Escape of VHE gamma-rays from close massive binary Cen X-3

W. Bednarek

Department of Experimental Physics, University of Łódź,
ul. Pomorska 149/153, PL 90-236 Łódź, Poland

Abstract

We consider propagation of very high energy (VHE) gamma-rays in the radiation field of a massive star in the binary system Cen X-3, which has been reported as a source of gamma-ray photons in the GeV and TeV energies. VHE gamma-rays or electrons, injected by the compact object, should develop inverse Compton e^\pm pair cascades. Based on the Monte Carlo simulations we predict the γ-ray spectra and the γ-ray light curves for the parameters of Cen X-3 system, and applying different models of injection of primary particles (monodirectional, isotropic, monoenergetic, power law). It is found that the gamma-ray spectra observed at different directions have different shape and intensity. Interestingly, some gamma-rays may even escape from the binary system at directions which are obscured by the massive star, i.e. from the opposite side of the massive star than the location of the compact source of primary gamma-rays or electrons. We predict that the gamma-ray light curves, produced in the case of electron injection by the compact object in the Cen X-3 system, should have opposite tendencies for photons with energies above 100 MeV and above 300 GeV, i.e. the photon intensities increases with phase in the first case and decreases with phase in the second case. However model with injection of primary electrons seems to be in contrary with the reported modulation of the GeV γ-ray flux with the pulsar’s period. The model with injection of primary photons allows such modulation with the pulsar’s period, but predicts strong modulation of the TeV flux with the orbital period of the binary. Modulation of TeV emission with the orbital period has been reported by the early Cherenkov observations, but was not confirmed by the recent, more sensitive observations by the Durham Mark 6 telescope.

1 Introduction

The massive binary systems are often considered as sites of high energy processes in which γ-ray production is expected. γ-rays in these systems may be produced in interactions of relativistic particles injected by: a neutron star or a black hole (e.g. Bignami, Maraschi & Treves 1977, Kirk, Ball & Skjæraasen 1999); a shock wave created in collision of the pulsar and stellar winds (e.g. Harding & Gaisser 1990) or two stellar winds (e.g. Eichler & Usov 1993). Observations of these systems in GeV and TeV energies suggest that in fact it may be the case. For example in last years the Compton GRO detectors reported point sources with flat spectra coincident with some massive binaries e.g. Cyg X-3, LSI 303+61, or Cen X-3. Some positive detections of massive binaries by Cherenkov telescopes has been also claimed, although they were frequently accompanied by many negative reports (see for a review Weekes 1992, Moskalenko 1995). In the recent review on TeV observations only Cen X-3 has been mentioned as possible massive binary active at these energies (Weekes 1999).

These theoretical predictions and positive observations has stimulated analysis of propagation of VHE γ-rays in the anisotropic radiation fields of accretion disks around compact objects in massive binaries (Carraminana 1992, Bednarek 1993), and in the radiation fields of massive stars (e.g. Protheroe & Stanev 1987, Moskalenko, Karakula & Tkaczyk 1993,
Moskalenko & Karaku/s suppress la 1994). Recently we have performed Monte Carlo simulations of cascades initiated by monoenergetic \(\gamma\)-ray beams injected by a discrete source (probably a compact object) in the radiation field of a massive companion. Two massive binaries, Cyg X-3 (Lamb et al. 1977, Merck et al. 1995) and LSI 303\(^{\circ}\)+61 (van Dijk et al. 1993, Hermsen et al. 1977, Thompson et al. 1995), have been discussed in the context of this problem (Bednarek 1997).

Another massive X-ray binary, Cen X-3, containing a neutron star with the period 4.8 s on a 2.09 day orbit around an O-type supergiant, has been detected above 100 MeV by the EGRET detector on the Compton Observatory (Vestrand, Sreekumar & Mori 1997). There are evidences that \(\gamma\)-ray emission at these energies has a form of outbursts and is modulated with a 4.8 s period of the pulsar. Based on the observations in late 80’s, two Cherenkov groups (Raubenheimer et al. 1989, Brazier et al. 1990, North et al. 1990) reported detection of positive signal at TeV energies from Cen X-3 at an orbital phase of \(\sim 0.75\), which is modulated with a period of the pulsar. This emission has been localized by North et al. (1991) and Raubenheimer & Smith (1997) to a relatively small region between the pulsar orbit and the surface of a massive companion which may be the accretion wake or the limb of the star. More recently the Durham group has detected a persistent flux of \(\gamma\)-rays above 400 GeV on a lower level than previous reports (Chadwick et al. 1998,1999). No evidence of correlation with the pulsar or orbital periods has been found and no evidence of correlation with the X-ray flux has been detected (Chadwick et al. 1999a,b).

