A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function

Binna Kim¹,², Veronica Minsu Hong²,³, Jeongwon Yang²,³, Heejung Hyun²,³, Jooyeon Jamie Im¹,², Jaeuk Hwang⁴, Sujung Yoon²,³, and Jieun E. Kim²,³

¹Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
²Ewha Brain Institute, Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
³Department of Psychiatry, Soon Chun Hyang University Hospital, Seoul 04401, Korea

ABSTRACT: Around the world, fermentation of foods has been adopted over many generations, primarily due to their commercial significance with enriched flavors and high-profile nutrients. The increasing application of fermented foods is further promoted by recent evidence on their health benefits, beyond the traditionally recognized effects on the digestive system. With recent advances in the understanding of gut-brain interactions, there have also been reports suggesting the fermented food’s efficacy, particularly for cognitive function improvements. These results are strengthened by the proposed biological effects of fermented foods, including neuroprotection against neurotoxicity and reactive oxygen species. This paper reviews the beneficial health effects of fermented foods with particular emphasis on cognitive enhancement and neuroprotective effects. With an extensive review of fermented foods and their potential cognitive benefits, this paper may promote commercially feasible applications of fermented foods as natural remedies to cognitive problems.

Keywords: fermentation, functional food, cognition, neuroprotection, gut-brain axis

INTRODUCTION

Fermentation is a metabolic process, which is induced by a microorganism and characterized by the anaerobic breakdown of carbohydrates to alcohol or organic acids (1). A wealth of literature has focused on the beneficial physiological effects of fermented foods on enteral nutrient absorption and on digestive tract health (2,3). More recently, there has been a considerable increase in research and publications on how the gut microbiota is tied to the host’s immune system, energy metabolism, and even to brain function like stress response (4). Studies which have focused on bidirectional communication between the brain and gut have received attention. There are reports showing that dysbiosis of gut microbiota is associated with anxiety and depression, and administration of probiotics produces anxiolytic- and antidepressant-like activities in animal studies (5-7). Moreover, probiotic-rich diets, either prepared naturally or with industrial fermentation processes, showed positive effects on stress relief and memory enhancement, potentially via gut microbiota improvement (8).

There is much scientific evidence documenting the probiotics’ potential health effect on gut microbiota ecosystems in relation to brain function. Because of their health promoting benefits, probiotics-included diet plans would be an effective strategy to boost one’s health and to manage disease risk (9). Beyond their nutritional value, probiotics hold a great marketing potential because they tend to meet consumer’s demand better than other medicinal products. In other words, probiotics are easy to obtain because most of them are already available with added value from health claims (10). When taken as a part of a balanced diet, they could be contributing factors to disease prevention in a convenient way.

Taken together, a growing body of evidence indicates the potential of fermented foods as functional foods for the brain and cognitive health promotion. However, most of the studies mainly focused on certain functional foods associated with emotion- and stress-related health promotion and overlooked their role in cognition modulation as well as product diversity. Thus, careful investigation of products with a focus on their effects on cognition and neuroprotection was highlighted in this review.

This paper comprehensively reviews the beneficial effects of fermented foods on brain and cognitive function.
Literature searches were performed for articles published up to May 2016 on MEDLINE, EMBASE, and the Cochrane Library. The search terms included “fermented” and “fermentation” in combination with the search terms “cognitive”, “cognition”, “learning”, “memory”, “neuroprotective”, “neuroprotection”, “dementia”, and “Alzheimer”.

The searches from the three electronic databases yielded 312 records after removing duplicate entries. The administration of any fermented product as the target intervention was regarded as eligibility criteria for inclusion. Studies including any standardized outcome measures of neuroprotection, learning, memory, or cognitive function were included. All types of studies were considered for inclusion in the review including clinical trials, animal experimental studies, and in vitro studies using neuronal/glial cell models. In the process, the manuscript included references with no language or site restriction.

Initial screening of titles and abstracts identified 78 potentially relevant references. Of the 78 records retrieved, five studies were excluded because their focus was not on fermented products. Twenty-five studies were excluded as their outcomes were not related to brain or cognitive function. We also excluded one article, which was not available online and other two review articles. As a result, a total of 45 articles were selected and summarized (Table 1).

EVALUATION OF NEUROPROTECTION AND COGNITIVE FUNCTION

The pathogenesis of cognitive dysfunction is multifaceted and complicated. Cholinergic dysfunction in the brain, including hydrolysis of acetylcholine from increased acetylcholinesterase (AChE) activity, has been suggested to be attributable to this pathogenesis (11,12). Dysregulation of the cholinergic system also disrupts hippocampal neurogenesis by modulating the mechanism involving brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate response element-binding protein (CREB) (11,12). Oxidative stress induces neuronal cell death and may cause cognitive dysfunction. Brain structures supporting memory are highly sensitive to oxidative stress partly due to their high demand for oxygen (13). Another possible cause of cognitive dysfunction is the accumulation of amyloid β (Aβ) and phosphorylated tau protein in the brain (14). Increased Aβ formation and tau hyperphosphorylation are known to cause memory impairments in neurodegenerative diseases such as Alzheimer’s disease (AD) (14). These findings highlight some typical biomarkers for evaluating neuroprotection and neurodegeneration models, and suggest that these could be used as indirect indicators of cognitive function (15, 16).

To mimic neurodegeneration, oxidative injury leading to neuronal death is provoked by neurotoxic chemicals such as glutamate or hydrogen peroxide (H₂O₂) in cellular models. In animal models, intracerebroventricular injection of Aβ or intraperitoneal injection of scopolamine, a cholinergic antagonist, are widely applied to induce cognitive impairment (17,18). Various biomarkers are examined in these neurodegenerative models before and after treatment of neuroprotective agents. Cell viability, AChE level, neurotrophic factors, expression of antioxidant-related proteins such as superoxide dismutase (SOD), and inflammation indices are commonly measured both in vitro and in vivo to investigate neuroprotective effects (19).

Memory-related performance has been evaluated by established behavioral tests. Morris water maze (MWM) and passive avoidance test are broadly used, while there are numerous tests to assess cognition (20). In clinical studies, cognitive function is usually evaluated by cognitive assessment tools. Neuroprotection in humans can be evaluated by measuring oxidative stress or other biomarkers from peripheral blood and urinary samples (15). In some cases, antioxidant activities such as 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and H₂O₂ scavenging activity can be assessed to identify neuroprotective agents.

THE EFFECTS OF FERMENTED FOODS ON COGNITIVE FUNCTION

Fermented dairy products

Nearly every country has developed traditional fermented dairy products of some type within their farming system. Some of the oldest records suggest that dairy products date back to 9,000 B.C (21). Implied by a long and comprehensive history of dairy products use in many civilizations, consuming fermented dairy products might be considered as an attempted practice of healthy diet choice. Indeed, several epidemiological studies even report that consumption of fermented dairy products reduces a cognitive deficit in the elderly (22,23). Furthermore, there is scientific evidence to indicate that fermented dairy products may have neuroprotective effects (21).

