Keywords: Compact Spinning, Long Staple Category, Compacted Cotton Yarns, Compact Carded Cotton Yarns, Compact Combed Cotton Yarns, Yarn initial preparatory processes, Kier Boiling or Scouring, Bleaching, Compact Spinning, Compact Carded Cotton Yarns, Compact Combed Cotton Yarns, Yarn initial preparatory processes, Kier Boiling or Scouring, Bleaching

Abstract:

The Responsiveness Rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes

Introduction:

The responsiveness rate of compact cotton yarn structure to influence initial preparatory processes is crucial for obtaining high-quality fabrics. The present study aimed to investigate the effects of various initial preparatory processes on the physical and chemical properties of compact cotton yarns. The researchers used synthetic fibers (Cominers) of different types and weights to prepare compact cotton yarns. The study found that the responsiveness rate of compact cotton yarn structure to influence initial preparatory processes varied depending on the type and weight of the synthetic fibers used. The results demonstrated that the responsiveness rate of compact cotton yarn structure to influence initial preparatory processes is an important factor in obtaining high-quality fabrics.
The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes

Statement of the Problem

1. The use of compact spinning in the textile industry has become more widespread due to its ability to produce high-quality yarns that are important for various applications. However, despite its advantages, the process still faces challenges such as uneven distribution of fibers, which affects the final product's quality. This study aims to address these issues by investigating the effects of compact spinning on the yarn's structure and properties.

Research Hypothesis

A hypothesis is proposed that compact spinning will improve the yarn's structure and properties compared to conventional spinning methods. This hypothesis is based on the premise that compact spinning reduces the air gaps between fibers, leading to a more uniform yarn structure.

Research Methodology

To test this hypothesis, a series of experiments were conducted on compact yarns produced using different spinning parameters. The yarns were then evaluated using various physical and mechanical tests to determine their structure and properties.

Theoretical Framework

1.1. Spinning: Compact Spinning

Compact spinning is a method that reduces the air gaps between fibers, leading to a more uniform yarn structure. This is achieved by using a specific type of spinning machine that applies pressure to the fibers, resulting in a compact yarn with improved physical and mechanical properties.

Delimitations

1. The study focuses on compact yarns produced using a specific type of spinning machine, which may not be applicable to other machines.
2. The study only considers the effects of compact spinning on the yarn's structure and properties, and does not take into account other factors such as the fibers' chemical composition or the spinning machine's design.

Research Objectives

1. To investigate the effects of compact spinning on the yarn's structure and properties.
2. To compare the results of compact spinning with those of conventional spinning methods.
3. To develop a method for optimizing compact spinning parameters to achieve the desired yarn properties.

Statement of the Problem

In the textile industry, the quality of yarns is crucial for the final product's performance. Compact spinning is a method that improves yarn quality by reducing air gaps between fibers. However, the process still faces challenges such as uneven fiber distribution. This study aims to investigate the effects of compact spinning on yarn structure and properties, and to develop an optimization method for this process.

Research Hypothesis

The hypothesis is that compact spinning will result in yarns with improved structure and properties compared to conventional spinning methods. This hypothesis is supported by the premise that compact spinning reduces air gaps between fibers, leading to a more uniform yarn structure.

Research Methodology

To test this hypothesis, experiments were conducted on compact yarns produced using different spinning parameters. The yarns were then evaluated using various physical and mechanical tests to determine their structure and properties.

Theoretical Framework

1.1. Spinning: Compact Spinning

Compact spinning is a method that reduces air gaps between fibers by applying pressure to the fibers. This results in a more uniform yarn structure with improved physical and mechanical properties.

Delimitations

1. The study focuses on compact yarns produced using a specific spinning machine, which may not be applicable to other machines.
2. The study only considers the effects of compact spinning on the yarn's structure and properties, and does not take into account other factors such as fiber composition or spinning machine design.

Research Objectives

1. To investigate the effects of compact spinning on the yarn's structure and properties.
2. To compare the results of compact spinning with those of conventional spinning methods.
3. To develop a method for optimizing compact spinning parameters to achieve the desired yarn properties.
المسحوبة لإحكام السيطرة على حركة الشعرات ودمجها وترتيبها في اتجاه محور الخيط. وقد ساعد هذا الأسلوب شكل (2) وهو من تصميم شركة Rieter السويسرية على تقليل حجم مثلث الغزل إلى أقل درجة ممكنة، وبالتالي أمكن إدخال البرمات مباشرة على الشعرات الخارجية من جهاز السحب بطريقة إيجابية، ومساهمة جميع الشعرات الطويلة والقصيرة في تركيب الخيط،حسن واضح في مظهرية الخيط الناتج بدرجة كبيرة.

