Review

High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk

Anouar Hafiane, Jacques Genest *

McGill University Health Center, Royal Victoria Hospital, 687 Avenue des Pins West, Montreal, QC H3A 1A1, Canada

ABBREVIATIONS:
ApoA-I, apolipoprotein A-I; CHD, coronary heart disease; CVD, cardiovascular disease; HDL, high density lipoprotein; HPLC, High Performance Liquid Chromatography; LCAT, lecithin: cholesterol acyltransferase; LDL, low density lipoprotein; MALDI, matrix-assisted laser desorption/ionization; MOP, myeloperoxidase; MS/MS, tandem-mass spectrometry; ND-PAGGE, non-denaturant polyacrylamide gradient gel electrophoresis; NMR, nuclear magnetic resonance; PEG, polyethylene glycol; PON1, paraoxonase 1; SELDI, surface enhanced laser desorption/ionization; TOF, time-of-flight; UTC, ultracentrifugation

* Corresponding author. Tel.: +1 514 934 1934 x34642 or 36151; fax: +1 514 843 2813.
E-mail address: jacques.genest@mcgill.ca (J. Genest).

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 176
2. Controversy surrounding the relationship between HDL-cholesterol measurement and CAD 176
3. Methods of HDL measurement ... 176
3.1. Precipitation methods for the separation of HDL .. 176
3.2. Ultracentrifugation methods ... 177
3.3. Density gradient fractionation of plasma lipoproteins ... 177
3.4. Vertical auto profile (VAP) ... 177
3.5. Limitations of UTC ... 177
3.6. High Performance Liquid Chromatography .. 177
3.7. Non-denaturing polyacrylamide gradient gel electrophoresis (ND-PAGGE) 178
3.8. Two-dimensional gradient gel electrophoresis (2D-PAGGE) 178
3.9. Capillary isoelectrophoresis (cIEP) ... 179
3.10. Nuclear magnetic resonance (NMR) ... 180
4. HDL subclass measurement and CVD outcomes .. 181
5. HDL functional assays ... 181
5.1. Lecithin:cholesterol acyltransferase (LCAT) assay ... 181
5.2. HDL cholesterol efflux assay ... 181
5.3. Non-radioactive assays for cholesterol exchange onto lipid poor apoA-I 182
5.4. HDL anti-inflammatory assay ... 182

Plasma high density lipoprotein cholesterol (HDL) comprises a heterogeneous family of lipoprotein species, differing in surface charge, size and lipid and protein compositions. While HDL cholesterol (C) mass is a strong, graded and coherent biomarker of cardiovascular risk, genetic and clinical trial data suggest that the simple measurement of HDL-C may not be causal in preventing atherosclerosis nor reflect HDL functionality. Indeed, the measurement of HDL-C may be a biomarker of cardiovascular health. To assess the issue of HDL function as a potential therapeutic target, robust and simple analytical methods are required. The complex pleiotropic effects of HDL make the development of a single measurement challenging. Development of laboratory assays that accurately HDL function must be developed validated and brought to high-throughput for clinical purposes. This review discusses the limitations of current laboratory technologies for methods that separate and quantify HDL and potential application to predict CVD, with an emphasis on emergent approaches as potential biomarkers in clinical practice.
1. Introduction

Plasma levels of high density lipoprotein cholesterol (HDL-C) are strongly associated with atherosclerotic cardiovascular disease, especially coronary artery disease (CAD). This observation is strong, graded and coherent across the populations studied [1]. In post-hoc analysis of clinical trials, HDL-C remains a powerful predictor of residual risk, even at low LDL-C levels [2]. In recent years, Mendelian randomization experiments have cast doubt on the causal link between HDL-C and CAD [3]. Furthermore, drugs that increase HDL-C, including fibrates, niacin and the cholesteryl ester transfer protein inhibitors torcetrapib and dalceptrapib have failed to show improved cardiovascular outcomes. One possible explanation to explain the discrepancy between the epidemiological, genetic and clinical trial data is that the measurement of the cholesterol mass within HDL fails to capture the complexity of a highly dynamic process [4,5]. HDL particles differ in size, ranging from 7 nm to 17 nm, shape (unfolded protein, discoidal and spherical), lipidome and proteome [6,7]. The measurement of HDL-C has been standardized and current precipitation techniques achieve a high degree of accuracy for clinical purposes (Table 1). However, there is no accepted “gold standard” technique for the measurement of HDL particles. More refined techniques have been developed based on the physical and functional properties of HDL (Tables 2, 3). In this review, we will address the techniques of HDL measurement, determine whether the information provided aids to our ability to predict CVD, and evaluate the limitations of these assays. The structural and composition (proteomic/lipidomic) of HDL may provide further insights on its function [8,9]. HDL particles possess many pleiotropic properties that are unrelated to their cholesterol mass or the ability to transport it in the blood. These properties, observed in vitro, may be a better metric to determine CVD risk. These effects include HDL anti-inflammatory and anti-oxidant properties, vascular endothelial cell, nitric oxide (NO) production, expressions of inflammatory mediators, and endothelial progenitor cell proliferation [5,10–13]. Further, the structure and composition analysis of HDL particles (proteomic/lipidomic), which provide additional insight into the assessment of HDL particles with specific functions, are also discussed (Tables 4, 5).

2. Controversy surrounding the relationship between HDL-cholesterol measurement and CAD

Epidemiological studies have shown a consistent inverse association between HDL-C concentration and CAD [1]. Clinical trials aimed at raising HDL-C pharmacologically have failed to show clinical benefits in terms of CAD reduction [14–17]. Moreover, Mendelian randomization studies do not support a causal role for HDL-C in the pathogenesis of CAD [3]. HDL-C level is a static measurement that likely represents a biomarker of cardiovascular health, rather than a risk factor. Recent clinical studies suggest that HDL-C is a helpful biomarker, but functional testing, such as the cholesterol efflux capacity of HDL improves discrimination, independently of HDL-C levels [18]. Despite the coherent epidemiological data suggesting a cardioprotective role for HDL-C, the antatherogenic properties of different particles that constitute HDL are highly heterogeneous and have yet to be fully quantified and their roles properly evaluated. The cholesterol efflux capacity is likely more reflective of a biologically relevant pathway in the prevention of atherosclerosis and CAD [18].

Thus, a new paradigm states that we need to determine and measure the anti-atherogenic properties of HDL, rather than the cholesterol mass within HDL. Other methods for measuring HDL function, reflecting relevant causal pathways need to be established. Indeed, the cholesterol content of HDL does not represent many biologically important HDL properties that are relevant to CVD (Tables 2, 3). Methods for measurement of HDL sub-fractions, as well as physicochemical (Table 2) and functional (Table 3) may be more effective in predicting CAD risk than HDL-C [19]. Thus, the concept that HDL-C does not necessarily reflect HDL function, and that HDL function may be a better biomarker of cardiovascular risk must be emphasized. Recently, various alternate HDL phenotypes are being examined as surrogates for the beneficial actions of HDL [5]. The functional heterogeneity of HDL particles makes the identification of effective clinical method to quantify HDL function an ongoing challenge [5,20,21]. The pleiotropic HDL biological activities (biomarker) have immediate relevance to understanding the key mechanisms implicated in the pathophysiology of atherosclerosis and thrombosis. Even though some HDL biomarkers, such as cholesterol efflux capacity look promising, it is too early to embrace these measurements in the clinical realm [22] (Table 5).

3. Methods of HDL measurement

In clinical practice, the standard measure of HDL is the cholesterol content in HDL particles after precipitation of apoB-containing lipoproteins (Table 1). More refined techniques to determine HDL-C in serum include ultracentrifugation (UTC) [23], electrophoresis [24,25], high performance lipoprotein chromatography (HPLC) [26,27], precipitation-based methods [28], direct measuring methods [29,30], and nuclear magnetic resonance (NMR) [31] (Table 2).

