REVIEW

Molecular and phenotypic biomarkers of aging [version 1; peer review: 3 approved]

Xian Xia¹, Weiyang Chen², Joseph McDermott¹, Jing-Dong Jackie Han¹

¹Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
²School of Information, Qilu University of Technology, Jinan, China

First published: 09 Jun 2017, 6(F1000 Faculty Rev):860
https://doi.org/10.12688/f1000research.10692.1
Latest published: 09 Jun 2017, 6(F1000 Faculty Rev):860
https://doi.org/10.12688/f1000research.10692.1

Abstract
Individuals of the same age may not age at the same rate. Quantitative biomarkers of aging are valuable tools to measure physiological age, assess the extent of 'healthy aging', and potentially predict health span and life span for an individual. Given the complex nature of the aging process, the biomarkers of aging are multilayered and multifaceted. Here, we review the phenotypic and molecular biomarkers of aging. Identifying and using biomarkers of aging to improve human health, prevent age-associated diseases, and extend healthy life span are now facilitated by the fast-growing capacity of multilevel cross-sectional and longitudinal data acquisition, storage, and analysis, particularly for data related to general human populations. Combined with artificial intelligence and machine learning techniques, reliable panels of biomarkers of aging will have tremendous potential to improve human health in aging societies.

Keywords
physiological age, phenotypic, molecular, age-associated diseases, aging process

Open Peer Review

Approval Status ⬤ ⬤ ⬤

version 1
09 Jun 2017

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Eileen Crimmins, University of Southern California, Los Angeles, USA
2. Alan Cohen, University of Sherbrooke, Sherbrooke, Canada
3. Kristina Endres, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, Germany

Any comments on the article can be found at the end of the article.
Corresponding author: Jing-Dong Jackie Han (jdhan@picb.ac.cn)

Competing interests: The authors declare that they have no competing interests.

Grant information: This work was supported by grants from the China Ministry of Science and Technology (2015CB964803 and 2016YFE0108700) and the National Natural Science Foundation of China (91329302, 31210103916, and 91519330) and the Chinese Academy of Sciences XDB19020301 and XDA01010303 to J-DJH.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2017 Xia X et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Xia X, Chen W, McDermott J and Han JDJ. Molecular and phenotypic biomarkers of aging [version 1; peer review: 3 approved] F1000Research 2017, 6(F1000 Faculty Rev):860 https://doi.org/10.12688/f1000research.10692.1

First published: 09 Jun 2017, 6(F1000 Faculty Rev):860 https://doi.org/10.12688/f1000research.10692.1
Introduction: Why do we need biomarkers of aging?
Aging is the time-dependent physiological functional decline that affects most living organisms, which is underpinned by alterations within molecular pathways, and is also the most profound risk factor for many non-communicable diseases. To identify biomarkers of aging would, on one hand, facilitate differentiation of people who are of the same chronological age yet have variant aging rates. Quantitative biomarkers of aging could also define a panel of measurements for ‘healthy aging’ and, even further, predict life span. On the other hand, biomarkers of aging could also assist researchers to narrow their research scope to a specific biological facet in their attempts to explain the biological process behind aging or aging-related diseases. Here, we review the phenotypic and molecular biomarkers of aging. Phenotypic biomarkers can be non-invasive, panoramic, and easy to obtain, whereas molecular biomarkers can reflect some of the molecular mechanisms underlying age status. This review is centered on humans (with mouse and nematode in some rare cases).

Molecular biomarkers of aging
This section is inspired by two high-impact reviews on the hallmarks of aging. Following the framework of these reviews, we focus on developments since the American Federation for Aging Research (AFAR) has proposed the following criteria for a biomarker of aging: (1) it must predict the rate of aging; (2) it must monitor a basic process that underlies the aging process, not the effects of disease; (3) it must be able to be tested repeatedly without harming the person; and (4) it must be something that works in humans and in laboratory animals.

Biomarkers fulfilling all of the criteria proposed by the AFAR are unlikely to exist, so in the molecular part of this review we follow the first two criteria: a biomarker should predict the rate of aging, and it must monitor a basic process that underlies the aging process. For the first criterion, we required the biomarker to be correlated with aging; for the second criterion, we have organized the first part of this review according to the molecular pathways underlying aging.

