Serum from rabbit orally administered cobra venom inhibits growth of implanted hepatocellular carcinoma cells in mice

Peng Sun, Xian-Da Ren, Hai-Wei Zhang, Xiao-Hong Li, Shao-Hui Cai, Kai-He Ye, Xiao-Kun Li

Peng Sun, Xian-Da Ren, Xiao-Hong Li, Shao-Hui Cai, Department of Clinical Pharmacology, Pharmacy College, Jinan University, Guangzhou 510632, Guangdong Province, China
Hai-Wei Zhang, Department of Pathology, Medical College, Jinan University, Guangzhou 510632, Guangdong Province, China
Kai-He Ye, Department of Pharmacology, Pharmacy College, Jinan University, Guangzhou 510632, Guangdong Province, China
Xiao-Kun Li, Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, Guangdong Province, China

Supported by the Overseas Chinese Affairs Office of the State Council Foundation, No. 98-33
Correspondence to: Xiao-Kun Li, Biopharmaceutical R&D Center of Jinan University, Guangzhou 510632, Guangdong Province, China. xiaokunli@163.net
Telephone: +86-20-8586-5109
Received: 2003-03-19 Accepted: 2003-06-07

Abstract
AIM: To investigate the inhibitory effect of serum preparation from rabbits orally administered cobra venom (SRCV) on implanted hepatocellular carcinoma (HCC) cells in mice.

METHODS: An HCC cell line, HepA, was injected into mice to prepare implanted tumors. The animals (n=30) were divided randomly into SRCV, 5-fluorouracil (5-FU), and distilled water (control) groups. From the second day after transplantation, 20 mg/kg 5-FU was administered intraperitoneally once a day for 9 days. SRCV (1 000 mg/kg) or distilled water (0.2 mL) was given by gastrogavage. Tumor growth inhibition was described by the inhibitory rate (IR). Apoptosis was detected by transmission electron microscopy (TEM), flow cytometry (FCM), and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). Student’s t-test was performed for statistical analysis.

RESULTS: The tumor growth was inhibited markedly by SRCV treatment compared to that in the control group (P<0.01). The treatment resulted in a significant increase in the apoptotic rate of cancer cells by the factors of 10.5±2.4 % and 20.65±3.2 % as demonstrated through TUNEL and FCM assays, respectively (P<0.01). The apoptotic cells were also identified by characteristic ultrastructural features. The tumors were isolated and weighed immediately in order to calculate the inhibitory rate (IR) using implanted HepA cells in mice, and the apoptosis rate appears to elevate during the process.

CONCLUSION: SRCV can inhibit the growth of implanted HepA cells in mice, and the apoptosis rate appears to elevate during the process.

Sun P, Ren XD, Zhang HW, Li XH, Cai SH, Ye KH, Li XK. Serum from rabbit orally administered cobra venom inhibits growth of implanted hepatocellular carcinoma cells in mice. World J Gastroenterol 2003; 9(11): 2441-2444
http://www.wjgnet.com/1007-9327/9/2441.asp

INTRODUCTION
Snake venoms are complex mixtures of pharmacologically active polypeptides, some are of potential therapeutic value for embolism, cancer and other severe human disorders. Several snake venoms and their components have been demonstrated to be able to inhibit tumor growth and to induce apoptosis of neoplastic cells in vitro and in vivo[1-7]. We prepared a serum preparation from rabbits administered cobra venom (SRCV)[8]. In the present study, we observed its effects in vivo using implanted hepatocellular carcinoma (HCC) cell line HepA in mice.

MATERIALS AND METHODS

Drugs and reagents
5-FU was purchased from Nantong Pharmaceutical Co (Cat. No. 001121; Nantong, Jiangsu, China). SRCV was prepared as described previously[8]. Briefly, the rabbits were given oral Chinese cobra (Naja naja atra) venom 45 mg/kg (Guangzhou Research Institute of Snake Venom, Guangzhou, Guangdong, China) once a day for 3 days. Serum was collected from the rabbits at 4 h after the last administration, then heated in a water bath for 30 min at 56 °C, frozen at -20 °C, lyophilized using a vacuum drier and stored at 4 °C.

Animals
Female Kunming mice (18-22 g, No. 26-2002A002) were supplied from the Medical Animal Center of Guangdong Province. All animals were fed on basic diet and water. The cell line HepA was provided by the Cancer Institute of Sun Yet-Sen University.

