Application of the GCOM-C global ET_{index} estimation algorithm in 40 forests located throughout Japan, North America, Australia, and the tropical region

Hiroki Umeno, Yoshinori Shinohara† and Masahiro Tasumi

(Faculty of Agriculture, University of Miyazaki, 1–1 Gakuen-Kibanadai-Nishi, Miyazaki 889–2192, Japan)

Abstract

Evapotranspiration estimates in forested areas are important not only for water resource management on a regional scale but also to better understand the water cycle on a global scale. The objective of this study was to evaluate the Global Change Observation Mission-Climate (GCOM-C) global Evapotranspiration-index (ET_{index}) estimation algorithm (GCOM-C ET_{index} algorithm) applied to forested areas. ET_{index}, which is the ratio of the actual evapotranspiration to the reference evapotranspiration, is estimated from the actual surface temperature and hypothetical wet and dry surface temperatures, i.e., T_s (wet) and T_s (dry), respectively. Based on the algorithm, evapotranspiration is calculated from thermal satellite images and near-surface weather data. We compared the observed ground-based annual evapotranspiration with the estimated annual evapotranspiration obtained using the GCOM-C ET_{index} algorithm and thermal images from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite for 40 forests, with 10 sites in four different areas, including Japan, North America, Australia, and the tropical region. We found that the GCOM-C ET_{index} algorithm well reproduced annual evapotranspiration for most forests. The root mean square errors (RMSE) for the 40 forests was 239 mm. In Japan, North America, and Australia, the overestimation of summer evapotranspiration was offset by the underestimation of winter evapotranspiration. The accuracy of annual evapotranspiration estimates in forests with low annual mean temperatures ($<15^\circ$C) was less than that in forests with high annual mean temperatures ($\geq 15^\circ$C). Forests with a low annual mean temperature displayed low levels of evapotranspiration in winter. In these forests, the overestimation of summer evapotranspiration was not offset by the underestimation of winter evapotranspiration. The overestimation of T_s (wet) is the primary reason for the overestimation of summer evapotranspiration. Redetermination of the parameters for the T_s (wet) estimates must improve the evapotranspiration estimates in the forested areas, especially the ones with a low annual mean temperature.

Key words: Latent heat; MODIS; Reference evapotranspiration; Sensible heat; Surface temperature

1. Introduction

The maximum available water resources are effectively estimated as precipitation minus evapotranspiration. Forested areas generally receive larger amounts of precipitation than other areas (Sawano et al., 2005) and provide excess water that can be used for the irrigation of agricultural lands and to meet the water needs in urban areas. Thus, it is important to accurately estimate evapotranspiration in forested areas to effectively manage water resources for human activity on a regional scale. In addition, evapotranspiration from terrestrial lands greatly affects the overall water cycle on a global scale (Oki and Kanae, 2006). Understanding the global water cycle is an essential component of many methods used to predict future climate change (Jung et al., 2010). However, the wide-scale estimated evapotranspiration generally involves errors caused due to the uncertainties of the climate data and algorithms.

Several algorithms for estimating evapotranspiration based on satellite images have been developed (Allen et al., 2007; Mu et al., 2007, 2011), and these algorithms are used to estimate evapotranspiration on both the global and regional scales. Recently, Tasumi et al. (2016a) developed an algorithm to estimate the Evapotranspiration-index (ET_{index}), which is applicable to thermal images from the Global Change Observation Mission-Climate (GCOM-C) satellite (hereinafter, this algorithm is referred to as the GCOM-C ET_{index} algorithm). The GCOM-C satellite provides thermal images with a spatial resolution of 250 m every day or every 2 days at nadir. This resolution is considerably higher than that of similar semidaily observational satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (1000 m spatial resolution at nadir) (Tasumi et al., 2019).

The ET_{index} is the ratio of actual evapotranspiration to the reference evapotranspiration (ET_o) defined by the Food and Agriculture Organization of the United Nations (Allen et al., 1998). The ET_o can be estimated using near-surface weather data such as air temperature, relative humidity, solar radiation, and wind speed. In the proposed GCOM-C ET_{index} algorithm, the ET_{index} can be estimated using satellite thermal images and near-surface wind speed data without adjusting parameters at each individual site. Thus, the GCOM-C ET_{index} algorithm enables us to automatically estimate evapotranspiration via satellite thermal images and the near-surface weather data.

The GCOM-C ET_{index} algorithm was developed using the data in a semi-arid region (Tasumi et al., 2016a), wherein a
large amount of data related to the heat and radiation balances were available. Although the GCOM-C ET_{index} algorithm is theoretically applicable to all types of terrestrial lands, the applicability to forests has not been extensively examined. Denih et al. (2018) preliminary evaluated the performance of this algorithm at a lodgepole pine forest in Idaho, USA and found that it overestimated evapotranspiration, especially in summer. Since the heat balance is considerably different among regions (Matsumoto et al., 2008), the performance of the algorithm must also be different among regions.

