Our survey of data collected in the Chromosome Number Database for Polish angiosperms indicated that the 1,498 species with chromosome counts represent 40% of the total angiosperms (3,719) occurring in Poland, including 1,205 native species (53% of native species) and 194 anthropophytes (56% of anthropophytes). The chromosome numbers are known for all native species occurring in Poland within 298 genera and 46 families, and for all anthropophytes from 79 genera and 11 families. The remaining angiosperm groups are less explored: chromosome counts from Poland are known for 9% of cultivated species and 5% of ephemerophytes. According to generic basic chromosome numbers, 46.44% of Polish angiosperms have been classified as polyploid. By three different threshold methods, the contribution of polyploid plants to the Polish flora is 64.64%, 50.89% or 42.89%. Polyploidy is more common among indigenous than non-indigenous plants, and the ploidy distribution among plants from the Polish Tatras does not differ significantly from that observed in the rest of native Polish plants.

Key words: Chromosome numbers, Polish flora, polyploidy, threshold method, mountain plants.

INTRODUCTION

Somatic chromosome number is one of the most basic and useful pieces of information in many areas of plant research. Significant progress in our knowledge of it has greatly facilitated the resolution of issues such as the origin, relationships, relative age and peculiar distribution of plant species. Chromosomes are not just part of the plant phenotype but also the hereditary elements and units of mutation and transmission. As a remarkably dynamic feature, chromosome numbers are particularly suited for tracking plant diversification and evolution. They may be successfully used, in combination with other features (e.g., habit, nuclear DNA amount, molecular markers), to construct phylogenetic trees, particularly in taxa with extensive variation in chromosome number (Cerbah et al., 1999; Watanabe et al., 1999; Ito et al., 2000; Lysak et al., 2005; Navajas-Perez et al., 2005; Hansen et al., 2006).

Karyological studies in Poland began in the 1940s under the guidance of Professor Maria Skalińska, and in the following decades were continued by a team in the Department of Plant Cytology and Embryology of the Jagiellonian University. The results obtained by this team and other Polish researchers have been reported in many co-written and individual papers and summarized in three publications (Skalińska and Pogan, 1973; Pogan and Wcisło, 1983, 1990). A synthetic review of the karyology of Polish angiosperms was made only once, by Eugenia Pogan in 1972. At that time the Polish flora was estimated at about 2,300 species, of which only 19% had chromosome counts (438 species). Narrower karyological syntheses were made for the flora of the Tatra Mts. (110 species, Skalińska, 1963) and Polish grasses (55 species, Frey, 1973; 313 species, Mizianty, 2003).

Many new chromosome records have been published since the last publication summarizing chromosome counts of Polish angiosperms (Pogan and Wcisło, 1990). For many plants the taxonomic and/or nomenclatural treatments have changed. This stimulated work on a new summary of chromosome numbers of Polish angiosperms, published in the form of the freely available Chromosome Number Database (Góralski et al., 2009, http://www.chromosomes.binoz.uj.edu.pl). This form of publication is easily searchable and open for additions as new data are received. The survey gives the taxonomic and nomenclatural treatments
recommended in the critical checklist of vascular plants in Poland (Mirek et al., 2002) without removing the original names used by particular authors.

The breadth of research examining the karyology of Polish angiosperms has allowed us to summarize certain karyological aspects of Polish flora, to list taxa not tested so far, and to recommend the main directions of future research. We also used the collected data to estimate the share of polyploids in the Polish flora and in particular groups of species. We hope that this summary will encourage researchers to complete the data on the chromosome numbers of Polish angiosperms at a time when chromosome counting is not as popular as it once was in this country.

MATERIALS AND METHODS

Data collected in the Chromosome Number Database were used to assess the ploidy level of Polish plants, with particular emphasis on native and permanently established species. In most cases it was possible to use information on the lowest somatic chromosome numbers (LSCN) reported within genera (Appendix 1 in electronic version). The data of this subject were obtained primarily from the Index to Plant Chromosome Numbers available at http://www.tropicos.org/Project/IPCN. The LSCNs that do not match the other chromosome numbers within the genus have been omitted in the ploidy estimates, such as 2n=10 recorded in Phleum echinatum (which in all other Phleum species is x=7), or 2n=18 in Sagittaria (x=11 for all other Sagittaria specimens analyzed so far).

The data on somatic chromosome number(s) allowed us to specify basic chromosome number(s) within genera and to calculate the exact ploidy levels (2x, 3x, 4x, and so on) of the majority of analyzed species. The basic numbers were additionally consulted with syntheses (Wanscher, 1934; Darlington and Janaki Ammal, 1945; Darlington and Wylie, 1955; Raven, 1975) and taxon-specific literature. For two records the chromosome numbers could not be clearly classified as polyploid or aneuploid on a particular ploidy level (Scopolia carnolioca 2n=46, Stachys silvatica 2n=66), making it difficult to estimate ploidy precisely; these species were analyzed only by the threshold methods described below.

Chromosome number data were further used to assess ploidy level by the threshold methods developed by Grant (1963), Goldblatt (1980) and Wood et al. (2009). The threshold value was set at n=14 or more (Grant 1963) or n=11 or more (Goldblatt 1980). According to Wood et al. (2009), species with a somatic chromosome number greater than or equal to 3.5 times the lowest haploid count of the host genus should be considered polyploid. We removed taxa known to possess holocentric chromosomes (Cyperaceae, Cuscuta, Luzula) from the analysis due to extensive chromosome changes which may lead to simultaneous fusion or fragmentation of individual chromosomes or even whole chromosome sets (Kuta et al., 2004; Hipp et al., 2009). Mutations of this kind have nothing to do with true ploidy changes and make it difficult to determine the original basic chromosome number within a genus.

Differences in the proportions of diploid and polyploid plants, or the proportions of diploid, polyploid and diploid/polyploid species in the compared datasets, were cross-tabulated (2×2 and 2×3 contingency tables) and analyzed with Pearson’s chi-square test.

RESULTS AND DISCUSSION

The present Chromosome Number Database comprises 3,387 records on the chromosome numbers of 1,498 species (records relating to the 17 taxa excluded from the actualized checklist were censored). This means that we have knowledge of the chromosome numbers of about 40% of Poland’s angiosperms. This is the estimate for all 3,719 species listed by Mirek et al. (2002) from Poland, including ephemorophytes, cultivated plants, and 6 species classified "doubtful". The proportion of native and permanently established species with known chromosome numbers is higher (see below).

