NON-MEAGER FREE SETS FOR MEAGER RELATIONS
ON POLISH SPACES

TARAS BANAKH AND LYUBOMYR ZDOMSKYY

(Communicated by Mirna Džamonja)

Abstract. We prove that for each meager relation $E \subset X \times X$ on a Polish space X there is a nowhere meager subspace $F \subset X$ which is E-free in the sense that $(x, y) \notin E$ for any distinct points $x, y \in F$.

1. Introduction

This paper is devoted to the problem of finding non-meager free subsets for meager relations on Polish spaces. For a relation $E \subset X \times X$, a subset $F \subset X$ is called E-free if $(x, y) \notin E$ for any distinct points $x, y \in F$. This is equivalent to saying that $F^2 \cap E \subset \Delta_X$ where $\Delta_X = \{(x, y) \in X^2 : x = y\}$ is the diagonal of X^2.

The problem of finding “large” free sets for certain “small” relations was considered by many authors; see [10], [11], [9], [6], [7]. Observe that the classical Mycielski-Kuratowski Theorem [8, 18.1] implies that for each meager relation $E \subset X^2$ on a perfect Polish space X there is an E-free perfect subset $F \subset X$. We recall that a non-empty subset of a Polish space is perfect if it is closed and has no isolated points. Nonetheless, the following result seems to be new.

Theorem 1. For each meager relation $E \subset X^2$ on a Polish space X there is an E-free nowhere meager subspace $F \subset X$. Moreover, if the set of isolated points is not dense in X, then F may be chosen of any cardinality $\kappa \in [\text{cof}(\mathcal{M}), \mathfrak{c}]$.

Let us recall that a subspace A of a topological space X

- is meager in X, if A can be written as a countable union $A = \bigcup_{n \in \omega} A_n$ of nowhere dense subsets of X;
- is nowhere meager in X, if for any non-empty open set $U \subset X$ the intersection $U \cap A$ is not meager in X.

It is clear that a subset $A \subset X$ of a Polish space X is nowhere meager if and only if A is dense in X and contains no open meager subspace. By definition, $\text{cof}(\mathcal{M})$ is the minimal cardinality of a collection \mathcal{X} of meager subsets of the Baire space ω^ω such that for every meager $A \subset \omega^\omega$ there exists $X \in \mathcal{X}$ containing A. It is known [5] that $\text{cof}(\mathcal{M}) = \mathfrak{c}$ under Martin’s Axiom, and $\text{cof}(\mathcal{M}) < \mathfrak{c}$ in some models of ZFC; see [4].

Received by the editors April 9, 2013 and, in revised form, October 28, 2013.

2010 Mathematics Subject Classification. Primary 54E52, 54E50; Secondary 54D80.

Key words and phrases. Meager relation, free set.

The first author was partially supported by NCN grants DEC-2011/01/B/ST1/01439 and DEC-2012/07/D/ST1/02087.

The second author was a recipient of an APART-fellowship of the Austrian Academy of Sciences.

©2015 American Mathematical Society
Theorem 1 will be proved in Section 3. One of its applications is the existence of a first-countable uniform Eberlein compact space which is not supercompact (see [10, 5.2]), which was our initial motivation for considering free non-meager sets for meager relations. The following simple example shows that the nowhere meager set F in Theorem 1 cannot have the Baire property. We recall that a subset A of a topological space X has the Baire property in X if for some open set $U \subset X$ the symmetric difference $A \triangle U = (A \setminus U) \cup (U \setminus A)$ is meager in X.

Example 2. For the nowhere dense relation

$$E = \bigcup_{n \in \omega} \{(x, y) \in \mathbb{R}^2 : |x - y| = 2^{-n}\} \subset \mathbb{R} \times \mathbb{R}$$

on the real line \mathbb{R}, each E-free subset $F \subset \mathbb{R}$ with the Baire property is meager.

