Effects of *Bacillus subtilis* PB6 and/or chromium propionate supplementation on serum chemistry, complete blood count, and fecal *Salmonella* spp. count in high-risk cattle during the feedlot receiving and finishing periods¹²

T. M. Smock*, K. L. Samuelson¹*, J. E. Wells¹, K. E. Hales⁵, J. E. Hergenreder¹, P. W. Rounds¹, and J. T. Richeson*³

¹West Texas A&M University, Department of Agricultural Sciences, Canyon TX, 79016

¹U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center NE, 68933

⁵Texas Tech University, Department of Animal & Food Science, Lubbock TX, 79409

¹Kemin Industries, Inc., Des Moines IA, 50317

¹The authors would like to thank Kemin Industries, Inc. for financial support of this research, and recognize the excellent technical assistance of D. Tomczak, V. Muñoz, P. Spowart, H. Seiver, G. Hodges, B. Franklin, and A. Adame.

²Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable. USDA is an equal opportunity provider and employer.

³Corresponding author: jricheson@wtamu.edu

© The Author(s) 2020. Published by Oxford University Press on behalf of the American Society of Animal Science. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
ABSTRACT

The study objective was to determine the effects of *Bacillus subtilis* PB6 and/or chromium propionate supplementation on serum chemistry, complete blood count, and fecal *Salmonella* spp. count in high-risk beef cattle during a 56-d feedlot receiving period and the subsequent finishing period. Four truckload blocks of crossbred beef bulls (*n*=300) and steers (*n*=84; total *n*=384; average initial BW = 220 ± 16.2 kg) were sourced from regional auction markets and assigned randomly to treatments arranged in a 2 × 2 factorial. Blood samples were collected from two bulls nearest the median BW on arrival in each pen (*n*=96) and fecal samples were collected from cattle in block 3 (*n*=96). The generalized complete block design consisted of 12 pen replications per treatment with pen as the experimental unit. Treatments were: 1) negative control (CON); 2) 13 g/animal daily of prepared *B. subtilis* PB6 product (CST); 3) 450 ppb DM chromium propionate (CHR); and 4) 13 g/animal daily of prepared *B. subtilis* PB6 product and 450 ppb DM chromium propionate (CST+CHR). Treatments were top dressed in feed bunks daily using 0.45 kg/animal ground corn carrier immediately following feed delivery. Data were analyzed using mixed models with repeated measures. Day affected all serum chemistry variables (*P* ≤ 0.03) except total CO₂ (*P* = 0.34) and all complete blood count variables during receiving (*P* ≤ 0.02) except percentage basophils (*P* ≥ 0.12). During the overall receiving period, serum calcium was decreased (*P* = 0.02) by CHR. Cattle fed CHR had greater total leukocyte count (*P* = 0.04) and neutrophil count (*P* = 0.02) during the overall receiving period. Fecal *Salmonella* spp. count was markedly reduced in cattle fed CST on day 28 (*P* = 0.01) and overall (*P* = 0.07). Overall, these data provide metabolic and hematologic insight into the unique challenges presented by lightweight, high-risk feeder cattle. Notably, CST was found to be effective in mitigating fecal enumeration and presumably replication of *Salmonella* spp. in the gastrointestinal tract.
INTRODUCTION

Auction-derived feeder cattle are considered high-risk because a variety of predisposing factors lend them especially susceptible to digestive disturbances and bovine respiratory disease (BRD)-associated morbidity and mortality. Stress and pathogen exposure induced by weaning, marketing, and shipment results in compromised immune function, alteration of and likely negative state of energy and protein metabolism, reduced appetite and growth performance, and compromised digestion and rumen function (Loerch and Fluharty, 1999; Richeson et al., 2019). Cattle feeders employ a variety of pharmacological interventions to address these challenges, such as antimicrobial metaphylaxis and BRD treatments. Although a wealth of research supports antimicrobial efficacy (Ives and Richeson, 2015), there is an increasing demand to reduce antimicrobial use and therefore, to develop efficacious antimicrobial alternatives. In addition, treatment for BRD is a significant expense to the cattle feeder in the form of drugs, labor, and lost carcass value (Wilson et al., 2017).

An extensive variety of direct fed microbial (DFM) products with various or unknown efficacy are available for use in feedlot cattle. Bacterial DFM in particular may have beneficial effects in the rumen by reducing acidosis and promotion of desirable microflora and exclusion of pathogenic organisms in the gut (Krehbiel et al., 2003). *Bacillus subtilis* PB6 is a bacterial DFM fed in spore form that germinates in the small intestine among the presence of bile salts and low pH. The organism then produces secondary metabolites and lipopeptide surfactants that target pathogenic organisms, causing cell wall lysis and eventual cell death (Lin et al., 2007).

Supplemental chromium propionate has been found to enhance insulin sensitivity, growth performance, and clinical health of feedlot cattle (Bernhard et al., 2012a; Bernhard et al., 2012b; Spears et al., 2012). Chromium propionate is the only form of supplemental chromium approved for use in beef cattle in the United States, and may be included up to 0.50 mg/kg of diet DM (Spears et al., 2017).
The current study objective was to determine the effect of supplementation with the bacterial DFM *B. subtilis* PB6 and/or chromium propionate on serum chemistry, complete blood count, and fecal *Salmonella* spp. count of high-risk cattle with the hypothesis that *B. subtilis* PB6 and chromium propionate will alter metabolic and immunologic biomarkers and result in less *Salmonella* spp. via improved gastrointestinal (GIT) ecology and glucose utilization.

MATERIALS & METHODS

Live animal procedures were approved by the West Texas A&M University Institutional Animal Care and Use Committee (IACUC #02-12-17). The experiment was conducted from January 2018 to March 2019 at the West Texas A&M University Research Feedlot (WTRF), located 11.7 km east of Canyon, TX. Arrival processing, feeding, clinical health management, and carcass data collection procedures were described previously in a companion manuscript (Smock et al., 2020). Briefly, arrival processing included vaccination against viral respiratory, clostridial, and *Mannheimia haemolytica* pathogens, treatment for internal and external parasites using a parenteral anthelmintic, growth implant administration, testing for persistent infection with bovine viral diarrhea virus (PI-BVDV), castration and administration of an oral analgesic when applicable, and antimicrobial metaphylaxis with tilmicosin (Micotil, Elanco Animal Health). Diets were the same for all cattle regardless of experimental treatment and bunks were managed to implement a slick-bunk feeding program. Cattle were administered a terminal growth implant (Revalor XS, Merck Animal Health) on day 84. Average days on feed was 259. Cattle were evaluated daily for health and well-being by trained evaluators and medical treatment followed a pre-planned case definition.

