Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage

It is never known how far a controversial finding will go!
Dedicated to Ferruccio Ritossa

Antonio De Maio

Abstract Heat shock proteins (hsp) have been found to play a fundamental role in the recovery from multiple stress conditions and to offer protection from subsequent insults. The function of hsp during stress goes beyond their intracellular localization and chaperone role as they have been detected outside cells activating signaling pathways. Extracellular hsp are likely to act as indicators of the stress conditions, priming other cells, particularly of the immune system, to avoid the propagation of the insult. Some extracellular hsp, for instance Hsp70, are associated with export vesicles, displaying a robust activation of macrophages. We have coined the term Stress Observation System (SOS) for the mechanism for sensing extracellular hsp, which we propose is a form of cellular communication during stress conditions. An enigmatic and still poorly understood process is the mechanism for the release of hsp, which do not contain any consensus secretory signal. The export of hsp appears to be a very complex phenomenon encompassing different alternative pathways. Moreover, extracellular hsp may not come in a single flavor, but rather in a variety of physical conditions. This review addresses some of our current knowledge about the release and function of extracellular hsp, in particular those associated with vesicles.

Keywords Heat shock proteins · Stress · Exosomes · Microparticles · Cellular communication · Nonclassical secretory pathway · Inflammatory mediators

Introduction

Under normal physiological conditions, cells interact with each other to synchronize their metabolic activity, gene expression, and other basic cellular processes. In other words, cells communicate to maintain homeostasis. When cells are exposed to environmental changes, such as a variation in the availability of nutrients, they communicate to adjust their metabolism for the new condition. The same situation is true when cells are confronted by stressful circumstances. Thus, stressed cells release signals to alert the rest of the organism of a potentially damaging situation. We have coined the term Stress Observation System (SOS) for the mechanism responsible for the sensing of stress conditions in the extracellular environment. Some of the stress signals released by cells correspond to heat shock proteins (hsp), which are expressed in response to the insult. The mechanism involved in the release of hsp is still very mysterious, and their role in cell activation is only just beginning to be understood. This article presents a perspective on the release and role of extracellular hsp, in particular those hsp associated with membrane vesicles, in the activation of the immune system to combat injury and infection.

Expression of hsp: the universal response to stress

Almost 50 years ago, the Italian scientist Ferruccio Ritossa discovered the heat shock response by serendipity when one of his coworkers changed the temperature of his cell incubator. Ritossa observed a novel change in the pattern of Drosophila salivary gland puffs. As a good scientist, who kept impeccable records, he related the changes in the puffs with the higher temperatures, repeated the experiments with the appropriate controls, and the heat shock response was
born. However, his discovery was initially rejected because, in the words of a prominent journal editor, “it was irrelevant to the scientific community” (Ritossa 1996), a story too often repeated with many other novel observations that challenge the conventional wisdom. Later, the stress response was correlated with the expression of hsp. A large number of hsp have been identified so far, and they are classified according to their molecular weight into discrete families. As is the case in many other disciplines, several names have been given to the same hsp. A consensus nomenclature has recently been proposed to avoid this problem (Kampinga et al. 2009). Some hsp are present in normal nonstress conditions, playing important roles in different intracellular processes, among which their role as molecular chaperones is the most recognized. In addition, their expression is enhanced or induced after a variety of stresses, including environmental and pathological conditions. The presence of hsp is important for the recovery from stress and protection from subsequent insults (De Maio 1999; Giffard et al. 2008). The biology of intracellular hsp during normal and stress conditions has been summarized by a large number of reviews (Lindquist and Craig 1988; Morimoto 1991; Bukau et al. 2006; Hartl and Hayer-Hartl 2009). Consequently, this aspect will not be further discussed in this article.

A new twist in the stress field is the detection of hsp outside cells. Initially, a heat-shock-like protein was described as a glia-axon transfer protein of the squid giant axon (Tytell et al. 1986). Independently, Hightower and Guidon (1989) found that Hsp70 was released from cells by a mechanism that cannot be blocked by inhibitors of classical secretory pathways. This observation, like Ritossa’s discovery, was initially deemed irrelevant and impossible, in spite of a large number of appropriate controls. Thus, these early observations regarding the presence of hsp in the extracellular environment were disregarded for many years. It was not until another controversial finding was reported by Asea and Calderwood (Asea et al. 2000), who found that recombinant Hsp70 was capable of activating cells of the immune system, that a possible role for extracellular hsp was reborn. The results from Asea and Calderwood were disputed based on the possibility that the activation of immune cells was due to contamination by bacterial endotoxin (Gao and Tsan 2003; Bausinger et al. 2002), or other agents (Bendz et al. 2008). These worries have been ruled out by the use of recombinant Hsp70 isolated from insect cells, nonrecombinant Hsp70, treatment with polymyxin B, boiling, or incubation in serum-free medium (Srivastava 1997; Vega et al. 2008; Zheng et al. 2010). Today, it is well established that Hsp70 is, indeed, responsible for the activation of macrophages, monocytes, dendritic cells (DC), natural killer (NK) cells, and hepatocytes, independently of contaminants (Asea et al. 2000; 2002; Basu et al. 2001; Vabulas et al. 2002; Gastpar et al. 2004; Wang et al. 2006; Kovalchin et al. 2006; Aneja et al. 2006; Vega et al. 2008; Galloway et al. 2008). Moreover, extracellular hsp have been shown to act as potent immunostimulatory or immunosuppressive molecules depending on the circumstances by which they interact with cells (Pockley et al. 2008).

Another controversial finding was related to the origin of extracellular hsp. Although Hightower and Guidon (1989) demonstrated that the release of Hsp70 was from healthy cells, others proposed that the major source of extracellular Hsp70 was due to cell lysis after necrosis (Basu et al. 2000). Hunter-Lavin et al. (2004) reported that Hsp70 was released by an active mechanism independent of cell death, confirming Hightower and Guidon’s (1989) observations. However, these studies did not rule out the possibility that necrosis could be an additional source of extracellular Hsp70. In fact, we have observed that following regional hepatic ischemia/reperfusion injury in the rat, the majority of Hsp70 in circulation is due to liver necrosis (Vazquez and De Maio, unpublished observations). Consequently, there are two different sources of extracellular Hsp70: active, due to a nonconventional secretory process, and passive, secondary to cell death and lysis. In addition to Hsp70, other hsp have been detected outside cells, such as Hsp60 (Merendino et al. 2010), Hsp90 (Tsutsumi and Neckers 2007; Sidera and Patsavoudi 2008), Grp78 (Delpino and Castelli 2002; Kern et al. 2009), and Hsp27 (Liao et al. 2009). The importance of extracellular hsp has been enlightened by the detection of Hsp70 in the serum of patients suffering from an array of conditions (Table 1). In addition, hsp have been found in the serum of apparently healthy individuals (Pockley et al. 1998). The presence of Hsp70 in circulation has also been correlated with improved survival of critically ill patients (Pittet et al. 2002; Ziegler et al. 2005). Other extracellular hsp, including Hsp27 (Liao et al. 2009), Hsp60 (Zhang et al. 2008), and Hsp90 (Tsutsumi and Neckers 2007) have been additionally linked to several diseases.

