Mechanisms linking excess adiposity and carcinogenesis promotion

Ana I. Pérez-Hernández¹, Victoria Catalán¹², Javier Gómez-Ambroso¹², Amaia Rodríguez¹² and Gema Frühbeck¹²³ *

¹ Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
² Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
³ Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain

*Correspondence: Gema Frühbeck, Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Avda. Pío XII 36, Pamplona 31008, Spain e-mail: gfruehbeck@unav.es

INTRODUCTION

Obesity has reached epidemic proportions constituting one of the most important diseases of this century (1). Despite body mass index (BMI) being used for a long time as the best way to diagnose and define obesity, recent studies have proposed that BMI misclassified subjects with increased cardiovascular risk factors (2). This finding highlights that BMI underestimates the real prevalence of overweight and obesity, since it only considers weight and height of the patients and not total body fat, which really defines the obesity-associated comorbidity risk. In this regard, other indicators to determine the prevalence of obesity have been proposed with body fat percentage being one of the most useful due to its superior ability to stratify patients according to their metabolic and cardiovascular risks (3, 4).

Health care expenditure in severe obesity (BMI ≥ 40 or ≥ 35 kg/m² with manifest serious comorbidities) is greater than the investment in any other medical condition (5). This is not only due to direct consequences of obesity, but also due to their associated comorbidities. There are numerous evidences of the relationship between obesity and type 2 diabetes mellitus (T2D) (6), non-alcoholic fatty liver disease (NAFLD) (7, 8) and other chronic liver diseases such as cirrhosis (9), obstructive sleep apnea (OSA) syndrome (10), other respiratory alterations (11) as well as cardiovascular diseases (CVD) including cerebrovascular disorders and hypertension (12–14). Furthermore, evidence about the relationship between obesity and several types of cancer is increasing (15–19). These tumors include colon, breast, endometrium, prostate, thyroid, renal, esophagus, gastric cardia, pancreas, gallbladder, and liver cancer as well as non-Hodgkin lymphoma and multiple myeloma (15, 20–23). Nowadays, cancer is probably one of the most important diseases due to its high prevalence and mortality rates (24). According to the National Cancer Institute, a total of 1,660,290 new cancer cases and 580,350 cancer deaths would take place in the United States in 2013 (25). Increasing trends in incidence of the most common cancers in Europe are also of concern, in particular for colorectal cancer, where incidence is high and still continues to increase (26, 27). A large proportion of the studied cancers are potentially avoidable (28), and several programs to prevent or detect early stages of cancer have been proposed, such as gynecologic or colon cancer population screenings (29–31). Importantly, it has been estimated that 15–20% of all cancer deaths in the United States can be attributed to overweight and obesity (32–34). Obesity and cancer affect millions of people with important consequences; thereby a comprehensive approximation to the mechanisms underlying their relationship is needed to ensure better prevention and treatment strategies.

Higher BMIs have been associated with increased risk of disease while at the same time they have been related with a lower mortality and a better outcome in several chronic diseases (35). This paradoxical finding is shared over a variety of cardiovascular,
pulmonary, and renal diseases and is known as the obesity paradox (36). There is increasing evidence that patients, especially elderly, with elevated BMI and several chronic diseases exhibit lower all-cause mortality compared with normal-weight patients (37). However, it should be highlighted that the BMI is an anthropometric marker that does not consider total body fat mass and distribution, nutritional status, or other factors influencing health risks (2, 3, 38).

RELATIONSHIP BETWEEN OBESITY AND CANCER

Large prospective studies show a significant association between excess adiposity and several cancers. There is sufficient evidence relating obesity and tumor development of the colon, breast (post-menopausal women), and prostate among others (18).

Breast cancer is the most frequently diagnosed cancer globally and the second cause of cancer death in women. It has been estimated that breast cancer constituted 30% of all new cancer cases in women in 2013 (25). Overweight and obesity are important risk factors for breast cancer development and, in contrast to other risk factors, such as menstruation age, familiar antecedents or aging, both overweight and obesity are preventable. It has been shown that post-menopausal obese women present a threefold increase in the risk of breast cancer compared to the non-obese control group (39). Moreover, other studies have revealed that higher BMI is associated with worse response to neoadjuvant chemotherapy and worse overall survival (40). Other anthropometric measurements, such as the waist-to-hip ratio, also correlate with breast cancer death risk (41). Worse prognosis or survival rates in obese women with breast cancer have been established in different studies (42–44), showing that obesity is an important risk factor for breast cancer and, therefore, therapeutic measures must be adopted to reduce obesity incidence. It is important to take into account that hormone replacement therapy (45, 46) and mammographic density (47) could be additional confounders in these association studies. The obesity-associated increased risk of post-menopausal breast cancer might be explained by higher rates of peripheral conversion of androgenic precursors to estradiol due to an increased aromatase enzyme activity in adipose tissue (48).

Globally, colorectal cancer remains the third most commonly diagnosed in males and the second in females with a cumulative life risk of developing colorectal cancer of 5% in the general population (49). Although both, the incidence and mortality have been slowly but steadily decreasing, colorectal cancer is the third leading cause of cancer-related deaths (25). The relationship between obesity and colon cancer is well established (50–53). In this regard, it has been estimated that about 30% of all colon cancer cases could be attributable to a BMI higher than 22.5 kg/m² (54). BMI appears to be consistently associated with an increased risk of colorectal cancer in men, but only a weak association in women has been described (48). This gender difference might be explained by sex differences in prevalence and age of the onset of metabolic syndrome, or by a protective effect of estrogens, inducing apoptosis and inhibition of cell proliferation (55, 56). However, a recent meta-analysis showed that BMI is positively related with colon cancer in both men and women, and no gender differences were found (57). In this sense, a positive association between BMI and prevalence of colonic adenoma and advanced polyps has been demonstrated in pre-menopausal women according to hormonal status (58). Obesity has also been associated with worse cancer outcomes, such as recurrence of the primary cancer or increased mortality. Several factors, including reduced sensitivity to antiangiogenic–therapeutic regimens, might explain these differences. The underlying mechanisms linking obesity to colorectal cancer are not completely elucidated, but inflammation, insulin resistance, and a dysregulated adipokine profile are proposed as important factors. Other biological factors such as the gut microbiota (59) or bile acid concentrations are emerging as novel influential factors in obesity-associated tumors (55).

Prostate cancer is the second diagnosed cancer and the sixth cause of cancer-related mortality among men worldwide (60). Because obesity and prostate cancer affect substantial proportions of the male population, the association between these conditions is of great public health significance. In the last decade, multiple epidemiologic studies have suggested that obesity is associated with an increased risk of death from numerous cancer types including prostate cancer (32, 48). Three meta-analyses reported a positive association between obesity and prostate cancer incidence and, although modest, the relative risks were consistent (48, 61, 62). Obesity has also been associated with worse prognostic and malignant transformation of epithelial cells (63, 64). However, there are contradictory studies about the link between obesity and prostate cancer (65) reporting no association (64, 66), and even a protective effect of obesity (67–71). Proposed obesity-associated alterations related to prostate tumor development include lower levels of sex hormone-binding globulin that increase the fraction of biologically available testosterone (15).

Lung cancer is the main cause of cancer-related death in both genders, with an estimated incidence of more than 200,000 cases in 2013 in the United States (25). To date, the relationship between obesity and the incidence of lung cancer remains unclear (72). Controversy still focuses on the effect of smoking in studies investigating the relationship between BMI and lung cancer (73). In case–control studies, odds ratios for lung cancer by levels of BMI showed an increasing linear trend with a lower threshold BMI for current smokers and ex-smokers of both sexes (74, 75). Moreover, an inverse association between BMI and lung cancer has been shown in other studies after adjusting for smoking or waist circumference (76–78). In this sense, a recent meta-analysis indicates that overweight and obesity are protective factors against lung cancer, especially in current and former smokers (72). Recently, the involvement of adipokines in lung cancer is under study due to their emerging carcinogenic and immunomodulatory properties, making them potential mediators of the complex and still unclear multistep carcinogenic process (79).

Association with obesity has also been proposed for other cancer types, as thyroid, kidney, esophagus, gastric cardia, pancreas, gallbladder, or liver cancer, but further studies are needed to confirm the obesity-attributable risk of tumor development.

DYSFUNCTIONAL ADIPOSE TISSUE IN OBESITY AND TUMOR DEVELOPMENT

Obesity is described as an excess of adiposity due to a prolonged status of positive energy balance, which leads not only to changes in adipose tissue distribution but also to metabolic alterations as
well as altered cytokine and lipid secretion profiles. Energy balance and fuel homeostasis require a tight equilibrium between energy intake (chemical energy from diet-derived macronutrients) and energy expenditure [basal metabolic rate plus mechanical energy by muscle contractions due to physical activity (PA)] that are regulated by both central and peripheral mechanisms. In this sense, substantial changes have occurred in the patterns of foods consumed with special concern about excess of sugar intake in the diet in many industrialized countries mainly as sugar-sweetened drinks (80, 81).

