Outcomes in Black and White Patients With Metastatic Renal Cell Carcinoma Treated With First-Line Tyrosine Kinase Inhibitors: Insights From Two Large Cohorts

Dominick Bossé, MD, MSc, MPH1,2; Wanling Xie, MS2; Xun Lin, PhD2; Ronit Simantov, MD2; Aly-Khan A. Lalani, MD3; Jeffrey Graham, MD4; J. Connor Wells, MD4; Freda Donskov, MD5; Brian Rini, MD6; Benoit Beuselinck, MD5; Ajai Alva, MD10; Aaron Hansen, BSc, MBBS (Hons)11; Lori Wood, MD, MSc12; Denis Soulìères, MD13; Christian Kollmannsberger, MD14; Francois Patenaude, MD, PhD15; Daniel Y.C. Heng, MD, MPH16; Toni K. Choueiri, MD1; and Rana R. McKay, MD16

PURPOSE To investigate whether black race is an independent predictor of overall survival (OS) in metastatic renal cell carcinoma (mRCC).

METHODS We performed a retrospective 2-cohort (International Metastatic Renal Cell Carcinoma Database Consortium [IMDC] and trial-database) study of patients with mRCC treated with first-line tyrosine kinase inhibitors (TKIs). Unmatched (UM) and matched (M) analyses accounting for imbalances in region, year of treatment, age, and sex between races were performed. Cox models adjusting for histology, number of metastatic sites, nephrectomy, and IMDC risk compared time to treatment failure (TTF; IMDC cohort), progression-free survival (PFS; trial-database cohort), and OS.

RESULTS The IMDC cohort included 73 black versus 3,381 (UM) and 1,236 (M) white patients. The trial-database cohort included 21 black versus 1,040 (UM) and 431 (M) white patients. Median OS for black versus white patients was 18.5 versus 25.8 months in the IMDC group and 21.0 versus 25.6 months in the trial-database group. Differences in OS were not significant in multivariable analysis in the IMDC group (hazard ratio [HR]M, 1.0; 95% CI, 0.7 to 1.5; HRUM, 1.1; 95% CI, 0.8 to 1.4) and trial-database (HRM, 1.5; 95% CI, 0.8 to 2.7; HRUM, 1.4; 95% CI, 0.8 to 2.6) cohorts. TTF for black patients was shorter in the UM IMDC cohort (HRUM, 1.4; 95% CI, 1.1 to 1.8; \(P = .003 \)), but not in the M analysis. PFS was shorter for black patients in both analyses in the trial-database cohort (HRM, 2.3; 95% CI, 1.4 to 3.9; \(P = .002 \); HRUM, 2.3; 95% CI, 1.4 to 3.9; \(P = .002 \)).

CONCLUSION Black patients had more IMDC risk factors and worse outcomes with TKIs versus white patients. Race was not an independent predictor of OS. Strategies to understand biologic determinants of outcomes for minority patients are needed to optimize care.

JCO Global Oncol 6:293-306. © 2020 by American Society of Clinical Oncology

INTRODUCTION

Every year, approximately 400,000 people worldwide are diagnosed with renal cell carcinoma (RCC).1 Globally, the incidence of RCC varies by geographic region and race. In recent years, the black population in the United States has observed the most noticeable increase in RCC incidence rates.2,3 Additionally, epidemiologic studies have identified that the proportion of patients with non–clear-cell RCC is higher among black populations relative to non-Hispanic white cohorts.4 Reports from the linked SEER cancer registry and Medicare databases between 1986 and 1999,5 the National SEER database between 1992 and 2007,6 and the California Cancer Registry between 1988 and 20047 concluded that black patients with RCC have shorter overall survival (OS) compared with white patients with RCC. A retrospective single-institution study using a clinical trial population from 1992 to 2002 to mitigate confounders also reported racial disparities in outcomes.8 A more contemporary cohort of patients from the National Cancer Database showed improvement in patient outcomes independent of race after the introduction of vascular endothelial growth factor (VEGF)-targeted therapy in 2006 to 2011 compared with 1998 to 2004.9 However, the survival gap between black and white populations persisted in this analysis. Collectively, these studies suggest that black patients with RCC have worse outcomes than their white counterparts.
These disparities in survival are thought to reflect an interplay of socioeconomic factors, culture, environment, and differing underlying disease biology. The prevalence of RCC risk factors, such as hypertension, chronic kidney disease, obesity, cigarette smoking, lifestyle, and occupational/drug exposures, differs among black and white populations. However, evidence to support that such factors influence the disparity in incidence and the natural history of RCC is lacking.

