Spaces of flattenings of spheres

Olakunle S Abawonse

Department of Mathematics, Northeastern University,
360 Huntington Ave, Boston, 02115, Massachusetts, USA.

Contributing authors: o.abawonse@northeastern.edu;

Abstract

The spaces of flattenings of a simplicial sphere played a key role in the study of existence and uniqueness of differentiable structures on a simplicial sphere. In this paper, we will establish that the spaces of flattenings of some simplicial spheres and show that they have the homotopy type of the orthogonal group.

Keywords: Regular cell complex, Oriented matroids, Simplicial spheres, Flattenings

1 Introduction

The space of flattenings $F(L)$ associated to a simplicial k-sphere L is the space of all simplicial embeddings of the cone cL of L in \mathbb{R}^{k+1}. The space of flattenings of simplicial spheres was first studied by S.S Cairns [1] in the early 1940s. In [1], Cairns proved that the space of all flattenings of a simplicial 2-sphere which have an orientation preserving isomorphism onto a given triangulation is path connected.

The space of flattenings associated to a simplicial 1-sphere is homotopy equivalent to the orthogonal group $O(2)$ as we will prove in Theorem 17 [2]. The only known positive result about the topology of $F(L)$ when $\dim(L) > 2$ is the theorem of N.H Kuiper [3] where he proved that $F(L)$ has the homotopy type of $O(n+1)$ when L is the boundary of the $(n+1)$--simplex. In [4], Milin showed that there exist simplicial sphere L of dimension 3 whose subset of $F(L)$ consisting of flattenings which have an orientation preserving isomorphism onto a given triangulation is not path connected.
Let Δ^n denote an n-simplex. We will establish that the space of flattenings associated to $\partial \Delta^n \ast \partial \Delta^1$ has the homotopy type of an orthogonal group.

Let L be a simplicial k-sphere and $CF(L)$ denote the quotient of $F(L)$ by GL_{k+1} the invertible $(k+1) \times (k+1)$ matrices. To establish the above statement, we will first prove that $CF(L)$ is contractible. In Section 5, we will introduce a poset $P(L)$ called The poset of oriented matroid flattenings of L and a poset stratification map $\pi : CF(L) \to P(L)$. We will prove that $P(L)$ is contractible when L is either a simplicial 1-sphere, $\partial \Delta^{n+1}$ the boundary of an $(n+1)$-simplex or $\partial \Delta^1 \ast \partial \Delta^{n+1}$.

In Section 6, we will prove for the above simplicial spheres that $\{\pi^{-1}(M) : M \in P(L)\}$ is a totally normal cellular decomposition of $CF(L)$. Theorem 10 will then conclude that $\|P(L)\|$ can be embedded in $CF(L)$ as a deformation retract.

2 Oriented Matroids

We will view elements of \mathbb{R}^n as $1 \times n$ row vectors so that X is the rowspace of a $r \times n$ matrix. Suppose $X \in \text{Gr}(r, \mathbb{R}^n)$ so that $X = \text{Rowspace}(v_1 v_2 v_3 \ldots v_n)$. We consider the following function $\chi : [n]^r \to \{+, -, 0\}$ associated to X

$$\chi(i_1, i_2, \ldots, i_r) = \text{sign}(\det(v_{i_1} v_{i_2} \cdots v_{i_r}))$$

The collection $\{\pm \chi\}$ is independent of the choice of basis vectors for X. The resulting functions ($\pm \chi$) defines a rank r oriented matroid.

In general, an oriented matroid can be obtained from an arrangement of pseudospheres as evident by the following theorem. Figure 1 illustrates an arrangement of pseudospheres.

Theorem 1 ([5]) The Topological Representation Theorem (Folkman-Lawrence 1978) The rank r oriented matroids are exactly the sets (E, \mathbb{V}^*) arising from essential arrangements of pseudospheres in S^{r-1}.

A detailed introduction to the theory of oriented matroids can be found in the in the book [6]. Associated to a rank r oriented matroid on n elements are the functions $\pm \chi : [n]^r \to \{+, -, 0\}$ called the chirotopes. Let $\{+, -, 0\}$ be a poset with the partial order $0 < -$ and $0 < +$.

Definition 2 ([7]) Let $\mathcal{N} = (\pm \chi_1)$ and $\mathcal{M} = (\pm \chi_2)$ be two rank r oriented matroids. We say that $\mathcal{N} \leq \mathcal{M}$ if and only if $\chi_1 \leq \chi_2$ or $\chi_1 \leq -\chi_2$. The oriented matroid \mathcal{M} is said to weak map to \mathcal{N}.

