Some Results on The Incomplete q-Gamma Function and Its First Derivative

İnci Ege, Emrah Yıldırım
Department of Mathematics, Adnan Menderes University, 09100 Aydın, Turkey
E-mail: iegae@adu.edu.tr
E-mail: emrahyildirim@adu.edu.tr

Abstract. In this paper, we use neutrix calculus in order to obtain some results on the q-analogue of the incomplete gamma function and its first derivative for all real numbers.

1. Introduction and Preliminaries
Quantum calculus, the q-analogue of classic calculus, has been used in many research areas such as physics, mathematics, statistic etc. recently [1, 2, 3]. The q-analogue \mathcal{M}_q of mathematical object \mathcal{M} has not been given any specific definition, but common admission is that as q tends to 1, the limit of \mathcal{M}_q approaches to \mathcal{M}. Therefore many mathematical objects have got more then one q-analogue such as exponential function. One of the q-analogue of the exponential function e^x is denoted by E^x_q and defined by

$$E^x_q = \sum_{n=0}^{\infty} \frac{q^{n+1} x^n}{[n]!} = (1 - (1 - q)x)_q^\infty$$

where $[x] = \frac{1 - q^x}{1 - q}$; $[n]! = [1][2] \ldots [n - 1][n]$ $n \in \mathbb{Z}^+$ with $[0]! = 1$ and q-analogue of $(x - a)^n$ is defined by

$$(x - a)_q^n = \begin{cases}
1, & n = 0, \\
(x - a)(x - qa) \ldots (x - q^{n-1}a), & n \geq 1.
\end{cases}$$

Let us take a function f on any interval I of real numbers such that if $x \in I$ then $qx \in I$. The q-derivative of the function f is defined by

$$D_qf(x) = \frac{f(qx) - f(x)}{(q-1)x} \quad \text{for } x \neq 0 \quad \text{and} \quad (D_qf)(0) = f'(0)$$

provided $f'(0)$ exists. Note that $D_qE^x_q = E^{qx}_q$.

The q-integral of a function f from zero to a is defined by

$$\int_0^a f(x)d_qx = a(1 - q) \sum_{n=0}^{\infty} q^n f(q^na)$$

provided the sum converges absolutely and one of the differences between quantum calculus and classic calculus is that the q-derivative of the product of two functions is not symmetric. Because
of that, the \(q \)-integration by parts can be given by two ways. First one can be found in [4] and the second one, which will be used in this paper, is given for suitable functions \(f \) and \(g \) as

\[
\int_a^b f(qx) dq g(x) = f(b)g(b) - f(a)g(a) - \int_a^b g(x) dq f(x).
\]

(1)

The reader may find more information about quantum calculus in [4, 5] and references therein. In our study we also need the definitions of neutrix and neutrix limit given by Van der Corput in [6].

Definition 1. (Neutrix) Let \(N' \) be a nonempty set and let \(N \) be a commutative, additive group of functions mapping \(N' \) into a commutative, additive group \(N'' \). The group \(N \) is called neutrix if the function which is identically equal to zero is the only constant function occurring in \(N \). The function which belongs to \(N \) is called “negligible function” in \(N \).

Let \(N \) be a domain lying in a topological space with a limit point \(b \) not belonging to \(N \) and \(N \) be a commutative additive group of functions defined on \(N' \) with the following property:

\[
\forall f \in N, \lim_{x \to b} f(x) = c \text{ (constant)} \text{ for } x \in N' \text{ then } c = 0''.
\]

Then this group \(N \) is a neutrix.

Definition 2. (Neutrix Limit) Let \(f \) be a real valued function defined on \(N' \) and suppose that it is possible to find a constant \(c \) such that \(f(x) - c \) is negligible in \(N \). Then \(c \) is called the neutrix limit of \(f(x) \) as \(x \) tends to \(b \) and denoted by

\[
N' \lim_{x \to b} f(x) = c.
\]

In [7], authors defined the incomplete \(q \)-gamma function for \(\alpha > 0 \) by \(q \)-integral as

\[
\gamma_q(\alpha, x) = \int_0^{\alpha} t^{\alpha-1} E_q^{-qt} dt.
\]

(3)