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع عرضها ودمجها جهة محور الشعرات المارة مما ساعد على اختفاء مثلث الغزل وإتمام تركيب الشعرات الخارجة من السلف السويسري. التغييرات وترتيبها جهة محور الشعرات الماردة المضوية في الخيط شكل (3) وهو من تصميم شركة MAL الألمانية.

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Rieter السويسرية (11).

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Suessen الألمانية (15).

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Suessen الألمانية (16).

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Suessen الألمانية (17).

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Suessen الألمانية (18).

الغزل المدمج باستخدام ماسورة مفتوحة ذات مقطع بيضاوي من تصميم شركة Suessen الألمانية (19).

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع عرضها ودمجها جهة محور الشعرات المارة المضوية في الخيط شكل (2) وهو من تصميم شركة Rieter السويسرية.

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع عرضها ودمجها جهة محور الشعرات المارة المضوية في الخيط شكل (2) وهو من تصميم شركة Rieter السويسرية.

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع عرضها ودمجها جهة محور الشعرات المارة المضوية في الخيط شكل (2) وهو من تصميم شركة Rieter السويسرية.

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع عرضها ودمجها جهة محور الشعرات المارة المضوية في الخيط شكل (2) وهو من تصميم شركة Rieter السويسرية.

الغزل المدمج باستخدام سير علوي بثقوب في المنتصف: Zinser Compact Spinning

يعتمد هذا الأسلوب على استخدام نظام سحب 4/4 مزود بسير (بنطلون) إضافي علوي أمامي به ثقوب في المنتصف على طول محور السير وعرض لضخ هواء لإحكام السيطرة على الشعرات الباردة بجهاز السحب وتدنيع Un destination
- 4- In the case of improving the properties of cotton wool, American Acupuncture and other methods, we can achieve an increase in the rate of melting and the rate of boiling, as well as decrease the rate of melting and the rate of boiling, all of which lead to a decrease in the temperature of the gas.

- 5- Figure 1: A comparison of the effects of the different methods on the properties of cotton wool

The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes

Preparatory Processes

- **Fixing Process (Steaming Autoclave)**

 - **First Cycle:** The fixing process involves steaming the yarns in an autoclave to achieve a fixation rate of 85% at 110°C and 100°C for 5 minutes.
 - **Second Cycle:** The yarns are steamed in the autoclave at 110°C for 10 minutes to achieve a fixation rate of 90%.
 - **Third Cycle:** The yarns are steamed in the autoclave at 110°C for 15 minutes to achieve a fixation rate of 95%.

Waxing Process

- **First Cycle:** The yarns are waxed in the autoclave at 110°C for 20 minutes to achieve a waxing rate of 80%.
 - **Second Cycle:** The yarns are waxed in the autoclave at 110°C for 30 minutes to achieve a waxing rate of 90%.
 - **Third Cycle:** The yarns are waxed in the autoclave at 110°C for 40 minutes to achieve a waxing rate of 95%.

Citation: Amr Al-Laithy (2022), The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Design Journal, Vol. 12 No. 6, (November 2022) pp 51- 64
And ethylene in the form of a light-colored, low-density cotton yarn is treated in a balanced medium, and not in a low-density medium for its oxidizing ability, which tends to become pale blue when pure and weakly acidic. It is used in combination with other oxidizing agents. The cotton yarn is treated with an acidic solution of sodium peroxide, which is a liquid with no color or smell, one of the strongest oxidizing agents used for bleaching:

- The cotton yarn that is bleached achieves the maximum white degree possible by removing the largest possible amount of impurities in the cotton yarn. The reaction of oxygen with other substances produces simple, colorless compounds. It is used for bleaching by a constant white, which does not change over time. Hydrogen peroxide (H₂O₂) and sodium carbonate (Na₂CO₃) are used in this process. Bleaching is one of the most important preparatory processes that are carried out in the preparation of cotton yarns.

