Supplementary information

New insight on the structural features of the common cytotoxic auristatins MMAE and MMAF revealed by combined NMR spectroscopy and quantum chemical modelling

Mikael P. Johansson, a Hannu Maaheimo b & Filip S. Ekholm * a,c

a Department of Chemistry, University of Helsinki, PO Box 55, A. I. Virtasen aukio 1, 00014 Helsinki, Finland. Email: filip.ekholm@helsinki.fi

b VTT Technical Research Centre of Finland Ltd, PO Box 1000, 02044 VTT, Finland

c Glykos Finland Ltd, Viikinkaari 6, 00790 Helsinki, Finland
NMR spectroscopic characterisation of MMAE

The sole aromatic residues in 1A (cis-conformer) and 1B (trans-conformer) were selected as suitable starting points for the NMR spectroscopic characterisation of MMAE. In the carbon spectrum, the C-1 (1) and C-1’ (1’) signals are well-resolved and appear at 144.1 (1A) and 143.9 (1B) ppm. In the HMBC spectrum (Figure 5), the cross peaks from C-1 (1) to H-3 (1) and H-5 (1) at 7.34 ppm, H-7 (1) at 4.52 ppm and H-8 (1) at 4.24 ppm were visible. There were no HMBC correlations between C-1 (1) and H-2 (1) or H-6 (1). The conventional use of edHSQC (Figure 3) and COSY (not shown) resulted in the identification of all signals in residue (1). The signals of residue (1’) were identified and assigned in a similar fashion. It should be noted that all of the 1H- and 13C chemical shifts in residues (1) and (1’) are similar. In fact, they differ by less than 0.1 ppm in the 1H-NMR spectrum and 1.0 ppm in the 13C-NMR spectrum.

The norephedrine-dolaproine amide bonds (C-1 (2) at 175.5 ppm and C-1’ (2’) at 175.7 ppm) and the protons close to them (H-8 (1) at 4.24 ppm, H-2 (2) at 2.12 ppm, 2-CH$_3$ (2) at 1.18 ppm and H-8’ (1’) at 4.20 ppm, H-2’ (2’) at 2.22 ppm, 2’-CH$_3$ (2’) at 1.12 ppm) were identified based on the cross peaks in the HMBC spectrum. The other signals in dolaproine residues (2) and (2’) could be identified by an iteration of this approach. The edHSQC-method was found to be a good tool for further verification of the assignments since CH/CH$_3$-protons and CH$_2$-protons appear in separate phases. In the dolaproine residues, many of the chemical shifts were similar, however, positions 3, 3’, 4, 4’, 7 and 7’ were found to differ significantly. The chemical shift difference was found to be greatest for position 3 (H-3 (2) at 3.42 ppm, C-3 (2) at 86.6 ppm) and 3’ (H-3’ (2’) at 3.87 ppm, C-3’ (2’) at 83.5 ppm). The deviation for H-4 (2) and H-4’ (2’) was identical id.est. 0.44 ppm, however, the corresponding carbon signals C-4 (2) and C-4’ (2’) appeared at a similar frequency. The H-7’a (2’) and H-7’b (2’) signals were separated by 0.17 ppm while the H-7a (2) and H-7b (2) were separated by 0.49 ppm.

With the chemical shifts of residues (2) and (2’) obtained, the next step was to identify the dolaproine-dolaisoleuine amide bonds (C-1 (3), C-1’ (3’)) and the other signals on residues (3) and (3’). The HMBC correlations of H-4 (2) and H-4’ (2’) were weak and the H-4’ (2’)/C-1’ (3’) cross peak could barely be observed while the H-4 (2)/C-1 (3) correlation was absent. The HMBC correlations between H-7a (2) (3.68 ppm)/H-7b (2) (3.19 ppm)/C-1 (3) (171.8 ppm) were utilized to acquire a starting point for residue (3). A similar protocol was utilized to confirm the chemical shift of C-1’ (3’) at 171.7 ppm. From this point forward, all of the 1H- and 13C-chemical shifts in residues (3) and (3’) could be identified and assigned by analyzing the spectra acquired with the various NMR spectroscopic techniques.

Continuing on the NMR spectroscopic characterisation, we examined the HMBC correlations of H-4 (3) (4.88 ppm) and H-4’ (3’) (4.76 ppm). The corresponding HMBC correlations to C-1 (4) (174.5 ppm) and C-1’ (4’) (174.7 ppm) were identified. In addition, the HMBC cross peaks between C-1 (4)/(3)/(4)-N-CH$_3$ and C-4 (3)/(3’)/(4)-N-CH$_3$ were visible and could be utilized to confirm the assignment up to this point (in both rotamers). Assigning the remaining signals in residues (4) and (4’) was accomplished by the use of the standard protocol featuring HMBC, edHSQC, COSY, TOCSY, HSQC-TOCSY.
As expected the remaining signals in the 1H- and 13C-NMR spectra could be assigned to residues (5) and (5$'$). For example, H-2 (5) at 3.70 ppm and H-2 (4) at 4.80 ppm had HMBC correlations to C-1 (5) at 167.4 ppm thus assuring that all residues had been assigned correctly (the same patterns were identified in (5$'$)). The chemical shifts for the H-2 (5) (3.70 ppm) and H-2$'$ (5$'$) (3.68 ppm) protons were significantly different than those reported for the corresponding protons in dolastatin 10 (2.65 ppm and 2.39 ppm).

While not mentioned previously, the commercial MMAE utilized in this study was supplied as a TFA-salt. The signals from TFA are not listed in the tables but appeared in the carbon spectrum as a quartet at 162.3 ppm ($J_{C,F}$ = 35.8 Hz) and a quartet at 117.9 ppm ($J_{C,F}$ = 291.8 Hz). In addition to these peaks, there was an unidentified signal at 101.4 ppm without edHSQC and HMBC correlations.

NMR spectroscopic characterisation of MMAF

The NMR spectroscopic characterisation of MMAF will not be discussed in detail since the guidelines provided above are directly applicable to MMAF. Instead, the chemical shift values of 2A (cis-conformer) and 2B (trans-conformer) will be compared to each other and those observed for MMAE in order to uncover common trends for this class of compounds. For this comparison to be possible, the spectra of MMAF were also measured in deuterated methanol. It should be noted that MMAF was supplied as a TFA-salt. The chemical shifts of TFA are not listed in tables 3 and 4. In the 13C-spectrum of MMAF, there are two different sets of signals for TFA which might reflect the existence of the two well-known isomers, two deviating salt forms or alternatively free TFA in addition to the salt. These signals appear at 167.7 ppm (q, $J_{C,F}$ = 35 Hz), 158.9 ppm (q, $J_{C,F}$ = 42 Hz), 118.0 ppm (q, $J_{C,F}$ = 292.4 Hz) and 116.0 ppm (q, $J_{C,F}$ = 284.4 Hz). In the spectra of MMAF, there is also an unknown signal at 101.4 ppm without HMBC or HSQC cross peaks.

