Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Analysis of the factors predicting clinical response to tocilizumab therapy in patients with severe COVID-19

Rafael San-Juan¹²*, Mario Fernández-Ruiz¹², Francisco López-Medrano¹², Octavio Carretero¹, Antonio Lalueza³, Guillermo Maestro de la Calle³, María Asunción Pérez-Jacoste Asín³, Héctor Bueno²⁴, José Manuel Caro-Teller⁵, Mercedes Catalán⁶, Cristina de la Calle³, Rocío García-García⁷, Carlos Gómez⁸, Rocío Laguna-Goya⁹, Manuel Lizasoáin¹², Joaquín Martínez-López²¹⁰, Julia Oríñuen¹¹, Ángel Sevillaño¹³, Eduardo Gutiérrez¹³, Borja de Miguel¹³, Fernando Aguilar³, Patricia Parra¹, Mar Ripoll³, Tamara Ruiz-Merlo¹, Hernando Trujillo¹³, José Luis Pablos²¹², Estela Paz-Artal⁹, Carlos Lumbreras²³, José María Aguado¹², on behalf of the H12O Immunomodulation Therapy for COVID-19 Group, the Spanish Network for Research in Infectious Diseases (REIPI)³

¹ Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
² Department of Medicine, School of Medicine, Universidad Complutense, Madrid
³ Department of Internal Medicine, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁴ Department of Cardiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁵ Department of Pharmacy, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁶ Department of Intensive Care Medicine, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁷ Department of Pneumology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁸ Department of Medical Oncology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
⁹ Department of Immunology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
¹⁰ Department of Hematology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro Nacional de Investigaciones Oncológicas (CNIO), Universidad Complutense, Madrid, Spain
¹¹ Department of Emergency Medicine, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
¹² Department of Rheumatology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
¹³ Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain

Abbreviations: ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; AST, aspartate transaminase; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; eP/O₂/FiO₂, estimated arterial oxygen/fraction of inspired oxygen ratio; HCQ, hydroxychloroquine; ICU, intensive care unit; IFN-β, interferon-β; IQR, interquartile range; IL-6, interleukin-6; IMV, invasive mechanical ventilation; LDH, lactate dehydrogenase; LPV/r, lopinavir/ritonavir; NAT, nucleic acid testing; OTR, oxygen therapy requirements; SCI, Significant clinical improvement; RT-PCR, reverse transcription-polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TCZ, tocilizumab.

* Corresponding author. Rafael San-Juan, MD, PhD. Unit of Infectious Diseases. Hospital Universitario "12 de Octubre", Centro de Actividades Ambulatorias, 2ª planta, bloque D. Avda. de Córdoba, s/n, Postal code 28041, Madrid, Spain. Phone: +34 913908000. Fax: +34 914695775.
E-mail address: calasja@yahoo.es (R. San-Juan).
² Other members are listed in the Appendix.

https://doi.org/10.1016/j.ijid.2022.01.040
1201-9712/© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Abstract

Background: Controversy remains about the efficacy of tocilizumab (TCZ) for the treatment of severe COVID-19. We aimed to analyze the profile of TCZ-respondent patients.

Methods: We retrospectively analyzed a cohort of patients with severe COVID-19 who received off-label TCZ after recommendation by a local committee and were admitted to the University Hospital “12 de Octubre” until May 2020. The primary end point was a significant clinical improvement (SCI) on day 14 after administration of TCZ. Factors independently related to SCI were analyzed by multivariable logistic regression models.

Results: Of 428 (63.3%) patients treated with TCZ, 271 (63.3%) experienced SCI. After adjustment for factors related to unfavorable outcomes, TCZ administration within the first 48 hours from admission (odds ratio [OR]: 1.98, 95% confidence Interval [95% CI]: 1.1–3.55; P = 0.02) and ALT levels >100 U/L at day 0 (OR: 3.28; 95% CI: 1.3–8.1; P = 0.01) were independently related to SCI. The rate of SCI significantly decreased according to the time of TCZ administration: 70.2% in the first 48 hours from admission, 58.5% on days 3–7, and 45.1% after day 7 (P = 0.03 and P = 0.001, respectively).

Conclusion: TCZ improves the prognosis of patients with COVID-19 the most if treatment starts within the first 48 hours after admission.

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

The deleterious impact of the hyperactive immune response triggered by SARS-CoV-2 has been reported since the start of the pandemic (Giamarellos-Bourboulis et al., 2020), Vabret et al., 2020). Therapeutic immunomodulation emerged as a potentially life-saving option for patients with severe COVID-19 (Luis et al., 2021). Available drugs inhibiting the pleiotropic proinflammatory cytokine interleukin 6 (IL-6) rapidly became of particular interest because elevated IL-6 levels seemed to mediate systemic inflammatory responses associated with SARS-CoV-2 infection and the development of acute respiratory distress syndrome (ARDS) and multiorgan failure (McConagle et al., 2020). Preliminary case series and cohort studies reported outcomes in patients with severe COVID-19 pneumonia treated off-label with intravenous (IV) or subcutaneous (SC) tocilizumab (TCZ), the humanized monoclonal antibody targeting the IL-6 receptor (IL-6R) most available at that time (Antwi-Amoabeng et al., 2020, Fernandez-Ruiz et al., 2021b, Jordan et al., 2020, Knorr et al., 2020, Toniati et al., 2020), with preliminary data suggesting the safety and potential efficacy of this approach. These early results rapidly prompted the incorporation of this agent in most COVID-19 management protocols pending the results of observational studies and randomized clinical trials (RCTs) investigating the real role of TCZ for this indication.