![Bleaching Process](image)

Process

1. Hydrogen peroxide: A mixture of cotton yarn is treated with hydrogen peroxide, which is a liquid with no color or smell, one of the strongest oxidizing agents used for bleaching. It is used for bleaching by a constant white, which does not change over time. Hydrogen peroxide (H₂O₂) and sodium carbonate (Na₂CO₃) are used in this process. Bleaching is one of the most important preparatory processes that are carried out in the preparation of cotton yarns.
Commercially pure sodium hydroxide was used throughout all the different processes and it was neutralized by using a solution of acetic acid or 15% ammonium nitrate. A basic solution of water was used to neutralize the residual sodium hydroxide in the final product.

The responsiveness rate of compact cotton yarns structure to influence initial preparatory processes was investigated. The results showed that the compressive properties of the yarns were significantly affected by the process conditions. The treatments resulted in improvements in the tensile strength, elongation at break, and modulus of elasticity of the yarns. The treatments also led to a reduction in the crimp and the twist of the yarns. The treatments also led to a reduction in the crimp and the twist of the yarns.

The results proved that the compacting process had a significant impact on the yarns' structure and properties. The process conditions such as the temperature, the time, and the pressure of the process were found to be the main factors affecting the yarns' properties. The process conditions were optimized to achieve the desired properties of the yarns. The optimized conditions were found to be: temperature of 95°C, time of 30 min, and pressure of 100 bar.

The optimized conditions resulted in yarns with high compressive properties and good structural stability. The results indicated that the compacting process can be used as a pre-treatment step for the production of high-performance yarns.

Citation: Amr Al-Lahithy (2022), The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Design Journal, Vol. 12 No. 6, (November 2022) pp 51-64

The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes

5 - Utilization of the spun yarn for weaving and knitting: The spun yarn was used for weaving and knitting with a high productivity. The yarns were processed on a weaving loom, and the quality of the woven fabrics was monitored using a microscope. The results showed that the spun yarns had a high yarn count and a good surface finish. The woven fabrics had a high strength and a good durability. The spun yarns were also used for knitting with a high productivity. The knitted fabrics had a high strength and a good durability.
يتضمن الإختبارات الصيدلانية ترتيب 6% والتي تعمل على تجربة التربوتات وتحسينها حتى لا تتصل بالخيوط. وبالتالي يسهل التحلل النهائى أثناء عملية الطباعة الميكروية.

4. تم تصميم الكشف بدلاً من الأنواع المختلفة. ويتم توفير تحسينات لدرجة حرارة المไลء 25°F إلى درجة حرارة 60°F لمدة ساعتين اضافية أخرى، وتدفق الخيط عبر الفينال حسب الحاجة.

5. تم تشغيل الكشف وخلط الخيوط الألوية في تصميم الخيط بتنقشة Acetic Acid عند درجة حرارة 80°F لمدة ساعتين في حالة أداة التقطيع، حتى لا يختلف الخيوط بسبب القوة الانغلاقية للخيوط. ويتم غسيل الخيوط غسيل نهائي بارد لمدة ساعتين أخرى لتسريع التحلل من كافة المواد المكونة للخيوط المتشكلة.

6. تم تشغيل 12 لتر من مادتي الليومين وحمض الخليك حسب نسب Softening Agent في اختبارات الكشف. وتم تشغيل نسب الديوكسيا الناجمة في اختبار كشف الخيوط المتشكلة في اختبارات الكشف.

7. تم تشغيل الكشف بعد إجراء المعاملات المعملية مع كشف الخيوط المتشكلة بنوعية يمكن استخدامها في أنواع سير متحركات. يتم تشغيل لاستخدام الأملاح الخالصة في اختبارات الكشف في الكشف، وتستخدم كشف الخيوط المتشكلة في اختبارات الكشف في الكش
The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes

2.02	3.25	4.4	2.4	3.65	5.4	2.9	4.0	5.9	قيم التشتيت
0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	50%+
3.0	7.03	15.1	2.75	5.9	7.4	2.02	4.3	6.2	الأماكن المبقية
4.1	9.3	23.0	2.45	4.3	7.7	1.95	3.6	6.6	الأماكن المبقية
7.1	16.43	38.4	5.2	10.2	15.1	3.97	7.95	12.8	IPB العبوس
5.5	4.35	4.7	6.7	5.4	5.9	7.35	5.95	6.5	نسبة الرطوبة
17.5	19.25	21.0	14.0	15.85	17.0	13.0	14.9	15.2	T.P.I.

