Bibliometric analysis of European publications between 2001 and 2016 on concentrations of selected elements in mushrooms

Paweł Świslowski1 · Agnieszka Dolhańczuk-Śródkit · Małgorzata Rajfur1

Received: 14 November 2019 / Accepted: 30 March 2020 / Published online: 23 April 2020 © The Author(s) 2020

Abstract
This article presents a bibliometric study of 200 European publications released between 2001 and 2016, about the contamination of mushrooms by selected elements. The analysis includes figures on the type of analyte, its concentration, the species of fungi, and its country of origin. In the literature review, 492 species of mushrooms (wild-growing and cultured) found in 26 European countries and their concentration of 74 associated elements were analysed. The papers, which dealt mainly with the heavy metal (Cd, Cu, Fe, Pb, and Zn) concentrations of mushrooms, primarily came from Turkey, Poland, Spain, and the Czech Republic. More than 50% of the publications provided data about edible mushrooms. The results of the bibliometric analysis showed that over the 16 years, European research on fungal contamination by selected analytes has not lessened in popularity and is ongoing. Many of the studies underlined the need to assess the risk to human health arising from the consumption of contaminated mushrooms taken from various habitats. These results were the effect of, among other things, the strong interest in studies carried out on edible species, in which concentrations of mainly heavy metals that are dangerous to health and are marked were indicated (Cd, Pb, and Hg).

Keywords Mushrooms · Heavy metals · Review · Bibliometric analysis

Introduction
Due to their organoleptic (taste) characteristics, mushrooms are a valuable product that are used in a range of dishes. The dry matter content is very low, usually around 100 g/kg. The low proportion of protein, fat, and carbohydrates result in a low nutritional and energy value. The potassium and phosphorus content of the fungi is higher than in most vegetables. The mushroom concentrates nutrients and minerals from the soil through the hyphae; however, they are not actively taken in from the air (Kalac 2009; Falandysz 2017). Mushrooms contain microelements that are indispensable for the functioning of the human organism, but they can also concentrate heavy metals such as cadmium, mercury, and lead (Demirbaş 2001b). The fruiting bodies of edible mushrooms might contain high concentrations of macro- and micro-elements. The ability to take up high amounts of trace elements results from the specific structure of the mycelium: the uncovered surface of the vegetative cells and the hyphae’s large surface area (Işıloğlu et al. 2001a). Generally, in the fruiting body of the mushrooms, heavy metals are stored bound to proteins, especially to low molecular weight ones (Cuny et al. 2001; Demirbaş 2001a). It was evidenced that the uptake of metals from soil is a species characteristic and the level of concentration of individual microelements in the fungi is genetically conditioned (Işıloğlu et al. 2001b).

The papers included in this bibliometric analysis (literature reviews in the database) are concerned with the quantification of some important elements present in the fruiting body of some mushrooms; therefore, they contain data only about the concentration ranges of these elements. This article presents a new approach to the presentation and analysis of data on concentrations of selected elements in mushrooms. The abovementioned publications were categorised according to their year of issue, the author’s country of origin, and the most...
Year	Authors	Number of countries	Number of journals
2001	Blanușa et al. 2001; Cuny et al. 2001; Demirbaș 2001a, b; İşşoğlu et al. 2001a, b; Falandysz et al. 2001a, b; Falandysz and Bielawski 2001; Marzano et al. 2001; Mattila and Ko 2001; Zimmermannová et al. 2001	Croatia, 1	Archives of Environmental Contamination and Toxicology, 2
		Finland, 1	Ekokologia (Bratislava), 1
		France, 1	Environmental Research, 1
		Italy, 1	Food Additives & Contaminants, 1
		Poland, 2	Food Chemistry, 3
		Slovakia, 1	Journal of Agricultural and Food Chemistry, 1
		Sweden, 1	Journal of AOAC International, 1
		Turkey, 4	Polish Journal of Environmental Studies, 1
			Water, Air, and Soil Pollution, 1
			Analytical and Bioanalytical Chemistry, 1
			Applied Radiation and Isotopes, 1
			Archives of Environmental Contamination and Toxicology, 1
			Bulletin of Environmental Contamination and Toxicology, 1
			Environment International, 1
			FEMS Microbiology Ecology, 1
			FEMS Microbiology Letters, 1
			Food Additives and Contaminants, 1
			Food Chemistry, 3
			Geochemistry Exploration
			Environment Analysis, 1
			European Food Research and Technology, 1
			Food Chemistry, 2
			Journal de Physique IV France, 1
			Microchemical Journal, 1
			New Phytologist, 1
			The Science of the Total Environment, 1
			Turkish Journal of Botany, 1
			Water, Air, and Soil Pollution, 1
			Analytical Sciences
			Bulletin of Environmental Contamination and Toxicology, 1
			European Food Research and Technology, 1
			Food Chemistry, 5
			Journal of Food Research and Technology, 1
			Journal of Radioanalytical and Nuclear Chemistry, 1
			New Phytologist, 2
			World Journal of Microbiology & Biotechnology, 1
			Analytica Chimica Acta, 1
			Analytical Sciences, 1
2002	Baldrian and Gabriel 2002; Demirbaș 2002; Demovics et al. 2002; Falandysz et al. 2002a, b; Larsen et al. 2002; Lodenius et al. 2002; Mietelski et al. 2002; Ott et al. 2002; Sivrikaya et al. 2002; Svoboda et al. 2002; Collin-Hansen et al. 2002	Czech Republic, 2	Bulletin of Environmental Contamination and Toxicology, 1
		Denmark, 1	Environment International, 1
		Finland, 1	FEMS Microbiology Ecology, 1
		Germany, 1	FEMS Microbiology Letters, 1
		Hungary, 1	Food Additives and Contaminants, 1
		Norway, 1	Food Chemistry, 3
		Poland, 2	Geochemistry Exploration
		Ukraine and Spain, 1	Environment Analysis, 1
		Turkey, 2	European Food Research and Technology, 1
2003	Adriaensen et al. 2003; Alonso et al. 2003; Collin-Hansen et al. 2003; Djingova et al. 2003; Falandysz et al. 2003a, b; Perkiömäki et al. 2003; Hatvaní and Mécs 2003; Svoboda and Kalač 2003; Tüzen 2003; Vetter 2003a, b; Yılmaz et al. 2003	Belgium, 1	Food Chemistry, 2
		Czech Republic, 1	Journal de Physique IV France, 1
		Finland, 1	Microchemical Journal, 1
		Germany, 1	New Phytologist, 1
		Hungary, 3	The Science of the Total Environment, 1
		Norway, 1	Turkish Journal of Botany, 1
		Poland, 2	Water, Air, and Soil Pollution, 1
		Spain, 1	Analytical Sciences
		Turkey, 2	Bulletin of Environmental Contamination and Toxicology, 1
2004	Colpaert et al. 2004; Isildač et al. 2004; Krupa and Kozdřój 2004; Malinowska et al. 2004; Mendil et al. 2004; Moreno-Rojas et al. 2004; Muller et al. 2004; Nikkarinen and Mertanen 2004; Randa and Kucera 2004; Turkekul et al. 2004; Vetter 2004; Yeşil et al. 2004	Belgium, 2	European Food Research and Technology, 1
		Czech Republic, 1	Food Chemistry, 5
		Finland, 1	Journal of Food Research and Technology, 1
		Hungary, 1	Journal of Food Composition and Analysis, 1
		Poland, 2	Journal of Radioanalytical and Nuclear Chemistry, 1
		Spain, 1	New Phytologist, 2
		Turkey, 4	World Journal of Microbiology & Biotechnology, 1
			Analytica Chimica Acta, 1
2005	Borovička et al. 2005; Carvalho et al. 2005; Collin-Hansen et al. 2005a, b; Diaz Huerta et al. 2005; Fomina et al. 2005; García et al. 2005; Mendil et al. 2005; Rudawska and Leski 2005a, b; Soeres et al. 2005; Soylak et al. 2005; Tüzen and Soylak 2005; Vetter 2005a, b; Vetter and Berta 2005	Belgium, Ireland, and Great Britain, 1	Bulletin of Environmental Contamination and Toxicology, 1
		Czech Republic and Slovakia, 1	Food Chemistry, 4
		Hungary, 4	Food Control, 2
		Norway, 2	Journal of Chemical Technology and Biotechnology, 1
		Poland, 2	
		Portugal, 1	
Year	Authors	Number of countries	Number of journals
------	---	---------------------	---
2006	Benbrahim et al. 2006; Borovička et al. 2006; Cocchi et al. 2006; Sesli and Dalman 2006; Konuk et al. 2006; Malinowska et al. 2006; Moilanen et al. 2006; Sesli 2006; Svooba et al. 2006; Weeks et al. 2006	Spain, 2; Turkey, 3	Mycologia, 1; Mycological Research, 3; Science of the Total Environment, 1; Soil Biology & Biochemistry, 1; Asian Journal of Chemistry, 2; Chemosphere, 1; Environmental Pollution, 1; Food Additives & Contaminants, 1; Food Chemistry, 3; Forest Ecology and Management, 1; Fresenius Environmental Bulletin, 1; Pakistan Journal of Botany, 1
2007	Borovička and Řanda 2007; Borovička et al. 2007; Falandysz and Bielawski 2007; Falandysz et al. 2007; Figueiredo et al. 2007; Isildak et al. 2007; Komárek et al. 2007; Melgar et al. 2007; Nováčková et al. 2007; Omil et al. 2007; Ouzouni et al. 2007; Tižen et al. 2007; Yamaç et al. 2007	Czech Republic, 5; Poland, 1; Turkey, 4	Analytical Letters, 1; Ekologia (Bratislava), 1; Environment International, 1; Food Chemistry, 2; Food Control, 1; Journal of Agricultural and Food Chemistry, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Food Composition and Analysis, 1; Mycological Progress, 1; Mycological Research, 1; Science of the Total Environment, 2; Chemosphere, 1; Environmental Geochemistry and Health, 1; Food Additives & Contaminants: Part A, 1; Fresenius Environmental Bulletin, 1; Journal of Environmental Radioactivity, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Hazardous Materials, 2; Journal of Microbiology and Biotechnology, 1; Soil Biology & Biochemistry, 1; Annals. Food Science and Technology, 1; Biometals, 1; Bulletin of Environmental Contamination and Toxicology, 1; Chemical Analysis, 1; Contemporary Problems of Ecology, 1; Environmental Pollution, 1; Food and Chemical Toxicology, 1; Food Chemistry, 3; Journal of Hazardous Materials, 2; Science of the Total Environment, 2; African Journal of Agricultural Research, 1; Biological Trace Element Research, 1; Bulletin of Environmental Contamination and Toxicology, 1; Desalination, 1; Food Additives & Contaminants: Part B, 1; Food and Chemical Toxicology, 1
2008	Chudzyński and Falandysz 2008; Ertugay and Bayhan 2008; Falandysz and Gucia 2008; Falandysz et al. 2008; Johansson et al. 2008; Sesli et al. 2008; Svooba and Chrastrý 2008; Tasdemir et al. 2008; Yağız et al. 2008; Żunić et al. 2008	Czech Republic, 3; Greece, 1; Poland, 2; Portugal, 1; Spain, 2; Turkey, 3	Analytical Letters, 1; Ekologia (Bratislava), 1; Environment International, 1; Food Chemistry, 2; Food Control, 1; Journal of Agricultural and Food Chemistry, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Food Composition and Analysis, 1; Mycological Progress, 1; Mycological Research, 1; Science of the Total Environment, 2; Chemosphere, 1; Environmental Geochemistry and Health, 1; Food Additives & Contaminants: Part A, 1; Fresenius Environmental Bulletin, 1; Journal of Environmental Radioactivity, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Hazardous Materials, 2; Journal of Microbiology and Biotechnology, 1; Soil Biology & Biochemistry, 1; Annals. Food Science and Technology, 1; Biometals, 1; Bulletin of Environmental Contamination and Toxicology, 1; Chemical Analysis, 1; Contemporary Problems of Ecology, 1; Environmental Pollution, 1; Food and Chemical Toxicology, 1; Food Chemistry, 3; Journal of Hazardous Materials, 2; Science of the Total Environment, 2; African Journal of Agricultural Research, 1; Biological Trace Element Research, 1; Bulletin of Environmental Contamination and Toxicology, 1; Desalination, 1; Food Additives & Contaminants: Part B, 1; Food and Chemical Toxicology, 1
2009	Brzostowski et al. 2009; Campos et al. 2009; Chudzyński et al. 2009; Duran et al. 2009; García et al. 2009; Gençcelep et al. 2009; Gonzávez et al. 2009; Guillén et al. 2009; Gursoy et al. 2009; Melgar et al. 2009; Ouzouni et al. 2009; Krpata et al. 2009; Gorbunova et al. 2009; Elekes et al. 2009	Austria, 1; Greece, 1; Poland, 2; Romania, 1; Russia, 1; Spain, 5; Turkey, 3	Analytical Letters, 1; Ekologia (Bratislava), 1; Environment International, 1; Food Chemistry, 2; Food Control, 1; Journal of Agricultural and Food Chemistry, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Food Composition and Analysis, 1; Mycological Progress, 1; Mycological Research, 1; Science of the Total Environment, 2; Chemosphere, 1; Environmental Geochemistry and Health, 1; Food Additives & Contaminants: Part A, 1; Fresenius Environmental Bulletin, 1; Journal of Environmental Radioactivity, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Hazardous Materials, 2; Journal of Microbiology and Biotechnology, 1; Soil Biology & Biochemistry, 1; Annals. Food Science and Technology, 1; Biometals, 1; Bulletin of Environmental Contamination and Toxicology, 1; Chemical Analysis, 1; Contemporary Problems of Ecology, 1; Environmental Pollution, 1; Food and Chemical Toxicology, 1; Food Chemistry, 3; Journal of Hazardous Materials, 2; Science of the Total Environment, 2; African Journal of Agricultural Research, 1; Biological Trace Element Research, 1; Bulletin of Environmental Contamination and Toxicology, 1; Desalination, 1; Food Additives & Contaminants: Part B, 1; Food and Chemical Toxicology, 1
2010	Borovička et al. 2010; b; Çayır et al. 2010; Ertugay and Bayhan 2010; Frankowska et al. 2010; Karadeniz and Yaprak 2010; Ozturk et al. 2010; Radulescu et al. 2010; Sarikurkcu et al. 2010; Zhang et al. 2010	Czech Republic, 2; Poland, 2; Romania, 3; Turkey, 5	Analytical Letters, 1; Ekologia (Bratislava), 1; Environment International, 1; Food Chemistry, 2; Food Control, 1; Journal of Agricultural and Food Chemistry, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Food Composition and Analysis, 1; Mycological Progress, 1; Mycological Research, 1; Science of the Total Environment, 2; Chemosphere, 1; Environmental Geochemistry and Health, 1; Food Additives & Contaminants: Part A, 1; Fresenius Environmental Bulletin, 1; Journal of Environmental Radioactivity, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Hazardous Materials, 2; Journal of Microbiology and Biotechnology, 1; Soil Biology & Biochemistry, 1; Annals. Food Science and Technology, 1; Biometals, 1; Bulletin of Environmental Contamination and Toxicology, 1; Chemical Analysis, 1; Contemporary Problems of Ecology, 1; Environmental Pollution, 1; Food and Chemical Toxicology, 1; Food Chemistry, 3; Journal of Hazardous Materials, 2; Science of the Total Environment, 2; African Journal of Agricultural Research, 1; Biological Trace Element Research, 1; Bulletin of Environmental Contamination and Toxicology, 1; Desalination, 1; Food Additives & Contaminants: Part B, 1; Food and Chemical Toxicology, 1
Year	Authors	Number of countries	Number of journals
------	---------	---------------------	--------------------
2011	Ayaz et al. 2011; Borovička et al. 2011; Brzostowski et al. 2011; Busuioc et al. 2011; Campos and Tejera 2011; Chudzyński et al. 2011; Costa-Silva et al. 2011; Kula et al. 2011; Rieder et al. 2011; Osobová et al. 2011; Sarikurkçu et al. 2011; Stihi et al. 2011	Czech Republic, 2 Poland, 2 Portugal, 1 Romania, 2 Spain, 1 Switzerland, 1 Turkey, 3	Journal of Consumer Protection and Food Safety, 1 Journal of Radioanalytical and Nuclear Chemistry, 1 Ovidius University Annals of Chemistry, 1 Romanian Biotechnological Letters, 1 Science of the Total Environment, 1 Soil Biology & Biochemistry, 1 Biological Trace Element Research, 1 Biometals, 1 Bulletin of Environmental Contamination and Toxicology, 1 Bulletin UASVM Agriculture, 1 Environmental Pollution, 1 Environmental Science and Pollution Research, 1 Food and Nutrition Sciences, 1 Food Chemistry, 3 Journal of Environmental Science and Health, Part A, 1 New Physiologist, 1 Biological Trace Element Research, 1 Biometals, 1 Bulletin of Environmental Contamination and Toxicology, 1 Ecological Indicators, 1 Ecology of Food and Nutrition, 1 Ecotoxicology and Environmental Safety, 1 Environmental Monitoring and Assessment, 1 Environmental Science and Pollution Research, 1 Food Chemistry, 1 ISRN Ecology, 1 Journal of Environmental Protection and Ecology, 1 Proceedings of 6th Central European Congress on Food, 1 Bulletin of Environmental Contamination and Toxicology, 1 Environmental Monitoring and Assessment, 1 Environmental Research, 1 Environmental Science and Pollution Research, 1 Food and Chemical Toxicology, 1 International Journal of Environmental Science and Technology, 1 Journal of Environmental Radioactivity, 1 Journal of Microbiology, Biotechnology and Food Sciences, 1 Journal of Mountain Science, 1 Journal of Radioanalytical and Nuclear Chemistry, 1 Metallomics, 1 Polish Journal of Environmental Studies, 1 Science of the Total Environment, 1 Applied Geochemistry, 1
2012	Aloupi et al. 2012; Cremades et al. 2012; Giannaccini et al. 2012; Gryndler et al. 2012; Guica et al. 2012; Maćkiewicz and Falandyż 2012; Milinkovic et al. 2012; Mitičel et al. 2012; Sarikurkcu et al. 2012; Şen et al. 2012; Škrbić et al. 2012; Vinichuk 2012	Czech Republic, 1 Greece, 1 Italy, 1 Poland, 2 Romania, 1 Serbia, 2 Spain, 1 Sweden, 1 Turkey, 2	
2013	Daillant et al. 2013; García-Delgado et al. 2013; García et al. 2013; Gramss and Voigt 2013; Gwynn et al. 2013; Miklavčič et al. 2013; Mirończuk-Chodakowska et al. 2013; Özean et al. 2013; Petkovšek and Pokorny 2013; Ruytinx et al. 2013; Severoglu et al. 2013; Slávik et al. 2013; Zhang et al. 2013	Belgium, 1 France, 1 Germany, 1 Norway, 1 Poland, 2 Slovakia, 1 Slovenia, 2 Spain, 2 Turkey, 2	
2014		Croatia, 1	
frequently studied species of fungi. Furthermore, the article also includes the values of the highest concentrations of the most frequently studied heavy metals found in fungi. Additionally, a list of fungi species has been presented, together with their current, relevant scientific name (colloquial names, synonyms, or outdated names appear in many publications). The publications whose authors assessed the health risks arising from the consumption of contaminated mushrooms (i.e. with heavy/toxic metals) are also listed according to the different indices (Falandysz and Drewnowska 2015; Melgar et al. 2014; Zsigmond et al. 2015).

