Toxoplasma gondii Infection in Marine Animal Species, as a Potential Source of Food Contamination: A Systematic Review and Meta‑Analysis

Ehsan Ahmadpour¹,² · Mohamad Taghi Rahimi³ · Altin Ghojoghi⁴ · Fatemeh Rezaei⁵ · Kareem Hatam‑Nahavandi⁶ · Sónia M. R. Oliveira⁷,⁸ · Maria de Lourdes Pereira⁷,⁹ · Hamidreza Majidiani¹⁰ · Abolghasem Siyatpanah¹¹ · Samira Elhamirad¹² · Wei Cong¹³ · Abdol Sattar Pagheh¹²

Received: 30 August 2021 / Accepted: 9 December 2021 / Published online: 17 January 2022
© The Author(s) under exclusive licence to Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2022

Abstract

Purpose Many marine animals are infected and susceptible to toxoplasmosis, which is considered as a potential transmission source of *Toxoplasma gondii* to other hosts, especially humans. The current systematic review and meta-analysis aimed to determine the prevalence of *T. gondii* infection among sea animal species worldwide and highlight the existing gaps.

Methods Data collection was systematically done through searching databases, including PubMed, Science Direct, Google Scholar, Scopus, and Web of Science from 1997 to July 2020.

Results Our search strategy resulted in the retrieval of 55 eligible studies reporting the prevalence of marine *T. gondii* infection. The highest prevalence belonged to mustelids (sea otter) with 54.8% (95% CI 34.21–74.57) and cetaceans (whale, dolphin, and porpoise) with 30.92% (95% CI 17.85–45.76). The microscopic agglutination test (MAT) with 41 records and indirect immunofluorescence assay (IFA) with 30 records were the most applied diagnostic techniques for *T. gondii* detection in marine species.

Conclusions Our results indicated the geographic distribution and spectrum of infected marine species with *T. gondii* in different parts of the world. The spread of *T. gondii* among marine animals can affect the health of humans and other animals; in addition, it is possible that marine mammals act as sentinels of environmental contamination, especially the parasites by consuming water or prey species.

¹ Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
² Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
³ School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
⁴ Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
⁵ Islamic Azad University of Chalus Branch, Chalus, Iran
⁶ School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
⁷ CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
⁸ Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
⁹ Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
¹⁰ Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
¹¹ Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
¹² Infectious Diseases Research Center, Birjand University of Medical Sciences, PO Box 9717853577, Birjand, Iran
¹³ Marine College, Shandong University, Weihai, China

Springer
Introduction

Marine species constitute a very diverse group of animals with global distribution, mostly along coastal regions or habitat [1]. The human population density in coastal areas greatly increased during the recent decades and zoonotic pathogens can be transmitted to humans directly or indirectly from marine animals [2]. Thus, the health of marine mammals can substantially influence human’s well-being. Toxoplasmosis, caused by the intracellular protozoan Toxoplasma gondii, is a zoonotic infection with felids as definitive hosts, and a wide range of homoeothermic vertebrates as intermediate hosts [3, 4]. Pregnant women and immunocompromised patients are at a higher risk for developing the clinical disease with harsh outcomes, including congenital toxoplasmosis (hydrocephalus, chorioretinitis, and cerebral calcifications) and life-threatening encephalitis [5–7]. Understanding T. gondii transmission routes in wild, free-ranging marine mammals is problematic. There are three possible routes by which marine animals could become infected with T. gondii, including: ingestion of oocysts, ingestion of bradyzoites in tissue cysts of other intermediate hosts or vertically. Oocysts are shed via cat feces into the environment, which can readily infect several animal species [8, 9]. Small T. gondii oocysts show remarkable resistance to common disinfectants and remain alive in moist surroundings, even when exposed to a vast range of salinity and temperature.
conditions. This environmental tolerance leads to in fast and extensive dispersal of infection, particularly following heavy rain falls. The runoff originated from rainfalls alongside wastewater outfalls being likely contaminated with stray/feral cat fecal material make a huge depot of infective oocysts, which are usually discharged into a water body, i.e., sea and ocean, posing potential risk of *T. gondii* infection in those species dwelling in marine habitats [10]. In another way, marine animals acquired infection through ingestion of *T. gondii* protozoal cyst containing numerous bradyzoites. In areas where definitive hosts are rare and the viability of oocysts are likely limited due to freezing conditions, such as the Canadian Arctic, this could explain how animals are exposed to *T. gondii*. A number of investigators have pointed out that oocysts and bradyzoites of *T. gondii* are concentrated by oysters, clams and mussels during filter-feeding activity. It is noteworthy that the role of vertical transmission of toxoplasmosis in marine animals is unknown [9]. These are highly promising findings, but the precise mode of transmission is still open to question. Experimentally, oocyst sporulation occurs in seawater, remaining infective for animals for 6–24 months, depending on the temperature [11, 12].

During the last decades, a number of studies have reported *T. gondii* infection in marine animals, such as cetaceans, pinnipeds, sirenians, and sea otters (*Enhydra lutris*) [13–16]. Disseminated clinical disease has also been documented in adult or sometimes neonate marine mammals from Europe, USA, and Australia [17–19], with some degree of morbidity observed, for example, in the sea otters [13, 20, 21] and in the Pacific harbor seal (*Phoca vitulina richardsi*) [22, 23]. Furthermore, it seems that some species have been threatened and endangered in part due to toxoplasmosis [3, 24].

The increasing amount of anthropogenic toxicants discharged into the marine environment, as well as morbillivirus infection, can suppress the immunity of marine mammals and give rise to clinical toxoplasmosis susceptibility, yet in others cases, no links to concurrent disease have been identified [25, 26]. Since *T. gondii* is a pronounced hallmark of aquatic pollution and marine species are superb sentinel animals in marine life [27–29], it would be beneficial to assess the status of *T. gondii* infection in these animals. Thus, the current systematic review and meta-analysis aimed to investigate the prevalence of *T. gondii* infection among marine animal species worldwide and highlight the existing gaps.

Materials and Methods

Search Strategy

This study was prepared and performed in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) statement [30]. Data were systematically searched and collected from English language databases including PubMed, Science Direct, Google Scholar, Scopus, ISI Web of Science, published from inception to 1 January, 2020 by two investigators (FR and ASP).