The C-1 (1) (138.7 ppm) and C-1$'$ (1$'$) (138.7 ppm) were the starting points utilized in the NMR spectroscopic characterisation of MMAF (HMBC and edHSQC spectra showed in Figure 12 and 13). In the phenylalanine residue, the chemical shifts were fairly similar for both 2A and 2B. A direct comparison to the chemical shifts of MMAE is not warranted since this residue is different. In the dolaprine residues (2) and (2$'$), the chemical shifts followed a similar pattern as reported for MMAE above id. est. C-3 (2) (86.8 ppm) appeared 3.5 ppm downfield from C-3$'$ (2$'$) (83.3 ppm) and H-3 (2) (3.41 ppm) 0.44 ppm upfield from H-3$'$ (2$'$) (3.85 ppm). A similar pattern was observed for H-4 (2)/H-4$'$ (2$'$) although the effect was reduced ($\Delta \delta = 0.31$ ppm) when compared to the values of H-3 (2)/H-3$'$ (2$'$). The previously described pattern concerning the chemical shift difference between H-7a (2) and H-7b (2)/H-7a$'$ (2$'$) and H-7b$'$ (2$'$) was also observed in the spectra of MMAF ($\Delta \delta = 0.46$ ppm in (2), 0.17 ppm in (2$'$)). Since these signals show a similar pattern in both auristatins and the previously reported data on dolastatin 10, it can be concluded that these are general NMR spectroscopic trends for this class of compounds. Apart from these signals, the remaining chemical shifts in (2) and (2$'$) were similar. In residues (3) and (3$'$), the H-2 (3) protons were split into one d and one dd, while the H-2$'$ (3$'$) protons appeared together as a d (as also observed for MMAE). Apart from these minor deviations, all of the remaining signals in 2A and 2B appeared at similar chemical shifts. It should be noted that the H-2 (5) and H-2$'$ (5$'$) protons appear at a similar chemical shift (~3.70 ppm) in deuterated methanol in both MMAE and MMAF. This shift is considerably different than the values
reported for dolastatin 10 in CD$_2$Cl$_2$ (2.39 ppm), DMSO-d6 (2.65 ppm) and CD$_3$OD (3.05 ppm) thus reflecting a deviation in the structural features of auristatins when compared to dolastatin 10.

Supplementary Table 1. Summary of the NMR results of 1A (cis-conformer) measured at 22 °C in CD$_3$OD with a Bruker 850 MHz instrument. Chemical shifts are expressed in ppm using solvent residual peaks as an internal reference (3.31 ppm δ 1H and 49.0 ppm δ 13C). Coupling patterns are given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.

