piston implemented in NAMD (oscillation period of 100 fs and decay time of 50 fs). In all cases, we performed an initial energy minimization and an equilibration run until temperature, pressure, and membrane area reach stable values (these runs were short since initial configurations were built from equilibrated ones). The production runs were 40 ns for each case.

Results for S1 and S2 simulations. For both the DiI-DiI and DiD-DiD dye cases (S1 and S2 in Table S7), both pairs are perfectly incorporated and interdigitated between QS components, as illustrated in the snapshots of Figure S10 and S11. As observed there, both dyes are located and oriented as expected, being the head groups at the water-surface interface and the tails completely immerse in the hydrophobic region of the membrane. Results from the DiI-DiI pair (S1 simulation) show that both dyes remain inside the QS membrane stable along simulation time, not deforming the membrane nor aggregating. The calculated thickness of the bilayer (measured from the peaks of the nitrogen-nitrogen atom distance from CTAB distribution) is 4.2 nm for S1 and 4.3 for S2. In our previous simulations with a single dye, we obtained 4.2 nm for both dyes. It is also close to the value 4.3 nm for the bilayer thickness obtained in our
previous work in absence of dyes.2 Note that MD simulations of Dil dyes in DPPC phospholipid bilayer6 also predict the absence of aggregation.

We have computed the distance between both dyes present in S1 and S2 simulations as a function of time. As seen in Figure S10, the Dil-Dil distance (measured between the central carbon atoms of both dyes) presents a wide distribution, roughly uniform, indicating an absence of Dil-Dil interaction. In the case of DiD-DiD (Figure S11), we do not observe aggregation but there is a larger tendency of both dyes to be one near the other instead of being fully separated, as seen in Figure S11 (right). As shown in that figure, there is a peak at a separation of about 3 nm between the two central carbons of each dye.

Additional results for S3 simulations. The main results for the S3 simulation are reported in the main paper, Figure 5. Here, as additional material, we report the DiD-Dil separation shown in Figure 5c calculated differently. In Figure 5c, the separation between dyes is calculated as the separation between the N atoms of each dye. Here, in Figure S12 we also report the separation between Dil and DiD during the S3 simulation computed as the donor-acceptor separation. The separation is computed as the distance between each nitrogen atom of the Dil (donor) and the centre of mass of the chromophore of the DiD dye (acceptor).
Figure S1. Representation of the Dil-DiD FRET pair in QS, named QS-I,D. a) Normalized absorption and emission spectra of Dil and DiD in ethanol. Dil and DiD are considered ideal for single-pair FRET measurements as they show well-separated absorption and emission spectra with a significant overlap (marked in orange) between the donor (Dil) emission and the acceptor (DiD) absorption. The two dyes have comparable quantum yields, and good photostability. b) Representation of a Quatsome loaded with the Dil-DiD FRET pair, called QS-I,D.
Figure S2. Equipment configuration of the small-scale reactor DELOS-susp (depressurization of an expanded liquid organic solution–suspension). Nanovesicles were prepared following the DELOS-susp procedure, schematically represented in the Figure S2 a. This method has been previously described\(^7\) and includes the depressurization of a CO\(_2\)-expanded organic liquid solution into an aqueous phase containing a solution or dispersion of a polar compound using mild conditions of temperature (308 K) and pressure (10 MPa). a) The general procedure includes: (a) Loading of the organic solution containing the membrane components (cholesterol and dyes); (b) Addition of liquid compressed CO\(_2\) and formation of a CO\(_2\)-expanded solution with all the membrane components dissolved; (c) Depressurization of the CO\(_2\)-expanded solution into an aqueous solution containing the free surfactant (CTAB). The equipment used for the preparation of QS by Delos-susp is schematized in this Figure S2 b. b) The configuration comprises a 7.3 mL high-pressure vessel (HPV), whose temperature is controlled by an external thermostatic bath; a syringe pump (model 260D, ISCO Inc, USA) (P) to introduce CO\(_2\) inside the HPV through valve V-4; a depressurization valve (V-7) from which the expanded liquid solution is depressurized into the aqueous phase placed in a collector (C) located after V-7, N\(_2\) is pumped into the vessel through V-6. A one-way valve is located after V-6 to prevent contamination of CO\(_2\) in the N\(_2\) line. V-2, V-3, and V-5 are dividing the CO\(_2\) and N\(_2\) pipelines. There is also a pressure indicator (PI) and another one-way valve before the vessel to prevent the backflow from HPV, which could lead to contamination of the gas lines.

