Abstract Present work contains an elementary method to obtain Jackson and Stechkin type inequalities of approximation by integral functions of finite degree (IFFD) in some non-translation invariant Banach spaces of functions defined on $R := (-\infty, +\infty)$. To do this we employ a transference theorem which produce norm inequalities starting from norm inequalities in $C(R)$, the class of bounded uniformly continuous functions defined on R. As a model example we consider the variable exponent Lebesgue spaces. Let $B \subseteq R$ be a measurable set, $p(x) : B \to [1, \infty)$ be a measurable function. For the class of functions f belonging to variable exponent Lebesgue spaces $L^{p(x)}(B)$ we consider difference operator $(I - T_\delta)^r f(\cdot)$ under the condition that $p(x)$ satisfies the Log Hölder continuity condition and $1 \leq \text{ess inf}_{x \in B} p(x), \text{ess sup}_{x \in B} p(x) < \infty$ where I is the identity operator, $r \in \mathbb{N} := \{1, 2, 3, \ldots\}, \delta \geq 0$ and

$$T_\delta f(x) = \frac{1}{\delta} \int_0^\delta f(x + t) dt, \quad x \in R, \quad T_0 \equiv I,$$

is the forward Steklov operator. It is proved that

$$\| (I - T_\delta)^r f \|_{p(\cdot)},$$

is a suitable measure of smoothness for functions in $L^{p(x)}(B)$ where $\| \cdot \|_{p(\cdot)}$ is some norm in $L^{p(x)}(B)$. We obtain main properties of $\| (I - T_\delta)^r f \|_{p(\cdot)}$ in $L^{p(x)}(B)$. We give proof of direct and inverse theorems of approximation by IFFD in $L^{p(x)}(R)$.

Key Words Variable exponent Lebesgue space, One sided Steklov operator, Integral functions of finite degree, Best approximation, Direct theorem, Inverse theorem, Modulus of smoothness, Marchaud inequality, K-functional.

2010 Mathematics Subject Classifications 41A10; 41A25; 41A27; 41A65.

1. Part 1: Introduction and A Transference Result

Some inequalities of Approximation Theory in a Homogenous Banach Spaces (HBS) can be obtained their uniform-norm counterparts. This information is known for a
long time. (see e.g., [22]). Here, this elegant method is generalized to some non-
translation invariant (with respect to ordinary translation $x \to f(x + a)$) Banach
spaces of functions defined on \mathbb{R}. (see Theorem 1.4 below). This is the first part
of this work. After then, we obtain several uniform-norm inequalities on $C(\mathbb{R})$. (see
results of Part 2). In the Part 3, we apply the results of Parts 2 and 3 to obtain
several inequalities of approximation by IFFD in some variable exponent Lebesgue
spaces $L_{p(x)}(\mathbb{R})$. Under some condition on $p(x)$ of $L_{p(x)}(\mathbb{R})$ we obtain main
inequalities of exponential approximation by IFFD such as Jackson-Stechkin-Timan
type estimates and equivalence of K-functional with suitable modulus of smoothness (**)
given in abstract for functions of $L_{p(x)}(\mathbb{R})$. Note that many results of approximation
by IFFD can be obtained easily their uniform-norm counterparts in $C(\mathbb{R})$. (See proofs of
Part 3.)

Now we consider Transference Result (TR).

Let $C(\mathbb{R})$ be the class of continuous functions defined on \mathbb{R}. For $r \in \mathbb{N}$, we define
$C^r(\mathbb{R})$ consisting of every member $f \in C(\mathbb{R})$ such that the derivative $f^{(k)}$ exists and
is continuous on \mathbb{R} for $k = 1, ..., r$. We set $C^\infty(\mathbb{R}) := \{f \in C^r(\mathbb{R})\}$
for any $r \in \mathbb{N}$. We denote by $C_c(\mathbb{R})$, the collection of real valued continuous
functions on \mathbb{R} and support of $f \equiv \text{spt } f$ is compact set in \mathbb{R}. We define
$C^r_c(\mathbb{R}) := C^r_c(\mathbb{R}) \cap C_c(\mathbb{R})$ for $r \in \mathbb{N}$ and $C^\infty_c := C^\infty_c(\mathbb{R}) \cap C_c(\mathbb{R})$.
Let $L_{p(\cdot)}(\mathbb{R})$, $1 \leq p \leq \infty$ be the classical Lebesgue
space of functions on \mathbb{R}.

For $i \in \mathbb{N}$, all constants $C_i (\ldots)$ will be some positive number such that they depend on
the parameters given in the brackets. Also constants $C_i (\ldots)$ will not change throughout
this paper.

Let X (and X') be a Banach space (and its dual).

Definition 1.1. We collect here conditions required for Banach space X, considered
here, as the following three assumptions:

X1 (a) $C^\infty_c \cap X$ is a dense subset of X. (b) $C^\infty_c \cap X'$ is a dense subset of X' with
$X' \neq L^\infty(\mathbb{R})$.

X2 For any compact set $A \subset \mathbb{R}$, there exists a $C_1(X,A) > 0$ such that
\[
\|f\|_{1,A} \leq C_1(X,A) \|f\|_X, \quad \text{and}
\]

X3 $\|f\|_X \leq \tilde{C}_1 \sup \{ \int_{\mathbb{R}} |f(x)g(x)| \, dx : G \in X' \cap C^\infty_c \text{ and } \|G\|_{X'} \leq 1 \}$.

First of all we provide some examples of Banach space X satisfying conditions in
Definition 1.1.

Example 1.2. (i) Let $X := L_p(\mathbb{R})$ ($1 < p < \infty$) be the classical Lebesgue spaces
on \mathbb{R}. Then X satisfy properties (X1)-(X2)-(X3). When $p = 1$, we do not require
(X1)(b) and results holds for $X := L_1(\mathbb{R})$ with minor modifications on constants.

(ii) Let $p \in P^{\log}(\mathbb{R})$ see Definition 3.4 Then variable exponent Lebesgue space $L_{p(\cdot)}$
(see Definition 3.1) satisfy properties (X1)-(X2)-(X3) see Theorem 3.1 below. When
$p(\cdot) \equiv 1$ the same information in (i) need here. It is well known that variable exponent
Lebesgue spaces are not translation invariant.
(iii) All Banach Function Spaces (see Benneth Sharpley [14, Chapter 1]) with property (X1) satisfy conditions in Definition 1.1.

(iv) Lebesgue spaces \(X := L_p ([−π, π], \omega) \) (1 < p < ∞) with Muckenhoupt weights \(\omega \) (see [41]) satisfy conditions in Definition 1.1 (see paper [9]).

We define \(\langle f, g \rangle := \int_R f(x)g(x)dx \) when integral exists.

For an \(f \in X \), we define

\[
F_{f,G}(u) := \int_R f(u+x)|G(x)|dx, \quad u \in R,
\]

where \(G \in X' \cap C_c^\infty \) and \(\|G\|_{X'} \leq 1 \).

Let \(W^r_X, r \in \mathbb{N} \), be the class of functions \(f \in X \) such that derivatives \(f^{(k)} \) exist for \(k = 1, ..., r-1 \), \(f^{(r-1)} \) absolutely continuous and \(f^{(r)} \in X \).

Some properties of the function \(F_f(\cdot) \) is given in the following theorem.

Theorem 1.3. Let \(X \) be a Banach space with the properties (X1)-(X2)-(X3). Then,

(a) if \(f \in X \), then, the function \(F_{f,G}(\cdot) \) defined in (1.1) is uniformly continuous on \(R \),

(b) if \(r \in \mathbb{N} \), and \(f \in W^r_X \), then, \((F_{f,G}(u))^{(k)} \) exists and

\[
(F_{f,G})^{(k)}(u) = F_{f^{(k)},G}(u)
\]

for \(k \in \{1, ..., r\} \).

Main theorem of this part is as follows.

Theorem 1.4. Let \(X \) be a Banach space with the properties (X1)-(X2)-(X3) and \(f, g \in X \). If

\[
\|F_{f,G}\|_{C(R)} \leq C_2 \|F_{g,G}\|_{C(R)},
\]

with an absolute constant \(C_2 > 0 \), then, norm inequality

\[
\|f\|_X < 2C_1 (X, sptG) \tilde{C}_1 C_2 \|G\|_\infty \|g\|_X
\]

holds.

1.1. Proof of the results of part 1.

Proof of Theorem 1.3 (a) Since \(C_c^\infty \) is a dense subset of \(X \), we consider functions \(f \in C_c^\infty \). For any \(\varepsilon > 0 \), there exists \(\delta := \delta (\varepsilon) > 0 \) so that

\[
|f(x+u_1) - f(x+u_2)| < \frac{\varepsilon}{1 + |sptG|}
\]

for any \(u_1, u_2 \in \mathbb{R} \) with \(|u_1 - u_2| < \delta \). Then, there holds inequality

\[
|F_{f,G}(u_1) - F_{f,G}(u_2)| \leq \int_R |f(x+u_1) - f(x+u_2)||G(x)|dx
\]
Proof of Theorem 1.4. Let \(\xi > 0 \), then one can find an \(\varepsilon > 0 \) such that for any \(u_1, u_2 \in \mathbb{R} \) with \(|u_1 - u_2| < \delta \). Thus conclusion of Theorem 1.3 follows. For the general case \(f \in X \) there exists an \(g \in C^\infty_c \) so that

\[
\|f - g\|_X < \frac{\xi}{4(1 + |sptG|)} \|G\|_\infty
\]

for any \(\xi > 0 \). Therefore

\[
|F_{f,G}(u_1) - F_{f,G}(u_2)| = |F_{f,G}(u_1) - F_{g,G}(u_1)| + |F_{g,G}(u_1) - F_{g,G}(u_2)| + |F_{g,G}(u_2) - F_{f,G}(u_2)| = |F_{f-g,G}(u_1)| + \frac{\xi}{2} + |F_{g-f,G}(u_2)|
\]

\[
\leq 2(1 + |sptG|)\|G\|_\infty \|f - g\|_X + \frac{\xi}{2} < \xi.
\]

As a result \(F_{f,G} \) is uniformly continuous on \(\mathbb{R} \).

(b) is seen from (a) and (1.1). \(\square \)

Proof of Theorem 1.4. Let \(0 \leq f, g \in X \). If \(\|g\|_X = 0 \), then, the result is obvious. So we assume that \(\|g\|_X > 0 \). In this case

\[
\|F_{f,G}\|_{C(X)} \leq C_2 \|F_{g,G}\|_{C(X)} = C_2 \left\| \int R g(u+x) |G(x)| \, dx \right\|_{C(r)}
\]

\[
= C_2 \max_{u \in R} \int R g(u+x) |G(x)| \, dx = C_2 \max_{u \in sptG} \int sptG g(u+x) |G(x)| \, dx
\]

\[
= C_2 \max_{u \in sptG} \|G\|_{\infty,sptG} \|g(u\cdot)\|_{1,sptG} = C_2 \|G\|_{\infty} \|g\|_{1,sptG}
\]

\[
\leq C_2 \|G\|_{\infty} C_1(X,sptG) \|g\|_X
\]

by (X2).