The search process was performed using the following keywords and medical subject headings (MeSH) terms: “Toxoplasma gondii”, “Toxoplasmosis”, “T. gondii” in combination with “fishes”, “marine mammals”; “oyster”, “Shellfish”, “mussels”, “dolphin”, “shark”, “crab”, “seal”, “sea lion”, “whale”, “sea otter”, “porpoise”, “shrimp”, “Manatees”, “Walruses”, “Eel”, “crayfish”, and “turtle”. To avoid missing of any paper, the reference list of relevant papers was screened manually.

Study Selection

For the first screening, the two independent authors (ASP and FR) surveyed the title and the abstract of all papers returned from the search process. To ensure the eligibility for inclusion to the systematic review, full texts of papers were also reviewed by investigators (ASP and FR), and any disagreement on articles selected was resolved.

Quality Evaluation

Selected articles were assessed according to a checklist used in previous studies [31]. This checklist was based on contents of the strengthening the reporting of observational studies in epidemiology (STROBE) checklist containing questions about various methodological aspects such as type of study, sample size, study population, data collection approaches and tools, sampling methods, variables estimation status, methodology, research objectives and demonstration of results according to the objectives [32]. For each question, a score was attributed and articles with a score of at least seven were selected articles. In addition, any disagreements with selected papers were reviewed by another author.

Selection Criteria and Data Extraction

Papers were included in the meta-analysis with the following criteria: (1) original articles; (2) studies in English language; (2) articles available in full-text; (3) studies that evaluated the prevalence of *T. gondii* infection in marine animals. On the other hand, the exclusion criteria entailed: case reports, review articles, letter to the editor, unclear or not technically acceptable diagnostic criteria, insufficient information, congress articles, as well as those with unavailable full-text. After reviewing all articles, papers without sufficient information and that did not obtain the minimum quality score were excluded.
Meta-Analysis

In this study, a forest plot was used to visualize the summarized results and heterogeneity among the included studies. The size of every square indicated the weight of every study as well as crossed lines presented confidence intervals, CI. To assess heterogeneity index, Cochran’s Q test and I^2 statistics were applied. Additionally, a funnel plot was designed to determine the small study effects and their publication bias, based on Egger’s regression test. The meta-analysis was conducted using Stats Direct statistical software (http://www.statsdirect.com). A P value less than 0.05 was considered statistically significant. Additional meta-analysis was performed based on the type of host, location and diagnostic method.

Results

A total of 5175 papers were analyzed by exploration of PubMed, Science Direct, Scopus, Google Scholar, and ISI Web of Science databases, and finally 55 records were found to be eligible for the current systematic review and meta-analysis. The searching and study selection procedures are illustrated in Fig. 1. Based on Continent, the highest number of investigations was from Europe (30 studies) with a total prevalence of 12.99%, and marine mustelids were the most infected group with 53.12%. It is also worth noting that 24 studies from North America were included in this systematic review, indicating a total prevalence of 21.15%, and an exceptionally high infection rate among cetaceans was observed in this continent (80.85%). In Asian countries, a low prevalence rate of 1.78% was reported and the pinnipeds were the most infected group with 29.2%. In South America,
a pooled prevalence of 8.03% was reported with the highest infection in cetaceans (30.35%). In Oceania, the pooled prevalence was 17.73% and cetaceans were the most infected species (26.12%). In addition, the pooled prevalence rate in Antarctica was 39.21% in pinnipeds. On the other hand, no reports were found for the North Pole and the African continent (Fig. 2).

According to Table 1, T. gondii infection was detected in dolphins (45 entries), whales (29 entries), seals (31 entries), sea lions (5 entries), sea otters (10 entries), porpoise (3 entries), oysters/mussels/shellfish (11 entries), fishes (4 entries), shrimp (2 entries), manatees (2 entries), walruses, eel and crayfish (single record for each) using serological and/or molecular techniques. Most reports were from the USA and Brazil with 24 records for each country, followed by Scotland (15 records), Italy (13 records), China (10 records), Spain (9 records), Canada and United Kingdom (8 records for each), Mexico (5 records), Norway and Russia (4 records for each), New Zealand (3 records), Japan (2 records) as well as single records from Iran, Turkey, Portugal, Netherlands, Peru, Australia and Solomon Islands. Altogether, eight serological methods were employed to determine T. gondii infection among marine animals. These include the modified agglutination test (MAT) as the most used technique (41 records), followed by immunofluorescence antibody test (IFA) (30 records) and immunohistochemistry (IHC) (21 records). Moreover, 17 entries used conventional polymerase chain reaction (PCR), being this the most used molecular technique, followed by nested-PCR (7 records) and quantitative PCR (qPCR) (4 records). Subgroup analysis (Table 2) showed that most studies were focused on cetaceans (whale, dolphin and porpoise) (36 studies), whereas the highest prevalence rate of T. gondii infection belonged to marine mustelids (sea otter, 10 studies) with 54.8% (95% CI 34.21–74.57%). Pooled proportion of T. gondii infection in dolphin species was of 51.07%. According to Egger’s test, the prevalence rates in cetaceans (P value = 0.0489) and pinnipeds (P value = 0.0004) were statistically significant.

Discussion

The present systematic review and meta-analysis aimed to determine the prevalence rate of T. gondii infection worldwide. The obtained data were categorized based on the species of marine animals, continents, and diagnostic techniques. Among marine animals, the prevalence of T. gondii infection was higher in the population of sea otters (54.8%). In a study, Miller et al. [33] suggested that coastal freshwater runoff is a risk factor for toxoplasmosis in southern sea otters.

![Fig. 2](image-url) Pooled prevalence of T. gondii in marine animal species in different continents

