One–Step Hybrid Block Scheme for the Numerical Approximation for Solution of Third Order Initial Value Problems

J. Sabo a*, T. Y. Kyagya b and M. Solomon a

a Department of Mathematics Adamawa University Mubi, Adamawa State, Nigeria.
b Department of Mathematics and Statistic, Federal University, Wukari, Taraba State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

In this research, we have proposed the simulation of linear block algorithm for modeling third order highly stiff problem without reduction to a system of first order ordinary differential equation, to address the weaknesses in reduction method. The method is derived using the linear block method through interpolation and collocation. The basic properties of the block method were recovered and was found to be consistent, convergent and zero-stability. The new block method is been applied to model third order initial value problems of ordinary differential equations without reducing the equations to their equivalent systems of first order ordinary differential equations. The result obtained on the process on some sampled modeled third order linear problems give better approximation than the existing methods which we compared our result with.

Keywords: Block method; direct simulation; linear block algorithm; model; reduction.

1. INTRODUCTION

Numerical analysis is the area of mathematics which delivers suitable methods for modeling mathematical problems and to find out useful material from available solutions which are not expressed in tractable forms. Such problems begin for the most part, from real world
applications of algebra, geometry, calculus and they include variables which change consistently.

Conventionally, numerical solutions to third order ordinary differential equations of the form

\[y'' = f(x, y, y'), y(a) = y_0, y'(a) = y'_0 \] (1.1)

are solved by a reduction to a system of first order ordinary differential equation of the form

\[y' = f(x, y), y(a) = y_0, a \leq x \leq b, x, y \in \mathbb{R} \] (1.2)

Then any appropriate numerical methods would be used to solve the equation. This approach is extensively discussed by scholars such as [6-8]. It was noticed that this reduction process has a lot of hindrances such as difficulties in writing computer program for the method, computational burden which affects the accuracy of the method in terms of error and time consuming. In order to overcome these challenges or difficulties in reduction method, we will proposed the direct method.

In predictor-corrector method, an explicit method is usually meant for predictor step while an implicit method for the corrector step. The development of Linear Multistep Method (LMM) through the predictor-corrector mode has been carefully considered by scholars such as [6-8] among others. This method can only computes the numerical solution at one point at a time.

In order to overcome the difficulties mentioned in predictor-corrector method, block method was developed [9]. This method computes the discrete method at more than one grid point simultaneously. According to [10,11], the block method was originally proposed by Milne [12] who advocated the use of block as a means of getting a starting value for predictor-corrector algorithm and later adopted as a full method [13].

Therefore, we will develop a direct method using a block algorithms for solving (1.1) without reduction to (1.2) as suggested by [14-16]. Much and considerable attention have been dedicated to solving higher order ordinary differential equations of the form (1.1) directly without being reduced to system of first order ordinary differential equation. For instance, [17-21] etc. proposed block methods for direct solution of third order ordinary differential equation, the outcome is better when reduced to first order ordinary differential equation.

2. METHOD AND MATERIALS

2.1 Mathematical Formulation

The mathematical formulation of the method with six partitions shall be described in this section for treating third order initial value problems of the form (1.1). The one-step linear block approach with six partition are obtain from the expression

\[y_{n+\varphi} = \sum_{i=0}^{\varphi} \frac{(\varphi h)^i}{i!} y_n^{(i)} + \sum_{i=0}^{6} \eta_{i\varphi} f_{n+i} + \tau_{i\varphi} g_{n+i} \]

\[\varphi = \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{6} \] (2.1)

Obtaining the first and second derivative schemes of one step block method from

\[y_{n+\kappa}^{(i)} = \sum_{i=0}^{\kappa} \frac{(\kappa h)^i}{i!} y_n^{(i+\kappa)} + \sum_{i=0}^{3} \psi_{i\kappa} f_{n+i}, \kappa = 1, 2 \]

\[\eta_{\varphi} = Q^{-1} X \text{ and } \psi_{i\kappa} = Q^{-1} G \]

where
(2.3)
\[
Q = \left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & h & 0 & h & 0 & h & 0 & h \\
0 & 0 & 2h & 0 & 2h & 0 & 2h & 0 \\
0 & 0 & 0 & 3h & 0 & 3h & 0 & 3h \\
0 & 0 & 0 & 0 & 4h & 0 & 4h & 0 \\
0 & 0 & 0 & 0 & 0 & 5h & 0 & 5h \\
0 & 0 & 0 & 0 & 0 & 0 & 6h & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 6h \\
\end{array} \right)^T
\]