POSITION	δ 13C	δ 1H (J, Hz)	HMBC (H \rightarrow C)-CORRELATIONS	ROESY CORRELATIONSA
1 (1)	144.1	-	C-3 (1), C-5 (1)	H-7 (1), H-8 (1)
2 (1)	128.1	7.39		
	(dd, $J_{2,4} = 1.6$, $J_{2,3} = 7.8$ Hz)			
3 (1)	129.8	7.34	C-1 (1), C-2 (1), C-4 (1), C-6 (1)	not determined
4 (1)	128.6	7.22	C-2 (1), C-6 (1)	not determined
5 (1)	129.8	7.34	C-1 (1), C-2 (1), C-4 (1), C-6 (1)	not determined
6 (1)	128.1	7.39	C-3 (1), C-5 (1)	H-7 (1), H-8 (1)
7 (1)	77.5	4.52	C-1 (1), C-6 (1), 8-CH$_3$ (1)	H-2 (1), H-6 (1), H-8 (1), 8-CH$_3$ (1)
8 (1)	50.7	4.24	C-1 (1), C-7 (1), 8-CH$_3$ (1), C-1 (2)	H-2 (1), H-6 (1), H-7 (1), 8-CH$_3$ (1)
8-CH$_3$(1)	17.0	1.20	C-7 (1), C-8 (1)	H-7 (1), H-8 (1)
1 (2)	175.5	-		
2 (2)	45.4	2.12	C-1 (2), C-3 (2), 2-CH$_3$ (2)	H-5a (2), 2-CH$_3$ (2)
	(dq, $J_{3,2-CH_3} = 6.8$ Hz, $J_{2,3} = 10.0$ Hz)			
2-CH$_3$ (2)	15.8	1.18	C-1 (2), C-2 (2), C-3 (2)	H-2 (2), H-3 (2)
3 (2)	86.6	3.42	C-2 (2), 2-CH$_3$ (2), 3-OCH$_3$ (2), C-4 (2), C-5 (2)	H-2 (2), 2-CH$_3$ (2), H-2a (3)
	(dd, $J_{3,4} = 1.2$ Hz)			
3-OCH$_3$ (2)	62.0	3.34	C-3 (2)	2-CH$_3$ (2)
4 (2)	60.6	3.27	C-3 (2) weak, C-5 (2) weak, C-6 (2) weak, C-7 (2) weak	H-2b (3), H-5b (2)
5 (2)	26.6	1.78 (5a)	C-3 (2), C-4 (2), C-6 (2), C-7 (2)	H-5a: H-2 (2), H-5b (2)
	(m) 1.37 (5b)			H-5b: H-4 (2), H-5a (2)
6 (2)	24.4	1.88 (6a)	C-4 (2), C-5 (2), C-7 (2)	H-6a: H-6b (2), H-7b (2)
	(m) 1.57 (6b)			H-6b: H-6a (2)
7 (2)	48.1	3.68 (7a) (m)	C-4 (2), C-5 (2), C-6 (2), C-1 (3)	H-7a: H-7b (2), H-7b: H-6a (2), H-7a (2)
-------	-------	--------------	----------------------------------	---
		3.19 (7b) (m)		
1 (3)	171.8	-	-	
2 (3)	36.7	2.53 (2a) (d, $J_{2a,2b} = -15.8$ Hz)	C-1 (3), C-3 (3), C-4 (3)	H-2a: H-3 (2), H-3 (3), H-5 (3), aliphatic region H-2b: not determined
		2.46 (2b) (dd, $J_{2b,3} = 10.4$ Hz)		
3 (3)	78.8	4.19 (m)	C-1 (3), C-2 (3), 3-OCH$_3$ (3)	H-2a (3), 3-OCH$_3$ (3), aliphatic region
3-OCH$_3$ (3)	58.6	3.36 (s)	C-3 (3)	H-3 (3), H-4 (3)
4 (3)	57.8	4.88 (m)	C-2 (3), C-3 (3), C-5 (3), C-6 (3), 5-CH$_3$ (3), C-1 (4)	not observed
5 (3)	33.6	1.90 (m)	C-4 (3), 5-CH$_3$ (3), C-7 (3)	H-2a (3), (3)/(4)-N-CH$_3$, aliphatic region
5-CH$_3$ (3)	15.9	0.98 (d, $J_{5-CH_3} = 6.5$ Hz)	C-4 (3), C-5 (3), C-6 (3), C-7 (3)	H-3 (3), H-4 (3), H-5 (3)
6 (3)	27.1	1.38 (6a) (m)	C-4 (3), C-5 (3), 5-CH$_3$ (3), C-7 (3)	not determined
		1.02 (6b) (m)		
7 (3)	10.9	0.88 (t, $J_{7,8} = 7.5$ Hz)	C-5 (3), C-6 (3)	H-5 (3) weak, H-6a (3)
(3)/(4)-N-CH$_3$	33.2	3.29 (s)	C-4 (3), C-1 (4)	H-2 (1) and/or H-6 (1), H-2a and/or H-2b (3), H-5 (3), H-2 (4)
1 (4)	174.5	-	-	
2 (4)	56.7	4.80 (d, $J_{2a,3} = 8.4$ Hz)	C-1 (4), C-3 (4), 3-CH$_3$ (4), C-4 (4), C-1 (5)	(3)/(4)-N-CH$_3$, H-3 (4), aliphatic region
3 (4)	31.5	2.15 (dqq, $J_{3,3-CH_3} = 6.7$, $J_{3,4} = 6.8$ Hz)	C-1 (4), C-2 (4), 3-CH$_3$ (4), C-4 (4)	not determined
3-CH$_3$ (4)	18.9	0.99 (d)	C-2 (4), C-3 (4), C-4 (4)	H-2 (4), H-3 (4), aliphatic region
4 (4)	19.6	1.05 (d)	C-2 (4), C-3 (4), 3-CH$_3$ (4)	not determined
1 (5)	167.4	-	-	
2 (5)	68.1	3.70 (d, $J_{2a,3} = 5.4$ Hz)	C-1 (5), C-3 (5), 3-CH$_3$ (5), C-4 (5), (5)-N-CH$_3$	H-3 (5), H-4 (5), (5)-N-CH$_3$
3 (5)	31.5	2.20 (dqq, $J_{3,3-CH_3} = 6.5$, $J_{3,4} = 6.9$ Hz)	C-1 (5), C-2 (5), 3-CH$_3$ (5), C-4 (5)	H-2 (5), aliphatic region
3-CH$_3$ (5)	18.3	1.04 (d)	C-2 (5), C-3 (5), C-4 (5)	not determined
are provided only once when first encountered.

\[
\text{patterns are given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.}
\]

Supplementary Table 2. Summary of the NMR results of compound 1B (trans-conformer) measured at 22 °C in CD$_3$OD with a Bruker 850 MHz instrument. Chemical shifts are expressed in ppm using solvent residual peaks as an internal reference (3.31 ppm δ 1H and 49.0 ppm δ 13C). Coupling patterns are given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.

POSITION	δ 13C	δ 1H (J, Hz)	HMBC (H → C)-CORRELATIONS	ROESY CORRELATIONSa
1’ (1’)	143.9	-	-	-
2’ (1’)	127.9	7.39	C-3’ (1’), C-5’ (1’)	H-7’ (1’), H-8’ (1’)
3’ (1’)	129.5	7.29	C-1’ (1’), C-2’ (1’), C-4’ (1’), C-6’ (1’)	not determined
4’ (1’)	128.4	7.21	C-2’ (1’), C-6’ (1’)	not determined
5’ (1’)	129.5	7.29	C-1’ (1’), C-2’ (1’), C-4’ (1’), C-6’ (1’)	not determined
6’ (1’)	127.9	7.39	C-3’ (1’), C-5’ (1’)	H-7’ (1’), H-8’ (1’)
7’ (1’)	77.3	4.61	C-1’ (1’), C-2’ (1’), C-6’ (1’), C-8’ (1’), 8’-CH$_3$ (1’)	H-2’ (1’), H-6’ (1’), 8’-CH$_3$ (1’)
8’ (1’)	51.4	4.20	C-1’ (1’), C-7’ (1’), 8’-CH$_3$ (1’), C-1’ (2’), 8’-CH$_3$ (1’)	H-2’ (1’), H-6’ (1’), 8’-CH$_3$ (1’)
8’-CH$_3$ (1’)	16.0	1.15	C-7’ (1’), C-8’ (1’)	H-7’ (1’), H-8 (1’)
1’ (2’)	175.7	-	-	-
2’ (2’)	45.9	2.22	C-1’ (2’), C-3’ (2’), C-4’ (2’), 2’-CH$_3$ (2’)	H-3’ (2’), H-4’ (2’)
2’-CH$_3$ (2’)	15.1	1.12	C-1’ (2’), C-2’ (2’), C-3’ (2’), 3’-OC$_3$ (2’)	H-2’ (2’), H-3’ (2’), 3’-OC$_3$ (2’)
3’ (2’)	83.5	3.87	C-1’ (2’), C-2’ (2’), 2’-CH$_3$ (2’), C-4’ (2’), 3’-OCH$_3$ (2’)	3’-OCH$_3$ (2’), H-2’ (2’), 2’-CH$_3$ (2’)
3’-OCH$_3$ (2’)	61.5	3.35	C-3’ (2’)	not determined