This study aims to evaluate the GCOM-C ET_{index} algorithm in forested areas. The estimated annual evapotranspiration based on the GCOM-C ET_{index} algorithm was compared with the ground-based observed annual evapotranspiration in respective 10 forested sites (i.e., a total of 40 sites) located throughout Japan, North America, Australia, and the tropical region. Thermal images for long-term periods are required for this analysis. The GCOM-C satellite was just launched on December 2017; therefore, no thermal images for long-term periods are accumulated. Herein, we have used the estimated evapotranspiration based on thermal images from the MODIS satellite with similar temporal resolution to the GCOM-C satellite. The results of this study will contribute to the further improvement and optimization of the GCOM-C ET_{index} algorithm.

2. Materials and methods

2.1 GCOM-C ET_{index} algorithm

Since more extensive details of the GCOM-C ET_{index} algorithm were provided by Tasumi et al. (2016a), the algorithm is briefly mentioned here. In the GCOM-C ET_{index} algorithm, ET_{index} is estimated as follows:

$$ET_{\text{index}} = \frac{T_i(\text{dry}) - T_i(\text{act})}{T_i(\text{dry}) - T_i(\text{wet})} \quad (0 \leq ET_{\text{index}} \leq 1.23) \quad (1),$$

where C_{adj} is an empirical adjustment factor ($= 1.23$), $T_i(\text{act})$ is the surface temperature obtained using satellite thermal images ($\degree C$) at the satellite overpass time, and $T_i(\text{wet})$ and $T_i(\text{dry})$ are the hypothetical wet and dry surface temperatures ($\degree C$) at that time, which are surface temperatures assuming a surface with zero sensible or latent heat fluxes, respectively.

$T_i(\text{wet})$ is estimated as follows:

$$T_i(\text{wet}) = C_1 R_s + C_2 \sin \left(\frac{2 \pi \text{DOY} + C_3}{365} \right) \times f_{\text{sat}} \quad (2),$$

where R_s is solar radiation ($W m^{-2}$), DOY is the day of the year, f_{sat} is a function of latitude, and $C_1 (= 0.06)$, $C_2 (= -30.34)$, and $C_3 (= 37)$ for the North Hemisphere and 220 for the Southern Hemisphere) are calibration constants. Since the surface temperature associated with particular satellite images are available only for cloud-free days, R_s is calculated from R_s under clear sky conditions, which can be estimated from latitude and elevation (Allen et al., 1998). f_{sat} is calculated as follows:

$$f_{\text{sat}} = -0.0021 \times \text{Lat}^2 + 0.3449 \times |\text{Lat}| - 2.9864 \quad (3),$$

where Lat is latitude in degrees, and the value of f_{sat} should be limited to $0 \leq f_{\text{sat}} \leq 10$.

$T_i(\text{dry})$ is empirically calculated as follows:

$$T_i(\text{dry}) = T_i(\text{wet}) - (0.0023 u - 0.0301) R_s \quad (4),$$

where u is the wind speed measured at a height of 2 m above the surface ($m \ s^{-1}$).

Tasumi et al. (2016b) provided the global maps of daily evapotranspiration with a spatial resolution of 0.05° for 2001–2007. In these maps, the evapotranspiration was calculated as $ET_{\text{index}} \times ET_s$. ET_{index} was calculated using the MODIS MOD11 land surface temperature and u of the reanalyzed global weather data (Mabuchi, 2011). Meanwhile, ET_s was calculated using the reanalyzed global weather data (Mabuchi, 2011). The data of the surface temperature are not available for every day owing to the cloud contamination. Tasumi et al. (2016b) assumed that cloud contamination increases the ET_{index} value and there is at least one cloud-free day every 16-days. Consequently, the minimum ET_{index} for each 16-day period was used. In this study, monthly and annual evapotranspiration maps for 2001–2007, which were calculated from the daily evapotranspiration maps, were used (Tasumi et al., 2016b).

Fig. 1. Locations of the respective 10 sites in Japan (#1–#10), in Australia (#11–#20), in North America (#21–#30), and the tropical region (#31–#40).
2.2 Ground-based evapotranspiration observed data

Komatsu et al. (2012) compiled 829 ground-based observed data of forest annual evapotranspiration to develop a simple model for global estimation of annual evapotranspiration in forested areas. Among these data, the datasets from 10 respective locations in Japan, North America, Australia, and the tropical region (Fig. 1) were selected. Here, the tropical region was defined as the region where the Köppen climate classification deemed it a tropical region. The datasets from the 40 forests were selected using three criteria. First, the position of the forest and the observation period are available. Second, the targeted forests were distributed in areas that covered an area that was more than 5 km × 5 km, which corresponded to the spatial resolution of the evapotranspiration maps used in this study. Third, the target pixel(s) contained forests more than 50% both for 2001–2007 and for the observation period. The latter condition was verified using the time lapse tools on Google Earth (Google LCC, Mountain View, CA, USA).

Table 1 provides the summary of the 40 targeted forests, which are the subject of this study. The measurement periods were different among the 40 forests, with the range of 1–41 years. Although the observation periods for some forests partially overlapped with the estimated period (i.e., 2001–2007), the periods for other forests were different from the estimated one. We believe that the difference does not alter our conclusions because of two reasons. First, we verified that 40 sites had been covered by forests both in the observed and estimated periods. Second, long-term changes in annual evapotranspiration with tree growth and change in tree species, i.e., without clearcutting, was observed to be less than 200 mm (Komatsu et al., 2007; Kosugi et al., 2010).

