Effects of exercise on heart rate variability by time-domain, frequency-domain and non-linear analyses in equine athletes

Ka Hou Christien Li¹-³, Rachel Wing Chuen Lai²,³, Yimei Du⁴, Vivian Ly⁵, David Chun Yin Li²,³, Michael Huen Sum Lam⁶, Leonardo Roever⁷, Sophia Fitzgerald-Smith⁸, Guangping Li⁹, Tong Liu⁹, Gary Tse²,³, Mei Dong¹⁰, International Health Informatics Study (IHIS) Network

¹Faculty of Medicine, Newcastle University, Newcastle, UK
²Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, Hong Kong
³Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
⁴Research Center of Ion Channelopathy, Institute of Cardiology, Tongji Medical College, Wuhan, China
⁵Department of Biology, Mount Royal University, Alberta, Canada
⁶Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
⁷Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil
⁸Faculty of Medicine, University of Bristol, Bristol, UK
⁹Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
¹⁰Department of Cardiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China

Abstract

Background: Heart rate variability (HRV) is an intrinsic property that reflects autonomic balance and has been shown to be predictive of all-cause and cardiovascular mortality. It can be altered by physiological states such as exercise or pathological conditions. However, there are only a handful of studies on HRV in horses. The aim of this study is to compare HRV parameters before and during exercise in horses.

Methods: Time-domain, frequency-domain and non-linear analyses were applied to quantify time series data on RR intervals before and during exercise in horses (n=7).

Results: Exercise increased heart rate from 44±8 to 113±17 bpm (ANOVA, P<0.05) and decreased standard deviation (SD) from 7±2 to 4±2 bpm, coefficient of variation (CoV) from 16±4% to 3±2% and root mean square of successive RR interval differences (RMSSD) from 89.4±91.5 to 6.5±3.7 ms. Contrastingly, no difference in low-frequency (0.10±0.03 vs. 0.09±0.03 Hz) and high-frequency (0.19±0.03 vs. 0.18±0.03 Hz) peaks, nor in their percentage powers (2±1 vs. 4±5%; 59±9% vs. 64±20%; 39±10 vs. 32±19%) were observed but very low-frequency, low-frequency, and high-frequency powers (ms²) were
reduced from 29±17 to 2±5, 1138±372 to 22±22 and 860±564 to 9±6, respectively, as was total power (in logarithms) (7.52±0.52 to 3.25±0.73). Poincaré plots of RR_{n+1} against RR_n revealed similar ellipsoid shapes before and after exercise. The SD along the line-of-identity (SD2) and SD perpendicular to the line-of-identity (SD1) were decreased by exercise (62±17 vs. 9±5 and 63±65 vs. 5±3), corresponding to increased SD2/SD1 ratio from 1.33±0.45 to 2.19±0.72. No change in approximate and sample entropy was detected (0.97±0.23 vs. 0.82±0.22 and 1.14±0.43 vs. 1.37±0.49). Detrended fluctuation analysis revealed unaltered short-term fluctuation slopes (0.76±0.27 vs. 1.18±0.55) but increased long-term fluctuation slopes (0.16±0.11 vs. 0.50±0.16) after exercise.

Conclusion: Exercise leads to a decrease in HRV but did not affect signal entropy in horses.

Keywords
heart rate variability, time, frequency, non-linear, entropy, horses, equine

Corresponding authors: Gary Tse (tseg@cuhk.edu.hk), Mei Dong (dongmei0212@126.com)

Author roles: Li KHC: Data Curation, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Lai RWC: Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation; Du Y: Methodology, Resources, Software, Supervision, Validation, Visualization, Writing – Review & Editing; Ly V: Formal Analysis, Investigation, Methodology, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Li DCY: Conceptualization, Investigation, Methodology, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Li G: Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Validation, Writing – Review & Editing; Roever L: Formal Analysis, Funding Acquisition, Investigation, Methodology, Validation, Writing – Review & Editing; Fitzgerald-Smith S: Data Curation, Investigation, Methodology, Writing – Review & Editing; Tse G: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Writing – Review & Editing; Lam MHS: Conceptualization, Investigation, Methodology, Supervision, Validation, Writing – Review & Editing; Liu T: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Validation, Writing – Review & Editing; Dong M: Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Validation, Writing – Original Draft Preparation, Writing – Review & Editing;

Competing interests: No competing interests were disclosed.

