Which children and young people are at higher risk of severe disease and death after hospitalisation with SARS-CoV-2 infection in children and young people: A systematic review and individual patient meta-analysis

Rachel Harwood, Helen Yan, Nishanthi Talawila Da Camara, Clare Smith, Joseph Ward, Catrin Tudur-Smith, Michael Linney, Matthew Clark, Elizabeth Whittaker, Defne Saatci, Peter J. Davis, Karen Luyt, Elizabeth S. Draper, Simon E Kenny, Lorna K. Fraser, and Russell M. Viner

Summary

Background

We aimed to describe pre-existing factors associated with severe disease, primarily admission to critical care, and death secondary to SARS-CoV-2 infection in hospitalised children and young people (CYP), within a systematic review and individual patient meta-analysis.

Methods

We searched Pubmed, European PMC, Medline and Embase for case series and cohort studies published between 1st January 2020 and 21st May 2021 which included all CYP admitted to hospital with ≥ 30 CYP with SARS-CoV-2 or ≥ 5 CYP with PIMS-TS or MIS-C. Eligible studies contained (1) details of age, sex, ethnicity or comorbidities, and (2) an outcome which included admission to critical care, mechanical invasive ventilation, cardiovascular support, or death. Studies reporting outcomes in more restricted groupings of co-morbidities were eligible for narrative review. We used random effects meta-analyses for aggregate study-level data and multilevel mixed effect models for IPD data to examine risk factors (age, sex, comorbidities) associated with admission to critical care and death. Data shown are odds ratios and 95% confidence intervals (CI).

Findings

83 studies were included, 57 (21,549 patients) in the meta-analysis (of which 22 provided IPD) and 26 in the narrative synthesis. Most studies had an element of bias in their design or reporting. Sex was not associated with critical care or death. Compared with CYP aged 1–4 years (reference group), infants (aged <1 year) had increased odds of admission to critical care (OR 1.63 (95% CI 1.40–1.90)) and death (OR 2.08 (1.57–2.86)). Odds of death were increased amongst CYP over 10 years (10–14 years OR 2.15 (1.54–2.98); >14 years OR 2.15 (1.61–2.88)). The number of comorbid conditions was associated with increased odds of admission to critical care and death for COVID-19 in a step-wise fashion. Compared with CYP without comorbidity, odds ratios for critical care admission

*Corresponding author at: Molecular and Integrative Biology, Centre for Pre-Clinical Imaging, Institute of Systems, University of Liverpool, Crown Street, University of Liverpool, Liverpool L69 3BX, United Kingdom.
E-mail address: Rachel.Harwood@liverpool.ac.uk (R. Harwood).
were: 1.49 (1.45–1.53) for 1 comorbidity; 2.58 (2.41–2.75) for 2 comorbidities; 2.97 (2.04–4.32) for ≥3 comorbidities. Corresponding odds ratios for death were: 2.15 (1.98–2.34) for 1 comorbidity; 4.63 (4.54–4.74) for 2 comorbidities and 4.98 (3.78–6.65) for ≥3 comorbidities. Odds of admission to critical care were increased for all co-morbidities apart from asthma (0.92 (0.91–0.94)) and malignancy (0.85 (0.17–4.21)) with an increased odds of death in all co-morbidities considered apart from asthma. Neurological and cardiac comorbidities were associated with the greatest increase in odds of severe disease or death. Obesity increased the odds of severe disease and death independently of other comorbidities. IPD analysis demonstrated that, compared to children without co-morbidity, the risk difference in admission to critical care was increased in those with 1 comorbidity by 3.61% (1.87–5.36); 2 comorbidities by 9.26% (4.87–13.65); ≥3 comorbidities 10.83% (4.39–17.28), and for death: 1 comorbidity 1.50% (0.00–3.10); 2 comorbidities 4.40% (-0.10–8.80) and ≥3 co-morbidities 4.70 (0.50–8.90).

Interpretation Hospitalised CYP at greatest vulnerability of severe disease or death with SARS-CoV-2 infection are infants, teenagers, those with cardiac or neurological conditions, or 2 or more comorbid conditions, and those who are obese. These groups should be considered higher priority for vaccination and for protective shielding when appropriate. Whilst odds ratios were high, the absolute increase in risk for most comorbidities was small compared to children without underlying conditions.

Funding RH is in receipt of a fellowship from Kidney Research UK (grant no. TF_010_20171124). JW is in receipt of a Medical Research Council Fellowship (Grant No. MR/R00160X/1). LF is in receipt of funding from Martin House Children’s Hospice (there is no specific grant number for this). RV is in receipt of a grant from the National Institute of Health Research to support this work (grant no NIHRR202322). Funders had no role in study design, data collection, analysis, decision to publish or preparation of the manuscript.

Copyright © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Child; Adolescent; COVID-19; SARS-CoV-2; Meta-analysis; Systematic review; Mortality; Severity; Hospitalisation; Intensive care; Chronic condition; Risk factor

Research in context

Evidence before this study

SARS-CoV-2 infection in children and young people (CYP) very rarely causes severe disease and death. Recent publications describe the risk factors for severe disease in specific populations but the global experience has not been described. Pubmed, European PubMed Central (PMC), Medline and Embase were searched including key search concepts relating to COVID-19 OR SARS-CoV-2 OR PIMS-TS OR MIS-C AND Child OR Young person OR neonate from the 1st January 2020 to 21st May 2021. Studies with ≥30 children admitted to hospital with reverse transcriptase-PCR confirmed SARS-CoV-2 or ≥5 CYP defined as having paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS-TS) or multisystem inflammatory syndrome in children (MIS-C) were included. 57 studies (21,549 children) met the eligibility criteria for meta-analysis and 22 studies provided data (10,022 patients) for individual patient data meta-analysis.

Added value of this study

To our knowledge, this is the first meta-analysis to use individual patient data to compare the odds and risk of critical care admission and death in CYP with COVID-19 and PIMS-TS. We find that the odds of severe disease in hospitalised CYP is increased in those with multiple co-morbidities, cardiac and neurological co-morbidities and those who are obese. However, the additional risk compared to CYP without co-morbidity is small.

Implications of all the available evidence

Severe COVID-19 and PIMS-TS, whilst rare, can occur in CYP. We have identified pre-existing risk factors for severe disease after SARS-CoV-2 and recommend that those with co-morbidities which place them in the highest risk groups are prioritised for vaccination.

Introduction

Children and young people (CYP) have suffered fewer direct effects of the COVID-19 pandemic than adults, and the vast majority experience mild symptoms following SARS-CoV-2 infection. However a small minority experience more severe disease and small numbers of deaths have been documented. As severe outcomes amongst CYP are uncommon, our understanding of which are at risk from SARS-CoV-2 is limited, in contrast to adults. Yet identification of CYP at the highest risk of critical illness or death from infection and its sequelae is essential for guiding clinicians, families and
policymakers to identify groups to be prioritised for vaccination, and other protective interventions.

SARS-CoV-2 infection in hospitalised CYP has two primary manifestations. The first is acute COVID-19 disease, an acute illness caused by current infection with the SARS-CoV-2 virus and often characterised by respiratory symptoms. The second is a delayed inflammatory condition referred to as Paediatric Inflammatory Multisystem Syndrome Temporally associated with SARS-CoV-2 (PIMS-TS) or Multisystem Inflammatory Syndrome in Children (MIS-C). Existing systematic evaluations are not useful for guiding policy as reviews were undertaken early in the pandemic, and failed to distinguish between acute COVID-19 and PIMS-TS / MIS-C include existing co-morbid conditions, age, sex, ethnicity, socio-economic group, and geographical location. Existing systematic evaluations are not useful for guiding policy as reviews were undertaken early in the pandemic, and failed to distinguish between acute COVID-19 and PIMS-TS / MIS-C. Rapid growth in the literature over the past year provides an opportunity to synthesise findings, and better inform policy decisions about vaccination and protective shielding of vulnerable CYP.