DNA and chromosomes
Telomeres. Telomeres are ribonucleoprotein complexes at the end of chromosomes and become shorter after each replication, as telomerase, the enzyme responsible for its replication, is not regularly expressed in somatic cells. The length of telomerizes in leukocytes has been associated with aging and life span as well as age-related diseases, such as cardiovascular diseases, cancer, and neurological disorders.

DNA repair. The link between DNA damage and repair has been implicated in aging by the accumulation of senescent cells or genomic rearrangements. More recently, this link was directly demonstrated, and controlled induction of DNA double-strand breaks in mouse liver inducing aging pathways and gene expression was shown. Immunohistochemistry of γH2A.X is an established quantitative biomarker of aging because H2A.X is a variant of the H2A protein family, and phosphorylated H2A.X, γ-H2A.X, is an initial and essential component of DNA damage foci and therefore a reliable marker of the extent of DNA damage.

Epigenetic modifications. Age-related changes in DNA methylation patterns, notably as measured by the epigenetic clock, are among the best-studied aging biomarkers. Analysis of methylation profiles in the blood found that only three CpG sites could predict age with a mean absolute deviation from chronological age of less than 5 years. The association between age and DNA methylation can be extended to age-associated diseases, such as diabetes. For a full review of the epigenetic regulation of aging, see Sen et al.

RNA and transcriptome
Transcriptome profiles. With rapid progress in single-cell RNA sequencing (RNA-seq) technology, it has begun to be applied to the study of biomarkers of aging. Lu et al. have recently shown that cell-to-cell expression variation, as measured by single-cell RNA-seq of high-dimensional flow cytometry sorted T cells, is associated with aging and disease susceptibility.

A recent study used whole-blood gene expression profiles from 14,983 individuals to identify 1,497 genes with age-dependent differential expression and then used them to calculate the ‘transcriptomic age’ of an individual, suggesting that transcriptome signatures can be used to measure aging.

Non-coding RNAs. MicroRNAs (miRNAs) are a class of small (21- to 23-nucleotide) non-coding RNAs that, through base-pairing mechanisms, regulate a broad range of biological processes, including metabolism and aging. Among them, circulating miRNAs can be stable in plasma by residing in exosomes or binding to protein or lipoprotein factors, thus making them easy-to-access biomarkers. miR-34a was the first observed circulating miRNA with an altered expression pattern during mouse aging. Its expression is found to correlate with age-related hearing loss in mice and humans. miR-21 was defined as an inflammatory biomarker in a study of 365 miRNAs in the plasma of healthy and old humans. miR-151a-3p, miR-181a-5p, and miR-1248 are reported to be significantly decreased with age in humans, in which all three miRNAs also show indications of associations with inflammation. miR-126-3p has been found to be positively correlated with age in 136 healthy subjects from 20 to 90 years of age. Through expression of GFP driven by miRNA promoters, Pincus et al. found that levels of mir-71, mir-246, and mir-239 in early adulthood vary across individuals and are predictive of life span. A recent review summarized the associations of other types of circulating non-coding small RNAs, such as tRNA and YRNA.

Long non-coding RNAs (lncRNAs) are a heterogeneous class of non-coding RNAs which are defined as transcripts longer than 200 nucleotides and devoid of evident open reading frames. Two recent reviews summarize the role of lncRNAs in aging.
diverse functional mechanisms of lncRNA are beyond the scope of this review, and readers may consult a recent review on this topic; here, we list lncRNAs that function in aging. The lncRNA MIR31HG was identified to be upregulated in oncogene-induced senescence and required for polycomb group–mediated repression of the INK4A locus. Downregulation of lncRNA AK156230 occurs in replicative senescence and its knockdown in mouse embryonic fibroblasts induces senescence through dysregulation of autophagy and cell cycle pathways, as shown by expression profiles. As most of the lncRNAs studies have been anecdotal, high-throughput lncRNA studies, such as CRISPR-Cas9 screen of functional lncRNAs, will be a useful future step toward understanding lncRNA functions in the aging process.

Metabolism

That dietary restriction is the most conserved means to extend life span and health span from yeast to mammals points to a pivotal role of metabolism in aging regulation and to the potential for metabolic factors to be biomarkers.

Nutrient sensing. The insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway, which participates in glucose sensing, is the earliest discovered and the most well-known pathway to antagonize longevity. Paradoxically, IGF-1 declines in wild-type mice or mouse models of premature aging whereas attenuating IIS activity extends life span. Such observations led to the potential inclusion of IIS pathway members, such as growth hormone and IGF-1, as biomarkers of aging.

