An Energy Efficient Reinforcement Learning Based Clustering Approach for Wireless Sensor Network

Navpreet Kaur¹,* , Inderdeep Kaur Aulakh²

¹Research Scholar, Punjab University, UIET & Assistance Professor, Chandigarh University
²Associate Professor, Punjab University

Abstract

Clustering is known to conserve energy and enhance the network lifetime of Wireless Sensor Network (WSN). Although, the topic of energy efficiency has been well researched in conventional WSN, but it has not been extensively studied. In the research, Reinforcement Learning (RL) based energy-aware clustering algorithm is proposed by which the neighboring nodes in the cluster selects an appropriate Cluster Head (CH) by observing the environmental conditions like as energy consumption and coverage that is computed as distance from the CH to the Base Station (BS). An optimal cluster is selected by each neighboring node, which minimized the energy consumption and network lifetime. The problem of selecting an optimal CH is resolved using the RL approach. Using the RL approach, the CH having the highest reward point is selected for data communication. The results show that energy saving of 7.41%, 3.27%, 4.03%, and 2.79 % is achieved for 100, 200, 300, and 400 deployed nodes, respectively.

Keywords: Wireless Sensor Network (WSN), Clustering, Reinforcement Learning, Energy Consumption, Network Lifetime.

1. Introduction

Advances in wireless communications and the use of electronic devices have led to the development of low cost and minimum energy, multi-functional Wireless Sensor Networks (WSNs) that can operate in a complex environment and offer a wide variety of applications [1].

WSN is a group of autonomous, self-configured nodes used to collect various environmental activities such as temperature, humidity, and so on [2]. Using Analog to digital converter (ADC), the sensed data is converted into the digital signal, and after processing, the data is transmitted to the main server known as Base station (BS). BS analyses the data, and the decision has been taken accordingly. In WSN, nodes act as source as well as sink node [3]. The pictorial representation of WSN is shown in Figure 1. The structure of the WSN is shown in Figure 1. At present, WSN finds different application fields such as health monitoring, military control, digitally equipped homes, vehicle tracking and detection, production control, and so on. The nodes forward data to the relative node by sensing the node to be in the same region.

The battery is the essential unit of sensor nodes, which meets the power needs of processors, transmitter & receiver, but the limited battery life can result in exhausts network [5]. As it is not possible to charge the batteries manually in complex places, energy-saving becomes a difficult problem in applications that require long network life. Efforts have been performed by a number of researchers toward saving energy, but on the other hand, network life can also be prolonged by developing an energy-efficient approach [6]. From the existing survey, it has been studied that a cluster-based approach is one of the best ways to save energy as well as battery for complex and distributed networks and hence prolong the network life by making efficient use of node energy [7].
In WSN, clustering is one of the best ways to minimize energy consumption and hence prolong network life. The general existing clustering approach mainly has two types of communication phase (i) CH selection, (ii) Multiple data communication phases, which again consists of intra and intercommunication phase. The general scenario of data transmission using the clustering approach is shown in Figure 2. In common LEACH protocol, a group of nodes that is cluster size is formed based on the distance from the CH. The size of the cluster increases with the increase in the distance of CH from the BS and vice versa.

LEACH is one of the basic routing approaches designed for routing using the clustering technique in WSN. The distribution of nodes in the clusters should be approximately homogenous [8]. To equalize the distribution, a number of researchers have extended the LEACH protocol, and some of the popular enhancements are named as E-LEACH, N-LEACH, D-LEACH, EE-LEACH. E-LEACH uses the residue power of each deployed node for the selection of CH. A round-robin approach is considered, and the round time remains fixed [9]. In N-LEACH and EE-LEACH, the selection of CH has been performed by considering the benefits of the remnant sensor node's energy. Spanning tree has been constructing based on the distance between the CH and BS, which further results in avoidance of intermediate communication, which further saves communication energy [10, 12]. In D-LEACH, the energy of sensor nodes has been balanced by adjusting the threshold function, which is set according to the radius of nodes [11].
Usage of the Machine Learning (ML) approach has also been observed in the earlier research articles mentioned in several recent research articles [13, 30, 31]. Though the usage of ML is still there, this paper improves the ML-based Reinforcement Learning (RL) by using a feedback-based mechanism.

1.1 LEACH

LEACH is a self-adaptive clustering algorithm that distributes energy load on the deployed nodes equally. LEACH worked into two phases, namely CH count calculation and CH selection. Every node sends its data to the region CH, and further CH communicates with its neighboring CHs to reach to the destination. A CH can remain at its position until it has the highest residual energy in normal approaches, whereas in a rotation based approach, each node gets a chance to become CH for a certain time interval [13]. Every node transfers the n-bits of data to its corresponding CH by using a transmission setup, as shown in Figure 3.

![Figure 3. Schematic Diagram of LEACH Protocol [14]](image)

A different set of authors uses different energy consumption models, but there are some standard sets of parameter values, as shown in Table 1 [11, 23, 22, 25]

Considered Parameters	Dissipated Energy
Transmitter Electronics	$E_{Tx-eltx}$ = 50 nJ/bit
Receiver Electronics	$E_{Rx-eltx}$ = 50 nJ/bit
Transmit Amplify	E_{Tx-amp} = $n \times E_{eltx}$

The transmitting equations used by LEACH are defined in section 1.2 below.

