Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs

Fuqiang Zhao
Shenyang University

Ping Wang
Stephen F Austin State University, Arthur Temple College of Forestry and Agriculture, wangp@sfasu.edu

Rima D. Lucardi
USDA Forest Service

Zushang Su
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, suz@sfasu.edu

Shiyou Li
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, lis@sfasu.edu

Follow this and additional works at: https://scholarworks.sfasu.edu/ncpc_articles

Part of the [Pharmacology Commons](https://scholarworks.sfasu.edu/healthsci_commons) and the [Toxicology Commons](https://scholarworks.sfasu.edu/toxicity_commons)

Tell us how this article helped you.

Repository Citation
Zhao, Fuqiang; Wang, Ping; Lucardi, Rima D.; Su, Zushang; and Li, Shiyou, "Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs" (2020). *NCPC Publications and Patents*. 55. https://scholarworks.sfasu.edu/ncpc_articles/55

This Article is brought to you for free and open access by the National Center for Pharmaceutical Crops at SFA ScholarWorks. It has been accepted for inclusion in NCPC Publications and Patents by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.
Review

Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs

Fuqiang Zhao 1,2, Ping Wang 3, Rima D. Lucardi 4, Zushang Su 3 and Shiyou Li 3,*

1 College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, Liaoning, China; zhaofuqiang@iae.ac.cn
2 CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
3 National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA; protectforest@hotmail.com (P.W.); fuq_zhao@126.com (Z.S.)
4 Southern Research Station, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA; rima.lucardi@usda.gov

* Correspondence: lis@sfasu.edu

Received: 8 October 2019; Accepted: 16 December 2019; Published: 6 January 2020

Abstract: 2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common toxic secondary metabolite produced by various groups of organisms. The biosources and bioactivities of 2,4-DTBP have been well investigated, but the phenol has not been systematically reviewed. This article provides a comprehensive review of 2,4-DTBP and its analogs with emphasis on natural sources and bioactivities. 2,4-DTBP has been found in at least 169 species of bacteria (16 species, 10 families), fungi (11 species, eight families), diatom (one species, one family), liverwort (one species, one family), pteridiphyta (two species, two families), gymnosperms (four species, one family), dicots (107 species, 58 families), monocots (22 species, eight families), and animals (five species, five families). 2,4-DTBP is often a major component of violate or essential oils and it exhibits potent toxicity against almost all testing organisms, including the producers; however, it is not clear why organisms produce autotoxic 2,4-DTBP and its analogs. The accumulating evidence indicates that the endocidal regulation seems to be the primary function of the phenols in the producing organisms.

Keywords: 2,4-di-tert-butylphenol; 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP); 2,4-DTBP; analogs; natural source; bioactivities; autotoxicity; bacteria; fungi; plants; animals

Key Contribution: The comprehensive review of the biosources and bioactivities of 2,4-di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) and its analogs leads us to speculate that endocidal regulation is the primary function of these toxic phenols in the producing organisms.

1. Introduction

2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common natural product that exhibits potent toxicity against almost all testing organisms, including the producing species. The phenol has been well investigated in terms of its natural sources and bioactivities, but it has not been systematically reviewed. A basic question has never been addressed: why does an organism produces autotoxic 2,4-DTBP? This review has summarized the available references in both English and Chinese to date. It will provide some basic information to better understand the physiological and evolutionary roles of 2,4-DTBP in the producing organisms.
2. Natural Sources

2,4-DTBP is a lipophilic phenol reported in at least 169 species of organisms (see Table 1). 2,4-DTBP was found in 16 species of bacteria in 10 families, such as nitrogen-fixing cyanobacteria [1]; Gram-positive bacteria in hot spring, soils, and food [2–7] and Gram-negative bacteria in soil and freshwater [8–13]. Some bacteria are causal agents of infectious diseases in humans, e.g., Microcystis aeruginosa Kützing, a species of freshwater cyanobacteria that produce neurotoxins and peptide hepatotoxins [12]; and Vibrio alginolyticus Miyamoto et al., a marine bacterium causing otitis and wound infection [13]. The phenol has been identified from 11 fungal species of eight families, e.g., (Ditmar) Fr., and Didymium iridis (Eupatorium catarium (Griseb.) R.M.King & H. Rob. and (DC.) Danser [81]; and leaves of Carr., but not in the fallen leaves or decomposed leaves of the pine [32]. The phenol Pinus tabulaeformis The analysis also reported that 2,4-DTBP is a major component in the water extracts of fresh needles of phylum Porifera [71], centipede prevalent psychrophilic species (via distillation and methanol extracts of the cones and bark of Pinus yunnanensis Jacp. [88], and root exudate of sorghum [65]. It is also found in fungal 2,6-DTBP was detected in seeds of Jastropa curcas L. [76], rhizosphere soil of Boehmeria nivea (L.) Gauchid. [77], and algal Grateloupiptilia C. Ag. [78]. 2,6-DTBP was detected in seeds of Jastropa curcas L. [79] and Metaplexis japonica (Thum.) Makino [60]; flowers of Camellia sasanqua Thunb. [80], Aquilaria sinensis (Lour.) Gilg [45], and Taxillus chinensis (DC.) Danser [81]; and leaves of Chimonanthus spp. [82]. 3,5-DTBP was reported in flowers of Aesculus chinensis [83], fungal Coriolus versicolor [84], Aquilaria sinensis (Lour.) Gilg [45], whole plants of Hedychium lancea Thunb. [85], and seeds of Plukenetia volubilis L. [86]. 4-methyl-2,6-diterbutylphenol (butylated hydroxytoluene or dibutylhydroxytoluene, BHT) was found in the whole plants of Praxelis clematidea (Griseb.) R.M.King & H. Rob. and Eupatorium catarium Veldkamp [87], whole plants of Geum alleppicum Jacp. [82], and root exudate of sorghum [65]. It is also found in fungal Nectria [89]. The lipophilic phenol occurs in some plants, green algae, and cyanobacteria [90,91]. For example, the phenol was reported in rice [69] and Hedychium lancea Thunb. [85]. It was also found in the larval frass of sawyer beetles (Monochamus alternatus Hope) [92,93], and female frass of Chinese white pine beetles (Dendroctonus armandi Tsai et Li) [94]. It was believed to be produced by the host plant and is concentrated by larvae as a semiochemical compound [93]. However, a later experiment indicated that the phenol was present
in the beetle larvae only and not detected in the xylem samples of healthy trees, trees infected with blue-stain fungi, or the wall pupal chambers of *P. massoniana* [95]. 4-sec-butyl-2,6-diterbutylphenol was found in the stem of *Vernonia amygdalina* Del. [96]. 2,2′-methylenebis(6-tert-butyl-4-methylphenol) was found in the root exudate of sorghum [65]. It is noteworthy that phenols were detected in the sorghum root exudates in the second year of replantation but not in the following years [65].

![Structures of 2,4-DTBP and its natural analogs.](image1)

Figure 1. Structures of 2,4-DTBP and its natural analogs.

3. Antioxidant Activities

Some investigations on the antioxidant activities of this class of lipophilic phenols were focused on 2,4-DTBP (Figure 2, Table 2). Several in vitro methods for assaying the antioxidant activities have been used, for example, low density lipoprotein (LDL)-oxidation tools, including a thiobarbituric acid reactive substances (TBARS) assay, conjugated diene formation, the relative electrophoretic mobility (REM) of ox-LDL, apoB-100 fragmentation, radical 2,2′-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, and copper chelating activity, such as in the copper-mediated TBARS assay (IC50: 8.20 mM), 2,2-azobis amidinopropane (AAPH)-mediated oxidation (IC50: 9.9 mM), and 3-morpholino-sydnonimine (SIN-1)-mediated oxidation (29% at 5.0 mM) [72]. 2,4-DTBP from sweet potato extract protects against hydrogen peroxide-induced oxidative stress in the pheochromocytoma cell line (PC12) and in mice [97]. Administration of 2,4-DTBP increased the alternation behavior in mice injected with amyloid-beta peptide (Ab1-42) [97].

![Bioactivities and potential applications of 2,4-DTBP and its natural analogs.](image2)

Figure 2. Bioactivities and potential applications of 2,4-DTBP and its natural analogs.
The antioxidant activity of BHT was about twice as great as that of 2,4-DTBP because two ter-butyl groups in BHT protect the aromatic hydroxyl group, which forms a phenoxyl radical and donating a hydrogen atom that could quench active free radicals and stop the propagation of lipid peroxidation [98]. The additional ter-butyl group in BHT may also decrease the toxicity. As a result, BHT is one of most commonly used antioxidants for preserving food and feed, and is also listed as an antioxidant food additive by The U.S. Food and Drug Administration (FDA) and the European Union (EU) [99,100]. As an active ingredient from royal jelly, BHT can eliminate 75.86% of ultra-oxygen free radicals at 600 mg/L and 84.47% of the hydroxyl free radicals at 500 mg/L [101]. BHT decreased the Malondiadehyde (MDA) content and increased the superoxide dismutase (SOD) and glutathioneperoxidase (GSH-Px) content in rat liver and serum [101]. The antioxidant activity of BHT can be enhanced in combination use with synthetic 2-ter-butyl-4-methoxyphenol (BHA) and 2,4,6-tri-ter-butylphenl (TBP) [102]. BHT and BHA are fairly heat-stable, [1] but they have been found to exert a dual pro-oxidant and antioxidant action under certain conditions [102]. BHA can stimulate the peroxidase-dependent oxidation of BHT to form the potentially toxic BHT-quinone methide. Among several BHT metabolites, BHT-quinone methide (BHT-QM), 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHT-OOH), and 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO) have been reported to induce peroxides [102].

4. Anti-Inflammatory Activities

Lipopolysaccharide (LPS), the endotoxin found in the cell walls of Gram-negative bacteria, triggers inflammation by activating mononuclear phagocytes (monocytes and macrophages) and results in the production of various pro-inflammatory cytokines. LPS administration was observed to increase the expression of tumor necrosis factor alpha (TNF-α) interleukin IL-6 and IL-1b genes significantly, while 2,4-DTBP treatments were found to decrease the expression of all three genes in the RAW264.7 mouse macrophage cell line [103]. BHT has shown a slight anti-inflammatory activity on the expression of cyclooxygenase-2 (Cox2) and TNF-α genes upon stimulation with Porphyromonas gingivalis (Pg) fimbriae [102]. The combination of BHT and BHA at a molar ratio of 0.5–2 provides potent anti-inflammatory activity, as tested by gene-expression systems for Cox2 and TNF-α in RAW264.7 cells [102]. The anti-inflammatory activity may be attributable to complex synergistic antioxidant activity [102].

5. Cytotoxicities

2,4-DTBP showed a remarkable cytotoxicity against HeLa cells with an IC50 value of 10 µg/mL [6]. 2,4-DTBP exhibited superior effect in the induction of apoptotic genes in cancer cell lines, as did the standard drug Cisplatin [103]. 2,4-DTBP was found to significantly increase the expression of P53 and caspase 7 in both MCF-7 and A431 cell lines, and exhibited significantly higher activation of the P53 gene in MCF-7. Effect of 2,4-DTBP on caspase 7 gene expression was significantly greater in A431, while the effect appeared to be less pronounced in MCF-7 [103].

Based on hepatic and renal toxicity (histopathological changes and an increase in organ weight with blood biochemical changes) in rats, the respective no-observed-adverse-effect levels (NOAELs) for 2,4-DTBP were concluded to be 5 and 20 mg/kg/day [104]. Histologically, there were no obvious changes in uteri and vagina ovarietomized (OVX) CD1 mice between the 2,4-DTBP treatment and the control, and the uterotrophic effect of 2,4-DTBP was not observed in the range of 10 to 250 mg/kg using an oral gavage [105].

It has been reported that long-term and high quantities usage of BHT can induce liver tumors [106]. Due to their pro-oxidant activity, BHT-quinone and BHT-OOH have been reported to result in internucleosomal DNA fragmentation, which is the characteristic of apoptosis [107]. BHT-OOH was found through oxidative DNA damage directly, whereas BHT-quinone was found via DNA damage through H2O2 generation [107]. After an injection treatment, BHT can considerably increase the number of mitoses in epithelial cell populations from various parts of small intestinal crypts of mice [108]. The effect may be explained by the influence of BHT on the reserve pool of cells and the longevity of
individual stages of the mitotic cycle [108]. The BHA/BHT combination (molar ratio 1:1) has inhibited the expression of manganese superoxide dismutase (MnSOD) mRNA in HL60 cells and reversed the transcriptase-polymerase chain reaction (PCR)-activating caspases 3, 8, and 9 [109]. It may contribute to the synergistically antioxidant activity of the BHA/BHT combination and radical-induced formation of intermediates, such as quinone methide [109].

6. Insecticidal and Nematicidal Activities

2,4-DTBP exhibited significantly adulticidal, larvicidal, ovicidal, repellent, and oviposition-deterrent activities against the spider mite *Tetranychus cinnabarinus* [73]. The mites exhibited the highest run-off rate on bean leaf surfaces sprayed with 2,4-DTBP when applied at sublethal doses and moved toward surfaces that had not been sprayed with the compound, according to Pearson’s χ² test. The compound also showed nematicidal activity against Caenorhabditis elegans during fumigation or soil treatment at temperatures higher than 25 °C [110].