The mechanistic target of rapamycin (mTOR) protein senses high amino acid concentrations. Inhibition of mTOR can extend life span. Unlike the IIS pathway, mTOR activity increases with age in the ovarian surface epithelium of aged human and mouse ovaries, which contributes to pathological changes. Phosphorylated S6 ribosomal protein (p-S6RP, or pS6) is a downstream target and also a known marker of active mTOR signaling, which is a potential biomarker of aging as indicated in the research of aged ovaries.

In contrast to IIS and mTOR function, 5′-adenosine monophosphate (AMP)–activated protein kinase (AMPK) and sirtuins sense nutrient scarcity instead of abundance. AMPK detects high AMP levels whereas sirtuins are sensors of high NAD+ levels, and both mark low-energy states. The upregulation of AMPK activity by metformin, a drug for type II diabetes, could mimic some of the benefits of caloric restriction, and metformin extends life span in male mice. AMPK is upregulated with age in skeletal muscles.

Sirtuins have the ability to directly link cellular metabolic signaling (reflected by NAD+) to protein post-translational modifications through a chemical reaction (deacetylation of lysine). During aging, NAD+ is reduced and sirtuins are downregulated. An analysis of primary human dermal fibroblasts found that SIRT1 and SIRT6 are downregulated through passing. Similarly, levels of SIRT1, SIRT3, and SIRT6 detected by Western blotting showed significant decrease in ovaries of aged mice. In human peripheral blood mononuclear cells, SIRT2 also decreases with age.

Protein metabolism. Protein carbamylation is one of the non-enzymatic post-translational modifications which occur throughout the whole life span of an organism, leading to tissue accumulation of carbamylated proteins. It is considered a hallmark of molecular aging and is related to aging-related diseases, such as cardiovascular disease.

Advanced glycation end products (AGEs) are a heterogeneous group of bioactive molecules that are formed by non-enzymatic glycation of proteins, lipids, and nucleic acids. Accumulation of AGEs in aging tissues leads to inflammation, apoptosis, obesity, and other age-related disorders. AGEs can be detected via high-performance liquid chromatography, gas chromatography-mass spectrometry, and immunochromatographic techniques. N-glycans are a class of glycoproteins with sugar chains bonded to the amide nitrogen of asparagine. The spectrum of N-linked glycans (the N-glycome) can now be investigated because of the development of high-throughput methods. The accumulation of N-linked glycation at Asn297 of the Fc portion of IgG (IgG-G0) can contribute to low-grade pro-inflammatory status in aging.

Lipid metabolism. Triglycerides are found to increase monotonously with age and thus could be a biomarker of aging. Studies of serum samples by shotgun lipidomics found that phospho- and sphingolipids are putative markers, and biological modulators, of healthy aging. However, the design of these studies is questionable—able in that they have a group of elderly individuals as a ‘not healthy aging control’ and compare them with the ‘successful aging’ centenarian group, but the two groups are obviously of very different ages. Therefore, it is not clear whether it was the age difference or the success of healthy aging that contributed to the differences in lipidomics.

Oxidative stress and mitochondria

Biomarkers of oxidative stress have long been regarded as a class of aging biomarkers. The products of oxidative damage to proteins include o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine. 8-iso-prostaglandin F2α is a biomarker for phospholipid damage. 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are produced by the oxidative damage of nucleic acids. The concentration of these biomarkers in body fluids can be detected via high-performance liquid chromatography and mass spectrometry. Shen et al. engineered a circularly permuted yellow fluorescent protein (cpYFP) expressed in *Caenorhabditis elegans* mitochondrial matrix as a sensor of oxidative stress and metabolic changes; the authors found that adult day 3 mitochondrial cpYFP flash frequency is a good predictor of *C. elegans* life span under different genetic, environmental, and stochastic conditions.

Although free radicals, the source of oxidative stress, are mainly produced in mitochondria, dysfunctional mitochondria can contribute to aging independently of reactive oxygen species. To measure mitochondria function, blood- and-muscle based respirometric profiling strategies are available, and the association of this potential reporter with bioenergetic capacity of other tissues or phenotypes, such as gait speed, has been investigated. Extracellular mitochondria components can function as damage-associated molecular pattern molecules (DAMPs) (see also “Inflammation and..."
intercellular communication”) and these induce neuroinflammation when injected in mouse hippocampus.