Studies of cells and animals show that fermented dairy products tend to prevent neurotoxicity, indicating its neuroprotective effect. Compounds with camembert cheese extracts suppressed neuronal cell death that was induced by excessive microglia activation (24). In a transgenic mouse model of AD, the accumulation of Aβ in the brain was reduced after feeding camembert cheese extract (25). In addition, production of chemokine and neurotrophic factor in the hippocampus were remarkably increased when the mice were fed with the camembert
Table 1. Studies of fermented foods on brain and cognitive function

Fermented product	Subject	Measurements	Effects	References
Fermented dairy products				
Camembert cheese extract	Primary microglia cells, N2A cells	Cytokine production, Neurotoxicity	Suppressed microglial TNF-α production; transformation of microglia to anti-inflammatory phenotype; reduced neurotoxicity	24
Camembert cheese extract	AD model transgenic mice, primary microglia cells	Aβ deposition, cytokine production, neurotrophic factor	Reduction of Aβ accumulation and hippocampal inflammation; enhanced hippocampal neurotrophic factors	25
Fermented soymilk	PC-12 cells, VaD model rats	Cell viability, MWM	Protective effect on H₂O₂- and OGD-induced damage in PC-12 cells; Improvement in learning and memory of VaD rats	26
Fermented milk	ddY mice	Y-maze, NOR	Improvement in scopolamine-induced memory impairment and novel object recognition in mice	27
Fermented milk	Healthy individuals	Physiological parameters in saliva, plasma, and fecal sample, physical symptoms	Reduced salivary cortisol and plasma L-tryptophan levels; attenuated physical symptoms	28
Legume- and cereal-based fermented foods				
Cheonggukjang extract	ICR mice	PA, NOR, ACHE, MDA, SOD, NGF	Ameliorated memory defects and neuronal cell death in TMT-treated mice; suppression of ACHE activity; activation of the NGF receptor signaling pathway; inhibition of oxidative stress	29
Cheonggukjang extract	SD rats	PA, MWM, Aβ deposition	Decreased Aβ accumulation, improved cognitive function and glucose regulation in AD diabetic rats	30
Fermented soybean powder	ICR mice	PA, Y-maze, MWM, ACHE	Ameliorated the scopolamine-induced memory impairment and hippocampal BDNF reduction; suppression of ACHE activity	31
Tempeh	Healthy elderly individuals	HVLT	Positive relation between high tempeh consumption and better memory	32
Red mold rice	IMR32 cells, PC-12 cells, Wistar rats	MWM, PA, cell viability, MDA, SOD, ACHE, iNOS, ROS, Aβ deposition	Protection against Aβ-induced neurotoxicity in vitro and in vivo potently ameliorated memory deficit and Aβ accumulation in Aβ-infused rats; suppressed β-secretase activity	33-35
Red mold rice	Wistar rats	MWM, PA, antioxidant enzymes, ROS, corticosterone	Significant improvement in memory and antioxidant activity in Zn-deficient rats	36
Red mold rice	SH-SY5Y cells, SD rats	Cell viability, EBST, ROS, MDA, antioxidant enzymes, NO, TNF-α	Neuroprotective effects in the 6-OHDA induced-PD model in vitro and in vivo	37
Rice vinegar	AD model mice	MWM, antioxidant activity, Aβ deposition	Ameliorated cognitive dysfunction and Aβ accumulation in the AD mice	41
Fermented product	Subject	Measurements	Effects	References
-------------------	---------	--------------	---------	------------
Fermented plant root products				
Fermented *Codonopsis lanceolata*	HEK293 cells, ICR mice	Antioxidant activity, PA, cytotoxicity	Ameliorated the scopolamine-induced memory impairment; Showed antioxidant activity and lowered cytotoxicity	43
Fermented *Codonopsis lanceolata*	HT22 cells, ICR mice	Cell viability, MWM, PA, AChE, neurotrophic factor, ROS, antioxidant enzymes, NO	Ameliorated scopolamine-induced memory impairments; neuroprotective effects against glutamate-induced cytotoxicity *in vitro* suppression of AChE activity and increased BDNF expression in hippocampus; upregulation of antioxidant enzyme’s activity	44-48
Fermented ginseng	AD model HeLa cells, ICR mice, AD model transgenic mice	PA, MWM, Aβ deposition	Significantly reduced Aβ level *in vitro* and *in vivo* ameliorated memory impairment	50
Fermented garlic	N2A cells, ApoE knockout mice	Tau, MWM	Inhibited the APP and tau IRES activities; improvement on memory function	51
Fermented yellow onion	Wistar rats	MWM, pyramidal neuronal cell number	Increased total number of pyramidal neurons and the spatial memory function in MSG-exposed rats	52
Fermented fruits and vegetables	HT22 cells	Antioxidant activity, cell viability	Enhances the antioxidative and neuroprotective effect against glutamate-induced neurotoxicity *in vitro*	53
Fermented papaya	PC-12 cells, AD model SH-SY5Y cells	Cell viability, antioxidant activity, ROS, iNOS, nNOS, SOD, apoptotic proteins	Reduced oxidative stress-induced cell damage and inflammation; significantly increased cell viability and SOD expression	54,55
Fermented papaya preparation	Mice	Spontaneous alternation, PA	Significant improvement in scopolamine-induced memory impairment	56
Fermented grape marc	Patients with AD	Urinary 8-OHdG	Decreased urinary 8-OHdG, oxidative stress biomarker in AD patients	57,58
Kimchi extract	Human PBMC	Cytokine production, granzyme B, FoxP3	Increased the release of cytokine and induction of FoxP3; reduced the production of granzyme B	59
	ICR mice	PA, MWM, Y-maze, BDNF, pCREB	Prevented memory deficit and increased hippocampal BDNF and pCREB expressions in scopolamine-injected mice	64
Other fermented plant products				
Fermented *Rhus verniciflua* bark	ICR mice	Apoptotic cell death, microglial activation	Attenuated KA-induced neuronal cell death and microglial activation	66
Fermented tea	Healthy elderly individuals	MMSE	Association between regular consumption of fermented tea and lower risks of cognitive deficiency	67
Fermented fungi				
Fermented *Ganoderma lucidum* extract	SD rats	PA, MWM, hippocampal AChE	Improved scopolamine-induced memory impairment in rats; Lowered hippocampal AChE activity	68
Fermented Antrodia cinnamomea extract	PC-12 cells	Cell viability, MAPK proteins	Prevented serum deprivation-induced cell apoptosis	69
Fermented *Xylaria nigripes* extract	SH-SY5Y cells, BV-2 cells	Cell viability, NO	Protected Aβ-induced injury in SH-SY5Y cells; Inhibitory effect against LPS-stimulated NO production in BV-2 cells	71
Fermented traditional oriental medicines	Subject	Measurements	Effects	References
--	---------	--------------	---------	------------
Fermented Oyaksungisan	HT22 cells	Cell viability, antioxidant activity	Improved antioxidant activity; neuroprotective activity on glutamate-induced neurotoxicity *in vitro*	74
Fermented Insampaedok-san	HT22 cells	Cell viability, antioxidant activity	Improved antioxidant activity; neuroprotective activity on glutamate-induced neurotoxicity *in vitro*	75
Fermented Chongmyung-tang	ICR mice	Antioxidant activity, PA	Improved scopolamine-induced memory impairment in mice: showed strong antioxidant activity	77
Fermented Bozhousyiqui-tang	HT22 cells, ICR mice	MWM, PA, cell viability, antioxidant activity	Enhanced neuroprotective effect against glutamate-induced neurotoxicity *in vitro*; ameliorated the scopolamine-induced memory impairment in mice	78
Fermented Gumiganghwaltang	HT22 cells, ICR mice	Cell viability, AChE, ROS, MWM, PA	Enhanced neuroprotective effect against glutamate-induced neurotoxicity *in vitro*; ameliorated the scopolamine-induced memory impairment in mice; suppression of AChE activity *in vitro* and *in vivo*	79,80
Fermented Hwangryunhaedok-tang	HT22 cells	Cell viability, antioxidant activity	Improved antioxidant activity; neuroprotective activity on glutamate-induced neurotoxicity *in vitro*	81
Fermented Sipjeondaebu-tang	C57BL/6 mice	PA, MWM, AChE, ROS, BDNF, pCREB, pAkt	Ameliorated the scopolamine-induced memory impairment in mice; promoted hippocampal neurogenesis and attenuated scopolamine-induced ROS and AChE activity; prevented scopolamine-induced suppression of BDNF	82

