Direct \textit{in vivo} injection of ^{131}I-GMS and its distribution and excretion in rabbit

Yu Ma, Yi Wan, Dong-Hui Luo, Li-Geng Duan, Lin Li, Chuan-Qin Xia, Xiao-Li Chen

Yu Ma, Yi Wan, Li-Geng Duan, Xiao-Li Chen, The Research Unit of Hepato-Bilio-Pancreatology and Department of Hepatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
Dong-Hui Luo, Chuan-Qin Xia, College of Chemistry, Sichuan University, Chengdu 610041, Sichuan Province, China
Lin Li, Department of Nuclear Medicine and The National Key Discipline of Medical Imaging and Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China

Author contributions: Chen XL, Li L, Xia CQ and Ma Y designed the research; Ma Y, Wan Y, Luo DH and Duan LG performed the research; Ma Y and Chen XL analyzed the data and wrote the paper; Xia CQ, Li L, Wan Y and Luo DH wrote part of the paper.

Supported by Grant from the Science & Technology Pillar Program of Sichuan Province, China, No. 2009SZ184
Correspondence to: Xiao-Li Chen, MD, Professor, The Research Unit of Hepato-Bilio-Pancreatology and Department of Hepatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China.
Telephone: +86-28-85422868 Fax: +86-28-85534151
Received: November 29, 2009 Revised: January 3, 2010
Accepted: January 10, 2010
Published online: May 7, 2010

Abstract

AIM: To explore the distribution and metabolism of ^{131}I-gelatin microspheres (^{131}I-GMSs) in rabbits after direct injection into rabbits’ livers.

METHODS: Twenty-eight healthy New Zealand rabbits were divided into seven groups, with four rabbits per group. Each rabbit’s hepatic lobes were directly injected with 41.336 ± 5.106 MBq ^{131}I-GMSs. Each day after ^{131}I-GMSs administration, 8 rabbits were randomly selected, and 250 μL of serum was collected for γ count. Hepatic and thyroid functions were tested on days 1, 4, 8, 16, 24, 32, 48 and 64 after ^{131}I-GMSs administration. Single-photon emission computed tomography (SPECT) was taken for each group on days 0, 1, 4, 8, 16, 24, 32, 48, 64 after ^{131}I-GMSs administration. A group of rabbits were sacrificed respectively on days 1, 4, 16, 24, 32, 48, 64. One day after ^{131}I-GMSs administration, the liver function was damaged but recovered 4 d later. Eight days after ^{131}I-GMSs administration, the levels of free triiodothyronine and free thyroxin were reduced, which restored to normal levels on day 16. Histological examination showed that the microspheres were degraded to different degrees at 24, 32 and 48 d after ^{131}I-GMSs administration. The surrounding parts of injection points were in fibrous sheathing. No microspheres were detected in histological examination on day 64 after ^{131}I-GMSs administration.

CONCLUSION: Direct \textit{in vivo} injection of ^{131}I-GMSs is safe in rabbits. It may be a promising method for treatment of malignant tumors.

© 2010 Baishideng. All rights reserved.

Key words: ^{131}I; Label; Gelatin microspheres; Animal; Rabbit; Hepatic; Direct injection

Peer reviewer: Dr. Serdar Karakose, Professor, Department of Radiology, Meram Medical Faculty, Selcuk University, Konya 42080, Turkey

Ma Y, Wan Y, Luo DH, Duan LG, Li L, Xia CQ, Chen XL. Direct \textit{in vivo} injection of ^{131}I-GMS and its distribution and excretion in rabbit. \textit{World J Gastroenterol} 2010; 16(17): 2120-2128 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i17/2120.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i17.2120
INTRODUCTION

The treatment of malignant tumors in hepatic, biliary and pancreatic systems has been and will always be a tough and key part of general surgery. Surgical removal has been considered a positive approach for most of malignant tumors in these systems. But the success rate of surgical removal is very low and the prognosis after operation is unsatisfactory. For example, the number of cases of primary hepatic carcinoma in China was around 384,119 in 2005, and the number of deaths was 357,624, only 10%-30% are related to surgical removal, and 25% of them survived over 5 years. The number of cases of pancreatic cancer in America was around 42,470 and the number of death was around 35,240 in 2009. Surgical procedure has much limitations for treatment of malignant cancers. Many patients with malignant tumors in the three systems at middle to advanced stages are in the urgent need of new and effective non-surgical treatment.