a The ROEs were not determined in crowded areas of the spectrum where the uncertainty was high, if these ROE-correlations were in the aliphatic region it is mentioned in the table.
4’ (2’)	60.8	3.71 (m)	C-3’ (2’), C-5’ (2’) weak, C-6’ (2’) weak, C-7’ (2’) weak, C-1’ (3’) weak	H-5’b (2’)
5’ (2’)	25.6	1.84 (5’a) (m)	C-3’ (2’), C-4’ (2’), C-6’ (2’), C-7’ (2’)	H-5’a: not determined
6’ (2’)	25.9	1.95 (6’a) (m)	C-4’ (2’), C-5’ (2’), C-7’ (2’)	H-6’a: H-6’b (2’), H-7’b (2’)
7’ (2’)	48.4	3.56 (7’a) (m)	C-4’ (2’), C-5’ (2’), C-6’ (2’), C-1’ (3’)	H-7’a: H-6’b (2’), H-2’ (3’), H-7’b (2’)
1’ (3’)	171.7	-	-	-
2’ (3’)	38.2	2.47 (d, J2,3 = 6.2 Hz)	C-1’ (3’), C-3’ (3’)	H-7’a (2’), H-3’ (3’), H-5’ (3’), (3’)/(4’)-N-CH3, aliphatic region
3’ (3’)	79.7	4.08 (m)	C-1’ (3’), C-2’ (3’), 3’-OCH3 (3’)	H-2’ (3’), 3’-OCH3 (3’), aliphatic region
3’-OCH3 (3’)	58.3	3.30 (s)	C-3’ (3’)	H-3’ (3’)
4’ (3’)	58.4	4.76 (m)	not determined	not determined
5’ (3’)	33.7	1.79 (m)	C-4’ (3’), 5’-CH3 (3’), C-7’ (3’)	H-2’ (3’), (3’)/(4’)-N-CH3
5’-CH3 (3’)	16.3	1.01 (d, J5’,CH3,5’ = 6.8 Hz)	C-4’ (3’), C-5’ (3’), C-6’ (3’)	not determined
6’ (3’)	27.1	1.42 (6’a) (m)	C-4’ (3’), 5’-CH3 (3’), C-7’ (3’)	not determined
7’ (3’)	10.9	0.86 (t, J7,6 = 7.5 Hz)	C-5’ (3’), C-6’ (3’)	H-5’ (3’), H-6’a (3’)
(3’)/(4’)-N-CH3	33.0	3.14 (s)	C-4’ (3’), C-1’ (4’)	H-2’ (3’), H-3’ (3’), H-5’ (3’), H-6’a (3’), H-2’ (4’), aliphatic region
1’ (4’)	174.7	-	-	-
2’ (4’)	56.9	4.70 (d, J2,3 = 8.8 Hz)	C-1’ (4’), C-3’ (4’), 3’-CH3 (4’), C-4’ (4’), C-1’ (5’)	(3’)/(4’)-N-CH3, H-3’ (4’), aliphatic region
3’ (4’)	31.9	2.08 (dqq, J3,3,CH3 = 6.7, J3,4 = 6.8 Hz)	C-2’ (4’), 3’-CH3 (4’), C-4’ (4’)	not determined
3’-CH3 (4’)	19.2	1.05 (d)	C-3’ (4’), C-4’ (4’)	not determined
The ROEs were not determined in crowded areas of the spectrum where the uncertainty was high, if these ROE-correlations were in the aliphatic region it is mentioned in the table.

Supplementary Table 3. Summary of the NMR results of compound 2A (cis-conformer) measured at 22 °C in CD$_3$OD with a Bruker 850 MHz instrument. Chemical shifts are expressed in ppm using solvent residual peaks as an internal reference (3.31 ppm δ 1H and 49.0 ppm δ 13C). Coupling patterns are given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.

POSITION	δ 13C	δ 1H (J, Hz)	HMBC (H → C)-CORRELATIONS	ROEY CORRELATIONSA
1 (1)	138.7	-	-	-
2 (1)	130.0	7.29–7.23 (m)	C-3 (1), C-4 (1), C-5 (1), C-7 (1)	not determined
3 (1)	129.6	7.29–7.23 (m)	not determined	not determined
4 (1)	127.8	7.19	C-2 (1), C-3 (1), C-5 (1), C-6 (1)	not determined
5 (1)	129.6	7.29–7.23 (m, identical to H-3(1))	not determined	not determined
6 (1)	130.0	7.29–7.23 (m, identical to H-2 (1))	C-3 (1), C-4 (1), C-5 (1), C-7 (1)	not determined
7 (1)	37.9	3.33 (H-7a) (dd)	C-1 (1), C-2 (1), C-6 (1), C-8 (1), 8-CO$_2$H (1)	H-7a: H-7b (1), aromatic region
8 (1)	53.7	4.79 (dd, J = 4.3, 11.7 Hz)	C-1 (1), C-7 (1), 8-CO$_2$H (1) (1), C-1 (2)	not determined
8-CO$_2$H (1)	174.8	-	-	-
1 (2)	176.6	-	-	-
2 (2)	45.3	2.25 (dq, J$_{2,3-CO_3}$ = 6.8, J$_{2,3}$ = 9.7 Hz)	C-1 (2), 2-CH$_3$ (2), C-3 (2), C-4 (2)	H-3 (2), H-5a (2)
2-CH$_3$ (2)	15.6	1.20	C-2 (2), C-3 (2)	H-2 (2), H-3 (2)
Compound	δ (ppm)	J (Hz)	Assignment	
----------	---------	--------	------------	
3 (2)	86.8	3.41 (br d)	C-2 (2), 2-CH₃ (2), C-(4), C-5 (2)	
3-OCH₃ (2)	62.1	3.35 (s)	C-3 (2) not determined	
4 (2)	60.6	3.35 (m)	C-5 (2) not determined	
5 (2)	26.5	1.77 (H-5a) (m)	C-3 (2), C-4 (2), C-6 (2), C-7 (2)	
		1.27 (H-5b) (m)	H-5a: H-2 (2), H-4 (2), H-5b (2) H-5b: not determined	
6 (2)	24.5	1.87 (H-6a) (m)	C-4 (2), C-5 (2), C-7 (2) not determined	
		1.54 (H-6b) (m)		
7 (2)	48.0	3.66 (H-7a) (m)	C-5 (2), C-6 (2), C-1 (3)	
		3.20 (H-7b) (m)	H-7a: H-7b (2) H-7b: H-7a (2)	
1 (3)	172.1	-	C-1 (3), C-3 (3) H-2a: H-5 (3) H-2b: H-4 (2), (3)/(4)-N-CH₃	
2 (3)	36.7	2.47 (H-2a) (d, J₂₃,₂₄ = -15.2 Hz)	C-1 (3), C-3 (3)	
		2.42 (H-2b) (dd, J₂₃,₂₄ = 10.5 Hz)	H-2a: H-5 (3) H-2b: H-4 (2), (3)/(4)-N-CH₃	
3 (3)	79.1	4.15 (m)	C-1 (3), C-2 (3), C-4 (3)	
		3.34 (s)	H-2 (3), H-4 (3), aliphatic region	
3-OCH₃ (3)	58.5	3.34 (s)	C-3 (3) not determined	
4 (3)	57.9	4.83 (m)	C-2 (3), C-3 (3), C-5 (3), 5-CH₃ (3), C-6 (3), C-1 (4) not determined	
5 (3)	33.5	1.87 (m)	C-4 (3), 5-CH₃ (3), C-7 (3) H-3 (3)	
5-CH₃ (3)	15.9	0.98 (d, J₅-OCH₃ = 6.6 Hz)	C-4 (3), C-5 (3), C-6 (3) not determined	
6 (3)	27.0	1.40 (H-6a) (m)	C-5 (3), 5-CH₃ (3), C-7 (3) not determined	
		1.00 (H-6b) (m)		
7 (3)	10.9	0.87 (t, J₆,₇ = 7.4 Hz)	C-5 (3), C-6 (3) not determined	
(3)/(4)-N-CH₃	33.1	3.23 (s)	C-4 (3), C-1 (4) H-2 (4), H-2b (3), aromatic region	
1 (4)	174.6	-	-	
2 (4)	56.7	4.82 (d, J₂₃ = 8.0 Hz)	C-1 (4), C-3 (4), C-4 (4), C-1 (5)	
3 (4)	31.7	2.18 (dqq, J₃₄ = 6.7, J₃₃-OCH₃ = 6.8 Hz)	C-1 (4), C-2 (4), C-4 (4) not determined	
3-CH₃ (4)	18.9	1.05 (d)	C-2 (4), C-3 (4), C-4 (4) not determined	
Given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.