This article contains a bibliometric analysis of 200 European publications about the concentrations of selected elements in mushrooms that were published between 2001 and 2016. We evaluated these articles relying on some important aspects: the edibility of mushrooms (edible and non-edible/poisonous species), the most studied elements (type, incidence, and concentration in the fruiting body), and health risks

Year	Authors	Number of countries	Number of journals
2014	Baumann et al. 2014; Borovička et al. 2014; Drewnowska et al. 2014; Dryżalowska and Falandysz 2014; Gezer and Kaygusuz 2014; Kubrová et al. 2014; Llorente-Mirandes et al. 2014; Melgar et al. 2014; Nagy et al. 2014; Rakić et al. 2014; Sácky et al. 2014; Širić et al. 2014	Czech Republic, 3; Germany, 1; Poland, 2; Romania, 1; Serbia, 1; Spain, 2; Turkey, 1	Ecotoxicology and Environmental Safety, 1; Environmental Progress & Sustainable Energy, 1; Environmental Science and Pollution Research, 2; Food and Chemical Toxicology, 1; Food Chemistry, 1; Fungal Genetics and Biology, 1; Journal of Environmental Protection and Ecology, 1; Journal of Environmental Science and Health, Part A, 1; Journal of Environmental Science and Health, Part B, 1
Materials and methods

The articles considered in this bibliometric survey were selected from various online databases such as ScienceDirect, Springer, Scopus, and Web of Science. These databases are the main sources for monitoring the progress of scientific research. A total of 200 articles from the years 2001–2016 were analysed. Publications from consecutive years do not represent all the published material; however, an attempt was made to select the most ‘popular’ (article citation index) articles in a given year. We tried to collect at least ten publications from each year. Table 1 presents a list of authors covered in the literature survey. Because authors occasionally provided synonyms for the names of the same species, as well as sometimes using outdated phrases from mushroom nomenclature, we have used the current definitions from the Catalogue of Life: 2019 Annual Checklist and Index Fungorum. For example, due to the conflicting description regarding the edibility of the species Tricholoma fructicum (the mushroom is described as edible in one publication and non-edible in another), we decided to define the edibility of a species using the United Nations FAO (Boa 2004), the MycoKey 4.1 program (MK), and the following selected Internet pages: Wikipedia (W), Fungipedia (F), www.wildfooduk.com (UK), and www.mycodb.fr (MDB). The Supplementary data section contains all the numerical data concerning elements, mushroom species, and the countries present in the list. Our main task was to search for a relevant literature entry (year, location of research) and select the data of interest (element, mushroom species studied). The article was based on reviews, which were the inspiration for this work (Kalač et al. 2010; Kalač and Svoboda 2000). These publications were most frequently based on the analyses of concentrations of individual elements in mushrooms (Mogîldea 2016; Kalač et al. 2004; Román et al. 2006), which were related to publications on the biomonitoring of certain areas for heavy metal pollution in selected mushroom species, e.g. Świsłowsk and Rajfur (2018). This article is based on a systematic literature review, following the example of other bibliometric papers (Chang and Ho 2010; de Freitas and Alves-Souza 2019).

Results and discussion

The average number of publications per year was 13. Table 2 contains a list of the ten most frequently mentioned mushroom species in the above publications.

The Boletus edulis was the most frequently studied species, and it was present in 57 articles out of 200. The articles dealt with a total number of 492 species of edible (262) and non-edible mushrooms (226). The list included four mushroom species (Helvella leptopodra, Hypholoma pudorinus, Russula nigrescens, Suillus elegant) that were only mentioned in these publications and have not been identified elsewhere. This could have been caused by an erroneously quoted name or the use of a synonym of the approved name. In Table 2, only the edible species from the general list are shown. This confirms that European researchers focused on edible mushroom species (more than half of the 492 fungi species included in the analysed articles). The phrase ‘non-edible’ mushrooms signifies those that have no culinary value, those whose consumption can be hazardous to health, and poisonous ones. The species Amanita muscaria was the most frequently mentioned non-edible mushroom species (26 times).