Contradictory results were first obtained from observational studies. Although most of these studies found benefits in the form of decreased mortality or invasive mechanical ventilation (IMV) requirements among TCZ-treated patients (Defteros et al., 2020, Mikulska et al., 2020, Rojas-Marte et al., 2020, Rossotti et al., 2020, Roumier et al., 2021, Somers et al., 2020), some others failed to demonstrate significant outcome differences compared with the standard of care (Campochiaro et al., 2020, Della-Torre et al., 2020). Surprisingly, similar variable results are currently being reported from RCTs. Although recent meta-analyses that included all 10 RCTs with available results up to May 2021 (Snow et al., 2021, Tleyjeh et al., 2021) found an overall statistically significant but modest benefit in terms of mortality in patients with the most severe COVID-19 and a trend for lower risk of progression to IMV, the specific results from placebo-controlled RCTs failed to demonstrate a significant prognostic effect (Rosas et al., 2021, Stone et al., 2020). In this regard, there is a need to identify specific factors that would prompt the use of tocilizumab and some experts are currently advocating for the identification of the clinical profile of patients most likely to respond to TCZ therapy to optimize the outcomes of this potentially effective treatment for severe COVID-19 (Fernandez-Ruiz et al., 2021a, Klopfenstein et al., 2021).

This study aimed to analyze the baseline clinical factors related to clinical response in a broad homogeneous cohort of patients who received off-label treatment with TCZ under an institutional protocol throughout the first wave of the COVID-19 pandemic.

Materials and Methods

Study population and design

This retrospective study was conducted at the University Hospital “12 de Octubre” (Spain). The research was performed in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines.

The study population included all patients aged ≥18 years consecutively admitted at our center from March 16, 2020, to May 16, 2020, who received IV TCZ as immunomodulatory therapy for COVID-19 pneumonia.

We collected the following data from electronic medical records using a standardized case report form: demographics and major comorbidities, symptoms at presentation, vital signs, laboratory values and radiological features at day 0, use of antiviral therapy, the evolution of clinical status at days +1, +3, +5, +7, +10 and +14, treatment-related adverse events, and outcomes. Day 0 was defined as the calendar date on which the first dose of TCZ was administered. Follow-up for all participants was completed at 28 days or death (whichever occurred first).

The primary outcome was a significant clinical improvement (SCI) by day +14 after the first TCZ dose, defined by hospital discharge and/or a decrease of ≥2 points from baseline (day 0) on the 6-point ordinal scale detailed later.

The National Early Warning Score (NEWS) was calculated at admission. Respiratory function was assessed by the pulse oximetry oxygen saturation/fraction of inspired oxygen (SpO2/FiO2) ratio. Dynamic changes in the clinical status were assessed according to the following 6-point ordinal scale: 1.- discharged to home; 2.- admitted to the hospital, not requiring supplemental oxygen; 3.- admitted to the hospital, requiring low-flow supplemental oxygen (FiO2 <40%); 4.- admitted to the hospital, requiring high-flow supplemental oxygen (FiO2 ≥40%) or non-invasive mechanical ventilation; 5.- admitted to the hospital, requiring IMV, extracorporeal membrane oxygenation (ECMO), or both; and 6.- death. Comorbidity burden was assessed by means of the age-adjusted Charlson comorbidity index. Immunosuppression was defined by the presence...
of solid organ transplantation, HIV infection, or receipt of corticosteroid therapy (prednisone >20 mg daily or equivalent dose for more than 1 week), cytostatic agents, or other immunosuppressive drugs within the previous month.

Antiviral and immunomodulatory therapies

According to the clinical guidelines issued by the Spanish Ministry of Health during the study period (Ministerio de Sanidad, 2020), off-label antiviral regimens included co-formulated lopinavir/ritonavir (LPV/r) (200/100 mg twice daily for up to 14 days), hydroxychloroquine (HCQ) (400 mg twice for the first day, followed by 200 mg twice daily for 5-10 days), and subcutaneous (SC) interferon (IFN)-β (250 μg every 48 hours). In addition, some patients received IV remdesivir (200 mg during the first day, followed by 100 mg daily for 5-10 days) in the context of an ongoingRCT. Corticosteroids were administered at different dosing regimens (IV methylprednisolone 0.5-1 mg/Kg daily for ≤5 days or as pulses of 100-250 mg for 3 days). By April 2020, the use of corticosteroids was generalized for patients presenting to the emergency room with COVID-19 pneumonia and SpO2 <92% on room air, regardless of the subsequent administration of TCZ. Most patients received empirical antibiotic therapy (usually with a second- or third-generation cephalosporin), and thromboprophylaxis with low-molecular-weight heparin (SC enoxaparin 40 mg once daily, 60 mg once daily, or 40 mg twice daily if bodyweight <80 kg, 80–100 kg, or >100 kg, respectively, with renal dose adjustment if needed).

Beginning March 18, 2020, a local multidisciplinary committee that included representatives from different clinical specialties and from the Department of Pharmacy was established to standardize decisions regarding immunomodulatory therapies for COVID-19 patients. The committee held daily meetings (except for the weekends) during the first wave of the pandemic. The off-label use of TCZ was considered for patients potentially eligible for intensive care unit (ICU) admission, with bilateral or rapidly progressive infiltrates in chest x-ray or computerized tomography (CT) scan, and fulfilling 1 or more of the following criteria: (a) respiratory rate >30 bpm and/or pulse oximetry oxygen saturation (SpO2) <92% while breathing room air; (b) C-reactive protein (CRP) level >10 mg/dl; (c) IL-6 level >40 pg/ml; and/or (d) D-dimers >1,500 ng/ml. Exclusion criteria included liver function abnormalities (alanine transaminase [ALT] and/or aspartate transaminase [AST] levels >5 times the upper limit of normal), uncontrolled bacterial or fungal infection, or acute diverticulitis or bowel perforation. An initial IV 400 mg (if bodyweight <75 kg) or 600 mg (if bodyweight ≥75 kg) dose was administered as a 1-hour infusion. Until March 26, 2020, a second 400 mg dose was routinely administered 12 hours later, whereas a third dose could be given after 24 hours from the first infusion for selected patients according to the criteria of the treating physician (Ministerio de Sanidad, 2020). After that date, a single dose was prescribed according to the updated recommendations of the Ministry of Health of Spain.

Statistical analysis

Quantitative data were shown as the mean and SD or the median with interquartile range (IQR), whereas qualitative variables were expressed as absolute and relative frequencies. Categorical variables were compared using the chi-square test. Student’s t test or Mann-Whitney U test was applied for continuous variables, as appropriate. No imputation for missing data was applied.