Health care administrative databases do not account for important variations in baseline disease characteristics, such as the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) risk groups or the burden of disease; it is therefore unclear whether the racial disparity in survival previously reported would exist after accounting for these confounders. To better understand the effects of racial differences among patients with metastatic RCC (mRCC), this study examined outcomes in black patients compared with matched and unmatched white cohorts in the IMDC database and in a trial-database cohort from a pooled clinical trials database.

METHODS

Study Population

The study examined 2 independent groups of patients with mRCC. Patients were restricted to centers from North America and Northern Europe. The IMDC cohort included patients from a clinical retrospective and multi-institution database of consecutive patients with mRCC. The trial-database cohort was developed from a pooled RCC database of 12 prospective phase II (ClinicalTrials.gov identifiers: NCT00077974, NCT00137423, NCT00267748, NCT00338884, NCT0054886, NCT00835978) and phase III (ClinicalTrials.gov identifiers: NCT00083889, NCT00678392, NCT00920816, NCT00065468, NCT00474786, NCT00631371) clinical trials in patients with advanced RCC. For both cohorts, eligible patients had a confirmed diagnosis of mRCC of any histology (locally or centrally confirmed), were of black or white race, and were in receipt of a VEGF tyrosine kinase inhibitor (TKI) as first-line therapy or after cytokines. Baseline patient characteristics, IMDC risk groups (favorable [0 risk factors], intermediate [1 to 2 risk factors], or poor [≥ 3 risk factors]), sites and number of metastases, history of nephrectomy, and clinical outcomes were extracted from both databases. IMDC risk factors included 1 year from diagnosis to systemic therapy, Karnofsky performance score ≥ 80%, hemoglobin less than the lower limit of normal, corrected calcium level greater than the upper limit of normal (ULN), neutrophil count greater than the ULN, and platelet count greater than the ULN. This study was approved by the ethics research board of each institution.

Study Design

Unmatched and matched cohort designs for race were conducted. For the unmatched analysis, all eligible patients were included. For the matched analysis, the coarsened exact matching procedure with variable ratio matching was performed. The black and white study arms were matched by region (Canada, Northern Europe, United States), year of TKI initiation (2003 to 2007, 2008 to 2012, 2013 to 2016), age (< 50, 50 to 59, 60 to 69, ≥ 70 years), and sex to eliminate any imbalances in these factors between the 2 racial categories. Weights were assigned to the matched white study arm, accounting for variable ratios (number of white v black patients) across strata from the matching procedure.

Statistical Methods

Unless specified otherwise, identical statistical analyses and matching procedure were performed in the IMDC and trial-database cohorts. Baseline patient and disease characteristics were reported as absolute numbers and percentages. The χ² test was used to compare the distribution of and difference in objective response rate (ORR) as defined by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 between racial categories. The distribution of OS, time to treatment failure (TTF) for the IMDC cohort, and progression-free survival (PFS) for
the trial-database cohort were estimated using Kaplan-Meier methodology. OS was defined as treatment start or randomization (for the trial-database only) until death; if death was not observed, patients were censored at the time they were last known to be alive. TTF was defined as the time of starting TKI treatment until discontinuation or death, or, if they remained on therapy, patients were censored at their last assessment. PFS was the time of the randomization or protocol treatment initiation until progression of the disease or death; patients who had not experienced disease progression were censored at their last assessment.

Cox multivariable regression analysis assessed the adjusted hazard ratio (HR) and 95% CI for the black versus white study arms. For the matched analysis, the models were adjusted for patient and disease characteristics, including histology (clear-cell and non-clear-cell RCC), number of metastases, nephrectomy status, and IMDC risk groups; weights were applied to the models accounting for variable ratios across strata from the matching procedure. For the unmatched full analysis, additional variables (sex, age, and duration of TKI treatment) were also included in the multivariable models. An “unknown” category was included in the model if missing values were present for a categorical covariable, to limit exclusion of black patients from the analysis.

All analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC). Statistical significance was assumed at a 2-sided α error level < .05.

RESULTS

Matching

The IMDC cohort consisted of 3,454 patients identified from the North American and Northern European subsets of the IMDC, where 73 (2%) were black and 3,381 (98%) were white. In the trial-database cohort, 1,061 patients were identified: 21 (2%) black and 1,040 (98%) white (Fig 1). The matching procedure was successful for both datasets based on Sturges’ rule. For the unmatched full analysis, additional variables (sex, age, and duration of TKI treatment) were also included in the multivariable models. An “unknown” category was included in the model if missing values were present for a categorical covariable, to limit exclusion of black patients from the analysis.