1.2. Energy Consumption in WSNs Model

The energy consumption model is highly dependent on distance to BS. The increase in the distance between the transmitter and receiver results in the attenuation of transmitted power [15]. The threshold of free space can be represented by equation (1).

$$d_{th} = \sqrt{\frac{P_{tl}}{P_{mp}}}$$

d_{th}: Threshold of the space model
P_{tl}: Power Loss for free space
P_{mp}: Power Loss for multipath models

The energy released during the transmission of n bits over d distance can be calculated using equation (2).

$$E_{Tx(n,d)} = E_{Tx-eltx}(n) + E_{Tx-amp}(n,d) = n \times E_{eltx} + n \times P_{tl} \times d^2, d > d_0$$

The energy dissipated during the reception of the signal is presented by equation (3)

$$E_{Rx}(n) = E_{Rx-eltx}(n) = n \times E_{eltx}$$

Let WSN is implemented in 2D (two dimensional) area of (A^2), with N number of deployed nodes. The nodes are grouped into 'P' number of clusters. Let the distance from the cluster members to the CH is d_i and from CH to BS is, it is denoted by 'D'. Therefore, the energy consumed by a cluster to forward a single data frame is calculated using equation (4).

$$E_{mic} = E_{CH} + \left(\frac{N}{P} - 1 \right) \times E_{cm}$$

$N/P - 1$: Average of number of Cluster members in a given cluster

E_{CH}: Dissipated energy for CH

The energy dissipated by the CH and the Cm is given by equation (5)

$$E_{cm} = n \times E_{eltx} + n \times P_{tl} \times d_{CH}^2$$

$E_{CH} = n \times E_{eltx} \times \left(\frac{N}{K} - 1 \right) + n \times E_{DA} \times \frac{N}{K} + n \times E_{eltx} + n \times P_{mp} \times D_1^2$ (6)

Based on the above discussion, the total energy consumed by the WSN nodes during the communication process, while utilizing the clustering mechanism is given by equation (7)

$$E_{total} = E_{mic} + E_{frame} = E_{mic} + K \times E_{cluster}$$

E_{mic}: Power consumed by the microcontroller
The power consumed by the microcontroller cannot be optimized. Hence, the only way to optimize power is to optimize the clustering process, which is based on distance [16, 17].

In each round of LEACH, the sensor node decides whether to become a CH or not during the cluster formation. The decision to become a CH depends upon the percentage of total CHs present in the network and the number of times to which the sensor node becomes a CH. During this process, the sensor node selects a random number between [0,1]. The node becomes CH if the number is less than the defined threshold for the existing round.

\[T_{th} = \begin{cases} P_a - P_d \left(n \bmod \frac{1}{P_d} \right) & \text{if } n \notin G \\ 0 & \text{otherwise} \end{cases} \]

(8)

Here, \(n \) is a random number lies between 0 and 1. \(P_a \rightarrow \) Required percentage of CHs, \(n \rightarrow \) present rounds, \(G \rightarrow \) Set of sensor nodes, which are not selected as CHs in the previous round.

2. Related work

Clustering is the best way to reduce the energy consumed by sensor nodes. Presently, a number of researchers have proposed different clustering techniques and contributed to prolonging the network life [18]. The work performed by various researchers is discussed in this section, which is divided into two sections that are State-of-art related to (i) LEACH, and (ii) RL based Clustering.

2.1. Clustering using LEACH based Approach

The trendiest clustering protocol used in WSN is the low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, which extends the life of a network by partitioning the entire network area [19]. However, the LEACH protocol has many disadvantages. Random selection of CH and the use of single-hop communication in the LEACH protocol result in the early death of nodes that are too far from the BS due to unbalanced network load. In addition, the protocol does not take into account residual energy (each node has equal rights to behave like a CH), which results in an unequal distribution of CH [20, 21]. The scenario of LEACH based clustering in WSN is shown in Figure 4.

Recent advancements in the engineering field, digital communications, and networking have led to new wireless systems designs with new tech sensors. Such high-tech sensors can be utilized as a bridge between the physical world and the digital world. Sensor nodes are deployed in various fields, mainly in remote areas, which is beyond the approach of the human being. These sensors sense the external environment and help people from infrastructure failure, accidents, save natural resources, protect wildlife, increase productivity, safety, and more. Using emerging semiconductor technology, one can design more powerful microprocessors that are compact in size than preceding generations. This miniaturization of processing, computing, and sensation technologies has led to the creation of small, low power and inexpensive sensors, controllers, and actuators.

The rest of the paper is organized as follows: related work is provided in section 2. In section 3, the detailed description of the proposed work, along with the designed algorithm, is discussed. In section 4, experimental analysis is discussed in terms of performance parameters. In section 4 conclusion is presented, followed by the references.
Peng and LI (2010) have presented a Variable Round-LEACH (VR-LEACH) protocol based on the selection of CH. The selection of CH has been performed on the basis of sensor nodes conditions. All those nodes take part in the data communication, having a higher energy level compared to the defined average energy [24]. Tong and Tang (2010) have presented Balanced LEACH (B-LEACH) protocol that resolved the problem of fluctuation in CH and for CH selection considered remand energy of sensor nodes. Based on the member count in the cluster, every round is divided into the frame and then again subdivided into time slots [25].

Yu et al. (2012) have utilized the concept of cluster-based routing protocols using the "Energy Aware Clustering approach" to solve the problem of non-uniform energy consumption of distributed nodes. Using this approach, the loss of energy among CH's have been minimized by using the concept of inter and intra clustering approach. However, sensor nodes with small energy limited networks life, and the nodes with higher energy are responsible for network exhaustion [26]. Nehra and Sharma (2013) have used an enhanced “Power-efficient gathering in sensor information systems” (PEGASIS-E) protocol to prolong network life. The chain for transmitting data from the source node to the BS has been formed based on the average distance measured between the sensor nodes. Even though the network life is enhanced with the reduced energy consumption, but the chain formation required the information about the location of nodes, which results in poor network scalability with large delay in data transmission [27]. In 2015, Amgoth et al. have presented an “Energy-Aware Routing Algorithm” for WSN. Using this technique, the nodes in the network are divided into multiple groups. Each sensor node began to select CH with a delay based on the remaining energy. The technique can extend network life but has not exploited fault tolerance and the WSN's active scenario [28].

Al-Humidi et al. (2019) have resolved the problem of a random selection of CH through a newly developed cluster-based approach known by EACCC. It works on the basis of centralized control cluster (3C) algorithm. Initially, each sensor nodes sent information related to remand energy along with the position of the node to the BS. On the basis of received information, BS decide that in which portion of the network the nodes will be. EACCC runs in the round, and in every round the selection CH has been performed, after the selection of CH, data transmission takes place [29].

