Cadmium (Cd) is a common environmental hazardous heavy metal. The standard treatment of heavy metal intoxication; chelators may have a minor role in Cd toxicity. Montelukast (ML) is an anti-inflammatory drug that is used mainly for managing asthmatic patients. Recent workers have tested ML for its antioxidant properties in various conditions and obtained encouraging results as regarding this effect. We investigated the protective and antioxidant effect of ML on pituitary gland, a highly sensitive organ to Cd toxicity. Four groups of rats were used and received distilled water, 10mg/kg ML, 3mg/kg Cd, and 10mg ML plus 3mg/kg Cd respectively. Antioxidant, histological, immunohistochemical and hormonal effects of Cd and ML were evaluated. The detrimental effect of Cd on pituitary gland was abolished by ML. The diminished hormonal effect of Cd was restored to normal levels. The increased MDA level and depleted oxidative enzymes on pituitary gland of rat exposed to Cd were restored by ML. Lastly, histological and apoptotic effects of Cd were also, corrected significantly by ML. It is concluded that ML can protect against Cd-induced pituitary gland toxicity.

Keywords: CD; Montelukast; Pituitary; Antioxidant; Apoptosis.
tal procedures followed the guidelines of Minia University Ethical Committee for care and manipulation of animals used for the research. Animals were left for 1 week in the same experimental conditions with free access to food ad libitum for acclimatization. Another week was left in the same condition to calculate the water consumption of rats. Rats consumed water about 20 ml/day.

Cadmium chloride was obtained from Merck®, Egypt. CdCl₂ anhydrous (99.995%-Cd pure white powder, 25gm package) was prepared by dissolving 50 mg into one liter of distilled water. ML as Singular® (5mg tablets) produced by Global Napi Pharmaceuticals (GNP) - Egypt. Animals were divided into 4 groups (10 rats each) as follow: the control group received distilled water. Group 2 received ML diluted in distilled water at a dose of 10 mg/kg/day orally [13]. Group 3 received Cd at 3 mg CdCl₂/kg/day (50 mg/l CdCl₂) (this dose produces neuroendocrinal disruption) [14]. Group 4 received both ML plus Cd at a dosage like group 2 and 3. This regimen was followed for 1 month. Rat water consumption does not change throughout the experiment. At the end of the experimental period, animals were killed by decapitation. Trunk blood was collected in tubes containing EDTA and plasma was obtained after centrifugation of the samples at 1,500×g for 15 min at 4°C. Samples were kept frozen at −20°C until hormone measurements. Pituitary gland was removed and frozen for further examination.

For oxidative stress assessment, a part of the pituitary gland was homogenized in cold sodium phosphate buffer (pH 7.4) containing 1mmol/L ethylene diamine tetra acetic acid. The homogenates were then centrifuged at 9000 g for 15 min at 4°C. The supernatants were separated and used for oxidative stress analysis. Four markers were examined to test the antioxidant activities of ML. One of the extensively used tools for evaluating oxidative stress is malondialdehyde (MDA) [15]. Thiobarbituric acid (TBA) method was used to determine MDA level according to Ohkawa et al., (1979) [16]. Three antioxidant enzymes levels were assayed; namely glutathione reductase (GSH), superoxide dismutase (SOD) and catalase (CAT) according to McGowan (1989) [17], Lu et al., (2013) [18] and Aebi (1984) [19] respectively.

Biopsies from pituitary tissue samples were dehydrated and embedded in paraffin using the routine histological procedures. Serial cross sections of 6 µm were prepared. The sections were mounted and stained with hematoxylin-eosin.

Immunohistochemical Staining

The steps and methods used in immunohistochemical staining were the same followed by Hsu et al., (1981) [20]. In brief, 6µ thickness sections of pituitary tissue and fixed by poly-l-lysine and left for 12 h at 56°C. Sections were deparaffinization by Xylene. 3% H₂O₂ in distilled water was used for inhibiting endogenous oxygenase enzymes. Then sections were washed with phosphate-buffered saline (PBS). Blocking the nonspecific binding of antibodies was done by incubation of the sections in normal goat saline and then rinsed with PBS. Lastly; incubation of the sections with p53 antibodies overnight at 4°C.