We undertook a systematic review and meta-analysis of the literature from the first pandemic year with the aim of identifying which CYP were at increased risk of severe disease or death in CYP admitted to hospital with SARS-CoV-2 infection or PIMS-TS / MIS-C.

Methods
The protocol for this systematic review and meta-analysis was published on PROSPERO (CRD42021235338) on the 5th February 2021. We report findings according to the PRISMA 2020 guidelines (Supplementary information 1). The systematic review was limited to hospitalised CYP to enable the baseline denominator characteristics to be more accurately defined, particularly co-morbidities, and because in itself, hospital admission is an indicator of severity. We limited our review to pre-specified potential risk-factors (co-morbidities, age, sex, ethnicity and socioeconomic deprivation), plus a limited number of outcomes denoting severe disease (critical care admission, need for mechanical invasive ventilation or cardiovascular support) and death.

Search strategy and selection criteria
We performed a systematic search of four major databases: PubMed, European PubMed Central (PMC), Scopus and Embase for relevant studies on COVID-19 in CYP aged 0–21 years of age, published between the 1st January 2020 and the 29th January 2021 and updated the search on the 21st May 2021. Searches were limited to English only and included key search concepts relating to COVID-19 OR SARS-CoV-2 OR PIMS-TS OR MIS-C AND Child OR Young person OR neonate (full search strategy in supplementary information (i)). References of published systematic reviews and included studies were checked for additional studies.

Two reviewers selected studies using a two-stage process. All titles and abstracts were reviewed independently in duplicate by a team of five reviewers to determine eligibility. Full texts of articles were reviewed if inclusion was not clear in the abstract. Disagreements were discussed between the two reviewers and a decision made about inclusion or exclusion of the study. We excluded studies if the data were duplicated elsewhere, as reported by the study authors, and prioritised the studies which gave comparative data on the risk factors and outcomes of interest; if both did so, we used the larger study.

Inclusion criteria were as follows:

1. Observational studies of any type of CYP under 21 years of age who had been admitted to hospital with a finding of COVID-19 infection at or during admission OR who had been identified clinically as having PIMS-TS or MIS-C. All patients included in the IPD analysis with a diagnosis of COVID-19 had reverse transcriptase polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2.
2. Data were provided on any of the following potential risk factors: age, sex, ethnicity, co-morbidity and socioeconomic deprivation.
3. Studies that included all admitted CYP in a population or institution regardless of co-morbidity were eligible for inclusion in the meta-analysis if they included ≥30 children with COVID-19 or ≥5 children with PIMS-TS or MIS-C. Thirty or more children with COVID-19 was selected as the minimum a-priori to account for the outcomes of admission to critical care and death being rare, with previous systematic reviews suggesting severe COVID-19 occurs in approximately 2.5% of children. Studies of a single pre-existing co-morbidity were included in the systematic review if they included ≥5 children but not included in the meta-analysis.
4. Studies which reported one of the following outcomes as a proxy for severe disease:
 (1) Need for invasive ventilation during hospital stay (not including during anaesthesia for surgical procedures).
 (2) Need for cardiovascular support (vasopressors, inotropes +/- extracorporeal membrane oxygenation (ECMO)).
 (3) Need for critical/intensive care.
 (4) Death after diagnosis of SARS-CoV-2 infection or PIMS-TS/MIS-C.

We initially intended to include other identifiers indicative of severe disease including use of pharmacological therapy and length of stay in critical care,
but were unable to reliably capture these as they were rarely and inconsistently reported. In analyses, CYP who did not have an indicator of severe disease but had COVID-19 or PIMS-TS/MIS-C and were admitted to hospital were used as the comparator group.

Data on risk factors and outcome variables were extracted from individual studies by one reviewer using a pre-designed data collection form and extraction was cross-checked by a second reviewer in 10% of studies. Authors of studies from the first search (to January 2021) were contacted by email and asked to provide either additional aggregated data demonstrating the relationship between predictor and outcome variables or IPD. Time did not allow these to be requested for studies identified in the second search (to May 2021). IPD were shared by authors using a standardised data collection form and checked for consistency with the original publication. Any queries from sharing authors or the study team were discussed over email or by a video call. Eligible studies not supplying IPD in a way that enabled the relationship between risk factors and outcomes to be analysed or that did not provide aggregate or individual patient data were excluded from the meta-analysis.

We assessed the studies for bias using the Newcastle-Ottawa Scale to assess the quality of observational studies. Studies were scored according to selection of participants, comparability, and outcome. The description of comparator cohorts was deemed present when analyses comparing two groups of outcomes were described within the publication.

Data analysis
Meta-analyses were undertaken separately for COVID-19 and PIMS-TS/MIS-C to examine the association of each clinical outcome with sex (female sex was the reference group), age-group (1–4 years as reference group) and comorbidities (CYP without any comorbidity were the reference group). CYP who were RT-PCR positive for SARS-CoV-2 but met the criteria for PIMS-TS or MIS-C were included in the latter group.

Meta-analyses were conducted in two ways. First, we undertook a random-effects meta-analysis of reported study-level data using RevMan 5 software to estimate pooled odds-ratios for each outcome (death, intensive care admission, mechanical invasive ventilation and cardiovascular support). We refer to this analysis as the aggregate meta-analysis. Age categories were described as <1 year, 1–4 years, 5–9 years, 10–14 years and 15–21 years. When studies reported a different age grouping, the group was used in the range which had the greatest cross-over of years. Co-morbidity data were compared using the presence and absence of individual co-morbidities. We calculated the I² statistic as a measure of heterogeneity and report prediction intervals. Funnel plots were examined to assess the evidence for publication bias. We then performed a sensitivity analysis by excluding the largest study of patients with COVID-19. The second set of meta-analyses were undertaken on the IPD, using multi-level logistic mixed-effects models in Stata 16 (StataCorp. College Station, TX) including a random effect for study, with models for co-morbidities adjusted for age and sex. After each model we calculated the predicted probability for each outcome amongst those with and without each comorbidity using the margins post estimation command. We did this to estimate risk difference for admission to critical care or death amongst CYP with comorbidities compared to those without. As a sensitivity analysis, a two-stage meta-analysis was conducted using study-level estimates calculated from the IPD data. A further sensitivity analysis for both the aggregate and IPD meta-analyses was performed by excluding one very large study.

Eligible studies which included only CYP with specific comorbidities were not included in the meta-analyses but included in a narrative synthesis. Data displayed are odds ratio (95% confidence interval) and absolute risk difference (95% confidence interval).

Role of the funding source
RH is in receipt of a fellowship from Kidney Research UK. JW is in receipt of a Medical Research Council Fellowship. LF is in receipt of funding from Martin House Children’s Hospice and RV is in receipt of a grant from the National Institute of Health Research to support this work. Funders had no role in study design, data collection, analysis, decision to publish or preparation of the manuscript.

Results
Figure 1 shows the search flow, 23,050 reports were identified. After excluding duplicates and ineligible studies, 83 studies were included in the review. Fifty-seven studies were included in the meta-analysis, including a total of 21,549 children (see Table 1). Ten studies were from Asia, fifteen from Europe, one from Africa, twenty-one from North America and nine from South America. One study had global recruitment.

Data from 22 studies (40% of those in the meta-analysis) was included in the IPD meta-analyses, totalling 10,022 children. 26 studies reporting individual comorbidities were eligible for inclusion in the narrative synthesis. Most studies eligible for inclusion in the meta-analysis were at considerable risk of bias (Figure 2).

We discuss findings from the aggregate and IPD meta-analyses for each set of risk factors and clinical outcomes below. Detailed data from included studies and pooled estimates from the aggregate meta-analyses...
Figure 1. Description of the study search and selection process.

