On semigroups of matrices with nonnegative diagonals✩

Grega Cigler, Roman Drnovšek∗

Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

Abstract

We give a short proof of a recent result by Bernik, Mastnak, and Radjavi, stating that an irreducible group of complex matrices with nonnegative diagonal entries is diagonally similar to a group of nonnegative monomial matrices. We also explore the problem when an irreducible matrix semigroup in which each member is diagonally similar to a nonnegative matrix is diagonally similar to a semigroup of nonnegative matrices.

Keywords: matrices, semigroups, nonnegative matrices, cones, irreducibility

2010 MSC: 15B48, 20M20, 47D03

1. Introduction

Multiplicative semigroups of matrices with nonnegative diagonal entries have been studied in the papers [2] and [4]. Their authors considered the general question under which additional assumptions such a semigroup is simultaneously similar to a semigroup of nonnegative matrices. The main result of [2] is that every irreducible group of complex matrices with nonneg-
ative diagonal entries is diagonally similar to a group of nonnegative monomial matrices. In Section 2 we give a short proof of this result. Our proof is more geometric and less group-theoretic than the proof in [2]. Multiple authors of the paper [4] provided several examples showing that it is impossible to extend this result from groups to semigroups. So, to obtain similarity to a semigroup of nonnegative matrices, stronger assumptions on a given semigroup must be imposed. In Section 3 we explore the problem when an irreducible matrix semigroup in which each member is diagonally similar to a nonnegative matrix is necessarily diagonally similar to a semigroup of nonnegative matrices.

We now recall some definitions and basic facts. The set of all nonnegative real numbers is denoted by \mathbb{R}_+. A convex set $K \subseteq \mathbb{R}^n$ is said to be a cone if $rK \subseteq K$ for all $r \in \mathbb{R}_+$. A cone $K \subseteq \mathbb{R}^n$ is proper if it is closed, pointed ($K \cap (-K) = \{0\}$), and solid (the interior of K is nonempty). The most natural example of a proper cone is the nonnegative orthant \mathbb{R}^+_n. A cone $K \subseteq \mathbb{R}^n$ is reproducing if $K - K = \mathbb{R}^n$. It is well-known that a closed cone is solid if and only if it is reproducing.

Let K be a closed cone in \mathbb{R}^n. A vector $x \in K$ is an extremal vector of K if $y \in K$ and $x - y \in K$ imply that y is a nonnegative multiple of x. By Ext (K) we denote the set of all extremal vectors of K. By the Krein-Milman theorem, K is the convex hull of Ext (K). The angle $\phi \in [0, \pi]$ between non-zero vectors $x, y \in \mathbb{R}^n$ is determined by the equality $x^T y = \|x\| \|y\| \cos \phi$.

If F is a subset of complex numbers, then $M_n(F)$ denotes the set of all $n \times n$ matrices with entries in F. If $C \subseteq M_n(\mathbb{C})$ is a collection of complex matrices, then \overline{C} denotes its closure in the Euclidean topology, and $\mathbb{R}_+ C$ denotes its homogenization, i.e., $\mathbb{R}_+ C = \{rC : r \in \mathbb{R}_+, C \in C\}$. We say that a matrix has a nonnegative diagonal if all of its diagonal entries are nonnegative. A matrix is called monomial if it has the same nonzero pattern.
as a permutation matrix, i.e., there is exactly one nonzero entry in each row and in each column.

A collection \(\mathcal{C} \subseteq M_n(\mathbb{C}) \) (where \(n \geq 2 \)) is reducible if there exists a common invariant subspace other than the trivial ones \(\{0\} \) and \(\mathbb{C}^n \), or equivalently, there exists an invertible matrix \(S \in M_n(\mathbb{C}) \) such that the collection \(S \mathcal{C} S^{-1} \) has a block upper-triangular form; otherwise, the collection \(\mathcal{C} \) is said to be irreducible. If the matrix \(S \) can be chosen to be a permutation matrix, then the collection \(\mathcal{C} \) is said to be decomposable; otherwise, it is called indecomposable (or ideal-irreducible).