As for the higher taxa, we have karyological data on 60.9% of the genera (26.7% in full and 34.2% in part) and 78% of the families (15.7% in full and 61.9% in part) (Tab. 1, Appendices 2, 3 in electronic version). There is little evidence of intraspecific karyological differentiation of Polish plants between areas of occurrence. Of the 344 taxa analyzed from the north (N) and south (S) of Poland, only two showed such variation: Cirsium arvense var. horridum (N – 2n=34,68; S – 2n=34) and Caltha f. radicans ssp. cornuta (N – 2n=32,56; S – 2n=32,48).

CHROMOSOME COUNTS OF NATIVE AND PERMANENTLY ESTABLISHED TAXA

From the standpoint of research on the structure and history of the Polish flora, the most important data concern the karyology of native species and permanently established anthropophytes (hereinafter, "anthropophytes"). This group of species determines the distinctiveness of our flora and hence deserve special attention. According to the checklist (Mirek et al., 2002), the Polish flora includes 2,256 native species and 344 anthropophytes. Chromosome counts were reported for 1,205 native species (53%) and 194
anthropophytes (56%). It can therefore be assumed that the sample size of our study provides a good taxonomic and ecological representation of these elements of the Polish flora.

The biggest challenge for the future will be to make chromosome counts of representatives of large apomictic genera. So far there has been significant progress in this respect only for *Rubus*, in which only 24% of the species (20 of 85) remain to investigate. A significant group among the 1,201 species without chromosome counts (1,051 native species and 150 anthropophytes; Appendix 4 in electronic version) are representatives of *Alchemilla* (46 species, 79%), *Hieracium* (86 species, 83%) and *Taraxacum* (259 species, 91%). Almost all of these species have been classified as native to the Polish flora.

In the most numerous and least-explored apomictic genus, *Taraxacum*, with the well defined basic chromosome number $x=8$ and dominated by triploid and tetraploid microspecies, attempts are being made to develop indirect methods of assessing ploidy level (Marciniuk et al., 2010a,b). Together with nuclear 2C DNA measurements they may provide an alternative to time-consuming chromosome counting. DNA estimations can also be helpful in determining ploidy in other agamospermous species (Trávníček et al., 2011) and in plants showing huge chromosome variation in root-tip tissues (Joachimiak et al. 2001).

It may be quite problematic to make an exhaustive examination of apomictic genera possessing many hardly recognizable microspecies. After
Family	NG Checklist	Genus	NG ChND	Genus
Asteraceae	110	Achillea Alstroemeria Anemone Asteriscus Bells Bidens Callistephus Carduus Carlina Carthamus Centaurea Chamomilla Chrysanthemum Cicerbita Chitorum Cirsiun Cnicus Coleostephanus Conyza Coreopsis Cosmos Crepis Crupina Dahlia Dendranthera Dimorphotheca Doronicum Echinacea Echinops Erichites Erigeron Eupatorium Filago Gaillardia Galinsoga Gazania Gnaophalius Guizotia Hedynopsis Helenium Helianthus Helichrysum Heliopsis Helipterum Hieracium Homogyne Hypochoeris Inula Iva Lactuca Lapsana Leonotodon Leontopodium Leucanthemum Liatris Ligularia Linosyris Matricaria Mycelis Onopordon Parthenium Petasites Picris Podospermum Prenanthes Pulicaria Pyrethrum Rhagadiolus Rudbeckia Santolina Saussurea Scotochrysos Scorzonera Senecio Serratula Silphium Solidago Sonchus Spilanthes Stokesia Tagetes Tanacetum Taraxacum Telekia Tragopogon Tussilago Verbascina Voluptaria Xanthium Xeranthemum Zinnia		
Balsaminaceae	1	Impatiens	1	Impatiens
Begoniaceae	1	Begonia	0	
Berberidaceae	3	Berberis Epimedium Mahonia	1	Berberis
Betulaceae	2	Alnus Betula	2	Alnus Betula
Bignoniaceae	2	Campsis Catalpa	0	
Boraginaceae	16	Alkanna Amsinckia Anchusa Asperugo Borago Cerithome Cynoglossum Echiium Heliotropium Lappula Lithospermum Myosotis Nonea Omphalodes Pulmonaria Symphytum	10	Anchusa Borago Cerinthe Cynoglossum Echiium Lithospermum Myosotis Omphalodes Pulmonaria Symphytum
Brassicaceae	55	Alliaria Alyssum Arabidopsis Arabis Armoracia Aubrietia Barbarea Berterea Biscutella Brassica Bunias Cakile Camelina Capsella Cardamine Cardaminopsis Cardaria Cheiranthus Chorispora Cochlearia Coincya Conringia Coronopus Crambe Dentaria Descarudianta Diplotaxis Draba Erophila Eruca Erucastrum Erysimum Euclidiun Hesperis Hirschfeldia Hutchinsonia Iberis Isatis Kernera Lepidium Lobularia Lunaria Malcolmia Matthiola Myagrum Nasturtium Neslia Raphanus Rapistrum Rhynchosinapis Rorippa Sinapis Sisymbrium Teesdalea Thlaspi	33	Alliaria Alyssum Arabis Armoracia Barbarea Berteroa Biscutella Brassica Bunias Cakile Cameline Capsella Cardamine Cardaminopsis Cochlearia Dentaria Descarudiantia Diplotaxis Draba Eruca Erysimum Hesperis Hutchinsonia Kernera Lepidium Lunaria Nasturtium Raphanus Rorippa Sinapis Sisymbrium Teesdalea Thlaspi
TABLE 1. Cont.