Table 3 contains five of the most frequently occurring elements out of the 74 mentioned. The Supplementary data section contains both alkali metals, non-metals, radioisotopes, and heavy metals. The last group occurred most frequently in the list.

The majority of publications contained studies on the mushrooms’ capacity for concentrating elements (e.g. migration mechanisms), or their possible harmfulness (polluted with heavy metals) when consumed by humans. The analyses of Cd, Pb, and Zn concentrations and their presence in mushrooms were due to the fact that many authors indicated the health-related aspects of consuming mushrooms contaminated by heavy metals (Table 4).

The most frequently discussed element was cadmium (Table 3). The influence of different concentrations of this element on growth and its content in mushrooms (226). The list included four mushroom species (Helvella leptopodra, Hypholoma pudorinus, Russula nigrescens, Suillus elegant) that were only mentioned in these publications and have not been identified elsewhere. This could have been caused by an erroneously quoted name or the use of a synonym of the approved name. In Table 2, only the edible species from the general list are shown. This confirms that European researchers focused on edible mushroom species (more than half of the 492 fungi species included in the analysed articles). The phrase ‘non-edible’ mushrooms signifies those that have no culinary value, those whose consumption can be hazardous to health, and poisonous ones. The species Amanita muscaria was the most frequently mentioned non-edible mushroom species (26 times).

Table 3 contains five of the most frequently occurring elements out of the 74 mentioned. The Supplementary data section contains both alkali metals, non-metals, radioisotopes, and heavy metals. The last group occurred most frequently in the list.

The majority of publications contained studies on the mushrooms’ capacity for concentrating elements (e.g. migration mechanisms), or their possible harmfulness (polluted with heavy metals) when consumed by humans. The analyses of Cd, Pb, and Zn concentrations and their presence in mushrooms were due to the fact that many authors indicated the health-related aspects of consuming mushrooms contaminated by heavy metals (Table 4).

The most frequently discussed element was cadmium (Table 3). The influence of different concentrations of this element on growth and its content in mushrooms (226). The list included four mushroom species (Helvella leptopodra, Hypholoma pudorinus, Russula nigrescens, Suillus elegant) that were only mentioned in these publications and have not been identified elsewhere. This could have been caused by an erroneously quoted name or the use of a synonym of the approved name. In Table 2, only the edible species from the general list are shown. This confirms that European researchers focused on edible mushroom species (more than half of the 492 fungi species included in the analysed articles). The phrase ‘non-edible’ mushrooms signifies those that have no culinary value, those whose consumption can be hazardous to health, and poisonous ones. The species Amanita muscaria was the most frequently mentioned non-edible mushroom species (26 times).

Table 3 contains five of the most frequently occurring elements out of the 74 mentioned. The Supplementary data section contains both alkali metals, non-metals, radioisotopes, and heavy metals. The last group occurred most frequently in the list.

The majority of publications contained studies on the mushrooms’ capacity for concentrating elements (e.g. migration mechanisms), or their possible harmfulness (polluted with heavy metals) when consumed by humans. The analyses of Cd, Pb, and Zn concentrations and their presence in mushrooms were due to the fact that many authors indicated the health-related aspects of consuming mushrooms contaminated by heavy metals (Table 4).

The most frequently discussed element was cadmium (Table 3). The influence of different concentrations of this element on growth and its content in mushrooms (226). The list included four mushroom species (Helvella leptopodra, Hypholoma pudorinus, Russula nigrescens, Suillus elegant) that were only mentioned in these publications and have not been identified elsewhere. This could have been caused by an erroneously quoted name or the use of a synonym of the approved name. In Table 2, only the edible species from the general list are shown. This confirms that European researchers focused on edible mushroom species (more than half of the 492 fungi species included in the analysed articles). The phrase ‘non-edible’ mushrooms signifies those that have no culinary value, those whose consumption can be hazardous to health, and poisonous ones. The species Amanita muscaria was the most frequently mentioned non-edible mushroom species (26 times).

Table 3 contains five of the most frequently occurring elements out of the 74 mentioned. The Supplementary data section contains both alkali metals, non-metals, radioisotopes, and heavy metals. The last group occurred most frequently in the list.

The majority of publications contained studies on the mushrooms’ capacity for concentrating elements (e.g. migration mechanisms), or their possible harmfulness (polluted with heavy metals) when consumed by humans. The analyses of Cd, Pb, and Zn concentrations and their presence in mushrooms were due to the fact that many authors indicated the health-related aspects of consuming mushrooms contaminated by heavy metals (Table 4).

The most frequently discussed element was cadmium (Table 3). The influence of different concentrations of this element on growth and its content in mushrooms (226). The list included four mushroom species (Helvella leptopodra, Hypholoma pudorinus, Russula nigrescens, Suillus elegant) that were only mentioned in these publications and have not been identified elsewhere. This could have been caused by an erroneously quoted name or the use of a synonym of the approved name. In Table 2, only the edible species from the general list are shown. This confirms that European researchers focused on edible mushroom species (more than half of the 492 fungi species included in the analysed articles). The phrase ‘non-edible’ mushrooms signifies those that have no culinary value, those whose consumption can be hazardous to health, and poisonous ones. The species Amanita muscaria was the most frequently mentioned non-edible mushroom species (26 times).

Table 3 contains five of the most frequently occurring elements out of the 74 mentioned. The Supplementary data section contains both alkali metals, non-metals, radioisotopes, and heavy metals. The last group occurred most frequently in the list.

The majority of publications contained studies on the mushrooms’ capacity for concentrating elements (e.g. migration mechanisms), or their possible harmfulness (polluted with heavy metals) when consumed by humans. The analyses of Cd, Pb, and Zn concentrations and their presence in mushrooms were due to the fact that many authors indicated the health-related aspects of consuming mushrooms contaminated by heavy metals (Table 4).
Concentrations are in the range of 50–150 mg kg\(^{-1}\) d. m. However, a higher concentration of Zn was present in *Sarcodon scabrosus*, taken from a pine forest in Turkey (4325 ± 298 mg kg\(^{-1}\) d. m.). This result differed significantly from the abovementioned average concentrations presented in the literature. The concentration of Zn in fungi seems to be similar to, or higher than, that found in the soil. The only species known to accumulate Zn in a significant way is *Russula atropurpurea*. This species, taken from unpolluted areas in the Czech Republic and Slovakia, contained as high Zn as 1062 mg kg\(^{-1}\) d. m. (Borovička and Řanda 2007). The high concentrations of zinc in sporocarps of this species are related to the presence of functional peptides, which bind this metal (Leonhardt et al. 2014).

The habitat from which fungi are taken has a direct impact on the levels of contamination of mushrooms by selected elements (including heavy metals). This was also the case of *Amanita citrina*, taken from industrialised areas in Upper Silesia in Poland. The concentration of lead in the fungus was 895 mg kg\(^{-1}\) d. m. The influence of zinc and lead smelters, which have been emitting pollutants in this area since the end of the nineteenth century, is undeniable (Krupa and Kozdrój 2004). Lead concentration in *Macrolepiota procera* was found to be of 171 mg kg\(^{-1}\) d. m. The habitat of the fungi was contaminated with Pb due to former metallurgical and mining activities (Petkovšek and Pokorny 2013). The low mobility of Pb and its ensuing rapid accumulation in mushroom stem are the main reasons why Pb is found chiefly in stems rather than mushroom caps (Komárek et al. 2007). An example is the 2007 study carried out near a Pb smelter in the highly polluted area of Příbram in the Czech Republic. In the upper soil layer of this area, lead was measured at a concentration of 36,234 mg kg\(^{-1}\), while the concentrations in the stipe of *B. edulis* growing in this study area was found to be 165 mg kg\(^{-1}\) d. m. (Komárek et al. 2007).

