CECI N’EST PAS A GLOBULAR CLUSTER: THE METALLICITY DISTRIBUTION OF THE STELLAR SYSTEM TERZAN 5∗

D. Massari1, A. Mucciarelli1, F. R. Ferraro1, L. Origlia2, R. M. Rich3, B. Lanzoni1, E. Dalessandro1, E. Valent4, R. Ibata5, L. Lovisi1, M. Bellazzini2, and D. Reitzel3

1 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, v.le Berti Pichat 6/2, I-40127 Bologna, Italy
2 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy
3 Department of Physics and Astronomy, Math-Sciences 8979, UCLA, Los Angeles, CA 90095-1562, USA
4 European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany
5 Ovservatoire Astronomique, Université de Strasbourg, CNRS, 11, rue de l’Université, F-67000 Strasbourg, France

Abstract

We present new determinations of the iron abundance for 220 stars belonging to the stellar system Terzan 5 in the Galactic bulge. The spectra have been acquired with FLAMES at the Very Large Telescope of the European Southern Observatory and DEIMOS at the Keck II Telescope. This is by far the largest spectroscopic sample of stars ever observed in this stellar system. From this data set, a subsample of targets with spectra unaffected by TiO bands was extracted and statistically decontaminated from field stars. Once combined with 34 additional stars previously published by our group, a total sample of 135 member stars covering the entire radial extent of the system has been used to determine the metallicity distribution function of Terzan 5. The iron distribution clearly shows three peaks: a super-solar component at [Fe/H] ≳ 0.25 dex, accounting for ∼29% of the sample, a dominant sub-solar population at [Fe/H] ≲ −0.30 dex, corresponding to ∼62% of the total, and a minor (6%) metal-poor component at [Fe/H] ≲ −0.8 dex. Such a broad, multi-modal metallicity distribution demonstrates that Terzan 5 is not a genuine globular cluster but the remnant of a much more complex stellar system.

Key words: globular clusters: individual (Terzan 5) – stars: abundances – techniques: spectroscopic

Online-only material: color figure, machine-readable table

1. INTRODUCTION

Terzan 5 is a stellar system located in the bulge of our Galaxy, at a distance of 5.9 kpc (Valenti et al. 2007), historically classified as a globular cluster (GC). Its location (l = 3°8395, b = 1°6868) corresponds to a highly extincted region of the sky, with an average color excess E(B − V) = 2.38 mag (Valenti et al. 2007) and a patchy structure of dust clouds that causes the extinction to vary spatially by ∼0.7 mag over a projected spatial scale of few arcminutes (Massari et al. 2012). Because of optical observations of Terzan 5 are extremely challenging, its true nature remained hidden behind this dusty curtain for a long time, until high-resolution near-infrared observations revealed the presence of two distinct stellar populations (Ferraro et al. 2009, hereafter F09). Two Red Clumps (RCs) well separated in color (δ(U − K) ≈ 0.2 mag) and magnitude (ΔK ≈ 0.3 mag) have been detected in the near-infrared color–magnitude diagram (CMD) obtained with the Multi-conjugate Adaptive optics Demonstrator mounted at the Very Large Telescope (VLT). The analysis of near-infrared high-resolution spectra (Origlia et al. 1997) promptly acquired with NIRSPEC (McLean et al. 1998) at Keck II telescope demonstrated that both populations belong to Terzan 5 and have very different iron abundances (F09; Origlia et al. 2011, hereafter O11): [Fe/H] = −0.25 dex for the component corresponding to the faint RC, [Fe/H] = +0.27 dex for the bright RC. Recently, Origlia et al. (2013, hereafter O13) discovered the presence of a third, more metal-poor component at [Fe/H] = −0.79. Such a large spread in the iron abundance of Terzan 5 stars clearly indicates that its initial mass had to be much larger than the current one (10^6 M⊙; Lanzoni et al. 2010), in order to retain the high-velocity, iron-enriched gas ejected by supernovae (SNe). Moreover, O11 did not find any hint of the spreads and anti-correlations among light elements commonly observed in Galactic GCs (see Carretta et al. 2010a). Instead, the α-element abundance patterns of the three populations (see O11, O13) turned out to be strikingly similar to those observed in the bulge field stars (e.g., Fulbright et al. 2007; Hill et al. 2011; Rich et al. 2012; Johnson et al. 2011, 2012, 2013, 2014; Ness et al. 2013), with α enhancement up to about solar [Fe/H] and a progressively decreasing [α/Fe] toward the solar ratio at super-solar [Fe/H].

The observational evidence collected so far suggests that Terzan 5 is not a genuine GC, but a stellar system that experienced complex star formation and chemical enrichment histories. In order to accurately reconstruct its evolution, a first crucial step is to precisely determine the metallicity distribution of its stellar populations, based on a statistically significant sample of stars. This paper reports the iron abundance for a sample of 220 giants distributed over the entire radial extent of Terzan 5 from the innermost regions out to the tidal radius. In Section 2, we present the analyzed sample. In Section 3, we describe the chemical abundance analysis. The overall error budget is discussed in Section 4. Finally in Section 5, we finally present the metallicity distribution, and in Section 6, we draw our conclusions.

2. OBSERVATIONS AND DATA REDUCTION

This work is part of a large spectroscopic survey of stars in the direction of Terzan 5, aimed at characterizing the kinematical...
and chemical properties of the stellar populations within the system and in the surrounding Galactic bulge field. While the overall survey will be described in a forthcoming paper (F. Ferraro et al. 2014, in preparation) and the properties of the field around Terzan 5 have been discussed in Massari et al. (2014, hereafter M14a), here we focus on the metallicity distribution of Terzan 5.