On the other hand, for any \(\varepsilon > 0 \) and appropriately chosen \(\tilde{G}_\varepsilon \in X' \cap C^\infty_c \) with

\[
\int R g(x) \left| \tilde{G}_\varepsilon(x) \right| \, dx \geq \frac{1}{C_1} \|g\|_X - \varepsilon, \quad \left\| \tilde{G}_\varepsilon \right\|_{X'} \leq 1,
\]

one can find

\[
\|F_{f,G}\|_{C(X)} \geq |F_{f,G}(0)| \geq \int R f(x) |G(x)| \, dx
\]

\[
= \frac{1}{C_1} \|f\|_X - \varepsilon.
\]

In the last inequality we take as \(\varepsilon \rightarrow 0^+ \) and obtain

\[
\|F_{f,G}\|_{C(X)} \geq \frac{1}{C_1} \|f\|_X.
\]
Combining these inequalities we get
\[
\| f \|_X \leq \tilde{C}_1 \| F_{f,G} \|_{C(R)} \leq \tilde{C}_1 C_2 \| G \|_\infty \| g \|_X .
\]

In the general case \(f, g \in X \) we get
\[
(1.2) \quad \| f \|_X \leq 2 \tilde{C}_1 (X, \text{spt} G) \tilde{C}_1 C_2 \| G \|_\infty \| g \|_X .
\]

Remark 1.5. (i) Note that, inequalities type (1.2) will be used frequently in the application Part 3.

(ii) We can see from the Main Theorem 1.4 that uniform norm inequalities are important for applications. In the next part, we will concentrate on uniform norm inequalities on measurable subsets of \(R \).

2. **Part 2: Uniform norm estimates**

In this part, let \(\Omega \subseteq R \) be a measurable set and \(C(\Omega) \) be the collection of functions continuous on \(\Omega \). If \(\Omega \neq R \) and \(f \in C(\Omega) \), we will extend \(f \) to whole \(R \) by " \(f(s) \equiv 0 \) whenever \(s \notin \Omega \)." when necessary. For \(f \in C(\Omega) \) and \(\delta \geq 0 \), we define the modulus of smoothness as
\[
(2.1) \quad \Omega_r(f, \delta) := \|(I - T_\delta)^r f\|_{C(\Omega)}, \quad r \in \mathbb{N},
\]

\[
\Omega_0(f, \cdot) := \|f\|_{C(\Omega)}
\]

with \(T_\delta f \) of (*).

Lemma 2.1. Let \(0 \leq \delta < \infty, r \in \mathbb{N} \) and \(f \in C^r(\Omega) \). Then
\[
(2.2) \quad \frac{d^r}{dx^r} T_\delta f(x) = T_\delta \frac{d^r}{dx^r} f(x) \quad \text{on} \Omega.
\]

The following theorem states the main properties of (2.1).

Theorem 2.2. For \(f \in C(\Omega), 0 \leq \delta < \infty, \) and \(r \in \mathbb{N} \), the following properties hold.

1. \(\Omega_r(f, \delta)_{C(\Omega)} \) is non-negative, non-decreasing function of \(\delta \),
2. \(\Omega_r(f, \delta)_{C(\Omega)} \) is subadditive with respect to \(f \),
3. \(\|T_\delta f\|_{C(\Omega)} \leq \|f\|_{C(\Omega)} \),
4. \(\Omega_r(f, \delta)_{C(\Omega)} \leq 2\Omega_{r-1}(f, \delta)_{C(\Omega)} \leq \cdots \leq 2^{r-1}\Omega_1(f, \delta)_{C(\Omega)} \leq 2^r \|f\|_{C(\Omega)}, \quad (***)
5. \(\Omega_r(f, \delta)_{C(\Omega)} \leq 2^{-1}\delta\Omega_{r-1}(f^r, \delta)_{C(\Omega)} \leq \cdots \leq 2^{-r}\delta \|f^{(r)}\|_{C(\Omega)}, \quad \text{if} f \in C^r(\Omega). \)

Let \(X \) be a Banach space with a norm \(\| \cdot \|_X \) and \(r \in \mathbb{N} \). We define Peetre’s \(K \)-functional for the pair \(X \) and \(W^r_X \) as follows:
\[
K_r(f, \delta, X)_X := \inf_{g \in W^r_X} \{ \|f - g\|_X + \delta \|g^{(r)}\|_X \}, \quad \delta > 0.
\]

We set \(T^r_\delta f := (T_\delta f)^r \).
Lemma 2.3. Let $0 \leq \delta < \infty$, $r - 1 \in \mathbb{N}$, and $f \in C^r(\Omega)$ be given. Then
\[
\frac{d^r}{dx^r} T_\delta f (x) = \frac{d}{dx} T_\delta \left(\frac{d^{r-1}}{dx^{r-1}} T_\delta f (x)\right) \quad \text{on } \Omega.
\]

Lemma 2.4. (see e.g. [19, p.177]) Let $\Omega \subseteq \mathbb{R}$ be a measurable set, $\delta > 0$, $f \in C(\Omega)$ and $\tilde{T}_\delta f (\cdot) = f (\cdot + \delta)$. Then, for any $r \in \mathbb{N}$, there holds
\[
\frac{1}{r^r + 2^r} \leq \sup_{|h| \leq \delta} \left\| \left(I - \tilde{T}_h \right)^r f \right\|_{C(\Omega)} \leq 2^r.
\]

Main result of this part is the following theorem.

Theorem 2.5. Let $\Omega \subseteq \mathbb{R}$ be a measurable set, $0 < \delta < \infty$, $f \in C(\Omega)$, $r \in \mathbb{N}$ and $g \in C^2(\Omega)$. Then, the following inequalities
\[
\left\| \frac{d}{dx} T_\delta f (x) \right\|_{C(\Omega)} \leq \frac{2}{\delta} \left\| f \right\|_{C(\Omega)},
\]
\[
\left\| T_\delta f (x) \right\|_{C(\Omega)} \leq \frac{2}{\delta} \left\| \frac{d}{dx} T_\delta f \right\|_{C(\Omega)},
\]
\[
\left\| g (x) - T_\delta g (x) + \frac{\delta}{2} \frac{d}{dx} g (x) \right\|_{C(\Omega)} \leq \frac{\delta^2}{6} \left\| \frac{d^2}{dx^2} g \right\|_{C(\Omega)},
\]
\[
\left((C_3 (r))^{-1} K_r (f, \delta, C(\Omega)) \right)_{C(\Omega)} \leq \left\| (I - T_\delta)^r f \right\|_{C(\Omega)} \leq 2^r K_r (f, \delta, C(\Omega)),
\]
are hold with $C_3 (1) = 36$, $C_3 (r) = 2^r (r^r + 34^r)$ for $r > 1$.

As a corollary of Theorem 2.5 we can state the following result.

Proposition 2.6. If $0 < h \leq \delta < \infty$ and $f \in C(\Omega)$, then
\[
\left\| (I - T_h) f \right\|_{C(\Omega)} \leq 72 \left\| (I - T_\delta) f \right\|_{C(\Omega)}.
\]

As a corollary of (2.4) and Lemma 2.4 we can write

Corollary 2.7. Let $\Omega \subseteq \mathbb{R}$ be a measurable set, $\delta > 0$, $f \in C(\Omega)$ and $r \in \mathbb{N}$. Then,

(i) there holds
\[
1 + 2^{-r} r^r \leq \frac{\sup_{|h| \leq \delta} \left\| \left(I - \tilde{T}_h \right)^r f \right\|_{C(\Omega)}}{\left\| (I - T_\delta)^r f \right\|_{C(\Omega)}} \leq 2^r C_3 (r),
\]

(ii) for $0 < \delta_1 \leq \delta_2$, there holds
\[
(1 + 2^{-r} r^r) \Omega_r (f, \delta_1)_{C(\Omega)} \leq C_3 (r) 2^r \Omega_r (f, \delta_2)_{C(\Omega)}.
\]

Remark 2.8. From Theorem 23.62 of [58, p.579] we have
\[
\lim_{\delta \searrow 0} \Omega_1 (f, \delta)_{C(\mathbb{R})} = \lim_{\delta \searrow 0} \left\| (I - T_\delta) f \right\|_{C(\mathbb{R})} = 0.
\]
Corollary 2.9. If \(f \in C(\mathbb{R}) \), \(0 < \delta < \infty \), and \(r \in \mathbb{N} \), then, by (2.6) and (**),
\[
\lim_{\delta \to 0} \Omega_r(f, \delta)_{C(\Omega)} = \lim_{\delta \to 0} \| (I - T_\delta)^r f \|_{C(\Omega)} = 0
\]
holds.

2.1. Exponential Approximation. Consider an entire function \(f(z) \) and put \(M(r) = \max_{|z|=r} |f(z)| \) for \(z = x + iy \). We say that an entire function \(f \) is of exponential type \(\sigma \) if
\[
\limsup_{r \to \infty} \frac{\ln M(r)}{r} \leq \sigma, \quad \sigma < \infty.
\]
Let \(\mathcal{G}_\sigma(X) \) be the subspace of entire function of exponential type \(\sigma \) that belonging to a Banach space \(X \). The quantity
\[
A_\sigma(f)_X := \inf_{g} \{ \| f - g \|_X : g \in \mathcal{G}_\sigma(X) \}
\]
is called the deviation of the function \(f \in X \) from \(\mathcal{G}_\sigma(X) \).

Remark 2.10. Let \(\sigma > 0 \), \(1 \leq p \leq \infty \), \(f \in L_p(\mathbb{R}) \),
\[
\vartheta(x) := \frac{2 \sin(x/2) \sin(3x/2)}{x^2}
\]
and
\[
J(f, \sigma) = \sigma \int_R f(x-u) \vartheta(\sigma u) du
\]
be the dela Val`ee Poussin operator ([13, definition given in (5.3)]). It is known (see (5.4)-(5.5) of [13]) that, if \(f \in L_p(\mathbb{R}) \), \(1 \leq p \leq \infty \), then,

(i) \(J(f, \sigma) \in \mathcal{G}_{2\sigma}(L_p(\mathbb{R})) \),

(ii) \(J(g_\sigma, \sigma) = g_\sigma \) for any \(g_\sigma \in \mathcal{G}_\sigma(L_p(\mathbb{R})) \),

(iii) \(\| J(f, \sigma) \|_{L_p(\mathbb{R})} \leq \frac{3}{2} \| f \|_{L_p(\mathbb{R})} \),

(iv) \(J(f, \sigma)^{(r)} = J(f^{(r)}, \sigma) \) for any \(r \in \mathbb{N} \) and \(f \in W^r_{L_p(\mathbb{R})} \);

(v) \(\| J\left(f, \frac{\sigma}{2}\right) - f \|_{L_p(\mathbb{R})} \to 0 \) (as \(\sigma \to \infty \)) and hence
\[
\| J\left(f, \frac{\sigma}{2}\right)^{(k)} - f^{(k)} \|_{L_p(\mathbb{R})} \to 0 \text{ as } \sigma \to \infty,
\]
for \(f \in W^r_{L_p(\mathbb{R})} \) and \(1 \leq k \leq r \).

Corollary 2.11. Let \(0 < \sigma < \infty \).

(i) If \(1 \leq p \leq \infty \), \(f \in L_p(\mathbb{R}) \). Then, using (v) of the last remark, we conclude
\[
\lim_{\sigma \to \infty} A_\sigma(f)_{L_p(\mathbb{R})} = 0.
\]

(ii) Let \(g : \mathbb{R} \to \mathbb{C} \) be bounded on the real axis \(\mathbb{R} \). Then (see [15])
\[
\lim_{\sigma \to \infty} A_\sigma(g)_{C(\mathbb{R})} = 0 \Leftrightarrow g \text{ is uniformly continuous on } \mathbb{R}.
\]
Theorem 2.12. Let \(r \in \mathbb{N}, \sigma > 0, \delta \in (0,1) \) and \(f \in C(R) \). Then, the following Jackson type inequality
\[
(2.8) \quad A_\sigma (f)_{\mathcal{C}(R)} \leq 5\pi 4^{-1} C_3 (r) \Omega_r (f, 1/\sigma)_{\mathcal{C}(R)}, \text{ and }
\]
its weak inverse
\[
(2.9) \quad \Omega_r (f, \delta)_{\mathcal{C}(R)} \leq (1 + 2^{r-1}) 2^{-1} \sigma^r \left(A_0 (f)_{\mathcal{C}(R)} + \int_{1/2}^{1/3} u^{r-1} A_u (f)_{\mathcal{C}(R)} du \right)
\]
are hold.

