ZebraShare: A new venue for rapid dissemination of zebrafish mutant data

April DeLaurier, Corresponding author; Equal first author, 1, Douglas G Howe 2, Leyla Ruzicka 2, Adam N Carre 3,4,5, Lacie Mishoe Hernandez 1, Kali J Wiggins 1, Mika M Gallati 6, Kayce Vanpelt 1, Frances Loyo Rosado 1, Katlin G Pugh 1, Chasey J Shabdue 1, Khadijah Jihad 1, Summer B Thyme 7, Jared C Talbot, Corresponding author; Equal first author, 6

1 Department of Biology and Geology, University of South Carolina - Aiken, Aiken, South Carolina, United States
2 The Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States
3 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States
4 Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, Massachusetts, United States
5 Biozentrum, Universität Basel, Basel, Switzerland
6 School of Biology and Ecology, University of Maine, Orono, Maine, United States
7 Department of Neurobiology, University of Alabama - Birmingham, Birmingham, Alabama, United States

Corresponding Authors: April DeLaurier, Jared C Talbot
Email address: AprilD@usca.edu, jared.talbot@maine.edu

Background. In the past decade, the zebrafish community has widely embraced targeted mutagenesis technologies, resulting in an abundance of mutant lines. While many lines have proven to be useful for investigating gene function, many have also shown no apparent phenotype, or phenotypes not of interest to the originating lab. In order for labs to document and share information about these lines, we have created ZebraShare as a new resource offered within ZFIN. Methods. ZebraShare involves a form-based submission process generated by ZFIN. The ZebraShare interface (https://zfin.org/action/ZebraShare) can be accessed on ZFIN under “Submit Data”. Users download the Submission Workbook and complete the required fields, then submit the completed workbook with associated images and captions, generating a new ZFIN publication record. ZFIN curators add the submitted phenotype and mutant information to the ZFIN database, provide mapping information about mutations, and cross reference this information across the appropriate ZFIN databases. We present here examples of ZebraShare submissions, including phf21aa, kdm1a, ctnnd1, snu13a, and snu13b mutant lines. Results. Users can find ZebraShare submissions by searching ZFIN for specific alleles or line designations, just as for alleles submitted through the normal process. We present several potential examples of submission types to ZebaShare including a-phenotypic mutants, mildly phenotypic, and early lethal mutants. Mutants for kdm1a show no apparent skeletal phenotype, and phf21aa mutants show only a mild skeletal phenotype, yet these genes have specific human disease relevance and therefore may be useful for further studies. The p120-catenin encoding gene, ctnnd1, was knocked out to
investigate a potential role in brain development or function. The homozygous ctnnd1 mutant disintegrates during early somitogenesis and the heterozygote has localized defects, revealing vital roles in early development. Two snu13 genes were knocked out to investigate a role in muscle formation. The snu13a;snu13b double mutant has an early embryonic lethal phenotype, potentially related to a proposed role in the core splicing complex. In each example, the mutants submitted to ZebraShare display phenotypes that are not ideally suited to their originating lab’s project directions but may be of great relevance to other researchers. **Conclusion.** ZebraShare provides an opportunity for researchers to directly share information about mutant lines within ZFIN, which is widely used by the community as a central database of information about zebrafish lines. Submissions of alleles with a-phenotypic or unexpected phenotypes is encouraged to promote collaborations, disseminate lines, reduce redundancy of effort and to promote efficient use of time and resources. We anticipate that as submissions to ZebraShare increase, they will help build an ultimately more complete picture of zebrafish genetics and development.
ZebraShare: A new venue for rapid dissemination of zebrafish mutant data

April DeLaurier¹, *, Douglas G. Howe², Leyla Ruzicka², Adam N. Carte³⁻⁵, Lacie Mishoe Hernandez¹, Kali J Wiggins¹, Mika M. Gallati⁶, Kayce Vanpelt¹, Frances Loyo Rosado¹, Katlin G. Pugh¹, Chasey J. Shabdue¹, Khadijah Jihad¹, Summer B. Thyme⁷, and Jared C. Talbot⁶, *

* These authors contributed equally.

Affiliations:
1) Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, USA
2) The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
3) Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
4) Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA, USA
5) Biozentrum, Universität Basel, Basel, Switzerland
6) School of Biology and Ecology, University of Maine, Orono, ME, USA
7) Department of Neurobiology, University of Alabama - Birmingham, Birmingham, Alabama, United States

Corresponding Author:
Jared C. Talbot
5735 Hitchner Hall Room 303, Orono, ME, 04469, USA
Email address: jared.talbot@maine.edu

Co-corresponding Author:
April DeLaurier
471 University Parkway, Aiken, SC 29801
Email address: aprild@usca.edu
Abstract

Background. In the past decade, the zebrafish community has widely embraced targeted mutagenesis technologies, resulting in an abundance of mutant lines. While many lines have proven to be useful for investigating gene function, many have also shown no apparent phenotype, or phenotypes not of interest to the originating lab. In order for labs to document and share information about these lines, we have created ZebraShare as a new resource offered within ZFIN.

Methods. ZebraShare involves a form-based submission process generated by ZFIN. The ZebraShare interface (https://zfin.org/action/ZebraShare) can be accessed on ZFIN under “Submit Data”. Users download the Submission Workbook and complete the required fields, then submit the completed workbook with associated images and captions, generating a new ZFIN publication record. ZFIN curators add the submitted phenotype and mutant information to the ZFIN database, provide mapping information about mutations, and cross reference this information across the appropriate ZFIN databases. We present here examples of ZebraShare submissions, including phf21aa, kdm1a, ctnnd1, snu13a, and snu13b mutant lines.

Results. Users can find ZebraShare submissions by searching ZFIN for specific alleles or line designations, just as for alleles submitted through the normal process. We present several potential examples of submission types to ZebraShare including a-phenotypic mutants, mildly phenotypic, and early lethal mutants. Mutants for kdm1a show no apparent skeletal phenotype, and phf21aa mutants show only a mild skeletal phenotype, yet these genes have specific human disease relevance and therefore may be useful for further studies. The p120-catenin encoding gene, ctnnd1, was knocked out to investigate a potential role in brain development or function. The homozygous ctnnd1 mutant disintegrates during early somitogenesis and the heterozygote has localized defects, revealing vital roles in early development. Two snu13 genes were knocked out to investigate a role in muscle formation. The snu13a;snu13b double mutant has an early embryonic lethal phenotype, potentially related to a proposed role in the core splicing complex.

In each example, the mutants submitted to ZebraShare display phenotypes that are not ideally suited to their originating lab’s project directions but may be of great relevance to other researchers.

Conclusion. ZebraShare provides an opportunity for researchers to directly share information about mutant lines within ZFIN, which is widely used by the community as a central database of information about zebrafish lines. Submissions of alleles with a-phenotypic or unexpected phenotypes is encouraged to promote collaborations, disseminate lines, reduce redundancy of effort and to promote efficient use of time and resources. We anticipate that as submissions to ZebraShare increase, they will help build an ultimately more complete picture of zebrafish genetics and development.

