Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma

V Bilim¹, A Ougolkov², K Yuuki¹, S Naito¹, H Kawazoe¹, A Muto¹, M Oya³, D Billadeau⁴, T Motoyama⁵ and Y Tomita*¹

¹Department of Urology, Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585, Japan; ²Department of Pathology, Feinberg School of Medicine, Northwestern University, Word Building 3-140, 303 E. Chicago Avenue, Chicago, IL 60611, USA; ³Department of Urology, Keio University School of Medicine, Shinano-machi 35, Shinjuku-ku, Tokyo, Japan; ⁴Division of Oncology Research, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA; ⁵Department of Human Pathology (Second Department of Pathology), Yamagata University School of Medicine, Iida-nishi 2-2-2, Yamagata 990-9585, Japan

BACKGROUND: Renal cell carcinoma (RCC) is highly resistant to chemotherapy because of a high apoptotic threshold. Recent evidences suggest that GSK-3β positively regulates human pancreatic cancer and leukaemia cell survival in part through regulation of nuclear factor (NF-κB)-mediated expression of anti-apoptotic molecules. Our objectives were to determine the expression pattern of GSK-3β and to assess the anti-cancer effect of GSK-3β inhibition in RCC.

METHODS: Immunohistochemistry and nuclear/cytosolic fractionation were performed to determine the expression pattern of GSK-3β in human RCCs. We used small molecule inhibitor, RNA interference, western blotting, quantitative RT–PCR, BrDU incorporation and MTS assays to study the effect of GSK-3β inactivation on renal cancer cell proliferation and survival.

RESULTS: We detected aberrant nuclear accumulation of GSK-3β in RCC cell lines and in 68 out of 74 (91.89%) human RCCs. We found that pharmacological inhibition of GSK-3 led to a decrease in proliferation and survival of renal cancer cells. We observed that inhibition of GSK-3 results in decreased expression of NF-κB target genes Bcl-2 and XIAP and a subsequent increase in renal cancer cell apoptosis. Moreover, we show that GSK-3 inhibitor and Docetaxel synergistically suppress proliferation and survival of renal cancer cells.

CONCLUSIONS: Our results show nuclear accumulation of GSK-3β as a new marker of human RCC, identify that GSK-3 positively regulates RCC cell survival and proliferation and suggest inhibition of GSK-3 as a new promising approach in the treatment of human renal cancer.

British Journal of Cancer (2009) 101, 2005 – 2014. doi:10.1038/sj.bjc.6605437 www.bjcancer.com

© 2009 Cancer Research UK

Keywords: renal cell carcinoma; apoptosis; glycogen synthase kinase-3β

Kidney cancer accounts for approximately 2–3% of all cancers worldwide. It is the seventh most common cancer and the tenth most common cause of cancer death in men and the ninth most common cause of cancer in women. In 2008, an estimated 54,000 adults in the United States have been diagnosed with renal cell carcinoma (RCC). Approximately 13,000 deaths from RCC have occurred in 2008 (Cancer.Net by ASCO). The 5-year survival rate for patients with metastatic RCC is less than 10% because of the tumours resistance to chemo- and radiotherapy. About one third of newly diagnosed RCC patients present with metastases and up to one half of patients develop metastatic disease during follow-up (Bukowski, 1997). Immunotherapy overall efficacy rate does not exceed 10–20% in RCC cases (Bukowski, 2001). Recently, molecular targeting drugs including multiple kinase inhibitors Sorafenib and Sunitinib (Motzer and Bukowski, 2006; Ljungberg et al., 2007) have been suggested as first-line treatment for metastatic RCC, although the treatment response is not long-standing and the RCC tumours inevitably progress. Thus, the identification of novel therapeutic targets in RCC is urgently needed.

There are diverse factors that contributes to RCC progression and chemoresistance, including activation of nuclear factor-κB (NF-κB; Oya et al., 2001, 2003; An et al., 2004). Increased expression of Bcl-2 and XIAP anti-apoptotic molecules, NF-κB target genes, has an important function in renal cancer cell survival and chemoresistence (Bilim et al., 2008) and resistance to immunotherapy (Maruyama et al., 2006). Previous studies suggest a positive role for GSK-3β in the regulation of NF-κB activity (Hoefflich et al., 2000; Ougolkov et al., 2005, 2007). GSK-3 is a pluripotent serine–threonine kinase with a numerous intracellular target proteins (Jope and Johnson, 2004). GSK-3 has two isoforms, α and β, which are coded by two different genes (Jope and Johnson, 2004). Previously, we showed that inhibition of GSK-3 resulted in apoptosis induction through decreased expression of NF-κB target genes Bcl-2 and XIAP in chronic lymphocytic leukaemia (CLL) and pancreatic cancer cells (Ougolkov et al., 2005, 2007). It has been
Inhibition of GSK-3 induces apoptosis in RCC
V Bilim et al

MATERIALS AND METHODS
Patients and immunohistochemistry

The study was approved by the Ethical Committee of Yamagata University and all patients signed an informed consent form. Seventy-six surgical specimens from 75 patients were included in the study. Patients’ clinical characteristics are presented in the Table 1. The tumours were fixed in 10% buffered formalin and embedded in paraffin, and the samples were coded. Paraffin sections were routinely stained with haematoxylin and eosin and a pathological diagnosis was made. Pathological staging was determined according to the UICC TNM classification of malignant tumours. Pathological diagnosis for 2 tumours was replaced by either nonimmune mouse or rabbit immunoglobulin. The results were observed using Olympus (Tokyo, Japan) BX50 microscope equipped with Olympus DP12 digital microscope camera. All slides were evaluated for immunostaining without any knowledge of the clinical data. There were no inter- and intra-sample fluctuations in terms of the staining intensity. GSK-3β protein expression was defined as positive staining of > 10% of cancer cells. Immunohistochemical staining was performed as described earlier (Bilim et al, 2006). Positive G3p expression was defined as positive staining of more than 80% of cancer cells throughout the tumour.

