On triangulating k-outerplanar graphs

Therese Biedl*

Abstract

A k-outerplanar graph is a graph that can be drawn in the plane without crossing such that after k-fold removal of the vertices on the outer-face there are no vertices left. In this paper, we study how to triangulate a k-outerplanar graph while keeping its outerplanarity small. Specifically, we show that not all k-outerplanar graphs can be triangulated so that the result is k-outerplanar, but they can be triangulated so that the result is $(k + 1)$-outerplanar.

1 Introduction

A planar graph is a graph $G = (V, E)$ that can be drawn in the plane without crossing. Given such a drawing Γ, the faces are the connected pieces of $\mathbb{R}^2 - \Gamma$; the unbounded piece is called the outer-face. A planar drawing can be described by giving for each vertex the clockwise order of edges at it, and by saying which edges are incident to the outer-face; we call this a combinatorial embedding.

Assume that a planar drawing Γ has been fixed. Define L_1 to be the vertices incident to the outer-face, and define L_i for $i > 1$ recursively to be the vertices on the outer-face of the planar drawing obtained when removing the vertices in L_1, \ldots, L_{i-1}. We call L_i (for $i \geq 1$) the ith onion peel of drawing Γ. A graph is called k-outerplanar if it has a planar drawing that has most k onion peels. The outer-planarity of a planar graph G is the smallest k such that G is k-outerplanar.

A triangulated graph is a planar graph for which all faces (including the outer-face) are triangles. A triangulated disk is a planar graph for which the outer-face is a simple cycle and all inner faces (i.e., faces that are not the outer-face) are triangles. It is well-known that any planar graph can be triangulated, i.e., we can add edges to it without destroying planarity so that it becomes triangulated.

Sometimes it is of interest to triangulate a planar graph while maintaining other properties. For example, any planar graph without separating triangles can be triangulated without creating separating triangles [2], with the exception of graphs with a universal vertex. Any

*David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 1A2, Canada. Supported by NSERC and the Ross and Muriel Cheriton Fellowship.
planar graph can be triangulated so that the maximum degree increases by at most a constant \[10\]. Any planar graph \(G\) can be triangulated such that the result has treewidth at most \(\max\{3, \text{tw}(G)\}\) \[3\]. Also, following the proof of Heawood’s 3-color theorem \[8\], one can easily show that any 3-colorable planar graph can be made triangulated by adding edges and vertices such that the result is 3-colorable.

In this paper, we investigate whether a planar graph can be triangulated without changing its outer-planarity. We show first that this is not true. For example, a 4-cycle has outer-planarity 1, but the only way to triangulate it is to create \(K_4\), which has outer-planarity 2. (We give more complicated examples for higher outer-planarity in Section 2.) However, if we are content with “only” converting the graph to a triangulated disk, then it is always possible to do so without increasing the outer-planarity (see Section 3). In consequence, any \(k\)-outerplanar graph can be triangulated so that its outer-planarity is at most \(k + 1\). In Section 4, we use our triangulations to give a different proof of the well-known result \[6\] that \(k\)-outerplanar graphs have treewidth at most \(3k - 1\).

2 Triangulating \(k\)-outerplanar graphs

In this section, we show that not all planar graphs can be triangulated while maintaining the outer-planarity.

Theorem 1. For any \(k \geq 1\), there exists a triangulated disk \(G\) with \(O(k)\) vertices that is \(k\)-outerplanar, but any triangulation of \(G\) has outer-planarity at least \(k + 1\).

Proof. For \(k = 1\), the graph \(K_4\) with one edge deleted is a suitable example. For \(k > 1\), we first define an auxiliary graph \(T_i\) as follows. \(T_1\) consists of a single triangle \(t_1\). \(T_i\), for \(i > 1\), is obtained by taking a triangle \(t_i\) and inserting a copy of \(T_{i-1}\) inside it; then add a 6-cycle between triangles \(t_i\) and \(t_{i-1}\). In other words, \(T_i\) consists of \(i\) nested triangles. Clearly graph \(T_i\) is 3-connected and has \(i\) onion peels if \(t_i\) is the outer-face. See Figure 1 (left).