Families	NG Checklist	Genus	NG ChND	Genus
Buddlejaceae	1	Buddleia	0	
Butomaceae	1	Butomus	1	Butomus
Buxaceae	2	Buxus Pachysandra	0	
Caesalpinaceae	1	Gleditsia	1	Gleditsia
Callitricaceae	1	Callitriche	1	Callitriche
Calycanthaceae	1	Calycanthus	0	
Campanulaceae	6	Adenophora Campanula Jasion Legousia Phyteuma Platycedon	4	Adenophora Campanula Jasion Phyteuma
Cannabaceae	2	Cannabis Humulus	2	Cannabis Humulus
Cannaceae	1	Canna	0	
Capparaceae	1	Cleome	0	
Caprifoliaceae	7	Kolkwitzia Linnea Lonicera Sambucus Symphoricarpus Viburnum Weigela	5	Linnea Lonicera Sambucus Symphoricarpus Viburnum
Caryophyllaceae	30	Agrostemma Arenaria Celosia Cerasium Corrigiola Cucubalus Dianthus Gypsophila Heliosperma Herniaria Holosteuem Honckenya Illecebrum Lychnis Melandrium Miruaaria Moehringia Moenchia Myosoton Petrhoragia Polycarpon Sagina Saponaria Scleranthus Silene Spergula Spergularia Stellaria Vaccaria Viscaria	21	Agrostemma Arenaria Cerastium Cucubalus Dianthus Gypsophila Heliosperma Herniaria Honckenya Illecebrum Lychnis Melandrium Miruaaria Moehringia Moenchia Myosoton Petrhoragia Polycarpon Sagina Saponaria Scleranthus Silene Spergula Spergularia Stellaria Vaccaria Viscaria
Celastraceae	2	Celastrus Euonymus	1	Euonymus
Ceratophyllaceae	1	Ceratophyllum	1	Ceratophyllum
Cercidiphyllaceae	1	Cercidiphyllum	0	
Chenopodiaceae	13	Atriplex Axyris Bassia Beta Chenopodium Corispermum Halimione Kochia Polycenenum Salicornia Salsola Spinacia Suada	5	Atriplex Chenopodium Corispermum Kochia Salicornia
Cistaceae	1	Helianthemum	1	Helianthemum
Commelinaceae	2	Commelina Trasdecantia	0	
Convolulaceae	4	Calystegia Convolulus Ipomoea Merremia	2	Calystegia Convolulus
Cornaceae	1	Cornus	1	Cornus
Corylaceae	2	Carpinus Corylus	2	Carpinus Corylus
Crassulaceae	5	Crassula Jovibara Rhodiola Sedum Semprevium	1	Sedum
Cucurbitaceae	6	Bryonia Cucumis Cucurbita Echinocystis Sicyos Thalianta	4	Bryonia Echinocystis Sicyos Thalianta
Cuscutaceae	1	Cuscuta	1	Cuscuta
Cyperaceae	16	Baeothryon Blysmus Bulboschoenus Carex Cladium Cyperus Dichostylis Eleocharis Eleogiton Eriophorum Isolepis Rhynchospora Schoenoplectus Schoenus Scirpoides Scirpus	9	Blysmus Bulboschoenus Carex Eleocharis Eriophorum Isolepis Rhynchospora Schoenoplectus Scirpus
Dipsacaceae	7	Cephalaria Dipsacus Knautia Scabiosa Succisa Succisella Virga	4	Dipsacus Knautia Scabiosa Succisa
Family	NG Checklist	Genus	NG ChND	Genus
----------------------	--------------	------------------------	---------	------------------------
Droscurcaceae	2	Aldrovanda Drosera	2	Aldrovanda Drosera
Elaeagnaceae	2	Elaeagnus Hippophae	2	Elaeagnus Hippophae
Elatinaceae	1	Elatine	1	Elatine
Empertraccae	1	Empetrum	0	
Ericaceae	10	Andromeda Arctostaphylos Caltuna	3	Caltuna Oxyccoccus Rhododendron
		Chamaedaphne Erica Kalmia Ledum		
		Oxycoccus Rhododendron Vaccinium		
Euphorbiaceae	2	Euphorbia Mercurialis	2	Euphorbia Mercurialis
Fabaceae	40	Amorpha Anthyllis Arachis Astragalus	24	Anthyllis Astragalus Caragana
		Caragana Ceratonia Chamaeysirus		Caragana Ceratonia Chamaeysirus
		Cicer Colutea Coronilla Dorycnium		Cicer Colutea Coronilla Dorycnium
		Galega Genista Genistella Glycine		Galega Genista Genistella Glycine
		Gymnociadus Hedysarum Hippocris		Gymnociadus Hedysarum Hippocris
		Laburnum Lathyrsus Lembotopsis Lens		Laburnum Lathyrsus Lembotopsis Lens
		Lotus Lupinus Medicago Melilotus		Lotus Lupinus Medicago Melilotus
		Onobrychis Ononis Ornithopus		Onobrychis Ononis Ornithopus
		Oxytropis Phaseolus Pisum Robinia		Oxytropis Phaseolus Pisum Robinia
		Sarothamnus Tetragonolobus Trifolium		Sarothamnus Tetragonolobus Trifolium
		Trigonella Ulex Vicia Wisteria		Trigonella Ulex Vicia Wisteria
Fagaceae	3	Castanea Fagus Quercus	2	Fagus Quercus
Fumariaceae	3	Corydalis Dicentra Fumaria	1	Corydalis
Gentianaceae	4	Centaurium Gentiana Gentianella Swertia	4	Centaurium Gentiana Gentianella Swertia
Geraniaceae	3	Erodium Geranium Pelargonium	2	Erodium Geranium
Grossulariaceae	1	Ribes	1	Ribes
Haloragaceae	1	Myriophyllum	1	Myriophyllum
Hamamelidaceae	1	Hamamelis	0	
Hippocastanaceae	1	Aesculus	1	Aesculus
Hippuridaceae	1	Hippuris	1	Hippuris
Hydrangeaceae	1	Hydrangea	0	
Hydrocharitaceae	4	Elodea Hydilla Hydrocharis Stratiotes	3	Elodea Hydilla Hydrocharis
Hydrocotylaceae	3	Hydrocotyle Hydrophyllum Nemphila	1	Hydrocotyle
Hydrophylaceae	1	Phacelia	0	
Hypericaceae	1	Hypericum	1	Hypericum
Iridaceae	6	Crocosmia Crocus Gladiolus Iris Narcissus Sisyrinchum	3	Crocus Gladiolus Iris
Juglandaceae	3	Carya Juglans Pierocarya	1	Juglans
Juncaceae	2	Juncus Luzula	2	Juncus Luzula
Juncagnaceae	1	Triglochin	1	Triglochin
Lamiaceae	34	Acinos Ajuga Amethystea Ballota	22	Acinos Ajuga Ballota Betonica
		Betonica Calamintha Chaithurus		Betonica Calamintha Chaithurus
		Clinopodium Dracocephalum Elsholtzia		Clinopodium Dracocephalum Elsholtzia
		Galeobdolon Galeopsis Glechoma		Galeobdolon Galeopsis Glechoma
		Hyssopus Lamium Lavandula Leonurus Lycopus		Hyssopus Lamium Lavandula Leonurus Lycopus
		Marrubium Melissa Melittis Mentha Monarda Nepeta Oeicum		Marrubium Melissa Melittis Mentha Monarda Nepeta Oeicum
		Orgianum Physostegia Prunella Salvia Scutellaria Sideritis Stachys Teurcum Thymus		Orgianum Physostegia Prunella Salvia Scutellaria Sideritis Stachys Teurcum Thymus
Family	NG Checklist	Genus	NG ChND	Genus
-------------------	--------------	--------------------------------	---------	--------------------------------
Lemnaceae	3	Lemna Spirodela Wolffia	3	Lemna Spirodela Wolffia
Lentibulariaceae	2	Pinguicula Utricularia	2	Pinguicula Utricularia
Liliaceae	26	Allium Anthericum Asparagulus	15	Allium Anthericum Asparagulus