Proof. Assuming that F is not meager, and using the Baire property of F, find a non-empty open subset $U \subset \mathbb{R}$ such that $U \setminus F$ is meager and hence lies in some meager F_σ-set $M \subset \mathbb{R}$. Then $G = U \setminus M \subset F$ is a dense G_δ-set in U. By the Steinhaus-Pettis Theorem [8, 9.9], the difference $G - G = \{x - y : x, y \in G\}$ is a neighborhood of zero in \mathbb{R} and hence $2^{-n} \in G - G$ for some $n \in \omega$. Then any points $x, y \in G \cap F$ with $|x - y| = 2^{-n}$ witness that the set $F \ni x, y$ is not E-free. □

Remark 3. By a classical result of Solovay [11], there are models of ZF in which all subsets of the real line have the Baire property. In such models each E-free subset for the relation $E = \bigcup_{n \in \omega} \{(x, y) \in \mathbb{R}^2 : |x - y| = 2^{-n}\}$ is meager. This means that the proof of Theorem 1 must essentially use the Axiom of Choice.

2. **Some auxiliary results**

We recall [2] that a family \mathcal{F} of infinite subsets of a countable set X is called a semifilter, if $A \in \mathcal{F}$ provided $F \subset^* A \subset X$ for some set $F \in \mathcal{F}$. Here $F \subset^* A$ means that $F \setminus A$ is finite. Each semifilter on X is contained in the semifilter $[X]^\omega$ of all infinite subsets of X. The semifilter $[X]^\omega$ is a subset of the power set $\mathcal{P}(X)$ which can be identified with the Tychonoff product 2^X via characteristic functions. So, we can speak about topological properties of semifilters as subspaces of the compact Hausdorff space $\mathcal{P}(X)$. According to Talagrand’s characterization [13] of meager semifilters on ω, a semifilter \mathcal{F} on a countable set X is meager (as a subset of $\mathcal{P}(X)$) if and only if \mathcal{F} can be enlarged to a σ-compact semifilter $\overline{\mathcal{F}} \subset [X]^\omega$. This characterization implies the following:

Corollary 4. For any finite-to-one map $\phi : X \to Y$ between countable sets, a semifilter $\mathcal{F} \subset \mathcal{P}(X)$ is meager if and only if the semifilter $\phi[\mathcal{F}] = \{E \subset Y : \phi^{-1}(E) \in \mathcal{F}\} \subset \mathcal{P}(Y)$ is meager.

We recall that a map $f : X \to Y$ between two sets is called finite-to-one if for each $y \in Y$ the preimage $\psi^{-1}(y)$ is finite and non-empty. In particular, each monotone surjection $\psi : \omega \to \omega$ is finite-to-one.

A key ingredient of the proof of Theorem 1 is the following proposition.

Proposition 5. For any meager relation $E \subset 2^\omega \times 2^\omega$ on the Cantor cube 2^ω there is a family $(G_\alpha)_{\alpha < \lambda}$ of nowhere meager subsets in 2^ω such that $(G_\alpha \times G_\beta) \cap E = \emptyset$ for any distinct ordinals $\alpha, \beta < \lambda$.

Proof. An indexed family $(A_\alpha)_{\alpha < \lambda}$ of infinite subsets of ω is called almost disjoint if $A_\alpha \cap A_\beta$ is finite for any distinct ordinals $\alpha, \beta < \lambda$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 6. There are a finite-to-one map \(\varphi : \omega \to \omega \) and an almost disjoint family \((A_\alpha)_{\alpha < \kappa} \) of infinite subsets of \(\omega \) such that \(\varphi(A_\alpha) = \omega \) for all \(\alpha < \kappa \).

Proof. Let \(\xi : \omega \to 2^{<\omega} \) be any bijection of \(\omega \) onto the binary tree \(2^{<\omega} = \bigcup_{n \in \omega} 2^n \).
Let \(\ell : 2^{<\omega} \to \omega \) be the level map assigning to each finite sequence \(s \in 2^{<\omega} \) the unique number \(n \in \omega \) such that \(s \in 2^n \). It is clear that the map \(\ell : 2^{<\omega} \to \omega \) is finite-to-one and so is the composition \(\varphi = \ell \circ \xi : \omega \to \omega \).