We now define graph \(G\) to consist of four copies of \(T_k\), in the embedding with \(t_k\) on the outer-face, and connect them so that the outer-face contains two vertices of each copy of \(t_k\). The inner faces “between” the four copies of \(T_k\) are triangulated arbitrarily. See Figure 1 (right). Notice that the first and second onion peel will contain (in each copy of \(T_k\)) all vertices of \(t_k\) and \(t_{k-1}\). Therefore the \(i\)th onion peel (for \(2 \leq i \leq k\)) contains \(t_{k-i}\) and hence \(G\) is \(k\)-outerplanar. It is also a triangulated disk and has \(12k\) vertices.

Now let \(G'\) be any triangulation of \(G\). Since there are three vertices on the outer-face of \(G'\), there exists one copy \(C\) of \(T_k\) that does not have any vertex on the outer-face. In consequence (since \(T_k\) is 3-connected), the embedding of \(C\) induced by \(G'\) must have \(t_k\) as its outer-face. The first onion peel of \(G'\) contains no vertex of \(C\). In consequence, at least \(k + 1\) onion peels are required before all vertices of \(C\) are removed, and the outer-planarity of \(G'\) is at least \(k + 1\). \(\Box\)
Figure 1: (Left) Graph T_3. (Right) A 3-outer planar graph which cannot be triangulated and stay 3-outerplanar. Thick edges indicate an outer-face-rooted spanning forest of height 2 (defined formally in Section 3).

3 Converting to triangulated disks

In this section, we aim to show that we can triangulate inner faces without increasing the outer-planarity. To our knowledge, this result was not formally described in the literature before (though Lemma 3.11.1 in [4] has many of the crucial steps for it.) From now on, let G be a k-outerplanar graph with the planar embedding and outer-face fixed such that it has onion peels L_1, L_2, \ldots, L_k. We first compute a special spanning forest of G (after adding some edges). We need some preliminary results

Observation 1. If $v \in L_i$ (for some $i > 1$), then some incident face of v contains vertices in L_{i-1}.

Proof. Since v is in L_i and not in L_{i-1}, it is not on the outer-face of the graph H_{i-1} induced by $L_{i-1} \cup L_i \cup L_{i+1} \cup \ldots$. Therefore all incident faces of v (in H_{i-1}) are inner faces. But since v is on the outer-face after deleting L_{i-1}, at least one of its incident faces merges with the outer-face when removing L_{i-1}. Therefore at least one incident face of v contains a vertex from L_{i-1}.

Observation 2. We can add edges (while maintaining planarity) such that every vertex in L_i, $i > 1$ has a neighbor in L_{i-1}.

Proof. Add edges in any inner face f as follows: Let w be the vertex of f contained in the onion peel with smallest index among all vertices of f (breaking ties arbitrarily.) For any
vertex \(v \neq w \) of \(f \), add an edge \((v, w) \) if it did not exist already. Clearly this maintains planarity since all new edges can be drawn inside face \(f \).

By Observation 1, every vertex \(v \in L_i \) (for \(i > 1 \)) had an incident face \(f_v \) that contained a vertex in \(L_{i-1} \). When applying the above procedure to face \(f_v \), some vertex \(w \) in \(L_{i-1} \) is made adjacent to \(v \), unless \((w, v) \) already was an edge. Either way, afterwards \(v \) has the neighbor \(w \in L_{i-1} \).

A spanning forest of \(G \) is a subgraph that contains all vertices of \(G \) and has no cycles. We say that a spanning forest is outer-face-rooted if every connected component of it contains exactly one vertex on the outer-face. We say that an outer-face-rooted spanning forest \(F \) has height \(h \) if every vertex \(v \) has distance (in \(F \)) at most \(h \) to an outer-face vertex. See also Figure 1.

Lemma 1. Let \(G \) be a \(k \)-outerplanar graph. The we can add edges to \(G \) (while maintaining planarity) such that \(G \) has an outer-face-rooted spanning forest of height at most \(k - 1 \).

