Simultaneous Gene Expression and Multi-Gene Silencing in Zea Mays Using Maize Dwarf Mosaic Virus

Wenshuang Xie
Ohio State University

DeeMarie Marty
USDA-ARS Corn and Soybean Research Unit: USDA-ARS Corn Soybean and Wheat Quality Research

Junhuan Xu
Ohio State University

Nitika Khatri
Ohio State University

Kristen Willie
USDA-ARS CSWQRU: USDA-ARS Corn Soybean and Wheat Quality Research

Wanderson Bucker Moraes
Ohio State University

Lucy Rae Stewart (lucy.stewart@usda.gov)
USDA-ARS https://orcid.org/0000-0001-8856-1141

Research article

Keywords: gene expression, multigene silencing, photobleaching, potyvirus, vascular puncture inoculation (VPI), virus-induced gene silencing (VIGS)

DOI: https://doi.org/10.21203/rs.3.rs-117871/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined.

Results: Infectious clones of an Ohio isolate of MDMV, MDMV-OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi).

Conclusions: These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.

Background

Maize (Ze a mays) is one of the most widely planted crops in the world, used for human consumption, animal feed, and as raw material for biofuels and other products (reviewed in [1]). In addition to its agricultural importance, maize is a model plant for monocot crop genetics, with complete genome sequences of B73 [2] and 34 other maize genomes deposited in Maize Genetics and Genomics Database (maizeGDB.org). However, few genomic tools for phenotyping impacts of individual genes are available. Maize transformation is technically difficult, expensive, and time consuming (reviewed in [3]). Thus, alternatives to transformation of stable transgenics are valuable. Virus-based tools developed for high-throughput virus-induced gene silencing (VIGS) could help fill the gap for maize gene function studies.

Many plant viruses have been developed as beneficial tools for expression of protein or VIGS (reviewed in [4–10]). VIGS has been used for gene functional analyses in host plants [11–14], utilizing target gene fragments in viral vectors in sense or antisense orientations or hairpin structures (see examples in [15]), and insertion sequence fragments as small as 100–300 nt being effective to silence target genes [13]. Plant viruses have also been widely used for protein expression in many different plant species (reviewed in [5, 16–18]). In one case, a plant virus vector derived from bean pod mottle virus (BPMV) was even developed for simultaneous single gene expression and single gene silencing [19]. For maize, several viruses have been developed as tools for gene expression or silencing, including bromegrass mosaic virus (BMV) for gene silencing [20, 21], wheat streak mosaic virus (WSMV) for marker gene expression [22], cucumber mosaic virus (CMV) for gene silencing [13], barley stripe mosaic virus (BSMV) for gene silencing [23], foxtail mosaic virus (FoMV) for VIGS [24] or protein expression [25] and guide RNA delivery for CRISPR/Cas9 gene editing [26], and sugarcane mosaic virus (SCMV) for protein expression [27], and barley yellow stripe mosaic virus (BYSMV) for guide RNA and protein expression [28].

Viruses in the family Potyviridae, or potyviruses, have been developed for heterologous gene expression vectors in various plant hosts, enabling tracking of virus movement and other experiments. Viruses in the family Potyviridae have flexuous, rod-shaped virus particles with a single-stranded positive-sense RNA genome encapsidated by viral coat protein, and are the largest group of plant viruses (reviewed in [29]). The potyvirus genome encodes a polyprotein which is cleaved by its own viral proteases to produce ten mature functional viral proteins for virus replication, pathogenicity, aphid transmission and other functions through interaction with many plant host proteins (reviewed in [29]). Potyviruses developed for protein expression include tobacco etch virus (TEV) [30, 31], zucchini yellow mosaic virus (ZY MV) [32], plum pox virus (PPV) [33], potato virus A (PVA) [34–36], turnip mosaic virus (TuMV) [37, 38], tobacco vein banding mosaic virus (TVBMV) [39], WSMV [22], and SCMV [27]. Because of their strong silencing suppressor, potyviruses were not favored for development of VIGS vectors, however, PVA was developed for transient gene silencing [40]. The most common insertion sites in these potyvirus-based vectors are the P1/HCPro and Nl/CP coding sequence junctions, with four other encoded junction sites in the polyprotein open reading frame (ORF) or at the 5’ end of the polyprotein ORF utilized in some vectors.

Since more than one sequence insertion site can be utilized for some potyviruses, and their expandable rod-shaped virions are generally more tolerant of insertion sequences than viruses with icosahedral virions and inherent packaging constraints, expression of two to five proteins from a single vector has been achieved in some of these systems [31, 36–38].

Given the features of potyviruses and interest in further tools for maize, maize dwarf mosaic virus (MDMV) was an attractive option for development. MDMV was first reported in Ohio in 1963 [41]. MDMV is naturally transmitted by aphids in a nonpersistent manner [42], and is readily transmissible by rub inoculation in the laboratory [43]. MDMV infected plants have mosaic symptoms on leaves of susceptible cultivars of maize that can be visible as early as 5–7 days after rub inoculation. MDMV is common in the United States and is capable of reducing yields, but successful resistance breeding has limited major yield loss (reviewed in [44]). In addition to infecting maize, the host range of MDMV includes some sorghum cultivars and Johnsongrass (Sorghum halepense L.), which is a major overwintering virus reservoir [45, 46]. Near-complete consensus sequence of a lab-maintained isolate MDMV-OH2 (GenBank accession no. JQ403609) and complete sequence of a derived infectious clone (MDMV OH1; GenBank accession no. JQ403608) from Ohio were previously reported [47]. Here we report the cloning and sequencing of a new Ohio MDMV isolate from Johnsongrass, MDMV OHS, development of MDMV OHS infectious clones, and engineered constructs for simultaneous gene expression and multi-gene silencing in maize. We report development of a vector for simultaneous gene expression and multi-target VIGS in maize.
Results

Complete sequence of MDMV-OH5 and developing a full-length infectious clone

MDMV infection from Ohio-collected Johnsongrass (S. halepense L.) was confirmed by RT-PCR using previously published MDMV OH-specific primers to Nib (MDMV-7065F) and the 3'UTR (MDMV GenR1, [47], Additional file 1: Table S1), and by sequencing the amplified fragments. Typical mosaic symptoms developed when Johnsongrass leaf sap was rub-inoculated onto susceptible 'Silver Queen', 'Early Sunglow', and 'Oh28' maize plants (data not shown). RNA from original collected Johnsongrass leaves was used for cDNA synthesis, cloning and sequencing. The complete sequence of the MDMV isolate was determined by Sanger sequencing, with terminal sequences determined by 5' and 3'- rapid amplification of cDNA ends (RACE; primers in Additional file 1: Table S1).

