Strong changes in electronic transport and magnetic properties of Co$_2$YSi Heusler alloys at Y-component variation

Yu A Perevozhikova1, A A Semiannikova1, P B Terentev1,2, M Eisterer3, P S Korenistov1,2 and V V Marchenkov1,2

1M.N. Miheev Institute of Metal Physics, Ekaterinburg 620108, Russia
2Ural Federal University, Ekaterinburg 620002, Russia
3Atominstitut, TU Wien, Vienna 1020, Austria

E-mail: yu.perevozhikova@imp.uran.ru; march@imp.uran.ru

Abstract. The Co$_2$YSi ($Y = \text{Ti, V, Cr, Mn, Fe, Co, Ni}$) Heusler alloys can manifest the properties of half-metallic ferromagnets. These compounds are promising materials for spintronics since almost 100 % spin polarization of charge carriers can be realized at room temperature. We measured the electroresistivity, magnetic and galvanomagnetic properties of the Co$_2$YSi ($Y = \text{Ti, V, Cr, Mn, Fe, Co, Ni}$) Heusler alloys from 4.2 K to 300 K and in magnetic fields up to 100 kOe. The type, concentration and mobility of charge carriers were estimated. The Y-component variation in the Co$_2$YSi Heusler alloys is found to affect strongly the number of current carriers and alter the electronic band structure near the Fermi level \(E_F\) and, consequently, the electronic transport and magnetic properties of the Co$_2$YSi ($Y = \text{Ti, V, Cr, Mn, Fe, Co, Ni}$) Heusler alloys.

1. Introduction

The development of modern nanoelectronics and spintronics requires the search and creation of new magnetic materials with high spin polarization of charge carriers. One of the most promising materials is half-metallic ferromagnets (HMF) [1-3]. The main feature of such materials is that in their electronic spectrum at the Fermi level there is an energy gap for one of the spin directions and its absence for another one. This can lead to 100% spin polarization of charge carriers.

Most of the Heusler alloys X_2YZ (where X, Y are 3d transition elements; Z is s-, p-elements of the Periodic Table), ordered in the L_2_1 crystal structure, belong to the HMF. Modern electron band structure calculations by the spin density functional method show [4-11] that in their spectrum at the Fermi level E_F, a wide (~ 1 eV) energy gap is realized in one of the subbands differing in the direction of electron spins. In recent years these alloys have been intensively investigated both by experimental methods and theoretically. A number of scientific publications is devoted to the study of optical [4], magnetic [6, 7, 8, 12, 13] and electrical [8, 14-16] properties, as well as "first-principle" calculations of the electronic band structure [4-11], which indicate that many of the Heusler HMF alloys can be used for applications.

The corresponding materials should have high Curie temperatures T_C because spintronic devices will mainly be used near the room temperature. The Co$_2$YSi system is appropriate materials for these purposes because in Co$_2$FeSi and Co$_2$MnSi compounds the high values of charge carriers spin polarization (about 100%) were observed near room temperature and their Curie temperatures T_C are
about 1000 K (see, for example, [17, 18]). It is quite interesting to follow the electronic and magnetic characteristics of these alloys and similar compounds of the Co$_2$YSi system at Y-varying. Therefore, in this work we studied the polycrystalline HMF Co$_2$YSi compounds, where Y = Ti, V, Cr, Mn, Fe, Co, Ni, to trend the changes in their electroresistivity, magnetic and galvanomagnetic properties.

2. Experimental

The alloys were prepared by induced furnace. Then the result ingots of Co$_2$YSi (Y = V, Cr, Fe, Co) were annealed at 1100°C for 3 days and quenched. The ingots of Co$_2$YSi, where Y = Ti, Mn, Ni, were annealed at 800°C for 9 days followed by cooling to room temperature. Elemental analysis was carried out by using a scanning electron microscope equipped with an EDAX X-ray microanalysis attachment. The deviation from a stoichiometric composition was revealed to be insignificant in all samples. X-ray diffraction studies showed that the samples have L$_2$$_1$ structure. The structural analysis was performed at the Collaborative Access Center, M.N. Mikheev Institute of Metal Physics.