2.2. Reinforcement Learning in WSN

For the last couple of years, a machine learning technique has gained a lot of attention. Reinforcement Learning (RL) is a subfield of machine learning and seeks to use computer programs to create rules from large data sets. Using the RL approach [30], the agent is selected based on the action/rule performed, and in return, a reward point is received from the outside environment. Based on the reward point, the rules are modified and can achieve optimal results. Due to RL’s conventional feature, it can easily resolve distributed problems [31] (see Figure 5). Therefore, a few researchers have used RL algorithm to resolve the routing-related problems faces by WSN. This section describes the state-of-art performed by various researchers by utilizing the RL approach in WSN [32].

Boyan and Littman (1994) have presented a Q learning-based optimized routing approach in WSN. RL technique provides better PDR with reduced data transmission time. A Q value is assigned to each neighboring nodes. Here, Q value is calculated by the total time consumed by the source node to delivered data to the BS through nearby nodes. Test results proved that; the proposed approach is able to delivered data in large networks without the prior knowledge of traffic patterns [33]. Wang and Wang (2006) have utilized Least squares policy iteration approach to know the routing policy of WSN. Using the proposed approach, the Q value along with the π score has been calculated, and based on these parameters, the remaining energy, hop count, the aggregate ratio has been decided [34].

Hu et al. (2010) have presented an energy-aware routing protocol based on the RL approach for underwater WSN. RL technique has been used to learn about the situation in an effective way so that data can be transmitted in the dynamic topology of underwater WSN. Based on the environmental conditions, the reward point is generated based on the remaining energy and its distribution among the set of nodes, which are used for balancing energy consumption [35]. Razzaque et al. (2014) have used RL approach to modify the routing information. Here, RL approach learns about the environment using information related to the delay and reliability of the nodes and then generated a reward point [36]. Kiani et al. (2015) have used RL based routing mechanism to enhance the life span of WSN. Here, the RL approach has been utilized for the selection of CH. Q point generated by RL approach is obtained after multiplying node’s Q value and its actions Q value [37]. Soni and Shrivastava (2018) have worked on resolving hot spot
problems in WSN using RL approach. Initially, the RLBCA algorithm is designed to remand energy consumption. On the other hand, ODMST has been designed to aggregate data as per requirement from the CH. The record of incoming requests has been stored into a table, and according to the recorded data next step has been performed [38].

3. Materials and Methods
The entire network is divided into two sections that are clustering and Route formation using RL based approach.

![Flow of Proposed Work](image)

Clustering is the process of dividing the entire network into different zones known as clusters.

Each cluster is monitored by a CH node, which collects and forwards data to the BS. In a large network area, the selection of CH becomes an important issue. Since, with the increase in the network size distance between the CH and BS increases and hence decrease nodes lifetime and the failure of CH, it increases the network overhead. Also, the process of route formation has been done through the RL algorithm using the neural network concept. The overall flow is shown in Figure 6.

An RL based energy efficient LEACH routing protocol (RL-LEACH) is designed to select appropriate CH based on the revert Q point.

3.1. Clustering
Initially, N numbers of nodes are deployed in the network with a dynamic size of the network. Here five different node variation with network size has been considered, which are presented in Table 2.

Network Number	Number of deployed Nodes	Network Area Range
Net-1	100	1000×1000 to 3000×3000
Net-2	200	
Net-3	300	
Net-4	400	

The nodes are deployed with defined properties such as energy, delay, co-ordinates, and collision rate. The algorithm followed for the node deployment is written below:

Algorithm 1: Node Deployment

WSN = Node Deployment (Nodes, N\text{height}, N\text{Width})

Where,
- Nodes \(\rightarrow\) Number of Nodes
- N\text{height} \(\rightarrow\) Height of the WSN
- N\text{Width} \(\rightarrow\) Width of WSN
- WSN \(\rightarrow\) A simulation area of WSN

1. Start
2. \(N\text{height}=1000, 1200, 1400, 1600\)
3. \(N\text{Width}=1000, 1200, 1400, 1600\)
4. Define N number of Nodes for the simulation of Network
5. For in range of (1 to N)
6. Plot Node (i)=coordinate (X, Y)
7. Define Node = N (i)
8. Source Node = random (N)
9. Destination Node= random (N)
10. If Source Node (S\text{N}) == Destination Node (D\text{N})
11. Source _Node = rand (N)
is to learn about the route and hence provide the best route point in the surrounding environment. In WSN, its main use is associated with an adjacent sensor node and each network node. For example, each sensor node holds a reward point inside each sensor node or on the outer surface of the sensor determined using equation (8).

Using the RL approach is illustrated in Figure 7.

Figure 7. RL Learning Approach

Table 3. Cluster Identification for 1600×1600 Network Area

ID-1	ID-2	ID-3	ID-4
ID-5	ID-6	ID-7	ID-8
ID-9	ID-10	ID-11	ID-12
ID-13	ID-14	ID-15	ID-16

The CH's that have been formed in the network area are determined using equation (8)

\[T_{CH} = \sqrt{\frac{\sum_{i=1}^{N} d_{sink} \times \ln(n)^{\alpha}}{\text{Total Area}}} \] (8)

\[I_{A} \rightarrow \text{Attraction index and is calculated using Equation (9)} \]

\[I_{A} = \begin{cases} 2 & \text{if } \frac{N}{\text{Total Area}} < 0.1 \text{ & } N > 50 \\ 1 & \text{Otherwise} \end{cases} \] (9)

Using \(T_{CH} \) and \(I_{A} \), the selection of Q points for RL learning has been decided.

3.1. RL Learning

RL collects information by continuously interacting with the surrounding environment and improving the performance of the system by achieving optimal results by performing all the necessary actions to draw conclusions. Q-learning is a category of RL scheme that creates a sequence of observations in terms of reward point. The visualization of the RL approach is illustrated in Figure 7.

