Resonant leptogenesis and TM$_1$ mixing in minimal Type-I seesaw model with S$_4$ symmetry

Bikash Thapa* and Ng. K. Francis †

Department of Physics, Tezpur University, Tezpur - 784028, India

Abstract

We present an S$_4$ flavour symmetric model within a minimal seesaw framework resulting in mass matrices that leads to TM$_1$ mixing. Minimal seesaw is realized by adding two right-handed neutrinos to the Standard Model. The model predicts Normal Hierarchy (NH) for neutrino masses. Using the constrained six-dimensional parameter space, we have evaluated the effective Majorana neutrino mass, which is the parameter of interest in neutrinoless double beta decay experiments. The possibility of explaining baryogenesis via resonant leptogenesis is also examined within the model. A non-zero, resonantly enhanced CP asymmetry generated from the decay of right-handed neutrinos at the TeV scale is studied, considering flavour effects. The evolution of lepton asymmetry is discussed by solving the set of Boltzmann equations numerically and obtain the value of baryon asymmetry to be $|\eta_B| = 6.3 \times 10^{-10}$.

PACS numbers: 12.60.-i, 14.60.Pq, 14.60.St

*bikash2@tezu.ernet.in
†francis@tezu.ernet.in
I. Introduction

Neutrino oscillation experiments have determined that the mass of neutrinos are small but non-zero, and indicate flavour mixing \([1,6]\). Observations such as these pose a question about the origin of the tiny neutrino masses. The absence of the right-handed counterpart of the neutrinos within the standard model (SM) suggests that, unlike charged fermions, Dirac masses could not be the origin of neutrino masses. There are numerous frameworks beyond the standard model (BSM) that can explain the origin of neutrino masses, for instance, the seesaw mechanism \([7,9]\), radiative seesaw mechanism \([10]\), models based on extra dimensions \([11,12]\), and other models. The minimal seesaw mechanism, which is the extension of SM with two right-handed neutrinos, can explain the origin of neutrino masses as well as that of the Baryon Asymmetry of the Universe (BAU) through leptogenesis \([13]\). Here, the generation of baryon asymmetry involves conversion of lepton asymmetry, obtained from the CP-violating decay of the heavy right-handed neutrinos, via the sphaleron processes \([14]\). It has been reported in Ref. \([15]\) that the mass scale \(\mathcal{O}(10^9)\) for the right-handed neutrino is needed to explain the observed BAU. However, this scale can be lowered if we have nearly degenerate mass of right-handed neutrinos. Such a case leads to resonantly enhanced CP-violating effects, and sufficient lepton asymmetry to account for BAU can be generated at relatively low masses (TeV scale). Such a situation is termed Resonant leptogenesis \([16]\).

Further, the study of the origin of neutrino flavour mixing has received much attention through the years. Among various possibilities, tri-bimaximal mixing (TBM) \([17]\) seemed the most plausible explanation; however, experimental observations at Daya Bay \([18]\), RENO \([19]\) and Double Chooz \([20]\) suggest TBM requires corrections to incorporate \(\theta_{13} \neq 0\). Trimaximal TM\(_1\) \([21,23]\) is one such attractive mixing scheme that can be obtained by multiplying TBM with a 23-rotation leaving the first column of the TBM mixing matrix intact in TM\(_1\) mixing, and the relationships among the observables in such a scheme are given as \([24]\)

\[
\sin^2 \theta_{12} = \frac{1 - 3 \sin^2 \theta_{13}}{3 \cos^2 \theta_{13}}, \tag{1}
\]

\[
\cos \delta_{CP} = \frac{(1 - 5 \sin^2 \theta_{13})(2 \sin^2 \theta_{23} - 1)}{4 \sin \theta_{13} \sin \theta_{23} \sqrt{2(1 - 3 \sin^2 \theta_{13})(1 - \sin^2 \theta_{23})}}. \tag{2}
\]

TM\(_1\) mixing has proved to be compatible with the global data on neutrino oscillations, in a sense that it includes non-zero \(\theta_{13}\) and agrees very well with the experiments on its prediction on the
mixing angles θ_{13}, θ_{23} and the Dirac phase, δ_{CP}. Over the years, many discrete symmetry-based studies have been done that gives rise to TM$_{1}$ mixing $^{[24-29]}$. Herein, we propose a model based constructed using S$_{4}$ discrete symmetry within the framework of the minimal seesaw model. The resulting mass matrix leads to TM$_{1}$ mixing and can simultaneously explain BAU via resonant leptogenesis. The choice of right-handed neutrino Majorana mass matrix, M$_{R}$, is such that the right-handed neutrinos have degenerate mass at dimension five-level and successful resonant leptogenesis is achieved by introducing the higher-order term. In other words, our work is based on the extension of the model presented in $^{[30]}$, such that it makes it suitable to study resonant leptogenesis within minimal seesaw scenario, and the orthogonality condition $^{[23,25]}$ allows us to realize TM$_{1}$ mixing in the leptonic sector.

This paper is structured as follows. In section 2, we have presented the S$_{4}$ flavour symmetric minimal seesaw model followed by the features of the S$_{4}$ flavour group relevant to the construction of the model. Using the 3σ range of neutrino oscillation data as constraints, we defined the allowed region for the model parameters in section 3. In section 4, the framework for resonant leptogenesis is described and the Boltzmann equations, which govern the evolution of the lepton number density and baryon asymmetry parameter, are numerically solved. It also includes the numerical results on neutrinoless double beta decay within the model and we finally conclude our work in section 5.

