Sustained maternal hyperandrogenism during PCOS pregnancy reduced by metformin in non-obese women carrying a male foetus

Frida Andræ MD¹, David Abbott PhD², Solhild Stridsklev MD PhD³, Anne Vibeke Schmedes MD PhD⁵, Ingrid Hov Odsæter MD PhD⁴, Eszter Vanky MD PhD³,²,∗, Øyvind Salvesen PhD⁷∗

∗ Shared last authorship

¹Department of Obstetrics and Gynecology, Nordlandssykehuset, Bodø, Norway.
²Department of Obstetrics and Gynaecology and Wisconsin National Primate Research Centre, University of Wisconsin, Madison, WI, USA
³Department of Obstetrics and Gynecology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway and
⁴Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
⁵Biochemistry and Immunology, Lillebælt Hospital, Vejle, Denmark
⁶Department of Clinical Chemistry, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway and
⁷Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
Funding statement: The Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology funded the original study. No specific funding for this sub-study. The specific analyses for the present study were funded by the Norwegian research council funding.

Disclosure: The authors report no conflicts of interest in this work.

Clinical trial registration: ClinicalTrials.gov: The PregMet study: NCT00159536. NormalFow study: REC number 4.2008.841

Correspondence

Frida Andræ, Kvinneklinikken i Bodø, Nordlandssykehuset HF
Postboks 1480, NO-8092 Bodø, Norway.

Frida.andrae@nlsh.no

Telephone: +47-47624879
Abstract

Context

Large, longitudinal studies on androgen levels in pregnant women with polycystic ovary syndrome (PCOS) are lacking. While metformin has a mild androgen-lowering effect in non-pregnant women with PCOS, its effects on maternal androgen levels in pregnancy are less well understood.

Objective

To describe androgen patterns in pregnant women with PCOS, and healthy control women, and to explore the potential effects of metformin on maternal androgen levels in PCOS.

Design and setting

A post hoc analysis from a randomized, placebo-controlled, multicenter study, carried out at 11 secondary care centers and a longitudinal single-center study on healthy pregnant women in Norway.

Participants

262 women with PCOS, and 119 controls.

Intervention

The participants with PCOS, were randomly assigned to metformin (2g daily) or placebo, from first trimester to delivery.

Main outcome measures

Androstenedione (A4), testosterone (T), sex-hormone binding globulin (SHBG) and free-testosterone-index (FTI) at four time points in pregnancy.

Results

Women with PCOS vs. healthy controls, had higher A4, T and FTI, and lower SHBG at all measured time points in pregnancy. In the overall cohort of women with PCOS, metformin had no effect on A4, T, SHBG and FTI.
In sub-group analyses, metformin reduced A4 (p=0.019), in non-obese women. Metformin also reduced A4 (p=0.036), T (p=0.023) and SHBG (p=0.010) levels through pregnancy in mothers with a male foetus.

Conclusion

Metformin had no effect on maternal androgens in PCOS pregnancies. In sub-group analyses a modest androgen-lowering effect was observed in non-obese PCOS. In PCOS women carrying a male foetus, metformin exhibited an androgen-lowering effect.

Precis

Androgens are significantly elevated in PCOS compared to healthy pregnant women. Metformin lowered androstenedione levels in non-obese pregnant women with PCOS, and androstenedione and testosterone levels in those carrying a male foetus.

Key words: PCOS, pregnancy, metformin, androgens, testosterone, androstenedione, gender, obesity
Introduction

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder. When using Rotterdam criteria it effects up to 15% of women in reproductive age (16-18). It is also associated with overweight, obesity and insulin resistance (19). Pregnant women with PCOS are hyperandrogenic and have more pregnancy complications, such as miscarriage, preterm birth, gestational diabetes and pre-eclampsia (2-5). Interest in metformin treatment, an insulin-lowering drug, for women with PCOS increased when it became evident that insulin resistance plays an important role in the pathophysiology of the disorder (20). Early trials in women with PCOS demonstrated modest benefits in weight reduction, decreased serum androgens and restoration of regular menstrual cycles in approximately 50% of women with oligomenorrhea (21,22). There are, however, only a few published studies on androgen levels throughout PCOS pregnancies and the effects of metformin treatment during pregnancy, and none reach RCT rigor (22,23).