Cell senescence

In mitotic tissues, the gradual accumulation of senescent cells is thought to be one of the causal factors of aging. Thus, the biomarkers of cell senescence can also be used as markers. Such biomarkers have been summarized in recent reviews. The most widely used marker is senescence-associated β-galactosidase (SAβ-gal) and p16INK4A/ARF. SAβ-gal reflects increased lysosomal mass but can yield false positives because of its low specificity. SAβ-gal is a cell damage marker, and p16INK4A is required to induce, and is indicative of, permanent cell cycle arrest.

Other senescent cell markers include activated and persistent DNA-damage response (see “DNA repair”), telomere shortening and dysfunction (see “Telomere”), and senescence-associated secretory phenotype (SASP) (see “Inflammation and intercellular communication”).

Inflammation and intercellular communication

SASP is a consequence of cell senescence and may occur in cells that, though undergoing cell cycle arrest, are still metabolically active and secrete proteins. SASP functions in an autocrine/paracrine manner. The major components of SASP factors are soluble signaling factors, including interleukins, chemokines, and growth factors. Proteins that are associated with the SASP, such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, matrix metalloproteinases, and IGF binding proteins, increase in multiple tissues with chronological aging and occur in conjunction with sterile inflammation. Comprehensive catalogs of SASP also include secreted proteases and secreted insoluble proteins/extracellular matrix components and are summarized by Coppé et al. and the Reactome database (http://www.reactome.org/content/detail/R-HSA-2559582).

The DAMPs, such as heat shock proteins, histones, high-mobility group box 1, and S100, compose a class of molecules released after injury or cellular death and mediate immune response. The association between DAMPs and other hallmarks of aging has been reviewed by Huang et al.

Phenotypic biomarkers of aging

Still following the criteria proposed by the AFAR, here we categorize the phenotypic biomarkers of aging. It is difficult for phenotypic biomarkers to monitor a basic molecular process that underlies the aging process, so we follow three standards: a biomarker should predict rate of aging, it must be able to be tested repeatedly without harming the person, and it monitors one or more physiological processes.

Physical function and anthropometry are the most practical measurements among phenotypic biomarkers of aging. In this regard, walking speed, chair stand, standing balance, grip strength, body mass index, waist circumference, and muscle mass are well known. These physical functional measurements, though simple, can actually perform better than DNA methylation in terms of relationship to health status in demographic research.

Quantitative phenotypes of external human features also show significant relationships with aging. Quantified facial features based on three-dimensional (3D) facial images, such as mouth width, nose width, and eye corner droop, are highly associated with age. In fact, 3D facial images can be used to quantify the biological age of an individual.

Integration of aging biomarkers

Biomarkers of aging can be used to predict the physiological age, which reflects their state of health, via statistics and machine learning algorithms. A single class of biomarkers, which is intrinsically a matrix of features, can be used in the prediction. DNA methylation was used to predict age with an error of about 3.6 years using 8,000 samples. 3D facial images have also been used to predict age with a mean deviation of 6 years.

Integration of multiple biomarkers can be even more powerful. The Dunedin Study has focused on middle-aged people and used different measurements (telomere lengths, epigenetic clocks, and clinical biomarker composites) and compared their performance in predicting health status, as measured by physical functionality, cognitive decline, and subjective signs of aging. The three types of measurements in this study do not correlate with each other, suggesting that there is no single index of biological age. Therefore, another approach is to use statistic distance, to assess the degree of deviation of an individual’s biomarker profile from the reference population. of multi-variants (in the simplest case, when all the variants are uncorrelated, this distance is the sum of the absolute values of z-scores), and is proven to be insensitive to biomarker choice across 44 available markers and to be generalizable with multiple marker variants. Recently, a modular ensemble of 21 deep neural networks was used to predict age by using measurements from basic blood tests by training over 60,000 samples, which revealed the five most important blood markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea, and erythrocytes.

Conclusion and outlook

As expected from the complex nature of the aging process, aging biomarkers are multifaceted and multifaceted and consist of a dizzying array of parameters, which we further summarized in an even more concise form as a table (Table 1). This, however, does not mean that they are equally useful. We need to point out that not all factors, although they might be involved in the underlying biological process of aging, are proven to be useful in terms of measuring human aging at this point.