There are two main types of adipose tissue, white and brown, with different origins and functions (82). The major role of white adipose tissue (WAT) is related to maintaining energy homeostasis by storing triglycerides and releasing fatty acids for energy synthesis. It has been well established that WAT also controls a wide variety of functions including immune and inflammatory regulation, glucose and lipid homeostasis, food intake control, or metabolism by secreting a great number of adipokines (83, 84). BAT is a heterogeneous tissue, consisting of a peripheral subcutaneous component (SAT) and a central intra-abdominal component [visceral adipose tissue (VAT)] (85). Abdominal obesity seems to be of greater pathophysiological concern than subcutaneous fat with an increase in VAT being strongly correlated with the metabolic syndrome and tumor development (86–88). Brown adipose tissue (BAT) was initially described to play a physiological role in animals and infants. In human neonates, BAT is located in specific depots, the interscapular and axillary region, and to a lesser extent, near to the thymus and in the dorsal midline region of the thorax and abdomen (89). However, recent studies using positron emission tomography imaging techniques documented the presence of functional BAT in adult humans (90–92). BAT is specialized in thermogenesis, the production of heat mainly mediated by the uncoupling protein-1 (UCP-1), which produces heat by uncoupling mitochondrial respiration for ATP synthesis (93, 94). Cancer has been associated with cachexia, a complex syndrome that involves profound metabolic imbalances (95). The colorectal tumor-induced cachexia on BAT in mice has been described, involving epithelial cells, fibroblasts, mast cells, and cells of the innate microenvironment is composed of multiple cell types including adipose tissue remodeling (110–112). This process includes adipocyte hypertrophy, immune cell infiltration, angiogenesis, and fibrosis during the progression of inflammation (113–116) accompanied with changes in the adipokine production profile (117). The link between chronic inflammation and cancer development was first noticed over 100 years ago by Virchow, when he observed an abundance of leukocytes in neoplastic tissue (118). Since then, the role of chronic inflammation as a precursor of cancer development has been observed in multiple cancer types (119). In animal models of human cancers, inflammation has been shown to influence tumor promotion and progression (120–122). Like adipose tissue, tumor microenvironment is composed of multiple cell types including epithelial cells, fibroblasts, mast cells, and cells of the innate and adaptive immune system that favors a pro-inflammatory and pro-tumorigenic environment (123–127).

Macrophages, obesity, and cancer

Growing evidence reveals that adipose tissue from obese subjects is markedly infiltrated by macrophages that participate in inflammatory pathways with important roles in obesity-associated comorbidities (128). Adipose tissue macrophages (ATM) enhance the levels of inflammatory markers dysregulated in cancer, suggesting that macrophages from peritumoral adipose tissue are locally involved in promoting carcinogenesis (129–131). The presence of tumor-associated macrophages (TAM) also contributes to the pro-inflammatory tumor environment. The recruitment of these cells is upregulated by several adipokines, including pro-inflammatory cytokines, chemokines, and lipids that are associated with obesity and cancer. This interaction is critical in the establishment and maintenance of the pro-inflammatory microenvironment that promotes tumor growth and progression (132–134).
of TAM to the tumor microenvironment is largely dependent on the monocyte chemoattractant protein-1 (MCP-1). In this regard, levels of MCP-1 in tumor tissue have been highly correlated with the accumulation of TAM in ovarian, breast, and pancreatic cancer (123, 132).

Local environment factors are able to determine polarization of macrophages through two general states: M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages (Figure 1). Activation of M1 macrophages is mediated mainly through the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) system. M1 macrophage-derived tumor necrosis factor (TNF)-α and interleukin (IL)-18, 12, and 23 have been identified as important mediators in several chronic inflammatory diseases including obesity and cancer (133–136). Excess of M1 macrophage polarization is related to insulin resistance in obese subjects (137) with M1 macrophages being also differentiated in the tumor initiation stages. Obesity could lead to tumor initiation by the denominated extrinsic pathway, in which tumorigenesis is attributable to a chronic inflammatory condition through the NF-κB pathway (138). NF-κB activation in tumor cells promotes carcinogenesis by increasing their aggressive potential by triggering autocrine growth factor cascades and by inhibiting proliferation control mechanisms, including apoptotic signals (139). NF-κB involvement in tumorigenesis has been shown in various tumor models (140). M1 macrophages also contribute to tumor development by TNF-α and IL-6 signaling, enhancing carcinogenesis by increasing cell proliferation and neangiogenic cell properties (141, 142). In addition, TNF-α production by macrophages activates the Wnt/β-catenin pathway, which is also associated with tumor development by a non-resulting anti-inflammatory response (143, 144). M2 macrophage activation is mainly mediated by the IL-4-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) transduction signaling. It has been shown that IL-10 secreted by M2 macrophages improves insulin signaling, with a protective role in obesity-induced insulin resistance (145). Moreover, several factors are involved in M2 activation, such as peroxisome proliferator-activated receptor (PPAR)-γ, Krüppel-like factor 4, AMP-activated protein kinase (AMPK), or sirtuin-1 (SIRT1) (146).

In adipose tissue from obese subjects, there is a phenotype switch from M2 to M1 macrophages leading to an increase in general inflammatory markers (147). Moreover, during tumor progression, an M2 to M1 transition of ATM has been shown. However, in later tumor stages, a trophic and immunomodulatory M2-like adipose tissue macrophage phenotype is recruited to the tumor environment. It has been proposed that M2 differentiation could act as a compensatory mechanism, trying to re-establish a homeostatic environment in a pathological condition (144). Mechanisms involved in this M1–M2 switch are not well understood, but molecular pathways related to cyclooxygenase (COX)-2, toll-like receptor (TLR), or Notch signaling have been proposed to play an important role (148–150). Macrophage switch from M1 to M2 in tumor setting occurs via many different receptors, signaling pathways, and transcription factors as a result of the coexistence of pro- and anti-inflammatory signals present during tumor progression in the tumor environment.

Dysregulated adipokine profile in obesity and cancer

The progression of tumors toward malignancy requires the interaction of various cytokines, growth factors, and transcription factors. Adipose tissue acts as an important endocrine organ via the synthesis of several adipokines, which regulate insulin sensitivity, lipolysis, control of energy intake, or inflammatory processes (151–153). Obesity affects the secretory profile of adipokines leading to alteration in multiple physiological processes (154–164). Adipokines are linked to tumor development and progression due to their plentiful actions on different cell types, mainly by exerting their effects through inflammatory pathways. Adiponectin and leptin are two of the most important adipocyte-specific adipokines.

FIGURE 1 | Macrophages are representative of the innate immune system and represent a large proportion of the stromovascular cell fraction in adipose tissue. The phenotype of macrophages depends on the subset of monocytes upon arrival at target tissues being probably determined by the local microenvironment. Based on their cytokine profile secretion and cell surface markers, macrophages are classified into two main types: the “classical” macrophages named M1 in contrast to the “alternatively activated” M2. M1 macrophages are the first line of defense against intracellular pathogens and are classically stimulated by interferon (IFN)-γ or by lipopolysaccharide (LPS). M1 induce the secretion of inflammatory cytokines [Interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, or monocyte chemoattractant protein (MCP-1)]. Alternative activation, resulting from induction by the Th2 cytokines interleukin IL-4 and IL-13, is associated with tissue repair and humoral immunity producing immunosuppressive factors, including IL-10, IL-1Ra, and arginase. Obesity and initial tumor stages induce a phenotypic switch from an anti-inflammatory M2-polarized state to a pro-inflammatory M1 state.
Adiponectin. Adiponectin, also known as Acrp30, ADIPOQ, apM1, or GBP28, is a 30-kDa protein mainly secreted by adipocytes (165). Adiponectin presents a carboxy-terminal globular domain and an amino-terminal collagen domain that forms characteristic multimers (166). Adiponectin exists as full-length adiponectin or as a globular fragment. Globular adiponectin is generated by proteolytic cleavage of full-length adiponectin, but it circulates in very small amounts in the bloodstream (167). Globular adiponectin exists as a trimer, whereas full-length adiponectin can be found as a low-molecular weight (trimer), middle-molecular weight (hexamers), and high-molecular weight (12–18mers) with different biological functions (168, 169). Both globular and full-length adiponectin promote an increased fatty acid oxidation and glucose uptake in the liver and skeletal muscle as well as a decreased hepatic gluconeogenesis. These biological effects are mediated by two transmembrane adiponectin receptors, AdipoR1 and AdipoR2, which are expressed in many tissues and activate the downstream targets AMPK, PPAR-α, and P38 MAPK (167).

Several studies suggest that hypoadiponectinemia or reduced concentrations of adiponectin and PPAR-α in obesity may be one of the mechanisms linking obesity and cancer development as well as progression. Importantly, adiponectin levels are decreased in obesity-associated insulin resistance (170) and cancer (171). A negative correlation between adiponectin levels and the risk of developing colorectal (52, 172, 173), endometrium (174), breast (175), prostate (176), or pancreas cancer (177) has been shown. In animal models, a protective role for adiponectin by suppressing colorectal cancer development has been suggested (178). Adiponectin knockout mice showed a significant higher polyp formation compared with wild-type mice under a high-fat diet. Furthermore, it was also demonstrated that Adipor1, but not Adipor2-deficient mice show an increase in colonic epithelial cell proliferation, suggesting that adiponectin suppresses this biological process under a high-fat diet (178). Reduced adiponectin levels in the obese state lead to the development of insulin resistance and compensatory chronic hyperinsulinemia. Increased insulin levels lead to reduced liver synthesis and secretion of insulin-like growth factor-binding protein (IGFBP)-1 and -2, resulting in increased levels of bioavailable insulin-like growth factor (IGF)-1. Insulin and IGF-1 promote cellular proliferation and inhibit apoptosis in many tissue types, leading to carcinogenesis (15, 171). Low adiponectin levels are potentially associated with carcinogenesis, indirectly through its effects on TNF-α and tumor cell proliferation and directly by its effects on the regulation of hepatomasis and system, selective binding to several mitogenic growth factors, and inhibition of NF-κB (171, 179). The adiponectin protective effects in tumors also include the inhibition of leptin proliferative signaling and inducing cell apoptosis (180).

