Search for new physics in dijet angular distributions using proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter and other models

The CMS Collaboration

Abstract

A search is presented for physics beyond the standard model, based on measurements of dijet angular distributions in proton-proton collisions at $\sqrt{s} = 13$ TeV. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 35.9 fb$^{-1}$. The observed distributions, corrected to particle level, are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Constraints are placed on models containing quark contact interactions, extra spatial dimensions, quantum black holes, or dark matter, using the detector-level distributions. In a benchmark model where only left-handed quarks participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8 or 17.5 TeV, for destructive or constructive interference, respectively. The most stringent lower limits to date are set on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model of extra dimensions. In the Giudice–Rattazzi–Wells convention, the cutoff scale is excluded up to 10.1 TeV. The production of quantum black holes is excluded for masses below 5.9 and 8.2 TeV, depending on the model. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $g_q = 1.0$.

Published in the European Physical Journal C as doi:10.1140/epjc/s10052-018-6242-x.
1 Introduction

Pairs of highly energetic jets (dijets) are produced at high rates in proton-proton collisions at the CERN LHC through pointlike scattering of quarks and gluons. Despite its enormous success, the shortcomings of the standard model (SM) are well known. Many theories of physics beyond the standard model (BSM) that alter the interaction of quarks and gluons from that predicted by perturbative quantum chromodynamics (QCD) give rise to narrow or wide resonances or even to nonresonant dijet signatures. Examples that have received widespread attention include models with dark matter (DM) [1–5], quark compositeness [6–8], extra spatial dimensions [9, 10], and quantum black holes [11–15]. Resonances with an intrinsic width of the order of the experimental resolution can be constrained by searches in the dijet invariant mass spectrum [16–18]. These searches, however, are not very sensitive to wide resonances or nonresonant signatures; a more effective strategy to constrain such signatures is the study of dijet angular distributions [19].

The angular distribution of dijets relative to the beam direction is sensitive to the dynamics of the scattering process. Furthermore, since the angular distributions of the dominant underlying QCD processes of \(qg \rightarrow qg\), \(qq' \rightarrow qq'\), \(qq \rightarrow qq\), \(gg \rightarrow gg\), are all similar [20], the dijet angular distribution is insensitive to uncertainties in the parton distribution functions (PDFs). The dijet angular distribution is typically expressed in terms of \(\chi_{\text{dijet}} = \exp(|y_1 - y_2|)\), where \(y_1\) and \(y_2\) are the rapidities of the two jets with the highest transverse momentum \(p_T\) (the leading jets). For collinear massless parton scattering, \(\chi_{\text{dijet}}\) takes the form \(\chi_{\text{dijet}} = (1 + |\cos \theta^*|)/(1 - |\cos \theta|)\), where \(\theta^*\) is the polar scattering angle in the parton-parton center-of-mass (CM) frame. The choice of \(\chi_{\text{dijet}}\), rather than \(\theta^*\), to measure the dijet angular distribution is motivated by the fact that in Rutherford scattering, where only \(t\)-channel scattering contributes to the partonic cross section, the \(\chi_{\text{dijet}}\) distribution is independent of \(|y_1 - y_2|\) [20]. In contrast, BSM processes may have scattering angle distributions that are closer to being isotropic than those given by QCD processes and can be identified by an excess of events at small values of \(\chi_{\text{dijet}}\). Previous measurements of dijet angular distributions at the LHC have been reported by the ATLAS [17, 21–25] and CMS [26–29] Collaborations.

In a simplified model of interactions between DM particles and quarks [1–4, 30, 31], the spin-1 (vector or axial-vector) DM mediator particle with unknown mass \(M_{\text{Med}}\) is assumed to decay only to pairs of quarks or pairs of DM particles, with mass \(m_{\text{DM}}\), and with a universal quark coupling \(g_q\) and a DM coupling \(g_{\text{DM}}\). In this model, the relative width of the DM mediator increases monotonically with increasing \(g_q\). In a scenario where \(g_q = 0.25\) and in which the relative widths for vector and axial-vector mediators in the dark matter decay channels are negligible, values of \(M_{\text{Med}}\) below 3.0 TeV were excluded by narrow dijet resonance searches [17, 18]. A search for narrow and broad dijet resonances set constraints on mediator widths up to 30% (\(g_q < 0.75\)) and masses up to 4 TeV [32]. Searches for invisible particles produced in association with quarks or bosons [33–35] have excluded vector and axial-vector mediators below 1.8 (2.1) TeV for \(g_q = 0.25\) (\(g_q = 1.0\)) and \(g_{\text{DM}} = 1.0\) [34].

A common signature of quark compositeness [6–8], at energies well below the characteristic mass scale \(\Lambda\) for new interactions between quark constituents, is the four-fermion contact interaction (CI). The most stringent limits on quark CIs come from searches in dijet angular distributions at large dijet invariant masses (\(M_{jj}\)) [17, 29], and in inclusive jet \(p_T\) distributions [36]. The publication from the ATLAS Collaboration [17] provides lower limits on the quark CI scales from 13.1 to 29.5 TeV, depending on the details of the model.

The Arkani–Hamed–Dimopoulos–Dvali (ADD) model [9, 10] of compactified large extra dimensions (EDs) provides a possible solution to the hierarchy problem of the standard model.
It predicts signatures of virtual graviton exchange that result in a nonresonant enhancement of dijet production in proton-proton collisions, whose angular distribution differs from the predictions of QCD. Signatures from virtual graviton exchange have previously been sought at the LHC in various final states, where the most stringent limits arise from the CMS search with dijet angular distributions [29], which excludes the ultraviolet cutoff in the ADD framework up to 7.9–11.2 TeV, depending on the parameterization of the model.

In models with large EDs, the fundamental Planck scale \(M_{Pl} \) is assumed to be closer to the electroweak (EW) scale, thereby allowing black hole production at the LHC [11–15]. Semi-classical black holes, which have mass much larger than \(M_{Pl} \), decay into multiple jets through Hawking radiation [37]. Quantum black holes (QBHs), which are produced with mass close to \(M_{Pl} \), decay predominantly into dijets and can be studied using dijet angular distributions [38–40]. Recent searches for QBHs with dijet final states at the LHC reported in Refs. [17, 29] exclude QBHs with masses below 8.9 TeV.

In this paper, we present a search for new physics, specifically DM mediators, CIs, EDs, and QBHs, using measurements of dijet angular distributions. The signature of the signals can be categorized into nonresonant excesses at high \(M_{jj} \) as predicted by the CI and ADD models and resonances from the decay of QBHs and DM mediators that could appear across the whole range of the \(M_{jj} \) spectrum. The searches are performed by comparing detector-level dijet angular distributions with BSM predictions that have been adjusted to include detector resolution effects. This eliminates some systematic uncertainties that are introduced when correcting the dijet angular distributions for detector effects and simplifies the statistical evaluation. The dijet angular distributions are also corrected to particle level to facilitate comparisons with other theoretical predictions and published in HEPData.

2 The CMS detector

The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing an axial field of 3.8 T. Within the solenoid and nearest to the interaction point are the silicon pixel and strip trackers. Surrounding the tracker volume are the lead tungstate crystal electromagnetic calorimeter and the brass and scintillator hadron calorimeter. The trackers cover a pseudorapidity region of \(|\eta| < 2.5 \) while the calorimeters cover \(|\eta| < 3.0 \). In addition, CMS has extensive forward calorimetry, which extends the coverage to \(|\eta| < 5.0 \). Finally, muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the solenoid, with a coverage of \(|\eta| < 2.4 \). A two-tiered system, with a level-1 trigger followed by a high-level trigger (HLT), is used by CMS to record events of interest [41] for the offline analysis. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [42].

3 Event selection and data unfolding

Events are reconstructed using a particle-flow algorithm [43] to identify and reconstruct individual particles from each collision by combining information from all CMS subdetectors. Identified particles include charged and neutral hadrons, electrons, muons, and photons. The particles are clustered into jets using the anti-\(k_T \) algorithm [44, 45] with a distance parameter of 0.4. In order to mitigate the effect of additional proton-proton interactions within the same or nearby bunch crossings (pileup) on the jet momentum measurement, the charged hadron subtraction technique [43] is used. Spurious jets from noise or non-collision backgrounds are rejected by applying jet identification criteria [46]. The jet energies are corrected for nonlin-
ear and nonuniform response of the calorimeters through corrections obtained from data and
Monte Carlo (MC) simulations [47]. To compare data with theoretical predictions, the same
jet clustering algorithm is applied to the generated stable particles (lifetime
Monte Carlo (MC) simulations [47]. To compare data with theoretical predictions, the same
jet clustering algorithm is applied to the generated stable particles (lifetime
corresponds to an integrated luminosity of 35.9 fb$^{-1}$ [50].

The events used in this analysis are selected with triggers based upon either jet p_T or H_T, as
measured by the HLT, where H_T is the scalar sum of the p_T values of all the jets with $|\eta| < 3.0$
and p_T greater than 30 GeV. The HLT selection requires having a jet with $p_T > 450$ GeV or an
H_T value of at least 900 GeV. The data sample was collected with the CMS detector in 2016 and
corresponds to an integrated luminosity of 35.9 fb$^{-1}$ [50].

In the subsequent offline analysis, events with a reconstructed primary vertex that lies within
± 24 cm of the detector center along the beam line, and within 2 cm of the detector center in the
plane transverse to the beam, are selected. The primary vertex is defined as the reconstructed
vertex with the highest sum of the squares of all associated physics objects p_T. The physics
objects are the jets returned by the application of the anti-k_T algorithm to all tracks associated
with the vertex, plus the corresponding associated missing transverse momentum, taken as the
negative vector sum of the p_T of those jets.

The two leading jets are used to measure the dijet angular distributions in seven regions of
the dijet invariant mass M_{jj}. The M_{jj} regions, in units of TeV, are chosen to be 2.4–3.0, 3.0–
3.6, 3.6–4.2, 4.2–4.8, 4.8–5.4, 5.4–6.0, and >6.0. The highest M_{jj} range was chosen to maximize
the expected sensitivity to the BSM signals considered. The phase space for this analysis is
restricted by the requirements $\chi_{dijet} < 16$ and $|y_{boost}| < 1.11$, where $y_{boost} = (y_1 + y_2)/2$. This
selection and the M_{jj} range definition restrict the absolute rapidities $|y_1|$ and $|y_2|$ of the two
highest p_T jets to be less than 2.5 and their p_T to be larger than 200 GeV. The trigger efficiency
for events that satisfy the subsequent selection criteria exceeds 99% in all the M_{jj} ranges for
the analysis. The observed numbers of events in the analysis phase space for each of the mass
ranges are 353025, 71832, 16712, 4287, 1153, 330, and 95. The highest value of M_{jj} observed
among these events is 8.2 TeV.

In this paper, we present dijet angular distributions normalized to unity in each M_{jj} range,
denoted $(1/\sigma_{dijet})(d\sigma_{dijet}/d\chi_{dijet})$, where σ_{dijet} is the cross section in the analysis phase space.

Fluctuations in jet response from the resolution in jet p_T of the detector can cause lower energy
jets to be misidentified as leading jets and also result in bin-to-bin event migrations in both
χ_{dijet} and dijet mass. The corrections for these effects are obtained from a two-dimensional
response matrix that maps the generator-level M_{jj} and χ_{dijet} distributions onto the measured
values. This matrix is obtained using particle-level jets from the 	extsc{pythia} MC event generator
that are smeared in p_T using a double-sided Crystal Ball parameterization [51] of the response.
This parameterization takes into account the full jet energy resolution, including non-Gaussian
tails, and is derived from the full detector simulation. The width of the Gaussian core in the
parameterization is adjusted to account for the difference in resolution observed between data
and simulation [47]. The reason for deriving the response matrix from smeared generator-level
MC rather than from full detector simulation is that significantly smaller statistical uncertainties
can be achieved using the faster code. The measured distributions are unfolded to particle
level by inverting the response matrix without regularization, using the RooUnfold package [52]. The unfolding changes the shape of the χ_{dijet} distributions by <1% and <8% across
χ_{dijet} in the lowest and highest M_{jj} ranges, respectively. The fractions of event migrations be-
tween mass bins are 15–20% in the lowest M_{jj} range and 25–40% in the highest M_{jj} range,
depending on χ_{dijet} values. The unfolding procedure was tested by splitting the simulation
data into independent training and testing samples. The training sample was used to derive a
response matrix and the smeared χ_{dijet} distributions from the test sample were unfolded using
this response matrix. No significant difference was observed between the generated and un-
folded χ_{dijet} distributions in the test sample. The effects of migrations between χ_{dijet} bins are
negligible. The unfolding procedure is based on matrix inversion, while the procedure used
in previous publications of dijet angular distributions [28, 29] was based on the D’Agostini it-
erative method [53]. We have compared these two methods by deriving limits from unfolded
data, and the limits vary by less than 5%.

4 Theoretical predictions

We compare the unfolded normalized dijet angular distributions with the predictions of per-
turbative QCD at NLO, available in NLOJET++ 4.1.3 [54] in the FASTNLO 2.1 framework [55].
EW corrections for dijet production [56] change the predicted normalized distributions by up
to 1% (5%) for the lowest χ_{dijet} bins in small (large) values of M_{jj}. The factorization (μ_f)
and renormalization (μ_r) scales are set to the average p_T of the two jets,
$\langle p_T \rangle = (p_T^1 + p_T^2)/2$, and the PDFs are taken from the CT14 set [57]. The use of a more flexible statistical combination
of multiple PDF sets as in PDF4LHC15 [57–62] exhibited small differences as compared
to the CT14 PDF set. We evaluated the impact of nonperturbative effects from hadronization
and multiple parton interactions on the QCD predictions using PYTHIA with the CUETP8M1
tune [63] and HERWIG++ 2.7.1 [64] with tune EESC [65]. The effects are found to be less than
1% and negligible for both MC generators.

The production and decay of the DM mediators in the simplified DM model are generated
at LO using MADDM version 2.0.6 [66, 67] at fixed g_{DM} and m_{DM} values, where $g_{DM} = 1.0$
and $m_{DM} = 1$ GeV. For these values of g_{DM} and m_{DM}, the differences between vector and axial-
vector mediators in the cross sections and in the acceptances are negligible in the analysis phase
space.

