Analysis of Polar Components in Salt by GC-MS

Guo-Hua Chang¹, Bin Yue¹,*, Jun Li¹, Zhuo-Xin Yin¹, Tian-peng Gao¹,²*, Xiao-Ke Li¹ and Ying-Xi Cheng¹

¹College of Geography and Environmental Engineering, Lanzhou City University, Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou 730070, China
²College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
Correspondence: yb_gs@163.com; zkgtp@163.com

Abstract Edible salt is the most common and extensive seasoning agent in people's daily life, and its edible safety is directly related to human health. The polar components of edible salt were analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that there were more than 20 polar organic compounds in salt, mainly C14-C22 long-chain fatty acids. The highest content of erucic acid (50.610%) was detected. Meanwhile, phthalate esters (PAEs) and elemental sulfur were also detected.

1. Introduction
In modern analysis technology, gas chromatography-mass spectrometry (GC-MS) is a kind of high-efficiency analysis technology. The technology uses the separation ability of gas chromatography to realize separation of components in mixture, and uses mass spectrometry to identify the separated components, which can be used for qualitative and quantitative analysis. Because of its good separation, high sensitivity and low detection limit, GC-MS is suitable for trace and trace analysis, and is one of the reliable technical means for food safety inspection. The technology has been widely used in food safety detection, analysis of environmental pollutants, drug composition identification, doping detection and so on [1, 2]. Compared with other foods, salt is a necessity of human life and is irreplaceable. At present, for the edible safety of salt, more emphasis is placed on the analysis of inorganic elements, while the study of organic compounds in salt is less [3]. In the study, the polar organic compounds in salt were studied by GC-MS, which can provide a scientific reference for food safety supervision of edible salt.

2. Samples and methods
2.1. Samples Treatment
Salt samples (120.0000 g) purchased from supermarkets was weighed accurately and put into a 250 mL beaker, and then added appropriate amount of refined chloroform into the beaker containing the sample (subject to the sample just passing). Then the samples were extracted with CHCl₃ by ultrasonic for 3 times and each time for 20 minutes, and the three extracts were mixed. Finally, the organic substances extracted were weighted after CHCl₃ was completely volatilized.

The organic substances extracted were esterified with BF₃ in methanol to convert carboxylic acids to their corresponding methyl esters more amenable to GC analysis [4]. The same volume of refined
Dichloromethane and refined methanol mixture (volume ratio 1:1) were added to the above extracted samples to dissolve the organic matter, and 5 mL BF₃/MeOH reagent added, followed by shaking gently. Finally, the sample was sealed and kept in a water bath at 60 °C for 10 h.

The sample was transferred into a 120 mL separation funnel after methyl esterification. Then 60 mL of ultra pure water and 20 mL of refined ether were added into the separation funnel. The sample was shaken fully and then left to stand. After the liquid level was stratified, the organic phase was retained, and then 40 mL ultra pure water was added again. The sample was still shaken fully and allowed to stand. After the liquid level was stratified, the organic phase in the separation funnel was transferred to a weighing bottle and weighed after ether volatilization.

2.2. Instruments and sample conditions

After the ether is completely evaporated, 1-2 drops of refined dichloromethane solvent were slowly added along the wall of the bottle contained the above extracted samples, and then gently shaken. After the solvent volatilized to a small amount, 1.0 ul of solution was injected and analyzed using an Agilent 6890N/MSD5973N gas chromatography mass spectrometer(GC-MS) equipped with a J&W HP-5 column (30 m × 0.32 mm i.d. × 0.25 μm film thickness). The carrier gas was helium (99.999%) at a column flow of 1.2 mL/min. The initial oven temperature was 80°C for 2 min, and then was raised with 4 °C/min to 295 °C, and held for 20 min. MS conditions were as follows: electron ionization (EI) at 70 eV; an ion source temperature of 230 °C; quadrupole rod temperature of 150 °C, interface temperature of 280 °C and spectrum library with NIST05L (U.S.A.)[4].

3. Results and discussion

The GC / MS total ion current chromatogram of polar fraction (methyl ester products) from the salt is shown in Figure 1. Fatty acids appeared at 14.504 min and erucic acid appeared at 23.630 min, with the highest peak. A total of 29 polar components were observed in the salt sample; these components were predominantly composed of fatty acids, phthalate esters (PAEs) and sulfur rings (Table 1). The relative abundance of the three type was as follows: fatty acids (94.764%) > PAEs (3.566%) > sulfurs (1.67%), respectively (Figure 2). The fatty acids were divided into saturated fatty acids (SFAs) and unsaturated fatty acids (USFAs). The content of unsaturated fatty acids was higher than that of saturated fatty acid in the sample.

The saturated fatty acid components detected in the sample consisted mainly from C₁₄ to C₂₄, and the even carbon content was higher than that of odd carbon, which was accordance to the fatty acids in biological. In biological systems, the content of even carbon was generally higher than that of an odd carbon number in saturated fatty acid series compounds (carbon number in 12 to 24, typical) [5].