Mechanisms for the export of hsp

The fact that hsp can be detected outside cells has been puzzling, since the majority of these proteins lack the consensus signal required for secretion via the classical endoplasmic reticulum (ER)-Golgi pathway. With the exception of ER-resident hsp (Grp78 and Grp94), the majority of hsp are synthesized in the cytosol and exported to the extracellular space by an active mechanism that cannot be blocked by typical inhibitors of the ER-Golgi pathway, such as brefaldin A. Consequently, they are likely to be released by an alternative mechanism, coined the nonclassical secretory or unconventional pathway (reviewed by Nickel and Seedorf 2008). It appears that
the nonclassical secretory pathway is not a unique mechanism, but rather a collection of alternative passage-ways, which have as a common denominator the exclusion from the ER/Golgi compartment. The most prominent molecules secreted by the unconventional pathway are interleukin (IL)-1α and -1β, which are apparently released by several possible mechanisms (Eder 2008). Similarly to IL-1, the release of Hsp70 outside cells has been reported via different mechanisms. A lysosome–endosome pathway has been proposed (Mambula and Calderwood 2006). In this process, Hsp70 is translocated into lysosomes, where the protein is spared from degradation and transported to the exterior of the cell via the endocytic process. Indeed, the presence of Hsp70 in the lumen of lysomes has been reported previously (Nylandsted et al. 2004). The translocation of Hsp70 into lysosomes has been proposed via an ATP-binding cassette (ABC) transport-like system (Mambula and Calderwood 2006). Hsp70 has also been proposed to be released by secretory-like granules (Evdonin et al. 2006). We have argued that there is another mechanism for the export of Hsp70, which is mediated by the insertion of the protein into the membrane of export vesicles (Vega et al. 2008).

Another surprising and controversial finding has been the interaction of Hsp70 with membranes. Initially, Alder et al. (1990) detected currents after the addition of Hsp70 to unilamellar lipid vesicles. Ten years later, we showed that Hsp70 was capable of integrating into an artificial lipid bilayer, opening cationic conductance channels, which were very stable and regulated by adenosine triphosphate/diphosphate (ATP/ADP) (Arispe and De Maio 2000). Similarly, Hsp70 was found to open ion conductance pathways in artificial lipid bilayers (Vega et al. 2008). These observations have been expanded by other studies in which both Hsc70 and Hsp70 were capable of inducing liposome aggregation in a time-, concentration-, and nucleotide-dependent manner (Arispe et al. 2002). Moreover, it was found that the specificity of Hsp70 and Hsc70 for lipids was highly related to the presence of phosphatidylserine (PS) within membranes (Arispe et al. 2004; Schilling et al. 2009). New observations also revealed that Hsp70-induced PS-liposome aggregation could be enhanced by the coaddition of monosialotetrahexosylganglioside (GM1) and cholesterol (Fig. 1). Other sphingolipids, such as globotriaosylceramide, have also been reported to enhance Hsp70 insertion into membranes (Gehmann et al. 2008; Sugawara et al. 2009). Recently, the specificity of Hsp70 for other lipids, such as anionic phospholipid bis(monoacylglycerol)phosphate, has been reported (Nylandsted et al. 2004). In contrast, liposomes made of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol could not sustain Hsp70 membrane insertion and liposome aggregation, confirming that the presence of PS is fundamental for Hsp70 insertion (Arispe et al. 2004). Although both Hsc70 and Hsp70 channels showed the same specificity, their conductance was not identical (Arispe and De Maio 2000; Vega et al. 2008). Likewise, the kinetics of Hsc70- or Hsp70-induced liposome aggregation were different (Arispe et al. 2002), suggesting that these two protein are, indeed, functionally different, at least in their interaction with membranes. The stability observed in Hsp70/Hsc70 channels is remarkable for a protein that does not contain any consensus hydrophobic domain that can explain membrane insertion. In other words, the incorporation of Hsp70/Hsc70 into membranes cannot be predicted on the basis of their amino acid sequences. The mechanism for the insertion of Hsp70 within the lipid membrane is not known, but it is likely dependent on membrane fluidity (Horvath et al. 2008). We have proposed that Hsp70 membrane insertion may be related to the flipping/flopping of PS across the lipid bilayer. It is also possible that Hsp70/Hsc70 oligomerizes prior to or during membrane insertion, which is likely necessary for ion channel formation. Hsc70 has been shown to form low-order oligomers (Schlossman et al. 1984; Gao et al. 1996; Fouchaq et al. 1999). The C terminus end of Hsp70/Hsc70 displays a β-sheet structure, which may act as an oligomerization center. Indeed, other

Disease	Reference
Acute lung injury	Ganter et al. 2006
Cancer	Azuma et al. 2003; Faure et al. 2004
Chronic inflammation during aging	Njemini et al. 2004
Coronary artery disease	Zhu et al. 2003; Genth-Zotz et al. 2004; Zhang et al. 2010a
Diabetes	Oglesbee et al. 2005
Hypertension/pregnancy	Molvarec et al. 2006
Infection	Njemini et al. 2003
Ischemia/reperfusion	Hecker and McGarvey 2010
Myocardial infarction	Dybdahl et al. 2005
Trauma	Pittet et al. 2002; Ziegler et al. 2005
proteins with similar β-sheet structures, such as annexin, amyloid, and amylin, have been shown to form ion channels in artificial lipid bilayers (Rojas et al. 1992; Arispe et al. 1993, 1996).

The discovery of Hsp70 insertion into membranes provided an explanation for another divisive topic, the presence of hsp on the cell surface. Initially, Ferrarini et al. (1992) detected Hsp90 and, to a lesser extent, Hsp70 on the surface of several tumor cell lines. This observation was followed by a more extensive characterization of Hsp70 on the surface of transformed cells by Multhoff et al. (1995). These discoveries remained controversial for many years despite a large number of publications confirming this phenomenon (reviewed by Multhoff and Hightower 1996; Multhoff 2007). Several lines of evidence suggested that Hsp70 was not simply associated to a membrane protein, but rather inserted into the plasma membrane. The strongest argument for this observation was that only an antibody that recognized a small epitope on the C terminus end of the molecule was capable of detecting Hsp70 on the cell surface (Botzler et al. 1998). In addition, Hsp70 within the plasma membrane was found resistant to acid or basic washes (Vega et al. 2008; Gehrmann et al. 2008). Interestingly, the protein within the cell surface was found resistant to solubilization by nonionic detergents (Vega et al. 2008), suggesting that the protein may be localized within detergent-resistant microdomains (DRM), or lipid rafts, which are rich in cholesterol and sphingolipids (Brown and London 2000). Indeed, Hsp70 has been detected within the DRM fraction isolated from cells (Triantafilou et al. 2002; Broquet et al. 2003; Hunter-Lavin et al. 2004; Chen et al. 2005; Wang et al. 2006; Vega et al. 2008). These observations are supported by our findings demonstrating an increase in aggregation by addition of cholesterol and/or GM1 to PS liposomes (Fig. 1). The presence of Hsp70 and other hsp on the cell surface has been widely reported by many investigators under different physiological or pathological conditions (Table 2). Moreover, the observation that Hsp70 can be inserted into the plasma membrane opens the possibility that this association may be the gateway for the release of the protein to the extracellular space. In fact, Hsp70-containing vesicles, which were derived from the plasma membrane, have been detected in the extracellular medium (Gastpar et al. 2005; Vega et al. 2008; Chalmin et al. 2010). Hsp70 was found on the surface of these vesicles, presenting many of the characteristics of the protein within the plasma membrane, such as insolubility by Triton X-100 (Vega et al. 2008).