Radionuclide labeled microspheres and seeds are the new progress made in the area of tumor therapy and interventional radiotherapy. It has now become a fast developing sub-field of medicine combining nuclear medicine and oncotherapy. Nuclide microspheres under study over recent years include 90Y glass and resin microsphere, 186Re glass microsphere, 32P glass microsphere, and 90Y glass microsphere. The 90Y glass microsphere is being increasingly recognized by the medical community as an important strategy for the treatment of primary and secondary neoplasm, which was officially approved in 1999 in America and Canada for treatment of malignant tumors. Now hundreds of publications have described the treatment of 90Y glass microsphere. The therapeutic practices in thousands of patients with liver cancer in about 80 medical centers around the globe show that hepatic arterial injection of 90Y glass microsphere is a safe and effective method for liver cancer treatment. Carr reports a group of clinical control study involving 65 cases of primary liver cancer. Forty-two cases are Okuda stage 1 with a median survival of 649 d (64 d for the control group) and 32P glass microsphere; and 23 are Okuda stage 2 with a median survival of 302 d (64 d for the control group). Salem reports another clinical control study involving 49 cases of liver cancer. Thirty cases of primary liver cancer were treated with 90Y glass microsphere. The success rate was 92%, and the number of deaths was 6 cases. These studies showed similar clinical therapeutic efficacy of 90Y glass microsphere to that of surgical procedure. The 131I-seeds used for prostate cancer in Europe and America has been tried in intratumoral implantation in China to treat advanced pancreatic carcinoma, which has demonstrated effects in alleviating pains and prolonging life. In conclusion, directional radiotherapy using nuclide microsphere or nuclide particle is a potential alternative to treat malignant tumors in hepatic, biliary and pancreatic systems.

China is a country with a large population in the world and has the highest incidence and death rate of primary liver cancer. And the incidence of biliary and pancreatic malignant tumors is increasing. However, most of the patients with middle to advanced stage cancers of the three systems cannot be treated with surgery. Therefore, directional radiotherapy using nuclide microsphere will significantly improve the prognosis of patients with middle to advanced stage cancers. Since 90Y glass microspheres have to be activated in an accelerator to get radioactivity, and when they are activated, they have relatively short half-life. We have been studying the nuclide microspheres for local brachytherapy for hepatic, biliary and pancreatic malignant tumors. In the 1990s, we developed the 32P glass microsphere with relatively long half-life, and treated 40 patients with advanced liver cancer from 1992 to 1994 after the completion of the metabolism tests in vivo in tumor-carrying animals. In recent years, we have developed the gelatin microspheres (GMSs) with a diameter of 50-70 μm carrying a high concentration of 131I to treat patients with advanced liver cancer with hepatic arterial transfusion and embolotherapy. Since its half-life is 8.04 d and free 131I in the body is either collected in thyroid tissue or discharged out of the body quickly, 131I is safe and has relatively weak influence on other tissues. The GMS is one of the degradable biomaterials with good biocompatibility, which can also bind 131I nuclide at a high concentration. So in this study, we prepared 131I-GMSs with a diameter of 10-30 μm for intratumoral implantation, which is expected to be easily applied for the hepatic, biliary, pancreatic and other malignant tumors that cannot be removed. Healthy rabbits are used as models to observe the metabolism of 131I-GMSs in vivo and the tissue reaction in their livers.

MATERIALS AND METHODS

Materials

Lime-processed gelatin (sigma G-9382) with an isoelectric point of 4.8-5.2 was purchased from Sigma Co. Ltd., USA; 131I-sodium-iodine solution (37 GBq/mL) was purchased from China Nuclear Group Chengdu Gaotong Isotope Co. Ltd., Chengdu, China. All other chemicals were of the highest commercially available purity.

Laboratory animals

This study was approved by the Animal Ethics Committee of Sichuan University. Twenty-eight healthy New Zealand rabbits weighing 1.8-2.5 kg were supplied by the animal experimental center of the Medical School of
Sichuan University and were divided into seven groups (groups 1-7), with four rabbits per group. Half of the rabbits were female and half were male. The rabbits were fed with a particulate (3-5 mm) chow and housed in a layered stainless steel coop. Rabbits had ad libitum access to running water. The air humidity and temperature were maintained at 50%-70% and 20-29°C, respectively. Eight days before the operation, four rabbits were randomly selected as control animals to collect serum from their hearts for the measurement of the liver and thyroid function.