(2.4)
\[
X = \begin{pmatrix}
\frac{(\phi h)}{3!} & \frac{(\phi h)^3}{4!} & \frac{(\phi h)^5}{5!} & \frac{(\phi h)^7}{6!} & \frac{(\phi h)^8}{7!} & \frac{(\phi h)^9}{8!} & \frac{(\phi h)^{10}}{9!}
\end{pmatrix}^T
\]

(2.5)
\[
G = \begin{pmatrix}
\frac{(\phi h)^{3-k}}{(3-k)!} & \frac{(\phi h)^{4-k}}{(4-k)!} & \frac{(\phi h)^{5-k}}{(5-k)!} & \frac{(\phi h)^{6-k}}{(6-k)!} & \frac{(\phi h)^{7-k}}{(7-k)!} & \frac{(\phi h)^{8-k}}{(8-k)!} & \frac{(\phi h)^{9-k}}{(9-k)!}
\end{pmatrix}^T
\]

equation (2.1) and (2.2) can also be written in the following form

\[
y_{a1} = y_a + \frac{h}{6} y_a + \frac{h^2}{2!} y_a'' + \frac{(h/6)^2}{2!} y_a'''
\]

\[
y_{a3} = y_a + \frac{h}{3} y_a + \frac{h^2}{2!} y_a'' + \frac{(h/3)^2}{2!} y_a'''
\]

\[
y_{a3} = y_a + \frac{h}{2} y_a + \frac{h^2}{2!} y_a'' + \frac{(h/2)^2}{2!} y_a'''
\]

\[
y_{a3} = y_a + \frac{2h}{3} y_a + \frac{(2h/3)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]

\[
y_{a4} = y_a + \frac{5h}{6} y_a + \frac{(5h/6)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]

\[
y_{a4} = y_a + \frac{h}{2} y_a + \frac{(h/2)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]

(2.6)
\[
y_{a6} = y_a + \frac{h}{2} y_a + \frac{(h/2)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]

\[
y_{a6} = y_a + \frac{5h}{6} y_a + \frac{(5h/6)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]

\[
y_{a6} = y_a + \frac{h}{2} y_a + \frac{(h/2)^2}{2!} y_a'' + \frac{h^2}{2!} y_a'''
\]
\(y' = y + h^2 \left(\psi_{101}f_{\alpha} + \psi_{111}f_{\alpha} + \psi_{121}f_{\alpha} + \psi_{131}f_{\alpha} + \psi_{141}f_{\alpha} + \psi_{151}f_{\alpha} + \psi_{161}f_{\alpha} \right) \)

\(y'' = y' + h^2 \left(\psi_{202}f_{\alpha} + \psi_{212}f_{\alpha} + \psi_{222}f_{\alpha} + \psi_{232}f_{\alpha} + \psi_{242}f_{\alpha} + \psi_{252}f_{\alpha} + \psi_{262}f_{\alpha} \right) \)

\(y''' = y'' + h^2 \left(\psi_{303}f_{\alpha} + \psi_{313}f_{\alpha} + \psi_{323}f_{\alpha} + \psi_{333}f_{\alpha} + \psi_{343}f_{\alpha} + \psi_{353}f_{\alpha} + \psi_{363}f_{\alpha} \right) \)

\(y'''' = y''' + h^2 \left(\psi_{404}f_{\alpha} + \psi_{414}f_{\alpha} + \psi_{424}f_{\alpha} + \psi_{434}f_{\alpha} + \psi_{444}f_{\alpha} + \psi_{454}f_{\alpha} + \psi_{464}f_{\alpha} \right) \)