Proof. First add edges as in Observation 2. Now any vertex \(v \) in \(L_i \), \(i \geq 1 \) has distance at most \(i - 1 \) from some vertex in \(L_1 \): This holds by definition for \(i = 1 \), and holds by induction for \(i > 1 \), since vertex \(v \) has a neighbor \(w \) in \(L_{i-1} \) and \(w \) has distance at most \(i - 2 \) to some vertex in \(L_1 \).

Now perform a breadth-first search, starting at all the vertices on the outer-face \(L_1 \). The resulting breadth-first search tree \(F \) (which is a forest, since we start with multiple vertices) has one component for each outer-face vertex. Since breadth-first search computes distances from its start-vertices, each vertex has distance at most \(k - 1 \) from a root of \(F \) and so \(F \) has height at most \(k - 1 \).

Lemma 2. Let \(G \) be a planar graph that (for some fixed planar embedding and outer-face) has an outer-face-rooted spanning forest \(F \) of height \(k - 1 \). Then \(G \) is \(k \)-outerplanar.

Proof. Root each connected component \(T \) of \(F \) at the vertex on the outer-face. Removing the outer-face \(L_1 \) then removes the root of each tree \(T \). After the roots have been removed, all their children appear on the outer-face of what remains. So all children of the roots are in \(L_2 \). (There may be other vertices in \(L_2 \) as well.) Continuing the argument shows that the vertices at distance \(i \) from the roots are in onion peel \(L_{i+1} \) or in one of earlier onion peels \(L_1, \ldots, L_i \). Therefore \(G \) has at most \(k \) non-empty onion peels and it is \(k \)-outerplanar.

Theorem 2. Any \(k \)-outerplanar graph \(G \) can be converted into a \(k \)-outerplanar triangulated disk by adding edges.

Proof. Add edges to \(G \) (while maintaining planarity) until it has an outer-face-rooted spanning forest \(F \) of height \(k - 1 \) (Lemma 1). While the outer-face is disconnected, add an edge between two vertices on the outer-face of different connected components. While the outer-face has a vertex \(v \) that appears on it multiple times, add an edge between two neighbors of \(v \) on the outer-face. Finally, add more edges to \(G \) (with the standard techniques for triangulating) until all interior faces are triangles. Note that none of these edges additions removes any vertex from the outer-face. So we end with a triangulated disk \(D \) whose
outer-face vertices are the same as the ones on \(G \). In particular, \(F \) is an outer-face-rooted spanning forest of \(D \) as well, and it still has height \(k - 1 \). By Lemma 2 \(D \) is \(k \)-outerplanar as desired.

\[\square \]

Corollary 1. Any \(k \)-outerplanar graph \(G \) can be triangulated such that the result has outer-planarity at most \(k + 1 \).

Proof. First convert \(G \) into a triangulated disk \(D \) that is \(k \)-outerplanar. Now pick one vertex \(r \) on the outer-face of \(D \) that has only two neighbors on the outer-face on \(r \). This exists because the outer-face induces a 2-connected outer-planar graph; such graphs have a degree-2 vertex. Make \(r \) adjacent to all other vertices on the outer-face. Clearly the result \(G' \) is a triangulated graph. Also, if \(L'_0, L'_1, \ldots \) are the onion peels of \(G' \), then \(r \in L'_0 \), any neighbors of \(r \) (and in particular therefore all of \(L_1 \)) is in \(L'_0 \cup L'_1 \), and by induction any vertex in \(L_i \) is in \(L'_0 \cup \cdots \cup L'_i \). Therefore \(G' \) has at most \(k + 1 \) onion peels as desired. \[\square \]

4 **Treewidth of \(k \)-outerplanar graphs**

It is well-known that any \(k \)-outerplanar graph has treewidth at most \(3k - 1 \) \([5, 6]\) and this bound is tight \([9]\). (We will not review the definition of treewidth here, since we will only use the closely related concept of branchwidth.) This has important algorithmic consequences: many (normally NP-hard) problems can be solved in polynomial time on \(k \)-outerplanar graphs, which allows for a PTAS for many problems in planar graphs (see Baker \([1]\)), or for solving graph isomorphism and related problems efficiently in planar graphs (see Eppstein \([7]\)).