II. Model Framework

The S$_{4}$ flavour symmetry has been widely used to explain the observed flavour mixing of neutrinos $^{[21,29,37]}$. S$_{4}$ group is a non-Abelian discrete group of permutations of 4 objects. It has 24 elements and 5 irreducible representations 1_{1}, 1_{2}, 2, 3_{1} and 3_{2}. The product rules and Clebsch-Gordon coefficients are presented in Appendix A. In this work, we have considered the extension of the standard model (SM) with a discrete non-abelian group S$_{4}$. Also, a $Z_{3} \times Z_{2}$ group is introduced to avoid specific unwanted couplings and achieve desired structures for the mass matrices. The fermion sector includes, in addition to the SM fermions, two right-handed neutrinos N$_{1}$ and N$_{2}$. Flavons φ_{l}, ϕ_{l}, φ_{ν}, ϕ_{ν}, χ, ψ, β and ρ forms the extension in the scalar sector. The charges carried by the various fields under different symmetry groups are presented in Table 1. Following the
Table 1: Field content and their representations under $S_4 \times Z_3 \times Z_2$.

Field	\bar{L}	e_R	(μ_R, τ_R)	N_1	N_2	H	φ_l	ϕ_l	φ_ν	ϕ_ν	ψ	ξ	ζ
S_4	3	1	1	2	1	1	1	3	3	3	3	1	1
Z_3	1	ω^2	1	1	1	ω	1	1	1	1	1	1	
Z_2	1	1	-1	1	1	1	-1	1	-1	1	1	-1	1

representations of the fields given in Table 1 we can write the invariant Yukawa Lagrangian

$$-L \supset \frac{y_{l1}}{\Lambda} \bar{L} H \varphi_l e_R + \frac{y_{l2}}{\Lambda} \bar{L} H \varphi_l (\mu_R, \tau_R) + \frac{y_{l3}}{\Lambda} \bar{L} H \phi_l (\mu_R, \tau_R)$$

$$+ \frac{y_{\nu1}}{\Lambda} \bar{L} \tilde{H} \varphi_\nu N_1 + \frac{y_{\nu2}}{\Lambda} \bar{L} \tilde{H} \phi_\nu N_2 + \frac{y_{\nu3}}{\Lambda} \bar{L} \tilde{H} \psi N_2$$

$$+ y_{N1} \tilde{N}_1^c N_1 \beta + y_{N2} \tilde{N}_2^c N_2 \beta + y_{N3} \tilde{N}_3^c N_2 \beta + \Lambda^2 + h.c.,$$

where H is SM Higgs doublet and $\tilde{H} = i \sigma_2 H^*$, σ_2 being the 2nd Pauli matrices. The vacuum expectation values (vev) of the scalar fields are of the form

$$\langle \varphi_l \rangle = (v_{\varphi_l}, 0, 0), \quad \langle \phi_l \rangle = (v_{\phi_l}, 0, 0), \quad \langle \varphi_\nu \rangle = (0, -v_{\varphi_\nu}, v_{\varphi_\nu}),$$

$$\langle \phi_\nu \rangle = (v_{\phi_\nu}, v_{\phi_\nu}, v_{\phi_\nu}), \quad \langle \beta \rangle = v_\beta, \quad \langle \rho \rangle = v_\rho.$$

As for the vev of ψ we choose $\langle \psi \rangle = (0, -v_\psi, v_\psi)$ following the orthogonality conditions $\langle \psi \rangle \cdot \langle \phi_l \rangle$ and $\langle \psi \rangle \cdot \langle \phi_\nu \rangle$. After electroweak and flavour symmetry breaking, we obtain the following structure for the charged lepton mass matrix

$$m_l = \frac{v_H}{\Lambda} \begin{pmatrix} y_{l1} v_{\varphi_l} & 0 & 0 \\ 0 & y_{l2} v_{\varphi_l} + y_{l3} v_{\phi_l} & 0 \\ 0 & 0 & y_{l2} v_{\varphi_l} - y_{l3} v_{\phi_l} \end{pmatrix}.$$

The charged lepton sector of the model is similar to that of $[30]$ and we similarly assume that the Froggatt-Nielsen mechanism explains the observed mass hierarchy of the charged leptons. Similarly, using the vev presented in Eq.(4) for the neutrino sector, we obtain the Dirac and
Majorana mass matrix

\[m_D = \begin{pmatrix} 0 & b \\ a & b + c \\ -a & b - c \end{pmatrix}, \quad (6) \]

\[m_R = \begin{pmatrix} M & 0 \\ 0 & M \end{pmatrix}, \quad (7) \]

where \(a = y_{\nu_1} \frac{v_H v_{\phi_1}}{\Lambda}, \ b = y_{\nu_2} \frac{v_H v_{\phi_2}}{\Lambda}, \ c = y_{\nu_3} \frac{v_H v_{\phi_3}}{\Lambda} \) with \(v_H \) being the vev of the SM Higgs. Taking \(y_{N_1} \simeq y_{N_2} = y_N \) we have degenerate masses for the right-handed neutrinos, \(M = y_N v_{H}^2 \).

