The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M_B luminosity of -5.52 ± 0.39 mag and a $B - I$ color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10^{-12} gc m$^{-1}$. Assuming a wind velocity of 10^3 km s$^{-1}$, we derive a progenitor mass-loss rate of 3×10^{-8} M_\odot yr$^{-1}$. Our observations, taken as a whole, are consistent with a Wolf–Rayet progenitor of the supernova iPTF13bvn.

Key words: instrumentation: adaptive optics – shock waves – stars: Wolf–Rayet – supernovae: individual (iPTF13bvn) – surveys

Online-only material: color figures

1. INTRODUCTION

Supernovae of Type Ib/c constitute about one-third of the death rate of massive stars (Li et al. 2011). Their spectra lack hydrogen (Filippenko 1997), suggesting progenitors stripped of their hydrogen envelopes either due to mass transfer in a binary system or via copious stellar winds. On theoretical grounds, the anticipated progenitors are Wolf–Rayet (WR) stars or massive helium stars (e.g., Dessart et al. 2012; Yoon et al. 2012).

The most direct way to test the above theoretical picture is direct detection of the progenitor. This is possible for supernovae occurring in nearby galaxies which have deep pre-explosion images (which means, in practice, Hubble Space Telescope, HST). Eldridge et al. (2013) comprehensively summarize searches for 12 Ib/c progenitors, which are all non-detections. The deepest upper limit to date is $M_B = -4.4$ mag for SN 2002ap, a Type Ic supernova in the very nearby galaxy Messier 74 (Crockett et al. 2007).

An indirect way to infer the progenitor properties is the early light curve of a supernova, which is sensitive to the progenitor size, explosion energy, and the composition of the outer layers (e.g., Nakar & Sari 2010; Rabinak & Waxman 2011; Bersten et al. 2012; Piro & Nakar 2013), and in some propitious cases can even diagnose the presence of a binary companion (Kasen 2010). No detection of shock cooling constrains the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10^{12} g cm$^{-1}$. Assuming a wind velocity of 10^3 km s$^{-1}$, we derive a progenitor mass-loss rate of 3×10^{-5} M_\odot yr$^{-1}$. Our observations, taken as a whole, are consistent with a Wolf–Rayet progenitor of the supernova iPTF13bvn.
The Astrophysical Journal, 775:L7 (7pp), 2013 September 20

Cao et al.

Figure 1. Supernova iPTF13bvn and its host galaxy, NGC 5806. The supernova is located at $\alpha = 15^h00^m00.152$, $\delta = +01^\circ52'53.17$ (J2000). Panel (a) shows the HST image of NGC 5806, taken on 2005 March 10 UT (HST proposal 10187, PI: Smartt). Panel (b) is a zoom-in of the HST image near the site of iPTF13bvn. Panel (c) is the composite image of the supernova taken with OSIRIS and LGS-AO system. This is made by stacking 60 15 s exposures. We align this image with the HST/ACS images with 15, 23, and 25 registration stars in the F435W, F555W, and F814W filters and acquire registration uncertainties of 0.6, 0.9, and 0.8 HST pixel, respectively. Panels (d), (e), and (f) show the HST images at the position of the supernova in F435W, F555W, and F814W filters. The position of iPTF13bvn is marked with 1σ and 3σ error circles. The progenitor candidate is 26.50 ± 0.15 mag in F435W ($S/N = 11.2$), 26.40 ± 0.15 mag in F555W ($S/N = 9.9$), and 26.10 ± 0.20 mag in F814W ($S/N = 8.2$). (A color version of this figure is available in the online journal.)

2. DISCOVERY

On 2013 June 16.238 UT, the automated real-time discovery and classification pipeline of the intermediate Palomar Transient Factory (iPTF; Law et al. 2009; P. E. Nugent et al., in preparation) identified a new transient source with $r = 18.6$ mag in the vicinity of NGC 5806 (see Figure 1; Cao et al. 2013). No source was detected at the same location to <21.7 mag (3σ) on June 15.240 (Figure 2). Also, there was no evidence for pre-outburst activity in 492 PTF images taken since 2009 June 29 to a similar depth. Our duty astronomer saved this source as iPTF13bvn and initiated rapid, multi-wavelength follow-up.