This study is based on a sample of stars located within the tidal radius of Terzan 5 \((r_t \simeq 300'' ; \text{Lanzoni et al. 2010; Miocchi et al. 2013}) \) observed with two different instruments: FLAMES (Pasquini et al. 2002) at the European Southern Observatory (ESO) VLT and DEIMOS (Faber et al. 2003) at the Keck II Telescope. The spectroscopic targets have been selected from the optical photometric catalog of Terzan 5 described in Lanzoni et al. (2010) along the brightest portion \((I < 17) \) of the red giant branch (RGB). In order to avoid contamination from other sources, we avoided stars with bright neighbors \((I_{\text{neighbor}} < I_{\text{star}} + 1.0) \) within a distance of 2" in the selection process of the spectroscopic targets. The spatial distribution of the observed targets is shown in Figure 1.

1. **FLAMES data set.** This data set has been collected under three different programs (ID: 087.D-0716(B), PI: Ferraro; ID: 087.D-0748(A), PI: Lovisi; and ID: 283.D-5027(A), PI: Ferraro). As already described in M14a, all the spectra have been obtained using the HR21 setup in the GIRAFFE/MEDUSA mode, providing a resolving power of \(R \sim 16,200 \) and a spectral coverage ranging from 8484 Å to 9001 Å. This grating has been chosen because it includes the prominent Ca\(ii \) triplet lines, which are widely used features for radial velocity estimates, even in low signal-to-noise ratio (S/N) spectra. Several metal lines (mainly of Fe\(i \)) lie in this spectral range, thus allowing a direct measurement of \([\text{Fe}/\text{H}]).\) In order to reach S/N \(\sim 40-50\) even for the faintest \((I \sim 17) \) targets, multiple exposures with integration times ranging from 1500 s to 2400 s (depending on the magnitude of the targets) have been secured for the majority of the stars. In order to reduce the acquired spectra, we used the FLAMES-GIRAFFE ESO pipeline.\(^6\) This includes bias subtraction, flat-field correction, wavelength calibration with a standard Th–Ar lamp, resampling at a constant pixel size, and extraction of one-dimensional spectra. Because of the large number of O\(_2 \) and OH emission lines in this spectral range, a correct sky subtraction is a primary requirement. Thus, in each exposure 15–20 fibers have been used to measure the sky. The master sky spectrum obtained as the median of these spectra has been then subtracted from the stellar ones. Finally, all the spectra have been reported to zero velocity and in

\(^6\) http://www.eso.org/sci/software/pipelines/
the case of multiple exposures, they have been co-added together.

2. **DEIMOS data set.** This spectral data set has been acquired by using the 1200 line/mm grating coupled with the GG495 and GG550 order-blocking filters. The spectra cover the ∼6500–9500 Å wavelength range with a resolution of $R \sim 7000$ at $\lambda \sim 8500$ Å. An exposure time of 600 s for each pointing allowed to reach $S/N \sim 50–60$ for the brightest stars and $S/N \sim 15–20$ for the faintest ones ($I \sim 17$ mag). We used the package described in Ibata et al. (2011) for an optimal reduction and extraction of the DEIMOS spectra. For sake of comparison, Figure 2 shows two spectra of the same star observed with FLAMES (top panels) and with DEIMOS (bottom panels).

3. **ANALYSIS**

3.1. **Atmospheric Parameters**

Effective temperatures (T_{eff}) and surface gravities ($\log g$) for each target have been derived from near infrared photometry in order to minimize the effect of possible residuals in the differential reddening correction. The ($K, J - K$) CMD has been obtained by combining the SOFI catalog of Valenti et al. (2007) for the central 2.5×2.5 and Two Micron Sky Survey photometry in the outermost regions. Magnitudes and colors of each star have been corrected for differential extinction according to their spatial location with respect to the center of Terzan 5. For stars in the innermost regions, lying within the field of view (FoV) of the Advanced Camera for Surveys/Hubble Space Telescope (ACS/HST) observations (see Lanzoni et al. 2010), the reddening map published in Massari et al. (2012)⁷ has been adopted. Instead, the correction for stars in the outer regions has been estimated from the new differential reddening map described in M14a (see their Figure 4). The target positions in the reddening-corrected CMD are shown in Figure 3. In order to estimate T_{eff} and $\log g$, the position of each target in the reddening-corrected CMD has been projected onto a reference isochrone. Following F09, we adopted a 12 Gyr old isochrone extracted from the BaSTI database (Pietrinferni et al. 2006) with metallicity $Z = 0.01$ (corresponding to $[\text{Fe/H}] = -0.25$), α-enhanced chemical mixture and helium content $Y = 0.26$ dex (well-reproducing the dominant stellar population in Terzan 5, see O11). The isochrone is shown as dashed line in Figure 3. Since Terzan 5 hosts at least two stellar populations but they are photometrically indistinguishable in the near-infrared plane, we discuss the effect of using isochrones with different metallicities and ages in Section 4.

⁷ A webtool able to compute the reddening in the direction of Terzan 5 is freely available at the Cosmic-Lab Web site, http://www.cosmic-lab.eu/Cosmic-Lab/Products.html.
As already explained in M14a, the small number of Fe i lines (about 10) observed in the FLAMES and DEIMOS spectra (see Section 3.2) prevents us from deriving a reliable spectroscopic determination of the microturbulent velocity (v_{turb}; see Mucciarelli 2011 for a review of the different methods to estimate this parameter). Therefore, for homogeneity with our previous work, we adopted the same value, $v_{\text{turb}} = 1.5 \text{ km s}^{-1}$, which is a reasonable assumption for cool giant stars (see also Zoccali et al. 2008; Johnson et al. 2013).

