A short proof of a symmetry identity for the \(q \)-Hahn distribution

Guillaume Barraquand*

Abstract

We give a short and elementary proof of a symmetry identity for the \(q \)-moments of the \(q \)-Hahn distribution arising in the study of the \(q \)-Hahn Boson process and the \(q \)-Hahn TASEP. This identity discovered by Corwin in "The \(q \)-Hahn Boson Process and \(q \)-Hahn TASEP", Int. Math. Res. Not., 2014, was a key technical step to prove an intertwining relation between the Markov transition matrices of these two classes of discrete-time Markov chains. This was used in turn to derive exact formulas for a large class of observables of both these processes.

Keywords: Markov duality; \(q \)-Hahn process.

AMS MSC 2010: 60J10; 33D45.

Submitted to ECP on July 16, 2014, final version accepted on July 23, 2014.

Supersedes arXiv:1404.4265.

Introduction

Zero-range and exclusion processes are generic stochastic models for transport phenomena on a lattice. Integrability of these models is an important question. In a short letter [5], Evans, Majumdar and Zia considered spatially homogeneous discrete time zero-range processes on periodic domains. They addressed and solved the question of characterizing the jump distributions for which invariant measures are product measures. Povolotsky [7] further examined the most general form of jump distributions allowing solvability by Bethe ansatz, and found a family depending on three real parameters \(q \), \(\mu \) and \(\nu \), later called the \(q \)-Hahn distribution. In the same article [7], he also studied the corresponding \(q \)-Hahn Boson process and \(q \)-Hahn TASEP, and conjectured exact formulas for the models on the infinite lattice.

Using a Markov duality between the \(q \)-Hahn Boson process and the \(q \)-Hahn TASEP, Corwin [4] showed a variant of these formulas and provided a method to compute a large class of observables. This can be seen as a generalization of a similar work on \(q \)-TASEP and \(q \)-Boson process performed in [3, 2]. In his proof, the intertwining relation between the two Markov transition matrices essentially boils down to a symmetry identity verified by the \(q \)-moments of the \(q \)-Hahn distribution [4, Proposition 1.2]. The proof was adapted from [2, Lemma 3.7] which is the \(\nu = 0 \) case, and required the use of Heine’s summation formula for the basic hypergeometric series \(_2\phi_1 \). In the following, we give a new proof of this identity.

*Université Paris-Diderot, France. E-mail: barraquand@math.univ-paris-diderot.fr
A symmetry property for the q-moments of the q-Hahn distribution

First, we define the three parameter deformation of the Binomial distribution introduced in [7].

Definition 0.1. For $|q| < 1$, $0 \leq \nu \leq \mu < 1$ and integers $0 \leq j \leq m$, define the function

$$
\varphi_{q,\mu,\nu}(j|m) = \mu^j \binom{\nu/\mu; q, \mu; q}_{m-j} \binom{\mu; q}_{m-j}
$$

where

$$
\binom{m}{j}_q = \frac{(q; q)_m}{(q; q)_j (q; q)_{m-j}}
$$

are q-Binomial coefficients with, as usual,

$$(z; q)_m = \prod_{i=0}^{m-1} (1 - q^i z).$$

It happens that for each $m \in \mathbb{N} \cup \{\infty\}$, this defines a probability distribution on the set $\{0, \ldots, m\}$. The weights $\varphi_{q,\mu,\nu}(j|m)$ are very closely related to the weights associated with the q-Hahn orthogonal polynomials (see (7.2.22) in [6]), hence the use of the name q-Hahn.

Lemma 0.2 (Lemma 1.1, [4]). For any $|q| < 1$ and $0 \leq \nu \leq \mu < 1$,

$$
\sum_{j=0}^{m} \varphi_{q,\mu,\nu}(j|m) = 1.
$$

Proof. As shown in [4], this equation is equivalent to a specialization of some known summation formula for basic hypergeometric series ϕ_1 (Heine’s q-generalizations of Gauss’ summation formula).

We now state and prove the main identity.

Proposition 0.3 (Proposition 1.2, [4]). Fix $|q| < 1$ and $0 \leq \nu \leq \mu < 1$. Let X (resp. Y) be a random variable following the q-Hahn distribution on $\{0, \ldots, x\}$ (resp. $\{\nu q^j, \nu q^j + 1, \ldots, \nu q^x\}$).

We have

$$
E[q^{xY}] = E[q^{yX}].
$$

Proof. Let $S_{x,y} := \sum_{j=0}^{x} \varphi_{q,\mu,\nu}(j|x) q^{\nu y}$. We have to show that $S_{x,y} = S_{y,x}$ for all integers $x, y \geq 0$. Our proof is based on the fact that $S_{x,y}$ satisfies a recurrence relation which is invariant when exchanging the roles of x and y. First notice that by Lemma 0.2, $S_{x,0} = 1$ for all $x \geq 0$, and by definition $S_{0,y} = 1$ for all $y \geq 0$.