Introduction

In the last decade use of reverse genetics has become a standard approach to investigate gene function in zebrafish and other species. With the advent of zinc finger nucleases it became
possible to direct mutagenesis in zebrafish, which became easier with TALENS and then even simpler with CRISPR-Cas9 technology (Rafferty & Quinn, 2018). The simplicity of targeted mutagenesis in zebrafish has led to mass production of knockout lines targeting genes and genetic pathways of interest. Some mutants show phenotypes that have led to impactful publications, but it is apparent that many more mutants have no phenotypic defect (a-phenotypic), subtle phenotypes, or phenotypes in tissues that are not in the research focus of the originating lab (Kok et al., 2015; Stainier, Kontarakis & Rossi, 2015). Although mutants with unexpected phenotypes may sometimes not be pursued by the originating lab, information about these lines is still critically relevant to the broader research community. Failure to disseminate these findings and alleles will ultimately lead to redundant efforts, lost time, and wasted resources. To facilitate information distribution about zebrafish lines, we have integrated a new feature into the Zebrafish Information Network (ZFIN) called “ZebraShare”. In ZebraShare, users submit an abstract, knockout sequences, validation steps, and phenotypic information directly to ZFIN. Submissions are curated by ZFIN staff into the ZebraShare database for public viewing. Future information or edits can be added to the submission over time, which may include further descriptions of phenotypes or other relevant information about lines. We anticipate that ZebraShare will help zebrafish researchers engage in optimized use of their reverse genetics mutants by avoiding redundancy, sharing phenotypes that would be otherwise lost, and forging collaborations for future research. Here, we describe the ZebraShare feature of ZFIN. We begin by describing the submission process and features included which ensure that data quality can quickly be assessed by ZFIN users. Then, we provide four differing examples of submissions and for each example provide the rationale for constructing the mutant and why the resulting phenotypes lead to ZebraShare submission. Finally, we discuss the implications of this new sharing system.

Materials & Methods

Animal stocks and husbandry: We raised and housed zebrafish in standard conditions (Westerfield, 2007) and collected embryos by natural spawning of adult fish, with embryo staging as described (Kimmel et al., 1995). All zebrafish experimentation was conducted as approved by Institutional Animal Care and Use Committees at the University of Maine (approval number A2019_10_01), The Ohio State University (approval number 2012A00000113), the University of Alabama at Birmingham (approval number 21744), Harvard University (approval number 25-08), the University of South Carolina (approval number 2485-101478-031720) and the University of South Carolina Aiken (010317-BIO-01).

Oligonucleotides: Table 1 lists the oligonucleotides used in this study during mutant construction and genotyping.

phf21aa mutant construction: For phf21aa mutant (phf21aa^{aikd}) construction, wild-type AB embryos were co-injected with 3 nl of a mixture containing guide RNA targeting exon 6 (ENSDART00000173629.2) (~160 ng/µl) along with mRNA encoding nuclear-localized Cas9 (~160 ng/µl). Nuclear-localized Cas9 mRNA was synthesized from pCS2-nCas9n (Addgene),
linearized with NotI-HF (New England Biolabs), column purified (Zyppy Plasmid Miniprep kit; Zymo Research), and mRNA was synthesized (mMessage mMachine SP6 kit; Thermo Fisher). Mutagenesis efficiency was detected in groups of F0 embryos (5 pooled x 3 replicates) using T7 endonuclease (New England Biolabs) digest of PCR fragments flanking the gRNA target site (PCR product = 995 base-pairs (bp), digestion products are approximately 720 and 275 bp). DNA from potential individual mutants was Sanger sequenced to establish a line with a 7 bp deletion at the gRNA target site in exon 6 (phf21aa^{aik4}). This mutation results in a frameshift mutation producing extensive missense mutations and a premature stop codon (GenBank accession numbers: wild type MW438986, mutant MW438985). Genotyping of subsequent individual phf21aa^{aik4} fish utilized primers flanking the indel site. PCR amplification results in a 641 bp product for wild-type DNA and a 634 bp product for mutant DNA. PCR products are run on a 2.5% agarose gel to resolve bands (wild type = 641 bp, mutant = 634 bp, heterozygotes = 641 + 634 bp bands).

kdm1a mutant construction: For kdm1a mutant (kdm1a^{aik5}) construction, wild-type AB embryos were co-injected with guide RNA targeting exon 1 (ENSDART00000180532.1) (~200 ng/µl) along with mRNA encoding nuclear-localized Cas9 (~160 ng/µl). Nuclear-localized Cas9 mRNA was synthesized and injected as described above for phf21aa. Mutagenesis efficiency was detected in groups of F0 embryos (5 pooled x 3 replicates) using T7 endonuclease digest of PCR fragments flanking the guide RNA target site (PCR product = 299 bp, digestion products are approximately 228 and 71 bp), as described for phf21aa. cDNA from individual potential mutants was Sanger sequenced to result in a frameshift producing extensive missense and a premature stop codon. Genotyping of subsequent individual kdm1a^{aik5} fish utilizes the same T7 primers flanking the indel site. PCR amplification results in a 299 bp product for wild-type DNA and a 285 bp product for mutant DNA. PCR products are run on a 2.5% agarose gel to resolve bands (wild type = 299 bp, mutant = 285 bp, heterozygotes = 299 + 285 bp bands).

ctnnd1 mutant construction: The ctnnd1 mutant (ctnnd1^{uab302}) was constructed by injection of three guide RNAs (>50 ng/µl each) and purified Cas9 protein (25 µM) into wild-type EKW embryos. The first two nucleotides of every guide were changed to 5′-GG-3′ for high-yield synthesis with T7 polymerase. Heterozygous carriers were initially identified on pools with MiSeq sequencing and later confirmed with Sanger sequencing. PCR of this 31 bp deletion results in a 242 bp product for wild-type DNA and a 211 bp product for mutant DNA. PCR products were separated with standard agarose gel electrophoresis on 4% gels. The injected (F0) fish were raised to adulthood and F1 carriers confirmed by sequencing were outcrossed to wild-type EKW fish.

snu13a and snu13b mutant construction: The snu13a and snu13b mutants were constructed following described methods (Talbot & Amacher, 2014). An injection mix containing 38 ng/µl of guide RNA targeting snu13a and 83 ng/µl of mRNA encoding nuclear localized Cas9 (Jao, Wente & Chen, 2013) was injected into AB fish. For snu13b, the injection was similar except the snu13b guide RNA had a concentration of 37 ng/µl. To prepare the Cas9 mRNA we synthesized from pCS2-nCas9n (Jao, Wente & Chen, 2013) after linearization with NotI (New England Biolabs).
Biolabs) using a mMessage mMachine kit (Thermo Fisher) and purified using a NucleoSpin II RNA cleanup kit (Machery-Nagel). Mutagenesis efficiency was determined using High Resolution Melt Analysis (HRMA) (Talbot and Amacher 2014; Dahlem et al., 2012). These F1 carriers were outcrossed and identified by testing 16 embryos per clutch using HRMA. HRMA was again used to pre-screen F1 heterozygote carriers, which were sequenced using primers specific to snu13a and snu13b. Sequence analysis was performed on individual snu13a^{−/−};snu13b^{−/−} embryos.

Histological staining and imaging of skeletal tissue: Larval skeletal samples (phf21aa and kdm1a) were prepared and stained using Alcian Blue and Alizarin Red dyes as described (Walker & Kimmel, 2007; DeLaurier, Alvarez & Wiggins, 2019). Samples were flat-mounted and imaged using an Olympus BX41 compound microscope and Olympus cellSens Standard software (version 1.16).