BSM physics signatures from CIs with flavor-diagonal color-singlet couplings among quarks
are described by the effective Lagrangian [7, 8]:

$$L_{qq} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(q_L^\gamma q_L^\gamma)(q_L^\gamma q_L^\gamma) + \eta_{RR}(q_R^\gamma q_R^\gamma)(q_R^\gamma q_R^\gamma) + 2\eta_{RL}(q_R^\gamma q_R^\gamma)(q_L^\gamma q_L^\gamma) \right],$$

where the subscripts L and R refer to the left and right chiral projections of the quark fields, re-
spectively, and η_{LL}, η_{RR}, and η_{RL} are taken to be 0, $+1$, or -1 for the different combinations that
correspond to different CI models. The following CI possibilities with color-singlet couplings
among quarks are investigated:

Model	$(\eta_{LL}, \eta_{RR}, \eta_{RL})$
Λ_{LL}	(± 1, 0, 0)
Λ_{RR}	(0, ± 1, 0)
Λ_{VV}	(± 1, ± 1, ± 1)
Λ_{AA}	(± 1, ± 1, ∓ 1)
Λ_{V-A}	(0, 0, ± 1)

The models with positive (negative) η_{LL} or η_{RR} lead to destructive (constructive) interference
with the QCD terms, and consequently a lower (higher) cross section, respectively. In all CI
models discussed in this paper, NLO QCD corrections are employed to calculate the cross sec-
tions. In proton-proton collisions, the $\Lambda_{LL}^+\Lambda_{VV}$ and $\Lambda_{RR}^+\Lambda_{VV}$ models result in identical lowest order
cross sections and NLO corrections, and consequently lead to the same sensitivity. For Λ_{V-A}^\pm
and Λ_{AA}^{\pm}, as well as for $\Lambda_{(V-A)}^{\pm}$, the CI predictions are also identical at lowest order, but exhibit different NLO corrections and yield different sensitivities. The CIJET 1.0 program [68] is used to calculate the CI terms, as well as the interference between the CI and QCD terms at NLO in QCD.

For the ADD model, two parameterizations for virtual graviton exchange are considered: Giudice–Rattazzi–Wells (GRW) [69] and Han–Lykken–Zhang (HLZ) [70]. In the GRW convention, the sum over the Kaluza–Klein graviton excitations in the effective field theory is regulated by a single cutoff parameter Λ_T. In the HLZ convention, the effective theory is described in terms of two parameters, the cutoff scale M_S and the number of extra spatial dimensions n_{ED}. The parameters M_S and n_{ED} are directly related to Λ_T [71]. We consider models with 2–6 EDs. The case of $n_{ED} = 1$ is not considered since it would require an ED of the size of the radius of the solar system; the gravitational potential at such distances would be noticeably modified, and this case is therefore excluded by observation. The case of $n_{ED} = 2$ is special in the sense that the relation between M_S and Λ_T also depends on the parton-parton CM energy \sqrt{s}. The ADD predictions are calculated using PYTHIA.

Quantum black hole production is studied within the framework of the ADD model, with $n_{ED} = 6$ (ADD6), and the Randall–Sundrum model (RS1) [72, 73] with a single, warped extra dimension ($n_{ED} = 1$). In these models, the QBH production cross section depends on the mass of the QBH, M_{Pl}, and the number of spatial dimensions. Since QBHs are produced with a mass threshold close to M_{Pl}, we set the minimum QBH mass M_{QBH} equal to M_{Pl} for simplicity. The QBH 3.0 generator [74] is used for the predictions.

To take into account the NLO QCD and EW corrections to SM dijet production when probing the ADD, QBH, and DM models, the cross section difference $\sigma^{QCD}_{NLO+EW\text{ corr}} - \sigma^{QCD}_{LO}$ is evaluated for each M_{jj} and χ_{dijet} bin and added to the SM+BSM predictions. This procedure provides an SM+BSM prediction where the QCD terms are corrected to NLO with EW corrections while the BSM terms are calculated at LO. While the ADD BSM prediction from PYTHIA includes the interference terms of graviton exchange with QCD (obtained by subtracting the predictions $\sigma^{ADD+QCD}_{LO} - \sigma^{QCD}_{LO}$), the QBH and DM BSM predictions do not include such interference terms.

Exclusion limits on the BSM models studied in this paper are set based on the comparison of data that have not been corrected for resolution effects with both SM+BSM and SM predictions. The comparison at detector level is done to eliminate some systematic uncertainties that are introduced during the unfolding procedure and simplifies the statistical evaluation. This procedure uses the same two-dimensional response matrix whose inverse is used for unfolding the data. It has been verified that the χ_{dijet} distributions for SM+BSM predictions folded with the response matrix derived from SM QCD multijet predictions smeared with the double-sided Crystal Ball parameterization of the jet p_T resolution agree with SM+BSM predictions smeared with this same parameterization. The folding procedure is equivalent to running the full detector simulation on the particle-level predictions, with the residual differences accounted for in the systematic uncertainties.

5 Systematic uncertainties

The normalized χ_{dijet} distributions are relatively insensitive to many potential systematic effects. To present the uncertainties for the normalized shapes, the quoted values are reported for the lowest χ_{dijet} bins, where the uncertainties and potential contributions from BSM processes are typically the largest. The main experimental uncertainty is from the jet energy scale (JES) and the main theoretical uncertainty is from the choices of μ_r and μ_f scales.
5.1 Experimental uncertainties

The overall JES uncertainty is less than 1%, and the variation of the JES as a function of pseudorapidity is less than 1% per unit η \cite{47,75} in the phase space of the analysis. The JES uncertainties related to each step in the derivation of the p_T and η dependent JES corrections are taken into account independently. In this way, the correlations of the JES uncertainty sources among the M_{jj} ranges and χ_{dijet} bins are included. For the purpose of display in figures and tables, the total JES uncertainty is obtained from the quadratic sum of these uncertainty sources and is found to be 3.6% in the lowest M_{jj} range and 9.2% in the highest M_{jj} range.

The uncertainty from the jet p_T resolution is evaluated by changing the width of the Gaussian core of the Crystal Ball parameterization of the response by up to $\pm 5\%$ \cite{47,75}, depending upon the jet η, and comparing the resultant distributions before and after these changes. This uncertainty is found to be less than 1% for all M_{jj}. The uncertainty from the modeling of the tails of the jet p_T resolution \cite{76} is evaluated using a Gaussian function to parameterize the response, and we assign an uncertainty equal to half of the difference between the distributions determined from this Gaussian ansatz and the nominal correction. The size of this uncertainty is less than 1.5% for all M_{jj}.

Another source of uncertainty arises from the use of a parametric model to simulate the jet p_T resolution of the detector. This uncertainty is estimated by comparing the smeared χ_{dijet} distributions to the ones from a detailed simulation of the CMS detector using GEANT4 \cite{77}, and is found to be 0.5% and 1% in the lowest and highest M_{jj} ranges, respectively.

In the unfolding procedure, there is an additional systematic uncertainty introduced due to potential mismodeling of the dijet kinematic distributions in PYTHIA. This uncertainty is evaluated using MADGRAPH5_aMC@NLO 2.2.2 \cite{78} predictions, as the kinematic distributions from MADGRAPH5_aMC@NLO and PYTHIA are found to bracket the data. The inverted response matrix from PYTHIA is applied to the smeared χ_{dijet} distributions from MADGRAPH5_aMC@NLO and the results are compared to the corresponding generated χ_{dijet} distributions. The differences are observed to be less than 1.5% for all M_{jj}.

The effect from pileup is studied by comparing the χ_{dijet} distributions with various numbers of pileup interactions in simulated events. The numbers are varied according to the uncertainty of the total inelastic cross section of pp collisions \cite{79}. The effect on the χ_{dijet} distributions is observed to be negligible.

5.2 Theoretical uncertainties

The uncertainties due to the choices of μ_f and μ_r scales in the NLO QCD predictions are evaluated by following the proposal in Refs. \cite{80,81} and changing the default choice of scales in the following 6 combinations: $(\mu_f/\langle p_T \rangle, \mu_r/\langle p_T \rangle) = (1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1), \text{and} (1, 2)$. These changes modify the predictions of the normalized χ_{dijet} distributions by up to 8.5% and up to 19%, at small and large values of M_{jj}, respectively. The uncertainty in the NLO QCD predictions due to the choice of PDFs is determined from the 28 eigenvectors of CT14 using the procedure described in Ref. \cite{82}, and is found to be less than 0.2% at low M_{jj} and less than 0.6% at high M_{jj}. The uncertainty in the strong coupling constant has a negligible impact on the normalized χ_{dijet} distribution.

Scale and PDF uncertainties in the CI predictions are obtained using the same procedure as in the QCD predictions. In the ADD and QBH models, the scale and PDF uncertainties have a negligible impact on the limits as the signals only appear in the highest mass bins, where the statistical uncertainties dominate. The effect on the acceptance for the DM models due to
the PDF uncertainty is evaluated using the 100 replica NNPDF3.0 PDF set \cite{60} and found to be non-negligible in the M_{jj} ranges with $M_{jj} > M_{\text{Med}}$ for DM mediators that have large mass and coupling. For example, for an axial-vector mediator with $M_{\text{Med}} = 6\,\text{TeV}$ and $g_q = 1.0$, which corresponds to a resonance with relative width of 50%, the uncertainty is 14\% in the $M_{jj} > 6.0\,\text{TeV}$ bin.

Although the uncertainties are treated separately in the statistical analysis of the data, for display purposes in tables and figures we calculate the total experimental and theoretical uncertainty as the quadratic sum of the contributions due to the JES, the jet p_T resolution, the modeling of both the detector response and the dijet kinematics, and the contributions from μ_f, μ_r, and the PDFs. A summary of the leading experimental systematic uncertainties is provided in Table 1. The theoretical uncertainties quoted in the table apply to the QCD prediction. As shown in Table 1, systematic uncertainties dominate the total uncertainty in low M_{jj} regions, while the statistical uncertainty dominates in high M_{jj} regions.

Table 1: Summary of the leading experimental and theoretical uncertainties in the normalized χ_{dijet} distributions, in percent. While the statistical analysis represents each uncertainty through a change in the χ_{dijet} distribution correlated among all χ_{dijet} bins, this table summarizes each uncertainty by a representative value to show their relative contributions. For the lowest and highest dijet mass bins, the relative shift is given for the lowest χ_{dijet} bin. In the highest dijet mass bin, the dominant experimental contribution corresponds to the statistical uncertainty, while the dominant theoretical contribution is from the uncertainty in scales.

Source of uncertainty	$2.4 < M_{jj} < 3.0\,\text{TeV}$	$M_{jj} > 6.0\,\text{TeV}$
Statistical	0.7	27
JES	3.6	9.2
Jet p_T resolution (core)	1.0	1.0
Jet p_T resolution (tails)	1.0	1.5
Detector response model	0.5	1.0
Unfolding, model dependence	0.2	1.5
Total experimental	4.1	29
QCD NLO scale (6 changes in μ_f and μ_r)	$+8.5$	$+19$
PDF (CT14 eigenvectors)	-3.0	-5.8
Total theoretical	8.5	19

6 Results

In Figs. 1 and 2 the measured normalized χ_{dijet} distributions for all mass bins unfolded to particle level are compared to NLO predictions with EW corrections. No significant deviation from the SM prediction is observed. The distributions are also compared to predictions for QCD+CI with CI scales equal to 14\,\text{TeV}, QCD+ADD with $\Lambda (\text{GRW}) = 10\,\text{TeV}$, QCD+QBH with $M_{\text{QBH}} (\text{ADD6}) = 8\,\text{TeV}$, and QCD+DM with $M_{\text{Med}} = 2$, 3 and 5\,\text{TeV} and $g_q = 1.0$. The signal distributions are only shown for the M_{jj} ranges that contribute to the sensitivity for the BSM searches.

The asymptotic approximation \cite{83} of the CL$_s$ criterion \cite{84, 85, 86} is used to set exclusion limits on the parameters for the BSM models \cite{86}. The limits obtained using this approximation were tested against the CL$_s$ limits obtained using ensembles of pseudo experiments for several of the models examined, and the differences were found to be negligible. The likeli-
Figure 1: Normalized χ_{dijet} distributions in the three highest mass bins. Unfolded data are compared to NLO predictions (black dotted line). The error bars represent statistical and experimental systematic uncertainties combined in quadrature. The ticks on the error bars correspond to the experimental systematic uncertainties only. Theoretical uncertainties are indicated as a gray band. Also shown are the predictions for various CI, ADD, QBH, and DM scenarios. The lower panels show the ratio of the unfolded data distributions and NLO predictions.
Figure 2: Normalized χ_{dijet} distributions in the four lower mass bins. Unfolded data are compared to NLO predictions (black dotted line). The error bars represent statistical and experimental systematic uncertainties combined in quadrature. The ticks on the error bars correspond to the experimental systematic uncertainties only. Theoretical uncertainties are indicated as a gray band. Also shown are the predictions for various CI, ADD, and DM scenarios. The lower panels show the ratio of the unfolded data distributions and NLO predictions.
hypotheses L_{QCD} and $L_{QCD+BSM}$ are defined for the respective QCD-only and QCD+BSM hypotheses as a product of Poisson likelihood functions for each bin in χ_{dijet}. The predictions for each M_{jj} range are normalized to the number of observed events in that range. Systematic uncertainties are treated as nuisance parameters in the likelihood model. Following Ref. [17], the nuisance parameters are profiled with respect to the QCD-only and QCD+BSM models by maximizing the corresponding likelihood functions. The p-values for the two hypotheses, $P_{QCD+BSM}(q \geq q_{obs})$ and $P_{QCD}(q \leq q_{obs})$, are evaluated for the profile log-likelihood ratio $q = -2 \ln(L_{QCD+BSM}/L_{QCD})$. Limits on the QCD+BSM models are set based on the quantity $\text{CL}_s = P_{QCD+BSM}(q \geq q_{obs})/(1 - P_{QCD}(q \leq q_{obs}))$, which is required to be less than 0.05 for a 95% confidence level (CL) of exclusion. Because of the large number of events in the low-M_{jj} range, which constrain the systematic uncertainties, we obtain 2–30% better observed limits on the BSM scales and masses compared to the limits obtained using the method in the predecessor of this search reported in Ref. [29], where the nuisance parameters were marginalized rather than profiled.

