Testing whether muon neutrino flavor mixing is maximal

Sandhya Choubey

INFN, Sezione di Trieste, Trieste, Italy and
Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste, Italy

Probir Roy

Department of Theoretical Physics,
Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400 005, India

(Dated: November 10, 2018)

PACS numbers: 13.15.+g, 14.60.Lm, 14.60.Pq

The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.

PACS numbers: 13.15.+g, 14.60.Lm, 14.60.Pq

How really close to maximal \(1\) is the flavor mixing of muon neutrinos and antineutrinos discovered in atmospheric neutrino experiments \(2\)? We propose in this Letter a way of probing the deviation, if any, from this maximality. The idea is to measure the small difference \(\Delta P_{\mu\mu} = P_{\mu\mu} - P_{\bar{\mu}\bar{\mu}}\), with \(P_{\mu\mu} = P[\nu_\mu(0) \to \nu_\mu(L)]\) and \(P_{\bar{\mu}\bar{\mu}} = P[\bar{\nu}_\mu(0) \to \bar{\nu}_\mu(L)]\) representing respective survival probabilities of muonic neutrion and antineutrino beams after passage through a distance \(L\) in earth matter. Suppose we neglect the subdominant oscillations due to the smaller mass difference relevant to the solar neutrino problem, but retain a nonzero mixing between the first and the third family neutrinos. Working to the linear perturbative order in the earth matter effect, we are then able to show that \(\Delta P_{\mu\mu}\) is proportional to \(|U_{e3}|^2(1 - 2|U_{\mu3}|^2)\), \(U\) being the Pontecorvo-Maki-Nakagawa-Sakata neutrino flavor mixing matrix, with a computable proportionality coefficient. Thus the effect is linear in the deviation \(1/\sqrt{2} - |U_{\mu3}|\) from maximal mixing.

Much has been learnt recently about neutrino masses and mixing angles from solar \(3\), atmospheric \(2\), reactor \(4\, 5\) and long baseline \(6\) studies \(7\). We know now that the squared mass difference between one pair of neutrinos comprising \(\nu_\mu\) and \(\nu_\tau\), mixed nearly maximally \((\theta_{23} \simeq 45^\circ)\) \(8\), is \(|\delta m_{21}^2| \sim 2 \times 10^{-3}\) \(eV^2\). We also know that the squared mass difference between another pair of neutrinos, involving \(\nu_e\) mixed by a large angle \((\theta_{12} \simeq 30^\circ)\) with a nearly equal combination of \(\nu_\mu\) and \(\nu_\tau\), is \(\delta m_{23}^2 \sim 7 \times 10^{-5}\) \(eV^2\). Furthermore, the mixing between the third possible pair, characterized by the angle \(\theta_{13}\), is known to be quite restricted, as elaborated below.

Yet longer baseline experiments with \(\nu, \bar{\nu}\) beams/superbeams promise to be the wave of the future in neutrino physics. MINOS \(9\) and off-axis NUMI \(10\) are forthcoming experiments and will be followed by JPARC \(11\), CNGS \(12\) and other efforts. Many theoretical and phenomenological analyses \(13\) of physics issues pertaining to long baseline experiments have been carried out meanwhile. However, the focus of recent studies has largely been on appearance experiments: specifically, the ‘golden’ \((\nu_e \to \nu_\mu)\) and ‘silver’ \((\nu_\mu \to \nu_\tau)\) channels and their synergy in probing leptonic \(CP\) violation as well as the mixing between the first and third family neutrinos. Less attention has been paid to survival probabilities, the originally measured quantities \(14\) in atmospheric neutrino studies. This is since they do not yield direct information on those aspects. However, it is the survival probabilities for \(\nu_\mu\) and \(\bar{\nu}_\mu\) beams/superbeams, specifically their difference, which should help determine the deviation from maximality, if any, of the flavor mixing of muon neutrinos.

