Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

Mohammadreza Gholami 1, Ghasem Saki 2*, Masoud Hemadi 3, Ali Khodadadi 4, Javad Mohammadi-asl 5

1 Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
2 Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3 Fertility and Infertility Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
5 Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

OBJECTIVE(S): Transplantation quality improvement and reduction of cellular damage are important goals that are now considered by researchers. Melatonin is secreted from the pineal gland and some organs such as testes. According to beneficial effects of melatonin (such as its antioxidant and antiapoptotic properties), researchers have proposed that the use of melatonin may improve transplantation quality. The aim of this study was to investigate the effects of melatonin on the spermatogonial stem cells transplantation in the azoospermic mice.

MATERIALS AND METHODS: The testes of the BALB/c mice pups (6-day-old) after vitrified-thawed, were digested with enzymes (collagenase, DNaseI, trypsin-EDTA) to disperse the cells. The SSECs, type A, were isolated from the rest of testicular cells by MACS. Spermatogonial stem cells were labeled with PKH26 fluorescent kit. Labeled spermatogonial stem cells were transplanted into the testes of infertile mice (busulfan 40 mg/kg). The mice died two months after transplantation and the efficiency of spermatogenesis was investigated. TNP2 and hematoyline-eosin staining were used to detect the efficiency of cell transplantation.

RESULTS: TNP2 were detected in the samples that received melatonin and spermatogonial stem cells transplantation, simultaneously. TNP2 was not detectable in the transplant recipient mice that received placebo for 10 weeks (control group). According to hematoyline-eosin staining, melatonin improved structure of testes.

CONCLUSION: Administration of melatonin (20 mg/kg) simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

INTRODUCTION

Spermatogenesis is a complex phenomenon in which proliferation and differentiation of spermatogonial stem cells continuously seek to become mature sperm (1, 2). Spermatogonial stem cell transplantation is a technique in which the spermatogonial stem cells, type A, from a donor animal are injected into seminiferous tubules or rete testes of the recipient testis (azoospermic mice) (3, 4). Following the transplantation, spermatogonial stem cells migrated to basal compartment of seminiferous tubules via unknown mechanisms and resume spermatogenesis (4, 5). In animal models (rodents, pigs, goats and dogs), spermatogonial stem cell transplantation into the testes of infertile males can lead to the reoccurrence of spermatogenesis (6-14). The current challenge concerning spermatogonial stem cells transplantation is increasing the quality and safety of cellular transplantation (1). The application of this technique to children rescued from chemotherapy because of lower success in animal models (e.g. mice, rats, goats, pigs and dogs) don’t extend (1). However, the recipient mice were able to reproduce live offspring but litter sizes were reduced in comparison with control group and the concentration and motility of sperms were decreased (15-17). Improving the quality and reducing the harm to transplanted cells during freezing-thawing and recovery of spermatogenesis after transplantation of cells seem to be essential (1). Researchers have suggested that melatonin could be used to improve the quality and performance of organ transplantation (18). Use of melatonin in organ transplantation due to its pro-

*Corresponding author: Ghasem Saki. Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran, Tel: +98-611-3362411; Fax: +98-611-367562; email: ghasemsaki@yahoo.com
Properties such as antioxidant, antiapoptotic, antibiotic, antiviral and immunosuppressive effects appears to be effective. (19-21). Melatonin is small biological molecule that is secreted from pineal gland and other organs e.g. retina, testis (19, 22, 23). Effects of melatonin are studied in many regulatory functions of the cells such as immune response, cell signaling, protecting fatty acids from oxidation and nuclear DNA from damage, controlling the tumor growth and inhibiting cell proliferation, oncostatic action, antiapoptotic effect on many normal cells, enhancing apoptosis in the tumor cells and significant anti-aging properties (19, 20, 22-32). Effects of melatonin on cells transplantaion are not clear. It is not clear whether melatonin can improve spermatogonial stem cell transplantation efficiency or not. The aim of this study is assessment of concurrent administration of melatonin with spermatogonial stem cells transplantation in azoospermic mice.