The family \(B \) of all branches (i.e., maximal linearly ordered subsets) of the tree \(2^{<\omega} \) is almost disjoint and has cardinality \(\kappa \). So, it admits an (injective) enumeration \(B = \{ B_\alpha \}_{\alpha < \kappa} \) such that the indexed family \((B_\alpha)_{\alpha < \kappa} \) is almost disjoint.

For every \(\alpha < \kappa \) put \(A_\alpha = \xi^{-1}(B_\alpha) \) and observe that \((A_\alpha)_{\alpha < \kappa} \) is a required almost disjoint family of infinite subsets of \(\omega \) with \(\varphi(A_\alpha) = \ell(B_\alpha) = \omega \) for all \(\alpha < \kappa \). \(\square \)

Using Lemma 6 fix a finite-to-one surjection \(\varphi : \omega \to \omega \) and an almost disjoint family \((A_\alpha)_{\alpha < \kappa} \) of infinite subsets of \(\omega \) such that \(\varphi(A_\alpha) = \omega \) for all \(\alpha < \kappa \).

Next, fix any free ultrafilter \(U \) on \(\omega \) and for every \(\alpha < \kappa \) choose an ultrafilter \(U_\alpha \) on \(\omega \) extending the family \(\{ A_\alpha \cap \varphi^{-1}[U] : U \in U \} \). The almost disjoint property of the family \((A_\alpha)_{\alpha < \kappa} \) guarantees that \(\omega \setminus A_\alpha \in U_\xi \) for any distinct ordinals \(\alpha, \xi < \kappa \).

Lemma 7. For every \(\alpha < \kappa \), the filter
\[
F_\alpha = \mathcal{P}(\omega \setminus A_\alpha) \cap \bigcap_{\alpha \neq \xi < \kappa} U_\xi
\]
is non-meager in \(\mathcal{P}(\omega \setminus A_\alpha) \).

Proof. By Corollary 4, the filter \(F_\alpha \) is not meager in \(\mathcal{P}(\omega \setminus A_\alpha) \) as its image \(\varphi[F_\alpha] = \{ E \in \omega : \varphi^{-1}[E] \in F_\alpha \} \) coincides with the ultrafilter \(U \) and hence is not meager in \(\mathcal{P}(\omega) \). \(\square \)

Let \(E \subset 2^\omega \times 2^\omega \) be a meager relation on \(2^\omega \). By [3, Theorem 2.2.4], there exist a monotone surjection \(\phi : \omega \to \omega \) and functions \(f_0, f_1 : \omega \to 2 \) such that
\[
E \subset \{(g, g') \in 2^\omega \times 2^\omega : \forall n \in \omega \, (g \upharpoonright \phi^{-1}(n) \neq f_0 \upharpoonright \phi^{-1}(n)) \}
\]

For every ordinal \(\alpha < \kappa \) consider the subset
\[
G_\alpha = \{ g \in 2^\omega : \exists X_0, X_1 \in U_\alpha \setminus \bigcup_{\alpha \neq \xi < \kappa} U_\xi \}
\]
\[
\left(X_0 \subset X_1 \right) \wedge (g \upharpoonright \phi^{-1}[X_0] = f_0 \upharpoonright \phi^{-1}[X_0])
\]
\[
\wedge (g \upharpoonright \phi^{-1}[\omega \setminus X_1] = f_1 \upharpoonright \phi^{-1}[\omega \setminus X_1]) \}
\]
in the Cantor cube \(2^\omega \).

Lemma 8. For every ordinal \(\alpha < \kappa \) the set \(G_\alpha \) is nowhere meager in \(2^\omega \).

