FORMATION OF ULTRACOMPACT X-RAY BINARIES THROUGH CIRCUMBINARY DISK-DRIVEN MASS TRANSFER

BO MA AND XIANG-DONG LI
Department of Astronomy, Nanjing University, Nanjing 210093, China; xiaomabo@gmail.com, lixd@nju.edu.cn
Received 2008 November 18; accepted 2009 March 26; published 2009 June 5

ABSTRACT

The formation of ultracompact X-ray binaries (UCXBs) has not been well understood. Previous works show that ultrashort orbital periods (less than 1 hr) may be reached through mass transfer driven by magnetic braking in normal low/intermediate-mass X-ray binaries (L/IMXBs) only for an extremely small range of initial binary parameters, which makes it difficult to account for the rather large population of UCXBs. In this paper, we report the calculated results on mass transfer processes in L/IMXBs with a circumbinary (CB) disk. We show that when the orbital angular momentum loss due to a CB disk is included, ultrashort orbital periods could be reached for a relatively wide range of initial binary parameters. The results of our binary models suggest an alternative formation channel for UCXBs.

Key words: binaries: close – stars: evolution – X-rays: binaries

1. INTRODUCTION

Ultracompact X-ray binaries (UCXBs) are X-ray sources with very short orbital periods ($P < 1$ hr). They are thought to be powered by accretion from a Roche-lobe (RL) filling donor star to a neutron star (NS). The donor has to be compact, such as the helium (or more heavier elements) core of an evolved giant or a white dwarf (WD), to fit in the small RL (Nelson et al. 1986). Spectra observations have shown possible C star or a white dwarf features in some of the UCXBs or UCXB candidates (Nelemans et al. 2004, 2006, and references therein). In particular, interest has been paid to UCXBs in recent years since they are thought to be potential sources for the gravitational-wave detector LISA (Nelemans 2009).

Scenarios for the formation of the UCXBs can be summarized as follows. For UCXBs in globular clusters, they often invoke dynamical processes, such as (1) direct collisions between an NS and a giant (Verbunt 1987; Davies et al. 1992; Rasio & Shapiro 1991; Ivanova et al. 2005; Lombardi et al. 2006), (2) tidal capture of a low-mass main sequence (MS) star by an NS (Bailyn & Grindlay 1987), and (3) exchange interaction between an NS and a primordial binary (Davies & Hansen 1998; Rasio et al. 2000). All these dynamical scenarios are involved with the so-called common-envelop (CE) phase when the mass transfer between an NS and a (sub)giant is dynamically unstable, which may help form a tight NS+WD or NS+He star binary. After that, the orbital period decays to ultrashort regime through gravitational radiation (GR) until the WD/He star overflows its RL. For UCXBs in the Galactic field where dynamical collisions are not important, generally two CE phases are required to form a tight NS+WD or NS+He star binary, which decays to the ultrashort regime through GR (Tutukov & Yungelson 1993; Ibne et al. 1995; Yungelson et al. 2002; Belczynski & Taam 2004). An alternative formation channel of UCXBs is through stable mass transfer in normal low/intermediate-mass X-ray binaries (L/IMXBs) driven by magnetic braking (MB; Verbunt & Zwaan 1981), which is now called the “magnetic capture” scenario (Paczynski & Sienkiewicz 1981; Pyls & Savonije 1988; Podsiałowski et al. 2002; Nelson & Rappaport 2003; van der Sluys et al. 2005a). However, van der Sluys et al. (2005a) found that only a very small range of initial parameters are allowed for the binaries to evolve to UCXBs through this channel within the Hubble time. This makes it impossible to account for the relatively large number of observed UCXBs.

Another problem of this scenario is related to the efficiency of MB. Observations of some rapid rotators in young, open clusters seem to be contradicted with the MB law originally suggested by Verbunt & Zwaan (1981), and a modified MB law was proposed to resolve this problem (Queloz et al. 1998; Sills et al. 2000). van der Sluys et al. (2005b) showed that, if this new MB law is adopted, no UCXBs can be formed through the magnetic capture channel.