		Colchicum Convallaria Eremurus		Colchicum Convallaria Eremurus
		Erythronium Fritillaria Gagea		Erythronium Fritillaria Gagea
		Hemerocallis Hosta Hyacinthoides		Hemerocallis Hosta Hyacinthoides
		Hyacinthus Kniphofia Lilium		Hyacinthus Kniphofia Lilium
		Lloidia Maianthemum Muscari		Lloidia Maianthemum Muscari
		Ornithogalum Polygonatum Scilla		Ornithogalum Polygonatum Scilla
		Tulipa Streptopus Tofieldia		Tulipa Streptopus Tofieldia
		Tulipa Veratrum		Tulipa Veratrum
Linaceae	2	Linum Radiola	1	Linum
Lobeliaceae	1	Lobelia	1	Lobelia
Lorantheae	1	Viscum	1	Viscum
Lythraceae	2	Lythrum Peplis	2	Lythrum Peplis
Magnoliaceae	2	Liriodendron Magnolia	0	
Malvaceae	9	Abutilon Alcea Althaea Anoda	4	Althaea Lavatera Malope Malva
		Hibiscus Lavatera Malope Malva		Malva
Martyniaceae	1	Martynia	0	
Menyanthaceae	2	Menyanthes Nymphoides	2	Menyanthes Nymphoides
Monotropaceae	1	Monotropa	0	
Moraceae	2	Ficus Morus	1	Morus
Myricaceae	1	Myrica	0	
Najadaceae	1	Najas	1	Najas
Nyctaginaceae	2	Mirabilis Oxybaphus	0	
Nymphaeaceae	2	Nuphar Nymphaea	2	Nuphar Nymphaea
Oleaceae	4	Forsythia Fraxinus Ligustrum	3	Fraxinus Ligustrum Syringa
		Syringa		
Onagraceae	6	Chamaenerion Circeae Epilobium	4	Chamaenerion Circeae Epilobium
		Godetia Luduvigia Oenothera		Godetia Luduvigia Oenothera
Orchidaceae	24	Anacamptis Cephalanthera	14	Cephalanthera Coeloglossum
		Chamorhics Coeloglossum		Cephalanthera Coeloglossum
		Corallorhiza Cyripedium		Corallorhiza Cyripedium
		Dactylorhiza Epipactis Epipogium		Dactylorhiza Epipactis Epipogium
		Goodyera Gymnadenia Hammarbya		Goodyera Gymnadenia Hammarbya
		Herminium Leuconorhis Liparis Liparis		Herminium Leuconorhis Liparis Liparis
		Listera Neottia Ophrys Orchis		Listera Neottia Ophrys Orchis
		Orchis Platanthera Spirantes		Orchis Platanthera Spirantes
		Platanthera Traunsteinera		Platanthera Traunsteinera
Orobanchaceae	1	Orobanche	1	Orobanche
Oxalidaceae	1	Oxalis	1	Oxalis
Paeoniaceae	1	Paeonia	0	
Papaveraceae	5	Argemone Cheilodium Eschscholtzia	3	Cheilodium Glaucum Papaver
		Glaucum Papaver		
Parnassiacae	1	Parnassia	1	Parnassia
Philadelphaceae	2	Deutzia Philadelphus	0	
Plantaginaceae	2	Littorella Plantago	2	Littorella Plantago
Platanaceae	1	Platanus	0	
Plumbaginaceae	2	Armeria Limonium	1	Armeria Limonium
Family	NG Checklist	Genus		
--------------	--------------	--		
Poaceae	86	Aegilops Agropyron Agrostis Aira		
		Alopecurus Ammophila Anthoxanthum		
		Apera Arrhenatherum Avena Avenula		
		Beckmannia Bellardiocha Bothriochloa		
		Brachypodium Briza Bromus		
		Calamagrois Catabrosa Chloria Coix		
		Cortaderia Corynephorus Corynoda		
		Cynosurus Daetlylis Daetlyloctenium		
		Danthonia Dasyaerum Deschampsina		
		Desmazeria Digitaria Dinebra Echinocloa		
		Eleusine Elymus Eltygriga Erargostis		
		Eriochloa Festuca Gastridium Gaudinia		
		Glycera Hapnardea Heliotrichon		
		Hierochloë Holecus Hordelymus Hordeum		
		Koeleria Lagurus Leersia Lollum		
		Lophiocha Melica Millet Miseanths		
		Molinia Nardus Oreochoa Panicum		
		Paraphilus Paspalum Pennisetum Phalaris		
		Phleum Phlilus Phragmites Poa		
		Polypocon Pucinellia Schismus Sceloclooa		
		Sclerochoa Selce Sesleria Setaria Sorghum		
		Stipa Trisetum Triticum Ventenata Vulpia		
		xCalamomphila xFestubolium Zea		
Polemoniaceae	5	Cobaea Callomia Gilia Phlox Polemonium		
Polygalaceae	1	Polygala		
Polygonaceae	7	Fagopyrum Fallopia Oxyria Polygonum		
		Reynoutria Rheum Rumex		
Portulaceae	3	Calandrinia Montia Portulaca		
Potamogetonaceae	2	Groenlandia Potamogoton		
Primulaceae	13	Anagallis Androsace Centunculus		
		Cortusa Glauca Hotonia Lysimachia Primula Samolus Soldanella		
Proteaceae	1	Simia		
Pyrolaceae	4	Chimpisia Moneses Orthilia Pyrola		
Ranunculaceae	24	Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Ceratophyllum Cimicifuga		
		Clematis Convolvulus Delphinium Eranthis		
		Ficaria Helleborus Hepatica Isopyrum		
		Mjosurus Nigella Palsatilla Ranunculus Thalictrum Trollius		
Resedaceae	1	Reseda		
Rhamnaceae	3	Ceanothus Frangula Rhamnus		
Rosaceae	39	Acaena Agrimonia Alchemilla		
		Armeniaca Aruncus Cerasus		
		Chamaemes Comarum Cotoneaster		
		Crataegeus Cydonia Dryas Eocochorda		
		Filipendula Fragaria Geum Holodiscus		
		Kerria Laurocerasus Malus Mesophilus		
		Padus Persica Physocarpus Potentilla		
		Prunus Pyracantha Pyrus Rosa Rubus		
		Sanguisorba Silbaldia Sorbaria Sorbus		
		Spiraea Waldsteinia		
		Aegilops Agrostis Aira Alopecurus		
		Ammophila Anthoxanthum Apera		
		Arrhenatherum Avena Avenula		
		Bellardiocha Bothriochloa		
		Brachypodium Briza Bromus		
		Calamagrois Catabrosa		
		Corynephorus Cynosurus Daetlylis		
		Danthonia Deschampsia Digitaria		
		Echinocha Elymus Festuca Glycera		
		Hierochloë Holecus Hordelymus Hordeum		
		Koeleria Lagurus Leersia Lollum		
		Lophiocha Melica Millet Miseanths		
		Molinia Nardus Oreochoa Panicum		
		Panicum Phalaris Phleum Phragmites		
		Poa Pucinellia Sclerochoa Sesleria		
		Setaria Stipa Trisetum Vulpia		
		xCalamomphila xFestubolium Zea		
		Anagallis Androsace Centunculus		
		Cortusa Glauca Hotonia Lysimachia Primula Samolus Soldanella		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
		Chimpisia Moneses Orthilia Pyrola		
		Aconitum Actaea Adonis Anemone		
		Aquilegia Batrachium Callianthemen		
		Caltha Clematis Consolida		
		Delphinium Ficaria Helleborus		
		Hepatica Isopyrum Nigella		
		Ranunculus Thalictrum Trollius		
excluding these genera (Alchemilla, Hieracium, Taraxacum), 1,812 native species remain, of which 1,150 (63%) have established chromosome numbers. Among the large non-apomictic genera poorly researched so far, Carex, with 76 species lacking chromosome counts, deserves special attention.

Poland’s native flora is represented by 533 genera and 111 families; anthropophytes are listed among 176 genera and 46 families. The karyological data include chromosome numbers of native species from 448 genera and 104 families, and anthropophytes from 117 genera and 34 families.

Family	NG Checklist	Genus	NG ChND	Genus
Rubiaceae	5	Asperula Cruciat a Galium Rubia Sherardia	4	Asperula Crucia t a Galium Sherardia
Ruppiaceae	1	Ruppi a	0	Ruppi a
Rutaceae	5	Citrus Dicta mum Phellodendron Ptelea Ruta	1	Ruta
Salicaceae	2	Populus Salix	2	Populus Salix
Santalaceae	1	Thesium	1	Thesium
Saururaceae	1	Houttuynia	0	Houttuynia
Saxifragaceae	5	Astilbe Bergenia Chrysosplenium Heuchera Saxifraga	2	Chrysosplenium Saxifraga
Scheuchzeriaceae	1	Scheuchzeria	0	Scheuchzeria
Scrophulariaceae	25	Antirrhinum Bartsia Chaenorhinum Cymbalaria Digitalis Limosella Linaria Lindernia Melampyrum Mimus Misopates Odontites Orhantha Pedicularis Penstemon Rhinanthus Scrophularia Tozzia Verbascum Veronica	17	Bartsia Chaenorhinum Cymbalaria Digitalis Limosella Linaria Lindernia Melampyrum Mimus Misopates Odontites Orhantha Pedicularis Penstemon Rhinanthus Scrophularia Tozzia Verbascum Veronica
Simaroubaceae	1	Alant hus	0	Alant hus
Solanaceae	12	Atropa Capsicum Datura Hyoscyamus Lycium Lycopersicon Nicandra Nicotiana Physalis Salpiglossis Scopolia Solanum	6	Datura Hyoscyamus Lycium Physalis Scopolia Solanum
Sparganiaceae	1	Sparganium	1	Sparganium
Staphyleace	1	Staphylea	1	Staphylea
Tamaricaceae	1	Myricaria	1	Myricaria
Thymelaceae	2	Daphne Thymelaea	1	Daphne Thymelaea
Tiliaceae	1	Tilia	1	Tilia
Trapaceae	1	Trapa	1	Trapa
Trilliaceae	1	Paris	1	Paris
Tropaeolaceae	1	Tropaeolum	0	Tropaeolum
Typhaceae	1	Typha	1	Typha
Ulmaceae	1	Ulmus	1	Ulmus
Urticaceae	2	Parietaria Urtica	2	Parietaria Urtica
Valerianaceae	2	Valeriana Valerianella	1	Valeriana Valerianella
Verbenaceae	1	Verbena	1	Verbena
Violaeeae	1	Viola	1	Viola
Vitaceae	2	Parthenocissus Vitis	2	Parthenocissus Vitis
Zannichelliaceae	1	Zannichellia	1	Zannichellia
Zosteraceae	1	Zosteria	1	Zosteria
Zygodophyllaceae	2	Tribulus Zygodophyllum	0	Tribulus Zygodophyllum
Chromosome numbers are known for all native species listed in 298 genera and 46 families, and all anthropophytes from 79 genera and 11 families. We have no information on the chromosome numbers of any of the native species in 85 genera and 7 families, nor for the anthropophytes listed in 59 genera and 12 families. Most of the genera not examined on this respect contain 1–2(3) species, with the exception of *Euphrasia* (11 native species), *Pulsatilla* (6 native species), *Minuartia* (5 native species), *Sagina* (5 native species) and *Vaccinium* (4 native species). The same applies to unexplored families, with the exception of *Fumariaceae* (4 anthropophytes). Although plants belonging to karyologically unexplored genera/families in Poland represent a small share (9%) of native and permanently established anthropophyte species, they form a significant share (17%) of the plants without established chromosome numbers.

