Supporting Information

Dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors containing the morpholine group: Synthesis and biochemical investigations

Rani Sasidharana, Bo Hyun Eomb#, Jeong Hyun Heob#, Mohamed A Abdelgawadc,d, Arafa Musae,f, Nicola Gambacortag, Orazio Nicolottig, Sreedharannair Leelabaiamma Manjuh*, Bijo Mathewi and Hoon Kimb*

aCollege of Pharmaceutical Science, Government T.D. Medical College, Alappuzha, Kerala, India.
bDepartment of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
cPharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Al jouf 72341, Saudi Arabia.
dPharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef university, Beni Suef 62514, Egypt.
eDepartment of Pharmacogonosy, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia.
fDepartment of Pharmacogonosy, Al-Azhar University, Cairo-11371, Egypt.
gDipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, via E. Orabona, 4, I-70125 Bari, Italy.
hOrganic Chemistry Division, SAS, VIT University, Vellore, Tamil Nadu, India.
iDivision of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India.

#Authors contributed equally.

*Corresponding Authors:

Hoon Kim (H. Kim) (hoon@sunchon.ac.kr)
Bijo Mathew (B. Mathew) (bijovilaventgu@gmail.com) (bijo.mathew@ahalia.ac.in)
S. L. Manju (Manju S.L.) (slmanju@vit.ac.in)
Table of Contents

Spectral Characterization of the synthesized compounds.. S1

Copies of NMR and Mass spectra .. S2

MuSSel prediction of the lead molecules.. S3
Spectral Characterization of the synthesized compounds

(2E)-1-[4-(morpholin-4-yl)phenyl]-3-phenylprop-2-en-1-one (MO1): 1H-NMR (500 MHz, DMSO) δ: 3.34–3.33 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 3.75–3.74 (4H, t, J = 5.0 Hz, morpholine O-(CH$_2$)$_2$), 7.04–7.02 (2H, d, H3’ & H5’), 7.45–7.43 (3H, m, H3, H4 & H5), 7.69–7.65 (1H, d, J = 15.0 Hz, -CHα), 7.88–7.87 (2H, d, H2&H6), 7.94–7.91 (1H, d, J = 15.0 Hz, -CHβ), 8.09–8.07 (2H, d, H2’&H6’). 13C-NMR (500 MHz, DMSO) δ: 186.46, 153.99, 142.14, 134.90, 130.46, 130.10, 128.76, 128.53, 127.39, 122.10, 112.97, 65.75, 46.62. ESI-MS (m/z): Calculated- 293.3596, Observed-293.3593.

(2E)-3-[4-hydroxyphenyl]-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO2): 1H-NMR (500 MHz, DMSO) δ: 3.32–3.31 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 3.74–3.73 (4H, t, J = 5.0 Hz, morpholine O-(CH$_2$)$_2$), 6.43 (1H, s, Ar-OH), 7.03–7.01 (2H, d, H3’ & H5’), 7.46–7.44 (2H, m, H3 & H5), 7.66–7.63 (1H, d, J = 15.0 Hz, -CHα), 7.87–7.86 (2H, d, H2&H6), 7.96–7.93 (1H, d, J = 15.0 Hz, -CHβ), 8.10–8.08 (2H, d, H2’&H6’). 13C-NMR (500 MHz, DMSO) δ: 186.88, 153.32, 142.44, 134.65, 130.22, 130.11, 128.86, 128.63, 127.59, 122.50, 112.47, 65.65, 46.82. ESI-MS (m/z): Calculated- 309.3590, Observed-309.3592.

