Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Scientific letter

Oropharyngeal persistence of SARS-CoV-2: Influence of viral load

Persistencia orofaríngea de SARS-CoV-2: influencia de la carga viral

Dear Editor:

Several clinical factors have been associated with oropharyngeal persistence of SARS-CoV-2. Our study included the viral load determination by quantitative PCR (Exact Diagnostics SARS-CoV-2 Standard; Bio-Rad, Texas, USA) of 33 COVID-19 patients with persistent PCR in nasopharyngeal samples >4 weeks and 33 controls, adjusted for age and sex, who tested negative before. Values are expressed as Log10 mean viral load (N and R genes) and cycle threshold (Ct) values. The Clinical Research Ethics Committee (CREC) of Cantabria approved the study. Student’s t-test or Mann–Whitney U were used to compare quantitative variables, and chi-square or Fisher’s test for qualitative variables. All analyses were performed using SPSS 23.0 software (Chicago, IL, USA). A p value <0.05 was considered statistically significant.

The viral load of COVID-19 patients with mild disease (outpatients) and persistent SARS-CoV-2 was significantly higher than that of their controls in copies/ml (Log10: 7.04 ± 1.81 copies/ml vs. 5.15 ± 2.14 copies/ml; p = 0.018) and Ct of the N gene (25.7 ± 5.6 versus 31.3 ± 6.7 in controls; p = 0.02). Their clinical profile showed no peculiarities (Table 1). Hospitalized patients with persistent SARS-CoV-2 (49 ± 20 days) had the same viral load as their controls (Log10: 6.21 ± 2.06 copies/ml vs. 5.98 ± 1.97 copies/ml; p = 0.73 and Ct values of the N and R genes) and there were no differences in terms of their clinical characteristics (Table 1).

Viral shedding in respiratory samples varies from 2 to 3 weeks after the onset of symptoms, but it has been reported up to 83 days later. Various clinical factors are related to this fact, including male gender, age over 65, the use of invasive mechanical ventilation, the presence of immunodeficiency or diabetes. Some studies find that persistence is more common in seriously ill hospitalised patients with high comorbidity; however, others associate it with asymptomatic cases. The use of corticosteroids and lopinavir/ritonavir also seems to be associated. Our study has the limitations of observational studies and we do not know the clinical translation of the persistence of SARS-CoV-2; however, we consider it important to continue analysing the problem of prolonged shedding and fluctuations of the virus.

Table 1

COVID-19 patients.				
Variables	**Outpatients**	**Controls**		
Age (years)	57 (20)	56 (20)	0.85	
Sex, n (%)	**65, 71 (16)**	72 (13)	0.78	
Smoking, n (%)	**65, 74 (40)**	64 (40)	0.63	
ACE or ARB, n (%)	**65, 56 (40)**	49 (20)	<0.001	
Comorbidities, n (%)	**65, 74 (40)**	20 (50)	0.19	
Hypertension	3 (20)	1 (7)	0.35	
Dyslipidemia	3 (20)	3 (20)	0.60	
Diabetes mellitus	0 (0)	1 (7)	0.46	
Asthma	0 (0)	0 (0)	–	
Atrial fibrillation	1 (7)	1 (7)	0.72	
Neoplasms	1 (7)	0 (0)	0.53	
COPD	0 (0)	0 (0)	–	
Symptomatic, n (%)	11 (73)	7 (47)	0.18	
Duration of symptoms, (days)	15 (8)	12 (5)	0.48	
Chest x-ray, n (%)	2 (20)	1 (7)	0.42	
Pulmonary infiltrates, n (%)	2/1 (66)	0/1 (0)	0.36	
Viral load	Log10 (copies/ml)	7.0 (1.8)	5.1 (2.1)	0.018
N gene Ct	25.7 (5.6)	31.3 (6.7)	0.020	
R gene Ct	25.1 (7.0)	28.5 (7.5)	0.12	
Hospitalized patients				
Variables	**Outpatients**	**Controls**		
Age (years)	71 (16)	72 (13)	0.78	
Sex, n (%)	7 (40)	7 (40)	0.63	
Days until negative PCR	49 (20)	64 (40)	<0.001	
Smoking, n (%)	0 (0)	4 (22)	0.10	
ACE or ARB, n (%)	8 (44)	4 (22)	0.14	
Comorbidities, n (%)	11 (61)	7 (39)	0.15	
Hypertension	7 (39)	10 (56)	0.25	
Dyslipidemia	2 (11)	2 (11)	0.64	
Diabetes mellitus	1 (5.6)	0 (0)	0.50	
Asthma	0 (0)	2 (22)	0.24	
Atrial fibrillation	0 (0)	1 (5)	0.50	
Neoplasms	0 (0)	3 (17)	0.30	
Duration of symptoms, (days)	14 (7)	16 (10)	0.49	
Chest x-ray, n (%)	18 (100)	18 (100)	–	
Pulmonary infiltrates, n (%)	12 (67)	17 (94)	0.10	

Mean (SD) or n (%).

| ARBs: angiotensin receptor blockers; COPD: chronic obstructive pulmonary disease; ACE: ACE inhibitors. |

Mean (SD) or n (%).

References

1. Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. Clin Infect Dis. 2020;71:799–806.
2. Kim SM, Hwang YJ, Kwak Y. Prolonged SARS-CoV-2 detection and reversed RT-PCR results in mild or asymptomatic patients. Infect Dis (Lond). 2021;53:31–7, http://dx.doi.org/10.1080/23744235.2020.1820076, Epub 2020 Sep 16.
3. Yongchen Z, Shen H, Wang X, Shi X, Li Y, Yan J. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect. 2020:9:833–6.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Please cite this article as: Puente N, Fayos M, Pablo-Marcos D, Valero Díaz de Lamadrid C. Persistencia orofaringea de SARS-CoV-2: influencia de la carga viral. Med Clin (Barc). 2022. https://doi.org/10.1016/j.medcli.2021.10.004
4. Hu Z, Li S, Yang A, Li W, Xiong X, Hu J, et al. Delayed hospital admission and high-dose corticosteroids potentially prolong SARS-CoV-2 RNA detection duration of patients with COVID-19. Eur J Clin Microbiol Infect Dis. 2021;40:841–8, http://dx.doi.org/10.1007/s10096-020-04085-2.

5. Yan S, Liu XY, Zhu YN, Huang L, Dan BT, Zhang GJ, et al. Factors associated with prolonged viral shedding and impact of lopinavir/ritonavir treatment in hospitalised non-critically ill patients with SARS-CoV-2 infection. Eur Respir J. 2020;56:2000799, http://dx.doi.org/10.1183/13993003.00799-2020.

Nuria Puente a, Marina Fayos a, Daniel Pablo–Marcos b, Carmen Valero Díaz de Lamadrid a,b,*

* Corresponding author. E-mail address: mirvdc@humv.es (C. Valero Díaz de Lamadrid).