The RL model presented in Figure 7 can be implanted inside each sensor node or on the outer surface of the sensor node. For example, each sensor node holds a reward point associated with an adjacent sensor node and each network point in the surrounding environment. In WSN, its main use is to learn about the route and hence provide the best route for data transmission. State sensing is used to indicate the action performed by the destination node. The action indicates the next communicating node to which data is to be forwarded. The reward point indicates the distance between the CH and the destination node. The increase in the reward point decreases the distance of CH towards the destination node and hence increase the network performance [39].

RL-based routing protocol has been used to optimize the life of WSN networks in all specific aspects. Using this technique, the next CH is selected based on historical learning and available evaluated information, and properties of nodes like residual energy, transmission distance from CH to BS, and delay are taken into consideration to learn the best ways. In this way, the correct linkage between the sensor nodes and BS is performed with balanced energy consumption.

Q learning approach is used in the RL approach in which agent monitored the WSN environment of state (U). Accordingly, there is an action (C), and reward points are (P) are generated. Based upon the experience, the strategy is modified. The action with the highest reward point is selected for a certain state. In case if the transition probability is unknown, the next node selection using simple RL approach is not possible. Therefore, Q learning approach is provided, which calculates the accurate reward point and hence decides the best path [40]. Let the state of each node is represented by \(Q(u,c) \), which is being updated after every iteration by using equation (10)

\[Q(u_{t}, c_{t}) = (1 - \alpha)Q(u_{t}, c_{t}) + \alpha[p_{t+1} + \beta_{\text{max}} + \gamma_{\text{max}} + Q(u_{t+1}, c_{t+1})] \] (10)

\(Q(u_{t}, c_{t}) \rightarrow \text{Accumulated reward generated by the node at state } u_{t}, \text{ action } c_{t}, \text{ which is taken at time } t. \)

\(p_{t+1} \rightarrow \text{immediate reward point generated for action } c, \text{ when the state transition takes place from state } U_{t} \text{ to } U. \)

\(\gamma_{\text{max}} \rightarrow \text{action performed in the set of action } U_{t+1}(C) \)

\(\alpha \rightarrow \text{learning factor} \)
\(\beta \) → rate of discount lies between \([0,1]\)

Algorithm: CH Selection using RL approach

\[
\text{Route} = \text{RL} (\text{Nodes, S, D, CHs, ECONSUPTION, CAREA, Distance})
\]

Where,

- **Nodes** → Number of Nodes
- **S** → Source Node
- **D** → Destination Node
- **CHs** → All Cluster Heads
- **ECONSUPTION** → Energy Consumption of Nodes
- **CAREA** → Coverage Area of Nodes
- **Distance** → Distance of node from neighboring nodes
- **Route** → Route from S to D via CHs

1. **Start**
2. **Route** = []
3. The starting point of Route is Source Node so, Route(1) = S
4. Define a flag for the destination, \(D_{\text{FOUND}} = 0 \)
5. **While** \(D_{\text{FOUND}} \neq 1 \)
6. Reward = [] // To store the current CH reward points
7. **For I in range of S(CAREA)**
8. Reward(I, 1) = ECONSUPTION (S(CAREA, I))
9. Reward(I, 2) = CAREA (S(CAREA, I))
10. Reward(I, 3) = Distance (S(CAREA, I))
11. **End – For**
12. Max Reward = [Reward(I, 1) Reward(I, 2) Reward(I, 3)]
13. If Max Reward == True
14. Route (Next Nodes) = CH (Max Reward)
15. Else
16. Selected Next Node in S(CAREA)
17. **End – If**
18. If \(D_{\text{FOUND}} = 1 \)
19. Route (Next Nodes) = D
20. Else
21. Repeat Process
22. **End – if**
23. **End – While**
24. **Return**: Route as a path from S to D via CHs
25. **End – Function**

3.3. Proposed Reinforcement learning-based LEACH protocol (RL-LEACH)

Using the RL-LEACH approach, the selection of CH in WSN has been performed by considering three factors, such as Energy consumption, coverage area, and distance of CH from BS. Initially, the energy level of each node is compared with the defined threshold; if energy is higher, then the selected nodes’ communication range is checked and then the distance is checked. Based on the QoS parameters, reward points are generated. The nodes having a higher reward point is selected as CH.

\[\text{Figure 8. Proposed RL-LEACH approach Working scenario} \]
Figure 8 describes the working of the RL-LEACH routing protocol that is used to select the CH from nodes based on their basic properties like Energy Consumption, Coverage Area, and Distance from Sink node. In the figure, 10 nodes are selected as CH (CH1, CH2,…….CH5). Source node wants to transmit the data packets, then CH1 is selected as a next intermediate node after that RL decides which CH nodes are selected as the next intermediate nodes. The selection of CH is performed based on the written algorithm of RL-LEACH:

\[
\text{OCHs} = \text{RL-LEACH (Nodes, Nodes-Prop)}
\]

Where,

- **Nodes** → Number of Nodes
- **Nodes-Prop** → Nodes properties like Energy Consumption, Coverage Area and Distance from Sink

The OCHs → Optimized Cluster Heads (CHs) having better efficiency to monitor entire cluster

1. **Start**
2. **During Cluster formation**, when the nodes required being CH, it may select an arbitrary random number (rNum) among zero and one.
3. **Calculate threshold**, \[
T_{new}(m) = \begin{cases}
\frac{E_{\text{Residual}(m)}}{E_{\text{Initial}}(m)} & \text{if } m \in \text{Grp} \\
0 & \text{else}
\end{cases}
\]

a. Where, \(m\) is number of nodes, \(E_{\text{Residual}}\) is residual energy of nodes and \(E_{\text{Initial}}\) is initial energy for nodes being generated during the initialization of WSN.
4. **Call and Apply RL for CH selection**
5. **Reward = []** // To store the reward points of Nodes
6. **For I in range of m**
7. **Reward(I, 1) = Nodes-Prop (E_{\text{Consumption} (I)})**
8. **Reward(I, 2) = Nodes-Prop (C_{\text{Area} (I)})**
9. **Reward(I, 3) = Nodes-Prop (Distance (I))**
10. **End – For**
11. **Max Reward = [Reward(I, 1) Reward(I, 2) Reward(I, 3)]**
12. **If rNum < \(T_{\text{new}(m)}\) and Max Reward = True then,**
13. **OCH = Node not selected as CH**
14. **Else**

The protocols are tested under different topologies, which are generated randomly. The performance parameters are discussed later. The designed network with \(N\) number of nodes is shown in Figure 9.