(2E)-3-[4-methoxyphenyl]-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO3): 1H NMR (500 MHz, DMSO) δ: 3.33–3.32 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 3.75–3.73 (4H, t, J = 5.0 Hz, morpholine O-(CH$_2$)$_2$), 3.82 (3H, s, OCH$_3$), 7.03–7.02 (2H, d, H3’ & H5’), 7.01–7.00 (2H, m, H3, & H5), 7.66–7.63 (1H, d, J = 15.0 Hz, -CHα), 7.81–7.78 (1H, d, J = 15.0 Hz, -CHβ), 7.84–7.82 (2H, d, H2&H6), 8.07–8.05 (2H, d, H2’&H6’). 13C-NMR (500 MHz, DMSO) δ: 186.38, 160.89,
ESI-MS (m/z): Calculated- 323.3856, Observed-323.3853.

(2E)-3-(4-methylphenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO4): 1H NMR (500 MHz, DMSO) δ: 2.35 (3H, s, OCH$_3$), 3.33–3.32 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 3.75–3.74 (4H, t, J = 5.0 Hz, morpholine O-(CH$_2$)$_2$), 7.04–7.02 (2H, d, H3’ & H5’), 7.27–7.25 (2H, m, H3 & H5), 7.65–7.62 (1H, d, J = 15.0 Hz, -CHα), 7.77–7.75 (2H, d, H2&H6), 7.88–7.85 (1H, d, J = 15.0 Hz, -CHβ), 8.08–8.06 (2H, d, H2’&H6’).
13C-NMR (500 MHz, DMSO) δ: 186.46, 153.93, 142.20, 140.06, 132.17, 130.38, 129.38, 128.58, 127.50, 121.03, 112.97, 65.75, 46.64, 20.96.
ESI-MS (m/z): Calculated- 307.3862, Observed-323.3860.

(2E)-3-(4-dimethylamino)phenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO5): 1H NMR (500 MHz, DMSO) δ: 2.99 (6H, s, (NCH$_3$)$_2$), 3.32–3.31 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 6.75–6.73 (2H, d, H3’ & H5’), 7.02–7.00 (2H, m, H3 & H5), 7.19–7.16 (1H, d, J = 15.0 Hz, -CHα), 7.62–7.61 (2H, d, H2&H6), 7.68–7.65 (1H, d, J = 15.0 Hz, -CHβ), 8.04–8.02 (2H, d, H2’&H6’).
13C-NMR (500 MHz, DMSO) δ: 186.26, 153.65, 151.60, 143.26, 130.30, 130.01, 128.19, 122.25, 116.24, 113.02, 111.66, 65.7, 46.76, 41.16. ESI-MS (m/z): Calculated- 336.4274, Observed-336.4272.

(2E)-3-(4-ethylphenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO6): 1H NMR (500 MHz, DMSO) δ: 1.12-1.18 (3H, t, J = 10.0 Hz, CH$_3$), 2.67-2.65 (2H, q, J = 10.0 Hz, CH$_2$), 3.34–3.33 (4H, t, J = 5.0 Hz, morpholine -N-(CH$_2$)$_2$), 3.75–3.74 (4H, t, J = 5.0 Hz, morpholine O-(CH$_2$)$_2$), 7.04–7.02 (2H, d, H3’ & H5’), 7.30–7.28 (2H, m, H3 & H5), 7.67–7.64 (1H, d, J = 15.0 Hz, -CHα), 7.79–7.77 (2H, d, H2&H6), 7.89–7.86 (1H, d, J = 15.0 Hz, -CHβ), 8.08–8.06 (2H, d,
\(^{13}\)C-NMR (500 MHz, DMSO) \(\delta\): 186.48, 153.94, 146.41, 142.23, 132.45, 130.39, 128.68, 128.21, 127.15, 121.11, 112.98, 65.76, 46.65, 28.02, 15.27.

ESI-MS (m/z): Calculated-321.4128, Observed-321.4125.