Application and Management of Experimental Treatment

Crossbred beef bulls (*n*=300) and steers (*n*=84; total *n*=384; average initial BW = 220 ± 16.2 kg) were sourced from regional auction markets in central and south Texas, composited at an order buying facility, and shipped approximately 11 h to WTRF on January 18, 2018 (Block 1), February 8,
2018 (Block 2), May 15, 2018 (Block 3), and June 20, 2018 (Block 4). Cattle were stratified within block by arrival BW, sex, and arrival health status determined via blood leukocyte differential (QScout® BLD, Advanced Animal Diagnostics, Morrisville, NC) according to a proprietary algorithm and randomly assigned to treatment. Experimental treatments were: 1) negative control (CON); 2) 13 g/animal daily prepared Bacillus subtilis PB6 product (CLOSTAT®, Kemin Industries, Des Moines, IA; CST); 3) 450 ppb DM chromium propionate (KemTRACE® Chromium, Kemin Industries; CHR); and 4) 13 g/animal daily prepared Bacillus subtilis PB6 product and 450 ppb DM chromium propionate (CST + CHR). Feeding rate was established per recommendation of the manufacturer. The CLOSTAT and KemTRACE Chromium products were mixed into a ground corn base weekly using a ribbon mixer (Davis Precision Horizontal Batch Mixer, H. C. Davis Sons Mfg. Co., Bonner Springs, KS) and stored in covered, 500 kg-capacity commodity bins. Experimental treatments were top dressed daily immediately following feed delivery. Cattle fed CON received an equivalent amount of ground corn only. Morbidity investigators and technicians were blinded to experimental treatment by assignment of color codes to treatment pens and ear tags. The 2 study periods were the receiving period (day 0 through 56) and the finishing period (day 57 through harvest). Experimental treatments were applied throughout both study periods beginning on day 0 until harvest.

Twelve animals were removed from the trial for the following: poor performance due to chronic BRD (n=8), poor performance with suspected Mycoplasma bovis infection (n=1), difficulty standing with suspected peritonitis/enteritis (n=1), castration error (n=1), and rectal prolapse (n=1).

Blood Sampling

Two bulls nearest the median arrival BW in each pen (n=96) were selected to obtain representative blood samples for the entirety of the study. Blood samples were collected at each BW collection beginning on day 0. During the receiving period, blood was collected via jugular venipuncture into a plain evacuated tube (BD Vacutainer®, Becton, Dickinson and Company, Franklin Lakes, NJ) for analysis of serum chemistry (Preventative Care Profile Plus, VetScan® VS2, Abaxis,
Blood samples were allowed to clot, then centrifuged (Allegra® 6R Centrifuge, Beckman Coulter, Brea, CA) at 2,791 \(\times g \) for 20 min at 20° C. Duplicate serum aliquots were decanted and stored at -20° C for subsequent quantitative analysis of serum chemistry variables, including albumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate amino transferase (AST), blood urea nitrogen (BUN), calcium (Ca), chloride (Cl\(^{-}\)), creatinine (CRE), globulin (GLOB), glucose (GLU), potassium (K\(^{+}\)), sodium (Na\(^{+}\)), total carbon dioxide (tCO\(_2\)), total bilirubin (TBIL), and total protein (TP). A second blood sample was collected into an evacuated tube containing 7.2 mg EDTA (BD Vacutainer) for analysis of complete blood count (CBC) variables including red blood cells, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, platelets, white blood cells, count and percentage of neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and neutrophil:lymphocyte ratio. An automated hemocytometer (ProCyte® Dx Hematology Analyzer; IDEXX Laboratories, Westbrook, ME) was used to conduct a complete blood count (CBC) analysis. During the finishing period, a single blood sample was collected and analyzed for CBC.

Fecal enumeration of Salmonella spp.

Fecal samples to determine colony-forming unit (CFU) count of *Salmonella* spp. were collected via rectal grab from cattle in block 3 (n=96) on days 0, 28, and 196. Population analysis was conducted at the U.S. Meat Animal Research Center (MARC; Clay Center, NE). Fecal enumeration (≥ 200 CFU/g fecal sample) was determined using direct plating technique and fecal prevalence was determined using enrichment techniques for the designated samples as described previously (Agga et al., 2016).
Statistical Analysis

Data were analyzed as repeated measures using PROC MIXED (SAS v9.4, SAS Inst. Inc., Cary, NC). Experimental treatments were arranged in a 2×2 factorial as a generalized complete block design (n=4 blocks; block=truckload), where factor was CST or CHR, and level was “yes” (product was supplemented in the diet) or “no” (product was not supplemented in the diet). There were 12 pen replications per treatment (24 pen replications per main effect) and 8 animals per pen with 2 animals per pen used to quantify blood variables. Pen was the experimental unit for all dependent variables. For serum chemistry and CBC analyses, 3- and 2-way hierarchical interactions between CST, CHR and day were evaluated for statistical significance first, then main effects.

Salmonella CFU were transformed using square root to determine P-value and SEM. Fixed effects were analyzed as an interaction of CST × CHR, followed by main effect of CST and CHR. Slicers were inserted to determine the effect of treatment within an individual day and are presented as P-value for TRT. The P-value for effect of time was presented as DAY. The interaction of overall treatment and overall day was presented in P-value TRT × DAY (Kaps and Lamberson, 2017).

For all analyses, differences between least squares means were determined using least significant difference. If SEM was different among treatment means for the same dependent variable, the greatest SEM was reported. Results were considered statistically significant when $P \leq 0.05$, and tendencies were discussed when $0.05 > P \leq 0.10$.