Table 1. Annual precipitation (P), annual mean temperature (T), elevation, forest type, observed annual evapotranspiration (ET), and observed method in the 40 sites.

Site	P (mm)	T (°C)	Elevation (m)	Forest Type*	Observed ET (mm)	Methods**	Citation
#1 Jozankei	1253	8	310–441	EC	408	WB	Hattori et al. (2001)
#2 TakaragawaHonryu	3673	5	1391	MM	556	WB	Takeda (1951)
#3 Hitachi-ohta	1345	14	280–330	EC	546	WB	Fujieda et al. (1996)
#4 Tsukuba	1338	14	290–390	EC	748	WB	Water Resources Lab. and Flood Control Lab., Forest Environmental Division (1993)
#5 Nutanodani	2454	13	470–990	MM	807	WB	Hattori et al. (2001)
#6 Shirakawatani	2933	9	740–1140	EC	517	WB	Yao et al. (1996)
#7 KahokuII	2176	16	160–250	EC	935	WB	Shimizu et al. (2003)
#8 SarakawaII	2766	13	290	EB	1078	WB	Takeshita et al. (1996)
#9 Minaminomijiymaya	1785	22	145–244	EB	1094	WB	Fujieda et al. (1995)
#10 Hedona	2897	20	187–399	EM	1114	WB	Kanna et al. (2001)
#11 Howard River	1720	27	***	EB	1110	M, SF	Cook et al. (1998)
#12 Oliver Creek	2481	24	30	EB	1298	SF, I	McJannet et al. (2007)
#13 Mount LewisI	3040	17	1100	EB	1533	SF, I	McJannet et al. (2007)
#14 Babinda Creek	5400	15	50–150	UN	700	WB	Chiew and McMahon (1994)
#15 BellendenKer	7471	14	1560	EB	971	SF, I	McJannet et al. (2007)
#16 Upper Barron	2983	18	1050	EB	1518	SF, I	McJannet et al. (2007)
#17 Canning River at Glen Eagle	800	16	300–400	UN	780	WB	Chiew and McMahon (1994)
#18 Lewin North	1100	16	***	EB	911	WB	Bari et al. (2005)
#19 April Road	975	16	170–230	EB	795	WB	Bari et al. (1996)
#20 March Road	991	16	200–240	EB	843	WB	Bari et al. (1996)
#21 Delta Junction, 15-year	304	2	***	DB	284	M	Liu et al. (2005)
#22 Prince Albert National Park	422	1	601	DB	418	M	Barr et al. (2007)
#23 DF49	1470	9	350	EC	413	M	Jassal et al. (2010)
#24 HDF00	1410	10	175	EC	285	M	Jassal et al. (2010)
#25 HDF88	1610	9	170	EC	418	M	Jassal et al. (2010)
#26 USDA Forest Service Research Natural Area	392	8	941	EC	415	M	Anthoni et al. (1999)
#27 HJ Andrews	2177	9	780	EC	881	WB, Model	Wachler et al. (2005)
#28 Duke Forest pine	1091	16	163	EC	782	M	Novick et al. (2009)
#29 CoweeaWS7	1890	13	724–1060	DB	830	WB	Swank et al. (2001)
#30 Gainesville	1175	21	***	EC	1126	M	Gholz and Clark (2002)
#31 La Selva	3300	25	***	EB	1588	M, P+I	Loescher et al. (2005), Bigelow (2001)
#32 Upper Rio Orinoco	3223	26	105	EB	1492	M	Rollenbeck and Anhuf (2007)
#33 ReboJaru	2200	25	145	EB	1359	M	von Randow et al. (2004)
#34 Asu	2621	26	45–120	EB	1409	SWB	Tomassella et al. (2008)
#35 Aracruz experimental catchment	1147	24	***	EB	1108	WB	Almeida et al. (2007)
#36 Nsini	1751	24	500–700	UN	1371	M	Oliveira et al. (1999)
#37 Mule Hole	1156	27	820–910	DB	809	SWB, Model	Ruiz et al. (2010)
#38 Pasoh	1733	25	75–150	EB	1318	M	Takahashi et al. (2010)
#39 BukitTimah	2369	27	90–164	EB	1350	WB	Chappell and Sherlock (2005)
#40 W855	2778	27	150–300	EB	1350	WB	Chappell and Sherlock (2005)

* EB: evergreen broadleaved; EC: evergreen coniferous; EM: evergreen mixed; DB: deciduous broadleaved; MM: mixed; UN: unknown
** WB: catchment water balance; SF: sap flux; I: interception; M: micrometeorological; SWB: soil water balance; Model: interpolation by models; P: porometry
*** Unavailable
and Katsuyma, 2007), which was relatively smaller than the differences in the annual evapotranspiration among sites.