The 5'-most nucleotide of MDMV OH5, identified by 5' RACE, was adenosine, the same as for other published MDMV isolates: MDMV-Bulgaria (GenBank accession no. NC_003377, [48], MDMV-Golestan (GenBank accession no. JQ280313.1), MDMV-Sz0605 (GenBank accession no. FM883211.2 [49], MDMV-Mv0801 (GenBank accession no. FM883164.2 [49] (Table 1). RACE was also performed for MDMV-Italy (GenBank accession no. JX185302) and MDMV-OH2, for which GenBank sequences were missing 5'-most sequences. This sequencing identified seven 5' nucleotides for MDMV OH2 (5'-AAAAACA-3') missing in the near-complete sequence submission and 35 5' nucleotides missing in the near-complete sequence submission of MDMV-Italy (5'-AAAAACAACAGACTAACACAAACACAAAAACAAA-3'). GenBank sequence submissions of near-complete sequences of these viruses were updated completed with the 5' sequence data for these viruses. Based on RACE data, all isolates had a 5'-most adenosine residue, rather than 5'-most guanine of the cloned virus MDMV OH1 (GenBank accession no. JQ403608), for which 5' RACE on the MDMV OH2 source virus had not been successfully conducted [47]. All three MDMV-OH sequences (MDMV OH1, MDMV OH2 and MDMV OH5) had the same 3'-end sequences as determined by 3' RACE (Table 1). The complete sequence of MDMV-OH5 was 9538 nt compared to the 9442 nt MDMV OH2 RACE-completed sequence, and shared 89% nucleotide and 96% polyprotein amino acid sequence identity with MDMV OH2. An additional 96 nucleotides present in MDMV OH5 were located in frame in the coding region for the N-terminus of the MDMV coat protein (CP) gene, such that MDMV OH5 is predicted to encode a coat protein containing 32 additional amino acids and with a predicted molecular weight of 34 kDa, compared to the 30 kDa CP predicted for MDMV OH1 and OH2. This additional sequence at the N-terminal CP coding sequence was previously found for all Ohio field isolates of MDMV in a survey of maize and Johnsongrass [50], suggesting that laboratory mechanically-passaged isolate (MDMV OH2) collected in Ohio ca. 1970 and the derived clone (MDMV OH1) may have lost N-terminal coat protein encoding sequence in passaging [50]. The complete sequence of the cloned Johnsongrass-derived field MDMV isolate was named MDMV-OH5 and deposited as GenBank accession no. MN615724.

Virus Isolate	GenBank accession no.	5' RACE 5' – 3 sequence	3' RACE 5' – 3 sequence
MDMV OH2	JQ403609.1	AAAAACAACAGACT	TTCGTGGTGAGAGAC
MDMV It	JX185302.1	AAAAACAACAGACT	TTCGTGGTGAGAGAC
MDMV OH5	MN615724	AAAAACAACAGACT	TTCGTGGTGAGAGAC

Full-length MDMV OH5 sequence was cloned into binary vector pJL89 [51] and named pWX6 (Fig. 1A). To examine infectivity of pWX6 in vitro, RNA transcript derived from pWX6 was inoculated into 'Silver Queen' maize by vascular puncture inoculation (VPI [52, 53]) using amplified full-length sequences with primer-added T7 promoter to generate transcripts as was previously successful for the reported MDMV OH1 infectious clone [47]. Typical mosaic symptoms were observed in a subset of plants after inoculation (Fig. 2G), indicating that clone pWX6 is infectious with an infection rate of 33% by VPI (Table 2), an improvement over ca. 10% maximum infection rates reported for the MDMV-OH1 infectious clone [47]. Infection rates were also improved for the original MDMV OH1 clone (57%), indicating that improvement was attributable to the modified inoculum preparation protocol (full-length sequence amplification and/or in vitro transcription, VPI procedure remained unchanged) rather than inherently higher infectivity of the MDMV OH5 pWX6 clone. Initial experiments to launch virus infection from the binary vector clones by agroinfiltration of maize or Nicotiana benthamiana from this construct were unsuccessful (data not shown), and further clones were tested using only the successful maize VPI approach.
Table 2
Efficiency of vascular puncture inoculation infection of MDMV-OH5 derived constructs.

Clone	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Total	
	Infected/	Inoculated	Inoculated								
	Inoculated										
MDMV OH1a	13/19	5/9	4/9	1/10	6/10	8/8	8/9	4/10	5/10	54/94 (57%)	
pWX6	4/8	2/6	1/7	4/8	2/6	1/7	NT	NT	NT	14/42 (33%)	
pWX27	5/18	5/17	11/20	NT	NT	NT	NT	NT	NT	21/55 (38%)	
pWX68	14/39	18/31	12/34	NT	NT	NT	NT	NT	NT	44/104 (42%)	
pWX56	5/16	5/24	4/26	NT	NT	NT	NT	NT	NT	14/66 (21%)	

a Infectious clone reported in [47].

b Not tested.

Expression of GFP from gene insertion at Nib/CP junction in pWX27

To explore whether MDMV-OH5 could be used for gene expression, the green fluorescent protein (GFP) gene was assembled in-frame within the polyprotein between nuclear inclusion b-RNA-dependent RNA polymerase (Nib-RdRP) and CP genes of MDMV-OH5 in clone pWX6 to create pWX27 (Fig. 1B). Nib/CP cleavage sequence (EVIDVKHQAGE) was duplicated upstream and downstream of the inserted GFP sequence, with degenerate coding sequences to avoid direct sequence duplication, in order to allow efficient GFP cleavage from encoded polyprotein. Clone pWX27 was confirmed to be infectious with an average infection rate of 37% by VPI (Table 2), and typical mosaic symptoms developed in infected plants. GFP expression was visualized under a fluorescent microscope, indicating that MDMV-OH5 can be used as a gene expression vector (Fig. 2A). Western blots for GFP showed that the amount of expressed GFP detected (expected size 29.4 kDa) declined slightly at weeks two and three compared to week one (Fig. 3).

Expression of GFP from gene insertion at P1/HCPro junction in pWX68

We next inserted GFP between P1 and HCPro coding sequence in-frame within the polyprotein to create clone pWX68 (Fig. 1C). Clone pWX68 infectivity was confirmed by VPI with average infection rate of 43% (Table 2). Typical mosaic symptoms were observed, and GFP expression was visualized (Fig. 2B). Western blot analysis of pWX68-infected leaves also showed GFP expression (Fig. 3).

Simultaneous silencing of three genes and heterologous GFP expression from pWX56

Since GFP expression from gene insertion at each of two sites was successful, we next examined whether MDMV-OH5 could be used for simultaneous gene silencing and gene expression using both insertion sites in a single construct. Using similar insertion sizes for VIGS, we aimed to target multiple genes in one insertion site. A triple gene-targeting VIGS insertion, ZmChlI-IspH-PDS, was created to silence magnesium chelatase, lemon white 1 and phytoene desaturase genes, with 249 nt sequence from each targeted maize gene for a 747 nt total construct size. This triple-gene VIGS construct was inserted in-frame within the polyprotein between P1 and HCPro with inserted Nib cleavage site sequence of MDMV-OH5 into a pWX27 backbone to create pWX56 (Fig. 1D). The infectivity of clone pWX56 was confirmed by VPI of RNA transcripts, with an average infection rate of 22% (Table 2).