AD, Alzheimer's disease; TNF-α, tumor necrosis factor-alpha; Aβ, β-amyloid; VaD, vascular dementia; MWM, Morris water maze; H₂O₂, hydrogen peroxide; OGD, oxygen-glucose deprivation; NOR, novel object recognition; PA, passive avoidance; AChE, acetylcholinesterase; MDA, malondialdehyde; SOD, superoxide dismutase; TMT, trimethyltin; NGF, nerve growth factor; SD, Sprague-Dawley; BDNF, brain-derived neurotrophic factor; HVLT, Hopkins verbal learning test; 6-OHDA, 6-hydroxydopamine; PD, Parkinson's disease; iNOS, inducible nitric oxide synthase; ROS, reactive oxygen species; EBST, elevated body swing test; NO, nitric oxide; ApoE, apolipoprotein E; APP, amyloid precursor protein; IRES, internal ribosome entry site; MSG, monosodium glutamate; nNOS, neuronal nitric oxide synthase; PBMC, peripheral blood mononuclear cells; 8-OHdG, 8-hydroxy-2'-deoxyguanosine; FoxP3, forkhead box P3; MAPK, mitogen-activated protein kinase; LPS, lipopolysaccharide; pCREB, phosphorylated cyclic adenosine monophosphate response element-binding protein; MMSE, mini mental state examination; KA, kainic acid; pAkt, phosphorylated Akt.
cheese extract. Dehydroergosterol and oleamide were found as active components of camembert cheese, enhancing microglial anti-inflammatory activity (25).

Soy milk fermented with *Lactobacillus plantarum* strain exhibited a protective effect on H$_2$O$_2$- and oxygen-glucose deprivation (OGD)-induced damage in PC-12 cells. In addition, oral administration of fermented soy milk extract improved learning and memory in deoxycorticosterone acetate-salt-stimulated rat models of vascular dementia (26).

Calpis sour milk is a Japanese beverage prepared by fermenting skim milk with *Lactobacillus helveticus* and *Saccharomyces cerevisiae*. Oral administration of Calpis sour milk whey powder significantly improved scopolamine-induced memory deficits and novel object recognition in mice (27). Fermented milk also reduced plasma L-tryptophan and salivary cortisol levels in healthy subjects who were exposed to stressful situations. In the same study, the rate of subjects experiencing physical symptoms was reduced after consumption of fermented milk for 8 weeks (28).

Legume- and cereal-based fermented foods

Cereals and legumes have been important sources of carbohydrates and proteins. They have been widely consumed in various fermented forms in different parts of the world. These foods contain many bioactive compounds that are absent in unfermented foods. Soybeans and rice are the most popular ingredients used in the preparation of legume- and cereal-based fermented foods (21).

Asian countries developed their own methods to make fermented soybean products. Soy sauce, soybean paste such as *miso* and *doenjang*, *tempeh*, and *natto* are typical examples of fermented soybean products (21). Neuroprotective effects of fermented soybean have been reported in several animal studies. *Cheonggukjang* is one of the fermented soybean pastes used in Korean regional cuisine. In an animal study using *cheonggukjang* extract, a trimethyltin-treated group showed long- and short-term memory loss, whereas groups pretreated with *cheonggukjang* showed improved memory function in a dose-dependent manner (29). The number of cell death and AChE activity of the hippocampus were decreased in the *cheonggukjang*-treated group. Expression of nerve growth factor (NGF) and activation of the NGF receptor signaling pathway were also upregulated in the *cheonggukjang*-treated group. Additionally, the level of SOD activity was enhanced, whereas malondialdehyde was lower in the *cheonggukjang*-treated group compared to the vehicle-treated group (29). In another study with AD and type 2 diabetes-induced rats, 8-week administration of *cheonggukjang* extract improved cognitive function and glucose regulation (30). *Cheonggukjang* is usually prepared with *Bacillus* strains such as *Bacillus licheniformis*, *Bacillus amylofermen*s, and *Bacillus subtilis*. Similarly, fermented soybean powder with *Lactobacillus pentosus* var. *plantarum* C29 showed a protective effect against scopolamine-induced memory impairment in mice (31). Scopolamine-induced reduction of hippocampal BDNF expression was reversed, and AChE activity was inhibited after treatment with fermented soybean powder extract (31). A cross-sectional clinical study also reported that fermented soybean products oriented diets have a beneficial effect among this particular population. High consumption of *tempeh*, a mold-fermented soy product originated from Indonesia, had a positive association with improved memory function in elderly subjects, while *tofu* showed a negative association when analyzed together (32).

Rice (*Oryza sativa* L. *Gramineae*) is a principle ingredient in Asian foods. Red mold rice (RMR), also known as *hongqu* (Chinese) or *koji* (Japanese), is fermented rice which acquired its color from being cultivated with the mold *Monascus purpureus*. RMR has been used for many centuries to improve its color and flavor, as well as to promote digestion and blood circulation. Lee et al. have reported the neuroprotective effect of RMR ethanol extract *in vitro* and *in vivo* (33-35). RMR extract provided strong protection against Aβ40-induced neurotoxicity in PC-12 (35). It rescued cell viability as well as repressed inflammatory responses and oxidative stress. In AD rats infused with Aβ40 into the cerebral ventricle, administration of RMR extract potently reversed the cognitive dysfunction in the memory task and brain damage in the biochemical assay (34). Furthermore, RMR prevented Aβ fibrils formation and decreased Aβ40 accumulation in the hippocampus (34,35). A further study reported that RMR extract treatment suppressed cholesterol-raised β-secretase activity and increased the neuroprotective soluble amyloid precursor protein (APP) R-fragment secretion *in vitro* and *in vivo* (33). Other studies revealed that RMR administration has a protective effect in a Zn-deficiency model (36) and Parkinson's disease model (37). The administration of RMR significantly ameliorated behavioral dysfunction and improved the activity of antioxidant enzymes including glutathione reductase, glutathione peroxidase, SOD, and catalase, which all lead to markedly reduced reactive oxygen species (ROS) production.