BHT showed larvicidal and ovicidal properties against warehouse beetles (*Trogoderma variabile* Ballion) and black carpet beetles (*Attagenus megatoma* (F.)) [111]. The compound also exhibited lethal insecticidal activity against other beetle species, such as saw-toothed grain beetles (*Oryzaephilus surinamensis* (L.)) and red flour beetles (*Tribolium castaneum* (Herbst)) [112]. The phenol may be used as a preservative in non-toxic aqueous pesticide [113]. It can be used as an adjuvant in a dienol formulation to stabilize p-mentha-1,3-dien-8-ol, an unstable monoterpenic alcohol, as a male-produced aggregation-sex pheromone to attract cerambycid beetles (*Paranoplium gracile* (Leconte)) of both sexes in field assays [114]. BHT has been as a component to repel female sawyer beetles [115].

7. Antibacterial Activities

Extracellular polymeric substances (EPS) play crucial roles in biofilm formation and biocorrosion, resulting in heavy economic loss in an industrial setup. 2,4-DTBP can modulate the secreted EPS of *Serratia marcescens*, which in turn could facilitate the disruption of biofilms, as well as favoring the diffusion of antimicrobials into the cell aggregates, resulting in the eradication of persistent biofilms [116]. 2,4-DTBP can be used to enhance the efficacy of conventional antibiotics. Intercellular communication in bacteria (quorum sensing (QS)) is an important phenomenon in disease dissemination and pathogenesis that controls biofilm formation. 2,4-DTBP controls QS-mediated biofilm formation and simultaneously increases the hydration of the cell wall, which results in reduced biofilm formation [13].

2,4-DTBP isolated from thermophilic *Bacillus licheniformis* in an Algerian hot spring showed bioactivity against two multidrug resistance bacteria *Pseudomonas aeruginosa* and *Staphylococcus aureus* in pure and mixed cultures that were investigated using a radial diffusion assay at 55 °C [2]. The phenol from *Bacillus*, in association with seaweed, was reported to exhibit a dose-dependent antibiofilm activity against group A *Streptococcus* bacterium [3].

8. Antiviral Activity

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) and plaque reduction assays showed that 2,4-DTBP exhibited significant anti-coxsackievirus B-3 (CVB-3) and anti-herpes virus type 2 (HSV-2) activities [117].

9. Antifungal Activities

2,4-DTBP was found to be effective against an agriculturally important root-rot fungus *Fusarium oxysporum* by inhibiting spore germination and hyphal growth [10]. During the fungal spore germination, 2,4-DTBP completely inhibited the germination by preventing the emergence of a normal germ tube and led to the abnormal branching and swelling of hyphae. In such a case, 2,4-DTBP may be binding with β-tubulin in microtubules, inhibiting their proliferation and suppressing their dynamic instability as the microtubules are the cytoskeletal polymers in eukaryotic cells and the loss of microtubules should negatively affect the growth rate of spore germination, with an expected reduction
in fungal growth in vitro. [10] 2,4-DTBP distinctly reduced the mycelial growth of Phytophthora capsici by approximately 50% at 100 µg/mL relative to the control [8]. The germinated seeds of pepper treated with 2,4-DTBP significantly reduced radicle infection by P. capsici without radicle growth inhibition [8].

2,4-DTBP had a significant inhibition effect on the mycelium growth at the early stage of culturing tomato leaf mold (Cladosporium fulvum) and 0.1 mmol/L of 2,4-DTBP had the best inhibition effect when the mycelium had grown for seven days [118].

The mycelium growth of Verticillium dahliae was drastically decreased with increasing concentrations of 2,4-DTBP (0.50 to 2.00 mmol/L.) [119].

2,4-DTBP can be produced in some species of Aspergillus [18], Penicillium [20,21], and Fusarium [23], but experiments showed the phenol could inhibit the growth of these fungi. Disc diffusion assays showed that 2,4-DTBP (2 mg/25 mL) prevented the fungal mycelial growth of Aspergillus niger, F. oxysporum, and Penicillium chrysogenum on wheat grains [6]. 2,4-DTBP produced from environmental bacterium Shewanella algae strain YM8 significantly reduced the mycelial growth and conidial germination in mold Aspergillus [11]. 2,4-DTBP could inhibit Aspergillus flavus mycelial growth 7 dpi on potatodextrose agar (PDA) medium at a 5 µg/L concentration and complete inhibition of mycelial growth was observed at 100 µg/L. At 200 µg/L, the compound completely inhibited the germination of conidia. The antimicrobial activity of 2,4-DTBP appeared to correlate with its antioxidative activity because it was able to inhibit the reactive oxygen species (ROS) production in both Aspergillus and Phytophthora cinnamomoni [120]. Thus, the phenol has potential in the development of biopreservatives and dietary antioxidants for food applications.

2,4-DTBP exhibited fungicidal potential at higher concentrations where fluconazole failed to act completely. Various antibiofilm assays and morphological observations revealed that 2,4-DTBP inhibited and disrupted biofilms of Candida albicans via the possible inhibition of hyphal development [101]. It also inhibited the production of hemolysins and phospholipases, and secreted aspartyl proteinase, which are the crucial virulence factors required for the invasion of C. albicans [121].

10. Phytotoxicity: Allelopathy and Autotoxicity

2,4-DTBP shows potential as a natural and environmentally friendly herbicide for weed management [122]. 2,4-DTBP from Chrysanthemum indicum inhibited seed germination and seedling growth of lettuce (Lactuca sativa var. ramosa Hort.), romaine lettuce (L. sativa L.), and rapeseed (Brassica napus L.) [65].

2,4-DTBP extracted from the rhizome of cogongrass (Imperata cylindrica (L.) P. Beauv.) was found to have allelopathic effects on the germination and seedling growth of weedy plants under soilless conditions; for instance, 2,4-DTBP at 0.1 mg/mL showed a 78–95% inhibition of root and shoot growth of beggar ticks (Bidens pilosa L.), leucaena (Leucaena leucocephala L. de Wit), and barnyardgrass (Echinochloa crus-galli (L.) Beauv.) [123]. Lab assays showed that leachates of cogongrass are toxic to ryegrass and lettuce, but not toxic to cogongrass [124]. However, another report showed that boiling water extracts of cogongrass rhizomes that contain catechol, chlorogenic acid, isochlorogenic acid, neochlorogenic acid, p-coumaric acid, p-hydroxybenzaldehyde, scopolin, and scopoletin not only significantly inhibited the seedling growth of five other plant species, but also suppressed cogongrass growth [125]. A later investigation indicated that 2,4-DTBP inhibited 100% of the seed germination and growth of cogongrass at the concentration of 0.1 mg/mL [123].

The phenol also showed toxicity on the root and leaf tissues of the grassy weed Leptochloa chinensis (L.) Nees and broadleaf weed Hedychium verticillata (L.) Lam [126] The phytotoxic effect of 2,4-DTBP on these two weeds became apparent at seven days and 14 days after treatment with symptoms of lamina wilting and necrosis, respectively [126]. After a 2,4-DTBP treatment, both had abnormal and much shorter root hairs compared to those of untreated plants. 2,4-DTBP reduced the shoot biomass growth of L. chinensis and H. verticillata by 50% when applied at concentrations of 50 and 200 µg/mL, respectively [122]. Chuah et al. found that 2,4-DTBP isolated from Napier grass (Pennisetum purpureum) exhibited potent herbicidal activity, whereby it completely prevented the root growth of L. chinensis in
soil at an application rate as low as 0.60 kg a.i. ha\(^{-1}\) [127]. 2,4-DTBP induces oxidative stress through the enhanced generation of reactive oxygen species, which cause lipid peroxidation, membrane damage, and the activation of antioxidant enzyme systems, and thus cause a great reduction in chlorophyll content, thereby decreasing chlorophyll fluorescence, transpiration, and the net photosynthetic rate in the leaf tissues [121]. 2,4-DTBP has potent herbicidal properties that can alter the chloroplast ultrastructure, thereby reducing physiological activity of these weedy plants [128]. The present findings imply that 2,4-DTBP may potentially be developed as a soil-applied natural herbicide for the control of \(L. \text{chinensis}\) and perhaps other weeds in an aerobic rice system [127,129].

It was reported that 2,4-DTBP from \(P. \text{massoniana}\) significantly inhibited the seed germination, seed viability, hypocotyl and radicle growth, and seedling growth of Masson’s pine at 0.25–1.0 mg/mL [33]. Another autotoxic study found that 2,4-DTBP had a toxic effect on microorganisms in the rhizosphere soil of hop (\(H. \text{lupulus}\) L.) and affected the photosynthesis and growth of hop seedlings [130,131]. 2,4-DTBP had a significant inhibitory effect on the plant immune system and seed germination of \(A. \text{macrolepida}\) [132]. 2,4-DTBP from root exudates of chilli pepper showed a medium inhibition against the seed germination and seedling growth of chilli pepper at more than 2 mmol/L [133]. The growth of eggplants was stunted at high concentrations (0.10–1.00 mmol L\(^{-1}\)) [104]. 2.5-DTBP is one of the compounds responsible for soil sickness in the field of \(B. \text{nivea}\) [77]. The results of a pot experiment indicated that 2,4-DTBP first significantly decreased and then increased the abundance of culturable bacteria, fungi, and actinomycetes of the rhizosphere soil after treatment [90,91]. 2,4-DTBP from the bulb of \(L. \text{davidii}\) var. \(w. \text{willmottiae}\) and \(F. \) display a synergetic effect on the \(F. \text{wilt}\) in the lily [134].

11. Conclusions

2,4-DTBP is a toxic lipophilic phenol reported in at least 169 species of organisms, such as bacteria (16 species of 10 families), fungi (11 species of eight families), diatom (one species), liverwort (one species), pteridophyta (two species of two families), gymnosperms (four species of one family), dicots (107 species of 58 families), monocots (22 species of eight families), and animals (five species of five families). To date, several analogs of 2,4-DTBP have been identified in bacteria, algae, fungi, plants, and insects, such as 2,5-DTBP, 2,6-DTBP, 3,5-DTBP, BHT, 4-sec-butyl-2,6-ditertbutylphenol, and 2,2’-methylenebis(6-tert-butyl-4-methylphenol).

The antioxidant and anti-inflammatory activities of 2,4-DTBP have been emphasized in many publications. More importantly, however, the phenol exhibited a broad toxicity in all testing organisms, including the producers; for example, cytotoxicity in human cells and animals, insecticidal and nematicidal activities, antimicrobial activities, and phytotoxicities. However, the available data could not explain why an organism produces such toxic 2,4-DTBP. The endocide theory hypothesizes that an organism is more sensitive to its own endogenous metabolites than external molecules and thus an endocidal compound commonly occurring in different species has a broad spectrum of toxicity or low selective activity [135]. 2,4-DTBP provides a good example. This phenol commonly occurs in diversified organisms and has a potent toxicity against almost all testing organisms.

The following aspects of 2,4-DTBP need to be addressed in future investigations. For example, 2,4-DTBP is usually a major component of volatile oils in many organisms, but its biosynthesis site is not known. A recent report showed that healthy rice plants had level of 2,4-DTBP similar to the plants of the same species following insect herbivory and viral infection [69], however, a carefully designed experiment is needed to determine whether the production of this phenol can be induced under stresses. Also, the presence of 2,4-DTBP analogs in organisms are often independent of 2,4-DTBP; it is important to elucidate the physiological role of these analogs in the producers. In addition, the bioactivities and potential applications of most analogs of 2,4-DTBP have not been well investigated, although BHT has been commonly used as antioxidants for preserving food and feed.
Table 1. Natural sources of 2,4-di-tert-butylphenol (2,4-DTBP).

Family	Biosource	Tissues	Ref.
Bacteria			
Bacillaceae	*Bacillus licheniformis*		[2]
	B. subtilis Ehrenberg		[3]
Flavobacteriaceae	*Flavobacterium johnsoniae* (Stanier)		[8,9]
	Bernardet et al.		
Microcystaceae	*Microcystis aeruginosa* Kützing		[12]
	Arthrobacter sp.		[4]
Nostocaceae	*Nostoc* spp.		[136]
	Anabaena oryzae F.E. Fritsch		
	A. azotica Ley		
Paenibacillaceae	*Paenibacillus polymyxa* (Prazmowski)		[137]
	Ash et al.		
Pseudomonadaceae	*Pseudomonas monteilii* Elomari et al.		[10]
Shevanellaceae	*Shevanella algae* Simidu et al.		[11]
Streptococcaceae	*Lactococcus* sp.	Cell-free supernatant	[6]
Streptomycetaceae	*Streptomyces globosus* Waksman		[4]
	S. mutabilis Pridham et al.		[7]
Vibrionaceae	*Vibrio alginolyticus* Miyamoto et al.	Cell-free culture supernatant	[13]
Fungi			
Agaricaceae	*Agaricus bisporus* (J.E. Lange) Imbach		[14]
Bionectriaceae	*Glomastix murorum* (Corda) S. Hughes		[17]
Glomerellaceae	*Colletotrichum gloeosporioides* (Penz.) Penz. & Sacc.		[22]
Nectriaceae	*Fusarium tricinctum* (Corda) Saccardo		[23]
Omphalotaceae	*Lentinus edodes* (Berk.) Pegler	Caps and stipes	[15]
Polyporaceae	*Trametes suaveolens* (L.) Fr.		[16]
Tremellaceae	*Cryptococcus albicus* (Saito) Skinner	Cell-free extract	[24]
Trichocomaceae	*Aspergillus terreus* (Thom)		[18]
	Didymium iridis (Ditmar) Fr.		[138]
	Penicillium flavigenum Frisvad & Samson		[20]
	Penicillium sp.	Culture	[21]
Diatom			
Phaeodactylaceae	*Phaeodactylum tricornutum* Bohlin	Cells	[25]
Liverwort			
Marchantiaceae	*Marchantia polymorpha* L.	Whole thallus	[26]
Pteridophyta			
Osmundaceae	*Osmunda regalis* L.		[27]
Pteridaceae	*Adiantum venustum* D. Don		[28]
Gyumnasperms			
Table 1. Cont.