Green fluorescence was visualized in infected plants (Fig. 2A-D), and GFP protein expression confirmed by Western blot analyses (Fig. 3). Strong photobleaching was also observed in all leaves (Fig. 2F, Fig. S1D). Retention of GFP coding sequences and sequences of each component of the triple VIGS insertion were verified by RT-PCR analysis (Additional file 2: Fig. S1A). Decreased levels of chlorophyll were measured compared to plants inoculated with the wild type clone pWX6 or healthy control plants (Additional file 2: Fig. S1B). Quantitative RT-PCR (RT-qPCR) was used to examine individual target gene transcript reduction of pWX56. All three genes targets, ZmChlI, ZmPDS and ZmIspH, had reduced RNA transcript levels compared to wild type pWX6 infected plant controls at 14 days post inoculation (Fig. 4).

Differential Stability Of Constructs

One of the ubiquitous challenges of plant virus-based expression and VIGS vectors is instability of the heterologous sequence and loss of insertion sequences over time during replication cycles of the virus. Stability of the heterologous sequence insertions in pWX27, pWX68, and pWX56 was assayed over three weeks after rub-inoculation of 10-day-old seedlings using VPI launched infected leaf materials of pWX6, pWX27, pWX68, and...
pWX56 stored in -80°C freezer. At each time point, the youngest fully emerged leaf from the top of each plant was assayed for virus and insert stability by RT-PCR analysis with primers flanking the insertion sites (Additional file 1: Table S1). Amplicons were scored as full length insert band only (a); full length insert plus smaller bands detected (b); multiple bands with no full length insert detected (c); single band of less than full-length insert, with size usually near that of wild type virus amplicon (d); and no band (e) (Table 3, Fig. 5C; Additional file 2: Fig. S2). pWX27 showed rapid loss of insertion sequence, with no samples showing full-length insert only by 14 dpi. pWX27 amplicons detected shifted from predominantly full-length or a mixture of amplicons with full-length insert to loss of most full length insert detection by 21 dpi (Table 3). In contrast, pWX68 retained some full-length only insert by 14 and 21 dpi. Even less full-length only insertion loss was observed for pWX56 VIGS and GFP insertion sequences (Table 3). Statistical comparison of the single band categories a (full-length insert single band) and d (single smaller than full-length band/near wild-type reversion) across insertion sites for the various constructs supported significantly improved insert stability of both pWX56 insertions compared to pWX27 and pWX68 insertions (Fig. 5A, B; see Additional file 1: Tables S2-S4 for P-values), indicating that dual insertion stabilizes the construct. Both GFP and triple VIGS insert stability in pWX56 were also examined through series of five passages to ten plants by rub inoculation. GFP expression and VIGS photobleaching were detected in all five passages but was weak by the fifth passage (Additional file 1: Table S5; Additional file 2: Fig. S1)
Table 3

GFP and VIGS insert stability in constructs pWX27, pWX68, and pWX56.

Construct	Insert	Rep.	Time (dpi)	Total plants	a	b	c	d	e
pWX27	GFP	1	7	20	9	10	0	0	1
		2	7	20	6	13	1	0	0
		3	7	20	11	8	0	1	0
		1	14	20	0	18	2	0	0
		2	14	20	0	13	4	2	1
		3	14	20	0	16	4	0	0
		1	21	20	0	5	12	2	1
		2	21	20	0	3	9	8	0
		3	21	20	0	3	12	5	0
pWX68	GFP	1	7	20	14	4	2	0	0
		2	7	20	2	11	4	3	0
		3	7	20	3	10	5	2	0
		1	14	20	10	6	2	2	0
		2	14	20	3	6	5	5	1
		3	14	20	2	4	6	8	0
		1	21	20	3	9	4	3	1
		2	21	20	0	0	12	7	1
		3	21	20	0	2	7	9	2
pWX56	GFP	1	7	20	7	6	1	4	2
		2	7	20	11	4	0	3	2
		3	7	20	8	5	1	1	5
		1	14	20	9	7	2	2	0
		2	14	20	3	14	1	2	0
		3	14	20	8	7	3	0	2
		1	21	20	2	8	2	4	4

a Three experimental replicates (20 plants per construct in each), were tested by RT-PCR. Wild type pWX6 and healthy plants were used as positive and negative controls.

b RT-PCR results per sample were scored into 5 different categories (a,b,c,d and e), based on band(s) observed: a = full length insertion single band observed; b = multiple bands observed, including expected full-length insertion and smaller bands indicating insert loss; c = multiple bands indicating insert loss, with none representing full length insertion; d = single band detected at less than full-length insertion size, usually close to size of wild type virus amplicon; e = no bands detected with primer pair.

c This replicate was excluded from statistical analyses since no amplification was observed in half of the samples.
Construct	Insert	Rep.	Time (dpi)	Total plants	a	b	c	d	e
pWX56	VIGS	1	7	20	6	9	5	0	0
		2	7	20	17	0	0	3	0
		3	7	20	0	16	0	0	4
		1	14	20	13	2	3	0	2
		2	14	20	6	12	0	1	1
		3	14	20	11	4	0	5	0
		1	21	20	12	3	0	1	4
		2	21	20	12	3	0	1	4
		3	21	20	4	4	1	1	1

\(^a\)Three experimental replicates (20 plants per construct in each), were tested by RT-PCR. Wild type pWX6 and healthy plants were used as positive and negative controls.

\(^b\)RT-PCR results per sample were scored into 5 different categories (a,b,c,d and e), based on band(s) observed: a = full length insertion single band observed; b = multiple bands observed; including expected full-length insertion and smaller bands indicating insert loss; c = multiple bands indicating insert loss, with none representing full length insertion; d = single band detected at less than full-length insertion size, usually close to size of wild type virus amplicon; e = no bands detected with primer pair.

\(^c\)This replicate was excluded from statistical analyses since no amplification was observed in half of the samples.

Aphid Transmission Of Pwx56

Aphids (*Rhopalosiphum padi*) from both Ohio- and Kansas- originating colonies were used to test transmission of pWX56. Aphid transmission was successful as indicated by typical mosaic symptoms for both wild type pWX6 and pWX56, with no statistically significant difference in transmission rates for each construct or for *R. padi* colonies from Kansas versus Ohio. (Fig. 6). In pWX56 aphid-inoculated plants, photobleaching was observed (Additional file 2: Fig. S3A) and GFP expression was visualized by fluorescence microscopy (data not shown). VIGS and GFP insertions were further confirmed by RT-PCR detection of target genes (Additional file 2: Fig. S3B). VIGS insert sequence remained intact at 17 days post aphid inoculation, while GFP insert sequence showed a mix of intact and partially intact sequences at 17 days post aphid inoculation. Each of the two *R. padi* populations transmitted pWX6 and pWX56 at similar rates of 45–90% (9–18 infected plants per 20 plants infested by aphids with no statistically significant difference (P > 0.05) (Fig. 6).