In this paper, we let \(N \) be the neutrix having domain the open interval \(N' = \{ \varepsilon : 0 < \varepsilon < \infty \} \) and range \(N'' \) as the real numbers with negligible functions being finite linear sums of the functions

\[
\varepsilon^\lambda \ln^{r-1} \varepsilon, \ \ln^r \varepsilon, \ [\varepsilon]^\lambda \ (\lambda < 0, \ r = 1, 2, \ldots)
\]

and all being functions \(f(\varepsilon) \) which converges to zero in the usual sense as \(\varepsilon \) tends to zero. In [8], the author used the neutrix limit in order to define the incomplete \(q \)-gamma function with its derivatives as

\[
\gamma_q^{(r)}(\alpha, x) = N' \lim_{\varepsilon \to 0} \int_\varepsilon^\alpha t^{\alpha-1} \ln^r t E_q^{-qt} dt
\]

(4)

for all real values of \(\alpha \) and \(x > 0 \) and showed that

\[
\gamma_q(-n, x) = \int_1^x t^{-n-1} E_q^{-qt} dt + \int_0^1 t^{-n-1} \left[E_q^{-qt} - \sum_{i=0}^n \frac{(-1)^i q^{i(i+1)}}{[i]!} t^i \right] dt + \sum_{i=0}^{n-1} \frac{(-1)^i q^{i(i+1)}}{[i-n][i]!}
\]

(5)

for \(n \in \mathbb{Z}^+, \ x > 0 \).

2. Main Results

In this section, we aim to give some equalities for the incomplete \(q \)-gamma function with its first derivative for all real values of \(\alpha \). First we show the following result.
for $n=1, 2, \ldots$

$$\gamma_q(-n, x) = \frac{1}{[-n]} \gamma_q(-n + 1, x) + \frac{x^{-n} E_q^{-x}}{[-n]} - \frac{(-1)^n q^{n(-n+1)}}{[-n][n!]}.$$ \hfill (7)

Proof. The proof of equation (6) is straightforward from equation (1). Now for equation (7), we have

$$\gamma_q(-n, x) = \frac{1}{[-n]} \left\{ \int_1^x t^{-n} E_q^{-qt} d_q t + \int_0^1 t^{-n} \left[E_q^{-qt} - \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i]!} t^i \right] d_q t \right\}$$

$$+ \frac{x^{-n} E_q^{-x}}{[-n]} - \frac{E_q^{-1}}{[-n]} + \frac{E_q^{-1}}{[-n]} - \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i]!} - \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i][i-n]}$$

by using q-integration by parts in equation (5). By calculating the last two terms, we get desired result. \hfill \Box

The recurrence formula of incomplete q-gamma function for negative integers is also obtained in \cite{8} as

$$\gamma_q(-n, x) + \frac{q^n}{[n]} \gamma_q(-n + 1, qx) = \frac{(-1)^n q^{n(-n+1)}}{[n][n!]} - \frac{q^n}{[n]} x^{-n} E_q^{-qx}$$ \hfill (8)

by q-integration by parts in \cite{4}. Remark that, the classical version is given by

$$\gamma(-n, x) + \frac{1}{n} \gamma(-n + 1, x) = \frac{(-1)^n}{nn!} = \frac{1}{n} e^{-x} x^{-n}$$ \hfill (9)

in \cite{9}. Nevertheless to say, both of the equations (7) and (8) tend to (9) as $q \to 1$ and the equations (6) and (7) tends to the result in \cite{10} as $x \to \infty$.

Also we want to note that by mathematical induction one can find that

$$\gamma_q(-n, x) = \frac{(-1)^n q^{n(n+1)}}{[n]!} [\varphi_q(n) + \gamma(0, x)] + \mu_q(n) E_q^{-x}.$$ \hfill (10)

for $n=1, 2, \ldots$ where the functions are defined by

$$\mu_q(n) = \sum_{i=0}^{n-1} (-1)^i \eta_q(i) x^{-n+i}, \quad \varphi_q(n) = \sum_{i=1}^{n} \frac{1}{[n]}, \quad \eta_q(i) = \prod_{j=0}^{i} \frac{q^{n-j}}{[n-j]}$$

respectively. The equation (10) approaches to the result in \cite{11} as $x \to \infty, q \to 1$.

Before we give the result for the first derivative of incomplete q-gamma function at negative integers we need the following properties.

