The Impact of Smoking on Post-Clopidogrel Platelet Reactivity in Patients With Acute Myocardial Infarction

Jung-Hyun Cho, MD¹, Young-Hoon Jeong, MD¹, Yeon-Jeong Ahn, MD¹, Min-Kyung Kang, MD¹, Jin-Sin Koh, MD¹, In-Suk Kim, MD², Yongwhi Park, MD³, Seok-Jae Hwang, MD¹, Choong Hwan Kwak, MD¹ and Jin-Yong Hwang, MD¹

¹Division of Cardiology, Departments of Internal Medicine and ²Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Korea

ABSTRACT

Background and Objectives: Smoking increases inhibition of clopidogrel-induced platelet reactivity in patients undergoing elective coronary stenting. However, an association between pre-admission smoking (PS) and post-clopidogrel platelet reactivity in patients with acute myocardial infarction (AMI) has not been determined. Subjects and Methods: Study cohorts were recruited from a pool of patients at our hospital who were undergoing coronary stenting for AMI (n=134). Immediately after arrival at the emergency room (ER), all patients received a 600 mg loading dose of clopidogrel followed by a maintenance dose of 75 mg/day. Platelet aggregation was measured with light transmittance aggregometry (LTA) after addition of 5 or 20 μmol/L adenosine diphosphate (ADP).

Results: Maximal platelet aggregation (Aggmax) was lower in PS patients after 5 μmol/L ADP (43.6±15.7% vs. 48.4±12.5%, p=0.096) and 20 μmol/L ADP stimuli (56.2±15.6% vs. 61.3±11.6%, p=0.073) compared with non-smoking (NS) patients. However, there were no differences in 5 μmol/L (42.6±16.3% vs. 43.8±15.6%, p=0.776) and 20 μmol/L ADP-induced Aggmax (54.8±14.3% vs. 56.5±15.9%, p=0.692) between PS patients <0.5 pack/day and ≥0.5 pack/day. Although more PS patients met the criteria for low post-clopidogrel platelet reactivity (LPPR) (<37%; the lowest quartile of 5 μmol/L ADP-induced Aggmax) than NS patients (30.9% vs. 13.5%, p=0.048), advancing age was the only independent predictor of LPPR (odds ratio (OR) 0.960, 95% confidence interval (CI) 0.929 to 0.993, p=0.019). Conclusion: PS is significantly not associated with decreased residual platelet reactivity in AMI patients. (Korean Circ J 2010;40:119-124)

KEY WORDS: Smoking; Post-clopidogrel platelet reactivity; Acute myocardial infarction.

Introduction

Clopidogrel is metabolized into an active metabolite by 2 consecutive steps involving cytochrome P450 (CYP), and inhibits platelet aggregation through an irreversible blockade of adenosine diphosphate (ADP) P2Y12 receptors.¹ Therefore, various factors that interfere with CYP activity can reduce antiplatelet responses to clopidogrel.²⁻³ On the contrary, cigarette smoking, an inducer of CYP1A2 activity, can increase concentrations of the active metabolite of clopidogrel.⁴ Recently, Bliden et al.⁵ reported that smoking, in a dose-related manner, increases platelet inhibition by clopidogrel compared with non-smoking (NS). An analysis of patients on chronic clopidogrel therapy (n=120) showed significantly lower platelet aggregation in patients currently smoking ≥0.5 pack/day compared with patients of NS and currently smoking <0.5 pack/day (p<0.05). The study of Bliden used the results of platelet aggregation in the setting of elective coronary stenting.

However, acute myocardial infarction (AMI) is associated with enhanced platelet reactivity, and the impact of pre-admission smoking (PS) on post-clopidogrel platelet reactivity in AMI patients can be different from platelet reactivity in patients on chronic clopidogrel th-
therapy. In addition, there is no clear data for the role of smoking on clopidogrel-induced platelet inhibition in AMI patients. Accordingly, the aim of the present study was to determine if there is an association between smoking and clopidogrel-induced platelet inhibition in AMI patients.

