Laparoscopic hepatectomy versus open hepatectomy for hepatocellular carcinoma in 158 patients: A prospective cohort study

Jiao Yuan
Wuhan Union Hospital

Li Zeng
Wuhan Union Hospital

min tian
Wuhan Union Hospital

Sisi Chen
Wuhan Union Hospital

Huai yi Yao
Wuhan Union Hospital

Shengli Yang
Wuhan Union Hospital

Lin Ye
Huazhong University of Science and Technology
https://orcid.org/0000-0002-2106-3030

Research article

Keywords: Laparoscopic hepatectomy, hepatocellular carcinoma, prospective cohort study

DOI: https://doi.org/10.21203/rs.3.rs-58070/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Hepatocellular carcinoma (HCC) ranks as the fourth most common cancer and the third leading cause of cancer-related mortality worldwide. With the development of minimally invasive surgical techniques, laparoscopic hepatectomy is becoming more prevalent in liver surgery. There are multiple reports to evaluate the safety and feasibility of laparoscopic liver resection. Unfortunately, the jury is still out on whether laparoscopic hepatectomy is better than open hepatectomy. The aim of this study is to compare the perioperative and postoperative long-term outcomes of open hepatectomy and laparoscopic hepatectomy for hepatocellular carcinoma, and to evaluate the safety and efficacy of the two surgical methods for hepatocellular carcinoma.

Methods

A prospective cohort study of patients who underwent major hepatectomy for hepatocellular carcinoma between October 2017 and September 2018 was performed. And these patients were followed for 24 months after surgery. There are 158 patients involved in the present study and they were randomly divided into two groups, LH group (n=60), and OH group (n=98). And all of 158 patients underwent hepatectomy. Continuous data were compared by one-way ANOVA, and categorical data were compared by Fisher's exact test or the c2 test. Survival curves were calculated by the Kaplan–Meier method and compared using the log-rank test. The study was approved by the ethics committee of Union Hospital. (No. WHUH2018S002) and registered in the International Clinical Trial Registry (No. NCT03585166). Informed consent was signed by all patients.

Results

Incision lengths of LH (5.14±3.11cm) were shorter than OH (20.92±6.44cm), P<0.001. Operating time of LH (398.53±170.51 minutes) were longer than OH (257.74±91.31 minutes), P=0.003. Hospital stay of LH (17.72±5.82 days) were shorter than OH (21.42±8.44 days), P<0.001. The average hospitalization costs of LH group (82741.18±26128.81) were significantly less than OH group (94998.75±30499.64), p=0.011<0.05. The incidence of total complications was also lower in LH group than in OH group (P=0.001). Postoperatively, the leukocyte was significantly lower at 1st day in LH group (9.79±2.92 G/L) than in OH group (12.6±4.85 G/L), p<0.001. The aspartate aminotransferase (AST) was significantly lower at 7th day in LH group (39.25±16.63 U/L) than in OH group (62.49±67.77 U/L), p=0.01<0.05. The albumin was significantly higher at 3rd day in LH group (34.21±3.94 g/L) than in OH group (31.24±5.23 g/L), p<0.001. The albumin was significantly higher at 7th day in LH group (35.26±3.73 g/L) than in OH group (33.31±4.51 g/L), p=0.006<0.05. Direct bilirubin was significantly higher at 1st day in LH group (10.28±10.70 µmol/L) than in OH group (315.03±15.71 µmol/L), p=0.04<0.05. The follow-up time after surgery was 24 months (1-24). The mean follow-up time after surgery was 17.94±9.132. Log rank test was performed to compare overall survival rates between the two groups. There were no statistically
significant differences with 2-year survival rate between LH and OH group for liver cancer patients, nor was disease-free survival.

Conclusions

Laparoscopic hepatectomy surgery supplied a lower incision lengths, hospital stay and incidence of total complications. Laparoscopic hepatectomy was cheaper the open hepatectomy.

There were no statistically significant differences with 2-year survival rate between the two group for liver cancer patients, nor was disease-free survival.

Background

Hepatocellular carcinoma (HCC) ranks as the fourth most common cancer and the third leading cause of cancer-related mortality worldwide \(^{[1\sim2]}\). Although there are many choices for the treatment of HCC, including hepatectomy, liver transplantation, interventional therapy, chemoradiotherapy, targeted therapy, and immunotherapies. Surgical resection is still the most effective treatment for patients with early HCC. There are two surgical methods for primary liver cancer, which are open hepatectomy (OH) and laparoscopic hepatectomy (LH) \(^{[3]}\). With the development of minimally invasive surgical techniques, laparoscopic hepatectomy is becoming more prevalent in liver surgery. It is considered to have less bleeding, shorter hospital stay, and fewer complications, as compared with open hepatectomy. Whether laparoscopic surgery has a significant therapeutic advantage over open surgery in certain segments of the liver or tumors of a certain size has not been determined.