DAPI-stained embryos: ctnnd1 embryos were left in the chorion and fixed overnight in 4% formaldehyde in PBS. Embryos were then washed 4 x 5 minutes in PBS, incubated in DAPI for 30 minutes, and washed 2 x 5 minutes in PBS before being mounted in a droplet of 1% low-melting agarose in PBS on a 35mm MatTek dish with a No. 1.5 coverslip bottom. Imaging was performed on a Zeiss LSM700 inverted laser scanning confocal microscope with a Plan-APOCHROMAT 10X/0.45 AIR objective using 5µm slices. Maximum intensity projections were produced from acquired z-stacks in Fiji (Schindelin et al., 2012), and images were scaled to maximize for visibility.

Live imaging snu13 mutants: Zebrafish embryos from in-cross of snu13a^{oz24}/+;snu13b^{oz91}/+ were monitored through their first 12 hours of development, and then imaged using a Leica DMC5400 camera mounted on a Leica MZ10F microscope at 24 hours post-fertilization (hpf).

Live imaging ctnnd1 mutants: ctnnd1 embryos were photographed at approximately the 6-somite stage using identical magnification and lighting settings across embryos on a Zeiss AXIO Zoom V16 microscope fitted with a PlanNeofluar Z 1x/0.25 objective and Axiocam 503 color camera. Embryo photographs were color-balanced using the BIOP SimpleColorBalance plugin in ImageJ (Schindelin et al., 2012). The time-lapse recording of developing ctnnd1 embryos was made from approximately the 4-6 somite stage to the 12-14 somite stage using the “TIME-LAPSE” function on an iPhone 8 mounted to a Zeiss Stemi 2000 stereo microscope with a Gosky Universal Cell Phone Adapter Mount.

Results

ZebraShare implementation: ZebraShare implements several new features into existing ZFIN functionalities. A ZebraShare landing page, linked from the "Submit Data" button on the ZFIN home page, contains a summary of the project and links to the workbook and submission page (Figure 1). ZebraShare is designed to fit into ZFIN's existing publication acquisition infrastructure, nomenclature, and curation workflows. When completing the ZebraShare Workbook, researchers are asked to define precise coordinates of the mutation so the alleles can be described accurately in ZFIN (Figure 2) and to provide information relevant to the mutant.
When uploading this workbook, authors have an opportunity to enter an abstract describing their allelic and phenotypic characterization (Figure 3, Table 2). This abstract is linked to the workbook and any images and captions included in the submission. Upon creation, ZebraShare submissions are automatically assigned to the ZFIN nomenclature coordinator. The coordinator vets nomenclature, consults authors if needed, and after adding alleles to ZFIN with correct nomenclature, assigns the paper to the high-priority ZebraShare curation queue. Curators complete curation by adding the remaining details for mutants to the publication and inform the authors that their submission has been curated. Once a ZebraShare submission is completed, the mutant alleles and phenotypes can be searched for just like the ZFIN entries curated from papers (Van Slyke et al., 2018).

Ensuring validated mutant information: ZebraShare provides researchers an opportunity to detail their own validation steps in the submission workbook, which will be listed on the allele page. First, researchers enter detailed descriptions of the mutation using a written description, sequence alignment, and predicted effect on transcript and protein. Then, researchers specify whether the transcript changes are determined directly from cDNA sequencing or inferred from genomic sequences. A field is also provided where researchers can specify whether nonsense-mediated decay (NMD) has been assayed, because of the growing concern that compensation may occur in alleles that induce NMD (Rossi et al., 2015; El-Brolosy et al., 2019). Researchers can state whether mutations have been examined in homozygous embryos from heterozygous parents, or whether maternal-zygotic knockouts have been examined. Information about maternal-zygotic outcomes may be particularly important for mutations showing little or no phenotype in the offspring of heterozygous crosses. While validation experiments are not required for submission to ZebraShare, these fields are included to provide researchers an opportunity to communicate this information if desired. Because mutant validation may be improved after submission, and line availability may change, the following fields remain editable by submitting researchers and their designees after submission: ‘Functional Consequence,’ ‘Adult Viable,’ ‘Maternal Zygosity Examined,’ ‘NMD Apparent,’ ‘Other Line Information,’ and ‘Available’. Only the submitting researcher and other researchers designated at the time of mutant allele submission are able to edit these fields.

Example 1, *phf21aa* knockout shows a mild craniofacial skeletal phenotype: *phf21aa* homozygous mutants develop normally, have no obvious external abnormalities, and are viable, fertile adults. A slight medial rotation of the ceratohyal cartilage was detected in whole mount mutant specimens at 7 dpf (Figure 3C) in maternal-zygotic mutants (7/20) not detected in heterozygote offspring (35/35). Flat mount of pharyngeal skeletons reveals no ceratohyal patterning defect in mutants compared to wild-type siblings (Figure 3C), suggesting the rotation defect may be the result of a connective tissue defect not apparent in skeletal preparations. Loss of PHF21A is associated with Potocki-Shaffer Syndrome (PSS) in humans and is associated with craniofacial and neurological complications (Kim et al., 2012, 2019). Thus, although this mutant...
did not have a skeletal phenotype of interest to the originating lab, the phf21aa line may have other important uses as a disease model, so information about this line was provide to ZebraShare (Mishoe L.N. and DeLaurier, 2020). Researchers with interest in pursuing a zebrafish model for PSS may wish to investigate the origin of the anatomical defect in phf21aa mutants, in double mutants for the zebrafish co-ortholog for phf21aa, phf21ab, or in combination with mutants for other interacting factors (i.e. kdm1a, ZNF198/zmym2, ZNF261/zmym3) (Hakimi et al., 2003; Shi et al., 2004; Lan et al., 2007; Kim et al., 2012, 2019).

Example 2, kdm1a mutants have no overt skeletal phenotype: kdm1a (zygotic and maternal-zygotic) homozygous mutants develop normally, have no obvious external abnormalities, and are viable, fertile adults. Analysis of craniofacial skeletal patterning in kdm1a maternal-zygotic mutants at stages between 4-8 dpf (Figure 4) reveals no specific defects in cartilage or bone (21/23) compared to kdm1a wild-type (18/18) kdm1a larvae. Because the kdm1a mutant was a-phenotypic, the originating lab chose not to pursue it further. To prevent others from spending redundant effort generating the same line, information about this mutant was provided submitted to ZebraShare (DeLaurier et al., 2020). KDM1A functions as a histone demethylase transcriptional corepressor in a multi-protein HDAC1/2/CoREST-containing complex (Hakimi et al., 2003; Shi et al., 2004). Humans with mutations in KDM1A are reported to have craniofacial defects including cleft palate and developmental delay (Tunovic et al., 2014; Chong et al., 2016), these clinical features are also found in Kabuki syndrome. In one study (Turnovic et al., 2014), clinical features are hypothesized to result from the combined effect of mutations in KDM1A and ANKRD11 (Ankrin Repeating Domain-Containing protein 11), the latter of which is associated with KBG syndrome involving craniofacial phenotypes. PHF21A and KDM1A interact, where binding of PHF21A to histones is required for the repressive activity of KDM1A (Lan et al., 2007; Kim et al., 2012). Given that both KDM1A and PHF21A underlie craniofacial defects in humans, zebrafish mutant models for these genes may be of potential interest to labs studying human syndromes such as Kabuki, KBG, and PSS-type syndromes.