Subjects and Methods

Subjects

Subjects were prospectively recruited from the population of patients who underwent, between October 2007 and May 2008, coronary stenting for AMI in the Department of Cardiology of the Gyeongsang National University Hospital. Consecutive patients admitted for AMI were enrolled if they were ≥18 years of age and had undergone uneventful coronary stenting. AMI was defined as clinical symptoms compatible with acute myocardial ischemia within 12 hours before admission with a subsequently documented increase in markers of AMI. ST-segment elevation myocardial infarction (STEMI) patients were treated with primary stenting less than 12 hours after the onset of pain; non-STEMI (NSTEMI) patients received coronary stenting within 24 hours after admission. Exclusion criteria were a history of active bleeding and bleeding diatheses, oral anticoagulation therapy with warfarin, contraindications to antiplatelet therapy, left ventricular ejection fraction <30%, leukocyte count <3,000/mm³ and/or a platelet count <100,000/mm³, aspartate aminotransferase or alanine aminotransferase levels ≥3 times upper normal, serum creatinine level ≥2.5 mg/dL, and non-cardiac disease with a life expectancy <1 year. The Institutional Review Board approved the study protocol, and the patients provided written informed consent for participation.

Study design

Immediately after emergency room (ER) arrival, all patients received a 600 mg loading dose of clopidogrel followed by a maintenance dose of 75 mg/day. Low-molecular-weight heparin (enoxaparin) or unfractionated heparin was used at the physician’s discretion before the procedure, and tirofiban, which has a short half-life, was administered if needed. Pre-discharge post-clopidogrel platelet reactivity was assessed 1) 3 or more days after coronary stenting not treated with tirofiban or 2) 5 or more days after the procedure in patients treated with tirofiban.

Platelet function assays and definition

Platelet aggregation was assessed with light transmittance aggregometry (LTA) according to standard protocols. The results of LTA were validated in our laboratory and reported. Blood samples were drawn though a 21-gauge needle into vacutainer tubes containing 0.5 mL sodium citrate 3.2% (Becton-Dickinson, San Jose, CA, USA) and processed within 60 minutes. Platelet-rich plasma (PRP) was obtained as a supernatant fluid after centrifuging blood at 120 g for 10 minutes. The remaining blood was further centrifuged at 1,200 g for 10 minutes to prepare platelet-poor plasma (PPP). PRP was adjusted to platelet counts of 250,000/μL by adding PPP as needed. Platelet aggregation was assessed at 37°C using an AggRAM aggregometer (Helena Laboratories Corp., Beaumont, TX, USA). Light transmission was adjusted to 0% with PRP and to 100% with PPP for each measurement. Platelet functions were measured after addition of 5 or 20 μmol/L ADP, and curves were recorded for 10 minutes. Platelet aggregation was measured at peak (Aggmax) and at 5 minutes (Agglate) by laboratory personnel blinded to the study protocol. Aggmax is considered to reflect the activity of both P2Y1 and P2Y12 ADP receptors, whereas Agglate may be more reflective of P2Y12 receptor activity.

We defined the criteria for low post-clopidogrel platelet reactivity (LPPR) as the lowest quartile of 5 μmol/L ADP-induced platelet reactivity (Aggmax ≤37%).

Statistical analysis

Continuous variables are presented as means ± SD. They were compared using Student’s unpaired t-tests or Mann-Whitney U-tests. Categorical variables are presented as numbers or percentages and were compared using the chi-square tests or Fisher’s exact tests (if an expected frequency was <5). Platelet function measurements of the 3 groups were analyzed by one-way analysis of variance (ANOVA) on ranks. To determine predictors of LPPR, multivariate regression analyses were performed using the dependent variables that exhibited at least a modest effect (p<0.20). A p<0.05 was considered to indicate a significant difference. Statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) version 13 (SPSS Inc., Chicago, IL, USA).

Results

Baseline characteristics

We identified 134 AMI patients (73 STEMI and 61 NSTEMI patients) who underwent uneventful coronary stenting. The 134 included 97 PS patients (smoking within 2 weeks of the procedure and 37 NS patients (no smoking within 1 year of the Procedure). The PS patients were younger, more often men, and less likely to have diabetes, hypertension or anemia than the NS patients (Table 1).