Citation: Amr Al-Laithy (2022), The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Design Journal, Vol. 12 No. 6, (November 2022) pp 51- 64

- **Compact Combed Cotton Yarns**

2-2-2

- **الخيوط الخطية المدمجة القطنية المتميزة**

جدول (2) تناول اختبارات الخيوط القطنية المتميزة المشتملة قبل وبعد إجراء عملية طين اللفيات بالاستخدام هيدروكسيد الصوديوم و/أكسيد الأيدروجين (NaOH) وتراكم 32.5%، وعند التبييض الكامل باستخدام FQ أكسيد الأيدروجين (H2O2) تراكم 50%.

1/80	1/70	1/50						
T.P.I134	T.P.I32	T.P.I127						
بعد التبييض الكامل	بعد اللفيات في القلوي	بعد اللفيات في القلوي						
بعد التبييض الكامل	بعد اللفيات في القلوي	خام						
بعد اللفيات في القلوي	بعد اللفيات في القلوي	خام						
82.3	81.05	80.2	73.35	72.01	71.0	53.5	52.02	51.0
26.7	24.45	23.5	28.6	27.35	26.7	29.85	28.25	27.4
5.3	4.15	4.5	5.8	4.7	4.9	6.1	5.15	5.4
0.7	1.8	3.0	1.02	2.0	3.2	1.15	2.25	3.3
1.0	2.1	3.5	0.6	1.1	1.5	0.01	0.03	0.5
4.03	4.02	16.0	3.6	7.0	10.0	3.2	6.1	8.5
10.1	23.5	58.0	9.3	19.2	35.0	8.1	15.1	23.0
15.13	35.62	77.5	13.5	27.3	46.5	11.31	21.23	32.0
5.65	3.9	4.4	6.05	4.2	4.7	7.25	5.15	5.7
29.2	32.25	33.85	27.0	30.15	32.1	22.1	25.2	27.0

- **الخيوط القطنية المدمجة المسرحة**

3-1-3

Cotton Yarns

: Results & Discussion

```latex
Y = 2.5635 + 0.9762 X
```

شكلاً (10) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، وهذا الارتباط

شكلاً (9) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، ونسبة الفحم ونسبة البيض، ونسبة اللفيات بالاستخدام هيدروكسيد الصوديوم و/أكسيد الأيدروجين (NaOH) وتراكم 32.5%.

Cotton Yarns Structure to Influence Initial Preparatory Processes

- **3-1-3**

Cotton Yarns

: Results & Discussion

```latex
Y = 2.5635 + 0.9762 X
```

شكلاً (10) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، وهذا الارتباط

شكلاً (9) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، ونسبة الفحم ونسبة البيض، ونسبة اللفيات بالاستخدام هيدروكسيد الصوديوم و/أكسيد الأيدروجين (NaOH) وتراكم 32.5%.

Cotton Yarns

: Results & Discussion

```latex
Y = 2.5635 + 0.9762 X
```

شكلاً (10) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، وهذا الارتباط

شكلاً (9) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، ونسبة الفحم ونسبة البيض، ونسبة اللفيات بالاستخدام هيدروكسيد الصوديوم و/أكسيد الأيدروجين (NaOH) وتراكم 32.5%.

Cotton Yarns

: Results & Discussion

```latex
Y = 2.5635 + 0.9762 X
```

شكلاً (10) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، وهذا الارتباط

شكلاً (9) معدلة خط الالتحاد: بعد إجراء عمليتي الفحمي والبيض الكامل، ونسبة الفحم ونسبة البيض، ونسبة اللفيات بالاستخدام هيدروكسيد الصوديوم و/أكسيد الأيدروجين (NaOH) وتراكم 32.5%.
بعد إجراء عمليتي الغليان في القلوي باستخدام هيدروكسيد الصوديوم (NaOH) تركيز 20% (ماء H2O) والأيض الكامل بمجلول فوق أكسيد الأيدروجين (أكسجين) تركيز 50% (الصودا الكاوية) تركيز 1000/Ne(s) وهذ الفصل (13)، وقد وجد أن معامل الارتباط (R) = 0.992، وهذا الارتباط موجب (عكسي)، يعني أنه: كانت هناك نسبة بالعلاقة مع النسبة الرطوبة في الخيط (%).

correlation

3-1-3: العلاقة بين نمرة الخيط بعد إجراء عمليتي الغليان في القلوي والتبيض الكامل ونسبة استطالة الخيط (%):

فمجد (14) تم استخراج معامل الارتباط (R) = 0.997، وهو معامل الارتباط سالب (عكسي) يعني أنه: كانت هناك نسبة بالعلاقة مع النسبة الرطوبة في الخيط (%).

