ON THE ORIGIN OF THE LIGHTEST MOLYBDENUM ISOTOPES

Jacob Lund Fisker, Robert D. Hoffman, and Jason Pruett
Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551, USA: fisker1@llnl.gov, hoffman21@llnl.gov, pruet1@llnl.gov
Received 2008 September 5; accepted 2008 November 21; published 2008 December 22

Abstract

We discuss implications of recent precision measurements for the 93Rh proton separation energy for the production of the lightest molybdenum isotopes in proton-rich Type II supernova (SN II) ejecta. It has recently been shown that a novel neutrino-induced process makes these ejecta a promising site for the production of the light molybdenum isotopes and other "p-nuclei" with atomic mass near 100. The origin of these isotopes has long been uncertain. A distinguishing feature of nucleosynthesis in neutrino-irradiated outflows is that the relative production of 92Mo and 94Mo is set by a competition governed by the proton separation energy of 93Rh. We use the detailed nuclear network calculations and the recent experimental results for this proton separation energy to place constraints on the outflow characteristics that produce the lightest molybdenum isotopes in their solar proportions. It is found that for the conditions calculated in recent two-dimensional SN simulations, and also for a large range of outflow characteristics around these conditions, the solar ratio of 92Mo to 94Mo cannot be achieved. This suggests that either proton-rich winds from SNe II do not exclusively produce both isotopes, or that these winds are qualitatively different than calculated in today’s SN models.

Key words: nuclear reactions, nucleosynthesis, abundances – supernovae: general

1. INTRODUCTION

Burbidge et al. (1957) described the synthesis of elements heavier than the iron group in terms of three main processes: slow (s-process) neutron capture, rapid (r-process) neutron capture, and proton capture (the p-process). It was believed that proton capture could account for stable nuclei whose synthesis is bypassed by the two neutron capture processes and shielded from β-decay. Subsequent studies of p-process nucleosynthesis in stellar environments found that the densities and temperatures needed are difficult to obtain, especially for production of the lightest isotopes of molybdenum and ruthenium. Today, the origin of the p-nuclei between $A = 92$ and 126, and in particular 92Mo and 94Mo, is one of the great outstanding mysteries in nuclear astrophysics.

A number of potentially promising production sites and alternative nucleosynthesis paths for producing the p-nuclei have been proposed. These include neutron-rich outflows from nascent neutron stars (Hoffman et al. 1996), outflows from black hole accretion disks (Surman et al. 2006), and incredibly neutrino-irradiated neutron-rich outflows from neutron stars (Fuller & Meyer 1995). Recently, it has been shown that a novel nucleosynthesis process occurring in proton-rich SN ejecta could efficiently synthesize p-nuclei between strontium and palladium (Fröhlich et al. 2006; Pruett et al. 2006). In this process neutrino capture on free protons produces a small reserve of free neutrons. These neutrons induce (n, p) reactions that push the nuclear flow beyond the waiting point nuclei with long weak decay half-lives (starting with 64Ge). A feature of the neutrino-irradiated synthesis is that all of the light p-process nuclei are made through decay of radioactive proton-rich progenitors.

In this Letter we develop quantitative arguments to test and place limits on neutrino-irradiated SN outflows as the site responsible for producing the two lightest molybdenum isotopes. The observed ratio of these isotopes in the Sun provides a key diagnostic. We will show that this ratio in SN outflows is exclusively sensitive to the proton separation energy for 93Rh. As a result the production of the two lightest molybdenum isotopes in proton winds with a relative abundance equal to that observed in the Sun is only possible for a narrow range of proton separation energies near $S_p = 1.65$ MeV. This value was consistent with the previous empirically based estimate $S_p = 2.0 \pm 0.5$ MeV (Audi et al. 2003). However, recent precision measurements (Fallis et al. 2003; Weber et al. 2008) find that $S_p = 2.00 \pm 0.01$ MeV. Nucleosynthesis results that incorporate these values are not in agreement with the diagnostic afforded by the solar ratio, and suggest that proton-rich SN outflows are not exclusively responsible for producing the solar abundance of both light molybdenum isotopes.