\(y''''' = y'''' + h^2 \left(\psi_{505}f_{\alpha} + \psi_{515}f_{\alpha} + \psi_{525}f_{\alpha} + \psi_{535}f_{\alpha} + \psi_{545}f_{\alpha} + \psi_{555}f_{\alpha} + \psi_{565}f_{\alpha} \right) \)

\(y'''''' = y''''' + h^2 \left(\psi_{606}f_{\alpha} + \psi_{616}f_{\alpha} + \psi_{626}f_{\alpha} + \psi_{636}f_{\alpha} + \psi_{646}f_{\alpha} + \psi_{656}f_{\alpha} + \psi_{666}f_{\alpha} \right) \)

\[(\eta_1, \eta_2, \eta_3, \eta_4, \eta_5, \eta_6, \eta_7) = \begin{pmatrix}
343801 & 6031 & 13981 & 5177 & 15107 & 5947 & 98809 \\
78302000 & 9331200 & 52254720 & 9797760 & 52254720 & 65318400 & 78302000
\end{pmatrix}
\]

\[(\eta_8, \eta_9, \eta_{10}, \eta_{11}, \eta_{12}, \eta_{13}, \eta_{14}) = \begin{pmatrix}
6887 & 1499 & 233 & 52 & 379 & 149 & 491 \\
3061800 & 255150 & 58320 & 15309 & 204120 & 255150 & 6123600
\end{pmatrix}
\]

\[(\eta_{15}, \eta_{16}, \eta_{17}, \eta_{18}, \eta_{19}, \eta_{20}, \eta_{21}) = \begin{pmatrix}
1595 & 1599 & 537 & 1 & 327 & 129 & 71 \\
358400 & 89600 & 71680 & 120 & 71680 & 89600 & 358400
\end{pmatrix}
\]

\[(\eta_{22}, \eta_{23}, \eta_{24}, \eta_{25}, \eta_{26}, \eta_{27}, \eta_{28}) = \begin{pmatrix}
3863 & 4664 & 226 & 272 & 31 & 344 & 142 \\
382725 & 127575 & 25515 & 15309 & 3645 & 127575 & 382725
\end{pmatrix}
\]

\[(\eta_{29}, \eta_{30}, \eta_{31}, \eta_{32}, \eta_{33}, \eta_{34}, \eta_{35}) = \begin{pmatrix}
505625 & 162125 & 85625 & 66875 & 119375 & 1625 & 18625 \\
31352832 & 2612736 & 10450944 & 373248 & 10450944 & 373248 & 31352832
\end{pmatrix}
\]

\[(\eta_{36}, \eta_{37}, \eta_{38}, \eta_{39}, \eta_{40}, \eta_{41}, \eta_{42}) = \begin{pmatrix}
33 & 33 & 6 & 0 & 3 & 3 & 1 \\
1400 & 350 & 560 & 35 & 280 & 350 & 1200
\end{pmatrix}
\]