In the limit calculations, not all M_{jj} ranges are included in the likelihoods; only those that improve the expected limits by more than 1% are used. We use mass bins with $M_{jj} > 3.6$ TeV for the CI models, $M_{jj} > 4.2$ TeV for the ADD models, and $M_{jj} > 4.8$ TeV for the QCD+BSM and QCD models. For the DM mediators, we use mass bins that cover the M_{jj} range of $0.5M_{Med} - 1.2M_{Med}$. The exclusion limits on the BSM models are determined using detector-level χ_{dijet} distributions and theoretical predictions at detector level. By using the detector-level χ_{dijet} distributions, each bin of the χ_{dijet} distributions can be modeled by a Poisson likelihood function, while at particle level, the unfolded data distributions have correlations among the dijet mass bins. As a cross-check, the limits are also determined for the case where the unfolded χ_{dijet} distributions, approximated by Poisson likelihood functions, and particle-level theoretical predictions are used in the limit extraction procedure. The resulting observed limits on the BSM scales and masses are found to be more stringent than those determined at detector level by 1–10%, depending on the model. The agreement of the data with QCD predictions is quantified by calculating $P_{QCD}(q < q_{obs})$ for each mass bin separately. The largest excess is found in the first data point of the > 6.0 TeV mass bin, with a significance of 1.8 standard deviations. When combining mass bins in the various QCD+BSM models under study, the largest significances are found to be 2.7–2.8 standard deviations for the QCD+DM model with $M_{Med} = 4.5$–6 TeV and $g_q = 1.0$.

Figure 3 shows the 95% CL upper limits on g_q as a function of the mass of the vector or axial-vector DM mediator with $g_{DM} = 1.0$ and $m_{DM} = 1$ GeV. The corresponding limits on the width of the mediators are shown on the vertical axis on the right-hand side of Fig. 3. The degradation of the limits below $M_{Med} = 2.5$ TeV and above $M_{Med} = 4$ TeV can be explained as follows. For resonance masses below the lower M_{jj} boundary of the analysis at 2.4 TeV, the acceptance increases rapidly as a function of resonance mass (e.g., from 1.4% at $M_{Med} = 2$ TeV to 16% at $M_{Med} = 2.5$ TeV, for $g_q = 0.5$), resulting in the improvement of the limit on g_q as a function of resonance mass. For large values of resonance mass and width (e.g., for $M_{Med} > 4$ TeV and $g_q > 0.5$), the mediator is primarily produced off-shell with a mass less than the M_{jj} boundary of the analysis at 2.4 TeV. The acceptance for high resonance masses thus decreases as a function of resonance width (e.g., for $M_{Med} = 5$ TeV, from 25% at $g_q = 0.5$ to 8% at $g_q = 1.5$), resulting in the fast deterioration of the limit on g_q at high resonance masses. The observed limit above 5 TeV is at $\Gamma/M_{Med} \geq 1$, thus in a region where the simplified model of a mediator particle is no longer valid. For M_{Med} between 2.0 and 4.6 TeV, this search excludes couplings $1.0 \leq g_q \leq 1.4$, which are not accessible via dijet resonance searches.

The limits for M_{Med} at arbitrary m_{DM} and g_{DM} can be calculated based on the fact that at fixed
mediator production cross sections, changes in the width of the DM decay channel will lead to changes in the width of the quark decay channel. For the models with $g_q = 1.0$, $g_{DM} = 1.0$, and $2m_{DM} < M_{Med}$, in which the total width of the mediator is dominated by the width of the quark decay channel due to the large number of possible quark flavors and colors, the exclusion range for M_{Med} has little dependence on m_{DM}. For the models with $2m_{DM} \geq M_{Med}$, the width of the DM decay channel is assumed to be zero. The resulting exclusion regions for vector and axial-vector mediators with $g_q = 1.0$ and $g_{DM} = 1.0$ in the m_{DM} and M_{Med} plane are shown in Fig. 4.

![Figure 3: The 95% CL upper limits on the quark coupling g_q, as a function of mass, for an axial-vector or vector DM mediator with $g_{DM} = 1.0$ and $m_{DM} = 1$ GeV. The observed limits (solid), expected limits (dashed) and the variation in the expected limit at the 1 and 2 standard deviation levels (shaded bands) are shown. A dotted horizontal line shows the coupling strength for a benchmark DM mediator with $g_q = 1.0$. The corresponding limits on the width of the mediators are shown on the vertical axis on the right-hand side of the figure.](image)

The observed and expected exclusion limits at 95% CL on different CI, ED, QBH, and DM models obtained in this analysis are listed in Table 2. The observed limits are less stringent than the expected limits because of the upward fluctuation in the measured distributions compared to theoretical predictions. The limits on all models are more stringent than those obtained from data collected by CMS in 2015 [29].

7 Summary

A search has been presented for physics beyond the standard model, based on normalized dijet angular distributions obtained in 2016 from proton-proton collisions at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The angular distributions, measured over a wide range of dijet invariant masses, are found to be in agreement with the predictions of perturbative quantum chromodynamics. The results are used to set 95% confidence level lower limits on the contact interaction scale for a variety of quark compositeness models, the ultraviolet cutoff in models of extra spatial dimensions, the minimum mass of quantum black
Figure 4: The 95% CL observed (red) and expected (blue) excluded regions in the plane of m_{DM} and M_{Med}, for a vector mediator (upper) and an axial-vector mediator (lower) for a DM benchmark model with $g_{DM} = g_q = 1.0$. These are compared to constraints from the cosmological relic density of DM (gray) determined from astrophysical measurements [87], using MADDMM. In the hatched area, DM is overabundant. The observed and expected lower bounds for M_{Med} overlap with each other.

holes, and the mass and couplings in dark matter models. For the first time, lower limits between 2.0 and 4.6 TeV are set on the mass of a dark matter mediator for (axial-)vector mediators, for the universal quark coupling $1.0 \leq g_q \leq 1.4$. This region is not accessible through dijet resonance searches. The lower limits for the contact interaction scale Λ range from 9.2 to 22.4 TeV. The lower limits on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model are in the range of 8.5–12 TeV, and are the most stringent limits available. Quantum black hole masses below 8.2 TeV are excluded in the model with six large extra spatial dimensions, and below 5.9 TeV in the Randall–Sundrum model with a single, warped extra dimension. To facilitate comparisons with the predictions of other models, the angular distributions, corrected to particle level, are published in HEPData.
Table 2: Observed and expected exclusion limits at 95% CL for various CI, ADD, QBH, and DM models. The 68% ranges of expectation for the expected limit are given as well. For the DM vector mediator, couplings $g_{\text{DM}} = 1.0$, $g_q \geq 1$ and a DM mass of 1 GeV are assumed and a range of masses instead of a lower limit is quoted.