Materials and Methods

All experiments were performed in accordance with principles of laboratory animal care. Male 6-day-old- BALB/c mouse pups (N=80) were obtained from physiology research center. Mice were euthanized by excessive doses of ketamine HCl (80 mg/kg) and xylazine (10 mg/kg) (Pharmacia and Upjohn, Erlangen, Germany) (21) in accordance with the protocols approved by Ahvaz Jundishapur University Medical Science Animal Care and Use Committee. Testes were vitrified and thawed according to Gholami et al methods (33). Testes were transferred to vitrification solution 1 (V.S 1), 2 (V.S 2) and 3 (V.S 3), respectively (Table 1). Finally, samples were transferred to liquid nitrogen tank.

Thawing procedure

Samples were maintained for 30 seconds at room temperature and were held in water bath 37°C until defreeze then, samples were transferred to thawing solution 1 (T.S.1) containing 0.5 molar sucrose at 4°C. After 5 min, samples were transferred to thawing solution 2 (T.S.2) containing 0.25 molar sucrose at 4°C. After 5 min, samples were transferred to thawing solution 3 (T.S.3) containing 0.125 molar sucrose at 4°C (33).

Digestion of 6-day-old mouse testes

The cells digestion was done according to Milazzo et al, with little modification (34). Briefly, after removal of tunica albugina, 6-day-old mice testes were digested in the two steps. In the first step, 10 testes were incubated in 1 mg/ml collagenase type IV and 200-700 µg/ml DNsase I for 15 min at 37°C with slow pipetting. After centrifuging at 100 g for 5 min, in the second step supernatant was discarded and cells were resuspended in 1 ml trypsin-EDTA (sigma) and 200 µg/ml DNsase for 5 min at 37°C. Trypsin was inactivated with adding 10% FBS to cell suspension.

Separation and purification with Laminin and MACS

Petri dishes (60 mm) were incubated with 20 µg/ml laminin, overnight. Supernatants were removed and Petri dishes containing laminin were washed with PBS buffer. Petri dishes were incubated with 0.0.5 mg/ml BSA, for one hour at 37°C to prevent nonspecific bindings and then they were washed with PBS buffer (35). In next steps, spermatogonial stem cells were purified with CD90.1 antibody. The cells, digested in the previous step, were incubated for 1 hr in the Petri dishes containing laminin at 32°C. Next, Petri dishes were washed with PBS. Cells that were attached to laminin were isolated by using trypsin - EDTA. CD90.1 (Thy1.1+) was used to detect spermatogonial stem cells type A. The procedure was performed according to manufacturer manual (Miltenyi Biotec, order no. 130-094-523). In brief, 10^7 of total cells were centrifuged at 300 g for 10 min. Cell pellet was resuspended in 90 µl of buffer .Buffer solution contained phosphate-buffered saline (PBS), PH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA stock solution (# 130-91-376) 1:20 with autoMACS rinsing solution (# 130-091-222). Also, 10 µl CD90.1 microbeads was added. Then, it was well mixed and incubated for 15 min in the refrigerator (2-8). Cells were washed by adding 1-2 ml of buffer and centrifuged at 300 g for 10 min. Next, up to 10^6 cells were resuspended in 500 µl of buffer. Then, the cell suspension was loaded onto a MACS column, which is placed in the magnetic field of a MACS separator.

Labeling cells for transplantation

Cells were labeled with real fluorescent cell linker kit according to manufacturer catalogs. In brief, cells were centrifuged at 400 g for 5 min. Dye was prepared at the concentrations of 16 ×10^-6 M and cells were incubated with this dye for 2-7 min at 25°C. Labeling procedure stops by addition of FBS. Subsequently, cells were washed 3 times in DMEM and kept on ice until transplantation.

Azoospermic mice for cells transplantation

Busulfan, 40 mg/kg, was injected intraperitoneal to mice for 4-6 weeks. The mice will be ready for transplantation, 2.5 months after injection. The male BALB/c mice in our study, were divided into three groups. The first group (n=5) received

Table 1. Details of the solution used for vitrification
0.5 molar sucrose
V.S. 1
V.S. 2
V.S. 3
transplanted cells and 10 weeks melatonin (20 mg/kg). The second group (n=5) received transplanted cells and 10 weeks placebo. The third group (n=5) of mice that did not receive transplanted cells and were injected with melatonin or placebo.

Spermatogonial stem cell transplantation
Spermatogonial stem cells transplanted to left rete testes by microinjection, using a needle under a stereomicroscope with the appropriate diameter, after anesthetizing the mice (36). Melatonin, 20 mg/kg daily, was injected intraperitoneally to mice for 10 weeks after transplantation.

