Brazilian berry seeds (Eugenia uniflora) were used as an eco-friendly and low-cost biosorbent for the treatment of textile effluents containing methylene blue. Characterization techniques indicated that Brazilian berry seeds are constituted of irregular particles, mainly composed of lignin and holocellulose groups, distributed in an amorphous structure. Methylene blue biosorption was favorable at pH of 8, using a biosorbent dosage of 0.8 g L\(^{-1}\). The equilibrium was reached in the first 20 min for lower M methylene blue concentrations and 120 min for higher methylene blue concentrations. Furthermore, the general and pseudo-second-order models were suitable for describing the kinetic data. Langmuir was the most adequate model for describing the isotherm curves, predicting a biosorption capacity of 189.6 mg g\(^{-1}\) at 328 K. Biosorption was spontaneous (\(-9.54 \leq \Delta G^0 \leq -8.06\) kJ mol\(^{-1}\)) and endothermic, with standard enthalpy change of 6.11 kJ mol\(^{-1}\). Brazilian berry seeds were successfully used to remove the color of two different simulated textile effluents, achieving 92.2% and 73.5% of removal. Last, the fixed-bed experiment showed that a column packed with Brazilian berry seeds can operate during 840 min, attaining biosorption capacity of 88.7 mg g\(^{-1}\). The data here presented indicates that textile effluents containing methylene blue can be easily and successfully treated by an eco-friendly and low-cost biosorbent like Brazilian berry seeds.

Keywords Biosorption · Dye · Eco-friendly · Effluent · Fixed-bed · Methylene blue

Introduction

Nowadays, different industries, such as textile, paper, leather tanning, food processing, plastics, cosmetics, rubber, and printing, apply dyes to give color for its products (Yagub et al. 2014). An example of dye is methylene blue (MB), which presents high chemical stability, being one of the most applied dyes on the textile industries (Catanho et al. 2006). It is a cationic dye often used in the dyeing of wool and cotton fabrics. However, the incorrect treatment of textile effluents containing MB, and its release on rivers and lakes, besides affecting the visual state of the water, leads to a poor natural photosynthetic activity, thus generating harm to the ecosystem (Honorato et al. 2015). The high quantities of used dyes and its noxious effects have drawn attention of the scientific community and the governmental inspection agencies in relation to the colored effluents generated. Searching to solve the problem of colored effluents, the development of alternative, eco-friendly, and sustainable methods have increased in the last years (Bazzo et al. 2015).
Different technologies for the treatment of colored effluents can be applied; nevertheless, biosorption has gained importance because it is a simple and cost-effective operation. In addition, biosorption allows the use of a wide range of biosorbent materials (Uddin et al. 2017). In this sense, different promising biosorbent materials have been reported in the literature. Cedrela odorata seeds were applied by Babalola et al. (2016) for the removal of methylene blue, congo red, methyl orange, and crystal violet dyes from aqueous effluents. Georgin et al. (2018a) applied Araucaria angustifolia wastes to treat colored effluents containing crystal violet dye. Activated carbon from jerivá stone was tested by Carvalho to treat colored effluents containing crystal violet dye. Postai et al. (2016) used residues from Aleurites mluccana for the removal of anthraquinone and azo dyes from colored effluents. Fontana et al. (2016) used malt bagasse as an efficient and low-cost biosorbent to uptake the textile dye orange Solimax TGL from aqueous solutions. Banana peel was tested by Munagapati et al. (2018), as an effective material to remove reactive black 5 and congo red from aqueous solutions. From the above studies, it can be seen a continuous search for eco-friendly and low-cost biosorbents which are able for the treatment of textile effluents.

The Eugenia uniflora is important for the food and pharmaceutical industries. The fruits of this species are known as Brazilian berries, standing out mainly due to its astringent properties and a pleasant aroma. The fruits and leaves from Eugenia uniflora also present several interesting compounds, such as flavonoids, terpenes, tannins, anthraquinones, and essential oils. Their by-products end up being widely used by the cosmetics industry (Lima et al. 2006). However, during the processing of the fruit, 23% is residue in the form of seeds; thus, a final application is needed (Amorim et al. 2009).

In this work, Brazilian berry seeds (BBS) (Eugenia uniflora), a waste from the berries processing, was tested for the first time as an eco-friendly and low-cost biosorbent for the treatment of textile effluents containing MB. The BBS biosorbent was previously characterized by different techniques. The biosorption of MB using the BBS was evaluated in relation to the kinetics and isotherms. The BBS was tested for the treatment of simulated effluents with different compositions. Fixed-bed experiments were also performed to verify the potential of BBS to be used in continuous operations.

Materials and methods

Preparation of BBS and characterization techniques

The Brazilian berries (Eugenia uniflora) were collected around the region of the Federal University of Santa Maria (UFSM) (Rio Grande do Sul state, Brazil). First, the seeds were manually separated from the fruit pulp, washed with distilled water, sun dried during 6 h and grounded with a knife mill (Marconi, MA340). After the initial step, the powder was washed with an ethanol solution (50% v/v) at 60 °C for 40 min under stirring of 150 rpm. This process was executed four times, aiming the removal of any extractives. The solid material was then separated from the liquid phase by sedimentation and dried at 60 °C for 72 h. Last, the biosorbent was sieved using a 45 mesh, corresponding to 0.0354 cm, and named BBS powder.

The following techniques were selected for the characterization of the BBS: scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRD). For the SEM images, the BBS samples were covered with gold through the sputtering process, using a current of 20 mA for 90 s. After this step, the SEM images were obtained using a VEGA 3 from Tescan (Czech Republic) operating at 10 kV. In the case of the FT-IR, 100 mg of KBr were mixed with 1 mg of the sample and further pressed using a Hand Press SSP-10A (Shimadzu, Japan), resulting in thin transparent inserts (less than 1 mm thick) with a diameter of 13 mm. Then, KBr/BBS mixture was scanned from 450 to 4500 cm⁻¹ using a Shimadzu FT-IR model Prestige-21 (Japan) with 45 scans and 2.0 cm⁻¹ resolution. Last, the XRD was used to determine the crystallographic structure, using a Rigaku, model MiniFlex 300 equipment (Japan).