Recently, the MARK-AGE project was announced as a large-scale integrated project aimed to find a powerful set of biomarkers for human aging based on over 3,200 subjects. Although more details from this project remain to be seen, the pace of identifying and using biomarkers of aging to improve human health, preventing aging-associated diseases, and extending healthy life span will only be further increased by the myriad of data generated. These include not only data from large human cohort studies but also ordinary people’s genomic, functional genomic, phenotypic, and lifestyle data, which will be facilitated by the ever-growing capacity of data.
Table 1. Biomarkers of aging. For species source, if there is one in humans, then other model organisms are omitted.

Biomarker Category	Biomarker Subcategory	Biomarker	Trend with age	Species
DNA and chromosome	Telomere	Leukocyte telomere length	Decrease	Human
	DNA repair	γ-H2A.X immunohistochemistry	Increase	Human
	Epigenetic modification	DNA methylation	Global hypomethylation and local hypermethylation	Human
RNA and transcriptome	Transcriptome profiles	Heterogeneity of CD38 in CD4+CD27+ T cells	Decrease	Human
		Heterogeneity of CD197 in CD4+CD25+ T cells	Increase	Human
	Circulating microRNAs (miRNAs)	miR-34a, miR-21, miR-126-3p	Increase	Human
		miR-151a-3p, miR-181a-5p, miR-1248	Decrease	Human
	Long non-coding RNAs	MIR31HG	Increase in cell senescence	Human
		AK156230	Decrease in cell senescence	Mouse
		Meg3	Increase in cell senescence	Human
Metabolism	Nutrient sensing	Growth hormone and insulin/insulin-like growth factor 1 (IGF-1)	Decrease	Human
		Mechanistic target of rapamycin (mTOR) and pS6RP	Increase	Human
		NAD+, SIRT1, SIRT2, SIRT3, SIRT6	Decrease	Human
	Protein metabolism	Protein carbamylation, such as homocitrulline rate	Increase	Human
		Advanced glycation end products and N-glycans	Increase	Human
	Lipid metabolism	Triglycerides	Increase	Human
Oxidative stress and mitochondria		o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-iso prostaglandin F2α, 8-hydroxy-2′-deoxyguanosine, 8-hydroxyguanosine	Increase	Human
Cell senescence	Senescence-associated β-galactosidase	Increase in cell senescence	Human	
Inflammation and intercellular communication	p16INK4A	Increase in cell senescence	Human	
Phenotypic biomarkers	Physical function and anthropometry	Walking speed, chair stand, standing balance, grip strength, muscle mass	Decrease	
		Body mass index, waist circumference	Increase	
	Facial features	Mouth width	Increase	
		Nose width	Increase	
		Mouth-nose distance	Increase	
		Eye corner slope	Decrease	
 acquisition, storage, and analysis. It would not be far-fetched for there one day to be an artificial intelligence program capable of precise prognosis of how long a person can live, based on his or her quantitative measurements in a large panel of biomarkers of aging.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by grants from the China Ministry of Science and Technology (2015CB964803 and 2016YFE0108700) and the National Natural Science Foundation of China (91329302, 31210103916, and 91519330) and the Chinese Academy of Sciences XDB19020301 and XDA01010303 to J-DJH.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. López-Otin C, Blasco MA, Partridge L, et al.: The hallmarks of aging. Cell. 2013; 153(6): 1146–54. [Publisher Full Text | F1000 Recommendation]
2. Engeland PM, Jansen EH, Picavet HS, et al.: Biochemical markers of aging for longitudinal studies in humans. Epidemiol. Rev. 2013; 35(1): 132–51. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
3. Johnson TE: Recent results: biomarkers of aging. Exp Gerontol. 2006; 41(12): 1243–6. [Publisher Abstract | Publisher Full Text]
4. Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev. 2008; 88(2): 567–79. [Publisher Abstract | Publisher Full Text]
5. Kimura M, Hjelmborg JV, Gardner JP, et al.: Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008; 167(7): 799–806. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
6. Reikof DH, Needham BL, Lin J, et al.: Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLoS Med. 2016; 13(11): e1002188. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
7. Hammoud M, Al Mheid I, Wilmot K, et al.: Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res. 2017; 120(7): 1130–8. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