 Springer
Species	Location	Continent	Test	Sample size	Positive (%)	References
Dolphin						
Tursiops truncatus	USA	North America	MAT	141	138 (97.9)	Dubey et al. [17]
Sousa chinensis	Australia	Australia	IHC	4	4 (100)	Bowater et al. [47]
Stenella coeruleoalba	Spain	Europe	MAT	36	4 (11.1)	Cabezón et al. [48]
Delphinus delphis	Spain	Europe	MAT	4	2 (50)	Cabezón et al. [48]
Tursiops truncatus	Spain	Europe	MAT	7	4 (57.1)	Cabezón et al. [48]
Phocoena phocoena	Spain	Europe	MAT	1	1 (100)	Cabezón et al. [48]
Grampus griseus	Spain	Europe	MAT	9	0	Cabezón et al. [48]
Tursiops aduncus	Solomon Islands	Oceania	Immunoblotting	58	8 (13.8)	Omata et al. [49]
Tursiops truncatus	Russia	Europe	ELISA	59	27 (45.7)	Alekseev et al. [50]
Tursiops truncatus	USA	North America	MAT	52	27 (51.9)	Dubey et al. [44]
Tursiops truncatus	Russia	Europe	ELISA	74	39 (52.7)	Alekseev et al. [51]
Tursiops truncatus	USA	North America	MAT	7	7 (100)	Dubey et al. [18]
Delphinus delphis	United Kingdom	Europe	Sabin Feldman	21	6 (28.5)	Forman et al. [52]
Grampus griseus	United Kingdom	Europe	Sabin Feldman	1	0	Forman et al. [52]
Lagenorhynchus acutus	United Kingdom	Europe	Sabin Feldman	1	0	Forman et al. [52]
Tursiops truncatus	United Kingdom	Europe	Sabin Feldman	1	0	Forman et al. [52]
Stenella coeruleoalba	United Kingdom	Europe	Sabin Feldman	5	0	Forman et al. [52]
Stenella coeruleoalba	Italy	Europe	IFA	8	4 (50)	Di Guardo et al. [53]
Tursiops truncates	Italy	Europe	Nested-PCR and MAT	8	7 (87.5)	Pretti et al. [54]
Stenella coeruleoalba	Italy	Europe	Nested-PCR and MAT	6	6 (100)	Pretti et al. [54]
Inia geoffrensis	Brazil	South America	MAT	95	82 (86.3)	Santos et al. [55]
Tursiops truncatus	Mexico	North America	MAT	63	55 (87.3)	Alvarado-Esquível et al. [56]
Tursiops truncatus	Mexico	North America	MAT	3	3 (100)	Alvarado-Esquível et al. [56]
Cephalorhynchys hectori	New Zealand	Oceania	PCR	49	17 (34.7)	Roe et al. [57]
Tursiops truncatus	Spain	Europe	IFA	24	2 (8.3)	Bernal-Guadarrama et al. [58]
Stenella coeruleoalba	Italy	Europe	IFA	18	8 (44.4)	Profeta et al. [59]
Tursiops truncatus	Italy	Europe	IFA	3	2 (66.6)	Profeta et al. [59]
Grampus griseus	Scotland	Europe	IFA	7	2 (28.5)	et al. [26]
Delphinus delphis	Scotland	Europe	IFA	13	2 (15.4)	van de Velde et al. [26]
Stenella coeruleoalba	Scotland	Europe	IFA	9	0	van de Velde et al. [26]
Lagenorhynchus albirostris	Scotland	Europe	IFA	6	1 (16.6)	van de Velde et al. [26]
Stenella coeruleoalba	Italy	Europe	PCR	10	6 (60)	Pintore et al. [60]
Tursiops truncatus	Italy	Europe	PCR	1	1 (100)	Pintore et al. [60]
Steno bredanensis	Brazil	South America	IHC	3	0	Costa-Silva et al. [61]
Lagenodelphis hosei	Brazil	South America	IHC	2	0	Costa-Silva et al. [61]
Sotalia guianensis	Brazil	South America	IHC	27	1 (3.7)	Costa-Silva et al. [61]
Tursiops truncatus	Brazil	South America	IHC	4	1 (25)	Costa-Silva et al. [61]
Pontoporia blainvillii	Brazil	South America	IHC	102	0	Costa-Silva et al. [61]
Stenella frontalis	Brazil	South America	IHC	6	0	Costa-Silva et al. [61]
Stenella longirostris	Brazil	South America	IHC	5	0	Costa-Silva et al. [61]
Stenella clymene	Brazil	South America	IHC	6	0	Costa-Silva et al. [61]
Stenella coeruleoalba	Brazil	South America	IHC	2	0	Costa-Silva et al. [61]
Delphinus delphis	Brazil	South America	IHC	1	0	Costa-Silva et al. [61]
Table 1 (continued)