To identify the possible nature of the sites, present on the BBC surface, as well as the pH effect on biosorption, it was realized the point of zero charge test (pH pzc) (Salleh et al. 2011). Eight NaCl solutions (0.1 mol L⁻¹) had its pH adjusted from 2 to 10. Then, a dosage of 0.8 g L⁻¹ of BBC biosorbent was added into each solution. Solutions were then agitated until reaching the equilibrium (36 h). The pH pzc was obtained from the difference between the final and initial pH (Hameed et al. 2008).

Batch biosorption tests

The biosorption essays were conducted using the cationic dye MB. MB is a synthetic dye derivate from thiazine with a molecular formula C₁₆H₁₈ClN₃S (319.87 g mol⁻¹, λmax of 664 nm). Moreover, it presents the following molecular dimensions: 14.3 Å width, 6.1 Å depth, and 4 Å thick. The molecular diameter is 8 Å, and the molecular volume is 241.9 cm³ mol⁻¹. A stock solution of MB was firstly prepared (1 g L⁻¹) using distilled water, and stocked on glass vials, being further diluted as required in each specific experiment. The equipment used to perform all the biosorption essays was the thermostatic agitator, model MA 093 from Marconi (Brazil), which was operated at 150 rpm. Batch biosorption tests were conducted as follows:

The pH tests were conducted for the following pH values: 2.0, 4.0, 6.0, 8.0, and 10.0, using 1 g L⁻¹ of BBS
biosorbent. The pH values were adjusted using sodium hydroxide or chloride acid. BBS was added to 50 mL of MB solutions with initial concentration of 60 mg L\(^{-1}\), and the solutions were agitated during 180 min at 298 K. The BBS dosage effect was analyzed for the following values: 0.50, 0.75, 1.00, 1.25, and 1.50 g L\(^{-1}\). For these assays, the pH was set at 8. The different BBS dosages were put in contact with 50 mL of MB solution with an initial concentration of 60 mg L\(^{-1}\). Solutions were stirred during 180 min at 298 K.

The biosorption kinetic experiments were conducted using the best conditions found in the pH and dosage tests. The influence of different initial MB concentrations (25, 50, 100, 200 mg L\(^{-1}\)) was evaluated. In the same form, BBS was added to 50 mL of MB solutions at 298 K. The samples were collected at predefined times: 5, 10, 15, 20, 30, 45, 60, 90, 120, and 180 min.

The equilibrium biosorption essays were made at 298, 308, 318, and 328 K, for different initial concentrations (0, 25, 50, 100, 150, and 200 mg L\(^{-1}\)). For each essay, BBS was added to 50 mL of MB solution and the solution was agitated until reaching the equilibrium.

Each sample was centrifuged (4000 rpm for 20 min) after collected, using a Centribio model 80-2B centrifuge (Brazil). The MB concentration was measured by spectrophotometry using a Shimadzu UV model mini 1240 (Japan). All tests were made in triplicates (\(n=3\)) and blanks were carried out to ensure reproducibility. The percentage of dye removal (R, %) and biosorption capacity at any time (\(q_t\), mg g\(^{-1}\)) and at equilibrium (\(q_e\), mg g\(^{-1}\)) were calculated as follows:

\[
R = \left(\frac{C_0 - C_t}{C_0}\right) \times 100. \tag{1}
\]

\[
q_t = \left(\frac{C_0 - C_t}{m}\right) \times V \tag{2}
\]

\[
q_e = \left(\frac{C_0 - C_e}{m}\right) \times V \tag{3}
\]

where \(C_0\) is the initial concentration of the MB dye in the liquid phase (mg L\(^{-1}\)), \(C_e\) is the equilibrium concentration of the MB dye in the liquid phase (mg L\(^{-1}\)), \(C_t\) is the concentration of the MB dye in the liquid phase at any time (mg L\(^{-1}\)), \(m\) is the amount of BBS biosorbent (g), and \(V\) is the volume of solution (L).

Kinetic, isotherm, and thermodynamic models

The biosorption kinetics of MB on BBS biosorbent was analyzed according to the pseudo-first-order (Lagergren 1898), pseudo-second-order (Ho and McKay 1999), and general order models (Liu and Shen 2008). The Weber-Morris model was also selected for understanding the biosorption mechanism (Weber and Morris 1963; Crank 1975) (supplementary material S1). For the biosorption isotherms, the models of Langmuir (Langmuir 1918), Freundlich (Freundlich 1906), and Khan (Khan et al. 1996) were tested (supplementary material (S.2)). For the thermodynamic calculations, it was used the equilibrium constant estimated from the best isotherm model (Lima et al. 2019), and the equations presented in the supplementary material (S.3).

Textile effluent treatment using BBS

The BBS biosorbent was evaluated for the treatment of effluents containing MB and a series of other compounds found in real situations of textile industry. Two types of textile effluents were simulated, containing different compositions of dyes and salts (Table 1). For these tests, a dosage of 4.0 g L\(^{-1}\) of BBS was put in contact with the effluents A and B (Table 1), which were agitated for 240 min at 150 rpm and 298 K. Before and after the treatment with BBS, the solutions were UV-Vis scanned on the 300 to 800 nm region. The efficiency of the biosorption with BBS was evaluated in terms of total color removal (TCR, %). Total color removal was calculated from the difference between the areas under the spectral curves, before and after the treatment (Georgin et al. 2019a; Yaseen and Scholz 2019).