A semi-quantitative method for evaluation toxic effect of Cd and protective effect of ML is apoptotic index (AI). AI was determined by counting at least 1000 cells per slide subdivided in 10 fields chosen randomly at ×400 magnification. P53 stained nucleus appears dark brown. (Xu et al., 2007) [21].

\[AI = \frac{\text{number of p53 labeled cells}}{\text{total number of cells}} \times 100 \]

Hormonal assay was done using the commercial radioimmunoassay kits. The data were statistically analyzed using SPSS Version 22 software. All data were expressed as means ± standard errors. Data of different groups were compared using ANOVA followed by Mann–Whitney Rank. Differences at p < 0.05 were considered significant.

Results

Table (1) summarizes the effect of Cd on pituitary hormones. Serum prolactin was diminished on rats drinking water containing Cd with high significant change when compared with control group of rats. Other pituitary hormones namely L.H, FSH, and GH are also, inversely affected by Cd. It is significantly lower than that of the control. In the administration of ML with Cd, all the examined hormones showed significantly elevation to approximate the normal level, these hormones become insignificantly different from that of control rats.

As regard the oxidative stress effect of Cd, MDA level was significantly higher that of the control in the pituitary tissue. Antioxidant enzymes GRH, CAT, and SOD have significantly depleted in pituitary tissues in rats received Cd. In rats received ML with Cd, there was significantly correction of the oxidative stress produced by Cd in the previous group. This appeared from the corrected MDA and antioxidant enzymes levels (Table 2).

Figure (1) showed the normal histological structure of pituitary gland. Pars distalis forms the main bulk of the anterior pituitary gland. It is formed of acidophils which form the main compo-

| Table 1. The Effect of CD and CD plus ML on Serum Levels of Pituitary Hormones. |
|--------------------------------------|----------------|----------------|----------------|----------------|
| | LH (ng/ml) | FSH (ng/ml) | GH (ng/ml) | Prolactin (ng/ml) |
| CONTROL | 14.3 ± 2.3 | 8.5 ± 2.1 | 15.45 ± 3.23 | 1.2 ± 0.098 |
| ML | 13.6 ± 2.1 | 8.7 ± 2.4 | 14.78 ± 4.54 | 1.1 ± 0.099 |
| Cd | 9.4 ± 3.2** | 6.7 ± 2.11** | 10.64 ± 3.23** | 0.7 ± 0.21**** |
| Cd +ML | 13.9 ± 2.3 | 8.3 ± 2.5 | 14.12 ± 3.79 | 1.01 ± 0.099 |

Data was expressed as mean ± SD.

* significantly different from control group (p < 0.05).

** high significant different from control group (p < 0.001).

significantly different from Cd + ML group.
Cd occupies the 8th position in the highly toxic 20 chemicals [24]. It is widely used in industry. Smoking represents the most important source of human exposure [22]. Cd widely affects both haemopoietic, and pancreatic system (3). In comparison with other toxic agents, it has carcinogenic properties [23]. In addition, it has cytotoxic properties as that of Zn. It usually exists as a divalent cation as CdCl₂. It is situated in the Periodic Table between zinc (Zn) and mercury (Hg) and has similar chemical characteristics as that of Zn. It usually exists as a divalent cation as CdCl₂. It is widely used in industry. Smoking represents the most important source of human exposure [22]. Cd widely affects both animal and human health. It affects liver, kidney, vascular, bone, haemopoietic, and pancreatic system (3). In addition, it has carcinogenic properties [23]. In comparison with other toxic agents, Cd occupies the 8th position in the highly toxic 20 chemicals [24]. Results of this study confirmed the detrimental effect of Cd on the pituitary hormones. It suppressed serum prolactin, LH, FSH, and GH. This was in agree with other studies in both human [4] and animal [24]. Also, Cd produced oxidative load on the pituitary gland cell. This appeared from depleted antioxidant enzymes GRH, CAT and SOD that were significantly diminished in rats received Cd. There was significant increase in lipid oxidation by-product, MDA level. This was the same as found by different research [25, 26] in the pituitary gland and on other tissues [27-29]. Cd toxicity produced also, histological changes in rat pituitary tissues. These changes were reported in different studies [30, 31].

As regard immunohistochemistry, Figure (4a) shows no immunolabeled cells. Cd received rats, showed an increased number of immunolabeled cells with decreased cell density (Figure 4b). In rats received ML and Cd, there was an almost correction of the toxic effect of Cd on the pituitary histopathology. There was no congestion with restoring the density of the cellular elements of the anterior pituitary gland (Figure 3).

As regard immunohistochemical examination, there was significant increase in the expression of p53 protein in rat pituitary gland exposed to Cd in comparing with that of the control. This appeared from both microscopic examinations of immunohistologically stained sections and AI calculation. The apoptotic effect of Cd was reported by different authors on pituitary gland [32, 33] and other tissues [34-36].