Proof. Since \(G_\alpha \) is closed under finite modifications of its elements, it is enough to show that \(G_\alpha \) is non-meager in \(2^\omega \). Observe that \(G_\alpha \) contains the set
\[
G'_\alpha = \{ g \in 2^\omega : \exists Y_0 \in U_\alpha \cap \mathcal{P}(A_\alpha) \, \exists Y_1 \in \mathcal{P}(\omega \setminus A_\alpha) \setminus \bigcup_{\alpha \neq \xi < \kappa} U_\xi \}
\]
\[
\left(g \upharpoonright \phi^{-1}[Y_0] = f_0 \upharpoonright \phi^{-1}[Y_0]) \right) \wedge (g \upharpoonright \phi^{-1}[\omega \setminus (A_\alpha \cup Y_1])
\]
\[
= f_1 \upharpoonright \phi^{-1}[\omega \setminus (A_\alpha \cup Y_1)] \}
\]
Indeed, if \(g \in G'_\alpha \) is witnessed by \(Y_0, Y_1 \), then \(X_0 = Y_0 \) and \(X_1 = A_\alpha \cup Y_1 \) are witnessing that \(g \in G_\alpha \). Now \(G'_\alpha \) may be written as the product \(R_\alpha \times H_\alpha \), where

\[
R_\alpha = \{ g \in 2^{\phi^{-1}[A_\alpha]} : \exists Y_0 \in U_\alpha \cap \mathcal{P}(A_\alpha) \ (g \upharpoonright \phi^{-1}[Y_0] = \emptyset \upharpoonright \phi^{-1}[Y_0]) \}
\]

and

\[
H_\alpha = \{ g \in 2^{\phi^{-1}[\omega \setminus A_\alpha]} : \exists Y_1 \in \mathcal{P}(\omega \setminus A_\alpha) \setminus \bigcup_{\alpha \neq \xi < \zeta} U_\xi \ (g \upharpoonright \phi^{-1}[\omega \setminus (A_\alpha \cup Y_1)] = \emptyset \upharpoonright \phi^{-1}[\omega \setminus (A_\alpha \cup Y_1)]) \}.
\]

Thus it suffices to show that both \(R_\alpha \) and \(H_\alpha \) are non-meager. By the homogeneity of \(2^\omega \) there is no loss of generality to assume that \(\emptyset \upharpoonright \phi^{-1}[A_\alpha] \equiv 1 \) and \(\emptyset \upharpoonright \phi^{-1}[\omega \setminus A_\alpha] \equiv 1 \).

With \(f_1 \) as above we see that \(H_\alpha \) is simply the set of characteristic functions of elements of the semifilter

\[
\mathcal{H}_\alpha = \{ Z \subset \phi^{-1}[\omega \setminus A_\alpha] : \exists Y_1 \in \mathcal{P}(\omega \setminus A_\alpha) \setminus \bigcup_{\alpha \neq \xi < \zeta} U_\xi \ (\phi^{-1}[\omega \setminus (A_\alpha \cup Y_1)] \subset Z) \}
\]
on \(\phi^{-1}[\omega \setminus A_\alpha] \). Therefore

\[
\phi[\mathcal{H}_\alpha] = \{ T \subset \omega \setminus A_\alpha : \exists Y_1 \in \mathcal{P}(\omega \setminus A_\alpha) \setminus \bigcup_{\alpha \neq \xi < \zeta} U_\xi \ (\omega \setminus (A_\alpha \cup Y_1) \subset T) \}.
\]

Observe that \(Y_1 \in \mathcal{P}(\omega \setminus A_\alpha) \setminus \bigcup_{\alpha \neq \xi < \zeta} U_\xi \) iff \(\omega \setminus (A_\alpha \cup Y_1) \in \bigcap_{\alpha \neq \xi < \zeta} U_\xi \), and hence \(\phi[\mathcal{H}_\alpha] \) is equal to the filter \(\mathcal{P}(\omega \setminus A_\alpha) \cap \bigcap_{\alpha \neq \xi < \zeta} U_\xi \) which is non-meager in \(\mathcal{P}(\omega \setminus A_\alpha) \) by Lemma \(\Box \) and consequently the filter \(\mathcal{H}_\alpha \) is non-meager in \(\mathcal{P}(\phi^{-1}[\omega \setminus A_\alpha]) \) by Corollary \(\Box \).