![Figure 1. Total ion current chromatogram of polar fraction in sample from salt.](image)

![Figure 2. Relative abundance of different type of components from salt.](image)
Table 1. Polar fraction identification (methyl esters) in salt.

Peak number	Molecular formula	Molecular weight	Compounds	Content (%)
1	C₁₀H₁₀O₄	194	Dimethyl phthalate	0.033
2	S₆	192	Sulful S₆	0.509
3	C₁₂H₁₆O₂	242	Tetradecanoic acid, methyl ester	0.601
4	C₁₅H₃₀O₂	256	12-methyl- tetradecanoic acid, methyl ester	0.285
5	S₇	224	Sulful S₇	0.070
6	C₁₆H₃₂O₂	256	Pentadecanoic acid, methyl ester	0.482
7	C₁₆H₃₂O₄	278	Diisobutyl phthalate (DIBP)	0.150
8	C₁₃H₃₄O₂	270	Pentadecanoic acid, 14-methyl-, methyl ester	0.272
9	C₁₃H₃₂O₄	268	9- Hexadecenoic acid, methyl ester	2.332
10	C₁₃H₃₄O₂	270	Hexadecanoic acid, methyl ester	13.637
11	C₁₆H₃₂O₄	278	Diibutyl phthalate (DBP)	1.204
12	C₁₈H₃₆O₂	284	Heptadecanoic acid, methyl ester	0.494
13	C₁₇H₃₂O₄	292	Methyl 2-ethylhexyl phthalate	1.763
14	S₈	256	Cyclic octaatomic sulfur	1.091
15	C₂₁H₄₂O₂	326	Phytyanic acid, methyl ester	1.814
16	C₁₀H₃₆O₂	296	9-Octadecenoic acid, methyl ester	8.747
17	C₁₁H₃₆O₂	296	16-Octadecenoic acid, methyl ester	0.195
18	C₁₁H₃₈O₂	298	Octadecanoic acid, methyl ester	6.662
19	C₁₂H₄₀O₂	312	Nonadecanoic acid, methyl ester	0.074
20	C₂₁H₄₂O₄	358	8,10-Dimethyloctadecanoic acid, methyl ester	1.215
21	C₂₁H₄₀O₂	324	Methyl trans-11-eicosenoate	0.557
22	C₂₁H₄₀O₂	324	Methyl cis-11-eicosenoate	0.168
23	C₂₂H₄₂O₂	326	Eicosanoic acid, methyl ester	0.619
24	C₂₂H₄₄O₂	340	Heneicosanoic acid, methyl ester	0.113
25	C₂₂H₄₄O₂	352	Erucic acid, methyl ester	50.610
26	C₂₃H₄₆O₂	396	Tricosanoic acid, 3,5-dimethyl-, methyl ester	0.395
27	C₂₃H₄₆O₂	354	Docosenoic acid, methyl ester	0.648
28	C₂₃H₄₈O₄	390	Bis(2-ethylhexyl) phthalate (DEHP)	0.416
29	C₂₃H₅₀O₄	414	12,14-Dimethoxy-octadecanoic acid, methyl ester	4.864

In nature, fatty acids come from different sources such as fruits, vegetable oils, seeds, nuts, animal fats, and fish oils. Fatty acids are the primary component of lipids and play an important role in biological systems, including as primary constituents of cell membranes, an energy source, and regulating the activity of enzymes and inflammatory processes[6-8], and can exist as free forms and bound forms, such as cholesterol and phospholipids [1, 9]. Among the various fatty acids, the content of erucic acid was the highest, 50.610%; second, n-hexadecanic acid (13.637%) and 9-octadecenoic acid (8.747%); then octadecanoic acid (6.662%). The rest of the fatty acids were less than 3%. Eric acid is an unsaturated fatty acid, and is a non-branched and long-chain fatty acid consisting of 22 carbons and a cis-configurated double bond on C-13[10]. Consumption of food rich in erucic acid has been found to have adverse effects on health. The main effect of erucic acid on health is the accumulation of triacylglycerol in the heart due to insufficient oxidation, which leads to the reduction of myocardial contractility [10-12]. n-hexadecanoic acid belongs to saturated fatty acid, which widely exists in nature and has been detected in many plants, such as *Peganum harmala* plant [13], *Hydrilla* [4] and *Elaeis guineensis* [14]. The main peak of salt is C16, which is consistent with the current research about aquatic plant *Hydrilla* [4]. The results indicated that the source of fatty acids from aquatic plants is closely related to the water quality of salt.
Phthalate esters (PAEs) such as DIBP, DBP and DEHP were found in the sample. PAEs have been widely used as plasticizers in products like plastic wrappers, toys, cosmetics, gaskets, plastic roofing systems, and furniture decoration materials [15]. Approximately 150 million tons of plastic products are consumed annually worldwide, and the global annual production of PAEs is nearly 6–8 million tons [16, 17]. PAEs exist widely in water and soil, and have gradually becoming a family of emerging environmental pollutants, which have frequently been detected in terrestrial and aquatic organisms such as mice, algae, zooplankton, fish, and even in human blood[18, 19]. Phthalates have been reported to affect multiple biochemical processes in humans and wildlife, and their effects include reproduction, damage to sperm [20], infertility [21], apoptotic responses [18] and so on. DBP and DEHP are two widely used plasticizers. Therefore, it should be pay attention to the influence of plasticizers on aquatic organisms in the future.

