Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase*

Gerd K. Wagner, Thomas Pesnot, Monica M. Palcic, and Rene Jørgensen

Two closely related glycosyltransferases are responsible for the final step of the biosynthesis of ABO(H) human blood group A and B antigens. The two enzymes differ by only four amino acid residues, which determine whether the enzymes transfer GalNAc from UDP-GalNAc or Gal from UDP-Gal to the H-antigen acceptor. The enzymes belong to the class of GT-A folded enzymes, grouped as GT6 in the CAZy database, and are characterized by a single domain with a metal dependent retaining reaction mechanism. However, the exact role of the four amino acid residues in the specificity of the enzymes is still unresolved. In this study, we report the first structural information of a dual specificity cis-AB blood group glycosyltransferase in complex with a synthetic UDP-GalNAc derivative. Interestingly, the GalNAc moiety adopts an unusual yet catalytically productive conformation in the binding pocket, which is different from the “tucked under” conformation previously observed for the UDP-Gal donor. In addition, we show that this UDP-GalNAc derivative in complex with the H-antigen acceptor provokes the same unusual binding pocket closure as seen for the corresponding UDP-Gal derivative. Despite this, the two derivatives show vastly different kinetic properties. Our results provide a important structural insight into the donor substrate specificity and utilization in blood group biosynthesis, which can very likely be exploited for the development of new glycosyltransferase inhibitors and probes.

Glycosyltransferases (GTs) are vital enzymes responsible for the synthesis of oligosaccharides, polysaccharides, and glycoconjugates (1, 2). One important example is the generation of human ABO(H) blood group A and B antigens. These antigens differ in only a single sugar (A: N-acetyl α-D-galactosamine; B: α-D-galactose), which is installed at the common H-antigen core by one of two closely related GTs, an α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and an α-(1→3)-galactosyltransferase (GTB) (Fig. 1A). Despite the different donor substrate specificities GTA and GTB are identical except for only four amino acids. GTA has residues Arg176, Gly235, Leu266, and Gly268, whereas GTB has residues Gly176, Ser235, Met266, and Ala268 at the corresponding positions (3–5). The structural basis for this difference in specificity between GTA and GTB is currently unresolved. To address this question, important insights can be gleaned from structural and mechanistic studies with mutant blood group enzymes. One naturally occurring blood group GT mutant is the cis-AB enzyme, AA GlyB, which can bind and utilize either UDP-Gal or UDP-GalNAc with almost equal efficiency (3, 6). In AA GlyB the four residues critical for donor recognition are Arg176, Gly235, Gly266, and Ala268 with Gly at the third position belonging to neither A nor B.

Small molecular inhibitors and substrate analogues are useful tools to investigate the details of the substrate recognition and mechanism in GTs (7–10). Recently, we have used the human blood group enzymes as a model system for the development of a new class of GT donor analogues derived from the natural UDP-Gal donor substrate of galactosyltransferases (7, 11–14). These donor analogues carry an additional substituent in position 5 of the uracil base (Fig. 1B). Intriguingly, this modification in position 5 of UDP-Gal turned the donor analogues 1 (5-(5-formylthienyl-2-yl)-UDP-α-D-galactose) and 2 (5-(phenyl)-UDP-α-D-galactose) into potent inhibitors with very low turnover rates with the AA GlyB mutant (7, 12). Previous studies of 1 and 2 using the AA GlyB cis-AB mutant have provided important insights into the basis for this enzyme inhibition (7, 12). Structures of AA GlyB in complex with 1 and 2 show that the donor derivatives are binding in the active site with the galactose in the “tucked under” conformation as seen previously with native UDP-Gal (15–18).

However, the 5-formylthienyl and phenyl substituents in these compounds are obstructing the stacking of the side chain of Trp181 positioned in a flexible active site loop with the side...
chain of Arg352 in the equally flexible C terminus. Upon binding of native donor substrates to blood group GTs, this stacking interaction stabilizes the “closed” conformation and contributes to the H-antigen acceptor (HAA) binding site, which is required for full catalytic activity. Hence, obstruction of this crucial conformational transition provides an explanation for the inhibitory activity of 1 and 2 toward AAGlyB (7, 19). The structures of AAGlyB in complex with compounds 1 or 2 and the HAA substrate acceptor, α-L-Fucp-(1→2)-β-D-Galp, in conjunction with detailed enzymological data, also provided an explanation for the different binding affinities and turnover rates of the two different UDP-Gal derivatives (12). Intriguingly, the ternary structure of the AAGlyB-1-HAA complex revealed an alternatively closed conformation of the C terminus forming hydrogen bonds with the 5-formylthienyl substituent. This alternatively closed conformation was not present in the AAGlyB-2-HAA structure presumably because of the lack of hydrogen bonding opportunities between the C terminus and the 5-phenyl substituent in 2. Therefore, the ability of AAGlyB to adopt this alternative conformation in 1 but not in 2 provided an explanation for the difference in residual rate of product formation between the two derivatives. It also suggested a reason for the elevated \(K_m\) for acceptor substrate with compound 1 because a histidine residue in this alternative conformation of the C terminus is no longer hydrogen bonding to the acceptor.

