THE CONVERGENCE ESTIMATES FOR GALERKIN-WAVELET SOLUTION OF PERIODIC PSEUDODIFFERENTIAL INITIAL VALUE PROBLEMS

NGUYEN MINH CHUONG and BUI KIEN CUONG

Received 13 March 2002

Using the discrete Fourier transform and Galerkin-Petrov scheme, we get some results on the solutions and the convergence estimates for periodic pseudodifferential initial value problems.

2000 Mathematics Subject Classification: 35Sxx, 41A65, 65Txx, 65Mxx.

1. Introduction. In recent years, wavelets have been developing intensively and have become a powerful tool to study mathematics and technology, for example, the theory of the singular integral, singular integro-differential equations, the areas such as sound analysis, image compression, and so on (see [9, 10] and references therein). In this paper, we use a scaling function and a multilevel approach to estimate the error of the problem

\[\frac{\partial u(x,t)}{\partial t} = a \cdot Au(x,t), \quad x \in \mathbb{Z}^n, \quad t > 0, \quad a \in \mathbb{R}, \]

\[u(x,0) = [u_0](x), \quad x \in \mathbb{Z}^n, \tag{1.1} \]

where \(A \) is a pseudodifferential operator (see [1, 2, 3, 4, 6, 8, 9, 12]) with a symbol \(\sigma \in C^\infty(\mathbb{R}^n) \), \(\sigma \) is positively homogeneous of degree \(r > 0 \) such that

\[|D^\alpha \sigma(\xi)| \leq C_\alpha (1 + |\xi|)^{r-|\alpha|}, \quad \text{for all multi-index } \alpha \in \mathbb{N}^n, \tag{1.2} \]

\(\mathbb{Z}^n = \mathbb{R}^n / \mathbb{Z}^n \), and \([u_0](x) = \sum_{k \in \mathbb{Z}^n} u_0(x + k) \) is a periodic operator.

We discuss only problem (1.1) with the following condition:

\[a \sigma(\xi) \leq 0, \quad \forall \xi \in \mathbb{Z}^n. \tag{1.3} \]

2. Preliminaries and notations. The continuous Fourier transform of the function \(f \in L_2(\mathbb{R}^n) \) is defined by

\[\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i x \xi} f(x) dx, \quad \xi \in \mathbb{R}^n \tag{2.1} \]
with the inverse Fourier formula

$$f(x) = \int_{\mathbb{R}^n} e^{2\pi i x \xi} \hat{f}(\xi) d\xi, \quad \xi \in \mathbb{R}^n$$

(2.2)

(see [4, 8, 11]).

The discrete Fourier transform of the function $f \in L_2(\mathbb{J}^n)$ is

$$\mathcal{F}(f)(\xi) = \tilde{f}(\xi) := \int_{[0,1]^n} e^{-2\pi i x \xi} f(x) dx, \quad \xi \in \mathbb{Z}^n,$n

(2.3)

and the inverse Fourier transform is

$$f(x) := \sum_{\xi \in \mathbb{Z}^n} \tilde{f}(\xi) e^{2\pi i x \xi}$$

(2.4)

(see [6]).

Some simple properties of the discrete Fourier transform are

$$(f, g)_0 = \sum_{\xi \in \mathbb{Z}^n} \tilde{f}(\xi) \overline{\tilde{g}(\xi)},$$

(2.5)

where $(\cdot, \cdot)_0$ is the $L_2(\mathbb{J}^n)$-inner product,

$$\|f\|_0^2 = \sum_{\xi \in \mathbb{Z}^n} |\tilde{f}(\xi)|^2 = \|\tilde{f}\|_{l_2}^2,$$

(2.6)

where $\|\cdot\|_0$ is $L_2(\mathbb{J}^n)$-norm and $\|\cdot\|_{l_2}$ is l_2-norm.