Placental aromatase (CYP19A1) is thought to protect the foetus against maternal androgens, from their metabolism to estrogens or bio-inactive conjugates. Maternal hyper-androgenism in PCOS gestations may breach a compromised placenta and affect the developing offspring. Diminished placental expression of CYP19A1 and HSD3B1 during PCOS gestation likely impair placental metabolism of androgens (1). Perhaps not surprisingly, PCOS placentae exhibit structural and molecular dysfunction (6,7), including increased signal transducers and activators of transcription 3 (STAT3) phosphorylation, indicating that specific metabolic pathways are activated by maternal gestational hyperandrogenism (8). There is evidence that maternal androgens may modulate the programming of placental and foetal steroidogenesis, and alter circulating androgen levels in utero (9,10). Human studies have demonstrated traits of in utero androgenisation of female offspring (11-14). In mice, prenatal androgen exposure, alone, plays an important role in inter- and trans-generational susceptibility to PCOS (15).

Whether increased maternal androgens are useful as risk markers for short and long-term consequences to human offspring health, remains to be fully explored.

The aims of our study were 1) to describe androgen patterns during pregnancy in women with PCOS and relate them to androgen levels during pregnancy in healthy control women, 2) to explore whether metformin alters androgen levels during pregnancy in women with PCOS,
and 3) to ascertain whether PCOS maternal androgen levels differ according to BMI category and sex of the foetus.

Material and Methods

The PregMet study

In all 274 women with PCOS participated in the original PregMet study (24). In one patient, a partial 21-hydroxylase deficiency had been overlooked, and she was excluded after randomization. 17 women participated with two pregnancies. In 11 women, serum samples were not available for analyses. In all, serum samples from 262 participants were analysed. Participants were recruited from 11 study centres in Norway. Inclusion criteria for the PregMet study were: 1) PCOS diagnosed according to the Rotterdam criteria (25), 2) age 18-45 years; 3) gestational age between 5-12 weeks and 4) a singleton viable foetus. The exclusion criteria were alanine aminotransferase higher than 90 IU/l, serum creatinine concentration higher than 1.70 mg/dl, known alcohol abuse, previously diagnosed diabetes mellitus or fasting serum glucose > 126 mg/dl (6.9 mmol/l) at the time point of inclusion, treatment with oral glucocorticoids, or use of drugs known to interfere with metformin. The participants were randomized to either 2000 mg metformin daily or placebo (Figure 1). All participants received counselling on lifestyle and diet at inclusion. To counteract possible metformin effects on folate or vitamin B levels, the participants were advised to take 0.8 mg folate and one multivitamin tablet daily, throughout pregnancy. An intake of more than 85% of the prescribed tablets was self-reported by 80% of the participants and was considered as good/acceptable compliance. Randomization, stratification and blinding for the study allocation is described elsewhere (24). Blood samples were collected at inclusion to the study and at gestational weeks 19, 32 and 36. The study was carried out between 2005 and 2009. Twelve women dropped out, i.e. discontinued medication and did not turn up at scheduled visits. Participants and all investigators were blinded to group assignment.

NormalFlow study

One hundred and twenty-four women were included a St. Olavs Hospital, Trondheim University Hospital between June 2008 and May 2010. The study recruited healthy women with an ongoing first trimester, singleton pregnancy aged 18-38 years old (26). Exclusion criteria were: 1) somatic or mental disease (e.g., diabetes, kidney and cardiovascular diseases and PCOS), 2) pregnancy complications in previous pregnancies (e.g., preeclampsia,
intrauterine foetal death, gestational diabetes mellitus, preterm delivery), 3) multiple pregnancies. Missed abortions and congenital anomalies were excluded. In addition, 5 women were excluded from the original NormalFlow cohort before analyses due to: previously undetected polycystic ovary syndrome (n = 1), preeclampsia (n = 3), intrauterine foetal death in week 35 (n = 1), leaving 119 women for analysis. Blood samples were available from gestational weeks 11, 13, 19 and 24.

In both studies (24,26), androgen levels were originally analysed by the ELISA-method and androstenedione (A4) and testosterone (T) were later re-analysed by liquid chromatography mass spectrometry (LC-MS/MS). Plasma samples were extracted by supported liquid extraction and the eluate was evaporated and reconstituted before analysis on LC-MS/MS. The analysis was calibrated by in-house prepared calibrators and the relative standard deviation was below 10 %. Quality was assured by monthly participation with satisfactory results in the external quality control program for steroid hormones from NEQAS, UK. Sex hormone binding globulin (SHBG) was analyzed by the ELISA technique with the reagents and calibrators supplied by the manufacturer (DRG Instruments GmbH, Marburg/Lahn, Germany).

Free testosterone index (FTI) was calculated (T/SHBG) x 100.

Statistical analysis

Maternal baseline characteristics at inclusion for the PregMet study were summarized using mean and standard deviation for continuous variables and counts and proportions for categorical variables.

Androgen levels during pregnancy were examined using linear mixed models. The logarithm of the androgen measurements was taken as response variables since these values were approximately normally distributed. The covariance matrix for the repeated measurements for each woman were taken as unstructured due to apparent heteroscedasticity.

The effect of metformin on androgen levels were tested for significance comparing area under curves for the different treatment groups.
Subgroup analyses were performed according to BMI category under and over 30 kg/m\(^2\), and according to the sex of the foetus.

The significance level was taken as 5%. All analyses were done using R version 2.13.1.

Funding

The Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology funded the original study. The Norwegian research council. Metformin and placebo tablets were delivered free of charge by Weifa A/S, Oslo. No specific funding for this sub study.

Results

At baseline, women with PCOS were older, with higher BMI and blood pressure compared to healthy controls (Table 1). There was no difference in baseline characteristics between women with PCOS randomized to metformin or placebo treatments (Table 1).

PCOS vs. healthy controls

In both the first and second trimester of pregnancy, and compared to healthy control mothers, serum A4, T, and FTI were higher in mothers with PCOS regardless of placebo or metformin treatment. SHBG levels were lower at all time-points in both metformin and placebo treated PCOS compared to healthy controls (Figure 2a-d).

The placebo treated PCOS population

In all women with PCOS treated with placebo, A4 and T levels were relatively stable throughout pregnancy, i.e., gestational weeks 11, 19, 32 and 36 (Figure 2a-b). FTI decreased from early to mid- and late pregnancy (Figure 2c), while SHBG levels increased during the first half of gestation (Figure 2d).

PCOS cohort Metformin vs. placebo

For the total PCOS cohort, there were no differences in levels of A4 (p=0.14), T (p=0.17), SHBG (p=0.35) and FTI (p=0.15) in the metformin vs. placebo PCOS groups throughout gestation.
Subgroup analyses according to BMI

At inclusion, non-obese PCOS women had higher A4 (p=0.001) and SHBG (p=0.001), and lower FTI levels (p=0.047) compared to obese women with PCOS (BMI > 30 kg/m²), and no difference in T levels.

Metformin significantly lowered A4 (p=0.019) and tended to lower T (p=0.07) levels in non-obese women with PCOS, while it had no effect on obese PCOS women. FTI values were not significantly altered by metformin in either obese or non-obese women with PCOS (Figure 3a-d).

Subgroup analyses by sex of the foetus

Throughout pregnancy in the placebo group, women with PCOS and carrying a male or female foetus, had similar A4, T and FTI levels. Metformin significantly reduced A4 (p=0.036), T (p=0.023) and SHBG (p=0.010) circulating levels throughout pregnancy in PCOS mothers with a male foetus, while it did not have any effect on A4, T or SHBG levels in PCOS women with a female foetus. FTI was not significantly altered by metformin in mothers carrying either a male or female foetus (Figure 4a-d).

Discussion

The main findings of this study are that 1) pregnant women with PCOS had higher levels of A4, T and FTI compared to healthy control women, in the first half of pregnancy, 2) A4 and T levels were relatively stable, while FTI decreased throughout pregnancy in women with PCOS, 3) metformin had no androgen lowering effect in the total PCOS study population, however, 4) in sub-group analyses, metformin lowered A4 levels in non-obese PCOS women, alone, as well as A4 and T levels in those carrying a male foetus.

Higher maternal androgen levels during gestation was expected in women with PCOS, as their gestational hyper-androgenicility is well-documented, likely due to their pre-conception androgen excess contributing to a PCOS diagnosis. Our findings are supported by a study of Sir-Petermann and colleagues (27), in which second trimester A4, T, DHEAS and FAI were higher in women with PCOS compared to healthy women. Caanen et al (28) reported on higher T and A4 both in mid-pregnancy and at delivery. Glintborg et al (29) found higher T and FT and Piltonen et al (30) found higher T and A4, all in the third trimester in PCOS compared to healthy mothers.
Metformin-effect

Metformin demonstrated androgen-lowering effects during pregnancy, in a case report and in a non-randomized study (31). In our pilot study with 40 participants, no effect of metformin on androgens was observed (32). In that study, however, a less sensitive method of ELISA analysis was used to quantify androgen levels. In a meta-analysis report, metformin had no lowering effect on free androgen index (FAI) in non-pregnant women with PCOS (33). The mild T lowering effect of metformin, reported in non-pregnant PCOS(33) was not confirmed in pregnancy.

BMI-categories

In subgroup analyses, based on BMI categories, we found that metformin significantly lowered A4 and tended to lower T levels, among women with BMI < 30 kg/m². In a Cochrane meta-analysis, metformin demonstrated a stronger T lowering effect on non-obese, non-pregnant women with PCOS compared to obese non-pregnant PCOS women (34,35). This effect is most probably due to metformin inhibiting HSD3B2 and 17,20 lyase activity of CYP17A1. The same mechanism may be applicable for the pregnant state. Lower plasma and tissue concentrations of metformin in obese women with PCOS may contribute to its obesity-diminished impact, due perhaps, in part, to unvarying and not BMI-corrected metformin dosage given to all participants.

Foetal sex

PCOS women, pregnant with either a male or a female foetus, had similar A4, T and FTI through pregnancy. This is consistent with an earlier study that reported similar levels of DHEAS, T, SHBG and FTI and T at delivery for 20 pregnant women with PCOS who gave birth to 14 girls and 6 boys (27). Surprisingly, we show that introduction of metformin only lowered A4 and T levels in mothers carrying a male foetus, but had no effect on mothers with a female foetus. Whether, or to what extent, decreased A4 and T levels are reflected in the foetal circulation, is not known. The finding of lowered androgen levels in pregnancies with male fetuses, when metformin is introduced, should be interpreted with great caution, due to reduced sample size of the sub-group analyses and borderline p-values.

While sex of foetus contributions to differential maternal hormonal responses to metformin were unanticipated, human male fetuses can exhibit more severe placental histopathological lesions than found in females (36). Sex differences have been found in human placental
perinatal responses (37) and placental epigenomic and transcriptomic profiles vary by foetal sex (38).

Strengths and limitations

A strength of this study is the placebo controlled RCT design and the large number of PCOS participants. The trial was performed during routine clinical practice, and participants were representative for the population of women with known diagnosis of PCOS. The longitudinal measurements of androgens throughout pregnancy is also a strength, including re-analysis of samples with highly specific LCMS. Adherence to study medication during pregnancy was high, and the original study was conducted in accordance with “Good Clinical Practice Principles” (24). A limitation of this study includes limited quantitative assessments of maternal steroid hormones. It would have been useful to quantify other androgens and steroid sex hormones through pregnancy. In addition, the control group lacked serum samples from the third trimester of pregnancy and gestational time-points for serum sampling from controls and PCOS women were not identical. The statistics used, however, together with the presentation of data from healthy controls, provided quantitative and visual understanding of between-group differences.

Conclusion

The present study confirms that circulating maternal androgen levels are higher in PCOS compared to healthy pregnant women. Metformin had no effect on maternal androgens in PCOS pregnancies. In sub-group analyses, however, a modest androgen-lowering effect was observed in non-obese, pregnant women with PCOS and in those carrying a male foetus. It is not known whether the androgen lowering effects of metformin also occur in the foetal circulation.

Acknowledgements

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.
References

1. Maliqueo M, Lara HE, Sanchez F, Echiburu B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. *Eur J Obstet Gynecol Reprod Biol*. 2013;166(2):151-155.

2. Boomsma CM, Fauser BC, Macklon NS. Pregnancy complications in women with polycystic ovary syndrome. *Semin Reprod Med*. 2008;26(1):72-84.

3. Yu HF, Chen HS, Rao DP, Gong J. Association between polycystic ovary syndrome and the risk of pregnancy complications: A PRISMA-compliant systematic review and meta-analysis. *Medicine (Baltimore)*. 2016;95(51):e4863.

4. Qin JZ, Pang LH, Li MJ, Fan XJ, Huang RD, Chen HY. Obstetric complications in women with polycystic ovary syndrome: a systematic review and meta-analysis. *Reprod Biol Endocrinol*. 2013;11:56.

5. Kjerulff LE, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. *Am J Obstet Gynecol*. 2011;204(6):558-556.

6. Palomba S, Falbo A, Russo T, Tolino A, Ori F, Zullo F. Pregnancy in women with polycystic ovary syndrome: the effect of different phenotypes and features on obstetric and neonatal outcomes. *Fertil Steril*. 2010;94(5):1805-1811.

7. Palomba S, Russo T, Falbo A, Di Cello A, Tolino A, Tucci L, La Sala GB, Zullo F. Macroscopic and microscopic findings of the placenta in women with polycystic ovary syndrome. *Hum Reprod*. 2013;28(10):2838-2847.

8. Maliqueo M, Sundstrom Poromaa I, Vanky E, Fornes R, Benrick A, Akerud H, Stridsklev S, Labrie F, Jansson T, Stener-Victorin E. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. *Hum Reprod*. 2015;30(3):692-700.

9. Beckett EM, Astapova O, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programing: impact of testosterone on placental differentiation. *Reproduction*. 2014;148(2):199-209.

10. Padmanabhan V, Veiga-Lopez A. Animal models of the polycystic ovary syndrome phenotype. *Steroids*. 2013;78(8):734-740.

11. Homburg R, Gudi A, Shah A, A ML. A novel method to demonstrate that pregnant women with polycystic ovary syndrome hyper-expose their fetus to androgens as a possible stepping stone for the developmental theory of PCOS. A pilot study. *Reprod Biol Endocrinol*. 2017;15(1):61.

12. Abbott DH, Kraynak M, Dumesic DA, Levine JE. In utero Androgen Excess: A Developmental Commonality Preceding Polycystic Ovary Syndrome? *Front Horm Res*. 2019;53:1-17.

13. Barrett ES, Hoeger KM, Sathyarayana S, Abbott DH, Redmon JB, Nguyen RHN, Swan SH. Anogenital distance in newborn daughters of women with polycystic ovary syndrome indicates fetal testosterone exposure. *J Dev Orig Health Dis*. 2018;9(3):307-314.

14. Palomba S, Marotta R, Di Cello A, Russo T, Falbo A, Ori F, Tolino A, Zullo F, Esposito R, La Sala GB. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. *Clin Endocrinol (Oxf)*. 2012;77(6):898-904.

15. Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, Zhao Z, Massart J, Ohlsson C, Lindgren E, Crisosto N, Maliqueo M, Echiburu B, Ladrón de Guevara A, Sir-Petermann T, Larsson H, Rosenqvist MA, Cesta CE, Benrick A, Deng Q, Stener-Victorin E. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. *Nat Med*. 2019;25(12):1894-1904.

16. Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. *Hum Reprod*. 2016;31(12):2841-2855.
17. Tehrani FR, Simbar M, Tohidi M, Hosseinpanah F, Azizi F. The prevalence of polycystic ovary syndrome in a community sample of Iranian population: Iranian PCOS prevalence study. *Reprod Biol Endocrinol*. 2011;9:39.
18. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. *Hum Reprod*. 2010;25(2):544-551.
19. Alvarez-Blasco F, Botella-Carretero JJ, San Millan JL, Escobar-Morreale HF. Prevalence and characteristics of the polycystic ovary syndrome in overweight and obese women. *Arch Intern Med*. 2006;166(19):2081-2086.
20. Dewailly D, Cortet-Rudelli C. Insulin resistance and polycystic ovarian syndrome. *Horm Res*. 1992;38(1-2):41-45.
21. Fleming R, Hopkinson ZE, Wallace AM, Greer IA, Sattar N. Ovarian function and metabolic factors in women with oligomenorrhea treated with metformin in a randomized double blind placebo-controlled trial. *J Clin Endocrinol Metab*. 2002;87(2):569-574.
22. Palomba S, Falbo A, Zullo F, Orio F, Jr. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. *Endocr Rev*. 2009;30(1):1-50.
23. Glueck CJ, Goldenberg N, Wang P, Lofthouse M, Sherman A. Metformin during pregnancy reduces insulin, insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes: prospective longitudinal assessment of women with polycystic ovary syndrome from preconception throughout pregnancy. *Hum Reprod*. 2004;19(3):510-521.
24. Vanky E, Stridsklev S, Heimstad R, Romundstad P, Skogov K, Kleggetveit O, Hjelle S, von Brandis P, Eikeland T, Flo K, Berg KH, Lund A, Bjerke C, Almas I, Berg AH, Daniels C, Lahmann G, Carlsen SM. Metformin versus placebo from first trimester to delivery in polycystic ovary syndrome: a randomized, controlled multicenter study. *Acta Obstet Gynecol Scand*. 2016.
25. Sir-Petermann T, Maliqueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. *Hum Reprod*. 2002;17(10):2573-2579.
26. Caanen MR, Kuijper EA, Hompes PG, Kushir MM, Rockwood AL, Meikle WA, Homburg R, Lambalk CB. Mass spectrometry methods measured androgen and estrogen concentrations during pregnancy and in newborns of mothers with polycystic ovary syndrome. *Eur J Endocrinol*. 2016;174(1):25-32.
27. Gilnorg DJ, Jensen RC, Bentsen K, Schmedes AV, Brandslund I, Kyhl HB, Bilenberg N, Andersen MS. Testosterone Levels in Third Trimester in Polycystic Ovary Syndrome: Odense Child Cohort. *J Clin Endocrinol Metab*. 2018;103(10):3819-3827.
28. Pittonen TT, Giacobini P, Edvinsson A, Hustad S, Lager S, Morin-Papunen L, Tapanainen JS, Sundstorm-Poromaa I, Arffman RK. Circulating antimullerian hormone and steroid hormone levels remain high in pregnant women with polycystic ovary syndrome at term. *Fertil Steril*. 2019.
29. Sarlis NJ, Weil SJ, Nelson LM. Administration of metformin to a diabetic woman with extreme hyperandrogenemia of nontumoral origin: management of infertility and prevention of inadvertent masculinization of a female fetus. *J Clin Endocrinol Metab*. 1999;84(5):1510-1512.
30. Vanky E, Salvesen KA, Heimstad R, Fougner KJ, Romundstad P, Carlsen SM. Metformin reduces pregnancy complications without affecting androgen levels in pregnant polycystic ovary syndrome women: results of a randomized study. *Hum Reprod*. 2004;19(8):1734-1740.
31. International evidence based guideline for the assessment and management of polycystic ovary syndrome Vol 2018. https://www.monash.edu/medicine/sphpm/mchri/pcos/guideline2018.
34. Hirsch A, Hahn D, Kempna P, Hofer G, Nuoffer JM, Mullis PE, Fluck CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology. 2012;153(9):4354-4366.

35. Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database of Systematic Reviews. 2017(11).

36. Ghidini A, Salafia CM. Histologic placental lesions in women with recurrent preterm delivery. Acta Obstet Gynecol Scand. 2005;84(6):547-550.