Model	Observed lower limit (TeV)	Expected lower limit (TeV)
CI	Observed lower limit (TeV)	Expected lower limit (TeV)
$\Lambda_{\text{LL/RR}}^+$	12.8	14.6 ± 0.8
$\Lambda_{\text{LL/RR}}^-$	17.5	23.5 ± 3.0
Λ_{VV}^+	14.6	16.4 ± 0.8
Λ_{VV}^-	22.4	30.7 ± 3.7
Λ_{AA}^+	14.7	16.5 ± 0.8
Λ_{AA}^-	22.3	30.6 ± 3.8
$\Lambda_{(V-A)}^+$	9.2	11.5 ± 1.0
$\Lambda_{(V-A)}^-$	9.3	11.8 ± 1.1
ADD	Observed lower limit (TeV)	Expected lower limit (TeV)
Λ_T (GRW)	10.1	11.4 ± 0.9
M_S (HLZ) $n_{\text{ED}} = 2$	10.7	12.4 ± 1.0
M_S (HLZ) $n_{\text{ED}} = 3$	12.0	13.6 ± 1.1
M_S (HLZ) $n_{\text{ED}} = 4$	10.1	11.4 ± 0.9
M_S (HLZ) $n_{\text{ED}} = 5$	9.1	10.3 ± 0.8
M_S (HLZ) $n_{\text{ED}} = 6$	8.5	9.6 ± 0.8
QBH	Observed lower limit (TeV)	Expected lower limit (TeV)
M_{QBH} (ADD $n_{\text{ED}} = 6$)	8.2	8.5 ± 0.4
M_{QBH} (RS $n_{\text{ED}} = 1$)	5.9	6.3 ± 0.7
DM	Observed lower limit (TeV)	Expected lower limit (TeV)
Vector/Axial-vector M_{Med}	2.0 – 4.6	2.0 – 5.5
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); INFN (Italy); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MIEIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] H. Dreiner, D. Schmeier, and J. Tattersall, “Contact interactions probe effective dark matter models at the LHC”, Europ. Phys. Lett. 102 (2013) 51001, doi:10.1209/0295-5075/102/51001 [arXiv:1303.3348]
[2] J. Abdallah et al., “Simplified models for dark matter searches at the LHC”, *Phys. Dark Univ.* **9-10** (2015) 8, [doi:10.1016/j.dark.2015.08.001](https://doi.org/10.1016/j.dark.2015.08.001) [arXiv:1506.03116](https://arxiv.org/abs/1506.03116).

[3] G. Busoni et al., “Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter”, (2016). [arXiv:1603.04155](https://arxiv.org/abs/1603.04155).

[4] A. Albert et al., “Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels”, (2017). [arXiv:1703.05703](https://arxiv.org/abs/1703.05703).

[5] D. Abercrombie et al., “Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum”, (2015). [arXiv:1507.00966](https://arxiv.org/abs/1507.00966).

[6] H. Terazawa, “Subquark model of leptons and quarks”, *Phys. Rev. D* **22** (1980) 184, [doi:10.1103/PhysRevD.22.184](https://doi.org/10.1103/PhysRevD.22.184).

[7] E. Eichten, K. Lane, and M. Peskin, “New tests for quark and lepton substructure”, *Phys. Rev. Lett.* **50** (1983) 811, [doi:10.1103/PhysRevLett.50.811](https://doi.org/10.1103/PhysRevLett.50.811).

[8] E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, “Supercollider physics”, *Rev. Mod. Phys.* **56** (1984) 579, [doi:10.1103/RevModPhys.56.579](https://doi.org/10.1103/RevModPhys.56.579).

[9] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The hierarchy problem and new dimensions at a millimeter”, *Phys. Lett. B* **429** (1998) 263, [doi:10.1016/S0370-2693(98)00466-3](https://doi.org/10.1016/S0370-2693(98)00466-3) [arXiv:hep-ph/9803315](https://arxiv.org/abs/hep-ph/9803315).

[10] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity”, *Phys. Rev. D* **59** (1999) 086004, [doi:10.1103/PhysRevD.59.086004](https://doi.org/10.1103/PhysRevD.59.086004) [arXiv:hep-ph/9807344](https://arxiv.org/abs/hep-ph/9807344).

[11] P. C. Argyres, S. Dimopoulos and J. March-Russell, “Black holes and sub-millimeter dimensions”, *Phys. Lett. B* **441** (1998) 96, [doi:10.1016/S0370-2693(98)01184-8](https://doi.org/10.1016/S0370-2693(98)01184-8) [arXiv:hep-th/9808138](https://arxiv.org/abs/hep-th/9808138).

[12] T. Banks and W. Fischler, “A model for high-energy scattering in quantum gravity”, (1999). [arXiv:hep-th/9906038](https://arxiv.org/abs/hep-th/9906038).

[13] R. Emparan, G. T. Horowitz, and R. C. Myers, “Black holes radiate mainly on the brane”, *Phys. Rev. Lett.* **85** (2000) 499, [doi:10.1103/PhysRevLett.85.499](https://doi.org/10.1103/PhysRevLett.85.499) [arXiv:hep-th/0003118](https://arxiv.org/abs/hep-th/0003118).

[14] S. Dimopoulos and G. Landsberg, “Black holes at the LHC”, *Phys. Rev. Lett.* **87** (2001) 161602, [doi:10.1103/PhysRevLett.87.161602](https://doi.org/10.1103/PhysRevLett.87.161602) [arXiv:hep-ph/0106295](https://arxiv.org/abs/hep-ph/0106295).

[15] S. B. Giddings and S. Thomas, “High energy colliders as black hole factories: the end of short distance physics”, *Phys. Rev. D* **65** (2002) 056010, [doi:10.1103/PhysRevD.65.056010](https://doi.org/10.1103/PhysRevD.65.056010) [arXiv:hep-ph/0106219](https://arxiv.org/abs/hep-ph/0106219).

[16] M. Chala et al., “Constraining dark sectors with monojets and dijets”, *JHEP* **07** (2015) 089, [doi:10.1007/JHEP07(2015)089](https://doi.org/10.1007/JHEP07(2015)089) [arXiv:1503.05916](https://arxiv.org/abs/1503.05916).

[17] ATLAS Collaboration, “Search for new phenomena in dijet events using 37 fb$^{-1}$ of pp collision data collected at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. D* **96** (2017) 052004, [doi:10.1103/PhysRevD.96.052004](https://doi.org/10.1103/PhysRevD.96.052004) [arXiv:1703.09127](https://arxiv.org/abs/1703.09127).
[18] CMS Collaboration, “Search for dijet resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter and other models”, Phys. Lett. B 769 (2016) 520, doi:10.1016/j.physletb.2017.02.012, arXiv:1611.03568.

[19] UA1 Collaboration, “Angular distributions for high mass jet pairs and a limit on the energy scale of compositeness for quarks from the CERN pp collider”, Phys. Lett. B 177 (1986) 244, doi:10.1016/0370-2693(86)91065-8.

[20] B. L. Combridge and C. J. Maxwell, “Untangling large p_T hadronic reactions”, Nucl. Phys. B 239 (1984) 429, doi:10.1016/0550-3213(84)90257-8.

[21] ATLAS Collaboration, “Search for quark contact interactions in dijet angular distributions in pp collisions at $\sqrt{s} = 7$ TeV measured with the ATLAS detector”, Phys. Lett. B 694 (2010) 327, doi:10.1016/j.physletb.2010.10.021, arXiv:1009.5069.

[22] ATLAS Collaboration, “Search for new physics in dijet mass and angular distributions in pp collisions at $\sqrt{s} = 7$ TeV measured with the ATLAS detector”, New J. Phys. 13 (2011) 053044, doi:10.1088/1367-2630/13/5/053044, arXiv:1103.3864.

