Comparison of cadaveric and isomorphic virtual haptic simulation in temporal bone training

Dana Wong1, Bertram Unger2, Jay Kraut3, Justyn Pisa4, Charlotte Rhodes3 and Jordan B Hochman5*

Abstract

Background: Virtual surgery may improve learning and provides an opportunity for pre-operative surgical rehearsal. We describe a novel haptic temporal bone simulator specifically developed for multicore processing and improved visual realism. A position locking algorithm for enhanced drill-bone interaction and haptic fidelity is further employed. The simulation construct is evaluated against cadaveric education.

Methods: A voxel-based simulator was designed for multicore architecture employing Marching Cubes and Laplacian smoothing to perform real-time haptic and graphic rendering of virtual bone. Ten Otolaryngology trainees dissected a cadaveric temporal bone (CTB) followed by a virtual isomorphic haptic model (VM) based on derivative microCT data. Participants rated 1) physical characteristics, 2) specific anatomic constructs, 3) usefulness in skill development and 4) perceived educational value. The survey instrument employed a Likert scale (1-7).

Results: Residents were equivocal about the physical properties of the VM, as cortical (3.2 ± 2.0) and trabecular (2.8 ± 1.6) bone drilling character was appraised as dissimilar to CTB. Overall similarity to cadaveric training was moderate (3.5 ± 1.8). Residents generally felt the VM was beneficial in skill development, rating it highest for translabyrinthine skull-base approaches (5.2 ± 1.3). The VM was considered an effective (5.4 ± 1.5) and accurate (5.7 ± 1.4) training tool which should be integrated into resident education (5.5 ± 1.4). The VM was thought to improve performance (5.3 ± 1.8) and confidence (5.3 ± 1.9) and was highly rated for anatomic learning (6.1 ± 1.9).

Conclusion: Study participants found the VM to be a beneficial and effective platform for learning temporal bone anatomy and surgical techniques. They identify some concern with limited physical realism likely owing to the haptic device interface. This study is the first to compare isomorphic simulation in education. This significantly removes possible confounding features as the haptic simulation was based on derivative imaging.

Keywords: Medical simulation, Haptic, Real time marching cubes, Temporal bone

Background

Current temporal bone surgical training is centered on graduated operative practice under the supervision of an experienced surgeon. As a corollary to increasing focus on safety, and to supplement surgical education in the face of resident work hour restrictions, numerous teaching adjuncts have been developed. The Cadaveric Temporal Bone Lab remains the gold standard; however accessibility to sufficient exposure is site specific owing to local factors and expense [1]. An array of haptic simulators [2-10] are now available to complement this training and the field of additive manufacturing is beginning to provide effective models for dissection [11,12].

Haptic simulation for surgical training

Haptic simulation provides real-time 3 dimensional contact force representation. The user sees a graphical representation of the bone and feels it using a manipulandum held in the hand in an analogous fashion to an otic drill. Movement of the manipulandum guides the virtual drill tip. As the virtual bone is drilled, deep structures are revealed, permitting simulated complex surgical procedures. While this does provide a sense of drill-bone interaction, the experience is not identical to that of operative drilling.

The advantages of haptic simulation are easy operation, the absence of biologic materials, the ability to provide a...
wide range of anatomic variants, failure without consequence, and provision for repeated practice. Perhaps the most significant advantage is the ability to objectively monitor and assess trainee actions, providing a basis for formative and summative metrics [13-18]. Further, there may be utility in competency based residency training.

These benefits have led to the development of numerous haptic surgical trainers [2-10]. The validity of haptic trainers has been studied, particularly with reference to surgical performance and construct validity [13,15-17]. Direct comparison to performance in standard cadaveric dissection [12,13] have previously shown mixed results. These studies appear to have used a standardized haptic model which was compared to anatomically unmatched cadaveric samples. In the study described below, unique isomorphic models of cadaveric bones were created so that participants drill anatomically identical bones in both modalities, eliminating anatomical variation as a confounding factor in analysis.

The haptic simulation of temporal bone which we use takes advantage of incremental gains in processing speed and computer architecture to generate contact forces using a novel algorithm [19].