Another alternative mechanism for the export of hsp proteins may be related to the release of cargo within extracellular vesicles. Indeed, several hsp have been detected within extracellular vesicles (Table 3). It is very likely that cytosolic proteins, including hsp, are trapped or actively transported into the lumen of extracellular vesicles and are consequently released into the outer cellular space. Alterations in the vesicle integrity may result in the release of the cargo into circulation. A potential example for this mechanism is related to the release of high-mobility group box 1 (HMGB-1), which is not secreted by the ER-Golgi pathway (Gardella et al. 2002). HMGB-1 has been reported in extracellular vesicles derived from stimulated human epithelial cells (Liu et al. 2006). Thus, it is possible that HMGB-1 is packed into extracellular vesicles that are released into circulation, which eventually release their cargo, including this important inflammatory agent (Yang et al. 2005). This possibility matches the initial observation about the detection

Fig. 1 Liposome aggregation induced by Hsp70, effect of cholesterol and GM1. The aggregation assay was performed with PS liposomes prepared with or without GM1 (20 μg/ml), cholesterol (20% mol/mol) or a combination of both. Liposomes were incubated with Hsp70 (10 μg/ml) in 40 mM histidine–HCl, pH 6, 300 mM sucrose, 0.5 mM MgCl2, 1 mM CaCl2 at 25°C, and the change in absorbance produced as a result of the aggregation process was measured at 350 nm in a Hewlett Packard spectrophotometer, with data collected every 30 s.
of HMBG-1 in circulation during late sepsis (Wang et al. 1999). Similarly, exocytosis of endolysosome-related vesicles has also been proposed for the release of IL-1β (Andrei et al. 1999; MacKenzie et al. 2001).

Cell communication via extracellular vesicles

There are several ways that cells can communicate with each other. The most common is via soluble molecules that are placed in the extracellular environment and interact with adjacent or distant cells via specific receptors. The typical examples of this type of communication are hormones and cytokines. Cells that are placed together can also communicate via surface contact molecules, such as adhesion proteins, which have been coined “cellular synapses” (Ahmed and Xiang 2010). Moreover, cells in close proximity can exchange surface molecules by the direct transfer of membrane portions, which is known as trogocytosis, or by

Table 2 Detection of hsp on the cell surface

Hsp	Suggested name	Cells	Remarks	References
Hsp70	HSPA	Human Ewing's sarcoma and osteosarcoma cells	HS/recovery	Multhoff et al. 1995
		Human lung (LX-1) and mammary (MX-1) carcinoma cells		Botzler et al. 1998
		Human oral dysplasia and squamous cell carcinoma		Kaur et al. 1998
		Tumor biopsies		Hantschel et al. 2000
		Melanoma biopsies		Farkas et al. 2003
		Acute myeloid leukemia cells		Gehrmann et al. 2003
		Head-and-neck tumors		Kleinjung et al. 2003
		Human neutrophils	LPS	Hirsh et al. 2006
		Human colon (CX2) and pancreas (Colo357) carcinoma		Gehrmann et al. 2008
		Human HepG2 cells	HS/recovery	Vega et al. 2008
		Human fibroblast-like synovial cells		Sedlackova et al. 2009
		Colon carcinoma cells (CX2)	Hypoxia	Schilling et al. 2009
		Murine LL2 lung carcinoma		Tani et al. 2009
		Human Leukemia cells (U-937)	Heat shock	Lasunskai et al. 2010
Hsp70B	HSPA6	Human colon cells (HT-29, CRL-1809)	Proteosome inhibitors	Noonan et al. 2008
Hsp70/Hsp25	HSPA/HSPB1	Human mammary adenocarcinoma cells (4T1)	Normal/heat shock	Bausero et al. 2004
Hsp70/Hsp90	HSPA/HSPC	Human tumor cell lines GLC1 (microcitoma), lung carcinoma (P71 and A549), melanoma (MEL10 and M14), hepatoma (HEPA1)		Ferrarini et al. 1992
Hsp90	HSPC	Human neuroblastoma (NB69) cells		Cid et al. 2009; Tsutsumi and Neckers 2007
Hsp90β	HSPC3	Multipotential mesenchymal precursor cells		Gronthos et al. 1999
Grp94	HSPC4	Meth A sarcoma	Enhanced HS and exposure to reducing agents	Altmeyer et al. 1996.
Hsp60	HSPD1	Xenopus lymphoid tumor cell lines		Robert et al. 1999
Grp78	HSPA5	Liver/spleen	Infection	Belles et al. 1999
		Rat exocrine pancreas		Takemoto et al. 1992
		Atherosclerotic lesion (293T endothelial cells)	ER stress	Zhang et al. 2010b
		Prostate cancer cells (DU 145)	overexpression	Liu et al. 2003
Hsp90/Hsp70/Hsp27	HSPC/HSPA/HSB1	Dog neutrophils	H2O2	Arap et al. 2004
Hsc70	HSPA8	Bile duct formation in newborn rat liver	Morphogenic maturation	Camins et al. 1999

membrane tethers or nanotubes (Davis 2007). In addition, adjacent cells can exchange low-molecular-weight metabolites by passing them from cell to cell via gap junctions (De Maio et al. 2002). An alternative mechanism for cellular communication could be mediated by membrane vesicles released by one cell and captured by another. These vesicles contain surface molecules, lipids, and cargo, which can be of different natures, including proteins, nucleic acids, carbohydrates, and small molecules.