Fixed-bed essay and modeling

The column experiment for the BBS was performed using an acrylic column with 25 cm height and 2.5 cm diameter. The column was filled with 27.8 g of BBS. The MB solution was pumped at a volumetric flow of 20 mL min\(^{-1}\) through the system, using a peristaltic pump from Provitec (model AWV.

Chemical compounds	Concentration (mg L\(^{-1}\))	\(\lambda_{\text{max}}\) (nm)
Effluent A		
Methylene blue	100	664
Crystal violet	50	586
Malachite green	50	615
Sodium chloride (NaCl)	100	
Sodium carbonate (Na\(_2\)CO\(_3\))	100	
pH	9.8	
Effluent B		
Methylene blue	80	664
Brilliant blue	50	630
Basic fuchsin	100	546
Sodium chloride (NaCl)	100	
Sodium carbonate (Na\(_2\)CO\(_3\))	100	
pH	8.5	
Brazil). The samples were taken at intervals of 30 min until the concentration at the outlet of the column become constant. The MB concentrations were measured according to the section “Batch biosorption tests”. The length of mass transfer zone \((Z_m) \), the volume of effluent \((V_{eff,m}) \), maximum biosorption capacity \((q_{eq,m}) \), and percentage of removal \((R, \%) \) were estimated using the following equations (Suzuki 1990):

\[
Z_m = Z \left(1 - \frac{t_b}{t_c}\right) \tag{4}
\]

\[
V_{eff} = \frac{Q t_{total}}{m_{bio}} \tag{5}
\]

\[
q_{eq} = \frac{Q C_0}{m_{bio}} \int_0^{t_{total}} \left(1 - \frac{C_t}{C_0}\right) dt \tag{6}
\]

\[
R = \frac{100\%}{t_{total}} \int_0^{t_{total}} \left(1 - \frac{C_t}{C_0}\right) dt \tag{7}
\]

where \(Z \) is the height of the fixed bed (cm), \(Q \) is the volumetric flow (mL min\(^{-1}\)), \(t_{total} \) is total time of operation (min), \(C_0 \) is the feed concentration (mg L\(^{-1}\)), \(C_t \) is output concentration (mg L\(^{-1}\)) and \(m_{bio} \) is the biosorbed mass (g).

The breakthrough data were evaluated by the models of Bohart-Adams (Bohart and Adams 1920), Thomas (Thomas 1944) and Yoon-Nelson (Yoon and Nelson 1984). These models are presented in the supplementary material (S.4).

Fit evaluation

For all models used in this work, the goodness of fit was evaluated through the determination coefficient \((R^2) \), adjusted determination coefficient \((R^2_{adj}) \), average relative error (ARE) and minimum squared error (MSE). The equations are shown in the supplementary material (S.5). All the parameter estimations were made using script programming on Matlab 2017.

Fig. 1 SEM images of the BBS biosorbent at different magnifications a \(\times \) 200, b \(\times \) 500, c \(\times \) 1000, and d \(\times \) 5000
Results and discussion

BBS biosorbent characteristics

The SEM images of the BBS surface are exhibited in Fig. 1. In Fig. 1 a and b, with magnifications of × 200 and × 500, respectively, it is possible to observe that the BBS biosorbent is a particulate material, containing irregular and shapeless particles, with sizes in the order of 200 μm or less. Similar morphological aspects have already been found in other plant-based materials, such as the bark of the tree species Cedrella fissilis, Araucaria angustifolia, and Handroanthus albus (Georgin et al. 2018a; Georgin et al. 2019b; Hernandes et al. 2019). Siddiqui et al. (2018) and Kebede et al. (2018) also used caraway seed residues and Moringa stenopetala and found surfaces with similar aspects of this study. In the images depicted in Fig. 1 c and d (magnifications of × 1000 and × 5000, respectively), it can be verified that the BBS particles are formed by agglomerates of circular structures with sizes lower than 10 μm.

The FT-IR spectrum for the BBS biosorbent is presented in Fig. 2a. The wideband found at 3430 cm\(^{-1}\) is related to the bond elongation of O–H (Cao et al. 2014). The band at 2927 cm\(^{-1}\) is attributed to the C–H stretch vibrations of aliphatic molecules (Ghaedi et al. 2015). The vibrational signal at 1641 cm\(^{-1}\) is ascribed to the C=O and N–H bonds, directly
related to the amide I group (Pavan et al. 2008). The band found at 1370 cm$^{-1}$ corresponds to C–H from the methyl groups (Yang and Qiu 2010). The band around 1017 cm$^{-1}$ indicates the presence of C–O (Dahri et al. 2014). In the region of 400 cm$^{-1}$, the vibration of C–N bonds can be verified (Salem and Awwad 2014). The results indicate that the BBS contains groups that are commonly found in lignocellulosic materials. These groups in turn possess the capacity to uptake species diluted in aqueous solutions.

The XRD pattern for BBS biosorbent is presented in Fig. 2b. It is possible to observe that the material presents an amorphous characteristic, corresponding to the broad peak between the 10 and 30°. This peak is characteristic of the lignin and cellulose materials (Xu et al. 2007). Similar behavior has been also found by Siddiqui et al. (2018) for cumin seeds.

Influence of pH and BBS dosage on biosorption

Figure 3a shows the influence of pH on the biosorption of MB by BBS. It is possible to observe that the pH increase from 2 to 8 enhanced the biosorption capacity from 2.2 to 56.1 mg g$^{-1}$. A new increase from 8 to 10 presented no effect in the MB biosorption. This effect is a result of the BBS and MB characteristics, when submitted to solutions with different pH values. Concerning the BBS characteristics, it was found that the pH$_{pzc}$ was 6.8, as shown in Fig. 3b. So, the BBS surface is protonated at pH values lower than 6.8, and deprotonated at pH values higher than 6.8. In relation to MB, it is a cationic dye. Thus, the biosorption was more efficient at pH 8.0.