\((2E)-1-[4-(morpholin-4-yl)phenyl]-3-(4-nitrophenyl)prop-2-en-1-one (MO7)\): \(^1\)H NMR (500 MHz, DMSO) \(\delta\): 3.35–3.34 (4H, t, \(J = 5.0\) Hz, morpholine -N-(CH\(_2\))\(_2\)), 3.76–3.75 (4H, t, \(J = 5.0\) Hz, morpholine O-(CH\(_2\))\(_2\)), 7.05–7.03 (2H, d, H3' & H5'), 7.75–7.72 (1H, d, J = 15.0 Hz, -CH\(\alpha\)), 8.11–8.09 (2H, d, H2'&H6'), 8.14–8.11 (1H, d, J = 15.0 Hz, -CH\(\beta\)), 8.16–8.14 (2H, m, H3 & H5), 8.28–8.26 (2H, d, H2&H6). \(^{13}\)C-NMR (500 MHz, DMSO) \(\delta\): 186.07, 154.18, 147.72, 141.51, 139.33, 130.72, 129.54, 126.97, 126.27, 123.79, 112.91, 65.74, 46.53.

ESI-MS (m/z): Calculated-338.3578, Observed-338.3570.

\((2E)-3-(4-chlorophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO8)\): \(^1\)H NMR (500 MHz, DMSO) \(\delta\): 3.34–3.33 (4H, t, \(J = 5.0\) Hz, morpholine -N-(CH\(_2\))\(_2\)), 3.75–3.74 (4H, t, \(J = 5.0\) Hz, morpholine O-(CH\(_2\))\(_2\)), 7.04–7.02 (2H, d, H3' & H5'), 7.52–7.50 (2H, d, H2'&H6'), 7.66–7.63 (1H, d, J = 15.0 Hz, -CH\(\alpha\)), 7.92–7.90 (2H, d, H2&H6), 7.97–7.94 (1H, d, J = 15.0 Hz, -CH\(\beta\)), 8.09–8.07 (2H, m, H3 & H5). \(^{13}\)C-NMR (500 MHz, DMSO) \(\delta\): 186.29, 154.02, 140.65, 134.51, 133.89, 130.51, 130.26, 129.90, 128.77, 127.26, 122.88, 112.88, 65.74, 46.58.

ESI-MS (m/z): Calculated-327.8047, Observed-327.8045.

\((2E)-3-(4-bromophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (MO9)\): \(^1\)H NMR (500 MHz, DMSO) \(\delta\): 3.34–3.33 (4H, t, \(J = 5.0\) Hz, morpholine -N-(CH\(_2\))\(_2\)), 3.75–3.74 (4H, t, \(J = 5.0\) Hz, morpholine O-(CH\(_2\))\(_2\)), 7.04–7.02 (2H, d, H3' & H5'), 7.64–7.61 (1H, d, J = 15.0 Hz, -CH\(\alpha\)), 7.66–7.64 (2H, d, H2'&H6'), 7.85–7.83 (2H, d, H2&H6), 7.98–7.95 (1H, d, J = 15.0 Hz, -CH\(\beta\)),
8.09–8.07 (2H, m, H3, H3 & H5). 13C-NMR (500 MHz, DMSO) δ: 186.28, 154.01, 140.72, 134.20, 131.67, 130.49, 130.47, 127.23, 123.34, 122.12, 112.91, 65.72, 46.55. ESI-MS (m/z):

Calculated- 372.2557, Observed-372.2554.
MO-1
1H_8scan DMSO (D:\Spectra) nmr 6
MO-1
1H_8scan DMSO (D:\Spectra) nmr 6
MO-3
1H_8scan DMSO [D:\Spectra] nmr 7
MO-3
1H_8scan DMSO (D:\Spectra) nmr 7

Current Data Parameters
NAME D
PROCNO PROCNO
F2 - Acquisition
Date_ Date
Time Time
INSTRUM Avance
PROBhd 21194
PULPROG
TD
SOVENT
NS
DS
SWH
FIRRES
AQ
RG
DS
DE
TE
DI 1
TDO
SPOL 50
NUCL
P0
P1
PLN1 22
F2 - Processing
SI
SF
WDN
SGB 0
LB
GB 0
PC

8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 ppm
1H_8scan DMSO (D:\Spectra) nmr 7
MO-3
C13CPD DMSO (D:\Spectra) nmr 7