3.1. Precipitation methods for the separation of HDL

HDL-C is first separated by precipitating apoB containing lipoproteins from serum by using a combination of polyansions, typically such as heparin–MnCl2, dextran sulfate–MgCl2 or phosphotungstate–MgCl2 [32,33], and a divalent cation, such as magnesium, heparin–manganese, or calcium [34]. Subsequently, HDL is quantified as cholesterol in the supernatant [35]. Polyethylene glycol (PEG) although not a polyanion is also used to precipitate apoB-containing lipoproteins [36,37]. This method is a convenient, reproducible, and rapid way to extract HDL from patient serum or plasma [38]. Incomplete precipitation of apoB lipoproteins [35] is a major drawback of this method [33,39]. Supernatant turbidity, observed with hypertriglyceridemia, inflammatory conditions and cryopreservation [29,40,41] may lead to discordant results between methods [29,35,42]. Commercial immunoprecipitation reagent using specific antibodies directed against HDL particles could be effective in serum with elevated triglycerides [33]. Because of specificity of anti-apoB antibodies, HDL particles will not co-precipitate with apoB, which may be an issue with chemical precipitation methods [33]. Another limitation is that the
provides a reasonable degree of accuracy [52]. VAP was validated in the measurement of HDL2 and HDL3 [56], but limited studies have frequently and VAP had a lesser degree of correlation with these techniques, and show that NMR and ND-PAGGE agreed most time consuming than ultracentrifugation [29]. PEG precipitation provides major contamination with the plasma proteins avoiding HDL isolation in a nondenatured and nonoxidized state, and by consecutive layering of 4 salt solution distinct densities at such as NaBr or KBr [20, 48]. Density gradient UTC approach is based on the isopycnic equilibrium approach developed by Chapman et al. [23] (Table 2). This method that uses a swinging–rotor, plasma or serum is layered on the surface of a NaCl-KBr gradient, constructed by consecutive layering of 4 salt solution distinct densities at +15 °C. The process involves a single ultra-centrifugal step, facilitating HDL isolation in a nonadenatured and nonoxidized state, and avoids major contamination with the plasma proteins >1.25 g/mL present at the bottom of the tube [20, 49]. The density gradient UTC method reduces centrifugation steps and preparation time [23] necessary for isolating lipoprotein subspecies [50]. An important advantage is that isopycnic UTC method allows isolating LDL subfractions simultaneously with those of HDL.

3.4. Vertical auto profile (VAP)

This assay, which involves a single vertical spin, is an inverted rate zonal density gradient UTC technique that sequentially measures the cholesterol content of all five lipoprotein classes [51, 52] (Table 2). The vertical rotor method or single vertical spin is a modification of the method for single spin separation and analysis of the major classes of lipoproteins [51, 53] described earlier. Unlike most other UTC methods, the VAP method separates all lipoproteins in less than 1 h at 65,000 rpm [52, 54, 55]. This assay is sensitive (requiring <50 μL of plasma or serum) [48], economical and relatively widely available [20], and provides a reasonable degree of accuracy [52]. VAP was validated in the measurement of HDL2 and HDL3 [56], but limited studies have been performed to compare this method to lipoprotein subtraction measurement techniques, and show that NMR and ND-PAGGE agreed most frequently and VAP had a lesser degree of correlation with these methods [51].

Table 1	Direct measurement of HDL-C mass by precipitation.
Plasma or serum HDL-C concentration is commonly determined by precipitation methods using various reagents. Reagents involve polyanions such as heparin, dextran sulfate, and sodium phosphotungstate, which are used with a divalent cation, such as magnesium, heparin–manganese, or calcium.	

Precipitation
• Polyanions: heparin–Mn²⁺, dextran sulfate–Mg²⁺ [32]
• Divalent cation: dextran sulfate–Mg²⁺ [34]
• Polyethylene glycol [37, 43, 126, 197]
• Immunoprecipitation [33]

3.2. Ultracentrifugation methods

3.3. Density gradient fractionation of plasma lipoproteins

Analytical UTC with density gradient flotation using Schlieren optics was used over 70 years ago to characterize lipoproteins [47] (Table 2). With sequential flotation, lipoproteins could be separated into five major groups such as HDL, LDL, VLDL, and chylomicrons. In this multi-step process plasma based on the initial hydrated density range (1.006 g/mL) is increased to 1.063 g/mL with neutral salts, such as NaBr or KBr [20, 48]. Density gradient UTC approach is based on the isopycnic equilibrium approach developed by Chapman et al. [23] (Table 2). This method that uses a swinging–rotor, plasma or serum is layered on the surface of a NaCl-KBr gradient, constructed by consecutive layering of 4 salt solution distinct densities at +15 °C. The process involves a single ultra-centrifugal step, facilitating HDL isolation in a nonadenatured and nonoxidized state, and avoids major contamination with the plasma proteins >1.25 g/mL present at the bottom of the tube [20, 49]. The density gradient UTC method reduces centrifugation steps and preparation time [23] necessary for isolating lipoprotein subspecies [50]. An important advantage is that isopycnic UTC method allows isolating LDL subfractions simultaneously with those of HDL.

Table 2

Separate HDL by ultracentrifugation	Figure
UTC separation	
• Flotational analytical ultracentrifugation [47, 48]	
• Sequential ultracentrifugation: isopycnic equilibrium method [23]	
• Vertical auto profile: zonal ultracentrifugation [51, 53, 54]	
Separate HDL by charge	
• Capillary isothiocyanophoresis [82, 83]	
Separate HDL by size	
• Gel gradient electrophoresis separation	
• Electrophoresis one dimensional gel electrophoresis [72, 73]	
• Electrophoresis 2D gel electrophoresis [6, 74]	
Fast liquid chromatography	
• Ion exchange chromatography [63, 64]	
• Gel filtration column [62]	
Nuclear magnetic resonance	
• Proton NMR measurement [31, 92]	
• Diffusion ordered NMR spectroscopy (DOSY NMR) [94]	

3.5. Limitations of UTC

Shear forces generated by the ultracentrifugal field (57 × 10⁻⁷ g average/min) may strip off proteins associated with lipoproteins; these forces are reduced by the use of a swing rotor [48, 54]. Another biggest drawback of UTC lies in the fact that lipoproteins, especially HDL particles are subjected to high ionic strengths 5 to 20 times above those of human plasma and lymph [57, 58]. These conditions can alter the labile proteins on the HDL surface and cause minor structural disruption to the HDL particles. Accordingly, a proteomic approach showed that high salt can deplete the lipoproteins, especially HDL [58]. Isopycnic gradient UTC procedures in a buffer of deuterium oxide (D₂O) and sucrose are suggested over salt [59]. Therefore, apolipoproteins, such as apoA-IV, can be significantly overestimated by this method [59]. Earlier studies showed that the loss of apoA-I from HDL during ultracentrifugal isolation is higher than other precipitation methods [60] by as much as 50% [61]. However, the loss of apolipoproteins from human HDL was not influenced by the effects of rotor configuration, centrifuge tube type, ionic strength or temperature [57]. Furthermore, the plethora of different types of equipment used in laboratories makes conditions extremely difficult to reproduce, and separations are highly dependent on the skills of the operator. While UTC is very useful in research and has been considered as a “gold standard technique” [20] for the separation of lipoproteins and HDL subpopulation, it is not considered practical for routine analytical measurement (Table 5).

3.6. High Performance Liquid Chromatography

HPLC is an analytical and preparative method for classifying and quantifying lipoproteins according to size [62] (Table 2). In this method, lipoproteins separated by permeation columns (exclusion chromatography), the lipid components (mainly cholesterol and triglycerides) are detected enzymatically. Various columns containing nonporous polymer-based gels are used for separation of major classes of human lipoproteins in serum and plasma [63]. For lipoprotein analysis, a Superose 6 column is most frequently used [36, 64–66]. Lipoprotein separation using HPLC is divided broadly into two categories: HPLC with a gel-filtration column and HPLC with an anion-exchange column (Table 2). Both methods can determine the lipid levels of fractionated
serum lipoproteins of small amounts (~10 μl) within 30 min. The gel-filtration HPLC method determines the lipid levels of lipoprotein fractions by Gaussian approximation [67]. The HPLC method with an anion-exchange column elutes lipoproteins based on the ion intensity of the lipoprotein particle surface and its hydrophobic properties, and determines the cholesterol levels of separated lipoproteins without overlapping lipoprotein fractions. This method provides lipoprotein separation and larger-sized lipoproteins are eluted earlier (chylomicron, VLDL, IDL, LDL and HDL respectively). HPLC can be contaminated by plasma proteins that co-elute with HDL, especially apoA-I. Assays of antioxidant capacity of HDL involve: inflammatory index and monocyte chemotactic assay. Paraoxonase activity and HDL associated myeloperoxidase in vitro assays. Assays for the endothelial effects of HDL on endothelial NO and superoxide production and endothelial repair capacity were also discussed.