3. PROGENITOR IDENTIFICATION

On June 20.276, we observed iPTF13bvn in H-band with OSIRIS (Larkin et al. 2006) and the Laser Guide Star Adaptive Optics (LGS-AO) system (Wizinowich et al. 2006) mounted on the 10 m Keck I telescope. Registering the AO image to the progenitor (Chevalier 1998). Type Ib/c supernovae typically have A of the order of 10^{12} g cm$^{-1}$ (Chevalier & Fransson 2006).

In this Letter, we report the discovery of iPTF13bvn, a young Type Ib supernova in the nearby galaxy NGC 5806. Archival HST images of NGC 5806 allow a direct progenitor search. We also present early photometric, spectroscopic, and wide-band radio observations and discuss implications on the progenitor.
Figure 2. Left panel: multi-band light curve of iPTF13bvn (the color represents the filter, and the symbol shape represents the telescope). The upper limits are denoted in triangles. The origin $t = 0$ is set to the explosion date derived from the best power-law fit (solid gray curve). For comparison, r-band light curves of SN 1994I, SN 2008D, PTF10vgv, and PTF12gzk are also shown in cyan with different line styles. On the top axis, the epochs of spectroscopic follow-up are indicated by "S".

In the right panel, the P48 r-band light curves are plotted against predicted light curves of shock cooling (gray dash curves) from Piro & Nakar (2013) for explosions starting at $t = -1, -0.5, 0.0$, and 0.5 days with a "mean" velocity of 8000 km s$^{-1}$. The radius of the progenitor in each of the models is besides its corresponding light curve.

(A color version of this figure is available in the online journal.)

the archival HST/ACS image, we obtain a 1σ uncertainty of $\lesssim 40$ mas. We find one source coincident with the supernova within the 2σ (equivalently 8.7 pc projection distance) error circle (Figure 1; Arcavi et al. 2013b).

We perform point-spread function (PSF) photometry on the HST/ACS images with DOLPHOT (Dolphin 2000). The photometry of the progenitor candidate is 26.50 ± 0.15 mag in F435W, 26.40 ± 0.15 mag in F555W, and 26.10 ± 0.20 mag in F814W. To correct for extinction, we obtain a high-resolution spectrum (Section 4.1) and measure the equivalent widths of Na I D lines. We find local extinction of $E(B - V) = 0.0437$ and foreground extinction of 0.0278 (Poznanski et al. 2012). Assuming $R_V = 3.1$ (Schlafly & Finkbeiner 2011) and adopting a distance modulus of 31.76 ± 0.36 (22.5 Mpc; Tully et al. 2009), we find $M_B = -5.52 \pm 0.39$ mag, $M_V = -5.55 \pm 0.39$ mag, and $M_I = -5.77 \pm 0.41$ mag. Thus, the progenitor, if single, is no brighter than these values. The luminosity and colors are consistent with the compilation of WN and WC Wolf–Rayet stars in Eldridge et al. (2013).

However, WR stars are often in binaries (Tuthill et al. 1999). Thus, the progenitor is possibly in a binary system and the light is dominated by the companion. We further note that color alone cannot be used as a discriminant. The B, V, and I filters are in the Rayleigh–Jeans tail of hot stars, including O-stars, WR stars, and blue supergiants. Moreover, given the 0.05 pixel size of HST/ACS, or equivalently 5.45 pc at the distance of NGC 5806, the candidate can also be an unresolved young star cluster whose color is dominated by OB stars. Finally, we caution that the progenitor candidate may even be unrelated to the supernova.

The litmus test of whether this candidate is the progenitor or part of the progenitor system can only be undertaken by HST imaging after the supernova fades.