BRUKER
AVANCE NEO
500 MHz NMR SPECT
SAIF, PANJAB UNIV
CHANDIGARH

Current Data Parameters
NAME: Dec24-2019
ENTNO: 71
PROCNO: 1

F1 - Acquisition Parameters
DATE: 20191224
TIME: 15:08 h
INSTRUM: Avance Neo 500
PFBID: 2119470_0333
FULLPROG: zgpm30
TD: 65536
SOLVENT: DMSO
DD: 512
DE: 4
SWF: 37037.035 Hz
FTCRS: 1.130281 Hz
AQ: 0.885760 se
RG: 101
C1W: 13.500 us
DE: 6.50 us
TE: 298.3 K
D1: 2.00000000 se
D11: 0.03000000 se
ISO: 1
SC2: 125.7804233 MHz
NOC1: 1.3C
F0: 3.33 us
F1: 10.00 us
FLM1: 79.56098701 W
SC2: 500.1720007 MHz
NOC2: 1H
CPDPG[2]: 50.00 us
CPD2: 60.00 us
FLM2: 22.02300072 W
FLM12: 0.94411001 W
FLM13: 0.17308000 W

F2 - Processing parameters
SF: 37568
SF: 125.7679421 MHz
WDW: 64
SUB: 0
LB: 1.00 Hz
GB: 0
CT: 1.40
MO-4
1H_8scan DMSO (D:\Spectra) nmr 8
MO-5
1H_8scan DMSO [D:\Spectra] nmr 9
MO-6
1H_8scan DMSO (D:\Spectra) nmr 10
1H_8scan DMSO (D:\Spectra) nmr 10
MO-6
Cl3CPD DMSO {D:\Spectra} nmr 10

BRUKER
AVANCE NEO
500 MHz NMR SPECT
SAIF, PANJAB UNIV
CHANDIGARH

Current Data Parameters
NAME Dec24-2019
KMPDS 101
FREQNO 1

F2 - Acquisition Parameters
Date_ 2019-12-24
Time_ 16:35 h
INSTRUM Avance Neo 500
FROBNED B119470_0033
FREQRED 9000 gHz
TD 68936
GDQENT DMSO
NS 163
CS 0
SNR 3037.035 Hz
FIDRSS 1.130281 Hz
AQ 0.6867360 sec
RO 101
DM 13.500 us
DE 6.50 us
TE 298.4 K
D1 2.00000000 sec
D11 0.33000000 sec
D2 2
SFO1 128.78045333 MHz
DCO1 13C
F0 3.33 us
P1 10.00 us
FLM1 79.56079701 W
SFO2 500.1220070 MHz
DCO2 1N
CPDPRG12 waltz65
PCD2 80.00 us
FLM2 22.02300072 W
FLM12 0.94411001 W
FLM15 0.17308000 W

F2 - Processing parameters
S2 32768
SF 128.7679178 MHz
GCW EM
SSB 0
LB 1.00 Hz
GB 0
WC 1.40
C13CPD DMSO (D:\Spectra) nmr 10
MO-7
1H_8scan DMSO (D:\Spectra) nmr 11

BRUKER
AVANCE NEO
500 MHz NMR SPE
SAIF, PAKISTAN UNIVERSITY OF CHEMICAL SCIENCES

Current Data File
NAME D1
EXPNO PROCNO

F2 - Acquisition
Date_ Time
INSTRUM Avance PROBHD 21194
PULPROG TD
SOLVENT NS
DS SNH
FIRES AQ
RG DS
DE TE
DI 1
TD0 SPO1 50
NUC1 P0 F1
PLN1 22

F2 - Processing
SI SF
WDN SB 0
LB GB 0
PC

8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 ppm
MO-7
1H_8scan DMSO (D:\Spectra) nmr 11
C13CPD DMSO (D:\Spectra) nmr 11
C13CPD DMSO {D:\Spectra} nmr 12
MuSSel prediction of the lead molecules……………………………………………………………………S3