The importance of cellular communication via vesicles is that they contain a large number of molecules in a small volume. Thus, every target cell can be hit at the same time by a great number of recognition or signaling molecules, which is likely to be more effective than the activity of individual components in solution. For example, activation of macrophages by Hsp70 is increasingly elevated when the protein is associated with vesicles, more than 250-fold higher than the same concentration of the hsp in solution (Vega et al. 2008). This robust effect is likely due to the high concentration of Hsp70 within the vesicle. In fact, the concentration of a ligand within a 100-nm vesicle is theoretically calculated in the millimolar range, which is much larger than the circulating concentration of any hormone or other cellular activator agent. Moreover, the multiplicity of different molecules per vesicle adds a synergistic effect for the information transmitted to the target cell. Thus, it could be postulated that these vesicles interact with specific cells via surface molecules or receptors. In other words, surface molecules on the vesicles could act as recognition signals (zip codes) that direct the vesicles to specific receptors on cellular targets. These surface molecules could be directly involved in the activation of cells, or this role could be mediated by other components within the vesicles, such as cargo molecules. The process of vesicle interaction with the target cells may require endocytosis or membrane fusion.

Extracellular vesicles have different origins

The presence of extracellular vesicles has been known for a long time. However, the terminology, as in any emerging field, has been confusing, hindering the understanding of the role and origin of these vesicles. Extracellular vesicles have been coined exosomes, ectosomes, and microparticles, among many other names. Exosomes are small export vesicles initially derived from the plasma membrane, but by a mechanism involving endocytosis (Thery et al. 2009). In contrast, microparticles and ectosomes are derived directly from the plasma membrane by the formation of membrane protuberances. Initially, microparticles were described as the “dust” released by platelets (Wolf 1967). Since it was not initially clear whether or not they contained a membrane component, microparticles was an appropriate term. Today, it is known that they are encapsulated by a membrane, derived from the plasma membrane, and they may be very large, reaching diameters of up to 1,000 nm (Hugel et al. 2005; Meziani et al. 2008). Consequently, they are not properly microparticles, but rather macrovesicles. In contrast, ectosomes, which are derived from the plasma membrane, are smaller, about 50–100 nm in diameter.

Table 3 Hsp detected within extracellular vesicles

Hsp	Cells	Reference
Hsc70/Hsp70	Reticulocytes	Mathew et al. 1995
Hsp90, Hsc70	Mesothelioma	Hegmans et al. 2004
Hsp70	PBMC	Lancaster and Febbraio 2005
Hsp70, Hsc70, hsp 27, Hsp 90	B cells	Claytan et al. 2005
Hsp70	DC	Thery et al. 1999
Hsp70	Colo357/CX2	Gasparr et al. 2005
Hsp70, Hsp90, grp78	Rat hepatocytes	Conde-Vancells et al. 2008
Hsp90	Dendritic cells (DC)	Chaput et al. 2006
Mortalin/Grp75	K562	Pilzer and Fishelson 2005
Hsp70	HepG2	Vega et al. 2008
Hsp70	EL4 thymoma, TS/A mammary carcinoma, and CT26 colon carcinoma	Chalmin et al. 2010
Hsp70	mycobacteria-infected (M. smegmatis and M. avium) RAW 264.7	Anand et al. 1999
Hsp90	A172, HT-1080, MDA-MB231	McCready et al. 2010
Extracellular hsp, cellular export vesicles, and SOS

(Thery et al. 2009). The composition of exosomes, ectosomes, and microparticles is likely to be different. Density in sucrose gradients has been used as a criterion to differentiate them. However, it is unclear whether exosomes and ectosomes indeed have different density. Since the common approach to isolate extracellular vesicles is by differential centrifugation, it has been very difficult to physically separate the various types of vesicles, making it complicated to determine their specific components or markers.

Exosomes were first described as being derived during the differentiation of reticulocytes as part of a mechanism to release unwanted molecules (Harding et al. 1983; Pan et al. 1985). They are derived by a process in which the plasma membrane is internalized by endocytosis, followed by the formation of late endosomes. In this last compartment, the membrane of the endocytic vesicle is invaginated inward and sealed, resulting in vesicles within larger vesicles, called multivesicular bodies (MVB). Then, MVB fuse with the plasma membrane, liberating the internal vesicles (exosomes), 40–100 nm, which are then free in the extracellular environment (Johnstone 2006; Thery et al. 2009). The major characteristic of this process is that the vesicles that are released have the same topology as the plasma membrane. However, not all plasma membrane components are present in exosomes, suggesting a level of specificity for their assembly. Exosomes have been found to contain transferrin receptor, tetraspanins (CD9, CD63, CD81, and CD82), and Glycosylphosphatidylinositol (GPI) anchored glycoproteins, such as acetycholinesterase. In addition, exosomes are also rich in cholesterol and sphingolipids (Simpson et al. 2008; Thery et al. 2009). These observations suggest that DRM or lipid rafts are present in these extracellular vesicles (de Gassart et al. 2003). Exosomes also contain some members of the endocytosis pathway, such as Rabs, which have been implicated in exosome formation (Savina et al. 2002; Ostrowski et al. 2010). Moreover, the release of exosomes is apparently calcium-dependent (Savina et al. 2003). Since exosomes are made by invaginations of the endosomal membrane, they pinch out some cytosolic molecules. In fact, a protein that has been detected in many exosome preparations is Hsc70. Originally, it was speculated that Hsc70 was present because of its high cytosolic abundance (approximately 10^7 molecules/cell). However, other proteins present in large concentrations in the cytosol have not been detected in exosomes. Thus, the theory is that the composition of exosome cargo is also very specific. Exosomes have been observed derived from a large number of cells in different physiological conditions (Simpson et al. 2008), including B cells (Raposo et al. 1996), T cells (Blanchard et al. 2002), DC (Zitvogel et al. 1998), macrophages (Bhatnagar et al. 2007), and mast cells (Raposo et al. 1997). They have been also associated with an important role in cancer and pathogen biology (Schorey and Bhatnagar 2008; O’Neill and Quah 2008).

In contrast to exosomes, microparticles, or ectosomes, are derived directly from the plasma membrane without the involvement of the endocytic pathway. The mechanism implies the formation of membrane protuberances or blebs, which at critical sizes are sealed and released (Hugel et al. 2005; Meziani et al. 2008). These vesicles are also likely to contain plasma membrane components and several cytosolic factors that are imported into the emerging vesicle. Interestingly, ectosomes and microparticles are also very rich in lipid raft components (Hugel et al. 2005; Lopez et al. 2005). In fact, it has been proposed that microparticles are derived from lipid rafts (del Conde et al. 2005). Similarly with exosomes, microparticles, or ectosomes, are not absolute replicas of the plasma membrane, suggesting a level of selectivity in their formation. These vesicles also likely require actin polymerization for their formation. Consequently, it is possible that F-actin is present within them. As mentioned above, microparticles tend to be large (100–1000 nm) and can be isolated by low g force and characterized by flow cytometry (Thery et al. 2009; Gelderman and Simak 2008). Microparticles have been shown to display immunosuppressive function (Sadallah et al. 2008), and they have also been implicated in angiogenesis (Mostefai et al. 2008). Microparticles have been proposed as markers of endothelium dysfunction (Horstman et al. 2004) and other conditions (Smalley and Ley 2008; Meziani et al. 2008). Small vesicles, which are commonly called ectosomes, might also be released through budding of the plasma membrane. Thus, size is not the main criteria to classify extracellular vesicles as exosomes or ectosomes. Therefore, the term exosomes should be restricted to vesicles that are derived via MVB. In other words, not all 5- to 100-nm vesicles detected outside cells are exosomes. Microparticles, ectosomes, and exosomes are different than vesicles derived from apoptotic cells. During cell death, there is a significant bleed of the plasma membrane and a release of vesicles, which have been coined apoptotic blebs or apoptotic vesicles. These vesicles are likely part of the cell shrinking process during apoptosis (Hristov et al. 2004). Apoptotic blebs probably contain a large variety of cellular components (membrane, cytosolic, and nuclear) without any specificity. They are possibly of different sizes and denser than exosomes (Thery et al. 2009). Their biological role, if any, remains to be established.