Leptin. Leptin, the OB gene product, acts as a key mediator in body weight regulation (181–184). In adipose tissue, the secretion levels of leptin are strictly controlled and maintain a balance to ensure adequate regulation of food intake and energy expenditure under physiological conditions. Contrary to adiponectin, leptin levels are increased in obese individuals (185). Reportedly, treatment with leptin promotes cell growth, inhibits apoptosis, and modulates migration of cancer cells (186). In this regard, an overexpression of leptin receptors in various cancers like breast (187) or colon (188) has been also shown. Tumor cells from papillary thyroid cancer also show increased expression levels of the leptin receptor being associated with a more aggressive phenotype (189). Mature adipocytes secrete both adiponectin and leptin with preadipocytes showing a primarily secretion of high leptin levels (190). An increase of the preadipocyte pool in obese subjects is related to an increase in leptin levels, with proangiogenic and promitogenic properties (191). At the same time, high leptin levels attract more inflammatory cells and promote monocyte to macrophage differentiation, maintaining the obesity-associated state of chronic inflammation. In summary, leptin has an important role in the development of a large variety of malignancies, predominantly acting through the JAK/STAT pathway, which modulates phosphatidylinositols 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) 1/2 signaling pathways increasing the expression of anti-apoptotic proteins (XIAP), inflammatory markers (TNF-α, IL-6), angiogenic factors [vascular endothelial growth factor (VEGF)], and also the hypoxia-inducible factor-1α (HIF-1α). These processes promote cancer cell survival, proliferation, and migration.

Tumor necrosis factor-α. TNF-α is a pro-inflammatory cytokine secreted by adipocytes with increased secretion levels in obese subjects (192). TNF-α was first identified as a macrophage-derived factor that induces the necrosis of tumor cells, but when its antitumoral activity was tested on cancer patients, a paradoxical tumor-promoting role became apparent (193–195). At present, the pro-inflammatory role of TNF-α has been linked to all steps involved in tumorigenesis, including cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis (195, 196). Animal models have shown a positive relationship between TNF-α and tumor development and progression in liver (197) and colorectal cancer (195) with elevated circulating concentrations in different tumoral types (198, 199). In addition, TNF-α is not only produced by a wide variety of tumor cells (200) but also by adipocytes. Levels of TNF-α are increased in obesity, indicating a role for this cytokine in the obesity-associated inflammation and particularly in insulin resistance and diabetes.

Interleukin-6. Interleukin-6 is another major pro-inflammatory cytokine secreted by adipose tissue, which shows increased levels in obese subjects. It has been implicated in inflammation-associated carcinogenesis (201, 202). IL-6 modulates the expression of genes involved in proliferation, survival, and angiogenesis via the JAK/STAT signaling pathway (203). A relationship between IL-6 and carcinogenesis has been shown for renal cell carcinoma (204), gastric cancer (205), or colorectal cancer, among others (200, 206). Moreover, elevated levels of IL-6 in cancer patients correlate with disease aggressiveness and poor prognosis (207, 208). Other studies have revealed the role of IL-6 as an anti-inflammatory cytokine acting via the classic signaling through the activation of the IL-6 receptor on the cellular membrane of specific cell types such as macrophages, neutrophils, some T-cells, and hepatocytes (209, 210).

C-reactive protein. C-reactive protein (CRP) is an acute-phase reactant protein induced as a response to inflammatory conditions...
and different cytokines including IL-6. Elevated levels of CRP in adipose tissue and serum of obese subjects have been shown (211) as well as in patients with a variety of malignancies (212). Prospective studies have shown a higher risk of developing cancer in those with elevated serum CRP (213, 214). Elevated CRP is a significant predictor of lower survival rates in patients with several cancers, including esophageal, colorectal, hepatocellular, pancreatic, urinary bladder, renal, ovarian, and cervical cancer, after surgical resection. CRP can serve as an additional prognostic predictor for survival and post-treatment monitoring in cancer patients (215).

Visfatin. Visfatin has been further identified in inflammatory cells with its glucose-induced insulin secretion in β some of their original findings (231). However, visfatin stimulates mimetic activities of visfatin as well as its ability to bind the T2D (230). Since several authors could not replicate the insulin- and increased plasma concentrations in patients with obesity and (254), suggesting that adipose tissue may constitute a source of in both human and mice (254, 255). In this regard, an increase partitioning of fat mass in obesity has been described pathogenesis of atherosclerosis by promoting smooth muscle cell proliferation and migration, ICAM-1 and VCAM-1 expression, as well as via regulating patterns of adhesion and inflammation in atherosclerotic plaques (218, 219). Several colorectal cancer studies have shown a positive correlation between resistin and tumor size based on T-staging and tumor grading (172, 220). Resistin has also been postulated as a target molecule, which associates with clinicopathological features and prognosis of pancreatic ductal adenocarcinoma (221). Resistin has been postulated as a pro-inflammatory adipokine (222), exhibiting significantly higher serum levels in patients affected by breast cancer in comparison to controls. Additionally, resistin has been proposed as a regulator of the human choriocarcinoma cell invasive behavior and endothelial cell angiogenic processes (223).

Monocyte chemoattractant protein-1. MCP-1 is a chemokine implicated in the infiltration of macrophages in adipose tissue. Higher levels of MCP-1 can be found in obese subjects compared with lean subjects (224). The presence of infiltrating macrophages as a consequence of increased MCP-1 levels has been shown to correlate with cancer metastasis and poor prognosis in a variety of human carcinomas (172, 225). MCP-1 overexpression has been reported in both ovarian cancer (226, 227) and colorectal cancer (228).

Visfatin. Visfatin also known as pre-B cell colony enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (NAMPT) is a 52-kDa protein with apparently insulin-mimetic actions (229) and increased plasma concentrations in patients with obesity and T2D (230). Since several authors could not replicate the insulin-mimetic activities of visfatin as well as its ability to bind the insulin receptor, Fukushima and colleagues were forced to retract some of their original findings (231). However, visfatin stimulates glucose-induced insulin secretion in β-pancreatic cells (232, 233). Visfatin has been further identified in inflammatory cells with its levels being reportedly increased in various inflammatory conditions (229). Visfatin has been related with carcinogenesis and tumor progression, as well as with chemotherapy response (234) in colorectal (235, 236) and breast cancer (237).

Osteopontin. Osteopontin (OPN), also known as secreted phosphoprotein-1 (SPP1) and bone sialoprotein-1, among others, is a phosphoprotein expressed by a wide variety of cell types, including adipocytes (238). The expression levels of OPN are increased in obesity (160, 239) as well as in other pathophysiological processes including neoplasic transformation, progression of metastases, and promotion of cell survival (240). OPN is also expressed in many cancers, with elevated circulating levels and tissular tumor expression being associated with poor prognosis in gastric and liver cancers (241, 242).

Chitinase-3-like protein-1. Chitinase-3-like protein-1 (CHI3L1), also known as YKL-40 or human cartilage glucoprotein-39, is a member of mammalian chitinase-like proteins with increased gene expression levels in obesity and T2D (155, 243). Recently, YKL-40 has been proposed as a new inflammatory marker related to insulin resistance (244). YKL-40 is also increased in several types of solid tumors contributing not only to the development of an inflammatory state but also to cell proliferation, inhibition of apoptosis, stimulation of angiogenesis, and regulation of extracellular tissue remodeling (245). Increased YKL-40 expression has been detected in glioblastoma multiforme (246), papillary thyroid carcinoma (247), extracellular myoid chondrosarcoma (248), colon cancer (131), and diverse cancer cell lines, being suggested as a useful cancer prognostic biomarker (249).

Consequences of oxidative stress

Reactive oxygen species (ROS) comprise hydrogen peroxide (H₂O₂), superoxide anion (‘O₂⁻), and hydroxyl radical (‘HO) and induce DNA mutations contributing to cancer development and progression. Potential sources for ROS production in mitochondria include xanthine oxidase, cytochrome P450 oxidases, uncoupled nitric oxide synthases, and NADPH oxidases (250).

Reactive oxygen species exert a wide range of effects in cancer cells depending on their concentrations. In general, low levels of ROS are mitogenic and promote cell proliferation and survival, while intermediate levels cause transient or permanent cell cycle arrest and induce cell differentiation (251). At high levels, ROS can easily react with membrane lipids (causing membrane permeability alteration), DNA (inducing damage and genomic instability), and proteins (promoting oxidative modifications that result in less active enzymes or proteins more susceptible to proteolytic degradation). These facts suggest a possible protective effect of high local ROS levels in cancer progression (252). However, although ROS production does not irreversibly alter cell viability, they can act as a primary messenger, modulating several intracellular signaling cascades leading to cancer progression. Indeed, it has been demonstrated that ROS activate the MAPK, PI3K/Akt, phospholipase C-γ1 (PLCγ1), protein kinase C, NF-κB, and JAK/STAT pathways (253). The increase of fat mass in obesity has been correlated with the increase of markers of systemic oxidative stress in both human and mice (254, 255). In this regard, an increase in the NADPH oxidase subunits in obesity has been described (254), suggesting that adipose tissue may constitute a source of ROS, releasing them into the peripheral blood, and affecting the function of remote organs (256). Adipose tissue from lean subjects expresses antioxidant enzymes (catalase, superoxide dismutase-1,
and glutathione peroxidase) for managing ROS production, with the expression of these antioxidant enzymes downregulated in adipose tissue from obese individuals (254, 255, 257, 258).

Therapeutic approaches to cancer involving ROS metabolism have been proposed in recent years. Experimental results have proposed that the ROS increase is involved in apoptosis induction by chemotherapeutic anticancer agents (259). Cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents (260). Therefore, manipulating ROS levels by redox modulation constitutes a way to selectively induce cancer cell death without causing significant toxicity to normal cells (261).

HORMONAL LINKS IN OBESITY-ASSOCIATED CANCERS
A substantial number of cancers are linked to a hormonal etiology such as tumors of the breast, endometrium, ovary, prostate, testis, and thyroid. Adipose tissue excess is thought to be related with these types of tumors due to the abnormal levels of several hormones encountered in obesity, most notably increased estrogen levels (262, 263). Estrogen is a known growth factor with different biosyntheses between pre- and post-menopausal women (264). Pre-menopausal women mainly synthesize estrogens in the ovary, however, after the menopause peripheral sites including adipose tissue, are the primary source of estrogens. In this regard, for post-menopausal women, significant increases in estrone, estradiol, and free estradiol are associated with increasing BMI (262). Estrogen binds to at least three major classes of receptors, ER-α, ER-β, and GPR30 (265) activating numerous growth-promoting genes, including growth factors and growth-enhancing protooncogenes such as c-fos and c-myc (266–268). The primary mediator of post-menopausal estrogen biosynthesis is aromatase, which is found in adipose tissue as well as tumor tissue itself (269). In the expanding adipose tissue, this mechanism of production leads to a local increase in estrogen levels favoring tumor development (15). Different meta-analysis indicated a higher risk of breast cancer in post-menopausal women with high serum estrogen levels (270, 271). However, the role of blood levels of estrogen in obesity-associated colon cancer is controversial. Evidence showed a worse marked effect of obesity in men than women in the carcinogenesis of colon cancer, pointing to a protective effect of estrogens, which are increased in obesity (56).

In addition to excess estrogen, hyperplasia and carcinogenesis may also stem from a decrease in circulating progesterone levels. In obese women, lack of progesterone due to anovulation, similar to that observed in the polycystic ovarian syndrome, may contribute to endometrial cancer risk (272).

OBESITY-ASSOCIATED INSULIN RESISTANCE
Insulin is a key hormone involved in the control of glucose and lipid homeostasis with insulin actions being mediated by a transmembrane insulin receptor, a heterotetrameric glycoprotein consisting of two α-subunits and two β-subunits linked by disulfide bonds (273). Insulin promotes cellular response through many pathways, including PI3K/Akt signaling leading to AMPK activation. AMPK has been implicated in regulating cellular functions including energy state, fuel metabolism, mitochondrial biogenesis, protein and ceramide synthesis, as well as cell growth and proliferation (274). In addition, its activation was initially shown to inhibit TNF-α-induced inflammation, insulin resistance, apoptosis, and oxidative stress. AMPK activity is diminished in adipose tissue from severely obese subjects who are insulin resistant compared to equally obese individuals who are insulin sensitive (275). Studies evaluating insulin secretion, as reflected by C-peptide levels, have pointed out a correlation between hyperinsulinemia and poor clinical outcome and death in prostate cancer (276). A recent study has shown that ald-o-keto reductase 1B10, which plays a critical role in tumor development and progression through promoting lipogenesis and eliminating cytotoxic carbonyls, is induced by insulin through the activator protein-1 (AP-1) signaling pathway in human hepatocellular carcinoma cells (277). Most recent reports have also suggested that insulin has mitogenic and anti-apoptotic effects in endometrial cancer and that the activation of insulin receptors and Akt is associated with more aggressive features (278, 279).

Since insulin also acts as a growth factor, there are some molecules, called insulin-like peptides (ILPs), which can bind to the insulin receptor and trigger intracellular responses similar to those triggered by insulin. In humans, the most important ILPs are IGF-1 and IGF-2. The mitogenic and anti-apoptotic environment caused by elevated levels of insulin and IGF-1 in obesity accelerates the stepwise accumulation of mutations and, hence, favor carcinogenesis (280). Studies evaluating IGF-1 circulating concentrations and cancer risk show important effects on cancer development and progression. Circulating IGF-1 binds mainly to the major IGF-binding protein, IGFBP-3 (281). Results of early studies evaluating the risk of prostate (282), breast (283), colorectal (284), and lung cancer (285) suggest that high circulating IGF-1 concentrations are associated with an increased risk, whereas high IGFBP-3 concentrations are associated with a lower risk (286, 287). Associations between IGF-1, IGFBP-3, and cancer risk vary by cancer site. Circulating concentrations of IGF-1 increase the risk of non-smoking-related malignant diseases (288). Other ILPs, like IGF-2, have also been proposed to have a relationship with carcinogenesis (279).

HYPOXIA, ANGIOGENESIS, AND CANCER DEVELOPMENT
Adipose tissue presents an adequate exposure to nutrients and oxygen due to the extensive capillary network surrounding each adipocyte. However, there is substantial evidence that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in O2 concentrations is considered to underlie the obesity-associated inflammatory response (289). Cancer may be promoted by the hypoxic and angiogenic environment of obese adipose tissue, in conjunction with the described elevated circulating levels of cytokines existing in obese subjects (290).

Studies in hepatocellular carcinoma have shown a higher accumulation of ATM in tumor regions poorly vascularized (291, 292). Under low oxygen conditions, both tumor cells and macrophages establish a proangiogenic program mediated by HIF-1, which is a transcriptional activator complex constituted with two types of subunits, an inducible α subunit (HIF-1α, HIF-2α, or HIF-3α), and the constitutively expressed HIF-1β subunit. Hypoxia stabilizes HIF-1α, preventing its post-translational hydroxylation and consequently proteasome-mediated degradation. In addition, hypoxia
promotes HIF-1α association with HIF-1β, as well as cofactor recruitment (293). HIF-1α is also transcriptionally regulated by NF-κB (294). ATM adaptation to hypoxia is mediated by the induction of HIF-1 and HIF-2-regulated genes, including VEGF, fibroblast growth factor (FGF)-β, and IL-8, as well as glycolytic enzymes (295). Furthermore, the HIF-1 pathway has been demonstrated to play a role in macrophage recruitment and activation. As suggested for NF-κB and STAT-3, HIF-1 might be a potential target in hepatocellular carcinoma therapy (296). HIF-1 has been also proposed as a key molecule implicated in tumor metastasis (297, 298) and a possible metabolic target in cancer therapy (299–301). Inflammatory molecules like TNF-α are also secreted by adipose tissue in response to hypoxia and macrophage–monocyte infiltration (280).

THERAPEUTIC STRATEGIES
Since obesity is a result of a prolonged positive energy balance, caloric restriction and PA are key strategies to reduce BMI, fat mass, and improve metabolic abnormalities. Although pharmaceutical approaches for obesity and T2D are used, the main pillar of treatment is lifestyle changes. In this regard, it has been recently reported that behaviors concordant with the Nutrition and Physical Activity Cancer Prevention Guidelines are associated with lower risk of total, breast, and colorectal cancers and lower cancer-specific mortality in post-menopausal women (302).

PHYSICAL ACTIVITY
Sedentary behavior and insufficient PA are strongly related with obesity and metabolic syndrome development. Animal studies have shown metabolic beneficial effects of aerobic exercise training independent of dietary changes (303). However, it has been demonstrated that the combination of PA and dietary intervention is more effective than only an increase in PA (304). There are evidences of benefits of physical exercise to normalize obesity-altered lipid patterns (305, 306), improve glucose metabolism (307), change the growth hormone/IGF-1 axis (308), and consequently reduce the risk of obesity-associated comorbidities. Studies in humans have also shown a direct relationship between BMI, PA, and mortality with cancer (309). In a large cohort study of middle-age women, both the excess of weight (considered as a BMI ≥ 25 kg/m²) and sedentary habits were significantly associated with an increased mortality. It has been estimated that excess weight and physical inactivity could account for 31% of all premature deaths and 21% of deaths from cancer among non-smoking women (310). A great variety of studies has reported the advantages of PA in several types of cancer, such as breast (311, 312), colon (313, 314), or prostate cancer (315).

DIET
Both epidemiological studies and experiments in animals suggest that alterations in caloric intake or in the quality of the diet may significantly influence the risk of cancer development and progression. A higher risk of cancer development related to diets rich in calories, overabundant in alcohol and animal fats, and/or deficient in vegetal products has been reported. By contrast, cancer risk was lower in diets with a higher intake of fruit and vegetables. High-fiber cereal consumption has also been linked to a reduced risk of colorectal cancer (16, 316). Recently, the role of ω-3 polyunsaturated fatty acids in cancer prevention has been highlighted (317, 318). These fatty acids exert their effects by targeting different stages of cancer development, including cell proliferation and survival, inflammation, or angiogenesis (319, 320).

A cell-cycle regulation by nutrients has been shown in studies on Saccharomyces cerevisiae. Growth experiments under glucose-limited conditions suggested that coupling of circadian, metabolic, and cell division cycles is essential for genome integrity (321). However, the coupling of these cycles is highly dependent on the experimental conditions and can be uncoupled under other nutrient-limiting conditions (322). The relationship between nutrient availability and genome alterations could play a role in obesity-related cancer due to an abnormal energy state in obese subjects. Therefore, aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer (323). Moreover, sugar intake and consumption of sweet cakes and cookies have been associated with increased risk of endometrial cancer (324). Biological mechanisms whereby high-sugar foods consumption might increase risk of cancer development are related to the development of hyperglycemia, stimulation of insulin production, and insulin resistance (325, 326).