We set \(|\sigma| := \max \{ n \in \mathbb{Z} : n \leq \sigma \} \).

Theorem 2.13. Let \(r \in \mathbb{N}, f \in X^r_\mathcal{C}(R) \) and \(\sigma > 0 \). Then,

(a) (i) there exists (see [13, Proposition 25]) a \(g_\sigma \in \mathcal{G}_\sigma (C(R)) \) such that
\[
A_\sigma (f)_{\mathcal{C}(R)} \leq \| f - g_\sigma \|_{\mathcal{C}(R)} \leq \frac{5\pi 4^r}{4 \sigma^r} \| f^{(r)} \|_{\mathcal{C}(R)}, \text{ and }
\]
(ii) its weak inverse
\[
\| f^{(k)} \|_{\mathcal{C}(R)} \leq (1 + 2^{2k-1}) 2^{k+2} \pi^k C_3 (k) \sum_{\nu=0}^{\infty} \frac{(\nu + 1)^{r}}{\nu + 1} A_\nu (f)_{\mathcal{C}(R)},
\]
holds whenever \(k = 1, 2, \ldots, r \) and \(\sum_{\nu=0}^{\infty} (\nu + 1)^{r-1} A_\nu (f)_{\mathcal{C}(R)} < \infty \).

(b) (i) the following inequality (see [29, p.397])
\[
A_\sigma (f)_{\mathcal{C}(R)} \leq \frac{(5\pi)^r}{\sigma^r} A_{\sigma^{(r)}} (f^{(r)})_{\mathcal{C}(R)}, \text{ and }
\]
(ii) its weak inverse
\[
A_{\sigma} (f^{(r)})_{\mathcal{C}(R)} \leq \left\| f^{(r)} - (J (f^{(r)}, \frac{\sigma}{2})) \right\|_{\mathcal{C}(R)} \leq
\leq (1 + 2^{2r-1}) 2^{r+2} \pi^r C_3 (r) \left(A_\sigma (f)_{\mathcal{C}(R)} \sum_{k=0}^{[\sigma]} \frac{k^r}{k} + \sum_{\nu=[\sigma]+1}^{\infty} \frac{(\nu + 1)^{r}}{\nu + 1} A_\nu (f)_{\mathcal{C}(R)} \right)
\]
hold when \(\sum_{\nu=0}^{\infty} (\nu + 1)^{r-1} A_\nu (f)_{\mathcal{C}(R)} < \infty \).

Theorem 2.14. Let \(r, k \in \mathbb{N}, 0 < t \leq 1/2, 0 \leq \delta < \infty \) and \(f \in C(R) \). Then

(i) there holds
\[
\Omega_{r+k} (f, \delta)_{\mathcal{C}(R)} \leq 2^k \Omega_r (f, \delta)_{\mathcal{C}(R)}, \text{ and }
\]
(ii) its weak inverse (Marchaud inequality)
\[
\Omega_r (f, t)_{\mathcal{C}(R)} \leq C_4 (r, k) t^r \int_{t}^{1} \frac{\Omega_{r+k} (f, u)_{\mathcal{C}(R)}}{u^{r+1}} du
\]
with \(C_4 (r, k) = 10\pi (1 + 2^{2r-1}) 2^{2r+3k} C_3 (r + k) \).
Theorem 2.15. Let $\sigma > 0$ and $f \in C(R)$. If $\sum_{\nu=0}^{\infty}(\nu + 1)^{k-1}A_{\nu}(f)_{C(R)} < \infty$, holds for some $k \in N$, then,

(i) the following Jackson type inequality for derivatives

$$A_{\sigma}(f)_{C(R)} \leq (5\pi)^{k+1}C_{3}(r)\sigma^{-k}\Omega_{r}(f^{(k)}, \sigma^{-1})_{C(R)},$$

and

(ii) its weak inverse (see Theorem 6.3.4 of [29, p.343])

$$\Omega_{r}(f^{(k)}, \frac{1}{\sigma})_{C(R)} \leq 2^{2k+r+1}\frac{1}{\sigma^{r}}\sum_{\nu=0}^{[\sigma]}\frac{(\nu + 1)^{r+k}}{\nu + 1}A_{\nu}(f)_{C(R)} + \sum_{\nu=[\sigma]+1}^{\infty}\frac{\nu^{k}}{\nu}A_{\nu}(f)_{C(R)}$$

are hold.

2.2. Proofs of the results of part 2.

Proof of Lemma 2.1. For $\delta = 0$ (2.2) is obvious. For $0 < \delta < \infty$ and $r = 1$, one can find

$$\frac{d}{dx}T_{\delta}f(x) = \frac{d}{dx}\left(\frac{1}{\delta}\int_{0}^{\delta} f(x + t) dt\right) = \frac{d}{dx}\left(\frac{1}{\delta}\int_{x}^{x+\delta} f(\tau) d\tau\right) = \frac{1}{\delta}\int_{x}^{x+\delta} \frac{d}{dx} f(\tau) d\tau = T_{\delta}\frac{d}{dx}f(x).$$

For $r > 1$, (2.2) follows from (2.10).

Proof of Theorem 2.2. (1)-(3) is known. (4) is seen from binomial expansion. To prove (5) it is sufficient to note inequality (see [10])

$$\| (I - T_{\delta}) f \|_{C(\Omega)} \leq 2^{-1}\delta \| f' \|_{C(\Omega)}, \ \delta > 0$$

for $f \in C^{1}(\Omega)$. Then

$$\| (I - T_{\delta})^{r} f \|_{C(\Omega)} \leq 2^{-1}\delta \| (I - T_{\delta})^{r-1} f' \|_{C(\Omega)} \leq \cdots \leq 2^{-r}\delta^{r} \| f^{(r)} \|_{C(\Omega)}$$

for $f \in C^{r}(\Omega)$, because

$$[(I - T_{\delta})^{r} f]' = (I - T_{\delta})^{r} f'.$$

Proof of Lemma 2.3. For $r = 2$, by Lemma 2.1

$$\frac{d^2}{dx^2}T_{\delta}f = \frac{d}{dx}\frac{d}{dx}T_{\delta}f = \frac{d}{dx}\frac{d}{dx}T_{\delta}\Psi = \frac{d}{dx}T_{\delta}\frac{d}{dx}\Psi [\Psi := T_{\delta}f]$$

and the result (2.3) follows. For $r = 3$, by Lemma 2.1

$$\frac{d^3}{dx^3}T_{\delta}f = \frac{d}{dx}\frac{d^2}{dx^2}T_{\delta}f = \frac{d}{dx}\frac{d^2}{dx^2}T_{\delta}\Psi = \frac{d}{dx}\frac{d}{dx}T_{\delta}\frac{d}{dx}\Psi = \frac{d}{dx}T_{\delta}\frac{d}{dx}T_{\delta}\Psi.$$
\[
\frac{d}{dx} T_\delta f = \frac{d^2}{dx^2} T_\delta^2 f = \frac{d}{dx} T_\delta \frac{d}{dx} T_\delta f = \frac{d}{dx} T_\delta \frac{d^2}{dx^2} T_\delta^2 f
\]

and \((2.3)\) holds. Let \((2.3)\) holds for \(k \in \mathbb{N}\):

\[
(2.11) \quad \frac{d^k}{dx^k} T_\delta^k f = \frac{d}{dx} T_\delta \frac{d^{k-1}}{dx^{k-1}} T_\delta^{k-1} f.
\]

Then, for \(k + 1\), \((2.11)\) and Lemma 2.1 implies that

\[
\frac{d^{k+1}}{dx^{k+1}} T_\delta^{k+1} f = \frac{d}{dx} T_\delta \frac{d^k}{dx^k} T_\delta^k f = \frac{d}{dx} T_\delta \frac{d^{k-1}}{dx^{k-1}} T_\delta^{k-1} f = \frac{d}{dx} T_\delta \frac{d^k}{dx^k} T_\delta^k f.
\]

\(\square\)

Proof of Theorem 2.5. For \(f \in C(\Omega)\) we have

\[
\left\| \frac{d}{dx} T_\delta f (x) \right\|_{C(\Omega)} = \left\| \frac{1}{\delta} \int_0^\delta f(x + t) dt \right\|_{C(\Omega)} =
\]

\[
(2.12) \quad \left\| \frac{1}{\delta} \int_x^{x+\delta} f(\tau) d\tau \right\|_{C(\Omega)} = \left\| \frac{1}{\delta} (f(x+\delta) - f(x)) \right\|_{C(\Omega)} \leq \frac{2}{\delta} \|f\|_{C(\Omega)}.
\]

Inequality \((2.12)\) also implies

\[
\left\| \left(\frac{d}{dx}\right)^2 T_\delta f (x) \right\|_{C(\Omega)} \leq \frac{2}{\delta} \left\| \frac{d}{dx} T_\delta f \right\|_{C(\Omega)}
\]

for \(f \in C(\Omega)\). If \(f \in C^2(\Omega)\) one can get

\[
(2.13) \quad \left\| f(x) - T_\delta f(x) + \frac{\delta}{2} \frac{d}{dx} f(x) \right\|_{C(\Omega)} \leq \frac{\delta^2}{6} \left\| \frac{d^2}{dx^2} f \right\|_{C(\Omega)}.
\]

To obtain \((2.13)\) we will use the Taylor formula

\[f(x + t) = f(x) + t \frac{d}{dx} f(x) + \frac{t^2}{2} \frac{d^2}{dx^2} f(\xi)\]

for some \(\xi \leq [x, x + t]\). Then integrating the last equation with respect to \(t\)

\[
\frac{1}{\delta} \int_0^\delta f(x + t) dt = f(x) + \frac{1}{\delta} \int_0^\delta t dt \frac{d}{dx} f(x) + \frac{1}{2\delta} \int_0^\delta t^2 dt \frac{d^2}{dx^2} f(\xi),
\]

\[
T_\delta f(x) = f(x) + \frac{\delta}{2} \frac{d}{dx} f(x) + \frac{\delta^2}{6} \frac{d^2}{dx^2} f(\xi)
\]

and \((2.13)\) holds.