There are multiple reports to evaluate the safety and feasibility of laparoscopic liver resection. Unfortunately, the jury is still out on whether laparoscopic hepatectomy is better than open hepatectomy \(^{[4]}\). This study is a follow-up report of our previous study. The aim of this study is to compare the perioperative and postoperative long-term outcomes of open hepatectomy and laparoscopic hepatectomy for hepatocellular carcinoma.

Methods

Patient selection

The hepatocellular carcinoma patients admitted to the Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from October 2017 to September 2018. This is a prospective cohort study. Patients meeting the following criteria were included in the study: (1) regardless of gender and age; (2) normal vital organ function; (3) meeting the requirements of general anesthesia; (4) a tumor diameter of < 10 cm on imaging; (5) no tumor thrombus in the portal vein, bile duct or inferior vena cava; (6) Child-Pugh grade A or B; (7) no extrahepatic metastasis; (8) no active hepatitis. Patients who were excluded with a severe organic disease or hepatic cirrhosis, or a conversion from a laparoscopic to an open surgery \(^{[5]}\).
There are 158 patients involved in the present study and they were randomly divided into two groups, LH group (n = 60), and OH group (n = 98). All patients were followed up until August 2020, by clinic visits every 3 months in the first year after surgery, every 4 months during the second year after surgery and every 6 months thereafter. The study was approved by the ethics committee of Union Hospital. (No. WHUH2018S002) and registered in the International Clinical Trial Registry (No. NCT03585166). Informed consent was signed by all patients.

Surgical Procedures

Surgery for LH

This operation was performed in accordance with the consensus of Chinese experts on laparoscopic hepatectomy\(^6\). Specifically \(^5, 7\), The patient was placed in the left semi-recumbent position with total venous anesthesia. Intra-abdominal pressure was maintained at 13–15 mmHg (1 mmHg = 0.133 kPa). Four 10-mm trocars are commonly used for liver anatomy, and one 10 mm trocar is inserted above the umbilicus for camera. The vessel and parenchyma tissue were dissected by harmonic scalpel (Ethicon Endo-Surgery, USA) and laparoscopic cavitation ultrasonic surgical aspirator (Valleylab, USA). Hem-o-lock clips (Weck Surgical Instruments, USA) were used for vessels of \(\geq 5\) mm in diameter. Intraoperative ultrasound examination (Toshiba, Japan) was used to determine the location of the main catheter in the liver and the size of the tumor, including their relationships, and to look for any metastatic sites or tumor clots\(^8\).

Surgery for OH

The same anesthesia with LH was performed, patients were placed in supine position and the laparotomy was performed through right subcostal incision. The vascular and parenchymal tissues were separated by ultrasonic sputum aspirator. During the operation, bipolar electrocoagulation was used to stop the blood\(^5\).

Postoperative hospitalization and follow-up

Postoperatively, all patients were taken off by the same care and monitoring. Liver function tests and routine blood tests were conducted at 1, 3, and 7 days. When the drainage fluid was serous and in the absence of bile leakage, the abdominal drainage tube was removed. Also, an ultrasound imaging was usually performed before discharge.

After discharge, all these patients were followed at 1 months, 3 months, 6 months, 12 months, and 24 months. The follow-up indexes included adverse reactions such as nausea, diarrhea, liver pain and fever, complications such as biliary leakage, bleeding, infection, ascites pleural effusion, number and size of recurrent tumors, and death.

Statistical Analysis
Continuous variables were indicated by means and standard deviations, and categorical variables were indicated by number and percentages. Continuous data were compared by one-way ANOVA, and categorical data were compared by Fisher’s exact test or the χ² test. Overall survival was defined as the interval between the initial surgery and death or the date of the last or most recent follow-up visit. Disease-free survival was defined as the interval between the initial surgery and the date when recurrence was detected by radiological examination [3]. Survival curves were calculated by the Kaplan–Meier method and compared using the log-rank test. All analysis were performed using SPSS 23. P < 0.05 was considered statistically significant.

