On the Mathematics of Thermodynamics

J. B. Cooper
Johannes Kepler Universität Linz

T. Russell
Santa Clara University

Contents

1 Introduction 3

2 Samuelson’s vision 4

3 Orderings and the axiomatics 6
 3.1 Orderings and utility functions 6
 3.2 The axiomatics 9
 3.3 The existence of absolute temperature and entropy 10

4 Samuelson configurations 10
 4.1 The area condition 10
 4.2 Thermodynamical notation 12
 4.3 Canonical recalibrations 13

5 Thermodynamical identities— an anthologie raisonnée 15
 5.1 The basic machinery 15
 5.2 Higher derivatives 20
 5.3 Derived quantities and thermodynamical identities 20
 5.4 Computing (a,b,c) and $((a,b,c),d,e)$ 21
 5.5 A notational survival kit 23

6 Existence and uniqueness of S-transversals 23
 6.1 A special case 24
 6.2 A reduction 26
 6.3 The general situation 27
 6.4 Examples of the uniqueness and existence results 28
7 Five basic models

7.1 The ideal gas

7.2 A generalisation of the ideal gas

7.3 The van der Waals gas

7.4 The Feynman gas

7.5 A synthesis

7.6 A gallimaufry of formulae

8 Final remarks
Abstract

We show that the mathematical structure of Gibbsian thermodynamics flows from the following simple elements: the state space of a thermodynamical substance is a measure space \(\Omega \) together with two orderings (corresponding to “warmer than” and “adiabatically accessible from”) which satisfy certain plausible physical axioms and an area condition which was introduced by Paul Samuelson. We show how the basic identities of thermodynamics, in particular the Maxwell relations, follow and so the existence of energy, free energy, enthalpy and the Gibbs potential functions. We also discuss some questions which we have not found dealt with in the literature, such as the amount of information required to reconstruct the equations of state of a substance and a systematic approach to thermodynamical identities. We illustrate the power of these methods by giving in detail explicit computations for several real gases which, in the textbooks, are normally only obtained for the simple case of an ideal gas.

This article is dedicated to the memory of Paul A. Samuelson, who had the initial insight which led to our approach and who accompanied its development with a barrage of new questions, ideas and encouragement.

1 Introduction

The subject of thermodynamics is notoriously difficult for mathematicians. V.I. Arnold [Ar] famously put it in a nutshell as follows:

Every mathematician knows that it is impossible to understand any elementary course in thermodynamics.

He continues by explaining that

the reason is that [the] thermodynamics is based on a rather complicated mathematical theory, on [the] contact geometry.

It is the purpose of this note to present an axiomatisation which is mathematically transparent, avoids anthropomorphisms, is elementary (no contact geometry) and preserves all of the structure of the classical theory. It also allows us to carry out explicit computations for the classical cases (ideal gas, van der Waals gas) in a simple and general way which works for virtually any of the standard models for real gases. We illustrate this for an equation of
state suggested by Feynman to allow for the fact that, for real gases, the adiabatic index is far from being constant and for a new model which combines the advantages of the van der Waals and the Feynman gas.

We also discuss a theme which seems to us to be of eminent practical significance but which we have never seen treated in the literature—namely, how much information is required to recreate the equations of state of a substance. Thus we show that knowledge of all of the isotherms and just two adiabats (dually two isotherms and the adiabats) suffices.

Our system of axioms has two basic ingredients—firstly a measure space, i.e., a set with a σ-finite positive measure (which describes the possible states of a thermodynamic system), provided with two pre-orderings, “warmer than” and “adiabatically accessible from”. We show that if these orderings satisfy several physically plausible conditions, then they are induced by numerical functions—empirical temperature and empirical entropy in the thermodynamical case.

We then show that an area condition which was made explicit by the distinguished economist P.A. Samuelson ensures the existence of essentially unique absolute temperature and entropy. These have the property that the four Maxwell relations then hold. If we then interpret these as integrability conditions, we can deduce the existence of the four energy type functions of thermodynamics. This is in contrast to many standard treatments where these relations are deduced from the existence of the energy functions via the Schwarz Lemma. In a final section, we present a unified and systematic approach to the classical thermodynamical identities between derived quantities and discuss some known and new models of real gases in much more detail than one finds in standard treatments.

2 Samuelson’s vision

Samuelson noted that classical thermodynamics and economics are related by a common search for an optimising basis for observed behaviour. In thermodynamics the observed isotherms and adiabats are hypothesised to be derived from the minimisation of a scalar quantity “energy”. In economics, the observed input demand functions are hypothesised to be derived from the maximisation of the scalar quantity “profits”. Deriving a test for these hypotheses then becomes a common task of both disciplines.

Thus we can interpret results of Maxwell as establishing the equivalence of the existence of an energy function which is minimised with the fact that the isotherms and the adiabatics fulfill a simple and natural geometric condition which we called in an earlier paper the “S-condition”—see below for a precise
formulation of the latter.

Such a condition is certainly implicit in Maxwell’s argument. However, it is not stated explicitly. Samuelson claims no priority for having noticed via this diagram that constrained optimisation implies this relationship but we have been unable to find another reference stating the equilibrium condition in such a geometrically simple way. Thus although the above area condition appears implicitly in many areas, we have found no previous instance of its explicit formulation in the literature.

In [Co1] we obtained a number of equivalent formulations of this condition, notably a rather lengthy partial differential equation in two arbitrarily chosen functions which have the given curves as contours (corresponding to empirical temperature and entropy in the thermodynamical situation). We then showed that when this equation is satisfied there are canonical recalibrations of empirical temperature and entropy for which the Jacobian is identically “1” and this implies the existence of an energy function and the validity of the Maxwell relations for the recalibrated quantities. Note that, as in Maxwell’s original treatment, we derive his relations from an area condition in \((p,V)\)-space, the existence of recalibrations with the \(J = 1\) condition being a consequence of the \(S\) condition. This paper can thus be viewed as an attempt to rehabilitate and perhaps clarify the Maxwell approach.

We shall use this theory to discuss existence and uniqueness of solutions to the above partial differential equation. In particular, we show that given one family of curves (say the isotherms) and two other members of the other family, then this uniquely determines the family of adiabats (for a more precise mathematical formulation, see below).

The Maxwell/Samuelson area condition thus establishes an important duality between isotherms and adiabats and, more generally, between any two suitable families of level curves which are derived by minimizing energy in two different constraint regimes. These facts can be used to show how to exploit this duality to derive some explicit formulae for the dual functions (adiabats given isotherms, isotherms given adiabats) for two standard textbook cases, the ideal gas and the van der Waals gas.

Recently there has been renewed interest in the derivation of the Maxwell relations in thermodynamics from the Jacobian identity \(\frac{\partial (p,V)}{\partial (T,S)} = 1\) (see, for example, [Ri]). As is well known, this identity means that the the corresponding map from the \((T,S)\)-plane into the \((p,V)\)-plane is area preserving, and so this approach links thermodynamics to such areas as geometrical mechanics where area-preserving mappings play a central role. Maxwell was well aware that his relations had a geometric foundation and indeed he used Euclidean geometry “to get his four identities in an amazingly obscure way” [Am]. Per-
haps because of its opacity, Maxwell’s use of geometry to derive his relationships seems to have largely disappeared from the physics textbooks. In the discipline of economics, however, exactly this obscure geometrical argument of Maxwell was the subject of the acceptance speech of Paul Samuelson, the first American Nobel laureate in Economics. The Maxwell/Samuelson area condition thus establishes an important duality between isotherms and adiabats and, more generally, between any two families of level curves which are derived by minimizing energy in two different constraint regimes.

3 Orderings and the axiomatics

In this section we discuss briefly a topic which is probably the basic problem of the theory of measurement—when is a physical quantity described (in a meaningful fashion) by a number? If this can be done, then the values of the quantity in question can be compared (as in “warmer than”, “worth more than” etc.) and the basic question is when the converse holds, i.e., when is such an ordering induced by a numerical function (“temperature”, “price”)? This has been examined and re-examined countless times (to our knowledge, the first rigorous formulation of a mathematical theorem of this sort was due to Debreu [De] who gave a sufficient condition for a preordering to be induced by a utility function). We give a brief discussion, firstly for the sake of completeness and secondly because we would like to emphasise what we regard as the central point, namely that the real line has a simple and elegant characterisation as an ordered space. The latter fact is wellknown (although perhaps not quite as wellknown as it should be) but we have never seen it used on the problem we are now addressing. The opening pages of Maxwell’s treatise [Ma] give a lucid treatment of temperature as an ordering.

3.1 Orderings and utility functions

Suppose that we are given a set Ω and a surjective mapping \(f \) from it onto the real line. (Since we are only concerned with the order-theoretic aspects of the latter, we can, at will, replace it by any order-isomorphic set, for example an open interval, in particular the half-line). Then \(f \) induces a preordering \(\leq_f \) where we define: \(x \leq_f y \) if and only if \(f(x) \leq f(y) \). This preordering has the following properties:

1. it is total and has no largest or smallest element;

2. it is order complete;
3. Ω contains a countable, order dense subset.

For our purposes it will be convenient to restate these properties in terms of the family of predecessor sets of elements. Thus, we define, for each $\alpha \in \Omega$ the sets

$$A_\alpha = \{ x \in \Omega : x \leq_f \alpha \}, \quad U_\alpha = \{ x \in \Omega : x <_f \alpha \},$$

which have the following properties:

1. The A_α are distinct and totally ordered by inclusion;
2. the countable subfamily $\{ A_q : q \in \mathbb{Q} \}$ is order dense;
3. $\bigcup A_\alpha = \Omega, \bigcap A_\alpha = \emptyset$;
4. The family of the A_α is closed under intersections and for each α,
 $$A_\alpha = \bigcap \{ A_\beta : \beta > \alpha \}.$$

The family of the U's satisfies the corresponding properties, except that 4. is replaced by

4'. the family is closed under unions and for each α, $U_\alpha = \bigcup \{ U_\beta : \beta < \alpha \}$.