The specific protocol for the preparation of the four QS-I,D formulations is detailed in Table S1.
Figure S3. Histograms obtained from cryo-TEM images of FRET nanoprobes. a) QS-I,D 143; b) QS-I,D 81; c) QS-I,D 17 and d) QS-I,D 2. The histograms show the distribution of the QS diameters, measured from n=150 nanovesicles.
Figure S4. STORM pictures and histograms of FRET nanoprobes. STORM pictures (scale bar = 5 µm) for the QS-I,D with different loadings. a) QS-I,D 2; b) QS-I,D 17; c) QS-I,D 81 and d) QS-I,D 143. The histograms show the distribution of the QS diameters, as obtained by STORM.
Figure S5. Absorption and excitation spectra of QS-I,D at different loadings. Diluted solutions were used for absorption and fluorescence measurements, with optical densities of ∼0.1. The spectra are normalized at 650 nm. Spectra were measured in aqueous media with 1 cm path length quartz cuvette, with excitation at \(\lambda_{em} = 710 \) nm.

The efficiency of energy transfer is defined as the fraction of photons absorbed by the donor (DiI) which are transferred to the acceptor (DiD). It is estimated experimentally comparing the absorption spectrum with the excitation spectrum, detected from the emission of the acceptor, as in Equation 1, where \(A_A(\lambda_A) \) and \(A_D(\lambda_D) \) are the maximum absorbance of donor and acceptor, at \(\lambda_A \) and \(\lambda_D \), respectively. The fluorescence intensity of the acceptor (\(I_A \)) is indicated with two wavelengths in parentheses: the first one is the excitation wavelength, and the second is the observation wavelength.

\[
\Phi_{FRET} = \frac{A_A(\lambda_A)}{A_D(\lambda_D)} \left[\frac{I_A(\lambda_D, \lambda_A^{EM})}{I_A(\lambda_A, \lambda_A^{EM})} \right] - \frac{A_A(\lambda_D)}{A_A(\lambda_A)}
\]
(1)
Figure S6. Normalized absorption spectra of fluorescent QS. Spectra were measured in aqueous media with 1 cm path length quartz cuvette. The spectra are normalized at Dil emission ($\lambda_{em} = 551$ nm).

Absorption spectra of QS-I,D contain two peaks, the characteristic absorption bands for the monomers Dil and DiD (~552 nm and ~649 nm, respectively). The small high energy shoulder (516 nm and 600 nm, for Dil and DiD respectively) can be safely assigned as the first the vibronic replica of the monomer band,8 attributed to the symmetric C-C valence vibration of the polymethine chain in the electronic excited state.9 Variations in the spectral profile of absorption spectra can be ascribed to different origins, including the presence of aggregates. Several studies on cyanine dyes have investigated the relationship between the absorption bands and a growing population of H-dimers in solution.$^{10-13}$ As shown in Figure S4, when the concentration of dyes entrapped at the QS membrane is augmented (from QS-I,D 2 to QS-I,D 143) the 600 nm band becomes more prominent pointing out the presence of H-aggregates, mainly related to the absorption band of H-dimers. Moreover, although the molar ratio of two dyes was kept constant (1:1, see Table S4), the ratio between maximum absorbance of DiD and Dil dyes in QS-I,D changes with increasing loading. This fact is also in line with the formation of DiD H-aggregates in QS membrane at increasing loadings,14,15 due to the hypochromism expected for H aggregates.16
Figure S7. Procedure for FRET ratio estimation through TIRF-microscopy. a) Raw TIRF images at 561 nm of the four formulations (scale bar = 5µm). b) Schematic representation of the procedure for the calculation of FRET ratio through TIRF-microscopy.

The TIRF-images were analysed following the next steps for all the formulations:

1. Subtract background from original images. Divide the far-red emission image by the full-emission image to obtain a ratiometric image.
2. Threshold the full-emission image to obtain a mask; QS = 1, Background = NaN (Not a Number).
3. Multiply the ratiometric image by the mask. (FRET ratio information)
4. Multiply the full-emission image by the mask. (Brightness Information)
5. Stack both masked images and measure both parameters in each QS. Individual QS were easily identified in the full-emission image (output of step 4), defining the delimiting area. This same area was used to measure the brightness (output of step 4) and the FRET ratio (output of step 3).
Figure S8. FRET ratio results represented for each nanoprobe (main values plotted in Figure 4e). TIRF-microscopy counts vs FRET ratio values. In the Table are presented the averaged values obtained per N nanovesicles studied (N=total number of nanoprobes interrogated, SD = Standard Deviation).
Figure S9. Brightness calculated from TIRF-microscopy. TIRF-microscopy counts vs total brightness intensity (DiI+DiD emission). In the Table are presented the averaged values obtained per N nanovesicles studied (N = total number of nanoprobes interrogated, SD = Standard Deviation).