Example 3, ctnnd1 mutants disintegrate by 24 hpf: The ctnnd1 gene was knocked out because it is within a locus associated with neuropsychiatric disorders (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) and the related gene CTNND2 has been linked to autism (Turner et al., 2015). Prior analysis using a ctnnd1 morpholino (MO) noted embryonic disassociation at high doses and bent tails at lower doses (Hsu et al., 2012); however, without mutant validation these ctnnd1-MO phenotypes are difficult to distinguish from non-specific morpholino toxicity (Stainier et al., 2017; Robu et al., 2007; Bedell et al., 2011). Consistent with a requirement for ctnnd1 in embryonic viability, in-cross of ctnnd1 heterozygotes yields no homozygous mutants 6 dpf (N=44 wild type, 56 het, 0 mutant, Chi Square analysis P<0.0001). Subsequent analysis revealed that the ctnnd1 homozygotes proceed through cleavage stages and gastrulate but typically die between the 4 and 12 somite stages (Figure 5A, B). Embryonic death occurs via cellular disassociation (Figure 5C), initiating at the head or the tailbud.
In ctnnd1 heterozygotes, small clumps of cells briefly appear on the embryo's dorsal surface during early somitogenesis stages, typically over the mid- or hindbrain regions (Figure 5D-F). Given that the homozygote fully disassociates, the heterozygote's small clumps of ectopic cells may represent localized points of disassociation. Genotyping at 12 hpf confirms that 24/24 “dying” embryos are homozygous mutant, 25/25 embryos with ectopic cells are heterozygous, and 23/23 healthy embryos are wild type (Chi Square analysis P<0.001). Because early lethality precludes analysis of neural phenotypes, information about the ctnnd1 mutants was deposited in ZebraShare (Thyme and Carte 2020). Consistent with the zebrafish findings, the p120-catenin protein encoded by ctnnd1 has several known roles in early development and murine loss-of-function models are embryonic lethal when homozygous (Hernández-Martínez, Ramkumar & Anderson, 2019). The mouse Ctnnd1 neural crest knockout line shows cleft palate when homozygous and consistent defects are seen in humans heterozygous for CTNND1 truncation alleles (Alharatani et al., 2020). Ctnnd1 is involved in cadherin stabilization, WNT signaling during gastrulation and epithelial-to-mesenchymal transitions, and suppression of the RhoA–ROCK–myosin pathway (Pieters et al., 2016; Yu et al., 2016; Hernández-Martínez, Ramkumar & Anderson, 2019). It is unclear which of these functions are the direct cause of the zebrafish ctnnd1 defects and researchers interested in any of these mechanisms and/or in CTNND1-related human disease may find this mutant useful.

Example 4, snu13a;Snu13b double mutants arrest during somitogenesis: Previous analysis of Snu13 gene function in flies and zebrafish supported a specific role in muscle formation (Johnson et al., 2013; Williams et al., 2015). To further test this role, the two zebrafish genes, snu13a and snu13b, were knocked out. DNA sequencing of the resulting mutants indicates that they both cause frameshift and premature stop codons. The snu13a^{-/-} and snu13b^{-/-} single mutants are both overtly indistinguishable from wild-type siblings (not shown). Embryos homozygous for the two mutations (snu13a^{-/-};snu13b^{-/-}) appear normal until 10 hpf but their development ceases to progress by 12 hpf, after which the cells linger in place and typically become necrotic by 24 hpf (Figure 6). Some of the fish with this severe phenotype are homozygotically mutant for snu13b but only heterozygous for snu13a (snu13a⁺⁻;snu13b^{-/-}). These snu13a⁺⁻;snu13b^{-/-} fish are often indistinguishable from the double mutant shown in figure 6, but are sometimes indistinguishable from wild-type siblings (40 with wild-type phenotype were genotyped: 0 are snu13a^{-/-};snu13b^{-/-}, 7 are snu13a⁺⁻;snu13b^{-/-}, 16 are snu13a⁺⁻;snu13b^{-/-}, Chi Square analysis P<0.0001). These findings reveal that embryonic development can only sometimes proceed through somitogenesis stages when snu13 function is strongly reduced (snu13a⁺⁻;snu13b^{-/-}) and cannot proceed in the absence of snu13 gene function (snu13a^{-/-};snu13b^{-/-}). A severe developmental halt is likely explained by a requirement for Snu13 protein in assembly of the core spliceosome (Stevens et al., 2001; Dobbyn & O’Keefe, 2004; Oruganti, Zhang & Li, 2005; Rothé et al., 2014; Diouf et al., 2018). These mutant phenotypes demonstrate that snu13a & snu13b gene function is essential to organismal viability and development past early embryogenesis. This severe embryonic phenotype impeded...
further investigation of muscle formation; however, these lines may be valuable to the broader research community, so information about the *snu13a* and *snu13b* mutants was submitted to ZFIN via ZebraShare (Gallati and Talbot 2020). The mutants may be of interest to researchers investigating the core spliceosome, or as a comparison group for investigation of alternative splicing pathways. These mutants may also be useful to labs studying the maternal to zygotic transition because both *snu13a* and *snu13b* are expressed prior to zygotic genome activation (Papatheodorou et al., 2018).

Discussion

Currently, there is no comprehensive zebrafish mutant library that parallels those available for yeast, drosophila, and worms (Winzeler et al., 1999; Thurmond et al., 2019; Harris et al., 2020). While large scale mutagenesis projects are being undertaken, such as the Sanger Targeting Induced Local Lesions in Genomes (TILLING) screen (Kettleborough et al., 2013), in most examples these mutant collections exist only in untested frozen sperm that carry many mutations in other genes. ZebraShare is intended to expand the ZFIN mutant collection by encouraging labs to publicize characterized alleles that lack an obvious route to traditional publication (Figure 7A) and is a suitable destination for archiving information about alleles that labs may not plan to pursue.

Lines submitted to ZebraShare are publicly visible, and the abstracts can be cited, but the submissions may not include some information vital to journal publication, such as details about mutant construction. For instance, in this manuscript we cite abstracts of ZebraShare submissions but also include details about mutant construction in our methods section. To include these details, we needed to collect and coordinate information from each originating lab. Likewise, if other researchers would like to incorporate ZebraShare data into their own traditional publications, they should contact the lab which originated the mutant line. Thus, the ZebraShare system is intended to facilitate dissemination of unpublished mutant information and collaboration formation, to complement and enhance traditional routes of publication.

In this paper, we provide examples of mutants that we publicized using ZebraShare, such as a-phenotypic alleles (*kdm1a*), mildly phenotypic (*phf21aa*), and those with severe early defects (*snu13a;snu13b* and *ctnnd1*). The diversity in described early lethal phenotypes, *snu13a*snu13b arrests and *ctnnd1* disintegrates, highlight the reality that different processes can underlie embryonic death. The observation that some *snu13a*+/-;snu13b-/- fish can proceed through somitogenesis while others cannot underscores variation often observed in mutant phenotypes, which is potentially influenced by genetic or environmental modifiers. New discoveries may stimulate new interest in submitted lines. While there was no clear disease connection when the *ctnnd1* homozygous lethal phenotypes were submitted to ZebraShare, subsequent analysis of the heterozygote reveals a more specific cellular disassociation at the embryo’s dorsal edge, which could potentially be related to neural crest defects recently reported in humans with CTNND1 gene variants (Alharatani et al., 2020). Finally, ZebraShare may also provide information about
alleles which reproduce phenotypes found already in publication and offers a way to quickly share phenotypes that verify or contradict the literature.