Haptic simulation of the temporal bone

Temporal bone haptic simulation is not new. The earliest simulators converted voxel data to low resolution polygon surfaces [20] for display using volume rendering [21-23]. Our current simulation also uses voxel data for collision detection and force calculations, but renders the voxels graphically using high resolution polygons generated by the Marching Cubes algorithm [24] and Laplacian HC Smoothing [25]. These two algorithms run in real time using a new multicores architecture, creating a bone surface which appears smooth and free of step-like voxellation artifacts (Figure 1). The simulation runs on the Windows™ platform using DirectX™ which allows stereoscopic 3D using inexpensive consumer level 3D graphics cards and active shutter displays.

Our haptic display simulates forces felt by a simulated surgical drill. For the purposes of this study we used the inexpensive Phantom Omni device (Geomagic, Wilmington MA). The program is also compatible with 6 degree-of-freedom devices.

A position locking algorithm is used to calculate interaction forces rather than the more commonly used virtual spring methods [21]. This permits calculation of the location of the drill bit at every iteration and allows the haptic device to navigate fine surface features and improve stability when the drill tip is located in tightly constrained spaces.

The temporal bone haptic simulation we have developed employs CT data. The data is segmented into component structures, stored initially as individual polygon meshes which are then combined into a voxellated model for haptic display.

Education centric platform

The purpose of the haptic simulation is to aid education. Software features included in the simulation permit drilling actions to be undone at the discretion of the user. Internal constructs can be made “undrillable” to facilitate learning the relative nature of anatomy. The ease of bone removal can be modified to aid in learning structure location. Two distinct training modes permit a user to both visually and manually follow an expert’s dissection of a bone model. The first is Passive Hand Motion Training. In this mode the user holds the haptic manipulandum while the computer replays the exact drill movements of an expert. The second mode is Active Hand Motion Training where arrows located in the upper right of the screen direct hand motion to closely replicate the expert’s recorded drilling process. Variable coloration, transparency, and stiffness of individual tissue components permit users to visualize anatomic structures more easily (Figures 2 and 3).

In the following, we describe the design of derivative haptic simulations from cadaveric temporal bone microCT data followed by experimental design, surgical resident preferences and perceptions of the model when compared directly to matched isomorphic cadaveric specimens.

Methods

After study approval by the local Research Ethics Board (REB), ten residents each performed a cadaveric immediately followed by a virtual dissection of an isomorphic haptic model.

Preparation of isomorphic haptic models from cadaveric specimens

Ten human cadaveric temporal bone specimens were prepared for otic drilling by resident surgical trainees. Prior to drilling, each bone underwent microCT using a SkyScan 1176 microtomograph (Bruker-microCT, Belgium). Image resolution was initially 35 μm but was down-sampled by a factor of 4 in x and y.

MicroCT data was then segmented using Mimics 14.0.1.7 (Materialize, Belgium) into separate anatomic features. Bone was segmented semi-automatically using Hounsfield unit thresholds. This ensured that void spaces such as air cells, were retained in the final model. Soft tissue features including carotid artery, sigmoid sinus, superior petrosal sinus, dural plates, endolympathic sac, endolympathic duct, otic capsule contents, ossicles, greater superficial petrosal, chordae tympani, facial nerves, cochleariform process and semi-canal for tensor tympani, were manually segmented. Segmented features were stored as individual polygon meshes.
A haptic simulation of each cadaveric specimen was then generated by recombining its individual polygon mesh models into a single voxelated model [19]. Each cadaveric bone specimen, therefore, had a corresponding haptic simulation which contained anatomy identical in size and shape (isomorphic) to the parent bone. The simulation used a haptic device (Geomagic Touch - SC, USA) to control a virtual drill during interaction with the voxelated model (Figures 1, 2 and 3). The model was visually displayed on a 165 cm plasma screen (Panasonic TCP65VT30, Panasonic, Osaka, Japan) mounted above and behind the haptic device (1280×720 pixel resolution). The drill was activated using an on-off foot-pedal (Scythe – Tokyo, Japan).

