Is the spectrum of highly excited mesons purely coulombian?

El Houssine Mezoir and P. González
Departamento de Física Teórica, Universidad de Valencia (UV) and IFIC (UV-CSIC), Valencia, Spain.
(Dated: October 31, 2008)

We show that a static central potential may provide a precise description of highly excited light unflavoured mesons. Due to string breaking this potential becomes of chromoelectric type at sufficiently large quark-antiquark distances giving rise to a coulombian spectrum. The same conclusion can be inferred for any other meson sector through a straightforward extension of our analysis.

In the last years the interest in the highly excited light-quark meson spectrum has been renewed as a consequence of the observation of more than thirty new meson resonances with masses between 1.9 and 2.4 GeV in the exhaustive analyses of Crystal Barrel and PS172 data [1]. Many of the reported new resonances are listed by the Particle Data Group (PDG) [2] in the section “Other Light Unflavoured Mesons” awaiting for confirmation from a separate experiment. Regarding the non-new resonances also found in [1] they are in perfect correspondence (quite similar masses) with the ones listed in the “Light Unflavoured Mesons” section of the PDG. From the theoretical point of view the extensive spectrum up to 2.4 GeV has made clear an approximate hydrogen like classification of meson states [3]. In this article we show through a dynamical study that the physical origin of the hydrogen like degeneracy may have to do with string breaking once the quark-antiquark average distance in a meson reaches a sufficiently high value. We shall rely on a Constituent Quark Model (CQM) calculation by solving the Schrödinger equation for a static potential. Although the use of a static potential for light-quark systems is in general debatable we shall justify its applicability for highly excited states. Then in the spirit of CQM calculations we shall assume that relativistic corrections to the Schrödinger equation may be to a good extent taken into account through the effective character of the parameters of the potential.

From lattice QCD the static potential is the ground state energy of a bound state composed of two static colour sources and gluons [4]. In the so called quenched approximation (only valence quark (q) and antiquark (\bar{q})) the static qq potential, given by the expectation value of the Wilson loop operator, resembles a funnel potential containing a confining term depending linearly on r, the q-\bar{q} distance, plus a coulombian term proportional to $(1/r)$. When including sea quarks, i.e. in the so called unquenched approximation, the static sources q and \bar{q} are screened by light quark-antiquark pairs that pop out of the vacuum. Then transitions between the static sources state (string) and mesons coming from the recombination of the static sources and the members of the pairs may take place. Two physical effects occur. On the one hand the confining term becomes a constant (string breaking) at a certain saturation distance, r_s. Although this behaviour has not been detected with the Wilson loop technique, the finite temperature potential extracted from Polyakov line correlators at temperatures close to the deconfinement phase transition, exhibits a flattening, once sea quarks are included into the action [5]. Such a flattening occurs at distances $r_s \approx 1.15$ fm. The diagonalization of a two by two correlation matrix between the string state and a two meson state (each meson formed by one static source and one member of a pair) should confirm it. On the other hand the coulomb strength remains higher than in the quenched case. From these indications we shall assume a static potential of the form

$$V(r) = \sigma r - \frac{k}{r} + C \quad \text{if} \quad r \leq r_s$$

$$V(r) = \sigma r_s - \frac{k}{r} + C \quad \text{if} \quad r \geq r_s$$

where σ stands for the string tension, k for the coulomb strength and C for a constant to fix the origin of the potential.

We shall choose this form for the effective $q\bar{q}$ potential in our CQM calculation. Let us recall that in quark models the effective $q\bar{q}$ potential is found by equating the scattering amplitude of free quark and antiquark with the potential between bound quark and antiquark inside a meson. Thinking of a single exchange diagram the static limit corresponds to no energy transfer, i.e. to $q^0 \equiv (E_q)_{\text{final}} - (E_q)_{\text{final}} = (E_{\bar{q}})_{\text{final}} - (E_{\bar{q}})_{\text{final}} = 0$. So the static approximation means $q^0 \approx 0$. Then by substituting $E_q = m_q \sqrt{1 + (\vec{p}^2/m_q^2)}$ we can easily establish as a criterion for the validity of such approximation the requirement

$$\left[(\vec{p}_q^2)_{\text{initial}} - (\vec{p}_q^2)_{\text{final}} \right] \lesssim 1$$

By replacing $(\vec{p}_q^2)_{\text{initial}} = \vec{q}^2 + (\vec{p}_q^2)_{\text{final}}$ the criterion [2] can be written as

$$\frac{\vec{q}^2 + 2\vec{q} \cdot (\vec{p}_q)_{\text{final}}}{m_q^2} \lesssim 1$$