A multivariate logistic regression model was created to analyze factors independently related to SCI by day +14 on the basis of clinical factors and laboratory values available at baseline (day 0). Those variables with univariate P ≤ 0.1 were entered into a backward stepwise logistic regression model. Some continuous variables of interest were dichotomized according to the optimal cutoff value, as determined by Youden’s index. Goodness-of-fit was assessed by the Hosmer-Lemeshow test. Multicollinearity among explanatory variables was analyzed using the variance inflation factor (VIF), with VIF values <3 being considered acceptable. The most parsimonious model (ie, the highest outcome variability explained with the lowest number of variables) was selected. Results are given as odds ratios (ORs) with 95% confidence intervals (CIs).

All the significance tests were 2-tailed. The threshold for significance was set at a P < 0.05. Statistical analysis was performed with SPSS version 20.0 (IBM Corp, Armonk, New York) and graphs were generated with Prism version 6.0 (GraphPad Software Inc., La Jolla, California).

Results

Clinical characteristics of study groups

After excluding 7 patients with insufficient follow-up data owing to transfer to another institution, a total of 428 patients were included in the analysis. As listed in Table 1 and Table 2, most patients were male, of Caucasian ethnicity, with a mean age of 55 years, more than half with some underlying disease and presented to the emergency department with cough, dyspnea, and diffuse infiltrates on the initial chest x-ray after a median interval of 7 days since symptom onset. Most patients were treated with HCQ, half of them received corticosteroid therapy, and about one-third received LPV/r before or simultaneously with the first dose of TCZ.
Table 2
Clinical characteristics, laboratory values, and radiologic findings at hospital admission.

Variable	Overall cohort (n = 428)
Symptoms at hospital admission [n (%)]	[]
Cough	317 (74.1)
Dyspnea	309 (72.2)
Fever	209 (48.8)
Myalgia	158 (36.9)
Diarrhea	150 (35)
Vomiting	55 (12.9)
Expectoration	66 (15.4)
Impaired mental status	15 (3.5)
Interval from symptom onset to hospital admission, days [median (IQR)]	7 (5 – 10)
NEWS at hospital admission [median (IQR)]a	5.5 (3 – 7)
Vital signs at hospital admission	
Auxiliary temperature, °C [mean ± SD]	37.8 ± 1.1
Respiratory rate, rpm [median (IQR)]	22 (16 – 30)
Heart rate, bpm [mean ± SD]	101.3 ± 17.3
SpO₂ (at room air) [median (IQR)]	92 (88 – 95)
Laboratory values at hospital admission	
Leukocytes, × 10⁶ cells/L [mean ± SD]	7.8 ± 3.4
Neutrophils, × 10⁶ cells/L [mean ± SD]	6.3 ± 3.3
Lymphocytes, × 10⁹ cells/L [mean ± SD]	0.92 ± 0.5
Leukocyte-to-lymphocyte ratio [median (IQR)]	8.5 (5.8 – 13.3)
Platelet count, × 10¹² cells/L [mean ± SD]	237.9 ± 100
ALT, U/L [median (IQR)]	39 (25.3 – 63)
AST, U/L [median (IQR)]	46 (32 – 68)
Creatinine, mg/dL [mean ± SD]	1.03 ± 0.56
CRP, mg/dL [median (IQR)]	16.9 ± 9.2
LDH, U/L [median (IQR)]	426 (356 – 536)
Ferritin, ng/mL [median (IQR)b]	1.526 (779 – 2,264)
Interleukin-6, pg/mL [median (IQR)c]	44 (20.2 – 144)
Chest imaging at hospital admission [n (%)]	
Diffuse pneumonia	386 (86)
Multiple lobe pneumonia	26 (6.1)
Single lobe pneumonia	18 (4.2)
No pneumonia	14 (3.3)

a NEWS hospital admission available for 266 patients
b Ferritin levels at hospital admission available for 278 patients
c Interleukin-6 levels at hospital admission available for 140 patients

Empiric antibiotic therapy including second- or third-generation cephalosporins or amoxicillin/clavulanic acid was also common.

Clinical and analytical data of patients at the time of TCZ administration are listed in Table 3. According to the clinical criteria for being considered as candidates for TCZ by the multidisciplinary committee, 1 criterion was fulfilled in 13 (3.0%) patients, 2 criteria in 80 (18.7%), 3 in 207 (48.4%), 4 in 116 (27.1%) and 5 in 12 (2.8%). TCZ was administered mainly at a single dose schedule at a median of 2 days from hospital admission.

As listed in Table 4, in the entire study cohort, 271 of 428 patients experienced SCI by day +14, accounting for an overall rate of 63.3% (95% CI: 58.6–67.9). Regarding other outcome parameters, ICU admission was required in 98 (22.9%) patients, IMV in 93 (21.7%), and 30-day all-cause mortality was 13.8% (59/428). Reported adverse events after TCZ treatment were bacterial superinfection in 13 (3%) patients and hypertransaminasemia in 30 (7%). No cases of disseminated strongyloidiasis or other opportunistic infections were reported in our cohort.

Factors predicting clinical response by day +14

The preliminary comparative analysis between patients presenting with SCI or without SCI by day +14 is listed in Table 5. The mean time to TCZ administration from admission was significantly lower in patients that experienced SCI by day +14 (2.9 days vs 4.9 days; P = <0.0001). The area under the receiver operating characteristics curve analyses supported by Youden’s index yielded the cutoff of 48 hours from hospital admission as the most predictive with regards to the achievement of SCI by day +14. As depicted in Figure 1, the rate of SCI by day +14 was significantly higher in those patients receiving TCZ within the first 48 hours (165/235 [70.2%]), compared with 58.5% (83/142) for those treated between days 3 and 7, and 45.1% (23/51) for those receiving TCZ after day 7 (P = 0.03 and P = 0.001, respectively). Median serum ALT levels at day 0 were also significantly higher in the group with SCI compared with those without (43 vs 36 IU/L, respectively; P = 0.001), and the cutoff of 100 IU/L was selected as the most predictive in terms of combined sensitivity and specificity.

