Search for exotic Higgs boson decays $H \rightarrow A.A \rightarrow 4\gamma$ with events containing two merged diphotons in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration*

Abstract

We present the first direct search for exotic Higgs boson decays $H \rightarrow A.A, A \rightarrow \gamma\gamma$ in events with two photonlike objects. The hypothetical particle A is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 136 fb^{-1}. No excess above the estimated background is found. We set upper limits on the branching fraction $\mathcal{B}(H \rightarrow A.A \rightarrow 4\gamma)$ of $(0.9–3.3) \times 10^{-3}$ at 95% confidence level for masses of A in the range 0.1–1.2 GeV.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.131.101801.

*See Appendix A for the list of collaboration members
Despite current constraints on the Higgs boson coupling to standard model (SM) particles from experiments at the CERN LHC [1, 2], the Higgs sector remains an important area for physics searches beyond the SM (BSM). This is possible because the Higgs sector can potentially access BSM states that do not directly participate in the SM gauge interactions, called SM neutral. The simplest extensions of the Higgs sector include exotic decays of the form $H \rightarrow AA$, where H is the 125 GeV boson with a non-SM decay, and A is a hypothetical new spin-0 particle decaying to a pair of SM particles [3]. Such decays are found in BSM models containing an additional SM-neutral singlet [3, 4] and are of interest in searches for axionlike particle (ALP) production [5–7], including analyses performed at CMS [8–12]. In ALP models, A is identified as a CP-odd spin-0 particle where CP is the charge-conjugation and parity operator. The experimental search presented in this Letter is insensitive to the CP quantum numbers of A, since its polarization is not measured.

For particle A masses $m_A \lesssim 1$ GeV, decays to many of the heavier fermions become inaccessible and the diphoton decay mode $A \rightarrow \gamma\gamma$ becomes particularly relevant [3, 13]. Generic $A \rightarrow \gamma\gamma$ searches are prevalent in astrophysics, cosmology [14–16], and particle collider experiments [17, 18] because of the potential impact of A on stellar formation and the evolution of the early Universe. The particle A is also a potential dark matter candidate [19–22].

A measurement of the diphoton invariant mass spectrum at the LHC in this A mass regime is challenging if A is produced from the decay $H \rightarrow AA$. In the A mass range of $m_A < 0.4$ GeV, A will have a Lorentz boost $\gamma_L \gtrsim 150$, where $\gamma_L = E_A/m_A$ and E_A is the A energy. In the CMS experiment, this boost corresponds to a distance between the photons from the $A \rightarrow \gamma\gamma$ decay at the electromagnetic calorimeter (ECAL) that is equal to or less than the Molière radius (r_M) of the ECAL material. The two photons will be predominantly reconstructed as one photonlike object (labeled Γ) by the standard CMS photon reconstruction algorithm, as described in Ref. [23]. If A decays promptly, the $H \rightarrow AA \rightarrow 4\gamma$ decay will lead to a measured two-photon invariant mass $m_{\Gamma\Gamma}$ peak degenerate with that of the SM $H \rightarrow \gamma\gamma$ decay. The $H \rightarrow AA \rightarrow 4\gamma$ signal will then be hidden by reconstructed SM $H \rightarrow \gamma\gamma$ events [1, 24]. With A decays to more-massive particles being inaccessible, A can also be long-lived [3].

To separate a possible signal from the SM background, we present the first search that directly measures the invariant mass spectrum of merged diphoton candidates Γ reconstructed in events resembling an SM $H \rightarrow \gamma\gamma$ final state. We assume that each A in the $H \rightarrow AA$ decay has the same mass and decays promptly to photons, though we provide estimated results where these assumptions are relaxed. The direct search is made possible by a novel particle reconstruction technique that is able to measure the invariant mass, m_{Γ}, of merged diphoton candidates, something not possible with standard CMS reconstruction software. The technique utilizes deep learning algorithms trained directly on ECAL energy deposits to estimate m_A in a so-called end-to-end m_{Γ} reconstruction [23]. It is applied for the first time at CMS to probe masses from 0.1 GeV (corresponding to $\gamma_L \approx 50$ and diphotons separated by around $3 r_M$ at the ECAL). Tabulated results for this analysis can be found in [25]. Signal events with larger m_A have at least one of the $A \rightarrow \gamma\gamma$ decays reconstructed as two distinct photons and are not studied. We note that the technique requires access to the full CMS event content which is not readily accessible because of storage constraints. No special event triggers are otherwise required.

The analysis is performed using proton-proton (pp) collision data at $\sqrt{s} = 13$ TeV, collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 136 fb$^{-1}$. The CMS apparatus [26] is a multipurpose, nearly hermetic detector, designed to
trigger on [27, 28] and identify electrons, muons, photons, and hadrons [29–33]. A global reconstruction algorithm [34] combines the information provided by the all-silicon inner tracker and by the lead tungstate ECAL and brass-scintillator hadron calorimeters, operating inside a 3.8 T superconducting solenoid, with data from gas-ionization muon detectors embedded in the solenoid return yoke, to build τ leptons, jets, missing transverse momentum, and other physics objects [35–37]. The integrated luminosities for the 2016–2018 data-taking years have 1.2–2.5% individual uncertainties [38–40], while the overall uncertainty for the 2016–2018 period is 1.6%.

The \(A \to \gamma\gamma \) decay is primarily detected in the ECAL, which contains a barrel section covering the pseudorapidity range \(|\eta| < 1.48 \) and two endcap sections on either end extending the range to \(|\eta| < 3\). The crystal \(r_M \) is comparable to the barrel crystal width of 2.2 cm, resulting in more than 90% of the energy of photons converting only in the ECAL barrel to be laterally contained within a \(3 \times 3 \) crystal matrix [31].

A sample of events containing two reconstructed photonlike objects (IT) is selected for analysis. We assume that each reconstructed photonlike object \(\Gamma \) corresponds to a single merged diphoton candidate. Events selected for study are required to pass trigger, photon reconstruction, and kinematic selection requirements similar to those used in the CMS SM \(H \to \gamma\gamma \) analysis [24]. Key differences in the photon reconstruction criteria are described in the following paragraph. The SM background processes contributing to the selected sample are composed of nonresonant quantum chromodynamic (QCD) dijet and \(\gamma + \text{jet} \) production, prompt-diphoton production, and \(H \to \gamma\gamma \) decays.

