Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research paper

Candidate new rotavirus species in Schreiber's bats, Serbia

Krisztián Bányai a,⁎,1, Gábor Kemenesi b,1, Ivana Budinski c, Fanni Földes b, Brigitta Zana b, Szilvia Marton a, Renáta Varga-Kugler a, Miklós Oldal b, Kornélia Kurucz b, Ferenc Jakab b,**

a Lendület Pathogen Discovery Research Group, Institute for Veterinary Medical Research, Centre for Agricultural Research, HÁS-Centre for Agricultural Research, Budapest, Hungary
b Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
c Department of Genetic Research, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia

ARTICLE INFO
Article history:
Received 31 August 2016
Received in revised form 30 November 2016
Accepted 1 December 2016
Available online 6 December 2016

Keywords:
Chiroptera
Viral metagenomics
Semiconductor sequencing
Rotavirus
Astrovirus
Coronavirus
Gemycircularvirus
Retrovirus
Minioptrerus schreibersii

ABSTRACT

The genus Rotavirus comprises eight species designated A to H and one tentative species, Rotavirus I. In a virus metagenomic analysis of Schreiber’s bats sampled in Serbia in 2014 we obtained sequences likely representing novel rotavirus species. Whole genome sequencing and phylogenetic analysis classified the representative strain into a tentative tenth rotavirus species, we provisionally called Rotavirus J. The novel virus shared a maximum of 50% amino acid sequence identity within the VP6 gene to currently known members of the genus. This study extends our understanding of the genetic diversity of rotaviruses in bats.

1. Introduction

Rotaviruses (RVs, family Reoviridae, genus Rotavirus) are a major cause of acute diarrhea in mammals and birds. At present, eight recognized and one proposed rotavirus species (RVA to RVH and RVI, respectively) are distinguished. Among these, RVA to RVC, RVE, RVH and RVI are known to infect mammals and RVA is the most widespread species in most, if not all, mammalian hosts (Estes and Greenberg, 2013; Matthijnssens et al., 2012; Mihalov-Kovács et al., 2015).

Batborne RVs described so far belong almost exclusively to RVA; sequence analysis of the identified strains uncovered some intriguing details concerning the ecology and evolution of batborne RVAs. For example, a bat strain from Kenya had an unusual VP1 gene and the hypothesis arose that during their evolution mammalian RVs belonging to different RV species may share genes by reassortment (Esona et al., 2010). Furthermore, bats seem to serve as reservoirs of multiple RVA genotypes commonly found in heterologous host species. Consequently, batborne RVAs might pose some veterinary and public health risk (Asano et al., 2016; He et al., 2013; Xia et al., 2014). More recent data indicate that in addition to RVA, RVH may also infect bats (Kim et al., 2016).

Among bats, Schreiber’s bat (Minioptrerus schreibersii) represents one of the most widespread species complex in the world, living in large colonies. Schreiber’s bats are distributed in distinct lineages throughout Oceania, Africa, Southern Europe and South-East Asia (Appleton et al., 2004). Colonies of M. schreibersii are usually large and dense so that members of the colony can save energy during the hibernation period. These bats may roost together with Rhinolophus ferrumequinum, Rhinolophus euryale, Myotis myotis, Myotis blythii, and Myotis emarginatus. M. schreibersii is able to fly large distances (>500 km) from one roost to another (Hutterer et al., 2005). Overall, these colonial and behavioral characteristics of M. schreibersii may notably influence pathogen dissemination that could lead to high prevalence and maintenance of viruses within colonies (Kemenesi et al., 2014).

Our recent pilot study on fecal virome analysis of the Hungarian bat fauna provided new insight into viral diversity, providing evidence of novel astroviruses and bufaviruses in M. schreibersii (Kemenesi et al., 2014, 2015). To further explore the ecological role of these common bats as virus reservoirs we involved additional geographical locations...
in our surveys. While we were prepared that new virus diversity may be explored by the method of viral metagenomics, we unexpectedly, identified sequence traces of a novel rotavirus in multiple samples. Sequence and phylogenetic analysis of the complete genome sequence of a selected rotavirus strain provided evidence of a candidate new rotavirus species in these bats.

2. Materials and methods

2.1. Bat guano

Bat guano samples were collected on October 3rd 2014 at cave Pionilska pečina (Belanica Mt., Serbia; 44° 4’ N, 21°38’ E) during regular bat-ringing activities by experienced chiropterologists (under a license provided by the Ministry of Energetics, Development, and Environmental Protection of the Republic of Serbia, license number: 353-01-2660/2013-08). A mist-net (7 × 2.5 m) was set up at the cave entrance before sunset and remained open until 2 a.m. The trapped bat specimens were removed immediately, identified following Dietz et al. (2009) and held individually in perforated disposable paper bags for maximum of 30 min in order to let them defecate. After collecting fecal samples, bats were aged, sexed, measured, banded and released. A total of 128 Miniopterus schreibersii were captured (45 males and 83 females), and fecal samples were collected from ten specimens (3 males and 7 females). Droppings were stored in RNAlater RNA Stabilization Reagent (QIAGEN) and kept on ice until laboratory processing.