$
Y = 0.0713 \pm 0.2206 \times X
$

والتبيض الكامل ونسبة استطالة الخيط (%).

$
Y = 8.0483 \mp 0.0391 \times X
$

4-1-3: العلاقة بين نمرة الخيط والتبيض الكامل وقلم التشتيت في الخيط:

فمجد (15) وتم استخراج معامل الارتباط (R) = -0.947، وهو معامل الارتباط سالب (عكسي) يعني أنه: كانت هناك نسبة بالعلاقة مع النسبة الرطوبة في الخيط (%).

$
Y = 9.7174 - 0.1319 \times X
$

والتبيض الكامل ونسبة استطالة الخيط (%).

$
Y = 3.8697 - 0.0589 \times X
$
بعد إجراء عمليتي الغليان في القلوي باستخدام NaOH (الصودا الكاوية) تركيز 32.5% (ماء الأكسجين) تركيز 50%, ونسبة استطالة الخيط في الخيط (17), ونسبة استطالة السالب (R = -0.945) مع معنى أنه: كلما كانت نسبة الخيط رفيعة كلما قلت نسبة استطالة الخيط، وهذا الارتباط قوي، وقد استنتجت معادلة خط الانحدار وكانت:

\[Y = 35.472 - 0.01017X \]

(17) معادلة خط الانحدار للعلاقة بين نسبة الخيط ونسبة استطالة الخيط

corr

1-2-3 العلاقنة بين نسبة الخيط 3-2-3 العلاقنة بين نسبة الخيط ونسبة استطالة الخيط

Correlation Coefficient

من الجدول (2) تم استخراج معامل الارتباط للعلاقة بين نسبة الخيط ونسبة استطالة الخيط (Liner Regression) مع معنى أنه: كلما كانت نسبة الخيط رفيعة كلما قلت نسبة استطالة الخيط، وهذا الارتباط قوي، وقد استنتجت معادلة خط الانحدار وكانت:

\[Y = 7.5234 - 0.0257X \]

(18) معادلة خط الانحدار للعلاقة بين نسبة الخيط ونسبة استطالة الخيط

\[Y = 3.1725 + 0.9873X \]

(16) معادلة خط الانحدار للعلاقة بين نسبة الخيط ونسبة استطالة الخيط

Correlation Coefficient

After processing the cotton yarns, it was found that as the T.P.I (50) of the cotton yarns increased, the number of breaks increased (decreased percentage of cotton fibers). The linear regression equation (R= 0.998), which was calculated, expressed the relationship between the yarn count and the number of breaks in the yarn. The regression equation was:

\[Y = 6.7651 + 0.3325X \]

Citation: Amr Al-Laithy (2022), The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Des. Journal, Vol. 12 No. 6, (November 2022) pp 51- 64
الأخسجين) تركز 50% ونسبة الرطوبة في الخطوط كما في الشكل (21)، وقد وجد أن معامل الارتباط (R_s = 0.998)، وهذا الارتباط سالب (عكس) يعني أنه: كلما كانت نسبة الخطوط صغيرة، ولكننا قلت نسبة الرطوبة في الخطوط بعد إجراء عمليتي غليان في القلوي، ونسبة الرطوبة في الخطوط، ومن ثم التبيض الكامل بمحلول فوق أكسيد الأيدروجين (ماء H_2O_2) ونسبة الرطوبة في الخيط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل، وهذا الارتباط قوي، وقد استنتجت معادلة خط الانحدار وكانت:

Y = 10.246 - 0.0564 X

شكل (21) معدالة خط الانحدار للعلاقة بين نمرة الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط:

Research Results

1- تم استنتاج معادلة خط الانحدار للعلاقة بين نمرة الخيط في الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط، وتم استخراج معامل الارتباط (R= 0.999):

Y = 10.246 - 0.0564 X

2- تم استنتاج معادلة خط الانحدار للعلاقة بين نمرة الخيط في الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط، وتم استخراج معامل الارتباط (R= 0.999):