The purpose of this paper is to compute the \(\gamma\)-ray light curves and \(\gamma\)-ray spectra escaping from Cen X-3 system, assuming different geometries and energy distributions for primary electrons or photons injected into the radiation field of the massive star by a compact object. The \(\gamma\)-ray spectrum escaping from the system is a consequence of anisotropic cascades which initiate primary electrons or \(\gamma\)-ray photons in the thermal radiation of a massive star in Cen X-3. The results of computations are discussed in the context of observations of Cen X-3 in GeV and TeV energy ranges.

We assumed the following parameters for the massive binary Cen X-3: the radius of the O star \(r_s = 8.6 \times 10^{11}\) cm, its surface temperature \(T_s = 3 \times 10^4\) K (Krzemiński 1974), the binary star separation \(a = 1.4r_s = 1.2 \times 10^{12}\) cm, the inclination angle 70\(^{\circ}\) and the circular orbit since the known eccentricity of the binary is < 0.0008 (Fabbiano & Schreier 1977).

2 Propagation of VHE \(\gamma\)-rays in the radiation field of a massive star

In the previous paper (Bednarek 1997), we considered the propagation of monoenergetic \(\gamma\)-ray beams in the radiation field of a massive star in the case of two massive binaries: Cyg X-3 and LSI 303\(^{\circ}\)+61. We determined general conditions for which VHE \(\gamma\)-rays may initiate such kind of inverse Compton cascade (ICS) (see Sect. 2 in Bednarek 1997). The massive star in Cen X-3 system has also high enough luminosity that VHE photons injected inside a few stellar radii should initiate the cascade. This expectation has been checked by computing the optical depth for \(\gamma\)-ray photons as a function of distance from the surface of the massive star, the photon energies, and the angle of injection \(\alpha\) measured with respect to the direction determined by the place of photon injection and the center of the massive star. The optical depth has been computed as shown in Appendix A of Bednarek (1997). We have found that for the parameters of the massive star in Cen X-3 system, the optical depth for photons injected at angles \(\alpha > 30^{\circ}\) and at the distance \(x = 1.4r_s\), can be greater than one. If photons are injected closer to the massive star, then the optical depth can be greater than one for all
The optical depth for γ-ray photons with energies 10^6 MeV in the soft radiation field of the massive star in Cen X-3 system is shown as a function of the angle of injection of photons α, for different distances of the photon injection from the massive star equal to $x = 1.1, 1.4, 2, 5, 10$ radii of the star r_s (a). The dependence of the optical depth on the photon energy, for fixed values of the angle α and the distance $x = 1.4r_s$, is shown in (b).

The optical depth reaches maximum (characteristic cusps visible in Fig. 1a), for photons propagating in directions tangent to the massive star surface, i.e. at an angle $\alpha_\delta = \pi - \delta$, where δ is the angle intercepted by the massive star. For higher angles α, the optical depth is computed up to the moment of photon collision with the stellar surface and therefore it is lower than for α_δ. As expected the optical depth for γ-ray photon reaches maximum at photon energies determined by characteristic energies of soft star photons (see Fig. 1b). Photons with energies below a few tens of GeV escape without significant absorption. Therefore it is expected that cascade γ-ray spectra should show a break close to these energies.

3 Gamma-ray spectra from ICS cascade

Let us assume that the γ-ray photon is injected by the compact object which is on an orbit around the star with the parameters characteristic for Cen X-3 system. As we showed above these photons may create e^\pm pair in collision with the soft star photon. The secondary pairs can next produce ICS γ-rays, initiating in this way the ICS cascade in the massive star radiation which is seen anisotropic in respect to the location of the injection place of the primary photons or electrons. In the subsections we describe the cascade scenario and discuss the results of calculations for different initial injection conditions, i.e. type, distribution, and spectra of primary particles.
Figure 2: The secondary spectra of escaping γ-rays from the binary system with Cen X-3 parameters, in the case of injection of monodirectional and monoenergetic primary photons with energy 10^7 MeV. The spectra are shown for different angles of injection of primary γ-rays: $\cos \alpha = 1$ (a), 0.5 (b), 0. (c), −0.5 (d), and −1 (e), within the range of observation angles: $\cos \theta = 0.8 \div 1.$ (dotted histograms), 0.4 $\div 0.6$ (dashed), 0.2 $\div 0$ (dot-dashed), −0.6 $\div −0.4$ (dot-dot-dashed), and −1 $\div −0.9$ (long-dashed). The thick solid histogram shows the secondary γ-ray spectrum integrated over all sphere. In figure (f) we compare the spectra escaping at fixed range of angles $\cos \theta = 0 \div 0.2$ in the case of different angles of injection of primary photons $\cos \alpha = 1.$ (dotted histogram), 0.5 (dashed), 0. (dot-dashed), −0.5 (dot-dot-dot-dashed), and −1. (long dashed).