Lemma 1.

$$\gamma_q(\alpha, x) = \int_1^x t^{\alpha-1} E_q^{-qt} d_q t + \int_0^1 t^{\alpha-1} \left[E_q^{-qt} - \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i]!} t^i \right] d_q t + \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i][i+\alpha][i+\alpha]} t^i$$ \hfill (11)

and

$$\gamma_q'(\alpha, x) = \int_1^x t^{\alpha-1} \ln t E_q^{-qt} d_q t + \int_0^1 t^{\alpha-1} \ln t \left[E_q^{-qt} - \sum_{i=0}^{n-1} \frac{(-1)^i q^{(i+1)x}}{[i]!} t^i \right] d_q t \int_0^1 t^{\alpha-1} \ln t$$
We also have taking neutrix limit on both side and using the equation (5) we get (11) that
\[
\gamma_q(-n, x) = \int_1^x t^{-n-1} \ln t E_q^{-qt} dt + \int_0^1 t^{-n-1} \ln t \left[E_q^{-qt} - \sum_{i=0}^{\alpha} \left(-1 \right)^i q \frac{t^{i+1}}{i!} \right] dt \\
+ \sum_{i=0}^{n-1} \frac{(-1)^i q^{i+1}}{i!} \left[\ln q^{-1} \frac{1}{[\alpha + i]} + \ln q^{-1} \frac{1}{(q-1)[\alpha + i]^2} \right]
\]
for \(-n < \alpha < -n + 1, n = 1, 2, \ldots, x > 0\) and
\[
\gamma_q(-n, x) = \int_1^x t^{-n-1} \ln t E_q^{-qt} dt + \int_0^1 t^{-n-1} \ln t \left[E_q^{-qt} - \sum_{i=0}^{\alpha} \left(-1 \right)^i q \frac{t^{i+1}}{i!} \right] dt \\
+ \sum_{i=0}^{n-1} \frac{(-1)^i q^{i+1}}{i!} \left[\ln q^{-1} \frac{1}{[\alpha + i]} + \ln q^{-1} \frac{1}{(q-1)[\alpha + i]^2} \right]
\]
for \(n = 1, 2, \ldots\).

Proof. For \(\varepsilon > 0\), we have
\[
\int_\varepsilon^x t^{\alpha-1} E_q^{-qt} dt = \int_1^x t^{\alpha-1} E_q^{-qt} dt + \int_1^\varepsilon t^{\alpha-1} \left[E_q^{-qt} - \sum_{i=0}^{\alpha} \left(-1 \right)^i q \frac{t^{i+1}}{i!} \right] dt \\
+ \sum_{i=0}^{n-1} \frac{(-1)^i q^{i+1}}{i!} \left[\ln q^{-1} \frac{1}{[\alpha + i]} + \ln q^{-1} \frac{1}{(q-1)[\alpha + i]^2} \right].
\]
Since the last term is a negligible function, we get equation (11). The proofs of the equation (12) and (13) can be obtained similarly. \(\square\)

We can now prove the following theorem.

Theorem 2.
\[
\gamma_q^{(r)}(\alpha, x) = N - \lim_{\varepsilon \to 0} \gamma_q^{(r)}(\alpha + \varepsilon, x)
\]
for all real values of \(\alpha\) and \(r = 0, 1\).