Baseline Characteristics

Baseline and disease characteristics for both cohorts are summarized in Table 1. Overall, the groups were well balanced. At treatment initiation, there was a greater proportion of black patients with non-clear-cell histology, < 1 year interval from diagnosis to treatment, and anemia in the IMDC cohort in both matched and unmatched analyses. Although there was no difference in the rate of prior nephrectomy in the unmatched analysis, matching resulted
TABLE 1. Baseline Patient and Disease Characteristics

Characteristic	IMDC Cohort		Trial-Database Cohort	
	Black	White	Black	White
	Matched	Unmatched	Matched	Unmatched
n = 73	n = 1,236	n = 3,381	n = 21	n = 431
	n = 1,040			
No. %	No. %	No. %	No. %	No. %
Matched variables				
Age at TKI initiation				
Median (IQR), years	60 52-67	60 53-68	62 55-69	58 54-65
< 50	12 16	203 16	393 12	4 19
50-59	24 33	406 33	990 29	9 43
60-69	22 30	372 30	1,226 36	5 24
≥ 70	15 21	254 21	765 23	3 14
Missing	0 0	7 0	0 0	0 0
Male sex	55 75	931 75	2,434 72	15 71
Region				
Canada	15 21	254 21	1,266 21	1 5
Northern Europe	3 4	51 4	1,395 41	1 5
United States	55 75	931 75	1,287 38	19 90
Year of TKI initiation				
2003 to 2007	32 44	542 44	1,193 35***	11 52
2008 to 2012	38 52	643 52	1,449 43	10 48
2013 to 2016	3 4	51 4	739 22	0 0
Unmatched variables				
Histology				
Clear cell	49 74	1,034 89***	2,834 88***	18 86
Non-clear cell	17 26	127 11	385 12	3 14
Missing	7 75	162	0 0	0 0
Sarcomatoid differentiation				
Absent	57 86	957 88	2,430 87	20 95
Present	9 14	126 12	376 13	1 5
Missing	7 153	575	0 0	0 0

(Continued on following page)
TABLE 1. Baseline Patient and Disease Characteristics (Continued)

Characteristic	IMDC Cohort			Trial-Database Cohort								
	Black	White	Black	White	Black	White						
	n = 73	n = 1,236	n = 3,381	n = 21	n = 431	n = 1,040						
No. of metastatic sites	No.	%										
1	17	24	246	20	659	21	4	20	97	23	179	17
> 1	55	76	990	80	2,553	79	16	80	330	77	852	83
Missing	1	0	169	1	1	4	9					
Prior nephrectomy	No		18	25	194	16*	603	18	2	10	70	16
	Yes		55	75	1,042	84	2,776	82	19	90	361	84
Missing	0	0		2								
Karnofsky performance score	≥ 80		56	86	1,035	84	2,571	81	21	100	416	97
	< 80		9	14	201	16	614	19	0		15	3
Missing	8	0		196								
Diagnosis to first-line TKI < 1 year	No		24	33	556	45*	1,494	46*	6	29	148	34
	Yes		49	67	680	55	1,765	54	15	71	283	66
Missing	0	0		122								
Low hemoglobin	No		17	25	568	46**	1,527	49***	9	43	309	72**
	Yes		50	75	668	54	1,602	51	12	57	121	28
Missing	6	0		0								
High calcium	No		57	88	1,144	93	2,514	86	16	84	300	82
	Yes		8	12	92	7	400	14	3	16	66	18
Missing	8	0		467								
High neutrophil count (> ULN)	No		58	92	1,057	86	2,537	84	16	80	347	82
	Yes		5	8	179	14	483	16	4	20	75	18
Missing	10	0		361								

(Continued on following page)
Characteristic	IMDC Cohort			Trial-Database Cohort				
	Black	White	Black	White	Black	White		
	Matched	Unmatched	Matched	Unmatched	Matched	Unmatched		
	n = 73	n = 1,236	n = 3,381	n = 21	n = 431	n = 1,040		
No.	%	No.	%	No.	%	No.	%	
High platelet count (> ULN)								
No	53	1,027	2,509	16	365	85	878	86
Yes	14	209	530	4	65	15	148	14
Missing	6	0	342	1	1	14		
IMDC risk group								
Favorable	7	253	564	2	87	25	215	26
Intermediate	36	705	1,587	11	193	54	468	56
Poor	19	278	765	4	75	21	150	18
Missing	11	0	465	4	76	207		

NOTE. Missing values were excluded for percentage and χ^2 test. For matched white patients, numbers and percentages were weighted values to account for variable ratios (number of white patients versus number of black patients) across strata from the matching procedure. Bold type indicates significance.

Abbreviations: IMDC, International Metastatic Renal Cell Carcinoma Database Consortium; IQR, interquartile range; TKI, tyrosine kinase inhibitor; ULN, upper limit of normal.

* $P \leq .05$.