The proof in \([9]\) is non-trivial and in particular requires first converting the \(k \)-outerplanar graph \(G \) into a \(k \)-outerplanar graph \(H \) with maximum degree 3 such that \(G \) is a minor of \(H \). A detailed discussion (and analysis of the linear-time complexity to find the tree decomposition) is given in \([11]\). A second, different, proof can be derived from Tamaki’s theorem \([13]\) that shows that the branchwidth of a graph is bounded by the radius of the face-vertex-incidence graph. But this proof is not straightforward either, as it requires detours into the medial graph and the carving width.

Our result on triangulating \(k \)-outerplanar graphs, in conjunction with some results of Eppstein concerning tree decompositions of graphs with small diameter \([7]\), allows for a different (and in our opinion simpler) proof that every \(k \)-outerplanar graph has treewidth at most \(3k - 1 \). We explain this in the following.

We first need to define a closely related concept, the *branchwidth*.

Definition 1. A branch decomposition of a graph \(G \) is a tree \(T \) that has maximum degree 3, together with an injective assignment of the edges of \(G \) to the leaves of \(T \). In such a branch decomposition, a vertex \(v \) of \(G \) is said to cross an arc \(a \) of \(T \) if two incident edges of \(v \) are assigned to leaves in two different components of \(T - a \). The branch decomposition is said to have width \(w \) if any arc \(a \) of \(T \) is crossed by at most \(w \) vertices. The branchwidth of a graph \(G \) is the minimum width of a branch decomposition of \(G \).
The following lemma relates the branchwidth of a planar graph G to the height of an outer-planar-rooted spanning forest F of G. It is strongly inspired by Lemma 4 of [7] (which in turn was inspired by [1]):

Lemma 3. Let G be a triangulated disk with an outer-face-rooted spanning forest F of height $h - 1$. Then G has branchwidth at most $2h$.

Proof. Let G^* be the dual graph of G. Let T^* be a subgraph of G^* defined as follows: T^* contains all vertices of G^* (= faces of G), except for the outer-face of G. It also contains the duals of all edges of E that are not in F and not on the outer-face of G. See also Figure 2 left).

We claim that T^* is a tree. This can be seen as follows. Define F^+ to be the subgraph of G formed by the edges of F, as well as all but one edge on the outer-face. Since F is an outerface-rooted forest, F^+ is a spanning tree of G. By the well-known tree-co-tree result ([14], p.289) therefore the duals of the edges not in F^+ form a spanning tree T^+ of the dual graph. The outer-face-vertex is a leaf in T^+ by definition of F^+. Deleting this leaf from T^+ yields exactly T^*, which therefore is a tree.

We will use T^* (with some additions) as the tree for the branch decomposition. See also Figure 2 A node of T^* will be called face-node and denoted $n(f)$ if it corresponds to the inner face f of G. Let T_1 be the tree obtained from T^* by subdividing each arc a of T^* with an arc-node $n(a)$. Let T_2 be the tree obtained from T_1 by adding an edge-node $n(e)$ for every edge e of G. If the dual edge e^* of e is an arc of T^*, then make $n(e)$ adjacent to the arc-node $n(e^*)$; note that $n(e^*)$ had degree 2 before and is used for exactly one $n(e)$, so it has degree 3 now. If the dual edge of e is not in T^*, then either e is on the outer-face or e belongs to F. In both cases, pick an inner face f incident to e and make $n(e)$ adjacent to $n(f)$. Notice that in T_2 node $n(f)$ has at most one incident arc for each edge of f, therefore $n(f)$ has degree at most 3.