Table 1 Patients’ characteristics

Characteristic	Value	
Median age (range) years	59.5 (28 – 83)	
Male/female	50/25	
Histological type		
Oncocytoma	2	
Clear cell	64	
Papillary	4	
Chromophobe	3	
Unclassified RCC	3	
pT stage		
1a	34	
1b	19	
2	7	
3a (including one adrenal involvement)	10	
3b	4	
Grade		
1	27	
2	43	
3	4	

Abbreviation: RCC = renal cell carcinoma.

Inhibition of GSK-3 contributes to the maintenance of active chromatin at NF-κB target gene Bcl-2 and XIAP promoters, allowing p65 binding and transcriptional activation in cancer cells (Ougolkov et al, 2007).

Although our recent studies suggest GSK-3 as an important factor of NF-κB-mediated cancer cell survival and proliferation in pancreatic cancer and CLL (Ougolkov et al, 2005, 2007), the role of GSK-3 in the proliferation, survival and chemoresistance of RCC is unknown. Here, for the first time, we show that genetic depletion or pharmacological inhibition of GSK-3 results in decreased renal cancer cell proliferation and survival. Moreover, we found aberrant GSK-3β nuclear overexpression in RCC cell lines and most human renal carcinomas. Furthermore, we show a synergistic anti-cancer effect of GSK-3 inhibitor and Docetaxel in renal cancer cells. Our results suggest GSK-3 as a novel potential therapeutic target in the treatment of RCC.

2006

anti-phospho-glycogen synthase (pGS) (#3891) from Cell Signaling Technology (Danvers, MA, USA) was used for immunohistochemical analysis. Immunohistochemical staining was performed as described earlier (Bilim et al, 2008). Two different sections from each tumour were examined by immunohistochemistry. For each staining, two 5 μm-thick paraffin sections from different parts of each tumour representative of the entire tumour were mounted on silanised glass slides (Dako Japan, Tokyo, Japan). After deparaffination and rehydration, epitopes were reactivated by autoclaving sections in 10 mM citric buffer (pH 6.0) for 10 min. The slides were incubated with the primary antibodies overnight at 4°C in a moist chamber. After washing with PBS, bound antibody was detected by peroxidase method using Histofine simple stain MAX-PO MULTY (Nichirei, Tokyo, Japan). The staining reaction was developed by DAB in the presence of H2O2. Nuclear counterstaining was performed by haematoxylin. Positive and negative controls were included in each staining series. Positive immunohistochemical staining of GSK-3β or pGS in tumours confirmed by western immunoblotting served as a positive control. As a negative control, each primary antibody was replaced by either nonimmune mouse or rabbit immunoglobulin. The results were observed using Olympus (Tokyo, Japan) BX50 microscope equipped with Olympus DP12 digital microscope camera. All slides were evaluated for immunostaining without any knowledge of the clinical data. There were no inter- and intra-sample fluctuations in terms of the staining intensity. GSK-3β nuclear accumulation was defined as positive staining of > 10% of cancer cell nuclei throughout the tumour regardless of cytoplasmic expression as we established earlier for this antibody (Ougolkov et al, 2006). Positive pGS expression was defined as positive staining of more than 80% of cancer cells throughout the tumour.

Cell culture and reagents

Renal cell cancer cell lines ACHN, KRC/Y, Caki1, Caki2, A704, A498 and KH39 were purchased from ATCC (Manassas, VA, USA). KU19-20 was kindly provided by Dr Mototsugu Oya (Department of Urology, School of Medicine, Keio University, Tokyo, Japan). The cells were cultured as described earlier (Bilim et al, 2000). GSK-3 inhibitor AR-A014418 was purchased from Calbiochem (San Diego, CA, USA). AR-A014418 (thiazole-containing urea compound), a small molecule inhibitor, inhibits GSK-3 in an ATP-competitive manner (in vitro IC50 = 104 nM) and does not significantly inhibit cdk or other 26 kinases showing high specificity for GSK-3 (Bhat et al, 2003). Other two GSK-3 inhibitors, SB-216763 (ATP-competitive, aryldioneleamide) and TDZD8 (non-ATP-competitive, thiadiazolidinone derivative), were purchased from Cayman Chemicals (Ann Arbor, MI, USA) and Sigma-Aldrich Japan (Tokyo, Japan), respectively. SB-216763 inhibits GSK-3 in vitro with an IC50 value of less than 100 nM with no significant inhibition of 24 other protein kinases (Coghlán et al, 2000). TDZD8, a potent inhibitor of GSK-3 (IC50 = 2 μM), did not inhibit protein kinases A or C, CK-2 or CDK1/cyclin B kinases at > 100 μM (Martínez et al, 2002). Docetaxel was from Sigma-Aldrich Japan.

