Antidiabetic Activity of *Clitoria ternatea* Linn

K. Kalaiselvi a, U. Vidhya Rekha b, Ponnulakshmi Rajagopal c, Durairaj Sekar d and Selvaraj Jayaraman a,*

a Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai-600077, India.
b Department of Public Health Dentistry, SreeBalaji Dental College and Hospital, Chennai-600100, India.
c Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Meenakshi Academy of Higher Education and Research (MAHER), Chennai-600 095, India.
d Cellular and Molecular Research Centre, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai - 600 077, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i61B35537

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc. are available here:

https://www.sdiarticle5.com/review-history/83786

Received 20 October 2021

Accepted 27 December 2021

Published 28 December 2021

ABSTRACT

In recent years, interest in plant study has expanded all over the world and a substantial body of evidence has been collected to illustrate the great potential of medicinal plants utilized in diverse traditional systems. Plant-based medications and chemicals have been used to treat various diseases and for personal adornment since the beginning of human civilization. *Clitoria ternatea* Linn, (butterfly pea) Fabaceae family. *Clitoria ternatea* is used to treat a variety of ailments and symptoms. It possesses antidepressant, anticonvulsant, anticancer, hypolipidemic, anti-inflammatory, analgesic and antipyretic qualities, as well as local anesthetic, purgative, and anti-diabetic effects. It’s also used to treat snake bites and scorpion stings in India.

Keywords: *Clitoria ternatea* Linn; anti-diabetic; medicinal uses; traditional uses.

*Associate Professor;
*Corresponding author;
1. INTRODUCTION

Clitoriaternatea has long been used in traditional medicine, primarily as supplementation to improve cognitive function and relieve symptoms of a wide range of illnesses such as fever, inflammation, pain, and diabetes [1]. *Clitoria ternatea* is available in two flower colors: white and blue. Shankhpushpi is the local name for *Clitoria ternatea* Linn. It has potential uses in modern health and agriculture, as well as as a natural source of food organic dyes and antioxidants [2,3,4]. *Clitoria ternatea* has been often used as a memory enhancer, antidepressant, antistress, sedative agent, anxiolytic, and tranquilizing agent in traditional medicine such as Ayurvedic medicine [5].

2. PLANT PROFILE

2.1 Taxonomic Classification

Kingdom: Plantae

Subkingdom: Viridaeplanta

Infrakingdom: Streptophyta

Division: Tracheophyta

Subdivision: Spermatophytina

Infrodivision: Angiospermae

Class: Magnoliopsida

Superorder: Rosaneae

Order: Fabales

Family: Fabaceae

Genus: Clitoria L.

Species: *Clitoria ternatea* [6].

2.1.1 Traditional uses

3. PLANT PARTS USED

For medicinal purposes plant Leaves, seeds, bark, fruits, sprouts and stems were used [7].

3.1 Food Colorants

Clitoria ternatea Flowers might be white, deep blue, or any shade in between. This coloring largely stems from the anthocyanin content and degree of fragrant acylation [8]. *Clitoria ternatea*’s rich blue pigment is very popular in Asia, where flower petals are used to color beverages, desserts, and clothing. *Clitoria ternatea* flower extracts have already been utilized to make colorful blue alcoholic gins that change color according to the pH, like when mixed with tonic water or lime. The rich blue color of *Clitoria ternatea* flowers, in particular, is a popular substitute for synthetic blue food colorants, which are becoming less popular owing to health concerns [9].
4. ANTIDIABETIC ACTIVITY

Diabetes mellitus is a condition characterized by persistent hyperglycemia and difficulties with carbohydrate, lipid [10] and protein metabolism connected with a total or relative lack of insulin action or insulin secretion [11,12,13,14,15]. Almost 800 species of plants showing antidiabetic activity and *Clitoria ternatea* is one of them [16,17]. *Clitoria ternatea* leaf extracts have recently shown promise as an anti-diabetic [18,19]. Wistar rats given 400 mg *Clitoria ternatea* ethanolic leaf extract per kg body weight every day for 28 days had considerably lower blood glucose, insulin, glycosylated haemoglobin, urea, and creatinine levels than diabetic controls. Moreover, the levels of liver enzymes (serum glutamate oxalate transaminase, serum glutamate pyruvate transaminase, lactate dehydrogenase, and alkaline phosphatase) in treated rats were relatively low than diabetic control rats and were comparable to the normal control rats [19].