Since the \(m_A \) range we study spans a wide range of \(A \) boosts, the opening angles of the \(A \to \gamma\gamma \) decays vary as well [23]. We thus apply a looser requirement on the output of the multivariate photon tagger [24], which then accepts more photons than for the CMS \(H \to \gamma\gamma \) search. This increases the contribution from QCD background processes containing hadronic jets, which may be reconstructed as photonlike objects if they radiate an energetic photon or contain one or more neutral-meson decays (\(\pi^0/\eta \to \gamma\gamma \)). To compensate, we set a more restrictive requirement on the transverse momenta of charged particles in a cone around the selected photon, \(\mathcal{I}_{ch} \) [24]. Since neutral mesons are mainly produced inside hadronic jets, they are more likely to be accompanied by charged particle tracks. Thresholds for the above requirements are chosen to maximize the significance of a possible \(H \to AA \to 4\gamma \) signal over the \(m_A \) range of interest. After all selection criteria are applied, signal events are selected with an estimated efficiency of 8%–24%, decreasing with \(m_A \), while background events are reduced by >99%, as determined from simulation.

To simplify the application of the new \(m_F \) reconstruction technique, only events with both IT reconstructed in the barrel section of the ECAL are analyzed. These account for about two thirds of the total expected signal yield. Events with more than two selected photons passing the selection criteria are not used to maintain orthogonality with a complementary CMS search at higher \(m_A \) where the \(A \to \gamma\gamma \) photons are fully resolved [41].

To discriminate \(H \to AA \to 4\gamma \) events from background, the end-to-end \(m_F \) reconstruction technique is used to measure the two-dimensional (2D) invariant mass spectrum, \(m_{\Gamma_1} \) versus \(m_{\Gamma_2} \), (labeled \(2D-m_F \)), where \(\Gamma_{1/2} \) is the higher- (lower-) energy reconstructed photon. Each \(\Gamma \) is assumed to correspond to a single \(A \to \gamma\gamma \) leg of the presumed \(H \to AA \to 4\gamma \) decay. We construct signal (S) 2D-\(m_F \) templates for each signal mass hypothesis \(m_A = 0.1–1.2 \text{ GeV} \), in 0.1 GeV steps, using simulation. This defines our signal model at each \(m_A \) hypothesis. The relative \(m_F \) resolution varies from approximately 100% to 20% for \(m_A = 0.1–1.2 \text{ GeV} \) [23]. Background (B) 2D-\(m_F \) templates are constructed for the SM processes contributing to our selected
sample, derived from data and simulation. The sum of these background templates defines our background model, representing the SM-only hypothesis. A scan over different signal hypotheses is performed. At each point, maximum likelihood estimation (MLE) [42] is used to extract the best fit between the observed 2D-m_{T} spectrum and the signal-plus-background model, µS + B, for some signal strength parameter µ. The detection of a potential H → AA → 4γ contribution at a given m_{A} is expressed in terms of the significance of the extracted best fit signal strength.

Simulated H → AA → 4γ events are generated with MADGRAPH MC@NLO [43] at leading order using the SM + dark vector + dark Higgs model [3, 4] and a Higgs boson mass of 125 GeV. A rounded mass value of 125 GeV is chosen as this search is insensitive to the exact value of the Higgs boson mass. The Higgs boson is produced with up to one associated jet, and the A has a negligible lifetime. The events are fully simulated in the CMS detector and account for effects from the underlying event and additional pp collisions in the same or nearby bunch crossings. Signal samples are generated separately for each m_{A} hypothesis.

The simulated H → AA → 4γ events are used to construct the signal 2D-m_{T} templates. Theoretical estimates of the H → AA production cross section vary depending on the model assumptions. Our final results, however, are expressed in terms of the signal branching fraction and efficiency to pass selection criteria.

An overall background 2D-m_{T} template for all other nonresonant processes is estimated from data. We divide the selected events in data into regions based on m_{TT} and 2D-m_{T}. Since the two A particles come from the decay of a Higgs boson with a mass of 125 GeV, we define an m_{TT} signal region (SR) around the Higgs boson mass (labeled m_{H} - SR) using 110 < m_{TT} < 140 GeV and sideband (SB) regions below (labeled m_{H} - SB_{low}) and above (labeled m_{H} - SB_{high}) the Higgs boson mass, by requiring 100 < m_{TT} < 110 GeV and 140 < m_{TT} < 180 GeV, respectively. Since we assume that the two A particles from the H → AA decay have equal mass, we also divide the 2D-m_{T} distribution into an SR along the diagonal (labeled m_{A} - SR), by requiring |m_{γ1} − m_{γ2}| < 0.3 GeV, and a SB region (labeled m_{A} - SB) using |m_{γ1} − m_{γ2}| > 0.3 GeV. The final SR in which the MLE test is performed corresponds to the intersection of the above two SRs, m_{A} - SR ∩ m_{H} - SR. A binned likelihood fit of µS + B versus the observed 2D-m_{T} distribution with bin sizes of 0.05 × 0.05 GeV^{2} is used. The boundaries between the SR and SB regions are tuned using the simulation to maximize the signal enrichment in the SR, while maintaining a sufficient number of events in the SB regions to give a good background estimation. Figure 1 (center) shows the observed 2D-m_{T} distribution of the selected events in data from m_{H} - SR and the respective 1D projections of m_{γ1} (left) and m_{γ2} (right) in the m_{A} - SR. Illustrative contours in 2D-m_{T} of the signal template (center) and its 1D projections (left and right) are also provided.

An estimate of the nonresonant background shape of the 2D-m_{T} template in the m_{H} - SR is obtained from data SBs by taking the event-weighted average of the shapes from the two m_{H} - SB.
Figure 1: Mass distributions from selected events in data. Center: the 2D-m_{T} distribution for data events in the $m_{T}-$SR. The red dashed lines indicate the $m_{T}-$SR boundaries. The contours of simulated $H \rightarrow A\bar{A} \rightarrow 4\gamma$ events for $m_{A} = 0.4$ GeV are plotted for 75% (solid contour) and 50% (dotted contour) of the distribution maximum. The corresponding $m_{T_{1}}$ (left) and $m_{T_{2}}$ (right) projections for the overlap of the $m_{T}-$SR and $m_{A}-$SR are also shown. The data distributions (black points) are plotted against the total predicted background distributions (blue curves). The statistical uncertainties in the former are negligible and the total uncertainties in the latter are barely visible as green bands. The spectra of simulated $H \rightarrow A\bar{A} \rightarrow 4\gamma$ events for $m_{A} = 0.1$ (purple dashed curve), 0.4 (gray dotted curve), and 1.0 GeV (orange dash-dotted curve) are also provided. They are each normalized to the value of $B(H \rightarrow A\bar{A} \rightarrow 4\gamma)$ that is expected to be excluded by the background model (described under the CL$_{s}$ criterion in our results) times 10^{3}. The black points in the lower panels of the left and right plots give the ratios of the data to the predicted background distributions. The vertical bars represent the statistical uncertainties in the former, and the green bands represent the total uncertainty in the latter.
regions (together labeled m_{H-SB}). To determine the normalization of the template, we assume that the ratio of the number of events along the m_A-SR diagonal, from that observed in the m_{H-SR}s to that estimated from the m_{H-SB}, $N(m_A$-SR $\cap m_{H-SR})/N(m_A$-SR $\cap m_{H-SB})$, is the same as for the m_A-SB off diagonal, $N(m_A$-SB $\cap m_{H-SR})/N(m_A$-SB $\cap m_{H-SB})$. This is justified since the ratio of the number of events in the m_{H-SR} to the m_{H-SB} as a function of 2D-m_T is estimated to be constant after the reweighting procedure described below. The normalization for the template shape is then determined by solving for the expression for $N(m_A$-SR $\cap m_{H-SR})$.