Let $s \in \mathbb{R}$. Denote

$$H^s(\mathbb{J}^n) = \{ u \in D'(\mathbb{J}^n) \mid \langle D \rangle^s u \in L_2(\mathbb{J}^n) \},$$

(2.7)

where

$$\langle \xi \rangle = \begin{cases} 1 & \text{if } \xi = 0, \\ |\xi| & \text{if } \xi \neq 0, \end{cases}$$

(2.8)

then $H^s(\mathbb{J}^n)$ is the Sobolev space endowed with the norm

$$\|u\|_{s}^2 = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2s} |\hat{u}(\xi)|^2,$$

(2.9)

and the inner product

$$\langle u, v \rangle_s = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2s} \hat{u}(\xi) \overline{\hat{v}(\xi)}.$$

(2.10)

Here, we also define the discrete Sobolev space $H^s_d(\mathbb{R}^n), s \in \mathbb{R}$, of the functions $f \in H^s(\mathbb{R}^n)$ such that the following norm is finite:

$$\|f\|_{s,d}^2 = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2s} |\hat{f}(\xi)|^2.$$

(2.11)
Denote
\[
\mathcal{L}_2 = \left\{ f \in L_2(\mathbb{R}^n) : \sum_{\xi \in \mathbb{Z}^n} |f(\cdot - \xi)| \in L_2([0,1]^n) \right\}.
\] (2.12)

It is clear that any function \(f \in L_2(\mathbb{R}^n) \), which has compact support, or any function, for which \(\int_{k+(0,1)^n} |f(x)|^2 dx \) decays exponentially as \(|k|\) tends to infinity, belongs to \(\mathcal{L}_2 \). The periodic operator \([u]\) is totally defined if \(u \in \mathcal{L}_2 \).

Here, we assume that \(u_0 \in \mathcal{L}_2 \).

Remark 2.1. (1) It follows from (2.1) and (2.3) that if \(u \in \mathcal{L}_2 \), then \(\mathcal{F}([u])(\xi) = \hat{u}(\xi) \), \(\xi \in \mathbb{Z}^n \).

(2) It is clear that if \(t \leq s \), \(s, t \in \mathbb{R} \), then \(H^t(\mathbb{Z}^n) \subset H^s(\mathbb{Z}^n) \).

Using the variable separate method and the discrete Fourier transform, the solution of problem (1.1) can be represented as
\[
u(x,t) = E(t) [u_0](x) = \sum_{\xi \in \mathbb{Z}^n} \exp(a \sigma(\xi) t) \mathcal{F}([u_0])(\xi)e^{2\pi i x \xi},
\] (2.13)
where \(E(t) \) is a differentiable function and \(E(0) = 1 \).

We recall that a multiresolution approximation (MRA) of \(L_2(\mathbb{R}^n) \) is, as a definition, an increasing sequence \(V_j \), \(j \in \mathbb{Z} \), of closed linear subspaces of \(L_2(\mathbb{R}^n) \) with the following properties:
\[
\bigcap_{j \in \mathbb{Z}} V_j = \{0\}, \quad \bigcup_{j \in \mathbb{Z}} V_j = L_2(\mathbb{R}^n);
\] (2.14)
for all \(f \in L_2(\mathbb{R}^n) \) and all \(j \in \mathbb{Z} \),
\[
f(x) \in V_j \iff f(2x) \in V_{j+1};
\] (2.15)
for all \(f \in L_2(\mathbb{R}^n) \) and \(k \in \mathbb{Z}^n \),
\[
f(x) \in V_0 \iff f(x-k) \in V_0.
\] (2.16)

There exists a function, called the scaling function (SF) \(\phi(x) \in V_0 \), such that the sequence
\[
\{\phi(x-k), k \in \mathbb{Z}^n\}
\] (2.17)
is a Riesz basic of \(V_0 \) (see [5, 9]).

An SF \(\phi \) is called \(\mu \)-regular (\(\mu \in \mathbb{N} \)) if, for each \(m \in \mathbb{N} \), there exists \(c_m \) such that the following condition holds:
\[
|D^\alpha \phi(x)| \leq c_m (1 + |x|)^{-m}, \quad \forall \alpha, \ |\alpha| \leq \mu.
\] (2.18)
Remark 2.2. (1) Denote $\phi_{jk}(x) = 2^{nj/2}\phi(2^j x - k)$, $k \in \mathbb{Z}^n$. It follows from (2.14), (2.15), (2.16), and (2.17) that $V_j = \text{span}\{\phi_{jk}(x), k \in \mathbb{Z}^n\}$, $j \in \mathbb{Z}$.