Sample	N	Mean	SD	Median
QS-I,D 2	166	3004.6	5556.1	1035
QS-I,D 17	299	22742.0	38326.5	8432
QS-I,D 81	211	15489.9	12360.3	11441
QS-I,D 143	202	59289.5	104758.1	17909
Figure S10. Stability over time and upon dilution of QS-I,D 81. (a) Fluorescence emission spectra, (b) FRET efficiency representation of the QS-I,D 81 after 1, 3, 6, 8 months and more than two years from the synthesis. (c) Micelles of CTAB loaded with Dil and DiD at same concentration as QS-I,D 81 were progressively diluted in aqueous media. Under 1 mM (the critical micellar concentration of CTAB micelles, referred as CMC), micelles become unstable indicated by the significant changes on the FRET ratio, otherwise, the FRET ratio of QS-I,D 81 is preserved at higher dilutions.
Figure S11. Geometry of Dil (left) and DiD (right) dyes in CPK representation with indication of dimensions and charge. The color scale indicates the partial charge of each atom in e units.
Figure S12. Summary of results of simulation S1: two Dil molecules inside a Quatsome bilayer (Table S9, Supporting Information). The snapshot of the system (front view and top view) shows both QS components CTA+ and cholesterol in blue and cyan, respectively. Water is shown as red dots and ions are shown as pink spheres. The two Dil dyes are shown in licorice representation in magenta. The histogram shows the distribution of the distance between the centre of mass of the chromophoric part of the two dyes. In the top view a black line defines the distance between the dyes.
Figure S13. Summary of results of simulation S2: two DiD molecules inside a Quatsome bilayer (Table S9, Supporting Information). The snapshot of the system (front view and top view) shows both QS components CTA+ and cholesterol in grey and cyan, respectively. Water is shown as red dots and ions are shown as pink spheres. The two DiI dyes are shown in licorice representation in dark blue. The histogram shows the distribution of the distance between the centre of mass of the chromophore part of the two dyes. In the top view a black line defines the distance between the dyes.
Figure S14. Donor - Acceptor separation during simulation S3 as a function of time, computed as the distance between each of the two nitrogen atoms of the DiI (donor), indicated either as N1 or N2, and the centre of mass of the chromophore of the DiD dye (acceptor).
Table S1. Dil and DiD concentrations of the ethanolic solution used for the preparation of QS-I,D formulations by Delos-susp methodology.

SAMPLE	[Dil] (mM) [a]	[DiD] (mM) [a]
QS-I,D 2	2.27×10^{-2}	2.27×10^{-2}
QS-I,D 17	2.27×10^{-1}	2.27×10^{-1}
QS-I,D 81	4.54×10^{-1}	4.54×10^{-1}
QS-I,D 143	9.07×10^{-1}	9.07×10^{-1}

[a] Dye stock solutions were used for the preparation of the initial ethanolic solution. Dil and DiD were dissolved, separately, in EtOH at a high concentration (~5 mM) and the concentration of both solutions was determined through UV-Vis spectroscopy.

For the Delos-susp experiments, 3.11 mL of ethanolic solution at 7mM of cholesterol and with different concentrations of Dil and DiD ([Dil] and [DiD]), depending on the QS-I,D formulation, were prepared (see Table S1). The mixture was kept under stirring protected from light for 40 minutes. The ethanolic solution containing the cholesterol and dyes was loaded into a high-pressure vessel of 7.3 mL at atmospheric pressure and the working temperature ($T_w = 308$ K) (Figure S2). The solution was then volumetrically expanded with compressed CO$_2$ until a molar fraction (X_{CO2}) of 0.60, reaching a working pressure (P_w) of 10 MPa. The system was kept at 308 K and 10 MPa for approximately 1 hour to achieve a complete homogenization and to attain thermal equilibration. Afterwards the depressurization of the volumetric expanded organic phase was performed over 25.11 mL of an aqueous solution at 7mM of CTAB. In this step a flow of N$_2$ at the working pressure is used as a plunger to push down the CO$_2$ expanded solution from the vessel and to maintain a constant P_w inside the vessel during depressurization. Details of the equipment configuration are given in Figure S2, Supporting Information.
Table S2. Characteristics of the dye-loaded nanoformulations.