For hadronic jets passing the event selection, there is an energy dependence, and thus an m_{TT} dependence, that violates the assumption described in the previous paragraph. With increasing jet energy, more energy becomes available to produce additional hadrons in the jet, which increases the effective mass of the jet and thus its reconstructed m_T. To correct for this effect, prior to deriving the 2D-m_T shape, events from the two m_{H-SB} regions are first reweighted so that their transverse momentum distributions match that in the target m_{H-SR}.

The normalized $H \rightarrow \gamma \gamma$ and nonresonant background templates are then added together. Their combined yield is renormalized so that the ratio of the predicted to the observed yields in the m_A-SB region remains unity. The $H \rightarrow \gamma \gamma$ template accounts for about 0.4% of the total background template yield. To account for residual differences in the 2D-m_T shape between the background estimate and the observed distribution in the m_A-SB region, the total background template is multiplied by a 2D polynomial function $\text{pol}(m_{\Gamma_1}, m_{\Gamma_2})$ over the full 2D-m_T range. A linear polynomial is used with parameters chosen to maximize the likelihood with respect to the observed 2D-m_T shape in the m_A-SB region. No further improvement in the goodness of fit is found with higher polynomial orders. The resulting corrected 2D-m_T background template defines the background model used in the MLE fit. The left and right plots in Fig. 1 show that the SM background in the observed 2D-m_T distribution is dominated by single photonlike objects, which exhibit a smoothly falling m_T spectrum, rather than by neutral-meson decays, which would be manifested as peaks [23]. Neutral-meson decays from γ + jet production are more likely to be reconstructed in the lower-energy Γ_2. The background estimation is validated using an orthogonal data sample obtained by inverting the I_{ch} requirement on Γ_2, to ensure negligible signal contamination. No significant bias is observed when the signal extraction procedure is performed on this sample.

Uncertainties in the predicted signal and background templates are treated as nuisance parameters in the MLE procedure used to determine the best fit signal strength $\hat{\mu}$. The dominant uncertainties impacting the extracted $\hat{\mu}$ are those from statistical uncertainties in the background template’s shape. Their largest impact on the relative uncertainty in $\hat{\mu}$ varies between 15% and 20%, depending on m_A. For $m_A = 0.1 \text{ GeV}$, where the m_T resolution is poorest and the background contribution is largest, systematic uncertainties affecting the background template normalization are also important. These include systematic uncertainties associated with the best fit parameters of $\text{pol}(m_{\Gamma_1}, m_{\Gamma_2})$ and the relative contribution of $m_{H-SB_{low}}$ versus $m_{H-SB_{high}}$ events in the nonresonant background 2D-m_T template. These systematic uncertainties impact the relative uncertainty in $\hat{\mu}$ by about 25% (10%) for $m_A = 0.1$ (1.2) GeV.

The systematic uncertainty in the signal strength from using the 2D-m_T template determined from simulation is estimated from a sample of electrons in events with $Z \rightarrow e^+e^-$ decays, selected from both data and simulation with the "tag-and-probe" technique [46]. Electrons are preferred over decays of neutral mesons in jets because of the complicating effects of accompanying hadrons in the same jet [23]. Specifically, uncertainties associated with a relative m_T scale shift and an increase in the smearing of the mass peak are estimated and found to have a negligible impact on $\hat{\mu}$.

The best fit background estimate determined from the MLE procedure is shown by the blue solid curves in Fig. 1 (left and right), together with its associated best fit total statistical plus systematic (stat + syst) uncertainties. We find no statistically significant excess in the data over the SM background predictions for m_A masses in the range 0.1–1.2 GeV.

The CL$_s$ criterion [47, 48] is used to interpret this result in terms of excluded \(B(H \to AA \to 4\gamma) \) values. The observed upper limit on \(B(H \to AA \to 4\gamma) \) at 95% confidence level (CL) as a function of m_A in the range 0.1-1.2 GeV is shown in Fig. 2, and varies between $(0.9–3.3) \times 10^{-3}$ for m_A values 0.1–1.2 GeV. The expected 95% CL limits and their associated 68 and 95% confidence intervals (CIs) are determined by simulating SM background-only pseudo-experiments. The LHC measurements of \(B(H \to \gamma\gamma) \) [1, 2] give an effective upper bound on a possible measurement of \(B(H \to AA \to 4\gamma) \) because of the degeneracy between the final states. The constraint from the CMS measurement [1] is shown in Fig. 2. It is relevant for values of $m_A \approx 0.1$ GeV where the $A \to \gamma\gamma$ decay resembles a single photon and increases at larger m_A.

Our observed upper limits thus set the best constraints for this decay mode in the m_A range that we study.

We estimate the upper limits for long-lived A decays by comparing the signal yield in the m_A-SR \cap m_H-SR for different simulated A decay lengths compared with that for prompt decays. For $m_A = 0.1$ (0.4) GeV, the 95% CL upper limit on \(B(H \to AA \to 4\gamma) \) is 1.6 (0.9) times the prompt-decay upper limit for an A decay length of $c\tau_0 = 1$ mm, and 30 (3) times larger for $c\tau_0 = 10$ mm, with a linear interpolation between the two limits in both cases. Better upper limits result when the increased merging from long-lived A decays improves photon reconstruction more than it degrades m_ℓ resolution. The prompt-decay upper limits are also relevant for models with dissimilar A masses, $H \to A_1A_2$, with $m_{A_1} \neq m_{A_2}$, for mass differences less than the m_A-SR window, $|m_{A_1} - m_{A_2}| \lesssim 0.3$ GeV. For larger mass differences, the signal mass peak would fall outside of the m_A-SR and be absorbed into the m_A-SB, making a measurement impossible.