2.2. Semiconductor sequencing

Guano samples were homogenized in 500 μL phosphate buffered saline. After 5 min centrifugation in 10,000 × g, 200 μL of the supernatant was used for nucleic acid extraction, performed with GeneJet Viral DNA and RNA Purification Kit (Thermo Scientific Ltd.), following the manufacturers recommendations. Nucleic acid samples were previously denatured at 97 °C for 5 min in the presence of 10 μM random hexamer tailed by a common PCR primer sequence (Djikeng et al., 2008). Reverse transcription was performed with 1 U AMV reverse transcriptase (Promega), 400 nM random hexamer primer (Djikeng et al., 2008), and 200 μM dATP, dGTP, dCTP, dTTP, and 4 μL of cDNA was subjected to enzymatic fragmentation and adaptor ligation following the manufacturer's instructions. Genomic RNA was heat-denatured at 95 °C and then placed on ice slurry. The reverse transcription mixture contained 14 μL nuclease free water, 6 μL 5′ First Strand Buffer, 1 μL of 10 μM dNTP mixture, 1 μL 0.1 M DTT, 20 U RiboLock RNase Inhibitor (Thermo Scientific) and 300 U SuperScript III Reverse Transcriptase (Invitrogen). This mixture was added to the denatured ligated RNA and incubated at 25 °C for 5 min and then 50 °C for 60 min. The reaction was stopped at 70 °C for 15 min.

Subsequently, 2 μL cDNA was added to the PCR mixture, which consisted of 17 μL nuclease free water, 1 μL of 10 μM dNTP mixture, 2.5 μL 10× DreamTag Green Buffer (including 20 mM MgCl₂), and 2 μL of 20 μM primer pair (i.e. 1 μL PC2 and 1 μL gene-specific primer; see Table 1) and 2.5 U DreamTag DNA polymerase (Thermo Scientific). Gene-specific primers were designed on the basis of preliminary sequence data obtained by semiconductor sequencing. The thermal profile consisted of the following steps: 95 °C 3 min, 40 cycles of 95 °C 30 s, 42 °C 30 s, 72 °C 2 min, final elongation at 72 °C for 8 min. The PCR products were visualized on 1% agarose gel electrophoresis and bands of the expected sizes were excised and cleaned up with Geneaid Gel/PCR DNA fragments Extraction Kit (Geneaid).

Amplicons were subjected to Sanger sequencing with the PCR primers using the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems). Ethanol precipitated products were run on an ABI PRISM 310 Genetic Analyzer.

2.3. Determination of the termini of genomic RNA

To obtain the true sequence of the genome segment ends, a short oligonucleotide (PC3-mod), phosphorylated at the 5′ end and blocked at the 3′ end with dideoxy cytosine, was ligated to the 3′ ends of the genomic RNA in the nucleic acid extract (Lambden et al., 1992; Potgieter et al., 2002). In brief, 5 μL total RNA was combined with 25 μL RNA ligation mixture (consisting of 3.5 μL nuclease free water, 2 μL of 20 μM PC3, 12.5 μL of 34% (w/v) polyethylene glycol 8000, 3 μL of 10 mM ATP, 3 μL 10× T4 RNA Ligase buffer and 10 U T4 RNA Ligase 1 (New England Biolabs) and then incubated at 17 °C for 16 h. Following the incubation, the RNA was extracted using the QIAquick Gel Extraction Kit (QIAGEN). Binding of RNA to silica-gel column was performed in the presence of 150 μL QG buffer from the extraction kit and 180 μL isopropanol. All subsequent steps were performed according to the manufacturer's instructions.

Five microliter ligated RNA was heat-denatured in the presence of 1 μL of 20 μM primer (PC2-mod, which is complementary to the PC3-mod oligonucleotide ligated to the 3′ end) at 95 °C for 5 min and then placed on ice slurry. The reverse transcription mixture contained 14 μL nuclease free water, 6 μL 5′ First Strand Buffer, 1 μL of 10 μM dNTP mixture, 1 μL 0.1 M DTT, 20 U RiboLock RNase Inhibitor (Thermo Scientific) and 300 U SuperScript III Reverse Transcriptase (Invitrogen). This mixture was added to the denatured ligated RNA and incubated at 25 °C for 5 min and then 50 °C for 60 min. The reaction was stopped at 70 °C for 15 min.