Now \((2.12)\) and \((2.13)\) imply that

\[
(1/36) K_1 (f, \delta, C(\Omega))_{C(\Omega)} \leq \| (I - T_\delta) f \|_{C(\Omega)} \leq 2K_1 (f, \delta, C(\Omega))_{C(\Omega)}.
\]
Firstly, let us prove the right hand side of (2.14). For any \(g \in C^1 (\Omega) \)
\[
\| f - T_\delta f \|_{C(\Omega)} \leq \| f - g \|_{C(\Omega)} + \| g - T_\delta g \|_{C(\Omega)} + \| T_\delta (g - f) \|_{C(\Omega)}
\leq 2 \| f - g \|_{C(\Omega)} + \frac{\delta}{2} \| g' \|_{C(\Omega)} \leq 2 K_1 (f, \delta, C(\Omega))_{C(\Omega)}.
\]

For the left hand side of inequality (2.14) we need inequalities
\begin{align}
(2.15) \quad \| f - T_\delta^2 f \|_{C(R)} & \leq 2 \| f - T_\delta f \|_{C(R)}, \\
(2.16) \quad \delta \left(\left(\frac{d}{dx} \right)^2 T_\delta^2 f \right)_{C(R)} & \leq 34 \| f - T_\delta f \|_{C(R)}.
\end{align}

First we prove (2.15). Then
\[
\| f - T_\delta^2 f \|_{C(\Omega)} \leq \| f - T_\delta f \|_{C(\Omega)} + \| T_\delta f - T_\delta T_\delta f \|_{C(\Omega)}
\leq 2 \| f - T_\delta f \|_{C(\Omega)}.
\]

Now we consider inequality (2.16). In (2.15) we replace \(f \) by \(T_\delta^2 f \) and obtain
\[
\left\| T_\delta^2 f (x) - T_\delta T_\delta f (x) + \frac{\delta}{2} \frac{d}{dx} T_\delta^2 f (x) \right\|_{C(\Omega)} \leq \frac{\delta^2}{6} \left\| \frac{d^2}{dx^2} T_\delta^2 f \right\|_{C(\Omega)}.
\]

On the other hand, by (2.12),
\[
\left\| \frac{d^2}{dx^2} T_\delta^2 f \right\|_{C(\Omega)} \leq \frac{2}{\delta} \left\| \frac{d}{dx} T_\delta f \right\|_{C(\Omega)}
\leq \frac{2}{\delta} \left\{ \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} + \left\| \frac{d}{dx} (T_\delta f - f) \right\|_{C(\Omega)} \right\}
\leq \frac{2}{\delta} \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} + \frac{4}{\delta^2} \| T_\delta f - f \|_{C(\Omega)}.
\]

Hence,
\[
\frac{\delta}{2} \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} \leq \left\| T_\delta^2 f - T_\delta T_\delta^2 f - \frac{\delta}{2} \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} + \| T_\delta^2 f - T_\delta T_\delta^2 f \|_{C(\Omega)}
\leq \frac{\delta^2}{6} \left\| \frac{d^2}{dx^2} T_\delta^2 f \right\|_{C(\Omega)} + \| T_\delta^2 f - T_\delta T_\delta^2 f \|_{C(\Omega)}
\leq \frac{\delta^2}{6} \left\{ \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} + \frac{2}{\delta} \| T_\delta f - f \|_{C(\Omega)} \right\} + \| T_\delta^2 f - f \|_{C(\Omega)}
\]
\[
+ \| T_\delta (T_\delta^2 f - f) \|_{C(\Omega)} + \| T_\delta f - f \|_{C(\Omega)}.
\]
Then
\[
\frac{\delta}{6} \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} \leq \frac{17}{3} \left\| T_\delta f - f \right\|_{C(\Omega)},
\]
\[
\delta \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)} \leq 34 \left\| T_\delta f - f \right\|_{C(\Omega)}.
\]
To finish proof of the left hand side of inequality (2.4) with \(r = 1 \), we proceed as
\[
K_1 (f, \delta, C(\Omega)) \leq \left\| f - T_\delta^2 f \right\|_{C(\Omega)} + \delta \left\| \frac{d}{dx} T_\delta^2 f \right\|_{C(\Omega)}
\leq 36 \left\| T_\delta f - f \right\|_{C(\Omega)}.
\]
The proof of (2.4) with \(r = 1 \) now completed.

Let \(r > 1 \) be a natural number and we define
\[
g(\cdot) = \sum_{i=1}^{r} (-1)^{i-1} \binom{r}{i} T_\delta^{2r} f(\cdot).
\]
Then,
\[
\left\| f - g \right\|_{C(\Omega)} = \left\| (I - T_\delta^{2r}) f \right\|_{C(\Omega)} \leq (2r)^r \left\| (I - T_\delta)^r f \right\|_{C(\Omega)}.
\]
On the other hand,
\[
\delta^r \left\| \frac{d}{dx^r} T_\delta^{2r} f \right\|_{C(\Omega)} = \delta^{r-1} \delta \left\| \frac{d}{dx} T_\delta^2 \left(\frac{d^{r-1}}{dx^{r-1}} \right) T_\delta^{2r-2} f \right\|_{C(\Omega)}
\leq 34 \delta^{r-1} \left\| (I - T_\delta)^2 \frac{d^{r-1}}{dx^{r-1}} T_\delta^{2r-2} f \right\|_{C(\Omega)}
\leq (34)^2 \delta^{r-2} \left\| (I - T_\delta)^2 \frac{d^{r-2}}{dx^{r-2}} T_\delta^{2r-4} f \right\|_{C(\Omega)}
\leq \cdots \leq (34)^r \left\| (I - T_\delta)^r f \right\|_{C(\Omega)}.
\]
Then
\[
\delta^r \left\| \frac{d}{dx^r} T_\delta^{2r} f \right\|_{C(\Omega)} \leq (34)^r \left\| (I - T_\delta)^r T_\delta^{2r(l-1)} f \right\|_{C(\Omega)}
= (34)^r \left\| T_\delta^{2r(l-1)} (I - T_\delta)^r f \right\|_{C(\Omega)} \leq (34)^r \left\| (I - T_\delta)^r f \right\|_{C(\Omega)}.
\]
Using the last inequality we find
\[
\delta^r \left\| \frac{d}{dx^r} g \right\|_{C(\Omega)} = \delta \left\| \frac{d}{dx^r} \sum_{i=1}^{r} (-1)^{i-1} \binom{r}{i} T_\delta^{2r} f \right\|_{C(\Omega)}
= \delta \left\| \sum_{i=1}^{r} (-1)^{i-1} \binom{r}{i} \frac{d}{dx^r} T_\delta^{2r} f \right\|_{C(\Omega)}
\leq \sum_{i=1}^{r} \left\| \binom{r}{i} \right\| \delta^r \left\| \frac{d}{dx^r} T_\delta^{2r} f \right\|_{C(\Omega)} \leq 2^r (34)^r \left\| (I - T_\delta)^r f \right\|_{C(\Omega)}.
and
\[\begin{aligned} K_r(f, \delta, C(\Omega))_{C(\Omega)} & \leq \|f - g\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} g \right\|_{C(\Omega)} \\ & \leq 2^r (r^r + (34)^r) \|(I - T_\delta)^r f\|_{C(\Omega)}. \end{aligned} \]

For the opposite direction of the last inequality, when \(g \in W^r_{p(\cdot)} \),
\[\Omega_r(f, \delta)_{C(\Omega)} \leq 2^r \|f - g\|_{C(\Omega)} + \Omega_r(g, \delta)_{C(\Omega)}, \]
(2.17)
\[\leq 2^r \|f - g\|_{C(\Omega)} + 2^{-r} \delta^r \|g^{(r)}\|_{C(\Omega)}, \]
and taking infimum on \(g \in W^r_{p(\cdot)} \) in (2.17) we get
\[\Omega_r(f, \delta)_{C(\Omega)} \leq 2^r K_r(f, \delta, C(\Omega))_{C(\Omega)}. \]
\[\square \]

Proof of Proposition 2.6. Let \(f \in C(\Omega) \). Then
\[\| (I - T_h) f \|_{C(\Omega)} \leq 2K_1(f, h, C(\Omega))_{C(\Omega)} \leq 2K_1(f, \delta, C(\Omega))_{C(\Omega)} \leq 72 \| (I - T_\delta) f \|_{C(\Omega)}. \]
\[\square \]

Proof of Theorem 2.12. (i) We consider Jackson type inequality (2.8). For any \(g \in X^r_{C(R)} \) we have
\[A_\sigma(f)_{C(R)} \leq A_\sigma(f - g)_{C(R)} + A_\sigma(g)_{C(R)} \leq \|f - g\|_{C(R)} + \frac{5\pi}{4} \frac{d^r}{dx^r} \left\| \frac{d^r}{dx^r} g \right\|_{C(R)}. \]

Taking infimum on \(g \in X^r_{C(R)} \) in the last inequality we have
\[A_\sigma(f)_{C(R)} \leq \frac{5\pi}{4} K_r\left(f, \frac{1}{\sigma}, C(R) \right)_{C(R)} \leq \frac{5\pi}{4} C_3(r) 4^r \left\| (I - T_{1/\sigma})^r f \right\|_{C(R)}. \]

(ii) We give the proof of inverse estimate (2.9). Let \(\sigma > 0 \) and \(g_\sigma \in G_\sigma(C(R)) \) be the best approximating IFFD of \(f \in C(R) \). Suppose that \(r \in \mathbb{N}, 0 < \delta < 1 \). Then, there exists a \(m \in \mathbb{N} \) such that \(\lfloor 1/\delta \rfloor = 2^{m-1} \). Hence, \(2^{m-1} \leq 1/\delta < 2^m \). Now we have
\[\Omega_r(f, \delta)_{C(R)} \leq \Omega_r(f - g_{2^m}, \delta)_{C(R)} + \Omega_r(g_{2^m}, \delta)_{C(R)} \leq 2^r A_{2^m}(f)_{C(R)} + 2^{-r} \delta^r \left\| \frac{d^r}{dx^r} g_{2^m} \right\|_{C(R)}. \]

On the other hand
\[\left\| \frac{d^r}{dx^r} g_{2^m} \right\|_{C(R)} = \sum_{\gamma=1}^m \left(\frac{d^r}{dx^r} g_{2^\gamma} - \frac{d^r}{dx^r} g_{2^{\gamma-1}} \right) + \left(\frac{d^r}{dx^r} g_{1} - \frac{d^r}{dx^r} g_{0} \right) \right\|_{C(R)} \leq \sum_{\gamma=1}^m 2^{\gamma r} \left\| g_{2^\gamma} - g_{2^{\gamma-1}} \right\|_{C(R)} + \left\| g_1 - g_0 \right\|_{C(R)} \]
inequality, one gets

\[\leq A_0 (f)_{C(R)} + A_1 (f)_{C(R)} + \sum_{\gamma=1}^{m} 2^{\gamma r} \left(A_{2\gamma^2} (f)_{C(R)} + A_{2\gamma - 1} (f)_{C(R)} \right) \]

\[\leq A_0 (f)_{C(R)} + 2^{r} A_1 (f)_{C(R)} + 2 \sum_{\gamma=1}^{m} 2^{\gamma r} A_{2\gamma - 1} (f)_{C(R)} \]

\[\leq 2 \left(A_0 (f)_{C(R)} + \sum_{\gamma=1}^{m} 2^{\gamma r} A_{2\gamma - 1} (f)_{C(R)} \right). \]

Then

\[\frac{\delta^r}{2^r} \left\| \frac{d^r}{dx^r} g_{2m} \right\|_{C(R)} \leq \frac{2}{2^r} \delta^r \left(A_0 (f)_{C(R)} + \sum_{\gamma=1}^{m} 2^{\gamma r} A_{q\gamma - 1} (f)_{C(R)} \right). \]

Hence

\[\Omega_r (f, \delta)_{C(R)} \leq \frac{2^{(m+1)r}}{2^m} A_{2m} (f)_{C(R)} + \frac{2}{2^r} \delta^r \left(A_0 (f)_{C(R)} + \sum_{\gamma=1}^{m} 2^{\gamma - 1} A_{2\gamma - 1} (f)_{C(R)} \right) \]

\[\leq (1 + 2^{2r-1}) 2^{1-r} 2^{2r} \delta^r \left(A_0 (f)_{C(R)} + \sum_{\gamma=1}^{m} 2^{\gamma - 1} \int_{1/2} u r^{-1} A_u (f)_{C(R)} du \right) \]

\[\leq (1 + 2^{2r-1}) 2^{r-1} \delta^r \left(A_0 (f)_{C(R)} + \int_{1/2}^{1/\delta} u r^{-1} A_u (f)_{C(R)} du \right). \]

□

Proof of Theorem 2.13. Results a) (i) and b) (i) are known. Let us consider a) (ii).