For non-relativistic as well as for relativistic systems [3] is satisfied when

$$\frac{|\vec{q}|}{m_q} \ll 1 \quad \text{and} \quad \frac{|\vec{p}_q|}{m_q} \ll 1$$
Since the main contributions to the interaction come from distances $r \approx \hbar c/|\vec{q}|$ we expect the mesons satisfying $|\vec{q}|$ to have root mean square radius (rms-radius)

$$< r^2 >^{1/2} \frac{1}{|\vec{q}|} \gg \frac{1}{m_q} \quad (5)$$

Notice that for bottomonium ($\bar{b}b$) and charmonium ($\bar{c}c$) the conditions \(5\) and \(\bar{p}_q/m_q \gg 1\) are well satisfied according to reference \[d\] where a good description of such mesons is attained by means of a quenched potential. The validity of the quenched approximation in this case can be related to the fact that for $\bar{b}b$ and $\bar{c}c$ the saturation distance r_s may be significantly larger than 1.15 fm. The screening effect on $\bar{b}b$ and $\bar{c}c$ has been studied in the literature \[2\]. From these studies a value for $(r_s)_{\bar{b}b,\bar{c}c}$ up to 1.8 fm may be conjectured. This value may be reflecting the fact that the $\bar{b}b$ and $\bar{c}c$ decays into stable hadrons involve more than two mesons. Then it can be explained why the predicted $\bar{b}b$ and $\bar{c}c$ spectra involving states with $< r^2 >^{1/2} \lesssim (r_s)_{\bar{b}b,\bar{c}c}$ hardly change from the unquenched to the quenched approximation. The experimental extension of the spectra to states with larger rms-radii is essential to confirm or refute this conjecture.

Here we centre on light-quark mesons. We shall restrict for simplicity to isospin $I = 1$ mesons (they contain only u (\(\bar{u}\)) and/or d (\(\bar{d}\)): π_J, η_J, ρ_J and a_J (J : total angular momentum). Thus we avoid all possible complications coming from $q\bar{q}$ annihilation and from $\bar{s}s$ components. The mass of the constituent quarks $m_u([\bar{u}]$, $a([\bar{u}])$, named henceforth m_u, is a parameter of our model. We shall fix its value from the average dynamical quark mass generated by Spontaneous Chiral Symmetry Breaking (SCSB), $m_u([\bar{q}])$, in the energy region under consideration. From instanton model calculations \[3\] confirmed by lattice QCD \[1\] we know the explicit $m_u([\bar{q}])$ dependence so that it has its maximum value at $|\vec{q}| = 0$ ($m_u(0) \approx 0.350$ GeV) and decreases when increasing $|\vec{q}|$. For $|\vec{q}| = 0.1$ GeV for instance one has $m_u(0.1$ GeV) = 0.332 GeV. Therefore \[1\] tells us that the static approximation might only be applied for $|\vec{q}| < 0.1$ GeV.

Then we shall use $m_u = 340$ MeV as an average mass in this interval for which we expect from \[5\] to have mesons with $< r^2 >^{1/2} \gg 0.6$ fm. It should be added that SCSB has another important effect: the appearance of Goldstone bosons. This effect is not explicitly reflected in \[1\].

We shall comment on this later on.

To check the applicability of the static approximation we proceed to calculate the spectrum of $I = 1$ mesons with an effective potential of the form \[1\]. For this purpose we have to fix the parameters of the potential. For r_s we take $(r_s)_u = 1.15$ fm. For the string tension σ_u we shall use the value $\sigma_u = 932.7$ MeV/fm obtained from the Regge trajectory for ρ_J and a_J (see for instance \[4\]) in accord with lattice evaluations. Regarding k_u and C_u we shall fix them by fitting the average masses of the experimental states with higher orbital angular momentum L, since we expect these states to have large rms-radii due to the centrifugal barrier. Let us realize that the calculated masses coming out from the Schrödinger equation will only depend on L ($L = 0, 1, 2, 3, \ldots$) and on the radial quantum number n_r ($n_r = 1, 2, 3, \ldots$). We shall denote them as M_{L,n_r}. So we should compare them to the average masses of experimental (L, n_r) multiplets, $(M)_{L,n_r}^{Exp}$. The existence of such multiplets has been suggested elsewhere \[3\]. Actually the assumption of a long distance interaction depending only on r drives naturally to a $SU(4)_\text{Spin} \times \text{Isospin} \times O(3)$ group of symmetry so that the $I = 1$ light unflavoured mesons belong to 15-plets (note that the product of $SU(4)$ quark and antiquark representations is $4 \times 4 \equiv 15 + 1$; the singlet representation 1 contains only $I = 0$ mesons that we do not consider). Indeed we should better talk about super 15-plets since for each member of the multiplet there are so many experimental states as possible different J values (J degeneracy). As we consider only $I = 1$ mesons