The Q based learning has been implemented in MATLAB and the designed network for an area of 1600×1600, which is divided into 16 different clusters \{ID1, ID2, ID3………………..ID16\}, the identification of each clusters is represented in Table 3. The pictorial representation is shown in Figure 9.

As shown in Figure 10, the source "S" is defined in the cluster (ID1) that wants to transmit data to destination "D" located in cluster ID 15. Now the route is created based on the directional orientation of destination node (D); that is, the data traveled from the source node (S) considered the path in the direction of its destination node as shown in figure 10. Source node ‘S’ have four nearby clusters in its coverage range named as ID2, ID 3, ID4 and ID5, each having different CH’s such as CH1, CH2, CH3, CH4 and CH5 respectively. Now, to which CH, the S node forward data, depends upon the reward point generated by RL approach. For CH1, CH2, CH3, CH4 and CH5, the generated reward point is depicted in Table 6. According to that, the reward point of CH5 is higher compared to the other four CHs. Hence, S node forwards data to CH5. Now, CH 5 also, checks its nearby clusters that are CH7, CH9, CH10, and CH12. RL approach is applied to generate a

4. Results and Discussions

This section describes the efficiency of the proposed RL-LEACH algorithm in terms of throughput, Packet Delivery Ratio (PDR), and energy consumption.

The proposed algorithms select optimal CH using the RL approach and enhance the lifetime by reducing the consumption of energy. In the simulation process, we have considered nodes (\(N=50, 100, 150, 200\)) deployed in a different area of (A=1000×1000, 1200×1200, 1400×1400, and 1600×1600) square meters. Initially, the parameters of network nodes such as energy consumed by each node, transmission delay, and collision rate and co-ordinated of each node are taken into consideration. The performance has been examined using simple LEACH, RL based Q learning approach by considering the same parametric values of the nodes. The detailed simulation parameters are presented in Table 4.

Parameters	Value
Number of Nodes	100, 200, 300, 400
Number of the destination node	1
Area of network	1000×1000
1200×1200	1400×1400
1600×1600	
Initial Energy of sensor nodes	2 J
Deployment mode of sensor nodes	Random
Transmission range	20 m
Sensing radius	10m
Packet Size	512 bits
Distance Threshold	12m

Table 4. Simulation Parameters for RL-LEACH protocol
reward point based on energy consumption, coverage area, and distance. Since, the reward point for CH12 is highest among all, hence CH5 forward data to CH12. Again, the same process is repeated by CH12 node, which finds that CH15 have the highest reward point and passes data to CH15 node, which is the destination node. In this way, data travels from the S node to the D node.

![Figure 9. Clustering in WSN](image)

![Figure 10. Route creation using R-LEACH](image)

During Q based RL learning, each cluster member nodes pass data to their CH, which is in its communication range as mention in Table 4. The data is passed to the single CH instead of checking each and every cluster. In this way, an optimal cluster is selected, which consumed less energy and also near to the BS.

The simulation has been performed in which both the member nodes and the CH nodes are participated and examined the energy consumed by both nodes with different
cluster sizes in the network. The examined network energy consumption value for 16 different clusters formed in Figure 10 is presented in Table 5.

Table 5. Network Energy Consumption Vs. Cluster Size

Cluster size	Network Energy Consumption (J)
1	512
2	504
3	420
4	435
5	424
6	412
7	408
8	405
9	409
10	406
11	407
12	405
13	404
14	406
15	408
16	442

As shown in Figure 11, the network energy consumption for fixed number of nodes deployed in each cluster (ID1, ID2……ID16), for small and large cluster size network, the consumed energy is high. For cluster size one in network are 1600×1600, the consumed energy is 512 J, whereas for large cluster size of 16, the consumed energy is 442 J. This is because, for small cluster size network, the cluster member nodes have to communicate with other nodes that are placed at long distance and hence consume high energy due to the intracluster distance communication.

To obtain an optimal solution, we applied Q-learning to examine the performance of the proposed algorithm in terms of learning and adaptation to a dynamic environment. The CH selection using Q-learning is performed due to its quick convergence for shorter span. The performance of the RL approach has been determined by computing the reward point for different member nodes in the CH based on the energy consumed and distance of the CH to the BS. Route = [S CH1 CH5 CH12 CH15 D]

Here, S is source node and D is the destination node

To create a route from S to D, the RL approach is used for better path selection by avoiding the affected node within the route as an intermediate node. During the transmission, S transfer the data packets to own cluster head (CH1), and then now CH1 searches next nodes as CH5 based on the reward points using the RL technique. The selection process of CH5 as a next intermediate node is shown in the figure10. The corresponding reward point based on energy consumption, coverage area, and distance are listed in Table 6.

Table 6. Reward Point for Scenario-1

Reward Point	CH2	CH3	CH4	CH5
CH2	0.4	0.83	0.85	0.9
CH3	0.8	0.84	0.87	0.94
CH4	0.6	0.83	0.93	0.98

Figure 11. Network Energy Consumption Vs. Cluster Size

On the other side, with large cluster size (see cluster size=14), the energy consumption is low. But, in this case, with the increase in the cluster size, the communication between inter CH increases, which consumes more energy than cluster members. Therefore, it is necessary to select the appropriate size of clusters in the network so that energy consumption can be minimized. Here, this is performed by selecting appropriate CH and hence balance the energy consumption for both inter and intracluster communication in WSN. The graph depicted in Figure 11 shows that the optimal cluster size, where the energy consumption is minimum, is 8.
In 2nd Scenario, route from S to D, using RL approach by considered CH5 as cluster head is performed. Let in the coverage area of CH5, clusters CH7, CH 9, CH10 and CH12 occurs. Now, to which CH, the data is transmitted by the selected CH5 depends upon the reward point generated by RL approach as listed in Table 7 and graphically shown in Figure 13.