Articles identified through database search (n= 23050)

Articles after duplicates removed (n= 13734)

Articles screened (n=13734)

Full-text articles excluded (n=13065)
- Outcome measure of interest not used (n=241)
- Too few children in study (n=107)
- No comparative data between risk factor and outcome (n=91)
- Unable to separate data for children and adults (n=78)
- Unable to differentiate hospitalized and community cases (n=41)
- Only children admitted to critical care (n=23)
- Infants or neonates only (n=5)

Full-text articles assessed for eligibility (n= 669)

Studies eligible to be included in Systematic Review (n= 83)

Studies included in meta-analysis (n=57) 21,549 patients

Studies included in narrative syntheses (n=26)
- Cardiovascular (n=2)
- Cystic Fibrosis (n=1)
- Malignancy / Stem cell transplant (n=15)
- Haemoglobinopathies (n=2)
- Immunosuppression (n=2)
- CKD (n=2)
- Rheumatological Diseases (n=1)
- Liver disease (n=1)

Studies included in individual patient data (n=22) 10,022 patients
Study	Population	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC (%)	Death (%)	Data Source			
Asia											
COVID-19											
Du, 36 May 2020, China	Retrospective Observational	182, <16 years Admitted	RT-PCR pos Age	mIV n = 3 Death n = 1	Allergic vs non-allergic patients	uk	1 (0.5%)				
Qian, 37 July 2020, China	Retrospective Observational	127, 1 month - 16 years Patients admitted to hospital	RT-PCR pos Age, sex, comorbidity, confection	CC n = 7 Death n = 0	Pneumonia vs no pneumonia Critical Disease (admission to CC need for mIV/CVS) only admission to CC analysed.	7	0				
Sung, 30 July 2020, South Korea	National prospective registry	101, All ages, collected, only children <19 years inc	RT-PCR pos Age, sex, comorbidity	CC n = 0 mIV n = 0 Death n = 0	Comparison of disease severity	0	0	*			
Alharbi, 39 Dec 2020, Saudi Arabia	Retrospective Observational	65, C-19, <15 years Community and hospitalized	RT-PCR pos Sex, comorbidity	CC n = 12 mIV n = 5 CVS n = 8 Death n = 3	Community vs hospitalized, hospitalised vs critical care	12	3	/			
Bayashev, 40 Dec 2020, Kazakhstan	Retrospective Observational	549, <19 years	RT-PCR pos Comorbidity, age, sex Obesity not defined	CC n = 4 mIV n = 1 CVS n = 8 Death n = 0	Mild, moderate and severe diarrhoea	4	0	*			
Kian, 41 April 2021, China	Retrospective Observational	127, 1 month - 16 years	RT-PCR pos Co-morbidities	Death	Mild, moderate, severe and critical	9	2 (1.6%)	/			
MIS-C / TS / MIS-C											
Almoussa, 42 Oct 2020, Saudi Arabia	Retrospective Observational	10, <14 years Admitted to hospital	MIS-C (CDC) Age, sex comorbidity	CC n = 9 mIV n = 1 CVS n = 5 Death n = 2	None	9 (90%)	2 (20%)				
Jain, 43 Aug 2020, India	Retrospective and prospective Observational	23, <15 years Hospitalised	MIS-C (WHO) Sex, age	mIV n = 9 CVS n = 15 Death n = 1	MIS-C with shock vs MIS-C without shock	1	*				
Shahabnejad, 44 Oct 2020, Iran	Retrospective Observational	10, Patients admitted to hospital	MIS-TS Sex, Age	CC n = 9 mIV n = 3 CVS n = 4 Death n = 1	None	9 (90%)	1 (10%)				
Study	Study Design	No of admitted children	Inclusion and Exclusion criteria	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC m(%)	Death m(%)	Data Source	
-------	-------------	-------------------------	---------------------------------	-------------------------------	-------------------------	---------------------	--------------------	---------	-----------	------------	
Hasan, Feb 2021, Qatar	Retrospective Observational	7	Patients admitted to hospital	MIS-C (WHO)	Sex, Age	CC n = 5	mIV n = 1	None	5	uk	5
Europe COVID-19											
Armann, May 2020, Germany	Prospective Observational Registry	102	<20 years	RT-PCR pos	Age, sex, comorbidities	CC n = 15	mIV n = 6	No	15	1	*
Bellino, July 2020, Italy	Routine surveillance system	511	<18 years	RT-PCR pos	Age, sex, comorbidity	CC n = 18	Death n = 4	Outcomes compared by age, Multivariable logistic regression comparing predictor variables and outcomes	18	4	/
Giacomelli, Oct 2020, Italy	Retrospective Observational	127	<18 years	RT-PCR pos	Sex, comorbidity, ethnicity	CC n = 8	mIV n = 1	Asymptomatic, mild or moderate vs severe or critical. Admission to ICU/no ICU	8	0	*
Gazzarino, May 2020, Italy	Retrospective Observational	168	1 day - <18 years	RT-PCR pos	Age	mIV n = 2	No	uk	1	*	
Ceaño-Vivas, May 2020, Spain	Retrospective Observational	33	<18 years	RT-PCR pos	Sex, comorbidity, age	CC n = 5	mIV n = 1	Admission to hospital	5	1	*
Storch de Gracia, Oct 2020, Spain	Retrospective Observational	39	<18 years requiring hospital admission. Includes patients with MIS-C	RT-PCR pos or IgG antibodies	Age	CC n = 14	Uncomplicated vs complicated (fluids or vasopressors, high flow nasal cannulae / non-invasive ventilation / invasive ventilation, encephalopathy)	14	uk	/	
M. Korkmaz, June 2020, Turkey	Retrospective Observational	44	<18 years	RT-PCR pos	Age	CC n = 2	Admission to hospital vs discharge from ED, ≤5 years, >5 years	2	uk	/	

Table 1 (Continued)
Study	Author, Date, Country	Study Design	Population	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC n(%)	Death n(%)	Data Source
Yayla, 53 March 2021, Turkey	Retrospective Observational	<18 years Admitted	RT-PCR pos or antibodies	Comorbidity	CC n = 1 mIV n = 1 CVS n = 1 Death n = 1	Asymptomatic, mild, moderate, critical/severe	1 (1%)	1 (1%)	/	
O’Swann, 10 Aug 2020, UK	Prospective Observational	<19 years Admitted to hospital	RT-PCR pos Age, sex, comorbidities Obesity not defined	CC n = 78 CVS n = 25 Death n = 6	Admission to critical care, in-hospital mortality. Details about patients with MIS-C could not be extracted and were excluded.	78 (13%)	6 (1%)	/		
Gotzinger, 11 June 2020, Europe	Retrospective and prospective Observational	<19 years Admitted and community	RT-PCR pos Sex, comorbidity, age Obesity not defined	CC n = 48 CVS n = 19 Death n = 4	Admission to CC / no CC	48 (8.2%)	4 (0.7%)	@		
Moraleda, 5 July 2020, Spain	Retrospective Observational	<18 years Admitted to hospital	RT-PCR, IgM or IgG positive or clinical MIS-C	Comorbidities Death n = 1 None		20 (6.5%)	1 (3%)	/		
PIMS-TS / MIS-C	Retrospective Observational	Patients admitted to hospital	PIMS-TS Sex, comorbidity	CC n = 32 CVS n = 26 Death n = 1	Comparison with other childhood inflammatory disorders	32 (59%)	1 (1.7%)	@		
Pang, 7 June 2020, UK	Retrospective selected cohort	Patients admitted to hospital	PIMS-TS Sex, age, comorbidity, race	CC n = 4 CVS n = 4	Viral polymorphisms in admitted patients with and without PIMS-TS compared to community SARS-CoV-2 individuals	4 (80%)	4 (80%)	$		
Carbajal, 7 Nov 2020, France	Retrospective Observational	Hospitalised	MIS-C (CDC) Sex, age	CC n = 7 CVS n = 3 CVS n = 5 Death n = 0	Kawasaki disease compared to MIS-C Comparison of MIS-C (CDC) vs MIS-C (WHO) vs PIMS-TS	7 (100%)	0 (0%)	$		
Alkan, 1 March 2021, Turkey	Retrospective Observational	Hospitalised	MIS-C (CDC) Age	CC	Mild, moderate and severe MIS-C	4 (11%)	0 (0%)	/		
Author, Date, Country	Study Design	No of admitted children	Inclusion and Exclusion criteria	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC n(%)	Death n(%)	Data Source
-----------------------	-------------	-------------------------	----------------------------------	-------------------------------	------------------------	---------------------	---------------------	---------	-----------	------------
van der Zalm, Nov 2020, South Africa	Retrospective Observational	62	<13 years	RT-PCR pos	Age	CC n = 11	Outcomes compared based on age	11	1	/
CDC, April 2020, USA	Voluntary national reporting	147	<18 years	RT-PCR pos	Age	CC n = 15	Comparison with adults	15	uk	/
Choo, Aug 2020, USA	Retrospective Observational	46	1 month - <22 years Admitted	RT-PCR pos	Sex, comorbidity	CC n = 13	Admission to critical care	13	uk	/
Desai, Dec 2020, USA	Retrospective Observational	293	<18 years Preventing to hospital	RT-PCR pos	Sex, comorbidity	CC n = 27	Admission to hospital	28	uk	/
Fisler, Dec 2020, USA	Retrospective Observational	77	<21 years Admitted	RT-PCR pos	Sex, comorbidity	CC n = 30	Admission to critical care	30	1	/
Karth, July 2020, USA	Retrospective Observational	65	<22 years Admitted Symptomatic	RT-PCR pos	Sex, age, comorbidity	CC n = 23	Subcategories of healthy infants, healthy children, immunocompromised children, chronically ill children and mild, moderate or severe disease	23	1	/
Marcello, Dec 2020, USA	Retrospective Observational	32	All ages included, data provided on children <19 years	RT-PCR pos	Sex, comorbidity	Death n = 1	Hospitalisation and death	uk	1	*
Kim, Aug 2020, USA	Population surveillance database	208 (completed data)	<18 years Hospitalised	RT-PCR pos	Age	CC n = 69	Outcomes compared by age	69	1	/
Moreira, Jan 2021, USA	Routinely collected data	445	All data complete <20 years All patients attending ED	RT-PCR pos	Age (0–9 years, 10–19 years), Gender, Race & ethnicity, comorbidity	CC n = 69	Admission to hospital vs discharge from ED, Death	69	12	*