Discussion

We have demonstrated that MDMV can be used for simultaneous gene expression and multi-gene silencing in maize. This is significant as more than one gene could be evaluated simultaneously for functional analyses. This opens up the possibility of modifying other agriculturally important potyviruses/crops for gene expression and function studies. Unexpectedly, dual insertion also increased the stability of heterologous sequences in the virus compared to single site insertion constructs. As yet, the mechanism underlying the stabilization effect for dual insertion in this construct is not known. Similarly, since this is one of only two reported potyviruses that have been developed for VIGS, whether the ability of MDMV to be modified for successful multi-target VIGS and gene expression is unique or is a result of some rare feature of this virus remains unknown. Nevertheless, insertion sequences can be cloned and efficiently expressed simultaneously in pWX56, and constructs can be launched by transcript VPI. VPI has an estimated tenfold greater efficiency than initial launching of transcript RNA by rub-inoculation to plant leaves [53]. Once the construct has infected plants, early collections of leaves can be used for simple rub-inoculation to new maize plants for easy scale-up. Stable VIGS or GFP insertion and expression in MDMV demonstrate that MDMV could be used as a powerful tool for gene function analysis and gene expression in maize.

Conclusions

We demonstrated that an MDMV-derived vector can be used to express GFP protein and simultaneously silence three maize genes at the same time. We also showed that dual insertion enhanced the stability of inserted sequences.

Materials And Methods

Plant materials and inoculation
MDMV-OH5 was obtained from a Johnsongrass plant with mosaic symptoms collected from a field in Chillicothe, Ohio in October 2017 (public property collections and private property collections by permission of individual landowners were made, samples were not distinguished to original land ownership), and maintained in a greenhouse at Ohio State University (OSU) Wooster campus under OSU Institutional Biosafety Committee regulations. Plants were destructively sampled and not formally identified by taxonomic experts. Virus was transmitted from the source plant via rub inoculation by grinding leaf tissue in five volumes of 10 mM potassium phosphate, pH 7. Extract was rubbed onto leaves of 10 to 11 day old ‘Oh28’, ‘Early Sunglow’, and ‘Silver Queen’ between thumb and forefinger with inoculum mixed with 600-mesh silicon carbide (carborundum). All plant materials infected with modified virus constructs were grown in controlled growth chamber at 25 °C, 16 hr light and 8 hr dark conditions with light intensity of 13000 lumens.

Sequencing Mdmv Oh5

Total RNA was isolated from four Johnsongrass samples (named MDMV OH3 to MDMV OH6) using Directzol RNA Miniprep Kit (Zymo Research, USA). Complementary DNA (cDNA) was synthesized and used for reverse transcription-PCR (RT-PCR). Primers specific to MDMV OH1 (MDMV-7065F, MDMV-4272F, MDMV genR1) were used for MDMV genome sequence amplification (Additional file 1: Table S1). Amplified DNA fragments were sequenced using the same primers above and MDMV-6241R. MDMV OH5 was used for subsequent studies.

Terminal sequences of MDMV were determined by 5'- and 3'-RACE. For 5'-RACE, 1 µg total nucleic acid extracted from MDMV-infected plants were first annealed with primer WX24 (Additional file 1: Table S1), then used for first strand cDNA synthesis using Superscript III reverse transcriptase (ThermoFisher Scientific, USA), followed by RNaseH treatment as described by the manufacturer (ThermoFisher Scientific, USA). The cDNA was then passed through a Monarch® PCR and DNA cleanup column (New England Biolabs, USA), quantified and G-tailed with 0.25 mM dGTP by terminal transferase (New England Biolabs, USA). The G-tailed cDNA was used as template for PCR with primers WX25 and WX27, followed by a second amplification PCR with primers WX26 and WX29 (Additional file 1: Table S1). PCR amplified DNA was either sequenced directly using primer WX27 or cloned into pMINIT 2.0 vector (New England Biolabs, USA), then subject to sequencing. For 3'-RACE, 1 µg total nucleic acid extracted from MDMV-infected plants were first annealed with primer WX292 (Additional file 1: Table S1), then used for first strand cDNA synthesis using Superscript III reverse transcriptase (ThermoFisher Scientific, USA), followed by RNaseH treatment as described by the manufacturer (ThermoFisher Scientific, USA). The cDNA was then passed through a Monarch® PCR and DNA cleanup column (New England Biolabs, USA). The cDNA was used as template for PCR with primers WX236 and WX293, followed by a second PCR with primers WX29 and WX237. Amplified DNA was either sequenced directly using primer WX27 or cloned into pMINIT 2.0 vector (New England Biolabs, USA) and then subject to sequencing.

Creation Of Infectious Cdna Clone Of Mdmv Oh5

Full-length cDNA from MDMV OH5 was cloned into a binary vector pJL89 [S1]. Several infectious MDMV OH5 clones in pJL89 were obtained, one of which, named pWX6, was selected for sequencing and further analysis.

Insertion of GFP at the N-terminal region of CP (pWX27)

Green fluorescent protein (GFP) gene sequence [S4] was inserted using NEBuilder HiFi Assembly Master Mix (New England Biolabs Inc., USA) in-frame between pWX6 Nlb and CP coding sequences with a duplicated cleavage sites inserted between nt 8386/8387: 15 nt (5’-CagGCcGcGcAgac-3’, lower case indicating nucleotides changed to alter codons while retaining translated sequence) encoding amino acid sequence Q/AGET, cleaved by Nla-Pro at the beginning of the GFP gene; and 24 nt (5’-GagGTTGATcCcGAGCagAccCAA-3’) encoding Nlb cleavage site amino acid sequence of EVIDVKHQ/AGE) at the end of GFP. Primers WX123/WX124 and WX126/WX127 were used to amplify the full-length GFP sequence, primers WX125/LRS764 and WX128/LRS765 for MDMV OH5 sequence, and LRS766/LRS769 were used to amplify the pJL89 vector (Additional file 1: Table S1). The GFP-encoding gene fragment was assembled into pWX6 using NEBuilder® HiFi DNA Assembly Master Mix (New England Biolabs, USA), and subsequent clones were tested for infectivity.

Insertion of GFP at the N-terminal region of HCPro (pWX68)

GFP sequence was also cloned using NEBuilder HiFi Assembly Master Mix (New England Biolabs Inc., USA) in-frame between MDMV OH5 P1 and HCPro coding sequences with inserted Nlb cleavage site sequence in pWX6 (nt 8386/839), adding 12 nt 5’ (5’-GgcGATCCatc-3’), encoding amino acid sequence ADPT 5’, and 33 nt 3’ (5’-GagGTTGATcCcGAGCagAccCAA-3’) encoding Nlb cleavage site amino acid sequence of EVIDVKHQ/AGE, cleaved by Nla-Pro) at the end of GFP. Nested primers WX36/WX37 and WX63/WX64 were used to amplify the full-length GFP gene sequence, and primers WX247 and WX246 were then used for PCR with primers WX36/WX37 and WX63/WX64 to amplify the GFP sequence. The amplified DNA was cloned into pWX6 using NEBuilder® HiFi DNA Assembly Master Mix (New England Biolabs, USA), and subsequent clones were tested for infectivity.