Resident evaluation of haptic temporal bone models

10 surgical resident trainees, with varying degrees of surgical experience, from the Otolaryngology program at the University of Manitoba, gave informed consent for participation in the study. Each student was randomly assigned a cadaveric bone and its matched isomorphic haptic model for dissection. Subjects first drilled their assigned cadaveric specimen under supervision of a Neurotologist using an otic drill (Stryker, Michigan, USA). Following completion of cadaveric drilling, each subject drilled the isomorphic haptic model matching the cadaveric bone on which they had just practiced. No time limit on the session was set although all subjects completed cadaveric and virtual drilling in less than 4 hours. Subjects then completed a survey instrument (Likert Scale) comparing haptic and cadaveric drill experiences. The survey asked subjects to rate the haptic model in four areas as compared to cadaveric dissection, including 1) physical characteristics of the VM, 2) specific anatomic feature representation of the VM, 3) usefulness in surgical skills training and 4) perceived educational value. A copy of the survey instrument can be obtained from the corresponding author.

Results

The mean and standard deviation of resident responses can be seen in the tables below for each of the four survey components.

Residents were ambivalent about the physical similarity of the VM as compared to CTB (Table 1), rating it highest...
for its air cell system representation (5.4 ± 1.4). Hardness was rated better for cortical (3.2 ± 2.0) than trabecular (2.8 ± 1.6) bone, but neither was considered similar to CTB. The simulations overall physical similarity to CTB (3.5 ± 1.8) was unexceptional.

Residents generally rated the VM’s internal constructs as more similar to CTB than its physical properties (Table 2), with the highest values awarded to vascular structures (range 5.6 to 5.8) and the lowest to dural plates (4.5 ± 1.7). Important middle ear, otic capsule and nervous structures were reasonably considered (range 5-5.5).

Residents generally felt that the VM was beneficial in surgical skill acquisition (Table 3), rating it highest for translabyrinthine approaches to the skull base (5.2 ± 1.3) and lowest for sigmoid sinus decompression (4.4 ± 2.0). All surgical skills assessed were deemed to benefit from training on the VM.

Residents generally agreed that the VM was an effective (5.4 ± 1.5) and accurate (5.7 ± 1.4) tool which should be integrated into education (5.5 ± 1.4) (Table 4). Participants did not consider the VM a viable replacement of CTB dissection (2.5 ± 2.3). Generally, the VM was presumed to increase surgical performance (5.3 ± 1.8) and confidence (5.3 ± 1.9) and was ranked highly with respect to its usefulness in teaching anatomy (6.1 ± 1.9) and facilitating access to a broad range of pathologic and anatomic variation (5.6 ± 1.8).

Table 1 Resident assessment of virtual model physical properties as compared to cadaveric bone

Model factor	Mean comparison rating ± SD (1 = very dissimilar, 7 = very similar)
Cortical bone hardness	3.2 ± 2.0
Trabecular bone hardness	2.8 ± 1.6
Vibrational properties	3.2 ± 1.5
Acoustic properties	2.7 ± 2.0
Drill skip	2.9 ± 2.0
Air cell system	5.4 ± 1.4
Thinning of dural plates	3.5 ± 1.8
Palpation of Dura	2.2 ± 1.6
Overall similarity to CTB	3.5 ± 1.8

Table 2 Resident assessment of virtual model anatomical feature similarity to cadaveric bone

Anatomical feature	Mean similarity rating ± SD (1 = very dissimilar, 7 = very similar)
Mastoid/vertical facial nerve	5.4 ± 1.4
Typanic/horizontal facial nerve	5.5 ± 1.4
Dural plates	4.5 ± 1.7
Dura	4.5 ± 1.5
Incus	5.3 ± 1.4
Stapes	5.3 ± 1.3
Malleus	5.2 ± 1.3
Horizontal SCC	5.0 ± 1.4
Posterior SCC	5.0 ± 1.4
Superior SCC	5.0 ± 1.4
Carotid Artery	5.6 ± 0.9
Sigmoid sinus	5.8 ± 1.1
Cochleariform process	5.3 ± 0.7
Facial recess	5.2 ± 1.2
Sinus Tympani	5.2 ± 1.0
Internal auditory canal	5.3 ± 1.2
Table 3 Resident perceived value of virtual model in surgical skill acquisition