Species	Location	Continent	Test	Sample size	Positive (%)	References
Delphinus delphis	Brazil	South America	IHC	1	0	Costa-Silva et al. [61]
Inia geofrensis	Brazil	South America	IHC	1	0	Costa-Silva et al. [61]
Whale						
*Balaenoptera acuto-	Norway	Europe	MAT	202	0	Oksanen et al. [62]
rostrata						
Delphinapterus leucas	USA	North America	MAT	3	0	Dubey et al. [17]
Globicephala melas	Spain	Europe	MAT	1	0	Cabezón et al. [48]
Orcinus orca	Japan	Asia	PCR	8	1 (12.5)	Omata et al. [49]
Delphinapterus leucas	Russia	Europe	ELISA	147	7 (4.7)	Alekseev et al. [51]
Megaptera novaeangliae	United Kingdom	Europe	Sabin Feldman	1	1 (100)	Forman et al. [52]
Ziphius cavirostris	United Kingdom	Europe	Sabin Feldman	1	0	Forman et al. [52]
Physeter macrocephalus	Portugal	Europe	qPCR	5	0	Hermosilla et al. [63]
Balaenoptera physalus	Italy	Europe	IFA	1	0	van de Velde et al. [26]
Globicephala melas	Italy	Europe	IFA	1	0	van de Velde et al. [26]
Balaenoptera physalus	Scotland	Europe	IFA	1	0	van de Velde et al. [26]
Orcinus orca	Scotland	Europe	IFA	3	0	van de Velde et al. [26]
Globicephala melas	Scotland	Europe	IFA	10	4 (40)	van de Velde et al. [26]
*Balaenoptera acuto-	Scotland	Europe	IFA	5	0	van de Velde et al. [26]
rostrata						
Mesoplodon bidens	Scotland	Europe	IFA	4	0	van de Velde et al. [26]
Physeter macrocephalus	Scotland	Europe	IFA	2	0	Alekseev et al. 2017 [64]
Balaenoptera borealis	Scotland	Europe	IFA	1	0	Iqbal et al. [65]
Delphinapterus leucas	Russia	Europe	ELISA	87	10 (11.5)	Profeta et al. [59]
Delphinapterus leucas	Canada	North America	PCR	34	15 (44.1)	Profeta et al. [59]
Globicephala melas	Italy	Europe	PCR	1	0	Pintore et al. [60]
Kogia sima	Brazil	South America	IHC	7	0	Costa-Silva et al. [61]
Peponocephala electra	Brazil	South America	IHC	5	0	Costa-Silva et al. [61]
*Globicephala macro-	Brazil	South America	IHC	3	0	Costa-Silva et al. [61]
rhynchus						
Physeter macrocephalus	Brazil	South America	IHC	3	0	Costa-Silva et al. [61]
Kogia breviceps	Brazil	South America	IHC	2	0	Costa-Silva et al. [61]
Megaptera novaeangliae	Brazil	South America	IHC	2	0	Costa-Silva et al. [61]
Orcinus orca	Brazil	South America	IHC	2	1 (50)	Costa-Silva et al. [61]
Mesoplodon europaeus	Brazil	South America	IHC	1	0	Costa-Silva et al. [61]
Balaenoptera physalus	Italy	Europe	PCR	7	1 (14.2)	Marcer et al. [66]
Seals						
Phoca groenlandica	Norway	Europe	MAT	316	0	Oksanen et al. [62]
Phoca hispida	Norway	Europe	MAT	48	0	Oksanen et al. [62]
Cystophora cristata	Norway	Europe	MAT	78	0	Oksanen et al. [62]
Phoca vitulina	USA	North America	MAT	380	29 (7.6)	Lambourn et al. [67]
Phoca vitulina	USA	North America	MAT	311	51 (16.4)	Dubey et al. [17]
Phoca hispida	USA	North America	MAT	32	5 (15.6)	Dubey et al. [17]
Erignathus barbatus	USA	North America	MAT	8	4 (50)	Dubey et al. [17]
Phoca largha	USA	North America	MAT	9	1 (11.1)	Dubey et al. [17]
Phoca fasciata	USA	North America	MAT	14	0	Dubey et al. [17]
Phoca groenlandica	Canada	North America	MAT	112	0	Measures et al. [68]
Species	Location	Continent	Test	Sample size	Positive (%)	References
-------------------------------	------------------------	-----------------	----------	-------------	---------------	----------------------
Cystophora cristata	Canada	North America	MAT	60	1 (1.6)	Measures et al. [68]
Halichoerus grypus	Canada	North America	MAT	122	11 (9)	Measures et al. [68]
Phoca vitulina	Canada	North America	MAT	34	3 (8.8)	Measures et al. [68]
Phoca vitulina stejnegeri	Japan	Asia	ELISA	77	3 (3.9)	Fujii et al. [9]
Phoca vitulina vitulina	Spain	Europe	MAT	56	3 (5.3)	Cabezón et al. [48]
Halichoerus grypus	Spain	Europe	MAT	47	11 (23.4)	Cabezón et al. [48]
Pusa hispida	Canada	North America	DAT	788	80 (10.1)	Simon et al. [69]
Erignathus barbatus	Canada	North America	DAT	20	2 (10)	Simon et al. [69]
Phoca vitulina	Canada	North America	MAT	9	2 (22.2)	Simon et al. [69]
Leptonychotes weddellii	Antarctic Peninsula	South America	DAT	31	13 (41.9)	Rengifo-Herrera et al. [70]
Mirounga leonina	Antarctic Peninsula	South America	DAT	13	10 (76.9)	Rengifo-Herrera et al. [70]
Lobodon carcinophaga	Antarctic Peninsula	South America	DAT	2	1 (50)	Rengifo-Herrera et al. [70]
Arctocephalus gazella	Antarctic Peninsula	South America	DAT	165	4 (2.4)	Rengifo-Herrera et al. [70]
Arctocephalus gazella	Antarctica	Antarctica	DAT	21	12 (57.1)	Jensen et al. [71]
Leptonychotes weddellii	Antarctica	Antarctica	DAT	33	17 (51.5)	Jensen et al. [71]
Mirounga leonina	Antarctica	Antarctica	DAT	48	11 (22.9)	Jensen et al. [71]
Arctocephalus australis	Peru	South America	IFA	27	0	Jankowski et al. [72]
Halichoerus grypus	Scotland	Europe	IFA	13	0	van de Velde et al. [26]
Phoca vitulina	Scotland	Europe	IFA	17	2 (11.7)	van de Velde et al. [26]
Phoca vitulina richardi	Alaska	North America	IFA	34	0	Bauer et al. [73]
Pusa caspica	Iran	Asia	MAT	36	30 (83.3)	Namroodi et al. [74]
Sea lions						
Zalophus californianus	USA	North America	MAT	45	19 (42.2)	Dubey et al. [17]
Otaria flavescens	Mexico	North America	MAT	2	0	Alvarado-Esquivel et al. [56]
Zalophus californianus	Mexico	North America	MAT	4	2 (50)	Alvarado-Esquivel et al. [56]
Zalophus californianus	USA	North America	IFA	1630	46 (2.8)	Carlson-Bremer et al. [75]
Phocarctos hookeri	New Zealand	Oceania	ELISA	50	5 (10)	Michael et al. [76]
Sea otters						
Lontra canadensis	USA	North America	LAT	103	46 (44.6)	Tocidlowski et al. [77]
Enhydra lutris nereis	USA	North America	IFA	223	115 (51.5)	Miller et al. [78]
Enhydra lutris nereis	USA	North America	IFA	80	29 (36.2)	Miller et al. [78]
Enhydra lutris kenyoni	USA	North America	IFA	21	8 (38.1)	Miller et al. [78]
Enhydra lutris kenyoni	USA	North America	IFA	65	0	Miller et al. [78]
Enhydra lutris nereis	USA	North America	Microscopic test	35	15 (42.8)	Miller et al. [79]
Enhydra lutris	USA	North America	MAT	145	107 (73.7)	Dubey et al. [17]
Lontra canadensis	USA	North America	IFA	40	7 (17.5)	Gaydos et al. [80]
Lutra lutra	Scotland	Europe	IFA	32	17 (53.1)	van de Velde et al. [26]
Enhydra lutris kenyoni	USA	North America	MAT	70	65 (92.8)	Verma et al. [81]
Porpoise						
Phocoena phocoena	United Kingdom	Europe	Sabin Feldman	70	1 (1.4)	Forman et al. [52]
Phocoena phocoena	Netherlands	Europe	MAT	31	4 (12.9)	van de Velde et al. [26]
Phocoena phocoena	Scotland	Europe	IFA	98	2 (2)	van de Velde et al. [26]
Oysters/mussels/shellfish						
Mytella guyanensis	Brazil	South America	Nested PCR	300	0	Esmerini et al. [82]
(Enhydra lutris nereis) in southern California. Furthermore, it has been shown that exposure to T. gondii among sea otters was highly influenced by individual animal prey choice and habitat use [34]. Toxoplasmosis had considerable morbidity and mortality rates in the sea otter [35]. T. gondii encephalitis in sea otters causes high mortality rate and is responsible for slow population recovery, particularly for the endangered Southern sea otter [27]. In addition, cetaceans were the most infected animals in North America, South America, and Oceania. Modified agglutination test (MAT) was the most applied diagnostic assay for T. gondii detection in marine animals. This technique is widely employed in research of toxoplasmosis in humans and in all species of animals because it is considered as a rapid and simple approach without the requirement for special facilities [36]. Molecular methods, particularly polymerase chain reaction (PCR) and nested PCR, were used in marine animals usually as a food source for humans like fishes, shrimp, oysters, and crayfish, amongst others. Some studies indicate that consumption of contaminated raw shellfish and mussels can be considered a