The Hall Effect measurements were carried out according to a standard procedure, which is described in detail in [19, 20]. The field dependencies of the magnetization and Hall resistivity $\rho_H(H)$ are measured at T = 4.2 K in magnetic fields up to 100 kOe. The samples studied were in the form of plates with dimensions of \sim (0.5x1.5x5) mm. In this case, the magnetic field vector was directed strictly perpendicular to the plate plane with an accuracy of \pm 2 degrees (or \pm 2.5%), and the electric current flowed along the largest surface of the sample. To control the asymmetry of the Hall contacts, measurements were made using a 5-point scheme [21, 22] in order to compensate for the contribution from the transverse resistivity. It was found that the data obtained using the 5- and 4-contact methods, well coincide. Therefore, further 4-pin technique was used. To determine the coefficients of the normal and anomalous Hall Effect in the same transverse geometry, we measured the field dependencies of the magnetization $M(H)$. The temperature dependencies of the electroresistivity were carried out at T = 4.2 – 300 K with the 4-contact technique.

3. Results and discussion

Analysis of the temperature dependencies of the electroresistivity of samples (figure 1) showed that the alloys have different residual resistivity values ρ_0 (from 20 to 300 $\mu\Omega\cdot$cm), and electroresistivity $\rho(T)$ increases monotonously with temperature for all compounds. In the case of alloys with relatively low ρ_0, the electroresistivity $\rho(T)$ changes superlinearly (Co$_2$TiSi, Co$_2$MnSi, Co$_2$FeSi) or sublinearly (Co$_3$Si, Co$_2$NiSi), and for compounds with a large residual resistivity (Co$_2$VSi, Co$_2$CrSi) $\rho(T)$ tends to saturation at high temperatures.

![Figure 1. Temperature dependencies of the electrical resistivity of the Co$_2$YSi (Y = Ti, V, Cr, Mn, Fe, Co, Ni).](image-url)
At varying the Y-component in the Co$_2$YSi system ($Y = \text{Ti, V, Cr, Mn, Fe, Co, Ni}$) along with the difference in residual resistivity other electronic characteristics will change, in particular, concentration of the current carriers, which should be manifested in the Hall Effect.

Since all the alloys are in the ferromagnetic state, their Hall coefficients contain both the normal R_0 and the anomalous R_S components. The field dependence of Hall resistivity allows us to determine the normal and anomalous Hall coefficients by using the following equation [23]:

$$\frac{\rho_H}{H} = R_0 + 4\pi R_S \frac{M}{H},$$

where ρ_H is the Hall resistivity, M is the magnetization. The first coefficient R_0 describes the normal Hall Effect associated with the action of the Lorentz force on the movement of conduction electrons in a magnetic field H. The second coefficient R_S is associated with the presence of spin-orbit interaction and determined by the scattering processes of current carriers on the impurities and phonons and magnetic scattering centers (magnons). Table 1 shows obtained from the experimental data the type, concentration and mobility of charge carriers of Co$_2$YSi samples, which are typical for metals.

Alloy	Type of charge carriers	Concentration $n \cdot 10^{22}$, cm$^{-3}$	Mobility μ, cm2/V·s	T_c, K [24, 25]
Co$_2$TiSi	holes	0.9	4.7	385
Co$_2$VSi	electrons	5	0.4	566
Co$_2$CrSi	electrons	1	1.6	747
Co$_2$MnSi	electrons	4	9.7	985
Co$_2$FeSi	holes	3	6.7	1100
Co$_3$Si	holes	5	1.8	622
Co$_2$NiSi	electrons	8	0.6	589

The significant changes were observed in the values of the residual electroresistivity ρ_0, the saturation magnetization M_s, the coefficients of normal R_0 and anomalous R_S Hall Effects depending on the number z of valence electrons at Y-varying in the series from Ti to Ni. The observed changes in the electronic transport and magnetic properties clearly correlate with each other (figure 2).