Platelet function assays

There was no difference between STEMI and NSTEMI patients with regard to post-clopidogrel platelet
Table 1. Clinical and procedural characteristics

Variables, n (%)	Pre-admission smoking (n=97)	Non-smoking (n=37)	p
Age (years)	58.7 ± 12.3	66.1 ± 9.0	0.001
Male	91 (93.8)	10 (27.9)	<0.001
BMI (kg/m²)	24.1 ± 2.5	24.9 ± 2.5	0.179
Indication for intervention	52 (53.6)	21 (56.8)	0.847
STEMI	45 (46.4)	16 (43.2)	
Pre-procedural hemodynamics			
Systolic blood pressure (mmHg)	129 ± 29	125 ± 29	0.551
Diastolic blood pressure (mmHg)	80 ± 17	76 ± 19	0.168
Heart rate (bpm)	79 ± 22	81 ± 26	0.510
Risk factor			
Diabetes mellitus	21 (21.6)	17 (45.9)	0.009
Hypertension	34 (35.1)	22 (59.5)	0.018
Hypercholesterolemia	32 (33.0)	14 (37.8)	0.685
Chronic kidney disease	9 (9.3)	8 (21.6)	0.079
History			
Previous myocardial infarction	2 (2.1)	0 (0)	0.523
Previous PCI	1 (1.0)	0 (0)	0.724
Previous CABG	0 (0)	0 (0)	1.000
Previous stroke	1 (1.0)	0 (0)	0.724
Concomitant medications			0.557
Statin			
CYP 3A4 pathway metabolized	90 (92.8)	34 (91.9)	
Non-CYP 3A4 pathway metabolized	7 (7.2)	3 (8.1)	
Beta blocker	88 (90.7)	31 (83.8)	0.200
ACEI	25 (25.8)	9 (24.3)	1.000
ARB	71 (73.2)	26 (70.3)	0.829
Nitrate	85 (87.6)	33 (89.2)	0.533
Calcium channel blocker	9 (9.3)	3 (8.1)	0.567
LV ejection fraction (%)	56 ± 9	56 ± 12	0.959
Hemoglobin (g/dL)	14.7 ± 1.4	13.9 ± 1.4	0.002
Platelet count (× 10³/mm³)	277 ± 63	277 ± 79	0.993
HbA1C (%)	6.2 ± 1.2	6.8 ± 1.6	0.019
Creatinine clearance (mL/min)	85 ± 24	76 ± 29	0.054
Total cholesterol (mg/dL)	192 ± 41	197 ± 43	0.502
Total ischemic time (minutes) (STEMI patients)	220 ± 180	179 ± 179	0.375
DTB time (minutes) (STEMI patients)	68 ± 32	62 ± 30	0.745
Infarct-related vessel			0.731
Left anterior descending	45 (46.4)	15 (40.5)	
Left circumflex artery	23 (23.7)	11 (29.7)	
Right coronary artery	29 (29.9)	11 (29.7)	
Left main	0 (0)	0 (0)	
Initial TIMI flow grade			0.249
0 or 1	60 (61.8)	25 (69.4)	
2	28 (28.9)	10 (27.8)	
3	9 (9.3)	1 (2.8)	
Thrombus present	25 (25.8)	4 (10.8)	0.065
Pre-dilatation	93 (95.9)	35 (94.6)	0.530
Aspiration thrombectomy	22 (22.7)	4 (10.8)	0.147
Administration of GPI	8 (8.2)	1 (2.7)	0.232
Table 1. Continued

Variables, n (%)	Pre-admission smoking (n=97)	Non-smoking (n=37)	p
Stent diameter (mm)	3.1 ± 0.7	3.0 ± 0.8	0.421
Stents per patient	1.5 ± 0.8	1.7 ± 0.9	0.200
Total stent length (mm)	35.9 ± 20.7	41.7 ± 25.8	0.183
Final TIMI flow grade 3	97 (100)	36 (97.3)	0.276

BMI: body mass index, STEMI: ST-elevation myocardial infarction, NSTEMI: non-ST-elevation myocardial infarction, PCI: percutaneous coronary intervention, CABG: coronary artery bypass grafting, CYP 3A4: cytochrome P450 3A4 isoenzyme, ACEI: angiotensin-converting enzyme inhibitor, ARB: angiotensin receptor blocker, LV: left ventricular, Hb: hemoglobin, DTB: door-to-balloon, TIMI: thrombolysis in myocardial infarction, GPI: glycoprotein IIb/IIIa inhibitor

Table 2. The rate of LPPR and platelet reactivity according to smoking status

Rate of LPPR, n (%)	Non-smoking (n=37)	Smoking <0.5 pack/day (n=16)	Smoking ≥0.5 pack/day (n=81)	p
Maximal platelet aggregation (%)				
5 μmol/L ADP	48.4 ± 12.5	42.6 ± 16.3	43.8 ± 15.6	0.240
20 μmol/L ADP	61.3 ± 11.6	54.8 ± 14.3	56.5 ± 15.9	0.185
Late platelet aggregation (%)				
5 μmol/L ADP	38.1 ± 17.3	31.0 ± 20.2	34.3 ± 19.5	0.404
20 μmol/L ADP	51.0 ± 18.6	42.1 ± 21.2	46.1 ± 22.8	0.334