Family	Biosource	Tissues	Ref.
Pinaceae	*Pinus kesya* var. *langbianensis* (A.chev.) Gavssen.	Cones	[31]
	P. massoniana Lamb.	Rhizosphere soil	[33]
	P. tabulaeformis Carr.	Needles	[139]
	P. yunnanensis Franch.	Cones and bark	[129,140]
Dicots			
Amaryllidaceae	*Allium fistulosum* L.	Root exudates	[141]
Apiaceae	*Anethum graveolens* L.		[142]
Araliaceae	*Centella asiatica* (L.) Urban	Leaves	[143]
Asclepiadaceae	*Metaplexis japonica* (Thunb.) Makino	Seeds	[60]
	Achroptilon repens (L.) D.C.	Aerial part	[145]
	Artemisia annua L.		
	A. apiacea Hance		
	A. japonica Thunb.	Leaves	[34]
	A. capillaris Thunb.		
	A. argyi H.Lév. & Vaniot		
	A. eriopoda Bunge		
Asteraceae	*A. tschernieviana* Besser	Aerial parts	[146]
	Atractylodes corona (Nakai) Kitam	Rhizomes	[147]
	A. macrocephala Koidz	Rhizomes	[132]
	Chrysanthemum indicum L.	Leaves, stem, rot exudates, and rhizosphere soils	[63]
	Gynura ciusimhua (D. Don) S. Moore	Aerial parts	[148]
Begoniaceae	*Begonia malabarica* Lam.	Fruits and aerial parts	[150]
Boraginaceae	*Heliotropium indicum* L.	Aerial parts	[151]
Brassicaceae	*Brassica oleracea var. capitata* F. Rubra	Leaves	[152]
	B. napus L.	Seeds	[153]
Cactaceae	*Pereskia bleo* (Kunth) de Candolle	Leaves	[154]
Caeselpiniaceae	*Bauhinia variegata* (L.) Benth.	Leaves	[155]
	Chimonanthus Lindl.		[156]
	C. praeco (L.) Link.		
	C. zhejiangensis M.C. Liu		
	C. salicifolius S.Y. Hu		
	C. nitens Oliv.		
	C. grammatus M.C. Liu		
Calycanthaceae	*C. campanulatus* R.H.	Leaves	[82]
Table 1. Cont.

Family	Biosource	Tissues	Ref.
Cannabaceae	*Humulus lupulus* L.	Rhizosphere soils	[131]
Capparaceae	*Crataegus* religiosa G. Forst.	Stems	[157]
Caprifoliaceae	*Lonicera maackii* (Rupr.) Maxim.	Fruits	[64]
Caricaceae	*Carica papaya* L.	Seeds	[158]
Caryophyllaceae	*Spergularia marina* (L.) Besser	Aerial part	[159]
Combretaceae	*Terminalia travancorensis* Wight & Arn.	Bark	[160]
Convolvulaceae	*Ipomoea batatas* (L.) Lam.	Tubers	[97]
Cornaceae	*Cornus officinalis* Sieb. Et Zucc.	Fruits	[161]
Cucurbitaceae	*Cucurbita moschata* (Duch. ex Lam.) Duch. ex Poiret	Fruits	[56]
Crassulaceae	*Rhodiola imbricata* Edgew.	Roots	[162]
Equisetaceae	*Equisetum arvense* L.	Whole plant	[163]
Ericaceae	*Rhododendron dauricum* L.	Leaves	[48]
Euphorbiaceae	*Croton bonplandianum* Baill.	Leaves	[164]
	Phyllanthus debilis Klein ex Willd.	Leaves	[165]
	Sauropus rostratus Miq.	Leaves	[55]
Fabaceae	*Albizia julibrissin* Durazz.	Leaves and stems	[49]
	Dalbergia odorifera T. Chen	Wood	[166]
	Humboldtia unijuga Bedd.	Roots	[103]
	Glycine max (L.) Merr	Root secretion	[167]
	Mucuna pruriens (L.) DC.	Seeds	[168]
	Vigna radiata (L.) R. Wilczek	Seeds	[169]
Gentianaceae	*Gentiana apiata* N. E. Br.	Whole plants	[46]
	G. tibetica King ex J.D. Hooker	Flowers	[170]
Hydrocharitaceae	*Hydrilla verticillata* (L.f.) Royle	Exudates	[171]
Juglandaceae	*Juglans regia* L.	Root exudates	[172]
Lamiaceae	*Sphenodesme inulocrata var. paniculata* (C. B. Clarke) Munir	Leaves	[173]
	Perilla frutescens (L.) Britton	Leaves	[174]
	Salvia miltiorrhiza Bunge	Leaves and roots	[175]
Lauraceae	*Cinnamomum longepaniculatum* (Gamble) N. Chao ex H. W. Li	Leaves	[176]
	C. loureirii Nees	Bark	[177]
	Lindera aggregata (Sims) Kosterm	Roots	[178]
	L. angustifolia (W. C. Cheng) Nakai. *L. rubromeria* (Gamble) Rehder.	Xylem	[179]
	Persea americana Mill.	Roots	[120]
Loranthaceae	*Loranthus micranthus* L.	Fresh leaves	[180]
	L. pentapetalus Roxb.	Leaves	[181]
	Viscum ovalifolium Wallich ex Candolle	Leaves	[181]
Malvaceae	*Cola nitida* (Vent.) Schott & Endl.	Fruits	[182]
Table 1. Cont.

Family	Biosource	Tissues	Ref.
Melastomataceae	*Memecylon umbellatum* Burm. f	Leaves	[183]
Menispermaceae	*Tinospora cordifolia* (Willd.) Hook. f. &	Embryogenic callus	[184]
	Thoms.		
Myrtaceae	*Eucalyptus globulus* L.	Leaves	[185]
	E. grandis W. Hill ex Maiden	Root	[186]
	Eugenia dysenterica D.C.	Fruits	[187]
Nelumbonaceae	*Nelumbo nucifera* Gaertn.	Rhizomes	[188]
Oleaceae	*Olea europaea* L.	Stems	[117]
Paoniaeaceae	*Paeonia lactiflora* Pall.	Root	[189]
Papaveraceae	*Eomecon chionanthera* Hance		[67]
Phyllanthaceae	*Phyllanthus emblica* L.	Fruits	[61]
	Saurous rostratus Miq.	Leaves	[55]
Piperaceae	*Piper nigrum* L.	Seeds	[190]
Plumbaginaceae	*Plumbago zeylanica* L.	Roots	[191]
Polygonaceae	*Calligonum polygonoides* L.	Fruits and stems	[192]
	Polygonum viscosum Buch-ham	Leaves	[193]
Primulaceae	*Lysimachia foenum-graecum* Hance		[194]
Ranunculaceae	*Aconitum carnichalae* Dibx.	Root	[68]
	Clematis comnata D.C.	Whole plant	[195]
	Consolida regalis Gray	Stem and leaves	[196]
Rosaceae	*Chaenomeles sinensis* C.K. Schneid.	Fruits	[197]
	Prunus persica (L.) Batsch	Roots	[198]
	Rosa iberica Stev.	Hips	[199]
	Sibiraea angustata (Rehd.) Hand.-Mazz.	Infructescence	[54]
Rubiaceae	*Rubia cordifolia* L.	Stems	[200]
Rutaceae	*Zanthoxylum planispinum* Sieb. et Zucc.	Litters	[201]
	Nauclea diderrichii (De Wild. & T. Durand)	Leaves	[202]
Sapindaceae	*Koelreuteria paniculata* Laxm.	Leaves	[203]
Saururaceae	*Houttuynia cordata* Thunb.	Aerial part	[66]
Scrophulariaceae	*Verbascum phlomoides* L.	Flowers	[204]
Solanaceae	*Capsicum annum* L.	Root exudates	[133,205]
	Solanum lycopersicum var. cerasiforme	Fruits	[206]
	(Dunal) A.Gray		
	S. melongena L.	Root exudates	[207]
	Withania coagulans (Stocks) Dunal	Leaves and micropropagated plant	[208]
Styraeceae	*Sinojackia sarcocarpa* L.Q. Lou	Drupes	[209]
Theaceae	*Camellia sinensis* (L.) Kuntze	Leaves	[210]
Table 1. Cont.

Family	Biosource	Tissues	Ref.
Thymelaeaceae	*Aquilaria sinensis* (Loureiro) Sprengel	Resin	[211]
Urticaceae	*Boehmeria nivea* (L.) Gaudich.	Rhizosphere soil	[77]
	Urtica dioica L.	Leaves	[212]
Violaceae	*Viola betonicifolia* Sm.	Whole plant	[213]
Vitaceae	*Ampelopsis grossedentata* (Hand.-Mazz.) W.T. Wang		[214]
Monocots			
Araceae	*Amorphophallus campanulatus* (Dennst.) Nicolson	Tuber	[215]
Arecales	*Cocos nucifera* L. (coconut)	Fruit juice	[216]
Commelinaceae	*Murdannia nudiflora* (L.) Brenan	Whole plant	[62]
Cyperaceae	*Cyperus rotundus* L.	Rhizomes	[217]
	Helocharis dulcis (Burm. f.) Trin.	Rhizomes	[136]
	Kyllinga triceps Rottboll		[218]
Liliaceae	*Lilium davidii* var. *willmottiae* (E.H. Wilson) Raffill	Bulb	[134]
Musaceae	*Musa* spp.	Root	[219]
Orchidaceae	*Dendrobium moniliforme* (L.) Sw.	Flowers	[220]
	Gastrodia elata Blume	Rhizomes	[125]
Palmae	*Phoenix canariensis* Chabaud	Leaves	[221]
	Washingtonia filifera (Lind.) H. Wendl. O’Brien		
Poaceae	*Echinochloa crusgalli* (L.) Beauv	Root exudates	[222]
	Imperata cylindrica (L.) Beauv	Rhizome and root exudates	[123]
	Oryza sativa L.	Root exudate	[223]
	Pennisetum orientale Rich.	Aerial part	[47]
	Pennisetum purpureum Schumach.	Culm and leaves	[127,129]
	Phyllostachys pubescens (Pradelle) Mazel ex J. Houz.	Fresh parenchyma	[224]
	Sorghum bicolor (L.) Moench	Root exudate	[65]
	Spartina cynosuroides (L.) Roth	Fresh grass	[225]
	Triticum durum L.	Seeds	[226]
Zingiberaceae	*Zingiber cassumunar* Roxb.	Rhizomes and leaves	[227]
Animals			
Mantidae	*Mantis ootheca*	Egg cases	[75]
Mygalidae	*Zygomycale* sp.		[71]
Scolopendridae	*Scolopendra subspinipes* Leach	Dried bodies	[72]
Styelidae	*Styela clava* Herdman		[74]
Tetranychidae	*Tetranychus cinnabarinus* (Boisduval)		[73]
Table 2. The bioactivities of 2,4-di-tert-butyphenol (2,4-DTBP) and its analogs.

Bioactivities	Chemical Name	Experimental Model	Treatment Doses	Cellular and Molecular Targets	Ref.
Antioxidant Activities	2,4-DTBP	TBARS assay	IC_{50}: 8.20 mM	LDL-oxidation	[72]
		Human plasma LDL	IC_{50}: 9.9 mM	AAPH-mediated oxidation	[72]
		Human plasma LDL	5.0 mM	SIN-1-mediated oxidation	[72]
		PheochromocytomPC12 cells and mice	2–10 mg/100mL	Hydrogen-peroxide-induced oxidative stress	[97]
		Mice injected with amyloid-beta peptide (Aβ1-42)	5–40 mg/kg	Alternation behavior	[97]
	BHT	Ultra-oxygen-free radical	600 mg/L	Radical scavenging	[101]
		Hydroxyl-free radical	500 mg/L	Radical scavenging	[101]
		Liver and serum of rat	100-800 mg/L	MDA, SOD, and GSH-PX content	[101]
Anti-Inflammatory Activities	2,4-DTBP	RAW264.7 mouse macrophage cell line	50 and 100 µg/mL	TNF-α, IL-6, and IL-1β genes	[103]
	BHT	RAW264.7 cells	10 µM	Cox2 and TNF-α genes upon stimulation with Pg	[102]
Cytotoxicities	2,4-DTBP	HeLa cells	IC_{50} value of 10 µg/mL	Cytotoxicity	[6]
		MCF-7 and A431 cell lines	50 and 100 µg/mL	P53 and caspase 7 generation	[103]
		Rats	5 and 20 mg/kg/day	Respective no-observed-adverse-effect (NOAELs)	[104]
		Uteri and vagina ovariectomized (OVX) CD1 mice	10–250 mg/kg by oral treatment	Uterotrophic effect	[105]
	BHT	32P-labeled DNA fragments	50–500 µM	DNA damage	[107]
		Small intestinal crypts of mice	Number of mitoses		[108]
		HL-60 and HSC-2 cells	0.2–0.3 mM	Manganese superoxide dismutase (MnSOD) and reverse transcriptase-polymerase chain reaction (PCR)	[109]
Table 2. Cont.