Table 2 Kinetic parameters for the MB biosorption on BBS

MB initial concentration (mg L$^{-1}$)	25	50	100	200
Pseudo-first order (PFO)				
q_1 (mg g$^{-1}$)	52.4	76.3	98.8	130.8
k_1 (min$^{-1}$)	0.271	0.308	0.172	0.183
R^2	0.983	0.997	0.949	0.932
R^2_{adj}	0.958	0.992	0.875	0.836
ARE (%)	3.64	1.38	6.92	8.30
MSE (mg g$^{-1}$)2	4.7	1.9	53.1	123.2
Pseudo-second order (PSO)				
q_2 (mg g$^{-1}$)	54.9	78.8	106.2	140.5
k_2 (g mg$^{-1}$ min$^{-1}$)	0.010	9.8 \times 10$^{-3}$	2.6 \times 10$^{-3}$	2.1 \times 10$^{-3}$
R^2	0.998	0.998	0.990	0.982
R^2_{adj}	0.996	0.995	0.975	0.955
ARE (%)	1.09	1.07	2.97	4.22
MSE (mg g$^{-1}$)2	0.4	1.0	10.5	33.2
General order (GO)				
q_n (mg g$^{-1}$)	56.9	77.3	142.1	206.7
k_n (min$^{-1}$ (g mg$^{-1}$))^$-n$	1.3 \times 10$^{-3}$	5.8 \times 10$^{-2}$	3.6 \times 10$^{-10}$	5.6 \times 10$^{-14}$
n (–)	2.6	1.5	5.3	6.7
R^2	0.998	0.998	0.990	0.982
R^2_{adj}	0.995	0.995	0.971	0.948
ARE (%)	0.79	0.37	0.82	1.56
MSE (mg g$^{-1}$)2	0.25	0.22	0.81	4.5
q_{exp} (mg g$^{-1}$)	55.3	77.2	107.9	142.9
because the opposite charges of BBS and MB in this condition, which in turn facilitated the interaction in the surface.

The BBS dosage effect on the removal percentage and biosorption capacity of MB is shown in Fig. 3c. The different dosages (0.5 to 1.5 g L\(^{-1}\)) were tested with 50 mL of MB solutions at an initial concentration of 60 mg L\(^{-1}\) and pH 8. The percentage of MB removal ranged from 83 to 91% with BBS dosage increase. In contrast, the biosorption capacity values decreased from 106.0 to 38.6 mg g\(^{-1}\). This expected behavior can be related to several aspects. The first one, from a mathematical viewpoint, is that the biosorption capacity is inversely proportional to the adsorbent dosage; thus, its increase causes a direct decrease of the adsorbent capacity (Ghosh and Bhattacharyya 2002). Second, from a molecular viewpoint, the removal increase and adsorption decrease in related to the increase of total biosorption sites (Franco et al. 2019). The decrease in biosorption capacity \((q) \) occurs due to the superposition and aggregation of biosorption sites. In Fig. 3c, the intersection between the curves of biosorption capacity and removal percentage indicates the appropriate dosage, which in this case was 0.8 g L\(^{-1}\).

Biosorption kinetics and modeling

The kinetic profiles of the MB biosorption onto BBS, obtained at different initial concentrations, are shown in Fig. 4. The curves were obtained at pH of 8 and BBS dosage of 0.8 g L\(^{-1}\). Evidently, all curves started from \(q_t = 0 \) and the biosorption equilibrium was attained along the time until reach the equilibrium. However, it was observed that the curves at lower initial MB concentrations (25 and 50 mg L\(^{-1}\)) were faster. At lower initial MB concentrations, the biosorption equilibrium was attained.

Table 3 Estimated Weber-Morris parameters for the biosorption of MB onto BBS

Parameters	MB initial concentration (mg L\(^{-1}\))
	25
	50
	100
	200
	S1
	S2
\(k_{WB} \) (mg g\(^{-1}\) min\(^{-1/2}\))	18.24
	0.78
\(C \) (mg g\(^{-1}\))	27.46
	0.48
\(D_e \) (cm\(^2\) s\(^{-1}\))	9.28 \times 10\(^{-11}\)
	1.82 \times 10\(^{-11}\)
\(R^2 \)	0.999
	0.85668

Table 4 Isotherm parameters for the MB biosorption on BBS

Model	298	308	318	328
Langmuir				
\(q_L \) (mg g\(^{-1}\))	179.7			
\(K_L \) (L mg\(^{-1}\))	0.081			
\(R^2 \)	0.990			
\(R^2_{adj} \)	0.983			
ARE (%)	11.91			
MSE (mg g\(^{-1}\)^2)	49.1			
Freundlich				
\(K_F \) (mg g\(^{-1}\)(mg L\(^{-1}\)y\(^{-1/2}\)))	29.2			
\(1/n_F \) (dimensionless)	2.51			
\(R^2 \)	0.956			
\(R^2_{adj} \)	0.983			
ARE (%)	21.5			
MSE (mg g\(^{-1}\)^2)	209.3			
Khan				
\(q_mK \) (mg g\(^{-1}\))	152.7			
\(a \) (L mg\(^{-1}\))	0.101			
\(b \) (dimensionless)	0.935			
\(R^2 \)	0.989			
\(R^2_{adj} \)	0.972			
ARE (%)	12.76			
MSE (mg g\(^{-1}\)^2)	72.7			

Fig. 5 Equilibrium curves for the MB/BBS system (BBS dosage = 0.8 g L\(^{-1}\), pH = 8, 150 rpm, \(V = 50 \) mL)
at around 20 min, while at higher MB concentrations (100 and 200 mg L$^{-1}$), the equilibrium was reached at around 120 min. This suggests that the diffusive effects inside the BBS particle were most pronounced at higher concentrations. Similar behavior has been reported by Neupane et al. (2014) in the adsorption of crystal violet onto pineapple leaves.

