NON-PARALLEL ESSENTIAL SURFACES IN KNOT COMPLEMENTS

DAVID BACHMAN

Abstract. We show that if a knot or link has \(n \) thin levels when put in thin position then its exterior contains a collection of \(n \) disjoint, non-parallel, planar, meridional, essential surfaces. A corollary is that there are at least \(n/3 \) tetrahedra in any triangulation of the complement of such a knot.

Keywords: thin position, essential surface, knot invariant

1. Introduction

In 1987 D. Gabai introduced the concept of thin position for knots \([\text{Gab}87]\) to solve the Property \(R \) conjecture. Since then it has been used to solve many important questions in 3-manifold topology \([\text{GL}89], \text{ST}93, \text{Tho}94\). More recently thin position has become an object of study in itself \([\text{Tho}97], \text{HK}97, \text{RS}02, \text{Wu}\).

Thin levels are particular spheres which appear in a thin presentation of a knot or link. In \([\text{Tho}97]\) A. Thompson shows that if the exterior of a knot or link \(K \) does not contain any planar, meridional, essential surfaces then thin position for \(K \) has no thin levels. The idea of the proof is to show that the property of being non-trivial, possessed by a thin level, cannot disappear after any number of compressions. Therefore, compressing any thin level as much as possible yields a planar, meridional, essential surface.

In this paper we show that the property of being non-parallel, possessed by a collection of thin levels, cannot disappear after any number of compressions (as long as the compressions are chosen in a suitably nice way). Hence, compressing all thin levels as much as possible yields at least as many non-parallel essential surfaces as the number of thin levels. As a corollary we show that there are at least \(n/3 \) tetrahedra in any triangulation of the complement of a knot or link with \(n \) thin levels.

The author would like to thank Saul Schleimer for many helpful conversations.

2. Thin Position

Suppose \(K \subset S^3 \) is an arbitrary knot or link with no trivial components and \(h \) is some standard height function on \(S^3 \) (so that for each \(p \in (0, 1), h^{-1}(p) \) is a 2-sphere), which is a Morse function when restricted to \(K \). Let \(\{q'_j\} \) denote the critical values of \(h \) restricted to \(K \), let \(q_j \) be some point in the interval \((q'_j, q'_{j+1})\), and let

\(Date: \) October 31, 2018.
\[S_j = h^{-1}(q_j). \] The following terminology is standard in thin position arguments (see [Gab87]).

The width of \(K \) is defined to be the quantity \(\sum_j |K \cap S_j| \). A knot is said to be in thin position if \(h \) is chosen so that the width of \(K \) is minimal (see [Gab87]). If \(j \) is such that \(|K \cap S_j| < |K \cap S_{j-1}| \) and \(|K \cap S_j| < |K \cap S_{j+1}| \) then we say the surface \(S_j \) is a thin level of \(K \). In other words, a thin level is one which appears just above a maximum of \(K \) and just below a minimum.

Definition 2.1. Suppose \(K \) is a knot or link in \(S^3 \), \(h \) is the standard height function, and \(\gamma \) is a 1-manifold in the exterior of \(K \). We say \(\gamma \) is horizontal (with respect to \(K \)) if it is contained in a thin level of \(K \). If \(\gamma \) has endpoints on distinct levels of \(h \) then we say it is vertical if its interior has no critical points (with respect to \(h \)). If \(\gamma \) has endpoints on the same level of \(h \) then we say it is \(U \)-shaped if its interior has exactly one maximum or minimum. Finally, \(\gamma \) is simple if it is vertical or \(U \)-shaped.

Lemma 2.2. Suppose \(K_1 \) and \(K_2 \) are isotopic knots or links in \(S^3 \) which agree on some 1-manifold, \(\alpha \). \(K_1 \) is not in thin position if any of the following hold:

1. \(K_2 \setminus \alpha \) is horizontal with respect to \(K_1 \).
2. \(K_2 \setminus \alpha \) is vertical, but \(K_1 \setminus \alpha \) is not.
3. \(K_2 \setminus \alpha \) is \(U \)-shaped, but \(K_1 \setminus \alpha \) is not, and the minimum (maximum) of \(K_2 \setminus \alpha \) is at least as high (low) as the minimum (maximum) of \(K_1 \setminus \alpha \).

