Antibiotics susceptibility patterns of *Citrobacter freundii* isolated from patients with urinary tract infection in Al-Najaf governorate – Iraq

Thualfakar Hayder*1, Ahmed Abduljabbar Jaloob Aljanaby2

1Altoosi College University, Al-Najaf Governorate, Iraq
2University of Kufa, Faculty of Science, Department of Biology, Iraq

**Article History:**

Received on: 11.12.2018
Revised on: 21.03.2019
Accepted on: 25.03.2019

**Keywords:**

Urinary tract infection, *Citrobacter freundii*, Antimicrobials resistance, MDR, XDR

**ABSTRACT**

*Citrobacter freundii* is one of the most causative agents of urinary tract infection in human due to their high antimicrobials resistance. Therefore, this study aimed to evaluate the ability of *Citrobacter freundii* to resist to fifteen antimicrobials. A total of 461 urine samples were collected from patients infected with urinary tract infection, females and males, age groups between 18 to 60 years old performed in Al-Najaf central hospital in Al-Najaf City, Iraq, during April to December 2018. Antimicrobials susceptibility testing was performed by disc diffusion method according to the Kirby-Bauer method onto Mueller Hinton agar surface. There were 30 isolates (6.5%) diagnosed as *Citrobacter freundii*. Antimicrobial resistance rate of the 30 isolates to Amoxicillin and Chloramphenicol were all high (25 isolates 83.4%), Ciprofloxacin, Streptomycin and Sulfonamide (24 isolates 80%). The good resistance rate was observed for Penicillin, Amoxiclav and Ceftazidime (21 isolates 70%). The moderate resistance rate was observed for Cefotaxime (19 isolates 63.3%), Ceftriaxone (20 isolates 66.7%), Gentamicin (15 isolates 50%), Tobramycin (18 isolates 60%) and Erythromycin (20 isolates 66.7%). The lowest resistance rate was observed for Tetracycline (19 isolates 63.3%). While Imipenem provided full antibacterial activity (30 isolates 100%). Of the total 30 isolates, 22 (73.3%) were multi-drug resistance, 8(26.7%) extended-drug resistance and no isolates were pan-drug resistance. While 19 isolates (63.3%) were extended-spectrum beta-lactamase producing *Citrobacter freundii*. *Citrobacter freundii* has highly resistant against most antimicrobials and became more dangerous bacteria cause urinary tract infection.

**INTRODUCTION**

Urinary tract infection is one of the most important recurrent infections infect man and women worldwide (Mohammed *et al.*, 2016; Aljanaby 2018a) mainly caused by gram-negative bacteria such as *Escherichia coli*, *Klebsiella pneumonia* and *Citrobacter freundii* (Perslev *et al.*, 2019; Aljanaby and Aljanaby 2018b). *Citrobacter freundii* (*C. freundii*) is a gram-negative bacterium, motile, oxidase negative and non-capsulated (Lakhundi *et al.*, 2017; Liu *et al.*, 2018). *Citrobacter freundii* is one of the most important gram-negative bacteria cause urinary tract infection and other diseases in human such as bacteremia (Park *et al.*, 2013; Ouyang *et al.*, 2018; Anderson *et al.*, 2018). Recently, *Citrobacter freundii* isolated from hospitals patients with urinary tract infection becomes more resistant to different antibiotics like beta-lactamase, 3rd generation cephalosporins and aminoglycosides (Aljanaby and Gafil 2013; Castanheira *et al.*, 2018; Akinbami *et al.*, 2018). In Iraq, there was no
enough studies focused on C. freundii, and they're resistant to different antibiotics. Therefore, the main aim of the present study is to investigate the antibiotics sensitivity pattern of C. freundii isolated from patients infected with urinary tract infection in Al-Najaf governorate – Iraq.

MATERIALS AND METHODS

Study design and patients

This is a cross-sectional descriptive study, performed in Al-Najaf central hospital in Al-Najaf City, Iraq, during the period from April to December 2018. A total of 461 urine samples were collected from patients infected with urinary tract infection, females and males, age groups between 18 to 60 years old.

Eligibility criteria for patients

Patients will be considered eligible for registration into this study if they fulfill all the inclusion criteria and none of the exclusion criteria as defined below;

- Patients (female or male) at least equal or more than 18 years old.
- All infected patients have been diagnosed by a physician and primary microscopic characters such as the presence of pus cells in urine samples.
- Patients should have sufficient capacity for informed consent.
- Patients should don’t have any other infection.
- Patients should don’t take any antibiotics for treatment.

Samples collection, culture and bacterial identification

Ten ml of mid-stream urine samples were collected in sterile disposable containers after cleaned the genitals (Aljanaby and Aljanaby 2018b). All urine samples were centrifuged at 2000 rpm for 3 min, immediately, the sediment incubated aerobically with brain heart infusion broth at 37°C for 24h, then streaked with a sterile loop on to blood agar and MacConkey agar (Oxoid™) plates. Colony Forming Units (CFUs) method was used for growing single and pure bacterial colony; all urine samples containing less than 105 CFUs/ml were excluded (Tan et al., 2012). All emerged bacterial isolates were identified according to colony morphology and standard microbiological tests such as; colony morphology, gram stain, oxidase test, catalase test, imvic test, motility test, coagulase test, growth on MacConkey agar (Oxoid™) (Mac Faddin 2000).

Antimicrobials susceptibility test

Antimicrobials susceptibility testing was performed by disc diffusion method according to the Kirby-Bauer method onto Mueller Hinton agar (Oxoid™) surface (Bauer et al., 1966). Fourteen different antimicrobial discs were used in this study provide from OxoidTM, the USA as follow: Ampicillin 10IU (AM), amoxicillin 25μg (AX), Amoxiclav 30μg (AMC), cefotaxime 30μg (CTX), ceftriaxone 30μg (CRO), ceftazidime 30μg (CAZ), gentamicin 10μg (GM), tobramycin 10μg (TM), ciprofloxacin 5μg (CIP), Streptomycin 10μg (S), erythromycin 30μg (E), tetracycline 30 μg (TE), Sulfonamide 300μg (SSS), Chloramphenicol (C) 30μg and imipenem 10μg (IMP). The diameters of inhibition zones (mm) were measured using a caliper measure each zone with the unaided eye and compared with clinical and laboratory standards institute (CLSI) guideline (CLSI 2017). Any bacterial isolate was resistant to at least three different antimicrobials classes considered as MDR, if any bacterial isolate was resistance to all antimicrobial classes except two or three antimicrobial classes considered as extensive-drug resistant (XDR) and when any bacterial isolate was resistance to all antimicrobials class considered as pan-drug resistant (PDR) (Aljanaby 2018c).

Statistical analysis

Fisher's exact test was used in this study for the comparison between samples by using Graph pad prism V.10 computer software. P values less than the 0.05 level of significance were considered statistically significant (Aljanaby and Alhasnawi 2017).

RESULTS

Figure 1: Numbers and percentages of total bacterial isolates from patients infected with urinary tract infection in Al-Najaf city-Iraq during the period from April to December 2018. (N=461)

Total bacterial isolates

Out of 461 different bacterial isolates from patients infected with urinary tract infection, gram-negative bacteria were the most incidences with 297 isolates (64.4%) while; there were 158 isolates (34.3%) were gram-negative bacteria and 6 isolates (1.3%) with no growth (Fig.1). According to
microscopic and culture characteristics, biochemical test, Chromagar and Vitek²® system, out of 461 different bacterial isolates, there were 30 isolates (6.5%) diagnosed as *Citrobacter freundii*. On the other hand, out of a total of 297 gram-negative bacterial isolates, *Citrobacter freundii* was prevalent with the percentage of 10.10% (Fig. 2 and 3).

Figure 2: Numbers and percentages of *Citrobacter freundii* isolate d from patients infected with urinary tract infection in Al-Najaf city-Iraq during the period from April to December 2018. (N=461)

In this study, 15 different antimicrobials were used against *Citrobacter freundii*. The result proved that the antimicrobial resistance rate of the 30 isolates to Amoxicillin and Chloramphenicol were all high (25 isolates 83.4%), Ciprofloxacin, Streptomycin and Sulfonamide (24 isolates 80%). The good resistance rate was observed for Penicillin, Amoxiclav and Ceftazidime (21 isolates 70%). The moderate resistance rate was observed for Cefotaxime (19 isolates 63.3%), Ceftriaxone (20 isolates 66.7%), Gentamicin (15 isolates 50%), Tobramycin (18 isolates 60%) and Erythromycin (20 isolates 66.7%). The lowest resistance rate was observed for Tetracycline (19 isolates 63.3%).

Patients

The results of the present study proved that out of 461 patients infected with urinary tract infection, there were 309 patients (67%) were female, and 152 patients (33%) were male. Also, the results demonstrated that out of total 297 patients infected with urinary tract infection caused by gram-negative bacteria there were 204 patients (68.7%) were female and 93 patients (31.3%) were male. While out of a total of 158 patients infected with urinary tract infection caused by gram-positive bacteria, there were 99 patients (62.7%) were female, and 59 patients (37.3%) were male. Also, the results indicated that there were 6 patients (100%) were female infected with urinary tract infection with no bacterial growth (Fig. 4). According to age groups, the results demonstrated that the age group 41-50 years old was the most prevalent range among patients infected with urinary tract infection caused by *Citrobacter freundii* (12 patients 40%, 8 females and 4 male) followed by age group 31-40 years old (8 patients 26.7%, 5 females and male), 51-60 years old (7 patients 23.3%, 5 females and 2 male) and 18-30 years old (3 female patients 10%) (Table 1).
While Imipenem provided full antibacterial activity (30 isolates 100%) (Table 2). Of the total 30 isolates, 22 isolates (73.3%) were multi-drug resistance: 16 isolates (72.7%) from female and 6 isolates (27.3%) from male, 8 isolates (26.7%) extensive-drug resistance: 5 isolates (62.5%) from female and 3 isolates (37.5%) from male and no isolates was pan-drug resistance (Table 3). According to modified double disc synergy test, the results indicated that there were 19 isolates (63.3%) were extended-spectrum beta-lactamase producing Citrobacter freundii 16 (84.2%) isolates from female and 3 (15.8%) isolates from male with significant increase P = 0.0419 (Table 4) (Fig.5). The antimicrobials resistance profile of 30 Citrobacter freundii isolates is given in table 5.

**DISCUSSION**

Urinary Tract Infection is common in most region of Iraq, and it remains the main health problem in many similar developing countries (Rödel et al., 2019). *Citrobacter freundii* is an opportunistic bacterium, highly adaptable and has remarkable mechanisms of survival and transmission in the host (Liu et al., 2018). This pathogen is responsible

---

**Table 1:** Numbers and percentages of patients infected with urinary tract infection caused by *Citrobacter freundii* in Al-Najaf City-Iraq during the period from April to December 2018 according to age groups. (N=30)

| Age group | Female No. (%) | Male No. (%) | Total No. (%) |
|-----------|----------------|--------------|---------------|
| 18-30     | 3              | 0            | 3 (10)        |
| 31-40     | 5              | 3            | 8 (26.7)      |
| 41-50     | 8              | 4            | 12 (40)       |
| 51-60     | 5              | 2            | 7 (23.3)      |
| Total     | 21 (70)        | 9 (30)       | 30 (100)      |

**Table 2:** Antimicrobials sensitivity test of 30 *Citrobacter freundii* isolates from patients infected with urinary tract infection in Al-Najaf City-Iraq during the period from April to December 2018

| Antimicrobials           | Sensitive No. (%) | Resistance No. (%) |
|--------------------------|-------------------|--------------------|
| Ampicillin 10 IU         | 9 (30)            | 21 (70)            |
| Amoxicillin 25µg         | 5 (16.6)          | 25 (83.4)          |
| Amoxiclav 30 µg          | 9 (30)            | 21 (70)            |
| Cefotaxime 30 µg         | 11 (36.7)         | 19 (63.3)          |
| Ceftriaxone 30 µg        | 10 (33.3)         | 20 (66.7)          |
| Ceftazidime 30 µg        | 9 (30)            | 21 (70)            |
| Gentamicin 10 µg         | 15(50)            | 15 (50)            |
| Tobramycin 10 µg         | 12 (40)           | 18 (60)            |
| Ciprofloxacin 5 µg       | 6 (20)            | 24 (80)            |
| Streptomycin 10 µg       | 6 (20)            | 24 (80)            |
| Erythromycin 30 µg       | 10 (33.3)         | 20 (66.7)          |
| Tetracycline 30 µg       | 19 (63.3)         | 11 (36.7)          |
| Sulfonamide 300 µg       | 6 (20)            | 24 (80)            |
| Chloramphenicol 30 µg    | 5 (16.6)          | 25 (83.4)          |
| Imipenem 10 µg           | 30(100)           | 0(0.0)             |

**Table 3:** Numbers and percentages of multi-drug resistance and extensive-drug resistance *Citrobacter freundii* isolated from patients infected with urinary tract infection in Al-Najaf City-Iraq during the period from April to December 2018 according to age groups. (N=30)

| Type of resistance      | Female No. % | Male No. % | Total No. % | P value |
|-------------------------|--------------|------------|-------------|---------|
| Multi-drug resistance   | 16 (72.7)    | 6 (27.3)   | 22 (73.3)   | 0.6460  |
| Extensive-drug resistance | 5 (62.5)   | 11 (37.5)  | 8 (26.7)    | Non-significant |
| Total                   | 21 (70)      | 9 (30)     | 30 (100)    |         |

**Table 4:** Numbers and percentages (%) of extended-spectrum beta-lactamase producing *Citrobacter freundii* isolates from patients infected with urinary tract infection in Al-Najaf City-Iraq during the period from April to December 2018. (N=30)

| Extended-spectrum beta-lactamase producing *Citrobacter freundii* | Female No. % | Male No. % | Total No. % | P-value |
|-------------------------------------------------------------------|--------------|------------|-------------|---------|
| Extended-spectrum beta-lactamase                                   | 16 (84.2)    | 3 (15.8)   | 19 (63.3)   |         |
| Non-extended-spectrum beta-lactamase                              | 5 (45.5)     | 6 (54.5)   | 11 (36.7)   | 0.0419* |
| Total                                                              | 21 (70)      | 9 (30)     | 30 (100)    |         |
Table 5: Antimicrobials resistance profile of 30 Citrobacter freundii isolates from patients infected with urinary tract infection in Al-Najaf City-Iraq during the period from April to December 2018

| Isolate | Sex | Age group | Phenotype resistance |
|---------|-----|-----------|----------------------|
| 1       | F   | 51-60     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, E, TE, SSS, C        |
| 2       | F   | 18-30     | AM, CTX, CRO, CAZ, CIP, S, E, SSS, C                       |
| 3       | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, E, TE, SSS, C    |
| 4       | F   | 31-40     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, TE, SSS, C|
| 5       | F   | 51-60     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, TE, SSS, C|
| 6       | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, TE, SSS, C|
| 7       | M   | 51-60     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, TE, SSS, C|
| 8       | M   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, TE, SSS, C|
| 9       | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, CIP, E, TE, SSS, C        |
| 10      | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, E, TE, SSS, C        |
| 11      | M   | 31-40     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, C          |
| 12      | M   | 31-40     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, C          |
| 13      | M   | 31-40     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, SSS, C     |
| 14      | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, S, E, C          |
| 15      | F   | 18-30     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, S, E, C              |
| 16      | F   | 18-30     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, S, SSS, C            |
| 17      | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, S, E, SSS, C         |
| 18      | F   | 31-40     | AM, AX, AMC, CTX, CRO, CAZ, TM, CIP, S, E, SSS             |
| 19      | F   | 41-50     | AM, AX, AMC, CTX, CRO, CAZ, CN, TM, CIP, E, TE, SSS, C    |
| 20      | F   | 31-40     | AM, AX, AMC, CRO, CAZ, CIP, S, E, SSS, C                  |
| 21      | F   | 31-40     | AM, AX, AMC, CAZ, S, C                                    |
| 22      | F   | 31-40     | AX, AMC, S,C                                              |
| 23      | F   | 51-60     | AX, SSS, C                                                |
| 24      | F   | 51-60     | AX, S, SSS, C                                             |
| 25      | F   | 41-50     | AX, CN, S, SSS                                            |
| 26      | F   | 41-50     | S, CIP, SSS, C                                            |
| 27      | M   | 41-50     | TM, CIP, S, C                                             |
| 28      | M   | 41-50     | CN, CIP, S, SSS                                           |
| 29      | M   | 51-60     | CN, CIP, S, SSS                                           |
| 30      | M   | 51-60     | AX, AMC, SSS, C                                           |

AM: Ampicillin, AX: Amoxicillin, AMC: Amoxiclav, CTX: Cefotaxime, CRO: Ceftriaxone, CAZ: Ceftazidime, CN: Gentamicin, TM: Tobramycin, CIP: Ciprofloxacin, S: Streptomycin, E: Erythromycin, TE: Tetracycline, SSS: Sulfonamide, C: Chloramphenicol, F: Female, M: Male, No (%): Numbers and (percentages) of overall resistance, R: resistance type, MDR: Multi-drug resistance, XDR: Extensive-drug resistance, ESBL: Extended-spectrum beta lactamase producing bacteria.

for many pathogenic cases in infants and immune compromised people, also hospital-acquired infection, bloodstream, wounds infections, gastroenteritis, endocarditis, pneumonia, septicemia, urinary tract infection meningitis and brain abscesses with high mortality and morbidity (Aljanaby 2013). The antibiotics resistance is considered as a serious indicator on human health by affecting on infection severity, diseases spreading, increasing of mortality rate, and increasing of costs of antibiotics (Maraki et al., 2017). Antimicrobials are the mainstay of therapy for urinary tract infection patients. However, the intensive use of first-line antimicrobials, such as ampicillin, and chloramphenicol has led to the emergence and global spread of multidrug-resistant mainstay strains (Sirkhazi et al., 2014). Infections caused by antimicrobial-resistant organisms are associated with higher rates of treatment failures, prolonged hospitalizations, increased costs and mortality (Ruiz et al., 2018). Antimicrobial stewardship consists of avoidance of antimicrobials when appropriate and, when antimicrobials are indicated, use of strategies to optimize the selection, dosing, route of administration, duration and timing of antimicrobial therapy to maximize clinical cure while limiting the unintended consequences of antimicrobial use, including toxicity and selection of resistant microorganisms (Chen et al. 2018). The Citrobacter freundii resisting beta-lactams by three main strategies the first one is hydrolyzing of beta-lactam ring by beta-lactamase enzymes, the encoding genes for beta-lactamases was plasmid-borne and easy to transfer from each other (Huang et al., 2017). The second strategy is modifying the beta-lactams target (Penicillin-binding proteins), that leading to prevent...
antibiotics from binding to it. The third one is lowering the outer membrane permeability of antibiotics inside the cell and through it out of the cell by many mechanisms like efflux pumps (Juhas et al., 2019). *Citrobacter freundii* phenotypically having the ability to resist aminoglycosides antibiotics due to many mechanisms like reducing uptake or decreasing cell permeability by a transport defect or membrane impermeable this mechanism is uncommon since they bind to multiple sites on both ribosomal subunits and high-level resistance cannot be selected by a single step (Feng et al., 2015). The most of isolates in this study showed an obvious resistance to chloramphenicol antibiotic. The target modifying may also contribute to chloramphenicol resistance, the efflux pump that is throwing away this antibiotic, causing decreasing of antibiotic concentration inside the bacterial cell (Anisimova and Yarullina 2018). The bacterial cell that has an ability to resist chloramphenicol antibiotic by many mechanisms such as hydrolyzing enzymes encoding by tet(X) genes, efflux pumps (A-E) types (Leski et al., 2016). The bacterial cell can be resisting the sulfonamides due to the presence of an R-plasmid that determining sulfonamide-resistant di-hydroprioate synthase (DHPs), DHPs enzymes