Species	Location	Continent	Test	Sample size	Positive (%)	References
*Crassostrea rhizopho-	Brazil	South America	Nested PCR	300	10 (3.3)	Esmerini et al. [82]
Mytilus galloprovincialis	Turkey	Europe	HRM	53	21 (39.6)	Aksoy et al. [37]
Ostreae concha	China	Asia	PCR	398	0	Zhang et al. [83]
Mytilus galloprovincialis	Italy	Europe	qPCR	53	7 (13.2)	Marangi et al. [84]
Crassostrea virginica	USA	North America	PCR	230	4 (1.7)	Marquis et al. [85]
*Crassostrea rhizopho-	Brazil	South America	PCR	624	17 (2.7)	Ribeiro et al. [86]
Oysters	China	Asia	Nested PCR	998	26 (2.6)	Cong et al. [87]
Perna canaliculus	New Zealand	Oceania	Nested PCR	104	13 (12.5)	Coupe et al. [88]
Mytilus edulis	China	Asia	Nested PCR	2215	55 (2.4)	Cong et al. [89]
Crassostrea virginica	USA	North America	qPCR	1440	446 (30.9)	Marquis et al. [90]
Fishes	China	Asia	PCR	309	0	Zhang et al. [83]
Cyprinus carpio	China	Asia	PCR	309	0	Zhang et al. [83]
Hypophthalmichthys molitrix	China	Asia	PCR	456	1 (0.2)	Zhang et al. [83]
Fishes	Italy	Europe	qPCR	147	32 (21.7)	Marino et al. [91]
Shrimp	China	Asia	PCR	426	0	Zhang et al. [83]
Macrobrachium nipponense	China	Asia	PCR	813	1 (0.1)	Zhang et al. [83]
Manatees	Mexico	North America	MAT	3	0	Alvarado-Esquivel et al. [56]
Trichechus inunguis	USA	North America	MAT	74	29 (39.1)	Mathews et al. [15]
Walruses	USA	North America	MAT	53	3 (5.6)	Dubey et al. [17]
Eel	China	Asia	PCR	98	0	Zhang et al. [83]
Crayfish	China	Asia	PCR	618	4 (0.64)	Zhang et al. [83]

IHC immunohistochemistry, IFA immunofluorescence antibody test, DAT direct agglutination test, LAT latex agglutination test, HRM real time PCR/high-resolution melting analysis, IHAT indirect hemagglutination test.
significant health danger due to their ability to infect a wide variety of hosts such as other marine animals and humans. However, they are particularly at risk for *T. gondii* infection, and therefore, they can be considered a bioindicator for monitoring waterborne pathogens [37, 38]. The high prevalence rate of *T. gondii* in the examined marine species may indicate that the nearby terrestrial environment in the studied area was heavily contaminated by *T. gondii*, and consequently, contamination was transferred to the aquatic environment. Furthermore, marine hosts may associate with *T. gondii* infection as paratenic hosts in some area [39]. Hence, contamination of marine animal species is an important bioindicator for contamination of aquatic environments.

Each cat, as final host for *T. gondii*, shed over 3–810 million oocysts. The sporulation of the oocysts takes 1–5 days, and they can remain infective in the soil for up to 18 months [40]. Furthermore, experiments showed that oocysts of *T. gondii* can sporulate in sea water and survive at 4 °C for 24 months and then infect mice [12]. One important factor in infected hosts is the strain of the parasite, which plays a major role in the toxoplasmosis prognosis. So far, the genotypes *T. gondii* were classified as classical types I, II, III, mix/recombinant atypical, and African lineages [41]. Comparison between *T. gondii* genotypes from the marine and terrestrial environments would help clarify routs and mechanisms of land-sea transmission. Type I strains, which are highly virulent and pathogenic, can lead to acquired ocular toxoplasmosis in individuals with disseminated congenital form of *T. gondii* [42, 43]. Aksoy et al. [37] reported *T. gondii* type 1 infection in *Mytilus galloprovincialis* (Mediterranean mussel), one of the most consumed shellfish in Turkey. The authors suggested that these types of contaminated seafood may be involved in the transmission of the parasite to humans and other hosts. Type II *T. gondii* strains are the vast majority of human infections and have a worldwide distribution. Type II strains are causative agents for numerous asymptomatic toxoplasmosis cases in Europe, it can be pathogenic for two important categories of subjects, namely immature fetuses and immunocompromised individuals [43]. On the basis of a previous study, Dubey et al. [44] showed Type II *T. gondii* from a striped dolphin (*Stenella coeruleoalba*) in Costa Rica. It is noteworthy that Type III *T. gondii* in mice are classified as avirulent strain. Study carried out by Hancock et al. [45] showed the first report of type III *T. gondii* in a Hawaiian monk seal. This genotype was determined to be restriction fragment length polymorphisms (RFLP) of the SAG2 gene. On the other hand, it has previously been shown that Type X strains of *T. gondii* are virulent for southern sea otters from coastal California [27]. Additionally, one interesting study has demonstrated Type X strains of *T. gondii* in canids, coastal-dwelling felids, nearshore-dwelling sea otters, and marine bivalve. It is assumed that contaminated runoff to feline faecal rapidly reaches sea from lands, and

Table 2 Prevalence of *Toxoplasma* infection in marine animals and subgroup analyses

Types of animals (species)	No. of studies	Prevalence (95% CI)	Heterogeneity	Egger's test			
Cetaceans (whale, dolphin, porpoise)	36	30.92 (17.85–45.76)	97.5	1377.98	<0.0001	4.87	0.0489
Pinipeds (seals, sea lions, walruses)	18	12.16 (7.26–18.98)	96.3	460.63	<0.0001	4.10	0.0001
Sirenians (manatees)	2	36.51 (24.66–53.96)	96.6	147.12	<0.0001	4.34	0.0165
Marine fissipeds (sea otter)	6	26.5 (18.41–43.66)	96.6	147.12	<0.0001	4.34	0.0165
Fishes (fish, eel)	5	1.64 (0.02–7.22)	96.3	147.12	<0.0001	4.34	0.0165
Decapoda (crayfish, shrimp)	2	1.64 (0.02–7.22)	96.3	147.12	<0.0001	4.34	0.0165
Mollusca (oysters, mussels, shellfish)	10	7.45 (2.06–15.81)	99.1	962.83	<0.0001	7.56	0.0078
otters could be infected with *T. gondii* via the consumption of filter-feeding marine invertebrates [46].