SAMPLE	[a] Dye concentration in bulk (µM)	[b] Ratio Dil:DiD	[b] Total dye loading (x10⁻³)	[c] Dye encapsulation efficiency (%)	[d] QS concentration (particle/mL) x10¹¹	[d] Hydrodynamic diameter (nm) NTA	[d] Mean diameter (nm) STORM		
QS-I,D 2	2.5	2 : 2	1.00 : 0.95	1.0	100	88	141 ± 5	144 ± 1	141 ± 44
QS-I,D 17	24.4	21.1	1.00 : 0.89	8.8	98	84	137 ± 9	156 ± 2	159 ± 49
QS-I,D 81	55	53	1.00 : 0.88	25.0	100	96	68 ± 2	138 ± 3	156 ± 58
QS-I,D 143	104	99	1.00 : 0.98	49.0	95	90	72 ± 4	125 ± 2	164 ± 49

[a] The final concentration of dyes was determined measuring the absorbance of the diafiltrated fluorescent Quatsomes in ethanol and applying the Lambert-Beer Law (see Experimental Section).

[b] The dye loading indicates the relation in composition between the content of dye vs membrane components. It is calculated as [(mg dye/mL solution) / (mg membrane components_{CTAB+Chol} /mL solution)]. The final concentration of membrane components was estimated lyophilizing the fluorescent Quatsomes after the diafiltration (see Experimental Section).

[c] The dye encapsulation efficiency is defined as the ratio between the amount of dye present in the final formulation of QS-I,D and the initial amount of dye loaded into the reactor.

[d] QS concentration and size distribution were measured by Nanoparticle Tracking Analysis (NTA). The averaged results are obtained from n ≥ 3 (error ± 7%).
Table S3. Geometric parameters of the fluorescent QS

Geometric parameters of a Chol/CTAB QS
[a] Diameter outer (nm)
Diameter inner (nm)
[b] Thickness membrane (nm)
Volume vesicle exterior (nm3)
Volume vesicle interior (nm3)
Membrane Volume (nm3)
Membrane Volume (dm3)
Membrane vs nanovesicle volume
Surface outer vesicle (nm2)
Surface inner vesicle (nm2)
[c] Surface synthon (nm2)
Number synthons at the outer QS surface
Number synthons at the inner QS surface
Number of total synthons per 1 QS

[a] Average size obtained from NTA measurement and cryo-TEM pictures.
[b] Obtained from previous works, based on AFM-FS experiments.
[c] Obtained from Molecular Dynamics simulations.
Table S4. Volume of QS membrane in relation to the total volume

Number of QS per mL	[a] Membrane volume of QS per mL	[b] QSs membrane vs total volume (%)	
QS-I,D 143	7.24E+12	1.42E-06	0.14%
QS-I,D 81	6.76E+12	1.33E-06	0.13%
QS-I,D 17	1.37E+13	2.69E-06	0.27%
QS-I,D 2	1.41E+13	2.77E-06	0.28%

[a] Membrane volume of a QS obtained from Table S3 is multiplied by the number of quatsomes estimated in 1mL, determined by NTA.

[b] Membrane Relation between the QS membrane volume and the total volume in 1mL.
Table S5. Calculation of the dye concentration at the QS membrane

QS [a]	Dye bulk concentration [b]	Dye per QS [c]	Concentration of dye per QS [d]							
	QS per mL Dil (mol/mL)	Dil per QS (mol/QS)	DiD per QS (mol/QS)	Total dye (mol/QS)	Dil at the nanodomain (M)	DiD at the nanodomain (M)	Total conc. at the nanodomain (M)			
QS-I,D 143	7.24E+12	1.04E-07	9.90E-08	2.03E-07	1.44E-20	1.37E-20	2.80E-20	7.31E-02	6.96E-02	1.43E-01
QS-I,D 81	6.76E+12	5.50E-08	5.30E-08	1.08E-07	8.14E-21	7.84E-21	1.60E-20	4.14E-02	3.99E-02	8.13E-02
QS-I,D 17	1.37E+13	2.44E-08	2.11E-08	4.55E-08	1.78E-21	1.54E-21	3.32E-21	9.07E-03	7.84E-03	1.69E-02
QS-I,D 2	1.41E+13	2.50E-09	2.20E-09	4.70E-09	1.90E-22	1.67E-22	3.56E-22	9.65E-04	8.49E-04	1.81E-03

[a] Number of QS nanovesicles obtained from NTA measurements, the averaged results are obtained from n ≥ 3 per sample (error ± 7%).

