High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

Paul M. Rindler‡, Scott M. Plafker‡§, Luke I. Szweda‡¶||, and Michael Kinter‡*†

From the ‡Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation and the *Reynolds Oklahoma Center on Aging, Departments of ‡Biochemistry and Molecular Biology and ¶Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104

Background: High dietary fat is linked to cardiac oxidative stress, however, little is known about the endogenous antioxidant response. High fat feeding and fasting rapidly up-regulate catalase. Up-regulation of catalase is designed to protect mitochondria from oxidative damage while not perturbing H2O2-mediated signaling. Coupling fatty acid oxidation to H2O2 production creates a mechanism for sensing and communicating diet composition.

Results:

Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. This data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization.

Conclusion:

Long term consumption of a diet high in fat promotes obesity and enhances the risk for the development of type 2 diabetes and cardiovascular disease (1–5). It has been proposed that oxidative stress may serve as the causal link between diet-induced obesity and cardiovascular disease (6, 7). Hearts from rodents fed a high fat diet display increased indices of lipid and protein oxidation as well as increased markers of apoptosis (8–11). Several different mechanisms of free radical production have been implicated in obesity, including the release of pro-inflammatory adipokines (12), elevated NAD(P)H oxidase activity (13), and increased mitochondrial hydrogen peroxide (H2O2) production (14, 15). However, the overall role of oxidative stress in the pathobiology of obesity and high dietary fat is not well understood.

Although free radicals are capable of damaging lipids, DNA, and proteins, it is important to note that pro-oxidant species such as H2O2 also act as signaling molecules (16–18). Furthermore, an extensive network of endogenous antioxidant enzymes and molecules exists to preclude oxidative damage while maintaining an environment conducive to redox regulation. If high dietary fat induces oxidative stress, it is logical to assume that the antioxidant network will mount a compensatory response to preserve redox homeostasis. Assessing the response of the antioxidant network to a high fat diet would provide valuable insight into the nature and source of oxidative stress associated with high dietary fat and offer targeted therapeutic options for the accompanying diseases. However, little has been reported on the antioxidant network response to high dietary fat, particularly in the heart. What is known is largely limited to the measurement of superoxide dismutase, glutathione peroxidase, and catalase (9, 10, 19, 20). Given that there are a number of antioxidant enzymes residing in multiple cellular locations, and catalyzing distinct reactions, it is important that a comprehensive proteomic and temporal assessment of the antioxidant response be performed.

The goal of the experiments described here was to determine the effect of high dietary fat on cardiac antioxidant protein expression. We utilized C57BL/6J mice fed a high fat diet (60%
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase

...kcal from fat) for varying durations, with mice fed a low fat diet (10% kcal from fat) serving as controls. Mice consuming the high fat chow develop obesity, hyperinsulinemia, hyperglycemia, and hypertension (21). Characterization of the antioxidant response using Western blot analysis is both logistically challenging given the large number of targets and not suited for rigorous quantification of changes in protein content. Therefore, a high throughput quantitative mass spectrometry-based method was developed to analyze a large fraction of the antioxidant network in a single experiment with the use of liquid chromatography-tandem mass spectrometry with selected reaction monitoring (SRM)2 (22). In the SRM experiments, a series of collision-induced dissociation reactions were monitored for a subset of peptides, produced by trypsin digestion, specifically found in each target protein of interest. Key aspects of the SRM approach include high selectivity for the proteins analyzed, direct quantitation of protein concentration, as well as a degree of multiplexing that measures many proteins in a single experiment (22).

Using this quantitative proteomics approach, we found that, within 1 day, high dietary fat invokes a cardiac antioxidant response that is specific to the \(\text{H}_2\text{O}_2 \)-metabolizing enzyme catalase. This work also shows that catalase is present within mouse cardiac mitochondria and that mitochondrial catalase content and activity increase in response to a high fat diet, consistent with elevated mitochondrial \(\text{H}_2\text{O}_2 \) production. Furthermore, these data show that 1 day of fasting also induces a quantitatively similar and selective increase in catalase expression and activity. These opposing nutritional states have in common increased levels of circulating triglycerides and increased delivery of free fatty acids to the heart (9, 23–25). It has previously been demonstrated that, in each case, this results in enhanced fatty acid oxidation (24–26) presumably by both peroxisomes and mitochondria. Given that increased reliance on fatty acid oxidation promotes peroxisomal and mitochondrial \(\text{H}_2\text{O}_2 \) production, up-regulation of catalase may represent an important adaptive antioxidant response designed to accommodate changes in energetic substrate availability. We believe that this unique up-regulation of catalase is a means to prevent oxidative damage from toxic levels of \(\text{H}_2\text{O}_2 \) without perturbing \(\text{H}_2\text{O}_2 \)-mediated signaling within the physiological range.

EXPERIMENTAL PROCEDURES

Animals, Dietary Model, and Sample Preparation—For studies with wild-type animals, 6-week-old male C57BL/6J mice (The Jackson Laboratory) were fed either a high fat diet or a control low fat diet (60% versus 10% total kilocalories from lard) purchased from Research Diets (D12492, D12450B, and D12450). Previously described Nfe2l2−/− (Nrf2) global knock-out mice (27) were obtained from Dr. Scott Plafker at the Oklahoma Medical Research Foundation, and Cat−/− global knock-out mice (28) were acquired from Dr. Eugene Chen at the University of Michigan. Ppara−/− global knock-out mice were purchased from The Jackson Laboratory (stock 008154). At the designated time points, mice were sacrificed by cervical dislocation, and the hearts removed for analysis. Approximately 10 mg of heart tissue was removed from the apex for RNA extraction as described below. The remaining tissue was homogenized in buffer A (buffer A: 10 mM MOPS, 1 mM EDTA, 210 mM mannitol, 70 mM sucrose, pH 7.4). These whole heart lysates were cleared by centrifugation at 55 × g for 5 min and decanted through cheesecloth. Protein concentrations were determined using the BCA Protein Assay Reagent (Thermo Scientific) according to manufacturer’s protocol. All experiments were approved by the Oklahoma Medical Research Foundation Institutional Animal Care and Use Committee.

Mass Spectrometry Analysis (22)—Quantitative proteomics was used to determine changes in the expression of the antioxidant proteins in all samples. For these assays, 60-μg amounts of whole heart lysates were mixed with 8 pmol of bovine serum albumin (BSA) as an internal standard and 50 μl of 10% SDS. The samples were heated at 80 °C for 15 min before precipitating the proteins in 80% acetone overnight at −20 °C. The protein pellet was dissolved in 60 μl of sample buffer and a 20-μl aliquot containing 20 μg of protein run 1.5 cm into a 12.5% SDS-polyacrylamide gel. The gel was fixed and stained with GelCode Blue (Pierce). For each sample, the entire 1.5-cm lane was cut out of the gel and divided coarsely. The gel pieces were washed to remove the stain, reduced with DTT, alkylated with iodoacetamide, and digested with 1 μg of trypsin overnight at room temperature. The peptides produced in the digest were extracted with 50% methanol, 10% formic acid in water. The extract was evaporated to dryness and reconstituted in 150 μl of 1% acetic acid in water for analysis.

The samples were analyzed using SRM with a triple quadrupole mass spectrometer (ThermoScientific TSQ Vantage) configured with a splitless capillary column HPLC system (Eksigent). The samples (10-μl aliquots) were injected onto a 10 cm × 75 μm inner diameter column packed with a C18 reversed phase material (Phenomenex, Jupiter C18). The column was eluted at 160 nl/min with a 30-min linear gradient of acetonitrile in 0.1% formic acid. The SRM program was constructed using the program Pinpoint (ThermoScientific) to contain a total of ~400 collision-induced dissociation reactions for ~100 peptides. These peptides represented 25 target proteins, two housekeeping proteins (heat shock protein 1 and voltage-dependent anion-selective channel protein 1), and the BSA internal standard. Each peptide was monitored in a 5-min window centered around the known elution time of that peptide.

The data were processed using the program Pinpoint, which aligned the various collision-induced dissociation reactions monitored for each peptide and determined the chromatographic peak areas. The response for each protein was taken as the total response for all peptides monitored. Changes in the relative abundance of the proteins were determined by normalization to the BSA internal standard, with confirmation by normalization to the housekeeping proteins. The amount of catalase in each sample was determined based on its ratio to the BSA internal standard according to the best flyer approach (29).

2 The abbreviations used are: SRM, selected reaction monitoring; ACADM, acyl-coenzyme A dehydrogenase very long chain; ACOX1, acyl-coenzyme A oxidase 1 palmityl; FOXO, forkhead box protein; mCat, mitochondrial specific overexpression of catalase; Ppar, peroxisome proliferator-activated receptor; BisTris, 2-[bis(2-hydroxyethyl)aminol]-2-(hydroxymethyl)-propane-1,3-diol; Nrf2, nuclear factor E2-related factor 2.
Western Blot Analysis—Whole heart lysates were immunoblotted with antibodies for catalase (Santa Cruz Biotechnology) as well as the E1 subunit of α-ketoglutarate dehydrogenase (Biosynthesis), which served as a loading control. Protein samples were incubated for 10 min at 70 °C in the presence of 70 mM SDS, 100 mM DTT, and 50 μM MG132, subjected to electrophoresis using a NuPAGE 10% BisTris gel (Invitrogen), and transferred to PVDF (Bio-Rad). Antibody treatments were carried out in 10 mM K2HPO4, 150 mM NaCl, 0.05% Tween 20, and 5% nonfat dry milk. Horseradish peroxidase–conjugated secondary antibodies (Pierce) were visualized with using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) according to manufacturer’s protocol.

Catalase Enzyme Activity—Catalase enzyme activity was determined by measuring the rate of H2O2 consumption via absorbance at 240 nm (30). Briefly, activity assays were carried out with 40 μg of protein in 1 ml of 10 mM MOPS, 10 mM H2O2, pH 7.4. The amount of catalase present in each sample, determined by the quantitative proteomics described above, was used to calculate catalase-specific activity as H2O2 consumed per min/pmol of catalase protein.

Mitochondrial H2O2 Production—Cardiac mitochondria were pelleted from whole heart lysates via centrifugation at 10,000 × g for 10 min at 4 °C. The supernatant was discarded and the mitochondrial pellets resuspended in ice-cold buffer A. For the assay, isolated mitochondria (200 μg of protein equivalent) were incubated at room temperature in a 2-ml reaction in buffer B (buffer B: 10 mM MOPS, 210 mM mannitol, 70 mM sucrose, 5 mM K2HPO4, 0.05% BSA, 100 mM malate, 20 μM Amplex red, 4 units of horseradish peroxidase, pH 7.4) with either 25 μM palmitoylcarnitine or 100 μM pyruvate as respiration substrate. The amount of H2O2 produced was measured as the rate of resorufin accumulation determined by fluorescence (excitation 571 nm/emission 582 nm).

Density Gradient Purification of Cardiac Mitochondria—Mitochondria were isolated as described above and further purified by differential centrifugation using a self-generating Percoll gradient (GE Healthcare). Isolated mitochondria were layered onto a 40% isotonic Percoll solution and centrifuged at 66,000 × g for 40 min at 4 °C. The purified mitochondria formed a single distinct layer within the gradient that was collected and diluted in 12 ml of ice-cold buffer A. The purified mitochondria were then separated from any residual Percoll by pelleting at 10,000 × g for 15 min at 4 °C. This final purified mitochondrial pellet was resuspended in ice-cold buffer A. The peroxisome-enriched pellets were obtained from the mitochondrially depleted whole heart lysate by centrifugation at 20,000 × g for 90 min at 4 °C. The resulting peroxisome-enriched pellet was resuspended in ice-cold buffer A.

Immunogold Electron Microscopy—The electron microscopy experiments were carried out at the Oklahoma Medical Research Foundation Imaging Facility using established procedures. Briefly, heart tissue samples were fixed overnight in 4% EM grade paraformaldehyde, dehydrated in ethanol, and embedded in LR White. Blocks were cut by UV light exposure at 4 °C. Sections, 100-nm thick, were placed on square mesh nickel grids. Immunogold labeling was performed serially in droplets of the following solutions: hydration in PBS with 2% BSA for 5 min, blocking buffer for 30 min (PBS, 1% BSA, 3% donkey serum, 0.1% cold water fish skin gelatin), catalase antibody for 1.5 h (PBS, 1% BSA, 3% donkey serum), PBS rinses three times for 5 min each, secondary antibody for 1 h (0.05% BSA), PBS rinses three times for 5 min each, water rinses two times for 1 min each. Immunogold labeled tissues were counter-stained by serial exposure to droplets of Sato’s Lead for 5 min, saturated uranyl acetate for 30 min, Sato’s Lead for 15 min, and water rinses four times for 1 min each. Images at ×5,000 to 25,000 magnification were collected using a Hitachi H-7600 transmission electron microscope.

Quantitative RT-PCR—The apex of the heart (about 10 mg) was snap-frozen in liquid nitrogen at harvest and stored at −80 °C. RNA was extracted using TriPure (Roche Applied Science) according to the manufacturer’s protocol, and concentration and 260/280 nm ratio (≥1.8 for all samples) were measured by absorbance on a NanoDrop 2000 UV-visible spectrophotometer (ThermoScientific). RNA (1 μg) was converted to cDNA, a 20-μl final volume, using QuantiTect reverse transcription kit (Qiagen). Quantitative PCR was performed on a CFX96 thermocycler (Bio-Rad). Reactions consisted of 1 μl of cDNA, 125 nm final concentrations of each primer, and iQ SYBR Green Supermix (Bio-Rad) in a total volume of 20 μl. Technical duplicates were performed for all samples. Relative transcript expression ratios were calculated using CFX Manager software, version 2.1 (Bio-Rad), and statistics were generated with REST2009 software (31). Catalase transcript levels were normalized to three reference genes (GAPDH, SDHA, and HSP90ABI) determined to be stable between dietary conditions using geNorm analysis (32). The respective cDNA was amplified with the following primers: CAT (89.1% efficiency) 181-bp product, forward, 5'-agccagcatagagacgctg-3', and reverse, 5'-tccgctctgtgatgcgtg-3'; ACOX1 (93.0% efficiency) 283-bp product, forward, 5'-taatctccatcaggaaca-3', and reverse, 5'-atgctacgacacctgctc-3'; GAPDH (79.6% efficiency) 136-bp product, forward, 5'-atgctacgagacctc-3', and reverse, 5'-ggtcctaccctctcctgagta-3'; SDHA (85.5% efficiency) 106-bp product, forward, 5'-ggaactctccacagctac-3', and reverse, 5'-ccacactggattgattagta-3'; HSP90ABI (90.5% efficiency) 102-bp product, forward, 5'-tcacaagggagatgtctc-3', and reverse, 5'-actgtcagataagggtc-3'.

RESULTS

Diet-induced Obesity—To investigate the endogenous antioxidant response to high dietary fat and the obesity produced by such a diet, C57BL/6j mice were placed on either a high fat diet or a low fat control diet that gave 60% or 10% of total kilocalories from lard, respectively. The mice were maintained on the respective diets for 2, 20, or 30 weeks to evaluate the effects of diet duration. The animals eating the high fat diet had significantly increased body weights, compared with low fat control diet animals, after as little as 2 weeks (27 ± 3 g versus 23 ± 2 g, p < 0.001, n = 11). Further increases were evident at 20 weeks (45 ± 4 g versus 31 ± 3 g, p < 0.001, n = 14) and 30 weeks (53 ± 6 g versus 33 ± 3 g, p < 0.001, n = 5). This pattern of weight gain is consistent with other reports using this model of diet-induced obesity (33).
Catalase Expression Is Induced by High Fat Feeding—The endogenous antioxidant response in the heart to this high fat diet was measured using a quantitative proteomics approach (22). Analysis of whole heart lysates revealed that, of 16 major antioxidant proteins measured, the H₂O₂-metabolizing enzyme catalase was the only observed enzyme induced by 30 weeks of high fat feeding (Fig. 1A). The increase in catalase detected by quantitative mass spectrometry was also seen by Western blot with densitometry analysis (Fig. 1, B and C). This unique response was also observed after 2 weeks and 20 weeks on the high fat diet (data not shown). Compared with low fat diet controls, catalase protein content in the heart was significantly increased by 38% at 2 weeks \((p < 0.01, n = 11)\), 48% at 20 weeks \((p < 0.001, n = 14)\), and 82% at 30 weeks \((p < 0.001, n = 5)\) (Fig. 2A). Thus, the catalase induction is specific and contrasts with the notable lack of an increase in the expression of any other assayed enzymes involved in either the consumption of H₂O₂ (the glutathione peroxidases and peroxiredoxins) or the production of H₂O₂ (the superoxide dismutases).

Catalase activity was measured to determine whether increased catalase protein content translates into elevated enzyme activity in these hearts. Total catalase activity, measured as H₂O₂ consumption per mg of total protein, was significantly elevated in mice fed the high fat diet at all three time points, compared with the low fat diet controls (Fig. 2B). The magnitude of the increase in catalase activity was relatively constant at all three time points, \(\sim 40\%\). The catalase inhibitors sodium cyanide, sodium azide, and 3-amino-1,2,4-triazole all
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase

TABLE 1

	LF/HS	HF	LF/LS
Total Cat Activity	5.8 ± 0.7	8.7 ± 0.9*	6.1 ± 0.9
Protein kcal%	20	20	20
Carbohydrate kcal%	70	20	70
Fat kcal%	10	60	10
Casein kcal	800	800	800
L-Cystine kcal	12	12	12
Corn starch kcal	1260	0	2025
Maltodextrin kcal	140	500	500
Sucrose kcal	1400	225	275
Soybean oil kcal	225	225	225
Lard kcal	180	2205	180
Vitamin mix kcal	40	40	40
Total kcal	4057	4057	4057

* This indicates a significant increase (2-tailed t test) in high fat-fed mice compared with mice fed either low fat control diet (p < 0.01).

FIGURE 3. Catalase induction is immediately responsive to high fat feeding. Catalase protein concentration and activity were determined by quantitative proteomics experiments and measuring the rate of H2O2 clearance via absorbance spectrophotometery, respectively, within whole heart lysates from mice maintained on either high fat or low fat control diet for 1–3 days (d). A, catalase protein concentration in whole heart lysates from high fat-fed mice (closed bars) relative to low fat-fed controls (open bars). B, total catalase activity (H2O2 consumed per mg of total protein) in high fat-fed mice compared with low fat-fed controls. Values are presented as the mean ± S.D. (n = 5), where * indicates a significant increase (2-tailed t test) in high fat-fed mice versus low fat-fed controls within each diet duration (p < 0.01).

blocked the H2O2 consumption in the assay (data not shown). Finally, in a parallel 2-week high fat diet experiment, catalase global knock-out mice showed no appreciable level of catalase activity (Fig. 2C). It is therefore clear that the increase in H2O2 metabolism seen in the hearts of animals on the high fat diet is due to catalase activity as opposed to any other enzymatic or nonenzymatic process.

The quantitation of catalase amounts in the quantitative proteomics experiments makes it possible to calculate specific activity. This calculation revealed no change in catalase specific activity at 2 and 20 weeks on the high fat diet (Fig. 2D) with a modest but statistically significant decrease seen at 30 weeks (−19%, p < 0.01, n = 5). It is important to note that, overall, catalase specific activity declined significantly with age on both the high fat diet and the low fat control diet. However, it appears the heart is capable of compensating for the age-dependent decline in specific activity by increasing catalase protein content to maintain a relatively constant level of total catalase activity throughout the 30-week experiment in both diet groups (Fig. 2, A and B).

As shown in Table 1, the low fat diet used for these experiments offsets the reduction of lard content with increased sucrose content. The use of this high sucrose diet as the low fat control raises the possibility that the differences in catalase expression and activity seen in Fig. 2 are due to a down-regulation driven by the high sucrose rather than an up-regulation by the high fat diet. Therefore, to determine whether high dietary sucrose affects catalase activity, total catalase activity was measured in mice fed an alternative low fat control diet where cornstarch, rather than sucrose, is used to offset the reduced fat content. Cornstarch is a complex carbohydrate and as such does not induce the postprandial blood glucose spike observed following sucrose consumption. After 4 weeks on diet, total catalase activity in the cornstarch-enriched low fat diet-fed mice was not significantly different from mice fed the sucrose-enriched low fat control diet (Table 1, p = 0.625, n = 5). These data indicate that the observed changes in catalase protein content and activity are increased due to the high dietary fat.

Catalase Induction by the High Fat Diet Occurs Prior to Onset of Obesity—The persistent nature and relatively constant magnitude of the increased total catalase activity seen as early as 2 weeks on the high fat diet prompted us to determine the exact onset of this response and, in particular, whether this response was related to the weight gain or the high fat diet itself. Fig. 3 shows that catalase protein content is significantly increased, relative to controls, in mice fed a high fat diet for 1 day. Total catalase activity was also increased following 1 day of the high fat feeding (Fig. 3B) with no significant change in catalase specific activity (data not shown). The magnitude by which total catalase activity is increased in mice fed a high fat diet throughout the 1- to 3-day experiments, ~40%, was similar to that observed for the 2- to 30-week experiments described above (Fig. 2). These observations strongly suggest that catalase induction is an important component of an immediate antioxidant response to a high fat diet and that elevated dietary fat increases H2O2 production within heart tissue.
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase

Both Peroxisomes and Mitochondria Are Potential Sources of Increased \(\text{H}_2\text{O}_2 \) Production during High Fat Feeding—The organelles chiefly responsible for fatty acid oxidation are the peroxisomes and mitochondria. Peroxosomal fatty acid oxidation is largely restricted to very long chain fatty acids and is a potential contributor to increased \(\text{H}_2\text{O}_2 \) production within the heart in response to a high fat diet. The enzyme ACOX1 performs the first step in this process in a reaction that directly produces \(\text{H}_2\text{O}_2 \) during the removal of the \(\alpha \)- and \(\beta \)-carbons from the acyl-CoA ester. Mice consuming high fat diet for periods of 1–3 days all displayed increased ACOX1 protein amounts in the heart (Fig. 4, closed bars) compared with low fat-fed controls (Fig. 4, open bars) (see under “Experimental Procedures”) from mitochondria, isolated from low fat-fed mice, respiring on either palmitoylcarnitine or pyruvate. D, mean rate of \(\text{H}_2\text{O}_2 \) production, during pyruvate (Pyr) (open bar) or palmitoylcarnitine (PC) (closed bar)-supported respiration, from mitochondria isolated from mice maintained on a low fat diet for 2 weeks. Values are presented as the mean ± S.D. (\(n \geq 5 \)), where * indicates a significant increase (2-tailed t test) in high fat-fed mice versus low fat-fed controls within each diet duration (\(p < 0.01 \)).

Mitochondrial Catalase Content and Activity Are Elevated by High Dietary Fat—Despite possession of a peroxisomal targeting sequence, catalase has been shown to reside within rat cardiac mitochondria (37). Given that both mitochondria and peroxisomes produce \(\text{H}_2\text{O}_2 \) during fatty acid oxidation, it was important to determine the subcellular site of high fat diet-induced catalase expression to gain insight into the potential physiological significance. Cardiac mitochondrial and peroxisomal fractions were purified from mice fed either a high fat or low fat control diet for 3 days. Western blot analysis was used to assess the purity of each fraction and showed both that the subcellular fractions were free of cytosolic proteins and that there was no cross-contamination between the mitochondrial and peroxisomal compartments (Fig. 5A). Quantitative mass spectrometric analyses and enzyme activity assays were then used to measure the amount of catalase in each compartment. These quantitative assays showed that peroxisomal catalase content and total activity did not change in response to high dietary fat (Fig. 5, B and C). However, mitochondria isolated from high fat-fed mice had both increased catalase content (+49%, \(p < 0.05 \), \(n = 5 \)) and total activity (+50%, \(p < 0.05 \), \(n = 5 \)) compared with low fat-fed controls (Fig. 5, D and E). The presence and increase in catalase protein within the mitochondria of high fat-fed versus low fat-fed control mice was directly demonstrated by electron microscopy with immunogold stain-
High Fat Diet Increases Catalase mRNA Levels

Catalase mRNA levels were determined in mice fed a high fat diet relative to low-fat-fed controls to determine whether the catalase response to a high fat diet results from increased transcription. Catalase mRNA content was significantly elevated following 24 h on the high fat diet, compared with controls, and remained elevated throughout 30 weeks on diet (Fig. 6). These data demonstrate that the catalase induction triggered by high fat feeding is at least partly regulated at the transcription level.

We therefore sought to identify transcription factors that contribute to catalase induction. Nrf2 is a stress-response transcription factor implicated in the regulation of catalase in response to oxidative stress. To assess the role of Nrf2 in the catalase response to high dietary fat, wild-type and NFE2L2−/− global knock-out mice were analyzed after 1 week on the high fat diet. NFE2L2−/− mice fed the high fat diet had significantly increased catalase mRNA, catalase protein concentration, and total catalase activity relative to controls. No differences were seen in the total catalase activity between NFE2L2−/− and wild-type mice in either dietary condition. This lack of an effect shows that Nrf2 does not mediate the induction of catalase in response to high dietary fat.

Pparα is a lipid-sensitive nuclear receptor that acts as a transcription factor to drive the expression of several target genes, including ACOXI, in response to conditions that increase lipid availability. In light of increased ACOXI mRNA levels in the hearts of mice consuming a high fat diet, the role of Pparα in the induction of catalase by high fat feeding was assessed using PPARA−/− global knock-out mice. The loss of Pparα likely leads to a general reduction in the overall level of fatty acid oxidation based on the significant decrease in ACOXI mRNA in low fat fed PPARA−/− mice (p < 0.05, n = 5).
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase

FIGURE 6. High fat diet increases catalase mRNA in NFE2L2−/− and PPARA−/− knock-out mice. The level of catalase mRNA was determined using quantitative RT-PCR analysis of RNA isolated from the heart tissue of wild-type, NFE2L2−/−, and PPARA−/− mice. A, catalase mRNA levels in wild-type mice maintained on high fat diet (closed bars) from 1 day to 30 weeks relative to low fat-fed controls (open bars). B–D, relative catalase mRNA levels (B), protein concentration (C), and total activity (D) were determined in wild-type, NFE2L2−/−, and PPARA−/− mice fed either a high fat or low fat control diet for 1 week. E, ACOX1 mRNA levels in wild-type or PPARA−/− knock-out mice maintained on high fat diet from 1 week relative to low fat fed controls. Values are presented as the mean ± S.E. (catalase mRNA, Bio-Rad CFX manager software version 2.1) or mean ± S.D. (catalase concentration and total activity, 2-tailed t test) where * indicates a significant difference between high fat- and low fat-fed control mice within each mouse strain, and † indicates a significant difference between wild-type and knock-out mouse strain within each dietary condition (p < 0.05, n ≥4).

FIGURE 7. Catalase is uniquely up-regulated by fasting. Cardiac catalase protein concentration, activity, and mRNA levels were determined in mice either fed low fat control diet or fasted for 1 day. A, quantitative mass spectrometric analysis of antioxidant protein expression in mice fasted for 1 day relative to low fat-fed controls (dashed line). The abbreviations used are: aldo-keto reductase family 1 member B1 (Akr1b1), aldehyde dehydrogenase (Aldh2), catalase (Cat), glutathione peroxidase (Gpx), methionine sulfoxide reductase A (Mrsa), prohibitin (Pphb), peroxiredoxin (Prdx), superoxide dismutase (Sod), thioredoxin (Txn), thioredoxin reductase (Txnrd). B, total catalase activity (H2O2 consumed per mg of total protein) in low fat-fed control mice (open bar) compared with mice fasted for 1 day (closed bar). C, catalase mRNA levels in mice maintained on low fat control diet or fasted for 1 day. D, ACOX1 protein concentration determined by quantitative mass spectrometry in mice fed low fat control diet or fasted for 1 day. Values are presented as the mean ± S.E. (catalase mRNA, Bio-Rad CFX manager software version 2.1) or mean ± S.D. (protein concentration and activity, 2-tailed t test), where * indicates a significant difference between low fat-fed and fasted mice (p < 0.05, n = 5).
congruence of the high fat diet and fasting data is consistent with lipid availability triggering a specific and selective induction of catalase.

DISCUSSION

In this study, we measured the effect of a high fat diet on the endogenous antioxidant enzyme system in the heart. Using a novel quantitative proteomics method, based on LC-tandem MS with SRM, we have simultaneously quantified changes in 16 members of the antioxidant enzyme network in mice fed a high fat diet. We found that catalase was selectively induced within 24 h, and catalase total activity persisted at a relatively constant magnitude throughout 30 weeks of high fat feeding. Moreover, the same selective and rapid induction of catalase was observed in mice fasted for 1 day. Together, these data suggest that both high fat feeding and fasting increase H2O2 production within the heart, which is countered by the specific induction of catalase.

Hydrogen peroxide can damage biological systems by a number of mechanisms. For example, Fenton chemistry converts H2O2 into the highly reactive hydroxyl radical that is capable of damaging proteins, lipids, and DNA. H2O2 is also a substrate for the enzyme myeloperoxidase, which uses H2O2 to generate other damaging molecules such as a hypochlorous acid (40). It is also clear that H2O2 functions as a signaling molecule through transient oxidation of proteins such as the protein-tyrosine phosphatases PTP1B and PTEN, which negatively regulate insulin sensitivity (41–43). Low concentrations of H2O2 can also have a proliferative effect, whereas high concentrations are cytotoxic (44). As such, H2O2-consuming enzymes such as the glutathione peroxidases, peroxiredoxins, and catalase should be readily and selectively regulated to limit toxic levels of H2O2 accumulation while permitting H2O2-mediated cell signaling. The low binding affinity of catalase for H2O2, which is well below the micromolar binding affinity of glutathione peroxidases and peroxiredoxins, may underlie the specificity of catalase induction by high fat diet (45–47). This difference makes catalase ideal for consuming toxic levels of H2O2 while allowing the glutathione peroxidases and peroxiredoxins to manipulate the lower subtoxic amounts of H2O2 needed for signaling. Proper coordination between these enzymes is critical given that subtle changes in cellular H2O2 concentration can exert both positive and negative effects. For example, treatment of hepatocytes with 1 μM H2O2 has been shown to increase insulin sensitivity, whereas treatment with 5–10 μM H2O2 promotes insulin resistance via inhibition of PTP1B and activation of the stress-responsive protein c-Jun N-terminal kinase (48). Based on low binding affinity, we hypothesize that the main role of catalase in the maintenance of intracellular H2O2 concentration is largely to protect against H2O2-induced oxidative damage.

Overexpression of catalase in transgenic mice confers protection against conditions that increase fatty acid oxidation. Whole heart overexpression of catalase reduces malondialdehyde protein modification and preserves fractal shortening in models of type 1 and 2 diabetes (49). Of particular importance to this study, mice that overexpress mitochondrial targeted catalase (mCat) are protected from high fat diet-induced insulin resistance in skeletal muscle and displayed decreased mitochondrial H2O2 production (14). The data from transgenic mice coupled with H2O2 concentration-dependent regulation of insulin sensitivity in hepatocytes support H2O2 as a key regulator of insulin sensitivity. Why then do mice capable of selectively increasing catalase expression and activity in response to high dietary fat still become insulin-resistant (21)? One explanation is that the level of catalase activity in mitochondria from mCat mice is 50-fold higher than wild type (50) compared with the ~50% increase we observe for the endogenous catalase response. Although the binding affinity of catalase is low, the Vmax is near the rate of diffusion. Thus, massive overexpression of catalase could eliminate the H2O2 needed to drive skeletal muscle insulin resistance in response to high dietary fat.

The data from mCat mice suggest that increased mitochondrial H2O2 production induced by high fat feeding promotes insulin resistance. High dietary fat is known to increase fatty acid oxidation for energy production via the Randle cycle, and we and others have shown that mitochondria produce more H2O2 when oxidizing fatty acids versus pyruvate derived from glycolysis (35). We demonstrate here for the first time that catalase is present and is increased within mouse cardiac mitochondria following exposure to a high fat diet. The increase in mitochondrial catalase (~50%) is consistent with a response designed to protect mitochondria rather than prevent insulin resistance as observed in mCat mice. Very long chain fatty acids present in the high fat chow are oxidized within peroxisomes where β-oxidation is initiated by ACOX1 activity that directly produces H2O2. The observed increase in ACOX1 expression within 1 day suggests that high dietary fat enhances peroxisomal fatty acid oxidation. The excess H2O2 produced by peroxisomes is likely to be consumed by the high concentration of catalase present within peroxisomes. However, peroxisomal β-oxidation is incomplete, and the shortened fatty acids are able to be exported for uptake and complete oxidation by the mitochondria in a manner similar to pristanic acid (51), potentially enhancing mitochondrial H2O2 production. Together, these data are consistent with both peroxisomes and mitochondria cooperatively affecting the cellular redox environment via increased fatty acid oxidation during high fat feeding.

A question that emerges from our findings is what serves as the stimulus for the induction of catalase in response to high dietary fat, increased fatty acid delivery, or increased H2O2 production? Two candidate transcription factors that are sensitive to either oxidative stress (Nrf2) or lipid levels (Pparα) were explored in our work. Nrf2-dependent regulation of catalase has been observed in mouse cardiomyocytes challenged with 3H-1,2-dithiole-3-thione, which induces various antioxidants and phase 2 enzymes, including catalase (39). Other work from our laboratory has found that Nrf2 siRNA reduces the increase in catalase expression seen in macrophages treated with oxidized low density lipoprotein (22). Similarly, a functional Ppara response element has been found within the rat catalase promoter (52). However, no differences were seen in the response of increased catalase protein expression or activity induced by high dietary fat between wild-type, Nfe2l2−/−, and Ppara−/− mice clearly arguing against the involvement of these transcription factors. The overall reduction in catalase...
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase concentration seen in \(\text{PPARA}^{−/−} \) global knock-out mice may arise from a general reduction in fatty acid oxidation, which suggests that although \(\text{PPARA}^{−/−} \) does not regulate the catalase response to high dietary fat the amount of catalase present is linked to the level of fatty acid oxidation.

