On repetitive right application of B-terms

Mirai Ikebuchi
ikebuchi.mirai@nagoya-u.jp
Nagoya University
Aichi, Japan

Keisuke Nakano
k.nakano@acm.org
University of Electro-Communications
Tokyo, Japan

September 14, 2018

Abstract

B-terms are built from the B combinator alone defined by $B \equiv \lambda f.\lambda g.\lambda x. f\ (g\ x)$, which is well-known as a function composition operator. This paper investigates an interesting property of B-terms, that is, whether repetitive right applications of a B-term circulates or not. We discuss conditions for B-terms to and not to have the property through a sound and complete equational axiomatization. Specifically, we give examples of B-terms which have the property and show that there are infinitely many B-terms which does not have the property. Also, we introduce a canonical representation of B-terms that is useful to detect cycles, or equivalently, to prove the property, with an efficient algorithm.

1 Introduction

The ‘bluebird’ combinator $B = \lambda f.\lambda g.\lambda x. f\ (g\ x)$ is well-known [8] as a bracketing combinator or composition operator, which has a principal type $(\alpha \to \beta) \to (\gamma \to \alpha) \to \gamma \to \beta$. A function $B\ f\ g$ (also written as $f \circ g$) synthesized from two functions f and g takes a single argument to apply g and returns the result of an application f to the output of g.

In the general case where g takes n arguments to pass the output to f, the synthesized function is defined by $\lambda x_1, \ldots, x_n. f\ (g\ x_1 \ldots x_n)$. Interestingly, the function can be expressed by $B^n\ f\ g$ where e^n is an n-fold composition of function e such that $e^0 = \lambda x. x$ and $e^{n+1} = B\ e^n\ e$ for $n \geq 0$. We call n-argument composition for the generalized composition represented by B^n.

Now we consider the 2-argument composition expressed by $B^2 = \lambda f.\lambda g.\lambda x. f\ (g\ x\ y)$. From the definition, we have $B^2 = B\circ B = B\ B$ where function application is considered left-associative, that is, $f\ a\ b = (f\ a)\ b$. Thus B^2 is defined by an expression in which all applications nest to the left, never to the right. We call such an expression flat [7]. In particular we write $X_{(k)}$ for a flat expression involving only a combinator X, which is defined by $X_{(1)} = X$ and $X_{(k+1)} = X_{(k)}\ X$ for $k \geq 1$. Okasaki [7] shows that there is no universal combinator X that can represent any combinator by $X_{(k)}$ with some k. Using this notation, we can write $B^2 = B_{(2)}$.

Consider the n-argument composition expressed by B^n. Surprisingly, we have $B^3 = B\ B\ B\ B\ B\ B = B_{(8)}$. It is easy to check it by repeating β-reduction for $B_{(8)}\ f\ g\ x\ y\ z = f\ (g\ x\ y\ z)$. For $n > 3$, however, the n-argument composition cannot be expressed by flat B-terms. There is no integer k such that $B^n = B_{(k)}$ with respect to $\beta\eta$-equality. It can be proved by ρ-property of combinator B, that is introduced in this paper. We say that a combinator X has ρ-property if there exists two distinct integer i and j such that $X_{(i)} = X_{(j)}$. If such a pair i, j is found, we have $X_{(i+k)} = X_{(j+k)}$ for any $k \geq 0$ (à la finite monogenic semigroup [5]). In the case of B, we can check $B_{(6)} = B_{(10)} = \lambda x.\lambda y.\lambda z.\lambda w.\lambda v.\ x\ (y\ z)\ (w\ v)$ hence $B_{(i)} = B_{(i+4)}$ for $i \geq 6$. Fig. 1 shows a computation graph of $B_{(k)}$. The ρ-property is named after the shape of the graph. The ρ-property implies that the set $\{ B_{(k)} \mid k \geq 1 \}$ is finite. Since none of the terms in the set is equal to B^n with $n > 3$ up to the $\beta\eta$-equivalence of the corresponding λ-terms, we conclude that there is no integer k such that $B^n = B_{(k)}$.

This paper discusses the ρ-property of combinatory terms, particularly in $\mathbf{CL}(B)$, called B-terms, that are built from B alone. Interestingly, $B\ B$ enjoys the ρ-property with $(B\ B)_{(2^2)} = (B\ B)_{(32)}$ and so does $B\ (B\ B)$ with $(B\ (B\ B))_{(2^4)} = (B\ (B\ B))_{(256)}$ as reported [6]. Several combinations other than B-terms can be found enjoy the ρ-property, for example, $K = \lambda x.\lambda y.\lambda x = \lambda x.\lambda y.\lambda z.\ x\ y\ z$ because of $K_{(3)} = K_{(1)}$ and $C_{(4)} = C_{(3)}$. They are not so interesting in the sense that the cycle starts immediately and its size is very small, comparing with B-terms like $B\ B$ and $B\ (B\ B)$. As we will see later, $B\ (B\ (B\ (B\ (B\ B))))(\equiv B^6\ B)$ has the ρ-property.
with the cycle of the size more than 3×10^{11} which starts after more than 2×10^{12} repetitive right application. This is why the ρ-property of B-terms is intensively discussed in the present paper.

The contributions of the paper are two-fold. One is to give a characterization of CL(B) and another is to provide a sufficient condition for the ρ-property and anti-ρ-property of B-terms. In the former, a canonical representation of B-terms is introduced and sound and complete equational axiomatization for CL(B) is established. In the latter, the ρ-property of $B^n B$ with $n \leq 6$ is shown with an efficient algorithm and the anti-ρ-property for B-terms in particular forms is proved.

2 ρ-property of terms

The ρ-property of combinator X is that $X_{(i)} = X_{(j)}$ holds for some $i > j \geq 1$. We adopt $\beta\eta$-equivalence of corresponding λ-terms for the equivalence of combinatorial terms in this paper. We could use other equivalence, for example, induced by the axioms of the combinatory logic. The choice of equivalence does not have an essential influence, e.g., $B_{(9)}$ and $B_{(13)}$ are equal even up to the combinatory axiom of B, while $B_{(6)} = B_{(10)}$ holds for $\beta\eta$-equivalence. Furthermore, for simplicity, we only deal with the case where $X_{(n)}$ is normalizable for all n. If $X_{(n)}$ is not normalizable, it is much difficult to check equivalence with the other terms.

