The Effect of GTP and Mg\(^{2+}\) on the GTPase Activity and the Fluorescent Properties of G\(_a\)*

(Received for publication, September 3, 1986.

Tuutomo Higashijima, Kenneth M. Ferguson, Murray D. Smigel, and Alfred G. Gilman

From the Department of Pharmacology, Southwestern Graduate School, University of Texas Health Science Center, Dallas, Texas 75235

The structures of the guanosine 5'-O-(3-thio)triphosphate (GTP\(_{\gamma}\)S)-containing guanine nucleotide-binding regulatory proteins (G proteins) are distinct from those of the GDP-containing forms. One indication of the conformational change caused by GTP\(_{\gamma}\)S is a Mg\(^{2+}\)-sensitive increase in the intensity of the proteins' tryptophan fluorescence (Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., Gilman, A. G. (1987), J. Biol. Chem., 262, 762-766). GTP causes a similar change in the fluorescence of G\(_a\), a G protein from bovine brain. When Mg\(^{2+}\) is also present, the increase in fluorescence is transient, and the rate of decline in the intensity of the fluorescence is the same as the rate of GTP hydrolysis by the protein. The steady-state rate of hydrolysis of GTP by G\(_a\), (0.3-0.4/min) is slower than the catalytic rate of the protein (2/min), because the rate-limiting step in the reaction is the release of GDP.

The G proteins\(^1\) are a family of homologous, membrane-associated guanine nucleotide-binding regulatory proteins that act as transducers of receptor-mediated signals (1-3). Their properties are described briefly in the first of this series of papers. All of the G proteins hydrolyze GTP, albeit slowly, to GDP and P\(_i\). Although the GTPase activity of the purified G proteins depends on the assay conditions and the particular protein, basal rates of hydrolysis are typically 0.01-1.5 min\(^{-1}\) (4, 5). Receptor-stimulated stimulation of GTPase activity has been demonstrated by reconstitution of purified G proteins with receptor-containing membranes (6-11). Such reconstituted preparations yield hormone-stimulated activities that are similar to those noted in plasma membranes (12, 13).

The GTPase activity of the G proteins is a crucial aspect of their regulatory mechanism. With regard to stimulation of adenylyl cyclase, for example, it is believed that agonist-bound receptors catalyze the exchange of tightly bound GDP on G, for GTP (14). GTP-bound G, stimulates adenylyl cyclase activity until hydrolysis of GTP terminates this action and restores the system to its inactive state. Several types of experiments support this general model (12, 15-18), although it is questioned whether the rate of release of GDP from G, is always rate-limiting (7, 19-21).

Our previous experiments demonstrated that binding of GTP\(_{\gamma}\)S to either G, or G, induced a change in the fluorescence of these proteins. In the experiments reported here, we show that GTP causes a similar change in fluorescence, and that this change can be used to measure the intrinsic rate of GTP hydrolysis by G,.

MATERIALS AND METHODS

Protein Preparation—G, was purified as described (22). GDP-free G,,,, was prepared by chromatography on Sephadex G-25 in a (NH\(_4\)\(_2\))SO\(_4\)-containing buffer (23). The (NH\(_4\)\(_2\))SO\(_4\) was removed by chromatography on Sephadex G-25 in buffer A (50 mM NaHepes, pH 8.0, 1 mM NaEDTA, 1 mM dithiothreitol, 0.1% Lubrol) containing 20% glycerol.

GTP Hydrolysis—GTPase activity was measured as described (6) with some modifications. The G protein was incubated at 20°C in buffer A containing the indicated concentrations of [\(^{32}\)P]GTP and MgSO\(_4\). For measurement of the time-dependent release of [\(^{32}\)P]P, the reaction was initiated by the addition of protein that had been warmed to the temperature of the reaction. Aliquots (50 \(\mu\)l) were removed at the indicated intervals, added to 750 \(\mu\)l of 5\% (w/v) Norit in 50 mM NaHPO\(_4\), (0°C), and vortexed. The charcoal was removed by centrifugation (2900 rpm for 10 min in a Beckman JA 4.2 rotor) and the amount of radioactivity in a 400-\(\mu\)l aliquot of the supernatant was determined by liquid scintillation counting. The rate of protein independent formation of [\(^{32}\)P]P, was subtracted to determine the GTPase activity. [\(^{32}\)P]GTP was prepared as described (24). All other procedures have been described elsewhere (25).