Proof. Since \(\gamma_q^{(r)}(\alpha, x)\) is continuous function for \(\alpha \neq 0, -1, -2, \ldots\), the result follows immediately for \(\alpha \neq 0, -1, -2, \ldots\). If \(0 < \varepsilon < 1\) and \(r = 0\), we have from the equation (11) that
\[
\gamma_q(-n + \varepsilon, x) = \int_1^x t^{-n-1} E_q^{-qt} dt + \int_0^1 t^{-n-1} \left[E_q^{-qt} - \sum_{i=0}^{\alpha} \left(-1 \right)^i q \frac{t^{i+1}}{i!} \right] dt \\
+ \sum_{i=0}^{n-1} \frac{(-1)^i q^{i+1}}{i!} \left[\ln q^{-1} \frac{1}{[\alpha + i]} + \ln q^{-1} \frac{1}{(q-1)[\alpha + i]^2} \right].
\]
The last term on the right side of the equation is a negligible function. Because of that, by taking neutrix limit on both side and using the equation (5) we get
\[
N - \lim_{\varepsilon \to 0} \gamma_q(-n + \varepsilon, x) = \gamma_q(-n, x).
\]
We also have
\[
\gamma_q(-n - \varepsilon, x) = \int_1^x t^{-n-1} E_q^{-qt} dt + \int_0^1 t^{-n-1} \left[E_q^{-qt} - \sum_{i=0}^{\alpha} \left(-1 \right)^i q \frac{t^{i+1}}{i!} \right] dt \\
+ \sum_{i=0}^{n-1} \frac{(-1)^i q^{i+1}}{i!} \left[\ln q^{-1} \frac{1}{[\alpha + i]} + \ln q^{-1} \frac{1}{(q-1)[\alpha + i]^2} \right].
\]
Now taking neutrix limits of both sides, using the equation (5) and the fact that \([-\varepsilon] = -q^\varepsilon[\varepsilon]\), we get
\[
N - \lim_{\varepsilon \to 0} \gamma_q(-n - \varepsilon, x) = \gamma_q(-n, x).
\]
The case \(r = 1\) can be proved similarly. \(\square\)
Theorem 3. \[\gamma_q(\alpha + 1, x) = N - \lim_{\varepsilon \to 0} \left([\alpha + \varepsilon] \gamma_q(\alpha + \varepsilon, x) - x^{\alpha + \varepsilon} E_q^{-x} \right) \]
for all real values of \(\alpha \).

Proof. The result follows because of the continuity of \(\gamma_q(\alpha, x) \) for \(\alpha \neq -1, -2, \ldots \). By using equation (14) we get
\[\gamma_q(-n + \varepsilon + 1, x) = [-n + \varepsilon] \gamma_q(-n + \varepsilon, x) - x^{-n + \varepsilon} E_q^{-x}. \]
for \(0 < |\varepsilon| < 1 \) and \(n = 1, 2, \ldots \).
Then using theorem 2 we obtain
\[\gamma_q(-n + 1, x) = N - \lim_{\varepsilon \to 0} \gamma_q(-n + \varepsilon + 1, x) = N - \lim_{\varepsilon \to 0} \left([-n + \varepsilon] \gamma_q(-n + \varepsilon, x) - x^{-n + \varepsilon} E_q^{-x} \right). \]

One can find that the result goes to the one in [13] as \(x \to \infty \).

In the next theorem we will show that the first derivative of incomplete \(q \)-gamma function at negative integers can be presented by itself.

Theorem 4. For \(n \in \mathbb{Z}^+ \), we have
\[\gamma'_q(-n, x) = \frac{x^{-n} \ln(q^{-1} x) E_q^{-x}}{[-n]} + \frac{\ln q^{-1}}{(q - 1)[-n]} \gamma_q(-n, x) + \frac{\ln q^{-1}}{[-n]} \gamma_q(-n + 1, x) + \frac{1}{[-n]} \gamma'_q(-n + 1, x). \]

Proof. By using \(q \)-integration by parts on equation (13) we get

Then we add missing series parts of the definition of incomplete \(q \)-gamma function and its first derivative into the corresponding parentheses, we obtain
\[\gamma'_q(-n, x) = \frac{x^{-n} \ln q^{-1} x E_q^{-x}}{[-n]} + \frac{\ln q^{-1}}{(q - 1)[-n]} \gamma_q(-n, x) + \frac{\ln q^{-1}}{[-n]} \gamma_q(-n + 1, x) + \frac{1}{[-n]} \gamma'_q(-n + 1, x) \]
\[+ \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-1} \frac{(-1)^i q^{i(i+1)}}{[i]!} \ln q^{-1} + \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-1} \frac{(-1)^i q^{i(i+1)}}{[i]!} \gamma_q(-n + 1, x) \]
\[+ \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-2} \frac{(-1)^i q^{i(i+1)}}{[i]! [i]!} + \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-2} \frac{(-1)^i q^{i(i+1)}}{[i]! [i]! [i]!} \gamma_q(-n + 1, x) \]
\[+ \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-2} \frac{(-1)^i q^{i(i+1)}}{[i]! [i]! [i]! [i]!} + \frac{\ln q}{(q - 1)[-n]} \sum_{i=0}^{n-2} \frac{(-1)^i q^{i(i+1)}}{[i]! [i]! [i]! [i]!} \gamma'_q(-n + 1, x). \]
The sums of the first, fourth and sixth series and also the remaining series’ sums are equal to zero. Hence it completes the proof. □

This result also tends to the one in [10] as \(x \to \infty \).

