Evaluation of NoSQL databases for DIRAC monitoring and beyond

Adrian Casajus Ramo, Federico Stagni, Luca Tomassetti, Zoltan Mathe
On behalf of the LHCb collaboration
Motivation

- Develop a system for real time monitoring and data analysis:
 - Focus on monitoring the jobs (not accounting)

- Requirements
 - Optimized for time series analysis
 - Efficient data storage, data analysis and retrieval
 - Easy to maintain
 - Scale Horizontally
 - Easy to create complex reports (dashboards)

- Why?
 - Current system is based on MySQL:
 - is not designed for real time monitoring (more for accounting)
 - does not scale to hundred of million rows (>500 million).
 - It requires ~400 second to generate a one-month duration plot
 - is not for real time analysis
 - is not schema-less:
 - Often change the data format
Motivation

Evaluation of NoSQL databases for DIRAC monitoring and beyond, CHEP2015
Technologies used

- **Database:**
 - InfluxDB is a distributed time series database with no dependency
 - OpenTSDB is a distributed time series database based on HBase
 - ElasticSearch is a distributed search and analytic engine

- **Data visualization:**
 - Grafana
 - Metric dashboard and graph editor for InfluxDB, Graphite and OpenTSDB

Evaluation of NoSQL databases for DIRAC monitoring and beyond, CHEP2015
Motivation

Grafana dashboard:

Evaluation of NoSQL databases for DIRAC monitoring and beyond, CHEP2015
Technologies used

- **Database:**
 - InfluxDB is a distributed time series database with no dependency
 - OpenTSDB is a distributed time series database based on HBase
 - ElasticSearch is a distributed search and analytic engine

- **Data visualization:**
 - Grafana
 - Metric dashboard and graph editor for InfluxDB, Graphite and OpenTSD
 - Kibana
 - Flexible analytic and visualization framework
 - Developed for creating complex dashboards
Technologies used

- **Kibana dashboard:**
Technologies used

- **Database:**
 - InfluxDB is a distributed time series database with no dependencies
 - OpenTSDB is a distributed time series database based on HBase
 - ElasticSearch is a distributed search and analytic engine

- **Data visualization:**
 - Grafana
 - Metric dashboard and graph editor for InfluxDB, Graphite and OpenTSD
 - Kibana
 - Flexible analytic and visualization framework
 - Developed for creating complex dashboards

- **Communication**
 - RabbitMQ
 - Robust messaging system
Overview of the System
Hardware and data format

- **RabbitMQ**
 - one physical machine

- **12 VMs provided by CERN OpenStack**
 - Each VM has 4 core, 8 GB memory and 80GB disk
 - We used 3 clusters with 4 nodes

- **Data format:**
 - The records are sent to the RabbitMQ in JSON format.
 - Each record must contain a minimum of four elements:
 - metric, time, key/value pairs, value
 - For example: `{"Status": "Done", "time": 1404086442, "JobSplitType": "MCSimulation", "MinorStatus": "unset", "Site": "ARC.Oxford.uk", "value": 10, "metric": "WMSHistory", "User": "phicharp", "JobGroup": "00037468", "UserGroup": "lhcb_mc"}`
We have recorded ~600 million records during ~1.5 month.

We defined 5 different queries:

- Running jobs grouped by Site
- Running jobs grouped by JobGroup
- Running jobs grouped by JobSplitType
- Failed jobs grouped by JobSplitType
- Waiting jobs grouped by JobSplitType

Query intervals: 1, 2, 7 and 30 day

- Random interval:

 Start and end time are generated randomly between 2015-02-05, 15:00:00 and 2015-03-12 15:00:00

The high workload is generated by 10, 50, 100 clients (python threads) to measure the response time and the throughput.

- REST APIs are used to retrieve the data from the DB
- All clients are used a random query and a random period
- All clients are continuously running parallel during 7200 second

InfluxDB has not scaled after 2 days.
Evaluation of NoSQL databases for DIRAC monitoring and beyond, CHEP2015
Results: 50 client
Results: 100 client
Response time of all experiments
Conclusions

- ElasticSearch was faster than OpenTSDB and InfluxDB
 - It is easy to maintain
 - Marvel is a very good tool for monitoring the cluster
 - license required...
 - It can be easily integrated to the DIRAC portal
 - OpenTSDB was slower than ElasticSearch but it may scale better by adding more nodes to the cluster
 - It is not easy to maintain (lot of parameters which have to be correctly set)
 - Very good monitoring of the cluster.
- InfluxDB is a new time series database, which is easy to use, but it does not scale
- Kibana can fulfil our needs
 - But we’ll look at integration in the DIRAC portal
- According to our experience we decided to use ElasticSearch for real time monitoring of jobs, and for all real time DIRAC monitoring systems
Question, comments