8. Blackram EH, Epp ES, Lin J: Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015; 350(6263): 1193–8. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
9. Elan E, Hutchison ER, Mattson MP: Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci. 2014; 37(5): 256–63. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
10. Gedjikova OA, Horikawa I, Zimonjic DB, et al.: Senescence human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 2004; 6(2): 168–70. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
11. Dole ME, Giese H, Hopkins CL, et al.: Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 1997; 17(4): 431–4. [Publisher Abstract | Publisher Full Text]
12. White RR, Miholland B, de Bruin A, et al.: Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing. Nat Commun. 2015; 6: 6790. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
13. Wang C, Jurek D, Madlack M, et al.: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009; 8(3): 311–23. [Publisher Abstract | Publisher Full Text]
14. Rübe CE, Fricke A, Wildmann TA, et al.: Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One. 2011; 6(3): e17487. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
15. Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008; 22(3): 305–9. [Publisher Abstract | Publisher Full Text]
16. Song Z, von Figura G, Liu Y, et al.: Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010; 9(4): 607–15. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
17. Chevanne M, Caldini R, Tombaccini D, et al.: Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biogerontology. 2003; 4(2): 97–104. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
18. Day K, Waite LL, Thalacker-Mercer A, et al.: Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013; 14(3): R102. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
19. Horvath S, Zhang Y, Langfelder P, et al.: Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012; 13(10): R87. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
20. Horvath S, Gurven M, Levine ME, et al.: An epigenetic clock analysis of race/ ethnicity, sex, and coronary heart disease. Genome Biol. 2016; 17(1): 171. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
21. Weidner OJ, Lin Q, Koch CM, et al.: Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014; 15(2): R24. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
22. Bacos K, Gillberg L, Volkov P, et al.: Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016; 7: 11089. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
23. Sen P, Shah PP, Nativo R, et al.: Epigenetic Mechanisms of Longevity and Aging. Cell. 2016; 166(4): 822–39. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
24. Lu Y, Biancoatto A, Cheung F, et al.: Systematic Analysis of Cell-to-Cell Expression Variation of T Lymphocytes in a Human Cohort Identifies Aging and Genetic Associations. Immunity. 2016; 45(3): 1143–54. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
25. Dumortier O, Hinaut C, Van Obberghen E: MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013; 18(3): 312–24. [Publisher Abstract | Publisher Full Text]
26. Dahabi MJ: Circularizing small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014; 17: 86–98. [Publisher Abstract | Publisher Full Text]
27. Li X, Khanna A, Li N, et al.: Circulatory mir34a as an RNA-based, noninvasive biomarker for brain aging. Aging (Albany NY). 2011; 3(10): 985–1002. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
28. Pang J, Xiong H, Yang H, et al.: Circulating mir-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol. 2016; 76: 58–67. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
29. Olivieri F, Spazzafulo L, Santini G, et al.: Age-related differences in the expression of circulating microRNAs: mir-21 as a new circulating marker of inflamming. Mech Ageing Dev. 2012; 133(11–12): 675–86. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
30. Noren Hooten N, Fitzpatrick M, Wood WH 3rd, et al.: Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013; 5(10): 725–40. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
31. Olivieri F, Bonafe M, Spazzafulo L, et al.: Age- and glycaemia-related mir-126-3p levels in plasma and endothelial cells. Aging (Albany NY). 2014; 6(9): 771–87. [Publisher Abstract | Publisher Full Text | F1000 Recommendation]
32. Pincus Z, Smith-Vikos T, Slack FJ: MicroRNA predictors of longevity in...
Caenorhabditis elegans. PLoS Genet. 2011; 7(9): e1002306.