Hematoxylin and eosin staining
After 10 weeks of spermatogonial stem cells transplantation, the mice were killed with a high dose of anesthetic and testicular tissue was extracted for analysis. Left testes after fixation, embedded in paraffin, cutting and dehydration stained with hematoxylin-eosin dye for evaluation of histological changes. The results were analyzed based on a descriptive method and the blind evaluation of tissue sections within similarly staged seminiferous tubules was done by specialists.

Immunohistochemistry
The replacement of histones with protamine is done via transition nuclear protein 2 (TNP2) in the late stages of spermiogenesis. TNP2 appears in the nuclei at step 10 spermatid. Tracing this protein could be a good indicator to show spermatid. Immunohistochemical staining was performed according to the method of Zheng et al, with slight modifications (37). After fixation, embedded in paraffin and cutting, paraffin was removed from the the specimens by Xylene and specimens were dehydrated in ethanol. Antigens retrieval was done in citrate buffer (pH = 6) for 15 min at 98°C. Samples were incubated with PBS-0.3% Triton X-100 with 10% Normal donkey serum for 3 hr. The samples were incubated overnight with primary antibody (Polyclonal IgG Goat). Primary antibodies were diluted in PBS-TS at the ratio of 1:100. At this stage, PBS-TS only was added to the negative control samples. Secondary antibody was diluted at the ratio of 1:50 in PBS-TS. After washing, samples were incubated with DAPI for 12 min. The results were analyzed based on a descriptive method and the blind evaluation of tissue sections within similarly staged seminiferous tubules done by specialists.

Statistical analysis
Results (seminiferous epithelium) of treated group with melatonin and control group (untreated group) were compared with Mean-Whitney U-test and SPSS.16 software. Results are presented as Mean±SD and statistical analysis were considered significant at P<0.001.

Results
Study of tissue sections after transplantation using hematoxylin – eosin staining
The results were analyzed based on Johnson’s method (38) and the blind evaluation of tissue sections was done by specialists. Statistical seminiferous epithelium analysis between treated group with melatonin (7.95±1.85) and control group (1.50±0.513) according to Johnson’s method is significant (P=0.001). Tissue sections of the first group that received transplanted cells and melatonin, showed that large number of sperm was found in the lumen of seminiferous tubes and completes spermatogenesis. Germlinal epithelium seminiferous tubes are stratified (Figure 1, section A). Basement membrane is organized and integrated (Figure 1, section A). Leydig cells in the interstitial space are evident (Figure 1, section A). The tubes have a significant thickness of germlinal cells and various germ cells were observed including spermatagonia, primary spermatocytes, secondary spermatocytes,
round spermatid, spermatozoa and sertoli cells (Figure 1, section A). In the interstitial tissue, visible loose connective tissue with blood vessels, nerves and leydig cells with round nuclei were observed (Figure 1, section A). Tissue sections of the second group that received transplanted cells and placebo, showed that lumen of seminiferous tubes represented a few elongated spermatids (Figure 1, section C). Epithelium of seminiferous is stratified and normal (Figure 1, section C). Basement membrane is normal (Figure 1, section C). Leydig cells are showed in the interstitial space (Figure 1, section C). Tissue sections of the third group that did not receive transplanted cells and placebo, showed that lumen of seminiferous tubes are devoid of spermatid and epithelium seminiferous tubes are irregular and destructed (Figure 1, section B). Vacuoles are seen in the epithelium seminiferous tubes and the basement membrane thickening is irregular (Figure 1, section B). Interstitial space is irregular (Figure 1, section B). The destruction of spermatogenesis can be seen clearly (Figure 1, section B).

Immunohistochemical results for review TNP2
TNP2 is shown in the central part of seminiferous tubules (Figure 2, section A) in the mice that received melatonin and spermatogonial stem cells transplantation (group 1). TNP2 was not detectable in the transplant recipient mice that received placebo (group 2) for 10 weeks (Figure 2, section C). Results obtained by Aziz et al., are consistent with the results obtained in this study. Simultaneous injection of melatonin and busulfan reduces the effects of busulfan on spermatogenesis (42). Melatonin administration reduced testicular damage in the rats that were treated with cisplatin (43) and streptozotocin (44). Researchers showed that melatonin decrease germ cells apoptosis and cadmium-induced testicular stress in testes (45). Administration of melatonin to older men and women may help repairing oxidative damage of guanine DNA (46). Administration of high doses of melatonin (100 mg/kg) protects the testicular against the harmful effects X-rays (47).