Let us write $\rho(X) = (i, j)$ when a combinator X has the ρ-property due to $X_{(i)} = X_{(i+j)}$ with minimum positive integers i and j. For example, we can write $\rho(B) = (6, 4)$, $\rho(C) = (3, 1)$, $\rho(K) = (1, 2)$ and $\rho(I) = (1, 1)$. Besides them, several combinators introduced in the Smullyan’s book [8] have the ρ-property:

$$\rho(D) = (32, 20) \quad \rho(F) = (3, 1) \quad \rho(R) = (3, 1) \quad \rho(T) = (2, 1) \quad \rho(V) = (3, 1)$$

where $D = \lambda x.\lambda y.\lambda z.\lambda w.x y (z w)$, $F = \lambda x.\lambda y.\lambda z.x y x$, $R = \lambda x.\lambda y.\lambda z.x y z x$, $T = \lambda x.\lambda y.x y x$, and $V = \lambda x.\lambda y.\lambda z.x y z x$.

Except the B and $D (= B B)$ combinators, the property is ‘trivial’ in the sense that loop starts early and the size of cycle is very small.

On the other hand, the combinators $S = \lambda x.\lambda y.\lambda z.x z (y z)$ and $O = \lambda x.\lambda y.y (x y)$ in the book do not have the ρ-property for reason (A), which is illustrated by

$$S_{(2n+1)} = \lambda x.\lambda y.x y (x y (\ldots (x y (\lambda z.x z (y z))) \ldots)),$$
$$O_{(n+1)} = \lambda x.\lambda y.x (x (\ldots (x (\lambda y.y (x y)))))$$

The definition of the ρ-property is naturally extended from single combinators to terms obtained by combining
several combinators. We found by computation that several \(B \)-terms, built from the \(B \) combinator alone, have a nontrivial \(\rho \)-property as shown in Fig. 2. The detail will be shown in Section 4.

3 Characterization of \(B \)-terms

The set of all \(B \)-terms, \(\text{CL}(B) \), is closed under application, that is, the repetitive right application of a \(B \)-term always generates a sequence of \(B \)-terms. Hence, the \(\rho \)-property can be decided by checking 'equivalence' among generated \(B \)-terms, where the equivalence should be checked through \(\beta \eta \)-equivalence of their corresponding \(\lambda \)-terms in accordance with the definition of the \(\rho \)-property. It would be useful if we have a simple decision procedure for deciding equivalence over \(B \)-terms.

In this section, we give a characterization of the \(B \)-terms to make it easy to decide their equivalence. We introduce a method for deciding equivalence of \(B \)-terms without calculating the corresponding \(\lambda \)-terms. To this end, we first investigate equivalence over \(B \)-terms with examples and then present an equation system as characterization of \(B \)-terms so as to decide equivalence between two \(B \)-terms. Based on the equation system, we introduce a canonical representation of \(B \)-terms. The representation makes it easy to observe the growth caused by repetitive right application of \(B \)-terms, which will be later shown for proving the anti-\(\rho \)-property of \(B^2 \). We believe that this representation will be helpful to prove the \(\rho \)-property or the anti-\(\rho \)-property for the other \(B \)-terms.

3.1 Equivalence over \(B \)-terms

Two \(B \)-terms are said equivalent if their corresponding \(\lambda \)-terms are \(\beta \eta \)-equivalent. For instance, \(B \ B \ (B \ B) \) and \(B \ (B \ (B \ B)) \) are equivalent. This can be easily shown by the definition \(B \ x \ y \ z = x \ (y \ z) \). For another (non-trivial) instance, \(B \ B \ (B \ B) \) and \(B \ (B \ (B \ B)) \) are equivalent. This is illustrated by the fact that they are equivalent to \(\lambda x.\lambda y.\lambda z.\lambda w.\lambda v. x \ (y \ z) \ (w \ v) \). Where \(B \) is replaced with \(\lambda x.\lambda y.\lambda z.\lambda w.\lambda v. x \ (y \ z) \) or the other way around at the \(=_\beta \) equation. Similarly, we cannot show equivalence between two \(B \)-terms, \(B \ (B \ B) \) and \(B \ (B \ B) \), without long calculation. This kind of equality makes it hard to investigate the \(\rho \)-property of \(B \)-terms.

To solve the annoying issue, we will later introduce a canonical representation of \(B \)-terms.

3.2 Equational axiomatization for \(B \)-terms

Equality between two \(B \)-terms can be effectively decided by an equation system. Figure 3 shows a sound and complete equation system as described in the following theorem.

Theorem 3.1 Two \(B \)-terms are \(\beta \eta \)-equivalent if and only if their equality is derived by equations (B1), (B2), and (B3).

The proof of the if-part is given here, which corresponds to the soundness of the equation system. We will later prove the only-if-part with the uniqueness of the canonical representation of \(B \)-terms.
Proof of if-part of Theorem 3.1. Equation (B1) is immediate from the definition of B. Equation (B2) and (B3) are shown by

\[
B (B e_1 e_2) = \lambda x. \lambda y. B e_1 e_2 (x y) \quad \text{and} \quad B B (B e_1) = \lambda x. B (B e_1 x)
\]

where the α-renaming is implicitly used.

Equation (B2) has been employed by Statman [9] to show that no $B\omega$-term can be a fixed-point combinator where $\omega = \lambda x. x x$. This equation exposes an interesting feature of the B combinator. Write equation (B2) as

\[
B (e_1 \circ e_2) = (B e_1) \circ (B e_2)
\]

(B2')

by replacing every B combinator with \circ infix operator if it has exactly two arguments. The equation is an associative law of B over \circ, which will be used to obtain the canonical representation of B-terms. Equation (B3) is also used for the same purpose as the form of

\[
B \circ (B e_1) = (B (B e_1)) \circ B.
\]

(B3')

which represents associativity of function composition, i.e., $e_1 \circ (e_2 \circ e_3) = (e_1 \circ e_2) \circ e_3$. This is shown with equations (B1) and (B2) by

\[
B e_1 (B e_2 e_3) = B (B e_1 e_2) e_3
\]

(1)

3.3 Canonical representation of B-terms

To decide equality between two B-terms, it does not suffice to compute their normal forms under the definition of B, $B x y z \to x (y z)$. This is because two distinct normal forms may be equal up to $\beta\eta$-equivalence, e.g., $B B (B B)$ and $B (B (B B)) B$. We introduce a canonical representation of B-terms, which makes it easy to check equivalence of B-terms. We will finally find that for any B-term e there exists a unique finite non-empty weakly-decreasing sequence of non-negative integers $n_1 \geq n_2 \geq \cdots \geq n_k$ such that e is equivalent to $(B^{n_1} B) \circ (B^{n_2} B) \circ \cdots \circ (B^{n_k} B)$. Ignoring the inequality condition gives polynomials introduced by Statman [9]. We will use decreasing polynomials for our canonical representation as presented later.