Bioactivities	Chemical Name	Experimental Model	Treatment Doses	Cellular and Molecular Targets	Ref.
Insecticidal and Nematicidal Activities					
	2,4-DTBP	Spider mite *Tetranychus cinnabarinus*	LC$_{50}$ values of 1256.51, 625.39, and 743.64 ppm	Adulticidal, larvicidal, ovicidal, repellent, and oviposition-deterrent activities	[73]
		Caenorhabditis elegans	0.5–4 g/L	Nematicidal activity	[101]
		Trogoderma variabile	0.5 or 2.0%	Larvical and ovicidal activity	[111]
		Oryzaephilus surinamensis (L.), and *Tricholoma castaneum* (Herbst)	10–45 mM	Lethal insecticidal activity	[112]
	BHT	*Paranoplium gracile* (Leconte)	5% test solution	Stabilize a male-produced aggregation-sex pheromone	[114]
		Female *Monochamus alternatus*		Repellent activity	[115]
Antibacterial Activities	2,4-DTBP	Biofilm of *Serratia marcescens*	250–300 µg/mL	Secreted extracellular polymeric substances, quorum sensing, and hydration of the cell wall	[13,116]
		Pseudomonas aeruginosa and *Staphylococcus aureus* in pure and mixed culture		Antibacterial potency	[2]
		Group A *Streptococcus* bacterium	16–48 µg/mL	Antibiofilm activity	[3]
Antiviral Activity	2,4-DTBP	Coxsackievirus B-3 (CVB-3) and herpes virus type 2 (HSV-2)	6.32 ± 0.67 and 5.24 ± 0.82	Antiviral activity	[117]
Antifungal Activities	2,4-DTBP	*Fusarium oxysporum*	1–500 µg/mL	β-tubulin in microtubules	[10]
		Phytophthora capsici	100 µg/mL	Mycelial growth	[8]
		Pepper seed infected by *P. capsici*	1–100 g/mL	Radicle infection	[8]
		Cladosporium fulvum	0.1 mmol/L	Mycelium growth	[118]
		Verticillium dahliae	0.50 to 2.00 mmol/L	Mycelium growth	[119]
		Aspergillus niger, F. oxysporum and *Penicillium chrysogenum* on wheat grains	2 mg/25 mL	Fungal mycelial growth	[6]
		Aspergillus	5–200 µg/L	Mycelial growth and conidial germination ROS production	[11,120]
		Biofilms of *Candida albicans*	2.5–100 µg/mL	Hemolysins, phospholipases, and aspartyl proteinase	[121]

Note: LC$_{50}$ values are given as the concentration that inhibits 50% of the population.
Table 2. Cont.

Bioactivities	Chemical Name	Experimental Model	Treatment Doses	Cellular and Molecular Targets	Ref.
Allelopathy	2,4-DTBP	Seed and seedling of *Lactuca sativa* var. *ramosa* Hort. and *L. sativa* L.	0–0.10 mmol/L	Seed germination and seedling growth	[63]
		Seed and seedling of *Bidens pilosa* L. and *Leucaena leucocephala* L. de Wit	0.1 mg/mL	Root and shoot growth	[123]
		Root and leaf tissues of *Leptochloa chinensis* (L.) Nees and *Hedyotis verticillata* (L.) Lam	50 and 200 µg/mL	Lamina wilting and necrosis, and root and shoot growth	[122, 126]
		L. chinensis in soil	0.60 kg a.i. ha\(^{-1}\)	Root growth	[127]
		Leaf of weed plant	2.5–100 µg/mL	Reactive oxygen species and chloroplasts	[121, 128]
		Seed and seedling *Atractylodes macrocephala*	0.1, 1, and 10 mmol/L	Plant immune system	[132]
		Rhizosphere soil of *Litchi chinensis* Sonn.	Abundance		[90]
		Seed and seedling of *Imperata cylindrical* (L.)	0.1 mg/mL	Seed germination and growth	[123]
		Seed and seedling of *Masson’s pine*	0.25–1.0 mg/mL	Seed germination, seed viability, hypocotyl and radicle growth, and seedling growth	[33]
		Microorganism in the rhizosphere soil of *Hamulus lupulus* L.	7.5 and 15 mmol/m\(^2\)	Photosynthesis and growth of hop seedlings	[130, 131]
Autotoxicity	2,4-DTBP	Seed and seedling of *Brassica napus* L., *Echinochloa crus-galli* (L.) Beauv	0.1 mg/mL	Root and shoot growth	[123]
		Seed and seedling of *Brassica napus* L.	0–0.10 mmol/L	Seed germination and seedling growth	[63]
		Seed and seedling chilli pepper	More than 2 mmol/L	Seed germination and seedling growth	[133]
		Seedling of eggplant	0.10–1.00 mmol/L	Seedling growth	[104]
		Bulb of *Fusarium*	*Fusarium* wilt in the lily		[134]
	2,5-DTBP	*Boehmeria nivea*	Soil sickness in the field		[77]

Author Contributions: Conceptualization, S.L. and F.Z.; methodology and literature, F.Z., P.W., Z.S.; manuscript writing, all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, D.H. Volatiles analysis of several nitrogen-fixing Cyanobacteria isolated from rice fields using gas chromatography-mass spectrometry. *J. Anhui Agric. Sci.* 2018, 46, 145–148.
2. Aissaoui, N.; Mahjoubi, M.; Nas, F.; mghirbi, O.; Arab, M.; Souissi, Y.; Hoceini, A.; Masmoudi, A.S.; Mosbah, A.; Cherif, A.; et al. Antibacterial potential of 2, 4-di-tert-butylphenol and calixarene-based...
prodrugs from thermophilic *Bacillus licheniformis* isolated in Algerian hot spring. *Geomicrobiology* 2019, 36, 53–62. [CrossRef]

3. Viszwapriya, D.; Prithika, U.; Deebika, S.; Balamurugan, K.; Pandian, S.K. *In vitro* and *in vivo* antibiofilm potential of 2,4-di-tert-butylphenol from seaweed surface associated bacterium *Bacillus subtilis* against group A streptococcus. *Microbiol. Res.* 2016, 191, 19–31. [CrossRef]

4. Akshatha, J.V.; Prakash, H.S.; Nalini, M.S. Actinomycete endophytes from the ethno medicinal plants of Southern India: Antioxidant activity and characterization studies. *J. Biol. Act. Prod. Nat.* 2016, 6, 166–172. [CrossRef]

5. Zhang, D.J.; Gong, C.Y.; Wei, H.G.; Li, S.I.; Li, Y.G.; Shen, G.M. Chemical constituents of the culture broth of *Paenibacillus polymyxa* HY96-2. *J. East China Univ. Sci. Technol. (Nat. Sci. Ed.)* 2008, 34, 71–73.

6. Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. *Int. J. Food Microbiol.* 2015, 211, 44–50. [CrossRef]

7. Belghit, S.; Driche, E.H.; Bijani, C.; Zitouni, A.; Sabaou, N.; Badji, B.; Mathieu, F. Activity of 2,4-Di-tert-butylphenol produced by a strain of *Streptomyces mutabilis* isolated from a Saharan soil against *Candida albicans* and other pathogenic fungi. *J. Mycol. Med.* 2016, 26, 160–169. [CrossRef]

8. Li, S.; Wang, A.; Liu, L.; Tian, G.; Wei, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-tert-butyl phenol as a prodrug from thermophilic *Bacillus licheniformis* HY96-2. *J. East China Univ. Sci. Technol. (Nat. Sci. Ed.)* 2016, 65–76. [CrossRef]

9. Dharni, S.; Maurya, A.; Samad, A.; Srivastava, S.K.; Sharma, A.; Patra, D.D. Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol produced by a strain of *Pseudomonas monteilii* PsF84: Conformational and molecular docking studies. *J. Agric. Food Chem.* 2014, 62, 6138–6146. [CrossRef]

10. Gong, A.; Li, H.P.; Shen, L.; Zhang, J.B.; Wu, A.B.; He, W.J.; Yuan, Q.S.; He, J.D.; Liao, Y.C. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against *Aspergillus pathogen* and aflatoxins. *Front. Microbiol.* 2015, 6, 1091. [CrossRef] [PubMed]

11. Wei, J.; Li, S.B.; Xu, Z.X.; Han, X.; Yang, M.Z.; Chen, X.L. Response of the toxic cyanobacterium *Microcystis aeruginosa* to bacteria signaling molecules AHLs—Change of volatile components production. *Adv. Mater. Res.* 2013, 718, 255–260. [CrossRef] [PubMed]

12. Padmavathi, A.R.; Abinaya, B.; Pandian, S.K. Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen *Serratia marcescens*. *Biofouling* 2014, 30, 1111–1122. [CrossRef] [PubMed]

13. Lu, Y. Comparative application of SDE and SPME for analysis of aroma-active compounds in button mushroom (*Agaricus bisporus*). *Shipin Kexue* 2015, 36, 185–188.

14. Li, S.; Wang, A.; Liu, L.; Tian, G.; Wei, S.; Xu, F. Evaluation of nutritional values of shiitake mushroom (*Lentinus edodes*) stipes. *J. Food Meas. Charact.* 2018, 12, 2012–2019. [CrossRef]

15. Zhao, Y. Study on the Biological Characteristics and Pharmacological Activities of *Trametes Suavelens*. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2018.

16. Zhao, J.; Shan, T.; Huang, Y.; Liu, X.; Gao, X.; Wang, M.; Jiang, W.; Zhou, L. Chemical composition and *in vitro* antimicrobial activity of the volatile oils from *Gliomastix murorum* and *Pichia guilliermondii*. *J. Agric. Res.* 2012, 44–50. [CrossRef]

17. Amin, N.; Amin, S.; Al-Abed, R.; Al-Dhaheri, M.; Khatib, M.; Al-Tahhan, M. Antioxidant and antimicrobial properties of *Didymium iridis* *in vitro* and *in vivo*. *Int. J. Food Microbiol.* 2015, 26, 65–76. [CrossRef]

18. Jiang, S.C.; Zhang, B.; Li, Y.S.; Li, D.H.; Li, Y. An analysis of volatile components in *Didymium iridis* by GLME/GC-MS. *J. Fungal Res.* 2017, 15, 255–258.