The copper content of mushrooms is usually 100–300 mg kg\(^{-1}\) d. m. During the period under consideration in the analysed European literature, a very high concentration of this analyte was determined in fungi collected from unpolluted areas of the Czech Republic, which makes this level of

Chemical element	Number	Species with the highest concentration of the element (mg kg\(^{-1}\) dry mass)	Habitat, where the mushrooms were collected	References
Cd	108	*Paxillus involutus* (Batsch) Fr., 1838 (3964 ± 611)	Laboratory – grown in a liquid medium	Ott et al. 2002
Zn	101	*Lepista nuda* (Bull.) Cooke, 1871 (4325 ± 298)	pine forest site, Çinardibi, Turkey	Karadeniz and Yaprak 2010
Pb	98	*Amanita citrina* Pers., 1797 (895 ± 41)	Industrial desert surrounding a nonferrous (zinc and lead) works in Miasteczko Slaskie, Poland	Krupa and Kozdrój 2004
Cu	96	*Xerocomellus chrysenteron* (Bull.) Šutara, 2008 (502)	Four sites in a rural area, unpolluted region near the town of Moravský Krumlov in south-western Moravia, Czech Republic	Svoboda and Chrastný 2008
Fe	76	*Lycoperdon perlatum* Pers., 1796 (24,600 ± 368)	The province of Mugla in the South-Aegean Region of Turkey	Sarikurkcu et al. 2015

*The name *Xerocomellus chrysenteron* is already outdated.*
contamination puzzling: see Table 3 (Svoboda and Chrastný 2008). A copper concentration of 427 mg kg\(^{-1}\) d. m. was measured in \textit{B. edulis} in Norway, where mushrooms were collected from around a copper smelter (Collin-Hansen et al. 2002). In \textit{Agaricus xanthodermus}, taken from areas with geochemical characteristics determined as polymetallic ores Pb-Cu-Zn-Ag, the concentration of copper was 420 ± 14 mg kg\(^{-1}\) d. m. (Řanda and Kučera 2004). Taking fungi from such areas means that the Cu content may be elevated (copper concentration is usually 100–300 mg kg\(^{-1}\) d. m.), taking into account the contamination of a given site (Kalač and Svoboda 2000; Kalač 2010).

The highest concentrations of iron were found in mushrooms collected in Turkey (Table 3). The high concentrations of this metal can be attributed to the industrial activity in this region. In \textit{Lepista nuda}, which was collected from Türkmenbaba Mountain in the Eskişehir forest area, an Fe concentration of 11,460 ± 6 mg kg\(^{-1}\) d. m. was measured. The results presented in this publication, for this species of fungus, were also very high for other elements (Pb, Mn, and Cu) and differed from the concentrations found in other samples of mushrooms collected from Turkey (Yamaç et al. 2007). In turn, in \textit{Omphalotus olearius}, taken from the forest along the Balıkesir-Manisa highway, 9685 mg kg\(^{-1}\) dry weight of iron was found. These areas were exposed to traffic pollution for many years (Yılmaz et al. 2003).

On the basis of the literature research we carried out, it can be concluded that high concentrations of heavy metals depend on the genetic properties of a given species (the ability of individual species to accumulate analytes (hyperaccumulation) (Falandysz and Chudzyńska 2012; Stefanović et al. 2016b; Zsigmond et al. 2015), and on the level of contamination in the habitat from which the material for testing was sampled (Mleczek et al. 2016).

Table 4 shows a list of indices that researchers used to assess the health risks associated with the consumption of fungi contaminated by heavy metals. The choice of appropriate indices for analysis depended on the type of test performed, the species of fungus on which the test was performed, and the element whose concentration was determined.

According to the literature analysis, provisional tolerable weekly intake (PTWI) was determined most frequently. The Joint FAO/WHO Expert Committee on Food Additives (JECFA) gives tolerable intake levels for contaminants, expressed on either a daily or a weekly basis. Unlike tolerable daily intake (TDI), the introduction of the term ‘weekly’ is intended to emphasise the need to limit the intake of a substance over a certain period of time, given that many contaminants are not rapidly removed from the body (Herrman and Younes 1999; Türkmen and Budur 2018). In addition, it can be concluded that this parameter was increasingly used in studies over the last decade of the analysis. In the research of many of the authors, they stressed the need to assess the

Table 4 List of indices

Indices	References
Hazard index (HI)	Falandysz et al. 2002a; Falandysz et al. 2003a; Falandysz et al. 2003b; Zsigmond et al. 2015
Provisional tolerable weekly intake (PTWI)	Blauša et al. 2001; Çayır et al. 2010; Chudzyński et al. 2009; Chudzyński et al. 2011; Dimitrijevic et al. 2016; Drewowska et al. 2014; Dzyażowska and Falandysz 2014; Falandysz and Drewowska 2014; Frankowska et al. 2010; Garcia et al. 2009; Giannaccini et al. 2012; Gucia et al. 2012; Guroy et al. 2009; Komárek et al. 2007; Krisánika and Falanska 2015; Krisánika and Falanska 2016; Larsen et al. 2002; Maćkiewicz and Falanska 2012; Malinowska et al. 2004; Miklavčič et al. 2013; Mirończuk-Chodakowska et al. 2013; Ostos et al. 2015; Ouzouni et al. 2007; Petkovišek and Pokorny 2013; Rudawska and Leski 2005a; Sarikurkcu et al. 2011; Sarikurkcu et al. 2012; Stefanović et al. 2016b; Svoboda et al. 2006
Recommended daily intake (RDI)	Milisavljevic et al. 2016; Gucia et al. 2012; Melgar et al. 2014; Stefanović et al. 2016a; Zsigmond et al. 2015
Acceptable daily intake (ADI)	Alonso et al. 2003
Dietary reference intake (DRI)	Cocchi et al. 2006; Costa-Silva et al. 2011
Provisional tolerable daily intake (PTDI)	Sesli et al. 2008
Reference dose (RfD)	Chudzyński et al. 2009; Chudzyński et al. 2011; Drewowska et al. 2014; Dzyażowska and Falanska 2014; Falanska and Drewowska 2015; Frankowska et al. 2010; Krisánika and Falanska 2016; Maćkiewicz and Falanska 2012; Melgar et al. 2014; Stefanović et al. 2016a; Zsigmond et al. 2015
Tolerable weekly intake (TWI)	Dimitrijevic et al. 2016; Gucia et al. 2012; Melgar et al. 2016; Ozturk et al. 2010; Schlecht and Säumel 2015; Stefanović et al. 2016b
Reference dose (RfD)	Chudzyński et al. 2009; Chudzyński et al. 2011; Drewowska et al. 2014; Dzyażowska and Falanska 2014; Falanska and Drewowska 2015; Frankowska et al. 2010; Krisánika and Falanska 2016; Maćkiewicz and Falansza 2012; Melgar et al. 2014; Stefanović et al. 2016a; Zsigmond et al. 2015
Acceptable daily intake (ADI)	Alonso et al. 2003
Dietary reference intake (DRI)	Cocchi et al. 2006; Costa-Silva et al. 2011
Provisional tolerable daily intake (PTDI)	Sesli et al. 2008
Recommended dietary allowance (RDA)	Busuio et al. 2011; Çayır et al. 2010; Garcia et al. 2013; Stefanović et al. 2016a
Recommended daily intake (RDI)	Aloupis et al. 2012; Dimitrijevic et al. 2016
Tolerable daily intake (TDI)	Aloupis et al. 2012; Stefanović et al. 2016b
Probable daily intake (PDI)	Miklavčič et al. 2013
risk to human health arising from the consumption of contaminated mushrooms taken from a given area (Table 4). This was due to the great interest in research carried out on edible species, in which concentrations of, mainly, heavy metals that are dangerous to health (Cd, Pb, and Hg) were determined.

Figure 1 contains a graphical representation of the countries where the discussed publications originated; for each country, the number of studies concerning sample acquisition is provided (for example, mushrooms purchased in shops or wild-grown).

Out of 26 countries, the following four were mentioned most frequently: Turkey (42), Poland (32), Spain (25), and the Czech Republic (22). Many studies about these issues have been carried out in Poland, as was shown earlier (Świsłowski and Rajfur 2017). It should be emphasised that the research teams in these countries are stable and their members produce joint publications. For example, in Poland, these works are produced mainly by Professor J. Falandysz and his teams, such as Falandysz et al. (2017).