$$< M_{L,n_r} >^{Exp} = \left(\sum_j (2J + 1) \right)^{-1} \sum_{X,J} (2J + 1) X_J \quad (6)$$

being X_J the experimental masses assigned to the multiplet ($X_J \equiv M_{T_J}, M_{\rho_J}$ or M_{B_J}, M_{M_J}).

The maximum value of L for which we have some candidate from the PDG catalog (the section “Light Unflavoured Mesons”) or from reference \[1\], named henceforth CBC (for Cristal Barrel Collaboration), is $L = 5$. In fact there is only one candidate, the PDG resonance $\omega_0(2450\pm 130)$. Although the error bar is big the existence of a non considered $I = 0$ PDG resonance $f_0(2465 \pm 50)$ that can be assigned to the same 15-plet ($L = 5, n_r = 1$) makes us confident about the average PDG mass.

For ($L = 4, n_r = 1$) we also have only one PDG resonance, $\rho_5(2330 \pm 35)$ but a complete set of CBC candidates ($\pi_4(2250\pm15), \rho_3(2260\pm20), \rho_4(2230\pm25), \rho_5(2300\pm45)$) (an explanation for the PDG - CBC difference in mass for ρ_5 is given in reference \[1\]). Let us also notice the existence of $I = 0$ CBC resonances, ω_3, ω_4 and ω_5 at about the same mass.

By choosing $k_u = 2480$ MeV.fm and $C_u = 1070$ MeV we reproduce correctly their average masses (for ($L = 4, n_r = 1$) a value in between the PDG and CBC averages is chosen). It is noteworthy that the calculated rms-radii for the fitting states (3.7 fm and 2.6 fm) consistently satisfy $< r^2 >^{1/2} > 0.6$ fm. Moreover the calculated values of $|\vec{p}_q|/m_q$ (1.05 and 1.3), although indicating the relativistic character of quark and antiquark, are not much greater than 1, as required from \[4\].

The results for the spectrum of states with $< r^2 >^{1/2}$ > 2.0 fm, for which we expect the static approximation may work (all the states have $|\vec{p}_q|/m_q < 1.7$), are shown in...
Table I (we include for completeness multiplets with rms radii below 2.0 fm as (2, 2) and (3, 1)). Our results are compared to CBC and PDG average masses. The states entering in the calculation of the averages are specified. The multiplets (1, 4) and (1, 3) lack an \(a_0 \) despite having an available candidate \(a_0(2025) \). The reason for not including this state is, apart from the ambiguity in its assignment, the general deficient description of \(a_0 \) states provided by quark models pointing out the need to incorporate more than two valence component. It should be noted additionally that \(\rho_3(2260 \pm 20) \) has been assigned to two multiplets (4,1) and (2,3). The reason for this double assignment the assumption that the \(\rho_3 \) resonances belonging to such multiplets would be, as indicated by their partners in the multiplets, almost degenerate. All the multiplets considered have at least one PDG cataloged state or one resonance rated at least three stars in reference [1]. The multiplet (0,4) has not been considered since the only trustable assignment to it, the CBC \(\pi(2070) \), has only a two-star rating (let us point out that if we assigned the PDG \(\rho(1900) \) to this multiplet our result would be in perfect accord with data). As can be checked our results seem to agree with data for \(< r^2 >^{1/2} > 2.0 \) fm. To be more precise we can rely on the approximate linearity and equidistance of Regge trajectories satisfied by data up to a mass of 2.3 GeV \([1, 3, 10]\) with a standard Regge slope of about 1.1 GeV\(^2\). From our results for (1,3), (2,3) a Regge slope of 1.4 GeV\(^2\), far above the standard value, would be obtained for the corresponding \((L,3)\) trajectories. We interpret this as an indication that the static approximation is doubtful for the (1,3) state. Let us also note that a Regge slope of 0.79 GeV\(^2\), quite below the standard value, would be obtained from our chosen masses for (4,1) and (5,1) in the \((L,1)\) trajectories indicating that the calculated spectrum tends to a coulombian one when increasing the energy. This is clearly indicated by the almost mass degeneracy for states with the same values of \((L+n_r)\) for \((L+n_r) > 6\) \(< r^2 >^{1/2} > 4.0 \) fm. Then we can give a closed formula for the mass of highly excited mesons