Although several structures of human blood group GTs in complex with UDP-Gal have been reported (7, 12, 15), attempts to solve a structure with UDP-GalNAc have remained elusive due to the very rapid hydrolysis of the donor when soaked into the crystals. Therefore, we have expanded our ligand design to the UDP-GalNAc congener of inhibitor 1 (compound 3, Fig. 1B) assuming that this UDP-GalNAc derivative would also behave as an inhibitor with a low turnover rate.

Herein, we present the synthesis of compound 3 as well as structures of AAGlyB in complex with 3 alone, and in complex with 3 together with the HAA-acceptor. Importantly, the structure of the AAGlyB-3 complex contains the donor analogue with a partially intact GalNAc portion, which, for the first time, gives an indication of the binding mode of UDP-GalNAc to a human blood group GT. In this new structure, the GalNAc moiety is placed in the active site in a conformation, which is different from the canonical tucked under conformation previously observed in other UDP-sugar-GT complex structures (7, 12, 15–18, 20–24).

Importantly, this new GalNAc conformation is catalytically productive and, supported by enzyme kinetics, we suggest that donor hydrolysis along with additional conformational changes...
UDP-GalNAc Donor Analogue Structures and Kinetic Analysis

is a prerequisite for proper HAA binding. The new structures allow a direct comparison, for the first time, of the recognition and utilization of the two alternative donors UDP-Gal and UDP-GalNAc by AAGlyB, and offer a structural explanation for the dual specificity of this enzyme.

Experimental Procedures

Synthesis of UDP-GalNAc Derivative

3. Preparative Chromatography—Ion-pair chromatography was performed using Lichroprep RP-18 resin gradient 0–10% acetonitrile (or methanol) against 0.05 M triethylammonium bicarbonate over 480 ml at a flow rate of 5 ml/min. Product-containing fractions were combined and reduced to dryness. The residue was co-evaporated repeatedly with methanol to remove residual triethylammonium bicarbonate. Anion-exchange chromatography was performed using a MacroPrep 25Q resin, gradient 0–100% 1 M triethylammonium bicarbonate (pH 7.3) against H2O over 480 ml at a flow rate of 5 ml/min.

The residue was co-evaporated repeatedly with methanol to remove residual triethylammonium bicarbonate. 5-Iodouridine-5' monophosphate 5 (292 mg, 0.65 mmol) (19) was dissolved in dry dimethyl sulfoxide and co-evaporated (3 times) with dry N,N-dimethylformamide to remove residual water. The residue was dissolved in 0.5 ml of dry dimethyl sulfoxide. Morpholine (400 µl, 4.6 mmol) was added, and the mixture was stirred at room temperature for 5 min. Dipyridyl disulfide (500 mg, 2.3 mmol) and triphenylphosphine (600 mg, 2.3 mmol) were added at 5-min intervals. The reaction mixture was further stirred for 60 min at room temperature before being quenched with 0.1 M NaI in acetone until a colorless solid precipitated out of the solution. The supernatant was removed and the phosphoromorpholidate of 5 (sodium salt) was isolated by filtration as a colorless powder (354 mg, 99% yield). This material was sufficiently pure for analytical characterization and was used in the next step without further purification.

Cloning, Purification, and Crystallization

The AAGlyB was cloned, expressed, and purified in Escherichia coli as previously described (12, 25, 26) and the crystallization condition was described in Refs. 7 and 12. The AAGlyB-3 complex crystals were flash cooled in liquid N2 after adding a cryosolution consisting of reservoir solution including 20% glycerol and 25 mM compound 3 to a crystal drop and letting it soak for 30 min at 4 °C. The AAGlyB-3-HAA crystals were flash cooled in liquid N2 as for AAGlyB-3 crystals but with an additional 25 mM α-Fucp-(1→2)-β-Galp-O-(CH2)2-CH3 (HAA) acceptor added to the cryosolution.

Enzyme Kinetics

The Kₘ, kₐₚ, and Kₑₚ values for UDP-Gal, UDP-GalNAc, 1, and HAA acceptor with AAGlyB were previously described (7). To determine the Kₘ and kₑₚ values for 3 we used capillary electrophoresis with tetraethylrhodamine (TMR)-labeled α-Fucp-(1→2)-β-Galp-O-(CH2)2-CONH(CH2)2-NH-acceptor (27) as described in detail for compound 2 in Ref. 12. For donor kinetics, 3 (25–0.29 µM), AAGlyB protein (0.004 µg/ml), TMR-labeled acceptor (25 µM), MnCl₂ (20 mM), BSA (1
mg/ml), and MOPS buffer (50 mM, pH 7.0) were incubated at 37 °C. All concentrations are final concentrations in a volume of 12 µl. To avoid substrate depletion, the assay was only incubated for 8 min. For acceptor kinetics with 3, the following concentrations were used: 3 (33.3 µM) and TMR-labeled acceptor (250–1.9 M), incubated for 20 min. The K values and V max values were obtained by fitting the data points to a Michaelis-Menten curve using GraphPad Prism 4 (GraphPad Software).