Low post-clopidogrel platelet reactivity indicates the lowest quartile of 5 μmol/L ADP-induced maximal platelet aggregation (≤37%). LPPR: low post-clopidogrel platelet reactivity, ADP: adenosine diphosphate

Table 3. Multivariate analysis of predictors for LPPR

Variables	p	OR	95% CI
Age	0.019	0.960	0.929-0.993
Male	0.932	1.073	0.216-5.319
Pre-admission smoking	0.245	1.916	0.640-5.747
Hemoglobin	0.384	1.179	0.813-1.710
Beta blocker	0.192	2.882	0.588-14.085
Glycoprotein IIb/IIIa inhibitor	0.476	0.586	0.135-2.547
Presence of thrombus	0.845	0.902	0.321-2.535
Stents per patient	0.102	1.555	0.916-2.646

Low post-clopidogrel platelet reactivity indicates the lowest quartile of 5 μmol/L ADP-induced maximal platelet aggregation (≤37%). LPPR: low post-clopidogrel platelet reactivity, OR: odds ratio, CI: confidence interval

Discussion

Our study showed that smoking before admission is not significantly associated with decreased residual platelet reactivity in AMI patients. In addition, we could not find a dose-related relationship between smoking and post-clopidogrel residual platelet reactivity. Clopidogrel is a prodrug and can be converted to its active metabolite by CYP isoenzymes. Of these, CYP isoenzyme 1A2 is activated by the polycyclic aromatic hy-

reactivity (data not shown). When platelet reactivity was compared according to clinical risk factors, there were no significant differences in terms of the presence of diabetes mellitus, hypertension and hypercholesterolemia, except for higher values in patients with chronic kidney disease (5 μmol/L ADP-induced Aggmax: 52.6 ± 11.0% vs. 43.8 ± 15.2%, p = 0.023 and 20 μmol/L ADP-induced Aggmax: 63.6 ± 10.4% vs. 56.7 ± 15.1%, p = 0.074). The PS patients showed a trend toward lower Aggmax after 5 μmol/L (43.6 ± 15.7% vs. 48.4 ± 12.5%, p = 0.096) and 20 μmol/L ADP stimuli (56.2 ± 15.6% vs. 61.3 ± 11.6%, p = 0.073) compared with NS patients (Table 2). However, Aggmax did not differ between PS and NS patients (5 μmol/L ADP: 33.8 ± 19.5% vs. 38.1 ± 17.3%, p = 0.234 and 20 μmol/L ADP: 45.5 ± 22.5% vs. 51.0 ± 18.6%, p = 0.187). In contrast to the results of Blieden et al., our results did not show significant differences in 5 μmol/L (Aggmax: p = 0.776 and Agglate: p = 0.540) and 20 μmol/L ADP-induced platelet aggregation (Aggmax: p = 0.692 and Agglate: p = 0.517) between PS patients <0.5 pack/day and ≥0.5 pack/day (Table 2).

Predictor of low post-clopidogrel platelet reactivity

More PS patients met the criteria for LPPR than NS patients (30.9% vs. 13.5%, p = 0.048). To identify significant predictors of LPPR, a logistic regression analysis was used to evaluate the impact of the same analytic variables as Blieden et al. evaluated age, body mass index, diabetes, history of myocardial infarction, hypertension, smoking status, and use of calcium antagonists, angiotensin-converting enzyme inhibitors, beta blockers, and statins. Age was the only variable that was inversely correlated with LPPR (odds ratio (OR) 0.904, 95% confidence interval (CI) 0.845 to 0.968, p = 0.004). In another model of multivariate analyses including variables with p < 0.2 in univariate analyses for differences between LPPR vs. non-LPPR groups, age was also the only independent predictor of LPPR (OR 0.960, 95% CI 0.929 to 0.993, p = 0.019) (Table 3).
hydrocarbons in cigarette smoke and induced by plasma nicotine. Therefore, cigarette smoking induces CYP1A2 activity and contributes to the increased metabolite of clopidogrel in a dose-related manner. Interestingly, some reports suggested that smoking might have a good effect on short-term clinical outcomes after coronary stenting.