Creation of a triple gene insertion in the N-terminal region of HCPro (pWX56)

Infectious clone pWX27 with GFP inserted between Nlb and CP was used as backbone vector for a triple partial gene sequence cloning between P1 and HCPro. Three maize genes, magnesium chelatase (ZmChl, GenBank accession no. DQ084025, target region: 946–1193), lemon white 1 (ZmIspH, GenBank accession no. NM_001175829, target region: 740–988) and phytoene desaturase (ZmPDS, GenBank accession no. L39266, target region: 54–8}

Page 8/18
538–786) were selected for VIGS analysis. The triple gene fragment, 249 nt of each gene with total length of 747 nt, was synthesized (Eurofins Genomics, USA), cloned into pMINIT2.0 vector and verified by sequencing. The triple VIGS gene fragment was then amplified by PCR with primers WX251 and WX252, and the pWX27 backbone was amplified using primers WX247 and WX250, assembled using NEBuilder HiFi Assembly Master Mix (New England Biolabs Inc., USA) in-frame between P1 and HCPro to create pWX56. The triple VIGS DNA fragment contained nine additional 5' nt (5'-GCcGATCCT-3') encoding amino acid sequence ADP at the beginning of the VIGS insertion, and 33 nt 3' (5'-GAgGTATCCAGGCTAGACCCGcGag-3'), encoding Nib cleavage site amino acid sequence of EVIDVKHQ/AGE, cleaved by Nla-Pro), between nt 838/839 of pWX27. Recovered clones were tested for infectivity and one infectious clone, pWX56, was selected for further analysis.

Infectivity testing by vascular puncture inoculation of in vitro transcripts

All full-length virus constructs were amplified by polymerase chain reaction (PCR) from plasmid DNA templates using primers containing 5' T7 promoter sequences, WX3 (Table S1) and reverse primer MDMV GenR1 [47] complementary to the 3' most 17 nt of the MDMV 3-terminal sequence and adding a 21 nt of poly(A) to the virus-sense strand of the amplicon. PCR was performed using PrimeSTAR GXL DNA Polymerase from Takara Bio USA (Mountain View, CA) according to manufacturer's instructions.

In vitro RNA transcripts were synthesized using T7 ARCA RNA transcription kit (New England Biolabs, USA) rather than the transcription kit used for previous work reporting MDMV-OH1 infectious clone [47] and cleaned using 2 M lithium chloride or the Monarch RNA cleanup kit (New England Biolabs, USA). Transcript quantity was estimated by NanoDrop (ThermoFisher Scientific, USA) and quality was assessed on non-denaturing 1% agarose 1X TBE (0.089 M Tris, 0.089M boric acid, 0.002M EDTA) gels.). Vascular puncture inoculation (VPI) was used to inoculate 'Silver Queen' maize seeds with 2.0 µg RNA transcript per seed as previously described [50, 45]. Inoculated seeds were germinated for two days at 30°C, sown into sterilized soil, and grown in a growth chamber at 25°C, 16 hr light and 8 hr dark conditions with light intensity of 13000 lumens. Infectivity of constructs was tested by reverse transcription polymerase chain reaction (RT-PCR) on leaves from individual plants with primers testing for MDMV (WX111 and WX112). RT-PCR was performed on fresh samples at each time point by grinding samples 1:20 (g/mL) in grape extraction buffer (GEB: 0.05M sodium carbonate buffer pH 9.6, 2% polyvinylpyrrolidone-40, 0.2% bovine serum albumin, 0.05% Tween-20), then boiling the samples diluted 4 µl into 50 µl of 95°C for 10 min in GES buffer (0.1M glycinie-NaOH pH 9.0, 50 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, and .01% beta-mercaptoethanol. One-step RT-PCR was performed with SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA) and GoTaq polymerase (Promega Corp., Madison, WI) at 52°C for 40 min. followed by 2 min at 94°C and 32 cycles of 94°C for 15 seconds, 55°C for 20 seconds, and 72°C for 20 seconds, and 72°C for 1 min, ending with a 7 min. 72°C extension.

Rub Inoculation Scale-up From Transcript-infected Material

To scale up infection with constructs after VPI inoculation with transcripts, VPI-infected leaves were harvested as early as systemic symptoms could be robustly confirmed (7–10 dpi), to maximize virus harvest while minimizing replication cycles in which insert can be lost, and stored at -80°C for up to 3 months in 0.5 g aliquots. Frozen tissue was ground in five volumes of 10 mM pH 7 potassium phosphate buffer with 600-mesh silicon carbide (carborundum) added as abrasive. Extract was then rubbed onto leaves of 8 to 10-day old corn plants using thumb and forefinger, with 0.5 g frozen tissue providing enough inoculum for 20 plants and resulting in infection rates near 100%. Plants were symptomatic 5–7 days post rub inoculation.

Visualization Of Gfp Expression

GFP expression was visualized on leaves of *Z. mays* 'Silver Queen' at 7, and 21 days post rub inoculation. Images were taken with a Leica DFC460C (Leica Microsystems, USA) camera using fluorescence imaging with NIGHTSEA Green-only bandpass filter (NIGHTSEA, USA) at 3-second exposure to separate green fluorescence from maize autofluorescence. Brightfield images were taken at 1-second exposure.

Western Blotting

Western blotting

GFP protein expression was assessed by Western blotting. Plant tissue that tested positive by RT-PCR with primers WX358 and WX367 was saved at -80°C, for each time point of 7, 14, and 21 days post rub inoculation, and later used for Western blotting. Thawed tissue was ground in 1 ml of radioimmunoprecipitation assay (RIPA) buffer amended with one tablet cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail (Millipore-Sigma, USA) and 300 µl 1M dithiothreitol (DTT) per 10 ml of buffer. Ground tissue was centrifuged at 16,000 g at 4°C for 20 min. Supernatant was transferred to new Eppendorf tubes and placed on ice for remainder of experiment. Total protein was determined using Pierce 660 nm Protein Assay kit and Pierce BCA Protein standards (ThermoFisher Scientific, USA) in a 96 well plate with 3 reps per sample.

Equal parts of leaf supernatant and 2X Laemmli sample buffer (Bio-Rad, USA) were mixed, boiled for 3 min and allowed to cool. Samples were loaded onto 4–20% MiniPROTEAN TGX Stain-Free Protein Gels (Bio-Rad, USA) at 25 µg total protein per lane. Recombinant *E. coli* GFP Protein (Abcam, USA) was loaded at 5 ng as a positive control. Lysates were electrophoresed in Tris/Glycine/SDS buffer (25 mM Tris; pH 8.8, 200 mM glycine, 0.1% sodium dodecyl sulfate) at 200V for 30 min. Proteins were transferred using Trans-Blot Turbo Transfer System on Trans-Blot Turbo Nitrocellulose Transfer Pack (Bio-Rad, USA) paper at 25V for 7 min. Membranes were blocked in 5% nonfat dry milk (NFDM) in TBS buffer (50 mM Tris and 150 mM NaCl, pH
7.5) for 1hr. Membranes were incubated on a shaker at room temperature for 1 hr with 1:3000 Anti-GFP antibody (Abcam, USA) in 1% TBS-T (TBS buffer with 0.1% Tween-20). Membranes were washed for 10 min 3 times in TBS-T. Membranes were incubated with 1:2,500 Goat Anti-Rabbit IgG H&L (Abcam, USA) for 1 hr and then washed for 5 min 3 times in TBS-T. Proteins were visualized by chemiluminescence using Clarity Western ECL Substrate (Bio-Rad, USA) on a ChemiDoc XRS System (Bio-Rad, USA).