RESULTS & DISCUSSION

Feedlot growth performance, clinical health outcomes, and carcass trait results are presented in a companion manuscript (Smock et al., 2020).
Receiving period blood parameter analysis

Serum chemistry

Day affected all serum chemistry variables during the receiving period (day 0 to 56; Table 1; $P \leq 0.03$) except total CO$_2$ ($P \geq 0.34$). Supplementation with CHR increased serum aspartate aminotransferase (AST; Table 2; $P = 0.04$), an enzyme associated with highly metabolic tissue; largely cardiac muscle, liver cells, and skeletal muscle cells. Serum AST increases when infection or injury causes cells of these tissues to lyse and AST is liberated into blood. Increased levels of AST can be an indicator of liver damage, especially when paralleled with increased alanine aminotransferase (Pagana and Pagana, 2006). In the present study, using the observed AST levels as a proxy for liver damage was not supported by liver outcome as there were no statistical differences among percentage abnormal livers (Smock et al., 2020); however, in addition to relatively low sample size, liver score observed at slaughter does not account for microscopic damage or that which was repaired over time. Furthermore, the AST levels reported in the present study fall well within the normal range for bovine (Merck Veterinary Manual, 2019).

Serum calcium was decreased by CHR (Table 2; $P = 0.02$). Serum calcium is used in many metabolic enzymatic pathways and is a critical contributor to muscle contraction, cardiac function, neural transmission, and blood clotting. When blood levels decrease, parathyroid hormone is released and stimulates calcium to be released from bone and teeth reservoirs (Pagana and Pagana, 2006). The observed serum calcium differences in the present study are small and probably not biologically relevant, especially considering no differences in serum albumin ($P \geq 0.11$), the protein bound to approximately half of serum calcium, were observed.

As a result of limited or no feed and water access and inflammation during marketing and transportation, high-risk cattle arrive to the feedlot in a catabolic and chronically stressed state (Richeson et al., 2019). The observed serum chemistry day effects (Table 1) clearly indicate the
metabolic disruption high-risk cattle possess at feedlot arrival, and how they return to homeostasis later in the receiving period. For example, blood urea nitrogen (BUN) was greater on day 0 compared to the subsequent interim intervals of the receiving period (Figure 1; linear, quadratic, and cubic, $P < 0.01$). As urea nitrogen is a waste product of protein catabolism, this could indicate calves were liberating protein stores to compensate for inadequate dietary crude protein (CP) during marketing and transportation (Richeson et al., 2015). Furthermore, high-risk cattle experience increased pathogen exposure via commingling during marketing and transportation. A pathogenic challenge will initiate an acute phase response, an early and nonspecific defense mechanism of the immune system that results in the production of proinflammatory cytokines, therefore promoting skeletal muscle catabolism to supply amino acids to immune tissues (Peterson, 2004). Conversely, total protein was least on day 0, followed by a sustained increase throughout the remainder of the receiving period (linear and quadratic, $P < 0.01$; cubic, $P = 0.02$). This could be indicative of low existing immunoglobulin (antibody) concentration at feedlot arrival, followed by antibody development from vaccination on day 28 or natural infection through the remainder of the receiving period. Further, serum glucose was the least at day 0 than other time points during the receiving period (Figure 2; linear and quadratic, $P < 0.01$). This is intuitive considering the lack of access to feed during transport and therefore less rumination activity. Subsequently, less propionate would be made available for transport to the liver to complete gluconeogenesis and be dispatched to target tissues as an energy source (NASEM, 2016). Collectively, the serum chemistry day effects observed in this study provide compelling evidence for potential use as predictive variables for BRD risk. Cattle were observed to be metabolically imbalanced at feedlot arrival, which resolved over time as cattle consumed feed and water and overcame stress. The temporal changes observed for several of the serum chemistry variables in this study also support their utility as a biomarker for BRD, but further research is needed to better understand metabolic status on-arrival and health risk in cattle.
Complete blood count

All CBC variables were affected by day during the receiving period (Table 3, \(P \leq 0.02 \)) except percentage basophils \((P \geq 0.12) \). Particularly notable is neutrophil:lymphocyte ratio of 0.96 on day 0 (Figure 3; linear and quadratic, \(P < 0.01 \); cubic, \(P = 0.01 \)), demonstrating the stress and inflammation high-risk cattle harbor at feedlot arrival. Neutrophil:lymphocyte has traditionally been used as a proxy for stress, where a threshold 1.0 ratio would be indicative of a highly stressed bovine (Zahorec, 2001).

Chromium propionate supplementation decreased (Table 4; \(P = 0.05 \)) hemoglobin concentration. Hemoglobin transports oxygen and carbon dioxide throughout the body; therefore, the oxygen carrying capacity of the blood is determined by hemoglobin concentration. Although decreased hemoglobin indicates anemia (Pagana and Pagana, 2006), both values presented are within the normal range for cattle. Supplementation with chromium propionate increased \((P \leq 0.05) \) total white blood cell count, neutrophil count and percentage, and neutrophil:lymphocyte ratio. There was a CST \(\times \) CHR interaction for hematocrit concentration \((P = 0.05) \), where CON was greater than CST, CHR, and CST + CHR. Hematocrit is a measure of the proportion of total blood volume that is red and white blood cells and is closely linked to dehydration (Pagana and Pagana, 2006). Tomczak et al. (2018) orally drenched high-risk calves with water to rapidly address dehydration at feedlot arrival and observed potential for the practice to improve growth performance during the feedlot receiving period. Mean corpuscular volume was greater \((P < 0.01) \) in CON compared to other treatments \((CST \times CHR; P < 0.01) \). Likewise, mean corpuscular hemoglobin was greater \((P < 0.01) \) in CON \((CST \times CHR; P = 0.01) \). Supplementation with CST resulted in an increase of mean corpuscular hemoglobin concentration \((P < 0.01) \). Mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration collectively provide information about the size, weight, and hemoglobin concentration, respectively, of individual red blood cells (Pagana and Pagana, 2006).
Glucocorticoids are known to increase total white blood cell count (Davies and Lefkowitz, 1980) as was observed in CHR-fed cattle during the receiving period of the present study (Table 4). Glucocorticoids are also known to extensively influence mammalian glucose homeostasis. This is likely a defense mechanism, as the overall function is to reserve plasma glucose for maximal brain function during a stress event by promoting gluconeogenesis, but reducing glucose utilization by skeletal muscle and white adipose tissue (Kuo et al., 2015). Marketing, transportation, and feedlot arrival of high-risk cattle is a stressful event (Richeson et al., 2019), and the stress-induced production of glucocorticoid and subsequent increase in total white blood cell count supports the observed decrease in treatment for BRD in CHR-fed cattle (Smock et al., 2020). Furthermore, CHR did not influence receiving period performance but did decrease performance during the finishing period (Smock et al., 2020). Glucose and insulin are potent satiety signals (De Leeuw et al., 2005; Allen et al., 2009), and supplemental chromium is known to modulate glucose and insulin metabolism (Kegley et al., 2000; Swanson et al., 2000; Sumner et al., 2007; Yan et al., 2008; Bernhard et al., 2012a; Spears et al., 2012; Kneeskern et al., 2016). Therefore, the detrimental effects of glucocorticoid on glucose absorption may have been mitigated by CHR during the receiving period, allowing cattle more energy to combat the initial immune challenge with no apparent decrease in performance. However, as cattle sustained homeostasis and entered the finishing period where fewer health and stress challenges occur, the satiety effects of glucose and insulin may provide insight to the diminished finishing period performance due to CHR (Smock et al., 2020).