Suppose that \(\sum_{\nu=0}^{[\nu+1]/2} A_\nu (f)_{C(R)} < \infty \) and \(k \in \{1, 2, \cdots, r\} \). Then, using Nikolskii inequality, one gets

\[\| f^{(k)} \|_{C(R)} = \lim_{\sigma \to \infty} \| J \left(f^{(k)}, \frac{\sigma}{2} \right) \|_{C(R)} = \lim_{\sigma \to \infty} \| J \left(f, \frac{\sigma}{2} \right) \|_{C(R)}^{(k)} \]

\[\leq \pi^k \left[\sup_{|b| \leq \delta} \left\| (I - \tilde{T}_h)^k \left(J \left(f, \frac{\sigma}{2} \right) \right) \right\|_{C(R)} \right] \]

\[\leq (1 + 2^{2k-1}) 2^{k+2} \pi^k C_3 (k) \sum_{\nu=0}^{[\nu+1]/2} A_\nu \left(J \left(f, \frac{\sigma}{2} \right) \right)_{C(R)} \]

Note that (ii) b) is follow from (i) b). □
Proof of Theorem 2.14. (i) follows from properties of modulus of smoothness. We consider Marchaud type inequality (ii). Let \(0 < t < 1/2 \). Assume that \(2^{m-1} \leq \frac{1}{t} < 2^m \) for some \(m \in \mathbb{N} \). Then

\[
\Omega_t(f, t)_{C(R)} \leq \left(1 + 2^{2r-1} \right) 2^{1-r} t^r \left(\sum_{\nu=1}^m 2^{\nu r} A_{2^{\nu-1}} (f)_{C(R)} + A_0 (f)_{C(R)} \right)
\]

\[
\leq \frac{5\pi}{2} \left(1 + 2^{2r-1} \right) 2^{r+2k} C_3 (r + k) t^r \left(A_0 (f)_{C(R)} + \sum_{\nu=1}^m 2^{\nu r} \Omega_{k+r} (f, \frac{1}{2^\nu})_{C(R)} \right)
\]

\[
\leq \frac{5\pi}{2} \left(1 + 2^{2r-1} \right) 2^{r+3k} C_3 (r + k) t^r \left(\Omega_{k+r} (f, \frac{1}{2})_{C(R)} + \sum_{\nu=1}^m 2^{-\nu+1} \Omega_{k+r} (f, u)_{C(R)} du \right)
\]

\[
\leq \frac{5\pi}{2} \left(1 + 2^{2r-1} \right) 2^{r+3k} C_3 (r + k) t^r \left(\Omega_{k+r} (f, \frac{1}{2})_{C(R)} + \int_{2^{-\nu}}^{2^{-\nu+1}} \Omega_{k+r} (f, u)_{C(R)} du \right)
\]

\[
\leq 5\pi \left(1 + 2^{2r-1} \right) 2^{r+3k} C_3 (r + k) t^r \left(\int_{1/2}^1 \Omega_{k+r} (f, u)_{C(R)} \frac{du}{u^{r+1}} \right) + \int_{1}^t \Omega_{k+r} (f, u)_{C(R)} \frac{du}{u^{r+1}}
\]

\[
\leq 10\pi \left(1 + 2^{2r-1} \right) 2^{r+3k} C_3 (r + k) t^k \int_{1}^t \Omega_{k+r} (f, u)_{C(R)} \frac{du}{u^{r+1}}
\]

\[\square\]

3. Part 3: Applications

In this part we will exhibit some applications of previous parts. Let \(B \subseteq \mathbb{R} \) be a measurable set and \(p(x) : B \rightarrow [1, \infty) \) be a measurable function. We define \(P(B) \) as the class of measurable functions \(p(x) \) satisfying the conditions

\[1 \leq p^-_B := \text{ess inf}_{x \in B} p(x), \quad p^+_B := \text{ess sup}_{x \in B} p(x) < \infty. \]

We also set \(p^- := p^-_B \) and \(p^+ := p^+_B \).

Definition 3.1. We define the \(L_{p(\cdot)}(B) \) as the set of all functions \(f : B \rightarrow \mathbb{R} \) such that

\[\int_B \left| \frac{f(y)}{\lambda} \right|^{p(y)} dy < \infty \]

for some \(\lambda > 0 \). We set \(I_{p(\cdot)} (f) := I_{p(\cdot),B} (f) \). The set of of functions \(L_{p(\cdot)}(B) \), with norm

\[\| f \|_{p(\cdot),B} := \inf \left\{ \eta > 0 : I_{p(\cdot),B} \left(\frac{f}{\eta} \right) < 1 \right\} \]

is Banach space. We set \(L_{p(\cdot)} := L_{p(\cdot)}(\mathbb{R}) \). The following embedding results are hold.
Theorem 3.2. ([17, Theorem 2.26]) Let \(B \subseteq \mathbb{R} \) be a measurable set. If \(1 \leq p(x) < p^+_B < \infty \), \(p'(x) = p(x)/(p(x) - 1) \), \(f \in L_{p(\cdot)}(B) \), and \(g \in L_{p'(\cdot)}(B) \), then, Hölder Inequality
\[
\int_B f(x)g(x)dx \leq C_5 \left(p^+_B, p^-_B, B \right) \| f \|_{p(\cdot), B} \| g \|_{p'(\cdot), B}
\]
holds with \(C_5 := C_5 \left(p^+_B, p^-_B, B \right) = 1 + \frac{1}{p_B} - \frac{1}{p'_B} \).

Remark 3.3. By Theorem 2.26 and Remark 2.27 of [17] that
\[1 < C_5 \left(p^+_B, p^-_B, B \right) \leq 4 \]
for any nonconstant \(p(\cdot) \).

Let \(G_{\sigma,p(\cdot)} := \mathcal{G}_{\sigma} \left(L_{p(\cdot)} \right) \) be the subspace of integral function \(f \) of exponential type \(\sigma \) that belonging to \(L_{p(\cdot)} \). The quantity
\[
A_\sigma(f)_{p(\cdot)} := \inf_g \left\{ \| f - g \|_{p(\cdot)} : g \in G_{\sigma,p(\cdot)} \right\}
\]
is the deviation of the function \(f \in L_{p(\cdot)} \) from \(\mathcal{G}_\sigma \).

Definition 3.4. For measurable \(B \subseteq \mathbb{R} \), let \(P_{Log}(B) \) be the class of measurable functions \(p(x) \) satisfying the condition \(P(B) \), and there are positive constants \(C_6(p(\cdot)), C_7(p(\cdot)) \) and \(p_\infty > 1 \) such that
\begin{align*}
(3.3) & \quad |p(x) - p(y)| \ln \left(e + 1/|x - y| \right) \leq C_6 < \infty, \\
& \quad \text{for any } x, y \in B, \text{ and} \\
(3.4) & \quad |p(x) - p_\infty| \ln \left(e + |x| \right) \leq C_7 < \infty, \\
& \quad \text{for any } x \in B. \text{ Let } c_{log}(p) := \max \{ C_6, C_7 \}.
\end{align*}

The approximation by entire function of finite degree in the real line was originated in the beginning of twentieth century by Serge Bernstein [16] and became a separate branch of analysis due to the efforts of many mathematicians such as N. Wiener and R. Paley [46], N.I. Ahiezer [4], S.M. Nikolskii [43], I.I. Ibragimov [29], A. F. Timan [53], M. F. Timan [54], R. Taberski [55, 56], F.G. Nasibov [42], V. Yu. Popov [17], A. A. Ligun [44], and others.

Studying function spaces with variable exponent is now an extensively developed field after their applications in elasticity theory [59], fluid mechanics [48, 49], differential operators [21, 49], nonlinear Dirichlet boundary value problems [10], nonstandard growth [59], and variational calculus. See the books [17, 20, 52] for more references. Nowadays many mathematician solved many problems for the approximation of function in these type spaces defined on \([0, 2\pi] \subset \mathbb{R} \) (see e.g., [7, 8, 27, 30, 31, 34], [1, 2, 3, 11, 12], [5, 6, 9, 13, 15], [21, 25, 26, 28, 32, 33, 36, 37, 38, 43, 50, 51, 57]). In this paper we propose generalized our last results in [10] which we obtained a direct and inverse theorems for approximation by entire functions of finite degree in variable exponent Lebesgue spaces on the whole real axis \(\mathbb{R} \) with
\[
(3.5) \quad \sup_{0 < h \leq \delta} \| (I - T_h)f \|_{p(\cdot)}
\]
as modulus of continuity \(\Omega_1(f, \delta)_{p(.)} \). Instead of (3.5), here we will use

\[
\|(I - T_\delta)^p f\|_{p(.)}
\]
as modulus smoothness \(\Omega_r(f, \delta)_{p(.)} \) and we obtain stronger Jackson inequality than obtained in [10].

3.1. Translated Steklov Averages and Mollifiers.

Definition 3.5. Suppose that \(0 < \delta < 1 \) and \(\tau \in \mathbb{R} \). We define family of translated Steklov operators \(\{S_{\delta, \tau} f\} \), by

\[
S_{\delta, \tau} f(x) := \Phi_\delta(f)(x + \tau) = \frac{1}{\delta} \int_{x + \tau - \delta/2}^{x + \tau + \delta/2} f(t) \, dt, \quad x \in \mathbb{R}
\]

for locally integrable function \(f \) defined on \(\mathbb{R} \).

Mollifiers in variable exponent Lebesgue spaces is obtained by D. Cruz-Uribe and A. Fiorenza (see [18]).

Definition 3.6. Let \(B \subseteq \mathbb{R} \) be an open set, \(\phi \in L_1(B) \) and \(\int_B \phi(t) \, dt = 1 \). For each \(t > 0 \) we define \(\phi_t(x) = \frac{1}{t} \phi(\frac{x}{t}) \). Sequence \(\{\phi_t\} \) will be called approximate identity. A function

\[
\tilde{\phi}(x) = \sup_{|y| \geq |x|} |\phi(y)|
\]

will be called radial majorant of \(\phi \). If \(\tilde{\phi} \in L_1(B) \), then, sequence \(\{\phi_t\} \) will be called potential-type approximate identity.

Definition 3.7. ([20]) Let \(\mathbb{N} := \{1, 2, 3, \cdots \} \) be natural numbers and \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \).

(a) A family \(Q \) of measurable sets \(E \subset \mathbb{R} \) is called locally \(N \)-finite \((N \in \mathbb{N}) \) if

\[
\sum_{E \in Q} \chi_E(x) \leq N
\]

almost everywhere in \(\mathbb{R} \) where \(\chi_U \) is the characteristic function of the set \(U \).

(b) A family \(Q \) of open bounded sets \(U \subset \mathbb{R} \) is locally 1-finite if and only if the sets \(U \in Q \) are pairwise disjoint.

(c) Let \(U \subset \mathbb{R} \) be a measurable set and

\[
A_U f := \frac{1}{|U|} \int_U |f(t)| \, dt.
\]

(d) For a family \(Q \) of open sets \(U \subset \mathbb{R} \) we define averaging operator by

\[
T_Q : L^1_{loc} \rightarrow L^0,
\]

\[
T_Q f(x) := \sum_{U \in Q} \chi_U(x) A_U f, \quad x \in \mathbb{R},
\]

where \(L^0 \) is the set of measurable functions on \(\mathbb{R} \).
For a measurable set $A \subset \mathbb{R}$, symbol $|A|$ will represent the Lebesgue measure of A.