4. Early Photometric and Spectroscopic Evolution

4.1. Observations and Reduction

As part of regular iPTF operations, the field of iPTF13bvn was imaged twice a night every night by the Palomar 48 inch Oschin telescope (P48) with a Mould R-band filter (Ofek et al. 2012) during the Spring quarter. Upon discovery of iPTF13bvn, the robotic Palomar 60 inch telescope (P60; Cenko et al. 2006) was triggered for follow-up in the g', r', i', z' bands. We obtained photometry with the Las Cumbres Observatory Global Telescope (LCOGT; Brown et al. 2013) network in the $UBVRij'iz'$ bands using the 1 m telescopes from Cerro Tololo (Chile), McDonald Observatory (USA), and Sutherland (South Africa), along with the 2 m Faulkes Telescope South (Siding Springs). As part of our ongoing iPTF-Swift program, we triggered target-of-opportunity observations beginning on 2013 June 17 (Arcavi et al. 2013a). In the P48, P60, and...
Swift images, the host background is subtracted by using pre-explosion reference images, while in the LCOGT images a low-order polynomial fit is used to remove the background. PSF photometry is then performed in all the images. Photometry in the $g' r' i' z'$ bands is calibrated to Sloan Digital Sky Survey stars and that in the $UBVRI$ bands is calibrated with Landolt standard stars. The multi-color light curve of iPTF13bvn is illustrated in Figure 2.

Low-resolution spectroscopic follow-up of iPTF13bvn was undertaken with the DOLORES low-resolution spectrograph on Telescopio Nazionale Galileo (TNG), the Marcario Low-Resolution Spectrograph (LRS; Hill et al. 1998) on the Hobby–Eberly Telescope (HET), the low-resolution, cross-dispersed spectrograph FLOYDS (D. Sand et al., in preparation) on the robotic Faulkes Telescope (FT), the Dual Imaging Spectrograph (DIS) on the ARC 3.5 m telescope, the Folded-Port InfraRed Echellete (FIRE; Simcoe et al. 2013) on the 6.5 m Magellan telescope, and SpeX (Rayner et al. 2003) on the NASA Infrared Telescope Facility (IRTF). We also obtained a high-resolution spectrum with High Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994) on the 10 m Keck I telescope. The spectroscopic series of iPTF13bvn is displayed in Figure 3.

All photometry tables and spectroscopy data will be made public via WISeREP24 (Yaron & Gal-Yam 2012).

4.2. Analysis: Photometry

In order to better constrain the explosion date, we fit a power-law model $f(t) \propto (t - t_0)^\beta$ to the P48 data of iPTF13bvn taken in the first five nights after explosion and constrain the parameters with the upper limits preceding the discovery. The best fit results in an explosion date $t_0 = $ June 15.67 and a power-law index $\beta = 1.01$ (Figure 2). The 95% confidence levels for t_0 and β are [Jun 15.50, Jun 15.76] and [0.923, 1.09], respectively. Note that the color evolution is minimal, suggesting that the r band is a reasonable proxy for the bolometric light curve. iPTF13bvn peaked at $r = -16.6$ mag at about $t_0 + 18$ days.

A direct comparison of the iPTF13bvn r-band light curve with SN 1994I (Richmond et al. 1996), SN 2008D (Soderberg et al. 2008), PTF10vgv (Corsi et al. 2012), and PTF12gzk (Ben-Ami et al. 2012) is also shown in Figure 4. The Type Ic SN 1994I is much more luminous than iPTF13bvn while its rise rate is...
Figure 4. Spectra of iPTF13bvn (black) compared to other SNe Ib/c. All ages are reported in days since explosion. An early spectrum of iPTF13bvn shows strong similarity to early spectra of Type Ib/c SNe: SN 2007gr, Type Ic (Valenti et al. 2008); SN 1994I, Type Ic (Filippenko et al. 1995); SN 2007Y, Type Ib (Stritzinger et al. 2009). The early spectrum of the energetic Type Ic PTF12gzk (Ben-Ami et al. 2012) resembles that of iPTF13bvn, if a correction is made artificially for its remarkable blueshift. Later spectra of iPTF13bvn resemble the Type Ib SN 2009jf (Valenti et al. 2011). Despite the light curve similarity, the high velocity Type Ic PTF10vgv bears no spectral resemblance to iPTF13bvn. (A color version of this figure is available in the online journal.)