Table 1 (Continued)
Study	Population	Exposure	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC n(%)	Death n(%)	Data Source			
Richardson, April 2020, USA	Prospective Observational	110	Patients admitted to hospital	Age, Race	CC n = 37	Survival vs death	37	1	*		
Verma, June 2021, USA	Retrospective Observational	82	<22 years	RT-PCR pos	Age, comorbidity	CC n = 23	Admission to critical care	23	0	/	
Zachariah, June 2020, USA	Retrospective Observational	50	<22 years	Admitted	RT-PCR pos	Sex, comorbidity	mVn = 9	Non severe vs severe	uk	uk	/
Graff, April 2021, USA	Retrospective Observational	85	<21 years, all patients	Admitted	RT-PCR pos	Age, sex, race, comorbidity	mVn = 9	Non severe vs severe	11	1	/
Preston, April 2021, USA	Routinely collected data	2430	<19 years, all patients	Coded discharge with COVID-19	Age, sex, race, comorbidity	CC n = 747	Non severe vs severe	747	uk	/	
Abdel-Haq, Jan 2021, USA	Retrospective Observational	33	<18 years	Hospitalised	MIS-C (CDC)	Comorbidity	CC n = 2	Admission to critical care	22	uk	/
Capone, June 2020, USA	Retrospective Observational	33	Hospitalised	MIS-C (CDC)	Sex	Death n = 0	None	26	0	/	
Crawford, Feb 2021, USA	Retrospective Observational	5	<18 years	Hospitalised	MIS-C (CDC)	Sex, comorbidity, age	CC n = 4	None	4	0	5
Dufort, June 2020, USA	Emergency state reporting system	99	<21 years	Hospitalised	MIS-C (NYSDOH)	Age	CC n = 79	Clinical features and outcomes	79	2	/
Rodiliano-Cruz, USA	Retrospective Observational	15	Patients admitted to hospital	MIS-C (CDC)	Sex, comorbidity, age	CC n = 1	None	1	1	*	

Table 1 (Continued)
Study	Author, Date, Country	Study Design	No of admitted children	Population Inclusion and Exclusion criteria	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC n(%)	Death n(%)	Data Source
	Rekhtman, 76 Feb 2021, USA	Prospective Observational	19	Hospitalised <16 years	MS-C (CDC) Age, race, sex	CVS n = 1	COVID-19 cohort compared to CC n = 12	12	1	*	
	Belay, 77 April 2021, USA	Standardised reporting and retrospective Observational	18 16	Hospitalised <21 years	MS-C (CDC) Age	mIV n = 5	MS-C cohort (with and without mucocutaneous disease)	Death n = 1	(63%)	(5.3%)	
	Abrams, 78 May 2021, USA	Retrospective Observational	1080	Hospitalised <22 years	MS-C (CDC) Sex, comorbidity, Age, race	CC Admission to ICU vs no ICU	1009	24	/		
	OY Antunez Montes, 79 Jan 2021, Latin America	Prospective Observational	96 - C-19, 67 - MIS-C ≤18 years	All patients attending ED	RT-PCR pos	admission to hospital, admission to PICU	CC n = 43	(26%)	(10%)		
	Araujo da Silva, 80 Jan 2021, Brazil	Retrospective Observational	50 - C-19, 14 - MIS-C	Patients admitted to hospital	RT-PCR pos	Predominant vs non-predominant respiratory symptoms	CC n = 38	(59%)	(1.6%)		
	Sousa, 22 Oct 2020, Brazil	Routinely collected dataset	6948	<20 years, admission to hospital	RT-PCR pos	Outcomes of SARS-CoV-2 with severe acute respiratory infection symptoms	CC n = 1009	24	/		
	Hillesheim, 80 Oct 2020, Brazil	Prospective reporting to national surveillance system	6989	<20 years	RT-PCR pos	Survival vs death	mIV n = 610	(60%)	(2%)		

Table 1 (Continued)
Study	Study Design	No of admitted children	Population Inclusion and Exclusion criteria	Exposure Criteria for diagnosis	Risk Factors used in MA	Outcomes used in MA	Comparator Group(s)	CC n(%)	Death n(%)	Data Source	
Bolanos-Almeida, 81	Jan 2021, Colombia	Retrospective Observational	597	<18 years	RT-PCR pos	Age, Sex	CC n = 17 Death n = 5	Mild, moderate and severe disease and death	17	5	*
Cairoli, 82	Aug 2020, Argentina	Retrospective Observational	578	<21 years	RT-PCR pos	Age, sex, comorbidity Obesity: not defined	CC n = 3 mIV n = 1 CVS n = 3 Death n = 1	None	3	1	*
Sena, 83	Feb 2021, Brazil	National Registry	315	<20 years	RT-PCR pos	Age	Death n = 38	Outcomes compared by age and co-morbidity (hospitalised and community).	uk	38	/
Torres, 84	Aug 2020, Chile	Retrospective and prospective Observational	27	Patients admitted to hospital	MIS-C (CDC) Sex	CC n = 16	Ward vs critical care admission	16	0	/	
Luna-Munoz, 2021, Peru	Retrospective Observational	10	<15 years	MIS-C (CDC) Age, Sex, co-morbidity	mIV n = 3 Death n = 0	None	uk	0	/		
Clark, 85	Sept 2020, Global	Retrospective Observational	55	<19 years	MIS-C (WHO) Age, ethnicity	CC n = 27	Comparison of cardiac abnormalities	27	2	$	

Table 1: Study characteristics of ‘All comer’ studies for children and young people with COVID-19, paediatric multisystem inflammatory syndrome temporally associative with COVID-19 (PIMS-TS) or multisystem inflammatory syndrome in children (MIS-C) included in meta-analyses, grouped by region of origin.