The prevalence rate of marine *T. gondii* infection in various regions of the world was very different, and ranged from 0 to 100%. These differences may originate from different types of marine animals, sample sizes, and diagnostic approaches in the reviewed studies. Regarding continents, North America showed the highest *T. gondii* infection in marine animals that may suggest the level of fecal contamination of the soil and water reservoirs. Our analysis also showed that there is either no available data (Africa) or very limited literature (Antarctica, Oceania, and South America) on the prevalence of *T. gondii* infection in significant parts of the globe. Therefore, it is essential to conduct more studies to determine the putative role of *T. gondii* on marine species. The main limitation expressed in the included studies regarding prevalence of *T. gondii* infection in marine animal species was related to the use of different diagnostic methods with varying sensitivity and specificity due to their great impact on the results. The use of an accurate and reliable technique can help to correctly interpret the results of *T. gondii* prevalence in marine species in different parts of the world.

Conclusion

The results of current study indicated that the global prevalence rate of *T. gondii* infection was high in marine animals. It is well demonstrated that *T. gondii* parasite has a very successful adaptation in aquatic environments. Despite the worldwide range and broad marine animals host record of *T. gondii* infection, there was no evidence regarding toxoplasmosis in these animals in most parts of the world. Therefore, it is necessary to develop surveillance for detection of *T. gondii* in aquatic animals in different regions with appropriate molecular and serological techniques. It is also important to know the ecology of this parasite in aquatic environment to design appropriate strategies for monitoring, controlling, and prevention of the transmission of toxoplasmosis to humans or other hosts.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1077/s11686-021-00507-z.

Acknowledgements Maria de Lourdes Pereira acknowledge project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UID/P/50011/2020.

Author Contributions Conceptualization, ASP and EA; methodology, ASP, FR, and MTR; formal analysis, EA, AG and SMO; investigation, HM, AS, and MLP; data curation, EA and MLP; writing original draft preparation, ASP, MTR, HM; writing-review and editing, EA, MLP, and ASP; all authors have read and agreed to the published version of the manuscript.

Declarations

Conflict of Interest The authors declare that there is no conflict of interest regarding the publication of this article.

Availability of Data and Material Data supporting the conclusions of this article are included within the article.

References

1. Mikaelian I, Boisclair J, Dubey J, Kennedy S, Martinneau D (2000) Toxoplasmosis in beluga whales (*Delphinapterus leucas*) from the St Lawrence estuary: two case reports and a serological survey. J Comp Pathol 122(1):73–76. https://doi.org/10.1053/jcpath.1999.0341
2. Bossart GD (2006) Marine mammals as sentinel species for oceans and human health. Oceanography 19(2):134–137. https://doi.org/10.1017/S0300985810388525
3. Aguirre AA, Longcore T, Barbieri M, Dabritz H, Hill D, Klein PN et al (2019) The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. Eco Health 16(2):378–390. https://doi.org/10.1007/s10393-019-01405-7
4. Dubey J (2004) Toxoplasmosis—a waterborne zoonosis. Vet Parasitol 126(1–2):57–72. https://doi.org/10.1016/j.vetpar.2004.09.005
5. Hoseini SA, Dehgani NSM, Daryani A, Gholami S, Ebrahimi F, Pagheh AS, Arefkhah N (2014) Serological survey of toxoplasmosis in pregnant women. J Maz Univ Med Sci 24(14):146–150
6. Safarpour H, Cevik M, Zarean M, Barac A, Hatam-Nahavandi K, Rahimi MT et al (2020) Global status of *Toxoplasma gondii* infection and associated risk factors in people living with HIV. AIDS 34(3):469–474. https://doi.org/10.1007/QAD.000000000002424
7. Anvari D, Sharif M, Sarvi S, Aghayan SA, Gholami S, Pagheh AS, Hosseini SA, Saberi R et al (2019) Seroprevalence of *Toxoplasma gondii* infection in cancer patients: a systematic review and meta-analysis. Microb Pathog 129:30–42. https://doi.org/10.1016/j.micpath.2019.01.040
8. Djurkovic-Djakovic O, Dupouy-Camet J, Van der Giessen J, Dubey JP (2019) Toxoplasmosis: overview from a one health perspective. Food Waterborne Parasitol 15:e00054. https://doi.org/10.1016/j.fawpar.2019.e00054
9. Fuji K, Kakumoto C, Kobayashi M, Saito S, Kariya T, Watanabe Y et al (2007) Seropidemiology of *Toxoplasma gondii* and *Neospora caninum* in seals around Hokkaido, Japan. J Vet Med Sci 69(4):393–398. https://doi.org/10.1292/jvms.69.393
10. Fayer R, Dubey JP, Lindsay DS (2004) Zoonotic protozoa: from land to sea. Trends Parasitol 20(11):531–536. https://doi.org/10.1016/j.pt.2004.08.008
11. Lindsay DS, Collins MV, Mitchell SM, Cole RA, Flick GJ, Wetch CN et al (2003) Sporulation and survival of *Toxoplasma gondii* oocysts in seawater. J Eukaryot Microbiol 50:687–688. https://doi.org/10.1111/j.1550-7408.2003.tb00688.x
12. Lindsay DS, Dubey J (2009) Long-term survival of *Toxoplasma gondii* sporulated oocysts in seawater. J Parasitol 95(4):1019–1020. https://doi.org/10.1645/GE-1919.1
13. Cole RA, Lindsay D, Howe D, Roderick C, Dubey J, Thomas N et al (2000) Biological and molecular characterizations of *Toxoplasma gondii* strains obtained from southern sea otters (*Enhydra...
28. Jessup DA, Miller M, Ames J, Harris M, Kreuder C, Conrad PA (2020) Recent epidemiologic and clinical importance of Toxoplasma gondii infections in marine mammals: 2009–2020. Vet Parasitol. https://doi.org/10.1016/j.vetpar.2020.109296