The Pascal identity for q-Binomial coefficients, (see 10.0.3 in [1]),

$$
\binom{x+1}{j}_q = \binom{x}{j}_q q^j + \binom{x}{j-1}_q,
$$

yields

$$
S_{x+1,y} = \sum_{j=0}^{x+1} \mu^j \binom{\nu/\mu; q, \mu; q}_{x+1-j} \binom{\mu; q}_{x+1-j} \binom{x}{j}_q q^{\nu y} + \sum_{j=0}^{x+1} \mu^j \binom{\nu/\mu; q, \mu; q}_{x+1-j} \binom{\mu; q}_{x+1-j} \binom{x}{j}_q q^{y - 1/j},
$$

$$
S_{x+1,y} = \sum_{j=0}^{x} \varphi_{q,\mu,\nu}(j|x) \frac{1 - \mu q^{x-j}}{1 - \nu q^y} q^j q^{\nu y} + \sum_{j=0}^{x} \varphi_{q,\mu,\nu}(j|x) \mu \frac{1 - \nu q^j}{1 - \nu q^y} q^{\nu y} q^j q^{y}. \tag{16}
$$
A short proof of a symmetry identity for the \(q \)-Hahn distribution

The last equation can be rewritten

\[
(1 - \nu q^x)S_{x+1, y} = (S_{x, y+1} - \mu q^x S_{x, y}) + (\mu q^y (S_{x, y} - \nu / \mu S_{x, y+1})),
\]

\[
= (1 - \nu q^y)S_{x, y+1} + \mu (q^y - q^x)S_{x, y}.
\]

Thus, the sequence \((S_{x, y})_{(x, y) \in \mathbb{N}^2}\) is completely determined by

\[
\begin{cases}
(1 - \nu q^x)S_{x+1, y} = (1 - \nu q^y)S_{x, y+1} + \mu (q^y - q^x)S_{x, y}, \\
S_{x, 0} = S_{0, y} = 1.
\end{cases}
\]

Setting \(T_{x, y} = S_{y, x} \), one notices that the sequence \((T_{x, y})_{(x, y) \in \mathbb{N}^2}\) enjoys the same recurrence, which concludes the proof.

Remark 0.4. To completely avoid the use of basic hypergeometric series, one would also need a similar proof of the Lemma above. One can prove the result by recurrence on \(m \) (as in the proof of [2, Lemma 1.3]), but the calculations are less elegant when \(\nu \neq 0 \).

More precisely, fix some \(m \) and suppose that for any \(0 \leq \nu \leq \mu < 1 \), \(S_{m, 0}(q, \mu, \nu) := \sum_{j=0}^{m} \varphi_{q, \mu, \nu}(j|m) = 1 \). Pascal’s identity yields

\[
S_{m+1, 0}(q, \mu, \nu) = \frac{1 - \mu}{1 - \nu} S_{m, 0}(q, \mu, q^\nu) + \sum_{j=0}^{m} \varphi_{q, \mu, \nu}(j|m) \frac{1 - \nu / \mu q^j}{1 - \nu q^m},
\]

\[
= \frac{1 - \mu}{1 - \nu} S_{m, 0}(q, \mu, q^\nu) + \frac{\mu}{1 - \nu q^m} (S_{m, 0}(q, \mu, \nu) - \nu / \mu S_{m, 1}(q, \mu, \nu)).
\]

Then, using the recurrence formula (0.1) for \(S_{m, 1}(q, \mu, \nu) \), and applying the recurrence hypothesis, one obtains \(S_{m+1, 0}(q, \mu, \nu) = 1 \).

References

[1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, vol. 71, Cambridge University Press, 2001.
[2] A. Borodin and I. Corwin, Discrete time \(q \)-TASEPs, International Mathematics Research Notices (2013), rnt206.
[3] A. Borodin, I. Corwin, and T. Sasamoto, From duality to determinants for \(q \)-TASEP and ASEP, Ann. Probab., to appear, arXiv:1207.5035 (2012).
[4] I. Corwin, The \(q \)-Hahn Boson Process and \(q \)-Hahn TASEP, International Mathematics Research Notices (2014), rnu094.
[5] M. R. Evans, Satya N. Majumdar, and R. K. P. Zia, Factorized steady states in mass transport models, J. Phys. A 37 (2004), no. 25, L275–L280. MR-2073204
[6] George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990, With a foreword by Richard Askey. MR-1052153
[7] A. M. Povolotsky, On the integrability of zero-range chipping models with factorized steady states, J. Phys. A 46 (2013), no. 46, 465205, 25. MR-3126878

Acknowledgments. The author would like to thank his advisor Sandrine Péché for her support.
Advantages of publishing in EJP-ECP

• Very high standards
• Free for authors, free for readers
• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS¹)
• Non profit, sponsored by IMS², BS³, PKP⁴
• Purely electronic and secure (LOCKSS⁵)

Help keep the journal free and vigorous

• Donate to the IMS open access fund⁶ (click here to donate!)
• Submit your best articles to EJP-ECP
• Choose EJP-ECP over for-profit journals

¹OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
²IMS: Institute of Mathematical Statistics http://www.imstat.org/
³BS: Bernoulli Society http://www.bernoulli-society.org/
⁴PK: Public Knowledge Project http://pkp.sfu.ca/
⁵LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
⁶IMS Open Access Fund: http://www.imstat.org/publications/open.htm