The data on chromosome numbers of native and permanently established taxa should be supplemented by direct chromosome counting in the Polish plants not studied so far. Only then will they be fully reliable and of use for summarizing the karyology and distinctiveness of the Polish flora. When possible, the data on taxa already in the Chromosome Number Database should be broadened to include plants collected from different localities in Poland. Currently the data on plants from the south (1,337 species) far outweigh the data from other areas (Fig. 1). This can be only partially explained by the higher species richness of southern Poland.

OTHER TAXA

The remaining angiosperms recorded from Poland are classified as cultivated species (534; "frequently cultivated and having the potential to establish permanently in the wild"), ephemerophytes (511), and extinct or probably extinct (40) (Mirek et al., 2002). The status of 33 species in Polish flora remains to be clarified, and 6 previously reported species are doubtful.

Almost all of those groups are insufficiently researched in Poland. Of the taxa with recognized statuses, the Chromosome Number Database contains only 9% (45) of the cultivated plants, 5% (25) of the ephemerophytes, and 8% (3) of the extinct or probably extinct species. Besides those, chromosome numbers are known for 64% (21) of the species with uncertain status. Among the doubtful species, only *Arum maculatum* has a record in the database.

Much remains to be done in terms of direct examination of Polish plants, but reliable data on the two largest poorly investigated groups of species (cultivated species and ephemerophytes) may be obtained from existing databases and the scientific literature. These species come from different, often remote areas, and presumably their chromosome numbers are unaffected by the fact of their presence in Poland. The data obtained indirectly will be a valuable supplement to the Chromosome Number Database. For chromosome counting, attention should focus on cultivated plants and ephemerophytes with completely unknown chromosome numbers and species showing diverse chromosome numbers, to determine which cytotype(s) occur in Poland. The species of interest are listed in Appendix 5 (in electronic version).

FREQUENCY OF POLYPLOID PLANTS

Polyploidy is the most common karyotype variation and a key factor in the formation of new vascular plant species (Stebbins, 1950, 1971; Levin, 2002). Polyploidization probably was also critical to the
The evolution of bryophytes (Przywara and Kuta, 1995; Kuta and Przywara, 1997). Despite the fundamental role of polyploidy in plant diversification, the frequency of polyploid speciation in angiosperms is still a debated issue (Otto and Whitton, 2000; Wood et al., 2009; Mayrose et al., 2011).

Polyploidy commonly is inferred when somatic chromosome numbers among related species follow a polyploid series (Stebbins, 1950), but this approach is questionable in the case of ancient polyploids (Otto and Whitton, 2000). For this reason, various indirect methods have been proposed, largely based on analysis of haploid chromosome numbers (Grant, 1963; Stebbins, 1971; Goldblatt, 1980; Masterson, 1994), guard cell size (Masterson, 1994) or molecular traces of ancient genome duplication (Lysak et al., 2005; Cui et al., 2006). Depending on the estimation method, the inferred proportion of polyploid taxa among angiosperms ranges from 30% to 80% (Bennett, 2004). A recent in-depth phylogenetic analysis indicates that almost all angiosperms underwent at least one polyploidization event in their evolutionary history (Soltis et al., 2009).

When polyploidy was calculated according to generic basic chromosome numbers, 46.44% of Polish angiosperm species with chromosome counts were inferred to be polyploid (possessing three or more basic chromosome sets). The rest of the plants showed diploid (49.45%) or diploid/polyploid chromosome numbers (4.11%). The difference in the shares of diploids and polyploids between native plants and anthropophytes is highly significant ($\chi^2=22.16$, $P<0.0001$, $N=1302$). On the other hand, anthropophytes do not differ in this respect from the rest of the non-indigenous Polish plants with established chromosome numbers ($\chi^2=0.03$, $P>0.8$, $N=288$). The differences do not change after diploid/polyploid species are included in the diploids or polyploids (data not shown).

The relatively high frequency of polyploid species presumably is a specific feature of Poland's indigenous flora. The frequencies obtained by the three threshold methods for native plants (67.58%, 53.46%, 47.22%) and anthropophytes (48.45%, 37.63% and 25.77%) confirmed the substantial difference between them. The higher share of polyploids in native plants may be related to the Quaternary history of Polish flora. The majority of them were recruited from nearby regions after the last deglaciation, whereas the anthropophytes arrived relatively recently. Arguing that polyploids were more successful than diploids in colonizing deglaciated areas, Brochman et al. (2004) demonstrated that in arctic plants the frequency of diploids is much higher among taxa restricted to the Atlantic (glaciated) than to the Beringian (non-glaciated) region.

Some authors have suggested that polyploids are better adapted for harsher environmental conditions than diploids are (Flovik, 1940; Brochmann et al., 2004; Nie et al., 2005, and references therein). Skalińska (1963), however, reported a relatively low proportion of polyploids (43.6%) in the Polish Tatras, based on chromosome counts of 110 taxa. Our estimates using the basic numbers for 228 species from that area showed 115 (50.44%) diploid, 107 (46.93%) polyploid and 6 (2.63%) diploid/polyploid species. A comparison with the rest of the native Polish plants with chromosome counts (417, 473 and 49 species, respectively) showed a nonsignificant difference between the Tatras and the rest of Poland ($\chi^2=4.51$, $P>0.1$, $N=1167$). This counterintuitive outcome is in accord with results Hadac (1989) gave for plants from two mountain valleys in the Slovak Tatras (51% and 53% diploids). Hadac suggested that high mountains could provide a favorable habitat for native diploids because "... high mountain plants could well survive [glaciation] in the mountain com-

TABLE 2. Ploidy distribution among Polish native species and anthropophytes (%)

	Diploids (2x)	Lower polyplids (3x, 4x)	Higher polyplids (5x-22x)	Diploid/polyploid	Mixed polyplids*
Native species (N=1167)	45.59	29.21	15.89	4.71	4.60
Anthropophytes (N=194)	64.95	21.56	10.26	2.13	1.10

* – lower and higher polyplids (e.g. 4× and 6×)
plex or in the adjacent tundra, and come back without losing contact with their original home. So the natural selection of less adapted forms was very slight and even diploids with a relatively narrow scale of adaptation could survive."