Five microliter cDNA was then added to the PCR mixture, which consisted of 17 μL nuclease free water, 1 μL of 10 μM dNTP mixture, 2.5 μL 10× DreamTag Green Buffer (including 20 mM MgCl₂), and 2 μL of 20 μM primer pair (i.e. 1 μL PC2 and 1 μL gene-specific primer; see Table 1) and 2.5 U DreamTag DNA polymerase (Thermo Scientific). Gene-specific primers were designed on the basis of preliminary sequence data obtained by semiconductor sequencing. The thermal profile consisted of the following steps: 95 °C 3 min, 40 cycles of 95 °C 30 s, 42 °C 30 s, 72 °C 2 min, final elongation at 72 °C for 8 min. The PCR products were visualized on 1% agarose gel electrophoresis and bands of the expected sizes were excised and cleaned up with Geneaid Gel/PCR DNA fragments Extraction Kit (Geneaid).

Amplicons were subjected to Sanger sequencing with the PCR primers using the BigDye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems). Ethanol precipitated products were run on an ABI PRISM 310 Genetic Analyzer.

2.4. Sanger sequencing of the full-length NSP1 and NSP5 genes

The genome segments encoding NSP1 and NSP5 of RV strains belonging to various RV species may be either mono-, bi- or tricistronic. To validate the results obtained by semiconductor sequencing we performed traditional sequencing. In brief, cDNA production, amplification and Sanger sequencing were carried out with sequence specific primers (Table 1) designed based on the ion Torrent sequence reads. The experimental protocol was essentially the same as described in the previous section describing the method for determination of genome segment termini.

2.5. RVf-specific screening RT-PCR assay

Stool samples were homogenized in 500 μL PBS. Following a centrifugation step at 10000 × g for 5 min, the viral RNA was extracted from 200 μL of supernatants using GeneJET Viral DNA and RNA Purification Kit (Thermo Scientific) following the manufacturer's recommendations. Genomic RNA was heat-denatured at 95 °C for 5 min in the presence of 10 μM gene specific primers. Nested RT-PCR amplification was performed with newly designed primers directed to a 338 nt fragment in the RV VP6 protein region (Table 1). To obtain first round PCR product, 5 μL of the heat-denatured RNA was
reverse transcribed and amplified using QIAGEN One-Step RT-PCR Kit (Qiagen) in a 25 μL final reaction volume. The reaction was performed at 50 °C for 30 min, followed by 40 cycles of amplification (each cycle included a denaturation step at 94 °C for 30 s, an annealing step at 50 °C, 45 s, and extension step at 72 °C, 1 min). Second round PCR products were analyzed by electrophoresis in 2% agarose gel in TBE buffer stained with GelGreen and then sequenced in both directions using the protocol referred in previous sections.

2.6. Sequence and phylogenetic analysis

For viral metagenomics, raw sequence reads were trimmed and quality controlled using CLC Genomics Workbench (version 9.0; http://www.clcbio.com). The minimal read length parameter was set to 35. Trimmed reads were taxonomically binned using Diamond v0.8.3 versus NCBI-NR (Buchfink et al., 2015). After classification, the output files were analyzed and visualized by MEGAN6 Ultimate Edition (Huson et al., 2016).

The CLC Genomics Workbench software package was utilized to assemble the genome sequence. After visual inspection of sequence mappings a single consensus sequence was created for all 11 genome segments. Further sequence editing and evaluation were carried out by the GeneDoc (Nicholas et al., 1997) and BioEdit software (Hall, 1999) and then analyzed by similarity search using BLAST (Altschul et

Table 1
Primer sequences used in the study.

Application	Gene	Orientation	Sequence (5′-3′)	Amplicon length (bp)
RNA ligation	Universal	(Phos)-GGA TCC CGG AAG TTC GG-(ddC)*	–	
	Universal	CCG AAT TCC CGG GAT GC*		
VP1	Fw	CTG CTG AAA CAA TTG TTA ACT GTA CAA	270	
	Fw	GGA TGG ACT GGT TCA GAA CAA AGC TAT TA	412	
	Rev	TCT CTT GGA TGA TTT GAG ATG GAG	198	
VP2	Fw	GAT GGC GCA GAC TTC GGT ATA C	233	
	Fw	CTC GAT GCA CAG AGA TTA TTA GTC	208	
	Rev	GAT TTA ACT AAG CAC AGC AAG TAC TCC	204	
	Rev	CTG TTT CTT CTT TTT AGT AGT CTT	280	
VP3	Fw	ATG TCG TGG TTT ATA AGA TTA AAT G	229	
	Fw	AAG AGA TAA TTT CGG CGG GTA CTC	302	
	Rev	TCA ATC GTA ACG TAG AAT GTC TGC TGC	186	
	Rev	CTT CTA TAA GCA TCA TTT CCC CCC GC	222	
VP4	Fw	AC CTT TTT TCT TTA CAA ATG GCC A	243	
	Fw	ACT CAG ATG GGT AAT GGC CAT GCA C	270	
	Rev	CTA TTA TCT TAT TGG ACA GAG GCT TTA	330	
	Rev	GGA CAC ACC GTC ACT ACC AAA TAA TTC	376	
	Rev	GGT TCC AGC CCA TAA TCC CCA CCA	439	
VP6	Fw	CAT CTC CGG GCT CCT TTT TTA TG	244	
	Fw	CTC AAA TGC AAG CCA CAG TAT CA	328	
	Rev	ACT TGT TCC ATT TTT AGC GGA AGC	193	
VP7	Fw	CTG TCA ATT CGA TAC TGC ACT TIG TTT ATA A	133	
	Fw	GTG TGA GAA AAG ATT CAT CAC AGC	247	
	Rev	CCA TAT AAA AAC CAG CAA CAT TAA ATC GC	260	
	Rev	TTT CAT ATG TAA ATC CAC CCA ACA AGG AA	196	
NSP1	Fw	GGG AAA AGA TAA ACA ACT TIG AGT ACT	110	
	Rev	ATC GAA CAA GCA AGC AAA AAA AGC	151	
	Rev	GGA AAC AAA GCA ACC TTT CTT CTC	161	
NSP2	Fw	CTG GGG ATA CAT TTT CAT CAA TGT GCA	174	
	Fw	CAA GGA AAG ACA AGC AGG AAA TTA CCA	231	
	Rev	CCT ATT TCC AGC TTT ACC AAC CCC TCG	237	
	Rev	GTC ATT CTC CTA CTT TCG GGT GAT A	278	
NSP3	Fw	CCA CAC GTT AGA ATG TCT GCA	168	
	Fw	CAT TCA TCG CTT CAA TAA TCA TCA AGG A	224	
	Rev	CCA ATT ATC AGT TTT TCT CTC AAG TCC	203	
	Rev	GGT CAT TTT CTT TGA AAT TCT TTT CTA	245	
NSP4	Fw	TAA AGA GGA CAT CAT GAT ACT CCA GGA	120	
	Fw	GGG TAA ATA AAA TCT ACA CCA TAC AGG AA	160	
	Rev	ACT CAT ATC TTT AAA ATA TTA TTA TGG CTC CAT A	178	
	Rev	CAA CAC CAT ATG TCC GAG TAT TCC TCC	208	
	Rev	GCC CAA AAC ACT CAC GAA ATG ACA	191	
	Rev	CCG ACA CCT CCA ACT TGC ATG AGA	236	
	Rev	ATG CCG CTT CTT CTC GGA GGA	162	
NSP5	Fw	GCC CAA TTA TAC CTC GCC CTC TTA C	200	
	Fw	CCA CAC ACC GCA CCA AAA AAA GAC GTA CTA	1074	
	Rev	CGC CTC GGT TTT TCC TTG CTC CTT C	427	
NSP5	Fw	CTC TCT CCA AAA TTA ATC CCT CCA CAA AA	427	
	Rev	CAT GGA GGA GGG TTT TCC CTC GTG TGT TA	643 (1st round)	
Screening	Fw	GGA TCT CTA AAT TAT CTC CCA C	338 (2nd round)	
	Rev	CTA CTA TAA ATG AGC AGC CCA		
	Rev	TTA CAA CAT ATG GCC TCC		
	Rev	GTT CCA TTC TAG CTT TAT CA		

a These oligonucleotides (referred in the text as PC3-mod and PC2-mod, respectively) were adapted from Potgieter et al. (2002).
cies (incl. RVB, RVG, RVH and RVI). To clarify this ambiguous situation, sequences were the most abundant genomic representatives (98.5%); Rotavirus and gemycircularvirus in sample 6). In one specimen (i.e. sample 6) RV sequences were detected in at least three samples (herpesvirus in sample 1, 3, and 4; astrovirus in sample 1 to 3; coronavirus in sample 4 to 6). Terminal sequences at the 5’ ends showed relatively conserved structure with stable nucleotides at positions 1, 2 and 4 and some variations at positions 3, 5, and 6 (segments 1 and 2, GCCACA; segments 3 and 4, GGCATT; segments 5, 7 and 9, GGAATA; segments 6 and 10, GGCAAA), while at the 3’ ends the variation was less (TAYACCC) (see details in Table 2).

2.7. GenBank accession numbers

The whole genome sequence of strain RVJ/Bat-wt/SRB/BO4351/Ms/2014/G1P1 has been deposited under the following accession numbers: KX756619-KX756629.