19. Canturk, Z.; Kocabiyik, E.; Ozturk, N.; Ilhan, S. Evaluation of antioxidant and antiproliferative metabolites of *Penicillium flavigenum* isolated from hypersaline environment: Tuz (Salt) Lake by Xcellence technology. *Microbiology* (Mosc. Russ. Fed.) 2017, 86, 346–354. [CrossRef]

20. Kumar, K.M.; Poojari, C.C.; Ryavalad, C.; Lakshmikantha, R.Y.; Satwadi, P.R.; Vittal, R.R.; Melappa, G. Anti-diabetic activity of endophytic fungi, *Penicillium* species of *Tabebuia argetnes*; *in silico* and experimental analysis. *Res. J. Phytochem.* 2017, 11, 90–110.
22. Nameirakpam, N.D.; Singh, M.S. GC-MS analysis of metabolites from endophytic fungus Collectotrichum gloeosporioides isolated from Phlogacanthus thyrsiflorus Nees. Int. J. Pharm. Sci. Res. 2013, 23, 392–395.
23. Shaukat, K.; Sfrasabay, S.; Hasnain, S. Growth responses of Triticum aestivum to plant growth promoting rhizobacteria used as a biofertilizer. Res. J. Microbiol. 2006, 1, 330–338.
24. Hashem, M.; Alamri, S.A.; Hesham, A.E.; Alqahtani, F.M.H.; Kilany, M. Biocontrol of apple blue mould by new yeast strains: Cryptococcus albidus KKUY0017 and Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol. Sci. Technol. 2014, 24, 1137–1152. [CrossRef]
25. Prestegard, S.K.; Erga, S.R.; Steinrucken, P.; Mjas, S.A.; Knutsen, G.; Rohloff, J. Specific metabolites in a Phaeodactylum tricornutum strain isolated from Western Norwegian fjord water. Mar. Drugs 2016, 14, 9. [CrossRef]
26. Krishnan, R.; Murugan, K. Comparison of GC-MS analysis of phytochemicals in the ethanolic extracts of Marchantia linearis LEHM & Lindenh. and Marchantia polymorpha L. (Bryophyta). Int. J. Pharm. Sci. Res. 2014, 5, 1981–1987.
27. Bouazizi, S.; Jmi, H.; Mokni, R.E.; Faidi, K.; Falconieri, D.; Piras, A.; Jaidane, H.; Porechedda, S.; Hammami, S. Cytotoxic and antiviral activities of the essential oils from Tunisian Fern, Osmunda regalis. S. Afr. J. Bot. 2018, 118, 52–57. [CrossRef]
28. Hamid, J.; Ahmed, D.; Waheed, A. Evaluation of anti-oxidative, antimicrobial and anti-diabetic potential of Adiantum venustum and its closely related species. J. Anhui Agric. Sci. 2011, 39, 18647–18648.
29. Tian, K.; Wang, X.Y. GC-MS analysis of water extracts of pine needles of Pinus tabulaeformis. Tianjin Agric. For. Sci. Technol. 2018, 2018, 1–10.
30. Wei, W. Study on the Chemical Constitutions and Allelopathy in Rhizosphere Soil Extracts of the 1st and 2nd Pinus Massoniana Plantation. Master’s Thesis, Guizhou University, Guiyang, China, 2017.
31. Kong, D.X.; Li, Y.Q.; Zhou, R.; Shi, Y.C.; Wei, X. GC-MS and FTIR identification and analysis of chemical component in Artemisia annua and its closely related species. Guizhifu 2017, 37, 234–241. [CrossRef]
32. Liu, J.R.; Li, D.M.; Zhang, Z.; Liu, G.M. GC-MS analysis on the constituents of n-hexane extracts from the pinecone of Pinus kesiya var. langbianensis. J. Anhui Agric. Sci. 2011, 39, 18647–18648.
33. Zhang, C.; Liu, S.J.; Yang, L.; Hu, J.M. Determination of volatile components from flowers of Dendrobium moniliforme (L.) Sw. in Yunnan by GC-MS. J. Yunnan Agric. Univ. (Nat. Sci.) 2017, 32, 174–178.
34. Fan, M.Y.; Cao, F.F.; Xu, M.; Zhang, X.F. Volatile component analysis of five species of genus Chimonanthis leaves by HS-SPME/GC-MS. Mol. Plant Breed. 2017, 15, 2381–2388.
35. Huang, M.Z.; Li, X. Kind and content of volatile components in Gastrodia elata by SDE-GC-MS analysis. Guangzhou Chem. Ind. 2016, 44, 68–70.
36. Zhu, Y.; Shao, C.Y.; Zhang, Y.; Lin, Z.; Lv, H.P. Comparison of differences in aroma constituents of longjing tea produced from different tea germplasms. Sci. Technol. Food Ind. 2018, 39, 241–246.
37. Zhu, Z.H.; Cao, W.H.; Li, X.B.; Luo, T.L.; Liu, G.J. Analysis of chemical composition of essential oil from different yeast strains: Wickerhamomyces anomalus KKUY0051 and their mode of action. Biocontrol. Sci. Technol. 2014, 24, 1137–1152. [CrossRef]
46. Xu, H.Y.; Li, Y.L.; Peng, X.J.; XChen, Y.B.; Yang, X.J. Study on composition and antioxidant activity of volatile oil from Gentiana apiata N. E. Br. Tradit. Chin. Drug Res. Clin. Pharmacol. 2019, 30, 106–109.
47. Yu, A.X.; Lin, F.; Xu, H.H. Effect of extracts from Pennisetum orientale on Chinese sprangletop (Leptochloa chinensis (L.) Nees). World Pestic. 2015, 37, 55–58.
48. Lee, C.Y.; Whitaker, J.R. (Eds.) Enzymatic Browning and Its Prevention; American Chemical Society: Washington, DC, USA, 1995.
49. Pirttilä, A.M.; Podolich, O.; Koskimäki, J.J.; Hohtola, E.; Hohtola, A. Role of origin and endophyte infection in browning of bud-derived tissue cultures of scots pine (Pinus sylvestris L.). Plant Cell Tissue Organ 2008, 95, 47–55. [CrossRef]
50. Liu, J.X.; Luo, Y.Y.; Liu, X.H.; Song, J.P. Comparison of volatile components in Xanthii Herba and Xanthii Fructus by GC-MS. Nat. Prod. Res. Dev. 2016, 28, 1929–1935.
51. Yao, H.J.; Yao, H.M.; Bu, S.H.; Lu, X.T.; Zhang, J. Analysis of the volatile oil constituent of Atractylodes Coreana (Nakai) Kitam by GC-MS. Chin. J. Pharmacovigil. 2013, 10, 148–151.
52. Wu, Y.X.; Jiang, H.T.; Cui, P.; Fang, J.X.; Wang, W.D.; Hu, C.Y. Study on bioactive components and antioxidant, antibacterial activities of Atractylodes macrocephala Koidz grown in Qimen. Food Mach. 2018, 34, 154–158. [CrossRef]
53. Chen, X.Y.; Shi, H.F. Analysis of volatile components in Lindera rubronervia and Lindera angustifolia xylem by GC-MS. J. Mianyang Teachers’ Coll. 2018, 37, 19–23.
54. Chen, Y.; Shi, X.Y.; Li, H.L.; Luo, G.H. Analysis of volatile oil of infructescence of Aconitum carmichaeli DC, USA, 1995.
55. Wei, J.; Mo, H.; Meng, Q.; Zhao, H.; Lu, R. Chemical constituents from Zhuang medicine Sauropus rostratus (II). Chin. Tradit. Herb. Drugs 2016, 47, 3560–3564.
56. Pirttilä, A.M.; Podolich, O.; Koskimäki, J.J.; Hohtola, E.; Hohtola, A. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plant. 2004, 121, 305–312. [CrossRef] [PubMed]
57. Hu, X.Z.; Peng, X.T.; Xia, H.; Zhou, Y.T.; Peng, L.J.; Hu, D.J. GC-MS analysis of volatile oil components by steam distillation and ethanol extraction from water chestnut. J. Changjiang Veg. 2017, 54–60. [CrossRef]
58. Hu, X.Z.; Zheng, D.; Peng, X.T.; Xia, H.; Zhou, Y.X.; Peng, L.J.; Sun, D.L. GC-MS analysis of volatile oil components by steam distillation and ethanol extraction from lotus. Jiangou Agric. Sci. 2018, 46, 226–230.
59. Hu, R. Analysis of Volatile Compounds of Lysimachia Foenum-graecum Powder by HS-SPME-GC/MS. Shandong Chem. Ind. 2018, 47, 94–98.
60. Hu, P.; Cai, J.; Zhang, Y.J.; Li, X.; Chen, J.W. Analysis of volatile oil and fatty oil in seed of Metaplexis japonica. China Pharm. 2017, 28, 2532–2535.
61. Zhou, K.; Jiang, P.; Liang, W.Y.; Liang, L.J.; Cui, Y.P.; Ye, T.; Zhang, L.Z. Research process of chemical constituents and pharmacological effects of Tibetan medicine triphala. World Sci. Technol./Mod. Tradit. Chin. Med. Mater. Med. 2018, 20, 1608–1614.
62. Huang, Z.F.; Lu, W.J.; Tan, X.; Lu, G.S.; Huang, J.Y.; Hu, X.X. Study on the components and antioxidant activities of the liposoluble constituents from Murdannia nudiflora (Linn.) Brenan. Chin. J. Mod. Appl. Pharm. 2018, 35, 674–677.
63. Huang, X.J.; Li, Y.C.; Jiang, P.; Zhang, X.; Zhang, X.Y.; Tan, P.Y.; Tian, W. Identification of chrysanthemum root exudates and allelopathic effects of the three plants. Hubei Agric. Sci. 2017, 56, 1061–1071.
64. Gao, X.Y.; Wang, H.Y.; Liu, Z.M. GC-MS analysis of fresh fruits extracts of Lonicera maackii. Chin. Wild Plant Res. 2018, 37, 25–28. [CrossRef]
65. Li, G.; Bai, W.B.; Ren, A.X. Effects of continuous cropping duration of sorghum on components of root exudates and contents of allelochemicals. Chin. J. Ecol. 2017, 36, 3535–3544. [CrossRef]
66. Zhou, Q.; Xiong, Y.; Yu, X.; Ren, M.; Xiang, B.; He, Q. Analysis of antibacterial activity and chemical constituents of ethanol extracts from Houttuynia cordata roots and aerial part. J. Chongqi Norm. Univ. (Nat. Sci.) 2019, 36, 103–108.
67. Zhu, P.H. Study on the Chemical Components and Bioactivity of Eomecon Chionantha Hance. Master’s Thesis, Wuhan Institute of Technology, Wuhan, China, 2017.
68. Zhang, R.X.; Zhao, D.G. GC-MS study on the essential oil of Aconitum carnichaeli produced in Guizhou. Guizhou Agric. Sci. 2011, 39, 55–58.
69. Wang, L.F.; Hu, K.; He, H.L.; Ding, W.B.; Li, Y.Z. Southern rice black-streaked dwarf virus-induced volatiles from rice plants and behavioral responses of adult Sogatella furcifera (Hemiptera: Delphacidae) to the components of these volatiles. *Acta Entomol. Sin.* 2017, 60, 412–420.

70. Li, T.T.; Li, G.J.; Li, J.N. Comparison of the components in different parts of Dalbergia odorifera wood planted in Hainan by GC-MS. *J. Northwest. For. Univ.* 2018, 33, 172–178. [CrossRef]

71. Johnson, J.A.; Citarasu, T.; Manjusha, W.A. Antimicrobial screening and identification of bioactive compounds present in marine sponge *Zygomycale* sp. collected from Kanyakumari coast. *J. Chem. Biol. Phys. Sci.* 2012, 2, 1842–1848.

72. Yoon, M.A.; Jeong, T.S.; Park, D.S.; Xu, M.Z.; Oh, H.W.; Song, K.B.; Lee, W.S.; Park, H.Y. Antioxidant effects of quinoline alkaloids and 2,4-di-tert-butylphenol isolated from *Scolopendra subspinipes*. *Biol. Pharm. Bull.* 2006, 29, 735–739. [CrossRef]

73. Chen, Y.; Dai, G. Acaricidal, repellent, and oviposition-deterrent activities of 2,4-ditert-butylphenol and ethyl oleate against the carmine spider mite *Tetranychus cinnabarinus*. *J. Pest. Sci.* 2015, 88, 645–655. [CrossRef]

74. Chu, C.; Gu, Q.; Fang, Y. Isolation and identification of a phenolic derivative from the ascidian. *Sci. Silvae Sin.* 2018, 54, 157–168. [CrossRef]

75. Xu, M.; Piao, G. Anti-atherosclerotic activities of two compounds from mantidis ootheca. *Anhui Nongye Xuebao* 2012, 4, 15722–15723.

76. Zhu, X.Y.; Zhang, Y.Q.; Chen, Y.Q.; Ma, B.L.; Yan, X.Y. Advances in chemical constituents and pharmacological activities of plants of genus *Salix*. *Chin. Tradit. Herbal Drugs* 2018, 49, 5952–5960.

77. Liu, N.N.; Bai, Y.C.; Li, X.L.; Yang, R.F.; Guo, T.; Cui, G.X. Allelopathic potential evaluation of water extracts from rhamn rhizosphere soil. *J. Plant Nutr. Fertil.* 2017, 23, 834–842. [CrossRef]

78. Yang, T.; Yang, G.Y.; Zhang, Y.P.; Sun, J.P.; Chen, W.Z.; Fang, H.; Hong, Z. Study on chemical constituents of *Chimonanthus praecox* from ramie rhizosphere soil. *J. Plant Nutr. Fertil.* 2017, 39, 37–41.

79. Ma, H.F.; Lang, N.J.; He, L.P.; Yu, Z.; Zheng, K.; Peng, M.J.; Xiang, Z.Y.; Kong, J.J.; Yuab, R.L. Volatile components from plant parts of *Jatropha curcas* in Jianshui, Yunnan Province. *J. Zhejiang A F Univ.* 2011, 28, 674–679.

80. Wang, J.; Li, X.H.; Yin, H.F.; Fan, Z.Q.; Li, J.Y. Volatile components in different floral organs and flowering stages of *Camellia sasanqua* ‘Dongxing’. *J. Yunnan Agric. Univ. (Nat. Sci.)* 2018, 33, 904–910. [CrossRef]

81. Huang, Z.Q.; Zhang, H.J.; Li, B.; Lu, R.M.; Zhu, X.Y. GC-MS analysis of volatile oil of *Taxillus chinensis* (DC.) Danser on oleander. *Guangxi J. Tradit. Chin. Med.* 2013, 36, 57–60.

82. Liu, H.T. Study on the Chemical Composition Analysis and ISSR Molecular Marker of Chimonanthus. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2013.

83. Gao, Y.Q.; Guo, L.Y.; Meng, X.X.; Zhang, L.N.; Yang, G.D. The optimal GC-MS analysis of essential oil (fresh, dried and bud) and aroma enhanced by β-glucosidase on *Aesculus chinensis* flowers. *For. Prod. Spec. China* 2018, 5, 1–4.