A study of the alpine flora of the Hengduan Mts. (Nie et al., 2005) based on 522 taxa belonging to 152 genera and 44 families showed a great prevalence of diploid taxa (78%). Moreover, the endemic species from this area (considered one of the world’s richest centers of endemism) were characterized by the lowest known share of polyploids (only 16%). In this context it is interesting to examine the frequency of polyploids among the endemic plants inhabiting Tatra Mts.

The Tatras are the northernmost center of endemism in Europe; there are 34 endemic and subendemic species (ESS) occurring in the Polish Tatras (Piękoś-Mirkowa et al., 1996). All of them except Melampyrum herbichii have chromosome records in Polish and/or Slovak chromosome number databases (http://www.binoz.uj.edu.pl;8080/ chromosomes/, Marhold et al., 2007 and http://www.chromosomes.sav.sk/). According to basic chromosome number, 11 of them are diploid, 21 polyploid, and 1 diploid/polyploid. Thus, in contrast to all Tatra plants, the share of polyploids within this group (63.64%) is extremely high. This value also differs radically from that observed in all arctic plants analyzed by Nie et al. (2005) for endemic species of the Hengduan Mts. On the other hand, the ploidy distribution (diploid – polyploid – diploid/polyploid) in ESS from the Polish Tatras does not differ significantly from that observed in all arctic plants analyzed by Brochman et al. (2004) ($\chi^2=2.78$, P>0.2, N=1752). In terms of the 5 zonal groups distinguished by Brochman and coworkers, ESS from the Tatra Mts. showed the greatest similarity to group 4, representing mainly arctic taxa with infrequent occurrence in boreal and/or temperate alpine areas ($\chi^2=0.56$, P>0.7, N=177). The difference in the proportion of polyploids between ESS (63.64%) and the rest of the plants from the Tatra Mts. (44.62%) probably is not conditioned environmentally. The lack of a direct link between polyploidy and habitat has been stressed by a number of authors (e.g., Ehrendorfer, 1980; Nie et al., 2005; Brochman et al. 2004).

This statistical survey showed a significant difference in the proportion of polyploids between indigenous and non-indigenous plants and between ESS and the rest of the plants inhabiting the Tatra Mts. Further studies on chromosome numbers and polyploidy in the different taxonomic, geographical and ecological elements of the Polish flora should yield more comprehensive data on the extent of karyological diversification among Polish angiosperms – and its possible causes.

REFERENCES

Bennett MD. 2004. Perspectives on polyploidy in plants – ancient and neo. *Biological Journal of the Linnean Society* 82: 411–423.

Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A-C, and Elven R. 2004. Polyploidy in arctic plants. *Biological Journal of the Linnean Society* 82: 521–536.

Cerbai M, Coulaud J, Brown SC, and Siljar-Yarovelj S. 1999. Evolutionary DNA variation in the genus Hypochaeris. *Heredity* 82: 261–266.

Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis P, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, and DePamphilis CW. 2006. Widespread genome duplications throughout the history of flowering plants. *Genome Research* 16: 738–749.

Darlington CD, and Janaki Ammal EK. 1945. *Chromosome Atlas of Cultivated Plants*. George Allen & Unwin Ltd., London.

Darlington CD, and Wylie AP. 1955. *Chromosome Atlas of Flowering Plants*. George Allen & Unwin Ltd., London.

Dobes C, and Viter E. 2000. *Documented Chromosome Number Checklist of Austria Vascular Plants*. Museum of Natural History, Vienna.

Ehrendorfer F. 1980. Polyploidy and distribution. In: Lewis WH [ed.], *Polyploidy: Biological Relevance*, 45–60. New York, Plenum Press.

Flovik K. 1940. Chromosome numbers and polyploidy within the flora of Spitzbergen. *Hereditas* 26: 430–440.

Frey L. 1973. Niekóre problemy z kariologii i systematyki traw w Polsce. *Wiadomości Botaniczne* 17: 151–161.

Grant V. 1963. *The Origin of Adaptations*. Columbia University Press, New York.

Goldblatt P. 1980. Polyploidy in angiosperms. In: Lewis WH [ed.], *Polyploidy: Biological Relevance*, 219–239. Plenum, New York.

Góralski G, Lubczynska P, and Joachimiak AJ. 2009 (onwards). Chromosome Number Database. http://www.chromosomes.binoz.uj.edu.pl.

Guerra M. 1984. New chromosome numbers in Rutaceae. *Plant Systenomics and Evolution* 146: 13–30.

Hadam E. 1989. Ecological significance of polyploidy in high mountain plants and plant communities. *Folia Geobotanica et Phytotaxonomica* 24: 51–56.

Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, and Jansen RK. 2006. Phylogenetic relationships and chromosome number evolution in *Passiflora*. *Systematic Botany* 31: 138–150.

Hasterok R, Draper J, and Jenkins G. 2004. Laying the cytogenetic foundations of a new model grass, *Brachypodium distachyon* (L.) Beauv. *Chromosome Research* 12: 397–403.

Hipp AL, Rothrock PE, and Roalson EH. 2009. The evolution of chromosome arrangements in *Carex* (Cyperaceae). *Botanical Review* 75: 96–109.

Holub J, Messick J, and Javurkova V. 1971. Annotated chromosome counts of Czechoslovak plants (16–30) (Materials for “Flora CSSR” – 3). *Folia Geobotanica et Phytotaxonomica* 7: 167–202.
Ito M, Yahara T, King RM, Watanabe K, Oshta S, Yokoyama J, and Crawford DJ. 2000. Molecular phylogeny of *Eupatoriaeae* (Asteraceae) estimated from cpDNA RFLP and its implication for the polyploid origin hypothesis of the tribe. *Journal of Plant Research* 113: 91–96.