Grant information: GT is currently supported by a Clinical Assistant Professorship from the Croucher Foundation of Hong Kong. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2019 Li KHC et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Li KHC, Lai RWC, Du Y et al. Effects of exercise on heart rate variability by time-domain, frequency-domain and non-linear analyses in equine athletes [version 1; peer review: 2 approved with reservations] F1000Research 2019, 8:147 https://doi.org/10.12688/f1000research.17997.1

First published: 04 Feb 2019, 8:147 https://doi.org/10.12688/f1000research.17997.1
Introduction
Beat-to-beat alterations in heart rate, termed heart rate variability (HRV), is an intrinsic property that may be affected by distinct physiological states, such as exercise. Exercise-related sudden cardiac arrest remains a significant problem, affecting young athletes who are otherwise healthy with structurally normal hearts. Previously, our group has employed mouse models for studying cardiac electrophysiological properties\(^1\). However, these bear the disadvantages of having important differences compared to humans, such as a ten-fold higher heart rates and the lack of a plateau phase during repolarization.

Therefore, the use of alternative animal models offers an important and complementary approach. For example, horses show similar heart rate patterns compared to humans, with capacity of increasing from 40 bpm to 200 bpm during exercise. This suggests that horses could be useful for exploring the consequences of exercise-induced electrophysiological changes\(^2\). However, few studies in the literature have quantified HRV in horses. We quantified beat-to-beat variability in heart rate by applying time-domain, frequency-domain and non-linear techniques for the first time to electrocardiograms obtained from horses at rest and during exercise.

Methods

Data source and heart variability analysis
Heart rate data of horses were obtained from a publicly available dataset published online with the study protocol previously described\(^3\). Briefly, healthy Thoroughbred horses in race training presented for workups at an equine hospital were screened. This yielded a total of seven horses with electrocardiographic recordings for 10 to 18 minutes. HRV analysis was performed using Kubios HRV Standard software (Version 3.0.2). The following time-domain measures were obtained: 1) mean RR interval; 2) standard deviation (SD) of RR intervals; 3) coefficient of variation (CoV) for RR intervals; 4) root mean square (RMSSD) of successive differences of RR intervals; 5) NN50, number of successive RR interval pairs that differ more than 50 ms; 6) pNN50, relative number of successive RR interval pairs that differ more than 50 ms; 7) HRV triangular index, the integral of the RR interval histogram divided by the height of the histogram; 8) Triangular interpolation of normal-to-normal intervals (TINN); 9) mean HR; 10) SD of HR; 11) CoV for HR; 12) minimum HR; 13) maximum HR.

Frequency-domain analysis was performed using the Fast Fourier Transform method\(^4\) with sampling frequency set at 8 Hz. The power in the repolarization spectrum between 0.04 and 0.4 Hz was defined as total power (TP). The power in the heart rate spectrum was divided into three different frequency bands: very low frequency power (VLF, 0 to 0.04 Hz), low frequency power (LF, 0.04 to 0.15 Hz) and high frequency power (HF, 0.15 to 0.4 Hz). Non-linear properties of HRV were studied as follow. Poincaré plots are graphical representations of the correlation between successive RR intervals, in which RR\(_\text{m+1}\) is plotted against RR\(_\text{m}\). From this plot, the SD of the points perpendicular to the line-of-identity (SD1) describing short-term variability, and the SD of the points along the line-of-identity (SD2) describing the long-term variability, can be determined. The SD2/SD1 ratio is a measure of long-term variability relative to the short-term variability. The approximate entropy provides a measure of the irregularity of the signal. It is computed as follows:

Firstly, a set of length \(m\) vectors \(u_j\) is formed:

\[
u_j = (RR_j; RR_{j+1}, \ldots, RR_{j+m-1}); j = 1; 2; \ldots N - m + 1 \]

where \(m\) is the embedding dimension and \(N\) is the number of measured RR intervals. The distance between these vectors is defined as the maximum absolute difference between the corresponding elements:

\[
d(u_j, u_k) = \max \{|RR_{j+n} - RR_{k+n}|; n=0, \ldots, m-1\} \]

for each \(u_j\), the relative number of vectors \(u_k\) for which \(d(u_j, u_k) \leq r\) is calculated. This index is denoted with \(C_{mj}(r)\) and can be written in the form

\[
C^m_j(r) = \frac{n_{br}\{u_k|d(u_j, u_k) \leq r\}}{N - m + 1} \quad \forall k \neq j
\]

Taking the natural logarithms gives:

\[
\Phi^m(r) = \frac{1}{N - m + 1} \sum_{j=1}^{N-m+1} \ln C^m_j(r).
\]

The approximate entropy is then defined as:

\[
ApEn(m, r, N) = \Phi^m(r) - \Phi^{m+1}(r)
\]

Lower approximate entropy values reflect a more regular signal, whereas higher values reflect a more irregular signal.