Data Source: / if extracted from paper; * if individual patient data shared, ** if individual patient data shared and includes unpublished data due to ongoing data collection, $ if individual patient data extracted from paper, @ if aggregate data shared by authors. Admission to critical care - CC, Required mechanical invasive ventilation - mIV, Required cardiovascular support - CVS. Systematic Review - SR. uk - unknown.
are provided in Supplementary Table 1. Supplementary Figures 1 and 2 show the sensitivity analysis with the largest study excluded. A two-stage meta-analysis using study-level estimates calculated from the IPD data is shown in supplementary Figures 3 and 4.

Proportions of hospitalised children with COVID-19 admitted to critical care and who died in the aggregate analysis were 21.8% and 5.9% respectively and for PIMS-TS/MIS-C were 60.4% and 5.2%. In the IPD analysis, the proportion admitted to critical care with COVID-19 was 16.5% (6.7, 26.3) with death reported in 2.1% (0.1, 4.3). For PIMS-TS/MIS-C, 72.6% (54.4, 90.7) were admitted to critical care and 7.41% (4.0, 10.8) died.

Demographic risk factors for admission to critical care and death
Sex was not associated with pooled risk of admission to critical care or death in either COVID-19 or PIMS-TS in either the aggregate or IPD analyses (Figure 3A and B). Compared with 1–4 year olds, the aggregate analysis found a higher pooled risk of critical care admission amongst 10–14 year olds and a higher risk of death amongst infants (children aged < 1 year) for COVID-19. In contrast, the IPD analysis found higher risk of critical care and death amongst both infants and 10–14 year olds, plus a higher odds of death amongst those >14 years for COVID-19. For PIMS-TS/MIS-C, the aggregate analysis found higher odds of critical care admission in all age-groups over 5 years, but no age-effects on risk of death. Numbers in the IPD analysis for PIMS-TS/MIS-C were very small, with no association of age-group with risk of death or critical care admission.

We were unable to assess the impact of ethnicity and socioeconomic position on clinical outcomes. The reporting of ethnicity data was highly variable and groupings were insufficiently similar across studies to allow meta-analysis. Socioeconomic position was reported by very few studies.

Association of co-morbidities and critical care and death in aggregate meta-analysis
The aggregate meta-analysis compared those with any or specific comorbidities with all other CYP in each study (Figure 4). The presence of any comorbidity increased odds of critical care and death in COVID-19, with pooled odds ratios of 2.56 (1.77, 3.71) for critical care and 4.16 (1.97, 8.80) for death, both with moderate to high heterogeneity. Pooled odds ratios for PIMS-TS/MIS-C were of a similar order but with wide confidence intervals (Figure 4).

Pooled odds of both critical care admission and death in COVID-19 were increased in CYP with the following co-morbidities: cardiovascular; gastrointestinal or hepatic; neurological; chronic kidney disease; endocrine conditions, including diabetes; and metabolic conditions, including obesity (Figure 4). Odds ratios for critical care ranged from 2.5 to 3.1 and for death from 2.9 to 13. The presence of asthma or trisomy 21 (Down’s Syndrome) was not associated with either outcome, while respiratory conditions were associated with increased odds of critical care but not death. There was an increased odds of death but not of critical care admission in those with malignancy, haematological conditions and immunosuppression for non-malignant reasons.
Figure 3. Association between demographic features and severe disease following SARS-CoV-2 infection in children. A: Aggregate meta-analysis. B: Individual patient data meta-analysis. LCI—Lower confidence interval, UCI—Upper confidence interval. Age ref group: 1–4 years. Sex ref group: female.
Figure 4. Association between co-morbidity and severe disease in COVID-19 and PIMS-TS, analysed using aggregated extracted data from published studies. UCI - Upper confidence interval, LCI – lower confidence interval. P 0.00 indicates p<0.01.
Few individual comorbidities were associated with odds of critical care or death in PIMS-TS / MIS-C, with the exception of malignancy (OR for death 183 [2.61, 12.81]) and metabolic diseases including obesity (OR for critical care 1.45 [1.10, 1.92]).

Association between co-morbidities and critical care and death in IPD meta-analysis

The IPD analysis compared those with each co-morbidity with children without any co-morbidity and additionally enabled analysis of risk associated with multiple comorbidities, obesity without other comorbidity, and trisomy 21 without cardiovascular disease. Figure 5 shows pooled OR for critical care and death for each comorbidity, and Figure 6 shows the risk difference estimated from the same models compared with children without comorbidities.

In IPD analysis, the presence of any comorbidity increased odds of critical care and death in COVID-19. The pooled odds ratio for admission to critical care was 1.64 [1.59, 1.69], with risk difference being 4.6% (2.5, 6.7) greater than the 16.2% prevalence of critical care admission in those without comorbidities. The pooled odds of death from COVID-19 in those with any comorbidity was 2.49 [2.34, 2.66], with a risk difference of 2.1% (0.03, 4.2) above the 1.69% risk in those without comorbidity. For PIMS-TS/MIS-C, pooled odds of critical care was 12.44 [9.74–15.89] and risk difference 21.1% [4.4, 37.8] above baseline risk of 74.5%, and pooled odds of death was 11.23 [0.77, 161.22] with risk difference 21.0% [−3.4, 45.3] above baseline risk of death of 3.1%.

Increasing numbers of comorbidities increased the odds of critical care and death in COVID-19, with those with 23 comorbidities having a odds ratio of death of 4.98 [3.78, 6.56], twice that of the odds with one comorbidity. Small numbers with PIMS-TS / MIS-C meant that further analysis of co-morbidities could not be undertaken.

All individual comorbidities increased odds of admission to critical care except for malignancy and asthma, the latter associated with reduced odds (0.92 [0.91, 0.94]). Risk differences for critical care above the risk for the no comorbidities group were highest for cardiovascular, neurological, and gastrointestinal conditions, as well as for obesity. Obesity alone, without other conditions, increased risk difference to the same level as cardiovascular or neurological conditions, although numbers were small in the obesity analyses.

Odds of death in COVID-19 in the IPD analyses was elevated in all comorbidity groups except for asthma, where there was a reduced risk (−0.6% [−0.9, −0.3]). Risk difference additional to the no comorbidity group was highest for malignancy. Trisomy 21 increased risk of death in those with or without comorbid cardiovascular disease.

Narrative findings from studies of specific comorbidities

Twenty-six papers met the inclusion criteria for the narrative synthesis (Table 2), all reporting on the association of co-morbidity with acute COVID-19. Malignancy was the focus of sixteen of the studies, with rates of critical care admission in hospitalised patients ranging from 0 to 45% and of death in 0–47%. Six of the ten studies reporting deaths in this group of patients noted that some or all of the reported deaths were due to the underlying condition rather than SARS-CoV-2 infection.

Two studies focussed on hospitalised patients with sickle cell disease. There were fewer than fifteen patients in each study, with 17% of patients being admitted to critical care in one study and reported deaths in 0–10%. Two studies looking at non-malignant immunosuppression described no children requiring critical care admission or death and a study of children with Rheumatic diseases found a rate of critical care admission of 3.8%.

Chronic kidney disease was examined in two studies with small numbers of hospitalised patients, which describe a rate of critical care admission between 0 and 9% and of death between 0 and 6%. A study of CYP with cystic fibrosis found that 1 in 24 (4%) of those hospitalised were admitted to critical care and no deaths were described. Finally, two studies describe the association between pre-existing cardiac co-morbidity and outcome, which show a high proportion of children are admitted to critical care (43–71%) and that 14–29% are reported to die.

Discussion

We present the first individual patient meta-analysis of risk factors for severe disease and death in CYP hospitalised from both COVID-19 and PIMS-TS/MIS-C, nested within a broad systematic review and meta-analysis of published studies from the first pandemic year. Studies were of mixed quality and most were open to substantial bias; yet our meta-analyses included data from 57 studies from 19 countries, including 8 low or middle-income countries (LMIC).