Differentiating equation (14), we obtain

\[
\gamma_q'(\alpha + 1, x) = \frac{q^\alpha \ln q}{q - 1} \gamma_q(\alpha, x) + [\alpha] \gamma_q'(\alpha, x) - x^\alpha \ln x E_q^{-x}
\]

(16)

for \(\alpha \neq 0, -1, -2, \ldots \).

In the following theorem we use neutrix limits in order to generalize equation (16) for all real numbers.

Theorem 5.

\[
\gamma_q(\alpha + 1, x) = N - \lim_{\varepsilon \to 0} \left[\frac{q^{\alpha + \varepsilon} \ln q}{q - 1} \gamma_q(\alpha + \varepsilon, x) + [\alpha + \varepsilon] \gamma_q'(\alpha + \varepsilon, x) - x^{\alpha + \varepsilon} \ln x E_q^{-x} \right]
\]

for all real values of \(\alpha \).

Proof. The result can easily be obtained because of the continuity of \(\gamma_q'(\alpha, x) \) for \(\alpha \neq 0, -1, -2, \ldots \). Equation (15) also satisfies for all real values of \(\alpha \). By rewriting this equation for \(n \in \mathbb{Z}^+ \) and \(0 < \varepsilon < 1 \) we have

\[
\gamma_q'(n + \varepsilon + 1, x) = [-n + \varepsilon] \gamma_q'(-n + \varepsilon, x) + \frac{\ln q}{q - 1} \gamma_q(-n + \varepsilon, x) + \ln q \gamma_q(-n + \varepsilon + 1, x) - x^{-n+\varepsilon} E_q^{-x} \ln(q^{-1}x)
\]

\[
+ x^{-n+\varepsilon} E_q^{-x} \ln q - x^{-n+\varepsilon} E_q^{-x} \ln x
\]

\[
= [-n + \varepsilon] \gamma_q'(-n + \varepsilon, x) + \frac{\ln q}{q - 1} (1 + q^{-n+\varepsilon} - 1) \gamma_q(-n + \varepsilon, x) - x^{-n+\varepsilon} E_q^{-x} \ln x
\]

Then by taking the neutrix limits of the both sides and theorem 2 the proof is completed. □

References

[1] Algın A., Irk D., Topcü G., Anyonic behavior of an intermediate-statistics fermion gas model, Physical Review E., 22,91(6), 062131, (2015)

[2] Haven, E., Potential functions and the characterization of economics-based information, Foundations of Physics, 45(10), 291-398, (1959)

[3] Ren, Mei-Ying., Statistical Approximation of the \(q \)-Bernstein-Durrmeyer Type Operators, Fuzzy Systems and Operations Research and Management, Springer International Publishing, 117-124, (2016)

[4] Kac V.G., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, (2002)

[5] Ernst T., A comprehensive treatment of \(q \)-calculus. Springer Science & Business Media, (2012)

[6] Corput J.G., Introduction to the neutrix calculus, J. Analyse Math., 7, 291-398, (1959)

[7] El-Shahed M., Salem A., On \(q \)-analogue of the Incomplete Gamma Function, Int. J. Pure Appl. Math, 44, 773-780, (2008)

[8] Salem A., Existence of the neutrix limit of the \(q \)-analogue of the incomplete gamma function and its derivatives. Applied Mathematics Letters, 25, 363-368, (2012)

[9] Özçağ E., et al., Some remarks on the incomplete gamma function, Mathematical Methods in Engineering. Springer Netherlands, 97-108, (2007)

[10] Ege İ. Yıldırım E., Some equalities on \(q \)-Gamma and \(q \)-Digamma functions. Filomat, (in press)

[11] Fisher B., Kuribayashi Y., Neutrices and the gamma function, The Jour. of the Fac. of Edu. Tottori Uni., 36, 1-22, (1987)

[12] Fisher B., Kuribayashi Y., Some results on the gamma function, The Journal of Faculty of Education Tottori University, 37, 2, (1988)

[13] Ege İ. Yıldırım E., Some generalized equalities for the \(q \)-gamma function. Filomat, 26(6), 1227-1232, (2012)