Surgical skill	Mean value ± SD (1 = not beneficial, 7 = very beneficial)
Canal wall up mastoidectomy	4.9 ± 1.7
Facial recess approach	4.8 ± 1.8
Canal wall down mastoidectomy	5.1 ± 1.4
Inside out mastoidectomy	4.7 ± 1.8
Bondy mastoidectomy	4.8 ± 1.6
Sigmoid sinus decompression	4.4 ± 2.0
Dural plate decompression	4.6 ± 2.0
Labyrinthectomy	5.0 ± 1.5
Translabyrinthine approach to IAC	5.2 ± 1.3
Middle fossa approach to IAC	4.7 ± 1.8
Middle fossa approach to superior canal dehiscence	5.0 ± 1.5

Table 4 Resident appraisal of virtual model educational value

Educational evaluation statement	Mean agreement level ± SD (1 = strongly disagree, 7 = strongly agree)
This is an effective training instrument	5.4 ± 1.5
This instrument is an accurate reproduction of the temporal bone	5.7 ± 1.4
This instrument should be integrated into resident education	5.5 ± 1.4
This form of simulation can replace the cadaveric temporal bone lab	2.5 ± 2.3
This simulation provides a basis for appreciating the relative anatomy of temporal bone structures	6.1 ± 1.9
This simulated surgery improves confidence	5.3 ± 1.9
Increased exposure to this simulation would improve resident surgical performance	5.3 ± 1.8
Increased exposure to this simulation would improve resident comfort with actual patient surgery	5.4 ± 1.8
This simulation facilitates practice of skills across a range of anatomical and pathologic variations (sclerotic, low dura, disease)	5.6 ± 1.8
VM against the derived cadaveric bone. Study participants found that the VM was both a beneficial and an effective platform for learning temporal bone anatomy and surgical techniques. They also identify some concern with limited physical realism likely owing to the haptic device interface. Virtual surgery may improve learning and provide added opportunity for pre-operative surgical rehearsal without comparison patient safety. This study is the first to compare isomorphic simulation in education.

Abbreviations

CTB: Cadaveric temporal bone; VM: Virtual isomorphic haptic model.

Competing interests

Research Support: Stryker donated an Otic Drill System. No Industrial Support for Research. No Disclosures to report. No Conflict of Interest.

Authors’ contributions

DW was involved with study design, conducting the study and drafting the paper. BU was involved with study design and statistical analysis. JK designed the virtual haptic model. JP was involved with statistical analysis. CR was involved with study design. JBF was involved with study design, conducting the study and drafting the paper and supervising the study team. All authors read and approved the final manuscript.

Author details

1Department of Otolaryngology Head and Neck Surgery, University of Manitoba, Winnipeg, Manitoba, Canada. 1Clinical Learning and Simulation Facility, Department of Medical Education, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada. 1Department of Medical Education, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.

2Surgical Hearing Implant Program, Department of Otolaryngology - Head and Neck Surgery, University of Manitoba, GB421, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada. 2Neurotologic Surgery, Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, University of Manitoba, GB421, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada.

Received: 27 May 2014 Accepted: 18 July 2014

Published online: 13 October 2014

References

1. Fennessy BG, Sullivan PO: Establishing a temporal bone laboratory: considerations for ENT specialist training. J J Med Sci 2009, 178:393–395.

2. Fried MP, Uribe JI, Sadoughi B: The role of virtual reality in surgical training in otolaryngology. Curr Opin Otolaryngol Head Neck Surg 2007, 15(5):163–169.

3. George AP, De R: Review of temporal bone dissection teaching: how it was, is and will be. J Laryngol Otol 2010, 124:119–125.

4. Morris D, Sewell C, Barbaghi F, Salisbury K, Blevins NH, Grod S: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Comput Graph Appl 2006, 6:48–57.

5. Wet G, Bryand J, Dodson E, Sensanna D, Stredney D, Schmalbrock P, Welling B: Virtual temporal bone dissection simulation. Stud Health Tech Inform 2000, 70:378–384.

6. Pfleisser B, Petersik A, Tiede U, Höhne KH, Leuwer R: Volume cutting for virtual petrous bone surgery. Comput Aided Surg 2003, 7(2):74–83.

7. Agus M, Giachetti A, Gobbetti E, Zanetti G, Zorcolo A, John NW, Stone RJ: Mastoidectomy simulation with combined visual and haptic feedback. MMVR 2002, 85:17–23.