To obtain the unknown coefficients \(\eta \), it is defined that
\[\eta = Q^{-1}X \] where \(Q \) and \(X \) are given in (2.3) and (2.4). The coefficients are
\[
\begin{align*}
\psi_{101}, \psi_{111}, \psi_{121}, \psi_{131}, \psi_{141}, \psi_{151}, \psi_{161} &= \\
&\begin{pmatrix}
28549 & 275 & 5717 & 10621 & -7703 & 403 & -199 \\
4354560 & 20736 & 483840 & 1088640 & -1451520 & 241920 & -870912
\end{pmatrix}, \\
\psi_{202}, \psi_{212}, \psi_{222}, \psi_{232}, \psi_{242}, \psi_{252}, \psi_{262} &= \\
&\begin{pmatrix}
1027 & 97 & 2 & 197 & 97 & 23 & -19 \\
68040 & 1890 & 81 & 8505 & 7560 & 5670 & 34020
\end{pmatrix}, \\
\psi_{303}, \psi_{313}, \psi_{323}, \psi_{333}, \psi_{343}, \psi_{353}, \psi_{363} &= \\
&\begin{pmatrix}
253 & 165 & 267 & 5 & 363 & 57 & 47 \\
10752 & 1792 & 17920 & 128 & 17920 & 8960 & 53760
\end{pmatrix}, \\
\psi_{404}, \psi_{414}, \psi_{424}, \psi_{434}, \psi_{444}, \psi_{454}, \psi_{464} &= \\
&\begin{pmatrix}
272 & 376 & 2 & 656 & 2 & 8 & 2 \\
8505 & 2835 & 945 & 8505 & 81 & 945 & 1701
\end{pmatrix}, \\
\psi_{505}, \psi_{515}, \psi_{525}, \psi_{535}, \psi_{545}, \psi_{555}, \psi_{565} &= \\
&\begin{pmatrix}
35225 & 8375 & 3125 & 25625 & 625 & 275 & 1375 \\
570912 & 48384 & 293030 & 4217728 & 96768 & 20736 & 870912
\end{pmatrix}, \\
\psi_{606}, \psi_{616}, \psi_{626}, \psi_{636}, \psi_{646}, \psi_{656}, \psi_{666} &= \\
&\begin{pmatrix}
41 & 3 & 3 & 17 & 3 & 3 & 0 \\
840 & 140 & 105 & 280 & 70 & 0
\end{pmatrix}.
\end{align*}
\]

3. Investigating the Properties of the Block Method

The properties examined for the new block method are the properties that are mandatory to ensure convergence of the block method when modified to solve initial value problems of higher order ordinary differential equations.

3.1 Order and Error Constant of the Block Method

To accomplish the order of the block method, by Taylor series expansions about \(x_n \) defined as

\[
y^{(m)}(x_n + ah) = y^{(m)}(x_n) + ah y^{(m+1)}(x_n) + \frac{(ah)^2}{2!} y^{(m+2)}(x_n) + \frac{(ah)^3}{3!} y^{(m+3)}(x_n) + \ldots
\]
Where \(y^{(m)}(x) = \frac{d^m y}{dx^m} \bigg|_{x=x_n} \), \(m = 1, 2, \ldots \)

Using the linear operator
\[
L[y(x)h] = \sum_{j=0}^{3} \alpha_j y_{n+j} + \sum_{j=0}^{3} \beta_j f_{n+j} + \sum_{j=0}^{3} \gamma_j f'_{n+j}
\]

expanding (3.2) using Taylor series expansions about \(x_n \) and comparing the coefficient \(h \) and the method is said to be of order \(p \) if \(C_0 = C_1 = \cdots = C_{p+1} = 0, C_{p+2} = 0, C_{p+3} \neq 0 \) and \(C_{p+3} \) is the error constant, [4]. Therefore the order and error constant of new method are
\[
p = [5, 5, 5, 5, 5, 5]^T\text{ with error constant } C_z = \begin{bmatrix}
6.7679 \times 10^{-36}, 5.0402 \times 10^{-30}, 5.9803 \\
5.0402 \times 10^{-30}, 6.7679 \times 10^{-30}, 4.4653 \times 10^{-30}
\end{bmatrix}
\]

3.2 Consistency

The block method is said to be consistant if the order is greater than or equal to one i.e. \(p \geq 1 \). Therefore the new method is consistent, [19].

3.3 Zero Stability

The block method is said to be zero-stable, if the roots \(y(x) = \frac{3}{16} (1 - \cos 2x) + \frac{x^2}{8}, s = 1, 2, \ldots, k \) of the first characteristics polynomial \(J(z) \) defined by
\[
J(z) = \det (zA^{(0)} - E)
\]
satisfies \(|z_s| \leq 1 \) and every root satisfies \(|z_s| = 1 \) have multiplicity not exceeding the order of the differential equation [9]. To analyze the block method for zero stability, the roots of the first characteristic polynomial
\[
J(z) = zI_k -
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

Solving for \(z \) in (3.3) gives \(J(z) = z^6 - z^5 \).

3.4 Convergence

The block method is to be convergent if it is consistent and zero-stable. Hence the block method is convergent in [14].