[b] Obtained from UV-Vis spectra measured in bulk

[c] Obtained by: Dye (mol/mL) / QS per mL

[d] In order to obtain the concentration; dye per QS is divided by membrane volume (dm³) obtained from Table S3.
Table S6. Brightness per particle

SAMPLE	\(\varepsilon \) per particle	\(\phi_{\text{DiD}} \) (%)	Brightness \(_p\) (x 10^6)	\(\phi_{\text{DiD}} \) (%)	Brightness \(_p\) (x 10^6)
QS-I,D 143	1.05E+09	5.6%	58.52	6.3%	65.84
QS-I,D 81	6.77E+08	10.9%	73.83	12.8%	86.70
QS-I,D 17	1.74E+08	16.5%	28.69	20.4%	35.47
QS-I,D 2	4.65E+07	18.1%	8.42	40.7%	18.94

[a] Brightness of the nanoparticle excited at DiI and emission recorded at DiD (\(\lambda_{\text{ex}} = 520 \) nm, \(\lambda_{\text{em}} = 670 \) nm)

[b] Brightness of the nanoparticle excited at DiD and emission recorded at DiD (\(\lambda_{\text{ex}} = 600 \) nm, \(\lambda_{\text{em}} = 670 \) nm)

Brightness per particle was determined as the product of the molar extinction coefficient per particle (\(\varepsilon_p \)) and the fluorescence quantum yield (\(\phi \)).\(^{17}\) The \(\varepsilon_p \) was determined by the Lambert-Beer Law (\(\varepsilon_p = \text{Abs}_{650}/C_{QS} \) (M)), where \(\text{Abs}_{650} \) was obtained by UV-Vis spectroscopy and the molar concentration of QS (\(C_{QS} \)) from the NTA values (Table S3). The \(\phi \) measurements were carried out using a Quantaurus-QY Plus (UV-NIR absolute PL quantum yield spectrometer C13534-11), Hamamatsu Photonics. The samples were diluted until absorbance values OD ≈ 0.1 were obtained, the excitation wavelength was 520nm and 600nm, for FRET and direct DiD emission determination, respectively, (the direct excitation of DiD at 520nm can be considered negligible).\(^{15}\) Illumination time was 0.9 seconds and the final \(\phi \) value come from an average of 20 repetitions.
Table S7. Optical characteristics of fluorescent inorganic and organic nanoparticles reported in bibliography.

FLUORESCENT NANOFLUID	SIZE (nm)	FLUOROPHORE	λ_em (nm)	DYE (wt %)	BRIGHTNESS (M⁻¹ cm⁻¹)	REF
FLUORESCENT INORGANIC NANOFLUIDS						
QUANTUM DOTS						
QDot-585	15-20	/	585	/	1.2 x 10⁵	18,19
QDot-605	11	/	605	/	5.8 x 10⁵	20
QDot-655	15	/	655	/	~10⁶	21
DYE-LOADED SILICA NANOFLUIDS						
Silica core-shell NPs dye doped	24	Rhodamine B derivative	588	0.36%	7.5 x 10⁵	22
Fluorophore-rich centre + siliceous shell	20-30	TRITC	577	[a]	~ 2-3x QD585	23,24
Mesoporous silica NP encapsulating dye	28	Polymethine cyanine dye LS277	815	1.5	6.2 x 10⁵	25
Silica Core-Surfactant Shell NPs dye doped	24	Rhodamine B derivative	590	~0.36%	1.5 x 10⁵	19,26
FLUORESCENT ORGANIC NANOFLUIDS						
DIRECT ASSEMBLY OF DYE NPs						
FONs built from Thienothiophene dyes	27	Derivative Ila	570	~100%	4 x 10⁷	27
39	Derivative Ib	711	~100%	2 x 10⁷		
FONs built from spirofluorene dyes	14	JD193	716	~100%	9 x 10⁵	28
DENDRIMERS						
Phosphorous-based dendrimers (2-G₂)	Unknown	Quadrupolar 2P photosensitizers	560	[b]	2.1 x 10⁵	29
Phosphorous dendrimers (G1 – G4)	~8	TP-Chromophore	423 - 445	[b]	0.75 x 10⁶ – 3.4 x 10⁶	30
POLYMER-BASED FNP						

PLGA NP						
40						
Rhodamine B (R18)						
590						
5%						
1.8 × 10^7						
PEMA-AspN3 NP						
20						
Rhodamine B (R18)						
590						
50%						
5.1 × 10^7						
PLGA-PEG NP						
66						
DiD						
665						
0.5%						
1.3 × 10^7						
PLGA-PEG, sample T3 (FRET cascade)						
86						
DiO:Dil:DiD (1:1:0.5)						
672						
2.10%						
~10^7						
Carboxylated PSP						
100						
Nile Red						
635						
0.74%						
6.8 × 10^7						
PLGA NP						
38						
Lumogen Red						
605						
5%						
7.5 × 10^6						