The sample entropy also provides a measure of signal irregularity but is less susceptible to bias compared to approximate entropy. This is given by:

\[
C^m_j(r) = \frac{n_{br}\{u_k|d(u_j, u_k) \leq r\}}{N - m} \quad \forall k \neq j
\]

Averaging then yields:

\[
C^m(r) = \frac{1}{N - m + 1} \sum_{j=1}^{N-m+1} C^m_j(r)
\]

The sample entropy is then given by:

\[
SampEn(m, r, N) = \ln \left(\frac{C^m(r)}{C^{m+1}(r)}\right)
\]

Finally, detrended fluctuation analysis (DFA) was performed to determine long-range correlations in non-stationary physiological time series\(^5\), yielding both short-term fluctuation (\(a1\)) and long-term fluctuation (\(a2\)) slopes. The point at which the slopes \(a1\) and \(a2\) is the crossover point.

Statistical analysis
Statistical analyses were conducted using Origin Pro 2017. All values were expressed as mean ± standard deviation (SD).
Numerical data were compared by one-way analysis of variance (ANOVA). $P<0.05$ was considered statistically significant and was denoted by * in the figures.

Results

Heart rate variability determined using time-domain and frequency-domain methods

Representative time series data for RR intervals at rest and during exercise from a single horse are shown in Figure 1A and Figure 1B, respectively, with their frequency distributions shown in Figure 1C and Figure 1D. Their corresponding heart rate time series are shown in Figure 2A and Figure 2B, and frequency distributions in Figure 2C and Figure 2D. Under resting conditions, the mean RR interval was 1392±224 ms, decreasing to 541±84 with exercise ($n=7$ horses) (Figure 3A). The mean standard deviation (SD) was 65±43 ms (Figure 3B) and coefficient of variation (CoV) was 5±2% (Figure 3C), which decreased to 8±4 ms and 1±1%, respectively, after exercise (ANOVA, $P<0.05$). Similarly, the root mean square of successive RR interval differences (RMSSD) decreased from 89±92 to 6±4 ms (Figure 3D).

![Figure 1](image1.png)

Figure 1. Representative time series data for RR intervals at rest (A) and during exercise (B) and the corresponding histograms (C and D) from a single horse.

![Figure 2](image2.png)

Figure 2. Representative time series data for heart rates at rest (A) and during exercise (B) and the corresponding histograms (C and D) from a single horse.
Figure 3. Time-domain analysis (n=7 horses) yielding mean RR intervals (A), standard deviation (SD) of RR intervals (B), coefficient of variation (CoV) given by SD/mean x 100% (C), root mean square of successive RR interval differences (RMSSD) (D), number of interval differences of successive NN intervals greater than 50 ms (NN50) (E), proportion derived by dividing NN50 by the total number of NN intervals (pNN50) (F), heart rate variability triangular index (HRVTI), the integral of the RR interval histogram divided by the height of the histogram (G) and triangular interpolation of normal-to-normal intervals (TINN), the baseline width of the RR interval histogram (H).
The number of interval differences of successive NN intervals greater than 50 ms (NN50) and the proportion derived by dividing NN50 by the total number of NN intervals (pNN50) were decreased from 85±55 to 0±1 ms and from 21±12 to 0±1%, respectively (ANOVA, P<0.05). The HRV triangular index, which is integral of the RR interval histogram divided by the height of the histogram, also decreased from 8.37±2.87 to 2.03±0.45 (ANOVA, P<0.05), as was the triangular interpolation of normal-to-normal intervals (TINN), the baseline width of the RR interval histogram (445±240 to 40±26 ms; ANOVA, P<0.05). These corresponded to a mean heart rate of 44±8 bpm (Figure 4A), SD was 7±2 bpm (Figure 4B) and CoV (Figure 4C) of 16±4%. With exercise, HR increased to 113±17 bpm, whereas SD, CoV and RMSSD decreased to 4±2 bpm, 3±2% and 6±4 ms, respectively. Finally, the minimum and maximum heart rates (Figure 4D and 4E) at rest were 34±5 and 79±16 bpm, respectively, increasing to 101±16 and 129±15 bpm.

Next, the Fast Fourier Transform method was used for frequency-domain analyses. An example of the power spectrum plot against frequency before and after exercise is shown in Figure 5A and 5B, respectively. Strikingly, the peaks for very low-, low- and high-frequency were not altered by exercise (0.04 ± 0.00 vs. 0.04 ± 0.00 Hz; 0.10 ± 0.03 vs. 0.09±0.03 Hz; 0.19 ± 0.03 vs. 0.18±0.03 Hz, respectively) (Figures 5C to E). Similarly, their percentage powers remained unchanged (2±1 vs. 4±5%; 59±9 vs. 64±20%; 39±10 vs. 32±19%, respectively, P>0.05) (Figures 5F to 5H). By contrast, very low-frequency, low-frequency, and high-frequency powers were significantly reduced from 29±17 to 2±5 ms\(^2\), 1138±372 to 22±22 ms\(^2\) and 860±564 to 9±6 ms\(^2\), respectively (P<0.05) (Figures 6A to 6C), as was the total power (in logarithms) from 7.52±0.52 to 3.25±0.73 (P<0.05) (Figures 6D).