2. Groups of matrices with nonnegative diagonals

The study of semigroups of matrices having nonnegative diagonals was initiated by the authors of [2]. They started their discussion by the following result (see [2, Theorem 4.1]).

Theorem 2.1. Let \(S \subseteq M_n(\mathbb{C}) \) be an irreducible semigroup of matrices of rank at most one having nonnegative diagonals. If \(\mathbb{R}_+ S = S \), then, after a diagonal similarity, \(S = XY^T \) for some subsets \(X \) and \(Y \) of \(\mathbb{R}_+^n \) each of which spans \(\mathbb{C}^n \).

Using the Haar measure one can prove the following assertion (see [2, Proposition 4.3]).

Proposition 2.2. Let \(S \subseteq M_n(\mathbb{C}) \) be an irreducible semigroup of matrices. Suppose that \(\mathbb{R}_+ S = S \) and that there exists a non-zero functional \(\varphi : M_n(\mathbb{C}) \to \mathbb{C} \) such that \(\varphi(S) \in \mathbb{R}_+ \) for all \(S \in S \). Then \(S \) has members of rank one.

The following theorem is the main result of [2, Theorem 5.5]. We provide a short proof that is more geometric and less group-theoretic than the original one.
Theorem 2.3. If \(G \subset M_n(\mathbb{C}) \) is an irreducible group of matrices with non-negative diagonals, then, up to a diagonal similarity, \(G \) is a group in \(M_n(\mathbb{R}_+) \). Therefore, each member of the group \(G \) is a nonnegative monomial matrix.

Proof. With no loss of generality we may assume that \(tG \in G \) for all \(t > 0 \) and \(G \in G \). Let \(S = \overline{G} \). Applying Proposition 2.2 for the trace functional, we conclude that \(S \) contains elements of rank one. The semigroup ideal \(S_1 \) of all elements of rank at most one in \(S \) is irreducible (see [3]). By Theorem 2.1, we can assume that, after a diagonal similarity, \(S_1 = XY^T \) for some subsets \(X \) and \(Y \) of \(\mathbb{R}_+^n \) each of which spans \(\mathbb{C}^n \). We can also assume that \(\mathbb{R}_+X = X \) and \(\mathbb{R}_+Y = Y \). The cone \(\hat{X} \) generated by \(X \) is closed, and it is invariant under any \(S \in S \), since \((Sx)y^T = S(xy^T) \in S_1 \) for every \(x \in X \) and \(y \in Y \). Similarly, it follows from \(x(S^Ty)^T = (xy^T)S \in S_1 \) that \(Y \) is invariant under \(S^T \). The dual cone

\[
Y^d = \{ z \in \mathbb{R}^n : z^Ty \geq 0 \text{ for all } y \in Y \}
\]

of the set \(Y \) obviously contains \(\mathbb{R}_+^n \), and it is invariant under any \(S \in S \), as \((Sz)^T y = z(S^Ty) \geq 0 \) for all \(y \in Y \) and \(z \in Y^d \). It follows that every \(G \in G \) is a bijective mapping on both \(\hat{X} \) and \(Y^d \), implying that every \(G \in G \) maps \(\text{Ext}(\hat{X}) \) to itself, and the same holds for the cone \(Y^d \). We want to show that the inclusions \(\hat{X} \subseteq \mathbb{R}_+^n \subseteq Y^d \) are in fact equalities.