Analysis of the Time-dependence of GTPase Activity—Estimates for the dissociation rate of GDP (k,\(_{d}\)) from G, and the protein's rate of catalysis (k,\(_{c}\)) were obtained by fitting the data to one of two models:

For GDP-free G protein:

\[
[P_i](t) = \frac{G_k}{k_{cat} + k_{d}} \left(t - \frac{1}{k_{cat} + k_{d}} + e^{-(k_{cat}+k_{d})t} \right)
\]

For GDP-containing G protein:

\[
[P_i](t) = G_k \left(\frac{t}{(k_{cat} + k_{d})k_{d}} + \frac{k_{cat}}{(k_{cat} + k_{d})} \left(1 - e^{-(k_{cat}+k_{d})t} \right) \right)
\]

In either case, the total amount of G, in the reaction was determined by GTP\(_{\gamma}\)S binding as described (23). Thus, only k,\(_{d}\) and k,\(_{c}\) were permitted to vary during the nonlinear least squares parameter estimation procedure. Details of the derivation of these equations are provided in the Appendix.

RESULTS

The Influence of GTP on the Fluorescence of G,—Binding of GTP\(_{\gamma}\)S to G, and G, changes the conformation of the proteins and causes an increase in the intensity of their tryptophan fluorescence. A similar effect is caused by GTP.
When 10 μM GTP is added to a reaction containing 290 nM Gα, there is a slow, exponential increase in the fluorescence intensity; steady state is achieved in 5 min (Fig. 1). (The abrupt decrease in the intensity of the fluorescence emission immediately upon addition of GTP is due to the absorbance of the nucleotide.) The subsequent addition of 10 mM Mg²⁺ causes a further, rapid increase in the fluorescence intensity (>35% enhancement), which then declines exponentially (rate = 2.2 ± 0.1 min⁻¹) to a value that exceeds the baseline by 10%. The change in the fluorescence intensity caused by GTP in the absence of added Mg²⁺ is similar to that observed with GTPγS in both time course and intensity (25), suggesting that the alteration is caused by the exchange of bound GDP for GTP. (Recall that Gα as purified contains 1 mol GDP/mol protein (Ref. 23)). Once steady state is achieved, addition of Mg²⁺ causes a rapid increase in the fluorescence intensity, also analogous to that observed when GTPγS was used. Unlike the results obtained with GTPγS, however, the Mg²⁺-induced change in the presence of GTP is transient. These data suggest the following model:

\[
\begin{align*}
\text{Mg}^2+ + \text{Gα} + \text{GTP} & \rightleftharpoons k_1 \text{Gα-GTP} + \text{Mg}^2+ \\
\text{Mg}^2+ + \text{GTP} + \text{Gα} \cdot \text{GDP} & \rightarrow k_{-1} \text{Gα-GTP-Mg}^2+
\end{align*}
\]

Gα-GTP is the form of the protein that has a 10% enhancement of the fluorescence intensity; Gα-GTP-Mg²⁺ has a higher fluorescence intensity (35% enhancement), but, because of the hydrolysis of GTP, it has a short lifetime determined by \(k_{-2} \). Upon hydrolysis, the system returns to the GDP-bound form, which is the reference state for these experiments.

According to this model, the rate of approach to steady state is \(k_{-2} + k_{-1} \), when both Mg²⁺ and GTP are added to the G protein. In the absence of Mg²⁺, the rate is \(k_{-2} \). A consequence of the hydrolytic reaction is that the enhancement of steady-state fluorescence intensity in the presence of Mg²⁺ is \(f_1 k_{-2}/(k_{-2} + k_{-1}) \), where \(f_1 \) is the increase in fluorescence characteristic of Gα-GTP-Mg²⁺. When 1 μM GTP is added to a reaction containing both Mg²⁺ and Gα, there is a rapid increase in the fluorescence intensity to a steady-state enhancement of 5% (Fig. 2). The rate of this increase (2–3 min⁻¹) is much faster than that observed when Mg²⁺ is omitted (Fig. 1). Given the magnitude of the increase in fluorescence (5%) and using estimates of \(f_1 = 35% \) and \(k_{cat} = 2 \text{ min}^{-1} \), one would predict \(k_{-2} \) to approximate 0.3 min⁻¹ (see below). If this increase in fluorescence is caused by the steady-state concentration of Gα-GTP-Mg²⁺, the addition of an excess of GDP should block the formation of Gα-GTP-Mg²⁺, and the hydrolysis of GTP should cause a decrease in fluorescence. When 10 μM GDP is added to a reaction at steady state that contains Gα, 1 μM GTP, and 10 mM MgSO₄, there is a rapid decline in the intensity of the fluorescence (Fig. 2). This relaxation process is complete in 1 min and is absent when 10 μM GTP is substituted for GDP.