Immunoblotting

Immunoblotting was performed as described earlier (Bilim et al, 2000). HRP-labelled second antibody was detected using a SuperSignal West Pico Substrate (Pierce, Rockford, IL, USA) according to the manufacturer’s instructions. β-Actin was used as a loading control. The images were analysed using UN-SCAN-ITgel Automated Digitizing System software (version 5.1 for Windows, Silk Scientific Inc., Orem, UT, USA). The following antibodies were used: anti-Bcl-2 (clone 124, DAKO, Japan), anti-glycogen synthase kinase (GSK) (#3893), anti-pGS (#3891) from Cell Signaling Technology; anti-GSK-3β (clone 7), anti-PARP (clone 7D3-6), anti-NF-κB (p65)
RNA extraction and real-time RT–PCR

Total cellular RNA was extracted using the SV total RNA Isolation System (Promega, Madison, WI, USA) and the first-strand DNA was synthesised using a cDNA Reverse Transcription kit (Applied Biosystems Japan, Tokyo, Japan) following the manufacturer's instructions. Real-time quantitative RT–PCR was performed in the 7300 Real-Time PCR System (Applied Biosystems). We used pre-designed TaqMan Gene Expression Assays (Applied Biosystems) targeting human Bcl-2 (Hs00236808_s1), XIAP (Hs00236913_m1) mRNA and GAPDH (4352934E) mRNA as an endogenous control. Each experiment was repeated at least three times to confirm reproducibility with the reaction in triplicate wells for each sample using a TaqMan Universal PCR Master Mix (Applied Biosystems) according to the standard protocol. The expression of the target mRNA was quantified relative to that of the GAPDH mRNA and untreated controls were used as a reference.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) was performed as described earlier (Ougolkov et al, 2007). Briefly, ACHN cells were treated with 50 μM of AR-A014418 or control DMSO for 48 h. After that the cells were cross-linked with formaldehyde for 15 min at room temperature and immunoprecipitated using the Chromatin Immunoprecipitation kit (Upstate Biotechnology, Lake Placid, NY, USA) according to the manufacturer's instructions. Anti-NF-κB p65 antibody was from Santa Cruz Biotechnology (Santa Cruz, CA, USA). One hundred and six bps of the XIAP promoter and 168 bps of the Bcl-2 promoter were detected in immunoprecipitated samples by PCR. PCR products were separated on a 2% agarose gel and visualised under UV light after staining with ethidium bromide.

RNA interference

Genetic knockdown of GSK-3β and GSK-3α was achieved using Validated Stealth siRNA DuoPak (Invitrogen Japan, Tokyo, Japan). Unrelated control siRNA (Invitrogen) was also used. Transfection was carried out using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommendations.

Measurement of cell viability, proliferation and apoptosis

Cell viability was detected with a colorimetric assay, the CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA) using tetrazolium compound according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For estimation of cell proliferation BrdU cell proliferation assay (Calbiochem) was applied according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For detection of apoptotic morphology, cells were cultured in Lab-Tek Chambers (Nunc Inc, Naperville, IL, USA), treated with AR-A014418. Apoptotic morphological changes were detected with Hoechst 33342 (Dojindo Laboratories, Kumamoto, Japan) staining followed by observation under fluorescence microscope Axiovert 200 (Carl Zeiss Japan, Tokyo, Japan). PI staining of the fixed cells, as described elsewhere, was applied for quantification of the late apoptotic events (sub-G1 fraction). Stained cells were analysed on FACSCalibur Flow Cytometer (BD).

Statistical analysis

Continuous variables are presented as the mean ± s.d. All continuous variables in this study met the criteria for a normal distribution and were assumed to be parametric. They were analysed using a two tailed t-test or one-way ANOVA where appropriate with the post test for a linear trend. Associations between immunohistochemical staining and pathological or clinical characteristics were analysed using Fisher’s exact test. Two-sided tests were used. Data were analysed using GraphPad Prism software package for Windows (GraphPad Software Inc., San Diego, CA, USA).

RESULTS

GSK-3β is expressed and active in human renal cancer cells

Using western blotting, we detected higher levels of GSK-3β expression in RCC cell lines compared with normal kidney (Figure 1A). We also found higher levels of phosphorylation of GSK-3β (clone 20), anti-XIAP (clone 28) from BD Transduction; anti-GSK-3β (#07-389) from Upstate Cell Signaling Solutions (Lake Placid, NY, USA); and anti-β-actin from Abcam Inc. (Cambridge, MA, USA). Nuclear/cytosolic fractionation was performed by modified Dignam method as described earlier (Ougolkov et al, 2006).

Measurement of cell viability, proliferation and apoptosis

Cell viability was detected with a colorimetric assay, the CellTiter 96 AQueous USA Solution Cell Proliferation Assay (Promega, Madison, WI, USA) using tetrazolium compound according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For estimation of cell proliferation BrdU cell proliferation assay (Calbiochem) was applied according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For detection of apoptotic morphology, cells were cultured in Lab-Tek Chambers (Nunc Inc, Naperville, IL, USA), treated with AR-A014418. Apoptotic morphological changes were detected with Hoechst 33342 (Dojindo Laboratories, Kumamoto, Japan) staining followed by observation under fluorescence microscope Axiovert 200 (Carl Zeiss Japan, Tokyo, Japan). PI staining of the fixed cells, as described elsewhere, was applied for quantification of the late apoptotic events (sub-G1 fraction). Stained cells were analysed on FACSCalibur Flow Cytometer (BD).