Preparation of GMSs

GMSs were produced according to the modified method of Tabata et al. Briefly, 10 mL of 10% lime-processed gelatin solution was added dropwise while stirring, to 80 mL of liquid paraffin (Kelong Chemical Reagent Co. Ltd., Chengdu, China), which was preheated to 55°C with 0.8 mL span-80 (Shenyu Chemical Reagent Co. Ltd., Chongqing, China). The mixture was then stirred at 550 r/min at 55°C for 15 min to yield a water-in-oil emulsion. The stirring was then continued for 30 min at 4°C. Next, 3 mL of glutaraldehyde (25%, Kermel Chemical Reagent Co. Ltd., Tianjin, China) was added to the mixture after it cooled for 5 min to induce crosslinking and solidification of the microspheres. The resulting microspheres were removed by suction filtration and washed three times with acetone (Changlian Chemical Reagent Industries, Ltd., Chengdu, China) after dehydration by immersion in 30 mL of acetone for 15 min. After air-drying, the GMSs were examined by the Analyzing and Testing Center of Sichuan University and imaged under a scanning electron microscope.

Preparation of 131I-GMS

The 131I was labeled by a modification of the chloramine-T method. Briefly, 50 mg of GMSs were placed in test tubes, rehydrated with 190 μL of phosphate-buffered saline (pH 7.0) for 10 min. Next, 3.4 μL of 131I-sodium-iodine solution (37 GBq/mL) and 200 μL of chloramine-T solution (Bodi Chemical Reagent Co. Ltd., Chengdu, China) after dehydration by immersion in 30 mL of acetone for 15 min. After air-drying, the GMSs were examined by the Analyzing and Testing Center of Sichuan University and imaged under a scanning electron microscope.

Radioassay of rabbit serum

Four rabbits were chosen randomly for collecting 1 mL of blood from the ear veins between 0 and 24, then at 28, 32, 48 and 64 d after the administration of the GMSs. Those blood were centrifuged at 4400 r/min, and 250-μL aliquots of serum were used for γ counting in a γ counter (No. 262 Industry, Ltd., Xi’an, China).

Single-photon emission computed tomography, hepatic and thyroid functions examinations

The single-photon emission computed tomography (SPECT) scan (Skylight SPECT Camera, Philips Co. Ltd., Amsterdam, Netherlands) was conducted by the Nuclear Medicine Department of West China Hospital at 4 h, and at 1, 4, 8, 16, 24, 32, 48 and 64 d after administration. The animals in group 1, 2, 3, 4, 5, 6 and 7 were sacrificed at 1, 4, 8, 16, 24, 32, 48 and 64 d after the administration of the GMSs. Those blood were centrifuged at 4400 r/min, and 250-μL aliquots of serum were used for γ counting in a γ counter (No. 262 Industry, Ltd., Xi’an, China).

Histological examination

Liver samples were fixed in 10% formalin solution (Kelong Chemical Reagent Co. Ltd., Chengdu, China) for 48 h. Liver samples were then embedded in paraffin, sectioned, and stained with hematoxylin and eosin (HE) for histological examination.

Statistical analysis

Results were expressed as mean ± SD and were analyzed by t tests using SPSS 11.5 software. The level of significance was regarded at a P value of < 0.05.
RESULTS

Morphology of the microspheres
The GMSs were uniform in appearance, with a diameter of 10-30 μm, and a good divergence (Figure 1).

Effect of washing on GMS ¹³¹I content
The GMSs labeled with ¹³¹I were washed seven times to inhibit physical adsorption. Then, 50 mg of the GMSs labeled with ¹³¹I showed decreased radioactivity levels with increasing number of washes. The slope for the relative ¹³¹I content decreased gradually until it nearly reached a straight line (Table 1 and Figure 2).

Findings of SPECT imaging
The rabbits showed normal behaviors after the operation. SPECT imaging showed that the radioactive nuclide was concentrated in the liver, in regions surrounding the site of injection at 4 h and at 1, 4, 8, 16, 24, 32 and 48 d after ¹³¹I-GMSs administration. However, SPECT did not reveal any nuclide labeling on day 64. The thyroid also showed low levels of nuclide accumulation on days 4, 8, 16 and 24. Furthermore, there was faint nuclide labeling in the bladder of four rabbits before day 24, although this disappeared by day 32. SPECT imaging showed no accumulation of nuclide in other tissues, including the lung, heart, stomach, intestines and kidney in any rabbits for the entire observation period (Figure 3). The radioactive ratios between the injected parts of liver and thyroids was assessed by region of interest analysis and increased with time, from 15.91 ± 0.74 at 4 h after ¹³¹I-GMSs administration to 162.875 ± 7.955 at day 48 (Table 2).

Radioactive changes in serum
According to the serum γ counts, the radioactivity level decreased markedly over the first 2 d after ¹³¹I-GMSs administration. The decline in radioactivity continued to decline thereafter, but at a slower rate until day 24. At this time, there was no difference in relative radioactivity level compared with the background level (Figure 4).

Hepatic and thyroid function
The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased rapidly, particularly that of ALT, within 1 d after ¹³¹I-GMSs administration. The levels of these enzymes then decreased gradually, reverting to the normal level by day 4. The values of alkaline phosphatase and γ-glutamyltransferase were relatively stable. Similarly, the total protein, albumin and globulin did not change markedly during the study period (Table 3 and Figure 5).

The levels of free triiodothyronine (FT3) and free thyroxin (FT4) were significantly decreased on day 8 (P < 0.05), but returned to normal levels at day 16, and remained at the normal level until day 64 (Table 4 and Figure 6). The level of thyrotropic-stimulating hormone (TSH) remained < 0.005 mU/L throughout the study.

Number of washes	Labeling rate (%)
0	68.01 ± 2.09
1	47.74 ± 2.26
2	43.68 ± 2.19
3	42.72 ± 2.23
4	42.22 ± 2.27
5	41.91 ± 2.28
6	41.56 ± 2.27
7	41.00 ± 2.29

Time	Liver/thyroid
4 h	15.910 ± 0.740
Day 4	27.197 ± 5.467
Day 8	81.467 ± 24.637
Day 16	91.670 ± 23.278
Day 24	93.601 ± 21.337
Day 32	112.608 ± 12.787
Day 48	162.875 ± 7.955

Table 1 Effect of washing on labeling rate (n = 6)

Table 2 Ratio of radioactivity between the liver and thyroid (n = 6) after the administration of ¹³¹I-labeled gelatin microspheres.

Figure 1 Scanning electron microscopic (20 kV) images of metal-coated gelatin microspheres (original magnification, × 500).

Figure 2 The labeling rate decreases with increasing the number of washes. The slope decreased gradually, nearly reaching a straight line, which demonstrates that the ¹³¹I-labeled gelatin microspheres after washing contained very low amounts of nuclides conjugated by physical adsorption.
Histological findings

The histological specimens showed that the 131I-GMSs were quite concentrated, with a few inflammatory cells surrounding the injection sites on day 1 (Figure 7A) and some hepatic cells had died by day 4 (Figure 7B). Fibrous sheaths coating the 131I-GMSs and sequential degradation of the 131I-GMS were observed on days 16, 24 and 32. Most of the hepatic cells around and within the

Table 3	Effects of the administration of 131I-labeled gelatin microspheres on hepatic function ($n = 4$)						
	ALT (IU/L)	AST (IU/L)	ALP (IU/L)	GGT (IU/L)	TP (g/L)	ALB (g/L)	GLB (g/L)
Before administration	67.75 ± 11.87	55.00 ± 11.87	99.75 ± 14.99	6.00 ± 1.83	54.33 ± 3.16	46.05 ± 2.32	8.28 ± 2.79
After administration							
1 d	291.50 ± 12.79	146.00 ± 13.88	115.00 ± 25.92	9.25 ± 3.30	60.23 ± 1.96	45.65 ± 5.17	15.00 ± 5.34
4 d	46.75 ± 4.79	41.25 ± 10.69	91.00 ± 29.59	7.25 ± 1.26	58.43 ± 8.45	47.55 ± 3.53	12.23 ± 5.03
8 d	48.50 ± 14.39	48.00 ± 17.32	79.75 ± 14.77	7.50 ± 0.58	58.10 ± 4.40	44.63 ± 2.33	13.65 ± 4.33
16 d	37.25 ± 9.32	39.75 ± 11.81	76.00 ± 9.83	9.50 ± 3.11	62.13 ± 5.84	44.38 ± 7.41	19.85 ± 6.79
24 d	46.50 ± 16.01	45.25 ± 9.95	95.25 ± 17.08	8.00 ± 2.83	60.28 ± 4.45	47.60 ± 7.38	14.50 ± 3.54
32 d	52.25 ± 14.29	46.25 ± 8.66	96.75 ± 35.38	12.50 ± 3.87	63.55 ± 4.90	46.40 ± 4.06	18.63 ± 6.72
48 d	43.75 ± 10.01	40.25 ± 14.45	97.25 ± 7.93	9.25 ± 1.71	60.78 ± 4.08	46.83 ± 4.06	14.23 ± 4.22
64 d	45.50 ± 4.80	45.75 ± 3.24	91.75 ± 29.62	10.50 ± 3.42	61.92 ± 8.18	50.15 ± 5.30	15.05 ± 3.89

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; GGT: γ-glutamyltransferase; TP: Total protein; ALB: Albumin; GLB: Globulin.

Figure 3 Single-photon emission computed tomography (SPECT) imaging performed at 4 h (A) and 1 (B), 4 (C), 8 (D), 16 (E), 24 (F), 32 (G) and 48 (H) d after the administration of 131I-labeled gelatin microspheres.