Assume, if possible, that \(\hat{X} \neq Y^d \). Then there exists a unit vector \(x \in X \setminus Y^d \) which is extremal for the cone \(\hat{X} \). Since the cone \(Y^d \) is closed, the distance between \(x \) and \(Y^d \) is strictly positive. It follows that there is a number \(\phi \in (0, \pi/2) \) such that, for each \(z \in \text{Ext}(Y^d) \), the angle between \(z \) and \(x \) is at least \(\phi \). Since \(x \in X \) and the set \(Y \) is spanning, there is a vector \(y \in Y \) such that \(P = xy^T \in S \) with \(y^Tx > 0 \). We can assume that \(y^Tx = 1 \), so that \(Px = x \). Choose any \(\epsilon > 0 \). Since \(S = G \), there is a matrix \(G \in G \).
such that \(|G - P| < \epsilon\). Now, for any \(z \in \text{Ext}(Y^d)\) with norm 1, we have
\[
\epsilon^2 > \|Gz - Pz\|^2 = \|Gz - (y^T z)x\|^2 = \|Gz\|^2 + (y^T z)^2 - 2(y^T z)\|Gz\| \cos \phi_z,
\]
where \(\phi_z\) is the angle between the vector \(x\) and the vector \(Gz \in \text{Ext}(Y^d)\).
Since \(y^T z \in \mathbb{R}_+\) and \(\phi_z \geq \phi\), we conclude that
\[
\epsilon^2 > \|Gz\|^2 + (y^T z)^2 - 2(y^T z)\|Gz\| \cos \phi = (y^T z - \|Gz\| \cos \phi)^2 + \|Gz\|^2 \sin^2 \phi.
\]
It follows that
\[
\|Gz\| \sin \phi < \epsilon \quad \text{and} \quad |y^T z - \|Gz\| \cos \phi| < \epsilon,
\]
and so
\[
0 \leq y^T z < \epsilon + \|Gz\| \cos \phi < \epsilon + \frac{\epsilon}{\sin \phi} \cos \phi.
\]
Since \(\epsilon > 0\) is arbitrary, we obtain that \(y^T z = 0\) for all vectors \(z \in \text{Ext}(Y^d)\), implying that \(y = 0\). This contradiction completes the proof of the equality \(\hat{X} = Y^d = \mathbb{R}_+^n\). Consequently, the inclusion \(\mathcal{G} \subset M_n(\mathbb{R}_+)\) holds, as asserted.

Since the map associated to any matrix \(G \in \mathcal{G}\) maps \(\text{Ext}(\mathbb{R}_+^n)\) to itself and it is invertible, the matrix \(G\) must be monomial, and so the proof is complete.

3. Semigroups of matrices diagonally similar to nonnegative ones

Let \(\mathcal{S} \subseteq M_n(\mathbb{C})\) be a semigroup in which each member \(A \in \mathcal{S}\) is diagonally similar to a nonnegative matrix. In this section we are looking for additional assumptions under which the whole semigroup \(\mathcal{S}\) is diagonally similar to a semigroup of nonnegative matrices. We first show that it does not suffice to assume that the semigroup \(\mathcal{S}\) is indecomposable.

Example 3.1. Define \(n \times n\) matrices \(A = aa^T\) and \(B = bb^T\), where \(n \geq 2\), \(a = [1, 1, \ldots, 1]^T\) and \(b = [1, 1, \ldots, 1, 1 - n]^T\). Then every nonzero member
of the semigroup S generated by A and B is an indecomposable matrix of rank one that is diagonally similar to a nonnegative matrix. However, the whole semigroup S is not diagonally similar to a semigroup of nonnegative matrices.

Proof. Note that $A^k = n^{k-1}A$ and $B^k = (n(n-1))^{k-1}B$ for all $k \in \mathbb{N}$, while $AB = BA = 0$. Therefore, S is contained in the semigroup $\mathbb{R}_+A \cup \mathbb{R}_+B$. If D is the diagonal matrix with diagonal $(1,1,\ldots,1, -1)$, then the matrix DBD^{-1} is nonnegative, and therefore each matrix from S is diagonally similar to a nonnegative matrix. Since the matrices A and B are indecomposable, every nonzero member of S is indecomposable as well. It is easy to verify that the whole semigroup S is not diagonally similar to a semigroup of nonnegative matrices. □

In the rest of the paper we explore the case when the semigroup S is irreducible. We first show that, with no loss of generality, we may assume that S is a closed set.