We use tree T_2 for the branch decomposition and assign edge e of G to node $n(e)$. We have already argued that T_2 has maximum degree 3, so it is a branch decomposition, and it only remains to analyze its width. Let a be an arc of T_2. If a is incident to a node $n(e)$ of T_2, then only the vertices of e can cross a, so at most $2 \leq 2h$ vertices cross a. If a is not incident to a node $n(e)$, then it has the form $(n(f), n(e^*))$ for some inner face f of G and some edge $e = (v_1, v_2)$ that is incident to f and does not belong to F.

If v_1 and v_2 are in different connected components of F, then for $j = 1, 2$, let P_j be the path from v_j to the outer-face vertex r_j in v_j’s component of F. Observe that P_1 and P_2 are disjoint, and therefore $P_1 \cup \{e\} \cup P_2$ is a path from outer-face to outer-face that splits the inner faces of G into two parts, namely, the two parts corresponding to the two connected components of $T_2 - a$. Any vertex that has incident edges in both those connected components hence must be on $P_1 \cup \{e\} \cup P_2$. But P_1 and P_2 contain at most $h - 1$ edges each, so there are at most $2h$ vertices that cross a. Similarly, if v_1 and v_2 are in the same connected component of F, then let P the path from v_1 to v_2 in F, and observe that $P \cup \{e\}$ forms a cycle that separates the two components of $T_2 - a$. Since P contains at most $2h - 2$ edges, in this case at most $2h - 1$ vertices cross a.

So this branch decomposition has width at most $2h$ as desired.

\[\square\]
Since $tw(G) \leq \max\{1, \lfloor \frac{3}{2}bw(G) \rfloor \} - 1$ for the treewidth $tw(G)$ and branchwidth $bw(G)$ of a graph [12], we therefore have:

Corollary 2. Let G be a triangulated disk with a outer-face-rooted spanning forest F of height $h - 1$. Then G has treewidth at most $3h - 1$.

Since adding edges does not decrease the treewidth, therefore by Lemma [1] we have:

Corollary 3. Any k-outerplanar graph has treewidth at most $3k - 1$.

Following the steps of our proof, it is easy to see that the branch decomposition of width $2k$ can be found in linear time, and from it, a tree decomposition of width $3k - 1$ is easily obtained by following the proof in [12].

References

[1] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. *J. ACM*, 41(1):153–180, 1994.

[2] T. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under the four-connectivity constraint. *Algorithmica*, 19(4):427–446, 1997.

[3] T. Biedl and L.E. Ruiz Velazquez. Drawing planar 3-trees with given face areas. *Computational Geometry: Theory and Applications*, 46(3):276–285, 2013.
[4] H. Bodlaender. Classes of graphs with bounded tree-width. Technical Report RUU-CS-86-22, Rijksuniversiteit Utrecht, 1986.

[5] H. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-88-14, Rijksuniversiteit Utrecht, 1988.

[6] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. *Theor. Comput. Sci.*, 209(1-2):1–45, 1998.

[7] David Eppstein. Subgraph isomorphism in planar graphs and related problems. *J. Graph Algorithms Appl.*, 3(3), 1999.

[8] P.J. Heawood. On the four-color map theorem. *Quart. J. Pure Math.*, 29, 1898.

[9] Frank Kammer and Torsten Tholey. A lower bound for the treewidth of k-outerplanar graphs. Technical Report 2009-07, Universit¨ at Augsburg, 2009.

[10] Goos Kant and Hans L. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. *Inf. Comput.*, 135(1):1–14, 1997.

[11] Ioannis Katsikarelis. Computing bounded-width tree and branch decompositions of k-outerplanar graphs. *CoRR*, abs/1301.5896, 2013.

[12] Neil Robertson and P. D. Seymour. Graph minors. X. Obstructions in tree-decompositions. *J. Combin. Theory Ser. B*, 52:153–190, 1991.

[13] Hisao Tamaki. A linear time heuristic for the branch-decomposition of planar graphs. In *European Symposium on Algorithms (ESA’03)*, volume 2832 of *Lecture Notes in Computer Science*, pages 765–775. Springer, 2003.

[14] W.T. Tutte. *Graph Theory*. Addison-Wesley, 1984.