Table 6: Antimicrobials resistance profile of 30 *Citrobacter freundii* isolates from patients infected with urinary tract infection in Al-Najaf City-Iraq during the period from April to December 2018 (Contd…)

| Isolate | Sex | Age group | No (%) | R   | ESBL |
|---------|-----|-----------|--------|-----|------|
| 1       | F   | 51-60     | 12(80) | MDR | Positive |
| 2       | F   | 18-30     | 9(60)  | MDR | Positive |
| 3       | F   | 41-50     | 13(86.6) | XDR  | Positive |
| 4       | F   | 31-40     | 14(93.3)  | XDR  | Positive |
| 5       | F   | 51-60     | 14(93.3)  | XDR  | Positive |
| 6       | F   | 41-50     | 14(93.3)  | XDR  | Positive |
| 7       | M   | 51-60     | 14(93.3)  | XDR  | Positive |
| 8       | M   | 41-50     | 14(93.3)  | XDR  | Positive |
| 9       | F   | 41-50     | 12(80)  | MDR | Positive |
| 10      | F   | 41-50     | 12(80)  | MDR | Positive |
| 11      | M   | 31-40     | 12(80)  | MDR | Positive |
| 12      | M   | 31-40     | 12(80)  | MDR | Positive |
| 13      | M   | 31-40     | 14(93.3)  | XDR  | Positive |
| 14      | F   | 41-50     | 12(80)  | MDR | Positive |
| 15      | F   | 18-30     | 12(80)  | MDR | Positive |
| 16      | F   | 18-30     | 11(73.3)  | MDR  | Positive |
| 17      | F   | 41-50     | 12(80)  | MDR | Positive |
| 18      | F   | 31-40     | 11(73.3)  | MDR  | Positive |
| 19      | F   | 41-50     | 13(86.6) | XDR  | Positive |
| 20      | F   | 31-40     | 10(66.6) | MDR  | Negative |
| 21      | F   | 31-40     | 6(40)   | MDR  | Negative |
| 22      | F   | 31-40     | 4(26.6)  | MDR  | Negative |
| 23      | F   | 51-60     | 3(20)   | MDR  | Negative |
| 24      | F   | 51-60     | 4(26.6)  | MDR  | Negative |
| 25      | F   | 41-50     | 4(26.6)  | MDR  | Negative |
| 26      | F   | 41-50     | 4(26.6)  | MDR  | Negative |
| 27      | M   | 41-50     | 4(26.6)  | MDR  | Negative |
| 28      | M   | 41-50     | 4(26.6)  | MDR  | Negative |
| 29      | M   | 51-60     | 4(26.6)  | MDR  | Negative |
| 30      | M   | 51-60     | 4(26.6)  | MDR  | Negative |