Aptosis or programmed cell death is a gene regulated mechanism that various genes control it. P53 gene is one of them. It presents at a low level in the normal cellular environment but under stressful conditions as excess reactive oxygen species and DNA damage, p53 increases to stop cell growth, repair DNA or if fail, cell death occurs [37]. There are several mechanisms involved in the apoptotic effect of Cd. Oxidative stress and disturbed calcium influx in the cell are the main mentioned causes in the literature [38]. Another mechanism was described by Tokumoto et al., and Lee et al., [39, 40]. They found that Cd suppressed gene expression of the ubiquitin-proteasome system which is responsible for the rapid destruction of this protein system and hence increased

Table 2. Effect of CD and CD plus ML on the Oxidative System on the Pituitary Tissue.

	MDA (nmol/g protein)	GRH (µg/100 mg tissue weight)	SOD (U/mg protein)	CAT (U/g protein)
CONTROL	3.8 ± 1.02	56.3 ± 6.3	19.9 ± 3.1	49.2 ± 5.8
ML	4.12 ± 1.7	61.2 ± 7.4	18.3 ± 4.2	50.6 ± 4.5
Cd	7.23 ± 2.6**	43.9 ± 6.8**	12.4 ± 4.5**	32.6 ± 4.7**
Cd +ML	5.02 ± 2.8	53 ± 4.1	17.9 ± 5.2	47.1 ± 8.3

Data was expressed as mean ± SD.
* significantly different from control group (p < 0.05).
** high significant different from control group (p < 0.001).
significantly different from CD + ML group.
Figure 2. Photomicrographs of the Pituitary gland of CD group showing: a) pars distalis of the adenohypophysis (PD) with congested and dilated sinusoids (arrows), Pars Intermedia (PI), and pars nervosa (PN) of the neurohypophysis. b) PD showing decreased cell amount and congested and dilated sinusoids(s). Acidophils (circle), basophils (blue arrow), and chromophobes (black arrow). H&E aX 10, bX100.

Figure 3. Photomicrographs of the pituitary gland of rats received ML plus Cd showing: a) pars distalis of the adenohypophysis (PD), Pars Intermedia (PI), and pars nervosa (PN) of the neurohypophysis. b) PD with aberrant normal cell amount and sinusoids with no congestion(s). Acidophils (circle), basophils (blue arrow), and chromophobes (black arrow). H&E aX 10, bX100.

Figure 4. Rat pituitary glands labeled for p-53 in a) control and ML groups showed no detectable immunolabeled cells. b) Cd group showed immunolabeled cells (arrows). Notice decreased cellular density. The inset showed immunolabeled cells and p-53-labeled remnants of apoptotic material around and within a sinusoidal lumen (arrows); most probably macrophages phagocytosing remnants of apoptotic cells. c) ML plus Cd showing very few immunolabeled cells (arrow). Immunohistochemistry, counterstained with H x 100.
Montelukast is an oral selective leukotriene receptor antagonist that inhibits cysteine leukotriene. It is widely used as a antiasthmatic therapy for chronic asthma and seasonal allergies with high tolerability in both children and adults [41, 42]. It was tested for various pathological conditions as spinal cord injury [43], hippocampal ischemia [44], and hemorrhagic shock [45]. A few years ago, it attracted scientists to be evaluated as a protection for various toxic agents. It gave good results in different acute toxicities in different organs. Examples of these agents are carbon tetra-chloride induced liver injury [46], methotrexate in kidney [47], dioxin and paracetamol in liver [12, 48], gentamicin in kidney [41], indomethacin-induced gastric ulcer [49], paraquat in lung [50], and radiiodine hepatic toxicity [13] but it is not tested against metal-induced toxicity. This study investigated if ML could protect Cd-induced pituitary toxicity. Cd is endocrinal distributors affecting all pituitary hormones also, this gland is highly sensitive to oxidative stress caused by it [25].

In rat exposed to Cd, this work found that ML could abolish all endocrinol, oxidant, and apoptotic effects of Cd. All tested pituitary hormones; prolactin, GH, LH and FSH were restored to normal levels by co-administration of Cd and ML. Pituitary gland levels of MDA, GSH, SOD, and CAT were returned to its healthy concentrations by ML. Lastly, ML succeeded in preserving the histological structure of pituitary exposed to Cd and corrected the AI.