Further, if $\alpha < \beta < \gamma$, then

$$A_\alpha \subset U_\beta \subset A_\beta \subset U_\gamma \subset A_\gamma.$$

(Note that if we start with a family A_α as above, and define $U_\alpha = \bigcup \{ A_\beta : \beta < \alpha \}$, then the above conditions are fulfilled).

We remark at this point that in this paper the inclusion \subset will always be exclusive, i.e., $A \subset B$ implies that A and B are distinct.

We are interested in the following converse statements:

Theorem 1 Suppose that we are given a family \mathcal{A} of subsets of Ω which is totally ordered by inclusion, is closed under arbitrary intersections and satisfies the properties

1. if $A \in \mathcal{A}$, then $A = \bigcap \{ B \in \mathcal{A}, A \subset B \}$;
2. there is a countable subset \mathcal{A}_0 which is order dense in \mathcal{A};
3. $\bigcap \mathcal{A} = \emptyset$ and $\bigcup \mathcal{A} = \Omega$.

7
Then there is a surjective mapping f from Ω onto \mathbb{R} such that \mathcal{A} is the family
\[\{ f \leq \alpha : \alpha \in \mathbb{R} \} . \]

The simple proof of this result follows from the following standard order-theoretical characterisation of the real line:

Theorem 2 Suppose that we have a set A with a total ordering such that

1. A has neither a smallest nor a greatest element;
2. A has a countable, order-dense subset;
3. A is order complete.

Then A is order-theoretically isomorphic to the real numbers.

This in turn follows easily from the following characterisation of the rationals, which is due to Cantor:

Theorem 3 Suppose that we have a set A with a total ordering so that

1. A has neither a smallest nor a greatest element;
2. A is countable;
3. A is dense in itself (i.e., if $x < z$ in A, then there is a $y \in A$ with $x < y < z$).

Then A is order-theoretically isomorphic to the rational numbers.

The idea behind the proof of theorem 1 is now simple. We introduce the following equivalence relationship on Ω: $x \sim y$ if and only if x and y are in exactly the same sets of $A \in \mathcal{A}$, i.e., for each A, $x \in A$ if and only if $y \in A$. Then the quotient space Ω_{\sim} has a natural order structure which satisfies the properties which characterise the real line. The required mapping f is then the canonical one from Ω onto the quotient space.

An important point is that the f in theorem 1 is not uniquely determined. We can replace it by any $F = \phi \circ f$ where ϕ is an arbitrary order isomorphism of the line. We call such an F a *recalibration* of f. In the general situation there is no canonical choice of F. This will be crucial in the following.

There are two refinements of theorem 1 which will be of particular interest to us. Firstly, if Ω is provided with a suitable σ algebra and each $A \in \mathcal{A}$ is measurable (i.e., a member of the algebra—we then say that the ordering is *measurable*), f will be measurable. Secondly, if Ω is a topological space and each $A \in \mathcal{A}$ is closed and, further, for each $A \in \mathcal{A}$, $U = \bigcup \{ B \in \mathcal{A} : B \subset A \}$ is open, then f is continuous. There are corresponding conditions which ensure semi-continuity.
3.2 The axiomatics

We are now in a position to state the four axioms which describe the mathematical structure of a thermodynamical theory:

1. The states of a thermodynamical system are specified by the points of a set \(\Omega \) with a positive \(\sigma \)-finite measure \(\mu \).

2. \(\Omega \) is provided with two families \(\mathcal{A}_{\text{temp}} \) and \(\mathcal{A}_{\text{ent}} \) of measurable subsets which satisfy the conditions of theorem 1 (and so the reorderings are induced by numerical functions which we denote by \(t \) and \(s \)).

3. for each \(A_{-1} \subset A_0 \subset A_1 \) in \(\mathcal{A}_{\text{temp}} \) and \(B_{-1} \subset B_0 \subset B_1 \) in \(\mathcal{A}_{\text{ent}} \) we have
 \[
 \mu((A_1 \setminus A_0) \cap (B_1 \setminus B_0)) \mu((A_0 \setminus A_{-1}) \cap (B_0 \setminus B_{-1})) = \mu((A_1 \setminus A_0) \cap (B_0 \setminus B_{-1})) \mu((A_0 \setminus A_{-1}) \cap (B_1 \setminus B_0)).
 \]

4. Condition 3. means that if \(t \) and \(s \) are the (measurable) functions which induce these orderings, then the image measure of \(\mu \) in \(\mathbb{R}^2 \) under the mapping \(\omega \mapsto (t(\omega), s(\omega)) \) splits multiplicatively. We further assume that this measure is equivalent to Lebesgue measure on the plane (equivalent in the sense of being mutually absolutely continuous).

It follows from this that for each \(A \in \mathcal{A}_{\text{temp}} \), and for each \(A \in \mathcal{A}_{\text{ent}} \),
\[
\mu(A \setminus \bigcup\{B \in \mathcal{A} : B \subset A\}) = 0,
\]
and that for each pair \(A \subset A_1 \) from \(\mathcal{A} \) and \(B \subset B_1 \) from \(\mathcal{B} \) we have
\[
\mu((A_1 \setminus A) \cap (B_1 \setminus B))
\]
is strictly positive and finite.

We remark that these axioms are physically natural and plausible. (In classical thermodynamics, \(\Omega \) is \((p, V)\)-space and the measure is interpreted as mechanical work). Since this article is, despite its title, one in mathematics rather than in physics, we will not go into this in detail; but we emphasise that the area condition, in particular, is not a \textit{deus ex machina} inserted to save the day but has a natural physical justification. A further point, which is important more for philosophical reasons, is that they do not explicitly refer to the real numbers (compare the axioms for Euclidian geometry, particularly in the form as perfected by Hilbert).
3.3 The existence of absolute temperature and entropy

If we only assume 1. of the above axioms, s and t are, as is the function f in the general result, not uniquely determined. A crucial point of our treatment is that in the presence of conditions 3. and 4. above, then there are (essentially) unique such choices, which we call the canonical recalibrations. For the condition 4. means that the image measure has the form $a(u)b(v) \, du \, dv$ where we denote the coordinates in \mathbb{R}^2 by (u, v) and a and b are locally Lebesgue-integrable functions whose reciprocals are also locally integrable. Now if we replace the two functions t and s by the recalibrations $T = \phi \circ t$ and $S = \psi \circ s$, where ϕ is a primitive of $\frac{1}{a}$ and ψ of $\frac{1}{b}$, then we obtain the following result:

Theorem 4 Suppose that the above axioms are satisfied. Then we can choose the functions T and S so that the mapping $\omega \mapsto (T(\omega), S(\omega))$ is area-preserving.

This choice is unique up to suitable affine transformations (loosely speaking, we can choose the zero point and a change of scale—c.f. the difference between the Celsius and Fahrenheit systems).

In thermodynamics, these canonical calibrations are called absolute temperature and entropy (as opposed to empirical temperature and entropy).

We now proceed to show that these axioms imply the usual contents of elementary treatments of thermodynamics.

As we shall see shortly, this choice of calibration is crucial since the fact that the area condition holds is equivalent to each (and hence all) of the four Maxwell relations. Since the latter can be interpreted as integrability conditions, they ensure the existence of the four energy type functions of thermodynamics. (Once again, these are purely mathematical facts, but the underlying motivation from thermodynamics is the principle of Joule-Maxwell on the mechanical equivalence of heat).

4 Samuelson configurations

4.1 The area condition

We emphasise at this point that up till now smoothness (except in the very mild form of measurability) has played no part in our considerations, neither in the formulation of the axioms nor in the derivation of the canonical recalibrations. This is as it should be, for philosophical reasons but also because the presence of phase transitions makes it clear that in real substances we
can and should expect the isotherms and adiabats to have “corners”. We now turn to the case where they are smooth, i.e., we suppose that Ω is the plane \mathbb{R}^2 or some suitable subspace (in thermodynamics usually the positive quadrant) and that the functions which induce the ordering are smooth (in the sense of being infinitely differentiable) as are their level curves. It is convenient to use the mathematically neutral notation x and y for the coordinates in the plane which we shall initially regard as the independent variables and u and v for the two (potential) functions. As shown in [Co1], the area condition is equivalent to the fact that the functions u and v satisfy a certain non-linear partial differential equation of the third order which is displayed explicitly there. Families of level curves satisfying this partial differential equation are thus of great interest in the study of optimizing systems.

In the following, we concentrate on the two foliations consisting of the level curves of u and v, i.e., the isotherms and adiabatics in the thermodynamical context. The area condition can then be formulated as follows. The plane (or a suitable part thereof) is foliated by two families of curves—the level curves of two potential functions u and v. We assume that these are transversal at each point, i.e., the Jacobian $J = (u_x v_y - u_y v_x)$ never vanishes. Since the regions we consider are connected (in the topological sense), J cannot change sign. Hence there is no essential loss of generality if we assume that it is always strictly positive.

Locally the families of curves form a network which is topologically equivalent to the standard network of the plane induced by the parallels to the x and y axes (i.e., the case where $u(x, y) = x$ and $v(x, y) = y$).