Finishing period blood parameter analysis

During the finishing period, there was a CST × CHR interaction (P = 0.04; data not shown) for red blood cell count, where CHR was greatest (P < 0.01) followed by CST + CHR, CON being intermediate, and CST being least. The hemoglobin concentration of CST was less (P ≤ 0.04) than CON, CHR, and CST + CHR (CST × CHR P < 0.01). Likewise, hematocrit of CST was less (P < 0.01) compared to CON, CHR, and CST + CHR (CST × CHR P = 0.02). Mean corpuscular volume was
decreased by CST supplementation ($P = 0.03$). A CST × CHR × day interaction was observed for mean corpuscular hemoglobin concentration ($P = 0.02$). A CST × CHR interaction occurred for percent monocytes ($P = 0.03$).

Fecal Salmonella prevalence

Salmonella spp. count was markedly reduced in cattle fed CST, and especially the CST treatment, both overall (Table 5; $P = 0.07$) and on day 28 (Table 6; $P = 0.01$) when cattle in the CON and CHR treatments were shedding the pathogen. A fecal Salmonella spp. count of ≥200 CFU/g represents enumerable levels in the fecal sample, and indicates the GIT is colonized and the animal is shedding the pathogen (Berry and Wells, 2016). Although Salmonella spp. are relatively ubiquitous in certain environments, cattle are not considered a major reservoir and are therefore susceptible to salmonellosis (Fedorka-Cray et al., 1998; McGuirk and Peek, 2003; NASEM, 2016). These results further validate the observed improvements among CST-fed cattle in receiving period performance and overall clinical health (Smock et al., 2020) assuming the protein and energy that would otherwise be diverted to combating a GIT bacterial infection can instead be used to facilitate tissue growth and/or allow immunological focus and resolution of respiratory infection. Broadway et al. (2020) evaluated the effect of CST in Holstein calves experimentally challenged with Salmonella typhimurium. Calves supplemented with CST had reduced concentration of S. typhimurium in the jejunum, ileum, and transverse colon 48 h post-challenge, and numerically reduced concentration in all GIT tissues 96 h post-challenge. The ability of CST to withhold colonization of the GIT by Salmonella spp. in the present study is a landmark observation among DFM products under natural exposure conditions and provides great potential for future research and use in production, as the presence of Salmonella spp. is a food safety concern in addition to having potentially negative impacts on cattle health and performance (Gragg et al., 2013).

While the organism B. subtilis PB6 is not itself an antimicrobial, it does produce proteinaceous antimicrobial compounds in the lower gut, bacteriocin (Lin et al., 2007). Bacteriocin
are ribosomally synthesized defense mechanisms produced by bacteria which can kill or inhibit targeted bacteria without harming the host microbe with protection from specific immunity proteins. Multiple pathways exist for a bacteriocin to target specific bacteria. The bacteriocin differentiates into either a proteinaceous colicin, an unmodified peptide, or modified peptide. These compounds act on the target bacteria by entering through a receptor and disrupting the DNA or RNA matrix, or by the activity of peptidoglycanase (Yang et al., 2014). As a broad species, Bacillus organisms produce a variety of bacteriocins. This DFM product is not functional in the rumen as it is ingested in spore form, passes through the rumen, and germinates in the jejunum and intestinal tract via stimulation of acidic pH and the presence of bile salts (Lin et al., 2007).

CONCLUSIONS

Cattle fed the CST treatment had markedly less fecal Salmonella spp. count both overall and on day 28 – a landmark observation in beef cattle under natural Salmonella spp. challenge, considering increasing concern of Salmonella spp. presence in beef at harvest. Day affected almost all serum chemistry and complete blood count variables during the receiving period, but they became relatively homeostatic by end of the receiving period and throughout the finishing period, demonstrating the metabolic and immunologic disruption high-risk cattle experience at feedlot arrival that resolves over time. Collectively, these data suggest feeding CST during the feedlot receiving period may be a promising management strategy that improves both performance and health outcomes in high-risk cattle. Furthermore, the CST treatment was effective in mitigating fecal Salmonella spp colonization during both the feedlot receiving and finishing period.
LITERATURE CITED

Merck Veterinary Manual. Whitehouse Station, NJ. Merck & Co., Inc. Available: https://www.merckvetmanual.com/.

Agga, G. E., J. W. Schmidt, and T. M. Arthur. 2016. Antimicrobial-resistant fecal bacteria from ceftiofur-treated and nonantimicrobial-treated commingled beef cows at a cow-calf operation. Microb. Drug Resist. 22:598-608. doi: https://doi.org/10.1089/mdr.2015.0259

Allen, M. S., B. J. Bradford, and M. Oba. 2009. Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 87:3317-3334. doi: https://doi.org/10.2527/jas.2009-1779

Bernhard, B. C., N. C. Burdick, R. J. Rathmann, J. A. Carroll, D. N. Finck, M. A. Jennings, T. R. Young, and B. J. Johnson. 2012a. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period. J. Anim. Sci 90:4857-4865. doi: https://doi.org/10.2527/jas.2011-4982

Bernhard, B. C., N. C. Burdick, W. Rounds, R. J. Rathmann, J. A. Carroll, D. N. Finck, M. A. Jennings, T. R. Young, and B. J. Johnson. 2012b. Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge. J. Anim. Sci. 90:3879-3888. doi: 10.2527/jas.2012-4982

Berry, E. D., and J. E. Wells. 2016. Reducing foodborne pathogen persistence and transmission in animal production environments: Challenges and opportunities. Microbiol. Spectr. 4:PFS-0006-2014. doi: https://doi.org/10.1128/microbiolspec.PFS-0006-2014

Broadway, P. R., J. A. Carroll, N. C. Burdick Sanchez, T. R. Callaway, S. D. Lawhon, E. V. Gart, L. K. Bryan, D. J. Nisbet, H. D. Hughes, and J. F. Legako. 2020. Bacillus subtilis PB6 supplementation in weaned Holstein steers during an experimental Salmonella challenge. Foodborne Path. Dis. doi: https://doi.org/10.1089/fpd.2019.2757

Brown, T. R., and T. E. Lawrence. 2010. Association of liver abnormalities with carcass grading performance and value. J. Anim. Sci. 88:4037-4043. doi: https://doi.org/10.2527/jas.2010-3219

Davies, A. O., and R. J. Lefkowitz. 1980. Corticosteroid-induced differential regulation of β-adrenergic receptors in circulating human polymorphonuclear leukocytes and mononuclear leukocytes. J. Clin. Endo. Met. 51:599-605. doi: https://doi.org/10.1210/jcem-51-3-599

De Leeuw, J. A., A. W. Jongbloed, H. A. M. Spooler, and M. W. A. Verstegen. 2005. Effects of hindgut fermentation of non-starch polysaccharides on the stability of blood glucose and insulin levels and physical activity in empty sows. Livest. Sci. 96:165-174. doi: https://doi.org/10.1016/j.livprodsci.2005.01.009
Fedorka-Cray, P. J., D. A. Dargatz, L. A. Thomas, and J. T. Gray. 1998. Survey of Salmonella serotypes in feedlot cattle. J. Food Protect. 61:525-530. doi: https://doi.org/10.4315/0362-028X-61.5.525

Gragg, S. E., G. H. Loneragan, M. M. Brashears, T. M. Arthur, J. M. Bosilevac, N. Kalmchayanand, R. Wang, J. W. Schmidt, J. C. Brooks, and S. D. Shackelford. 2013. Cross-sectional study examining Salmonella enterica carriage in subiliac lymph nodes of cull and feedlot cattle at harvest. Foodborne Pathog. Dis. 10:368-374. doi: https://doi.org/10.1089/fpd.2012.1275

Ives, S. E., and J. T. Richeson. 2015. Use of antimicrobial metaphylaxis for the control of bovine respiratory disease in high-risk cattle. Vet. Clin. North Am. Food Anim. Pract. 31:341-350. doi: https://doi.org/10.1016/j.cvfa.2015.05.008

Kaps, M., and W. R. Lamberson. 2017. Biostatistics for Animal Science. 3rd ed.

Kegley, E. B., D. L. Galloway, and T. M. Fakler. 2000. Effect of dietary chromium-L-methionine on glucose metabolism of beef steers. J. Anim. Sci. 78:3177-3183. doi: https://doi.org/10.2527/2000.78123177x

Kneeskern, S. G., A. C. Dilger, S. C. Loerch, D. W. Shike, and T. L. Felix. 2016. Effects of chromium supplementation to feedlot steers on growth performance, insulin sensitivity, and carcass characteristics. J. Anim. Sci. 94:217-226. doi: https://doi.org/10.2527/jas.2015-9517

Krehbiel, C. R., S. R. Rust, G. Zhang, and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81:E120-E132. doi: https://doi.org/10.2527/2003.8114_suppl_2E120x

Kuo, T., A. McQueen, T.-C. Chen, and J.-C. Wang. 2015. Regulation of glucose homeostasis by glucocorticoids. Glucocorticoid Signaling. Springer. p. 99-126.

Lin, A. S. H., T. Yeow-Lim, and T. H. Meng. 2007. Antimicrobial compounds from Bacillus subtilis for use against animal and human pathogens. In: U. S. Patent (ed.). Kemin Industries, Inc., United States. Available: https://patents.google.com/patent/US7247299B2/en.

Loerch, S. C., and F. L. Fluharty. 1999. Physiological changes and digestive capabilities of newly received feedlot cattle. J. Anim. Sci. 77:1113-1119. doi: https://doi.org/10.2527/1999.7751113x

McGuirk, S. M., and S. Peek. 2003. Salmonellosis in cattle: a review. In: American Association of Bovine Practitioners 36th Annual Conference. Available: https://www.vetmed.wisc.edu/dms/fapm/fapmtools/7health/Salmorev.pdf

NASEM. 2016. Nutrient Requirements of Beef Cattle. 8th ed. Natl. Acad. Press, Washington, DC.

Odgaard, R. L., and J. A. Greaves. 2001. Chromium as an animal feed supplement. In: U. S. Patent (ed.). Kemin Industries, Inc., United States. Available: https://patents.google.com/patent/US6303158B1/en.
Pagana, K. D., and T. J. Pagana. 2006. Mosby’s Manual of Diagnostic and Laboratory Tests. Third ed. Elsevier.

Peterson, H. H. 2004. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 35:163-187. doi: https://doi.org/10.1051/vetres:2004002

Richeson, J. T., P. A. Beck, H. D. Hughes, D. S. Hubbell, M. S. Gadberry, E. B. Kegley, J. G. Powell, and F. L. Prouty. 2015. Effect of growth implant regimen on health, performance, and immunity of high-risk, newly received stocker cattle. J. Anim. Sci. 93:4089-4097. doi: https://doi.org/10.2527/jas.2014-8835

Richeson, J. T., K. L. Samuelson, and D. J. Tomczak. 2019. BEEF SPECIES–RUMINANT NUTRITION CACTUS BEEF SYMPOSIUM: Energy and roughage levels in cattle receiving diets and impacts on health, performance, and immune responses. J. Anim. Sci. 97:3596-3604. doi: https://doi.org/10.1093/jas/skz159

Smock, T. M., K. L. Samuelson, J. E. Hergenreder, P. W. Rounds, and J. T. Richeson. 2020. Effects of Bacillus subtilis PB6 and/or chromium propionate supplementation on clinical health, growth performance, and carcass traits of high-risk cattle during the feedlot receiving and finishing periods. Transl. Anim. Sci. (In Review).