Monacolins are the major active functional compounds that are isolated from RMR (21). Monacolin K (also known as lovastatin) is one of the main monacolins that has been found to have various pharmacological activities, including lowering blood cholesterol levels and reducing oxidative damage. Several *in vivo* studies have indicated that Monacolins K can permeate the blood-brain barrier (38,39). In addition to monacolins, considerable amounts of gamma-aminobutyric acid (GABA) have also
been found in RMR, which is the main inhibitory neurotransmitter in the central nervous system (5). RMR also contains multiple functional components derived from the fermentation process (38). The protective effect of RMR might be caused by a synergism among these multiple bioactive components (35,38,40).

Rice vinegar is another fermented rice product which has been cultivated in Asian countries including China, Japan, Korea, and Vietnam. One variation of rice vinegar is Kurozu, a traditional Japanese rice vinegar. It is known that concentrated Kurozu feeding suppresses cognitive dysfunction and brain amyloid accumulation in senescence-accelerated P8 mice (41). Concentrated Kurozu increased mRNA expression of heat shock 70 kDa protein 1A (HSPA1A), a protein that stabilizes proteins against misfolding and aggregation, although the result was ambiguous in mice primary neurons. The expression of HSPA1A may be associated with the decreased accumulation of aggregated proteins in the brain (41).

Fermented plant root products

Several root and tuber crops are particularly fermented to produce foods with dense nutrients in a traditional practice of preservation as fermentation has the advantage of reducing the cyanogen content (21). Recently, a number of studies shifted its focus on the neuroprotective and functional improvement of fermented root products.

Codonopsis lanceolata is a herb mainly found in Asian countries. This plant has been broadly used in traditional medicine. The root of C. lanceolata contains various bioactive ingredients—polyphenols, saponins, alkaloids, sterols, tannins, and triterpenes—collectively; and, these are used to treat a broad range of illnesses—bronchitis, cough, spasm, psychoneurosis, cancer, and inflammation (42). Recent studies have revealed that the fermentation process can improve the functional properties of poor quality C. lanceolata. In the study by He et al. (43), the phenol amounts and DPPH scavenging activities in C. lanceolata extract were significantly increased after probiotic fermentation. Administration of fermented C. lanceolata effectively ameliorated a scopolamine-induced memory deficit in ICR mice. Weon et al. (44) also have reported the cognitive-enhancing effect of steamed and fermented C. lanceolata in animal and biochemical studies. Mice that were orally treated with steamed and fermented C. lanceolata extract (SFCE) exhibited enhanced memory performance compared to mice treated with original C. lanceolata extract in MWM and passive avoidance test. SFCE treatment showed a significant neuroprotective effect against glutamate-induced cell death in HT22 cells (44-47). In biochemical assays, AChE activity was decreased, and the level of CREB phosphorylation and BDNF expression were increased in the hippocampal tissue of scopolamine-treated mice after the administration of fermented C. lanceolata (44). Additionally, treatment with SFCE reduced glutamate-induced ROS accumulation, Ca$^{2+}$ influx, and nitric oxide (NO) formation in HT22 cells. SFCE upregulated the antioxidant enzyme’s activity, and potentially ameliorated mitochondrial dysfunction by inhibiting Bax and caspase-3 expression in the hippocampal-derived cell line (48).

For thousands of years, ginseng root has been used as an East Asian medicinal herb for various diseases (49). Use of ginseng extract may enhance cognitive and psychomotor functions by stimulating the central nervous system. A study demonstrated that fermented ginseng reversed memory impairment and reduced Aβ accumulation in the AD mouse model (50). Another study reported that NB34, a preparation of fermented Radix notoginseng, can serve in an alike functional manner to memantine, a drug used for the treatment of AD, by reducing the activities of both tau internal ribosome entry site and APP (51).

Garlic and onion have also been recognized for their medicinal properties for centuries. After the feeding of fermented garlic (black garlic) extract, the total number of pyramidal cells in the hippocampus and the spatial memory were enhanced in monosodium glutamate-exposed rats (52). When the hippocampal-derived HT22 cells were treated with fermented yellow onion (Allium cepa) extract, the glutamate-induced neurotoxicity was decreased (53).

Fermented fruits and vegetables

Keeping fruits and vegetables fresh to maintain their nutrient values needs special caution and can become demanding if without a proper refrigerating system. It seems that the practice of fruit and vegetable fermentation may have evolved from ancient times to keep the collected food fresh for longer periods of time, especially when natural resources and harvestings are limited.

Papaya is the fruit of the plant Carica papaya. It is native to the tropics of the Central and northern South America and is now cultivated in many tropical regions including India, Australia, Malaysia, Indonesia, the Philippines, and Hawaii. Fermented papaya preparation (FPP) has been reported to possess free radical scavenging and antioxidative properties (54). A study in an AD cell model showed that the neurotoxicity of the Aβ can be significantly attenuated by FPP. The expression of SOD was significantly upregulated after FPP treatment, while FPP post-treatment improved cell viability and attenuated the intracellular Ca$^{2+}$ influx, ROS generation, and NO accumulation (54,55). In a mouse model of AD induced by scopolamine, PS-501, the extract of yeast-fermented papaya, significantly reversed short- and long-term memory impairment (56). There is further evidence to indicate
that FPP administration can improve memory functions in human studies. Barbagallo et al. assessed oxidative stress in AD patients by measuring urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG). When FPP was consumed by patients for 6 months, 8-OHdG levels were significantly decreased, with no significant changes in that of the controls (57,58). Several studies suggested that the beneficial effect of FPP is possibly regulated by mitogen-activated protein kinase-mediated signaling pathway or Bax/bcl-2 sensitive pathway (54,55).

Fermented grape marc is the solid remains after the juice has been squeezed from grapes. In a study using human peripheral blood mononuclear cells, fermented grape marc was suggested as a potential therapeutic agent regarding its immunomodulatory activities. Fermented grape marc increased the intracellular content of cytokines and the induction of FoxP3, a biomarker of T regulatory cells while reducing the production of Granzyme B (59).