3.2. Chemical Analysis

We adopted the same Fe i line list and the same techniques to analyze the spectra and to determine the chemical abundances as those used in M14a.

1. **FLAMES data set.** We performed the chemical analysis using the package GALA (Mucciarelli et al. 2013), an automatic tool to derive chemical abundances of single, unblended lines by using their measured equivalent widths (EWs). The adopted model atmospheres have been calculated with the ATLAS9 code (Castelli & Kurucz 2004). Following the prescriptions by M14a, we performed the analysis running GALA with all the model atmosphere parameters fixed and allowing only the metallicity to vary iteratively in order to match the iron abundance measured from EWs. The latter were measured by using the code 4DAO (Mucciarelli 2013). This code runs DAOSPEC (Stetson & Pancino 2008) for large sets of spectra, tuning automatically the main input parameters used by DAOSPEC. It also provides graphical outputs that are fundamental to visually check the quality of the fit for each individual spectral line. EW errors are estimated by DAOSPEC as the standard deviation of the local flux residuals (see Stetson & Pancino 2008). All the lines with EW errors larger than 10% were excluded from the analysis.

2. **DEIMOS data set.** The lower resolution of DEIMOS causes a high degree of line blending and blanketing in the observed spectra. The derivation of the abundances through the method of the EWs is therefore quite uncertain. Thus, the iron abundances for this data set have been measured by comparing the observed spectra with a grid of synthetic spectra, according to the procedure described in Mucciarelli et al. (2012). Each Fe i line has been analyzed individually by performing a χ^2 minimization between the normalized observed spectrum and a grid of synthetic spectra.

spectra. The synthetic spectra have been computed with the code SYNTHETE (Sbordone et al. 2004) assuming the proper atmospheric parameters for each individual star, then convolved at the DEIMOS resolution and finally resampled at the pixel size of the observed spectra. To improve the quality of the fit, the normalization is iteratively readjusted locally in a region of \sim50–60 Å. We estimated the uncertainties in the fitting procedure for each spectral line by using Monte Carlo simulations: for each line, Poissonian noise is added to the best-fit synthetic spectrum in order to reproduce the observed S/N and then the fit is re-computed as described above. The dispersion of the abundance distribution derived from 1000 Monte Carlo realizations has been adopted as the abundance uncertainty (typically about \pm0.2 dex).

4. ERROR BUDGET

In order to verify the robustness of our abundance analysis, in the following we discuss the effect of each specific assumption we made and the global uncertainty on the iron abundance estimates.

4.1. Systematic Effects

1. Choice of the isochrone. The atmospheric parameters of the selected targets have been determined from the projection onto an isochrone corresponding to the old, sub-solar population (see Figure 3). However, as discussed by F09 and O11, Terzan 5 hosts at least two stellar populations with different iron abundances and possibly ages. In order to quantify the effect of using isochrones with different metallicity/age, we re-derived the atmospheric parameters by using a BaSTI isochrone (Pietrinferni et al. 2004) with an age of 6 Gyr, $Z = +0.03$, and a solar-scaled mixture (corresponding to [Fe/H] = +0.26 dex). The temperatures of the targets decrease by less than 200 K and the gravities increase by \sim0.2 (as a consequence of the larger evolutive mass). By re-analyzing the spectra of these stars with the new parameters, we obtained very similar iron abundances, the mean difference, and rms scatter being $\langle[Fe/H]_{6\text{Gyr}}-[Fe/H]_{12\text{Gyr}}\rangle = 0.00$ dex, and $\sigma = 0.12$ dex, respectively. We performed an additional check by adopting the metallicity of the extreme metal poor component ([Fe/H] \approx −0.8 dex) by using a BaSTI isochrone with an age of 12 Gyr, $Z = 0.004$, and α enhanced (corresponding to [Fe/H] \approx −1 dex), finding that iron abundances increase only by about 0.06 dex.

2. Temperature scale. To check the impact of different T_{eff} scales, we derived the atmospheric parameters by adopting the Dartmouth (Dotter et al. 2007) and Padua (Marigo et al. 2008) isochrones, and we found negligible variations ($\delta T_{\text{eff}} \lesssim 50$ K). Also the adoption of the $(J-K)$-T_{eff} empirical scale by Montegriffo et al. (1998) has a marginal impact (smaller than 100 K) on the derived temperatures. Such differences lead to iron variations smaller than 0.05 dex.

3. Microturbulent velocities. The assumption of a different value of v_{turb} has the effect of shifting the metallicity distribution without changing its shape. Typically, a variation of ±0.1 km s$^{-1}$ leads to iron abundance variations of ±0.07–0.1 dex. Given the typical dispersion of v_{turb} for these kind of stars (see M14a), this effect would lead to a systematic shift of the distribution of a few tenths of dex. However the nice match between the abundances measured in these work and those obtained by O11 and O13 from higher-resolution spectra for the targets in common (see Section 5.1) demonstrates that our choice of v_{turb} is adequate.

4. Model atmospheres. We repeated the analysis of the targets by adopting MARCS (Gustafsson et al. 2008) and ATLAS9–APOGEE (Mezasros et al. 2012) model atmospheres instead of the ATLAS9 models by Castelli & Kurucz (2004). The adoption of different model atmospheres calculated assuming different lists for opacity, atomic data, and computation recipes leads to variations smaller than ±0.1 dex in the [Fe/H] determination and it does not change the shape of the metallicity distribution.

4.2. Abundance Uncertainties

As discussed in M14a, the global uncertainty of the derived iron abundances (typically \sim0.2 dex) has been computed as the sum in quadrature of two different sources of error.

1. The first source is the error arising from the uncertainties on the atmospheric parameters. Since it has been derived from photometry, the formal uncertainty on these quantities depends on all those parameters that can affect the location of the targets in the CMD, such as photometric errors (σ_K and σ_{J-K} for the magnitude and the color, respectively), uncertainty on the absolute and differential reddening ($\sigma_{E(B-V)}$ and $\sigma_{A(E(B-V))}$, respectively) and errors on the distance modulus (σ_{DM}). In order to evaluate the uncertainties on T_{eff} and log g, we therefore repeated the projection onto the isochrone for every single target assuming $\sigma_K = 0.04$, $\sigma_{J-K} = 0.05$, $\sigma_{E(B-V)} = 0.05$ for the targets in the ACS sample (Massari et al. 2012), $\sigma_{A(E(B-V))} = 0.1$ for targets in the WFI FoV (M14a), and $\sigma_{E(B-V)} = 0.05$ and $\sigma_{DM} = 0.05$ (Valenti et al. 2010). We found that uncertainties on T_{eff} range from \sim60 K up to \sim120 K, and those on log g are of the order of 0.1–0.15 dex. For v_{turb}, we adopted a conservative uncertainty of 0.2 km s$^{-1}$.

2. The second source of error is the internal abundance uncertainty. For each target, this was estimated as the dispersion of the abundances derived from the lines used divided by the squared root of the number of lines. It is worth noticing that for any given star, the dispersion is calculated by weighting the abundance of each line by its own uncertainty (as estimated by DAOSPEC for the FLAMES targets and from Monte Carlo simulations for the DEIMOS targets).

5. RESULTS

5.1. Metallicity Distribution

In order to build the metallicity distribution of Terzan 5, we selected bona fide members according to the following criteria.

1. We considered only stars within the tidal radius of Terzan 5 (\sim4.6, Lanzoni et al. 2010; see also Miocchi et al. 2013).

2. We considered stars with radial velocities within $\pm2.5\sigma$ (between -123 km s$^{-1}$ and -43 km s$^{-1}$) around the systemic radial velocity of Terzan 5 ($v_{\text{rad}} \simeq -83$ km s$^{-1}$, Ferraro et al. 2014, in preparation).

3. We discarded spectra affected by TiO molecular bands, which can make the evaluation of the continuum level difficult and in the most extreme cases, completely hide the spectral lines of interest. To evaluate the impact of TiO
bands on the observed spectra, we followed the strategy described in M14a, adopting the same q parameter (defined as the ratio between the deepest feature of the TiO band at λ≈8860 Å and the continuum level measured in the adjacent spectral range 8850 Å < λ < 8856 Å). Thus we analyzed the full set of absorption lines in all the targets with q > 0.8, while we adopted a reduced line list (by selecting only iron absorption lines in the range 8680 Å < λ < 8850 Å, which are only marginally affected by TiO contamination) for stars with 0.6 < q < 0.8, and we completely discarded all the targets with q < 0.6 (see the empty symbols in Figure 3).

Following these criteria, we selected a sample of 224 stars (170 from the FLAMES data set and 54 from the DEIMOS data set). A few stars observed with different instruments were used to check the internal consistency of the measures. In fact, three DEIMOS targets are in common with the FLAMES sample and the average difference between the metallicity estimates is (\[Fe/H]\)DEIMOS−\[Fe/H]\)FLAMES = +0.08 ± 0.06 (σ = 0.11 dex). One DEIMOS target is in common with the NIRSPEC sample by O11 and we find \[Fe/H]\)DEIMOS−\[Fe/H]\)NIRSPEC = +0.02 dex. Finally, three metal-poor FLAMES stars have been observed at higher spectral resolution with NIRSPEC by O13, and the average difference between the iron abundance estimates is 0.01 ± 0.02 dex (σ = 0.03) only. Hence we can conclude that iron abundances obtained from different instruments are in good agreement (well within the errors). For those stars with multiple measurements, we adopted the iron abundance obtained from the data set observed at higher spectral resolution. Thus the selected sample numbers 220 stars.

As discussed in detail in M14a, the rejection of targets severely contaminated by TiO bands introduces a bias that leads to the systematic exclusion of metal-rich stars. To avoid such a bias, we will focus the analysis only on a sub-sample of stars selected in a magnitude range (9.6 < \(K_c\) < 11.7) where no targets have been discarded because of TiO contamination. Thus, the final sample discussed in the following contains a total of 135 stars and their measured iron abundances and final uncertainties (computed as described in Section 4.2), together with the adopted atmospheric parameters, are listed in Table 1. The \[Fe/H\] distribution for these 135 targets is shown in Figure 4. It is quite broad, extending from \[Fe/H\] = −1.01 to +0.94 dex, with an average value of \[Fe/H\] = −0.12 and a dispersion σ = 0.35, much larger than the typical uncertainty on the abundance estimates. More in detail, the observed distribution shows a main peak at \[Fe/H\] ∼ −0.30 dex and a secondary component at \[Fe/H\] ∼ +0.30 dex, in very good agreement with the results of O11. Also, the third component discovered by O13 is clearly visible at \[Fe/H\] ∼ +0.8 dex. The distribution also shows a very metal-rich tail, up to \[Fe/H\] ∼ +0.8 dex. However, only five stars have been measured with such an extreme metallicity value, with a somewhat larger uncertainty (∼0.2 dex). Figure 5 shows the spectra of two such super metal-rich stars (7009197 and 7036045 with metallicity of [Fe/H] = +0.77 dex and [Fe/H] = +0.74 dex, respectively), and the spectrum of a star with [Fe/H] = +0.26 dex and very similar atmospheric parameters (\(T_{\text{eff}}\) = 4325 K, log g = 1.7 dex for the two super-metal-rich targets and \(T_{\text{eff}}\) = 4269 K and log g = 1.6 dex for the latter). As can be seen, the super metal-rich stars have deeper iron absorption lines, thus indicating a higher metal content with respect to the star at [Fe/H] = +0.26 dex. Note that in order to fit these lines with an iron abundance of 0.3 dex, one needs to assume a significantly warmer (∼500 K) temperature. A spectroscopic followup at higher spectral resolution is needed to draw a more firm conclusions about the metal content of these stars. If their extremely high metallicity were confirmed, they would be among the most metal-rich stars in the Galaxy.

5.2 Statistical Decontamination

Even though our sample has been selected within the narrow radial velocity range around the systemic velocity of Terzan 5, we may expect some contamination by a few bulge field stars. Hence, we performed a statistical decontamination by using the properties of the field population surrounding Terzan 5 described in M14a. As shown in detail in that paper, we found that the bulge field population has a very broad radial velocity distribution, peaking at \(v_{\text{rad,field}}\) ∼ 21 km s\(^{-1}\) and with a dispersion σ ∼ 113 km s\(^{-1}\), thus overlapping the Terzan 5 distribution. When considering different metallicity bins, the bulge population is distributed as follows: (1) 3% with [Fe/H] < −0.5 dex; (2) 44% with −0.5 < [Fe/H] < 0 dex; (3) 49% with 0 < [Fe/H] < 0.5 dex; and (4) 4% with [Fe/H] > 0.5 dex.

Table 1

Iron Abundance of Terzan 5 Stars

ID	R.A.	Decl.	\(K_c\) (mag)	\(T_{\text{eff}}\) (K)	log g (cm s\(^{-2}\))	[Fe/H] (dex)	\(\sigma_{\text{Fe/H}}\) (dex)	Data Set
109	266.9801977	−24.7835577	8.60	3741	0.7	−0.30	0.17	FLAMES
126	267.0292394	−24.7803417	8.60	3736	0.7	−0.26	0.14	FLAMES
134	267.0332227	−24.7935548	8.73	3771	0.7	−0.32	0.07	FLAMES
146	267.0254477	−24.7817867	8.78	3786	0.8	−0.38	0.07	FLAMES
148	267.0291700	−24.7969272	8.86	3804	0.8	−0.17	0.06	FLAMES
155	267.0286940	−24.7786346	8.83	3799	0.8	−0.34	0.09	FLAMES
158	267.0124475	−24.7843182	8.88	3814	0.8	−0.36	0.10	FLAMES
159	267.0226507	−24.7624999	8.83	3800	0.8	−0.32	0.06	FLAMES
164	267.0282685	−24.7949080	8.98	3838	0.8	−0.31	0.07	FLAMES
165	267.0315361	−24.7896355	8.95	3831	0.8	−0.18	0.15	FLAMES

Notes. Identification number, coordinates, \(K_c\) magnitude atmospheric parameters, iron abundances and their uncertainties, and corresponding data set for all the 220 stars members of Terzan 5 with iron abundance measured. All stars with \(K_c\) < 9.6 or \(K_c\) > 11.7 have been excluded from the analysis of the MDF (see Section 5.1).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)
Figure 4. Metallicity distribution obtained for the unbiased FLAMES+DEIMOS sample (135 targets selected in the magnitude range $9.6 < K_c < 11.7$) before the statistical decontamination.

Figure 5. Comparison of the spectra of two super metal-rich stars (namely 7009197 and 7036045, shown as dashed and dotted lines, respectively) and that of a star at $[\text{Fe/H}] = +0.26$ (solid line) with similar atmospheric parameters. The two super metal-rich stars show more pronounced absorption lines, thus indicating an actual, very high metallicity.
To perform a meaningful statistical decontamination, we first split our sample in three radially selected sub-samples (see Figure 6). The inner ($r < 100''$) subsample is composed of 66 stars. The fractions of field stars expected (Ferraro et al. 2014, in preparation) to populate this inner region amounts to 2%, corresponding to a number of contaminating targets of $N_{1,\text{field}} = 2$. The intermediate subsample ($100'' < r < 200''$) is composed of 48 stars. In this case, the number of expected field stars increases to $N_{2,\text{field}} = 16$, i.e., the 32% of the subsample. Finally, in the outer sample ($200'' < r < 276''$), where we count 21 stars, the expected contamination by non-member stars amounts to 73% (corresponding to $N_{3,\text{field}} = 16$). Figure 6 summarizes the number of stars observed (in black) and the number of contaminants expected (in gray, encircled) in each radial and metallicity bin considered.

For each radially selected sub-sample and metallicity bin, we then randomly subtracted the corresponding number of expected contaminants, thus obtaining the decontaminated sample.

5.3. Decontaminated Distribution

The final decontaminated sample is composed of 101 stars and its metallicity distribution is shown in the upper panel of Figure 7. For comparison, the lower panel shows the distribution of the 34 giant stars in the innermost region ($r < 22''$) of Terzan 5 analyzed in O11 and the three metal-poor stars studied in O13. The two main peaks at sub-solar and super-solar metallicity, as well as the peak of the minor (5%) metal-poor component at [Fe/H] ~ -0.8 dex nicely match each other in the two distributions.

It is worth noticing that while in the O11 sample the super-solar component is about as numerous as the sub-solar one (40% and 60%, respectively), in the FLAMES+DEIMOS distribution, the component at ~ -0.3 dex is dominant. This essentially reflects the different radial distributions of the two stellar populations observed in Terzan 5, with the metal-rich stars being more concentrated (at $r < 20''$), and rapidly vanishing at $r \gtrsim 50''$ (see F09 and Lanzoni et al. 2010). Note, in fact, that while the 34 RGB stars observed by O11 are located at $r < 22''$, almost all the FLAMES+DEIMOS targets are at larger radial distances. In the FLAMES+DEIMOS distribution, there are also three stars with very high metallicities ([Fe/H] $> +0.7$ dex). Given the small number of objects, at the moment we conservatively do not consider it as an additional sub-population of Terzan 5.

The overall metallicity distribution of Terzan 5, derived from a total of 135 stars (corresponding to 101 targets from the decontaminated FLAMES+DEIMOS sample discussed here, plus 34 NIRSPEC giants from O11) is shown in Figure 8. In order to statistically verify the apparent multi-modal behavior of the distribution, we used the Gaussian mixture modeling (GMM) algorithm proposed by Muratov & Gnedin (2010). This algorithm determines whether a distribution is better described by a unimodal or a bimodal Gaussian fit. In particular, three requirements are needed to rule out the unimodality of a distribution.

1. The separation D between the peaks, normalized to the widths of the Gaussians, defined as in Ashman et al. (1994), has to be strictly larger than two.
2. The kurtosis of the distribution has to be negative.

Figure 6. Metallicity distributions of Terzan 5 stars in the inner $r < 100''$ (top), intermediate $100'' < r < 200''$ (middle), and outer $170'' < r < 276''$ (bottom) annuli. The total number of expected contaminants in each radial bin is reported in the top left corner of each panel. The number of stars observed in each metallic bin (delimited by vertical dashed lines) is quoted, while the number of contaminants to be statistically subtracted is highlighted in gray and encircled in black.
Figure 7. Statistically decontaminated metallicity distribution for the FLAMES+DEIMOS sample (101 stars; top), compared to that derived by O11 and O13 (34 and 3 stars, respectively; bottom).

Figure 8. Decontaminated metallicity distribution for the combined FLAMES+DEIMOS (101 stars; this work) and NIRSPEC (34 targets; O11) spectroscopic samples. The solid red line shows the fit that best reproduces the observed distribution using three Gaussian profiles. Individual Gaussian components are shown as gray dashed lines. The percentage of each individual component with respect to the total sample of 135 stars is also reported.

(A color version of this figure is available in the online journal.)
The likelihood ratio test (Wolfe 1971), which obeys χ^2 statistics, has to give sufficiently large values of χ^2.

The algorithm also performs a parametric bootstrap to determine the confidence level at which the unimodality hypothesis can be accepted or rejected.

First of all, we computed the GMM test on the two main components. In this case, all the three requirements are verified ($D = 3.96$, kurtosis $= -0.89$ and $\chi^2 = 43.46$ with 4 dof) and the unimodal fit is rejected with a probability $P > 99.9\%$. We then repeated the same procedure considering the most metal-poor component at $[\text{Fe/H}] \approx -0.8$ and the sub-solar one. Also in this case the unimodal fit is rejected with a probability $P > 99.9\%$.\(^{10}\) We can therefore conclude that the metallicity distribution of Terzan 5 is clearly multi-peaked. We are able to reproduce its shape using three Gaussian profiles (red line in Figure 8). Adopting the mean values and dispersions obtained from the GMM test, the two main peaks are located at $[\text{Fe/H}] \approx -0.27$ dex (with $\sigma = 0.12$) and $[\text{Fe/H}] \approx +0.25$ dex (with $\sigma = 0.12$), the sub-solar component being largely dominant (62% of the total). A minor component (6% of the total) is located at $[\text{Fe/H}] \approx -0.77$ dex (with $\sigma = 0.11$).

Finally, in Figure 9, we show the radial distribution of the 135 stars (101 from this study and 34 from O11) adopted to construct the Terzan 5 metallicity distribution shown in Figure 8: the multi-modal metallicity distribution is clearly evident also in this plot. It is worth of noticing that the most metal-poor component is essentially located in the innermost 80″ from the cluster center, further supporting the membership of this minor component.

6. DISCUSSION AND CONCLUSIONS

The results presented in this work are based on a statistically significant sample of stars distributed over the entire radial extent of Terzan 5, thus solidly sampling the metallicity distribution of this stellar system. We confirm the previous claims by F09, O11, and O13 that Terzan 5 hosts multiple stellar populations characterized by significantly different iron contents.

The multi-modal iron distribution of Terzan 5 puts this stellar system in a completely different framework with respect to that of genuine GCs. In fact, the latter systems, although showing significant spreads in the abundance of light elements (as sodium, oxygen, aluminum etc.; see, e.g., Carretta et al. 2010a),\(^{11}\) still maintain a striking homogeneity in terms of iron content, thus indicating that their stellar populations formed within a potential well that was unable to retain the high-velocity gas ejected by violent SNe explosions. Indeed, the iron content of stellar populations can be considered the main feature to distinguish between genuine GCs and more complex stellar systems (Willman & Strader 2012). Following this view, Terzan 5 certainly belongs to the latter class of objects.