[23] ATLAS Collaboration, “ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 01 (2013) 029, doi:10.1007/JHEP01(2013)029, arXiv:1210.1718.

[24] ATLAS Collaboration, “Search for new phenomena in the dijet mass distribution using pp collision data at $\sqrt{s} = 8$ TeV with the atlas detector”, Phys. Rev. D 91 (2015) 052027, doi:10.1103/PhysRevD.91.052007, arXiv:1407.1376.

[25] ATLAS Collaboration, “Search for new phenomena in dijet mass and angular distributions from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, Phys. Lett. B 754 (2016) 302, doi:10.1016/j.physletb.2016.01.032, arXiv:1512.01530.

[26] CMS Collaboration, “Search for new physics with dijet angular distributions in proton-proton collisions at $\sqrt{s} = 13$ TeV”, Phys. Rev. Lett. 106 (2011) 201804, doi:10.1103/PhysRevLett.106.201804, arXiv:1102.2020.

[27] CMS Collaboration, “Search for quark compositeness in dijet angular distributions from pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 05 (2012) 055, doi:10.1007/JHEP05(2012)055, arXiv:1202.5535.

[28] CMS Collaboration, “Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at $\sqrt{s} = 8$ TeV”, Phys. Lett. B 746 (2015) 79, doi:10.1016/j.physletb.2015.04.042, arXiv:1411.2646.

[29] CMS Collaboration, “Search for new physics with dijet angular distributions in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 07 (2017) 013, doi:10.1007/JHEP07(2017)013, arXiv:1703.09986.

[30] Y. Bai, P. J. Fox, and R. Harnik, “The Tevatron at the Frontier of Dark Matter Direct Detection”, JHEP 12 (2010) 048, doi:10.1007/JHEP12(2010)048, arXiv:1005.3797.

[31] I. M. Shoemaker and L. Vecchi, “Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II”, Phys. Rev. D 86 (2012) 015023, doi:10.1103/PhysRevD.86.015023, arXiv:1112.5457.
[32] CMS Collaboration, “Search for narrow and broad dijet resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter mediators and other new particles”, JHEP 08 (2018) 130, doi:10.1007/JHEP08(2018)130, arXiv:1806.00843

[33] ATLAS Collaboration, “Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector”, Phys. Rev. D 94 (2016) 032005, doi:10.1103/PhysRevD.94.032005, arXiv:1604.07773

[34] CMS Collaboration, “Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at $\sqrt{s} = 13$ TeV”, JHEP 07 (2017) 014, doi:10.1007/JHEP07(2017)014, arXiv:1703.01651

[35] CMS Collaboration, “Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $\sqrt{s} = 13$ TeV”, Phys. Rev. D 97 (2018) 092005, doi:10.1103/PhysRevD.97.092005, arXiv:1712.02345

[36] CMS Collaboration, “Search for contact interactions using the inclusive jet p_T spectrum in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Rev. D 87 (2013) 052017, doi:10.1103/PhysRevD.87.052017, arXiv:1301.5023

[37] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys. 43 (1975) 199, doi:10.1007/BF02345020; [Erratum: https://projecteuclid.org/euclid.cmp/1103899590].

[38] X. Calmet, W. Gong, and S. D. H. Hsu, “Colorful quantum black holes at the LHC”, Phys. Lett. B 668 (2008) 20, doi:10.1016/j.physletb.2008.08.011, arXiv:0806.4605

[39] P. Meade and L. Randall, “Black holes and quantum gravity at the LHC”, JHEP 05 (2008) 003, doi:10.1088/1126-6708/2008/05/003, arXiv:0708.3017

[40] D. M. Gingrich, “Quantum black holes with charge, colour, and spin at the LHC”, J. Phys. G 37 (2010) 105008, doi:10.1088/0954-3899/37/10/105008, arXiv:0912.0826

[41] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

[42] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[43] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965

[44] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[45] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097

[46] CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.
[47] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, *JINST* **12** (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[48] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[49] T. Sjöstrand, S. Mrenna, and P. Skands, “A brief introduction to PYTHIA 8.1”, *Comput. Phys. Comm.* **178** (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[50] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[51] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma\gamma\psi$”, PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.

[52] T. Adye, “Unfolding algorithms and tests using RooUnfold”, in *Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding*, CERN, Geneva, Switzerland 17-20 January 2011, p. 313. 2011. arXiv:1105.1160. doi:10.5170/CERN-2011-006.313.

[53] G. D'Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, *Nucl. Instrum. Meth. A* **362** (1995) 487, doi:10.1016/0168-9002(95)00274-X.

[54] Z. Nagy, “Three-jet cross sections in hadron hadron collisions at next-to-leading order”, *Phys. Rev. Lett.* **88** (2002) 122003, doi:10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315.

[55] T. Kluge, K. Rabbertz, and M. Wobisch, “Fast pQCD calculations for PDF fits”, in DIS 2006, 20-24 Apr 2006, p. 483. Tsukuba, Japan, apr, 2006. arXiv:hep-ph/0609285.

[56] S. Dittmaier, A. Huss, and C. Speckner, “Weak radiative corrections to dijet production at hadron colliders”, *JHEP* **11** (2012) 095, doi:10.1007/JHEP11(2012)095, arXiv:1210.0438.

[57] S. Dulat et al., “New parton distribution functions from a global analysis of quantum chromodynamics”, *Phys. Rev. D* **93** (2016) 033006, doi:10.1103/PhysRevD.93.033006, arXiv:1506.07443.

[58] J. Butterworth et al., “PDF4LHC recommendations for LHC run II”, *J. Phys. G* **43** (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.

[59] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, “Parton distributions in the LHC era: MMHT 2014 PDFs”, *Eur. Phys. J. C* **75** (2015) 204, doi:10.1140/epjc/s10052-015-3397-6, arXiv:1412.3989.

[60] NNPDF Collaboration, “Parton distributions for the LHC run II”, *JHEP* **04** (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[61] J. Gao and P. Nadolsky, “A meta-analysis of parton distribution functions”, *JHEP* **07** (2014) 035, doi:10.1007/JHEP07(2014)035, arXiv:1401.0013.