Results

Patient Characteristics

The clinico-pathological characteristics of the 158 patients are shown in Table I, which include age, gender, education, income, health insurance, body mass index (BMI), tumor size(cm), hospitalization cost, hepatitis B positive rate, alpha fetoprotein positive and Child-Pugh grade. There were no significant differences between the two groups with these clinicopathological parameters.
Characteristic	LH group	OH group	F/χ²	P
Age(year)	53.10 ± 9.756	53.99 ± 10.703	0.275	0.601
Gender(%)				
Female	52(86.67)	78(79.59)	1.278	0.258
Male	8(13.33)	20(20.41)		
Education				
Primary schools and below	16(26.67)	30(30.61)	7.717	0.103
junior high school	17(28.33)	39(39.80)		
High school	17(28.33)	15(15.31)		
College degree or above	10(16.67)	14(14.29)		
Income			0.73	0.393
0-5000	39(65.00)	57(58.16)		
5000-	21(35.00)	41(41.84)		
Health insurance				
Health insurance in cities and towns	5(8.33)	9(9.18)	7.613	0.107
Commercial insurance	1(1.67)	3(3.06)		
Provincial health insurance	42(70.00)	61(62.24)		
New rural cooperative medical insurance	5(8.33)	21(21.43)		
Self-paying	7(11.67)	4(4.08)		
BMI	23.55 ± 2.75	23.62 ± 2.59	0.029	0.865
Tumor size(cm)	5.15 ± 2.80	5.65 ± 2.58	0.922	0.634
tumor type				
Single	39(65)	60(61.22)	0.227	0.634
Multiple	21(35)	38(38.78)		
HBsAg				
Positive	46(76.67)	76(77.55)	0.017	0.898
Negative	14(23.33)	22(22.45)		
Characteristic	LH group	OH group	F/χ²	P
----------------------------------	----------	----------	-------	-----
AFP				
Positive	29(48.33)	61(62.24)	2.938	0.087
Negative	31(51.67)	37(37.76)		
Child-Pugh grade				
A	53(88.33)	84(85.71)	0.222	0.638
B	7(11.67)	14(14.29)		

Perioperative outcomes of the patients who underwent LH and OH

Perioperative outcomes of the patients who underwent LH and OH were shown in table 2. Incision lengths of LH were shorter than OH. The average incision lengths of LH group was 5.14 ± 3.11 cm, and the OH group was 20.92 ± 6.44 cm, P < 0.001. Operating time of LH were longer than OH. The mean operating time of LH group was 398.53 ± 170.51 minutes, and the OH group was 257.74 ± 91.31 minutes, P < 0.001. Hospital stay of LH were shorter than OH. The mean hospital stay of LH group was 17.72 ± 5.82 days, and the OH group was 21.42 ± 8.44 days, P = 0.003. The average hospitalization costs of LH group (82741.18 ± 26128.81) were significantly less than OH group (94998.75 ± 30499.64), p = 0.011 < 0.05. Significant difference was found in the Intra-operative blood transfusion, eating time, exhaust time, defecation time, use of analgesia, ambulation time, abdominal drainage, post-operative albumin transfusion between two groups, p < 0.05.
Table 2
Comparison of perioperative outcomes between the patients who underwent LH and OH

Parameter	LH group	OH group	F/χ²	P
Incision length(cm)	5.14 ± 3.11	20.92 ± 6.44	315.079	< 0.001
Number of patients with intra-operative bleeding(%)			0.282	0.595
Yes	28(46.67)	50(51.02)		
No	32(53.33)	48(48.98)		
Intra-operative bleeding(ml)	632.81 ± 591.28	739.8 ± 859.63	0.989	0.487
Number of patients with intra-operative blood transfusion(%)				
Yes	48(80.00)	61(62.24)	5.484	0.019
No	12(20.00)	37(37.76)		
Intra-operative blood transfusion (ml)	787.50 ± 363.15	855.41 ± 837.31	0.378	0.540
Operating time(min)	398.53 ± 170.51	257.74 ± 91.31	45.597	< 0.001
Eating time (days)	1.47 ± 0.75	1.91 ± 0.76	12.700	< 0.001
Exhaust time (days)	2.35 ± 0.66	2.87 ± 0.64	23.933	< 0.001
Defecation time (days)	3.08 ± 0.93	3.54 ± 0.63	13.665	< 0.001
Use of analgesia (days)	3.85 ± 1.63	6.59 ± 2.76	48.638	< 0.001
Ambulation time (days)	3.93 ± 0.82	5.04 ± 1.28	36.041	< 0.001
Hospital stay (days)	17.72 ± 5.82	21.42 ± 8.44	8.938	0.003
Hospitalization cost($)	82741.18 ± 26128.81	94998.75 ± 30499.64	6.683	0.011
Abdominal drainage (days)	8.02 ± 3.5	11.77 ± 7.11	14.520	< 0.001
Number of patients with post-operative blood transfusion (%)				
Yes	2(3.33)	20(20.41)	9.053	0.003
No	58(96.67)	78(79.59)		
Post-operative blood transfusion (mL)	1450 ± 1060.66	2767.5 ± 2217.29	0.668	0.423
Parameter | **LH group** | **OH group** | \(F/\chi^2 \) | \(P \)
--- | --- | --- | --- | ---
Post-operative blood transfusion time (days) | 3 ± 2.83 | 3.55 ± 2.91 | 0.065 | 0.801