Statistical analysis

Continuous variables are presented as the mean ± s.d. All continuous variables in this study met the criteria for a normal distribution and were assumed to be parametric. They were analysed using a two tailed t-test or one-way ANOVA where appropriate with the post test for a linear trend. Associations between immunohistochemical staining and pathological or clinical characteristics were analysed using Fisher’s exact test. Two-sided tests were used. Data were analysed using GraphPad Prism software package for Windows (GraphPad Software Inc., San Diego, CA, USA).

RESULTS

GSK-3β is expressed and active in human renal cancer cells

Using western blotting, we detected higher levels of GSK-3β expression in RCC cell lines compared with normal kidney (Figure 1A). We also found higher levels of phosphorylation of GSK-3β (clone 20), anti-XIAP (clone 28) from BD Transduction; anti-GSK-3β (#07-389) from Upstate Cell Signaling Solutions (Lake Placid, NY, USA); and anti-β-actin from Abcam Inc. (Cambridge, MA, USA). Nuclear/cytosolic fractionation was performed by modified Dignam method as described earlier (Ougolkov et al, 2006).

RNA extraction and real-time RT–PCR

Total cellular RNA was extracted using the SV total RNA Isolation System (Promega, Madison, WI, USA) and the first-strand DNA was synthesised using a cDNA Reverse Transcription kit (Applied Biosystems Japan, Tokyo, Japan) following the manufacturer's instructions. Real-time quantitative RT–PCR was performed in the 7300 Real-Time PCR System (Applied Biosystems). We used pre-designed TaqMan Gene Expression Assays (Applied Biosystems) targeting human Bcl-2 (Hs00236808_s1), XIAP (Hs00236913_m1) mRNA and GAPDH (4352934E) mRNA as an endogenous control. Each experiment was repeated at least three times to confirm reproducibility with the reaction in triplicate wells for each sample using a TaqMan Universal PCR Master Mix (Applied Biosystems) according to the standard protocol. The expression of the target mRNA was quantified relative to that of the GAPDH mRNA and untreated controls were used as a reference.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) was performed as described earlier (Ougolkov et al, 2007). Briefly, ACHN cells were treated with 50 μM of AR-A014418 or control DMSO for 48 h. After that the cells were cross-linked with formaldehyde for 15 min at room temperature and immunoprecipitated using the Chromatin Immunoprecipitation kit (Upstate Biotechnology, Lake Placid, NY, USA) according to the manufacturer’s instructions. Anti-NF-κB p65 antibody was from Santa Cruz Biotechnology (Santa Cruz, CA, USA). One hundred and six bps of the XIAP promoter and 168 bps of the Bcl-2 promoter were detected in immunoprecipitated samples by PCR. PCR products were separated on a 2% agarose gel and visualised under UV light after staining with ethidium bromide.

RNA interference

Genetic knockdown of GSK-3β and GSK-3α was achieved using Validated Stealth siRNA DuoPak (Invitrogen Japan, Tokyo, Japan). Unrelated control siRNA (Invitrogen) was also used. Transfection was carried out using Lipofectamine 2000 (Invitrogen) according to manufacturer’s recommendations.

Measurement of cell viability, proliferation and apoptosis

Cell viability was detected with a colorimetric assay, the CellTiter 96 AQueous USA Solution Cell Proliferation Assay (Promega, Madison, WI, USA) using tetrazolium compound according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For estimation of cell proliferation BrdU cell proliferation assay (Calbiochem) was applied according to the manufacturer’s instructions as described earlier (Bilim et al, 2008). For detection of apoptotic morphology, cells were cultured in Lab-Tek Chambers (Nunc Inc, Naperville, IL, USA), treated with AR-A014418. Apoptotic morphological changes were detected with Hoechst 33342 (Dojindo Laboratories, Kumamoto, Japan) staining followed by observation under fluorescence microscope Axiovert 200 (Carl Zeiss Japan, Tokyo, Japan). PI staining of the fixed cells, as described elsewhere, was applied for quantification of the late apoptotic events (sub-G1 fraction). Stained cells were analysed on FACSCalibur Flow Cytometer (BD).
GS (pGS), a primary GSK-3 substrate, in RCC cell lines compared with normal kidney suggesting that GSK-3 is active in renal cancer cells (Figure 1A). Using paired samples of tumour and normal kidney tissues from renal cancer patients, we found phosphorylation of GS only in tumour tissues but not in its normal counterparts suggesting higher activity of GSK-3 in human RCCs (Figure 1C). Moreover, we found that expression of GSK-3β was higher in tumour compared with corresponding normal kidney tissue (Figure 1C). These data indicate that high levels of GSK-3β expression and activity are features of RCC.