Theorem 3.8. ([20, Theorem 4.4.8]) Suppose that $p \in P^{\text{Log}}$, and $f \in L^p(\cdot)$. If Q is 1-finite family of open bounded subsets of \mathbb{R} having Lebesgue measure 1, then, the averaging operator T_Q is uniformly bounded in $L^p(\cdot)$, namely,

$$
\|T_Qf\|_{p(\cdot)} \leq \frac{2}{\beta} \|f\|_{p(\cdot)}
$$

holds with $\beta := e^{-4c\log(1/p)}$.

Theorem 3.9. ([20]) Suppose that $B \subseteq \mathbb{R}$ be an open set, $p \in P^{\text{Log}}(B)$, $f \in L^p(\cdot)(B)$, ϕ is a potential-type approximate identity. Then, for any $t > 0$,

$$
\|f \ast \phi_t\|_{p(\cdot),B} \leq C_8 \|f\|_{p(\cdot),B}
$$

and

$$
\lim_{t \to 0} \|f \ast \phi_t - f\|_{p(\cdot),B} = 0
$$

hold with

$$
C_9 := \frac{12}{\beta}, \quad C_8 := \max \left\{ C_9^\frac{1}{p-1}(B), C_9^\frac{1}{p+1}(B) \right\}.
$$

Let S_c be the collection of the simple functions with compact support.

Theorem 3.10. ([20, Corollary 4.4.6]) Let $p \in P^{\text{Log}}(\mathbb{R})$. Then

$$
\sup_{g \in C_c^\infty, \|g\|_{p'(\cdot)} \leq 1} \int_{\mathbb{R}} |f(x)G(x)| \, dx \geq \frac{\beta}{24} \|f\|_{p(\cdot)}
$$

for $f \in L^p(\cdot)$ with β of Theorem 3.8.

Theorem 3.11. Let $p \in P^{\text{Log}}(\mathbb{R})$. Then $L^p(\cdot)$ satisfy properties $(X1)$-$(X2)$-$(X3)$. Further, if $f, g \in L^p(\cdot)$ and

$$
\|F_{f,G}\|_{C(\mathbb{R})} \leq C_2 \|F_{g,G}\|_{C(\mathbb{R})},
$$

with an absolute constant $C_2 > 0$, then, norm inequality

$$
\|f\|_X \leq 96 (1 + |\text{spt}G|) \beta^{-1} \|G\|_\infty C_2 \|g\|_X
$$

holds.

As a corollary of Theorem 3.11 we have

Theorem 3.12. Suppose that $p \in P^{\text{Log}}(\mathbb{R})$, $0 < \delta < \infty$ and $\tau \in \mathbb{R}$. Then,

(i) $F_{S_{\delta,\tau}f,G} = S_{\delta,\tau}F_{f,G}$ and

(ii) the family of operators $\{S_{\delta,\tau}f\}$, defined by (3.7), is uniformly bounded (in δ and τ) in $L^p(\cdot)$, namely,

$$
\|S_{\delta,\tau}f\|_{p(\cdot)} \leq C_{10} \|f\|_{p(\cdot)},
$$

holds with

$$
C_{11} := 96 (1 + |\text{spt}G|) \beta^{-1} \|G\|_\infty.
$$
$C_{10} := \max \left\{ C_{11}^{P_-}, C_{11}^{P_+} \right\}$.

As a corollary of Theorem 3.11 we get

Corollary 3.13. Let $p \in P^{\log}(R)$, $0 < \delta < \infty$, $f \in L_{p(\cdot)}$. If $\tau = \delta/2$ then,

$$S_{\delta,\delta/2} f(x) = \frac{1}{\delta} \int_0^\delta f(x+t) \, dt = T_\delta f(x),$$

$F_{T_\delta f, G} = T_\delta F_{f, G}$ and

$$\|T_\delta f\|_{p(\cdot)} \leq C_{10} \|f\|_{p(\cdot)}.$$

3.2. Modulus of Smoothness. For $p \in P^{\log}(R)$, $f \in L_{p(\cdot)}$, $0 < \delta < \infty$, $r \in \mathbb{N}$, modulus of smoothness $\Omega_r(f, \delta)_{p(\cdot)} = \|(I - T_\delta)^r f\|_{p(\cdot)}$ has property

$$\|(I - T_\delta)^r f\|_{p(\cdot)} \leq (1 + C_{10})^r \|f\|_{p(\cdot)}.$$

Lemma 3.14. Let $p \in P^{\log}(R)$, $r \in \mathbb{N}$, and $0 < \delta < \infty$. Then

$$\|(I - T_\delta)^r f\|_{p(\cdot)} \leq C_{10}^r 2^{-r} \delta^r \|f\|_{p(\cdot)}, \quad f \in W_{L_{p(\cdot)}}^r$$

hold.

We will use notation $K_r(f, \delta, p(\cdot)) := K_r(f, \delta, L_{p(\cdot)})_{L_{p(\cdot)}}$ for $r \in \mathbb{N}$, $p \in P^{\log}(B)$, $\delta > 0$ and $f \in L_{p(\cdot)}(B)$.

As a corollary of Transference Result we can obtain the following lemma.

Lemma 3.15. Let $0 < h \leq \delta < \infty$, $p \in P^{\log}(R)$ and $f \in L_{p(\cdot)}$. Then

$$F_{(I - T_h)f, G} = (I - T_h) F_{f, G} \quad \text{and}$$

$$\|(I - T_h) f\|_{p(\cdot)} \leq 72 \cdot 96 (1 + |spt G|) \beta^{-1} \|G\|_{\infty} \|(I - T_\delta) f\|_{p(\cdot)} \quad (3.9)$$

holds.

In the following theorem we show that K-functional $K_r(f, \delta, p(\cdot))_{p(\cdot)}$ and $\Omega_r(f, \delta)_{p(\cdot)}$ are equivalent.

Theorem 3.16. Let $p(\cdot) \in P^{\log}(R)$. If $L_{p(\cdot)}$, then the K-functional $K_r(f, \delta, p(\cdot))_{p(\cdot)}$ and the modulus $\Omega_r(f, \delta)_{p(\cdot)}$, are equivalent, namely,

$$\frac{\beta}{24 \cdot 2^r (1 + |spt G|) \|G\|_{\infty}} \leq \frac{K_r(f, \delta, p(\cdot))_{p(\cdot)}}{\Omega_r(f, \delta)_{p(\cdot)}} \quad \text{and}$$

$$\frac{K_r(f, \delta, p(\cdot))_{p(\cdot)}}{\Omega_r(f, \delta)_{p(\cdot)}} \leq \frac{24 \{2^r(34)^r\} \beta}{(1 + |spt G|) \|G\|_{\infty}}.$$

Theorem 3.17. For $p(\cdot) \in P^{\log}(R)$, $f, g \in L_{p(\cdot)}$ and $\delta > 0$, the modulus of smoothness $\Omega_r(f, \delta)_{p(\cdot)}$, has the following properties:

(1) $\Omega_r(f, \delta)_{p(\cdot)}$ is non-negative; non-decreasing function of δ;
(2) For $f, g \in L_{p(\cdot)}$ and $\delta > 0$,
\[\Omega_r (f + g, \delta)_{p(\cdot)} \leq \Omega_r (f, \delta)_{p(\cdot)} + \Omega_r (g, \delta)_{p(\cdot)}. \]

(3.10) $\Omega_r (f, \delta)_{p(\cdot)} \leq \Omega_r (f + g, \delta)_{p(\cdot)}$.

(3) For $f \in L_{p(\cdot)}$,
\[\lim_{\delta \to 0} \Omega_r (f, \delta)_{p(\cdot)} = 0. \]

As a corollary of Theorem 3.16

Corollary 3.18. Let $p(\cdot) \in P^\text{Log} (R)$. If $\delta, \lambda \in (0, \infty)$, $f \in L_{p(\cdot)}$, then,
\[\left(\frac{\Omega_r (f, \lambda \delta)_{p(\cdot)}}{(1 + [\lambda])^r \Omega_r (f, \delta)_{p(\cdot)}} \right)^{1/2} \leq (24)^2 2^{2r} \{ r^r + (34)^r \} \beta^{-2} (1 + |sptG|)^2 \| G \|_\infty^2. \]

holds.

Theorem 3.19. Let $p(\cdot) \in P^\text{Log} (R)$, $r \in N$, $\sigma > 0$ and $f \in L_{p(\cdot)}$. Then,
\[\| A_\sigma (f)_{p(\cdot)} \| \leq C \| (I - T_{1/\sigma})^r f \|_{p(\cdot)} \]
with $C = 1800 \pi 8^r \{ (2r)^r + 2^r (34)^r \} \beta^{-2} (1 + |sptG|)^2 \| G \|_\infty^2$.

Now we present the inverse theorem.

Theorem 3.20. Let $p(\cdot) \in P^\text{Log} (R)$, $r \in N$, $\delta \in (0, \infty)$ and $f \in L_{p(\cdot)}$. Then,
\[\Omega_r (f, \delta)_{p(\cdot)} \leq C_{12} \delta^r \left(A_0 (f)_{p(\cdot)} + \int_{1/2}^{1/\delta} u^{-1} A_{u/2} (f)_{p(\cdot)} du \right) \]
holds with $C_{12} = \frac{12}{\beta} (1 + 2^{2r-1}) 2^r (1 + |sptG|) \| G \|_\infty (1 + 144 (1 + |sptG|) \beta^{-1} \| G \|_\infty)$.

In this section we obtain Marchaud inequality.

Theorem 3.21. Let $r, k \in N$, $p \in P^\text{Log} (R)$, $f \in L_{p(\cdot)}$ and $t \in (0, 1/2)$. Then,
\[\Omega_r (f, t)_{p(\cdot)} \leq \frac{240 \pi}{\beta} (1 + 2^{2r-1}) 2^{2r+3k} C_3 \| sptG \| \| G \|_\infty t^r \int_{1/2}^{1/\delta} \frac{\Omega_{r+k} (f, u)_{p(\cdot)} du}{u^{r+1}} \]
holds.

Theorem 3.22. Let $p \in P^\text{Log} (R)$, $r \in N$ and $f \in L_{p(\cdot)}$. If
\[\sum_{k=0}^{\infty} u^{k-1} A_{\nu/2} (f)_{p(\cdot)} < \infty \]
holds for some $k \in N$, then $f^{(k)} \in L_{p(\cdot)}$ and
\[\Omega_r \left(f^{(k)}, \frac{1}{\sigma} \right)_{p(\cdot)} \leq C_{13} \left(\frac{1}{\sigma^r} \sum_{\nu=0}^{[\sigma]} (\nu + 1)^{r+k-1} A_{\nu/2} (f)_{p(\cdot)} + \sum_{\nu=\sigma+1}^{\infty} \nu^{k-1} A_{\nu/2} (f)_{p(\cdot)} \right) \]
with $C_{13} = C_{10} 2^{2k+r+2}$.
3.3. Proofs of the results of Part 3.

Proof of Theorem 3.11. Using [39] Theorem 4.1, the set C^∞_c is a dense subset of $L_{p(\cdot)}$ and (X1) follows. Corollary 3.3.4 of [20] gives (X2). Theorem 3.10 gives (X3). Then, we get
\[\|f\|_X \leq 96 (1 + |\text{spt}G|) \beta^{-1} \|G\|_\infty C_2 \|g\|_X. \]

Proof of Lemma 3.14. We note that (see [10]) the following inequality
\[(3.14) \quad \|(I - T_\delta) f\|_{p(\cdot)} \leq 2^{-1} C_{10} \|f\|_{p(\cdot)} , \quad \delta > 0 \]
holds for $f \in L_{p(\cdot)}$. Then
\[\Omega_r (f, \delta)_{p(\cdot)} = \|(I - T_\delta)^r f\|_{p(\cdot)} \leq \ldots \leq 2^{-r} C_{10}^r \|f^{(r)}\|_{p(\cdot)}, \quad \delta > 0 \]
for $f \in W^r_{L_p(\cdot)}$.