In summary, the results of a search for the exotic Higgs boson decay $H \to AA \to 4\gamma$ for a Higgs boson mass of 125 GeV are presented. Events reconstructed with two photonlike objects are used, where each photonlike object is assumed to be a merged $A \to \gamma\gamma$ candidate. A method is developed to measure the invariant mass of merged diphoton candidates to discriminate a potential signal from the standard model background. This is the first search of its kind at CMS and made possible by a novel end-to-end reconstruction technique of merged diphotons. No excess of events above the estimated background is found. An upper limit on the branching fraction \(B(H \to AA \to 4\gamma) \) of $(0.9–3.3) \times 10^{-3}$ is set at 95% C.L. for masses of A in the range 0.1–1.2 GeV, assuming prompt A decays. These are the current best constraints on $H \to AA \to 4\gamma$ in this m_A range.

Tabulated results for this analysis are provided in the HEPData record [25].

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided.
Figure 2: Observed (black solid curve with points) and median expected (blue dashed curve) 95% CL upper limit on $B(H \rightarrow AA \rightarrow 4\gamma)$ as a function of m_A for prompt A decays. The 68% (green band) and 95% (yellow band) CIs are plotted around the expected limit. The 95% CL upper limit from the CMS measurement [1] of $B(H \rightarrow \gamma\gamma)$ is also shown (red band, where the width represents the uncertainty in the measurement).
by the following funding agencies: BMBWF and FWO (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPEP, FAPERGS, and FAPEP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TUBA (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] CMS Collaboration, “Combined measurements of Higgs boson couplings in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *Eur. Phys. J. C* 79 (2019) 421, doi:10.1140/epjc/s10052-019-6909-y, arXiv:1809.10733.

[2] ATLAS Collaboration, “Combined measurements of Higgs boson production and decay using up to 80 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment”, *Phys. Rev. D* 101 (2020) 012002, doi:10.1103/physrevd.101.012002, arXiv:1909.02845.

[3] D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, *Phys. Rev. D* 90 (2014) 075004, doi:10.1103/PhysRevD.90.075004, arXiv:1312.4992.

[4] D. Curtin, R. Essig, S. Gori, and J. Shelton, “Illuminating dark photons with high-energy colliders”, *JHEP* 02 (2015) 157, doi:10.1007/jhep02(2015)157, arXiv:1412.0018.

[5] R. D. Peccei and H. R. Quinn, “CP conservation in the presence of pseudoparticles”, *Phys. Rev. Lett.* 38 (1977) 1440, doi:10.1103/PhysRevLett.38.1440.

[6] M. Bauer, M. Neubert, and A. Thamm, “Collider probes of axion-like particles”, *JHEP* 12 (2017) 044, doi:10.1007/jhep12(2017)044, arXiv:1708.00443.

[7] R. D. Peccei, “The strong CP problem and axions”, in *Axions*, M. Kuster, G. Raffelt, and B. Beltran, eds. Springer Berlin Heidelberg, 2008. arXiv:hep-ph/0607268. doi:10.1007/978-3-540-73518-2_1.

[8] CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* 11 (2018) 018, doi:10.1007/jhep11(2018)018, arXiv:1805.04865.

[9] CMS Collaboration, “A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV”, *Phys. Lett. B* 796 (2019) 131, doi:10.1016/j.physletb.2019.07.013, arXiv:1812.00380.

[10] CMS Collaboration, “Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp
collisions at $\sqrt{s} = 13$ TeV”, *Phys. Lett. B* **800** (2020) 135087, doi:10.1016/j.physletb.2019.135087, arXiv:1907.07235.

[11] CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in pp collisions at 13 TeV”, *Phys. Lett. B* **795** (2019) 398, doi:10.1016/j.physletb.2019.06.021, arXiv:1812.06359.

[12] CMS Collaboration, “Search for a light pseudoscalar Higgs boson in the boosted $\mu\mu\tau\tau$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* **08** (2020) 139, doi:10.1007/jhep08(2020)139, arXiv:2005.08694.

[13] B. A. Dobrescu, G. Landsberg, and K. T. Matchev, “Higgs boson decays to CP-odd scalars at the Fermilab Tevatron and beyond”, *Phys. Rev. D* **63** (2001) 075003, doi:10.1103/PhysRevD.63.075003, arXiv:hep-ph/0005308.

[14] P. W. Graham et al., “Experimental searches for the axion and axion-like particles”, *Annu. Rev. Nucl. Part. Sci.* **65** (2015) 485, doi:10.1146/annurev-nucl-102014-022120, arXiv:1602.00039.

[15] I. G. Irastorza and J. Redondo, “New experimental approaches in the search for axion-like particles”, *Prog. Part. Nucl. Phys.* **102** (2018) 89, doi:10.1016/j.ppnp.2018.05.003, arXiv:1801.08127.

[16] Particle Data Group, P. A. Zyla et al., “Review of particle physics”, *PTEP* **2020** (2020) 083C01, doi:10.1093/ptep/ptaa104.

[17] GlueX Collaboration, “Search for photoproduction of axionlike particles at GlueX”, *Phys. Rev. D* **105** (2022) 052007, doi:10.1103/physrevd.105.052007, arXiv:2109.13439.

[18] S. Knapen, T. Lin, H. K. Lou, and T. Melia, “Searching for axionlike particles with ultraperipheral heavy-ion collisions”, *Phys. Rev. Lett.* **118** (2017) 171801, doi:10.1103/PhysRevLett.118.171801, arXiv:1607.06083.

[19] G. G. Raffelt, “Astrophysical axion bounds”, in *Axions*, M. Kuster, G. Raffelt, and B. Beltran, eds. Springer Berlin Heidelberg, 2008. arXiv:hep-ph/0611350. doi:10.1007/978-3-540-73518-2_3.

[20] P. Sikivie, “Axion cosmology”, in *Axions*, M. Kuster, G. Raffelt, and B. Beltran, eds. Springer Berlin Heidelberg, 2008. arXiv:astro-ph/0610440. doi:10.1007/978-3-540-73518-2_2.

[21] D. J. E. Marsh, “Axion cosmology”, *Phys. Rep.* **643** (2016) 1, doi:10.1016/j.physrep.2016.06.005, arXiv:1510.07633.

[22] F. Chadha-Day, J. Ellis, and D. J. E. Marsh, “Axion dark matter: What is it and why now?”, *Science Advances* **8** (2022) eabj3618, doi:10.1126/sciadv.abj3618, arXiv:2105.01406.

[23] CMS Collaboration, “Reconstruction of decays to merged photons using end-to-end deep learning with domain continuation in the CMS detector”, 2022. arXiv:2204.12313.
[24] CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, Eur. Phys. J. C 74 (2014) 3076, doi:10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.