Definition 3 ([7]) MacP(p, n) denotes the poset of all rank p oriented matroids on elements $\{1, 2, \ldots, n\}$, with weak map as the partial order. The poset is called the MacPhersonian [7].
We have explained how to obtain a rank r oriented matroid on n elements from a rank r subspace of \mathbb{R}^n. That is, there is a function $\mu : \text{Gr}(r, \mathbb{R}^n) \to \text{MacP}(r, n) : X \to (\pm \chi_X)$.

The following Proposition and Theorem are from the work of the author in [8], [2].

Proposition 4 ([8]) Let $M \in \text{MacP}(2, n)$. Then $\partial \mu^{-1}(M) = \bigcup_{N \subset M} \mu^{-1}(N)$

Theorem 5 ([8]) $\{\mu^{-1}(M) : M \in \text{MacP}(2, n)\}$ is a regular cell decomposition of $\text{Gr}(2, \mathbb{R}^n)$.

3 Cellular stratified spaces

Definition 6 ([9]) A globular n-cell is a subset D of D^n containing $H = \text{Int}(D^n)$. We call $D \cap \partial D^n$ the boundary of D and denote it by ∂D. The number n is called the globular dimension of D.

A globular n-cell was introduced by Tamaki [9] as an extension of closure of n-cells to non-closed cells.

Definition 7 ([9]) Let X be a topological space. For a non-negative integer n, an n-cell structure on a subspace $e \subset X$ is a pair (D, φ) of a globular n-cell D and a continuous map

$$\varphi : D \to X$$

satsisfying the following conditions:

- $\varphi(D) = \bar{e}$ and $\varphi : D \to \bar{e}$ is a quotient map.
- The restriction $\varphi : H \to e$ is a homeomorphism.
Definition 8 ([9]) Let X be a topological space and P be a poset with the Alexandroff topology. A stratification of X indexed by P is an open continuous map

$$\pi : X \to P$$

satisfying the condition that for each $\lambda \in P$, $e_\lambda = \pi^{-1}(\lambda)$ is connected and locally closed. X is called a cellular stratified space if each e_λ is homeomorphic to an open ball.

Definition 9 ([9], [10]) Let X be a cellular stratified space. X is called totally normal if for each globular n-cell (D_λ, φ), and $e_\lambda = \varphi(\text{Int}(D_\lambda))$

1. If $e_\lambda \cap e_\mu \neq \emptyset$, then $e_\lambda \subseteq e_\mu$.
2. There exists a structure of a regular cell complex on S^{n-1} containing ∂D_λ as a cellular stratified subspace of S^{n-1}.
3. For each cell e in the cellular stratification on ∂D_λ, there exists a cell e_η in X and a map $b : D_\eta \to \partial D_\lambda$ such that $b(\text{Int}(D_\eta)) = e$ and $\varphi_\lambda \circ b = \varphi_\eta$.

Theorem 10 ([9]) For a totally normal cellular stratified space X with stratification $\pi : X \to P$, there is an embedding of $\|P\|$ as a strong deformation retract of X.

4 Flattenings

Definition 11 ([11], [4]) Let L be a triangulation of a k-sphere, and let cL be a simplicial cone over L. A flattening of L is an embedding $\psi : cL \to \mathbb{R}^{k+1}$ that maps the cone vertex to the origin and it is linear on simplices of cL.

Notation 12 Let L be a simplicial k-sphere. We denote as in [11] by $F(L)$ the space of all flattenings of L. Also, the group GL_{k+1} of invertible $(k+1) \times (k+1)$ matrices acts on $F(L)$; the quotient space denoted by $CF(L)$ is the configuration space of L.

The space $F(L)$ is an open subset of $\mathbb{R}^{(k+1)|\text{Vert}(L)|}$, and so has a natural smooth manifold structure. The space of flattenings comes up in the problem of existence and uniqueness of differentiable structures on triangulated manifolds (see [12], [3]).

We will show that $CF(L)$ is contractible when L is a simplicial 1-sphere, and so, $F(L)$ has the homotopy type of $O(2)$. Some few other non-trivial results that are known about the topology of $CF(L)$ and $F(L)$ are as follows.

Theorem 13 ([1]) Let L be a triangulated 2-sphere. Then $CF(L)$ is path connected.

For $\text{dim}(L) \geq 3$, Cairns [1] also showed that $CF(L)$ can be empty. When the dimension of L is greater than 2, Milin [4] obtained the following negative result about the topology of $CF(L)$.
Theorem 14

There exists a 3 dimensional simplicial sphere L such that $CF(L)$ is disconnected.