** $P \leq .01$.

*** $P \leq .001$.

Boss´e et al. 2020 by American Society of Clinical Oncology
in a higher rate of nephrectomy in white compared with black patients (84% vs 75%; \(P = .04 \)).

In the trial-database cohort, baseline anemia was more frequent in black compared with white patients in both matched and unmatched analyses. Unlike the IMDC cohort, rate of nephrectomy was higher in the black versus white study arm in the unmatched analysis (90% vs 66%; \(P = .02 \)). The difference in rate of nephrectomy between races was not significant in the matched analysis. The number of patients with non–clear-cell RCC in the trial-database cohort was limited (n = 82; 8%) because they were excluded from some of the pooled clinical trials composing this dataset.

Overall Survival

There were 2,382 (69%) deaths observed in the IMDC cohort. The median follow-up for patients who were alive was 34 months. The estimated median OS for white patients was 25.8 months (95% CI, 23.1 to 28.8 months) and 25.1 months (95% CI, 23.7 to 26.7 months) in the matched and unmatched analyses, respectively, compared with 18.5 months (95% CI, 13.8 to 26.1 months) for black patients (Fig 2; Table 2). The difference was not statistically significant in the multivariable analysis (HR\(_M\), 1.5; 95% CI, 0.8 to 2.7; HR\(_{UM}\), 1.4; 95% CI, 0.8 to 2.6; Table 2). Again, all other predictors, except for histology, were associated with survival (Table A1).

TTF, PFS, and Response Rates

In the IMDC cohort, the estimated median TTF was 4.6 months (95% CI, 4.0 to 7.3 months) in black patients versus 7.3 months (95% CI, 6.4 to 8.1 months) and 7.6 months (95% CI, 7.1 to 8.0 months), respectively, in the matched and unmatched white cohorts (Fig A1). TTF was significantly longer in white patients in the unmatched analysis (adjusted HR\(_{UM}\), 1.4; 95% CI, 1.1 to 1.8; \(P = .003 \)), but the difference did not reach statistical significance in the matched analysis, although there was a trend in the same direction (adjusted HR\(_M\), 1.2; 95% CI, 1.0 to 1.6; \(P = .1 \); Table 2). Non–clear-cell histology was associated with increased risk of treatment failure after adjusting for other predictors (adjusted HR, 1.4; 95% CI, 1.2 to 1.5; \(P < .0001 \)). ORR was lower in black versus matched and unmatched white patients: 13% versus 27% (\(P = .01 \)) and 24% (\(P = .04 \)), respectively.

In the trial-database cohort, the estimated PFS was 5.3 months in black patients compared with 10.5 and 10.7 months in the matched and unmatched white cohorts, respectively (Fig A2). The differences were statistically significant in both analyses (Table 2). ORR was 11% in black patients and 41% (\(P = .01 \)) and 39% (\(P = .01 \)) in the matched and unmatched white cohorts, respectively.

DISCUSSION

This study examined the disparity in oncologic outcomes between black and white patients with mRCC who received front-line VEGF TKIs in 2 independent cohorts. Contrary to
TABLE 2. Oncologic Outcomes of Black Versus White Patients With Metastatic Renal Cell Carcinoma

Outcome	IMDC Cohort Matched Analysis	IMDC Cohort Unmatched Analysis	Trial-Database Cohort Matched Analysis	Trial-Database Cohort Unmatched Analysis											
	Black	White	P												
Overall survival															
No. of patients (No. events)	73 (52)	1,236 (904)	3,371 (2,330)	21 (12)	431 (210)	1,040 (509)									
Median (95% CI), months	18.5 (13.8 to 26.1)	25.8 (23.1 to 28.8)	25.1 (23.7 to 26.7)	21.0 (6.1 to NE)	25.5 (23.4 to 31.1)	25.6 (23.7 to 29.6)									
HR (95% CI), black v white	1.0 (0.7 to 1.5)	9	1.1 (0.8 to 1.4)	.7	1.5 (0.8 to 2.7)	.18	1.4 (0.8 to 2.6)	.21							
TTF/PFS															
No. (No. of events)	73 (71)	1,236 (1,147)	3,355 (2,986)	21 (16)	431 (292)	1,040 (719)									
Median (95% CI), months	4.6 (4.0 to 7.3)	7.3 (6.4 to 8.1)	7.6 (7.1 to 8.0)	5.3 (1.8 to 9.8)	10.5 (9.2 to 11.3)	10.7 (9.7 to 11.0)									
HR (95% CI), black v white	1.2 (0.95 to 1.6)	.1	1.4 (1.1 to 1.8)	.003	2.3 (1.4 to 3.9)	.002	2.3 (1.4 to 3.9)	.002							
ORR															
No. evaluable	63	969	2,776	18	410	989									
No. (%)	8 (13)	267 (27)	672 (24)	.01	672 (24)	2 (11)	169 (41)	.01	390 (39)	.01					

NOTE. Significance assumed for \(P \leq .05. \) Bold type indicates significance.