[62] S. Carrazza et al., “An unbiased Hessian representation for Monte Carlo PDFs”, *Eur. Phys. J. C* **75** (2015) 369, doi:10.1140/epjc/s10052-015-3590-7, arXiv:1505.06736.
[63] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune”, Eur. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630

[64] M. Bähr et al., “Herwig++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883

[65] M. H. Seymour and A. Siodmok, “Constraining MPI models using σ_{eff} and recent tevatron and LHC underlying event data”, JHEP 10 (2013) 113, doi:10.1007/JHEP10(2013)113, arXiv:1307.5015

[66] M. Backovic, K. Kong, and M. McCaskey, “MadDM v.1.0: Computation of dark matter relic abundance using MadGraph5”, Phys. Dark Univ. 5-6 (2014) 18, doi:10.1016/j.dark.2014.04.001, arXiv:1308.4955

[67] M. Backovic et al., “Direct detection of dark matter with MadDM v.2.0”, Phys. Dark Univ. 9-10 (2015) 37, doi:10.1016/j.dark.2015.09.001, arXiv:1505.04190

[68] J. Gao et al., “Next-to-leading QCD effect to the quark compositeness search at the LHC”, Phys. Rev. Lett. 106 (2011) 142001, doi:10.1103/PhysRevLett.106.142001, arXiv:1101.4611

[69] G. F. Giudice, R. Rattazzi, and J. D. Wells, “Quantum gravity and extra dimensions at high-energy colliders”, Nucl. Phys. B 544 (1999) 3, doi:10.1016/S0550-3213(99)00044-9, arXiv:hep-ph/9811291

[70] T. Han, J. D. Lykken, and R.-J. Zhang, “Kaluzza-Klein states from large extra dimensions”, Phys. Rev. D 59 (1999) 105006, doi:10.1103/PhysRevD.59.105006, arXiv:hep-ph/9811350

[71] K. Cheung and G. Landsberg, “Drell-Yan and diphoton production at hadron colliders and low scale gravity model”, Phys. Rev. D 62 (2000) 076003, doi:10.1103/PhysRevD.62.076003, arXiv:hep-ph/9909218

[72] L. Randall and R. Sundrum, “Large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83 (1999) 3370, doi:10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221

[73] L. Randall and R. Sundrum, “An alternative to compactification”, Phys. Rev. Lett. 83 (1999) 4690, doi:10.1103/PhysRevLett.83.4690, arXiv:hep-th/9906064

[74] D. M. Gingrich, “Monte Carlo event generator for black hole production and decay in proton-proton collisions”, Comput. Phys. Commun. 181 (2010) 1917, doi:10.1016/j.cpc.2010.07.027, arXiv:0911.5370

[75] CMS Collaboration, “Jet energy scale and resolution performances with 13 TeV data”, CMS Detector Performance Summary CERN-DP-2016-020, 2016.

[76] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277

[77] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8
[78] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[79] ATLAS Collaboration, “Measurement of the inelastic proton-proton cross section at √s = 13 TeV with the ATLAS detector at the LHC”, Phys. Rev. Lett. 117 (2016) 182002, doi:10.1103/PhysRevLett.117.182002, arXiv:1606.02625.

[80] M. Cacciari et al., “The t̄t cross-section at 1.8 TeV and 1.96 TeV: A study of the systematics due to parton densities and scale dependence”, JHEP 04 (2004) 068, doi:10.1088/1126-6708/2004/04/068, arXiv:hep-ph/0303085.

[81] A. Banfi, G. P. Salam, and G. Zanderighi, “Phenomenology of event shapes at hadron colliders”, JHEP 06 (2010) 038, doi:10.1007/JHEP06(2010)038, arXiv:1001.4082.

[82] P. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, Phys. Rev. D 78 (2008) 013004, doi:10.1103/PhysRevD.78.013004, arXiv:0802.0007.

[83] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].

[84] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/s0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[85] A. L. Read, “Presentation of search results: The CLs technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[86] ATLAS and CMS Collaborations, and the LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.

[87] Planck Collaboration, “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys. 594 (2016) A13, doi:10.1051/0004-6361/201525830, arXiv:1502.01589.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck, R. Schönbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskiy, S. Lovette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondou, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, H. Malbouisson, M. Medina Jaime, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, S. Khalil

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, X. Coubez, F. Drouhin, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia
T. Torishvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teys, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müllier, A. Neurkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo, J. Garay García, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, H. Tholen, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marcon, J. Multhaup, M. Niedziela, D. Nowatschin, T. Peiffer, A. Perieanu, A. Reimers, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Steinbrück, F.M. Stober, M. Stöver, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Teilchenphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf, F. Hartmann, S.M. Heindl, U. Husemann, F. Kassel, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wörhmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

National Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneos, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók, P. Raics, Z.L. Trocsanyi, B. Ujvari
Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri

National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati23, P. Mal, K. Mandal, A. Nayak24, D.K. Sahoo23, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, S. Sharma, J.B. Singh, G. Walia

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, Ashok Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj25, R. Bhattacharya, S. Bhattacharya, U. Bhawandep25, D. Bhowmik, S. Dey, S. Dutta25, S. Dutta, S. Ghosh, N. Majumdar, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur25

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity26, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar26, N. Wickramage27

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani28, E. Eskandari Tadavani, S.M. Etesami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi29, Rezaei Hosseinabadi, B. Safarzadeh30, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari d, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, A. Di Floriob, F. Erricoa,b, L. Fiorea, A. Gelmia,b, G. Iasellia,c, S. Lezkia,b, G. Maggia,c, M. Maggia, B. Marangellia,b, G. Minioelloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa, A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,16, R. Vendittia, P. Verwilligena, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,
P. Giacomellia, C. Grandia, L. Guiduccia,c, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergoa,b, S. Costaa,b, A. Di Mattiaa, F. Giordanoa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, K. Chatterjeea,b,c, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, G. Latino, P. Lenzia,b, M. Meschinia, S. Paolettia, L. Russoa,31, G. Sguazzonia, D. Stroma, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera16

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
V. Calvellia,b, F. Ferroa, F. Raveraa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,16, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b, K. Pauwelsa,b, D. Pedrinia, S. Pigazzinia,b,32, S. Ragazzia,b, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,16, F. Fabozzia,c, F. Fiengaa,b, G. Galatia,b, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,16, P. Paoluccia,16, C. Sciacciaa,b, F. Thyssena,b, E. Voevodinaa

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bachettaa, L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraa, M. Margonia,b, A.T. Meneguzzoa,b, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, A. Tiko, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vitulloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardìa,b, E. Manonia, G. Mantovania,b, V. Mariana,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria,16, G. Bagliesia, L. Bianchinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedira, L. Gianninia,c, A. Giassia, M.T. Grippia,31, F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, N. Dacia, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza,
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autóntoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boińska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhias, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadrucic, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim, E. Kuznetsova, P. Lechenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenyev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepeninov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Terkulov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, D. Shtol, Y. Skovpen

State Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute", Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan García

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chacin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernandez Manteca, A. Garcia Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterría, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban, J. Kieseler, V. Knünz, A. Kornmayer, M. Krammer, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Plefifer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva,
P. Sphicas, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns, M. Verweij, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, B. Casal, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quitián, M. Reichmann, D. Ruini, D.A. Sanz Becerra, M. Schönengerber, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, I. Neutelings, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Arun Kumar, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Sriramanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci, S. Damarsekin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Ogłakci, G. Onengut, K. Ozdemir, D. Sunar Cerci, U.G. Tok, H. Topkak, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher,
J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, T. Strebler, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breeden, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. McColl, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta
dokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandravula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminiizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Ragan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapi Takaki, Q. Wang

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Meginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orinto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco
University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gerstsein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang
Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsinm, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanao, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU; CEA; Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
6: Also at Université Libre de Bruxelles, Bruxelles, Belgium
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Also at Zewail City of Science and Technology, Zewail, Egypt
12: Also at Department of Physics; King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics; Lomonosov Moscow State University, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at CERN; European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University; III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group; Eötvös Loránd University, Budapest, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Institute of Physics; University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Yazd University, Yazd, Iran
30: Also at Plasma Physics Research Center; Science and Research Branch; Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