Heart rate variability determined using non-linear methods

Poincaré plots expressing RR\(_{n+1}\) as a function of RR\(_n\) were constructed, with typical examples from a single horse before and after exercise shown in Figure 7A and 7B. In all of the hearts studied, circular shapes of the data points were observed. The SD perpendicular to the line-of-identity (SD1) and SD along the baseline of the Poincaré plot were calculated. The typical examples showed that the SD1 increased from 13±2% to 25±4% (P<0.05) whereas the SD along the baseline decreased from 19±2% to 8±1% (P<0.05) (Figure 7C).
line-of-identity (SD2) are shown in Figure 7C and 7D, respectively. The mean SD1 and SD2 were 63±65 and 62±17, respectively, corresponding to a SD2/SD1 ratio of 1.33±0.45 (Figure 7E). After exercise, SD1 and SD2 decreased significantly to 5±3 and 9±5, respectively, which corresponded to increased SD2/SD1 ratio to 2.19±0.72 (P<0.05). Moreover, approximate and sample entropy took values of 0.97±0.23 (Figure 7F) and 1.14±0.43 (Figure 7G), respectively. These values were not altered after exercise (0.82±0.22 and 1.37±0.49, respectively; P>0.05). Detrended fluctuation analysis plotting the detrended fluctuations F(n) as a function of n in a log-log scale was performed for the RR intervals (Figure 8A and 8B). This revealed short- (α1) and long-term (α2) fluctuation slopes of 0.76±0.27 (Figure 8C) and 0.16±0.11 (Figure 8D) before exercise. After exercise, α1 was not significantly different (1.18±0.55; P>0.05) but α2 was significantly increased to 0.50±0.16 (P<0.05).

Discussion
In this study, we investigated HRV of equine athletes before and after exercise. The main findings are that 1) variability in heart rate can be detected using time-domain, frequency-domain and non-linear methods; 2) exercise led to reduced HRV as revealed using time-domain, frequency-domain and linear methods, 3) no change in signal entropy was observed after exercise.
The heart shows variability in their electrical signals both spatially and temporally6–8, and this signal variability can be detected at different levels of complexity, from whole organs down to single ion channels9–11. A certain degree of HRV is present in normal, healthy individuals12–16. However, it can become altered in pathological states and in turn associated with atrial fibrillation, ventricular arrhythmias and sudden cardiac arrest14. HRV has been investigated in the context of aging17, massage18 and pregnancy19. To date, there have only been a handful of studies that have evaluated HRV from equine athletes in the context of exercise20–34. Consistent with previous findings22,29,30, we found that exercise decreased HRV as determined by time-domain methods. Thus, SD of RR intervals, CoV, RMSSD, NN50, pNN50, HRV triangular index, and TINN were all significantly reduced.

From frequency-domain analysis, we did not detect significant changes in the low- and high-frequency peaks, or their percentage powers after exercise. These findings are in contrast to some of the previously reported findings. Thus, an increase in high-frequency peak29, higher low-frequency and lower high-frequency components30, and increased high-frequency to low-frequency ratios during gallop1 were observed. By contrast, we observed significantly reductions in the absolute values for very low frequency power, lower frequency power and high frequency power and total power but no change in low frequency/high frequency power ratio after exercise. These findings are consistent with previous demonstrations that power in all bands was reduced by exercise31.

Significantly, non-linear analyses of RR intervals yielded further insights. Thus, Poincaré plots showed ellipsoid shapes in all of the horses studied at rest with SD2/SD1 ratio close to 1, suggesting similar short-term and long-term variability. By contrast, exercise led to significant decreases in both SD1 and SD2, but an increase in SD2/SD1 ratio, indicated greater long-term variability under these stressed conditions. These findings are consistent with a recent report showing significant reductions in both SD1 and SD222. Furthermore, the present findings also quantified approximate and sample entropy for the first time in equine athletes, demonstrating a degree of entropy present. Entropy is the amount of disorder in a given system and reflects the signal regularity or complexity35,36. However, this was not altered by exercise.