Aiming to better understand and describe the biosorption of MB on BBS, the abovementioned kinetic models (supplementary material (S.1)) were used. The estimated parameters of each model are presented in Table 2. The choice of the best model was based on the statistical indicators and physical meaning of the parameters. Considering the statistical indicators, it can be seen that PSO and GO models were more accurate than PFO to describe the biosorption kinetic profiles. PSO and GO presented R^2 and R^2_{adj} higher than 0.945, and also, lower values of ARE and MSE. At lower concentrations (25 and 50 mg L$^{-1}$), the GO model was better than PSO, predicting more accurately the experimental equilibrium biosorption capacity (q_{exp} near to q_n). On the other hand, at MB concentrations of 100 and 200 mg L$^{-1}$, the GO model (in spite of the good statistical indicators) was not able to predict the q_{exp} values, and also, provided k_p values without physical meaning. In conclusion, for lower MB concentrations, the PSO model is preferred.

The Weber-Morris model showed that the biosorption of MB onto the BBS was separated in two stages (Fig. S1). The first initial stage is related to the external mass transfer of the MB. The external mass transfer can be related to different aspects such as initial concentration, agitation speed and favorable interactions on the system (Tran et al. 2017). The second stage can be classified as the intraparticle diffusion step. In this case, the diffusion of the adsorbate molecules inside the particle (Weber and Smith 1987) occurs. This indicates that the biosorption of the MB onto the BBS has depended of both mechanisms. Furthermore, from the estimated parameters (Table 3), it was possible to conclude that the increase of the initial concentration of MB increased the effective diffusion from 9.28×10^{-11} to 3.65×10^{-10} cm2 s$^{-1}$.

Biosorption equilibrium and thermodynamics

The equilibrium curves for the MB biosorption onto BBS at different temperatures are exhibited in Fig. 5. The obtained isotherm curves were favorable of the “L” type. It can be observed an inclined portion at lower equilibrium concentrations, demonstrating the affinity between MB and BBS. With the increase in the equilibrium concentration (C_{eq}), the biosorption capacity (q_{eq}) tended to a constant value, but the plateau was not observed. The temperature effect on the equilibrium curves was little pronounced. The temperature increase provided a little increase in the biosorption capacity, from 152.7 (298 K) to 164.1 mg g$^{-1}$ (318 K). This trend can be attributed to the reduction in the solution viscosity and consequent increase in the mobility of MB molecules in solution. Bulut and Aydin (2006) reported a similar trend in the adsorption of MB onto wheat straw, raising the adsorption capacity from 16.6 to 21.5 mg g$^{-1}$, for the temperature variation of 303 to 323 K. For the same temperature variation, Hameed and Ahmad (2009) reported the increase of MB adsorption, from 82.6 to 142.9 mg g$^{-1}$.

The parameters of Langmuir, Freundlich and Khan models are listed in Table 4. Analyzing the statistical indicators ($R^2 \geq 0.989$, $R^2_{adj} \geq 0.982$, ARE $\leq 12.84\%$, MSE ≤ 58.3 (mg g$^{-1}$)), it is possible to conclude that the Langmuir model was the most suitable when compared with the Khan and Freundlich. Furthermore, the K_L and q_L parameters presented conformity with the experimental data, i.e., both increases as the temperature raises. The maximum biosorption capacity of BBS for MB was 189.6 mg g$^{-1}$ at 328 K.

Taking into consideration the Langmuir isotherm, it was estimated the equilibrium constant, which is further used for the determination of thermodynamic parameters (Table 5). The biosorption of MB onto BBS was favorable and spontaneous ($-9.54 \leq \Delta G^0 \leq -8.06$ kJ mol$^{-1}$). The endothermic nature of the MB biosorption onto BBS was confirmed by the ΔH^0 value of 6.11 kJ mol$^{-1}$. From the magnitude of ΔH^0, it indicates that the biosorption of the MB onto the BBS has depended of both mechanisms. Furthermore, from the estimated parameters (Table 3), it was possible to conclude that the increase of the initial concentration of MB increased the effective diffusion from 9.28×10^{-11} to 3.65×10^{-10} cm2 s$^{-1}$.

Tables

Table 5	Thermodynamic parameters for the MB biosorption on BBS			
T(K)	k_c (L·mol$^{-1}$)	ΔG^0 (kJ·mol$^{-1}$)	ΔH^0 (kJ·mol$^{-1}$)	ΔS^0 (kJ·mol$^{-1}$·K$^{-1}$)
298	25.87	-8.06	6.11	0.047
308	28.39	-8.57		
318	29.03	-8.91		
328	33.02	-9.54		

Table 6	Estimated partition values for the adsorption kinetics of MB onto BBS for different initial concentrations			
Sorbent	C_0 (mg L$^{-1}$)	C_e (mg L$^{-1}$)	q (mg g$^{-1}$)	K_D (mg g$^{-1}$ (mg L$^{-1}$))
BBS	25	3.37	57.25	16.96
Dosage 0.8 g L$^{-1}$	50	11.80	77.25	6.54
Time 180 min	100	12.21	107.94	8.84
pH 8.0	200	75.05	150.77	2.00
Temperature 298 K				
can be assumed that a physical biosorption occurred in the MB biosorption onto BBS. Finally, minor rearrangements of MB molecules on the BBS surface were indicated by the positive value of the entropy change. The entropy was more important than the enthalpy in the MB biosorption by BBS, since the term $T \Delta S_0$ was the unique in Eq. 9 (supplementary material (S.3)) that have contributed to obtain negative ΔG_0 values.