First, we explain how its canonical form is obtained from every B-term. We only need to consider B-terms in which every B has at most two arguments. One can easily reduce the arguments of B to less than three by repeatedly rewriting occurrences of $B e_1 e_2 e_3 e_4 \cdots e_n$ into $e_1 (e_2 e_3) e_4 \cdots e_n$. The rewriting procedure always terminates because it reduces the number of B. Thus, every B-term in $\text{CL}(B)$ is equivalent to a B-term built by the syntax

\[
e ::= B \mid B e \mid e \circ e
\]

(2)

where $e_1 \circ e_2$ denotes $B e_1 e_2$. We prefer to use the infix operator \circ instead of B that has two arguments because associativity of B, that is, $B e_1 (B e_2 e_3) = B (B e_1 e_2) e_3$, can be implicitly assumed. This simplifies the further discussion on B-terms. We will deal with only B-terms in syntax (2) from now on. The \circ operator has a lower precedence than application in this paper. Terms $B B B \circ B$ and $B B B B$ represent $(B B) \circ B$ and $B (B B)$, respectively.

The syntactic restriction by (2) does not suffice to proffer a canonical representation of B-terms. There are many pairs of B-terms which are equivalent even in the form of (2). For example, $B B B = B (B B) B$ holds according to equation (B3').
A polynomial form of B-terms is obtained by putting a restriction to the syntax so that no B combinator occurs outside of the \circ operator while syntax (2) allows the B combinators and the \circ operators to occur in arbitrary position. The restricted syntax is given as

$$e ::= e_B \mid e \circ e$$
$$e_B ::= B \mid B \circ e_B$$

where terms in e_B have a form of $B(\ldots(B(B)\ldots))$, that is $B^n B$, called monomial. The syntax can be simply rewritten into $e ::= B^n B \mid e \circ e$, which is called polynomial.

Definition 3.2 A B-term $B^n B$ is called monomial. A polynomial is given as the form of

$$(B^{n_1} B) \circ (B^{n_2} B) \circ \cdots \circ (B^{n_k} B)$$

where $k > 0$ and $n_1, \ldots, n_k \geq 0$ are integers. In particular, a polynomial is called decreasing when $n_1 \geq n_2 \geq \cdots \geq n_k$. The length of a polynomial P is defined by adding 1 to the number of \circ in P. The numbers n_1, n_2, \ldots, n_k are called degree.

In the rest of this subsection, we prove that for any B-term e there exists a unique decreasing polynomial equivalent to e. First, we show that e has an equivalent polynomial.

Lemma 3.3 ([9]) For any B-term e, there exists a polynomial to e.

Proof. We prove the statement by induction on structure of e. In the case of $e \equiv B$, the term itself is polynomial. In the case of $e \equiv B e_1$, assume that e_1 has equivalent polynomial $(B^{n_2} B) \circ (B^{n_3} B) \circ \cdots \circ (B^{n_k} B)$. Repeatedly applying equation (B2') to $B e_1$, we obtain a polynomial equivalent to $B e_1$ as $(B^{n_2+1} B) \circ (B^{n_3+1} B) \circ \cdots \circ (B^{n_k+1} B)$. In the case of $e \equiv e_1 \circ e_2$, assume that e_1 and e_2 have equivalent polynomials P_1 and P_2, respectively. A polynomial equivalent to e is given by $P_1 \circ P_2$. \hfill \square

Next we show that for any polynomial P there exists a decreasing list equivalent to P. A key equation of the proof is

$$(B^m B) \circ (B^n B) = (B^{m+1} B) \circ (B^m B) \quad \text{when } m < n, \quad (3)$$

which is shown by

$$(B^m B) \circ (B^n B) = B^m (B \circ (B^{n-m} B))$$
$$= B^m ((B(B^{n-m} B)) \circ B)$$
$$= (B^{n+1} B) \circ (B^m B)$$

using equations (B2') and (B3').

Lemma 3.4 Any polynomial P has an equivalent decreasing polynomial P' such that

- the length of P and P' are equal, and
- the lowest degrees of P and P' are equal.

Proof. We prove the statement by induction on the length of P. When the length is 1, that is, P includes no \circ operator, P itself is decreasing and the statement holds. When the length of P is $k > 1$, take P_1 such that $P \equiv P_1 \circ (B^n B)$. From the induction hypothesis, there exists a decreasing polynomial $P'_1 \equiv (B^{n_1} B) \circ (B^{n_2} B) \circ \cdots \circ (B^{n_{k-1}} B)$ equivalent to P_1, and the lowest degree of P_1 is n_{k-1}. If $n_{k-1} \geq n$, then $P' \equiv P'_1 \circ (B^n B)$ is decreasing and equivalent to P. Since the lowest degrees of P and P' are n, the statement holds. If $n_{k-1} < n$, P is equivalent to

$$(B^{n_1} B) \circ \cdots \circ (B^{n_{k-2}} B) \circ (B^{n_{k-1}} B) \circ (B^n B)$$
$$= (B^{n_1} B) \circ \cdots \circ (B^{n_{k-2}} B) \circ (B^{n_{k-1}+1} B) \circ (B^{n_{k-1}} B)$$

due to equation (3). Putting the last term as $P_2 \circ (B^{n_{k-1}} B)$, the length of P_2 is $k - 1$ and the lowest degree of P_2 is greater than or equal to n_{k-1}. From the induction hypothesis, P_2 has an equivalent decreasing polynomial P'_2 of length $k - 1$ and the lowest degree of P'_2 greater than or equal to n_{k-1}. Thereby we obtain a decreasing polynomial $P'_2 \circ (B^{n_{k-1}} B)$ equivalent to P and the statement holds. \hfill \square
Example 3.5 Consider a B-term $e = B (B B B) (B B) B$. First, applying equation (B1),
\[
e = B (B B B) (B B) (B B) B = B B B (B B B) = B (B B B (B B)) = B (B (B B (B B)))
\]
so that every B has at most two arguments. Then replace each B to the infix \odot operator if it has two arguments and obtain $B (B (B \odot (B B)))$. Applying equation (B2'), we have
\[
B (B (B \odot (B B))) = B ((B B) \odot (B (B B)))
\]
\[
= (B (B B)) \odot (B (B B))
\]
\[
= (B^2 B) \odot (B^3 B).
\]
Applying equation (3), we obtain the decreasing polynomial $(B^4 B) \odot (B^2 B)$ equivalent to e.

Every B-term has at least one equivalent decreasing polynomial as shown so far. To conclude this subsection, we show the uniqueness of decreasing polynomial equivalent to any B-term, that is, every B-term e has no two distinct decreasing polynomials equivalent to e.

