Dataset on assessment of physical and chemical quality of groundwater in rural drinking water, west Azerbaijan Province in Iran

Majid Radfard a,b, Hamed Soleimani c, Abooalfazl Azhdarpoo b, Hossein Faraji d, Amir Hossein Mahvi c,e,*

a Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
b Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
c Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
d Students Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
e Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

A R T I C L E I N F O

Article history:
Received 8 April 2018
Received in revised form 23 June 2018
Accepted 25 September 2018
Available online 9 October 2018

Keywords:
Drinking water
Physico-chemical quality
West azerbaijan province
Iran

A B S T R A C T

Analyzing the quality of drinking water and comparing it with standards, provides useful information regarding in the state of water supply and health protection to consumers. In the current research, the quality of drinking water in the cities of West Azerbaijan province has been investigated. In the current study, the results of drinking water analysis in 17 counties of West Azerbaijan province (except Urmia city), including 355 analyzes were conducted in 2016. The results were analyzed by SPSS software and compared with the national standard. Based on the analysis, the hardness of drinking water in the West Azerbaijan province ranged from 22 to 912 mg/L as calcium carbonate, and the average of the experiment was measured to be 136 ± 327 mg/L as calcium carbonate. The TDS values in this study were 39–1710 mg/L, and on average 397.7 ± 265.8 mg/L. Also, based on the analyzes performed in this study, the Fluoride concentration was from 0 to
3.45 mg/L, and on average 323.376 ± 0.05 mg/L and the Nitrate concentration was 0–218 mg/L and on average 3.58 ± 1.1 mg/L.

Specifications table

Subject area	Chemistry
More specific subject area	Describe narrower subject area
Type of data	Tables, figure
How data was acquired	The studied subject was drinking water resources in the cities of West Azerbaijan province. In order to carry out this study, the results of chemical analysis of urban and rural water resources of 13 cities of West Azerbaijan province were collected as a sample in 2017. In the following, data on the concentration of cations and anions, hardness, electrical conductivity, turbidity, TDS, and alkalinity were extracted and the values of mean, standard deviation and correlation coefficient were calculated
Data format	Raw, analyzed
Experimental factors	The mentioned parameters above, in abstract section, were analyzed according to the standards for water and wastewater treatment handbook.
Experimental features	The levels of physical and chemical parameters were determined.
Data source location	West Azerbaijan province, Iran
Data accessibility	The data are available with this article

Value of the data

- Determination of the physical and chemical parameters including F^-, NO_3^-, Cl^-, SO_4^{2-}, K^+, Na^+, Mg^{2+}, Ca^{2+}, pH, ALK, Turbidity, TH, TDS and EC in ground water was investigated the cities of West Azerbaijan province, Iran.
- In a number of cities in the West Azerbaijan province, the results of comparing the quality parameters of drinking water with national and international standards showed that some of these parameters were not within the standard range.
- Fluoridation of drinking water in cities area with less than the WHO optimum value is recommended.
- Based on the data, defluoridation water could be recommended in fluorotic cities area.
- According to the Pearson correlation, there is a positive correlation between the concentration of water fluoride and EC, TH, Na^+, K^+, ALK and SO_4^{2-}.

1. Data

See Tables 1–3.
Table 1
Statistical description of quality parameters of drinking water resources of West Azerbaijan province in 2017.

Parameter	Mean	SD	Min	Max
F⁻ (mg/L)	0.32	0.37	0	0.57
NO₃ (mg/L)	3.58	17.2	85.34	88.34
Cl (mg/L)	2.43	41.5	72.26	73.47
SO₄ (mg/L)	48.21	218	301.3	293.9
K⁺ (mg/L)	0.267	700	0.36	1.36
Na⁺ (mg/L)	208.6	980	0.02	4.02
Mg²⁺ (mg/L)	64	26	39	440

Table 2
Status of public and sanitary parameters of water in the cities of West Azerbaijan province in 2017.