To set the stage for a quantitative discussion we show in Figure 1 the net nuclear flows governing synthesis of the lightest molybdenum isotopes in a proton-rich SN outflow taken from the two-dimensional SN simulations of Janka et al. (2003) that corresponds to “trajectory 6” in the nucleosynthesis study of Pruett et al. (2006). This is one of only two outflow trajectories calculated by Janka et al. (2003) that efficiently synthesized $A > 90$ p-nuclei. This trajectory, which is characterized by an entropy per baryon $s/k_B = 77$ and electron fraction $Y_e = 0.57$, we take as our baseline. Figure 2 shows conditions during the first 3 s post-core bounce in trajectory 6.

At temperatures larger than about 1 billion degrees, net nuclear flows governing synthesis of the light molybdenum isotopes are regulated by a competition between (p, γ) and the inverse (γ, p) reactions. This balance is set chiefly by proton separation energies. From Figure 1 it can be seen that the proton separation energies for $^{89–91}$Rh isotopes ($44 \leq N \leq 46$) are small. As a result, the even–even nucleus 92Pd ($N = 46$) is not appreciably populated and does not serve as a progenitor for 92Mo. Instead the main flow path detours along $Z = 44$ (Ru) until reaching the $N = 48$ isotope. It is these $N = 48$ nuclei that serve as progenitors for the light molybdenum isotopes.

Figure 3 depicts the late-time evolution of the mass fractions (X_i) for the $A = 92$ and 94 isobars that contribute to 92Mo and 94Mo. Approximately 90% of the final 92Mo abundance results
Figure 1. Net nuclear flows important in setting the abundance of ^{92}Mo relative to ^{94}Mo. At the time shown $T_9 = 2.06$, $\rho_5 = 2.74$, and $Y_e = 0.561$. Each isotope is color coded to the value of its proton separation energy (red is 5 MeV, blue is 0 MeV, gray and white are above and below this range, respectively). An “x” indicates the isotope has an experimentally measured mass excess in the most recent mass evaluation (Audi et al. 2003), and an “e” represents their extrapolation from measured masses. The arrows indicate the dominant net nuclear flows with color representing strength. All net flows within a factor of 5 of the largest flow in this figure are colored red, those between 5 and 10 are green, and between 10 and 50 are blue. The inset shows the production of the light p-nuclei relative to the solar abundances. The most abundant isotope in the Sun is shown as an asterisk.

from β^+ decays starting at ^{92}Ru ($\tau_{1/2} = 3.7$ m). A larger fraction of the final ^{94}Mo inventory is attributed to decays starting with ^{94}Pd. Since $N = 48$ isotones are the main progenitors for the two light molybdenum isotopes, the final abundance of ^{92}Mo relative to ^{94}Mo is set principally by nuclear flow out of ^{92}Ru. Proton capture on this nucleus produces ^{93}Rh, with subsequent capture leading to efficient synthesis of the tightly bound and even–even ^{94}Pd. Though an important part of the nucleosynthesis occurs after rates have become too slow to maintain nuclear statistical equilibrium, we can gain some qualitative insights into the importance of the proton separation energies by considering the case where the outflowing ejecta is still hot. Under this condition ^{92}Ru and its proton capture daughter ^{93}Rh are in equilibrium with each other. The relative abundance of the two nuclei is given by

$$\frac{Y_{93}}{Y_{92}} = 5.15 \times 10^{-11} \left(\frac{G_{93}}{G_{92}} \right) \left(\frac{\rho Y_p}{T_9^{3/2}} \right) \exp(S_p(93)/T_9),$$

where Y represents the number fraction ($Y_i = \rho N_A n_i$), G represents the nuclear partition function, $S_p(93)$ is the proton separation energy for ^{93}Rh, and ρ is the density in g cm$^{-3}$. Because the proton separation energy for ^{93}Rh is relatively small (2.054 MeV) compared with that for ^{94}Pd (4.466 MeV), it plays the key role in setting the final abundance of ^{92}Mo relative to ^{94}Mo. Qualitatively, Equation (1) says that an increase in the ^{93}Rh proton separation energy tends to decrease the $^{92}\text{Mo}/^{94}\text{Mo}$ ratio.