Extracellular vesicles and the SOS

Cells also secrete extracellular or export vesicles in response to stress, which could be specifically coined
Stress Cellular Vesicles. The idea is that these extracellular vesicles contain particular molecules, such as hsp, whose expression is induced during the stress. These extracellular vesicles are recognized by other cell types, in particular cells of the immune system, as part of an assessment of the stress conditions. Particular components of extracellular vesicles may act as signals to activate a preemptive response in distant cells. We have coined this phenomenon the SOS. It is likely that the specific cellular response depends on the composition of extracellular vesicles. The presence of extracellular vesicles has been observed in a large number of disease conditions (Table 4). For example, extracellular vesicles that were isolated from the plasma of septic patients induced myocardial dysfunction in isolated rabbit hearts and rat papillary muscle preparations (Azevedo et al. 2007). The incidence of aortic valve stenosis has been associated with the presence of extracellular vesicles derived from platelets after high shear stress. These extracellular vesicles could further activate leukocytes and monocytes to produce more vesicles, resulting in endothelial cell injury (Diehl et al. 2008; Ahn et al. 2008). Extracellular vesicles derived from macrophages infected with intracellular pathogens were found to activate uninfected macrophages by a Toll-like receptor (Tlr) and myeloid differentiation factor 88 (My88) mechanism. They also induced polymorphonuclear leukocyte recruitment in lungs after intranasal delivery (Bhatnagar et al. 2007). Export vesicles isolated in the bronchoalveolar fluid of allergen-tolerized mice were reported to prevent an allergic reaction (Prado et al. 2008).

Extracellular vesicles have been purified from different sources, including epididymal fluid and seminal plasma (Gatti et al. 2005), broncoalveolar fluid (Admyre et al. 2003), amniotic fluid (Keller et al. 2007), blood (Caby et al. 2005), and urine (Keller et al. 2007). Hsp have been detected in preparations of extracellular vesicles from different cell types as mentioned before (Table 3). Moreover, these hsp-containing vesicles have been found to have a biological function. For example, vesicles containing Hsp70 on their surface displayed a robust and specific activation of macrophages, which was more robust than the same concentration of recombinant Hsp70 in solution (Vega et al. 2008). Hsp70-positive extracellular

![Table 4 Extracellular vesicles in disease](image)

Disease	Source of ECV	References (101–125)
Acute Coronary Syndromes	Endothelial cells, platelets	Mallat et al. 2000; Bernal-Mizrachi et al. 2004
Acute ischemic stroke	Endothelial cells	Simak et al. 2006
Allergy	Bronchial alveolar fluids	Prado et al. 2008
Aortic valve stenosis	Platelets	Diehl et al. 2008
Arteriosclerosis obliterans	Platelets	Nomura et al. 2000
Cancer	Several tumors or cell lines	Hegmans et al. 2004; Gastpar et al. 2005; Chalmin et al. 2010
Cardiopulmonary bypass	Multiple sources	Nieuwland et al. 1997
Congestive heart failure	Endothelial cells	Rossig et al. 2000
Diabetes	Total, platelets, monocytes, endothelial	Koga et al. 2005; Sabatier et al. 2002; Nomura et al. 1995; Ogata et al. 2006; Leroyer et al. 2008; Esposito et al. 2008
End-stage renal disease	Endothelial cells	Faure et al. 2006
Erectile dysfunction	Endothelial cells	Esposito et al. 2008
Hypertension	Endothelial cells, monocytes, platelets	Preston et al. 2003
Infection	Macrophages	Bhatnagar et al. 2007
Lupus anticoagulant	Endothelial cells	Combes et al. 1999
Metabolic syndrome	Endothelial cells, tissue factor (+)	Diamant et al. 2002; Arteaga et al. 2006
Paroxysmal nocturnal hemoglobinuria	Platelets, endothelial cells	Hugel et al. 1999; Simak et al. 2004
Preeclampsia	Leukocytes	Bretelle et al. 2003; Gonzalez-Quintero et al. 2004
Pulmonary and venous embolism	Platelets, endothelial cells	Chirinos et al. 2005; Inami et al. 2003
Pulmonary hypertension	Endothelial cells	Amabile et al. 2008
Sepsis	Leukocytes	Nieuwland et al. 2000; Joop et al. 2001
Sepsis	Plasma	Azvedo et al. 2007
Sickle cell disease	Multiple sources	Shet et al. 2003
Thrombotic thrombocytopenic purpura	Platelets, endothelial cells	Kelton et al. 1992; Jimenez et al. 2003
vesicles were also found to stimulate the cytotoxic capacity of NK cells (Gastpar et al. 2005). Vesicles containing Hsp70 isolated from mycobacteria-infected cells induced an inflammatory response in macrophages (O’Neill and Quah 2008). In contrast, Hsp70-membrane-associated vesicles could induce an immunosuppressive effect (Chalmin et al. 2010). Thus, it is possible that Hsp70 within export vesicles plays different roles depending on composition, vesicle source, and cell target. The mechanism for the recognition of extracellular (stress) vesicles by target cells is not known. However, it is likely that they are specifically detected by the presence of surface signals. One possibility is that extracellular vesicles lose the lipid asymmetry typical of the plasma membrane (Zwaal et al. 2005), exposing PS moieties on the surface of the vesicle. Macrophages may engulf these vesicles via surface receptors that recognize this lipid, such as Tim-4 (Miyanishi et al. 2007) and BAI1 (Park et al. 2007). These receptors have been investigated in the context of uptake of apoptotic cells, which display PS on the surface as part of the cell death process. If extracellular vesicles are recognized by the presence of PS, it is likely that other components within the vesicle may be responsible for a secondary effect, such as the presence of Hsp70 (Fig. 2). Whether this effect occurs concomitantly via a surface receptor or during an endocytic process remains to be established. The other possibility is that molecules on the surface of extracellular vesicles are specifically recognized by receptors on the target cell (Fig. 2). For example, several receptors have been proposed to recognize Hsp70, including Tlr 2 and 4 (Asea et al. 2002), CD14 (Asea et al. 2000), CD91 (Basu et al. 2001), CD40 (Becker et al. 2002; Wang et al. 2001), and scavenger receptors (Theriault et al. 2006; Facciponte et al. 2007). However, some of these observations have been controversial (Binder 2009). Whether these molecules are involved in the recognition of Hsp70-positive vesicles remains to be established. It could also be speculated that the presence of different stress signals of the vesicles may be recognized by various cell types or may trigger different responses.