Lemma 3.2. Let $C \subset M_n(\mathbb{C})$ be a collection in which each member $A \in C$ is diagonally similar to a nonnegative matrix. Then the closure $\overline{\mathbb{R}_+C}$ also consists of matrices which are diagonally similar to nonnegative matrices.

Proof. Clearly, we may assume that $\mathbb{R}_+C = C$. If $A \in \overline{C}$, then there is a sequence $\{A_k\}_{k \in \mathbb{N}}$ in C converging to the matrix A. For each $k \in \mathbb{N}$, let D_k be a diagonal matrix such that $D_kA_kD_k^{-1}$ is a nonnegative matrix. We may assume that each diagonal entry of D_k has absolute value one. Since the sequence $\{D_k\}_{k \in \mathbb{N}}$ is bounded, it has a convergent subsequence $\{D_{k_m}\}_{m \in \mathbb{N}}$ converging to some diagonal matrix D. Since $DAD^{-1} = \lim_{m \to \infty} D_{k_m}A_{k_m}D_{k_m}^{-1}$, the matrix DAD^{-1} is nonnegative, and so A is also diagonally similar to a nonnegative matrix. This completes the proof. □
We continue with a reduction of the problem to the real setting.

Lemma 3.3. Let $\mathcal{S} = \mathbb{R}_+ \mathcal{S} \subseteq M_n(\mathbb{C})$ be an irreducible semigroup such that each member $A \in \mathcal{S}$ is diagonally similar to a nonnegative matrix. Then there exists an invertible diagonal matrix $D \in M_n(\mathbb{C})$ such that the semigroup DSD^{-1} consists of real matrices, and there exist two sets $X, Y \subseteq \mathbb{R}^n_+$, each of which spans \mathbb{C}^n, such that

$$DS_1D^{-1} = (DSD^{-1})_1 = XY^T,$$

where S_1 is the ideal of \mathcal{S} consisting of members of rank at most one. Furthermore, the subcone of \mathbb{R}^n_+ generated by X is a proper cone invariant under every member of \mathcal{S}.

PROOF. Our assumption implies in particular that all diagonal elements of any member of \mathcal{S} must be nonnegative. By Proposition 2.2, the ideal S_1 of all members of \mathcal{S} with rank at most one is nonzero. Since \mathcal{S} is an irreducible semigroup, it is also necessarily irreducible (see [3]). Then by Theorem 2.1, we can find an invertible diagonal matrix D and two sets $X, Y \subset \mathbb{R}^n_+$, each of which spans \mathbb{C}^n, such that $DS_1D^{-1} = XY^T$. As we are interested in diagonal similarities, we can assume that D is the identity, so that $S_1 = XY^T$. To prove the inclusion $\mathcal{S} \subset M_n(\mathbb{R})$, pick any $A \in \mathcal{S}$ and $x \in X$. Since for any nonzero vector $y \in Y$ the matrix $A(xy^T) = (Ax)y^T$ belongs to S_1, we conclude that $Ax \in X \subseteq \mathbb{R}^n_+$. It follows that the cone of \mathbb{R}^n_+ generated by X is a proper cone invariant under A. Since the set X spans \mathbb{C}^n, it follows that $A(\mathbb{R}^n) \subseteq \mathbb{R}^n$, and therefore $A \in M_n(\mathbb{R})$. This completes the proof. \hfill \Box

From now on we consider real matrices. If a real matrix A is diagonally similar to a nonnegative matrix via diagonal matrix D, we clearly may assume that each diagonal entry of D is either 1 or -1. In this case we say that D is a ± 1-diagonal matrix.
Lemma 3.4. Let $A \in M_n(\mathbb{R})$ be an indecomposable matrix and D a ± 1-diagonal matrix such that $A' = DAD$ is a nonnegative matrix. If there exists a proper cone K such that $A(K) \subseteq K$ and $K \subseteq \mathbb{R}_+^n$, then $D = \pm I$ and A itself is a nonnegative matrix.

