A short remark on the nonlinear oscillator with a damping term

Shaowen Yao¹ and Zhibo Cheng¹,²

Abstract
A nonlinear oscillator with a damping term can model many nonlinear vibration problems. This short remark insights into its physical understanding by the variational principle, which is established by the semi-inverse method. The dissipative energy involved in the variational formulation can be explained by the two-scale thermodynamics. Taylor series method is used to solve its frequency-amplitude relation.

Keywords
Semi-inverse method, variational principle, dissipative energy, Taylor series method, He’s frequency formulation

Introduction
In our previous publication, we studied a nonlinear oscillator with a damping term; however, we found a typo in equation (1), which was wrongly written as

\[\ddot{u} + \frac{ku}{1 + cu} + bu = 0, \quad u(0) = A, \quad \dot{u}(0) = 0 \] (1)

It should be corrected as

\[\ddot{u} + \frac{ku}{1 + cu^2} + bu = 0, \quad u(0) = A, \quad \dot{u}(0) = 0 \] (2)

As this nonlinear oscillator has been caught an immediate attention, see some accepted papers in this journal with DOI numbers: 10.1177/1461348419847307, 10.1177/1461348419851931 and 10.1177/1461348418812327, the correction to equation (1) is very much needed, and its physical explanation will be also given in this short remark.

Physical insight into equation (2) and its variational principle
Nonlinear vibration is extremely important in engineering from nanoscale attachment to form a nanofiber membrane to building’s anti-seismic design.³ Equation (2) can be written as

\[\ddot{u} + cu^2 + (k + b + bcu^2)u = 0 \] (3)

¹School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China
²Department of Mathematics, Sichuan University, Chengdu, China

Corresponding author:
Shaowen Yao, School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China.
Email: yaoshao@hpu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Generally, a nonlinear oscillator with a damping term admits no variational principle; however, the variational formulation for equation (3) can be obtained by the semi-inverse method. When \(b = 0 \), its variational formulation is

\[
J(u) = \int_0^T \left\{ \frac{1}{2} \dot{u}^2 - \frac{1}{2} ku^2 + \frac{c}{12} \dot{u}^4 \right\} dt
\]

(4)

where \(\frac{1}{2} \dot{u}^2 \) is the kinetic energy, \(\frac{1}{2} ku^2 \) is the potential energy, and \(\frac{c}{12} \dot{u}^4 \) is the dissipative energy, which should be negative. The dissipative term involved in equation (2) can be explained by the two-scale thermodynamics. We consider a spring vibrating in a fractal space, for example, in water, when \(c = 0 \), it is a linear spring, but it ignores the effects of water molecule’s size and distribution on its oscillatory property. When we study the vibration in the fractal space on a smaller scale, saying a molecular scale, the dissipative energy should be a function of the square of its velocity (\(\dot{u}^2 \)). Considering the dissipative energy in the fractal space is irrelevant to the direction of the velocity, so it can be expressed \(\frac{c}{12} \dot{u}^4 \), where \(c \) is related to the fractal dimensions of the fractal space.

Now, we consider the case of \(b \neq 0 \). The term \(bc\dot{u}^2 \) can be considered as a viscous force

\[
F = -bc\dot{u}^2 u
\]

(5)

The work done by the viscous force can be written as

\[
\delta w = -\int_0^T bc\dot{u}^2 u \dot{u} dt
\]

(6)

The variational formulation can be written in the form

\[
\delta J(u) = \int_0^T \left\{ \frac{1}{2} \dot{u}^2 - \frac{1}{2} (k + b)u^2 + \frac{c}{12} \dot{u}^4 \right\} dt + \delta w = \int_0^T \left\{ \frac{1}{2} \dot{u}^2 - \frac{1}{2} (k + b)u^2 + \frac{c}{12} \dot{u}^4 - \frac{1}{2} bc\dot{u}^2 u^2 \right\} dt
\]