HDL–LCAT functional assay	Figure
• LCAT mass: exogenous activity [65,66,119]	6
• LCAT fractional esterification rate: endogenous activity [113,114]	7

Cholesterol efflux assays
- Measure of cholesterol efflux [130]
- Fluorescence efflux assay using BODIPY–cholesterol [137,138]

Non-radioactive assays for cholesterol exchange into lipid poor apoA-I
- Fluorescent apoA-I assay [198,199]
- TR-FRET version [140]
- Spin-label electron magnetic resonance [142]

Assays of HDL anti-inflammatory and functions of HDL
- MCP1 production: inflammatory index [145,146,153]
- Monocyte chemotactic assay [144]

Assays of antioxidant functions of HDL
- Cell free assay [151–153]
- HDL associated PON1 assays [146,156,157]
- HDL associated MPO assays [12,141]

Vascular endothelial cell function and HDL
- NO [10,158,169–171]
- eNOS [13,168,172]
- ICAM/VCAM [13]
- Endothelial cell [13]

3.7. Non-denaturing polyacrylamide gradient gel electrophoresis (ND-PAGGE)

ND-PAGGE was the first method used for size-based separation of lipoprotein subfractions (Table 2) that has been used as a standard laboratory technique for the past three decades [48,72]. This technique can identify various HDL subspecies separable on the basis of average diameter into 6 distinct subclasses [73]. Patterns of apoA-I containing HDL particles have been generated by ND-PAGGE and detected by apoA-I western blot or radioimmunodetection of apoA-I [20,73]. Accordingly, a graphical representation of apoA-I containing HDL particles in the plasma is shown in Fig. 1B. Although ND-PAGGE is considered a sensitive and reproducible approach for quantifying the size distribution of HDL subpopulations in conjunction with automated density [74,75], overall experience shows little additional benefit when compared with the more standard measurement of HDL-C [48]. Data for pre-β1 and HDL2 species from this method showed a significant linear correlation [73] when associated with immunodetection method of 2D-PAGGE. However, this method is labor intensive and standardization between laboratories is relatively poor, even when using commercially available pre-cast gels, limiting its broad application [76].

Table 3

HDL functional assay	Figure
• LCAT mass: exogenous activity [65,66,119]	6
• LCAT fractional esterification rate: endogenous activity [113,114]	7

Cholesterol efflux assays
- Measure of cholesterol efflux [130] 8
- Fluorescence efflux assay using BODIPY–cholesterol [137,138] 8

Non-radioactive assays for cholesterol exchange into lipid poor apoA-I 12
- Fluorescent apoA-I assay [198,199] 12
- TR-FRET version [140] 12
- Spin-label electron magnetic resonance [142] 12

Assays of HDL anti-inflammatory and functions of HDL
- MCP1 production: inflammatory index [145,146,153] 13
- Monocyte chemotactic assay [144] 14

Assays of antioxidant functions of HDL
- Cell free assay [151–153] 15
- HDL associated PON1 assays [146,156,157] 16
- HDL associated MPO assays [12,141] 17

Vascular endothelial cell function and HDL
- NO [10,158,169–171] 18
- eNOS [13,168,172] 19
- ICAM/VCAM [13] 20
- Endothelial cell [13] 21

3.8. Two-dimensional gradient gel electrophoresis (2D-PAGGE)

2D-PAGGE is another technique used to separate HDL based on their charge:mass ratio [74]. This method combines ND-PAGGE with agarose gel electrophoresis, which used surface charge density in the first dimension and particle size in the second dimension. Most human HDL particles in plasma are α–HDL observed as an α mobility by gel electrophoresis, or preβ–HDL having preβ electrophoretic mobility by gel electrophoresis [77]. Asztalos et al., by using antibodies to visualize individual protein migration pattern in a native 2D-PAGGE, found apoA-I in at least 11 distinct spots representing various species [74, 78]. Accordingly, a model of HDL subclasses was developed (Fig. 2). Analogous to ND-PAGGE, this method is able to quantify HDL populations in conjunction with automated densitometry for further analysis [75]. The two major HDL α–migrating species are usually described as HDLα (8.0 nm) and HDLβ (9.2 nm) [73]. HDL subclasses have various nomenclatures, which depend on the HDL separation methods (Fig. 2). As a result, a new HDL nomenclature and classification based on size was recently proposed [20]. The 2D-PAGGE analytical assay describes several novel variants of HDL (Table 5). 2D-PAGGE quantifies preβ-1–HDL [22,79,80], but this technique does not correlate precisely with sandwich ELISA designed and may overestimate preβ-1 concentrations in plasma [81]. A variant of this method, using minigels and chemiluminescence has been recently described [6].

Table 5

Determination of HDL components (proteomics and lipidomics)
Formal proteomic analyses of HDL based on the recognition that HDL contains many proteins, which are performed by using various MS techniques. Once HDL is purified, the wider mass spectrometric technologies that have been employed to directly mapping the HDL proteome include SELDI-TOF, MALDI-TOF, and ESI. Shut gun HDL lipidomic assays all used MS and involve direct/indirect infusion approach. Direct infusion of crude lipid extract into MS includes shotgun approaches: PSI-MS/MS, ESI-MS/MS, and most recently MALDI (QIT)-TOF-MS/MS. Indirect infusion assay separation of lipid species by LC–MS approaches uses two different LC strategies, LC coupled to ESI-MS (LC–MS) or MALDI-MS.

Lipidomic	Shot gun: direct infusion
LC–ESI–MS [196]	ESI–MS–MS [192,194]

Proteomic	Shut gun
LC–MS/MS based MALDI–TOF [152]	LC–MS/MS based SELDI–TOF [178]
Laser desorption ionization approaches	LC–MS/MS ESI [200,201]

Lipidomic	Shot gun: direct infusion
MALDI (QIT)-TOF-MS/MS [187,196]	Triple quadrupole–MRM–MS [8,195]
3.9. Capillary isotachophoresis (cITP)

Analytical free flow capillary isotachophoresis (cITP) is a technique that separates plasma lipoproteins into subfractions according to their electrophoretic charge, and was originally developed by Bottcher et al. [82] and Schmitz et al. [83]. Capillary isotachophoresis is based on the specific staining of lipoproteins with the fluorescent lipophilic dye before separation [83]. This method can separate plasma lipoproteins into 3 major HDL subfractions (fast f): only α-migrating HDL, intermediate (i): HDL particles rich in cholesterol, apoA-II, apoE and apoC, and slow migrating (s) HDL: consisted of both α and preβ-migrating HDL) according to their electrophoretic mobilities that can be determined as peak areas relative to an internal marker [83]. Also, this technique can separate charge based LDL subfractions in (fast, slow and minor) with a drop of plasma and within minutes [84]. This technique is reported in CAD clinical trial testing drugs that raise HDL-C levels [85,86], or in evaluating mechanism of apoA-I mimetic peptides in plasma [87,88] or also in some clinical laboratories as routine analytical assay [82]. Importantly, in patient with hypercholesterolemia the charge-modified LDL subfraction as determined by cITP (fLDL) subfraction is suggested as a possible potential useful biomarker for the risk of CAD [89]. Moreover, in lipid lowering drug therapy, fLDL was effectively reduced by low doses pravastatin and simvastatin [86]. More studies are needed to demonstrate whether cITP (fLDL) is related to clinical outcome and could be a target for therapy [90]. This method is highly sensitive and only a very small amount of sample is needed for the analysis. Unfortunately, the cITP technique has limited potential of quantification since the amount and fluorescence yield of the dye incorporated into lipoproteins is likely to vary with in-between lipoprotein subpopulations due to inter-individual variations in their lipid content [89]. In addition the cITP method determines not only the amount of total lipids but also the composition (mass) of the individual lipoproteins [91]. However, evidence is still lacking because cITP technique is limited in that the instruments for performing the cITP analysis are expensive and not readily available. Moreover, high-throughput analysis is limited by the nature of lipoproteins that they are susceptible to modification [86] (Table 5).

Table 5

Summary.
Assays of HDL in human: advantages and limitations. The general principle and choice of isolation/fractionation procedure are listed. Effects and efficiencies of these various biomarkers are presented.