(2) For each $\mu \in \mathbb{N}$, there exists an SF $\phi(x)$ with compact support, and $\phi(x)$ is μ-regular; so in what follows, we always assume that ϕ has compact support and is μ-regular (see [9]).

Using the periodic operator and an MRA of $L_2(\mathbb{R}^n)$, we can build an MRA of $L_2(\mathbb{R}^n)$ with the SF $[\phi]$ as follows.

Denote

$$
\phi^j_k(x) = 2^{nj/2} \sum_{l \in \mathbb{Z}^n} \phi_{jk}(x + l) = 2^{nj/2} \sum_{l \in \mathbb{Z}^n} \phi(2^j(x + l) - k), \quad j \geq 0,
$$

(2.19)

where $\mathbb{Z}^{nj} = \mathbb{Z}^n/2^j \mathbb{Z}^n$.

Then, the sequence $[V_j]_{j \geq 0}$ satisfies

$$
[V_0] \subset [V_1] \subset \cdots, \quad \bigcup_{j \geq 0} [V_j] = L_2(\mathbb{R}^n).
$$

(2.20)

It is clear that $\text{dim}[V_j] = 2^{nj}$, and if $(\phi_{jk}, \phi_{jl}) = \delta_{kl}$, $k, l \in \mathbb{Z}^n$, then $(\phi^j_k, \phi^j_l) = \delta_{kl}$, $k, l \in \mathbb{Z}^{nj}$ (see [6]).

For each $j \geq 0$, let $P_j : L_2(\mathbb{R}^n) \rightarrow [V_j]$ be the orthogonal projection from $L_2(\mathbb{R}^n)$ on $[V_j]$, which has the following property.

Theorem 2.3 (see [6, page 600]). Let $-\mu - 1 \leq s \leq \mu$, $-\mu \leq q \leq \mu + 1$, and $s \leq q$, then

$$
\|u - P_j u\|_s \leq c 2^{j(s-q)} \|u\|_q
$$

(2.22)

for all $u \in H^q(\mathbb{R}^n)$, where c is independent of j and u.

Denoting $h = 2^{-j}$ and $V_h = [V_j]$, we can write (2.22) as

$$
\|u - P_j u\|_s \leq c h^{q-s} \|u\|_q.
$$

(2.23)

3. The Galerkin-wavelet solution. Fix a distribution with compact support $\eta \in H^{-s'}(\Gamma)$, where $s' \geq 0$ satisfying $AV_h \subset H^{s'}(\mathbb{R}^n)$ and where $\Gamma \subset \mathbb{R}^n$ is some fixed compact domain such as a hypercube. For $f \in H^{s'}(\mathbb{R}^n)$, define

$$
\eta^j_k(f) = 2^{-nj/2} \eta(f(2^{-j}(\cdot + k))).
$$

(3.1)

The space

$$
X^j := \text{span}\{\eta^j_k, k \in \mathbb{Z}^{nj}\}
$$

(3.2)
is contained in \((AV_h)'\), which is the dual of \(AV_h\). The corresponding Galerkin-Petrov-wavelet scheme is then given by

\[
\eta_k^j \left(\frac{\partial u_h}{\partial t} \right) = a \eta_k^j (A u_h), \quad k \in \mathbb{Z}^{nj},
\]

\[
u_h(x,0) = R_{h}[u_0](x),
\]

where \(R_h v\) is a linear approximation of \(v\) in \(V_h\) and \(u_h : [0, \infty) \rightarrow V_h\) is a differentiable operator.

Set

\[
u_h(x,t) = \sum_{k \in \mathbb{Z}^{nj}} c_k(t) \phi_j^k(x),
\]

\[
R_h[u_0](x) := [u_0]_{h}(x) := \sum_{k \in \mathbb{Z}^{nj}} c_k(0) \phi_j^k(x).
\]

Then the scheme (3.3) and (3.4) provides an algebra equation system and the solution can be solved by Fourier series.