84. Yuan, S.J.; He, X.S.; Yuan, X.H.; Huang, Y. Antioxidant activity evaluation and low-polarity components analysis of *Coriolus versicolor* and *Trametes robiniiophila*. *Sci. Technol. Food Ind.* 2019, 40, 1–5.

85. Pan, W.G.; Li, Y.; Zhu, X.Y.; Zhu, Y.L.; Li, Y.H.; Luo, P. GC-MS analysis of volatile oil from *Hedyotis lancea*. *Chin. J. Exp. Tradit. Med. Formulae* 2012, 18, 130–134.

86. Chen, H.P.; Peng, Y.; Liu, G.; Li, H.; Gao, L.Q.; Zhan, N.; Xie, Y. Dynamic changes of volatile components from developing seeds of *Plukenetia volubilis*. *Sci. Silvae Sin.* 2018, 54, 157–168. [CrossRef]

87. Liu, Y.; Xie, J.Y.; Hui, Y.; Pi, W.B.; Chen, W.H.; Huang, G.H. GC-MS analysis of essential oil from the whole plant of *Eupatorium catarium*. *Guangzhou Chem. Ind.* 2015, 43, 115–117.

88. Li, H.L.; Yang, X.H.; Li, G.; Guan, E.J. GC-MS analysis of volatile oil of *Geum alicippicum* Jac. from Changbai Mountain. *Acad. Period. Changchun Coll. Tradit. Chin. Med.* 2005, 21, 31–32. [CrossRef]

89. Zhao, K.; Yu, Y.F.; Xie, J.P.; Hu, C.H.; Huang, Y.M. Components of volatile metabolites of *Nectria* analyzed by GC-MS. *J. Southwest Univ. (Nat. Sci. Ed.)* 2007, 29, 150–153.

90. Jiang, G.; Lin, S.; Wen, L.; Jiang, Y.; Zhao, M.; Chen, F.; Prasad, K.N.; Duan, X.; Yang, B. Identification of a novel phenolic compound in litchi (*Litchi chinensis* Sonn.) pericarp and bioactivity evaluation. *Food Chem.* 2013, 136, 563–568. [CrossRef]

91. Babu, B.; Wu, J.T. Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton. *J. Phycol.* 2008, 44, 1447–1454. [CrossRef]
92. Li, S.Q.; Zhang, Z.N. EAG responses of *Monochamus alternatus* Hope (Coleoptera: Cerambycidae) to volatiles from larval frass and the repellency tests in fields. *Acta Entomol. Sin.* 2008, 51, 284–289.
93. Li, S.Q.; Zhang, Z.N. Influence of larval frass extracts on the oviposition behaviour of *Monochamus alternatus* (Col., Cerambycidae). *J. Appl. Entomol.* 2006, 130, 177–182. [CrossRef]
94. Wu, S.P.; Chen, H.; Wu, Q. Volatile compounds in the frass of adult Chinese white pine beetle. *J. Northwest For. Univ.* 2012, 27, 111–116.
95. Zhao, L.L.; Wei, W.; Kang, L.; Sun, J.H. Chemotaxis of the pinewood nematode, *Bursaphelenchus xylophilus*, to volatiles associated with host pine, *Pinus massoniana*, and its vector *Monochamus alternatus*. *J. Chem. Ecol.* 2007, 33, 1207–1216. [CrossRef]
96. Zhou, W.M.; Zheng, H.Y.; Zeng, Q.Q.; Wang, R.Y.; Chen, L.S. Distribution of volatile components and inorganic elements from *Vernonia amygdalina*. *Chin. Tradit. Pat. Med.* 2018, 40, 1345–1360.
97. Choi, S.J.; Kim, J.K.; Kim, H.K.; Harris, K.; Kim, C.J.; Park, G.G.; Park, C.S.; Shin, D.H. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 cells and in mice. *J. Med. Food* 2013, 16, 977–983. [CrossRef]
98. Ali, H.M.; Abo-Shady, A.; Eldeen, H.A.S.; Soror, H.A.; Shousha, W.G.; Abdel-Barry, O.; Saleh, A.M. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. *Chem. Cent. J.* 2013, 7, 53. [CrossRef] [PubMed]
99. Food and Drug Administration. *Code of Federal Regulations, Title 21: Food and Drugs*. Ofﬁce of the Federal Register: Washington, DC, USA, 2001; Chapter I.
100. The Commission of the European Communities. European Parliament and Council Directive No. 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. *Off. J. Eur. Union* 1995, 61, 1–40.
101. Hou, C.S. Studies on Butylated Hydroxytoluene Antisenile of the Active Molecular in Roval Jelly. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, April 2007.
102. Murakami, Y.; Kawata, A.; Katayama, T.; Fujisawa, S. Anti-inflammatory activity of the artificial antioxidants 2-tert-butyl-4-methoxyphenol (BHA), 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4,6-tri-tert-butylphenol (TBP), and their various combinations. *In Vivo* 2015, 29, 197–206.
103. Nair, R.V.R.; Jayasree, D.V.; Biju, P.G.; Baby, S. Anti-inflammatory and anticancer activities of erythrodial-3-acetate and 2,4-di-tert-butylphenol isolated from *Humboldtiaunijuga*. *Nat. Prod. Res.* 2018, 26, 1–4. [CrossRef]
104. Hirata-Koizumi, M.; Hamamura, M.; Furukawa, H.; Fukuda, N.; Ito, Y.; Wako, Y.; Yamashita, K.; Takahashi, M.; Kamata, E.; Ema, M.; et al. Elevated susceptibility of newborn as compared with young rats to 2-tert-butylphenol and 2,4-di-tert-butylphenol toxicity. *Congenit. Anom (Kyoto)* 2005, 45, 146–153. [CrossRef]
105. Sakamoto, Y.; Satoh, K.; Ando, H.; Kubo, Y.; Nagasawa, A.; Yano, N.; Yuzawa, K.; Takahashi, H.; Ogat, A. Uterotrophic effect of 2,4-di-tert-butylphenol on ovariectomized CD1 mice. *Ann. Rep. Tokyo Metr. Inst. PH.* 2005, 56, 343–346.
106. Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. *Z. Lebensm. Unters. Forsch.* 1993, 196, 329–338. [CrossRef]
107. Oikawa, S.; Nishino, K.; Oikawa, S.; Inoue, S.; Mizutani, T.; Kawanishi, S. Oxidative DNA damage and apoptosis induced by metabolites of butylated hydroxytoluene. *Biochem. Pharmacol.* 1998, 56, 361–370. [CrossRef]
108. Dubinskaya, N.I.; Burlakova, E.B. Effect of the antioxidant, 4-methyl-2,6 di-tert-butylphenol on the mitotic division of epithelial cells of the small-intestinal crypts of mice depending on the degree of differentiation. *Tsitologiia* 1977, 19, 763–767. [PubMed]
109. Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). *Anticancer Res.* 2003, 23, 4693–4701. [PubMed]
110. Wang, Z.Q.; Wu, Y.X.; Zhou, H.; He, Y.Q. Nematicidal Activity of 2,4-Di-tert-butylphenol against *Caenorhabditis elegans*. *Agrochemicals* 2014, 53, 298–300.
111. Burkholder, W.E.; Schwab, C.P.; Boush, G.M. Antimicrobial food additives and their effects on *Trogoderma variabile* and *Attagenus megatoma* (Coleoptera, Dermestidae). *J. Stored Prod. Res.* 1973, 9, 205–211. [CrossRef]
112. García, D.; Girardi, N.S.; Passone, M.A.; Neschi, A.V.; Etchevery, M.G. Harmful Effects on *Oryzaephilus surinamensis* (L.) and *Tribolium castaneum* by food grade antioxidants and their formulations in peanut kernel. *J. Food Chem. Nanotechnol.* 2017, 3, 86–92. [CrossRef]
113. Pullen, E.M. Controlling Insects and Parasites on Plants Using Surfactants and High Terpene Oil. U.S. Patent US6582712B2, 24 June 2003.

114. Collignon, R.M.; Halloran, S.; Serrano, J.M.; McElfresh, J.S.; Millar, J.G. An unstable monoterpenic alcohol as a pheromone component of the longhorned beetle Paranoplium gracile (Coleoptera: Cerambycidae). J. Chem. Ecol. 2019, 45, 339–347. [CrossRef]

115. Lin, H.P.; Fan, J.T.; Su, X. A Composition to Repel Sawyer Beetles (Monochamus alternatus). China Patent CN102726463A, 29 June 2012.

116. Padmavathi, A.R.; Periyasamy, M.; Pandian, S.K. Assessment of 2,4-di-tert-butylphenol induced modifications in extracellular polymeric substances of Serratia marcescens. Bioresour. Technol. 2015, 188, 185–189. [CrossRef]

117. Leila, A.; Lamjed, B.; Roudaina, B.; Najla, T.; Taamalli, A.; Jellouli, S.; Mokhtar, Z. Isolation of an antiviral compound from Tunisian olive twig cultivars. Microb. Pathog. 2019, 128, 245–249. [CrossRef]

118. Zhou, B.; Li, N.; Liu, S.; Fu, R.; Li, G. Effects of 2,4-di-tert-butylphenol on tomato leaf mould and seedling growth. Shengtaixue Zazhi 2013, 32, 1203–1207.

119. Chen, Z.X.; Zhou, B.L.; Du, L.; Ye, X.L. Effects of phenol, 2,4-bis(1,1-dimethylethyl) on seedling growth of eggplant and Verticillium dahlia. Allelopath. J. 2012, 30, 81–92.

120. Maria Teresa, R.; Rosaura, V.; Elda, C.; Ernesto, G.T. The avocado defense compound phenol-2,4-bis(1,1-dimethylethyl) is induced by arachidonic acid and acts via the inhibition of hydrogen peroxide production by pathogen. Physiol. Mol. Plant Pathol. 2014, 87, 32–41. [CrossRef]

121. Padmavathi, A.R.; Bakkayaraj, D.; Thajuddin, N.; Pandian, S.K. Effect of 2, 4-di-tert-butylphenol on growth and biofilm formation by an opportunistic fungus Candida albicans. Biofouling 2015, 31, 565–574. [CrossRef]

122. Chuah, T.S.; Norhafigiah, M.Z.; Ismail, B.S. Evaluation of the biochemical and physiological activity of the natural compound, 2,4-ditert-butylphenol on weeds. Crop. Pasture Sci. 2015, 66, 214–223. [CrossRef]

123. Xuan, T.D.; Toyama, T.; Fukuta, M.; Khanh, T.D.; Tawata, S. Chemical interaction in the invasiveness of Cogongrass (Imperata cylindrica (L.) Beauv.). J. Agric. Food Chem. 2009, 57, 9448–9453. [CrossRef] [PubMed]

124. Rajasekharan, S.K.; Lee, J.H.; Ravichandran, V.; Kim, J.C.; Park, J.G.; Lee, J. Nematicidal and insecticidal activities of halogenated indoles. Crop. Pasture Sci. 2019, 66, 457–467. [CrossRef]

125. Lee, H.R.; Lee, S.O.; Lee, D.H.; Choi, W.S.; Jung, C.S.; Jeon, J.H.; Kim, J.E.; Park, I.K. Identification of the aggregation-sex pheromone produced by male Monochamus saltuarius, a major insect vector of the pine wood nematode. J. Chem. Ecol. 2017, 43, 670–678. [CrossRef]

126. Chuah, T.S.; Zain, N.M.; Naimah, A.H.; Ismail, B.S. Phytotoxic activity of the allelochemical, 2,4-di-tert-butylphenol on two selected weed species. Sains Malays. 2016, 45, 963–967.

127. Chuah, T.S.; Norhafigiah, M.Z.; Ismail, S. Phytotoxic effects of the extracts and compounds isolated from Napiergrass (Pennisetum purpureum) on Chinese sprangletop (Leptochloa chinensis) germination and seedling. Weed Sci. 2014, 62, 457–467. [CrossRef]

128. Halim, N.A.; Razak, S.B.A.; Simbak, N.; Seng, C.T. 2,4-di-tert-butylphenol-induced leaf physiological and ultrastructural changes in chloroplasts of weedy plants. S. Afr. J. Bot. 2017, 112, 89–94. [CrossRef]

129. Norhafigiah, Z.M. Characterization and Mode of Action of Phytotoxic Compounds Isolated from Pennisetum Purpureum (Napier grass). Ph.D Thesis, University Malaysia Terengganu, Kuala Terengganu, Malaysia, 2014.

130. Zhang, X.H.; Zhang, E.H.; Chai, Q.; He, Q.X.; Ren, B.C. Effects of phenol, 2,4-bis(1,1-dimethylethyl) on photosynthetic characters of hops seedling. J. Gansu Agric. Univ. 2006, 41, 50–54.