3. Results and discussion

To explore the viral diversity six fecal specimens collected from apparently healthy adult M. schreibersii bats were processed for viral metagenomics. In these samples various amounts of sequence reads mapped onto known eukaryotic viral sequences (range, ≪0.1% to 0.9%; Fig. 1). When evaluating the results of viral metagenomics data we need to point out that sample processing did not include virion enrichment step and it is not clear whether each of the relevant sequence reads originate from intact virions. Consequently, the presence of potential endogenous viral sequence elements may have affected the overall landscape of viral diversity. For example retrovirus specific reads, which may represent endogenous viral genomic traits from genomic DNA of the host species, were detected in all samples. Overall the rate of eukaryotic virus specific sequence reads was low, likely because we omitted virus particle enrichment procedures in our sample processing protocol. Nonetheless, various eukaryotic viruses were detected in all six selected fecal samples. Herpesvirus, astrovirus and coronavirus sequences were detected in at least three samples (herpesvirus in sample 1, 3, and 4; astrovirus in sample 1 to 3; coronavirus in sample 4 to 6). Rotavirus and gemycircularvirus sequences were found in two and one samples, respectively (both viruses in sample 1; rotavirus without gemycircularvirus in sample 6). In one specimen (i.e. sample 6) RV sequences were the most abundant genomic representatives (98.5%); however, these sequence reads were distributed among various RV species (incl. RVB, RVG, RVH and RVI). To clarify this ambiguous situation, the library DNA that contained the most abundant RV-specific reads was resequenced at a greater sequencing depth. The resulting >1.3 Million sequence reads were subjected to de novo assembly.

As a result, the consensus genome sequence of strain BO4351/Ms/2014 could be assembled from a total of 36,630 sequence reads at 131 X (segment 3) to 457 X (segment 11) average coverage. Once the consensus rotavirus gene sequences were assembled for all 11 genomic segments, the 5’ and 3’ ends of each segment were validated by an independent method. The resulting genome of BO4351/Ms/2014 was 18,135 bp in length (range, 3533 bp for segment 1 and 620 bp for segment 11). Terminal sequences at the 5’ ends showed relatively conserved structure with stable nucleotides at positions 1, 2 and 4 and some variations at positions 3, 5, and 6 (segments 1 and 2, GCCACA; segments 3 and 4, GGCATT; segments 5, 7 and 9, GGAATA; segments 6 and 10, GGCAAA), while at the 3’ ends the variation was less (TAYACCC) (see details in Table 2).

Each segment had non-translated regions at both 5’ end (length range, 6 to 57 nt) and 3’ end (length range, 20 to 84 nt). Encoded proteins were assigned based on significant hits through the Blast engine and conserved peptide motifs. With this approach we found the equivalents of the major structural (VP1 to VP4, VP6 and VP7) and non-structural (NSP1 to NSP5) proteins of RVs (Tables 2 and 3). The encoded structural and non-structural proteins were assigned to particular RNA segments based on the size of full-length genome segments. Additional putative ORFs were predicted to be encoded on segments coding for VP6 and NSP5; however, these putative proteins shared no conserved protein motifs with those of known from other rotavirus species.

In the phylogenetic analyses cognate sequences of representative RVA to RVH strains were included, except for RVE, for which no sequence information is available. Neighbor-joining and maximum-likelihood trees provided similar topologies, clearly distinguishing clade 1 and clade 2 RV strains. The novel batborne RV consistently clustered with clade 2 RV strains, and in particular, with porcine and human RVH strains. One exception was found when analyzing the NSP4 tree, where the limited bootstrap support at the deepest nodes prevented the separation of the two major RV clades (Fig. 2). Consistent with the phylogenetic analyses, the greatest nucleotide and amino acid sequence identities for the novel batborne RV were seen when compared to reference RVH strains (range, 41 (nt%) and 14 (aa%) for NSP4; 63 (nt%) and 64 (aa%) for VP1) (Table 4).

To place the novel batborne strain, BO4351/Ms/2014, into the latest RV taxonomic framework (Matthijnssens et al., 2012; http://www.ictvonline.org), additional VP6 gene sequences were selected from GenBank to represent a broader genetic diversity of various RV species (Fig. 3). In this analysis, again, BO4351/Ms/2014 was most closely related to the major genetic lineage containing RVH strains (49–50%, aa) and showed lower similarity to other clade 2 RVs (RVB, 39%, RVG, 39%). The
The genetic relationship of BO4351/Ms/2014 to clade 1 RVs was marginal (max. identity with RVC, 17%) (Fig. 4, Table 4). Thus, applying the species demarcation sequence cut-off value, which is 53% identity at the amino acid level, we conclude that the novel batborne RV strain represents a new RV species, tentatively called Rotavirus J (RVJ). The reference strain was therefore designated as RVJ/Bat-wt/SRB/BO4351/Ms/2014/GP1.

To determine whether RVJ infection was common among *M. schreibersii* in the cave under investigation, a nested PCR assay was developed targeting a sequence region that is conserved within the VP6 coding gene of both RVH and RVJ. By adapting the nested PCR assay that amplified a 338 bp long fragment (spanning nucleotide position 137 to 474), another four stool samples were found to be positive for RVJ. All PCR products obtained in the 2nd round PCR were bidirectionally sequenced. The low sequence variation within these short segments (data not shown) suggested the presence of the same virus strain within the colony. Notably, given that RVs have been detected exclusively in birds and mammals, the data presented here suggests that bats may be a true host species of RVJ, although further studies are required to confirm this hypothesis.

Table 3

Comparison of the genome size and the coding potential of different RV species.

