AVIAN ESCHERICHIA COLI INFECTION IN MEAT-TYPE CHICKEN: PREVALENCE AND PATHOLOGY

Q. A. Shah¹, N. M. Soomro², J. M. Shah³, M. A. Hussain¹ and S. F. Syed¹

¹Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
²Faculty of Veterinary Medicine, University of Poonch, Rawala Kot Azad Jammu and Kashmir
³Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan

ABSTRACT

Avian colibacillosis is considered the major bacterial disease in the poultry industry worldwide. This study was conducted to determine prevalence and pathology by avian pathogenic Escherichia coli (APEC) in broiler chicken. Various organs of affected broilers were checked for the E. coli infection. One hundred and forty commercial poultry farms were divided into seven age groups (A, B, C, D, E, F, and G). Group A (1⁰ week), B (2⁰ week), C (3⁰ week), D (4⁰ week), E (5⁰ week), F (6⁰ week), and G (7⁰ to 9⁰ week). Investigations were conducted from day 1 until the marketing of birds based on clinical findings. A total of 2491 (23.71% of sick birds) dead birds were observed positive for E. coli infection. Three forms of infection were observed i.e. omphalitis, colisepticaemia, and colibacillosis at the rate of 1.55, 17 and 56.65% respectively. Omphalitis was confirmed by microbial culture and revealed in only groups A and B with 76.24 and 23.76 respectively. While, Colisepticaemia was observed at the rate of 3.11, 6.74, 20.18, 29.67, 19.20, 26.70, 16.11 and 28.55% in groups A, B, C, D, E, F, and G respectively. Whereas Colibacillosis was noticed as 0.075, 3.35, 5.99, 19.20, 26.70, 16.11 and 28.55% in groups A, B, C, D, E, F, and G respectively. Petechiation of heart, kidney, and gizzard besides hemorrhagic enteritis, hemorrhagic tracheitis, and necrotic foci on the liver and caseous exudates in air sacs were the prime gross lesions noticed in colibacillosis. Microscopically, no lesion was observed in serosa, muscularis externa, and submucosa. However, loss of epithelial tissue and breaches in the mucosal layer of the small intestine were observed. Furthermore, characteristic pink and grayish colonies were observed in E. coli cultures on McConkey's and Blood agar respectively.

Keywords: broiler, Escherichia coli, infection, pathology, prevalence

INTRODUCTION

The poultry industry, as a source of animal proteins for a balanced human diet, occupies an important place in the sphere of food production. The results of this study indicated that colibacillosis is highly prevalent in the study area; these observations raise serious concern and prompt attention and thus a huge economic could be reduced significantly and problematic aspects (i.e. under feeding and malnutrition) are directly related to the health of the nation. Pakistan commercial poultry is an important and significant contributor in livestock share in GDP that has added 1809 (000 tons) of meat, and 21, 285 millions eggs in FY 2021 as well as a major source of employment to almost 8 millions throughout the country (GoP, 2021). Producing more eggs and meat by growing more poultry can combat the shortage of protein requirement by the cheapest available source of animal protein through filling the gap of protein availability as the poultry have a rapid growth rate and low generation gap as compared to other livestock.

Avian Pathogenic Escherichia coli (E. coli) cause severe economic losses in the animal and poultry industry by increasing morbidity and mortality rate as well as reducing the production of the animals. It causes a variety of infections through pan systemic involvement of various vital systems of the body. Amongst, colibacillosis is associated with respiratory and intestinal infections; it causes extra intestinal disease in humans and mammals. Infections progress to many other organs as salpingitis, peritonitis, cellulitis, perihepatitis, polyserositis, septicemia, and death (Dho-Moulin, 1999; Barnes 2003; Jeong et al., 2012; Awad et al., 2016).

© 2021, Sindh Agriculture University, Tandojam (http://pjaaevs.sau.edu.pk/index.php/ojs)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Various studies on Epidemiological and prevalence of E. coli infection described have been reported earlier in calves, pigs, ducks and turkeys. These findings revealed the prevalence of positive strains. These investigators found this infection as the most significant bacterial disease in poultry worldwide (Harel et al., 1991; Dozois et al., 1992, Dozois et al., 1997; Stordeur et al., 2002). E. coli, the predominant organism isolated from number of lesions in various avian studies showed reduced weight gain, poor feed conversion, down grading of carcasses and condemnation at slaughter, infection of soft tissues as well initiating cellulitis particularly in the broiler (Baracho et al., 2006).

