The Research Hotspots and Visualization Analysis Technology of Health Big Data

Weizhang Huang, Hanxiang Gong, Yajun Yang*
The Second Affiliated Hospital of Guangzhou Medical University

*Corresponding author: 2020682075@gzhmu.edu.cn

Abstract. By understanding the international research hotspots in this field, we hope to provide reference information for health big data researchers to grasp the research hotspots and frontiers. By searching the relevant literature in the field of international health big data research in the Web of Science database, using the method of bibliometrics to draw a visual map. Results A total of 3850 articles were retrieved. Since 2013, the number of health big data research papers has shown a rapid growth. Harvard Medical School, University of Michigan and Stanford University are the research institutions with the largest number of papers in this field. The United States is the most active in the field of big data research, with 1506 papers, far higher than other countries, followed by China, the United Kingdom and South Korea. International health big data research hotspots include research on Intelligent wearable devices, design and development of health big data monitoring system, and application of health big data in precision medicine. The research reveals the characteristics and hotspots of international health big data research field, and provides some references for the development direction of this field in China.

Keywords: International, Health big data, hotspot, visualization.

1. Introduction
Health and medical big data refer to the collection of all data related to medical treatment and life and health, as well as the data generated by patients during medical care [1]. With the rapid development of "Internet +", the amount of data generated in the health and medical field has grown rapidly. Big data technology is increasingly applied to research in the fields of biology and medicine, which can provide technical support for the health and medical field and promote the construction of medical information. At the same time, the use of medical and health big data analysis can strengthen the early diagnosis and early treatment of diseases, as well as the health care and nursing care of the population [2]. Health big data research is an important research content in the current academic and business circles, and related theories and application research results are increasing. In order to further promote the research of health big data, it is necessary to analyze the research hotspots and cutting-edge topics of health big data.
2. Information and methods

2.1. Source
Web of Science core collection using Web of Science database. Search conditions: TS= (health OR healthcare OR clinical OR medical OR medicine OR medical care) AND TS= “big data”, search time: May 4, 2021. The total number of documents: 3850, the document type is limited to Article, and the search period is not limited.

2.2. Research methods and tools
The research is based on bibliometric analysis, using software methods such as VOSviewer to systematically analyze the distribution of research institutions, author collaborations, and keyword distribution of health big data-related literature, and draw a visual map. VOSviewer software is a software developed by Professor Ludo Waltman of Leiden University in the Netherlands for visual analysis of documents. This method can more directly evaluate the research hotspots and related characteristics of documents.

3. Results

3.1. Time Distribution
The change in the number of publications can reflect the development status and different stages of development in a field. The number of publications in the international health big data research field is calculated according to the time distribution, and a broken line change chart is drawn (Figure 1). It can be seen from Figure 1 that international papers on health big data were first published in 2009. Since 2013, the number of publications has shown rapid growth and a large increase. Big data has attracted more and more attention in the field of medical and health, and has quickly become a research hotspot. One, the number of articles published in 2020 has reached 1,529. It can be predicted that in the next few years, health big data will continue to become a research hotspot in the medical and health field, and the international health field will have more in-depth and extensive research on big data.

![Figure 1. Changes in the number of papers in the field of health big data research](image)

3.2. Distribution of research institutions
Figure 2 and Table 1 show the distribution of research institutions in the field of health big data research and their publication volume. The research institutions with the most articles in this field are Harvard Med Sch, Univ Michigan and Stanford Univ, with 88, 78 and 72 articles respectively. The most frequently cited are Chinese Acad Sci, Stanford Univ and Univ Bristol, with 3110, 2236 and 2065 citations respectively. The most collaborative research institutions are Harvard Med Sch, Univ Penn and Univ Calif San Francisco. These data show that colleges and universities are the main force in promoting the process of health big data research.
Figure 2 The distribution of research institutions of related literature in the field of health big data research