In this paper, we propose an alternative scenario for the formation of UCXBs through mass transfer between an NS and an MS star. We assume that during RL overflow (RLOF), a small fraction of the mass lost from the donor forms a circumbinary (CB) disk around the binary rather accretes onto the NS (van den Heuvel 1994). Previous works have shown that a CB disk can extract orbital angular momentum from the binary effectively (Spruit & Taam 2001; Taam & Spruit 2001), and enhance the mass transfer rate, thus considerably influence the binary evolution (Chen & Li 2006; Chen et al. 2006). In this work, we explore the possible role of CB disks in the formation of UCXBs. In Section 2, we introduce the binary evolution code and the input physics incorporated in our calculations. In Section 3, we present the calculated results and compare them with observations. The implications of our model and related uncertainties are discussed in Section 4.

2. EVOLUTIONARY CODE AND INPUT PHYSICS

2.1. The Stellar Evolution Code

We use the STAR program, originally developed by Eggleton (1971, 1972) and updated by other authors (Han et al. 1994; Pols et al. 1995), to compute the binary evolution. The ratio of mixing length to pressure scale height $\chi = l/H_p$ is set to be 2.0 and convective overshooting parameter to be $os = 0.12$, implying a $0.24H_p$ overshooting distance. The opacity table is taken from Hubbard & Lampe (1969), Rogers & Iglesias (1992), and Alexander & Ferguson (1994). Solar compositions ($X = 0.70$, $Y = 0.28$, and $Z = 0.02$) are adopted. The binary system is initially composed of an NS primary of mass M_1 and a zero-age main-sequence (ZAMS) secondary of mass M_2 with an orbital period P_t. The effective radius of the RL for the
secondary star is calculated from the Eggleton (1983) equation,

$$ R_{L,2} = \frac{0.49 q^{-2/3} a}{0.6 q^{-2/3} + \ln(1 + q^{-1/3})}, $$

where \(q = M_2/M_1 \) is the mass ratio of the binary components and \(a \) is the orbital separation. The rate of mass transfer via RLOF is calculated with \(-M_2 = \text{RMT} \cdot \max[0, (R_2/R_{L,2} - 1)^3] M_2 \) yr\(^{-1}\) in the code, where \(R_2 \) is the radius of the secondary, and we set \(\text{RMT} = 10^3 \).

2.2. Angular Momentum Loss Mechanisms

We assume that the secondary star rotates synchronously with the binary orbital revolution, since the timescale of tidal synchronization is generally much shorter than the characteristic evolutionary timescale of the binaries considered here. We take into account four kinds of angular momentum loss mechanisms described as follows.

1. **GR.** This becomes important when the orbital period is short. The angular momentum loss rate is given by (Landau & Lifshitz 1975)

$$ \left. \frac{dJ}{dt} \right|_{\text{GR}} = \frac{-32}{5} \frac{GM_1^2M_2^2(M_1 + M_2)^{1/2}}{c^3 a^{7/2}}, $$

where \(J, G, \) and \(c \) are the orbital angular momentum, gravitational constant, and speed of light, respectively.

2. **CB disk.** We assume that a small fraction \(\delta (\ll 1) \) of the mass lost from the donor feeds into the CB disk rather leaves the binary, which yields a mass injection rate of the CB disk as \(\dot{M}_{CB} = -\delta \dot{M}_2 \). Tidal torques are then exerted on the binary by the CB disk via gravitational interaction, thus extracting the angular momentum from the binary system. The angular momentum loss rate via the CB disk is estimated to be (Spruit & Taam 2001)

$$ \left. \frac{dJ}{dt} \right|_{\text{CB}} = -\gamma \frac{2\pi a^2}{P} \dot{M}_{CB} \left(\frac{t}{t_{\text{vis}}} \right)^{1/3}, $$

where \(\gamma^2 = r_i/a = 1.7 \) (\(r_i \) is the inner radius of the CB disk), \(t \) is the time since mass transfer begins. In the standard \(\alpha \)-viscosity disk (Shakura & Sunyaev 1973), the viscous timescale \(t_{\text{vis}} \) at the inner edge \(r_i \) of the CB disk is given by \(t_{\text{vis}} = 2\gamma^3 P/\pi \alpha \beta^2 \), where \(\alpha \) is the viscosity parameter (we set \(\alpha = 0.01 \) in the following calculations), \(\beta = H_i/r_i \approx 0.03 \) (Belle et al. 2004), and \(H_i \) is the scale height of the disk. When \(\dot{M}_{CB} \) is sufficiently large, the mass transfer will become dynamically unstable, so we add an ad hoc term

$$ \exp(1 + \dot{M}_2/2\dot{M}_{\text{Edd}}) \text{ if } -\dot{M}_2 > 2\dot{M}_{\text{Edd}} $$