34. Fatica A, Bozzoni I: Long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. J Am Coll Cardiol. 2016; 68(25): 2589–91.

35. Grammatikakis I, Panda AC, Abdelmohsen K, et al.: Long noncoding RNAs (ncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014; 6(12): 992–1009.

36. Harman SM, Blackman MR: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; 17(1): 47–62.

37. Johnson SC, Rabinovitch PS, Kaeberlein M: Long non-coding RNAs in aging and age-related diseases. Ageing Res Rev. 2016; 26: 1–21.

38. Kim KS, Park HK, Lee JW, et al.: Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech. 2015; 78(4): 277–82.

39. McIntyre PW, Sabatini DM, Persichetti E, et al.: Does activation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010; 65(9): 963–75.

40. Kour S, Rath PC: Long noncoding RNAs in aging and age-related diseases. Aging. 2016; 2016; 8(3): 256–8.

41. Lai W, Zhang X, et al.: Advanced Glycation End Products induce Obesity and Hepatostasis in CD1-Wild-Type Mice. Biomed Res Int. 2016; 2016: 7867652.

42. McGraw MG, Sable J: Are sirtuins markers of ovarian aging? J Gerontol A Biol Sci Med Sci. 2015; 70(11): 1394–9.

43. Mehler PS, Balsam PK, et al.: Antioxidant-based detection of advanced glycation end-products: promises vs. limitations. Glycocon J. 2016; 33(4): 545–50.

44. Mehta M, Lesko O, Vanhooren V, Chen CC, et al.: N-glycomic biomarkers of biological aging and longevity: a link with inflamming. Ageing Res Rev. 2013; 12(2): 685–98.

45. Mezey E, Kibar Z, et al.: Identification of the IncRNA, AK156230, as a novel regulator of cellular senescence in mouse embryonic fibroblasts. Oncotarget. 2016; 7(33): 52873–84.

46. Milani V, Montisci A, et al.: Long non-coding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Aging. J Am Coll Cardiol. 2016; 68(23): 2589–91.

47. Mora-Flores S, Xi S, et al.: Long non-coding RNAs regulate longevity and stress resistance in C. elegans. Nature. 2016; 535(7609): 508–12.

48. Moskva K, Böhmova M, Mikolka M, et al.: Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev. 2014; 2014: 562866.

49. Mudryj M, Mancias JD, et al.: Mitochondrial dysfunction and aging. Annu Rev Physiol. 2012; 74: 229–54.

50. Niesler P, Moraru M, et al.: End product metabolomics analysis in human peripheral blood mononuclear cells. J Proteome Res. 2014; 13(7): 2585–95.

51. Niu H, Huang X, et al.: Senescence-promoting effect of advanced glycation end products on human vascular endothelial cells. J Gerontol A Biol Sci Med Sci. 2015; 70(10): 1359–67.

52. Ou F, Wang Z, et al.: Advanced glycation end products contribute to the aging phenotype. J Gerontol A Biol Sci Med Sci. 2015; 70(3): 396–403.

53. Parada JS, Elbashir SM, et al.: Unique features of long non-coding RNA biogenesis. Biochim Biophys Acta. 2016; 1860(11): 1297–60.
88. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leucoc Biol. 2007; 81(1):1–5.
PubMed Abstract | Publisher Full Text

89. Huang J, Xie Y, Sun X, et al. DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev. 2015; 24(Pt A):3–16.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

90. Wagner KH, Cameron-Smith D, Weissner B, et al. Biomarkers of Aging: From Function to Molecular Biology. Nutrients. 2016; 8(6): pii: E338.
PubMed Abstract | Publisher Full Text | Free Full Text

91. Belley-DW, Moffitt TE, Cohen AA, et al. Telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? bioRxiv. 2016.
Publisher Full Text | F1000 Recommendation

92. Chen W, Qian W, Wu G, et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 2015; 25(5): 574–87.
PubMed Abstract | Publisher Full Text | Free Full Text

93. Chen W, Xia X, Huang Y, et al. Bioluminesaging for quantitative phenotype analysis. Methods. 2016; 102: 20–5.
PubMed Abstract | Publisher Full Text

94. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013; 14(10): R115.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

95. Cohen AA, Milot E, Yong J, et al. A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev. 2013; 134(3–4): 110–7.
PubMed Abstract | Publisher Full Text | Free Full Text

96. Cohen AA, Li Q, Milot E, et al. Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition. PloS One. 2015; 10(4): e0122541.
PubMed Abstract | Publisher Full Text | Free Full Text

97. De Maesschalck R, Jouni-Rimbaud D, Massart DL. The Mahalanobis distance. Chemometr Intell Lab Syst. 2000; 50(1): 1–18.
Publisher Full Text

98. Putin E, Mamzshina P, Aliper A, et al. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016; 8(5): 1021–33.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

99. Bürkle A, Moreno-Villanueva M, Bernhard J, et al. MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015; 151: 2–12.
PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✅ ✅ ✅

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Kristina Endres
 Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Untere Zahlbacher Strasse 8, 55131 Mainz, Germany
 Competing Interests: No competing interests were disclosed.

2. Alan Cohen
 Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
 Competing Interests: No competing interests were disclosed.

3. Eileen Crimmins
 Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com