We generated ZebraShare to help researchers disseminate information about mutants which have no clear path to standard journal publication, including mutants that have no overt phenotypic defect. When mutants lack a desired phenotype, researchers may dismiss the finding because of compensatory mechanisms like gene redundancy, transcriptional compensation, unexpected splice variants, and maternal contributions (Ciruna et al., 2002; Rossi et al., 2015; Anderson et al., 2017; El-Brolosy et al., 2019). While these compensatory mechanisms sometimes do explain a lack of phenotype, the absence of phenotypic defect does not constitute evidence that one of these mutation-bypassing mechanisms are being used. In many cases a-phenotypic mutants provide genuine insights into gene function. We strongly believe that the dissemination of information about such unexpected phenotypes is necessary to reduce duplicate effort and to foster honest, open discussion about the necessity, redundancy, and interactions between individual genes in zebrafish.

ZebraShare complements other rapid mutant dissemination platforms (Figure 7B). For instance, CRISPRz allows researchers to share information about CRISPR guide RNAs but does not describe alleles generated nor mutant phenotypes (Varshney et al., 2016). Several researchers have put forward their own websites for describing mutants and transgenes (e.g., https://kawakami.lab.nig.ac.jp/), although individual lab websites may not be completely integrated into ZFIN. ZebraShare is conceptually similar to the ZFIN antibody and protocol wikis, which have provided valuable information to the zebrafish community for many years (Bradford et al., 2011; Howe et al., 2016). Unlike these wiki-style submissions to ZFIN, ZebraShare submissions are manually curated by ZFIN staff and are directly integrated into the database itself rather than as a separate wiki. ZFIN already accepts large datasets of less-characterized mutants and other direct submissions (Howe et al., 2016), which has been used by the Sanger TILLING project and several North American TILLING projects (Moens et al., 2008; Kettleborough et al., 2013 among others); however, ZebraShare is the first mechanism for labs to disseminate detailed information about individual mutations and phenotypes on ZFIN. Thus, ZebraShare fills a key niche by enabling individual labs to directly submit allelic and phenotypic information for up to a few mutants in ZFIN (Figure 7B).

In the long term, ZebraShare will serve to facilitate reporting from our community’s collective project and enable the field to report about the function of more genes than can be communicated exclusively through traditional publications. We anticipate that researchers will contribute information about multiple alleles within individual genes as this information becomes available. Different lesions for single genes may have slightly different effects on RNA/protein (e.g. premature stop vs., splice error, vs. deletion of functional domains). Thus, deposition of information about multiple alleles will be extremely useful as our community discerns which mutation types have the strongest effects on development, and may influence the dialogue about discrepancies between morpholino and mutant data (Kok et al., 2015; Stainier, Kontarakis & Rossi, 2015; El-Brolosy et al., 2019; Tessadori et al., 2020). The ease of sharing will encourage
examples and insights into how gene redundancy, maternal effect, and other ‘obscuring’ factors influence phenotypic severity. Furthermore, the simple ZebraShare submission process opens up opportunities for undergraduates, rotation students, and other new scientists to gain the transformative experience of describing and publicizing their findings in a formal and permanent manner with the broader community.

Conclusions

ZebraShare was conceived and developed in response to a community-wide need for a simple and centralized means to share information about alleles, particularly about a-phenotypic lines (e.g. *kdm1a*), or mild or unexpected phenotypes (e.g. *phf21aa*). Yet, researchers may also want to submit mutants with strong and interesting phenotypes that are outside of the scope of their normal work. For instance, we show a role for *ctnnd1* in embryonic integrity, and a role for *snu13* genes in development past early somite stages. We anticipate that over time with community submissions growing, ZebraShare will be a valuable resource to facilitate active collaborations on submitted alleles, inform investigators of existing lines, provide preliminary information about potential roles of genes and variants of mutant alleles for those genes, and promote sharing and communication about mutant alleles within the field.

Acknowledgements

We thank Mark Nilan and the University of Maine zebrafish facility for care of *snu13a*oz24 and *snu13b*oz91 mutants, especially during the 2020 Coronavirus pandemic. We thank Sharon L Amacher (S.L.A.) for supporting construction and early characterization of these *snu13* mutants and the Ohio State Rightmire Hall zebrafish facility staff for initial care of these lines. We thank Alexander F. Schier for supporting construction and early characterization of the *ctnnd1* mutants and the Harvard University zebrafish facility staff for initial care of these lines. J.C.T. thanks Sara Loiselle (University of Maine) for comments on this manuscript and Jared Austin (University of Maine) for assistance with *snu13a;snu13b* genotyping. A.D. thanks Dr. Hyung-Goo Kim (Augusta University, Hamad Bin Khalifa University) for input and ideas about PHF21A. We also thank the ZFIN development team for creation of the ZebraShare feature in ZFIN.

References

Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA,
Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. 2020. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. *Human Molecular Genetics* 29:1900–1921. DOI: 10.1093/hmg/ddaa050.

Anderson JL, Mulligan TS, Shen M-C, Wang H, Scahill CM, Tan FJ, Du SJ, Busch-Nentwich EM, Farber SA. 2017. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. *PLOS Genetics* 13:e1007105. DOI: 10.1371/journal.pgen.1007105.

Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, Knight J, Mani P, Martin R, Moxon SAT, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Bauer Schaper H, Schaper K, Shao X, Singer A, Sprague J, Sprunger B, Van Slyke C, Westerfield M. 2011. ZFIN: enhancements and updates to the zebrafish model organism database. *Nucleic Acids Research* 39:D822–D829. DOI: 10.1093/nar/gkq1077.

Bedell VM, Westcot SE, Ekker SC. 2011. Lessons from morpholino-based screening in zebrafish. *Briefings in Functional Genomics* 10:181–188. DOI: 10.1093/bfgp/elr021.

Chong JX, Yu J-H, Lorentzen P, Park KM, Jamal SM, Tabor HK, Rauch A, Saenz MS, Boltshauser E, Patterson KE, Nickerson DA, Bamshad MJ. 2016. Gene discovery for Mendelian conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive facial features. *Genetics in Medicine: Official Journal of the American College of Medical Genetics* 18:788–795. DOI: 10.1038/gim.2015.161.

Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, Schier AF. 2002. Production of maternal-zygotic mutant zebrafish by germ-line replacement. *Proceedings of the National Academy of Sciences* 99:14919–14924. DOI: 10.1073/pnas.222459999.

Dahlem TJ, Hoshijima K, Juryneck MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. 2012. Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome. *PLoS Genetics* 8:e1002861. DOI: 10.1371/journal.pgen.1002861.

DeLaurier A, Alvarez CL, Wiggins KJ. 2019. *hdac4 mediates perichondral ossification and pharyngeal skeleton development in the zebrafish*. *PeerJ* 7:e6167. DOI: 10.7717/peerj.6167.