The K value for 3 with AAGlyB competing with UDP-[6-3H]Gal transfer was determined by a standard SepPak reverse-phase radiochemical assay as previously described (15). Reduced incorporation of labeled [6-3H]Gal from UDP-[6-3H]Gal can be the result either of inhibition, or incorporation of unlabeled GalNAc. Therefore, the determination of K values in this assay is compatible with the observed donor substrate behavior of 3.

Dowex Hydrolysis Assay

Hydrolysis of UDP-Gal and UDP-GalNAc by AAGlyB was followed with a radiochemical assay, as previously described (28) using the following conditions: 50 mM MOPS (pH 7), 20 mM MgCl2, 1 mg/ml of bovine serum albumin, 300 µM UDP-Gal or UDP-GalNAc, 300,000 dpm of UDP-[6-3H]Gal or UDP-[6-3H]GalNAc, 350 and 35 µM enzyme for the UDP-Gal and UDP-GalNAc assays, respectively. The 10-µl reaction mixtures were incubated in a thermo block at 37 °C for 60 min. The reaction was terminated by adding 300 µl of ice-cold H2O and transferred to Mini-columns (5 ml, Sigma), which were packed with 0.4 g of AG1-X8 resin (chloride 200–400 mesh, Bio-Rad). The reaction product was washed first with 400 µl and then 500 µl of H2O by brief centrifugation and transferred to a scintillation vial. Ten milliliters of Ecolite™ scintillation fluid (MP Biomedicals) was added, and radioactivity was measured in a LS 6500 scintillation counter (Beckman Coulter™).

NMR Experiments

NMR was used to study the stereochemistry of the hydrolysis reaction. In these experiments the reaction medium consisted of 500 µM UDP-GalNAc and 17.5 µM AAGlyB or 250 µM 3 and 30 µM AAGlyB, in 50 mM deuterated BisTris buffer (pH 7) containing 10 mM MgCl2. After mixing donor and enzyme the NMR spectra were recorded at 291 K on a Bruker Advance 800 instrument at 799.96 MHz for proton using a 5-mm cryo probe. The assignment was based on Bruker standard experiments as included from refinement. Ramachandran plots were calculated with a random 5% subset of all reflections excluded from refinement.

Data Collection, Reduction, and Structure Solution

X-ray diffraction data were collected to 1.9-Å resolution on the AAGlyB-3 complex at beamline 1911-2 at the MAX II synchrotron in Lund, Sweden (λ = 1.038 Å, 100 K). X-ray diffraction data on the AAGlyB-3-HAA complex was collected to 1.65-Å resolution at beamline BL14.1 at the BESSY II synchrotron in Berlin, Germany (λ = 0.918 Å, 100 K). Both data sets were integrated and scaled by XDS (29). Subsequently, the structures were solved by molecular replacement using the module Phaser (30) including the solved structure of wild-type GTB (PDB entry 2RIT) as a search model. The two structures belong to space group P21212 with two molecules in the asymmetric unit. Restrained refinement was initially carried out in REFMAC5 (31) before iteratively rebuilding the structures using Coot (32) and finally refining in Phenix (33) with TLS included. Ramachandran plots were calculated in PROCHECK (34) and show that all residues are within the allowed region in both structures. The crystallographic details are presented in Table 1. The structural figures were all prepared in PyMOL (DeLano Scientific LLG).

TABLE 1

Human blood group GT (AAGlyB) complexes	3	3-HAA
Complex	MAXII	BESSY
Beamline	1911-2	MX-14-1
Symmetry	P21212	
Unit cell (Å)	a = 78.20	74.23
	b = 153.83	151.68
	c = 52.40	52.18

Resolution (Å)

Resolution (Å)	30.0-1.75	20.0-1.65
(1.80-1.75)	(1.80-1.65)	

Rsym (%)

Rsym (%)	7.0 (61.0)	7.6 (70.7)

Completeness (%)

Completeness (%)	99.9 (100)	97.8 (96.8)

Average I/σ(I)

Average I/σ(I)	17.4 (3.1)	17.3 (2.9)

Redundancy

Redundancy	6.1 (6.0)	7.1 (7.0)

Statistics for data collection and refinement

Reflection	Work set/Test set	
	62006/2586	68059/2105

Number of atoms	Protein	Ligand	Waters	Glycerol	SO4	Overall B-factor (Å²)	R.m.s. Deviation
	4767	112	546	18	15	22.18	0.010
	0.012		1.246	15.71		22.86	0.012

| R-factor (%) | 15.71 | 15.72 |
| Rfree-factor (%)| 18.43 | 19.40 |

Ramachandran plot (%)