Rt-PCR Insertion Stability Assays

Twenty plants were rub-inoculated with wild type and modified MDMV with GFP insert using verified VPI-sourced plant sap. Samples were collected at 7, 14, and 21 days post-rub inoculation from the youngest fully emerged leaf. Plant samples were screened by RT-PCR using the same method described above. Primers spanning whole GFP and GFP internal primers with MDMV-OH5 either upstream or downstream GFP insertion were used for RT-PCR analysis. Amplified DNA was electrophoresed on 1% agarose gels. Leaf samples were collected as described above and analyzed for insertion stability and quantified using either semi-quantification RT-PCR.

Individual target genes of triple VIGS insertion were confirmed using one of MDMV-OH5 specific primers either upstream (WX317) or downstream (WX315) of the triple VIGS insertion and specific primers (WX321 for ZmChlI, WX325 for ZmIspH, and WX327 for ZmPDS) to each of three target genes of magnesium chelatase, lemon white1 and phytoene desaturase (ZmChlI-IspH-PDS; triple VIGS). Photobleaching symptoms were observed and photographed, and chlorophyll content was measured with a MC-100 Chlorophyll Concentration Meter following manufacturer’s instructions (Apogee Instruments, USA). Three measurements were done for each leaf.

Rt-qPCR To Quantify Gene Silencing

Leaf samples were collected 7, 14, and 21 days post-rub inoculation, total RNA was extracted as described above and quantified using either semi-quantitative RT-PCR or RTqPCR. One microgram total RNA from each sample was used for cDNA synthesis in a 20 µl reaction by using iScript™ Reverse Transcription Supermix (Bio-Rad, USA). Primer efficiency was determined using 1 µl cDNA at 1/5, 1/10, 1/20, 1/40 and 1/160 dilutions (Additional file 1: Table S6). qPCR was carried out by using SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, USA) in a Bio-Rad’s CFX96 real-time C1000 touch thermal cycler under conditions of 95°C for 30 s, 39 cycles of: 95°C for 10 s and 60°C for 30 s, then 95°C for 10 s, melt curve 65°C to 95°C with an increment of 0.5°C, 5 s. All samples were run with cDNA dilution of 1:5, cDNA derived from 10 ng total RNA. Gene quantification and analysis was done on target genes of ZmChlI, ZmIspH, ZmPDS as well as GFR MDMV, and along with reference genes of membrane protein PB1A10.07c (MEP) and folypolyglutamate synthase (FPGS) [55]. Primers used for RT-qPCR analysis are shown in (Additional file 1: Table S1, S6). Ct was determined using E = 10^[−1/slope] (Additional file 1: Table S6).

Aphid Transmission Assays

Wild type MDMV-OH5 and modified MDMV-OH5 derived VIGS were transmitted by *Rhopalosiphum padi*. *R. padi* were maintained on virus-free ‘Early Sunglow’ maize plants in the cages at 25°C with a photoperiod of 15 hr light/ 9 hr dark. ‘Silver Queen’ maize plants were inoculated by VPI with *in vitro* RNA transcript. The infected tissues were collected and kept at −80°C, which were used for rub inoculation. The virus source plants were prepared by rub inoculating seven-day-old seedlings ‘Early Sunglow’ with the VPI tissue and the plants were kept at 20°C with a photoperiod of 15 hr light/ 9 hr dark for 14 days. The leaves with strong MDMV symptoms (usually the 1/3 from tip in the 2nd leaf of plant) were sprayed with 10% sucrose, and were left to dry out before collection. The collected leaf was then cut into smaller pieces (around 1 cm²) and were placed in a small box (around 10 cm³) lined with wet tissue paper for maintaining the moisture. *R. padi* were then fed on source plants in the box for 10 min (acquisition access period), and after acquisition period, 10 aphids were moved onto the corn whorl per plant with 20 healthy ‘Early Sunglow’ plants in total for each treatment. The plants were covered with a plastic tube for 3 days, and then aphids were removed by NUVAN PROSTRIPS (AMVAC Chemical Corporation, USA) for 2–4 hours. Symptoms was scored at 7, and 14 days post-inoculation and infection was further confirmed by RT-PCR using primers WX317/WX315 for VIGS, and WX368/WX357 for GFP insertion.

Statistical analysis

Insert stability in MDMV-OH5 constructs at 7, 14, and 21 dpi was analyzed statistically. Constructs of pWX27, pWX68, and pWX56, three replicates of 20 plants inoculated per construct, were examined for integrity of insertion sequences using RT-PCR with primers flanking the insertion sites. Linear mixed model was used to analyze the effects of constructs, time, and their interactions on band types. F-statistics and probability values from the fit of linear mixed models to arcsine-square root transformed bands data. Data were arcsine-square-root transformed prior to analysis to stabilize variance. Since data were collected as temporal repeated measures on the same experimental units and as such were correlated in time, the random _residual_ statement and type option in GLIMMIX were used to account for, and model, the covariance structure (compound symmetry) of the within-subject data. Models were fitted using the GLIMMIX procedure of SAS.

Abbreviations
Declarations

Ethics approval and consent to participate

Samples were collected both from public property and from private landowners in the area by verbal permission. Although permission was obtained, the ownership of the land from which the cloned MDMV-OH5 isolate was obtained was not recorded. Plant samples were used to destructively isolate RNA and plant viruses and were not herbarium deposited.

Consent for publication

Not applicable.

Competing interests

The authors declare they have no competing interests.

Funding

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA) and was accomplished under cooperative agreement number HR0011-17-2-0054. The views expressed are those of the author and should not be interpreted as representing the official views or policies of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. This research was supported in part by the U.S. Department of Agriculture, Agricultural Research Service. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Availability of data and materials

Reasonable requests will be fulfilled provided that written materials transfer and/or licensing agreements, and appropriate APHIS permits and containment requirements are in place. Requests should be directed to the corresponding author.

Authors' contributions

LRS led the project design, data interpretation, and manuscript preparation. WX, DM, JX and LRS designed experiments, WX, DM, JX, NK and KW performed the work, analyzed the data and assisted in writing the manuscript, WBM performed statistical analyses. All authors have read and approved the final manuscript.

Acknowledgements

We thank Jane Todd and Mark Jones of USDA for field Johnsongrass sample collection, Jodi Livesay for technical assistance, Dr. Tim Sit of the North Carolina State University for the GFP clone and Dr. Ray Louie for advice on vascular puncture inoculation techniques.