City	Statistical F⁻ (mg/L)	NO₃ (mg/L)	pH	ALK (mg/L as CaCO₃)	TH (mg/L as CaCO₃)	EC (µs/cm)
Sardasht	Mean 0.15 ± 0.22, SD 0.37	2.43 ± 1.32	7.4	208.6 ± 64	230.1 ± 78.3	442.2 ± 143.2
	Min 0	1.7	7	40	56	82
	Max 1	7	8	340	456	829
Mahabad	Mean 0.23 ± 0.23, SD 10.41	7.25 ± 0.2	80	301.3 ± 144.6	354 ± 161	827.7 ± 482
	Min 0	1	7	80	76	260
	Max 0.77	218	8	520	604	1880
Takab	Mean 0.2 ± 0.12, SD 2.61	5.7 ± 0.2	80	249.2 ± 77.5	298.2 ± 132	661.1 ± 363
	Min 0	0	7	68	80	151
	Max 0.58	110	8	368	596	1740
Naqadeh	Mean 0.22 ± 0.11, SD 2.71	7.73 ± 0.26	7.3	309 ± 76.1	305.2 ± 50	657.5 ± 135.8
	Min 0.04	1	7	172	200	477
	Max 0.5	10	8	460	428	927
Chaypareh	Mean 0.22 ± 0.11, SD 3.24	7.33 ± 0.26	8.1	313.25 ± 81	291 ± 47	683.6 ± 145.7
	Min 0.04	1	7	172	200	497
	Max 0.5	10	8	460	428	927
Khoy	Mean 0.2 ± 0.22, SD 2.68	7.46 ± 0.2	172	284.7 ± 147	361.1 ± 156.8	861.03 ± 565.2
	Min 0	0	7	72	148	330
	Max 0.9	12	8	704	820	2510
Miandoab	Mean 0.35 ± 0.28, SD 1.93	7.48 ± 0.22	128	285.9 ± 80.2	355.7 ± 153	993.6 ± 543.5
	Min 0	0	7	128	164	322
	Max 1.44	4	8	404	828	2920
Oshnavieh	Mean 0.16 ± 0.14, SD 2.52	7.52 ± 0.3	136	268.25 ± 136	289.6 ± 114	545.87 ± 310
	Min 0.01	1	7	72	72	149
	Max 0.4	7	8	560	460	1210
Salmas	Mean 0.27 ± 0.23, SD 3.36	7.3 ± 0.13	73.1	311 ± 73.1	380.2 ± 102	1001 ± 478
	Min 0	1	7	140	240	675
	Max 0.83	10	8	496	680	2780
Boukan	Mean 0.31 ± 0.15, SD 3.61	7.23 ± 0.18	92	273.6 ± 92	326.3 ± 125	710.6 ± 259.8
	Min 0.02	1	7	100	24	274
	Max 0.57	2	8	488	620	1423
Shahin Dezh	Mean 0.28 ± 0.31, SD 3.31	7.28 ± 0.11	51.6	221.52 ± 53.6	300.5 ± 73.3	568.7 ± 181
	Min 0.13	7	8	104	148	275
	Max 0.54	7	7	316	468	1087
Maku	Mean 0.73 ± 0.67, SD 0.89	7.4 ± 0.25	154.6	345.5 ± 154.6	367 ± 132	1096.4 ± 671
	Min 0	0	8	88	96	233
	Max 3.45	4	8	628	656	3270
Piranshahr	Mean 0.094 ± 0.11, SD 4.29	7.53 ± 0.17	56.8	177.8 ± 56.8	195 ± 62	407.5 ± 82
	Min 0	0	7	0	22	267
	Max 0.4	13	8	236	288	591
Total	Mean 0.32 ± 0.37, SD 3.58	7.39 ± 0.23	117	283.97 ± 117	327.2 ± 136	810.8 ± 527
	Min 0	0	7	0	22	82
	Max 3.45	218	8	720	912	3360
2. Experimental design, materials and methods

2.1. Description of study area

West Azerbaijan province is one of the 31 provinces of Iran (Fig. 1). It is in the northwest of the country in coordination 37.5528°N 45.0759°E [1–4].

2.2. Sample collection and analytical procedures

This research is a descriptive-applied study. The studied subject was drinking water resources in the cities of West Azerbaijan province. In order to carry out this study, the results of chemical analysis

Table 3
Correlation (Pearson correlation) between fluoride and different water quality parameters in West Azerbaijan province.

	F	EC	pH	TH	Ca	Mg	Na	K	ALK	NO₃	SO₄
F	1	0.415**	0.02	0.304**	0.112	0.287**	0.557**	0.467**	0.462**	0.007	0.409**
EC	0.415**	1	-0.084	0.843	0.52	0.6	0.912	0.528**	0.61	-0.02	0.803
pH	0.02	-0.084	1	-0.176	-0.247	-0.036	-0.059	-0.043	-0.211	0.028	0.046
TH	0.304	0.843	-0.176	1	0.662	0.68	0.704	0.382	0.667	-0.07	0.667
Ca	0.112	0.52	-0.247	0.662	1	0.221	0.344	0.13	0.41	-0.076	0.365
Mg	0.287**	0.6	-0.036	0.68	0.221	1	0.552	0.293	0.492	-0.041	0.486
Na	0.557**	0.912	-0.059	0.704	0.344	0.552	1	0.607	0.602	0.007	0.715
K	0.467**	0.528	-0.043	0.382	0.13	0.293	0.607	1	0.457	-0.014	0.37
ALK	0.462**	0.61	-0.211	0.667	0.41	0.492	0.602	0.457	1	-0.092	0.283
NO₃	0.007	-0.02	0.028	-0.07	-0.076	-0.041	0.007	-0.014	-0.092	1	0.004
SO₄	0.409**	0.803	0.046	0.667	0.365	0.486	0.715	0.37	0.283	0.004	1

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Fig. 1. Study area.
of urban and rural water resources of 13 cities of West Azerbaijan province were collected as a sample in 2017. In the following, data on the concentration of cations and anions, hardness, electrical conductivity, turbidity, TDS, and alkalinity were extracted and the values of mean, standard deviation and correlation coefficient were calculated. It should be noted that all of mentioned parameters were measured according to the standard Methods for the Examination of Water and Wastewater [5–15].

This province is limited from the north to Azerbaijan and Turkey, from the west to Turkey and Iraq, from the east to the provinces of East Azerbaijan and Zanjan, and south to the Kurdistan province. The province’s area is 37,059 km², that is the 13th largest province in the country in terms of area. According to the 2006 census, the population of the province is 2,873,459 people and has 17 cities [1,16–23].

Acknowledgements

The authors want to thank authorities of Shiraz University of Medical Sciences for their comprehensive support for this study.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.078.

References

[1] M. Yousefi, M. Yaseri, R. Nabizadeh, E. Hooshmand, M. Jalilzadeh, A.H. Mahvi, A.A. Mohammadi, Association of hypertension, body mass index and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas, Iran, Biol. Trace Elem. Res. (2018), https://doi.org/10.1007/s12011-018-1269-2.

[2] V. Kazemi Moghadam, M. Yousefi, A. Khosravi, M. Yaseri, A.H. Mahvi, M. Hadei, A.A. Mohammadi, Z. Robati, A. Mokamel, High concentration of fluoride can be increased risk of abortion, Biol. Trace Elem. Res. (2018), https://doi.org/10.1007/s12011-018-1250-0.

[3] F.B. Asghari, A.A. Mohammadi, Z. Aboosaedi, M. Yaseri, M. Yousefi, Data on fluoride concentration levels in cold and warm season in rural area of Shout (West Azerbaijan, Iran), Data Brief 15 (2017) 528–531.

[4] A.A. Mohammadi, M. Yousefi, A.H. Mahvi, Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature, Data Brief 13 (2017) 312–315.

[5] A. Abbasnia, N. Yosefi, A.H. Mahvi, R. Nabizadeh, M. Radfar, M. Yousefi, M. Alimoahmadi, Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran), Hum. Ecol. Risk Assess. Int. J. (2018), https://doi.org/10.1080/10807039.2018.1458596.

[6] M. Radfar, M. Yunesian, R. Nabizadeh Nodehi, H. Biglari, M. Hadi, N. Yousefi, M. Yousefi, A. Abbasnia, A.H. Mahvi, Drinking water quality and Arsenic health risk assessment in Sistan-and-Baluchestan, Southeastern province Iran, Hum. Ecol. Risk Assess. Int. J. (2018), https://doi.org/10.1080/10807039.2018.1458210.

[7] M. Mirzabeygi, N. Yousefi, A. Abbasnia, H. Youzi, M. Alikhani, A.H. Mahvi, Evaluation of groundwater quality and assessment of scaling potential and corrosiveness of water supply networks, Iran, J. Water Supply Res. Technol. Aqua (2017) (Jws2).

[8] A. Abbasnia, M. Alimoahmadi, A.H. Mahvi, R. Nabizadeh, M. Yousefi, A.A. Mohammadi, H. Pasalari H. M. Mirzabeigi, Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahar city, Sistan and Baluchistan province in Iran, Data Brief 16 (2018) 182–192.