In other words, \(H_\alpha \) is a non-meager subset of \(2^{\phi^{-1}[\omega \setminus A_\alpha]} \).

The proof of the fact that \(R_\alpha \) is non-meager is analogous. However, we present it for the sake of completeness. With \(f_0 \) as above we see that \(R_\alpha \) is simply the set of characteristic functions of elements of the semifilter

\[
\mathcal{R}_\alpha = \{ Z \subset \phi^{-1}[A_\alpha] : \exists Y_0 \in \mathcal{P}(A_\alpha) \cap \mathcal{U}_\alpha \ (\phi^{-1}[Y_0] \subset Z) \}
\]
on \(\phi^{-1}[A_\alpha] \). It follows that

\[
\phi[\mathcal{R}_\alpha] = \{ T \subset A_\alpha : \exists Y_0 \in \mathcal{P}(A_\alpha) \cap \mathcal{U}_\alpha \ (Y_0 \subset T) \} = \mathcal{P}(A_\alpha) \cap \mathcal{U}_\alpha
\]
is a non-meager ultrafilter on \(A_\alpha \), and hence \(\mathcal{R}_\alpha \) is a non-meager semifilter on \(\phi^{-1}[A_\alpha] \) according to Corollary \(\Box \). Consequently, \(R_\alpha \) is a non-meager subset of \(2^{\phi^{-1}[A_\alpha]} \). \(\Box \)

Lemma 9. For any distinct ordinals \(\alpha, \beta < \epsilon \) we get \((G_\alpha \times G_\beta) \cap E = \emptyset \).

Proof. Fix any \((g_\alpha, g_\beta) \in G_\alpha \times G_\beta\) and find some pair \((g_\alpha, g_\beta)\). Fix sets \(X_0^\alpha, X_1^\alpha \) and \(X_0^\beta, X_1^\beta \) witnessing that \(g_\alpha \in G_\alpha \) and \(g_\beta \in G_\beta \), respectively. The intersection \(X_0^\alpha \cap (\omega \setminus X_1^\beta) \) is infinite: otherwise \(X_0^\alpha \subset^* X_1^\beta \) and \(X_1^\beta \in \mathcal{U}_\alpha \), which contradicts the definition of \(G_\beta \). Thus the set \(X_0^\alpha \setminus X_1^\beta \) is infinite and for every \(n \in X_0^\alpha \setminus X_1^\beta \) we get \(g_\alpha \upharpoonright \phi^{-1}(n) = f_0 \upharpoonright \phi^{-1}(n) \) and \(g_\beta \upharpoonright \phi^{-1}(n) = f_1 \upharpoonright \phi^{-1}(n) \), which implies \((g_\alpha, g_\beta) \notin E\). \(\Box \)

This completes the proof of Proposition \(\Box \)

Using the well-known fact that each perfect Polish space \(X \) contains a dense \(G_\delta \)-subset homeomorphic to the space of irrationals \(\omega^\omega \), we can generalize Proposition \(\Box \) as follows.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 10. For any meager relation $E \subset X \times X$ on a perfect Polish space X there is a family $(G_\alpha)_{\alpha < \kappa}$ of nowhere meager subsets in X such that $(G_\alpha \times G_\beta) \cap E = \emptyset$ for any distinct ordinals $\alpha, \beta < \kappa$.

3. Proof of Theorem

Let $E \subset X \times X$ be a meager relation on a Polish space X. If the set D of isolated points is dense in X, then $F = D$ is a required nowhere meager E-free subset of X. So, we assume that the set D is not dense in X. Then the open subspace $Y = X \setminus \overline{D}$ of X is not empty and has no isolated points. Let $\kappa \in [\text{cof}(\mathcal{M}), \mathfrak{c}]$ be any cardinal. By Proposition 10 there is a family $(G_\alpha)_{\alpha < \kappa}$ of nowhere meager subsets in Y such that $(G_\alpha \times G_\beta) \cap E = \emptyset$ for any distinct ordinals $\alpha, \beta < \kappa$.