Abbreviations: HR, hazard ratio; IMDC, International Metastatic Renal Cell Carcinoma Database Consortium; NE, not estimable; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; TTF, time to treatment failure.

*Adjusted for histology, number of metastases, nephrectomy status, IMDC risk group.

*Adjusted for sex, age at targeted therapy initiation, year of tyrosine kinase inhibitor initiation (2003 to 2007, 2008 to 2012, 2013 to 2016), histology, number of metastases, nephrectomy status, IMDC risk group.

* TTF (IMDC cohort); PFS (trial-database cohort).
previous reports from large health care administrative databases, this study accounted for important prognostic factors validated in mRCC and assessed the effectiveness of VEGF TKIs in a black population. Importantly, race was not found to be independently associated with OS. The study suggests, however, that TTF and PFS in patients treated with VEGF TKIs were shorter in the black versus white patients. The study also highlights the under-representation of black race in the IMDC database and clinical trials (2%) versus their prevalence in the community (US, 13.4%; Canada, 3.4%) and the need to increase enrollment of black and other minorities in clinical trials and registries.11,12

Reasons behind the disparity in RCC survival between black and white racial groups reported in the literature have not been fully elucidated. Similar to these previous studies,2,5-7 the current study found that median OS in the black cohort was shorter compared with the white cohort, but the difference may be explained by higher rates of adverse clinical features among the black patients, as seen in the multivariable analysis. Black patients in the current study had more IMDC risk factors, including a higher rate of time from diagnosis to RCC treatment, suggesting that black patients are more likely to present with synchronous metastases or to experience recurrence shortly after radical nephrectomy, which is a known independent adverse predictor of survival in RCC.13 The increased risk factors for black patients at diagnosis may suggest later referral to oncologists. After adverse clinical features were accounted for in the multivariable models, race no longer appeared to be a determinant of survival.

Unlike most published studies from large administrative databases, only patients with mRCC who were treated with VEGF TKIs at an academic center (IMDC cohort) or as part of a clinical trial (trial-database cohort) were included in the current analysis. Therefore, cancer staging, access to health care, disparity in treatment, and, to some extent, socioeconomic factors were not as likely to be significant confounders in the current study.

The findings also suggest that black patients with mRCC do not benefit from VEGF TKI therapy to the same extent as their white counterparts. Although there was only a trend toward shorter TTF in the matched analysis of the IMDC cohort, the unmatched analysis, as well as the matched and unmatched analyses of the trial-database cohort, demonstrated statistically significantly shorter TTF/PFS among black patients. Accordingly, the response rate to treatment with VEGF TKIs was also markedly lower in the black arm of the current study.

It is plausible that genomic and/or epigenomic variations in tumors between races are responsible for the lower effectiveness of VEGF TKIs in black patients. A study using The Cancer Genome Atlas (TCGA) reported that clear-cell RCC in black patients was less likely to harbor a VHL mutation.14 Accordingly, tumors from black patients have a relative downregulation of HIF and VEGF pathways that, in turn, may result in lower activity of VEGF-targeted therapies. Differences in disease biology between races were also identified in the papillary RCC subset of the TCGA.15 In their report, tumors derived from black compared with white patients were more likely to be enriched in immune-related pathways such as the B-cell receptor and NOD-like receptor signaling pathways. This observation poses the hypothesis that black patients may experience differential responses to immunotherapy-based regimens; however, to our knowledge, there is no clinical study examining the relative effectiveness of immunotherapy in black patients with RCC.

FIG 3. Kaplan-Meier estimate of overall survival by race in the (A) matched* and (B) unmatched dataset of the trial-database cohort. (*) Number of patients at risk for the matched analysis is not reported as Kaplan-Meier plot is based on weighted estimates.
The distribution of RCC subtypes is another biologic variation between black and white patients. In the IMDC cohort that comprised a consecutive series of patients with RCC treated at academic institutions, black patients were twice as likely as white patients to present with non-clear-cell RCC histology (26% vs. 12%). However, the distribution of histology cannot be interpreted in the trial-database cohort because non-clear-cell RCC subtypes were excluded from many of the clinical trials that comprised the cohort. Furthermore, similar findings were reported from data in the SEER Program. In this study, the greater proportion of patients with non–clear-cell RCC was mainly driven by the enrichment of patients with papillary RCC of black ancestry compared with white race (23% vs. 9%).