Most favored	92.1	90.0
Additionally allowed	7.9	9.1

Protein Data Bank ID

	3VON	3V00

Notes

1. Values in parenthesis are for the highest resolution shell.
2. Rsym = Σ(|Fobs| - |Fcals|)/Σ|Fobs|, where I is the observed intensity.
3. R = Σ(|Fobs| - |Fcals|)/Σ|Fobs|, where |Fobs| and |Fcals| are observed and calculated structure factor amplitude.
4. The Rfree value was calculated with a random 5% subset of all reflections excluded from refinement.
Results

Synthesis—For the preparation of the new UDP-GalNAc derivative 3 we adapted our previously developed protocol for the Suzuki-Miyaura cross-coupling of unprotected sugar-nucleotides (Scheme 1) (7, 35–37). 5-Iodo-UDP-GalNAc 4 was prepared from GalNAc-1-phosphate and 5-ido-UMP 5 via conversion of the mononucleotide into the corresponding phosphoromorpholidate, followed by tetrazole-catalyzed pyrophosphate bond formation (38). Pleasingly, the free acetamido group in 4 did not interfere with the cross-coupling reaction in the next and final synthetic step. Thus, a water-soluble catalyst was used to successfully cross-couple the complete sugar nucleotide 4 with 5-formyl-2-thiopheneboronic acid to give the target 76% yield of UDP-GalNAc derivative 3.

Enzyme Kinetics—The kinetic parameters for the glycosyl transfer reaction of AAGlyB with UDP-Gal derivative 1 as donor and the HAA acceptor were described previously (Table 2) (7, 12). These results showed that the 5-formylthienyl substituent in 1 led to efficient inhibition of transferase activity. In this study, using a capillary electrophoresis assay with TMR-labeled acceptor as previously described (12) we determined the K_m, K_{cat} values of the new UDP-GalNAc donor analogue, 3, with AAGlyB. Interestingly, the enzymological profile of 3 is markedly different from that of 1 (Table 2). Donor analogue 3, which differs from 1 only in the nature of the sugar, has a K_m value similar to that of 1, but is turned over about 25-fold faster, despite the identical nature of the 5-substituent in 1 and 3. Overall, 3 has a very similar enzymological profile to its 5-unsubstituted parent UDP-GalNAc, with a K_m that is about 3-fold lower and similar values for k_{cat} and K_m for acceptor. This suggests that, although 3 binds to the enzyme with similar affinity as 1, the 5-formylthienyl substituent is not sufficient in this case to prevent product formation. Interestingly, in conjunction with 3 behaving as a natural substrate the acceptor K_m is also not elevated compared with the acceptor K_m for the reaction using UDP-GalNAc. This is in contrast to the higher K_m value for acceptor when using 1, which has a much lower turnover rate and it may suggest that donor hydrolysis is a prerequisite for proper acceptor binding. Finally, we also evaluated the ability of 3 to compete with UDP-Gal binding to AAGlyB in a radiochemical assay. As previously seen for 1, compound 3 competes for binding with a K value, which is in the same range as K_m for 3. However, because compound 3 behaves similar to the natural UDP-GalNAc substrate the reduced incorporation of labeled [6-3H]Gal is most likely the result of incorporation of unlabeled GalNAc.

Crystallographic Analysis—Although a structure of a human blood group GT in complex with a deoxy-antigen acceptor (DA) and intact UDP-Gal has previously been reported (15), a structure with the alternative UDP-GalNAc donor has remained elusive. AAGlyB catalyzes the hydrolysis of UDP-GalNAc with a rate that is \sim30 times higher than for UDP-Gal (Table 2). This is in keeping with previous findings with wild-type blood group enzymes, that the hydrolysis of UDP-GalNAc is catalyzed much more readily by GTA than the hydrolysis of UDP-Gal by GTB (39).

To further examine the enzymological profile of the UDP-GalNAc derivative, 3, and in particular its unexpected donor substrate activity, we solved two crystal structures of AAGlyB with 3. One complex is with 3 alone and one complex is with the HAA acceptor in the binding site. The statistical details for the x-ray data collection and refinement of the AAGlyB structures are shown in Table 1. The data diffracted to a maximum resolution of 1.75 and 1.65 Å with final R_{free} values of 18.43 and 19.4% for AAGlyB-3 and AAGlyB-3-HAA, respectively. Both structures belong to space group P2$_1$2$_1$2 containing 2 molecules in the asymmetric unit and with similar unit cell parameters. The two structures are highly isomorphous except for the last 10 residues of the C terminus, which are only visible in chain A of AAGlyB-3-HAA (residues 345–354).