Number of patients with post-operative albumin transfusion (%)

	LH group	OH group	\(\chi^2 \)	\(P \)
Yes	20(33.33)	68(69.39)	19.605	< 0.001
No	40(66.67)	30(30.61)	0.001	0.989

Postoperative outcomes of the patients who underwent LH and OH

Postoperative outcomes of the patients who underwent LH and OH were shown in table 3. The incidence of total complications was also lower in LH group than in OH group (\(P < 0.001 \)). The ascites(\(P = 0.001 \)), incision infection (\(P < 0.001 \)), bleeding(\(P = 0.003 \)) in LH group were significantly lower than those in OH group.

Parameter	LH group	OH group	\(\chi^2 \)	\(P \)
Ascites	4	27	10.092	< 0.001
Pleural effusion	7	18	1.255	0.263
Venous thrombosis of the lower extremities	2	1	1.069	0.301
Incision infection	1	21	12.126	< 0.001
Bile leakage	0	1	1*	
Bleeding	2	20	9.053	0.003
Intestinal fistula	0	1	0.616	1*
Total	12	55	19.883	< 0.001

* Fisher’s exact test.

Comparison of liver function between LH group and OH group

Liver function of the patients who underwent LH and OH were shown in table 4. Preoperatively, there was no significant difference between LH group and OH group in liver function. Postoperatively, the leukocyte was significantly lower at 1st day in LH group (9.79 ± 2.92G/L) than in OH group (12.6 ± 4.85 G/L), \(p < \)
The aspartate aminotransferase (AST) was significantly lower at 7th day in LH group (39.25 ± 16.63 U/L) than in OH group (62.49 ± 67.77 U/L), p = 0.01 < 0.05. The albumin was significantly higher at 3rd day in LH group (34.21 ± 3.94 g/L) than in OH group (31.24 ± 5.23 g/L), p < 0.001. The albumin was significantly higher at 7th day in LH group (35.26 ± 3.73 g/L) than in OH group (33.31 ± 4.51 g/L), p = 0.006 < 0.05. Direct bilirubin was significantly higher at 1st day in LH group (10.28 ± 10.70 µmol /L) than in OH group (315.03 ± 15.71 µmol /L), p = 0.04 < 0.05.
Table 4
Comparison of liver function between LH group and OH group

Parameter	LH group	OH group	F	P
Leukocyte (G/L)				
Pre-operation	5.52 ± 1.88	5.56 ± 2.29	0.014	0.907
Post-operation				
1st day	9.79 ± 2.92	12.6 ± 4.85	16.399	< 0.001
3rd day	9.4 ± 2.51	9.37 ± 3.59	0.006	0.941
7th day	7.28 ± 2.06	7.98 ± 3.41	2.057	0.153
(U/L)				
Pre-operation	51.68 ± 115.35	42.76 ± 49.3	0.453	0.502
Post-operation				
1st day	356.52 ± 542.96	338.3 ± 262.81	0.080	0.778
3rd day	341.3 ± 398.69	315.36 ± 252.99	0.251	0.617
7th day	104.6 ± 111.8	110.24 ± 82.73	0.132	0.717
AST (U/L)				
Pre-operation	43.97 ± 74.08	37.20 ± 18.30	0.745	0.389
Post-operation				
1st day	342.5 ± 322.63	423.65 ± 334.22	2.252	0.135
3rd day	158 ± 182.94	192.94 ± 173.03	1.453	0.230
7th day	39.25 ± 16.63	62.49 ± 67.77	6.789	0.010
Albumin (g/L)				
Pre-operation	40.35 ± 4.67	38.88 ± 5.33	3.093	0.081
Post-operation				
1st day	31.8 ± 5.38	30.54 ± 6.21	1.680	0.197
3rd day	34.21 ± 3.94	31.24 ± 5.23	14.402	< 0.001
7th day	35.26 ± 3.73	33.31 ± 4.51	7.903	0.006
Globulin (g/L)				
Pre-operation	25.55 ± 4.7	26.06 ± 5.18	0.387	0.535
Post-operation				
Parameter	LH group	OH group	F	P
--	---------------	---------------	---------	---------
1st day	21.35 ± 3.77	21.87 ± 4.95	0.485	0.487
3rd day	21.67 ± 3.8	21.82 ± 4.71	0.047	0.828
7th day	24.21 ± 4.24	24.23 ± 4.75	0.001	0.984
Albumin and globulin ratio				
Pre-operation	1.64 ± 0.34	1.55 ± 0.35	2.393	0.124
Post-operation				
1st day	1.54 ± 0.37	1.46 ± 0.42	1.412	0.236
3rd day	1.62 ± 0.34	1.49 ± 0.41	3.909	0.050
7th day	1.5 ± 0.29	1.43 ± 0.35	1.658	0.200
Total bilirubin (µmol/L)				
Pre-operation	17.52 ± 20.82	17.61 ± 20.70	0.001	0.979
Post-operation				
1st day	24.96 ± 17.62	31 ± 25.48	2.608	0.108
3rd day	24.62 ± 16.48	28.88 ± 27.22	1.199	0.275
7th day	18.83 ± 10.04	22.04 ± 18.77	1.486	0.225
Direct bilirubin (µmol/L)				
Pre-operation	7.24 ± 15.46	7.61 ± 14.28	0.024	0.878
Post-operation				
1st day	10.28 ± 10.7	15.03 ± 15.71	4.279	0.040
3rd day	10.49 ± 7.8	14.38 ± 16.28	3.005	0.085
7th day	8.32 ± 5.63	11.29 ± 11.86	3.320	0.070