Differences in molecular landscapes of cancer according to race have been described in multiple solid tumors, including colorectal cancer, lung cancer, and gliomas. Increasingly, biologic differences in “omics” is thought to contribute to some of the racial disparities observed in cancer outcomes. In patients with prostate cancer, for instance, multiple differences in epigenomics, genomics, androgen signaling, and microRNA alterations have been reported between black and white racial groups. Although the causality between racial differences in tumor biology and outcome disparity cannot be established directly, better understanding of these biologic differences may help to optimize treatment and close the survival gap between races.

Because the current standard front-line therapies for mRCC are shifting toward immunotherapy-based regimens, prospective studies assessing the relative efficacy of checkpoint inhibitors among black patients are warranted. It is essential that clinical trials and prospective biorepositories enroll more black patients to extend the generalizability of clinical trial findings and biomarker studies to nonwhite patients and to assist clinicians in selecting treatments with the highest efficacy among all available options.

Other clinical factors and determinants of health not measured in the current study may contribute to the racial disparity observed in published epidemiologic studies. Among others, access to health care, demographic and economic barriers to treatment, comorbidities, and adherence to oral TKI therapies were not accounted for in the current study and may influence prognosis at the population level. Despite the large cohorts of patients included, the number of black patients was small relative to the number of white patients; results should therefore be interpreted with caution. To help mitigate any bias this may have introduced, a matched analysis was reported of a group of white patients who shared as many demographic characteristics as possible with the black patients. Also of note, however, is that most patients were treated either in an academic center or enrolled in a clinical trial; therefore, results from the study may not be fully generalizable to the general population. Finally, the effectiveness of TKIs was reported as TTF in the IMDC cohort and PFS in the trial-database cohort because of the structure of the datasets. These 2 endpoints should be interpreted differently.

In summary, although race itself does not appear to be an independent predictor of OS in patients with mRCC, black patients tend to present with more adverse clinical features and have a shorter median survival than white patients. This analysis also suggests lower activity of VEGF TKIs in black versus white patients. Greater representation of those of black race in clinical trials is essential to ensure results are generalizable to all patients.

16University of California San Diego, Moores Cancer Center, San Diego, CA

CORRESPONDING AUTHOR
Rana R. McKay, MD, University of California San Diego, 3855 Health Sciences Dr, #0987, La Jolla, CA 92093; Twitter: @DrRanaMcKay; e-mail: rmckay@ucsd.edu.

SUPPORT
Supported by Pfizer. Also supported in part by the Dana-Farber/Harvard Cancer Center (DF/HCC) Kidney SPORE, DF/HCC Kidney Cancer Program and the Trust Family, Michael Brigham, and Loker Pinard Funds for Kidney Cancer Research at Dana-Farber Cancer Institute for T.K.C.

AUTHOR CONTRIBUTIONS
Conception and design: Dominick Bossé, Ronit Simantov, Toni K. Choueiri, Rana R. McKay
Financial support: Toni K. Choueiri
Outcomes of Black Patients With Metastatic Renal Cell Carcinoma

Provision of study materials or patients: Frede Donskov, Ajai Alva, Lori Wood, Denis Soulières, François Patenaude, Daniel Y. C. Heng, Brian Rini, Benoît Beuselinck, Christian Kollmannsberger

Collection and assembly of data: Dominick Bossé, Aly-Khan A. Lalani, J. Connor Wells, Frede Donskov, Brian Rini, Benoît Beuselinck, Aaron Hansen, Denis Soulières, Christian Kollmannsberger, François Patenaude, Rana R. McKay

Data analysis and interpretation: Dominick Bossé, Wanling Xie, Xun Lin, Toni K. Choueiri, Rana R. McKay

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rec or ascopubs.org/go/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Dominick Bossé
Honorary: Amgen, Ipsen, Janssen, AstraZeneca
Consulting or Advisory Role: Pfizer, Bristol-Myers Squibb, AbbVie

Research Funding: AstraZeneca

Wanling Xie
Consulting or Advisory Role: Bayer

Xun Lin
Employment: Pfizer

Stock and Other Ownership Interests: Pfizer

Ronit Simantov
Employment: Gamida Cell, Pfizer

Stock and Other Ownership Interests: Pfizer

Aly-Khan A. Lalani
Honorary: Pfizer, Genentech, Merck, Novartis, Astellas Pharma, Bayer, Tersera, Bristol-Myers Squibb

Consulting or Advisory Role: Eisai, Merck, Ipsen, Pfizer, Genentech, Bristol-Myers Squibb, AbbVie, Janssen, Tersera, Bayer, Astellas Pharma

Research Funding: Bristol-Myers Squibb (Inst), Novartis, Roche, Ipsen

Jeffrey Graham
Honorary: Janssen Oncology, Pfizer

J. Connor Wells

Travel, Accommodations, Expenses: Pfizer

Frede Donskov

Research Funding: Pfizer (Inst), Ipsen (Inst)