Genome segment	Rotavirus A, Wa	Rotavirus A, 02V0002G3	Rotavirus B, Bang373	Rotavirus C, Bristol	Rotavirus D, 05V0049	Rotavirus F, 03V0568	Rotavirus G, 03V0567	Rotavirus H, J19	Rotavirus I, KE135/2012	Rotavirus J, BO4351*				
Size (nt)	Protein (aa)	Size (nt)	Protein (aa)	Size (nt)	Protein (aa)	Size (nt)	Protein (aa)	Size (nt)	Protein (aa)	Size (nt)	Protein (aa)			
1	3302 VP1	(1088)	3305 VP1	(1089)	3311 VP1	(1160)	3309 VP1	(1090)	3274 VP1	(1079)	3296 VP1	(1086)	3526 VP1	(1160)
2	2717 VP2	(890)	2732 VP2	(895)	2847 VP2	(934)	2736 VP2	(884)	2801 VP2	(913)	2769 VP2	(904)	3014 VP2	(973)
3	2591 VP3	(835)	2583 VP3	(829)	2414 VP3	(763)	2283 VP3	(693)	2366 VP4	(777)	2464 VP4	(738)	2364 VP4	(722)
4	2359 VP4	(775)	2354 VP4	(760)	2106 VP4	(744)	2166 VP4	(685)	2104 VP3	(685)	2174 VP3	(694)	2352 VP3	(719)
5	1567 NSP1	(486)	2122 NSP1	(577)	1276 NSP1	(577)	1356 NSP1	(395)	1872 NSP1	(574)	1791 NSP1	(547)	1295 NSP1	(574)
6	1356 VP6	(397)	1348 VP6	(397)	1269 VP6	(397)	1350 NSP3	(402)	1353 NSP3	(398)	1314 VP6	(396)	1267 VP6	(396)
7	1074 NSP3	(310)	1089 NSP3	(304)	1179 NSP3	(347)	1270 VP6	(394)	1242 NSP3	(370)	1309 NSP3	(370)	1052 VP6	(394)
8	1062 VP7	(326)	1066 VP7	(329)	1007 NSP2	(301)	1063 VP7	(332)	1026 NSP2	(310)	1068 NSP2	(318)	1012 NSP2	(322)
9	1059 NSP2	(317)	1042 NSP2	(315)	814 VP7	(249)	107 NSP2	(312)	1025 NSP7	(316)	990 VP7	(295)	825 VP7	(247)
10	750 NSP4	(175)	724 NSP4	(168)	751 NSP4	(219)	730 NSP5	(212)	765 NSP5	(217)	706 NSP5	(218)	801 NSP4	(187)
11	664 NSP5	(197)	699 NSP5	(208)	631 NSP5	(170)	615 NSP5	(150)	672 NSP5	(195)	678 NSP5	(169)	678 NSP5	(185)
Total	18,501	19,064	17,932	17,912	18,500	18,186	17,961	17,989	18,135	18,135	18,135	18,135	18,135	18,135

* Abbreviated name of BO4351/Ms/2014.

Table 2

Assignment and some features of the genome segments of the candidate new bat rotavirus, BO4351/Ms/2014.

Genome segment	Assignment based on the main gene product	Positions of start and stop codons	Sequences at genome segment termini		
		Start	Stop	5' end	3' end
Segment 1	VP1	7	3153	GGCAAA	TATACC
Segment 2	VP2	21	2981	GGCAAA	TACCC
Segment 3	VP4	10	2490	GGCAAA	TATACC
Segment 4	VP3	9	2156	GGCAAA	TACCC
Segment 5	NSP1	50	1255	GGAAT	TACCC
Segment 6	VP6	33	1220	GGCAAA	TATACC
Segment 7	NSP3	49	1044	GGAAT	TACCC
Segment 8	NSP2	59	958	GGAAT	TACCC
Segment 9	VP7	8	745	GGAAT	TATACC
Segment 10	NSP4	27	659	GGAAT	TACCC
Segment 11	NSP5	58	555	GGAAT	TATACC

* Order of genome segments was defined on the basis of their size.
It is important to note that by morphological examination all tested animals were confirmed as adult specimens. Immune competence and pathogenicity need to be clarified for most viruses harbored by bats, although asymptomatic virus shedding seems to be common. Further studies are needed to clarify the pathogenicity, prevalence and effect of the virus on bat colonies. Since bats seem to possess special immune characteristics (Zhang et al., 2013), these features may contribute to an altered response to rotavirus infection and explain the high rate of fecal virus shedding in adult M. schreibersii specimens.