[9] A. Takdastana, M. Mirzabeigi (Radfar), M. Yousefi, A. Abbasnia, R. Khodadadia, A.H. Mahvi, D. Jalili Naghan, Neuro-fuzzy inference system prediction of stability indices and Sodium absorption ratio in Lordegan rural drinking water resources in west Iran, Data Brief (2018), https://doi.org/10.1016/j.dib.2018.09.078.

[10] M. Mirzabeigi, M. Yousefi, H. Soleimani, A.A. Mohammadi, A.H. Mahvi, A. Abbasnia, The concentration data of fluoride and health risk assessment in drinking water in the Ardakan city of Yazd province, Iran, Data Brief 18 (2018) 40–46.

[11] F.B. Asghari, A.A. Mohammadi, M.H. Dehghani, Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran, Data Brief 18 (2018) 375–379.

[12] F.B. Asghari, J. Jaafari, M. Yousefi, A.A. Mohammadi, R. Dehghanzadeh, Evaluation of water corrosion, scaling extent and heterotrophic plate count bacteria in asbestos and polyethylene pipes in drinking water distribution system, Hum. Ecol. Risk Assess. Int. J. (2018) 1–12.

[13] M. Yousefi, A.A. Mohammadi, M. Yaseri, A.H. Mahvi, Epidemiology of drinking water fluoride and its contribution to fertility, infertility, and abortion: an ecological study in West Azerbaijan province, Poldasht County, Iran, Fluoride 50 (2017) 343–353.

[14] A. Abbasnia, N. Yosefi, A.H. Mahvi, R. Nabizadeh, M. Radfar, M. Yousefi, M. Alimoahmadi, Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes; case study of Sistan and Baluchistan province (Iran), Hum. Ecol. Risk Assess. Int. J. (2018), https://doi.org/10.1080/10807039.2018.1458596.
[14] A. Neisi, M. Mirzabeygi, G. Zeyduni, A. Hamzezadeh, D. Jalili, A. Abbasnia, et al., Data on fluoride concentration levels in cold and warm season in city area of Sistan and Baluchistan province, Iran, Data Brief 18 (2018) 713–718.

[15] H. Soleimani, A. Abbasnia, M. Yousef, A.A. Mohammadi, F.C. Khorasgani, Data on assessment of groundwater quality for drinking and irrigation in rural area Sarpol-e Zahab city, Kermanshah province, Iran, Data Brief 17 (2018) 148–156.

[16] M. Yousef, H. Najafi Saleh, M. Yaseri, A.H. Mahvi, H. Soleimani, Z. Saeedi, S. Zohdi, A.A. Mohammadi, Data on microbiological quality assessment of rural drinking water supplies in Poldasht County, Data Brief 17 (2018) 763–769.

[17] M. Yousef, M. Ghoochani, A.H. Mahvi, Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran, Environ. Saf. 148 (2018) 426–430.

[18] A.A. Mohammadi, M. Yousefi, M. Yaseri, M. Jalilzadeh, A.H. Mahvi, Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran, Sci. Rep. 7 (2017) 17300.

[19] A.A. Mohammadi, H. Najafi Saleh, A.H. Mahvi, M. Alimohammadi, R. Nabizadeh, M. Yousefi, Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran, Data Brief 16 (2018) 724–731.

[20] M. Yousefi, M.H. Dehghani, S.M. Nasab, V. Taghavimanesh, S. Nazmara, A.A. Mohammadi, Data on trend changes of drinking groundwater resources quality: a case study in Abhar, Data Brief 17 (2018) 424–430.

[21] M. Mirzabeygi, A. Abbasnia, M. Yunesian, R.N. Nodehi, N. Yousef, M. Hadi, et al., Heavy metal contamination and health risk assessment in drinking water of Sistan and Baluchistan, Southeastern Iran, Hum. Ecol. Risk Assess. Int. J. 23 (2017) 1893–1905.

[22] M. Mirzabeygi, M. Naji, N. Yousefi, et al., Evaluation of corrosion and scaling tendency indices in water distribution system: a case study of Torbat Heydariye, Iran, Desalin. Water Treat. 57 (2016) 18–26.

[23] M. Yousef, S.M. Arami, H. Takallo, M. Hosseini, M. Radfar, H. Soleimani, A.A. Mohammadi, Modification of pumice with HCl and NaOH enhancing its fluoride adsorption capacity: kinetic and isotherm studies, Hum. Ecol. Risk Assess. Int. J. (2018), https://doi.org/10.1080/10807039.2018.1469968.