Conversely, increased age, certain comorbidities (hypertension, dyslipidemia, obesity, chronic obstructive pulmonary disease, immunosuppression, and solid malignancy), active or former smoking habit and clinical and analytical data indicative of severe disease at day 0 (low SpO₂/FIO₂ ratio, high leukocyte, and low lymphocyte counts, high leukocyte-to-lymphocyte, high CRP, LDH, and ferritin levels, bilateral alveolar infiltrates, and previous or concomitant corticosteroid therapy) were found to be significantly more frequent in patients not achieving SCI.

Univariate and multivariate analyses of factors related to SCI by day +14 through logistic regression models are listed in Table 6. Significant collinearity was observed between the clinical status assessed by the 6-point ordinal scale and the SpO₂/FIO₂ ratio at day 0 (VIF values >6.1). Only the SpO₂/FIO₂ ratio was maintained in the multivariate model because the more objective nature of this variable does not depend on the availability of health care resources (ie, number of ICU beds). In addition, owing to the existence of collinearity between leukocyte and lymphocyte counts and the leukocyte-to-lymphocyte ratio (VIF values >3.5), only the latter parameter was retained.

In the final multivariate model varies inversely related to the probability of achieving SCI included certain comorbidities such as dyslipidemia under statin treatment (odds ratio [OR]: 0.38; 95% CI: 0.19–0.73; P =0.0001) or active solid malignancy (OR: 0.19; 95% CI: 0.04–0.94; P = 0.04) and analytical parameters at day 0 indicating advanced disease such as higher leukocyte-to-lymphocyte ratio (OR [per unitary increment]: 0.94; 95% CI: 0.91–0.97; P = 0.001), higher CRP (OR [per unitary increment]: 0.97; 95% CI: 0.94–1.00; P = 0.065) or LDH levels (OR [per unitary increment]: 0.99; 95% CI: 0.99–0.99; P = 0.013). After adjustment by these factors related to poorer outcomes, TCZ administration within the first 48 hours of admission was still independently associated with a 2-fold increase in the probability of SCI by day +14 (OR: 1.98; 95% CI: 1.1–3.55; P = 0.02). Hepatitis expressed by serum ALT levels >100 IU/L also defined a group of patients with a 3-fold increased odds of having a favorable response to TCZ therapy (OR: 3.28; 95% CI: 1.3–8.1; P = 0.01).

Although the groups of patients stratified by the timing of TCZ administration (within the first 48 hours of admission or beyond) were not entirely comparable (Table 1), different comorbidity and disease severity variables were also included in the final multivariate model. Early (first 48 hours) initiation of TCZ therapy still retained the statistical significance after such adjustment.

Discussion

A specific analysis of this large series of patients treated with IV TCZ has allowed us to elucidate the factors that may predict a significant clinical response to this immunomodulatory agent in patients with COVID-19. An advantage of this series was the homogeneity in the indications for treatment with TCZ because all patients were selected by a specific committee that applied the
Table 3
Vital signs and laboratory values at day 0, and treatments administered previously to or simultaneously with tocilizumab.

Variable	Overall cohort (n = 428)
Vital signs at day 0	
Axillary temperature, °C [mean ± SD]	37.4 ± 0.9
Respiratory rate, rpm [median [IQR]]	26 (20 – 30)
Heart rate, bpm [mean ± SD]	88.6 ± 16.4
SpO2/FIO2 ratio [median [IQR]]	230 (166 – 321)
Laboratory values at day 0	
Leukocytes, × 10⁹ cells/L [mean ± SD]	8.7 ± 5.4
Lymphocytes, × 10⁹ cells/L [mean ± SD]	1.04 ± 3.1
Leukocyte-to-lymphocyte ratio [median [IQR]]	10.2 (6.5 – 16.3)
ALT, U/L [median [IQR]]	41 (25 – 65)
AST, U/L [median [IQR]]	43 (31 – 60)
CRP, mg/dL [mean ± SD]	163 ± 9.2
LDH, U/L [median [IQR]]	426.5 (356 – 536)
Ferritin, ng/mL [median [IQR]]	1.526 (779 – 2,264)
Interleukin-6, pg/mL [median [IQR]]	53 (17 – 136)
Chest imaging at hospital admission [n (%)]	
Bilateral interstitial infiltrates	217 (50.7)
Bilateral alveolar infiltrates	198 (46.3)
Single lobe infiltrates	7 (1.6)
Other	6 (1.4)
Interval from symptom onset to day 0, days [median [IQR]]	10 (8 – 13)
Interval from hospital admission to day 0, days [median [IQR]]	2 (1 – 4)
Administration of more than 1 TCZ dose [n (%)]	68 (15.8)
Clinical status according to the 6-point ordinal scale at day 0 [median [IQR]]	3 (2 – 3)
Clinical status at day 0 [n (%)]	
2. Hospitalized, no supplemental oxygen requirement	24 (5.6)
3. Hospitalized, low-flow supplemental oxygen requirement (FiO2 ≤40%)	188 (44.2)
4. Hospitalized, high-flow supplemental oxygen requirement (FiO2 ≥40%) or NIMV	190 (44.4)
5. Hospitalized, IMV and/or ECMO	25 (5.8)
Previous or simultaneous therapies [n (%)]	
HCQ	382 (89.2)
LPV/r	154 (35.9)
IFN-β	39 (9.1)
Remdesivir	2 (0.4)
Corticosteroids	218 (51)
Interval to day 0, days [median [IQR]]	1 (0 – 2)
Azithromycin	222 (51.8)
Other antibiotics	
Second- or third-generation cephalosporin	289 (67.5)
Amoxicillin/clavulanic acid	100 (23.3)
Carbenapenem	14 (3.2)
Fluoroquinolones	15 (3.5)
Others	4 (0.9)

* Ferritin levels at day 0 available 203 patients.

Table 4
Vital signs, laboratory values, and clinical status at day 0, 3, 7 and 14 from the initiation of TCZ therapy.