Discussion
Researchers showed that administration busulfan 40 mg/kg to mice lead to complete loss of spermatogenesis (39). Cryopreservation of spermatogonial stem cells can preserve fertility in children with cancer. Melatonin has antioxidant and anti-apoptotic properties (22). Melatonin seems to be useful in preventing transplant rejection (19). Melatonin can easily cross the cell membrane because of its small size and high lipophilic properties. Very high concentrations of melatonin in the cell nucleus protects DNA against damaging agents (22, 40). Therefore, in this study the effect of melatonin on transplanted spermatogonial stem cells in mice were studied and the results showed that melatonin improves the maturation and survival of spermatogonial stem cells in the recipient testes. Aziz et al., showed that administration of melatonin was more effective than stem cell therapy in busulfan-treated mice (41). Aziz et al., showed that administration of melatonin to azoospermic mice leads to complete regeneration of germ cells with appearance of elongated and round spermatids. In the stem cell-treated mice, germ cells showed partial or incomplete regeneration with invisible round and elongated spermatids (42). Results obtained by Aziz et al., are consistent with the results obtained in this study.

Figure 2. Immunohistological staining for detected TNP2. TNP2, Bright spots in periphery of the central lumen (arrows), detected in section A. Section A, samples that received melatonin and spermatogonial stem cells transplantation, simultaneously. Section B shows the negative control group. Section C, samples that received placebo and spermatogonial stem cells transplantation. TNP2 was not detected in the section C. Magnification X 400.
mice that received ectopic testicular transplantation for 2 months at the dose of 20 mg/kg led to the resumption of spermatogenesis, decreased apoptosis and improved transplantation (21). Researchers suggested that antioxidant and anti-apoptotic properties of melatonin can protect sperm, epididymis and seminal vesicle (50). D’Istria et al. showed that melatonin has anti-proliferative effect on germ cells (51). Researchers have shown that melatonin has antiproliferative effect on human prostate epithelial cells and neuroblastoma cells (52, 53). In our previous studies, we showed that supplementation of vitrification-thawing media with melatonin does not protect testicular tissue from injury (33) and melatonin may cause apoptosis in cells that were damaged in the process of freezing–thawing (54). Researchers showed that short-term administration of melatonin was beneficial and side effects have not been reported (19). Researchers suggested that melatonin strengthen the immune system (19). Melatonin role in organ transplantation is still not well understood. Jung et al. showed that the administration of melatonin can prevent rejection of transplanted hearts (18). Taken together, it can be said that melatonin may improve the quality of transplantation. In order to examine the effect of melatonin on the process of cells transplantation and to determine the exact mechanism on spermatogonial stem cells transplantation more closely, we suggest that more studies should be done.

Conclusion
Simultaneous administration of melatonin and spermatogonial stem cells transplantation can improve spermatogenesis quality.

Acknowledgment
This study was approved with grant number PRC-85 in the physiology research center. Authors thank Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran for the financial support.