So far, for $n > 2$ the only known positive result about the homotopy type of $F(L)$ is the following result of Kuiper.

Theorem 15

Let $\partial \Delta^{n+1}$ be the boundary of an $(n+1)$-simplex. Then $F(\partial \Delta^{n+1})$ has the homotopy type of $O(n+1)$.

Corollary 16

Let $\partial \Delta^{n+1}$ be the boundary of an $(n+1)$-simplex. Then any two smoothings of $\partial \Delta^{n+1}$ are diffeomorphic.

As in Theorem 15, we also obtain the following positive result for the simplicial sphere $\partial \Delta^1 \ast \partial \Delta^{n+1}$.

Theorem 17

Let $\partial \Delta^{n+1}$ be the boundary of an $(n+1)$-simplex. Then $F(\partial \Delta^1 \ast \partial \Delta^{n+1})$ has the homotopy type of $O(n+2)$. Let L be a simplicial 1-sphere. Then $F(L)$ has the homotopy type of $O(2)$.

Corollary 18

Let $\partial \Delta^{n+1}$ be the boundary of an $(n+1)$-simplex. Then any two smoothings of $\partial \Delta^1 \ast \partial \Delta^{n+1}$ are diffeomorphic.

5 Oriented matroid flattenings

Let L be a triangulated of a k-sphere, and $\psi : cL \to \mathbb{R}^{k+1}$ a flattening of L. Then the arrangement of vectors $(\psi(v) : v \in \text{Vert}(L))$ determines a rank $k+1$ oriented matroid M. Definition 19 gives a combinatorial abstraction for oriented matroids obtained from flattenings of a simplicial sphere.

Definition 19

Let L be a simplicial sphere of dimension k. An oriented matroid flattening of L is a rank $k+1$ oriented matroid M satisfying the following:

1. The elements of M are the vertices of L.
2. The set of vertices in a simplex are independent.
3. The set of vertices in a simplex has no other elements in its convex hull.

Notation 20

The poset of all oriented matroid flattenings of L is denoted by $P(L)$.

Proposition 21

Let L be a simplicial sphere and $\partial \Delta^n$ the boundary of an n-simplex. Then $\|P(L)\|$ is contractible when L is either a simplicial 1-sphere, $\partial \Delta^n$ or $\partial \Delta^1 \ast \partial \Delta^n$.
Proof The poset $P(\partial \Delta^n)$ consists of a point. Let $P(\partial \Delta^n) = \{ M_n \}$. For the sphere $\partial \Delta^1 \ast \partial \Delta^n$, $P(\partial \Delta^1 \ast \partial \Delta^n)$ has a minimum; given by the join $M_1 \oplus M_n$ of two oriented matroids.

In the case when L is a simplicial 1-sphere, this will follow by induction on the number of vertices in $\text{Vert}(L)$. Let L_n denote a simplicial 1-sphere on n vertices. We know that $P(L_3)$ consists of a point say $M_0 = (\pm \chi_0)$. In the following argument, we will consider chirotopes with positive value on the basis $\{1, 2\}$.

Let Σ^{n+1} denote a subposet of $P(L_{n+1})$ consisting of M' such that $M' \setminus \{n+1\}$ is an element of $P(L_n)$. An oriented matroid in Σ^{n+1} is thus an extension of an oriented matroid M in $P(L_n)$ by an element $n+1$, with $n+1$ lying in the convex hull of $\{1, n\}$.

There is a poset map $P(L_{n+1}) \rightarrow \Sigma^{n+1}$ obtained as composition of some poset maps as given below. Let $f_0 : P(L_{n+1}) \rightarrow P(L_{n+1})$ defined as:

$$f_0(\chi)(B) = \begin{cases}
\chi(B) & \text{if } B \neq (n, 1) \\
0 & \text{if } B = (n, 1) \text{ and } \chi(n, 1) \in \{0, -\} \\
+ & \text{if } B = (n, 1) \text{ and } \chi(n, 1) = +
\end{cases}$$

Let $P_0 = f_0(P(L_{n+1}))$. The poset map f_0 is a lowering homotopy, and so $\|P_0\|$ is homotopy equivalent to $\|P(L_{n+1})\|$. We again consider another poset map $f_1 : P_0 \rightarrow P_0$ defined as:
\[f_1(\chi)(B) = \begin{cases} \chi(B) & \text{if } B \neq (n,1) \\ + & \text{if } B = (n,1) \end{cases} \]

The image of \(f_1 \) is denoted is given by \(f_1(P_0) = \Sigma^{n+1} \). The poset map \(f_1 : P_0 \to P_0 \) is a raising homotopy, and so \(\|P_0\| \) is homotopy equivalent to \(\|\Sigma^{n+1}\| \). The poset map \(\Sigma^{n+1} \to P(L_n) \) induces a homotopy equivalence between \(\|\Sigma^{n+1}\| \) and \(\|P(L_n)\| \).