Conclusions

As a result of this bibliometric study of 200 European publications, appearing between 2001 and 2016, on the contamination of mushrooms by selected elements, we concluded that this issue is still popular and relevant. Each year, there is an increase in the number of papers assessing the level of health risks associated with the consumption of fungi contaminated with heavy metals using different indices. The main research being done on the concentration of elements in mushrooms is connected with their heavy metal content and the risks resulting from their consumption. So it is not surprising that more than half of the 492 species of mushrooms appearing in the articles under consideration were edible. These studies were mainly concerned with taking wild fungi from various areas and determining whether selected elements were present in them. There was also no shortage of papers in which different species of mushrooms were cultured and their sorption properties in relation to selected analytes subsequently analysed. The publications also included species of fungi with a natural ability to accumulate elements, thanks to which, the mushrooms can be used for phytoremediation of contaminated soils. The highest number of publications came from Turkey, Poland, Spain, and the Czech Republic; so these countries made the largest contribution to the development of the science of elements in mushrooms and the assessment of the health risks associated with the consumption of contaminated mushrooms.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
References

Adriaensen K, Van Der Lelie D, Van Laere A, Vangronsveld J, Colpaert JV (2003) A zinc-adapted fungus protects pines from zinc stress. New Phytol 161:549–555. https://doi.org/10.1046/j.1469-8137.2003.00941.x

Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N (2012) Copper, iron, manganese, and zinc in edible mushrooms. Arch Environ Con Tox 44:180–188. https://doi.org/10.1007/s00244-002-2051-0

Aloupi M, Koutrotsios G, Vassilopoulos M, Kalogeropoulos N (2012) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Safe 78:184–194. https://doi.org/10.1016/j.ecosafe.2011.11.018

Ayaz FA, Torun H, Colak A, Sesli E, Millsom M, Głow RH (2011) Macromolecular contents of fruiting bodies of wild-edible mushrooms growing in the East Black Sea Region of Turkey. Food Nutr Sci 02:53–59. https://doi.org/10.4236/fns.2011.22007

Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbio Lett 206:69–74. https://doi.org/10.1016/S0378-1097(01)00195-9

Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants of the Boletaceae species of the section Lepidella. Mycol Res 111:1339–1344. https://doi.org/10.1016/j.mycres.2007.08.015

Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environ Sci Pollut R 21:6921–6929. https://doi.org/10.1007/s11356-013-1913-5

Benbrahim M, Denai X, Thomas A-L, Balet J, Carnus JM (2006) Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut 144:847–854. https://doi.org/10.1016/j.envpol.2006.02.014

Blanuša M, Kučák A, Varnai VM, Saric MM (2001) Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int 84:1964–1971

Boa E (2004) Wild edible fungi: a global overview of their use and importance to people. Non-wood Forest Products. FAO, Rome

Borovička J, Řanda Z (2007) Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycol Prog 6:249–259. https://doi.org/10.1007/s11575-007-0544-y

Borovička J, Řanda Z, Jelinek E (2005) Gold content of ectomycorrhizal and saprobic macrofungi from non-auriferous and unpolluted areas. Mycol Res 109:951–955. https://doi.org/10.1017/S095375620500328X

Borovička J, Řanda Z, Jelinek E (2006) Antimony content of macrofungi from clean and polluted areas. Chemosphere 64:1837–1844. https://doi.org/10.1016/j.chemosphere.2006.01.060

Borovička J, Řanda Z, Jelinek E, Kotrba P, Dunn CE (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111:1339–1344. https://doi.org/10.1016/j.mycres.2007.08.015

Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Stijve T, Dunn CE (2010a) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744. https://doi.org/10.1016/j.scitotenv.2010.02.031

Borovička J, Dunn CE, Gryndler M, Mihaljevič M, Jelinek E, Rohovec J, Rohošková M, Řanda Z (2010b) Bioaccumulation of gold in macrofungi and ectomycorrhizae from the vicinity of the Moroksk gold deposit, Czech Republic. Soil Biol Biochem 42:83–91. https://doi.org/10.1016/j.soilbio.2009.10.003

Borovička J, Kubrová J, Rohovec J, Řanda Z, Dunn CE (2011) Uranium, thorium and rare earth elements in macrofungi: What are the genuine concentrations? BioMetals 24:837–845. https://doi.org/10.1007/s10534-011-9435-4

Borovička J, Mihaljevič M, Gryndler M, Kubrová J, Žígová A, Hršelová H, Řanda Z (2014) Lead isotopic signatures of saprotrophic macrofungi of various origins: tracing for lead sources and possible applications in geomycology. Appl Geochem 43:114–120. https://doi.org/10.1016/j.apgeochem.2014.02.012

Brzostowski A, Bielawlska L, Plichta S, Falandysz J (2009) Instrumental analysis of metals profile in Poison Pax (Paxillus involutus) collected at two sites in Bory Tucholskie. Chem Anal (Warsaw) 54:1297 http://beta.chem.uw.edu.pl/chemanal/PDFs/2009/CHANZ2009V54P1297.pdf. Accessed 24 Aug 2019

Brzostowski A, Falandysz J, Jarzysińska G, Zhang D (2011) Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. J Environ Sci Heal A 46:378–393. https://doi.org/10.1080/10934529.2011.542387

Busuioa G, Elekes CS, Stihi C, Iordache S, Ciuile SC (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut R 18:890–896. https://doi.org/10.1007/s11356-011-0446-z

Campos JA, Tejera NA (2011) Bioconcentration factors and trace elements bioaccumulation in sporocarps of fungi collected from quartzite acidic soils. Biol Trace Elem Res 143:540–554. https://doi.org/10.1007/s13113-011-0885-4

Campos JA, Tejera NA, Sánchez CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. BioMetals 22:835–841. https://doi.org/10.1007/s10534-009-9230-7

Carvalho ML, Pimentel AC, Fernandes B (2005) Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Anal Sci 21:747–750. https://doi.org/10.2116/analsci.21.747

Cayr A, Coşkun M, Coşkun M (2010) The heavy metal content of wild edible mushroom samples collected in canakkale province, Turkey. Biol Trace Elem Res 134:212–219. https://doi.org/10.1007/s12011-009-8464-0

Čejková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synkoviá I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185. https://doi.org/10.1016/j.envpol.2016.08.009

Chang C, Ho Y (2010) Bibliometric analysis of financial crisis research. Afr J Bus Manage 4:3898–3910

Chudzynski K, Falandysz J (2008) Multivariate analysis of elements of Larch Bolete (Suillus grevillei) mushroom. Chemosphere 73:1230–1239. https://doi.org/10.1016/j.chemosphere.2008.07.055

Chudzynski K, Bielawlska L, Falandysz J (2009) Mercury bioconcentration potential of Larch Bolete, Suillus grevillei, mushroom. Bull Environ Contam Toxicol 83:275–279. https://doi.org/10.1007/s00128-009-9723-7

Chudzynski K, Jarzyska G, Stefaniak A, Falandysz J (2011) Mercury content and bio-concentration potential of Slippery Jack, Suillus luteus, mushroom. Food Chem 125:986–990. https://doi.org/10.1016/j.foodchem.2010.09.102

Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284. https://doi.org/10.1016/j.foodchem.2005.05.068

Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steiness E (2002) Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geochemistry: Exploration, Environment, Analysis 2:121–130. https://doi.org/10.1144/1467-783702-015

Collin-Hansen C, Andersen RA, Steiness E (2003) Isolation and N-terminal sequencing of a novel cadmium-binding protein from...
Kala Ö, Turkekul I, Elmasstas M, Tuzen M (2004) Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem 86:547–552. https://doi.org/10.1016/j.foodchem.2003.09.007

Ilsidák Ö, Turkekul I, Elmastas M, Aboul-Enein HY (2007) Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Anal Lett 40:1099–1116. https://doi.org/10.1080/00032710701297042