Spears, J. W., K. E. Lloyd, and K. Krafsur. 2017. Chromium concentrations in ruminant feed ingredients. J. Dairy Sci. 100:3584-3590. doi: https://doi.org/10.3168/jds.2016-12153

Spears, J. W., C. S. Whisnant, G. B. Huntington, K. E. Lloyd, R. S. Fry, K. Krafsur, A. Lamptey, and J. Hyda. 2012. Chromium propionate enhances insulin sensitivity in growing cattle. J. Dairy Sci. 95:2037-2045. doi: https://doi.org/10.3168/jds.2011-4845

Sumner, J. M., F. Valdez, and J. P. McNamara. 2007. Effects of chromium propionate on response to an intravenous glucose tolerance test in growing Holstein heifers. J. Dairy Sci. 90:3467-3474. doi: https://doi.org/10.3168/jds.2006-623

Swanson, K. C., D. L. Harmon, K. A. Jacques, B. T. Larson, C. J. Richards, D. W. Bohnert, and S. J. Paton. 2000. Efficacy of chromium-yeast supplementation for growing beef steers. Anim. Feed Sci. Technol. 86:95-105. doi: https://doi.org/10.1016/S0377-8401(00)00142-5

Tomczak, D. J., K. L. Samuelson, J. S. Jennings, and J. T. Richeson. 2018. Oral hydration therapy with water affects health and performance of high-risk, newly received feedlot cattle. Appl. Anim. Sci. 35:30-38. doi: https://doi.org/10.15232/aas.2018-01796

Van Bibber-Krueger, C. L., J. E. Axman, J. M. Gonzalez, C. I. Vahl, and J. S. Drouillard. 2016. Effects of yeast combined with chromium propionate on growth performance and carcass quality of finishing steers. J. Anim. Sci. 94:3003-3011. doi: https://doi.org/10.2527/jas.2016-0454

Wilson, B. K., W. R. Ryan, E. D. DeSocio, C. G. Lockard, and J. Hergenreder. 2019. Effects of feeding a Bacillus subtilis active microbial on the clinical health, performance, and carcass characteristics of feedlot steers. J. Anim. Sci. 97 (E_Suppl_1)
Wilson, B. K., D. L. Step, C. L. Maxwell, C. A. Gifford, C. J. Richards, and C. R. Krehbiel. 2017. Effect of bovine respiratory disease during the receiving period on steer finishing performance, efficiency, carcass characteristics, and lung scores. Prof. Anim. Sci. 33:24-36. doi: https://doi.org/10.15232/pas.2016-01554

Yan, X., W. Zhang, J. Cheng, R. Wang, D. O. Kleemann, X. Zhu, and Z. Jia. 2008. Effects of chromium yeast on performance, insulin activity, and lipid metabolism in lambs fed different dietary protein levels. Asian Australas. J. Anim. Sci. 21:853-860. doi: https://doi.org/10.5713/ajas.2008.70643

Yang, S. C., C. H. Lin, C. T. Sung, and J. Y. Fang. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front. Microbiol. 5:1-10. doi: https://doi.org/10.3389/fmicb.2014.00241

Zahorec, R. 2001. Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratislava Med. J. 102:5-14.
Table 1. Day effects of serum chemistry variables\(^1\) during the feedlot receiving period.

Item\(^2\)	Day 0	Day 14	Day 28	Day 56	SEM\(^3\)	Linear	Quadratic	Cubic
Blood urea nitrogen, mg/dL	10.14\(^a\)	7.34\(^a\)	8.04\(^c\)	8.52\(^b\)	0.23	<0.01	<0.01	<0.01
Creatinine, mg/dL	1.49\(^a\)	1.09\(^b\)	1.06\(^bc\)	1.02\(^c\)	0.03	<0.01	<0.01	<0.01
Alanine aminotransferase, U/L	23.41\(^a\)	17.42\(^c\)	18.31\(^c\)	21.34\(^b\)	0.57	0.02	<0.01	0.03
Alkaline phosphatase, U/L	69.09\(^d\)	86.34\(^c\)	123.10\(^b\)	158.45\(^a\)	5.10	<0.01	0.02	0.22
Aspartate aminotransferase, U/L	94.63\(^a\)	61.00\(^c\)	61.59\(^c\)	75.83\(^b\)	2.38	<0.01	<0.01	0.03
Total bilirubin, mg/dL	0.39\(^a\)	0.26\(^b\)	0.25\(^b\)	0.25\(^b\)	0.01	<0.01	<0.01	0.01
Glucose, mg/dL	81.99\(^c\)	94.57\(^b\)	102.39\(^a\)	101.84\(^a\)	1.88	<0.01	<0.01	0.52
Calcium, mg/dL	9.42\(^d\)	10.24\(^c\)	10.43\(^b\)	10.81\(^a\)	0.06	<0.01	<0.01	<0.01
Total protein, g/dL	6.27\(^b\)	6.76\(^b\)	7.24\(^b\)	7.31\(^a\)	0.06	<0.01	<0.01	0.02
Albumin, g/dL	2.50\(^a\)	2.29\(^b\)	2.36\(^b\)	2.50\(^a\)	0.03	0.42	<0.01	0.02
Globulin, g/dL	3.77\(^c\)	4.47\(^b\)	4.88\(^a\)	4.81\(^a\)	0.06	<0.01	<0.01	0.41
Sodium, mmol/L	134.77\(^c\)	135.85\(^b\)	135.54\(^b\)	136.61\(^a\)	0.25	<0.01	0.98	0.01
Potassium, mmol/L	5.14\(^a\)	5.29\(^b\)	5.23\(^bc\)	5.52\(^a\)	0.05	<0.01	0.08	<0.01
Chlorine, mmol/L	96.10\(^a\)	95.46\(^b\)	94.47\(^b\)	94.72\(^b\)	0.22	<0.01	0.03	0.07
Total CO\(_2\), mmol/L	25.44	25.90	25.78	25.81	0.30	0.34	0.37	0.50

\(^1\)Serum chemistry analysis conducted using VetScan\(^\text{®}\) VS2 Preventative Care Profile Plus, Abaxis, Union City CA.