For a simplicial sphere \(L \), there is a stratification map \(\mu_0 : CF(L) \to P(L) \).

Conjecture 22 Let \(L \) be a simplicial sphere of dimension at least 2. Then \(\|P(L)\| \) is contractible.

6 Topology of space of flattenings of some spheres

Let \(\mu' : Gr(r, \mathbb{R}^{r+2}) \to \text{MacP}(r, r+2) \) and \(\mu : Gr(2, \mathbb{R}^n) \to \text{MacP}(2, n) \). Let \(\mu_0 : CF(L) \to P(L) \) be the restriction of \(\mu' \) to \(CF(L) \) when \(L = \partial \Delta^1 \ast \partial \Delta^{r-1} \) or the restriction of \(\mu \) when \(L \) is a simplicial 1-sphere on \(n \) vertices.

The stratification map \(\mu_0 : CF(L) \to P(L) \) gives a decomposition of \(CF(L) \) into semi-algebraic sets \(\{\mu_0^{-1}(M) : M \in P(L)\} \). When \(L \) is a simplicial 1-sphere or \(L = \partial \Delta^1 \ast \partial \Delta^n \), we will show that the decomposition is a totally normal cellular decomposition.

We have the following commutative diagram

\[
\begin{array}{ccc}
Gr(r, \mathbb{R}^{r+2}) & \xrightarrow{\mu'} & \text{MacP}(r, r+2) \\
V \downarrow V^\perp & & \downarrow M \to M^* \\
Gr(2, \mathbb{R}^{r+2}) & \xrightarrow{\mu} & \text{MacP}(2, r+2) \\
\end{array}
\]

The commutativity of the diagram follows from the fact that \(V = (I_r|A) \in Gr(r, \mathbb{R}^{r+2}) \) if and only if \(V^\perp = \text{Rowspan}(-A^T|I_2) \in Gr(2, \mathbb{R}^{r+2}) \). The oriented matroid \(M^* \) is called the dual of \(M \).

The map \(Gr(r, \mathbb{R}^{r+2}) \to Gr(2, \mathbb{R}^{r+2}) : V \mapsto V^\perp \) is a homeomorphism and the poset map \(\text{MacP}(r, r+2) \to \text{MacP}(2, r+2) : M \mapsto M^* \) is a poset isomorphism.

The following result thus follows from Theorem 5 and the commutativity of the diagram described above.

Theorem 23 Let \(M \in \text{MacP}(r, r+2) \) be a rank \(r \) oriented matroid on \(r+2 \) elements, and \(\mu' : Gr(r, \mathbb{R}^{r+2}) \to \text{MacP}(r, r+2) \). Then \(\{\mu'^{-1}(M) : M \in \text{MacP}(r, r+2)\} \) is a regular cell decomposition of \(Gr(r, \mathbb{R}^{r+2}) \).

Proposition 24 Let \(L \) be a simplicial sphere and \(\mu_0 : CF(L) \to P(L) \) a stratification map. If \(L \) is a simplicial 1-sphere or \(L = \partial \Delta^1 \ast \partial \Delta^n \), then the decomposition \(\{\mu_0^{-1}(M) : M \in P(L)\} \) is a totally normal cellular decomposition of \(CF(L) \).
Proof 1. Suppose L is as given above. It was proven in Proposition 4 that if $N, M \in P(L)$ such that $N < M$, then $\mu_0^{-1}(N) \subseteq \mu_0^{-1}(M)$. So, the decomposition $\{\mu_0^{-1}(M) : M \in P(L)\}$ is normal.

2. In Theorem 5, it was proven that $\{\mu^{-1}(M) : M \in \text{MacP}(2, |\text{Vert}(L)|)\}$ is a regular cell decomposition of $Gr(2, \mathbb{R}^{\text{Vert}(L)})$. Similarly, we have in Theorem 23 that $\{\mu^{-1}(M) : M \in \text{MacP}(r, r+2)\}$ is a regular cell decomposition of $Gr(r, \mathbb{R}^{r+2})$.

If L is a simplicial 1-sphere, and $M \in P(L)$, then $\partial\mu^{-1}(M)$ is a regular cellular cell complex homeomorphic to a sphere. Let $\mu_0^{-1}(M)$ denote the closure of $\mu_0^{-1}(M)$ in $CF(L)$. Then $\partial\mu^{-1}(M)$ contains $\partial\mu_0^{-1}(M)$ as a cellular stratified subspace. Similarly when $L = \partial\Delta^1 \ast \partial\Delta^n$ and $M \in P(L)$, $\partial(\mu')^{-1}(M)$ contains $\partial\mu_0^{-1}(M)$ as a cellular stratified subspace.