Figure 4 Dynamic changes in serum γ-count after the administration of 131I-labeled gelatin microspheres.
In this study, we generated degradable GMSs carrying the \(^{131}\)I nuclide. Gelatin has a similar specific gravity to blood, and could be conjugated to many other drugs and nuclides \(\text{via}\) physical adsorption or chemical keys. Gelatin also shows good histocompatibility and degrades gradually \(\text{in vivo}\). Therefore, as a carrier for slow release of drugs, GMSs have been widely used by the medical community. \(^{131}\)I is the most widely used radioactive nuclide in clinical settings, and has shown good anti-tumor effects in many clinical cases. \(\text{In vivo}\), dissociative \(^{131}\)I mainly accumulates in the thyroid and is excreted \(\text{via}\) the kidney. Therefore, \(^{131}\)I that is released by the degradation of \(^{131}\)I-GMS into the serum could result in tissue damage, particularly the thyroid gland. Therefore, detailed evaluation of the metabolic characteristics of \(^{131}\)I-GMS, including its release, distribution and excretion \(\text{in vivo}\), and the potential damage to the body should be evaluated to comprehensively appraise its safety. The study has provided some insight into these concerns.

The initial labeling rate of \(^{131}\)I includes chemical binding and physical adsorption. When radionuclide-labeled microspheres are injected into the body, the nuclides conjugated to the microspheres \(\text{via}\) physical adsorption are more likely to dissociate. This has been reported to cause a severe de-iodinated state \(\text{in vivo}\). In this study, we washed the microspheres seven times after the initial labeling, until the dissociative curve flattened, indicating that most of the \(^{131}\)I conjugated \(\text{via}\) physical adsorption had been eluted and the \(^{131}\)I-GMSs mainly exist \(\text{via}\) chemical combination. Although this reduces the labeling index, the \(\text{in vivo}\) de-iodination process is also attenuated, protecting against unwanted de-iodination effects.

Some studies have shown that injecting the microspheres at multiple sites could provide a more even distribution of the microspheres in the tumor tissues. Therefore, in this study, we injected the microspheres in several sites in the liver. SPECT imaging revealed that the nuclides were principally localized to the injection sites at 4 h and at 1, 4, 8, 16, 24, 32 and 48 d after administration. The extrahepatic labeling with \(^{131}\)I-GMS into the serum could be detected for 24 d after the operation; after this time, the serum radioactivity level was not different to that of the background level. Because the thyroid gland is the
principle site of iodine absorption and accumulation, it can absorb 131I from the serum into thyroid follicles, which is shown on the SPECT scan. Based on the radioactivity ratio between the site of injection in the liver and the thyroid, it is clear that only a small amount of 131I is absorbed by the thyroid.

SPECT imaging before day 24 revealed low radioactivity levels in the bladder, but not thereafter. This may be related to the full state of the rabbits' bladders when they were scanned, with full bladders showing some radioactivity as a result of excretion via the urinary system. Therefore, we believe that the release of 131I from the microspheres mainly occurs within 24 d after administration, but only very small amounts are released.

Assessment of thyroid function revealed that the TSH level was consistently below 0.005 mU/L, while FT3 and FT4 declined on day 8, but returned to normal levels after day 16. This suggests that the thyroid is only subject to transient damage. Because the thyroid has its own repair mechanisms, the damage caused by some radiation doses can be repaired, without causing hypothyroidism. In this study, a small amount of radioactive nuclides released into the blood was absorbed by the thyroid gland, but did not cause permanent damage or long-lasting hypothyroidism.

The assessment of hepatic function revealed that the ALT and AST increased rapidly compared with the normal level within 1 d after 131I-GMSs administration. However, these parameters returned to the normal level 4 d later. This suggests that the administration of 41.336 MBq of 131I caused notable liver damage in these experimental animals; however, because of the liver's capacity for self-repair and compensation, these impairments were transient and resolved within 4 d. This demonstrates the safety profile of radionuclide microspheres in the treatment of liver cancers.