Partition factor and sorbent comparison

Usually, maximum biosorption capacity is used to compare the performance of a determined sorbent material. However, biosorption capacity is a very sensitive variable, since it depends on different operational conditions (pH, dosage, initial concentration, temperature) (Siddiqui et al. 2019). One way to evaluate the sorbent is using the partition coefficient (K_D, mg g$^{-1}$ (mg L$^{-1}$)$^{-1}$) (Vikrant and Kim 2019), which is estimated according to the following Equation:

$$K_D = \frac{q_e}{C_e} = \frac{q_e}{C_0R}$$ \hspace{1cm} (8)

The first step is the self-evaluation of the sorbent in relation to its kinetics, here presented in Table 6. It was found that the coefficient of partition (K_D) tends to decrease with the increase in initial concentration (C_0), which is expected since the final equilibrium concentration (C_e) increases. This similar behavior has been also found by Siddiqui and collaborators (2019). Second, the BBS was evaluated using the maximum biosorption capacity and the partition coefficient in relation to other works present in the literature (Table 7). At first glance, using the q_m as a comparison, the BBS is stated as

Table 7 Comparison of maximum biosorption capacities and partition coefficient for different materials used to treat MB containing solutions

Adsorbent	pH	T (K)	C_0 (mg L$^{-1}$)	q_m (mg g$^{-1}$)	C_e (mg L$^{-1}$)	K_d (mg g$^{-1}$)(mg L$^{-1}$)$^{-1}$	References
BBS	8	328	25–200	189.6	65	2.9169	This work
Spent coffee	5	298	50–500	18.71	240	0.0780	Franca et al. (2009)
Glass hollow fiber	7	318	20–200	44.38	100	0.4438	Zhang et al. (2019)
Pará chestnut husk	4	328	100–400	83.8	450	0.1862	Georgin et al. (2018b)
Activated corn	5	298	20–160	254	160	1.5875	Fan et al. (2014)
AC/cellulose films	7	328	20–100	110.35	45	2.4522	Somsesta et al. (2020)
AC from A. donax	10	318	100–400	480.77	160	3.0048	Üner (2019)
Soursop and sugarcane wastes	5.5	298	50–200	55.39/17.43	55/80	1.007/4.589	Meili et al. (2019)
Modified celery	6.8	323	100–700	526.32	225	2.3392	Mohebali et al. (2018)
Ouricuri fibers	5.5	298	20–450	31.7	160	0.1981	Meili et al. (2016)
P. granatum husk	5	298	5–500	68.4	215	0.3181	Bretanha et al. (2014)
Pine cone biomass	7.28	303	20–60	109.89	40	2.7473	Sen et al. (2010)
Modified pine cone	9.2	303	20–90	142.25	55	2.5864	Yagub et al. (2013)

![Fig. 6](image_url)
Fig. 6 UV-Vis spectra for the simulated effluents before and after the biosorption: a effluent A and b effluent B.
the third better from the selected works. Nevertheless, when using the K_D, it was found that the BBS reaches the second position in relation to performance, being the first the activated carbon from Arundo donax reported by Üner (2019). This biosorption performance coupled with its eco-friendly character and low-cost, becomes BBS a promising material for MB removal from textile effluent.

MB/BBS system interaction

Figure 7 shows the proposed interaction between the MB and the BBS. In general, it is known that agro waste materials are mainly composed of lignin, cellulose, and hemicellulose (Chen, 2014, Siddiqui and Chaudhry 2019). These molecules often present OH groups that are able to perform hydrogen and electrostatic bonds with the MB (Abdulla et al. 2019; Fatima et al. 2019).

Treatment of textile effluents by biosorption with BBS

When a biosorption study is performed for dyes removal, normally, synthetic solutions containing only one dye and water are used to test the biosorbent (this evaluation is here presented in sections “Influence of pH and BBS dosage on biosorption”, “Biosorption kinetics and modeling”, and “Biosorption equilibrium and thermodynamics”). However, textile effluents contain a series of compounds and more than one dye. So, the potential of a biosorbent need to be evaluated

Model	Parameter value
Bohart-Adams	
\(k_{BA} \) (L mg\(^{-1}\) min\(^{-1}\))	\(7.3 \times 10^{-5}\)
\(N_{BA} \) (mg L\(^{-1}\))	504.13
\(R^2\)	0.998
MSE	\(2.092 \times 10^{-3}\)
Thomas	
\(k_{th} \) (L mg\(^{-1}\) min\(^{-1}\))	\(7.3 \times 10^{-5}\)
\(q_{th} \) (mg g\(^{-1}\))	89.02
\(q_{eq} \) (mg g\(^{-1}\))	88.9
\(R^2\)	0.998
MSE	\(2.092 \times 10^{-3}\)
Yoon-Nelson	
\(k_{YN} \) (min\(^{-1}\))	0.0073
\(\tau\) (min\(^{-1}\))	1237
\(\tau_{exp}\) (min\(^{-1}\))	1095
\(R^2\)	0.998
MSE	\(2.092 \times 10^{-3}\)

Fig. 7 Proposed interaction for the MB/BBS system

Fig. 8 Breakthrough curve for the MB biosorption onto BBS
in real conditions. In this work, two different simulated effluents (Table 1) were prepared and treated using the BBS biosorbent. The spectra of these effluents before and after biosorption with BBS are presented in Fig. 6. Before biosorption, the areas under the curves were 726.684 and 406.054 for the effluents A and B, respectively. After the biosorption process using BBS, these values decreased to 56.448 and 107.64. It was possible to estimate a color removal of 92.2% for the effluent A and 73.5% for the effluent B. Furthermore, in both cases, it is possible to observe a band at 320 nm, which indicates the possible formation of a new compound due to breakage of covalent bonds present in the dyes. Nevertheless, the BBS was able to uptake the unknown compound. Thus, the BBS biosorbent presented potential to be applied in the treatment of textile effluents, which are composed by different dyes and inorganic salts.