Method	Subfractions based separation	Advantages	Limitations
Precipitation	ApoB depleted serum	Cost, clinical applicability and high throughput	Proteins and apoe fraction confounders in HDL supernatant
Density gradient UTC	Particle density	Gold standard for lipoprotein separation	High ionic strength and centrifugal force, shear forces and salt concentrations that may cause minimal structural disruption to the particles
Single step UTC: VAP assay	Particle density	Fast and use from whole plasma just one single predefined, narrow density ranges	Some HDL individual subpopulations cannot be isolated
Gradient gel ND-PAGGE	Size based separation	Sensitive approach for quantifying the size distribution of HDL subpopulations	— Non-preparative technique
			— Unable to separate preβ-2 populations, and applied in specialized laboratory (Fig. 1)
			— A few data use this technique to study HDL subclasses in predicting CVD
			— Precast 4% to 30% or 3% to 30% gels are not commercially available or are unreliable [73,74]
2D-PAGE	Surface charge and mass	— Allows for the accurate diagnosis of disorders of HDL metabolism	— Consists of several variants in the protocol, and is applied in specialized laboratory
		— Reproducible, standardized	— Provides little information on other HDL species as apoa-IV
Capillary isotachophoresis	Electrophoretic based charge separation	— Provided information about CVD	— Expensive, limited high-throughput analysis [86]
HPLC	HDL particle size	Rapid, accurate, reproducible separation that does not affect lipoprotein composition	— Applied more in specialized or clinical laboratories
NMR spectroscopy	NMR signal of purified HDL	— No prior sample manipulation	— Albumin coelution with HDL fractions
Cholesterol efflux	HDL cholesterol removing capacity from plasma/serum	— Suitable for use in high-workload	— Unable to provide HDL chemical compositional information
		— Efficiently quantifies HDL and lipoproteins	— All lipoprotein classes are not measured with the same degree of accuracy
		— Gold standard [125]	— It’s not reported whether preβ-1 HDL subclass is detected
		— Inversely associated with CAD and carotid atherosclerosis [126,128]	— Limited evidence for CVD risk prediction beyond HDL-C
LCAT assay	Fractional esterification rate	Rapid, cost and reproducible	— Represent only a small fraction of macrophage RCT
HDL inflammatory	In vivo analysis of HDL to suppress LDL-induced chemotaxis	Explore HDL anti-inflammatory function	— Lack of standardization, and paradoxal association with CAD [132]
HDL antioxidant	Assay of HDL antioxidant enzymes (PON1, MOP, cell free assay)	Explore HDL anti-oxidation function	— Low throughput and not able to assess the terminal components of the RCT pathway
Endothelial assay	— Generation of NO, eNOS — ICAM/VCAM, MCP1, EPC	Quantify protective HDL endothelial properties	— Require standardization and more larger studies are in need to provide CVD prediction
Proteomic	HDL protein content	Identify diversity of HDL proteins and peptides	— May not measure the initial esterification rate and may not reflect the turnover of cholesterol [113]
Lipidomic assay	HDL lipid species content	Identify diversity of HDL lipidome	Lack reproducibility and low throughput
NMR employs the characteristic lipid methyl signal broadcast by HDL subclasses whose individual amplitude can be accurately measured. This technique uses proton (\(1^H\), \(13^C\) and \(32^P\)) spectroscopy to directly estimate the different sizes of lipoprotein subfractions rapidly [92]. NMR is widely used in specialty lipid reference laboratories [31, 92]. Using NMR, HDL has been classified into large (9.4–14 nm), medium (8.2–9.4 nm) and small (7.3–8.2 nm) HDL subclasses (Fig. 2) [20, 48, 74]. Current NMR methods allow for the separation of 26 subpopulations of HDL [9]. NMR analysis is precise for the determination and quantification of lipoprotein subclass[93].

Fig. 1. Separation of HDL species by ND-PAGGE. The left panel (A) shows the apoA-I containing HDL subpopulations separated by ND-PAGGE (5–35%) of a normolipidemic, healthy male subject (left) and healthy woman subject (right). Plasma samples were transferred to nitrocellulose membrane, and probed by radiolabeled-I\(^{125}\) apoA-I radio imaging. Molecular markers are indicated on the gel. Panel (B) is a schematic diagram of all the apoA-I containing α-HDL species.

Fig. 2. Separation of HDL species by 2D-PAGGE and techniques for measurement. Panel (A) shows the apoA-I containing HDL subpopulations separated by 2D-PAGGE (3–24%) of a normolipidemic, healthy male subject (left) and healthy woman subject (right). Plasma samples were transferred to nitrocellulose membrane, and probed by radiolabeled-I\(^{125}\) apoA-I radio imaging. Molecular markers are indicated on the gel. Panel (B) is a schematic diagram of all the apoA-I containing HDL particles. Nomenclatures of HDL subclasses determined by different methods are shown: [1] ND-PAGGE and 2D-PAGGE (mass: charge); [2] UTC (density) separation; and [3] NMR (size), [4] FPLC (size). The HDL particle images were created by using the Autodesk 3ds Max 2014 software.
with 2D gel parameters, and the clinical utility of NMR remains uncertain [96]. Whether preβ-1 HDL is detected by NMR [22] has not been reported. The most important limitation of this method is the requirement for specialized equipment not found in routine clinical laboratories.

4. HDL subclass measurement and CVD outcomes

Clinical and epidemiological studies have come to discordant conclusions on the prognostic value of HDL subclasses over the simple measurement of HDL-C to predict CVD risk [2,13,16,47,95,97]. A key issue has been the identification of atheroprotective HDL. Multiple studies showed that the levels of HDL2, as assessed by UCT or gradient gel electrophoresis [24,25,72], are strongly associated with CHD independently of HDL-C. Mounting evidence suggests that HDL3 particles may not be protected from atherosclerosis [110]. The well described value over HDL-C measurement. This controversy has gained some HDL particles have provided only and sometimes marginal incremental controversy remains as to the clinical usefulness of HDL sub-species [109].

5. HDL functional assays

HDL function has become an area of interest, as descriptive tests of HDL particles have provided only and sometimes marginal incremental value over HDL-C measurement. This controversy has gained some support in CETP deficient subjects who, despite elevated HDL-C levels, may not be protected from atherosclerosis [110]. The well described apoA1 muta mutation appears to confer protection against atherosclerosis [111]. Despite extreme reduction in HDL-C, less than 50% of Tangier patients develop CAD before age 40 [112]. Thus, a better understanding of HDL functionality may shed light on the pleiotropic cardio-protective effects of HDL.

5.1. Lecithin:cholesterol acyltransferase (LCAT) assay

LCAT mediates the esterification of HDL cholesterol and favors the maintenance of a gradient of free cholesterol between the plasma membrane and HDL particles. An assay for endogenous LCAT activity: fractional esterification rate (FER) measures the esterification of radiolabeled free cholesterol that has been equilibrated with HDL (Table 3) [113,114]. The FER is calculated as the ratio of radioactive unesterified to radioactive esterified cholesterol per unit of time and is expressed in (%/h) [115,116]. A variant of this assay is based on the estimation of the radioactivity of free and esterified cholesterol in plasma depleted of apoB [73]. Although the FER reflects particle size distribution in HDL and LDL [48,113], and is dependent on the metabolic milieu and distribution of lipoproteins [48]. The FER may not accurately reflect the turnover of cholesterol since the preincubation and equilibration phases may alter the substrate properties of the plasma and the radiolabeled exogenous cholesterol may not be in complete equilibrium with endogenous cholesterol [117]. The use of reconstituted HDL particles (proteoliposome) allows a more precise measure of LCAT activity [118] (Table 3). Using reconstituted HDL, LCAT activity is determined by the amount of cholesterol ester (CE) incorporated into apoA-I-containing proteoliposomes, as a percent of CE divided by total cholesterol [65,66]. This test correlated best with measures of LCAT cholesterol esterification rate [48,117]. The proteoliposome substrate used in this assay is relatively easy to make and can be stored frozen for a prolonged period of time, without loss of LCAT activation [119]. Calabresi et al. showed that defective LCAT activity does not result in enhanced atherosclerosis, despite reduced HDL-C levels [120]. Adding to the controversy, LCAT activity from patients undergoing angiography was found to best predict the presence of coronary atherosclerotic lesions [114]. These findings challenge the notion that LCAT is required for effective atheroprotection and suggest that increasing LCAT activity may not be a promising strategy for reducing cardiovascular risk [121].