8. Sorensen MS, Mosegaard J, Trier P: The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear based surgery. Accepted for publication in the visible ear data. Otol Neurotol 2009, 30(4):484–487.

9. Jackson A, John NW, Thacker NA, Ramsden RT, Gillespie JE, Gobbetti E, Zanetti G, Stone R, Linney AD, Alusi GH, Franceshini SS, Scherdner A, Emmen A: Developing a virtual reality environment in petrous bone surgery: a state-of-the-art review. Otol Neurotol 2002, 23:111–121.

10. Zhao YC, Kennedy G, Yukawa K, Pyman B, O’Leary S: Improving temporal bone dissection using self-directed virtual reality simulation: results of a randomized blinded control trial. Otolaryngol Head Neck Surg 2011, 144(3):357–364.

11. Hochman J, Kraut J, Kamerick K, Unger B: Generation of 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol Head Neck Surg 2013, 150(3):448–454.

12. Rocconi C, Sim JH, Mochel H, Marko-Matsuda M, Proctor R, NK: An artificial temporal bone as a training tool for cochlear implantation. Otol Neurotol 2013, 34(1):1048–1051.

13. Zirkle M, Roberson DW, Leuwer R, Dubrowski A: Using a virtual reality temporal bone simulator to assess otolaryngology trainees. Laryngoscope 2007, 117(2):258–263.

14. Reddy-Kolanu G, Alderson D: Evaluating the effectiveness of the voxel-man TempoSurg virtual reality simulator in facilitating learning mastoid surgery, Ann Roy Coll Surg Engl 2011, 93:205–208.

15. Wet G, Stredney D, Kerwin T, Hittle B, Fernandez SA, Abelos-Rasoul M, Welling B: Virtual temporal bone dissection system: development and testing. Laryngoscope 2012, 122Suppl(1):S1–S12.

16. Francis HW, Malik MU, Varella DAV, Barfliow MW, Chien WN, Carey JP, Niparko JK, Bhatti NI: Technical skills improve after practice on virtual-reality temporal bone simulator. Laryngoscope 2012, 122:1385–1391.

17. Khemani S, Arora A, Singh A, Tolley N, Darzi A: Objective skills assessment and construct validation of a virtual reality temporal bone simulator. Otol Neurotol 2012, 33:1225–1231.

18. Kerwin T, Wet G, Stredney D, Shen H: Automatic scoring of virtual mastoidectomies using expert scoring. Int J Comput Assist Robot Surg 2012, 7:11–1.

19. Kraut J, Hochman JB, Unger B: Temporal bone surgical simulation employing a MultiCore architecture. In Proceedings of the 26th Annual IEEE Canadian Conference on Electrical and Computer Engineering: 3–8 May 2013; Regina, SK. Edited by Yao J, Mehrandezh M, Paranjape R, Gelowitz G. IEEE; 2013:1–6.

20. Morris D, Sewell C, Blevins N, Barbaghi F, Salisbury K: A collaborative virtual environment for simulation of temporal bone surgery. MCCAI 2004, 3217:139–1327.

21. Byran JA: A Virtual Temporal Bone Dissection Simulation. In Master of Science Thesis. Columbus, Ohio: Ohio State University, Department of Computer and Information Science; 2001.

22. Visible Ear Simulation Manual. [http://www.daimi.au.dk/~trier/VES_blog/ November 2012]

23. Leuwer R, Petersik A, Pfleisser B, Ponnert A, Tolsdorff B, Hohe KH, Tiede U: Voxel-man TempoSurg: a virtual reality temporal bone surgery simulator. I Jpn Soc Head Neck Surg 2007, 17(3):203–207.

24. Lorensen WE, Cline HE: Construction of a fast algorithm for surface meshing of a large Scanning Laser Ophthalmoscope Volume. Proc. SPIE. 98, 167–178.

25. Vollmer J, Mencel R, Muller H: Improved laplacian smoothing of noisy surface meshes. Comput Graph Forum 1999, 18(3):131–138.

doi:10.1186/s40463-014-0031-9

Cite this article as: Wong et al.: Comparison of cadaveric and isomorphic virtual haptic simulation in temporal bone training. Journal of Otolaryngology - Head and Neck Surgery 2014 43:31.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit