THE IMPACT OF SMALL-CELL BANDWIDTH REQUIREMENTS ON STRATEGIC OPERATORS

Cheng Chen¹, Randall Berry², Michael Honig², Vijay Subramanian³

¹Intel Corporation
²Department of EECS, Northwestern University
³Department of EECS, University of Michigan
5G Trends

- Heterogeneous networks
 - Cells (Macro/Small)

- Heterogeneous services
 - Mobility, Quality of Experience

How does policy influence the strategic behavior of the service providers?
- Pricing
- Resource allocation (macro vs. micro)
5G Trends

- Heterogeneous networks
 - Cells (Macro/Small)
- Heterogeneous services
 - Mobility, Quality of Experience

How does policy influence the strategic behavior of the service providers?
- Licensed vs. unlicensed
- Regulatory constraints (sharing rules)
Spectrum Sharing

- 100 MHz
- Shared with naval radar
- Three-tier sharing rules
 - Incumbents
 - Priority Access Licenses
 - General Access
- Low power
 - small cells

3.5 GHz
THE INNOVATION BAND

Dyspan 2017, Baltimore, MD
Spectrum Sharing

- 100 MHz
- Shared with naval radar
- Three-tier sharing rules
- Low power ➔ small cells

How will the low power / small-cell requirement affect prices, bandwidth allocation, and social welfare?

Dyspan 2017, Baltimore, MD
Assumptions

- SPs manage two networks:
 - Macro-cell / Small-cell

- Two types of users: mobile / fixed
 - Mobile users **must** connect to macro-cell network
 - Fixed users can connect to macro- or small-cell network

- Utility is a function of the rate received
 - Shared spectrum
 - bandwidth (rate) is split evenly among users
Assumptions

- SPs manage two networks:
 - Macro-cell / Small-cell
- Two types of users: mobile / fixed
 - Mobile users must connect to macro-cell network
 - Fixed users can connect to macro- or small-cell network
- Utility is a function of the rate received
- Each SP must provide a minimum amount of bandwidth for small cells.
Related Work

- Chen et al:
 - Workshop on Smart Data Pricing, 2015
 Model for competing service providers
 - Infocom, 2016
 Licensed and unlicensed spectrum

- Differences from other related work:
 - Two classes of users (mobile/fixed)
 - Providers set prices and optimize bandwidth
 - Constraint on minimum small-cell bandwidth
Model

Supply

Mobile user

Demand

Fixed user

Users select service, rate, pay service fee.

Dyspan 2017, Baltimore, MD

Service Competition

Prices (per unit rate)

Bandwidth Allocation

Macrocell

Small-cell

\[B_{iM} \]

\[p_{iM} \]

\[B_{iS} \]

\[p_{iS} \]
Model

Bandwidth Allocation

Model

Supply

Demand

Users select service, rate, pay service fee.

Dyspan 2017, Baltimore, MD
How do the small cell constraints affect bandwidth and prices?
An equilibrium always exists and is unique.

Adding the constraints can only decrease social welfare (α-fair utilities).
Adding Small-Cell Bandwidth

- SPs have exclusive-use bands B_1 and B_2, which can be split between macro and small cells.
- Add bandwidth B designated for small cells.
Social Welfare: Large B

$B_1^0 = 1$, $B_2^0 = 1.2$, $B = 10$

Maximum SW without constraint

Maximum SW with constraint

SW for equilibrium with constraint
Social Welfare: Smaller B

$B_1^0 = 1, B_2^0 = 1.2, B = 6$

- Maximum SW without constraint
- $= \text{Maximum SW with constraint}$
- SW for equilibrium with constraint
Main Results (2)

- An equilibrium always exists and is unique.
- Possible effect of adding constraint on equilibrium:

Diagram:

Small-cell BW

No constraint

With constraint

B_1,S

B_2,S

B_1,S

B_2,S
Main Results (2)

- An equilibrium always exists and is unique.
- Possible effect of adding constraint on equilibrium:

```
| Small-cell BW | No constraint | With constraint |
|---------------|--------------|-----------------|
|               | $B_{1,S}$    | $B_{1,S}$       |
|               | $B_{2,S}$    | $B_{2,S}$       |
```
Effect of Constraint on Equilibrium

- Required bandwidth for SP 1 small cells ($B_{1,S}^0$, $B_{2,S} = B_{2,S}^0$).
- No change in equilibrium.
- SP 2 violates constraint: $B_{1,S} > B_{1,S}^0$, $B_{2,S} = B_{2,S}^0$.
- SPs 1 and 2 violate constraint: $B_{1,S} = B_{1,S}^0$, $B_{2,S} = B_{2,S}^0$.
- SP 1 violates constraint: $B_{1,S} = B_{1,S}^0$, $B_{2,S} > B_{2,S}^0$.
- $B_1 = 2$, $B_2 = 1$.
Utility

- Utility for each user is a function of the rate r.
- Total rate (capacity) depends on spectral efficiency R_0.