29. Stewart JR, Gast RJ, Fukushima RS, Solo-Gabriele HM, Mescske JS, Amaral-Zettler LA et al (2008) The coastal environment and human health: microbial indicators, pathogens, sentinel animals and reservoirs. J Environ Health 7(2):1–14. https://doi.org/10.1186/1476-069X-7-3-S3

30. Moosazadeh M, Nehdi-Moghadam M, Emrani Z, Amiremai M (2014) Prevalence of unwanted pregnancy in Iran: a systematic review and meta-analysis. Int J Health Plan Manag 29(3):c277–c290. https://doi.org/10.1002/hpm.2184

31. Miller M, Gardner I, Kreuder C, Paradies D, Worcester K, Jessup D et al (2002) Coastal freshwater runoffs is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int J Parasitol 32(8):997–1006. https://doi.org/10.1016/s0020-7519(02)00069-3

32. Johnson CK, Tinker MT, Estes JA, Conrad PA, Staedler M, Miller MA et al (2009) Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci 106(7):2242–2247. https://doi.org/10.1073/pnas.0806449106

33. Shapiro K, Miller M, Mazet J (2012) Temporal association between land-based runoffs events and California sea otter (Enhydra lutris nereis) protozoal mortalities. J Wildl Dis 48(2):394–404. https://doi.org/10.7589/0090-3558-48.2.394

34. Johnson CK, Tinker MT, Estes JA, Conrad PA, Staedler M, Miller MA et al (2009) Prey choice and habitat use drive sea otter pathogen exposure in a resource-limited coastal system. Proc Natl Acad Sci 106(7):2242–2247. https://doi.org/10.1073/pnas.0806449106

35. Shapiro K, Miller M, Mazet J (2012) Temporal association between land-based runoffs events and California sea otter (Enhydra lutris nereis) protozoal mortalities. J Wildl Dis 48(2):394–404. https://doi.org/10.7589/0090-3558-48.2.394

36. Packham AE, Sverlow KW, Conrad PA, Loomis EF, Rowe JD, Anderson ML et al (1998) A modified agglutination test for Neospora caninum: development, optimization, and comparison to the indirect fluorescent-antibody test and enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol 5(4):467–473. https://doi.org/10.1128/CDLI.5.4.467-473.1998

37. Aksoy U, Marangi M, Papini R, Ozkoc S, Delibas SB, Giangaspero A (2014) Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by real time PCR/high-resolution melting analysis (HRM). Food Microbiol 44:128–135. https://doi.org/10.1016/j.fm.2014.05.012

38. Arkush KD, Miller MA, Leutenegger CM, Gardner IA, Packham AE, Heckereth AR et al (2003) Molecular and bioassay-based detection of Toxoplasma gondii oocysts uptake by mussels (Mytilus galloprovincialis). Int J Parasitol 33(10):1087–1097. https://doi.org/10.1016/s0020-7519(03)00181-4

39. Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanVormer E et al (2019) Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food. Food Waterborne Parasitol 15:e00049. https://doi.org/10.7589/0090-3558-9.3.258

40. VanVormer E et al (2019) Environmental transmission of Toxoplasma gondii: oocysts in water, soil and food. Food Waterborne Parasitol 15:e00049. https://doi.org/10.7589/0090-3558-9.3.258

41. Hosseini S, Amouei A, Sharif M, Sarvi S, Galal L, Javidnia J et al (2019) Human toxoplasmosis: a systematic review for genetic diversity of Toxoplasma gondii in clinical samples. Epidemiol Infect 147:e36. https://doi.org/10.1017/S0090268418002947