In the seesaw framework, the resultant light neutrino mass matrix is given by the well-known formula

\[m_\nu = -m_D m_R^{-1} m_D^T \]

\[= \frac{1}{M} \begin{pmatrix} b^2 & b(b + c) & b(b - c) \\ b(b + c) & a^2 + (b + c)^2 & -(a^2 - b^2 + c^2) \\ b(b - c) & -(a^2 - b^2 + c^2) & a^2 + (b - c)^2 \end{pmatrix}, \quad (9) \]

\[= \begin{pmatrix} b'(b' + c') & a'^2 + (b' + c')^2 & -(a'^2 - b'^2 + c'^2) \\ b'(b' + c') & a'^2 + (b' + c')^2 & -(a'^2 - b'^2 + c'^2) \\ b'(b' - c') & -(a'^2 - b'^2 + c'^2) & a'^2 + (b' - c')^2 \end{pmatrix}, \quad (10) \]

with \(a' = \frac{a}{\sqrt{M}}, \ b' = \frac{b}{\sqrt{M}} \) and \(c' = \frac{c}{\sqrt{M}} \). In charged-lepton diagonal basis, the neutrino mixing matrix, \(U_\nu \), is the unitary matrix that diagonalizes the mass matrix in Eq.(10). The resulting \(U_\nu \) matrix, which is determined entirely from the neutrino sector, is

\[U_\nu = U_{\text{TBM}} U_{23} = U_{\text{TM}_1}, \quad (11) \]

where \(U_{\text{TBM}} \) is the tri-bimaximal mixing (TBM) matrix, \(U_{23} \) is a unitary matrix whose (1,2), (1,3), (2,1), (3,1) entries are vanishing and the resulting matrix, \(U_{\text{TM}_1} \), has its 1st column coinciding with that of TBM matrix.

The diagonalization equation thus reads

\[U_\nu^T m_\nu U_\nu = \text{diag}(m_1, m_2, m_3). \quad (12) \]

\[^1 \text{Here we obtain degenerate masses for the right-handed neutrino considering terms upto dimension-5} \]
The light neutrino masses are given as,

\[m_1 = 0, \quad m_2 = \frac{1}{2}|(s - \sqrt{t + s^2})|, \quad m_3 = \frac{1}{2}|(s + \sqrt{t + s^2})|, \]

where \(s = 2a'^2 + 3b'^2 + 2c'^2 \) and \(t = -24a'^2b'^2 \). It is evident from Eq. (13) that the model predicts normal hierarchy of light neutrino.

In the following sections, we have presented the numerical approaches and discussed baryogenesis via resonant leptogenesis, neutrinoless double beta decay within the context of our model.

III. Numerical Analysis

In the previous section, we have shown how the \(S_4 \) model can be implemented in the minimal seesaw scenario, which results in mass matrices that lead to \(T_{13} \) mixing and normal hierarchy (NH) of masses for the neutrinos. Here, we perform numerical analysis to see the model’s implication on leptogenesis and other phenomenological predictions. The mass matrix in Eq. (10) gives the effective neutrino mass matrix in terms of the complex model parameters \(a', b', \) and \(c' \). We find the values of the model parameters by fitting the model to the current neutrino oscillation data. To do so, we use the \(3\sigma \) interval [38] for the neutrino oscillation parameters (\(\theta_{12}, \theta_{23}, \theta_{13}, \Delta m^2_{21}, \Delta m^2_{31} \)) as presented in Table 2. A further constraint on the model parameters was applied on the sum of absolute neutrino masses \(\sum_i m_i < 0.12 \) eV from the cosmological bound [39].

In our analysis, the three complex parameters of the model are treated as free parameters and are

Parameters	Best-fit \(\pm 1\sigma \)	\(3\sigma \) range
\(\Delta m^2_{21}[10^{-5}\text{eV}^2] \)	\(7.42^{+0.21}_{-0.20} \)	\(6.82 - 8.04 \)
\(\Delta m^2_{31}[10^{-3}\text{eV}^2] \) (NH)	\(2.517^{+0.026}_{-0.028} \)	\(2.435 - 2.598 \)
\(\sin^2 \theta_{12} \)	\(0.304^{+0.012}_{-0.012} \)	\(0.269 - 0.343 \)
\(\sin^2 \theta_{23} \)	\(0.573^{+0.016}_{-0.020} \)	\(0.415 - 0.616 \)
\(\sin^2 \theta_{13} \)	\(0.02219^{+0.00062}_{-0.00063} \)	\(0.02032 - 0.02410 \)
\(\delta_{CP}/\pi \) (NH)	\(1.09^{+0.15}_{-0.13} \)	\(0.667 - 2.05 \)

Table 2: Neutrino oscillation parameters used to fit the model parameters.
allowed to run over the following ranges:

\[|a'| \in [0.1, 0.2] \text{ eV}^{1/2}, \quad |b'| \in [0.03, 0.06] \text{ eV}^{1/2}, \quad |c'| \in [10^{-4}, 0.1] \text{ eV}^{1/2}, \]
\[\phi_a \in [-\pi, \pi], \quad \phi_b \in [-\pi, \pi], \quad \phi_c \in [-\pi, \pi], \]

where \(\phi_a, \phi_b, \phi_c \) are the phases given by \(\text{arg}(a'), \text{arg}(b'), \text{arg}(c') \), respectively. Using relation

\[U^\dagger M U = \text{diag}(m_1^2, m_2^2, m_3^2), \]

with \(M = m_\nu m_\nu^\dagger \) and \(U \) is a unitary matrix, we numerically diagonalize the effective neutrino mass matrix \(m_\nu \). The mixing angles, \(\theta_{23}, \theta_{13} \) are obtained using the relation

\[\sin^2 \theta_{23} = \frac{|U_{23}|^2}{1 - |U_{13}|^2}, \quad \sin^2 \theta_{13} = |U_{13}|^2. \]