Experimental schedule
As described previously[10,11], HepA cells, 2×10^7/mL, were injected subcutaneously into mice, 200 µL for each. Thirty Kunming mice with implanted HepA tumor were divided randomly into SRCV-, 5-FU-treated groups and control group. From the second day after the implantation, 20 mg/kg 5-FU was administered intraperitoneally once a day for 9 days. SRCV (1 000 mg/kg) or distilled water (0.2 mL, control group) was given by gastrogavage. The mice were sacrificed at 24 h after the last administration. The tumors were isolated and weighed immediately in order to calculate the inhibitory rate (IR) according to the formula: IR of tumor (%)=(1-tumor weight in test groups/mean tumor weight in control group)×100 %. Then, the tumors were fixed and used for transmission electron microscopy (TEM), flow cytometry (FCM) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). All of the tests were repeated twice.

Morphological analysis of apoptosis
Dissected tumor samples were fixed with 2.5 % glutaraldehyde for 1 h. After washed three times in a buffer, the samples were post-fixed in 1 % OsO, in a cacodylate buffer for 1 h, then dehydrated in graded ethanol and embedded in epoxy resin (Agar 100). Thin sections (70 nm) were stained with uranyl acetate and Reynolds lead citrate and examined at 75 kV in an electron microscope (JEM-100CX 11/7). Morphological changes in the nuclear chromatin of cells undergoing apoptosis were detected by TEM.

[1-7]...
Flow cytometry analysis
Cell apoptotic rate was quantitatively determined by flow cytometry. The percentage of cells with a sub-G1 DNA content was taken as the fraction of apoptotic cell population\(^{[12,13]}\). According to the procedure described previously\(^{[14-16]}\), tumor tissues were sliced at a thickness of 400-500 \(\mu m\), then the slices were gently pulverized using a mortar and pestle in phosphate-buffered saline (PBS) (pH7.2). The cell suspension was infiltrated through 200 and 350 \(\mu m\) meshes to remove residues. The cells were collected by centrifugation at 2 000 rpm for 10 min. The cell suspension was fixed in 70 % ice-cold ethanol in PBS, and stored at -20 °C. Prior to analysis, the cells were washed and resuspended in PBS, then incubated with 10 mg/mL RNase A for 3-5 min and 50 \(\mu g/mL\) propidium iodide (PI) at 4 °C for 30 min in a dark chamber. The apoptotic cells having DNA strand breaks that had been labeled were detected by a flow cytometer (FACSCan, Becton Dickinson, San Jose, California, USA).

TUNEL reaction
An ApopTag plus peroxidase in situ apoptosis detection kit (Intergen Co Ltd., Burlington, Massachusetts, USA) was used to visualize the cells with DNA fragmentation. The procedure was performed following instructions of the manufacturer and in reference of the previous observations\(^{[17-19]}\). Briefly, 4-\(\mu m\) thick sections were dewaxed and hydrated, treated with 20 \(\mu g/mL\) proteinase K for 15 min at 37 °C, equilibrated in a buffer for 5 min at room temperature, and incubated in a buffer containing terminal deoxynucleotidyl transferase (TdT) enzyme for 1 h in a humidified chamber at 37 °C. The reaction was demonstrated by incubation with anti-digoxigenin-peroxidase for 30 min in a humidified chamber at room temperature and visualized in a buffer containing diaminobenzidine (DAB).

The positive cells were identified, counted and analyzed based on morphological characteristics of apoptotic cells as previously described\(^{[17]}\). Under the light microscope, apoptotic cells manifested as brownish staining in the nuclei. Nonnecrotic zone was selected in the tissue section and images were randomly selected. At least 1000 tumor cells were counted, and the percentage of TUNEL-positive cells was determined.

Statistical analysis
The data shown were mean values of 8-10 samples and expressed as mean ± standard deviations. Student’ s \(t\)-test was performed for statistical analysis. A \(P\) value less than 0.05 was considered statistically significant.

RESULTS
Anti-tumor effect of SRCV on implanted HepA tumor
In two separate experiments, the IRs were 30.4 % and 35.8 % after treatment with SRCV. The data, listed in Table 1, demonstrated the inhibitory effect of SRCV treatment on implanted HepA tumor growth, though it was not as strong as that of 5-FU.