3. $D_M = \mu_0^{-1}(M)$, and let φ_M be the restriction to D_M of the characteristic map of the cell $\mu^{-1}(M)$ if L is a simplicial 1-sphere or restriction of the characteristic map of $(\mu')^{-1}(M)$ if $L = \partial\Delta^1 \ast \partial\Delta^n$.

For a cell e in the boundary of D_M, there exists an oriented matroid N in $P(L)$ such that $N < M$ and $\mu_0^{-1}(N) = e$. The map $b : D_N \to \partial D_M$ is given by $b = (\varphi_M)^{-1} \circ \varphi_N$.

Proof of Theorem 17 Suppose L is a simplicial 1-sphere or $L = \partial\Delta^1 \ast \partial\Delta^n$. The decomposition $\{\mu_0^{-1}(M) : M \in P(L)\}$ is a totally normal cellular decomposition of $CF(L)$ by Proposition 24. It thus follows from Theorem 10 that $\|P(L)\|$ is a deformation retract of $CF(L)$. We know from Proposition 21 that $\|P(L)\|$ is contractible. Hence, $CF(L)$ is contractible.

Suppose L is a simplicial 1-sphere. We know that $F(L)|_H \cong \text{GL}_2(\mathbb{R}) \times CF(L)$. Hence $F(L)$ has the homotopy type of $O(2)$. Similarly, if $L = \partial\Delta^1 \ast \partial\Delta^n$, then $F(L) \cong \text{GL}_{n+1}(\mathbb{R}) \times CF(L)$. Hence $F(L)$ has the homotopy type of $O(n+1)$.

References

[1] Cairns, S.S.: Isotopic deformations of geodesic complexes on the 2-sphere and on the plane. Ann. of Math. (2) 45, 207–217 (1944). https://doi.org/10.2307/1969263

[2] Abawonse, O.S.: On the topology of flags of oriented matroids and spaces of flattenings of spheres. PhD thesis (2022). Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; Last updated - 2022-08-19. https://link.ezproxy.neu.edu/login?url=https://www.proquest.com/dissertations-theses/ontopology-flags-oriented-matroids-spaces/docview/2699687391/se-2

[3] Kuiper, N.H.: On the smoothings of triangulated and combinatorial manifolds. In: Differential and Combinatorial Topology (A Symposium in
[4] Milin, L.: A combinatorial computation of the first Pontryagin class of the complex projective plane. Geom. Dedicata 49(3), 253–291 (1994). https://doi.org/10.1007/BF01264030

[5] Folkman, J., Lawrence, J.: Oriented matroids. J. Combin. Theory Ser. B 25(2), 199–236 (1978). https://doi.org/10.1016/0095-8956(78)90039-4

[6] Björner, A.: Posets, regular CW complexes and Bruhat order. European J. Combin. 5(1), 7–16 (1984). https://doi.org/10.1016/S0195-6698(84)80012-8

[7] MacPherson, R.: Combinatorial differential manifolds, in: ”Topological Methods in Modern Mathematics: A Symposium in Honor of John Milnor’s Sixtieth Birthday Stony Brook NY 1991”. Publish or Perish, Houston TX 1993 (225282), 203–221 (1993). https://doi.org/10.2307/1970177

[8] Abawonse, O.S.: Homeomorphism type of combinatorial grassmannian and flag manifold (2022). Preprint at https://arxiv.org/abs/2205.09553

[9] Tamaki, D.: Cellular stratified spaces. In: Combinatorial and Toric Homotopy. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 35, pp. 305–435. World Sci. Publ., Hackensack, NJ, ??? (2018)

[10] Furuse, M., Mukouyama, T., Tamaki, D.: Totally normal cellular stratified spaces and applications to the configuration space of graphs. Topol. Methods Nonlinear Anal. 45(1), 169–214 (2015). https://doi.org/10.12775/TMNA.2015.010

[11] Gabrièlov, A.M., Gel’fand, I.M., Losik, M.V.: A local combinatorial formula for the first Pontrjagin class. Funkcional. Anal. i Priložen. 10(1), 14–17 (1976)

[12] Gabrièlov, A.M., Gel’fand, I.M., Losik, M.V.: Combinatorial computation of characteristic classes. I, II. Funkcional. Anal. i Priložen. 9(2), 12–28919753526 (1975)