Clinical data	Day 0	Day 3	Day 7	Day 14
Main vital signs				
Axillary temperature, °C [mean ± SD]	37.4 ± 0.9	36.8 ± 0.8	36.8 ± 0.6	36.9 ± 0.5
SpO2/FIO2 ratio [median [IQR]]	230 (166 – 321)	268 (170-343)	322 (187-438)	337 (252-448)
Main laboratory values				
Lymphocytes, × 10⁹ cells/L [mean ± SD]	1.04 ± 3.1	1.4 ± 3.8	1.5 ± 2.9	1.6 ± 2.2
CRP, mg/dL [mean ± SD]	16.3 ± 9.2	4.2 ± 1.7	4.2 ± 1.1	3.1 ± 1.3
LDH, U/L [median [IQR]]	426.5 (356 – 536)	427 (338 – 566)	394 (306 – 532)	337 (252 – 448)
Clinical status [n (%)]				
1. Discharged to home	0	11 (2.6)	143 (33.4)	256 (59.8)
2. Hospitalized, no supplemental oxygen requirement	24 (5.6)	48 (11.2)	36 (8.4)	21 (4.9)
3. Hospitalized, low-flow supplemental oxygen requirement (FiO2 ≤40%)	188 (44.2)	144 (33.6)	71 (16.6)	40 (9.3)
4. Hospitalized, high-flow supplemental oxygen requirement (FiO2 ≥40%) or NIMV	190 (44.4)	137 (32)	73 (17.1)	32 (7.5)
5. Hospitalized, IMV and/or ECMO	25 (5.8)	60 (16.1)	72 (16.8)	33 (7.7)
6. Death	0	19 (4.4)	33 (7.7)	46 (10.7)
Improvement in clinical status (at least 1 scale degree) [n (%)]		79 (18.5)	207 (48.4)	306 (71.5)
Improvement in clinical status (at least 2 scale degrees) [n (%)]		10 (2.3)	145 (33.5)	271 (63.3)

CRP: C-reactive protein; ECMO: extracorporeal membrane oxygenation; IQR: interquartile range; IMV: invasive mechanical ventilation; LDH: lactate dehydrogenase; LPV/r: lopinavir/ritonavir; NIMV: non-invasive mechanical ventilation; rpm: respirations per minute; SpO2/FIO2: SpO2/FIO2: pulse oximetry oxygen saturation/fraction of inspired oxygen; TCZ: tocilizumab.
Table 5
Comparative analysis of factors at the time of the initiation of TCZ therapy (day 0) among patients with or without significant clinical improvement by day +14*.

Variable	Clinical improvement (n = 271)	No clinical improvement (n = 157)	P value
Age, years [mean ± SD]	52.5 ± 13.1	60.9 ± 12.2	<0.0001
Aged 55 yrs. old or less [n (%)]	271 (64.6)	157 (44.6)	0.0001
Male gender [n (%)]	176 (64.9)	102 (65)	0.661
Non-Caucasian ethnicity [n (%)]	127 (46.8)	53 (33.7)	0.01
Hypertension [n (%)]	71 (26.2)	65 (41.4)	0.001
Dyslipidemia under statin treatment [n (%)]	48 (17.7)	58 (36.9)	<0.0001
Obesity [n (%)]	39 (14.4)	35 (22.3)	0.05
Diabetes mellitus [n (%)]	38 (14)	41 (27.1)	0.05
Atherothrombotic disease [n (%)]	12 (4.4)	12 (7.6)	0.24
Asthma [n (%)]	20 (7.4)	8 (5.1)	0.46
COPD and/or SAHS [n (%)]	13 (4.8)	19 (12.1)	0.01
Immunosuppression [n (%)]	20 (7.4)	24 (15.3)	0.01
Pregnancy [n (%)]	9 (3.3)	2 (1.3)	0.356
Active solid malignancy [n (%)]	4 (1.5)	13 (8.3)	0.001
Active or former smoking [n (%)]	43 (15.9)	46 (29.3)	0.001
Cough at admission [n (%)]	205 (75.6)	112 (71.3)	0.388
Dyspnea at admission [n (%)]	195 (72)	73 (69.5)	0.387
Fever at admission [n (%)]	139 (51.9)	70 (44.6)	0.175
Myalgia at admission [n (%)]	111 (41)	47 (29.9)	0.02
Diarrhea at admission [n (%)]	109 (40.2)	41 (26.1)	0.004
Myalgia and/or diarrhea at admission [n (%)]	172 (63.5)	72 (45.9)	0.0006
Impaired mental status at admission [n (%)]	7 (2.6)	8 (5.1)	0.344
NEWS at admission [median (IQR)]	5 (3–7)	6 (4–7)	0.144
Diffuse pneumonia at admission [n (%)]	233 (86)	135 (86)	0.854
Auxiliary temperature at day 0, °C [mean ± SD]	37.5 ± 1.0	37.5 ± 1.0	0.989
Respiratory rate at day 0, rpm [median (IQR)]	26 (20–30)	26 (22–30)	0.771
Heart rate at day 0, bpm [mean ± SD]	88.0 ± 17.9	88.2 ± 15.3	0.929
SpO2/Fio2 ratio at day 0 [median (IQR)]	288 (181–339)	175 (101–258)	<0.0001
Leukocytes at day 0, x 10^9 cells/L [median (IQR)]	7.3 (5.4–10)	7.9 (6.2–12.2)	0.007
Lymphocytes at day 0, x 10^9 cells/L [median (IQR)]	0.8 (0.6–1.1)	0.6 (0.4–0.87)	0.344
Leukocyte-to-lymphocyte ratio at day 0 [median (IQR)]	9.2 (5.8–13.3)	12.4 (8.7–21.4)	<0.0001
ALT at day 0, IU/L [median (IQR)]	43 (28–71)	36 (23–58)	0.001
ALT at day 0–100 IU/L [n (%)]	42 (15.5)	11 (7)	0.008
AST at day 0, IU/L [median (IQR)]	43 (30.5–59.5)	44 (31–60)	0.888
CRP at day 0, mg/dL [mean ± SD]	15.3 ± 8.9	18 ± 9.4	0.003
LDH at day 0, IU/L [median (IQR)]	409 (327–482)	481 (403–636.5)	<0.0001
Ferritin at day 0, ng/mL [median (IQR)]	1,479 (808–2,115)	1,602 (741–2,958)	0.062
Interleukin-6 at day 0, pg/mL [median (IQR)]	55 (16.7–116)	55 (18.7–213)	0.883
Bilateral alveolar infiltrates at day 0 [n (%)]	112 (41.3)	86 (54.8)	0.009
Interval from symptom onset to day 0, days [mean ± SD]	10.8 (4.6)	11.6 (6.1)	0.13
Interval from admission to day 0, days [mean ± SD]	2.9 (2.6)	4.9 (6)	<0.0001
Tocilizumab in the first 2 days of admission	271 (60.9)	157 (44.6)	0.001
Clinical status 4 or 5 at day 0 [n (%)]	97 (35.8)	118 (75.2)	<0.0001
Previous or concomitant therapy with remdesivir [n (%)]	8 (3)	8 (5.1)	0.4
Previous or concomitant therapy with HCQ [n (%)]	266 (98.2)	151 (96.2)	0.342
Previous or concomitant therapy with LPV/r [n (%)]	102 (37.6)	73 (46.5)	0.08
Previous or concomitant therapy with IFN-β [n (%)]	16 (9.5)	10 (9.5)	0.988
Previous or concomitant therapy with anakinra [n (%)]	116 (57.2)	84 (53.5)	0.52
Previous or concomitant corticosteroid therapy [n (%)]	124 (45.8)	94 (59.9)	0.006