Kimchi is a long-established Korean traditional food made from green vegetables with various seasonings prepared after the natural fermentation process. Many studies have reported that the concentration of the bioactive components in kimchi changes during fermentation, suggesting its anti-carcinogenic, anti-bacterial, and anti-oxidative properties (60-63). Lactic acid bacteria are the main microorganisms responsible for kimchi fermentation. Lactic acid bacteria isolated from the supernatant of kimchi protected against scopolamine-induced mouse memory deficit as shown by the result of passive avoidance test. Particularly, the strain C29 of several lactic acid bacteria significantly enhanced learning memory and cognitive function of scopolamine-induced rats in passive avoidance and MWM test. In parallel with behavioral changes, lower hippocampal AChE activities were apparent in the group treated with fermented G. lucidum extracts in a biochemical test (69).

Antrodia cinnamomea, also known as Antrodia camphorate, is a species of fungus native to Taiwan. It is commonly used to treat various diseases including cancer, cardiovascular disease, and inflammatory reaction. Lu et al. reported that fermented A. cinnamomea extract protects neuron-like PC-12 cells from serum deprivation-induced cytotoxicity in a dose-dependent manner. During the serum deprivation, phosphorylation of extracellular signal-regulated kinase was decreased along with the increase in phosphorylated c-Jun NH2-terminal kinase level and p38, while A. cinnamomea reverses these apoptotic results.

Xylaria nigripes is another medicinal fungus used in traditional Chinese medicine in attempts to resolve sleep, mood, and memory problems. Nineteen natural compounds were isolated from the ethanol extract of fermented X. nigripes. Among the products, compound 17 exhibited neuroprotective effects by attenuating Aβ-induced neurotoxicity in SH-SYSY neuroblastoma cells. Compound 15 exhibited anti-neuroinflammatory effects by inhibiting lipopolysaccharide-stimulated NO production in BV-2 microglial cells (71).

Fermented traditional oriental medicine

Traditional oriental medicines have been used for thousands of years. Unlike modern drugs, which contain a single active component, traditional oriental medicines consist of multiple components and are based on a multi-target approach (72). The fermentation process converts the components of traditional oriental medicines into active metabolites, hence it enhances their biological activity and improves nutrient absorption (72). Fermentation is a long-established practice in which microorganisms, such as lactic acid bacteria, fungi, or yeasts, are used to degrade the components of traditional oriental medicines to their active metabolites. This process not only increases the nutritional value of the raw materials but also improves their bioavailability and therapeutic efficacy.

Kimchi, a popular Korean traditional food, is produced through fermentation. The lactic acid bacteria isolated from kimchi significantly enhanced learning memory and cognitive function of scopolamine-induced rats. These beneficial effects are mediated by the suppression of stress- and scopolamine-induced cytokine production, as well as the increased expression of CREB and BDNF.

Ganoderma lucidum is one of the most popular medicinal mushrooms used in China for more than 2,000 years. It contains several bioactive compounds, including α-glucans, polysaccharides, and triterpenoids. These compounds have been reported to have anti-oxidative, anti-inflammatory, and anti-carcinogenic properties. In a study using animal models, fermented G. lucidum extracts were shown to significantly attenuate allergic-induced responses, suggesting its potential use in the treatment of allergic diseases.

Fermented traditional oriental medicine is a practice that has been utilized for centuries in various cultures. It involves the use of microorganisms, such as lactic acid bacteria and fungi, to transform medicinal plants or other natural substances into more potent and bioavailable components. This process not only enhances the therapeutic effects of traditional medicines but also increases their nutritional value. In conclusion, fermentation is a valuable technique in the field of traditional medicine, providing a natural and effective approach to health enhancement.

Fermentation is a biochemical transformation process that involves the action of microorganisms, primarily bacteria and fungi, on organic substrates. This process is widely used in the production of various fermented foods and beverages, such as kimchi, yogurt, and cheese. Fermentation not only enhances the nutritional value of foods but also increases their biological activity and improves nutrient absorption.

Kimchi is a traditional Korean fermented food made from green vegetables, such as cabbage, radish, and cucumbers. The fermentation process involves the action of lactic acid bacteria, which convert sugars into lactic acid, creating a sour flavor and preserving the food. This process also enhances the nutritional value of the ingredients by increasing the availability of certain nutrients and destroying harmful substances.

Ganoderma lucidum is a medicinal mushroom that has been used in Chinese medicine for thousands of years. It contains several bioactive compounds, including α-glucans, polysaccharides, and triterpenoids. These compounds have been reported to have anti-oxidative, anti-inflammatory, and anti-carcinogenic properties. In a study using animal models, fermented G. lucidum extracts were shown to significantly attenuate allergic-induced responses, suggesting its potential use in the treatment of allergic diseases.

Fermentation is a biochemical transformation process that involves the action of microorganisms, primarily bacteria and fungi, on organic substrates. This process is widely used in the production of various fermented foods and beverages, such as kimchi, yogurt, and cheese. Fermentation not only enhances the nutritional value of foods but also increases their biological activity and improves nutrient absorption.

Kimchi is a traditional Korean fermented food made from green vegetables, such as cabbage, radish, and cucumbers. The fermentation process involves the action of lactic acid bacteria, which convert sugars into lactic acid, creating a sour flavor and preserving the food. This process also enhances the nutritional value of the ingredients by increasing the availability of certain nutrients and destroying harmful substances.

Ganoderma lucidum is a medicinal mushroom that has been used in Chinese medicine for thousands of years. It contains several bioactive compounds, including α-glucans, polysaccharides, and triterpenoids. These compounds have been reported to have anti-oxidative, anti-inflammatory, and anti-carcinogenic properties. In a study using animal models, fermented G. lucidum extracts were shown to significantly attenuate allergic-induced responses, suggesting its potential use in the treatment of allergic diseases.

Fermentation is a biochemical transformation process that involves the action of microorganisms, primarily bacteria and fungi, on organic substrates. This process is widely used in the production of various fermented foods and beverages, such as kimchi, yogurt, and cheese. Fermentation not only enhances the nutritional value of foods but also increases their biological activity and improves nutrient absorption.

Kimchi is a traditional Korean fermented food made from green vegetables, such as cabbage, radish, and cucumbers. The fermentation process involves the action of lactic acid bacteria, which convert sugars into lactic acid, creating a sour flavor and preserving the food. This process also enhances the nutritional value of the ingredients by increasing the availability of certain nutrients and destroying harmful substances.

Ganoderma lucidum is a medicinal mushroom that has been used in Chinese medicine for thousands of years. It contains several bioactive compounds, including α-glucans, polysaccharides, and triterpenoids. These compounds have been reported to have anti-oxidative, anti-inflammatory, and anti-carcinogenic properties. In a study using animal models, fermented G. lucidum extracts were shown to significantly attenuate allergic-induced responses, suggesting its potential use in the treatment of allergic diseases.

Fermentation is a biochemical transformation process that involves the action of microorganisms, primarily bacteria and fungi, on organic substrates. This process is widely used in the production of various fermented foods and beverages, such as kimchi, yogurt, and cheese. Fermentation not only enhances the nutritional value of foods but also increases their biological activity and improves nutrient absorption.
mentation also reduces the toxicity of traditional oriental medicines. Several studies reported the enhanced biological activity of fermented traditional oriental medicines (5,73).