Işıoğlu M, Yilmaz F, Merdivan M (2001a) Concentrations of trace elements in wild edible mushrooms. Food Chem 73:169–175. https://doi.org/10.1016/S0308-8146(00)00257-0

Işıoğlu M, Merdivan M, Yılmaz F (2001b) Heavy metal contents in some macrofungi collected in the northwestern part of Turkey. Arch Environ Con Tox 41:1–7. https://doi.org/10.1006/aect.2000.0149

Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2008) Background to the ADI/TDI/PTWI. Environ Sci Pollut Res (2020) 27:22235–22246. https://doi.org/10.1007/s11356-015-5331-8

Krupa P, Kozdrój J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industri-AL D Stanojković. Environ Sci Pollut Res 23:860–869. https://doi.org/10.1007/s11356-015-5331-8

Krupa P, Kozdrój J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industri-AL D Stanojković. Environ Sci Pollut Res 23:860–869. https://doi.org/10.1007/s11356-015-5331-8

Krupa P, Kozdrój J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industri-AL D Stanojković. Environ Sci Pollut Res 23:860–869. https://doi.org/10.1007/s11356-015-5331-8

Krupa P, Kozdrój J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industri-AL D Stanojković. Environ Sci Pollut Res 23:860–869. https://doi.org/10.1007/s11356-015-5331-8

Krupa P, Kozdrój J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industri-AL D Stanojković. Environ Sci Pollut Res 23:860–869. https://doi.org/10.1007/s11356-015-5331-8

Kim Y-D, Chong M, Lim H-S, Park S (2016) Botulinum toxin and endotoxin in food: a review. Food Chem 198:33–41. https://doi.org/10.1016/j.foodchem.2015.08.047

Klimkova J, Šebelová J, Kubanek J, Rusakova J, Szydlikova J (2006) Contents of cadmium and selenium in raw and cooked edible mushrooms by a PBET method. Food Chem 88:245–252. https://doi.org/10.1016/j.foodchem.2005.02.048

Kliva Ľ, Solák MH, Uğurlu M, İşoğlu M, Anslan Y (2011) Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey. B Environ Contam Tox 87:276–281. https://doi.org/10.1007/s00128-011-0357-1

Larsen EH, Andersen NL, Møller A, Petersen A, Mortensen GK, Petersen J (2002) Monitoring the content and intake of trace elements from food in Denmark. Food Addit Contam 19:33–46. https://doi.org/10.1080/02652030110087447

Leonhardt T, Säcky J, Šimek P, Šantrůček J, Kotrba P (2014) Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metalloomics 6:1693. https://doi.org/10.1039/C4MT00141A

Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF (2014) Evaluation of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey. B Environ Contam Tox 87:276–281. https://doi.org/10.1007/s00128-011-0357-1

Llorente-Mirandes T, Barbero M, Rubio R, López-Sánchez JF (2014) Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products. Food Chem 158:207–215. https://doi.org/10.1016/j.foodchem.2014.02.081

Llorente-Mirandes T, Llorente-Muñoz M, Funes-Collado V, Sahuquillo À, Mañas C, Palacios A, Rodríguez-Gómez R (2015) Mercury in Orange Birch Bolete Russula atropurpurea collected in pure culture as a response to lead, cadmium and arsenic stress. Metallomics 7:1372–1381. https://doi.org/10.1039/C5MT00099D

Lodenius M, Soltanpour-Gargari A, Tulisalo E (2002) Cadmium in forest mushrooms after application of wood ash. B Environ Contam Tox 68:211–216. https://doi.org/10.1016/S0005-6610(01)00075-8

Mackiewicz D, Falandyzs J (2012) Total mercury in Yellow Knights (Tricholoma equestre) mushrooms and beneath soils. Bull Environ Contam Toxicol 89:755–758. https://doi.org/10.1007/s00128-012-0757-x

Malinowska E, Szefer P, Falandyzs J (2004) Metals biaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem 84:405–416. https://doi.org/10.1016/S0308-8146(03)00250-4

Malinowska E, Szefer P, Bojanowski R (2006) Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland. Food Chem 97:19–24. https://doi.org/10.1016/j.foodchem.2005.02.048

Marzano FN, Bracchi PG, Pizzetti P (2001) Radioactive and conventional pollutants accumulated by edible mushrooms (Boletus sp.) are useful indicators of species origin. Environ Res 85:260–264. https://doi.org/10.1006/ensr.2001.4233

Mattila P, Ko K (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agr Food Chem 49:2343–2348. https://doi.org/10.1021/jf010525d

Melgar MJ, Alonso J, Garcia MA (2007) Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus. Sci Total Environ 385:12–19. https://doi.org/10.1016/j.scitotenv.2007.07.011

Melgar MJ, Alonso J, García MA (2009) Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Springer
Sci Total Environ 407:5328–5334. https://doi.org/10.1016/j.scitotenv.2009.07.001

Melgar MJ, Alonso J, Garcia MA (2014) Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem Toxicol 73:44–50. https://doi.org/10.1016/j.fct.2014.08.003

Melgar MJ, Alonso J, Garcia MA (2016) Cadmium in edible mushrooms from NW Spain: biocumulation factors and consumer health implications. Food Chem Toxicol 88:13–20. https://doi.org/10.1016/j.fct.2015.12.002

Mendir D, Ulusözü OĐ, Hasdemir E, Çağlar A (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem 88:281–285. https://doi.org/10.1016/j.foodchem.2004.01.039

Mendir D, Ulusözü OĐ, Tüzen M, Hasdemir E, Sari H (2005) Trace metal levels in mushroom samples from Ordu, Turkey. Food Chem 91:463–467. https://doi.org/10.1016/j.foodchem.2004.06.028

Mietelski JW, Baeza AS, Guériton M, Tsigankov N, Gaca P, Miroviči M, Milinković M, Raicevic V, Lalevic B, Golubovic Curguz V, Jovanovic L (2012) Mercury in food items from the Idrija Mercury Mine area. Environ Res 125:61–68. https://doi.org/10.1016/j.envres.2013.02.008

Milinkovic M, Raicevic V, Lazic B, Golubic Curguz V, Jovanovic L (2012) Content of heavy metals in carphophores of wild mushroom (Boletus edulis). Proceedings of 6th Central European Congress on Agriculture, Novi Sad, Serbia, pp 378–381. http://www.fns.uns.ac.rs/uploads/zbartic/CIEFOOD-proceedings2012.pdf. Accessed 24 August 2019

Mirończuk-Chodakowska I, Socha K, Witkowska A, Zujko M, Borawska M (2013) Cadmium and lead in wild edible mushrooms from the Eastern Region of Poland’s ‘green lungs’. Pol J Environ Stud 22:1759–1765

Mititelu M, Nicolescu TO, Ionita CA, Nicolescu F (2012) Heavy metals analysis of some wild edible mushrooms. J Environ Prot Ecol 13:875–879. https://docs.google.com/a/jepe.ejournal.info/viewer?a=v&pid=sites&srcid=amVwZS1q3b3VybmfSImluZm98amVzZS1q3b3VybmfSFGd4Oj4ZTY5ZTc2OTg2ZjI5MDE. Accessed 24 August 2019

Mleczek M, Magdziak Z, Gásecka M, Niedzielski P, Kalač P, Siwulski M, Rzymski P, Zalicka S, Sobiersiak K (2016) Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom (Boletus edulis) (Fr.) Fr. from unpolluted and polluted areas. Environ Sci Pollut Res 23:20609–20618. https://doi.org/10.1007/s11356-016-7222-z

M oglidea D (2016) Bioaccumulation of toxic heavy metals in mushrooms - a review. Olenia Journal for Studies in Natural Sciences 32:157–163. http://biozoojournals.ro/oscsn/content/32_2/22_Mogaldea.pdf. Accessed 24 August 2019

Moilanen M, Fritze H, Nieminen M, Piirainen S, Issakainen J, Piispanen J, Nikkarinen M, Mertanen E (2004) Impact of geological origin on trace element composition of edible mushrooms. J Food Compos Anal 17:301–310. https://doi.org/10.1016/j.jfca.2004.03.013