The proof is based on the idea that B-terms correspond to unlabeled binary trees. In every λ-term in $\mathsf{CL}(B)$, all variables are referred exactly once (linear) in the order they it was introduced (ordered). More precisely, this fact is formalized as follows.

Lemma 3.6 Every λ-term in $\mathsf{CL}(B)$ is $\beta\eta$-equivalent to a λ-term of the form $\lambda x_1.\lambda x_2.\ldots.\lambda x_k$. M with some $k > 2$ where M is built by putting parentheses to appropriate positions in the sequence $x_1 x_2 \ldots x_k$.

Proof. This can be proved by induction on structure of terms in $\mathsf{CL}(B)$. □

This lemma implies that every λ-term in $\mathsf{CL}(B)$ is characterized by an unlabeled binary tree. A λ-term in $\mathsf{CL}(B)$ is constructed for any unlabeled binary tree by putting a variable to each leaf in the order of x_1, x_2, \ldots and enclosing it with k-fold lambda abstraction $\lambda x_1.\lambda x_2.\ldots.\lambda x_k$. [] where k is a number of leaves of the binary tree. Let us use the notation \ast for a leaf and (t_1, t_2) for a tree with left subtree t_1 and right subtree t_2. For example, B-terms $B = \lambda x.\lambda y.\lambda z. x \ y \ z$ and $B = \lambda x.\lambda y.\lambda z. \lambda w. \ x \ (y \ w)$ are represented by $(\ast, (\ast, \ast))$ and $(\langle \ast, \ast, \ast \rangle, \langle \ast, \ast \rangle)$, respectively.

We will present an algorithm for constructing the corresponding decreasing polynomial from a given binary tree. First let us define a function \mathcal{L}_i with integer i which maps binary trees to lists of integers:
\[
\mathcal{L}_i(\ast) = [] \quad \mathcal{L}_i((t_1, t_2)) = \mathcal{L}_{i+|t_1|}(t_2) \odot \mathcal{L}_i(t_1) \odot [i]
\]
where \odot concatenates two lists and $|t|$ denotes a number of leaves. For example, $\mathcal{L}_0((\langle \ast, \ast \rangle, (\ast, \ast))) = [2, 0, 0]$ and $\mathcal{L}_1((\langle \ast, \ast, \ast \rangle, (\ast, \ast, \ast))) = [4, 4, 2, 1, 1]$. Informally, the \mathcal{L}_i function returns a list of integers which is obtained by labeling both leaves and nodes in the following steps. First each leaf of a given tree is labeled by $i, i+1, i+2, \ldots$ in left-to-right order. Then each binary node of the tree is labeled by the same label as its leftmost descendant leaf. The \mathcal{L}_i function returns a list of only node labels in decreasing order. The length of the list equals the number of the nodes, that is, smaller by one than the number of variables in the λ-term.

We define a function \mathcal{L} which takes a binary tree t and returns a list of non-negative integers in $\mathcal{L}_{-1}(t)$, that is, the list obtained by excluding trailing all -1’s in $\mathcal{L}_{-1}(t)$. Note that by excluding the label -1’s it may happen to be $\mathcal{L}(t) = \mathcal{L}(t')$ for two distinct binary trees t and t' even though the \mathcal{L}_i function is injective. However, those binary trees t and t' must be 'equivalent' in terms of the corresponding λ-terms.

The following lemma claims that the \mathcal{L} function computes a list of degrees of a decreasing polynomial corresponding to a given λ-term.

Lemma 3.7 A decreasing polynomial $(B^n B) \odot (B^n B) \odot \cdots \odot (B^n B)$ is $\beta\eta$-equivalent to a λ-term $e \in \mathsf{CL}(B)$ corresponding a binary tree t such that $\mathcal{L}(t) = [n_1, n_2, \ldots, n_k]$.

Proof. We prove the statement by induction on the length of the polynomial P.

When $P \equiv B^n B$ with $n \geq 0$, it is found to be equivalent to the λ-term
\[
\lambda x_1.\lambda x_2.\lambda x_3.\ldots.\lambda x_{n+1}.\lambda x_{n+2}.\lambda x_{n+3}. x_1 x_2 x_3 \ldots x_{n+1} (x_{n+2} x_{n+3})
\]
by induction on n. This λ-term corresponds to a binary tree $t = \langle (\langle \ast, \ast \rangle, (\ast, \ast)), (\ast, \ast) \rangle$. Then we have
\[
\mathcal{L}(t) = [n] \text{ holds from } \mathcal{L}_{-1}(t) = [n, -1, -1, \ldots, -1].
\]
When $P = P' \circ (B^n B)$ with $P' \equiv (B^{n_1} B) \circ \cdots \circ (B^{n_k} B)$, $k \geq 1$ and $n_1 \geq \cdots \geq n_k \geq n \geq 0$, there exists a λ-term $\beta\eta$-equivalent to P' corresponding a binary tree t' such that $\mathcal{L}(t') = [n_1, \ldots, n_k]$ from the induction hypothesis. The binary tree t' must have the form of $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$ with $m \geq 1$ and some n_k leaves t_1, \ldots, t_m, otherwise $\mathcal{L}(t')$ would contain an integer smaller than n_k. From the definition of \mathcal{L} and \mathcal{L}_i, we have

$$\mathcal{L}(t') = \mathcal{L}_{s_m}(t_m) + \cdots + \mathcal{L}_{s_1}(t_1)$$

(4)

where $s_j = n_k + 1 + \sum_{i=1}^{j-1} \| t_i \|$. Additionally, the structure of t' implies $P' = \lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_{x_n+1} e_1 \cdots e_m$ where e_i corresponds to a binary tree t_i for $i = 1, \ldots, m$. From $B^n B = \lambda y_1 \cdots \lambda y_{n+3} y_1 y_2 \cdots y_{n+1} (y_{n+2} y_{n+3})$, we compute a λ-term $\beta\eta$-equivalent to $P = P' \circ (B^n B)$ by

$$P = \lambda x. P'(B^n B x)$$

$$= \lambda x. (\lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_{x_n+1} e_1 \cdots e_m)$$

$$= \lambda x. \lambda y_1 \cdots \lambda y_{n+3} x y_2 \cdots y_{n+1} (y_{n+2} y_{n+3})$$

where $n_k \geq n$ is taken into account. We split into four cases: (i) $n_k = n$ and $m = 1$, (ii) $n_k = n$ and $m > 1$, (iii) $n_k = n + 1$, and (iv) $n_k > n + 1$. In the case (i) where $n_k = n$ and $m = 1$, we have