The horizontal case is proved in [BS03]. The proofs in the vertical and \(U \)-shaped cases are similar.

3. Heegaard Splittings

A compression body \(W \) is a 3-manifold which can be obtained by starting with some surface \(F \) (not necessarily closed or connected), forming the product \(F \times I \), attaching some number of 2-handles to \(F \times \{1\} \), and capping off all remaining 2-sphere boundary components with 3-balls. The surface \(F \times \{0\} \) is referred to as \(\partial_+ W \). The surface \(\partial_- W \) is defined by the equation \(\partial W = \partial_+ W \cup (\partial F \times I) \cup \partial_- W \). A compression body is non-trivial if it is not a product.

A surface \(F \) in a 3-manifold \(M \) is a Heegaard splitting of \(M \) if \(F \) separates \(M \) into two compression bodies, \(W \) and \(W' \), such that \(F = \partial_+ W = \partial_- W' \). We define \(\partial_- M = \partial_- W \cup \partial_- W' \).

We now present the crucial example of a Heegaard splitting for our purposes. Let \(T_1 \) and \(T_2 \) denote consecutive thin levels of a knot or link \(K \). Let \(N \) be the submanifold of \(S^3 \) cobounded by \(T_1 \) and \(T_2 \). Let \(S \) be a level 2-sphere which separates the maxima of \(K \) in \(N \) from the minima. Then \(S \setminus K \) is a Heegaard splitting of \(N \setminus K \) and \(\partial_-(N \setminus K) = T_1 \setminus K \cup T_2 \setminus K \).

For the proof of Lemma 4.7 we will need the following result:
Lemma 3.1. (Haken [Hak68]) Let S be a Heegaard splitting of a 3-manifold N. If D is a compressing disk for $\partial_- N$ then there is a compressing disk E such that $\partial E = \partial D$ and $E \cap S$ is a loop.

4. Compressing sequences

In this section we prove a few preliminary lemmas concerning sequences of compressions of the thin levels of a knot or link.

Definition 4.1. Suppose K is a knot or link in S^3. A sphere in S^3 is trivial if it is disjoint from K, or bounds a ball which contains a single, unknotted arc of K.

Definition 4.2. Suppose K is a knot or link in S^3 and Σ denotes the union of the thin levels of K. A compressing sequence for K is a sequence of surfaces $\{\Sigma_i\}_{i=0}^n$ such that $\Sigma_0 = \Sigma$ and Σ_i is obtained from Σ_{i-1} by a compression in the complement of K.

Definition 4.3. The compressing sequence $\{\Sigma_i\}_{i=0}^n$ is maximal if Σ_n is incompressible in the complement of K.

Lemma 4.4. Suppose K is a knot or link in thin position. If $\{\Sigma_i\}_{i=0}^n$ is a maximal compressing sequence for K then each component of Σ_n is essential, i.e. incompressible and non-trivial.

Proof. First we show that each component of Σ_n is incompressible in the complement of K. Suppose D is a compressing disk for some such component. Then by a standard innermost disk argument we can isotope D so that it intersects every component of $\Sigma_n \setminus K$ in essential loops. Let α denote such a loop which is innermost on D. Then α bounds a subdisk of D which is a compressing disk for $\Sigma_n \setminus K$. This contradicts the maximality of $\{\Sigma_i\}_{i=0}^n$.

The remainder of the argument is essentially one of Thompson’s from [Tho94]. We recall this here. The only remaining possibility is that all components of Σ_n are trivial. Let S be an innermost component of Σ_n. Let D be a disk in S^3 such that $\partial D = \delta \cup \gamma$, where $D \cap K = \delta$ and $D \cap S = \gamma$.

Note that S is the result of compressing some thin level T of K some number of times. It follows that $S \cap T$ is connected and we may assume that $\gamma \subset S \cap T$. Hence, we can use D to guide an isotopy of δ which, in the end, is horizontal with respect to K. This contradicts Lemma 2.2.

Lemma 4.5. Suppose K is a knot or link in thin position. Let $\{\Sigma_i\}_{i=0}^n$ be a compressing sequence for K. Let N_0 denote the closure of some component of $S^3 \setminus \Sigma_0$. If some component K' of $K \cap N_0$ is U-shaped then for all i both points of $\partial K'$ lie on the same component of Σ_i.