4. NUMERICAL IMPLEMENTATION OF THE PROBLEMS

The subsequent mathematical problems are measured for determination of viewing the accuracy of the new block method when compared with previously existing methods. The accuracy and convergence of the block method will be considered using some highly stiff third order linear problems, textual form and vividly shown.

Problem one: Consider the third order highly non-stiff linear problem
\[
d^3 y \over dx^3 = 3\cos(x), \quad y(0) = 1, \quad \frac{dy}{dx}(0) = 0, \quad \frac{d^2 y}{dx^2}(0) = 2,
\]
with the exact solution:
\[
y(x) = x^2 - 3\sin(x) + 3x + 1
\]
Source: [21,22,18].

Problem two: Consider the third order highly stiff linear problem
\[
d^3 y \over dx^3 + 4\frac{dy}{dx} = x - 0, \quad y(0) = \frac{dy}{dx}(0) = 0, \quad \frac{d^2 y}{dx^2}(0) = 1, h = 0.1
\]
with the exact solution given by
Source: [20,5,19].

Problem three: Consider the third order highly stiff linear problem
\[
d^3 y \over dx^3 + \frac{dy}{dx} = 0, \quad y(0) = 0, \quad \frac{dy}{dx}(0) = 1, \quad \frac{d^2 y}{dx^2}(0) = 2, h = 0.1
\]
With the exact solution given by
\[
y(x) = 2(1 - \cos x) + \sin x
\]
Source [23-26].
Table 1. Showing the comparison of error for problem one

x	Exact Result	approximate Result	Error in our Method	Error in [22]	Error in [21]	Error in [18]
0.1	1.01049975005951554310	1.01049975005951554300	1.0000e-19	2.4800e-07	1.9700e-16	0.0000e-00
0.2	1.04399200761481635360	1.04399200761481635330	3.0000e-19	7.3740e-06	1.2639e-15	2.2205e-16
0.3	1.10343938001598127470	1.10343938001598127400	7.0000e-19	6.0542e-05	4.0627e-15	8.8818e-16
0.4	1.19174497307404852500	1.19174497307404852360	1.4000e-18	2.5479e-04	9.4370e-15	1.5543e-15
0.5	1.31172338418739099920	1.31172338418739099680	2.4000e-18	7.7602e-04	1.8205e-14	2.8866e-14
0.6	1.46607257981489392840	1.46607257981489392490	3.5000e-18	1.9261e-03	3.1152e-14	5.3291e-15
0.7	1.657346938268628390	1.6573469382686283410	4.9000e-18	4.1505e-03	4.9021e-14	7.5495e-15
0.8	1.88793172730143171510	1.88793172730143170860	6.5000e-18	8.3637e-03	7.2504e-14	1.0436e-14
0.9	2.16001927111754983460	2.16001927111754982620	8.4000e-18	1.0224e-03	1.0224e-13	1.4211e-14
1.0	2.47558704557631048000	2.47558704557631047000	1.0000e-17	1.3880e-13	1.3880e-13	1.8208e-14

Source: [21,22,18]

Table 2. Showing the comparison of error for problem two

x	Exact Solution	Commutated Solution	Error in our Method	Error in [20]	Error in [5]	Error in [19]	
			Case one				
0.1	0.00498751665476719416	0.00498751665476719555	4.8610e-17	0.2304e-14	2.8818e-09	7.9512e-14	3.1484e-14
0.2	0.01980106362445904698	0.01980106362445885599	1.9099e-16	0.1658e-13	3.2893e-08	8.6717e-13	1.5843e-13
0.3	0.04399957220443353927	0.04399957220443490276	4.1651e-16	0.4850e-13	1.1954e-07	3.1385e-12	4.2347e-13
0.4	0.07686749199740648358	0.07686749199740577542	7.0816e-16	0.1147e-12	2.8709e-07	7.5504e-12	8.5820e-13
0.5	0.11744331764972380299	0.11744331764972275952	1.0435e-15	0.2425e-12	5.5398e-07	1.4585e-11	1.4764e-12
0.6	0.16455792103562370419	0.16455792103562238033	1.3959e-15	0.4436e-12	9.2975e-07	2.4504e-11	2.2752e-12
0.7	0.21688116070620482401	0.21688116070620308777	1.7362e-15	0.7467e-12	1.4149e-06	3.7317e-11	3.2313e-12
0.8	0.27297491043149163616	0.27297491043148960136	2.0348e-15	0.1183e-11	1.9995e-06	5.2765e-11	4.3022e-12
0.9	0.33135039275495382287	0.33135039275495156010	2.2628e-15	0.1753e-11	2.6636e-06	7.0321e-11	5.4266e-12
1.0	0.39052753185258919756	0.39052753185258680323	2.3943e-15	0.2481e-11	3.3776e-06	8.8206e-11	6.5277e-12