References

1. Ranum P, Pena-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption. Ann N Y Acad Sci. 2014;1312:105–12.
2. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pestemak S, Liang C, Zhang J, Fulton L, Graves TA, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–5.
3. Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK. Advances in Maize Transformation Technologies and Development of Transgenic Maize. Front Plant Sci. 2016;7:1949.
4. Pogue GP, Lindbo JA, Garger SJ, Fitzmaurice WP. Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol. 2002;40:45–74.
5. Scholthof HB, Scholthof KB, Jackson AO. Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol. 1996;34:299–323.
6. Scholthof KB, Mirkov TE, Scholthof HB. Plant virus gene vectors: biotechnology applications in agriculture and medicine. Genet Eng (N Y). 2002;24:67–85.
7. Scofield SR, Nelson RS. Resources for virus-induced gene silencing in the grasses. Plant Physiol. 2009;149(1):152–7.
8. Becker A, Lange M. VIGS–genomics goes functional. Trends Plant Sci. 2010;15(1):1–4.
9. Dommes AB, Gross T, Herbert DB, Kivivirta KI, Becker A. Virus-induced gene silencing: empowering genetics in non-model organisms. J Exp Bot. 2019;70(3):757–70.

10. Robertson D. VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol. 2004;55:495–519.

11. Singh DK, Lee HK, Dweikat I, Mysore KS. An efficient and improved method for virus-induced gene silencing in sorghum. BMC Plant Biol. 2018;18(1):123.

12. van der Linde K, Doehlemann G. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis. Methods Mol Biol. 2013;975:47–60.

13. Wang R, Yang X, Wang N, Liu X, Nelson RS, Li W, Fan Z, Zhou T. An efficient virus-induced gene silencing vector for maize functional genomics research. Plant J. 2016;86(1):102–15.

14. Zhou T, Liu X, Fan Z. Use of a Virus Gene Silencing Vector for Maize Functional Genomics Research. Methods Mol Biol. 2018;1676:141–50.

15. Kant R, Dasgupta I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus. Plant Cell Rep. 2017;36(7):1159–70.

16. Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol. 2007;18(2):134–41.

17. Hefferon K. Plant Virus Expression Vectors: A Powerhouse for Global Health. Biomedicines 2017, 5(3).

18. Hefferon KL. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology. 2012;433(1):1–6.

19. Zhang CQ, Bradshaw JD, Whitham SA, Hill JH. The Development of an Efficient Multipurpose Bean Pod Mottle Virus Viral Vector Set for Foreign Gene Expression and RNA Silencing. Plant Physiol. 2010;153(1):52–65.

20. Ding XS, Schneider WL, Chaluvadi SR, Mian MA, Nelson RS. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant Microbe Interact. 2006;19(11):1229–39.

21. Ding XS, Mannas SW, Bishop BA, Rao X, Lecoultre M, Kwon S, Nelson RS. An Improved Brome mosaic virus Silencing Vector: Greater Insert Stability and More Extensive VIGS. Plant Physiol. 2018;176(1):496–510.

22. Tatineni S, McMechan AJ, Hein GL, French R. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology. 2011;410(1):268–81.

23. Jarugula S, Willie K, Stewart LR. Barley stripe mosaic virus (BSMV) as a virus-induced gene silencing vector in maize seedlings. Virus Genes. 2018;54(4):616–20.

24. Mei Y, Zhang CQ, Kemodle BM, Hill JH, Whitham SA. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize. Plant Physiol. 2016;171(2):760–72.

25. Bouton C, King RC, ChenHX, Azhakanandam K, Bieri S, Hammond-Kosack KE, Kanyuka K. Foxtail mosaic virus: A Viral Vector for Protein Expression in Cereals. Plant Physiol. 2018;177(4):1352–67.

26. Mei Y, Beemink BM, Ellison EE, Konecna E, Neelakandan AK, Voytas DF, Whitham SA. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct. 2019;3(11):e00181.

27. Mei Y, Liu G, Zhang C, Hill JH, Whitham SA. A sugarcane mosaic virus vector for gene expression in maize. Plant Direct. 2019;3(8):e00158.

28. Gao Q, Xu WY, Yan T, Fang XD, Cao Q, Zhang ZJ, Ding ZH, Wang Y, Wang XB. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytol. 2019;223(4):2120–33.

29. Revers F, Garcia JA. Molecular biology of potyviruses. Adv Virus Res. 2015;92:101–99.

30. Dolja VV, McBride HJ, Carrington JC. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc Natl Acad Sci U S A. 1992;89(21):10208–12.

31. Bedoya L, Martinez F, Rubio L, Daros JA. Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J Biotechnol. 2010;150(2):268–75.

32. Arazzi T, Slutsny SG, Shibolet YM, Wang Y, Rubinstein M, Barak S, Yang J, Gal-On A. Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J Biotechnol. 2001;87(1):67–82.

33. Fernandez-Fernandez MR, Mourino M, Rivera J, Rodriguez F, Planas-Duran J, Garcia JA. Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology. 2001;280(2):283–91.

34. Kelloniemi J, Makinen K, Valkonen JP. A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants. Biochimie. 2006;88(5):505–13.

35. Rajamaki ML, Kelloniemi J, Alminaita A, Kekarainen T, Rabenstein F, Valkonen JP. A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology. 2005;342(1):88–101.

36. Kelloniemi J, Makinen K, Valkonen JP. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res. 2008;135(2):282–91.

37. Beauchemin C, Bougie V, Laliberte JF. Simultaneous production of two foreign proteins from a polyvirus-based vector. Virus Res. 2005;112(1–2):1–8.
38. Chen CC, Chen TC, Raja JA, Chang CA, Chen LW, Lin SS, Yeh SD. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Res. 2007;130(1–2):210–27.

39. Gao R, Tian YP, Wang J, Yin X, Li XD, Valkonen JP. Construction of an infectious cDNA clone and gene expression vector of Tobacco vein banding mosaic virus (genus Potyvirus). Virus Res. 2012;169(1):276–81.

40. Gammelgard E, Mohan M, Valkonen JP. Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencing suppression. J Gen Virol. 2007;88(Pt 8):2337–46.

41. Janson BF, Ellett CW. A new corn disease in Ohio. Plant Disease Reporter. 1963;47:1107–8.

42. Nault LR, Knoke JK. Maize vectors (virus). In: Virus and Viruslike Diseases of Maize in the United States: 1981. Ohio Agricultural Research and Development Center: Southern cooperative series bulletin: 77–84.

43. Dale JL. Isolation of a mechanically transmissible virus from corn in Arkansas. Plant Disease Reporter. 1964;48:661–3.

44. Redinbaugh MG, Zambrano JL. Control of virus diseases in maize. Adv Virus Res. 2014;90:391–429.

45. Ford RE, Tasic M. New hosts of Maize dwarf mosaic virus and Sugarcane mosaic virus and a comparative host range study of viruses infecting corn. J Phytopathol. 1972;75(4):315–48.

46. Tasic M, Ford RE, Shukla DD, Julka J. Differentiation of sugarcane, maize dwarf, Johnsongrass, and sorghum mosaic viruses based on reactions of oat and some sorghum cultivars. Plant Dis. 1990;74:549–52.

47. Stewart LR, Pouchard B, Redinbaugh MG, Meulia T. Complete sequence and development of a full-length infectious clone of an Ohio isolate of Maize dwarf mosaic virus (MDMV). Virus Res. 2012;165(2):219–24.