Recent years have witnessed considerable sequence data accumulation in public data bases pointing out the enormous genetic diversity within the Rotavirus genus. Viral metagenomics largely contributed to our understanding of this genetic diversity (Asano et al., 2016; He et al., 2013; Kluge et al., 2016; Li et al., 2011; Marton et al., 2015; Mihalov-Kovács et al., 2015; Theuns et al., 2016; Xia et al., 2014). Until the early 2000s RVA to RVG were considered as the only extant RV species (Estes and Greenberg, 2013; Matthijnssens et al., 2012). Sequence independent amplification followed by cloning and sequencing led to the discovery of a novel human RV species that, together with closely related porcine origin strains, was classified into RVH (Matthijnssens et al., 2012; Wakuda et al., 2011; Yang et al., 2004). A newly described member of the Rotavirus genus, RVI, was identified in the fecal viromes of seals and dogs (Li et al., 2011; Mihalov-Kovács et al., 2015).

In this study we described a novel RV detected in M. schreibersii bats from Serbia in 2014. This novel batborne RV belongs to clade 2 RVs, which also includes RVA, RVG, RVH and RVI (Kindler et al., 2013; Mihalov-Kovács et al., 2015). Of interest, the novel strain was closely related to representative strains of RVH suggesting that these RVs had diverged from a common ancestor. Nonetheless, molecular classification indicated that the Serbian batborne RV strain could be the member of

Table 4

Percentile nucleotide (nt) and amino acid (aa) sequence based identities between the novel batborne RV strain, BO4351/Ms/2014, and reference RVA-RVD and RVF-RVI strains.

Encoded protein	RVA	RVB	RVC	RVD	RVF	RVG	RVH	RVI
VP1	40 5	25 5	58 5	41 5	24 5	41 5	25 5	24 5
VP2	34 5	54 5	35 4	14 3	36 5	14 5	36 5	14 3
VP3	38 7	46 7	38 5	19 3	36 7	16 4	36 7	16 3
VP4	33 7	51 7	35 4	14 3	35 7	12 4	35 7	12 3
VP6	35 7	50 7	35 4	17 3	34 7	12 4	34 7	12 3
VP7	38 7	42 7	36 6	16 4	36 7	14 4	36 7	14 3
NSP1	32 <	21	30 <	31 <	21 <	31 <	30 <	30 <
NSP2	38 6	56 6	48 5	17 4	38 6	56 5	17 4	38 6
NSP3	36 4	44 4	34 3	11 2	38 4	33 2	11 2	38 4
NSP4	34 4	36 4	32 3	12 2	34 4	32 2	12 2	34 4
NSP5	38 3	43 3	28 3	13 2	34 3	31 2	13 2	34 3

![Fig. 2. Phylogenetic trees obtained for the genes encoding all major structural proteins (VP1 to VP4, VP6, and VP7) and non-structural proteins (NSP1 to NSP5) with representative strains of RVA to RVI. Alignments were created using the TranslatorX online platform (http://translatorx.co.uk/). Phylogenetic trees were prepared using the maximum likelihood method as implemented in Mega6 (http://www.megasoftware.net/). Bootstrap values are shown at the branch nodes. Calibration bars are proportional to the genetic distance.](image-url)
a novel RV species that we propose here as Rotavirus J. New sequence information of the complete RVJ genome should enable the design of sophisticated nucleic acid based diagnostic assays and the production of recombinant protein for serological assays that will help describe further details about the ecology, epizootiology and evolution of the novel RV. Of particular interest, given that many batborne viruses are capable of causing severe disease in humans it will be important to study whether or not the novel RVJ strains pose any occupational risk for professional chiropterologists or individuals coming into contact with bats and their excreta.
Fig. 4. Similarity plot prepared from amino acid sequences of the VP6 protein. Dashed line indicates the rotavirus species demarcation sequence identity cut-off value determined by Matthijnssens et al. (2012). Color codes are indicated below the plot.

Acknowledgements

Financial support was obtained from the Momentum (Lendület) Program (awarded by the Hungarian Academy of Sciences), from the Ministry of Education, Science and Technological Development of Serbia (Grant No. 173003) and from TÁMOP (4.2.4.A/2-11-1-2012-0001). S.M. was a recipient of the János Bolyai fellowship (awarded by the Hungarian Academy of Sciences), K.K. was supported by the Szentágothai Research Centre, University of Pécs). Research activity of G.K. and F.J. was supported by the Talent Program (awarded by the Szentágothai Research Centre, Hungarian Academy of Sciences), from the ÚNKP-16-3-III and ÚNKP-16-4-III – New Excellence Program of the Ministry of Human Capacities. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

References

Abascal, F., Zardoya, R., Telford, M.J., 2010. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

Appleton, B.R., McKenzie, J.A., Christidis, L., 2004. Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817) (Chiroptera: Vespertilionidae). Mol. Phylogenet. Evol. 31, 431–439.

Asano, K.M., Gregori, F., Hora, A.S., Scheffer, K.C., Fah, W.O., Lamamora, K., Moli, E., Silva, F.D., Taniwaki, S.A., Brandão, P.E., 2015. Group A rotavirus in Brazilian bats: description of novel T15 and H15 genotypes. Arch. Virol. 161, 3225–3230.

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIALMONT. Nat. Methods 12, 59–60.