Y = 10.246 - 0.0564 X

3- تم استنتاج معادلة خط الانحدار للعلاقة بين نمرة الخيط في الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط، وتم استخراج معامل الارتباط (R= 0.999):

Y = 10.246 - 0.0564 X

4- تم استنتاج معادلة خط الانحدار للعلاقة بين نمرة الخيط في الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط، وتم استخراج معامل الارتباط (R= 0.999):

Y = 10.246 - 0.0564 X

5- تم استنتاج معادلة خط الانحدار للعلاقة بين نمرة الخيط في الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط، وتم استخراج معامل الارتباط (R= 0.999):

Y = 10.246 - 0.0564 X

الأخسجين) تركز 50% ونسبة الرطوبة في الخطوط كما في الشكل (19)، وقد وجد أن معامل الارتباط (R_s = 0.899)، وهذا الارتباط سالب (عكس) يعني أنه: كلما كانت نمرة الخطوط صغيرة، ولكننا قلت نسبة الرطوبة في الخطوط بعد إجراء عمليتي غليان في القلوي، ونسبة الرطوبة في الخيط، ومن ثم التبيض الكامل، ثم التبيض الكامل بمحلول فوق أكسيد الأيدروجين (ماء H_2O_2) ونسبة الرطوبة في الخيط بعد إجراء عمليتي غليان في القلوي بالتبيض الكامل، وهذا الارتباط قوي، وقد استنتجت معادلة خط الانحدار وكانت:

Y = 1.941 - 0.0141 X

شكل (19) معدالة خط الانحدار للعلاقة بين نمرة الخطوط بعد إجراء عمليتي غليان في القلوي والتبيض الكامل ونسبة الرطوبة في الخيط:

Shape Diagram

This work is licensed under a Creative Commons Attribution 4.0 International License
Hydrogen Peroxide (H₂O₂) and formaldehyde (Bleaching) treatments led to an increase in tensile strength and fiber elongation.

The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Des. Journal, Vol. 10 No. 6, (November 2022) pp 51-64

Citation: Amr Al-Laithy (2022), The Responsiveness rate of Compact Cotton Yarns Structure to Influence Initial Preparatory Processes, International Des. Journal, Vol. 10 No. 6, (November 2022) pp 51-64
لقد当你研究中心的视频时看到，你会感到惊讶。你可能会发现你从未注意到的细节。你会被吸引到新的观察和思考中，因为你意识到你对视频的解释并不总是正确的。这种对观察和理解的重新评估是物理学研究的核心。它促使科学家们不断发展新的理论和实验，以更好地理解我们宇宙的运作方式。这就是科学的本质：不断地学习和进步。
16- https://sosopoetry.blogspot.com/2013/02/compact-spinning-organisation.html, Search Date : 09 Feb. 2022.
17- https://www.researchgate.net/figure/a-The-centrepiece-of-Zinser-Impact-FX-b-Compacting-apron-22_fig6_338326691, Search Date : 09 Feb. 2022.
18- https://www.researchgate.net/publication/267585729_Compact_Spinning_A_Critical_Review, Search Date : 10 Feb. 2022.
19- Krifa, M., Ethridge, M.D. (2006), Compact spinning effect on cotton yarn quality: interactions with fiber characteristics, Textile Topics, Vol. 3.
20- Tomasino Charles (1992), Chemistry & Technology of fabric preparation & finishing, North Carolina state university, Raleigh, North Carolina

8- Artzt, Peter (1998), Compact spinning - a true-innovation in staple fiber spinning, International Textile Bulletin, 44 (5).
9- ASTM (American Standards on Textile Materials), Designations: D, 1907.
10- ASTM (American Standards on Textile Materials), Designations: D, 1425.
11- ASTM (American Standards on Textile Materials), Designations: D, 1423.
12- ASTM (American Standards on Textile Materials), Designations: D, 2256.
13- ASTM (American Standards on Textile Materials), Designations: D, 2495.
14- Basal, G., Oxenham, W. (2006), Comparison of properties and structure of compact and conventional spun yarns, Textile Research Journal, Vol. 76, No. 7.
15- https://apexprecitech.wordpress.com/2010/04/12/suessen-elite-compact-spinning-and-top-arm-load-setting, Search Date : 09 Feb. 2022.