Evapotranspiration for the 40 forests was observed using a single method or a combination of methods, including catchment water balance, micrometeorology, soil water balance, sap flux, interception, and porometry (Table 1). Wilson et al. (2001) reported that the observed evapotranspiration was different based on the measurement method. Because Komatsu et al. (2012) did not detect systematic trends in the annual evapotranspiration depend on the type of measurement method, so the data used in this study was not classified according to the measurement method used to obtain it.

3. Results

3.1 Annual evapotranspiration

Table 2 provides observed and estimated annual evapotranspiration (ET), coefficient of variation (CV) of the estimated annual evapotranspiration, and relative error in the 40 sites.

Site	Observed ET (mm)	Estimated ET (mm)	CV (%)	Relative error (%)
#1 Jozankei I	408	601	7	47
#2 Takaragawa honryu	556	736	8	32
#3 Hitachi-ohta	546	760	7	39
#4 Tsukuba	748	686	5	8
#5 Nutanodani	807	979	5	21
#6 Shirakawatani	517	964	7	87
#7 Kahoku III	935	874	4	7
#8 Sarukawa II	1078	931	6	14
#9 Minamiminejiyama	1094	1078	5	1
#10 Hedona	1114	1153	7	4
#11 Howard River	1110	1062	7	4
#12 Oliver Creek	1298	1228	6	5
#13 Mount Lewis I	1533	1596	8	4
#14 Babinda Creek	700	1307	3	87
#15 Bellenden Ker	971	1336	6	38
#16 Upper Barron	1518	1327	4	13
#17 Canning River at Glen Eagle	780	724	7	7
#18 Lewin North	911	900	5	1
#19 April Road	795	841	3	6
#20 March Road	843	844	4	0
#21 Delta Junction, 15-year	284	184	3	32
#22 Prince Albert National Park	418	989	23	137
#23 DF49	413	708	7	72
#24 HDF00	285	659	18	131
#25 HDF88	418	724	5	73
#26 USDA Forest Service Research Natural Area	415	778	10	88
#27 HJ Andrews	881	1062	7	21
#28 Duke Forest pine	782	883	7	13
#29 Coweeta WS7	830	1059	5	28
#30 Gainesville	1126	1047	5	7
#31 La Selva	1588	1394	5	12
#32 Upper Rio Orinoco	1492	1503	9	1
#33 Rebio Jaru	1359	1645	5	21
#34 Asu	1409	1855	10	32
#35 Araucruz experimental catchment	1108	927	5	16
#36 Nsimi	1371	1527	4	11
#37 Mule Hole	809	983	6	21
#38 Pasoh	1318	1216	3	9
#39 Bukit Timah	1350	1143	3	15
#40 W8S5	1350	1445	4	7

Table 2. Observed and estimated annual evapotranspiration (ET), coefficient of variation (CV) of the estimated annual evapotranspiration, and relative error in the 40 sites.

Evapotranspiration data for the 40 forests was observed and estimated for comparison. The observed and estimated evapotranspiration were the averaged value over the analyzed period and that for 2001–2007, respectively. The solid and dotted lines indicate the 1:1 and the regression lines, respectively.

3.1 Annual evapotranspiration

Table 2 provides observed and estimated annual evapotranspiration (ET), coefficient of variation (CV) of the estimated annual evapotranspiration, and relative error in the 40 sites.
Table 3. The coefficient of determination (R^2), root mean square errors (RMSE), and the bias for the 40 sites based on the GCOM-C ET_{index} algorithm, Zhang et al. (2001)'s model, and Komatsu et al. (2012)'s model.

Area	GCOM-C ET_{index} algorithm	Zhang et al. (2001)'s model	Komatsu et al. (2012)'s model						
	R^2	RMSE (mm)	Bias (mm)	R^2	RMSE (mm)	Bias (mm)	R^2	RMSE (mm)	Bias (mm)
Japan	0.56	194	66	0.12	545	482	0.80	157	101
Australia	0.46	235	70	0.26	325	130	0.52	221	-88
North America	0.53	299	224	0.21	441	288	0.47	211	47
Tropical region	0.44	216	48	0.78	112	-58	0.68	128	-40
All region	0.69	239	110	0.31	390	210	0.77	183	5

1:1 line (Fig. 3b), and the absolute value of relative errors of the data from these eight forests were less than 15% (Table 2). Meanwhile, two forests in Australia (#14 and #15) had relative errors that exceeded 35% (Table 2). In North America (#21–#30), except for two sites with the maximum and minimum observed evapotranspiration, the estimated evapotranspiration was larger than the observed evapotranspiration (Fig. 3c, Table 2). In the tropical region (#31–#40), the absolute value of relative errors for all 10 forests was less than 35% (Table 2).

3.2 Seasonal change in evapotranspiration

Fig. 4 presents the estimated monthly ET_{index} values. In 28 of the 30 forests in Japan, Australia, and North America, the maximum ET_{index} was more than 1.0, and in 25 of the 30 forests, the minimum ET_{index} was less than 0.2. Thus, there were large differences between the maximum and minimum ET_{index} values in most of the forests in Japan, Australia, and North America. Fig. 5 presents the estimated monthly evapotranspiration, which is $ET_{index} \times ET_o$ in each region. The trend for the monthly evapotranspiration was similar to that for monthly ET_{index}. In the tropical region, no clear seasonal trends were identified. In Japan, Australia, and North America, evapotranspiration during summer was larger than during winter.