We say that the foliations satisfy condition S (or that v is S-transversal to u or that the v-curves are S-transversal to the u curves) if the following holds: for any choice of values $c_{-1} < c_0 < c_1$, and $d_{-1} < d_0 < d_1$ respectively, we have

\[
\frac{\text{area } A}{\text{area } B} = \frac{\text{area } C}{\text{area } D}
\]

where

\[
A = \{(x, y) : c_{-1} < u(x, y) < c_0, d_0 < v(x, y) < d_1\},
\]
\[
B = \{(x, y) : c_0 < u(x, y) < c_1, d_0 < v(x, y) < d_1\},
\]
\[
C = \{(x, y) : c_{-1} < u(x, y) < c_0, d_{-1} < v(x, y) < d_0\},
\]
\[
D = \{(x, y) : c_0 < u(x, y) < c_1, d_{-1} < v(x, y) < d_0\}.
\]

In order to avoid topological problems, we assume that the values of the c's and d's are sufficiently close for the above condition on the network to
be satisfied. This means that the condition we are considering is a local one, as it should be if it is to be equivalent to a partial differential equation. However, it is easy to obtain a global form from the local one.

We refer to the configuration consisting of two foliations which are \(S \)-transversal as a Samuelson configuration. The \(S \)-configuration consisting of the adiabats and isotherms of the ideal gas is one of the most iconic images of modern science.

The precise relation of our result to this question will be made more explicit below. For obvious reasons, we discuss the case of the isotherms for an ideal gas and for a van der Waals gas in some detail. In particular, we show that if a function \(v \) is \(S \)-transversal to the function \(u = xy \) (i.e., the potential defining the isotherms of an ideal gas) and two of \(v \)'s level curves have the form \(xy^\gamma = \text{constant} \) for the same \(\gamma \), then all of them have this form, i.e., the adiabatics are precisely those for the ideal gas with exponent \(\gamma \).

4.2 Thermodynamical notation

Although this article is one on mathematics and not on physics, its main motivation comes, of course, from thermodynamics. For this reason, we recall the standard notation and concepts from classical thermodynamics for the reader’s convenience. The coordinates \(x \) and \(y \) in the neutral notation correspond to \(p \) and \(V \) in Gibbsian thermodynamics. The choice of the latter as independent variables is natural since these two quantities can be directly measured. Also the natural measure on this space (mathematically speaking, two-dimensional Lebesgue measure) has a natural physical interpretation (mechanical work).

Our starting point is the situation where we are given the temperature \(T \) and the entropy \(s \) as functions of the pressure \(p \) and the volume \(V \). We use the lower case \(s \) to indicate that this is empirical entropy. Absolute entropy will be denoted by \(S \). (The standard models do not require a recalibration of temperature so that there will be no need at this point to distinguish between lower and upper case \(T \)—however, we consider below an interesting model due to Feynman where we shall require such a recalibration). We use the following dictionary to jump between the purely mathematical notation and the thermodynamical one: \(u \) corresponds to \(T \), \(v \) to \(s \), \(p \) to \(x \) and \(V \) to \(y \). For example, the thermodynamical equations

\[
T = pV, \quad s = pV^\gamma
\]

of the ideal gas corresponds to
\[u(x, y) = xy, \quad v(x, y) = xy^\gamma. \]

For reasons which will be clear shortly, we use the recalibrated form

\[u(x, y) = xy, \quad v(x, y) = \frac{1}{\gamma - 1} (\ln x + \gamma \ln y) \]

of these equations.

It is a consequence of the Maxwell relations that one can define the following four energy type functions (whose definitions we repeat for the readers’ orientation. They can be found in any textbook on thermodynamics, e.g. [La]). Firstly, the **energy** \(E = E(S, V) \) is a function of entropy and volume. From this one derives the quantities \(T \) (temperature) and \(p \) (pressure) by the equations

\[T = \frac{\partial E(S, V)}{\partial S}, \quad p = -\frac{\partial E(S, V)}{\partial V}. \]

Analogously, one has the **enthalpy** \(H = H(p, S) \), from which one derives the quantities

\[T = \frac{\partial H(p, S)}{\partial S}, \quad V = \frac{\partial H(p, S)}{\partial p}; \]

the **free energy** \(F = F(T, V) \), from which one gets

\[S = -\frac{\partial F(T, V)}{\partial T}, \quad p = -\frac{\partial F(T, V)}{\partial V}; \]

and the **free enthalpy** \(G = G(p, T) \), which gives

\[S = -\frac{\partial G(p, T)}{\partial T}, \quad V = \frac{\partial G(p, T)}{\partial p}. \]

In the German-language literature, e.g. [La], one employs \(\Phi \) for \(G \) and \(W \) for \(H \).

We emphasise that in our treatment the logical development is reversed—the existence of such functions is a consequence of our axiom system, since it follows from the Maxwell relations which in turn are equivalent to the validity of the \(S_1 \)-condition (see below).

4.3 Canonical recalibrations

We saw above that if the level curves of \(u \) and \(v \) satisfy the \(S \) condition, then we can find (essentially unique) recalibrations \(U = \phi \circ u \) and \(V = \psi \circ v \) (where
\(\phi \) and \(\psi \) are diffeomorphisms between, say, intervals of the real line), so that the Jacobian is identically one. If we assume that \(u \) and \(v \) are so calibrated, then this means that the diffeomorphism \((x, y) \mapsto (u(x, y), v(x, y))\) of the plane (or a suitable subset thereof) is area preserving. In this case we say that the functions \(u \) and \(v \) satisfy the \text{S}_1\text{-condition}, or that \(v \) is \text{S}_1\text{-transversal} to \(u \). (The recalibration for the ideal gas which was used above arose in this way).

We now come to the crucial point in our argument. If we write the basic equations \(u = f(x, y) \), \(v = g(x, y) \) in differential form, i.e., as

\[
du = f_1 \, dx + f_2 \, dy, \quad dv = g_1 \, dx + g_2 \, dy
\]

\((f_1, f_2)\) are the partials with respect to \(x, y \) etc.), we can solve for \(du \) and \(dx \), say, to get

\[
du = \frac{f_1}{g_1} \, dv - \frac{J}{g_1} \, dy, \quad dx = \frac{1}{g_1} \, dv - \frac{g_2}{g_1} \, dy,
\]

where \(J \) is the Jacobi-determinant \(f_1 g_2 - f_2 g_1 \), and so we see that the condition \(J = 1 \) is equivalent to the Maxwell relation \(\frac{\partial u}{\partial y} \bigg|_v = -\frac{\partial x}{\partial v} \bigg|_y \) which is an integrability condition and ensures the existence of a function \(h \) of the two variables \(y \) and \(v \) such that \(u \) and \(v \) are the solutions of the equations

\[
x - f(y, v) = 0, \quad u - g(y, v) = 0,
\]

where \(f(y, v) = -\frac{\partial h}{\partial y} \) and \(g(y, v) = \frac{\partial h}{\partial v} \). (We are using the standard conventions employed in thermodynamics—thus \(\frac{\partial u}{\partial y} \bigg|_v \) denotes the partial derivative of \(u \), regarded as a function of \(y \) and \(v \), with respect to \(y \)).

The proof of this result employs the inverse function theorem and so the precise statement is local. The same remark applies to many of the following enunciations.

We shall call such a function \(h \) a \textit{geometric energy function} since in certain situations where the foliations arise as the level curves of suitable physical quantities it corresponds to the energy of a system. However, in such situations, the energy function satisfies some structural properties (monotonicity, convexity) which have natural physical interpretations, and these are of no direct relevance in our considerations below. In a similar manner, we will talk of geometrical adiabatics associated with families of isotherms, or geometrical isotherms associated with families of adiabatics respectively.

The existence of the above energy functions is one of those facts which have been discovered and rediscovered time and again in the history of mathematics. We have traced it as far back as to Gauß [Ga] who used it to describe
all equivalent projections (in the sense of mathematical cartography) and it appears in contact geometry (under the name of a generating function). Of course, as remarked above, it has long been used in thermodynamics.

It follows from the above observation that we have a remarkable symmetry (corresponding to the Maxwell relations in thermodynamics). If we start with a given energy function, we can as above calculate u and v as functions of x and y. The energy function arises from the process of replacing x and y as independent variables by y and v. There are four such possibilities (the interesting ones for us are those with y and v, x and v, y and u and x and u respectively as independent variables), each of which is associated with an “energy function” (as we noted above, in thermodynamics they are called energy, free energy, enthalpy and free enthalpy respectively). Hence any one such function automatically defines three others. (In fact, the situation is more complicated than described here. This is due to the fact that we are relying on global solvability of the corresponding non-linear equations. The general results we use employ the inverse function theorem and so only guarantee local solubility. In many concrete situations which we compute, we do, of course, have global invertibility and hence the kind of symmetry evoked here).

In the case of an ideal gas, the permutations of the various variables can be computed by hand and are valid globally—we include the formulae below for completeness. We have also added a more general case since it displays the fact that the familiar presence of the logarithm in the expression for the entropy of an ideal gas is in a certain sense unique to this case. Already the van der Waals gas offers difficulties here and we shall shortly develop an alternative method of computing these energy functions which is often more practical and doesn’t require us to compute these permutations.

\section{5 Thermodynamical identities—an anthologie raisonnée}

\subsection{5.1 The basic machinery}

We suppose that u and v are given as functions f and g of x and y. Thus $u = f(x, y)$, $v = g(x, y)$ and, when $J = 1$, simple manipulations with differential
forms proved the basic identities:

\[
\begin{align*}
\frac{du}{dx} &= f_1 \frac{dx}{dx} + f_2 \frac{dy}{dy}, & \frac{dv}{dx} &= g_1 \frac{dx}{dx} + g_2 \frac{dy}{dy} \\
\frac{dx}{du} &= g_2 \frac{du}{du} - f_2 \frac{dv}{dv}, & \frac{dy}{dv} &= -g_1 \frac{du}{du} + f_1 \frac{dv}{dv} \\
\frac{du}{dv} &= \frac{f_2}{g_2} \frac{dx}{dx} + \frac{1}{g_2} \frac{dx}{dy}, & \frac{dv}{dv} &= \frac{1}{g_2} \frac{dv}{dx} - \frac{g_1}{g_2} \frac{dx}{dy} \\
\frac{dx}{dv} &= \frac{f_2}{g_1} \frac{dx}{dx} - \frac{1}{g_1} \frac{dx}{dy}, & \frac{dy}{dv} &= \frac{1}{g_1} \frac{dv}{dx} - \frac{f_2}{g_1} \frac{dy}{dy} \\
\frac{dv}{du} &= \frac{g_2}{f_2} \frac{dv}{dx} - \frac{1}{f_2} \frac{dv}{dy}, & \frac{dy}{dv} &= \frac{1}{f_2} \frac{dv}{dx} - \frac{f_2}{f_1} \frac{dy}{dy}
\end{align*}
\]

where we have highlighted the expressions which correspond to the Maxwell
relations.