[25] HEPData record for this analysis, 2022. doi:10.17182/hepdata.132767.

[26] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[27] CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 15 (2020) P10017, doi:10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.

[28] CMS Collaboration, “The CMS trigger system”, JINST 12 (2016) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[29] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[30] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[31] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.

[32] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[33] CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, doi:10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.

[34] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[35] CMS Collaboration, “Performance of reconstruction and identification of τ leptons decaying to hadrons and ν_τ in pp collisions at $\sqrt{s} = 13$ TeV”, JINST 13 (2018) P10005, doi:10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.

[36] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[37] CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at $\sqrt{s} = 13$ TeV using the CMS detector”, JINST 14 (2019) P07004, doi:10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.

[38] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
[39] CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at √s = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.

[40] CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at √s = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.

[41] CMS Collaboration, “Search for the exotic decay of the Higgs boson into two light pseudoscalars with four photons in the final state in proton-proton collisions at √s = 13 TeV”, 2022. arXiv:2208.01469.

[42] ATLAS and CMS Collaborations, and LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[43] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[44] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, doi:10.1007/jhep12(2012)061, arXiv:1209.6215.

[45] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”. CERN Yellow Reports: Monographs. CERN, 2016. doi:10.23731/CYRM-2017-002.

[46] CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at √s = 7 TeV”, JHEP 10 (2011) 132, doi:10.1007/JHEP10(2011)132, arXiv:1107.4789.

[47] A. L. Read, “Presentation of search results: The CLs technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[48] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, J.W. Andrejkovic, T. Bergauer, S. Chatterjee, K. Damanakis, M. Dragicevic, A. Escalante Del Valle, P.S. Hussain, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, P. Paulitsch, F.M. Pitters, J. Schieck, R. Schöfbeck, D. Schwarz, S. Templ, W. Waltenberger, C.-E. Wulz

Universität Antwerpen, Antwerpen, Belgium
M.R. Darwish, T. Janssen, T. Kello, H. Rejeb Sfar, P. Van Mechelen

Vrije Universiteit Brussel, Brussel, Belgium
E.S. Bols, J. D’Hondt, A. De Moor, M. Delcourt, H. El Faham, S. Lowette, S. Moortgat, A. Morton, D. Müller, A.R. Sahasransu, S. Tavernier, W. Van Doninck, D. Vannerom

Université Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, L. Favart, D. Hohov, J. Jaramillo, K. Lee, M. Mahdavikhorrami, I. Makarenko, A. Malara, A. Moraes, L. Pétré, N. Postiau, E. Starling, L. Thomas, M. Vanden Bemden, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
D. Dobur, J. Knolle, L. Lambrecht, G. Mestdach, M. Niedziela, C. Rendón, C. Roskas, A. Samalan, K. Skovpen, M. Tytgat, N. Van Den Bossche, B. Vermassen, L. Wezenbeek

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
A. Benecke, G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, I.S. Donertas, A. Giammanco, J. Jaffel, S. Jain, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, T.T. Tran, P. Vischia, S. Wertz

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, E. Coelho, C. Hensel, A. Moraes, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, M. Alves Gallo Pereira, M. Barroso Ferreira Filho, H. Brandao Malbouisson, W. Carvalho, J. Chinellato, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, V. Dos Santos Sousa, S. Fonseca De Souza, J. Martins, C. Mora Herrera, K. Mota Amarilo, L. Mundim, H. Nogima, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov, E. Shumka

Beihang University, Beijing, China
T. Cheng, T. Javaid, M. Mittal, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, G. Bauer, Z. Hu, S. Lezki, K. Yi

Institute of High Energy Physics, Beijing, China
G.M. Chen, H.S. Chen, M. Chen, F. Iemmi, C.H. Jiang, A. Kapoor, H. Liao, Z.-A. Liu, V. Milosevic, F. Monti, R. Sharma, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. An, Y. Ban, C. Chen, A. Levin, C. Li, Q. Li, X. Lyu, Y. Mao, S.J. Qian, X. Sun, D. Wang, J. Xiao, H. Yang

Sun Yat-Sen University, Guangzhou, China
M. Lu, Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao, D. Leggat, H. Okawa, Y. Zhang

Zhejiang University, Hangzhou, Zhejiang, China
Z. Lin, C. Lu, M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, D.A. Barbosa Trujillo, A. Cabrera, C. Florez, J. Fraga

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, F. Ramirez, M. Rodriguez, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, B.K. Chitroda, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
A. Attikis, K. Christoforou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, E. Salama

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M. Abdullah Al-Mashad, M.A. Mahmoud

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, K. Ehaht, M. Kadastik, T. Lange, S. Nandan, C. Nielsen, J. Pata, M. Raidal, L. Tani, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Bharthuar, E. Brücken, F. García, J. Havukainen, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, M. Lotti, L. Martikainen, M. Myllymäki, J. Ott, M.m. Rantanen, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta-Lahti University of Technology, Lappeenranta, Finland
P. Luukka, H. Petrow, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, P. Gras, G. Hamel de Monchenault, P. Jarry, V. Lohezic, J. Malcles, J. Rander, A. Rosowsky, M.O. Sahin, A. Savoy-Navarro, P. Simkina, M. Titov

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
C. Baldenegro Barrera, F. Beaudette, A. Buchot Perraguit, P. Busson, A. Cappati, C. Charlot, F. Damas, O. Davignon, B. Diab, G. Falmagne, B.A. Fontana Santos Alves, S. Ghosh, R. Granier de Cassagnac, A. Hakimi, B. Harikrishnan, G. Liu, J. Motta, M. Nguyen, C. Ochando, L. Portales, R. Salerno, U. Sarkar, J.B. Sauvan, Y. Sirois, A. Tarabini, E. Vernazza, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Apparu, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, D. Darej, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
S. Beauceron, C. Bernet, B. Blancon, G. Boudoul, A. Carle, N. Chanon, J. Choi, D. Contardo, P. Depasse, C. Dozen, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, I.R. Laktineh, M. Lethuillier, M. Mirabito, S. Perries, L. Torterotot, M. Vander Donckt, P. Verdier, S. Viret

Georgian Technical University, Tbilisi, Georgia
D. Chokheli, I. Lomidze, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
V. Botta, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, N. Röwert, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
S. Diekmann, A. Dodonova, N. Eich, D. Eliseev, M. Erdmann, P. Fackeldey,
National Technical University of Athens, Athens, Greece
G. Bakas, T. Chatzistavrou, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
K. Adamidis, I. Bestintzanos, I. Evangelou, C. Foudas, P. Gianneios, C. Kamtsikis, P. Katsoulis, P. Kokkas, P.G. Kosmoglou Kioseoglou, N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanád, K. Farkas, M.M.A. Gadallah, S. Lőkös, P. Major, K. Mandal, G. Pásztor, A.J. Réáld, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
M. Bartók, G. Bencze, C. Hajdu, D. Horváth, F. Sikler, V. Veszpremi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi, D. Teysier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, B. Ujvari

Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
T. Csorgó, F. Nemes, T. Novak

Panjab University, Chandigarh, India
J. Babbar, S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhillon, N. Gupta, A. Kaur, S. Kaur, H. Kaur, M. Kaur, S. Kumar, P. Kumari, M. Meena, K. Sandeep, T. Sheokand, J.B. Singh, A. Singla, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, M. Gola, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, S. Saumya, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
S. Baradia, S. Barman, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Dutta, B. Gomber, M. Maity, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, J.R. Komaragiri, D. Kumar, A. Muhammad, L. Panwar, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar, P.C. Tiwari, S. Verma

Bhabha Atomic Research Centre, Mumbai, India
K. Naskar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, I. Das, S. Dugad, M. Kumar, G.B. Mohanty, P. Suryadevara

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, A. Thachayath

National Institute of Science Education and Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, Odisha, India
S. Bahinipati, A.K. Das, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan Nair Bindhu, A. Nayak, P. Saha, S.K. Swain, D. Vats

Indian Institute of Science Education and Research (IISER), Pune, India
A. Alpana, S. Dube, B. Kansal, A. Laha, S. Pandey, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi, E. Khazaie, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, A. Castro, B. Camaiani, S. Tosi, D. Piccolo, E. Khazaie, A. Nayak, D. Ramos, L. Borgonovi, S. My, S. Sharma, F. Fabbri, F. Brivio, E. Focardi, T. Diotalevi, D. Pedrini, A. Di Mattia, M. Paganoni, R. Ceccarelli, F.M. Simone, N. Redaelli

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, R. Aly, C. Aruta, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, A. Di Florio, W. Elmetenawee, F. Errico, L. Fiore, G. Iaselli, M. Ince, G. Maggi, I. Margjeka, V. Mastrapasqua, S. My, S. Nuzzo, A. Pellechia, A. Pompili, G. Pugliese, R. Radogna, D. Ramos, A. Ranieri, G. Selvaggi, L. Silvestris, F.M. Simone, U. Sözbilir, A. Stamerra, R. Venditti, P. Verwilligen

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, T. Diotalevi, F. Fabbri, A. Fanfani, P. Giacomelli, L. Giommi, C. Grandi, L. Guiducci, S. Lo Meo, L. Lunerti, S. Marcellini, G. Masetti, F.L. Navarra, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Siroli, G. Barbagli, S. Costa, A. Benaglia, INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, G. Boldrini, F. Brivio, F. Cetorelli, F. De Guio, M.E. Dinardo, P. Dini, S. Gennai, A. Ghezzi, P. Govoni, L. Guzzi, M.T. Lucchini, M. Malberti, S. Malvezzi, A. Massironi, D. Menasse, L. Moroni, M. Paganoni, D. Pedrini, B.S. Pinolini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis, D. Zuolo

INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy; Università della
Basilicata, Potenza, Italy; Università G. Marconi, Roma, Italy
S. Buontempo, F. Carnevali, N. Cavallo, A. De Iorio, F. Fabozzi, A.O.M. Iorio, L. Lista, P. Paolucci, B. Rossi, C. Sciacca, F. Fabozzi, A. Braghieri, D. Del Re, S. Maselli, R. Carlin, G. N. Kim, A. Scribano, J. Kim, J. Lee, S. Rahatlou, M. Ruspa, V. Re, P. G. Verdini, S. W. Lee, M. A. Ciocci, V. Candelise, F. Cavallari, A. Vagnerini, P. Bortignon, F. Pandolfi, G. Sorrentino, N. Bacchetta, R. Rossin, F. Moscatelli, M. Arneodo, P. Spagnolo, M. Grippo, D. Ciangottini, L. Lista, P. Ronchese, C. Riccardi, E. Di Marco, M. M. Obertino, C. Mariotti

INFN Sezione di Padova, Università di Padova, Padova, Italy; Università di Trento, Trento, Italy
P. Azzi, N. Bacchetta, M. Benettoni, D. Bisello, P. Bortignon, A. Bragagnolo, R. Carlin, P. Checchia, T. Dorigo, F. Gasparini, U. Gasparini, G. Grosso, L. Layer, E. Lusiani, M. Margoni, A. T. Meneguzzo, J. Pazzini, P. Rondoni, R. Rossini, G. Strong, M. Tosi, H. Yaran, M. Zanetti, P. Zotto, A. Zucchetta, G. Zumerle, P. V. Meneguzzo, A. Bragagnolo, A. O. M. Iorio, M. Presilla, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
S. Abu Zeid, C. Aimé, A. Braghieri, S. Calzaferri, D. Fiorina, P. Montagna, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
P. Asenov, G. M. Bilei, D. Ciangottini, L. Fanò, M. Magherini, G. Mantovani, V. Mariani, M. Menichelli, F. Moscatelli, A. Piccinelli, M. Presilla, A. Rossi, A. Santocchia, D. Spiga, T. Tedeschi

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy; Università di Siena, Siena, Italy
P. Azzurri, G. Bagliesi, V. Bertacchi, R. Bhattacharya, L. Bianchini, T. Boccali, E. Bossini, D. Bruschini, R. Castaldi, M. A. Ciocci, V. D’Amante, R. Dell’Orso, M. R. Di Domenico, S. Donato, A. Giassi, F. Ligabue, G. Mandorli, D. Matos Figueiredo, A. Messineo, M. Musich, F. Palli, S. Parolari, G. Ramirez-Sanchez, A. Rizzi, G. Rolandi, S. Roy Chowdhury, T. Sarkar, A. Scribano, N. Shafiee, P. Spagnolo, R. Tenchini, G. Tonelli, N. Turini, A. Venturi, P. G. Verdini

INFN Sezione di Roma, Sapienza Università di Roma, Roma, Italy
P. Barria, M. Campana, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, E. Longo, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, C. Quaranta, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, R. Tramontano

INFN Sezione di Torino, Università di Torino, Torino, Italy; Università del Piemonte Orientale, Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, A. Bellora, C. Biuno, N. Cartiglia, M. Costa, R. Covarelli, N. Demaria, M. Grippi, B. Kiani, F. Legger, C. Mariotti, S. Maselli, A. Mecca, E. Migliore, E. Monteil, M. Monteno, M. M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni, M. Ruspa, K. Shchelina, F. Siviero, V. Sola, A. Solano, D. Soldi, A. Staiano, M. Tornago, D. Trocino, G. Umore, A. Vagnerini