3.1 ICS cascade with isotropisation of secondary electrons

The γ-ray photon with energy E_γ interacts with the star photon creating e^\pm pair at the propagation distance l_γ. The place of the creation can be simulated randomly from

$$P_1 = \exp\left(−\int_0^{l_\gamma} \lambda_{\gamma\gamma}^{-1}(E_\gamma, x_\gamma, \alpha_\gamma) \, dt\right)$$ \hspace{1cm} (1)

where l is the distance measured along the photon propagation, $\lambda_{\gamma\gamma}(E_\gamma, x_\gamma, \alpha_\gamma)$ is the mean free path for γ-ray photon with energy E_γ, injected at the angle α_γ and at the distance x_γ from the center of the massive star in Cen X-3 system, and P_1 is the random number. If condition (1) can not be fulfilled for chosen random number P_1, we accept that the γ-ray: escapes from the star radiation field, or collides with the star surface.

Simple trigonometry allows us to determine the distance of produced e^\pm pair, x_{e^\pm}, from the center of the massive star. The energy of created electron (positron) E_e is chosen by sampling from the differential spectrum of pairs which can be produced by the γ-ray photon.
at the propagation distance l_γ. It is obtained from

$$P_2 = \left(\int_{0.5}^{E_e} \frac{dW}{dEdx} dE \right) \left(\int_{0.5}^{E_{e,\text{max}}} \frac{dW}{dEdx} dE \right)^{-1}$$

(2)

where $dW/dEdx$ is defined in Bednarek (1997, Appendix B), $E_{e,\text{max}}$ is the maximal possible energy of the electron produced in γ-ray – soft photon collision, and P_2 is the random number. The energy of positron is then $E_p = E_\gamma - E_e$.

We assume that secondary e^\pm pairs are locally isotropised by the random component of the magnetic field. This will happen if the random component of the magnetic field B_r inside the binary system is strong enough (Bednarek 1997), i.e.

$$B_r \geq 4 \times 10^{-29} \gamma_e^2 T^4 D,$$

(3)

where γ_e is the Lorentz factor of electron (or positron), T is the surface temperature of the massive star, and D is the dilution factor of the star radiation defined as the part of the sphere intersepted by the star. $D \approx 0.1$ for the separation of the companions $x = 1.4 r_s$.

The e^\pm pairs cool locally and produce next generation of γ-rays in the inverse Compton scattering of soft photons coming from the massive star. In order to select the direction of the secondary γ-ray we compute at first the energy loss rate on ICS for pairs with energy E_{e^\pm} assuming that the electron (positron) is located at the distance x_{e^\pm} and propagates at an angle α_{e^\pm} to the direction defined by x_{e^\pm} (see Appendix C in Bednarek 1997). The direction of motion of a secondary γ-ray, which in fact covers with the direction of motion of relativistic electron at the moment of γ-ray production, is obtained by sampling from the distribution of the energy loss rates computed as a function of the angle α_{e^\pm} after its normalization to the total energy loss rate for electrons moving isotropically at x_{e^\pm}. The cosine of the angle of γ-ray emission ($\cos \alpha_\gamma$) is obtained from

$$P_3 = \left(\int_{\cos \alpha_\gamma}^{1} \frac{dL}{dtd\nu} d\nu \right) \left(\int_{-1}^{1} \frac{dL}{dtd\nu} d\nu \right)^{-1},$$

(4)

where P_3 is the random number, and

$$\frac{dL}{dtd\nu} = \int_{0}^{E_{\gamma,\text{max}}} \frac{dN}{dtdE_\gamma} dN_{e^\pm} d\nu E_{\gamma} dE_\gamma,$$

(5)

$dN/dtd\nu$ is the photon spectrum produced by electrons in ICS process (see Appendix C in Bednarek 1997), $dN_{e^\pm}/d\nu$ describes the number of electrons moving inside the unit cosine angle $d\nu = d(\cos \alpha)$, and $E_{\gamma,\text{max}}$ is the maximum energy of the γ-ray photon produced in the ICS process by an electron with energy E_{e^\pm}, located at the distance x_{e^\pm}, and propagating at the angle $\alpha_{e^\pm} = \alpha_\gamma$. In this way the directions of motion of secondary ICS γ-rays are determined. Now we need to determine their energies. The mean energy of secondary γ-ray photon, E'_γ, produced by secondary electron with energy E_{e^\pm} at the distance x_{e^\pm} from the star and at an angle α_γ, is obtained from the formula

$$< E_\gamma > = \left(\frac{dL}{dtd\nu} \right) \left(\frac{dN}{dtd\nu} \right)^{-1},$$

(6)

where

$$\frac{dN}{dtd\nu} = \int_{0}^{E_{\gamma,\text{max}}} \frac{dN}{dtdE_\gamma} dN_{e^\pm} d\nu dE_\gamma$$

(7)

and $< E_\gamma >$ is the mean energy of secondary γ-ray photon generated by the pair.
Figure 3: The gamma-ray spectra escaping from the Cen X-3 binary system after cascading in
the soft radiation field of the massive star in the case of isotropic injection of monoenergetic
γ-ray photons with energy $E_{\gamma} = 10^7$ MeV. The secondary photon spectra are observed
at a range angles: $\cos \theta = 0.8 \div 1.$ (dotted), $0.4 \div 0.6$ (dashed), $0 \div −0.2$ (dot-dashed),
$−0.6 \div −0.4$ (dot-dot-dot-dashed), $−1 \div −0.8$ (long-dashed). The full thick histogram shows
the secondary spectrum summed over all sphere.

is the rate of photon production by an electron in the ICS process. Above described procedure
is repeated for all cascade e^\pm pairs up to the moment of their 'complete cooling', i.e. to the
moment at which they are not able to produce γ-ray photons in ICS process with energies
above certain applied value which in our simulations is chosen as equal to 100 MeV. We
follow all secondary ICS γ-rays with energies above the threshold for e^\pm pair production in
radiation of a massive star.

3.2 Injection of monodirectional and monoenergetic photons or
electrons

It is likely that high energy photons and/or electrons are injected by the neutron star (a
compact object in Cen X-3 system) in the form of highly collimated beams. Such beams may
be formed: in the outer gaps of pulsar magnetospheres (e.g. Cheng, Ho & Ruderman 1986);
in collisions of collimated protons escaping from the pulsar magnetospheres with the matter
of an accretion disk (Cheng & Ruderman 1989); or they may emerge from regions of the
magnetic poles of the neutron star (Kiraly & Meszaros 1988). In our simulations it is assumed
that highly collimated beam of γ-rays with energy 10 TeV emerge from the distance $x = 1.4r_s$
at a certain angle α, measured with respect to the direction determined by the center of the
massive star and the compact object. In fact such situation corresponds also to the case of
the highly collimated electron beams with comparable energy since at these energies electrons
transfer almost all its primary energy to a single γ-ray photon in ICS process because the
scattering occurs in the Klein-Nishina domain.

We are interested in the spectra of secondary photons which escape from the above
described type of cascade at a range of angles $\Delta \cos \theta = 0.2$. In Fig. 2, we show such secondary
spectra for different injection angles of primary monoenergetic photons with energy $E_{\gamma} = 10^7$
MeV: $\cos \alpha = 1$ (a), 0.5 (b), 0. (c), $−0.5$ (d), and $−1$ (e), observed at the range of angles:
$\cos \theta = 0.8 \div 1.$ (dotted histograms), $0.4 \div 0.6$ (dashed), $0.2 \div 0$ (dot-dashed), $−0.6 \div −0.4$
(dot-dot-dot-dashed), and $−1 \div −0.9$ (long-dashed). The cascading effects are the strongest
(the highest numbers of secondary γ-rays) if the monoenergetic γ-ray beam is injected at
the intermediate angles α (see thick solid histograms in Fig. 2, which show the secondary photon spectra integrated over all solid angle). This is a consequence of the highest optical depth for photons propagating at directions tangent to the massive star limb (curve for $x = 1.4r_s$ in Fig. 1a). All secondary spectra are well described by a power law with the index ~ 1.5 at energies below ~ 10 GeV (as expected in ICS cascades with complete cooling of electrons). The photon intensities in these spectra are the highest at direction tangent to the limb of the massive star (dot-dot-dot-dot-dashed histograms in Fig. 2). At higher photon energies (> 10 GeV), the spectra show characteristic cut-offs due to the absorption of secondary photons in the massive star radiation. The spectra recover at TeV energies with the intensities depending on the observation angle. The highest intensities are observed at small angles α for which the optical depth for TeV γ-rays is the lowest (see Fig. 1). In Figure 2f, we compare the spectra escaping at fixed range of angles $\cos \theta = 0 - 0.2$ but for different angles of injection of primary photons $\cos \alpha = 1$. (dotted histogram), 0.5 (dashed), 0. (dot-dashed), -0.5 (dot-dot-dot-dashed), and -1. (long dashed). It is clear that primary photons injected at directions of the highest optical depth ($\cos \alpha = -0.5 \div 0.$) produce the secondary photons with the highest intensities than the ones injected at directions of the lowest optical depth ($\cos \alpha = 1.$).

Note that in the type of cascade discussed here, the intensity of secondary photons observed at the direction of injection of primary photons is not completely dominated by these primary photons because of the large optical depths for the considered injection place ($x = 1.4r_s$), and the isotropisation of secondary cascade e^\pm pairs. Our assumptions on the propagation of photons in massive binaries are different than these ones applied in e.g. Kirk, Ball & Skjaeraasen (1999).

3.3 Isotropic injection of monoenergetic photons or electrons

The monoenergetic photons and electrons can be isotropically injected into the binary system by the young pulsars with strong pulsar winds. In fact, it is believed the pulsar winds are composed with relativistic electrons (positrons) which have typical Lorentz factors of the order $\sim 10^7$ (Rees & Gunn 1974). These electrons, if accelerated by the electric fields generated during magnetic reconnection in the pulsar wind zone, can be injected approximately isotropically. Therefore we consider the case of isotropic injection of photons or electrons with energies 10 TeV. If only 10 TeV electrons are injected, they should produce photons with comparable energies in a single scattering as mentioned above. The secondary photon spectra, produced in cascade under such initial conditions, are shown in Fig. 3 for different range of observation angles defined by: $\cos \theta = 0.8 \div 1.$ (dotted), $0.4 \div 0.6$ (dashed), $0 \div 0.2$ (dot-dashed), $-0.6 \div -0.4$ (dot-dot-dot-dashed), $-1 \div -0.8$ (long-dashed). The photon intensities observed at directions defined by very small angles θ and directions tangent to the massive star limb behaves differently in different energy ranges. The intensities of GeV photons are the highest for directions tangent to the stellar limb and the lowest for small angles. This is in contrary what is observed at TeV energies. Note, that significant amount of secondary photons emerges also at the range of angles $\cos \theta = -1 \div -0.8$. This is on the opposite side of the massive star than the location of the compact source of primary photons and/or electrons (directions obscured by the star!). Therefore, the soft radiation of a luminous star may work as a kind of lens for high energy γ-ray photons causing the effects of **focusing of very high energy photons.**
Figure 4: The γ-ray spectra observed from the Cen X-3 system in the case of isotropic injection of primary electrons with the power law spectrum and spectral index -2. The spectra integrated over all solid angle are shown in (a) for different distances of the point source of primary electrons from the massive star: $x = 1.4r_s$ (full histogram), 2 (dashed), 3 (dot-dashed), and 5r_s (dotted). The secondary γ-ray spectra escaping at different range of angles of observation: $\cos \theta = 0.8 \div 1$ (full histogram), $0.4 \div 0.6$ (dotted), $0 \div 0.2$ (dashed), $-0.4 \div -0.2$ (dot-dashed), $-0.8 \div -0.6$ (dot-dot-dot-dashed), $-1 \div -0.8$ (long-dashed) are shown in (b).
3.4 Isotropic injection of electrons with the power law spectrum

We consider also the case of isotropic injection of electrons with the power law spectrum. Such electrons can be accelerated at the shock front created in collision of the pulsar wind with the surrounding matter as proposed in the model by Kennel & Coroniti (1984). It is assumed that electrons have the power law spectrum with index \(-2\) (as expected from the theory of acceleration in strong shocks). They are injected from the discrete source orbiting the massive star in Cen X-3. In the binary system the shock may form relatively close to the compact object because the pulsar in Cen X-3 is relatively slow, and the density of surrounding plasma inside the binary system is high.

The results of calculations of the secondary photon spectra escaping from ICS cascade, after integration over all solid angle, are shown in Fig. 4a for different distances of the discrete source of primary electrons from the massive star. The results show that the integrated spectra in the energy region below \(\sim 10\) GeV do not depend significantly on the location of the injection distance (in the range from the surface up to \(5r_s\)). This effect may result from our assumption on the local capturing of secondary \(e^\pm\) pairs by the random magnetic field. If the dominant magnetic field has ordered structure inside the binary then the propagation effects of pairs may be important. Such more complicated cascade scenario is out of the scope of this paper and will be discussed in the future work. The photon intensity decreases drastically at TeV energies for injection distance closer to the massive star surface.

We investigate also the dependence of the shape of the escaping spectrum of secondary \(\gamma\)-rays on the observation angle \(\theta\), for distance of injection \(x = 1.4r_s\) (see Fig. 4b). The features of these angular dependent spectra are similar to these ones described above for monoenergetic injection of electrons. The highest intensities at TeV energies are observed at small angles \(\theta\) and the lowest intensities at directions behind the massive star. The highest intensities at GeV energies are for directions tangent to the massive star limb and the lowest for small angles and at directions obscured by the massive star.

3.5 Isotropic injection of photons with the power law spectrum

Finally we discuss the case of isotropic injection of photons with the power law spectrum and spectral index \(-2\). We show in Fig. 5 the spectra of escaping \(\gamma\)-rays for: different distances of the injection place from the massive star (Fig. 5a); separately, the escaping spectra of primary \(\gamma\)-rays and secondary \(\gamma\)-rays for the injection place at \(x = 1.4r_s\) (Fig. 5b); and the angular dependence of secondary \(\gamma\)-ray spectra on the observation angle \(\theta\) (Fig. 5c). General features of these spectra are very similar to the escaping spectra produced by electrons with the power law spectrum. The significant differences appear at low energies (below a few GeV) and at high energies (above \(\sim 1\) TeV), and results from the contribution to the escaping spectrum from the primary \(\gamma\)-rays which do not cascade in the radiation of the massive star in Cen X-3. The escaping primary \(\gamma\)-rays flattens the spectrum at energies below a few \(10^4\) Gev (spectral index close to 1.9), and dominates the angle integrated spectrum at TeV energies.

4 Consequences for gamma-ray escape from Cen X-3

In the previous section we investigated general features of the \(\gamma\)-ray spectra escaping from the radiation field of a massive star. In order to have results of calculations which can be directly compared with the observations we compute the \(\gamma\)-ray light curves expected from Cen X-3 system assuming that the compact object in this binary system injects \(\gamma\)-ray photons
Figure 5: The spectra of γ-ray photons escaping from Cen X-3 system in the case of isotropic injection of primary photons with the power law spectrum and spectral index \(-2\), are shown in figure (a) for different distances between the center of the massive star and the injection place: \(x = 1.4r_s\) (full histogram), 2 (dashed), 3 (dot-dashed), and 5\(r_s\) (dotted). The spectrum of photons injected by the compact object is marked by the thin dotted line. In figure (b) we show the photon spectra for the injection distance \(x = 1.4r_s\) which: escaped without interaction (dashed curve); are produced in the cascade (dot-dashed curve); and all photons escaping from the system (full curve). In figure (c) the gamma-ray spectra of secondary photons, in the case of injection at \(x = 1.4r_s\), are shown for different range of angles: \(\cos \theta = 0.8 \div 1\) (full histogram), 0.4 \(\div 0.6\) (dotted), 0 \(\div 0.2\) (dashed), \(-0.2 \div -0.4\) (dot-dashed), \(-0.8 \div -0.6\) (dot-dot-dot-dashed), \(-1 \div -0.8\) (long-dashed).

or electrons with the power law spectrum. The parameters of the Cen X-3 system, used in computations, are mentioned in the Introduction. Note that the orbit of the compact object is almost circular, so then the expected light curve should be symmetrical. Therefore we compute only the photon fluxes for the phases from 0 to 0.5, where the phase is measured from the side of the observer.

The γ-ray light curves of photons escaping from the system in the case of isotropic injection of electrons (or positrons) with the power law spectrum and spectral index \(-2\) are shown in Figs. 6a,b for photons with energies: above 100 MeV, i.e. the EGRET energy range (a), and above 300 GeV, i.e. Cherenkov technique energy range (b). The results are shown for the cut-offs in the spectrum of electrons at \(10^7\) MeV (full histogram) and at \(10^8\) MeV (dashed histogram). Note however, that the case with cut-off at \(10^8\) MeV we show only for comparison since it may not be completely right. Our assumption on the isotropization of secondary \(e^\pm\) pairs with the Lorentz factors \(\sim 10^7\) may not be justified in this case(see Eq. 3). The light curves show that the γ-ray flux should change drastically during \(\sim 2.09\) day the orbital period of the system by at least an order of magnitude. However the γ-ray light curves observed at different energy ranges behaves completely different. When the photon flux above 100 MeV increases from the phase equal 0. up to the eclipse of the compact object by the massive star, which occurs for the phase \(\sim 0.38\), the photon flux above 300 GeV decreases. This is the result of propagation of photons in the anisotropic radiation of a massive star as discussed in details in section 3. In Fig. 7, we show the spectra of γ-rays which should be seen by the observer for different phases of the compact object: 0. (full histogram), 0.15 (dotted), 0.35 (dashed), and 0.5 (dot-dashed). The photon spectra above 100 MeV have similar shapes but different intensities. The spectra above 300 GeV differs significantly not only in the intensities but also by the shape.

We have also computed the γ-ray light curves in the case of isotropic injection of primary
Figure 6: The light curves observed in γ-rays at the inclination angle of the orbital plane of Cen X-3 system equal to 70° at energies above 100 MeV (a), and 300 GeV (b) in the case of isotropic injection of electrons with the power law spectrum with exponent -2. Specific histograms show the number of primary photons which escaped without interaction (dotted), secondary photons (dashed) and all photons (full).

Figure 7: Gamma-ray spectra observed from the Cen X-3 system at the inclination angle $i = 70°$ for four different phases of the binary system 0. (full histogram), 0.15 (dotted), 0.35 (dashed), and 0.5 (dot-dashed) within the bin width equal to 0.1. The primary electrons, with the power law spectrum, exponent -2, and the cut-off at 10^7 MeV (a) and 10^8 MeV (b), are injected isotropically by the compact object.
Figure 8: The γ-ray photon light curves observed at the inclination angle 70\degree to the orbital plane in Cen X-3 system at two energy ranges: above 100 MeV (a), and above 300 GeV (b). The primary γ-rays, with the power law spectrum with exponent -2 are injected by the compact object isotropically. Specific histograms show: the number of primary photons which escaped without interaction (dotted); the secondary photons (dashed); and all photons (full).

photons with the power law spectrum and index -2 (see Figs. 8a,b). Specific histograms in these figures show the light curves for all escaping γ-ray photons (full histograms), primary photons which escape without cascading (dotted), and secondary photons produced in cascades (dashed). As expected the light curves for secondary photons in the case of injection of primary photons and electrons are very similar. However the contribution of escaping primary photons to the γ-ray light curves with energies above 100 MeV dominates the secondary photons. Altogether, the γ-ray light curves at energies above 100 MeV are very flat with the strong decrease for phases between $\sim 0.38 \div 0.62$ resulting from the eclipse condition. During the eclipse, the observer may only detect secondary photons produced in cascades (dashed histogram in Fig. 8b), but on the level of about an order of magnitude lower. The γ-ray light curves above 300 GeV do not differ significantly for the case of injection of primary photons or electrons (compare Fig 6b and 8b). The contribution of primary non-cascading photons dominates only for small values of the phase (dotted histogram in Fig. 8b). From these computations it becomes clear that investigation of the γ-ray light curves at photon energies above 100 MeV (but not above 300 GeV) should allow to distinguish what kind of primary particles is dominantly produced by the compact object, photons or electrons (positrons), provided that these particles are injected isotropically with the power law spectrum.

We also show in Fig. 9a,b the spectra of escaping photons for different phases of the compact object, separately for secondary cascade photons and for primary photons which escape without interaction. The photon spectral index below ~ 10 GeV for all escaping photons (primary plus secondary) vary with phase only in relatively small range, from -1.8 to -2. The observed photon fluxies are almost constant. At TeV energies the spectra change
drastically with the phase of the compact object, similarly to the above discussed case of injection of primary electrons. Note, that for phase 0.5 (corresponding to the total eclipse of the compact object by the massive star) only secondary photons at energies below ~ 10 GeV can be observed (Fig. 9a and b).

As we have discussed in the Introduction, Cen X-3 has been detected in GeV and TeV energy range. The emission in GeV energy range can be fitted by the power law with the spectral index -1.81 ± 0.37 (Vestrand et al. 1997). This index is consistent with our results for both discussed models of isotropic injection of primary photons or electrons with the power law spectrum and spectral index -2. However, the EGRET observations indicate modulation of GeV emission with the pulsar’s spin period, which should not be observed in the case of injection of primary electrons since the escaping photons at these energies were produced in the cascade process and the information on the pulsar period should disappear. Therefore the model with injection of primary electrons by the compact object seems not work. The modulation with the pulsar period might be observed in the case of injection of primary photons from the compact object, provided that the secondary photons do not completely dominate the primary escaping photons. In fact, this is evident from our simulations (see Figs. 9a,b). However, as it is seen in Fig. 8a, the photon flux, although constant though most of the phase range, should drop drastically during the eclipse of the
compact object by the massive star. This feature has not been observed but also can not be
rejected by the EGRET observations (Vestrand et al. 1997).

Cen X-3 has been also reported as a source of TeV photons modulated with the orbital
period of the binary system by earlier, less sensitive Cherenkov observations (Brazier et
al. 1990, North et al. 1990). Recent observations report that Cen X-3 is a source of steady
emission above ~ 400 GeV (Chadwick et al. 1998). However modulation with the pulsar and
orbital periods has not been found (Chadwick et al. 1999b). Our calculations show that in
both models, injection of primary photons and injection of primary electrons by the compact
object, the modulation of the signal with the orbital period should be very clear. In contrary,
the modulation with the pulsar period should not be observed because the secondary cascade
photons determines the light curve in the case of injection of primary electrons and dominate
or give similar contribution to the light curve in the case of injection of primary photons
(see dotted histogram in Fig. 8b).

5 Conclusion

We considered the cascade initiated by photons or electrons injected from the compact
object in the radiation field of a massive companion in Cen X-3 system, assuming that
secondary electrons are isotropised by the magnetic field in the binary. It is found that
the features of the escaping photons from such massive binaries (the light curves, photon
spectra as a function of the phase of the compact object) may allow to distinguish which
particles are injected by the compact object, i.e. photons or electrons. If the cascades
are initiated by electrons then the escaping secondary cascade photons should not show
features of modulation with the pulsar period. This seems to be in contradiction with the
observations of Cen X-3 at energies above 100 MeV. Therefore we reject such model. If
primary photons are injected isotropically with the power law spectrum and spectral index
-2, then the spectrum of escaping photons at energies below ~ 10 GeV is dominated, for
most of the phases, by the primary non-cascading photons. Then, the modulation with the
pulsar period can be observed. At TeV energies, the modulation of the photon flux with
the 2.09 day binary period should be strong. The observation of modulation of TeV signal
with the orbital period of the system have been reported by earlier observations of Cen X-3
system (mensioned above) but not confirmed recently (Chadwick et al. 1999b). We think
that this problem needs further investigation since the sensitivity of present observations is
still rather poor (see the TeV γ-ray light curve in Fig. 3 in Chadwick et al. 1999b).