Source: [20, 5, 19]

57
Table 3. Showing the result for problem three

x	Exact Solution	Commutated Solution	Error in new Method	Error in [23]	Error in [24]	Error in [25]	Error in [26]
0.1	0.10982508609077662011	0.10982508609077661962	4.9000e-19	1.6613e-12	1.1177e-10	3.7470e-16	2.4980e-16
0.2	0.23853617511257795326	0.23853617511257795125	2.010e-18	7.5411e-12	9.3348e-10	8.3267e-16	4.1633e-16
0.3	0.38484722841012753581	0.38484722841012753150	4.310e-18	1.3843e-09	3.2775e-09	1.3878e-15	8.3267e-16
0.4	0.54729635430288032607	0.54729635430288031857	7.5000e-18	4.5006e-09	8.0524e-09	1.4433e-15	1.4433e-16
0.5	0.72426041482345756807	0.72426041482345755666	1.1410e-17	1.0520e-08	1.6249e-08	1.5543e-15	4.4409e-16
0.6	0.91397124357567876270	0.91397124357567874687	1.5830e-17	1.9715e-08	2.8912e-08	1.9986e-15	1.1102e-16
0.7	1.11453331266871420120	1.11453331266871418040	2.0800e-17	3.2968e-08	4.7125e-08	2.8866e-15	4.4409e-19
0.8	1.32394267220519191880	1.32394267220519198939	2.5900e-17	5.0419e-08	7.1985e-08	4.4409e-15	1.3323e-15
0.9	1.54010697308615447550	1.54010697308615444442	3.1300e-17	7.2608e-08	1.0458e-07	3.5527e-15	4.4409e-15
1.0	1.76086637307161707180	1.76086637307161703510	3.6700e-17	9.9511e-08	1.4596e-07	5.3291e-15	2.2204e-15

Source: [23-26].
Fig. 1. The graphical solution of problem one

Fig. 2. The graphical solution of problem two

Fig. 3. Showing the solution graph of problem three
5. SUMMARY, CONCLUSION AND RECOMMENDATIONS

