Differing Trends in United States and European Severe Thunderstorm Environments in a Warming Climate

Mateusz Taszarek, John T. Allen, Harold E. Brooks, Natalia Pilguj, and Bartosz Czernecki

https://doi.org/10.1175/BAMS-D-20-0004.2
Corresponding author: Mateusz Taszarek, mateusz.taszarek@amu.edu.pl
This document is a supplement to https://doi.org/10.1175/BAMS-D-20-0004.1
©2021 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.
This article is licensed under a Creative Commons Attribution 4.0 license.

AFFILIATIONS: Taszarek—Department of Meteorology and Climatology, Adam Mickiewicz University, Poznan, Poland, National Severe Storms Laboratory, Norman, Oklahoma, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma; Allen—Central Michigan University, Mount Pleasant, Michigan; Brooks—National Severe Storms Laboratory, and School of Meteorology, University of Oklahoma, Norman, Oklahoma; Pilguj—Department of Climatology and Atmosphere Protection, University of Wroclaw, Wroclaw, Poland; Czernecki—Department of Meteorology and Climatology, Adam Mickiewicz University, Poznan, Poland
Fig. ES1. As in Fig. 1a, but for seasons.
Seasonal climatology and long-term trends of 500-700 hPa lapse rate [K km\(^{-1}\)]

95\(^{th}\) percentile	Trend (per decade)*	95\(^{th}\) percentile	Trend (per decade)*
Spring (MAM)			
Summer (JA)			
Autumn (SON)			
Winter (DJF)			

* - Trend computed with Sen's slope, x marks denote statistically significant trend (p-value < 0.05)

Fig. ES2. As in Fig. 1b, but for seasons.
Fig. ES3. As in Fig. 4a, but for seasons.
Fig. ES4. As in Fig. 4b, but for seasons.
Seasonal climatology and long-term trends of inhibiting environments***
(as a fraction of all CAPE > 150 J kg\(^{-1}\) situations)

Fig. E55. As in Fig. 5a, but for seasons.

* - Fraction is denoted by situations with inhibiting environments among cases when CAPE > 150 J kg\(^{-1}\)
** - Trend computed with Sen's slope, x marks denote statistically significant trend (p-value < 0.05)
*** - Inhibiting environment is considered when absolute CIN > 75 J kg\(^{-1}\)
Seasonal climatology and long-term trends of inhibiting environments for various CIN thresholds (as a fraction of all CAPE > 150 J kg\(^{-1}\) situations)

Fig. ES6. As in Fig. 5a, but with CIN thresholds of (a) 50, (b) 100, and (c) 150 J kg\(^{-1}\).

* - Fraction is denoted by situations with inhibiting environments among cases when CAPE > 150 J kg\(^{-1}\)

** - Trend computed with Sen's slope, x marks denote statistically significant trend (p-value < 0.05)

*** - Inhibiting environment is considered when absolute CIN is (a) > 50 J kg\(^{-1}\), (b) > 100 J kg\(^{-1}\), (c) > 150 J kg\(^{-1}\)
Fig. ES7. As in Fig. 5b, but for seasons.
Seasonal climatology and long-term trends of 0-4km relative humidity [%]

50th percentile (only for CAPE > 150 J kg⁻¹)
Trend (per decade)

a Spring (MAM)

b Summer (JA)

c Autumn (SON)

d Winter (DJF)

* - Trend computed with Sen's slope, x marks denote statistically significant trend (p-value < 0.05)

Fig. ES8. As in Fig. 5c, but for seasons.
Fig. ES9. As in Fig. 6, but without convective precipitation proxy.