$$P = \lambda x. \lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_{x_n+1} e_1 \cdots e_m$$

whose corresponding binary tree t is $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$. From equation (4), $\mathcal{L}(t) = \mathcal{L}_{n+1}(t_1) + [n + 1] = \mathcal{L}(t') + [n + 1] = [n_1, \ldots, n_k, n + 1]$, thus the statement holds. In the case (ii) where $n_k = n$ and $m > 1$, we have

$$P = \lambda x. \beta\eta_\beta\eta \lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_{x_n+1} (e_1 e_2) e_3 \cdots e_m$$

whose corresponding binary tree t is $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$. Hence, $\mathcal{L}(t) = \mathcal{L}(t') + [n + 1]$ holds again from equation (4). In the case (iii) where $n_k = n + 1$, we have

$$P = \lambda x. \lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_{x_n+1} (e_1 e_2) e_3 \cdots e_m$$

whose corresponding binary tree t is $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$. Hence, $\mathcal{L}(t) = \mathcal{L}(t') + [n + 1]$ holds from equation (4). In the case (iv) where $n_k > n + 2$, we have

$$P = \lambda x. \lambda x_1 \cdots \lambda x_{x_1} x_2 \cdots x_n (x_{n+2} x_{n+3} \cdots e_1 \cdots e_m$$

whose corresponding binary tree t is $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$. Hence, $\mathcal{L}(t) = \mathcal{L}(t') + [n + 1]$ holds from equation (4).

Example 3.8 A λ-term $\lambda x_1 \lambda x_2 \lambda x_3 \lambda x_4 \lambda x_5 \lambda x_6 \lambda x_7 \lambda x_8. x_1 (x_2 x_3) (x_4 x_5 x_6 (x_7 x_8))$ is $\beta\eta$-equivalent to $(B^n B) \circ (B^n B) \circ (B^n B) \circ (B^n B) \circ (B^n B)$ because its corresponding binary tree t is $\langle \langle \cdots \langle \langle \cdots \rangle, \cdots \rangle, \cdots \rangle, \cdots \rangle \rangle$ and satisfies $\mathcal{L}(t) = [5, 2, 2, 2, 0]$.

The previous lemmas immediately conclude the uniqueness of of decreasing polynomials for a B-term shown in the following theorem.

Theorem 3.9 Every B-term e has a unique decreasing polynomial.
Proof. For any given B-term e, we can find a decreasing polynomial for e from Lemma 3.3 and Lemma 3.4. Since no other decreasing polynomial an be equivalent to e from Lemma 3.7, the present statement holds.

This theorem implies that the decreasing polynomial of B-terms can be used as their canonical representation, which is effectively derived as shown in Lemma 3.3 and Lemma 3.4.

As a corollary of the theorem, we can show the only-if statement of Theorem 3.1, which corresponds to the completeness of the equation system.

Proof of only-if-part of Theorem 3.1. Let e_1 and e_2 be equivalent B-terms, that is, their λ-terms are $\beta\eta$-equivalent. From Theorem 3.9, their decreasing polynomials are the same. Since the decreasing polynomial is derived from e_1 and e_2 by equations (B1), (B2), and (B3) according to the proofs of Lemma 3.3 and Lemma 3.4, equivalence between e_1 and e_2 is also derived from these equations.

\[\square \]

4 Results on the ρ-property of B-terms

We investigate the ρ-property of concrete B-terms, some of which have the property and others do not. For B-terms having the ρ-property, we introduce an efficient implementation to compute the entry point and the size of the cycle. For B-terms not having the ρ-property, we give a proof why they do not have.

4.1 B-terms having the ρ-property

As shown in Section 2, we can check that B-terms equivalent to $B^n B$ with $n \leq 6$ have the ρ-property by computing $(B^n B)_{(i)}$ for each i. However, it is not easy to check it by computer without an efficient implementation because we should compute all $(B^n B)_{(i)}$ with $i \leq 2980054085040 (= 2641033883877 + 339020201163)$ to know $\rho(B^n B) = (2641033883877, 339020201163)$. A naive implementation which computes terms of $(B^n B)_{(i)}$ for all i and stores all of them has no hope to detect the ρ-property.

We introduce an efficient procedure to find the ρ-property of B-terms which can successfully compute $\rho(B^n B)$. The procedure is based on two orthogonal ideas, Floyd’s cycle-finding algorithm [4] and an efficient right application algorithm over decreasing polynomials presented in Section 3.3.

The first idea, Floyd’s cycle-finding algorithm (also called the tortoise and the hare algorithm), enables to detect the cycle with a constant memory usage, that is, the history of all terms not having the ρ-property, we give a proof why they do not have.

1. Find the smallest m such that $X_{(m)} = X_{(2m)}$.
2. Find the smallest k such that $X_{(m+k)} = X_{(m+k)}$.
3. Find the smallest $0 < c \leq k$ such that $X_{(m)} = X_{(m+c)}$. If not found, put $c = m$.

After this procedure, we find $\rho(X) = (k, c)$. The third step can be simultaneously run during the second one. See [4, exercise 3.1.6] for the detail. One could use slightly more (possibly) efficient algorithms by Brent [2] and Gosper [1, item 132] for cycle detection.

Efficient cycle-finding algorithms do not suffice to compute $\rho(B^n B)$. Only with the idea above running on a laptop (1.7 GHz Intel Core i7 / 8GB of memory), it takes about 2 hours even for $\rho(B^5 B)$ fails to compute $\rho(B^n B)$ due to out of memory.

The second idea enables to efficiently compute $X_{(i+1)}$ from $X_{(i)}$ for B-terms X. The key of this algorithm is to use the canonical representation of $X_{(i)}$, that is a decreasing polynomial, and directly compute the canonical representation of $X_{(i+1)}$ from that of $X_{(i)}$. Our implementation based on both ideas can compute $\rho(B^3 B)$ and $\rho(B^n B)$ in 10 minutes and 59 days (!), respectively.

For two given decreasing polynomials P_1 and P_2, we show how a decreasing polynomial P equivalent to (P_1, P_2) can be obtained. The method is based on the following lemma about application of one B-term to another B-term.

Lemma 4.1 For B-terms e_1 and e_2, there exists $k \geq 0$ such that $e_1 \circ (B e_2) = B (e_1 e_2) \circ B^k$.
Proof. Let P_1 be a decreasing polynomial equivalent to e_1. We prove the statement by case analysis on the maximum degree in P_1. When the maximum degree is 0, we can take $k' \geq 1$ such that $P_1 \equiv B \circ \cdots \circ B = B^{k'}$. Then,

$$e_1 \circ (B \circ e_2) = B \circ \cdots \circ B \circ (B \circ e_2) = (B^{k'+1} \circ e_2) \circ B \circ \cdots \circ B = B \circ (e_1 \circ e_2) \circ B^{k'}$$

where equation (B3') is used k' times in the second equation. Therefore the statement holds by taking $k = k'$.