Clinically E. coli infection is the most devastating disease that it consequences huge mortality, culling, treatment costs; infected birds show dissemination of infection. Several researchers have revealed purulent inflammation of avian lungs, presence of apoptotic cells. They also found dullness and depression with an elevation of temperature, in appettence, diarrhea, cyanosis, salpingitis and peritonitis in layers, infection of the reproductive tract, perirehepatitis, pericarditis, damaged lymphatic organs and immune function. (Barnes, et al., 2008; Horn et al., 2012; Landman et al., 2013; Pors et al., 2014; Sun et al., 2015; Jia et al., 2017). Since, Avian E. coli infections are ubiquitous and widely spread in Pakistan and cause heavy economic losses to the poultry farmers. Thus, this study aimed to determine the prevalence and pathology produced by avian pathogenic Escherichia coli in different age groups of broiler in the surroundings of Karachi, Pakistan.

MATERIALS AND METHODS

Prevalence of infection in broiler chicken

The investigations were carried out to record the prevalence of E. coli infections in different age groups of broilers at different commercial poultry farms in surroundings of Karachi, Pakistan. To observe the pathogenesis in different age groups of chicks, 140 commercial broiler poultry farms were visited; the disease was investigated from day first up to the marketing. Total number of farms (140) was divided into seven groups (A, B, C, D, E, F and G), each group having twenty broiler poultry farms (comprising 1000-7000 chicks). Group-A represents the age group from day 1 to day 7 (1st week), from 08 to 14 days in group B (2nd week), from 15 to 21 days in group C (3rd week), 22 to 28 days in group D (4th week), 29 to 35 days in group E (5th week), 36 to 42 days in group F (6th week) and from day 43 up to marketing in group G, respectively.

Gross pathological observations

During the visits, a postmortem of dead birds was conducted, the lesions observed were recorded and positive samples were collected and preserved in 10% formal saline solution and brought to the Post Graduate Pathological Laboratory of the Department.

Histopathological observations

To determine the histopathological changes, collected samples were processed with ascending grades of ethyl alcohol (starting from 30% to absolute) for dehydration. Then the sample was cleared in xylene and embedded in paraffin wax. After embedding the tissues were cut in 4-5µ section size. Ribbons were placed in the hot water bath to get rid of the wrinkle formation. These sections were mounted on slides and stained with Hemotoxyline and Eosin. These slides were then examined for histopathological changes.

Media prepared for isolation of E. coli

Commercially available McConkey’s agar was prepared by mixing 0.5 grams of McConkey’s agar with 100 ml distilled water in conical flask. A homogenous mixture was obtained by gently mixing and heating on the hot plate. The mixture was cooled at the room temperature, pH was adjusted at 7.4, (by adding NaOH and NaHCO3), autoclaved at 15 lbs. pressure at 121°C for 15 minutes, after autoclaving, the medium was cooled at 50°C and then 15ml was distributed into sterilized petri dishes.

Blood agar base

Commercially available Blood Agar media was used for the culture of E. coli. Media consisted Lab-Lemco Powder 10 gms, Peptone 10 gms, NaclO 5 gms, and Agar 15 gms. Forty grams of blood agar base medium was dehydrated in 1000 ml of distilled water and after mixing the pH of medium was adjusted at 7.3. Then the medium was autoclaved for 15mm at 121°C under 15 lbs pressure. After cooling at 50°C about 10% fresh defibrinated sheep blood was added and subsequently distributed into petridishes. After solidification the plates were incubated for 24 hrs at 37°C for the sterility of the medium. The sterile blood agar plates were used for primary isolation of E. coli.

Culture of sample

The samples from infected yolk and liver with E. coli were collected from different chicks and
cultured by sterilized platinum loop into the McConkey’s nutrient agar and blood agar and incubated for 24 hours at 37°C for characteristic and morphological observations. The study was conducted at Central Veterinary Research and Diagnostic Laboratory, Tandojam.

RESULTS
The systematic investigations were carried out to record the prevalence of *E. coli* infections in the boiler at commercial poultry farms in the surroundings of Karachi. The period of studies lasted five months. During the period, 140 commercial poultry broiler farms were visited to confirm the disease.