5.2. HDL cholesterol efflux assay

HDL removes cholesterol from cells through ABCA1, including macrophages, and this is considered to represent a major atheroprotective function of HDL particles as shown in vivo [124]. In humans, differences in macrophage-specific cholesterol efflux are predominantly due to ABCA1-mediated cholesterol efflux, not to the other transporters [37]. Thus, examination of ABCA1 mediated cholesterol efflux is a plausible target to quantify efflux capacity that could provide great relevance in assessing the risk of atherosclerosis. The mechanisms involved in efflux have attracted a great deal of investigation especially following the recent neutral clinical study data of the Treatment of HDL to Reduce the Incidence of Vascular Events (THRIVE) study [16]. Cholesterol efflux is regulated by various intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1 (SR-B1). The radioactive assay of cellular cholesterol efflux that explores ABCA1 function is proposed as a “gold standard” that measures the efflux of cholesterol to lipid poor apoA-I [125]. ABCA1 uses apoA-I as the initial cholesterol acceptor and represents the rate-limiting step in the reverse cholesterol transport pathway [99, 126–129]. The cellular cholesterol efflux assay aims to quantify the rate of cholesterol efflux from cultured cells to an acceptor particle or to plasma (Table 3). Many variations exist and attempts are made to standardize this assay, by posting protocol on-line [130]. Protocols differ by the type of cell, acceptor milieu, efflux times, and the specificity of the transporter examined [96,116,126,129]. Briefly, cholesterol efflux is calculated as the percentage of the cellular (3H) or (14C)-cholesterol that appears in the media onto an acceptor per unit of time [131]. A link between the in vitro efflux of cholesterol from macrophages and atherosclerosis has recently been established by clinical studies demonstrating a negative correlation between cholesterol efflux from J774 mouse cells and coronary artery disease (CAD) or carotid atherosclerosis independently of HDL-C mass [18,126,128,129]. It remains to be determined if the HDL cholesterol efflux measurement correlates with clinical outcomes [132,133]. A recent population-based cohort established inverse association between efflux capacity and the incidence of CAD that persisted after adjustment for traditional risk factors, HDL-C levels and HDL particle concentration [18]; these data should influence future study designs of HDL-modifying drugs.

In fact, the association between enhanced efflux and increase in the incidence of CVD is still fueling discussions as to the pertinence of this biomarker of HDL function. Regardless of the cellular model, it must be emphasized that the use of apoB-depleted serum neglects the contribution of apoB lipoproteins to the cholesterol efflux capacity [134]. Moreover, macrophages can efflux cholesterol not only onto lipid free apoA-I, but also to apoE, and onto nascent HDL particles via the ABCA1 transporter, or onto mature spherical HDL particles via the ABCG1 or SR-BI transporters. These confounders could strongly influence cholesterol efflux capacity of serum independently of HDL composition and functionality. However, it seems paradoxical that lipid free apoA-I would play a similar role in vivo, because lipid free apoA-I state is not
5.3. Non-radioactive assays for cholesterol exchange onto lipid poor apoA-I

These approaches focused on the conformational change in apoA-I protein in HDL biogenesis and remodeling. These techniques quantify HDL-apoA-I exchange between lipid associated and lipid free states, using time-resolved fluorescence resonance energy transfer (TR-FRET) or a discontinuous assay that uses the label-free Epic platform [140]. The TR-FRET assay employs HiLyte Fluor 647-labeled apoA-I with N-terminal biotin bound to streptavidin-terbium. When measured, the increase in the ratio of lipids to apoA-I. In the Epic assay, biotinylated apoA-I was captured on a streptavidin-coated biosensor. Measured resonant wavelength shift was proportional to the amount of lipids associated with apoA-I, indicating that the assay senses apoA-I lipidation [140]. However, potential background fluorescence emission was observed when using fluorescent probe [140,141]. The main disadvantage is that this assay appears to be less sensitive than the approach using FRET [140]. Moreover, the inherent fluorescence of blood plasma and serum limits the clinical utility of this approach to quantifying HDL-apoA-I exchange [140,141]. A new assay that employs a site-directed spin-label electron paramagnetic resonance was recently described [142], or by sensing hydrophobicity change in POLARIC-labeled apoA-I [139]. These techniques show promise but remain to be validated in large population-based or clinical study samples. [137].

5.4. HDL anti-inflammatory assay

The use of proteomics to probe the complex heterogeneity of HDL has helped uncover over 200 different proteins that reside on HDL particles. Of these, more than two dozen are related to the immune response [143] (Table 3). The anti-inflammatory properties of HDL...
have been described for some times and can be assessed by several techniques. The monocyte chemotaxis assay assesses the ability of HDL to inhibit LDL oxidation and monocyte chemoattractant protein 1 (MCP1) expression through the HDL inflammatory index in the presence or absence of HDL [144–146]. A new approach for quantifying the anti-inflammatory response to HDL involves measuring the cytokine response in lipopolysaccharide-activated macrophages [133,147]. Some studies suggest that the HDL-inflammatory index may constitute an improved biomarker in assessing CVD risk over HDL-C levels [38,145,148]. The limited reproducibility of these assays casts doubt on their clinical utility. HDL also suppresses in vitro type I interferon response of macrophages induced by lipopolysaccharide [149]. To date, there has been limited application of these assays outside the research laboratory.

5.5. HDL antioxidant capacity assay

HDL particles contain several enzymes, including phospholipase A2, glutathione peroxidase, paraoxonase-1 (PON1) and myeloperoxidase (MPO) [5,11,20,150]. These enzymes prevent or break down oxidized phospholipids, which prevent the formation of oxidized LDL particles [12,98,146]. Assays of HDL oxidation that are discussed include a variety of specific assays (Table 4).

1) Cell free assays of HDL oxidation. The cell-free assay examines the effect of HDL on the production of reactive oxygen species after oxidation and conversion of dichlorodihydrofluorescein diacetate (DCF-DA) to fluorescent signal DCF (2′,7′-dichlorodihydrofluorescein) [151]. Direct measurement of ROS after exposure to HDL is reflected by the increased DCF fluorescence, which in turn reflects the oxidative properties of different types of HDL particles that vary in their capacity to engage intrinsic redox cycling [151]. Although this assay yielded data that correlated with a cell-based assay [151,152], its use is limited by the short shelf life of DCF-DA and interference related to the assay’s sensitivity to hemolysis and the presence of metal chelators [22]. A new fluorometric method based on the oxidation of dihydrothromadine 123 (DHR) by HDL was developed [153]. This test assesses the intrinsic ability of HDL to be oxidized by measuring increasing fluorescence due to DHR oxidation over time. Based on this, the HDL oxidant/antioxidant index was used as the rate of DHR or rhodamine oxidation [154]. The direct comparison of this measurement correlated well with the results obtained by using a validated cell-based assay [152,153], However, this assay needs validation to large-scale clinical studies.

2) Paraoxonase (PON1) measurement. PON1 activity can be measured by spectrophotometric methods that can be automated [155]. Serum arylesterase and paraoxonase activities are independently measured respectively by UV spectrophotometry using phenyl acetate (at 270 nm) or paraoxon (at 405 nm) as substrates [156]. Most assays are based on monitoring p-nitrophenol formation from the substrate paraoxon using phenyl acetate or paraoxon as substrates [157]. This assay is based on the chemiluminescence emitted by dichlorofluorescein that quantifies the antioxidation activity of HDL. Increasing evidence from both animal and human studies links low PON1 activity (but increased PON1 mass) to the increased likelihood of CVD [158,159]. A PON1 activity method measurement has been proposed [146] as a biomarker of HDL functionality in experimental models and in therapeutic interventions in humans (Table 3). However, the correlation of PON1 activity with HDL-C levels in plasma is controversial [160]. Furthermore, PON1 activity was used in apoA-I mimetic drug studies as an indicator of the improvement of HDL antioxidant properties [153]. This enzyme is a promised biomarker of HDL function and cardiovascular risk independently of HDL-C levels. However, various factors should be considered when estimating PON1 activity, including its cardioprotective properties, as well as age, gender, lifestyle, medical conditions and pharmacological agent [161].