Thus, the anomalous Hall coefficient R_S and the residual resistivity ρ_0 increase near $z = 28$, while for the normal Hall coefficient R_0 and the magnetization M_s, there is a minimum at this point. HMFs have a gap for minority spin direction and its absence for majority spin. Therefore, HMFs are considered to be sum of two parallel connected conductors (see, e.g. Refs [16, 26]). One of them with “metallic” current carriers determines by majority spin projections and another has “semiconductor” or “dielectric” state with minority spin projection. Since in the studied alloy system HMF state can arise (see, for example, [3, 17, 18, 26]), then, apparently, the presented in figure 2 correlations between ρ_0, R_0, R_S and M_s can be realized. In particular, it was shown in Refs [17, 18] that the Co$_2$MnSi and Co$_2$FeSi Heusler alloys are HMF compounds in which a high degree of charge carrier polarization is realized. Figure 2 shows that it is for these alloys that the maximum values of magnetization and the minimum values of residual resistivity are observed. This may be due to the fact that under these conditions the compounds predominantly contain “metallic” current carriers with spin “up”, providing a “metallic” type of conductivity and a large magnetic moment, which ultimately should lead to high spin polarization of charge carriers. It is very interesting to experimentally determine the spin polarization coefficients in these alloys, analyze their behavior when the number of valence electrons changes, and compare with the data of figure 2.
Figure 2. The residual electroresistivity ρ_0, the saturation magnetization M_S, the coefficients of normal R_0 and anomalous R_S Hall Effect depending on the number of valence electrons z at Y-varying in the series of the Co$_2$YSi ($Y = Ti, V, Cr, Mn, Fe, Co, Ni$).

It is known [27], the anomalous Hall coefficient R_S is associated with the resistivity ρ by a power law:

$$ R_S \sim \lambda_{\text{eff}} \rho^k / M_S, $$

where λ_{eff} is the constant of the spin-orbit interaction, k is an exponent depending on the scattering mechanism of charge carriers, M_S is the magnetization. The value of R_S is much higher than R_0 and positive for all the samples. It is typical for ferromagnetic alloys.

Figure 3. Dependence of anomalous Hall Effect vs residual resistivity.

The differences between the sign of R_S and R_0 can be related to the sign of λ_{eff} for any scattering mechanism. At z varying, a power-law dependence of the anomalous Hall coefficient R_S on the residual electroresistivity ρ_0 with the exponent $k \approx 3$, i.e. $R_S \sim \rho_0^3$, takes place (figure 3). This is inconsistent with the existing theoretical concepts, but correlates with experimental data obtained on
similar Heusler alloy systems [23]. Thus, it is necessary to take into account additional contributions to the anomalous Hall Effect. The observed correlation between the dependencies of normal Hall coefficient R_0 and residual resistivity ρ_0 is seemed to indicate the essential contribution in the anomalous Hall coefficient R_S of scattering processes of current carriers.

The field dependencies of the magnetoresistivity of the alloys (figure 4) have a nearly linear form (except for Co$_2$MnSi) at high fields, different signs for different alloys (positive for Co$_2$VSi, Co$_2$CrSi and Co$_2$FeSi) and reach 2-3% (for Co$_2$VSi, Co$_2$CrSi and Co$_3$Si).

According to [28], two-magnon scattering processes in HMFs, along with the anomalous temperature dependencies of the ‘magnetic’ resistivity, which is due to the electron-magnon scattering, can lead to a negative linear contribution to the magnetoresistivity. Note that in the HMF Co$_2$FeSi alloy [26] as well as the HMF Co$_2$TiSn system [29] a negative contribution to the magnetoresistivity was observed. The observed field dependencies with negative part close to linear magnetoresistivity can indirectly confirm the manifestation of two-magnon scattering processes [28].

4. Conclusions
The temperature dependencies of the electroresistivity, the field dependencies of the magnetoresistivity, Hall resistivity and magnetization were measured for Co$_2$YSi ($Y = Ti, V, Cr, Mn, Fe, Co, Ni$). An analysis of the obtained results shows that the transition from Co$_2$TiSi to Co$_2$NiSi, i.e. with a variation in the number of valence electrons z within $26 \leq z \leq 32$, significantly changes in the sign and values of the coefficients of the normal and anomalous Hall Effect, magnetization, residual resistivity, type and concentration of current carriers and their mobilities. At the same time, the type and origin of changes in these electronic and magnetic characteristics depending on z clearly correlate with each other, and obtained values are typical for metals as well as a type of the temperature dependencies of the electrical resistivity. The electron transport properties of the alloys under consideration are largely determined not only by the scattering mechanisms of charge carriers, but in addition by the processes of electronic band structure changes near the Fermi level E_F. The studied HMF materials can be probably used for application in spintronics.