Prevalence of *E. coli* infections
During the study period, the prevalence of *E. coli* infections was recorded at various broiler farms. The highest rate of prevalence was found in group E (33.2%), followed by group G (27.7%), whereas, the prevalence of *E. coli* infection was observed as 14.6%, 13.6%, 17.7%, 27.5%, and 26.9% in groups A, B, C, D and F respectively (Table 1).

Table 1. Prevalence of *E. coli* in different groups

Groups	Total No. of birds reared	No. of Sick Birds (%)	No. of Positive Birds (%)
A 1st Week	12500	996 (7.99%)	146 (11.65)
B 2nd Week	15000	1499 (9.99%)	204 (13.60)
C 3rd Week	15700	1587 (10.10%)	282 (17.76)
D 4th Week	14000	1620 (11.57%)	447 (27.59)
E 5th Week	12000	1675 (13.95%)	557 (33.23)
F 6th Week	14600	1490 (10.42%)	401 (26.91)
G 7th Week	17000	1637 (9.62%)	454 (27.73)
Grand Total	100860	10504 (10.42%)	2491 (23.71)

Gross pathology
Gross pathological lesions varied at different broiler farms comprising the birds of various age groups. The lesions observed in different organs indicated higher infarction of *E. coli* in birds of the 5th week and subsequently decreased in older birds as indicated in (Table 2).

Table 2. Specific lesions were observed in various age groups infected with *E. coli*

Form of Infection	Specific Lesions observed	Groups	Total
1. Omphalitis and its forms 1.1 Mushy	Unabsorbed yolk, congested blood vessels, and panophthalmitis	A 215 B 15 C 1 D 62 E 63 F 217 G 230	148 185 905
2. Colisepticaemia	2.1 Fibrinous pericarditis	A - B - C - D - E - F - G -	312
	2.2 Fibrinous Pericarditis	A - B - C - D - E - F - G -	335
	2.3 Air Sacculitis	A - B - C - D - E - F - G -	511
	3. Enteritis	A 5 B 33 C 59 D 225 E 323 F 202 G 294	1141
	3.2 Necrotic foci on liver	A - B - C - D - E - F - G -	934
	3.3 Hemorrhages on heart	A - B - C - D - E - F - G -	487
	3.4 Tracheitis	A - B - C - D - E - F - G -	1259
	3.5 Nephritis	A - B - C - D - E - F - G -	310
	3.6 Nephrectomy	A - B - C - D - E - F - G -	312
	4. Colibacillosis	A - B - C - D - E - F - G -	420
	4.1 H.P.S	A - B - C - D - E - F - G -	896
	4.2 N.D.	A - B - C - D - E - F - G -	189
	4.3 B.D.	A - B - C - D - E - F - G -	329
	4.4 Coccioidosis	A - B - C - D - E - F - G -	332
	4.5 Water belly (Ascites)	A - B - C - D - E - F - G -	312
	4.6 C.R.D	A - B - C - D - E - F - G -	312

Group A represents 1st week, B 2nd Week, C 3rd Week, D 4th Week, E 5th Week, F 6th Week, and G7th up to marketing.

Omphalitis
The maximum rate of infection was observed in group A with 76.24% and minimum in group B with 23.76% whereas, omphalitis was not seen in other groups (Table 3). The gross lesions observed were panophthalmitis, unabsorbed yolk, congestion of the small intestine, and necrotic foci in the liver (Figure 3A and 3B).

Colisepticaemia
The maximum rate of infection 29.63% was observed in group E whereas, minimum of 3.11% in group B while no infection was observed in group A. However, the rate of infection in other groups was as 22.18, 20.18, 18.63 and 6.74% were seen in group G,D,F and C respectively (Table 3).

The gross pathological lesions about colisepticaemia were observed in certain visceral organs such as the liver, heart, and air sacs. The most common lesions were fibrinous perihepatitis, hepatomegaly with pale-colored necrotic foci, fibrinous pericarditis along clotted blood present in the heart, the air sacs were found inflamed due to presence of caseous exudates.