References
1. Geens M, Goossens E, De Block G, Ning L, Van Saen D, Tournaye H. Autologous spermatogonial stem cell transplantation in man: current obstacles for a future clinical application. Hum Reprod Update 2008; 14:121–129.
2. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and Histopathological Evaluation of the Testis, 1st ed. Clearwater, FL:Cache River Press; 1990.
3. Lean DJ, Johnston D, Russell L, Griswold M. Germ cell transplantation and the study of testicular function. Trends Endocrinol Metab 2001; 12:16–21.
4. Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod 1999; 60:1429–1436.
5. Hermann B, Sukhwani M, Lin C, Sheng Y, Tomko J, Rodriguez M, Shuttleworth J, McFarland D, Hobbs R, Pandolfi P, Schatten G, Orwig K. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 2007;25:2330–2338.
6. Brinster CJ, Ryu BY, Avarbock MR, Karagenc L, Brinster RL, Orwig KE. Restoration of fertility by germ cell transplantation requires effective recipient preparation. Biol Reprod 2003; 69:412–420.
7. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 1994; 91:11298–11302.
8. Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I. Germ cell transplantation in goats. Mol Reprod Dev 2003; 64:422–428.
9. Kim Y, Turner D, Nelson J, Dobrinski I, McCentee M, Travis AJ. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 2008; 136:823–831.
10. Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J, et al. Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim 2006; 41:124–128.
11. Nagano M, Mccarrey JR, Brinster RL. Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 2001; 64:1409–1416.
12. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 2000; 6:29–34.
13. Orwig KE, Schlatt S. Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility. J Natl Cancer Inst Monogr 2005; 51–56.
14. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A 2001; 98:6186–6191.
15. Goossens E, Frederickx V, De Block G, Van Steirteghem AC, Tournaye H. Reproductive capacity of sperm obtained after germ cell transplantation in a mouse model. Hum Reprod 2003; 18:1874 – 1880.
16. Goossens E, Frederickx V, De Block G, Van Steirteghem A, Tournaye H. Evaluation of in vivo conception after testicular stem cell transplantation in a mouse model shows altered post-implantation development. Hum Reprod 2006; 21:2057-2060.
17. Goossens E, De Block G, Tournaye H. Computer-assisted motility analysis of spermatozoa obtained after spermatogonial stem cell transplantation in the mouse. Fertil Steril 2008a; 90:1411–1416.
18. Jung FJ, Yang L, Harter L, Inci I, Schneiter D, Lardinouis D, et al. Melatonin in vivo prolongs allograft survival in rats. J Pineal Res 2004; 37:36–41.
19. Filldes JE, Yonan N, Keevil BG. Melatonin–a pleiotropic molecule involved in pathophysiological processes following organ transplantation. Immunology 2009; 127:443–449.
20. Hemadi M, Abolhassani F, Akbari M, Sobhani A, Pasbakhsh P, Ahrlund-Richter L, et al. Melatonin promotes the cumulus-oocyte complexes quality of vitrified-hewed murine ovaries; with increased mean number of follicles survival and ovary size
following heterotopic transplantation. Eur J Pharmacol 2009; 618:84-90.

21. Hemadi M, Zargar M, Sobhani A. Assessment of morphological and functional changes in neonate vitrified testis grafts after host treatment with melatonin. Folia Morphol (Warsz) 2011; 70:95-102.

22. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 2011; 93:350-384.

23. Zawilska JB, Skene DJ, Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 2009; 61:383-410.

24. Ahmad R, Haldar C. Melatonin and androgen receptor expression interplay modulates cell-mediated immunity in tropical rodent Funambulus pennantii: an in vivo and in vitro study. Scand J Immunol 2010; 71:420-430.

25. Dasilva CM, Macias-garcia B, Miro-moran A, González-Fernández L, Morillo-Rodriguez A, Ortega-Ferrusola C, et al. Melatonin reduces lipid peroxidation and apoptotic-like changes in stallion spermatozoa. J Pineal Res 2011; 51:172-179.

26. Martín-reino J, Mauriz JL, Jorquera F, Ruiz-Andrés O, González P, González-Gallego J. Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J Pineal Res 2008; 45:532-540.

27. Millan-planillo S, Piedrafita E, Miana-mená FJ, Fuentes-Bruto L, Martínez-Ballarin E, López-Pingarrón L, et al. Melatonin and structurally-related compounds protect synaptosomal membranes from free radical damage. Int J Mol Sci 2010; 11:312-328.

28. Radogna F, Cristofanini S, Paternoster L, D’Alessio M, De Nicola M, Cerella C, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44:316-325.

29. Radogna F, Paternoster L, Albertini MC, Accorsi A, Cerella C, D’Alessio M, et al. Melatonin as an apoptosis antagonist. Ann N Y Acad Sci 2006; 1090:226-233.

30. Radogna F, Paternoster L, Albertini MC, Cerella C, Accorsi A, Bucchini A, et al. Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. J Pineal Res 2007; 43:154-162.

31. Reiter RJ, Tan DX, Manchester LC, Paredes SD, Wang H, Meng C, et al. Melatonin as an apoptosis antagonist. J Pineal Res 2008; 44:316-325.

32. Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CZ. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 2010; 50:83-88.

33. Gholami M, Saki G, Hemadi M, Khodadadi A, Mohamadkhani ASL. Supplementation of vitrified-thawed media with melatonin do not protecting immature mouse testicular tissue from vitrified-thawed induced injury. Asian J Anim Veterinary Advances 2012; 7:940-949.