\(^2\)Items without common superscript differ (\(P \leq 0.05\)).

\(^3\)Pooled standard error of least square mean.
Table 2. Effect of *Bacillus subtilis* PB6 and/or chromium propionate supplementation on serum chemistry variables\(^1\) of beef cattle during the feedlot receiving period

Item	Treatment\(^2\)	P-value						
	CON	CST	CHR	CST + CHR	SEM\(^3\)	CST	CHR	CST × CHR
Blood urea nitrogen, mg/dL	8.22	8.46	8.79	8.57	0.30	0.97	0.26	0.46
Creatinine, mg/dL	1.19	1.19	1.15	1.13	0.04	0.70	0.17	0.77
Alanine aminotransferase, U/L	19.55	20.25	20.02	26.66	0.76	0.39	0.57	0.97
Alkaline phosphatase, U/L	111.36	107.49	104.53	113.6	7.81	0.74	0.96	0.41
Aspartate aminotransferase, U/L	69.38	70.39	77.51	75.78	3.20	0.91	0.04	0.67
Total bilirubin, mg/dL	0.2854	0.2948	0.2896	0.2823	0.0078	0.89	0.60	0.29
Glucose, mg/dL	94.74	92.76	93.95	99.34	3.06	0.58	0.25	0.23
Calcium, mg/dL	10.27	10.39	10.06	10.19	0.09	0.14	0.02	0.98
Total protein, g/dL	6.96	6.80	6.90	6.90	0.09	0.40	0.82	0.40
Albumin, g/dL	2.45	2.45	2.37	2.37	0.05	1.00	0.11	0.93
Globulin, g/dL	4.50	4.36	4.52	4.54	0.10	0.52	0.30	0.41
Sodium, mmol/L	135.82	135.00	135.91	136.05	0.31	0.27	0.07	0.12
Potassium, mmol/L	5.20	5.30	5.29	5.39	0.07	0.14	0.18	0.96
Chlorine, mmol/L	94.81	95.06	95.53	95.33	0.28	0.93	0.09	0.43
Total CO\(_2\), mmol/L	25.72	26.59	25.57	25.07	0.44	0.70	0.06	0.12

\(^1\)Serum chemistry analysis conducted using VetScan\(^\text{®}\) VS2 Preventative Care Profile Plus, Abaxis, Union City CA.

\(^2\)CON = negative control; CST = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product (CLOSTAT\(^\text{®}\), Kemin Industries, Des Moines, IA); CHR = 450 ppb DM chromium propionate (KemTRACE\(^\text{®}\) Chromium, Kemin Industries); CST + CHR = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product + 450 ppb DM chromium propionate.

\(^3\)Standard error of least square mean.
Table 3. Day effects of complete blood count variables\(^1\) during the feedlot receiving period

Item\(^2\)	Day 0	Day 14	Day 28	Day 56	SEM\(^3\)	Linear	Quadratic	Cubic
Red blood cells, M/µL	9.55\(^bc\)	9.33\(^c\)	9.66\(^b\)	10.02\(^a\)	0.18	<0.01	<0.01	0.26
Hemoglobin, g/dL	12.20\(^bc\)	11.85\(^c\)	12.53\(^b\)	13.41\(^a\)	0.18	<0.01	<0.01	0.17
Hematocrit, %	36.92\(^b\)	36.87\(^c\)	38.71\(^b\)	40.75\(^a\)	—	<0.01	0.53	0.39
Mean corpuscular volume, fL	39.62\(^c\)	40.52\(^b\)	41.08\(^ab\)	41.64\(^a\)	1.07	<0.01	0.53	0.77
Mean corpuscular hemoglobin, pg	13.24\(^c\)	13.19\(^c\)	13.46\(^b\)	13.85\(^a\)	0.31	<0.01	<0.01	0.54
Mean corpuscular hemoglobin concentration, g/dL	33.11\(^a\)	32.21\(^b\)	32.43\(^b\)	32.93\(^a\)	0.12	0.56	<0.01	0.12
Platelets, K/µL	401.40\(^b\)	527.38\(^a\)	448.52\(^b\)	436.87\(^b\)	21.70	0.77	<0.01	<0.01
White blood cells, K/µL	11.93\(^a\)	9.44\(^c\)	10.55\(^b\)	12.23\(^a\)	0.31	0.12	<0.01	0.02
Neutrophils, K/µL	4.95\(^a\)	2.28\(^c\)	2.58\(^c\)	3.61\(^b\)	0.21	<0.01	<0.01	0.02
Lymphocytes, K/µL	5.33\(^c\)	5.30\(^c\)	5.86\(^b\)	6.47\(^a\)	0.17	<0.01	0.05	0.46
Monocytes, K/µL	1.56\(^b\)	1.71\(^b\)	1.96\(^a\)	1.95\(^a\)	0.07	<0.01	0.17	0.18
Eosinophils, K/µL	0.0856\(^b\)	0.1518\(^ab\)	0.1460\(^ab\)	0.2045\(^a\)	0.0396	<0.01	0.89	0.28
Basophils, K/µL	0.0028	0.0026	0.0017	0.0018	0.0006	0.16	0.80	0.54
Neutrophils, %	40.66\(^a\)	23.14\(^b\)	22.53\(^b\)	28.40\(^c\)	—	<0.01	<0.01	0.05
Lymphocytes, %	45.32\(^b\)	56.83\(^b\)	56.94\(^a\)	53.83\(^a\)	—	<0.01	<0.01	0.01
Monocytes, %	13.28\(^c\)	18.45\(^a\)	19.12\(^a\)	16.16\(^b\)	—	<0.01	<0.01	0.68
Eosinophils, %	0.73\(^b\)	1.56\(^a\)	1.40\(^a\)	1.60\(^a\)	—	0.02	0.18	0.20
Basophils, %	0.0278	0.0247	0.0167	0.0167	—	0.12	0.79	0.63
Neutrophil:lymphocyte	0.96\(^a\)	0.44\(^c\)	0.46\(^bc\)	0.57\(^b\)	0.04	<0.01	<0.01	0.01

\(^1\)Complete blood count analysis was conducted using ProCyte® Dx Hematology Analyzer, IDEXX Laboratories, Westbrook, ME.