GSK-3β is accumulated in the nucleus of renal cancer cells

GSK-3β has been shown as positive regulator of NF-κB-mediated survival and proliferation of cancer cells (Ougolkov et al, 2005, 2007; Wilson and Baldwin, 2008). Recently, we have shown aberrant nuclear accumulation of GSK-3β in pancreatic cancer and leukaemia cells (Ougolkov et al, 2006, 2007). It has been suggested that nuclear GSK-3β might contribute to NF-κB-mediated expression of anti-apoptotic molecules and cancer cell survival (Ougolkov et al, 2006, 2007). We found that high levels of GSK-3β expression and activity are features of RCC (Figure 1A and C). However, the subcellular localisation of GSK-3β in renal cancer cells is unknown.

Using nuclear/cytoplasmic fractionation, we found aberrant nuclear expression of GSK-3β in human renal carcinomas but not in their normal counterparts (Figure 1D). Moreover, the levels of cytoplasmic GSK-3β in human renal carcinomas were higher than in normal kidney tissues (Figure 1D). Nuclear accumulation of GSK-3β and NF-κB p65 was detected in seven RCC lines: KH39, KU19-20, ACHN, Caki1, Caki2, KRC/Y and A498 (Figure 1B) and was undetectable in normal kidney (Figure 1B).

Using immunohistochemical staining, we found weak cytoplasmic expression of GSK-3β in a fraction of glomerular and tubular epithelial cells in normal kidney (Figure 2A). It is interesting to note that oncocytomas, which are benign kidney tumours, showed only cytoplasmic expression of GSK-3β and no pGS was detected in these tumours. We found aberrant nuclear accumulation of GSK-3β in 68 out of 74 (92%) human RCCs (Figure 2B; Table 2). Sixty-nine (90.79%) tumours were positive for pGS (Figure 2C; Table 2). Nuclear accumulation of GSK-3β correlated with pGS positivity (Fisher’s exact test \(P = 0.0017, \chi^2 \) with Yate’s correction \(P = 0.0004 \), which indicates GSK-3β active state. Clear cell RCC subtype is associated with worse survival in RCCs (Beck et al, 2004). We found that clear cell RCC was significantly associated with aberrant GSK-3β nuclear accumulation (Fisher’s exact test \(P = 0.0185, \chi^2 \) with Yate’s correction \(P = 0.0219 \)) and pGS positivity (Fisher’s exact test \(P = 0.0008, \chi^2 \) with Yate’s correction \(P = 0.0002 \)). GSK-3β nuclear accumulation correlated with neither stage nor grade in RCCs and it was observed equally frequently in low and high stages and grades (Table 2). Our results suggest that aberrant nuclear accumulation of GSK-3β is a feature of renal cancer cells and GSK-3β activation might be a critical early step of RCC carcinogenesis.

Pharmacological inhibition and genetic depletion of GSK-3 decrease proliferation and survival of renal cancer cells

Although our recent studies suggest GSK-3 as an important factor of NF-κB-mediated cancer cell survival and proliferation in pancreatic cancer and CLL (Ougolkov et al, 2006, 2007), the role of GSK-3 in the proliferation and survival of RCC is unknown. To determine whether active GSK-3 is essential for RCC cell survival and proliferation, first we tested the effect of three chemically distinct small molecule inhibitors of GSK-3: AR-A014418 (ATP-competitive) (Bhat et al, 2003), SB-216763 (ATP-competitive) (Coghlan et al, 2000), and TDZD8 (non-ATP-competitive) (Martínez et al, 2002) in ACHN renal cancer cells (Figure 3A). We found that all three distinct GSK-3 inhibitors can decrease viability of ACHN renal cancer cells (Figure 3A). Subsequently, we tested the anti-cancer effect of GSK-3 inhibitor AR-A014418 using six renal cancer cell lines, KH39, KU19-20, Caki1, Caki2, KRC/Y and A498. AR-A014418 is a potent and specific GSK-3 inhibitor described earlier (Bhat et al, 2003). We found that inhibition of GSK-3 decreased renal cancer cell viability in a dose- and time-dependent manner (Figure 3B). Using BrDU incorporation assay, we found that pharmacological inhibition of GSK-3 suppresses proliferation of renal cancer cells (Figure 3C). Using Hoechst
Inhibition of GSK-3 induces apoptosis in RCC
V Bilim et al

To unveil the potential mechanism of XIAP and Bcl-2 transcriptional suppression by GSK-3 inhibition, we immunoprecipitated chromatin with anti-p65 antibody in a ChIP assay. Accessibility of XIAP and Bcl-2 promoters by NF-κB p65 was drastically decreased on GSK-3 inhibition (Figure 4D). Consistent with previous findings in pancreatic cancer and leukemia cells (Ougolkov et al, 2006, 2007), we found that pharmacologic inhibition of GSK-3β resulted in depletion of nuclear GSK-3β from the renal cancer cells’ nuclei by 24 h of AR-A014418 treatment (Figure 4E). However, nuclear NF-κB p65 levels were not changed (data not shown). The data are in agreement with the hypothesis that GSK-3β positively modifies NF-κB transcriptional activity downstream to the Iκκ complex.

To determine whether Bcl-2 and XIAP downregulation was a cause or a consequence of caspase activation and apoptosis, we treated A498 renal cancer cells with DMSO, AR-A014418, DEVD-CHO (reversible tetrapeptide inhibitor of caspase-3 and caspase-7) or a combination of AR-A014418 and DEVD-CHO (Figure 4F). We found that DEVD-CHO could rescue the apoptotic effect of GSK-3 inhibition by AR-A014418, whereas DEVD-CHO did not affect the decrease in Bcl-2 and XIAP protein levels in AR-A014418-treated cells (Figure 4F). These results suggest that downregulation of Bcl-2 and XIAP expression in AR-A014418-treated renal cancer cells occurs upstream of caspase activation. Taken together, our results suggest that inhibition of GSK-3 suppresses the expression of NF-κB target genes Bcl-2 and XIAP, resulting in decreased survival of renal cancer cells.