DeLaurier, A., Wiggins, K., VanPelt, K. 2020. A frameshift mutation in the gene encoding LDLR adaptor protein Ldlrap1a in zebrafish. *Zebreshare, ZFIN Abstract: ZDB-PUB-180131-10*

Diouf B, Lin W, Goktug A, Grace CRR, Waddell MB, Bao J, Shao Y, Heath RJ, Zheng JJ, Shelat AA, Relling MV, Chen T, Evans WE. 2018. Alteration of RNA Splicing by Small-Molecule Inhibitors of the Interaction between NHP2L1 and U4. *SLAS DISCOVERY: Advancing Life Sciences R&D* 23:164–173. DOI: 10.1177/2472555217735035.
Dobbyn HC, O’Keefe RT. 2004. Analysis of Snu13p mutations reveals differential interactions with the U4 snRNA and U3 snoRNA. RNA (New York, N.Y.) 10:308–320. DOI: 10.1261/rna.5970404.

El-Brolosy M, Rossi A, Kontarakis Z, Kuenne C, Guenther S, Fukuda N, Takacs C, Lai S-L, Fukuda R, Gerri C, Kikhi K, Giraldez A, Stainier DYR. 2019. Genetic compensation is triggered by mutant mRNA degradation. Nature. DOI: 10.1101/328153.

Gallati, M.M., and Talbot, J.C. 2020. Snu13 genes are essential for embryonic development past early segmentation stages. ZebraShare, ZFIN abstract: ZDB-PUB-200604-17

Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, Maioli M, Calandra S, Bertolini S, Cossu F, Grishin N, Barnes R, Cohen JC, Hobbs HH. 2001. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science (New York, N.Y.) 292:1394–1398. DOI: 10.1126/science.1060458.

Hakimi M-A, Dong Y, Lane WS, Speicher DW, Shiekhattar R. 2003. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. The Journal of Biological Chemistry 278:7234–7239. DOI: 10.1074/jbc.M208992200.

Harris TW, Arnaboldi V, Cain S, Chan J, Chen WJ, Cho J, Davis P, Gao S, Grove CA, Kishore R, Lee RYN, Muller H-M, Nakamura C, Nuin P, Paulini M, Raciti D, Rodgers FH, Russell M, Schindelman G, Auken KV, Wang Q, Williams G, Wright AJ, Yook K, Howe KL, Schedl T, Stein L, Sternberg PW. 2020. WormBase: a modern Model Organism Information Resource. Nucleic Acids Research 48:D762–D767. DOI: 10.1093/nar/gkz920.

Hernández-Martínez R, Ramkumar N, Anderson KV. 2019. p120-catenin regulates WNT signaling and EMT in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America 116:16872–16881. DOI: 10.1073/pnas.1902843116.

Howe DG, Bradford YM, Eagle A, Fashena D, Frazer K, Kalita P, Mani P, Martin R, Moxon ST, Paddock H, Pich C, Ramachandran S, Ruzicka L, Schaper K, Shao X, Singer A, Toro S, Van Slyke C, Westerfield M. 2016. A scientist’s guide for submitting data to ZFIN. In: Methods in Cell Biology. Elsevier, 451–481. DOI: 10.1016/bs.mcb.2016.04.010.

Hsu CL, Muerdter CP, Knickerbocker AD, Walsh RM, Zepeda-Rivera MA, Depner KH, Sangesland M, Cisneros TB, Kim JY, Sanchez-Vazquez P, Cherezova L, Regan RD, Bahrami NM, Gray EA, Chan AY, Chen T, Rao MY, Hille MB. 2012. Cdc42 GTPase and Rac1 GTPase act downstream of p120 catenin and require GTP exchange during gastrulation of zebrafish mesoderm. Developmental Dynamics 241:1545–1561. DOI: https://doi.org/10.1002/dvdy.23847.

Jao L-E, Wente SR, Chen W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences 110:13904–13909. DOI: 10.1073/pnas.1308335110.
Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. 2013. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. *Development* 140:3645–3656. DOI: 10.1242/dev.095596.

Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijn J, Fényes F, Mehroke S, Seahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL. 2013. A systematic genome-wide analysis of zebrafish protein-coding gene function. *Nature* 496:494–497. DOI: 10.1038/nature11992.

Kim H-G, Kim H-T, Leach NT, Lan F, Ullmann R, Silahtaroglu A, Kurth I, Nowka A, Seong IS, Shen Y, Talkowski ME, Ruderfer D, Lee J-H, Glotzbach C, Ha K, Kjaergaard S, Levin AV, Romeike BF, Kleefstra T, Bartsch O, Elsea SH, Jabs EW, MacDonald ME, Harris DJ, Quade BJ, Ropers H-H, Shaffer LG, Kutsche K, Layman LC, Tommerup N, Kalscheuer VM, Shi Y, Morton CC, Kim C-H, Gusella JF. 2012. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. *American Journal of Human Genetics* 91:56–72. DOI: 10.1016/j.ajhg.2012.05.005.

Kim H-G, Rosenfeld JA, Scott DA, Bénédicte G, Labonne JD, Brown J, McGuire M, Mahida S, Naidu S, Gutierrez J, Lesca G, des Portes V, Bruel A-L, Sorlin A, Xia F, Capri Y, Muller E, McKnight D, Torti E, Rüschendorf F, Hummel O, Islam Z, Kolatkar PR, Layman LC, Ryu D, Kong I-K, Madan-Khetarpal S, Kim C-H. 2019. Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism. *Molecular Autism* 10:35. DOI: 10.1186/s13229-019-0286-0.

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. *Developmental dynamics* 203:253–310.

Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulias G, Male I, DeSantis DF, Sheppard-Tindell S, Ebarasi L, Betsholtz C, Schulte-Merker S, Wolfe SA, Lawson ND. 2015. Reverse Genetic Screening Reveals Poor Correlation between Morpholino-Induced and Mutant Phenotypes in Zebrafish. *Developmental Cell* 32:97–108. DOI: 10.1016/j.devcel.2014.11.018.

Lan F, Collins RE, De Cegli R, Alpatov R, Horton JR, Shi X, Gozani O, Cheng X, Shi Y. 2007. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. *Nature* 448:718–722. DOI: 10.1038/nature06034.

Mishoe, L.N., and DeLaurier, A. 2020. A frameshift mutation in the PHD Finger Protein 21A repressor of transcription *phf21aa*. *ZebraShare*, ZFIN Abstract: ZDB-PUB-190605-16

Moens CB, Donn TM, Wolf-Saxon ER, Ma TP. 2008. Reverse genetics in zebrafish by TILLING. *Briefings in Functional Genomics & Proteomics* 7:454–459. DOI: 10.1093/bfgp/eln046.
Oruganti S vdya, Zhang Y, Li H. 2005. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. *Biochemical and Biophysical Research Communications* 333:550–554. DOI: 10.1016/j.bbrc.2005.05.141.

Papathedorou I, Fonseca NA, Keays M, Tang YA, Barrera E, Bazera W, Burke M, Füllgrabe A, Fuentes AM-P, George N, Huerta L, Koskinen S, Mohammed S, Geniza M, Preece J, Jaiswal P, Jarnuczak AF, Huber W, Stegle O, Vizcaino JA, Brazma A, Petryszak R. 2018. Expression Atlas: gene and protein expression across multiple studies and organisms. *Nucleic Acids Research* 46:D246–D251. DOI: 10.1093/nar/gkx1158.

Pieters T, Goossens S, Haenebalcke L, Andries V, Stryjewska A, De Rycke R, Lemeire K, Hocheplied T, Huylebroeck D, Berx G, Stemmler MP, Wirth D, Haigh JJ, van Hengel J, van Roy F. 2016. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification. *PLoS genetics* 12:e1006243. DOI: 10.1371/journal.pgen.1006243.