In thermodynamic notation these are

\[
\begin{align*}
\frac{dS}{dT} &= f_1 \frac{dp}{dp} + f_2 \frac{dV}{dp}, & \frac{dS}{dT} &= g_1 \frac{dp}{dp} + g_2 \frac{dV}{dp} \\
\frac{dp}{dT} &= g_2 \frac{dS}{dS} - g_2 \frac{dS}{dV}, & \frac{dp}{dT} &= -g_1 \frac{dS}{dS} + f_1 \frac{dV}{dV} \\
\frac{dS}{dT} &= \frac{f_2}{f_2} \frac{dS}{dS} + \frac{1}{f_2} \frac{dp}{dp}, & \frac{dV}{dT} &= \frac{1}{f_2} \frac{dS}{dS} - \frac{g_1}{f_2} \frac{dp}{dp} \\
\frac{dS}{dT} &= \frac{g_1}{f_1} \frac{dS}{dS} - \frac{1}{f_1} \frac{dp}{dp}, & \frac{dV}{dT} &= \frac{1}{f_1} \frac{dS}{dS} - \frac{g_1}{f_1} \frac{dp}{dp}
\end{align*}
\]

where we are using the key: \(u \leftrightarrow T, \ v \leftrightarrow S, \ x \leftrightarrow p, \ y \leftrightarrow V \) introduced above.

In order to isolate the underlying patterns, we now use a numerical code. Thus

\[
\begin{align*}
\frac{du}{dx} &\rightarrow 3 \leftarrow T \\
\frac{dv}{dx} &\rightarrow 4 \leftarrow S \\
\frac{dx}{du} &\rightarrow 1 \leftarrow P \\
\frac{dy}{dv} &\rightarrow 2 \leftarrow V.
\end{align*}
\]

Partial derivatives will be denoted by triples in brackets. \((3,1,2)\), for example, denotes \(\frac{du}{dx}|_y\) in the neutral notation, \(\frac{dT}{dp}|_V\) in the thermodynamical one.

In general, \((i,j,k)\) denotes the partial derivative of variable \(i\), regarded as a function of the \(j\)-th and \(k\)-th variable, with respect to the \(j\)-th variable.
By reading off from the above list, we can express each partial derivative of the form \((i, j, k)\) in terms of \(f_1, f_2, g_1, g_2\) as follows:

\[
(3, 1, 2) = f_1, \quad (3, 2, 1) = f_2, \quad (4, 1, 2) = g_1, \quad (4, 2, 1) = g_2;
\]

\[
(1, 3, 4) = g_2, \quad (2, 3, 4) = -g_1, \quad (1, 4, 3) = -f_2, \quad (2, 4, 3) = f_1;
\]

\[
(3, 4, 1) = \frac{f_2}{g_2}, \quad (2, 4, 1) = \frac{1}{g_2}, \quad (3, 1, 4) = \frac{1}{g_2}, \quad (2, 1, 4) = -\frac{g_1}{g_2};
\]

\[
(4, 3, 1) = \frac{g_2}{f_2}, \quad (2, 3, 1) = \frac{1}{f_2}, \quad (4, 1, 3) = \frac{1}{f_2}, \quad (2, 1, 3) = -\frac{f_1}{f_2};
\]

\[
(3, 4, 2) = \frac{f_1}{g_1}, \quad (1, 4, 2) = \frac{1}{g_1}, \quad (3, 2, 4) = \frac{1}{g_1}, \quad (1, 2, 4) = -\frac{g_2}{g_1};
\]

\[
(4, 3, 2) = \frac{g_1}{f_1}, \quad (1, 3, 2) = \frac{1}{f_1}, \quad (4, 2, 3) = \frac{1}{f_1}, \quad (1, 2, 3) = -\frac{f_2}{f_1}.
\]

We can then express any derivative \((a, b, c)\) in terms of ones of the form \((d, 1, 2)\) or \((e, 2, 1)\). Thus the four derivatives with \(x\) and \(v\) as independent variables are as follows:

\[
\begin{align*}
(3, 4, 1) & = \frac{(3, 2, 1)}{(4, 2, 1)} \\
(2, 4, 1) & = \frac{1}{(4, 2, 1)} \\
(3, 1, 4) & = \frac{(4, 2, 1)}{(4, 1, 2)} \\
(2, 1, 4) & = -\frac{(4, 2, 1)}{(4, 2, 1)}
\end{align*}
\]

Then, as above, we can introduce four energy functions \(E_{13}, E_{14}, E_{24}, E_{14}^{14}\) such that \(dE_{24} = u \, dv - x \, dy, dE_{14} = u \, dv + y \, dx, dE_{13} = -v \, du + y \, dx, dE_{23} = -v \, du - x \, dy\) (the superfixes correspond to the independent variables—thus for \(E_{13}\) these are \(x\) and \(u\), i.e., 1 and 3).
We will discuss these in more detail below where the rationale of our notation will be explained. In terms of the classical notation:

\[
\begin{align*}
 dE &= T \, dS - p \, dV \quad \text{(energy)} \\
 dF &= -S \, dT - p \, dV \quad \text{(free energy)} \\
 dG &= -S \, dT + V \, dp \quad \text{(Gibbs potential)} \\
 dH &= T \, dS + V \, dp \quad \text{(enthalpy)}
\end{align*}
\]

i.e., \(E^{13} = G, \ E^{23} = F, \ E^{14} = H \) and \(E^{24} = E \).

If we arrange the energy functions in lexicographic order, i.e., as \(E^{13}, \ E^{14}, \ E^{23}, \ E^{24} \) and denote them by 5, 6, 7 and 8 in this order, then we can incorporate them into our system. For it follows from the definitions and simple substitutions that

\[
\begin{align*}
 dE^{13} &= (y - v f_1)dx - f_2 v dy \\
 dE^{14} &= (u f_1 + y)dx + u f_2 dy \\
 dE^{23} &= -v f_1 dx + (x - v f_2)dy \\
 dE^{24} &= u f_1 dx + (u f_2 - x)dy
\end{align*}
\]

and so

\[
\begin{align*}
 (5, 1, 2) &= y - g f_1, & (5, 2, 1) &= -g f_2 \\
 (6, 1, 2) &= y + f g_1, & (6, 2, 1) &= f g_2 \\
 (7, 1, 2) &= -g f_1, & (7, 2, 1) &= -x - g f_2 \\
 (8, 1, 2) &= f g_1, & (8, 2, 1) &= -x + f g_2.
\end{align*}
\]

One of the potentially irritating features of the thermodynamical identities is that many are related by a simple swapping of the variables while this is accompanied by changes of sign which seem at first sight to be random. The simplest example is displayed by the four Maxwell relations. We can systemise such computations by introducing the symbol \([a, b; c, d]\) for the Jacobi determinant of the mapping \((c, d) \mapsto (a, b)\), i.e.,

\[
[a, b; c, d] = (a, c, d)(b, d, c) - (a, d, c)(b, c, d).
\]

The determinant then takes care of the sign.

For example \([3, 4; 1, 2]\) is the Jacobian \(\frac{\partial(u, v)}{\partial(x, y)} \) and is therefore 1 (which here denotes the number 1), \([3, 2; 4, 1]\) is \(\frac{\partial(u, y)}{\partial(v, x)} \) and therefore \(= \frac{f_1}{g_2} = -\frac{(3, 1, 2)}{(4, 2, 1)} \). Note that there are 1,680 such Jacobians. However, lest the reader despair, we then have the following simple rules for manipulating
these expressions which allow us to express them all in terms of our primitive quantities \((f\) and \(g\) together with their partials and, of course, \(x\) and \(y\)).

\[
[a, b; c, d] = -[b, a; c, d] = -[a, b; d, c]
\]
\[
[c, d; a, b] = \frac{1}{[a, b; c, d]}
\]
\[(a, b, c) = [a, c; b, c]
\]

Further useful rules for computation are

\[
[a, b; c, d] = \frac{[a, b; e, f]}{[c, d; e, f]},
\]
in particular,

\[
[a, b; c, d] = \frac{[a, b; e, b]}{[c, d; e, b]}
\]

and

\[
[a, b; c, d] = \frac{[a, b; 1, b]}{[c, d; 1, b]}
\]

Using these rules, we can compute any of the 336 expressions of the form \((i, j, k)\) (for \(i, j\) and \(k\) running from 1 to 8) by routine computations. For example, if we wish to compute \((8, 3, 5)\) then we proceed as follows: Firstly,

\[
(8, 3, 5) = [8, 5; 3, 5] = \frac{[8, 5; 1, 2]}{[3, 5; 1, 2]}
\]

Now \([8, 5; 1, 2] = (8, 1, 2)(5, 2, 1) - (8, 2, 1)(5, 1, 2)\) and \([3, 5; 1, 2] = (3, 1, 2)(5, 2, 1) - (3, 2, 1)(5, 1, 2)\).

Hence, finally

\[
(8, 3, 5) = \frac{(8, 1, 2)(5, 2, 1) - (8, 2, 1)(5, 1, 2)}{(3, 1, 2)(5, 2, 1) - (3, 2, 1)(5, 1, 2)}
\]

and so can be expressed in terms of \(f\) and \(g\), together with their partials.