Across both the aggregate and IPD analyses, no association was found between sex and odds of severe disease or death for either COVID-19 or PIMS-TS/MIS-C. The odds of poor outcomes was 1.6 to 2-fold higher for infants than 1–4 year olds for COVID-19 alone, but teenagers had elevated odds of severe COVID-19 (1.4 to 2.2-fold higher odds) and particularly PIMS-TS/MIS-C (2.5 to 8-fold greater odds).

The presence of underlying comorbid conditions had the strongest association between critical care admission and death. The presence of any comorbidity increased odds of severe COVID-19 for both the aggregate and IPD analyses (OR 2.56 [1.77, 3.71] and 1.64...
Figure 5. Association between co-morbidity and severe disease in COVID-19 and PIMS-TS, analysed using individual patient data with adjustment for age and sex and clustered by study. LCI — lower confidence interval, UCI — upper confidence interval.
Figure 6. The risk difference for developing severe disease in children with co-morbidities compared to children without co-morbidity, calculated using individual patient data corrected for age and sex. The absolute risk of critical care admission for COVID-19 in children admitted to hospital with no co-morbidity being admitted to critical care is 16.2% and of death is 1.69%. The risk of admission to critical care with paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS-TS) is 74.5% and the risk of death is 3.09%. LCI-RD — lower confidence interval of the risk difference. UCI-RD — upper confidence interval of the risk difference. RD-p — statistical significance of the risk difference compared to no co-morbidity.

Group	Sub-cat	Outcome	-15	-10	-5	0	5	10	20	30	40	45
COVID-19	Any co-morbidity	Admission to critical care	4.77	4.58	4.68	0.00						
Cardiovascular	Admision to critical care	Death	1.87	3.61	5.98	0.00						
Two or more system	Admision to critical care	Death	0.60	1.50	3.10	0.06						
Malignancy	Admision to critical care	Death	4.87	9.26	13.61 0.00							
Asthma	Admision to critical care	Death	-0.10	4.40	8.80	0.05						
Respiratory	Admision to critical care	Death	4.39	10.83	17.28	0.00						
Diabetes	Admision to critical care	Death	0.60	4.70	8.90	0.03						
Chronic kidney disease	Admision to critical care	Death	6.62	10.93	16.34	0.00						
Asthma	Admision to critical care	Death	0.73	3.48	6.23	0.01						
Respiratory	Admision to critical care	Death	3.34	6.68	9.93	0.00						
Diabetes	Admision to critical care	Death	0.38	1.27	2.37	0.02						
Chronic kidney disease	Admision to critical care	Death	-0.90	0.61	-0.31	0.00						
Asthma	Admision to critical care	Death	3.48	8.03	12.58	0.00						
Respiratory	Admision to critical care	Death	0.00	2.29	4.52	0.00						
Diabetes	Admision to critical care	Death	4.31	9.26	14.05	0.00						
Chronic kidney disease	Admision to critical care	Death	0.31	2.58	4.86	0.03						
Malignancy	Admision to critical care	Death	-2.42	-4.21	10.00	0.03						
Haematological	Admision to critical care	Death	1.77	34.83	27.99	0.03						
Malignancy	Admision to critical care	Death	0.09	0.86	1.63	0.03						
Respiratory	Admision to critical care	Death	0.03	1.44	2.84	0.01						
Diabetes	Admision to critical care	Death	1.36	3.31	5.27	0.00						
Chronic kidney disease	Admision to critical care	Death	0.33	3.46	6.58	0.00						
Malignancy	Admision to critical care	Death	5.43	10.18	15.72	0.00						
Haematological	Admision to critical care	Death	0.44	2.31	4.17	0.02						
Malignancy	Admision to critical care	Death	5.37	11.15	17.14	0.00						
Asthma	Admision to critical care	Death	0.12	0.76	1.40	0.02						
Respiratory	Admision to critical care	Death	4.00	7.00	10.00	0.00						
Diabetes	Admision to critical care	Death	0.37	1.98	3.76	0.03						
Chronic kidney disease	Admision to critical care	Death	1.80	4.40	7.10	0.00						
Malignancy	Admision to critical care	Death	0.08	1.29	2.70	0.04						
Respiratory	Admision to critical care	Death	4.40	21.10	37.80	0.01						
Diabetes	Admision to critical care	Death	-3.40	21.00	45.80	0.09						
Chronic kidney disease	Admision to critical care	Death										
Study	Population	Exposure Criteria for diagnosis	Comparator Group(s)	CC m(%)	Death m(%)	Other						
-------	------------	--------------------------------	---------------------	---------	-----------	-------						
Bain, 86 Dec 2020, Europe	Retrospective and prospective registry	RT-PCR pos or clinical diagnosis	None	1	0	Cystic Fibrosis						
Simpson, 87 July 2020, USA	Case Series	RT-PCR pos	None	3	1	Heart Disease						
Esmaeili, 88 April 2021, Iran	Case Series	RT-PCR pos	None	5	2	Heart Disease						
Bisogno, 89 July 2020, Italy	Retrospective and prospective case series	RT-PCR pos	None	0	0	Cancer +/- stem cell transplant						
De Rojas, 90 April 2020, Spain	Retrospective case series	RT-PCR pos	None	0	0	Cancer +/- stem cell transplant						
Elbied, 91 Dec 2020, Egypt	Prospective observational study	RT-PCR pos	None	0	2	Cancer +/- stem cell transplant						

Table 2 (Continued)
Study	Population	Exposure	Comparator Group(s)	CC n(%)	Death n(%)	Other
Ferrari, April 2020, Italy	Retrospective and prospective case series	21	<18 years	RT-PCR pos	None	Leukaemia (n = 10)
						Lymphoma (n = 2)
						Other (n = 9)
Gampel, June 2020, USA	Retrospective observational study	11	<18 years	RT-PCR pos	None	Inpatient and outpatient
						Leukaemia/Lymphoma (n = 6)
						Solid Tumour (n = 8)
						Haematological diagnosis (n = 3)
						Hematopoietic stem cell transplant (n = 2)
Millen, Nov 2020, UK	Retrospective and prospective observational study	40	<16 years	RT-PCR pos	None	Inpatient and outpatient
						Leukaemia (n = 28)
						Lymphoma (n = 2)
						Soft tissue tumour (n = 4)
						Solid organ tumour (n = 10)
						CNS tumour (n = 5)
						Other (n = 5)
						11/40 (28%) nosocomial infection
						Death not due to COVID-19
Montoya, July 2020, Peru	Case Series	33	<17 years	RT-PCR pos	None	Inpatient and outpatient
						Leukaemia (n = 39)
						Lymphoma (n = 5)
						CNS tumour (n = 5)
						Other (n = 27)
						20/33 (61%) due to nosocomial infection
						4/7 (57%) deaths not due to COVID-19
Palomo Colli, Dec 2020, Mexico	Case Series	30	<18 years	RT-PCR pos	None	Inpatient and Outpatient
						Leukaemia (n = 24)
						Other (n = 14)
						All deaths due to underlying condition
Radhakrishna, Sept 2020, India	Case Series	16	<18 years	RT-PCR pos	None	Inpatient and Outpatient
						Leukaemia (n = 12)
						Other (n = 3)
						15/16 (94%) nosocomial infections
Sanchez-Jara, Nov 2020, Mexico	Retrospective observational study	15	<16 years	RT-PCR pos	None	Leukaemia (n = 15)