$\textit{AAGlyB Structure in Complex with 3}—$By carrying out the crystal soaks at 4 °C we ultimately obtained a structure of the AAGlyB-3 complex including a visible GalNAc in chain B of the two chains in the asymmetric unit (Fig. 2A). A difference
map of the AAGlyB structure also shows hints of a GalNAc in two different conformations in the active site of chain A, but the quality of the map in this area did not permit building a plausible model of the two GalNAc conformations. In the AAGlyB-3 structure the internal loop (residues 173–188) in both chains is well defined both in the presence and absence of acceptor. However, in contrast to the previously solved structures of AAGlyB-1 and AAGlyB-2 (12), the loop in AAGlyB-3 is in the closed conformation upon binding of the donor analogue alone (Fig. 2B).

AAGlyB Structure in Complex with 3 and HAA—Soaking crystals with both 3 and HAA resulted in a structure with donor and acceptor binding sites occupied by a 5-formylthienyl UDP and a HAA, respectively (Fig. 2C). Binding of 3 and HAA triggers the C terminus of chain A to fold over the active site in the same alternative conformation (Fig. 2D) as previously seen in the AAGlyB-1-HAA structure (12), in which the donor analogue also has the 5-formylthienyl substituent. Similar to AAGlyB-1-HAA the hydrogen bond between HAA and His348 in AAGlyB-3-HAA is disrupted and is pointing away from the active site. In fact, the two structures are almost identical, as the only distinguishing factor, the sugar moiety, is not seen in either of the two complexes. The similarity to the binding of 1 is supported by our kinetic results, which show comparable K_m values for both 1 and 3 (Table 2). However, the similar alternative binding mode for 1 and 3 suggests that the unusual conformation of the C terminus cannot be the reason for the much higher K_m value for acceptor binding in the AAGlyB-1-HAA complex.

The GalNAc Conformation—Interestingly, the AAGlyB-3 structure shows the GalNAc ring in a conformation clearly different from the canonical tucked under conformation we have seen in previous blood group enzyme structures with UDP-Gal, 1, or 2 and which is the conformation generally adopted by both UDP-Gal and UDP-GalNAc at a GT binding site (Fig. 3) (7, 12, 15–18, 20, 22–24). Additionally, this GalNAc conformation in AAGlyB is also different from the GalNAc conformation recently described in the similar, but metal-independent GT (CAZY group GT6) from *Bacteroides ovatus* (21).

In the tucked under conformation in human blood group GTs, the hydroxyl groups of the Gal moiety are forming an elaborate network of hydrogen bonds to residues Arg188, Asp211, His301, and Asp302 (Fig. 4A, Table 3). In the AAGlyB-3 structure the network of hydrogen bonds to the sugar is entirely different. Although O4’ of the GalNAc forms hydrogen bonds to Glu303 and His333, O3’ forms hydrogen bonds to the backbone of Gly267 and Ala268 (Fig. 4B, Table 3). Furthermore, in contrast to UDP-Gal in the tucked under conformation, several water molecules are bridging contact between the GalNAc in 3 and His301, Ser185, and Asp211.

The occupancy of the UDP-part of 3 in chain B is 100%, whereas the GalNAc moiety only has ~60% occupancy. A simulated annealing $F_o - F_c$ omit map of the active site of chain B shows a small gap between the GalNAc and the β-phosphate (Fig. 2A). In addition, a simulated annealing $F_o - F_c$ map of the final refined structure with 60% occupancy of intact 3 and 40% of 3 without the GalNAc shows a small blob of negative density at the position of the glycosidic C1-O3B bond between the UDP β-phosphate and GalNAc. These electron density maps show that, for at least a fraction of the compound 3 molecules bound to enzyme in the crystal, the glycosidic bond is broken. Importantly, this implies that even in a “non-tucked under” conformation, the AAGlyB in the crystal can still hydrolyze the glycosidic bond of 3. Also, a difference electron density map of the AAGlyB-3 structure indicates that there are two slightly differ-
ent positions of Asp213 in the DXD motif and the UDP phosphates (not shown). Furthermore, the strong electron density peak of the Mn$^{2+}$ ion is also slightly elongated, indicating that there may be an alternative slightly shifted position of the metal. The two slightly different conformations could be a result of the cleavage of the glycosidic bond, which then releases the strain on the nucleotide and causes a shift of the α- and β-phosphates, the Mn$^{2+}$ and Asp213. We chose to model an intact UDP-GalNAc donor analogue because this could be done without distortion of the stereochemistry around the glycosidic bond. However, assuming the bond is cleaved and the last refinement job is run again this time with a separate GalNAc moiety, the R_{free} only goes up by $\sim0.1\%$ and the negative density disappears from the C1-O3B bond. Furthermore, C1 is pulled away from the β-phosphate, which seems to make the pyranose ring adopt a flattened geometry (Fig. 5). Because the electron density map shows no sign of an O1 attached to C1 it is possible that the cleaved GalNAc exists as the C2 deprotonation product with a C1-C2 double bond, i.e. as a glycal. Although the quality of the electron density for the GalNAc does not justify modeling such an intermediate, this type of stabilized intermediate in the absence of acceptor has previously been suggested for the retaining GT-B-folded enzymes E. coli glycogen synthase (40) and Arabidopsis thaliana sucrose synthase-1 (41).