When the maximum degree is greater than 0, we can take a decreasing polynomial P' for a B-term and $k' \geq 0$ such that $P_1 \equiv (B \circ P') \circ B \circ \cdots \circ B = (B \circ P') \circ B^{k'}$ due to equation (B2'). Then,

$$e_1 \circ (B \circ e_2) = (B \circ P') \circ B \circ \cdots \circ B \circ (B \circ e_2)$$

$$= (B \circ P') \circ (B^{k'+1} \circ e_2) \circ B \circ \cdots \circ B$$

$$= B \circ (P' \circ (B^{k'} \circ e_2)) \circ B^{k'}$$

$$= B \circ (P_1 \circ e_2) \circ B^{k'}$$

$$= B \circ (e_1 \circ e_2) \circ B^{k'}$$

Therefore, the statement holds by taking $k = k'$.

This lemma indicates that, from two decreasing polynomials P_1 and P_2, a decreasing polynomial P equivalent to $(P_1 \circ P_2)$ can be obtained by the following steps:

1. Build P_2' by raising each degree of P_2 by 1, i.e., when $P_2 \equiv (B^{n_1} \circ B) \circ \cdots \circ (B^{n_l} \circ B)$, $P_2' \equiv (B^{n_1+1} \circ B) \circ \cdots \circ (B^{n_l+1} \circ B)$.

2. Find a decreasing polynomial P_{12} corresponding to $P_1 \circ P_2'$ by equation (B3');

3. Obtain P by lowering each degree of P_{12} after eliminating the trailing 0-degree units, i.e., when $P_{12} \equiv (B^{n_1} \circ B) \circ \cdots \circ (B^{n_l} \circ B) \circ (B^0 \circ B) \circ \cdots \circ (B^0 \circ B)$ with $n_1 \geq \cdots \geq n_l > 0$, $P \equiv (B^{n_l-1} \circ B) \circ \cdots \circ (B^{n_l-1} \circ B)$.

In the first step, a decreasing polynomial P_2' equivalent to $B \circ P_2$ is obtained. The second step yields a decreasing polynomial P_{12} for $P_1 \circ P_2' = P_1 \circ (B \circ P_2)$. Since P_1 and P_2 are decreasing, it is easy to find P_{12} by repetitive application of equation (B3') for each unit of P_2' à la insertion operation in insertion sort. In the final step, a polynomial P that satisfies $(B \circ P) \circ B^k = P_{12}$ with some k is obtained. From Lemma 4.1 and the uniqueness of decreasing polynomials, P is equivalent to $(P_1 \circ P_2)$.

Example 4.2 Let P_1 and P_2 be decreasing polynomials given as $P_1 = (B^4 \circ B) \circ (B^3 \circ B) \circ (B^0 \circ B)$ and $P_2 = (B^2 \circ B) \circ (B^0 \circ B)$. Then a decreasing polynomial P equivalent to $(P_1 \circ P_2)$ is obtained by three steps:

1. Raise each degree of P_2 to get $P_2' = (B^3 \circ B) \circ (B^1 \circ B)$.

2. Find a decreasing polynomial by

$$P_1 \circ P_2' = (B^4 \circ B) \circ (B^3 \circ B) \circ (B^0 \circ B) \circ (B^2 \circ B) \circ (B^3 \circ B)$$

$$= (B^4 \circ B) \circ (B^3 \circ B) \circ (B^0 \circ B) \circ (B^2 \circ B)$$

$$= (B^4 \circ B) \circ (B^5 \circ B) \circ (B^1 \circ B) \circ (B^0 \circ B)$$

$$= (B^6 \circ B) \circ (B^4 \circ B) \circ (B^1 \circ B) \circ (B^0 \circ B)$$

$$= (B^6 \circ B) \circ (B^4 \circ B) \circ (B^2 \circ B) \circ (B^0 \circ B)$$

$$= (B^6 \circ B) \circ (B^4 \circ B) \circ (B^3 \circ B) \circ (B^0 \circ B)$$

where equation (B3') is applied in each.
3. By lowering each degree after removing trailing \((B^0 B)\)'s,

\[P \equiv (B^5 B) \circ (B^3 B) \circ (B^2 B) \circ (B^0 B) \]

is obtained.

The implementation based on the right application over decreasing polynomials \(e\) is available at https://github.com/ksk/Rho. Note that the program does not terminate for the combinator which does not have the \(\rho\)-property. It will not help to decide if a combinator has the \(\rho\)-property. One might observe how the terms grow by repetitive right applications thorough running the program, though.

4.2 B-terms not having the \(\rho\)-property

We prove that the \(B\)-terms \((B^k B)^{(k+2)n}\) \((k \geq 0, n > 0)\) do not have the \(\rho\)-property. In particular, we show that the number of variables in the \(\beta\eta\)-normal form of \((B^k B)^{(k+2)n})\) is monotonically non-decreasing and that it implies the anti-\(\rho\)-property. Additionally, after proving that, we consider a sufficient condition not to have the \(\rho\)-property through the monotonicity.

First we introduce some notation. Suppose that the \(\beta\eta\)-normal form of a \(B\)-term \(X\) is given by \(\lambda x_1 \ldots \lambda x_n.\ x_1 e_1 \cdots e_k\) for some terms \(e_1, \ldots, e_k\). Then we define \(l(X) = n\) (the number of variables), \(a(X) = k\) (the number of arguments of \(x_1\)), and \(N_i(X) = e_i\) for \(i = 1, \ldots, k\). Let \(X'\) be another \(B\)-term and suppose its \(\beta\eta\)-normal form is given by \(\lambda x'_1 \ldots \lambda x'_{n'}.\ e'\). We can see \(X X' = (\lambda x_1 \ldots \lambda x_n.\ x_1 e_1 \cdots e_k) X' = \lambda x_2 \ldots \lambda x_{n'}.\ x'_1 e'_1 \cdots e'_k\) and from Lemma 3.6, its \(\beta\eta\)-normal form is

\[
\begin{cases}
\lambda x_2 \ldots \lambda x_{n'} \lambda x_{k+1} \ldots \lambda x_{n'+1}[e_1, \ldots, e_k]e' & (k \leq n') \\
\lambda x_2 \ldots \lambda x_{n'} [e_1, \ldots, e_{n'+1} e_{n'+1} \cdots e_k] & \text{(otherwise)}
\end{cases}
\]

Here \([e_1, \ldots, e_k]e'\) is the term which is obtained by substituting \(e_1, \ldots, e_k\) to the variables \(x'_1, \ldots, x'_k\) in \(e'\) in order.