Table 2 (Continued)
Study	No of admitted children	Inclusion and Exclusion criteria	CC n(%)	Death n(%)	Other
Madhusoodhan,98 April 2020, USA	28	<22 years	RT-PCR pos	None	4 (14%)
					Leukaemia (n = 6)
					Lymphoma (n = 3)
					Other (n = 3)
Kebudi,99 Jan 2021, Turkey	38	<18 years	RT-PCR pos	None	9 (24%)
					1 (3%)
					Inpatient and Outpatient
Lima,100 Nov 2020, Brazil	35	<19 years	RT-PCR pos	None	10 (29%)
					8 (23%)
Fonseca,101 Feb 2021, Colombia	33	<18 years	RT-PCR pos	Comparison of diagnoses and admission to CC	7 (21%)
					5 (15%)
Vincet,102 June 2020, Spain	5	<13 years	RT-PCR pos	None	2 (40%)
					1 (30%)
Haematological COVID-19					
Arlet,103 June 2020, France	12	<15 years	RT-PCR pos	Compared by age	2 (17%)
					0 Sickle Cell Disease
Effer,104 Nov 2020, England	10	<20 years	RT-PCR pos	Compared by age	2 (17%)
					1 Sickle Cell Disease
Immunosuppression COVID-19					
Dannan,105 Oct 2020, United Arab Emirates	5	<13 years	RT-PCR pos	None	0 (0%)
					Common Variable Immunodeficiency (n = 1)
					Chemotherapy (n = 1)
					Pyruvate kinase deficiency and splenectomy (n = 1)
					Nephrotic Syndrome on Prednisolone (n = 1)
					Systemic Lupus Erythematosus on Methotrexate and Mycophenolate (n = 1)

Table 2 (Continued)
Study	Study Design	Population	Exposure	Comparator Group(s)	CC n(%)	Death n(%)	Other		
Perez-Martinez,106 August 2020, Spain	Retrospective case series						Hematopoietic stem cell transplant (n = 1)		
							Leukaemia (n = 1)		
							Liver Transplant (n = 1)		
							Kidney Transplant (n = 1)		
							C-ANCA vasculitis (n = 1)		
Chronic Kidney Disease COVID-19							Inpatient and Outpatient		
Melgosa,107 May 2020, Spain	Retrospective case series	8	<18 years	RT-PCR pos	None	0	0		
							Renal Dysplasia (n = 5)		
							Nephrotic Syndrome (n = 5)		
							Uropathy (n = 2)		
							Other (n = 4)		
Malani,108 Nov 2020, Global	Retrospective and prospective observational study	68	<20 years	Under Paediatric Services	CKD on immunosuppression	RT-PCR pos	None	6	4
							Inpatient and Outpatient		
							Kidney transplantation (n = 53)		
							Nephrotic Syndrome (n = 30)		
							Other (n = 30)		
Rheumatic Diseases COVID-19							Juvenile Idiopathic Arthritis (n = 1)		
Villacis-Nunez,109 Jan 2021, USA	Retrospective case series	8	<22 years	RT-PCR pos	Need for hospitalisation	3	0		
							Systemic Lupus Erythematosus (n = 5)		
							Other (n = 2)		
Liver Disease and transplant COVID-19							Native liver disease (n = 44)		
Kohar,110 Feb 2021, International	Retrospective observational study	21	Community and hospitalised	RT-PCR or antibody	Native liver disease vs liver transplant recipient	2	1		
							Native liver disease (n = 44)		
							Liver transplant recipient (n = 47)		

Table 2: Study characteristics of comorbidity studies for CYP with COVID-19 and PIMS-TS or MIS-C. Admission to critical care - CC.
(1.59, 1.69) respectively for critical care admission), increasing absolute risk of critical care admission by 4.5% (a relative increase of 28%) and risk of death by 2.5% (125% relative increase), with an even greater 21% increase in risk of death for PIMS-TS/MIS-C (6.8-fold increase in risk). Whilst one comorbidity increased absolute risk of critical care by 3.6% and death by 1.5% in COVID-19, 2 or more comorbidities dramatically increased the absolute risk.

All comorbidities were associated with increased risk across the two analyses, with the exception of asthma. Increase in odds of poor outcomes in COVID-19 was highest amongst those with cardiovascular, respiratory, neurological, and gastrointestinal comorbidities, each increasing absolute risk of critical care by 8–11% and risk of death by 1–3.5%. Malignancy was associated with increased risk of death from COVID-19, but not critical care admission in both analyses, which is counter-intuitive and raises the possibility that this reflects the high mortality rate amongst cancer survivors who may have died with incidental SARS-CoV-2 positivity. The aggregated analysis did not suggest increased risk in those with immunosuppression (outside malignancy) or with haematological conditions when compared to CYP without those comorbidities, but these groups were at increased risk of severe disease in the IPD analysis.

The associations identified for more severe COVID-19 are highly similar to those risk factors now well described for adults and described in a subsequently published large US study in children.\(^{21-24}\) This suggests that risk factors for severe COVID-19 are consistent across the life-course, but previously not well understood in CYP because of the rarity of severe disease. These findings relate to risk factors for severe disease rather than risk factors for infection, as only hospitalised CYP were included. It is likely that these findings may over-estimate risks of critical care and death for CYP in high income countries, as the mortality rate in these analyses (2.1% of children with COVID and 7.41% of those with PIMS-TS/MIS-C) are very much higher than national mortality rates reported from these settings.\(^{25-27}\) This likely reflects inclusion of studies from LMIC, publication bias towards more severe cases and potentially an increased likelihood of presentation to and admission to hospital or critical care in CYP with co-morbidities. Despite this, the additional absolute risks related to all comorbidities was small compared with those without comorbidities.

The finding of no difference of severity by sex is contrary to a large literature showing that males are more vulnerable to severe illness and death in childhood.\(^{28,29}\) Whilst male sex is a known risk factor for more severe COVID-19 in adults, this excess risk arises only after middle age.\(^{30}\) Obesity, whether alone or with other conditions, was found to markedly increased risk of critical care admission and death in the IPD analysis. Whilst numbers with obesity were very small, these findings are consistent with adult data showing obesity to be one of the strongest risk factors for severe disease in adults.\(^{31}\) The finding that CYP with trisomy 21 were at increased risk of critical care admission and death has not been described before, although it is consistent with previous adult data.\(^{32}\) This risk appears to operate both through and independently of cardiovascular anomalies, indicating that all CYP with trisomy 21 are at some increased risk of severe disease.

Previous reviews have not provided a systematic understanding of the associations of paediatric comorbidities and severe outcomes in CYP. Systematic reviews which were undertaken early in the pandemic highlighted some of the challenges around identifying comorbidities which were associated with severe disease, including pooled reporting of even common conditions such as asthma\(^{33}\) and a focus on individual comorbidities without a comparator group.\(^{34}\)

The presented data are subject to a number of limitations. The risk of bias assessment demonstrates that the studies included within this systematic review are of low quality. Twenty-two of 57 studies (39%) provided individual patient data; systematic differences between these groups may have introduced bias. There were very small numbers with PIMS-TS/MIS-C in some analyses, particularly the IPD analyses. It was not possible to examine ethnicity and socioeconomic position as risk factors due to lack of data in included studies and further study is required to examine the impact of these variables on the severity of disease. The review was potentially limited by the ability to identify unpublished data and data in the grey literature.

Included studies were highly heterogenous and from a wide range of resource settings, and it is likely that findings were influenced by differing national approaches to hospitalisation of infected CYP and by differences in availability and use of resources including intensive care beds. Institutions undertaking systemic testing for SARS-CoV-2 on admission to hospital may include patients who were admitted for another reason and incidentally tested positive. A number of East Asian countries hospitalised all children who were SARS-CoV-2 positive, regardless of symptoms, whilst other countries limited hospitalisation to symptomatic children or those with significant illness. Policies on admission to and access to critical care likely also differed between countries.\(^{35}\) The novel nature of PIMS-TS/MIS-C also likely influenced critical care admission thresholds for this condition. Definitions of comorbidities were also heterogenous across studies and some of our comorbidity groups may be subject to misclassification bias. The definition of obesity in most studies related to severe or extreme obesity rather than the more common condition of being overweight, yet obesity was undefined in a number of studies.

The influence of variants on the severity of SARS-CoV-2 infection has not been studied as the majority of
data relate to the original virus and further work examining the impact of variants on the severity of disease in CYP is required.