3) Myeloperoxidase (MPO) activity measurement. MPO-mediated oxidation is proposed for measuring HDL oxidation (Table 3). Two MPO oxidation products, 3-chlorotyrosine and 3-nitrotyrosine, are quantified by tandem mass spectrometry in plasma and HDL [12]. By using this approach, phagocyte-derived MPO oxidation products might be useful indicators of the risk of CVD [162]. MPO activity can be analyzed by measuring MPO mass in plasma with an automated chemiluminescent microparticle immunoassay [118]. Recent data showed that both MPO and PON1 interact at the same site on HDL, which influences oxidant stress and lipid peroxidation during inflammation [11,163]. Data among subjects with CVD shows that increased MPO activity was associated with a decrease in HDL functional measures [164]. In this context it is relevant that plasma MPO is elevated in ACS patients [118]. Increasing evidence suggests that MPO is causally linked to atherosclerosis and its measurement may improve CVD risk estimation [141,150]. Recent studies highlighted the utility of the MPO assay as a biomarker of CVD risk in patients with systemic inflammation [164,165]. Whether oxidized HDL-proteins by MPO activity are a good marker of dysfunctional HDL and CVD risk remain to be validated in large-scale studies.

5.6. Vascular endothelial eNOS assay

HDL particles and HDL-derived cholesterol have been shown to increase the expression and stability of nitric oxide synthase (eNOS) in vascular endothelial cells (Table 3). These properties of HDL can be examined by measuring NO production by fluorescence in cell culture systems [166]. HDL effects on eNOS activation can be measured by quantifying the ratio of ser1177/thr495 phosphorylation [166–168]. Data from this assay have consistently demonstrated the ability of HDL to modulate eNOS expression and NO production [10,11,158]. An automated method to measure NO production, peripheral tonometry (Endo-PAT), is available [169]. A close correlation exists between the Endo-PAT method and assay of HDL mediated eNOS phosphorylation in healthy children [167]. The validity of this approach is critically dependent on the timing of the measurement as NO dissipates rapidly [169]. Another approach is to measure brachial artery flow-mediated dilatation by using B-mode carotid ultrasound [170,171]. A test based on electron spin resonance spectroscopy showed a reduced ability of HDL to stimulate endothelial NO production in patients with advanced CHD [13,172]. This measure is difficult to apply routinely in the clinic because it is subject to high individual variation. The assessment of the endothelial function in the clinic is limited by the complex analytical methods and a high degree of inter- and intra-individual variability.

5.7. Endothelial ICAM/VCAM assay

The expression of intercellular adhesion molecules (ICAMs) and vascular cell adhesion molecule-1 (VCAM-1) that forms vascular endothelial cell in response to an inflammatory stimulus (via nuclear factor κB – NF-κB) can be modulated by HDL [13,173] (Table 3). The peptides can be measured in plasma by ELISA or gel separation techniques [13,168] and provide a biomarker of vascular inflammatory state. The effect of HDL on endothelial progenitor cells (EPC) had been examined in an in-vivo system of carotid denudation in the athymic nude mouse. In this system, injured (electrical endothelial denudation) carotid arteries are examined for EPC-mediated endothelial repair (Fig. 4) [174,175]. The re-endothelialized area can be measured by computer-assisted morphometric analysis. This model has been shown to allow accurate quantification of re-endothelialization [13]. Clinical studies using this method have shown the restoration of endothelial-protective properties of HDL in patient with 2 diabetes mellitus under extended-release niacin therapy [13]. This is a fertile area of research of the biological
8. Summary and perspectives

Various methodologies have been developed for isolation of HDL subfractions, without establishing uniform characterization of the subfraction of HDL (Table 5). The potential of "omics" approaches may provide additional insight into the assessment of HDL particles with specific functions, and might be important in unraveling the controversies surrounding HDL-based therapies. This review highlights the lack of...
agreement between methods, especially with specimens from patient with CVD. Each technique of HDL quantification raises inherent incompatibilities in the nomenclature of the separated HDL subclasses (Fig. 2). It is critical to develop new metrics to determine whether HDL is cardioprotective in humans. Attempts to harmonize the definition of HDL are an important first step [20]. Providing better biomarkers of HDL function would be important in understanding the current clinical equipoise and the neutrality of clinical benefit for many HDL-C raising therapies.

Transparency document

The Transparency document associated with this article can be found, in the online version.

Acknowledgments

Supported by grant MOP 15042 from the Canadian Institutes of Health Research. JG holds the McGill-Novartis Chair at McGill University, Anouar Hafiane is supported by a salary award from the Fonds de Recherche du Québec – Santé.

References

[1] S.M. Boekholdt, B.J.Arsenault, G.K. Hovingh, S. Mora, T.R. Pedersen, J.C. Larosa, K.M. McGinty, P. Arsenault, A.D. Demico, A.M. Tonkin, et al., Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis, Circulation 128 (2013) 1504–1512.

[2] P.P. Toth, P.J. Barter, R.S. Rosenson, W.E. Boden, M.J. Chapman, M. Cuchel, R.B. D'Agostino Sr., M.H. Davidson, W.S. Davidson, J.W. Heinecke, et al., High-density lipoproteins: a consensus statement from the National Lipid Association, J. Clin. Lipidol. 7 (2013) 484–525.

[3] B. Voight, G.M. Pelosi, M. Orho-Melander, R. Frikke-Schmidt, M. Barbalic, M.K. Jensen, G. Hindsy, H. Holm, E.L. Ding, T. Johnson, et al., Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study, Lancet 380 (2012) 572–580.

[4] D.J. Rader, Spotlight on HDL biology: new insights in metabolism, function, and translation, Cardiovasc. Res. 103 (2014) 337–340.

[5] A. Hafiane, J. Genest, HDL, atherosclerosis, and emerging therapies, Cholesterol 2013 (2013) 891403.

[6] L.A. Freeman, Native-native 2D gel electrophoresis for HDL subpopulation analysis, Methods Mol. Biol. 1027 (2013) 353–367.

[7] M.G. Sorci-Thomas, J.S. Owen, B. Fulp, S. Bhat, X. Zhu, J.S. Parks, D. Shah, W.G. Nelson, Mass spectrometric immunoassay and MRM as targeted MS-based quantification of HDL cholesterol and apolipoprotein A-I containing particles and in plasma specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 796–801.

[8] J.H. Contois, A.L. Albert, R.A. Nguyen, Immunoprecipitation of apolipoprotein B-containing lipoproteins, J. Lipid Res. 19 (1978) 1379–1388.

[9] J.H. Contois, A.L. Albert, R.A. Nguyen, Immunoprecipitation of apolipoprotein B-containing lipoproteins for isolation of HDL particles with cardiovascular disease and diabetes, Proteomics Clin. Appl. 7 (2013) 528–540.

[10] A. Kontush, M. Lhonneur, M.J. Chapman, Unraveling the complexities of the HDL lipidome, J. Lipid Res. 54 (2013) 2950–2963.

[11] C. Besler, T.F. Luscher, U. Landmesser, Molecular mechanisms of vascular effects of high-density lipoprotein: alterations in cardiovascular disease, EMBO Mol. Med. 4 (2012) 251–268.

[12] M. Rivuato, U. Landmesser, High density lipoprotein and endothelial functions: mechanistic insights and alterations in cardiovascular disease, J. Lipid Res. 54 (2013) 3227–3243.

[13] Y. Huang, Z. Wu, M. Rivuato, S. Gao, B.S. Levison, X. Gu, X. Fu, M.A. Wagner, C. Besler, G. Genton, et al., Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex, J. Clin. Invest. 123 (2013) 3815–3828.

[14] S.A. Sorrentino, C. Besler, L. Rohrer, M. Meyer, K. Heinrich, F.H. Bahnmann, M. Mueller, T. Horvath, C. Doerries, M. Heinemann, et al., Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy, Circulation 121 (2010) 110–122.

[15] P. Barter, Lessons learned from the Investigation of Lipid Level Management to Understand its Impact on Atherosclerotic Events (ILLUMINATE) trial, Am. J. Cardiol. 104 (2009) 106–158.

[16] W.A. van der Steeg, I. Holme, S.M. Boekholdt, M.L. Larsen, C. Lindahl, E.S. Stroes, M.J. Tikkanen, N. Wareham, O. Faergeman, A.G. Olsson, et al., High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein A-I: signifi-
cance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies, J. Am. Coll. Cardiol. 51 (2008) 634–642.

[17] HFS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER nias/minor/apparent: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment, Eur. Heart J. 34 (2013) 1279–1291.

[18] E.J. Schaefer, Effects of cholesteryl ester transfer protein inhibitors on human lipo-
protein metabolism: why have they failed in lowering coronary heart disease risk? J. Clin. Lipidol. 24 (2013) 270–274.