Lemma 3.1. The following formulas hold true:

\[
\mathcal{F}(\phi_j^k)(\xi) = h^{n/2} \hat{\phi}(h\xi)e^{-2\pi ihk\xi},
\]

\[
\mathcal{F}(A\phi_j^k)(\xi) = h^{n/2} \sigma(\xi) \hat{\phi}(h\xi)e^{-2\pi ihk\xi}.
\]

Proof. (a) It follows from (2.3) and (2.19) that

\[
\mathcal{F}(\phi_j^l)(\xi) = h^{-n/2} \sum_{l \in \mathbb{Z}^{nj}} \int_{[0,1]^n} e^{-2\pi i l x \xi} \phi(2^j(x + l) - k) dx
\]

\[
= h^{n/2} \sum_{l \in \mathbb{Z}^{nj}} \int_{2^j[l+[0,1]^n]-k} e^{-2\pi i h x \xi} \phi(x) dx e^{-2\pi i h k \xi}
\]

\[
= h^{n/2} \int_{\mathbb{R}^n} e^{-2\pi i h x \xi} \phi(x) dx e^{-2\pi i h k \xi}
\]

\[
= h^{n/2} \hat{\phi}(h\xi)e^{-2\pi i h k \xi}.
\]

(b) We have

\[
\mathcal{F}(Au)(\xi) = \sigma(\xi) \hat{u}(\xi);
\]

consequently,

\[
\mathcal{F}(A\phi_j^k)(\xi) = \sigma(\xi) \mathcal{F}(\phi_j^k)(\xi) = h^{n/2} \sigma(\xi) \hat{\phi}(h\xi)e^{-2\pi ihk\xi}.
\]

The proof of the lemma is complete.
Corollary 3.2. The following formulas hold true:

\[
\eta^j_k(\phi^j_l) = h^n \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\eta(h\xi)} e^{-2\pi ih(l-k)\xi},
\]

\[
\eta^j_k(A\phi^j_l) = h^n \sum_{\xi \in \mathbb{Z}^n} \sigma(\xi) \hat{\phi}(h\xi) \overline{\eta(h\xi)} e^{-2\pi ih(l-k)\xi}.
\]

(3.11)

Proof. (a) Using (2.4), Lemma 3.1, and (3.1), we have

\[
\eta^j_k(\phi^j_l) = h^n \sum_{\xi \in \mathbb{Z}^n} \mathcal{F}(\phi^j_l)(\xi) e^{2\pi ix\xi}
\]

\[
= h^n \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) e^{-2\pi ihl\xi} e^{2\pi ix\xi}
\]

\[
= h^n \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\eta(h\xi)} e^{-2\pi ih(l-k)\xi}.
\]

(3.12)

(b) Similarly, we can get the second assertion. □

The following lemma is extracted from [6].

Lemma 3.3. The following formula holds valid:

\[
\sum_{m \in \mathbb{Z}^{nj}} e^{-2\pi ihm(k-\xi)} = \begin{cases} 2^{nj} & \text{if } \xi = k + 2^j \theta, \theta \in \mathbb{Z}^n, \\ 0 & \text{otherwise}. \end{cases}
\]

(3.13)

Set

\[
\alpha(k) = \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h\xi) \overline{\eta(h\xi)} e^{2\pi ihk\xi},
\]

(3.14)

\[
\delta(k) = \sum_{\xi \in \mathbb{Z}^n} \sigma(h\xi) \hat{\phi}(h\xi) \overline{\eta(h\xi)} e^{2\pi ihk\xi}, \quad k \in \mathbb{Z}^{nj}.
\]

(3.15)

The series

\[
\tilde{\alpha}(\zeta) = h^n \sum_{k \in \mathbb{Z}^{nj}} \alpha(k) e^{-2\pi ihk\zeta},
\]

(3.16)

\[
\tilde{\delta}(\zeta) = h^n \sum_{k \in \mathbb{Z}^{nj}} \delta(k) e^{-2\pi ihk\zeta},
\]

(3.17)

\[
\tilde{\epsilon}(\zeta, t) = h^n \sum_{k \in \mathbb{Z}^{nj}} c_k(t) e^{-2\pi ihk\zeta}, \quad \zeta \in \mathbb{Z}^n
\]

