On the stable set of an analytic gradient flow

by Zbigniew Szafraniec

Abstract. Let \(f : \mathbb{R}^n \to \mathbb{R}, n \geq 2 \), be an analytic function. There are presented sufficient conditions for the stable set of the gradient flow \(\dot{x} = \nabla f(x) \) to have a non-empty interior.

1 Introduction.

Let \(f : \mathbb{R}^n, n \geq 2 \), be an analytic function. According to Łojasiewicz [8], the limit set of a trajectory of the dynamical system \(\dot{x} = \nabla f(x) \) is either empty or contains a single critical point of \(f \). So the family of integral curves which converge to a critical point is a natural object of study in the theory of gradient dynamical systems.

Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) be an analytic function defined in a neighbourhood of the origin, having a critical point at \(0 \). We shall write \(S(f) \) for the stable set of the origin, which is the union of all orbits of the solutions that converge to the origin. By [8], the stable set in closed near the origin. There is a natural problem: is the interior of \(S(f) \) non-empty? (In the planar case this is equivalent to the problem whether the set of integral curves converging to the origin is infinite?)

Of course, if the origin is a local maximum then \(\text{int} S(f) \neq \emptyset \). If the origin is a non-degenerate critical point then the opposite implication holds.

Let \(\omega : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) be the homogeneous initial form associated with \(f \). Put \(\Omega = S^{n-1} \cap \{ \omega < 0 \} \). Applying the Moussu results [10] one may show that \(\text{int} S(f) \neq \emptyset \) if there exists at least one non-degenerate critical point of \(\omega \mid \Omega \) which is a local maximum.

Let \(S_r = S^{n-1}_r \cap \{ f < 0 \} \), where \(S^{n-1}_r = \{ x \in \mathbb{R}^n \mid |x| = r \}, 0 < r \ll 1 \). The main result of this paper says that \(\text{int} S(f) \neq \emptyset \) if \(\text{rank} H^{n-2}(S_r) < \text{rank} H^{n-2}(\Omega) \), where \(H^{n-2}(\cdot) \) is the \((n-2)\)-th cohomology group with rational coefficients.

Let \(\Omega' = S^{n-1}\Omega \cap \{ \omega \geq 0 \} = S^{n-1}_r \setminus \Omega \), and \(S'_r = S^{n-1}_r \cap \{ f \geq 0 \} = S^{n-1}_r \setminus S_r, 0 < r \ll 1 \). Sets \(\Omega', S'_r \) are compact and semianalytic, hence they are triagulable. By the Alexander duality theorem, if \(S'_r \) and \(\Omega' \) are non-empty then \(\text{rank} H_0(S'_r) = 1 + \text{rank} H^{n-2}(S_r) \) and \(\text{rank} H_0(\Omega') = 1 + \text{rank} H^{n-2}(\Omega) \).

Thus, if \(S'_r \) has less connected components than \(\Omega' \) then the interior of \(S(f) \) is non-empty.
Let f be as above. Assume that $g : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ analytic. We shall prove that $\text{int} S(g) \neq \emptyset$ if g is right-equivalent to f.

In exposition and notation we follow closely [13], where there are presented sufficient conditions for existence of an infinite family of trajectories of the gradient flow converging to the origin.

The paper is organized as follows. In Section 2 we prove sufficient conditions for a compact subset of the sphere to have a non-empty interior. In Section 3 we investigate the stable set of an analytic gradient flow and we prove the main results (Theorems 3.6, 3.7). Section 4 is devoted to functions right-equivalent to the ones that satisfy assumptions of those theorems. References [1, 3, 4, 5, 6, 7, 12] present significant related results and applications.

2 Preliminaries.

Lemma 2.1. Suppose that $L \subset K$ are closed subsets of S^{n-1}, $n \geq 2$, and $\text{rank } \bar{H}^{n-2}(K) < \text{rank } \bar{H}^{n-2}(L) < \infty$, where $\bar{H}^{n-2}(\cdot)$ is the $(n-2)$-th Čech-Alexander cohomology group with rational coefficients. Then the interior of K is non-empty.

Proof. As $\bar{H}^{n-2}(L) \neq 0$ then sets $L, K, S^{n-1} \setminus L$ are not void. If $K = S^{n-1}$ then the assertion holds. From now on we assume that $S^{n-1} \setminus K \neq \emptyset$ and $n \geq 3$.

By the Alexander duality theorem there are isomorphisms

$$
\bar{H}^{n-2}(L) \simeq \bar{H}_0(S^{n-1} \setminus L), \quad \bar{H}^{n-2}(K) \simeq \bar{H}_0(S^{n-1} \setminus K),
$$

where $\bar{H}_0(\cdot)$ is the 0-th reduced homology group.

Then $S^{n-1} \setminus L$ is a disjoint union of open connected components U_1, \ldots, U_ℓ, where $\ell = 1 + \text{rank } \bar{H}_0(S^{n-1} \setminus L) = 1 + \text{rank } \bar{H}^{n-2}(L)$, and $S^{n-1} \setminus K$ is a disjoint union of open connected components V_1, \ldots, V_k, where $k = 1 + \text{rank } \bar{H}_0(S^{n-1} \setminus K) = 1 + \text{rank } \bar{H}^{n-2}(K)$.

Suppose that $U_i \setminus K \neq \emptyset$ for each $1 \leq i \leq \ell$, so that there are points $p_i \in U_i \setminus K$ and then $p_i \in V_{j(i)}$ for some $1 \leq j(i) \leq k$. As $V_{j(i)}$ is a connected subset of $U_1 \cup \ldots \cup U_\ell$, then $V_{j(i)} \subset U_i$.

Because U_i are pairwise disjoint, then $V_{j(i)}$ are pairwise disjoint too. Hence $k \geq \ell$, contrary to our claim. Then at least one open connected component U_i is a subset of K.

Similar arguments apply to the case where $n = 2$. \qed
Corollary 2.2. Suppose that $L \subset K \subset F$, where L, K are compact, $n \geq 2$, $\text{rank} \, \check{H}^{n-2}(K) < \text{rank} \, \check{H}^{n-2}(L) < \infty$, and F is an $(n-1)$-dimensional manifold homeomorphic to a subset of S^{n-1}. Then the interior of K is non-empty.

3 Stable sets of gradient flows

Let $f : \mathbb{R}^n, 0 \to \mathbb{R}, 0$, $n \geq 2$, be an analytic function defined in an open neighbourhood of the origin. For $0 < -y \ll r \ll 1$ we shall write

$$B_r^n = \{ x \in \mathbb{R}^n \mid |x| \leq r \}, \quad S_r^{n-1} = \{ x \in \mathbb{R}^n \mid |x| = r \},$$

$$F_r(y) = B_r^n \cap f^{-1}(y), \quad S_r = \{ x \in S_r^{n-1} \mid f(x) < 0 \}.$$

We call the set $F_r(y)$ the real Milnor fibre. According to [9], it is either an $(n-1)$-dimensional compact manifold with boundary or an empty set. Moreover, the sets $F_r(y)$ and S_r are homotopy equivalent.

Corollary 3.1. If $0 < -y \ll r \ll 1$ then the cohomology groups $H^*(S_r)$ and $H^*(F_r(y))$ are isomorphic.

According to [10], there are $0 < -y \ll r \ll 1$ such that each non-trivial trajectory of the gradient flow $\dot{x} = \nabla f(x)$ converging to the origin intersects $F_r(y)$ transversally at exactly one point. Let $\Gamma(f) \subset F_r(y)$ be the union of all those points. By [8], the set $\Gamma(f)$ is a closed subset of $F_r(y)$, so $\Gamma(f)$ is compact. Hence there is a natural one-to-one correspondence between trajectories converging to the origin and points in $\Gamma(f)$.

By [11, Theorem 12] we have

Theorem 3.2. If $0 < -y \ll r \ll 1$ then the inclusion $\Gamma(f) \subset F_r(y)$ induces an isomorphism

$$\check{H}^*(\Gamma(f)) \simeq H^*(F_r(y)),$$

where $\check{H}^*(\cdot)$ is the Čech-Alexander cohomology group.

Corollary 3.3. There is an isomorphism $\check{H}^*(\Gamma(f)) \simeq H^*(S_r)$.

Let ω be the initial form associated with f, and let $\Omega = S_r^{n-1} \cap \{ \omega < 0 \}$. In the same manner as in the proof of [13, Proposition 3.5] we can get

Proposition 3.4. There exists a compact set $\check{\Gamma}(f) \subset \Gamma(f)$ such that $\check{H}^*(\check{\Gamma}(f)) \simeq H^*(\Omega)$. As Ω is semi-algebraic, then $\text{rank} \, \check{H}^{n-2}(\check{\Gamma}(f)) = \text{rank} \, H^{n-2}(\Omega) < \infty$.
Corollary 3.5. If ω is a quadratic form which can be reduced to the diagonal form $-x_1^2 - \cdots - x_i^2 + x_{i+2}^2 + \cdots + x_j^2$, where $i \geq 1$, then

$$\bar{H}^*(\tilde{\Gamma}(f)) \approx H^*(\Omega) \approx H^*(S^i).$$

In that case $\text{rank } \bar{H}^{n-2}(\tilde{\Gamma}(f)) = \text{rank } H^{n-2}(\Omega) > 0$ if and only if ω can be reduced to the diagonal form $-x_1^2 - \cdots - x_{n-1}^2$.

Theorem 3.6. Suppose that $f : \mathbb{R}^n, 0 \to \mathbb{R}, 0, n \geq 2$, is an analytic function defined in an open neighbourhood of the origin. Suppose that $\text{rank } H^{n-2}(S_r) < \text{rank } H^{n-2}(\Omega)$. Then the stable set of the origin of the gradient flow $\dot{x} = \nabla f(x)$ has a non-empty interior.

Proof. By [9, Lemma 5.10], if $0 < -y \ll r \ll 1$ then $F_r(y)$ is homeomorphic to an $(n-1)$-dimensional submanifold of S^{n-1}.

As $\tilde{\Gamma}(f) \subset \Gamma(f)$ are compact subsets of $F_r(y)$ with $\bar{H}^{n-2}(\tilde{\Gamma}(f)) = \text{rank } H^{n-2}(S_r) < \text{rank } H^{n-2}(\Omega) = \text{rank } \bar{H}^{n-2}(\tilde{\Gamma}(f)) < \infty$, then by Corollary 2.2 the set $\Gamma(f)$ has a non-empty interior in $F_r(y)$.

Trajectories of the flow $\dot{x} = \nabla f(x)$ converging to the origin cut transversally $F_r(y)$ at point of $\Gamma(f)$. Hence the stable set of the origin has a non-empty interior. \qed

Put $\Omega' = S^{n-1} \cap \{\omega \geq 0\} = S^{n-1} \setminus \Omega$, and $S'_r = S^{n-1} \cap \{f \geq 0\} = S^{n-1} \setminus S_r$, $0 < r \ll 1$. Sets Ω', S'_r are compact and semianalytic, hence they are triagulable. By the Alexander duality theorem, if S'_r and Ω' are non-empty then $\text{rank } H_0(S'_r) = 1 + \text{rank } H^{n-2}(S_r)$ and $\text{rank } H_0(\Omega') = 1 + \text{rank } H^{n-2}(\Omega)$.

Theorem 3.7. Suppose that the set S'_r has less connected components than Ω'. Then the stable set of the origin of the gradient flow $\dot{x} = \nabla f(x)$ has a non-empty interior.

Proof. The set Ω' is obviously not empty. If $S'_r = \emptyset$ then the origin is a local maximum, and then $\text{int } S(f) \neq \emptyset$.

Suppose that $S'_r \neq \emptyset$. Sets S'_r, Ω' are compact, semianalytic. So they are triangulable, and the number of connected components of S'_r (resp. Ω') equals the number of its path-components which is $\text{rank } H_0(S'_r)$ (resp. $\text{rank } H_0(\Omega')$).

By assumption, $\text{rank } H_0(S'_r) < \text{rank } H_0(\Omega')$ and then $\text{rank } H^{n-2}(S_r) < \text{rank } H^{n-2}(\Omega)$. By Theorem 3.6 the stable set $S(f)$ has a non-empty interior. \qed
Applying arguments presented by Moussu in [10, p.449] one can prove the next proposition. (As its proof would require to introduce other techniques, so we omit it here.)

Proposition 3.8. Suppose that there exists a non-degenerate critical point of \(\omega|\Omega \) which is a local maximum. Then the interior of \(S(f) \) is not-empty.

Example 3.9. Let \(f(x, y) = x^3 + 3xy^2 + x^2y^2 \), so that \(\omega = x^3 + 3xy^2 \). It is easy to see that \(\omega|S^1 \) has a non-degenerate local maximum at \((-1, 0) \in \Omega \). Then the interior of \(S(f) \) is non-empty.

Example 3.10. Let \(f(x, y) = x^3 - y^2 \), so that \(\omega = -y^2 \). Then \(\Omega = \{(x, y) \in S^1 \mid -y^2 < 0\} = S^1 \setminus \{(1, 0)\} \), and \(\Omega' = \{(-1, 0), (1, 0)\} \). The function \(\omega|\Omega \) has exactly two critical (minimum) points at \((0, \pm 1) \), so one cannot apply Proposition 3.8 in this case. As \(S_r \) is homeomorphic to a closed interval, then by Theorem 3.7 the interior of \(S(f) \) is non-empty.

Example 3.11. Let \(f(x, y, z) = -x^2y^2 - z^4 + x^5 \). Then \(\omega = -x^2y^2 - z^4 \) and \(\Omega' \) consists of four points. It is easy to see that \(S_r \) is homeomorphic to a disjoint union of a closed disc and two points. By Theorem 3.7 the interior of \(S(f) \) is non-empty.

4 Right-equivalent functions

Let \(g : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) be an analytic function which is right-equivalent to \(f \), i.e. there exists a \(C^\infty \)-diffeomorphism \(\phi : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) defined in an open neighbourhood of the origin such that \(g = f \circ \phi \). Then in particular the derivative \(D\phi(0) : \mathbb{R}^n \to \mathbb{R}^n \) is a linear isomorphism.

Let \(\theta \) be the initial homogeneous form associated with \(g \), and let \(\Theta' = S^{n-1}_r \cap \{ \theta \geq 0 \} \). It is easy to see that \(\theta = \omega \circ D\phi(0) \). Hence sets \(\Omega' \) and \(\Theta' \) are diffeomorphic, and then \(H_0(\Omega') \simeq H_0(\Theta') \).

Both \(f \) and \(g \) are analytic, hence there exists small \(r_0 > 0 \) such that for each \(0 < r \leq r_0 \) the number of connected components of \(S_r \) equals the number of connected components of \(B^n_r \setminus \{0\} \cap \{ f \geq 0 \} \), and the number of connected components of \(S^{n-1}_r \cap \{ g \geq 0 \} \) equals the number of connected components of \(B^n_r \setminus \{0\} \cap \{ g \geq 0 \} \). As \(g = f \circ \phi \) then \((B^n_r \setminus \{0\}) \cap \{ g \geq 0 \} \) is homeomorphic to \((\phi(B^n_r) \setminus \{0\}) \cap \{ f \geq 0 \} \).