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, G. Sorrentino

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D. H. Kim, G. N. Kim, J. Kim, J. Lee, S. W. Lee
C.S. Moon, Y.D. Oh, S.I. Pak, M.S. Ryu, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
E. Asilar, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Choi, S. Han, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Korea
J. Goh

Sejong University, Seoul, Korea
H. S. Kim, Y. Kim, S. Lee

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, W. Jun, J. Kim, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, J. Lee, S. Lee, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea
W. Jang, D.Y. Kang, Y. Kang, D. Kim, S. Kim, B. Ko, J.S.H. Lee, Y. Lee, J.A. Merlin, I.C. Park, Y. Roh, D. Song, I.J. Watson, S. Yang

Yonsei University, Department of Physics, Seoul, Korea
S. Ha, H.D. Yoo

Sungkyunkwan University, Suwon, Korea
M. Choi, M.R. Kim, H. Lee, Y. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Dasman, Kuwait
T. Beyrouthy, Y. Maghrbi

Riga Technical University, Riga, Latvia
K. Dreimanis, A. Gaile, A. Potrebko, M. Seidel, T. Torims, V. Veckalns

Vilnius University, Vilnius, Lithuania
M. Ambrozas, A. Carvalho Antunes De Oliveira, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
N. Bin Norjoharuddeen, S.Y. Hoh, I. Yusuff, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, H.A. Encinas Acosta, L.G. Gallegos Marín, M. León Coello, J.A. Murillo Quijada, A. Sehrawat, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sánchez Hernández

Universidad Iberoamericana, Mexico City, Mexico
C. Oropeza Barrera, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

University of Montenegro, Podgorica, Montenegro
I. Bubanja, J. Mijuskovic, N. Raicevic

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, M. Gul, H.R. Hoorani, W.A. Khan, M. Shoaiib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, M. Górska, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, M. Pisano, J. Seixas, J. Varela

VINCA Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
P. Adzic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, D. Fernández Del Val, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, C. Perez Dengra, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, D.D. Redondo Ferrero, L. Romero, S. Sánchez Navas, J. Sastre, L. Urda Gómez, J. Vazquez Escobar, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. Gonzalez Fernández, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, A. Soto Rodríguez, A. Trapote, C. Vico Villalba

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, C. Fernandez Madrazo, A. Garcia Alonso, G. Gomez, C. Lasaosa Garcia, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, P. Matorras Cuevas, J. Piedra Gomez, C. Prieels, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna
Y. Guler, E. Gürpinar Guler, C. Isik, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Özdemir, A. Polatoz, A.E. Simsek, B. Tali, U.G. Tok, S. Turkcapar, E. Uslan, I.S. Zorbakir

Middle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar, K. Ocalan, M. Yalva

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
O. Aydilek, S. Cerci, Hacisahinoglu, I. Hos, B. Isildak, B. Kaynak, S. Ozkorucuklu, C. Simsek, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkiv, Ukraine
B. Grynyov

National Science Centre, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
D. Anthony, E. Bhal, J.J. Brooke, A. Bundock, E. Clement, D. Cussans, H. Flacher, M. Glowacki, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianou, K. Walkingshaw Pass, R. White

Rutherford Appleton Laboratory, Didcot, United Kingdom
A.H. Ball, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, C. Cooke, K.V. Ellis, K. Harder, S. Harper, M.-L. Holmberg, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, G. Salvi, T. Schuh, C.H. Shepherd-Themistocleous, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, C.E. Brown, O. Buchmuller, V. Cacchio, V. Cepaitis, G.S. Chahal, D. Colling, J.S. Dancu, P. Dauncey, G. Davies, J. Davies, M. Della Negra, S. Fayer, G. Fedi, G. Hall, M.H. Hassanshahi, A. Howard, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, M. Mieskolainen, D.G. Monk, J. Nash, M. Pesaresi, B.C. Radburn-Smith, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, R. Shukla, A. Tapper, K. Uchida, G.P. Uttley, L.H. Vage, T. Virdee, M. Vojinovic, N. Wardle, S.N. Webb, D. Winterbottom

Brunel University, Uxbridge, United Kingdom
K. Coldham, J.E. Cole, A. Khan, P. Kyberd, I.D. Reid

Baylor University, Waco, Texas, USA
S. Abdullin, A. Brinkerhoff, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, B. McMaster, M. Saunders, S. Sawant, C. Sutantawibul, J. Wilson

Catholic University of America, Washington, DC, USA
Cornell University, Ithaca, New York, USA
J. Alexander, S. Bright-Thonney, X. Chen, D.J. Cranshaw, J. Fan, X. Fan, D. Gadkari, S. Hogan, J. Monroy, J.R. Patterson, D. Quach, J. Reichert, M. Reid, A. Ryd, J. Thom, P. Wittich, R. Zou

Fermi National Accelerator Laboratory, Batavia, Illinois, USA
M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, L.A.T. Bauerdick, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, K.F. Di Pietrillo, J. Dickinson, V.D. Elvira, Y. Feng, J. Freeman, A. Gandrakota, Z. Gecse, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, R. Heller, T.C. Herwig, J. Hirschauer, L. Horyn, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, K.H.M. Kwok, S. Lammel, D. Lincoln, R. Lipton, T. Liu, C. Madrid, K. Maeshima, C. Mantilla, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, J. Ngadiuba, D. Noonan, V. Papadimitriou, N. Pastika, K. Pedro, C. Pena, F. Ravera, A. Reinsvold Hall, L. Ristori, E. Sexton-Kennedy, N. Smith, A. Soha, L. Spiegel, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, I. Zoi

University of Florida, Gainesville, Florida, USA
P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, R.D. Field, D. Guerrero, M. Kim, E. Koenig, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, A. Muthirakalayil Madhu, N. Rawal, D. Rosenzweig, S. Rosenzweig, K. Shi, J. Wang, Z. Wu

Florida State University, Tallahassee, Florida, USA
T. Adams, A. Askew, R. Habibullah, V. Hagopian, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, O. Viazlo, R. Yoshay, J. Zhang

Florida Institute of Technology, Melbourne, Florida, USA
M.M. Baarmand, S. Butalla, T. Elkafrawy, M. Hohlmann, R. Kumar Verma, M. Rahmani, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, Illinois, USA
M.R. Adams, H. Becerril Gonzalez, R. Cavanaugh, S. Dittmer, O. Evdokimov, C.E. Gerber, D.J. Hofman, D.S. Lemos, A.H. Merritt, C. Mills, G. Oh, T. Roy, S. Rudrabhatla, M.B. Tonjes, N. Varelas, X. Wang, Z. Ye, J. Yoo