Proof. By the Perron-Frobenius Theorem, the spectral radius $\rho(A') = \rho(A)$ of the indecomposable matrix A' is a simple eigenvalue having exactly one (up to a scalar multiplication) strictly positive eigenvector e. On the other hand, since the proper cone K is invariant under A, the extension of the Perron-Frobenius Theorem (see [1, Theorem 3.2]) ensures that there is a non-zero vector $x \in K$ such that $Ax = \rho(A)x$. However, $A'Dx = DAx = \rho(A)Dx$, and so the vectors Dx and e are collinear. It follows that either De or $-De$ belongs to $K \subseteq \mathbb{R}^n_+$, and this implies that $D = \pm I$ and A itself is a nonnegative matrix. \[\square\]

The following simple example shows that in Lemma 3.4 we cannot omit the assumption that the cone K is proper.

Example 3.5. Let $n \geq 2$, $a = [1, 1, \ldots, 1, 1 - n]^T$ and $K = \mathbb{R}_+[1, 1, \ldots, 1]^T$. The matrix $A = aa^T$ is indecomposable, and the cone K is invariant under A, while DAD is a nonnegative matrix for the diagonal matrix D with diagonal $(1, 1, \ldots, 1, -1)$. \[\square\]

For $n \geq 2$ we say that a matrix $A \in M_n(\mathbb{R})$ is **1-decomposable** if there is a permutation matrix P such that

$$PAP^T = \begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},$$

where each of A_1 and A_2 is either an indecomposable (square) matrix or a 1×1 block.

The following assertion is crucial for the proof of the main result.
Proposition 3.6. Let \(A \in M_n(\mathbb{R}) \) be a 1-decomposable matrix that is diagonally similar to a nonnegative matrix. Let \(K \) and \(L \) be proper cones of \(\mathbb{R}_n^+ \) that are invariant under \(A \) and \(A^T \), respectively. Then \(A \) is a nonnegative matrix.

Proof. Let \(P \) be a permutation matrix such that the matrix \(PAP^T \) has the block form

\[
PAP^T = \begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix}
\]

with respect to the decomposition \(\mathbb{R}^n = \mathbb{R}^k \oplus \mathbb{R}^l \), where \(1 \leq k < n, l = n - k \), and each of \(A_1 \) and \(A_2 \) is either an indecomposable (square) matrix or a \(1 \times 1 \) block. We first prove that the diagonal blocks \(A_1 \) and \(A_2 \) are nonnegative matrices. If \(DAD \) is a nonnegative matrix for a suitable \(\pm 1 \)-diagonal matrix \(D \), then \(E = PDP^T \) is a \(\pm 1 \)-diagonal matrix such that \(E(PAP^T)E \) is a nonnegative matrix. It follows that matrix \(PAP^T \) satisfies our assumptions provided that the cones \(K \) and \(L \) are replaced by the cones \(P(K) \) and \(P(L) \). We can therefore assume that \(A \) itself is of the block form

\[
A = \begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix}.
\]

Let \(\Pi_1 : \mathbb{R}^n \to \mathbb{R}^k \) and \(\Pi_2 : \mathbb{R}^n \to \mathbb{R}^l \) be the corresponding projections, and let \(C \subseteq \mathbb{R}_+^n \) be a proper cone. As \(C \subseteq \Pi_1(C) + \Pi_2(C) \) and \(\Pi_1(C) \) contains at most \(k \) linearly independent vectors, it follows that \(\Pi_2(C) \) contains at least \(n - k = l \) linearly independent vectors. Consequently, \(\Pi_2(C) \) contains exactly \(l \) linearly independent vectors, so that \(\Pi_2(C) \) is a generating cone of \(\mathbb{R}^l \). Similarly, \(\Pi_1(C) \) is a generating cone of \(\mathbb{R}^k \). Since \(C \subseteq \mathbb{R}_+^n \), both \(\Pi_1(C) \) and \(\Pi_2(C) \) are pointed and therefore proper cones. Assume now that the cone \(C \) is invariant under \(A \). If \(x_2 \in \Pi_2(C) \), then \(x_2 = \Pi_2(x) \) for some \(x \in C \), and so \(A_2(x_2) = A_2(\Pi_2(x)) = \Pi_2(Ax) \in \Pi_2(C) \), since \(A(C) \subseteq C \). Therefore, the cone \(\Pi_2(C) \) is invariant under \(A_2 \). This means that \(\Pi_2(K) \subseteq \mathbb{R}_+^l \) is a proper
cone invariant under A_2. Since the indecomposable matrix A_2 is diagonally similar to a nonnegative matrix, we can apply Lemma 3.4 to conclude that A_2 is a nonnegative matrix.