Fixed-bed results

In biosorption studies, it is also fundamental to verify the possibility of the biosorbent to be used in fixed bed columns. Here, the fixed bed test was performed according to the section “Fixed-bed essay and modeling”, and the resulting breakthrough curve is presented in Fig. 7. It was found and inclined breakthrough curve, which is excellent for scale up purposes. The fixed bed packed with BBS was efficient to treat the MB solution until 840 min (breakthrough time, \(t_b \)). Until this point, the removal percentage was higher than 99%. After this point, the outlet MB concentration started to increase, until reach the exhaustion time at 1630 min. As consequence, the length of mass transfer zone (\(Z_m \)) was 12.1 cm, and the stoichiometric biosorption capacity was 88.92 mg g\(^{-1}\).

Thomas, Yoon-Nelson and Bohart-Adams, namely the dynamic models, were able to describe the breakthrough curve with \(R^2 \) of 0.998 and MSE of 2.092 \(\times 10^{-3} \) (Table 8). In addition, from the Thomas model, it was possible to estimate the biosorption capacity of 89.02 mg g\(^{-1}\), which was close with the experimental value (\(q_{eq} \)). The parameter \(\tau \) of the Yoon-Nelson model was 1237 min and was near with the experimental value (1095 min). These evaluations showed that the dynamic models can be applied to describe and predict the behavior of the breakthrough curve in the biosorption of MB onto the BBS biosorbent (Fig. 8).

Conclusion

In this work, it was prepared a biosorbent from the Brazilian berry seeds (BBS). The biosorbent was characterized and further applied in biosorption experiments. The major conclusions are as follows:

BBS biosorbent is mainly composed of irregular and shapeless particles, with sizes in the order of 200 \(\mu \)m, being nitrogen, oxygen, hydrogen, and carbon arranged its amorphous structure. Biosorption of MB on BBS was more favorable at pH 8. The better BBS dosage was 0.8 g L\(^{-1}\). At lower MB concentrations, biosorption was faster, reaching the equilibrium in 20 min, being the general order model the most adequate to represent the curves. However, for higher MB concentrations, the equilibrium was reached in 120 min and the pseudo-second order was the best model.

The Langmuir model is the proper one to represent the equilibrium curves. The maximum biosorption capacity was 189.6 mg g\(^{-1}\). The process was spontaneous, favorable and endothermic.

BBS material was able to remove 92.2% and 73.5% of the color for two types of textile effluents.

The fixed-bed experiment indicated that the biosorbent can be further applied on the continuous MB removal.

All these aspects indicated that BBS is a promising biosorbent to be used in the treatment of textile effluents.

References

Abdulla NK, Siddiqui SI, Tara N, Hashmi AA, Chaudhry SA (2019) *Psidium guajava* leave–based magnetic nanocomposite \(\gamma \)-Fe2O3@GL: a green technology for methylene blue removal from water. J Environ Chem Eng 7:103423

Amorim ACL, Lima CKF, Hovell AMC, Miranda ALP, Rezende CM (2009) Antinociceptive and hypnotic evaluation of the leaf essential oil and isolated terpenoids from *Eugenia uniflora* L. (Brazilian Pitanga). Phytomedicine 16:923–928

Babalola JO, Koiki BA, Eniyewu Y, Salimonu A, Olowoyo JO, Oninla VO, Omorogie MO (2016) Adsorption efficacy of Cedrela odorata seed waste for dyes: non-linear fractal kinetics and non-linear equilibrium studies. J Environ Chem Eng 4:3527–3536

Bazzo A, Adebayo MA, Dias SL, Lima EC, Vaghetti JCP, de Oliveira ER, Pavan FA (2015) Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions. Desalination Water Treat 57:15873–15888

Bohart GS, Adams EQ (1920) Some aspects of the behavior of charcoal with respect to chlorine. J Amer Chem Soc 42:523–544

Brethanga MS, Rochefort MC, Dotto GL, Lima EC, Dias SL, Pavan FA (2014) *Punica granatum* husk (PGH), a powdered biowaste material for the adsorption of methylene blue dye from aqueous solution. Desalination Water Treat 57:15873–15888

Bulut Y, Aydin H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267

Cao JS, Lin JX, Fang F, Zhang MT, Hu Z (2014) A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Biore sour Technol 163:199–205

Carvalho CDO, Costa Rodrigues DL, Lima EC, Umpierres CS, Caicedo Chaguez DF, Machado FM (2019) Kinetic, equilibrium, and,
thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana). Environ Sci Pollut Res 26:4690–4702

Catano M, Malpass GRP, Mothoo AJ (2006) Evaluation of electrochemical and photoelectrochemical treatments in the degradation of textile dyes. New Chemistry 29:983–989

Chen H (2014) Biotechnology of lignocellulose. Springer

Crank J (1975) The mathematics of diffusion. Oxford Science Publications

Dahri MK, Koooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2:1434–1444

Dávila-Jiménez MM, Elizalde-González MP, Hernández–Montoya V (2009) Performance of mango seed adsorbents in the adsorption of anthaquinone and azo acid dyes in single and binary aqueous solutions. Bioresour Technol 100:6199–6206

Fan H, Zhou L, Jiang X, Huang Q, Lang W (2014) Adsorption of Cu(II) and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Appl Clay Sci 95:150–158

Fatima B, Siddiqui SI, Ahmed R, Chaudhry AL (2019) Green synthesis of f-CdWO4 for photocatalytic degradation and adsorptive removal of Bismarck Brown R dye from water. Water Res Ind 22:100119

Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli (2019) Potential of low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetic, thermodynamic and regeneration studies. J Environ Sci Pollut Res 26:19207–19219

Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249:267–272

Georgin J, Drumm FC, Grassi P, Franco D, Allasia D, Dotto GL (2018a) Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents. Water Sci Technol 78:1693–1703

