Identification of HPV-16 in Borderline Mucinous Cystic Neoplasm of Pancreas

Tommy R. Tong¹, Anthony Chan², Tak-wing Lai³, Olivia W. Chan⁴, Kam-cheong Lee¹, Stephen TH Lo¹, Rosanna Lung¹, Jackson YW Li¹, Tat-chong Chow¹

¹Departments of Pathology, Princess Margaret Hospital, Hong Kong, China; ²Department of Pathology, Prince of Wales Hospital, Hong Kong, China; ³Departments of Surgery, Princess Margaret Hospital, Hong Kong, China; ⁴Department of Pathology, Nethersole Hospital, Hong Kong, China

ABSTRACT

Pancreatic mucinous cystic neoplasms (PMcN) predominantly affect women in the reproductive age, are located in the body and tail of the pancreas, and share morphological features with similar tumors of the ovary. We report the detection of human papillomavirus (HPV) using several different PCR protocols in a borderline PMcN from a female patient. Type-specific PCR demonstrated the HPV to be type 16. If confirmed by others, this group of neoplasms might become preventable by HPV vaccination.

Keywords: pancreatic mucinous cystic neoplasm; human papillomavirus; pancreas; carcinoma

INTRODUCTION

Pancreatic cancers are a heterogeneous group of tumors with significantly different clinical features, anatomic locations, histopathological features, molecular pathogenesis, and prognosis. The majority of these tumors are highly malignant adenocarcinomas, occur in the head of the pancreas (PANCA), and have a higher incidence in men. Pancreatic mucinous cystic neoplasms (PMcN) and solid-pseudopapillary tumor are rare tumors which occur mostly in women, the latter nearly exclusively so. Early detection and complete resection of these tumors offer a much better clinical outcome than PANCA. These differences suggest that different etiologic agents and intracellular pathways may be involved in tumorigenesis.

Recently, a series of ovarian adenocarcinomas was reported in which oncogenic HPV were found. Synchronous and metachronous endocervical adenocarcinomas positive for the same HPV types were identified (1). We posit HPV as an etiologic agent in a recent case of PMcN, which histologically resembles ovarian mucinous adenocarcinomas.

CLINICAL AND PATHOLOGIC FINDINGS

The patient is a previously healthy 45 year-old woman who experienced epigastric pain for several days before presentation. Physical examination showed a firm left upper quadrant abdominal mass. There was no tenderness or ascites. No lymphadenopathy was found. Rectal and vaginal examinations were negative for pelvic mass. Serum amylase level was normal. Abdominal ultrasonography revealed a large cystic lesion at the tail of the pancreas. Computerized axial tomography confirmed the presence of a thin walled cystic lesion with peripheral septations arising from the pancreatic tail, measuring 12 × 11 × 9 cm (Fig. 1). Distal pancreatectomy was performed. Grossly, the tumor was cystic, comprising one large locule and several smaller daughter cysts (Fig. 2). The contents were mucoid. The resection margins were not involved.
Microscopically, the epithelial lining was composed of a single layer of columnar epithelial cells with foveolar architecture and focal intestinal differentiation (Fig. 3). The stroma immediately underlying the epithelial lining was focally cellular and resembled ovarian stroma. The patient recovered from the operation uneventfully. Four weeks after surgery, she consented to a Papanicolaou smear and underwent colposcopic examination of the cervix, both of which were normal. She remained disease free for at least six months.

MOLECULAR PATHOLOGICAL FINDINGS

Tissue blocks with tumor and non-neoplastic pancreatic tissue were selected for HPV detection by general primer and type-specific PCR as previously reported (2-4). In brief, ten 10 μm paraffin sections were made from the paraffin blocks and DNA extracted after the standard proteinase K-phenol chloroform treatment. The purified DNA was precipitated with absolute ethanol and dissolved in 100 μl distilled water. 10 μl of the extracted DNA was used for the detection of HPV by PCR method. The general primer GP5+/6+, which amplifies a region of 140 to 150 bp in the L1 open reading frame of a broad spectrum of HPV genotypes were employed initially (5). For GP5+/6+ negative reactions, the second general primer PCR SPF1/2, which has a higher sensitivity and amplifies a 65 bp segment of the L1 region was performed (6). In addition, type-specific PCR was employed for positive specimens (7). The type-specific PCR consisted of two separate reactions, which detect HPV 6, 16 and 33, and HPV 11, 18 and 31, respectively. To assess the quality of extracted DNA, human beta-actin PCR was performed in parallel. To prevent carryover contamination, tissue blocks were cut with new blades after prior decontamination of the microtome and instruments. DNA extraction and purification, master-mix set-up, PCR amplification, as well as post-amplification gel electrophoresis were all carried out in dedicated areas. Uni-directional workflow for the PCR processes was followed. All pipetting works were conducted with the use of disposable aerosol-resistant micropipette tips.

HPV was identified in tumor blocks by general primer PCR reactions employing GP5+/6+ (Fig. 4) and SPF1/2 primers (Fig. 5). Type-specific PCR identified the HPV as type 16, a member of the high-risk HPVs (Fig. 6). Non-neoplastic pancreatic tissue and water negative controls were consistently negative for HPV. General primer PCR employing primer pairs MY09/11 was negative (Fig. 4).

DISCUSSION

Pancreatic mucinous cystic neoplasms are of unknown etiology and are much more common in women than in men. Its location in the body and tail of the pancreas is in contrast to conventional pancreatic adenocarcinoma of the
head of the pancreas (PANCA), which has a higher incidence in men (8). The evolution of PMCN is slow, giving a larger window for curative resection. Malignant progression takes place in the epithelial component but can also occur in the mesenchymal component, giving rise to sarcomas such as malignant fibrous histiocytoma. Fully malignant tumors are associated with oncogenic K-ras mutations and over-expression of EGFR and inactivation of tumor suppressors p53 and DPC4.

In terms of molecular pathways involved, PMCN differs from PANCA in being mostly negative for immunohistochemical expression of p53 (10). In uterine cervical carcinomas, which almost exclusively contain oncogenic HPV, high-risk HPV E6 targets p53 for proteasomal degradation, keeping p53 at a low level. As expected, most pre-malignant cervical lesions and a significant fraction of invasive cervical carcinomas are negative for p53 overexpression (11). This lends support to a possible etiologic link between HPV and PMCN. However, it is also possible that the p53 pathway may be alternatively disrupted, for example by over-expression of hDM2.
cal trials have demonstrated near 100% efficacy in protec-

1. Elishaev E, Gilks CB, Miller D, Srodon M, et al. Synchronous and metachronous endocervical and ovarian neoplasms: evidence supporting interpretation of the ovarian neoplasms as metastatic endocervical adenocarcinomas simulating primary ovarian surface epithelial neo-

2. Chan MK, Lau KM, Tsui Y, Wong FW, et al. Human papillomavirus infection in Hong Kong Chinese women with normal and abnormal cerv-

3. Lee CN, Cavanagh HM, Lo ST, Ng CS. Human papillomavirus infection in non-neoplastic uterine cervix (HPV) in PancreatIc mucInous neoPlasm

4. Qu W, Jiang G, Cruz Y, Chang CJ, et al. PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J. Clin. Microbiol. 1997; 35 (6): 1304.

5. Jacobs MV, Snijders PJ, van den Brule AJ, Helmerhorst TJ, et al. A general primer GP5+/GP6 (+) -mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J. Clin. Microbiol. 1997; 35 (3):791.

6. Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, et al. Novel short-

7. van den Brule AJ, Meijer CJ, Bakels V, Kenemans P, et al. Rapid detection of human papillomavirus in cervical scrapes by combined general primer-mediated and type-specific polymerase chain reaction. J. Clin. Microbiol. 1990; 28 (12): 2739.

8. Thompson LD, Becker RC, Przygodzki RM, Adair CF, et al. Mucinous cystic neoplasm (mucinous cystadenocarcinoma of low-grade malignant potential) of the pancreas: a clinicopathologic study of 130 cases. Am. J. Surg. Pathol. 1999; 23 (1): 1.

9. Wouters K, Ectors N, Van Steenbergen W, Aerts R, et al. A pancreatic mucinous cystadenoma in a man with mesenchymal stroma, expressing oestrogen and progesterone receptors. Virchows. Arch. 1998; 432 (2): 187.

10. Zhang SY, Ruggeri B, Agarwal P, Sroling AF, et al. Immunohistochemi-

11. Tervahauta AI, Syrjanen SM, Väyrynen M, Saastamoinen J, et al. Expression of p53 protein related to the presence of human papillomavi-

12. Young RH, Hart WR. Metastases from carcinomas of the pancreas simu-

13. Gagne LJ, Colacchio T, Longnecker DS. Simultaneous mucinous cyst-

REFERENCES