The key feature which enabled ML to abolish Cd toxicity may be attributed to its antioxidant properties. MDA concentration in the pituitary gland which produced due to increased lipid peroxida- tion was restored. The antioxidant enzymes which were depleted by oxidative stress of Cd were restored by ML. The antioxidant effects of ML were reported by other authors [12, 51, 52]. ML has direct free radical scavenger ability in addition to the anti-apoptotic properties which itself diminish the oxidative stress effect on tissues. The anti-inflammatory effect appeared from the disappearance of congested sinusoids in the pituitary gland of rats exposed to Cd and ML. Saad et al., stated that leukotrienes play roles in inflammation and oxidative stress [44].

ML has antiapoptotic properties. This ability was noticed from the corrected AI in pituitary tissues received Cd plus ML. This effect may be attributed to the antioxidant characteristics of ML. Several studies confirmed the fact of the ability of antioxidants to protect the cells from apoptosis [43, 53]. Another mechanism of antiapoptotic properties of ML is through inhibition of inflammation [54].

Conclusion

This is the first study to reveal the neuroprotective effect of ML on a heavy metal-induced toxicity. ML has both antioxidant and antiapoptotic protective properties against Cd deleterious effects on the pituitary gland. Further studies are needed to reveal more about the mechanism by which ML protect against Cd-induced toxicity and if it has any beneficial effect on other metals poisoning.

References

[1]. Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients. 7(1): 552-71.

[2]. Çilenk KT, Öztürk İ, Sönmez MF (2016) Ameliorative effect of propolis on the cadmium-induced reproductive toxicity in male albino rats. Exp Mol Pathol. 101(2): 207-13.

[3]. Amamou F, Nemmiche S, kaouthar Meziane R, Didi A, Yazit SM, et al., (2015) Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food Chem Toxicol. 78: 177-84.

[4]. Ciarrocca M, Caporossela A, Tomei F, Tomei G, Caciari T (2013) Exposure to cadmium in male urban and rural workers and effects on FSH, LH and testosterone. Chemosphere. 90(7): 2077-84.

[5]. Sharma S, Vijaya P (2015) Cardioprotective Effects of Lycopene against Cadmium Induced Toxicity in Albino Mice. Int J Health Sci Res. 5(8): 507-13.

[6]. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative medicine and cellular longevity. 898034: 12.

[7]. McCarty MF (2012) Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Med hypotheses. 79(5): 642-8.

[8]. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol appl pharmaco. 238(3): 209-14.

[9]. Aravind P, Prasad MNV (2003) Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte.
Cadmium induces apoptosis in anterior pituitary cells that can be reversed by antioxidative measures. Free Radic. Biol. Med. 37(9): 1463-71.

Nitric oxide protects anterior pituitary cells from cadmium-induced oxidative stress and immunotoxicity in the brain, and prevents cadmium-induced cell death by reducing oxidative stress. Free Radic. Biol. Med. 37(9): 1463-71.

Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury. Prostaglandins other lipid mediators. 577-80.

Oxidative stress, histological alterations in liver, and serum cytokine levels. Toxicol. In-vitro. 21: 199-204.

Cadmium chronotoxicity at pituitary level: effects on plasma ACTH, GH, and TSH daily pattern. J. physiol. biochem. 66(3): 213-20.

Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bio-impacts. 5(3): 123-7.

Mimosa pudica on the histoarchitecture of hypothalamus-including oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem. Toxicol. 86: 25-33.

Mimosa pudica on the histoarchitecture of hypothalamus-including oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem. Toxicol. 86: 25-33.

The impact of mimosa pudica on the histopathological changes of the pituitary gland in rats exposed to cadmium toxicity. J. vet. sci. 15(4): 485-93.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

Cadmium as an endocrine disruptor: correlation with anterior pituitary red and circular clock mechanisms and prevention by melatonin. Free radical biol. med. 53(12): 2287-97.

Cadmium as an endocrine disruptor: correlation with anterior pituitary red and circular clock mechanisms and prevention by melatonin. Free radical biol. med. 53(12): 2287-97.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

The impact of mimosa pudica on the histoarchitecture of hypothalamus-including oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem. Toxicol. 86: 25-33.

The impact of mimosa pudica on the histoarchitecture of hypothalamus-including oxidative stress, bioelements and androgen status in testes of rats subacutely exposed to cadmium. Food Chem. Toxicol. 86: 25-33.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.

The protective effect of melatonin on carbon tetrachloride induced hepato- and renal toxicity in rats. Prostaglandins other lipid mediators. 88(3): 82-9.