Finally, detrended fluctuation analysis (DFA) was applied, to the best of our knowledge, for the first time in equine athletes. Previous studies have used this method for investigating long-range correlations in non-stationary physiological time series5. In DFA, the mean fluctuation is plotted against the number of beats on a double logarithmic scale. This would then yield the scaling exponents, α_1 and α_2, respectively. For uncorrelated data, α takes a value of 0.5. By contrast, the presence of correlation will be reflected by α taking values below or above 0.5. In our study, α_1 was 0.76±0.27 and α_2 was 0.16±0.11 before exercise. With exercise α_2 was increased to 0.50±0.16, suggesting that the long-term correlation was lost. Previous studies have applied DFA to HRV in other species. For example, in rabbits with hypertrophic cardio-
Figure 7. Representative Poincaré plots of RR_{n+1} against RR_n before (A) or after exercise (B) from a single horse. Summary data (n=7) for standard deviation (SD) along the line-of-identity (SD1) (C) and SD perpendicular to the line-of-identity (SD2) (D), and the SD2/SD1 ratio (E), approximate entropy (ApEn) (F) and sample entropy (Samp En) (G).
myopathy, greater values of the scaling exponent were observed compared to those with the disease. Moreover, in humans, a reduction in α_1 was found during sympathetic activation, indicating a breakdown of the short-term fractal organization of heart rate. Normal α_1 and decreased α_2 were observed in patients with atrial fibrillation (AF) compared to those without AF. Our findings suggest that exercise does indeed alter scaling exponents for long-term correlations, which may be important in diseased states related to sudden cardiac arrest.

Translational outlook, limitations and future directions

Compared to rodent hearts with a significantly higher resting heart rate, equine hearts serve as more representative model system for electrophysiological studies. However, it is known that horses frequently show spontaneous AF due to their high vagal tone and enlarged atria. This needs to be evaluated in future studies, as detailed in other studies. Nevertheless, equine athletes undergo a similar sequence to humans from an athletic life course perspective, through from training to peak performance and retirement from competitive activity. This allows for more insightful investigation into electrophysiological changes in competitive human athletes but not in the general human population, where standard-breed equine models will be more appropriate. Further studies should be conducted on larger equine sample sizes against human counterparts at different life course intervals namely training, peak performance and retirement to better match the electrophysiological changes between the two cardiac models.

Conclusion

The present findings report that exercise leads to a decrease in HRV but did not affect signal entropy in horses. Time-domain, frequency-domain and non-linear analyses all provided unique insights into signal variability, regularity and complexity.
Data availability
Underlying data

The dataset used in this analysis is available as part of Li et al. (2018)¹

PLoS One: S1 Dataset. Excel file of dataset of electrocardiographic intervals in all horses.

https://doi.org/10.1371/journal.pone.0194008.s001³

License: CC BY 4.0 Attribution

References

1. Choy L, Yeo JM, Tse V, et al.: Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. Int J Cardiol Heart Vasc. 2016; 12: 1–10. PubMed Abstract | Publisher Full Text | Free Full Text

2. Baht R, Petersen EE, Lindholm M, et al.: Cardiac Arrhythmias in Standardbreds During and After Racing—Possible Association Between Heart Size, Valvular Regurgitations, and Arrhythmias. J Equine Vet Sci. 2013; 33(8): 590–6. Publisher Full Text

3. Li M, Chadda KR, Mehdokht DK, et al.: Cardiac electrophysiological adaptations in the equine athlete—Restitution analysis of electrocardiographic features. PLoS One. 2018; 13(3): e0194008. PubMed Abstract | Publisher Full Text | Free Full Text

4. Ernst G: Hidden Signals-The History and Methods of Heart Rate Variability. Front Public Health. 2017; 5: 265. PubMed Abstract | Publisher Full Text | Free Full Text

5. Peng CK, Havlin S, Stanley HE, et al.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995; 5(1): 82–7. PubMed Abstract | Publisher Full Text | Free Full Text

6. Tse G, Wong ST, Tse V, et al.: Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild-type and Scn10a-/- mouse hearts modeling human Brugada syndrome. J Geriatr Cardiol. 2016; 13(11): 930–1. PubMed Abstract | Publisher Full Text | Free Full Text

7. Zareba W, Moss AJ, Le Cessie S, et al.: T wave alternans in idiopathic long QT syndrome. J Am Coll Cardiol. 1994; 23(7): 1541–6. PubMed Abstract | Publisher Full Text | Free Full Text

8. Tse G, Wong ST, Tse V, et al.: Cardiac dynamics: Alternans and arrhythmogenesis. J Arrhythm. 2016; 32(5): 411–7. PubMed Abstract | Publisher Full Text | Free Full Text

9. Szentandrassy N, Kistamas K, Hegyi B, et al.: Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Arch. 2015; 467(7): 1431–43. PubMed Abstract | Publisher Full Text

10. Puyeto E, Coronas A, Virál L, et al.: A multiscale investigation of repolarization variability and its role in cardiac arrhythmogenesis. Biophys J. 2011; 101(12): 2892–902. PubMed Abstract | Publisher Full Text | Free Full Text

11. Tse G, Du Y, Hao G, et al.: Quantification of Beat-To-Beat Variability of Action Potential Durations in Langendorff-Perfused Mouse Hearts. Front Physiol. 2018; 9: 1578. PubMed Abstract | Publisher Full Text | Free Full Text