LIPID NP / NANOEMULSIONS
Lipid nano-droplets containing Dil
87
Dil-TPB
553
8
7.9 × 10^7
Fluorescent nanoemulsion (in VEA oil)
45
Dioxaborine barbituryl styryl (DBS-C₈)
544
1.5
30 × 10⁶
50
Nile Red derivative (NR668)
563
1.5
15 × 10⁶

FLUORESCENT ORGANIC NANOPARTICLES BASED ON QUASTOMES
QS-D
120
DiD
673
2.3%
1.8 × 10^8
QS-I,D 81 (FRET)
150
Dil:DiD (1:1)
673
4.8%
7.4 × 10^7

[a] wt % not reported, however is given the concentration per particle [TRITC] = 1.43 nM/particle

[b] The photosensitisers are part of the structure of the dendrimers nanoprobe.
Table S8. Estimation of donor-acceptor averaged distance in the Quatsome bilayer for the four formulations.

Molecules per QS	QS-I,D 143	QS-I,D 81	QS-I,D 17	QS-I,D 2
Dil concentration (µM)	104,0	55,0	24,4	2,5
DiD concentration (µM)	99,0	53,0	21,1	2,2
Dil molecules	8652	4900	1073	107
DiD molecules	8236	4722	928	94
Total dye molec.	16888	9623	2000	201
QS surface per dye (nm²)	5	9	42	420
[a] Theoretical average distance between two dyes in movement (nm)	2	3	7	21

[a] Dyes are constantly diffusing through the QSs membrane, at higher loadings dye molecules are closer to each other due to the higher amount of molecules per volume, leading to shorter average distances.
Table S9. Composition of the systems considered in the MD simulations.

	Atoms (total)	Num molec. Dil/DiD//water/CTA/Chol	Sim. Time	Box Size
S1 (DiI-DiI)	53892	2/0/12926/108/108	41.5 ns	32.2 nm2 x 16 nm
S2 (DiD-DiD)	53696	0/2/12858/108/108	40.5 ns	32.1 nm2 x 16 nm
S3 (DiI-DiD)	101248	1/1/23778/216/216	40.6 ns	91.2 nm2 x 16 nm

Composition of the systems considered in the MD simulations, including the total number of atoms, number of molecules of each component, simulation time, and box size (for each dye molecule a Cl$^{-}$ anion is also present and for each CTA$^{+}$ surfactant a Br$^{-}$ counterion is also present).
References

(1) Valeur, B. B.; Nuno, M. Effects of Intermolecular Photophysical Processes on Fluorescence Emission. *Molecular Fluorescence*. 2012, pp 141–179.

(2) Ferrer-Tasies, L.; Moreno-Calvo, E.; Cano-Sarabia, M.; Aguilella-Arzo, M.; Angelova, A.; Lesieur, S.; Ricart, S.; Faraudo, J.; Ventosa, N.; Veciana, J. Quatsomes: Vesicles Formed by Self-Assembly of Sterols and Quaternary Ammonium Surfactants. *Langmuir* 2013, 29 (22), 6519–6528.

(3) Gumí-Audenis, B.; Illa-Tuset, S.; Grimaldi, N.; Pasquina-Lemonche, L.; Ferrer-Tasies, L.; Sanz, F.; Veciana, J.; Ratera, I.; Faraudo, J.; Ventosa, N.; et al. Insights into the Structure and Nanomechanics of a Quatsome Membrane by Force Spectroscopy Measurements and Molecular Simulations. *Nanoscale* 2018, 10 (48), 23001–23011.

(4) Ardizzone, A.; Kurhuzenkau, S.; Illa-Tuset, S.; Faraudo, J.; Bondar, M.; Hagan, D.; Van Stryland, E. W.; Painelli, A.; Sissa, C.; Feiner, N.; et al. Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and Their Use as Probes for Bioimaging. *Small* 2018, 14 (16), 1703851.

(5) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. *J. Comput. Chem.* 2005, 26 (16), 1781–1802.

(6) Gullapalli, R. R.; Demirel, M. C.; Butler, P. J. Molecular Dynamics Simulations of Dil-C18(3) in a DPPC Lipid Bilayer. *Phys. Chem. Chem. Phys.* 2008, 10 (24), 3548–3560.

(7) Cabrera, I.; Elizondo, E.; Esteban, O.; Corchero, J. L.; Melgarejo, M.; Pulido, D.; Córdoba, A.; Moreno, E.; Unzueta, U.; Vázquez, E.; et al. Multifunctional Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO2-Expanded Solvents. *Nano Lett.* 2013, 13 (8), 3766–3774.