By simple computation with this fact, we get the following lemma:

Lemma 4.3 Let \(X\) and \(X'\) be \(B\)-terms. Then

\[
l(X X') = l(X) - 1 + \max\{l(X') - a(X), 0\}
\]

\[
a(X X') = a(X') + a(N_1(X)) + \max\{a(X) - l(X'), 0\}
\]

\[
N_1(X X') = \begin{cases}
[N_2(X), \ldots, N_m(X)]N_1(X') & (\text{if } N_1(X) \text{ is a variable}) \\
N_1(N_1(X)) & (\text{otherwise})
\end{cases}
\]

where \(m = \min\{l(N_1(X')), a(X)\}\).

The \(\beta\eta\)-normal form of \((B^k B)^{(k+2)n}\) is given by

\[
\lambda x_1 \ldots \lambda x_{k+(k+2)n+2}.\ x_1 x_2 \cdots x_{k+1} x_{k+2} x_{k+3} \cdots x_{k+(k+2)n+2}.
\]

This is deduced from Lemma 3.7 since the binary tree corresponding to the above \(\lambda\)-term is \(t = \langle \langle \langle *, *, * \rangle, *, \ldots, * \rangle \rangle, k+1 \langle \langle k, k \rangle \rangle \rangle \rangle \rangle\) and \(L(t) = [k, \ldots, k]\). Especially, we get \(l((B^k B)^{(k+2)n}) = k + (k + 2)n + 2\). In this section, we write \(\langle *, *, *, \ldots, * \rangle\) for \(\langle \langle \langle *, *, * \rangle, *, \ldots, * \rangle \rangle\) and identify \(B\)-terms with their corresponding binary trees.

To describe properties of \((B^k B)^{(k+2)n}\), we introduce a set \(T_{k,n}\) which is closed under right application of \((B^k B)^{(k+2)n}\), that is, \(T_{k,n}\) satisfies that “if \(X \in T_{k,n}\) then \(X (B^k B)^{(k+2)n} \in T_{k,n}\) holds”. First we inductively define a set of terms \(T_{k,n}\) as follows:

1. \(* \in T_{k,n}'\)
2. \(\langle *, s_1, \ldots, s_{(k+2)n} \rangle \in T_{k,n}'\) if \(s_i = *\) for a multiple \(i\) of \(k + 2\) and \(s_i \in T_{k,n}'\) for the others.

Then we define \(T_{k,n}\) by \(T_{k,n} = \{(t_0, t_1, \ldots, t_{k+1}) \mid t_0, t_1, \ldots, t_{k+1} \in T_{k,n}'\}\). It is obvious that \((B^k B)^{(k+2)n} \in T_{k,n}\). Now we shall prove that \(T_{k,n}\) is closed under right application of \((B^k B)^{(k+2)n}\).
Lemma 4.4 If $X \in T_{k,n}$ then $X \in (B^k B)^{(k+2)n}$.

Proof. From the definition of $T_{k,n}$, if $X \in T_{k,n}$ then X can be written in the form $(t_0, t_1, \ldots, t_{k+1})$ for some $t_0, \ldots, t_{k+1} \in T_{k,n}'$. In the case where $t_0 = \ast$, we have $X \in (B^k B)^{(k+2)n} = (t_1, \ldots, t_{k+1}, (\ast, \ast, \ast)) \in T_{k,n}'$. In the case where t_0 has the form of 2 in the definition of $T_{k,n}'$, then $X = (\ast, s_1, \ldots, s_{(k+2)n}, t_1, \ldots, t_{k+1})$ with $s_i \in T_{k,n}'$ and so

$$X \in (B^k B)^{(k+2)n} = \{s_1, \ldots, s_{k+1}, (s_{k+2}, \ldots, s_{(k+2)n}, t_1, \ldots, t_{k+1}, \ast)\}.$$

We can easily see $s_1, \ldots, s_{k+1}, (s_{k+2}, \ldots, s_{(k+2)n}, t_1, \ldots, t_{k+1}, \ast)$ are in $T_{k,n}'$. \hfill \Box

Lemma 4.5 For any $X \in T_{k,n}$, $a(X) \leq (k + 2)n + k + 1 = l((B^k B)^{(k+2)n}) - 1$.

This lemma is crucial to show that the number of variables in $(B^k B)^{(k+2)n}$. Put $Z = (B^k B)^{(k+2)n}$ for short. Since $Z \in T_{k,n}$, we have $\{Z(i) \mid i \geq 1\} \subset T_{k,n}$ by Lemma 4.4. Using Lemma 4.5, we can simplify Lemma 4.3 in the case where $X = Z(i)$ and $X' = Z$ as follows:

$$l(Z(i+1)) = l(Z(i)) + (k + 2)n + k + 1 - a(Z(i))$$
\[a(Z(i+1)) = a(N_1(Z(i))) + k + 1\]

$$N_1(Z(i+1)) = \begin{cases} N_2(Z(i)) & \text{(if $N_1(Z(i))$ is a variable)} \\
_1(N_1(Z(i))) & \text{(otherwise).} \end{cases} \quad (7)$$

By (5) and Lemma 4.5, we get $l(Z(i+1)) \geq l(Z(i)).$

To prove that Z does not have the ρ-property, it suffices to show the following:

Lemma 4.6 For any $i \geq 1$, there exists $j > i$ that satisfies $l(Z(j)) > l(Z(i))$.

Proof. Suppose that there exists $i \geq 1$ that satisfies $l(Z(i)) = l(Z(j))$ for any $j > i$. We get $a(Z(i)) = (k + 2)n + k + 1$ by (5) and then $a(N_1(Z(j))) = (k + 2)n$ by (6). Therefore $N_1(Z(j))$ is not a variable for any $j > i$ and from (7), we obtain $N_1(Z(j)) = N_1(N_1(Z(j-1))) = \cdots = N_{j-i+1}(Z(i))$ for any $j > i$.

However, this implies that $Z(i)$ has infinitely many variables and it contradicts.

Now, we get the desired result: \hfill \Box

Theorem 4.7 For any $k \geq 0$ and $n > 0$, $(B^k B)^{(k+2)n}$ does not have the ρ-property.