As a simple example, we can compute again the basic formulae

\[
(4, 3, 1) = \frac{g_2}{f_2}; \quad (4, 1, 3) = -\frac{1}{f_2}; \quad (2, 3, 1) = \frac{1}{f_2}; \quad (2, 1, 3) = \frac{1}{f_2}.
\]

For example

\[
(4, 3, 1) = [4, 1; 3, 1] = \frac{[4, 1; 1, 2]}{[3, 1; 1, 2]} = \frac{g_2}{f_2}
\]

and the other three terms can be computed analogously.
5.2 Higher derivatives

Some of the thermodynamical identities involve higher derivatives and we indicate briefly how to incorporate these into our scheme. We use the self-explanatory notation \(((a, b, c), d, e)\) for second derivatives. Thus \(((3, 1, 2), 2, 1)\) is just \(f_{12}\). Note that this notation allows for such derivatives as \(\frac{\partial}{\partial T} \left(\frac{\partial E}{\partial p} \right)_V\) which is \(((8, 1, 2), 3, 4)\). Once again, we can express all such derivatives (there are now 18,816 of them) in terms of \(x, y, f, g\) and their partials (now up to the second order) using the chain rule. For

\[((a, b, c), i, j) = ((a, b, c), 1, 2)(1, i, j) + ((a, b, c), 2, 1)(2, i, j) \]

and \((a, b, c), (1, i, j)\) and \((2, i, j)\) can be dealt with using the above tables.

5.3 Derived quantities and thermodynamical identities

The reason why there is a plethora of thermodynamical identities is simple. A large number of significant (and also insignificant) quantities can be expressed or defined as simple algebraic combinations of a very few (our primitive quantities \(x, y, f, g\) and their partials). Hence there are bound to be many relationships between them. Our strategy to verify (or falsify) an identity is to use the above methods to express both sides in terms of these quantities and check whether they agree.

Of course, there are myriads of such quantities and identities and we can only bring a sample. Thus we have

\[c_V = T \left(\frac{\partial S}{\partial T} \right)_V, \]

the heat capacity at constant volume, and

\[c_p = T \left(\frac{\partial S}{\partial T} \right)_p, \]

the heat capacity at constant pressure. In our formalism, \(c_V = f(4, 3, 2)\) and \(c_p = f(4, 3, 1)\), and so, from our tables,

\[c_V = \frac{g_1}{f_1}, \quad c_p = \frac{g_2}{f_2}. \]

Hence for the important quantities \(\gamma = \frac{c_p}{c_V}\) and \(c_p - c_V\) we have \(\gamma = \frac{f_2 g_1}{f_1 g_2}\) and \(c_p - c_V = \frac{1}{f_1 f_2}\).
Further examples are
\[l_V = \left(\frac{\partial S}{\partial V} \right)_T = -(4, 2, 3), \]
the latent heat of volume increase, and
\[l_p = \left(\frac{\partial S}{\partial P} \right)_T = (4, 1, 3), \]
the latent heat of pressure increase.
Further definitions are:
\[m_V = \left(\frac{\partial S}{\partial V} \right)_p = (4, 2, 1) \]
and
\[m_p = \left(\frac{\partial S}{\partial p} \right)_V = -(4, 1, 2). \]
The coefficient of volume expansion at constant pressure is
\[\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{1}{y}(2, 3, 1) \]
and the isothermal bulk modulus of elasticity is
\[B_T = -V \left(\frac{\partial P}{\partial V} \right)_T = -y(1, 2, 3). \]
Then \(K_T = \frac{1}{B_T} = \frac{-1}{y(1, 2, 3)} \) is the isothermal compressibility.
We illustrate our method by verifying the simple identity:
\[c_p - c_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_p. \]
Using the tables above, we can easily compute both sides in terms of our primitive expressions and get \(f_{f_1 f_2} \) in each case.

5.4 Computing \((a, b, c)\) and \(((a, b, c), d, e)\)
We can summarise these results in the following formulae:
\[[a, b; c, d] = \frac{(a, 1, 2)(b, 2, 1) - (a, 2, 1)(b, 1, 2)}{(c, 1, 2)(d, 2, 1) - (c, 2, 1)(d, 1, 2)} \]
and so

\[(a, b, c) = [a, c; b, c] = \frac{(a, 1, 2)(c, 2, 1) - (a, 2, 1)(c, 1, 2)}{(b, 1, 2)(c, 2, 1) - (b, 2, 1)(c, 2, 1)},\]

which allow us to systematically compute any of the derivatives of the form \((a, b, c)\) in terms of our primitives \(x, y, f, g, f_1, f_2, g_1\) and \(g_2\), using the above data basis for expressions of the form \((a, 1, 2)\) and \((a, 2, 1)\).

For the second derivatives we substitute \(\phi = (a, 1, 2)(c, 2, 1) - (a, 2, 1)(c, 1, 2)\)

\[\phi = \frac{(a, 1, 2)(c, 2, 1) - (a, 2, 1)(c, 1, 2)}{(b, 1, 2)(c, 2, 1) - (b, 2, 1)(c, 2, 1)}\]

into the formula

\[\phi, d, e = \frac{(\phi, 1, 2)(d, 2, 1) - (\phi, 2, 1)(d, 1, 2)}{(d, 1, 2)(e, 2, 1) - (d, 2, 1)(e, 1, 2)}\]

to compute \(((a, b, c), d, e)\) in terms of our primitive terms (this time with the first and second derivatives of \(f\) and \(g\)). The advantage of these formulae is, of course, that one can write a simple programme to compute them. (It is always tacitly assumed in the above formulae that the appropriate conditions which allow a use of the inverse function theorem hold).

It remains only to produce the corresponding data basis for second derivatives, i.e. to express all of the non-trivial quantities of the form \(((a, b, c), d, e)\) with \(b, c, d\) and \(e\) either 1 or 2 in terms of \(x, y\) and \(f\) and \(g\) and their partials. Of course, \(((3, 1, 2), 1, 2), ((3, 2, 1), 1, 2), ((3, 2, 1), 1, 2)\) are just \(f_{11}, f_{12}\) (twice) and \(f_{22}\). Similar identities hold for the partials of \(g\).

Further,

\[
\begin{align*}
((5, 1, 2), 1, 2) & = -g_1f_1 - gf_11; \\
((5, 1, 2), 2, 1) & = 1 - g_2f_1 - gf_12; \\
((5, 2, 1), 1, 2) & = -g_1f_2 - gf_12; \\
((5, 2, 1), 2, 1) & = -g_2f_2 - gf_22.
\end{align*}
\]

Note that the two expressions for the mixed partial coincide, since \(f_1g_2 - f_2g_1 = 1\).

Similarly,

\[
\begin{align*}
((6, 1, 2), 1, 2) & = f_1g_1 + fg_{11}; \\
((6, 1, 2), 2, 1) & = 1 + f_2g_1 + fg_{12}; \\
((6, 2, 1), 1, 2) & = f_1g_2 + fg_{12}; \\
((6, 2, 1), 2, 1) & = g_2f_2 + fg_{22}.
\end{align*}
\]
\(((7, 1, 2), 1, 2)\) = \(-g_1f_1 - gf_{11};\)
\(((7, 1, 2), 2, 1)\) = \(-g_2f_1 - gf_{12};\)
\(((7, 2, 1), 1, 2)\) = \(-1 - g_1f_2 - gf_{12};\)
\(((7, 2, 1), 2, 1)\) = \(-g_2f_2 - gf_{22}.\)

and

\(((8, 1, 2), 1, 2)\) = \(g_1f_1 - fg_{11};\)
\(((8, 1, 2), 2, 1)\) = \(g_1f_2 + fg_{12};\)
\(((8, 2, 1), 1, 2)\) = \(-1 + f_1g_2 + fg_{12};\)
\(((8, 2, 1), 2, 1)\) = \(-g_2f_2 + fg_{22}.\)

We emphasise that the numerical code for the various thermodynamical quantities is a mere construct to facilitate their computation (ideally with the aid of suitable software) and that the final goal is to express them all in terms of the basic quantities \((x, y, f, g\) and the partials of the latter). It is then a routine matter to translate these into the standard terminology of thermodynamics if so required.

5.5 A notational survival kit

In this treatment we have used three notations—the mathematically neutral symbols \(x, y, u\) and \(v\) etc. (to develop the mathematical theory which is independent of any reference to thermodynamics), the standard thermodynamical terminology \(p, V\) etc. (for readers interested in the thermodynamical interpretation) and finally the numerical code (to systematise the computations of derived quantities and our approach to thermodynamical identities). For the convenience of the reader we give a dictionary of the relationships between them:

\[
\begin{align*}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
p & V & T & S & G & H & F & E \\
x & y & u & v & E^{13} & E^{14} & E^{23} & E^{24}.
\end{align*}
\]

Of course, \(p\) is pressure, \(V\) volume, \(T\) temperature, \(S\) entropy and \(G, H, F\) and \(E\) are free enthalpy, enthalpy, free energy and energy respectively.

6 Existence and uniqueness of \(S\)-transversals

In this section, we consider in more detail the restraints which are imposed on families of curves by the Samuelson area condition. We begin with a special
situation which we can compute directly and then show how to reduce the
general case to it. We show that, given any family of level curves, there always
exist families of intersecting level curves which satisfy the area condition, and
the method of proof allows us to compute these curves explicitly in many
interesting cases. Speaking loosely, this means that in thermodynamics to
every family of isotherms (adiabats) there correspond families of possible
adiabats (isotherms) (this subject is discussed more carefully below). Since
the area condition is not very demanding, there are infinitely many collections
of level curves which are \(S \)-transversal to a given family; but we show that if
we are given two curves which are transversal to the latter (in the differential
geometric sense) then they can be embedded in an essentially unique fashion
into a system of \(S \)-transversal curves. This allows us, for example, to write
down all families which are \(S \)-transversal to the set of isotherms for the van
der Waals gas. We include some examples which we found to be of interest
in a later section.