Current research has concentrated on the impact of *Clitoria ternatea* extracts on glycemic response and antioxidant capacity in humans. In short clinical research involving 15 healthy males, it was shown that when 1 or 2 grams of *Clitoria ternatea* extract were combined with 50 g of sucrose, plasma glucose and insulin levels were reduced [18]. Suganya et al. [20] also observed that an ethanolic extract of *Clitoria ternatea* leaves and flowers has an antidiabetic effect *in vitro*. In alloxan-induced diabetic rats, the hypoglycemic effects of methanol extract of *Clitoria ternatea* leaves (200 and 400 mg/kg) were studied. 12 hrs after injection, the extract of *Clitoria ternatea* substantially (P<0.001) decreased blood glucose levels in alloxan-induced diabetic rats [21]. For 84 days, oral treatment of aqueous extracts of *Clitoria ternatea* leaves (400 mg/kg body weight) and flowers (400 mg/kg body weight) showed significantly reduced serum glucose, glycosylated hemoglobin, total cholesterol, triglycerides, urea, creatinine and the activity of gluconeogenic enzyme glucose-6-phosphatase, but increased serum insulin, HDL-cholesterol, protein, liver and skeletal muscle glycogen content and the activity of glycolytic enzyme glucokinase. *Clitoria ternatea* leaves treated diabetic rats performed somewhat
better than *Clitoriaternatea* flowers treated diabetic rats in all of the following biochemical parameters studied [22,23]. In comparison to the diabetic control group, chronic administration of plant extracts (100 mg/kg) for 14 days decreases the blood glucose levels in diabetes-induced animals (Wistar Albino rats) [24].

The extracts of *Clitoriaternatea* was tested against *P. aeruginosa*, *E. coli*, *K. pneumonia*, *B. subtilis*, *A. formicans*, *A. hydrophila* and *S. agalactiae* by the agar well diffusion method. *P. aeruginosa*, *E. coli*, *K. pneumonia*, *B. subtilis*, *A. formicans*, *A. hydrophila*, and *S. agalactiae* have all been inhibited by different preparations of *C. ternatea*. Ethanol extract showed *clitoriaternatea* maximum of inhibition zone against *A. formicans* (19 mm), *A. hydrophilia* (20 mm), *B. subtilis* (20 mm) and *P. aeruginosa* (22 mm) next to that ethanol extract of C. ternatea showed A. formicans (19 mm) and E. coli (15 mm) [25]. The pancreatic regeneration capacity of various fractions of an ethanol extract of *Clitoriaternatea* L. aerial parts was investigated. In streptozotocin-induced diabetic rats, the antidiabetic and antihyperlipidemic potential was assessed and linked with antioxidant activity *in vivo* and *in vitro*. The extract and its fractions were first tested in the dosage range of 100-200 mg/kg for acute and sub-chronic antidiabetic activities. The most effective extracts and fractions were then tested for their ability to regenerate pancreatic β-cells, as well as their safety. It has antioxidant and antihyperlipidemic properties. The most significant pancreatic regeneration activity, antidiabetic and antihyperlipidemic activity was shown by ethanol extract and butanol soluble fraction at a dose level of 200 mg/kg [26,27].

5. CONCLUSION

The organic and aqueous extracts of *Clitoriaternatea* might be used in the pharmaceutical sector in the future as a source of beneficial phytochemical substances, and the antioxidant mechanisms and anti-proliferative capabilities of the extracts should be explored further to obtain further applicability for usage as antioxidant compounds. The above Review indicates that the leaf and flower extracts of *Clitoriaternatea* have a hypoglycaemic effect. At the same time, the aqueous and organic extracts of *Clitoriaternatea* could be further utilized in the future as a source of useful phytochemicals substances for the pharmaceutical industry.

NOTE

The study highlights the efficacy of “AYURBEDIC” which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Mukherjee PK, Kumar V, Kumar NS, Heinrich M. The Ayurvedic medicine *Clitoriaternatea*--from traditional use to scientific assessment. J Ethnopharmacol. 2008;120(3):291-301.
2. Reid R, Sinclair DF. An evaluation of a collection of *Clitoriaternatea* for forage and grain production. CSIRO, Division of Tropical Crops & Pastures; 1980.
3. Barro C, Ribeiro A. The study of *Clitoriaternatea* L. Hay as a forage alternative in tropical countries. Evolution of the chemical composition at four different growth stages. J. Sci. Food Agric.1983;34(8):780-2.
4. Hall TJ. Adaptation and agronomy of *Clitoriaternatea* L. in northern Australia. Tropical Grasslands (Australia); 1985.
5. Pandey MM, Rastogi S, Rawat AK. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med. 2013;2013:376327.
6. Shahnas N, Aghila S. Phytochemical, *in vitro* and *in silico* evaluation on *Clitoriaternatea* for alzheimer's disease. Pharma Tutor. 2014;2(9):135-49.
7. Alok S, Gupta N, Kumar A, Malik A. An update on Ayurvedic herb vishnukanta (*Clitoria ternatea* Linn.): A review. Int. J. Life. Sci. 2015;1(1):1-9.
8. Kazuma K, Noda N, Suzuki M. Flavonoid composition related to petal color in different lines of Clitoria ternatea. Phytochemistry. 2003;64(6):1133-9.

9. Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J. Am. Acad. Child Adolesc. Psychiatry. 2012;51(1):86-97.

10. Selvaraj J, Pitchai D, Nithya P, Valli G, Ponnulakshmi R, Ramajayam G. Antidiabetic and antioxidant activity of novel dihydroxygymnemic triacetate (DGT) in liver of high fat diet and fructose-induced type-2 diabetic adult male rat. Int J Pharm Pharm Sci; 2015.

11. Jayakar b, suresh b. Antihyperglycemic and hypoglycemic effect of aporosalindleyana in normal and alloxan induced diabetic rats. J Ethnopharmacol. 2003;84(2-3):247-9.

12. Balaji V, Selvaraj J, Sathish S, Mayilvanan C, Balasubramanian K. Molecular mechanism underlying the antidiabetic effects of a Siddha polyherbal preparation in the liver of type 2 diabetic adult male rats. J. Evid Based Complementary Altern Med. 2013;18(1):29-42.

13. Jayaraman S, Roy A, Vengadassalapathy S, Sekar R, Veeraraghavan VP, Rajagopal P, et al. An Overview on the Therapeutic Function of Foods Enriched with Plant Sterols in Diabetes Management. Antioxidants. 2021;10(12):2471.

14. Ilankizhai RJ, Ponnulakshmi R, Gayathri R, Madhan K, Shyamaladevi B, Selvaraj J. An in vitro biochemical characterization of Momordica charantia—A conventional herbal remedy for diabetes. Drug Invention Today. 2019;11(6).

15. Krishnan M, Babu S, Rajagopal P, Nazar SP, Chinnaiyan M, Jayaraman S. Effect of β-sitosterol on Insulin Receptor, Glucose Transporter 4, Protein Expression and Glucose Oxidation in the Gastrocnemius Muscle of High Fat Diet Induced Type-2 Diabetic Experimental Rats. Indian J. Pharm. Educ. Res. 2021.

16. Marles RJ, Farnsworth NR. Antidiabetic plants and their active constituents. Phytomedicine. 1995;2(2):137-89.

17. Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020;131:110702.

18. Chusak C, Thilavech T, Henry CJ, Adisakwattana S. Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: A randomized crossover trial. BMC Complement Altern Med. 2018;18(1):6.

19. Kavitha, R. Biochemical studies on the effect of ethanolic extracts of Trichosanthes dioica and Clitoria ternatea in streptozotocin induced male Wistar rats. Int. J. Pharm. Sci. Res. 2018;9:4682–4689.

20. Suganya, Ganesan, P. Sampath kumar, Dheeba and Raman Sivakumar. In vitro antidiabetic, antioxidant and anti-inflammatory activity of Clitoria ternatea l. Int. J. Pharm. and Pharm. Sci. 2014;342-347.

21. Abhishek S, Pankaj M and Vikas S. Hypoglycemic effects of Clitoria ternatea leaves (Linn) Extract. Journal of Pharmacology and Toxicological Studies. 2013;1(1):4-7.

22. Terahara N, Oda M, Matsui T, Osajima Y, Saito N, Toki K, Honda T. Five new anthocyanins, tertatins A3, B4, B3, B2, and D2, from Clitoria ternatea flowers. J Nat Prod. 1996;59(7):1399-404.

23. Daisy P, Santosh K, Rajathi M. Antihyperglycemic and antihyperlipidemic effects of Clitoria ternatea Linn. in alloxan-induced diabetic rats. Afr. J. Microbiol. Res. 2009;3(5):287-91.

24. Gunjan M, Ravindran M, Sengamalam R, Jana GK, Jha AK. Pharmacognostic and antidiabetic study of Clitoria ternatea. Int. J. Phytomedicine. 2010 Oct 1;2(4).

25. Rajkumari, Sanatombi & Sanatombi, Keithellakpam. Biodiversity and Conservation of Medicinal Plants; 2017.

26. Verma PR, Ilankar PR, Arora SK. Evaluation of antidiabetic antihyperlipidemic and pancreatic regeneration, potential of aerial parts of Clitoria ternatea. Revista Brasileira de Farmacognosia. 2013;23:819-29.
27. Indu S, Vijayalakshmi P PJ, Rajalakshmi M. Novel Triterpenoids from Cassia fistula Stem Bark Depreciates STZ-Induced Detrimental Changes in IRS-1/Akt-Mediated Insulin Signaling Mechanisms in Type-1 Diabetic Rats. Molecules. 2021;26(22):6812.

© 2021 Kalaiselvi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/83786