Proof of Theorem 3.10. For any $g \in W^r_{L_p(\cdot)} (\Omega)$ we have $F_g \in C^r (\Omega)$, $F_{(I - T_\delta)^r f, G} = (I - T_\delta)^r F_{f, G}$ and
\[
\|(I - T_\delta)^r f\|_{p(\cdot)} \leq \frac{24}{\beta} \|F_{(I - T_\delta)^r f, G}\|_{C(\Omega)}
\]
\[
= \frac{24}{\beta} \|(I - T_\delta)^r F_{f, G}\|_{C(\Omega)} \leq \frac{24}{\beta} \cdot 2^r K_r (F_f, \delta, C (\Omega))_{C(\Omega)}
\]
\[
\leq \frac{24}{\beta} 2^r \left\{ \|F_f - F_g\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} F_g \right\|_{C(\Omega)} \right\}
\]
\[
= \frac{24}{\beta} 2^r \left\{ \|F_{f - g, G}\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} g \right\|_{C(\Omega)} \right\}
\]
\[
\leq \frac{24}{\beta} 2^r (1 + |\text{spt}G|) \|G\|_\infty \left\{ \|f - g\|_{p(\cdot)} + \delta^r \left\| \frac{d^r}{dx^r} g \right\|_{p(\cdot)} \right\}.
\]
Taking infimum and considering definition of K-functional one gets
\[
\|(I - T_\delta)^r f\|_{p(\cdot)} \leq \frac{24 \cdot 2^r}{\beta} (1 + |\text{spt}G|) \|G\|_\infty K_r (f, \delta, p (\cdot))_{p(\cdot)}.
\]
Now we consider the opposite direction of the last inequality. For
\[g (\cdot) = \sum_{i=1}^{r} (-1)^{i-1} \binom{r}{i} T_\delta^{2i} f (\cdot) \]
we have
\[
K_r (f, \delta, p (\cdot))_{p(\cdot)} \leq \|f - g\|_{p(\cdot)} + \delta^r \left\| \frac{d^r}{dx^r} g \right\|_{p(\cdot)}
\]
\[
\leq \frac{24}{\beta} \left\{ \|F_{f - g}\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} g \right\|_{C(\Omega)} \right\}.\]
\[\frac{24}{\beta} \left\{ \left\| F_f - F_g \right\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} F_g \right\|_{C(\Omega)} \right\} \]
\[\leq \frac{24}{\beta} \left\{ \left\| (I - T_\delta^r)^r F_f \right\|_{C(\Omega)} + \delta^r \left\| \frac{d^r}{dx^r} \sum_{l=1}^r (-1)^{l-1} \binom{r}{l} T_\delta^{2rl} F_f \right\|_{C(\Omega)} \right\} \]
\[= \frac{24}{\beta} \left\{ \left\| (I - T_\delta^r)^r F_f \right\|_{C(\Omega)} + \sum_{l=1}^r \left\| \binom{r}{l} \delta^r \left\| \frac{d^r}{dx^r} T_\delta^{2rl} F_f \right\|_{C(\Omega)} \right\} \]
\[\leq \frac{24}{\beta} \left\{ (2r)^r \left\| (I - T_\delta^r)^r F_f \right\|_{C(\Omega)} + 2^r (34)^r \left\| (I - T_\delta^r)^r F_f \right\|_{C(\Omega)} \right\} \]
\[= \frac{24}{\beta} \left\{ (2r)^r + 2^r (34)^r \right\} \left\| F_f \right\|_{C(\Omega)} \]
\[\leq \frac{24}{\beta} \left\{ (2r)^r + 2^r (34)^r \right\} \left(1 + |sptG| \right) \left\| G \right\|_\infty \left\| (I - T_\delta^r)^r f \right\|_{p(\cdot)} . \]

\[\square\]

Proof of Theorem 3.17: Properties (1) and (2), by definition of $\Omega_r (f, \delta)_{p(\cdot)}$ and the triangle inequality of $L_{p(\cdot)}$, are clearly valid. By using [23, Theorem 10.1] and [35, Lemma 2], the relation (3.11) is satisfied.

\[\square\]

Proof of Corollary 3.18: We have $\Omega_r (f, \lambda \delta)_{p(\cdot)} (1 + |\lambda|)^{-r} \Omega_r (f, \delta)^{-1}_{p(\cdot)} \leq \frac{(24)^2 2^2 r^r + (34)^r}{(1 + |\lambda|)^r} K_r (f, \lambda \delta, p(\cdot))_{p(\cdot)} \leq (24)^2 2^r \left\{ r^r + (34)^r \right\} \beta^{-2} \left(1 + |sptG| \right)^2 \left\| G \right\|_\infty^2 . \]

\[\square\]

Proof of Theorem 3.12: First we obtain

(3.15) $A_{2^\sigma} (f)_{p(\cdot)} \leq \frac{180 \pi 8^r}{\beta^2} \left\{ (2r)^r + 2^r (34)^r \right\} \left(1 + |sptG| \right)^2 \left\| G \right\|_\infty^2 \left\| (I - T_1/(2\sigma))^r f \right\|_{p(\cdot)}$

and (3.12) follows from (3.15). Using $V_\sigma F_{f,G} = F_{V_\sigma f,G}$ and $V_\sigma g_\sigma = g_\sigma$ we get

$A_{2^\sigma} (f)_{p(\cdot)} \leq \left\| f - V_\sigma f \right\|_{p(\cdot)} \leq \frac{24}{\beta} \left\| F_f - V_\sigma F_f, G \right\|_{C(R)} = \frac{24}{\beta} \left\| F_f - V_\sigma F_f, G \right\|_{C(R)}$

\[\leq \frac{24}{\beta} \left\| F_f, G - g_\sigma + V_\sigma F_f, G \right\|_{C(R)} = \frac{24}{\beta} \left\| F_f, G - g_\sigma + V_\sigma g_\sigma - V_\sigma F_f, G \right\|_{C(R)} \]

\[\leq \frac{24}{\beta} A_{2^\sigma} (F_f, G)_{C(R)} + \frac{24}{\beta} A_{2^\sigma} (F_f, G)_{C(R)} = \frac{60}{\beta} A_{2^\sigma} (F_f, G)_{C(R)} . \]

For any $g \in W_r^r_{C(R)}$

$A_{2^\sigma} (u)_{C(R)} \leq A_{2^\sigma} (u - g)_{C(R)} + A_{2^\sigma} (g)_{C(R)}$

$\leq \left\| u - g \right\|_{C(R)} + \frac{5 \pi 4^r}{4 \sigma^r} \left\| \frac{d^r}{dx^r} g \right\|_{C(R)}$
Proof of Theorem 3.20.

\[\begin{align*}
\leq & \frac{5\pi 4^r}{4} K_r \left(u, \frac{1}{\sigma}, C(R) \right)_{C(R)} \leq \frac{5\pi 8^r}{4} K_r \left(u, \frac{1}{2\sigma}, C(R) \right)_{C(R)} \\
\leq & 30\pi 8^r \{(2r)^r + 2^r(34)^r\} \beta^{-1} \left(1 + |spt G|\right) \|G\|_\infty \left\| \left(I - T_{\frac{1}{2\sigma}}\right)^r u \right\|_{C(R)}.
\end{align*} \]

Therefore

\[A_{2\sigma}(f)_{p(\cdot)} \leq \frac{60}{\beta} A_{\sigma}(F_{f,G})_{C(R)} \]

\[\leq \frac{1800}{\beta} \pi 8^r \{(2r)^r + 2^r(34)^r\} \beta^{-1} \left(1 + |spt G|\right) \|G\|_\infty \left\| \left(I - T_{\frac{1}{2\sigma}}\right)^r F_f \right\|_{C(R)} \]

\[= \frac{1800}{\beta} \pi 8^r \{(2r)^r + 2^r(34)^r\} \beta^{-1} \left(1 + |spt G|\right) \|G\|_\infty \left\| F_{f,G} \right\|_{C(R)} \]

\[\leq 1800\pi 8^r \{(2r)^r + 2^r(34)^r\} \beta^{-1} \left(1 + |spt G|\right)^2 \|G\|_\infty^2 \left\| \left(I - T_{1/(2\sigma)}\right)^r f \right\|_{p(\cdot)} \]

\[\square \]

Proof of Theorem 3.27.

\[\Omega_r(f,\delta)_{p(\cdot)} = \left\| (I - T_\delta)^r f \right\|_{p(\cdot)} \leq \frac{24}{\beta} \left\| (I - T_\delta)^r F_f \right\|_{C(R)} = \frac{24}{\beta} \left\| (I - T_\delta)^r F_f \right\|_{C(R)} \]

\[\leq \frac{12}{\beta} \left(1 + 2^{2r-1}\right) 2^r \delta^r \left(A_0(F_f)_{C(R)} + \int_{1/2}^{1/\delta} u^{r-1} A_{u/2}(F_f)_{C(R)} du \right) \]

\[\leq \frac{12}{\beta} \left(1 + 2^{2r-1}\right) 2^r \left(1 + |spt G|\right) \|G\|_\infty \left(1 + 144 \left(1 + |spt G|\right) \beta^{-1} \|G\|_\infty \right) \times \]

\[\times \delta^r \left(A_0(f)_{p(\cdot)} + \int_{1/2}^{1/\delta} u^{r-1} A_{u/2}(f)_{p(\cdot)} du \right) \]

because

\[A_{2\sigma}(F_{f,G})_{C(R)} \leq \left\| F_{f,G} - V_\sigma F_{f,G} \right\|_{C(R)} = \left\| F_{f,G} - V_\sigma f \right\|_{C(R)} \]

\[\leq (1 + |spt G|) \|G\|_\infty \left\| f - V_\sigma f \right\|_{p(\cdot)} \]

\[= (1 + |spt G|) \|G\|_\infty \left\| f - g_\sigma + g_\sigma - V_\sigma f \right\|_{p(\cdot)} \]

\[\leq (1 + |spt G|) \|G\|_\infty \left(\left\| f - g_\sigma \right\|_{p(\cdot)} + \| V_\sigma g_\sigma - V_\sigma f \right\|_{p(\cdot)} \]

\[\leq (1 + |spt G|) \|G\|_\infty \left(\left\| f - g_\sigma \right\|_{p(\cdot)} + 144 (1 + |spt G|) \beta^{-1} \|G\|_\infty \| g_\sigma - f \right\|_{p(\cdot)} \]

\[= (1 + |spt G|) \|G\|_\infty \left(1 + 144 (1 + |spt G|) \beta^{-1} \|G\|_\infty \right) A_{\sigma}(f)_{p(\cdot)} . \]

\[\square \]
Proof of Theorem 3.21 Let g_σ be an exponential type entire function of degree $\leq \sigma$, belonging to $L^{p(\cdot)}$, as best approximation of $f \in L^{p(\cdot)}$. Then
\[
\Omega_r(f, t)_{p(\cdot)} = \|(I - T_t)^r f\|_{p(\cdot)} \leq \frac{24}{\beta} \|F(I - T_t)^r f\|_{C(R)} = \frac{24}{\beta} \|(I - T_t)^r F f\|_{C(R)}
\]
\[
\leq \frac{24}{\beta} 10\pi \left(1 + 2^{2r-1}\right) 2^{2r+3k} C_3 (r + k) t^r \int_t^1 \|F(I - T_t)^{r+k} f\|_{C(R)} du
\]
\[
= \frac{24}{\beta} 10\pi \left(1 + 2^{2r-1}\right) 2^{2r+3k} C_3 (r + k) t^r \int_t^1 \|F(I - T_t)^{r+k} f\|_{C(R)} du
\]
\[
\leq \frac{24}{\beta} 10\pi \left(1 + 2^{2r-1}\right) 2^{2r+3k} C_3 (r + k) \left(1 + |spt G|\right) \|G\|_\infty t^r \int_t^1 \frac{\|F(I - T_t)^{r+k} f\|_{p(\cdot)} du}{u^{r+1}}
\]
\[
= \frac{24}{\beta} 10\pi \left(1 + 2^{2r-1}\right) 2^{2r+3k} C_3 (r + k) \left(1 + |spt G|\right) \|G\|_\infty t^r \int_t^1 \Omega_{r+k} (f, t)_{p(\cdot)} du.
\]

Proof of Theorem 3.22 Proof of (8.13) is similar to that of proof of Theorem 3.21.