Brian Rini

Leadership: MJH Life Sciences

Consulting or Advisory Role: Pfizer, Merck, Genentech, Synthorx, Bristol-Myers Squibb, AVEO, Surface Oncology, Peloton

Research Funding: Pfizer (Inst), Genentech (Inst), Bristol-Myers Squibb (Inst), Merck (Inst), AstraZeneca/MedImmune (Inst), Peloton Therapeutics (Inst), AVEO (Inst)

Travel, Accommodations, Expenses: Pfizer, Bristol-Myers Squibb, Merck

Benoit Beuselinck

Consulting or Advisory Role: Bristol-Myers Squibb (Inst), Pfizer (Inst), Astra Zeneca (Inst)

Speakers’ Bureau: Pfizer (Inst), Ipsen (Inst), Merck Darmstadt (Inst), Bristol-Myers Squibb (Inst)

Research Funding: Bristol-Myers Squibb (Inst)

Travel, Accommodations, Expenses: Pfizer (Inst), Ipsen (Inst)

Ajai Alva

Consulting or Advisory Role: AstraZeneca, Merck, Pfizer, Bristol-Myers Squibb

Speakers’ Bureau: AstraZeneca

Research Funding: Genentech (Inst), Bristol-Myers Squibb (Inst), Merck Sharp & Dohme (Inst), Prometheus Laboratories (Inst), Mirati Therapeutics (Inst), AstraZeneca (Inst), Roche (Inst), Bayer (Inst), Progenics (Inst), Astellas Pharma (Inst), Arcus Biosciences (Inst)

Aaron Hansen
Honorary: Merck, AstraZeneca/MedImmune, Pfizer, GlaxoSmithKline/Novartis, Bristol-Myers Squibb

Consulting or Advisory Role: Genentech, Merck, GlaxoSmithKline, Bristol-Myers Squibb, Novartis, Boston Biomedical, Boehringer Ingelheim

Research Funding: Karyopharm Therapeutics (Inst), Merck (Inst), Bristol-Myers Squibb (Inst), Boehringer Ingelheim, GlaxoSmithKline (Inst), Novartis (Inst), Genentech (Inst), Janssen (Inst)

Lori Wood

Research Funding: Bristol-Myers Squibb (Inst), Pfizer (Inst), Roche Canada (Inst), Exelixis (Inst), Merck (Inst), AstraZeneca (Inst), Novartis (Inst), Aragon Pharmaceuticals (Inst)

Denis Soulières
Honorary: Merck, Novartis, Pfizer, AstraZeneca, Ipsen, Bristol-Myers Squibb, Eisai, Adlai-Nortye

Consulting or Advisory Role: Merck, Pfizer, Ipsen

Research Funding: Novartis (Inst), Pfizer (Inst), Merck (Inst), Genentech (Inst), Bristol-Myers Squibb (Inst), Eli Lilly (Inst)

Christian Kollmannsberger
Honorary: Pfizer, Novartis, Bristol-Myers Squibb

Consulting or Advisory Role: Pfizer, Novartis, Bristol-Myers Squibb, Astellas Pharma, Ipsen, Eisai, Janssen

Travel, Accommodations, Expenses: Pfizer, Novartis, Eisai

Daniel Y.C. Heng

Consulting or Advisory Role: Pfizer, Novartis, Bristol-Myers Squibb, Janssen, Astellas Pharma, Ipsen, Eisai, Merck

Research Funding: Pfizer (Inst), Novartis (Inst), Exelixis (Inst), Bristol-Myers Squibb (Inst), Ipsen (Inst)

Toni K. Choueiri

Employment: Dana-Farber Cancer Hospital

Leadership: Dana-Farber Cancer Hospital, NCCN, Kidney Cancer Association, KidneyCan, ASCO

Stock and Other Ownership Interests: Pionyr, TEMPEST

Honorary: NCCN, UpToDate, Michael J. Hennessy Associates, ASCO, Harborside Press, Analysis Group, AstraZeneca, Alexion Pharmaceuticals, Sanofi/Aventis, Bayer, Bristol-Myers Squibb, Genentech, GlaxoSmithKline, Merck, Novartis, Peloton Therapeutics, Pfizer, Corus Pharmaceuticals, Ipsen, Foundation Medicine, Eisai, PlatformQ Health, Clinical Care Options, Navinata Healthcare, Kidney Cancer Journal, Exelixis, Prometheus, Lpath, NEJM, Lancet Oncology, Cerulean Pharma, Alligent, EMD Serono, HERON, Eli Lilly