to Equation (3) to suppress the CB disk-induced angular momentum loss rate when the mass loss rate is high. We find that this term does not influence the evolutionary tracks considerably, only expanding the parameter space of \(\delta \) suitable for UCXB formation within the Hubble time by \(\sim 10\%-20\% \). Here, the Eddington accretion limit is expressed as

$$ \dot{M}_{\text{Edd}} = 3.6 \times 10^{-8} \left(\frac{M_1}{1.4 M_\odot} \right) \left(\frac{0.1 \eta}{1 + X} \right) \left(\frac{1.7}{1 + X} \right) M_\odot \text{ yr}^{-1}, $$

where \(\eta = GM_1/Rc^2 \) is the energy release efficiency through accretion (\(R \) the NS radius) and \(X \) is the mass fraction of hydrogen in the accreting material.

3. **Mass loss.** Similar as in Podsiadlowski et al. (2002), we assume that the NS accretion rate is limited to the Eddington accretion rate, and that when the mass transfer rate is less than \(\dot{M}_{\text{Edd}} \), half of the mass is accreted by the NS, i.e.,

$$ \dot{M}_1 = \min(\dot{M}_{\text{Edd}}, -\dot{M}_2/2). $$

The excess mass is lost in the vicinity of the NS through isotropic winds, carrying away the specific angular momentum of the NS, i.e.,

$$ \left. \frac{dJ}{dt} \right|_{\text{MB}} \simeq \begin{cases} \frac{1}{2} \frac{M_2^3 a^2}{c^3 \omega}, & |\dot{M}_2| < 2\dot{M}_{\text{Edd}} \\ \frac{(M_2 + \dot{M}_{\text{Edd}})a^2}{c^3 \omega}, & |\dot{M}_2| \geq 2\dot{M}_{\text{Edd}} \end{cases} $$

where \(a_1 = aM_2/(M_1 + M_2) \) is the orbital radius of the NS and \(\omega \) is the orbital angular velocity of the binary.

4. **MB.** We use the saturated MB law suggested in Sills et al. (2000).

$$ \left. \frac{dJ}{dt} \right|_{\text{MB}} = \begin{cases} -K \omega^3 \left(\frac{R_2}{R_\odot} \right)^{1/2} \left(\frac{M_2}{M_\odot} \right)^{-1/2}, & \omega \leq \omega_{\text{cr}} \\ -K \omega_{\text{cr}}^2 \omega \left(\frac{R_2}{R_\odot} \right)^{1/2} \left(\frac{M_2}{M_\odot} \right)^{-1/2}, & \omega > \omega_{\text{cr}} \end{cases} $$

where \(K = 2.7 \times 10^{37} \text{ g cm}^2 \text{ s} \) (Andronov et al. 2003), \(\omega_{\text{cr}} \) is the critical angular velocity at which the angular momentum loss rate reaches a saturated state, and can be estimated as (Krishnamurthi et al. 1997),

$$ \omega_{\text{cr}}(t) = \omega_{\text{cr},0} \frac{\tau_{\text{vis},0}}{\tau_{\text{vis}}}, $$

where \(\omega_{\text{cr},0} = 2.9 \times 10^{-5} \text{ Hz} \), \(\tau_{\text{vis},0} \) is the global turnover timescale for the convective envelope of the Sun at its current age, \(\tau_{\text{vis}} \) for the secondary at age \(t \), solved by integrating the inverse local convective velocity over the entire surface convective envelope (Kim & Demarque 1996), Following Podsiadlowski et al. (2002), an ad hoc factor is also added to Equation (6)

$$ \exp(-0.02/q_{\text{con}} + 1) \text{ if } q_{\text{con}} < 0.02, $$

where \(q_{\text{con}} \) is the mass fraction of the surface convective envelope. This term is used to reduce the strength of MB when the star has a very small convective envelope and hence does not have a strong magnetic field.

3. RESULTS

3.1. Parameter Space of \(P_i \) and \(M_{2,i} \)

Similar as in van der Sluys et al. (2005a), we define UCXBs as X-ray binaries with \(P < 50 \text{ minutes} \). The binary systems considered are initially composed of a 1.4 \(M_\odot \) NS and a 0.5–5 \(M_\odot \) ZAMS star. We have performed calculations of a large number of binary evolutions, to search suitable values in the three-dimensional binary parameter space \(\delta \) (assumed to be constant through one evolutionary sequence), \(P_i \) and \(M_{2,i} \) for binaries evolved to UCXBs within the age of the universe (13.7 Gyr). The distribution of \(P_i \) and \(M_{2,i} \) for successful systems is shown in Figure 1 with \(P_i \sim 0.7–1 \text{ days} \) and
3.2. Limit and Influence of δ

The possible distribution of δ and P_i with $M_{2,i} = 1.1 M_\odot$ is shown in Figure 2. To illustrate the effects of δ on the binary evolution, in Figures 3–5, we plot the exemplarily evolutionary tracks of the secondary in the H–R diagram, the evolution of the donor mass and period as a function of age, respectively, for a binary system with $M_{2,i} = 1.1 M_\odot$, $P_i = 1.04$ days and different values of δ. The lower limit of δ is determined by the constraint that age of the binary should be less than 13.7 Gyr: a larger value of δ leads to shorter formation time, as seen from Figure 5; if δ is too small, the binary will not be able to reach the 50 minute period within 13.7 Gyr due to inefficient angular momentum loss. The upper limit of δ is determined by two conditions. The first is that the minimum orbital period P_{min} should be less than 50 minutes. With larger values of δ, the donor will spend relatively less time on the MS, leaving a smaller degenerate helium core. According to the mass–radius relation of degenerate stars, the smaller the mass, the larger the radius, which corresponds to a larger P_{min}. The second is
\[\delta < 0.015, \text{because we find that mass transfer becomes unstable in most cases if } \delta > 0.015.\]

The formation and evolutionary paths of UCXBs depend on the adopted values of \(\delta \). In the case of \(M_2, i = 1.1 M_\odot \) and \(P_i = 1.04 \text{ days} \), for example, when \(\delta < 0.0055 \), the orbital period first decreases with mass transfer until the donor star loses its outer envelope and shrinks rapidly at \(P \sim 0.1 \text{–} 0.2 \text{ days} \). This causes a cessation of mass transfer. In the subsequent evolution, the orbital period may decrease down to the ultrashort regime under the effect of GR, until the secondary star fills its RL again, and the binary appears as a UCXB. When \(\delta \gtrsim 0.0055 \) the binary evolves directly into the ultrashort regime with decreasing orbital period.

We need to mention that the distribution of \(\delta \) depends on the value of the viscous parameter \(\alpha \), which we chose to be 0.01 in our calculations as in Spruit & Taam (2001) and Taam & Spruit (2001). This is about an order of magnitude lower than the value (~0.1–0.4) inferred by King et al. (2007) for fully ionized, thin accretion disks from observations of dwarf nova outbursts and outbursts of X-ray transients. However, the value of \(\alpha \) parameter estimated by King et al. (2007) is an average one over the entire disk, while here it is at the inner edge of the disk (Spruit & Taam 2001), which may be smaller due to the boundary condition (Papaloizou & Nelson 2003; Winters et al. 2003; Fromang & Nelson 2006). Additionally, since the CB disk is located outside the binary orbit, it is shielded from X-ray irradiation from the NS by the accretion disk around the NS and the secondary, and the \(\alpha \) value in a CB disk might be smaller than in accretion disks. Taking account of the above facts, we suggest to regard Figure 2 as an optimistic case for the distribution of \(\delta \). Nevertheless, from Equation (3) one can see that the CB disk-induced angular momentum loss rate is proportional to \(\alpha^{1/3} \delta \). So if keeping \(\alpha^{1/3} \delta \) constant, the binary evolution will be exactly the same (this has been verified by our test calculations), implying a predictable \(\delta \) distribution for a given value of \(\alpha \).

3.3. Comparison with Observations

There are currently 10 UCXBs with known periods, five of which are persistent sources and five are transients. We list the orbital periods \(P_{\text{orb}} \) and mean mass accreting rates \(\dot{M}_1 \) (or the upper limit of \(M_1 \)) of these UCXBs in Table 1. The \(M_1 \) listed in this table for persistent UCXBs are calculated by using the luminosities mentioned in the references and assuming accretion onto a 1.4 \(M_\odot \) NS with a 10 km radius, while those for transient sources are from the estimates of Krauss et al. (2007), Watts et al. (2008), and Lasota et al. (2008). To compare observations with our CB disk-assisted binary model, we plot the \(\dot{M}_1 = -M_2/2 \) versus \(P_{\text{orb}} \) relations in Figure 6 for binary systems with \(M_2 = 1.1 M_\odot \), \(P_i = 1.04 \text{ days} \), and \(\delta = 0.005 \text{–} 0.009 \), and in Figure 7 for binary systems with \(M_2 = 1.1 M_\odot \), \(\delta = 0.005 \text{–} 0.009 \), and \(P_i = 0.94 \text{–} 1.04 \text{ days} \). Note that in these two figures the values of \(M_1 \) are not assumed to be limited to \(M_{\text{Edd}} \), so that possible super-Eddington accretion can be allowed. In this way, we can compare our results with observations directly. We also indicate in Figures 6 and 7 whether the accretion disks in the LMXBs are thermally and viscously stable, according to the stability criterion for a mixed-composition (\(X = 0.1 \),

Figure 6. Evolution of mass accretion rate (or half of the mass transfer rate) vs. orbital period for binary systems with \(M_2 = 1.1 M_\odot \), \(P_i = 1.04 \text{ days} \), and different values of the CB disk parameter \(\delta \). The red and blue lines indicate persistent and transient accretion according to the criteria in Lasota et al. (2008) for a mixed-composition \((X = 0.1, Y = 0.9)\) disk. Persistent (filled circles) and transient (triangles) LMXBs (including UCXBs) are also plotted for comparison. Here, the open triangles mean that the derived mass accretion rates from observations are the upper limits. The symbols “•”, “o”, and “+” on the evolutionary sequences denote where the composition of the donor in the binary is \(X = 0.3, 0.2, \) and 0.1 with \(Y = 0.98 - X \) and \(Z = 0.02 \), respectively.

Figure 7. Same as in Figure 6 but for binary systems with \(M_2, i = 1.1 M_\odot \), \(\delta = 5 \times 10^{-5} \), and \(P_i = 0.94 \text{–} 1.04 \text{ days} \).

Figure 8. Mean X-ray lifetime spent by the LMXBs that could evolve to UCXBs within 13.6 Gyr at certain luminosities with \(\delta = 0.005 \). The mean lifetime decreases sharply when \(L > 3 \times 10^{38} \text{ erg s}^{-1} \).
we find that change of metallicities does not significantly affect the binary evolution when the CB disk is involved. The 11 minute UCXB 4U 1820–30 is particularly interesting because of its negative period derivative $P/P > -3.5 \pm 1.5 \times 10^{-8}$ yr$^{-1}$ (van der Klis et al. 1993a; Chou & Grindlay 2001), which is inconsistent with the lower limit $(P/P > 8.8 \times 10^{-8}$ yr$^{-1}$) of the standard evolutionary scenario (Rappaport et al. 1987). While previous explanations for this negative period derivative invoke acceleration of the binary by a distant third companion in a hierarchical triple system, or by the cluster potential (Tan et al. 1991; van der Klis et al. 1993b; King et al. 1993; Chou & Grindlay 2001), our CB disk scenario may present an alternative interpretation of this negative period derivative (see Figure 5).

4. DISCUSSION AND CONCLUSION

During RLOF mass transfer, a CB disk may be formed as a result of mass outflow from the accretion disk, and has been invoked as an efficient process for the removal of orbital angular momentum (Taam & Spruit 2001). We propose a scenario for the formation of UCXBs from L/IMXBs with the aid of a CB disk in this work. The suitable binary parameter space $(M_{1,2}$ and P) with reasonable choice of the CB disk parameter δ for the formation of UCXBs within 13.7 Gyr is found to be significantly larger than in previous “magnetic capture” model (van der Sluys et al. 2005a, 2005b). This difference is caused by the fact that the bifurcation period is considerably increased if the CB disk is included. In L/IMXB evolution, the bifurcation period P_{bif} is defined as the initial orbital period when the donor star is on ZAMS, which separates the formation of converging systems from diverging systems. Because the value of P_{bif} depends strongly on the angular momentum loss mechanisms (van der Sluys et al. 2005a; Ma & Li 2009), we would expect P_{bif} to be significantly changed when the CB disk is included in the binary model. In Table 2, we present the calculated values of P_{bif} for binary systems consisting of a 1.4 M_\odot NS and a 1.1 M_\odot secondary, with $(\delta = 0.002-0.01)$ and without a CB disk. We also list the corresponding values of the period (P_{rot}) at which RLOF begins (Podsiadlowski et al. 2002; Ma & Li 2009). According to the investigation of Podsiadlowski et al. (2002) and van der Sluys et al. (2005a), binary systems with initial orbital period slightly below the bifurcation period can achieve the shortest possible orbital period. We list the shortest periods for binary systems with certain value of δ within 13.7 Gyr in Table 2, which clearly indicate that (1) the larger the δ, the larger the P_{bif} and P_{rot}, and (2) UCXBs $(P < 50$ minutes$)$ are not likely to form in such a scenario without the aid of CB disks $(\delta = 0)$.

We note here that when the binaries reach their minimum periods where the donors become degenerate, their orbital periods will bounce back into the period-increasing phase. Our code cannot follow the binary evolution with a degenerate donor star. It is likely that the observed UCXBs may be explained as binaries both evolving to shorter orbital periods with a hydrogen-deficient, nondegenerate donor star (as presented in Figures 6 and 7), and with a degenerate WD donor during a period-increasing phase (Yungelson et al. 2002; Nelson & Rappaport 2003; Deloye & Bildsten 2003; Deloye et al. 2007). In addition, the helium-donor channel (or semidegenerate channel) may also contribute to the formation of UCXBs (Savonije et al. 1986). Currently, it is difficult to compare the (spectral) theoretical models for hydrogen-deficient accretion disks with observations, or directly measure the orbital period derivative, one possible criterion to discriminate UCXBs in the

Table 1

Systems	Type	P_{rot} (minutes)	(M_1/M_2) yr$^{-1}$	References
4U 1820–30	P	11.4	3.6×10^{-9}	1
4U 1543–624	P	18.2	5.5×10^{-10}	2
4U 1850–087	P	20.6	1.6×10^{-10}	3
M15 X-2	P	22.6	1.2×10^{-10}	4
XTE J1816–05	P	49.5	8.9×10^{-10}	5
XTE J1907–294	T	40.07	$< 8 \times 10^{-12}$	6, 10
XTE J1751–305	T	42.42	$< 5 \times 10^{-12}$	6
XTE J0929–314	T	43.63	$< 2 \times 10^{-11}$	6, 11
4U 1626–67	T	41.4	4.7×10^{-10}	7
Swift J1756.9		54.7	9.3×10^{-13}	9

Notes. Here, the type means persistent (P) or transient (T) UCXBs. The mean mass transfer rate (M) listed here for persistent UCXBs are calculated by using the luminosities mentioned in the references and assuming accretion onto a 1.4 M_\odot NS with 10 km radius. The uncertainties in the calculated (M) mainly come from the uncertainties of source distance, neutron star masses and radii, spectral fit goodness, and recurrence times of transient sources (see Heinke et al. 2007, 2009 for a thorough discussion of these factors).

References. (1) Zdziarski et al. (2007), Kuulkers et al. (2003), Shaposhnikov & Titarchuk (2004); (2) Wang & Chakrabarty (2004), Schultz (2003); (3) Sidoli et al. (2006), Harris (1996), Paltrinieri et al. (2001); (4) Dieball et al. (2005), Hannikainen et al. (2005); (5) Juett & Chakrabarty (2006); (6) Heinke et al. (2009); (7) Chakrabarty (1998); (8) Krauss et al. (2007); (9) Lasota et al. (2008), Krimm et al. (2007); (10) Falanga et al. (2005); (11) Wijnands et al. (2005).

Table 2

| Bifurcation Periods P_{rot} and P_{rot}, and the Shortest Periods P_{rot} Achieved for a Binary with $M_{1,2} = 1.1 M_\odot$ and Different Values of δ |
|-----------------|----------------------------------|------------------------|-----------------|
| δ | P_{rot} (days) | P_{rot} (days) | P_{rot} (minutes) |
| 0 | 0.63 | 0.5 | 71 |
| 0.002 | 0.87 | 0.75 | 9 |
| 0.004 | 1.08 | 0.92 | 7 |
| 0.006 | 1.15 | 0.96 | 6 |
| 0.008 | 1.21 | 1.04 | 6 |
| 0.010 | 1.30 | 1.13 | 6 |

$Y = 0.9$) disk from Lasota et al. (2008). We use the symbols “x”, “*”, and “#” on the evolutionary tracks to denote where the hydrogen composition X of the donor becomes 0.3, 0.2, and 0.1, respectively, to show that the criterion of Lasota et al. (2008) is applicable here. The positions of UCXBs are marked in these two figures with circles and triangles for persistent and transient sources, respectively. Besides them, we also include 18 NS LMXBs with known P and M_1 (data are taken from Liu et al. 2007; Watts et al. 2008; Heinke et al. 2009).

A comparison between our CB disk-assisted binary models and the observations of (compact) NS LMXBs suggests that it is possible to form UCXBs from normal LMXBs. We note that three of the UCXBs are in globular clusters, indicating low metallicities in these systems. However, from our calculations

1 1. We note two points about the persistent/transient criterion in UCXBs. First, in Lasota et al. (2008) it is found that three of the five persistent UCXBs should be transient if their accretion disks are composed of pure helium or elements heavier than helium (C/O). However, in our CB disk model, the disks are not composed of pure helium but of mixed-compositions, so the accretion disks in these UCXBs are thermally stable, consistent with observations. Second, the transient source 4U1626–67 should be persistent according to the criterion, but it is transient in a different way: its outbursts do not last tens of days but tens of years (Krauss et al. 2007). The value of M_1 in Table 1 is calculated from Equation (4) in Krauss et al. (2007) assuming a distance of 3 kpc (Chakrabarty 1998) and the time between outbursts to be 30 yr. If the recurrence time is as long as 1000 yr, it will yield a much lower M_1 (Lasota et al. 2008), and may help to resolve this transient/persistent problem.
period-decreasing/increasing phases is related to the donor masses, which, together with the orbital periods, allow to
determine the mass–radius relation of the donor. Our calculations
show that the UCXB’s donor mass is around $\sim 0.1 M_\odot$ in the
period-decreasing phase at $P \sim 40$ minutes, while in the period-
increasing phase, the donor mass should be around $0.01 M_\odot$
(e.g., Yungelson et al. 2002; Nelson & Rappaport 2003). Previ-
ously investigations on the UCXBs XTE J1807$-$294 (Falanga
et al. 2005), Swift J1756.9$-$2508 (Krimm et al. 2007), and
XTE J0929$-$314 (Galloway et al. 2002) have shown that the
donors should be WDs unless the binary orbital inclination is
very small (less than 10°), because of their small mass
functions, while XTE 1751$-$305 is more likely to be in the
period-decreasing phase due to its relatively larger mass func-
tion (Markwardt et al. 2002). Observationally, there seem to be
more systems in the period-increasing phase than in the period-
decreasing phase. This may be addressed by the fact that UCXBs spend longer mass transfer time in the former (greater than
103 yr; see Rasio et al. 2000; Deloye & Bildsten 2003) than in the
latter phase ($\sim 10^2$ yr; see Nelson & Rappaport 2003, and
this work). From Table 1, there appears to be an apparent accu-
mulation of systems with $P \sim 40$–50 minutes. The reason may
lie in that (1) during the period-increasing phase, UCXBs spend more time at larger orbital periods (see Deloye & Bildsten 2003;
Figure 9), and (2) when $P > 50$ minutes, most of these systems
come in transients with very weak accretion (less than 10$^{-12} M_\odot$ yr$^{-1}$). From the calculation of Deloye et al. (2005),
these semidegenerate systems should mainly distribute at 40 minutes $< P < 90$ minutes (see Deloye et al. 2005; Fig-
ure 5). Most of them should be transients (see Deloye et al. 2005; Figure 2), among which the longer the orbital period, the
weaker the accretion will be, thus the more difficult to be de-
tected. These together account for the accumulation of UCXBs with $P \sim 40$–50 minutes. Obviously a thorough population
synthesis is needed to address the contribution to UCXBs from
systems with nondegenerate, semidegenerate, and degenerate
donors.

However, there exist some issues in the CB disk scenario,
especially the existence of CB disk in LMXBs. Dubus et al. (2002)
suggest that CB disks are prospective to be observed in infrared
and submillimeter band. Although observations have shown evidence for the existence of CB disks in young binary
systems (Monnier et al. 2008; Ireland & Kraus 2008), magnetic
cataclysmic variables (Howell et al. 2006; Brinkworth et al.
2007; Dubus et al. 2007; Hoard et al. 2007), and black hole
LMXBs (Muno & Mauerhan 2006; Gallo et al. 2007), more infrared observations are still needed to confirm or disprove
the hypothesis that CB disk may exist in some LMXBs (e.g., Dubus
et al. 2004). Additionally, the CB disk parameter δ is poorly
known, and it is possible to change with time or mass transfer
rate. The strong dependence of LMXB evolution on the value of δ
prevents accurate estimation of the contribution of such binaries to UCXBs. More generally, we do not insist that there
should be a CB disk in L/LMXBs, but argue that a mechanism
that mimics its features may be an important ingredient for
understanding the overall period distribution of UCXBs as well
as cataclysmic variable binaries (Willems et al. 2005).