Concluding remarks

The biology related to extracellular hsp is in exponential growth, leading to the discovery of more processes activated by these molecules. The multiple roles that have been associated with hsp, inside and outside cells, are remarkable. So far, we have gained a great deal of knowledge regarding the mechanisms for hsp export, which are likely to comprise multiple pathways. Similarly, it is evident that extracellular hsp come in different flavors, such as membrane-bound and membrane-free, each one with a specific systemic function. It could be envisioned that more mechanistic details for the release and function of hsp will be discovered within the next few years. It is amazing how far these disregarded initial discoveries have driven research on the stress response. However, we can expect more controversy to continue to arise, since it has been a common feature of this field.
Acknowledgements I would like to thank Nelson Arispe for providing me with the necessary expertise to understand the complex world of lipids and membranes and for the preparation of Fig. 1, David Cauvi for providing helpful comments and the preparation of Fig. 2, Virginia Vega for her constructive criticism and long-time loyalty, and, finally, Molly Wofford for her impeccable editorial assistance.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Admyre C, Grunewald J, Thyberg J, Grienback S, Tornling G, Eklund A, Scheynius A, Gabrielson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583
Ahmed KA, Xiang J (2010) Mechanisms of cellular communication through intercellular protein transfer. J Cell Mol Med PMID. doi:10.1111/j.1582-4934.2010.01008.x
Ahn YS, Jy W, Horstman LL, Jimenez JJ (2008) Cell-derived microparticles: a mediator of inflammation in aortic valve stenosis? Thromb Haemost 99:657–658
Alder GM, Austen BM, Bashford CL, Mehliert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Bioskri Rep 10:509–518
Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP
Arispe N, Doh M, Simakova O, Kurganov B, De Maio A (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645
Arteaga RB, Chirinos JA, Soriano AO, Jy W, Horstman L, Jimenez JJ, Mendez A, Ferreira A, de Marchena E, Ahn YS (2006) Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am J Cardiol 98:70–74
Ase a A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442
Ase a A, Relhi M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034
Azevedo LC, Janiszewski M, Pontieri V, Pedro Mde A, Bassi E, Tucci PJ, Laurindo FR (2007) Platelet-derived exosomes from septic shock patients induces myocardial dysfunction. Crit Care 11: R120
Azuma K, Shichijo S, Takedatsu H, Komatsu N, Sawamizu H, Itoh K (2003) Heat shock cognate protein 70 encodes antigenic epitopes recognised by HLA-B4601-restricted cytotoxic T lymphocytes from cancer patients. Br J Cancer 89:1079–1085
Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546
Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313
Bauersco MA, Page DT, Osinaga E, Asea A (2004) Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour Biol 25:243–251
Bausinger H, Lipsker D, Hanau D (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:342–343
Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285
Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67:4191–4200
Bendz H, Marineck BC, Momburg F, Ellwart JW, Issels RD, Nelson PJ, Noessner E (2008) Calcium signaling in dendritic cells by human or mycobacterial Hsp70 is caused by contamination and is not required for Hsp70-mediated enhancement of cross-presentation. J Biol Chem 283:26477–26483
Bernal-Mizrachi L, Jy W, Fierro C, MacDonough R, Velazques HH, Purow J, Jimenez JJ, Horstman LL, Ferreira A, de Marchena E, Ahn YS (2004) Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 97:439–446
Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110:3234–3244
Binder RJ (2009) CD40-independent engagement of mammalian hsp70 by antigen-presenting cells. J Immunol 182:6848–6850
Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Rappo G, Hivroz C (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168:3235–3241
Botzler C, Li G, Issels RD, Multhoff G (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3:6–11

Brettelle F, Sabatier F, Desprez D, Camoin L, Grunebaum L, Combes V, D’Ercole C, Dignat-George F (2003) Circulating microproteins: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost 89:486–492.

Broquet AH, Thomas G, Masliah J, Trugnan G, Bachele M (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J Biol Chem 278:21601–21606.

Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224.

Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451.

Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (1998) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471.

Chaput N, Flament C, Viaud S, Taieb J, Roux S et al (2006) Dendritic cell derived-exosomes: biology and clinical implementations. J Leukocyte Biol 80:471–478.

Chen S, Bawa D, Beshoh S, Gurd JW, Brown IR (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–529.

Chirinos JA, Heresi GA, Velasquez H, Jimenez JyW, JJ AE et al (2005) Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. Am J Cardiol 45:1467–1471.

Cid C, Regidor I, Poveda P, Alcazar A (2009) Expression of heat shock protein 90 at the cell surface in human neuroblastoma cells. Cell Stress Chaperones 14:321–327.

Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887.

Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, Claymin F, Ladoire S, Mignot G, Vincent J, Bruchard M et al (2010) Mechanisms of interleukin-1beta release. Immunobiology 214:543–553.

Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106:2442–2447.

Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M (2008) Increased levels of circulating microproteins in patients with severe aortic valve stenosis. Thromb Haemost 99:711–719.

Dybdahl B, Slوردahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91:299–304.

Eder C (2008) Mechanisms of interleukin-1beta release. Immunobiology 214:543–553.

Esposito K, Ciutola M, Giugliano F, Sardelli L, Giugliano F, Maieron MI, Beneduce F, De Sio M, Giugliano D (2008) Phenotypic assessment of endothelial microparticles in diabetic and nondiabetic men with erectile dysfunction. J Sexual Med 5:1436–1442.

Evdonin AL, Martynova MG, Byストロバ OA, Gruzha OA, Margulis B, Medvedeva N (2006) The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 85:443–455.

Facciponte JG, Wang XY, Subjeck JR (2007) Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur J Immunol 37:2268–2279.

Farkas B, Hantschel M, Magyarlaki M, Becker B, Scherer K et al (2003) Heat shock protein 70 membrane expression and melano-mama-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 13:147–152.

Faure O, Graff-Dubois S, Bretaudeau L, Derre L, Gross DA et al (2004) Inducible Hsp70 as target of anticancer immunotherapy: Identification of HLA-A*0201-restricted epitopes. Int J Cancer 108:863–870.

Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4:566–573.

Ferrarin M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619.

Fouchaq B, Benaroudj N, Ebel C, Ladjimi MM (1999) Oligomerization of the 17-kDa heat shock protein polymerization on its interaction with protein substrates. J Biol Chem 271:16792–16797.

Farkas B, Hantschel M, Magyarlaki M, Becker B, Scherer K et al (2003) Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res 13:147–152.

Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4:566–573.

Ferrarin M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619.

Fouchaq B, Benaroudj N, Ebel C, Ladjimi MM (1999) Oligomerization of the 17-kDa heat shock protein polymerization on its interaction with protein substrates. J Biol Chem 271:16792–16797.