AR-A014418 and Docetaxel synergistically suppress survival of renal cancer cells

The 5-year survival rate for patients with metastatic RCC is less than 10% (Motzer et al, 1996) because of the tumours resistance to chemo- and radiotherapy. Chemotherapeutic effect for RCC is very limited because kidney cancer is intrinsically chemoresistant. There are diverse factors that contribute to RCC chemoresistance, including activation of NF-κB (Oya et al, 2001, 2003; An et al, 2004). Increased expression of Bcl-2 and XIAP anti-apoptotic molecules, NF-κB target genes, has an important function in renal cancer cell survival and chemoresistance (Bilim et al, 2008). In this study, we show that inhibition of GSK-3 suppresses NF-κB-mediated expression of Bcl-2 and XIAP leading to a decreased survival of renal cancer cells. To determine whether inhibition of GSK-3 could be useful in combination with conventional chemotherapeutic agent in the treatment of RCC, we treated renal cancer cells with AR-A014418 and Docetaxel, a well-established chemotherapeutic drug. Docetaxel has a limited cytotoxic effect in clinical RCC (Hartmann and Bokemeyer, 1999). We found that inhibition of GSK-3 sensitised ACHN and Caki1 cancer cells to Docetaxel, leading to a significant decrease in survival of renal cancer cells (Figure 5). Our results suggest that the combination of GSK-3 inhibitor with Docetaxel could be a superior treatment for human RCC.

DISCUSSION

Recent studies show that GSK-3β has an important function in pathogenesis of human cancer, including leukaemia (Ougolkov et al, 2007; Wang et al, 2008), pancreatic (Ougolkov et al, 2005, 2006), prostate (Mazor et al, 2004; Sun et al, 2007), colorectal (Shakoori et al, 2005), ovarian (Cao et al, 2006), thyroid (Kunnimalaiyaan et al, 2007) and brain (Kotliarova et al, 2008) carcinomas. However, the role of GSK-3β in kidney cancer remains unknown.

In this study, we identify GSK-3 as a positive regulator of RCC cell survival, proliferation and chemoresistance. We found GSK-3β aberrant nuclear accumulation in most (91.89%) of human renal cancer cells. These results suggest that inhibition of GSK-3 decreases survival of renal cancer cells.

Table 2 Results of immunohistochemical study for GSK-3β and pGS

Histological type	GSK-3β nuclear	pGS positive
Oncocytoma	2	0
Clear cell	64	60a,b
Other	10	8

Abbreviations: pGS = phospho-glycogen synthase; RCC = renal cell carcinoma. *Fisher’s exact test P = 0.0185, χ² with Yates’s correction. †Fisher’s exact test P = 0.0008, χ² with Yates’s correction.
carcinomas, whereas GSK-3β was detectable only in cytoplasm in normal kidney tissue. Our results suggest nuclear accumulation of GSK-3β as a potential oncomarker of RCC. Our findings are supported by previous studies showing nuclear overexpression of GSK-3β in pancreatic cancer (Ougolkov et al., 2006) and CLL (Ougolkov et al., 2007). Immunohistochemical detection of GSK-3β nuclear accumulation could be a useful diagnostic method for pathological verification of kidney cancer.

It has been suggested that GSK-3β is directed to the nucleus by releasing of its nuclear localisation signal from cytosolic complexes (Meares and Jope, 2007). Recently, we have shown that only active form of GSK-3β is detectable in the nucleus of pancreatic cancer.

Figure 3 Inhibition of GSK-3 suppresses proliferation of renal cancer cells. (A) Relative cell viability was measured by MTS assay in ACHN renal cancer cell line treated with indicated doses of AR-A014418, SB-216763 or TDZD-8 for 24, 48, 72 and 96 h. (B) Relative cell viability was measured by MTS assay in RCC cell lines treated with indicated doses of AR-A014418 for 24, 48, 72 and 96 h. (C) ACHN, A498 and KU19-20 renal cancer cells were treated with diluent (DMSO) or AR-A014418 with indicated doses for 48 h. BrdU colometric assay was performed as described in ‘Materials and Methods’. The results are presented as OD 490 nm (ANOVA \(P < 0.0001 \), post test for linear trend \(P < 0.0001 \)). (D) ACHN, Caki1 and KU19-20 renal cancer cells were cultured in the presence of DMSO or indicated concentrations of AR-A014418 for 96 h, followed by Hoechst 33342 staining. (E) ACHN renal cancer cells were transfected with control siRNA, GSK-3β or GSK-3α siRNA using Lipofectamine; 48 h after transfection, relative cell viability was measured in transfected cancer cells by MTS assay as shown in lower panel. Western blot for GSK-3α, GSK-3β and actin as control for loading is presented in the upper panel. Right panel represents Hoechst 33342 staining of ACHN cells transfected with control siRNA (right-upper) or GSK-3β siRNA (right-lower). Apoptotic cells are indicated by arrows.
and survival of renal cancer cells. Our data are in agreement with other studies showing that inhibition of GSK-3 results in decreased proliferation and/or survival of CLL (Ougolkov et al., 2007), pancreatic (Ougolkov et al., 2005), colorectal (Shakoori et al., 2005), ovarian (Cao et al., 2006), thyroid (Kunnimalaiyaan et al., 2007) and brain (Kotliarova et al., 2008) cancer cells. We also observed retardation of tumour growth by GSK-3 pharmacological inhibition in mice xenograft model using RCC cell lines (manuscript in preparation). Our work suggests that inhibition of GSK-3 is a promising new approach to renal cancer therapy.

