Title of the paper:
Cynaracardunculus Biomass Recovery: an Eco-Sustainable, Non-Edible Resource of Vegetable Oil for the Production of Poly(lactic acid) Bioplasticizers

Authors
Rosa Turcoa, Riccardo Tessera, Maria Elena Cucciolitoa, Massimo Fagnanoc, Lucia Ottaianoc, Salvatore Mallardob, Mario Malinconicob, Gabriella Santagatab*, Martino Di Serioa,d*

Affiliations
aDepartment of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
bInstitute for Polymers, Composites and Biomaterials, National Council of Research, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
cDepartment of Agricultural Sciences, University of Naples Federico II, Via Università, 80126 Naples, Italy
dInternational Research Organization for Advanced Science and Technology (IROAST), University of Kumamoto, 860-8555 Kumamoto, Japan

a*Corresponding author. Tel.: +39081674414. E-mail: diserio@unina.it
b*Corresponding author. Tel.: +390818675372 E-mail: santagata@ipcb.cnr.it

Contents

Number of pages: 8
Number of figures: 5
Number of tables: 1

Figure S1a,b. FTIR spectra of neat (CO) and epoxidized cardoon oil (ECO) (pag.S4)
Figure S2. FTIR spectra of PLA, PLA_CO, PLA_ECO films (pag.S5)
Figure S3. PLA, PLA_ECO and their spectral subtraction of the finger print region. (pag.S6)
Figure S4. DSC second heating run. Red circles: first and second cold crystallization process (pag.S7)
Figure S5a,b. TGA (a) and DTG (b) thermograms of CO and ECO oils, PLA, PLA_CO and PLA_ECO films (pag.S9)
Table S1. Thermal properties of PLA, PLA_CCO and PLA_ECO films measured by DSC (pag S7)
References (pag.S9-S10)
Results and discussion

FTIR

In Figure S1a,b, FTIR comparison of CO and ECO spectra in the high frequency (a) and finger print (b) regions, are reported. In particular, in Fig.S1a, the presence of a shoulder at 3009 cm\(^{-1}\) in CO oil, related to the stretching vibration of double bond \(=\text{CH}\), disappeared in ECO oil spectrum, confirming that the epoxidation occurred at the expense of all unsaturated group conversion. In Figure S1b, besides the peak at 1250 cm\(^{-1}\) related to both C-O-C stretching from oxirane group (in ECO) and C-O stretching of ester group in both oils, oil, is possible to observe small intensity vibrations around 785, 826 and 842 cm\(^{-1}\), specifically attributed to the C-O-C stretching of oxirane groups (in ECO)\(^{1,2}\).

Figure S1a,b. FTIR spectra of neat (CO) and epoxidized cardoon oil (ECO)

In Figure S2, PLA, PLA_ECO and PLA_CO spectra are reported. The main absorption regions of PLA and PLA/oil based systems are attributed to the vibrations of \(–\CH\) stretching between 3100–2800 cm\(^{-1}\), \(\text{C}=\text{O}\) stretching in the range of 1760–1745 cm\(^{-1}\), \(–\CH\) bending at 1500–1400 cm\(^{-1}\) and \(–\text{C–O}\) stretching in the interval between 1100–1000 cm\(^{-1}\) (Figure S2)\(^{3,4}\).

Unfortunately, most of the vibration frequencies of the above functional groups were reciprocally overlapped, so the corresponding spectra comparison were not enlightening. Anyway, from a spectra
subtraction, it was possible to collect information related to PLA-oil interactions (see Figure 2a,b in the full text).

Figure S2. FTIR spectra of PLA, PLA_CO, PLA_ECO films.

In Figure S3, the fingerprint region of PLA, PLA_ECO and their spectral subtraction is reported. From the analysis of spectra, it is worthy to note the presence of the oxirane C-O-C vibrational frequency, at 820, 842, 855 cm⁻¹. This outcome suggested that, although the strong physical interaction occurring between the polar groups of PLA and ECO, no chemical reaction, involving the oxirane ring opening, occurred after the extrusion and compression moulding processes.

Figure S3. PLA, PLA_ECO and their spectral subtraction of the fingerprint region.
During the second heating run, PLA based systems evidenced two cold crystallization phenomena (red circle in Figure. S4), whose parameters are detailed in Table S1.

Cold crystallization phenomena, observable after the glass transition temperature, are very common mostly in the case of the polyesters, as widely reported in literature\(^5\). So far, three major mechanisms have been used to explain this phenomenon, as widely reported in literature\(^6\)-\(^8\).

In the specific case of PLA based systems, the cold crystallization believed to be aroused from the melting-recrystallization-remelting model, in which PLA unstable crystallites formed during the cooling process (see Figure. 4 in the full text), melted and then recrystallized in unsteady crystalline patterns, thermally susceptible to further melting process. Hence, the crystallization exotherms\((T_{cc1}\) and \(T_{cc2}\)) found in the DSC traces (FigureS4) corresponded to the recrystallization of the unstable melt crystallites, whereas the main endothermic peak were referred to the melting of highly thermally stable crystallites formed during the cooling step\(^9\). In all the films investigated, the first cold crystallization phenomenon was induced by the increasing of macromolecular mobility, since it occurred upon the glass transition of PLA. Anyway, while neat PLA film evidenced the melting of the metastable crystals formed, the plasticized films did not show any clear melting phenomena. This outcome could be due to the very closeness of the two consecutive processes, not discernible in presence of oil plasticizers, since the fast developed chain mobility. The second cold crystallization occurred very close to the main melting process of the more stable crystal lamellae fraction.