Solvent residual peaks

Patterns are g

RA

OE

The ROEs were not determined in crowded areas of the spectrum where the uncertainty was high, if these ROE-correlations were in the aliphatic region it is mentioned in the table.

Supplementary Table 4. Summary of the NMR results of compound 2B (trans-conformer) measured at 22 °C in CD3OD with a Bruker 850 MHz instrument. Chemical shifts are expressed in ppm using solvent residual peaks as an internal reference (3.31 ppm δ1H and 49.0 ppm δ13C). Coupling patterns are given as d (doublet), t (triplet), q (quartet), m (multiplet) etc. and coupling constants are provided only once when first encountered.

POSITION	δ13C	δ1H (J, Hz)	HMBC (H → C)-CORRELATIONS	ROEY CORRELATIONS4	
1'(1')	138.7	-	C-3' (1'), C-4' (1'), C-5'		
			(1'), C-7' (1')	not determined	
2' (1')	130.1	7.29 – 7.23	C-3' (1'), C-4' (1'), C-5'		
		(m)	(1'), C-7' (1')	not determined	
3' (1')	129.5	7.29 – 7.23	not determined	not determined	
		(m)			
4' (1')	127.7	4.17	C-2' (1'), C-3' (1'), C-5'		
		(tt, Jx,x = 1.6, Jy,y = 7.1 Hz)	(1'), C-6' (1')	not determined	
5' (1')	129.5	7.29 – 7.23	not determined	not determined	
		(m, identical to H-3' (1'))			
6' (1')	130.1	7.29 – 7.23	C-3' (1'), C-4' (1'), C-5'		
		(m, identical to H-2' (1'))	(1'), C-7' (1')	not determined	
7' (1')	37.9	3.28 (H-7'a)	C-1' (1'), C-2' (1'), C-6'		
		(dd)	(1'), C-8' (1'), 8'-CO2H		
		2.93 (H-7'b)	(1')	(1')	not determined
8' (1')	54.5	4.72	C-1' (1'), C-7' (1'), 8'-		
		(dd, J = 4.4, 11.0 Hz)	CO2H (1'), C-1' (2')	not determined	
8'-CO2H(1)	174.8	-			
1' (2')	176.7	-			
2' (2')	45.3	2.31	C-1' (2'), C-3' (2'), C-4'		
		(dq, Jx,x,CH3 = 6.8, Jy,y = 8.9 Hz)	(2'), 2'-CH3 (2')	not determined	
			2'-CH3 (2'), H-3' (2'),		
			H-5'a (2')		
	14.9	1.15	C-1' (2'), C-2' (2'), C-3' (2')		
----------------	------	------	-----------------------------		
2' (3')	1.15		C-2' (2'), 2'-CH₃ (2'), C-4' (2'), C-5' (2'), 3'-OCH₃ (2')		
3' (2')	61.4	3.30	C-3' (2')		
3'-OCH₃ (2')			not determined	2'-CH₃ (2')	
4' (2')	60.6	3.66	C-3' (2'), C-5' (2'), C-1' (3')		
5' (2')	25.5	1.73	C-3' (2'), C-4' (2'), C-6' (2'), C-7' (2')		
6' (2')	25.8	1.89	C-4' (2'), C-5' (2'), C-7' (2')		
7' (2')	49.0	3.52	C-4' (2'), C-5' (2'), C-6' (2'), C-1' (3')		
1' (3')	171.6	-	-		
2' (3')	38.2	2.46	C-1' (3'), C-3' (3'), C-4' (3')		
3' (3')	79.6	4.07	C-1' (3'), C-2' (3'), C-4' (3')		
3'-OCH₃ (3')	58.3	3.29	C-3' (3')		
4' (3')	58.3	4.76	C-2' (3')		
5' (3')	33.7	1.79	not determined		
5'-CH₃ (3')	16.2	1.01	C-4' (3'), C-5' (3'), C-6' (3')		
6' (3')	27.1	1.40	not determined		
7' (3')	10.8	0.86	C-5' (3'), C-6' (3')		
(3')/(4')-N-CH₃	33.1	3.13	C-4' (3'), C-1' (4')		
1' (4')	175.0	-	-		
2' (4')	56.9	4.70	C-1' (4'), C-3' (4'), C-4' (4'), 3'-CH₃ (4'), C-1' (5')		
3' (4')	31.8	2.08	C-1' (4'), C-2' (4'), C-4' (4'), 3'-CH₃ (4')		
3'-CH₃ (4')	19.2	1.03	C-2' (4'), C-3' (4')		