Recent high-precision spectroscopic studies have shown some iron spread (but still with a range largely smaller than

\(^{10}\) Note that because of the large difference in size between the two components, the computed kurtosis turns out to be positive. However we checked that by reducing the size of the sample belonging to the sub-solar component, the kurtosis turns negative, as required by the GMM test.

\(^{11}\) This suggests that GC formation has been more complex than previously thought, having re-processed the low-energy ejecta from asymptotic giant branch stars (Ventura et al. 2001) and/or fast rotating massive stars (Decressin et al. 2007), with enrichment timescales of $\sim 10^8$ yr or shorter (e.g., D’Ercole et al. 2008; Valcarce & Catelan 2011).
The metallicity distribution of ω Centauri (top) and Terzan 5 (bottom). Figure 10. Metallicity distribution of ω Centauri (top) and Terzan 5 (bottom). The distribution of ω Centauri, together with the five Gaussians reproducing its multi-modality, have been taken from Johnson & Pilachowski (2010).

However, the iron distributions observed in these systems are unimodal, with no evidence of multiple peaks, as we also verified by means of the GMM test described above. Only M54 shows a tail toward the metal-rich side of its metallicity distribution, but this population can be severely contaminated by the Sagittarius field stars (see Bellazzini et al. 1999, 2008).

Only another GC-like system in the Galaxy (ω Centauri) is known to host a large variety of stellar sub-populations (Lee et al. 1999; Pancino et al. 2000; Ferraro et al. 2004, 2006; Bellini et al. 2009, 2010, 2013) with a large range of iron abundance ($\Delta[Fe/H] > 1$ dex; Norris & Da Costa 1995; Origlia et al. 2003; Sollima et al. 2004, 2007; Johnson & Pilachowski 2010; Villanova et al. 2014), similar to what is observed in Terzan 5. As shown in Figure 10, a few similarities between Terzan 5 and ω Centauri can be indeed recognized: (1) a broad extension of the iron distribution (~1.8 dex in Terzan 5 and ~2 dex in ω Centauri; see Johnson & Pilachowski 2010 for the latter); (2) a multimodal distribution; and (3) the presence of a numerically small stellar population (~5–10% of the total in both cases), which is more metal-poor than the main peak, possibly corresponding to the first generation of stars in the system (see Pancino et al. 2011 for ω Centauri). The intrinsic large dispersion in [Fe/H] indicates that in the past these systems were massive enough to retain the high-energy, high-velocity ejecta of SNe, allowing for multiple bursts of star formation from increasingly iron-enriched gas over timescales on the order of a few 10^9 yr.

ω Centauri is now believed to be the remnant of a dwarf galaxy accreted by the Milky Way (e.g., Bekki & Freeman 2003). In contrast, the high metallicity regime of Terzan 5 (not observed in the known satellites of our Galaxy) and its tight chemical link with the Galactic bulge (O11; O13; M14a) make very unlikely that it has been accreted from outside the Milky Way and favor an in situ formation. Terzan 5 could be the remnant of an early giant structure that may plausibly have contributed to form the Galactic bulge. In principle, the low dispersion of the iron content within each sub-population of Terzan 5 could be consistent with both a bursty star formation and chemical self-enrichment, and the dry merging of individual sub-structures with different metallicity (e.g., Immeli et al. 2004; Elmegreen et al. 2008; Förster Schreiber et al. 2011). However, the fact that among the three distinct sub-populations, the metal-rich one is more centrally concentrated than the more metal-poor ones seems to favor a self-enrichment scenario, at least for the formation of the metal-rich component (e.g., D’Ercole et al. 2008).

Certainly Terzan 5 is very peculiar, if not unique, system within the Galactic bulge. In order to solve the puzzle of its true nature, some pieces of information are still missing, such as the accurate estimate of the absolute ages of its populations, and a proper characterization of the global kinematical properties of the system.

12 Other two GCs have been proposed to harbor intrinsic iron dispersion, namely NGC 5824 (Saviane et al. 2012; Da Costa et al. 2014) and NGC 3201 (Simmerer et al. 2013). We exclude these two clusters from our discussion because their intrinsic iron scatter has not been firmly confirmed. The analysis of NGC 5824 is based on the Calcium II triplet as a proxy of metallicity and direct measurements of iron lines from high-resolution spectra are not available yet. Moreover, based on HST photometry, Sanna et al. (2014) have recently found that the color distribution of RGB stars is consistent with no metallicity spread. Concerning NGC 3201, the analysis of Simmerer et al. (2013) leads to an appreciable iron spread among the stars of this cluster, but the analysis of Munoz et al. (2013) contradicts this result.
REFERENCES

Ashman, K. M., Bird, C. M., & Zepf, S. E. 1994, AJ, 108, 2348
Bekki, K., & Freeman, K. C. 2003, MNRAS, 346, L11
Bellazzini, M., Ferraro, F. R., & Buonanno, R. 1999, MNRAS, 307, 619
Bellazzini, M., Ibata, R. A., Chapman, S. C., et al. 2011, A&A, 534, 297, 872

Johnson, C. I., Rich, R. M., Fulbright, J. P., Valenti, E., & McWilliam, A. 2011, ApJ, 722, 1373
Johnson, C. I., Rich, R. M., Kobayashi, C., & Fulbright, J. P. 2012, ApJ, 749, 175
Johnson, C. I., Rich, R. M., Kobayashi, C., Kunder, A., & Koch, A. 2014, AJ, 148, 67

Johnson, C. I., Rich, R. M., Kobayashi, C., et al. 2013, ApJ, 765, 157

Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010b, ApJL, 714, L7
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010b, ApJL, 714, L7
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010b, ApJL, 714, L7

Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010a, ApJL, 712, L21
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010b, ApJL, 714, L7

Sollima, A., Ferraro, F. R., Bellazzini, M., & Pancino, E. 2002, MNRAS, 335, 891
Sollima, A., Ferraro, F. R., Pancino, E., & Bellazzini, M. 2004, A&A, 413, 547

Origlia, L., Ferraro, F. R., Bellazzini, M., & Pancino, E. 2003, ApJ, 591, 931
Origlia, L., Ferraro, F. R., Pancino, E., & Bellazzini, M. 2004, A&A, 413, 547

Johnson, C. I., Rich, R. M., Fulbright, J. P., Valenti, E., & McWilliam, A. 2011, ApJ, 732, 108
Johnson, C. I., Rich, R. M., Kobayashi, C., & Fulbright, J. P. 2012, ApJ, 749, 175
Johnson, C. I., Rich, R. M., Kobayashi, C., Kunder, A., & Koch, A. 2014, AJ, 148, 67

Johnson, C. I., Rich, R. M., Kobayashi, C., et al. 2013, ApJ, 765, 157

Lanzoni, B., Ferraro, F. R., Dalessandro, E., et al. 2010, ApJ, 717, 653
Lee, Y.-W., Joo, J.-M., Sohn, Y.-J., et al. 1999, Natur, 402, 55
Marigo, P., Girardi, L., Bressan, A., et al. 2008, A&A, 482, 883
Marino, A. F., Milone, A. P., Piotto, G., et al. 2009, A&A, 505, 1099
Marino, A. F., Milone, A. P., Sneden, C., et al. 2012, A&A, 541, 15
Marino, A. F., Sneden, C., Kraft, R. P., et al. 2011, A&A, 532, 8
Massari, D., Mucciarelli, A., Dalessandro, E., et al. 2012, ApJL, 755, L32
Massari, D., Mucciarelli, A., Ferraro, F. R., et al. 2014, ApJ, 791, 101 (M14a)
McLean, I. S., Becklin, E. E., Bendickson, O., et al. 1998, Proc. SPIE, 3354, 566
Meza, Z., Allende Prieto, C., Edvardsson, B., et al. 2012, AJ, 144, 120

Miocchi, P., Lanzoni, B., Ferraro, F. R., et al. 2013, ApJ, 774, 151
Montegriffo, P., Ferrario, F. R., Origlia, L., & Fusi Pecci, F. 1998, MNRAS, 297, 382

Mucciarelli, A., Pancino, E., Lovisi, L., Ferrari, F. R., & Lapenna, E. 2013, ApJ, 766, 78

Munoz, C., Geisler, D., & Villanova, S. 2013, MNRAS, 433, 2006
Muratori, A. L., & Gnedin, O. Y. 2010, ApJ, 718, 1266

Ness, M., Freeman, K., Athanassoula, E., et al. 2013, MNRAS, 430, 836

Norris, J. E., & Da Costa, G. S. 1995, ApJ, 447, 680

Orlila, L., Ferraro, F. R., Bellazzini, M., & Pancino, E. 2003, ApJ, 591, 931
Orlila, L., Ferraro, F. R., Fusi Pecci, F., & Oliva, E. 1997, A&A, 321, 859
Orlila, L., Massari, D., Rich, R. M., et al. 2013, ApJL, 799, L5 (O13)
Orlila, L., Rich, R. M., Ferraro, F. R., et al. 2011, ApJL, 726, L20 (O11)
Pancino, E., Ferraro, F. R., Bellazzini, M., Piotto, G., & Zoccali, M. 2000, ApJL, 534, L83

Pancino, E., Mucciarelli, A., Sbordone, L., et al. 2011, A&A, 527, 18
Pasquini, L., Avila, G., Blecha, A., et al. 2002, 110, 1
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2004, ApJL, 612, 168

Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797
Rich, R. M., Origlia, L., & Valenti, E. 2012, ApJ, 746, 59

Sanna, N., Dalessandro, E., Ferraro, F. R., et al. 2014, ApJ, 780, 90
Saviane, I., da Costa, G. S., Held, E. V., et al. 2012, A&A, 540, 27
Sbordone, L. Bonifacio, P., Castelli, F., & Kurucz, R. L. 2004, MSAIS, 5, 93
Simmerer, S., Evans, I. N., Hill, V., et al. 2013, ApJL, 764, L7
Sollima, A., Ferraro, F. R., Bellazzini, M., et al. 2007, ApJ, 654, 915
Sollima, A., Ferraro, F. R., Origlia, L., Pancino, E., & Bellazzini, M. 2004, A&A, 420, 173

Stephenson, P. B., & Pancino, E. 2008, PASP, 120, 1332
Valcarce, A. A. R., & Catelan, M. 2011, A&A, 533, A120
Valenti, E., Ferraro, F. R., & Origlia, L. 2007, ApJ, 133, 1287
Valenti, E., Ferrario, F. R., & Origlia, L. 2010, MNRAS, 402, 1729
Ventura, P. D’Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJL, 550, L65
Villanova, S., Geisler, D., Gratton, R. G., & Cassisi, S. 2014, ApJL, 791, 107

Willman, B., & Strader, J. 2012, AJ, 144, 76

Wolfe, A. M. 1971, BAAS, 3, 474
Yong, D., Roederer, I. U., Grundahl, F., et al. 2014, MNRAS, 441, 3396
Zoccali, M., Hill, V., Lebreure, A., et al. 2008, A&A, 486, 177