Table 7. Reward Point for Scenario-2

Reward Point	CH7	CH9	CH10	CH12
0.52	0.88	0.87	0.92	
0.91	0.91	0.9	0.95	
0.73	0.93	0.96	0.98	

After the selection of CH15 as the next intermediate nodes, CH15 checked its own coverage area and founded the destination (D).

4.1 Simulation Results

After the completion of route formation, data transmission takes place, and QoS parameters are calculated for the designed model using both approaches like RL and without RL. The computed values for network lifetime with respect to several nodes for three different scenarios that are (i) without RL, (ii) with RL, and (iii) Kiani et al. is presented in Table 9.

Table 9. QoS for 100 Nodes

NETWORK AREA (SQUARE METER)	NETWORK LIFETIME (MIN)	PDR	ENERGY CONSUMPTION (MJ)									
	Without RL	With RL/RL-LEACH										
1000×1000	10.257	19.2685	13.7586	77.3258	89.7582	Kiani et al.	324.245	300.1245	322.157	324.245	300.1245	
1200×1200	9.8452	20.369	12.3658	78.2698	88.2672	80.1425	Kiani et al.	328.167	304.257	326.547	330.147	307.264
1400×1400	9.2578	18.2574	13.7569	80.269	86.328	80.3651	Kiani et al.	330.147	307.264	328.164	330.147	307.264
1600×1600	8.2567	17.3658	14.3658	82.365	85.742	82.2569	Kiani et al.	322.157	305.264	320.754	322.157	305.264
1800×1800	7.2594	19.0257	15.6987	85.0369	86.120	84.0142	Kiani et al.	320.157	312.0147	317.267	320.157	312.0147
2000×2000	10.2575	17.8954	12.0875	75.0369	84.367	87.367	Kiani et al.	320.561	315.627	322.752	320.561	315.627
Table 9 represents the values of network lifetime, PDR, and energy consumption computed for three scenarios (i) without RL, (ii) with RL, and (iii) Kiani et al. From the above-obtained values, it has been examined that proposed approach RL-LEACH outperformed among all and the average computed values for network lifetime without RL, RL-LEACH and Kiani et al. for 100 nodes are 9.15, 17.71, and 14.37 respectively. Similarly, for PDR, the average values for without RL, RL-LEACH, and Kiani et al. 77.64, 86.52, and 80.15, respectively. In the same way, the average values computed for energy consumption are 327.35 mJ, 313.36mJ, and 325.05mJ, respectively. The average network lifetime examined for the proposed work in contrast to the existing work is 24.34 min, 19.2min, respectively. Thus, there is an enhancement of 26.77 % has been obtained. Similarly, for the PDR, the average PDR for RL-LEACH and Kiani et al. are 88.87 and 86.78, respectively. In the same way, the average energy consumption for RL-LEACH and Kiani et al. are 308.09 mJ, 319.05 mJ, respectively. Therefore, improvement in PDR and energy consumption compared to Kiani et al. is 2.41 % and 3.44 %, respectively.

Table 10. QoS for 200 Nodes

NETWORK AREA (SQUARE METER)	NETWORK LIFETIME (MIN)	PDR	ENERGY CONSUMPTION (MJ)						
	Without RL	With RL/RL-LEACH	Kiani et al.	Without RL	With RL/RL-LEACH	Kiani et al.	Without RL	With RL/RL-LEACH	Kiani et al.
1000×1000	15.125	24.3657	20.0325	79.2475	90.457	88.3687	324.236	300.0214	320.254
1200×1200	17.2548	23.0147	18.2571	78.365	91.3265	87.2547	324.365	304.125	318.257
1400×1400	18.3697	22.03147	20.365	77.248	94.0325	85.6472	327.0215	301.025	319.754
1600×1600	20.3651	25.0376	21.0365	76.258	89.265	86.3657	328.0642	304.025	318.657
1800×1800	24.3657	26.3574	25.0364	75.269	87.0257	87.3694	325.842	304.657	317.254
2000×2000	14.0236	27.3658	16.0327	74.2895	88.365	88.2571	327.168	307.265	316.85
2200×2200	17.0369	23.157	18.0267	73.657	90.257	89.325	326.942	305.124	319.347
2400×2400	12.3651	22.1571	14.3657	72.314	91.365	84.3657	328.367	312.542	320.154
2600×2600	16.3282	21.2675	17.3684	71.028	88.257	85.2361	330.251	318.025	321.012
2800×2800	17.3658	28.0365	18.3672	70.258	84.0257	84.0321	327.845	315.261	318.674
3000×3000	21.3657	25.0367	22.3658	70.369	83.2481	88.365	327.942	317.025	319.257

Table 11. QoS for 300 Nodes

NETWORK AREA (SQUARE METER)	NETWORK LIFETIME (MIN)	PDR	ENERGY CONSUMPTION (MJ)						
	Without RL	With RL/RL-LEACH	Kiani et al.	Without RL	With RL/RL-LEACH	Kiani et al.	Without RL	With RL/RL-LEACH	Kiani et al.
1000×1000	25.125	32.321	30.1253	80.1273	92.1528	88.258	347.124	333.254	340.285
1200×1200	24.152	33.251	29.156	78.958	93.258	87.685	348.157	325.147	342.251
1400×1400	23.267	30.125	31.024	79.157	90.27	87.659	350.27	326.487	348.215
1600×1600	26.248	28.264	32.045	76.258	91.365	84.325	351.657	342.158	342.165
1800×1800	27.036	32.452	33.157	82.157	89.567	86.975	356.271	348.25	345.128
2000×2000	25.03	33.267	29.567	81.247	94.235	90.258	350.275	345.28	349.157
2200×2200	22.036	35.68	28.751	82.365	93.574	87.258	349.752	340.28	347.125
2400×2400	29.167	36.157	32.015	81.365	92.365	84.258	348.627	342.158	346.215
2600×2600	28.0176	31.254	30.672	80.25	91.257	89.365	345.742	341.258	344.852
The results examined while deployed node count is \(N=200 \) nodes with different simulation area is depicted in Table 11. The proposed approach shows better results compared to existing work. The average percentage enhancement of network lifetime, PDR, and energy consumption of RL-LEACH protocol compared to the existing Kiani et al. is examined as 3.69 \%, 5.69 \%, and 1.67 \%, respectively.