Colibacillosis
The maximum rate of infection was observed in group G as 28.55% whereas, the minimum was 0.075% in group A. However, the rate of infection was 26.70, 19.20, 16.11, 5.99, and 3.35 in group E, D, F, and B respectively as shown in (Table 3).
Table 3. Rate of infections observed in various forms of *E. coli* in different age groups

Form of Infection (Omphalitis and its form)	Specific Lesions observed	Groups with Percentage	No. of birds examined
Types Mushy	Unabsorbed yolk, congested blood vessels and panophthalmitis	A 76.24 B 23.76 C - D - E - F - G -	125
Naval ill infection		A 13 B 28 C 3.11 D 6.74 E 112 F 20.18 G 29.63 H 159 I 18.63 J 168 K 22.18	1988
Colisepticaemia	Emaciation	A 13 B 62 C 63 D 217 E 230 F 148 G 185	1
Colibacillosis		A 5 B 33 C 3.35 D 59 E 5.99 F 225 G 19.20 H 323 I 26.70 J 202 K 16.11 L 294 M 28.55 N 6623	1
Colibacillosis		A 3.2 Enteritis 5 B 39 C 71 D 228 E 192 F 173 G 231	1
Colibacillosis		A 3.3 Necrotic foci on liver 39 B 23 C 139 D 179 E 43 F 83	1
Colibacillosis		A 3.4 Hemorrhages on heart 50 B 73 C 207 D 297 E 171 F 327	1
Colibacillosis		A 3.5 Tracheitis 50 B 74 C 160 D 280 E 185 F 331	1
Colibacillosis		A 3.6 Nephritis 50 B 74 C 160 D 280 E 185 F 331	1
Colibacillosis		A 3.7 Osteodystrophy 50 B 74 C 160 D 280 E 185 F 331	1
Colibacillosis		A 3.7 Petechiation of Gizzard 50 B 74 C 160 D 280 E 185 F 331	1

Group A represents 1st week, B 2nd Week, C 3rd Week, D 4th Week, E 5th Week, F 6th Week, and G 7th up to marketing.

Figure 3. Various pathological conditions caused by *E. coli* in broiler chicken. Figure 3A shows panophthalmitis in day-old chick. Figure 3B shows classical postmortem signs for omphalitis due to *E. coli*. Figure 3C and D, Shows hemorrhagic tracheitis and enteritis respectively, severe hemorrhages can be observed. Figure 3E and F, represent cultural characteristics of *E. coli* in the broiler on blood agar and McConkey’s agar. Figure 3G represents the morphology of *Escherichia coli* after successful culture and Figure 3H shows disruption of villus due to *E. coli* in a histological study (H and E, magnification 40X).
The gross pathological lesions varied in different visceral organs in the case of colibacillosis which included necrotic foci and hemorrhages in the liver, hemorrhagic patches in both the heart and gizzard. The kidney was also inflamed and in some cases showed necrotic lesions in the peripheral region. Gall bladder was enlarged and distended in some of the cases, whereas in some cases, the lesions of C.R.D were associated (Table 3) with hemorrhagic tracheitis (Figure 3C), hemorrhagic enteritis (Figure 3D) along with the lesions of mixed infections (Table 3). In general, colibacillosis with 56.65% was noticed as maximum, whereas, colisepticaemia with 17% was observed as a minimum. While other associated diseases with 24.80% and omphalitis with 1.55% were 2nd and 3rd week respectively (Table 4).

Table 4. Rate of infection in various types of *E. coli* along with mixed infection

Disease	No. of Lesions observed	Percentage
Omphalitis	181	1.55
Colisepticaemia	1,988	17.00
Colibacillosis	6,623	56.65
Escherichia coli and other infections	2,899	24.80
Grand Total	**11,691**	**100**

Histopathological observations

There was no any histopathological lesion observed in serosa, muscularis externa and submucosa but the lesions in the mucosa revealed loss of epithelial tissue along with desquamation (Figure 3H), leukocytic infiltration of necrotic foci were found in liver, heart, and kidney.

Cultural and morphological characteristics of *Escherichia coli*

The morphological study was conducted by culturing the specimens on different media revealed either singly or paired colonies with pinkish, small, circular, smooth, translucent, and convex colonies on McConkey's agar and grey-white (Figure 3E), glistening circular with convex colonies on blood agar (Figure 3F).

DISCUSSION

One hundred forty commercial broiler farms were surveyed to record the prevalence of *E. coli* infections in the surroundings of Karachi Pakistan. The studies were carried out to record the infection of *E. coli* in different age groups of birds from day one up to the marketing. The infection rate was recorded as 14.6%, 13.6%, 17.7%, 27.5%, 33.2%, 26.9% and 27.7% in group A,B,C,D,E,F and G, respectively.