Nováčková J, Fišar P, Chrastvý V, Svoboda L, Kalač P (2007) Contents of mercury, cadmium and lead in edible mushrooms and in underlying substrates from a rural area with an occurrence of serpentinities and amphiboles. Ekol Bratislava 26:322–329. https://147.213.211.222/node/2317. Accessed 24 August 2019

Ouml B, Piheiro V, Mortiro A (2007) Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Sci Total Environ 381:157–168. https://doi.org/10.1016/j.scitotenv.2007.04.004

Osofova M, Urban V, Jedelsky PL, Borovicka J, Gryndler M, Rumil T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phykol 190:916–926. https://doi.org/10.1111/j.1469-8137.2010.03634.x

Ostos C, Pérez-Rodríguez F, Arroyo BM, Moreno-Rojas R (2015) Study of mercury content in wild edible mushrooms and its contribution to the Provisional Tolerable Weekly Intake in Spain. J Food Compos Anal 37:136–142. https://doi.org/10.1016/j.jfca.2014.04.014

Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterisation of anti-oxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366. https://doi.org/10.1016/S0168-6496(02)00328-8

Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal 20:480–486. https://doi.org/10.1016/j.jfca.2007.02.008

Ouzouni PK, Petridis D, Koller WD, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580. https://doi.org/10.1016/j.foodchem.2009.02.014

 Özcan MM, Dursun N, Al Juhaiti FY (2013) Heavy metals intake by cultured mushrooms growing in model system. Environ Monit Assess 185:8393–8397. https://doi.org/10.1007/s10661-013-3181-8

Ozturk I, Sahin S, Sahin U, Ekici L, Sagdic O (2010) Bioactivity and mineral contents of wild-grown edible Morchella conica in the Mediterranean Region. J Verbrauch Lebens 5:453–457. https://doi.org/10.1016/j.vl.2010.01.002

Perkõmõnjõi K, Kõikõlõõ I, Moilanen M, Issakainen J, Tervahauta A, Fritze H (2003) Cadmium-containing wood ash in a pine forest: effects on human microflora and cadmium concentrations in mushrooms, berries, and needles. Can J Forest Res 33:2443–2451. https://doi.org/10.1139/x03-169

Petkovšek SAS, Pokorny B (2013) Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci Total Environ 443:944–954. https://doi.org/10.1016/j.scitotenv.2012.11.007

Radulescu C, Stîhî C, Busuioc G, Gheboianu AI, Popescu IV (2010a) Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. B Environ Contam Tox 84:641–646. https://doi.org/10.1016/j.bcatx.2010.06.025

Radulescu C, Stîhî C, Busuioc G, Gheboianu IV, Cimpoca VG (2010b) Evaluation of essential elements and heavy metal levels in fruiting bodies of wild mushrooms and their substrate by EDXRF spectrometry and FAE spectrometry. Rom Biotech Lett 15:544–5456. https://e-repository.org/rbl/vol.15/iss.4/11.pdf. Accessed 24 August 2019

Radulescu C, Stîhî C, Popescu IV, Busuioc G, Gheboianu AI, Cimpoca VG, Dulamî ID, Diaconescu M (2010c) Determination of heavy metals in...
metals content in wild mushr ooms and soil by EDXRF and FAAS techniques. Ovidius University Annales of Chemistry 21:9-14, http://anale-chimie.univ-ovidius.ro/anale-chimie/chemistry/2010-1/full_2_Radulescu.pdf. Accessed 24 Aug 2019

Rakić M, Kanaman M, Forkapić S, Hansman J, Kebert M, Biket K, Mrdja D (2014) Radionuclides in some edible and medicinal macrofungal species from Tara Mountain, Serbia. Environ Sci Pollut R 21: 11283–11292. https://doi.org/10.1007/s11356-014-2967-8

Řanda Z, Kucéra J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis, J Radioanal Nucl Ch 259:99–107. https://doi.org/10.1023/B:JRNC.0000015813.27926.32

Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B (2011) Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils. Environ Pollut 159:2861–2869. https://doi.org/10.1016/j.envpol.2011.04.040

Román M, Boa E, Woodward S (2006) Wild-gathered fungi for health and rural livelihoods. P Nutr Soc 65:190–197. https://doi.org/10.1079/pns2006491

Rudawska M, Leski T (2005a) Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chem 92:499–506. https://doi.org/10.1016/j.foodchem.2004.08.017

Rudawska M, Leski T (2005b) Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland. Sci Total Environ 399:103–115. https://doi.org/10.1016/j.scitotenv.2004.08.002

Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Sácký J, Leonhardt T, Borovičková J, Árvay J, Stanović J, Tešić Ž, Miščić Ž (2016) Metal accumulation in some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 305. https://doi.org/10.1016/j.jhazmat.2015.11.030

Rakša MT, Säumel I (2015) Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ Pollut 204:298–305. https://doi.org/10.1016/j.envpol.2015.05.018

Sen I, Ali M, Coll B (2012) Boron contents of some wild-growing mushrooms collected from the vicinity of boron mines in Balikesir, Turkey. Biol Trace Elem Res 145:233–239. https://doi.org/10.1007/s12011-011-9170-2

Sesi E (2006) Trace element contents of some selected fungi in the ecosystem of Turkey. Fresen Environ Bull 15:518-523. https://www.prt-parlarc.de/download_feb_2006/. Accessed 24 Aug 2019

Sesi E, Dalman Ö (2006) Concentrations of trace elements in fruiting bodies of wild growing fungi in Rize Province of Turkey. Asian J Chem 18:2179-2184. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=18_3.73. Accessed 24 Aug 2019

Sesi E, Tunuz M (2006) Micro- and macroelement contents of edible, wild growing mushrooms in Artvin Province of Turkey. Asian J Chem 18:1423-1429. www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=18_2.101. Accessed 24 Aug 2019

Sesi E, Tunuz M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Environ Sci Te 10:295–304. https://doi.org/10.1016/j.sjts.2009.01.004

Slovin B, Milovac S, Matavulj M (2012) Multielement profiles of soil, road dust, tree bark and wood-rotten fungi collected at various distances from high-frequency road in urban area. Ecol Indic 13:168–177. https://doi.org/10.1016/j.ecolind.2011.05.023

Šćakić J, Leonardt T, Borovička J, Gryndler M, Bizaki A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14. https://doi.org/10.1016/j.fgb.2013.03.003

Šćakić J, Leonardt T, Kotrba P (2016) Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Rusula atropurpurea. Biometals 29:349–363. https://doi.org/10.1007/s10534-016-9920-x

Sarikurkcu C, Tepe B, Seniz DK, Solak MH (2010) Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol 48:1230–1233. https://doi.org/10.1016/j.fct.2009.12.033

Sarikurkcu C, Copur M, Yildiz D, Akata J (2011) Metal concentration of wild edible mushrooms in Sogukcu National Park in Turkey. Food Chem 128:731–734. https://doi.org/10.1016/j.foodchem.2011.03.097

Sarikurkcu C, Tepe B, Solak MH, Çetinkaya S (2012) Metal concentrations of wild edible ushrooms from Turkey. Ecolo Food Nutr 51: 346–363. https://doi.org/10.1080/03670244.2012.674448

Sarikurkcu C, Tepe B, Kocak MS, Uren MC (2015) Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem 175:549–555. https://doi.org/10.1016/j.foodchem.2014.12.019

Schlecht MT, Säumel I (2015) Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environ Pollut 204:298–305. https://doi.org/10.1016/j.envpol.2015.05.018

Seo H, Yoon K, Lim I, Park S, Sun H, Yang S (2014) Determination of Fe and Zn accumulation in leafy vegetables and mushrooms using energy dispersive X-Ray fluorescence technique. Bulletin UASVM Agriculture 68:143-147. https://journals.usamvcluj.ro/index.php/agriculture/article/view/6539. Accessed 24 Aug 2019