Overall Survival Between LH Group And OH Group

The follow-up time after surgery was 24 months (1–24). The mean follow-up time after surgery was 17.94 ± 9.132. In LH group, the median follow-up time after surgery was 24 months (1–24), and the mean follow-up time after surgery was 17.52 ± 9.253. In OH group, the median follow-up time after surgery was 24 months (1–24), and the mean follow-up time after surgery was 18.19 ± 9.096, P = 0.625. Log rank test was performed to compare overall survival rates between the two groups. The 6,12 and 24-month overall survival rates were 97.96%, 84.22%, 84.22% in LH group. The 6,12 and 24-month overall survival rates
were 92.39%, 82.13%, 80.92% in OH group, \(\chi^2 = 0.398, P = 0.528 \), indicating that there were no statistically significant differences with 2-year survival rate between LH and OH group for liver cancer patients (Fig. 1).

During the follow-up period, recurrence was observed in 14 of the 158 patients in two groups. The 2-year disease-free survival rate was 90.01% after laparoscopic hepatectomy and 88.24% after open hepatectomy, \(\chi^2 = 0.126, P = 0.722 \). There were no statistically significant differences with 2-year disease-free survival rate between LH group and OH group. (Fig. 2).

The factors associated with overall survival rate were shown in table 5. The univariate analysis shown that Child-Pugh grade (RR = 0.362, 95%CI 0.139–0.944) was the risk factor of overall survival rate. And Child-Pugh grade A was the protective factor of overall survival rate. But other factors such as surgical methods, sex, age, tumor size, HBsAg, AFP were not the risk influence factors of overall survival rate. The factors associated with disease-free survival rate were shown in table 6. The univariate analysis shown that none of these were risk factors of disease-free survival rate.

Table 5

Parameter	B	p	RR	95%CI
LH (vs. OH)	-0.166	0.709	0.847	0.354–2.027
Male (vs. female)	-0.188	0.726	0.829	0.290–2.370
Age < 65 (vs. ≥ 65)	-0.247	0.635	0.781	0.281–2.169
Tumor size < 5 cm (vs. ≥ 5 cm)	-0.698	0.115	0.497	0.209–1.186
HBsAg positive (vs. negative)	-0.358	0.488	0.699	0.255–1.919
AFP positive (vs. negative)	-0.016	0.971	0.984	0.404–2.397
Child-Pugh grade A (vs. B)	-1.017	0.038	0.362	0.139–0.944
Table 6
Analyses of factors associated with disease-free survival rate

Parameter	B	p	RR	95%CI
Surgical methods	0.166	0.771	1.181	0.386–3.614
Male (vs. female)	-0.493	0.488	0.611	0.151–2.464
Age < 65 (vs. ≥ 65)	13.088	0.977	482949.424	
Tumor size < 5 cm (vs. ≥ 5 cm)	-0.837	0.155	0.433	0.137–1.373
HBsAg positive (vs. negative)	1.357	0.225	3.885	0.434–34.793
AFP positive (vs. negative)	-0.212	0.740	0.809	0.231–2.833
Child-Pugh grade A (vs. B)	-0.309	0.693	0.734	0.158–3.411

Discussion

It was not until 1991 that laparoscopic hepatectomy was first reported, open hepatectomy was the only choice for surgical method to treatment the liver cancer\[4\]. The first International Concensus Conference on Laparoscopic Hepatectomy, in Louisville, Kentucky, US, set the standard laparoscopic hepatectomy practice, which was laparoscopic left lateral sectionectomy in 2008\[9\]. Acceptable diameter indications of laparoscopic hepatectomy was less than or equal to 5 cm. The first Asia-Pacific consensus meeting on hepatocellular carcinoma in Hong Kong defined the role of laparoscopic hepatectomy in hepatocellular carcinoma management and developed guidelines in 2016\[10\]. And laparoscopic hepatectomy was regard as less blood loss the open hepatectomy. The First European Guidelines meeting on Laparoscopic Liver Surgery was held in Southampton in 2017\[11\]. This meeting presented and developed the guidelines of laparoscopic liver surgery.