The gross pathological lesions varied in different organs of various age groups. Omphalitis was observed as 76.2% in group A and 23.7% in group. Colisepticaemia as 3.1%, 6.7%, 21.1%, 18.1%, and 22.1% in birds of group B, C, D, E, F, and G, while in group A, Colisepticaemia was not observed. Whereas colibacillosis was found in all groups as 0.07% in A,3.3% in B, 5.9% in C,19.2%, in D, 26.7% in E,16.1% in F, and 28.5% in G groups of birds. The specific macroscopic lesions observed in the case of omphalitis included unabsorbed yolk material (sac) congested intestinal mucosa along with panophthalmitis whereas in the case of colisepticaemia there were fibrinous pericarditis, perihepatitis, and air sacculitis. While, in the case of colibacillosis, gross lesions observed were petechiation in the heart, kidney and gizzard besides enteritis tracheitis and necrotic foci in liver and caseous exudate in air sacs. Histopathological lesions revealed congestion, degenerative changes in the intestine, and leukocytic infiltration in liver, heart and kidneys with sometimes necrotic foci especially in the heart. Based on the observed lesions, the form of colibacillosis in the current study could be a hepatic form of colibacillosis. Histopathological lesions in the intestine, lungs and liver, were also identified by previous studies (Gosh et al., 2006; Talha et al., 2001; Riaz et al., 2016).

Colibacillosis is a contagious disease of chicken caused by *E. coli* (Barnes et al., 2008), it is classified as one of the major causes of an increase in morbidity and mortality rate in commercial farms, consequently leading to large economic losses to the poultry farming through its association with other diversified diseases, as a primary or secondary pathogen (McPeake et al., 2005; Tonu et al., 2012; Mbanga and Nyararai 2015).

Avian colibacillosis noticed to be a major infectious disease in all age birds, and has various local and systemic symptoms. The current study agrees with previous findings, in our finding various lesions were found in the liver, intestine and lungs. Died chicks showed postmortem signs for omphalitis intestinal hemorrhagic with tracheitis and enteritis respectively with severe hemorrhages observed. The poor flock performance and managements practices correlated with increased early
mortality rates in broiler forms, Histopathological observations in the present study had similarities to observations earlier (Barnes et al., 2008; Riaz et al., 2016).

In conclusion, the results of this study confirm the prevalence of avian pathogenic \textit{E. coli} in the field, based on morphological and histological lesions and cultural findings. The economic and poultry health burden of this disease emphasizes the effective surveillance and control measures to reduce economic losses inflicted to the farmer due to this hazard.

Novelty statement

We report that no such data have been published earlier and this is first ever report on natural infection of Avian \textit{Escherichia coli} in Pakistan. This data will prove to be complete data on Avian \textit{Escherichia coli} in meat-type chicken from day 1, up to marketing.

AUTHOR'S CONTRIBUTION

\textbf{Q. A. Shah}: Executed the experiment, data collection, analysis and overall manuscript write-up

\textbf{N. M. Soomro}: Helped in the development of experiment and generation of the data

\textbf{J. M. Shah}: Provided technical support in data and sample collection from the study area

\textbf{M. A. Hussain}: Helped in data collection

\textbf{S. F. Sayed}: Helped in data collection and culture of \textit{E. coli} (Prevalence)

CONFLICT OF INTEREST

There is conflict of interest among authors.

REFERENCES

Awad, A., N. Arafat and M. Elhadidy. 2016. Genetic elements associated with antimicrobial resistance among avian pathogenic \textit{Escherichia coli}. Annals of Clinical Microbiology and Antimicrobials, 15 (1): 1-8.

Baracho, M. S., G. A. Camargo, A. M. C. Lima, J. F. Mentem, D. J. Moura, J. Moreira and I. A. Nääs. 2006. Variables impacting poultry meat quality from production to pre-slaughter: A review. Revista Brasileira de Ciência Avícola, 8 (4): 201-212.

Barnes, H. J., J. P. Vaillancourt, W. B. Gross and Y. M. Saif. 2003. Colibacillosis. Diseases of Poultry. 11th Ed. Ames Iowa State Press, pp. 631-656.

Barnes, H. J., L. K. Nolan, J. P. Vaillancourt, Y. M. Saif, A. M. Fadley, J. R. Glisson, L. R. McDougald, L. K. Nolan and D. Swayne. 2008. Colibacillosis (Eds.). Diseases of Poultry. Iowa State Press, Ames, pp. 691-732.

Dho-Moulin, M. and J. M. Fairbrother. 1999. Avian pathogenic \textit{Escherichia coli} (APEC). Veterinary Research, 30 (2): 299-316.