Earth matter directly affects only neutrinos with electronlike flavor. However, this gets induced into the other neutrino flavors indirectly through mixing cum oscillation effects. For neutrinos of muonic flavor, there are two sources of such an occurrence: (1) mixing between the electronlike flavor and the third physical neutrino through the factor \(|U_{e3}|^2\) and (2) subdominant oscillations between electronlike and muonlike neutrino flavors, driven by \(\delta m_{21}^2\). It is generally known, and we will show later, that the effect of (2) is quite small for the baseline length of MINOS \(9\). This means that one can take the earth matter effect in such an experiment to be due to (1) only. We also assume that the actual value of \(|U_{e3}|^2\) is not as small as one order of magnitude less than its current upper bound 0.05 – 0.07 \(15\), so that our effect will be measurable. Moreover, we shall treat this effect to the lowest perturbative order \(16\) in \(A = \sqrt{2}G_F N_e\), \(N_e\) being the average electron density of the earth. This will also be justified later. On the other hand, if \(|U_{e3}|^2\) turns out to be smaller by more than an order of magnitude than its current upper bound, the content of our Letter will prove empty.

The effective Hamiltonian for neutrino oscillation in
matter can be written as

$$H = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} U^\dagger + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad (1)$$

Here $\Delta_{ij} = (m_i^2 - m_j^2)/(2E_0)$, m_i and E_0 being the mass of the ith (physical) neutrino and the beam energy respectively. For simplicity, let us work in the uniform

earth density approximation, though our results extend to the more general variable density case, as shown by using the evolution operator formalism \[17\]. When Δ_{31} is neglected in comparison with Δ_{31}, the effects of the solar neutrino mixing angle θ_{12} and of the CP violating phase δ in U become inconsequential. Then, in the standard parametrization and with $c_{ij} \equiv \cos \theta_{ij}$, $s_{ij} \equiv \sin \theta_{ij}$, H takes the form

$$H \approx \text{diag.}(A, 0, 0) + \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Delta_{31} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & -s_{13} \\ 0 & 1 & 0 \\ s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & -s_{23} \\ 0 & s_{23} & c_{23} \end{pmatrix}. \quad (2)$$

The RHS of (2) can be diagonalized by the unitary matrix \bar{U}, yielding the eigenvalues $\lambda_{1,2,3}$, given by

$$l_2 = 0, \quad \text{(3a)}$$

$$l_{1,3} = \frac{1}{2}(\Delta_{31} + A \mp B), \quad \text{(3b)}$$

where

$$B = \sqrt{\Delta_{31}^2 + A^2 - 2\Delta_{31}A \cos 2\theta_{13}}. \quad (4)$$

Moreover, \bar{U} can be written as

$$\bar{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{\theta_m} & 0 & s_{\theta_m} \\ 0 & 1 & 0 \\ -s_{\theta_m} & 0 & c_{\theta_m} \end{pmatrix} \begin{pmatrix} s_{23} \theta_m & c_{23} \theta_m & 0 \\ -c_{23} \theta_m & s_{23} \theta_m & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (5)$$

where the angle θ_m is related to θ_{13} and A by,

$$\tan 2\theta_m = \frac{\Delta_{31} \sin 2\theta_{13}}{\Delta_{31} \cos 2\theta_{13} - A}. \quad (6)$$

The ν_μ survival probability, after propagation through a distance L in matter, is

$$P_{\mu\mu} = 1 - 4 \left(|\bar{U}_{\mu1}|^2 |\bar{U}_{\mu2}|^2 \sin^2 \frac{l_2 - l_1}{2} L + |\bar{U}_{\mu1}|^2 |\bar{U}_{\mu3}|^2 \sin^2 \frac{l_3 - l_1}{2} L + |\bar{U}_{\mu2}|^2 |\bar{U}_{\mu3}|^2 \sin^2 \frac{l_3 - l_2}{2} L \right)$$

$$= 1 - 4 \left(s_{23}^2 c_{23} \theta_m \sin^2 \Delta_{31} + \frac{A - B}{4} L \right)$$

$$+ \frac{4 s_{23}^2 \theta_m^2 c_{\theta_m}^2}{2} \sin^2 \frac{BL}{2}$$

$$+ \frac{4 s_{23}^2 \theta_m \sin^2 \Delta_{31} + \frac{A + B}{4} L}{4}. \quad (7)$$

$P_{\mu\mu}$ can be obtained from $P_{\mu\mu}$ simply by changing A to $-A$ \[19\]. Moreover, in vacuum with $A = 0$ and hence $l_1 = 0 = l_2$ and $l_3 = \Delta_{31}$ as well as $\bar{U} = U$, we have

$$P_{\mu\mu}^{\text{vac}} = P_{\mu\mu} = 1 - 4|U_{\mu3}|^2(1 - |U_{\mu3}|^2) \sin^2 \frac{\Delta_{31} L}{2}. \quad (8)$$

The oscillation probability for a ν_μ/$\bar{\nu}_\mu$ traveling in vacuum, namely $1 - P_{\mu\mu}^{\text{vac}}$, is maximal, corresponding to maximal mixing, when $|U_{\mu3}| = 1/\sqrt{2}$. Though a careful measurement of $P_{\mu\mu}^{\text{vac}}$ may yield a value of $|U_{\mu3}|^2$ slightly different from 1/2, one here faces the difficulty of measuring a small term of order $(1/\sqrt{2} - |U_{\mu3}|)^2$. The vacuum term being quadratic in the deviation from maximality of muon neutrino flavor mixing contrasts strikingly with the matter effect term being linear in the said deviation.

Let us now consider \[17\], keeping terms only to linear order in A. The A^2 terms will be shown to cancel from our effect and the corrections will be shown to be of $O([U_{e3} A]^2)$. Note that, for the MINOS baseline length and energies, $|A/\Delta_{31}| = O(10^{-1})$. It is useful to note that

$$s_{23}^2 = s_{23}^2(1 + 2A \Delta_{31}^{-1} c_{13}^2) + O(A^2), \quad (9a)$$

$$c_{23}^2 = c_{23}^2(1 - 2A \Delta_{31}^{-1} s_{13}^2) + O(A^2), \quad (9b)$$

$$\sin^2 \Delta_{31} + \frac{A - B}{4} L = O(A^2), \quad (9c)$$

$$\sin^2 B L = \sin^2 \frac{\Delta_{31} L}{2} - \frac{AL}{2} \cos 2\theta_{13} \sin(\Delta_{31} L) + O(A^2), \quad (9d)$$

$$\sin^2 \frac{\Delta_{31} + A + B}{4} L = \sin^2 \frac{\Delta_{31} L}{2} + \frac{AL}{2} s_{13} \sin(\Delta_{31} L) + O(A^2). \quad (9e)$$

Utilizing (9a-e) in (7), we obtain

$$P_{\mu\mu} = P_{\mu\mu}^{\text{vac}} + 2s_{23}^2 c_{13}^2 s_{13}^2 (c_{23}^2 - s_{23}^2 \cos 2\theta_{13}). \quad (10)$$
while the thin lines are obtained by the exact numerical solution of the equation of motion of the neutrinos traveling in matter. The comparison between our analytic results and the exact numerical solution is shown for three different values of $|U_{e3}|^2$. For the exact numerical solution we have used $\delta m^2_{21} = 7 \times 10^{-5} \text{ eV}^2$ and $\sin^2 \theta_{12} = 0.3$.

FIG. 1: $\Delta P_{\mu\mu}$ as a function of the neutrino energy. The thick lines show the approximate analytic form given in Eq. (10) while the thin lines are obtained by the exact numerical solution of Eq. (10) as a measure of $|U_{e3}|^2$. The accuracy in the determination of δm^2_{21} is quite small, thus enhancing our confidence in the use of $|U_{e3}|^2$. The comparison between our analytic results and the exact numerical solution is shown for three different values of $|U_{e3}|^2$. For the exact numerical solution we have used $\delta m^2_{21} = 7 \times 10^{-5} \text{ eV}^2$ and $\sin^2 \theta_{12} = 0.3$.

leading to

$$\Delta P_{\mu\mu} = 4|U_{e3}|^2|U_{\mu3}|^2(1 - 2|U_{\mu3}|^2)$$

$$A \left[4 \Delta_{31}^{-1} \sin^2 \frac{\Delta_{31} L}{2} - L \sin(\Delta_{31} L) \right] + O(A^2).$$

Equation (10) is the key result. It shows that the linear A term in $\Delta P_{\mu\mu}$ is proportional to $1 - 2|U_{\mu3}|^2$ which is the deviation from maximality of the ν_μ flavor mixing in vacuum, as evident from Eq. (8). We may also note that the $O(A^2)$ terms cancel between $P_{\mu\mu}$ and $P_{\mu\bar{\nu}}$. Moreover, the corrections involve $O(|U_{e3}A|^2)$ terms since the lowest order A terms in the transition amplitude [20] come with coefficients $|U_{e3}|^2$ and U_{e3}. Thus the A^3 terms are further suppressed.

Our two significant approximations, i.e. ignoring δm^2_{21}-driven subdominant oscillations and the $O((|U_{e3}A|^2)$ terms in Eq. (10), were for the convenience of analytical calculations. A numerical code has been developed [21] to calculate $\Delta P_{\mu\mu}$, treating both the subdominant and the earth matter effect exactly. In Fig. 1 the thin (thick) lines show the $\Delta P_{\mu\mu}$ of exact numerical evaluation (of Eq. (10)) against E_ν with the other parameters specified in the figure labels. The differences are quite small, thus enhancing our confidence in the use of Eq. (10) as a measure of $|U_{e3}|^2(1 - 2|U_{\mu3}|^2)$. Interestingly, even for $|U_{e3}|^2 = 0.01$ when the magnitude of $\Delta P_{\mu\mu}$ is a lot less, these differences are small. The explanation why subdominant oscillations are suppressed is that the $A\Delta_{21}$ term in the transition amplitude [20] comes with a coefficient proportional to U_{e3}. We have also checked numerically that, while the location (in E_ν) of the $\Delta P_{\mu\mu}$ peak is sensitive to variations in δm^2_{21}, its magnitude is not.

The sensitivity of MINOS to $\Delta P_{\mu\mu}$ is best discussed in terms of ΔN_{ν}, the difference – due to the deviation of $|U_{\mu3}|^2$ from maximality – between the number of expected neutrino and antineutrino events. For an anticipated MINOS ν_μ exposure [22] of 16×10^{20} primary protons on target (p.o.t), this has been plotted in Fig. 2 along with the 1σ statistical errorbars for the parameter values shown in the labels. Given the detection cross-section for ν_μ's to be about half that of ν_μ's, we have assumed twice as much exposure for $\bar{\nu}_\mu$'s as for ν_μ's. The plot demonstrates the feasibility of such a measurement.

In conclusion, we have shown how the measurement of $\Delta P_{\mu\mu}$, in a long baseline experiment such as MINOS, can probe the deviation $1/\sqrt{2} - |U_{\mu3}|$ from maximality of the flavor mixing of the muon neutrino. The exclusion (with errors taken into account) of a vanishing value of $\Delta P_{\mu\mu}$ will simultaneously demonstrate $U_{e3} \neq 0 \neq \frac{1}{\sqrt{2}} - |U_{\mu3}|$. The accuracy in the determination of $|U_{e3}|(\frac{1}{\sqrt{2}} - |U_{\mu3}|)$ will depend more sensitively on the measurement error in $\Delta P_{\mu\mu}$ than on the then uncertainty in the knowledge
of δm_{31}^2.

We thank Yuval Grossman, Sanjib Mishra, Hitoshi Murayama, Sandip Pakvasa and Sergey Petcov for helpful discussions and Michele Frigerio for correcting an error.

In a three-generation framework, which is essential to our analysis, one can define maximal flavor mixing for the muon neutrino as the situation when, traveling in vacuum, it converts its flavor with the maximum probability. If the latter is calculated neglecting the subdominant oscillation due to δm_{21}^2, as done in Ref. [2], one finds $|U_{\mu 3}| = 1/\sqrt{2}$, see our later discussion after Eq. (5). Now if $|U_{e 3}| = \epsilon, |U_{\mu 3}| = 1/\sqrt{2}(1-\epsilon^2)^{1/2}$.

[2] Super-Kamiokande collaboration, Y. Hayato, talk given at the EPS 2003 conference (Aachen, Germany, 2003), http://eps2003.physik.rwth-aachen.de, S. Fukuda et al., Phys. Lett. B539, 179 (2002).

[3] SNO collaboration, S.N. Ahmed et al., nucl-ex/0309004

[4] CHOOZ collaboration, M. Appolonio et al., Eur. Phys. J. C27, 331 (2003); see also the website http://www.nu.to.infn.it/exp/all/chooz for their current statement.

[5] KamLAND collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).

[6] K2K collaboration, I. Kato, talk given at the 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories (Les Ares, France, 2003), hep-ex/0306043.

[7] M. C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75, 345 (2003); S. Pakvasa and J. W. Valle, arXiv:hep-ph/0301061; V. Barger, D. Marfatia and K. Whisnant, arXiv:hep-ph/0308123.

[8] More precisely, $\sin^2 2\theta_{23} > 0.92$ at 90% C.L. [2].

[9] MINOS collaboration, R. Saakian, Nucl. Phys. Proc. Suppl. 111, 169 (2002). M.V. Diwan, ibid. al. 172, 272 (2003).