(7)

where \(\dot{u} \) is considered as a constrained function, \(\delta \dot{u} = 0 \). The concept of the constrained function is widely used in the variational iteration method to identify approximately the Lagrange multiplier involved in the iteration algorithm. We obtain the following approximate variational principle

\[
J(u) = \int_0^T \left\{ \frac{1}{2} \dot{u}^2 - \frac{1}{2} (k + b)u^2 + \frac{c}{12} \dot{u}^4 - \frac{1}{2} bc\dot{u}^2 u^2 \right\} dt
\]

(8)

Taylor series method

Hereby, we introduce He’s frequency formulation by Taylor series. He’s frequency formulation and its various modifications have been proved to be extremely simple but remarkably accurate. For simplicity, we consider the case when \(b = 0 \). In view of the initial conditions and by differentiating equation (3) and setting \(t = 0 \) in the resultant equations, we have

\[
\ddot{u}(0) = -kA
\]

(9)

\[
\ddot{u}(0) = 0
\]

(10)

\[
\ddot{u}(0) = 2ck^2A^2 + k^2A
\]

(11)
Its Taylor series solution is

\[u(t) = u(0) + \dot{u}(0)t + \frac{1}{2!}\ddot{u}(0)t^2 + \frac{1}{3!}\dddot{u}(0)t^3 + \frac{1}{4!}\ddddot{u}(0)t^4 = A - \frac{1}{2}kAr^2 + \frac{1}{24}[2ck^3A^3 + k^2A]t^4 \]

(12)

Setting

\[u(t) \bigg|_{t=\frac{\pi}{2\omega}} = 0 \]

(13)

we obtain the frequency-amplitude relationship

\[A - \frac{1}{2}kA \left(\frac{\pi}{2\omega} \right)^2 + \frac{1}{24}[2ck^3A^3 + k^2A] \left(\frac{\pi}{2\omega} \right)^4 = 0 \]

(14)

Similarly, for the case when \(b \neq 0 \), we have

\[\dddot{u}(0) = -(k+b)A \]

(15)

\[\dddot{u}(0) = 0 \]

(16)

\[\dddot{u}(0) = 2c(k+b)^3A^3 + (k+b)^2A - 2bc(k+b)^2A^3 \]

(17)

The fourth-order series solution is

\[
\begin{align*}
 u(t) &= u(0) + \dot{u}(0)t + \frac{1}{2!}\ddot{u}(0)t^2 + \frac{1}{3!}\dddot{u}(0)t^3 + \frac{1}{4!}\ddddot{u}(0)t^4 \\
 &= A - \frac{1}{2}(k+b)Ar^2 + \frac{1}{24}\left[2c(k+b)^3A^3 + (k+b)^2A - 2bc(k+b)^2A^3\right]t^4
\end{align*}
\]

(18)

The frequency-amplitude relationship is obtained

\[A - \frac{1}{2}(k+b)A \left(\frac{\pi}{2\omega} \right)^2 + \frac{1}{24}\left[2c(k+b)^3A^3 + (k+b)^2A - 2bc(k+b)^2A^3\right] \left(\frac{\pi}{2\omega} \right)^4 = 0 \]

(19)

Conclusion

In this paper, the semi-inverse method\(^{3-11}\) is adopted to establish a variational formulation for a nonlinear oscillator with a damping term. The established variational formulation can give a good physical insight into equation (2) in an energy view, and the damping term \((\frac{k}{\pi^2\omega^2})\) involved in equation (2) can be explained as the dissipative term. Though equation (2) can be solved by various analytical methods; here, its frequency-amplitude relationship is obtained approximately by Taylor series method.\(^{36}\) Two special cases are discussed for \(b = 0 \) and \(b \neq 0 \) for easy understanding.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research is supported by National Natural Science Foundation of China (No.11501170, 71601072), China...
Postdoctoral Science Foundation funded project (No. 016M590886), Fundamental Research Funds for the Universities of Henan Province (NSFRF170302), Key Scientific Research Project of Higher Education Institutions in Henan Province (No. 20B110006).