Table 1 Top 20 research institutions in the field of health big data research

Serial number	organization	documents	citations	total link strength
1	harvard med sch	88	1132	252
2	univ michigan	78	894	191
3	stanford univ	72	2236	144
4	chinese acad sci	61	3110	82
5	univ penn	57	1190	227
6	king saud univ	55	1570	34
7	univ oxford	53	584	91
8	univ calif san francisco	52	1664	191
9	duke univ	47	662	153
10	univ calif los angeles	47	1019	122
11	univ washington	47	1023	161
12	huazhong univ sci & technol	45	1519	46
13	univ toronto	45	633	81
14	massachusetts gen hosp	42	921	123
15	columbia univ	41	607	87
16	univ minnesota	40	717	78
17	harvard univ	38	1740	137
18	johns hopkins univ	38	903	123
19	univ melbourne	37	943	48
20	emory univ	36	601	113

3.3. Country/Region Distribution
Figure 3 and Table 2 show the distribution of countries/regions in the field of health big data research and the volume of publications. It can be seen from Figure 3 and Table 2 that in foreign countries, the United States is the most active in the field of big data research on Taihealth, and its output is in a dominant position (the number is 1506), accounting for about 39.12% of the total, ranking first. It is much higher than other countries, further confirming the level and influence of its health big data research. China (850 articles, accounting for 22.08%), the United Kingdom (401 articles, accounting for 10.42%), and South Korea (263 articles, accounting for 6.83%) are next. Analyzing the total citation frequency and single citation frequency of hot papers in various countries, it is found that the United States still ranks first in terms of total citation frequency, with a total citation frequency of 29,835 times. The total citations of China, the United Kingdom, and Australia are followed by 15,711, 8,596, and 4,079, respectively.
Figure. 3 Distribution of countries/regions in the field of health big data research

Table. 2 Top 20 countries/regions in the field of health big data research

Serial number	country	documents	citations	total link strength
1	usa	1506	29835	1329
2	peoples r china	850	15711	695
3	england	401	8596	978
4	south korea	263	3861	282
5	australia	234	4079	543
6	canada	216	3846	407
7	italy	204	2742	589
8	india	198	2625	313
9	germany	178	3169	617
10	spain	155	2058	444
11	netherlands	153	2288	567
12	france	135	1816	468
13	saudi arabia	100	2262	155
14	taiwan	98	1771	112
15	switzerland	97	1519	324
16	japan	96	2036	295
17	sweden	72	965	383
18	scotland	70	1202	246
19	belgium	66	1410	286
20	brazil	61	859	240

3.4. Research topic distribution

Figure 4 and Table 3 show the distribution and frequency of the subject terms of the literature in the field of health big data research. A total of 14,762 keywords were extracted from 3850 documents, with a total word frequency of 37,141 times, and 29 subject words with a word frequency greater than 100 times. It can be considered that these keywords can reflect the current hottest health big data research topics.
Figure. 4 The distribution of the subject words of the literature in the field of health big data research

Table. 3 Top 40 keywords appearing frequently in the subject headings of the literature in the field of health big data research

Serial number	keyword	occurrences	total link strength	Serial number	keyword	occurrences	total link strength
1	big data	1769	7476	21	privacy	112	576
2	machine learning	339	1820	22	electronic health records	109	619
3	health	259	1140	23	precision medicine	109	574
4	risk	223	1077	24	medicine	107	601
5	classification	190	959	25	diagnosis	106	565
6	care	184	990	26	cancer	105	479
7	system	162	831	27	information	102	552
8	deep learning	157	767	28	big data analytics	100	436
9	internet	155	997	29	impact	100	515
10	challenges	151	923	30	epidemiology	98	434
11	model	149	783	31	internet of things	98	600
12	health-care	147	726	32	outcomes	98	486
13	prediction	147	789	33	healthcare	97	502
14	artificial intelligence	146	764	34	analytics	93	509
15	management	145	802	35	association	92	492
16	disease	137	719	36	cloud	84	423
17	cloud computing	136	656	37	things	84	598
18	mortality	134	709	38	systems	83	440
19	data mining	130	613	39	algorithm	79	384
20	framework	118	661	40	design	78	390
3.5. Distribution of research institutes
The color system in the keyword superimposed time view in Figure 5 indicates that the displayed color represents the time when the node appears, the research hotspots, evolutionary context, and the prediction of the research trend of the topic in the same color area. According to Figure 4 and related literature on health big data research, it can be seen that the research and practice of health big data presents three stages of practice evolution: 2014 and before, 2015-2018, and 2019 to the present. Among them, 2019 has been an important year for health big data research, with the expansion and scale of research hotspots.