\(^2\)Items without common superscript differ (P ≤ 0.05).

\(^3\)Pooled standard error of least square mean.
Table 4. Effect of *Bacillus subtilis* PB6 and/or chromium propionate supplementation on complete blood count variables\(^1\) of beef cattle during the feedlot receiving period

Item\(^3\)	Treatment\(^2\)	\(P\)-value						
	CON	CST	CHR	CST + CHR	SEM\(^4\)	CST	CHR	CST × CHR
Red blood cells, M/μL	9.55	9.75	9.44	9.82	0.23	0.14	0.93	0.66
Hemoglobin, g/dL	12.90\(^a\)	12.52\(^ab\)	12.06\(^b\)	12.50\(^ab\)	0.23	0.88	0.05	0.06
Hematocrit, %	39.93\(^a\)	37.94\(^b\)	37.31\(^b\)	38.07\(^b\)	—	0.37	0.07	0.05
Mean corpuscular volume, fL	44.96\(^a\)	40.05\(^b\)	38.35\(^b\)	39.50\(^b\)	1.31	0.03	<0.01	<0.01
Mean corpuscular hemoglobin, pg	14.57\(^a\)	13.37\(^b\)	12.88\(^b\)	12.92\(^b\)	0.38	0.02	<0.01	0.01
Mean corpuscular hemoglobin concentration, g/dL	32.37	33.03	32.38	32.91	0.12	<0.01	0.64	0.57
Platelets, K/μL	431.37	464.89	442.15	475.75	22.40	0.15	0.63	1.00
White blood cells, K/μL	10.93	10.38	11.60	11.23	0.37	0.20	0.04	0.81
Neutrophils, K/μL	3.23	2.90	3.72	3.56	0.21	0.27	0.02	0.69
Lymphocytes, K/μL	5.82	5.60	5.74	5.80	0.18	0.67	0.74	0.44
Monocytes, K/μL	1.76	1.76	1.90	1.76	0.09	0.39	0.40	0.41
Eosinophils, K/μL	0.12	0.18	0.13	0.16	0.03	0.17	0.90	0.71
Basophils, K/μL	0.0027	0.0024	0.0023	0.0014	0.0006	0.33	0.26	0.54
Neutrophils, %	28.11	26.91	30.01	29.71	—	0.53	0.05	0.71
Lymphocytes, %	53.93	54.09	52.17	52.74	—	0.76	0.19	0.86
Monocytes, %	16.86	17.28	16.76	16.11	—	0.84	0.27	0.35
Eosinophils, %	1.12	1.64	1.13	1.41	—	0.16	0.68	0.67
Basophils, %	0.0240	0.0250	0.0219	0.0129	—	0.40	0.17	0.50
Neutrophil:lymphocyte	0.58	0.55	0.67	0.63	0.04	0.39	0.03	0.82

\(^1\) Complete blood count analysis was conducted using ProCyte® Dx Hematology Analyzer, IDEXX Laboratories, Westbrook, ME.

\(^2\) CON = control; CST = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product (CLOSTAT®, Kemin Industries, Des Moines, IA); CHR = 450 ppb DM chromium propionate (KemTRACE® Chromium, Kemin Industries); CST + CHR = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product + 450 ppb DM chromium propionate.

\(^3\) Items without common superscript differ \((P ≤ 0.05)\).

\(^4\) Pooled standard error of least square mean.
Table 5. Fecal *Salmonella* spp. prevalence in high-risk cattle fed supplemental *Bacillus subtilis* PB6 and/or chromium propionate

Item	Treatment 1	P-value						
	CON	CST	CHR	CST + CHR	SEM²	CST	CHR	CST × CHR
Salmonella spp., CFU/g	4,150	4	13,620	220	18.94	0.07	0.33	0.49

1CON = negative control; CST = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product (CLOSTAT®, Kemin Industries, Des Moines, IA); CHR = 450 ppb DM chromium propionate (KemTRACE® Chromium, Kemin Industries); CST + CHR = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product + 450 ppb DM chromium propionate.

2Standard error of least square mean.

3P-value and SEM reported from data transformed using square root. Treatment means are back-transformed to reflect actual CFU/g.
Table 6. Fecal *Salmonella* spp. prevalence in high-risk cattle fed supplemental *Bacillus subtilis* PB6 and/or chromium propionate

Item	Treatment	P-value	SEM	TRT	DAY	TRT x DAY		
Salmonella spp., CFU/g	CON	CST	CHR	CST + CHR	SEM	32.81	0.04	0.68
d 0	39	1	3	2	32.81	0.99	-	-
d 28	12,406^{ab}	2^b	40,459^a	636^b	32.81	0.01	-	-
d 196	5	7	397	25	32.81	0.99	-	-

¹CON = negative control; CST = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product (CLOSTAT[®], Kemin Industries, Des Moines, IA); CHR = 450 ppb DM chromium propionate (KemTRACE[®] Chromium, Kemin Industries); CST + CHR = 13 g/animal daily DM inclusion of prepared *Bacillus subtilis* PB6 product + 450 ppb DM chromium propionate.

²P-value for TRT was determined using slicers for experimental treatment within individual day. The P-value for DAY represents the effect of overall day. Interaction of TRT x DAY represents the interaction of overall treatment and overall day.

³Items without common superscripts differ (P ≤ 0.05).

⁴Standard error of least square mean.

⁵P-value and SEM reported from data transformed using square root. Treatment means are back-transformed to reflect actual CFU/g.
Figure 1. Effect of day on blood urea nitrogen in high-risk cattle. Day means with different superscript letters differ, $P < 0.01$.

Figure 2. Effect of day on serum glucose concentration in high-risk cattle. Day means with different superscript letters differ, $P < 0.01$.

Figure 3. Effect of day on neutrophil:lymphocyte in high-risk cattle. This variable is used as a proxy for stress, where 1.0 indicates high stress. The reference range for bovine is 0.4 to 0.6. Day means with different superscript letters differ, $P \leq 0.03$.
Figure 1

day, $P < 0.01$
linear, $P < 0.01$
quadratic, $P < 0.01$
cubic, $P = 0.01$
Figure 2

Serum glucose, mg/dL

day, $P < 0.01$
linear, $P < 0.01$
quadratic, $P < 0.01$
cubic, $P = 0.52$