Rafferty SA, Quinn TA. 2018. A beginner’s guide to understanding and implementing the genetic modification of zebrafish. *Progress in Biophysics and Molecular Biology* 138:3–19. DOI: 10.1016/j.pbiomolbio.2018.07.005.

Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. 2007. p53 Activation by Knockdown Technologies. *PLOS Genetics* 3:e53. DOI: 10.1371/journal.pgen.0030078.

Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Krüger M, Stainier DYR. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. *Nature* 524:230–233. DOI: 10.1038/nature14580.

Rothé B, Back R, Quinternet M, Bizarro J, Robert M-C, Blaud M, Romier C, Manival X, Charpentier B, Bertrand E, Branlant C. 2014. Characterization of the interaction between protein Snu13p/15.5K and the Rsa1p/NUFIP factor and demonstration of its functional importance for snoRNP assembly. *Nucleic Acids Research* 42:2015–2036. DOI: 10.1093/nar/gkt1091.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. *Nature Methods* 9:676–682. DOI: 10.1038/nmeth.2019.

Schizophrenia Working Group of the Psychiatric Genomics Consortium. 2014. Biological insights from 108 schizophrenia-associated genetic loci. *Nature* 511:421–427. DOI: 10.1038/nature13595.

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. *Cell* 119:941–953. DOI: 10.1016/j.cell.2004.12.012.

Stainier DYR, Kontarakis Z, Rossi A. 2015. Making Sense of Anti-Sense Data. *Developmental Cell* 32:7–8. DOI: 10.1016/j.devcel.2014.12.012.
Stainier DY, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein BM. 2017. Guidelines for morpholino use in zebrafish. *PLoS genetics* 13:e1007000.

Stevens SW, Barti I, Ge HY, Moore RE, Young MK, Lee TD, Abelson J. 2001. Biochemical and genetic analyses of the U5, U6, and U4/U6 x U5 small nuclear ribonucleoproteins from Saccharomyces cerevisiae. *RNA (New York, N.Y.)* 7:1543–1553.

Talbot JC, Amacher SL. 2014. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. *Zebrafish* 11:583–585. DOI: 10.1089/zeb.2014.1047.

Tessadori F, de Bakker DEM, Barske L, Nelson N, Algra HA, Willekers S, Nichols JT, Crump JG, Bakkers J. 2020. Zebrafish prrx1a mutants have normal hearts. *Nature* 585:E14–E16. DOI: 10.1038/s41586-020-2674-1

Talbot JC, Amacher SL. 2014. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. *Zebrafish* 11:583–585. DOI: 10.1089/zeb.2014.1047.

Tessadori F, de Bakker DEM, Barske L, Nelson N, Algra HA, Willekers S, Nichols JT, Crump JG, Bakkers J. 2020. Zebrafish prrx1a mutants have normal hearts. *Nature* 585:E14–E16. DOI: 10.1038/s41586-020-2674-1

Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G, Antonazzo G, Trovisco V, Kaufman TC, Calvi BR, Perrimon N, Gelbart SR, Agapite J, Broll K, Crosby L, Santos G dos, Emmert D, Gramates LS, Falls K, Jenkins V, Matthews B, Sutherland C, Tabone C, Zhou P, Zytkovicz M, Brown N, Antonazzo G, Attrill H, Garapati P, Holmes A, Larkin A, Marygold S, Millburn G, Pilgrim C, Trovisco V, Urbano P, Kaufman T, Calvi B, Czoch B, Goodman J, Strelets V, Thurmond J, Cripps R, Baker P. 2019. FlyBase 2.0: the next generation. *Nucleic Acids Research* 47:D759–D765. DOI: 10.1093/nar/gky1003.

Thyme, S.B., and Carte, A. 2020. A CRISPR Mutagenesis Screen of Ctnnd1. *ZebraShare*, ZFIN Abstract: ZDB-PUB-200621-10

Tunovic S, Barkovich J, Sherr EH, Slavotinek AM. 2014. De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. *American Journal of Medical Genetics. Part A* 164A:1744–1749. DOI: 10.1002/ajmg.a.36450.

Turner TN, Sharma K, Oh EC, Liu YP, Collins RL, Sosa MX, Auer DR, Brand H, Sanders SJ, Moreno-De-Luca D, Pihur V, Plona T, Pike K, Soppet DR, Smith MW, Cheung SW, Martin CL, State MW, Talkowski ME, Cook E, Huganir R, Katsanis N, Chakravarti A. 2015. Loss of δ-catenin function in severe autism. *Nature* 520:51–56. DOI: 10.1038/nature14186.

Van Slyke CE, Bradford YM, Howe DG, Fashena DS, Ramachandran S, Ruzicka L. 2018. Using ZFIN: Data Types, Organization, and Retrieval. *Methods in molecular biology (Clifton, N.J.)* 1757:307–347. DOI: 10.1007/978-1-4939-7737-6_11.

Varshney GK, Zhang S, Pei W, Adomako-Ankomah A, Fohtung J, Schaffer K, Carrington B, Masker A, Slevin C, Wolfsberg T, Ledin J, Sood R, Burgess SM. 2016. CRISPRz: a database of zebrafish validated sgRNAs. *Nucleic Acids Research* 44:D822-826. DOI: 10.1093/nar/gkv998.

Walker M, Kimmel C. 2007. A two-color acid-free cartilage and bone stain for zebrafish larvae. *Biotechnic & Histochemistry* 82:23–28. DOI: 10.1080/10520290701333558.
Westerfield M. 2007. *The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio)*. Eugene: University of Oregon Press.

Williams J, Boin NG, Valera JM, Johnson AN. 2015. Noncanonical roles for Tropomyosin during myogenesis. *Development (Cambridge, England)* 142:3440–3452. DOI: 10.1242/dev.117051.

Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW. 1999. Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis. *Science (New York, N.Y.)* 285:901–906. DOI: 10.1126/science.285.5429.901.

Yu HH, Dohn MR, Markham NO, Coffey RJ, Reynolds AB. 2016. p120-catenin controls contractility along the vertical axis of epithelial lateral membranes. *Journal of Cell Science* 129:80–94. DOI: 10.1242/jcs.177550.
Table 1 (on next page)

gRNA targets used for CRISPR and genotyping primer sequences (5’-3’).