Let \mathcal{U} be a countable base of the topology of Y and \mathcal{X} be a cofinal with respect to inclusion family of meager subsets in Y of size κ. It is clear that the set $\mathcal{U} \times \mathcal{X}$ has cardinality κ and hence can be enumerated as $\mathcal{U} \times \mathcal{X} = \{ (U_\alpha, X_\alpha) : \alpha < \kappa \}$. Since the set D is at most countable and E is meager in $X \times X$, the set $E_0 = \{ y \in Y : \exists x \in D \ (x, y) \in E \text{ or } (y, x) \in E \}$ is meager in Y. For every ordinal $\alpha < \kappa$ the set G_α is nowhere meager in Y, which allows us to find a point $y_\alpha \in U_\alpha \cap G_\alpha \setminus (X_\alpha \cup E_0)$. Then $F = D \cup \{ y_\alpha \}_{\alpha < \kappa}$ is a nowhere meager E-free set in X.

References

[1] Taras Banakh, Zdzisław Kosztołowicz, and Slawomir Turek, Hereditarily supercompact spaces, Topology Appl. 161 (2014), 263–278, DOI 10.1016/j.topol.2013.10.028. MR3132367
[2] Taras Banakh and Lyubomyr Zdomskyy, The coherence of semifilters: a survey, Selection principles and covering properties in topology, Quad. Mat., vol. 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006, pp. 53–105. MR2395751 (2009g:54055)
[3] Tomek Bartoszyński and Haim Judah, Set theory. On the structure of the real line, A K Peters Ltd., Wellesley, MA, 1995. MR1350295 (96k:03002)
[4] Tomek Bartoszyński, Haim Judah, and Saharon Shelah, The Cichoń diagram, J. Symbolic Logic 58 (1993), no. 2, 401–423, DOI 10.2307/2275212. MR1233917 (94m:03077)
[5] Andreas Blass, Combinatorial cardinal characteristics of the continuum, Handbook of set theory, Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 395–489, DOI 10.1007/978-1-4020-5764-9_7. MR2768855
[6] Stefanie Frick and Stefan Geschke, Basis theorems for continuous n-colorings, J. Combin. Theory Ser. A 118 (2011), no. 4, 1334–1349, DOI 10.1016/j.jcta.2010.12.006. MR2755085 (2012f:05307)
[7] Stefan Geschke, Weak Borel chromatic numbers, MLQ Math. Log. Q. 57 (2011), no. 1, 5–13, DOI 10.1002/mlq.201000001. MR2779703 (2012d:03114)
[8] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR1321597 (96f:03057)
[9] Wiesław Kubis, Perfect cliques and G_δ colorings of Polish spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 619–623 (electronic), DOI 10.1090/S0002-9939-02-06584-X. MR1933354 (2004g:54043)
[10] Ludomir Newelski, Janusz Pawlikowski, and Witold Seredyński, Infinite free set for small measure set mappings, Proc. Amer. Math. Soc. 100 (1987), no. 2, 335–339, DOI 10.2307/2045967. MR884475 (88d:04003)
[11] Slawomir Solecki and Otmar Spinas, Dominating and unbounded free sets, J. Symbolic Logic 64 (1999), no. 1, 75–80, DOI 10.2307/2586752. MR1683896 (2000e:03137)
[12] Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR0265151 (42 #64)
[13] Michel Talagrand, *Filtres: mesurabilité, rapidité, propriété de Baire forte* (French), Studia Math. 74 (1982), no. 3, 283–291. MR683750 (84h:28005)

Department of Mathematics, Ivan Franko National University of Lviv, Ukraine – and – Instytut Matematyki, Jan Kochanowski University, Kielce, Poland

E-mail address: t.o.banakh@gmail.com

URL: http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/bancv.html

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria

E-mail address: lzdomsky@gmail.com

URL: http://www.logic.univie.ac.at/~lzdomsky/