Group	Dose	Tumor weight/(g)	Inhibition rate(%)		
		First	Twice	First	Twice
SRCV	1 000 mg/ kg	1.14±0.28\(^a\)	1.14±0.13\(^b\)	30.35±17.07	35.83±7.11
5-FU	20 mg/ kg	0.78±0.14\(^a\)	0.99±0.22\(^a\)	52.57±8.56	44.39±0.5
Control	0.2 ml	1.63±0.26	1.78±0.47		

\(^a\)\(^{P}<0.01\) vs control group.
assay, induction of apoptosis was represented by an increase in DNA fragments detected by a peroxidase reaction (Figure 2A), and the apoptotic cells in control tumors were scarcely scattered (Figure 2B).

Figure 2 Apoptotic cells of implanted HepA tumors in SRCV treated mice detected by TUNEL assay. A: control group (×400), B: SRCV 1000 mg/kg group (×400).

DISCUSSION

Snake venoms have inhibitory effects on the growth of a variety of tumors in vitro and in vivo[20,21]. Markland et al. found that contortrostatin (CN), a homodimeric disintegrin from southern copperhead venom, inhibited dissemination ovarian cancer in a nude mouse model[22]. According to Da Silva et al., Bothrops jararaca venom (BJV) had anti-tumor effects on Ehrlich ascites tumor (EAT) cells in vivo and in vitro[23].

Snake venom was also shown to induce apoptosis in tumors. Apoptosis, in contrast to necrosis, was an active process of gene-directed cellular suicide[24]. It has been clear that apoptosis is often upregulated in tumor by many anticancer drugs[25-27].

Since Araki et al. first described that hemorrhagic snake venoms induced apoptosis in vascular endothelial cells (VEC)[23], data have been accumulated rapidly about apoptosis-inducing action of various snake venoms and their active components. In 1994, Strizhkov et al. reported that both neurotoxin II (NT II) from venom of Naja naja oaxiana and 20-30 kDa proteins partially purified from pig brain (NTIm) cross-reacting with antibodies to NT II were cytotoxic to L929 and K562 tumor cells at concentrations of 10^{-6}-10^{-8} M, and induced apoptosis in L929 and K562 cells in vitro[24]. After that, L-amino acid oxidase (LAO) was found to induce apoptosis in human embryonic kidney cell line 293T[25] and human monocyte line MM6[26]. Recently, Araki et al.[27] and Masuda et al.[28] associated integrins with vascular apoptosis-inducing protein 1 (VAPI)-induced apoptosis. Data from Zhao et al. indicated that snake venom secreted phospholipase A_{2} (sPLA_{2}) induced apoptosis in Mv1Lu cells in a dose- and time-dependent manner, and was associated with a rapid increase in intracellular ceramide level[29].

The clinical trial using snake venom and their active components have succeeded in cancer therapies, but its application was confined to the auxiliary treatment of patients in the late stage[40,41]. Its toxic and side effects were unavoidable. Great efforts have been made[42-45], but the problem remains unresolved. So a long-standing goal in snake venom therapy of cancer is to find a stable, low toxic, highly effective chemotherapeutic agent that selectively targets tumor cells. Based on this idea, we prepared the SRCV agent[30].

In our previous studies, the anti-tumor activity and apoptosis-inducing effect of SRCV were shown in vitro using HepG2, HL-60 and human lung adenocarcinoma cell line, and no cytotoxicity was observed on human fetal lung fibroblast cells[46-48]. The results presented herein demonstrate that SRCV has inhibitory and apoptosis-inducing effects on implanted HepA tumors. Further studies are needed to identify the active components of SRCV and to elucidate their underlying mechanism.