In order to show that A_1 is also a nonnegative matrix, we consider the transposed matrix A^T. The proper cone $L \subseteq \mathbb{R}^n_+$ is invariant under A^T. Then the cone $\Pi_1(L)$ is a proper cone invariant under A_1^T. Since A_1 is indecomposable, A_1^T is indecomposable and again by Lemma 3.4 we conclude that A_1 must be a nonnegative matrix.

It remains to prove that the block B is nonnegative. Suppose to the contrary that B has some strictly negative entries. If $D = D_1 \oplus D_2$ is a ± 1-diagonal matrix such that DAD is a nonnegative matrix, then $D_i A_i D_i$ for $i = 1, 2$ and $D_1 BD_2$ are nonnegative matrices. Using Lemma 3.4 we conclude that $D_i = \pm I$ for $i = 1, 2$ and $D_1 BD_2 = \pm B$. Since B contains some strictly negative entries, the matrix $-B$ must be nonnegative. Since we can add the identity matrix to the matrix A, without loss of generality we can assume that the matrices A_1 and A_2 are both primitive, i.e., the spectral radius $\rho(A_i)$ is the only point in the peripheral spectrum of A_i, $i = 1, 2$. For $k \in \mathbb{N}$ we have

$$A^k = \begin{bmatrix} A_1^k & B_k \\ 0 & A_2^k \end{bmatrix},$$

where

$$B_k = \sum_{l=0}^{k-1} A_1^{k-1-l} BA_2^l.$$

If we multiply the matrix A by a suitable positive scalar, we can assume that $\rho(A) = \max\{\rho(A_1), \rho(A_2)\} = 1$. We must consider the following three cases:

1. $\rho(A_1) = \rho(A_2) = 1$: By Perron-Frobenius theory, the limits

$$\lim_{k \to \infty} A_1^k = E_1 \text{ and } \lim_{k \to \infty} A_2^k = E_2$$

are strictly positive idempotents of rank 1. In particular, there is a constant $C > 0$ such that $\|A_1^k\|, \|A_2^k\| \leq C$ for all $k \in \mathbb{N}$. Then we have, for any
\(m \in \mathbb{N} \),

\[
\|B_{4m}\| = \left\| \sum_{l=0}^{4m-1} A_{4m-1-l} B A_2^l \right\| \leq \sum_{l=0}^{4m-1} \|A_{4m-1-l}\| \|B\| \|A_2\| \leq 4m C^2 \|B\|,
\]

and so the sequence \(\left\{ \frac{1}{4m} B_{4m} \right\}_{m \in \mathbb{N}} \) is bounded. It follows that some subsequence \(\left\{ \frac{1}{4m_k} A_{4m_k} \right\}_{k \in \mathbb{N}} \) of the sequence \(\left\{ \frac{1}{4m} A_{4m} \right\}_{m \in \mathbb{N}} \) converges to the matrix of the form

\[
A_{\infty} = \lim_{k \to \infty} \frac{1}{4m_k} A_{4m_k} = \begin{bmatrix} 0 & B_{\infty} \\ 0 & 0 \end{bmatrix}.
\]