(14)

As seen from Eqs.\((1)\) and \((2)\), TM1 mixing gives correlations among the mixing angles and CP phases. These relations are assumed to calculate the observables \(\theta_{12} \) and \(\delta_{CP} \). The points in the 6-dimensional parameter space which corresponds to the observables that satisfy the 3\(\sigma\) bound on neutrino oscillations are taken to be the allowed region and the best-fit values for the model parameters \((|a'|, |b'|, |c'|, \phi_a, \phi_b, \phi_c)\) correspond to the minimum of the following \(\chi^2\) function

\[\chi^2 = \sum_i \left(\frac{\lambda^\text{model}_i - \lambda^\text{exp}_i}{\Delta \lambda_i} \right)^2, \]

(15)

where \(\lambda^\text{model}_i \) is the \(i^{th} \) observable predicted by the model, \(\lambda^\text{exp}_i \) stands for the \(i^{th} \) experimental best-fit value (Table 2) and \(\Delta \lambda_i \) is the 1\(\sigma\) range of the \(i^{th} \) observable.

Figure 1: Left and right panel shows the correlation of \(|a'| \) with \(|b'| \) and \(|c'| \) respectively along with the variation of \(\sum m_i \). The cross mark indicate the best-fit values with \(\chi^2 = \chi^2_{\text{min}} \), which corresponds to \(\sum m_i = 0.0586 \text{ eV} \).
Figure 2: Correlation between the phases ϕ_a, ϕ_b and ϕ_c. The cross mark indicate the best-fit values corresponding to χ^2_{min}.

The allowed regions for the various model parameters are given in Figure 1 and 2. The best-fit values for $|a'|$, $|b'|$, $|c'|$, ϕ_a, ϕ_b and ϕ_c obtained using the function defined in Eq.(15) are (0.155, 0.054, 0.09, 0.379π, 0.139π, 0.087π), denoted by the cross mark. Correspondingly, the best-fit values for the neutrino oscillation parameters are: $\sin^2\theta_{12} = 0.318$, $\sin^2\theta_{23} = 0.592$, $\sin^2\theta_{13} = 0.02225$, $\sin\delta_{CP} = -0.454$, $\Delta m^2_{21} = 7.25 \times 10^{-5}$ eV2 and $\Delta m^2_{31} = 2.51 \times 10^{-3}$ eV2. We have shown the value of $\sin\delta_{CP}$ predicted by the model in Figure 3.

Figure 3: Shows the correlation of $\sum m_i$ with $\sin\delta_{CP}$ predicted in the model.
IV. Resonant Leptogenesis

The mechanism of leptogenesis, first proposed by Fukugita and Yanagida [13], is one of the popular mechanisms that can explain the observed baryon asymmetry of the universe (BAU). In the simplest scenario of thermal leptogenesis with a hierarchical mass spectrum of right-handed neutrinos, there is a lower bound on the mass of the lightest right-handed neutrino, \(M_1 \simeq 10^9 \) GeV [15]. Although one can lower this limit if their masses are nearly degenerate, the scenario is popularly known as resonant leptogenesis [16,40]. In such a situation, one-loop self-energy contribution is enhanced resonantly, and the flavour-dependent asymmetry produced from the decay of right-handed neutrino into lepton and Higgs is given by [41–45]:

\[
\varepsilon_{i\alpha} = \frac{\Gamma(N_i \rightarrow l_\alpha + H) - \Gamma(N_i \rightarrow \bar{l}_\alpha + \bar{H})}{\sum \Gamma(N_i \rightarrow l_\alpha + H) + \Gamma(N_i \rightarrow \bar{l}_\alpha + \bar{H})} \sum_{i \neq j} \frac{\text{Im} \left[(Y_\nu^*)_{\alpha i} (Y_\nu^*)_{\alpha j} (Y_\nu^\dagger Y_\nu)_{ij} + \xi_{ij} (Y_\nu^*)_{\alpha i} (Y_\nu^*)_{\alpha j} (Y_\nu^\dagger Y_\nu)_{ji} \right]}{(Y_\nu^\dagger Y_\nu)_{ii} (Y_\nu^\dagger Y_\nu)_{jj}},
\]

where \(\xi_{ij} = M_i/M_j \) and \(\zeta_j = (Y_\nu^\dagger Y_\nu)_{jj}/(8\pi) \) with \(Y_\nu = m_D/v \).