(3.18)

are called discrete Fourier series.
It follows from (3.3), (3.5), the positively homogeneous condition, and Corollary 3.2 that

\[
\sum_{k \in \mathbb{Z}^n} c_k'(t) \alpha(l - k) = ah^{-r} \sum_{k \in \mathbb{Z}^n} c_k(t) \delta(l - k), \quad l \in \mathbb{Z}^n.
\]

Thus

\[
\tilde{\alpha}'(\zeta, t) \tilde{\alpha}(\zeta) = ah^{-r} \tilde{\alpha}(\zeta, t) \tilde{\delta}(\zeta),
\]

\[
\tilde{\alpha}(\zeta, t) = \exp\left(\frac{at}{h^r} \frac{\tilde{\delta}(\zeta)}{\tilde{\alpha}(\zeta)}\right) \tilde{\alpha}(\zeta, 0).
\]

For each \(\tau = 0, 1\), set

\[
g_{\phi, \tau}(\zeta) = \sum_{k \in \mathbb{Z}^n} \sigma(h \zeta + k)^\tau \hat{\phi}(h \zeta + k) \hat{\eta}(h \zeta + k).
\]

LEMMA 3.4. If the series (3.22) converges absolutely, then

\[
\tilde{\alpha}(\zeta) = g_{\phi, 0}(\zeta), \quad \tilde{\delta}(\zeta) = g_{\phi, 1}(\zeta).
\]

PROOF. (a) From (3.14) and (3.16), it follows that

\[
\tilde{\alpha}(\zeta) = h^n \sum_{k \in \mathbb{Z}^n} \sum_{\xi \in \mathbb{Z}^n} \hat{\phi}(h \xi) \hat{\eta}(h \xi) e^{-2\pi ihk (\zeta - \xi)}.
\]

By the hypothesis of the lemma, we can interchange the summation in the above double sum; then by using the variable change and Lemma 3.3, it is easy to see that

\[
\tilde{\alpha}(\zeta) = h^n \sum_{\xi \in \mathbb{Z}^n} \sum_{k \in \mathbb{Z}^n} e^{-2\pi ihk (\zeta - \xi)}
\]

\[
= \sum_{\theta \in \mathbb{Z}^n} \hat{\phi}(h \zeta + \theta) \hat{\eta}(h \zeta + \theta) = g_{\phi, 0}(\zeta).
\]

(b) Similarly, the second assertion of the lemma will be checked.

From (3.5), (3.6), and (3.21), it follows that

\[
\hat{u}_h(\xi, t) = \exp\left(\frac{at}{h^r} \frac{\hat{\delta}(\xi)}{\hat{\alpha}(\xi)}\right) \mathcal{F}\left([u_0]_h\right)(\xi).
\]

Let \(F_h(t)\) be the operator defined by

\[
\mathcal{F}(F_h(t)v(\cdot))(\xi) = \exp\left(\frac{at}{h^r} \frac{\hat{\delta}(\xi)}{\hat{\alpha}(\xi)}\right) \hat{v}(\xi),
\]

then the approximation \(u_h(x)\) can be represented by

\[
u_h(x) = F_h(t)R_h[u_0](x).
\]
4. The error estimate of approximation solutions. Now to estimate the error, we need some restrictions on the σ, ϕ, and η used above. The triplet (σ, ϕ, η) is called admissible if the following properties hold:

(i) there exists $p \in \mathbb{N}$, $p \geq r$, such that the series

$$\sum_{k \in \mathbb{Z}^n} \sigma(h\xi + k) \hat{\phi}(h\xi + k) \hat{\eta}(h\xi + k)$$

converges absolutely and

$$\sum_{k \in \mathbb{Z}^n} \sigma(h\xi + k) \hat{\phi}(h\xi + k) \hat{\eta}(h\xi + k) = \sigma(h\xi) \hat{\phi}(h\xi) \hat{\eta}(h\xi) + o(|h\xi|^p)$$

as $|h\xi| \to 0$,

(ii) $\hat{\phi}(\xi) \hat{\eta}(\xi) \geq 0$, for all $\xi \in \mathbb{R}^n$, $\hat{\phi}(0) \hat{\eta}(0) \neq 0$,

(iii) the series

$$\sum_{k \in \mathbb{Z}^n} \hat{\phi}(h\xi + k) \hat{\eta}(h\xi + k)$$

converges and

$$\sum_{k \in \mathbb{Z}^n} \hat{\phi}(h\xi + k) \hat{\eta}(h\xi + k) = \hat{\phi}(h\xi) \hat{\eta}(h\xi) + o(|h\xi|^p)$$

as $|h\xi| \to 0$.