Donor hydrolysis can be considered as transfer of the sugar to a water molecule, which is a poor acceptor substrate. In the refined position of the separate GalNAc there is a water molecule (H$_2$O786) coordinated by the nearby glycerol, which seems to be in a perfect position to attack C1 from the opposite side of the UDP leaving group (Fig. 5). Such an attack would likely result in an inversion of configuration of the anomeric carbon during hydrolysis of the GalNAc in the absence of HAA acceptor. We followed the enzymatic hydrolysis of both the UDP-GalNAc donor substrate and compound 3 catalyzed by AAGlyB by 1H NMR (Fig. 6). The 1H NMR spectra show that enzymatic hydrolysis releases α-N-acetyl-d-galactosamine as a product that is subsequently transformed into β-N-acetyl-d-galactosamine via mutarotation. This is in accordance with previous experiments showing that hydrolysis of the UDP-Gal donor substrate by GTB also occurs with retention of configuration (28). However, these results indicate that this nearby H$_2$O786 molecule seen in the AAGlyB-3 structure does not attack the C1 atom from the opposite side of the leaving group.

TABLE 3

Hydrogen bonds of donor analogue sugars
Ligand atom
Gal
O$_5$
O$_6$
O$_7$
O$_8$
O$_9$
O$_{10}$
O$_{11}$
O$_{12}$

a Hydrogen bond interactions of UDP-Gal in the human blood group GT complex, AABB-UDP-Gal-DA, (PDB entry 2RJ7) with UDP-Gal in the tucked under conformation.
When comparing the binding site of the AAGlyB-1, AAGlyB-2, and AAGlyB-3 and AAGlyB-3-HAA structures it can be seen that the HAA acceptor would not be able to bind to the active site without clashing significantly with the GalNAc seen in AAGlyB-3 (Fig. 7A). Therefore, it is likely that the active site undergoes additional conformational changes to put the HAA and the GalNAc in a position suitably coordinated for reaction. In contrast, in the AAGlyB-1 and -2 structures with the galactose in the tucked under conformation the superimposed HAA appears to be able to fit simultaneously together with the donor (Fig. 7B). Here the HAA is potentially forming hydrogen bonds to O1 of the donor galactose as well as to a β-phosphate oxygen. Furthermore, O3 of the HAA galactose is ∼3 Å away from C1 of the donor galactose. However, because the anomeric carbon is retaining its conformation after transfer, here too, additional con-

FIGURE 6. 1H NMR spectra of donor hydrolysis. A, recorded during enzymatic hydrolysis of 500 µM UDP-GalNAc at 291 K in the presence of 17.5 µM AAGlyB. The spectra show that enzymatic hydrolysis releases α-N-acetylgalactosamine as a product that is subsequently transformed into β-N-acetylgalactosamine via mutarotation. B, recorded during enzymatic hydrolysis of 250 µM 3 at 291 K in the presence of 30 µM AAGlyB. The spectra show that enzymatic hydrolysis releases α-N-acetylgalactosamine as a product that is subsequently transformed into β-N-acetylgalactosamine via mutarotation. The reaction buffer in both experiments contained 50 mM BisTris-d19 (pH 7.0), 10 mM MgCl2.
formational changes are needed for obtaining a coordination suitable for the reaction.

Discussion

Our results provide new structural insights into the factors that govern substrate specificity in GTs. AAGlyB is unusual in that this GT can use two different UDP-sugars as donor, with near equal efficiency. The new results help refine our understanding of the structural basis for this dual specificity of AAGlyB. Previous kinetic studies using GTA/GTB chimeric enzymes have shown that residues 266 and 268 are the key residues that determine A/B substrate specificity (25, 42). In GTB, residues 266 and 268 are an alanine and methionine, respectively, which readily accommodate the Gal moiety in the tucked under conformation as illustrated in the previously solved GTB-specific AABB-UDP-Gal-DA structure (Fig. 8A). In GTA, Leu266 and Gly268 seem to leave sufficient space to accommodate the N-acetyl group of the UDP-GalNAc donor when superimposing a GalNAc moiety onto the Gal in the tucked under conformation (Fig. 8B). This is in contrast to both GTB and AAGlyB, both of which have an alanine residue in position 268. From the new AAGlyB-3 structure it appears that Ala268 is at least partly responsible for preventing the GalNAc moiety of 3 from adopting the tucked under conformation because the N-acetyl moiety of 3 would potentially be clashing with the short side chain of this alanine (Fig. 8C). When superimposing the GTB residues, Met266 and Ala268, together with the GalNAc from the AAGlyB-3 structure and the GalNAc modeled in the tucked under conformation, the Met266 is clashing severely with both GalNAc conformations (Fig. 8D). In addition, when adding hydrogen atoms to the molecules using the validation program MolProbity (43) it is evident that not only Met266 but also Ala268 sterically overlaps with the N-acetyl group (results not shown). Hence, GTB residues at position 266 and 268 are preventing GalNAc from binding in any of the two conformations. In AAGlyB, residue 266 is a glycine, which allows, in conjunction with Ala268, the accommodation of the GalNAc residue in an alternative conformation. Although the presence of Ala268 therefore seems to preclude the GalNAc moiety of 3 from adopting the tucked under conformation in AAGlyB, it does permit, in conjunction with Gly268, the orientation of the donor in the alternative and productive conformation, despite the presence of the sterically demanding N-acetyl group.