42. Ahmadpour E, Sarvi S, Soteh MBH, Sharif M, Rahimi MT, Valadan R et al (2017) Enhancing immune responses to a DNA vaccine encoding Toxoplasma gondii GRA14 by calcium phosphate nanoparticles as an adjuvant. Immunol Lett 185:40–47. https://doi.org/10.1016/j.imlet.2017.03.006
43. Dardé M (2008) Toxoplasma gondii, “new” genotypes and virulence. Parasite 15(3):366–371. https://doi.org/10.1051/parasite/2008153366
44. Dubey J, Fair P, Sundar N, Velmurgan G, Kwok OCH, McFee W et al (2008) Isolation of Toxoplasma gondii from bottlenose dolphins (Tursiops truncatus). J Parasitol 94(4):821–823. https://doi.org/10.1645/GE-1444.1
45. Hancock K, Thiele LA, Zajac AM, Melli A, Leutenegger C (2005) Prevalence of antibodies to Toxoplasma gondii in raccoons (Procyon lotor) from an urban area of Northern Virginia. J Parasitol 91(3):694–695. https://doi.org/10.1645/0022-3395(2005)043R
46. Miller M, Miller W, Conrad PA, James E, Delphinapterus leucas in 2002–2007. Russ Vet 81(10):627–632. https://doi.org/10.1111/j.1751-0813.2003.tb12509.x
47. Cabezon O, Resendes A, Domingo M, Raga J, Agusti C, Alegre M (2008) Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int J Parasitol 38(11):1319–1328. https://doi.org/10.1016/j.ijpara.2008.02.005
48. Bowater RO, Norton J, Johnson S, Hill B, Odonoghue P, Prior H (2003) Toxoplasmosis in Indo-Pacific humpbacked dolphins (Sousa chinensis), from Queensland, Aust Vet J 81(10):627–632. https://doi.org/10.1111/j.1751-0813.2003.tb12509.x
49. Cabezon O, Resendes A, Domingo M, Raga J, Agusti C, Alegre F et al (2004) Seroprevalence of Toxoplasma gondii antibodies in wild dolphins from the Spanish Mediterranean coast. J Parasitol 90(3):643–644. https://doi.org/10.1645/GE-257R
50. Miller M, Miller W, Conrad PA, James E, Delphinapterus leucas in 2002–2007. Russ Vet 81(10):627–632. https://doi.org/10.1111/j.1751-0813.2003.tb12509.x
51. Alekseev AY, Reguzova AY, Rozanova E, Abramov A, Tumanov Y, Kuvshinova I, Shestopalov A (2007) The prevalence of antibodies to morbilliviruses, Brucella, and Toxoplasma in the Black Sea bottlenose dolphin Tursiops truncatus ponticus maintained in captivity. Russ J Mar Biol 33(6):425–428
52. Alekseev AY, Rozanova E, Ustinova E, Tumanov YL, Kuvshinova I, Shestopalov A (2007) The prevalence of antibodies to morbilliviruses, Brucella and Toxoplasma in the Black Sea dolphin Tursiops truncatus ponticus and the beluga whale Delphinapterus leucas from the Sea of Okhotsk in 2002–2007. Russ J Mar Biol 35(6):494–497. https://doi.org/10.1134/S1063074009060078
53. Forman D, West N, Francis J, Gru E (2009) The sero-prevalence of Toxoplasma gondii in British marine mammals. Mem Inst Oswaldo Cruz 104(2):296–298. https://doi.org/10.1590/S0071-02762009000200024
54. Di Guardo G, Proietto U, Di Francesco CE, Marsilio F, Zaccaroni M, Florio CL et al (2018) Neuropathologic findings in cetaceans stranded in Italy (2002–14). J Wildl Dis 54(2):295–303. https://doi.org/10.7589/2017-02-035
55. Alekseev AY, Shpak O, Adamenko L, Glazov D, Galkina I, Alekseev AY, Reguzova AY, Rozanova E, Abramov A, Tumanov YV, Kuvshinova I et al (2009) Detection of specific antibodies to morbilliviruses, Brucella and Toxoplasma in striped dolphins (Stenella coeruleoalba) stranded along the Ligurian Sea coast of Italy. Vet Pathol 47(2):245–253. https://doi.org/10.1177/0300985809358036
56. Prett C, Mancianti F, Nardoni S, Ariti G, Monni G, Bello Dd et al (2010) Detection of Toxoplasma gondii infection in dolphins stranded along the Tuscan coast, Italy. Rev Med Vet 161(10):428–431
57. Santos PS, Albuquerque GR, Da Silva V, Martin AR, Marvulo MFV, Souza S et al (2011) Seroprevalence of Toxoplasma gondii in free-living Amazon River dolphins (Inia geoffrensis) from central Amazon, Brazil. Vet Parasitol 183(1–2):171–173. https://doi.org/10.1016/j.vetpar.2011.06.007
58. Alvarado-Esquível C, Sánchez-Okrucky R, Dubey J (2012) Serological evidence of Toxoplasma gondii infection in captive marine mammals in Mexico. Vet Parasitol 184(2–4):321–324. https://doi.org/10.1016/j.vetpar.2011.08.036
59. Roe WD, Howe L, Baker EJ, Burrows L, Hunter SA (2013) An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet Parasitol 192(1–3):67–74. https://doi.org/10.1016/j.vetpar.2012.11.001
60. Bernal-Guadarrama MJ, Salichs J, Almunia J, García-Parraga D, Fernández-Gallardo N, Santana-Morales MA et al (2014) Development of an indirect immunofluorescence technique for the diagnosis of toxoplasmosis in bottlenose dolphins. Parasitol Res 113(2):451–455. https://doi.org/10.1007/s00436-013-3674-y
61. Hermosilla C, Silva LM, Kleinszrt S, Prieto R, Silva MA, Taubert A (2016) Endoparasite survey of Toxoplasma gondii in North Atlantic marine mammals by the use of agglutination test employing whole tachyzoites and dithiothreitol. Comp Immunol Microbiol Infect Dis 21(2):107–114. https://doi.org/10.1016/j.cimid.2015.06.008
62. Oksanen A, Tryland M, Johnsen K, Dubey J (1998) Serosurvey of Toxoplasma gondii in North Atlantic marine mammals by the use of agglutination test employing whole tachyzoites and dithiothreitol. Comp Immunol Microbiol Infect Dis 21(2):107–114. https://doi.org/10.1016/j.cimid.2015.06.008
63. Costa-Silva S, Gonzales-Viera O, Díaz-Delgado J, Sánchez-Sarmiento AM, Marigo J et al (2019) Toxoplasma gondii in cetaceans of Brazil: a histopathological and immunohistochemical survey. Rev Bras Parasitol Vet 28:395–402
64. Pintore MD, Mignone W, Di Guardo G, Mazzariol S, Ballardini M, Florio CL et al (2018) Neuropathologic findings in cetaceans stranded in Italy (2002–14). J Wildl Dis 54(2):295–303. https://doi.org/10.7589/2017-02-035
1. Bauer KL, Goertz CE, Belovarac JA, Walton RW, Dunn JL, Jankowski G, Adkesson MJ, Saliki JT, Cárdenas-Alayza S, Tocidlowski ME, Lappin MR, Sumner PW, Stoskopf MK (1997) Detection of Toxoplasma gondii in market-sold oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitol Int 64(5):299–302. https://doi.org/10.1016/j.parint.2015.04.001

2. Namroodi S, Shirazi AS, Khaleghi SR, Mills JN, Kheirabady M, Carlson-Bremer D, Colegrove KM, Gulland FM, Conrad PA, LATIF for demonstration of antibodies to Toxoplasma gondii in free-ranging California sea lions (Zalophus californianus). J Parasitol 88(3):594–599. https://doi.org/10.1086/302463. https://doi.org/10.1016/j.ijpara.2003.12.008

3. Gaydos JK, Conrad PA, Gilardi KV, Blundell GM, Ben-David M (2007) Does human proximity affect antibody prevalence in marine-foraging river otters (Lontra canadensis)? J Wildl Dis 43(1):116–123. https://doi.org/10.7589/2006-06-025

4. Marangi M, Giangaspero A, Lacassella V, Lonigro A, Gasser RB (2015) Multiplex PCR for the detection and quantification of zoonotic tax of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol Cell Probes 29(2):122–125. https://doi.org/10.1016/j.mcp.2015.01.001

5. Marquis ND, Record NR, Robledo JA (2015) Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitol Int 64(5):299–302. https://doi.org/10.1016/j.parint.2015.04.001

6. Vilardo M, Jiang V, Kwok OC, Jiang T, Su C et al (2018) An update on Toxoplasma gondii infections in northern sea otters (Enhydra lutris kenyoni) from Washington State, USA. Vet Parasitol 258(133):7. https://doi.org/10.1016/j.vetpar.2018.05.011

7. Esmerini PO, Gennari SM, Pena HF (2010) Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Vet Parasitol 170(1–2):8–13. https://doi.org/10.1016/j.vetpar.2010.01.036

8. Zhang M, Yang Z, Wang S, Tao L, Xu L, Yan R et al (2014) Detection of Toxoplasma gondii in shellfish and fish in parts of China. Vet Parasitol 200(1–2):85–89. https://doi.org/10.1016/j.vetpar.2013.10.022

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.