In this research, we have proposed the block method for direct solution of third order initial value problems without reduction to a system of first order ordinary differential equation, to address the weaknesses in reduction method. The method is derived using the linear block method through interpolation and collocation. The basic properties of the block method were recovered and was found to be consistent, convergent and zero stability. The new block method is been applied to solve third order initial value problems of ordinary differential equations without reducing the equations to their equivalent systems of first order ordinary differential equations. The result obtained on the process on some sampled modeled third order linear problems give better approximation than the existing methods. The method developed using interpolation and collocation procedure has been recommended for scholars, students and researchers.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Lambert JD. Computational methods in ordinary differential equations. Introductory Mathematics for Scientists and Engineers. Wiley; 1973.
2. Lambert JD, Watson IA. Symmetric multistep methods for periodic initial value problems. IMA Journal of Applied Mathematics. 1976;18(2):189-202.
3. Fatunla SO. Numerical methods for initial value problems in ordinary differential equations. Academic press inc. Harcourt Brace Jovanovich Publishers, New York; 1988.
4. Sabo J, Skwame Y, Kyagya TY, Kwanamu JA. The direct simulation of third order linear problems on single step block method. Asian Journal of Research in Computer Science. 2021;12(2): 1-12.
5. Aibiremhol AA, Omole EO. A four-step collocation procedure by means of perturbation term with application to third-order ordinary differential equation. International Journal of Computer Applications. 2020;175(24):25-36.
6. Brown RL. Some characteristics of implicit multistep multi-derivative integration formulas. SIAM Journal on Numerical Analysis. 1977;14(6):982-993.
7. Awoyemi DO. An algorithm collocation method for direct solution of special and general fourth order initial value problems of ordinary differential equation. J. of N. A. M. P. 2005;6:271-238.
8. Kayode SJ, Adebgoro JO. Predictor-Corrector linear multistep method for direct solution of initial value problems of second order ordinary differential equations. Asian Journal of Physical and Chemical Sciences. 2018;6(1):1-9.
9. Fatunla SO. Block methods for second order ODEs. International Journal of computer mathematics. 1991;41(1-2): 55-63.
10. Olabode BT. Some linear multistep methods for special and general third order initial value problems of ordinary differential equation. Ph.D. Thesis, Federal University of Technology, Akure. (unpublished); 2007.
11. Ehigie JO, Okunuga SA, Sofoluwe AB. 3-point block methods for direct integration of general second-order ordinary differential equations. Advances in Numerical Analysis. 2011;10:1-14.
12. Mlne WE. Numerical solution of differential equations. New York: Wiley. 1953;19(3).
13. Adesanya AO, Udo MO, Alkali AM. A new block-predictor corrector algorithm for the solution of \(y''' = f(x, y, y', y'') \). American Journal of Computational Mathematics. 2012;2(4):341 – 344.
14. Dahlquist G. Convergence and stability in the numerical integration of ordinary differential equations. Mathematica Scandinav. 1959;4:33-53.
15. Henrici P. Discrete Variable Methods in Ordinary Differential Equations; 1962.
16. Omar Z. Developing parallel 3-point implicit block method for solving second order ordinary differential equations directly. IJMS. 2004;11(1):91-103.
17. Adeyeye O, Omar Z. New self-starting approach for solving special third order initial value problems. Int. J. Pure Appl. Math. 2018;118(3):511-517.
18. Fasasi KM. New continue hybrid constant block method for the solution of third order initial value problem of ordinary differential equations. Academic Journal of
19. Tumba P, Skwame Y, Raymond D. Half-Step Implicit Linear Hybrid Block Approach of Order Four for Solving Third Order Ordinary Differential Equations. Dutse Journal of Pure and Applied Sciences (DUJOPAS). 2021;7(2b):124-133.

20. Adeyeye O, Omar Z. Direct solution of initial and boundary value problem of third order ODEs using maximum-order fourth-derivative block method. 4th Innovation and Analytics Conference & Exhibition. AIP Conf. Proc. 2019a;2138:030002-1-03002-6.

21. Skwame J, Dalatu PI, Sabo J, Mathew M. Numerical application of third derivative hybrid block methods on third Order Initial Value Problem of ordinary differential equations. IJSAM. 2019;4(6):90-100.

22. Taparki RM, Gurah D, Simon S. An implicit Runge-Kutta method for solution of third order initial value problem in ODE. Int. J. Numer. Math. 2010;6:174-189.

23. Adesanya AO, Udoh OM, Ajileye AM. A new hybrid block method for the solution of general third order initial value problem of ODEs. International Journal of Pure and Applied Mathematics. 2013;86(2):365-375.

24. Aro EA, Omojola MT. One-twelfth step continuous block method for the solution of y''' = f(x, y, y', y''). International Journal of Pure and Applied Mathematics. 2017;114(2):165-178.

25. Sunday J. On the oscillation criteria and computation of third order oscillatory differential equations. Communication in Mathematics and Applications. 2018;6(4):615-625.

26. Sunday J, Joshua KV, Danladi N. On the derivation and implementation of a one-step algorithm for third order oscillatory problems. Adamawa State University. Journal of Scientific Research (ADSUJSR). 2019;7(1):8-20.

© 2021 Sabo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/78869