Table S1. Thermal properties of PLA, PLA_CCO and PLA_ECO films measured by DSC.

Samples	\(T_{c\text{melt}}\)	\(\Delta H_{c\text{melt}}\)	\(T_g\)	\(T_{cc1}\)	\(T_{cc2}\)	\(\Delta H_{cc1}\)	\(\Delta H_{cc2}\)	\(\Delta H_m\)	\(T_m\)
PLA	97.4	33.5	62.2	93.4	160	3	3.4	44.0	174
PLA_CCO	98.1	30.4	59.8	93.6	158	4.1	4.4	47.7	174
Figure S4. DSC second heating run. Red circles: first and second cold crystallization process

TGA

From the analysis of thermograms, it is worthy to highlight that both oils evidenced the highest thermal stability; in particular, as expected, the presence of epoxidized rings, increasing the molecular complexity of the corresponding oil, delayed its thermal decomposition; indeed ECO degradation onset was shifted to higher temperature with respect to CO oil10. It is interesting to note that PLA was thermally stabilized by both oils, as shown by both thermograms and Table 2. Actually, the physical interaction occurring between PLA chains and oils induced a structural reassembling of the polymer creating a protective physical barrier, able both to hinder the permeability of volatile degradation products out from the blend, and to promote a drastic delay of blend thermal degradation. Moreover, only a single degradation pattern could be evidenced by TGA and DTG curves (Figures S5a,b) of PLA-oils based films, evidencing a fine oil dispersion among macromolecular chains. Nevertheless, it is outstanding to observe that PLA_CO blend showed higher thermal stability compared to PLA_ECO system (see Table 2). This outcome was somewhat expected, since the enhanced plasticization effect of epoxidized oil on polymeric matrix, as previously proved by DSC data and
morphological analysis, and following detailed by mechanical properties. Indeed, the epoxidized oil interspersed between the polymeric chains, increasing the free volume of the system. As a consequence, the polymer was more prone to thermal degradation11,12.

From the analysis of DTG thermogram, reported in Figure S5, it is worthy to highlight that both oils evidenced the highest thermal stability; in particular, as expected, the presence of epoxidized rings, increasing the molecular complexity of the corresponding oil, delayed its thermal decomposition; indeed ECO degradation onset was shifted to higher temperature with respect to CO oil. It is interesting to note that PLA was thermally stabilized by both oils, as widely detailed in the full text. Moreover, only a single degradation pattern could be evidenced by DTG curves of PLA-oils based films, evidencing a fine oil dispersion among macromolecular chains.

\textbf{Figure S5a,b.} TGA (a) and DTG (b) thermograms of CO and ECO oils, PLA, PLA_CO and PLA_ECO films

\textbf{References}

(1) Derawi, D.; Salimone, J. Optimization on Epoxidation of Palm Olein by Using Performic Acid. \textit{J Chem-NY.} \textbf{2010}, \textit{7}(4), 1440-1448.
(2) Silverajah, V.S.; Ibrahim, N.A.; Zainuddin, N.; Yunus, W.M.Z.W.; Hassan, H.A. Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. *Molecules.* 2012, 17(10), 11729-11747;

(3) Al-Mulla, E.A.J.; Ibrahim, N.A.B.; Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W. Effect of epoxidized palm oil on the mechanical and morphological properties of PLA-PCL blend. *Res. Chem. Intermediat.* 2014, 40 (2), 689-698.

(4) Al-Mulla, E. A. J.; Yunus, W. Md. Z. W.; Ibrahim, N. A. B.; Rahman, M. Z. Ab. Properties of epoxidized palm oil plasticized polytlactic acid *J Mater. Sci.* 2010, 45, 1942–1946

(5) Song, L.; Qiu, Z. Crystallization behavior and thermal property of biodegradable poly (butylene succinate)/functional multi-walled carbon nanotubes nanocomposite, *Polym. Degrad. Stab.* 2009, 94, 632–637.

(6) Yasuniwa, M.; Satou, T. Multiple melting behavior of poly (butylene succinate). Thermal analysis of melt-crystallized samples. *J PolymSci Pol Phys*, 2002; 40, 2411-2420.

(7) Liu, T.; Petermann, J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene, *Polymer.* 2001, 42, 6453–6461.

(8) Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M.G.; Santagata, G.; Di Lorenzo, M.L. Poly(butylenesuccinate)-basedcompositescontaining b-cyclodextrin/D-limoneneinclusioncomplex. *EurPolym J.* 2016, 79, 82–96.

(9) BuongWoei, C.; Nor Azowa, I.; Wan Md Zin Wan Y.; MohdZobir H. Plasticized Poly(lactic acid) with Low Molecular Weight Poly(ethylene glycol): Mechanical, Thermal, and Morphology Properties. *J. Appl. Polym. Sci.* 2013, 4576-4580.

(10) Garcia-Garcia, D.; Ferri, M.J.; Montanes, N.; Lopez-Martinez, J.; Balart, R. Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate).*Polym. Int.* 2016, 65, 1157–1164.

(11) Daniels, P. H. J. A Brief Overview of Theories of PVC Plasticization and Methods Used to Evaluate PVC-Plasticizer Interaction *Vinyl Addit. Technol.* 2009, 15, 219.
(12) Russo, R.; Malinconico, M.; Santagata, G. Effect of cross-linking with calcium ions on the physical properties of alginate films. *Biomacromolecules*. **2007**, *8*(10), 3193–3197.