Sero-prevalence of *Toxoplasma gondii* infection in backyard poultry birds of Tarai Zone of West Bengal, India

Dhananjay Kumar¹, Surajit Baidya¹, Ruma Jas¹*, Soumitra Pandit¹, Pradip Kumar Das²

¹Department of Veterinary Parasitology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, 37, K. B. Sarani, Kolkata – 700 037, West Bengal, India

²Department of Veterinary Physiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, 37, K. B. Sarani, Kolkata – 700 037, West Bengal, India

ARTICLE INFO

Article history:
Received 6 Mar 2017
Received in revised form 8 May 2017
Accepted 23 Jun 2017
Available online 28 Aug 2017

Keywords:
Toxoplasma gondii
Sero-prevalence
Indirect ELISA
Backyard poultry

ABSTRACT

Objective: To investigate the sero-prevalence of *Toxoplasma gondii* (*T. gondii*) infection in backyard poultry birds in three blocks of Tarai Zone of West Bengal during the period from January to June, 2015.

Methods: A total of 600 serum samples from Rhode Island Red poultry birds maintained by backyard system were collected and tested for anti-*T. gondii* antibodies using indirect ELISA standardized in the present study.

Results: The overall sero-prevalence of anti-*T. gondii* antibodies in backyard poultry birds of Tarai Zone was 20.33%. The prevalence of anti-*T. gondii* circulating antibodies ranged from 15% to 27.5% in backyard poultry birds in selected places of Tarai Zone of West Bengal.

Conclusions: Presence of such high level of anti-*T. gondii* antibodies in serum of backyard poultry birds maintained for egg and meat production poses a potential threat to the human population of getting infected with *T. gondii* and also suggests for general awareness about this disease to the local people of Tarai Zone of West Bengal, India.

1. Introduction

Toxoplasma gondii (*T. gondii*) is an intracellular zoonotic protozoan parasite of human and animals including poultry birds, and toxoplasmosis is prevalent throughout the world[1,2]. Clinical toxoplasmosis is rare in experimentally and naturally infected chicken and only a few of exposed poultry develop clinical symptoms, such as encephalitis, chorioretinitis and neuritis[1]. Free-range poultry birds with subclinical infection are an important source of *T. gondii* infection for cats which shed millions of oocysts in infected tissues, and these oocysts then contaminate the food and water. Infected poultry meat is also an important source of human infection. Sero-prevalence of *T. gondii* infection has been studied in chickens, ducks and pigeons in various parts of the world[3-5]. Several surveys in different countries have shown that sero-prevalence of *T. gondii* infection in poultry birds varied from moderate to high. Sero-positivity for *T. gondii* and isolation of the parasite have been reported in free-range chickens reared in Egypt[6], Pakistan[5], Mexico[6], Ghana, Indonesia, Italy, Poland, Vietnam[7], Brazil[8] and China[2,9].

Epidemiological survey is the most important method for determining the significance of different sources of *T. gondii* infection in human and animals. Since contaminated meat is an important source of human infection, it will be useful to ensure regular surveillance of *T. gondii* infection in animal and bird species intended for human consumption. Reports on sero-epidemiology of toxoplasmosis are scanty from India. Close co-habitation of human, animals and poultry birds particularly in rural India including West Bengal ideally favours the perpetuation and spread of this important zoonosis. Nevertheless, there has been a disparity between the gravity of this problem and the research attention for this disease. In West Bengal, no work on toxoplasmosis so far has been reported and hence it is imperative to uncover the hidden facts of this
problem. Hence the present study was designed to determine the sero-prevalence of *T. gondii* infection in chickens raised in backyard system for producing eggs or meat.

2. Materials and methods

2.1. Sampling area

Sampling for the present study was carried out in the Tarai region, one of the six agro-climatic zones of West Bengal in India. Tarai Zone is the plain land region of West Bengal, India that lies in south of the outer foothills of the Himalaya. Tarai Zone is a belt of marshy grass lands and composed of alternate layers of clay and sand with high water table. Tarai Zone consists mainly of Jalpaiguri District. Three blocks (Malbazar, Meteali, Nagrakata) under Jalpaiguri District and five villages under each block were selected for the present study. In those villages Rhode Island Red (RIR) chickens were maintained by backyard poultry farming system and the chickens were kept free during the day time and in night they were housed in cages at the backyard of owner’s house.

2.2. Collection of sera samples

Blood samples were collected with the prior consent of the owner at the farmer’s house by wing vein puncture from 600 RIR chickens aged 10–12 weeks old of either sex. Blood samples were collected at the ratio of 40 chickens per village. About 1 mL of blood was collected in 2-mL disposable plastic syringe (Dispovan) and sera were separated from the clotted blood following the standard procedure and dispatched to the laboratory with cold packs. Sera samples were stored at –20 °C till further use. The study was continued for six months from January to June, 2015.

2.3. Preparation of *T. gondii* tachyzoite antigen

Mouse adopted RH strain of *T. gondii* tachyzoites obtained from All India Institute of Medical Sciences, New Delhi, India was used for the present study. The infection was maintained in Swiss Albino mice by serial passage of tachyzoites through intra-peritoneal route. The mice (*n* = 10) selected for collection of tachyzoites were euthanized using chloroform and then 5–7 mL of phosphate buffer saline (PBS, pH 7.4) was injected intraperitoneally with a 10-mL syringe fitted with 21 gauge needle, and the peritoneal fluid was drawn back into the same syringe carefully to avoid injury to other internal organs. The peritoneal fluid, containing free tachyzoites as well as macrophages infected with tachyzoites, was washed thrice at the ratio of 40 chickens per village. About 1 mL of blood was collected in 2-mL disposable plastic syringe and sera were separated from the clotted blood following the standard procedure and dispatched to the laboratory with cold packs. Sera samples were stored at –20 °C till further use. The study was continued for six months from January to June, 2015.

2.4. ELISA for detection of anti-*T. gondii* IgG in chickens

An indirect ELISA was standardized to detect anti-*T. gondii* IgG following the standard protocol[11]. Human sera with positive and negative reactivity to the *T. gondii* (RH strain) antigen, confirmed with the commercial kit (ToxoELAgen IgG kit, Adaltis, Italy), were used as controls[12]. The optimal concentration of the coating antigen (3 µg/well), dilution of the positive and negative sera (1:400) as well as rabbit anti-human IgG-horseradish peroxidase (1:1 000) and the optimal test conditions were determined by checkerboard dilution assay. The cut-off value for the standardized ELISA was considered as the mean optical density (OD) plus three times the standard deviation of the negative control sera[13]. The collected sera samples were tested by the standardized indirect ELISA for the detection of anti-*T. gondii* antibodies in backyard poultry birds.

Flat-bottom 96-well micro-ELISA plates (Nunc, Maxisorp) were coated with 100 µL of *T. gondii* tachyzoite whole antigen diluted in carbonate-bicarbonate buffer and incubated overnight at 4 °C. The wells were washed with PBS containing 0.05% Tween 20 (PBST) for five times and blocking was done with 200 µL of 3% bovine serum albumin in PBST for 3 h at 37 °C. After washing 100 µL of diluted chicken sera (1:400) in PBST was added to test wells (*n* = 92) in duplicate keeping positive and negative controls and incubated at 37 °C for 2 h. Then 100 µL of rabbit anti-chicken IgG-horseradish peroxidase (Sigma) diluted in PBST was added to test wells, and rabbit anti-human IgG-horseradish peroxidase added to the control wells and incubated at 37 °C for 1 h. Finally 200 µL of substrate solution (OPD; Sigma) after washing was added to detect antigen-antibody reaction and incubated at 37 °C in dark for 15 min and then 2% H₂SO₄ was added to each well to stop the reaction. The OD of the wells was recorded at 492 nm by the ELISA reader (Multiskan Ex ELISA Reader, Thermo, Japan). A test sample having mean OD value higher than the cut-off value was considered as positive.

2.5. Statistical analysis

The data on OD values of serum samples from different blocks were analysed separately *i.e.* between blocks and within blocks.
by Duncan method (One-way ANOVA). The complete statistical analyses were done with the help of Statistical Package for Social Scientists (SPSS), Windows Version 15.0.

3. Results

A total of 600 serum samples of RIR poultry chicken maintained in backyard system were collected from Tarai Zone of West Bengal. Those sera samples were tested by the standardized indirect (Ab-detection) ELISA for the determination of sero-prevalence of *T. gondii* antibodies in RIR poultry birds of Tarai Zone of West Bengal.