Dozois, C. M., J. M. Fairbrother, J. O. S. E. E. Harel and M. A. R. C. Bosse. 1992. Pap- and pil-related DNA sequences and other virulence determinants associated with \textit{Escherichia coli} isolated from septicemic chickens and turkeys. Infection and Immunity, 60 (7): 2648-2656.

Dozois, C. M., S. Clément, C. Desautels, E. Oswald and J. M. Fairbrother. 1997. Expression of P, S, and F1C adhesions by Cytotoxic necrotizing factor 1-producing \textit{Escherichia coli} from septicemic and diarrheic pigs. FEMS Microbiology Letters, 152 (2): 307-312.

Ghosh, R. C., S. D. Hirpurkar and P. R. Suryawanshi. 2006. Concurrent colibacillosis and infectious bursal disease in broiler chicks. Indian Veterinary Journal, 83 (9): 1019-1020.

GoP, 2021. Economic Survey of Pakistan (Ministry of Finance, Government of Pakistan).

Harel, F., Daigle, S. Maiti, C. Desautels, A. Labigne and J. M. Fairbrother. 1991. Occurrence of pap-, sfa-, and afa-related sequences among \textit{F165-positive Escherichia coli} from diseased animals, FEMS Microbiology Letters, 82 (2): 177-182.

Horn, F., A. M. R. Corrêa, N. L. Barbieri, S. Glodde, K. D. Weyrauch and B. Kaspers. 2012. Infections with avian pathogenic and Fecal \textit{Escherichia coli} strains display similar lung histopathology and macrophage apoptosis. PLoS one, 7 (7): e41031.

Jeong, Y. W., T. E. Kim, J. H. Kim and H. J. Kwon. 2012. Pathotyping avian pathogenic \textit{Escherichia coli} strains in Korea. Journal of Veterinary Science, 13 (2): 145-152.

Jia, X., Q. Nie, X. Zhang, L. K. Nolan and S. J. Lamont. 2017. Novel micro RNA involved in host response to avian pathogenic \textit{Escherichia coli} identified by deep sequencing and integration analysis. Infection and Immunity, 85 (1): e00688-16.

Landman, W. J. M., A. Heuvelink and J. H. H. Van Eck. 2013. Reproduction of the \textit{Escherichia coli} peritonitis syndrome in laying hens. Avian Pathology, 42 (2): 157-162.
Mbanga, J. and Y. O. Nyararai. 2015. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with coli bacillosis in Bulawayo, Zimbabwe. Onderstepoort Journal of Veterinary Research, 82 (1): 1-8.

McPeake, S. J. W., J. A. Smyth and H. J. Ball. 2005. Characterization of avian pathogenic Escherichia coli (APEC) associated with Coli septicaemia compared to faecal isolates from healthy birds. Veterinary Microbiology, 110 (3-4): 245-253.

Pors, S. E., R. H. Olsen and J. P. Christensen. 2014. Variations in virulence of avian pathogenic Escherichia coli demonstrated by the use of a new in vivo infection model. Veterinary Microbiology, 170 (3-4): 368-374.

Riaz, A. M., A. Aslam, M. Rehman and T. Yaqub. 2016. Pathological Investigation and Molecular Detection of Avian Pathogenic E. coli Serogroups in Broiler Birds. Journal Veterinary Science Technology, 7: 373.

Stordeur, P., D. Marlier and J. Blanco. 2002. Examination of Escherichia coli from poultry for selected adhesin genes important in disease caused by mammalian pathogenic Escherichia coli. Veterinary Microbiology, 84 (3): 231-241.

Sun, H., P. Liu, L. K. Nolan and S. J. Lamont. 2015. Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics, 16 (1):1-15.

Talha, A. F. S. M., M. M. Hossain, E. H. Chowdhury, A. S. M. Bari, M. R. Islam and P. M. Das. 2001 Poultry diseases occurring in Mymensingh district of Bangladesh. The Bangladesh Veterinarian, 18 (1): 20-23.

Tonu, N. S., M. A. Sufian, S. Sarker, M. M. Kamal, M. H. Rahman and M. M. Hossain. 2012. Pathological study on colibacillosis in chickens and detection of Escherichia coli by PCR. Bangladesh Journal of Veterinary Medicine, 9 (1): 17-25.

(Received: September 29, 2021; Accepted: October 28, 2021)