Not determined
	19.1	1.05	C-2’ (4’), C-3’ (4’)	not determined
4’ (4’)				
1’ (5’)	167.6	-	C-1’ (5’), C-3’ (5’), C-4’ (5’), 3’-CH₃ (5’), (5’)-N-CH₃	
2’ (5’)	68.0	3.68		
			(d, \(J=5.2\) Hz)	
3’ (5’)	31.5	2.18	C-1’ (5’), C-2’ (5’), C-4’ (5’), 3’-CH₃ (5’), (5’)-N-CH₃	not determined
3’-CH₃ (5’)	18.3	1.01	C-2’ (5’), C-3’ (5’), C-4’ (5’), 3’-CH₃ (5’)	not determined
4’ (5’)	18.7	1.05	C-2’ (5’), C-3’ (5’), 3’-CH₃ (5’)	not determined
(5’)-N-CH₃	33.1	2.65	C-2’ (5’)	H-2’ (5’)

\(^{a}\) The ROEs were not determined in crowded areas of the spectrum where the uncertainty was high, if these ROE-correlations were in the aliphatic region it is mentioned in the table.
Supplementary Figure 1. 1H-NMR spectrum of MMAE in CD$_3$OD recorded at 22 °C (850 MHz).

Supplementary Figure 2. 13C-NMR spectrum of MMAE in CD$_3$OD recorded at 22 °C (213 MHz).
Supplementary Figure 3. EdHSQC spectrum of MMAE in CD$_3$OD recorded at 22 °C (850 MHz).

Supplementary Figure 4. 2D TOCSY spectrum of MMAE in CD$_3$OD recorded at 22 °C (180 ms spinlocktime) (850 MHz).
Supplementary Figure 5. 2D HSQC-TOCSY spectrum of MMAE in CD$_3$OD recorded at 22 °C (850 MHz).

Supplementary Figure 6. HMBC spectrum of MMAE in CD$_3$OD recorded at 22 °C (850 MHz).
Supplementary Figure 7. 2D ROESY spectrum of MMAE in CD$_3$OD recorded at 22 °C (0.8 s mixing time) (850 MHz).

Supplementary Figure 8. 1H-NMR spectrum of MMAF in CD$_3$OD recorded at 22 °C (850 MHz).
Supplementary Figure 9. 13C-NMR spectrum of MMAF in CD$_3$OD recorded at 22 °C (213 MHz).

Supplementary Figure 10. EdHSQC spectrum of MMAF in CD$_3$OD recorded at 22 °C (850 MHz).
Supplementary Figure 11. 2D TOCSY spectrum of MMAF in CD$_3$OD recorded at 22 °C (180 ms spinlocktime) (850 MHz).

Supplementary Figure 12. 2D HSQC-TOCSY spectrum of MMAE in CD$_3$OD recorded at 22 °C (850 MHz).
Supplementary Figure 13. HMBC spectrum of MMAF in CD$_3$OD recorded at 22 °C (850 MHz).

Supplementary Figure 14. 2D ROESY spectrum of MMAF in CD$_3$OD recorded at 22 °C (0.8 s mixing time) (850 MHz).
Supplementary Figure 15. 1H-NMR spectrum of MMAE in D$_2$O recorded at 22 °C (600 MHz).

Supplementary Figure 16. 1H-NMR spectrum of MMAF in D$_2$O recorded at 22 °C (600 MHz).
Molecular coordinates

Below we tabulate the molecular coordinates for the isomers and transition states of the studied species, in standard XYZ format (Ångström units). All geometries computed at the TPSSh-D3(BJ) density functional theory level, with the COSMO solvation model simulating a methanol environment, using the dielectric constant $\varepsilon=32.6$. The stable points on the potential energy surface were optimised with the def2-TZVPP basis set, and the transition states using the def2-SVP basis set.