Falk CAB, Furcht LF, Ebel C, Ladjimi MM (1999) Oligomerization of the 17-kDa heat shock protein polymerization on its interaction with protein substrates. J Biol Chem 271:16792–16797.

Galloway E, Shin T, Huber N, Eismann T, Kuboki S, Schuster R, Blanchard J, Wong HR, Lentsch AB (2008) Activation of hepatocytes by extracellular heat shock protein 72. Am J Physiol Cell Physiol 295:C514–520.

Ganter MT, Ware LB, Howard M, Roux J, Gartland B, Matthay MA, Fleschner M, Pittet JF (2006) Extracellular heat shock protein 72 is a marker of the stress protein response in acute lung injury. Am J Physiol Lung Cell Mol Physiol 291:L354–L631.

Gao B, Eisenberg E, Greene L (1996) Effect of constitutive 70-kDa heat shock protein polymerization on its interaction with protein substrate. J Biol Chem 271:16792–16797.

Gardella S, Andrei C, Ferrarra D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001.

Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multthoff F (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172:972–980.
Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

Gatti JL, Metayer S, Belghazi M, Dacheux F, Dacheux JL (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol Reprod 7:1452–1465

Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476

Gehrmann M, Liebisch G, Schmitz G, Anderson R, Steinem C, De Maio A, Pockley G, Multhoff G (2008) Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gh3. PLoS ONE 3:e1925

Gelderman MP, Simak J (2008) Flow cytometric analysis of cell membrane microparticles. Methods Mol Biol 484:79–93

Genth-Zotz S, Bolger AP, Kalra PR, von Haelhing S, Doechner W, Coats A, Volk HD, Anker SD (2004) Heat shock protein 70 in patients with chronic heart failure: relation to disease severity and survival. Int J Cardiol 96:397–401

Giffard RG, Han RQ, Emery JF, Duan M, Pittet JF (2008) Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70. Anesthesiology 109:339–348

Gonzalez-Quintero VH, Smarkusky LP, Jimenez JJ, Mauro L, Jy W, Gelderman MP, Simak J, von Haelhing S, Doechner W, Coats A, Volk HD, Anker SD (2004) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476

Gonzalez-Suitemo VH, Smarkusky LP, Jimenez JJ, Mauro L, Jy W, Horstman LL, O’ Sullivan MJ, Ahn YS (2004) Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension. Am J Obstet Gynecol 191:1418–1424

Gronthos S, Zannettino AC, Graves SE, Ohta S, Hay SJ, Simmons PJ (1999) Differential cellular surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J Bone Miner Res 14:47–56

Hantschel M, Pfister K, Jordan A, Scholz R, Andreessen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G (2000) Hsp70 plasma membrane expression on primary tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones 5:438–442

Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

Harl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574–581

Hecker JG, McGarvey M (2010) Heat shock proteins as biomarkers for the rapid detection of brain and spinal cord ischemia: a review and comparison to other methods of detection in thoracic aneurysm repair. Cell Stress Chaperones, epub Aug. 30

Hegmans JP, Bard MP, Hemmes A, Luider TM, Kleijnier M, Prins JB, Zitvogel L, Burgers SA, Hoogsteden H, Lambrecht B (2004) Proteomic analysis of exosomes secreted by human mesothelio- ma cells. Am J Pathol 164:1807–1815

Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

Hirsh MI, Hashiguchi N, Chen Y, Yap L, Junger WG (2006) Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammagammaT cell-mediated killing. Eur J Immunol 36:712–721

Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9:1118–1135

Horvath I, Multhoff G, Sonnleitner A, Vigh L (2008) Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778:1653–1664

Hristov M, Egl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differenti-
membrane translocation of 70-kDa heat shock protein in viable, but not in apoptotic, U-937 leukemia cells. APMIS 118:179–187

Leroyer AS, Tedgui A, Boulander CM (2008) Microparticles and type 2 diabetes. Diabetes Metab 34:S27–S32

Liao WS, Wu MS, Wang HP, Tren YW, Lin JT (2009) Serum heat shock protein 27 is increased in chronic pancreatitis and pancreatic cancer. Pancreas 38:422–426

Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:316–377

Liu C, Bhattacharjee G, Boisvert W, Dilley R, Edgington T (2003) In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am J Pathol 163:1859–1871

Liu S, Stolz DB, Sappington PL, Macias CA, Killeen M, Tenhunen J, Delude R, Fink M (2006) HMGB1 is secreted by immunostimulated enterocytes and contributes to cytokinin-induced hyperpermeability of Caco-2 monolayers. Am J Physiol 290:C990–999

Lopez JA, de Conde I, Shrimpton CN (2005) Receptors, rafts, and microvesicles in thrombosis and inflammation. J Thromb Haemost 3:1737–1744

MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North R, Suprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet J, Mambula SS, Calderwood SK (2006) Heat shock protein 70 is increased in chronic pancreatitis and superimposed preeclampsia and eclampsia and superimposed preeclampsia: a case-control study. J Matern Fetal Neonatal Med 18:377–386

MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North R, Suprenant A, Meier T, Wilmanns W (2006) Identification of Tim4 as a phosphatidylserine receptor. J Biol Chem 281:18710–18718

Malmstrom M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S, Mills DR, Haskell MD, Callanan HM, Flanagan D, Brilliant K, Yang PL, Osborn EJ, Fournier G, Hightower LE Jr (2006) Association of elevated serum heat-shock protein 70 levels with transient hypertension of pregnancy, pre-eclampsia and superimposed preeclampsia. J Hum Hypertens 20:780–786

Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet J, Mallat Z, Benamer H, Hugel B, Benessiano J, Steg PG, Freyssinet J, Mambula SS, Calderwood SK (2006) Heat shock protein 70 is increased in chronic pancreatitis and superimposed preeclampsia and eclampsia and superimposed preeclampsia: a case-control study. J Matern Fetal Neonatal Med 18:377–386

Malmstrom M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S, Mills DR, Haskell MD, Callanan HM, Flanagan D, Brilliant K, Yang PL, Osborn EJ, Fournier G, Hightower LE Jr (2006) Association of elevated serum heat-shock protein 70 levels with transient hypertension of pregnancy, pre-eclampsia and superimposed preeclampsia. J Hum Hypertens 20:780–786

Mills DR, Haskell MD, Callanan HM, Flanagan D, Brant K, Yang D, Hixson D (2010) Monoclonal antibody to novel cell surface epitope on Hsc70 promotes morphogenesis of bile ducts in newborn rat liver. Cell Stress Chaperones 15:39–53

Miyaniishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

Molvarec A, Prohaszka Z, Sazaly J, Fust G, Karadi I, Rigo J Jr (2006) Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, pre-eclampsia and superimposed pre-eclampsia: a case-control study. J Hum Hypertens 20:780–786

Morimoto RI (1991) Heat shock: the role of transient inducible responses in cell damage, transformation and differentiation. Cancer Cells 3:295–301