The Rate of Hydrolysis of GTP—To test the hypothesis that hydrolysis causes the decline in fluorescence following the rapid increase upon addition of Mg²⁺ to GTP-containing Gα (Fig. 1), Gα was incubated with 1 μM \([γ-32P]GTP \) for 16 min to allow sufficient time for GTP to replace the GDP on Gα. During this incubation there was little release of \([32P]P \) (Fig. 3). When 10 mM Mg²⁺ was added, there was a relatively rapid release of phosphate, followed by a slower rate of GTP hydrolysis. These data were analyzed as described under “Materials and Methods” to obtain estimates for \(k_{cat} \) (1.8 ± 0.5 min⁻¹) and \(k_{cat} \) (1.0 ± 0.1 min⁻¹). The decays in fluorescence intensity that followed addition of Mg²⁺ in Fig. 1 should occur with rate \(k_{cat} + k_{cat} \). This value (2.2 ± 0.1 min⁻¹) is thus in excellent agreement with the values of \(k_{cat} \) and \(k_{cat} \) determined by analysis of the data of Fig. 3. These data indicate that the release of GDP and not the hydrolysis of GTP is the rate-limiting step in the GTPase reaction at steady state.

The Effect of Bound GDP on the Hydrolysis of GTP—If the dissociation of GDP is rate-limiting, incubation of GDP-free Gα with \([γ-32P]GTP \) should cause a rapid release of phosphate. This hypothesis was tested by incubation of GDP-containing Gα and GDP-free Gα with 1 μM \([γ-32P]GTP \) (100 nM \([γ-32P] \) GTP for GDP-free Gα) and 10 mM MgSO₄ at 20 °C (Fig. 4). The release of \([32P]P \), catalyzed by GDP-containing Gα, lagged slightly before a steady-state rate of hydrolysis of 0.3 min⁻¹ was achieved. The production of \([32P]P \), in the reaction that contained GDP-free Gα, was initially faster and then slowed to the same steady-state rate of hydrolysis as found for GDP-containing Gα. Analysis of these data according to the equations described under “Materials and Methods” indicates that both forms of the protein catalyze hydrolysis at similar rates (2.1 ± 0.9 min⁻¹ for GDP-free Gα; 2.4 ± 0.4 min⁻¹ for GDP-containing Gα).
GDP Dissociation Limits G Protein GTPase

The proteins' conformation (8, 27-30). Concomitant with this structural change is an increase in the intensity of fluorescence of tryptophan residues (25). Both GTPTγS and GTP can cause this change, suggesting that a similar alteration in protein structure is caused by the different nucleotides. When GTP is added to GDP-containing Gs, there is a slow increase in the intensity of tryptophan fluorescence as GDP dissociates and GTP then binds. After GDP has been replaced with GTP, the addition of Mg2+ causes a rapid increase in fluorescence intensity, reflecting the formation of Gss-GTP-Mg2+. Unlike the complex formed in the presence of GTPTγS, the GTP-containing form of the protein is transient, because GTP is hydrolyzed to GDP and P3 in the presence of Mg2+.

The hydrolysis is accompanied by a decrease in the fluorescence intensity, providing a direct measure of the catalytic reaction. The rate of the catalytic reaction (as distinguished from the rate of steady-state hydrolysis) found for Gs and Gij is similar to that noted for Gs (4 min-1) and transducin (1 min-1) (5, 7, 18).

The rate of GTP hydrolysis by Gs, measured at steady state is the same as the rate of dissociation of GDP. These rates are influenced by several factors, including Mg2+, Gs, and anions (see accompanying articles).