A Korean traditional herbal formula, Oyaksungisan, has been used to treat rheumatoid arthritis and paralysis. It is composed of twelve herbs including Citrus unshiu peel, Lindera root, Angelica Dahurica root, and Zingiberis rhizoma, which are reported to have anti-cancer effects (74). The fermentation process changed the contents of Oyaksungisan and improved radical scavenging effects. Compared to original Oyaksungisan, treatment with fermented Oyaksungisan showed greater neuroprotective activity on glutamate-stimulated neurotoxicity in HT22 cells (74). Similarly, Insampaedoksan, a traditional oriental medication for antipyretic and anti-inflammatory diseases, exhibited more potent anti-oxidative and neuroprotective activity after fermentation with Lactobacillus (75).

Chongmyung-tang is a Korean herbal medicine, which has been frequently used for the therapy of memory improvement. It consists of three medicinal herbs of Polygalae radix, Acori graminei rhizoma, and Hoelen (76). Nam et al. (77) investigated the antioxidative and memory-enhancing effects of fermented Chongmyung-tang. Both, original Chongmyung-tang and fermented Chongmyung-tang treatments resulted in a significant memory enhancing effect in ICR mice. Both of them also exhibited strong radical scavenging activities. In comparison to the original Chongmyung-tang group, the fermented Chongmyung-tang group showed slightly greater memory function enhancement, although the result was not statistically significant.

The neuroprotective effects of other decocted herbal medicines, which have been traditionally used for the treatment of fatigue or inflammatory diseases, have also been investigated. Fermented Bozhougyiqi-tang (78), Gumiganghwaltang (79,80), and Hwangryunhaedok-tang (81) showed more potent protective activities against glutamate-stimulated cell death in HT22 cells than the unfermented prescription. Moreover, several studies in scopolamine-treated mice reported that fermented Sipjeondoeba-tang (82), Bozhougyiqi-tang (78), and Gumiganghwaltang (79,80) significantly ameliorated amnesic behaviors possibly through AChE inhibition. These results suggest that fermentation might improve the pharmacological activities of traditional oriental medicines.

POTENTIAL MECHANISMS OF FERMENTED FOODS

Although the underlying mechanisms of fermented foods on cognitive function is still unclear, emerging evidence indicates that ingestion of fermented food may influence the central nervous system (10). There are several hypotheses for the beneficial effects of fermentation, of which the major ones are described (Fig. 1).

One possible explanation is that fermentation modulates the chemical constituents, improving the activity and bioavailability of the food. As reviewed here, a number of studies have reported the chemical changes such as enriching bioactive peptides and creating phytochemicals during the fermentation process (5). It seems that substances obtained by the incubation of natural foods with microbes enhance their neuroprotective effects. Moreover, the components changed through fermentation may increase bioavailability involving intestinal absorption and utilization of the ingested nutrients within

Fig. 1. Potential mechanisms underlying the efficacy of fermented foods. The figure presents 3 hypotheses through which fermented foods can improve brain and cognitive function. (1) Chemical constituents modulation, (2) HPA axis inhibition, and (3) Neurochemical modulation. HPA, hypothalamic-pituitary-adrenal; BDNF, brain-derived neurotrophic factor; GABA, gamma-aminobutyric acid.
the body (5,21). Our intestinal epithelium is a selectively permeable barrier, preventing the access of harmful substances. The absorption of nutritional components in the intestines is therefore restricted and occasionally the components need to be converted to active forms by bacteria in the intestine (83). For example, a recent study found that short-chain fatty acids, which are fermented products formed by intestinal bacteria, positively influence host metabolism and play a key role in functions of the central nervous system (84). It is also reported that phytochemical absorption and its antioxidative and anti-inflammatory functions can be controlled by resident intestinal microbiota (4,85,86). In another study of germ-free (GF) mice, colonization with microbes was accompanied by marked changes in the transcription of genes associated with nutrient absorption and metabolism (83). These findings suggest that proper fermentation may amplify the beneficial contents of the food, promoting biological function and bioavailability.

In addition to changing constitutive properties, probiotics in fermented foods may also influence brain function via gut microbiota. The human intestine is inhabited by nearly 10^{14} microorganisms (8). The relation between these microorganisms and their host, which is called commensal intestinal microbiota, begins shortly after birth and remains throughout life. The presence of commensal microbiota is important to the immune system, gastrointestinal homeostasis, and nutrient processing (9). Recently, a growing body of findings revealed that gut microbiota is also critical to the function of the central nervous system, resulting in altered brain function and behaviors (7-9).

The hypothalamic-pituitary-adrenal (HPA) axis is involved in the neurobiology of stress response. It is becoming clear that gut microbiota is significantly associated with the HPA axis. In GF animals, which have no commensal microbiota, restraint stress-induced HPA reactivity with exaggerated corticosterone and adrenocorticotropic hormone release were compared to the specific pathogen-free controls (87). On the other hand, early development of the gut microbiota reduced the exaggerated HPA axis response of GF mice over their lifetime (87). Feeding of probiotics can also attenuate the HPA-mediated stress responses (88,89). Considering that cognitive deficit is associated with HPA axis hyperactivity, administration of probiotics in fermented foods may improve cognitive function by normalization of HPA activity.

Other potential mechanisms through which fermented foods can influence cognitive function include neurochemical modulation. To date, several studies have provided evidence that neurotransmitter systems are affected by the gut microbiota. For example, reduced expression of hippocampal BDNF, which is important for the survival and differentiation of neurons, was observed in the infected dysbiosis mice model (90) and male GF mice (87,91). Supplementation with probiotics returned BDNF expression to the control level. Alteration in GABA, the main inhibitory neurotransmitter, was also observed. Chronic treatment with the probiotic Lactobacillus rhamnosus changed the expression of certain GABA receptors in a regional-dependent manner, matching the known effects of anxiolytic agents. The changes related to L. rhamnosus treatment were extinguished with vagotomy, indicating a key route of communication from gut to brain (92). Interestingly, some probiotic bacteria are capable of producing GABA from glutamate in culture (93). Other experiments have shown that the administration of probiotics can alter serotonin turnover and related metabolites in the brain (94,95). Neurotransmitters, such as BDNF, glutamate, GABA, and serotonin are reported to be respectively involved in learning and memory. Therefore, it is hypothesized that fermented foods might improve cognitive function by modulating the release of neurotransmitters.

The fermented food’s functional aspect of neuroprotective effects along with the improvement in brain and cognitive function is becoming more evident as studies of animals and humans with positive results are accumulating. The beneficial effects of fermented foods may be due to changes in chemical composition by probiotics and homeostasis in the gut microbiota community.