Consulting or Advisory Role: Pfizer, Bayer, Novartis, GlaxoSmithKline, Merck, Bristol-Myers Squibb, Genentech, Eisai, Foundation Medicine, Cerulean Pharma, AstraZeneca, Exelixis, Prometheus Laboratories, Alligent, Ipsen, Corus Pharmaceuticals, Lpath, Alexion Pharmaceuticals, Sanofi/Aventis, Peloton Therapeutics, UpToDate, NCCN, Michael J. Hennessy Associates, Analysis Group, Kidney Cancer
REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018

2. Stafford HS, Saltzstein SL, Shimasaki S, et al: Racial/ethnic and gender disparities in renal cell carcinoma incidence and survival. J Urol 179:1704-1708, 2008

3. Vaishampayan UN, Do H, Hussain M, et al: Racial disparity in incidence patterns and outcome of kidney cancer. Urology 62:1012-1017, 2003

4. Olshan AF, Kuo TM, Meyer AM, et al: Racial difference in histologic subtype of renal cell carcinoma. Cancer Med 2:744-749, 2013

5. Berndt SI, Carter HB, Schoenberg MP, et al: Disparities in treatment and outcome for renal cell cancer among older black and white patients. J Clin Oncol 25:3589-3595, 2007

6. Chow WH, Shuch B, Linehan WM, et al: Racial disparity in renal cell carcinoma patient survival according to demographic and clinical characteristics. Cancer 119:388-394, 2013

7. Tripathi RT, Heilbrun LK, Jain V, et al: Racial disparity in outcomes of a clinical trial population with metastatic renal cell carcinoma. Urology 68:296-301, 2006

8. Rose TL, Deal AM, Krishnan B, et al: Racial disparities in survival among patients with advanced renal cell carcinoma in the targeted therapy era. Cancer 122:2988-2995, 2016

9. Lipworth L, Tarone RE, McLaughlin JK: Renal cell cancer among African Americans: An epidemiologic review. BMC Cancer 11:133-141, 2011

10. Heng DY, Xie W, Regan MM, et al: Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: Results from a large, multicenter study. J Clin Oncol 27:5794-5799, 2009

11. Nazha B, Mishra M, Pentz R, et al: Enrollment of racial minorities in clinical trials: Old problem assumes new urgency in the age of immunotherapy. Am Soc Clin Oncol Educ Book 39:3-10, 2019

12. Statistics Canada: Census profile, 2016 Census. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E

13. Donskov F, Xie W, Wells JC, et al: Synchronous vs metachronous metastatic disease: Impact of time to metastasis on outcome in metastatic renal cell carcinoma patients treated with targeted therapy. Ann Oncol 28 (suppl_5):v295-v329, 2017

14. Krishnan B, Rose TL, Kardos J, et al: Intrinsic genomic differences between African American and white patients with clear cell renal cell carcinoma. JAMA Oncol 2:664-667, 2016

15. Paulucci DJ, Stakianos JP, Skanderup AJ, et al: Genomic differences between black and white patients implicate a distinct immune response to papillary renal cell carcinoma. Oncotarget 8:5196-5205, 2017

16. Heath EI, Lynce F, Xu J, et al: Racial disparities in the molecular landscape of cancer. Anticancer Res 38:2235-2240, 2018

17. Kumar S, Singh R, Malik S, et al: Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett 414:153-165, 2018

18. Huang FW, Mosquera JM, Garofalo A, et al: Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov 7:973-983, 2017
Outcomes of Black Patients With Metastatic Renal Cell Carcinoma

APPENDIX

FIG A1. Kaplan-Meier estimate of time to treatment failure by race in the (A) matched* and (B) unmatched dataset of the International Metastatic Renal Cell Carcinoma Database Consortium cohort. (*) Number of patients at risk for the matched analysis is not reported as Kaplan-Meier plot is based on weighted estimates.

FIG A2. Kaplan-Meier estimate of progression-free survival by race in the (A) matched* and (B) unmatched dataset of the trial-database cohort. (*) Number of patients at risk for the matched analysis is not reported as Kaplan-Meier plot is based on weighted estimates.
TABLE A1. Cox Multivariable Model for Overall Survival in the Matched Cohorts

Cox Model	IMDC Cohort	Trial-Database Cohort
Black v white	1.0	1.5
Histology: non-clear cell v clear cell	1.6	1.3
No. metastases: >1 v 1	1.6	0.5
Prior nephrectomy: yes v no	0.5	1.6
IMDC risk factor: intermediate v favorable	1.5	4.3
IMDC risk factor: poor v favorable	3.7	9.6
IMDC risk factor: missing v favorable	—	3.8

Abbreviations: HR, hazard ratio; IMDC: International Metastatic Renal Cell Carcinoma Database Consortium.