From the pathological examination, we could conclude that the microspheres were gradually surrounded by fibroblasts to form fibrotic sheaths between days 16 and 24. This seemed to delay the degradation of the GMSs and reduced the rate of radionuclide release. This may explain the absence of thyroid radiolabelling from day 24 after surgery. Ohta reported that, after injecting GMSs into the renal artery of rabbits for 2 wk, the microspheres became wrapped with fibrous tissue and the GMSs in the embolism were completely biodegraded within 1 mo. However, in this experiment, we used the intra-tissue implantation method, which differs from the arterial embolism method. Indeed, over four half-lives of 131I decay (i.e. 32 d), the GMSs had degraded to varying degrees, but there was no sign of disappearance, with a large number of fiber-coated GMSs present, even by day 48. This difference may be due to the different methods of administering the GMSs. Previous studies have shown that gelatin is degraded in the body by degrading enzymes. In this study, the 131I-GMSs administered into the liver are, on the one hand, treated as a foreign body and induce foreign body reactions, with the activation of inflammatory cells, fibrotic cells and Kupffer cells to encapsulate and phagocytose the GMSs. On the other hand, the radiation will cause cells surrounding the GMSs to die to prevent phagocytosis by macrophages. This may explain why, in this experiment, the GMSs degrade slowly than that in the arterial embolism.

In conclusion, the hepatic administration of 131I-GMSs in rabbits caused marked hepatic damage. Furthermore, there was some 131I accumulation in thyroid tissue, causing slight, but only transient damage to the thyroid tissue. Other tissues showed no radioactive accumulation. Fibrous sheaths formed around the injected GMSs, which likely hampered the degradation of the GMSs.

Figure 7 Pathological examination at 1 (A), 4 (B), 16 (C), 24 (D), 32 (E) and 48 (F) d after the administration of 131I-labeled gelatin microspheres (HE stain; original magnification, ×200 in B, C, D and E, and ×400 in A and F).
GMSs and protracted the release of 131I. Taken together, we believe that it is safe to inject 131I-GMSs into tissues in vivo, and these are likely to be effective against malignant tumors.

COMMENTS

Background

Malignant tumors in hepatic, biliary and pancreatic systems are very commonly encountered and treated surgically worldwide. In recent years, the incidence of malignant tumors in these three systems was reported to be rising worldwide. However, the rate of surgical removal of the malignant tumors of the three systems is very low and the prognosis after surgery is very unsatisfactory.

Research frontiers

Internal radiotherapy has become an important facet of clinical therapy for malignant tumors. 90Y, 103Re and 169Ho microspheres have already been shown to be safe and are frequently used to therapy malignant tumors. However, their vehicle material is usually glass, which cannot degrade in the body. Unfortunately, once the microspheres have decayed completely, the vitreous carriers become foreign bodies that persist in the patient’s body, and trigger foreign body reactions.

Innovations and breakthroughs

Nuclide microspheres and nuclide particles represent a new generation of tumor therapies and interventional radiotherapies. The authors used gelatin microspheres (GMSs) that can be easily produced to carry radionuclides, and can degrade in vivo. This study provides a foundation to show how microspheres attached to GMSs are distributed and metabolized in vivo. Healthy rabbits were used as a model to observe the metabolism of 131I-GMSs. Overall, 131I-GMSs were found safe for administration in rabbits.

Applications

By understanding the distribution and metabolism of 131I-GMSs administered in the livers of rabbits, this study supports the use of 131I-GMSs in directional internal radiotherapy for the treatment of hepatic malignant tumors. This approach could be applied to pancreatic, hepatic, biliary and other material malignant tumors that cannot be removed by surgery. This approach could also be considered to treat osteoarthritis.

Terminology

131I-GMSs are protein microspheres containing the radionuclide 131I. The half life of 131I is 8.04 d and free 131I either in the body or accumulates in the thyroid is quickly excreted via the urinary system. Compared with glass microspheres, the gelatin microsphere is a biodegradable material with good biocompatibility. In recent years, the authors have developed 50-70 µm nuclide protein microspheres that can be labeled with high concentrations of 131I. These microspheres can be applied for hepatic arterial transfusion and embolotherapy for patients with advanced liver cancer.

Peer review

This is an interesting experimental study. The technique used in this study can be an effective method for treatment of malign tumors in the patients.