* Defined by hospital discharge and/or a decrease of ≥2 points from baseline (day 0) on the 6-point ordinal scale. ALT: alanine transaminase; AST: aspartate transaminase; bpm: beats per minute; CI: confidence interval; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; HCQ: hydroxychloroquine; IFN-β: interferon-β; IQR: interquartile range; LDH: lactate dehydrogenase; LPV/r: lopinavir/ritonavir; NEWS: National Early Warning Score: rpm: respirations per minute; OR: odds ratio; SAHS: sleep apnea-hypopnea syndrome; SpO2/Fio2: SpO2/FiO2; SpO2/FiO2: pulse oximetry oxygen saturation/fraction of inspired oxygen.

The first interesting finding of the current study was the identification of the early initiation of TCZ therapy as an independent predictor of better clinical response after adjustment by other variables potentially related to the prognosis of severe COVID-19. Patients beginning TCZ therapy within the first 48 hours of admission—as performed in more than half of our cohort—had a 2-fold increased probability of presenting an SCI by day +14, after adjustment by other prognostic factors in a multivariate model. Moreover, we observed a gradient in the rates of clinical response according to the time interval between admission and initiation of TCZ (Figure 1).

Since the beginning of the pandemic, early initiation of TCZ in patients with bilateral pneumonia has generally been advised and specifically recommended in most compassionate off-label protocols (Mikulska et al., 2020, Moreno Díaz et al., 2021) owing to the characteristics of the drug and the specific features of COVID-19 (McConagle et al., 2020). Although a maximum interval of 48 hours from admission was considered as inclusion...
Figure 1. Rates of significant clinical improvement by day +14 according to the timing of TCZ administration.

Table 6
Univariate and multivariate analysis of factors related to significant clinical improvement by day +14 from the initiation of TZM therapy.

Variable	Univariate					
	OR	95% CI	P value	OR	95% CI	P value
Age, years	0.95a	0.93–0.97	<0.0001			
Non-caucasian ethnicity	1.73	1.15–2.6	0.008			
Hypertension	0.5	0.33–0.76	0.01			
Dyslipidemia under statin treatment	0.37	0.23–0.57	<0.0001	0.38	0.19–0.73	<0.0001
Obesity	0.58	0.35–0.97	0.039			
Diabetes mellitus	0.59	0.35–0.98	0.043			
COPD and/or SAHS	0.37	0.17–0.76	0.007			
Immunosuppression	0.44	0.21–0.83	0.011			
Active solid malignancy	0.17	0.05–0.51	0.002	0.19	0.04–0.94	0.04
Active or former smoking	0.45	0.28–0.73	0.001			
Myalgia and/or diarrhea at admission	2.05	1.37–3.06	<0.0001			
SpO2/FiO2 ratio at day 0	1.01a	1.00–1.01	<0.0001	1.01a	1.00–1.00	<0.0001
Leukocyte-to-lymphocyte ratio at day 0	0.94a	0.91–0.96	<0.0001	0.94a	0.91–0.97	0.001
ALT at day 0 >100 IU/L	2.4	1.2–4.9	0.012	3.28	1.3–8.1	0.01
CRP at day 0, mg/dL	0.96a	0.94–0.99	0.004	0.97a	0.94–1.00	0.065
LDH at day 0, IU/L	0.99a	0.99–0.99	<0.0001	0.99a	0.99–0.99	0.013
Bilateral alveolar infiltrates at day 0	0.58	0.39–0.86	0.007			
Initiation of TCZ therapy within the first 48 hours from admission	1.93	1.3–2.9	0.001	1.98	1.1–3.55	0.02
Previous or concomitant corticosteroid therapy	0.56	0.38–0.84	0.005			

* Odds ratio per unitary increment. ALT: alanine transaminase; CI: confidence interval; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; LDH: lactate dehydrogenase; OR: odds ratio; SAHS: sleep apnea-hypopnea syndrome; SpO2/FiO2: SpO2/FiO2: pulse oximetry oxygen saturation/fraction of inspired oxygen.
criteria in 1 particular RCT (Salama et al., 2021), no details on the recruitment windows were reported in most published trials (Snow et al., 2021). The impact of the timing of TCZ administration in the clinical response rates had not been accurately analyzed to date. In 2 previous reports, the potential prognostic benefit of early treatment with TCZ was suggested, although the limited sample included in these studies precluded from performing multivariate analyses to adequately confirm this finding (Martinez-Uribistondo et al., 2021; Moreno Diaz et al., 2021). A rational conclusion owing to the findings of the current study is that patients who reach criteria soon after hospital admission and are in the inflammatory phase may benefit more from TCZ administration. Therefore, we recommend a practical approach work-up including the early detection of patients with COVID-19 bilateral pneumonia fulfilling criteria of the hyperinflammatory stage of the disease at the emergency room with daily reevaluation to begin TCZ treatment before development of severe ARDS.