REFERENCES

1. Souza DH, Eugenio LM, Fletcher JE, Jiang MS, Garratt RC, Oliva G, Sedl'estre-de-Araujo HS. Isolation and structural characterization of a cytotoxic L-amino acid oxidase from Agkistrodon contortrix latincusus snake venom: preliminary crystallographic data. Arch Biochem Biophys 1999; 388: 285-290
2. Du XY, Clemenson KJ. Snake venom L-amino acid oxidases. Toxicon. 2000; 40: 659-665
3. Correa MC Jr, Maria DA, Moura-da-Silva AM, Pizzocaro KF, Ruiz IR. Inhibition of melanoma cell tumorigenicity by the snake venom toxin jararhagin. Toxicon. 2002; 40: 739-748
4. Delta Morte R, Squaliociotti C, Garbi C, Derkinderen P, Belisario MA, Girault JA, Di Natale P, Nitsch L, Siano N. Echistatin inhibits pp125FAK autophosphorylation, paxillin phosphorylation and pp125FAK-paxillin interaction in fibronectin-adherent melanoma cells. Eur J Biochem 2000; 267: 5047-5054
5. Zhou Q, Nakata MD, Brooks PC, Swenson SD, Ritter MR, Argounova S, Arnold C, Markland FS. Contortrostatin, a homodimeric disintegrin, binds to integrin alphavbeta5. J Biochem Biophys Res Commun 2000; 267: 350-355
6. Kang IC, Lee YD, Kim DS. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res 1999; 59: 3754-3760
7. Abe Y, Shimoyama Y, Munakata H, Ito J, Nagata N, Ohtsuki K. Characterization of an apoptosis-inducing factor in Habu snake venom as a glycinrhiizin (GL)-binding protein potently inhibited by GL in vitro. Biochim Biophys Bull 1998; 21: 924-927
8. Sun P, Xu C, Ren XD, Liu J, Li XH. A cdtue toxicity test of three Cobra Venom preparation and their inhibitory effect on transplanted hepatoma in mice. Jia Daxue Xuebao 2002; 23: 1-4
9. Luo YR, Ye CL, Ren XD, Li HL, Zhong L. Inhibition of proliferation and apoptosis in HL 60 cells induced by cobra venom serum. Zhongguo Yaoxue Tongbao 2002; 18: 291-293
10. Wang W, Qin SK, Chen BA, Chen HY. Experimental study on antitumor effect of arsenic trioxide in combination with doxorubicin on hepatocellular carcinoma. World J Gastroenterol 2001; 7: 702-705
11. Bi WX, Xu SD, Zhang PH, Kong F. Antitumor activity of low density lipoprotein-acadenomin complex in mice bearing H (22) tumor. World J Gastroenterol 2000; 6: 140-142
12. Ryan KM, Ernst MK, Rice NR, Voudsen KH. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404: 892-897
13. Chun YJ, Park IC, Park MJ, Woo SH, Hong SI, Chung HY, Kim TH, Lee YS, Rheec HL, Lee SJ. Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3). FEBS Lett 2002; 519: 195-200
14. Lin SB, Wu LC, Huang SL, Hsu HL, Hsieh SH, Chi CW, Au LC. In vitro and in vivo suppression of growth of rat liver epithelial tumor cells by antisense oligonucleotide against protein kinase C-alpha. J Hepatol 2000; 33: 605-609
15. Hou L, Li YJ, Jia YH, Wang B, Xin Y, Ling MY, Lu S. Molecular mechanism about lymphogenous metastasis of hepatocarcinoma cells in mice. World J Gastroenterol 2001; 7: 532-536
16. Tian G, Yu JP, Luo HS, Yu BP, Yue H, Li JY, Mei Q. Effect of nimesulide on proliferation and apoptosis of human hepatoma
thyl-N-nitro-N-nitrosoguanidine: influences on cell apoptosis and acid inhibits rats gastric epithelial dysplasia induced by N-me-
expression of its regulatory genes.

World J Gastroenterol 2002; 8: 26-30

Zhou Q, Sherwin RP, Parrish C, Richters V, Groshen SG, Tsao-Wei D, Markland FS. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix, inhibits breast cancer progression. Breast Cancer Res Treat 2000; 61: 249-260

Yeh CH, Peng HC, Yang HS, Huang TF. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmaco 2001; 59: 1333-1342

Markland FS, Shieh K, Zhou Q, Golubkov V, Sherwin RP, Richters V, Sposto R. A novel snake venom disintegrin that inhib-
hits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 2003; 31: 183-191

Da Silva RJ, da Silva MG, Vilela LC, Fechino D. Antitumor effect of Bothrops jararaca venom. Mediators Inflamm 2002; 11: 99-104

Yu CL, Tsai MH. Fetal fetuin selectively induces apoptosis in cancer cell lines and shows anti-cancer activity in tumor animal models. Cancer Lett 2003; 186: 173-184