131. Zhang, X.; Zhang, E.; Lang, D. Autotoxic compounds from rhizosphere soil of Humulus lupulus L. extracts: Identification and biological activity. Agron. J. 2011, 103, 695–701. [CrossRef]

132. Zheng, F.; Chen, L.; Gao, J.; Niu, F.; Duan, X.; Yin, L.; Tian, W. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system. J. Plant Physiol. 2018, 230, 35–39. [CrossRef] [PubMed]

133. Jiang, S.; Zhao, Z.L.; Zang, S.S.; Xie, Z.H.; Shi, L.L.; Guo, J.W. Influence of several allelochemicals from root exudates on own seed germination and seedling growth in chili pepper. Acta Agric. Bor.-Occid. Sin. 2013, 22, 137–143.

134. Huang, W. Study on the Synergetic Effect of 2,4-DTBP and Fusarium on the Occurrence of Fusarium Wilt in Lanzhou Lily. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2018.

135. Li, S.; Wang, P.; Yuan, W.; Su, Z.; Bullard, S.H. Endocidal regulation of secondary metabolites in the producing organisms. Sci. Rep. 2016, 6, 29315. [CrossRef]
136. Suga, T.; Ohta, S.; Munesada, K.; Ide, N.; Kurokawa, M.; Shimizu, M. Endogenous pine wood nematicidal substances in pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry 1993, 33, 1395–1401. [CrossRef]

137. Zheng, Y.N.; Yang, Z.Q.; Wang, X.Y. Mechanism of chemical ecology of Bursaphelenchus xylophilus vectored by Monochamus alternatus. Plant Prot. 2014, 40, 12–15.

138. Gumiere, T.; Ribeiro, C.M.; Vasconcellos, R.L.F.; Cardoso, E.J.B.N. Indole-3-acetic acid producing root-associated bacteria on growth of Brazil pine (Araucaria angustifolia) and Slash pine (Pinus elliottii). Antonie Leeuwenhoek 2014, 105, 663. [CrossRef]

139. Barriuso, J.; Ramos Solano, B.; Santamaria, C.; Daza, A.; Gutiérrez Mañero, F.J. Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J. Appl. Microbiol. 2008, 105, 1298–1309. [CrossRef]

140. Zhang, X.; Zhang, J.; Wang, Y.; Bao, C.; Deng, G. Analysis of the volatile components of the bark of Pinus yunnanensis Franch by GC-MS. Jingxi Huagong 2008, 25, 45–48.

141. Xu, N.; Wang, C.; Wei, M.; Shi, W.; Wang, X. Allelopathy of welsh onion root exudates on cucumber seed germination and Fusarium oxysporum f. sp. cucumerinum and GC-MS analysis. Yuanji Xuebao 2012, 39, 1511–1520.

142. Jianu, C.; Misca, C.; Pop, G.; Rusu, L.C.; Ardelean, L.; Gruia, A.T. Chemical composition and antimicrobial activity of essential oils obtained from dill (Anethum graveolens L.) grown in western Romania. Rev. Chim. 2012, 63, 641–645.

143. Sugunanabai, J.; Jeyaraj, M.; Karpagam, T.; Senthil Rani, S.; Kalaiyarasi, G.; Renuga, R.; Gomathi, S. Outlining of phytochemicals and GC-MS profile of Centella asiatica. Int. J. Pharm. Drug. Anal. 2018, 6, 252–256.

144. Kołodziej, B.; Kowalski, R.; Holdkerna-Kedzia, E. Chemical composition and chosen bioactive properties of Panax quinquefolius extracts. Chemija 2013, 24, 151–159.

145. Nadaf, M.; Asrabadi, M.N.; Halimi, M.; Yazadani, Z. Identification of non-polar chemical compounds Acropition repens growing in Iran by GC-MS. Middle East J. Sci. Res. 2013, 17, 590–592.

146. Hourie, K.; Shandiz, A.S.S.; Baghbani-Arani, F. Anticancer properties of phyto-synthesized silver nanoparticles from medicinal plant Artemisia tschernieviana Beier aerial parts extract toward HT29 human colon adenocarcinoma cells. J. Clust. Sci. 2017, 28, 1617–1636.

147. Rincón, A.; Ruiz-Diez, B.; Garcia-Fraile, S.; García, J.A.L.; Fernandez-Pascual, M.; Pueyo, J.J.; de Felipe, M.R. Colonisation of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiol. Ecol. 2005, 51, 303–311. [CrossRef]

148. Villalobos-Amador, E.; Rodriguez-Hernández, G.; Pérez-Molpe-Balch, E. Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana Gordon. Plant Cell Rep. 2002, 20, 779–785. [CrossRef]

149. Pokojska-Burdziej, A.; Strzeleczyk, E.; Dahm, H.; Li, C.Y. Ecto- and endomycorrhization and rhizosphere microbial communities. FEMS Microbiol. Ecol. 2005, 51, 303–311. [CrossRef]

150. Aswathy, J.M.; Preetha, T.S.; Murugan, K. Comparison of bioactive anthocyanin components from Begonia malabarica Lam. and Begonia rex-Cultorum ‘Baby Rainbow’ L.H.Bailey by GC-MS analysis. Int. J. Appl. Biol. Pharm. Technol. 2015, 6, 217–222.

151. Vonderwell, J.D.; Enebak, S.A.; Samuelson, L.J. Influence of two plant growth-promoting rhizobacteria on lobolly pine root respiration and IAA activity. For. Sci. 2001, 47, 197–202. [CrossRef]

152. Logesh, R. Phytochemical and GC-MS analysis of Brassica oleracea var. Capitata, F. Rubra. World J. Pharm. Res. 2018, 7, 1392–1400.

153. He, S.; Ding, C.; Yang, G.; Zhu, J.; Zhao, J. Effect of microwave drying on quality and volatile profiles of rapeseeds. Zhongguo Xiangyou Xuebao 2013, 28, 48–54.

154. Li, M.; Leung, D.W.M. Root induction in radiata pine using Agrobacterium rhizogenes. Electron. J. Biotechnol. 2003, 6, 254–261.

155. Gayathri, G.; Vijayalakshmi, K.; Saraswathy, A. GC-MS & HPTLC fingerprinting of Bauhinia variegata leaves for anti-cancer activity. World J. Pharm. Res. 2014, 3, 907–915.

156. Mamiya, Y.; Endo, N. Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae). Nematologica 1972, 18, 159–162. [CrossRef]
157. Wagay, N.A.; Khan, N.A.; Rothe, S.P. Profiling of secondary metabolites and antimicrobial activity of *Crataeva religiosa* G. Forst. bark-A rare medicinal plant of Maharashtra India. *Int. J. Biosci.* 2017, 10, 343–354.

158. Ghosh, S.; Saha, M.; Bandyopadhyay, P.K.; Jana, M. Extraction, isolation and characterization of bioactive compounds from chloroform extract of *Carica papaya* seed and it’s *in vivo* antibacterial potentiality in *Channa punctatus* against Klebsiella PKBSG14. *Microb. Pathog.* 2017, 111, 508–518. [CrossRef]

159. Cho, J.; Kim, M.S.; Lee, Y.G.; Jeong, H.Y.; Lee, H.J.; Ham, K.S.; Moon, J.H. A phenyl lipid alkaloid and flavone-C-diglucosides from *Spergularia marina*. *Food Sci. Biotechnol.* 2016, 25, 63–69. [CrossRef]

160. Lakshmi, M.; Nair, B.R. GC-MS analysis of the chloroform extract of bark of *Terminalia travncoresens* Wight & Arn. (*Combretaceae*). *Int. J. Pharm. Sci. Res.* 2017, 8, 794–798.

161. Morimoto, K.; Iwasaki, A. Role of *Monochamus alternatus* (Coleoptera: Cerambycidae) as a vector of *Bursaphelenchus lignicolum* (Nematoda: Aphelenchoididae). *J. Ipn. For. Soc.* 1972, 54, 177–183.

162. Tayad, A.B.; Dhar, P.; Kumar, J.; Sharma, M.; Chauhan, R.S.; Chaurasia, O.P.; Srivastava, R.B. Chemometric analysis of the essential oils from the leaves of *Vigna radiata* (L.) Wilczek. *Asian J. Pharm. Clin. Res.* 2013, 6, 32–36.

163. Kour, J.; Ali, M.N.; Ganaie, H.A.; Tabassum, N. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of *Equisetum arvense*. *Toxicol. Rep.* 2017, 4, 226–233. [CrossRef] [PubMed]

164. Keerthana, G.; Kalaivani, M.K.; Sumathy, A. *In-vitro* alpha amylase inhibitory and anti-oxidant activities of ethanolic leaf extract of *Croton bonplandianum*. *Asian J. Pharm. Clin. Res.* 2013, 6, 32–36.

165. Malayaman, V.; Sheik Mohamed, S.; Senthilkumar, R.P.; Ghouse Basha, M. Analysis of phytochemical constituents in leaves of *Btunymalaki* (*Phyllanthus debilis* Klein ex Willd.) from Servaroy hills, Tamil Nadu, India. *J. Pharm. Phytochem.* 2019, 8, 2678–2683.

166. Zhao, L.L.; Zhang, S.; Wei, W.; Hao, H.; Zhang, B.; Butcher, R.A.; Sun, J. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. *Curr. Biol.* 2013, 23, 2038–2043. [CrossRef]

167. Li, Y.; Ma, F.; Wu, L.; Liu, C.; Wang, A.; Wang, C. Difference effects of rotation and continuous soybean root secretion on seedling growth of soybean. *J. NE Agric. Univ.* 2010, 41, 1–6.

168. Duangnin, N.; Phitak, T.; Pothcharaoren, P.; Kongtawelert, P. *In vitro and in vivo* investigation of natural compounds from seed extract of *Mucuna pruriens* lacking L-DOPA for the treatment of erectile dysfunction. *Asian Pac. J. Trop. Med.* 2017, 10, 238–251. [CrossRef]

169. Ishan, U.K.; Suresh, M.; Suresh, M.; Bagh, R. Volatile phyto-chemical compounds screening in alcoholic extract of western Rajasthan growing Mung-Bean (*Vigna radiata*) by Gas Chromatography-Mass Spectroscopy. *Trends Biosci.* 2017, 10, 1588–1595.

170. Necibi, S.; Linit, M.J. Effect of *Monochamus carolinensis* on *Bursaphelenchus xylophilus* dispersal stage formation. *J. Nematol.* 1998, 30, 246–254.

171. Gao, H.; Song, Y.; Lv, C.; Chen, X.; Yu, H.; Peng, J.; Wang, M. The possible allelopathic effect of *Hydrrilla verticillata* on phytoplankton in nutrient-rich water. *Environ. Earth Sci.* 2015, 73, 5141–5151. [CrossRef]

172. Cui, C.; Cai, J.; Zhang, S. Isolation and identification of the allelochemicals in walnut (* Juglans regia*) root exudates. *Linyne Kexue* 2013, 49, 54–60.

173. Sreeja, P.S.; Arunachalam, K.; Saikumar, S.; Kasipandi, M.; Dhivyas, S.; Murugan, R.; Parimelazhagan, T. Gastroprotective effect and mode of action of methanol extract of *Sphenodesme involucrata* var. *paniculata* (C.B. Clarke) Munir (*Lamiaceae*) leaves on experimental gastric ulcer models. *Biomed. Pharmacother.* 2018, 97, 1109–1118.

174. Warren, J.E.; Linit, M.J. Effect of *Monochamus carolinensis* on the Life history of the pinewood nematode, *Bursaphelenchus xylophilus*. *J. Nematol.* 1993, 25, 703–709. [PubMed]

175. Bolla, R.I.; Nosser, C.; Tamura, H. Chemistry of response of pines to *Bursaphelenchus xylophilus*: Resin acids. *Ipm. J. Nematol.* 1989, 19, 1–6.