\[
(M_{L,n_r})_{(L+n_r)\ge 6} \approx m_u + m_\pi + \sigma_u (r_s)_u + \frac{\mu}{2} \frac{k_u^2}{(L+n_r)^2} + C_u \tag{7}
\]

where \(\mu = m_u/2 \) is the reduced mass of the system. The predicted masses for multiplets with the same value of \((L+n_r)\) are listed in Table II up to \((L+n_r) = 9\). Let us also remark the accidental degeneracy between positive (+) and negative (−) parity states with \(L(+) - L(−) = odd \neq n_r(+) - n_r(+)\). Moreover, as the coulombian energy (third term on the right hand side of (7)) has 0 as an upper bound we predict that the \(I = 1 \) light unflavoured meson spectrum has an upper bound or limiting mass

\[
(L, n_r) \quad < r^2 >^{1/2} \quad \text{fm} \quad M_{L,n_r} \quad \text{MeV} \quad (\langle M_{L,n_r}\rangle_{CBC}) \quad \text{MeV} \quad (\langle M_{L,n_r}\rangle_{PDG}) \quad \text{MeV}
\]

\[
(5,1) \quad 3.7 \quad 2450^* \quad 2450 \pm 130
\]

\[
(1,4) \quad 3.4 \quad 2255 \quad 2219 \pm 43 \quad b_1(2240) \quad a_1(2270), a_2(2175)
\]

\[
(2,3) \quad 3.2 \quad 2254 \quad 2248 \pm 37 \quad \pi_0(2245), \rho(2265) \quad \rho_2(2225), \rho_4(2260) \quad \rho_3(2250)
\]

\[
(3,2) \quad 2.9 \quad 2258 \quad 2258 \pm 38 \quad b_3(2245), a_2(2255) \quad a_3(2275), a_4(2255)
\]

\[
(4,1) \quad 2.6 \quad 2283^* \quad 2262 \pm 28 \quad \pi_0(2250), \rho(2260) \quad \rho_2(2230), \rho_3(2300) \quad \rho_3(2550)
\]

\[
(1,3) \quad 2.1 \quad 1919 \quad 1947 \pm 47 \quad b_1(1960) \quad a_1(1930), a_2(1950)
\]

\[
(2,2) \quad 1.9 \quad 1913 \quad 1980 \pm 23 \quad \pi_0(2005), \rho(2000) \quad \rho_2(1940), \rho_4(1982) \quad \rho_3(1990)
\]

\[
(3,1) \quad 1.6 \quad 1937 \quad 2023 \pm 24 \quad b_3(2032), a_2(2030) \quad a_3(2031), a_4(2005) \quad a_4(2040)
\]

TABLE I: Calculated masses (column III) and rms radii (column II) for \((L, n_r)\) multiplets (column I) from the set of parameters \(m_u = 340 \) MeV, \(\sigma_u = 932.7 \) MeV/fm, \(k_u = 2480 \) MeV/fm and \(C_u = 1070 \) MeV. Experimental CBC and PDG average masses (columns IV and V) are shown for comparison. In both cases the candidates to be members of the multiplets are indicated. The superindex \(*\) in the (5,1) and (4,1) calculated masses indicates the average mass values chosen in the corresponding multiplets to fix the parameters.

TABLE II: Predicted masses for some \((L, n_r)\) multiplets with \(L + n_r > 6\). Parameters as in Table I.
given by
\[M_{\text{Limit}} \simeq m_u + m_{\pi} + \sigma_u(r_s)u + C_u = 2823 \text{ MeV} \]
(8)

This limit is compatible with current data since reported resonances with higher mass listed in the PDG section “Other Light Unflavoured Mesons” may be assigned to mesons containing \(s\pi \). Although a specific analysis parallel to the one just performed would be required for these states we can expect their limiting mass to increase with respect to the value in (8) by at least an amount \([m_u - m_q] + (m_{\pi} - m_{\pi_0}) \sim 300 - 500 \text{ MeV}\). Then the resulting limit \((\lesssim 3300 \text{ MeV})\) would be compatible with all existing light unflavoured meson candidates. Beyond this limit one meson states can not exist. Instead the system fragments into several mesons.