4. Discussion

Many algorithms have been developed to estimate evapotranspiration from the satellite data (Mu et al., 2007; Miralles et al., 2011; Senay et al., 2013; Yao et al., 2017).
Fig. 4. Estimated monthly ET_index in Japan (a), Australia (b), North America (c), and the tropical region (d). Gray lines and black lines with open circles indicate data for each site and data averaged over the 10 sites, respectively.

Fig. 5. Estimated monthly evapotranspiration in Japan (a), Australia (b), North America (c), and the tropical region (d). Gray lines and black lines with open circles indicate data for each site and data averaged over the 10 sites, respectively.
Among these studies, the observed and estimated annual evapotranspiration are available in Mu et al. (2007). Mu et al. (2007) developed an algorithm for evapotranspiration estimates based on the Penman–Monteith equation (Monteith, 1964) and MODIS satellite and global meteorology data (i.e., MODIS ET algorithm). They compared the observed and estimated annual mean latent heat flux at 19 sites. Note that the 19 sites included 12 forested sites and seven sites with other types of land cover.

\[R^2, \text{RMSE, and the bias of the MODIS ET algorithm were 0.74, 241 mm, and } -74 \text{ mm, respectively. Note that we assumed the annual air temperature of } 20^\circ \text{C when converting latent heat flux into evapotranspiration. Although the bias for the MODIS ET algorithm was better than that for the GCOM-C } ET_{\text{index}} \text{ algorithm, } R^2 \text{ and RMSE for the MODIS ET algorithm were comparable to those for the GCOM-C } ET_{\text{index}} \text{ algorithm. It is important to note that the GCOM-C } ET_{\text{index}} \text{ algorithm requires less input data than the MODIS ET algorithm. Regardless, the accuracy of the GCOM-C } ET_{\text{index}} \text{ algorithm for forested areas was close to that of the MODIS ET algorithm.}

In addition to methods based on satellite data, Zhang’s model (Zhang et al., 2001) has been widely used to predict the spatial variation in annual evapotranspiration in forests. Zhang’s model estimates evapotranspiration from annual precipitation and constant annual potential evaporation and a coefficient representing plant water availability. When Zhang’s model was applied to the data from the 40 forests in this study, \(R^2 \), RMSE, and the bias were 0.31, 390 mm, and 210 mm, respectively, which were worse than those associated with the GCOM-C \(ET_{\text{index}} \) algorithm (Table 2). Komatsu et al. (2012) improved Zhang’s model by adding the annual mean air temperature as an input. The constant annual potential evaporation for Zhang’s model was suitable for climate conditions in tropical regions (Komatsu et al., 2012). Komatsu’s model changes the annual potential evapotranspiration due to the annual mean air temperature. When Komatsu’s model was applied to the data for the 40 forests, \(R^2 \), RMSE, and the bias were 0.77, 183 mm, and 5 mm, respectively, which were better than those associated with the GCOM-C \(ET_{\text{index}} \) algorithm (Table 2). High accuracy of Komatsu’s model might be because the data for the 40 sites that we analyzed were included in the training data for developing Komatsu’s model.

Monthly evapotranspiration was not available for most of the 40 sites analyzed in this study. Suzuki (1991) reported monthly observed evapotranspiration based on the short-term water balance method for totally 22 periods in nine forested catchments of Japan. Some of the catchments and periods overlapped with the 10 sites located in Japan that were analyzed as part of this study. Fig. 6 compares the 22 monthly evapotranspiration observations with the estimated monthly evapotranspiration averaged over the 10 sites of Japan. In summer, the estimated evapotranspiration tended to be larger than the observed evapotranspiration. In winter, the estimated evapotranspiration tended to be less than the observed evapotranspiration. Thus, low estimation errors for annual evapotranspiration in the forests of Japan, North America, and Australia were likely due to the overestimation of summer evapotranspiration being offset by the underestimation of winter evapotranspiration.

In many forests of Japan, North America, and Australia, \(ET_{\text{index}} \) in summer was close to the maximum value (=1.23), suggesting that \(T_s(\text{act}) \) was close to or smaller than \(T_s(\text{wet}) \). Denh et al. (2018) also reported that \(T(\text{act}) \) in summer was close to \(T(\text{wet}) \) in the lodgepole pine tree forest in eastern Idaho, USA. To reduce the overestimation of summer evapotranspiration, a small \(T(\text{wet}) \) is required. \(T(\text{wet}) \) was basically estimated from the relation between \(R \) and \(T(\text{wet}) \), i.e., Equation (2). The empirical parameters in Equation (2) were determined using the data in a grassland of Shenmu, China, with semi-arid climate condition. Use of the two parameters \(C1 \) and \(C2 \) of Equation (2) determined in the forests could improve the accuracy of summer evapotranspiration in forests.