Choose \(m \in \mathbb{N} \) such that \(\frac{1}{4} E_i \leq A_{1}^l \) for \(i = 1, 2 \) and all \(l \geq m \). As \(-B\) is a nonnegative matrix, we obtain that \(A_{1}^{4m-1-l} B A_2^l \leq \frac{1}{4} E_1 B E_2 \) for all \(l = m, m + 1, m + 2, \ldots, 3m - 1 \). Since the matrices \(-A_{1}^{4m-1-l} B A_2^l\) are nonnegative, we have

\[
B_{4m} = \sum_{l=0}^{4m-1} A_{1}^{4m-1-l} B A_2^l \leq \sum_{l=m}^{3m-1} A_{1}^{4m-1-l} B A_2^l \leq \frac{1}{4} \sum_{l=m}^{3m-1} E_1 B E_2.
\]

It follows that

\[
B_{\infty} \leq \lim_{m \to \infty} \frac{1}{4m} \left(\frac{1}{4} \sum_{l=m}^{3m-1} E_1 B E_2 \right) = \frac{1}{8} E_1 B E_2,
\]

and so \(B_{\infty} \) is a matrix with some strictly negative entries. Therefore, there is a strictly positive vector \(e \in K \) such that the vector \(A_{\infty} e \) is not in \(\mathbb{R}_+^n \). As the cone \(K \) is closed and invariant under all powers of \(A \), it has to be invariant under \(A_{\infty} \), so that \(A_{\infty} e \in K \subseteq \mathbb{R}_+^n \). This contradiction completes the proof in this case.

(2) \(1 = \rho(A_1) > \rho(A_2) \): As before, the limit \(\lim_{k \to \infty} A_1^k = E_1 \) is a strictly positive idempotent of rank 1. Since \(L \subseteq \mathbb{R}_+^n \) is a proper cone invariant under \(A^T \), we can find a strictly positive vector \(e \in L \) such that for all \(k \in \mathbb{N} \) we have \((A^T)^k e \in L \subseteq \mathbb{R}_+^n \). If \(k \) is large enough, we have \(A_1^{k-1} \geq \frac{1}{2} E_1 \) and therefore \(B_k \leq A_1^{k-1} B \leq \frac{1}{2} E_1 B \). Writing \(e = e_1 \oplus e_2 \) with respect to the
given decomposition, we get $B_k^T e_1 \leq \frac{1}{2} (E_1 B)^T e_1 = \frac{1}{2} B^T E_1^T e_1$. Since the vector $B^T E_1^T e_1$ has at least one strictly negative component, the same holds for $B_k^T e_1$. Since $\lim_{k \to \infty} A_2^k = 0$, there is some power k such that the vector $(A^T)^k e = ((A_1^T)^k e_1) \oplus (B_k^T e_1 + (A_2^T)^k e_2)$ has at least one strictly negative component. This is a contradiction with $(A^T)^k e \in L \subseteq \mathbb{R}^n_+$.

(3) $\rho(A_1) < \rho(A_2) = 1$: This case can be handled in a way similar to the case (2); we get the contradiction with the assumption that K is a proper cone invariant under A. □

The next example shows that in Proposition 3.6 none of the cones K and L can be omitted.

Example 3.7. The proper cone $K = \{(x, y) \mid x \geq y \geq 0\} \subset \mathbb{R}^2_+$ is invariant under the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix},$$

which is diagonally similar to a nonnegative matrix, but it is not nonnegative itself. Therefore, the cone L cannot be omitted in Proposition 3.6. By duality, the cone K cannot be omitted as well. □

The following is the main result of the paper.

Theorem 3.8. Let $S \subset M_n(\mathbb{C})$ be an irreducible semigroup such that each member of S is diagonally similar to a nonnegative matrix. Suppose that every member of rank at least 2 is either indecomposable or 1-decomposable. Then S is (simultaneously) diagonally similar to a semigroup of nonnegative matrices.