Over the past 20 years, laparoscopic liver surgery indications were depended on tumor size, location, and time, initially, but recently the indications have been expanded. With the developed of minimally invasive technology, due to this surgical method could reduce the incision size, decrease complications and shorten hospital length of stay, laparoscopic liver surgery has been widely used all over the world. And hepatectomy has become a preferred method to treatment the liver cancer\[12\].

Both laparoscopic hepatectomy and open hepatectomy, have strict access criteria and indications. We performed these two surgical method by strict criteria and indications. In this study, before surgery, there was no statistical difference between the two groups in demographic characteristics and disease characteristics (Table 1).

According to this study results, the incision length of laparoscopic hepatectomy was significantly shorter than open hepatectomy. As all we known, laparoscopic liver surgery is a noninvasive procedure. This is also consistent with the aesthetic requirements of the body, which is one of the reasons for the increasing
popularity of laparoscopy. A shorter hospitalization stay was observed in laparoscopic hepatectomy. This result is in line with Meidai Kasai et al13. Laparoscopic hepatectomy is always considered to have shorter hospitalization stay, which probably due to a smaller incision under laparoscopic liver surgery, making it easier for patients to heal and recover more quickly. Compared to open liver surgery, laparoscopic liver surgery was cheaper. The cost of hospitalization is related to the type of surgery, payment method, length of stay, type of medical insurance, and drug use.

The operating time of laparoscopic hepatectomy was significantly longer than open hepatectomy. Many studies[13–14] also thought a longer operating time in the laparoscopic hepatectomy. Because laparoscopic hepatectomy is more complicated, and it depends on surgeon experience and skill level. Eating time, exhaust time, defecation time, use of analgesia time and ambulation time of laparoscopic hepatectomy were shorter than open hepatectomy. The earlier patients eating, the more nutrients can be provided to patients, and it can promote recovery. At the same time, it can reduce the input of nutritional supplements, reduce the pain of patients, reduce the cost of hospitalization. Laparoscopic liver surgery is always considered to have less bleeding, less blood transfusion, comparing with open liver surgery[3]. However in the present study, there were no statistically significance between the two group[15].

The rate of patients with intra-operative blood transfusion of laparoscopic hepatectomy was more than open hepatectomy. This finding is consistent with Macacari et al[15]. The proportion of patients with post-operative albumin transfusion was less than open hepatectomy. Komorowski A L et al[16] result shown that the laparoscopy hepatectomy had lower intra-operative blood loss and also required less blood transfusion.

The incidence of total complications was also lower in LH group than in OH group. This finding is consistent with our earlier findings[5]. The ascites, incision infection, and bleeding in LH group were significantly lower than those in OH group. Komorowski A L et al found that ascites was similar in both groups[17]. Laparoscopy hepatectomy could reduce the rate of ascites especially in patients who had cirrhotic liver[18]. The smaller the incision, the lower the infection rate. A lot of research demonstrated that less bleeding in laparoscopy hepatectomy, comparing with open hepatectomy.

Nonsignificant difference were found in the two groups for 2-year overall survival and for 2-year disease-free survival. Kandil et al[16]found that the 3-year overall survival rate was 100% in the laparoscopic group, but which was 71.4%in the open group. It was different from overall survival (p = 0.03) but not different from disease-frees survival (p = 0.2). This indicates that the long-term efficacy of laparoscopic hepatectomy is basically equivalent to that of open hepatectomy, which is basically consistent with the conclusions of other scholars[19–21].

Conclusion

Combined with recent experience, indications and use of laparoscopic hepatectomy have improved with the development of laparoscopic instruments widening[22]. Laparoscopic hepatectomy surgery supplied a
lower incision lengths, hospital stay and incidence of total complications. Laparoscopic hepatectomy was cheaper the open hepatectomy. There were no statistically significant differences with 2-year survival rate between LH and OH group for liver cancer patients, nor was disease-free survival. The result of this study indicated that laparoscopic hepatectomy surgery was as safe as open hepatectomy surgery. Laparoscopic hepatectomy surgery supplied a lower rate of mobidity and postoperative recovery and outcomes. The results of this study shown that laparoscopic hepatectomy surgery was as efficacy as open hepatectomy surgery.