Dietz, C., von Helversen, O., Nill, D., 2009. Bats of Britain, Europe and Northwest Africa. A & C Black Publishers Ltd., London, UK.

Djikeng, A., Alhjin, R., Kuzmickas, R., Depasse, J., Feldhuijn, J., Sengamalay, N., Afonso, C., Zhang, X., Anderson, N.G., Ghedin, E., Spiro, D., 2008. Viral genome sequencing by random priming methods. BMC Genomics 9, 5.

Eason, M.D., Mijatovic-Rustempasic, S., Conrady, C., Tong, S., Kuzmin, I.V., Agbewa, B., Breiman, R.F., Banyai, K., Nieszoda, M., Rupprecht, C.E., Gentsch, J.R., Bowen, M.D., 2010. Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum–Breiman, R.F., Banyai, K., Niezgoda, M., Rupprecht, C.E., Gentsch, J.R., Bowen, M.D., 2010. Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum (Kuhl, 1817) (Chiroptera: Vespertilionidae). Mol. Phylogenet. Evol. 31, 431–439.

K. Bányai et al. / Infection, Genetics and Evolution 48 (2017) 19–26

Fraenkel, E., Trojnar, E., Hecker, G., Otto, P.H., Johne, R., 2013. Analysis of rotavirus species diversity and evolution including the newly determined full-length genome sequences of rotavirus F and G. Infect. Genet. Evol. 14, 58–67.

Klug, M., Campos, F.S., Tavares, M., de Amorim, D.B., Valdez, F.P., Giong, A., Rothe, P.M., Franco, A.C., 2016. Metagenomic survey of viral diversity obtained from feces of Subantarctic and South American fur seals. PLoS One 11, e0151921.

Lambden, P.R., Cooke, S.J., Caul, E.O., Clarke, I.N., 1992. Cloning of noncultivatable human rotavirus by single primer amplification. J. Virol. 66, 1817–1822.

Li, L., Shan, T., Wang, C., Côté, C., Kolman, S., Oiniois, D., Guolland, F.M., Delwart, E., 2011. The feline viral flora of California sea lions. J. Virol. 85, 9909–9917.

Marton, S., Mihalov-Kovács, E., Dörö, R., Csata, T., Fehér, E., Oldal, M., Jakab, F., Matthijnssens, J., Martella, V., Bányai, K., 2015. Canine rotavirus C strain detected in Europe. J. Gen. Virol. 96, 3059–3071.

Martens, S., Mihalov-Kovács, E., Dörö, R., Csata, T., Fehér, E., Oldal, M., Jakab, F., Matthijnssens, J., Martella, V., Bányai, K., 2015. Canine rotavirus C strain detected in Europe. J. Gen. Virol. 96, 3059–3071.

Martello, V., Banyai, K., 2015. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg. Infect. Dis. 21, 660–663.

Nicholas, K.B., Nicholas Jr., H.B., Deerfield, D.W.J., 1997. GeneDoc: analysis and visualization of genetic variation. Embnet News 4, 14.

Potgieter, A.C., Steele, A.D., van Dijk, A.A., 2012. Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes. J. Gen. Virol. 83 (Pt 9), 2215–2223.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kuma, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

Theunis, C., Conciona-Cetto, N., Zeller, M., Heylen, E., Roukaerts, I.D., Desmares, L.M., Van Ranst, M., Naowaynck, H.J., Matthijnssens, J., 2016. Characterization of a genetically heterogeneous porcine rotavirus C, and other viruses present in the fecal virome of a non-diarrheic Belgian piglet. Infect. Genet. Evol. 43, 135–145.

Wakuda, M., Ide, T., Sasaki, K., Komoto, S., Ishii, J., Sanekata, T., Taniguchi, K., 2011. Porcine rotavirus closely related to novel group of human rotaviruses. Emerg. Infect. Dis. 17, 1491–1493.

Xia, L., Fan, Q., He, B., Xu, L., Zhang, F., Hu, T., Wang, Y., Li, N., Qiu, W., Zheng, Y., Matthijnssens, J., Tu, C., 2014. The complete genome sequence of a G3F10 Chinese bat rotavirus suggests multiple bat rotavirus inter-host species transmission events. Infect. Genet. Evol. 28, 1–4.

Yang, H., Makeyev, E.V., Kang, Z., Ji, S.S., Bannford, D.H., van Dijk, A.A., 2004. Cloning and sequence analysis of dsRNA segments 5, 6 and 7 of a novel non-group A, C adult rotavirus that caused an outbreak of gastroenteritis in China. Virus Res. 106, 15–26.

Zhang, G., Cowled, C., Shi, Z., Huang, Z., Baker, M.L., Zhao, W., Tachedjian, M., Zou, Y., Zhou, P., Xiang, J., Yang, L., Wu, L., Xiao, J., Cheng, Y., Sun, X., Zhang, Y., Marsh, G.A., Cramer, G., Broder, C.C., Frey, K.C., Wang, L.F., 2013. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460.