The model presented under “Results” provides a quantitative explanation for the hysteresis found in the time-dependence of GTP hydrolysis by the GDP-containing G protein. When Mg2+ is present, the rate of approach to the steady-state concentration of G·GTP·Mg2+ is kcat + k-s. The lag in the release of phosphate (defined as the extrapolation of the steady-state release of P, to the abscissa) is (k-n + k-s)-1 or about 30 s. Thus, even though the rate of binding of GTP is limited by the rate of dissociation of GDP, the rate of approach to steady state is not.

Another consequence of the relatively rapid k-n is that the fraction of G protein with bound GTP and Mg2+ (presumably the active form of the protein) cannot exceed k-s/(k-n + k-s), even when very high concentrations of GTP are present. This, the hydrolytic reaction holds the protein in the GDP-containing, presumably inactive form. Agonist-bound receptors increase the rate of dissociation of guanine nucleotide (7, 15, 17), apparently by a catalytic mechanism that is analogous to that of the interaction of elongation factors Tu and Ts (31). As the rate of dissociation of GDP increases, the velocity of the GTPase reaction will increase to a limit of k-n and the fraction of the activated form of the G protein will approach 100%. Thus, the receptor alters the state of activation of the G protein merely by changing the rate of dissociation of GDP.

Even though k-n is 5- to 20-fold greater (depending on the particular G protein) than the observed steady-state rate of GTP hydrolysis, it is still an exceedingly slow turnover rate. This too is an important part of the function of the G protein. The turnover rate for adenylyl cyclase, estimated from the activity of the purified protein (32), is 1200 min-1. If Gss-GTP-Mg2+ activates adenylyl cyclase and hydrolysis of GTP terminates this activation, the slow rate of destruction of GTP permits the production of 500-1000 molecules of cyclic AMP. Since a single receptor can presumably activate many molecules of Gs, the amplification achieved is significantly greater than this. An identical model explains the gain in the light-activated cyclic GMP-sensitive phosphodiesterase of the retinal rod outer segment (3).

DISCUSSION

Activation of G proteins by guanine nucleotides changes the proteins' conformation (8, 27-30). Concomitant with this structural change is an increase in the intensity of fluorescence of tryptophan residues (25). Both GTPTγS and GTP

FIG. 3. The hydrolysis of GTP by Gs·Gα (100 nM, 20 °C) was incubated in buffer A containing 1 μM [γ-32P]GTP (8500 cpm/pmol). Aliquots (50 μl) were taken during the first 15 min (C) of the incubation (data prior to 10 min not shown) and release of [32P]P, was measured as described under “Materials and Methods.” The inset presents preliminary data using partially GDP-free Gi show kat = 1.9 min-1. The rate of GDP dissociation is about 0.04 min-1 (Ref. 23).
APPENDIX

A Model for the Hydrolysis of GTP by G Proteins—The hydrolysis of GTP is assumed to occur according to the model:

\[
\begin{align*}
\text{Mg}^{2+} + \text{G} + \text{GTP} + \text{GDP} & \xrightleftharpoons[k_{-2}]{k_0} \text{G-TP} + \text{Mg}^{2+} + \text{GDP} \\
\text{Mg}^{2+} + \text{G-TP} & \xrightleftharpoons[]{k_1} \text{G-GTP} \cdot \text{Mg}^{2+}
\end{align*}
\]

The time-dependence of the formation of the various states in this model is determined by the differential equations below:

\[
\begin{align*}
& [\text{G-GTP}] = k_0 [\text{GTP}] [\text{G}] + k_{-1} [\text{G-TP} \cdot \text{Mg}^{2+}] \\
& [\text{G-GTP} \cdot \text{Mg}^{2+}] = k_1 [\text{Mg}^{2+}] [\text{G-GTP}] - (k_{-1} + k_{\text{cat}}) [\text{G-TP} \cdot \text{Mg}^{2+}] \\
& [\text{G-GDP}] = k_{\text{cat}} [\text{G-TP} \cdot \text{Mg}^{2+}] - k_{\text{cat}} [\text{G-GTP} \cdot \text{Mg}^{2+}]
\end{align*}
\]

\[\text{Note: } [x]' = d[x]/dt, \quad [x]'' = d^2[x]/dt^2\]