Unexpectedly, the finding of hypertransaminasemia (serum ALT levels >100 IU/L) at the time of treatment initiation was also found to act as an independent marker of subsequent response to TCZ. The explanation of this finding is not clear. The efficacy of TCZ is assumed to be more probable when administered in the hyperinflammatory state of COVID-19 (Rodríguez-Bano et al., 2021), and some experts consider liver inflammation as a complication owing to immune damage rather than direct viral cytopathic effect (Wu et al., 2021). We postulate that high ALT levels could potentially identify patients at the hyperinflammatory state of the disease. Previous use of statins was related to nearly a 3-fold risk of TCZ failure, which could be explained—in line to what has been shown in a particular study (Mitachione et al., 2021)—by the potential role of this variable as a surrogate marker of underly- ing cardiovascular disease, conferring a higher risk of more severe COVID-19 disease.

The profile of patients with a favorable response to TCZ therapy in our study was also defined by the absence of major underlying diseases potentially related to a worse outcome, such as active malignancy or the presence of advanced disease with severe respira- tory deterioration (as indicated by higher values of CRP or LDH and lower SpO2/FIO2 ratios) (Table 6). Such factors have been previously related to poor outcomes (Richardson et al., 2020; Wu et al., 2020; Zhou et al., 2020) and the efficacy of TCZ is lower in advanced stages of SARS-CoV-2-related ARDS (Moiseev et al., 2020). Age was not an independent risk factor for clinical failure in our cohort probably owing to the relatively young population included (only one-third were aged over 60 years).

Limitations

Some limitations of the current study deserve specific considera- tion. This is a single-center study including patients from the first wave of the COVID-19 pandemic in Madrid, which overwhelmed health resources and limited access to potentially effective therapeutic alternatives such as remdesivir that could have influenced the delayed access to hospital care. Therefore, extrapolation to other centers in different stages of the pandemic should be done with caution. In contrast to the timing from admission, the time interval between symptom onset and TCZ administration was not found to have a significant influence on clinical response. A possible explanation of this apparent discrepancy could be the lower accuracy of the patient’s precise self-reported calendar date for the initiation of symptoms compared with the more objective date of hospital admission. However, we believe that the beginning of the inflammatory phase of infection is more closely related to the time of worsening symptoms represented by the date of hospital admission. Because stringent criteria were applied to select candidates to receive TCZ therapy, the current cohort may not be representative of the entire COVID-19 population, particularly patients of older age who were underrepresented in the current cohort. Finally, although the large sample allowed us to perform a robust multivariate model to adequately adjust the main prognostic factors, we cannot rule out the impact of unmeasured confounding factors owing to the retrospective nature of the study and the absence of a control group precludes from addressing the potential effect of other administered treatments. In this regard, other limitations of the study include the heterogeneity in the doses and duration of patients receiving co-administration of corticosteroids that could influence therapeutic outcomes (Khiali and Entezari-Maleki, 2021), the changes in the treatment guidelines during the study period, and the effects of other therapies alongside corticosteroids in each group.

Conclusions

The results of this study support the early start of TCZ therapy in patients with severe COVID-19 and suggest incorporating a re- cruitment window of 48 hours from admission in future RCTs to optimize the efficacy of this therapy.

Appendix

Other members of the H12O Immunomodulation Therapy for COVID-19 Group

Unit of Infectious Diseases: Isabel Rodríguez-Goncer, Laura Corbella, María Ruiz-Ruigómez, Octavio Carretero, Tamara Ruiz-Merlo, Patricia Parra; Department of Pharmacy: José Miguel Ferrári; Department of Pneumology: Javier Sayas Catalán, Marta Corral Blanco; Department of Internal Medicine: Raquel Díaz Simón; Department of Nephrology: Fernando Caravaca, Amado Andrés, Manuel Praga; Department of Rheumatology: María Martín-López; Department of Hematology: Denis Zafrá, Cristina García-Sánchez; Department of Oncology: Carmen Díaz-Pedroche, Flora López, Luis Paz-Ares; Department of Intensive Care Medicine: Jesús Abelardo Barea Mendoza, Paula Burgueño Laguea, Helena Domínguez Agudo, Amanda Lesmes González de Aledo, Juan Carlos Montejo; Department of Emergency Medicine: Antonio Blanco Portillo, Laura Castro Reyes, Manuel Gil-Mosquera, José Luis Montesinos Díaz, Isabel Fernández-Marín; Department of Immunology: Oscar Cabrera-Marante, Antonio Serrano-Hernández, Daniel Pleguezuelo, Édgar Rodríguez de Frías, Paloma Talayera, Laura Naranjo-Rondán, Ángel Ramírez-Fernández, María Lasa-Lázaro, Daniel Arroyo-Sánchez, Department of Microbiology: Rafael Delgado, María Dolores Folgueira.

Conflicts of interest

All the authors declare no potential conflict of interest regard- ing this study.

Acknowledgments

We thank Dr. Miguel Saro-Buendía, Dr. Ángel Marrero-Sánchez, Dr. Daniel García-Ruiz de Morales and Dr. Guillermo Chiara-Graciani for assistance throughout the study.

The authors would like to acknowledge all the health care workers involved in response to the current pandemic in our hospital and, singularly, those who had COVID-19.

Funding sources

This research was supported by “Plan Nacional de I+D+I” and Instituto de Salud Carlos III (COVID-19 Research Call COV20/00181).
Subdirección General de Redes y Centros de Investigación Cooperativa, Spanish Ministry of Science and Innovation, Spanish Network for Research in Infectious Diseases (REPII RD16/0016) - financed by the European Development Regional Fund (EDRF) and the European Social Fund (ESF) "A way to achieve Europe - The ESF invests in your future." M.F.R. holds a research contract “Miguel Servet” (CP18/00073) and R.L.C. a research contract “Río Hortega” (CM19/00120), both from the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation.