Recent Chandra observations of nearby elliptical galaxies
have revealed a population of luminous point X-ray sources, which
are likely to be LMXBs with accretion rates $\dot{M} > 10^{-8} M_\odot$ yr$^{-1}$ (e.g., Gilfanov 2004; Kim & Fabiano 2004). These sources are explained either as transient LMXBs in which NSs accreting from a red giant star in wide orbits ($P > 10$ days;

We thank an anonymous referee for his/her valuable comments that helped improve the original manuscript. B.M. thanks W.-C. Chen and P. P. Eggleton for helpful discussions and suggestions. This work was supported by Natural Science Foundation of China under grant 10873008 and National Basic Research Program of China (973 Program 2009CB824800).

REFERENCES

Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
Andronov, N., Pinsonneault, M., & Sills, A. 2003, ApJ, 582, 358
Bailyn, C. D., & Grindlay, J. E. 1987, ApJ, 316, L25
Belczynski, K., & Taam, R. E. 2004, ApJ, 603, 690
Belle, K. E., Sanghi, N., Howell, S. B., Holberg, J. B., & Williams, P. T. 2004, AJ, 128, 448
Bildsten, L., & Deloye, C. J. 2004, ApJ, 607, L119
Bildrin, C. J., et al. 2007, ApJ, 659, 1154
Chakrabarty, D. 1998, ApJ, 492, 342
Chen, W.-C., & Li, X.-D. 2006, MNRAS, 373, 305
Chen, W.-C., Li, X.-D., & Qian, S.-B. 2006, ApJ, 649, 973
Chou, Y., & Grindlay, J. E. 2001, ApJ, 563, 934
Davies, M. B., Benz, W., & Hills, J. G. 1992, ApJ, 401, 246
Davies, M. B., & Hansen, B. M. S. 1998, MNRAS, 301, 15
Deloye, C. J., & Bildsten, L. 2003, ApJ, 598, L1217
Deloye, C. J., Bildsten, L., & Nelanemans, G. 2005, ApJ, 624, 934
Deloye, C. J., Taam, R. E., Winislofder, C., & Chabrier, G. 2007, MNRAS, 381, 525
Dieball, A., Knigge, C., Zurek, D. R., Shara, M. M., Long, K. S., Charles, P. A., Hannikainen, D. C., & van Zyl, L. 2005, ApJ, 634, L105
Dubus, G., Campbell, R., Kern, B., Taam, R. E., & Spruit, H. C. 2004, MNRAS, 349, 869
Dubus, G., Taam, R. E., Hull, C., Watson, D. M., & Mauerhan, J. C. 2007, ApJ, 663, 516
Dubus, G., Taam, R. E., Spruit, H. C. 2002, ApJ, 569, 395
Eggleton, P. P. 1971, MNRAS, 151, 351
Eggleton, P. P. 1972, MNRAS, 156, 361
Eggleton, P. P. 1983, ApJ, 268, 368
Falanga, M., et al. 2005, A&A, 436, 647
Fromang, S., & Nelson, R. P. 2006, A&A, 457, 343
Gallo, E., Migliari, S., Wijnands, R., Deloye, C. J., & Spruit H. C. 2003, ApJ, 598, L1217
Galloway, D. K., Chakrabarty, D., Morgan, E. H., & Remillard, R. A. 2002, ApJ, 576, L137
Gilfanov, M. 2004, MNRAS, 349, 146
Han, Z., Podsiadlowski, P., & Eggleton, P. P. 1994, MNRAS, 270, 121
Hannikainen, D. C., Charles, P. A., van Zyl, L., Kong, A. K. H., Homer, L., Hakala, P., Naylor, T., & Davies, M. B. 2005, MNRAS, 357, 325
Harris, W. E. 1996, AJ, 112, 1487
Heinke, C. O., Jonker, P. G., Wijnands, R., Deloye, C. J., & Taam, R. E. 2009, ApJ, 691, 1035
Heinke, C. O., Jonker, P. G., Wijnands, R., & Taam, R. E. 2007, ApJ, 660, 1424
Hoard, D. W., Howell, S. B., Brinkworth, C. S., Ciardì, D. R., & Wachter, S. 2007, ApJ, 671, 734
Howell, S. B., et al. 2006, ApJ, 646, L65