ORCID iD
Shaowen Yao https://orcid.org/0000-0002-5280-2975

References

1. Yao SW and Cheng ZB. The homotopy perturbation method for a nonlinear oscillator with a damping. J Low Freq Noise Vib Active Control 2019; 38: 1110–1112.
2. Li XX and He JH. Nanoscale adhesion and attachment oscillation under the geometric potential, part 1: the formation mechanism of nanofiber membrane in the electrospinning. Results Phys 2019; 12: 1405–1410.
3. He JH. A modified Li-He’s variational principle for plasma. Int J Numer Methods Heat Fluid Flow. Epub ahead of print 24 October 2019. DOI: 10.1108/HFF-06-2019-0523.
4. He JH. Lagrange crisis and generalized variational principle for 3D unsteady flow. Int J Numer Methods Heat Fluid Flow 2019; 30: 1189–1196.
5. He JH. Hamilton’s principle for dynamical elasticity. Appl Math Lett 2017; 72: 65–69.
6. He JH. Generalized equilibrium equations for shell derived from a generalized variational principle. Appl Math Lett 2017; 64: 94–100.
7. Wu Y and He JH. A remark on Samuelson’s variational principle in economics. Appl Math Lett 2018; 84: 143–147.
8. He JH. Generalized variational principles for buckling analysis of circular cylinders. Acta Mech 2020; 231: 899–906.
9. He JH. A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals. Epub ahead of print 23 October 2019. DOI: 10.1142/S0218348X20500243.
10. He J-H. Variational principle for the generalized KdV-Burgers equation with fractal derivatives for shallow water waves. J Appl Comput Mech 2020; 6: 735–740.
11. He JH and Sun C. A variational principle for a thin film equation. J Math Chem 2019; 57: 2075–2081.
12. He JH and Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. Therm Sci 2019; 23: 2131–2133.
13. Ain QT and He JH. On two-scale dimension and its applications. Therm Sci 2019; 23: 1707–1712.
14. He JH. A tutorial review on Wang’s fractal variational principle. Fractals. Epub ahead of print September 2019. DOI: 10.1142/S0218348X19501342.
15. He JH and Ji FY. Taylor series solution for Lane–Emden equation. J Math Chem 2019; 57: 1932–1934.
16. Anjum N and He JH. A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube. Math Meth Appl Sci. Epub ahead of print 5 March 2020. DOI: 10.1002/mma.6321.
17. Ji FY, He CH, et al. A fractal Boussinesq equation for nonlinear transverse vibration of a nanoﬁber-reinforced concrete pillar. Appl Math Model 2020; 82: 437–448.
18. He JH. Variational iteration method – some recent results and new interpretations. J Comput Appl Math 2007; 207: 3–17.
19. He JH and Wu XH. Variational iteration method: new development and applications. Comput Math Appl 2007; 54: 881–894.
20. He JH. Some asymptotic methods for strongly nonlinear equations. Int J Nonlinear Sci Numer Simul 2006; 7: 77–85.
32. He CH, Shen Y, Ji FY, et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. *Fractals*. Epub ahead of print 7 November 2019. DOI: 10.1142/S0218348X20500115.
33. He JH. A simple approach to one-dimensional convection-diffusion equation and its fractional modification for E reaction arising in rotating disk electrodes. *J Electroanal Chem* 2019; 854: 113565.
34. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.
35. He JH. Comment on He’s frequency formulation for nonlinear oscillators. *Eur J Phys* 2008; 29: 19–22.
36. He JH. An improved amplitude-frequency formulation for nonlinear oscillators. *Int J Nonlinear Sci Num Simul* 2008; 9: 211–212.
37. He JH. Max-min approach to nonlinear oscillators. *Int J Nonlinear Sci Num Simul* 2008; 9: 207–210.
38. He JH. Amplitude–frequency relationship for conservative nonlinear oscillators with odd nonlinearities. *Int J Appl Comput Math* 2017; 3: 1557–1560.