AM: Ampicillin, AX: Amoxicillin, AMC: Amoxiclav, CTX: Cefotaxime, CRO: Ceftriaxone, CAZ: Ceftazidine, CN: Gentamicin, TM: Tobramycin, CIP: Ciprofloxacain, S: Streptomycin, E: Erythromycin, TE: Tetracycline, SSS: Sulfonamide, C: Chloramphenicol, F: Female, M: Male, No (%): Numbers and (percentages) of overall resistance, R: resistance type, MDR: Multi-drug resistance, XDR: Extensive-drug resistance, ESBL: Extended-spectrum beta lactamase producing bacteria.
which hydrolyzing the sulfonamide antibiotics, the high resistance rate to this drug it’s may be due the property of plasmid-bearing that lead to the spreading of resistant (Lee et al., 2016). In this study showed the lower susceptibility rate to ciprofloxacin. The ciprofloxacin antibiotic determined as effective fluoroquinolone antibiotic against Enterobacteriaceae members but the resistance toward it is increasing, the resistance is due to many reasons like mutation in genes that encoding for gyrase enzymes alone or with mutation in genes that encoding to topoisomerase IV, another reason is excessive activity of efflux pumps, the mutations happing in regions called quinolone resistance-determining regions (responsible for quinolones resistance). In conclusion: Citrobacter freundii became one of the most drugs resistance dangerous pathogens caused urinary tract infection in Iraq.

REFERENCES

Akinbami O.R., Olofinsae S., Ayeni F.A., 2018 Prevalence of extended-spectrum beta-lactamase and plasmid-mediated quinolone resistant genes in strains of Klebsiella pneumonia, Morganella morganii, Leclercia adecarboxylata and Citrobacter freundii isolated from poultry in South Western Nigeria. PeerJ 22;6: e5053.

Aljanaby, A. A. J., 2013 Antibacterial activity of an aqueous extract of Petroselinum crispum leaves against pathogenic bacteria isolated from patients with burns infections in Al-Najaf Governorate, Iraq. Research on Chemical Intermediates 39: 3709.

Aljanaby, A. A. J., 2018a in vitro antibacterial activity of aqueous extracts of Matricaria chamomilla flowers against pathogenic bacteria isolated from pregnant women with urinary tract infection. Biomedical Research 29(11): 2395-2400.

Aljanaby A.A. and Gafil F.A., 2013 Effect of different antibiotics on aerobic pathogenic bacteria and urinary tract infection in Al-Manathera City, Iraq: a comparative study. Research on Chemical Intermediates 39(8):3679-87.

Aljanaby A.AJ. and Alhasnawi H.M.RJ., 2017 Phenotypic and Molecular Characterization of Multidrug-Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources in Al-Najaf Province-Iraq. Pakistan Journal of Biological Sciences 20 (5): 217-232.

Aljanaby A.AJ. and Aljanaby I.AJ., 2018b Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimicrobial susceptibility patterns in Al-Najaf City, Iraq: a three-year cross-sectional study. F1000Research 7:1157.
novel KPC-2-encoding MDR plasmid and an NDM-1-encoding pNDM-HN380-like plasmid in a clinical isolate of Citrobacter freundii. Journal of Antimicrobial Chemotherapy 70(11):2987-91.

Huang Y.W., Wang Y., Lin Y., Lin C., Lin Y.T., Hsu C.C., Yang T.C., 2017 Impacts of Penicillin-Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in Stenotrophomonas maltophilia. mSystems 29:2(4). pii: e00077-17.

Juhas M., Widlake E., Teo J., Huseby D.L., Tyrrell J.M., Polikanov Y.S., Erkan O., Petersson A., Cao S., Aboklaish A.F., Rominski A., Crich D., Böttger E.C., Walsh T.R., Hughes D., Hobbie S.N., 2019 In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy:9.

Lakhundi S.S., Duedu K.O., Cain N., Nagy R., Krakowiak J., French C.E., 2017 Citrobacter freundii as a test platform for recombinant cellulose degradation systems. Letters in Applied Microbiology 64(1):35-42.