1A: cis-MMAE

N	-0.6117916	58.5490463	21.6998763
C	0.3083166	58.5785729	22.8348631
C	-0.6318824	57.2529442	21.0345989
C	-1.9350678	55.9360898	19.4578757
C	-1.7525471	58.2176508	18.9381413
O	0.7041157	57.0079901	20.3358654
O	1.2849313	56.8679099	19.6730705
N	1.1791018	55.7301898	20.4835501
C	2.3089915	55.2362416	19.7324678
C	1.8177829	53.9400086	19.0829806
C	1.2295990	53.1302833	18.8154087
C	3.5346179	54.9479751	20.6248784
C	4.7166768	54.4813729	19.7767776
C	3.9045064	56.1821170	21.4475379
N	2.0956234	55.7812088	17.7665407
C	0.6053241	52.5781372	16.0634477
C	1.6384834	53.4309131	17.1964921
C	3.5330830	51.9645029	15.4806211
N	3.8661978	51.6299874	17.7976609
C	2.7282086	49.6742303	15.3128351
C	-0.6178002	53.3687578	16.5427768
C	-1.5524588	53.7831456	15.4088451
C	0.2132951	51.2000811	15.2562010
C	2.7230461	54.6703463	16.9000598
C	3.5874029	50.8328230	18.9386960
C	6.0978784	50.8491079	11.8429871
C	1.0989459	53.7887726	10.9906554
C	2.5226567	53.6784131	11.5426666
C	1.6348515	50.2481702	11.8193787
C	2.7310527	54.7354222	12.6122555
C	4.4203440	50.9471031	13.4509680
C	4.2218031	52.1835492	12.6793914
C	5.2171460	52.0586705	11.5061097
C	5.1896852	49.9638956	12.6899115
C	2.7689908	52.3125073	12.1973049
O	2.4620661	51.2719428	11.2739701
O	2.0763522	54.7099912	13.6618268
O	5.6154438	58.0833484	14.2866009
C	3.2752462	58.0751400	12.7163714
N	3.6598971	55.6761499	12.3547426
C	3.9218836	56.7967133	13.2460007
C	5.4395160	56.9418172	13.4413699
C	5.8414081	55.3797350	15.3807351
C	6.8706097	58.0751400	13.2689570
C	4.003459	54.2332086	13.9336868
C	7.4360590	53.7221224	13.8205538
C	6.0628648	55.7025382	14.0405593
C	7.1946533	53.3964425	15.1510864
H	-1.5526881	58.7450103	22.0260059
H	1.3350312	58.5080993	22.4689299
O	0.1440771	57.7558636	23.5474770
H	0.2004144	59.5256557	23.3634212
H	-0.7681173	56.4366557	21.7696154
H	-2.7050423	57.3581662	20.6528849
H	-1.9700455	54.9970767	20.2399123
-1.0876133 55.5317490 18.807234
-2.8438151 55.6743859 18.8585742
-0.9036925 50.0368030 19.3524267
-1.6481983 59.2207365 19.3417356
-2.6672515 58.1908700 18.3417356
0.6347428 57.029914 20.9952431
2.5734757 56.0114229 19.0186742
5.0465149 52.8388266 19.1105933
4.4637782 53.6121987 19.1105933
5.5618252 54.2135298 20.4150728
4.0067565 52.6460747 15.6797142
2.5734757 52.5117492 14.8363505
-0.2700101 54.2698678 17.0522160
-1.1607425 52.7816441 17.2914043
-2.0052748 52.922112 14.9124079
-1.0059656 54.3543703 14.6533157
-2.3630851 54.4103756 15.7860397
-0.1639944 50.5614413 16.3292261
1.0553967 50.6865073 15.0522160
-0.5675675 58.5490463 21.6998763
3.8003455 54.5165201 16.4989575
2.4926919 54.6958946 17.1419315
2.3952883 54.5233460 15.8460005
3.4057621 54.7948604 18.6398906
2.7186352 52.164013 19.4810155
4.4612717 50.8762801 19.5867676
6.9560196 51.572914 12.4421496
6.4659948 50.3402691 10.9532712
0.9466718 54.7588280 10.5144366
0.3750360 53.6830682 11.8008859
0.9236147 53.005953 10.2543035
3.2427298 53.6224647 17.7325201
0.6851670 50.6625877 12.1722466
2.1308463 49.7341961 12.6480184
1.4450424 49.5381471 11.0673069
4.4680957 53.0423035 13.3072131
4.6676371 51.8763123 10.5830606
5.7945059 52.9730547 11.3859835
5.7161703 49.3079943 13.3774069
4.5219958 49.3608143 12.0671565
2.0894786 52.2364875 13.0590156
6.5585722 58.1659633 14.4766983
2.2000299 57.9248035 12.6086030
3.6896951 58.3408044 11.7402944
3.4474070 58.9026320 13.4035355
4.1030700 55.6680624 14.4768688
3.4758653 56.5244317 14.026462
5.9015881 57.1302431 12.4630369
5.2386251 56.0415711 15.9907506
7.061126 55.1219753 12.2317037
6.2189176 53.9869444 16.9731900
8.0706479 53.0886268 13.2135838
7.6274490 52.5015600 15.5808742

1B: trans-MMAE

-0.6117916 58.5490463 21.6998763
0.3083166 58.5785729 22.8348631
-0.6318824 57.2529442 12.395489
-1.8126252 57.1653532 20.0445970
-1.9350678 55.7596089 19.4578577
-1.7525471 58.2176508 18.9381413
0.7041157 57.0079901 20.3358654
1.2849313 57.8687909 19.6737053
1.1791018 55.7530189 20.4835501
2.3089915 55.2362416 19.7324678
3.8177829 53.9400086 19.0829806
1.2295990 53.1302833 19.8154087
1TS: MMAE 1A↔1B transition state

N 2.1753224 -5.4329896 -5.5170134
C 3.6082100 -5.4655663 -5.7770242
C 1.6019032 -4.0991504 -5.5548965
C 0.0528608 -4.1770271 -5.4806590
C -0.5944796 -2.8069242 -5.7046083
C -0.4462398 -4.8439773 -4.1952786
C 2.1626531 -3.2610305 -4.4004140
O 2.3070573 -3.7069584 -3.2603871
N 2.4722266 -1.9802869 -4.7284625
C 2.8286973 -0.9985816 -3.7166776
C 1.5418235 -0.2572155 -3.3227292
O 0.9305995 0.3514596 -4.2099281
C 3.8772720 0.0117200 -4.2232519
C 2.666846 0.9667498 -3.0883311
C 5.102463 -0.7017490 -4.8001576
N 1.1167953 -0.3270511 -2.0339471
C 0.3297260 -1.7378174 -0.8815317
C -1.1637490 -3.3898163 -0.9830606
O -0.0656264 0.4614627 -1.6625694
C 0.7779722 1.5259970 0.5583999
C 0.5803792 2.7479111 1.4240118
O 1.3735391 2.4456638 -1.5597871
O 0.0763600 3.7742631 1.0029384
C -1.5535283 -1.5696137 -1.8971133
C -2.3700975 -2.6559985 -1.1978228
C -2.379386 0.4664222 -0.6068066
C 1.8397257 -1.0857222 -1.0132729
C 0.9432201 3.2658872 -2.6090582
C 2.1911362 2.4510939 4.7102489
C -3.3379402 4.6115824 4.6331349
C -2.3885289 3.4114141 4.5367764
C -0.5114448 6.0367356 3.3067187
C -3.0781121 2.2658789 3.7977922
N 0.9359480 2.5416614 2.7811241
C -0.1048072 2.5809975 3.8263720
C 0.7205688 2.5939287 1.5391373
C 2.2081988 3.0392645 3.2993087
C -1.1074469 3.7501382 3.7459237
O -0.5120403 4.9515807 4.2200190
O -3.2644183 2.3078434 2.5781652
O -4.1816399 -2.3030305 3.9211445
C -5.6511575 0.0796140 3.9792928
N -3.4708279 1.2193576 4.5652829
C -4.1629923 0.0579202 4.0284176
2B: trans-MMAF

N
-0.2406557 58.6041143 20.1379034
-0.9955919 59.2735267 20.5378677
-0.1284006 57.1545512 20.1914085
-1.5224353 56.4969032 20.0535083
-1.4570242 54.9943435 20.3279707
-1.9875255 54.7807619 18.7139347
0.8219094 56.6678962 19.0961421
0.8121040 57.1205348 17.9506729