6.1 A special case

We begin by investigating the questions of existence and uniqueness when
one of the families consists of lines parallel to one of the axes, in this case, the
\(x \)-axis. For this example, elementary computation shows that, as claimed,
we can always describe all other possible families of level curves which are \(S \)-
transversal to the first one. Moreover, in this case, it is also straightforward to
show that knowledge of two curves determines the whole family. Remarkably,
as we show in the next section, the general case can be reduced to this one,
thus allowing a simple derivation of the basic theorems. If the first family
of curves is calibrated, i.e., they are the level curves of a particular potential
function \(u \), then any single curve suffices to determine the second family.

So let the \(v \)-foliation consist of the lines parallel to the \(x \)-axis (i.e., where
\(v(x, y) = y \)), where in order to avoid topological difficulties we suppose that
our potentials are defined on a product of intervals. (We are exchanging the
roles of \(u \) and \(v \) here and will compute all \(u \)-functions which are transversal
to this \(v \)).

Then we know that if the foliation induced by the potential \(u \) is \(S \)-
transversal, we can recalibrate \(u \) and \(v \) so that the Jacobian is identically
one. If we assume that the \(u \) foliation has already been recalibrated and that
the recalibration of \(v \) is \(v(x, y) = c(y) \), then a straightforward computation
shows that \(J = c'(y)u_x \) and so \(u \) must have the form:

\[
u(x, y) = a(y)x + b(y)
\]
where \(b \) is an arbitrary smooth function of one variable and \(a \) is such that
\[a(y)c'(y) = 1. \]

We can state this formally as follows:

Theorem 5 The function \(u \) is \(S_1 \)-transversal to the function \(v = c(y) \) if and only if \(u \) has the form
\[u(x, y) = a(y)x + b(y) \text{ where } a(y) = \frac{1}{c'(y)}. \] (Note that we are assuming here that \(c \) is a diffeomorphism between two intervals of the line). The function \(u \) is \(S \)-transversal to the function \(v = y \) if and only if \(u \) has the form
\[u(x, y) = \phi(a(y)x + b(y)) \]
where \(\phi \) is a diffeomorphism between two intervals of the line, and \(a \) and \(b \) are any two smooth functions of one variable, for which \(a \) has no zeros.

Since it will often be convenient to switch the roles of \(u \) and \(v \), or \(x \) and \(y \) respectively, in the above, we document the corresponding formulae:
\[u(x, y) = c(x), \quad v(x, y) = a(x)y + b(x). \]

We now consider the question of uniqueness in the above situation. By virtue of the general theory developed in the next section, this will suffice to cover the general case. Our starting point is the typical pair of \(S_1 \)-transversal functions
\[u(x, y) = a(y)x + b(y), \quad v(x, y) = c(y) \]
for arbitrary (generic) functions \(a \) and \(b \) (of one variable), with \(ac' = 1 \) (i.e., \(c \) is a primitive of \(\frac{1}{a} \)) for the case where the \(v \)-lines are the parallels to the \(x \)-axis. We now suppose that we have two transversals to the \(x \)-axis which we want to incorporate into a family of geometric adiabatics. We can suppose that the curves correspond to the values \(u = 0 \) and \(u = 1 \). If \(c = 0 \), then we have
\[x = -\frac{b(y)}{a(y)} \]
and, for \(c = 1 \),
\[x = \frac{1 - b(y)}{a(y)}. \]

We note now that if the \(u \)-level curves are to be \(S_1 \)-transversal to the parallels to the \(x \)-axis, then they are transversal in the differential geometrical sense and so can be regarded as the graphs of functions (more precisely, \(x \) as a function of \(y \)). Hence if we suppose that the “adiabatics” \(c = 0, c = 1 \) have
the form \(x = f_0(y) \), and \(x = f_1(y) \), then a simple computation shows that the general adiabatic has the form \(u = c \), where

\[
\frac{f_0(y)}{f_1(y) - f_0(y)}
\]

6.2 A reduction

We now show that the general case can be reduced to the previous special case. We begin with the remark that if we have any smooth non-vanishing function \(f \) of two variables, say on the product of two intervals, then we can always find a smooth vector field \((u,v)\) which has \(f \) as its Jacobi function.

Probably the easiest way to do this, as was pointed out to us by Michael Schmückenschläger, is to use a field of the form

\[
u(x,y) = \phi(x,y), \quad v(x,y) = \psi(y)
\]

with \(\phi \) a smooth function of two variables, \(\psi \) one of one variable. (Such fields are called Knothe fields). The above form also has the advantage of leaving the level curves \(y = d \) invariant. The Jacobian of the above function is \(\phi_x(x,y)\psi'(y) \) and we can, of course, easily choose the two free functions in such a way that this product gives \(f \). For example, in the case where \(f \) is the constant function 1, then we can take for \(\psi \) any smooth function of one variable and then \(\phi \) is determined up to a function of \(y \) alone, i.e., has the form \(\phi(x,y) = \frac{1}{\psi(y)} x + \chi(y) \) where \(\chi \) is an arbitrary smooth function of one variable.

Using this result, we can prove the following:

Theorem 6 Suppose that we have a foliation of part of the plane by the level curves of a suitable function \(u(x,y) \) (with non-vanishing gradient) which is defined on a domain (i.e., an open, connected subset) \(G \) in \(\mathbb{R}^2 \). Then we can linearise \(u \) locally by means of an area-preserving mapping. More precisely, for each point \((x_0,y_0)\) in \(G \) we can find a neighbourhood \(\tilde{G} \) of the point in \(G \) and a function \(v(x,y) \) on \(\tilde{G} \) which is such that the mapping \((x,y) \mapsto (u(x,y),v(x,y)) \) is area-preserving and maps the lines \(u = c \) onto lines parallel to the \(y \)-axis.

\footnote{When we include such a formula we are, of course, tacitly assuming that the operations carried out on the generic functions involved are legitimate. In this case this means explicitly that we are assuming that the derivative of \(\psi \) never vanishes, i.e., that \(\psi \) is a diffeomorphism. This type of situation will occur frequently in the following and since it would be tedious to state the explicit assumptions on the generic functions which arise, we will rely on the reader to fill in the details.}
This is another result which is part of mathematical folklore.

In order to prove it, we start with a foliation consisting of the level curves of a potential \(u \) and a point \((x_0, y_0)\). Since the gradient of \(u \) never vanishes, we can find a function \(v \) which is transversal to \(u \) in a neighbourhood of this point and we introduce the new variables \(X = u(x, y) \), \(Y = v(x, y) \). By the inverse function theorem we can suppose that this can be solved to obtain \(x \) and \(y \) as smooth functions of \(X \) and \(Y \), say \(x = a(X, Y) \), \(y = b(X, Y) \).

We now introduce further new variables \(\tilde{X} \) and \(\tilde{Y} \) of the form

\[
\tilde{X} = \phi(X), \quad \tilde{Y} = \psi(X, Y)
\]

for suitable smooth functions \(\phi \) and \(\psi \) of one and two variables respectively. Then elementary calculations show that the Jacobian of \(\tilde{X} \) and \(\tilde{Y} \) with respect to the variables \(x \) and \(y \) (but expressed in terms of the variables \(X \) and \(Y \)) is

\[
\phi'(X)\psi_2(X, Y)J(X, Y)
\]

where \(J(X, Y) \) is the Jacobian of \((u, v) \) with respect to \(x \) and \(y \), expressed as a function of \(X \) and \(Y \) via \(a \) and \(b \), i.e., \(J(X, Y) = J\left(a(X, Y), b(X, Y)\right) \)

where \(J(x, y) = u_x(x, y)v_y(x, y) - u_y(x, y)v_x(x, y) \). We can clearly arrange for this to be identically one by using the freedom in the choice of \(\phi \) and \(\psi \) and this completes the proof.

6.3 The general situation

Using these results, we can now extend the existence and uniqueness results from the special case in which one of the foliations is parallel to the axis to any given \(u \)-foliation.

Since the method is explicit we can also use it to find all possible \(S \)-transversal systems for several interesting special types of \(u \)-curves. The method used is as follows: Suppose that we can find an area-preserving mapping which maps the \(u \)-curves onto the lines parallel the the \(x \)-axis. Then we can transfer the above example to this situation. We remark that this is in a certain sense a rigorous justification for a ploy of Maxwell’s, who argued from this special situation (for reasons of simplicity), assuming that his conclusions then carried over to the general case (cf. the passage: “For the sake of the distinctness in the figure, I have supposed the substance to be partly in the liquid and partly in the gaseous state, so that the isothermal lines are horizontal, and easily distinguished from the adiabatic lines, which slope downward to the right. The investigation, however, is quite independent of any such restriction as to the nature of the working substance”, [Ma], p. 155).
We state this formally as a theorem:

Theorem 7 Suppose that we are given a foliation of the plane which we take to be the level curves of a suitable function u. Then there exists (locally) a family of curves (the level curves of a potential v) which are S-transversal to the level curves of u. Furthermore, given any two curves which are transversal to the level curves of u, then there exists a unique family of S-transversal curves which include the given two.

6.4 Examples of the uniqueness and existence results

We bring some explicit computations in connection with the question of the existence and uniqueness of S-transversals to some simple cases.

The ideal gas: We begin with the case of the adiabatics for the ideal gas. In this case we use the new variables $X = xy, \ Y = \frac{1}{\gamma - 1} \log(xy)$ to reduce to the simple case of transversals to the parallels to the coordinate axes.