Caloric restriction could be a strategy to prevent cancer by reducing changes induced by obesity and general inflammatory profile (327). In this regard, studies in prostate cancer and murine prostate cancer models suggest that caloric restriction and weight loss may reduce the risk of prostate cancer-specific mortality (71). Positive effects of weight loss and PA have also been demonstrated in colorectal cancer (55).

BARIATRIC SURGERY
When PA and dietary changes are not enough to reduce BMI, bariatric surgery is a useful strategy to reduce excess of fat mass and prevent weight gain in morbid obesity. There are different surgical techniques that combine variable degrees of restriction and malabsorption. Beneficial effects of bariatric surgery in reducing obesity-associated alterations have been largely described. A clinical improvement in patients with T2D after bariatric surgery procedures has been shown (328, 329). Noteworthy, there are studies that suggest a preventive effect of bariatric surgery on diabetes development (330). Positive effects over other comorbidities include OSA (331), dyslipidemia (332), hepatic fibrosis (333), and cardiovascular risk (334, 335). Furthermore, there is evidence showing that bariatric surgery-induced weight loss reduces cancer risk in some retrospective cohort studies (336, 337). The mechanisms that may lead to a reduced cancer incidence in subjects under bariatric surgery include reduction in sex steroid plasma levels; decreased circulating fatty acid, adipokines, and pro-inflammatory cytokines levels; improvement in insulin sensitivity and reduction of fat mass leading to a lower ectopic fat accumulation (338). The Swedish Obese Subjects (SOS) study, a prospective and controlled intervention trial involving 2,010 obese patients who underwent bariatric surgery and 1,037 contemporaneously matched obese subjects, found a significantly lower number of first-time cancers after inclusion in the surgery group (gastric banding, vertical banded gastroplasty, and gastric bypass) than in the control group, but only in women. It has been postulated that since gastric
The excess of adipose tissue, especially abdominal obesity, is related to changes in circulating lipid concentrations, reactive oxygen species levels as well as adipokine and hormone secretion profile. Obesity is also linked to adipocyte hypertrophy and hypoxia, aggravating the inflammatory state. Therefore, the adipose tissue-derived inflammatory cytokines, the production of angiogenic factors by adipocytes, or infiltrating M1 macrophages that take place in obesity together with the obesity-associated insulin resistance may promote the stimulation of a microenvironment favorable for tumorigenesis. CRP, C-reactive protein; HIF-1α, hypoxia-inducible factor-1α; IGF, insulin growth factor; IGFBP, insulin-like growth factor-binding protein; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; MMP, matrix metalloproteinase; OPN, osteopontin; PAI-1, plasminogen activator inhibitor-1; TGF-β, transforming growth factor β; TNF-α, tumor necrosis factor α; YKL-40, chitinase-3-like protein.

CONCLUSION

Obesity is a potentially avoidable high prevalent risk factor for developing different health problems including tumor development. There are increasing evidences relating obesity and cancer, with a well-established relationship between obesity and breast, colorectal, prostate, or lung cancer among others. It has been proposed that an important percentage of all cancer deaths may be attributable to obesity. Due to the high prevalence and repression of these conditions, the understanding of mechanisms of obesity-associated tumorigenesis is an important objective in the prevention and treatment of these pathologies. Future interventions to reduce the prevalence of obesity are needed to prevent cancer development in these patients. In this regard, it has been shown that increased PA, healthy dietary habits, and bariatric surgery may be appropriate to reduce cancer risk in obese patients.

In addition, a comprehensive approximation to the underlying molecular mechanisms involved in obesity-related carcinogenesis may provide specific targets implicated in pathways by which obesity leads to tumor progression. Reduction of inflammatory signaling, improvement of insulin sensitivity, or counteracting the hypoxia-inducible factors appears to be relevant pathways in prevention of cancer development and reducing its progression (Figure 2).

ACKNOWLEDGMENTS

This work was supported by Fondo de Investigación Sanitaria-FEDER (PI11/02681, PI12/00515, PI13/00460) from the Spanish Instituto de Salud Carlos III and by the Department of Health (48/2011 and 58/2011) of the Gobierno de Navarra of Spain. Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición is an initiative of the Instituto de Salud Carlos III (Spain).

REFERENCES

1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA (2012) 307:491–7. doi:10.1001/jama.2012.39
Pérez-Hernández et al. Dysregulation of adipose tissue and cancer development since 1988: analysis of the European cancer observatory. *Eur J Cancer* (2013) 49:1374–403. doi:10.1016/j.ejca.2012.12.027

24. de Vries E, Soerjomataram I, Lemmens VE, Coebergh JW, Barendregt JJ, Oenema A, et al. Lifestyle changes and reduction of colon cancer incidence in Europe: a scenario study of physical activity promotion and weight reduction. *Eur J Cancer* (2010) 46:2605–16. doi:10.1016/j.ejca.2010.07.040

25. Lieberman D. Colorectal cancer screening: practice guidelines. *Dig Dis* (2012) 30(Suppl):34–8. doi:10.1159/000341891

26. Roobol MJ,Carlson SV. Risk stratification in prostate cancer screening. *Nat Rev Urol* (2010) 7:38–48. doi:10.1038/nruro.2010.10

27. Smith RA, Brooks D, Cokkinides V, Sadow D, Brawley OW. Cancer screening in the United States: a review of current American cancer society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. *CA Cancer J Clin* (2013) 63:85–102. doi:10.3322/caac.21174

28. de Vries E, Soerjomataram I, Lemmens VE, Coebergh JW, Barendregt JJ, Oenema A, et al. Lifestyle changes and reduction of colon cancer incidence in Europe: a scenario study of physical activity promotion and weight reduction. *Eur J Cancer* (2010) 46:2605–16. doi:10.1016/j.ejca.2010.07.040

29. Lieberman D. Colorectal cancer screening: practice guidelines. *Dig Dis* (2012) 30(Suppl):34–8. doi:10.1159/000341891

30. Roobol MJ,Carlson SV. Risk stratification in prostate cancer screening. *Nat Rev Urol* (2010) 7:38–48. doi:10.1038/nruro.2010.10

31. Smith RA, Brooks D, Cokkinides V, Sadow D, Brawley OW. Cancer screening in the United States: a review of current American cancer society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. *CA Cancer J Clin* (2013) 63:85–102. doi:10.3322/caac.21174

32. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N Engl J Med* (2003) 348:1625–38. doi:10.1056/NEJMoa021423

33. Chang SH, Pollack LM, Colditz GA. Obesity, mortality, and life years lost associated with breast cancer in nonsmoking US women, national health interview survey, 1997-2000. *Prev Chronic Dis* (2013) 10:E186. doi:10.5888/pcd10.130112

34. Ghaem Maralani H, Tai BC, Wong TY, Tai ES, Li J, Wang JJ, et al. The prognostic role of body mass index on mortality amongst the middle-aged and elderly: a competing risk analysis. *Diabetes Res Clin Pract* (2010) 94:52–40. doi:10.1016/j.diabres.2010.11.025

35. Hainer V, Aldhnoi-Hainerova I. Blood pressure does exist. *Diabetes Care* (2013) 36(Suppl 2):S276–81. doi:10.2337/dcS13-2023

36. Gruberg L, Weissman NJ, Waksman R, Pachu S, Deible R, Pinnow EE, et al. The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? *J Am Coll Cardiol* (2002) 39:578–84. doi:10.1016/S0735-1097(01)01802-2

37. Shah R, Gayat I, Januzji Jr II, Sato N, Cohen-Solal A, Disoum S, et al. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. *J Am Coll Cardiol* (2014) 63:778–85. doi:10.1016/j.jacc.2013.09.072

38. Meynsfield SB, Cefalu WT. Does body mass index adequately convey a patient's mortality risk? *JAMA* (2013) 309:878–8. doi:10.1001/jama.2012.185445

39. Montazeri A, Sadighi J, Farzadi F, Maftoon F, Vahdaninia M, Ansari M, et al. Weight, height, body mass index and risk of breast cancer in postmenopausal women: a case-control study. *BMC Cancer* (2008) 8:278. doi:10.1186/1471-2407-8-278

40. Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, et al. Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. *J Clin Oncol* (2008) 26:4072–7. doi:10.1200/JCO.2007.14.4527

41. Dal Maso L, Zucchetta A, Talanini R, Serraino D, Stocco CF, Vercelli M, et al. Effect of obesity and other lifestyle factors on mortality in women with breast cancer. *Int J Cancer* (2008) 126:1288–94. doi:10.1002/ijc.235747

42. Dawood S, Broghi K, Gonzalez-Angulo AM, Kau SW, Islam R, Hortobagyi GN, et al. Prognostic value of body mass index in locally advanced breast cancer. *Clin Cancer Res* (2008) 14:1718–25. doi:10.1158/1078-0432.CCR-07-1479

43. Majed B, Moreau T, Senouci K, Salmon RJ, Fourquet A, Asselain B. Is obesity an independent prognostic factor in woman breast cancer? *Breast Cancer Res Treat* (2008) 111:329–42. doi:10.1007/s10549-007-9875-3

44. Cleveland RJ, Eng SM, Abrahamson PE, Britton JA, Templebaum SL, Neugut AI, et al. Weight gain prior to diagnosis and survival from breast cancer. *Cancer Epidemiol Biomarkers Prev* (2007) 16:1803–11. doi:10.1158/1055-9965.EPI-06-0889

45. Lahmann PH, Hofmann K, Allen N, van Gils CH, Khaw KT, Tehder B, et al. Body size and breast cancer risk: findings from the European prospective investigation into cancer and nutrition (EPIC). *Int J Cancer* (2004) 111:762–71. doi:10.1002/ijc.20135

2. Gómez-Ambrosi J, Silva G, Galofre JC, Escalada J, Santos S, Millán D, et al. Body mass index classification misfits subjects with increased cardiometabolic risk factors related to elevated adiposity. *Int J Obes* (2012) 36:286–94. doi:10.1038/ijo.2011.100

3. Frühbeck G. Obesity: screening for the evident in obesity. *Nat Rev Endocrinol* (2012) 8:570–2. doi:10.1038/nrendo.2012.165

4. Frühbeck G, Toplak H, Woodward E, Yumuk V, Manslo M, Oppert JM. Obes-
MacInnis RJ, English DR. Body size and composition and prostate cancer risk.: Gut 60. Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Cancer Causes Control (2013) 23:1767–75. doi:10.1007/s10552-012-0066-z

Ben Q, An W, Jiang Y, Zhan X, Du Y, Cai QG, et al. Body mass index increases risk for colorectal adenomas based on meta-analysis. Gastroenterology (2012) 142:762–72. doi:10.1053/j.gastro.2011.12.050

Lin J, Zhang SM, Cook NR, Rexrode KM, Lee IM, Buring JE. Body mass index and risk of colorectal cancer in women (United States). Cancer Causes Control (2004) 15:581–91. doi:10.1023/B:CCCC.0000036168.23351.f1

Yoshimoto S, Loo TM, Atazari K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through seneceence secretome. Nature (2013) 499:97–101. doi:10.1038/nature12347

Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, et al. International variation in prostate cancer incidence and mortality rates. Eur Urol (2012) 61:1079–92. doi:10.1016/j.eururo.2012.02.054

Bergström A, Pisaní P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. Int J Cancer (2001) 91:421–30. doi:10.1002/1097-0215(200002)9999:9999::AID-IJIC1055-3.0.CO;2-T

MacInnis RJ, English DR. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis. Cancer Causes Control (2006) 17:989–1003. doi:10.1007/s10552-006-0074-y

Spangler E, Zeiger-Johnson CM, Coomes M, Malkowicz SB, Wein A, Rebeck TR. Association of obesity with tumor characteristics and treatment failure of prostate cancer in African-American and European American men. J Urol (2007) 178:1939–44. doi:10.1016/j.juro.2007.07.021

Andersson SQ, Wolk A, Bergström R, Adami HO, Englund G, Englund A, et al. Body size and prostate cancer: a 20-year follow-up study among 135006 Swedish construction workers. J Natl Cancer Inst (1997) 89:385–9. doi:10.1093/jnci/89.5.385

Baillargeon J, Plaza EA, Rose DP, Pollock BH, Ankerst DP, Haffner S, et al. Obesity, adipokines, and prostate cancer in a prospective population-based study. Cancer Epidemiol Biomarkers Prev (2006) 15:1331–5. doi:10.1158/1055-9965.EPI-06-0082

Engeland A, Tretli S, Bjørge T. Height, body mass index, and prostate cancer: a follow-up of 95000 Norwegian men. Br J Cancer (2003) 89:1237–42. doi:10.1038/sj.bjc.6601206

Porter MF, Stanford JL. Obesity and the risk of prostate cancer. Prostate (2005) 62:316–21. doi:10.1002/ pros.20121
Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G. Role of extracellular Serhan CN, Savill J. Resolution of inflammation: the beginning programs the development of obesity. Nature (2010) 464:1038–45. doi:10.1038/4641038-a

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev (2004) 84:277–359. doi:10.1152/physrev.00015.2003

Bruea E. ABC of palliative care. Amorexia, cachexia, and nutrition. BMJ (1997) 315:1219–22. doi:10.1136/bmj.315.7117.1219

Tsili M, Moore M, Burg D, Painter A, Taylor R, Lockie SH, et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res (2012) 72:4372–82. doi:10.1158/0008-5472.CAN-11-3536

Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev (2013) 27:234–40. doi:10.1101/gad.119412.112

Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allistic perspective. Biochem Biophys Acta (2010) 1801:338–49. doi:10.1016/j.bbapal.2009.12.006

Marin-Lopez J, Persson G, Petersen KF, Rothman DL, Cline GW, et al. Increased fatty acid synthase polymorphisms, tumor expression, body mass index, prostate cancer and overexpression of fatty acid synthase in human breast cancer cell lines. Oncogene (2012) 31:39–46. doi:10.1038/sj.onc.1208174

Harvey AE, Lashinger LM, Hurding SD. The growing challenge of obesity and cancer: an inflammatory issue. Ann N Y Acad Sci (2011) 1229:45–52. doi:10.1111/j.1749-6632.2011.06066.x

Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer (2008) 112:577–83. doi:10.1002/cncr.23275.38

Ribiati D, Ennas MG, Vacca A, Ferrelli F, Nico B, Orru S, et al. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Cancer (2003) 33:420–5. doi:10.1016/j.ejcc.2003.01.012

Leek RD, Landers RJ, Harris CE. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer (1999) 79:991–5. doi:10.1038/sj.bjc.6600158

Catalán V, Gómez-Ambrosi J, Rodriguez A, Frühbeck G. Adipose tissue immu- nity and cancer. Front Physiol (2013) 4:275. doi:10.3389/fphys.2013.00275

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Endocrinol Metab (2003) 88:2768–80. doi:10.1210/jc.2003-019246

Mayh TJ, Daroudi M, Derudas B, Gross B, Bories G, Wuest et al., et al. Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem (2008) 283:21904–13. doi:10.1074/jbc.M106.513200

Ribeiro R, Monteiro C, Catalán V, Hu P, Cunha V, Rodriguez A, et al. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med (2012) 10:108. doi:10.1186/1741-7015-10-108

Catalán V, Gómez-Ambrosi J, Rodriguez A, Ramírez B, Silva C, Rotellar F, et al. Up-regulation of the novel proinflammatory adipokines lipocalin-2, chtistinase 3-like 1 and osteopontin as well as angiogenic-related factors in visceral adi- pose tissue of patients with colon cancer. J Nutr Biochem (2011) 22:634–41. doi:10.1016/j.jnutbio.2010.04.015

Allvén P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev (2008) 222:155–61. doi:10.1111/j.1600-065X.2008.00667.x

Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med (2003) 198:1951–7. doi:10.1084/jem.20030806

Smith AM, Rahman EZ, Haye B, Graham SJ, Marks DJ, Sewell GW, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med (2009) 206:1898–73. doi:10.1084/jem.20091233

Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, Yoshioka Y, et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature (2006) 442:498–502. doi:10.1038/nature05245

Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage sub- types. Nat Rev Immunol (2011) 11:723–37. doi:10.1038/nri3073

Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Ann Rev Physiol (2012) 74:219–46. doi:10.1146/annurev-physiol-021909-135846
138. Mantovanini A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. *Nature* (2008) 458:436–44. doi:10.1038/nature07705

139. Karin M, Gao Y, Creten FR, Li ZW. NF-κB in cancer: from innocent bystander to major culprit. *Nat Rev Cancer* (2002) 2:301–10. doi:10.1038/nrc780

140. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kB as the match-maker. *Nat Immunol* (2011) 12:715–23. doi:10.1038/ni.2060

141. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. *Cancer Res* (2007) 67:585–92. doi:10.1158/0008-5472.CAN-06-2941

142. Naugler WE, Sakurai T, Kim S, Maeda S, Kim, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MdyD88-dependent IL-6 production. *Science* (2007) 317:121–4. doi:10.1126/science.1140485

143. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, et al. Plasma osteopontin and expression in adipose tissue are increased in obesity. *J Clin Endocrinol Metab* (2007) 92:3719–27. doi:10.1210/jc.2007-0349

144. Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, et al. Plasma adiponectin in breast cancer: a meta-analysis. *Br J Cancer* (2013) 108:108–15. doi:10.1038/sj.bjc.6607677

145. Frühbeck G, Gómez-Ambrosi J, Salvador J. Leptin-induced lipolysis opposes obesity. *FASEB J* (2003) 17:357–64. doi:10.1096/fj.02-0859fjb

146. Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, Archancho M, Burrell MA. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. *Gen Comp Endocrinol* (2002) 128:194–5. doi:10.1016/S0016-6480(02)00722-X

147. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. *J Biol Chem* (1995) 270:26746–9. doi:10.1074/jbc.270.45.26746

148. Waki H, Yamauchi T, Akune T, Ito Y, Uchida S, Kita S, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. *J Clin Invest* (2003) 109:40352–63. doi:10.1172/JCI219126

149. Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess MW, et al. Structure-function studies of the adipocyte-secreted hormone Adiponectin. Implications for metabolic regulation and bioactivity. *Diabetes* (2005) 54:439–51. doi:10.2337/diabetes.54.01.0439

150. Liu LY, Wang M, Ma ZB, Yu LX, Zhang Q, Gao DZ, et al. The role of adiponectin in breast cancer: a meta-analysis. *Gut* (2011) 60:438–46. doi:10.1136/gut.2010.213488

151. Wei EK, Giovannucci E, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. *J Natl Cancer Inst* (2005) 97:1688–94. doi:10.1093/jnci/dji536

152. Moon HS, Chamberland JP, Aronis K, Tselinii-Balafouta S, Mantzoros CS. Direct role of adiponectin and adiponectin receptors in endometrial cancer: in vitro and ex vivo studies in humans. *Mol Cancer Ther* (2011) 10:2234–43. doi:10.1158/1535-7186.MCT-11-0145

153. Liu Y, Wang M, Ma ZB, Yu LX, Zhang Q, Gao DZ, et al. The role of adiponectin in breast cancer: a meta-analysis. *PLoS One* (2013) 8:e73183. doi:10.1371/journal.pone.0073183

154. Pérez-Hernández et al. Dysregulation of adipose tissue and cancer development.
Dysregulation of adipose tissue and cancer development
Pérez-Hernández et al.

Dysregulation of adipose tissue and cancer development

225. Siven K, Kuttan G. Role of macrophages in tumour progression. *Immunol Lett* (2009) 123:97–102. doi:10.1016/j.imlet.2009.02.011

226. Hong S, Zhang P, Zhang H, Ju L, Xu X, Yang Q, et al. Enforced effect of IkB-MBP1 fusion gene in ovarian cancer. *J Exp Clin Cancer Res* (2012) 31:74. doi:10.1186/1556-914X-31-74

227. Matte I, Lane D, Laplante C, Rancourt C, Piche A. Profiling of cytokines in human epithelial ovarian cancer ascites. *Am J Cancer Res* (2012) 2:566–80.

228. Bayer PK, Eggstein S, Wolff-Vorbeck G, Baumgartner U, Hopt UT. Chemokines in human metastatic breast cancer. *Anticancer Res* (2005) 25:3581–4.

229. Fukuhara A, Matsuura N, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. *Science* (2005) 307:426–30. doi:10.1126/science.1097243

230. Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Silva C, Rottler F, et al. Association of increased visfatin/PEBP/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. *Nutr Metab Cardiovasc Dis* (2011) 21:245–53. doi:10.1016/j.numecd.2009.09.008

231. Fukuhara A, Matsuura N, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Retraction. *Science* (2007) 318:565. doi:10.1126/science.318.5850.565b

232. Revollo JR, Corrêa M, Mills HK, Satoh A, Wang T, Garten A, et al. NAMPT/PEBP/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. *Cell Metab* (2007) 6:636–75. doi:10.1016/j.cmet.2007.09.003

233. Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by NAMPT/PEBP/visfatin in mammals. *Curr Opin Genet Dev* (2007) 17:164–70. doi:10.1016/j.gde.2007.08.004

234. Bi TQ, Che XM. Nampt/PBEF/visfatin and cancer. *Cancer Biol Ther* (2010) 10:119–25. doi:10.4161/cbt.10.1.12581

235. Hufston SE, Moerkert PK, Brandwijk R, de Bruine AP, Arends JW, Hoogenboom HR, et al. A profile of differentially expressed genes in primary colorectal cancer. *FEBS Lett* (1999) 463:77–82. doi:10.1016/S0014-5793(99)01578-1

236. Van Beijnum JR, Moerkert PK, Geerts AJ, De Bruine AP, Arends JW, Hoogenboom HR, et al. Target validation for genomics using peptide-specific phage display technology in breast cancer. *Proc Natl Acad Sci U S A* (2003) 100:5449–54. doi:10.1073/pnas.252154798

237. Folgueira MA, Curtan G, Barbosa EM, Netto MM, Gómez-Ambrosi J, Rodríguez A, Catalán V, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. *Proc Natl Acad Sci U S A* (2001) 98:15044–9. doi:10.1073/pnas.252154798

238. Jorgensen C, Mikkelsen H, Orntoft TF, Mikkelsen CV, Pedersen JS, et al. Retraction. *Nat Genet* (2006) 38:1289–97. doi:10.1038/ng1901

239. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laffin KJ, Gaddis S, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. *Cancer Res* (2006) 66:5977–83.

240. Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lepinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham study. *Arterioscler Thromb Vasc Biol* (2003) 23:434–9. doi:10.1161/01.ATV.0105004802.34138.11

241. Okuno Y, Matsuura M, Kobayashi H, Morita K, Suzuki E, Fukuhara A, et al. Adipose expression of catalase is regulated via a novel remote PPARY-responsive region. *Biochem Biophys Res Commun* (2008) 366:689–704. doi:10.1016/j.bbrc.2007.12.001

242. Warner M, Gutterson T. Oxidative stress and apoptotic impact on cancer therapy. *J Pharm Sci* (2007) 96:2181–96. doi:10.1016/j.jspstsrt.2007.01.001

243. Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. *Endocrinology* (2009) 150:2357–42. doi:10.1210/en.2009-0070

244. Leslie KK, Thiel KW, Reyes HD, Yang S, Zhang Y, Carlson MJ, et al. The estrogen receptor-beta targets of estrogen action. *Cancer Res* (2012) 67:7159–65. doi:10.1158/0008-5472.CAN-11-1035

245. Warner M, Gutterson T. Oxidative stress and apoptotic impact on cancer therapy. *J Pharm Sci* (2007) 96:2181–96. doi:10.1016/j.jspstsrt.2007.01.001

246. Sjogren H, Meis-Kindblom JM, Orndal C, Bergh P, Ptaszynski K, Aman L, et al. Oxidative stress and apoptosis: impact on cancer therapy. *Chem Biol* (2007) 14:164–70. doi:10.1016/j.chembiol.2007.09.004

247. Huang Y, Prasad M, Lemon WJ, Hampel H, Wright PA, Kornacker K, et al. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. *Proc Natl Acad Sci U S A* (2001) 98:15044–9. doi:10.1073/pnas.252154798

248. Jorgensen C, Mikkelsen H, Orntoft TF, Mikkelsen CV, Pedersen JS, et al. Retraction. *Nat Genet* (2006) 38:1289–97. doi:10.1038/ng1901

249. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laffin KJ, Gaddis S, et al. Effects of estrogen on global gene expression: identification of novel targets of estrogen action. *Cancer Res* (2006) 66:5977–83.

250. Fraser I, Daines J, Korn M, Chang KC, Lyttle CR, Katerstommen V. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogen control of proliferation and cell phenotype. *Endocrinology* (2003) 144:5862–74. doi:10.1210/en.2003-0567

251. Stocco C. Tissue physiology and pathology of aromatase. *Steroids* (2012) 77:27–35. doi:10.1016/j.steroids.2011.11.011

252. Pérez-Hernández et al.

Dysregulation of adipose tissue and cancer development

253. 2014 | Volume 5 | Article 65 | 15

www.frontiersin.org
270. Key T, Appleby P, Barnes I, Reeves G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst (2002) 94:606–16.

271. Thomas HV, Reeves GK, Key TJ. Endogenous estrogen and postmenopausal breast cancer: a quantitative review. Cancer Causes Control (1997) 8:922–8. doi:10.1023/A:1007467663156

272. Carlson MJ, Thiel KW, Yang S, Leslie KK. Catch it before it kills progesterone, obesity, and the prevention of endometrial cancer. Diagn Med (2012) 14:215–22.

273. Kahn CR, White MF. The insulin receptor and the molecular mechanism of insulin action. J Clin Invest (1988) 82:1151–6. doi:10.1172/JCI113711

274. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res (2007) 100:328–41. doi:10.1161/01.RES.0000265090.42660.05

275. Xu XJ, Pories WJ, Dohm LG, Ruderman NB. What distinguishes adipose tissue from muscle? J Clin Invest (2013) 125:273–82. doi:10.1172/JCI11322

276. van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of insulin-like growth factors in cancer development. Cancer Epidemiol Biomarkers Prev (2013) 22:152–61. doi:10.1158/1055-9966.EPI-12-0324

277. Yu H, Portales V, Doehm LG, Ruderman NB. What distinguishes adipose tissue from muscle? J Clin Invest (2013) 125:273–82. doi:10.1172/JCI11322

278. van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of insulin-like growth factors in cancer development. Cancer Epidemiol Biomarkers Prev (2013) 22:152–61. doi:10.1158/1055-9966.EPI-12-0324

279. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst (2000) 92:1472–89. doi:10.1093/ jnci/92.18.1472

280. Giovannucci E. Insulin-like growth factors and colon cancer: a review of the evidence. J Nutr (2001) 131:3109S–205.

281. Renenhag AG, Zwingen M, Minder C, D’Oywer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-1, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet (2004) 363:1346–53. doi:10.1016/S0140-6736(04)60444-3

282. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev (2013) 93:1–21. doi:10.1152/physrev.00012.2012

283. Gilbert CS, Slingerland JM. Cytokines, obesity, and cancer: new insights on mechanisms that link obesity to cancer risk and cancer spread. Annu Rev Med (2013) 64:45–57. doi:10.1146/annurev-med-122111-091527

284. Yan W, Chang Y, Liang X, Cardinal JS, Huang H, Thorpe SH, et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology (2012) 55:1863–75. doi:10.1002/hep.25572

285. Murdoch C, Muthana M, Coiffet SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer (2008) 8:618–31. doi:10.1038/nrc2440

286. Weigt A, Bruné B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide (2008) 19:95–102. doi:10.1016/j.niox.2008.04.021

287. Yu H, Guma M, Schachturp C, Akasoglou K, Zinkernagel AS, Nizet V, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature (2008) 458:807–11. doi:10.1038/ nature07095

288. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood (2004) 104:2224–34. doi:10.1182/blood-2004-03-1109

289. Yamanaka S, Utsumo-Tani M, Morine Y, Imura S, Ikekoto T, Arakawa Y, et al. Expression of hypoxia-inducible factor-1α and epithelial cell adhesion molecule are linked with aggressive local recurrence of hepatocellular carcinoma after radiofrequency ablation therapy. Ann Surg Oncol (2014). doi:10.1245/ s10434-014-3753-z

290. Tsai YF, Wu KJ. Hypoxia-targeted gene implicated in tumor metastasis. J Biomed Sci (2012) 19:102. doi:10.1186/1340-2529-19-19.102

291. Semenza GL. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med (2012) 18:534–43. doi:10.1016/j.molmed.2012.08.001

