Corrosion behavior of hybrid coconut shell powder and silica carbide reinforced aluminium composite towards aggressive biofilm attack

M J Suriani¹,⁴, F Zulkifli¹, M A Khairul²,⁵, M D Azaman³,⁵ and M N K Jarkoni*¹,⁶

¹Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia.
²Mechanical Engineering Section, Universiti Kuala Lumpur, Malaysia France Institute, Section 14, Teras Jernang Road, 43650, Bandar Baru Bangi, Selangor, Malaysia.
³School of Manufacturing Engineering, Pauh Campus, Universiti Malaysia Perlis, 02600 Perlis, Malaysia.
E-mail: ¹surianomatjusoh@umt.edu.my, ²khairulazhar@unikl.edu.my, ³azaman@unimap.edu.my, ⁶khasbi@gmail.com.my

Abstract. This study enveloped innovative uses of a hybrid agro waste and silica carbide incorporated with aluminium as a new hybrid composite materials for marine application. In this study, the purpose of adding coconut shell powder (CSP) from the agro waste and silicon carbide (SiC) as reinforcement aluminium composites materials for combating corrosion problem. The CSP was incorporated into the molten aluminium alloys varies from 0%, 5%, 10%, 15% and 20% of weight percentages. The corrosion behaviour was determined by weight gain measurement (WGM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). As a results, 5% CSP reinforcement in hybrid aluminium composites contribute to excellent corrosion resistance performance by shifting the polarization curve towards the positive region, increases the value of polarization resistance, R_p, and reduces the I_{corr} value. It can be concluded that, by adding CSP into aluminium composite has significantly increase the corrosion resistance towards a severe biofilm attack.

1. Introduction

Corrosion has been recognized as the greatest issue worldwide as well as in Malaysia [1]. Nowadays, there are many types of hybrid metal composites reinforced with natural fiber and SiC used in the various industry [2-5]. Over the years, the great achievement has been witnessed in material engineering and material science through the development of hybrid aluminium composites from the natural green fiber. Furthermore, magnesium was added for improving wettability between the aluminium matrix and the reinforcement. Present discussion on hybrid composite ensures that the application and implementation of hybrid composites in various different fields seem to be practicable [6-7]. Previous study on the various aspects of hybrid composite application provides solid assumption regarding the influence of various different parameters on the hybrid composites performances.
method of fabricating for hybrid aluminium composites also add the credit. The development of composites production or fabrication includes the aspect of technique apply and degree of difficulty. Stir casting, powder metallurgy, spray atomization and co-deposition, plasma spraying, squeeze casting and compo-casting were the best developed methods for composite production [8-10].

2. Materials

The reinforcement used for aluminium matrix was pure SiC particles average range particles size within 30 µm and processed CSP about 425 µm consequential from controlled sieving of coconut shell. Magnesium powder was added for its role in cultivating wettability between the aluminium matrix and the reinforcement, increase strength through the solid solution and improve strain hardening ability. Hybrid materials composites were fabricated using stir casting method.

3. Methodology

The corrosion behavior was determine using Weight Gain Measurement (WGM), Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic polarization (PP). WGM was carried on followed the ASTM G31. The coupons were immersed in seawater solution accordingly for 35 days. Every 7 days interval, the coupons were withdrawn and dried at ambient temperature accordance with ASTM STP 1188, EIS test was conducted to calibrate the system impedance for a range of frequencies. The experiment was carried by Autolab PGSTAT302N controlled by NOVA software. The data from EIS test were collected and tabulated in Nyquist plot and the value of estimated polarization resistance \(R_p \) obtained. Meanwhile for PP, the potentials were scanned from -1.7 V to 0.01 V and a slow scan rate of 10 mV/s was used. The test was carried out at room temperature. The result from potentiodynamic polarization measurement was represented in a Tafel plot. From the experimental data obtained, the value of current density \(I_{corr} \) and the current potential \(E_{corr} \).

4. Results and discussion

It was observed that, there was an appearance of a milky white as depicted in Figure 1 for all samples as claimed by Bodunrin et al [11]. The inferior performance of single reinforced and CSP reinforced hybrid aluminium composites was clearly due to the electrochemical process during the immersion test which promoted pitting corrosion. The composites produced acting as an active anode. Corrosion of the composite is initiated by segregation of reinforcement interface, interfacial reaction, high dislocation density around reinforcement phase [15-16].

![Figure 1](image.png)

Figure 1. Milky white (corrosion deposit) appearance on the sample surfaces.

The average weight gain of the single reinforced hybrid aluminum composites for immersion week 1 is 0.0048 g followed by 0.0032 g, 0.0033 g, 0.0065 g and 0.0056 g for week 2 to week 5, respectively. The percentage of weight gain for all CSP reinforced hybrid aluminum composites is less than 0.2%. The weight gain for single reinforced hybrid aluminum composites reaches the highest at 0.34% in week 4. These results suggest that the trivial 1% weight gain of the composites is not significant. Once the weight gain is higher, it shows that the reaction on the surface is aggressive, leading to the
reduction of metal thickness. Meanwhile, weight gain percentage less than 0.1%, this composite had the much longer lifespan to survive in the marine environment. Bodunrin et al. [11] revealed that the composites with calcined CSP and SiC less corrode over the time exposure. The increased weight in average range observed in CSP reinforced hybrid aluminum composites was due to the microbially influenced corrosion (MIC) on the sample surfaces [14]. As depicted on Figure 2 (i) and Figure 2(ii), the largest value of R_p on immersion week 2 is 23,944.1 Ω.cm2 for 15% CSP-reinforced hybrid aluminum composites. In the week 5 of immersion, it is clear that 15% CSP reinforced hybrid composites recorded 22,057.4 Ω.cm2, slightly decrease than the Week 2 reading. However, 5% CSP reinforced hybrid aluminum composites recorded the highest R_p value that is 52,551.8 Ω.cm2 in the Week 5, increasing rapidly from 13,679.3 Ω.cm2 in week 2. It is then followed by 15%, 10%, 20% and 0% CSP reinforced hybrid aluminum composites.

![Figure 2. (i) and (ii) Nyquist plot of single reinforced and CSP reinforced hybrid aluminum composites for immersion week 2 and week 5, respectively.](image)

The occurrence can be related to the adsorption of CSP molecules on the sample surface which aligns with the previous studies. The adsorption of CSP molecules on the sample surface influences the size of the surface coverage assigned. This happens due to the corrosion process that has been controlled by the charge transfer process [16]. Moreover, the impedance value of CSP reinforced hybrid aluminum composites is larger than the single reinforced hybrid aluminum composites due to the presence of CSP. From the EIS test, the diameter of semi-circle increases as the time for immersion test increases. In this study, the diameter of Nyquist plots starts to fluctuate, reduce and increase for CSP reinforced hybrid aluminum composites. Higher R_p value suggests better corrosion resistance as has been reported by previous researchers [17-20]. This observation suggests that the presence of inhibitors hinder the adsorption to the metal matrix surfaces. It can be concluded that as the CSP weight percentage increase, the absolute quantity weakened. The 5% CSP reinforced hybrid aluminum composites demonstrate the highest R_p value in the week 5 immersion. As depicted in Figure 3, value for CSP reinforced hybrid aluminum composites shifted to the more electropositive region in comparison to the single reinforced sample. In particular, the Ecorr value for 0% CSP reinforced hybrid aluminum composites is -0.95764 V, followed by 15%, 20%, 10% and 5% CSP reinforced hybrid aluminum composites that shifted to a more electropositive region with reading -0.59459 V.

![Figure 3. Tafel plot of single reinforced and CSP reinforced hybrid aluminum composites for immersion week 3.](image)
Besides, 0% CSP reinforced hybrid aluminum composites has the least I_{corr} value of 4.28 µA/cm2 followed by 15% (4.37 µA/cm2), 20% (7.19 µA/cm2), 10% (10.2 µA/cm2) and 5% (34.7 µA/cm2), respectively. The lowest I_{corr} value is shown by 15% CSP followed by 20%, 10% and 5% CSP respectively. There is no significant different of I_{corr} value for 0% and 15% whereas the prominent different can be seen from E_{corr}. CSP reinforcement revealed that the inhibition takes place within the adsorption on the hybrid aluminum surfaces. This trend coincides with the research done by Vijayalakshmi et al [21]. As the 5% CSP reinforced hybrid aluminum composites show the lowest E_{corr} value due to the limitation amount of CSP molecules into the hybrid aluminum, it suggests that the presence of inhibitor molecules obstructs the absorption onto the hybrid aluminum surface. The work of Berenji et al [22] shows that the inhibition performance of natural fiber decreased at a specific point known as the limitation factor caused by the shifting of certain functional group among the hybrid aluminum and surroundings; the functional groups of natural inhibitor form protective films on the hybrid aluminum composites. The Tafel plot on week 3 immersion for potentiodynamic polarization mechanism is chosen because it shows the most electropositive value for E_{corr} which is reciprocal with the I_{corr} value compared to other immersion timelines. This trend aligns with Hajar et.al. [23].

5. Conclusion

It was found that through WGM, the single reinforced weighs more than CSP reinforced hybrid aluminum composites. The appearance of milky white corrosion deposit can clearly be seen due to localized and uniform corrosion that cause pitting corrosion on the composite surfaces. The inferior performance of single reinforced and CSP reinforced hybrid aluminum composites is because of the electrochemical process that happens during the immersion test that promotes localized corrosion and thus pitting corrosion. EIS study shows that 5% CSP reinforcement in hybrid aluminum composites contributes to excellent corrosion resistance performance. In EIS, 5% CSP reinforced recorded higher Rp value than others in week 5 that is about 52 551.8 Ω.cm2, compared to week 2 with recorded value of 13 679.3 Ω.cm2. The Rp value increases with longer immersion period. In PP measurement, 5% CSP reinforced hybrid aluminum composites shows the lowest E_{corr} values in week 1 and week 3. Both weeks show the most significant value with the lowest Ec Orr values and the highest Icorr values. Overall, E_{corr} value of 5% CSP reinforced hybrid aluminum composites is shifted from electronegative region to a more electropositive region.