REFERENCES

1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533-543
2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71-96
3. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004; 5: 215-219
4. Nagorney DM, van Heerden JA, Ilstrup DM, Adson MA. Primary hepatic malignancy: surgical management and determinants of survival. Surgery 1989; 106: 740-748; discussion 748-749
5. Tang ZY. Hepatocellular carcinoma—cause, treatment and metastasis. World J Gastroenterol 2001; 7: 445-454
6. Yamamoto J, Kosuge T, Takayama T, Shimada K, Yamasaki S, Ozaki H, Yamaguchi N, Makuuchi M. Recurrence of hepatocellular carcinoma after surgery. Br J Surg 1996; 83: 1219-1222
7. Pisans P, Parkin DM, Bray F, Ferlay J. Estimates of the world-wide mortality from 25 cancers in 1990. Int J Cancer 1999; 83: 18-29
8. Pisans P, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 2002; 97: 72-81
9. Yu SZ. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 1995; 10: 674-682
10. Bosch FX, Ribes J, Diaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127: S5-S16
11. Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of cancer incidence in China for 2000 and projections for 2005. Cancer Epidemiol Biomarkers Prev 2005; 14: 243-250
12. Yu SZ. Primary prevention of hepatocellular carcinoma. J Gastroenterol Hepatol 1995; 10: 674-682
13. Bosch FX, Ribes J, Diaz M, Cléries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004; 127: S5-S16
14. Yang L, Parkin DM, Li L, Chen Y. Time trends in cancer mortality in China. Cancer Causes Control 2004; 15: 681-687
15. Yang L, Parkin DM, Li L, Chen Y. A comparison of the sources of cancer mortality in China. Cancer Causes Control 2004; 15: 681-687
16. Yang L, Parkin DM, Li L, Chen Y. Time trends in cancer mortality in China: 1987-1999. Int J Cancer 2003; 106: 771-783
17. Yang L, Parkin DM, Li L, Chen YD, Bray F. Estimation and projection of the national profile of cancer mortality in China: 1991-2005. Br J Cancer 2004; 90: 2157-2166
18. Lai EC, Lau WY. The continuing challenge of hepatic cancer in Asia. Surgeon 2005; 3: 210-215
19. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59: 225-249
20. Nalesnik MA, Federle M, Buck D, Fontes P, Carr BL. Hepatobiliary effects of 90yttrium microsphere therapy for unresectable hepatocellular carcinoma. Hum Pathol 2009; 40: 125-134
21. Bienert M, McCook B, Carr BL, Geller DA, Sheetz M, Tutor C, Amesur N, Avril N. 90Y microsphere treatment of unresectable liver metastases: changes in 18F-FDG uptake and tumour size on PET/CT. Eur J Nucl Med Mol Imaging 2005; 32: 778-787
22. Kennedy AS, Coldwell D, Nutting C, Murthy R, Wurtman DE Jr, Loehr SP, Overton C, Meranne S, Niedzwiecki J, Sailer S. Resin 90Y-microsphere brachytherapy for unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2006; 65: 412-425
23. Liepe K, Brossigter C, Leonard H, Wunderlich G, Hlisce R, Pinkert J, Folpecht W, Kutzerke J. Feasibility of high activity rhenium-188-microsphere in hepatic radioembolization. Jpn J Clin Oncol 2007; 37: 942-950
24. Liu L, Jiang Z, Teng GJ, Song JZ, Zhang DS, Guo QM, Fang W, He SC, Guo JH. Clinical and experimental study on regional administration of phosphorus 32 glass microspheres in treating hepatic carcinoma. World J Gastroenterol 1999; 5: 492-505
25. Zhang DS, Liu L, Jin LQ, Wan ML, Li QH. Effect of phosphorus-32 glass microspheres on human hepatocellular carcinoma in nude mice. World J Gastroenterol 2004; 10: 1551-1554
26. White JE, Day DE. Rare earth aluminoisocyanates glasses for in vivo radiation delivery. Key Eng Mater 1994; 94-95: 181-208
27. Bilbao JR, Reiser MF. Liver radioembolization with 90Y microspheres. New York: Springer, 2008
28. Carr BL, Hepatic arterial 90Yttrium glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transpl 2004; 10: S107-S110
29. Salem R, Thurston KG, Carr BL, Goin JE, Geschwind JF. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 2002; 13: S223-S229
30. Tian JH, Xu BX, Zhang JM, Dong BW, Liang P, Wang XD. Ultrasound-guided internal radiotherapy using yttrium-90-
glass microspheres for liver malignancies. *J Nucl Med* 1996; 37: 958-963

29 *Jin Z, Du Y, Li Z, Jiang Y, Chen J, Liu Y.* Endoscopic ultrasonography-guided interstitial implantation of iodine 125-seeds combined with chemotherapy in the treatment of unresectable pancreatic carcinoma: a prospective pilot study. *Endoscopy* 2008; 40: 314-320

30 *Guo X, Cui Z.* Current diagnosis and treatment of pancreatic cancer in China. *Pancreas* 2005; 31: 13-22

31 *Bodner WR, Hilaris BS, Mastoras DA.* Radiation therapy in pancreatic cancer: current practice and future trends. *J Clin Gastroenterol* 2000; 30: 230-233

32 *Yan L, Li L, Chen S.* [Radioembolization with 32P-labelled glass microspheres for advanced hepatocellular carcinoma] Zhonghua Waike Zazhi 1996; 34: 526-529