The analysed values for 200 nodes in different network area dimension are depicted in Table 12. It is clearly observed that the proposed approach with RL. RL-LEACH performed better compared to the existing approach. For 200 nodes, the percentage increase in the network lifetime, PDR, and energy consumption compared to existing work is 8.57 \%, 18.32\% and 8.36\%.

4.2. Comparative Analysis

This section describes the comparative analysis for different nodes varies as \(N= 100, 200, 300, \) and 400 respectively for three designed scenarios such as Without RL, with RL and Kiani et al. the comparison has been performed on the basis of three parameters as Network Lifetime, PDR and energy Consumption.

Table 13. Network Lifetime

Number of nodes	Without RL	With RL	Kiani et al.
100	9	18	13
200	15	24	20
300	25	32	30
400	30	45	40
three different scenarios that are (i) without RL, (ii) with RL, and (iii) Kiani et al. is presented in Table 14.

Number of nodes	Without RL	With RL	Kiani et al.
100	77	89	80
200	79	90	88
300	80	92	88
400	81	93	89

Table 14. PDR

The energy consumed by three different approaches with different number of nodes is illustrated in Figure 17 along with the values presented in Table 15. The graph shows the improvement of our RL based cluster selection approach in contrast to the without RL approach and Kiani et al. The energy consumed by the cluster members is determined based on Mean Square Error (MSE). Efficient network is designed with minimum MSE value examined for particular cluster. From the graph depicted in Figure 17, it is clearly seen that the proposed approach using RL algorithm have less MSE compared to the without RL approach and hence consume less energy. The percentage reduction in the energy consumption rate in contrast to the without RL approach observed for 100, 200, 300, and 400 nodes is 7.41%, 3.27%, 4.03%, and 2.79 % respectively.

In short, the main purpose of the designed protocol is to reduce energy consumption and to increase network lifetime with packet delivery rate. All parameters are obtained as per requirement and hence fulfil the need to design a balanced WSN in dynamic environment.

5. Conclusion

Similar to other existing networks, WSN is developed for specific applications like as military, rescue operation, agriculture and many more; each requires different features as per their need. Depending upon the network scenario, each requires new communication protocols. In addition, network design factors must be taken into account to achieve the expected performance. Among all factors, energy is the most important parameter in WSN and must be controlled by appropriate algorithm. In this research, we focused on to save energy by selecting the appropriate CH using RL approach and the designed algorithm provides better network life with improved energy. Initially, optimal number of clusters in a network is evaluated by analysing the network energy consumption of both inter and intra clustering communication. Also, the process of selecting appropriate CH using RL approach based on reward point is discussed. From the simulation results, proposed algorithm performed better in terms of network lifetime, packet delivery ratio, and energy consumption. The maximum...
References

[1] Ahmadinia M, Meybodi MR, Esnaashari M, Alinejad-Rokny H. Energy-efficient and multi-stage clustering algorithm in wireless sensor networks using cellular learning automata. IETE Journal of Research. 2013 Nov 1;59(6):774-82.

[2] Arjunan S, Sujatha P. Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol. Applied Intelligence. 2018 Aug 1;48(8):2229-46.

[3] Shamsan Saleh AM, Ali BM, Rasid MF, Ismail A. A survey on energy awareness mechanisms in routing protocols for wireless sensor networks using optimization methods. Transactions on Emerging Telecommunications Technologies. 2014 Dec;25(12):1184-207.

[4] Ballav B, Rana G, Pattanayak BK. Investigating the effect of Black Hole attack on Zone Based Energy Efficient Routing Protocol for Mobile Sensor Networks. In2015 International Conference on Information Technology (ICIT) 2015 Dec 21 (pp. 113-118). IEEE.

[5] Esnaashari M, Meybodi MR. A novel clustering algorithm for wireless sensor networks using irregular cellular learning automata. In2008 International Symposium on Telecommunications 2008 Aug 27 (pp. 330-336). IEEE.

[6] Elhoseny M, Elleithy K, Elminir H, Yuan X, Riad A. Dynamic clustering of heterogeneous wireless sensor networks using a genetic algorithm, towards balancing energy exhaustion. International Journal of Scientific & Engineering Research. 2015;6(8):1243-52.

[7] Alarifi A, Tolba A. Optimizing the network energy of cloud assisted internet of things by using the adaptive neural learning approach in wireless sensor networks. Computers in Industry. 2019 Apr 1;106:133-41.

[8] Birajdar DM, Solapure SS. LEACH: An energy efficient routing protocol using Omnet++ for Wireless Sensor Network. In2017 International Conference on Inventive Communication and Computational Technologies (ICICCT) 2017 Mar 10 (pp. 465-470). IEEE.

[9] Xu J, Jin N, Lou X, Peng T, Zhou Q, Chen Y. Improvement of LEACH protocol for WSN. In2012 9th International Conference on Fuzzy Systems and Knowledge Discovery 2012 May 29 (pp. 2174-2177). IEEE.

[10] Yulan Z, Chunfeng J. Research about improvement of LEACH protocol. InThe 2nd International Conference on Information Science and Engineering 2010 Dec 4 (pp. 2281-2284). IEEE.

[11] Jin Y, Jo JY, Wang L, Kim Y, Yang X. ECCRA: An energy-efficiency coverage and connectivity preserving routing algorithm under border effects in wireless sensor networks. Computer Communications. 2008 Jun 25;31(10):2398-407.