The rate of Pi production is

\[\text{[Pi]}' = k_{\text{cat}} [\text{G-GTP} \cdot \text{Mg}^{2+}]\]

and requires the integration of (2) before the time dependence of the release of phosphate can be solved. To simplify the solution of Equation 2, Equation 1 is assumed to be at steady state (a valid assumption at relatively high concentrations of GTP). Then Equations 1–3 can be combined into the second order differential equation:

\[\text{[G-GTP} \cdot \text{Mg}^{2+}]' + A [\text{G-GTP} \cdot \text{Mg}^{2+}]' + B [\text{G-GTP} \cdot \text{Mg}^{2+}] = C \]

Where \(A\), \(B\), and \(C\) are combinations of the rate constants in Equations 1, 2, and 3. The solution of Equation 5 is:

\[\text{[G-GTP} \cdot \text{Mg}^{2+}] = c_1 e^{m_1 t} + c_2 e^{m_2 t} + C/B\]

where \(m_1\) and \(m_2\) are the roots of the polynomial:

\[m^2 + Am + B = 0\]

The constants \(c_1\) and \(c_2\) are determined by the initial conditions. Evaluating Equation 6 when \(t = 0\)

\[c_1 + c_2 + C/B = 0\]

The derivative of Equation 6 evaluated at \(t = 0\) equated with Equation 2 at \(t = 0\) is

\[c_1 m_1 + c_2 m_2 = G_i \text{(1-\text{f})} E\]

where \(G_i\) is the total concentration of G protein, \(f\) is the fraction of the protein with bound GDP at \(t = 0\), and

\[E = \frac{k_1 [\text{Mg}^{2+}] k_0 [\text{GTP}]}{[\text{G-GDP}] + k_{-2}}\]

Integration of Equation 6 between the limits of 0 and \(t\) gives

\[\text{[Pi]}(t) = k_{\text{cat}}(c_1/m_1 e^{m_1 t} - 1) + c_2/m_2 e^{m_2 t} - 1) + (C/B)t\]

For the case of saturating GTP and Mg\(^{2+}\) and low GDP the rate constants \(m_1\) and \(m_2\) are

\[m_1 = -k_0 [\text{GTP}] \quad m_2 = -(k_{\text{cat}} + k_{-2})\]

The magnitude of \(c_1\) and \(c_2\) are determined by the fraction of the G protein with bound GDP. When all the protein has bound GDP, \(f = 1\), and

\[c_1 = -G_i k_{-2} / k_0 [\text{GTP}]\]

\[c_2 = -G_i k_{\text{cat}} / (k_{\text{cat}} + k_{-2})\]

Then Equation 10 reduces to

\[\text{[Pi]}(t) = \frac{G_i k_{\text{cat}} k_{-2}}{k_{\text{cat}} + k_{-2}} \left(t - \frac{1}{k_{\text{cat}} + k_{-2}} e^{-k_{\text{cat}} k_{-2} t} \right)\]

The rate of hydrolysis at steady state is

\[V_a = \frac{G_i k_{\text{cat}} k_{-2}}{k_{\text{cat}} + k_{-2}}\]

After steady state is attained, extrapolation to \([\text{Pi}](t) = 0\) gives

\[t = 1 / (k_{\text{cat}} + k_{-2})\]

When none of the G protein contains GDP at the start of the reaction \((f = 0)\)

\[c_1 = -G_i \quad c_2 = G_i k_{\text{cat}} / (k_{\text{cat}} + k_{-2})\]

In this case Equation 10 is

\[\text{[Pi]}(t) = G_i k_{\text{cat}} \left(\frac{t k_{-2}}{(k_{\text{cat}} + k_{-2})} + \frac{k_{-2}}{(k_{\text{cat}} + k_{-2})} \left(1 - e^{-k_{\text{cat}} k_{-2} t} \right) \right)\]

The rate of hydrolysis after steady state is attained is

\[V_a = \frac{G_i k_{\text{cat}} k_{-2}}{k_{\text{cat}} + k_{-2}}\]

which is the same as for the previous case \((f = 1\), Equations 12 and 13\). Extrapolation of the steady-state solution to \(t = 0\) shows that there is a burst of Pi release:

\[\text{[Pi]}(0) = G_i \left[\frac{k_{\text{cat}}}{k_{\text{cat}} + k_{-2}} \right]^f\]