Remark 4.1. (1) If $\eta = \phi$ and σ is a pseudodifferential operator with symbol $\sigma(\xi) = |\xi|^r$, $0 < r \leq \mu$, then the triplet (σ, ϕ, ϕ) is automatically admissible at least for $p = \mu$, where $\mu \in \mathbb{N}$ is used in (2.18) (see [7] for detail).

(2) If $\eta = \phi$ and σ is a pseudodifferential operator with symbol $\sigma(\xi) = \langle \xi \rangle^2$, then the triplet $(\langle \xi \rangle^2, \phi, \phi)$ is admissible for $p = \mu$ (see [6]).

Write

$$u - u_h = [u - F_h(t)[u_0]] + F_h(t)[[u_0] - R_h[u_0]].$$

We have

$$\mathcal{F}(F_h(t)[u_0](\cdot))(\xi) = \exp \left(\frac{at}{h^r} \tilde{\delta}(\xi) \right) \mathcal{F}([[u_0]])(\xi)$$

$$= \exp \left(\frac{at}{h^r} \tilde{\delta}(\xi) \right) \hat{u}_0(\xi), \ \xi \in \mathbb{Z}^n,$$

thus

$$\mathcal{F}(u - F_h(t)[u_0])(\xi)$$

$$= \left\{ \exp(at\sigma(\xi)) - \exp \left(\frac{at}{h^r} \tilde{\delta}(\xi) \right) \right\} \hat{u}_0(\xi), \ \xi \in \mathbb{Z}^n.$$
If the triplet \((\sigma, \phi, \eta)\) is admissible, then it follows from (3.22) and Lemma 3.4 that

\[
\frac{\tilde{\delta}(\xi)}{\tilde{\alpha}(\xi)} = \sigma(h\xi) + O(|h\xi|^p) \quad \text{as } |h\xi| \to 0.
\]

(4.8)

Theorem 4.2. Suppose that \(r + s' \leq s \leq p\), \(0 \leq m \leq s\), and it is assumed that the triplet \((\sigma, \phi, \eta)\) is admissible. Then, for \(u_0 \in L_2 \cap H^m_{\text{ad}}(\mathbb{R}^n), 0 \leq t \leq T\), with \(h\) small enough, we get

\[
||u - F_h(t)[u_0]||_m \leq ch^{s-r}||u_0||_{s'+m,d},
\]

(4.9)

where \(c\) is independent of \(u, h,\) and \(u_0\).

Proof. It follows from (4.8) that

\[
\left| at\sigma(\xi) - \frac{at}{hr}\tilde{\delta}(\xi) \right| \leq ch^{p-r}|\xi|^p \quad \text{as } |h\xi| \leq 1.
\]

(4.10)

The equality

\[
e^{ta} - e^{tb} = t(a-b) \int_0^1 e^{sta+(1-s)tb} ds,
\]

(4.11)

(4.10), and (1.3) imply that, for \(r \leq s \leq p\) and \(0 \leq t \leq T\),

\[
\left| \exp(at\sigma(\xi)) - \left(\frac{at}{hr}\tilde{\alpha}(\xi)\right)^p \right| \leq ch^{s-r}|\xi|^s \quad \text{as } |h\xi| \leq 1.
\]

(4.12)

Hence, from (4.7) and (4.12), we obtain

\[
|\mathcal{F}(u(\cdot, t) - F_h(t)[u_0](\cdot))(\xi)| \leq ch^{s-r}|\xi|^s \hat{u}_0(\xi) \quad \text{as } |h\xi| \leq 1.
\]

(4.13)