Lee J.J., Kim M.N., Park K.S., Lee J.H., Karim A.M., Park M., Kim J.H., Lee S.H., 2016 Complex Class 1 Integron Carrying qnrB62 and blaVIM-2 in a Citrobacter freundii Clinical Isolate. Antimicrobial Agents and Chemotherapy 21:60(11):6937-6940.

Leski T.A., Taitt C.R., Bangura U., Stockelman M.G., Ansumana R., Cooper W.H., Stenger D.A., Vora G.J., 2016 High prevalence of multidrug-resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in Bo, Sierra Leone. BMC Infectious Diseases 18:167.

Liu L.H., Wang N.Y., Wu A.Y., Lin C.C., Lee C.M., Liu C.P., 2018 Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. Journal of Microbiology, Immunology and Infection 51(4):565-572.

Mac Faddin J.F., 2000 Biochemical Tests for Identification of Medical Bacteria. 3rd edn., Williams and Wilkins, Philadelphia 912.

Maraki S., Vardakas K.Z., Mavromanolaki V.E., Kyriakidou M., Spais G., Kofteridis D.P., Samonis G., Falagas M.E., 2017 In vitro susceptibility and resistance phenotypes in contemporary Citrobacter isolates in a University Hospital in Crete, Greece. Clinical Infectious Diseases 49(7):532-539.

Mohammed M.A., Alnour T.M., Shakurfo O.M., Aburass M.M., 2016 Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. Asian Pacific Journal of Tropical Medicine 9(8):771-6.

Ouyang J., Sun F., Zhou D., Feng J., Zhan Z., Xiong Z., Yang B., Liu Z., Li T., Tong Y., Xia P., 2018 Comparative genomics of five different resistance plasmids coexisting in a clinical multi-drug resistant Citrobacter freundii isolate. Infection and Drug Resistance 12(11):1447-1460.

Park S., Song S.H., Lee C., Kim J.W., Kim K.S., 2013 Bacterial pathogens in first febrile urinary tract infection affect breakthrough infections in infants with vesicooureteral reflux treated with prophylactic antibiotics. Urology 81(6):1342-5.

Perslev K., Msemo O.A., Minja D.T.R., Møller S.L., Theander T.G., Lusingu J.P.A., 2019 Bygbjerg IC, Nielsen BB, Schmiegelow C. Marked reduction in fertility among African women with urogenital infections: A prospective cohort study. PLoS One 10:14(1): e0210421.

Rödel J., Mellmann A., Stein C., Alexi M., Kipp F., Edel B., Dawczynski K., Brandt C., Seidel L., Pfister W., Löfler B., Straube E., 2019 Use of MALDI-TOF mass spectrometry to detect nosocomial outbreaks of Serratia marcescens and Citrobacter freundii. European Journal of Clinical Microbiology and Infectious Diseases 38(3):581-591.

Ruiz J., Ramirez P., Gordon M., Villarreal E., Frasquet J., Poveda-Andres J.L., Salavert-Lleti M., Catellanos A., 2018 Antimicrobial stewardship programme in critical care medicine: A prospective interventional study. Medicina Intensiva 42(5):266-273.

Sirkhazi M., Sarriff A., Aziz N.A., Almana F., Arafat O., Shorman M., 2014 Bacterial Spectrum, Isolation Sites and Susceptibility Patterns of Pathogens in Adult Febrile Neutropenic Cancer Patients at a Specialist Hospital in Saudi Arabia. World Journal of Oncology 5(5-6):196-203.

Tan C.K., Ulett K.B., Steele M., Benjamin W.H., Ulett G.C., 2012 Prognostic value of semi-quantitative bacteruria counts in the diagnosis of group B streptococcus urinary tract infection: a 4-year retrospective study in adult patients. BMC Infectious Diseases 26; 12(1):273.