[19] A. Rahaghi, A. Khera, J.D. Berry, E.G. Givens, C.R. Ayers, K.E. Wedin, J.S. Neeland, I.S. Yuhanna, D.R. Rader, J.A. de Lemos, et al., HDL cholesterol efflux capacity and inci-
dent cardiovascular events, N. Engl. J. Med. 371 (2014) 2383–2393.

[20] R.S. Rosenson, Functional quantification of HDL and beyond static measures for risk assessment, Cardiovasc. Drugs Ther. 24 (2010) 71–75.

[21] K. Marques, S. Zueck, D. Barc, M. De Buyzere, E. Ritzschel, D. De Bacquer, Unanswered questions in including HDL-cholesterol in the cardiovascular risk assessment model: is it still on our side? Atherosclerosis 226 (2013) 296–298.

100. S. Yu, J.W. Yarnell, C.H. Bolton, High density lipoprotein subfractions and the risk of coronary heart disease: 9-years follow-up in the Caerphilly Study, Atherosclerosis 166 (2003) 331–338.

101. D.S. Kim, A.A. Burt, E.A. Rosenthal, J.E. Ranchalis, T. Matsukawa, C.F. Furugstad, J.J. Albers, C.P. Jarvik, LDL-3 is a superior predictor of cardiac artery disease in a case–control cohort of 1725 participants, J. Am. Heart Assoc. 3 (2014) e000902.

102. P.T. Williams, D.E. Feldman, Prospective study of coronary heart disease vs. HDL2, HDL3, and other lipoproteins in Gofman's Livermore Cohort, Atherosclerosis 214 (2011) 196–202.

103. P.T. Williams, Fifty-year three follow-up of coronary heart disease versus HDL2 and other lipoproteins in Gofman's Cohort, J. Lipid Res. 53 (2012) 266–272.

104. J.P. Green, D. Collins, D.S. Freedman, I. Shalahan, J.E. Schafer, J.R. Menzies, H.E. Bloomfield, S.J. Robbins, Low-density lipoprotein and high-density lipoprotein particle subclass predicts coronary heart disease and is favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial, Circulation 113 (2006) 1556–1563.

105. C.M. Ballantyne, M. Miller, E.J. Niesor, T. Burgess, D. Kallend, E.A. Stein, Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study, Am. Heart J. 162 (2011) 515–525 (521 e511–513).

106. K.J. Swiger, S.S. Martin, M.J. Blaha, P.P. Thot, K. Nasir, E.D. Michos, G. Gerstenblith, R.S. Blumenthal, S.R. Jones, Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: the very large database of LDL (VLDL-108), J. Am. Coll. Cardiol. 63 (2014) 1008051.

107. A.A. Sethi, M. Sampson, R. Warnick, N. Muniz, B. Vaisman, B.G. Nordestgaard, A.C.M. Ballantyne, M. Miller, E.J. Niesor, T. Burgess, D. Kallend, E.A. Stein, Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high-density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose-ranging study, Am. Heart J. 162 (2011) 515–525 (521 e511–513).

108. R.K. Schindhelm, L.P. van der Zwan, T. Teerlink, P.G. Scheffer, Myeloperoxidase: a novel oxidant that mediates the adverse effects of oxidized lipids, Circulation 107 (2003) 1731–1736.

109. B. Ibanez, C. Giannarelli, G. Cimmino, C.G. Santos-Gallego, M. Alique, A. Pinero, G. Vilahur, V. Fuster, L. Badimon, J.J. Badimon, Recombinant HDL(Milano) exerts greater anti-inflammatory properties and improves inflammatory human monocyte/macrophage activation and plasma lipoprotein metabolism, Circ. Res. 114 (2014) 124–142.

110. R.K. Schindhelm, L.P. van der Zwan, T. Teerlink, P.G. Scheffer, Myeloperoxidase: a novel oxidant that mediates the adverse effects of oxidized lipids, Circulation 107 (2003) 1731–1736.

111. T. Vaisar, S. Pennathur, P.S. Green, S.A. Gharib, A.N. Hoofnagle, M.C. Cheung, J. Byun, R. Mottahedeh, R. Dave, S.T. Reddy, et al., Inflammatory/antiinflammatory properties of HDL, J. Genest / BBA Clinical 3 (2015) 175–187.

112. R. Omura, K. Nagao, N. Kobayashi, K. Ueda, H. Saito, Direct detection of ABCA1-mediated cholesterol efflux using BODIPY-cholesterol, J. Lipid Res. 52 (2011) 2332–2340.

113. M. Denis, B. Haidar, M. Marcil, B. Bouvier, L. Krivonogov, J. Genest, Characterization of synthetic HDL using a novel fluorescent transporter A1. Potential implications for determining the structure of nascent high density lipoprotein particles, J. Biol. Chem. 279 (2004) 41529–41536.

114. C.R. White, L.E. Smythies, D.K. Crossman, M.N. Palgunachari, G.M. Anantharamaiah, S.T. Reddy, S. Hama, N. Kamranpour, G. Fonarow, G. Hough, S. Rahmani, R. Omura, K. Nagao, N. Kobayashi, K. Ueda, H. Saito, Direct detection of ABCA1-mediated cholesterol efflux using BODIPY-cholesterol, J. Lipid Res. 52 (2011) 2332–2340.

115. M. Denis, B. Haidar, M. Marcil, B. Bouvier, L. Krivonogov, J. Genest, Characterization of synthetic HDL using a novel fluorescent transporter A1. Potential implications for determining the structure of nascent high density lipoprotein particles, J. Biol. Chem. 279 (2004) 41529–41536.

116. A. Eckardstein, Tachometer for reverse cholesterol transport? J. Am. Heart Assoc. 1 (2012) e001723.

117. A. Ha, M. Dobiasova, L. Adler, T. Ohta, J. Frohlich, A.V. Cula, M. Cuchel, M. de la Llera-Moya, A. Rodrigues, M.F. Burke, K. Jafri, B.C. Fresh, J.A. Phillips, M.L. Muckavage, R.L. Wilensky, et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis, N. Engl. J. Med. 364 (2011) 127–135.

118. S. Yanamandra, P.G. Yancey, T.A. Ikizler, W.G. Jerome, R. Kaseda, B. Cox, A. Bian, A. Shintani, A.B. Fogo, M.F. Linton, et al., Dysfunctional high-density lipoprotein in patients on chronic hemodialysis, J. Am. Coll. Cardiol. 60 (2012) 2372–2379.

119. R.J. Doonan, A. Ha, L. Carl, J.P. Veinoit, J. Genest, S.S. Daskalopoulou, Cholesterol efflux capacity, cardiovascular events, and cerebrovascular atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 34 (2014) 921–926.

120. A. Ha, B. Jabor, I. Ruel, J. Jing, J. Genest, High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes, Am. J. Cardiol. 113 (2014) 1940–1941.

121. X.M. Li, W.H. Tang, M.K. Mosior, Y. Huang, Y. Wu, W. Matter, V. Gao, D. Schmitt, J.A. Didonato, E.A. Fisher, et al., Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks, Arterioscler. Thromb. Vasc. Biol. 33 (2013) 1969–1975.

122. A. Eckardstein, Tachometer for reverse cholesterol transport? J. Am. Heart Assoc. 1 (2012) e001723.

123. A. Ha, B. Jabor, I. Ruel, J. Jing, J. Genest, High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes, Am. J. Cardiol. 113 (2014) 1940–1941.

124. R.J. Doonan, A. Ha, L. Carl, J.P. Veinoit, J. Genest, S.S. Daskalopoulou, Cholesterol efflux capacity, cardiovascular events, and cerebrovascular atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 34 (2014) 921–926.

125. X.M. Li, W.H. Tang, M.K. Mosior, Y. Huang, Y. Wu, W. Matter, V. Gao, D. Schmitt, J.A. Didonato, E.A. Fisher, et al., Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks, Arterioscler. Thromb. Vasc. Biol. 33 (2013) 1969–1975.

126. A. Eckardstein, Tachometer for reverse cholesterol transport? J. Am. Heart Assoc. 1 (2012) e001723.

127. A. Ha, B. Jabor, I. Ruel, J. Jing, J. Genest, High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes, Am. J. Cardiol. 113 (2014) 1940–1941.

128. X.M. Li, W.H. Tang, M.K. Mosior, Y. Huang, Y. Wu, W. Matter, V. Gao, D. Schmitt, J.A. Didonato, E.A. Fisher, et al., Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks, Arterioscler. Thromb. Vasc. Biol. 33 (2013) 1969–1975.