There are some deficiencies in this study. Lacking of long-term follow-up data, the short follow-up time in this study could not fully reflect the long-term postoperative survival rate and disease-free survival rate of the patients. And this is not a strictly random. We need to follow up these patients for a long period, such as 5 years, 10 years or even longer, to further compare and analyze the similarities and differences between laparoscopic hepatectomy and open hepatectomy, so as to further improve the safety and effectiveness of laparoscopic hepatectomy surgery, reduce complications, prolong survival time and improve the quality of life.

Abbreviations

HCC: Hepatocellular carcinoma; LH:Laparoscopic hepatectomy; OH:open hepatectomy; ALT:alanine aminotransferase; AFP:Alpha-feto-protein; AST:aspartate aminotransferase; HBsAg:hepatitis B surface antigen

Declarations

Availability of data and materials

The datesets generated and analyzed during the current study are available from the corresponding author.

Consent for publication

Not applicable.

Conflict of Interest Statement

The authors of this study declare no conflict of interest.
This study was reviewed and approved by the institutional Ethical Board of Union hospital, Tongji Medical College, Huazhong University of Science and Technology. The informed consent of the patients was obtained for data collection and follow-up.

Funding

This study was supported by National Natural Science Foundation of China (81974280), Nature Science Foundation of Hubei (2019CFB684)

Authors’ contributions

JY performed design, statistical analysis, interpretation and drafted the manuscript. LZ, MT, SSC, HYY performed collection, analysis and assembly of data; SLY, LY conducted the study and managed the database, revised the article and given guidance. All authors read and approved the final manuscript.

References

1. Mokdad AA, Singal AG, Yopp AC. JAMA PATIENT PAGE. Treatment of Liver Cancer. JAMA. 2016;315(1):100.
2. Yang JD, Hainaut P, Gores GJ, Amadou A, Amelie Plymoth & Lewis R. Roberts. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.
3. Ryu T. Honda Goro,Kurata Masanao,Kobayashi Shin,Sakamoto Katsunori,Honjo Masahiko. Perioperative and oncological outcomes of laparoscopic anatomical hepatectomy for hepatocellular carcinoma introduced gradually in a single center.[J]. Surgical endoscopy. 2018;32(2):790–8.
4. Hiroshi Y. Taniai Nobuhiko,Yoshioka Masato,Hirakata Atsushi,Kawano Youichi,Shimizu Tetsuya,Ueda Junji,Takata Hideyuki,Nakamura Yoshiharu,Mamada Yasuhiro. Current Status of Laparoscopic Hepatectomy.[J]. Journal of Nippon Medical School. 2019;86(4):201–6.
5. Li Zeng, MinTian,Si-si Chen, Yu-ting, Ke L, Geng Sheng-li, Yang L Ye. Short-term Outcomes of Laparoscopic vs. Open Hepatectomy for Primary Hepatocellular Carcinoma: A Prospective Comparative Study[J]. Current Medical Science,2019,39(5):778–783.
6. Chen XP. Expert consensus on laparoscopic hepatectomy (2013 version). J Huazhong Univ Sci Technolog Med Sci. 2013;33:791–7.
7. Xu Hong-wei, Liu F, Wei HY, Li B. Outcomes following laparoscopic versus open major hepatectomy for hepatocellular carcinoma in patients with cirrhosis: a propensity score-matched analysis. SURG ENDOSC. 2018;32:712–9.
8. Xiang L, Li J, Chen J, Wang X, Guo P, Fan Y, Zheng S. Prospective cohort study of laparoscopic and open hepatectomy for hepatocellular carcinoma. Br J Surg. 2016;103:1895–901.
9. Buell Joseph F, Cherqui Daniel, Geller DA, O'Rourke Nicholas, Iannitti David, Dagher Ibrahim, Koffron Alan J, Thomas Mark, Gayet Brice, Han Ho Seong, Wakabayashi Go, Belli Giulio, Kaneko Hironori, Ker Chen-Guo, Scatton Olivier, Laurent Alexis, Abdalla Eddie K, Chaudhury Prosanto, Dutson Erik, Gamblin Clark, D'Angelica Michael, Nagorney David, Testa Giuliano, Labow Daniel, Manas Derrik, Poon Ronnie T, Nelson Heidi, Martin Robert, Clary Bryan, Pinson Wright C, Martinie John, Vauthey Jean-Nicolas, Goldst... The international position on laparoscopic liver surgery: The Louisville Statement, 2008.[J]. Annals of surgery, 2009, 250(5):825–830.

10. Cheung TT, Han Ho-Seong, SheW HoI, Chen Kuo-Hsin, Chow, Pierce KH, Yoong Boon Koon, Lee Kit Fai, Kubo Shoji, Tang Chung Ngai, Wakabayashi Go. The Asia Pacific Consensus Statement on Laparoscopic Liver Resection for Hepatocellular Carcinoma: A Report from the 7th Asia-Pacific Primary Liver Cancer Expert Meeting Held in Hong Kong.[J]. Liver cancer, 2018, 7(1): 28–39.