Quantitative results for molybdenum production can be gained from detailed nuclear network calculations. Our goal is to see whether the solar ratio (Lodders 2003)

$$\frac{X(92\text{Mo})}{X(94\text{Mo})} = 1.57$$

(2)

can be synthesized in proton-rich SN ejecta. Using the recently measured ^{93}Rh proton separation energy, the outflow characteristics from the simulation of Janka et al. (2003), and the estimates of nuclear reaction rates described in Pruet et al. (2006) gives a ratio of the two lightest molybdenum isotopes of $X(92\text{Mo})/X(94\text{Mo}) = 0.35$. This is about a factor of 5 too small compared to the solar ratio in Equation (2).

If today’s SN models were perfect then we could infer directly from the discrepancy between the calculated and solar values that proton-rich SN winds are not exclusively responsible for making both light molybdenum isotopes. However, there are potentially important uncertainties in our understanding of neutron star winds. From the perspective of trying to calculate nucleosynthesis there are a few key aspects of the outflow. These include the entropy of the wind, the electron mole number, Y_e, and the dynamic timescale characterizing the evolution of the wind (Qian & Woosley 1996).

To see if uncertainties in calculations of the outflow could account for the discrepancy between the calculated and observed molybdenum ratio, we calculated the nucleosynthesis for a wide variation of assumptions about conditions in the SN. Results of modifying the electron fraction and entropy are shown in Figure 4. Entropy was varied simply by uniformly re-scaling the
density as a function of time, which is approximately correct because of the relation \(s/k_b \propto T^3/\rho \), which is valid in the regime important for nucleosynthesis (Qian & Woosley 1996). With the recently measured value for the proton separation energy \(S_p(93) \), the solar ratio can only be achieved for \(Y_e \approx 0.52 \). However, as Figure 5 shows, at this electron fraction the overall production of molybdenum plumes unless the entropy is larger than about 120. This is much higher than the value of 77 found in the SN calculations. For smaller entropies the production factor for \(^{92}\text{Mo}\), which provides a measure of the total amount of the isotope produced, is

\[
P(^{92}\text{Mo}) = \left(\frac{X(^{92}\text{Mo})}{X_\odot(^{92}\text{Mo})} \right) \left(\frac{M_{\text{wind}}}{M_{\text{ejecta}}} \right) < 0.07, \tag{3}
\]

where \(M_{\text{wind}} \approx 1.04 \times 10^{-3} M_\odot \) is the total mass of material producing \(^{92}\text{Mo}\) in the calculations of Janka et al. (2003) and \(M_{\text{ejecta}} \approx 13.5 M_\odot \) is the total mass of material ejected by the SN. To account for the solar abundance of isotopes attributed to SNe II, the production factor should be approximately 10 (Timmes et al. 1995) which characterize the production factors of isotopes such as \(^{16}\text{O}\), the most abundant metal produced in SNe II (Woosley & Weaver 1995). The needed production factor is also arrived at through detailed galactic chemical evolution studies that describe stellar mass recycling and galactic inflow and outflow (Mathews et al. 1992; Timmes et al. 1995). A production factor near 10 implies that if winds with \(Y_e \approx 0.52 \) were responsible for the two light molybdenum isotopes then the total mass of material producing these isotopes would have to be more than an order of magnitude larger than that calculated in current SN models.

We also investigated the influence of uncertainties in the dynamic timescale on the ratio of the light Mo isotopes. At high temperatures the e-folding time for density sets the production of "seed" nuclei with mass greater than \(A = 12 \) and at low temperatures it sets the net number of neutrino captures on protons. To approximately gauge the influence of uncertainties in the dynamic timescale we simply scale the time coordinate for our baseline trajectory by +50% (see Figure 2). The ratio of the light Mo isotopes was essentially unchanged. Given this weak sensitivity it seems reasonable to neglect errors associated with dynamic timescale. Qian & Woosley (1996) find that a factor of 2 change in dynamic timescale corresponds to a factor of 2 change in neutron star radius or neutrino luminosity.

In the same way that one can determine the outflow characteristics that reproduce the observed molybdenum ratio, we can also determine the \(^{93}\text{Rh}\) proton separation energy consistent with the observed solar ratio. For entropies less than 140, and outflows that give a \(^{92}\text{Mo}\) production factor larger than 0.7, we find that the solar ratio can only be recovered if \(S_p(93) = 1.65 \pm 0.1 \text{ MeV} \). This is ruled out by the recent mass measurements.