In these forests, \(ET_{\text{index}} \) in winter was close to 0, suggesting that \(T(\text{act}) \) was close to (or larger than) \(T(\text{dry}) \). \(T(\text{dry}) \) was calculated from \(T(\text{wet}) \) and the difference between \(T(\text{wet}) \) and \(T(\text{dry}) \). The difference was estimated from \(R \) and \(u \) (i.e., Equation (4)). The empirical parameters in Equation (4) were also determined using the data in Shenmu, China. The use of the two parameters \(C1 \) and \(C2 \) determined in Equation (4) determined in forests might improve the accuracy of winter evapotranspiration estimates for these forests.

In the tropical region, the absolute value of relative error was \(\leq 35\% \) for all forests. In the other three regions, the absolute value of relative error was \(>35\% \) in 10 of the 30 forests. In all the forests wherein the absolute value of relative error is \(>35\% \), the estimated annual evapotranspiration was larger than the observed annual evapotranspiration (Fig. 2). Fig. 7 classified the relationship between the observed and estimated annual evapotranspiration according to the annual mean temperature. In the forests with an annual mean temperature of \(<15^\circ \text{C} \), the estimated annual evapotranspiration was larger than the observed annual evapotranspiration in 14 out of 17 forests evaluated. This trend was not found in the forests with an annual mean temperature of \(\geq 15^\circ \text{C} \). Furthermore, a significant negative
relation exists between the annual mean temperature and relative error \(P < 0.05 \), when we used the data for 16 of the 17 forests with the annual mean temperatures of \(<15^\circ C\) (Fig. 8). The forests with low temperatures are covered by snow in winter. In these forests, winter evapotranspiration could be close to zero, which was comparable to the estimated winter evapotranspiration. Therefore, in these forests, the overestimation of summer evapotranspiration was not offset by the underestimation of winter evapotranspiration. Therefore, redetermination of \(C_1 \) and \(C_2 \) of Equation (2) would remarkably improve the annual evapotranspiration estimates for the forests with low temperatures (i.e., the annual mean temperatures of \(<15^\circ C\)).

Except for the forested sites with low temperatures, the estimated evapotranspiration was considerably larger than the observed evapotranspiration in Shirakawatani of Japan (\#6) and Babinda Creek (\#14) and Bellenden Ker (\#15) of Australia. Although the seasonal trend in Shirakawatani’s \(ET_{\text{index}} \) was similar to those in other forests of Japan, the observed annual evapotranspiration in Shirakawatani was less than that in other forests of Japan. The spatial resolution in weather data used for estimation was low, and the altitude of Shirakawatani was higher than the surrounding areas. Therefore, the air temperature in a grid within Shirakawatani would be higher than the air temperature in Shirakawatani. This suggests that the overestimation of annual evapotranspiration in Shirakawatani may be due to its complex topography. Babinda Creek and Bellenden Ker had large amounts of annual precipitation (5,400 mm and 7,471 mm, respectively) and are classified as cloud forests. The GCOM-C \(ET_{\text{index}} \) algorithm assumes there is at least one cloud-free day every 16 days and the \(ET_{\text{index}} \) was set to the minimum value of 16 days. Annual evapotranspiration at these two sites might have been overestimated because this particular assumption was not applicable to these two forests.

The GCOM-C \(ET_{\text{index}} \) algorithm requires only thermal images and fundamental weather data and provides evapotranspiration without adjusting the parameters at each individual site. Nevertheless, the accuracy of annual evapotranspiration was similar to that for the MODIS \(ET \) algorithm with more complex structures. The GCOM-C \(ET_{\text{index}} \) algorithm accurately represented the spatial variations in annual evapotranspiration due to climate conditions. Meanwhile, this algorithm did not represent well the evapotranspiration seasonality. In addition, whether the algorithm can detect the evapotranspiration changes due to the changes in forest structures remains unknown. Further studies clarifying this could expand the applicability of the GCOM-C \(ET_{\text{index}} \) algorithm.

5. Conclusions

This study examined the accuracy of annual evapotranspiration in forests based on GCOM-C \(ET_{\text{index}} \) algorithm, which enabled us to estimate evapotranspiration from thermal satellite images and near-surface whether data. We found that the GCOM-C \(ET_{\text{index}} \) algorithm well reproduced annual evapotranspiration for most forests. Conversely, the accuracy in forests with low annual mean temperature was lower than that in forests with high annual mean temperature. In addition, in most forests, the GCOM-C \(ET_{\text{index}} \) algorithm overestimated summer evapotranspiration and underestimated winter evapotranspiration. Redetermination of the two parameters in the function estimating the hypothetical dry surface temperature must improve the evapotranspiration estimates in the forested areas, especially the ones with a low annual mean temperature.

Acknowledgments

This study was supported by a research grant from the Global Change Observation Mission of the Japan Aerospace Exploration Agency (JAXA). This work was also supported by JSPS KAKENHI Grant Number JP18K14492.
References

Allen RG, Pereira LS, Raes D, Smith M, 1998: Crop Evapotranspiration—Guidelines for computing crop water requirements FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy. 330 pp.

Allen RG, Tasumi M, Trezza R, 2007: Satellite based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering 133, 380–394.