Georgin J, Marques BS, Peres EC, Allasia D, Dotto GL (2018b) Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Sci Technol 77:1612–1621

Georgin J, Franco DSP, Drumun FC, Grassi P, Schadeck Netto M, Allasia D, Dotto GL (2019a) Paddle cactus (Tacinga palmodora) as potential low-cost adsorbent to treat textile effluents containing crystal violet. Chem Eng Commun in press:1–12. https://doi.org/10.1080/00986445.2019.1650033

Georgin J, Franco DSP, Grassi P, Tomato D, Piccilia DGA, Meili L, Dotto GL (2019b) Potential of Cedrela fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219

Ghaedi M, Mazahei H, Khodadoust S, Hajati S, Purkait MK (2015) Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim Acta A: Mol Biomol Spectroscopy 135:479–490

Ghosh D, Bhattacharyya KG (2002) Adsorption of methylene blue on kaolinite. Appl Clay Sci 20:295–300

Hameed BH, Ahmad AA (2009) Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass. J Hazard Mater 164:870–875

Hameed BH, Tan IAW, Ahmad AL (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6–trichlorophenol on coconut husk-based activated carbon. Chem Eng J 144:235–244

Hernandes PT, Oliveira MLS, Georgin J, Franco DSP, Allasia D, Dotto GL (2019) Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus). Environ Sci Pollut Res 26:31924–31933

Ho YS, McKay G (1999) Pseudo–second order model for sorption processes. Process Biochem 34:451–465

Honorato AC, Machado JM, Celante G, Borges WGP, Dragunski DC, Caetano J (2015) Methylene blue biosorption using agroindustrial residues. Brazilian J Agric Environ Eng 19:705–710

Kebede TG, Mengistie AA, Dube S, Nkambule TT, Hindi MM (2018) Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder. J Environ Chem Eng 6:1378–1389

Khan AR, Al–Waheib HI, Al–Haddad A (1996) A generalized equation for adsorption isotherms for multi–component organic pollutants in dilute aqueous solution. Environ Technol 17:13–23

Laegergren S (1898) Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Kung Svenska Vetenskap 24:1–39

Lamguiri I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

 Lima EC, Hosseini-Bandeghareei A, Moreno-Piraján JC, Anastopoulos T (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

 Lima I, Oliveira R, Lima E, Farias NMP, Souza EL (2006) Anti fungal activity of essential oils on Candida species. Brazilian J Pharm 16:197–201

 Liu Y, Shen L (2008) A general rate law equation for biosorption. Biochem Eng J 38:390–394

 Meili L, da Silva TS, Henrique DC, Soletti JI, de Carvalho SHV, Fonseca EJ, Dotto GL (2016) Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions. Water Sci Technol 75:106–114

 Meili L, Lins PVS, Costa MT, Almeida RL, Abud AKS, Soletti JI, Ertol A (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Prog Biophys Mol Biol 141:60–71

 Mohebali S, Bastani D, Shayesteh H (2018) Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Struct 1173:541–551

 Munagapati VS, Yarramuthi V, Kim Y, Lee KM, Kim DS (2018) Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol Environ Saf 148:601–607

 Neupane S, Ramesh ST, Gandhiethi R, Nidheesh PV (2014) Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution. Desalin Water Treat 54:2041–2054

 Pavan FA, Lima EC, Dias SL, Mazzaocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712

 Postai DL, Demarchi CA, Zanatta F, Melo DCC, Rodrigues CA (2016) Adsorption of rhodamine B and methylene blue dyes using waste of Aleurites Moluccana fiber: a novel adsorbent with high adsorption capacity. Brazilian J Agric Environ Eng 19:465–470

 Salem NM, Awad AM (2014) Biosorption of Ni(II) from electroplating wastewater by modified (Eriobotrya japonica) loquat bark. J Saudi Chem Soc 18:379–386

 Salleh MAM, Mahmoud DK, Karim WA WA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1–13

 Sen TK, Afroze S, Ang HM (2010) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218:499–515
Siddiqui SI, Rathi G, Chaudhry SA (2018) Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies. J Mol Liq 264:275–284

Siddiqui SI, Chaudhry SA (2019) Nanohybrid composite Fe2O3–ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. J Clean Prod 223:849–868

Siddiqui SI, Zohra F, Chaudhry SA (2019) Nigella sativa seed based nanohybrid composite-Fe2O3-SnO2/BC: a novel material for enhanced adsorptive removal of methylene blue from water. Environ Res 178:108667

Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Mater Chem Phys 240:122221

Suzuki M (1990) Adsorption engineering. Kodansha, Tokyo

Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Amer Chem Soc 66:1664–1666

Tran HN, You SJ, Hosseini-Bandegharmae A, Chao HP (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116

Uddin MT, Rahman MA, Rukanuzzaman M, Islam MA (2017) A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl Water Sci 7:2831–2842

Üner O (2019) Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Mater Chem Phys 237:121858

Vikrant K, Kim KH (2019) Nanomaterials for the adsorptive treatment of Hgt(II) ions from water. Chem Eng J 358:264–282

Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng ASCE 89:31–59

Weber WJ, Smith EH (1987) Simulation and design models for adsorption processes. Environ Sci Technol 21:1040–1050

Xu Z, Wang Q, Jiang Z, Yang X, Ji Y (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy 31:162–167

Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interf Sci 209:172–184

Yagub MT, Sen TK, Ang M (2013) Removal of cationic dye methylene blue (MB) from aqueous solution by ground raw and base modified pine cone powder. Environ Earth Sci 71:1507–1519

Yang J, Qiu K (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J 165:209–217

Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226

Yoon YH, Nelson JH (1984) Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. Amer Ind Hyg Assoc J 45:509–516

Zhang Y, Liu J, Du X, Shao W (2019) Preparation of reusable glass hollow fiber membranes and methylene blue adsorption. J Eur Ceram Soc 39:4891–4900

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.