Proof. Without loss of generality, assume that K' has a minimum. Then we may isotope K', preserving the width of K', so that any other minimum on any other component of $K \cap N_0$ is below the minimum of K'.

\[\square\]
Now, suppose the lemma is false. Let m denote the largest integer such that both points of $\partial K'$ lie on the same component of Σ_m. Then Σ_{m+1} is obtained from Σ_m by compressing along a disk D whose boundary separates the boundary points of K'. Let N denote the closure of the component of $S^3 \setminus \Sigma_m$ which contains K'. So $\partial D \subset \partial N$. Note that the interior of D must lie outside of N. Otherwise, D would have to intersect K', as ∂D separates $\partial K'$. Let B be either of the balls bounded by $D \cup \partial N$ whose interior lies outside of N.

As the component F of ∂N that contains $\partial K'$ is obtained by compressing a thin level, T, it must be the case that $F \cap T$ is connected. Hence, we may choose a horizontal arc γ in $F \cap T$ which connects the endpoints of K'. Furthermore, we may choose such an arc so that it meets D in precisely one point of ∂D.

We now perform the isotopy depicted in Figure 1, which can be described as follows:

1. Shrink B to a small ball B' at the end of K'.
2. Contract K', pulling B' along with it.
3. Push B' along the arc γ.
4. Inflate B' back to B.

As in Figure 1 this isotopy will affect the other arcs of $K \cap N_0$ which meet B. Let S denote a level 2-sphere which is just below the minimum of K'. Note that Steps 2 and 3 of the isotopy take place entirely in the region between T and S. Recall that the minimum of K' is above all other minima of the components of $K \cap N_0$. Hence, the subarcs of K that are between T and S and which meet B are vertical. One such arc is depicted in Figure 1. Note that after the isotopy this arc is still vertical. Hence, as in Case 1 of Lemma 2.2 we have reached a contradiction because we have made a non-horizontal subarc of K into a horizontal one while preserving the width everywhere else. □

Definition 4.6. The compressing sequence $\{\Sigma_i\}_{i=0}^n$ is good if for each i, each component N of $S^3 - \Sigma_i$, and each component K' of $K \cap N$ there is a simple arc in N connecting the endpoints of K'.

Lemma 4.7. Suppose K is a knot or link in S^3. Then there exists a good maximal compressing sequence for K.

Proof. To establish the lemma we will define a much more rigid compressing sequence called a Haken sequence and prove that every Haken sequence is good. We will then show that a Haken sequence of maximal length is a maximal compressing sequence.

We say a compressing sequence $\{\Sigma_i\}_{i=0}^n$ is Haken if for each i each component N of $S^3 - \Sigma_i$ contains a 2-sphere S such that

1. $S \setminus K$ is a Heegaard splitting of $N \setminus K$.
2. The surface S is obtained from a level surface of h by some sequence of compressions.
3. Every component of $(K \cap N) \setminus S$ is simple.
Note that a compressing sequence with a single element, by definition consisting of the thin levels of K, is a Haken sequence. Between any two thin levels there is a level S which separates the maxima of K from the minima which has the desired properties.

We now show that every Haken sequence is good. Let $\{\Sigma_i\}_{i=0}^n$ denote a Haken sequence. Choose some i and let N denote the closure of a component of $S^3 - \Sigma_i$. Let K' denote a component of $K \cap N$. To show that our sequence is good we must produce a simple arc in N connecting the endpoints of K'. Since our sequence is Haken there is a 2-sphere S in N such that $S \setminus K$ is a Heegaard splitting for $N \setminus K$.

Let K_1 and K_2 denote the closure of the subarcs of $K' \setminus S$ which contain the points of $\partial K'$. Since S was obtained from a level surface of h by some sequence of compressions
we may choose a horizontal arc α in S which connects $K_1 \cap S$ to $K_2 \cap S$ (see Figure 2).

Since $\{\Sigma_i\}$ is a Haken sequence the arcs K_1 and K_2 must be vertical. Since the arc α is horizontal we may perturb the arc $\gamma = K_1 \cup \alpha \cup K_2$ to be simple (again, see Figure 2).