It is also possible that uncertainties in other nuclear physics inputs apart from the \(^{93}\text{Rh}\) proton separation energy could explain the discrepancy between the calculated and solar molybdenum ratio. We studied variations consistent with current experimental uncertainties for the separation energies of \(^{91}\text{Rh}\) and \(^{92}\text{Rh}\). Uncertainties in these have effectively no impact on the calculated Mo ratio. The same is true for variations in both theoretical and experimental ground-state spin assignments. We also studied the impact of uncertainties in the charged particle capture cross sections that affect the production of \(^{92}\text{Mo}\) and \(^{94}\text{Mo}\) by increasing the \(^{90}\text{Ru}(p, \gamma)^{91}\text{Rh}\), \(^{91}\text{Ru}(p, \gamma)^{92}\text{Rh}\), \(^{92}\text{Ru}(p, \gamma)^{93}\text{Rh}\), and \(^{94}\text{Pd}(p, \gamma)^{95}\text{Ag}\) rates by a factor of 100. Because these nuclei are so nearly in equilibrium throughout the expansion, these variations result in a < 1% change in the production factors. Though we cannot strictly rule out the possibility, it appears that current nuclear physics uncertainties cannot account for the discrepancy in the molybdenum ratio.

In summary, our study of nucleosynthesis using the newly measured value for the \(^{93}\text{Rh}\) proton separation energy suggests that proton-rich SN ejecta are not exclusively responsible for producing the two lightest molybdenum isotopes unless conditions in these ejecta are quite different than indicated by recent SN calculations. In particular, the free proton fraction would have to be about three times smaller, and the entropy about 50 units higher. This would have fairly dramatic implications.

Figure 2. Evolution of the temperature, density, and total neutrino flux for the baseline “trajectory 6” as well as the evolution when the dynamic time scale is changed by 50%.
Figure 3. Mass fractions of the $A=92$ and $A=94$ isobars affecting the final abundance of 92Mo and 94Mo as a function of freeze-out temperature. Note that most of the final yield of these two molybdenum isotopes originates with $N=48$ isotones.

Figure 4. Abundance ratio of 92Mo and 94Mo as a function of Y_e and the entropy per baryon. The line very near $Y_e = 0.52$ shows the solution where $X(^{92}\text{Mo})/X(^{94}\text{Mo}) = 1.57$.

Figure 5. Production factor for 92Mo (Equation (3)) as a function of Y_e and the entropy per baryon.
not just for molybdenum production but also for p-process nucleosynthesis as a whole. It may be interesting to note that the need for a decrease in electron fraction and an increase in entropy also plagues calculations of the \(r \)-process that might occur later in the evolution of the SN (Qian & Woosley 1996).

We wish to thank S. E. Woosley and H.-T. Janka for very useful discussions and R. Buras for providing the SN model trajectories used in this study. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. J. Fisker gratefully acknowledges support from the Scientific Discovery through Advanced Computing program sponsored by the US Department of Energy (DC-FC02-01ER41176).

REFERENCES

Audi, G., Wapstra, A. H., & Thibault, C. 2003, Nucl. Phys., 729, 337
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. 1957, Rev. Mod. Phys., 29, 547
Fallis, J., et al. 2008, Phys. Rev. C., 78, 022801 (4 pages)
Fröhlich, C., et al. 2006, ApJ, 637, 415
Fuller, G. M., & Meyer, B. S. 1995, ApJ, 453, 792
Hoffman, R. D., Woosley, S. E., Fuller, G. M., & Meyer, B. S. 1996, ApJ, 460, 478
Janka, H.-T., Buras, R., & Rampp, M. 2003, Nucl. Phys., A718, 269
Lodders, K. 2003, ApJ, 591, 1220
Mathews, G. J., Bazan, G., & Cowan, J. J. 1992, ApJ, 391, 719
Pruet, J., Hoffman, R. D., Woosley, S. E., Janka, H.-T., & Buras, R. 2006, ApJ, 644, 1028
Qian, Y.-Z., & Woosley, S. E. 1996, ApJ, 471, 331
Surman, R., McLaughlin, G. C., & Hix, W. R. 2006, ApJ, 643, 1057
Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1995, ApJS, 98, 617
Weber, et al. 2008, Phys. Rev. C., 78, 054310, (18 pages)
Woosley, S. E., & Weaver, T. A. 1995, ApJS, 101, 181