Almeida AC, Soares JV, Landsberg JJ, Rezende GD, 2007: Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management 251, 10–21.

Anthoni PM, Law BE, Unsworth MH, 1999: Carbon and water vapor exchange of an open-canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology 95, 151–168.

Bari MA, Smettem KRJ, Sivapalan M, 2005: Understanding changes in annual runoff following land use changes: a systematic data-based approach. Hydrological Processes 19, 2463–2479.

Bari MA, Smith N, Ruprecht JK, Boyd BW, 1996: Changes in streamflow components following logging and regeneration in the southern forest of Western Australia. Hydrological Processes 10, 447–461.

Barr AG, Black TA, Hogg EH, Griffiss TJ, Morgenstern K, Klijun N, Theede A, Nesic Z, 2007: Climatic controls on the carbon and water balances of a boreal aspen forest. 1994–2003. Global Change Biology 13, 561–576.

Bigelow S, 2001: Evapotranspiration modelled from stands of three broad-leaved tropical trees in Costa Rica. Hydrological Processes 15, 2779–2796.

Chappell NA, Sherlock MD, 2005: Contrasting flow pathways within tropical forest slopes of Ultisol soils. Earth Surface Processes and Landforms 30, 735–753.

Chiew F, McMahon T, 1994: Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments. Journal of Hydrology 153, 383–416.

Cook PG, Hatton TJ, Pidsley D, Herzeg AL, Held A, O’Grady A, Eamus D, 1998: Water balance of a tropical wet forest in the southern forest of Western Australia. Journal of Hydrology 210, 161–177.

Denih A, Maeda A, Tasumi M, Shinhara Y, Takeshita S, 2018: Evaluation of GCOM-C ET estimation algorithm at a Lodgepole Pine Tree Open Forest in Idaho, USA. Journal of Rainwater Catchment Systems 24, 9–14.

Fujieda M, Noguchi S, Ogawa M, 1996: Effects of changes in forest condition on hydrologic environment—case study of areas clearcut and logged by skidders. Journal of the Japanese Forest Society 78, 43–49 (in Japanese with English summary).

Fujieda M, Shimizu T, Kinjou M, Terazono R, 1995: Hydrologic environment in headwater area on Okinawa Island. Journal of the Japanese Forest Society 77, 145–152 (in Japanese with English summary).

Gholz HL, Clark KL, 2002: Energy exchange across a chronosequence of slash pine forests in Florida. Agricultural and Forest Meteorology 112, 87–102.

Hattori S, Shimizu T, Araki M, Kosugi K, Takeuchi I, 2001: Status of research on forest water storage capacity and forest management aiming at maintaining and improving the capacity (1). Suiri Kagaku 260, 1–40 (in Japanese).

Jassal RS, Black AT, Cai T, Ethier G, Pepin S, Rüemmler C, Nesic Z, Spittlehouse DL, Trofymow AJ, 2010: Impact of nitrogen fertilization on carbon and water balances in a chronosequence of three Douglas-fir stands in the Pacific Northwest. Agricultural and Forest Meteorology 150, 208–218.

Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescaetti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Grobbon N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupard S, Running S, Tomelleri E, Verry N, Weber U, Williams C, Wood E, Zaehhe S, Zhang K, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954.

Kanna K, Aragaki T, Kinjo M, 2001: Effects of water and soil conservation management on water holding capacity. Bulletin Okinawa Branch of the Forest and Forest Products Research Institute 44, 1–14 (in Japanese with English summary).

Komatsu H, Cho J, Matsumoto K, Otsuki K, 2012: Simple modeling of the global variation in annual forest evapotranspiration. Journal of Hydrology 420–421, 380–390.

Komatsu H, Tanaka N, Kume T, 2007: Do coniferous forests evaporate more water than broad-leaved forests in Japan? Journal of Hydrology 336, 361–375.

Kosugi Y, Katsuyama M, 2007: Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods. Journal of Hydrology 334, 305–311.

Liu H, Randerson TJ, Lindfors J, Chapin III FS, 2005: Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. Journal of Geophysical Research 110, D13101.

Loescher HW, Gholz HL, Jacobs JM, Oberbauer SF, 2005: Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. Journal of Hydrology 315, 274–294.

Mabuchi K, 2011: A numerical investigation of changes in energy and carbon cycle balances under vegetation transition due to deforestation in the Asian tropical region. Journal of the Meteorological Society of Japan 89, 47–65.

Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S, 2008: Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology 148, 1978–1989.

McJannet D, Wallace J, Fitch P, Disher M, Reddell P, 2007: Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrological Processes 21, 3473–3484.

Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences Discussions 8, 1–27.

Monteith JL, 1964: Evaporation and environment. The state and movement of water in living organisms. Symposium of the Society of Experimental Biology 19, pp. 205–234.

Mu Q, Heinisch FA, Zhao M, Running SW, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment 111, 519–536.

Mu Q, Zhao M, Running SW, 2011: Improvements to a MODIS
global terrestrial evapotranspiration algorithm. *Remote Sensing of Environment* **115**, 1781–1800.

Novick KA, Oren R, Stoy PC, Siqueira MBS, Katul GG, 2009: Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes. *Agricultural and Forest Meteorology* **149**, 1491–1504.

Oki T, Kanae S, 2006: Global Hydrological Cycles and World Water Resources, *Science* **313**, 1068–1072.

Oliva P, Viers J, Dupré B, Fortuné JP, Martin F, Braun JJ, Nahon D, Robain H, 1999: The effect of organic matter on chemical weathering: Study of a small tropical watershed: Nsimi-Zoélté site, Cameroon. *Geochimica et Cosmochimica Acta* **63**, 23/24, 4013–4025.

Ruiz L., Varma MRR, Kumar MSM, Sekhar M, Maréchal JC, Descloitres I., Riotte J, Braun JJ, 2010: Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matrix storage buffers the groundwater recharge process. *Journal of Hydrology* **380**, 460–472.

Rollenbeck R, Anhuf D, 2007: Characteristics of the water and energy balance in an Amazonian lowland rainforest in Venezuela and the impact of the ENSO-cycle. *Journal of Hydrology* **337**, 377–390.

Sawano S, Komatsu H, Suzuki M, 2005: Differences in annual precipitation amounts between forested area, agricultural area, and urban area in Japan. *Journal of the Japan Society of Hydrology and Water Resources* **18**, 435–440 (in Japanese with English summary).

Senay GB, Bohms S, Singh RK, Gowda PH, Velpuri NM, Alemu H, Verdin JP, 2013: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. *Journal of the American Water Resources Association* **49**, 577–591.

Shimizu A, Shimizu T, Miyabuchi Y, Ogawa Y, 2003: Evapotranspiration and runoff in a forest watershed, western Japan. *Hydrological Processes* **17**, 3125–3139.

Suzuki M, 1991: Evapotranspiration in forests. *Japan Society of Hydrology and Water Resources* **4** (2), 9–22 (in Japanese).

Swank WT, Vose JM, Elliott KJ, 2001: Long-term hydrologic and water quality responses following commercial clearing of mixed hardwoods on a southern Appalachian catchment. *Forest Ecology and Management* **143**, 163–178.

Takanashi S, Kosugi Y, Ohkubo S, Matsuo N, Tani M, Nik AR, 2010: Water and heat fluxes above a lowland dipterocarp forest in Peninsular Malaysia. *Hydrological Processes* **24**, 472–480.

Takeda S, 1951: On the annual discharge and especially on increased run-off due to heavy rain (experiment of forest influences upon stream flow at Takaragawa, the 2nd report). *Bulletin of the Forest and Forest Products Research Institute* **50**, 1–87 (in Japanese).

Takeshita K, Shimizu A, Miyabuchi Y, 1996: Statistical report of hydrological observation at Sarukawa experimental watershed. *Bulletin of the Forest and Forest Products Research Institute* **370**, 31–75 (in Japanese).

Tasumi M, Kimura R, Allen RG, Moriyama M, Trezza R, 2016a: Development of the GCOM-C global ET_{max} estimation algorithm. *Journal of Agricultural Meteorology* **72**, 85–94.

Tasumi M, Moriyama M, Hirakawa K, Fuji A, 2016b: Evaluation of the GCOM-C global ET_{max} estimation algorithm. *Journal of Agricultural Meteorology* **72**, 151–158.

Tasumi M, Moriyama M, Shinhara Y, 2019: Application of GCOM-C SGLI for agricultural water management via field evapotranspiration. *Paddy and Water Environment* **17**, 75–82.

Tomasella J, Hodnett MG, Cuartas LA, Nobre AD, Waterloo MJ, Oliveira SM, 2008: The water balance of an Amazonian micro-catchment: the effect of interannual variability of rainfall on hydrological behavior. *Hydrological Processes* **22**, 2133–2147.

von Randow C, Manzi AO, Kruijt B, de Oliveira PJ, Zanchi FB, Silva RL, Hodnett MG, Gash JHC, Elbers JA, Waterloo MJ, Cardoso FL, Kabat P, 2004: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. *Theoretical and Applied Climatology* **78**, 5–26.

Waichler SC, Wemple BC, Wigmosta MS, 2005: Simulation of water balance and forest treatment effects at the H.J. Andrews Experimental Forest. *Hydrological Processes* **19**, 3177–3199.

Wilson KB, Hason PJ, Mulholland PJ, Baldocci DD, Wullschleger SD, 2001: A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. *Agricultural and Forest Meteorology* **106**, 153–168.

Yao H, Hashino M, Yoshida H, 1996: Modeling energy and water cycle in a forested headwater basin. *Journal of Hydrology* **174**, 221–234.

Yao Y, Liang L, Li X, Chen J, Liu S, Jia K, Zhang X, Xiao Z, Fisher JB, Mu Q, Pan M, Liu M, Cheng J, Jiang B, Xie X, Grünwald T, Bernhofer C, Rouspard O, 2017: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. *Agricultural and Forest Meteorology* **242**, 55–74.

Zhang L, Dawes WR, Walker GR, 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. *Water Resources Research* **37**, 701–708.