292. Zhao Y, Liu H, Riker AI, Fedostad O, Ledoux SP, Wilson GL, et al. Emerging metabolic targets in cancer therapy. Front Biosci (2011) 16:18440–60. doi:10.2741/3826

293. Kizaka-Kondoh S, Kuchimaru T, Kadonosono T. Pathophysiological response to hypoxia – from the molecular mechanisms of malady to drug discovery: hypoxia-inducible factor-1 (HIF-1)-active cells as a target for cancer therapy. J Pharmaco (2011) 115:440–5. doi:10.1002/jps.10220F

294. Nagasawa H. Pathophysiological response to hypoxia – from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. J Pharmacol Sci (2011) 115:446–52. doi:10.1254/jps.10225F

295. Thomson CA, McCullough ML, Wertheim BC, Chlebowski RT, Martinez ME, Stefanick ML, et al. Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the women's health initiative. Cancer Prev Res (2014) 7:52–53. doi:10.1158/1940-6207.CAPR-13-0252

296. Caponi PW, Lehnen AM, Pinto GH, Borges J, Markoski M, Machado UF, et al. Aerobic exercise training induces metabolic benefits in rats with metabolic syndrome independent of dietary changes. Clinics (2013) 68:1010–7. doi:10.6061/clinics/2013(07)20

297. Jakicic JM, Otto AD, Lang W, Semler L, Winters C, Polzien K, et al. The effect of physical activity on 18-month weight change in overweight adults. Obesity (2012) 20:R1–17. doi:10.1038/ERC-12-0324

298. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med (2002) 347:483–92. doi:10.1056/NEJMoa201194

299. Halle M, Berg A, Konig D, Keul J, Baumstark MW. Differences in the concentration and composition of low-density lipoprotein subfraction particles between sedentary and trained hypercholesterolemic men. Metabolism (1997) 46:186–91. doi:10.1016/S0026-0495(97)09300-0

300. Knolweg WC, Barrett-Conner E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med (2002) 346:393–403. doi:10.1056/NEJMoa012512

301. Gihney J, Healy ML, Sonksen PH. The growth hormone/insulin-like growth factor-1 axis in exercise and sport. Endocr Rev (2007) 28:603–24. doi:10.1210/er.2006-0052

302. Katzmarzyk PT, Janssen I, Arden C. Physical inactivity, excess adiposity and premature mortality. Obes Rev (2003) 4:257–90. doi:10.1046/j.1467-789X.2003.00120.x

303. Hj FN, Willett WC, Li T, Stapler MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med (2004) 351:694–703. doi:10.1056/NEJMoa042135

304. Bernstein L, Henderson BE, Hanisch R, Sullivan-Halley J, Ross RK. Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst (1994) 86:1403–8. doi:10.1093/jnci/86.18.1403
Chlebowski RT. Nutrition and physical activity influence on breast cancer incidence and outcome. Breast (2013) 22(Suppl 2):S30–7. doi:10.1016/j.breast.2013.07.006

Boyle T, Fritschi L, Pateff C, Heyworth J. Lifestyle factors associated with survival after colorectal cancer diagnosis. Br J Cancer (2013) 109:814–22. doi:10.1038/bjc.2013.310

Song JH, Kim YS, Yang SY, Chung SJ, Park MJ, Lim SH, et al. Physical activity and other lifestyle factors in relation to the prevalence of colorectal adenoma: a colonoscopy-based study in asymptomatic Koreans. Cancer Causes Control (2013) 24:1717–26. doi:10.1007/s10552-013-0247-4

Rebillard A, Lefevre-Orfila L, Gueritat J, Cillard J. Prostate cancer and physical activity: adaptive response to oxidative stress. Free Radic Biol Med (2013) 60:115–24. doi:10.1016/j.freeradbiomed.2013.02.009

McMillan DC, Sattar N, McArdle CS. ABC of obesity. Obesity and cancer. BMJ (2006) 333:1169–11. doi:10.1136/bmj.39042.565035.BE1

Jing K, Wu T, Lim K. ω-3 polyunsaturated fatty acids and cancer. Anticancer Agents Med Chem (2013) 13:1162–77. doi:10.2174/1871520611319990319

Laviano A, Randa S, Molinino A, Rossi Fanelli F. ω-3 fatty acids in cancer. Curr Opin Clin Nutr Metab Care (2013) 16:156–61. doi:10.1097/MCO.0b013e328352d499

Cockbain AJ, Volpato M, Race AD, Munarini A, Fazio C, Belluzzi A, et al. Anticoagulorectal cancer activity of the ω-3 polyunsaturated fatty acid eicosapentaenoic acid. Gut (2014). doi:10.1136/gutjnl-2013-306445

Gu Z, Suburu J, Chen H, Chen YQ. Mechanisms of ω-3 polyunsaturated fatty acids in prostate cancer prevention. Biomed Res Int (2013) 2013:824563. doi:10.1155/2013/824563

Chen Z, Odstrcil EA, Tu BP, McKnight SL. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science (2007) 316:1916–9. doi:10.1126/science.1149958

Silverman SJ, Petti AA, Slavov N, Parsons L, Brehel R, Thibierge SY, et al. Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci U S A (2010) 107:6946–51. doi:10.1073/pnas.1002221107

Dang CV. Links between metabolism and cancer. Genes Dev (2012) 26:877–90. doi:10.1101/gad.189365.112

Frieberg E, Wallin A, Wolk A. Sucrose, high-sugar foods, and risk of endometrial cancer – a population-based cohort study. Cancer Epidemiol Biomarkers Prev (2011) 20:1381–7. doi:10.1158/1055-9966.EPI-11-042

Cist AE, Simanni N, Kaako R, Van Bakel M, Biessy C, Ferrari P, et al. Dietary carbohydrates, glycemic index, glycemic load, and endometrial cancer risk within the European prospective investigation into cancer and nutrition cohort. Am J Epidemiol (2007) 166:912–23. doi:10.1093/aje/kwm161

Tasevska N, Jiao L, Cross AJ, Kipnis V, Subar AF, Hollenbeck A, et al. Sugars in diet and risk of cancer in the NIH-AARP diet and health study. Int J Cancer (2012) 130:159–69. doi:10.1002/ijc.25990

Longo VD, Fontana L. Cancer restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci (2010) 31:89–98. doi:10.1016/j.tips.2009.11.004

Breithauer SA, Amianin A, Romero-Talamas H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of type 2 diabetes mellitus. Ann Surg (2013) 258:628–37. doi:10.1097/SLA.0b013e3182a5034b

Guo X, Liu X, Wang M, Wei F, Zhang Y. The effects of bariatric procedures versus medical therapy for obese patients with type 2 diabetes: meta-analysis of randomized controlled trials. Biomed Res Int (2013) 2013:410609. doi:10.1155/2013/410609

Nestvold TK, Nielsen EW, Lappèregard KT. Bariatric surgery reduces risk factors for development of type 2 diabetes mellitus in morbidly obese, non-diabetic patients. Metab Syndr Relat Disord (2013) 11:441–6. doi:10.1089/met.2013.0085

Greenburg DL, Lettieri CJ, Elaissah AH. Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med (2009) 122:535–42. doi:10.1016/j.amjmed.2008.10.037

Laimer MW, Engl J, Tischner A, Kaser S, Ritsch A, Tantarczyk T, et al. Effects of weight loss on lipid transfer proteins in morbidly obese women. Lipids (2009) 44:1125–30. doi:10.1007/s11745-009-3349-8

Moretto M, Kupski C, da Silva VD, Padovin A, Mottin CC. Effect of bariatric surgery on liver fibrosis. Obes Surg (2012) 22:1044–9. doi:10.1007/s11695-011-0559-y

Athyros VG, Tsianosol K, Karagianissi A, Mikhailidis DP. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes Rev (2011) 12:515–24. doi:10.1111/j.1467-789X.2010.0083/1.x

Ikramuddin S, Livingston EH. New insights on bariatric surgery outcomes. JAMA (2013) 310:2401–2. doi:10.1001/jama.2013.280927

Christou NV, Lieberman M, Sampalis J, Sampalis JS. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg Obes Relat Dis (2008) 4:691–5. doi:10.1016/j.soard.2008.08.025

Adams TD, Stroup AM, Gress RE, Adams KE, Calle EE, Smith SC, et al. Cancer incidence and mortality after gastric bypass surgery. Obesity (2009) 17:796–802. doi:10.1038/oby.2008.610

Ashrafian H, Ahmed K, Rowland SP, Patel VM, Gooderham NJ, Holmes E, et al. Metabolic surgery and cancer: protective effects of bariatric procedures. Cancer (2011) 117:788–99. doi:10.1002/cncr.25738

Sjöström L, Gummesson A, Sjöström CD, Narbro K, Peltonen M, Wedel H, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol (2009) 10:653–62. doi:10.1016/S1470-2045(09)70159-2

Renehan AG. Bariatric surgery, weight reduction, and cancer prevention. Lancet Oncol (2009) 10:640–1. doi:10.1016/S1470-2045(09)70170-6

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 04 March 2014; paper pending published: 22 March 2014; accepted: 15 April 2014; published online: 01 May 2014.

Citation: Pérez-Hernández AI, Catalán V, Gómez-Ambrosi J, Rodríguez A and Frühbeck G (2014) Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. 5:65. doi:10.3389/fendo.2014.00065

This article was submitted to Cancer Endocrinology, a section of the journal Frontiers in Endocrinology.

Copyright © 2014 Pérez-Hernández, Catalán, Gómez-Ambrosi, Rodríguez and Frühbeck. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.