![Figure 5](image)

Figure 5 A visual map of the key word overlay time of the literature in the health big data research field

4. An Analysis of Hotspots in International Health Big Data Research

4.1. Research on Smart Wearable Devices
With the continuous improvement of people's health awareness, their attention and demand for various intelligent health service management tools continue to increase. Medical and health wearable devices and big data technology have created huge development opportunities for the medical and health industry [3-4]. Portable mobile medical and health wearable devices can collect users' health data and behavior information in real time through the application of various emerging information technologies. They are an important data collection source for smart medical service platforms based on medical and health big data analysis. Portable mobile medical and health wearable devices and their applications have become the focus of medical and health service-related companies and research institutions. Research on smart medical services based on smart wearable devices is becoming one of the frontier research topics in the field of health big data.

4.2. Research on Design, Development and Application of Health Big Data Monitoring System
With the advancement of wireless communication technologies such as wearable and implantable biosensors, it is possible to promote the design, development and implementation of the human body local area network. The human body local area network has paved the way for the development of
innovative applications for medical health monitoring [5]. At present, the representative application fields of big data include enterprise management, Internet of Things, online social networks, media applications, group wisdom and smart grid [6]. The medical and health field is rich in big data resources, and as people’s health awareness has increased, various health monitoring systems have emerged. Medical health management is increasingly becoming a key area for the application of big data technology, and the design and development of health big data application systems has gradually become the focus. Research topics of interest.

4.3. Application of health big data in precision medicine

In 2015, US President Barack Obama proposed the "Precision Medicine" plan, and precision medicine began to attract the world's attention. With the rapid development of high-throughput biotechnology, various omics, bioinformatics, and systematic methods, precision medicine is gradually becoming a new paradigm for future medical development [7]. Precision medicine affects the development of the medical field in the form of network, promotes the cross-cooperation of biomedicine and information science with new ideas, integrates data-driven scientific research paradigm, and strives to overcome many shortcomings of the traditional symptom-oriented disease diagnosis and treatment model, thereby Effectively use medical resources and improve medical standards.

References
[1] Liu Ning, Chen Min. Research on the topic of medical and health big data application and related data sources [J]. China Digital Medicine, 2016, 11(8): 6-9.
[2] Li Chunying, Zhang Weiwei. Cluster analysis of research hotspots in global big data and health management [J]. Chinese Hospital Management, 2016, 36(10): 63-65.
[3] ROSKI J, BO-LINN G W, ANDREWS T A. Creating Value in Health Care through Big Data: Opportunities and Policy Implications [J]. Health Affairs, 2014, 33 (7) :1115-1122.
[4] WU J, LI H, CHENG S R, et al. The promising future of healthcare services: When big data analytics meets wearable technology [J]. Information&Management, 2016, 53 (8):1020-1033.
[5] CHEN M, GONZALEZ S, VASILAKOS A, et al.Body Area Networks:A Survey [J].Mobile Networks and Applications, 2011, 16 (2) :171-193.
[6] CHEN M, MAO S, LIU Y. Big Data: A Survey [J]. Mobile Networks and Applications, 2014, 19 (2) :171-209.
[7] CHEN R, SNYDER M. Promise of personalized omics to precision medicine [J]. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5(1): 73-82.

Liu Zhuang, Zhang Yue, Tian Lei, Sun Baozhi, Zhao Yuhong. Analysis of influential factors on self-evaluation of post competency of clinicians in northwest China [J]. China health statistics, 2017,34(03): 397-399 + 403.