In our model, we have two right-handed neutrinos with exactly degenerate masses, \(M_1 = M_2 = M \). However, successful leptogenesis requires a tiny mass splitting between the two right-handed neutrinos, which is introduced by adding a higher dimension term in the model (Eq.3). Such term leads to a minor correction in the Majorana mass matrix of Eq.(7), and the resultant structure of the mass matrix may be written as

\[
m_R = \begin{pmatrix} M & \epsilon \\ \epsilon & M \end{pmatrix},
\]

where \(\epsilon = y_{N_3} v^2 / \Lambda^2 \) is a parameter that quantifies the tiny difference between masses required for leptogenesis [2]. The mass matrix in Eq.(18) is diagonalized using a \((2 \times 2) \) matrix of the form

\[
U_R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},
\]

\(^2\epsilon \) is assumed to be real.
with real eigenvalues $M_1 = M - \epsilon$ and $M_2 = M + \epsilon$. In the basis where the charged-lepton and Majorana mass matrix are diagonal, the Dirac mass matrix (Eq.6) takes the form

$$m'_D = \frac{1}{\sqrt{2}} \begin{pmatrix} -b & b \\ a - (b + c) & a + (b + c) \\ -a - (b - c) & -a + (b - c) \end{pmatrix}. \quad (20)$$

From this point onward, we will take $Y_\nu = m'_D/v$, which is relevant for calculating CP asymmetry that arises during the decay of right-handed neutrinos in out-of-equilibrium way. Taking the best-fit values of the model parameters obtained in the previous section, we solve the following coupled Boltzmann equations describing the evolution, with respect to $z = M_1/T$, of RH neutrino density, N_{N_i} and lepton number density for three flavours, $N_{\alpha\alpha}$ corresponding to $\alpha = e, \mu, \tau$ [16,44].

$$\frac{dN_{N_i}}{dz} = -D_i \left(N_{N_i} - N^\text{eq}_{N_i} \right) \quad (21)$$

$$\frac{dN_{\alpha\alpha}}{dz} = -\sum_{i=1}^{2} \varepsilon_{i\alpha} D_i \left(N_{N_i} - N^\text{eq}_{N_i} \right) - \frac{1}{4} \left\{ \sum_{i=1}^{2} (rz)^2 D_i K_2(rz) + W_{\Delta L=2} \right\} N_{\alpha\alpha}. \quad (22)$$

The following equation gives the equilibrium number density of N_i,

$$N^\text{eq}_{N_i} = \frac{45 g_N}{4 \pi^4 g^*} z^2 K_2(z), \quad (23)$$

with $K_{1,2}(z)$ being the modified Bessel function. The parameter, D_i, sometimes called the decay parameter is defined as

$$D_i = \frac{z}{H(z = 1)} \frac{\Gamma_{N_i}}{N^\text{eq}_{N_i}}, \quad (24)$$

which gives the total decay rate with respect to Hubble rate and $W_{\Delta L=2}$ denotes the washout coming from $\Delta L = 2$ scattering process4.

We take $M_1 = 10$ TeV and $d = (M_2 - M_1)/M_1 \simeq 10^{-8}$ in order to estimate the value of BAU. We made the calculations related to baryon asymmetry using the ULYSSES package [46]. Figure 4 shows the evolution of three flavoured lepton number density, $N_{\alpha\alpha}$ and baryon asymmetry, η_B as a function of $z = M_{N_i}/T$. The asymptotic value suggests that the obtained value of baryon asymmetry is $|\eta_B| \approx 6.3 \times 10^{-10}$.

4Such processes are explained in [16].
Figure 4: Variation of lepton number density for three flavours and baryon asymmetry parameter, η_B as a function of z.

Figure 5: The predicted values of $|\langle m_{ee} \rangle|$ with respect to $\sum m_i$.

The effective Majorana mass relevant for the neutrinoless double beta decay ($0\nu\beta\beta$) is the (1, 1) element of the effective neutrino mass matrix (Eq 8), $|\langle m_{ee} \rangle| = |(m_\nu)_{11}|$. Figure 5 shows the predicted values of $|\langle m_{ee} \rangle|$ with respect to $\sum m_i$ for the allowed region of parameter space. We have also shown the sensitivity reach of some experiments such as nEXO [47], KamLAND-Zen [48], NEXT [49], AMoRE-II [50]. It shows that $|\langle m_{ee} \rangle|$ ranges from 2.6 meV to 3.6 meV and probing
such small parameters by $(0\nu\beta\beta)$ experiments would be quite difficult.

V. Conclusion

We have explored the S_4 symmetric flavour model in the context of minimal Type-I seesaw mechanism leading to TM$_1$ mixing pattern in the leptonic sector. In order to achieve TM$_1$ mixing, we extended the scalar sector further by adding a flavon ψ and its vev is chosen such that it follows the orthogonality conditions (i.e., $\langle \psi \rangle \cdot \langle \phi_l \rangle$ and $\langle \psi \rangle \cdot \langle \phi_\nu \rangle$). The resulting effective neutrino mass matrix predicts NH for masses of the neutrinos and $0.0576 \text{ eV} < \sum m_i < 0.0599 \text{ eV}$. An allowed region for the model parameters is derived numerically such that the predictions on the mixing angles, CP phase, and mass squared differences lie within the 3σ bound of current oscillation data. Among various points within the 6-dimensional parameter space, the best-fit value is obtained through chi-squared analysis. Using the obtained parameter space, we evaluated the effective Majorana neutrino mass, $|\langle m_{ee} \rangle|$ and we found that it is relatively small, and difficult to probe at the $0\nu\beta\beta$ experiments.