Following Piro & Nakar (2013), we derive a constraint on the progenitor radius based on our detection limits on shock cooling. The inferred radius is sensitive to the “mean” velocity of the ejecta \(v = \sqrt{2E/M_{\text{ej}}} \) where \(E \) is the explosion energy and \(M_{\text{ej}} \) is the mass of the ejecta. Based on the measured photospheric velocities and line velocities (Section 4.3), we conservatively adopt the lowest velocity of 8000 km s\(^{-1}\). If the velocity was higher, the radius of the progenitor would be constrained to be even smaller (Piro & Nakar 2013). The model also depends weakly on \(E \) and thus we assume \(E = 10^{51} \) erg. In the right bottom panel of Figure 2, the predicted \(r \)-band light curves (gray lines) of shock cooling with various explosion times are also plotted. We find: if the explosion had happened earlier than \(t_0 \), the progenitor radius would have to be unreasonably small (\(\approx 0.03 \, R_\odot \)) because the luminosity of the shock breakout is tightly constrained by non-detection on June 14. If the explosion happened at \(t_0 \), the progenitor radius \(< 1.5 \, R_\odot \). If the explosion happened at \(t_0 + 0.5 \) day, the progenitor radius \(< 5 \, R_\odot \). We conclude that the progenitor radius was no larger than a few solar radii, suggesting a stripped core such as WR stars.

4.3. Analysis: Spectroscopy

The strongest features in the early spectra are the Ca ii H + K and Ca ii near-IR triplet absorption. The blends of Fe ii lines at \(\approx 5000 \) Å and Fe ii, Mg ii and Ti ii at \(\approx 4400 \) Å are also prominent. The local minimum at about 5500 Å may be either He i or Na i and that at about 6200 Å may be interpreted as either Si ii or Ne i. At +2.6 days after explosion, a SYNOW fit gives a photospheric velocity of 10,000 km s\(^{-1}\) and a Ca ii line velocity of 14,000 km s\(^{-1}\). By +11.5 days, these velocities evolve to 8000 and 10,000 km s\(^{-1}\) respectively.

Helium lines are not expected to be prominent in early spectra of Type Ib supernovae (Hachinger et al. 2012). We begin to
see weak wiggles at the location of He\textsc{i} (5876 Å, 6678 Å and 7065 Å) in optical spectra after +10 days. However, SYNOW cannot fit a single expansion velocity to all the three lines simultaneously. In the IR spectra, we see a prominent 10200 Å absorption feature, which may be explained by He\textsc{i} 10830 line blended with metal lines. The 20581 Å doublet is often used to confirm the presence of He (Taubenberger et al. 2006; Kasliwal et al. 2013). By +16.7 days, we unambiguously detect this feature (see the inset of Figure 3). Therefore, we classify iPTF13bvn as a Type Ib supernova (Milisavljevic et al. 2013; Kamble & Soderberg 2013). The solid lines show our fits using synchrotron self-absorption models. Additional CARMA measurements on +4 days, and +8 days (black stars) and an upper limit on +10 days (cyan triangle) are shown.

(A color version of this figure is available in the online journal.)

Figure 5. Flux density as a function of frequency on +3 days (red circles; CARMA + JVLA), +6 days (blue diamonds; CARMA + ATCA), and +9 days (green squares; ATCA). The red triangle is our JVLA detection limit (3\(\sigma\)) in C band (6 GHz) at +3 days. The purple triangle is the JVLA detection limit (3\(\sigma\)) on +4 days obtained by Kamble & Soderberg (2013). The solid lines show our fits using synchrotron self-absorption models. Additional CARMA measurements on +4 days, and +8 days (black stars) and an upper limit on +10 days (cyan triangle) are shown.

We note that the SSA model alone is consistent with all our data including the null detection in C band on June 18. However, on June 19.1, Kamble & Soderberg (2013) observed iPTF13bvn with the JVLA in C band and announced a null detection with an rms of 6 \(\mu\)Jy. Based on our SSA model, we estimate that Kamble & Soderberg should have detected iPTF13bvn at a level of \(\approx 5\sigma\). Their null detection therefore may require additional free–free absorption at low frequencies. Based on inverse Compton scattering, we estimate the X-ray emission to be \(10^{-15}\) erg cm\(^{-2}\) s\(^{-1}\). This is consistent with our \textit{Swift} X-ray telescope (XRT) upper limit of \(1.0 \times 10^{-15}\) erg cm\(^{-2}\) s\(^{-1}\) on June 17 (assuming a power-law spectrum with a photon index of 2.0). We note that Kong et al. (2013) reported an X-ray detection by co-adding the XRT data from June 17 to July 13. We reprocessed the XRT data from the first 10 days after the supernova explosion and resulted in a 3\(\sigma\) upper limit of \(4 \times 10^{-14}\) erg cm\(^{-2}\) s\(^{-1}\). This is also consistent with our expectation from inverse Compton scattering.