Taken together, these results therefore provide an explanation for the dual specificity of the AAGlyB mutant, and may also offer an explanation for the different donor substrate specifi-
ties of the wild-type blood group GTs, GTA and GTB. Although we cannot rule out a tucked under conformation of the GalNAc in wild-type GTA, the AAGlyB-3 structure provides valuable information on the function and importance of the two key residues, 266 and 268 in determining the specificity of the blood group GTs. Importantly, this mechanism of donor recognition and discrimination may also be used by other GTs. For example, the equivalent residues 266 and 268 in the Forssman synthetase, a close homologue of blood group synthases in GT6, are glycine and alanine as in AAGlyB (44). The Forssman synthetase is an α3-GalNAc transferase that transfers a GalNAc residue onto the glycolipid called the Forssman antigen. A hypothesis could be that, for the enzyme to allow the donor to adopt a productive configuration and act as an α3-GalNAc transferase, the active site of the enzyme must comprise a glycine residue either in position 266 (as in AAGlyB and FS) or 268 (as in GTA).

Finally, it is notable that the kinetic parameters for 3, including k_{cat} and acceptor K_m, are comparable with those of its parent molecule UDP-GalNAc (Table 2), despite the clashing position of the GalNAc with HAA. In contrast, the kinetic profile of 1 differs markedly from that of its parent UDP-Gal by having a lower k_{cat} and a higher acceptor K_m. Furthermore, because both AAGlyB-1-HAA and AAGlyB-3-HAA are forming the alternative conformation of the C terminus the lack of hydrogen bonding between HAA and the C-terminal His348 residue cannot be the only factor contributing to the elevated acceptor K_m in the case of 1. Instead, it is more likely that acceptor binding is preceded by additional conformational changes and/or donor hydrolysis.

In summary, we show for the first time, the structure of a human blood group GT, AAGlyB, in complex with a UDP-GalNAc derivative. Intriguingly, this structure adopts a conformation different from the canonical tucked under conformation. The new donor conformation of the GalNAc in 3 is induced by the presence of residues, Gly266 and Ala268, important determinants for donor substrate specificity in blood group GTs. The structure of the AAGlyB-3 complex therefore provides, for the first time, a detailed structural explanation for the dual specificity of histo-blood group A and B transferases based on amino acid substitutions. J. Biol. Chem. 265, 19257–19262

Yamamoto, F., Lin, X. H., Kominato, Y., Hata, Y., Noda, R., Saitou, N., and Yamamoto, F. (2001) Murine equivalent of the human histo-blood group ABO gene is a cis-AB gene and encodes a glycosyltransferase with both A and B transferase activity. J. Biol. Chem. 276, 13701–13708

Pesnot, T., Jørgensen, R., Palcic, M. C., and Wagner, G. K. (2010) Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 6, 321–323

Rillahan, C. D., Antonopoulos, A., Lefort, C. T., Sonon, R., Azadi, P., Levy, K., Delli, A., Haslam, S. M., and Paulson, J. C. (2012) Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 8, 661–668

Gloster, T. M., Sandberg, W. F., Heinonen, J. E., Shen, D. L., Deng, L., and Vocadlo, D. J. (2011) Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7, 174–181

Breton, C., Fournel-Gigleux, S., and Palcic, M. C. (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549

Evitt, A., Tedaldi, L. M., and Wagner, G. K. (2012) One-step synthesis of novel glycosyltransferase inhibitors. Chem. Commun. (Camb.) 48, 11856–11858

Jørgensen, R., Pesnot, T., Lee, H. J., Palcic, M. C., and Wagner, G. K. (2013) Base-modified donor analogues reveal novel dynamic features of a glycosyltransferase. J. Biol. Chem. 288, 26201–26208

Tedaldi, L. M., Pierce, M., and Wagner, G. K. (2012) Optimised chemical synthesis of 5-substituted UDP-sugars and their evaluation as glycosyltransferase inhibitors. Carbohydr. Res. 364, 22–27

Wagstaff, B. A., Rejzek, M., Pesnot, T., Tedaldi, L. M., Caputi, L., O’Neill, E. C., Benini, S., Wagner, G. K., and Field, R. A. (2015) Enzymatic synthesis of nucleobase-modified UDP-sugars: scope and limitations. Carbohydr. Res. 404, 17–25

Alfaro, J. A., Zheng, R. B., Persson, M., Letts, J. A., Polakowski, R., Bai, Y., Borisova, S. N., Seto, N. O., Lowary, T. L., Palcic, M. C., and Evans, S. V. (2008) ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10997–10108