Mostefai HA, Andriantsitohaina R, Martinez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res Acad Sci Bohemoslov 57:311–320

Multhoff G (2007) Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods 43:229–237

Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176

Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W (1995) A stress-inducible 72 kDa heat shock protein (Hsp72) is expressed on the surface of human tumor cells but not on normal cells. Int J Cancer 61:272–279

Nickel W, Seedorf M (2008) Uneconomic mechanisms of protein transport to the cell surface of eukaryotic cells. Annu Rev Dev Biol 25:259–287

Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin K, Roozendael K, Jansen P, ten Have K, Eijjsman L, Hack CE, Sturk A (1997) Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 96:3534–3541

Nieuwland R, Berckmans RJ, McGregor S, Boing A, Romijn F, Westendorp R, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95:930–935

Njemini R, Lambert M, Demanet C, Mets T (2003) Elevated serum heat-shock protein 70 levels in patients with acute infection: use of an optimized enzyme-linked immunosorbent assay. Scand J Immunol 58:664–669

Njemini R, Demanet C, Mets T (2004) Inflammatory status as an important determinant of heat shock protein 70 serum concentrations during aging. Biogerontology 5:31–38

Nomura S, Suzuki M, Katsura K, Xie G, Miyazaki Y, Miyake T, Kido H, Kagawa H, Fukuhara S (1995) Platelet-derived microparticles may influence the development of atherosclerosis in diabetes mellitus. Atherosclerosis 116:235–240

Nomura S, Imamura A, Okuno M, Kamiyama Y, Fujimura Y, Ikeda Y, Fukuhara S (2000) Platelet-derived microparticles in patients with arteriosclerosis obliterans: enhancement of high shear-induced microparticle generation by cytokines. Thromb Res 89:257–268

Noonan EJ, Fournier G, Hightower LE (2008) Surface expression of Hsp70B in response to proteasome inhibition in human colon cells. Cell Stress Chaperones 13:105–110

Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Mathew A, Bell A, Johnstone RM (1995) Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem J 308:823–830

O’Neill HC, Quah BJ (2008) Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal 1:pe8

Ostrowski M, Carro NB, Kruych F, Fanget I, Raposo G et al (2010) Rab72a and Rab27b control different steps of the exosomes secretion pathway. Nat Cell Bio 12:19–24

Ogata H, Tokuyama K, Nagasaka S, Ando A, Kasaka I et al (2006) Long-range negative correlation of glucose dynamics in humans and its breakdown in diabetes mellitus. Am J Physiol 291:R1638–R1643

Oglesbee MJ, Herdman AV, Passmore GG, Hoffman WH (2005) Diabetic ketoacidosis increases extracellular levels of the major inducible 70-kDa heat shock protein. Clin Biochem 38:900–904

Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:669

Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney L, Ma Z, Klibanov A, Mandell J, Ravichandran K (2007) BAII is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

Pelzer D, Fishelson Z (2005) Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 17:1239–1248
Pittet JF, Lee H, Morabito D, Howard M, Welch W, Mackersie R (2002) Serum levels of Hsp 72 measured early after trauma correlate with survival. J Trauma 52:611–617

Pockley AG, Shepherd J, Corton JM (1998) Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 27:367–377

Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

Prado N, Marazuela EG, Segura E, Fernández-García H, Villalba M, Thery C, Rodríguez R, Batanero E (2008) Exosomes from bone-marrowveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525

Preston RA, Jy W, Jimenez IJ, Mauro M, Horstman L, Valle M, Aime G, Ahn YS (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41:211–217

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding C, Melief C, Geuze H (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645

Ritossa F (1996) Discovery of the heat shock response. Cell Stress Chaperones 1:97–98

Robert J, Menoret A, Cohen N (1999) Cell surface expression of the endoplasmic reticular heat shock protein gp96 is phylogenetically conserved. J Immunol 163:4133–4139

Rojas E, Arispe N, Haigler HT, Burns AL, Pollard JS, Schorey JS, Bhatnagar S (2008) Exosome function: from tumor conveyors of immune responses. Nat Rev 9:581–593

Srivastava PK (1997) Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods 12:165–171

Sugawara S, Kawano T, Omoto T, Hosono N, Tatsuta T, Nitta K (2009) Binding of Silurus asotus leucon to GB3 on Raji cells causes disappearance of membrane-bound form of HSP70. Biochim Biophys Acta 1790:101–109

Tkemato H, Yoshimori T, Yamamoto A, Miyata Y, Yahara I, Inoue K, Tashiro Y (1992) Heavy chain binding protein (BiP/GRP78) and endoplasm in are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys 296:129–136

Tani F, Ohno M, Furukawa Y, Sakamoto M, Masuda S, Kitabatake N (2009) Surface expression of a C-terminal alpha-helix region in heat shock protein 72 on murine LL/2 lung carcinoma can be recognized by innate immune sentinels. Mol Immunol 46:1326–1339

Theriault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611

Thery C, Regnault A, Garin J, Wolters J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610

Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev 9:581–593

Triantafillou M, Miyake K, Golenbock DT, Triantafillou K (2002) Mediators of innate immune recognition of bacteria concentrate in lipids rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:26302611

Tsunumi S, Neckers L (2007) Extracellular heat shock protein 90: a role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci 98:1536–1539

Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

Vabulas RM, Ahmad-Nejad P, Ghose S, Kirchning C, Issels R, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

Vega VL, Rodriguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates from glia to axon. Brain Res 363:161–164

Vabulas RM, Ahmad-Nejad P, Ghose S, Kirchning C, Issels R, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

Wang Y, Kelly CG, Karetten JT, Whittall T, Lehrer P et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983

Wang R, Kovalchin JT, Muhlenkamp P, Chandawarkar RY (2006) Exogenous heat shock protein 70 binds macrophage lipid raft microdomain and stimulates phagocytosis, processing, and MHC-II presentation of antigens. Blood 107:1636–1642

Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288
Yang H, Wang H, Czura CJ, Tracey KJ (2005) The cytokine activity of HMGB1. J Leukoc Biol 78:1–8
Zhang X, He M, Cheng L et al (2008) Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118:2687–2693
Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM, Wu T (2010a) Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 15:675–686
Zhang Y, Liu R, Ni M, Gill P, Lee AS (2010b) Cell surface relocalization of the endoplasmic reticulum chaperone and unfolded protein response regulator GRP78/BiP. J Biol Chem 285:15065–15075
Zheng H, Nagaraja GM, Kaur P, Asea EE, Asea A (2010) Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained. J Biol Chem 285:349–356
Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogumakinwa J, Halcox J, Se E (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059
Ziegler TR, Ogden LG, Singleton KD, Luo M, Fernandez-Esstivariz C, Griffith D, Galloway J, Wischmeyer P (2005) Parenteral glutamine increases serum heat shock protein 70 in critically ill patients. Intensive Care Med 31:1079–1086
Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600
Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988