MuSSel prediction of the lead MO1

Position	Target	Score	Reliability	Similar
1	Calpain 2: Sus scrofa	91.683 %	YES	1
2	Caspase-3: Homo sapiens	75.868 %	YES	5
3	Sentrin-specific protease 7: Homo sapiens	75.868 %	YES	5
4	Sentrin-specific protease 8: Homo sapiens	75.868 %	YES	5
5	Sentrin-specific protease 6: Homo sapiens	75.868 %	YES	5
6	Glycogen synthase kinase-3 beta: Homo sapiens	60.719 %	YES	3
7	Arachidonate 5-lipoxygenase: Rattus norvegicus	57.694 %	YES	5
8	Cathepsin L: Homo sapiens	50.677 %	YES	5
9	Cathepsin B: Homo sapiens	50.677 %	YES	5
10	DNA-dependent protein kinase: Homo sapiens	45.533 %	NO	4
11	Protein skinhead-1: Caenorhabditis elegans	44.933 %	NO	7
12	Protein-tyrosine phosphatase 1B: Homo sapiens	40.958 %	NO	5
13	Monoamine oxidase B: Homo sapiens	40.916 %	NO	7
14	Acetylcholinesterase: Homo sapiens	39.023 %	NO	7
15	Integrase: Human immunodeficiency virus 1	37.149 %	NO	4
16	Heat shock protein Hsp-16.2: Caenorhabditis elegans	34.073 %	NO	1
17	Beta Lactamase: Pseudomonas aeruginosa	34.060 %	NO	7
18	PI3-kinase p110-delta subunit: Homo sapiens	34.007 %	NO	2
19	PI3-kinase p110-gamma subunit: Homo sapiens	34.007 %	NO	2
20	PI3-kinase p110-beta subunit: Homo sapiens	34.007 %	NO	2
MuSSel prediction of the lead MO5

Position	Target 1	Target 2	Score	Reliability	Similar	Score 2	Reliability	Similar
1	Calpain 2: Sus scrofa		86.747% (11.277)	YES	1			
2	Senlin-specific protease 6: Homo sapiens		65.432% (8.506)	YES	5			
3	Senlin-specific protease 8: Homo sapiens		65.432% (8.506)	YES	5			
4	Caspase-3: Homo sapiens		65.432% (8.506)	YES	5			
5	Senlin-specific protease 7: Homo sapiens		65.432% (8.506)	YES	5			
6	Arachidonate 5-lipoxygenase: Rattus norvegicus		53.401% (6.942)	YES	4			
7	Monoamine oxidase B: Homo sapiens		47.277% (6.146)	YES	9			
8	Protein-tyrosine phosphatase 1B: Homo sapiens		46.935% (6.102)	YES	3			
9	Cathepsin L: Homo sapiens		44.673% (5.807)	NO	6			
10	Cathepsin B: Homo sapiens		44.673% (5.807)	NO	7			
11	Beta Lactamase: Pseudomonas aeruginosa		43.832% (5.698)	NO	7			
12	Acetylcholinesterase: Electrophorus electricus		43.187% (5.614)	NO	9			
13	Monoamine oxidase A: Homo sapiens		42.763% (5.559)	NO	5			
14	Protein skinhead-1: Caenorhabditis elegans		41.656% (5.415)	NO	6			
15	Acetylcholinesterase: Homo sapiens		39.220% (5.099)	NO	8			
16	Cyclooxygenase-2: Homo sapiens		38.388% (4.990)	NO	5			
17	Toll-like receptor 9: Homo sapiens		37.371% (4.858)	NO	6			
18	Quinolone resistance protein norA: Staphylococcus aureus		35.691% (4.640)	NO	3			
19	Glycogen synthase kinase-3 beta: Homo sapiens		34.780% (4.521)	NO	3			
20	Cholinesterase: Equus caballus		34.515% (4.487)	NO	8			