It was not possible to separate the increased risk for severe disease related to comorbidities from the underlying risks of illness and death seen in these comorbidities in uninfected CYP, as all included cases had SARS-CoV-2. Case controlled studies are required to understand how rare congenital or acquired comorbidities may influence risk of severe disease or death from SARS-CoV-2 and enable better distinction between severe disease or death from SARS-CoV-2 and with SARS-CoV-2.

Whilst this review examined comorbidities as risk factors in more detail than previous studies, there were limited data on sub-types of comorbidities, e.g. whether neurological problems were epilepsy or more complex neurological and gastrointestinal conditions were associated with the highest risk of poor outcome, a risk similar to having 2 or more comorbidities, may reflect that these conditions were more likely to be comorbid with others. Given the low risk to CYP requiring hospital admission or critical care as a direct consequence of SARS-CoV-2 infection, it is likely that a significant number of reported cases were coincidental cases of SARS-CoV-2 positivity reflecting population prevalence. Furthermore, the impact of long COVID in CYP as an indicator of severe disease is not described in this manuscript.

When children are admitted to hospital with SARS-CoV-2 infection, those with the strongest association between critical care admission or death are infants, teenagers, those with cardiac or neurological conditions, or 2 or more comorbid conditions, and those who are significantly obese. These groups should be considered higher priority for vaccination and for protective shielding when appropriate. Whilst odd ratios for poor outcomes were increased for nearly all comorbidities was small compared to CYP without underlying conditions. This emphasises that our findings should be understood within the broader context that risk of severe disease and death from SARS-CoV-2 and PIMS-TS/MIS-C in hospitalised CYP is very low compared with adults.

This study quantifies the additional risk related to comorbidities in infected children, however it is possible that some or all of this risk relates to the underlying condition rather than SARS-CoV-2 infection. Further population-based research using comparator groups which identify the risk of severe disease due to COVID-19 and the underlying risk due to comorbidity is required to develop a safe approach to vaccination for children.

Contributors
Study Design: RH, NT, CS, JW, C T-S, ML, MC, EW, PJD, KL, ESD, SK, LF and RMV, Literature search, identification of papers and data extraction: RH, HY, NT, CS, JW, SK and LF, Data analysis: RH, CT-S and RV, First Draft: RH, Review and editing: All authors

Funding
RH is in receipt of a fellowship from Kidney Research UK (grant no. TF_010_20171124). JW is in receipt of a Medical Research Council Fellowship (Grant No. MR/R00160X/1). LF is in receipt of funding from Martin House Children’s Hospice (there is no specific grant number for this). RV is in receipt of a grant from the National Institute of Health Research to support this work (grant no NHR202322). Funders had no role in study design, data collection, analysis, decision to publish or preparation of the manuscript.

Declaration of interests
KL is the Programme Lead for the National Child Mortality Database. SK is the National Clinical Director for Children and Young People, NHS England and Improvement. ED is the Co-Principal Investigator for the Paediatric Intensive Care Audit Network.

Data sharing statement
Individual patient data will not be available to share, in-keeping with the data sharing agreement between authors providing data and the study team.

Acknowledgements
We thank the authors who shared patient level data to enable their inclusion in this study (Supplementary Information 1) and the Royal College of Paediatrics and Child Health

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.eclinm.2022.101287.

References
1 Davies NG, Klepac P, Liu Y, Prem K, Jit M, group CC-w. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26(8):1205–1211. https://doi.org/10.1038/s41591-020-0958-x.
2 Molteni E, Sudre CH, Canas LS, et al. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2. Lancet Child Adolesc Health. 2021;5(10):708–718.
3 Say D, Crawford N, McNab S, Wurzel D, Steer A, Tofsi S. Post-acute COVID-19 outcomes in children with mild and asymptomatic disease. Lancet Child Adolesc Health. 2021;5(6):e22–ee3.
4 Docherty A, Harrison E, Green C, et al. Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1395. https://doi.org/10.1136/bmj.m1395.
5 Bhopal SS, Bagaria J, Olahi B, Bhopal R. Children and young people remain at low risk of COVID-19 mortality. Lancet Child Adolesc Health. 2021;5(3):e12–ee3.
95 Palomo-Colli MA, Fuentes-Lugo AD, Cobo-Ovando SR, Juarez-Villegas L. COVID-19 in children and adolescents with cancer from a single center in Mexico City. J Pediatr Hematol Oncol. 2020.
96 Radhakrishnan V, Ovett J, Rajendran A, et al. COVID-19 in children with cancer in low- and middle-income countries: experience from a cancer center in Chennai, India. Pediatr Hematol Oncol. 2021;38(2):161–167.
97 Sánchez-Jara B, Torres-Jiménez AR, Del Campo-Martínez MDLA, et al. Clinical characteristics and evolution of pediatric patients with acute leukemia and SARS-CoV-2 virus infection in a third level hospital in Mexico. Pediatr Hematol Oncol J. 2021;6(1):42–48.
98 Madhusoodhan PP, Pierre J, Musante J, et al. Characterization of COVID-19 disease in pediatric oncology patients: the New York-New Jersey regional experience. Pediatr Blood Cancer. 2021;68(3):e28843.
99 Kebudi R, Kurucu N, Tugcu D, et al. COVID-19 infection in children with cancer and stem cell transplant recipients in Turkey: a nationwide study. Pediatr Blood Cancer. 2021;68(6):e29035.
100 Lima ALMDA, Borborema MDCD, Matos APR, Oliveira KMMD. Mello MJG, Lins MM. COVID-19 cohort on children with cancer: delay in treatment and increased frequency of deaths. Rev Brasileira de Saúde Materno Infantil. 2021;21(suppl 1):299–304.
101 Fonseca EV, Pardo CA, Linares A, et al. Clinical characteristics and outcomes of a cohort of pediatric oncohematologic patients with COVID-19 infection in the city of Bogota, Colombia. Pediatr Infect Dis J. 2021;40(6):499–502.
102 Vicent MG, Martinez AP, Trabazo Del Castillo M, et al. COVID-19 in pediatric hematopoietic stem cell transplantation: the experience of Spanish Group of Transplant (GETMON/GETH). Pediatr Blood Cancer. 2020;67(9):e28514.
103 Arlet JB, de Luna G, Khimoud D, et al. Prognosis of patients with sickle cell disease and COVID-19: a French experience. Lancet Haematol. 2020;7(9):e631–e634.
104 Tefler P, De la Fuente J, Sohul M, et al. Real-time national survey of COVID-19 in hemoglobinopathy and rare inherited anemia patients. Haematologica. 2020;105(11):2651–2654.
105 El Dannan H, Al Hassani M, Rami M. Clinical course of COVID-19 among immunocompromised children: a clinical case series. BMJ Case Rep. 2020;13(10).
106 Perez-Martinez A, Guerra-Garcia P, Melgosà M, et al. Clinical outcome of SARS-CoV-2 infection in immunosuppressed children in Spain. Eur J Pediatr. 2021;180(1):967–971.
107 Melgosà M, Madrid A, Alvarez O, et al. SARS-CoV-2 infection in Spanish children with chronic kidney pathologies. Pediatr Nephrol. 2020;35(8):1521–1524.
108 Marlais M, Wlodkowski T, Al-Akash S, et al. COVID-19 in children treated with immunosuppressive medication for kidney diseases. Arch Dis Child. 2021;106(8):798-801. https://doi.org/10.1136/archdischild-2020-32616.
109 Villacís-Nunez DS, Rostad CA, Rouster-Stevens K, Khosroshahi A, Chandrakasan S, Prahalad S. Outcomes of COVID-19 in a cohort of pediatric patients with rheumatic diseases. Paediatr Rheumatol. 2021;19:91. https://doi.org/10.1186/s12969-021-00568-4.
110 Kehar M, Ebel NH, Ng VL, et al. Severe acute respiratory syndrome coronavirus-2 infection in children with liver transplant and native liver disease: an international observational registry study. J Pediatr Gastroenterol Nutr. 2021;72(6):807–814.