Furthermore, we investigated baryogenesis via flavoured resonant leptogenesis. The right-handed neutrinos are degenerate at dimension 5 level, and hence a tiny splitting was generated by including higher dimension term. We have taken the splitting parameter, $d \simeq 10^{-8}$ and thus, obtained a non-zero, resonantly enhanced CP asymmetry from the out-of-equilibrium decay of right-handed Majorana neutrinos. The analysis of the evolution of particles and asymmetry is done by solving the Boltzmann equations. Here, the best-fit values for the model parameters is considered as inputs, and the Boltzmann equations are solved numerically to estimate baryon asymmetry. It was found that the predicted baryon asymmetry comes out to be $|\eta_B| \approx 6.3 \times 10^{-10}$.

Acknowledgement

BT acknowledges the Department of Science and Technology (DST), Government of India for INSPIRE Fellowship vide Grant No. DST/INSPIRE/2018/IF180588. The research of NKF is funded by DST-SERB, India under Grant No. EMR/2015/001683.
Appendix

A. S_4 group

The irreducible representations of S_4 follow the following Kronecker products,

$$
1_1 \otimes \eta = \eta, \quad 1_2 \otimes 1_2 = 1, \quad 1_2 \otimes 2 = 2, \quad 1_2 \otimes 3_1 = 3_2, \quad 1_2 \otimes 3_2 = 3_1
$$

$$
2 \otimes 2 = 1_1 \oplus 1_2 \oplus 2, \quad 2 \otimes 3_1 = 2 \otimes 3_2 = 3_1 \oplus 3_2,
$$

$$
3_1 \otimes 3_1 = 3_2 \otimes 3_2 = 1_1 \oplus 2 \oplus 3_1 \oplus 3_2, \quad 3_1 \otimes 3_2 = 1_2 \oplus 2 \oplus 3_1 \oplus 3_2
$$

Now, we write the Clebsch-Gordon coefficients in particular basis 34

For 1-dimensional representations:

$$
1_1 \otimes \eta = \eta \otimes 1_1 = \eta
$$

$$
1_2 \otimes 1_2 = 1_1 \sim \alpha \beta
$$

$$
1_2 \otimes 2 = 2 \sim \begin{pmatrix}
\alpha \beta_1 \\
-\alpha \beta_2
\end{pmatrix}
$$

$$
1_2 \otimes 3_1 = 3_2 \sim \begin{pmatrix}
\alpha \beta_1 \\
\alpha \beta_2 \\
\alpha \beta_3
\end{pmatrix}
$$

$$
1_2 \otimes 3_2 = 3_1 \sim \begin{pmatrix}
\alpha \beta_1 \\
\alpha \beta_2 \\
\alpha \beta_3
\end{pmatrix}
$$

For 2-dimensional representations:

$$
2 \otimes 2 = 1_1 \oplus 1_2 \oplus 2
$$

with

$$
1_1 \sim \alpha_1 \beta_2 + \alpha_2 \beta_1
$$

$$
1_2 \sim \alpha_1 \beta_2 - \alpha_2 \beta_1
$$

$$
2 \sim \begin{pmatrix}
\alpha_2 \beta_2 \\
\alpha_1 \beta_1
\end{pmatrix}
$$
\[\begin{align*}
2 \otimes 3_1 &= 3_1 \oplus 3_2 \\
2 \otimes 3_2 &= 3_1 \oplus 3_2
\end{align*} \]

with
\[
\begin{align*}
3_1 &\sim \left\{ \begin{array}{c}
\alpha_1 \beta_2 + \alpha_2 \beta_3 \\
\alpha_1 \beta_3 + \alpha_2 \beta_1 \\
\alpha_1 \beta_1 + \alpha_2 \beta_2
\end{array} \right. \\
3_2 &\sim \left\{ \begin{array}{c}
\alpha_1 \beta_2 - \alpha_2 \beta_3 \\
\alpha_1 \beta_3 - \alpha_2 \beta_1 \\
\alpha_1 \beta_1 - \alpha_2 \beta_2
\end{array} \right.
\end{align*}
\]

For 3-dimensional representations:
\[
\begin{align*}
3_1 \otimes 3_1 = 3_2 \otimes 3_2 = 1_1 \oplus 2 \oplus 3_1 \oplus 3_2
\end{align*} \]

with
\[
\begin{align*}
1_1 &\sim \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2 \\
2 &\sim \left\{ \begin{array}{c}
\alpha_2 \beta_2 + \alpha_1 \beta_3 + \alpha_3 \beta_1 \\
\alpha_3 \beta_3 + \alpha_1 \beta_2 + \alpha_2 \beta_1
\end{array} \right. \\
3_1 &\sim \left\{ \begin{array}{c}
2 \alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2 \\
2 \alpha_3 \beta_3 - \alpha_1 \beta_2 - \alpha_2 \beta_1 \\
2 \alpha_2 \beta_2 - \alpha_1 \beta_3 - \alpha_3 \beta_1
\end{array} \right. \\
3_2 &\sim \left\{ \begin{array}{c}
\alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3
\end{array} \right.
\end{align*}
\]
$3_1 \otimes 3_2 = 1_2 \oplus 2 \oplus 3_1 \oplus 3_2$

with

\[
\begin{align*}
1_2 & \sim \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2 \\
2 & \sim \begin{pmatrix}
\alpha_2 \beta_2 + \alpha_1 \beta_3 + \alpha_3 \beta_1 \\
-\alpha_3 \beta_3 - \alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3
\end{pmatrix} \\
3_1 & \sim \begin{pmatrix}
\alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3 \\
2\alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2
\end{pmatrix} \\
3_2 & \sim \begin{pmatrix}
2\alpha_3 \beta_3 - \alpha_1 \beta_2 - \alpha_2 \beta_1 \\
2\alpha_2 \beta_2 - \alpha_1 \beta_3 - \alpha_3 \beta_1
\end{pmatrix}
\end{align*}
\]

where α_i and β_i denotes the elements of the first and second elements, respectively.