Multiple factors contribute to RCC progression, including activation of NF-κB (Oya et al., 2001, 2003; An et al., 2004). Previous studies suggest a positive role for GSK-3β in the regulation of NF-κB-mediated cancer cell survival (Ougolkov et al., 2005, 2007). Previously, we showed that inhibition of GSK-3 resulted in apoptosis induction through decreased expression of NF-κB target genes Bcl-2 and XIAP in CLL and pancreatic cancer cells (Ougolkov et al., 2005, 2006, 2007). Increased expression of Bcl-2 and XIAP anti-apoptotic molecules, NF-κB target genes, has an important function in renal cancer cell survival (Maruyama et al., 2006; Bilim et al., 2008). In this study, we show that inhibition of GSK-3 suppresses NF-κB-mediated expression of Bcl-2 and XIAP leading to a decreased survival of renal cancer cells. Moreover, we
show that depletion of GSK-3β by siRNA leads to a decrease in renal cancer cell survival, suggesting that GSK-3β, but not GSK-3α, is a selective regulator of survival in renal cancer cells.

Our finding of nuclear accumulation of GSK-3β suggests the possibility that GSK-3β could positively regulate NF-κB-mediated transcriptional activation of Bcl-2 and XIAP in the nucleus of renal
cancer cells. We show that pharmacological inhibition of GSK-3 resulted in depletion of its nuclear pool and decreased transcription of Bcl-2 and XIAP. Consistent with our recent study suggesting that GSK-3 may regulate the nuclear activity of NF-κB in leukaemia cells by affecting the binding of p65/p50 to the promoters of NF-κB target genes Bcl-2 and XIAP (Ougolkov et al., 2007), we found that GSK-3 positively regulates NF-κB p65 binding to Bcl-2 and XIAP promoters in human renal cancer cells.

In renal carcinoma, NF-κB activity could be boosted by chemotherapeutic stress, leading to tumour chemoresistance. Increased expression of Bcl-2 and XIAP anti-apoptotic molecules, NF-κB target genes, has an important function in renal cancer cell survival and chemoresistance. Inactivation of NF-κB can make renal cancer cells more sensitive to chemotherapy. As GSK-3β is a positive regulator of NF-κB activity (Ougolkov et al., 2005, 2007), inhibition of GSK-3 may sensitise renal cancer cells to conventional chemotherapeutic agents. Here, we found that inhibition of GSK-3 suppresses NF-κB-mediated expression of Bcl-2 and XIAP leading to a decreased survival of renal cancer cells. Moreover, we show that inhibition of GSK-3 sensitised kidney cancer cells to Docetaxel suggesting that GSK-3 might contribute to renal cancer chemoresistance. Our findings are supported by another study showing that GSK-3β positively regulates NF-κB-mediated chemoresistance in acute myeloid leukaemia (De Toni et al., 2006).

Recently, it has been shown that GSK-3β inhibition enhanced Sorafenib-induced apoptosis in melanoma cells (Panka et al., 2008). As this combination potentially could be applied for the treatment of RCC we performed series of experiments. We also observed synergistic effect of AR-A014418 and Sorafenib to induce apoptosis in RCC in vitro and explored the underlying molecular mechanisms (manuscript in preparation).

Taken together, our work identifies GSK-3β as a novel potential therapeutic target in RCC and suggests the combination of GSK-3 inhibitors and standard chemotherapy could be a superior treatment for human RCC.

ACKNOWLEDGEMENTS

This research was supported by grants-in-aid for scientific research (#50334686) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to V Bilim).

REFERENCES

An J, Sun Y, Fisher M, Retting MB (2004) Maximal apoptosis of renal cell carcinoma by the proteasome inhibitor bortezomib is nuclear factor-kappaB dependent. Mol Cancer Ther 3: 727–736

Beck SDW, Patel MJ, Snyder ME, Kattan MW, Motzer RJ, Reuter VE, Russo P (2004) Effect of papillary and chromophobe cell type on disease-free survival after nephrectomy for renal cell carcinoma. Ann Surg Oncol 11: 71–77
Inhibition of GSK-3 induces apoptosis in RCC
V Bilim et al

Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, Radesater A-C, Jerning E, Markgren P-O, Borregaard T, Nyløf M, Gimenez-Cassina A, Hernandez F, Lucas JJ, Diaz-Nido J, Avila J (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278: 45937 – 45945

Bilim V, Kawasaki T, Katagiri A, Wakatsuki S, Takahashi K, Tomita Y (2000) Altered expression of beta-catenin in renal cell cancer and transitional cell cancer with the absence of beta-catenin gene mutations. Clin Cancer Res 6: 460 – 466