There exist \(0 < r_3 < r_2 < r_1 < r_0 \) such that \(\phi(B^n_{r_3}) \subset B^n_{r_2} \subset \phi(B^n_{r_1}) \subset B^n_{r_0} \).
The inclusion \((B^n \setminus \{0\}) \cap \{g \geq 0\} \subset (B^n \setminus \{0\}) \cap \{g \geq 0\}\) is a homotopy equivalence. Hence inclusions
\[
(\phi(B^n) \setminus \{0\}) \cap \{f \geq 0\} \subset (\phi(B^n) \setminus \{0\}) \cap \{f \geq 0\},
\]
\[
(B^n \setminus \{0\}) \cap \{f \geq 0\} \subset (B^n \setminus \{0\}) \cap \{f \geq 0\}
\]
are homotopy equivalencies, and then in particular sets \((B^n \setminus \{0\}) \cap \{g \geq 0\}, (\phi(B^n) \setminus \{0\}) \cap \{f \geq 0\}\) and \((B^n \setminus \{0\}) \cap \{f \geq 0\}\) have the same number of connected components.

Hence sets \(S^n_{r-1} \cap \{g \geq 0\}\) and \(S'_r\) have the same number of connected components too. By Theorem 3.7 we get

Corollary 4.1. Suppose that \(\text{rank } H_0(S'_r) < \text{rank } H_0(\Omega')\) and \(g\) is right-equivalent to \(f\). Then \(S(g)\) has a non-empty interior.

Example 4.2. Let \(g(x, y, z, w) = x^5 + z^5 + 2zw - x^2 - y^2 - z^2 - w^2 - 2xyz - y^2z^2\). Applying standard methods of the singularities theory (see [2]) one can show that \(g\) is right-equivalent to \(f(x, y, z, w) = x^5 - y^2 - z^2 - w^2\). Then \(\omega = -y^2 - z^2 - w^2\), and so \(\Omega'\) consists of two points. It is easy to see that \(S'_r\) is homeomorphic to a closed ball. By Corollary 4.1 the set \(S(g)\) has a non-empty interior.

References

[1] C. Böhm, R. Lafuente, M. Simon, Optimal curvature estimates for homogeneous Ricci flows, Int. Math. Res. Not. IMRN 14 (2019) 4431-4468.

[2] Th. Bröcker, L. Lander, Differentiable germs and catastrophes, Cambridge University Press, 1975.

[3] A. Dzedzej, Z. Szafraniec, On families of trajectories of an analytic gradient vector field, Ann. Polon. Math. 87 (2005) 99-109.

[4] P. Goldstein, Gradient flow of a harmonic function in \(\mathbb{R}^3\), J. Differential Equations 247 (9) (2009) 2517-2557.

[5] K. Kurdyka, T. Mostowski, A. Parusiński, Proof of the gradient conjecture of R. Thom, Ann. of Math. 152 (2000) 763-792.
[6] K. Kurdyka, A. Parusiński, Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture, Advanced Studies in Pure Mathematics 43 (2006), Singularity Theory and Its Applications, pp. 137-177.

[7] C. Lageman, Convergence of gradient-like dynamical systems and optimization algorithms, Ph.D. Thesis, University of Würzburg, 2007.

[8] S. Łojasiewicz, Sur les trajectoires du gradient d’une fonction analytique, Seminari di Geometria 1982-1983, Università di Bologna, Istituto di Geometria, Dipartamento di Matematica (1984) 115-117.

[9] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton Univ. Press, Princeton, NJ, 1968.

[10] R. Moussu, Sur la dynamique des gradients. Existence de varietes invariantes, Math. Ann. 307 (1997) 445-460.

[11] A. Nowel, Z. Szafraniec, On trajectories of analytic gradient vector fields, J. Differential Equations 184 (2002) 215-223.

[12] A. Nowel, Z. Szafraniec, On trajectories of analytic gradient vector fields on analytic manifolds, Topol. Methods Nonlinear Anal. 25 (2005) 167-182.

[13] Z. Szafraniec, On the family of trajectories of an analytic gradient flow converging to a critical point, http://arxiv.org/abs/1912.09149

Zbigniew SZAFRANIEC
Institute of Mathematics, University of Gdańsk
80-952 Gdańsk, Wita Stwosza 57, Poland
Zbigniew.Szafraniec@mat.ug.edu.pl