References

[1] Particle Data Group, PA Zyla, RM Barnett, J Beringer, O Dahl, DA Dwyer, DE Groom, C-J Lin, KS Lugovsky, E Pianori, et al. Review of particle physics. *Progress of Theoretical and Experimental Physics*, 2020(8):083C01, 2020.

[2] Max Aker, K Altenmüller, M Arenz, M Babutzka, J Barrett, S Bauer, M Beck, A Beglarian, J Behrens, T Bergmann, et al. Improved upper limit on the neutrino mass from a direct kinematic method by katrin. *Physical review letters*, 123(22):221802, 2019.

[3] Amand Faessler. Status of the determination of the electron-neutrino mass. *Progress in Particle and Nuclear Physics*, page 103789, 2020.

[4] T Araki, K Eguchi, S Enomoto, K Furuno, K Ichimura, H Ikeda, K Inoue, K Ishihara, T Iwamoto, T Kawashima, et al. Measurement of neutrino oscillation with kamland: Evidence of spectral distortion. *Physical Review Letters*, 94(8):081801, 2005.

[5] S. Cao, A. Nath, T. V. Ngoc, Ng. K. Francis, N. T. Hong Van, and P. T. Quyen. Physics potential of the combined sensitivity of t2k-ii, NOvA extension, and juno. *Phys. Rev. D*, 103:112010, Jun 2021.
[6] Ankur Nath and Ng. K. Francis. Detection techniques and investigation of different neutrino experiments. *International Journal of Modern Physics A*, 36(13):2130008, 2021.

[7] Peter Minkowski. $\mu \rightarrow e\gamma$ at a rate of one out of 109 muon decays? *Physics Letters B*, 67(4):421–428, 1977.

[8] Tsutomu Yanagida. Horizontal symmetry and masses of neutrinos. *Progress of Theoretical Physics*, 64(3):1103–1105, 1980.

[9] Rabindra N Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. *Physical review letters*, 56(6):561, 1986.

[10] Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. *Physical Review D*, 73(7):077301, 2006.

[11] Rabindra N Mohapatra, S Nandi, and A Perez-Lorenzana. Neutrino masses and oscillations in models with large extra dimensions. *Physics Letters B*, 466(2-4):115–121, 1999.

[12] Nima Arkani-Hamed, Savas Dimopoulos, Gia Dvali, and John March-Russell. Neutrino masses from large extra dimensions. *Physical Review D*, 65(2):024032, 2001.

[13] Masataka Fukugita and Tsutomu Yanagida. Barygenesis without grand unification. *Physics Letters B*, 174(1):45–47, 1986.

[14] Vadim A Kuzmin, Valery A Rubakov, and Mikhail E Shaposhnikov. On anomalous electroweak baryon-number non-conservation in the early universe. *Physics Letters B*, 155(1-2):36–42, 1985.

[15] Sacha Davidson and Alejandro Ibarra. A lower bound on the right-handed neutrino mass from leptogenesis. *Physics Letters B*, 535(1-4):25–32, 2002.

[16] Apostolos Pilaftsis and Thomas EJ Underwood. Resonant leptogenesis. *Nuclear Physics B*, 692(3):303–345, 2004.

[17] Paul F Harrison, Don H Perkins, and WG Scott. Tri-bimaximal mixing and the neutrino oscillation data. *Physics Letters B*, 530(1-4):167–173, 2002.
[18] FP An, JZ Bai, AB Balantekin, HR Band, D Beavis, W Beriguete, M Bishai, S Blyth, K Boddy, RL Brown, et al. Observation of electron-antineutrino disappearance at daya bay. *Physical Review Letters*, 108(17):171803, 2012.

[19] Jung Keun Ahn, S Chebotaryov, JH Choi, S Choi, W Choi, Y Choi, HI Jang, JS Jang, EJ Jeon, IS Jeong, et al. Observation of reactor electron antineutrinos disappearance in the reno experiment. *Physical Review Letters*, 108(19):191802, 2012.

[20] Y Abe, Christoph Aberle, T Akiri, JC Dos Anjos, F Ardellier, AF Barbosa, A Baxter, M Bergevin, A Bernstein, TJC Bezerra, et al. Indication of reactor $\nu^- e$ disappearance in the double chooz experiment. *Physical Review Letters*, 108(13):131801, 2012.

[21] Christoph Luhn. Trimaximal T_M_1 neutrino mixing in S_4 with spontaneous CP violation. *Nuclear Physics B*, 875(1):80–100, 2013.

[22] Walter Grimus. Discrete symmetries, roots of unity, and lepton mixing. *Journal of Physics G: Nuclear and Particle Physics*, 40(7):075008, 2013.

[23] Werner Rodejohann and He Zhang. Simple two parameter description of lepton mixing. *Physical Review D*, 86(9):093008, 2012.

[24] Ivo de Medeiros Varzielas and Luís Lavoura. Flavour models for T_M_1 lepton mixing. *Journal of Physics G: Nuclear and Particle Physics*, 40(8):085002, 2013.