We find that the radio emission peaks at \(\approx 73.5, 37, 20\) GHz with fluxes of \(\approx 3.5, 3.5, 2.7\) mJy on June 18, 21 and 24, respectively. Following Chevalier (1998), we derive a shock wave radius \(R_s \approx 0.7, 1.4, 2.3 \times 10^{15}\) cm and a magnetic field strength \(B \approx 8.2, 4.1, 2.3\) G. Using the explosion date determined in the optical data, we find a shock wave velocity of \(2.7 \times 10^4\) km s\(^{-1}\), which is typical for SNe Ib/c (Chevalier & Fransson 2006).

We derive a mass-loading parameter \(A \approx 1.3 \times 10^{12}\) g cm\(^{-1}\) (see Horesh et al. 2012 for equations). Assuming a typical wind velocity of \(v_w \approx 1000\) km s\(^{-1}\) from a WR star (Cappa et al. 2004), the progenitor mass-loss rate \(M = 4\pi A v_w \approx 3 \times 10^{-5}\) M\(_{\odot}\) yr\(^{-1}\). This is consistent with the WR mass-loss rate in Cappa et al. (2004).

6. CONCLUSION

iPTF13bvn is a Type Ib supernova that exploded on June 15.67 and rose to maximum luminosity of \(M_R = -16.6\) in about 18 days. The luminosity of the supernova in the first
10 days is approximately proportional to t^{-1}. We identify a single progenitor candidate within a 2σ error radius of 8.7 pc in pre-explosion HST imaging. The candidate has an M_B luminosity of -5.52 ± 0.39 mag and a $B-I$ color of 0.25 ± 0.25 mag. Future HST imaging, after the supernova fades away, will determine whether this is a single star, a binary, or a star cluster. The non-detection of shock cooling in our light curve constrains the progenitor radius to smaller than a few solar radii. Our radio detections suggest a shock wave with velocity 2.7×10^4 km s$^{-1}$ and a progenitor mass-loss rate of $3 \times 10^{-5} M_\odot$ yr$^{-1}$.

We conclude that the pre-explosion photometry of the detected candidate, the radius constraint based on absence of shock cooling, and the mass-loss rate derived from radio are all consistent with a WR progenitor.

We thank A. L. Piro for valuable discussions. We thank the following people for co-operating with our target of opportunity or queue observations: M. Roth (Magellan), A. Hartuynan (TNG), J. Johnson (Keck), and J. Caldwell (HET). We thank A. Howard and H. Isaascon for HIRES data reduction. We thank R. Campbell, Hien Tran, and S. Tendulkar for helping with OSIRIS image registration. We thank J. Vinko, R. Foley, B. Kirshner, D. Perley, A. Corsi, and K. Mooley as proposal co-Is. We thank J. Swift, B. Montet, M. Bryan, R. Jensen-Clem, D. Polishook, and S. Tinyanont for assisting with observations.

M.M.K. acknowledges generous support from the Hubble Fellowship and Carnegie-Princeton Fellowship. J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. N.D. acknowledges the Hubble Fellowship. Research by A.G.Y. and his group was supported by grants from the ISF, BSF, GIF, Minerva, the EU/FP7 via an ERC grant and the Kimmel award. The research of J.C.W. is supported by NSF Grant AST 11-09801.

The National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy, provided staff, computational resources, and data storage for this project. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This research has been supported by the Australian Research Council through Super Science Fellowship grant FS100100033. The Centre for All-sky Astrophysics is an Australian Research Council Centre of Excellence, funded by grant CE110001020. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Ongoing CARMA development and support are funded by the National Science Foundation under a cooperative agreement, and by the CARMA partner universities.