Then we have that two functions u and v where v is a recalibration of xy^{γ} are S_1-transversal if and only if they have the form

$$u(x, y) = a \left(\frac{1}{\gamma - 1} (\ln x + \gamma \ln y) \right) xy + b \left(\frac{1}{\gamma - 1} (\ln x + \gamma \ln y) \right),$$

$$v(x, y) = c \left(\frac{1}{\gamma - 1} (\ln x + \gamma \ln y) \right),$$

where c is a primitive of $\frac{1}{a}$.

Similarly, two functions u and v where u is a recalibration of xy are S_1-transversal if and only if they have the form

$$u(x, y) = c(xy), \quad v(x, y) = a(xy) \left(\frac{1}{\gamma - 1} (\ln x + \gamma \ln y) \right) + b(xy)$$

where c is again a primitive of $\frac{1}{a}$.

From these formulae it is easy to give the general form of functions u which are S-transversal to the adiabatics of the ideal gas resp. functions v which are S-transversal to its isotherms.

At this point we bring a concrete example related to the ideal gas which was constructed to answer a question of Samuelson. Suppose that we are
given \(v(x, y) = xy \) and require an \(S \)-transversal function \(u \) which interpolates between the curves \(xy^2 = 1 \) and \(xy^3 = 10 \) (i.e., two adiabatics corresponding to distinct cases of the ideal gas). Then a simple computation shows that

\[
u(x, y) = \frac{2 \ln(xy^2)}{\ln(10xy)}
\]

is such that the contour \(u = 0 \) is the first curve, while \(u = 1 \) is the second one. Interestingly, this then forces \(u \) to contain adiabatics of all the intermediary exponents, as the reader can easily verify. (This is an example where the representations are only valid locally, since any two curves of the form \(xy^2 = c \) and \(xy^3 = d \) will cross).

Analogous considerations lead to the following result:

Theorem 8 Let \(v \) be \(S \)-transversal to \(u = xy \). Then if two level curves of \(v \) have the form \(xy^\gamma \) constant for a fixed \(\gamma \), \(v \) is a recalibration of \(xy^\gamma \).

The van der Waals gas: We now turn to the van der Waals equation. In order to simplify the notation, we use the following solutions of the Maxwell relationships:

\[
u = \frac{1}{\gamma - 1} \left(\ln \left(x + \frac{1}{y^2} \right) + \gamma \ln(y - 1) \right).
\]

In this case we use the new variables

\[
X = \left(x + \frac{1}{y^2} \right) (y - 1)
\]

and

\[
Y = \frac{1}{\gamma - 1} \left(\ln \left(x + \frac{1}{y^2} \right) + \gamma \ln(y - 1) \right)
\]

to reduce to the simple case.

Then we have that two functions \(u \) and \(v \) where \(v \) is a recalibration of \(Y \) are \(S_1 \)-transversal if and only if they have the form

\[
u(x, y) = a(Y)X + b(Y), \quad v(x, y) = c(Y)
\]

where \(c \) is a primitive of \(\frac{1}{a} \).
Similarly, two functions \(u \) and \(v \) where \(u \) is a recalibration of \(xy \) are \(S_1 \)-transversal if and only if they have the form

\[
u(x, y) = c(X), \quad v(x, y) = a(X)Y + b(X)
\]

where \(c \) is again a primitive of \(\frac{1}{a} \).

From these formulae it is again easy to give the general form of functions \(u \) which are \(S \)-transversal to the adiabatics of the van der Waals gas, or functions \(v \) which are \(S \)-transversal to its isotherms.

Similar methods can be applied to the Feynman gas which are now discussed.

7 Five basic models

We conclude by collecting some explicit computations for various gas models: beginning with the ideal gas.

7.1 The ideal gas

Here the recalibration is \(u = xy, \ v = \frac{1}{\gamma - 1}(\ln xy^\gamma) \). In this case we can explicitly compute the relationships, which are obtained by permuting the variables to get:

\[
x = e^{(\gamma - 1)v}y^{-\gamma}, \quad u = e^{(\gamma - 1)v}y^{-\gamma + 1};
\]

\[
x = \frac{u}{y}, \quad v = \frac{1}{\gamma - 1}\ln u + \ln y;
\]

\[
y = \frac{u}{x}, \quad v = \frac{\gamma}{\gamma - 1}\ln u - \ln x;
\]

\[
y = e^{\frac{1}{\gamma - 4}}x^{\frac{1}{\gamma - 4}}, \quad y = e^{\frac{1}{\gamma - 4}}x^{\frac{1}{\gamma - 4}}.
\]

The reader can check that the four Maxwell relations are indeed valid and thus compute the corresponding energy functions. We shall shortly describe a simpler and more systematic way of doing this.

7.2 A generalisation of the ideal gas

We now consider a simple generalisation of the ideal gas. This will presumably not describe any real gas (but see the remarks on Nernst’s law below): we include it since the results are particularly transparent. The starting point is the equation

\[
u = x^a y^b, \ v = x^c y^d.
\]
with \(a \neq 1, b \neq 1\) and \(ab - cd \neq 0\). The canonical recalibration is

\[
U = \frac{1}{\sqrt{J}} \left(\frac{1}{d - c - J + 1} \right) x^{a(d-c-J+1)} y^{b(d-c-J+1)}
\]

\[
V = \frac{1}{\sqrt{J}} \left(\frac{1}{a - b - J + 1} \right) x^{c(a-b-J+1)} y^{d(a-b-J+1)}.
\]

where \(J = ad - bc\), and so, for the special case \(J = 1\), (which we can always achieve by means of a simple recalibration),

\[
\frac{1}{d - c} \quad x^{a(d-c)} y^{b(d-c)}
\]

\[
\frac{1}{a - b} \quad x^{c(a-b)} y^{d(a-b)}
\]

We have included this example since the results have a pleasing simplicity and symmetry (see, in particular, the further computations below). The case of an ideal gas can be obtained by setting \(a = c = 1\) and letting \(b\) tend to 1 but there are some subtleties involved, as the presence of the logarithmic term in the recalibration of the ideal gas would suggest.

7.3 The van der Waals gas

The natural calibrations are

\[
u = \left(x + \frac{a}{y^2} \right) (y - b), \quad v = \frac{1}{\gamma - 1} \ln \left(\left(x + \frac{a}{y^2} \right) (y - b)^\gamma \right).
\]

In this case the computations for computing \(E^{23}\) and \(E^{24}\) can be carried out by hand and we get:

\[x - \frac{u}{y - b} + \frac{a}{y^2}, \quad v = \ln(y - b) + \frac{1}{\gamma - 1} \ln u,
\]

and

\[x = e^{(\gamma - 1)v} (y - b)^{-\gamma}, \quad u = e^{(\gamma - 1)v} (y - b)^{1-\gamma}.
\]

Again this can be used to compute the two energies, but see below for a more systematic treatment which gives all such functions.

7.4 The Feynman gas

Here \(u = xy\) and \(v = xy^{\gamma(xy)}\) for a function \(\gamma\) of one variable. This example was introduced by Feynman (see [Fe]) to cope with the fact that, in a real
gas, the adiabatic index depends on temperature. This is a case where one genuinely requires the equation in [Co1] to verify that it is a Samuelson configuration. This turns out to be the case and the recalibrations (which are not computed by Feynman) are

\[U = \phi(xy) \quad V = \ln(xy^{\gamma(xy)}) \]

where \(\phi \) is a primitive of \(\frac{1}{\gamma - 1} \). This is the first example which we have met where we genuinely have to recalibrate temperature (i.e., Boyle’s law holds only in the weak form that \(pV \) is constant for constant temperature). For a discussion of the relevance of such recalibrations, see Chang [Ch]. The recalibrations introduced provide an at least qualitative explanation of the diagram on p. 78 of this reference, which displays comparative data of Le Duc on spirit thermometers.

Here we can solve for the cases where \(u \) and \(x \), or \(u \) and \(v \), are the independent variables. (We would like to thank P.F.X. Müller who pointed out this passage in Feynman’s text to us).

7.5 A synthesis

We can include all of the above (except the second example) in the form:

\[u = \left(x + \frac{a}{y^2} \right) (y - b) \quad v = \left(x + \frac{a}{y^2} \right) (v - b)^{\gamma(u(x,y))}. \]

with recalibrations

\[u = \phi \left(\left(x + \frac{a}{y^2} \right) (y - b) \right) \quad v = \ln \left(\left(x + \frac{a}{y^2} \right) (v - b)^{\gamma(\phi^{-1}(u(x,y)))} \right). \]

Once again, \(\phi \) is a primitive of \(\frac{1}{\gamma - 1} \). This is another case where it seems hopeless to check that this represents a Samuelson configuration without the theory and computational methods developed here.

7.6 A gallimaufry of formulae

For completeness, we now bring a list of the expressions \((i, 1, 2)\) and \((i, 2, 1)\) for the substances introduced above. We emphasise again that we include these results since they allow us to compute the various energy functions and further thermodynamical quantities without explicitly calculating the various permutations of the variables implicit in the definitions. We have found no indication in the literature that this is possible. Again we start with the ideal gas:
The ideal gas: For the ideal gas

\[
\begin{align*}
(5, 1, 2) &= y - \frac{y \log (xy^\gamma)}{\gamma - 1}; \\
(5, 2, 1) &= -\frac{x \log (xy^\gamma)}{\gamma - 1}; \\
(6, 1, 2) &= \frac{y\gamma}{\gamma - 1}; \\
(6, 2, 1) &= \frac{\gamma x}{\gamma - 1}; \\
(7, 1, 2) &= -\frac{(y \log (xy^\gamma))}{(\gamma - 1)}; \\
(7, 2, 1) &= -x - \frac{(x \log (xy^\gamma))}{(\gamma - 1)}; \\
(8, 1, 2) &= \frac{y}{(\gamma - 1)}; \\
(8, 2, 1) &= \frac{x}{(\gamma - 1)}.
\end{align*}
\]

The generalisation of the ideal gas: Here

\[
\begin{align*}
(5, 1, 2) &= \frac{by}{b - a}, & (5, 2, 1) &= \frac{bx}{b - a}, \\
(6, 1, 2) &= \frac{dy}{d - c}, & (6, 2, 1) &= \frac{dx}{d - c}, \\
(7, 1, 2) &= \frac{ay}{b - a}, & (7, 2, 1) &= \frac{ax}{b - a}, \\
(8, 1, 2) &= \frac{cx}{d - c}, & (8, 2, 1) &= \frac{cy}{d - c}.
\end{align*}
\]

Hence the energy functions are given by

\[
\begin{align*}
E^{12} &= \frac{bxy}{b - a}, & E^{13} &= \frac{dxy}{d - c}, & E^{23} &= \frac{axy}{b - a} \text{ and } E^{24} &= \frac{cy}{d - c}.
\end{align*}
\]

Note the pleasing symmetry of these results. We have found them useful as a litmus test for the validity of thermodynamical identities.