37. Rosenfeld CS. Sex-Specific Placental Responses in Fetal Development. Endocrinology. 2015;156(10):3422-3434.

38. Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5.
Figure and Table Legends

Figure 1. Flow chart on enrollment and randomization of pregnant women with PCOS.

Table 1. Baseline characteristics of women with PCOS according to randomization to metformin or placebo, and healthy controls during the 1st trimester of pregnancy.

Figure 2. a-d Androstenedione, testosterone, sex hormone binding globulin (SHBG) and free testosterone index (FTI) in women with PCOS, treated with metformin vs. placebo in pregnancy, and healthy pregnant controls.

Figure 3. a-d Androstenedione, testosterone, sex hormone binding globulin (SHBG) and free testosterone index (FTI) in women with PCOS, treated with metformin vs. placebo in pregnancy according to BMI category.

Figure 4. a-d Androstenedione, testosterone, sex hormone binding globulin (SHBG) and free testosterone index (FTI) in women with PCOS, treated with metformin vs. placebo in pregnancy according to foetal sex.
Table 1 Baseline characteristics of women with PCOS according to randomization to metformin or placebo, and healthy controls in the 1st trimester of pregnancy

	All PCOS participants N=262	PCOS randomized to Metformin N=128	PCOS randomized to Placebo N=134	Healthy controls N=119	Metformin vs. placebo p-value	All PCOS vs. controls p-value
Age, years (SD)	29.5 (4.4)	29.7 (4.4)	29.2 (4.4)	27.9 (4.2)	0.343	0.001
Height, cm (SD)	167.5 (5.6)	167.2 (5.7)	167.8 (5.5)	168.2 (5.9)	0.410	0.292
Weight, kg (SD)	80.7 (19.0)	82.9 (20.5)	78.7 (17.3)	68.0 (13.0)	0.073	0.000
BMI, kg/m² (SD)	28.9 (7.1)	29.6 (7.2)	28.3 (6.9)	24.0 (4.3)	0.115	0.000
SBP (mmHg)	118 (12)	119 (12)	117 (11)	114 (12)	0.176	0.002
DBP (mmHg)	73 (11)	74 (12)	73 (10)	68 (10)	0.272	0.000
Smoking (%)	21 (8.0)	12 (9.4)	9 (6.8)	12 (11.2)	0.439	0.334
Metformin at conception (%)	83 (31.7)	41 (32.0)	42 (31.3)	0	1.00	
GDM at inclusion no (%)*	22 (8.4)	9 (7.0)	13 (9.7)	0	0.508	

Ethnicity (%)

Caucasian	257 (98.1)	124 (96.9)	133 (99.3)	119 (100)	0.528	0.681
Working status (%)					0.377	0.000
Working	221 (80.4)	111 (87.4)	110 (82.1)	90 (80.4)		
Student	10 (3.8)	5 (3.9)	5 (3.7)	16 (14.3)		
Other	30 (11.5)	11 (8.6)	19 (14.2)	6 (5.4)		

Phenotype (%)

HA+PCOM+OA	76 (59.4)	82 (61.2)			0.908	
HA+PCOM	13 (10.2)	13 (9.7)				
HA+OA	6 (4.7)	4 (3.0)				
PCOM+OA	33 (25.8)	35 (26.1)				

HA = hyperandrogenism, PCOM = polycystic ovary morphology, OA = oligo-amenorrhea

*GDM = gestational diabetes mellitus diagnosed according to the WHO1999 criteria, as the PregMet study was performed in 2005-2009.
Figure 1. Flow chart on enrollment and randomization of pregnant women with PCOS.

Assessed for eligibility
N=364

Excluded (n=90)
Inclusion criteria not met (n=32)
Declined to participate (n=58)

Randomized
N=274

Metformin
n=136
Excluded (n=8)
Did not meet inclusion criteria (n=1)
No data on androgens (n=7)

Placebo
n=138
Excluded (n=4)
Lost to follow-up (n=3)
No data on androgens (n=1)

Analyzed
n=128
Analyzed
n=134
Figure 2