Ethical approval

The Clinical Research Ethics Committee approved the study protocol (CEIm no. 20/117) and granted a waiver of informed consent owing to the observational design.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.ijid.2022.01.040.

References

Antwi-Amoabeng D, Kaji Z, Ford B, Beutler BD, Riddle MS, Siddiqui F. Clinical outcomes in COVID-19 patients treated with tocilizumab: An individual patient data systematic review. J Med Virol 2020;92(11):2516–22.

Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med 2020;76:43–9.

Delftereos SG, Giannopoulos GV, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw Open 2020;3(6).

Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann Rheum Dis 2020;79(10):1277–85.

Fernandez-Ruiz M, Lopez-Medrano F, Aguado JM. Tocilizumab for the treatment of COVID-19. Expert Opin Biol Ther 2021a;21(4):431–4.

Fernandez-Ruiz M, Lopez-Medrano F, Perez-Jacoste Asin MA, Maestro de la Calle G, Bueno H, Caro-Teller JM, et al. Tocilizumab for the treatment of adult patients with severe COVID-19 pneumonia: A single-center cohort study. J Med Virol 2021b;93(2):831–42.

Giamarellou-Bourboulis EJ, Netea MG, Rovina N, Akinosoglu K, Antoniadou A, et al. Neutrophils in the SARS-CoV-2 infection: what’s the role? Cytokine 2021;134:105316.

Khalil S, Kutra HJ, Bhati S, Kabir S, et al. Clinical Outcomes of COVID-19 Patients Treated with Tocilizumab. J Infect Public Health 2020;13(4):320–4.

Klopfenstein T, Gerazie A, Puyreavaud M, Kadiane-Oussou NJ, Gendrin V, Zayet S, et al. Time to determine tocilizumab place in COVID-19. Clin Infect Dis 2021.

Knorr JP, Colony V, Mauriello CM, Ha S. Tocilizumab in patients with severe COVID-19: A single-center observational analysis. J Med Virol 2020;92(11):2813–20.

Luis BM, Miguel MB, Pedro DL, David IP, Iztiai A, Ana GH, et al. Effects of late aggressive immunomodulatory therapy (tocilizumab and methylprednisolone) in COVID-19: Single center cohort study of 685 patients. J Transl Autoimmun 2021.

Martínez-Urbistondo D, Costa Segovia R, Suarez Del Villar Carrero R, Risco R, Villares Fernandez F. Early Combination of Tocilizumab and Corticosteroids: An Upgrade in Anti-inflammatory Therapy for Severe Coronavirus Disease (COVID). Int J Clin Pract 2021;72(9):1682–3.

McConagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev 2020;19(6).

Mikhalev M, Nicolini LA, Signori A, Di Biagio A, Sepulcri C, Russo C, et al. Tocilizumab and steroid treatment in patients with COVID-19 pneumonia. PLoS One 2020;15(8).

Mitacchione G, Schiavone M, Curnis A, Arca M, Antinori S, Gasperetti A, et al. Impact of prior statin use on clinical outcomes in COVID-19 patients: data from tertiary referral hospitals during COVID-19 pandemic in Italy. J Clin Lipidol 2021;15(1):68–78.

Moises S, Aveev S, Tao E, Brovko M, Bulanov N, Zykov A, et al. Neither earlier nor late tocilizumab improved outcomes in the intensive care unit patients with COVID-19 in a retrospective cohort study. Ann Rheum Dis 2020.

Moreno Diaz R, Amor Garcia MA, Teigell Muñoz FJ, Saldana Perez LE, Mateos Gonzalez M, Melero Bermejo JA, et al. Does timing matter on tocilizumab administration? Clinical, analytical and radiological outcomes in COVID-19. Eur J Hosp Pharm 2021.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020;323(20):2052–9.

Rodrigue-Bano J, Pachon J, Carratala J, Ryan P, Jarrín I, Vilescas M, et al. Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19). Clin Microbiol Infect 2021;27(2):244–52.

Rojas-Marté G, Khalid M, Mukhtar O, Hashmi AT, Waheed MA, Ehrlich S, et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case-controlled study. QJM 2020;113(8):546–50.

Rosas IO, Braun N, Waters M, Go RC, Hunter BD, Bhagan S, et al. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med 2021;384(16):1503–16.

Rossotti R, Travi G, Ughi N, Corradin M, Baiguera F, Fumagalli R, et al. Safety and efficacy of anti-IL6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect 2020;81(4):e11–e27.

Roumiere M, Paule R, Vallerie A, Rohmer J, Ballester M, Brun AL, et al. Tocilizumab for Severe Worsening COVID-19 Pneumonia: A Propensity Score Analysis. J Clin Immunol 2021;41(2):303–14.

Salaña C, Han J, Yau L, Reiss W, Kramer B, Neidhart JD, et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med 2021;384(1):20–30.

Snow TAC, Saleem N, Ambler G, Nastouli E, Singer M, Arulkumaran N. Tocilizumab in COVID-19: a meta-analysis, trial sequential analysis, and meta-regression of randomized-controlled trials. Intensive Care Med 2021.

Soin AS, Kumar K, Choudhary NS, Sharma P, Mehta Y, Kataria S, et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir Med 2021;9(5):511–21.

Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis 2020.

Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AL, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020;383(24):2333–44.

Tleyjeh IM, Kashour Z, Riaz M, Hassett L, Veiga VC, Kashour T. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis-first update. Clin Microbiol Infect 2021.

Toniasi P, Piva S, Cattalini M, Garrella E, Regola F, Castelli F, et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020;19(7).

Vaheri A, Britton GJ, Gruber C, Hegde S, Kim J, Kukkonen M, et al. Immunology of COVID-19: Current State of the Science. Immunity 2020;52(6):910–41.

Wu C, Chen X, Cai Y, Xie J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020.

Wu H, Liu S, Luo H, Chen M. Progress in the Clinical Features and Pathogenesis of Abnormal Liver Enzymes in Coronavirus Disease 2019. J Clin Transl Hepatol 2021;9(2):239–46.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–62.