Joachimiak A, Kula A, Śliwińska E, and Sobieszczanka A. 2001. C-banding and nuclear DNA amount in six *Bromus* species. *Acta Biologica Cracoviensia Series Botanica* 43: 105–115.

Kuta E, Bohanc B, Dubas E, Vizinin L, and Przywara L. 2004. Chromosome and nuclear DNA study on *Luzula* – a genus with holokinetic chromosomes. *Genome* 47: 246–256.

Kuta E, and Przywara L. 1997. Polyploidy in mosses. *Acta Biologica Cracoviensia Series Botanica* 39/1–2: 17–26.

Levin DA. 2002. *The Role of Chromosomal Change in Plant Evolution*. Oxford University Press, Oxford, New York.

Lysak MA, Koch MA, Peczka A, and Schubert I. 2005. Chromosome triplication found across the tribe *Brassicaceae*. *Genome Research* 15: 516–525.

Majovsky J, Murin A, Ferakova V, Hndakova M, Schwarzova T, Uhrikova A, Vachova M, and Zaborsky J. 1987. *Karyotaxonomicky Preh’lad Flory Slovenska*. VEDA, Bratislava.

Marciniuk J, Rerak J, Grabowska-Joachimiak A, Jastrzbi L, Musial K, and Joachimiak AJ. 2010a. Chromosome numbers and stomatal cell length in *Taraxacum* sect. *Palustria* from Poland. *Acta Biologica Cracoviensia Series Botanica* 52/1: 117–121.

Marciniuk J, Grabowska-Joachimiak A, and Marciniuk P. 2010b. Differentiation of the pollen size in five representatives of *Taraxacum* sect. *Palustria*. *Polish Botany* 65: 954–957.

Marhold K, Martin P, Mereda P, and Mraz P. [eds.]. 2007. *Chromosome Number Survey of the Ferns and Flowering Plants of Slovakia*. Veda, Bratislava.

Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of flowering plants. *Science* 264: 421–424.

Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Baker MS, Riesenberg LH, and Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333: 1257.

Miresk Z, Mike-Merkova H, Zajac A, and Zajac M. 2002. *Flowering Plants of Poland*. A Checklist. W. Szafir Institute of Botany, Polish Academy of Sciences, Kraków.

Mizianty M. 2003. *Karyology of grasses in Poland*. In: Fry L [ed.] *Problems of Grass Biology*, 51–69. W. Szafir Institute of Botany, Polish Academy of Sciences, Kraków.

Navajas-Perez R, de la Herran R, Lopez Gonzalez G, Jamilena M, Lozano R, Ruiz Rejon C, Ruiz Rejon M, and Garrido-Ramos A. 2005. The evolution of reproductive systems and sex-determining mechanisms within *Rumex* (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. *Molecular Biology and Evolution* 22: 1929–1939.

Nie Z-L, Wen J, Gu Z-J, Boufford DE, and Sun H. 2005. Polyploidy in the flora of the Hengduan Mountains hotspot, Southwestern China. *Annals of the Missouri Botanical Garden* 92: 275–306.

Otto SP, and Whitton J. 2000. Polyploid incidence and evolution. *Annual Review of Genetics* 34: 401–437.

Piiskir-Pikir H, Mirek Z, and Michowka A. 1996. Endemic vascular plants in the Polish Tatra *Mts*. *Polish Botanical Studies* 12: 1–107.

Pogan E. 1972. *Kariologia flory polskiej*. In: Szafer W and Zarzycki K [eds.]. *Szata Roslinna Polski*, vol. 1, 207–234. Państwowe Wydawnictwo Naukowe, Warszawa.

Pogan E, and Wcisło H. 1983. A list of chromosome numbers of Polish angiosperms. II. *Acta Biologica Cracoviensia Series Botanica* 25: 103–172.

Pogan E, and Wcisło H. 1990. Chromosome numbers of Polish angiosperms. *Acta Biologica Cracoviensia Series Botanica* 32: 1–169.

Przywara L, and Kuta E. 1995. Karyology of bryophytes. *Polish Botanical Studies* 9: 1–83.

Raven PH. 1975. The bases of angiosperm phylogeny: cytology. *Annals of Missouri Botanical Garden* 62: 724–764.

Skalinska M. 1963. Cytological studies in the flora of the Tatra Mts. A synthetic review. *Acta Biologica Cracoviensia Series Botanica* 6: 203–233.

Skalinska M, and Pogan E. 1973. A list of chromosome numbers of Polish angiosperms. *Acta Biologica Cracoviensia Series Botanica* 16: 145–201.

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, and Soltis PS. 2009. Polyploidy and angiosperm diversification. *American Journal of Botany* 96: 336–348.

Stebbins GJ. 1950. *Variation and Evolution in Plants*. Columbia University Press, New York.

Stebbins GJ. 1971. *Chromosomal Evolution in Higher Plants*. Addison-Wesley, London.

Stelae B. 1988. A new low chromosome number for *Ornithogalum tenuifolium* (Hyacinthaceae). *Plant Systematics and Evolution* 161: 65–69.

Stoeva M. 1982. In: IOPB chromosome number reports 76. *Taxon* 31: 579–580.

Tischler G. 1950. *Die Chromosomenzahlen der Gefäßpflanzen Mitteleuropas*. W. Junk, s-Gravenhage.

Travnick P, Dockalova Z, Rosenbaumova R, Kubatova B, Szlag Z, and Chrtek J. 2011. Bridging global and microregional scales: ploidy distribution in *Filosella echoides* (Asteraceae) in central Europe. *Annals of Botany* 107: 443–454.

Wanscher JH. 1934. *Die Chromosomenzahl der Gefäßpflanzen Mitteleuropas*. W. Junk, s-Gravenhage.

Wataiabe K, Yahara T, Dendra T, and Kosuge K. 1999. Chromosomal evolution in the genus *Brachyscome* (Asteraceae, Asteraeae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. *Journal of Plant Research* 112: 145–161.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, and Riesenberg LH. 2009. The frequency of polyploid specialization in vascular plants. *Proceedings of the National Academy of Sciences U.S.A.* 106: 13875–13879.