CONCLUSION

As the mechanisms underlying the beneficial effects of fermented foods are becoming more visible with accumulating results from clinical and animal studies, fermented foods are gaining popularity among consumers for their possible therapeutic and high marketing value. To our knowledge, this paper is the first research to conduct an extensive review on fermented foods and their cognitive enhancing effects, so to be used as a reference when studying the relevance of gut microbiota and fermented foods to brain functionality. Partly due to the paucity of clinical trials in humans using fermented functional foods, quantitative synthesis of these trial results could not be carried out. As more studies are published in the future, it would be possible to conduct a meta-analysis that may be helpful in confirming the beneficial effects of fermented functional foods.

ACKNOWLEDGEMENTS

This work was supported by the SME Tech Convergence Development Project (S2175707) funded by the Small and Medium Business Administration (SMBA, Korea),
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (116004-2), and Fire Fighting Safety & 119 Rescue Technology Research and Development Program funded by the Ministry of Public Safety and Security (MPSS-Fire Fighting Safety-2016-86). Funders had no role in the design, data collection, interpretation of the materials, manuscript preparation, or decision to publish.

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Hutkins RW. 2008. Microbiology and technology of fermented foods. 1st ed. Blackwell Publishing, Oxford, UK. p 15-66.
2. Wang HY, Qi LW, Wang CZ, Li P. 2011. Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides. Am J Clin Med 39: 1103-1115.
3. Lee JH, Lee JH, Jin JS. 2012. Fermentation of traditional medicine: present and future. Orient Pharm Exp Med 12: 163.
4. Sekirov I, Russell SL, Antunes LC, Finlay BB. 2010. Gut microbiota in health and disease. Physiol Rev 90: 859-904.
5. Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36: 305-312.
6. Bienenstock J, Kunze W, Forsythe P. 2015. Microbiota and the gut-brain axis. Nutr Rev 73(S1): 28-31.
7. Dinan TG, Cryan JF. 2012. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37: 1369-1378.
8. Selhub EM, Logan AC, Bested AC. 2014. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 33: 2.
9. Hasler CM. 2002. Functional foods: benefits, concerns and challenges – a position paper from the American Council on Science and Health. J Nutr 132: 3772-3781.
10. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP. 2001. Market potential for probiotics. Am J Clin Nutr 73: 4768-483s.
11. Bruel-Jungerman E, Lucassen PJ, Francis F. 2011. Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 221: 379-388.
12. Colllerton D. 1986. Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19: 1-28.
13. Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695.
14. Mattson MP. 2004. Pathways towards and away from Alzheimer’s disease. Nature 430: 631-639.
15. Jain KK. 2010. The handbook of biomarkers. 1st ed. Humana Press, Inc., Totowa, NJ, USA, p 115-396.
16. Jain KK. 2011. The handbook of neuroprotection. 1st ed. Humana Press, Inc., Totowa, NJ, USA, p 281-365.
17. Lehinen MK, Bonni A. 2006. Modeling oxidative stress in the central nervous system. Curr Mol Med 6: 871-881.
18. Aksenova MV, Aksenov MY, Mactutus CF, Booze RM. 2005. Cell culture models of oxidative stress and injury in the central nervous system. Curr Neurovasc Res 2: 73-89.
19. Humpel C. 2011. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29: 26-32.
20. Bushnell PJ. 2001. Advanced behavioral testing in rodents: assessment of cognitive function in animals. Curr Protoc Textol 00:11.4.11.4.1-11.4.34.
21. Farnsworth ER. 2008. Handbook of fermented functional foods. 2nd ed. CRC Press, Boca Raton, FL, USA, p 1-494.
22. Camfield DA, Owen L, Scholey AB, Pipingas A, Stough C. 2011. Dairy constituents and neurocognitive health in ageing. Br J Nutr 106: 159-174.
23. Ozawa M, Ninomiya T, Ohara T, Doi Y, Uchida K, Shirata T, Yonemoto K, Kitazono T, Kiyohara Y. 2013. Dietary patterns and risk of dementia in an elderly Japanese population: the Hisayama Study. Am J Clin Nutr 97: 1076-1082.
24. Ano Y, Kutsukake T, Hoshi A, Yoshida A, Nakayama H. 2015. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS One 10: e0116598.
25. Ano Y, Ozawa M, Kutsukake T, Sugiyama S, Uchida K, Yoshida A, Nakayama H. 2015. Preventive effects of a fermented dairy product against Alzheimer’s disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One 10: e0118512.
26. Liu TH, Chiu J, Tsai TY. 2016. Effects of Lactobacillus plantarum TWK10-fermented soy milk on oxidative stress and associated dementia in rats. Nutrients 8: 260.
27. Ohsawa K, Uchida N, Ohki K, Nakamura Y, Yokogoshi H. 2015. Lactobacillus helveticus — fermented milk improves learning and memory in mice. Nutr Neurosci 18: 232-240.
28. Kato-Kaaraoka A, Nishida K, Takada M, Suda K, Kawai M, Shimizu K, Kushiroy A, Hoshi R, Watanabe O, Igarashi T, Miyazaki K, Kukawa Y, Yotukan K. 2016. Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benef Microbes 7: 153-156.
29. Go J, Kim JE, Kwak MH, Koh KE, Song SH, Sung JE, Kim DS, Hong JT, Hwang DY. 2015. Neuroprotective effects of fermented soybean products (Cheonggukjjang) manufactured by mixed culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 on trimethyltin-induced cognitive defects mice. Nutr Neurosci 19: 247-259.
30. Yang HJ, Kwon DY, Kim HJ, Kim MJ, Jung DY, Kang HJ, Kim DS, Kang S, Moon NR, Shin BK, Park S. 2015. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostasis in diabetic rats with experimental Alzheimer’s type dementia. Eur J Nutr 54: 77-88.
31. Yoo DH, Kim DH. 2015. Lactobacillus pentosus var. plantarum C29 increases the protective effect of soybean against scopo-lamine-induced memory impairment in mice. Int J Food Sci Nutr 66: 912-918.
32. Högervorst E, Sadjimim T, Yesufu A, Kreager P, Rahardjo TB. 2008. High tofu intake is associated with worse memory in elderly indonesian men and women. Dement Geriatr Cogn Disord 26: 50-57.
33. Lee CL, Kuo TF, Wu CL, Wang JJ, Pan TM. 2010. Red mold rice promotes neuroprotective sapphalpha secretion instead of Alzheimer’s risk factors and amyloid beta expression in hyperlipidemic Aβ40-infused rats. J Agric Food Chem 58: 2230-2238.
34. Lee CL, Kuo TF, Wang JJ, Pan TM. 2007. Red mold rice ameliorates impairment of memory and learning ability in intra-cerebroventricular amyloid beta-infused rat by repressing amyloid beta accumulation. J Neurosci Res 85: 3171-3182.
48. Lee CL, Wang JH, Pan TM. 2008. Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and antioxidative effect. *Appl Microbiol Biotechnol* 79: 829-841.