Proof. By Lemma 3.2, we can assume that $S = \mathbb{R}_+ S$. Then, by Lemma 3.3, we can assume that $S \subset M_n(\mathbb{R})$ and that there are spanning sets $X, Y \subseteq \mathbb{R}^n_+$ such that $S_1 = XY^T$. We can also assume that $X = \mathbb{R}_+ X$ and $Y = \mathbb{R}_+ Y$.
Denote by \(\hat{X} \) and \(\hat{Y} \) the cones generated by \(X \) and \(Y \), respectively. Since \(X \) and \(Y \) are spanning sets, the cones \(\hat{X}, \hat{Y} \subseteq \mathbb{R}^n_+ \) are proper. Choose any member \(A \in S \) of rank at least 2. Then, for all \(x \in X \) and \(y \in Y \), the matrices \(Axy^T = (Ax)y^T \) and \(xy^TA = x(A^Ty)^T \) belong to \(S_1 = XY^T \). It follows that \(Ax \in X \) and \(A^Ty \in Y \), and therefore the proper cone \(\hat{X} \) is invariant under \(A \), while the proper cone \(\hat{Y} \) is invariant under \(A^T \). Since the matrix \(A \) is either indecomposable or 1-decomposable, we now apply either Lemma 3.4 or Proposition 3.6 to conclude that \(A \) is nonnegative. This completes the proof. \(\square \)

Corollary 3.9. Let \(S \subset M_2(\mathbb{C}) \) be an irreducible semigroup such that each member of \(S \) is diagonally similar to a nonnegative matrix. Then \(S \) is (simultaneously) diagonally similar to a semigroup of nonnegative matrices.

We conclude the paper with the following example showing that the (in)decomposability assumptions in Proposition 3.6 and Theorem 3.8 cannot be omitted.

Example 3.10. Define the matrix

\[
A_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}
\]

and the proper cones \(K_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x \geq 0, y \geq z \geq 0 \} \subset \mathbb{R}^3_+ \) and \(L_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x \geq y \geq 0, z \geq 0 \} \subset \mathbb{R}^3_+ \). It is easy to see that \(K_3 \) is invariant under \(A_3 \), while \(L_3 \) is invariant under \(A_3^T \). For \(n \geq 3 \) we define the proper cones \(K_n = K_3 \oplus \mathbb{R}^{n-3}_+ \) and \(L_n = L_3 \oplus \mathbb{R}^{n-3}_+ \). Now we define an irreducible semigroup \(S_1 = K_nL_n^T \), consisting of matrices of rank at most 1. We extend the matrix \(A_3 \) with a zero block to get a matrix \(A_n = A_3 \oplus 0 \in M_n(\mathbb{R}) \). As \(K_3 \) is invariant under \(A_3 \) and \(L_3 \) is invariant under \(A_3^T \), it is clear that the cones \(K_n \) and \(L_n \) are invariant under \(A_n \) and
A_n^T, respectively. Since $A_n^2 = A_n$, $\mathcal{S} = \mathcal{S}_1 \cup \{A_n\}$ is an irreducible semigroup in which each member is diagonally similar to a nonnegative matrix, while the whole semigroup is not diagonally similar to a semigroup of nonnegative matrices.

\[\square\]

References

[1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, revised reprint of the 1979 original, Classics in Applied Mathematics 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[2] J. Bernik, M. Mastnak, H. Radjavi, Positivity and matrix semigroups, Linear Algebra Appl. 434 (2011), No. 3, 801–812.

[3] H. Radjavi and P. Rosenthal, Simultaneous triangularization, Springer-Verlag, Berlin, Heidelberg, New York (2000).

[4] Semigroups Working Group at LAW’08, Kranjska Gora (H. Radjavi, R. Drnovšek, J. Bernik, G. Cigler, A.A. Jafarian, D. Kokol Bukovšek, T. Košir, M. Kramar Fijavž, G. Kudryavtseva, T. Laffey, L. Livshits, G.W. MacDonald, M. Omladič, P. Rosenthal), Semigroups of operators with nonnegative diagonals, Linear Algebra Appl. 433 (2010), No. 11-12, 2080–2087.