[10] D. Ayres et al., hep-ex/0210005

[11] Y. Itow et al., hep-ex/0106019

[12] F. Arneodo, talk given at the TAUP 2003 conference, http://mocha.phys.washington.edu/taup2003/; K. Kodama, talk given at the Nufact 2003 conference, http://www.cap.bnl.gov/nufact03/agenda.uq1.xhtml.

[13] The following is a partial list. A. de Rujula, M.B. Gavela and P. Hernandez, Nucl. Phys. B547, 21 (1999); K. Dick, M. Freund, M. Lindner and A. Romanino, Nucl. Phys. B562, 29 (1999); V. Barger, S. Geer and K. Whisnant, Phys. Rev. D61, 053004 (2000); A. Bueno, M. Campanelli and A. Rubbia, Nucl. Phys. B573, 27 (2000); M. Freund, M. Lindner, S. T. Petcov and A. Romanino, Nucl. Phys. B 578, 27 (2000); A. Cervera et al., Nucl. Phys. B608, 301 (2001); erratum. ibid B593, 731 (2001). P. Huber, M. Lindner and W. Winter, Nucl. Phys. B645, 3 (2002). M.V. Diwan et al., Phys. Rev. D68, 012002 (2003). D. Autiero et al., hep-ph/0305185; O.L.G. Peres and A. Yu. Smirnov, hep-ph/0309312.

[14] T. Kajita and Y. Totsuka, Rev. Mod. Phys. 73, 85 (2001).

[15] One needs to be prudent at this point in quoting an absolute upper bound on $|U_{e 3}|^2$. The latter depends crucially on the lower bound on $|\delta m_{23}|$ coming from the Super-K atmospheric neutrino studies [2]. The 90% C.L. bound $s^2_{13} < 0.04$, claimed by the CHOOZ collaboration [1], is valid only for $|\delta m_{23}|^2 > 2 \times 10^{-3} eV^2$; it increases sharply for lower $|\delta m_{23}|^2$ on account of reduced sensitivity. In order to derive a reliable upper bound on $|U_{e 3}|^2$, covering the entire Super-K 90% C.L. mass squared range $1.3 \times 10^{-3} eV^2 < |\delta m_{23}|^2 < 3.1 \times 10^{-3} eV^2$, one needs to resort to a global analysis of neutrino oscillation data. However, such a procedure needs to input the precise $|\delta m_{23}|^2$ range currently reported by Super-K. A cautious upper bound on $|U_{e 3}|^2$ derived from such analyses is $\sim 0.05 - 0.07$, but it increases to 0.096 if only CHOOZ data are used, see for eg., A. Bandyopadhyay, S. Choubey, S. Goswami, S.T. Petcov and D.P. Roy, hep-ph/0309174; G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Phys. Rev D 69, 017301 (2004); M. Maltoni, T. Schwetz, M. A. Tortella and J. W. F. Valle, Phys. Rev. D 68, 113010 (2003).

[16] J. Arafune, M. Koike and J. Sato, Phys. Rev. D56, 3093 (1997); erratum. ibid D60, 119005 (1999).

[17] B. Brahmachari, S. Choubey and P. Roy, Nucl. Phys. B671, 483 (2003), cf. eq.(30).

[18] S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59, 671 (1987).

[19] For a ν_e ($\bar{\nu}_e$) beam, A is proportional to the threshold four-fermion limit for the charged current part of the forward $\nu e \rightarrow \nu e$ ($\bar{\nu}_e \rightarrow \bar{\nu}_e$) scattering amplitude and these differ only by a sign.

[20] The transition amplitude $S_{\mu 3}(L)$, to the lowest order in A and Δ_{21}, can be calculated to be $1 - 2i(U_{\mu 3})^2 e^{-i\Delta_{31}L/2} \sin(|\Delta_{31}|L/2) - i\Delta_{21}L|U_{\mu 3}|^2 - 2A|U_{\mu 3}|^2 |U_{\mu 3}|^2 e^{-i\Delta_{31}L/2} \sin(|\Delta_{31}|L/2) (L - 2i\Delta_{21}^*) - iL) + A A_{\Delta_{31}} \Re(Re(U_{\mu 3} U_{\mu 3}^* U_{\mu 3} U_{\mu 3}^*)) |L|^2 + 2iL \Delta_{31}^{*} - 4i\Delta_{31}^{*} e^{-i\Delta_{31}L/2} \sin(|\Delta_{31}|L/2)].$

[21] This has been done in collaboration with S. Goswami.

[22] http://www-numi.fnal.gov/