The University of Iowa, Iowa City, Iowa, USA
M. Alhusseini, K. Dilisz, L. Emediato, R.P. Gandrajula, G. Karaman, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili, J. Nachtmann, O. Neogi, H. Ogul, Y. Onel, A. Penzo, C. Snyder, E. Tiras

Johns Hopkins University, Baltimore, Maryland, USA
O. Amram, B. Blumenfeld, L. Corcodilos, J. Davis, A.V. Gritsan, L. Kang, S. Kyriacou, P. Maksimovic, J. Roskes, S. Sekhar, M. Swartz, T.A. Vámi

The University of Kansas, Lawrence, Kansas, USA
A. Abreu, L.F. Alcerro Alcerro, J. Anguiano, P. Baringer, A. Bean, Z. Flowers, T. Isidori, S. Khalil, J. King, G. Krintiras, M. Lazarovits, C. Le Mahieu, C. Lindsey, J. Marquez, N. Minafra, M. Murray, M. Nickel, C. Rogan, C. Royon, R. Salvatico, S. Sanders, C. Smith, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, Kansas, USA
Princeton University, Princeton, New Jersey, USA
F.M. Addesa, P. Das, G. Dezoort, P. Elmer, A. Frankenthal, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, Puerto Rico, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, Indiana, USA
A.S. Bakshi, V.E. Barnes, R. Chowla, S. Das, L. Gutay, M. Jones, A.W. Jung, D. Kondratyev, A.M. Koshy, M. Liu, G. Negro, N. Neumeister, G. Paspalaki, S. Piperov, A. Purohit, J.F. Schulte, M. Stojanovic, J. Thieman, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, Indiana, USA
J. Dolen, N. Parashar

Rice University, Houston, Texas, USA
D. Acosta, A. Baty, T. Carnahan, M. Decaro, S. Dildick, K.M. Ecklund, P.J. Fernández Manteca, S. Freed, P. Gardner, F.J.M. Geurts, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Rotter, W. Shi, S. Yang, E. Yigitbasi, L. Zhang, Y. Zhang, X. Zuo

University of Rochester, Rochester, New York, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus, G.P. Van Onsem

The Rockefeller University, New York, New York, USA
K. Goulianos

Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
B. Chiarito, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, D. Jaroslawski, O. Karacheban, I. Laflolette, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, Tennessee, USA
H. Acharya, A.G. Delannoy, S. Fiorendi, T. Holmes, E. Nibigira, S. Spanier

Texas A&M University, College Station, Texas, USA
O. Bouhali, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, Texas, USA
N. Akchurin, J. Damgov, V. Hegde, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, Tennessee, USA
E. Appelt, S. Greene, A. Gurrola, W. Johns, A. Melo, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, J. Viinikainen

University of Virginia, Charlottesville, Virginia, USA
B. Cardwell, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce,
17 Now at Ain Shams University, Cairo, Egypt
18 Also at Purdue University, West Lafayette, Indiana, USA
19 Also at Université de Haute Alsace, Mulhouse, France
20 Also at Department of Physics, Tsinghua University, Beijing, China
21 Also at Erzincan Binali Yildirim University, Erzincan, Turkey
22 Also at University of Hamburg, Hamburg, Germany
23 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
24 Also at Isfahan University of Technology, Isfahan, Iran
25 Also at Brandenburg University of Technology, Cottbus, Germany
26 Also at Forschungszentrum Jülich, Juelich, Germany
27 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
28 Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
29 Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
30 Also at Wigner Research Centre for Physics, Budapest, Hungary
31 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
32 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
33 Now at Universitatea Babes-Bolyai - Facultatea de Fizica, Cluj-Napoca, Romania
34 Also at Faculty of Informatics, University of Debrecen, Debrecen, Hungary
35 Also at Punjab Agricultural University, Ludhiana, India
36 Also at UPES - University of Petroleum and Energy Studies, Dehradun, India
37 Also at University of Visva-Bharati, Santiniketan, India
38 Also at University of Hyderabad, Hyderabad, India
39 Also at Indian Institute of Science (IISc), Bangalore, India
40 Also at Indian Institute of Technology (IIT), Mumbai, India
41 Also at IIT Bhubaneswar, Bhubaneswar, India
42 Also at Institute of Physics, Bhubaneswar, India
43 Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
44 Now at Department of Physics, Isfahan University of Technology, Isfahan, Iran
45 Also at Sharif University of Technology, Tehran, Iran
46 Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
47 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
48 Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
49 Also at Scuola Superiore Meridionale, Università di Napoli ‘Federico II’, Napoli, Italy
50 Also at Fermi National Accelerator Laboratory, Batavia, Illinois, USA
51 Also at Università di Napoli ‘Federico II’, Napoli, Italy
52 Also at Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Perugia, Italy
53 Also at Department of physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
54 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
55 Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
56 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
57 Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
58 Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
59 Also at National and Kapodistrian University of Athens, Athens, Greece
60 Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
61 Also at Universität Zürich, Zurich, Switzerland
62 Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
Also at Near East University, Research Center of Experimental Health Science, Mersin, Turkey
Also at Konya Technical University, Konya, Turkey
Also at Izmir Bakircay University, Izmir, Turkey
Also at Adiyaman University, Adiyaman, Turkey
Also at Istanbul Gedik University, Istanbul, Turkey
Also at Necmettin Erbakan University, Konya, Turkey
Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
Also at Marmara University, Istanbul, Turkey
Also at Milli Savunma University, Istanbul, Turkey
Also at Kafkas University, Kars, Turkey
Also at Istanbul University - Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
Also at Yildiz Technical University, Istanbul, Turkey
Also at Vrije Universiteit Brussel, Brussel, Belgium
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
Also at University of Bristol, Bristol, United Kingdom
Also at IPPP Durham University, Durham, United Kingdom
Also at Monash University, Faculty of Science, Clayton, Australia
Also at Università di Torino, Torino, Italy
Also at Bethel University, St. Paul, Minnesota, USA
Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
Also at California Institute of Technology, Pasadena, California, USA
Also at United States Naval Academy, Annapolis, Maryland, USA
Also at Bingol University, Bingol, Turkey
Also at Georgian Technical University, Tbilisi, Georgia
Also at Sinop University, Sinop, Turkey
Also at Erciyes University, Kayseri, Turkey
Also at Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
Also at Texas A&M University at Qatar, Doha, Qatar
Also at Kyungpook National University, Daegu, Korea
Also at another institute or international laboratory covered by a cooperation agreement with CERN
Also at Yerevan Physics Institute, Yerevan, Armenia
Now at University of Florida, Gainesville, Florida, USA
Also at Imperial College, London, United Kingdom
Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan