Outcomes of ureteroscopy and internal ureteral stent for pregnancy with urolithiasis: a systematic review and meta-analysis

Xingwei Jin¹, Boke Liu¹, Yunqi Xiong², Weichao Tu¹, Yuan Shao¹, Lin Zhang³,⁴,⁵,* , Dawei Wang¹,*
¹ Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
² Department of Gynaecology and Obstetrics, Shanghai TCM College Affiliated Shu Guang Hospital, Shanghai, China.
³ School of Population Medicine and Public Health, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
⁴ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria 3100, Australia.
⁵ The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3100, Australia.

Xingwei Jin and Boke Liu contributed equally as co-first authors

* Lin Zhang and Dawei Wang contributed equally as co-correspondences

*Correspondence to:

Dr. Dawei Wang; Department of Urology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Address: No. 197 Ruijin Er Road, Shanghai 200025, China; Tel.: +86 021 67888999; Email: wdwrjhn@163.com

Dr. Lin Zhang; School of Population Medicine and Public Health, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China. Tel.: + 86 10 65105916; Email: tony1982110@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Transparency declaration

The corresponding authors affirm that this manuscript is an accurate account of the study proposed with no important aspects omitted, and that any discrepancies from the study as planned and registered will be explained upon the completion of the proposed study.

Ethical approval

Ethics approval is not required for this study because it is a systematic review and meta-analysis by using the published available data.

Details of funding

This study was supported by the General Programs of the National Natural Science Foundation of China (No. 81970658) and the Youth Program of Shanghai Ruijin Hospital North (2020ZY06).

Conflict of interest

The authors have declared that no competing interests exist.

Statement of independence of researchers form funders

Not applicable.

Patient involvement

No patients were involved in the design or analysis of this study.

Data sharing statement

All data relevant to the study are included in the article or uploaded as supplementary information.
ABSTRACT

Objectives

To investigate the outcomes of internal ureteral stent versus ureteroscopy (URS) treatments for pregnant women with urolithiasis.

Design

This is a systematic review and meta-analysis of observational studies that investigated the outcomes of internal ureteral stent and ureteroscopy for pregnancy with urolithiasis. This systematic review have been registered on the PROSPERO website (www.york.ac.uk/inst/crd, registration number: CRD42020195607).

Data Sources

Relevant studies published from January 1980 to April 2020 were identified through a systematic literature search in MEDLINE, EMBASE, Web of Science and the Cochrane Library.

Data extraction and synthesis

All pregnant women in their all pregnancy stages who were underwent double-J (D-J) stent insertion only or URS operation for lithotripsy/stone extraction/exploration were considered. The number of related participants in study more than 10 were included. Fertility outcome and complications of intervention were extracted as main outcomes, while other data such as operation success rate, stone free rate (SFR), patient characteristics, anaesthetic method, ureteral stone characteristics, detail of interventions were obtained as well. Complications were stratified according to Clavien-Dindo criteria. Two authors independently extracted data and assessed the quality of included studies. Study-specific prevalence rates were pooled using a random-effects model. We applied the Newcastle-Ottawa Scale quality assessment to evaluate the quality of the selected studies.
Results

A total of 25 studies were identified with 131 cases undergoing serial stenting and 789 cases undergoing URS operation. The age range was from 16 to 41, and urolithiasis occurred in the second trimester most. Ultrasound was the most commonly used diagnostic method. The most common site of calculi was distal ureter. The average stone size was between 6-17mm. There were 6 studies investigating D-J stent insertion only, while 23 studies involving URS operation. The most commonly used anesthesia for internal ureteral stent therapy was local anesthesia, and for URS treatments, general anesthesia and spinal anesthesia were widely used. The pooled operation success rate was 97% for D-J stent insertion, and 99% for URS. Serial D-J stenting was an effective methods for treating ureter obstruction and only a few patients passed stone spontaneously. Different common lithotripters were used in URS operations and the pooled SFR was about 91%. For internal ureteral stent therapy; the rate of normal fertility outcome was 99%, but the pooled incidence of complications was about 45%. For the URS treatment group, the rate of normal fertility outcome was 99% as well, and the pooled incidence of complications was about 1%. However, the pooled premature and abortion incidence rate of two group were the same as less than 1%, and the same as this in serious complication incidence rate.

Conclusions

Both ureteroscopy operation and internal ureteral stent were usually used for handing pregnancy with urolithiasis. Two treatments had less side effective on fertility outcome, but internal ureteral stent may cause more complications. Evidence suggests that URS therapy may have a greater advantage for pregnancy with urolithiasis when the conditions permit. As it is proved safe and effective, internal ureteral stent could be considered at emergency condition or preoperative preparations was lack.
Keywords: Pregnancy; Urolithiasis; Double-J stent; Ureteroscopy.
INTRODUCTION

The incidence rates of pregnant women with symptomatic urinary tract stones is reported as range from 1 in 2000 to 1 in 200[1]. Symptomatic urolithiasis can lead to renal colic, urinary tract infection and ureteral obstruction posing significant morbidity and potentially mortality not only to mother but also to child. The main risks are pre-term delivery and premature rupture of membranes, which brings serious health risks to the fetus[2, 3]. It is important for the urologists and obstetricians to be aware of the management of this condition.

When managing a pregnant patient with urolithiasis, conservative management is favoured where possible. Surgical intervention are available for those that do not improve with conservative measures [4]. Ureteroscopy (URS) and internal ureteral stent are the most widely used in pregnancy with symptomatic urolithiasis[5]. Insertion of double-J (D-J) stent till definitive treatment in the postpartum period is a temporising measure and related studied is not so many. And with continued advancements in endoscopic technology and endourological techniques, URS seems to be considered as first-line treatment in the management of ureteric stones in pregnancy. However, although the latest 2020 European Association of Urology (EAU) guideline has recommended URS as reasonable alternative option [6], there is still lack of evaluation of evidence-based medicine in comparison between URS and internal ureteral stent. This systematic review and meta-analysis tried to update the outcomes of internal ureteral stent and URS treatments for pregnant women with urolithiasis and make a comparison.

METHODS

We performed the systematic review according to a predetermined protocol and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) guidelines[7]. We had registered our systematic review on the PROSPERO website (www.york.ac.uk/inst/crd, registration number: CRD42020195607). Two reviewers independently undertook the literature search (X.J. and B.L.), assessment for eligibility (X.J. and B.L.), data extraction (Y.S. and W.T.), and qualitative assessment (D.W. and Y.X.). Any inconsistencies between the two reviewers were reviewed by a third reviewer (L.Z.) and resolved by consensus. By consensus among all three reviewers (X.J., B.L. and L.Z.), if data sources were duplicated in more than one study, only the original study was included in the meta-analysis.
PICOS definition of this study:

Participants: Pregnant women with urolithiasis whatever which pregnancy stage they were.

Intervention: D-J stent insertion only.

Comparators (controls): URS operation for lithotripsy/stone extraction/exploration.

Outcome: Fertility results and complications.

Study design: RCTs and observational studies (case-control, cross-sectional and cohort) were included in this systematic review and meta-analysis.

Eligibility criteria: 1). Pregnant women in any pregnancy stages who underwent D-J stent insertion only or ureteroscopy operation for urolithiasis treatment were included. 2). Studies published between January 1980 and April 2020 were eligible for evaluation. 3). The number of related participants in each group of study should be more than 10.

Studies were excluded if they: 1). Article type including review, comment, letter, guideline, or meta; 2). Related data of pregnancy or interventions was lack; 3). Photographic skill, equipment evaluation or diagnosis criteria of urolithiasis in pregnancy; 4). Research for neonates; 5). Physiologic hydronephrosis without stone disease; 6). Extracorporeal shock wave lithotripsy, percutaneous nephrostomy, or other treatments for pregnancy with urolithiasis.

Search strategy

We conducted a literature search using PubMed (MEDLINE), Embase, Web of Science and the Cochrane Library which were published from January 1980 to April 2020. The Medical Subject Heading (MeSH) terms were used in conjunction with the following keywords for our search: (Pregnanc* or Pregnancy or Pregnant or Gestation* or Pregnant woman or Mother*) **AND** (Urinary Calcul* OR Urinary Calculi OR Urinary Calculus OR Urinary Stone* OR Urinary Tract Stone* OR Ureteral Calcul* OR Ureteral Calculi OR Ureteral Calculus OR Kidney Calcul* OR Kidney Calculi OR Kidney Calculus OR Nephrolith OR Renal Calcul* OR Renal Calculi OR Renal Calculus OR Kidney Stone* OR Staghorn Calcul* OR Staghorn Calculi OR Staghorn Calculus OR Urinary Lithiasis) **AND** (Ureteroscopies OR Ureteroscopic OR Ureteroscopic Surgical OR Ureteroscopic Surgical Procedure* OR Ureteroscopic Surgery
OR Ureteroscopy) **AND** (Double-J stent OR Ureteral stent OR Ureteral double-J stent OR Ureteral D-J stent OR Double J ureteral stent OR D-J ureteral stent OR stent OR D-J stent).

Full search strings are presented in **Table S1**. References from relevant articles, editorials, conference abstracts, letters, and reviews were thoroughly reviewed to identify additional studies. Full manuscripts of every article with a relevant title and abstract were then reviewed for eligibility.

Data extraction and qualitative assessment

Two reviewers (Y.S., W.T.) independently extracted the following study-level characteristics from each eligible study: first author, year of publication, country where the study was conducted, journal, study period, age, trimester, diagnose method, stone location and size, anesthetic method, intervention and sample size, operation success rate, stone free rate (SFR), fertility outcome, complications and follow-up pattern. Two groups were set as different treatment procedures: internal ureteral stent (D-J stent) therapy group and URS group. Fertility outcome and complications were also assessed with Clavien-Dindo classification which as showed in **Table S2**. Clavien-Dindo III-V was regarded as serious complications.

We applied the Newcastle-Ottawa Scale (NOS) quality assessment tool to evaluate the quality of the selected observational studies. This tool was used to measure the key aspects of the methodology in selected studies with regard to design quality and the risk of biased estimates based on three design criteria: 1) selection of study participants; 2) comparability of study groups; and 3) assessment of outcome and exposure with a star system (with a maximum of 9 stars). We judged studies that received a score of 7-9 stars to be at low risk of bias, studies that scored 4-6 stars to be at medium risk, and those that scored 3 or less to be at high risk of bias. A funnel plot was used to assess the publication bias. Any disagreement on the data extraction and quality assessment of the studies were resolved through comprehensive discussion (D.W., Y.X. and L.Z.).

Statistical analysis

Study-specific prevalence rate estimates were combined using a random-effects model, that considers within-study and between-study variations. Corresponding 95% Confidence Interval (CIs) were extracted directly from articles where available. The statistical heterogeneity among studies was evaluated using Cochran’s Q test and I^2 statistic, with values of 25%, 50%, and
75% representing low, moderate, and high heterogeneity, respectively. The criterion for identifying heterogeneity was a \(P \) value less than 0.05 for the Q test.

An estimation of publication bias was evaluated by the Beggs funnel plot, in which the SE of log (OR) of each study was plotted against its log (OR). An asymmetrical plot suggests possible publication bias. Egger's linear regression test assessed funnel plot asymmetry, a statistical approach to identify funnel plot asymmetry on the natural logarithm scale of the rates. All statistical analyses were performed using Stata (version 14.2; StataCorp LP, College Station, Texas). All \(P \) values were two-sided, and \(P < 0.05 \) was considered as statistically significant.

RESULTS

Selection of studies

A detailed PRISMA flow diagram of literature search and inclusion criteria were shown in Figure 1. A total of 453 studies were initially identified with this literature search (123 from Pubmed, 147 from Embase, 144 from Web of Science and 29 from Cochrane Library). 198 studies were excluded due to duplication and 208 were excluded after screening the titles and abstracts. 22 other studies were excluded after full-text review. Finally, a total of 25 studies were identified as eligible for systematic review and meta-analysis.

The published time span of twenty-five studies included was year 1995-2018, and the research period of cases was between 1984 to 2016. Common information of publications was showed in Table 1. Briefly, among these studies, 1 from Norway[8], 1 from Italy[9], 2 from America[10], 1 from Brazil[11], 1 from Pakistan[12], 4 from Egypt[13, 20, 27, 29], 5 from China[14, 22, 28, 30, 32], 6 from Turkey[15-18, 21, 25], 2 from Iran[23, 31], 1 from Iraq[24] and 1 from Romania[26]. The age range was from 16 to 41, and urolithiasis occurred in the second trimester most. Ultrasound was the most commonly used diagnostic method. The most common sites of calculi were as follows: distal ureter, medium ureter, proximal ureter. The average stone size was between 6-17mm.

Subgroup analysis and meta-analysis

There were 2 studies involving D-J stent insertion only[10, 24], 19 studies involving URS operation[8, 9, 11-21, 23, 25, 26, 29-31], and 4 involving both[22, 27, 28, 32]. A total of 131
cases undergoing internal ureteral stent only and 789 cases undergoing URS operation. Common results were showed in tables and occurrence rates (ORs) were calculated and compared by meta-analysis.

Detailed data of internal ureteral stent therapy was showed in Table 2. The most commonly used anesthesia was local anesthesia. The pooled operation success rate was 97% [Figure 2, 95% CI, 0.94-1.01]. Only one related study mentioned the SFR was about 25% [Figure 3, 95% CI, 0.04-0.46], which reported as an accident situation. The pooled ORs of normal fertility outcome was 99% [Figure 4, 95% CI, 0.99-1.01] and the pooled ORs of adverse pregnant outcome (premature and abortion) was less than 1% [Figure 5, 95% CI, 0-0.02]. The pooled ORs of overall complications was about 45% [Figure 6, 95% CI,0.19-0.70], but the pooled ORs of serious complications (Clavien-Dindo III-V) was less than 1% [Figure 7, 95% CI,0-0].

Detailed data of URS therapy was showed in Table 3. General anesthesia and spinal anesthesia were widely used in this situation. The pooled operation success rate was 99% [Figure 2, 95% CI, 0.98-1]. The SFR was about 91% in all [Figure 3, 95% CI, 0.88-0.95]. The pooled ORs of normal fertility outcome was 99% [Figure 4, 95% CI, 0.99-1], the pooled ORs of adverse pregnant outcome was less than 1% [Figure 5, 95% CI, 0.01-0.02]. The pooled ORs of overall complications was about 1% [Figure 6, 95% CI, 0.01-0.02], and the pooled ORs of serious complications (Clavien-Dindo III-V) was less than 1% [Figure 7, 95% CI,0-0].

Meta-analysis results indicated that there was no evidence of statistical heterogeneity between two treatments on operation success rate (Figure 2, $I^2=12.1\%, P=0.280$), normal fertility outcome (Figure 4, $I^2=0.0\%, P=0.989$) and adverse pregnant outcome (Figure 5, $I^2=0.0\%, P=1.000$). However, overall complications of internal ureteral stent therapy was more common than that in URS operation group (Figure 6, $I^2=91.0\%, P < 0.001$). We also analyzed pooled ORs of serious complications in two treatments (Figure 7). There was no evidence of significant statistical heterogeneity among studies ($I^2=0.0\%, P=1.000$).

Qualitative assessment and publication bias

The NOS tool was used to conduct a qualitative assessment of the selected studies to review the quality of the studies and detect possible bias (Table 4 and Table 5). Of the 25 studies, 8 were
at low risk of bias (7-9 stars). 16 studies were at medium risk (4-6 stars) mainly due to bias from representativeness of case or controls, control definition and comparability. 1 study was high risk (3 stars) mainly due to bad representativeness, lack of control and unclear control exposure. The funnel plot showed certain publication bias in the studies included in the meta-analysis (Begg's test with P<0.001) (Figure S1).

DISCUSSION

From the best of our knowledge, that this study is the first systematic review to investigate and compare between the outcomes of the ureteroscopy and serial D-J stenting therapy in pregnancy with urolithiasis. To determine the efficacy and safety of two treatments, we analysed the relative information as much detail as possible. This meta-analysis contained 25 studies with total 920 cases of urolithiasis during pregnancy. This meta-analysis contains studies selected from several countries as stated above. As showed in Table 1, most studies come from Asia continent (15 studies), followed by Africa continent (4 studies), Europe continent (3 studies) and America continent (including North and South America, 3 studies). So this review could represent human races of different skin colors.

Urolithiasis in pregnancy is the most common cause of non-obstetric reason for hospital admission, 80–90% of which are diagnosed in the 2nd or 3rd trimester of their pregnancy when the disease becomes symptomatic[33-36]. As a majority of calculi could be passed with treatment of intravenous fluids and analgesia, the first-line treatment of urolithiasis in pregnancy is conservative management. This is recommended by both the latest European Association of Urology (EAU) and the American Urological Association (AUA). However, if complications develop and may even affect fetal safe, or the patient does not feel adequate relief, more aggressive treatment should be considered. Shock wave lithotripsy is absolutely contraindicated in pregnancy because of potential fetal death[37]. Percutaneous nephrostomy (PCN) drainage is also not an appropriate choice as it raises risk of septic complications and imposes additional burden of an external drain[38]. The common utilization of prone position and fluoroscopy limited PCN in pregnancy as well[39]. Therefore, internal ureteral stent and URS are the most common treatments in clinic for the pregnant patient.

After failed in initial conservative treatment, insertion of D-J stent might be a safe choice. Serial stenting for pregnancy with urolithiasis was common used in clinic but there were not many related studies. After scanning articles in the past 30 years, only 6 related articles were
included in this meta-analysis[10, 22, 24, 27, 28, 32]. Historically, serial stenting was considered as the gold standard surgical treatment for pregnancy with urolithiasis as it was less invasive and could be performed under local anesthesia[40]. This amount of anesthetic drugs and fewer surgical traumas was safer for the fetus[24]. And its effect of relieving obstruction and pain, maintenance of pregnancy was proved as this meta-analysis suggested. But there were still some negative opinions. On the one hand, serial stenting may be poorly tolerated by some pregnant women as it caused pain and reducing quality of life. On the other hand, insertion of D-J stent was a temporary measure, the D-J stents need a regularly replacement. And due to the increased concentration of calcium and urate in urine during pregnancy, which cause more prone to encrustation, these invasive operations need more frequency[20, 41]. With the increase of invasive operations, complications such as UTI, stent migration were increased[27, 32, 42], and the cost raised as well[39]. Actually, our meta-analysis had demonstrated the pooled ORs of complications after serial stenting was about 45%. However, the pooled ORs of serious complications (Clavien-Dindo III-V) after serial stenting was less than 1%. And there is no evidence that serial stenting treatment was harmful for pregnancy as the pooled ORs of adverse pregnant outcome was less than 1%. Internal ureteral stent was proved to be safe for pregnant woman and fetus in all.

Not the same as internal ureteral stent operation, URS for treating urolithiasis in pregnancy were studied by many urologists, as 23 papers were included in this meta-analysis as mentioned above[8, 9, 11-23, 25-32]. It is common that anesthesia methods were including general anesthesia and spinal anesthesia after scanning the papers included. Although there were risks in anesthesia and surgery, development in technology provided a guarantee for perioperative safety. After systematic analysis, we calculated that the pooled ORs of complications was about 1% and the pooled ORs of normal fertility outcome was 99%. Another advantage of URS was the high SFR which arrived 91%. High stone clearance rates and low complication rates made URS be recommended by the 2020 EAU guideline.

In the latest 2020 EAU guideline, URS looks like a better selection for pregnancy with urolithiasis compared with internal ureteral stent, and stent insertion therapy is only mentioned for symptomatic moderate-to-severe hydronephrosis during pregnancy. It looks like ureteral stent insertion is not a proper treatment for pregnant women with urolithiasis. But we need to under that a successful URS operation must base on detailed preoperative preparation and stringent obstetric care. At emergency condition, or in a backward obstetric
care environment, internal ureteral stent may be better choice as it is also safe and effective in all. And it could gain time for URS later. Urologist and obstetrician should work together to ensure the safety of pregnancy and fetus.

There were several inherent limitations in this meta-analysis. First, most of the included studies were retrospective study. This might cause inevitable methodological defects in these studies, including data bias, insufficient baseline comparisons, and insufficient data collection. Urolithiasis during pregnancy is not a rare disease, but for urologists, it is not easy to handle both urolithiasis condition and obstetric care; and after failed in initial conservative treatment, it may be considered as an emergency to handle rapidly. Thus well-designed RCTs were difficult to accomplish. Secondly, performance bias should also be considered. Although various centres have performed similar operations, the medical equipment and medical teams were different. Surgery is a complex process; these differences may also lead to different outcome. What’s more, there was unavoidable bias when the data were pooled. Therefore, further well-designed, prospective studies are required, and those studies should take into account selection bias, performance bias and the issue of confounding. Finally, funnel plot showed certain publication bias in included articles, but considering the number of included article was small, we reserved all studies. Despite these limitations, this updated meta-analysis provides an important clinical reference for the urolithiasis during pregnancy.

CONCLUSION

Both ureteroscopy operation and internal ureteral stent were usually used for handing pregnancy with urolithiasis. Two treatments had less side effective on fertility outcome, but internal ureteral stent may cause more complications. Evidence suggests that URS therapy may have a greater advantage for pregnancy with urolithiasis when the conditions permit. As it is proved safe and effective, internal ureteral stent could be considered at emergency condition or preoperative preparations was lack.

Figure legends/captions

Figure 1. PRISMA flow diagram of study selection for meta-analysis

Figure 2. Meta-analysis about operation success rate in D-J stent therapy group and URS group.
Figure 3. Meta-analysis about stone free rate in D-J stent therapy group and URS group.

Figure 4. Meta-analysis about normal fertility outcome in D-J stent therapy group and URS group.

Figure 5. Meta-analysis about adverse pregnant outcome (premature and abortion) in D-J stent therapy group and URS group.

Figure 6. Meta-analysis about overall complications in D-J stent therapy group and URS group.

Figure 7. Meta-analysis about Clavien-Dindo III-V complications in D-J stent therapy group and URS group.

Figure S1. Funnel Plot for Publication Bias.

Table 1. Summary of characteristic for studies included in the meta-analysis.

Table 2. Summary of details for D-J stent therapy group.

Table 3. Summary of details for URS group.

Table 4. Newcastle-Ottawa Scale review for cohort studies from systematic review.

Table 5. Newcastle-Ottawa Scale review for case-control and cross-sectional studies from systematic review.

Table S1. Search strategy and results.

Table S2. Complications and their Clavien-Dindo Classification.

Uncategorized References

1. Fiadjo P, Kannan K, Rane A: *Maternal urological problems in pregnancy*. *Eur J Obstet Gynecol Reprod Biol* 2010, 152(1):13-17.

2. Pedro RN, Das K, Buchholz N: *Urolithiasis in pregnancy*. *Int J Surg* 2016, 36(Pt D):688-692.

3. Fregonesi A, Dias FG, Saade RD, Dechaalani V, Reis LO: *Challenges on percutaneous nephrolithotomy in pregnancy: Supine position approach through ultrasound guidance*. *Urol Ann* 2013, 5(3):197-199.

4. Hendricks SK, Ross SO, Krieger JN: *An algorithm for diagnosis and therapy of management and complications of urolithiasis during pregnancy*. *Surg Gynecol Obstet* 1991, 172(1):49-54.

5. Blanco LT, Socarras MR, Montero RF, Diez EL, Calvo AO, Gregorio SAY, Cansino JR, Galan JA, Rivas JG: *Renal colic during pregnancy: Diagnostic and therapeutic aspects*. *Literature review*. *Central European Journal of Urology* 2017, 70(1):93-100.

6. Türk C, Neisius A, Petrik A, Seitz C, Skolarikos A, Thomas K: *EAU Guidelines on Urolithiasis*. *European Association of Urology* 2020:32.
7. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 2015, 350:g7647.

8. Ulvik NM, Bakke A, Hoisaeter PA, Kramolowsky EV: Ureteroscopy in pregnancy. *Journal of Urology* 1995, 154(5):1660-1663.

9. Scarpa RM, De Lisa A, Usai E: Diagnosis and treatment of ureteral calculi during pregnancy with rigid ureteroscopes. *Journal of Urology* 1996, 155(3):875-877.

10. Parulkar BG, Hopkins TB, Wollin MR, Howard Jr PJ, Lal A: Renal colic during pregnancy: A case for conservative treatment. *Journal of Urology* 1998, 159(2):365-368.

11. Lemos GC, El Hayek OR, Apezzato M: Rigid ureteroscopy for diagnosis and treatment of ureteral calculi during pregnancy. *International Braz J Urol* 2002, 28(4):311-315.

12. Rana AM, Aquil S, Khawaja AM: Semirigid Ureteroscopy and Pneumatic Lithotripsy as Definitive Management of Obstructive Ureteral Calculi During Pregnancy. *Urology* 2009, 73(5):964-967.

13. Elgamasy A, Elsherif A: Use of Doppler ultrasonography and rigid ureteroscopy for managing symptomatic ureteric stones during pregnancy. *BJU International* 2010, 106(2):262-266.

14. Liu GQ, Wang JF, Li JR, Zheng JT, Huang ZQ, Ye ZQ: Urolithiasis in Pregnancy: Survey in Clinical Epidemiology. *Journal of Huazhong University of Science and Technology-Medical Sciences* 2011, 31(2):226-230.

15. Polat F, Yesil S, M KI, Biri H: Treatment outcomes of semirigid ureterorenoscopy and intracorporeal lithotripsy in pregnant women with obstructive ureteral calculi. *Urological Research* 2011, 39(6):487-490.

16. Atar M, Bozkurt Y, Soylemez H, Penbegul N, Sancaktutar AA, Bodakci MN, Hatipoglu NK, Hamidi C, Ozler A: Use of renal resistive index and semi-rigid ureteroscopy for managing symptomatic persistent hydronephrosis during pregnancy. *International Journal of Surgery* 2012, 10(10):629-633.

17. Bozkurt Y, Penbegul N, Soylemez H, Atar M, Sancaktutar AA, Yildirim K, Sak ME: The efficacy and safety of ureteroscopy for ureteral calculi in pregnancy: Our experience in 32 patients. *Urological Research* 2012, 40(5):531-535.

18. Hoscan MB, Ekinci M, Tunckran A, Oksay T, Ozorak A, Ozkardes H: Management of symptomatic ureteral calculi complicating pregnancy. *Urology* 2012, 80(5):1011-1014.

19. Johnson EB, Krambeck AE, White WM, Hyams E, Beddies J, Marien T, Shah O, Matlaga B, Pais VM, Jr.: Obstetric complications of ureteroscopy during pregnancy. *Journal of Urology* 2012, 188(1):151-154.

20. Abdel-Kader MS, Tamam AA, Elderwy AA, Gad M, El-Gamal MA, Kurkar A, Safwat AS: Management of symptomatic ureteral calculi during pregnancy: Experience of 23 cases. *Urology Annals* 2013, 5(4):241-244.

21. Bozkurt Y, Soylemez H, Atar M, Sancaktutar AA, Penbegul N, Hatipoglu NK, Bodakci MN, Evsen MS: Effectiveness and safety of ureteroscopy in pregnant women: a comparative study. *Urolithiasis* 2013, 41(1):37-42.
22. Yan S, Xiang F, Song Y: Diagnosis and operative intervention for problematic ureteral calculi during pregnancy. *International Journal of Gynecology and Obstetrics* 2013, 121(2):115-118.

23. Keshvari Shirvan M, Darabi Mahboub MR, Rahimi HR, Seyedi A: The evaluation of ureteroscopy and pneumatic lithotripsy results in pregnant women with urethral calculi. *Nephrourol Mon* 2013, 5(4):874-878.

24. Ngai HY, Salih HQ, Albeer A, Aghaways I, Buchholz N: Double-J ureteric stenting in pregnancy: A single-centre experience from Iraq. *Arab Journal of Urology* 2013, 11(2):148-151.

25. Adanur S, Ziypak T, Bedir F, Yapanoglu T, Aydin HR, Yilmaz M, Aksoy M, Ozbey I: Ureteroscopy and holmium laser lithotripsy: Is this procedure safe in pregnant women with ureteral stones at different locations? *Archivio Italiano di Urologia e Andrologia* 2014, 86(2):86-89.

26. Georgescu D, Multescu R, Geavlete B, Geavlete P, Chiutu L: Ureteroscopy -- first-line treatment alternative in ureteral calculi during pregnancy? *Chirurgia (Bucuresti)* 2014, 109(2):229-232.

27. Teleb M, Ragab A, Dawod T, Elgalaly H, Elsayed E, Sakr A, Abdelhameed A, Maarouf A, Khalil S: Definitive ureteroscopy and intracorporeal lithotripsy in treatment of ureteral calculi during pregnancy. *Arab journal of urology* 2014, 12(4):299 - 303.

28. Wang Z, Xu L, Su Z, Yao C, Chen Z: Invasive management of proximal ureteral calculi during pregnancy. *Urology* 2014, 83(4):745-749.

29. Fathelbab TK, Hamid AMA, Galal EM: Ureteroscopy for treatment of obstructing ureteral calculi in pregnant women: Single center experience. *African Journal of Urology* 2016, 22(2):106-109.

30. Zhang S, Liu G, Duo Y, Wang J, Li J, Li C: Application of ureteroscope in emergency treatment with persistent renal colic patients during pregnancy. *PLoS ONE* 2016, 11(1).

31. Abedi AR, Allameh F, Razzaghi MR, Fadavi B, Qashqai H, Najafi S, Ranjbar A, Bashirian M: The Efficacy and Safety of Laser Lithotripsy in Pregnancy. *Journal of Lasers in Medical Sciences* 2017, 8(2):84-87.

32. Tan ST, Chen X, Sun M, Wu B: The comparation of effects and security of double-J stent retention and ureteroscopy lithotripsy in the treatment of symptomatic ureteral calculi during pregnancy. *European Journal of Obstetrics and Gynecology and Reproductive Biology* 2018, 227:32-34.

33. Pais VM, Jr., Payton AL, LaGrange CA: Urolithiasis in pregnancy. *Urol Clin North Am* 2007, 34(1):43-52.

34. Biyani CS, Joyce AD: Urolithiasis in pregnancy. I: pathophysiology, fetal considerations and diagnosis. *BJU Int* 2002, 89(8):811-818; quiz i-ii.

35. Srirangam SJ, Hickerton B, Van Cleynenbreugel B: Management of urinary calculi in pregnancy: A review. *Journal of Endourology* 2008, 22(5):867-875.
36. Laing KA, Lam TB, McClinton S, Cohen NP, Traxer O, Somani BK: Outcomes of ureteroscopy for stone disease in pregnancy: results from a systematic review of the literature. Urologia Internationalis 2012, 89(4):380-386.

37. Ohmori K, Matsuda T, Horii Y, Yoshida O: Effects of shock waves on the mouse fetus. J Urol 1994, 151(1):255-258.

38. Khoo L, Anson K, Patel U: Success and short-term complication rates of percutaneous nephrostomy during pregnancy. J Vasc Interv Radiol 2004, 15(12):1469-1473.

39. Clennon EK, Duty BD, Caughey AB: Cost-Effectiveness of Urolithiasis Management in Pregnancy. Urology Practice 2019, 6(6):337-344.

40. Valovska MTI, Pais VM: Contemporary best practice urolithiasis in pregnancy. Therapeutic Advances in Urology 2018, 10(4):127-138.

41. Choi CI, Yu YD, Park DS: Ureteral Stent Insertion in the Management of Renal Colic during Pregnancy. Chonnam Medical Journal 2016, 52(2):123-127.

42. Semins MJ, Trock BJ, Matlaga BR: The Safety of Ureteroscopy During Pregnancy: A Systematic Review and Meta-Analysis. Journal of Urology 2009, 181(1):139-143.
Figure 1. PRISMA flow diagram of study selection for meta-analysis

453 records retrieved through database search (Pubmed 123, Embase 147, Web of Science 144, Cochrane Library 29)

255 unique titles/abstracts scanned

198 duplicated records removed

208 records excluded due to irrelevant titles/abstracts or less than 10 cases or review papers

47 full-text papers scanned

22 records were excluded.
- 10 discard as conference abstract without full-text
- 2 target sample number less than 10 cases
- 6 about other conditions without the details of surgery or complications
- 4 not in English

25 papers included in the systematic review
firstauthor_year	patient size	Operation success rate,%	ES (95% CI)	% Weight
URS				
Ulvik1995	25	.99	0.99 (0.95, 1.03)	3.64
Scarpia1996	15	.99	0.99 (0.94, 1.04)	2.29
Lemos2002	14	.99	0.99 (0.94, 1.04)	2.15
Rana2009	19	.99	0.99 (0.95, 1.03)	2.85
Elgamasy2010	15	.99	0.99 (0.94, 1.04)	2.29
Liu2011	24	.99	0.99 (0.95, 1.03)	3.51
Polat2011	16	.99	0.99 (0.94, 1.04)	2.43
Atar2012	19	.99	0.99 (0.95, 1.03)	2.85
Bozkurt2012	32	.99	0.99 (0.96, 1.02)	4.50
Hoscan2012	57	.99	0.99 (0.96, 1.02)	7.17
Johnson2012	46	.99	0.99 (0.96, 1.02)	6.07
Abdel2013	17	.99	0.99 (0.94, 1.04)	2.57
Bozkurt2013	41	.902	0.90 (0.81, 0.99)	0.74
Song2013	21	.857	0.86 (0.71, 1.01)	0.28
Keshvari2013	44	.99	0.99 (0.96, 1.02)	5.86
Adanur2014	19	.99	0.99 (0.95, 1.03)	2.85
Georgescu2014	54	.815	0.81 (0.71, 0.92)	0.58
Teleb2014	21	.99	0.99 (0.95, 1.03)	3.11
Wang2014	64	.99	0.99 (0.97, 1.01)	7.83
Fathebab2016	41	.99	0.99 (0.96, 1.02)	5.53
Zhang2016	117	.99	0.99 (0.97, 1.01)	11.76
Abedi2017	45	.99	0.99 (0.96, 1.02)	5.96
Tan2018	23	.87	0.87 (0.73, 1.01)	0.33
Subtotal			0.99 (0.98, 1.00)	87.15
(I-squared = 0.0%, p = 0.572)				
D-J stent only				
Parulkar1998	15	.99	0.99 (0.94, 1.04)	2.29
Song2013	17	.706	0.71 (0.49, 0.92)	0.13
Ngai, H. Y2013	30	.99	0.99 (0.95, 1.03)	4.26
Teleb2014	22	.99	0.99 (0.95, 1.03)	3.25
Wang2014	17	.99	0.99 (0.94, 1.04)	2.57
Tan2018	30	.833	0.83 (0.70, 0.97)	0.35
Subtotal			0.97 (0.94, 1.01)	12.85
(I-squared = 56.7%, p = 0.042)				
Overall			0.99 (0.98, 0.99)	100.00
(I-squared = 12.1%, p = 0.280)				

NOTE: Weights are from random effects analysis
first_author_year	size	SFR, %	ES (95% CI)	Weight
Lemos2002	14	.99	0.99 (0.94, 1.04)	7.35
Rana2009	19	.79	0.79 (0.61, 0.97)	3.41
Polat2011	16	.7273	0.73 (0.51, 0.95)	2.74
Bozkurt2012	32	.99	0.99 (0.96, 1.02)	7.80
Hoscan2012	57	.853	0.85 (0.76, 0.94)	6.05
Johnson2012	46	.86	0.86 (0.76, 0.96)	5.76
Abdel2013	17	.99	0.99 (0.94, 1.04)	7.48
Bozkurt2013	41	.855	0.86 (0.75, 0.96)	5.51
Song2013	21	.857	0.86 (0.71, 1.01)	4.23
Keshvari2013	44	.99	0.99 (0.96, 1.02)	7.90
Georgescu2014	54	.815	0.81 (0.71, 0.92)	5.65
Teleb2014	21	.99	0.99 (0.95, 1.03)	7.61
Wang2014	64	.813	0.81 (0.72, 0.91)	5.92
Fathelee2016	41	.897	0.90 (0.80, 0.99)	6.01
Zhang2016	117	.846	0.85 (0.78, 0.91)	6.94
Abedi2017	45	.933	0.93 (0.86, 1.01)	6.69
Subtotal (I-squared = 76.6%, p = 0.000)			0.91 (0.88, 0.95)	97.05

D-J stent only

| Song2013 | 17 | .25 | 0.25 (0.04, 0.46) | 2.95 |

Subtotal (I-squared = .%, p = .) | | 0.25 (0.04, 0.46) | 2.95 |

Overall (I-squared = 85.4%, p = 0.000) | | 0.89 (0.84, 0.93) | 100.00 |

NOTE: Weights are from random effects analysis

Summary of stone-free rate (%)
firstauthor_year	patient size	Deliveries normal	ES (95% CI)	% Weight
URS				
Ulvik1995	25	22	0.88 (0.75, 1.01)	0.13
Scarpa1996	15	15	1.00 (0.98, 1.02)	5.49
Lemos2002	14	14	1.00 (0.98, 1.02)	5.49
Elgamasy2010	15	14	0.93 (0.81, 1.06)	0.13
Liu2011	24	22	0.92 (0.81, 1.03)	0.17
Polat2011	16	16	1.00 (0.98, 1.02)	5.49
Atar2012	19	19	1.00 (0.98, 1.02)	5.49
Bozkurt2012	32	32	1.00 (0.98, 1.02)	5.49
Johnson2012	46	44	0.96 (0.90, 1.02)	0.61
Abdel2013	17	17	1.00 (0.98, 1.02)	5.49
Bozkurt2013	41	41	1.00 (0.98, 1.02)	5.49
Song2013	21	21	1.00 (0.98, 1.02)	5.49
Keshvari2013	44	44	1.00 (0.98, 1.02)	5.49
Adanur2014	19	19	1.00 (0.98, 1.02)	5.49
Georgescu2014	54	54	1.00 (0.98, 1.02)	5.49
Teleb2014	21	21	1.00 (0.98, 1.02)	5.49
Wang2014	64	64	1.00 (0.98, 1.02)	5.49
Fatbelab2016	41	41	1.00 (0.98, 1.02)	5.49
Zhang2016	117	117	1.00 (0.98, 1.02)	5.49
Abedi2017	45	45	1.00 (0.98, 1.02)	5.49
Subtotal (I-squared = 0.0%, p = 0.979)			1.00 (0.99, 1.00)	88.85

D-J stent only

firstauthor_year	patient size	Deliveries normal	ES (95% CI)	% Weight
Song2013	17	16	0.94 (0.83, 1.05)	0.17
Teleb2014	22	22	1.00 (0.98, 1.02)	5.49
Wang2014	17	17	1.00 (0.98, 1.02)	5.49
Subtotal (I-squared = 0.0%, p = 0.593)			1.00 (0.99, 1.01)	11.15

Overall (I-squared = 0.0%, p = 0.989)

1.00 (0.99, 1.00) 100.00

NOTE: Weights are from random effects analysis

Summary of normal delivery rate (%)
firstauthor_year	patient size	premature labour and abortion	ES (95% CI)	% Weight
URS				
Ulvik1995	25	1	0.04 (-0.04, 0.12)	0.36
Scarpa1996	15	0	0.01 (-0.01, 0.03)	5.47
Lemos2002	14	0	0.01 (-0.01, 0.03)	5.47
Elgamas2010	15	1	0.07 (-0.06, 0.19)	0.13
Liu2011	24	1	0.04 (-0.04, 0.12)	0.33
Polat2011	16	0	0.01 (-0.01, 0.03)	5.47
Atar2012	19	0	0.01 (-0.01, 0.03)	5.47
Bozkurt2012	32	0	0.01 (-0.01, 0.03)	5.47
Johnson2012	46	2	0.04 (-0.02, 0.10)	0.60
Abdeli2013	17	0	0.01 (-0.01, 0.03)	5.47
Bozkurt2013	41	0	0.01 (-0.01, 0.03)	5.47
Song2013	21	0	0.01 (-0.01, 0.03)	5.47
Keshvari2013	44	0	0.01 (-0.01, 0.03)	5.47
Adanur2014	19	0	0.01 (-0.01, 0.03)	5.47
Georgescu2014	54	0	0.01 (-0.01, 0.03)	5.47
Teleb2014	21	0	0.01 (-0.01, 0.03)	5.47
Wang2014	64	0	0.01 (-0.01, 0.03)	5.47
Fathebab2016	41	0	0.01 (-0.01, 0.03)	5.47
Zhang2016	117	0	0.01 (-0.01, 0.03)	5.47
Abedi2017	45	0	0.01 (-0.01, 0.03)	5.47
Subtotal (I-squared = 0.0%, p = 1.000)			0.01 (0.01, 0.02)	88.90
D-J stent only				
Song2013	17	1	0.06 (-0.05, 0.17)	0.17
Teleb2014	22	0	0.01 (-0.01, 0.03)	5.47
Wang2014	17	0	0.01 (-0.01, 0.03)	5.47
Subtotal (I-squared = 0.0%, p = 0.697)			0.01 (-0.00, 0.02)	11.10
Overall (I-squared = 0.0%, p = 1.000)			0.01 (0.01, 0.02)	100.00

NOTE: Weights are from random effects analysis
firstauthor_year	patient size	Complications (classified)	ES (95% CI)	% Weight
URS				
Ulvik1995	25	4	0.16 (0.02, 0.30)	0.63
Scarpa1996	15	0	0.00 (-0.00, 0.01)	13.61
Lemos2002	14	0	0.00 (-0.01, 0.01)	13.59
Rana2009	19	0	0.00 (-0.00, 0.00)	13.68
Elgamasy2010	15	1	0.07 (-0.06, 0.19)	0.81
Polat2011	16	0	0.00 (-0.00, 0.00)	13.63
Atar2012	19	5	0.26 (0.07, 0.46)	0.34
Bozkurt2012	32	9	0.28 (0.13, 0.44)	0.54
Hoscan2012	57	7	0.12 (0.04, 0.21)	1.66
Abdel2013	17	0	0.00 (-0.00, 0.00)	13.65
Bozkurt2013	41	15	0.37 (0.22, 0.51)	0.60
Song2013	21	3	0.14 (-0.01, 0.29)	0.59
Keshvari2013	44	0	0.00 (-0.00, 0.00)	13.84
Adanur2014	19	2	0.11 (-0.03, 0.24)	0.68
Georgescu2014	54	12	0.22 (0.11, 0.33)	1.03
Teleb2014	21	6	0.29 (0.09, 0.48)	0.36
Wang2014	64	7	0.11 (0.03, 0.19)	2.00
Fathelbab2016	41	17	0.41 (0.26, 0.57)	0.58
Zhang2016	117	13	0.11 (0.05, 0.17)	3.24
Abedi2017	45	4	0.09 (0.01, 0.17)	1.73
Tan2018	23	2	0.09 (-0.03, 0.20)	0.96
Subtotal (I-squared = 86.1%, p = 0.000)			0.01 (0.01, 0.02)	97.76

D-J stent only

firstauthor_year	patient size	Complications (classified)	ES (95% CI)	% Weight
Parulkart1998	15	5	0.33 (0.09, 0.57)	0.24
Song2013	17	11	0.65 (0.42, 0.87)	0.26
Ngai, H. Y2013	30	11	0.37 (0.19, 0.54)	0.45
Teleb2014	22	17	0.77 (0.60, 0.95)	0.43
Tan2018	30	4	0.13 (0.01, 0.25)	0.87
Subtotal (I-squared = 90.1%, p = 0.000)			0.45 (0.19, 0.70)	2.24

Overall (I-squared = 91.0%, p = 0.000)

0.03 (0.02, 0.04) 100.00

NOTE: Weights are from random effects analysis

Summary of total complication incidence rate (%)
firstauthor_year	patient size	Number of Clavien-Dindo III-V	ES (95% CI)	% Weight
URS				
Ulvik1995	25	0	0.00 (-0.00, 0.00)	5.26
Scarpa1996	15	0	0.00 (-0.00, 0.00)	5.26
Lemos2002	14	0	0.00 (-0.00, 0.00)	5.26
Rana2009	19	0	0.00 (-0.00, 0.00)	5.26
Elgamasy2010	15	1	0.07 (-0.06, 0.20)	0.00
Polat2011	16	0	0.00 (-0.00, 0.00)	5.26
Atar2012	19	0	0.00 (-0.00, 0.00)	5.26
Bozkurt2012	32	1	0.03 (-0.03, 0.09)	0.00
Hoscan2012	57	0	0.00 (-0.00, 0.00)	5.26
Abdel2013	17	0	0.00 (-0.00, 0.00)	5.26
Bozkurt2013	41	2	0.05 (-0.05, 0.14)	0.00
Song2013	21	0	0.00 (-0.00, 0.00)	5.26
Keshvari2013	44	0	0.00 (-0.00, 0.00)	5.26
Adanur2014	19	0	0.00 (-0.00, 0.00)	5.26
Georgescu2014	54	0	0.00 (-0.00, 0.00)	5.26
Teleb2014	21	0	0.00 (-0.00, 0.00)	5.26
Wang2014	64	0	0.00 (-0.00, 0.00)	5.26
Fatherbab2016	41	0	0.00 (-0.00, 0.00)	5.26
Zhang2016	117	1	0.01 (-0.01, 0.03)	0.00
Abedi2017	45	0	0.00 (-0.00, 0.00)	5.26
Tan2018	23	0	0.00 (-0.00, 0.00)	5.26
Subtotal (I-squared = 0.0%, p = 1.000)			0.00 (0.00, 0.00)	89.47
D-J stent only				
Parulkar1998	15	5	0.33 (-0.32, 0.99)	0.00
Song2013	17	5	0.29 (-0.28, 0.87)	0.00
Ngai, H. Y2013	30	6	0.20 (-0.19, 0.59)	0.00
Teleb2014	22	0	0.00 (-0.00, 0.00)	5.26
Wang2014	17	0	0.00 (-0.00, 0.00)	5.26
Tan2018	30	1	0.03 (-0.03, 0.10)	0.00
Subtotal (I-squared = 0.0%, p = 0.551)			0.00 (-0.00, 0.00)	10.53
Overall (I-squared = 0.0%, p = 1.000)			0.00 (0.00, 0.00)	100.00

NOTE: Weights are from random effects analysis

Summary of Clavien-Dindo III-V incidence rate (%)
First author	Year	Country, Continent	Journal	Period	Age range	Trimester	Diagnosis method	Stone location (No.)	Stone size, mm (mean/SD,range)		
Ulvik[8]	1995	Norway, Europe	Journal of Urology	September 1984-December 1994	27 (20-41)	4-14 weeks in 3; 15-28 weeks in 9; 29-37 weeks in 12	KUB 1 positive in 6; US 3 positive in 21 (hydronephrosis 21 in 21)	Not mentioned	Not mentioned		
Scarpa[9]	1996	Italy, Europe	Journal of Urology	3-years period	24 (16-30)	20-34	US/symptoms/urinalysis	Not mentioned	Not mentioned		
Parulkar[10]	1998	America, North America	Journal of Urology	January 1984- November 1995	27 (<18y 2; 18-20y 4; 20-30y 43; 30-40y 21)	First trimester in 3; second trimester in 23; third trimester in 44	US 40 positive in 65; IVP 5 positive in 5	Not mentioned	US 0.7 (0.4-1.6); IVP 0.55 (0.4-0.7)		
Lemos[11]	2002	Brazil, South America	International Braz J Urol	Not mentioned	28 (20-34)	18 (12-34)	US 12 positive in 12; ureteroscopy 13 positive in 14	Proximal ureter in 1; medium ureter in 4; distal ureter in 12; 1 missed	6 (4-12)		
Rana[12]	2009	Pakistan, Asia	Urology	1997 - 2007	22 (18-27)	20 (14-34)	First trimester in 1; second trimester in 11; third trimester in 7	US in 11; KUB in 1	Proximal ureter in 11; distal ureter in 8; 11 (8-18)		
Elgamasy[13]	2010	Egypt, Africa	BJU International	June 2003- June 2008	25.9 (18-38)	25.9 (24-30)	US 12 positive in 15; RU 14 positive in 15,	Proximal ureter in 2; medium ureter in 2; distal ureter in 10;	Not mentioned		
Liu[14]	2011	China, Asia	Journal of Huazhong University of Science and Technology-Medical Sciences	January 2004 - December 2009	26.7 (18-37)	23.45 (4-38)	US in 24	6 bilateral; 8 left; 10 right (surgery group)	Not mentioned		
Author	Year	Country, Continent	Journal/Annals	Year Range	Stone Size	Methodology	Locations				
----------	-------	--------------------	---------------------------	------------	------------	-------------	-----------				
Polat[15]	2011	Turkey, Asia	Urological Research	2007-2009	25 (19-34)	US in 11	Proximal ureter in 5; distal ureter in 6; 9.45 (5-12)				
Atar[16]	2012	Turkey, Asia	International Journal of Surgery	December 2010-July 2011	26 (19-40)	US for 8, ureteroscopy for all	Proximal ureter in 5; medium ureter in 5; distal ureter in 7; no stone in 2; 8 (5-19)				
Bozkurt[17]	2012	Turkey, Asia	Urological Research	April 2005-November 2010	27.8 (20-39)	US 16 positive; all 32 positive underwent URS	Proximal ureter in 8; medium ureter in 9; distal ureter in 10; no stone in 5; 8 (5-19, in 16 US positive cases)				
Hoscan[18]	2012	Turkey, Asia	Urology	2001-2011	24 (17-37)	URS 34 positive in 57	Proximal ureter in 8; medium ureter in 6; distal ureter in 20; 7 (4-13)				
Johnson[19]	2012	America, North America	Journal of Urology	Not mentioned	27	Low dose CT in 23; US in 18; MRI in 5	Not mentioned; 7.8 (3-25)				
Abdel[20]	2013	Egypt, Africa	Urology Annals	April 2008-March 2011	23 (19-28)	Clinical presentation and US; MRI in 3	Proximal ureter in 2; medium ureter in 5; distal ureter in 10; 17 (12-21)				
Bozkurt[21]	2013	Turkey, Asia	Urolithiasis	April 2005-Setemper 2011	27.41 ± 5.79	Clinical presentation, presence of microscopic hematuria in urinalysis and US	Proximal ureter in 13; medium ureter in 13; distal ureter in 15; 9.78 ± 3.47				
Author	Year	Country, Region	Journal/Source	Period	First Trimester	Second Trimester	Third Trimester	Ultrasound	MRI	Proximal Ureter	Distal Ureter
--------	------	-----------------	----------------	--------	----------------	-----------------	----------------	-------------	-----	----------------	-------------
Song	2013	China, Asia	International Journal of Gynecology and Obstetrics	April 2001 - July 2012	27.2$§	26.5$§	US 23 positive in 54; MRI 25 positive in 31	Proximal ureter in 10; distal ureter in 44			
Keshvari	2013	Iran, Asia	Nephro-Urology Monthly	June 2003-April 2011	23 ± 2 (19-34)	24 ± 3 (12-36)	First trimester in 2; second trimester in 26; third trimester in 16	US in 44; IVP in 2			
Ngai	2013	Iraq, Asia	Arab Journal of Urology	March 2008-March 2010	27.2 (18-38)	First trimester in 5; second trimester in 15; third trimester in 10	US showed hydronephrosis in 30, stone in 12	Proximal ureter in 2; medium ureter in 10; distal ureter in 36			
Adanur	2014	Turkey, Asia	Archivio Italiano di Urologia e Andrologia	January 2005-December 2012	25.4 (18-41)	24.8(7-33)	US in 6; ureteroscopy for all	Proximal ureter in 6; medium ureter in 5; distal ureter in 8			
Georgescu	2014	Romania, Europe	Chirurgia	January 2006-January 2012	27.2 (20-37)	First trimester in 6; second trimester in 32; third trimester in 16	US stone 18 positive in 54	Proximal ureter in 11; medium ureter in 8; distal ureter in 14			
Teleb	2014	Egypt, Africa	Arab Journal of Urology	October 2006-December 2013	26.6 (SD 4.65)$	24.1 (SD 5.44)$	US 31 positive in 43	Middle ureter in 9§; distal ureter in 13§			

$§ = Specific data not available for all studies.
Author	Year	Country	Journal	Date Range	First trimester	Second trimester	Third trimester	Procedure Details
Wang[28]	2014	China, Asia	Urology	February 2006-Setemper 2012	26 (17-39)	29 (17-39)	US in 79, MRI in 8, Left side in 48, Right side in 39	8 (5-19)
Fathelbab[29]	2016	Egypt, Africa	African Journal of Urology	April 2006-October 2013	23 (19-37)	36 positive in 41	Proximal ureter in 7; distal ureter in 29	8.9 (5-16)
Zhang[30]	2016	China, Asia	PLoS ONE	March 2009-Setemper 2014	25.5±4.6 (16-41)	9-36	US and diagnostic ureteroscopy positive in 86 (only ureteroscopy in 24), negative in 31	8.2 ± 0.6
Abedi[31]	2017	Iran, Asia	Journal of Lasers in Medical Sciences	January 2007-June 2016	29.3	27.3 (13-31)	Clinical manifestations, urinalysis and US	7.84 (5-9mm)
Tan[32]	2018	China, Asia	European Journal of Obstetrics and Gynecology and Reproductive Biology	January 2005-June 2015	26.7 ± 8.9‡	27.5 ± 11.2‡	US	Proximal ureter in 10; medium ureter in 12; distal ureter in 31
					27.4 ± 10.2¶	25.9 ± 9.7¶		

‡ means received internal ureteral stent only; ¶ means received ureteroscopy operation.
Table 2. Summary of details for D-J stent therapy group.

First author	Year	Anesthetic method	No. of operations (success rate)	SFR, %	Fertility outcome	Complications	Complications (classified)	Follow-up pattern
Parulkar[10]	1998	Local anesthesia	15 (100%)	\	Not mentioned	Stent slipping into bladder in 1, then replaced; 5F stent blocked in 2, then replace to 7F; softer stent was needed in 1; calcified stent in 1	Clavien-Dindo III in 5	Not mentioned
Song[22]	2013	Local anaesthesia with lidocaine gel	17, 12 success (70.6%)	25 (3 passed stone spontaneously of 12)	16 delivered at term; preterm labor in 1	Stent-induced bladder irritation in 6, retained; encrusted stent problem in 4; passed a double-J stent in 1	Clavien-Dindo I in 6; Clavien-Dindo III in 5	Not mentioned
Ngai[24]	2013	Local anaesthesia	30 (100%)	\	Not mentioned	Stent encrustation in 3; stent migration in 3; stent-related bladder irritation in 3; gross hematuria in 2	Clavien-Dindo I in 5; Clavien-Dindo III in 6	Renal function tests and US was arranged weekly in the first month, then monthly throughout pregnancy
Teleb[27]	2014	Spinal anaesthesia in 18, topical lidocaine anaesthesia with sedo-analgesia in 4	22 (100%)	\	All 22 delivered at term	Urinary tract infection in 4; irritative LUTS in 13	Clavien-Dindo I in 13; Clavien-Dindo II in 4	US and urinalysis every 4 weeks
Wang[28]	2014	Epidural anesthesia	17 (100%)	\	All 17 delivered at term	Urinary tract infection in 4; stent-related bladder irritation in 12; hematuria in 7	Clavien-Dindo I in 19; Clavien-Dindo II in 4	Obstetric care; clinical assessment, ultrasound examination and urine culture.
Tan[32]	2018	Local anesthesia	30, 25 success (83.3%)	\	Not mentioned	Bladder irritation in 2; D-J stent drop in 1; hard removal of D-J stent in 1	Clavien-Dindo I in 3; Clavien-Dindo III in 1	Not mentioned

SFR: stone-free rate.
Table 3. Summary of details for URS group.

First author	Year	Anesthetic method	No. of operations (success rate)	Tool	SFR, %	Fertility outcome	Complications	Complications (classified)	Follow-up pattern
Ulvik[8]	1995	Epidural anesthesia in 23; spinal anesthesia in 1; pethidine intravenously in 1	25 (100%)	11.5F rigid URS in 23 and 9.5F rigid URS in 2	Not mentioned	Deliveries normal in 19; cesarean section in 2; seven weeks premature in 1; elective termination unrelated to ureteroscopy in 1; 1 unknown	Fever in 3 (treated with antibiotics); irritative bladder symptom in 1	Clavien-Dindo I in 1; Clavien-Dindo II in 3	IVP or ultrasound 3 months after delivery
Scarpa[9]	1996	Without anesthetic in 5; neuroleptic analgesia in 10	15 (100%)	7F rigid URS in 14 and 9.5F rigid URS in 1 (pulsed dye laser in 3, YAG laser in 3, ballistic lithotriptor in 2)	Not mentioned	All 15 delivered at term	0	0	Not mentioned
Lemos[11]	2002	Epidural anesthesia	14 (100%)	7F or 10F URS in 14 (11 removed stone with basket; 2 underwent ultrasonic lithotriptor)	100	All 14 delivered at term	0	0	Not mentioned
Rana[12]	2009	General anesthesia	19 (100%)	6.9F/8F semi-rigid URS with pneumatic lithoclast (5 need ureteral balloon dilator)	79	Not mentioned	0	0	Clinical assessment, ultrasound examination, and urine samples for culture and sensitivity.
Elgamasy[13]	2010	General anaesthesia in 10; spinal anaesthesia in 5	15 (100%)	9.5F URS (5 need balloon dilation; 12 Dormia basket or pneumatic lithotriptor; 2 forceps; 1 no stone)	Not mentioned	14 delivered at term; 1 premature labour (36week)	D-J stent migration in 1	Clavien-Dindo III in 1	Patients were followed closely until delivery.
Author	Year	Anesthesia Type	Number (%)	Ureteral Access	Delivery Method	Complications	Clinical Assessment and Testing	Notes	
--------	------	----------------	-------------	----------------	----------------	--------------	--------------------------------	-------	
Liu[14]	2011	Not mentioned	24 (100%)	Not mentioned	Not mentioned	1 abortion; 1 cesarean	Not mentioned	Not mentioned	
Polat[15]	2011	General anesthesia	16 (100%), 11 with complete fragmentation of the calculi; 5 with stone push-back	9.5F semi-rigid URS with lithoclast	72.73	All 16 delivered at term	0	Obstetric care; clinical assessment, ultrasound examination, and urine culture.	
Atar[16]	2012	Spinal anesthesia in 18; general anesthesia in 1	19 (100%)	9.5F semi-rigid URS in 19 (holmium laser lithotripsy in 15 and stone forceps in 2)	Not mentioned	All 19 delivered at term	Dysuria-pain in 4; urinary infection in 1	Clavien-Dindo I in 4; Clavien-Dindo II in 1	
Bozkurt[17]	2012	Spinal anaesthesia in 22; general anesthesia in 7; local anaesthesia in 3	32 (100%)	9.5F semi-rigid URS (balloon dilator with pneumatic lithotripsy in 8, holmium laser in 17, then extracted with forceps; 2 extracted with forceps only)	100	All 32 delivered at term	Urinary infection in 4; dysuria-pain in 2; sepsis in 1; ureteral laceration in 2	Clavien-Dindo I in 4; Clavien-Dindo II in 4; Clavien-Dindo IV in 1	
Hoscan[18]	2012	General anesthesia	57 (100%)	9.5F semi-rigid URS	85.3	Not mentioned	Urinary tract infection in 3; bladder irritation in 3; uterine contraction in 1	Clavien-Dindo I in 3; Clavien-Dindo II in 4	Obstetric care; clinical assessment, ultrasound examination, and urine culture.
Reference	Year	Type of Anesthesia	Number of Patients	Procedure Details	Outcome	Complications	Other Details		
-----------	------	--------------------	--------------------	------------------	--------	---------------	--------------		
Johnson[19]	2012	General anesthesia in 32; local anesthesia in 5; epidural or spinal anesthesia in 9	46 (100%), 39 with stone	Flexible scope in 8, rigid scope in 21, Both scope in 17; Lithotripsy in 24, basket extraction in 37	86	44 delivered at term; preterm labor in 2	Not mentioned		
Abdel[20]	2013	Spinal anesthesia	17 (100%), 13 with pneumatic lithoclast, 4 with dormia extraction	7.3/8 F semi-rigid URS (Storz) and 6/7.5 F semi-rigid ureteroscope (Wolf)	100	All 17 delivered at term	0 0		
Bozkurt[21]	2013	Spinal anesthesia in 34; general anesthesia in 3; other in 4	41, 37 success (90.2%)	9.5F semi-rigid URS (laser lithotripsy in 27, pneumatic lithotripsy in 6 and stone extraction in 4)	85.5	All 41 delivered at term	Laceration in 3; perforation in 1; urinary infection in 4; dysuria-pain in 6; sepsis in 1	Clavien-Dindo I in 9; Clavien-Dindo II in 4; Clavien-Dindo III in 1; Clavien-Dindo IV in 1	Clinical assessment, US and urine samples for culture and antibiogram
Song[22]	2013	Epidural anesthesia in 21	21, 18 success (85.7%)	Wolf URS and LithoClastMaster	85.7	All 21 delivered at term	Hematuria in 2; stent-induced bladder irritation in 1	Clavien-Dindo I in 3; Not mentioned	Obstetric care; clinical assessment, ultrasound examination, urinalysis and urine culture
Keshvari[23]	2013	General anesthesia	44 (100%)	8F semi-rigid URS (pneumatic lithotripsy in 34, stone extraction with grasper in 16)	100	All 44 delivered at term	0 0	Clavien-Dindo I in 3; Not mentioned	Obstetric care; clinical assessment, ultrasound examination, urinalysis and urine culture
Reference	Year	Anaesthesia Type	Stones Location & Procedure Details	Outcome Details					
-------------	-------	-----------------------------------	---	---					
Adanur[25]	2014	General anaesthesia without using halothane and nitric oxide	7.5 F or 9.5 F semi-rigid URS (holmium-YAG laser in 19, a forcep for extraction of stone fragment in 9) Not mentioned All 19 delivered at term Preterm uterine contraction in 1 and treated with tocolytics; urinary tract infection in 1 and treated with appropriate antibiotics	Not mentioned					
Georgescu[26]	2014	Spinal anaesthesia 42; general anesthesia 12	Semi-rigid URS used during first 2 trimesters (32 success from 38 patients); flexible URS (12 from 16 cases) in the last trimester Not mentioned All 54 delivered at term; uterine contraction in 1 Urinary tract infection developed in 4 patients; renal colic in 2; prolonged hematuria in 1; stent-induced bladder irritation in 4 Obstetric care, clinical assessment, ultrasound examination, urinalysis and urine culture.						
Teleb[27]	2014	Spinal anaesthesia in 19; topical lidocaine anaesthesia with sedo-analgesia in 2	9.5F semi-rigid URS (dilatation of ureteric orifice in 4, pneumatic lithoclast in 14, directly extracted stone in 7) 100 All 21 delivered at term Urinary tract infection in 2; irritative bladder symptom in 4 Clavien-Dindo I in 4; Clavien-Dindo II in 2 US and urinalysis every 4 wks Obstetric care; clinical assessment, ultrasound examination and urine culture.						
Wang[28]	2014	Local anesthesia	8/ 9.8F rigid URS (lithotripsy with Holmium:YAG laser) 81.3 All 64 delivered at term Urinary tract infection in 1; mild ureretic laceration in 1; mild bleeding in 5 Clavien-Dindo I in 6; Clavien-Dindo II in 1 Obstetric care; clinical assessment, ultrasound examination and urine culture.						
Fathelbab[29]	2016	Epidural anesthesia	Semi-rigid URS (pneumatic lithoclast in 22, directly extracted stone in 4) 89.7 All 41 delivered at term Stent-related mild dysuria in 12; hematuria in 5, Clavien-Dindo I in 17 Not mentioned						
Author	Year	Anesthesia	URS Type	Success Rate	Delivery Outcome	Complications	Obstetric Care	Notes	
--------	------	-------------	----------	--------------	-----------------	---------------	----------------	-------	
Zhang[30]	2016	General anesthesia in 72; spinal anesthesia in 45	9.5F semi-rigid URS or flexible URS (pneumatic ballistic lithotripsy or Holmium:YAG laser)	117 (100%)	All 117 delivered at term	Urosepsis in 1; threatened abortion in 12	Obstetric care; clinical assessment, ultrasound examination, urinalysis and urine culture.		
Abedi[31]	2017	Not mentioned	9.5F semi-rigid URS (holmium-YAG laser)	45 (100%)	All 45 delivered at term	Preterm uterine contraction in 2 and treated with tocolysis; urinary tract infection in 2 and treated with appropriate antibiotics	Obstetric care: clinical assessment, ultrasound examination, urinalysis and urine culture.		
Tan[32]	2018	General anesthesia or epidural anesthesia	URS lithotripsy with pneumatic lithotripsy	23, 20 success (87%)	Not mentioned	Bladder irritation in 1; slight hematuria in 1	Obstetric care: clinical assessment, ultrasound examination, urinalysis and urine culture.		

URS: ureteroscopy; SFR: stone-free rate.
Table 4. Newcastle-Ottawa Scale review for cohort studies from systematic review

Study	Country	Selection	Comparability	Outcome	Total
Liu et al. [14]	China	★ ★ ★ ★		★ ★ ★	7
Bozkurt et al.[17]	Turkey	★ ★ ★ ★		★ ★ ★	7
Teleb et al.[27]	Egypt	★ ★ ★ ★		★ ★ ★	7

Guidelines for review:

Selection:
S1, Representativeness of the exposed cohort; ★ a) representative of the community (e.g. community-based colorectal cancer-screening programme or registry) or (single hospital or clinic); b) selected group of people (e.g. nurses, volunteers); d) no description of the derivation of the cohort
S2, Selection of the non-exposed cohort: ★ a) drawn from the same community as the exposed cohort; b) drawn from a different source; c) no description of the derivation of the non-exposed cohort
S3, Ascertainment of exposure: ★ a) secure record (eg medical records); ★b) structured interview; c) written self-report; d) no description
S4, Demonstration that outcome of interest was not present at start of study: ★ a)yes; b) no

Comparability:
C1, ★ Study controls for one most important factor;
C2, ★ Study controls for any additional factors (1> additional factors)

Outcome:
O1, Assessment of outcome: ★ a) independent blind assessment; ★ b) record linkage; c) self-report; d) no description
O2, Follow-up was long enough for outcomes to occur (after delivery or longer): ★ a) yes; b) no
O3, Adequacy of follow-up of cohorts: a) complete follow-up - all subjects accounted for; b) subjects lost to follow up unlikely to introduce bias - small number lost > 10%; c) follow up rate < 90% and no description of those lost; d) no statement.
Table 5. Newcastle-Ottawa Scale review for case-control and cross-sectional studies from systematic review

Study	Country	Selection									
		S1	S2	S3	S4	C1	C2	E1	E2	E3	Total
Ulvik et al.[8]	Norway	★	★			★					4
Scarpa et al.[9]	Italy	★	★			★					4
Parulkar et al.[10]	America	★	★	★							7
Lemos et al. [11]	Brazil	★									3
Rana et al. [12]	Pakistan	★					★				4
Elgamasy et al. [13]	Egypt	★									4
Polat et al. [15]	Turkey	★									4
Atar et al. [16]	Turkey	★									4
Bozkurt et al. [17]	Turkey	★									4
Hoscen et al. [18]	Turkey	★									4
Johnson et al. [19]	America	★									4
Abdel et al.[20]	Egypt	★									4
Song et al.[22]	China	★	★	★							7
Keshvari et al.[23]	Iran	★									4
Ngai et al. [24]	Iraq	★									4
Adanur et al. [25]	Turkey	★									4
Georgescu et al.[26]	Romania	★									4
Wang et al. [28]	China	★	★	★							7
Fathelbab et al. [29]	Egypt	★									4
Zhang et al. [30]	China	★	★	★							7
Abedi et al. [31]	Iran	★									4
Tan et al.[32]	China	★	★	★							7

Guidelines for review

Selection:

- S1, Case definition adequacy: ★a) requires independent validation (>1 person/record/time/process to extract information, or reference to primary record source such as colonoscopy or medical/hospital records); b) record linkage or self-report with no reference to primary record; c) no description
- S2, Representativeness of the cases: ★a) consecutive or obviously representative series of cases; b) potential for selection biases or not stated
- S3, Selection of controls: ★a) community controls; b) hospital controls, within same community as cases; c) no description
- S4, Definition of controls: ★a) no history of colorectal cancer or adenoma; b) no description of source

Comparability:

- C1, ★ Study controls for one most important factor;
- C2, ★ Study controls for any additional factors (1> additional factors)

Exposure:

- E1, Ascertainment of exposure: ★a) secure record (e.g. medical records); ★b) structured interview where blind to case/control status; c) interview not blinded to case/control status; d) written self-report or medical record only; e) no description
- E2, Same method of ascertainment for cases and controls: ★a) yes; b) no
- E3, Non-response rate: ★a) same rate for both groups; b) non respondents described; c) rate different and no designation