[25] Stefan Antusch, Stephen F King, Christoph Luhn, and Martin Spinrath. Trimaximal mixing with predicted θ_{13} from a new type of constrained sequential dominance. *Nuclear Physics B*, 856(2):328–341, 2012.

[26] Stephen F King. Minimal see-saw model predicting best-fit lepton mixing angles. *Physics Letters B*, 724(1-3):92–98, 2013.

[27] Mainak Chakraborty, R Krishnan, and Ambar Ghosal. Predictive S_4 flavon model with T_M_1 mixing and baryogenesis through leptogenesis. *Journal of High Energy Physics*, 2020(9):1–48, 2020.

[28] Stephen F King, Thomas Neder, and Alexander J Stuart. Lepton mixing predictions from $\delta (6n^2)$ family symmetry. *Physics Letters B*, 726(1-3):312–315, 2013.
[29] Stephen F King. Littlest seesaw. *Journal of High Energy Physics*, 2016(2):85, 2016.

[30] Zhen-hua Zhao. Realizing tri-bimaximal mixing in minimal seesaw model with S_4 family symmetry. *Physics Letters B*, 701(5):609–613, 2011.

[31] Yoshio Koide. S_4 flavor symmetry embedded into SU(3) and lepton masses and mixing. *Journal of High Energy Physics*, 2007(08):086, 2007.

[32] R Krishnan, PF Harrison, and WG Scott. Simplest neutrino mixing from S_4 symmetry. *Journal of High Energy Physics*, 2013(4):1–15, 2013.

[33] T Brown, S Pakvasa, H Sugawara, and Y Yamanaka. Neutrino masses, mixing, and oscillations in the S_4 model of permutation symmetry. *Physical Review D*, 30(1):255, 1984.

[34] F. Bazzocchi, L. Merlo, and S. Morisi. Fermion masses and mixings in a S_4 based model. *Nuclear Physics*, 816:204–226, 2009.

[35] Fredrik Björkeroth, Francisco J de Anda, Stephen F King, and Elena Perdomo. A natural $S_4 \times SO(10)$ model of flavour. *Journal of High Energy Physics*, 2017(10):1–28, 2017.

[36] Davide Meloni. A see-saw S_4 model for fermion masses and mixings. *Journal of Physics G: Nuclear and Particle Physics*, 37(5):055201, 2010.

[37] Ping-Tao Chen, Gui-Jun Ding, Stephen F King, and Cai-Chang Li. A new littlest seesaw model. *Journal of Physics G: Nuclear and Particle Physics*, 47(6):065001, 2020.

[38] Ivan Esteban, Maria Concepción González-García, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. *Journal of High Energy Physics*, 2020(9):1–22, 2020.

[39] Nabila Aghanim, Yashar Akrami, M Ashdown, J Aumont, C Baccigalupi, M Ballardini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al. Planck 2018 results-vi. cosmological parameters. *Astronomy & Astrophysics*, 641:A6, 2020.

[40] Apostolos Pilaftsis. CP violation and baryogenesis due to heavy majorana neutrinos. *Physical Review D*, 56(9):5431, 1997.
[41] Zhi-zhong Xing and Di Zhang. Bridging resonant leptogenesis and low-energy CP violation with an RGE-modified seesaw relation. *Physics Letters B*, 804:135397, 2020.

[42] Apostolos Pilaftsis. Resonant CP violation induced by particle mixing in transition amplitudes. *Nuclear Physics B*, 504(1-2):61–107, 1997.

[43] A Anisimov, A Broncano, and M Plümacher. The CP-asymmetry in resonant leptogenesis. *Nuclear Physics B*, 737(1-2):176–189, 2006.

[44] Andrea De Simone and Antonio Riotto. On resonant leptogenesis. *Journal of Cosmology and Astroparticle Physics*, 2007(08):013, 2007.

[45] Ng K Francis and N Nimai Singh. Validity of quasi-degenerate neutrino mass models and their predictions on baryogenesis. *Nuclear Physics B*, 863(1):19–32, 2012.

[46] Alessandro Granelli, Kristian Moffat, YF Perez-Gonzalez, Holger Schulz, and Jessica Turner. Ulysses: Universal leptogenesis equation solver. *Computer Physics Communications*, 262:107813, 2021.

[47] Caio Licciardi, nEXO Collaboration, et al. The sensitivity of the nexo experiment to majorana neutrinos. In *Journal of Physics: Conference Series*, volume 888, page 012237. IOP Publishing, 2017.

[48] S Obara, KamLAND-Zen Collaboration, et al. Status of balloon production for kamland-zen 800 kg phase. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 845:410–413, 2017.

[49] Juan José Gómez Cadenas, V Álvarez, FIG Borges, S Cárcel, J Castel, S Cebrián, A Cervera, CAN Conde, T Dafni, THVT Dias, et al. Present status and future perspectives of the next experiment. *Advances in High Energy Physics*, 2014, 2014.

[50] H Bhang, RS Boiko, DM Chernyak, JH Choi, S Choi, FA Danevich, KV Efendiev, C Enss, A Fleischmann, AM Gangapshev, et al. AMoRE experiment: a search for neutrinoless double beta decay of 100Mo isotope with 40Ca100MoO$_4$ cryogenic scintillation detector. In *Journal of Physics: Conference Series*, volume 375 issue 4, page 042023. IOP Publishing, 2012.