129. A. Eckardstein, Tachometer for reverse cholesterol transport? J. Am. Heart Assoc. 1 (2012) e001723.

130. A. Ha, B. Jabor, I. Ruel, J. Jing, J. Genest, High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes, Am. J. Cardiol. 113 (2014) 1940–1941.
[152] T. Keledis, J.S. Currier, D. Huyhn, D. Meriwether, C. Charles-Schoeman, S.T. Reddy, A.M. Fogelman, M. Navab, O.O. Yang. A biochemical fluorescent method for assessing the oxidative properties of HDL, J. Lipid Res. 52 (2011) 2341–2351.

[153] CE. Watson, N. Weissbach, L. Kjens, S. Ayalasomayajula, Y. Zhang, I. Chang, M. Navab, S. Hama, G. Hough, S.T. Reddy, et al., Treatment of patients with cardiovascular disease with L-4f, an apo-A1 mimetic, did not improve select biomarkers of inflammation, J. Lipid Res. 51 (2010) 361–371.

[154] T. Keledis, S.T. Reddy, D. Huyhn, D. Meriwether, A.M. Fogelman, M. Navab, O.O. Yang. Effects of lipop–probe interactions in biochemical fluorescent methods that assess HDL redux activity, LipoLipid Health Dis. 11 (2012) 87.

[155] R.K. Brown, S.T. Kooy, G. Wilder, S. M. Taylor, S.C. Charles-Schoeman, M. T. M. T. Mesri, Accuracy and biological variation of human serum paraoxonase 1 activity and polymorphism (PON1) by kinetic enzyme assay, Clin. Chem. 53 (2007) 310–317.

[156] T. Bhattacharyya, S.J. Nichols, J.E. Topol, R. Zhang, Y. Yang, D. Schmitt, X. Fu, M. Shao, D.M. Brennan, S.G. Ellis, et al., Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic stress and cardiovascular risk, JAMA 299 (2008) 1265–1276.

[157] F. Yin, A. Lawal, J. Ricks, J.R. Fox, T. Larson, M. Wilhelm, V.M. Conraads, T. Kelesidis, J.S. Currier, D. Huynh, D. Meriwether, C. Charles-Schoeman, S.T. Reddy, A. Ha, T. Bhattacharyya, S.J. Nicholls, E.J. Topol, R. Zhang, X. Yang, D. Schmitt, X. Fu, M. Shao, D.M. Brennan, S.G. Ellis, et al., Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic stress and cardiovascular risk, JAMA 299 (2008) 1265–1276.

[158] C. Betesler, K. Heinrich, L. Rohrer, C. Doerries, M. Riitanto, D.M. Shi, A. Chron, K. Yonekawa, S. Stein, N. Schaefer, et al., Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease, J. Clin. Invest. 121 (2011) 2693–2708.

[159] A. Guggliucci, T. Menini, Paraoxonase 1 and HDL maturation, Clin Chim Acta 439 (2014) 8–13.

[160] A.E. Razavi, M. Ani, M. Pourfarzam, G.A. Naderi, Associations between high density lipoprotein mean particle size and serum paraoxonase-1 activity, J. Res. Med. Sci. 17 (2012) 1020–1024.

[161] H. Soran, N.N. Younis, V. Charlton-Menys, D. Purrington, Variation in paraoxonase-1 activity and atherosclerosis, Curr. Lipidol. 20 (2009) 265–274.

[162] B. Shao, C. Tang, A. Sinha, P.S. Mayer, G.D. Davenport, N. Brot, M.N. Oda, X.Q. Zhao, J.W. Heinecke, Human HDL with acetylated low density lipoprotein has impaired ABCAI cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase, Circ. Res. 114 (2014) 1733–1742.

[163] T.S. McMillen, J.W. Heinecke, R.C. LeBoeuf, Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice, Circulation 111 (2005) 2798–2804.

[164] C. Charles-Schoeman, Y.Y. Lee, V. Grijalva, S. Amjadi, J. FitzGerald, V.K. Ranganath, A.E. Razavi, M. Ani, M. Pourfarzam, G.A. Naderi, Associations between high density lipoprotein and inflammation, J. Lipid Res. 52 (2011) 2341–2351.

[165] T. Vaisar, Proteomics investigations of HDL: challenges and promise, Curr. Vasc. Med. 13 (2009) 65–72.

[166] T. Vaisar, J.W. Jukema, J.C. Kaski, T. Pluskal, S. Castillo, A. Villar-Briones, M. Oresic, MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profiles, Expert. Rev. Mol. Diagn. 11 (2011) 395.

[167] C. Koy, S. Miltik, E. Raptakis, C. Sutton, M. Resch, K. Tanaka, M.O. Glock, Matrix-assisted laser desorption/ionization–quadrupole ion trap time-of-flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by gel tryptic digestion of haptenol derivatives from human plasma proteomes, Proteomics 3 (2003) 851–858.

[168] B. Simons, D. Kauhanen, T. Sylva, S. Kataros, E. Duchosal, K. Ekroog, Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer, Metabolites 2 (2012) 195–213.

[169] L. Li, J. Han, Z. Wang, J. Liu, J. Wei, S. Xiong, Z. Zhao, Mass spectrometry methodology in lipid analysis, Int. J. Mol. Sci. 14 (2014) 10492–10507.

[170] X. Han, R.W. Gross, Global analyses of cellular lipids directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics, J. Lipid Res. 44 (2003) 1071–1079.

[171] S.J. Blanksby, T.W. Mitchell, Advances in mass spectrometry for lipidomics, Annu Rev Anal Chem (Palo Alto, Calif) 3 (2010) 433–465.

[172] M. Scherer, A. Bottcher, G. Liebisch, Lipid profiling of lipoproteins: our emerging understanding of its importance in lipid transport and atherosclerosis, Curr. Chem. Genomics 3 (2009) 22–36.

[173] G. Isaac, Electrospay ionization tandem mass spectrometry, Biochim. Biophys. Acta 1811 (2011) 918–924.

[174] K. Retra, O.B. Bleijerveld, R.A. van Gestel, A.G. Tienens, J. van Hellenrood, J.P. Brouwers, A simple and universal method for the separation and identification of phospholipidophosphospholipid species, Rapid Commun. Mass Spectrom. 22 (2008) 1853–1862.

[175] G. Issac, Electrospay ionization tandem mass spectrometry (ESI-MS/MS)-based shotgun lipidomics, Methods Mol. Biol. 708 (2011) 259–275.

[176] J.M. Weir, G. Wong, K. Klarow, A. Kowalczyk, L. Almasy, A.G. Gamal, C. Wadsack, A. Heinemann, G. Marsche, Psoriasis alters HDL composition and cholesterol efflux capacity, J. Lipid Res. 52 (2011) 1618–1624.

[177] L. Yeniky, S. Sodaler, A. Koivunikki, S. Seppanen-Laakso, P.S. Niemela, M. Hyvonen, M.R. Taskinen, V. Tautvailute, M. Jauhiainen, M. Oresic, Composition and lipid spatial distribution of HDL particles in subjects with low and high HDL-cholesterol, J. Lipid Res. 51 (2010) 2341–2351.

[178] T. Pluskal, S. Castillo, A. Villar-Briones, M. Oresic, MZmine 2: a modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profiles, Expert. Rev. Mol. Diagn. 11 (2011) 395.

[179] Y. Jia, C.M. Quinn, A.I. Gagnon, R. Talanian, Homogeneous time-resolved fluorescence and its applications for kinase assays in drug discovery, Anal. Biochem. 356 (2006) 273–278.

[180] T. Vaisar, J.W. Jukema, J.C. Kaski, T. Pluskal, S. Castillo, A. Villar-Briones, M. Oresic, MZmine 2: a modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profiles, Expert. Rev. Mol. Diagn. 11 (2011) 395.

[181] T.S. McMillen, J.W. Heinecke, R.C. LeBoeuf, Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice, Circulation 111 (2005) 2798–2804.

[182] C. Charles-Schoeman, Y.Y. Lee, V. Grijalva, S. Amjadi, J. FitzGerald, V.K. Ranganath, A.E. Razavi, M. Ani, M. Pourfarzam, G.A. Naderi, Associations between high density lipoprotein and inflammation, J. Lipid Res. 52 (2011) 2341–2351.