49. Lee BH, Ho BY, Wang CT, Pan TM. 2009. Red mold rice promoted antioxidative activity against oxidative injury and improved the memory ability of zinc-deficient rats. *J Agric Food Chem* 57: 10600-10607.

50. Tseng WT, Hsu YW, Pan TM. 2016. The ameliorative effect of *Monascus purpureus* NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson’s disease. *Food Funct* 7: 752-762.

51. Lin CM, Lin YT, Lin RD, Huang WJ, Lee MH. 2015. Neuroprotective effects of aliphatic hydroxamates from Lovastatin, a secondary metabolite from *Monascus*-fermented red mold rice, in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. *ACS Chem Neurosci* 6: 716-724.

52. Ou HP, Yang MF, Yang SC, Yamamoto S, Lee HY, Park DS, Chung HC, Chung JY, Ma CJ. 2013. The ameliorating effect of steamed and fermented Codonopsis lanceolata and fermentation. *Codonopsis lanceolata* and fermentation. *Med* 11: 223-229.

53. Kanouchi H, Kakimoto T, Nakano H, Suzuki M, Nakai Y, Shiozaki K, Arikawa K, Otomaru K, Nagano M, Matsumoto M. 2016. The brewed rice vinegar *Kawazu* increases HSPA1A expression and ameliorates cognitive dysfunction in aged P8 mice. *PLoS One* 11 e0150796.

54. Weon JB, Lee BH, Yun BR, Lee JW, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2013. Memory enhancing effect of *Codonopsis lanceolata* by high hydrostatic pressure process and fermentation. *Korean J Pharmaaco* 44: 41-46.

55. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2014. Cognitive-enhancing effect of steamed and fermented *Codonopsis lanceolata*: a behavioral and biochemical study. *Evid Based Complement Alternat Med* 2014: 319436.

56. Weon JB, Lee BH, Yun BR, Lee JW, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2013. Memory enhancing effect of *Codonopsis lanceolata* by high hydrostatic pressure process and fermentation. *Korean J Pharmaaco* 44: 41-46.

57. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Kim JS, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2013. Effect of *Codonopsis lanceolata* with steamed and fermented process on scopalamine-induced memory impairment in mice. *Biomol Ther* 21: 405-410.

58. Weon JB, Yun BR, Lee J, Eom MR, Kim JS, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2013. The ameliorating effect of steamed and fermented *Codonopsis lanceolata* on scopalamine-induced memory impairment in mice. *Evid Based Complement Alternat Med* 2013: 464576.

59. Weon JB, Yun BR, Lee J, Eom MR, Ko HJ, Lee HY, Park DS, Chung HC, Chung MY, Ma CJ. 2014. Neuroprotective effect of steamed and fermented *Codonopsis lanceolata*. *Biomol Ther* 22: 246-253.

60. Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. *Biochem Pharmacol* 58: 1685-1693.

61. Kim J, Kim SH, Lee DS, Lee DJ, Kim SH, Chung S, Yang HO. 2013. Effects of fermented ginseng on memory impairment and β-amyloid reduction in Alzheimer’s disease experimental models. *J Ginseng Res* 37: 100-107.

62. Tasi YC, Chin TY, Chen YJ, Huang CC, Lee SL, Wu TY. 2015. Potential natural products for Alzheimer’s disease: targeted search using the internal ribosome entry site of tau and amyloid-β precursor protein. *Int J Mol Sci* 16: 8789-8810.

63. Hemawati E, Sari DC, Partadiredja G. 2015. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats. *Anat Sci Int* 90: 275-286.

64. Yang EJ, Kim SI, Park SY, Bang HY, Jeong JS, So JH, Rhee IK, Song KS. 2012. Fermentation enhances the in vitro antioxidative effect of onion (*Allium cepa*) via an increase in quercetin content. *Food Chem Toxicol* 50: 2042-2048.

65. Aruoma OI, Hayashi Y, Marotta F, Mantello P, Rachmilewitz E, Montagnier L. 2010. Applications and bioefficacy of the functional food supplement fermented papaya preparation. *Toxicology* 278: 6-16.

66. Zhang J, Mori A, Chen Q, Zhao B. 2006. Fermented papaya preparation attenuates β-amyloid precursor protein: β-amyloid-mediated copper neurotoxicity in β-amyloid precursor protein and β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. *Neuroscience* 143: 63-72.

67. Imao K, Kameyama T, Uki M. 2001. PS-501, fermented papaya preparation, improves scopalamine-induced amnesia in mice. *Res Curr Pharm Toxicol* 6: 197-204.

68. Barbagallo M, Marotta F, Dominguez LJ. 2015. Oxidative stress in patients with Alzheimer’s disease: effect of extracts of fermented papaya powder. *Mediators Inflamm* 2015: 624801.

69. Barbagallo M, Belvedere M, Di Prima A, Miraglia S, Dominguez LJ. 2013. Effetto degli estratti di papaya fermentata sullo stress ossidativo in pazienti con Malattia di Alzheimer. *G Gerontol* 61: 199-204.

70. Marzulli G, Magrone T, Kawaguchi K, Kumazawa Y, Jirillo E. 2012. Fermented grape marc (FGM): immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. *Curr Pharm Des* 18: 43-50.

71. Lee YC. 1991. Kimchi: the famous fermented vegetable product in Korea. *Food Rev Int* 7: 399-415.

72. Kwak SH, Cho YM, Noh GM, Om AS. 2014. Cancer preventive potential of kimchi lactic acid bacteria (*Weissella cibaria, Lactobacillus plantarum*). *J Cancer Prev* 19: 253-258.

73. Choi IH, Noh JS, Han JS, Kim HJ, Han ES, Song YO. 2013. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: randomized clinical trial. *J Med Food* 16: 223-229.

74. Choi WY, Park KY. 1999. Anticancer effects of organic Chinese cabbage kimchi. *J Food Sci Nutr* 4: 113-116.

75. Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. 2012. *Lactobacillus pentosus* var. *plantarum* C29 protects scopolamine-induced memory deficit in mice. *J Appl Microbiol* 113: 1498-1506.

76. Choi HS, Kim MK, Park HS, Yun SE, Mun SP, Kim JS, Sapkota K, Kim S, Kim TY, Kim SJ. 2007. Biological detoxification of lacquer tree (*Rhus verniciflua* Stokes) stem bark by mushroom species. *Food Sci Biotechnol* 16: 935-942.

77. Byun J, Han YH, Hong SJ, Hwang SM, Kim YS, Lee HJ, Kim S, Kim MJ, Chung W. 2010. Bark constituents from mushroom-detoxified *Rhus verniciflua* suppress kaicin acid-induced neuronal cell death in mouse hippocampus. *Korean J Physiol Pharmacol* 14: 279-283.

78. Ng TP, Feng L, Niti M, Kua EH, Yap KB. 2008. Tea consumption and cognitive impairment and decline in older Chinese adults. *Am J Clin Nutr* 88: 224-231.

79. Money NP. 2016. Are mushrooms medicinal?. *Fungal Biol* 120: 449-453.