Bilim V, Yuuki K, Itoi T, Muto A, Kato T, Nagaoka A, Motoyama T, Tomita Y (2008) Double inhibition of XIAP and Bcl-2 axis is beneficial for retrieving sensitivity of renal cell cancer to apoptosis. Br J Cancer 99: 941 – 949

Bukowski RM (1997) Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer 80: 1198 – 1220

Bukowski RM (2001) Cytokine therapy for metastatic renal cell carcinoma. Semin Urol Oncol 19: 148 – 154

Cao Q, Lu X, Feng YJ (2006) Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res 16: 671 – 677

Coghlan MP, Culbert AA, Cross DAE, Corcoran SL, Yates JW, Pearce NJ, Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86 – 90

Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86 – 90

Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3: functional effects in myeloid leukemia. Nature 428: 976 – 988

Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3: functional effects in myeloid leukemia. Nature 428: 976 – 988

Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Constitutive activation of nuclear factor-kappaB in pancreatic cancer cells. Mol Cancer Ther 1: 1511 – 1518

Ljungberg B, Kasavaki T, Tagatiri A, Wakatsuki S, Takahashi K, Tomita Y (2000) Altered expression of beta-catenin in renal cell cancer and transitional cell cancer with the absence of beta-catenin gene mutations. Clin Cancer Res 6: 460 – 466

Bilim V, Kawasaki T, Katagiri A, Wakatsuki S, Takahashi K, Tomita Y (2000) Altered expression of beta-catenin in renal cell cancer and transitional cell cancer with the absence of beta-catenin gene mutations. Clin Cancer Res 6: 460 – 466

Bukowski RM (1997) Natural history and therapy of metastatic renal cell carcinoma: the role of interleukin-2. Cancer 80: 1198 – 1220

Bukowski RM (2001) Cytokine therapy for metastatic renal cell carcinoma. Semin Urol Oncol 19: 148 – 154

Cao Q, Lu X, Feng YJ (2006) Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res 16: 671 – 677

Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406: 86 – 90

Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3: functional effects in myeloid leukemia. Nature 428: 976 – 988

Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3: functional effects in myeloid leukemia. Nature 428: 976 – 988

Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Constitutive activation of nuclear factor-kappaB in pancreatic cancer cells. Mol Cancer Ther 1: 1511 – 1518

Ljungberg B, Hanbury DC, Kuczyk MA, Merseburger AS, Mulders PF, Martinez A, Alonso M, Castro A, Perez C, Moreno FJ (2002) First non-ATP competitive glycogen synthase kinase 3beta (GSK-3beta) inhibitors: thiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer's disease. J Med Chem 45: 1292 – 1299

Maruyama R, Yamana K, Itoi T, Hara N, Bilim V, Nishiyama T, Takahashi K, Tomita Y (2006) Absence of Bcl-2 and Fas/CD95/APO-1 predicts the response to immunotherapy in metastatic renal cell carcinoma. Br J Cancer 95: 1244 – 1249

Mazor M, Kawano Y, Zhu H, Waxman J, Kypta RM (2004) Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene 23: 7882 – 7892

Meares GP, Jope RS (2007) Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem 282: 16989 – 17001

Motzer RJ, Bander NH, Namus DM (1996) Renal-cell carcinoma. N Engl J Med 335: 865 – 875

Motzer RJ, Bukowski RM (2006) Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol 24: 5601 – 5608

Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD (2007) Inhibition of GSK-3 activity leads to epigenetic silencing of NF-kappaB target genes and induction of apoptosis in CLL B-cells. Blood 110: 735 – 742

Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD (2006) Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res 12: 5074 – 5081

Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD (2005) Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 65: 2076 – 2081

Oya M, Ohitsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M (2001) Constitutive activation of nuclear factor-kappaB prevents TRAIL-induced apoptosis in renal cell carcinoma. Oncogene 20: 3888 – 3896

Oya M, Takayanagi A, Horiguchi A, Mizuno R, Ohitsubo M, Marumo K, Shimizu N, Murai M (2003) Increased nuclear factor-kappa B activation is related to the tumor development of renal cell carcinoma. Carcinogenesis 24: 377 – 384

Panka DJ, Cho DC, Atkins MB, Mier JW (2008) GSK-3 inhibition enhances Sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem 283: 726 – 732

Shakoori A, Ougolkov A, Yu ZW, Zhang B, Medarasssi MH, Billadeau DD, Mai M, Takahashi Y, Minamoto T (2005) Deregulated GSK3[beta] activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 334: 1365 – 1373

Steinbrecher KA, Wilson III W, Coggswell PC, Baldwin AS (2005) Glycogen synthase kinase 3beta functions to specify gene-specific, NF-kappaB B-dependent transcription. Mol Cell Biol 25: 8444 – 8455

Sun A, Shanmugam I, Song J, Terranova P, Thrasher J, Li B (2007) Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 67: 976 – 988

Tomita Y, Bilim V, Kawasaki T, Takahashi K, Okan I, Magnusson KP, Wiman KG (1996) Frequent expression of Bcl-2 in renal-cell carcinomas carrying wild-type p53. Int J Cancer 66: 322 – 325

Wang Z, Smith KS, Murphy M, Filoto O, Somerville TCP, Cleary ML (2008) Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. Nature 455: 1205 – 1209

Wilson III W, Baldwin AS (2008) Maintenance of constitutive I-kappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer. Cancer Res 68: 8156 – 8163