REFERENCES

Arcavi, I., Cenko, S. B., Gal-Yam, A., & Ofek, E. 2013a, ATel, 5146, 1
Arcavi, I., Ofek, E., Cao, Y., et al. 2013b, ATel, 5152, 1
Ben-Ami, S., Gal-Yam, A., Filippenko, A. V., et al. 2012, ApJL, 760, L33
Bersten, M. C., Benvenuto, O. G., Nomoto, K., et al. 2012, ApJ, 757, 31
Brown, T. M., Baliber, N., Bianco, F., et al. 2013, PASP, in press (arXiv:1305.2437)
Cao, Y., Gorbikov, E., Arcavi, I., et al. 2013, ATel, 5137, 1
Cappa, C., Goss, W. M., & van der Hucht, K. A. 2004, A&A, 427, 2885
Cenko, S. B., Fox, D. B., Moon, D.-S., et al. 2006, PASP, 118, 1396
Chevalier, R. A. 1998, ApJ, 499, 810
Chevalier, R. A., & Fransson, C. 2006, ApJ, 651, 381
Corsi, A., Ofek, E. O., Gal-Yam, A., et al. 2012, ApJL, 747, L5
Crockett, R. M., Smartt, S. J., Eldridge, J. J., et al. 2007, MNras, 381, 835
Dessart, L., Hillier, D. J., Li, C., & Woosley, S. E. 2012, MNras, 424, 2139
Dolphin, A. 2000, PASP, 112, 1383
Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M. 2013, arXiv:1301.1975
Filippenko, A. V. 1997, ARA&A, 35, 309
Filippenko, A. V., Barth, A. J., Mathevon, T., et al. 1995, ApJL, 450, L11
Hachinger, S., Mazzali, P. A., Taubenberger, S., et al. 2012, MNras, 422, 70
Hill, G. J., Nicklas, H. E., MacQueen, P. J., et al. 1998, Proc. SPIE, 3355, 375
Horesh, A., Kulkarni, S. R., Fox, D. B., et al. 2012, ApJ, 746, 21
Kamble, A., & Soderberg, A. 2013, ATel, 5154, 1
Kasen, D. 2010, ApJ, 708, 1025
Kasliwal, M. M., Degenauer, N., & Polishook, D. 2013, ATel, 5151, 1
Kong, A. K. H., Li, K. L., & Ofek, E. 2013, ATel, 5210, 1
Larkin, J., Barcziis, M., Krabbe, A., et al. 2006, Proc. SPIE, 6269, 62691A
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395
Li, W., Chornock, R., Leaman, J., et al. 2011, MNRAS, 412, 1473
Marion, G. H., Vinko, J., Kirshner, R. P., et al. 2013, arXiv:1303.5482
Milisavljevic, D., Fesen, R., Pickering, T., et al. 2013, ATel, 5142, 1
Nakar, E., & Sari, R. 2010, ApJ, 725, 908
Ofek, E. O., Laher, R., Law, N., et al. 2012, PASP, 124, 62
Piro, A. L., & Nakar, E. 2013, ApJ, 769, 67
Poznanski, D., Prochaska, J. X., & Bloom, J. S. 2012, MNras, 426, 1465
Rabinak, I., & Waxman, E. 2011, ApJ, 728, 63
Rayner, J. T., Toomey, D. W., Onaka, P. M., et al. 2003, PASP, 115, 362
Richmond, M. W., van Dyk, S. D., Ho, W., et al. 1996, AJ, 111, 327
Sault, R. J., Teuben, P. J., & Wrigth, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco, CA: ASP), 433
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Simcoe, R. A., Burgasser, A. J., Sleechter, P. L., et al. 2013, PASP, 125, 270
Soderber, A. M., Berger, E., Page, K. L., et al. 2008, Natur, 453, 469
Stritzinger, M., Mazzali, P., Phillips, M. M., et al. 2009, ApJ, 696, 713
Taubenberger, S., Pastorello, A., Mazzali, P. A., et al. 2006, MNras, 371, 1459
Tully, R. B., Rizzi, L., Shaya, E. J., et al. 2009, AJ, 138, 323
Tuthill, P. G., Monnier, J. D., & Danchi, W. C. 1999, Natur, 398, 487
Valenti, S., Elias-Rosa, N., Taubenberger, S., et al. 2008, ApJL, 673, L155
Valenti, S., Fraser, M., Benetti, S., et al. 2011, MNras, 416, 3138
Vest, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, Proc. SPIE, 2198, 362
Wizinowich, P. L., Chin, J., Johansson, E., et al. 2006, Proc. SPIE, 6272, 627209
Yaron, O., & Gal-Yam, A. 2012, PASP, 124, 668
Yoon, S.-C., Gr¨afener, G., Vink, J. S., Kozyreva, A., & Izzard, R. G. 2012, A&A, 544, L11