If the lack of modulation of the TeV photon flux with the Cen X-3 binary period is real,
then a more complicated model has to be investigated. An extended source, e.g. a shock
inside the binary system, injecting primary photons or electrons which initiate cascades in
the soft radiation of a massive star should be developed. However such computations will
require much more computing time in order to get satisfactory statistics, and therefore are
left for the future work.

In the present calculations we neglected the X-ray radiation field produced by the compact
object. Its energy density $L_X \approx 10^{38}$ erg s$^{-1}$ (Giacconi et al. 1971) is comparable to the
energy density of thermal photons from the massive star, so their photon density is a few
orders of magnitude lower inside the volume of the binary system. We neglect also the
heating effects of the massive star by the X-rays coming form the compact object since the
power emitted by the stellar surface is higher than the X-ray power falling on the massive
star from the orbital distance of the compact object equal to 1.4 stellar radii. However
note that X-rays, produced in the accretion disk around a compact object, i.e. close to the
production site of primary photons, may absorb γ-rays if they are also produced close to the inner disk radius (see e.g. Bednarek 1993).

References

[1] Bednarek, W. 1993, A&A, 278, 307
[2] Bednarek, W. 1997, A&A, 322,523
[3] Bignami, G.F., Maraschi, L., Treves, A. 1977, A&A, 55, 155
[4] Brazier, K.T. et al. 1990, Proc. 21st ICRC (Adelaide), vol. 2, p 296
[5] Carraminana, A. 1992, A&A, 264, 127
[6] Chadwick, P.M., Dickinson, M.R., Dipper, N.A. et al. 1998, ApJ, 503, 391
[7] Chadwick, P.M., Lyons, K., McComb, T.J.L. et al. 1999a, ApJ, 513, 161
[8] Chadwick, P.M., Lyons, K., McComb, T.J.L., et al. 1999b, Proc. 26th ICRC (Salt Lake City), OG 2.4.9
[9] Cheng, K.S., Ho, C., Ruderman, M.A. 1986, ApJ, 300, 500
[10] Cheng, K.S., Ruderman, M.A. 1989, ApJ, 337, L77
[11] Eichler, D., Usov, V. 1993, ApJ, 402, 271
[12] Fabbiano, G., Schreier, E. 1977, ApJ, 214, 235
[13] Giacconi, R., Gursky, E., Kellog, E., Schreier, E., Tananbaum, H. 1971, ApJ, 167, L67
[14] Harding, A.K., Gaisser, T.K. 1990, ApJ, 358, 561
[15] Hermsen, W. et al. 1977, Nat 269, 494
[16] Kennel, C.F., Coroniti, F.V. 1984, ApJ, 283, 710
[17] Kiraly, P., Meszaros, P., ApJ, 1988, 333, 719
[18] Kirk, J.G., Ball, L., Skjæraasen, O. 1999, Astropart.Phys., 10, 31
[19] Krzemiński, W. 1974, ApJL, 192, L135
[20] Lamb, R.C. et al. 1977, ApJ, 212, L63
[21] Merck, M., Kanbach, G., Mayer-Hasselwander, H.A., Meintjes, P. 1995, Proc. 24th ICRC (Rome), v.2, p.190
[22] Moskalenko, I.V. 1995, Space Sci.Rev., 72, 593
[23] Moskalenko, I.V., Karakula, S. 1994, ApJS, 92, 567
[24] Moskalenko, I.V., Karakula, S., Tkaczyk, W. 1993, MNRAS, 260, 681
[25] North, A.R. et al. 1990, Proc. 21st ICRC (Adelaide), vol 2, p 275
[26] North, A.R. et al. 1991, Proc. 22nd ICRC (Dublin), vol. 1, p 340
[27] Protheroe, R.J., Stanev, T. 1987, ApJ, 322, 838
[28] Raubenheimer, B.C., North, A.R., De Jager O.C., Nel, H.I. 1989, ApJ, 336, 349
[29] Raubenheimer, B.C., Smith, H.J. 1997, Astropart.Phys. 7, 63
[30] Rees, M.J., Gunn, J.E. 1974, MNRAS, 167, 1
[31] Thompson, D.J., Bertsch, D.L., Dingus, B.L. et al. 1995, ApJS, 101, 259
[32] van Dijk, R., Bennett, K., Bloemen, H. et al. 1996, A&A, 315, 485
[33] Vestrand, W.T., Sreekumar, P., Mori, M. 1997, ApJ, 483, L49
[34] Weekes, T.C. 1992, Space Sci. Rev. 59, 314
[35] Weekes, T.C. 1999, in Proc. ”GeV-TeV Astrophysics Toward a Major Atmospheric Cherenkov Telescope VI”, Snowbird, Utah, in press, astro-ph/9910394