4. Conclusions
The organic matter analysis of salt showed that the polar substances in salt were complex, mainly including fatty acids, PAEs, and sulfur ring, in which erucic acid and PAEs should be paid more attention by food testing departments.

Acknowledgments
The research was funded by the National Natural Science Foundation of China (31860176), the Research Project of Universities in Gansu (2019B-169 and 2020A-124) and Doctoral Research Initiation Fund of Lanzhou City College (LZCU-BS2019-26).

References
[1] Hewavitharana G G, Perera D N, Navaratne S B and Wickramasinghe I 2020 Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arabian J. Chem. 13(8) 6865–6875.
[2] Li X J, Zhao Z H, Yang Y and Zhu H 2016 Research progress on detection of fatty acids in food by gas chromatography. J. Food Safety Quality 7(8) 3114–3120.
[3] Na M, Chen Y L, Han Y X, Ma S D, Liu J J and Chen X G 2019 Determination of potassium ferrocyanide in table salt and salted food using a water-soluble fluorescent silicon quantum dots. Food Chemistry 288 248–255.
[4] Chang G H, Yue B, Gao T P, Yan WD and Pan G 2020 Phytoremediation of phenol by Hydrilla verticillata (L.f.) Royle and associated effects on physiological parameters. J. Hazard. Mater. 388 121569.
[5] Petrovic S and Arsic A 2016 Fatty acids: fatty acids. In: Caballero B, Finglas P M and Toldra F (Eds.) Encyclopedia of Food and Health Academic Press (UK:Oxford) pp 623–631. https://doi.org/10.1016/B978-0-12-384947-2.00277-4.
[6] Christinat N, Morin-Rivron D and Masoodi M 2016 Highthroughput quantitative lipidomics analysis of nonesterified fatty acids in human plasma. J. Proteome Res. 15 (7) 2228–2235.
[7] Corrêa-Oliveira R, Fachi J L, Vieira A, Sato F T and Vinolo M A R 2016 Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5 (4) e73.
[8] Kimura I, Ichimura A, Ohue-Kitano R and Igarashi M 2020 Free fatty acid receptors in health and disease. Physiol. Rev. 100 (1) 171–210.
[9] De Carvalho C C and Caramujo M J 2018 The various roles of fatty acids. Molecules 23 (10) 2583.
[10] Vetter W, Darwish V and Lehner K 2020 Erucic acid in Brassicaceae and salmon – an evaluation of the new proposed limits of erucic acid in food. NFS Journal 19 9–15.
[11] Abbott P, Baines J, Fox P, Graf L, Kelly L, Stanley G and Tomaska L 2003 Review of the regulations for contaminants and natural toxicants. Food Contam. 14 383–389.
[12] Bremer J and Norum K R 1982 Metabolism of the very long-chain monounsaturated fatty acids (22:1) and the adaption to the presence in the diet. J. Lipid Res. 23 243–256.
[13] Moussa T A A and Almaghrabi O A 2016 Fatty acid constituents of *Peganum harmala* plant using gas chromatography–mass spectroscopy. *Saudi J. Biol. Sci.* 23 397–403.

[14] Kamatou G P P and Viljoen A M 2017 Comparison of fatty acid methyl esters of palm and palmist oils determined by GCxGC–ToF–MS and GC–MS/FID. *J. S. Afr. Bot.* 112 483–488.

[15] Katsikantami I, Sifakis S, Tzatzarakis M N, Vakonaki E, Kalantzi O I, Tsatsakis A M and Rizos A K 2016 A global assessment of phthalates burden and related links to health effects. *Environ. Int.* 97 212–236.

[16] Net S, Delmont A, Sempéré R, Paluselli A and Ouddane B 2015 Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review. *Sci. Total. Environ.* 515–516 162–180.

[17] Wittassek M, Koch H M, Angerer J and Bruning T, 2011 Assessing exposure to phthalates -the human biomonitoring approach. *Mol. Nutr. Food. Res.* 55, 7–31.

[18] Mankidy R, Wiseman S, Ma H and Giesy J P 2013 Biological impact of phthalates. *Toxicol. Lett.* 217 50–58.

[19] Gu S, Zheng H, Xu Q, Sun C, Shi M, Wang Z and Li F 2017 Comparative toxicity of the plasticizer dibutyl phthalate to two freshwater algae. *Aquat. Toxicol.* 191 122–130.

[20] Rozati R, Redd P P, Reddanna P and Mujtaba R 2002 Role of environmental estrogens in the deterioration of male factor fertility. *Fertil..Steril.* 78 (6) 1187–1194.

[21] Tranfo G, Caporossi L, Paci E, Aragona C, Romanzi D, De C C, De R M, Capanna S, Papaleo B and Pera A 2012 Urinary phthalate monoesters concentration in couples with infertility problems. *Toxicol. Lett.* 213 (1) 15–20.