176. Chen, F.; Xu, M.; Yang, X.; Liu, J.; Xiao, Y.; Yang, L. An improved approach for the isolation of essential oil from the leaves of *Cinnamomum longepaniculatum* using microwave-assisted hydrodistillation concatenated double-column liquid-liquid extraction. *Sep. Purif. Technol.* 2018, 195, 110–120. [CrossRef]

177. Kim, C.R.; Xu, M.; Yang, X.; Liu, J.; Xiao, Y.; Yang, L. *Cinnamomum loureirii* extract inhibits acetylcholinesterase activity and ameliorates trimethyltin-induced cognitive dysfunction in mice. *Biol. Pharm. Bull.* 2016, 39, 113–1136. [CrossRef]
178. Zhu, M.; Luk, C.T.; Lew, T.H. Cytoprotective effect of Lindera aggregate roots against ethanol-induced acute gastric injury. Pharm. Biol. 1998, 36, 222–226. [CrossRef]
179. Gnanendra Shanmugam, G.; Lee, S.K.; Jeon, J. Identification of potential nematicidal compounds against the pine wood nematode, Bursaphelenchus xylophilus through an in silico approach. Molecules 2018, 23, 1828. [CrossRef]
180. Channabasava Govindappa, M.; Chandrashekar, N. Determination of phytochemicals by GC-MS in two fractions (17 and 21) of methanol extract of Loranthus Micranthus and their antioxidant and anti-Inflammatory activity. Nat. Prod. J. 2015, 5, 1–18. [CrossRef]
181. Chen, R.; Huo, L.; Liao, Y.; Li, P.Y.; Lu, R. Study on the chemical constituents of essential oils from the leaves of Viscum ovalifolium and Loranthus pentapetalus roxb. parasitizing on Guaiacum spp. Asian J. Chem. 2013, 25, 1757–1758.
182. Salahdeen, H.M.; Omoaghe, A.O.; Isehunwa, G.O.; Murtala, B.A.; Alada, A.R.A. Gas chromatography mass spectrometry (GC-MS) analysis of ethanolic extracts of kolanut (Cola nitida) (vent) and its toxicity studies in rats. J. Med. Plants Res. 2015, 9, 56–70. [CrossRef]
183. Subban, M.; Ramasamy, V.; Annamalai, P. Evaluation of phytochemical constituents from the leaves of Memecylon umbellatum Burm.f. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 1145–1152.
184. Falaki Khalilsaraie, M.; Saima, N.; Meti, N.T.; Bhadekar, R.K.; Nerkar, D.P. Cytological study and anti-microbial activity of embryogenic callus induced from leaf cultures of Tinospora cordifolia (Willd.) Miers. J. Med. Plants Res. 2011, 5, 3002–3006.
185. Khan, Y.; Ansari, H.R.; Chauhan, R.; Tamboli, E.T.; Ahmad, S. Comparative gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography analysis of essential oils extracted using 4 methods from the leaves of Eucalyptus globulus L. Drug Dev. Ther. 2016, 7, 81–86.
186. Wang, H.; Zhang, J.; Yang, W.; Wang, X.; Cheng, L. A comparative research on the allelochemicals of Eucalyptus grandis in different woodland. Hebei Shifan Daxue Xuebao Ziran Kexueban 2009, 33, 94–99.
187. Silva, M.R.; Bueno, G.H.; Araujo, R.L.B.; Lacerda, I.C.A.; Freitas, L.G.; Morais, H.A.; Augusti, R.; Melo, J.O.F. Evaluation of the influence of extraction conditions on the isolation and identification of volatile compounds from cagaita (Eugenia dysenterica) using HS-SPME/GC-MS. J. Braz. Chem. Soc. 2019, 30, 379–387. [CrossRef]
188. Hanawa, F.; Yamada, T.; Nakashima, T. Phytoalexins from Pinus strobus bark infected with pinewood nematode, Bursaphelenchus xylophilus. Phytochemistry 2001, 57, 223–228. [CrossRef]
189. Hu, Q.; Jin, J.; Du, Y.B.; Fan, J.T. Variation of the composition of attractants in lures for Monochamus alternatus (Coleoptera: Cerambycidae) in the field and its influence on trapping efficacy. Acta Entomol. Sin. 2018, 61, 1310–1318.
190. Gupta, M.; Gupta, A.; Gupta, S. In vitro antimicrobial and phytochemical analysis of dichloromethane extracts of Piper nigrum (black pepper). Orient. J. Chem. 2013, 29, 777–782. [CrossRef]
191. Ajayi, G.O.; Olagunju, J.A.; Ademuyiwa, O.; Martin, O.C. Gas chromatography-mass spectrometry analysis and phytochemical screening of ethanolic root extract of Plumbago zeylanica Linn. J. Med. Plants Res. 2011, 5, 1756–1761.
192. Samejo, M.Q.; Memon, S.; Bhanger, M.I.; Khan, K.M. Essential oil constituents in fruit and stem of Calligonum polygonoides. Ind. Crops Prod. 2013, 45, 293–295. [CrossRef]
193. Chen, F.; Jia, J.; Zhang, Q.; Yang, L.; Gu, H. Isolation of essential oil from the leaves of Polygonum viscosum Buch-ham. using microwave-assisted enzyme pretreatment followed by microwave hydrodistillation concatenated with liquid-liquid extraction. Ind. Crops Prod. 2018, 112, 327–341. [CrossRef]
194. Ikeda, T.; Enda, N.; Yamane, A.; Oda, K.; Toyoda, T. Attractants for the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Appl. Entomol. Zool. 1980, 15, 358–361. [CrossRef]
195. Ishikawa, M.; Shuto, Y.; Watanabe, H. β-Myrcene, a potent attractant component of pine wood for the pine wood nematode, Bursaphelenchus xylophilus. Agric. Biol. Chem. 1986, 50, 1863–1866. [CrossRef]
196. Ucar, E. In-vitro antioxidant and antimicrobial activities and various enzyme inhibitory activities of ethanolic extracts from different organs of Consolida regalis. Fresenius Environ. Bull. 2018, 27, 5990–5997.
197. Qin, Z.; Zhang, Z.G.; Liu, H.M.; Qin, G.Y.; Wang, X.D. Acetic acid lignins from Chinese quince fruit (Chaenomeles sinensis): Effect of pretreatment on their structural features and antioxidant activities. RSC Adv. 2018, 8, 24923–24931. [CrossRef]
198. Basu, S.; Choudhury, U.R.; Das, M.; Datta, G. Identification of bioactive components in ethanolic and aqueous seedlings growth, photosynthesis, antioxidant and ultrastructure properties. *Sci. Hortic.* 2015, 215, 49–58. [CrossRef]

199. Murathan, Z.T.; Zarifikhosroshahi, M.; Kafkas, E.; Sevindik, E. Chemical composition, volatiles, and antioxidant activity of *Rosa iberica* Stev. hips. *Acta Sci. Pol. Hortorum Cultus* 2016, 15, 41–54.

200. Kim, J.; Lee, S.M.; Jung, Y.K.; Kwaon, Y.D.; Kim, D.S.; Lee, D.W.; Park, C.G. Field evaluation on the synergistic attractiveness of 2-(1-undecyloxy)-1-ethanol and isepnol to *Monochamus saltuarius*. *Entomol. Res.* 2016, 46, 31–35. [CrossRef]

201. Ji, G.; Yu, L.; Zhang, C.; Zou, J.; Liu, Y. Primary study on allelopathic substance in litter of *Zanthoxylum planispinum*. *Guizhou Agric. Sci.* 2011, 39, 45–47.

202. Edewor, T.; Olabisi, K.N.; Oluwagbemiga, O.S. Gas chromatography-mass spectrometric analysis of gas chromatography-mass spectrometric analysis of *Amorphophallus campanulatus* tuber by GC-MC analysis. *J. Chem. Soc. Pak.* 2014, 6297–6304.

203. Ghalh, S.; Alinezhad, H.; Nematzadeh, G.A.; Ghalh, S. Phytochemical screening and antimicrobial activities of the constituents isolated from *Koelreuteria paniculata* leaves. *Nat. Prod. Res.* 2015, 29, 1865–1869. [CrossRef] [PubMed]

204. Armatu, A.; Bodirlau, R.; Nechita, C.B.; Niculaua, M.; Teaca, C.A.; Ichim, M.; Spiridon, I. Characterization of biological active compounds from *Verbascum phlomoides* by chromatography techniques. I. Gas chromatography. *Rom. Biotechnol. Lett.* 2011, 16, 6297–6304.

205. Xie, Z.; Zhao, Z.; Wu, G.; Ye, X.; Shi, L.; Guo, J. Component analysis of the root exudates at different growth stages in chili pepper. *Acta Agric. Bor.-Occid. Sin.* 2012, 21, 175–181.

206. Chang, P.; Liang, Y.; Zhang, J.; Yang, J.H.; Liu, J.Y.; Lu, J.; Zhao, J.J. Volatile components and quality characteristics of cherry tomato from five color varieties. *Food Sci.* 2014, 35, 215–221.

207. Zhou, B.L.; Chen, Z.X.; Du, L.; Xie, Y.H.; Zhang, Q.; Ye, X.L. Allelopathy of root exudates from *Diplotaxis erucoides*. *Int. J. Biotechnol.* 2011, 6, 8284–8290.

208. Sharma, N.; Rautela, I.; Sharma, M.D. Mass propagation and GC-MS analysis of methanolic leaf extracts of *Lannea kerstingii* and *Nauclea diderrichii*, two medicinal plants used for the treatment of gastrointestinal tract infections. *Asian J. Pharm. Clin. Res.* 2016, 9, 179–182.

209. Kim, J.; Lee, S.M.; Jung, Y.K.; Kwaon, Y.D.; Kim, D.S.; Lee, D.W.; Park, C.G. Field evaluation on the synergistic attractiveness of 2-(1-undecyloxy)-1-ethanol and isepnol to *Monochamus saltuarius*. *Entomol. Res.* 2016, 46, 31–35. [CrossRef]

210. Ji, G.; Yu, L.; Zhang, C.; Zou, J.; Liu, Y. Primary study on allelopathic substance in litter of *Zanthoxylum planispinum*. *Guizhou Agric. Sci.* 2011, 39, 45–47.

211. Kim, J.; Lee, S.M.; Jung, Y.K.; Kwaon, Y.D.; Kim, D.S.; Lee, D.W.; Park, C.G. Field evaluation on the synergistic attractiveness of 2-(1-undecyloxy)-1-ethanol and isepnol to *Monochamus saltuarius*. *Entomol. Res.* 2016, 46, 31–35. [CrossRef]

212. Dar, S.A.; Yousuf, A.R.; Ganai, F.A.; Sharma, P.; Kumar, N.; Singh, R. Bioassay guided isolation and identification of allelochemicals. *J. Chem. Soc. Pak.* 2014, 6297–6304.

213. Muhammad, N.; Khan, A.; Saeed, M.; Khan, H.; Khan, S.S.; Shareef, H.; Khan, Z.; Farooq, U.; Zahoor, M. Fixed oil composition and biological screening of *Nerium oleander* are highlighted in this study. *Afr. J. Biotechnol.* 2012, 11, 12910–12920.

214. Zhang, S.; Ao, K.; Zeng, Q.; Liu, Y. Determination of volatile oil components in *Ampelopsis grossedentata* by GC-MS. *Zhongguo Niangzao* 2014, 33, 140–143.

215. Basu, S.; Choudhury, U.R.; Das, M.; Datta, G. Identification of bioactive components in ethanolic and aqueous extracts of *Amorphophallus campanulatus* tuber by GC-MC analysis. *Int. J. Phytomedicine* 2013, 5, 243–251.

216. Yang, H.; Zhou, W.; Zhang, Q.; Li, W. Analysis of flavor components in the coconut juice and beverage based on GC-MS method. *Xiaodai Shipin Keji* 2014, 30, 286–290.

217. Hema, N.; Avadhani, R.; Ashwini, P.; Sunil Kumar, K.N. GC-MS characterization of n-hexane soluble compounds of *Cyperus rotundus* L. rhizomes. *J. Appl. Pharm. Sci.* 2016, 5, 96–100.

218. Aneela, S.; Dey, A.; De, S. Gas chromatography-mass spectrometry analysis of *Kyllinga triceps*. *Int. J. Pharm. Sci. Res.* 2014, 5, 2999–3003.

219. Seenivasan, N. Phytochemical profiling of burrowing nematode (*Radopholus similis*) resistant and susceptible banana (*Musa* spp.) genotypes for detection of marker compounds. *Fruits* 2018, 73, 48–59. [CrossRef]
220. Kohno, T.; Togashi, K.; Fukamiya, N. The nematocidal activity and the structure-activity relationships of stilbenes. *Nat. Prod. Res.* 2007, 21, 606–615. [CrossRef] [PubMed]

221. Pajares, J.A.; Alvarez, G.; Ibeas, F.; Gallego, D.; Hall, D.R.; Farman, D.I. Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, *Monochamus galloprovincialis*. *J. Chem. Ecol.* 2010, 36, 570–583. [CrossRef] [PubMed]

222. Xuan, T.D.; Chung, I.M.; Khanh, T.D.; Tawata, S. Identification of phytotoxic substances from early growth of barnyard grass (*Echinochloa crusgalli*) root exudates. *J. Chem. Ecol.* 2006, 32, 895–906. [CrossRef] [PubMed]

223. He, H.; Chen, X.; Lin, R.; Jia, X.; Xiong, J.; Shen, L.; Liang, Y. Chemical components of root exudates from allelopathic rice accession PI312777 seedlings. *J. App. Ecol.* 2005, 16, 2383–2388.

224. Hong, H.; Yu, Y.; Zhou, W.; Li, B. Analysis of extracts components of parenchyma in *Phyllostachys pubescens* by GC-MS. *Zhongnan Linye Keji Daxue Xuebao* 2015, 35, 114–117.

225. Mody, N.V.; Bhattacharyya, J.; Miles, D.H.; Hedin, P.A. Constituents of marsh grass. II. Survey of the essential oil in *Spartina cynosuroides*. *Phytochemistry* 1974, 13, 1175–1178. [CrossRef]

226. Bai, J.; Wang, J.; Tao, B.; Teng, C. Allelopathy and preliminary separation of allelopathic substance in the extracts of wheat seed germination. *Adv. Mater. Res.* 2012, 468, 565–568. [CrossRef]

227. Bordoloi, A.K.; Sperkova, J.; Leclercq, P.A. Essential oils of *Zingiber cassumunar* Roxb. from northeast India. *J. Essent. Oil Res.* 1999, 11, 441–445. [CrossRef]