34. Milazzo JP, Vaudreuil L, Caudieux M, Guelinckx JP, Caudieux M, et al. Comparison of conditions for cryopreservation of testicular tissue from immature mice. Hum Reprod 2008; 23:17-28.

35. Shinohara K, Avarbock MR, Brinster RL. beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 1999; 96:5504-5509.

36. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of testis germinal cells into mouse seminiferous tubules. Int J Dev Biol 1997; 41:111-122.

37. Zheng J, Xia X, Ding H, Yan A, Hu S, Gong X, Zong S, Zhang Y, Sheng HZ. Erasure of the paternal transcription program during spermiogenesis: the first step in the reprogramming of sperm chromatin for zygotic development. Dev Dyn 2008; 237:1463-1476.

38. Lewis-Johnes DL, Kerrigan DD. A modified johnsen’s count for evaluation of Spermatogenesis in the rat. ICSM J 1985; 13:510-511.

39. Anjamrooz SH, Movahedin M, Mowla SJ, anvand SP. Assessment of morphological and functional changes in the mouse testis and epididymal sperms following busulfan treatment. Iran Biomed J 2007; 11:15-22.

40. Sanchez-hidalgo M, De La Lastra CA, Carrascosa-salmoral MP, et al. Age-related changes in melatonin synthesis in rat extrapineal tissues. Exp Gerontol 2009; 44:328-334.

41. Aziz A, Metwally DH, Halla GB. The effect of stem cell therapy versus melatonin on the changes induced by busulfan in the testes of adult rat: histological and immunohistochemical studies. Egypt J Histol 2013; 36:175-184.

42. Mohammadghasemi F, Faghani M, Khajeh S. The protective effects of melatonin on the histological changes of testis in busulfan-treated adult mice. J Reprod Infertil 2010; 11:67-76.

43. Atessaahin A, Sahna E, Turk G, Ceribaşı AO, Yilmaz S, Yüce A, et al. Chemoprotective effect of melatonin against cisplatin-induced testicular toxicity in rats. J Pineal Res 2006; 41:21-27.

44. Gunelie E, Tugyan K, Oztürk H, Gumustekin M, Cirak M, Uysal N. Effect of melatonin on testicular damage in streptozotocin-induced diabetes rats. Eur Surg Res 2008; 40:354-360.

45. Ji YL, Wang H, Meng C, Zhao XF, Zhang C, Zhang Y, et al. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res 2012; 52:71-79.

46. Davanipour Z, Poulsen HE, Weimann A, Sobel E. Endogenous melatonin and oxidatively damaged guanine in DNA. BMC Endocr Disord 2009; 9:22.

47. Take G, Erdogan D, Helvaciloglu F, Göktaş G, Ozbey G, Uluoglu C, et al. Effect of melatonin and time of administration on irradiation-induced damage to rat testes. Braz J Med Biol Res 2009; 42:621-628.

48. Lissoni P, Chillelli M, Villa S, Cerizza L, Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res 2005; 35:12-15.

49. Vijayalaxmi, Thpmas CR, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002; 20:2575-2601.

50. Mohammadghasemi F, Faghani M, Falahkarkan M. The protective effect of melatonin on sperm parameters, epididymis and seminal vesicle morphology in adult mouse treated with busulfan. J Iran Anatomi Sci 2010; 8:25-36.

51. D’istria M, Serino I, Izzo G, Ferrara D, De Rienzo G, Minucci S. Effects of melatonin treatment on Leydig cell activity in the testis of the frog Rana esculenta. Zygote 2004; 12:293-299.
52. Pizarro JG, Yeste-velasco M, Esparza JL, Verdaguer E, Pallàs M, Camins A, et al. The antiproliferative activity of melatonin in B65 rat dopaminergic neuroblastoma cells is related to the downregulation of cell cycle-related genes. J Pineal Res 2008; 45:8-16.

53. Tam CW, Chan KW, Liu VW, Pang B, Yao KM, Shiu SY. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance. J Pineal Res 2008; 45:403-412.

54. Gholami M, Saki G, Hemadi M, Khodadadi A, Mohamma-di-Asl J. Melatonin effect on expression apoptotic genes in vitrified-thawed 6-old-days mouse spermatogonial stem cells type A. Iran J Basic MedSCI 2013; 16:906-909.