References

[1] F. Abdullaev, S. Chaichenko, M. İmaş Kızı, and A. Shidlich, Direct and inverse approximation theorems in the weighted Orlicz-type spaces with a variable exponent, Turk. J. Math., 44 (2020), No: 1, 284-299.

[2] F. Abdullaev, A. Shidlich and S. Chaichenko, Direct and inverse approximation theorems of functions in the Orlicz type spaces, Math. Slovaca, 69 (2019), No:6, 1367-1380.

[3] F. Abdullaev, N. Özkaratepe, V. Savchuk and A. Shidlich, Exact constants in direct and inverse approximation theorems for functions of several variables in the spaces S_p, FILOMAT, 33 (2019), No:5, 1471-1484.

[4] N. I. Ackhiezer, Theory of approximation, Fizmatlit, Moscow, 1965; English transl. of 2nd ed. Frederick Ungar, New York, 1956.

[5] R. Akgün, Approximation of Functions of Weighted Lebesgue and Smirnov Spaces, Mathematica (Cluj), Tome 54 (77), No: Special (2012), pp. 25-36.

[6] R. Akgün, Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces, Proc. A. Razmadze Math. Inst., 152 (2010), pp. 1-18.

[7] R. Akgün, Inequalities for one sided approximation in Orlicz spaces, Hacet. J. Math. Stat., 40 (2011), No: 2: pp. 231-240.

[8] R. Akgün, Some convolution inequalities in Musielak Orlicz spaces, Proc. Inst. Math. Mech., NAS Azerbaijan, 42 (2016), No: 2, 279-291.

[9] R. Akgün, Weighted norm inequalities in Lebesgue spaces with Muckenhoupt weights and some applications to operators, [arXiv:1709.02928v4 [math.CA]].

[10] R. Akgün; A. Ghorbanalizadeh, Approximation by integral functions of finite degree in variable exponent Lebesgue spaces on the real axis, Turk. J. of Math. 42, (2018), no. 4, 1887–1903.

[11] A.H. Avşar and H. Koç, Jackson and Stechkin type inequalities of trigonometric approximation in $A^{p,\theta}_{p(\cdot)}$, Turk J Math 42 (2018), No:6, 2979-2993.

[12] A.H. Avşar and Y.E. Yildirir, On the trigonometric approximation of functions in weighted Lorentz spaces using Cesaro submethod, Novi Sad J. Math. 48 (2018), No. 2, 41-54.
[13] C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, *Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals*, J. Math. Anal. Appl. 316 (2006), No: 1, 269-306.

[14] C. Benneth and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129, Academic Press, Boston, 1988.

[15] S.N. Bernstein, *Sur la meilleure approximation sur tout l’axe reel des fonctions continues par des fonctions entieres de degre n. I*, C.R. (Doklady) Acad. Sci. URSS (N.S.) 51 (1946), 331-334.

[16] S. N. Bernstein, Collected works, M. Vol. I, Izdat. Akad. Nauk SSSR, Moscow, 1952., 11-104.

[17] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces, Foundations and Harmonic Analysis, Birkhauser, Applied and Numerical Harmonic Analysis, 2013.

[18] D. Cruz-Uribe, A. Fiorenza, *Approximate identities in variable Lp spaces*, Mathematische Nachrichten, 280 (2007), No:3, 256-270.

[19] R. A. Devore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, (1993).

[20] L. Diening, P. Harjulehto, P. Haso and M. Růžička, *Lebesgue and Sobolev spaces with variable exponents*, Lecture Notes in Math., vol. 2017, Springer, Berlin, Heidelberg, 2011.

[21] L. Diening, M. Růžička, *Calderon–Zygmund operators on generalized Lebesgue spaces Lp(x)* and problems related to fluid dynamics, preprint, Mathematische Fakultät, Albert-Ludwings-Universität Freiburg, 21/2002, 04.07.2002, 1-20, 2002.

[22] Z. Ditzian, *Inverse theorems for functions in Lp and other spaces*, Proc. Amer. Math. Soc. 54 (1976), No:1, 80-82.

[23] Z. Ditzian and K. G. Ivanov, *Strong converse inequalities*, Journal d’Analyse mathematique 61 (1993), 61-111.

[24] A. Dogu, A.H. Avsar and Y.E. Yildirir, *Some inequalities about convolution and trigonometric approximation in weighted Orlicz spaces*, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Volume 44 (2018), No: 1, 107-115.

[25] D. P. Dryanov, M. A. Qazi, and Q. I. Rahman, *Entire functions of exponential type in Approximation Theory*, In: Constructive Theory of Functions, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2003, pp. 86-135.

[26] X. Fan and D. Zhao, *On the spaces Lp(x) and Wm,p(x) (Ω)*, J. Math. Anal. Appl. 263 (2001), No:2, 424-446.

[27] A. Guven and D.M. Israfilov, *Trigonometric approximation in generalized Lebesgue spaces Lp(x)*, J. Math. Inequal. 4 (2010), no. 2, 285–299.

[28] H. Hudzik, *On generalized Orlicz–Sobolev space*, Funct. Approximatio Comment. Math. 4 (1976), 37-51.

[29] I.I. Ibragimov, Teoriya priblizheniya tselymi funktsiyami. (Russian) [The theory of approximation by entire functions] "Elni", Baku, 1979. 468 pp.

[30] S.Z. Jafarov, *Linear Methods for Summing Fourier Series and Approximation in Weighted Orlicz spaces*, J. Math. Anal. Appl. 346 (2008), No:2, 489-500.

[31] S.Z. Jafarov, *Approximation by trigonometric polynomials in subspace of variable exponent grand Lebesgue spaces*, Global Journal of Mathematics, 8 (2016), No: 2, 836-843.

[32] S. Z. Jafarov, *Ul’yanov type inequalities for moduli of smoothness*, Applied Mathematics E-Notes, 12 (2012), 221-227.

[33] S. Z. Jafarov, S. M. Nikolskii type inequality and estimation between the best approximations of a function in norms of different spaces, Math. Balkanica (N.S.) 21 (2007), no. 1-2, 173-182

[34] D. M. Israfilov and R. Akgün, *Approximation by polynomials and rational functions in weighted rearrangement invariant spaces*, J. Math. Anal. Appl. 346 (2008), No:2, 489-500.

[35] D. M. Israfilov and A. Testici, *Approximation problems in the Lebesgue spaces with variable exponent*, Journal of Mathematical Analysis and Applications 459 (2018), No:1, 112-123.

[36] D. M. Israfilov and E. Yirtici, *Approximation by Faber–Laurent rational functions in Lebesgue spaces with variable exponent*, Indag. Mat. 27 (2016), No:4, 914-922.

[37] D. M. Israfilov and E. Yirtici, *Convolutions and best approximations in variable exponent Lebesgue spaces*, Math. Reports 18(68) (2016), No:4, 497-508.

[38] H. Koc, *Simultaneous approximation by polynomials in Orlicz spaces generated by quasiconvex Young functions*, Kuwait J. Sci. 43 (2016); No:4, 18-31.
[39] V. Kokilashvili and S. G. Samko, *Singular integrals weighted Lebesgue spaces with variable exponent*, Georgian M. J., 10 (2003), No: 1 145-156.

[40] Z. O. Kováčik and J. Rákosník, *On spaces $L^{p(x)}$ and $W^{k,p(x)}$*, Czechoslovak Math. J. 41(116) (1991), No: 4, 592-618.

[41] B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc. 165 (1972), 207-226.

[42] F.G. Nasibov, *Approximation in L_2 by entire functions.* (Russian) Akad. Nauk Azerbaidzhan. SSR Dokl. 42 (1986), No: 4, 3-6.

[43] S. M. Nikolskii, *Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of several variables*, Amer. Math. Soc. Transl. Ser. 2, 80 (1969), 1-38, (Trudy Mat. Inst. Steklov 38 (1951), 211-278).

[44] A.A. Ligun and V.G. Doronin, *Exact constants in Jackson-type inequalities for the L_2-approximation on a straight line*. Translation in Ukrainian Math. J. 61 (2009), No: 1, 112-120.

[45] W. Orlicz, *Über konjugierte Exponentenfolgen*, Studia Math. 3 (1931), 200-212.

[46] R. Paley and N. Wiener, *Fourier Transforms in the Complex Domain*, Amer. Math. Soc., 1934.

[47] V. Yu. Popov, *Best mean square approximations by entire functions of exponential type*. (Russian) Izv. Vysš. Ucebn. Zaved. Matematika.; 121 (1972), No: 6, 65-73.

[48] K. R. Rajagopal and M. Růžička, *On the modeling elektroreological materials*, Mech. Res. Commun. 23 (1996), No: 4, 401-407.

[49] M. Růžička, *Electrorheological Fluids: Modeling and Mathematical Theory*, Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000.

[50] S. Samko, *Differentiation and integration of variable order and the spaces $L^{p(x)}$, in: Operator theory for complex and hypercomplex analysis* (Mexico City, 1994), 203–219, Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998.

[51] I. I. Sharapudinov, *The topology of the space $L^{p(x)}([0,1])$, (Russian)* Mat. Zametki 26 (1979), No:4, 613-632.

[52] I. I. Sharapudinov, *Some questions in the theory of approximation in Lebesgue spaces with variable exponent*, Southern Institute of Mathematics of the Vladikavkaz Scine Centre of the Russian Academy of Sciences and the Goverment of the Republic of North Ossetia-Alania, vol. 5, Vladikavkaz 2012, 267 pp. Russian.

[53] A.F. Timan, *Theory of approximation of functions of a real variable*. Translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34, The Macmillan Co., New York: A Pergamon Press Book. 1963.

[54] M.F.Timan, *The approximation of functions defined on the whole real axis by entire functions of exponential type*. Izv. Vyssh. Ucebn. Zaved. Mat. 2 (1968), 89-101.

[55] R. Taberski, *Approximation by entire functions of exponential type*, 1981, Demonstr. Math. 14 (1981), 151-181 .

[56] R. Taberski, *Contributions to fractional calculus and exponential approximation*, 1986, Funct. Approximatio, Comment. Math. 15 (1986), 81-106 .

[57] S. S. Volosivets, *Approximation of functions and their conjugates in variable Lebesgue spaces*, Sbornik: Mathematics, 208 (2017), No:1, 44-59.

[58] J. Yeh, *Real analysis: theory of measure and integration*, 2nd ed., 2006.

[59] V. V. Zhikov, *Averaging of functionals of the calculus of variations and elasticity theory*, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), No: 4, 675-710 (in Russian).