These mutants were generated in three separate labs so they used different mutagenesis and genotyping protocols. Three gRNAs were co-injected for ctnnd1.
Originating lab	Gene	gRNA target(s)	Forward Genotyping Primer	Reverse genotyping primer
DeLaurier	*phf21a*	GTGAGGCTAGCAGCAGGCGAG	T7 assay: GATTTCCTTGCCACTGCAC	T7 assay: CCATTAAGAAGCAGACACAGG
			Traditional genotyping: AGAATACGGTGCCCTCGT	Traditional genotyping: CCATTAAGAAGCAGACACAGG
DeLaurier	*kdm1a*	GGCTCCTCCTCTTCGTAGG	T7 assay/ Traditional genotyping: AAGGAGAAGCTCTGTTCATC	T7 assay/ Traditional genotyping: GAGATTTACCCCTTGCCCG
Thyme	*ctnd1*	GGTCCTCTGGCCTCTGTAGG, CCTCCAGGCCATAGGCGCTC, CTGATCGTCTCCCTCCAGGCGCAT	Traditional genotyping: ATGGGCTACCAGCAGCCTG	Traditional genotyping: GTGTTGATGTGCAACCAGGGG
Talbot	*snu13a*	GAACCCTAAAGCGTCACCCT	HRMA genotyping: GACTGATCAAGTGCTGTTCTCC	HRMA genotyping: ATCCAGGATGTGTGGGTGCGTTGAGG
			DNA sequencing: TGGCTAATCTTTATGGTGTCAGG	DNA sequencing: CTTCGTGGCGCCCTTTC
Talbot	*snu13b*	GAACCCTAAAGCGCTATCCT	HRMA genotyping: GTCTGTGTTTTTACTCAGACTG	HRMA genotyping: CCCCCTTTCTCAGCTTTGTTG
			DNA sequencing: TGCTAACCAGGATGATAAGAG	DNA sequencing: CGAGTTATCACCTTCATTTG
Table 2 (on next page)

Web addresses for the ZebraShare abstracts for alleles used in case studies.
Allele(s)	ZebraShare abstract page
phf21aa^{alk4}	http://zfin.org/ZDB-PUB-190605-16
kdm1a^{alk5}	http://zfin.org/ZDB-PUB-200515-15
ctnd1^{uabb302}	http://zfin.org/ZDB-PUB-200621-10
snu13a, snu13b	http://zfin.org/ZDB-PUB-200604-17
Figure 1

Publicizing a mutant on ZebraShare in 5 steps.
Step 1:
Follow links to ZebraShare from zfin.org

Submit Data
Guidelines and forms to submit data to ZFIN

ZebraShare
ZebraShare is intended to help establish fruitful collaborations by sharing mutant fish lines, and information about these mutants, particularly when authors do not otherwise see a clear path to publication.

Download Submission Workbook
Get started by filling out the details for your alleles

Submit Completed Workbook
ZFIN curators will process your submission as part of their high priority literature curation workflow

Step 2:
Download workbook

Step 3:
Fill out workbook & write abstract

Step 4:
Upload mutant information

Step 5: ZFIN curates your data and publicizes it on their website
Figure 2

Example of how to determine DNA coordinates for a simple deletion allele, \textit{phf21aa}^{alk4}.

(A) Align the WT and mutant sequence. (B) Blast the aligned WT sequence and determine the base numbers altered in the mutant. (C) Transfer these coordinates to the ZebraShare submission workbook. Descriptions become more complex for combined insertion/deletions alleles (InDels) and for alleles with multiple mutation sites due to use of multiple guide RNAs.

\textbf{A) Generate a WT/MUT sequence alignment}

\textbf{WT} 5′-TCGTCGTCGGT\textcolor{red}{TCTC}CGCAGACACAGAC-3′

\textbf{MUT} 5′-TCGTCGTCGG\textcolor{red}{--------}GAGACACAGAC-3′

\textbf{B) BLAST using WT, select bases to determine coordinates changed in the mutant}

![Diagram showing DNA sequence with coordinates 38,846,382 and 38,846,388 marked as deleted.]

\textbf{C) Describe these coordinates in the workbook}

\textit{phf21aa}^{alk5} is a 7 bp deletion

GRCz11 Chr:7 38,846,382-38,846,388
Figure 3

Example of a mutant, \(phf21aa^{\text{aik4}}\), publicized via ZebraShare.

(A) The allele description page shows information that helps researchers interpret the mutant. (B) The abstract page gives an overview of phenotypic characterization. (C) The figure associated with the abstract shows pertinent phenotypic details. For \(phf21aa^{\text{aik4}}\), the mutants appeared normal, save for a mild rotation of the ceratohyal cartilage (red arrow). Fish larvae are stained with alcian blue (cartilage) and alizarin red (bone) to reveal skeletal shape. Scale bar in whole mount lateral views = 100 microns, in pharyngeal skeleton and neurocranium flat mounts scale bar = 200 microns.
A) phf21aa aik4 allele page

B) phf21aa aik4 abstract page

A frameshift mutation in the PHD Finger Protein 21A repressor of transcription \textit{phf21aa}

Misheo, L.N., and DeLaurier, A.

C) Figure associated with abstract

\textbf{phf21aa mutant}
Figure 4

Skeletal structure is normal in *kdm1a* maternal zygotic mutants.

Wild-type larvae (A-C) compared with *kdm1a* maternal zygotic mutant larvae (D-F). A and D: Whole mount specimens, lateral view of head skeleton, B and E: flat mount pharyngeal skeleton, pharyngeal arches 1 and 2, lateral view, C and F: flat mount neurocranium, ventral view. Fish larvae are stained as described in Figure 3. Scale bar = 200 microns.
Figure 5

Embryonic disintegration in ctnnd1 mutants.

(A, B) Frames from time-lapse imaging (Supplementary Movie 1) illustrate disintegrating phenotype of ctnnd1 mutants. Asterisk(s) mark two of the embryos that disintegrated during the time-lapse recording. (C) DAPI staining of fixed ctnnd1 mutant embryos reveals that cells with intact nuclei dissociate from the embryo. (D-F) Phenotypes of ctnnd1 sibling embryos at the ~6-somite stage. The homozygous mutant (F) has disintegrated, the heterozygous mutant (E) displays clumps of cells along the dorsal surface, and the wild-type embryo appears normal (D). The solid arrow marks a clump of cells dorsal to the midbrain and the open arrowhead marks a clump of cells dorsal to the hindbrain in the heterozygote.
Figure 6

Embryonic development arrests in *snu13a;snu13b* double mutants.

A) Normal sibling and **B)** *snu13a;snu13b* double mutant at 24 hpf. Tail region is outlined in orange, head in blue. The shown double mutant was confirmed to be homozygous by Sanger sequencing. Scale bar is 1 mm.
Figure 7

A decision tree on whether to publicize findings in ZebraShare.

A A ZebraShare submission immediately disseminates your information to the scientific community and also can serve as a pathway to journal publication. **B** Comparison of correct and misplaced ZebraShare submissions, with solutions for incorrect uses.
A) ZebraShare is a pathway to publication

Generate new mutant lines → Confirm mutation → Assay phenotypes

Conduct further research and pursue journal publication

Are reviewers interested in your work?

Yes

Do you see a new path to journal publication?

Yes

Publish your findings in a journal

Consider submitting the line to ZIRC

After submitting to ZebraShare did you
- make a new discovery?
- collaboratively share your mutants?
- find a path to publication?

Yes!

Your findings are now searchable in ZFIN

No

Do the phenotypes interest your research group?

Yes

Do you want others researchers to learn about your work?

Do you want to find a collaborative path to publication?

Do you think your result may be meaningful to others?

No

Publicize your findings via ZebraShare

B)

ZebraShare IS for:

- Publicizing verified alleles
- Reporting confirmation steps on the unpublished alleles
- Publicizing a few alleles
- Unpublished phenotypes
- Establishing collaborations

ZebraShare is NOT for:

- Publicizing CRISPR guide RNA
 Do this on CRISPRz
- Publicizing mutants that have not even been sequenced
 Verify before submitting
- Reporting a large-scale screen
 For this, contact ZFIN directly
- Re-reporting published mutants
 ZFIN will curate published mutants automatically
- Discouraging other researchers