Persson, K., Ly, H. D., Dieckelmann, M., Wakarchuk, W. W., Withers, S. G., and Strynadka, N. C. (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8, 166–175

Pruitt, R. N., Chambler, N. M., Rutherford, S. A., Farrow, M. A., Friedman, D. B., Spiller, B., and Lacy, D. B. (2012) Structural determinants of Clostridium difficile toxin A glycosyltransferase activity. J. Biol. Chem. 287,
UDP-GalNAc Donor Analogue Structures and Kinetic Analysis

8013–8020
18. Ramakrishnan, B., Balaji, P. V., and Qasha, P. K. (2002) Crystal structure of β1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491–502
19. Descroix, K., Pesnot, T., Yoshimura, Y., Gehrke, S. S., Wakarchuk, W., Palcic, M. M., and Wagner, G. K. (2012) Inhibition of galactosyltransferases by a novel class of donor analogues. J. Med. Chem. 55, 2015–2024
22. Reinert, D. J., Jank, T., Aktories, K., and Schulz, G. E. (2005) Structural basis for the function of Clostridium difficile toxin B. J. Mol. Biol. 351, 973–981
23. Unligil, U. M., Zhou, S., Yuwaraj, S., Sarkar, M., Schachter, H., and Rini, J. M. (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19, 5269–5280
24. Ramakrishnan, B., and Qasha, P. K. (2002) Structure–based design of β1,4-galactosyltransferase I (β4Gal-T1) with equally efficient N-acetylglucosaminyltransferase activity: point mutation broadens β4Gal-T1 donor specificity. J. Biol. Chem. 277, 20833–20839
25. Seto, N. O., Palcic, M. M., Compton, C. A., Li, H., Bundle, D. R., and Narang, S. A. (1997) Sequential interchange of four amino acids from blood group B to blood group A glycosyltransferase boosts catalytic activity and progressively modifies substrate recognition in human recombinant enzymes. J. Biol. Chem. 272, 14133–14138
26. Seto, N. O., Palcic, M. M., Hindsgaul, O., Bundle, D. R., and Narang, S. A. (1995) Expression of a recombinant human glycosyltransferase from a synthetic gene and its utilization for synthesis of the human blood group B trisaccharide. Eur. J. Biochem. 234, 323–328
27. Laferté, S., Chan, N. W., Sujino, K., Lowary, T. L., and Palcic, M. M. (2000) Intracellular inhibition of blood group A glycosyltransferase. Eur. J. Biochem. 267, 4840–4849
28. Sindhuwinata, N., Munoz, E., Munoz, F. J., Palcic, M. M., Peters, H., and Peters, T. (2010) Binding of an acceptor substrate analog enhances the enzymatic activity of human blood group B galactosyltransferase. Glycobiology 20, 718–723
29. Kabsch, W. (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800
30. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., and Read, R. J. (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464
31. Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255
32. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
33. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Iorger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. I., Sacchettini, J. C., Sauer, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954
34. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291
35. Collier, A., and Wagner, G. K. (2008) A fast synthetic route to GDP-sugars modified at the nucleoside. Chem. Commun. (Camb) 2, 178–180
36. Pesnot, T., Palcic, M. M., and Wagner, G. K. (2010) A novel fluorescent probe for retaining galactosyltransferases. Chembiochem 11, 1392–1398
37. Pesnot, T., and Wagner, G. K. (2008) Novel derivatives of UDP-glucose: concise synthesis and fluorescent properties. Org. Biomol. Chem. 6, 2884–2891
38. Wittmann, V., and Wong, C. H. (1997) 4H-Tetrazole as catalyst in phosphomorpholodiate coupling reactions: efficient synthesis of GDP-fucose, GDP-mannose, and UDP-galactose. J. Org. Chem. 62, 2144–2147
39. Suya, N., Shoemaker, G. K., Palcic, M. M., and Klassen, J. S. (2009) Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases. Glycobiology 19, 1224–1234
40. Sheng, F., Jia, X., Yap, A., Preiss, J., and Geiger, J. H. (2009) The crystal structures of the open and catalytically competent closed conformation of Escherichia coli glycogen synthase. J. Biol. Chem. 284, 17796–17807
41. Zheng, Y., Anderson, S., Zhang, Y., and Garavito, R. M. (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J. Biol. Chem. 286, 36108–36118
42. Seto, N. O., Compton, C. A., Evans, S. V., Bundle, D. R., Narang, S. A., and Palcic, M. M. (1999) Donor substrate specificity of recombinant human blood group A B, and hybrid A/B glycosyltransferases expressed in Escherichia coli. Eur. J. Biochem. 259, 770–775
43. Chen, V. B., Arendall, W. B., 3rd, Heed, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21
44. Gastinel, L. N., Bignon, C., Misra, A. K., Hindsgaul, O., Shaper, J. H., and Joziassie, D. H. (2001) Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. EMBO J. 20, 638–649