48. Kong P, Steinbiss HH. Complete nucleotide sequence and analysis of the putative polyprotein of maize dwarf mosaic virus genomic RNA (Bulgarian isolate). Arch Virol. 1998;143(9):1791–9.

49. Petrik K, Sebestyen E, Gell G, Balazs E. Natural insertions within the N-terminal region of the coat protein of Maize dwarf mosaic potyvirus (MDMV) have an effect on the RNA stability. Virus Genes. 2010;40(1):135–9.

50. Stewart LR, Tepler R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, Wijeratne A, Redinbaugh MG. Viruses in maize and Johnsongrass in southern Ohio. Phytopathology. 2014;104(12):1360–9.

51. Lindbo JA. TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 2007;145(4):1232–40.

52. Louie R. Vascular puncture of maize kernels for the mechanical transmission of maize white line mosaic virus and other viruses of maize. Phytopathology. 1995;85(2):139–43.

53. Redinbaugh MG, Louie R, Ngwira P, Edema R, Gordon DT, Bisaro DM. Transmission of viral RNA and DNA to maize kernels by vascular puncture inoculation. J Virol Methods. 2001;98(2):135–43.

54. Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J. Engineered GFP as a vital reporter in plants. Curr Biol. 1996;6(3):325–30.

55. Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A. Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol. 2012;169(8):807–15.

Figures
Figure 1

Genome layout of MDMV-OH5 full-length infectious clone constructs. A. pWX6 (14,229 bp), infectious wild-type clone. B. pWX27 (15,009 bp), GFP gene inserted in-frame between NIb and CP coding sequences. C. pWX68 (15,018 bp), GFP gene inserted in-frame between P1 and HCPro coding sequences. D. pWX56 VIGS (15,798 bp), GFP gene inserted in-frame between NIb and CP coding sequences; and 249 bp each from target endogenous maize genes for magnesium chelatase (ZmChII), lemon white 1 (ZmIspH), and phytoene desaturase (ZmPDS). Black arrows indicate location of 5' WX3 and 3' MDMV-genF2 primers (Table S1) used for amplification prior to in vitro transcription. RNA transcripts were synthesized from amplicon with primer-added 5' T7 promoter sequence. P1 = protein 1 protease, HCPro = helper component protease, P3 = protein 3 protease. PIPO = pretty interesting Potyviridae open reading frame. 6k1 = 6 kD protein 1. CI = cylindrical inclusions. 6k2 = 6kD protein 2. VPg = viral protein genome linked. Nla-Pro = nuclear inclusion a-protease. NIb-RdRP = nuclear inclusion b-RNA dependent RNA polymerase. CP = coat protein.
Figure 2
Images of GFP visualization and symptoms by MDMV OH5 constructs at 7 and 21-days post inoculation on Z. mays cultivar Silver Queen. A. pWX27. B. pWX68. C. pWX56. D. Non-inoculated control. E. Non-inoculated maize. F. pWX56-infected plant leaf with virus-induced gene silencing photobleaching. G. pWX6, a wild-type clone of MDMV OH5. The newest fully emerged leaf from top of the plants were selected for GFP visualization. (A-D). Fluorescent images taken with a Leica DFC460C camera using fluorescence imaging with NIGHTSEA Green-only bandpass filter at 3 sec exposure. Brightfield images using same camera without fluorescence at 1 sec exposure. (E-G) Z. mays ‘Silver Queen’ plant images at 21 dpi taken with a Canon EOS REBEL T5i.

Figure 3
Western blot analysis of GFP in MDMV OH5 derived constructs. Samples of the newest fully emerged leaf from top of the plants were collected at 7, 14, and 21 days post rub-inoculation and analyzed for GFP protein using Anti-GFP antibody (Abcam, USA). Constructs are as diagrammed in Fig. 1,
and pWX70 is similar to pWX56 with a similar-sized insert at P1/HCPro without further data reported. GFP from MDMV OH5 constructs with additional 6xHis and protease cleavage sequences with predicted molecular weight of 29.4 kDa were detected at slightly slower migration (32 kDa estimated based on ladder) compared to the positive control GFP (27 kDa estimated based on ladder) with predicted amino acid molecular weight of 26.8 kDa. 25 µg total protein was loaded per sample and 5 ng recombinant E. coli GFP protein (Abcam, ab119740) was loaded as the positive control. Imaging of proteins was done on a Bio-Rad Imaging System utilizing Bio-Rad’s Stain Free Technology.

Figure 4

Mean target gene transcript relative expression ratios of 14 dpi of pWX56 inoculation. Mean values were derived from three samples of the newest fully emerged leaf of wild type pWX6, and 6 samples of pWX56-infected plants. Folypolyglutamate synthase (FPGS) reference gene was used for all calculations (primers Table S1). Error bars represent standard error. Bars headed by asterisk * are significantly different with p-values <=0.05 (*), 0.01 (**) and 0.001 (***) Student T-test was used.
Comparison of insert stability in MDMV OH5 constructs at 7, 14, and 21 dpi. Across three replicates of 20 plants per construct, plants infected with pWX27, pWX68, and pWX56 were assessed for integrity of insertion sequences using RT-PCR with primers flanking the insertion sites. Five plants inoculated with pWX6, with wild type virus, were included for each replicate. For each sample, amplicons were scored in five categories (panel C); as full length insert (a), full length insert plus smaller bands detected (b), multiple bands with no full length insert (c), single band of less than full-length insert usually near-wild type virus amplicon (d), and no band detected (e; example from pWX6 sample shown), and plasmid controls pWX56 and pWX6 (WT). The number of samples in which bands were scored in categories (a) and (d) (panel A and B, respectively) were compared statistically for each construct. At fixed levels of assessment time, constructs with ns are not significantly different from pWX27 GFP at $P \leq 0.05$ and constructs with * are significantly different from pWX27 GFP at $P \leq 0.05$ based on the pairwise comparisons of least squares mean on the arcsine-square root scale. Samples were taken from the youngest leaves of 7, 14 and 21 dpi of plants for RT-PCR analysis using primers: WX112/WX111 (pWX27); WX317/WX315 (pWX68); WX358/WX367 for GFP insertion (pWX56), and primers WX317/WX315 for VIGS insertion (pWX56).
Figure 6

Aphid transmission of pWX56 vs wild type control pWX6. A total of 20 plants each for pWX6 and pWX56 were aphid inoculated with the respective constructs, and infectivity was scored by observation of mosaic symptoms and RT-PCR analysis (data not shown). No statistical significance was observed between pWX6 and pWX56 transmission or between transmission by Kansas and Ohio-derived R. padi colonies. Samples were taken from the newest fully emerged leaf of 17 dpi of aphid feeding plants for RT-PCR analysis using primers WX358/WX367 (1115 nt) for GFP insertion, and primers WX317/WX315 (965 nt) for VIGS insertion.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- 20200611MDMVpWX56Suppl.Figures.pptx
- Coomassieofweek1.tif
- MDMVPCRmanuscriptimages.pptx
- Week1rep1.tif
- Week2rep1.tif
- Week3Rep1.tif
- pWX70stabilitygels.pptx