Acknowledgements
This work was partly supported by the state assignment of Minobrnauki of Russia (themes “Spin” No. AAAA-A18-118020290104-2 and “Magnet” No. AAAA-A18-118020290129-5), RFBR grants (Nos. 18-32-00686 and 18-02-00739), the Scientific Program of UB RAS (project No. 18-10-2-37) and the Government of the Russian Federation (state contract No. 02.A03.21.0006).
References

[1] Irkhin V Y and Katsnelson M I 1994 Physics Uspekhi 37 659
[2] Katsnelson M I, Irkhin V Yu, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315
[3] Marchenkov V V, Kourov N I and Irkhin V Yu 2018 Phys. Met. Metallog. 119 64
[4] Fomina K A, Marchenkov V V, Shreder E I and Weber H W 2011 Solid State Phenomena 168-169 545
[5] Luo H et al 2008 J. Magn. Magn. Mater. 320 1345
[6] Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507
[7] Graf T, Fecher G H, Barth J, Winterlik J and Felser C 2009 J. Phys. D: Appl. Phys. 42 084003
[8] Kourov N I, Lukoyanov A V and Marchenkov V V 2013 Phys. Solid State 55 2487
[9] Han H, Bai Z and Yao K L 2013 J. Alloys Comp. 576 93
[10] Ram S, Chauhan M R, Agarwal K and Kanchana V 2011 Philos. Mag. Lett. 91 545
[11] Rai D P, Sandeep, Shankar A, Ghimire M P and Thapa R K 2012 Phys. Scr. 86 045702
[12] Umetsu R Y, Kobayashi K, Fujita A, Kainuma R and Ishida K 2008 J. Appl. Phys. 103 07D718
[13] Kanomata T et al 2010 Phys. Rev. B 82 144415
[14] Kourov N I, Perevozhikova Yu A, Weber H W and Marchenkov V V 2016 Phys. Solid State 58 1355
[15] Kourov N I, Korolev A V, Marchenkov V V, Lukoyanov A V and Belozerova K A 2013 Phys. Solid State 55 977
[16] Kourov N I, Marchenkov V V, Korolev A V, Belozerova K A and Weber H W 2015 Curr. Appl. Phys. 15 839
[17] Makinistian L, Faiz M M, Panguluri R P, Balke B, Wurmehl S, Felser C, Albanesi E A, Petukhov A G and Nadgorny B 2013 Phys. Rev. B 87 220402
[18] Jourdan M et al 2014 Nat. Commun. 5 3974
[19] Marchenkov V V, Cherepanov A N, Startsev V E, Czurda C and Weber H W 1995 J. Low Temp. Phys. 98 425
[20] Marchenkov V V, Weber H W, Cherepanov A N and Startsev V E 1996 J. Low Temp. Phys. 102 133
[21] Volkenshtein N V, Marchenkov V V, Startsev V E, Cherepanov A N and Glin’ski M 1985 JETP Lett. 41 458
[22] Volkenshtein N V, Glin’ski M, Marchenkov V V, Startsev V E and Cherepanov A N 1989 Sov. Phys. JETP 68 1216
[23] Kourov N I, Marchenkov V V, Belozerova K A and Weber H W 2015 J. Exp. Theor. Phys. 148 996
[24] Xing-Qiu C, Podloucky R and Rogl P 2006 J. Appl. Phys. 100 113901
[25] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkin S S P 2017 Phys. Rev. B 96 024402
[26] Marchenkov V V, Perevozhikova Yu A, Kourov N I, Irkhin V Yu, Eisterer M and Gao T 2018 J. Magn. Magn. Mater. 459 211
[27] Irkhin V Yu and Irkhin Yu P 2007 Electronic structure, correlation effects and properties of d- and f-metals and their compounds (Cambridge: Cambridge International Science Publishing) p 457
[28] Irkhin V Yu and Katsnelson M I 2002 Eur. Phys. J. B 30 481
[29] Majumdar S, Chattopadhyay M K, Sharma V K, Sokhey K J S, Roy S B and Chaddah P 2005 Phys. Rev. B 72 012417