REVIEW

Impairment of the autophagy—lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential

Wei Zhang\(^{a,b,\dag}\), Chengchao Xu\(^{a,c,\dag}\), Jichao Sun\(^{a,\dag}\), Han-Ming Shen\(^{d,\ast}\), Jigang Wang\(^{a,c,e,\ast}\), Chuanbin Yang\(^{a,\ast}\)

\(^{a}\)Department of Geriatrics, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China

\(^{b}\)Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China

\(^{c}\)Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China

\(^{d}\)Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China

\(^{e}\)Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China

Received 21 September 2021; received in revised form 9 November 2021; accepted 16 December 2021

KEY WORDS
Alzheimer’s disease (AD); Amyloid beta (A\(_\beta\)) peptides; MAPT/tau; Autophagy—lysosomal pathway; Autophagy enhancers; Mitophagy; Neurodegenerative diseases

Abstract Alzheimer’s disease (AD), the most common neurodegenerative disorder, is characterized by memory loss and cognitive dysfunction. The accumulation of misfolded protein aggregates including amyloid beta (A\(_\beta\)) peptides and microtubule associated protein tau (MAPT/tau) in neuronal cells are hallmarks of AD. So far, the exact underlying mechanisms for the aetiologies of AD have not been fully understood and the effective treatment for AD is limited. Autophagy is an evolutionarily conserved cellular catabolic process by which damaged cellular organelles and protein aggregates are degraded via lysosomes. Recently, there is accumulating evidence linking the impairment of the autophagy—lysosomal pathway with AD pathogenesis. Interestingly, the enhancement of autophagy to remove protein aggregates has been proposed as a promising therapeutic strategy for AD. Here, we first summarize the recent genetic, pathological and experimental studies regarding the impairment of the autophagy—lysosomal pathway in AD. We then describe the interplay between the autophagy—lysosomal pathway...
1. Introduction

Alzheimer’s disease (AD), the most common neurodegenerative disorder, affects about 4%—8% of the elderly population worldwide. Aging is the leading factor in the pathogenesis of AD. According to recent data from the World Alzheimer Report, there are about 10% of people above 65-year-old living with AD. In the United States, over 5.8 million people in 2020 suffered from AD and this number is expected to rise to 13.8 million in 2050. China has become an aging society and there were about 164.5 million people aged 65 and above in 2019. Recent studies showed that the overall prevalence of AD was estimated to be 0.04% and the pooled prevalence for aged people (55 years old) with mild cognitive impairment was as high as 12.2% in China. The medicare cost for AD patients is enormous. For instance, the total cost of AD treatment is about $305 billion in 2020 in the USA. According to recent data from the World Alzheimer Report, there are about 10% of people above 65-year-old living with AD. In the United States, over 5.8 million people in 2020 suffered from AD and this number is expected to rise to 13.8 million in 2050. China has become an aging society and there were about 164.5 million people aged 65 and above in 2019. Recent studies showed that the overall prevalence of AD was estimated to be 0.04% and the pooled prevalence for aged people (55 years old) with mild cognitive impairment was as high as 12.2% in China. The medicare cost for AD patients is enormous. For instance, the total cost of AD treatment is about $305 billion in 2020 in the USA. Though the U.S. Food and Drug Administration (FDA) recently approved Aduhelm (aducanumab), a monoclonal antibody targeting Aβ (amyloid beta) for treating AD, there is also a controversial discussion regarding its effects, and the therapeutics for this disease are still unclear.

The main clinical features of AD are memory loss and cognitive dysfunction due to the loss of synapses in the brain. Two hallmarks of AD pathology are the presence of extracellular senile plaques primarily composed of amyloid beta (Aβ), and the intraneuronal neurofibrillary tangles (NFTs), the main constituent of which is the aggregated microtubule associated protein Tau (MAPT/tau) protein. While the etiologies of AD are not fully understood, the elimination of Aβ and/or MAPT/tau aggregates is one of the most promising therapeutic strategies for this disease. The main route to remove Aβ and MAPT/tau aggregates is macroautophagy (hereafter referred to as autophagy). Autophagy is a highly conserved pathway for the degradation of intracellular long-lived proteins, protein aggregates and organelles (e.g., mitochondrial) via lysosomes to maintain homeostasis under physiological conditions. The expansion of our knowledge on autophagy has revealed that impaired autophagy is linked to the pathogenesis of multiple chronic diseases including AD. Induction of autophagy by a variety of small molecules results in the clearance of Aβ and MAPT/tau aggregates, leading to beneficial effects in multiple preclinical AD models, suggesting that pharmacological activation of autophagy holds great promise for developing therapies for AD. Notably, other types of selective autophagy such as CMA (chaperone-mediated autophagy) and mitophagy have also been associated with AD, and the detailed discussion of these pathways goes beyond the scope of this review and can be found elsewhere. Here, we summarize the characteristics of Aβ and MAPT/tau in AD, describe the regulatory mechanism of the autophagy—lysosomal pathway, review current evidence of dysregulated autophagy—lysosomal pathway in AD, discuss the interplay between autophagy and two pathological proteins, Aβ and MAPT/tau, illustrate autophagy enhancers in preclinical AD animals and clinical trials, and finally highlight potential pharmacological therapeutic strategies that target autophagy—lysosomal pathway for AD treatment.

2. Aβ and MAPT/tau in AD

Key pathological features of AD include the senile plaques formation caused by the accumulation of Aβ and NFTs formation resulting from hyperphosphorylated MAPT/tau aggregates. These toxic protein aggregates promote neuroinflammation and neuronal death. Aβ has been regarded as one of the central molecules leading to synaptic toxicity, memory and cognitive impairment in AD. Aβ is generated by the cleavage of amyloid precursor protein (APP). APP is a type I transmembrane protein that can be cleaved by either a-secretase (non-amyloidogenic processing) or BACE1 (β-secretase; known as amyloidogenic processing) followed by γ-secretase cleavage (Fig. 1). In non-amyloidogenic APP processing pathway, APP is first proteolytically cleaved by α-secretase, producing sAPPα (secreted ectodomain APP alpha) and the membrane-associated APP-CTFα (APP C-terminal fragment alpha, C83) and/or Aβ aggregates, illustrate autophagy enhancers in preclinical AD animals and clinical trials, and finally highlight potential pharmacological therapeutic strategies that target autophagy—lysosomal pathway for AD.

...
hyperphosphorylated MAPT forms aggregates, and NFTs, which lead to the impairment of axonal transport, neurons death, and finally induce neurodegeneration (Fig. 1)22. Besides phosphorylation, acetylated MAPT has also been shown to affect its bind to microtubules, promote MAPT fibrillization, and play an important role in MAPT-mediated synaptic toxicity23,24. Interestingly, Aβ and MAPT/tau have both independent and synergistic effects in inducing neurotoxicity, and the intimate interplay between soluble Aβ and MAPT/tau has been implicated in AD pathocascade25,26. As the accumulation of Aβ and MAPT, the synapses integrity and neural connectivity of the brain will be disrupted, which may finally induce neuronal death25. Importantly, Aβ fibrils and MAPT aggregates induce the hyperactivation of glia cells and subsequent neuroinflammation, which may also contribute to neurodegeneration in AD25,27. Considering the importance of Aβ and MAPT in AD, targeting Aβ and/or MAPT is probably the most promising strategy for anti-AD drug development.

3. The autophagy—lysosomal pathway

Autophagy is a highly conserved process for sequestering protein aggregates and damaged organelles into a double member structure termed autophagosomes, whose content will be subsequently delivered into lysosomes for degradation6,28—31. Autophagy process is generally divided into several steps, which include autophagy initiation, autophagosome formation, the fusion of autophagosomes with lysosomes, and lysosomal degradation (Fig. 2). Autophagy initiation is controlled by the Unc-51 like autophagy activating kinase 1 (ULK1) complex containing ULK1/2, ATG101, ATG13, and focal adhesion kinase family-interacting protein of 200 kDa (FIP200). Several key signaling pathways are known to regulate autophagy initiation, which includes adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1). Nutrient deficiency and low energy status are well-defined autophagy inducers that inhibit mTORC1 and activate AMPK, respectively. AMPK activation and mTORC1 inhibition trigger autophagy initiation by phosphorylation and activation ofULK1 complex (Fig. 2)22.ULK1 complex activation recruits the VPS34/Pik3c3 PtdIns3K (phosphatidylinositol 3-kinase) complex comprising VPS34/Pik3c3, Pik3r4/VPS15, Beclin1, ATG14L and nuclear receptor binding factor 2 (Nrbf2) to a PAS (pre-autophagosomal structure) for the production of phosphatidylinositol 3-phosphate (PI3P)31—33. PI3P then recruits its effectors such as WD repeat domain phosphoinositide-interacting protein 2 (Wipi2) and downstream autophagy proteins (e.g.,
ATG16L) to facilitate phagophores formation9,28,29. The subsequent elongation and expansion of phagophores are controlled by two ubiquitin-like conjugation systems, ATG12 and ATG8/LC3. By cooperation with ATG7 and ATG3, ATG5eATG12eATG16L facilitates the conjugation of MAP1LC3B-I/LC3B-I to lipid phosphatidylethanolamine (PE) to form lipiddated MAP1LC3B-II/LC3B-II, a core component of autophagosome28,29. MAP1LC3B-II/LC3B-II promotes the sequestration of multiple autophagy substrates (e.g., protein aggregates and mitochondria) into autophagosomes \textit{via} a group of autophagy receptors such as SQSTM1/p6228,29. Finally, autophagosomes fuse with lysosomes to form autolysosomes and autophagic cargos can be degraded by lysosome hydrolases. The fusion process is controlled by multiple factors including SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), small GTPase RAB7, EPG5 (ectopic P-granules autophagy protein 5 homolog), ATG14L, NRBF2 (Nuclear receptor-binding factor 2) and other factors36,37.

In addition to its inhibitory effect on ULK1 complex-involved autophagy initiation, mTORC1 is known to negatively regulate the late stage of autophagy and lysosomal function38,39,40. One key mechanism is \textit{via} targeting TFEB (transcription factor EB), a key transcription factor controlling autophagy and lysosome biogenesis41,42. Under normal physiological conditions, TFEB is dephosphorylated and translocated from the cytoplasm into the nucleus, where TFEB upregulates the expression of multiple genes responsible for autophagy and lysosome biogenesis. Thus, TFEB not only promotes the formation of autophagosomes, but also enhances lysosome functions.

ATG16L to facilitate phagophores formation9,28,29. The subsequent elongation and expansion of phagophores are controlled by two ubiquitin-like conjugation systems, ATG12 and ATG8/LC3. By cooperation with ATG7 and ATG3, ATG5eATG12eATG16L facilitates the conjugation of MAP1LC3B-I/LC3B-I to lipid phosphatidylethanolamine (PE) to form lipiddated MAP1LC3B-II/LC3B-II, a core component of autophagosome28,29. MAP1LC3B-II/LC3B-II promotes the sequestration of multiple autophagy substrates (e.g., protein aggregates and mitochondria) into autophagosomes \textit{via} a group of autophagy receptors such as SQSTM1/p6228,29. Finally, autophagosomes fuse with lysosomes to form autolysosomes and autophagic cargos can be degraded by lysosome hydrolases. The fusion process is controlled by multiple factors including SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), small GTPase RAB7, EPG5 (ectopic P-granules autophagy protein 5 homolog), ATG14L, NRBF2 (Nuclear receptor-binding factor 2) and other factors36,37.

In addition to its inhibitory effect on ULK1 complex-involved autophagy initiation, mTORC1 is known to negatively regulate the late stage of autophagy and lysosomal function38,39,40. One key mechanism is \textit{via} targeting TFEB (transcription factor EB), a key transcription factor controlling autophagy and lysosome biogenesis41,42. Under normal physiological conditions, TFEB is dephosphorylated and translocated from the cytoplasm into the nucleus, where TFEB upregulates the expression of multiple genes responsible for autophagy and lysosome biogenesis. Thus, TFEB not only promotes the formation of autophagosomes, but also enhances lysosome functions.

Figure 2 Autophagy process and its regulation. Autophagy is generally divided into several steps, which include autophagy initiation, the formation of autophagosomes, the fusion of autophagosomes with lysosomes and subsequent autophagic cargos degradation. MTORC1 and AMPK are upstream key kinases that control autophagy initiation. AMPK activation (in response to low energy status) and/or MTORC1 inhibition (in response to nutrient deficiency) promotes autophagy initiation by phosphorylation and activation of ULK1 complex, which further activates VPS34/PIK3C3 phosphatidylinositol 3-kinase (PtdIns3K) complex to produce PI3P. PI3P then recruits its effector proteins such as WIPI2 to form pre-autophagosome structure. The subsequent phagophores elongation and expansion will form autophagosomes, which are controlled by ATG5eATG12eATG16L complex and ATG8/MAP1LC3B, two conserved ubiquitin-like conjugation systems. The fusion of autophagosomes with lysosomes to form autolysosomes, within which autophagic cargos are degraded by lysosome hydrolases. Upon dephosphorylation (e.g., upon starvation-induced MTORC1 inhibition), transcriptional factor EB (TFEB) is dissociated from 14-3-3 protein and subsequently moves from the cytosol into the nucleus, where it upregulates the expression of multiple genes responsible for autophagy and lysosome biogenesis. Thus, TFEB not only promotes the formation of autophagosomes, but also enhances lysosome functions.

1022 Wei Zhang et al.

4. Impairment of the autophagy—lysosomal pathway in AD

4.1. Genetic evidence

Early-onset familial AD, accounting for 1%–5% of AD50, is associated with mutations in APP, presenilin 1 (PSEN1) and presenilin 2 (PSEN2). Among them, PSEN1 and PSEN2 mutations are the most frequent known causes of early-onset familial AD51. PSEN1 and PSEN2 are key ingredients of the γ-secretase complex that regulates A\textsubscript{β} production, and these two gene mutations result in increased A\textsubscript{β}42/A\textsubscript{β}40 ratio51. Apart from modulating A\textsubscript{β} production, PSEN1 also maintains lysosomal...
acidiﬁcation via regulating lysosome calcium channel mucolipin TRP cation channel 1 (MCOLN1)-mediated lysosome calcium homeostasis, and PSEN1 deﬁciency elevates lysosomal pH53–55 (Table 1). Moreover, PSEN1 deﬁciency or mutation promotes mTORC1 activation, which subsequently inhibits TFE2-mediated autophagy and lysosome biogenesis56,57. PSEN2 mutation was also reported inhibiting autophagosome and lysosome fusion and consequently impaired autophagy ﬂux55 (Table 1). As such, PSEN1 and PSEN2 mutations induce impairment of the autophagy–lysosomal pathway, leading to the accumulation of protein aggregates and neurons death independent of γ-secretase.

In addition to familial AD-linked genes, gene-based tests and genome-wide association studies (GWAS) have found multiple loci in the genome associated with late-onset of AD66. Among them, phosphatidylinositol binding clathrin assembly protein (PICALM), cathepsin D (CSTD), phospholipase D3 (PLD3), ubiquitin-like protein ubiquilin-1 (UBQLN1), GRN (granulin), sortilin-related receptor 1 (SORL1), and clusterin (CLU) have been implicated in regulating autophagy and/or lysosomal functions58–62 (as summarized in Table 1 and Fig. 3A). PICALM is an AD risk gene63, whose expression has been reported to be reduced in AD brains64. PICALM encodes a protein termed phosphatidylinositol binding clathrin assembly protein65. PICALM promotes the formation of clathrin-coated pits by interaction with and binding to clathrin and adaptor protein 2 (AP2), which are important for clathrin-mediated endocytosis66. Interestingly, PICALM/AP2 complex interacts with APP-CTFs and autophagic marker MAP1LC3B/LC3B and serves as an autophagic cargo receptor targeting autophagic degradation of APP-CTFβ, thereby modulating Aβ production67. Moreover, PICALM regulates both autophagosomes formation and the fusion of autophagosomes with lysosomes68 via modulating the endocytosis of soluble NSF attachment protein receptors (SNAREs) such as VAMP2 and VAMP869. Consequently, Picalm deﬁciency promotes the formation of Aβ as well as results in the accumulation of MAPT protein, which exacerbates MAPT pathology in animal models via inhibiting autophagy61,62. Overall, these ﬁndings indicate that PICALM deﬁciency inhibits both autophagosome formation and the fusion of autophagosomes with lysosomes. CTSD gene encodes cathepsin D, a key lysosome enzyme that participated in the degradation of Aβ63. Genetic studies have suggested that CTSD variation was a key risk factor for AD64,65, implicating that impairment of lysosomal function may link to AD pathogenesis. However, there was a report demonstrated that CTSD polymorphism was not a key risk factor for AD66. Though the underlying reasons for this discrepancy are unclear, APOE ε4 carriers or non-carriers’ status has been implicated to affect the association of CTSD with AD66.

PLD3, a member of the phospholipase D protein family, is a 5’ exonuclease that speciﬁcally cleaves ssDNA to regulate inﬂammatory cytokine responses67. Whole-exome sequencing has identiﬁed that rare coding variants in the PLD3 were associated with the increased risk to develop late-onset AD in European patients and Chinese cohorts68. PLD3 expression is reduced in AD patients69,70. Pld3 mutations reduced PLD3 activity and inhibited autophagy possibly via activation of mTOR in AD cell models, suggesting a possible link between the impairment of autophagy pathway in PLD3-mediated AD pathogenesis. However, whether and how PLD3-mediated autophagy impairment contributes to AD pathogenesis in animal models remains to be examined.

UBQLN1 encodes a ubiquitin-like protein ubiquilin-1, whose polymorphism has been suggested to be associated with AD71 and the expression of ubiquilin-1 was reduced in the brains of AD patients72. Ubqiln1 deﬁciency led to increased production of Aβ and neuronal cell death73,74. Apart from its role in delivering protein for degradation by the proteasome75, it has also been shown that Ubqiln1 deﬁciency comprised the fusion of autophagosomes with lysosomes76 via interacting with LC377. These results indicate that autophagy may also play a role in ubiquilin-1-mediated AD pathogenesis.

GRN encodes progranulin (PGRN) protein, a multiple functional glycoprotein. GRN mutations were identiﬁed as a risk factor for AD and frontotemporal dementia78. The decrease of PGRN levels can be detected in serum or cerebrospinal ﬂuid of patients with GRN mutation since it is a secreted protein79. It has been shown that GRN mutation may be related to disrupting lysosomal functions80 though underlying mechanisms are unclear.

SORL1 encodes sortilin-related receptor 1 protein that is critical for regulating the protein trafﬁcking from Golgi to endosome81,82. SORL1 rare coding variants are associated with the developing AD83. SORL1 regulates APP sorting and generation, and Sorl1-deﬁcient mice have increased Aβ levels84. Importantly, homozygous mutations in SORL1 induced enlarged endosomes, lysosome dysfunction, and inhibited autophagosome ﬂux85. Notably, APP, PSEN1 and SORL1 function within a common pathway for modulating endosome function.

CLU (also known as APOJ) encodes clusterin protein, which is a molecular chaperone that regulates protein folding86,87. GWAS results showed that CLU was also a late-onset AD risk gene56,88. Though how CLU mutation contributes to AD pathogenesis is largely unclear89, it was found that CLU promoted LC3-lipidation and autophagosome biogenesis90, suggesting a potential link between CLU mutation, autophagy lysosome dysfunction and AD. Several evidence showed that other late-onset AD risk genes including CD2AP (CD2 Associated Protein) and BIN1 (bridging integrator 1) may be implicated in modulating autophagy–lysosomal pathway86 though future mechanistic studies are required.

Overall, mutations in genes that affect autophagy and lysosome function are associated with an increased risk of both familial and late-onset AD.

4.2. Evidence from post-mortem analysis in AD patients

Post-mortem studies have provided mountains of evidence regarding the impairment of multiple steps of the autophagy–lysosomal pathway including autophagy initiation, autophagosomes formation, and autophagosome clearance in AD (Fig. 3A).

The dysregulated autophagy initiation machinery has been observed in the brains of AD patients and animal models. For instance, the expression of p-mTOR, p-4E-BP1, and p-PTOR/Raptor, and mTORC1 upstream molecule RARG/Rag C were increased in the hippocampus of AD patients91,92, suggesting the hyperactivation of mTORC1 signaling in AD, which may prevent autophagy initiation and autophagosome formation. The impairment of autophagosome biogenesis in AD was further conﬁrmed by the finding that the expression of the key components that regulate autophagosome formation including Becn1, Nrf2 and Ulk1/2 were reduced in the hippocampus of AD patients and in AD animal models (Fig. 3)93,95–97.
Direct evidence linking autophagy to AD comes from a study by Nixon and colleagues, who found that the massive accumulation of autophagosomes was present in the dystrophic neuritis of AD brains as shown by immuno-electron microscopy analysis. This phenomenon was further verified in the APP/PS1 transgenic AD mouse model, the defective lysosomal proteolysis function was also observed, highlighting the impairment of lysosomal degradation capacity in AD.

However, pathological studies from different research groups also show variations and even inconsistent results regarding which steps that autophagy—lysosomal pathway is impaired in AD. This may be due to the dynamic process of autophagy. Dysfunctions of multiple pathological processes may vary at different stages of AD or in certain subpopulations of AD patients. Moreover, so far, the majority of studies mainly focused on neurons in AD, the roles of autophagy in neuronal function blocking are largely unclear.

4.3. Evidence from AD animal models

Mounting evidence from autophagy deficiency animal models have also been established for the critical roles of autophagy in AD (summarized in Table 2 and Fig. 3A). For instance, Inoue et al. found that forebrain specific Atg7 deficiency mice exerted...
an age-related neurodegeneration with the accumulation of autophagy substrates such as ubiquitin and SQSTM1/p62-positive protein aggregates, as well as the accumulation of phospho-MAPT. Importantly, inhibition of MAPT phosphorylation attenuated neurodegeneration in forebrain specific Atg7 KO (knock out) mice. These results highlighted the role of autophagy and phosphorylated MAPT in neurodegeneration. By using an APP transgenic mouse with excitatory neurons specific knock out of Atg7, it has been found that autophagy deficiency exacerbated neurodegeneration possibly via affecting Aβ secretion though the underlying mechanisms are not fully understood. In microglial cell, it has been shown that autophagy plays an important role in the degradation of Aβ fibrils via autophagy receptor OPTN/Optineurin, and microglial specific Atg7 deficiency mice showed increased neuroinflammation upon exposure to exogenous Aβ fibrils. Similarly, neural cells specific Atg5 KO mice exerted neurodegeneration with motor dysfunction and accumulation of protein aggregates. Apart from essential autophagy genes, beclin 1 and NRBF2, two components of VPS34/PI3KC3 complex for autophagosome formation have also
Autophagy is crucial in degrading APP and its metabolites include Aβ and Aβ5.1. The autophagy and Aβ induction of mitophagy alleviated AD-associated pathologies and instance, aged Nrbf2 KO mice with neuronal autophagy impairment and memory and LTP (long-term potentiation) deficits, further highlighting the importance of autophagy in AD. Notably, apart from modulating autophagy, autophagy-independent function of NRBF2 may also be involved in modulating learning and memory. Overall, these evidence from autophagy deficient mouse established critical links between autophagy impairment and AD pathogenesis.

Apart from canonical autophagy, defects in mitophagy have been implicated in the pathogenesis of multiple diseases including AD,11,104–106. Mitophagy is a process for specific degradation of damaged or superfluous mitochondria via lysosomes.107–111 In mammals, a variety of proteins and pathways such as PINK1/parkin are identified to be necessary for mitophagy.112–116 The accumulation of dysfunctional mitochondrial and impairment of mitophagy are commonly found in AD patients and AD animal models.11,104 For instance, AD-associated APP mutation and Aβ deposition, and induction of neurodegeneration102,106. Mitophagy is a process for specific degradation of dysfunctional mitochondrial and impairment of mitophagy.117 Defective mitophagy exaggerated Aβ and tau pathologies possibly via increasing oxidative stress and inducing energy deficits, and these events may finally contribute to synaptic dysfunction and cognitive deficits in AD.11,104,105 In contrast, induction of mitophagy alleviated AD-associated-pathologies and improved memory deficits in multiple AD animal models.11,104,105 Collectively, comprised mitophagy is critical for AD pathogenesis and induction of mitophagy may represent a promising therapeutic strategy.

5. Interplays between the autophagy—lysosomal pathway and Aβ and MAPT

5.1. The autophagy—lysosomal pathway participates in regulating Aβ homeostasis

Autophagy is crucial in degrading APP and its metabolites include APP-CTFβ and Aβ. It has been reported that overexpression of TFEB to enhance autophagy and lysosomal biogenesis promotes APP degradation.118 Similarly, APP-CTFβ was reported to be degraded in an autophagy-dependent manner.119 Aβ is accumulated in the autophagosomes, which can be incorporated into autolysosomes for degradation via Aβ-specific degrading protease CTSD.120,121 Interestingly, autophagic cargo protein OPTN/optineurin plays a critical role in degradation of extracellular Aβ fibrils by phagocytosis of microglia.122 Though ubiquitin proteasome system (UPS) has also been involved in the degradation of Aβ, it was reported that proteasome only degrades monomeric Aβ42 and low-molecular weight Aβ40 oligomers. In contrast, autophagy degrades both the monomeric and high molecular weight Aβ aggregates.123 These findings highlight the critical role of autophagy rather than UPS in promoting Aβ plaque degradation. Though several genes such as RRD1, SNF4, GCN4 and SRE1 were shown as critical regulators for autophagy-mediated Aβ42 degradation in yeast,124 whether their homologous in mammalian cells also play a similar role is unclear. These results indicated that APP, APP-CTFβ and Aβ are autophagy substrates. BECN1 and NRB2 are two main components of VPS34/P38KC3 complex and they are crucial in regulating autophagy initiation.125,126 It has been shown that BECN1 overexpression triggered autophagy and reduced Aβ plaques and subsequently AD pathology in a transgenic mouse expressing human APP, and vice versa (Fig. 3).127,128 We recently found that NRB2 not only regulates autophagosome biogenesis but also modulates autophagosome-lysosome fusion via modulating RAB7 activities. Interestingly, NRB2 was reduced in the hippocampus of AD patients and 5XFAD transgenic mice,129,130 and NRB2 interacted with APP and was essential for NRB2-mediated APP-CTFβ degradation via autophagy.131 Specifically, NRB2 interacts with the CCZ1/MON1A complex to facilitate RAB7 activation, and NRB2 also facilitated the interaction of APP with CCZ1/MON1A/RAB7 complex, which is important for the maturation of autophagosome containing APP-CTFβ for degradation, as such NRB2-dependent autophagy is crucial for the maintenance of Aβ contents.132 Furthermore, autophagy was also

Gene name	Function in autophagy	Animal model	Phenotype associated with AD	Ref.
Atg7	An essential gene for MAP1LC3B lipidation	Forebrain-specific Atg7 KO mice	These mice displayed accumulation of SQSTM1- and ubiquitin-positive inclusion, and phospho-MAPT protein; and showed aging-related neurodegeneration	99
Atg7	An essential gene for MAP1LC3B lipidation	APP transgenic mice with excitatory neuron-Specific Atg7 deficiency	Exacerbated neurodegeneration; inhibited Aβ secretion and enhanced the intraneuronal accumulation of Aβ in Golgi	100,101
Atg7	An essential gene for MAP1LC3B lipidation	Microglia specific Atg7 KO mice	Optineurin-mediated autophagic-degradation of Aβ fibrils in microglial cells and injection of extracellular Aβ fibrils increased neuroinflammation in microglial Atg7 KO mice	102
Atg5	An essential gene for MAP1LC3B lipidation	Neural cells specific Atg5 KO mice	Deficits in motor functions and accumulation of cytoplasmic inclusion bodies in neurons	103
Beclin1	Regulates autophagosome formation	APP transgenic mice with heterozygous BECN1 deficiency	Reduced neuron autophagy; increased Aβ deposition, and induction of neurodegeneration	89,92
Nrbf2	Regulates autophagosome formation	Nrbf2 KO mice	Nrbf2 deficiency resulted in the accumulation of Aβ in the hippocampus; memory and LTP deficits	90

Animal models show links between autophagy deficiency and AD.

- Genes: Atg7, Atg5, Beclin1, Nrbf2
- Function: An essential gene for MAP1LC3B lipidation, Regulates autophagosome formation
- Animal models: Forebrain-specific Atg7 KO mice, APP transgenic mice with excitatory neuron-Specific Atg7 deficiency, Microglia specific Atg7 KO mice, Neural cells specific Atg5 KO mice, APP transgenic mice with heterozygous BECN1 deficiency, Nrbf2 KO mice
- Phenotypes: These mice displayed accumulation of SQSTM1- and ubiquitin-positive inclusion, and phospho-MAPT protein; and showed aging-related neurodegeneration, Exacerbated neurodegeneration; inhibited Aβ secretion and enhanced the intraneuronal accumulation of Aβ in Golgi, Optineurin-mediated autophagic-degradation of Aβ fibrils in microglial cells and injection of extracellular Aβ fibrils increased neuroinflammation in microglial Atg7 KO mice, Deficits in motor functions and accumulation of cytoplasmic inclusion bodies in neurons, Reduced neuron autophagy; increased Aβ deposition, and induction of neurodegeneration, Nrbf2 deficiency resulted in the accumulation of Aβ in the hippocampus; memory and LTP deficits
- Ref.: 99, 100, 101, 102, 103, 89, 92, 90, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132
reported modulating Aβ secretion\(^{100}\). Nilsson and colleagues\(^{100}\) found that specific neuronal deletion of ATG7, an essential gene required for autophagosome formation, inhibited Aβ secretion and increased intraneuronal Aβ accumulation and exacerbated neurodegeneration in an AD mouse model. Collectively, these results demonstrate that autophagy plays a major role in regulating both APP/APP metabolites degradation and Aβ secretion.

Importantly, the enhancement of autophagy has been demonstrated to reduce Aβ plaque formation and ameliorate memory deficits in multiple transgenic AD animal models. Activation of mTOR was found in AD mouse models\(^{121,122}\), and genetic ablation of mTOR in Tg2576 mice not only induced autophagy but also Aβ deposits and rescued memory deficits\(^{123,124}\). Similarly, pharmacological inhibition of mTOR-mediated autophagy activation improved cognitive deficits and reduced Aβ levels in several AD transgenic mouse models that represent Aβ pathology\(^{123,125}\). Overall, these results indicate that autophagy is critical for maintaining Aβ homeostasis.

5.2. The autophagy—lysosomal pathway participates in regulating MAPT homeostasis

In addition to regulating APP/APP metabolites degradation, autophagy is also critical in modulating MAPT\(^{+}\) aggregation, phosphorylation and degradation. Several studies\(^{26,127}\) have demonstrated that suppression of autophagy with 3-methyladenine (3-MA) or inhibition of lysosomal functions with lysosome inhibitor chloroquine (CQ) induced the formation of MAPT oligomers and aggregates formation, indicating that autophagy—lysosomal pathway regulates MAPT aggregates formation. In addition, brain specific deletion of Atg7 resulted in autophagy deficiency, and subsequent accumulation of phosphorylated MAPT protein aggregates and neurodegeneration in mice, which may be due to the increased GSK3β/GSK3\(^{\beta}\), a main MAPT phosphorylation kinase in Atg7 KO mice\(^{27}\). This finding indicates that autophagy may also affect MAPT phosphorylation status. Furthermore, the accumulation of MAPT in autophagosomes was found and MAPT can be degraded after the fusion of autophagosomes with lysosomes\(^{128,129}\). CTSD/cathepsin D is a critical enzyme for MAPT cleavage, and deletion of Ctsd resulted in MAPT accumulation and consequently neurodegeneration\(^{130,132}\). NDP52 (nuclear dot protein 52), an autophagy adaptor protein that is transcriptionally-induced by NRF2 (nuclear factor erythroid 2-related factor 2), was responsible for autophagy-dependent phosphorylated-MAPT degradation\(^{131}\), further highlighting the critical role of autophagy—lysosomal pathway in promoting MAPT degradation. As aforementioned, the AD risk gene PICALM is critical for modulating autophagy, and its depletion increased the impairment of autophagy—lysosomal pathway and subsequent induction of MAPT aggregation and exageration of MAPT pathology in AD animal models\(^{47}\), further indicating the role of defective PICALM-regulated autophagy—lysosome in MAPT-mediated AD pathogenesis. Furthermore, apart from phosphorylated MAPT, autophagy also plays a critical role in promoting acetylated MAPT degradation both in vitro and in animal brains and knockout Atg7 in mouse brains increased acetylated MAPT\(^{133}\).

Conversely, induction of autophagy facilitates the degradation of phosphorylated MAPT aggregates and acetylated tau and alleviates MAPT-induced pathology in multiple AD animal models\(^{134,135}\). Rapamycin treatment restored autophagy flux, reduced insoluble phosphorylated MAPT and MAPT tangle, and alleviated memory deficiency in MAPT transgenic AD mice\(^{136,137}\), suggesting that pharmacological inhibition of mTOR to induce autophagy may effectively promote MAPT clearance in mice. Furthermore, genetic activation of autophagy and lysosome biogenesis by overexpression of TfEB, a master regulator of autophagy and lysosome biogenesis, promoted the degradation of hyperphosphorylated and misfolded MAPT and rescued neurotoxicity in a tauopathy mouse model\(^{138}\). Overall, activation of autophagy—lysosomal pathway is critical for promoting MAPT aggregates degradation and attenuating MAPT-induced neurodegeneration.

Collectively, impairments of multiple stages in autophagy—lysosome pathway including autophagosomes formation, autophagy—lysosomes fusion, and lysosomal function lead to the accumulation of APP/APP-CTF\(^{\beta}\), thereby promoting Aβ generation. Furthermore, autophagosomes—lysosome dysfunction also results in the accumulation of MAPT aggregates. Accumulation of Aβ and MAPT aggregates, two hallmarks of AD, may finally induce neurodegeneration (Fig. 3B).

5.3. The effects of Aβ and MAPT on the autophagy—lysosome pathway

Though autophagy—lysosomal pathway plays a major role in modulating APP/APP metabolites and MAPT degradation, APP/APP metabolites (APP-CTF\(^{\beta}\), Aβ) and MAPT also affect multiple steps of autophagy—lysosomal pathway. As aforementioned, APP-CTF\(^{\beta}\) is accumulated in AD patient brains and multiple AD animal models, which can be degraded by autophagy—lysosomal pathway. Paradoxically, APP-CTF\(^{\beta}\) overexpression could induce impairment of autophagy flux in mouse brains evidenced by accumulated MAP1LC3B-II and SQSTM1/p62, and this function is independent of Aβ since inhibition of γ-secretase to reduce the production of Aβ did not restore autophagy flux\(^{139}\). Furthermore, overexpression of mutant APP induced the accumulation of Aβ\(^{\delta}\), which not only induced neurodegeneration but also induced autophagy inhibition with downregulated expression of autophagy markers including ATG5 in the hippocampus, suggesting that APP/Aβ may also inhibit autophagosome biogenesis\(^{140}\). Similarly, Aβ\(^{\delta}\) was reported to activate mTORC1, a negative regulator of autophagy, via promoting the phosphorylation of PRAS40 (proline-rich Akt substrate 40)\(^{41}\), suggesting that Aβ\(^{\delta}\) may inhibit autophagy initiation. Additionally, Aβ\(^{42}\) was reported to induce the accumulation of autophagosomes and contribute to neurodegeneration in fruit flies\(^{142,143}\). Apart from neurons, accumulation of Aβ\(^{\delta}\) also impairs autophagy in microglia cells though the underlying mechanisms are not fully addressed\(^{144}\). These results highlight that APP/APP metabolites are also critical for inducing the impairment of autophagy—lysosomal pathway. It would be interesting to understand the underlying molecular mechanisms of how APP/APP metabolites modulate autophagy—lysosomal pathway.

Apart from APP/APP metabolites, hyperphosphorylation of MAPT also causes autophagy and lysosome dysfunction. Microtubule has been well-established in promoting autophagosomes retrograde trafficking and subsequent autophagosome and lysosome fusion\(^{144}\). MAPT is essential in maintaining the stability of microtubules in axons, but phosphorylated MAPT in AD was unable to stabilize microtubules, and thus MAPT may inhibit autophagosomes movement and its subsequent fusion with lysosomes in neurons\(^{146,148}\). Furthermore, a recent study showed that MAPT accumulation inhibited the formation of endosomal sorting
complex transport-III (ESCRT-III), which is required for autophagosome—lysosome formation, by downregulating the expression of ESCRT-III associated factor Ist1 (IST1 factor associated with ESCRT-III) [148]. MAPT overexpression also induced lysosomal aberrations in mice [150]. Overall, these results indicate that MAPT accumulation may result in the impairment of autophagy—lysosomal pathway. Together, Aβ and MAPT accumulation results in impairment of autophagy—lysosomal pathway. The impairment of autophagy—lysosomal in AD will lead to the accumulation of Aβ and MAPT aggregates, which further exacerbate the autophagy—lysosomal dysfunction. Thus, APP/APP metabolites and MAPT aggregates accumulation and impairment of autophagy—lysosomal form a vicious worse cycle, which may finally induce the formation of Aβ plaques and NFTs, and contribute to neurodegeneration in AD [Fig. 4].

6. Pre-clinical animal models for AD treatment with small molecule autophagy enhancers targeting the autophagy—lysosomal pathway

Given the importance of Aβ and MAPT in AD pathogenesis, and autophagy induction not only reduces the levels of both Aβ and MAPT but also alleviates AD pathology in multiple animal models, activation of autophagy represents a promising strategy for AD treatment. Multiple strategies targeting autophagy induction by small molecules have been shown to exert neuroprotective effects in AD animal models, including modulating upstream kinase mTOR and AMPK for autophagy induction, targeting autophagy components, activating TFEB, directly targeting lysosomes and other targets for enhancing autophagy. The following section highlights neuroprotective effects of autophagy enhancers in preclinical in vivo AD animal models, which are summarized in Table 3 and Fig. 5.

6.1. mTOR inhibitors

Rapamycin induced autophagy by inhibiting the mTORC1 pathway is one of the most thoroughly tested strategies for combating neurodegeneration including AD. Rapamycin is an immunosuppressant drug to prevent graft rejection and is also used for treating lymphangioleiomyomatosis [54]. Rapamycin promotes autophagy via binding the cytosolic protein FKBP12/FKBP12 (FK-binding protein 12) [54]. It has been shown that rapamycin treatment lowered Aβ and MAPT levels, and rescued memory deficits in multiple AD animal models including 3XTg, P301S MAPT, and hAPP(J20) mice [125,136,152,153]. Rapamycin treatment also improved vascular and metabolic deficits in apolipoprotein E4 transgenic mice with pre-symptomatic AD though whether this effect was attributed to autophagy induction remains unclear [155]. However, chronic rapamycin treatment induces certain side effects such as glucose intolerance and hyperlipidemia, which may be due to its effects on inhibiting mTORC2. In addition, the anti-AD effect of rapamycin may also be involved in other pathways since rapamycin is a non-autophagy-specific compound. As such, more specific mTORC1 inhibitors, rapamycin paralogues, have been developed. Among them, everolimus and temsirolimus show improved effects, which have been approved by FDA for treating tuberosclerosis and renal cell carcinoma, respectively [55]. Interestingly, everolimus is more stable than rapamycin in mice brains [156]. Everolimus inhibits mTOR in animal brains, reduces Aβ and tau levels, and improves cognitive deficiency in 3XTg transgenic AD mice [156]. Temsirolimus has also been shown to induce autophagy by inhibiting mTOR in mice brains, which may contribute to its roles in reducing Aβ and MAPT, and improving motor deficit in multiple AD mice including APP/PS1 [147], P301S [150], and Tg30 mice [157]. These findings demonstrate that everolimus and temsirolimus may be promising anti-AD candidates. In addition, an antihistamine drug latrepirdine (Dimebon) has also been demonstrated to activate autophagy via mTOR inhibition though it has multiple targets [148,161]. In TgCRND8 transgenic AD mice, latrepirdine was shown to improve cognitive impairment and Aβ neuropathology as well as restore autophagy impairment [160,161].

6.2. AMPK activators

Apart from mTOR inhibition, activating AMPK is another important way to induce autophagy. Multiple small molecules activation of AMPK such as metformin, resveratrol, and berberine [162] exert neuroprotective effects in AD animal models via autophagy induction. Metformin is the first-class anti-diabetic drug that can activate AMPK, and it has been demonstrated to exert neuroprotective effects in AD animal models including SAMP8 and APP/PS1 mice [163]. Metformin treatment also improved memory deficiency, reduced Aβ plaque loading and ptau levels in several AD animal models [164,165]. However, whether this neuroprotective effect depends on metformin-mediated autophagy induction via activating AMPK is unclear and its role in AD is controversial as a study also showed that metformin exaggerated AD pathology in P301S MAPT mice [166]. Future in-depth studies on exploring the effects and underlying mechanisms of metformin in AD are highly desired. Notably, metformin is a non-autophagy specific compound, and thus its beneficial effects in AD could also be partially attributed to other pathways. Resveratrol (3,5,4′-tri-hydroxystilbene), a natural polyphenol widely distributed in edible food including wide wine, peanut, blueberries, and grapes, is a caloric mimic that has multiple biological activities [167]. It is an AMPK activator and directs binds to and activates SIRT1 to induce autophagy [167]. In the APP/PS1 transgenic AD mice, resveratrol has been shown to activate AMPK and reduce Aβ levels [168], suggesting a potential autophagy dependent neuroprotective effects of resveratrol. Notably, though resveratrol is an autophagy enhancer, autophagy-independent neuroprotective effects in AD animal models have also been reported, including anti-inflammation, anti-oxidant, and promoting non-amylogenic APP processing [169]. Berberine is widely distributed in botanical medical plants including Coptis chinensis and Hydrastis canadensis [170]. Berberine has multiple biological activities including metabolic anti-diabetes and anti-hypercholesteroeloma, which may contribute to its effects on activation of AMPK [170,171]. In AD, berberine improved spatial learning capacity and memory retention, induced autophagy, and promoted the degradation of Aβ, APP, and aggregated MAPT levels in the 3XTg mice [172,173]. These findings demonstrate that multiple AMPK-dependent autophagy enhancers have neuroprotective effects in AD animal models.

6.3. TFEB activators

As aforementioned, upon activation, TFEB induces the expression of multiple autophagy- and lysosomal-related genes [114,174]. Genetic overexpression of TFEB alleviates AD disease progression via promoting both Aβ and MAPT degradation through the autophagy—lysosomal pathway in multiple AD animal models [118,175–177]. Additionally, the impairment of
Impairment of the autophagy—lysosomal pathway has been implicated in the pathogenesis of AD, further indicating that upregulation of TFEB to enhance autophagy and lysosomal biogenesis, thereby degradation of both Aβ and MAPT at the same time serves as a promising therapeutic strategy for AD treatment. For instance, multiple TFEB activators have been identified to exert neuroprotective effects in AD animal models. Trehalose is a natural disaccharide that is commonly used as a preservative, humectant, and nutraceutical. Trehalose was reported to activate TFEB-mediated autophagy and lysosomal biogenesis. It has been shown that trehalose alleviated AD pathology by reducing Aβ contents and attenuating the impaired cognitive and learning ability in multiple animal models. Curcumin and its analogues have been reported to activates TFEB-mediated autophagy and lysosomal biogenesis. Curcumin analogue C1 was reported to activate TFEB-mediated autophagy and lysosome biogenesis independent of mTORC1 inhibition. C1 further attenuated both Aβ and MAPT pathology in 5XFAD, 3XTg and F301S MAPT mice by activation of TFEB. HEP14 (5β-O-angelate-20-deoxyingenol) was demonstrated to bind to and activated PKCα and PKCδ, which inactivated GSK3β/GSK3β and facilitated TFEB dephosphorylation and activation. Importantly, HEP14-mediated TFEB activation alleviates Aβ plaques in the brain of APP/PS1 mice. TFEB can be transcriptionally upregulated by PPARα activation. Several small molecules such as aspirin, gemfibrozil, Wy14643, and cinnamic acid were reported to enhance TFEB-mediated autophagy and lysosomal biogenesis by activation of PPARα. Gypenoside XVII is a major saponin in ginseng, which was reported to activate TFEB-mediated autophagy and lysosome biogenesis though the underlying mechanism is not fully understood. Interestingly, gypenoside XVII not only improved spatial learning and memory deficits but also reduced Aβ plaques in APP/PS1 mice, which may be related to its role in promoting TFEB-mediated autophagy and lysosomal biogenesis. Ouabain, a cardiac glycoside, was identified as a TFEB activator by high throughput screening. This compound was further demonstrated to enhance TFEB-mediated autophagy—lysosomal pathway by inhibiting mTOR, and reducing phosphorylated MAPT in transgenic AD flies and P301S transgenic mice. Several other small molecule TFEB activators such as fisetin and flubendazole have also been shown to reduce phosphorylated MAPT in AD cell lines, future studies are required to test their effects in AD animal models. Collectively, these results suggest that pharmacological activation of TFEB by small molecules may represent a novel strategy to treat AD.

6.4. Restoration of lysosomal functions

Impairment of lysosome functions has been implicated in AD pathogenesis and thus directly restoring lysosomal functions has recently emerged as a promising strategy for AD treatment. Notably, PLGA-aNP (acidic nanoparticles of poly[DL-lactide-co-glycolide]) lowered lysosomal pH, and restores lysosomal function in multiple cell models of neurodegenerative diseases associated with lysosomal dysfunction. Importantly, PLGA-aNP restores lysosomal functions and protects Aβ-induced toxicity in neurons, indicating the therapeutic potential of restoring lysosomal functions by PLGA-aNP in AD. Recently, the impairment of ER (endoplasmic reticulum)-to-lysosome delivery of H+ exchange transporter chloride channel-7 (CIC-7) has been reported to play critical roles in PSEN1 deficiency and mutation cells with elevated lysosomal pH.
Compound	Mechanism of action	Drug target	AD animal model	Main effects	Ref.
Rapamycin	mTORC1 inhibition	FKBP12	3XTg	Improved cognitive deficits and ameliorated Aβ and MAPT pathology	153,216
			P301L MAPT	Inhibited MAPT-induced neuronal loss, synaptotoxicity, and neuroinflammation	
				Reduced cortical MAPT tangles, lowered hyperphosphorylation and insoluble MAPT levels	
Everolimus	mTORC1 inhibition	FKBP12	3XTg	Reduced Aβ and MAPT levels, attenuated cognitive deficit	156
Temsirolimus	mTORC1 inhibition	mTOR	APP/PS1	Reduced Aβ levels, induced autophagy, inhibited neuron apoptosis, and improved spatial cognitive functions	157
			P301S	Lowered hyperphosphorylation MAPT levels, rescued spatial learning and memory impairment	158
			Tg30	Increased autophagy, reduced phosphorylated MAPT levels and neurofibrillary tangles	159
Latrepirdine	mTORC1 inhibition	Unknown	TgCRND8	Improved memory decline and reduced Aβ plaque	161
Metformin	AMPK activation	AMPK	SAMP8	Improved learning and memory, decreased Aβ and phosphorylated MAPT	164
Resveratrol	AMPK activation	SIRT1	APP/PS1	Activated AMPK and reduced brain Aβ levels	168
Berberine	AMPK activation	Unknown?	3XTg	Improved spatial learning capacity and memory retention, induced autophagy and reduced Aβ, APP, and MAPT levels	172,173
Trehalose	TFEB activation	unknown	APP/PS1	Reduced Aβ deposit in hippocampus, and alleviated cognitive and learning ability	181
				Improved learning and memory	
C1 (Curcumin	TFEB activation	TFEB	Tg2576	Increased autophagy and lysosome biogenesis, improved learning and memory, decrease Aβ and phosphorylated MAPT	182,183
analogue)			5XFAD, 3XTg, P301S	Activated TFEB, ameliorated Aβ plaque formation	
HEP14 (5β-O-	TFEB activation	PKC	APP/PS1	Decreased amyloid plaque pathology in a PPARα dependent manner	190
angelate-20-deoxyingenol)					
Aspirin	TFEB activation	PPARα	5XFAD	Decreased amyloid plaque pathology in a PPARα dependent manner	190
Gemfibrozil, Wy14643	TFEB activation	PPARα	APP-PSEN1ΔE9	Rescued cognitive and anxiety symptoms, reduced Aβ levels	188
Cinnamic acid	TFEB activation	PPARα	5XFAD	Reduced Aβ plaque burden, improved memory	189
Gyipenoside XVII	TFEB activation	Unknown	APP/PS1	Improved spatial learning and memory deficits, reduced Aβ plaque formation	191
Ouabain	TFEB activation	Unknown	P301S transgenic AD flies and mice	Improved memory impairment and reduced phosphorylated MAPT	192
levels. Interestingly, β2-adrenergic agonists such as isoproterenol could restore lysosomal CLCN7/CIC-7 (chloride voltage-gated channel 7) levels and subsequent lysosome acidification in PSEN1 deficient cells. Activation of β2-adrenergic by clenbuterol could improve memory deficits in APP/PS1 mouse model of AD, though whether the underlying mechanism is related to the restoration of lysosomal PH is unclear. Overall, these studies underscore the potential of directly correcting lysosomal acidification deficits for therapy in AD and possibly in other autophagy-related neurodegenerative diseases.

6.5. Other autophagy enhancers

In addition to modulating canonical signaling pathways such as mTOR and AMPK for autophagy induction, a variety of other small molecules have also been implicated in inducing autophagy in an mTOR- and AMPK-independent manner. Among them, lithium chloride (LiCl), a drug for treating mental illnesses including bipolar disorder, has been shown to activate autophagy by inhibition of inositol monophosphatase (IMPase), which reduces free inositol and IP3 (myo-inositol-1,4,5-triphosphate) levels to induce autophagy. In multiple animal models of AD, lithium chloride has been shown to exert neuroprotective effects. For instance, lithium chloride treatment was reported to improve cognitive impairment and promote clearance of Aβ in APP/PS1 mice. In mice overexpressing FTD17 (frontotemporal dementia and parkinsonism linked to chromosome 17) MAPT and GSK3β, lithium chloride treatment inhibited MAPT hyperphosphorylation and NFTs formation, suggesting that lithium chloride could also reduce phosphorylated MAPT levels. However, apart from autophagy induction, we cannot exclude other mechanisms that contribute to its neuroprotective effects, such as lithium chloride-mediated inhibition of GSK3β and Aβ aggregation formation. Another mood-stabilizing drug carbamazepine has also been reported to induce autophagy via reducing inositol levels. In the APP/PS1 mice, carbamazepine induced autophagy, improved spatial learning and memory deficits, reduced Aβ levels.

As mentioned above, defective mitophagy is linked to AD pathogenesis, and several small molecule mitophagy activators were shown to effectively improve memory deficits in AD mouse model. Induction of mitophagy by NAD+ precursor (e.g., nicotinamide mononucleotide) alleviated cognitive decline in C. elegans models of AD. In the APP/PS1 mice, induction of mitophagy by urolitin A (UA) was shown to remove Aβ plaques, alleviate neurinflammation and memory dysfunction. In 3XTg mice, urolitin A was also shown to alleviate tau pathology and improve cognitive deficits. These results indicated that mitophagy inducers such as NAD+ precursor and UA are promising anti-AD agents.

Table 3 (continued)

Compound	Mechanism of action	Drug target	AD animal model	Main effects	Ref.
Lithium chloride (LiCl)	mTORC1-independend (inositol depletion)	IMPase	APP/PS1	Improved cognitive impairment and promoted the clearance of Aβ; Prevented MAPT hyperphosphorylation and NFT formation	202
NAD+ precursor nicotinamide mononucleotide	Mitophagy inducer	NAD	FTDP-17 MAPT mice C. elegans	Induced neuronal mitophagy and alleviated cognitive decline	203
UA	Mitophagy inducer	Unclear	APP/PS1; 3XTg	Induction of mitophagy, reduce Aβ in APP/PS1 mice and alleviated p-tau in 3XTg mice, improve memory deficiency in these two mouse models	104
Carbamazepine	mTORC1-independent (inositol depletion)	Unkown	APP/PS1	Improved spatial learning and memory deficits, and reduced Aβ plaque formation	206
PD146176	mTORC1-independent	12/15-Lipoxygenase inhibition	3XTg	Improved cognitive impairment, alleviated both Aβ and MAPT pathology	209
peptide Tat-beclin 1, was identified to activate autophagy both \textit{in vitro} and \textit{in vivo} and improve phenotypes of proximal and distal defects of the urea cycle in mice \cite{214, 215}, though its effects in AD animal models are unclear. Overall, these results demonstrate that autophagy enhancers independent of AMPK and mTOR may also represent novel anti-AD candidates.

Collectively, multiple strategies can enhance autophagy by small molecules mediated regulation of various pathways including activation of AMPK, inhibition of mTOR, activation TFEB, or direct restore lysosomal functions to enhance autophagy, which has shown promising results in AD animal models (Fig. 5). However, it should be noted that the most above-mentioned autophagy activators have off-target effects. Therefore, whether autophagy indeed contributes to the neuroprotective effects still need further clarified in the future.

7. Clinical trials of autophagy enhancers for AD treatment

Notably, a variety of above-mentioned small molecule autophagy activators have been conducted or being tested for their efficacy in AD patients (Table 4). For instance, one of the most comprehensive investigated autophagy enhancers lithium was shown to exert potential beneficial effects on cognitive deficiency in patients with MCI (amnestic mild cognitive impairment, NCT01055392). In this study, patients with MCI received lithium or placebo for 2 years, and a followed-up study for an additional 2-years. This study showed that the placebo control group showed a mild but significantly cognitive decline as reflected by total ADAS-Cog (The Alzheimer’s Disease Assessment Scale—Cognitive Subscale) and CDR-SoB (the Clinical Dementia Rating scale) scores, but the lithium treatment group remain stably over 24 months \cite{217}. Lithium treatment resulted in a significant increase in CSF A\textsubscript{b} contents \cite{217}. These results indicate that lithium may be a potentially effective drug for MCI-AD patients. A phase IV clinical trial for investigating the effects of lithium in preventing cognition impairment in the elderly is being tested (NCT03185208).

Metformin is a classical anti-diabetic drug that activates AMPK. Pilot studies\cite{218, 219} have shown that the classical anti-diabetic agent metformin is a safe, well-tolerated agent, which attenuated certain cognitive decline (e.g., reminding Test in the ADAS-Cog) in AD patients. However, its anti-AD effects are being tested on a relatively large-scale phase II/III trial (estimated to recruit 370 patients) (NCT04098666).

Although multiple studies in animal models showed that latrepirdine had anti-AD effect, and an initial 6-month phase II clinical study reported that latrepirdine improved cognitive dysfunction compared with placebo control\cite{220}, later studies conducted by Pfizer and Medivation found that this drug failed to improve cognitive deficit and further study was terminated.

Figure 5 Strategies targeting the autophagy—lysosomal pathway for potential AD treatment. Targeting of upstream autophagy signaling such as (1) activation of AMPK (metformin, resveratrol, berberine) or (2) inhibition of MTORC1 (rapamycin, everolimus, temsirolimus, latrepirdine) can promote autophagosomes formation (3) Small molecules that activate TFEB (e.g., curcumin analogue C1, HEP14, aspirin, gemfibrozil, Wy14643, cinnamic acid, and gypenoside XVII). Not only promote autophagy flux but also enhance lysosome functions, which may represent promising anti-AD agents. (4) Strategies through direct enhancing lysosomal functions including inhibition of CIC-7 transporter (\beta-adrenergic agonists: isoproterenol, clenbuterol) and acid nanoparticles. Importantly, above mentioned small molecule autophagy enhancers have been shown to reduce A\textsubscript{b} and/or MAPT/tau aggregates and alleviate memory deficiency in AD animal models, and some of them (e.g., metformin) have shown promising results in clinical trials.
The failure of this drug for treating AD may be due to latrepirdine having multiple functions unrelated to autophagy, which include blocking L-type calcium channels. Rapamycin has been well-studied in inducing autophagy and it has neuroprotective effects in multiple AD animal models. However, the clinical trial aiming at investigating its safety, and feasibility for patients at an early stage of AD has just started recently (NCT04629495). Notably, lithium, metformin, and rapamycin were reported to be safe in humans, and they are currently used for other diseases, further strengthening their feasibility for treating AD. Furthermore, other autophagy enhancers, such as diet-enriched natural small molecule resveratrol, were investigated for their anti-AD effects in humans.

It has been shown that 52-week resveratrol treatment (500 mg orally once daily) significantly reduced CSF MMP9 (matrix

Table 4
Clinical trials of autophagy enhancers in AD.

Agent	ClinicalTrials.gov NCT number	Trial title	Phase	Year	No. of subject	Results (if applicable)
Lithium	NCT01055392	Disease-modifying properties of lithium in the neurobiology of Alzheimer’s disease	II	2007/2011	61	Lithium improved cognitive and functional decline after 24 months treatment, and increased CSF’s Aβ1-42 contents after 36 months treatment
	NCT02129348	Treatment of psychosis and agitation in Alzheimer’s disease	II	2014/2020	77	N/A
	NCT03185208	Lithium as a treatment to prevent impairment of cognition in elders (LATTICE)	IV	2017/2023	80	N/A
Rapamycin	NCT04629495	Rapamycin — effects on Alzheimer’s and cognitive health (REACH)	II	2021/2023	40 (estimated)	N/A
Latrepirdine	NCT00377715	Double-blind, placebo-controlled study of oral dimebon in subjects with mild to moderate Alzheimer’s disease	II	2005/2006	183	Benefits in ADAS-cog compared with control
	NCT00838110	A Phase 3 study to evaluate the safety and tolerability of dimebon patients with mild to moderate Alzheimer’s disease	III	2009/2010	742	Did not significantly improve ADAS-cog and CIBIC-plus
	NCT00912288	Phase 3 efficacy study of dimebon in patients with moderate to severe Alzheimer’s disease	III	2009/2010	86	This study was terminated due to the lack of efficacy of NCT00838110
Metformin	NCT01965756	Effect of insulin sensitizer metformin on AD biomarkers	II	2013/2015	20	Metformin can penetrate into brain is safe, well-tolerated; metformin had a trend in the improvement of learning/memory and attention
	NCT00620191	Metformin in amnestic mild cognitive impairment (MCI)	II	2008/2012	80	Metformin improved the total recall of the selective reminding test in the ADAS-Cog, after adjusting for the baseline
	NCT04098666	Metformin in Alzheimer’s dementia prevention (MAP)	II/III	2021/2015	370 (estimated)	N/A
Resveratrol	NCT01504854	Resveratrol for Alzheimer’s disease	II	2012/2014	119	Reduced CSF MMP9 and Aβ levels, but not MAPT levels; attenuated declines in (MMSE) mini-mental status examination scores
	NCT00678431	Randomized trial of a nutritional supplement in Alzheimer’s disease	III	2008/2010	39	Low-dose resveratrol is safe and well tolerated, its effect on AD remains uncertain
Trehalose	NCT04663854	Mycose administration for Healing Alzheimer neuropathy (MASHIANE)	I	2020/2022	20 (estimated)	N/A
metallopeptidase 9) levels and modulated neuroinflammation221. Resveratrol attenuated the declines in CSF Aβ contents but did not affect CSF MAPT levels. Though, resveratrol also slowed the decline in MMSE (mini-mental status examination) scores221, large scale studies are still required to further confirm its effects in improving cognitive and function in AD patients. A disaccharide trehalose was reported to activate TFEB-mediated autophagy and lysosome biogenesis and showed neuroproective effects in multiple AD animal models, which are being tested for its anti-AD effects.

Overall, clinical trials have shown that autophagy enhancers hold great promise for developing novel anti-AD agents. However, since most of autophagy enhancers have multiple targets, further examination of the participant’s expression levels of autophagic markers and their regulators will provide novel insight into the autophagy enhancers in AD therapy. For instance, resveratrol has multiple biological activities including anti-inflammation apart from its role in activating autophagy. As aforementioned, a clinical trial showed that it can induce adaptive immunity in AD patients221. Whether its anti-AD effects in human are related to autophagy remain elusive.

8. Conclusions and perspectives

Here, we have highlighted how pathogenic and genetic deficits contribute to the impairment of autophagy lysosome function and their link to AD pathogenesis, and illustrated the potential therapeutic potential of autophagy enhancers in AD animal models and humans. We argue that induction of autophagy may be an effective way to develop novel disease-modifying agents for AD. Specifically, impairment of autophagy—lysosomal pathway is mainly responsible for the accumulation of Aβ and NFTs, two hallmarks of AD. Thus, in terms of therapeutic intervention, the concept that induction of autophagy to remove Aβ and MAPT aggregates has been supposed to be an effective way to treat AD by targeting its roots causes. In addition, ageing is a major leading factor for the pathogenesis of multiple chronic diseases including AD222,223. Thus, understanding the underlying mechanisms of ageing will provide novel information on AD pathogenesis and therapeutic targets. Accumulating evidence indicates that compromised autophagy is a hallmark of ageing, and autophagy plays critical role in modulating inflammation, ageing, and ageing-associated neurodegenerative diseases222,223. Induction of autophagy has shown promising beneficial effects in extending lifespan and alleviating ageing-associated disease including AD in lab animal models162,223. Future studies aiming at fully understanding the intricate relationships among autophagy, ageing, and AD will eventually facilitate the development of novel agents (e.g., autophagy enhancers) for treating AD. Importantly, autophagy is a pro-survival pathway that can reduce neuron death associated with neurodegeneration in AD. To this end, a variety of autophagy enhancers have been reported to exert beneficial effects in multiple AD animal models, and clinical trials.

However, the specific target of autophagy intervention in AD might be considered. Given that impairment of autophagosome maturation has been found in AD, and broad autophagy enhancers targeting upstream signaling pathways including mTOR and/or AMPK may lead to unexpected accumulation of autophagosomes, which might result in toxic effects, making it unsuitable for long-term use for AD treatment. In addition, the side effects of long-term mTOR inhibition should be considered since mTOR plays an important role in regulating synaptic plasticity, memory formation and retention in neurons224. The immunosuppressive effects of mTOR inhibitors such as rapamycin should also be considered. These issues can be avoided by using mTOR-independent autophagy enhancers targeting the whole autophagy process (e.g., activating TFEB as aforementioned) or directly increasing lysosome functions. Similarly, the time point for intervening autophagy in AD might be a critical consideration. It has been shown that Aβ and tau are formed much earlier than the impairment of memory in AD patients225, thus autophagy-based drugs before rather than after the onset of pathology may be more effective. Indeed, beneficial effects would be gained if autophagy is induced by rapamycin before, rather than after the formation of Aβ plaques and NFTs in 3XTg mice225. Therefore, future studies aiming at better understanding the dynamics of autophagy process and the exact mechanisms underlying the impairment of AD in different AD stages will also provide novel insight into the designing of specifically tailored autophagy enhancers for AD treatment. Finally, the vast majority of current studies mainly focus on investigating the roles of autophagy enhancers in neurons of AD. The function of autophagy in glia cells is so far unclear in AD. Given that autophagy also plays critical role in regulating inflammation and most autophagy enhancers also induce autophagy in glia cells, understanding the crosstalk between neurons and glia cells and their roles in AD upon autophagy induction is a critical issue for future studies. Further characterization of the roles of impairment of autophagy lysosomes in different AD stages and genetic and molecular subtypes of AD may provide new avenues for the discovery of novel therapeutic agents. Moreover, since most of the drugs may have off-target effects, developing innovative assays to detect dynamic autophagy flux in animals/humans to monitor the therapeutic efficacy of autophagy enhancers is highly desired both for animal models and clinical studies. Overall, we believe that targeting autophagy will yield novel therapeutic agents for AD though much work is still needed.

Acknowledgments

We apologize to colleagues whose work could not be cited due to space limitations. We acknowledge the funding supports from the National Natural Science Foundation of China (82003721, 82071193, 32170774 and 32000673), Shenzhen Science and Technology Innovation Commission (JCYJ20210324114014039, China), China Postdoctoral Science Foundation (2020M683182), and Guangdong Basic and Applied Basic Research Foundation (2020A1515110549, China).

Author contributions

Conceptualization: Chuanbin Yang, Jigang Wang, and Han-Ming Shen. First draft prepared by Wei Zhang, reviewed and edited by Wei Zhang, Chengchao Xu, Jichao Sun, Han-Ming Shen, Jigang Wang, and Chuanbin Yang. All authors have approved the final version of the article.

Conflicts of interest

The authors declare no conflicts of interest.
1. Kern S, Zetterberg H, Kern J, Zettergren A, Waern M, Höglund K, et al. Prevalence of preclinical Alzheimer disease: comparison of current classification systems. Neurology 2018; 89:e1682–91.

2. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 2007; 120:4081–91.

3. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 16:391–460.

4. Fang EF, Xie C, Schenkel JA, Wu C, Long Q, Cui H, et al. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev 2020; 64:101174.

5. Li Kanglan, Shouchao Liu, Zhou Hu, Li. TAN Shiting, MAI Yingren. The prevalence of Alzheimer’s disease in China: a systematic review and meta-analysis. Iran J Public Health 2019; 48:1615–26.

6. Lu Y, Liu C, Yu D, Fawkes S, Ma J, Zhang M, et al. Prevalence of mild cognitive impairment in community-dwelling Chinese populations aged over 55 years: a meta-analysis and systematic review. BMC Geriatr 2021; 21:10.

7. Scheltema P, Blenno K, Breeteler MM, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet 2016; 388:505–17.

8. Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, et al. Current and emerging avenues for Alzheimer’s disease drug targets. J Intern Med 2019; 286:398–417.

9. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 2017; 93:1015–34.

10. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Autophagy 2014; 10:92–104.

11. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Bohr VA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 2021; 17:1–382.

12. Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res 2014; 24:42–57.

13. Sun J, Roy S. The physical approximation of APP and BACE-1: a mechanism and mediates the association of APP-CTFs with active form of RAB7 oligomer and promotes α-cleavage. Nat Commun 2019; 10:53.

14. Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci 2021; 24:297–311.

15. Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci 2021; 24:297–311.

16. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15:40.

17. Weller J, Hudson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 2018:7:1161.

18. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10:698–712.

19. Benilova I, Karran E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 2012; 15:349–57.

20. Bakota L, Brandt R. Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 2016; 76:301–13.

21. Medeiros R, Baglietto-Vargas D, LaFerla FM. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 2011; 17:514–24.

22. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 2009; 118:53–69.

23. Tracy TE, Sohn PD, Minami SS, Wang C, Min SW, Li Y, et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron 2016; 90:245–60.

24. Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 2015; 21:1154–62.

25. Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 2020; 23:1183–93.

26. Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71:505–8.

27. Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, et al. Role of amyloid-β and tau proteins in Alzheimer’s disease: confuting the amyloid cascade. J Alzheimers Dis 2018; 64:861–31.
lyosomal function in response to histone deacetylase inhibitors. Autophagy 2018;14:1043–59.
48. Wang Y, Huang Y, Liu J, Zhang J, Xu M, You Z, et al. Acetyltransferase GCN5 regulates autophagy and lysosome biogenesis by targeting TFEB. EMBO Rep 2020;21:e48335.
49. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 2015;11:867–80.
50. Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016;539:187–96.
51. Cacace R, Sleezers K, Van Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016;12:753–48.
52. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010;141:1146–58.
53. Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, et al. Presenilin 1 maintains lysosomal Ca2+ homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 2015;12:1340–44.
54. Reddy K, Cusack CL, Nnah IC, Khayati K, Saqenca C, Huynh TB, et al. Dysregulation of nutrient sensing and CLEARance in presenilin deficiency. Cell Rep 2016;14:2166–79.
55. Fedeli C, Filadi R, Rossi A, Mammucari C, Pizzo P. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca2+ homeostasis. Autophagy 2019;15:2044–62.
56. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015;77:43–51.
57. Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets. Science 2020;370:61–6.
58. Jun C, Nog AC, Beecham GW, Wang LS, Buros J, Gallins PJ, et al. Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 2010;67:1473–84.
59. Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, et al. Clathrin adaptor CALM/PICALM is associated with neurobrillary tangles and is cleaved in Alzheimer’s brains. Proc Natl Acad Sci U S A 2013;110:17071–6.
60. Moreau K, Fleming A, Iamariso S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, et al. PICALM modulates autophagy activity and tau accumulation. Nat Commun 2014;5:4998.
61. Ando K, De Decker R, Vergara C, Yilmaz M, Mansour S, Suain V, et al. Picalm reduction exacerbates tau pathology in a murine tauopathy model. Acta Neuropathol 2020;139:773–89.
62. Saído T, Leissring MA. Proteolytic degradation of amyloid-β-protein. Cold Spring Harb Perspect Med 2012;2:a006579.
63. Papassotiropoulos A, Bagli M, Kurz A, Kornhuber J, Förstl H, Maier W, et al. A genetic variation of cathepsin D is a major risk factor for Alzheimer’s disease. Ann Neurol 2000;47:399–403.
64. Schuur M, Ikram MA, van Swieten JC, Isaacs A, Vergeer-Drop JM, Hofman A, et al. Cathepsin D gene and the risk of Alzheimer’s disease: a population-based study and meta-analysis. Neurobiol Aging 2011;32:1607–14.
65. Ntis C, Polycarpou A, Ioannidis JP. Meta-analysis of the association of the cathepsin D Ala224Val gene polymorphism with the risk of Alzheimer’s disease: a HuGE gene-disease association review. Am J Epidemiol 2004;159:527–36.
66. Gavin AL, Huang D, Huber C, Mahtessian A, Tartif V, Skog PD, et al. PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nat Immunol 2018;19:942–53.
67. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 2014;505:550–4.
68. Tan MS, Zhu JX, Cao XP, Yu JT, Tan L. Rare variants in PLD3 increase risk for Alzheimer’s disease in Han Chinese. J Alzheimers Dis 2018;64:55–9.
69. Sato J, Kino Y, Yamamoto Y, Kawana N, Ishida T, Saito Y, et al. PLD3 is accumulated on neuritic plaques in Alzheimer’s disease brains. Alzheimers Res Ther 2014;6:70.
70. Tan M, Li J, Ma F, Zhang X, Zhao Q, Cao X. PLD3 rare variants identified in late-onset Alzheimer’s disease affect amyloid-β levels in cellular model. Front Neurosci 2019;13:116.
71. Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K, et al. Family-based association between Alzheimer’s disease variants and in UBQLN1. N Engl J Med 2005;352:884–94.
72. Stierer ES, El Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, et al. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. J Biol Chem 2011;286:35689–98.
73. El Ayadi A, Stierer ES, Barral JM, Boehning D, Ubiquilin-1 and protein quality control in Alzheimer disease. Prion 2013;7:164–9.
74. N’Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown EJ. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep 2009;10:173–9.
75. Perry D, Lehmann M, Yokoyama JS, Karydas A, Lee JJ, Coppola G, et al. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol 2013;70:774–8.
76. Root J, Merino P, Nuckols A, Johnson M, Kakar T. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021;154:105360.
77. Hung C, Tuck E, Stubbs V, van der Lee SJ, Aalfs C, van Spaendonk R, et al. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome–autophagy network. Cell Rep 2021;35:109259.
78. Campion D, Charbonnier C, Nicolas G. SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data. Acta Neuropathol 2019;138:173–86.
79. Dodson SE, Andersen OM, Karmali V, Fritz JJ, Cheng D, Peng J, et al. Loss of LR11/SORLA enhances early pathology in a model of amyloidosis: evidence for a proximal role in Alzheimer’s disease. J Neurosci 2008;28:12877–86.
80. Koltai T. Clusterin: a key player in cancer chemoresistance and its inhibition. OncoTargets Ther 2014;7:447–56.
81. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009;41:1088–93.
82. Lambert JC, Heath S, Even G, Campion D, Sleezers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009;41:1094–9.
83. Foster EM, Danila-Valles A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci 2019;13:164.
84. Zhang F, Komano M, Beraldin E, Fazli L, Du C, Moore S, et al. Clusterin facilitates stress-induced lipidation of LC3 and autophagosome biogenesis to enhance cancer cell survival. Nat Commun 2014;5:5775.
85. Gao S, Casey AE, Sargeant TJ, Mäkinen VP. Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain 2018;141:2711–20.
Impairment of the autophagy–lysosomal pathway in Alzheimer’s diseases

87. Sun YX, Ji X, Mao X, Xie L, Jiao J, Galvan V, et al. Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer’s disease. *Alzheimers Dis* 2014;38:437–44.

88. An WL, Cowburn RF, Li L, Braak H, Alafuozzi I, Iqbal K, et al. Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. *Am J Pathol* 2003;163:591–607.

89. Pickford F, Masilah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. *J Clin Invest* 2008;118:2190–9.

90. Lachance V, Wang Q, Sweet E, Choi I, Cai CZ, Zhuang XX, et al. Autophagy protein NRB2F has reduced expression in Alzheimer’s brains and modulates memory and amyloid-beta homeostasis in mice. *Mol Neurodegener* 2019;14:43.

91. Yang C, Cai CZ, Song JX, Tan JQ, Durairajan SK, Iyaswamy A, et al. NRB2F is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. *Autophagy* 2017;13:2028–40.

92. Salminen A, Kaurniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, et al. Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of beclin 1 interactome. *Prog Neurobiol* 2013;106:33–54.

93. Nixon RA, Wiegell R, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. *J Neuropath Exp Neurol* 2005;64:113–22.

94. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, et al. Macroutaphagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. *J Cell Biol* 2005;171:87–98.

95. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. *Acta Neuro-pathol* 2012;123:53–70.

96. Piras A, Collin L, Grüninger F, Griff C, Rönnbäck A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. *Acta Neuropathol Commun* 2016;4:22.

97. Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal–lysosomal pathways: roles in pathogenesis of down syndrome and Alzheimer’s disease. *Free Radic Biol Med* 2018;114:40–51.

98. Torres M, Jimenez S, Sanchez-Varo R, Navarro V, Trujillo-Estrada L, Sanchez-Mejias E, et al. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. *Mol Neurodegener* 2012;7:59.

99. Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J, et al. Macroautophagy and regulates the NLRP3 inflammasome. *Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study*. *J Neuropath Exp Neurol* 2011;60:837–54.

100. Yin XM, Ding WX. Mitochondrial dynamics and mitochondrial quality control. *Redox Biol* 2015;4:6–13.

101. Wang C, Yu JT, Miao D, Wu ZC, Tan MS, Tan L. Targeting the mTOR signaling network for Alzheimer’s disease therapy. *Front Neurosci* 2011;5:1934–42.

102. Ji XR, Cheng KC, Chen YR, Lin TY, Cheung CHA, Wu CL, et al. Dysfunction of different cellular degradation pathways contributes to specific beta-amyloid42-induced pathologies. *Front Biosci (Schol Ed)* 2012;4:941–52.

103. Pei JJ, Hugon J. mTOR-dependent signalling in Alzheimer’s disease. *Front Cell Dev Biol* 2020;8:299.

104. Wang L, Wang J, Yang B, et al. Novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1/parkin-mediated mitophagy. *Cell Res* 2018;28:787–802.

105. Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. *Curr Biol* 2018;28:R170–85.

106. Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, et al. Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. *Hum Mol Genet* 2018;27:2502–16.

107. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. *J Neurosci* 2015;35:12317–51.

108. Tian Y, Bustos V, Flajolet M, Greengard P. A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. *FASEB J* 2011;25:1934–42.

109. Oddo S. The role of mTOR signaling in Alzheimer disease. *Front Biosci (Schol Ed)* 2012;4:941–52.

110. Pei JJ, Hugon J. mTOR-dependent signalling in Alzheimer’s disease. *J Cell Mol Med* 2008;12:2525–32.

111. Caccamo A, De Pinto V, Messina A, Branca C, Oddo S. Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. *J Neurosci* 2014;34:798–98.

112. Wang C, Yu JT, Miao D, Wu ZC, Tan MS, Tan L. Targeting the mTOR signaling network for Alzheimer’s disease therapy. *Mol Neurobiol* 2014;49:120–35.

113. Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. *PLoS One* 2010;5:e9979.
126. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. *Eur J Neurosci* 2008;27:1119–30.

127. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, et al. Tau fragmentation, aggregation, and clearance: the dual role of lysosomal processing. *Hum Mol Genet* 2009;18:4153–70.

128. Ji C, Tang M, Zeidler C, Höhfeld J, Johnson GV, BAG3 and SYNYO (synaptopodin) facilitate phospho-MAPT/TAU degradation via autophagy in neuronal processes. *Autophagy* 2019;15:1199–213.

129. Zhu M, Zhang S, Tian X, Wu C. Mask mitigates MAPT- and FUS-induced degeneration by enhancing autophagy through lysosomal acidification. *Autophagy* 2017;13:1924–38.

130. Khurana V, Elson-Schwab I, Fulga TA, Sharp KA, Loewen CA, Mulkarnin E, et al. Lysosomal dysfunction promotes clearance and neurotoxicity of tau in vivo. *PLoS Genet* 2010;6:e1001026.

131. Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. *Biochem Soc Trans* 2012;40:644–52.

132. Caballero B, Wang Y, Diaz A, Tasset I, Juste YR, Stillier B, et al. Interplay of pathogenic forms of human tau with different autophagic pathways. *Aging Cell* 2018;17:e12692.

133. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. *Nat Commun* 2014;5:3496.

134. Caballero B, Bourdoux M, Luengo E, Diaz A, Sohn PD, Chen X, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. *Nat Commun* 2011;2:2238.

135. Lim J, Yue Z. Neuronal aggregates: formation, clearance, and spreading. *Dev Cell* 2015;32:491–501.

136. Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, et al. Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. *PLoS One* 2013;8:e62459.

137. Cai Z, Yan LJ. Rapamycin, autophagy, and Alzheimer’s disease. *J Biochem Pharmacol Res* 2013;1:84–90.

138. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, et al. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. *EMBO Mol Med* 2014;6:1142–60.

139. Lauritzen I, Pardossi-Fiquared R, Bourgeois A, Pagnotta S, Biferi MG, Barkats M, et al. Intraneuronal aggregation of the β-CFT fragment of APP (C99) induces Ad-independent lysosomal-autophagic pathology. *Acta Neuropathol* 2016;132:257–76.

140. Manzak M, Kandimalla R, Yin X, Reddy PH. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dextrin spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. *Hum Mol Genet* 2018;27:1352–42.

141. Caccamo A, Maldonado MA, Majumder S, Medina DX, Holbein W, Magri A, et al. Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. *J Biol Chem* 2011;286:8924–32.

142. Ling D, Song HJ, Garza D, Neufeld TP, Salvaterra PM. Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in *Drosophila*. *PLoS One* 2009;4:e4201.

143. Ling D, Salvaterra PM. Brain aging and Aβ1–42 neurotoxicity converge via deterioration in autophagy–lysosomal system: a conditional *Drosophila* model linking Alzheimer’s neurodegeneration with aging. *Acta Neuropathol* 2011;121:183–91.

144. Pomilio C, Gorojdo RM, Riudavets M, Vinuesa A, Presa J, Gregosa A, et al. Microglial autophagy is impaired by prolonged exposure to β-amyloid peptides: evidence from experimental models and Alzheimer’s disease patients. *Geroscience* 2020;42:613–32.

145. Mackeh R, Perdiz D, Lorin S, Codogno P, Poizis C. Autophagy and microtubules—new story, old players. *J Cell Sci* 2013;126:1071–80.

146. Chaudhary AR, Berger F, Berger CL, Hendrickx AG. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. *Traffic* 2018;19:111–21.
185. Zhang J, Wang J, Xu J, Lu Y, Jiang J, Wang L, et al. Curcumin targets Alzheimer’s disease. From molecular pathophysiology to clinical trials. Exp Gerontol 2018;113:36–47.

184. Wang Z, Yang C, Liu J, Chun-Kit Tong B, Zhu Z, Malampati S, et al. A novel curcumin analog binds to and activates TFEB. Nature 2019;564:80–88.

182. Song JX, Sun YR, Peluso I, Zeng Y, Yu X, Lu JH, et al. A novel curcumin derivative activates TFEB and protects against Parkin gene mutation. J Biol Chem 2018;293:20163–20174.

181. Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, et al. Impairment of the autophagy lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci 2016;39:221–34.

180. Jeong SJ, Stitham J, Evans TD, Zhang X, Rodriguez-Velez A, Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, et al. Protein kinase C inhibition potentiates cognitive improvement in APP/PS1 transgenic mice. J Pharm Pharmacol 2017;69:4–15.

179. Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan YW, Drygalski K, Fereniec E, Koryciak J, et al. AMP-activated protein kinase signaling activation by resveratrol targets both tau hyperphosphorylation and autophagic clearance. Exp Gerontol 2020;132:104796.

178. Settembre C, Medina DL. TFEB and the CLEAR network. Trends Cell Biol 2016;26:1–9.

177. Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive deficits and lipid catabolism. J Immunol 2018;201:6862–6870.

176. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2526–64.

175. Yeh YS, et al. Trehalose causes low-grade lysosomal stress to activate transcription factor EB and exerts neuroprotection in models of Alzheimer’s disease. Mol Cell Neurosci 2019;95:13–24.

174. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Williams RS, Cheng L, Mudge AW, Harwood AJ. A common enhancer carbamazepine alleviates memory deficits and cerebral impairment of the autophagy—lysosomal pathway in Alzheimer’s diseases. Front Cell Biol 2015;6:126–45.

173. Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive decline in an Alzheimer’s disease mouse model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother 2020;121:109670.

172. Settembre C, Medina DL. TFEB and the CLEAR network. Methods Cell Biol 2015;126:45–62.

171. Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan YW, Drygalski K, Fereniec E, Koryciak J, et al. AMP-activated protein kinase signaling activation by resveratrol targets both tau hyperphosphorylation and autophagic clearance. Exp Gerontol 2020;132:104796.

170. Kong WJ, Vernieri C, Foiani M, Jiang JD. Berberine in the treatment of metabolism-related chronic diseases: a drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther 2020;209:107496.

169. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2526–64.

168. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2526–64.

167. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006;55:2526–64.

166. Song J, Sun Y, Ballabio A, Zheng H. The autophagy—lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci 2016;39:221–34.

165. Wang H, Wang R, Carrera I, Xu S, Lakshmana MK. TFEB overexpression in the P301S model of tauopathy mitigates increased PHF1 levels and lipofuscin puncta and rescues memory deficits. eNeuro 2016;3:e0042.

164. Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan YW, Bajaj L, et al. TFEB enhances astrogial uptake of extracellular tau species and reduces tau spreading. J Exp Med 2018;215:2355–77.

163. Jeong SJ, Stitham J, Evans TD, Zhang X, Rodriguez-Velez A, Yeh YS, et al. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy—lysosome biogenesis response. Autophagy 2021;17:3740–52.

162. Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 2019;15:631–51.

161. Portbury SD, Hare DJ, Sgambelloni C, Perrone K, Portbury AJ, Finkelstein DJ, et al. Trehalose causes cognition in the transparent eye (Te2576) mouse model of Alzheimer’s disease. J Alzheimers Dis 2017;60:549–60.

160. Du J, Liang Y, Xu F, Sun B, Wang Z. Trehalose rescues Alzheimer’s disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol 2013;65:1753–6.

159. Song JX, Sun YR, Peluso I, Zeng Y, Yu X, Lu JH, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo impaired mitochondrial function in MTOR inhibition. Autophagy 2016;12:1372–89.

158. Song JX, Malampati S, Zeng Y, Durairajan SSK, Yang CB, Tong BC, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and tau pathology in Alzheimer’s disease models. Aging Cell 2020;19:e13069.

157. Wang Z, Yang C, Liu J, Chun-Kit Tong B, Zhu Z, Malampati S, et al. A curcumin derivative activates TFEB and protects against Parkinsonian neurotoxicity in vitro. Int J Mol Sci 2020;21:1515.

156. Zhang J, Wang J, Xu J, Lu Y, Jiang J, Wang L, et al. Curcumin targets the TFEB—lysosome pathway for induction of autophagy. Oncotarget 2016;7:57659–71.

155. Li Y, Xu M, Ding X, Yan C, Song Z, Chen L, et al. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 2016;18:1065–77.

154. Kim YS, Lee HM, Kim JK, Yang CS, Kim TS, Jung M, et al. PPARG activation mediates innate host defense through induction of TFEB and lipid catabolism. J Immunol 2017;198:3283–95.
amyloid-β pathology in a mouse model of Alzheimer’s disease. *Curr Alzheimer Res* 2013;10:433–41.

207. Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. *Prog Lipid Res* 2019;73:28–45.

208. Jang I, Park S, Cho JW, Yigitkanli K, van Leyen K, Roth J. Genetic ablation and short-duration inhibition of lipoxygenase results in increased macroautophagy. *Exp Cell Res* 2014;321:276–87.

209. Di Meco A, Li JG, Blass BE, Abou-Gharbia M, Lauretti E, Praticò D. 12/15-lipoxygenase inhibition reverses cognitive impairment, brain amyloidosis, and tau pathology by stimulating autophagy in aged triple transgenic mice. *Biol Psychiatry* 2017;81:92–100.

210. Li JG, Chu J, Praticò D. Downregulation of autophagy by 12/15Lipoxygenase worsens the phenotype of an Alzheimer’s disease mouse model with plaques, tangles, and memory impairments. *Mol Psychiatry* 2021;26:604–13.

211. Dong Y, Hu Y, Sarkar S, Zong WX, Li M, Feng D, et al. Autophagy modulator scoring system: a user-friendly tool for quantitative analysis of methodological integrity of chemical autophagy modulator studies. *Autophagy* 2020;16:195–202.

212. Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, et al. Isohynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. *Autophagy* 2012;8:98–108.

213. Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SS, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. *J Neuroimmune Pharmacol* 2014;9:380–7.

214. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. *Nature* 2013;494:201–6.

215. Soria LR, Gurung S, De Sabbata G, Perocheau DP, De Angelis A, Bruno G, et al. Beclin-1-mediated activation of autophagy improves proximal and distal urea cycle disorders. *EMBO Mol Med* 2020: e13158.

216. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. *J Biol Chem* 2010;285:13107–20.

217. Forlenza OV, Radanovic M, Talib LL, Gattaz WF. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial. *Br J Psychiatry* 2019;215:668–74.

218. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. *Alzheimer Dis Assoc Disord* 2017;31:107–13.

219. Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. *J Alzheimers Dis* 2016;51:501–14.

220. Doody RS, Gavrilova SL, Sano M, Thomas RG, Aisen PS, Bachurin SO, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. *Lancet* 2008;372:207–15.

221. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. *J Neuroinflammation* 2017;14:1.

222. Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. *Cell* 2011;146:682–95.

223. Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. *Nat Aging* 2021;1:634–50.

224. Bockaert J, Marin P. mTOR in brain physiology and pathologies. *Physiol Rev* 2015;95:1157–87.

225. Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. *Lancet Neurol* 2013;12:207–16.