Wu K, Zhao Y, Liu B, Lin Y, Liu F, Guo J, Yu WP. RRR-alpha-tocopheryl succinate inhibits human gastric cancer SGC-7901 cell growth by inducing apoptosis and DNA synthesis arrest. World J Gastroenterol 2002; 8: 263-265

Panichakul W, Wanun T, Reutrakul V, Sirisinha S. Synergistic cytotoxicity and apoptosis induced in human cholangiocarcinoma cell lines by a combined treatment with tumor necrosis factor-alpha (TNF-alpha) and triptolide. Asian Pac J Allergy Immunol 2002; 20: 167-173

Zhang XL, Liu L, Jiang HQ, Salvia miltiorrhiza monomer I H 764-3 induces hepatic stellate cell apoptosis via caspase-3 activation. World J Gastroenterol 2002; 8: 515-519

Sun ZX, Li HL, Sun P, Ren XD, Luo YR, Ye CL, Zhang HW. Effect of the oral administration with serum preparation of Naja naja oxiana venom disintegrin and its endogenous analogue induce apoptosis in tumor cells. FEBS Lett 1999; 340: 22-24

Ali SA, Stoeva S, Abbasi A, Alam JM, Kayed R, Faigle M, Neumeister B, Voelter W. Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristichopus monachorum) snake venom. Arch Biochem Biophys 2000; 384: 216-226

Araki S, Masuda S, Maeda H, Ying MJ, Hayashi H. Involvement of specific integrins in apoptosis induced by vascular-apoptosis-inducing protein 1. Toxicol 2002; 8: 535-542

Masuda S, Ohta T, Kaji K, Fox JW, Hayashi H, Araki S. cDNA cloning and characterization of vascular-apoptosis-inducing protein 1. Biochem Biophys Res Commun 2000; 278: 197-204

Zhao S, Du XY, Chai MQ, Chen JS, Zhou YC, Song JG. Secretory phospholipase A(2) induces apoptosis via a mechanism involving ceramide generation. Biochim Biophys Acta 2002; 1581: 75-88

Cura JE, Blanzaco DP, Brison C, Cura MA, Cabrol R, Larreguy L, Mendez C, Sechi JC, Silveira JE, Thellier E, de Roodt AR, Vidal JC. Phase I and pharmacokinetics study of crototoxin (crototoxin PLA(2), N.SC-62444) in patients with advanced cancer. Clin Cancer Res 2002; 8: 1033-1041

Costa LA, Miles HA, Diez RA, Araujo CE, Coni Molina CM, Cervellino JC. Phase I study of VRCTC-310, a purified phospho-
lipase A2 purified from snake venom, in patients with refractory cancer: safety and pharmacokinetic data. Anticancer Drugs 1997; 8: 829-834

Fu Q, Gowda DC. Carbohydrate-directed conjugation of cobra venom factor to antibody by selective derivatization of the ter-
minal galactose residues. Bioconjug Chem 2001; 12: 271-279

Wang XM, Huang SJ. The selective cytotoxicity of cobra venom factor immunoconjugate on cultured human nasopharyngeal carcinoma cell line. Hum Exp Toxicol 1999; 18: 71-76

Schmitzler S, Markland FS, Chen TC. Anti-invasive effect of contortrostatin, a snake venom disintegrin, and TNF-alpha on malignant glioma cells. Anticancer Res 2000; 20: 4227-4233

Juhl H, Petrella EC, Cheung NK, Bredhorst R, Vogel CW. Ad-
ditive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human neuroblastoma cells. Immunobiology 1997; 197: 444-449

Li HL, Ren XD, Luo YR, Ye CL, Zhang HW. Effect of serum prepa-
ration derived from rabbits after the gastrectomy with N aja naja atra venom on human lung adenocarcinoma cell line. Jinnan Da Xue Xuebao 2001; 22: 1-5

Li HL, Ren XD, Luo YR, Ye CL, Zhang HW. Effect of the oral administra-
tion with serum preparation of Naja naja atra venom on apoptosis in HepG2 cells. Zhongguo Bingli shengli Zazhi 2002; 18: 199-200

Li HL, Sun P, Ren XD, Luo YR, Ye CL, Zhang HW. A antihypertocar-
cinoma activity of the oral serum preparation of Naja naja atra venom. Health Science J Macao 2002; 2: 59-61.

Edited by Su Q and Wang XL