11. Mohammad Abu Hilal, Luca Aldrighetti, Ibrahim Dagher, Bjorn Edwin, Roberto Ivan Troisi, Ruslan Alikhanov, Somaiah Aroori, Giulio Belli, Marc Besselink, Javier Briceno, Brice Gayet, Mathieu D’Hondt, Mickael Lesurtel, Krishna Menon, Peter Lodge, Fernando Rotellar, Julio Santoyo, Olivier Scatton, Olivier Soubrane, Robert Sutcliffe, Ronald Van Dam, Steve White, Mark Christopher Halls, Federica Cipriani, Marcel Van der Poel, Ruben Ciria, Leonid Barkhatov, Yrene Gomez-Luque, Sira Ocana-Garcia, Andrew Cook, Joseph. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation[J]. Ann Surg 2018; 268: 11–18.

12. Kang Woo-Hyoung, Kim Ki-Hun, Jung Dong-Hwan, Park Gil-Chun, Kim Seok-Hwan, Cho Hwui-Dong, Lee Sung-Gyu. Long-term results of laparoscopic liver resection for the primary treatment of hepatocellular carcinoma: role of the surgeon in anatomical resection.[J]. Surgical endoscopy, 2018, 32(11):4481–4490.

13. Kasai Meidai C, Federica G, Brice A, Luca R, Francesca, Sarmiento Juan M, Scatton Olivier, Kim Ki-Hun, Dagher Ibrahim, Topal Baki, Primrose John, Nomi Takeo, Fuks David, Abu Hilal Mohammad. Laparoscopic versus open major hepatectomy: a systematic review and meta-analysis of individual patient data.[J]. Surgery, 2018:985–995.

14. Komatsu S, Brustia Raffaele, Goumard Claire, Perdigao Fabiano, Soubrane Olivier, Scatton Olivier. Laparoscopic versus open major hepatectomy for hepatocellular carcinoma: a matched pair analysis.[J]. Surgical endoscopy, 2016, 30(5):1965–1974.

15. Rodrigo Luiz Macacari, Fabricio Ferreira Coelho, Wanderley Marques Bernardo, Jaime Arthur Pirola Kruger, Vagner Birk Jeismann, Gilton Marques Fonseca, Danielle Menezes Cesconetto, Ivan Ceconello, Paulo Herman. Laparoscopic vs. open left lateral sectionectomy: An update meta-analysis of randomized and non-randomized controlled trials[J]. International Journal of Surgery, 2019, 61:1–10.

16. Emad Kandil, Salem I, Noureldine A, Koffron Lu, Yao B, Saggi, Joseph F, Buell. Outcomes of laparoscopic and open resection for neuroendocrine liver metastases[J]. Surgery. 2012;152(6):1225–31.

17. Andrzej L, Komorowski, Jerzy W, Mituś, Wojciech M, Wysocki, Małgorzata M, Bała. Laparoscopic and open liver resection - a literature review with meta-analysis.[J]. Archives of Medical ence Ams, 2017,
18. Morise Z. Developments and perspectives of laparoscopic liver resection in the treatment of hepatocellular carcinoma[J]. Surg Today. 2019;49:649–55.
19. Ciria Ruben G-L, Irene O, Sira CF, Halls Mark B, Javier O, Yukihiro T, Roberto R, Fernando S, Olivier, Abu Hilal Mohammed. A Systematic Review and Meta-Analysis Comparing the Short- and Long-Term Outcomes for Laparoscopic and Open Liver Resections for Hepatocellular Carcinoma: Updated Results from the European Guidelines Meeting on Laparoscopic Liver Surgery, Southampton, UK 2017[J]. Ann Surg Oncol, 2019, 26(1):252–263.
20. Ruben Ciria D, Cherqui DA, Geller J, Briceno G, Wakabayashi. Comparative Short term Benefits of Laparoscopic Liver Resection: 9000 Cases and Climbing[J]. Ann Surg. 2016;263(4):761–77.
21. El-Gendi A, El-Shafei M, El-Gendi S, et al. Laparoscopic Versus Open Hepatic Resection for Solitary Hepatocellular Carcinoma Less Than 5 cm in Cirrhotic Patients: A Randomized Controlled Study[J]. J Laparoendosc Adv Surg Tech A. 2018;28(3):302–10.
22. Kim JH, Kim H. Modified liver hanging maneuver in laparoscopic major hepatectomy: the learning curve and evolution of indications[J]. Surg Endosc. 2020;34(6):2742–8.

Figures
Figure 1
Cumulative overall survival of the LH and OH groups

Figure 2
Cumulative disease-free survival of the LH and OH groups