33 *Rini JN, Vallabhaajosula S, Zanzonico P, Hurley JR, Becker DV, Goldsmith SJ.* Thyroid uptake of liquid versus capsule 131I tracers in hyperthyroid patients treated with liquid 131I. *Thyroid* 1999; 9: 347-352

34 *Pathirana AA, Vinjamuri S, Byrne C, Ghaneh P, Vora J, Poston GJ.* (131I)-MIBG: radioimmunotherapy and cost-effective in the control of symptoms of the carcinoid syndrome. *Eur J Surg Oncol* 2001; 27: 404-408

35 *Matthay KK, Huberty JP, Hattner RS, Ablin AR, Engelstad BL, Zoger S, Hasegawa BH, Price D.* Efficacy and safety of [131I]metaboloidenzyguanidine therapy for patients with refractory neuroblastoma. *J Nucl Biol Med* 1991; 35: 244-247

36 *Yan CH, Li XW, Chen XL, Wang DQ, Zhong DC, Tan TZ, Kitano H.* Anticancer gelatin microspheres with multiple functions. *Biomaterials* 1991; 12: 640-644

37 *Tabata Y, Ikada Y.* Synthesis of gelatin microspheres containing interferon. *Pharm Res* 1989; 6: 422-427

38 *Djagny VB, Wang Z, Xu S.* Gelatin: a valuable protein for food and pharmaceutical industries: review. *Crit Rev Food Sci Nutr* 2001; 41: 481-492

39 *Choi SS, Regenstein JM.* Physicochemical and sensory characteristics of fish gelatin. *J Food Sci* 2000; 65: 194-199

40 *Esposito E, Cortesi R, Nastruzzi C.* Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. *Biomaterials* 1996; 17: 2009-2020

41 *Liang HC, Chang WH, Lin KJ, Sung HW.* Genipin-cross-linked gelatin microspheres as a drug carrier for intramuscular administration: in vitro and in vivo studies. *J Biomed Mater Res A* 2003; 65: 271-282

42 *Cortesi R, Esposito E, Osti M, Squarzoni G, Menegatti E, Davis SS, Nastruzzi C.* Dextran cross-linked gelatin microspheres as a drug delivery system. *Eur J Pharm Biopharm* 1999; 47: 153-160

43 *Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, Xing JL, BIAN HJ, Jiang JL, Wang XH, Shang F, Qian AR, Zhang SH, Li L, Li Y, Feng Q, Yu XL, Feng Y, Yang XM, Tian R, Wu ZB, Leng N, Mo TS, Kuang AR, Tan TZ, Li YC, Liang DR, Lu WS, Miao J, Xu GH, Zhang ZH, Nan KJ, Han J, Liu QC, Zhang HX, Zhu P.* Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. *Int J Radiat Oncol Biol Phys* 2006; 65: 435-444

44 *Cohen S, Holloway RC, Matthews C, Mcfarlane AS.* Distribution and elimination of 131I- and 14C-labelled plasma proteins in the rabbit. *Biochem J* 1956; 62: 143-154

45 *Campbell RM, Cutberson DP, Matthews CM, Mcfarlane AS.* Behaviour of 14C- and 131I-labelled plasma proteins in the rat. *Int J Appl Radiat Isot* 1956; 6: 66-84

46 *Liu YP, Li QS, Huang YR, Liu CX.* Tissue distribution and excretion of 125I-lidamycin in mice and rats. *World J Gastroenterol* 2005; 11: 3281-3284

47 *Chen XL, Zhong DC, Li L, Yan CH, Li XW.* Experimental study of intratumor injection with gelatin microspheres containing131I and mitomycin C in implanted hepatoma-22 in mice. *Chin J Cancer Res* 1993; 5: 187-191

48 *Rajkovic V, Matavulj M, Gledic D, Lazetic B.* Evaluation of rat thyroid gland morphophysiological status after three months exposure to 50 Hz electromagnetic field. *Tissue Cell* 2003; 35: 223-231

49 *Ohta S, Nitta N, Takahashi M, Murata K, Tabata Y.* Degradable gelatin microspheres as an embolic agent: an experimental study in a rabbit renal model. *Korean J Radiol* 2007; 8: 418-428

50 *Nitta N, Ohta S, Tanaka T, Takazakura R, Nagatani Y, Kono N, Sonoda A, Soko A, Furukawa A, Takahashi M, Murata K, Tabata Y.* Gelatin microspheres: initial clinical experience for the transcatheter arterial embolization. *Eur J Radiol* 2008; 67: 536-540

51 *Nakaoka R, Tabata Y, Ikada Y.* Potentiality of gelatin microsphere as immunological adjuvant. *Vaccine* 1995; 13: 653-661