We remark here that although this model may not correspond to any real gas, it does have the advantage that it satisfies Nernst’s law—the third law of thermodynamics in the precise form given in [La]—i.e., that if we express the entropy \(S \) as a function of \(p \) and \(T \) or of \(V \) and \(T \), then we get the form \(S = \dot{P}_1(p)T^n \) or \(S = \dot{P}_2(p)T^m \) for suitable positive indices \(n \) and \(m \) and
functions P_1 and P_2 of pressure. We know of no other explicit model for a real gas which has this property.

A non-example Continuing on the theme of Nernst’s law, we note that we have examined the Feynman model in this respect (for natural choices of γ) and found that it again failed to reproduce this phenomenon—the problem lies in the logarithm term in the recalibration of entropy. In view of the above remark, it was then tempting to combine the Feynman model and the above generalisation of the ideal gas, i.e. to consider the case

\[u = x^a y^b, \quad v = x^c y^{\gamma(x^b)}. \]

Unfortunately, these functions do not normally satisfy the S-condition. Despite this disappointment, this computation at least shows the usefulness of the P.D.E. characterisation of the latter condition, in particular that it can be used to eliminate possible models which cannot be recalibrated to satisfy the Maxwell relations.
The van der Waals gas:

\[(5, 1, 2) = \frac{(-b + y)}{(\gamma - 1)};\]
\[(5, 2, 1) = \frac{(-2(y - b)a + ay^2 + x) \log \left(\frac{a}{y^2 + x} (y - b)^\gamma \right)}{\gamma - 1};\]
\[(6, 1, 2) = y - \frac{((-b + y) \log \left((x + \frac{a}{y^2})(-b + y)^\gamma \right))}{(\gamma - 1)};\]
\[(6, 2, 1) = -\frac{(-2(y - b)a + ay^2 + x) \log \left(\frac{a}{y^2 + x} (y - b)^\gamma \right)}{\gamma - 1};\]
\[(7, 1, 2) = \frac{(y - b) \log \left(\left(\frac{a}{y^2} + x \right) (y - b)^\gamma \right)}{\gamma - 1};\]
\[(7, 2, 1) = \frac{(y - b)^{1-\gamma} \left(\gamma \left(\frac{a}{y^2} + x \right) (y - b)^{\gamma-1} - \frac{2a(y - b)^\gamma}{y^3} \right)}{\gamma - 1};\]
\[(8, 1, 2) = \frac{y - b}{\gamma - 1}i;\]
\[(8, 2, 1) = \frac{(y - b)^{1-\gamma} \left(\gamma \left(\frac{a}{y^2} + x \right) (y - b)^{\gamma-1} - \frac{2a(y - b)^\gamma}{y^3} \right)}{\gamma - 1} - x.\]
The Feynman gas:

\begin{align*}
(5, 1, 2) &= y - y \log (xy^{\gamma(xy)}) \phi'(xy); \\
(5, 2, 1) &= -x \log (xy^{\gamma(xy)}) \phi'(xy); \\
(6, 1, 2) &= \frac{\phi(xy) (y^{\gamma(xy)} + x \log(y) \gamma'(xy)y^{\gamma(xy)+1}) y^{-\gamma(xy)}}{x} + y; \\
(6, 2, 1) &= \phi(xy) \left(\frac{\gamma(xy)}{y} + x \log(y) \gamma'(xy) \right) ; \\
(7, 1, 2) &= -y \log (xy^{\gamma(xy)}) \phi'(xy); \\
(7, 2, 1) &= -\log (xy^{\gamma(xy)}) \phi'(xy)x - x; \\
(8, 2, 1) &= \frac{y^{-\gamma(xy)} \phi(xy) (y^{\gamma(xy)} + x \log(y) \gamma'(xy)y^{\gamma(xy)+1})}{x}; \\
(8, 2, 1) &= \phi(xy) \left(\frac{\gamma(xy)}{y} + x \log(y) \gamma'(xy) \right) - x.
\end{align*}

In reading Feynman’s treatment, one gains the impression that he is tacitly assuming that the formulae for his model are obtained simply by plugging a variable \(\gamma \) into those for the ideal gas. The presence of terms involving the derivative of \(\gamma \) in the above show that this is not the case (for example, in the formulae for the important quantities \(c_p, c_V \) and their difference and quotient).

It is an easy task to compute the above quantities for the combined Feynman and van der Waals gas (using Mathematica), but the results are too elaborate to be included here.

8 Final remarks

The mathematics of thermodynamics have never ceased to fascinate mathematicians, who generally experience a sense of unease at the standard representations, in particular of the laws of thermodynamics as an axiom system (see, for example, [Se] for a critical evaluation). There have been many attempts to put them on a solid basis. We mention, in particular, Caratheodory [Ca1] and [Ca2], Lieb and Yngvason [Li] and Truesdell [Tr]. We have, of course, been influenced by these treatments and, inevitably, there are certain common points. However, we believe that our approach is sufficiently original to justify its presentation. Thus in [Li] the ordering “adiabatically accessible from” is centre stage but apart from that the method is completely different. We know of two systematic approaches to thermodynamical identities (Bridgman [Br] and Jayne [Ja]) and they have influenced our treatment.
Thus the idea of using Jacobians to derive identities can be found in the latter.

In conclusion, we would like to express our gratitude to Iain Fraser and Elena Kartashova, who read and commented on an earlier version of our manuscript.

References

[Am] Ambegokoar, V., Marman, N.D., Answer to question 78, Amer. J. Physics 70(2), p. 105.

[Ar] Arnold, V.I., Contact geometry: the geometrical method of Gibb’s thermodynamics, in Proc. of the Gibbs symposium, Yale University, May 15-17 (1989), 163-179.

[Br] Bridgman, P., A complete collection of thermodynamical formulas

[Ca1] Caratheodory, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Ann. 67 (1909) 355-386.

[Ca2] Caratheodory, C., Über die Bestimmung der Energie und der absoluten Temperature mit Hilfe von reversiblen Prozessen, Sitzungsbericht Preuss. Akad. Wiss., Phys. Math. Kl. (1925) 39-47.

[Ch] Chang, H., Inventing Temperature (Oxford, 2004)

[Co1] Cooper, J.B., Russell, T., Samuelson, P.A., Characterizing an area condition associated with minimizing systems, in Economic Theory, Dynamics and Markets: Essays in honour of Ryuzo Sato (Editors T. Nageshi, R.V. Ramachandran and K. Mino), Norwell Mass., Kluwer 391-403.

[Co2] Cooper, J.B., Russell, T., The surprising ubiquity of the Samuelson configuration (in Szenberg et al (eds), Samuelson economics in the 21st century).

[De] Debreu, G., Topological Methods in Cardinal Utility Theory, in Mathematical Methods in the Social Sciences, 1959, Kenneth J. Arrow, Karlin S. and Suppes P. Ed., pp. 16–26.

2In Jayne’s notation $[A, B]$ corresponds to our $[A, B; x, y]$ for an unspecified pair of quantities x and y. The latter can be freely chosen for any specific computation and so are not explicitly documented in his symbolism. Regardless of this choice, we always have that our $[A, B; C, D]$ is his $[A, B]/[C, D]$, which establishes the relationship between our notation and that of Jayne.
[Fe] Feynman, R.P., Leighton, R., Sands, M., The Feynman lectures on Physics (Reading, 1963).

[Ga] Gauß, C.F., Werke Bd. 8, p. 373.

[Ja] Jayne, E.T., Thermodynamics (unpublished, but the first three chapters available online)

[La] Landau, L.D., Lipschitz, E.M., Statistische Physik, Teil I (Berlin, 1978)

[14] Lieb, E., Yngvason, J., The entropy of classical thermodynamics, Entropy, 147-195, Princeton Series Applied Mathematics.

[Ma] Maxwell, J.C., The theory of heat (Longman Green, 1891) 10th ed., p. 165.

[Ri] Ritchie, D., A simple method for deriving Maxwell’s relations, Amer. J. Phys. 36 (8) 760 (1968).

[Sa1] Samuelson, P.A., A Basic Partial Differential Equation to Test NonIntrospectively the Expect {Utility} Hypothesis, Forthcoming.

[Sa2] Samuelson, P.A., Rigorous observational positivism: Klein’s envelope aggregation: thermodynamics and economic isomorphisms, in Global Econometrics : Essays in honor of Lawrence R. Klein (Editors F. Gerald Adams and Bert G. Hickman), Cambridge Mass., The MIT Press, 1-38.

[Sa3] Samuelson, P.A., Maximum Principles in Analytical Economics, American Economics Review, 62 (3),(1972) 249-262.

[Se] Serrin, J., The nature of thermodynamics, Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991) 455-472.

[Tr] Truesdell, C., Bharatha, S., Classical thermodynamics as a theory of heat engines, Springer (1977).