The cut-off value (mean OD plus three times the standard deviation of the negative control serum) of the standardized indirect ELISA was 0.198 (Figure 1). Out of 600 serum samples collected from the different blocks of Tarai Zone of West Bengal, only 122 samples showed OD value higher than the cut-off value (Figures 1–3). The overall sero-prevalence of *T. gondii* antibodies in RIR birds maintained in backyard was 20.33%. Out of the three blocks, Meteali block showed the highest prevalence (21%) of *T. gondii* circulating antibodies in serum samples of backyard poultry birds and the lowest sero-prevalence (19.5%) was recorded in chickens of Malbazar block of Tarai Zone (Table 1). No significant (*P* > 0.05) difference was observed in sero-prevalence of *T. gondii* infection in backyard poultry birds among the three different blocks of Tarai Zone of West Bengal. The prevalence of anti-*T. gondii* IgG in serum samples of backyard RIR poultry birds ranged from 15% to 27.5% in the selected villages under the three blocks of Tarai Zone (Table 1).

Table 1

Sero-prevalence of *T. gondii* antibodies in backyard poultry birds of different places of Tarai Zone of West Bengal, India.

Places	Malbazar block	Meteali block	Nagrakata block
Village 1	20.00	17.50	15.00
Village 2	20.00	22.50	25.00
Village 3	17.50	27.50	20.00
Village 4	20.00	20.00	20.00
Village 5	15.00	17.50	22.50
Overall	19.50	21.00	20.50

Several surveys have been conducted in different countries for the detection of *T. gondii* infection in free-range chickens and in most of the cases the prevalence ranged between 36.03% and 85.7%[2,6,8,9,12]. In West Bengal there are six different zones based on soil character and climatic condition, and in our preliminary study we have selected one agro-climatic zone: Tarai Zone. The sero-prevalence of *T. gondii* antibodies was 20.33% in backyard RIR poultry birds in Tarai Zone of West Bengal. There are scanty reports on prevalence of toxoplasmosis in animals including poultry birds in India. Type II and III genotypes of *T. gondii* were isolated from free-range chickens in India[14]. The prevalence of *T. gondii* antibodies was recorded as 21.7% using indirect fluorescent antibody technique[15], and by modified agglutination technique 17.9% sero-prevalence was recorded in free-range chickens in Central and South India by Sreekumar et al.[15] and 39.5% sero-prevalence recorded by Devada et al.[16] in serum samples of free-range chickens in South India. Garcia et al.[17] and Hill et al.[18] showed that ELISA method had a higher sensitivity rate and performed better than MAT for detecting serum antibodies for *Toxoplasma*. So in this research indirect ELISA was standardized to detect the antibodies of *T. gondii* in serum samples of backyard poultry birds.

Sero-prevalence (20.33%) recorded in the present study though lower than that of the earlier reports from India[16] and other parts of the world[2,8,12], in some villages more than 25% backyard poultry

Figure 1. Detection of *T. gondii* antibodies by standardized indirect ELISA in serum samples of 200 RIR birds of Malbazar block of Jalpaiguri District of West Bengal.

Figure 2. Detection of *T. gondii* antibodies by standardized indirect ELISA in serum samples of 200 RIR birds of Meteali block of Jalpaiguri District of West Bengal.

Figure 3. Detection of *T. gondii* antibodies by standardized indirect ELISA in serum samples of 200 RIR birds of Nagrakata block of Jalpaiguri District of West Bengal.
birds were found seropositive. The sources of human infection vary all over the world with the culture of the society, ethnicity, geographical location and food habits of the population[9]. *T. gondii* was isolated from brain and hearts of hens from India[14], Jacobs and Melton[20] reported *T. gondii* in ovariess, oviduct and muscle of chicken by performing bioassay study in mice. All the genetic types (I, II, III) of chicken by performing bioassay study in mice. All the genetic types and Melton[20] reported[3] Maksimov P, Buschtöns S, Herrmann DC, Conraths FJ, Görlich K, Zhao GW, Shen B, Xie Q, Yan RF, Xu LX, Song XK. Detection of Dubey JP. Serological survey and risk factors for *Toxoplasma gondii* in domestic ducks and geese in Lower Saxony, Germany. Vet Parasitol 2011; 182: 140-9.

[9] Aboelhalid SM, Abdel-Ghany AE, Ibrahim MA, Mahran HA. Seroprevalence of *Toxoplasma gondii* infection in chickens and humans in Beni Suef, Egypt. Global Vet 2013; 11(2): 139-44.

[10] Masood A, Awais AAH, Mian MA, Muhammad KS, Kamran A, Elzebita HS. Seroprevalence of *Toxoplasma gondii* in the backyard chickens of the rural areas of Faisalabad, Punjab, Pakistan. Int J Agric Biol 2014; 16: 1105-11.

[11] Alvarado-Esquível C, González-Salazar AM, Alvarado-Esquível D, Ontiveros-Vázquez F, Vitela-Corrales F, Villena I, et al. Seroprevalence of *Toxoplasma gondii* infection in chickens in Durango State, Mexico. J Parasitol 2012; 98(2): 431-2.

[12] Dubey JP, Huong LT, Lawson BW, Subekti DT, Tassi P, Cabaj W, et al. Sero-prevalence and isolation of *Toxoplasma gondii* from free-range chickens in Ghana, Indonesia, Italy, Poland, and Vietnam. J Parasitol 2008; 94: 68-71.

[13] Millar PR, Alves FMX, Teixeira VQ, Vicente RT, Menezes EM, Sobreiro LG, et al. Occurrence of infection with *Toxoplasma gondii* and factors associated with transmission in broiler chickens and laying hens in different raising systems. Pesq Vet Bras 2012; 32(3): 231-6.

[14] Cong W, Huang SY, Zhou DH, Xu MJ, Wu SM, Yan C, et al. First report of *Toxoplasma gondii* infection in market-sold adult chickens, ducks and pigeons in Northwest China. Parasit Vectors 2012; 5: 110.

[15] Lowry OH, Rosenbrough WJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-75.

[16] Balsari A, Poli G, Molina V, Dovis M, Petruzzelli E, Boniolo A, et al. ELISA for *Toxoplasma* antibody detection: a comparision with other serodiagnostic tests. J Clin Pathol 1980; 33: 640-3.

[17] Zhu J, Yin J, Xiao Y, Jiang N, Ankarlev J, Lindh J, et al. A sero-epidemiological survey of *Toxoplasma gondii* infection in free range and caged chickens in Northeast China. Vet Parasitol 2008; 158: 360-3.

[18] Lejon V, Claes F, Verloo D, Maina M, Urakawa T, Majiwa PAO, et al. Recombinant RoTat 1.2 variable surface glycoprotein as antigen for diagnosis of *Trypanosoma evansi* in dromedary camels. Int J Parasitol 2005; 35: 455-60.

[19] Sreekumar C, Graham DH, Dhal E, Lehrman T, Raman M, Bhalarao DP, et al. Genotyping of *Toxoplasma gondii* isolates from chickens from India. Vet Parasitol 2003; 118: 187-94.

[20] Sreekumar C, Rao JR, Mishra AK, Ray D, Singh RL, Joshi P. First isolation of *Toxoplasma gondii* from chickens in India. J Vet Parasitol 2001; 15(2): 103-6.

[21] Devada K, Anandan R, Dubey JP. Serologic prevalence of *Toxoplasma gondii* in chickens in Madras, India. J Parasitol 1998; 84(3): 621-2.

[22] García JL, Gennari SM, Navarro IT, Machado RZ, Headley SA, Vidotto O, et al. Evaluation of IFA, MAT, ELISAs and immunoblotting for the detection of anti-*Toxoplasma gondii* antibodies in paired serum and aqueous humour samples from experimentally infected pigs. Res Vet Sci 2008; 84: 237-42.

[23] Hill DE, Chirukandoth S, Dubey JP, Lunney JK, Gamble HR. Comparison of detection methods for *Toxoplasma gondii* in naturally and experimentally infected swine. Vet Parasitol 2006; 141: 9-17.

[24] Tenter AM, Heckeroth AR, Weis LM. *Toxoplasma gondii* from animal to humans. Int J Parasitol 2000; 30: 1217-58.

[25] Jacobs L, Melton ML. Toxoplasmosis in chickens. J Parasitol 1966; 52: 1411-4.