C
1.6602767 55.6818311 19.4874000
2.4745923 54.9296839 18.5468941
1.7412484 53.6126132 18.2686524
1.4922013 52.8751589 19.2300620
3.8782038 54.8427705 19.1068446
4.6984409 53.8569907 18.0827664
4.5792473 55.9423985 19.4973209
3.8186777 53.3273884 16.9971669
1.7818256 51.0296797 16.1417219
-0.5537635 52.1396306 15.9383669
0.7580325 52.0206952 16.7318900
2.2577450 51.3456084 14.7341755
3.1032164 50.1971882 14.2089780
2.9594792 50.9896409 16.9457660
2.8320037 49.0243755 14.4848780
-1.5210615 53.0856283 16.6677672
-2.7647766 53.4521459 15.8635758
-1.1728496 50.7539928 15.7287917
1.6255928 54.2607217 15.8957735
2.8592764 50.1208236 18.0654008
C	X	Y	Z
5.1941170	51.5387951	11.6102859	
7.6415451	47.148911	14.669585	
6.8195929	47.7505973	14.669585	
6.2006541	50.0964851	16.0581042	
6.0045992	46.6628151	12.8565838	
5.8661850	48.8396316	14.0522665	
6.6340637	48.807482	14.7320480	
5.2158874	49.904606	12.9180038	
6.4505969	44.5195609	10.2632145	
6.024825	46.5287775	11.5232810	
5.177990	52.523705	10.7390005	
7.247773	46.1251851	9.5736892	
2.8182082	46.927446	10.3766821	
3.7472089	44.416873	9.420321	
9.198655	47.9109010	11.4406777	
2.8373894	49.4210931	9.8107446	
3.7458644	47.148911	10.0220843	
1.9235035	45.199899	18.7901063	
-0.9894173	58.8821475	20.7506586	
1.7678800	59.0818656	19.7895153	
1.3747209	58.9348262	21.5141500	
0.8275311	60.3493274	20.5836886	
0.2895315	56.8228016	21.157091	
-2.1248910	50.9576273	20.8461553	
-1.0043028	54.7859308	21.3008939	
-0.8704288	54.4742568	19.5673847	
-2.4610756	54.5671801	20.321093	
-1.6722094	56.2943739	17.8945359	
-2.2166870	57.8572710	18.5060174	
-3.2263090	56.4161608	18.7306313	
1.5421533	55.2903308	20.410638	
5.605843	55.5533810	17.6616330	
3.7466813	54.0212551	19.9989518	
4.8728065	54.4614081	17.187177	
4.1983451	52.9345100	17.7791533	
5.6730440	53.5943383	18.4999147	
4.0043458	56.5023265	20.2367437	
4.7195478	56.5825446	18.6211881	
5.5630666	55.7282663	19.9203377	
1.3323069	50.0332151	16.1369717	
-0.3512734	52.5643912	14.9487964	
0.5033529	51.6468003	17.7243231	
2.8315845	52.2684549	14.7444690	
1.4077902	51.4876532	14.0611012	
-0.9860476	54.004524	16.9199006	
-1.8087270	52.683238	17.6206216	
-3.899487	52.5826151	15.6501504	
-2.4882157	53.9091037	14.9093528	
-3.3768743	54.1708668	16.4128580	
-1.305933	50.2430541	16.6865269	
-0.5505711	50.1221729	15.0934867	
-2.1485039	50.8371147	15.2487749	
2.6869671	54.3263637	15.699290	
1.2511045	55.2536474	16.1432053	
1.0436059	53.9065903	15.0181537	
2.9911567	49.1103994	17.7398538	
2.127233	50.4879795	18.7901063	
3.8431957	50.1019468	18.5325035	
4.4489539	51.3620499	10.8343370	
5.845798	52.3489448	11.2858979	
8.3456556	46.4026066	14.2835377	
6.9840787	46.6510973	15.3887335	
8.2022921	47.9248188	15.1787356	
7.4956055	48.2046311	12.8019295	
6.2894966	49.1954377	16.6745858	
5.1621820	50.4481837	16.0831260	
6.8574372	50.8694727	16.4565650	
4.4620563	48.7254321	12.4273319	
6.9138091	50.4776950	12.3774498	
6.1346164	49.6534115	11.0194781	
3.5825215	52.4435901	12.7713434	
5.1433019	52.3883933	13.6177215	
2TS: MMAF 2A↔2B transition state

...
2C: internally hydrogen bonded MMAF

N 0.5214915 -4.6214203 0.3975345
C 0.8564307 -4.5996631 1.8204589
C 1.4920284 -3.9205205 -0.4350293
C 1.0915586 -3.9532322 -1.9209015
C 0.7561541 -5.3662367 -2.3912174
C 2.1936173 -3.3296722 -2.7796630
C 1.6257646 -2.4595646 -0.0020987
O 0.6519899 -1.6945157 -0.0294624
N 2.3854464 -2.0603280 0.4388346
C 3.1187562 -0.6847671 0.7730734
C 4.0086420 -0.1016576 -0.3313202
O 4.8964242 -0.8118289 -0.8233156
C 3.7518221 -0.5222340 2.1793949
C 2.7288081 -0.9143395 3.2412777
C 5.0630003 -1.2891917 2.3456333
N 3.7857700 1.1716790 -0.7322691
C 1.3715150 1.6057585 -0.9324112
Atom	X	Y	Z
H	1.5251944	0.9304686	-4.1560928
H	0.8069766	-0.0654082	-2.8632826
H	-4.4448033	3.6174138	1.1404697
H	-4.3773016	1.8534622	1.3008836
H	-1.7055247	-2.0485747	3.6970284
H	-1.5968773	-2.7809751	2.1390959
H	-2.8727346	-2.2350259	3.2398430
H	-0.8146032	-0.4244082	1.8727816
H	-1.9768323	0.5020935	6.4148128
H	-3.4805272	0.6576945	5.4655224
H	-2.2660688	1.9626976	5.4439581
H	-1.5829623	2.2334011	3.3483580
H	-3.8772857	2.6122407	3.5810268
H	-2.8234057	3.8938692	2.9682111
H	-2.2513051	3.6910139	0.1567879
H	-2.7694887	2.0960155	-0.4185057
H	-3.4107292	0.3571576	3.2385289
H	-1.4988367	-1.4024797	-0.1134513
H	-3.9591199	-1.4175870	-1.0271453
H	-1.4910408	-1.0016809	-2.7764459
H	-1.0961977	1.2315049	-3.3469924
H	-5.0097480	0.1556959	-1.9687049
H	-1.7875257	3.5895729	-3.4795185
H	-5.7055813	2.5056115	-2.1125480
H	-4.1039104	4.2440317	-2.8648184
O	-3.4040160	-3.6122595	-2.4868628
O	-2.3565469	-3.8700474	-0.5200312
H	-3.3754086	-4.5838789	-2.4622681