[12] Arumugam GS, Ponmunchamy T. EE-LEACH: development of energy-efficient LEACH Protocol for data gathering in WSN. EURASIP Journal on Wireless Communications and Networking. 2015 Dec;2015(1):1-9.

[13] Alsheikh MA, Lin S, Niyato D, Tan HP. Machine learning in wireless sensor networks: Algorithms, energy saving is of 2.79% has been obtained.

[14] Hu Z, Wang Z, Wang J, Zeng T. Routing Protocol for Wireless Sensor Network Based on Automatic Cluster Optimization. International Journal of Online and Biomedical Engineering (IJOBE). 2018 Dec 23;14(12):150-63.

[15] Zhang Y, Li W. Modeling and energy consumption evaluation of a stochastic wireless sensor network. EURASIP Journal on Wireless Communications and Networking. 2012 Dec 1;2012(1):282.

[16] Wang X, Han S, Wu Y, Wang X. Coverage and energy consumption control in mobile heterogeneous wireless sensor networks. IEEE Transactions on Automatic Control. 2012 Oct 18;58(4):975-88.

[17] Javaid N, Rasheed MB, Imran M, Guizani M, Khan ZA, Alghamdi TA, Ilahi M. An energy-efficient distributed clustering algorithm for heterogeneous WSNs. EURASIP Journal on Wireless communications and Networking. 2015 Dec;2015(1):1-1.

[18] Logambigai R, Kannan A. Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks. 2016 Apr 1;22(3):945-57.

[19] Azharuddin M, Jana PK. PSO-based approach for energy-efficient and energy-balanced routing and clustering in wireless sensor networks. Soft Computing. 2017 Nov 1;21(22):6825-39.

[20] Jamal T, Butt SA. Low-energy adaptive clustering hierarchy (LEACH) enhancement for military security operations. Proc. Of Journal of Basic and Applied Scientific Research, ISSN. 2017:2090-4304.

[21] Palan NG, Barbadekar BV, Patil S. Low energy adaptive clustering hierarchy (LEACH) protocol: A retrospective analysis. In2017 International conference on inventive systems and control (ICISC) 2017 Jan 19 (pp. 1-12). IEEE.

[22] Bian X, Liu X, Cho H. Study on a cluster-chain routing protocol in wireless sensor networks. In2008 Third International Conference on Communications and Networking in China 2008 Aug 25 (pp. 964-968). IEEE.

[23] Xiaoping W, Hong L, Gang L. An improved routing algorithm based on LEACH protocol. In2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science 2010 Aug 10 (pp. 259-262). IEEE.

[24] Peng W, Edwards DJ. K-means like minimum mean distance algorithm for wireless sensor networks. In2010 2nd International Conference on Computer Engineering and Technology 2010 Apr 16 (Vol. 1, pp. V1-120). IEEE.

[25] Tong M, Tang M. LEACH-B: an improved LEACH protocol for wireless sensor network. In2010 6th international conference on wireless communications networking and mobile computing (WiCOM) 2010 Sep 23 (pp. 1-4). IEEE.

[26] Yu J, Qi Y, Wang G, Gu X. A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU-International Journal of Electronics and Communications. 2012 Jan 1;66(1):54-61.

[27] Nehra V, Sharma AK. PEGASIS-E: Power efficient gathering in sensor information system extended.
Global Journal of Computer Science and Technology. 2013 Dec 7.

[28] Amgoth T, Jana PK. Energy-aware routing algorithm for wireless sensor networks. Computers & Electrical Engineering. 2015 Jan;41:357-67.

[29] Al-Humidi N, Chowdhary GV. Energy-aware approach for routing protocol by using centralized control clustering algorithm in wireless sensor networks. InComputing, communication and signal processing 2019 (pp. 261-274). Springer, Singapore.

[30] Le TT, Moh S. An energy-efficient topology control algorithm based on reinforcement learning for wireless sensor networks. Int. J. Control Autom. 2017;10(5):233-44.

[31] Savaglio C, Pace P, Aloi G, Liotta A, Fortino G. Lightweight reinforcement learning for energy efficient communications in wireless sensor networks. IEEE Access. 2019 Mar;7:29355-64.

[32] Banerjee PS, Mandal SN, De D, Maiti B. RL-Sleep: Temperature Adaptive Sleep Scheduling using Reinforcement Learning for Sustainable Connectivity in Wireless Sensor Networks. Sustainable Computing: Informatics and Systems. 2020 Jun 1;26:100380.

[33] Boyan JA, Littman ML. Packet routing in dynamically changing networks: A reinforcement learning approach. InAdvances in neural information processing systems 1994 (pp. 671-678).

[34] Wang P, Wang T. Adaptive routing for sensor networks using reinforcement learning. InThe Sixth IEEE International Conference on Computer and Information Technology (CIT'06) 2006 Sep 20 (pp. 219-219). IEEE.

[35] Hu T, Fei Y. QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing. 2010 Feb;9(6):796-809.

[36] Razzaque MA, Ahmed MH, Hong CS, Lee S. QoS-aware distributed adaptive cooperative routing in wireless sensor networks. Ad Hoc Networks. 2014 Aug 1;19:28-42.

[37] Kiani F, Amiri E, Zamani M, Khodadadi T, Abdal Manaaf A. Efficient intelligent energy routing protocol in wireless sensor networks. International Journal of Distributed Sensor Networks. 2015 Mar 2;11(3):618072.

[38] Soni S, Shrivastava M. Novel learning algorithms for efficient mobile sink data collection using reinforcement learning in wireless sensor network. Wireless Communications and Mobile Computing. 2018 Aug 16;2018.

[39] Hu T, Fei Y. QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing. 2010 Feb;9(6):796-809.

[40] Chen H, Li X, Zhao F. A reinforcement learning-based sleep scheduling algorithm for desired area coverage in solar-powered wireless sensor networks. IEEE Sensors Journal. 2016 Jan 12;16(8):2763-74.