The key fact which enables to show the anti-ρ-property of $(B^k B)^{(k+2)n}$ is the existence of the set $T_{k,n} \subset \{(B^k B)^{(k+2)n} \mid i \geq 1\}$ which satisfies Lemma 4.5. In the same way to above, we can show the anti-ρ-property of a B-term which has such a “good” set. That is,

Theorem 4.8 Let X be a B-term and T be a set of B-terms. If $\{X(i) \mid i \geq 1\} \subset T$ and $l(X) \geq a(X') + 1$ for any $X' \in T$, then X does not have the ρ-property.

Here is an example of the B-terms which satisfies the condition in Theorem 4.8 with some set T. Consider $X = (B^2 B)^2 \circ (B B)^2 \circ B^2 = \ast, \ast, (\ast, (\ast, \ast), \ast, \ast)$. We inductively define T' as follows:

1. $\ast \in T'$
2. For any $t \in T'$, $\ast, t, \ast \in T'$
3. For any $t_1, t_2 \in T'$, $\ast, t_1, \ast, (\ast, \ast, t_2, \ast) \in T'$

Then $T = \{t_1, \ast, \ast, t_2, \ast\} \subset T'$ satisfies the condition in Theorem 4.8. It can be checked simply by case analysis. Thus

Theorem 4.9 $(B^2 B)^2 \circ (B B)^2 \circ B^2$ does not have the ρ-property.

Theorem 4.8 gives a possible technique to prove the monotonicity with respect to $l(X(i))$, or, the anti-ρ-property of X, for some B-term X. Moreover, we can consider another problem on B-terms: “Give a necessary and sufficient condition to have the monotonicity for B-terms.”
5 Concluding remark

We have investigated the ρ-properties of B-terms in particular forms so far. While the B-terms equivalent to $B^n B$ with $n \leq 6$ have the ρ-property, the B-terms $(B^k B)^{(k+2)n}$ with $k \geq 0$ and $n > 0$ and $(B^3 B)^2 \circ (B B)^2 \circ B^2$ do not. In this section, remaining problems related to these results are introduced and possible approaches to illustrate them are discussed.

5.1 Remaining problems

The ρ-property is defined any combinatory terms (and closed λ-terms). We investigate it only for B-terms as a simple but interesting instance in the present paper. From his observation on repetitive right applications for several B-terms, Nakano [6] has conjectured as follows.

Conjecture 5.1 B-term e has the ρ-property if and only if e is a monomial, i.e., e is equivalent to $B^n B$ with $n \geq 0$.

The if-part for $n \leq 6$ has been shown by computation and the only-if-part for $(B^k B)^{(k+2)n}$ ($k \geq 0, n > 0$) and $(B^2 B)^2 \circ (B B)^2 \circ B^2$ has been shown by Theorem 4.7. This conjecture implies that the ρ-property of B-terms is decidable. We surmise that the ρ-property of B-terms in particular forms so far. While the ρ-property of even BCK- and $BC1$-terms is decidable. The decidability for the ρ-property of S-terms and L-terms can also be considered. Waldmann’s work on a rational representation of normalizable S-terms may be helpful to solve it. We expect that none of S-terms have the ρ-property as S itself does not, though. Regarding to L-terms, Statman’s work [10] may be helpful where equivalence of L-terms is shown decidable up to a congruence relation induced by $L e_1 e_2 \rightarrow e_1 \ (e_2 e_2)$. It would be interesting to investigate the ρ-property of L-terms in this setting.

5.2 Possible approaches

The present paper introduces a canonical representation to make equivalence check of B-terms easier. The idea of the representation is based on that we can lift all \circ’s (2-argument B) to outside of B (1-argument B) by equation ($B2'$). One may consider it the other way around. Using the equation, we can lift all B’s (1-argument B) to outside of \circ (2-argument B). Then one of the arguments of \circ becomes B. By equation ($B3'$), we can move all B’s to right. Thereby we find another canonical representation for B-terms given by

$$e := B \ | \ B e \ | \ e \circ B$$

whose uniqueness could be easily proved in a way similar to Theorem 3.9.

Waldmann [11] suggests that the ρ-property of $B^n B$ may be checked even without converting B-terms into canonical forms. He simply defines B-terms by

$$e := B^k \ | \ e e$$

and regards B^k as a constant which has a rewrite rule $B^k e_1 e_2 \ldots e_{k+2} \rightarrow e_1 (e_2 \ldots e_{k+2})$. He implemented a check program in Haskell to confirm the ρ-property. Even in the restriction on rewriting rules, he found that $(B^0 B)^{(0)} = (B^0 B)^{(1)} = (B^1 B)^{(56)} = (B^1 B)^{(56)} = (B^2 B)^{(275)} = (B^2 B)^{(310)} = (B^3 B)^{(10063)}$, in which it requires a bit more right applications to find the ρ-property than the case of a canonical representation. If the ρ-property of $B^n B$ for any $n \geq 0$ is shown under the restricted equivalence given by rewriting rules, then we can conclude the if-part of Conjecture 5.1.

Another possible approach is to observe the change of (principal) types by right repetitive application. Although there are many distinct λ-terms of the same type, we can consider a desirable subset of typed λ-terms. As shown by Hirokawa [3], each BCK-term can be characterized by its type, that is, any two λ-terms in $CL(BCK)$ of the same principal type are identical up to β-equivalence. This approach may require to observe unification between types in a clever way.

References

[1] Michael Beeler, R. W Gosper, and Rich Schroeppe. HAKMEM. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1972.

[2] Richard P. Brent. An improved Monte Carlo factorization algorithm. BIT, 20(2):176–184, 1980.
[3] Sachio Hirokawa. Principal Types of BCK-lambda-terms. *Theoretical Computer Science*, 107(2):253–276, Jan 1993.

[4] Donald E. Knuth. *The Art of Computer Programming. Volume 2 (3rd Ed.): Seminumerical Algorithms*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[5] E.S. Ljapin. *Semigroups*. Semigroups. American Mathematical Society, 1968.

[6] Keisuke Nakano. ρ-property of combinators. 29th TRS Meeting in Tokyo, 2008. URL: http://www.jaist.ac.jp/~hirokawa/trs-meeting/original/29.html.

[7] Chris Okasaki. Flattening combinators: surviving without parentheses. *Journal of Functional Programming*, 13(4):815–822, July 2003.

[8] R.M. Smullyan. *To Mock a Mocking Bird*. Knopf Doubleday Publishing Group, 2012.

[9] Richard Statman. To Type A Mockingbird. A draft paper is available http://tlca.di.unito.it/PAPER/TypeMock.pdf, 2011.

[10] Rick Statman. The Word Problem for Smullyan’s Lark Combinator is Decidable. *Journal of Symbolic Computation*, 7(2):103–112, February 1989.

[11] Johannes Waldmann. Personal communication, March 2013.