- Macro-cell capacity for SP i: $C_{i,M} = B_{i,M}R_0$
- Small-cell capacity for SP i: $C_{i,S} = \lambda_s B_{i,S}R_0$

$\lambda_s > 1$ accounts for higher density and/or spectral efficiency of small-cell network.
Utility

- Utility for each user is a function of the rate r.
- Total rate (capacity) depends on spectral efficiency R_0.
 - Macro-cell capacity for SP i: $C_{i,M} = B_{i,M}R_0$
 - Small-cell capacity for SP i: $C_{i,S} = \lambda S B_{i,S}R_0$
- Will assume the class of α-fair utility functions:
 $$u(r) = \frac{r^{1-\alpha}}{1-\alpha}$$
 - $\alpha \to 0$, $u(r)$ becomes linear
 - $\alpha \to 1$, $u(r)$ becomes logarithmic
Sequential (Two-Stage) Game

1. SPs set bandwidths \(B_{i,M} \) \(B_{i,S} \)
2. SPs set prices \(p_{i,M} \) \(p_{i,S} \)

Fixed users choose network to maximize surplus (utility minus cost): \(S(r) = u(r) - p \cdot r \)

rate \(r^* = \arg \max S(r) = D(p) \) (demand function)

We will characterize sub-game perfect Nash equilibria:

1. Price equilibrium / user association given bandwidth allocation.
2. Bandwidth allocation given that prices are set according to 1.
Revenue Maximization

\[
\max S_i = K_{i,M} p_{i,M} D(p_{i,M}) + K_{i,S} p_{i,S} D(p_{i,S})
\]

subject to

\[
K_{i,M} D(p_{i,M}) \leq C_{i,M}
\]

\[
K_{i,S} D(p_{i,S}) \leq C_{i,S}
\]

\[
B_{i,M} + B_{i,S} \leq B_i
\]

\[
0 \leq p_{i,M}, p_{i,S} < \infty
\]

\[
B_{i,M} \geq 0, \quad B_{i,S} \geq B_i^0
\]

fraction of users in macro-/small-cell networks

Dyspan 2017, Baltimore, MD
Social Welfare (Utility) Objective

With α-fair utility functions the equilibrium maximizes SW without small-cell bandwidth constraints.

$$SW = \sum_{i=1}^{N} K_{i,M} u(r_{i,M}) + K_{i,S} u(r_{i,S})$$
Social Welfare Loss

- **SW loss occurs when**

\[
\frac{N_f \lambda_S^{1/\alpha-1}}{N_f \lambda_S^{1/\alpha-1} + N_m} \sum_{i \in \mathcal{N}} B_i < \sum_{i \in \mathcal{N}} B_{i,S}^0
\]

- **The loss satisfies:**

\[
\frac{SW_{w}^{NE}}{SW_{w_o}^{*}} \geq \left(\frac{N_f \lambda_S^{1/\alpha-1}}{N_m + N_f \lambda_S^{1/\alpha-1}} \right)^\alpha
\]

- **Equality holds when** \(B_{i,S}^0 = B_i \) **for every SP** \(i \).
Given new bandwidth B, there exists a threshold T such that if $B > T$, constraining B for small cells reduces SW.

$$T = \frac{(B_1^0 + B_2^0) N_f \lambda_{S}^{1/\alpha - 1}}{N_m},$$

If $B < T$, B can be split between SPs 1 and 2 so that the competitive equilibrium achieves the maximum SW.
Social Welfare: Smaller B

$B_1^0 = 1, B_2^0 = 1.2, B = 6$

Maximum SW without constraint

= Maximum SW with constraint

SW for equilibrium with constraint

Dyspan 2017, Baltimore, MD
Conclusions

- Adding constraints on small-cell bandwidth can change competitive equilibrium and lead to a loss in SW.
- The constraint may cause an SP to reduce its small-cell bandwidth, although the total allocation cannot decrease.
- Constraining new bandwidth B leads to inefficient allocations when B exceeds a threshold.