(8) Debnath, P.; Chakraborty, S.; Deb, S.; Nath, J.; Bhattacharjee, D.; Hussain, S. A. Reversible Transition between Excimer and J-Aggregate of Indocarbocyanine Dye in Langmuir–Blodgett (LB) Films. *J. Phys. Chem. C* 2015, 119 (17), 9429–9441.

(9) Mustroph, H.; Reiner, K.; Mistol, J.; Ernst, S.; Keil, D.; Hennig, L. Relationship between the Molecular Structure of Cyanine Dyes and the Vibrational Fine Structure of Their Electronic Absorption Spectra. *ChemPhysChem* 2009, 10 (5), 835–840.

(10) Terdalle, S.; Tantray, A. Spectroscopic Study of the Dimerization of Rhodamine 6G in Water and Different Organic Solvents. *J. Mol. Liq.* 2017, 225, 662–671.

(11) Ferreira, L. F. V.; Oliveira, A. S.; Wilkinson, F.; Worrall, D. Photophysics of Cyanine Dyes on Surfaces. A New Emission from Aggregates of 2,2′-Cyanines Adsorbed onto Microcrystalline Cellulose. *J. Chem. Soc. Faraday Trans.* 1996, 92 (7), 1217–1225.

(12) v. Berlepsch, H.; Böttcher, C. H-Aggregates of an Indocyanine Cy5 Dye: Transition from Strong to Weak Molecular Coupling. *J. Phys. Chem. B* 2015, 119 (35), 11900–11909.

(13) Patlolla, P. R.; Das Mahapatra, A.; Mallajosyula, S. S.; Datta, B. Template-Free H-Dimer and H-
Aggregate Formation by Dimeric Carbocyanine Dyes. *New J. Chem.* **2018**, *42* (9), 6727–6734.

(14) Kurhuzenkau, S. *Dyes and Nanoparticles for Bioimaging: Linear Photophysical and Nonlinear Optical Study*, University of Parma, 2017.

(15) Morla-Folch, J.; Vargas-Nadal, G.; Zhao, T.; Sissa, C.; Ardizzone, A.; Kurhuzenkau, S.; Köber, M.; Uddin, M.; Painelli, A.; Veciana, J.; et al. Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging. *ACS Appl. Mater. Interfaces* **2020**, *12* (18), 20253–20262.

(16) Anzola, M.; Painelli, A. Aggregates of Polar Dyes: Beyond the Exciton Model. *Phys. Chem. Chem. Phys.* **2021**, No. 23, 8282–8291.

(17) Andreas, R.; S., K. A. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. *Small* **2016**, *12* (15), 1968–1992.

(18) Wu, Y.; Lopez, G. P.; Sklar, L. A.; Buranda, T. Spectroscopic Characterization of Streptavidin Functionalized Quantum Dots. *Anal. Biochem.* **2007**, *364* (2), 193–203.

(19) Bonacchi, S.; Genovese, D.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. *Angew. Chemie Int. Ed.*** **2011**, *50* (18), 4056–4066.

(20) Melnychuk, N.; Egloff, S.; Runser, A.; Reisch, A.; Klymchenko, A. S. Light-Harvesting Nanoparticle Probes for FRET-Based Detection of Oligonucleotides with Single-Molecule Sensitivity. *Angew. Chemie Int. Ed.* **2020**, *59*, 6811–6818.

(21) Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B.; et al. Photostable Fluorescent Organic Dots with Aggregation-Induced Emission (AIE Dots) for Noninvasive Long-Term Cell Tracing. *Sci. Rep.* **2013**, *3* (1), 1150.

(22) Rampazzo, E.; Boschi, F.; Bonacchi, S.; Juris, R.; Montalti, M.; Zaccheroni, N.; Prodi, L.; Calderan, L.; Rossi, B.; Becchi, S.; et al. Multicolor Core/Shell Silica Nanoparticles for in Vivo and Ex Vivo Imaging. *Nanoscale* **2012**, *4* (3), 824–830.

(23) Larson, D. R.; Ow, H.; Vishwasrao, H. D.; Heikal, A. A.; Wiesner, U.; Webb, W. W. Silica Nanoparticle Architecture Determines Radiative Properties of Encapsulated Fluorophores. *Chem. Mater.* **2008**, *20* (8), 2677–2684.

(24) Ow, H.; Larson, D. R.; Srivastava, M.; Baird, B. A.; Webb, W. W.; Wiesner, U. Bright and Stable Core–Shell Fluorescent Silica Nanoparticles. *Nano Lett.* **2005**, *5* (1), 113–117.