Acknowledgements

The authors would like to thank all the staffs of Maritime Technology Laboratory, Universiti Malaysia Terengganu (UMT) for the support throughout completing this study.

6. References

[1] Emilio B A 2018 Reliability of reinforced concrete structures subjected to corrosion-fatigue and climate changes International Journal of Concrete Structures and Materials 12 (10) 40-53.

[2] Alaneme K K, Bodunrin M O and Awe A A 2016 Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened Aluminium matrix composites Journal of King Saudi University in Press.

[3] Alaneme K K, Ademilua B O, Bodunrin M O 2013 Mechanical properties and corrosion behavior of Aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash Tribology in Industry 35 (1) 25-35.

[4] Alaneme K K and Aluko A O 2012 Production and age-hardening behavior of borax pre-mixed SiC reinforced Al-Mg-Si alloy composites developed by double stir casting technique The West Indian Journal of Engineering 34 (1-2) 80-85.
[5] Alaneme K K and Bodunrin M O 2011 Corrosion behavior of alumina reinforced Aluminium (6063) metal matrix composites Journal of Minerals and Materials Characterization and Engineering 10 (12) 1153-1165.

[6] Bobic B, Mitrovic S, Babic M and Bobic I 2010 Corrosion of metal-matrix composites with aluminium alloy substrate Tribology in Industry 32 (1) 3-11.

[7] Boopathi M, Arulshri K and Iyandurai N 2013 Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites American Journal of Applied Sciences 10 (3) 219-229.

[8] Kim S W, Lee U J, Han S W, Kim D K and Ogi K 2003 Heat treatment and wear characteristics of Al/SiCp composites fabricated by duplex process Composites Part B: Engineering 34 737-745.

[9] Daoud A, Abou-Elkhair M T and Rohatgi P 2004 Wear and friction behavior of near eutectic Al-Si+Zro2 or WC particle composites Composites Science and Technology 64 1029-1040.

[10] David Raja Selvam J, Robinson Smart D S and Dinaharan I 2013 Microstructure and some mechanical properties of fly ash particulate reinforced AA Aluminium alloy composites prepared by compocasting Materials and Design 49 28-34.

[11] Bodunrin M O, Alaneme K K and Chown L H 2015 Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics Journal of Materials Research and Technology 4 (4) 434-445.

[12] Trowsdale A J, Noble B, Harris S J, Gibbins I S R, Thompson G E and Wood G C 1996 The influence of silicon carbide reinforcement on the pitting behavior of aluminum Corrosion Science 38 177-191.

[13] Deuis R L, Green L, Subramaniam C and Yellup J M 1997 Corrosion behavior of aluminum composite coatings Corrosion 53 880-890.

[14] Iwona B B, Bergel A, Mollica A, Flemming H C, Scotto V and Sand W 2000 Simple methods for the investigation of the role of biofilm in corrosion European Federation of Corrosion.

[15] Sekar N and Ramasamy R P 2013 Electrochemical impedance spectroscopy for microbial fuel cell characterization Journal of Microbial and Biochemical Technology 6 (4) 35-41.

[16] Zakaria K, Hamdy A, Abbas M and Elenien A O 2016 New organic compounds based on siloxane moiety as corrosion inhibitors for carbon steel in HCl solution: Weight loss, electrochemical and surface studies Journal of Environmental Chemical Engineering 1 652-657.

[17] Sherif E M 2014 A comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt% sodium chloride solution and after different exposure intervals Molecules 19 (7) 9962-9974.

[18] Alam M, Rahman M and Haque M 2007 Extraction of henna leaf dye and its dyeing effects on textile fibre Bangladesh Journal of Scientific and Industrial Research 42 (2) 217-222.

[19] Curioni M, Scenini F, Monetta T and Bellucci F 2015 Correlation between electrochemical impedance measurements and corrosion rate of magnesium investigated by real-time hydrogen measurement and optical imaging Electrochimica Acta 166 (1) 372-384.

[20] Hou J, Zhu G, Xu J and Liu H 2013 Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT:PSS on hull steel in seawater Journal of Material Science 29 (7) 678-684.

[21] Vijayalakshmi P R, Rajalakshmi R and Subhashini S 2010 Coco nucifera shell as a potential inhibitor for mild steel corrosion in acidic medium Asian Journal of Chemistry 22 (6) 4537-4548.

[22] Berenji F, Rakshandeh H and Ebrahimipour H 2010 In vitro study of the effects of henna extract (Lawsonia inermis) on Malassezia species Jundishapur Journal of Microbiology 3 (3) 125-128.

[23] Hajar H M 2017 Performance of Henna extract as corrosion inhibitor for aluminum alloy in marine application School of Ocean Engineering, Universiti Malaysia Terengganu.