By (1.3) and the admissibility of the triplet \((\sigma, \phi, \eta)\), inequality (4.13) is also valid for all \(\xi \in \mathbb{Z}^n\). Hence, for each \(0 \leq m \leq s, r + s' \leq s \leq p\), and \(0 \leq t \leq T\), we get

\[
||u - F_h(t)[u_0]||_m^2 = \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2m} |\mathcal{F}(u(\cdot, t) - F_h(t)[u_0](\cdot))(\xi)|^2
\leq ch^{2(s-r)} \sum_{\xi \in \mathbb{Z}^n} \langle \xi \rangle^{2(m+s)} |\hat{u}_0(\xi)|^2
\leq ch^{2(s-r)}||u_0||_{m+s,d}^2.
\]

(4.14)

The theorem is thus proved. \(\square\)
From the admissibility of the triplet \((\sigma, \phi, \eta)\) and (1.3), it follows that \(F_h(t) : H^m(\mathbb{R}^n) \to H^m(\mathbb{R}^n), 0 \leq m \leq s\), is a continuous linear operator. Consequently,

\[
\|F_h(t)([u_0] - R_h[u_0])\|_m \leq c\|[u_0] - R_h[u_0]\|_m. \quad (4.15)
\]

Therefore, if we assume that

\[
\|(I - R_h)[u_0]\|_m \leq ch^s\|[u_0]\|_{m+s}, \quad (4.16)
\]

then

\[
\|F_h(t)([u_0] - R_h[u_0])\|_m \leq ch^s\|[u_0]\|_{m+s}. \quad (4.17)
\]

Remark 4.3. It follows from (2.23) that the assumption (4.17) is satisfied, when \(R_h = P_j\) for \(0 \leq m, m + s \leq \mu + 1\).

Thus from (4.5), (4.9), and (4.17), we obtain the following theorem.

Theorem 4.4. If all the hypotheses of Theorem 4.2 and assumption (4.17) are satisfied, then

\[
\|u - u_h\|_m \leq ch^{s-r}\|[u_0]\|_{m+s,d} + ch^s\|[u_0]\|_{m+s}, \quad (4.18)
\]

where \(c\) is independent of \(u_0, h\).

Acknowledgment. The authors thank the referee and the managing editor for their helpful comments and suggestions.

References

[1] N. M. Chuong, *Parabolic pseudodifferential operators of variable order*, Dokl. Akad. Nauk SSSR 258 (1981), no. 6, 1308–1312.

[2] ———, *Parabolic systems of pseudo differential equations of variable order*, Dokl. Akad. Nauk SSSR 264 (1982), no. 2, 299–302.

[3] ———, *Degenerate parabolic pseudo differential operator of variable order*, Dokl. Akad. Nauk SSSR 268 (1983), no. 5, 1055–1058.

[4] N. M. Chuong, N. M. Tri, and L. Q. Trung, *Theory of Partial Differential Equations*, Science and Technology Publishing House, Hanoi, 1995 (Vietnamese).

[5] N. M. Chuong and T. N. Tri, *The integral wavelet transform in \(L^p(\mathbb{R}^n)\), \(1 \leq p \leq \infty\)*, Fract. Calc. Appl. Anal. 3 (2000), no. 2, 133–140.

[6] W. Dahmen, S. Prössdorf, and R. Schneider, *Wavelet approximation methods for pseudodifferential equations. I. Stability and convergence*, Math. Z. 215 (1994), no. 4, 583–620.

[7] S. M. Gomes and E. Cortina, *Convergence estimates for the wavelet Galerkin method*, SIAM J. Numer. Anal. 33 (1996), no. 1, 149–161.

[8] L. Hörmander, *The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis*, Grundlehren der Mathematischen Wissenschaften, vol. 256, Springer-Verlag, Berlin, 1983.

[9] Y. Meyer, *Ondelettes et opérateurs. I [Wavelets and Operators. I]*, Actualités Mathématiques, Hermann, Paris, 1990 (French).
[10] , Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, University Lecture Series, vol. 22, American Mathematical Society, Rhode Island, 2001.

[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New Jersey, 1975.

[12] F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, I, II, Plenum Press, New York, 1982.

Nguyen Minh Chuong: National Centre for Natural Science and Technology, Institute of Mathematics, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
Email address: nmchuong@thevinh.ncst.ac.vn

Bui Kien Cuong: Department of Mathematics, Hanoi Pedagogical University, Number 2, Xuan Hoa, Me Linh, Vinh Phu, Vietnam
Email address: bkhcuong@hn.vnn.vn
Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru