Peptide Toxins in Sea Anemones: Structural and Functional Aspects

Tomohiro Honma, Kazuo Shiomi

Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan

Received: 1 July 2005 / Accepted: 15 August 2005 / Published online: 26 December 2005

Abstract

Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.

Keywords: peptide toxin — potassium channel toxin — sea anemone — sodium channel toxin

Introduction

Members of the phylum Cnidaria commonly possess specialized stinging organelles (nematocysts) to capture prey animals. On chemical or physical stimulation, the thread tubule folded in the nematocyst is discharged and penetrates the epithelium of the victim. Simultaneously, toxins in the nematocyst enter the victim through the thread tubule, leading to its paralysis. Apart from the inherent biological function in sea anemones, nematocyst toxins from some species of sea anemones such as Anemonia sulcata and Phyllodiscus semoni are even dangerous to humans. When an individual is stung by nematocysts, local inflammations, including severe pain, redness, and edema are immediately induced by toxins.

In general, sea anemone toxins are considerably stable compared to other cnidarian toxins (typically jellyfish toxins). Thus, a number of toxins have so far been isolated from various species of sea anemones and well characterized, although it is not always clear whether these toxins are derived from nematocysts. Most of the sea anemone toxins are divided into the following three classes: 20-kDa pore-forming cytolysins inhibitable by sphingomyelin [now called actinoporins; Kem, 1988; Anderluh and Macek, 2002], 3- to 5-kDa neurotoxins acting on voltage-gated sodium channels [Kem, 1988; Kem et al., 1990; Norton, 1991], and 3.5- to 6.5-kDa neurotoxins acting on voltage-gated Kv1 potassium channels [Castañeda et al., 1995; Schweitz et al., 1995; Cotton et al., 1997; Gendeh et al., 1997; Minagawa et al., 1998a]. Of the three classes of toxins, both sodium and potassium channel peptide toxins have been useful tools for studying the structure and function of ion channels, because of their high affinity to the specific channel. Besides the well-characterized peptide toxins, structurally and/or functionally novel peptide toxins, which seem to be promising pharmacological reagents, have recently emerged from some species of sea anemones.

In this article, accumulated knowledge on the structural and functional aspects of sea anemone peptide toxins is reviewed, with special emphasis on sea anemones as an important source of fascinating pharmacological tools. The three-dimensional structure–function relationships have been clarified for some sea anemone peptide toxins (Gasparini et al., 2004; Mouhat et al., 2004) but are not included in this review because of space limitations.

Correspondence to: Kazuo Shiomi; E-mail: shiomi@s.kaiyodai.ac.jp

DOI: 10.1007/s10126-005-5093-2 • Volume 8, 1–10 (2006) • © Springer Science + Business Media, Inc. 2005
Sodium Channel Peptide Toxins

Since the first discovery of three toxins in *Anemonia sulcata* [Béress et al., 1975], more than 50 sodium channel peptide toxins have been isolated and/or cloned from various species of sea anemones. As proposed by Norton (1991), most of the sea anemone sodium channel toxins can be classified into three types based on the determined amino acid sequences [Figure 1]. As listed in Table 1, as many as 33 and 9 toxins have been identified as type 1 and 2 toxins, respectively. For type 1 and 2 toxins, therefore, only some typical sequences are included in Figure 1.

Type 1 and 2 toxins are composed of 46 to 49 amino acid residues, except for Ae I of 54 residues [Lin et al., 1996], and cross-linked by three disulfide bridges (4–46, 6–36, and 29–47; numbering is based on the amino acid sequence of ApA). Ten residues including six Cys residues are completely conserved between type 1 and 2 toxins. In view of the fact that a toxin (halcurin) with structural features of both type 1 and 2 toxins is present in *Halcurias* sp. [Ishida et al., 1997a], the most primitive species belonging to the suborder Endocoelantheae compared to the other species so far studied of the suborder Nynantheae, both type 1 and 2 toxins are considered to have evolved from the same ancestor gene. However, they are immunologically distinguishable from each other because no antigenic cross-reactivity between both types of toxins is recognized [Schweitz et al., 1985; Kem et al., 1989]. It is interesting to note that the distribution of type 1 and 2 toxins seems to be related to the taxonomical position of sea anemones; members of the family Actiniidae contain only type 1 toxins, while either type 1 or 2 toxins or both type 1 and 2 toxins are found in those of the family Stichodactylidae.

Table 1

Type 1	1	10	20	30	40
ApA	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
ApB	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
ATX II	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
Ae I	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
Cp I	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
Rc I	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			
AFT I	GVCCLDSGPDSVGNLTSGLLWYPS	GCPGWNCNHAPGTIGWCK			

Type 1 + Type 2

Halcurin	1	10	20	30	40
VACRCE5GDPDVRSAFTGTVDLW	NCNTGWKCIAYTAVASCCKD				

Type 2

RTX I	1	10	20	30	40
GNCDDGDPVDSATFTGVDA	YCNAGWKEKCLAYTPVASCRRK				
Rp III	1	10	20	30	40
GNCDDGDPVDSATFTGVDA	YCNAGWKEKCLAYTPVASCRRK				
Sh I	1	10	20	30	40
GNCDDGDPVDSATFTGVDA	YCNAGWKEKCLAYTPVASCRRK				
Gigantoxin III	1	10	20	30	40
GNCDDGDPVDSATFTGVDA	YCNAGWKEKCLAYTPVASCRRK				

Type 3

PaTX	1	10	20	30	40
ACGKSTCCPCACWCKYTAGCPWQQ	CAAHGCCE				
Da I	1	10	20	30	40
ACGKSTCCPCACWCKYTAGCPWQQ	CAAHGCCE				
Da II	1	10	20	30	40
ACGKSTCCPCACWCKYTAGCPWQQ	CAAHGCCE				
Er I	1	10	20	30	40
ACGKSTCCPCACWCKYTAGCPWQQ	CAAHGCCE				
ATX III	1	10	20	30	40
RCCPCMVGGCPVWQQ	YCPSGPKV				

Others

Calitoxin I	1	10	20	30	40
GCAPDLSHM+GTG+VFSC+KGG+DSWSK+CN+YT+A+ADC+CHQA					

Fig. 1. Amino acid sequences of sodium channel toxins from sea anemones. ApA and ApB are from *Anthopleura xanthogrammica* [Tanaka et al., 1977; Reimer et al., 1985]; ATX II from *Anemonia sulcata* [Wunderer et al., 1976]; Ae I from *Actinia equina* [Lin et al., 1996]; Cp I from *Condylactis passiflora* [Shiomi et al., 1995]; Rc I from *Radianthus (Heteractis) crispus* [Sunahara et al., 1987]; halcurin from *Halcurias* sp. [Ishida et al., 1997a]; RTX I and RTX II from *Radianthus (Heteractis) macrodactylus* [Zykova et al., 1988a, b]; Rp III from *Radianthus (Heteractis) paumotensis* [Mettrione et al., 1987]; Sh I from *Stichodactyla helianthus* [Kem et al., 1989]; gigantoxin III from *Stichodactyla gigantea* [Shiomi et al., 2003]; PaTX from *Entacmaea Parasicyonis* actinostoloides [Nishida et al., 1985]; Da I and Da II from *Dofleinia armata* [Honma et al., 2003a]; Er I from *Entacmaea raamsayi* [Honma et al., 2003a]; ATX III from *Anemonia sulcata* [Martinez et al., 1977]; calitoxins I and II from *Calliactis parasitica* [Cariello et al., 1989, Spagnuolo et al., 1994]. Hydroxy-Pro at position 3 of Cp I and Rc I are denoted by “O.” Identical amino acid residues with ApA, RTX I, PaTX, and calitoxin I are boxed for type 1, 2, and 3 toxins and calitoxins, respectively. Asterisks represent the common amino acid residues for both type 1 and 2 toxins. The lines above and below the sequence of halcurin indicate the residues peculiar to type 1 and 2 toxins, respectively.
Type 3 sodium channel toxins are shorter peptides composed of 27 to 32 amino acid residues. Previously, two toxins, PaTX from *Entacmaea actinostoloides* (formerly called *Parasicyonis actinostoloides*; Nishida et al., 1985) and ATX III from *Anemonia sulcata* (Martinez et al., 1977), have been tentatively classified into type 3 toxins (Norton, 1991). However, PaTX and ATX III are cross-linked by four and three disulfide bridges, respectively, implying that they share no structural scaffold. In our recent study, two toxins (Da I and II) isolated from *Dofleinia armata* and one toxin (Er I) from *Entacmaea ramsayi* were found to be homologous with PaTX (Honma et al., 2003a), suggesting a wide distribution of PaTX-like toxins in sea anemones. Therefore, it may be reasonable to include only PaTX and its analogs in the category of type 3 toxins.

At least six different receptor sites for neurotoxins are known for the mammalian sodium channels. Similar to α-scorpion toxins, sea anemone type 1–3 toxins bind to the receptor site 3 of sodium channels and prolong the open state of the channels during the depolarization procedure (Catterall and Bércess, 1978; Vincent et al., 1980; Schweitz et al., 1981; Warashina et al., 1988a,b; Norton, 1991). Because of this unique action on the sodium channels, some of the known sea anemone sodium channel toxins, such as ATX II from *Anemonia sulcata* (Wunderer et al., 1988) and anthopleurin A (ApA; Tanaka et al., 1977) and B (ApB; Reimer et al., 1985) from *Anthopleura xanthogrammica*, have been used as valuable pharmacological reagents in many laboratories of the world. Detailed molecular studies on the interaction with sodium channels have been performed using ApB and its various site-directed mutants. The results show that the flexibility of the region 8–17 (Arg-14 loop) is essential for toxin binding to sodium channels (Seibert et al., 2003). As for individual residues, Arg-12 within the Arg-14 loop and Leu-18 and Ser-19 proximal to the C-terminus of the loop greatly contribute to toxin affinity (Gallagher and Blumenthal, 1994; Dias-Kadambi et al., 1996; Seibert et al., 2004). It is worth mentioning that ApB has no selectivity for neuronal and cardiac sodium channels, while ApA is selective for cardiac channels. This difference in selectivity between ApA and ApB is associated with

Table 1. Distribution of Type 1 and 2 Sodium Channel Toxins in Sea Anemones

Species	Type 1 toxins	Type 2 toxins	References
Family Actiniidae			
Actinia equina	Ae I		Lin et al., 1996
Anemonia erythrae	AETX I		Shiomi et al., 1997
Anemonia sulcata	ATX Ia and Ib		Widmer et al., 1988
	ATX II		Wunderer et al., 1976
	ATX V		Scheffler et al., 1982
Anthopleura elegansissima	ApC		Norton, 1981
	APE 1–1, 1–2, and 2–2		Bruhn et al., 2001
Anthopleura fuscoviridis	AFT I and II		Sunahara et al., 1987
Anthopleura xanthogrammica	ApA		Tanaka et al., 1977
	ApB		Reimer et al., 1985
	PCR1–2, 2–1, 2–5, 2–10, 3–6, and 3–7		Kelso and Blumenthal, 1998
Anthopleura sp.	Hk2a, 7a, 8a, and 16a		Wang et al., 2004
Bunodosoma caissarum	Be III		Malpezzii et al., 1993
Bunodosoma canicium			Cunha et al., 2005
Bunodosoma granulifera	Bg II and III		Loret et al., 1994
Condylactis passiflora	Cp I and II		Shiomi et al., 1995
Family Stichodactylidae			
Antheopsis maculata	Am III		Honma et al., 2005
Radianthus (Heteractis) crispus	Rc I		Shiomi et al., 1996
Radianthus (Heteractis) macrodactylus	RTX I	RTX II	Zykova and Kozlovskaya, 1989
		RTX III	Zykova et al., 1988a
		RTX IV and V	Zykova et al., 1988b
		Rp II	Schweitz et al., 1985
		Rp III	Metrione et al., 1987
Radianthus (Heteractis) paumotensis	Gigantoxin II	Gigantoxin III	Shiomi et al., 2003
Stichodactyla gigantea			
Stichodactyla helianthus			

Type 3 sodium channel toxins are shorter peptides composed of 27 to 32 amino acid residues. Previously, two toxins, PaTX from *Entacmaea actinostoloides* (formerly called *Parasicyonis actinostoloides*; Nishida et al., 1985) and ATX III from *Anemonia sulcata* (Martinez et al., 1977), have been tentatively classified into type 3 toxins (Norton, 1991). However, PaTX and ATX III are cross-linked by four and three disulfide bridges, respectively, implying that they share no structural scaffold. In our recent study, two toxins (Da I and II) isolated from *Dofleinia armata* and one toxin (Er I) from *Entacmaea ramsayi* were found to be homologous with PaTX (Honma et al., 2003a), suggesting a wide distribution of PaTX-like toxins in sea anemones. Therefore, it may be reasonable to include only PaTX and its analogs in the category of type 3 toxins.
the replacements at positions 12 and 49 [Khera et al., 1995]. Furthermore, experiments using mutants of either neuronal sodium channels [Rogers et al., 1996] or cardiac sodium channels [Benzinger et al., 1998] suggested that the receptor site 3 is involved in the extracellular loop IVS3-S4 and that anionic residues (Glu-1613 and Glu-1616 for neuronal channels and Asp-1612 for cardiac channels) in the IVS3-S4 loop electrostatically interact with basic residues of toxins. However, more recent study using six different sodium channel genes (Nav1.1-1.6) showed that some nearby amino acids, which are different in the channels, contribute to the interaction with toxins [Oliveira et al., 2004].

Besides the type 1–3 toxins described above, two novel sodium channel toxins, calitoxins I and II (46 amino acid residues) distinguishable by only one replacement at position 6, have been isolated or cloned from Calliactis parasitica [Cariello et al., 1989; Spagnuolo et al., 1994]. Both calitoxins are comparable to type 1 and 2 toxins as to chain length and disulfide bridge pattern but their entire amino acid sequences greatly differ from those of type 1 and 2 toxins. They act on voltage-gated sodium channels probably in a similar manner to type 1–3 toxins.

Potassium Channel Peptide Toxins

It has not been long since sea anemone potassium channel peptide toxins were discovered in the mid-1990s. Nevertheless, much knowledge on their structures and functions has been accumulated in the last decade. Based on the structural and functional differences, the 11 potassium channel peptide toxins so far isolated can be classified into three types as shown in Figure 2.

Type 1 potassium channel toxins blocking Kv1 (Shaker) potassium channels include ShK from Stichodactyla helianthus [Castañeda et al., 1995], AsKS [kaliseptine] from Anemonia sulcata [Schweitz et al., 1995], BgK from Bunodosoma granulifera [Cotton et al., 1997], HmK from Heteractis magnifica [Gendeh et al., 1997], and AeK from Actinia equina [Minagawa et al., 1998a]. These toxins are composed of 35 to 37 amino acid residues and cross-linked by three disulfide bridges (3–35, 12–28, and 17–32; numbering is based on the amino acid sequence of ShK). Alanine scanning experiments identified three residues, Ser-20, Lys-22, and Tyr-23, as essential for the binding of ShK to rat brain potassium channels [Pennington et al., 1996]. Similar experiments carried out on BgK also proved that the corresponding residues (Ser-23, Lys-25, and Tyr-26) are involved in the binding to rat brain potassium channels [Dauplais et al., 1997] and Kv1.1, Kv1.2, Kv1.3, and Kv1.6 channels [Alessandri-Haber et al., 1999; Gilquin et al., 2002]. These three residues are completely conserved in the other type 1 toxins. Of the three residues, the dyad (Lys-Tyr) is considered to be especially important for the binding to potassium channels. It is interesting to note that scorpion toxins blocking Kv1 channels, such as charybdotoxin and margatoxin, contain a similar dyad composed of Lys and a hydrophobic residue (e.g., Lys-27 and Tyr-36 for charybdotoxin), which is critical for their binding to Kv1 channels [Dauplais et al., 1997; Gasparini et al., 2004].

Fig. 2. Amino acid sequences of potassium channel toxins from sea anemones. ShK is from Stichodactyla helianthus [Castañeda et al., 1995]; AsKS [kaliseptine]; AsKS 1-3 [kalicludines 1–3]; BDS-I and BDS-II from Anemonia sulcata [Schweitz et al., 1995; Diochot et al., 1998]; BgK from Bunodosoma granulifera [Cotton et al., 1997]; HmK from Heteractis magnifica [Gendeh et al., 1997]; AeK from Actinia equina [Minagawa et al., 1998a]; APETx1 from Anthopleura elegantissima [Diochot et al., 2003]. Identical residues with ShK, AsKC 1, and BDS-I are boxed for type 1, 2, and 3 toxins, respectively. For reference, the amino acid sequences of dendrotoxin I, a potassium channel toxin from black mamba, and BPTI [bovine pancreatic trypsin inhibitor] are aligned with those of type 2 toxins.
Although there is a distinct difference in molecular scaffold between sea anemone type 1 potassium channel toxins and scorpion potassium channel toxins, the important dyads of both toxins superimpose in the three-dimensional structures. It is thus assumed that structurally unrelated toxins [sea anemone and scorpion toxins] have undergone convergent evolution to bind to the same region of structurally related targets (Gasparini et al., 2004).

Type 2 potassium channel toxins, AsKC 1-3 (kalicludines 1–3), are composed of 58 or 59 amino acid residues and also exhibit blocking of Kv1 channels with much less potency than type 1 toxins (Schweitz et al., 1995). In accordance with the sequence homologies with Kunitz-type protease inhibitors, such as bovine pancreatic trypsin inhibitor (BPTI), AsKCs have protease inhibitory activity although less potently than BPTI. As compared to the three residues [Lys-15, Ala-16, and Ile-19] of BPTI, which are known to be important to bind to trypsin, AsKCs have a significant replacement (Ile by Pro) at position 19, leading to their weaker inhibitory activity than BPTI. In relation to this, dendrotoxins, Kv1 channel blockers from either green or black mamba, also share high sequence homologies with Kunitz-type protease inhibitors but exhibit no protease inhibitory activity.

It should be noted that various species of sea anemones contain Kunitz-type protease inhibitors (Wunderer et al., 1981; Zykova et al., 1985a; Antuch et al., 1993; Ishida et al., 1997b; Minagawa et al., 1997, 1998b). Sea anemone protease inhibitors have been considered to function to inhibit endogenous proteases in animals themselves or to protect the toxins injected into prey animals or predators from rapid degradation. However, the finding of potassium channel toxins with protease inhibitory activity, such as AsKCs, leads us to assume that sea anemone protease inhibitors serve not only as defensive substances but also as offensive substances to paralyze prey animals. It is interesting to examine whether the sea anemone protease inhibitors so far isolated have potassium channel toxicity.

Three toxins, BDS-I and II from Anemonia sulcata (Diochot et al., 1998) and APETx1 from Anthopleura elegantissima (Diochot et al., 2003), are members of type 3 potassium channel toxins. BDS-I and II are the first specific blockers of Kv3.4 channels and are substantially inactive to other members of the Kv3 (Shaw) subfamily. Although they show about 25% sequence identities with type 1 sodium channel toxins such as ApA and ATX II, they elicit no effect on sodium channels in cardiac and skeletal muscle cells; they have only a weak effect on tetrodotoxin-sensitive sodium channels in neuroblasts. On the other hand, APETx1 has 64%, 42%, and 42% sequence identities with APETx2, BDS-I, and BDS-II, respectively, and also shares the same structural scaffold with them but its target channel is different. It is a selective blocker of human ether-a-go-go-related gene (HERG or erg1) potassium channels. Besides APETx1, two scorpion toxins, ErgTx from Centruroides noxius (Gurrola et al., 1999) and BeKm-1 from Buthus eupeus (Korolkova et al., 2001), have also been reported to be potent inhibitors of HERG channels.

Acid-Sensing Ion Channel Peptide Toxin

APETx2 (42 amino acid residues) isolated from Anthopleura elegantissima (Diochot et al., 2004) is functionally quite unique. Although it shares 36% to 64% sequence identities with type 3 potassium channel toxins, BDS-I and II from Anemonia sulcata and APETx1 from Anthopleura elegantissima (Figure 3), it inhibits not potassium channels but acid-sensing ion channels (ASICs, H+-gated sodium channels; Waldmann and Lazdunski, 1998) in sensory neurons, which are implicated in the modulation of pain sensation. ASICs are formed by homomeric or heteromeric association of six different subunits [ASIC1a, ASIC1b, ASIC2a, ASIC2b,
ASIC3, and ASIC4) and only ASIC3 channels and ASIC3-containing channels are affected by APETx2. Until the discovery of APETx2, psalmotoxin 1 (PcTX1) from the tarantula Psalmopoeus cambridgei has been the sole toxin acting on ASICs (Escoubas et al., 2000). However, APETx2 has no sequence homology with PcTX1 and is functionally discriminated from PcTX1 inhibiting homomeric ASIC1a channels. Since APETx2 is the first specific inhibitor for ASIC3 channels and ASIC3-containing channels, it will be a promising tool to study the physiological involvement of ASIC3 channels in neuronal excitability and pain coding.

Other Structurally Novel Peptide Toxins

In addition to the peptide toxins described above, the following structurally novel peptide toxins have been isolated although not functionally characterized: AETX II and III from Anemonia erythraea (Shiomi et al., 1997), gigantoxin I from Stichodactyla gigantea (Shiomi et al., 2003; Honma et al., 2003b), and Am I and II from Antheopsis maculata (Honma et al., 2005a).

AETX II and III are composed of 59 amino acid residues and are highly homologous with each other (Figure 4). There are only four substitutions between both toxins. These toxins are featured by the presence of as many as 10 Cys residues probably forming five disulfide bridges. Moreover, they are most potently lethal to crabs among the peptide toxins so far isolated from sea anemones by our laboratory; the LD50 values of AETX II and III against crabs are 0.53 and 0.28 μg/kg, respectively.

Gigantoxin I, which is not lethal but potently paralytic to crabs with an ED50 of 215 μg/kg, was discovered through a careful observation of the symptoms of crabs injected with samples. Very surprisingly, it shows about 35% sequence homologies with epidermal growth factors (EGFs) from mammals (Figure 5). Consistent with the structural resemblance in Figure 5, gigantoxin I displays EGF activity, as evidenced by rounding of human epidermoid carcinoma A431 cells and tyrosine phosphorylation of the EGF receptor in the cells, although much less potently than human EGF. The finding of an EGF-like molecule (gigantoxin I) with both toxic and EGF activities in the sea anemone S. gigantea, which is the nearest to the phylogenetic root of the animal kingdom, allows us to assume that the ancestors of EGFs originally had functioned as toxins as in the case of gigantoxin I and that they had lost toxic properties during the evolution process.

Am I (27 amino acid residues) appears to act on sodium channels from the lethality to crabs (LD50 830 μg/kg). Differing from all the known sea anemone peptide toxins, Am I has only four Cys residues, suggesting its unique conformation to be clarified (Figure 6). It is also interesting to note that the Am I precursor contains as many as six copies of Am I. On the other hand, Am II (46 amino acid residues) is only paralytic to crabs (ED50 420 μg/kg), similar to gigantoxin I. It should be emphasized that the crab assay is a simple and useful tool to discover new toxins, such as Am II and gigantoxin I, if only the symptoms induced in crabs by samples are carefully observed. It is worth mentioning that Am
II is homologous to APETx2 (ASIC3 channel blocker), BDS-I (Kv3.4 channel blocker), BDS-II (Kv3.4 channel blocker), and APETx1 (HERG channel blocker) with 28%, 39%, 39%, and 37% sequence identities, respectively (Figure 6). Despite the structural similarity, APETx2, BDS-I, BDS-II, and APETx1 target different ion channels. Am II may act to specialized ion channels or one of the ion channels targeted by these four toxins.

The sea anemone peptide toxins described above are all derived from the whole bodies, tentacles or secreted mucus. However, we recently found that the extract from special aggressive organs (acrorhagi) of *Actinia equina* is toxic to crabs. The acrorhagi are located in a ring around the base of the tentacles in certain species of sea anemones belonging to the family Actiniidae and used to fight with nonspecific non-clonemates. Two novel peptide toxins, acrorhagins I (50 amino acid residues) and II (44 amino acid residues), were isolated from the acrorhagi of *A. equina* (Figure 7; Honma et al., 2005b). Acrorhagin I has no sequence homologies with any toxins from other biological sources. On the other hand, acrorhagin II is somewhat homologous (20% to 27% identity) with hainantoxin-I (sodium channel toxin) from the Chinese bird spider *Selenocosmia hainana* [Li et al., 2003], α-conotoxin MVIB (calcium channel toxin) from the cone snail *Conus magus* [Olivera et al., 1985], and Tx 3-2 from the Brazilian armed spider *Phoneutria nigriventer* [Cordeiro et al., 1993], are aligned with that of acrorhagin II. Identical residues with acrorhagin II are boxed.

![Fig. 7. Amino acid sequences of acrorhagins I and II from acrorhagi of *Actinia equina* (Honma et al., 2005b). The amino acid sequences of three peptide toxins, hainantoxin-I from the Chinese bird spider *Selenocosmia hainana* [Li et al., 2003], α-conotoxin MVIB from the cone snail *Conus magus* [Olivera et al., 1985], and Tx 3-2 from the Brazilian armed spider *Phoneutria nigriventer* [Cordeiro et al., 1993], are aligned with that of acrorhagin II. Identical residues with acrorhagin II are boxed.](image)

Concluding Remarks

In the early 1990s, it was once concluded that sodium channel toxins binding to the receptor site 3 are the sole family of sea anemone peptide toxins. However, potassium channel peptide toxins have emerged as a new family of peptide toxins in the mid-1990s and structurally and functionally novel peptide toxins have also been discovered one after another. As a result of extensive studies on sea anemone peptide toxins, some of them have been used as valuable tools in studying the structure and function of ion channels. Importantly, only about 40 species have been examined for peptide toxins, although more than 800 species of sea anemones are recorded in the world. In the course of our screening for toxins in sea anemones, all species tested have been found to contain toxins that are lethal or paralytic to crabs, suggesting the universal distribution of peptide toxins in sea anemones. This article ends with the hope that future study on sea anemone peptide toxins will discover fascinating new molecules acting on specific ion channels, expanding our understanding of the structure and function of various ion channels deeply implicated in the physiology of animals.

References

Alessandri-Haber N, Lecoq A, Gasparini S, Grangier-Macmath G, Jacquet G, Harvey AL, de Medeiros C, Rowan EG, Gola M, Ménez A, Crest M (1999) Mapping the functional anatomy of BgK on Kv1.1, Kv1.2, and Kv1.3. Clues to design analogs with enhanced selectivity. J Biol Chem 274, 35653–35661

Antuch W, Berndt KD, Chavez MA, Dellin J, Wuethrich K (1993) The NMR solution structure of a Kunitz-type protease inhibitor from the sea anemone *Stichodactyla helianthus*. Eur J Biochem 212, 675–684

Benzinger GR, Kyle JW, Blumenthal KM, Hanck DA (1998) A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem 273, 80–84

Béress L, Béress R, Wunderer G (1975) Isolation and...
characterization of three polypeptides with neurotoxicity from *Anemone* *sakaleu*. FEBS Lett 50, 311–314
Bruhn T, Schaller C, Schulze C, Sanchez-Rodriguez J, Dannmeier C, Ravens U, Heubach JF, Eckhardt K, Schmidtmaier J, Schmidt H, Anerios A, Wachter E, Béress L (2001) Isolation and characterisation of five neurotoxic and cardioactive polypeptides from the sea anemone *Anthopleura elegantissima*. Toxicon 39, 693–702
Cariello L, de Santis A, Fiore F, Spagnuolo A, Castaneda O, Sotolongo V, Amor AM, Stoeklin R, Anderson Dauplais M, Lecoq A, Song J, Cotton J, Jamin N, Gilquin Cunha RB, Santana ANC, Amaral PC, Carvalho MDF, Carvalho DMF, Cavalheiro EA, Meenez A, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na⁺ channels. J Biol Chem 275, 25116–25121

Gallagher MJ, Blumenthal KM (1994) Importance of the unique cationic residues arginine 12 and lysine 49 in the activity of the cardioactive polypeptide anthopleurin B. J Biol Chem 269, 254–259
Gasparini S, Gilquin B, Ménez A (2004) Comparison of sea anemone and scorpion toxins binding to Kv1 channels: an example of convergent evolution. Toxicon 43, 901–908
Gendeh GS, Young LC, de Medeiros LC, Jeyaseelan K, Harvey AL, Chung MCM (1997) A new potassium channel toxin from the sea anemone *Heteractis magnifica*: isolation, cDNA cloning, and functional expression. Biochemistry 36, 11461–11471
Gilquin B, Racape J, Wisch A, Visan V, Lecoq A, Grissmer S, Ménez A, Gasparini S (2002) Structure of the BgK–Kv1.1 complex based on distance restraints identified by double mutant cycles. Molecular basis for convergent evolution of Kv1 channel blockers. J Biol Chem 277, 37406–37413

Curola GB, Rosati B, Rocchetti M, Pimienta G, Zaza A, Arcangeli A, Olivotto M, Possani LD, Wanke E (1999) A toxin to nervous, cardiac, and endocrine ERG K⁺ channels isolated from *Centruroides noxius* venom. FASEB J 13, 953–962
Honma T, Iso T, Ishida M, Nagashima Y, Shiomi K (2003a) Occurrence of type 3 sodium channel peptide toxins in two species of sea anemones (Dofleinia armata and *Entacmaea ramsayi*). Toxicon 41, 637–639
Honma T, Nagai H, Nagashima Y, Shiomi K (2003b) Molecular cloning of an epidural growth factor-like toxin and two sodium channel toxins from the sea anemone *Stichodactyla gigantea*. Biochim Biophys Acta 1652, 103–106

Honma T, Hasegawa Y, Ishida M, Nagai H, Nagashima Y, Shiomi K (2005a) Isolation and molecular cloning of novel peptide toxins from the sea anemone *Anthopleura maculata*. Toxicon 45, 33–41
Honma T, Minagawa S, Nagai H, Ishida M, Nagashima Y, Shiomi K (2005b) Novel peptide toxins from acrorhagi, aggregative organs of the sea anemone *Actinia equina*. Fish Sci 63, 794–798
Kelso GJ, Blumenthal KM (1998) Identification and characterization of novel sodium channel toxins from the sea anemone *Anthopleura xanthogrammica*. Toxicon 36, 41–51

Kem WR (1988) "Sea anemone toxins: structure and action." In: The Biology of Nematocytes, Hessinger DA, Lenhoff HM, eds. [New York: Academic Press] pp 375–405

Kem WR, Parten B, Pennington MW, Price DA, Dunn BM (1989) Isolation, characterization, and amino acid sequence of a polypeptide neurotoxin occurring in the sea anemone *Stichodactyla helianthus*. Biochemistry 28, 3483–3489

Kem WR, Pennington MW, Dunn BM (1990) "Sea anemone polypeptide toxins affecting sodium channels. Initial structure-activity investigations." In: Marine Toxins. Origin, Structure and Molecular Pharmacology, Hall S, Stricharz G, eds. [Washington, DC: American Chemical Society] pp 279–289

Khera PK, Benzinger GR, Lipkind G, Drum CL, Hanck DA, Blumenthal KM (1995) Multiple cationic residues of antheplurin B that determine high affinity and channel isofrom discrimination. Biochemistry 34, 8533–8541

Korolkova YV, Kozlov SA, Lipkin AV, Pluzhnikov KA, Hadley JK, Filipov AK, Brown DA, Angelo K, Stroback D, Jespersen T, Olesen SP, Jensen BS, Grishin EV (2001) An ERG channel inhibitor from the scorpion *Buthus eupeus*. J Biol Chem 276, 9868–9876

Li D, Xiao Y, Hu W, Xie J, Bosmans F, Tytjat J, Liang S (2003) Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider *Selecoscapus hainana*. FEBS Lett 555, 616–622

Lin XY, Ishida M, Nagashima Y, Shiomi K (1996) A polypeptide toxin in the sea anemone *Actinia equina* homologous with other sea anemone sodium channel toxins: isolation and amino acid sequence. Toxicon 34, 57–65

Loret EP, del Valle RM, Mansuelle P, Sampieri F, Rochat H (1994) Positively charged amino acid residues located similarly in sea anemone and scorpion toxins. J Biol Chem 269, 16785–16788

Malpezi EL, de Freitas JC, Muramoto K, Kamiya H (1993) Characterization of peptides in sea anemone venom collected by a novel procedure. Toxicon 31, 853–864

Martinez G, Kopeyan C, Schweitz H, Lazdunski M (1977) Toxin III from *Anemonia sulcata*: primary structure. FEBS Lett 84, 247–252

Mettrione RM, Schweitz H, Walsh KA (1987) The amino acid sequence of toxin RpIII from the sea anemone, *Radianthus paumotensis*. FEBS Lett 218, 59–62

Minagawa S, Ishida M, Shimakura K, Nagashima Y, Shiomi K (1997) Isolation and amino acid sequences of two Kunitz-type protease inhibitors from the sea anemone *Anthopleura aff. xanthogrammica*. Comp Biochem Physiol 118B, 381–386

Minagawa S, Ishida M, Nagashima Y, Shiomi K (1998a) Primary structure of a potassium channel toxin from the sea anemone *Actinia equina*. FEBS Lett 427, 149–151

Minagawa M, Ishida M, Shimakura K, Nagashima Y, Shiomi K (1998b) Amino acid sequence and biological activities of another Kunitz-type protease inhibitor from the sea anemone *Anthopleura aff. xanthogrammica*. Fish Sci 64, 157–161

Mouhat S, Jouibou B, Mosbah A, De Waard M, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378, 717–726

Nishida S, Fujita S, Warashina A, Satake M, Tamiya N (1985) Amino acid sequence of a sea anemone toxin from *Parasicyonis actinostoloides*. Eur J Biochem 150, 171–173

Norton TR (1981) Cardiotonic polypeptides from *Anthopleura xanthogrammica* (Brandt) and *A. elegantissima* (Brandt). Fed Proc 40, 21–25

Norton RS (1991) Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. Toxicon 29, 1051–1084

Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JI, Wanke E (2004) Binding specificity of sea anemone toxins to Nav 1.1–1.6 sodium channels: unexpected contributions from differences in the IV/S3–S4 outer loop. J Biol Chem 279, 33323–33335

Oliveira BM, Gray WR, Zeikus R, McIntosh JM, Varga J, Rivier J, de Santos V, Cruz LJ (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338–1343

Pennington MW, Mahnir VM, Krafte DS, Zaydenberg I, Byrnes ME, Khaytin I, Crowley K, Kem WR (1996) Identification of three separate binding sites on SHK toxin, a potent inhibitor of voltage-dependent potassium channels in human T-lymphocytes and rat brain. Biochem Biophys Res Commun 219, 696–701

Reimer NS, Yasunobu CL, Yasunobu KT, Norton TR (1985) Amino acid sequence of the *Anthopleura xanthogrammica* heart stimulant, antheplurein-B. J Biol Chem 260, 8690–8693

Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na⁺ channel alpha subunit. J Biol Chem 271, 15950–15962

Scheffler JJ, Tsugita A, Linden G, Schweitz H, Lazdunski M (1982) The amino acid sequence of toxin V from *Anemonia sulcata*. Biochem Biophys Res Commun 107, 272–278

Schweitz H, Vincent JP, Barhanin J, Frelin C, Linden G, Hugues M, Lazdunski M (1981) Purification and pharmacological properties of eight sea anemone toxins from *Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus*, and *Actinodendron pluminosum*. Biochemistry 20, 5245–5252

Schweitz H, Bidard J-N, Frelin C, Pauzon D, Vijverberg HPM, Mahasneh DM, Lazdunski M, Vilbois F, Tsugita A (1985) Purification, sequence, and pharmacological properties of sea anemone toxins from *Radianthus paumotensis*. A new class of sea anemone toxins acting on the sodium channel. Biochemistry 24, 3554–3561
Schweitz H, Bruhn T, Guillemare E, Moinier D, Lancelin J-M, Béress L, Lazdunski M [1995] Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage-sensitive K⁺ channels. J Biol Chem 270, 25121–25126

Seibert AL, Liu J, Hanck DA, Blumenthal KM [2003] Arg-14 loop of site 3 anemone toxins: effects of glycine replacement on toxin affinity. Biochemistry 42, 14515–14521

Seibert AL, Liu J, Hanck DA, Blumenthal KM [2004] Role of Asn-16 and Ser-19 in anthopleurin B binding. Implications for the electrostatic nature of Na(V) site 3. Biochemistry 43, 7082–7089

Shiomi K, Lin XY, Nagashima Y, Ishida M [1995] Isolation and amino acid sequence of polypeptide toxins in the Caribbean sea anemone Condylactis passiflora. Fish Sci 61, 1016–1021

Shiomi K, Lin XY, Nagashima Y, Ishida M [1996] Isolation and amino acid sequence of a polypeptide toxin from the sea anemone Radianthus crispus. Fish Sci 62, 629–633

Shiomi K, Qian WH, Lin XY, Shimakura K, Nagashima Y, Ishida M [1997] Novel polypeptide toxins with crab toxicity from the sea anemone Anemonia erythraea. Biochim Biophys Acta 1335, 191–198

Spagnuolo A, Zanetti L, Cariello L, Piccoli R [1994] Isolation and characterization of two genes encoding calitoxins, neurotoxic peptides from Calliactis parasitica (Cnidaria). Gene 138, 187–191

Sunahara S, Muramoto K, Tenma K, Kamiya H [1987] Amino acid sequence of two sea anemone toxins from Anthopleura fuscoviridis. Toxicon 25, 211–219

Tanaka M, Haniu M, Yasunobu KT, Norton TR [1977] Amino acid sequence of the Anthopleura xanthogrammica heart stimulant anthopleurin-A. Biochemistry 16, 204–208

Vincent JP, Balerna M, Barhanin J, Fosset M, Lazdunski M [1980] Binding of sea anemone toxin to receptor sites associated with gating system of sodium channel in synaptic nerve endings in vitro. Proc Natl Acad Sci USA 77, 1646–1650

Waldmann R, Lazdunski M [1998] H⁺-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8, 418–424

Wang L, Ou J, Peng L, Zhong X, Du J, Liu Y, Huang Y, Liu W, Zhang Y, Dong M, Xu AL [2004] Functional expression and characterization of four novel neurotoxins from sea anemone Anthopleura sp. Biochem Biophys Res Commun 313, 163–170

Warashina A, Ogura T, Fujita S [1988a] Binding properties of sea anemone toxins to sodium channels in the crayfish giant axon. Comp Biochem Physiol 90C, 351–359

Warashina A, Jiang ZY, Ogura T [1988b] Potential-dependent action of Anemonea sulcata toxins III and IV on sodium channels in crayfish giant axons. Pflügers Arch 411, 88–93

Widmer H, Wagner G, Schweitz H, Lazdunski M, Wuthrich K [1988] The secondary structure of the toxin ATX Ia from Anemonea sulcata in aqueous solution determined on the basis of complete sequence-specific 1H-NMR assignments. Eur J Biochem 171, 177–192

Wunderer G, Fritz H, Wachter E, Machleidt W [1976] Amino-acid sequence of a coelenterate toxin: toxin II from Anemonea sulcata. Eur J Biochem 68, 193–198

Wunderer G, Machleidt W, Fritz H [1981] The broad-specificity protease inhibitor 5 II from the sea anemone Anemonea sulcata. Methods Enzymol 80, 816–820

Zykova TA, Kozlovskaya EP [1989] Amino acid sequence of neurotoxin I from the sea anemone Radianthus macrodactylus. Bioorg Khim 15, 1301–1306

Zykova TA, Vinokurov LM, Markova LF, Kozlovskaya EP, Elyakov GB [1985a] Amino-acid sequence of trypsin inhibitor IV from the sea anemone Radianthus macrodactylus. Bioorghim 11, 302–310

Zykova TA, Kozlovskaya EP, Elyakov GB [1988a] Amino acid sequence of neurotoxin II from the sea anemone Radianthus macrodactylus. Bioorg Khim 14, 1489–1494