(25) Palantavida, S.; Tang, R.; Sudlow, G. P.; Akers, W. J.; Achilefu, S.; Sokolov, I. Ultrabright NIR Fluorescent Mesoporous Silica Nanoparticles. *J. Mater. Chem. B*** **2014**, *2* (20), 3107–3114.

(26) Rampazzo, E.; Bonacchi, S.; Juris, R.; Montalti, M.; Genovese, D.; Zaccheroni, N.; Prodi, L.; Rambaldi, D. C.; Zattoni, A.; Reschiglian, P. Energy Transfer from Silica Core–Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores. *J. Phys. Chem. B*** **2010**, *114* (45), 14605–14613.

(27) Mastrodonato, C.; Pagano, P.; Daniel, J.; Vaultier, M.; Blanchard-Desce, M. Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters. *Molecules* **2016**, *21* (9), 1227.
(28) Daniel, J.; Godin, A. G.; Palayret, M.; Lounis, B.; Cognet, L.; Blanchard-Desce, M. Innovative Molecular-Based Fluorescent Nanoparticles for Multicolor Single Particle Tracking in Cells. *J. Phys. D. Appl. Phys.* 2016, 49 (8), 84002.

(29) Sourdon, A.; Gary-Bobo, M.; Maynadier, M.; Garcia, M.; Majoral, J.-P.; Caminade, A.-M.; Mongin, O.; Blanchard-Desce, M. Dendrimeric Nanoparticles for Two-Photon Photodynamic Therapy and Imaging: Synthesis, Photophysical Properties, Innocuousness in Daylight and Cytotoxicity under Two-Photon Irradiation in the NIR. *Chem. – A Eur. J.* 2019, 25 (14), 3637–3649.

(30) Mongin, O.; Krishna, T. R.; Werts, M. H. V; Caminade, A.-M.; Majoral, J.-P.; Blanchard-Desce, M. A Modular Approach to Two-Photon Absorbing Organic Nanodots: Brilliant Dendrimers as an Alternative to Semiconductor Quantum Dots? *Chem. Commun.* 2006, No. 8, 915–917.

(31) Reisch, A.; Didier, P.; Richert, L.; Oncul, S.; Arntz, Y.; Mély, Y.; Klymchenko, A. S. Collective Fluorescence Switching of Counterion-Assembled Dyes in Polymer Nanoparticles. *Nat. Commun.* 2014, 5, 4089.

(32) Melnychuk, N.; Klymchenko, A. S. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. *J. Am. Chem. Soc.* 2018, 140 (34), 10856–10865.

(33) Wagh, A.; Qian, S. Y.; Law, B. Development of Biocompatible Polymeric Nanoparticles for in Vivo NIR and FRET Imaging. *Bioconjug. Chem.* 2012, 23 (5), 981–992.

(34) Anil, W.; Faidat, J.; Sanku, M.; Steven, Q.; Estelle, L.; Benedict, L. Polymeric Nanoparticles with Sequential and Multiple FRET Cascade Mechanisms for Multicolor and Multiplexed Imaging. *Small* 2013, 9 (12), 2129–2139.

(35) Behnke, T.; Würth, C.; Laux, E.-M.; Hoffmann, K.; Resch-Genger, U. Simple Strategies towards Bright Polymer Particles via One-Step Staining Procedures. *Dye. Pigment.* 2012, 94 (2), 247–257.

(36) Trofymchuk, K.; Reisch, A.; Shulov, I.; Mély, Y.; Klymchenko, A. S. Tuning the Color and Photostability of Perylene Diimides inside Polymer Nanoparticles: Towards Biodegradable Substitutes of Quantum Dots. *Nanoscale* 2014, 6 (21), 12934–12942.

(37) Kilin, V. N.; Anton, H.; Anton, N.; Steed, E.; Vermot, J.; Vandamme, T. F.; Mely, Y.; Klymchenko, A. S. Counterion-Enhanced Cyanine Dye Loading into Lipid Nano-Droplets for Single-Particle Tracking in Zebrafish. *Biomaterials* 2014, 35 (18), 4950–4957.

(38) Wang, X.; Anton, N.; Ashokkumar, P.; Anton, H.; Fam, T. K.; Vandamme, T.; Klymchenko, A. S.; Collot, M. Optimizing the Fluorescence Properties of Nanoemulsions for Single Particle Tracking in Live Cells. *ACS Appl. Mater. Interfaces* 2019, 11 (14), 13079–13090.