We have now shown that that every Haken sequence is good. What remains is to show is that there is a maximal compressing sequence which is a Haken sequence. Again note that for every knot or link K there exists at least one Haken sequence, namely the sequence with one element consisting of the thin levels of K.

We now assume that $\{\Sigma_i\}_{i=0}^n$ is a Haken sequence of maximal length such that some component T of Σ_n is compressible in the complement of K (i.e. $\{\Sigma_i\}_{i=0}^n$ is not a maximal compressing sequence). Let D be a compressing disk for T in the complement of K. By an innermost disk argument, we may assume that all loops of $D \cap \Sigma_n$ are essential on $\Sigma_n \setminus K$. Let D' be the subdisk of D bounded by an innermost such loop. Let N denote the closure of the component of $S^3 \setminus \Sigma_n$ which contains D'. Then $\partial D'$ is a compressing disk for ∂N, in the complement of K.

As $\{\Sigma_i\}_{i=0}^n$ is a Haken sequence there is a 2-sphere S in N such that $S \setminus K$ is a Heegaard splitting for $N \setminus K$. By Lemma 3.1 there is a compressing disk E for ∂N, in the complement of K, such that $\partial E = \partial D'$ and $E \cap S$ is a simple closed curve, δ. We now compress S along the subdisk of E bounded by δ to obtain the spheres S' and S'' and compress Σ_n along E to obtain Σ_{n+1} (see Figure 3). Note that $\{\Sigma_i\}_{i=0}^{n+1}$ is also a Haken sequence, contradicting the maximality of the length of our original choice.

\[\Box\]

Lemma 4.8. Suppose K is a knot or link in thin position. Let $\{\Sigma_i\}_{i=0}^n$ be a good compressing sequence for K. Let N be the closure of some component of $S^3 \setminus \Sigma_n$ and let S be a component of ∂N. Let K' denote the components of $K \cap N$ which meet
If all of the components of K' are parallel and connect distinct components of ∂N then each component of K' is vertical.

Proof. To prove the lemma we show that the components of K' must be simple. There are then two possibilities: either they are U-shaped or vertical. The former is ruled out by Lemma 4.5 and the latter is the desired conclusion.

By way of contradiction, assume the components of K' are not simple. As $\{\Sigma_i\}_{i=0}^n$ is good we may choose a collection of parallel simple arcs $\overline{K'}$ in N such that for each component $\alpha' \subset K'$ there is a component $\alpha' \subset \overline{K}$ with $\partial \alpha' = \partial \alpha'$. We now show that K is isotopic to a knot or link \overline{K} which contains $\overline{K'}$, such that $K \setminus K' = \overline{K} \setminus \overline{K'}$. This then contradicts Lemma 2.2.

Let B be the ball bounded by S on the side opposite N. Note that only one endpoint of each arc component of K' meets B, since each such arc connects distinct components of ∂N. The isotopy is illustrated in Figure 4 in the case where $\partial K'$ is contained in a single thin level T. The steps are the same in the case where the components of K' connect distinct thin levels. They are as follows:

1. Shrink B to a small ball B' at the end of K'.
2. Contract the arcs of K', pulling B' along with it.
3. Push B' along the arcs of \overline{K}.
4. Inflate B' back to B.

Note that in the case that $\overline{K'}$ is U-shaped we may do a further width-preserving isotopy to make the minima (maxima) of $\overline{K'}$ appear above (below) the minima (maxima) of K'. This is necessary to appeal to Case 3 of Lemma 2.2. □
5. The Main Theorem.

In this section we prove our main theorem.

Theorem 5.1. If a knot or link has \(n \) thin levels when put in thin position then its exterior contains a collection of \(n \) disjoint, non-parallel, planar, meridional, essential surfaces.

Proof. Let \(K \) be a knot or link in thin position with \(n \) thin levels. By Lemma 4.7 we may choose a good maximal compressing sequence \(\{ \Sigma_i \}_{i=0}^n \) for \(K \).

Lemma 4.4 implies that the elements of \(\Sigma_n \) are essential in the complement of \(K \). Let \(\mathcal{S} \) denote a collection of spheres in \(S^3 \) such that
(1) every element of Σ_n is parallel, in the complement of K, to an element of \mathcal{S} and

(2) no two elements of \mathcal{S} are parallel in the complement of K.

Our goal is to show that \mathcal{S} has at least n elements. Let Γ denote the dual graph of \mathcal{S} in S^3. Γ is then a tree, whose edges correspond to elements of \mathcal{S}. As the number of vertices minus the number of edges of any tree is 1, it suffices to show that Γ has at least $n + 1$ vertices.

Note that it is implicit in the assumption that K is in thin position that we have fixed a height function, h, on S^3. Let x and y denote two critical points of K with respect to h, which are separated by a thin level of K. Then x and y are separated by an element, T, of Σ_n. We claim that x and y are also separated by an element of \mathcal{S}.

Suppose this is not the case and let M denote the component of $S^3 \setminus \mathcal{S}$ which contains x and y, so that $T \subset M$. As T is not an element of \mathcal{S}, it must be parallel (in the complement of K) to some element of \mathcal{S}, and hence, to some component, S, of ∂M. Either x or y lies between T and S. Assume the former. Since T and S are parallel in the complement of K, and x is a point of K which lies between them, x must lie on a subarc, α, of K which connects T to S. But Lemma 4.8 implies that α is vertical, contradicting the fact that it contains the critical point, x.

We conclude by noting that our assumption that K had n thin levels implies that there is a collection of $n + 1$ critical points of K such that any two are separated by a thin level. The above argument then shows that each of these points must lie in a distinct component of $S^3 \setminus \mathcal{S}$, implying that Γ has at least $n + 1$ vertices. \square

Corollary 5.2. Let K be a knot or link which has a thin presentation with n thin levels. Let t be the smallest number of tetrahedra necessary to triangulate the complement of K. Then $t \geq \frac{n}{3}$.

Proof. In [Bac] we give an improvement over the classical Kneser-Haken Finiteness Theorem [Kne29, Hak68] and show that in closed manifolds the size of any collection of pairwise disjoint, closed, essential, 2-sided surfaces is at most twice the number of tetrahedra, $|T|$. Although we do not explicitly state a result there for manifolds (and surfaces) with boundary, the same proof shows that if M is a 3-manifold with non-empty boundary and \mathcal{S} is a collection of properly embedded, pairwise disjoint, 2-sided, incompressible and boundary incompressible surfaces then $2|\mathcal{S}| \leq g + 6|T|$, where g is the maximum number of twisted I-bundles that can disjointly embed in M. In the complement of the knot or link K in S^3 we have $g = 0$, so $2|\mathcal{S}| \leq 6t$, or $|\mathcal{S}| \leq 3t$. Now, Theorem 5.1 says there exists such a collection \mathcal{S} such that $n \leq |\mathcal{S}|$. Hence, $n \leq 3t$. \square

References

[Bac] D. Bachman. A note on Kneser-Haken finiteness. to appear in *Proceedings of the American Mathematical Society.*
D. Bachman and S. Schleimer. Thin position for tangles. *J. of Knot Theory and its Ramifications*, 12(1):117–122, 2003.

D Gabai. Foliations and the topology of three-manifolds iii. *J. Diff. Geom.*, 26:479–536, 1987.

C. McA. Gordon and J. Luecke. Knots are determined by their complements. *J. Amer. Math. Soc.*, 2:371–415, 1989.

Wolfgang Haken. Some results on surfaces in 3-manifolds. In *Studies in Modern Topology*, pages 39–98. Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1968.

Daniel J. Heath and Tsuyoshi Kobayashi. Essential tangle decomposition from thin position of a link. *Pacific J. Math.*, 179(1):101–117, 1997.

H. Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. *Jahresbericht der Deut. Math. Verein*, 28:248–260, 1929.

Yo’av Rieck and Eric Sedgwick. Thin position for a connected sum of small knots. *Algebr. Geom. Topol.*, 2:297–309 (electronic), 2002.

M. Scharlemann and A. Thompson. Heegaard splittings of (surface) x I are standard. *Math. Ann.*, 295:549–564, 1993.

A. Thompson. Thin position and the recognition problem for the 3-sphere. *Math. Research Letters*, 1:613–630, 1994.

A. Thompson. Thin position and bridge number for knots in the 3-sphere. *Topology*, 36:505–507, 1997.

Y.-Q. Wu. Thin position and essential planar surfaces. preprint.

Mathematics Department, California Polytechnic State University

E-mail address: dbachman@calpoly.edu