REFERENCES

1. Gilman, A. G. (1984) 36, 577–579
2. Smigel, M. D., Ross, E. M., and Gilman, A. G. (1984) in Cell Membranes: Methods and Reviews (Elson, E. L., Frazier, W. A., and Glaser, L., eds.), Vol. 2, pp. 247–294, Plenum Publishing Corp., New York
3. Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87–119
4. Sunyer, T., Codina, J., and Birnbaumer, L. (1984) J. Biol. Chem. 259, 14474–14511
5. Brandt, D. R., and Ross, E. M. (1985) J. Biol. Chem. 260, 266–272
6. Brandt, D. R., Asano, T., Pedersen, S. E., and Ross, E. M. (1983) Biochemistry 22, 4357–4362
7. Brandt, D. R., and Ross, E. M. (1986) J. Biol. Chem. 261, 1656–1664
8. Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495–10502
9. Cerione, R. A., Codina, J., Benovic, J. L., Lefkowitz, R. J., Birnbaumer, L., and Caron, M. G. (1984) Biochemistry 23, 4519–4525
10. Cerione, R. A., Staniszewski, C., Benovic, J. L., Lefkowitz, R. J., Caron, M. G., Gierschik, P., Somers, R., Spiegel, A. M., Codina, J., and Birnbaumer, L. (1985) J. Biol. Chem. 260, 1493–1500
11. Cerione, R. A., Regan, J. W., Nakata, H., Codina, J., Benovic, J. L., Gierschik, P., Somers, R. L., Spiegel, A. M., Birnbaumer, L., Lefkowitz, R. J., and Caron, M. G. (1986) J. Biol. Chem. 261, 3901–3909
12. Cassel, D., and Selinger, Z. (1976) Biochem. Biophys. Acta 452, 538–551
13. Jakobs, K. H., Aktories, K., Minuth, M., and Schultz, G. (1985) Adv. Cyclic Nucleotide Protein Phosphorylation Res. 19, 137–150
14. Cassel, D., and Selinger, Z. (1978) Proc. Natl. Acad. Sci. U. S. A. 75, 4155–4159
15. Cassel, D., and Selinger, Z. (1977) *J. Cyclic Nucleotide Res.* 3, 11–22
16. Cassel, D., and Selinger, Z. (1977) *Proc. Natl. Acad. Sci. U. S. A.* 74, 3307–3311
17. Fung, B. K.-K., and Stryer, L. (1980) *Proc. Natl. Acad. Sci. U. S. A.* 77, 2500–2504
18. Navon, S. E., and Fung, B. K.-K. (1984) *J. Biol. Chem.* 259, 6686–6693
19. Birnbaumer, L., Swartz, T. L., Abramowit, J., Mintz, P. W., and Iyengar, R. (1980) *J. Biol. Chem.* 255, 3542–3551
20. Levitzki, A. (1980) *FEBS Lett.* 115, 9–10
21. Neer, E. J., and Salter, R. S. (1981) *J. Biol. Chem.* 256, 12102–12107
22. Bokoch, G. M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) *J. Biol. Chem.* 259, 3560–3567
23. Ferguson, K. M., Higashijima, T., Smigel, M. D., and Gilman, A. G. (1986) *J. Biol. Chem.* 261, 7393–7399
24. Johnson, R. H., and Walseth, T. F. (1979) *Adv. Cyclic Nucleotide Res.* 10, 155–168
25. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Ross, E. M., Smigel, M. D., and Gilman, A. G. (1987) *J. Biol. Chem.* 262, 752–756
26. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Smigel, M. D., and Gilman, A. G. (1987) *J. Biol. Chem.* 262, 762–766
27. Northup, J. K., Smigel, M. D., Sternweis, P. C., and Gilman, A. G. (1983) *J. Biol. Chem.* 258, 11369–11376.
28. Sternweis, P. C., and Robishaw, J. D. (1984) *J. Biol. Chem.* 259, 13806–13813
29. Fung, B. K.-K., and Nash, C. R. (1983) *J. Biol. Chem.* 258, 10503–10510
30. Sternweis, P. C. (1986) *J. Biol. Chem.* 261, 631–637
31. Chau, V., Romero, G. and Biltonen, R. L. (1981) *J. Biol. Chem.* 256, 5591–5596
32. Smigel, M. D. (1986) *J. Biol. Chem.* 261, 1976–1982