Furthermore a mass limit for baryons containing only quarks \(u \) and \(d \) may be derived through the simple prescription \((M_B)_{\text{Limit}} \simeq 3m_u + (3/2)[\sigma_u(r_s)u + C_u] = 4213 \text{ MeV}\). This value is consistently above the most massive reported nucleon and delta resonances in the PDG sections \(N(\sim 3000 \text{ Region}) \) and \(\Delta(\sim 3000 \text{ Region}) \).

With respect to the fitted values of the parameters some comment is in order. As we do not expect significant Goldstone boson contributions for we are dealing with \(q\pi\) distances much larger than \(M_\pi^{-1} \) the parameters may be incorporating mostly gluon contributions (apart from possible relativistic quark kinetic corrections). So the coulomb strength, \(k \), can be tentatively related to an effective quark-antiquark-gluon coupling, \(\alpha_s \), through the colour relation \(k = (4/3)\alpha_s \). Then from the fitted value of \(k = 2480 \text{ MeV} \cdot \text{fm} \) we get \(\alpha_s(\sqrt{q^2}) < 0.01 \text{ GeV}^2 \). It is interesting to realize that this value for \(\alpha_s \) is precisely the same reported in reference [11] from a solution of the truncated Schwinger Dyson equations. However this “coincidence” should be taken with caution since a smaller value has been obtained in other calculations [12]. As a matter of fact the only general conclusion we may extract from possible relativistic quark kinetic corrections). So including mainly gluon contributions (apart from possible relativistic quark kinetic corrections). So one could think that the observed flattening of the confining potential corresponded indeed to a severe softening of the confining interaction in the region under study. Then the good effective description achieved would be compatible with a very slight increase of the interaction with the distance and consequently with an unbound meson spectrum. Besides the non-relativistic hydrogen like symmetry we have made dynamically evident may be only the effective face of a broader relativistic symmetry in the energy region under consideration as discussed in [3]. In our model the higher the meson mass the lesser the \(|p_q|/m_q \) value and the less relativistic the system (when approaching the limiting mass \(|p_q|/m_q \to 0 \)) implying a non-relativistic coulombian symmetry at the long range. Consistent relativistic calculations beyond our effective CQM treatment could shed more light on this point.

Let us also emphasize that the analysis we have performed may be extended to any other meson sector although the current lack of data makes it not feasible. Then a definite answer to the general question about the coulombian nature of the highly excited meson spectrum has to be postponed until more complete data are available. We encourage an experimental effort along this line. In the mean time we hope our results may be suggestive and motivate further studies in the field.

This work has been partially funded by spanish MCyT and EU FEDER under Contract No. FPA2007-65748 and by European III 506078.

[1] D. V. Bugg, Phys. Rep. 397, 257 (2004).
[2] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[3] S. S. Afonin, Mod. Phys. Lett. A 22, 1359 (2007), arXiv:hep-ph/0709.4444; arXiv:hep-ph/0707.1291.
[4] G. S. Bali, Phys. Rep. 343, 1 (2001).
[5] C. DeTar, O. Kaczmarek, F. Karsch and E. Laermann, Phys. Rev. D 59, 035101 (1999).
[6] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Phys. Rev. D 17, 3090 (1978); Phys. Rev. D 21, 203 (1980).
[7] Y.-B. Ding, K.-T. Chao and D.-H. Qin, Phys. Rev. D 51, 5064 (1995); P. González, A. Valcarce, H. Garcilazo and J. Vijande, Phys. Rev. D 68, 034007 (2003); P. González, A. Valcarce, J. Vijande and H. Garcilazo, Int. J. Mod. Phys. A 20, 1842 (2005).
[8] D.I. Diakonov and V.Yu. Petrov, Nucl. Phys. B 272, 457 (1986); D. I. Diakonov, arXiv:hep-ph/0212026.
[9] P. O. Bowman, U. M. Heller, D. B. Leinweber, A. I. Williams and J. Zhang, Nucl. Phys. B 128, 23 (2004).
[10] A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, Phys. Rev. D 62, 051502 (2000).
[11] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).
[12] C. S. Fischer and R. Alkofer, Phys. Rev. D 67, 094011 (2003); A. C. Aguilar, A. Mihara and A. A. Natale, Phys. Rev. D 65, 054011 (2002), arXiv:hep-ph/0208095.
[13] M. M. Brusudová, L. Burakovsky and T. Goldman, Phys. Rev. D 61, 054013 (2000).