However, this suggestion is in opposition to common knowledge of smoking’s harmfulness. Most epidemiologic studies have strongly supported the conclusion that smoking increases the incidence of fatal coronary artery diseases (CAD), especially AMI. The magnitude of the risk has been linearly related to the number of cigarettes smoked, with even low levels of smoking being associated with a considerable risk of AMI. Increased risk of CAD due to smoking is associated not only with vasomotor dysfunction but also with inflammatory reactions. Thrombosis due to smoking has been associated with alterations in platelet function, antithrombotic/prothrombotic factors, and fibrinolytic factors. Cigarette smoking induces hyperaggregability, decreases the availability of platelet-derived nitric oxide (NO), and decreases platelet sensitivity to exogenous NO. Alterations in tissue factors and a consequent increase in thrombotic potential have also been documented. Furthermore, higher fibrinogen, higher red blood cell counts, higher hematocrits, and higher blood viscosity potentiate the prothrombotic process associated with exposure to smoke. Decreased plasma tissue plasminogen activator activity was observed in smokers. Therefore, smoking is associated with dysfunctional thrombotic mechanisms that promote the initiation and/or propagation of thrombus formation. Compared to chronic CAD, these effects of smoking may play a greater role in the setting of AMI.

Although we could ascertain that smoking may enhance clopidogrel-induced platelet inhibition in AMI patients, the association seems weaker than the association between and elective coronary stenting. Enhanced platelet reactivity may be a main feature in the early phase of AMI and correlate with the magnitude of the risk. Maetzky et al. showed that there may be no significant change of post-clopidogrel platelet reactivity during the early phase of AMI, which is related to high residual platelet reactivity. However, this suggestion is in opposition to common knowledge of smoking’s harmfulness. Most epidemiologic studies have strongly supported the conclusion that smoking increases the incidence of fatal coronary artery diseases (CAD), especially AMI. Enhanced platelet reactivity may be a main feature in the early phase of AMI and correlate with the magnitude of the risk. Maetzky et al. showed that there may be no significant change of post-clopidogrel platelet reactivity during the early phase of AMI, which is related to high residual platelet reactivity. Therefore, cigarette smoking induces CYP1A2 activity. This can explain why smoking did not achieve significant suppression of enhanced platelet hyperaggregability in this study.

In the present study, advancing age predicted higher post-clopidogrel platelet reactivity in AMI patients. Like diabetes mellitus, advancing age shows higher pre-treatment platelet reactivity, which is related to high residual platelet reactivity. Geisler et al. also found that patients aged 65 years or older had significantly increased residual platelet aggregation at least 6 hours after clopidogrel loading.

A study of the PREDICT score demonstrated that various clinical factors influence residual platelet reactivity (acute coronary syndrome, age ≥65 years, diabetes mellitus, renal failure, and reduced left ventricular function). Because the PS patients showed lower prevalence of clinical risk factors in this study, a lower platelet reactivity in PS patients might not be explained by the effect of smoking alone. However, the presence of diabetes mellitus and hypertension did not induce increased residual platelet reactivity in this study, which may be related to the fact that we only enrolled AMI patients and we enrolled a small number of subjects.

Limitations

Our study has several limitations. First, the number of study subjects was relatively small. Because there were differences in clinical risk factors between PS and NS patients, a decreased trend towards maximal platelet reactivity in PS patients could not be explained by the effect of smoking alone. Second, the study group was heterogeneous: it contained both STEMI and NSTEMI patients. However, there was no difference in platelet reactivity between these groups. Finally, the time point of platelet function measurements can be criticized. Although post-clopidogrel platelet reactivity may change dynamically during the early phase of AMI, Maetzky et al. showed that there may be no significant changes of post-clopidogrel platelet reactivity from days 3 to 5 in AMI patients after coronary stenting. Because we assessed platelet reactivity from 3 to 5 days after coronary stenting, our patients’ results may principally reflect pre-discharge residual platelet reactivity.

Conclusions

Smoking before admission is not significantly associated with decreased residual platelet reactivity in AMI patients. In addition, PS of ≥0.5 pack/day cannot induce a significant reduction in post-clopidogrel platelet reactivity compared with NS.

Acknowledgments

This study was partly supported by grants from the Research Foundation of Gyeongsang National University Hospital.
REFERENCES

1) Holfopeter G, Jantzen HM, Vincent D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001;409:202-7.

2) Siller-Matula JM, Lang I, Christ G, Jilma B. Calcium-channel blockers reduce the antplatelet effect of clopidogrel. J Am Coll Cardiol 2008;52:1557-63.

3) Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol 2008;51:256-60.

4) Tenk D, Hochholzer W, Fromm MF, et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol 2008;51:1925-34.

5) Lau WC, Waskell LA, Watkins PB, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation 2003;107:32-7.

6) Zevin S, Benowitz NL. Drug interactions with tobacco smoking: an update. Clin Pharmacokinet 1999;36:425-38.

7) Bliden KP, Dichiera J, Lawal L, et al. The association of cigarette smoking with enhanced platelet inhibition by clopidogrel. J Am Coll Cardiol 2008;52:531-3.

8) Buonomica P, Marcucci R, Migliorini A, et al. Impact of platelet reactivity after clopidogrel administration on drug-eluting stent thrombosis. J Am Coll Cardiol 2007;49:2312-7.

9) Matetzky S, Shenkman B, Guetta V, et al. Cytochrome P450 polymorphism and clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 2004;109:3171-5.

10) Jeong YH, Lee SW, Choi BR, et al. Randomized comparison of adjunctive cilostazol versus high maintenance-dose clopidogrel in patients with high post-treatment platelet reactivity. J Am Coll Cardiol 2009;53:1101-9.

11) Jeong YH, Kim IS, Choi BR, Kwak CH, Hwang JY. The optimal threshold of high post-treatment platelet reactivity could be defined by a point-of-care VerifyNow P2Y12 assay. Eur Heart J 2008;29:2186-7.

12) Iha MM, Fung J, Pak YW, et al. Dose-dependent up-regulation of rat pulmonary, renal, and hepatic cytochrome P-450 (CYP) 1A expression by nicotine feeding. Drug Metab Dispos 1999;27:977-82.

13) Tantcheva-Poor I, Zaigler M, Rietbrock S, Fuhr U. Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test. Pharmacogenetics 1999;9:131-44.

14) Berger JS, Bhatt DL, Steinshubl SR, et al. Smoking, clopidogrel, and mortality in patients with established cardiovascular disease. Circulation 2009;120:2337-44.

15) Desai NR, Mega JL, Jiang S, Cannon CP, Sabatine MS. Interaction between cigarette smoking and clinical benefit of clopidogrel. J Am Coll Cardiol 2009;53:1273-8.

16) Tendo KC, Ounpuu S, Hawkens N, et al. Tobacco use and risk of myocardial infarction in 52 countries in the INTERHEART study: a case-control study. Lancet 2006;368:647-58.

17) Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 2004;43:1731-7.

18) Cho JY, Jeong MH, Ahn YK, et al. Predictive factors of major adverse cardiac events and clinical outcomes of acute myocardial infarction in young Korean patients. Korean Circ J 2008;38:161-9.

19) Lim SY, Jeong MH, Yang BR, et al. Long-term clinical outcomes after primary percutaneous coronary intervention in patients with acute myocardial infarction older than 75 years. Korean Circ J 2005;35:613-9.

20) Cho JY, Jeong MH, Choi OJ, et al. Predictive factors after percutaneous coronary intervention in young patients with acute myocardial infarction. Korean Circ J 2007;37:373-9.

21) Fusegawa Y, Goto S, Han da S, Kawada T, Ando Y. Platelet spontaneous aggregation in platelet-rich plasma is increased in habitual smokers. Thromb Res 1999;93:271-8.

22) Ichiki K, Ikeda H, Hara maki N, Ueno T, Imaizumi T. Long-term smoking impairs platelet-derived nitric oxide release. Circulation 1996;94:3109-14.

23) Sawada M, Kishi Y, Numano F, Isobe M. Smokers lack morning increase in platelet sensitivity to nitric oxide. J Cardiovasc Pharmacol 2002;40:571-6.

24) Lusher TF, Steffel J, Eberli FR, et al. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 2007;115:1051-8.

25) Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009;360:354-62.

26) Freedman JE, Hylek EM. Clopidogrel, genetics, and drug responsiveness. N Engl J Med 2009;360:411-3.

27) Gurbel PA, Tantriy US. Drug insight: clopidogrel nonresponsiveness. Nat Clin Pract Cardiovasc Med 2006;3:387-95.

28) Geisler T, Grass D, Bigalke B, et al. The Residual Platelet Aggregation after Deployment of Intracoronary Stent (PREDICT) score. J Thromb Haemost 2008;6:54-61.

29) Geisler T, Schaeffeler E, Dippon J, et al. CYP2C19 and non-genetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 2008;9:1251-9.