12. Yan BP, Chan OK, Li CK, et al.: Resting and Postexercise Heart Rate Detection From Fingerpad and Facial Photoplethysmography Using a Smartphone Camera: A Validation Study. JMIR Mhealth Uhealth. 2017; 5(3): e33. PubMed Abstract | Publisher Full Text | Free Full Text

13. Yan BP, Chan OK, Li CK, et al.: Figure Correction: Resting and Postexercise Heart Rate Detection From Fingerpad and Facial Photoplethysmography Using a Smartphone Camera: A Validation Study. JMIR Mhealth Uhealth. 2019; 7(1): e11616. PubMed Abstract | Publisher Full Text

14. Li KHC, White FA, Tippe T, et al.: Current State of Mobile Phone Apps for Monitoring Heart Rate, Heart Rate Variability, and Atrial Fibrillation: Narrative Review. JMIR Mhealth Uhealth. 2019. Publisher Full Text

15. Bogdan P, Jain S, Markescu R: Pacemaker control of heart rate variability: A cyber physical system perspective. ACM Trans Embed Comput Syst. 2013; 12(1s): 1–22. Publisher Full Text

16. Bogdan P, Jain S, Goyal K, et al.: Implantable Pacemakers Control and Optimization via Fractional Calculus Approaches: A Cyber-Physical Systems Perspective. 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems. 2012; 23–32. Publisher Full Text

17. Ohmura H, Jones JH: Changes in heart rate and heart rate variability as a function of age in Thoroughbred horses. J Equine Sci. 2017; 28(3): 99–103. PubMed Abstract | Publisher Full Text | Free Full Text

18. Kowalski S, Janczarek I, Kędzierski W, et al.: The effect of relaxing massage on heart rate and heart rate variability in purebred Arabian racehorses. Anim Sci J. 2017; 88(4): 669–77. PubMed Abstract | Publisher Full Text

19. Nagel C, Aurih J, Palm F, et al.: Heart rate and heart rate variability in pregnant warmblood and Shetland mares as well as their fetuses. Anim Reprod Sci. 2011; 123(3–4): 183–7. PubMed Abstract | Publisher Full Text | Free Full Text

20. Lenoir A, Trachel DS, Younes M, et al.: Agreement between Electrocardiogram and Heart Rate Meter is Low for the Measurement of Heart Rate Variability during Exercise in Young Endurance Horses. Front Vet Sci. 2017; 4: 170. PubMed Abstract | Publisher Full Text | Free Full Text

21. Loftus L, Marks K, Jones-McVey R, et al.: Monty Roberts’ Public Demonstrations: Preliminary Report on the Heart Rate and Heart Rate Variability of Horses Undergoing Training during Live Audience Events. Animals (Basel). 2016; 6(1): pii: E55. PubMed Abstract | Publisher Full Text | Free Full Text

22. Younes M, Robert C, Barrey E, et al.: Effects of Age, Exercise Duration, and Test Conditions on Heart Rate Variability in Young Endurance Horses. Front Physiol. 2016; 7: 155. PubMed Abstract | Publisher Full Text | Free Full Text

23. Flethøj M, Kanters JK, Haugaard MM, et al.: Changes in heart rate, arrhythmia frequency, and cardiac biomarker values in horses during recovery after a long-distance endurance ride. J Am Vet Med Assoc. 2016; 248(9): 1034–42. PubMed Abstract | Publisher Full Text

24. Matsuura A, Maruta H, Iwasaki T, et al.: The beneficial effects of horse trekking on autonomic nervous activity in experienced rider with no disability. Anim Sci J. 2017; 88(1): 173–9. PubMed Abstract | Publisher Full Text | Free Full Text

25. von Leinasi M, Biau S, Eber R, et al.: Cortisol release, heart rate and heart rate variability in the horse and its rider: different responses to training and performance. Vet J. 2013; 197(2): 229–32. PubMed Abstract | Publisher Full Text

26. Matsuura A, Tanaka M, Irimajii M, et al.: Heart rate variability after horse trekking in leading and following horses. Anim Sci J. 2010; 81(5): 618–21. PubMed Abstract | Publisher Full Text

27. Schmidt A, Aurih J, Mösti E, et al.: Changes in cortisol release and heart rate

Grant information

GT is currently supported by a Clinical Assistant Professorship from the Croucher Foundation of Hong Kong.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We thank the authors of the original dataset for generously sharing their data.
and heart rate variability during the initial training of 3-year-old sport horses.

Horm Behav. 2010; 58(4): 628–36. PubMed Abstract | Publisher Full Text

28. Kinnunen S, Laukkanen R, Haldi J, et al.: Heart rate variability in trotters during different training periods. Equine Vet J Suppl. 2006; 38(S36): 204–9. PubMed Abstract | Publisher Full Text

29. Cottin F, Barrey E, Lopes P, et al.: Effect of repeated exercise and recovery on heart rate variability in elite trotting horses during high intensity interval training. Equine Vet J Suppl. 2006; 38(S36): 214–7. PubMed Abstract | Publisher Full Text

30. Voss B, Mohr E, Krzywanek H: Effects of aqua-treadmill exercise on selected blood parameters and on heart-rate variability of horses. J Vet Med A Physiol Pathol Clin Med. 2002; 49(3): 137–43. PubMed Abstract | Publisher Full Text

31. Physick-Sheard PW, Marlin DJ, Thornhill R, et al.: Frequency domain analysis of heart rate variability in horses at rest and during exercise. Equine Vet J. 2000; 32(3): 253–62. PubMed Abstract | Publisher Full Text

32. Kuwahara M, Hiraga A, Kai M, et al.: Influence of training on autonomic nervous function in horses: evaluation by power spectral analysis of heart rate variability. Equine Vet J Suppl. 1999; 31(S36): 178–80. PubMed Abstract | Publisher Full Text

33. Thayer JF, Hahn AW, Pearson MA, et al.: Heart rate variability during exercise in the horse. Biomed Sci Instrum. 1997; 34: 248–51. PubMed Abstract

34. Cottin F, Médigue C, Lopes P, et al.: Effect of exercise intensity and repetition on heart rate variability during training in elite trotting horse. Int J Sports Med. 2000; 21(10): 859–67. PubMed Abstract | Publisher Full Text

35. Pincus SM, Goldberger AL: Physiological time-series analysis: what does regularity quantify? Am J Physiol. 1994; 266(4 Pt 2): H1643–56. PubMed Abstract | Publisher Full Text

36. Pincus SM: Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991; 88(6): 2297–301. PubMed Abstract | Publisher Full Text | Free Full Text

37. Sanbe A, James J, Truzzu V, et al.: Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy. Circulation. 2005; 111(18): 2330–8. PubMed Abstract | Publisher Full Text | Free Full Text

38. Tulppo MP, Kivimäki AM, Hautala AJ, et al.: Physiological background of the loss of fractal heart rate dynamics. Circulation. 2006; 112(3): 314–9. PubMed Abstract | Publisher Full Text

39. Kališnik JM, Hrovat E, Hrastovec A, et al.: Severe Cardiac Autonomic Derangement and Altered Ventricular Repolarization Pave the Way to Postoperative Atrial Fibrillation. Innovations (Phila). 2015; 10(6): 398–405. PubMed Abstract | Publisher Full Text

40. Broux B, De Clercq D, Vera L, et al.: Can heart rate variability parameters derived by a heart rate monitor differentiate between atrial fibrillation and sinus rhythm? BMC Vet Res. 2018; 14(1): 320. PubMed Abstract | Publisher Full Text | Free Full Text

41. Broux B, De Clercq D, Decloedt A, et al.: Heart rate variability parameters in horses distinguish atrial fibrillation from sinus rhythm before and after successful electrical cardioversion. Equine Vet J. 2017; 49(6): 723–8. PubMed Abstract | Publisher Full Text

42. Gelzer AR, Moise NS, Vaidya D, et al.: Temporal organization of atrial activity and irregular ventricular rhythm during spontaneous atrial fibrillation: an in vivo study in the horse. J Cardiovasc Electrophysiol. 2000; 11(7): 773–84. PubMed Abstract | Publisher Full Text

43. Kuwahara M, Hiraga A, Nishimura T, et al.: Power spectral analysis of heart rate variability in a horse with atrial fibrillation. J Vet Med Sci. 1998; 60(1): 111–4. PubMed Abstract | Publisher Full Text
In this study, Li and colleagues performed quantitative analyses of heart rate variability in horses based on previously published data in reference 3, and reached a conclusion that is supported by quantitative results.

Here is a list of comments that I believe this MS could benefit from:

1. In Methods – Frequency-domain analysis, how were the cut-off frequencies for these fast, low, and very low frequency determined? Also, ‘repolarization spectrum’ appears confusing. It would be helpful if explained in more detail. Please also add more details regarding how FFT was performed, i.e., what software/code and relevant parameters, in order to reproduce these analyses.

2. It is not clear exactly what ‘at rest’ and ‘exercise’ mean in the context of this study, e.g., is ‘at rest’ suggesting HR data taken minutes/hours before exercise? This is more relevant for ‘exercise’ as it is not clear what is the form and duration of exercise, and perhaps these data are taken after exercise? If so, it would be very helpful to clearly describe at what time point these data were taken, since Figures 1 and 2 show gradually slowed HR in the ‘exercise’ column. Other HR-contributing factors like the circadian rhythm may also ideally need to be ruled out if ‘rest’ and ‘exercise’ data are taken during different part of the day.

3. It is also worthwhile to describe the sexes of the horses. Is there any sex-based difference?

4. Figures 1 and 2 are essentially showing the same data and therefore may benefit from merging into a single figure. The authors described the duration of single HR recording (10 to 18 min), were the analyses performed on the whole length of the recordings or segments of them? Please elaborate and perhaps provide a representative plot of whole length recording of HR/RR data? Also, in Figure 2 C-D, there’s no tick/tick labels for the y axis.

5. Figure 5A-B, please add notations for what the color areas stand for.

6. For entropy and detrended fluctuation analyses, please add detailed descriptions of implementation methods.

7. Figure 8A-B appear that the plots do not cover complete dataset. Please modify the axis ranges to improve.
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational Cardiology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Arun V. Holden
School of Biomedical Sciences, University of Leeds, Leeds, UK

This is a clearly presented quantitative description of heart rate variability in thoroughbred racehorses, from data sets that are publically available from ref [3] as an xlsx dataset of RR,QT intervals and analysed by standard methods. The results and conclusion are quantitative. The paper does not add anything to the methodology or interpretation of HTV analysis, or to physiological understanding of exercise effects on heart activity, but provides a standard analysis of data from an unusual (for mammalian physiology) animal, and is of potential interest to veterinary medicine.

“Equine athletes” is not a term I would search for if I was looking to racehorse ECG analyses. In
sports medicine an athletes could be marathon runner, a sprinter, or a weightlifter, all with different cardiovascular profiles. I know it's used in the previous PlosOne paper, so suggest you replace horse by race horse in the abstract.

Fig 1 A, b, 2A,B show RR intervals, rates from the same horse at rest and during exercise. Could “at rest” and “during exercise “ be more specific in the legend/text. A striking feature are the transient accelerations in heart rate at rest, and the slow decline in rate during exercise. Could you comment on these, in the results (are they typical, can they be quantified over the full set of data i.e. accelerations in heart rate, in which RR interval dropped by more than x % in y seconds, occurred in % at rest, and y1-y2% decrease in heart rate occurred during the period of exercise; and comment on the possible physiological mechanism. This would add to the paper, and is relevant to your title as it concerns the assumed stationarity of the RR interval sequences you are analysing.

Figs 1,2 C,F “frequency”: since you get into the frequency domain later in Fig5 I’d suggest replace frequency by probability (number in bin /no. of intervals) and add a tick marks for linear scale, and unit, so they are now estimates of probability density and have a common scale

Time domain statistics: Figs 3 and 4: all OK, but repetitive as the figs repeat the text. I'd prefer one table + some descriptive text.

Methods: Frequency domain analysis.

The data in [3] is a sequence of intervals:

‘...using the FFT with a sampling rate of 8 Hz...’ implies you are sampling a continuous signal ie. the \(V(t) \), not the point process of \(R \) events by their interval sequence (see Kybernetik. 1971 May;8(5):165-71. Alias-free sampling of neuronal spike trains. French AS, Holden AV \(^1\).) I think you are constructing a staircase, by plotting the interval against the sum of the intervals ie. time, and sampling this function at 8 Hz. Could you be specific about what you are doing.

The power in the repolarization spectrum: I think you mean the total power is the integral of the spectral density from 0.04 and 0.4Hz, repolarization spectrum does not seem to be used in the text or figures.

In the legend of fig 5 A, B identify the colours with the frequency bands mentioned in the text. Figs 5A,B PSD scales differ by an order of magnitude.: are the spectra from the same length (number of RR intervals/total time?) of data

The spectra in Figs 5A, B look plausible but you need to give more information about how they were constructed [4] is a simple overview. If it were a package (say OriginPro) then give the parameters used (sampling rate, window, type,...,or specify the method in detail

What was the total record length?
Was it zero-meaned? Was it segmented into 50% overlapping blocks
How long each block, how many degrees of freedom, what window function; Hanning, hamming,....
See any text on FFT.
Since I'm not too sure of the methods you used to construct the spectra I'm not too sure about the exact meaning of Figs 5 and 6

Fig 7: Recurrence plots not Poincare recurrence (a recurrence plot would be to have a \(V(t) \) signal in say x,y,z space and plot its point intersections with a plane, here you're plotting \(RR_n+! \) against \(RR_n \) ie a straight recurrence plot, and then quantifying it.

You explain the sample entropies and DFA but do not give the method (as a computer program
say Peng's code) or package used. If you wrote the code yourself have it as a supplement so the reader could validate it/use it on the data in [3].

References
1. French AS, Holden AV: Alias-free sampling of neuronal spike trains. *Kybernetik*. 1971; 8 (5): 165-71 PubMed Abstract

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology, time series analysis, nonlinear dynamics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com