The requirement of c-Jun N-terminal kinase (JNK) for development of insulin resistance in response to high dietary fat may provide the first clue as to the regulatory mechanism responsible for catalase induction. \(\text{JNK}^{−/−} \) knock-out mice are resistant to high fat diet-induced increases in body weight, blood glucose levels, and insulin resistance (53). Low micromolar \(\text{H}_{2}\text{O}_{2} \) treatment of mouse embryonic fibroblasts activates the small GTPase Rap leading to JNK-dependent phosphorylation of transcription factor forerkhead box protein 4 (FOXO4) thereby promoting nuclear translocation and up-regulation of target genes (54). FOXO3-dependent catalase induction has been demonstrated in response to oxidative stress-mediated hyper trophy of rat cardiomyocytes (55). Additionally, treatment of rat cardiomyocytes with insulin leads to increased phosphorylation, ubiquitination, and eventual down-regulation of FOXO1 (56). Altogether, these data suggest that JNK activation by \(\text{H}_{2}\text{O}_{2} \) promotes insulin resistance and FOXO-mediated transactivation of antioxidant genes, including catalase. Therefore, \(\text{H}_{2}\text{O}_{2} \) production from peroxisomes or mitochondria during high fat feeding may serve both to induce catalase expression while promoting insulin resistance through a JNK/FOXO-dependent mechanism. Although this idea needs to be tested, any potential regulation of catalase by FOXO family members is potentially complex given that these transcription factors, like Nrf2 and Pparo, typically up-regulate gene sets rather than individual antioxidant enzymes. The existence of multiple FOXO isoforms and a variety of co-transactivators with which they interact may provide the specificity required for the unique induction of catalase by high dietary fat.

In summary, we have characterized the cardiac antioxidant response to a high fat diet and identified catalase as an important component of the immediate antioxidant response. Furthermore, we found that fasting elicited a similar catalase-specific response. \(\text{Ad libitum} \) consumption of high dietary fat and fasting are fundamentally different nutritional states; however, each is characterized by elevated plasma levels and oxidation of fatty acids (9, 23–26). Thus, our findings are consistent with elevated circulating fatty acid levels promoting \(\text{H}_{2}\text{O}_{2} \) production from organelles that oxidize fatty acids. The coupling of fatty acid oxidation with the production of \(\text{H}_{2}\text{O}_{2} \), a signaling molecule known to influence insulin sensitivity and thereby energetic fuel utilization, place both the mitochondria and peroxisomes in an ideal position to sense and communicate dietary composition. The rapid induction of catalase suggests that this enzyme is critical for the heart’s ability to accommodate increased fatty acid oxidation for energy production, during either high fat feeding or fasting, by preventing oxidative damage while not perturbing \(\text{H}_{2}\text{O}_{2} \)-mediated signaling. From this perspective, short term metabolic adaptations such as insulin resistance may be an entirely appropriate response to a high fat diet that favors utilization of lipid rather than carbohydrate to ensure complete clearance of potentially toxic lipid intermediates. Although these changes may reflect an evolutionarily conserved adaptation to cycles of fasting and feeding, chronic consumption of excess calories leads to obesity and a metabolic syndrome characterized by chronic dyslipidemia. In this scenario, the well intended response needed for short term challenges is transformed into the unwanted long term metabolic abnormality of chronically elevated blood glucose levels that drive downstream complications such as diabetes and cardiovascular disease.

Acknowledgments—We thank Melinda West for work with the care of the animals used in this study and Caroline Kinter for work on the quantitative mass spectrometry analyses. We also thank the Imaging Core, supported by the Oklahoma Medical Research Foundation, for their services in generating the immunogold labeling data. We thank Dr. Eugene Chen (University of Michigan) for providing the catalase knock-out mice.

REFERENCES

1. Fox, C. S., Coady, S., Sordie, P. D., D’Agostino, R. B., Sr., Pencina, M. J., Vasan, R. S., Meigs, J. B., Levy, D., and Savage, P. J. (2007) Increasing cardiovascular disease burden due to diabetes mellitus. The Framingham Heart Study. Circulation 115, 1544–1550
2. Boudina, S., and Abel, E. D. (2007) Diabetic cardiomyopathy revisited. Circulation 115, 3213–3223
3. Kenchaua, S., Evans, J. C., Levy, D., Wilson, P. W., Benjamin, E. J., Larson, M. G., Kannel, W. B., and Vasan, R. S. (2002) Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313
4. Hubert, H. B., Feinleib, M., McNamara, P. M., and Castelli, W. P. (1983) Obesity as an independent risk factor for cardiovascular disease. A 26-year follow-up of participants in the Framingham Heart Study. Circulation 67, 968–977
5. Abel, E. D., Litwin, S. E., and Sweeney, G. (2008) Cardiac remodeling in obesity. Physiol. Rev. 88, 389–419
6. Tsutstui, H., Ide, T., and Kinugawa, S. (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid. Redox Signal 8, 1737–1744
7. Penckofer, S., Schwartz, D., and Florczak, K. (2002) Oxidative stress and cardiovascular disease in type 2 diabetes. The role of antioxidants and pro-oxidants. J. Cardiovasc. Nurs. 16, 68–85
8. Wang, H.-T., Liu, C.-F., Tsai, T.-H., Chen, Y.-L., Chang, H.-W., Tsai, C.-Y., Leu, S., Zhen, Y.-Y., Chai, H.-T., Chung, S.-Y., Chua, S., Yen, C.-H., and Yip, H.-K. (2012) Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice. J. Transl. Med. 10, 145
9. Bhandari, U., Kumar, V., Khanna, N., and Panda, B. P. (2011) The effect of high fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum. Exp. Toxicol. 30, 1313–1321
10. Noeman, S. A., Hamooda, H. E., and Baalash, A. A. (2011) Biochemical study of oxidative stress markers in the liver, kidney, and heart of high fat diet-induced obesity in rats. Diabetol. Metab. Syndr. 3, 17
11. Fang, C. X., Dong F., Thomas D. P., Ma H., He L., and Ren, J. (2008) Hypertrophic cardiomyopathy in high fat diet-induced obesity. Role of suppression of forkhead transcription factor and atrophy gene transcription. Am. J. Physiol. Heart Circ. Physiol. 295, H1206–H1215
12. Fernández-Sánchez, A., Madrigal-Santillán, E., Bautista, M., Esquivel-Chirino, C., Durante-Montiel, I., Sánchez-Rivera, G., Valadez-Vega, C., and Morales-González, J. A. (2011) Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 12, 3117–3132
13. Sonta, T., Inoguchi, T., Tsdbouchi, H., Sekiguchi, N., Kobayashi, K., Matsumoto, S., Utsumi, H., and Nawata, H. (2004) Evidence for contribution of vascular NAD(P)H oxidase to increased oxidative stress in animal models of diabetes and obesity. Free Radic. Biol. Med. 37, 115–123
14. Anderson, E. J., Lustig, M. E., Boyle, K. E., Wooddlef, T. L., Kane, D. A., Lin, C. T., Price, J. W., 3rd, Kang, L., Rabinovitch, P. S., Szeto, H. H., Houmand,
High Fat Diet Up-regulates Cardiac Mitochondrial Catalase

J. A., Cortwright, R. N., Wasserman, D. H., and Neuer, P. D. (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 119, 573–581

15. Fisher-Wellman, K. H., and Neuer, P. D. (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 23, 142–153

16. McLain, A. L., Szveda, P. A., and Szveda, L. I. (2011) α-Ketoglutarate dehydrogenase. A mitochondrial redox sensor. Free Radic. Res. 45, 29–36

17. Veal, E. A., Day, A. M., and Morgan, B. A. (2007) Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14

18. Rhee, S. G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883

19. Anderson, E. J., Thayne, K., Harris, M., Carraway, K., and Shaikh, S. R. (2012) Aldehyde stress and up-regulation of Nrf2-mediated antioxidant systems accompany functional adaptations in cardiac mitochondria from mice fed n-3 polysaturated fatty acids. Biochem. J. 441, 353–364

20. Vincent, H. K., Powers, S. K., Dintzis, J., and Scarpace, P. J. (2001) Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int. J. Obes. Relat. Metab. Disord. 25, 378–388

21. Kinter, C. S., Lundie, J. M., Patel, H., Rindler, P. M., Szweda, L. I., and Aebersold, R. (November 20, 2012) Aldehyde stress and up-regulation of Nrf2-mediated antioxidant response of macrophages to oxidized LDL determined by multiplexed selected reaction monitoring. PLoS ONE 7, e50016

22. Orfali, K. A., Fryer, L. G., Holness, M. J., and Sugden, M. C. (1993) Long-term regulation of pyruvate dehydrogenase kinase by high fat feeding. J. Biomed. Sci. 5748–5758

23. Randle, P. J., Newsholme, E. A., and Garland, P. B. (1964) Regulation of glycolytic and gluconeogenic pathways. J. Physiol. 180, 277–308

24. Horton, T. J., and Hill, J. O. (2001) Prolonged fasting significantly changes mitochondrial bioenergetics to insulin resistance via redox biology. J. Lipid Res. 42, 1544–1548

25. Gaetani, G. F., Ferraris, A. M., Rolfo, M., Mangerini, R., Arena, S., and Nicotera, P. (2004) Catalase protects cardiomyocyte function in models of myocardial ischemia and reperfusion. J. Clin. Invest. 114, 1004–1016

26. Arredondo, M. A., Misra, H. P., and Li, Y. (2008) Nuclear factor E2-related factor 1-dependent myocardiac cytoprotection against oxidative and electro- philic stress. Cardiovasc. Toxicol. 8, 71–85

27. Chan, K., Lu, R., Chang, J. C., and Kan, Y. W. (1996) NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythroid peroxisomal and mitochondrial reactions in cultured fibroblasts. Adv. Inorg. Chem. 37, 336–351

28. Rensing, G., Metreveli, N. S., Donthi, R. V., Xia, S., Xu, M., Carlson, E. C., and Ye, G. (2003) The Nrf2 transcription factor regulates oxidative and inflammatory signaling in the lung. J. Clin. Invest. 112, 142–153

29. Ludwig, C., Claessen, M., Schmidt, A., and Aebersold, R. (2013) Concentration-dependent dual effects of hydro- gen peroxide on insulin signal transduction in H914EC hepatocytes. PLoS ONE 8, e50522

30. Ye, G., Metreveli, N. S., Donthi, R. V., Xia, S., Xu, M., Carlson, E. C., and Epstein, P. N. (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53, 1336–1343

31. Schröder, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C., and Rabinovitch, P. S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911

32. Verhoeven, N. M., Roe, D. S., Kok, R. M., Wanders, R. J., Jakobs, C., and Roe, C. R. (1998) Phtyric acid and pristane acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J. Lipid Res. 39, 66–74

33. Girnun, G. D., Doman, F. E., Moore, S. A., and Robbins, M. E. (2002) Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter. Mol. Endocrinol. 16, 3522–3532

34. Anderson, E. J., Yamazaki, H., and Neuer, P. D. (2007) Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration. J. Biol. Chem. 282, 31257–31266
2793–2801
53. Hirosumi, J., Tuncman, G., Chang, L., Görgün, C. Z., Uysal, K. T., Maeda, K., Karin, M., and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance. *Nature* **420**, 333–336
54. Essers, M. A., Weijzen, S., de Vries-Smits, A. M., Saarloos, I., de Ruiter, N. D., Bos, J. L., and Burgering B. M. (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Rap1 and JNK.

EMBO J. **23**, 4802–4812
55. Tan, W.-Q., Wang, K., Lv, D.-Y., and Li, P.-F. (2008) Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase. *J. Biol. Chem.* **283**, 29730–29739
56. Liu, T. J., Lai, H. C., Ting, C. T., and Wang, P. H. (2007) Bidirectional regulation of upstream IGF-I/insulin receptor signaling and downstream FOXO1 in cardiomyocytes. *J. Endocrinol.* **192**, 149–158